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Control In Five-Axis Milling

In five-axis milling of 3D free-form surface, determining the continuously changing Cutter Workpiece Engagement (CWE) for supporting force and surface quality prediction remains a challenge. In order to predict the cutting forces accurately, precise geometric information on cutter workpiece engagement is very important. Solid models and discrete methods are the most common methods used to predict the engagement region. However, both methods give the result with the accuracy as the tolerance set in the beginning. The methods suffer with the long computational time. Several studies in the CWE generation using analytical method have been performed. The results showed that analytical approaches were proven much faster and more accurate over the discrete approaches. However, despite this method has the advantage compared with the discrete method and solid models, but the current available studies are still limited to three axis milling and flat workpiece surface.

This study presents new simple methods to define Cutter Workpiece Engagement during sculptured surface machining in five-axis milling. The proposed models were developed for two cutting tools that are widely used in the machining process, flat-end and toroidal cutting tool. The instantaneous CWE was defined by determining two engagement points, the lowermost engagement (LE)point and the uppermost engagement (UE)-point. For flat-end cutter, the LE-point is always located at the bottom side. Meanwhile for toroidal cutter, an extended method to define the grazing point in swept volume development was employed to define the instantaneous LE-point.

The UE-point was calculated using a combination of discretization and analytical method. During rough milling and semi-finish milling, the workpiece surface was represented by vertical vector. The method called the Toroidalboundary was employed to obtain the UE-point when it was located on the cutting tool at the toroidal side. On the other hand, the method called the Cylindricalv boundary was used to calculate the UE-point on a flat-end cutter and on the cylindrical side of a toroidal cutter. Moreover, when the workpiece is a nonstraight staircase, the UE-point was calculated using the Curve-boundary method.

The equation derived in this study was used to develop a simulation program that was called the Analytical Boundary Simulation (ABS). The simulation program can be employed to generate the shape and length of cut. The accuracy of the proposed model was verified two times, first by comparing the coordinate of the UE-points with respect to the workpiece surface, and the second using a commercial CAD software, Siemens-NX. The results proved that the proposed method is accurate. The efficiency of the proposed model in generating the CWE was compared with the Z-mapping method. The result confirmed that the proposed model is more efficient in term of computational time.

For machining with a free-form surface, the surface was discretized using normal vector. Although the workpiece surface was discretized, but there was no calculation to check the intersection between a cutter and the normal vectors. The normal vectors were only used as the reference to define the shape of the surface at every CC-point mathematically. The engagement point was obtained using a combination of workpiece surface equation, parametric equation of cutting tool and tool orientation angles. The accuracy of the developed method was also tested using the verification methods that were applied in semi-finish milling. The results showed that the proposed model produced relatively small errors. It proved the accuracy of the method. Moreover, the method was eliminating the need for large number of Z-map to define the workpiece surface. The comparison test proved that the proposed method is much faster in term of computational time than Z-mapping method.

Cut geometry data from the CWE models were employed to support the method to calculate the cutting forces. In this study, mechanistic cutting force model was used. Cutting force coefficients as a function of axial depth of cut was obtained using a cubic polynomial fitting. The results of the tests showed that the calculated cutting forces have a good agreement with the cutting force generated from the experimental work. vi
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INTRODUCTION

Multi-axis CNC milling is a key technology in machining a complex part with free-form surface. Application can be found in the milling of dies and mold, jet engine parts, pump blade, and biomedical parts. Technically, machining a small part will only take a few minutes in overall mass production, while dies, molds and aerospace parts in fact may take several days of machining when accuracy, precision and productivity become a critical factor in the economic survival of the manufacturing industry.

In today machining, the ability to automatically generates an optimal process plan is an essential step toward achieving automation, higher productivity and better accuracy. This requirement is particularly emphasized in die and mold manufacturing, where the complex cutter and workpiece geometry involved makes it difficult to generate the process plan. Current modern machine tools are

Computer Numeric Control (CNC) milling machine and lathe. The Numeric Control (NC) Code program in each machine read by a microprocessor that user creates and performs the programmed operations. Traditionally, a costly time consuming process of machining process of plastic or wooden models was used to verify and corrects the NC program. For solving this kind of problem, various studies [START_REF] Yun | Development of a virtual machining system, part 1: approximation of the size effect for cutting force prediction[END_REF][START_REF] Yun | Development of a virtual machining system, part 2: prediction and analysis of a machined surface error[END_REF][START_REF] Yun | Development of a virtual machining system, part 3: cutting process simulation in transient cuts[END_REF][START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF] have been conducted to produce a new approach called Virtual Machining (VM). This new approach is for advancing productivity and quality of the machining processes. Manufacturing process, includes designing, testing and producing the parts, is simulated in a virtual environment. This technique tries to decrease the lead time before the implementation of a new product and also to minimize the cycle of the product development. The main purposes of virtual machining in milling operation are how to predict the instantaneous cutting force and surface roughness. They can be used as an input to shorten the machining time by optimizing process parameter without sacrificing the machining quality.

This purpose is to overcome the remaining drawback of modern CNC which is the machining parameters, such as feedrate, cutting speed and depth of cut, are still programmed off line. There is no mathematical model of integrated machining physics used in the industry. Process planner selects machining parameters based on their accumulated experience which is gained through trial and error over a period of years. When machining a free-form surface that result in constantly Therefore, it seems to be the best choice to obtain an efficient machining process.

However, low feedrate causes the tool and the machine is not fully utilized. As a result, the machining is run under the operating condition that is inefficient and far from optimal condition.

In supporting the machining optimization, a precise geometrical information is very important especially in the modeling of the cutting forces.

According to Salami et al. [START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF], there are three information required to calculate the instantaneous chip load i.e. in-cut segment of the cutting edge, tool angular position and chip thickness (undeformed radial chip thickness). According to Merdol and Altintas [START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF], there are two fundamental challenges in virtual machining process simulation system: identification of cutter-part intersection, feedrate intervals and development of computationally efficient process simulation algorithms. The geometric simulation must be fast enough as the number of cutter movement can be very large. The accuracy of predicted cut geometry must be high enough in order to predict the accurate machining forces.

Various studies in geometric simulation strategy based on solid modeling include the constructive solid geometry (CSG) and the boundary representations (B-Rep) have been conducted. The CSG method is popular because this method can construct a complex surface using Boolean operator relatively easily, precisely and accurately. Altintas and Spence [START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF] used the CSG to identify the cutter workpiece intersection to predict the cutting forces. El-Mounayri et al. [START_REF] El-Mounayri | Milling Process Simulation-A generic Solid Modeller Based Paradigm[END_REF] used a solid modeling system to compute the volume removed for a three-axis tool path.

Other researchers who have contributed significantly are Jerard et al. [START_REF] Fussel | Computer Generated CNC Machining Feedrates[END_REF][START_REF] Fussell | Robust feedrate selection for 3-axis NC machining using discrete models[END_REF][12]. They evaluated the conditions of the cutter part engagement with a computationally efficient algorithms called the Z-map method. Using this method, the workpiece was broken into a set of evenly distributed discrete z-direction vectors (ZDV). The Z-map or dexel can be thought of as a special type of discrete vector model, or also known as discrete vertical vector [13]. Another type of discrete vector model is discrete normal vector. This model represents the workpiece as a set of position and direction vectors where the directions are generally the normal vectors at the corresponding surface point. Roth et al.[14,15] tried to eliminate the need for an extended Z-map by introducing an adaptive depth buffer method for mechanistic modeling in three-axis and five-axis machining.

Another alternative for modeling CWE that is starting to receive more attention are Polyhedral Models. In this model the workpiece surface are represented by a finite set of polygonal planes called facets. The most commonly used shape is the triangle , because of this, the term facet is usually understood to mean triangular facet. In triangulated model, each facet is described by three vertices and a normal direction of the triangles. Several researches [16][17][18] Ozturk and Lazoglu [22] proposed an analytical method to determine chip load of ball-end mill during 3D free-form machining. Although the method is fast and accurate, but it is only applicable for three-axis milling with a flat workpiece surface. Spence et al. [23] reported an analytical method to calculate the cutter workpiece engagement using filled circles and rectangles as primitives to describe parts to be machined. They proposed two basic calculations, one was for the cutter engagement of circle primitives, and one was for the rectangles. Finally, a

Boolean operation was applied to find the entry and exit angles on the cutter.

Another study was performed by Tunc and Budak [24], in which a simple analytical method called the bounding point coordinate was used for five-axis milling. By using this method, the depth of cut in each tool location can be predicted by defining the coordinate of the cutter contact point. The tests showed that the proposed method could predict the depth of cut well. However, this method was only applicable for a flat surface. When a sculptured workpiece surface was machined, then they used faceted model to represent the workpiece surface. Another limitation of the current analytical methods is they cannot provide the CWE data with respect to engagement angle. The instantaneous length of cut and cut thickness information are required to predict the instantaneous cutting forces [25][26][27]. Gupta et al. [28] mentioned that analytical approaches for computing the CWE are proven much faster and more accurate compared with the discrete approaches. But they do not work for a free-form surface geometries.

Even though analytical method is preferable to discrete method, studies on the CWE using this method have not been well developed, especially for complex surfaces.

From the above discussion it can be concluded that a number of challenges exist in the development of Virtual Machining. One of the challenges is how to calculate the CWE efficiently and accurately. Considering this challenge, the objectives of this thesis are:

To develop the CWE model

When machining a complex surface, a tool path may contain hundreds or thousands of tool motions that make the computational cost for obtaining the CWE prohibitively expensive. The limitations of analytical method for complex geometries motivate research in this thesis into methodologies that provide The engagement points are determined using the parametric equations of the cutting tool and the base surface/rest surface information. In this study, the base surface of the proposed model is based on faceted model, while the information of the surface of rest of material, which is the part where the cutter is engaged, is based on Z-map data. The algorithms are developed by assuming all needed information, such as vertices, vertical and normal vector (this terminology will be explained in Chapter 4 and Chapter 5 in more detailed) are derived and computed from the base surface and rest surface information. However, the method to obtain this data is not discussed in this study. CHAPTER 2

LITERATURE REVIEW

Contrary to the advancement in machine tool technology and milling tool development, machining parameters such as feedrate, cutting speed, width of cut, are selected conventionally to avoid the risk of damaging workpiece, cutting tool and even the machine tool during the machining process. There is an increasing demand for virtual machining application that are capable in predicting the performance measures such as cutting forces, surface quality, tool deflection and power demands. Altintas [START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF] outlined a detailed flow chart of a comprehensive machining simulation and optimization scheme that consider not only the geometric factors but also mechanics and dynamics of milling, controller performance and feed drive dynamic as well as volumetric errors of a machine tool to compensate the machining errors and reduce the cycle time by adjusting the machining parameters (Fig. 2-1). Virtual machining has two main parts, geometric modeling and process modeling. The process modeling needs precise information about the CWE from the geometric modeling to predict the cutting forces. The main scope of this thesis is focused on the study of geometric and physical simulation of the machining optimization. CWE calculation becomes more challenging task when machining a complex part from a complex workpiece in multi-axis milling. In this chapter, some of important research contributions in this field will be reviewed, especially research into CWE generation, in-process workpiece modeling and feedrate optimization.

Feedrate Optimization/Scheduling

One of the optimization method in a free-form surface machining, which has become popular in recently, is feedrate scheduling. Selecting the most suitable feedrates values for machining of die, mould and other free-form surface parts, where the amount of material removal is constantly changing, has the potential for great advantages. Even though an important progress is being done in machining science and technology during the last three decades, but the task to determine the optimal feedrates for machining processes is still not easy. Hence, the offline method is largely used in optimization of feedrate in surface machining processes.

Classification of Control Parameters and Optimization Approaches

From the literature can be concluded that feedrate scheduling consist of two was used based on the assumption that average cutting forces are proportional to the MRR, and then, the feedrate is automatically optimized to increase the productivity under some boundary conditions.

Similar to Wang's study, Fussel et al. [10] developed a computer system to generate feedrates that can improve the performance of CNC cutting of free-form surfaces using end milling process. Li [42] proposed an offline feedrate optimization based on MRR integrated with commercial CAD/CAM for threeaxis end machining. This study offered an improve approach by relating the average power with the MRR. The machining force was predicted using empirical model after the chip parameters used to predict the cutting force was extracted.

Then feedrate was adjusted to fulfill the machining requirements such as productivity, accuracy and quality. Ip et al. [36] developed a fuzzy-based MRR approach to enhance the machining performance using spindle power and specific energy. Ip [43] proposed a new MRR optimization strategy to regulate the variation of cutting speed and maintain a fixed cutting force by optimizing feedrate by taken into consideration tool life, wear and surface quality. Lan and Hsu [44] proposed a mathematical model and the decision criteria to increase the optimal MRR control of a cutter. Chen et al. [45] proposed a feedrate optimization by considering the maximum surface roughness. The method to calculate or predict MRR in free-form surface can be categorized into three different methods. For the first method, the value of the MRR as can be seen in Fig. 2-2a must be computed for each tool movement. A 1 is the dexel area, z 2 and z 1 are the z values before and after the cutting tool movement, and j is the number of dexels changed by this particular cutting tool movement:

• = !"(# • * • )" # $ • & ' •() [*+ , ] (2-1) 
-= . / 0"+1 = . / 2 3 /4 [*+ , ] (2-2) 
where • is feedrate and is an average material removal rate for the time of the cutting tool movement. When the workpiece is a complex surface as illustrated in Fig. 2-2b, the average MRR may drift considerably from the peak MRR. This method is apparently not applicable for finish machining, but can be implemented in rough machining operation.

In the second method, the MRR value is calculated by defining the intersection between cutter swept volume and workpiece. This method requires to obtain the area of the cutting tool that is in contact with the workpiece and then the intersection area in the direction of the tool movement is swept as can be seen in Fig. 2-2c. This swept volume is divided by the frequency of tooth passing (t p ) to define the average MRR. The cut thickness at any tool location is calculated by dividing the scalar product of the feedrate (f) with the surface normal vector (N s ) by the number of teeth (n t ) multiplied by the cutting speed (N) [49].
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This strategy was used in feedrate rescheduling method where the feedrate is created from CAM software only in the existing G-codes. the rate which each tooth removes material, a value which briefly varies with the position of the cutting flutes relative to the engagement area. Then the instantaneous MRR can be defined by integrating the cut thickness along each teeth that is actively intersected in the engagement area as depicted below, The feedrate programmed to the CNC machine is a reference input to the system.
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In every NC code using the geometric simulation, the volume of material removed is determined at every sampling interval, from the B-Rep of the engagement area representing the amount of material removed. The MRR can be determined and the cutting force can be predicted at every sampling interval if the cut volume is known. The optimum feedrate value is computed by [46],
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In the first approach, the MRR values in between two consecutive CC In analyzing the results of MRR based approach, the feedrate reduced in regions where the MRR increased and vice versa. The MRR based feedrate optimization without adding new NC block is preferred for rough machining due to the simpler and short calculation time. Meanwhile the second approach is more suitable for semi-finish machining.

To achieve an optimum feedrate values, which are obtained through the feedrate optimization, to be applied in real machining, the capability of the machine tool interpolator is very importance. Uneven MRR means that unregulated cutting force, and hence, it will deteriorates the surface form quality.

In addition to it, this condition can faster the tool wear or even tool damage. This is the reason why the constant MRR is required and, therefore it should be considered in the design of parametric NC interpolator.

Force-Based Feedrate Scheduling Methods

Most studies in feedrate scheduling were developed based on the volumetric analysis that commonly using the MRR value. In volumetric based approach, the machining optimization is performed simply, feedrate rise as less material being removed and reduce as more material is being removed to keep MRR fixed.

Optimal feedrates, however, cannot be gained in the real operation because the physical machining force prediction is very complex when only the MRR is utilized. The vector force models are generally more accurate and precise, but they are also more difficult to integrate on the shop floor. In the modeling and computing of the mechanistic cutting force, an accurate geometrical information is very importance. The information needed to calculate the instantaneous cut geometry consists of [START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF]:

1. In-cut segment of the cutting edges There are two important items in the calculation of cutting force based mechanistic, the in-cut segment value and the cutter workpiece engagement.

Precise cutter workpiece engagement and in-cut segment geometric information give direct influence on the precision of cutting force calculation. In a free-form surface machining, defining the cutter workpiece contact area are much more complex. Immersion geometry is calculated using the surface between the cutting tool and updated part geometry. In ball-end milling process, the engagement surface has three edges (AB, BC and AC) as depicted in Fig. 23. For every location of cutting edge motion, the engagement points between the cutting edge and the edges of the contact surface are extracted. In-cut segment is the height of these points from the cutting tool tip. The engagement boundaries (• • and • ), which are the lowermost and uppermost limits of the in-cut segment are provided by geometric simulation approach. of the CL file is divided into smaller blocks with optimal feedrates that adjust the peak value of the cutting forces to the reference milling force. The reference milling force is computed using the cutting tool geometry data and then the calculated machining configurations is employed to schedule the feedrate. Some studies have proposed feedrate scheduling strategy using the cutting force model in flat-end milling [START_REF] Yun | Development of a virtual machining system, part 1: approximation of the size effect for cutting force prediction[END_REF][START_REF] Yun | Development of a virtual machining system, part 2: prediction and analysis of a machined surface error[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF].

• , • ! , • " = # $• , $• ! , " % " & $• " (2-
Moreover, several researchers have used feedrate scheduling for ball-end milling process. Lim and Menq [53] took cutting force and geometrical restrictions into account while concurrently regulating feedrates to optimize the machining direction in a sculptured surfaces machining. It was reported that the milling time could be significantly reduced for highly curved surfaces by cutting along the machining direction of low force-low error. However, this study did not present any experimental test for validation the proposed model. Guzel and Lazoglu [54] presented an improved theoretical model for the prediction of milling force system for a sculpture surface machining processes. This milling force model was built upon the previous paper of Lazoglu [55]. Then the cutting force model was used in the offline piecewise variable feedrate optimizing for increasing the machining efficiency [56]. Erdim et al. [57] proposed a new analytical cutter workpiece engagement model for a monotonic free-form surfaces. They developed an offline feedrate optimization system for a sculptured surface machining based on the milling force model, which was reported upon the previous paper of Guzel and Lazoglu [54].

Moreover, authors compared the force-based feedrate optimization approaches.

They concluded that force based feedrate scheduling control the cutting force magnitudes more reliable than the MRR technique. Lim and Hsiang [58] proposed a cutting path adaptive feedrate strategy, which improves the milling performance and efficiency of a sculpture surface machining when subjected to both force and dimensional tolerance constraints. Kim et al. [59] managed the spindle speed with respect to the effective tool diameter. It depicted the realization of increasing machining efficiency in highspeed milling of sculptured surface products. Chen et al. [45] studied the feedrate optimization of high speed ball-end milling process. They found that the feedinterval scallop height is an importance parameter to limit the feedrate for high productivity machining using CBN cutting tools. Fussell et al. [60] and Jerard et al.[61] developed a feedrate optimization and selection system using a cutting force model for ball-end milling. The comparisons between the simulations and experimental results in this work showed significant inaccuracies in the prediction and regulation of machining forces. The feedrate optimization system used tool deflection, surface roughness, tool wear and machine power data to set constraints on the cutting force and the feedrate for rough, semi-finish and finish machining phases. Due to the cut thickness parameter is one of the most important parameters in supporting the calculation of mechanistic milling force, the flow chart in Fig. 2-4 can also be formed by selecting the cut thickness as the reference parameter.

At every discrete rotational position, the cut thickness of all CWE segment is required for cutting force calculation. Consequently, the maximum cut thickness during a given cutting tool move may be obtained by storing the calculated maximum value. If the value at any tool position is obtained to exceed the maximum permissible value and the current cutting force is less than the upper limit on the acceptable force range, the feedrate iterations are stopped. The output feedrate value is then adjusted to the value that generates the maximum admissible thickness. Since there is a linear relationship between the feedrate and cut thickness at any tool position, the expected feedrate value is calculated using

[62]:
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• ••• is the feedrate as an output to the updated NC block file for the current move, !•""#$• is the current iteration feedrate value that resulted in excessive cut thickness, % &#'("#& is the predetermined maximum cut thickness value and % )*+ is the maximum cut thickness computed during the current tool movement.

Discussion

Offline [START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF]66]. In 3D-space approach intersections between CWE boundary and cutter edges are performed in 3D Euclidian space [52].

Curve (Wireframe) Modeling

Parametric as well as non-parametric curve representation is found in the The inherent polynomial nature of Bezier, B-spline and NURBS curves can be seen in the deviation of these curves from a sequence of linear interpolation. Let • • and ! be two points in " , and 0 % &, then • ! (0) given by:
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The operation is very simple as well as attractive from storage point of view.

Because of these two points control resulting (linear) curve, they are usually called control points. For higher order polynomial, the linear interpolation can be expressed by:
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Solid Modeling

A solid model is an unambiguous (complete) representation and therefore can provide enough information to be implemented, in principle, any geometric procedure. Solid modeling systems are used to model a shape having a closed volume, called a solid. There are many fundamental issues related to the design of a solid modeling representation and more generally, a solid modeler. In geometric modeling, E 3 subsets are the abstract geometric models used to model physical objects. However, only few subsets of E 3 are adequate models of physicals solids.

They the ones that capture mathematically the following properties: 1) Rigidity; From the literature of the CWE extractions using a solid model can be categorized into two groups: 21/2-axis and 3-axis methods. Another study was reported by . They developed a geometric approach for three-axis machining process simulation using a ball-end mill. They used solid models for representing the in-process workpiece and the removal volume. The cutting edges are represented by Bezier curves in 3D

Euclidean space. The Bezier curves are intersected with the removal volume for obtaining the in-cut segments of the cutting edges as presented in Fig. 2-6b.

Further, these segments are used to evaluate the instantaneous cutting forces.

Polyhedral Model Based Methods

Another alternative for modeling CWE that is starting to receive more attention are Polyhedral Models. Several researches [16][17][18] than what they should be.

Discrete Vector Based Methods

In this method, the workpiece is broken into a set of evenly distributed discrete z direction vectors (Fig. 2345678). The length of the vectors represents the depth of the workpiece. The spacing between the vectors can be defined with regard to the desired accuracy, local surface curvature of the workpiece and size of cutting tool.

The engagements are determined by finding intersections between the cutting tool geometry and vectors along the normal at discrete points on the surface. The intersections are calculated by a vector/surface intersection instead of surface/surface intersection in solid modeling.

Several studies [48,[START_REF] Fussell | Robust feedrate selection for 3-axis NC machining using discrete models[END_REF][START_REF] Fussel | Computer Generated CNC Machining Feedrates[END_REF]72,73] The vector based approach is widely used in geometric simulation.

However, the accuracy of this model is largely depends on the selected grid size.

Although mathematically it is more simple and shorter computation time than a solid modeler based approach. This technique suffers from inaccuracies due to the rasterization effect that commonly occurred in many discretized problems [72].

The accuracy can be improved by increasing the resolution of the grid size, but it comes with the expense of larger memory and calculation time.

Analytical Based Method

The numerical method has the limitation that it cannot handle very large stock parts and at the same time maintain high accuracy due to the limitations on the computational resources [28]. Few approaches have been developed using analytical techniques that do not require sampling. However, they do not work for a complex geometries. There are two main advantages of using analytical techniques. First, the functions can be extracted to determine cutter workpiece engagement at any point along the cutter path without explicitly resolving to an expensive Boolean operation. Secondly, it is not based on numerical or sampling method, hence it is more accurate than sampling techniques. Budak [24]. A simple analytical method called the bounding point coordinate was used. Using this method, the depth of cut in every instantaneous tool location can be predicted by defining the coordinate of cutter contact point. The tests showed that the proposed method can predict the depth of cut well.

Discussion

The purpose of CWE data generation is to identify the engagement condition between the cutter and the in-process workpiece during the milling operation for prediction the cutting force and further it can be used for machining optimization.

From the literature, it can be seen that research work for CWE extraction can be classified into three main methods, solid modeler based approach, polyhedral based method and vector based method. There is always tradeoff between the complexity of computation and accuracy in this approach.

Solid modeling gives more accurate information on cutter workpiece engagement (CWE). 3D part model can be represented easily, precisely and accurately. But it has drawback in high computation time. The computation time drastically increased due to surface-surface intersections. The most complex CWE calculation found during free-form surface machining, especially machining in five-axis milling. Due to the surface geometry change continuously during freeform surface makes modeling CWE extraction using solid model is not so easy.

On the other hand, few studies on polyhedral model based CWE extractions that have been conducted. And this method has a robustness issue in CWE extractions because of the chordal error.

Discrete vector model makes the calculation become faster than solid modeling because it is based on vector-surface intersection instead of surfacesurface intersection. However, the computation time and memory consumption increases intensely as the precision and accuracy is to be improved. In free-form surface machining, determine tool workpiece engagement become much more difficult because of the complex tool path and target surface geometry. Although large studies have been reported in modeling cutter workpiece engagement, but a good compromise between manageable computational speed and accuracy is still a challenge.

From the above discussion it can be seen that comprehensive methods for extracting CWE using solid model, polyhedral mode and discrete method have been fully developed. Meanwhile few studies are discussed about analytical method. Analytical approaches for computing cutter engagement were proven much faster and more accurate compared with the discrete approaches. But they do not work for free-form surface geometries. Even though the analytical method has the advantage compare to the discrete method, but study on CWE using this method has not been well developed especially for a complex surface.

CHAPTER 3 DEFINING TOOL ORIENTATION

In three-axis NC-milling, the orientation of the tool axis is normally fixed.

Consequently, complex parts with several surface orientations, requires more setups and hence longer cycle time. For machining a free-form cavities or a concave surface, ball-end cutting tools are widely used. However, the drawback of using ball-end mill is producing high scallops on a machined surface. Reducing the scallop to reach a predetermined surface quality is normally accomplished by increasing the number of cutting passes, which leads to longer machining time.

Therefore, five-axis NC machines are becoming increasingly popular due to their ability to handle geometrically complex part and workpiece surface. In five-axis machining, the tool orientation relative to the workpiece can be controlled by two additional degrees of freedom that enable the possibility to position a tool freely in the available working space. It could significantly reduce the number of setup needed and hence higher machining efficiency can be achieved.

Coordinate System in Five-Axis Milling

In five-axis machining, the tool can be rotated in any direction. Part with sculptured surfaces can be machined efficiently by controlling the tool to move and rotate dynamically with respect to the part surface normal (curvatures). In order to analytically represent the moving surface generation of the cutting tool, appropriate operators for the coordinate system transformations are required.

Therefore, three coordinate systems, as illustrated in Fig. 3-1, are employed to represent the position and orientation of the cutting tool. They are the workpiece coordinate system (WCS), which is the reference coordinate frame, the tool coordinate system (TCS), and the local coordinate system (LCS). The WCS is a fixed framed represented by the basis vector x, y, z, while the TCS and the LCS are denoted by u, v, w and X, Y, Z, respectively. The tool inclination angle (•), or which is called as lead angle by some references, and the screw angle ( ), which is also called as tilt angle, are normally used when a sculptured surface part is machined using five-axis milling. They are the angles formed by the TCS and the LCS as illustrated in Fig. 3-1a.

The orientation of the cutting tool relative to WCS (!) is shown in Fig. 3-1b and it is calculated using the tool rotation angles about the x-axis (" # ) and the yaxis (" $ ),
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The operator [M] to map the coordinate system from the TCS to the WCS involving the tool rotation about the x-axis, the y-axis and a translation at T is expressed as follows,
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where

#($ • , % • , & • )
is the cutter location point (CL-point) that is located at the bottom center of the cutting tool. The tool coordinate frame, with orthogonal basis vector u, v, w, is defined as,
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3 • is the linear velocity from one CC-point to the next and it is obtained by,

3 • = 5 6(789) :5 6 (7) 
;

; where ( i = 1, 2, 3, ...) [START_REF] Yun | Development of a virtual machining system, part 3: cutting process simulation in transient cuts[END_REF][START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF] where < 5 ($ 5 6 , % 5 6 , & 5 6 ) and = denote the coordinates of the CC-point and the feedrate, respectively. To calculate the instantaneous CWE, the tool path is interpolated linearly. For linear interpolation of cutting tool movement " $(&+)) * " $(&) % where (0 , ' <1) [START_REF] Yun | Development of a virtual machining system, part 3: cutting process simulation in transient cuts[END_REF][START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF](5) where ' denotes the tool path interpolation parameter.

The tool's moving direction influences the area of the cutting tool that engages with the workpiece. In the real machining, the tool can be set to move in any direction, especially during a free-form surface machining. Therefore, the entry angle (-), which is the displacement of the f direction from the x-axis as depicted in Fig. 3-1c, needs to be calculated as follows:

-= ./0 +) 1 2 ! 3 (&()) * 2 ! 3 (&) 4 ! 3 (&()) * 4 ! 3 (&) 5 (3-6)
where • is the tool rotation angle or the engagement angle that is equal to

• + !, and 
• ) 180 0 ( < < o j
is the engagement angle when the tool moves straight on the x-axis. 

Effect of Helical Angle to the Tool Orientation

The milling cutters with straight teeth have disadvantage in which each edge begins to cut the material on its entire length that creating very strong efforts with a discontinuities of the load on the tool. It can be followed by the shock effect that causes vibration that is dangerous to the quality of the machined surface. For this reason, the cutter with helical angle is introduced to eliminate such problem.

Helical angle ( ), which is also called lag angle in solid cutter, makes the cutting tool engages with the workpiece gradually. The existence of the helical angle makes the length of cut larger. In this section, the impact of the helical angle to the actual tool orientation will be discussed.

Identifying the Tool Mapping Operator and the Tool Orientation

Angles during Plain Milling

When a helical angle is introduced to the cutting tool, it changes the orientation of the cutting edge. The orientation of the cutting edge is not in the same direction to the orientation of the cutting tool. By assuming that the tool moves in the Xdirection, a helical angle makes the tool rotates about the Y-axis as depicted by Fig. 3-2. The actual cutting edge orientation at every engagement angel can be determined by calculating two representative points on the cutting edge,

• • ( ! " , # ! " , $ ! " ) and %& ' , # ', $ ' (. Parametric equation of the cylindrical cutting tool is used to define the coordinate of both points. Point • • is point • that is rotated about the Y-axis by helical angle. Point • is an arbitrary point on the cutting edge when ) = 0, while point % is a point at the bottom of the cutting edge. Let's take the coordinate of point • and point % for a flat-end tool and a toroidal tool as follow:

• =(0, *, 10) and % = (0, *, 0) à flat-end tool

• =(0, + , , 10 
) and % = (0, + , , 0) à toroidal tool [START_REF] Yun | Development of a virtual machining system, part 3: cutting process simulation in transient cuts[END_REF][START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF](5)[START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF] where * and + , denote the radius and minor radius of cutting tool, respectively.

Then the coordinate of point • • and point % with respect to the engagement angle are defined by performing transformation about the Z-axis. Therefore, the both transformations, about the Y-axis (helical angle) and the Z-axis (engagement angle), are expressed as follows,

• • = *-.(/, )). *-.(0, 1). [•] • • 2 ! " # ! " $ ! " 3 = 2 %-• ) 4 •56 ) 0 •56 ) %-• ) 0 0 0 1 3 2 %-• 1 0 •56 1 0 1 0 •56 1 0 %-• 1 3 2 ! # ! $ ! 3 (3-8) % = *-.(/, )). [%] % 2 7 # 7 $ 7 3 = 2 %-• ) 4 •56 ) 0 •56 ) %-• ) 0 0 0 1 3 2 ' # ' $ ' 3 (3-9)
The mapping operator is determined by calculating the cutting edge rotation angles about the X-axis and the Y-axis as depicted in Fig. 3-2b. They are calculated as follows,

8 9 " = 8 : = .;6 <= > • ! " • # $ ! % & ' = ()* +, - . ! " . # $ ! % (3-10) • ! = "#$ %& ' () * ! + ) , -./0 • 1 2 * ! 3 = "#$ %& 4"#$ • 5 ./0 • 1 6
The cutting edge orientation relative to the Z-axis in WCS, as expressed in Eq. , yields to,

7 8 = ./0 %& (./0 • 9 ! ./0 • ! - (3-11)
During plain cutting (• 9 = • = 0), the orientation angle of the cutting edge at every engagement angle are equal to the helical angle (7 = :). The mapping operator when a helical angle exist with respect to • 9 ! and • ! is expressed by,

[;] < = =/" (>, • 9 ! -. =/" (?, • ! - [;] < = @ ./0 • ! 0 0A$ • ! 0A$ • 9 ! 0A$ • ! ./0 • 9 ! +0A$ • 9 ! ./0 • ! +./0 • 9 ! 0A$ • ! 0A$ • 9 ! ./0 • 9 ! ./0 • ! B (3-12)

Identifying the Tool Mapping Operator and Tool Orientation Angles during Free-Form Milling

The characteristic of a free-form milling is the tool can be oriented in any direction. The tool orientation is defined using the tool orientation angles, • • and

• . When a helical angle exists, the orientation angles of the cutting edge is changed. Once again, the actual cutting edge rotation can be determined with the aid of point ! " and point #. To obtain the coordinate of point ! " and point # as shown in Fig. 3-2, they are rotated by • • and • . Then, Eq. [START_REF] Yun | Development of a virtual machining system, part 3: cutting process simulation in transient cuts[END_REF][START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF](5)[START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF] and Eq. [START_REF] Yun | Development of a virtual machining system, part 3: cutting process simulation in transient cuts[END_REF][START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF](5)[START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF][START_REF] El-Mounayri | Milling Process Simulation-A generic Solid Modeller Based Paradigm[END_REF] changed to become,

! " ($ % & , ' % & , ( % & ) = )*+(,, • • ) . )*+(-, • ). )*+(., /). )*+(-, 0). [!] (3-13) #($ 1 , ' 1 , ( 1 ) = )*+(,, • • ) . )*+(-, • ). )*+(., /). [#] (3-14)
Once point ! " and point # are determined, all of the cutting edge orientations [START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF] and the mapping operator are defined using Eq.(3-10) -Eq.(3-12).

(• 2 , • 3 , • • & , • & ,

Cutting Tool Geometry and Selection in Five-Axis Milling

According to APT (automatically programmed tools) definition [77], milling cutter is composed of four parts: cylinder, upper cone, lower cone and corner torus as shown in Fig. 3-3a. The geometric definition and mathematical description of the generalized cutter are presented below [78],

• : the cutter radius

• : the cutter corner radius Selecting a milling cutter is not a simple task. There are many variables that need to be considered. But essentially the machinist is trying to choose a tool that cut the material to the required specification for the least cost. Many types of cutting tool geometry that can be used in five-axis milling operation. Among them, however, three cutting tool types in term of geometry are commonly used:

flat-end cutting tool, toroidal cutting tool and ball-end cutting tool as depicted in Fig. 3-3.

These types of tools have been studied for the effectiveness in the machining of sculptured surfaces [79][80][81][82][83][84]. The studies showed that, with the same tool inclination angle, a flat-end tool results in the smallest scallop height compared with a toroidal and a ball-end tools. The scallop height does not vary with the inclination angle when cutting using a ball-end tool, while it is significantly reduced for a toroidal tool at small inclination angles. In more detail, a flat-end tool even gives more scallop height reduction than the toroidal tool with the same inclination angle. The higher the corner radius of a toroidal tool, the higher the scallop height is, and vice versa. Therefore, a specified inclination angle larger than zero must be applied. On the other hand, the generated roughness when cutting using a flat-end tool has similar tendency as a toroidal tool. For this tool, the best roughness is obtained at the zero inclination angle, and it becomes worse when increasing. A flat-end tool results in higher surface roughness than a toroidal tool.

From the above discussion, a toroidal tool and a flat-end tool are preferred to a ball-end tool, not only for roughing but also for semi finishing and finishing operation. In practice, the use of a flat-end tool is common due to its simplicity for gouging avoidance and calculating the preferred inclination angle for a sculptured surfaces as done by [85,89].

Parametric Equation of Flat-End and Toroidal Cutting Tool

According to APT tool geometry in section 3.3, flat-end cutter can be defined as follows:

• • = ! = " = # = $ = 0.
This tool is universally applicable for roughing, semi-finishing and finishing operation. The geometry of flat-end tool is presented in Fig. 3-4a. The surface of a flat-end cutter is considered as a cylindrical surface and is defined by a parametric equation as follows,

% & ('; () = ) * +,-' * ./+ ' ( 0 1 ; 0 < ( 0 < ( (3-15)
where * is the radius of cutting tool, ' is the tool rotation angle or the engagement angle and ( 0 is the distance of a point on the cutting edge, which is measured from the bottom of cutting edge, and used to calculate the length of cut.

Meanwhile for a toroidal cutter, it can be described by referring to APT as follows:

2 • = ! =0 ; " = # 3 0 ; $ = " • .
The generic toroidal-end cutter is decomposed into cylindrical and toroidal parametric surfaces. The representation of the cylindrical surface with respect to the tool coordinate system (TCS) is described using Eq. [START_REF] Yun | Development of a virtual machining system, part 3: cutting process simulation in transient cuts[END_REF][START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF](5)[START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF][START_REF] El-Mounayri | Milling Process Simulation-A generic Solid Modeller Based Paradigm[END_REF][START_REF] Fussel | Computer Generated CNC Machining Feedrates[END_REF][START_REF] Fussell | Robust feedrate selection for 3-axis NC machining using discrete models[END_REF](12)(13)(14)(15) with ( 0 = " + (, while for the toroidal surface is defined by the following equation, % 4 ('; 5) = ) (" 6 + " +,-7) +,-'

(" 6 + " +,-7) ./+ ' " 8 " ./+ 7 1 where 0 < 7 < 90 [START_REF] Yun | Development of a virtual machining system, part 3: cutting process simulation in transient cuts[END_REF][START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF](5)[START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF][START_REF] El-Mounayri | Milling Process Simulation-A generic Solid Modeller Based Paradigm[END_REF][START_REF] Fussel | Computer Generated CNC Machining Feedrates[END_REF][START_REF] Fussell | Robust feedrate selection for 3-axis NC machining using discrete models[END_REF](12)(13)(14)(15)(16) where " is the minor radius of the cutter, " 6 is the distance between the cutter centre point to the minor radius, and 7 denotes the toroidal angle. Due to the cutter location (CL) data and the workpiece surface information are provided in the workpiece coordinate system (WCS), the cutter surfaces are transformed from the TCS to the WCS.

• ! (" # $ ! , % # $ ! , & # $ ! ) = ['] • ((; )) (3-17) • * ! +" # , ! , % # , ! , & # , ! -= ['] • * ((; .) (3-18)

Effect of a Helical Angle to the Shape of Swept Surface

For a solid cutting tool, the shape of the swept surface, whether it is with or without a helical angle, is always similar. A different condition is found when a non-solid cutting tool (index-able milling tool) is used. The helical angle gives an effect to the swept surface. As depicted in Fig. 3 

• •( ) = •/ /0+ ! " (3-20)
where • • is the lag angle. The lag angle is the engagement angle of ! relative to the engagement angle of . Then the parametric equation of swept surface for a helical flat-end tool is defined as follows,

" • # ($; l) = % & ! '( $ & ! )* $ + , )* - . where 0 < + , < + (3-21)
For a helical toroidal cutting tool, the radius of cutting edge as a function of axial depth of cut is determined using the following equations,

• / = 01( 23 4((5 6 5 )* 7) '( -)/(• + • !"# $)% (3-22) & ' ($) = (• + • !"# $)/ ()! * + (3-23) , + -(.; $) = / & ' !"# . & ' ()! . (• 0 • ()! $) ()! 1 2 where 0 < $ < 90 (3-24)
The cylindrical surface of a helical toroidal cutter is defined using Eq.(3-19) -Eq.(3-21) with • < 3 4 < 3.

Conclusion

Three coordinate systems used in the model development have been defined in this chapter. The equations to map the coordinate system were developed. The algorithm to calculate the tool orientation angles relative to the WCS was presented. The effect of helical angle, inclination angle and screw angle were taken into account in the method development. The existence of helical angle makes the orientation of the cutting edge is not in the same direction with that of cutting tool. Finally, the parametric equations to define the surface of the cutting tools have been determined. These equation will be used in the next chapter in defining the coordinate of the Le-point and UE-point.

CHAPTER 4 ANALYTICAL METHOD FOR OBTAINING THE LE-POINT AND THE UE-POINT FOR ROUGH AND SEMI-FINISH MILLING

There are generally three main stages in the high speed machining of dies/mould machining: rough milling, semi-finish milling and finish milling. In order to perform a complete process simulation of a given machining cycle, the CWE model for all of machining stages will be derived. The characteristic of the workpiece surface and the tool orientation in each stage may be different. The tool paths of a five-axis milling are generated in computer aided manufacturing (CAM) software resulting in continuously varying tool orientation and the CWE.

Due to the complex surface geometry, the engagement between the cutting tool and the workpiece vary continuously, especially in roughing and semi finishing operation. Therefore, a different method will be applied for each machining stages.

The method to determine the orientation of the cutting tools with respect to the WCS and the TCS have been defined in the previous chapter. The effect of helical angle to the tool orientation was comprehensively discussed. In this chapter, the method to calculate the cutter workpiece engagement points, LE-point and the UE-point, will be discussed. The discussion will be only focused on roughing and semi-finishing milling. For a complex workpiece surface, which is normally performed during finish milling, will be discussed in the next chapter.

During rough milling, the workpiece surface is represented by the coordinate of points (vertex) that are located on the wall surface. Meanwhile vertical vectors are used during semi finish milling with straight staircase profile.

For semi finish milling with non-straight staircase profile, the shape of the wall surface is represented by a number of discrete points. All the surface data are assumed provided (given) and the method to obtain the discrete data will not be discussed in this study.

Calculating the Geometry of Cut

One of the objective of CWE calculation is to determined the geometry of cut.

This information can be used to support the method to predict the instantaneous cutting force. The equation to calculate the geometry of cut for toroidal and flat end cutter will be derived in this section. The geometry of cut involving the length of cut, the depth of cut and the cut thickness, are calculated using variables of the engagement points: the length of CWE on the cylindrical side (• • ), the toroidal angle of the LE-point ( ! ), and the toroidal angle of the UE-point ( • ). The method to obtain these variables will be discussed in the following sections.

For a flat-end cutting tool without neither helical angle nor inclination angle, the axial depth of cut (") and the length of cut (#) are equal, and they are expressed by,

" = # = • • (4-1)
The length of cut is always equal to • • whether the tool is set with or without both the helical angle and the inclination angle. On the other hand, the axial depth of cut of a toroidal cutting tool is always different with the length of cut in spite of the helical angle and the inclination angle do not exist. It is occurred because of its toroidal side. The axial depth of cut is calculated as follows,

" = $ • !"# $ % + & % (4-2)
where $ % is the toroidal angle of the UE-point. And the length of cut is determined as follows,

' = ($ % /180)( ) + & % (4-3)
In this study, the axial depth of cut is measured along the surface normal axis. Therefore, when the inclination angle exists, then it makes the axial depth of cut smaller. The word "smaller" is used because the length of cut is determined first, then the axial depth of cut is calculated by referring to the length of cut.

When the cutting tool has a helical angle, then Eq.(4-1) and Eq.( 4-3) are also applicable to calculate the length of cut. Meanwhile the axial depth of cut is expressed as follows,

• = ! "#$ % à (flat-end) • = (& ' & "#$ ( ! + ! ) "#$ % à (toroidal tool) (4-4)
When the cutting tool with the inclination angle but without the helical angle, then the length of cut is defined as follows,

) = ! + * à (flat-end) ) = [(( ! ' ( • )/180], -+ ! + * à (toroidal tool) (4-5)
The axial depth of cut is expressed using the following equations,

• = ! "#$ . à (flat-end) • = (& ("#$ ( • ' "#$ ( ! ) + ! ) "#$ . à (toroidal tool) (4-6)
In five-axis milling, there is a possibility that the helical angle and the inclination angle are used together. When it is occurred, then the cut geometry can be defined after the orientation angle of the cutting edge with respect to the helical angle and inclination angle is determined. The orientation angle (/ 0 ) is determined using the method to obtain the cutting edge orientation in section 3.2. Then the representative points as expressed in Eq. [START_REF] Yun | Development of a virtual machining system, part 3: cutting process simulation in transient cuts[END_REF][START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF](5)[START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF][START_REF] El-Mounayri | Milling Process Simulation-A generic Solid Modeller Based Paradigm[END_REF][START_REF] Fussel | Computer Generated CNC Machining Feedrates[END_REF][START_REF] Fussell | Robust feedrate selection for 3-axis NC machining using discrete models[END_REF](12)(13) and Eq.(3-14) yield to, $ 1 (2 3 4 , 5 3 4 , 6 3 4 ) = -#7 (8, .). -#7(9, :). -#7(8, %).

[$] (4- 7)

"(2 • , 5 • , 6 • ) = -#7(;, < = ) . -#7(8, < > ). -#7(9, :). ["] (4-8) 
Eq. [START_REF] Yun | Development of a virtual machining system, part 3: cutting process simulation in transient cuts[END_REF][START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF](5)[START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF][START_REF] El-Mounayri | Milling Process Simulation-A generic Solid Modeller Based Paradigm[END_REF][START_REF] Fussel | Computer Generated CNC Machining Feedrates[END_REF] and Eq. [START_REF] Yun | Development of a virtual machining system, part 3: cutting process simulation in transient cuts[END_REF][START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF](5)[START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF][START_REF] El-Mounayri | Milling Process Simulation-A generic Solid Modeller Based Paradigm[END_REF][START_REF] Fussel | Computer Generated CNC Machining Feedrates[END_REF][START_REF] Fussell | Robust feedrate selection for 3-axis NC machining using discrete models[END_REF] are then used to obtain the orientation angle relative to the surface normal. Once the cutting edge orientation was determined, the axial depth of cut is defined by,

• = ! "#$ / 0 à (flat-end) • = (& ' & "#$(( ! ' ( • ) + ! ) "#$ . à (toroidal tool) (4-9)
The cutting force prediction model is performed based on the cut area generated at an instantaneous tool location. Before the cut area is calculated, the cut thickness need to be determined. According to Kumanchik and Schmitz [90],

the cut thickness in a milling operation is defined as the distance between the current tooth path and the previous tooth path along the line segment that connects the tool center to the current tooth cutting edge. However, this definition is only applicable for machining with a perpendicular tool orientation. Inclination angle should be taken into consideration, it can influences the size of the cut thickness.

The tool inclination angle makes the cut thickness smaller than the distance of two consecutive tooth paths. Therefore, the cut thickness (•) is expressed as a function of the engagement angle as follows,

• = !"# $ #34 ' (4-10) Finally, the cross cut area as a function of the engagement angle is calculated by multiplying the cut thickness by the length of cut.

( ()) = * ()) . • ()) (4-11)

Obtaining the LE-Point

As mentioned in the introduction that the length of cut is determined by defining two engagement points, the LE-point (• • ) that is located at lower side of CWE, and the UE-point that is located at the upper side of CWE. In this section, the method to determine the coordinate of the LE-point (• • ) is developed. Erdim et al.

[57] mentioned that, when the cutter moves upwards or downwards with a feed inclination angle, as in upward (positive inclination angle) and downward (negative inclination angle) ramping, the feed direction vector is not perpendicular to the cutter rotation vector, and the cutting edge element produces different undeformed chip geometry. Gani et.al [91] mentioned that the tool inclination in five-axis milling has a large influence on the cross cut geometry. It will not only change the chip thickness, but also the length of cut. In term of cutting force, previous studies [57,92] showed that a negative inclination angle tend to give higher cutting force. It is believed due to the larger contact area between the cutter and the workpiece. 

• • #$ % & , ' % & , ( % & ) = [*]+ % (,; 0) + - (4-12)
A different case is depicted by the tool with negative inclination angle ( >0). The CWE is not only occurred on the front cutting edge, but also on the back cutting edge at the bottom side. In this case, the CWE is divided into two sections: the first section is the upper side of front cutting edge, which is located in between the UE-point (• • ) and the LE-point of front cutting edge ( • ). This section is called the front CWE (3 • ). The second section is located at the bottom side of both front and back cutting edge, which is in between • to the LE-point of back cutting edge ( " ), or it is called as the bottom CWE (3 " ). The existence of bottom CWE is depend on the number of cutting teeth, cutting edge geometry at the bottom side, and the engagement angle. The engagement angle of the back cutting edge (# " ) is calculated as follows,

# " = # + 180 $ % & '|()%(*+×% & )| % &
, ; where # " -{180, 360} [START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF](5)[START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF][START_REF] El-Mounayri | Milling Process Simulation-A generic Solid Modeller Based Paradigm[END_REF][START_REF] Fussel | Computer Generated CNC Machining Feedrates[END_REF][START_REF] Fussell | Robust feedrate selection for 3-axis NC machining using discrete models[END_REF](12)(13) where • . denotes the number of cutting teeth. Then, the coordinate of " is calculated using Eq.( 4-12) with # = # " . Meanwhile the length of the bottom CWE is a summation of the length of front and back cutting edge at the bottom side (/ . ). The method to define the LE-point was derived using the method to define a swept envelope. As mentioned in other studies [93-95], a swept envelope is constructed by three points: the forward boundary (egress point), the envelope boundary (grazing point) and the backward boundary (ingress point). The grazing point is considered as the LE-point at every engagement angle. It is obtained using the tangency function • ( ,!,") = # $ % ( ,!,") . & $ % ( ,!,") = 0, which consists of the cutter surface normal # $ % ( ,!,") and the cutter moving vector & $ % ( ,!,") . Using the same method, the toroidal angle of the LE-points at every engagement angle are calculated. Even though the toroidal cutter is constructed by two surfaces, toroidal side and cylindrical side, the LE-point is always located on the toroidal surface.

3 " = 2 / . ( 4 
When the inclination angle is negative, the engagement angle used in the calculation is the engagement angle of the back cutting edge (' = ' ( ). The method to define ' ( (Eq.(4-13)) for a flat-end tool can also be used for a toroidal cutter.

The surface normal of an arbitrary point ) on toroidal surface in the TCS is described by, The velocity of an arbitrary point ) on the toroidal surface is determined as

# $ % = *+ , /
follows, & $ % = & , + ; × <) =====> (4-18)
where ; and <) =====> denote the angular velocity and the position vector from < to ), respectively. Because the tool orientations for any instantaneous position was adjusted in Eq. [START_REF] Yun | Development of a virtual machining system, part 3: cutting process simulation in transient cuts[END_REF][START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF](5), it is assumed that ; = 0. Therefore, the velocity vector in Eq.( 4 Furthermore, the test was performed to check the effect of several variables, such as helical angle, radius and minor radius of the cutting tool, to the LE-point. Four combinations of variables were tested and the results are shown in Fig. 4-5d. From this figure can be concluded that a helical angle makes the CWE start at • > 0 (lag angle). Increasing helical angle and minor radius will increase the lag angle. On the other hand, increasing the radius of cutting tool will decrease the lag angle.

2.5d Rough Milling (Flat-End Cutter)

The 2.5D milling operation is a common machining operation. In five-axis machining operation, 2.5D milling is normally performed during rough machining. In rough machining, raw material is removed as quickly as possible while leaving stock material for a semi-finishing allowance. The machining during this stage is less concern on the workpiece dimensional accuracy or surface quality. A study showed that approximately 50% of total cutting time in mould and die manufacturing is spent in the rough cutting stage [96,97]. Therefore, increasing efficiency during rough machining will enhance overall throughout of the manufacturing process. Flat-end mill is generally employed for this operation due to the higher material removal rate and longer tool life.

In general, rough milling starts with a block material as the initial workpiece. Predicting the CWE during plain cutting with a block workpiece is a simple work. The axial depth of cut in the tool rotation is constant, and the length of cut is equal to the radial depth of cut. However, when a machining performs layer by layer cutting strategy, then the in process workpiece surface become more complex with staircase surface as shown in Fig. 4-6.

Obtaining the UE-Point During Rough Milling

For the rough milling, the workpiece surface is represented by the coordinate of the points that are located on the border wall as depicted in Fig. 4-6a. In every tool path, the border wall that has potential engages with the cutting tool should be determined. The potential border walls are the wall that are located in between (• + ) and (• ! ). Where •(" # , $ #, % # ) is the coordinate of CL-point and is the radius of the cutting tool. In the case as shown in Fig. 4-6b, only one wall that has potential engage with the cutting tool, such as In every instantaneous tool location, the UE-point is calculated based on the coordinate of the LE-point () * ). When a cutting tool without a helical angle performs plain cutting, the axial depth of cut and the length of cut have the same dimension. The UE-point is always located on the surface of the workpiece block A. The length of cut can be calculated by, 

+ , = ($ -.$ / ) , if / < -and $ / < $ - + , = ($ 0 .$ / ) , if / > -and $ / < $ - ( 4 

Effect of Helical Angle During Rough Milling

As discussed in the previous section, predicting CWE for a flat-end mill without helical angle during rough milling is a simple work. However, this method is not applicable when a helical angle exists. The helical angle makes the calculation become more complex because the orientation of the cutting edge with respect to the engagement angle is continuously changed. Then, the equation to determine the UE-point yields to,

• !% # $ , • • • , " • • # = [$] % . (0, 0, • • ) + ' (4-24)
where [$] % is a mapping operator when a helical angle exists. It is obtained using the method as explained in section 3.2.

The helical angle changes the orientation of the cutting edge and it makes the cutting edge can engage with more than one workpiece block. Moreover, the UE-point can be located either on the top surface or on the wall surface of the workpiece block. When the orientation of cutting edge is not along to the Z-axis in the WCS, then a method called the Cylindrical-boundary method is used to calculate the length of cut. The length of cut is required to calculate the UE-point as expressed in Eq.( 4-24). It can be calculated if the distance between the LEpoint to the surface where the UE-point located is known. This method consist of three methods depending on the axis used as the workpiece reference. 

# $ = (% ! &% " )/ '() * + ,-. • = (% ! &% " )/ ./) * 0 1 (4-26)
When a large cutting tool is used to machine a high staircase workpiece (the distance between the border wall is small), then there is a possibility that the UEpoint is not located neither on the block A nor on the block B. It can be located on the block next to the block B. Then, using the same method, the calculation is continued until the final engagement is obtained.

Fig. 456789The length of cut (L) with and without helical angle

Application and Discussion

The formulae derived in this section have been used to develop a simulation program using MATLAB. One part design as shown in Fig. 4-8a was cut using a flat-end cutting tool with 30 mm diameter. The tests were performed for a cutting tool with • = 0 and that with • = 15. The shape of cut as a function of engagement angle when • = 0 is depicted in Fig. 4-8b. While Fig. 4-8c presents the shape of cut when • = 15. It can be seen that the shape of cut when the tool without a helical angle is perpendicular, while the tool with a helical angle produced a tilted cut.

The lengths of cut for both tests are shown in Fig. 456789. From this graph can be seen that a helical angle gave an effect to the length of cut. When the UE-point is located on the top surface, the length of cut obtained from the tool with a helical angle is larger than that without a helical angle. On the other hand, when it is on the wall surface, the length of cut increases gradually, and hence it can be either higher or smaller. 

Semi-Finish Milling with Straight Staircase Profile

Semi-finish milling is a machining process to remove the steps and shoulder remaining from the roughing stage and a finishing allowance of uniform thickness is left. This operation is important in maintaining a relatively constant metal removal rate for subsequent finishing [98]. The characteristic of semi-finish in a sculptured surface machining is an extreme variation of cutting force. It is occurred due to the dynamic Cutter Workpiece Engagement (CWE) is produced by both the sculptured part surface and the staircase workpiece surface. Even though semi-finishing is less concern on surface quality, but extreme cutting force variation will give adverse affect to the cutting tool. Therefore, controlling the generated cutting force along the tool path become more important.

In this study, the staircase workpiece as depicted in Fig. 4-10a, which is normally produced by rough milling, was used in the model development. A number of normal vectors, which are located on the border of the workpiece surface, are used as references for further calculations. At every instantaneous tool position, two vectors, Initially the UE-point is calculated by assuming that it is located on • • can be determined after the length of cut on the wall surface (' ( ) is calculated using the Z-Cylindrical method. The coordinate • • is then defined using Eq.(4-23) with ' = ' ( . Finally, several conclusions regarding the cutter workpiece engagement can be made. but some part of it engage with block B. In this case, the LE-point moves from + , to + , . 

• • ( • , ! • , " • ) and • # ( # , ! # , " # ), are identified. The vector • • is located before $( % , ! % , " % ). While • # is
! " > ! # A.1 $ % & < $ ' , ( % & > ( ) , ( % * < ( ) + ' (Fig. 4-13a) , % = , ) A.2 $ % & > $ ) , ( % & > ( ) , ( % * < ( ) + ) (Fig. 4-13b) , % = , ) A.3 $ % & < $ ' , ( % & > ( ) , ( % * > ( ) -) (Fig. 4-13c) , % = , . A.4 $ % & > $ ) , ( % & > ( ) , ( % * > ( ) -) (Fig. 4-13d) , % = , . ! " < ! # B.1 $ % & > $ ) , ( % * < ( ' < ( ) and 
( / < ( ' -) (Fig. 4-14a) , % = , ) B.2 $ % & < $ ' , ( % * < ( ' < ( ) and 
( / < ( ' -) (Fig. 4-14b) , % = , ) B.3 $ % & < $ ) , ( ' < ( % * < ( ) and
( / < ( ' + ) and -) (Fig.

4-14c)

, % = , ) 0 (, . 0 , ' )

B.4 • ! > • " , # $ < # • < # " and # & < # • ' • and ( " (Fig. 4-14d) ) = ) " * () + * ) • ) B.5 # & > # • and # , > # " None (Fig. 4-14e) ) = 0 B.6 # & > # • and # , < # " ( " (Fig. 4-14f) ) = () " * ) • )
Although the procedures, which were explained above, are assumed only two workpiece blocks have potential to engage, however, when large cutting tool is selected to cut high staircase workpiece, then the procedure can be continued to check the engagement point with the block next to block B. Obviously, the calculation time increase as the staircase increase, and vice versa.

Application and discussion

A part design with complex surface as depicted in Fig. 4-15a was tested. The tool path was generated using Siemens-NX. Because of the complexity of the surface profile, the tool was rotated in both the x-axis (-• ) and the y-axis (-" ) during the machining process. In this test, the tool was set with inclination angle 10 o .

Machining conditions used in the test were feedrate 0.3 mm/tooth, and cutting speed 5000 rpm. A two teeth flat-end cutter with diameter 20 mm was employed as cutting tool. with three workpiece blocks. For CC-30, the orientation of the cutting tool, • • , was negative and the surface of block B was higher than the surface of block A.

In this case, the cuts, which are highlighted in CC-30, show the condition when the cutting tool engages with both of workpiece blocks but some parts of cutting tool in between the LE-point and the UE-point are out the workpiece. This is the case as explained by Fig. 4-14c.

Obtaining the UE-Point for Toroidal Cutter During Semi-Finish

Milling

Because the equations for the cylindrical and toroidal surface are different, the method used to calculate CWE on the toroidal side is different from that on the cylindrical side. Therefore, the location of • ! whether it is on toroidal side or the cylindrical side is determined before the calculation is made. This is performed by checking the coordinate of the UE-point relative to point • and point (see Fig.

4-21).

Where point (! " , # " , $ " ) denoting the end point of toroidal cutter on the WCS, which is calculated using Eq. ( 3 On the other hand, when the UE-point is located below point •, it means that the UE-point is located on the toroidal side, as shown in Fig. 4-21b. In this case, the UE-point is calculated using the mapping operation of toroidal side as shown in Eq. [START_REF] Yun | Development of a virtual machining system, part 3: cutting process simulation in transient cuts[END_REF][START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF](5)[START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF][START_REF] El-Mounayri | Milling Process Simulation-A generic Solid Modeller Based Paradigm[END_REF][START_REF] Fussel | Computer Generated CNC Machining Feedrates[END_REF][START_REF] Fussell | Robust feedrate selection for 3-axis NC machining using discrete models[END_REF](12)(13)(14)(15)(16)(17)(18), and it yields to

• ! "# $ % , & $ % , ' $ % ( = [)] * + (,; -. ) (4-28)
When the tool has helical angle, however, the UE-point is determined using the following equation,

! "# $ % , & $ % , ' $ % ( = [)] / 0 1. 23 4 1 562 4 1 • 1 562 4 8 + 9 (4-29)
The UE-point, as presented in Eq.( 4-29) and Eq. ( 4-30), can be calculated after the toroidal angle (•) is determined. The method to define the toroidal angle of the UE-point will be discussed in the following section. 

(# •• , $ •• , • ••
), is known. For example, when the UE-point is located on the top of workpiece block as shown in Fig. 4-21a, then

• • = [!"# $ % 0 #&' $ % ( ) ] * ) (+; ,) (4-37) (-. #&' $ % ) !"# , + (. #&' + !"# $ % ) #&' , = (( ) -( • ) + (. / #&' + !"# $ % -. #&' $ % ) (4-38)
Where:

0 = -. #&' $ % ; 1 = . #&' + !"# $ % ; ! = (( ) -( • ) + (. / #&' + !"# $ % -. #&' $ % ) (4-39)
Hereinafter, the toroidal angle will be defined using single trigonometric function as expressed in Eq.( 4-34)-Eq.(4-36).

Identification and Calculation of the Final UE-Point

Similar to a flat-end cutter, initially the UE-point is calculated by assuming that it is located on the surface of block A. Block B for a tool with positive $ % is located next after block A. However, because of its toroidal side, it is possible that the tool engages with the block next after block A even though the tool has a negative $ % . This is checked by calculating , 2 using the X-toroidal method with ( •3 equal to the coordinate of the vector next to 4 5 . If 0 < , 2 < 90, then the block next after A is selected to be block B. Otherwise, block B is located before block A.

Various possible conditions of the CWE are depicted in Fig. 4-22 and Fig.

4-23.

The methods used to identify the location of the UE-point as well as those used to calculate their coordinates are presented in 

• • > • C. (• ! < • " and # " > # $ ) % & < % ' and ( & > ( )
Tor. and * ' (Fig. 4-23e) Tor. and + ) (Fig. 4-23f)

X-toroidal Z-toroidal

• ! = • " # ! = # • • % > • • and # % > # • Cyl. and & • (Fig. 4-23g) X-Cylindrical • ' = • • • % > • • and # % < # • Cyl. and & " (Fig. 4-23h) Cyl. and ( • X-Cylindrical Z-Cylindrical • ' = • " # ' = # • D. ( 0 
< ) * < 90 and + , > • ) ! " < ! # and $ % > $ #
Tor. and & # (' # ) (Fig. 4-23i) Cyl. and ( # (' ) )

Z-toroidal X-Cylindrical

! *+ = ! # $ ) = $ # ! " < ! # and $ % < $ #
Tor. and & # (' # ) (Fig. 4-23j) Tor. and ( # (' ) )

Z-toroidal X-toroidal

! *+ = ! # $ *+ = $ #
Others circumstances are shown by case A. 6 and A.7. Even though • is located above ! , but it cannot be concluded that there is no engagement. The tool may engage with block B. In both cases, the LE-point move from • " to • " .

Consequently, the coordinate of • " need to be calculated. The toroidal angle of • " for case A.6 is obtained using the X-toroidal method with # $" = # % . On the other hand, because the LE-point is located on the cylindrical side, the Xcylindrical method with # & = # % is used to calculate the LE-point for A.7.

Although the initial assumption that ' ( is located on ! , it is possible that some part of cutting tool in between the engagement points is out of the workpiece as depicted by Fig. 4-23i and Fig. 4-23j, this is occurred when 0 < ) & < 90. In this case, there are two more points that need to be determined: the engagement points on % (' % ) and the engagement point on * % (' & ). Even though the result indicated that the proposed model was accurate, the verification was kept performed. Using the same method that was applied for semi finish with a flat-end tool, two verification tests were also accomplished in this section. Fig. 4-24c depicts the verification result in which the location of the UEpoint for every CC-point at • = 90 were compared with respect to the workpiece surface. From this graph, it can be seen that all of the UE-points are located exactly on the workpiece surface. To prove the accuracy of the proposed method, a second verification procedure using Siemens-NX was also performed and good agreement was found. The tool orientation and the workpiece surface changed continuously make the length of cut fluctuate significantly during machining, as presented in Fig. 4-25. The length of cut progressions, which were generated for the tool without the helical angle and that with helical angle 15 o , are presented in (Fig. 4-25a) and (Fig. 4-25b), respectively. It can be seen that the helical angle changed the profile of length of cut progression. When the tool without the helical angle, the tool engaged the workpiece completely since beginning. When the helical angle exists, however, the tool engaged with the workpiece gradually. The effect of helical angle to the length of cut, as presented in Fig. 4-25, can be analyzed more clearly using Fig. 4-26.

The shapes of cut geometry with respect to the engagement angle for CC-37 are displayed in Fig. 4-26. The shape of cut, which were generated using the tool without the helical angle and that with the helical angle 15 o , are depicted in The accuracy of the proposed model was also verified experimentally by comparing the length of cuts that were calculated using ABS with those were obtained from the real machining test. For this purpose, a machining test has been performed using a five axis milling (Hurco VMX 30U -belong to Universitas Negeri Jakarta, Indonesia), as presented in Fig. 4-30a. The machining conditions used for the experimental were feedrate 0.2 mm/tooth and cutting speed 1000 rpm. A two teeth toroidal cutter with major radius 6 mm and minor radius 2 mm was used as the cutting tool. To obtain a good shape of the cut geometry from a machining process, a soft material, which is acrylonitrile butadiene styrene (ABS), was selected. The shape of chip from the experimental work is depicted in Fig. 4-30b. This figure was captured using Camera Nikon D5100.

Because the material was soft, some part of chip were damaged especially on the side when the tool enter and exit the workpiece material, as highlighted in Fig. 4-30c. Therefore, the length of cut was only measured at the middle side of the chip. It is impossible to define the length of cut as a function of engagement angle from the chip that was obtained from the experimental work. Hence, the length of cut data was labeled using data number.

Thirty six data were measured using CorelDraw X3. The measurement was calibrated using a vernier caliper that was also captured with the chip as can be seen in Fig. 4-30c. The calibration was performed to define the magnification of the image, and it was found that the scale of the image was 10.58 :1. Then, the actual length of cut was determined by dividing the length of cut that was measured using CorelDraw X3 with the scale of the image. Fig. 4-30d shows the comparison of the calculated and measured length of cuts. From this graph can be seen that both of them have a good agreement. In general, the deviations were less than 4%.

Comparison with Z-Mapping Method

The main objective of the researches on the analytical method for the CWE generation is intended to solve the issue regarding the long computational time that normally arise when using a solid model and a discretization method.

Therefore, to ensure the efficiency of the proposed method over the existing one, computational times were compared to the Z-mapping method. Z-mapping is a discretization method that is powerful for generating CWE [22]. As mentioned in the introduction, the computational time of a discretization method is largely influenced by the grid size selection, which is dependent on the required accuracy.

On the other hand, with the analytical method described in this study, there is no need to select a grid size; therefore there is no correlation between the grid size and the computational time. For comparison purposes, the CWE for a part design and a workpiece surface, as presented in Fig. 4-31a, were generated using both the ABS and the Zmapping method. For this test, a two teethed toroidal cutter with a diameter 20 mm and minor radius 5 mm was employed as cutting tool. The simulation was performed using cutting speed 5000 rpm and feedrate 0.3 mm/tooth. The tool was set incline with the inclination angle 10 o relative to the surface normal. For the Zmapping method, the workpiece surface was discretized with a grid size of 0.1 mm. Both the ABS and Z-mapping methods were performed using Matlab on Intel Core i5 1.7 GHz laptop with 6 GB RAM. An uninterrupted test from CC-1 to CC-47 was carried out and the computational time in between two consecutive CC-points was recorded. This measurement was repeated three times for every method and the average results are presented in Fig. 4-32.

Fig. 4-32 Comparison of average computational time between ABS and Zmapping

From the graph in Fig. 4-32 can clearly be seen that the computational time for ABS was much shorter than the Z-mapping method. The ABS took only 375.38 second to generate the length of cut as presented in Fig. 4-31, while Zmapping took 9,411.48 second. Z-mapping was not a fast algorithm because it has to calculate and update a large amount of data. On the other hand, using analytical method, the CWE was calculated directly from a combination of parametric equation of the cutting tool, tool orientation data and mathematic equation of the workpiece surface, which were discussed in the previous sections. This is the main advantage of the analytical method over the discrete method.

In this test, the intensity of the CWE data generated by ABS was set at 3.33x10 -5 seconds of the tool motion or 1 o of tool rotation. If necessary, the intensity of the CWE data can be reduced, and obviously the computational time will also decrease. Reducing the intensity in analytical method will not decrease the accuracy. When machining a free-form surface part, the shape of workpiece surface, which is produced by rough milling, can be a non-straight (curve) staircase profile instead of a straight staircase as presented in Fig. 4-33a. This profile is obtained depend on the machining strategy that is applied during rough milling. A curve workpiece surface is normally produced by 3D rough milling that is aimed to obtain lower chip load variation during semi-finish milling. In this study, the shape of the wall surface in every stair level is represented by six points that are located on the top of the wall surface as illustrated in Fig. 4-33b. Based on the coordinate of the representative points, a mathematic equation to define the shape of the wall surface is developed using a polynomial equation. A flowchart describing the steps to obtain the CWE points is presented in Fig. 4-12. The details will be given in the subsequent sections.

Curve Surface Representation

A fundamental mathematical technique is to approximate something complex by something simple, or at least complex, in the hope that the simple can represent some of the essential information in the complicated. The wide spread used of computers has made the idea of approximation even more important. As mentioned before that the wall of the workpiece surface is represented by a non-straight staircase profile, which is a curve from polynomial interpolation.

To simplify the equations, some parts of

• • • • and • • • in Eq.(4-42) are represented by, ! = " #$% & '(# ) * + • + , = " '(# & #$% ) -#$% ) * + " '(# & '(# ) -+ + (4-43) Then • • • • and • • • yield to become, . • • • • • • • / = . ! + 0 % #$% ) 1 , 2 0 % #$% ) 3 '(# ) 1 / (4-44)
The intersection point is obtained by insert the value of

• • • • and • • • from
Eq.( 4-44) into • 4 and 4 in Eq.(4-40). Then Eq.( 4-40) changes to become,

! + 0 5 #$% ) * = 6 7 + 6 8 (, 2 0 5 #$% ) -'(# ) * ) + 6 9 (, 2 0 5 #$% ) -'(# ) * ) 9 + 6 : (, 2 0 5 #$% ) -'(# ) * ) :
(4-45)

The equation above was rearranged to become, 0 = ; 7 + ; 8 0 5 + ; 9 0 5 9 + ; : 0 5 : where :

; 7 = 6 7 + 6 8 , + 6 9 , 9 + 6 : , : 2 ! ; 8 = (26 8 2 26 9 , 2 36 : , 9 )#$% ) -cos ) * 2 #$% ) * ; 9 = (6 9 + 36 : ,) #$% 9 ) -'(# 9 ) * ; : = (26 : ) #$% : ) -'(# : ) * (4-47)

The roots of polynomial can be easily determined using software programming such as Matlab. Then the length of CWE is obtained by, 0 5 = <((=# [; : ; 9 ; 8 ; 7 ] (4-48)

The Eq.(4-48) produces three roots of 0 5 . Among those roots, however, only one 0 5 that is applicable for obtaining the CWE point correctly. The correct one is selected by following these rules, i. 0 5 must be real and positive, ii. if more than one 0 5 fulfill the criteria i, then the smallest one is selected.

Once • • is obtained, then the engagement point is calculated using Eq.(4-23). Similar to semi finish method, the UE-point is calculated by assuming that it is located on the top surface of block A (' & ). Then the Z-cylindrical method (Eq.(4-25)) is used to calculate ( ) . After ( ) is obtained, the initial UE-point,

* + ( ) , , # ) , , • ) , )
, is then calculated using Eq. [START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF](5)[START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF][START_REF] El-Mounayri | Milling Process Simulation-A generic Solid Modeller Based Paradigm[END_REF][START_REF] Fussel | Computer Generated CNC Machining Feedrates[END_REF][START_REF] Fussell | Robust feedrate selection for 3-axis NC machining using discrete models[END_REF](12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23). After that, it is checked to determined whether or not it is on ' & . The checking step is performed by

• • ( ! " , # ! " , $ ! "
), need to be determined. It can be defined after the length of cut on the wall surface is calculated using the curve boundary method. Finally, some conclusion regarding the CWE, when the initial assumption is wrong, can be taken. All of the CWE conditions for a curve surface are illustrated in Fig. 4-35 and Fig. 4-36.

Table 4-3 presents the method to identify the final engagement point for the conditions as illustrated in Fig. 4-35 and Fig. 4-36. The procedures that are explained in this table is similar to that use in the case of straight staircase. 

. Implementation and Discussion

A one part design with a complex surface and workpiece surface, which were obtained from 3D rough milling as shown in Fig. 4-37a, was tested. A two teeth flat-end cutter with 14 mm diameter was employed as cutting tool, and it was set with a constant inclination angle (5 o ). Machining condition that was used for this implementation were feedrate 0.3 mm/tooth, and cutting speed 5000 rpm.

The Curve boundary method for a non-straight staircase profile has been added to Analytical Boundary Simulation (ABS). Using ABS, the length of cuts for one tool pass were generated and presented in Fig. 4-37b. The shape of cut and the length of cut for one tool rotation are presented in Fig. 4-37c for CC-4 and Fig. 4-37d for CC-22. The shape of cuts, which were generated using ABS, were compared with the one obtained from the extraction model of the intersection between a cutter model and a workpiece model using Siemens-NX. From the two figures can be concluded that the shape of cuts generated using ABS resembled to that obtained using Siemens-NX. From Fig. 4-37 can be seen that the length of cuts are very fluctuates. This is because of the complexity of the part and workpiece surface. To verify the accuracy of the proposed method, the length of cuts obtained using ABS were compared with the length of cut measured using Siemens-NX.

The method to measure the length of cut in Siemens-NX uses the same method that was applied for the case as explained in section 4.4.1.1. For the verification purposes, the length of cut for CC-22 as depicted in Fig. 4-37d was tested as presented in Fig. 4-38a. The error was calculated by dividing the difference between the length of cut obtained using ABS and the one obtained using Siemens-NX, with the length of cut obtained using Siemens-NX, or it can be expressed as follows: a. The accuracy of the proposed method when the UE-points located on a flattop surface and on a flat-wall surface were very good. For these cases, the error was zero, or can be considered as zero.

••••• = • (!"#) $ (%&) • (%&) '100% ( 
b. A relatively small errors were found when the UE-points were located on the curve-wall surface. Because the approximation method was used to represent the curve-wall surface, the accuracy was largely influenced by the accuracy in predicting the shape of the wall surface. From the verification was found that the errors were less than 6%.

Conclusion

In this chapter, the method to calculate the coordinate of the LE-point was developed and tested. For a flat cutting tool, the LE-point was always located at the bottom of cutting tool, whether it is with or without an inclination angle. A different phenomena was shown by toroidal cutter. When the tool without an inclination angle, the LE-point is located at the bottom of cutting tool. Meanwhile when an inclination angle exist, its location become very dynamic. The coordinate of the LE-point can be determined after the toroidal angle of the LE-point is defined. The toroidal angle of the LE-point was determined using a method called the Grazing method. The proposed method was tested and the result revealed that the method can be used to define the coordinate of the LE-point.

The methods to generate the UE-point for rough and semi finish milling with a flat-end cutter and a toroidal cutter were also presented in this chapter.

During rough milling and semi-finish milling, a method called the Cylindricalboundary was employed to obtain the UE-point for a flat-end cutter or the UEpoint for the UE-points on the cylindrical side of the toroidal cutter. On the other hand, the method called the Toroidal-boundary was used to calculate the UEpoint of toroidal cutter when it is located on the toroidal side.

The algorithm derived in this chapter was used to develop a simulation program called Analytical Boundary Method (ABS). ABS can be used to generate the shape of cut and the length of cut. The accuracy of the proposed model was verified two times: first by comparing the coordinate of the UE-points with respect to the workpiece surface, and the second by employing a commercial CAD software Siemens-NX. The results proved that the proposed method was accurate. The efficiency of the proposed model in generating the CWE was also compared with the Z-mapping method. The result confirmed that the proposed model was more efficient in term of the computational time.

For the case of a non-straight staircase workpiece surface, the shape of the wall surface was determined mathematically using a polynomial curve. The method to define the UE-point when the engagement point located on the wall surface is called the Curve boundary method. The method was also verified using Siemens-NX. The result showed that the error for the UE-point located on the wall surface was below 6%.

Small portion of workpiece surface as illustrated in Fig. 5-1a is approximated by a surface that is a combination of the surface shape in the x-axis and the y-axis as presented in Fig. 5-1c. The shape of the surface can be a combination of convex, concave, flat or slope surface. This approximation is used to define the shape of the instantaneous workpiece surface. The method to define the shape of the surface will be discussed in the following section. The detail procedure to obtain the UE-point for flat-end cutter or cylindrical tool is presented by flow chart in Fig. 5-2. 

Identifying Instantaneous Surface Shape

At instantaneous tool position, the shape of the workpiece surface should be identified. Fig. 5-3a shows top view of the workpiece surface. The shape of an instantaneous workpiece surface region is defined using three selected normal vectors (• • , ! , " ). • is a reference vector that is located closest to the CC-point.

It can be located inside or outside the cutter region. While ! and " are vectors that are located before • .

Based on the coordinate and orientation of the normal surface, the radius of the workpiece surface in the x-axis (# $ ) is determined using Eq.(5-1). The equations were derived by referring to Fig. 5-3b. Using the same method, the radius of the workpiece surface in the y-axis (# % ) is determined using Eq.(5-2). 

# $ = &'(( ! ) ( • ) ! + (* ! ) * • ) ! +/(2 ,-.(0.5(/ $! ) / $• )))
(5-1)

# % = 0'(1 " ) 1 • ) ! + (* " ) * • ) ! 2/(2 ,-.(0.5(/ %! ) / %• ))) (5-2)
After # $ and # % are obtained, then several conclusions regarding the shape of the workpiece surface in the x-axis (3 $ ) and the y-axis (3 % ) can be taken.

• Convex surface : if # $ > 0, # % > 0 • Concave surface : if # $ < 0, # % < 0 • Flat surface : if • • = 0 and •! = 0; or • * = 0 and "! = 0 • Slope surface : if • • = 0 and •! # 0, slope angle (g) = •! ; or • • = 0 and "! # 0, 7 = "!
Therefore, the shape of an instantaneous workpiece surface is constructed using a combination of % • and % * . Several feasible surface shapes are illustrated in Fig.

5-1c.

The method to identify the selected normal vectors, as illustrated in Fig.

5-3a, is applied when the shape of the workpiece surface at the instantaneous tool location is determined using only one surface region. When the workpiece surface has a high curvature, the shape of the instantaneous surface can be very complex.

In this case, the errors can be higher if only one surface region is used to represent one instantaneous workpiece surface. The accuracy of this method is largely influenced by the accuracy in determining the shape of workpiece surface.

Therefore, to reduce the error due to the complexity of the surface, the instantaneous workpiece surface can be divided into two or more regions instead of one region. The method to define the shape of the surface for each region is similar as previously discussed. When the surface is separated into several regions, the workpiece surface should be discretized with larger number of normal vector, as illustrated in Fig. 5-3c. (5-7)
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+ 8 = 180 &(+ / + + 2 ) (5-12) • !!!! = (" # $ + • % # !!!!!! $ & 2 " # $ • % # !!!!!! $ '( ) * ) 0.5
(5-13)

Meanwhile for a concave surface, the equations to calculate the line • !!!! were developed by referring to Fig. 5-5b and they are presented as follows,

• % # !!!!!! = (• + !!!! $ + " # $ & 2 • + !!!! " # '( , # ) 0.5
(5- 14)

) -= ./ 01 ( " # $ sin (180 &, # )/ • % # !!!!!! ) (5- 15 
)

) 2 = |3 • ! " | (5-16)
! # = 180 $%& '( ( ) * + ,,,,,, $%& ! -. + / )

(5-17)

! 0 =180 (! -+ ! # ) (5-18)
) $ ,,,, = ) * + ,,,,,, $%&(! 0 ) $%& ! # /

(5-19)

More simple equations are used to calculate the line ) $ ,,,, for a slope surface and a flat surface as depicted in Eq.(5-20) and Eq.(5-21), respectively. For a slope surface, the equation was derived by referring to Fig. 5-5c.

) $ ,,,, = ) 1 ,,,, sin(90+2)/ sin(90 2 3 • )

(5-20)

) $ ,,,, = ) 1 ,,,, 45$ 3 denotes the projected distance in the z-axis from a projected point q on the workpiece surface to the baseline of curved surface 6 7 .

19 ,,, = . 7 45$ : 7

(5-22) ! is calculated only when it meets three conditions: % & , " , and % + are not equal to zero. Otherwise, ! = " . ----) from step 1 is rotated again about point , by % + . This rotation is aimed to obtained line , .

• !!!! = ((" # !!!! $ % " !!!! ) &'• ( ) * ) + % • !!!! ; for convex surface (5-23) • !!!! = ((" # !!!! + % " !!!! ) &'• ( ) * ) $ % • !!!! ;
----on • ! . Line , .

----represents the length of contact between the tool and the workpiece, or normally called as the length of cut. This step is performed only when % + is not equal to zero, otherwise,

• • !!!!! = • " !!!! . For a convex surface, the equations to calculate • • !!!!!
were derived by referring to Fig. 5-6a.

• # $ !!!!! = (• " !!!! % + & ' % ( 2 • " !!!! & ' )*"+ , ) 0.5
(5-28)

-. = cos /0 (( • # $ !!!!! % + & ' % ( • " !!!! % )/(2 • # $ !!!!! & ' ))
(5-29)

-1 = 180 (23 , 2 ( |+ 4 | + -.
(5-30)

-5 = "6 7• # $ !!!!! "6 -1 & ' 8 9; 
(5-31)

• = 180 !(• " + • # ) (5-32) $ % &&&&& = (' ( ) + $ * + &&&&& ) ! 2 ' ( $ * + &&&&& ,-. • ) 0.5
(5-33) $ * + &&&&& = ($ / &&&& ) + ' ( ) ! 2 $ / &&&& ' ( ,-. 0 1 ) 0.5

(5-34)

• 2 = .3% 45 ( ' ( ) .3%(180 !0 1 )/ $ * + &&&&& )

(5-35)

• " = |6 7 ! • 2 |
(5-36)

• # = 180 ! .3% 45 8 $ * + &&&&& .3% • " ' ( 9 :

(5-37)

• = 180 !(• " + • # ) (5-38) $ % &&&&& = $ * + &&&&& .3%(• ) .3% • # ;
(5-39)

For a slope and a flat surface are determined using Eq.(5-40) and Eq.(5-41), respectively.

• !!!!! = ( • " !!!! "# ( 90 +$))/ sin( 90 %$ % & ' )

(5-40)

• !!!!! = • " !!!! ()" & ' * (5-41)
Finally, the coordinate of + is determined by mapping the parametric equation of a cylindrical surface in Eq. [START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF](5)[START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF][START_REF] El-Mounayri | Milling Process Simulation-A generic Solid Modeller Based Paradigm[END_REF][START_REF] Fussel | Computer Generated CNC Machining Feedrates[END_REF][START_REF] Fussell | Robust feedrate selection for 3-axis NC machining using discrete models[END_REF](12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23) or Eq.(4-24)) with , -is equal to • !!!!! .

For a case when the tool is located near by the limit of the workpiece dimension, or in the other word when the tool is located at start or end of tool path as illustrated in Fig. 567, the UE-point and the LE-point may be located on the wall of workpiece surface, which are denoted by . and • . , respectively. In these cases, the UE-point and LE-point, which are obtained in the previous section, should be checked to determine the actual location. For this case, the cylindricalboundary method as discussed in Chapter 4 is used to define the UE-point. Then a new , -is obtained.

Application and Discussion

The formulae derived in this section were used to developed ABS using MATLAB. Three free-form workpiece and part surface models as shown in Fig. Even though the shape of cut was similar to the shape of material removed, but the accuracy of the proposed method was kept verified. The verification was performed by comparing the length of cut obtained from the simulation program to the one measured using commercial CAD software, Siemens-NX. Actually, Siemens-NX has no function to generate the instantaneous CWE data. Therefore, the CWE measurements were performed manually.

Verification method performed in this method is similar to that was applied for the second verification in semi-finish milling. As shown by The tests revealed that the proposed method could be used to determine the CWE of a free-form surface. The accuracy of this method was largely influenced by the accuracy in predicting the surface shape at every tool location. If the calculation was performed using one surface region for a one complete tool revolution, hence, the error may increase when the workpiece has higher curvature. High-curvature means that the surface is very dynamic that has more than one surface shape in one tool revolution. In this case, however, the error can be decreased by dividing the instantaneous workpiece surface into several regions.

By this strategy, the workpiece surface must be discretized with more number of normal vector. Obviously, the calculation time will also longer.

Comparison of Finish Model with Z-Mapping

To ensure the advantage of the proposed method over the discretization method, the comparison test in term of computational time was also performed. The part and workpiece model as used in Test 1 was used in the comparison test. The simulation was performed using a cutting speed 5000 rpm and a feedrate 0.3 mm/tooth. For the Z-mapping method, the workpiece surface was discretized with a grid size 0.1 mm both in the x-axis and the y-axis. Meanwhile for the ABS, the workpiece surface was discretized with a grid size 0.3 mm in the x-axis and 20 mm in the y-axis.

Both the ABS and the Z-mapping method were performed using Matlab on Intel Core i5 1.7 GHz laptop with 6 GB RAM. The uninterrupted test from CC-1 to CC-40 was carried out and the computational time in between two consecutive CC-point was recorded. This measurement was repeated three times for every method and the average results are presented in Fig. 5-12. From this graph can be seen that the computational time for the proposed method (ABS) is much shorter than the Z-mapping method. The ABS took only 334.68 second to generate the length of cut as presented in Fig. 5-12, meanwhile the Z-mapping took 3,579.82 second. The Z-mapping is not a fast algorithm because it must calculate a large number of surface data. Meanwhile the ABS is more efficient because the workpiece surface is defined mathematically, and the CWE is calculated directly using a combination of parametric equation of the cutting tool, tool orientation data and mathematic equation of the workpiece surface, which was discussed in the previous sections. The computational time is the main advantage of analytical method over the discrete method. The procedure to define the CWE points using a toroidal tool is more complicated compared with a flat-end cutting tool. Because of its geometric, the UE-point can be located either on the toroidal side or cylindrical side. Therefore, two projection lines, as shown in Fig. 5-13, should be identified. Hence, the coordinate of

• • ( ! " , # ! " , $ ! " )
, which is a point on the workpiece surface that is projected 

from point % ( • , # • , $ • ), and & ' ( ! ) , # ! ) , $ ! ) *,

3.

If % • < 0 and % & < 0 : there is no engagement between cutter and workpiece.

The projection line is a line that will be used as the initial reference line to calculate the length of cut and to define the coordinate of the CWE. 

Obtaining the UE-Point

The calculation is initially performed by determining the CWE at • {0, 90,180}.

The cut geometry at others engagement angle will be interpolated based on the cut geometry from these three engagement angles. Thus, for generalizing the calculation, several variables for every engagement angle should be defined. The variables and their values can be seen in Table 5-1.

Calculate Toroidal Angle of the UE-Point

For the CWE that is only occurred on the toroidal side, • • is determined by mapping the parametric equation of a toroidal surface (Eq.(4-28) or (4-29)).

Before the mapping operation is executed, the toroidal angle of the engagement point need to be determined. The methods to calculate a toroidal angle for all of the surface shapes are elaborated below. In this stage, the toroidal cutter will be represented as a circle with radius r. In this case, the toroidal side of the cutting tool and the workpiece surface are considered as a circle with radius r and " # , respectively. $ % , which was obtained in the second procedure, is used to define the orientation of the cutting tool. Then (5-49)

-. is positive when / 0 is negative and negative when / 0 is positive . (5-51)

Slope surface

The line / 0 ***** and the toroidal angle for a slope surface, which are presented in Fig. As mentioned before that the calculation, which was discussed in the previous section, is only for obtaining the UE-point at ! {0, 90,180}. The UE-points obtained in that stages are called as " # (! = 0), " $ (! = 90) and " % (! = 180). For the other engagement angles, the UE-points are determined by interpolating these three engagement angles. The coordinate of " & as a function of the engagement angle is determined by first obtaining the ' ( ) using an interpolating process. For reducing the error, the interpolating process is divided into two sections, the UEpoint at 0 * ! < 90 and that at 90 < ! < 180.

' ( ) = ' ( + + ,' ( -. ' ( + / 01" ! ; for 0 * ! < 90

' ( ) = ' ( 2 + ,' ( -. ' ( 2 / 01" ! ; for 90 < ! < 180 (5-54)
After ' ( ) is obtained, the next step is to determined the location of the CWE whether it is on the cylindrical side or the toroidal side. The method, which was explained in section 3.5.1, is applied in this section. Then, the UE-point can be determined after its toroidal angle, which is calculated using Z-toroidal method, or the length of cylindrical contact that is calculated using Z-cylindrical method, is obtained. After the toroidal angle or the length of cylindrical contact is obtained, finally the coordinate of the UE-point can be calculated. Using the developed simulation, the shape of cut geometry and the coordinate of the CWE can be generated. The graphs, which are showed in Fig.

5-20a,b,c,d, are the cut geometry for every CC-points. It can be seen that the shape of cut is similar to the shape of part and workpiece surface. The progressions of the length of cut for one tool pass are presented in Fig.

5-20e,f,g,h.

The first test was aimed to test the proposed method with a surface that is a combination of a curved surface and a flat surface. In this test, the normal distance between the part and workpiece surface was designed constant. From the graph shown in Fig. 5-20a can be concluded that the CWEs from test model 1 were only located on the toroidal side. Furthermore, the length of cut, as depicted in Fig. 5-20e, are constant. The decreasing value from CL-point 37 until CL-40

were occurred because some part of the cutter have been located out of the workpiece limit. For the last test, a combination of a concave surface and a flat surface was machined. In this test, the tool was inclined with the inclination angle 10 o . From Fig. 5-20h can be seen that there is a small variation in the length of cut. Cut inclination angle, then the length of cuts as a function of engagement angle were very fluctuate.

Verifications were also performed to check the accuracy of the method in predicting the cut geometry with respect to the engagement angle. The results are depicted in Fig. 5-22e,f,g,h. From these graphs can be seen that the errors produced by all of the tests were small. Therefore it can be concluded that the proposed method was accurate. This data was obtained using CorelDraw X3 by following the method as explained in section 4.4.2.4. From Fig. 5-23c can be seen that there was also a good agreement between the length of cut calculated using ABS and the one measured from the experimental work. In general, the errors were less than 7 %. 

Conclusion

In this chapter, The methods to define the Cutter Workpiece Engagement for a free form workpiece surface, which are normally performed during finish milling, was presented. The engagement was calculated using a combination of discretization and analytical method. Despite the workpiece was discretized by normal vectors, but there was no calculation to check the intersection between the cutting tool and the normal vectors. They were only used as the reference to define the shape of the surface at every CL-point, mathematically. The engagement point was obtained based on the predicted surface shape and tool orientation angles at the instantaneous tool location. The formulae were derived and implemented in a computer simulation. The program simulation, the Analytical Boundary Simulation (ABS), can generate the instantaneous shape of cut and the length of cut. The accuracy of the proposed methods were tested using Siemens NX. The verification was performed using the same procedure that was applied in semi-finish milling. The results showed that the proposed model produces relatively small errors. For both cutting tools, it was found that the errors are less than 4%. It proved the accuracy of the method. Moreover, the method was eliminating the need for large number of Z-mapping to define the workpiece surface. A test on the computational time proved that the proposed method is more efficient compared with Z-mapping method.

The accuracy of the proposed model was largely influenced by the accuracy in predicting the shape of the workpiece surface. Increasing the complexity of the workpiece surface will increase the error. For a complex surfaces, the error can be reduced by dividing the instantaneous workpiece surface to become several regions. Hence, the workpiece surface should be discretized into more number of normal vectors. Consequently, the calculation time will also increase.

CHAPTER 6 MODELING OF MILLING FORCE

In a CAD/CAM environment and the actual operation, practical and accurate cutting force prediction approaches are needed to optimize a process planning.

Although significant works have been reported in modeling individual but simplified machining process, generalized mathematical modeling of arbitrary operations is an essential step to predict part specific operations in virtual machining. Cutting forces prediction in milling process is very importance as they are the key factors that influence the dimensional surface accuracy, machining power, and the required strength for workpiece holding mechanisms and the cutting tool. By predicting the cutting force, the tool breakage and tolerance violations before the real machining can be avoid. This Chapter presents a generalized mathematical method to predict the instantaneous cutting force. The CWE models that have been developed in the previous chapters are employed to support the cutting forces prediction model.

Cutting Force Coefficient Identification

According to the early studies [103], cutting force predictions are mainly characterized by three methods: analytical, mechanistic, and numerical methods.

However, the first model is less accurate and the third is time-consuming [104].

Mechanistic model gives intermediate advantages based on the different cutting conditions and cutter types. In the milling operation, the mechanistic identification model is widely used to predict the cutting forces. By this model, the cutting forces are related to the average cut thickness and the cutting force coefficients that are calibrated experimentally for a specific workpiece material-tool geometry pair.

Another method was also proposed by Armarego et al. [105]. They used the oblique cutting model for milling force predictions that is called the mechanics of milling approach. Prediction of cutting force coefficients is based on the mechanics of general oblique cutting and requires knowledge of the fundamental cutting parameters, such as workpiece material, shear stress, and friction coefficient [106]. These parameters have to be calculated from the orthogonal cutting test and create an orthogonal database for a particular tool-workpiece material pair. Once the orthogonal database has been established, the specific cutting and edge coefficients can be predicted for turning, drilling, and milling operation, for specified tool geometry and cutting conditions. Orthogonal database is particularly useful for the cutting tool designer, since the coefficient can be estimated before the cutter is going to manufactured [107]. However, despite the orthogonal to oblique transformation provides cutting force coefficients for a variety of milling cutter geometries using three orthogonal parameters (shear stress, shear angle, friction coefficient), it is not always possible to identify these parameters when the cutting tools with a complex cutting edges are used.

Moreover, constructing an orthogonal cutting database is very time consuming and costly. For this case, the specific cutting force coefficients have to be identified mechanistically.

In the mechanistic identification model, the force coefficients are and Sabberwal [109] reported the proportional relationship between the uncut chip thickness and the tangential milling force component. Tlusty and MacNeil [110] and Kline [26] extended this model by including a radial force component. This extended method has been widely used in the milling force analysis [START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF]111] Since the coefficients are relative independent of the average cut thickness, this model is more suitable for an analytical method [106]. However, compared to exponential model, more force coefficients need to be determined. Zorev [115] proposed different ways for identifying the edge forces that are usually found by extrapolating the cutting forces to zero cut thickness. The linear edge force model was also used by Armarego and Epp [105] in formulating the milling forces for zero helix cutters, and by Yellowley [116] for analytical mean force and torque formulations in peripheral milling operations. Cheng and Tsay [117] studied the relationship between the instantaneous cutting force coefficients and other cutting parameters, and analyzed the degrees of effect factors for each parameter. Gonzalo and Beristain [118] proposed an inverse method to calculate the instantaneous cutting force by taken into account the influence of a rake angle and the cut thickness to the specific force coefficients. Another method was proposed by Wan and Zhang [100]. A forward calibration based on the lumped force model for general end milling was used to calculate the coefficients cutting force. Currently, finite element method (FEM) based on specific software that provides simulation functionalities with different helical angle has attracted the interest in machining process modeling [103].

In this study, the second mechanistic model is used in which the cutting forces are composed of the tangential, radial and axial components. The specific cutting and edge force coefficients for each force component is calculated using the experimental cutting forces data. In this model, the average cutting forces per tooth are measured and the effect of run-out on measurement can be minimized by dividing the total force per spindle revolution by the total number of teeth.

Mechanistic Modeling of Milling Forces

Cutting forces are modeled with respect to two fundamental factors, shearing effects that is taking place in the shear zone and edge effects, which are induced by plowing or ploughing at cutting edges. Six force coefficients have to be identified through experiments and mathematical analysis for a given cutter geometry and workpiece material under specific cutting conditions. Then the cutting forces are calculated using the six force coefficients, cut thickness and the length of cut. The geometry of cut or cutter workpiece engagement (cut thickness and the length of cut) are obtained using the methods that were discussed in the previous chapters. ) #,$ = 5 / /2 (cylindrical side) After tangential, radial, and axial cutting force components are obtained, the forces in the Cartesian coordinate system are derived through a coordinate Contrary to three-axis milling, tool orientation in five-axis milling is continuously changed. Therefore, tool coordinate system has to be mapped into the workpiece coordinate system. Therefore, the equation to calculate cutting force in X, Y, Z direction for three-axis milling in Eq. [START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF] is transformed to fiveaxis milling as follows, [START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF][START_REF] El-Mounayri | Milling Process Simulation-A generic Solid Modeller Based Paradigm[END_REF][START_REF] Fussel | Computer Generated CNC Machining Feedrates[END_REF][START_REF] Fussell | Robust feedrate selection for 3-axis NC machining using discrete models[END_REF] where [%] is a mapping operator from the tool coordinate system to the workpiece coordinate system involving the tool orientation angles in the x-axis (3 4 ) and the y-axis (3 5 ). [START_REF] Yun | Development of a virtual machining system, part 2: prediction and analysis of a machined surface error[END_REF][START_REF] Yun | Development of a virtual machining system, part 3: cutting process simulation in transient cuts[END_REF][START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF]5,[START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF][START_REF] Fussel | Computer Generated CNC Machining Feedrates[END_REF] mm are applied under feedrate 0.1, 0.2, 0.3 mm/tooth. Cutting force coefficients were identified using feedrate 0,1 and 0.3 mm/tooth. Feedrate 0.2 mm/tooth is used for verification purpose.

Cutting Force Coefficients

Through experiments and data processing, the general trend of six cutting and edge force coefficients were determined and presented in Fig. 6-4. From this figures can be seen that the coefficients are very fluctuative. Then, the values of the force coefficients obtained from the experiment are fitted, thereby its value at every z elevation can be determined. Using a cubic polynomial fitting, the cutting and edge coefficients as a function of axial depth of cut (•) are expressed as follows,

• ! = (-0.877) " # + (18.6863) " $ + (-116.6406) " + 748.0811

• %! = (0.3048) " # + (-4.3090) " $ + (-1.8247) " + 58.5752

• &! = (-2.4127) " # + (43.9065) " $ + (-236.4195) " + 58.3667

• ' = (0.0197) " # + (-0.5740) " $ + (3.775) " + 24.5360

• %' = (-0.0405) " # + (0.7798) " $ + (-2.6908) " + 3.2515

• &' = (0.0522) " # + (-1.1549) " $ + (5.1104) " + -0.057 [START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF][START_REF] El-Mounayri | Milling Process Simulation-A generic Solid Modeller Based Paradigm[END_REF][START_REF] Fussel | Computer Generated CNC Machining Feedrates[END_REF][START_REF] Fussell | Robust feedrate selection for 3-axis NC machining using discrete models[END_REF](12) From the graph in Fig. 6-4 can be seen that the cutting edge coefficients (• ! , • %!, • &! ) have larger fluctuation ranges compared with those of the edge coefficient (• ' , • %', • &' ). According to Ge et al. [104], this phenomenon can be explained by metal removal mechanism acting on the rake and flank contact areas.

Drastic changes of cutting (shearing) coefficients are characterized by the size effect. Larger force coefficient at smaller axial depth of cut was also found by Erdim et al. [57]. Several studies [START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF]27,124] were also reported that the cutting force coefficients increase as the cut thickness decrease.

The cutting forces coefficients are calibrated experimentally for a specific workpiece material-tool geometry pair [39]. Therefore, different coefficients need to be identified when a different workpiece material-tool geometry pair is employed. The cutting force coefficients in Eq. [START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF][START_REF] El-Mounayri | Milling Process Simulation-A generic Solid Modeller Based Paradigm[END_REF][START_REF] Fussel | Computer Generated CNC Machining Feedrates[END_REF][START_REF] Fussell | Robust feedrate selection for 3-axis NC machining using discrete models[END_REF](12) were derived from the experimental data with various feedrate and depth of cut. Hence, it can be used to predict the cutting force as a function of axial depth of cut and feedrate. Because the effect of cutting speed was not taken into account in the model development, it is probably not applicable for variety of cutting speed. Study on the relationship of cutting speeds on the force coefficients has been performed by Ge et al. [104].

They mentioned that the force coefficients tend to increase as the cutting speed decrease, and vice versa. 

Model Implementation in Five-Axis Milling

Cutting experiments were performed to verify the proposed model in five-axis milling. For this purpose, the same cutting tool and workpiece material were utilized. The cutting speed and feedrate used in tests were 1000 m/min and 0.2 mm/tooth, respectively. The verifications were performed for two milling operations, semi-finish milling and finish milling.

For the first test, a part and workpiece model as shown in Fig. 6-5a was used and the length of cut, which were calculated using ABS, are presented in Fig. 6-5b. The cutting force components during one tool pass were measured and compared against the calculated cutting forces. From Fig. 6-6 through Fig. 6-8

show that the profile of the graph of the measured cutting forces and theirs value correspond to the graph of calculated cutting forces. It can be seen that calculated cutting force in the x-axis (• • ) and the y-axis ( ! ) match well with the experimental data in both their trends and amplitudes. In most of regions, the deviation with regard to measured cutting force were below 15%. Meanwhile in Z direction ( " ), higher deviation were found. Mostly the deviations were low, but in some region it reached until 40%. The second validation test was performed for a free-form workpiece surface as depicted in Fig. 6-9a. The length of cut with respect to the machining time is presented in Fig. 6-9b. As it is demonstrated in Fig. 6-10 through Fig. 6-12, calculated and measured cutting force components match well. In general, the difference between the calculated and measured force amplitudes were below 10%. It can be considered that there is a strong relationship between them.

Many reports [51,88, studied cutting force prediction. Mostly they were performed a plain cutting in three-axis milling, and only few studies that were developed for five-axis milling. Becze et al. [125] proposed an analytical force model and then it was verified using hardened tool steel (D2 tool steel). They concluded that the proposed model was able to predict the cutting force well, but there is some deviation of the predicted cutting force from the actual forces, which can reach until 40%. Erdim [51] used mechanistic force model to predict the cutting forces, and then the proposed model was applied for feedrate scheduling of a complex part in five-axis milling. The method could predict the cutting forces of the optimization feedrate with the maximum deviation about 28%. Boz et al. [88] was also developed an cutting force prediction model. According to the verification results, they stated that the simulated and measured cutting force match reasonably well within the deviation band of 0-20%.

In the real five-axis machining, there are many factors that affect the magnitude of cutting forces in which some of them did not taken into consideration in the cutting force model proposed in this study. The flexibility inherently associated by two additional axes of the machine/workpiece system causes significant vibrations, which in turn may lead to tool chatter. This factor might contribute to the deviation of the simulation results due to the force coefficients were calculated using a set of experimental data that were obtained from three-axis milling. Another factor that greatly influenced the magnitude and distribution of the cutting force is the cutter run-out effect, which is general phenomenon in the milling process. The existence of these factors that might influence the discrepancy between the calculated and measured cutting forces. This chapter presents a generalized mathematical method to predict the instantaneous cutting forces. The cut geometry models that have been developed in the previous chapter were employed to support the cutting forces prediction model. Mechanistic cutting force model, which breaks down the cutting force into three components (tangential, radial and axial), was used in this study. For a simulation purpose, the force coefficients (cutting coefficient and edge coefficient) were determined using the cutting forces data that were obtained from a series of experimental works. Cutting force coefficients as a function of axial depth of cut was defined using a cubic polynomial fitting.

The proposed method has been tested to generate cutting forces during a semi finish and a finish milling. Using the same part and workpiece model, the actual cutting force were measured experimentally. The test results showed that the calculated cutting forces have a good agreement, both in trends and amplitudes, with the cutting force generated from the experimental work . Otherwise, it is located at the back cutting edge. For toroidal cutter, increasing positive inclination angle will decrease the length of cut. On the other hand, increasing negative inclination angle will increase the length of cut.

The new methods to generate CWE for roughing, semi finishing and finishing milling with a flat-end cutter and toroidal cutter were presented. The UE-point was calculated using a combination of discretization and analytical method. During rough milling and semi-finish, a method called the Toroidalboundary was employed to obtain the UE-point when it was located on the cutting tool at toroidal side. On the other hand, a method called the Cylindrical-boundary was used to calculate the UE-point for a flat-end cutter and a cylindrical side of toroidal cutter. All of the equations, which were derived in this study, were used to develop a simulation program using Matlab. It was called Analytical Boundary Simulation (ABS). The accuracy of the proposed models were verified two times, first by comparing the coordinate of the UE-points with respect to the workpiece surface, and the second by employing CAD software Siemens-NX. The results proved that the proposed method was accurate. The efficiency of the proposed model was also compared with the Z-mapping method in generating the CWE.

The result confirmed that the proposed model was more efficient in term of computational time. For the case of the shape of workpiece surface is a nonstraight staircase, the wall surface was represented by polynomial curve. The method to define the UE-point when the engagement located on the wall surface was called the curve boundary method. The method was also verified using Siemens-NX, and the result showed that the error when the UE-point located on the wall surface was below 6%.

Meanwhile for finish milling, the surface is discretized using normal vectors. Despite the workpiece surfaces were discretized, but there was no calculation to check the intersection between the cutter and the representative vectors. They were only used as the reference to define the shape of the surface at every CC-point, mathematically. The engagement point was obtained using a combination of workpiece surface equation, parametric equation of cutting tool and tool orientation data. The accuracy of the developed method was verified using the same method that was applied in semi-finish milling. The results

showed that the proposed model produces relatively small errors. For both cutting tools, it was found that the errors were less than 4%. It proved the accuracy of the method. Moreover, the method was eliminating the need for large number of Zmap to define the workpiece surface. The computational time test proved that it was more efficient compared with the Z-mapping method.

Cutter workpiece engagement model was applied for supporting the method to predict the cutting forces. In this study, the mechanistic cutting force model was used. Cutting force coefficients as a function of axial depth of cut was obtained using a cubic polynomial fitting. The test results showed that the calculated cutting forces have a good agreement with the cutting force generated from the experimental work.

Future Work

In an analytical method, the algorithm developed for the CWE generator is applicable only for a specified cutting tool geometry and workpiece surface.
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  computationally simple analytical solution to generate CWE of complex part design and workpiece surface. The analytical methods of the CWE calculation are developed for various machining stages from 2.5D rough milling until finish milling operation.The instantaneous length of cut is defined by determining two engagement points, the lowermost engagement (LE)-point, which is denoted by C f , and the uppermost engagement (UE)-point, which is represented by n f , as shown in Fig.1-1. The LE-point is an engagement point that is located at the lowermost of CWE, meanwhile the UE-point is an engagement point that is located at the uppermost of CWE. The CWE models are developed for two types of cutting tools, flat-end cutter and toroidal cutter. The effects of helical angle, screw angle and inclination angle are taken into consideration in the model development.
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 1 Fig. 1-1 UE-point and LE-point

Fig. 2 -

 2 Fig. 2-1 A comprehensive process simulation and optimization flow chart byAltintas[START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF] 

Fig. 2 -

 2 Fig. 2-2 MRR calculation method, a) using dexel space, b) average MRR vs max. MRR [46], c) removed volume [46], d) The same MRR but different force [47], e) CWE for ball-end mill and chip thickness varies as a function of engagement angle [48]
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 323 Fig. 2-3 Detailed extraction of in-cut segment [52]
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 143 Force-based Feedrate Scheduling Algorithms and ImplementationThe flow chart shown in Fig.2-4was employed to perform a feedrate scheduling using mechanistic cutting force model. The model presented in this figure was aimed to keep the resultant cutting force at the expected constant reference level along the NC tool path for every NC block. The mechanistic milling force is computed for the existing feedrate value and compared with the reference milling force. If the difference is significant, a new feedrate value is utilized to calculate the cutting force, which is then compared with the reference force again. The new feedrate can be calculated as shown in Fig.2-4. This step is repeated until the difference reduces within a predetermined tolerance.

Fig. 2 - 4

 24 Fig. 2-4 Block diagram of feedrate adjustment based on mechanistic cutting force model [46]

  literature. Parametric representation has demonstrated more advantages than nonparametric ones, especially when used in the context of engineering application, including CAD/CAM.Curve is also divided into analytic and synthetic. The latter can represent more general and complex shapes. Synthetic curves when formulated in a certain way are very practical and suitable for design and reverse design. The requirement for synthetic curves in design arises in two occasions. First, when a curve is represented by a collection of measured data points. Second, when an existing curve must change to meet new design requirement[67].Mathematically, a synthetic curve is used to represent a curve fitting problem to create a smooth curve that interpolates or approximates a given set of data points. Polynomials are most suitable for this task. They are easy to store, differentiate and integrate, and allow for a very practical and powerful curve representation and design tool to be implemented. Bezier and B-spline curves are the most widely used formulations for generating synthetic curves as polynomials or piecewise continuous polynomials. They have been adopted as the standard of CAD/CAM technology and are now supported by major CAD/CAM and solid modeling packages.Fundamentally, B-spline curves are the natural extension and generalization of Bezier ones. Indeed, they consist of piecewise continuous Bezier curves. Different degrees of continuity can be produced at the junction points. C 1continuity is the minimum acceptable order for curves used in engineering applications. However, C 2 -cubic B-spline is the most widely used as they allow for true 3D curves (non planar or twisted curves).

2 )

 2 Homogeneous three dimensionality; 3) Finiteness; 4) Closure under rigid motion and regularized Boolean operation; and 5) Boundary determinism[69].Some studies in Solid model based CWE extraction for supporting process modeling have been presented by[52, 66, 70]. The CWE extraction in those studies represents the initial workpiece geometry using B-rep model. The geometric and topological algorithms of this model were used for both the inprocess workpiece and CWE geometry. For updating the in-process workpiece, the swept volume of the cutter is initially generated for a given tool path segment and then this volume is subtracted from the current workpiece using regularized Boolean subtraction. The cutter workpiece engagement computation was carried out using this new workpiece state until the start of the following tool path segment. If the tool path has self engagement, then for generating the correct CWE, it need to decompose the tool path into non-engaging smaller segments.
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 2 Fig.2-5 Extraction of ceF boundary using advancing semi cylinder technique[START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF] 
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 2 Fig. 2-6 a) Instantaneous chip geometry extraction for 3-D ball-end milling [52],b) procedure for extracting in-cut segments of the cutting edge(s)[71] 

  Fig. 2-7 Faceted representation of a model [17]
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 28 Fig.2-8Workpiece representation with Z Direction Vectors (ZDV) approach[START_REF] Fussell | Robust feedrate selection for 3-axis NC machining using discrete models[END_REF] 
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 29 Fig. 2-9 Top, front and detail view of boundaries [22]
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  Fig. 3-1 Illustration of the relationship among the coordinate systems, (a) three coordinate systems, (b) tool orientations relative to the WCS, (c) entry angle
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 32 Fig. 3-2 Effect of helical angle to the cutting edge orientation with respect to the engagement angle
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 3 Fig. 3-3 Cutting tool geometry, (a) generalized cutting tool model based on APT, (b) flat-end tool, (c) toroidal tool, (d) ball-end tool
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 34 Fig. 3-4 The geometry of cutting tool, a) flat-end cutter, b) toroidal cutter

  Fig. 3-5 Swept surface of flat-end tool with helical angle
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 2141 Fig. 4-1 Effect of inclination angle to the CWE region in flat-end tool, (a) front view, (b) side view

  Fig. 4-2 Bottom view of flat cutting tool
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 4434 Fig. 4-4 Geometry of cutting tool at the bottom side, (a) bottom view, (b) front view

  Fig. 4-6 a) Workpiece representation method for rough milling, b) CWE region and CWE points

Fig. 4 - 7 FeasibleFig. 4 - 8

 4748 Fig. 4-7 Feasible Location of the UE-point during tool revolution

Fig

  Fig. 4-10 Workpiece representation method

  located either following or prior to • • , depending on the tool orientation. Both vectors are used to define two workpiece blocks that have potentially engage with the cutting tool. After two vectors (• • and • # ) are identified, then the workpiece is divided into two subsequent blocks, the block A and the block B as presented in Fig. 4-10b. Because of the tool orientation and the shape of workpiece surface, the UE-point can be located either on the top surface of block A (• • ), the wall surface of block A ( • ), the top surface of block B (• ! ) or the wall surface of block B ( ! ). A flowchart describing the steps used to obtain the CWE points for both flat-end and toroidal cutter are presented in Fig. 4-12 and the details will be given in the subsequent sections.
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 4441 Fig. 4-11 Flowchart for obtaining CWE points for flat-end cutter
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 4 Fig. 4-14 Location of the UE-point when $ ) < $ &
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 44 Fig. 4-15 Test model, a) Part model, b) chip geometry generated by the program simulation

Fig. 4 -

 4 Fig. 4-17 Two types of model verification, a) comparing the UE-point with respect to workpiece surface, b) verification using Siemens-NX

Fig. 4 -

 4 Fig. 4-19 shows the comparison of the shape and length of cut for CC-12, which were obtained from the cutting tool with a helical angle (c = 11) and those

Fig. 4 -

 4 Fig. 4-19 Cut geometry of CC-12 at jÎ{0, 190}, a) with helical angle (• = 11), b) without helical angle, c) the length of cut (L)

  -18) with = 90. In order to check the UEpoint position easier, point P and the UE-point are transformed into TCS. If the UE-point is located above point , it means that the UE-point is located on the cylindrical side, as depicted in Fig. 4-21a. Cylindrical boundary method, which is used to define the length of cut for a flat-end cutter, can also be utilized to calculate the length of cut for the cylindrical side of a toroidal cutter. However, the length of cut on the cylindrical side is measured from point to % & instead of from point • to % & .
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 4 Fig. 4-20 Test model 2, a) part model, b) cut geometry generated by the program, c) the length of cut progression (L), d) cut geometry for several CC-points at jÎ{0, 180}
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 4 Fig. 4-21 Two possible locations of the UE-point for toroidal cutter, a) wall of workpiece, b) top of workpiece
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 4 Fig. 4-22 Various possible conditions of CWE with toroidal cutter when • • < •
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 4 Fig. 4-24 Test model 1; a) Parts and workpiece for test model; b) CWE progression for one tool pass; c) verification

Fig. 4 -

 4 Fig. 4-25 The length of cut progression (L), a) without helical angle, b) with helical angle

Fig. 4 -

 4 Fig. 4-26 CWE from CC-37 a) the shape of cut without helical angle, b) the shape of cut with helical angle, and c) the length of cut (L) as a function of engagement angle

Fig. 4 -

 4 Fig. 4-26a and Fig. 4-26b. The effect of a helical angle on the shape of cut, which is highlighted in Fig. 4-26b, can be analyzed more clearly using the graph of the lengths of cut in Fig. 4-26c. When the tool without a helical angle, the length of cut are relatively larger since the tool enters to the workpiece. Meanwhile when a helical angle exist, the length of cut start from zero and then increase gradually. The CWE is still occurred at the engagement angle more than 180 o . In this case, the tool exits totally from the workpiece at • = 192 o . This figure answers the reason why the graphs in Fig. 4-25a and Fig. 4-25b are different.
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 4 Fig. 4-27 Test model 2; a) Parts and workpiece for test model; b) CWE progression for one tool pass
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 4 Fig. 4-28 The length of cut progression (L) from (a) Test A (• = 0; = 0), (b) Test B (• = 15; = 0), (c) Test C (• = 15; = 10)
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 4 Fig. 4-31 Part model for computational time test
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 4 Fig. 4-33 Non straight staircase workpiece surface
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 4 Fig. 4-34 Flow chart to obtain the CWE point for a non-straight staircase
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 44 Fig. 4-35 Location of the UE-point when • • > • •
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 4 Fig. 4-37 a) Part and workpiece model, b) the length of cut progression, c) the shape and the length of cut for CC-4, and d) for CC-22

Fig. 4 -

 4 Fig. 4-38 Model verification, a) error of the proposed model, b) the sections of cut

Fig. 4 -

 4 Fig. 4-38b shows the shape of cut generated using ABS. Based on the location of the UE-point, this figure was divided into six sections. Section A, Section C, Section E and Section G are the section where the UE-points are located on the top surface. Meanwhile the UE-points in Section B and Section F are located on the curve-wall surface. Section D shows the shape of cut when the UE-points are located on the straight-wall surface. From this figures can be derived two conclusions:
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 51 Fig. 5-1 Workpiece surface representation, a) normal vector distribution, b) vector orientation in WCS, d) feasible surface shape combination

Fig. 5 - 2

 52 Fig. 5-2 Flow chart to obtain the UE-point of flat-end cutter (cylindrical tool)

Fig. 5 - 3 5. 2 .

 532 Fig. 5-3 Workpiece surface representation, a) top view of workpiece, b) method to calculate radius of surface, c) surface discretization using two instantaneous workpiece regions

  hand, when • • is a slope or flat surface, then it is calculated as follows, ! = ( " sin( 90+#))/ sin( 90$# $ % & ); for slope surface (

Fig. 5 - 6

 56 Fig. 5-6 Rotation of rotated projection line on • ! , a) convex surface, b) concave surface

Fig. 5 - 7

 57 Fig. 5-7 Engagement points on the wall of workpiece surface

5- 8

 8 Fig. 5-8 Part and workpiece design for test, and the shape of cut generated by program simulation

  Fig. 5-11a, the length of cuts were measured by extracting the intersection between a tool model and a workpiece model. The tool model was placed at the instantaneous CC-point and then its orientation was adjusted. After that, the intersection between the workpiece model and the tool model can be extracted. Then the length of cut for every engagement angle were measured from the extracted model. Although the CWE can be measured using Siemens-NX, but it is very time consuming because it is performed manually.
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 59 Fig. 5-9 The length of cut progression for every test model
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 5 Fig. 5-11 Model verification, a) method to measure CWE in CAD software, b,c,d) error for • •[0 : 10: 180]

Fig. 5 -

 5 Fig. 5-12 Comparison of average computational time between ABS and Zmapping

  which is a point on the workpiece surface that is projected from point P ( + , # + , $ + ), should be determined. Point % and point , are the points on the cutting tool that are located at the lowermost toroidal side and uppermost toroidal side, respectively. The projection lines, % & • -----and , & + ------, are employed as the initial reference line for further calculation. The engagement point are obtained by rotating the projection line using the tool orientation angles. Fig. 5-14 summarizes the procedure to obtain the UE-point and the detail steps will be elaborated in the following sections. When the UE-point is predicted on the cylindrical side, then, the method to calculate the UE-point for a flat end cutter in Fig. 5-2 is utilized.
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 5 Fig. 5-13 Projection line of toroidal cutter
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 5 Fig. 5-14 Flow chart to obtain the UE-point for toroidal cutter

Fig. 5 -

 5 Fig. 5-16 The intersection point between the toroidal side of a cutting tool and a curved workpiece surface, a) ! positive, b) ! negative

  that the tool is rotated in positive (Fig.5-16a) or negative (Fig.5-16b) direction. For example, when the tool orientation at .{0} is positive, then it is negative at .{180}, and vice versa. Accordingly, ! for .{180} as shown in Table5-1 was set to be negative. The toroidal angle is expressed generally by,• = !"# $% (1 & '
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 5 Fig. 5-17 The intersection point between the toroidal side of a cutting tool and a slope workpiece surface, a) when / 0 is positive, b) when / 0 is negative

•

  Fig. 5-18 The intersection point between the toroidal side of a cutting tool and a slope surface, a) when • • positive, b) when • negative
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 5 Fig. 5-19 the UE-point for • {0, 90,180}
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 5 Fig. 5-20 Test models; a,b,c,d) the shape of cut, e,f,g,h) the progression of the length of cut
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 5 Fig. 5-22 The shape of cut geometry, the length of cut and the error for • •{0, 180} at selected CC-points

Fig. 5 -

 5 Fig. 5-23 Actual cutting verification, a) chip from machining, b) chip measured using Corel Draw X3, c) comparison of calculated and measured the length of cut

  identified from a series of milling test. Two different mechanistic cutting force models are found in the machining literature. They are the exponential force coefficient model and the linear edge force model. In the first one, the cutting forces are proportional to the cut thickness. The effects of shearing mechanisms due to the chip generating process on the tool's rake face and the effects of rubbing and ploughing mechanisms on the flank face are lumped into one specific cutting force coefficients for each cutting force component(tangential, radial, and axial). This model was modeled byMerchant [108]. Meanwhile Koenigsberger

  . The experimental results show that the cutting force tend to converges to some values different than zero as the cut thickness close to zero. It makes the cutting forces coefficient from the exponential force model increase indefinitely as the cut thickness smaller. It is occurred because of the finite sharpness of the tool edge which results in the ploughing of some material under the tool nose, and the flank contact which follow it [112]. The complexity of the phenomena of physics occurred during the cutting edge ploughing on the workpiece surface led the researcher to determine the edge forces using the second mechanistic model (linear edge force model). In this model, the force component is separated into the shearing component at the rake face and the ploughing component at the flank face [25]. The shearing and ploughing effect are characterized separately by the respective specific cutting and edge force coefficients [106-113]. Armarego and Deshpande [114] mentioned that the separation of ploughing force from the shearing force was found to be important in obtaining a linearized model with a constant cutting coefficient.
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 612 Fig. 6-1 Orientation of cutting force components on cutting edge
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 63 Fig. 6-3 Experimental setup
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 64 Fig. 6-4 Experimental and fitting of coefficients data, a) cutting coefficients, b) edge coefficients
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 6566676869666 Fig. 6-5 Test for semi-finish milling, a) part and workpiece model, b) the length of cut progression (L)

  In this study, the geometries of cross section of the instantaneous CWE in five axis milling have been defined. The length of cut was determined by defining two points, the LE-point and the UE point. Determination of cross cut geometry for continuous tool orientation change is not as simple as when milling with a constant tool orientation. The tool orientation continuously change in between two consecutive CC-points and the complexity of the workpiece profile made the CWE become very dynamic. The CWE was also proven to be influenced by the inclination angle that normally exist in five-axis milling. When machining using a negative inclination angle, LE-point is always located at the front cutting edge.
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  changing tool orientation and depth of cut, they prefer to select moderate machining parameters which means that the value of feedrate is much lower than the recommended values specified by the tool maker. It is aimed to prevent unpredictable failures such as tool breakage, machining failure and low surface

quality. By selecting low feedrate, the benchwork e.g. grinding and polishing to obtain the expected surface quality can be avoided. The bench-work is time consuming, such work accounting for about 80% of total machining time

[5]

.

2.1.3. Volumetric Based Feedrate Optimization Methods

  stages. The first stage is the calculation of an optimized feedrate based on a reference value (reference cutting force, material removal rate (MRR), chip thickness, chip volume, etc), and the second is the modification of NC code due to

	Implementing feedrate scheduling in a free-form surface milling has become
	popular, and it is also used in some commercial CAM software such as
	MasterCAM, PowerMill, etc. Feedrate optimization strategy based on the material
	removal rate (MRR) is the commonly used by most researchers. Besides MRR,
	other geometrical information such as cross cut geometry and cut volume are also
	used to performed feedrate optimization. Due to the risk of simplification, MRR
	model is easy to apply but less accurate and precise than vector force model
	(mechanistic) models.
	Study on feedrate optimization is initiated by Wang [34]. The aim of his
	study was a real-time solid modeling-based simulation of end milling for
	scheduling the MRR via adaptive feedrate control. The optimization system works
	as an offline adaptive controller before CL files are downloaded to the CNC
	control unit. The material removal extracted from the solid model was used to
	analyze the average cutting force. Relationship of the cutting force and the MRR
	average or instantaneous
	material removal rate [10, 25-28].
	2. Vector force method (mechanistic): Feedrate is set to values which keep either
	average or instantaneous milling force to predetermine values [7, 20, 21, 29,
	30].
	3. Rule-based method: Which can implement also the principles of artificial
	intelligence technique, genetic algorithm, response surface, etc [31, 32].

the new feedrate values. Feedrate rescheduling in a sculptured surface machining consider only one constraint at all of the machining parameter such as keeping fixed chip thickness f, keeping constant surface roughness R a , or keeping resultant cutting force (F r ). MRR, chip thickness, surface roughness, tool deflection and resultant force, these parameters can be categorized as feedrate scheduling control parameters. Different feedrate scheduling strategies have various feedrate control parameters and should be integrated for better results based on machining time and cost optimization models

[32]

.

Recently, in feedrate scheduling related studies, the aim has been focused to obtain precise and accurate results using a combination of several feedrate rescheduling strategies. Feedrate scheduling, which is also called as feedrate optimization, is a process which changes the NC code of the machined part in order to cut at varying feedrate values in placed of fixed feedrate value. The offline method for performing optimization of cutting condition can be categorized extensively into three classifications [24]:

1. Volumetric method: Feedrate is proportional to either

Geometric Modeling for Supporting Virtual Machining Instantaneous

  feedrate scheduling is a new methodology to automatically provide optimum feedrates for CL file modification. It has been one of the important topics in virtual machining. The two feedrate scheduling method can be compared based on several criteria such as machining tolerances and machining time. From cutting forces are calculated by the feedrate, spindle speed, and the CWE. The goal of CWE data generation is to obtain the engagement conditions between milling cutter and the in-process workpiece for supporting process

the literature is known that volumetric method is insufficient for determining the best feedrate values. The feedrate scheduling systems used in most CAD/CAM software have limitations in creating the adjusted feedrates because they are based on the MRR

[34, 35]

.

Since the volumetric based feedrate scheduling model does not rely on the physics of cutting tool, this deficiency makes the cutting forces not to be kept at a constant limiting level. Optimum feedrate values cannot be achieved by the operation because the mechanistic milling force prediction is very complicated when only the MRR is used. A feedrate scheduling strategy based on the cutting force prediction is thus needed to predict an effective and trustworthy feedrate.

Cutting force acting on the milling tool is one of the variables that bring important milling process data

[63]

.

Several studies

[57, 64, 65] 

performed feedrate optimization during a freeform machining and they conclude that feedrate scheduling based on the cutting force is more precise compared with based on the MRR. The MRR based feedrate strategy tends to give higher feedrate values than that cutting force based feedrate strategy. Due to the MRR strategy is less precise; the feedrate obtained from the optimization can be excessive that can cause unwanted effect such as chipping, wear, cutter breakage or over cut due to excessive cutter deflection and dynamic run-out. MRR-based feedrate is suitable for rough milling because it is simpler and shorter calculation time. Meanwhile feedrate scheduling based force is preferred for semi finish milling because this operation needs more precise result, even though the computational time is longer. Recently, in feedrate schedulingrelated studies, the more precise and accurate results has been obtained using a combinations of different approaches such as the MRR, chip, force, acceleration and deceleration.

2.2.

modeling. For extracting the in-cut segment, CWE boundaries are intersected with the cutter edges either in 2D or in 3D Euclidian space. Then those CWE boundary and the cuter edges are mapped into two dimensional spaces. Finally, for obtaining the in-cut segments, each cutting edge is intersected with the CWE boundary in this space

  -18) is equal to & , and the tangency function is as follows, • ( ,!,") = /01 2 . 34/ ' . (& , . 8) + /01 2 . /01 ' . (& , . 9) +

	34/ 2 . (& , . :) = 0	(4-19)

  • • ( ! " , # ! " , $ ! " ) and • % ( ! & , # ! & , $ ! & ). By obtaining the representative points, two workpiece blocks, block A and block B, can be identified. Block A is a block where point '( ( , # (, $ ( ) is

	located. Meanwhile block B is a block beside block A that has potential to engage
	with the cutting tool.

  • • . The UE-point at that stage is called the initial UE-point, $ • (& ' ( , ) ' ( , * ' ! " , # ! " , $ ! " ) is obtained. The engagement point • • is on the wall of block A when % & is negative, or on the wall of block B when % & is positive. Following this,

( ). It is called 'initial' because it needs to be checked further to determine if the initial • • (

Table 4 -

 4 1 Method to identify and calculate CWE for flat-end cutter

	No.	Indication	the UE-point Location of	•

Table 4 -

 4 2. Mostly the appropriate method can be determined only by comparing the indication variables (4 5 , 4 % , ' 6 , 7). However, in some cases, such as with A.3, B.1, C.1 and C.3, two possible methods can be used to obtain the toroidal angle of the UE point. In these cases, both methods are calculated in order to determine the correct one. For case A.3, the method which produces as smaller , • is chosen to calculate ' 3 .Meanwhile, for B.1 and C.1, the method that generates as larger , • is selected because to 8 5 > 8 % . For case C.1, the method that gives a smaller 9 • is chosen to calculate the final UE point.

  ) is obtained by sliced the workpiece material using plane B. Plane B is a plane A that is rotated by 3 • . The radius of 6 8 (.8) is dependent on 6 + . When 6 + is a curved surface, the equations were derived by referring back to Fig.5-5a. Line 19 ,,,

	/	•	(5-21)
	5.2.2.2. STEP 2: Inclined Surface	
	If 3 • is not equal to zero, it means that the projection line has been rotated in the
	first step. Because of this rotation, the projecting line is not perpendicular to the
	second surface (6 7 ). Consequently, when 6 7 is a curved surface, the line ) $ ,,,,
	cannot be mapped or rotated on 6 7 due to the line ) $ ,,,, and the surface 6 7 are not
	aligned anymore. It can be analogous by Fig. 5-5d. The inclined curved surface
	(6 8		

Table 5

 5 

	-1 Variables used for selected engagement angle
	Variables	• {0}	• {90}	• {180}
	!	"	#	"
	$	#	"	#
	% !	% "!	% #!	% "!
	% $	% #!	% "!	% #!
	& !	& "	& #	& "
	& $	& #	& "	& #
	' !	' ( /' ()	' * /' *)	' ( /' ()
	' $	' * /' *)	' ( /' ()	+' * /' *)
	S 1	, "	, #	, "
	S 2	, #	, "	, #

% & < % ' and ( & < ( ' Cyl. and * ' (Fig.4-23d) Z-Cylindrical ( -= ( '

Y-Cylindrical method: this method is used when the distance between a reference points to the wall surface in the y-axis is known. And the method to calculate • • is expressed by, In the case as shown in Fig. 4567, there are three border walls that have potential to engage with a cutting tool. Because the tool has a helical angle, the Cylindrical boundary method with the tool orientation angle relative to the z-axis is equal to the helical angle ( = -). Therefore, several checks should be performed to obtain the final UE-point. The entire steps to determine the UE-point is elaborated as follows,

1. When • • > • ! and " • < " ! (at # $ ): it means that there is no CWE.

2. When • • < • ! and " • < " ! : the cutting edge engages with the surface of block B, and the length of cut is calculated using Eq. with # $ = # ! .

3. When • • > • ! and " • < " % : there are three possible locations of the UEpoint: on the top surface of block A (at & ' and & ( ), on the top surface of block B (at & ) ), or on the wall surface of block A (at & * ). In beginning, it is assumed that the UE-point is located on the top surface of block A. Then + , is calculated using Eq. with # $ = # % . Once + , is obtained, the coordinate of the UE-point can be calculated. This point is then checked to find and correct the error. If -, < -$ , it means that the actual UE-point is not located on the top surface of block A. It can be on the wall surface or on the top surface of block B. Therefore, using the second assumption that the engagement point is located on the wall surface, + , is defined using Eq. .

Once again, the UE-point is calculated using Eq. . The final examination is performed to check the possibility of the actual UE-point is located on the surface of block A. The second assumption is incorrect if # , < # ! . It means that . / is located on the top surface of block A.

assumption is correct or not. If it is correct, then

Otherwise, the recalculation is performed to obtain the final UE-point,

• (! " , # " , $ " ), must be performed. Once • • is obtained, then it is checked to determine whether or not it is on , ( or not. The initial assumption is deemed incorrect if ! " -< ! ( when the tool has a negative ' ) , or if ! " -> ! ) when the tool with positive ' ) . In this case, the final UE-point needs to be recalculated. The final UE-point can be identified after point

In this case, ! • is calculated using the Z-toroidal. Meanwhile, the X-toroidal method is used when the UE-point is located on the wall of the workpiece block.

Z-toroidal method. If • " # in Eq. [START_REF] Yun | Development of a virtual machining system, part 3: cutting process simulation in transient cuts[END_REF][START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF](5)[START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF][START_REF] El-Mounayri | Milling Process Simulation-A generic Solid Modeller Based Paradigm[END_REF][START_REF] Fussel | Computer Generated CNC Machining Feedrates[END_REF][START_REF] Fussell | Robust feedrate selection for 3-axis NC machining using discrete models[END_REF](12)(13)(14)(15)(16)(17)(18) is identified, then the toroidal angle is calculated by extracting Eq. [START_REF] Yun | Development of a virtual machining system, part 3: cutting process simulation in transient cuts[END_REF][START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF](5)[START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF][START_REF] El-Mounayri | Milling Process Simulation-A generic Solid Modeller Based Paradigm[END_REF][START_REF] Fussel | Computer Generated CNC Machining Feedrates[END_REF][START_REF] Fussell | Robust feedrate selection for 3-axis NC machining using discrete models[END_REF](12)(13)(14)(15)(16)(17)(18) in order to obtain • " # . Because the purpose of this method is to define the coordinate for $ • , the symbol

and the toroidal angle is expressed using the following equations:

By substituting * ) (+; ) from Eq. [START_REF] Yun | Development of a virtual machining system, part 3: cutting process simulation in transient cuts[END_REF][START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF](5)[START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF][START_REF] El-Mounayri | Milling Process Simulation-A generic Solid Modeller Based Paradigm[END_REF][START_REF] Fussel | Computer Generated CNC Machining Feedrates[END_REF][START_REF] Fussell | Robust feedrate selection for 3-axis NC machining using discrete models[END_REF](12)(13)(14)(15)(16), Eq.(4-30) is altered as follows,

Eq.( 4-31) is simplified to give,

• !" # + $ "%& # = (4-32)

Where:

• = ' ( !") * + !" * , ;

$ = ( !" -"%& * + ' ( "%& -!" * + "%& * , = (. / 0 ' . 1 ) ' [( !") * + !" * , + ( 2 !" -"%& * + ' ( 2 "%& -!" * + "%& * , ]

(4-33)

To solve the above problem, the sum of the two trigonometric functions in Eq.

(4-32) is expressed as a single trigonometric function as follows,

By referring to Eq. (4-32) and Eq. (4-34), 3 and 4 can be expressed by,

Finally, the toroidal angle of the point on the toroidal surface is determined by,

X-toroidal method. Following the same procedure for the Z-toroidal method, the toroidal angle can be determined if (" $ > " % and • & < • % )

• > • ! and " > " ! Tor. and # ! (Fig. 4-22a)

Tor. and & ! (Fig. 4-22c) Tor. and & ! (Fig. 4-22d)

X-toroidal Z-toroidal

Tor. and # ! (Fig. 4-22g) Tor. and & ! (CC-point)

Z-toroidal X-toroidal Interpolation is a problem of creating a function that belonging to a (simple) finite dimensional linear space from given set of data. Because a wall surface along a tool path is represented by a number of points, the shape of wall surface is constructed by 3 th degree of polynomial curve fitting that constructed from a six given point. The number of points to represent the wall surface can be increased to get more accurate result. A 3 rd degree of polynomial curve fitting has the form,

where &(1, … , ') represents the order of the workpiece blocks. Because the profile of the wall surface in every block may be different. To calculate the !• ,..., %• , four linear equations in matrix form was set up as follows,

where ' is the number of representative points and 4 = 1, … , '.

Curve Boundary Method

In the case of a non-straight staircase, the UE-point on the top surface is defined using the Z-cylindrical method that was discussed in the previous section.

However, when the UE-point point is identified on the wall surface, the Xcylindrical method for a straight staircase is not applicable. In this case, the UEpoint is calculated using a method called the Curve Boundary Method. In this method, the intersection point between the wall surface and the cutting tool is occurred when

The Curve Boundary Method is aimed to define the length of CWE (" # ) that will be used to calculate the UE-point. Therefore,

calculating the coordinate of 

. $ (Fig. 4-36b)

% $ and . $ (Fig. 4-36c)

% & and . $ (Fig. 4-36d) 

ON FREE-FORM WORKPIECE SURFACE

In five-axis milling, the machining is not only performed to create a sculptured part from a block workpiece material. Machining can be performed for finishing a free-form part from a casting process. Another case is finishing a semi-finish part.

A semi-finish machining normally produces a part surface with a constant removal rate for finish machining. When a final part is a free-form surface, the workpiece from semi finish milling is also a free-form surface. Prediction of machining process with a complex part is a challenging. During finish milling, controlling the dimensional accuracy, the gouge prevention and the workpiece surface roughness are the most important criteria. As a result, a finishing process generally spends the largest amount of machining time due to low depth of cut and feed rate [98].

The method proposed in this study is a hybrid method, which is a combination of discretization and analytical method. The workpiece surface is represented using point spreading method as presented in Fig. 5-1a. However, despite the workpiece is discretized using the normal vectors, but there is no calculation to check the intersection between cutter and normal vectors. They are only used as the reference to define the shape of the surface at every CC-point, mathematically. Compare to a full discrete method, the proposed method uses smaller number of normal vectors to represent the workpiece surface. The normal vector can be defined as a point on the workpiece surface that has the orientation relative to the workpiece coordinate system (WCS) in the x-axis (• • ) and the yaxis (• * ) as shown in Fig. 5-1b. As mentioned in introduction, all of the workpiece surface data (normal vectors) are assumed to be provided (given). The method to obtain the discrete normal vectors is not discussed in this study.

• = !"# $% &(' !"# ( % + () * + ) % ))/' , ;

• -= !"# $% .&' -!"# ( -% +(/ * + / % ),/' -0

(5-3)

(5-4)

• is the angle between the line 5 6 77777 and the z-axis as depicted in Fig. 5-3b.

Meanwhile • -is angle between the line 5 -6 77777 and the z-axis. For a slope surface,

12 and 12 -are determined by,

12 -= (/ * + / % ) 89# ( -%

(5-5)

Meanwhile for a flat surface, 12 and 12 -are equal to zero. Finally, : ; is defined as follows,

After : ; is obtained, thus the length of projection line from < to 6 is calculated by <6 7777 = : ; + : * . The projection line < 6 7777 will be used as the initial reference line for further calculation to get the UE-points. The engagement is occurred if < 6 7777 is positive. Otherwise, the cutting edge is located above the workpiece surface and hence there is no engagement between tool and workpiece.

Obtaining the UE-Point

After the projection line is obtained, then it will be rotated by the tool orientation angles (• • and • ) to obtain the UE-point. These two rotation procedures must be performed sequentially except for a certain conditions it can be skipped and then jump to the next procedure. In this section, the detail procedure to obtain ! • will be derived.

STEP 1: Rotating the Projection Line by • •

In the first step, to get the line # $ %%%% , the projection line is rotated about point # by two regions, hence it reduced the error. However, it caused the calculation time higher because more surface regions should be calculated.

After the projection line is obtained, then it is rotated using the tool orientation angles, • • and ! (Table 5-1). These two rotation processes are part of the three procedures that will be performed to calculate the UE-point. The UEpoint on the cylindrical side is obtained by performing only two rotation procedures. In this case, all of the procedures to obtain the UE-point for a flat end cutting tool, which has been discussed in the previous section, cam be applied to calculate " # . Then the coordinate of UE-point, $ % , is calculated using Eq. [START_REF] Merdol | Virtual Cutting and Optimization of three-axis milling processes[END_REF](5)[START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF][START_REF] El-Mounayri | Milling Process Simulation-A generic Solid Modeller Based Paradigm[END_REF][START_REF] Fussel | Computer Generated CNC Machining Feedrates[END_REF][START_REF] Fussell | Robust feedrate selection for 3-axis NC machining using discrete models[END_REF](12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23) or

Eq. ( 4-24) with " = " # + &.

A different method was developed for the UE-point on the toroidal side.

When it is located on the toroidal side, the method to obtain the UE-point consist of three procedures. Two of three procedures are the rotation of the projection line using • and ! . The final intersection between a tool and a workpiece will be obtained in the third procedure. In the third procedure, the toroidal side of toroidal cutting tool is represented by a circle. All of the procedures must be performed sequentially, except for certain conditions it can be skipped and then jump to the next procedure. For the first procedure, the method to rotate the projection line for a flat-end mill, which was derived in section 5.2.2.1, and the method to obtain the inclined surface in section 5.2.2.2 are utilized. For the second procedure, even though the procedure is similar to the method used for a cylindrical surface, but the objective is different. The detail procedure to obtain $ % will be derived and discussed in the following sections.

Rotating the Rotated Line by !

In this procedure, the rotated line, which is obtained from the first rotation by • , is rotated again by ! . Even though the final coordinate of the UE-point will be obtained in the third procedure. But if 1 ! is a curved surface, then, ( ) and the length of line * + * , -------, as depicted in Fig. 5-15, need to be defined in the second procedure. Otherwise, the calculation jumps to the next procedure. 

(5-42)

When 0 & < 0 and • • > 0, or vice versa, then ! yields to, ((((((( 1 (5-47) geometry progression for all of the test models, as shown in Fig. 5-20, are similar to the shape of the workpiece surface. It is an indication that the method was accurate. Nevertheless, the accuracy of the proposed method was kept examined.

Therefore, to verify the accuracy of the proposed method, the length of cuts calculated using the simulation program were compared with the ones measured using the commercial software Siemens-NX. The verification method for a flat cutting tool, as explained in section 5.2.3, was also employed. (6-7)

Identification of the Specific Cutting and Edge Coefficients

Specific cutting and edge coefficient are empirical and commonly identified experimentally. Martellotti [119] explained that the components of the cutting forces could be related to the average cut thickness. Sawin [120] and Sabberwall [121] showed that the cutting coefficient varies with the cut thickness. Other studies showed that the coefficient also depend on the other machining parameters such as cutting speed [104,122] and tool geometry [123].

In this study, the effect of the axial depth of cut to the cutting and edge coefficient are analyzed. The cutting force data are generated from a set of milling test at various feedrates and axial depth of cut. The average cutting force is obtained from the fitted experimental data using polynomial curve fitting. Fig. 6-2 showed two samples of the experimental and fitted cutting force data. From

Eq. [START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF], by giving the cut geometry (the length of cut and cut thickness), only the specific cutting and edge coefficient remain unknown in the right hand side.

Eq.( 6 (6-9)

The final cutting and edge coefficients as a function of axial depth of cut (') are fitted through a polynomial fitting. The detailed expression of cubic polynomial is written by, 3 4 = 5' " + 6' ! + 7' + 8 [START_REF] Salami | Feedrate optimization for 3axis ball-end milling of sculptured surfaces[END_REF][START_REF] Altintas | End Milling Force Algorithms for CAD Systems[END_REF][START_REF] Spence | A solid modeler based milling processs simulation and planning system[END_REF][START_REF] El-Mounayri | Milling Process Simulation-A generic Solid Modeller Based Paradigm[END_REF][START_REF] Fussel | Computer Generated CNC Machining Feedrates[END_REF] where 3 4 (9 = :7, ;7, 57, :<, ;<, 5<) are the force coefficients and 5, 6, 7, 8 are the polynomial coefficients.

Cutting Force Prediction in Five-Axis Milling

The procedure discussed in section 6.2 is applicable for calculating the cutting force in three-axis milling operation. Cutting forces measurement in five-axis milling is more challenging task due to the varying orientation of the tool axis with respect to the workpiece coordinate surface. In five-axis milling, generally the cutting forces can be measured in two ways; first one is using table-typed dynamometer that is attached to the rotary table of the machine tool. The second one is using a rotary dynamometer that is directly attached to the spindle of the machine tool and cutting tool is attached to the dynamometer.

Because the study in this area is still lack, many topics still can be developed and explored. For future works, there are several research topics, which are related to the current research area, can be developed, such as, 1. Develop an efficient method to generate the in-progress workpiece surface data for supporting Cutter Workpiece Engagement model.

2. Develop an analytical and hybrid method for others type of cutting tool geometry, and also for a solid cutting tool.