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Brief summary 

 
We aimed to investigate the possible role of cortico-basal ganglia loops and 

dopaminergic pathways in the mechanisms of top-down and bottom-up control of visual 

attention (VA). 

We compared the performances on 3 computerized tasks, respectively suitable to study 

attentional capture (AC), motor response selection and movement initiation, of two 

groups of patients with Parkinson’s disease (PD), one evaluated in different sets of 

electrical stimulation (without stimulation, or selective stimulation of the sensorimotor, 

SM, or associative, AS, parts of the subthalamic nucleus, STN), the other in different 

conditions of medication (with or without levodopa), with those of a group of controls. 

Our results showed that in PD there is a weakening of the mechanisms underlying the 

top-down control of VA, which also would account indirectly account for the 

enhancement of AC. Dopaminergic treatment proved to be effective in restoring the top-

down mechanisms of VA, suggesting an involvement of dopaminergic pathways in this 

cognitive domain. These pathways seem to play a role also in the bottom-up mechanisms 

of attention, as suggested by the enhancement of AC under dopaminergic treatment. 

The STN-stimulation showed a similar effect to that obtained by dopaminergic 

treatment, establishing a direct involvement of the basal ganglia loops in VA control. 

Our results highlighted a functional specialization of different sub-territories of the STN 

in relation to the top-down mechanisms. SM stimulation produced marked effects on the 

movement initiation processes and appreciable positive effects on endogenous VA 

mechanisms, while AS stimulation seems to be especially effective in improving the 

mechanisms of target selection. 

 
 
 
Keywords: visual selective attention, attentional capture, deep brain stimulation, 

subthalamic nucleus, Parkinson’s disease. 
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Bref résumé 

 

Le but de cette étude était d’évaluer le rôle des boucles des ganglions de la base et des 

voies dopaminergiques sur les mécanismes « bottom-up » et « « top-down » du contrôle  

de l’attention visuelle (AV). 

Nous avons comparé les performances sur 3 tâches informatisés, appropriées à l’étude de 

la capture attentionnelle (CA), des mécanismes de sélection de la réponse motrice et 

d’initiation du mouvement, de deux groupes de patients avec maladie de Parkinson (MP) 

- un groupe étant évalué dans trois différentes conditions de stimulation électrique (sans 

stimulation, ou stimulation sélective de la partie sensorimotrice, SM, ou de la partie 

associative, AS, du noyau subthalamique, NST), l’autre groupe étant évalué dans deux 

différentes conditions de traitement médical (avec ou sans levodopa) - avec celles d’un 

groupe des sujets contrôles. 

Nos résultats suggèrent dans la MP un affaiblissement des mécanismes « top-down » de 

contrôle de l’AV, ce qui pourrait aussi expliquer indirectement l’augmentation de la CA. 

Le traitement dopaminergique est efficace dans le rétablissement des mécanismes « top-

down » de l’AV, suggérant une implication des voies dopaminergiques dans ce domaine 

cognitif. Ces voies semblent aussi jouer un rôle dans les mécanismes « bottom-up » de 

l'attention, comme l'a suggéré le renforcement de la CA sous traitement dopaminergique. 

La stimulation du NST a montré un effet similaire à celui obtenu par un traitement 

dopaminergique, en favour d’une implication directe des boucles des ganglions de la 

base dans le contrôle de l’AV. Nos résultats ont mis en évidence une spécialisation 

fonctionnelle de différents sous-territoires du NST en ce qui concerne les mécanismes de 

« top-down ». La stimulation SM produit des effets marqués sur les processus 

d’initiation de mouvement et des effets positifs sur les mécanismes endogènes de l’AV, 

alors que la stimulation de la partie AS semble être plus particulièrement efficace dans 

l’amélioration des mécanismes de sélection de cible. 

 

Mots clés: attention visuelle sélective, capture attentionelle, stimulation cérébrale 

profonde, nayaux subthalmique, maladie de Parkinson. 
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Riassunto sintetico 

 
Lo scopo di questo studio è stato quello di valutare il possibile ruolo dei diversi circuiti 

cortico-sottocorticali passanti per i gangli della base e della via dopaminergica sui 

meccanismi di top-down e bottom-up dell’attenzione visiva (AV). 

A tal fine, abbiamo confrontato le prestazioni in 3 paradigmi computerizzati, adatti a 

studiare la cattura attenzionale (AC), la selezione della risposta motoria, e l’avvio del 

movimento, di due gruppi di pazienti affetti da malattia di parkinson (MP) - uno valutato 

in differenti condizioni di stimolazione elettrica (senza stimolazione, con stimolazione 

selettiva dell’area sensorimotoria, SM, o di quella associativa, AS, del nucleo 

subtalamico, NST), l’altro in differenti condizioni terapeutiche (con o senza trattamento 

dopaminergico) - con quelle di un gruppo di soggetti di controllo. 

I nostri risultati hanno evidenziato che nella MP vi è un indebolimento dei meccanismi 

top-down di controllo dell’AV, che può spiegare, indirettamente, il parallelo incremento 

dell’AC osservato nelle medesime condizioni. Il trattamento dopaminergico si è 

dimostrato efficace nel ricondurre alla normalità i meccanismi top-down dell’AV, 

suggerendo un coinvolgimento della via dopaminergica in questa funzione della sfera 

cognitiva. Questa via sembra giocare un ruolo anche nei meccaniesmi di bottom-up 

dell’attenzione, come suggerito dall’aumento della CA osservato per effetto del 

trattamento dopaminergico. 

La stimolazione del NST ha evidenziato un quadro simile a quello ottenuto con il 

trattamento dopaminergico, indicando un coinvolgimento diretto dei gangli della base 

nel controllo dell’AV. In particolare, i nostri risultati evidenziano una specializzazione 

funzionale dei differenti sub-territori del NST, nei meccanismi top-down. La 

stimolazione dell’area SM ha degli effetti pronunciati sui meccanismi d’avvio del 

movimento e un effetto positivo sui meccanismi dell’AVE, mentre la stimolazione AS 

sembra essere efficace soprattutto sui meccanismi di selezione del target.  

 

 

Parole chiave: attenzione visiva selettiva, cattura attenzionale, stimolazione cerebrale 

profonda, nucleo subtalamico, malattia di Parkinson. 
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Abstract 
 
 
Introduction.  Some findings suggest that non-demented Parkinson’s disease (PD) 

patients may be impaired in visual selective attention tasks, which involve the ability 

to focus on relevant information in a goal-direct manner (endogenous visual attention, 

EVA), while ignoring other interfering irrelevant stimuli. Indeed, patients may present 

enhanced distractibility in the presence of salient objects/events, which are able to 

capture their attention, determining a cost in terms of reaction time and accuracy 

during a goal-directed behaviour (attentional capture, AC), sufficiently to interfere 

with their daily activity. These observations suggest a possible involvement of the 

basal ganglia in visual attention (VA), since PD symptoms are mainly related to a 

striatal (dopaminergic) defect. Up to now, evidence for a role of the cortico-basal-

ganglia loops in modulating VA mechanisms is poor and indirect. 

Objective. To assess the role of different cortico-basal ganglia loops and dopaminergic 

pathways on the mechanisms underlying EVA and AC, by using two effective 

treatments in PD, that is dopaminergic and subthalamic nucleus (STN) stimulation.  

Methods. The main instrument for our study was an AC task, which was appropriately 

integrated with a choice reaction time task and a simple motor reaction time task, to 

assess the effectiveness of the mechanisms underlying AC and visual selection of the 

target (EVA), as well as the mechanisms of motor response selection and movement 

initiation. We compared the performance on these tasks of two groups of PD patients, 

one evaluated in different sets of electrical (without stimulation, or selective 

stimulation of the sensorimotor, SM, or associative, AS, parts of the STN) stimulation, 

the other in different conditions of medication (with or without dopaminergic 

treatment), with those of a group of healthy subjects. 

Results. PD patients assessed after withdrawal of dopaminergic treatment and after 

turning-off stimulation (stim-off) showed increased AC compared to healthy subjects. 

Also, target selection (EVA) and movement initiation times were prolonged in both 

groups of patients, while motor response selection time was significantly increased 

only in the otherwise stimulated group. It is noteworthy that the usual dopaminergic 

treatment of otherwise electrically stimulated patients was at significantly lower 

dosage than that of the otherwise pharmacologically treated group. 
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Under usual dopaminergic treatment and stimulation of the SM as well as AS part of 

the STN, patients showed similarly increased AC in terms of ∆RT (difference in 

reaction times between trials with and without singleton distractor of the AC task). 

Dopaminergic treatment and AS stimulation improved EVA, restoring it to the level of 

control subjects. Also the SM stimulation allowed a significant recovery of EVA 

compared to the stim-off condition, but to a lesser extent compared to that obtained by 

AS stimulation. No appreciable effects were observed on motor response selection 

times by stimulation of either site. The movement initiation RTs were reduced 

compared to the stim-off condition only by stimulation of the SM part of the STN. 

Conclusions. Our results showed that in PD there is a weakening of the mechanisms 

underlying the top-down control of VA, which likely indirectly accounts also for the 

enhancement of AC. This finding is part of a more composite scenario of deficits, 

especially in otherwise stimulated patients, who undergo a milder drug treatment than 

pharmacologically treated patients, including slowing of the processes of movement 

initiation, and slowing of the processes of motor response selection. 

Dopaminergic treatment proves to be effective not only in restoring movement 

initiation mechanisms, but also the top-down mechanisms of VA, suggesting an 

involvement of the dopaminergic pathways in this cognitive domain.  

In parallel with the amelioration of the mechanisms of target selection, the observed 

enhancement of AC under dopaminergic treatment suggests that the dopaminergic 

pathways may be involved also in the mechanisms that compute salience of visual 

stimuli, or the bottom-up control of attention, although other interpretations are 

available. 

The stimulation of the STN shows a similar effect to that obtained by dopaminergic 

treatment, establishing a direct involvement of the basal ganglia in VA control. In 

particular, our results strengthen the idea of a functional specialization of different 

sub-territories of the STN, and of the different cortico-basal ganglia loops in which 

they are integrated in relation to the top-down mechanisms of VA. As a matter of fact, 

two well distinct patterns seem to emerge depending on the stimulated region: SM 

stimulation produces marked effects on the movement initiation processes and 

appreciable positive effects on EVA mechanisms, while AS stimulation seems to be 

especially effective in improving the mechanisms of target selection. On the other 
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hand, no functional specialization of the sub-territories of STN in relation to the 

exogenous mechanisms of VA seems to emerge, suggesting that top-down and bottom-

up mechanisms are supplied by different anatomical networks involving the cortico-

basal-ganglia loops. 
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Résumé 
 
 
Introduction.  Plusieurs études suggèrent que les patients parkinsoniens sans démence 

pourraient présenter des déficits dans des tâches d’attention visuelle sélective qui 

nécessitent l’habilité a orienter volontairement leur attention vers un but (attention 

visuelle endogène, AVE) en ignorant tout autre stimuli non pertinents potentiellement 

sources d’interférences. En effet, les patients pourraient présenter une augmentation de 

la distractibilité en présence d’objets ou évènements saillants, qui ont la capacité de 

capturer l’attention du patient au cours d’un comportement dirigé vers un but, 

engendrant un coût suffisamment important en termes de temps de réaction et de 

précision (capture attentionnelle, CA), pour interférer avec les activités quotidiennes. 

Ces observations suggèrent une implication possible des ganglions de la base dans 

l’attention visuelle (AV), étant donné que les symptômes de la maladie sont 

principalement liés à un déficit striatal en dopamine. Jusqu’à présent, les éléments en 

faveur d’un rôle des boucles cortico-ganglions de la base dans la modulation des 

mécanismes de l’AV sont faibles et indirects. 

Objectif.  Évaluer le rôle des boucles cortico-ganglions de la base et des voies 

dopaminergiques sur les mécanismes sous-jacents à l’AVE et la CA, en utilisant deux 

traitements effectifs de la maladie de Parkinson (MP), que sont les traitements 

dopaminergiques et la stimulation du noyau subthalamique (NST).  

Méthodes. Le principal instrument pour notre étude à été une tâche de CA, qui a été 

intégrée de façon appropriée avec une tâche de temps de réaction de choix et une autre 

tâche de temps de réaction motrice simple afin d’évaluer l’efficacité des mécanismes 

sous-jacents à la CA et à la sélection visuelle de la cible (AVE), ainsi que les 

mécanismes de sélection de réponse motrice et d’initiation de mouvement. Nous avons 

comparé les performances de deux groupes de patients parkinsonien sur ces tâches - un 

groupe étant évalué dans trois différentes conditions de stimulation électrique (sans 

stimulation, ou stimulation sélective de la partie sensorimotrice, SM, ou de la partie 

associative, AS, du NST), l’autre groupe étant évalué dans deux différentes conditions 

de traitement médical (avec ou sans traitement dopaminergique) - avec celles d’un 

groupe des sujets contrôles sains.  

Résultats. Les patients évalués à jeun de traitement antiparkinsonien et après l’arrêt de 
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la stimulation (stim-off) ont montré une augmentation de la CA par rapport aux sujets 

sains. De même, les temps de sélection de la cible (AVE) et d’initiation de mouvement 

étaient augmentés dans les deux groupes de patients, alors que le temps de sélection de 

la réponse motrice n’augmentait de façon considérable que dans le groupe stimulé. Il 

convient de remarquer que le traitement dopaminergique habituel de patients autrement 

stimulés électriquement consistait en un dosage nettement plus faible que le groupe des 

patients autrement traités de manière pharmacologique. 

Sous traitement dopaminergique habituel et sous stimulation des parties SM et AS du 

NST, les patients ont montré une augmentation comparable de la CA en termes de ∆RT 

(différence des temps de réaction entre les essais avec et sans distracteur de la tâche de 

CA). Le traitement dopaminergique et la stimulation de la partie AS du NST 

amélioraient l’AVE, en la ramenant au niveau des sujets de contrôle. De même, la 

stimulation de la partie SM du NST permettait une récupération considérable de l’AVE 

par rapport à la condition stim-off, mais dans une moindre mesure que celle obtenue 

par une stimulation de la partie AS. Aucun effet appréciable n’a été observé sur les 

temps de sélection de la réponse motrice par stimulation de l’un ou l’autre site. 

Les temps de réaction motrice simple n’étaient réduits par rapport à la condition de 

stim-off que par la stimulation de la partie SM du NST. 

Conclusions. Nos résultats suggèrent dans la MP, un affaiblissement des mécanismes 

« top-down » de contrôle de l’AV, ce qui pourrait aussi expliquer indirectement 

l’augmentation de la CA. Cette constatation s’inscrit dans le cadre d’un scénario plus 

composite des déficits, qui inclut le ralentissement des mécanismes d’initiation de 

mouvement, et le ralentissement des mécanismes de sélection de la réponse motrice,  

en particulier chez les patients stimulés électriquement qui sont soumis à un traitement 

dopaminergique plus faible que les malades traités seulement de manière 

pharmacologique.  

Le traitement dopaminergique est efficace dans le rétablissement non seulement des 

mécanismes d’initiation de mouvement, mais ègalement des mécanismes « top-down » 

de l’AV, suggérant une implication des voies dopaminergiques dans ce domaine 

cognitif. Parallèlement à l'amélioration des mécanismes de sélection de la cible, le 

renforcement observé de la CA sous traitement dopaminergique pourrait suggérer que 

la voie dopaminergique puisse également avoir un rôle dans les mécanismes 
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d’évaluation de saillance des stimuli visuels, ou le contrôle « bottom-up » de 

l’attention, bien que d’autres interprétations soient possibles. 

La stimulation du NST a montré un effet similaire à celui obtenu par un traitement 

dopaminergique, en favour d’une implication directe des boucles cortico-ganglions de 

la base dans le contrôle de l’AV. En particulier, nos résultats ont mis en évidence une 

spécialisation fonctionnelle de différents sous-territoires du NST et des différentes 

boucles cortico-ganglions de la base dans lesquels ils sont intégrés en ce qui concerne 

les mécanismes de « top-down » de l’AV. En fait, deux modèles bien distincts semblent 

émerger selon le site stimulé: la stimulation de la partie SM produit des effets marqués 

sur les processus d’initiation de mouvement et des effets positifs appréciables sur les 

mécanismes de l’AVE, alors que la stimulation de la partie AS semble être plus 

particulièrement efficace dans l’amélioration des mécanismes de sélection de cible. 

D’autre part, il semble y avoir aucune spécialisation fonctionelle des sous-territoires du 

NST par rapport aux mécanismes exogènes de l’AV, suggérant que les mécanismes 

« top-down » et « bottom-up » de l’AV soient fournis par des réseaux anatomiques 

différents, impliquant les boucles des ganglions de la base. 
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Riassunto 
 
 
Introduzione. Alcuni studi suggeriscono che pazienti non-dementi affetti da Malattia 

di Parkinson (MP), possono presentare un’alterazione delle prestazioni durante 

l’esecuzione di compiti di attenzione visiva selettiva, che consiste nella capacità di 

focalizzare volontariamente l’attenzione su informazioni rilevanti (attenzione visiva 

endogena, AVE), ignorando nel contempo altri stimoli irrilevanti, che possono 

distogliere dall’obiettivo prefissato. Infatti, i pazienti possono presentare una spiccata 

distraibilità in presenza di oggetti/eventi salienti capaci di catturare l’attenzione 

durante l’esecuzione di un compito finalizzato (cattura attenzionale, CA), 

determinando un costo in termini di tempo di reazione e di accuratezza tale da 

interferire con le loro attività quotidiane.  

Queste osservazioni suggeriscono un possibile coinvolgimento dei gangli della base 

nell’attenzione visiva (AV), poiché i sintomi della MP sono principalmente correlati a 

un deficit striatale dopaminergico. Ad oggi, la dimostrazione di un coinvolgimento dei 

circuiti cortico-sottocorticali nell’AV è parziale ed indiretta.  

Obiettivi.  Valutare il ruolo dei diversi circuiti cortico-sottocorticali passanti per i 

gangli della base e della via dopaminergica sui meccanismi che sottendono l’AVE e la 

CA, utilizzando due trattamenti efficaci nella malattia di Parkinson: la terapia 

dopaminergica e la stimolazione del nucleo subtalamico (NST). 

Metodi. Il principale strumento impiegato nel nostro studio è stato un paradigma di CA 

opportunamente integrato con un paradigma di “choice reaction time” ed un altro di 

“simple motor reaction time”. Questi tests hanno permesso di valutare l’efficacia sia 

dei meccanismi che sottendono la CA e la selezione visiva del target (AVE), sia di 

quelli di selezione della risposta motoria e di avvio del movimento. Con questi 

paradigmi, abbiamo confrontato le prestazioni di due gruppi di pazienti affetti da MP -  

uno valutato in differenti condizioni di stimolazione elettrica (senza stimolazione, con 

stimolazione selettiva dell’area sensorimotoria, SM, o di quella associativa, AS, del 

NST), l’altro in differenti condizioni terapeutiche (con o senza trattamento 

dopaminergico) - con quelle di un gruppo di soggetti sani di controllo. 

Risultati. I pazienti valutati a digiuno di trattamento dopaminergico e dopo lo 

spegnimento della stimolazione (stim-off) evidenziavano un aumento della CA rispetto 
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ai soggetti sani. Inoltre, i tempi di selezione del target (AVE), e di avvio del 

movimento risultavano prolungati in entrambi i gruppi di pazienti, mentre il tempo di 

selezione della risposta motoria era significativamente aumentato soltanto nel gruppo 

degli stimolati. É rilevante notare che l’usuale trattamento dopaminergico del gruppo 

dei pazienti stimolati elettricamente era significativamente inferiore rispetto a quello 

del gruppo di pazienti trattato solo farmacologicamente.  

Per effetto sia del trattamento dopaminergico abituale, sia della stimolazione delle aree 

SM e AS del NST, i pazienti evidenziavano un incremento simile della CA in termini 

di ∆RT (inteso come differenza nei tempi di reazione tra i trials con e senza distrattore 

del paradigma di CA). Il trattamento dopaminergico e la stimolazione dell’area AS del 

NST miglioravano l’AVE, riportandola al livello di quella dei soggetti di controllo. 

Anche la stimolazione dell’area SM consentiva di ottenere un miglioramento 

significativo dell’AVE rispetto alla condizione di stim-off, ma di entità inferiore 

rispetto a quello ottenuto per stimolazione dell’area AS. Per stimolazione di entrambe 

le aree del NST non si sono ottenuti modificazioni apprezzabili sui tempi di selezione 

della risposta motoria.  

I tempi di avvio del movimento risultavano accorciati rispetto alla condizione di stim-

off solo per stimolazione della parte SM del NST.  

Conclusioni. I nostri risultati suggeriscono che nella MP vi è un indebolimento dei 

meccanismi top-down di controllo dell’AV, il che può spiegare, indirettamente, il 

parallelo incremento dell’AC osservato nelle medesime condizioni. Questo risultato è 

parte di un quadro variegato di deficit, in particolare nei pazienti stimolati 

elettricamente - i quali abitualmente assumono una quantità di terapia dopaminergica 

inferiore rispetto a quelli trattati solo farmacologicamente - che include il 

rallentamento dei processi di avvio del movimento, e il rallentamento dei processi di 

selezione della risposta motoria. 

Il trattamento dopaminergico si è dimostrato efficace non solo nel migliorare i 

meccanismi d’avvio del movimento, ma anche nel ricondurre alla normalità i 

meccanismi top-down dell’AV, suggerendo un coinvolgimento della via dopaminergica 

in questa funzione della sfera cognitiva. 

Parallelamente al miglioramento dei meccanismi di selezione del target, l’aumento 

della CA osservato per effetto del trattamento dopaminergico suggerisce che la via 
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dopaminergica possa avere un ruolo nei meccanismi di computazione della salienza 

degli stimoli visivi, o il controllo “bottom-up” dell’attenzione, sebbene altre 

interpretazioni siano possibili. 

La stimolazione del NST ha evidenziato un quadro simile a quello ottenuto con il 

trattamento dopaminergico, indicando un coinvolgimento diretto dei gangli della base 

nel controllo dell’AV. In particolare, i nostri risultati rafforzano l’ipotesi di una 

specializzazione funzionale dei differenti sub-territori del NST, e dei diversi circuiti 

cortico-sottocorticali passanti per i gangli della base in cui essi sono integrati, nei 

meccanismi top-down dell’AV. In effetti, due quadri ben distinti sembrano emergere in 

funzione della regione stimolata: la stimolazione dell’area SM ha degli effetti 

pronunciati sui meccanismi d’avvio del movimento e un effetto positivo sui 

meccanismi dell’AVE, mentre la stimolazione AS sembra essere efficace soprattutto 

sui meccanismi di selezione del target. D’altra parte, non abbiamo evidenziato alcuna 

specializzazione funzionale dei differenti sub-territori del NST in rapporto ai 

meccanismi esogeni dell’AV. Ciò suggerisce che differenti circuiti neuronali, che 

coinvolgono i gangli della base, sottendono i meccanismi di top-down e bottom-up. 
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Abbreviations 

 

AC: attentional capture 

AS: associative 

BDI-II: Beck Depression Inventory-II 

DBS: deep brain stimulation 

DBS-STN: deep brain stimulation of the subthalamic nucleus 

DM: decision-making 

EVA: endogenous visual attention 

FAB: Frontal Assessment Battery 

fMRI: functional magnetic resonance imaging 

IE: inverse efficiency 

MDRS: Mattis Dementia Rating Scale 

MMSE: Mini-Mental State Examination 

med-off: medication-off condition 

med-off/ASstim-on: medication-off/associative stimulation-on condition 

med-off/SMstim-on: medication-off/sensorimotor stimulation-on condition 

med-off/stim-off: medication-off/stimulation-off condition 

med-on: medication-on condition 

PET: positron emission tomography 

PD: Parkinson’s disease 

RT: reaction time 

SAS: Starkstein Apathy Scale 

SE: standard error mean 

SM: sensorimotor 

SRT: simple reaction time 

STN:  subthalamic nucleus 

UPDRS III: Unified Parkinson Disease Rating Scale part III 

V: voltage 

V1: primary visual cortex 

V2: visual area V2 or prestriate cortex 

V3A: visual area V3A 

V4: visual area V4 
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Background 
 

Parkinson’s disease (PD) affects 1.8% of people over 65 years. In rare cases, 

termed “early onset”, sometimes of genetic origin, the disease begins between 18 and 

40 years of age. PD is a gradually progressive neurodegenerative disorder. The main 

clinical signs are: tremor at rest, rigidity (hypertonia), bradykinesia (slowed and 

reduced voluntary and spontaneous movements), akinesia (difficulty to initiate 

movements), and postural disorders.1-3 

Moreover, PD is known to be accompanied in many instances by a variety of 

cognitive deficits.4 Generalized deficits in intellectual functions5-7 have been reported, 

as well as more subtle and specific difficulties with visual-spatial perception,8, 9 

memory,10, 11 language,12 concept formation and behavioural regulation.10, 13, 14  

Findings from several studies of PD patients suggest that this clinical 

population may have an attentional deficit. Poor concentration15 and the inability to 

attend to more than one act at a time16 have been reported in PD patients. In addition, 

these patients have been shown to exhibit difficult shifting from one set to another on 

the Wisconsin Card Sorting Test,9, 14 to be unable to maintain a set against competing 

alternatives on the Odd-Man-Out choice discrimination task,10 and are more prone to 

interference in the presence of a distactor stimulus than normal controls as measured 

on a dichotic listening task.17  

Several behavioural studies indicate that PD patients with normal cognitive 

status may be impaired on visual attention tasks,18-20 and more specifically on visual 

selective attention tasks.21, 22 Besides, there is some evidence of an enhanced 

distractibility of PD patients in the presence of an irrelevant but salient stimulus, 

sufficient to interfere with their daily activity.23-25  

 

Visual selective attention 

One of the most severe problems of visual perception is information overload. 

Our capacity-limited brain is not equipped to deal with the vast amount of sensory 

information that more or less continuously is presented to us at any given time. Thus, 

it is important for the nervous system to make decisions which part of the available 

information needs to be selected for further, more detailed processing, and which 
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parts are to be discarded. Furthermore, the selected stimuli need to be prioritized, with 

the most relevant being processed first and the less important ones later, thus leading 

to a sequential treatment of different parts of the visual scene. This selection and 

ordering process is called visual selective attention. 

Visual selective attention can be accomplished using one of two functionally 

different control mechanisms. Endogenous or top–down control refers to a voluntary 

mode of orienting that serves to keep attention directed at locations where 

behaviourally relevant stimuli are expected, regardless of the actual presence of 

stimuli.26 Endogenous attention is said to be goal-directed when attentional priority is 

given to those events and objects that are in line with the current goals of the observer, 

personal history, and experiences. In contrast, exogenous or bottom–up driven control 

refers to a presumably automatic mechanism in which salient stimuli capture attention, 

without taking into account the internal state of the organism.27-29 

A dramatic example of a stimulus that attracts attention using bottom-up 

mechanisms is a fire-cracker going off suddenly, while an example of top-down 

attention is the focusing onto difficult-to-find food items by an animal that is hungry, 

ignoring more "salient" stimuli. 

According to the biased competition model of attention, as developed by 

Desimone and Duncan (1995), the competition among visual stimuli for neural 

representation occurs within visual cortex itself, and it can be biased by both top-

down influences and bottom-up sensory-driven mechanisms. The stimulus that wins 

the competition for neural representation will have further access to memory systems 

for mnemonic encoding and retrieval and to motor systems for guiding action30 (Fig.1) 

 

Competition among visual stimuli biased by bottom-up mechanisms 

Now, we have a fairly good understanding of how bottom-up sensory-driven 

mechanisms modulate the sensory interaction among multiple visual stimuli for neural 

representation, as revealed by the recording of single-cell activity, and hemodynamic 

events in neuroimaging studies. One way is by stimulus conspicuousness which occurs 

when an object has a unique feature (e.g. color, luminance, orientation, motion, size) 

that sets it apart from the rest of the image.31 The term “pop-out” is often used to 

describe this capturing of attention through a bottom-up selection process.  
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Fig.1 The biased competition model of visual attention. 

 

 

Single-cell recording studies in the monkey have shed light on the neural 

correlates for competitive interactions among multiple objects in the visual field, by 

comparing responses to a single visual stimulus presented alone in a neuron’s 

receptive field with the responses to the same stimulus when a second one is presented 

simultaneously within the same receptive fields.32, 33 It has been shown that the 

responses to the paired stimuli within the receptive field were a weighted average of 

the responses to the individual stimuli when presented alone. For example, if a single 

effective stimulus elicited a high firing rate and a single ineffective stimulus elicited a 

low firing rate, the response to the paired stimuli was reduced compared to that 

elicited by the single effective stimulus. This result indicates that two stimuli present 

at the same time within a neuron’s receptive field are not processed independently, for, 

if they were, then the responses to the two stimuli when presented together would 

Top-down feedback mechanisms:  
fronto-parietal attentional 

network 

Bottom-up sensory-driven 

Output to: 

Memory and 
motor systems 

Competition among multiple stimuli 
for representation in visual cortex 
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have summed. Rather, the reduced response to the paired stimuli suggests that the two 

stimuli within the receptive field interacted with each other in a mutually suppressive 

way. This sensory suppressive interaction among multiple stimuli has been interpreted 

as an expression of competition for neural representation. Sensory suppression among 

multiple stimuli present at the same time in the visual field has been found in several 

areas of the visual cortex, including extrastriate areas V2, V4, the middle temporal 

and medial superior temporal areas, and the inferior temporal cortex.32-35 

Based on hypotheses derived from these monkey physiology studies, Kastner et 

al. (1998) examined competitive interactions among multiple stimuli in the human 

cortex using functional magnetic resonance imaging (fMRI). 36 In these studies, 

hemodynamic changes, as measured by fMRI, were used as indirect measures of 

neural activity. Complex, colourful visual stimuli, known to evoke robust responses in 

ventral stream visual areas of the monkey brain, were presented eccentrically in four 

nearby locations of the upper right quadrant of the visual field, while subjects 

maintained fixation. The stimuli were presented under two different presentation 

conditions, sequential and simultaneous. In the sequential presentation condition, a 

single stimulus appeared in one of the four locations, then another appeared in a 

different location, and so on, until each of the four stimuli had been presented in the 

four different locations. In the simultaneous presentation condition, the same four 

stimuli appeared in the same four locations, but they were presented together. Thus, 

integrated over time, the physical stimulation parameters were identical in each of the 

four locations in the two presentation conditions. However, sensory suppression 

among stimuli within receptive fields could take place only in the simultaneous, not in 

the sequential presentation condition, and in the correspondent brain areas seen for the 

monkeys. Importantly, the difference in activations between sequential and 

simultaneous presentations was smallest in V1 and increased in magnitude towards 

ventral extrastriate areas V4 and temporal-occipital area, and dorsal extrastriate areas 

V3A and middle temporal area. This increase in magnitude of the sensory suppressive 

effects across visual areas suggests that the sensory interactions were scaled to the 

increase in receptive field size of neurons within these areas. That is, the small 

receptive fields of neurons in V1 and V2 would encompass only a small portion of the 

visual display, whereas the larger receptive fields of neurons in V4, temporal-occipital 
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area, V3A and middle temporal area would encompass all four stimuli. Therefore, 

suppressive interactions among the stimuli within receptive fields could take place 

most effectively in these more anterior extrastriate visual areas.31, 37 

 

Competition among visual stimuli modulated by top-down biasing signals  

Several findings support the idea that unwanted distracting information is 

effectively filtered out by attention. Single-cell recording studies in the monkey have 

demonstrated that when a monkey directs attention to one of two competing stimuli 

within a receptive field in extrastriate areas V2 and V4, the response is similar to the 

response to that stimulus presented alone.33 These findings imply that attention may 

resolve the competition among multiple stimuli by counteracting the suppressive 

influences of nearby stimuli, thereby enhancing information processing at the attended 

location. This may be an important mechanism by which attention filters out 

unwanted information from cluttered visual scenes.30 

A similar mechanism operates in the human visual cortex, as revealed by fMRI 

studies, while subjects have to spatially direct attention on multiple competing visual 

stimuli in two different attentional conditions, that is either unattended or attended 

condition.31, 36 During the unattended condition, attention was directed away from the 

visual display, while in the attended condition, subjects were instructed to maintain 

fixation and attend covertly (in an act of mentally focusing on one sensory stimulus, 

apart from eye movements) to the peripheral stimulus location closest to fixation in 

the display. In the attended condition the extent of activation of visual striate and 

extrastriate cortex areas increased significantly compared to the unattended condition. 

More importantly, and in accordance with prediction from monkey physiology, 

directed attention led to greater increases of fMRI signals to simultaneously presented 

stimuli than to sequentially presented stimuli. Additionally, the magnitude of the 

attentional effect scaled with the magnitude of the suppressive interactions among 

stimuli, with the strongest reduction of suppression occurring in ventral extrastriate 

areas V4 and temporal-ocipital area, suggesting that the effects scaled with receptive 

field size. 
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Visual attention paradigms to separately study top-down and bottom-up driven 

control 

The most common experimental paradigm used to study visuospatial attention 

is the Posner paradigm.26, 31, 38, 39 This experimental task revolves around cued 

visuospatial orientation that requires attentional activation. Subjects staring at a 

fixation point are usually presented with a cue that guides the individual toward a 

particular spatial location.40, 41 This prepares the attentional system of the individual 

to anticipate and respond specifically to the corresponding target following the 

eliciting cue.  

The cue and target are usually separated by relatively long intervals so that 

neural activation of attention can be assessed in the presence and absence of visual 

stimuli.31 This helps to elucidate the neural mechanisms associated with attentional 

activation versus direct visual activation. A variation to this task increases 

visuospatial target unpredictability by using more randomly cued locations. This 

forces bottom-up pathway activation related to the stimulus-driven processes of 

visuospatial attention.31, 40, 41  

The Posner’s cueing paradigm includes slight variations, which allowed to 

elucidate the different pathways underlying endogenous and exogenous visual 

selective attention (i.e. top-down vs. bottom-up mechanisms), as reported in the next 

section. 

In the endogenous orienting condition, a central cue (typically an arrow) points 

to a possible target location, thereby allowing the participants to focus their attention 

on that location. After cue presentation, the target will appear at the cued location 

(valid) in the majority of the trials, but will sometimes appear at an uncued location 

(invalid). The typical finding is that participants tend to respond faster and with 

higher accuracy to the target if it is presented at the cued location than when it is 

presented at the uncued location, revealing a benefit of location-cueing.  

In an exogenous orienting condition, typically a brief peripheral onset cue is 

presented at one of the target locations. The cue does not predict the location of the 

subsequent target and it is assumed that the cue attracts attention automatically. 

Similar to central cueing, subjects are faster in responding to targets presented at the 

cued location than at the uncued location. However, unlike in central cueing, when the 
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stimulus onset asynchrony between cue and target exceeds approximately 250 ms, 

subjects respond more slowly to targets presented at the cued location.39, 42 This 

phenomenon is called inhibition of return. Inhibition of return is believed to be the 

result of an automatic build-up of inhibition that occurs over time following the 

withdrawal of attention from the cued location.39, 43  

Posner and colleagues’ merit was to be able to assess in isolation the 

exogenous and endogenous components of visual attention by means of two variants 

of a very simple paradigm. 

 

Top-down attentional control 

Tract-tracing studies in monkeys have given insights into a distributed network 

of higher-order areas in frontal and parietal cortex that appears to be involved in the 

generation and control of attentional top-down feedback signals, as proposed by the 

biased competition model. In particular, these studies demonstrated direct feedback 

projections to extrastriate visual areas V4 and temporal-occipital area from parietal 

cortex and to anterior inferior temporal cortex from prefrontal cortex, as well as 

indirect feedback projections to areas V4 and temporal-occipital area from prefrontal 

cortex via parietal cortex44, 45 (Fig.2).  

The evidence that the top-down biasing signals generated in frontal and parietal 

areas produce a change within visual cortex derives from single-cell recording studies, 

which showed that spontaneous (baseline) firing rates were 30–40% higher for 

neurons in areas V2 and V4 when a monkey was cued to attend covertly to a location 

within the neuron’s receptive field before the stimulus was presented there.46 This 

increased baseline activity, termed the ‘baseline shift’, has been interpreted as a direct 

demonstration of a top-down signal that feeds back from higher-order control areas to 

lower-order processing areas. In the latter areas, stimuli at attended locations would 

be biased to ‘win’ the competition for processing resources at the expense of stimuli 

appearing at unattended locations.30, 31, 47, 48 

Prefrontal cortex, namely the dorsolateral prefrontal cortex in humans, provides 

both inhibitory and excitatory input to distributed neural circuits required to support 

performance in diverse selective attention tasks.49  
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Fig.2  Anatomical substrate for top-down influences. Cortical visual processing, as outlined 

on a lateral view of a monkey brain, originates in the primary visual cortex (V1) and 

proceeds both ventrally and dorsally to temporal and parietal regions, respectively, before 

converging in prefrontal cortex. Red arrows indicate potential feedback connections that 

might provide the anatomical substrate for top-down attentional effects. Abbreviations: PFC, 

prefrontal cortex; PG, inferior parietal cortex; TE, anterior inferior temporal area; TEO, 

temporal-occipital area.31 

 

The distractibility theory postulates that prefrontal patients are unable to 

suppress responses to irrelevant stimuli in a range of sensory and cognitive 

processes.50 In particular, enhancements of primary auditory and somatosensory 

cortical responses to task-irrelevant distracters have been found in neurological 

patients with dorsolateral prefrontal damage51 and in schizophrenic patients with 

prefrontal hypometabolism on positron emission tomography (PET) scanning.52 This 

suggests that prefrontal damage disrupts inhibitory modulation of inputs to primary 

sensory cortex, perhaps through abnormalities in a prefrontal-thalamic sensory gating 

system, contributing to the attentional deficits observed in these patients. In addition 

to a critical role in inhibitory control of sensory flow to primary cortical regions, 

prefrontal cortex also exerts excitatory input to activity in multiple sub-regions of 
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secondary visual and auditory association cortex. Unilateral prefrontal damage results 

in multi-modal decreases in neural activity in posterior association cortex in the 

hemisphere ipsilateral to damage. This excitatory modulation is necessary to sustain 

neural activity during working memory.49 

In humans, several studies provide evidence that a fronto-parietal attentional 

network may be the source of feedback that generates the top-down biasing signals 

modulating activity in visual cortex.31 Interestingly, a fronto-parietal network of 

regions consisting of areas in the superior parietal lobule, the frontal eye field, and the 

supplementary eye field has been consistently activated in a variety of tasks involving 

visuospatial attention.53-57 Other studies showed that directed attention in the absence 

of visual stimulation activated the same distributed network of areas as directed 

attention in the presence of visual stimulation and consisted of the frontal eye field, 

the supplementary eye field, and the superior parietal lobule. A time course analysis 

of the fMRI signals revealed that there was an increase in activity in these frontal and 

parietal areas during the expectation period (in the absence of visual input), with no 

further increase in activity evoked by the attended stimulus. These results suggest that 

the activity reflected the attentional operations of the task per se and not the effects of 

attention on visual processing. This conclusion is supported by the finding that, in the 

unattended condition, no significant visually evoked activity was observed in these 

frontal and parietal regions.58, 59  

Additional evidence for a fronto-parietal network of regions involved in 

attentional control comes from another imaging study. By using an endogenous 

orienting condition similar to that of the Posner’s paradigm, Corbetta et al. (2000) 

showed that the intraparietal sulcus was uniquely active when attention was directed 

toward and maintained at a relevant location (preceding target presentation), 

suggesting that the intraparietal sulcus is a top-down source of biasing signals 

observed in visual cortex.60 Conversely, the exogenous orienting condition of Posner’s 

paradigm, revealed right-hemisphere predominant activations, specifically 

encompassing regions in the temporal-parietal junction, anterior insula, and the 

ventral frontal cortex. 

Corbetta and Shulman (2002) have recently proposed two anatomically 

segregated but interacting networks for spatial attention. According to their scheme, a 
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dorsal fronto-parietal system is involved in the generation of attentional sets 

associated with goal-directed stimulus-response selection. Key nodes within this 

largely bilateral network include the intraparietal sulcus/superior parietal lobule and 

the frontal eye field. A second, ventral system, which is strongly lateralized to the 

right hemisphere, is proposed to detect behaviourally relevant stimuli and to work as 

an alerting mechanism for the first system when these stimuli are detected outside the 

focus of attention. This latter network is thought to involve the temporo-parietal 

junction (at the intersection of the inferior parietal lobule and the superior temporal 

gyrus) and the middle and inferior frontal gyri. Overall, the dorsal and ventral 

networks can be thought of as subserving, respectively, endogenous and exogenous 

spatial attention functions.54  

This fronto-parietal source of top-down biasing signals revealed by imaging 

studies exhibits great overlap with the set of regions implicated in visuospatial neglect 

in studies of patients with brain lesions affecting the right cerebral hemisphere.31 

Patients suffering of visuospatial neglect fail to detect stimuli on the side of space 

opposite the lesion, and they are not consciously aware of contralesional objects or 

parts of objects.61 For example, a patient will read from one side of a book, apply 

make-up to only one half of her face, or eat from only one side of a plate. Patients 

with visuospatial neglect typically exhibit extinction. Detection reaction time (RT) in 

the contralesional field is not significantly slowed if a valid cue is given. When, 

however, a cue draws attention to the ispilesional field and the target subsequently 

appears in the opposite, contralesional field, then detection time is slowed 

dramatically. This pattern of results (i.e. extinction) is often interpreted as a deficit in 

one of the proposed elementary operations of attention,62 namely, disengagement. 

Visuospatial neglect may follow unilateral lesions at very different sites, including the 

parietal lobe, especially its inferior part and the temporo-parietal junction ,63 regions 

of the frontal lobe,64 the anterior cingulate cortex,65 the basal ganglia,64 and the 

thalamus, in particular, the pulvinar.66  

 

Saliency map 

A remarkable attempt at understanding bottom-up attention and the underlying 

neural mechanisms was made by Koch and Ullman (1985).67 They proposed that the 
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different visual features that contribute to attentive selection of a stimulus (colour, 

orientation, movement, etc.) are combined into one single topographically organized 

map, the saliency map, which integrates the information from the individual feature 

maps (each of which encodes contrast within a single feature dimension) into one 

global measure of conspicuity.68-70 The bottom-up saliency is thus determined by how 

different a stimulus is from its surround, in many submodalities and at many scales. 

To quote from Koch and Ullman (1985), “saliency at a given location is determined 

primarily by how different this location is from its surround in colour, orientation, 

motion, depth etc”.67 Then, the saliency map is a topographically arranged map that 

represents visual saliency of a corresponding visual scene. These authors posited that 

the most salient location in a visual scene would be a good candidate for attentional 

selection. Once a topographic map of saliency is established, the attentional location 

is obtained by computing the position of the maximum in this map by a winner-take-

all mechanism. After the selection is made, suppression of activity at the selected 

location leads to selection of the next location at the location of the second-highest 

value in the saliency map and a succession of these events generates a sequential scan 

of the visual scene.  

The Koch and Ullman study was purely conceptual. The first actual 

implementation of a saliency map was described by Niebur and Koch (1996).71 They 

applied their saliency map model which made use of colour, intensity, orientation and 

motion cues both to simplified visual input (as is typically used in psychophysical 

experiments) and to complex natural scenes and they demonstrated sequential 

scanning of the visual scene in order of decreasing salience (Fig.3).  

Bottom-up mechanisms (and thus the saliency map) do not completely 

determine visual selective attention. In many cases, top-down influences play an 

important role and can override bottom-up saliency cues. Various mechanisms have 

been proposed to integrate top-down influences in the saliency map.72 Activation in 

the salience map may be a function of feature weights, which are determined by the 

search goals. Visual conjunction search represents a type of task which shows clearly 

that top-down factors can influence visual selective attention. In the conjunction 

search paradigm, the target, which is embedded among irrelevant distracters, does not 

have a unique feature; instead, it is defined by a conjunction of features, as for example 
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Fig.3. A visual scene on the left, with the corresponding saliency map to the right. The figure 

shows a complex visual scene and the corresponding saliency map, as computed from the 

algorithm in Niebur and Koch (1996). The scene is static so the motion component of the 

algorithm does not yield a contribution. The surf line is well-represented in the saliency map 

since it combines input from several feature maps: intensity, orientation and color all have 

substantial local contrast at several spatial scales in this area. The same is the case for the 

clouds and the island in the distance. 

 

when a red T has to be found among red L’s and green T’s – here only the conjunction 

‘‘red + T” defines the target and not the features individually. The conjunction search 

requires serial search, in which the RTs increase linearly as the function of the 

number of elements in the display.73 Egeth et al. (1984) had participants search for a 

red O between black O’s and red N’s, a typical conjunction search. They found that 

RT increased with increasing numbers of red elements in the display.74 RT did not 

increase at all, however, when the number of black O’s increased. Participants seemed 

able to ignore all black elements in the display, and restrict their search to the red 

ones. This experiment suggests that attentional selection can be influenced by top-

down settings (e.g., to select only elements in the relevant dimension). This suggests 

that a mixture of bottom-up and top-down processes is likely at play during 

conjunction search: target features guide attention to the target, while subjects use the 

target feature information to form an attentional set to guide search in a top-down 

fashion.47, 72, 75-77 

Thus, visual conjunction search paradigms are especially suitable to study the 
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interactions between top-down and bottom-up mechanisms of visual attention, more 

so than Posner’s paradigms, which are instead suitable to study exogenous and 

endogenous orienting of attention in isolation. 

The question where the saliency map is located in the brain arises thus quite 

naturally. Koch and Ullman (1985)67 proposed that it may be located in the lateral 

geniculate nucleus of the thalamus, an area previously suggested as playing a major 

role in attentional control by Crick (1984).78 Another thalamic nucleus, the pulvinar, 

is known to be involved in attention and has also been suggested as a candidate for 

housing the saliency map.79 Another possibility is the superior colliculus (SC), 

likewise known to be involved in the control of attention.80 Several neocortical areas 

have been suggested as well, including V1,81 V4,82 and posterior parietal cortex.83
 

The results of a series of experiments with monkeys performing visual search 

tasks have identified a population of frontal eye field visually responsive neurons that 

exhibit all of the characteristics of a visual salience map.69 The frontal eye field is 

located in the rostral bank of the arcuate sulcus in the prefrontal cortex of macaques 

and is undeniably a part of the oculomotor system. Over the recent years, it has 

become rather obvious that neurons in frontal eye field not only are able to issue 

signals for oculomotor control, in particular for encoding the saccadic goal, but they 

also encode the location of a salient or otherwise relevant visual stimulus falling in 

the receptive field, indicating that they play a role in visual selection apart from and 

beyond the role in guiding gaze.84 In fact, the frontal eye field is ideally positioned to 

contain a map of visual salience for guiding selective spatial attention. Frontal eye 

field is reciprocally connected with both the dorsal and ventral visual processing 

streams, and these connections are topographycally organized.85 About half of the 

neurons in frontal eye field have visual responses with spatially defined visual 

receptive fields.86 The visual cortex of primates is organized into functionally 

specialized areas that contain neurons that are tuned to one or a few feature 

dimensions.87 The preattentive processing in these visual areas corresponds 

conceptually to the feature maps in the theoretical models of visual search.68 The 

frontal eye field receives the signal from extrastriate visual cortex representing 

specific features such as form, color, and direction of motion. However, the frontal 

eye field visually responsive neurons do not exhibit selectivity for specific features;88, 
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89 instead they exhibit selective activation that is related to the overall behavioural 

relevance of stimuli, whether relevance is derived from the intrinsic properties of the 

stimuli or from the viewer’s knowledge and goals. This selective activation in the 

frontal eye field is not in itself a motor command because the magnitude of activation 

reflects the relative behavioural significance of the different stimuli in the visual 

scene and occurs even when no saccade is made.69 

In conclusion, there are a number of identified candidates which may 

correspond to different flavours of salience, perhaps more bottom-up driven in some 

area and more strongly modulated by behavioural goals in some other area. 

  

Effects of time and space on visual selective attention 

Most current accounts of visual perception suggest that there are two main 

stages of visual information processing: a low-level preattentive stage and high-level 

attentive stage.47, 72, 76, 90 Preattentive processing occurs prior to the allocation of focal 

attention, has a large capacity and occurs in parallel fashion across the whole visual 

field. It has been suggested that one of the outcomes of preattentive processing is a 

salience map. The map location with the highest activation is then selected for further 

‘‘attentive” processing. Attentive processing has a small capacity and occurs only for 

a part of the visual field.72  

Models of visual selection usually do not take into account the effect of time or 

space on selection.47, 75-77, 90, 91 Theoretically, it is possible that early in processing, 

the salience map is computed from bottom-up factors alone, while top-down factors 

contribute late in processing.27, 52, 92-96  

Another way in which the issue of top-down versus bottom-up control of 

selection could be resolved involves not time but space. Implicit in the idea of spatial 

attention is that some selected contiguous area in the visual field receives priority in 

information sampling. This area has been referred to as the ‘‘attentional window” of 

observers.97 Although spatial attention is mostly investigated in the context of 

selection of stimuli once they appear, observers probably use their expectations to 

limit spatial selection in advance of stimulus presentation. One way in which top-

down settings might influence performance is that observers adjust the size of the 

attentional window according to their expectations of the task. This is precisely what 
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we can expect in Posner’s paradigms, which are characterized by 50% of valid cues, 

with a consequent focusing of the attentional window. In particular, when observers 

expect an easy search, they presumably set their window so that it encompasses the 

entire display, and then pick the most salient element in it.98 In case of a serial search 

task the window does not encompass the whole display. Instead, search elements are 

examined individually or in small clusters. If selection is limited to stimuli within the 

attentional window, setting the window size may provide a way for top-down control 

to influence selection from the bottom-up information.72 

 

Attentional capture 

Although the Posner’s cueing paradigms are excellent tools to study the top-

down and bottom-up driven processes of attention in isolation, their use in studying 

interactions between top-down and bottom-up driven processes are somewhat limited. 

In particular, one notable disadvantage of the cueing paradigm is that two different 

types of cues are used to modulate top-down versus bottom-up control of attention, 

making it hard to modulate these two forms of attention within the same framework.  

A potentially better way to investigate the relation between top–down and 

bottom–up driven control is the attentional capture paradigm.93 

Attentional capture, AC, refers to the phenomenon for which objects or events 

(which act as distracters) in visual space receive priority independent of the 

observer’s goals, disrupting target search, and leading to slowed, incorrect and 

missing responses.99 It can be considered as a measure of distractibility. 

Scientific interest in AC has grown exponentially over the last 20 years.100-102 

A good part of this interest stems from the fact that modelling AC has the potential to 

provide fundamental insights into the nature of cognitive control.  

To study the properties of AC, stimuli are typically used that are highly salient 

and ‘‘pop out’’ from the display (such as a red element surrounded by green elements), 

the so-called feature singletons. In the early 1990s, Theeuwes et al. developed a 

paradigm, referred to as the “irrelevant singleton” or “additional singleton” paradigm, 

which became a classical test to study AC.92, 93, 100-103 In this paradigm, observers are 

asked to search a visual display and respond to a prespecified target defined by a 

particular feature value (usually a unique shape, color or onset element). This 
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condition is compared to a condition in which an irrelevant, yet salient non-target 

singleton item (object unique in a different dimension) may also be present (Fig.4). 

Critically, the presence of a salient distracter triggered a shift of attention to its 

location before attention was allocated to the target, increasing the time required to 

respond to the target.92, 104, 105  

 

 

 

 

Fig.4 Example of trials of a classical attentional capture task referred to as the “irrelevant 

singleton” paradigm. In this case, in the no-distracter condition, the target is represented by 

the single green circle that contains a horizontal (but it could be vertical) oriented white line, 

surrounded by four green squares, which contain a white line tiled by 22,5 degrees. This 

condition is compared to a condition in which an irrelevant, yet salient non-target singleton 

(distracter) may also be present. In this case the distracter is represented by a red square.  

 

Recently, this AC effect has been investigated by using event-related 

potentials.106 In particular, as reported by Van der Stigchel et al. (2009), some studies 

have focused on a component of the event-related potentials called the ‘N2pc’ that is 

considered an index of the deployment of spatial attention.72 The N2pc is defined as a 

no-distracter condition distracter condition 
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larger negative voltage at electrodes contralateral to an attended stimulus and is 

thought to reflect the attentional selection of an item via the suppression of 

surrounding items.107 Hickey et al. (2006) investigated whether a salient colour 

singleton in the AC paradigm elicits an N2pc. When target and distracter were 

presented in opposite hemifields, an N2pc was observed for both stimuli, with the 

distracter-elicited N2pc preceding the target-elicited N2pc. This indicates that 

participants shifted their attention first to the distracter and then to the target, in line 

with the idea that irrelevant salient singletons capture attention independently of the 

top-down set.106 

It is noteworthy that in the AC task the singleton is always irrelevant but 

salient, and nonetheless it is able to disrupt the target search, while in 50% of the 

trials of the exogenous orienting condition of Posner’s paradigm the exogenous cue 

validly predicts the target. This suggests that the AC paradigm is more suitable than 

Posner’s task to study the competition between top-down and bottom-up mechanisms 

of visual attention, and a distraction effect.  

The RT cost due to the distracter led Theeuwes (1991, 1992) to argue that the 

colour singleton captured attention automatically because of its high level of 

saliency.92, 103 The experiments described above can be interpreted with reference to a 

salience map.72 Both the target and distracter objects are represented on the map, with 

the distracter having a larger activation than the target. If activation in the salience 

map is determined by top-down goals, there should have been no interference from the 

distracter, but there is. The presence of a salient distracter slows down the search for 

the target, and it can also reduce the target’s detectability. On the basis of these 

findings, several authors have argued that AC is basically bottom-up and not subject 

to top-down control.94, 104, 106, 108, 109 Importantly, the critical factor for the AC is the 

relative salience of the target and distracter: when the target was more salient than the 

irrelevant singleton, AC by the distracter was eliminated. 92, 93, 109  

According to another view, the ability of a stimulus to capture attention is 

contingent on whether an attentional-capturing stimulus is consistent with the top-

down attentional setting; stimuli that do not match the top-down settings will be 

ignored.110, 111 For instance, when searching for a red target, an irrelevant red cue that 

preceded the search display captures attention while an irrelevant onset has no effect 
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on performance. 

Recently, Theeuwes (2004) suggested that the size of the attentional window109 

of observers could be one of the factors explaining why salient colour singletons fail 

to capture attention in some studies using a visual search task.110, 112-114 As discussed 

earlier, observers may adjust the size of the attentional window according to their 

expectation of a search task. When the target is a unique object, as in the task used by 

Theeuwes (1992, 1994), the optimal strategy to find the target is to divide attention 

across the whole display.92 As a consequence, the uniquely colored item that falls 

inside the attentional window is processed in parallel and captures attention. In case 

of a serial search task the window does not encompass the whole display. Instead, 

search elements are examined individually or in small clusters. This increases the 

chance that the unique element is not included in the initial salience computations and 

does not capture attention.110, 111, 114 Therefore, as put forward by Van der Stigchel et 

al. (2009), changing the attentional window changes the set of objects that are 

attended.72 Then, the size of an attentional window is a variable that needs to be 

considered when AC by a salient singleton is investigated. The only thing that is 

under top-down control seems to be the size of the attentional window. However, 

there is no top-down control within the attended window. 

In conclusion, although both fMRI and event-related potential studies 

convincingly showed a possibility of top-down modulation of feature selective areas, 

the behavioural findings from AC paradigms suggest that this neural modulation does 

not necessarily influence initial selection.  

The actual orienting of attention on the basis of bottom-up factors appears to 

depend on the conjoint activity of areas in the parietal and frontal networks.29, 115  

 

Covert attention orienting 

Selective attention can be directed to discrete locations in the visual field 

without saccades (covert attention), which improves perception at the attended 

location relative to nonattended locations.69, 116 Recent research indicates that 

attention and eye movements are highly related, and they may be implemented via a 

common mechanism. According to the premotor theory of Rizzolatti et al. (1987) 

saccade programming in the frontal eye field and other oculomotor structures provides 
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the basis for covert orienting.117  

In humans, functional imaging studies show that the frontal eye field is active 

during the allocation of attention with and without eye movements,54, 118 and 

transcranial magnetic stimulation over the frontal eye field facilitates visual 

perception119 and modulates performance in visual search tasks without saccades.120 

Recently, Moore et al. (2001, 2003) demonstrated that weak electrical stimulation of 

the frontal eye field below the threshold for producing saccades improves the 

perceptual abilities of monkeys,121 and produces enhanced responses in extrastriate 

visual cortex that resembles the effects of directed spatial attention.122 

The close relationship between covert attention and saccades suggests that the 

relative contribution of bottom-up and top-down control of selection can be 

investigated by recording eye movements. In particular, part of the evidence for the 

influence of timing on attentional selection comes from visual search experiments in 

which eye movements were recorded.72, 96 In a variant of the AC paradigm, the so-

called ‘oculomotor capture’ paradigm, observers viewed displays containing a number 

of grey circles positioned on an imaginary circle around a central fixation point.95, 123 

After a fixed period, all circles changed colour except one (the target circle). Upon 

the presentation of the target, on some trials an additional irrelevant red circle was 

presented with abrupt onset in the display. In 30–40% of trials in which the additional 

onset circle was presented, participants did not saccade to the target element, but 

made an eye movement to the onset distracter element: the eye was ‘captured’ by the 

onset distracter. Consistent with the idea that initial selection is stimulus-driven, 

latencies of the saccades directed to the irrelevant onset are generally shorter than the 

latencies directed to the target. 

 

Visual selective attention and attentional capture in Parkinson’s disease  

Several behavioural studies indicate that non-demented PD patients may be 

impaired on tasks of visual selective attention. For example, PD patients demonstrate 

abnormal performance on the Stroop task, which requires subjects to attend 

selectively to the colour of the ink in which words are printed while ignoring the 

actual word itself.21, 124 These patients are also impaired on visual search tasks that 

require subjects to attend selectively and localize targets among distracters.21-24, 124 In 
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particular Deijen et al. (2006), studied the susceptibility to distracters in early stage 

PD, using an “oculomotor capture” task, like that described in the previous paragraph, 

and in which in half of the trials an irrelevant stimulus with sudden onset was added 

to the display.23 They found a deficit in suppressing reflexive saccades to these 

stimuli in spite of the fact that they were entirely task-irrelevant. This important piece 

of work is very important for the purposes of our study because it allowes us to make 

some predictions on the relation between top–down and bottom–up driven control in 

PD patients. Indeed, it was the study of Deijen et al. which inspired our current study.  

Maddox et al. (1996) found that a significantly larger proportion of a group of 

non-demented PD patients, as compared with a group of healthy subjects, were 

impaired in making perceptual judgements about a simple visual stimulus when it was 

presented with other irrelevant visual information.125 However, the fact that nearly 

one third of the PD patients were able to attend selectively in an optimal fashion 

suggests that visual selective attention was not equally compromised in all PD 

patients. These results are consistent with the fact that PD can manifest itself with 

heterogeneous cognitive profiles.5 

Some authors have argued that in visual search tasks PD patients are impaired 

in certain aspects of the build-up and maintenance of inhibition of the irrelevant 

stimuli over time. 

Filoteo et al. (1997) studied the endogenous and exogenous shifts of attention 

in non-demented PD patients, using the tasks devised by Posner.126 They showed that, 

like in healthy subjects, at longer stimulus onset asynchronies, the responses of PD 

patients in the cued condition relative to the responses in the uncued condition were 

delayed compared to the ones measured at short stimulus onset asynchronies, which 

has been interpreted in terms of inhibitory mechanisms.43, 127 However, in both 

exogenous and endogenous conditions, namely following peripheral as well as central 

cues, the magnitude of this delay was lower for PD patients than for healthy controls. 

Therefore, the authors supposed that attentional deficits in PD patients were caused by 

a rapid decay of inhibitory mechanisms which, under physiological conditions, 

impede access of irrelevant information to the cognitive processing system. Thus, PD 

patients could be more vulnerable to distracting information than healthy controls. 

This idea has been supported by studies on negative priming.128 Negative priming 
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refers to the phenomenon of delayed response latencies and increased error rates when 

participants have to respond to a target presented in a probe display that was ignored 

in a previously presented prime display (ignored-repetition condition). It has been 

assumed that negative priming is due to inhibition of the mental representation of the 

previously ignored stimulus.129, 130 Before an appropriate response can be performed 

to the target of the probe display, this existing inhibition has to be overcome. 

Interestingly, clinical studies revealed that PD patients did not show negative 

priming,131, 132 or show a reduction in the magnitude of the negative priming.133 Also 

these findings suggest that attention-related inhibitory mechanisms are severely 

impaired in PD patients. 

 

Cortico-basal ganglia loops 

PD is a neurodegenerative and progressive disorder of the basal ganglia 

characterized by a selective loss of dopaminergic neurons, predominantly in the 

substantia nigra pars compacta.134  

The basal ganglia can be viewed as components of functional circuits including 

thalamus and higher-level cortical areas.135 Higher-level cortical areas send 

projections to the basal ganglia, which outputs project to the thalamus and back to the 

originating cortical areas.136 Within the basal ganglia a direct pathway from the 

striatum to the globus pallidum internum and substantia nigra pars reticulata 

associated with excitation of motor actions, can be distinguished from an indirect 

pathway connecting the striatum and the globus pallidum internum/substantia nigra 

pars reticulata via external globus pallidus and the subthalamic nucleus (STN). This 

indirect pathway is associated with inhibition of action. The balance between these 

two pathways is moderated by the neurotransmitter dopamine which exerts an 

inhibitory or excitatory effect depending upon the postsynaptic receptor type, i.e. 

receptors of either the D1 or D2 receptor family. A third pathway connects directly 

the cortical motor and premotor areas to the STN (hyperdirect pathway),137 and it 

mainly inhibits all motor programs in a reset-like fashion.138 Considering that the 

entire cerebral cortex actually projects to the basal ganglia, a global subdivision of 

cortical activity into three functional territories referred to as sensorimotor (SM), 

associative (AS) and limbic was adopted.137 These three functional cortical territories 
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project to different portions of the basal ganglia nuclei, the SM territory in the 

dorsolateral portions, the limbic territory in the ventromedial portions, and the AS 

territory in the central intermediate portions.139-141 The basal ganglia system works as 

a device that receives a sample of the three specific functional aspects of cortical 

information and processes this information in a convergent manner. Moreover, a 

complex integration of cortical information takes place in each of the basal ganglia 

nuclei, that results in the elaboration of a completely new and specific output message 

that will be sent to the frontal cortex. 

Thus, a deficit of the central dopaminergic activity can determine a functional 

impairment of the cortico-basal ganglia loops, explaining way in PD patients not only 

control of motor actions, but also cognitive functions, such as selective attention, are 

compromised. 

 

Subthalamic nucleus  

In spite of its small size, 12 × 5 × 3 millimetres, the STN seems to play a key 

role in modulating the output activity from the basal ganglia, in reason of its anatomo-

functional organization, and its afferent and efferent connections with the cortical and 

subcortical structures.138  

The role of the STN must be considered at different scales. At the macroscopic 

scale it works like a thermostat that would regulate the level of execution of cortical 

commands. In the normal state, with an appropriate level of activity, it enables normal 

execution of cortical commands. When hyperactive, it slows down all cortical 

programs, like in parkinsonian akinesia, which can be released by its inactivation by 

lesion142 or high frequency stimulation.143 At a territorial scale, considering its 

functional subdivision, the STN can process separately motor, AS, and limbic 

information.144 Non motor effects, such as improvement of obsessive-compulsive 

disorders,145 or production of a hypomanic state,140, 146 as well as mirthful laughter147 

have been obtained by stimulation in the ventromedial, likely limbic part of the 

nucleus. At the neuronal scale, STN assures a much finer neuronal representation of 

limbic, AS and motor cortical commands, which are distributed in a medio-lateral 

gradient without any clear-cut segregation between different territories. In this sense, 

the whole nucleus has to be considered an integrator of emotional and motor aspects 
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of behaviour.140, 148 

Striatal dopamine depletion, the hallmark of PD, is associated with an abnormal 

activity of STN.149 Inactivation of the STN has thus been proposed as an alternative 

therapy to dopaminergic treatments in Parkinsonism.142 

 

Current treatments in Parkinson’s disease 

Current treatment options for PD patients include levodopa and dopamine 

agonists. However, levodopa principally causes motor complications after long-term 

treatment (i.e., wearing-off and dyskinesia) and dopamine agonists may cause non-

motor complications, such as excessive sedation, cardiac valve damage, psychosis and 

dopamine dysregulation syndrome.150 

Very little is known, however, about the capacity of levodopa and dopamine 

agonists to improve cognitive deficits in PD. In the early 1970s, many studies 

suggested a positive effect of levodopa on cognitive signs.151 Downes et al. (1989) 

have noticed an elevated sensitivity of the non-medicated PD patients to distractibility, 

thus suggesting that the attentional deficit could be corrected at least partly by 

levodopa therapy.152 Later on, the influence of levodopa on cognitive functions has 

been assessed in patients subjected to controlled withdrawal. Data showed that certain, 

but not all, aspects of the cognitive functions were altered, emphasizing putative 

dopaminergic control on frontal lobe related functions such as working memory or 

executive functions.153 

Therefore, the cognitive effect of levodopa might not depend on a 

neuropsychological specificity of the drug or the severity and progression of the 

disease, but, more likely, may be a function of dopaminergic depletion in the different 

parts of the basal ganglia and prefrontal cortex, since improvement or impairment of 

cognitive function with dopaminergic treatment is partial and task-related. In fact, the 

effects of levodopa on cognitive functions have been reported as beneficial as well as 

deleterious.154-156 In a recent paper, Cools et al. (2001)157 studied the effects of 

levodopa administration in PD on behavioral tasks associated with the different 

components of corticostriatal circuits described by Alexander et al. (1986).135 The 

data showed that switching between two tasks, which requires high level of attentional 

control and involves the dorsolateral part of prefrontal cortex and parietal cortex, is 
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improved by levodopa treatment, whereas probabilistic reversal learning, associated 

with the orbitofrontal loops, is impaired. Consequently, it can be speculated that doses 

of levodopa necessary to improve motor aspects of PD also contribute to facilitate 

dopamine transmission in dorsolateral-parietal cortical areas, but may “overdose any 

area where dopamine regions are relatively intact”, such as the orbitofrontal cortical 

areas.157  Such a view is reinforced by the data by Weder et al. (1999), showing that 

working memory and directed attention deficits correlate at subcortical levels with a 

specific decrease in dopaminergic innervation at the level of the caudate nucleus and 

not at the level of the putamen.158 

During the last two decades, deep brain stimulation (DBS) has revolutionized 

the treatment of advanced PD, becoming a routine method.159-161 The main indication 

for DBS in PD is advanced PD with motor complications with relevant disability or 

therapy-resistant parkinsonian tremor. The ultimate goal of the DBS surgical 

procedure is the precise implantation of a stimulation quadripolar electrode in the 

targeted brain area and the connection of this electrode to a programmable pulse 

generator usually located subcutaneously in the subclavicular area (Fig.5). The 

stimulation is accomplished via one or more of the four contacts on its distal end. The 

pulse generator settings can be adjusted post-operatively by telemetry with respect to 

electrode configuration, voltage, amplitude, pulse width, and frequency. The 

implantation of the electrode is done by a stereotactic procedure in the awake patient 

in the medication-off state after 12-h drug withdrawal. Prior to the operation, the 

target is predetermined by means of stereotactic imaging procedures such as MRI, 

computed tomography or ventriculography. Many reports documenting significant and 

long-term benefit in PD with DBS surgery have been reported so far.162-164 In 

particular, STN-DBS has been shown to improve to a great extent all the levodopa-

responsive parkinsonian signs and levodopa-induced dyskinesia, and significantly 

reduced the need for daily anti-PD drugs. 

In STN-DBS, the literature regarding neuropsychological outcome reports 

mixed results. In carefully selected patients, most groups have reported relatively 

little cognitive morbidity162, 165, 166 with improvements in some areas.167-169 In contrast, 

other studies have reported declines. The most robust finding across studies appears to 

be a decline in word fluency.139, 166, 170 However, a minority of studies have 
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documented declines in verbal memory and selected measures of executive 

function.170-172  

From a scientific point of view, since DBS modulates basal ganglia activity, it 

represents a rare opportunity to study the involvement of basal ganglia in motor, 

behavioural and cognitive functions. 

 

 

 

 
 

Fig.5 The deep brain stimulation system. 

 

 

 

Involvement of the cortico-basal ganglia loops in visual attention  

In animals, there is some evidence for the assumption that the basal ganglia, 

and in particular central dopaminergic activity, plays an important role in visual 

attention.  

Baunez et al. (2007) studied the effects of high frequency stimulation of the 
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STN in rats performing a visual attentional task.173 They demonstrated that the 

stimulation administered to control (non dopamino-depleted) rats impaired 

performance in the visual task. The same results had already been observed as a 

consequence of STN lesions.174  

Considering the interconnections of the basal ganglia with the cortical areas, 

the selective attention deficits may be the result of dysfunction in other brain regions 

secondary to basal ganglia damage. For example, it is possible that dysfunction in the 

prefrontal cortex results in PD patients’ selective attention deficits. Post-mortem 

examination of Parkinson brains has revealed a depletion of dopamine in the 

mesocortico-limbic projection.175 The depletion of dopamine in these pathways has 

been implicated in the mediation of attentional processes in animals. In rats and 

monkeys, localised lesions of the ascending dopaminergic projection to the prefrontal 

association cortex caused an attention deficit as measured by a visual selective 

attentional task.176, 177 The deficit produced by these lesions in monkeys was almost as 

severe as that caused by direct lesion of the prefrontal cortex and could be partially 

reversed by dopamine agonists. 

The putative contribution of the dopaminergic neurons in the regulation of 

attention was also examined in a series of experiments consisting in recording 

dopaminergic neuronal activity directly at the mesencepahlic level or from neurons in 

the target area of the dopaminergic terminals. By this technique, it was shown that the 

typical electrocortical rhythms associated with attentive behaviour was suppressed 

either by the lesion of mesencephalic dopaminergic neurons178 or injections of 

neuroleptics.179 In contrast, these rhythms were shown amplified by dopaminergic 

precursors. Moreover, the neuronal discharge of the dopaminergic neurons recorded at 

mesencephalic level in behaving animals correlated with attentional processes.178 

Schultz (1994) showed that in primates dopaminergic neurons responded to 

unexpected events, then representing an alerting signal which interrupted the ongoing 

behaviour, allowing an adaptive reaction.180 The suppression of the dopaminergic 

neurons could thus result in loss of the adaptive capacities of behaviour, as shown in 

Parkinsonism. 

Chudasama et al. (2003) using a disconnection procedure, showed that rats with 

disconnected lesions of the medial prefrontal cortex and STN were impaired in a test 



   44 

of visual attention.181 This study provides direct evidence that performance in tasks 

that require optimal attentional and executive control relies on a corticosubthalamic 

interaction within the neural circuitry of the basal ganglia. 

The SC is part of a network of brain areas, that directs saccadic eye movements. 

In particular, it receives inhibitory input from the frontal eye field via the caudate 

nucleus and the substantia nigra pars reticulata.182 Muller et al. (2005) showed that 

microstimulation of a specific location in the SC spatial map would enhance visual 

performance at the corresponding region of space.183 This data provides direct 

evidence that the SC contributes to the control of covert spatial attention. Then, 

dysfunction within the frontal lobes or the basal ganglia could determine a deficit in 

visual spatial attention. 

In humans, the demonstrations of an involvement of the cortico-basal ganglia 

loops in visual attention are poor and indirect. In a study with normal subjects, PET 

has identified hypermetabolism within the basal ganglia during the administration of 

selective attention tasks.184 

Applying PET, Volkow et al. reported a positive relationship between 

dopaminergic activity in the striatum and performance on the Stroop Test.185 As 

regards this test, in PD patients treated by STN-DBS, some authors pointed out an 

increase of the errors during the stimulation.168, 186, 187  
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Summary of the introduction 

Our capacity-limited brain is not equipped to deal with the vast amount of 

sensory information that is presented to us at any given time. Visual selective 

attention is the basic cognitive faculty that allows us to filter out irrelevant sensory 

information in favour of the relevant input. It is now well accepted that visual 

selective attention may be accomplished using two different anatomically segregated 

but interacting networks, endogenous or top-down (goal-directed), and exogenous or 

bottom-up (automatic) mechanisms, as demonstrated by a number of lesional, 

neurphysiological, behavioural, and functional MRI and PET studies in animals, as 

well as in humans. 

In humans, several studies provide evidence that the dorsolateral prefrontal 

cortex and a fronto-parietal attentional network, may be the source of feedback that 

generates the top-down biasing signals modulating activity in visual cortex, while a 

second ventral cortical network, including the temporo-parietal junction and the 

middle and inferior frontal gyri is thought of as subserving the exogenous spatial 

attention functions.  

Essential for the understanding of the bottom-up attention is the concept of 

saliency map, which is a topographically arranged brain map that represents visual 

saliency of a corresponding visual scene.  

Different paradigms have been developed by several researchers during the last 

decades to measure visual attention processes. This is, for example, the case with the 

Posner’s cueing paradigms which allow to study in isolation bottom-up from top-

down mechanisms. In the AC paradigm, observers have to respond to a prespecified 

target, but in a number of trials their search may be disrupted by the appearance of a 

salient but irrelevant element, the distracter, which determines a cost in terms of 

reaction time and accuracy (AC phenomenon) of the goal-directed behaviour. This 

task proves to be suitable to study the competition between top-down and bottom-up 

mechanisms of visual attention, and it represents a useful tool to measure the degree 

of distractibility. Several experiments suggest that AC is basically bottom-up and not 

subject to top-down control. But this is controversial and other studies indicate the 

involvement of the top-down system. Further work is therefore required to clarify this 

issue. 
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Numerous neuropsychological tests have been used to study visual attention in 

PD. One of the most widely used the Stroop test which assesses among other 

parameters visual selective attention. The Posner’s cueing paradigms have also been 

tested in PD patients. 

Several lines of evidence suggest that attentional deficits in PD are caused by 

diminished inhibitory mechanisms. Moreover, PD patients could be more vulnerable 

to distracting information than healthy controls.  

In animals, there is some evidence for the assumption that the basal ganglia, 

and in particular central dopaminergic activity, play an important role in visual 

attention.  

Conversely, in humans, the evidence for a role of the cortico-basal-ganglia 

loops and dopaminergic pathways in modulating visual attention mechanisms is poor, 

controversial and indirect. 

The STN-DBS, which is one of the most effective treatments in PD, represents 

a rare mean to directly study the possible role of basal ganglia in several brain 

functions. Indeed, this therapy allows to modulate the neuronal signals conveyed into 

the cortico-basal ganglia loops passing across the STN.  
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Objectives  

 

Main Objectives:  

1) to assess the effects of PD on visual selective attention and AC.  

2) to study the effects of dopaminergic stimulation and the neuromodulation of the 

STN on visual attention performances in PD, assessing directly a possible 

involvement of the cortico-basal ganglia loops in these cognitive functions. 

 

Secondary Objectives: from a clinical and neurophysiological point of view to study 

the respective role of the dopaminergic pathways and the SM and AS cortico-

basal ganglia loops passing through the STN in visual attention performances.  

 

Subjects, material and methods 

 

Subjects 

Three groups of subjects participated to this study:  

group #1: pharmacologically-treated PD patients; 

group #2: PD patients treated by STN-DBS; 

group #3: healthy controls.  

 

PD patients were selected among those treated at the Movement Disorder Unit 

of the Neurological Department of the University Hospital Centre (CHU) of Grenoble 

and at the Department of Neurological, Neuropsychological, Morphological, and 

Movement Sciences of the University of Verona (Italy). They were evaluated during 

their usual follow-up admissions.  

As regards the surgical procedure for the implantation of electrodes in the 

STN-DBS treated patients, it was carried out as already reported by the Grenoble 

team,188 but with some differences in the preoperative targeting (3T non-stereotactic 

MRI fused with 1T stereotactic MRI instead of ventriculography), and during the 

intraoperative neurophysiological exploration (2 or 3 trajectories instead of the usual 

5) for the Verona team. Correct placement of the electrodes in both STNs was 

strongly suggested by the efficacy of the neurosurgical procedure, confirmed by 
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postoperative MR images, and by the clinical outcome. A few days after implantation 

of the electrodes, a double-channel programmable pulse generator (Kinetra model 

7428, Medtronic, Minneapolis, Minnesota, USA) was placed in the subclavicular area 

and connected to the electrodes. All patients were implanted bilaterally with 

quadripolar electrodes (DBS-3389, Medtronic). The postoperative effects of 

stimulation were assessed through each of the four contacts to identify the one 

providing the best therapeutic window, defined as the difference between the current 

intensity threshold for the first adverse effect, and the current intensity to obtain the 

obtimal motor benefit by DBS. This contact was used for chronic stimulation. 

Healthy controls were selected among patient family circle, the staff of CHU as 

well as the staff of the University of Verona. 

Before entering the study, all participants underwent physical, neurological and 

neuropsychological examinations to ensure that they fulfilled the criteria set by the 

protocol.  

The motor state of PD patients was evaluated by the Unified Parkinson Disease 

Rating Scale part III, UPDRS III, which is part of a composite scale used to measure 

the severity of the disease.189 The maximum score on the UPDRS III is 108, with a 

higher score denoting greater motor impairment. This scale is generally used to 

quantify the motor disability of PD patients in different conditions of evaluation, for 

example under dopaminergic treatment (medication-on condition, med-on), or 12 h 

after a withdrawal of antiparkinsonian drugs (medication-off condition, med-off). The 

motor scores were obtained by a trained neurologist. 

The cognitive profile of PD patients was assessed by the Mattis Dementia 

Rating Scale, MDRS,190 a widely used tool, which measures overall cognitive 

functioning on five subscales: attention, initiation, construction, conceptualization, 

memory. The maximum score on MDRS is 144, and a score of less than or equal to 

130 is considered diagnostic of mild dementia. The cognitive functioning of healthy 

subjects was assessed by the Mini-Mental State Examination (MMSE),191 which is a 

brief 30-point questionnaire. In the time span of about 10 min it samples various 

functions including arithmetic, memory and orientation. A score of less than or equal 

to 24 is considered diagnostic of mild cognitive impairment. 

The frontal lobe functions in PD patients as well as in healthy subjects were 
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assessed by the Frontal Assessment Battery, FAB,192 which is a short bedside 

cognitive and behavioural battery. It is usually performed in approximately 10 min, 

and it consists of six subsets exploring: conceptualization, mental flexibility, motor 

programming, sensitivity to interference, inhibitory control, and environmental 

autonomy. The maximum score on FAB is 18, while a score below 13 is considered 

diagnostic of a mild or severe impairment on the executive functions. 

The behavioural state in PD patients as well as in healthy subjects was assessed 

by the Beck Depression Inventory-II, BDI-II,193 and Starkstein Apathy scale, SAS. In 

particular, depression was rated with the BDI-II, a 21 items questionnaire, revised 

form according to the definition of depression in the Diagnostic and Statistical 

Manual of Mental Disorders (IV revision). It is widely accepted and validated also in 

patients with PD. The maximum score on the BDI-II is 63, and a score more than 20 

was considered diagnostic of mild or severe depression.  

The SAS194 is one of the most widely used questionnaires to assess apathy and 

has been validated in patients with PD. It comprises 14 questions, each one scored 

from 0 to 3 (maximum 42 points). Higher levels indicate more severe apathy. A cut-

off at 14 points has been chosen to separate apathetic from non-apathetic subjects. 

To assess the dominance of participants’ hand in everyday activities, we used 

the Edinburgh Handedness Inventory,195 which is a self-reporting questionnaire. A 

score above +40 indicates right-handedness. 

Since the computerized tests used in our study essentially consisted in the 

presentation of red and green stimuli on a computer monitor, the screening to enter 

our protocol included also the desatured D-15 Lanthony test (Luneau, Paris), which is 

a colour vision test designed to indicate mild color deficiency quickly and easily.196 

This test contains a reference disc and fifteen faded (unsaturated) colored numbered 

discs (back numbered) which make up an incomplete color circle. Following a 

subject’s attempt to sequentially arrange the discs, the evaluation determines colour 

perception or defects in deutan, protan, or triatan axis discrimination. This test is 

widely used to assess acquired deficits in colour discrimination both in healthy 

subjects and especially in PD patients.197-201 Considering that our participants’ mean 

age was expected to be over 50 years, and 2/3 of them would have been PD patients in 

an advanced stage of the disease, the desatured D-15 Lanthony test was performed to 
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ensure that participants did not suffer from significant deficiencies in red-green colour 

perception, as well as to exclude possible colour discrimination changes related to 

different conditions of dopaminergic treatment. For this purpose, our patients of group 

#1 underwent twice the colour vision test, i.e., in med-off and med-on (under 

dopaminergic stimulation). A score below 32 corresponds to minor errors.200, 202 

 

Inclusion criteria 

Participants had to be over 20 years-old, right-handed, neurologically healthy 

subjects, apart from PD. They had to self-declare normal or corrected to normal vision, 

and they should not to show of significant deficiencies in red-green color perception. 

Patients had to be clinically diagnosed with idiopathic Parkinson’s disease 

according to UK British Brain Bank Criteria for PD, and at a disease’s stage 

characterized by motor complications, such as motor fluctuations and dyskinesia 

related to long-term pulsatile dopaminergic treatment. Their levodopa response, 

computed as percentage of motor state improvement after a levodopa challenge with 

respect to the med-off, should be more than 30%.   

Since the protocol study included a prolonged evaluation in med-off for group 

#1, and an evaluation without medication and stimulation (med-off/stim-off condition, 

med-off/stim-off) for group #2, which implied the reappearance of parkinsonian signs, 

only patients able to tolerate these conditions, and who accepted this mild discomfort 

were selected. However, it should be considered that med-off and med-off/stim-off 

represent usual conditions of assessment during the follow-up of PD patients.  

Patients of group #2 entered the study at least 3 months after surgery. This 

represents the mean elapse of time necessary for the disappearance of any possible 

microtraumatic effect due to the implantation procedure, which might interfere with a 

correct conduct of the study, and to obtain a fair control of parkinsonian symptoms by 

STN-DBS.  

To study the respective role of the SM and AS cortico-basal ganglia loops in 

visual attention, only stimulated PD patients with at least one contact lead in the SM 

part and another contact in the AS part of the STN entered the protocol. The precise 

anatomical lead contacts localization with respect to the subdivisions of the STN was 

possible by fitting the images of a three-dimensional atlas developed from 
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immunohistochimical and MRI data to the postoperative MRIs of the patients.200, 202-

204 The anatomical contacts localization was possible thanks to the collaboration with 

Prof. J. Yelnik, and took place in his laboratory at the Hopital de la Salpêtrière, Paris. 

(Fig.6) 

 

right STN left STNright STN left STN

 

 

Fig.6 Lead contacts localization with respect to the subdivisions of the STN in patient #12.  

A) In green, violet and yellow, respectively the sensorimotor, associative, and limbic 

subdivisions of the STN. In B) and C), the green circles represent the contact used to 

predominantly stimulate the sensorimotor part of the STN, while the violet circles represent 

the contacts to predominantly stimulate the associative part of the nucleus.    

A 

B C 
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Exclusion criteria 

Exclusion criteria were represented by mild/severe cognitive impairment 

(dementia and dysexecutive syndrome) as well as behavioural disorders (depression, 

and apathy), according to the cut-off values defined in the battery of 

neuropsychological tests. Also, current psychosis represented a contraindication to 

enter our study. Psychotropic or neurotropic drug intake was not tolerated, except for 

short half-life benzodiazepe or similar drugs, but with the last intake going back at 

least 12 h. Participants should not have a history of drug or alcohol addiction. 

Moreover, PD patients should not complain of any other medical or psychological 

problem, in addition to those mentioned above, which could interfere with a smooth 

and accurate conduction of the study protocol (i.e., a marked tremor of head and upper 

limbs in med-off, disabling dyskinesias, levodopa induced disorders of alertness and 

attention, and side effects induced by STN-DBS which can interfere with the 

computerized task performances). 

 

Participants were matched for age (± 5 years), sex, and education. 

Patients were also matched for disease severity, according to the UPDRS III 

score in med-off condition.  

All subjects had to be naive to the purpose of the experiment. 

All subjects gave written informed consent to the research protocol, which was 

approved by the local ethical committee of the two Universities where the study took 

place.  

Subject characteristics are listed in Table 1.  
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 GROUP #1 
 

mean (±SE) 
 

GROUP #2 
 

mean (±SE) 
 

GROUP #3 
 

mean (±SE) 
 

p 

N. Subjects 12 12 12  
Sex M:F=7:5 M:F=7:5 M:F=7:5  

Age 57.1 (±2.3) 55.5 (±2.7) 56.1 (±2.6) N.S. 
Education 13.6 (±1.1) 13.7 (±0.9) 13.7 (±1.0) N.S. 
MMSE    29.4 (±0.3)  
MDRS 140.8 (±0.6) 139.4 (±0.8)  N.S. 
FAB  16.7 (±0.3) 16.0 (±0.4) 16.9 (±0.3) N.S. 
BDI-II 8.0 (±1.5) 6.3 (±0.9) 5.8 (±0.9) N.S. 
SAS 6.8 (±1.2) 8.1 (±0.9) 7.6 (±1.0) N.S. 
Disease severity 37.5 (±2.4) 42.6 (±2.6)  N.S. 
Disease duration 13.9 (±2.1) y 11.9 (±1.2) y  N.S. 
Edinburgh Inventory Scale 88.7 (±4.3) 86.3 (±5.1) 89.4 (±5.3) N.S. 
Levodopa therapy length 7.7 (±1.5) y 9.1 (±1.6) y  N.S. 
LEDD 804.4 (±81.1) 392.9 (±74.6)  < 0.001 
Lanthony test, right eye med-off: 

4.6 (±2.0) 
 

med-on: 
3.0 (±1.6) 

 
6.6 (±2.5) 

 
 

 
3.0 (±1.6) 

 

 
N.S. 

 
N.S. 

 
Lanthony test, left eye  med-off 

3.3 (±1.8) 
 

med-on: 
4.0 (±1.8) 

 
5.0 (±1.8) 

 

 
3.1 (±2.1) 

 

 
N.S. 

 
N.S. 

 

 

 

Tab.1  Subject characteristics.  

Disease severity was expressed as the motor score obtained in off-phase according to the the 

Unified Parkinson’s Disease Rating Scale (UPDRS) part III. The maximum score on the 

UPDRS III is 108, with a higher score denoting greater motor impairment. Disease duration 

was estimated on the basis of the patients’ subjective estimate of the time of occurrence of 

the first symptoms of Parkinson’s disease. Antiparkinsonian drugs were expressed as 

levodopa equivalent daily dose, LEDD, in mg/die205 y = years 

N.S. = non significant 
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Study Protocol 

 

Computerized tasks   

The main instrument used in our experimental protocol was a computerized AC 

task, which was suitably combined with a choice reaction time task in order to assess 

the effectiveness of bottom-up and top-down mechanisms in visual attention (see 

below). By combining the choice reaction time task with a simple reaction time task, 

we could also obtain precious information about the effectiveness of the mechanisms 

of response selection and initiation of motor response.   

All these tasks have been developed in the Laboratories of the Department of 

Neurological, Neuropsychological, Morphological, and Movement Sciences, Section 

of Physiology and Psychology, University of Verona, under the supervision of Prof. L. 

Chelazzi.  

 

Apparatus 

The computerized tasks have been created and run with the E-Prime software 

(Psychology Software Tools, Inc., Pittsburgh, PA), on a compatible Compaq 6715s Hp 

Computer. The stimuli appeared on a 17-in. CRT monitor (Samsung SyncMaster 

753DF-T/T, resolution 1024 × 768), which was connected to the computer. The 

display stimuli consisted of green (CIE x,y chromaticity coordinates of 0.288/0.609) 

or red (coordinates of 0.633/0.334) geometrical elements matched for luminance (18.4 

cd/m2). The fixation cross was presented in white (78.0 cd/m2) on a black background 

(0.0 cd/m2). The colorimetric and photometric measurements were carried out  by 

means of a photo-radio-colorimeter (J17 LumaColorTM  Photometer, Tektronix Inc., 

Wilsonville, USA). The detector head of this device was directed toward the color 

patches used in this experiment, which were displayed at the centre of the computer 

screen. 

The “1” and “2” adjacent keys (1.7 × 1.7 cm) of a numeric keypad (Manhattan 

model 176354 numeric keypad), connected to the computer by a USB port, were used 

as response buttons.  

Subject was tested in a quiet and dimly lit room, seated on a comfortable and 

adjustable armchair, with his/her head resting on a chinrest to hold the viewing 
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centred on the monitor at a 57 cm constant distance. 

 

Attentional Capture Task  

In our protocol study, we used an AC task developed starting from the classical 

and validated tests pioneered by Theeuwes et al. (1992, 1994).23, 92, 93 There are 

different accepted versions of this test, which was variously modified by some authors 

according to the aims of their study.  

In our AC task, subjects received two conditions. In the so-called no-distracter 

condition (control trial), they were instructed to search for a target element embedded 

among irrelevant stimuli, in a goal-directed manner, according to previous instruction. 

In the so-called distracter condition, which occurred in 1/3 of the trials, simultaneous 

with the presentation of the target, a distracter appeared on the display, replacing one 

of the other irrelevant stimuli. We included such a low percentage of distracter trials 

in our AC task because it is known that the capture grows stronger as the frequency of 

distracter presentation is lower.206 

We conjectured that the original Theeuwues’s AC task could be too difficult for 

our patients, especially with regard to the identification of the target, represented, in 

the original study, by a vertical or horizontal line contained in an outline circle or 

square. Then, we made some little changes to the original version of the test, making 

it simpler for the PD patients.  

Stimuli and procedure. The sequence of events was as follows. Initially, a 

white fixation cross (0.5°) was presented at the centre of the visual field against the 

black background together with a warning sound for 300 ms. Then, a stimulus display 

consisting of 6 diamonds (1.2° on a side) all of the same colour (green or red), equally 

spaced around the fixation cross on an imaginary circle whose radius was 3.6°, 

appeared on the monitor. After 700 ms, one of the 6 diamonds was abruptly cut on the 

upper or lower tip (0.6° on a side), changing into a pentagon-shaped element, i.e. the 

target, respectively with the base upward or downward. This represented the target 

display in the no-distracter condition. It lasted only 200 ms to prevent eye 

movements,207 and subjects had to focus their attention on the up or down location of 

the cut, while ignoring the other elements. In the so-called distracter condition, 

simultaneous with the target presentation, one of the other 5 diamonds changed colour 
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(red instead of green or vice versa) as well as orientation (45° rotation, becoming a 

square), therefore becoming a singleton. This element represented the irrelevant but 

salient stimulus (distracter) which was able to disrupt the target search.  

Subjects were instructed to respond to the orientation of the pentagon-shaped 

target by pressing key “1” of the numeric keypad if the base of the pentagon was 

upward or key “2” if it was downward, respectively using their right hand forefinger 

or middle finger, which were resting on the response keys. Following the 

disappearance of the target display the screen went black and subjects had 2300 ms 

more to give their response, (thus, the maximal response emission time was 2500 ms). 

The inter-trial interval was 1500 ms (screen black). An exemplar of the typical no-

distracter and distracter condition of the AC task are shown in figure 7. 

On the whole, subjects performed 360 randomly mixed trials consisting of 240 

no-distracter trials and 120 distracter trials. Along the task, both the target (in its two 

forms: pointing up or down) as well as the salient distracter appeared equally often in 

each of the 6 display positions, otherwise occupied by the irrelevant diamonds. The 

positions of the target and the distracter were randomized from trial to trial. Moreover, 

the target appeared equally often in red or green so as to prevent consistent mapping.    

To ensure an optimal level of attention throughout the whole experimental 

session, while avoiding excessive fatigue, the total trials were presented in 6 blocks, 

each consisting of 60 trials, separated by breaks, each one lasting no more than 3-4 

min, at subject’s discretion. During stimuli presentation, subjects were requested to 

maintain fixation at the centre of the display, stressing that a steady fixation would 

reduce RT and make the task easier. Both speed and accuracy were emphasized.  

The AC task as a whole took about 24 min (without breaks).  

Before the first experimental session, subjects practiced the task at least in two 

blocks, each of 60 trials, and anyway the training session continued until an accuracy 

of 70% or more was achieved. For the following experimental sessions, only a 

practice block was required. 
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  A             B 

 

 

 
 

Fig.7 Graphic illustration of a no-distracter (A) and a distracter (B) condition of the attentional capture task. 
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Choice Reaction Time Task 

It is evident that different brain mechanisms could contribute to the emitted 

response in a trial of the AC task. In a no-distracter trial we could conjecture the 

involvement of mechanisms of target selection, mechanisms of response selection and 

mechanisms of initiation of the motor response. In particular, under the term of target 

selection different cognitive processes may be probably included, that is low level 

pre-attentive processes, depending on specific primitive properties of the stimulus 

array, mechanisms of endogenous visual attention (EVA), which guided the selection 

of the relevant target in a goal-directed manner, and also bottom-up selection 

mechanisms, considering that the target was defined by the abrupt cut on the upper or 

lower tip of one diamond element, which could contribute to some extent to 

exogenous AC.  

We tried to isolate the perceptual-attentional mechanisms of target selection 

from the other components of the whole response by comparing the performance in a 

no-distracter trial of the AC task with that of a choice reaction time task. 

This task is a version of the classical and validated choice reaction time test, 208 

adapted to the purposes of our study.  

Stimuli and procedure: a typical trial was similar to that described for the no-

distracter trial of the AC task, except for a single diamond element (red or green) 

presented on the display in one of the 6 eccentric positions occupied by the stimuli of 

the previous task. This element abruptly was replaced by a pentagon-shaped target (of 

the same colour) with the base up or down. Subjects gave the response according to 

the instructions specified for the AC task. (Fig.8)  

Therefore, a typical trial of the choice reaction time task was characterized by a 

component of perceptual discrimination (which allowed to identify the target and its 

orientation), by a component of response selection (which key to press depending on 

the target orientation), and initiation of the motor response. As a consequence, the 

difference in RT between the no-distracter trial of the AC task and the choice reaction 

time task allowed us to isolate the time necessary to select the target within an array 

of irrelevant stimuli. Different perceptual and selective attentional components 

contributed to this time, including an exogenous attentional component. Nonetheless, 

in our study we were able to assess in isolation the bottom-up selection mechanisms,  
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Fig.8 Graphic illustration of a choice reaction time trial. 

 

by comparing the performances in trials with and without distracter of the AC task. 

Thus, we can assume that the time necessary to select the target mainly represented 

the functioning of the perceptual-endogenous attention (EVA) component. On the 

whole, in the choice reaction time task, the subjects performed 72 randomly mixed 

trials consisting of 36 trials with the target upward and 36 trials with the target 

downward. The target appeared equally often in red or green, and in each of the 6 

eccentric positions of the array. 

As a whole the task took about 5 min.  

300 ms 

700 ms 

200 ms 

2300 ms 
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At the beginning of the first experimental session, subjects practiced the experimental 

task in one block of 36 trials. If an accuracy of 80% or more was achieved, the actual 

experiment was run, otherwise the practice block was repeated. The following 

experimental sessions started with 10 training trials. 

 

Simple Reaction Time Task  

A simple reaction time test was introduced in our experimental setting to assess 

the mechanisms of motor response initiation. This task was a version of the classical 

simple reaction time test, adapted for the purposes of the study.209 

Stimuli and procedure: initially, a white fixation cross was presented at the 

centre of the visual field on a black background together with a warning sound. In all 

the trials, after a variable delay from onset of the cross (delays between 400 and 2000 

ms), a diamond element (red or green) appeared on the monitor, for 200 ms, in one of 

the 6 eccentric positions occupied by the stimuli in the AC task. Subjects had to 

respond as fast as possible to the diamond onset, pressing the key “1”. (Fig.9) 

Therefore, this task allowed us to estimate the amount of time required to 

initiate a simple motor response on the basis of a very low level visual information 

(the detection of the stimulus onset). This task could be especially useful in our 

experimental setting to uncover possible variations in motor performance in the 

different studied groups as well as the different conditions of medication and 

stimulation in which PD patients were evaluated. 

In a typical trial of this task there were no components of perceptual 

discrimination and selection of the motor response like those involved for the choice 

reaction time task. As a consequence, the difference in RT between the trials of these 

two tasks allowed us to isolate the time necessary to select the motor response on the 

basis of a discriminative visual analysis. This was a decision making (DM) component 

representative of the functioning of the mechanisms of motor response selection. Then, 

the computation of this difference in RT could enable us to uncover if our patients’ 

performance in the AC task was affected by possible decision-making deficits, as 

reported by some authors in PD patients.210-213 

On the whole, in the simple reaction time task, subjects performed 60 randomly 

mixed trials, in which the target appeared equally often in red or green, and in each of 
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the 6 possible eccentric positions of the array. The task was presented in 2 blocks, 

each consisting of 30 trials. In one block the subject responded with the index, while 

on the other block with the middle finger. The inter-trial interval was 1500 ms.  

This test as a whole took about 5 min.  

At the beginning of the first experimental session, subjects practiced the task in one 

block of 30 trials. If an accuracy of 80% or more was achieved, the actual experiment 

was run, otherwise the practice block was repeated. The following experimental 

sessions started with 10 training trials. 

 

 

 

Fig.9 Graphic illustration of a simple reaction time trial. 
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Procedure and development of the experimental session 

Each participant of the 3 groups underwent more than one experimental session. 

PD patients of group #1 performed two experimental sessions in different 

conditions of medication: med-off and medication-on (med-on, corresponding to the 

best clinical state after their usual first dopaminergic dose intake in the morning). 

These sessions were performed on different days within the same week, and the 

conditions of evaluation were randomized. Each session began with the motor state 

evaluation scored by the UPDRS III, followed by the performance of the 3 

computerized tasks, which were presented in a randomized order and counterbalanced 

to obtain the same number of patients beginning with the med-off or the med-on. At 

the end of each session, the patients’ motor state was scored again to uncover possible 

changes in the global motor score during the experimental session. As a whole, each 

evaluation session took about 1h.  

Patients of group #2 were evaluated in 3 different conditions at least 12 h after 

a withdrawal of antiparkinsonian drugs: 1) med-off/stim-off, 2) med-off/SM 

stimulation-on (med-off/SMstim-on, stimulating through the lead contacts localized in 

the SM part of the STN, as it usually would occur during chronic stimulation), 3) 

med-off/AS stim-on (med-off/ASstim-on, stimulating through lead contacts localized 

in the AS part of the STN, using a contact generally located one or two contacts more 

ventral than the one located in the SM part of the STN). The more distant were the 

used stimulation contacts from each other, the greater was the possibility for a 

selective stimulation of the SM and AS areas of STN, avoiding any overlapping effect 

due to the spread of electrical current. The parameters of stimulation were as close as 

possible to the ones used for chronic stimulation, while avoiding side effects. On each 

side, we stimulated both STN sites with the same electrical parameters, in order to 

activate the same volume of tissue (Table 2). 

Also for this group, the experimental sessions were performed in different days 

within the same week, and the conditions of evaluation were randomized and 

counterbalanced. In med-off/stim-off, the patient started the experimental evaluation 

after having the stimulation turned-off for about 30 min. In each med-off/stim-on 

condition, firstly the stimulation was turned-off for about half an hour, then it was 

turned-on for half an hour, and at last the experimental evaluation started.  Each expe- 
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 right STN left STN 

Subject SM  
contact 

AS 
contact 

Voltage 
(V) 

SM  
contact 

AS  
contact 

Voltage 

#1 2 
 

0 2.4 3 1 2.2 

#2 2 
 

0 3.0 3 1 2.5 

#3 3 
 

1 2.5 2 0 3.3 

#4 2 
 

0 2.5 3 1 2.5 

#5 3 
 

1 2.4 3 1 2.7 

#6 3 
 

1 2.7 2 1 2.5 

#7 2 
 

0 3.0 3 1 3.0 

#8 2 
 

0 3.3 3 2 2.8 

#9 3 
 

1 2.0 3 1 2.4 

#10 3 
 

1 2.2 3 1 2.4 

#11 2 
 

0 2.6 2 0 2.4 

#12 3 
 

1 1.8 3 1 2.8 

   mean value 
2.5 ± 0.4 

  mean value 
2.6 ± 0.2 

 

 

Tab.2  Contacts and parameters of stimulation in the experimetal sessions for each patient.   

The four contacts of each electrode were numbered 0 to 3 from bottom to top. SM contact 

and AS contact: contacts used to stimulate the SM and AS part of the subthalamic nucleus, 

respectively. V = volt. The mean voltage was not significantly different between the two 

sides of stimulation (p = 1.0). The pulse width and frequency of stimulation were set to 60 µs 

and 130 Hz, respectively, for each side. STN = subthalamic nucleus.  

 

mental evaluation was run in the same way as described for group #1. Therefore, in 

med-off/stim-off, stimulation was turned-off as a whole for about 1h 30 min, whereas 

in each med-off/stim-on condition, either we maintained the stimulation parameters 
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used for chronic treatment or we changed them as little as possible for no more than 

1h 30 min.  

Healthy controls (group #3) were evaluated twice to assess possible learning effects 

on the computerized tasks. These evaluations occurred in different days within the 

same week, and in each session the 3 computerized tasks were performed in a 

randomized order. 

 

 

Statistical analysis 

Variables measured  

To pursue the objectives of this study, the main variables assessed were RT and 

error rate in performing the 3 computerized tasks, comparing the results among groups 

and conditions.  

RT was the time between the presentation of the target stimuli on the display 

and the onset of the subjects’ response. Statistical analyses were performed on RTs 

for trials with correct responses. We excluded from analyses trials on which the RT 

fell outside ±2.5 SDs from the mean value for each subject and each experimental 

condition. 

Error rate was computed as the percentage of the omitted and wrong responses 

in the AC task and in the choice reaction time task, while error rate was the 

percentage of the omitted and anticipated responses in the simple reaction time task.  

The AC effect was measured as the difference (∆) in RTs and error rates 

between the distracter and no-distracter trials of the AC task. 

To investigate any potential speed-accuracy trade-off related to the different 

conditions, we also calculated the inverse efficiency (IE) scores for the AC task. IE 

scores are a standard way to combine RT and accuracy data into a single performance 

measure, computed as mean RT divided by the proportion of correct trials for a given 

condition, and expressed as adjusted mean RT.214-216 Higher values represent worse 

performances. 

In an attempt to isolate components of the cognitive operations underlying the 

response given in a no-distracter trial of the AC task (such as EVA, DM, and motor 

initiation), albeit with some degree of approximation, we have adopted the subtraction 
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method of Donders.217 The Donders’ approach was based on the assumption that 

mental processing takes time, therefore inserting a specific computation into a RT 

paradigm will lenghten the behavioural response times by a certain amount compared 

to those obtained in the original RT paradigm, without affecting the other components 

of the test. Even if Donders' work paved the way for future research in mental 

chronometry tests, it was not without some drawbacks. In particular, the assumption 

that the incremental effect on RT was strictly additive did not hold up to later 

experimental tests,209, 218 which showed that the insertions may interact with other 

aspects of the RT paradigm. Despite this aritmetical limit, Donders' method represents 

one of the core paradigms in psychometric psychology, having the potential to 

elucidate a lot of mechanisms underlying cognitive processing, at least at a conceptual 

level. In this sense, we have used this method, especially to infer the impairment of 

some components of cognitive-behavioral control in PD, and the effects of 

dopaminergic and electrical stimulation on them. 

In particular, the EVA component was computed as the difference between the 

mean RT in no-distracter trials of the AC task and the mean RT in the choice reaction 

time task. Lower values of EVA suggest more efficient mechanisms of selection of the 

target within an array of irrelevant stimuli, and therefore they seem to indicate a 

strengthening of the endogenous attention mechanisms. 

The DM component was defined as the difference between the mean RT in the 

choice reaction time task and the simple reaction time task. 

 

Data analyses 

Collected data underwent statistical analyses using SPSS (version 12.0, inc. 

Chicago, USA).  

Separate analyses of variance (ANOVAs) were carried out in relation to the 

different computerized tasks (AC task, choice reaction time task, simple reaction time 

task) to compare different performance indices (RT, error rate, AC, EVA, DM) 

between groups (#1 versus #2 versus #3) and in different conditions of evaluation 

(with or without drug, with or without stimulation, stimulation of different parts of the 

STN).  
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In detail, the following evaluation criteria and analyses were adopted: 

  

1) Effectiveness of the tasks and effects of session. Preliminary analyses in the 

group of healthy controls were run in order to assess both the effectiveness of our AC 

task, and the feasibility of applying the subtraction method of Donders to the results 

obtained in the other computerized tasks. Moreover, we verified possible learning 

effects due to the mere repetition of the experimental session. For this purpose, RT, 

error rate and IE in the AC task have been analyzed by means of repeated measures 

ANOVA with the type of trial (no-distracter versus distracter trials) and session 

(session-I versus session-II) as within-subjects factors. Similar analyses have been 

carried out for RTs and error rates in relation to the other computerized tasks, as well 

as for the other performance indices (EVA and DM), the session being the within-

subject factor. 

 

2) Effects of disease. To address the first objective in the present study, i.e. the 

effects of PD on visual selective attention and AC, we compared the performance on 

the computerized tasks of PD patients in med-off (group #1) and in med-off/stim-off 

(group #2) with that of the healthy controls (group #3). We ran a repeated measures 

ANOVA on RTs, error rates and IEs of the AC task, with the type of trial (no-

distracter versus distracter trials) as within-subjects factor, while the group as 

between-subjects factor. The RTs and error rates obtained in the other computerized 

tasks, as well as the other performance indices (EVA and DM) were analyzed by one-

way ANOVAs, with group as between-subjects factor.  

 

3) Effects of dopaminergic treatment. To study the effects of the dopaminergic 

treatment on visual selective attention and AC, we made an evaluation within group 

#1, comparing the performances in med-off with that in med-on. For this purpose we 

made an  analysis of variance (ANOVA) with the condition of evaluation (med-off 

versus med-on) and the type of trial of the AC task (no-distracter and distracter 

condition) as within-subjects factors, and the RTs, error rates, and IEs as dependent 

variables. The data obtained in the other computerized tasks, as well as the 

performance indices computed by the subtraction method were analyzed by means of 
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paired samples t-tests, comparing the results obtained in the two different conditions 

of evaluation.  

 

4) Effects of STN-DBS. To study the effects of neuromodulation of the STN on 

visual selective attention and AC, we made an evaluation within group #2, comparing 

the performances in med-off/stim-off with that in med-off/SMstim-on and med-

off/ASstim-on. Moreover, this type of evaluation enabled us also to directly assess the 

involvement of the cortico-basal ganglia loops in the mechanisms underlying visual 

attention, and the respective role of the SM and AS parts of STN in modulating these 

mechanisms. Then, we performed an analysis of variance (ANOVA), with the 

conditions of evaluation (med-off/stim-off, med-off/SMstim-on, med-off/ASstim-on), 

and the type of trial of the AC task (no-distracter and distracter condition) as within-

subjects factors, and the RTs, error rates, and IEs as dependent variables. The RTs and 

error rates obtained in the other computerized tasks, as well as the other performance 

indices (EVA and DM) were analyzed by means of repeated measures ANOVA with 

the condition of evaluation as within-subjects factor. 

  

5) Comparison between the effects due to dopaminergic and STN stimulation. 

A comparison between groups addressing the effect of different treatments allowed to 

analyze the respective role of the dopaminergic pathways and the cortico-basal 

ganglia loops passing through the STN in the bottom-up and top-down mechanisms of 

visual attention. To this end, we computed for each variable the difference between 

the mean value obtained in off condition with that in med-on (∆ med-off – med-on), 

as well as in med-off/SMstim-on (∆ med-off/stim-off – med-off/SMstim-on) or in 

med-off/ASstim-on (∆ med-off/stim-off – med-off/ASstim-on). In this way, we 

obtained a measure of the possible gain or detriment of the patients’ performance due 

to the specific treatment with respect to the off condition. 

On the basis of these differences, two separate statistical analyses were carried 

out applying the t-tests for independent samples. In one of them we compared the 

effects of medication with those of stimulation of the SM part of the STN, while in 

the other we compared the effect of medication with those of stimulation of the AS 

part of the STN.  
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6) Effects of dopaminergic and STN stimulation with respect to the control 

condition. At last, we also investigated whether medication and/or stimulation of the 

two STN sites could restore patients’ performance to the normal level. To this end we 

carried out three separate analyses using the t-test for independent samples, 

comparing the performances of healthy subjects with those of group #1 in med-on, 

and group #2 in med-off/SMstim-on or med-off/ASstim-on. Again these comparisons 

were carried out for all the variables measured in the study. 

 

Whenever a main effect of a factor (group, condition of evaluation or type of 

trial) was found, we performed comparisons between the levels of this factor by 

means of pairwise comparisons among the estimated means of the evaluated levels, 

with Bonferroni adjustment for multiple comparisons. 

Post-hoc analyses of significant interactions were carried out by means of t-

tests with Bonferroni’s correction for multiple comparisons where necessary.  

Unless otherwise specified, significant values have been considered for p ≤ 

0.05. 

 

Computation of groups’ size 

We computed the groups’ size on the main tool of our research, the AC task, 

and on the group #2 (that is, the group in which participants underwent the maximum 

number of evaluations), according to an α risk < 0.05 and a powerful = 90% (β risk < 

0.10). 

As every patient of the group #2 performed the experimental session in 3 

different conditions of stimulation, to fulfil the criteria of randomization for sequence 

a minimum of 6 cases were required. 

Statistical analysis comprised a within group evaluation, and a study of the 

interaction between group and condition, according to the criteria and the 

methodology described above.  

As regards the within group evaluation, supposing that RTs would be 

distributed according to N (µ . σ), and if Cohen’s d =1, we would expect to need 13 

patients.  
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Referring to the paper of Deijen et al. (2006),23 from which we started to 

devised our AC task, they found that in PD patients the mean RTs (±SD) in the no-

distracter and distracter condition were respectively: 1080 (±193) ms and 1320 (±298) 

ms. These values correspond to Cohen’s d = 1.2. If so, 10 cases would have been 

required. During a pilot study, carried out on 8 healthy volunteers to test the 

effectiveness of our AC task, we found that the mean RTs (±SD) in no-distracter and 

distracter trials were respectively: 523.4 (±64.7) ms and 625.6 (±80.8) ms. The mean 

∆RTs was: 102.2 (±41.3) ms. A paired samples t-test of the mean RTs in no-distracter 

and distracter trials showed a significant difference (p = 0.006). These mean RTs lead 

to Cohen’s d = 2.4, and if so 7 cases would have been required.  

We decided to increase the group size to 12 subjects in order to obtain an 

equivalent distribution of the different evaluation condition sequences due to the 

randomization of the stimulation conditions. 

As regards the interaction between group (PD patients versus healthy controls) 

and the type of trial of the AC task (no-distracter and distracter trials), we referred 

again to the work of Deijen et al. (2006), in which a sample of 12 healthy controls and 

11 PD patients proved to be sufficient to obtain a significant interaction effect (p = 

0.04) with respect to RT. Moreover, as regards the accuracy, Deijen et al. (2006) 

found a significant interaction effect between groups and the type of trial (p = 0.007). 

The number of the correct responses was reduced in the presence of the distracter, the 

reduction being larger in the patients.  

To sum up, 24 PD patients (12 for the group #1, and 12 for the group #2) and 

12 healthy controls took part to our protocol. 
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Results 

 

Effectiveness of the tasks and effects of session 

 

The percentage of trials excluded from analyses, because their RT fell outside 

±2.5 SDs from the mean value, were 2.2%, 2.1%, and 2.4% respectively in the AC, 

choice reaction time, and simple reaction time tasks. 

A first qualitative inspection of the data in the AC task showed that the mean 

(±SE) RT of healthy subjects in the no-distracter condition was to 541.2 (±17.8) ms 

and 534.8 (±15.7) ms, respectively in the first and second experimental session, while 

the mean cost in terms of ∆ RT was of about 100 ms in the distracter condition, 

respectively 98.2 (±5.3) ms and 96.1 (±4.2) ms in the first and second session 

(Fig.10A). More in detail, analysis of RTs in the AC task revealed a significant effect 

of the type of trial [F(1,11) = 560.12, p < 0.001], due to faster RTs in the no-distracter 

condition (538 ±16.6 ms) compared with the distracter condition (635.2 ±18.6 ms). 

The factor session and the interaction type of trial × session were not significant (p = 

0.206 and p = 0.677, respectively).  

Analogous results were obtained by analyzing error rates in the AC task 

(Fig.10B). In detail, a significant effect of the distracter [F(1,11) = 55.23, p < 0.001] 

was found on error rates, due to more errors in the distracter condition (4.04 ±0.4%) 

than in no-distracter condition (1.04 ±0.2%), in both experimental sessions. The factor 

session and the interaction type of trial × session were not significant (p = 0.698 and p 

= 0.840, respectively).  

A single measure of performance in the AC task, by the IE score, again 

revealed a significant effect of the distracter [F(1,11) = 733.2, p < 0.001], with higher 

IE values in the distracter condition (662.0 ±19.4 ms) than in the no distracter 

condition (543.3 ±16.4 ms), (Fig.11). The factor session and the interaction type of 

trial × session again were not significant (p = 0.135 and p = 0.544, respectively). 

On the whole, these results showed that our AC task was an effective means to 

assess AC, and that performances were not affected by learning effects due to the 

mere repetition of the experimental session. 
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Fig.10  Healthy subjects: comparison of mean reaction time, RT (in A), and error rate, ER (in 

B), in the no-distracter and distracter conditions of the attentional capture task, in two 

consecutive experimental sessions (SESS).  ∆ RT and ∆ ER = attentional capture in terms of  

∆ RT and  ∆ ER, respectively. 
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Fig.11 Healthy subjects: comparison of inverse efficiency (IE) score, expressed as adjusted 

mean RT, in the no-distracter and distracter conditions of the attentional capture task, in two 

consecutive experimental sessions (SESS).  ∆ IE = attentional capture in terms of ∆ IE. 

 

 

Comparing the data obtained in the choice reaction time and simple reaction 

time tasks, we noted that more complex was the task, the longer was the mean RT 

(Fig.12). In detail, the mean RTs were 443.5 ±16.7 ms and 435.6 ±15.4 ms, 

respectively, in the first and second experimental session of the choice reaction time 

task, while they amounted to 305.1 ±9.4 ms and 296.3 ±9.2 ms respectively in the first 

and second experimental session of the simple reaction time task. Overall, these RTs 

were shorter than those obtained for the no-distracter condition of the AC task. These 

results suggested that the RT lengthened in parallel with the increasing complexity of 

the tasks, which allowed us to adopt the subtraction method of Donders to 

approximately enucleate the two cognitive processes underlying the responses given 

in the no-distracter condition of the AC task: that is EVA and DM. Indeed, mean EVA 
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session, while DM amounted to 138.5 ±17.1 ms and 139.3 ±14.3 ms (Fig.12). The 

analyses of RTs and ∆ RTs obtained by these two tasks revealed also that the factor 

session was not significant (for all comparisons p > 0.149), pointing out that even 

these measures of performance were not reliably influenced by learning. 

Also the error rates in the two tasks (0.2 ±0.2% and 0.5 ±0.3%, respectively, in 

the first and second session of the choice reaction time task, and 1.0 ±0.3% and 0.7 

±0.3% for the simple reaction time task) were not influenced by the repetition of the 

task (p = 0.438 and p = 0.443, respectively, in the choice reaction time and simple 

reaction time task). 

 

 

 

Fig.12 Healthy subjects: comparison of the mean times for movement initiation (simple 

reaction time, SRT), motor response selection (decision making, DM), and target selection 

(EVA, endogenous visual attention) in two consecutive experimental sessions (SESS). Note 

that SRT + DM = choice RT, while SRT + DM + EVA = RT in the no-distracter condition of 

the attentional capture task. 
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Effects of disease 

 

The percentage of trials in med-off excluded from analyses, because their RT 

fell outside ±2.5 SDs from the mean value, were 2.5%, 2.6%, and 1.5%, respectively, 

in the AC, choice reaction time, and simple reaction time tasks. On the other hand, the 

percentage of outliers in med-off/stim-off were 2.5%, 2.0%, and 2.3%, respectively, in 

the AC, choice reaction time, and simple reaction time tasks.  

At first glance, PD impaired performance with respect to healthy subjects by 

slowing down RT and increasing the error rate in the AC task (Fig.13A).  

In detail, analysis of RTs in the AC task revealed a significant effect of the 

type of trial [F(1,33) = 479.3, p < 0.001], due to longer RTs (mean ±SE) in the 

distracter condition (769.0 ±18.7 ms) than the no-distracter condition (664.2 ±16.3 

ms). The factor group was also significant [F(2,33) = 16.0, p < 0.001], due to longer 

RTs in med-off (738.4 ±30.2 ms) compared to control subjects (586.6 ±30.2 ms, p = 

0.003), and med-off/stim-off (824.8 ±30.2 ms) compared to control subjects (p < 

0.001). Otherwise, there was no reliable difference between the med-off and med-

off/stim-off conditions (p = 0.153). The interaction type of trial × group was not 

significant (p = 0.127), although by looking at the AC effect, it was slightly, but non 

significantly, increased for the group in med-off (118.9 ±12.1 ms) with respect to the 

other two groups (med-off/stim-off: 98.2 ±6.5 ms, and healthy subjects: 97.2 ±4.1 ms), 

suggesting that the pathological condition, although slowing down the RTs, did not 

affect the mechanisms underlying AC.  

A different pattern of results emerged from the analysis of error rate in the AC 

task (Fig.13B). In detail, a significant effect of the distracter [F(1,33) = 67.0, p < 

0.001] was found on error rates, due to more errors committed by participants in the 

distracter condition (10.3 ±1.0%) than in no-distracter condition (2.5 ±0.2%). The 

factor group was also significant [F(2,33) = 14.1, p < 0.001)], due to higher error rates 

in med-off (8.3 ±0.9%) compared to healthy subjects (2.5% ±0.9, p < 0.001), and 

med-off/stim-off (8.2 ±0.9%) compared to healthy subjects (p < 0.001). Otherwise, no 

significant differences in error rates (p = 1.0) were found between the two groups of 

PD patients. The interaction of type of trial × group was significant [F(2,33) = 6.3, p 

= 0.005]. Post-hoc analysis revealed that the AC effect was larger in med-off (∆ error  
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Fig.13 Comparison between the two groups of PD patients evaluated in off-condition (in 

med-off for the pharmacologically treated group, and in med-off/stim-off for the stimulation 

treated group) and healthy subjects in terms of reaction time, RT (in A), and error rate, ER 

(in B), obtained in the no-distracter and distracter conditions of the attentional capture task. 

∆ RT and ∆ ER = attentional capture in terms of ∆ RT and ∆ ER. 
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rate: 10.3 ±2.0%) with respect to healthy subjects [∆ error rate: 3.0 ±0.4%, t(22) = -

3.54, p = 0.002], and in med-off/stim-off (∆ error rate: 9.9 ±2.0%) with respect to 

healthy subjects [t(22) = -3.48, p = 0.002], suggesting enhanced AC in PD. Otherwise, 

no significant difference in ∆ error rate [t(22) = -0.148, p = 0.884] was found between 

the two groups of PD patients.  

Then, a discrepancy was apparent between the two measures representative of 

AC, i.e. ∆ RT and ∆ error rate. This result could be due to a potential speed-accuracy 

trade-off effect, related to different conditions of evaluation. To clarify this 

discrepancy, we calculated the IE scores (Fig.14). 

 

 

 

  

Fig.14 Comparison between the two groups of PD patients evaluated in off-condition (in 

med-off for the pharmacologically treated group, and in med-off/stim-off for the the 

stimulation treated group) and healthy subjects in terms of inverse efficiency (IE) score 

(expressed as adjusted mean RT), obtained in the no-distracter and distracter conditions of 

the attentional capture task. ∆ IE = attentional capture in terms of ∆ IE. 
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Firstly, this analysis revealed a significant effect of group [F(2,33) = 18.6, p < 

0.001], due to higher IEs in med-off (817.2 ±36.3 ms,) than in control subjects (603.6 

±36.3 ms, p = 0.001), and in med-off/stim-off (909.1 ±36.3 ms) than in control 

subjects (p < 0.001), confirming that PD impaired performance in the AC task. 

Otherwise, there was no reliable difference between the med-off and med-off/stim-off 

conditions (p = 0.248). Moreover, a significant effect of the type of trial was observed 

[F(1,33) = 167.6, p < 0.001], due to higher IE in the distracter condition (870.3 ±26 

ms) than in the no-distracter condition (683 ±17.5 ms). The interaction type of trial × 

group was significant [F(2,33) = 5.6, p = 0.008]. In particular, post-hoc analysis 

revealed that the AC effect was larger in the group of med-off patients (∆ IE: 231.2 

±33.3 ms) compared to healthy subjects [∆ IE: 119.6 ±4.3 ms, t(22) = -3.32, p = 

0.003], and in the group of med-off/stim-off patients (∆ IE: 210.9 ±27.4 ms) 

compared to healthy subjects [t(22) = -3.29, p = 0.003]. Otherwise, no significant 

difference in ∆ IE [t(22) = 0.471, p = 0.642] was found between the two groups of PD 

patients. Thus, these results suggested a behavioral homogeneity of our two groups of 

PD patients in terms of AC, which appeared enhanced by the pathological condition. 

As regards the selection and initiation of motor responses, the analysis of RTs 

in the choice reaction time task revealed a significant effect of the factor group 

[F(2,33) = 12.0, p < 0.001]. In detail, we found longer RTs (p < 0.001) in the group #2 

(med-off/stim-off: 613.9 ±30.8 ms) compared to healthy subjects (439.6 ±15.8 ms), 

whereas we obtained a p value very close to the significance (p = 0.059) by comparing 

PD patients in med-off (526.8 ±26.4 ms) with healthy subjects, as well as by 

comparing the two groups of PD patients in off-condition with each other. 

Also the analysis of the RTs in the simple reaction time task pointed out that 

the factor group was significant [F(2,33) = 10.4, p < 0.001], due to faster RTs in 

healthy subjects (300.7 ±8.9 ms) than both groups of PD patients (med-off: 382.1 

±18.3 ms, p < 0.013; med-off/stim-off: 421.2 ±26.0 ms, p < 0.001), as we could 

expect by considering the akinesia typical of PD off-phase.  No significant differences 

(p = 0.468) emerged by comparing the two groups of PD patients, suggesting a 

homogeneity in motor impairment between the two groups of patients (Fig.15).  
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Fig.15 Comparison between the two groups of PD patients evaluated in off-condition (in 

med-off for the pharmacologically treated group, and in med-off/stim-off for the the 

stimulation treated group) and healthy subjects in terms of mean times for movement 

initiation (simple reaction time, SRT), motor response selection (decision making, DM), and 

target selection (EVA, endogenous visual attention). Note that SRT + DM = choice RT, while 

SRT + DM + EVA = RT in the no-distracter condition of the attentional capture task. 
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we consider these two tasks, the differences between PD patients and healthy subjects 
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 healthy subjects med-off med-off/stim-off 

Choice reaction time task 0.4 ±0.2% 0.8 ±0.2% 0.5 ±0.3% 

Simple reaction time task 0.8 ±0.2% 1.4 ±0.6% 2.6 ±0.9% 

 

Tab.3 Mean (±SE) error rates in the choice and simple reaction time tasks for the three 

groups of participants. 

 

Now, one might ask whether the larger increase of choice RTs observed for PD 

patients was due only to a mere motor impairment, or instead reflected a genuine 

impairment of the mechanisms of motor response selection. Analysis of DM revealed 

that the factor group was significant [F(2,33) = 3.8, p = 0.032]. This effect was due to 

larger ∆ RTs in med-off/stim-off (192.7 ±16.8 ms) compared to control subjects 

(138.9 ±15.6 ms, p = 0.050), (Fig.15). Conversely, in med-off, we revealed only a 

slight increment in DM (144.7 ±12.5 ms, p = 1.0) compared to healthy subjects, and a 

tendency to a significant difference between med-off and med-off/stim-off (p = 0.094). 

These results showed that the mechanisms of motor response selection were 

potentially impaired only in the group of surgical treated PD patients. This 

observation suggested heterogeneity between our two PD groups, which could be 

related to some epidemiological or clinical parameter, as it will be pointed out in the 

discussion.  

Analysis of EVA revealed that the factor group was significant [F(2,33) = 17.5, 

p < 0.001]. This effect was due to larger ∆ RT in med-off (152.2 ±9.4 ms) compared 

to control subjects (98.5 ±5.7 ms, p < 0.001), and in med-off/stim-off (161.8 ±8.8 ms) 

compared to control subjects (p < 0.001), whereas no difference was found between 

the two PD groups (p = 1.0) (Fig.15). Thus, these results demonstrated that the time 

for display analysis and target selection were prolonged in both groups of PD patients, 

suggesting a weakening of the endogenous mechanisms of visual attention in PD.  

On the whole, the analysis of the components of the response in no-distracter 

trials of the AC task showed that in med-off and in med-off/stim-off there was an 

impairment of the mechanisms of target selection and motor response initiation, while 

in med-off/stim-off only, there was also an involvement of the mechanisms of motor 

response selection. 
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Effects of dopaminergic treatment 

 

The rate of outliers trials in med-on were 2.4%, 2.3%, and 2.4%, respectively 

in the AC, choice reaction time, and simple reaction time tasks. 

A first qualitative inspection of the data showed that the dopaminergic 

treatment improved performances by decreasing RTs and the error rates in the AC task 

(Fig.16). More specifically, analysis of RTs revealed that the factor type of trial was 

significant [F(1,11) = 113.8, p < 0.001], due to longer RTs (mean ±SE) in the 

distracter condition (772.1 ±38.3 ms) than in no-distracter condition (642.3 ±29.7 ms). 

Moreover, the factor condition of evaluation was significant [F(1,11) = 25.2, p < 

0.001], due to longer RTs in med-off (738.4 ±34.0 ms) compared to med-on (676.0 

±34.5 ms), thus indicating that the global performance was ameliorated by the 

pharmacological treatment. The interaction type of trial × condition of evaluation was 

also significant [F(1,11) = 6.4, p = 0.028]. In particular, the AC effect was larger 

under medical treatment (∆ RT: 140.6 ±13.7 ms) compared to med-off (∆ RT: 119.0 

±12.1 ms), suggesting that while the dopaminergic treatment speeded up the response 

times, it influenced also the mechanisms of visual attention (Fig.16A). 

A different pattern of results emerged from the analysis of error rate in the AC 

task (Fig.16B). Indeed, while the factor type of trial was significant [F(1,11) = 39.8, p 

< 0.001], due to higher error rate in the distracter condition (12.5 ±1.4%) compared 

with the no-distracter condition (3.0 ±0.2%), the factor condition of evaluation, and 

the interaction condition of evaluation × type of trial were not significant (p = 0.388 

and p = 0.373, respectively). Thus, these results seemed to point out that, contrary to 

what we saw for AC in terms of ∆ RT, the dopaminergic treatment did not influence 

the mechanisms underlying the AC. To clarify this discrepancy, we calculated the IE 

scores (Fig.17). 

In detail, this analysis showed a significant effect of the condition of evaluation 

[F(1,11) = 11.1, p = 0.007), due to a better global performance under dopaminergic 

treatment (736.9 ±41.7 ms) than in med-off (817.2 ±43.4 ms). Also the factor type of 

trial was significant [F(1,11) = 58.9, p < 0.001], due to higher IE values in the 

distracter (891.7 ±53.6 ms) than in the no-distracter (662.4 ±30.2 ms) condition. 
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Fig.16  Comparison of mean reaction time, RT (in A), and error rate, ER (in B), obtained in 

the no-distracter and distracter conditions of the attentional capture task, by the group of 

pharmacologically treated patients, who were evaluated in med-off and med-on conditions. ∆ 

RT and  ∆ ER = attentional capture in terms of ∆ RT and  ∆ ER. 
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Conversely, the interaction type of trial × condition of evaluation was not 

significant (p = 0.893), as confirmed by the fact that no appreciable differences in ∆ 

IE between the two conditions of evaluation (med-off: 231.2 ±33.3 ms; med-on: 227.3 

±32.8 ms) were observed, suggesting that the previous observed increment of AC in 

terms of ∆ RT could be of unclear relevance. 

 

 

 

 

Fig.17 Comparison of the inverse efficiency (IE) score (expressed as adjusted mean RT), 

obtained in the no-distracter and distracter conditions of the attentional capture task by the 

group of medical treated patients, who were evaluated in med-off and med-on conditions. ∆ 

IE = attentional capture in terms of ∆ IE. 
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0.147) in the choice reaction time task (med-off: 526.7 ±26.4 ms; med-on: 506.9 

±27.3 ms), while it was significant [t(11) = 5.7, p < 0.001] in the simple reaction time 

task (med-off: 382.1 ±18.3 ms; med-on: 351.6 ±17.8 ms), suggesting that 

dopaminergic treatment could speed up the patients’ motor responses, without 

consistently affecting the process of motor response selection (Fig.18).  

 

 

 

Fig.18 Comparison of the mean times for movement initiation (simple reaction time, SRT), 

motor response selection (decision making, DM), and target selection (EVA, endogenous 

visual attention) obtained by the group of pharmacologically treated patients, who were 

evaluated in med-off and med-on conditions. Note that SRT + DM = choice RT, while SRT + 

DM + EVA = RT in the no-distracter condition of the attentional capture task. 

 

This lack of effect on motor response selection was confirmed by the analysis 

of DM, where no significant effect of condition of evaluation was found (p = 0.435). 

In particular, the DM component “diluted” the beneficial effect of the dopaminergic 

treatment obtained on motor response initiation, as revealed by the mild increment of 

DM in med-on (155.3 ±16.1 ms) compared with med-off (144.7 ±12.5 ms). 
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Analyses of error rates in the choice reaction time as well as the simple 

reaction time tasks revealed that there were no significant differences comparing the 

two conditions of evaluation (p = 0.191, and p = 0.120, respectively in the choice and 

simple reaction time task).  

A beneficial effect on the mechanisms of target selection, due to dopaminergic 

treatment, seemed to emerge by the analysis of EVA. In detail, in med-on there a was 

significant [t(11) = 7.8, p < 0.001] reduction of EVA (98.8 ±8.7 ms) compared with 

med-off (152.2 ±9.4 ms), suggesting that the dopaminergic treatment might potentate 

the endogenous mechanisms of visual attention. If so, one might expect a reduction of 

the AC. Conversely, we observed an increase of AC in terms of ∆ RTs, which could 

be explained by assuming that, under dopaminergic treatment, in parallel with the 

improvement of EVA mechanisms, there might be also an enhancement of the bottom-

up mechanisms. 

On the whole, the analysis of the components of the response in no-distracter 

trials of the AC task showed that under dopaminergic treatment there was an 

improvement of the mechanisms of target selection and motor response initiation, 

while there were no significant changes in the mechanisms of motor response 

selection. 

 

 

Effects of deep brain stimulation of the subthalamic nucleus 

 

The percentage of outliers excluded from analyses were 2.5%, 1.9%, and 2.8%, 

respectively, in the AC, choice reaction time, and simple reaction time tasks in med-

off/SMstim-on, and 2.2%, 3.1%, 2.0% in med-off/ASstim-on. 

A first qualitative inspection of the data obtained in the AC task showed that 

both conditions of stimulation, especially the med-off/SMstim-on reduced RTs, while 

no appreciable changes were evident in terms of error rates (Fig.19). In particular, the 

analysis of RTs in the AC task showed that the factor type of trial was significant 

[F(1,11) = 281.9, p < 0.001], due to longer RTs in the distracter condition (849.7 

±33.3 ms) than in the no-distracter condition (723.0 ±28.8 ms). The factor condition 

of evaluation was significant [F(2,22) = 7.8, p = 0.003], due to longer RTs in the med-
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off/stim-off (824.8 ±35.5 ms, p = 0.009) compared with med-off/SMstim-on (753.6 

±27.0 ms). Otherwise, the RTs in med-off/ASstim-on (780.5 ±34.8 ms) did not differ 

significantly from med-off/stim-off (p = 0.092) and from med-off/SMstim-on (p = 

0.488). The interaction type of trial × condition of evaluation was significant [F(2,22) 

= 30.7, p < 0.001]. Post-hoc analyses showed that the AC effect was larger under SM-

stimulation (∆ RT: 143.2 ±10.0 ms) than in med-off/stim-off (98.2 ±6.5 ms, t(11) = -

7.49, p < 0.001), as well as under AS-stimulation (∆ RT: 138.8 ±8.3 ms) than in med-

off/stim-off [t(11) = -6.76, p < 0.001]. Otherwise, the two conditions of stimulation 

did not differ from one another in terms of AC [t(11) = 0.641, p = 0.535]. Therefore, 

under STN stimulation, there was an enhancement of the AC in terms of ∆ RT, 

similarly to that seen under dopaminergic treatment. 

Analysis of error rate showed that the factor type of trial was significant 

[F(1,11) = 32.3, p < 0.001], due to higher error rate in the distracter condition (13.9 

±1.7%) than the no-distracter condition (4.3 ±0.6%). The factor condition of 

evaluation and the interaction condition of evaluation × type of trial were not 

significant (p = 0.463 and p = 0.802, respectively). Therefore, in terms of error rate, 

STN stimulation did not seem to influence the mechanisms underlying AC, similarly 

to the dopaminergic treatment. 

To clarify the discrepancy in the measures of AC, i.e. ∆ RTs and ∆ error rates, 

we computed the IE scores (Fig.20). This analysis showed that the factor type of trial 

was significant [F(1,11) = 82.7, p < 0.001], due to worse performances in the 

distracter trials (996.6 ±48.2 ms) than no-distracter trials (755.2 ±30.3 ms). Yet, under 

stimulation of both STN sites we obtained a partial amelioration of the global 

performances with respect to med-off/stim-off (909.1 ±41.8 ms), but without reaching 

significance: p = 0.134 in med-off/SMstim-on (847.6 ±35.6 ms), and p = 0.500 in 

med-off/ASstim-on (871.0 ±45.2 ms). Also the interaction condition of evaluation × 

type of trial was not significant (p = 0.179), as revealed by the lack of appreciable 

differences in the AC effect in terms of ∆ IE between the three conditions of 

evaluation (med-off/stim-off: 210.9 ±27.4 ms; med-off/SMstim-on: 265.0 ±36.1 ms; 

med-off/ASstim-on: 248.3 ±29.7 ms), although a tendency to larger ∆ IE emerged 

under stimulation. 
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Fig.19  Comparison of mean reaction time, RT (in A), and error rate, ER (in B), obtained in 

the no-distracter and distracter conditions of the attentional capture task, by the group of 

stimulation treated patients, who were evaluated in med-off/stim-off, med-off/SMstim-on, 

and med-off/ASstim-on conditions. ∆ RT and ∆ ER = attentional capture in terms of ∆ RT 

and ∆ ER. 
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Fig.20  Comparison of the inverse efficiency (IE) score (expressed as adjusted mean RT), 

obtained in the no-distracter and distracter conditions of the attentional capture task by the 

group of stimulation treated patients, who were evaluated in med-off/stim-off, med-

off/SMstim-on, and med-off/ASstim-on conditions. ∆ IE = attentional capture in terms of ∆ 

IE. 
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1.0), and the two conditions of stimulation with one another (p = 0.072). Analysis of 

error rate revealed no significant effect (p = 0.143). 

 
Fig.21 Comparison of the mean times for movement initiation (simple reaction time, SRT), 

motor response selection (decision making, DM), and target selection (EVA, endogenous 

visual attention) obtained by the group of stimulation treated patients, who were evaluated in 

med-off/stim-off, med-off/SMstim-on, and med-off/ASstim-on conditions. Note that SRT + 

DM = choice RT, while SRT + DM + EVA = RT in the no-distracter condition of the 

attentional capture task. 

 

In the simple reaction time task, analysis of RTs showed that stimulation of the 

SM part of the STN led to faster RTs (380.1 ±13.1 ms), with a tendency to a 

significant effect, compared to the pathological condition (421.2 ±26 ms, p = 0.077), 

as well as compared to the stimulation of the AS part of the STN (416.4 ±23.5 ms, p = 

0.058). No significant difference (p = 1.0) was found between med-off/ASstim-on and 

med-off/stim-off. Analysis of error rate revealed no significant effect (p = 0.217). 

Thus, the stimulation of the SM part of the STN seemed to be effective at improving 

the mechanisms of motor response initiation with respect to the pathological condition.  
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Analysis of DM revealed no significant effect of the factor condition of 

evaluation (p = 0.513) suggesting that stimulation, like dopaminergic treatment, did 

not interfere with the process of motor response selection (Fig.21). Nevertheless, a 

qualitative inspection of the data showed a trend towards an improvement of DM 

under stimulation of the SM part of the STN, contrary to what observed with 

dopaminergic treatment. 

Conversely, stimulation seemed to have a great impact on the mechanisms 

underlying target selection, as showed by the analysis of EVA (Fig.21). This analysis 

showed that the factor condition of evaluation was significant [F(2,22) = 75.2, p < 

0.001], due to shorter ∆ RTs in med-off/SMstim-on (123.2 ±7.5 ms) and in med-

off/ASstim-on (102.3 ±6.5 ms) compared with med-off/stim-off (161.8 ±8.8 ms) [for 

both comparisons p < 0.001]. Therefore, the aforementioned stimulation-induced 

enhancement of AC in terms of ∆ RTs, might be explained by considering a 

potentation of the bottom-up mechanisms of visual attention, which occurred in 

parallel with the improvement of EVA, similar to what observed under dopaminergic 

treatment.  

Moreover, we found that the time taken for target selection was significantly 

shorter by stimulating the AS part of the STN than the SM one (p = 0.013), suggesting 

a functional specialization of the AS part of the STN in the mechanisms of EVA 

control.  

On the whole, the analysis of the components of the response in no-distracter 

trials of the AC task showed that under stimulation of the AS part of the STN there 

was an improvement of the mechanisms of target selection. Also the SM stimulation 

allowed a significant recovery of EVA compared to the stim-off condition, but to a 

lesser extent compared to that obtained by stimulation of the AS part. No appreciable 

effects were observed on motor response selection times by stimulation of either site. 

The movement initiation RTs were reduced compared to the stim-off condition only 

by stimulation of the SM part of the STN. 
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Comparison between the effects due to dopaminergic and STN stimulation 

 

For these analyses the level of significance was set to p ≤ 0.025 according to 

Bonferroni correction, since we compared the effect of dopaminergic treatment twice.  

 

A) Dopaminergic versus SM-STN stimulation.  

Overall, it appeared that dopaminergic and SM-STN stimulation did not 

determine significantly different effects compared with the off condition, as reported 

in detail in Table 4.  

 

 ∆ med-off – med-on ∆ med-off/stim-off –  
med-off/ASstim-on 

t; p 
(df = 22) 

Attentional capture task 
     

   RT 
        no-distracter condition 
        distracter condition 
 

   Error rates 
        no-distracter condition 
        distracter condition 

 
 
 

73.2 ±12.3 ms 
51.6 ±14.0 ms 

 
 

0.3 ±0.5% 
2.0 ±2.1% 

 
 
 

93.7 ±19.6 ms  
48.7 ±18.7 ms 

 
 
 

-1.3 ±0.6%  
-1.5 ±1.9% 

 
 
 

-0.886; 0.387 
0.123; 0.903 

 
 

1.951; 0.064  
1.231; 0.231 

Attentional Capture 
         
       ∆ RT 
       ∆ Error rate 

 
 

-21.7 ±8.6 ms 
1.8 ±1.9% 

 
 

-45.1 ±6.0 ms  
-0.2 ±1.8% 

 
 

2.229; 0.038 
0.728; 0.474 

Inverse Efficiency 
         
        no-distracter condition 
        distracter condition 
        attentional capture 

 
 

78.4 ±15.0 ms 
82.3 ±36.6 ms 
3.9 ±28.4 ms 

 
 

88.5 ±21.1 ms  
34.4 ±37.7 ms  

   -54.1 ±28.0 ms  

 
 

-0.391; 0.700 
0.912; 0.372 
1.457; 0.159 

Choice reaction time task 
         
        RT 
        Error rate 

 
 

19.8 ±12.7 ms 
0.4 ±0.3% 

 
 

55.1 ±17.7 ms  
-0.4 ±0.4% 

 
 

-1.623; 0.119  
1.629; 0.365 

Simple reaction time task 
         
        RT 
        Error rate 

 
 

30.5 ±5.3 ms 
-1.1 ±0.7% 

 
 

41.2 ±16.0 ms  
1.3 ±0.9% 

 
 

-0.635; 0.536 
-2.195; 0.039 

Decision Making -10.7 ±13.2 ms 13.9 ±12.1 ms  -1.378; 0.182 
Endogenous Visual Attention 53.4 ±6.9 ms 38.6 ±3.9 ms 1.871; 0.075 

 

Tab.4 Mean (±SE) ∆ RTs and ∆ error rates in different tasks under pharmacological 

treatment and electrical stimulation of the sensorimotor part of the subthalamic nucleus. The 

t and p values obtained comparing the effects of the two treatments by t-tests are reported on 

the right column. 
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More precisely, the analysis of RTs in the AC task showed a similar 

improvement of performances by medical and electrical treatment in the no-distracter 

as well as in the distracter conditions. The analysis of AC in terms of ∆ RT did not 

reveal significant differences in the increment of AC under dopaminergic and 

electrical stimulation, although a tendency to a larger ∆ AC emerged under 

stimulation. 

The analysis of errors revealed no significant difference, either in the no-

distracter or in the distracter conditions. The analysis of AC in terms of ∆ error rates 

confirmed that there was no significantly different effect when comparing the two 

treatments.  

Analogously, the analysis of IE revealed no significant differences, either in 

the no-distracter or in the distracter conditions. Also the analysis of ∆ AC computed 

on the IE scores did not show appreciable differences between the two treatments. 

Finally, no significantly different effects due to pharmacological treatment and SM-

STN stimulation were found in terms of RTs and error rates in the choice reaction 

time task, in the simple reaction time task, in terms of ∆ DM, and ∆ EVA. 

 

B) Dopaminergic versus AS-STN stimulation.  

Overall, we did not find reliable differences by comparing dopaminergic and 

AS-STN stimulation, as reported in Table 5. Only in the choice reaction time task, PD 

patients committed significantly more errors under stimulation than medication. 
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 ∆ med-off – med-on ∆ med-off/stim-off –  
med-off/ASstim-on 

t; p 
(df = 22) 

Attentional capture task 
     

   RT 
        no-distracter condition 
        distracter condition 
 

   Error rates 
        no-distracter condition 
        distracter condition 

 
 
 

73.2 ±12.3 ms 
51.6 ±14.0 ms 

 
 

0.3 ±0.5% 
2.0 ±2.1% 

 
 
 

64.6 ±18.2 ms 
24.0 ±18.0 ms 

 
 

-1.4 ±0.8% 
-0.4±2.0% 

 
 
 

0.394; 0.697 
1.208; 0.240 

 
 

1.784; 0.088 
0.832; 0.414 

Attentional Capture 
         
       ∆ RT 
       ∆ Error rate 

 
 

-21.7 ±8.6 ms 
1.8 ±1.9% 

 
 

-40.6 ±6.0 ms 
1.0 ±1.9% 

 
 

1.805; 0.085 
0.277; 0.784 

Inverse Efficiency 
         
        no-distracter condition 
        distracter condition 
        attentional capture 

 
 

78.4 ±15.0 ms 
82.3 ±36.6 ms 
3.9 ±28.4 ms 

 
 

56.8 ±20.3 ms 
19.4 ±36.3 ms 
-37.4 ±28.4 ms 

 
 

0.856; 0.401 
1.220; 0.235 
1.029; 0.315 

Choice reaction time task 
         
        RT 
        Error rate 

 
 

19.8 ±12.7 ms 
0.4 ±0.3% 

 
 

5.1 ±17.7 ms 
-0.8 ±0.3% 

 
 

0.675; 0.506 
2.865; 0.009 

Simple reaction time task 
         
        RT 
        Error rate 

 
 

30.5 ±5.3 ms 
-1.1 ±0.7% 

 
 

4.8 ±11.8 ms 
0.1 ±0.7% 

 
 

1.979; 0.060 
-1.344; 0.193 

Decision Making -10.7 ±13.2 ms 0.3 ±14.3 ms -0.564; 0.578 
Endogenous Visual Attention 53.4 ±6.9 ms 59.5 ±4.9 ms -0.720; 0.479 

 
Tab.5 Mean (±SE) ∆ RTs and ∆ error rates in different tasks under pharmacological 

treatment and electrical stimulation of the associative part of the subthalamic nucleus. The t 

and p values obtained comparing the effects of the two treatments by t-tests are reported on 

the right column. 

 

 

Effects of dopaminergic and STN stimulation with respect to the control condition 

 

For these analyses the level of significance was set to p ≤ 0.017 according to 

Bonferroni correction, since we compared three times the values obtained from 

controls.  

At first glance, the dopaminergic treatment seemed to improve the patients’ 

performance in our tasks more than the stimulation. Nonetheless, neither the medical 
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therapy, nor the electrical stimulation completely restored the patients’ performance 

to the level of healthy subjects. A detailed data analysis is shown on Table 6. 

More precisely, in the AC task, the RTs of patients under dopaminergic 

treatment were not significantly different from those of healthy subjects either in the 

no-distracter, or in the distracter condition. Conversely, the RTs of patients stimulated 

at the SM and AS parts of the STN differed from those of healthy subjects in the no-

distracter as well as in the distracter condition (Fig.22A). These findings suggest that 

the dopaminergic treatment may be more effective than stimulation in restoring to 

normality the patients’ performance in the AC task. Yet, we have seen that medical 

and electrical treatment had a comparable effect on the AC task performances. This 

discrepancy may be explained by considering that the two groups of PD patients were 

differently impaired in their performances in the AC task in off condition (even if 

without reaching a significance level), being the RTs of medically treated patients 

(med-off in the no-distracter: 678.9.1 ±30.9 ms, and in distracter condition: 797.9 

±38.0 ms) shorter than those of stimulated patients (med-off/stim-off in the no-

distracter: 775.7 ±34.3 ms, and distracter condition: 873.9 ±37.1 ms). Therefore, in 

face of a comparable effect of the two treatments, the dopaminergic treatment seemed 

more effective in restoring the patients’ performance to normality. 

Dopaminergic and STN-stimulation (at both sites of stimulation), similarly 

influenced the mechanisms underlying the AC, by increasing the AC in terms of ∆RT 

compared to healthy subjects (Fig.22A).  

Analysis of error rates in the AC task revealed that the error rates were higher 

for medically treated and stimulated patients compared with healthy subjects, both in 

no-distracter and in distracter conditions. Also AC in terms of ∆ error rates showed a 

significant increase under medical and electrical treatment compared with that 

obtained in healthy subjects (Fig.22B).  

Analysis of IE showed that, in the no-distracter condition, PD patients’ 

performance in med-on was not significantly different from those of healthy subjects 

(Fig.23). 
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 med-on 
 

med-off/ 
SMstim-on 

 

med-off/ 
ASstim-on 

 

controls 
 
 

med-on 
vs controls  

t(df = 22);p 

SM-stimulation 
vs controls 

t(df = 22);p 

AS-stimulation 
vs controls  

t(df = 22);p  

Attentional capture task 
 

   RT (ms) 
        no-distracter condition 
        distracter condition 
    
Error rates (%) 
        no-distracter condition 
        distracter condition 

 
 

 
605.7 ±29.8 
746.3 ±39.8 

 
 

2.9 ±0.4 
11.5 ±1.5 

 
 
 

682.0 ±24.7 
825.2 ±30.0 

 
 

4.7 ±0.8 
14.8 ±2.4 

 
 
 

711.1 ±32.4 
849.9 ±37.5 

 
 

4.8 ±0.7 
13.7 ±1.8 

 
 

 
538.0 ±16.6 
635.2 ±18.6 

 
 

1.0 ±0.2 
4.0 ±0.4 

 
 

 
-1.983;0.060 
-2.529;0.023 

 
 

-4.213;<0.001 
-4.849;<0.001 

 
 
 

-4.836;<0.001 
-5.380;<0.001 
 
 

-4.298;<0.001 
-4.441;<0.001 

 

 
 
 

-4.752;<0.001 
-5.130;<0.001 
 
 

-4.970;<0.001 
-5.202;<0.001 

 
  

Attentional Capture 
         
       ∆ RT (ms) 
       ∆ Error rate (%) 

 
 

140.6 ±13.7 
8.6 ±1.5 

 
 

143.2 ±10.0 
10.1 ±2.4 

 
 

138.8 ±8.3 
8.9 ±1.7 

 
 

97.1 ±4.1 
3.0 ±0.4 

 
 

-3,049;0.006 
-3,677;0.001 

 
 

-4.273;<0.001 
-2.955;<0.007 

 
 

-4.490;<0.001 
-3.414;<0.002 

Inverse Efficiency (ms) 
         
        no-distracter condition 
        distracter condition 
        attentional capture 

 
 

623.2 ±29.3 
850.5 ±56.2 
227.3 ±32.8  

 
 

715.1 ±24.4 
980.1 ±50.8 
265.0 ±36.1 

 
 

746.8 ±33.8 
995.1 ±58.1 
248.3 ±29.7 

 
 

543.8 ±16.5 
663.4 ±19.5 
119.6 ±4.3 

 
 

-2.361;0.028 
-3.144;0.005 
-3.252;0.004 

 
 

-5.814;<0.001 
-5.816;<0.001 
-4.003;0.001 

 
 

-5.395;<0.001 
-5.408;<0.001 
-4.283;<0.001 

Choice reaction time task 
         
        RT (ms) 
        Error rate (%) 

 
 

506.9 ±27.3 
0.5 ±0.2 

 
 

558.8 ±21.9 
0.9 ±0.3 

 
 

608.8 ±32.4 
1.2 ±0.3 

 
 

439.6 ±15.8 
0.4 ±0.2 

 
 

-2.136;0.044 
-0.456;0.653 

 
 

-4.418;<0.001 
-1.890;<0.072 

 
 

-4.689;<0.001 
-2.602;0.016 

Simple reaction time task 
         
        RT (ms) 
        Error rate (%) 

 
 

351.6 ±17.8 
2.5 ±0.6 

 
 

380.1 ±13.1 
1.4 ±0.5 

 
 

416.4 ±23.5 
2.5 ±0.6 

 
 

300.7 ±8.9 
0.8 ±0.2 

 
 

-2.564;0.021 
-2.563;0.023  

 
 

-5.031;<0.000 
-1.108;0.280 

 
 

-4.605;<0.001 
-2.681;0.014 

Decision Making (ms) 155.3 ±16.1 
 

178.8±13.1 192.4 ±18.6 
 

138.9 ±15.6 
 

-0.732;0,472 
 

-1.955;<0.063 
 

-2.199;0.039 

Endogenous Visual Attention 
(ms) 

98.8 ±8.7 123.2 ±7.5 102.3 ±6.5 98.5 ±5.7 -0.028;0.978 -2.613;0.016 -0.444;0.661 

 

Tab.6 Mean ±SE performances indices obtained in different tasks by Parkinson’s disease patients, under either dopaminergic treatment or 

electrical stimulation of the sensorimotor or associative part of the subthalamic nucleus, and by controls. The t and p values obtained by 

means of t-tests, comparing each performance index of patients under different treatments with that of controls are reported. 
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Fig.22 Comparison between the two groups of patients evaluated under treatment (in med-on 

for the pharmacologically treated group, and in med-off/SMstim-on and in med-off/ASstim-

on for the stimulation treated group) and healthy subjects in terms of reaction time, RT (in 

A), and error rate, ER (in B), obtained in the no-distracter and distracter conditions of the 

attentional capture task.  ∆ RT and ∆ ER = attentional capture in terms of ∆ RT and ∆ ER.
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Fig.23 Comparison between the two groups of patients evaluated under treatment (in med-on 

for the medically treated group, and in med-off/SMstim-on and in med-off/ASstim-on for the 

stimulation treated group) and healthy subjects n terms of inverse efficiency (IE) score 

(expressed as adjusted mean RT), obtained in the no-distracter and distracter conditions of 

the attentional capture task. ∆ IE = attentional capture in terms of ∆ IE. 

 

Conversely, under stimulation of the SM and AS parts of the STN the IE scores 

in the no-distracter condition were significantly higher than those of healthy subjects, 

suggesting that dopaminergic treatment was more effective than stimulation in 

restoring to normality these IE values. 

However, this dopaminergic benefit was only partial, as revealed by the fact 

that in the distracter condition, PD patients had significantly higher IE scores under 

all types of treatment than healthy subjects. Also the AC computed on the IE scores 

resulted significantly increased compared with that of healthy subjects under 

dopaminergic as well as STN-stimulation of both sites. 

Interestingly, while in med-off PD patients had longer RTs in the choice as 

well as in the simple reaction time tasks compared with healthy subjects, under 
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dopaminergic treatment they showed a substantial amelioration in their performances, 

as proved by the fact that the RTs on these tasks did not differ significantly from 

those of healthy subjects (Fig.24). Conversely, STN stimulation did not restore 

patients’ RTs in these two tasks to normality. 

Analysis of errors rates revealed a significant increase of errors only for 

stimulation of the AS part of the STN in both tasks (Table 6). Otherwise, no 

significant differences in error rates between healthy subjects and medically treated 

patients as well as healthy subjects and SM-stimulated patients were found. 

 

 

 

Fig.24 Comparison between the two groups of patients evaluated under treatment (in med-on 

for the medical treated group, and in med-off/SMstim-on and in med-off/ASstim-on for the 

stimulation treated group) and healthy subjects of the mean times for movement initiation 

(simple reaction time, SRT), motor response selection (decision making, DM), and target 

selection (EVA, endogenous visual attention). Note that SRT + DM = choice RT, while SRT 

+ DM + EVA = RT in the no-distracter condition of the attentional capture task. 
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As regards the mechanisms of motor response selection, we found that under 

stimulation and medication the DM values did not significantly differ from those of 

healthy subjects (Fig.24). On the other hand, we have seen that in med-off/stim-off 

the mechanisms of motor response selection resulted impaired, without a significant 

amelioration under stimulation of both sites, while they were preserved in med-off. 

These results suggest that under STN stimulation, especially of the SM part, there is a 

tendency to an amelioration of the DM component of the response, even if it was not 

statistically significant. Conversely, the dopaminergic treatment seems to have no 

effect on DM.  

Finally, and more interestingly, we found a different effect of dopaminergic 

and AS stimulation of the STN with respect to SM stimulation on EVA (Fig.24). More 

precisely, no significant differences were found between med-on and med-off/ASstim-

on compared to healthy subjects, whereas med-off/SMstim-on differed from healthy 

subjects (p = 0.016). This result suggest that dopaminergic treatment as well as 

stimulation of the AS part of the STN can restore the mechanisms of EVA to normal 

value, while this is not the case for the SM-stimulation.  
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Discussion 
 

The basal ganglia have long been implicated in the control of movement, and 

the anatomy of the basal ganglia is perfectely suited to selectively gate a desired 

motor plan to the motor cortex while simultaneously inhibiting competing motor 

plans.219 Several studies have suggested that the role of the basal ganglia in selective 

gating is not limited to motor processes but extends to cognitive functions.220  

In this work we aimed to investigate the possible role of cortico-basal ganglia 

loops and dopaminergic pathways in the mechanisms of top-down and bottom-up 

control of visual attention, by comparing the performances of PD patients in a variety 

of conditions, including under dopaminergic treatment, STN electrical stimulation and, 

finally, patients in off-phase condition. In summary the results of the present work 

indicated that PD patients assessed after withdrawal of dopaminergic treatment and 

after turning-off stimulation showed increased AC compared to healthy subjects. Also, 

target selection and movement initiation times were prolonged in both groups of 

patients, while motor response selection time was significantly increased only in the 

otherwise stimulated group. It is noteworthy that the usual dopaminergic treatment of 

otherwise electrically stimulated patients was at significantly lower dosage than that 

of the otherwise pharmacologically treated group.  

Under usual dopaminergic treatment and stimulation of the SM as well as AS 

part of the STN, patients showed similarly increased AC in terms of ∆RT. 

Dopaminergic treatment and AS stimulation improved EVA, restoring it to the level 

of control subjects. Also the SM stimulation allowed a significant recovery of EVA 

compared to the stim-off condition, but to a lesser extent compared to that obtained by 

AS stimulation. No appreciable effects were observed on motor response selection 

times by stimulation of either site. The movement initiation RTs were reduced 

compared to the stim-off condition only by stimulation of the SM part of the STN. 

 

Effectiveness of the tasks and effects of session 

The main tool used in our protocol was an AC task, which was conveniently 

combined with two other tasks, the choice reaction time and simple reaction time 

tasks, to assess the effectiveness of the exogenous (bottom-up) and endogenous (top-
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down) mechanisms of visual attention, as well as the mechanisms of selection and 

initiation of a motor response. 

In our AC task, subjects received two conditions. In the so-called no-distracter 

condition (control trial), target selection was mainly guided by endogenous attentional 

mechanisms (in a top-down manner) because the subjects intentionally selected only 

the stimulus which was relevant to perform the task at hand (the unique pentagon-

shaped element among 5 diamonds), although low-level pre-attentive processes, 

depending on specific primitive properties of the stimulus array, might have 

contributed to the target selection as well. Indeed, the target was not particularly 

salient among the non-targets, but nonetheless it was a unique element and therefore it 

benefited from bottom-up selection mechanisms. In the so-called distracter condition, 

an irrelevant, yet salient non-target singleton item (an object unique along two 

different dimensions: color and orientation), activated mechanisms of bottom-up 

selection, determining a cost in terms of reaction time (about 100 ms), and error rate 

(about 3%) in a group of healthy subjects. It is noteworthy that with similar irrelevant 

singleton paradigms, as developed by Theewues et al. (1991),103 the AC in terms of 

∆RT amounted to 120-150 ms. Thus, our AC task proved to be a powerful paradigm to 

assess AC, which arises from the conflict between bottom-up and top-down 

mechanisms of visual attention. 

We observed that the performance of our healthy subjects in the various 

computerized tasks was not appreciably modified by learning effects occurring during 

the subsequent sessions of formal testing, likely because of the substantial training to 

which they were exposed before the experimental sessions. This result was essential 

to ensure that any difference in performance observed in PD patients, who were 

evaluated under different conditions of medication and stimulation, was really due to 

the evaluation condition, and not to a learning effect. However, to minimize the 

impact of any learning effect across experimental conditions, we applied a 

counterbalanced design in our study. 

 

Effects of disease 

Attentional capture in Parkinson’s disease 

Comparing the performances in the AC task of the two groups of PD patients, 
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evaluated in off-phase, with those of the healthy control subjects, we observed that 

overall the disease determined a slowing down of RTs, and an increase of error rates. 

At first glance, the longer RTs may be related to the akinesia typical of PD off-phase. 

Nevertheless, the higher rate of errors committed by patients than controls in both the 

no-distracter and distracter conditions of the AC task, with no significant differences 

in error rates between groups for the other two tasks, suggested a possible impairment 

of visual attention. In particular, the higher error rate observed in PD in the no-

distracter condition suggests a defect in display analysis and target selection. This 

could be due to the weakening of the top-down mechanisms of attention. On the other 

hand, the higher error rate observed in patients in the distracter condition suggests a 

stronger withdrawal of attention from the target by the distracter itself, especially 

when the display duration is limited like in our task. This could be due to a 

disproportionate enhancement of the bottom-up mechanisms of attention in PD 

patients compare to controls. Concerning this, a study carried out in two monkeys, 

aiming at identifying the neural mechanisms necessary for visual attention, showed 

that restricted lesions in extrastriate cortical areas V4 and temporal-occipital area 

determined an increase in AC by strong stimuli, regardless of their behavioural 

relevance.221 

The analyses of AC in terms of ∆ RT suggested that the disease did not impair 

the mechanisms underlying AC, since there were no significant differences between 

groups. Only for patients of group #1 we observed a tendency to a higher value of ∆ 

RT than the other two groups. This effect could be due to the significantly greater 

daily dopaminergic treatment of group #1 compared with that of group #2, which 

could leave slight traces in med-off. In this respect, it has been shown that 

dopaminergic stimulation correlates with the detection of salient stimuli in 

monkeys.180 This means that our pharmacologically treated patients, althouh evaluated 

in med-off, could be more suscetible to a salient distracter than surgically treated 

patients.  

Unlike what seen for ∆ RT, AC poved to be significantly greater in terms of ∆ 

error rates and IE scores in both groups of PD patients compared with controls, which 

pointed out that the mechanisms underlying this phenomenon might be actually 

affected by the pathological condition. Moreover, this increment in AC was 
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comparable between the two groups of patients, suggesting a behavioral homogeneity 

of our patients in terms of AC. 

This finding is consistent with several studies carried out in PD patients, which 

showed an enhanced distractibility in the presence of irrelevant but salient stimuli.19, 

24, 25 In particular, in a controlled study carried out in medication-withdrawn PD 

patients, while performing a visuospatial memory task, behavioural and electro-

encephalographic measures indicated that patients were impaired at filtering out 

distracters.222 In another behavioural study, carried out by Deijen et al. (2006), PD 

patients showed an abnormal susceptibility to distracters in an oculomotor capture 

task.23 Firstly, it is important to underscore that it is not clear to what extent evidence 

provided by that study may be interpreted in terms of covert attentional processing or 

overt motor behaviour, especially in the case of PD patients, who are known to have a 

central deficit in the motor demain, and in particular an impairment in the control of 

saccades.223 This is the reason why for our study we devised an AC task in which we 

excluded eye movements altogether. 

Nevertheless, the close relationship between covert attention and saccades, 

described in the introduction, allows to make some inferences about the relative 

contribution of bottom-up and top-down control of attentional selection also in the 

work of Deijen et al., and to make a comparison with our results. In particular, Deijen 

et al. showed that already at an early stage of disease (mean disease duration: 2.3 ±1.9 

years), untreated PD patients presented a “capture effect” characterized by longer RTs 

and higher error rates in the distracter condition compared to the no-distracter 

condition. Conversely, in the no-distracter condition the performances of the patients 

were similar to those of the controls. This finding suggests that at an early stage of PD 

the top-down mechanisms of attention may be spared, and that the abnormal 

susceptibility to distracters may depend mainly on the enhancement of the bottom-up 

mechanisms or to a specific deficit to deal with distracting stimuli. Differently, we 

evaluated patients at an advanced stage of disease (mean disease duration: group #1, 

13.9 ±2.1 years;  group #2, 11.9 ±1.2 years), and the results seem to suggest that at 

this stage there is an impairment not only of bottom-up, but also of top-down 

mechanisms of attention.  

Several studies have reported impairments in the inhibitory mechanisms of 
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visual selective attention, which usually impede access of irrelevant information to 

the cognitive processing system.126, 131, 132 Thus, PD patients resulted more vulnerable 

to distracting information than healthy controls. However, these reports are not 

universally accepted.  

For example, Posner et al. (1985)224 and Kingstone et al. (2002)225 reported 

intact inhibition of return in their respective PD groups. Briand et al. (2001)43 further 

reported that participants with PD showed normal, faster response latencies for trials 

with short cue-target delays (facilitation) and normal, slowed response latencies 

(inhibition of return) for trials with longer cue-target delays. 

Grande et al. (2006) examined inhibition of return (i.e., exogenously evoked 

inhibition) and negative priming (i.e., endogenously evoked inhibition) in a group of 

14 patients with PD and 14 healthy controls).133 Unlike the controls, who 

demonstrated significant inhibition in both tasks, PD demonstrated intact inhibition 

only in the inhibition of return task, which suggested that in PD patients only the 

neuronal network supporting endogenously evoked inhibition was disrupted. This 

study proposed a dissociation between exogenously and endogenously evoked 

inhibitory attentional mechanisms, analogously to the traditional accounts of set-

shifting deficits in PD, which attribute them to problems with “internal” attentional 

control, leading to excessive guidance of behavior by “external cues”.13, 226 

Specifically, several studies have indicated that PD patients exhibit greater difficulty 

with directing attention based on internal attentional sets than external attentional 

cues, not only in high-level cognitive tasks,227 but also as measured with simple 

choice RT tasks and in the domain of movement.228 

In particular, in their work, Grande et al. (2006) postulated that the impairment 

of endogenously evoked inhibition observed in the negative priming task might be 

related to dysfunction of the direct and indirect loops of basal ganglia.133 In this 

respect the intralaminar nuclei of the thalamus, specifically the centromedian 

parafascicular nuclei, and their afferent and efferent connections to the frontal lobe, 

seem to play a critical role in selective attention.229-231 The authors proposed that the 

observed differential impairment in exogenously and endogenously evoked inhibition 

is the direct result of the necessary involvement of intralaminar nuclei for 

endogenously evoked inhibition but not for exogenously evoked inhibition. Indeed, 
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they postulated that in the case of endogenously evoked inhibition, the intralaminar 

nuclei are underactive as a consequence of the disruption of the globus pallidum 

internum activity by dopamine depletion, while in the case of exogenously evoked 

inhibition, the intralaminar nuclei are activated via the superior colliculus, which 

functions normally in PD. Then, the globus pallidum internum seems to play an 

essential role in a circuit that is responsible for the inhibition of irrelevant information. 

This is consistent with the findings of a recent functional MRI study carried out on 

healthy subjects, which showed a greater activation in the left and right-middle frontal 

gyri and the left basal ganglia (especially the globus pallidus) when subjects 

attempted to avoid distracter stimuli.232 

 

Mechanisms of target selection in PD 

The Donders’ approach allowed to highlight that the time needed for display 

analysis and target selection were prolonged in both our groups of PD patients. This 

suggests that PD patients could present a weakening of the endogenous mechanisms of 

visual attention. This is in agreement with Cools et al. (2009), who assumed that in 

PD patients there was a failure of the top-down mechanisms of attention,227 with a 

consequent disproportionate bottom-up attentional control, as suggested by the 

principle of competitive interactions between top-down and bottom-up attentional 

control processes.233 This could account for the enhanced AC observed in Cools et 

al.’s (2009) as well as in our study. 

 

Neural correlates of top-down and bottom-up attentional control 

It is still debated to what degree top-down and bottom-up attentional control 

processes are subserved by shared or by separate mechanisms. Separate loci within the 

parietal lobe have been identified as the neural source for goal-directed (superior 

parietal lobule) and stimulus-driven (temporo-parietal junction) attentional 

orienting.58, 234, 235 In an investigation of neuropsy-chological patients with a lesion to 

one or the other of these distinct anatomical sites, the authors examined the relative 

contribution of superior parietal lobule and temporo-parietal junction for attentional 

orienting. Patients completed two tasks, one sensitive to stimulus-driven and the other 

to goal-directed attentional orienting. Based on the behavioural profiles obtained on 
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each task, patients were assigned to different groups and their lesion overlap explored. 

Patients, who exhibited difficulties with goal-directed attentional orienting and 

concurrently showed “hyper-capture”, presented with lesion overlap centered over 

superior portions of the parietal lobule. Patients who performed normally on the goal-

directed orienting task, while remaining abnormally immune to AC, presented with 

lesion overlap centered over the inferior portions of the parietal lobule. As a result, 

patients with temporo-parietal junction damage performed better than controls (i.e., 

their accuracy was higher) by exhibiting reduced capture. Yet, superior parietal lobule 

and temporo-parietal junction systems are not entirely independent. This conclusion 

was supported by the finding that patients with superior parietal lobule damage 

showed a pattern of performance labelled “hyper-capture”, rather than showing the 

normal capture profile, which was expected if superior parietal lobule played no role 

in AC. It has been suggested that superior parietal lobule and temporo-parietal 

junction could interact in at least one of two possible ways. The first possibility is that 

temporo-parietal junction serves as an alerting system that detects behaviorally 

relevant stimuli but lacks high spatial resolution; thus, when a behaviorally relevant 

stimulus is detected, its precise location is supplied by the superior parietal lobule that 

stores finegrained spatial maps along with information about salient locations.58, 235 A 

related possibility is that the capture mechanism (that includes temporo-parietal 

junction) acts as a circuit breaker of ongoing cognitive activity when a behaviorally 

relevant stimulus is presented.54 The ‘‘hyper-capture’’ pattern of activity observed in 

patients with preserved temporo-parietal junction but lesioned superior parietal lobule 

provides further evidence for the hypothesis that temporo-parietal junction issues a 

control signal that terminates the task at hand, thus serving as a circuit breaker.54, 236 

So far, only a limited number of studies have attempted to use the AC paradigm 

to investigate brain activations related to the interactions between top-down and 

bottom-up control of visual attention. 

De Fockert et al. (2004) studied the neural correlates of AC using functional 

magnetic resonance imaging in human subjects during performance of Theeuwes’s 

visual task.115 They found that the presence (vs. absence) of the color singleton 

distracter was associated with bilateral activation of the superior parietal lobule, and 

with activity in an area in the left lateral precentral gyrus of the frontal cortex 
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(anterior, inferior, and lateral to the frontal eye field). Moreover, a strong negative 

correlation between the neural signal in the frontal cortex and the magnitude of 

distracter interference effects on behaviour was found. This means that a greater 

activity in the left lateral frontal cortex is associated with reduced interference from 

irrelevant distracters. By contrast there was no significant correlation between activity 

in the superior parietal lobule and behavioural interference.  

These findings imply that superior parietal lobule and frontal cortex serve 

different functions in AC. The activity in the superior parietal lobule may reflect 

shifts of attention towards the irrelevant distracter that occurs in a bottom-up, 

stimulus-driven manner. As such, attention may always be captured by the more 

salient distracter (with very little variation in the extent of attentional shifts and the 

strength of the associated signal in the superior parietal cortex, thus precluding any 

correlation with behavioural interference effects). On the contrary, the activity in the 

frontal cortex may reflect the extent to which this cortical region exerts top-down 

control in order to resolve the competition between the target and the irrelevant 

distracter. Supporting this hypothesis, an enhanced activity in the left lateral 

precentral gyrus of the frontal lobe has been previously associated with competition 

induced by stimuli that are incongruent (versus neutral or congruent) with the current 

response in Stroop-like tasks.237-240 It should be noted that the model proposed by de 

Fockert is not consistent with the two-circuit model put forward by Corbetta and 

Shulman (2002).54 Probably this discrepancy is due to a methodological issue: de 

Fockert used an AC task, which is well suited to study the interaction between the 

top-down and bottom-up control of attention, while Corbetta and Shulman used 

typical Posner-tasks to investigate separately these two mechanisms of attentional 

control.       

Interactions between top-down and bottom-up attentional control mechanisms 

were also investigated using a rapid event-related fMRI design.29 Healthy subjects 

performed an attentional search task in which, following a prestimulus mask, target 

stimuli (consisting of a letter C or a mirror image of the C, enclosed in a diamond 

outline) were presented either at one unique location among three non-target items 

(consisting of a random letter, enclosed in a circle outline; 50% probability), or at all 

four possible target locations (also 50% probability). On half the trials, irrelevant 
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colour singletons were presented, consisting of a colour change of one of the four 

prestimulus masks, just prior to target appearance. Participants were required to 

search for a target letter inside the diamond and report its orientation. Results indicate 

that, in addition to a common network of parietal areas, medial frontal cortex is 

uniquely involved in top-down orienting, whereas bottom–up control is mainly 

subserved by a network of occipital and parietal areas. Additionally, participants who 

were better able to suppress orienting to the colour singleton showed middle frontal 

gyrus activation, and the degree of top-down control correlated with left insular 

activity. These findings suggest that in addition to a common set of parietal areas, 

separate brain areas are involved in top-down and bottom-up driven attentional 

control, and that frontal areas play a role in the suppression of AC by an irrelevant 

colour singleton. 

The aforementioned frontal areas are integrated in the cortio-basal ganglia 

loops,135, 138 therefore an impairment of their normal function, as occurs in PD, may 

determine an enhanced AC. 

 

Mechanisms of motor response selection and initiation in Parkinson’ disease 

Overall, in both groups of PD patients we observed longer RT than controls in 

the choice reaction time task. The subtraction method of Donders allowed us to 

appreciate that this deficit in both groups was due to the impairment of the mechanism 

of motor response initiation, typical of PD off-phase. In addition, only in the group of 

stimulated patients, we found a significant involvement of the mechanism of motor 

response selection, indicating a worsening of the DM component. This different 

pattern of motor response selection found in the two groups of PD patients might be 

due to their heterogeneity in terms of DM, as reported in the literature,241 which may 

be explained by a more severe dopaminergic denervation or different non-

dopaminergic lesions in the group of patients treated by stimulation compared with 

the medically treated group. Otherwise, this difference in the DM component could be 

explained as an effect of dopaminergic treatment, since the dopaminergic daily doses 

were higher in the pharmacologically treated patients than in the stimulated ones. This 

could mean a slight dopaminergic effect even in med-off, which could allow an 

improvement of DM in this condition.242 
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Effects of dopaminergic treatment 

Our results suggest that the dopaminergic treatment, as indicated by the 

improvement of the response times observed in the no-distracter and distracter 

condition of the AC task, could affect the mechanisms of visual attention. Under drug, 

we found that the AC in terms of ∆ RT was significantly greater than in med-off. This 

result unlikely depends on a reduced waking state of patients in relation to the 

dopaminergic intake, which in fact may be a side effect of this treatment.156, 243 If so, 

there should have been a deterioration in overall performance, with an increase in 

error rate, but this was not the case. Actually, we observed a small reduction of errors 

committed especially in the distracter condition of the AC task compared with the 

med-off condition. Moreover, to avoid any potential side effect of the dopaminergic 

treatment, such as disorders of alertness, and disabling dyskinesias, which could 

interfere with a smooth performance in the experimental session, our patients were 

evaluated in their best clinical state after administration of their usual early morning 

dopaminergic intake, and not after a levodopa challenge, as usually done in many 

protocol studies.    

A plausible explanation of the increase of AC in terms of ∆ RT, observed in 

our patients under treatment, could be related to the effect of time on visual selection, 

since early in processing, the salience map is computed from buttom-up factors alone, 

while top-down factors contribute late in processing. This means that, critically, the 

presence of a salient distracter triggered a shift of attention to its location before 

attention was allocated to the target.106 As a consequence, the faster the responses (as 

occurred under dopaminergic treatment), the greater could be the AC, due to a greater 

exposure to the bottom-up factors.  

The analysis of IE scores showed that, under drug, despite the overall 

improvemement of performance compared with that in med-off, there was no 

enhancement of the AC. This observation suggests that the increment of AC in terms 

of ∆ RT obtained under dopaminergic treatment should be interpreted with caution 

because it might reflect a form of speed-accuracy trade-off effect.  

We found that under medication the times taken for display analysis and target 

selection (EVA) were shorter than in med-off, suggesting that the dopaminergic 

treatment might potentiate the endogenous mechanisms of visual attention. 
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Nonetheless, one could argue that this effect was spurious, and that the shorter EVA 

observed in med-on was simply due to fast responses in patients, leaving little 

opportunity for EVA computed by the subtraction method of Donders. But, for the 

same reason, one could expect longer EVA for slower responses. This is not 

consistent with the conspicuous reduction of EVA observed during stimulation of the 

AS part of the STN, a condition in which the responses of patients were not 

significantly shorter than those in off-phase, and therefore one should expect 

relatively long EVA.       

Several neurophysiological and lesional studies carried out in animals showed 

that the dopaminergic pathway may play a crucial role in the mechanisms of top-down 

attentional control.176-180 Therefore, an attentional deficit due to striatal dopamine 

depletion should be ameliorated by dopaminergic treatment, as in fact highlighted by 

some authors.152, 158 In this respect, Kischka et al. (1996) reported that dopamine 

increased inhibition, or reduced interference, in a semantic priming task in healthy 

individuals.244 It is possible, therefore, that inhibitory deficits of endogenous 

mechanisms of visual attention in patients with PD are lessened while they are on 

dopamine therapy. 

Conversely, according to other authors, replacement of dopamine did not affect 

orienting of attention in PD patients, suggesting that other neurotrasmitters or 

modulators , especially noradrenaline and serotonin may be involved in the regulation 

of the top-down mechanisms of visual attention.133, 157, 227, 245 

Indeed, there is evidence that different forms of attentional set shifting 

implicate distinct cortical and subcortical mechanisms. Specifically, it was 

emphasized that the striatum is active and required only for shifting between concrete 

stimulus exemplars but not for shifting between abstract rules.220, 246 In a study using 

fMRI combined with nonliner dynamic causal modeling, Cools et al., (2010) 

demonstrated that the ventral striato-pallidum, activated by salient and unexpected 

events, modulated the top-down influences of the prefrontal cortex on stimulus-

specific visual association areas in humans.247 One mechanism by which salient 

stimuli might influence the activity of the ventral striato-pallidum is dopamine, which 

is released in the ventral striatum during salient events.248, 249 This hypothesis is in 

line with suggestions that short latency dopamine signals mediate the shift of attention 
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to unexpected stimuli.250, 251   

This correlation between dopamine-mediated neuronal activation and the 

detection of salient stimuli may also account for the increase of AC (in terms of ∆ 

RT). In fact, the dopamine release in the ventral striatum in the presence of a salient 

event probably may result in a strengthening of the bottom-up mechanisms of visual 

attention, leading to increased perception of the salient distracter. In parallel, we have 

seen that the dopaminergic treatment may potentiate the endogenos mechanisms of 

visual attention. Thus, with reference to a saliency map, we may conjecture that the 

saliences of the target and the distracter were enhanced under dopaminergic drug, but 

relatively more for the distracter than the target. Consequently, this could result in a 

stronger withdrawal of attention from the target by the distracter itself, even if the 

mechanisms of top-down attention were potentiated by dopaminergic treatment. 

In this respect, it was shown that dopamine hyperactivity can contribute to 

disrupt attentional processes to external stimuli, as shown, for example, in 

schizophrenic patients.252 As noted by Sarter (1994), a hyperattention syndrome in 

schizophrenia would correspond to a failure “to disattend irrelevant stimuli including 

internally generated cues, impairment in filtering irrelevant stimuli, deficit in divided 

attention and inability to filter or to gate irrelevant information”.253 

As we could expect,254 dopamine replacement allowed a significant 

improvement of akinesia, as suggested by the shortening of the RTs in the simple 

reaction time task compared with those in med-off condition. 

The dopaminergic treatment apparently did not cause any significant 

amelioration of the mechanisms of motor responce selection (DM). However, this 

negative result could be biased by the daily doses of dopaminergic treatment taken by 

these patients, which could leave slight traces in med-off. 

 

Effects of stimulation 

There is ample evidence from animal studies,255 assessment of patients with 

prefrontal lesion,256, 257 and functional brain imaging220, 232, 247 that the prefrontal 

cortex, basal ganglia, and their interconnections mediate attentional functions. 

Electrical stimulation of the STN, used to treat patients with PD, has proved to be a 

powerful and accurate means for testing directly the role of cortico-basal ganglia 
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circuits in non-motor functions,203, 258, 259 because the functioning of the stimulated 

structure can be reversibly altered in a spatially and temporally controlled manner. 

Moreover, in this study, we used an interactive brain atlas to precisely localize each 

contact of the quadripolar electrodes in the STN of our stimulated patients, in order to 

assess whether there was a functional specialization of the different sub-territories of 

STN in the mechanisms underlying visual attention. In this respect, it was essential to 

selectively stimulate the SM and AS part of the STN, avoiding overlapping effects 

due to current spread. To this aim, in most cases (when it was possile, based on the 

anatomical location of the contacts), we chose two stimulating contacts centered on 

the SM and AS part of the STN, and interspaced by a contact (this means that in most 

cases the SM and AS contacts were 4 mm apart). Importantly, one would expect that 

the stimulating current diffused  even less, on the order of 1 mm for a 2.5 V 

current.260 This was in fact the mean current voltage used for stimulating both sides. 

Overall, our results suggest that STN-DBS, in parallel with the improvement of 

the response times obtained in the AC task, which was more evident for SM-

stimulation, could affect the mechianisms of visual attention. In particular, under 

stimulation, our patients resulted more distractible in terms of ∆ RT than in med-

off/stim-off. This similarity with attentional behaviour observed under dopaminergic 

treatment suggested that stimulation could potentatiate the bottom-up mechanisms of 

visual attention. Moreover, the increase of AC in terms of ∆ RT was of a similar 

magnitude for both sites of stimulation, which suggested lack of functional 

specialization of the different sub-territories of STN in relation to AC mechanisms. 

Nevertheless, the lack of significant changes in error rates committed in the AC 

task in different conditions of stimulation suggested that the increment of AC in terms 

of ∆ RT, observed under stimulation, should be interpreted with caution because it 

might reflect a form of speed-accuracy trade-off effect. To confirm this, analysis of IE 

scores showed that, under different conditions of stimulation, there was neither 

improvement of overall perfomence, nor changes in AC. 

On the other hand, our results showed that stimulation greatly improved the 

mechanisms underlying display analysis and target selection, just like we obseved 

under dopaminergic treatment. Interestingly, previous studies have reported that the 

effects of STN-DBS on a range of cognitive tests parallel those of levodopa.139, 261 
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The specific involvement of STN in visual attention processing is suggested by 

various studies carried out in animals using lesional174, 181, 262 or stimulating 

procedures.173 Moreover, several studies carried out in humans revealed that STN-

DBS improves performance on tasks that require attentional set shifting.187, 263, 264 On 

the basis of imaging results, it has been proposed that these attentional deficits in 

patients with PD are associated with underactivation of those prefrontal areas that are 

specifically coactivated with the striatum and overactivation of those prefrontal areas 

that are not coactivated with the striatum in controls.265 DBS of the STN alters frontal 

activation266, 267 and striato-frontal connectivity.268 This alteration of frontal 

activation and striato-frontal connectivity with DBS of the STN is task specific, with 

increased activation observed during movement execution266 and decreased activation 

during cognitive tasks requiring response selection under competition such as the 

Stroop task.267 For instance, Schroeder et al. (2002), using PET, studied changes in 

regional cerebral blood flow associated with the Stroop task in Parkinson's disease 

patients ON and OFF bilateral STN stimulation.267 They found that during STN 

stimulation, impaired task performance (prolonged reaction times) was associated 

with decreased activation in both right anterior cingulate cortex and right ventral 

striatum. On the other hand, a concomitant increased activation in left angular gyrus, 

indicative of ongoing word processing during stimulation, was consistent with an 

impairment to inhibit habitual responses. The anterior cingulate cortex and ventral 

striatum are part of the anterior cingulate cortex circuit associated with response 

conflict tasks. The decreased activation during STN stimulation in the ACC circuit, 

while response conflict processing worsened, provided direct evidence of STN 

modulating non-motor basal ganglia-thalamocortical circuitry. 

We found that the stimulation of the AS part of STN potentiated the 

endogenous mechanisms of visual attention to a larger extent than the SM part. On the 

other hand, only the stimulation of the SM part of the STN led to an improvement of 

the mechanisms of movement initiation, as proved by the shortening of the RTs in the 

simple reaction time task compared with the med-off/stim-off condition. These results 

strengthen the idea of a functional specialization of different sub-territories of the 

STN, as already proved in humans.203 

Interestingly, this result seems to contradict the aforementioned lack of 
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functional specialization of the sub-territories of STN in relation to the exogenous 

mechanisms of visual attention. This, actually, confirms that different mechanisms 

underlie the top-down and bottom-up attentional control processes. Probably, top-

down and bottom-up mechanisms are supplied by different anatomical networks, 

which may be modulated in a similar way by dopaminergic and STN stimulation. 

Then, the beneficial effect of dopaminergic and electrical stimulation on the neural 

network controlling top-down mechanisms might simultaneously result in a 

detrimental effect on the network controlling the bottom-up mechanisms.  

Concerning the DM component of the response, the stimulation of both STN 

sites did not lead to a significant improvement of motor response selection. In this 

sense, only a slight positive trend could be appreciated for stimulation of the SM part 

of the STN, as already reported.254 

 

Comparison between different treatments and the control condition 

Lastly, we compared the different treatments, and their effectiveness in 

restoring the normal functions.  

Overall, the dopaminergic treatment was superior to electrical stimulation in 

improving most of the variables measured, even if it rarely restored patients’ 

performance to normality.  

For instance, the dopaminergic treatment allowed a significant amelioration of 

the response times in the no-distracter and distracter condition of AC task, in the 

choice and simple reaction time tasks, restoring them towards normality, while it was 

not the case for stimulation of both sites of STN. Yet, these data seem to contradict 

the general lack of significant differences obtained by comparing directly the 

treatments with one another. This inconsistency could be explained by keeping in 

mind that the two groups of PD patients showed a slightly different impairment in 

their performances in off condition. This could be a consequence of higher 

dopaminergic daily doses taken by the medically treated patients compared to the 

stimulated ones, which could leave slight traces in med-off. This means that, in off 

condition, the performances of the medically treated group could be better than those 

of the stimulated group. Therefore, it is possible that the direct comparison between 

medical and electrical treatment could understimate the actual effect of dopaminergic 
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treatment. Otherwise, we could assume that the different impairment in performances 

observed between the two groups of patients in off condition is actually related to a 

different degree of dopaminergic denervation or non-dopaminergic lesions. 

Interestingly, dopaminergic treatment as well as the stimulation of the SM and 

AS parts of STN increased significantly, and to a comparable extent, the AC in terms 

of ∆ RT, ∆ error rate and ∆ IE scores. This confirms that PD patients are more 

distractible than healthy subjects, and that the different treatments could potentatiate 

the bottom-up mechanisms of visual attention. 

On the other hand, we have shown that dopaminergic treatment and AS 

stimulation can restore entirely the mechanisms of top-down visual attention, while 

this was not the case for the SM-stimulation. Nevertheless, we have to keep in mind 

that SM stimulation allowed a significant amelioration of the EVA mechanisms with 

respect to the med-off/stim-off.  

Interestingly, despite the complete restoration of the top-down mechanisms by 

dopaminergic as well as AS-stimulation, the AC resulted enhanced in the same two 

conditions, which could be explained by a parallel potentiation of the mechanisms that 

compute salience of visual stimuli, or the bottom-up control of attention.  

Lastly, we observed that under stimulation of the AS part of the STN, patients 

committed more errors in the choice reaction time and simple reaction time tasks than 

healthy subjects. This could be explained considering the close location of the AS 

stimulation contact to the limbic part of the STN, which could be activated by current 

spreading, in turn determining an impulsive behaviour.140, 211, 269 
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Conclusion  

 

Our results showed that in PD there is a weakening of the mechanisms underlying the 

top-down control of visual attention, which likely indirectly accounts also for the 

enhancement of AC. This finding is part of a more composite scenario of deficits, 

especially in otherwise stimulated patients, who undergo a milder drug treatment than 

pharmacologically treated patients, including slowing of the processes of movement 

initiation, and slowing of the processes of motor response selection. 

Dopaminergic treatment proves to be effective not only in restoring movement 

initiation mechanisms, but also the mechanisms of EVA, suggesting an involvement 

of the dopaminergic pathway in the control of the top-down mechanisms of visual 

attention. 

In parallel with the amelioration of the mechanisms of target selection, the observed 

enhancement of AC under dopaminergic treatment suggests that the dopaminergic 

pathway may be involved also in the mechanisms that compute salience of visual 

stimuli, or the bottom-up control of attention. 

The STN-DBS shows a similar effect to that obtained by dopaminergic 

treatment, establishing a direct involvement of the basal ganglia in visual attention 

control. In particular, our results strengthen the idea of a functional specialization of 

different sub-territories of the STN, and of the different cortico-basal ganglia loops in 

which they are integrated in relation to the top-down mechanisms of visual attention. 

As a matter of fact, two well distinct patterns seem to emerge depending on the 

stimulated region: SM stimulation produces marked effects on the movement 

initiation processes and appreciable positive effects on EVA mechanisms, while AS 

stimulation seems to be especially effective in improving the mechanisms of target 

selection. On the other hand, no functional specialization of the sub-territories of STN 

in relation to the exogenous mechanisms of visual attention seems to emerge, 

suggesting that top-down and bottom-up mechanisms are supplied by different 

anatomical networks involving the cortico-basal-ganglia loops.  
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