
HAL Id: tel-01176447
https://theses.hal.science/tel-01176447

Submitted on 15 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

In situ forming implants for the treatment of
periodontitis
Minh Phuong Do

To cite this version:
Minh Phuong Do. In situ forming implants for the treatment of periodontitis. Human health and
pathology. Université du Droit et de la Santé - Lille II, 2014. English. �NNT : 2014LIL2S019�.
�tel-01176447�

https://theses.hal.science/tel-01176447
https://hal.archives-ouvertes.fr


UNIVERSITE)LILLE)2)–)DROIT)ET)SANTE)

ECOLE)DOCTORALE)BIOLOGIE)–)SANTE)

!

!

!

!

THESE DE DOCTORAT 
Spécialité!“Pharmacie!en!Sciences!physico4chimiques!et!Ingénierie!appliquée!à!la!santé”!

!

!

DO)MINH)PHUONG)
!

!

IMPLANTS)SE)FORMANT)IN#SITU)POUR)LE)TRAITEMENT)DES)

PARODONTITES)
!

!

Thèse!dirigée!par!:!Madame)SIEPMANN)Florence!–!Directrice!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Madame)NEUT)Christel!–!Co4directrice!

Soutenue'le'09'septembre'2014'

!

!

!!!!!!!!!!!!Composition!du!jury:!

Monsieur)SIEPMANN)Juergen! Professeur!à!l’Université!de!Lille!2!
! !
Madame)EVRARD)Brigitte! Professeur!à!l’Université!de!Liège!
! Rapporteur!
Madame)NEUT)Christel! PhD!à!l’Université!de!Lille!2!
! !
Monsieur)GOOLE)Jonathan! PhD!à!l’Université!Libre!de!Bruxelles!
! Rapporteur!

!



Remerciements 
 

La scientiste Marie Curie a dit : 

  “I am among those who think that science has great beauty. A scientist in his 

laboratory is not only a technician: he is also a child placed before natural phenomena which 

impress him like a fairy tale”.  

J’aime beaucoup cette citation et la trouve tellement vraie depuis que je connais la 

science. Je voudrais remercier les personnes qui ont partagé cet esprit avec moi et 

m’ont accompagnée tout au long de mes 3 ans de thèse. 

 

Je suis très reconnaissante envers Madame Florence Siepmann, de m’avoir encadrée 

et d’avoir dirigé l’ensemble de cette thèse. Elle m’a toujours soutenue et 

encouragée par son esprit et sa disponibilité inappréciable. J’admire sa capacité à 

garder l’équilibre entre la vie scientifique et la vie familiale. 

Je tiens à vous remercier sincèrement pour votre enseignement et votre 

dévouement. Je vous exprime ma profonde gratitude et mon très grand respect. 

 

Je voudrais remercier Madame Christel Neut, qui est ma co-directrice de thèse. 

Son soutien et sa contribution, en particulier dans la partie microbiologique, sont 

inestimables pour l’ensemble de ce travail.  

Veuillez trouver ici ma considération distinguée et ma profonde reconnaissance. 

 

Je tiens à remercier Monsieur Juergen Siepmann, qui m’a accueillie 

chaleureusement et m’a donné la chance d’être un membre de son équipe de 

recherche. Son enseignement et sa créativité scientifique m’ont motivée tout au 

long de mes études. Cette thèse n’aurait pas pu être réalisable sans son apport et 

son encouragement. 

Soyez assuré de mon profond respect et de ma très sincère gratitude. 



Je tiens à adresser mes remerciements sincères 

A Madame Brigitte Evrard, 

Je vous suis reconnaissante de m’avoir fait le grand plaisir d’accepter de juger ce 

travail en tant que rapporteur et d’être présente dans le jury de cette thèse. 

Veuillez trouver ici l’expression de toute ma gratitude et de mes respectueuses 

considérations. 

A Monsieur Jonathan Goole, 

Je vous remercie de l’honneur que vous m’avez fait en acceptant la charge de 

rapporteur et d’être présent dans le jury de cette thèse. 

Soyez assuré de ma très sincère gratitude. 

 

Madame Anne Gayot est le premier professeur que j’ai connu, qui m’a fait jouir de 

son accueil et de son enseignement depuis mes premières journées d’études en 

Master 2 en France. Par sa rigueur scientifique et son enthousiasme, elle m’a donné 

des cours très intéressants en pharmacie galénique. Avec l’enseignement de 

Madame Marie-Pierre Flament, j’ai acquis beaucoup de nouvelles connaissances, ce 

qui a affermi mon aspiration de poursuite de mes études en doctorat. Je tiens à vous 

exprimer toute ma gratitude et mon profond respect.  

 

Pendant mes 3 années de thèse, j’ai eu l’occasion de travailler avec beaucoup de 

personnes. Leur aide et leur expertise ont contribué considérablement à 

l’avancement de ce travail, en particulier: Madame Elisabeth Delcourt-Debruyne 

m’a enseigné les caractéristiques des maladies parodontales dans la pratique clinique 

et m’a donné son apport précieux à l’échantillonnage du fluide gingival chez les 

patients atteints de parodontites. Monsieur Karsten Maeder m’a donné l’occasion 

d’apprendre et de faire des analyses d’EPR et de NMR dans son laboratoire. 

Monsieur Hendrik Metz m’a aidée dans la réalisation de ces analyses pendant mes 3 

mois de travail.  



J’aimerais sincèrement vous remercier et vous exprimer mes respectueuses 

considérations. 

 

Je tiens à remercier l’ensemble du personnel du Laboratoire de Pharmacotechnie 

Industrielle où ce travail a été réalisé, en particulier: Susanne Muschert, Hugues 

Florins, Muriel Deudon et Karrout Youness pour leur disponibilité et leur apport 

précieux à la bonne condition de travail au laboratoire. 

Je souhaite également remercier Mickael, pour son apport considérable à la 

détermination de la concentration minimale inhibitrice des antibiotiques sur 

certaines souches de bactéries. 

 

J’adresse mes sincères remerciements à tous mes amis, qui m’ont toujours soutenue 

pendant mes années en France: anh Phuong, chi Huong, chi Nhung, Thuy Anh… 

Quand je suis arrivée ici la première fois, anh Phuong m’a récupérée à la gare, chi 

Huong m’a hébergée pendant mes premières journées. Ils m’ont aidée à m’habituer 

à la vie en France ainsi qu’à surmonter les difficultés dans le travail. Leur 

compagnie est tellement précieuse pour moi.  

Je suis si chanceuse d’avoir partagé les bons moments avec les autres camarades du 

laboratoire: Céline, Emilie, Carine, Maria, Susana, Bérengère et Hanane. Grâce à 

eux  j’ai amélioré ma langue française ainsi qu’élargi ma connaissance de la culture 

internationale. 

Je vous remercie beaucoup pour votre aide et votre compagnie dans le quotidien au 

laboratoire. 

 

Je souhaite remercier spécialement ma famille, 

Qui restent toujours à mes côtés avec leur support éternel. 

Enfin, merci à mon mari Bao Tung pour son énorme soutien inconditionnel et mon 

fils Bao Nguyen pour sa présence très spéciale.  



! i!

Table of contents  
!

INTRODUCTION).................................................................................................................................)1!

1.))Periodontal)diseases)..................................................................................................................)2)
1.1.!!Definition!.......................................................................................................................................................!2!
1.2.!!Treatment!......................................................................................................................................................!5!
1.2.1.!!Non2surgical!treatment!........................................................................................................................!6!
1.2.1.1.!!Antimicrobial!choice!..........................................................................................................................!7!
1.2.1.2.!!Clinical!studies!on!adjunctive!antimicrobial!therapy!..........................................................!9!
1.2.2.!!Surgical!treatment!...............................................................................................................................!13!
2.))Local)controlled)delivery)systems)for)the)treatment)of)periodontitis)..................)14)
3.))In#situ)forming)implants)........................................................................................................)21)
3.1.!!Compositions!of!in!situ!forming!implants!based!on!solvent!exchange!............................!23!
3.1.1.!!Solvent!......................................................................................................................................................!23!
3.1.2.!!Polymer!....................................................................................................................................................!23!
3.1.3.!!Drug!...........................................................................................................................................................!26!
3.2.!!Mechanism!of!drug!release!from!PLGA2based!in!situ!forming!implants.!........................!26!
3.2.1.!!Release!mechanism!.............................................................................................................................!27!
3.2.1.1.!!Diffusion!...............................................................................................................................................!27!
3.2.1.2.!!Erosion!..................................................................................................................................................!28!
3.2.2.!!Burst!release!and!phase!inversion!dynamic!............................................................................!29!
3.3.!!Impacts!of!various!parameters!on!the!drug!release!of!PLGA2based!in!situ!forming!
implants!.................................................................................................................................................................!31!
3.3.1.!!Solvent!......................................................................................................................................................!31!
3.3.2.!!Polymer!....................................................................................................................................................!32!
3.3.2.1.!!Molecular!weight!..............................................................................................................................!33!
3.3.2.2.!!Polymer!concentration!..................................................................................................................!34!
3.3.2.3.!!Functional2end!group!.....................................................................................................................!35!
3.3.2.4.!!Ratio!of!lactic/glycolic!acid!(L:G)!..............................................................................................!35!
3.3.3.!!Drug!...........................................................................................................................................................!36!
3.3.3.1.!!Drug!properties!.................................................................................................................................!36!
3.3.3.2.!!Drug!concentration!.........................................................................................................................!37!
3.3.4.!!Additives!..................................................................................................................................................!37!



! ii!

3.3.5.!!Injection!site!...........................................................................................................................................!39!
3.3.5.1.!!Bath!composition!.............................................................................................................................!39!
3.3.5.2.!!In!vitro!–!in!vivo!correlation!.........................................................................................................!40!
4.))Research)objectives)................................................................................................................)41)
References!............................................................................................................................................................!43!

CHAPTER)I.)In#Situ)Forming)Implants)for)Periodontitis)Treatment)with)Improved)
Adhesive)Properties))....................................................................................................................)52)

Abstract)..........................................................................................................................................)..53!
1.)Introduction)...............................................................................................................................)54!
2.)Materials)and)methods)...........................................................................................................)56!
2.1.!Materials!.......................................................................................................................................................!56!
2.2.!Preparation!of!the!liquid!formulations!...........................................................................................!56!
2.3.!In!situ!implant!formation!and!drug!release!measurements!...................................................!57!
2.4.!Monitoring!of!dynamic!changes!in!the!implants’!mass!............................................................!57!
2.5.!Mechanical!and!adhesive!properties!................................................................................................!58!
2.6.!Antibacterial!activity!...............................................................................................................................!60!
3.)Results)and)discussion)............................................................................................................)60!
3.1.!Effects!of!the!addition!of!plasticizers!...............................................................................................!60!
3.2.!Antimicrobial!activity!.............................................................................................................................!63!
3.3.!Effects!of!the!addition!of!a!second!type!of!polymer!...................................................................!65!
3.4.!Drug!release!kinetics!...............................................................................................................................!69!
4.)Conclusion)...................................................................................................................................)74!
References!............................................................................................................................................................!75!

CHAPTER)II.)Towards)a)Better)Understanding)of)the)In#Situ)Formation)of)Implants)
for)Periodontitis)Treatment)).....................................................................................................)79)

Abstract)..........................................................................................................................................)..80!
1.)Introduction)...............................................................................................................................)81!
2.)Materials)and)methods)...........................................................................................................)84!
2.1.!Materials!.......................................................................................................................................................!84!
2.2.!Preparation!of!the!liquid!formulations!...........................................................................................!84!
2.3.!In!situ!implant!formation!and!drug!release!measurements!...................................................!85!
2.4.!Monitoring!of!dynamic!changes!in!the!implants’!mass!............................................................!86!
2.5.!Electron!paramagnetic!resonance!(EPR)!measurements!.......................................................!86!



! iii!

2.6.!1H!NMR!measurements!..........................................................................................................................!87!
2.7.!Optical!microscopy!..................................................................................................................................!87!
2.8.!PLGA!degradation!.....................................................................................................................................!88!
2.9.!Microbiological!tests!...............................................................................................................................!88!
3.)Results)and)discussion)............................................................................................................)90!
3.1.!Impact!of!HPMC!addition!on!the!implants’!key!properties!....................................................!90!
3.2.!Monitoring!of!the!in+situ!implant!formation!by!EPR!and!1H!NMR!......................................!93!
3.3.!Optical!microscopy!..................................................................................................................................!97!
3.4.!Antimicrobial!activity!..........................................................................................................................!102!
4.)Conclusion).................................................................................................................................)108!
References!.........................................................................................................................................................!109!

CHAPTER)III.)In#Situ)Forming)Composite#Implants)for)Periodontitis)Treatment:)
How)the)composition)determines)system)performance))..............................................)112)

Abstract)..........................................................................................................................................)113!
1.)Introduction).............................................................................................................................)114!
2.)Materials)and)methods).........................................................................................................)116!
2.1.!Materials!....................................................................................................................................................!116!
2.2.!Preparation!of!the!liquid!formulations!........................................................................................!116!
2.3.!In!situ!implant!formation!and!drug!release!measurements!................................................!116!
2.4.!Monitoring!of!dynamic!changes!in!the!implants’!mass!.........................................................!117!
2.5.!Electron!paramagnetic!resonance!(EPR)!measurements!....................................................!117!
2.6.!Mechanical!and!adhesive!properties!.............................................................................................!119!
2.7.!Optical!microscopy!...............................................................................................................................!119!
2.8.!Microbiological!tests!............................................................................................................................!120!
3.)Results)and)discussion)..........................................................................................................)122!
3.1.!Key!properties!of!the!implants:!Adhesiveness,!plasticity!and!drug!release!................!122!
3.2.!Underlying!mass!transport!mechanisms!....................................................................................!126!
3.3.!Antimicrobial!implant!activity!.........................................................................................................!133!
4.)Conclusion).................................................................................................................................)140!
References!.........................................................................................................................................................!141!
)
CONCLUSION))................................................................................................................................)144)

RESUME)).........................................................................................................................................)147)



! iv!

Abbreviations  
 
 
1H NMR Proton nuclear magnetic resonance 

AAP American academy of periodontology 

API Active pharmaceutical ingredients 

AUC Area under the curve 

BOP Bleeding on probing 

BSA Bovine serum albumin 

CAL Clinical attachment loss 

CFU Colony forming unit 

DMSO Dimethylsulfoxide 

EPR Electron paramagnetic resonance 

FDA American food and drug administration 

FMSRP Full-mouth scaling and root planing 

GA Glycolic acid 

GCF Gingival crevicular fluid 

HEC Hydroxyethylcellulose 

ISFI In situ forming implants 

L:G Ratio of lactic/glycolic acid 

LA Lactic acid 

MIC Minimum inhibitory concentration 

MMP Matrix metalloproteinase 

Mw Molecular weight 

NHANES National health and nutrition examination survey 

NMP N-methyl pyrrolidone 

PBS Phosphate-buffered saline 

PCL Poly(ε-caprolactone) 

PD Probing depth 

PDLLA Poly(D,L-lactide) 

PEG Polyethylene glycol 

PEG-DME Polyethylene glycol-dimethylether 

PEO Poly(ethylene oxide) 



! v!

PGA Polyglycolic acid; polyglycolide 

PLA Polylactic acid; polylactide   

PLGA Poly(D,L-lactide-co-glycolide); Poly(lactic-co-glycolic acid) 

PLLA Poly(L-lactide) 

PPO Poly(propylene oxide) 

PVP Polyvinylpyrrolidone 

R&D Research and development 

RAL Relative attachment level 

SEM Scanning electron microscopy 

SFM Société française de microbiologie 

sp55-R P55 tumor necrosis factor receptor 

SRP Scaling and root planing 

  

!



 1"

 

 
 
 
 
 
 
 
 
 
 
 
 

INTRODUCTION)

 



 INTRODUCTION 
!

! 2!

1.  Periodontal diseases 
1.1.  Definition 

 Periodontal diseases are various periodontal tissue infections including gingivitis 

and periodontitis [1], [2]. These diseases are caused by bacterial biofilm residing on teeth 

adjacent to the gingiva, leading to an inflammation of the gums. While gingivitis is the 

milder form, which does not harm the underlying supporting structures of the teeth and is 

reversible, periodontitis results in the loss of connective tissues and bone support [1].   

 Although the global epidemiology study of periodontal diseases is limited by the 

lack of standardized design, the variation of disease definition and diagnosis method, it is 

known that periodontal diseases are highly prevalent worldwide. Gingivitis can affect 50 to 

90 % of the world population, depending on its definition [1]. Periodontitis is generally 

less prevalent but is a major cause of tooth loss in the world. In general, destructive 

periodontal disease is less common in young people than in adults. However, the incidence 

of loss of periodontal attachment and supporting bone increases in adolescents aged 12 to 

17 when compared to children aged 5 to 11. Some epidemiologic studies indicate that in 

the United States, the prevalence of severe attachment loss in children and young adults is 

approximately 0.2 % to 0.5 % [3]. According to the 2009 and 2010 report of the National 

Health and Nutrition Examination Survey (NHANES), the total prevalence of periodontitis 

in American adults aged of 30 years and older was 47.2 %. Among that, the prevalence of 

mild, moderate, and severe periodontitis was 8.7 %, 30.0 %, and 8.5 %, respectively. There 

is a clear and significant disparity of the age and gender among periodontal population. 

Indeed, total periodontitis ranged from 24.4 % in 30 to 34 year old adults to 70.1 % in 

adults aged of 65 years and older. At the same age, the occurrence of disease is 

significantly higher in males than in females [4]. Periodontitis is also more common in 

developing countries, where dental hygiene is less controlled and dental treatment is too 

expensive to be afforded [5]. 

Periodontal diseases were recognized and treated about 5000 years ago, following 

ancient Egyptian and Chinese documents. From the 10th century, many authors described 

their observations of these diseases. However, until the 19th century, there was still 
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insufficient knowledge about the etiology and pathogenesis of periodontal diseases [2]. 

Until now, the most acknowledged classification of periodontal diseases is the American 

Academy of Periodontology (AAP) classification. The 1999 AAP classification, 

summarized in table 1, is the most recognized and implemented in the world [2], [6], [7]. 

Table&1.!Abbreviated!version!of!the!1999!AAP!classification!of!periodontal!diseases.!
Adapted'from'[7].'(CAL'='Clinical'Attachment'Loss)'

I Gingival Diseases 

A. Dental plaque-induced gingival diseases  

B. Non-plaque-induced gingival lesions 

II Chronic Periodontitis 

(Slight: 1-2 mm CAL; moderate: 3-4 mm CAL; severe: > 5 mm CAL) 

A. Localized 

B. Generalized (> 30 % of sites are involved) 

III Aggressive Periodontitis 

(Slight: 1-2 mm CAL; moderate: 3-4 mm CAL; severe: > 5 mm CAL) 

A. Localized 

B. Generalized (> 30 % of sites are involved) 

IV Periodontitis as a Manifestation of Systemic Diseases  

A. Associated with hematological disorders 

B. Associated with genetic disorders 

C. Not otherwise specified 

V Necrotizing Periodontal Diseases 

A. Necrotizing ulcerative gingivitis 

B. Necrotizing ulcerative periodontitis 

VI Abscesses of the Periodontium  

A. Gingival abscess 

B. Periodontal abscess 

C. Pericoronal abscess 

VII Periodontitis Associated With Endodontic Lesions  

A. Combined periodontic-endodontic lesions 
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VIII Developmental or Acquired Deformities and Conditions 

A. A. Localized tooth-related factors that modify or predispose to plaque-

induced gingival diseases/periodontitis  

B. B. Mucogingival deformities and conditions around teeth  

C. C. Mucogingival deformities and conditions on edentulous ridges  

D. D. Occlusal trauma  

 

 The main cause of periodontal disease is the overgrowth of pathogenic bacteria 

disturbing the natural balance of host defense and commensal flora [8]. The oral cavity has 

a natural moist environment which provides good growth conditions for about 700 

bacterial species, including normal and pathogenic bacteria [8]–[11]. These organisms 

grow on tooth surfaces first as microcolonies, which then secrete a sticky extracellular 

polymeric substance helping the bacteria to attach to the surface and to each other [10]. 

These complex, co-dependent colonies are called biofilms – the intense polymicrobial 

structure with functional heterogeneity that diversify the microbial population [1], [10]. 

Gingivitis often advances by inadequate oral hygiene, causing the dental plaque, so called 

plaque-induced gingivitis. Others factors can contribute to the cause of this disease such as 

genetics, tobacco, alcohol intake, nutritional deficiencies, HIV infection, osteoporosis, 

diabetes, stress, impaired host response and certain medication [1], [12]. The early 

colonization of root surfaces is known by the coaggregation of gram positive aerobes and 

facultative anaerobes such as Streptococci and Actinomyces species into developing 

biofilm. If oral hygiene is not practiced regularly, dental plaque is developed into a mature 

state consisting of high proportion of anaerobic organisms. Among them, the predominant 

microorganisms are gram negatives such as Fusobacterium, Porphyromonas, Prevotella, 

Treponema and members of the phylum Synergistetes [11], [13].  

Untreated gingival lesions can progress to periodontitis, in which the plaque 

broadens and deepens below the gum, creating even better condition for bacteria colonies, 

especially gram negative and anaerobic bacteria [1], [14]. The transition from gingivitis to 

periodontitis depends not only on the presence and number of pathogenic bacteria, but 

also: (i) the degree of host susceptibility and (ii) the presence and number of protective 

bacteria. Indeed, the host defense mechanism is impaired by bacterial toxins and enzymes 

releasing from gram negative anaerobes such as: epitheliotoxins, endotoxins, leukotoxins, 
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collagenase, gellatinase, elastase, fibrinolysins and other proteolytic enzymes. On a 

susceptible host, these bacterial proteins irritate the gums, stimulate the inflammation 

response, leading to the destruction of the periodontium and alveolar bone [1], [2], [11]. 

By the time, the tight attachment of gingival tissues to the teeth is lost, causing the 

formation of periodontal pockets. The number of bacteria found in healthy shallow crevice 

is around 1 x 103 while in a periodontal pocket, this value increases to more than 105 times. 

As periodontitis progresses, these symptoms become more severe, resulting in occasional 

pain and discomfort, mastication and eventually tooth loss [1].  

Normal oral microbiota (always present at a level of 108 bacteria/mL of saliva) 

contains primarily gram positive aerobes and only several pathogenic species with low 

virulence. Pathogenic species associated with periodontitis consists primarily of gram 

negative anaerobes [10]. Each type of periodontitis presents a specific subgingival flora 

consisting of its own microorganisms. The change in bacterial combination with the 

occurrence of certain specific bacterial combinations in infected root canals may be a 

decisive factor in causation of symptoms.  

The first bacterial complex associated with periodontitis is called ‘orange complex’ 

and consists of the obligate anaerobe gram negative bacilli such as Prevotella intermedia 

and Fusobacterium nucleatum. The worse disease accompanies with ‘red complex’ 

microbiota including Porphyromonas gingivalis, Tannerella forsythia and Treponema 

denticola [1], [2], [10], [15], [16]. The facultative gram! negative Actinobacillus 

(Aggregatibacterium) actinomycetemcomitans is also commonly associated with this 

disease, especially in young adults [1], [2]. 

1.2.  Treatment 

The treatment of periodontal diseases aims to re-establish periodontal health by 

interrupting the disease progression, preventing its recurrence and preserving the teeth in a 

healthy state, comfort and function [1]. This objective can be achieved by various non-

surgical and surgical therapies, depending on the specific disease as well as its severity.  
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1.2.1.  Non-surgical treatment 

The first and essential therapy for the treatment of periodontal diseases consists of 

the plaque control, which is performed by personal oral hygiene care and professional 

treatment called scaling and root planing. Scaling is the careful cleaning of the dental root 

surface in both supra and sub-gingival position to remove plaque and calculus (tartar) from 

periodontal pockets. Consequently, root planing is carried out to smooth the tooth root to 

remove bacterial toxins, which adsorb on cemental surface and limit plaque recurrence. 

The scaling and root planing should be managed regularly to maintain the oral hygiene and 

re-stabilize the normal oral flora, which will stop the gingival inflammation. Otherwise, 

these techniques also help the periodontist to follow the progress of the disease as well as 

to predict possible recurrence of inflammation. Scaling and root planing are the first choice 

therapies for most clinicians and are broadly considered as the ‘gold standard’ of 

periodontitis treatment [10]. This non-surgical therapy can achieve good efficacy in initial 

periodontitis such as decreased tissue inflammation, improved clinical periodontal 

attachment [1]. However, in severe cases, this mechanical treatment alone is not enough to 

attain the desired clinical outcomes. For instance, re-colonization of pathogenic species 

associated with disease and the recurrence of periodontitis are quite common [10]. 

To reinforce the non-surgical treatment of periodontitis, antimicrobial therapy is 

often used as an adjunct to scaling and root planing [10]. Current protocols recommend 

that the first phase treatment of generalized aggressive periodontitis as well as chronic 

periodontitis should be aimed at reducing or eliminating the pathogenic microorganisms 

[17]. Systemic antibiotherapy has been applied for the treatment of severe periodontitis. 

However, this administration route faced some disadvantages because of their side effects 

including hypersensitivity, gastrointestinal intolerance. Moreover, the concentration of 

drug at the action site (periodontal tissue) is quite low and not sufficient for an effective 

antimicrobial treatment [18]. These limits would be improved by the local administration 

of antimicrobial agents. Placing into periodontal pocket a controlled delivery system 

containing active agent could significantly enhance the local concentration of drug. By 

controlling the release of drug, the undesired second effects can also be reduced [18]. 
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1.2.1.1.  Antimicrobial choice 

Generally, the choice of antimicrobial agents for the treatment of periodontitis is 

dependent on the bacterial etiology of the infection. Several antimicrobial agents have been 

tested for their efficacy against periodontitis. However, only a limited number of these 

substances have been used in the formulation of drug delivery systems for the treatment of 

periodontitis. These antimicrobial agents can be classified into 2 categories: antiseptic 

agents and antibiotic agents [18].  

Table&2a.!Antiseptic!agents!for!the!treatment!of!periodontal!diseases.!

Substance 
Mechanism of 

action 
Advantages Disadvantages 

Chlorhexidine Reduction in pellicle 

formation, alteration 

of bacterial adherence 

to teeth and bacterial 

cell wall. 

- Surface bacteriostatic 

action. 

- Improved wound healing. 

- Effective control of dental 

plaque. 

- Staining of teeth. 

- Taste disturbance. 

- Increase in calculus 

accumulation. 

- Limited effects to 

supra-gingival area. 

Sanguinarine Reduction of bacterial 

aggregation and 

attachment due to 

alteration of bacterial 

wall. 

- Plaque & gingivitis 

reduction in short time 

study. 

- Low antimicrobial 

activity (MIC against 

periodontal pathogens: 1 

to 32 µg/mL). 

- Low clinical efficacy 

in local controlled 

release system. 
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Table&2b.!Antibiotic!agents!for!the!treatment!of!periodontal!diseases.!

Substance Mechanism of action Advantages Disadvantages 

Tetracyclines 

(tetracycline, 

doxycycline, 

minocycline) 

Bacteriostatic action 

by interfering 

bacterial protein syn-

thesis & inhibiting 

tissue collagenase 
activity. 

- Broad spectrum of activity by inhibiting both gram negative and 

gram positive organisms. 

- Antiproteolytic properties due to inhibitory effect on oxygen radi-

cals, so prevent tissue destruction. 

- Tetracyclines, especially doxycycline, inhibit matrix metallopro-
teinases, helping to reduce tissue destruction & alveolar bone loss 

[10]. 

- Tetracycline exhibits high substantivity in periodontal environment. 

- Doxycycline & minocycline exhibit greater oral absorption, more 
prolonged half-lives & enhanced lipid solubility. 

- Most of subgingival microorganisms are susceptible to tetracycline 

at MIC ≤ 1 – 2 µg/mL. 

- Bacteria may develop resistance to anti-

biotic. 

- Some strains of Campylobacter & Veil-
lonella exhibited intrinsic tetracycline 

resistance (MIC ≥ 16 µg/mL). 

Metronidazole Inhibiting bacterial 

DNA synthesis. 

- Selective efficacy against obligate anaerobes. 

- Adjunctive metronidazole therapy was reported more effective in 

adults with deep pockets than with less advanced periodontitis. 

- Ineffective in vitro against Actinobacil-
lus actinomycetemcomitans. 

Clindamycin Bacteriostatic effect by 
inhibiting bacterial 

protein synthesis. 

- Broad-spectrum of activity against aerobic, anaerobic, and beta-
lactamase-producing pathogens [19]. 

- Limited number of study. 
- Reported recurrence of disease after both 

adjunctive systemic & local therapy. 

Ofloxacin Synthetic fluoroquino-

lone actives by inhibit-

ing bacterial cell divi-
sion [20]. 

- Activity against gram positive & anaerobic bacteria. 

- Marked antibacterial activity against periodontopathic bacteria in-

cluding Fusobacterium & Actinobacillus actinomycetemcomitans. 
- High chemical stability. 

- Increasing ofloxacin resistance in south-

east Asia. 
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1.2.1.2.  Clinical studies on adjunctive antimicrobial therapy 

a. Antiseptics 

Many studies have focused on the clinical efficacy of antimicrobial treatment as an 

adjunctive therapy to scaling and root planing. Nevertheless, only modest results have been 

found till now. One systematically review of 7 clinical trials has analysed the efficacy of 

full-mouth treatment concepts for chronic periodontitis. Meta-analysis focused on full-

mouth scaling with or without the use of antiseptic chlorhexidine and quadrant scaling 

(control). The results showed that in adults with chronic periodontitis, only minor 

differences in treatment effects were observed between the treatment strategies [21]. In 

agreement with this, another meta-analysis concluded that the use of chlorhexidine and 

other antiseptics in full-mouth disinfection does not provide clinically relevant advantages 

over conventional staged debridement [22]. Full-mouth disinfection can never been 

achieved as a normal microbiota is always present at a high level. Moreover, chlorhexidine 

was found less effective than tetracycline and minocycline in probing depth reduction 

when used as local adjuncts to scaling and root planing in periodontal disease therapy [23]. 

In addition, antiseptics do not have the advantage of suppressing the host inflammatory 

response comparing to tetracyclines. Hence, antibiotics seem to be more potential in the 

research of adjunctive antimicrobial therapy [10].   

b. Antibiotics 

In the domain of antibiotics, there were numerous therapies of systemic antibiotics 

using alone or in combination with non-surgical or surgical periodontal treatment. Only a 

limited number of studies regarding the effect of antibiotic used alone have been 

published, for instance the 50-week term tetracycline therapy [24] or the metronidazole 

plus amoxicillin therapy [25]. Generally, systemic antibiotics should only be used as an 

adjunct to periodontal therapy, when patients do not respond to conventional mechanical 

therapy [26].  

• Metronidazole + amoxicillin 

One of the common adjunctive systemic antibiotic therapies, which interested 

clinical research, is metronidazole plus amoxicillin. Ribeiro et al. [27] evaluated the 

adjunctive clinical, microbiologic, and immunologic effects of the systemic administration 

of amoxicillin and metronidazole in the full-mouth ultrasonic debridement of patients (n = 
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25) with severe chronic periodontitis. For test groups, antibiotics were administered at the 

dose of 375 mg amoxicillin and 250 mg metronidazole, three times a day for 7 days. The 

outcome parameters were evaluated after 3 and 6 months of treatment. Significant clinical 

improvements were observed for both the test and control group. At 6 months post-

treatment, the test treatment resulted in significantly lower bleeding on probing (BOP) and 

an additional reduction (0.83 mm) in probing depth (PD) (p < 0.05). Moreover, percentage 

of sites with PD ≥ 5 mm exhibiting relative attachment level (RAL) gain ≥ 2 mm was 

higher (58.03 % in test patients versus 43.52 % in control patients) (p < 0.05). 

Nevertheless, no improvement in the microbiologic or immunologic outcomes was 

observed with the adjunctive use of systemic amoxicillin and metronidazole. With the 

same objective to figure out efficacy of amoxicillin/metronidazole therapy as an adjunct to 

full-mouth scaling in patients with chronic periodontitis, Cionca et al. [28] designed a 

study on 47 patients for 6 months, with the administration of 500 mg metronidazole and 

375 mg amoxicillin, three times a day for 7 days on the test group. Interestingly, positive 

clinical outcomes have been observed with significantly lower mean number of persisting 

pockets > 4 mm (0.4 ± 0.8 pockets in the test group versus 3.0 ± 4.3 pockets in the control 

group) and bleeding on probing that required further treatment (p = 0.005). Recently, a 

systemic review was accomplished aiming at testing the efficacy of systemic 

amoxicillin/metronidazole as an adjunctive therapy to full-mouth scaling and root planing 

(FMSRP) in the treatment of aggressive periodontitis. Meta-analysis results of six 

randomized clinical trials showed significant clinical attachment level gain and reduction 

in probing depth (p < 0.05) in favor of FMSRP + amoxicillin/metronidazole. These 

findings seem to support the efficacy and the clinical safety of FMSRP + 

amoxicillin/metronidazole [17]. In general, amoxicillin/metronidazole therapy in 

adjunction with FMSRP was proved to be efficient in the treatment of both aggressive and 

chronic periodontitis. However, considering the small number of included studies, future 

studies with larger sample size and standardized study designs are needed to confirm these 

results.  

• Tetracyclines 

Systemic tetracyclines may be indicated in periodontal infections due to their broad 

spectrum of activity and possible benefit of inhibiting matrix metalloproteinases (MMP). 

In particular, doxycycline and minocycline have great oral absorption and prolonged half-



 INTRODUCTION 
!

! 11!

life. However, the low concentration of tetracyclines in gingival crevicular fluid after 

systemic use (from 0 to 8 µg/mL, 50 % of samples get less than 1 µg/mL) could be the 

reason for variable clinical response in practice [26]. Thus, the development of local 

tetracyclines therapy seems to be more appropriate in the research of periodontitis 

treatment.  

The use alone of a sustained-release, biodegradable gel containing 8.5 

% doxycycline was reported to be effective on chronic periodontitis (n = 45, divided into 2 

groups). Following this doxycycline administration, a significant decrease (p < 0.01) in 

total anaerobic counts in subgingival plaque was observed for 6 months after initiation of 

treatment. Regarding antibiotic susceptibility patterns associated with subgingival plaque 

and saliva, no change in the number of resistant bacteria or the acquisition of antibiotic 

resistance was observed [29]. When using in combination with full-mouth scaling and root 

planing, or full-mouth debridement, the local application of 8.5 % w/w doxycycline-loaded 

PLA/NMP (AtridoxTM) was effective in reducing clinical signs of chronic periodontitis (n 

= 105). After 3 month post-treatment, the proportion of pocket closure determined as 

probing pocket depth PPD < 4 mm was significantly increased (50 to 58 %); the clinical 

attachment level CAL gained from 0.5 to 0.8 mm and the proportion of sites showing a 

clinically significant CAL gain (> 2 mm) increased from 30 to 38 % compared to the 

baseline [30]. These results are quite reasonable regarding the pharmacokinetic profiles of 

local delivery of doxycycline gels in gingival crevicular fluid (GCF) and saliva given by 

the study of Kim et al. [31]. They measured local drug concentration after delivering Doxy 

(14 % doxycycline in PEG-PLGA copolymer gel) or AtridoxTM (8.5 % doxycycline in 

PLA/NMP polymer solution) in 10 patients with severe periodontitis. In GCF specimens, 

sites treated with AtridoxTM exhibited a faster decrease of mean doxycycline concentration 

(from 1085 to 274 µg/mL) than sites treated with Doxy (1388 to 804 µg/mL, measured at 2 

and 24 h after application, respectively). Both doxycycline gels demonstrated 

pharmacokinetics of controlled-release delivery systems, with doxycycline concentration 

in GCF after 12 days of 8 and 19 µg/mL for AtridoxTM and Doxy, respectively. In contrast, 

another recent study investigating the effect of topical doxycycline AtridoxTM as an adjunct 

to non-surgical periodontal treatment in chronic and aggressive periodontitis patients 

provided negative results. 10 chronic periodontitis patients and 8 aggressive periodontitis 

patients were divided into 4 groups treated by scaling and root planing with or without 
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doxycycline gel application. The results yielded at 1, 3 and 6 months post-treatment was 

found not statistically different between the test and control sites in probing depth, plaque 

scores and bleeding on probing values. Similarly, GCF MMP-8 levels presented no 

significant intergroup differences [32].  These contradictory results could be explained by 

the complexity of periodontitis with the variety of pathogen bacteria among which many 

are still unknown, and host modulation is not always a feasible issue.   

Among the tetracyclines, minocycline has the best absorption and tissue penetration 

[26]. This property provides advantages for local application in the treatment of 

periodontitis. Many studies on the efficacy of topical minocycline therapy have been 

carried out. Generally, local application of minocycline was reported inefficient when used 

as mono-therapy [33], but provided significant efficacy in combination with mechanical 

treatment. For instance, minocycline HCl 2 % ointment reported a significant reduction in 

microbial count and improvements in clinical parameters for the scaling with minocycline 

therapy versus scaling alone. With regard to the dose study, application of a 2 % ointment 

3 to 4 times every 2 weeks in combination with scaling and root planing was proved to 

provide significant improvement in microbiological and clinical parameters versus scaling 

and root planing for the treatment of adult periodontitis [34]. Another study evaluated the 

efficacy of 2 % minocycline gel as adjuncts to scaling and root planing in the treatment of 

persistent periodontal lesions. The clinical parameters were also found significantly 

improved in the test group (n = 21) over control group (n = 20), with mean probing depth 

reduction at 6 months was 1.10 mm versus 0.71 mm. Thus, the benefit of adjunctive local 

2 % minocycline gel was statistically significant [35]. In accordance with these previous 

studies, another research was performed on a total of 104 patients over 15-month period to 

investigate the role of subgingivally administered 2 % minocycline ointment following 

scaling and root planing. The administration of drug was done at baseline, week 2, and at 

month 1, 3, 6, 9, 12. Scaling and root planing was repeated at month 6 and 12. During the 

entire 15-month study period, positive results were collected in both microbiological and 

clinical issues. With regard to microbiological results, the number of 7 studied 

microorganisms reduced significantly in both treatment groups. Concerning clinical 

outcomes, significantly greater improvements were observed in sites treated with 

minocycline compared to the control sites. For instance, at the pockets with initial probing 

depth ≥ 5 mm: mean probing depth reduction was 1.9 mm in test sites versus 1.2 mm in 
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control sites; gain in attachment level was 0.9 mm versus 0.5 mm in the same order. 

Furthermore, none of the patients demonstrated hypersensitivity or any local site reactions, 

proving that minocycline ointment was well tolerated. This study confirmed the good 

efficacy of local adjunctive 2 % minocycline ointment as adjunct to scaling and root 

planing in chronic periodontitis over a long period of time [36]. Some other similar studies 

have been performed and also gained positive results [37]. Most recently, a study 

evaluating the efficacy of scaling and root planing with adjunctive local minocycline 

microspheres in the treatment of moderate to advance chronic periodontitis was performed. 

However, this combination therapy did not differ significantly from scaling and root 

planing alone in the reduction of probing depth and bleeding on probing [38]. In brief, the 

local administration of minocycline, especially the 2 % minocycline in gel formulation 

seems to be most promising when used as an adjunct to scaling and root planing in the 

treatment of chronic periodontitis.  

1.2.2.  Surgical treatment 

When non-surgical treatment failed to achieve periodontal health, surgery may be 

indicated to restore impaired periodontal anatomy by reducing periodontal pocket depth, 

gaining access for debridement of residual dental plaque and stimulating the regeneration 

of lost periodontal support [1]. Due to excessive gingival recession, tooth roots are 

exposed, facilitating further recession and bone loss. Gum graft surgery can be used to 

cover roots and compensate the lost gum tissue. A regenerative procedure is recommended 

to the patients with advance periodontitis whose bone and tissue supporting the teeth has 

been destroyed. Membranes, bone grafts or tissue-stimulating proteins can be used to 

encourage the regeneration on patients. The periodontal pocket reduction procedure is 

necessary for the patients who have too deep pockets to be cleaned by professional care. In 

this case, the bacteria accumulation inside periodontal pocket should be eliminated after 

folding back the gum tissue. Periodontal tissue is secured to be clean before placing back 

into place. Last but not least, dental implants and the replacement of defective prostheses 

are also important for periodontal therapy on patients who have lost a tooth or teeth [1].  

Briefly, the treatment therapies of periodontal diseases are various and can be 

tailored to individual patients depending on their etiology, severity and the associated 

systemic diseases. The success of the treatment depends much on oral home care, 
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continued efforts to control or remove risk factors, and regular maintenance or supportive 

follow-up therapy after active treatment. Adjunctive antibiotics re-treatment should be 

considered for patients with aggressive or refractory periodontitis, based on the present 

pathogenic microbial community and their sensitivity [1].  

2.  Local controlled delivery systems for the treatment of 

periodontitis 

In patients with periodontitis, the periodontal pockets can act as a natural reservoir 

filled with gingival crevicular fluid (GCF) for the administration of antimicrobial agents to 

periodontal tissues. GCF is characterized by a typical flow, giving a flushing action that 

leads to a rapid removing of substances from gingival sulcus. However, this effect can be 

compensated by the introduction of controlled release drug delivery into periodontal 

environment. Moreover, the isolation effect of GCF keeps the substance within pockets 

separated from saliva. These characteristics makes the periodontal pockets an ideal route 

for local antimicrobial therapy in periodontitis treatment [39], [40].   A broad variety of 

local delivery systems have been developed to maintain the concentration of antimicrobial 

agents in GCF higher than their minimum inhibitor concentration against bacteria. These 

numerous systems are diversified in materials (biodegradable or non-biodegradable 

polymers) as well as in device form (solid or semi-solid, adhesive or non-adhesive 

systems). The proposed formulations include fibers, films, brushite cements, wafers, strips, 

microspheres, microcapsules, microparticles and gels (Table 3).  
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Table&3.!Summary!of!some!investigated!local!controlled!delivery!systems!for!the!treatment!of!periodontitis.!

Drug delivery 
system 

Antimicrobial 
drug 

Drug 
load 

(w/w) 
Vehicle 

In vitro 
release at 

24 h 

Prolonged 
release  

duration 

Degrad-
ability of 
carrier 

Clinical study 
Refer-
ence 

Monolithic 

fibers 

Tetracycline HCl 25 % Ethylene vinyl acetate n.a. 9 d No Significant probing depth 

reduction (n = 26) 

[41] 

[42] Actisite® (Alza Corporation, Palo Alto, CA, USA)* 

Strip Doxycycline 30 % Polyethylmethacrylate > 50 % 4 d No No [43] 

Film 

Metronidazole 10 % PLA  

+ dichloromethane 

38 % 

(48 h)  

28 d Yes No [44] 

Tetracycline HCl 25 % PLGA (85:15) 
+ dichloromethane 

 

27 % 14 d Yes Decreasing bacterial count in 
intra-crevicular fluid & 

significant microbial 

inhibition for 2 weeks over 

placebo (n = 8)  

[45] 

Chlorhexidine 
diacetate 

20 %  Cross-linked protein 
(Bycoprotein + glycerol 

+ formaldehyde) 

40 % 4 d Yes No [46] 

Insert 

Chlorhexidine 

gluconate 

34 % 

(2.5 

mg) 

Hydrolyzed gelatin 

(cross-linked with 

glutaraldehyde) 

40 % 7 – 10 d Yes No additional antimicrobial 

advantage of Periochip to 

thorough SRP (n = 9) 

[47] 

[48] 

 

Periochip® (Dexcel Pharma, Northampton, UK)* 

Chlorhexidine 
gluconate 

n.a. Oxidized-dextrin-
grafted paper points  

30 % 28 d Yes No [49] 
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Drug delivery 
system 

Antimicrobial 
drug 

Drug 
load 

(w/w) 
Vehicle 

In vitro 
release at 

24 h 

Prolonged 
release  

duration 

Degrad-
ability of 
carrier 

Clinical study 
Refer-
ence 

Mucoadhesive 

gel 

Metronidazole 

 

5 % HEC + Carbopol 974P + 

polycarbophil 

n.a. n.a. No No [50] 

Tetracycline HCl 5 % HEC + PVP + 

polycarbophil 

n.a. n.a. No No [51] 

Lipid-like gel 

Metronidazole 

benzoate 

25 % Glycerilmono-oleate   

+ sesame oil 

n.a. n.a. No Significant improvement of 

clinical parameters (n = 27) 

[52] 

[42] 

Elyzol® (Dumex-Alpharma, Copenhagen, Denmark)* 

Gel 
 

Minocycline HCl 2 % HEC + aminoalkyl 

methacrylate copolymer  

+ triacetine + MgCl2  

+ glycerin 

n.a. n.a. No Significant probing depth 

reduction and clinical 

attachment gain 

(Dentomycin®) (n = 27) 

[18] 

[42] 

Dentomycin® (Blackwell -Supplies, Kent, UK)*  
Parocline® (Sunstar, Levallois-Perret, France)* 
Periocline® (Sunstar, Osaka, Japan)* 

In situ gel 

Meloxicam 3 % Pluronic 

 

n.a. n.a. No Significant improvement in 

chronic patients 

[53] 

Minocycline HCl 2 % n.a. 3 d (85 % 

drug 

released) 

In situ implants 

Doxycycline  
hyclate  

10 %  NMP (63.3 %)  
+ PLA (36.7 %) 

n.a. 7 d Yes Statistically superior to oral 
hygiene & control (n = 822) 

[54] 
 

Atridox® (TOLMAR Inc., Fort Colin, CO, USA)* 
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Drug delivery 
system 

Antimicrobial 
drug 

Drug 
load 

(w/w) 
Vehicle 

In vitro 
release at 

24 h 

Prolonged 
release  

duration 

Degrad-
ability of 
carrier 

Clinical study 
Refer-
ence 

Brushite  

cement 

Doxycycline  

hyclate 

n.a. Calcium phosphate 

biomaterials 

50 %  

(12 h) 

3.5 d No No [55] 

Wafers 
Silver nitrate 12 % PLGA (73 %) 

PEG (15 %) 

40 % 30 d in vitro,      
21 d in vivo 

Yes Significant reduction in 

anaerobic bacteria (n = 9) 

[56] 

Microspheres 

 

Minocycline HCl  

 
2 %  n.a. n.a. 14 d  Yes Reduced probing pocket 

depth compared to SRP in 

supportive periodontal 

therapy (n = 48) 

[33] 

Arestin® (OraPharma, Horsham, PA, USA)* 

 Doxycycline HCl 9 - 25 

% 

PLGA 50:50 + PCL 

+ dichloromethane 

45 - 60 % 7 - 11 d Yes Improved clinical outcomes 

(30 sites) 

[57] 

Microcapsules 

Minocycline 2, 5, or 

10 % 

Sodium alginate 

+ chitosan 

n.a. 7 d Yes Statistically significant 

suppression of pathogenic 

bacteria (n = 15) 

[58] 

Electrospun 

fibers 

Metronidazole 0.1 - 

40 % 

PLA (70:30) + acetone 15 - 40 % > 28 d Yes No [59] 

* Commercial name of the respective drug; n.a. = not available; PLA = poly(D,L-lactic acid);  PLGA  = poly(D,L-lactide-co-glycolide); HEC = 

hydroxyethylcellulose; PVP = polyvinylpyrrolidone; MgCl2 = magnesium chloride; NMP = N-methyl pyrrolidone; PEG = polyethylene glycol; PCL = poly(ε-

caprolactone); PLA (70:30) = poly(L-lactide-co-D/L-lactide) (70:30); SRP = scaling and root planing.
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Due to the etiology of periodontal diseases and the anatomy of periodontal pockets, 

the local drug delivery system designed for periodontitis treatment should satisfy some 

criteria as followed [60]: 

! It should be easy to place into the periodontal pocket and remain within the pocket 

during the whole treatment time to maintain the local drug concentration. The 

injectable delivery systems (gels, microparticles, microspheres) are convenient to be 

administered subgingivally. The bioadhesive systems are also preferable because of 

their potential adhesive force, which ensure good retention of the device after 

placement.  

! The locally applied system must deliver drug into the periodontal pocket at a sufficient 

level to suppress pathogenic bacteria and sustain the drug concentration to be 

clinically effective for a sufficient length of time. 

! To facilitate the interference of clinician and to improve the compliance of patients, 

the drug device should be biodegradable, so that it can erode after a certain period 

without any surgical procedure to remove device remnants.  

! The cost of device, the facility of production technique should also be considered as 

factors for drug research and development (R&D). 

The local controlled drug delivery systems for the treatment of periodontitis gain some 

advantages and also some potential disadvantages (Table 4) [18], [60]. 
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Table&4.!Principal!advantages!and!disadvantages!of!local!controlled!delivery!system!!

for!the!treatment!of!periodontitis.!

Advantages Disadvantages 

Maintenance of drug concentration in its 

therapeutic range. 

Possible toxicity or lack of compatibility of 

material (solvent, polymer).  

Improved drug access to local site  

-> Improved clinical efficacy for a long 

duration of time. 

Mild discomfort caused by the presence of 

drug device within periodontal pocket. 

Improved pharmacokinetics  

-> Benefits to short half-lives drugs. 

Placement technique is needed to implant 

the device into target site. 

Lower total drug dosage  

-> Reduction or elimination of undesired 

side effects of drug. 

Expensive biodegradable polymer and high 

R&D cost leads to increase the price of 

some devices. 

Improved patient compliance.   

Smaller drug device with lower excipient 

quantity compared to systemic systems. 

 

 

Despite numerous studies aiming at designing and developing local drug delivery 

system for the treatment of periodontitis, only a small number of products have been 

marketed. The various pharmaceutical and practical demands as well as contradictory 

clinical results often reported for the same system challenged the R&D of these topical 

formulations. The first marketed subgingival system was Actisite®, which consists of fibers 

of ethylene vinyl acetate containing 25 % tetracycline HCl [41]. Although Actisite® 

prolonged the release of tetracycline for 9 days in vitro and showed good clinical efficacy 

[42], this system faced some difficulties in practice. These limits include the difficult and 

time-consuming placement technique for clinicians. In patients, main disadvantages were 

anesthesia needed for fiber placement, discomfort during treatment and significant adverse 

effects (gingival redness, tongue pigmentation). In addition, this system has to be securely 

fixed by cyanoacrylate adhesive due to the lack of bioadhesiveness [18]. The next 

marketed product was a lipid-like gel Elyzol® containing 25 % metronidazole, which can 

be placed easily into periodontal pocket by a provided syringe. Nevertheless, following 

various clinical studies, the efficacy of this gel used in combination with scaling and root 
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planing is controversial. This is possibly due to the poor retention of Elyzol® gel within 

periodontal pocket [18]. Similarly, the clinical efficacy of Periochip®, a biodegradable 

insert consisting of chlorhexidine gluconate in hydrolyzed gelatin was not confirmed. This 

biodegradable, adhesive insert can sustain drug release over 7 days. Although, following a 

systematic review enrolling 5 clinical studies, the microbiological and clinical results on 

Periochip® in conjunction with scaling and root planing therapy are limited and 

controversial [48]. Besides, the 2 % minocycline gel which has been commercialized under 

several trademarks: Dentomycin®, Periocline® and Parocline® seems to be good in clinical 

therapy. Adjunctive Dentomycin® was reported to provide significant probing depth 

reduction and clinical attachment gain [42] as well as more advantageous outcomes in 

bleeding on probing [18]. However, these gels still lack of biodegradability, leading to the 

need of removal of the empty device after treatment. A biodegradable injectable system 

that was broadly studied is Atridox®. This system consists of a biodegradable polymer 

PLA dissolved in a biocompatible solvent NMP with 10 % doxycycline hyclate drug 

loading. It is an in situ forming system due to its change from liquid to solid state after 

injection into periodontal pocket. This implant can sustain drug release over 7 days. In a 

very large clinical study (n = 822), Atridox® performed both clinical and statistical 

superiority for all parameters when compared to oral hygiene and the vehicle alone [54].  

Briefly, biodegradable in situ forming implant seems to be a very potential local 

drug delivery system for the adjunctive periodontal therapy. The liquid nature of drug 

device facilitates their placement by simple injection technique, which can reach the deep 

periodontal pockets. Subsequently, in situ formation occurs forming a hardened implant 

with a suitable form adapted to individual crevices. However, the retention of implant and 

drug release control are important issues to be solved in the research and development for 

such type of devices. 

!  



 INTRODUCTION 
!

! 21!

3.  In situ forming implants 

In situ forming implants (ISFI) are parenteral liquid drug delivery formulations 

generating (semi) solid depot after injection via a syringe into the body [61], [62]. ISFI was 

first studied in the early 1980s with the goal of developing injectable antimicrobial 

formulations for local treatment of periodontal diseases by Southern Research Institute, 

then continued by ATRIX laboratories, USA [63]. Until now, ISFI are still attracting 

considerable attentions from researchers because of their advantageous over the other 

parenteral drug delivery devices such as liquids, liposomes, emulsions, microspheres, 

microparticles. The principal benefits from ISFI are relatively lower production cost and 

simple manufacturing procedure. Moreover, ISFI (semi) solid reservoir has higher local 

retention and stable drug distribution, thus provides better-controlled drug release [62]. 

Besides dental administration, ISFI has been investigated for applications in cancer 

treatment, ophthalmic delivery systems, tissue engineering, three-dimensional cell 

culturing or cell transplantation [64]–[66]. 

ISFI can be classified into 3 main groups, based on their mechanisms of implant 

formation (Figure 1). Among the various types of ISFI, the phase separation system by 

solvent exchange is very attractive because of its great commercial potential. 

Dunn et al. [67] invented the concept of ISFI based on polymer precipitation by 

solvent exchange in 1990. They dissolved a water-insoluble and biodegradable polymer 

poly(D,L-lactide) (PLA) or poly(D,L-lactide-co-glycolide) (PLGA) in a compatible water-

miscible organic solvent N-methyl pyrrolidone (NMP). Consequently, drug was 

incorporated into the polymer solution forming a solution or a suspension after mixing. 

After injection of the formulation into the body, the organic solvent diffuses into the 

surrounding tissues while aqueous body fluid diffuses into organic polymeric phase. This 

leads to phase separation and polymer precipitation, forming a depot at injection site. The 

active pharmaceutical ingredients (API) entrapped within the polymer matrix are released 

by diffusion through the water-pores and by erosion upon polymer degradation. So far, two 

polymer precipitation systems based on solvent exchange have been commercialized, 

namely Atridox® and Eligard®. Both of these products were approved by the American 

Food and Drug Administration (FDA) and were prepared using Atrigel® technology. 
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Atridox® is a controlled-release product used for the treatment of periodontitis, 

consisting of a two syringe mixing system. Syringe A contains 450 mg of 36.7 % PLA 

dissolved in 63.3 % NMP. Syringe B contains 50 mg of doxycycline hyclate, which is 

equivalent to 42.5 mg doxycycline. After mixing, the final product is a yellow viscous 

liquid containing 10 % of doxycycline hyclate, which is injected directly into the 

periodontal pocket. Upon contact with the gingival crevicular fluid, the liquid solution 

solidifies forming a depot allowing the controlled release of drug for a period of 7 days. 

Eligard® is subcutaneous injection system providing sustained release of leuprolide 

acetate (7.5, 22.5, 30 or 45 mg) over a long period of time (1 month, 3 months, 4 months or 

6 months, respectively), which is indicated for the treatment of advanced prostate cancer. 

These products also consist of 2 syringes: syringe A prefilled with PLGA dissolved in 

NMP; syringe B prefilled with leuprolide acetate powder. Prior to administration, two 

syringe parts are mixed in order to get a homogenous dispersion of drug. The controlled 

release of drug from Eligard® formulations is achieved by the variation of polymer type. 

In situ forming 
implants  Solubility change 

Cross-linked  
systems  

Solidifying     
organogels  

Photo-initiated 

Chemical  

Physical  
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Clinical studies proved the high efficacy of 1-month and 3-month Eligard® formulations in 

reducing mean testosterone levels below the medical castration level (50 ng/dL) over 6 

month treatment [68].    

3.1.  Compositions of in situ forming implants based on solvent exchange 

Since this thesis focus on the in situ forming implants based on solvent exchange, 

the abbreviation ISFI will be used to denote the phase separation systems by solvent 

exchange. The formulation of these ISFI systems generally consists of solvent, polymer 

and drug. 

3.1.1.  Solvent 

Relatively high amounts of solvent are used in ISFI to dissolve the polymer, 

forming a polymeric solution. As this carrier is then injected into the body and solvent 

diffuses into surrounding tissues, the employed solvent must meets some requirements. It 

must be non-toxic and biocompatible, hence it does not cause any severe tissue irritation or 

necrosis at injection site. Moreover, the solvent should be water miscible to diffuse quickly 

into the body fluid and allow water to diffuse into the polymeric solution, leading to 

polymer precipitation. Suitable solvents meeting those criteria includes N-methyl 

pyrrolidone, 2-pyrrolidone, acetone, dimethyl sulfoxide, methyl acetate, ethyl acetate, 

methyl ethyl ketone, ethanol, propylene glycol, dimethylformamide, tetrahydrofuran, 

caprolactam, decylmethylsulfoxide, oleic acid, and 1-dodecylazacycloheptan-2-one. The 

four first solvents are preferred due to their solvating ability and their compatibility [67]. 

N-methyl pyrrolidone (NMP) is the most frequently used organic solvent because 

of its solvating ability; allowing to dissolve a wide range of polymers. This solvent has 

good properties such as low volatility, low inflammability and relatively low toxicity. 

Following the European chemicals agency, NMP is classified as toxic for reproduction. 

3.1.2.  Polymer 

Biodegradable polymers which can be used in ISFI includes polylactides, 

polyglycolides, polycaprolactones, polyanhydrides, polyamides, polyurethanes, 

polyesteramides, polyorthoesters, polydioxanones, polyacetals, polyketals, polycarbonates, 

polyorthocarbonates, polyphosphazenes, polyhydroxybutyrates, polyhydroxyvalerates, 
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polyalkylene oxalates, polyalkylene succinates, poly (malic acid), poly (mino acid), 

polyvinylpyrrolidone, polyethylene glycol, polyhydroxycellulose, chitin, chitosan and 

copolymers, terpolymers, or blends of the materials mentioned above. Polymers with low 

degree of crystallinity and more hydrophobicity are preferable because of their high 

solubility in organic solvents. Examples of such polymers are polylactides, 

polycaprolactones, and poly(lactide-co-glycolide). They present more amorphous regions 

to enhance solubility [69]. These polymers are also widely studied because of their safety 

approved by FDA and long history of clinical use. 

Lactic acid (LA) and glycolic acid (GA) are organic acids found in the nature, 

which have the molecular structure as below: 

 
 

)*+,-%&/(!:0).&;)(#!/,#;&,;#.!01!)(&,$&!(&$*!(%*!-)2&0)$&!(&$*5!

'()*%+(#,-./#7<=90#

 

Lactic acid exists in two active forms: L(+)-lactic acid and D(-)-lactic acid. It was 

first isolated from milk in 1780, and polylactic acid (PLA) was reported since 1932, 

although its applications in medical research has attracted interest since 1960s [71]. 

Poly(L-lactide) (PLLA) is a crystalline polymer (37 % crystallinity) presenting good 

tensile strength compared to poly(D,L-lactide) (PDLLA), which is an amorphous polymer 

[72]. 

Glycolic acid can also be found in natural products such as sugar beets, unripe 

grapes, and wheat [70]. The polyglycolic acid (PGA) has been known since 1954 to be a 

potentially low cost fibre-forming polymer and was developed as the first synthetic 

Lactic acid (!-hydroxypropionic acid), CH3CH(OH)COOH!

Glycolic acid (!-hydroxyacetic acid), HOCH2COOH!
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absorbable suture in 1962 [73]. PGA is a highly crystalline polymer (45-55 %

crystallinity), hence exhibits a high tensile strength. Both PGA and PLA undergo 

hydrolytic degradation via the bulk erosion mechanism by the non-specific scission of the 

ester backbone. They break down into glycolic acid and lactic acid, which can be excreted 

in the urine or converted into water and carbon dioxide via the citric acid cycle [72].!*hese 

two monomers can be found in the human body under normal physiological conditions, as 

by-products of various metabolic pathways and can thus be considered as non-toxic. 

Poly(lactic-co-glycolic acid) PLGA is a copolymer of PLA and PGA. 
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The product range of PLGA is large, due to the copolymerization ability of both 

PLLA and PDLLA with various ratios of monomers. PLGA biodegrades in water by 

hydrolysis of its ester linkages. In controlled release drug delivery applications, the choice 

of a PLGA with suitable degradation kinetics is important to achieve desired release 

kinetics. PLA is more hydrophobic than PGA due to the presence of methyl group, 

therefore the lactide-rich PLGA copolymers are more hydrophobic, hence absorb less 

Polyglycolic acid (PGA)                                

Polylactic acid (PLA)!

Poly(lactic-co-glycolic acid) (PLGA)
!
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water and degrade more slowly. For instance, 50/50 poly(D,L-lactide-co-glycolide) 

degrades in 1-2 months, 75/25 in 4-5 months and 85/15 in 5-6 months.  These time frames 

also depend on the PLGA molecular weight, the shape and structure of polymer matrix 

[72], [74].  

Since 1970s, PGA, PLA and PLGA interested researchers as biodegradable 

materials in dental, orthopaedic and drug delivery application [73]. There were various 

studies investigating their biocompatibility and toxicity, especially for use as materials in 

wound suture and fixation device in orthopaedic fracture. Generally, the animals, human 

and in vitro tests proved that PGA and PLA provide satisfactory biocompatibility without 

significant toxicity neither inflammatory reaction [75]. In a cytological analysis, PGA has 

also been considered as immunologically inert implant material [76]. Approved by the 

FDA for the use in human, PLGA is considered as the best-defined biomaterial available 

for drug delivery with respect to design and performance so far [72]. 

3.1.3.  Drug 

The choice of active substance depends on ISFI application. For the treatment of 

periodontitis, chosen drugs are antiseptics or antibiotics with suitable antibacterial 

spectrum [18]. In prostate cancer treatment, the peptide agonist hormone receptor 

leuprolide acetate was chosen as active drug [64]. Besides, numerous ISFI devices has 

been studied using drug varying from small molecules such as diclofenac sodium [77], 

aspirin [78] to big molecule of proteins, namely bovine serum albumin [79], human growth 

hormone [80]. The properties of drug (molecular weight, solubility, affinity to the solvent) 

and its content in the formulation can affect the drug release profile of ISFI systems.  

3.2.  Mechanism of drug release from PLGA-based in situ forming 

implants 

Numerous studies have been performed to investigate the release mechanism of drug 

from PLGA-based drug delivery system, especially in films, microspheres, microparticles, 

preformed implants [81]. PLGA-based implants relying on in situ polymer precipitation by 

solvent exchange, however, have not yet been extensively studied. The main differences of 

ISFI are: (i) the shape of ISFI can only be defined after injection of polymeric solution; (ii) 
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during the transformation from liquid to solid state, a complex physico-chemical process 

takes place, affecting the depot structure and hence the following drug release profile. 

Therefore, the knowledge of these characteristics is essential to understand the drug release 

mechanism and develop controlled-release ISFI. 

3.2.1.  Release mechanism 

Drug release from PLGA-based ISFI results from a complex physico-chemical 

process occurring within PLGA matrix, from the injection of polymeric solution until the 

end of matrix degradation. These processes begin by the solvent exchange causing the 

polymer precipitation, subsequently leading to the formation of a solid depot. Within the 

PLGA matrix, the presence of water triggers the hydrolysis of PLGA, hence cuts the ester 

bonds and increases polymer chain mobility. The decrease in polymer molecular weight 

finally leads to the erosion of the polymeric matrix, which in turn might affect drug 

release. In brief, the underlying drug release mechanism can be resumed in two principal 

processes: diffusion and erosion. These mechanisms can occur concomitantly and are 

influenced by formulation parameters as well as the surrounding environment of the 

injection site. 

3.2.1.1.  Diffusion 

Diffusion has been described as one of the main release mechanism controlling 

drug release from PLGA-based drug delivery system. It is directly related to the porosity of 

the polymer matrix, and thus on the processes of pore formation [81]. In the case of ISFI, 

the solvent exchange occurring upon contact of the polymeric solution to the aqueous 

environment leads to a liquid-liquid phase separation. The polymer solution transforms to a 

mixture of gel phase located on the surface and solution phase downside, namely two-

phase, gelled structures. It was suggested that the initial drug release occurs mainly by 

diffusion through the interconnected polymer-lean phase that exists in gel region. Thus, 

fast gelling system has high burst release compared to low gelling system [82].  

The resulting solid depot consists of polymer matrix with a negligible or significant 

quantity of water-filled pores, depending on the type of solvent and polymer. The solvents 

with high affinity to water (NMP, DMSO) have been reported to create highly porous 

structure, in contrast to the dense sponge like morphology of systems based on low water 
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miscible solvents (triacetin, ethyl benzoate) [83], [84]. The high density of water-filled 

pores provides multiple diffusion pathways to drug molecule, therefore improves the drug 

release rate. The biodegradable polymer, PLGA is hydrolyzed in the presence of water, 

resulting in shortened polymer chain length. As water uptake is faster than polymer 

degradation, PLGA generally undergoes bulk erosion. Erosion starts when the polymer 

degradation products can be dissolved in water and thus diffuses into the surrounding 

aqueous solution. Hydrolysis and erosion increase the pore size, hence accelerate the drug 

release. These effects are more pronounced on systems based on less hydrophobic PLGA 

(low molecular weight, low lactic:glycolic acid ratio and un-capped polymer end groups), 

which have greater water absorption, hydrolysis and erosion rate [81].  

The diffusion coefficient of drug from PLGA-based ISFI is dependent on the 

diffusion coefficient in the fluid filled the pores, the porosity and the tortuosity. 

Consequently, this parameter is not constant but time-dependent due to altered depot 

structure induced by polymer degradation [81]. 

3.2.1.2.  Erosion 

Erosion has been reported to start as the polymer molecular weight goes below a 

threshold of 15 kDa. This process can be considered as a rate-controlling release 

mechanism as well as a true-release mechanism. In the first case, erosion increases pore 

formation, and thus increases the rate of diffusion [81]. Besides, erosion can be considered 

as a true-release mechanism, inducing directly drug release in the mean time of polymer 

mass loss. In a study investigating the influence of the organic salt deoxycholate in the 

medium bath on the lysozyme release from PLGA/ethyl benzoate depot, Brodbeck et al. 

[83] have found a significant increase of protein release rate. Interestingly, the addition of 

this organic salt did not impact the bulk water absorption and the phase inversion dynamic 

of the system. Instead, the increased release rate was found as the result of increased 

PLGA erosion at the surface of the injected depot. The erosion is considered as a release 

mechanism in this case. 

Other mechanisms might be involved in the control of drug release from PLGA-

based drug delivery systems including diffusion through the polymer network and osmotic 

pumping, which are well described in the literature. In the case of PLGA-based in situ 
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implants, the absorption of water leads to pronounced polymer swelling. This phenomenon 

can compensate the osmotic pressure within systems. Therefore, diffusion through water-

filled pore is usually the dominant true release mechanism [81]. 

3.2.2.  Burst release and phase inversion dynamic 

Burst release can be defined as a high amount of drug released in the first hours up 

to 24 hours, which is often reported for PLGA-based ISFI. This phenomenon occurs due to 

the fact that solid depot formation can last from a few minutes to several hours. The rate of 

diffusion of the drug substance from the coagulating polymeric solution may be more rapid 

than the release rate from solid matrix. Consequently, a high leakage amount of API can be 

observed during implant formation, namely burst release [85]. The burst release is hence 

related to the liquid-liquid phase separation process, which is characterized by the phase 

inversion dynamic.   

Phase inversion dynamic is the dynamic of the interactions that takes place between 

the polymer solution and an aqueous (non-solvent) environment, causing the formation of 

polymer membrane at the interface. Accordingly, the solvent/non-solvent diffusion lowers 

the polymer solubility, thus leading the polymer solution to phase separate into a polymer-

rich matrix surrounding dispersed polymer-lean droplets. The arrangement of this two-

phase structure determines the separation characteristics, the device morphology and thus 

the drug release kinetics [82].  The phase inversion dynamic is influenced directly by the 

properties of organic solvent.  

There were a few studies investigating the role of organic solvent type on the phase 

inversion dynamic and drug release profile of a polymeric solution. It was concluded that 

the solutions based on strong, hydrophilic solvents that are miscible with water (NMP, 

DMSO…) generally cause a fast phase inversion. The solidification of these systems often 

takes place in the order of seconds to minutes, eventually forms a highly interconnected 

network with large finger pores, leading to a high burst release. In contrast, weaker 

solvents with lower water solubility (triacetin, ethyl benzoate…) leads to slower phase 

inversion resulting in a uniformly dense structure with few pores, and hence slower release 

rates, as illustrated in Figure 4 [84]. Brodbeck et al. [83] investigated the role of solvent 

type on the phase inversion, depot morphology and resulting release profile of lysozyme 
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from 50 wt. % PLGA-based polymeric solutions. The solvents used were NMP, triacetin 

and ethyl benzoate, which have solvent strengths reducing in the same order. The resulting 

data showed lower water diffusion and thus phase separation rate when decreasing the 

solvent/non-solvent affinity. For instance, water absorption of PLGA/NMP solution 

increased up to 20 % during the first day whereas it was almost zero in triacetin or ethyl 

benzoate solutions. Up to 14 days, significant differences could be clearly seen with water 

absorption reaching almost 80 %, 20 % and less than 10 % in NMP, triacetin and ethyl 

benzoate systems, respectively. This is in good agreement with the depots structure 

observed by scanning electron microscopy (SEM) (Figure 4). Indeed, NMP system showed 

a highly porous structure whereas pores were less visible in triacetin systems and even 

much less pronounced in ethyl benzoate systems. Interestingly, lysozyme release rate was 

much faster in NMP system (≈ 35 % drug release in 24 h) compared to the others (≈ 2 %). 

The subsequent release of triacetin system was faster than that of ethyl benzoate system 

due to the finite but higher water solubility of triacetin compared to ethyl benzoate (7 % 

versus 0.4 %, respectively).  

 
Figure&4.!SEM!images!and!scheme!of!matrix!structure!and!postulated!preferred!

pathway!of!protein!release!for!NMP!(C),!triacetin!(D),!and!ethyl!benzoate!(E)!as!

solvents.!In#schemes:#grey#regions#indicate#the#polymer=rich#phase,#bright#areas#

represent#water#filed#pores,#and#arrow#thickness#indicates#release#rates.##

Adapted#from#[86].#

Briefly, the phase inversion dynamic can be considered as an important 

characteristic of ISFI, which is essential for the gelation rate, depot morphology, and thus 

burst release as well as the overall drug release profile. Solvent type is important but is not 
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the only factor influencing the phase inversion dynamic of an in situ polymer precipitation 

system. 

3.3.  Impacts of various parameters on the drug release of PLGA-based 

in situ forming implants 

Many factors might influence drug release of PLGA-based ISFI, including the 

formulation parameters as well as the properties of the surrounding environment at the 

injection site.  

3.3.1.  Solvent 

As mentioned above, the organic solvent has a significant impact on the formation 

of the polymer matrix and subsequent drug release properties. Depending on the solvent 

strength (water miscibility) of solvent (Table 5), the resulted polymer matrix can be porous 

or almost dense without any pores. The solvents with high water miscibility (NMP, 

DMSO…) promote fast liquid-liquid phase separation and thus a porous structure, which 

can increase drug release. In contrast, the more uniform structure created by weaker 

solvents (triacetin, ethyl acetate, ethyl benzoate…) results in slower drug release [83], [87]. 

If all the solvents are miscible with water, the differences in drug release profiles of the 

systems depend on the polymer-solvent affinity. Comparing the 40 % PLA/NMP or DMSO 

systems, Kranz and Bodmeier [88] found that NMP has higher solvating power for PLA 

compared to DMSO. Therefore, the solution of PLA in NMP performed a slower polymer 

precipitation and subsequent less porous implant structure with slower drug release.  
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Table&5.!Aqueous!solubility!of!different!solvents!used!for!in#situ!forming!implants.!

Adapted#from#[86].!

Solvent Solubility in water (%) 

N-methyl pyrrolidone (NMP) Miscible 

Dimethylsulfoxide (DMSO) Miscible 

Polyethylene glycol (PEG) Miscible 

PEG-dimethylether (PEG-DME) Miscible 

Glycofurol Miscible 

Triacetin ≈ 7 

Triethyl citrate ≈ 5.7 

Ethyl benzoate ≈ 0.4 

Benzyl benzoate ≈ 0.15 

 

Besides, the polarity of solvent has also an impact on the drug release, due to its 

influence on polymer degradation. Slower degradation rate of PLGA has been observed in 

polar aprotic solvents (DMSO, NMP, triacetin) than in polar protic solvent (PEG 400, 2-

pyrrolidone, triethyl citrate). It was suggested that the polar protic solvents could donate 

hydrogen and possibly form hydrogen bonds with PLGA. Thus, the ester bonds of 

polymers can be exposed to residual water of solvent, and as a consequence enhance 

hydrolysis. In contrast, the ester bonds of the polymer might be shielded inside the 

polymer chains in the case of polar aprotic solvents, hence get less access to water [89]. 

This phenomenon has been confirmed in the study of Schoenhammer et al. [90], where 

they found block-copolymers during the degradation of PLGA in PEG 300. By capping the 

solvent with an alkyl-end group (PEG-dimethyl ether), the degradation rate of PLGA 

significantly reduced. Furthermore, the degradation of PLGA increased when increasing 

the water content of both protic and aprotic solvents [89]. Accordingly, the type of solvent 

and its water content should be taken into account for the design of PLGA-based ISFI, 

especially for the controlled-release devices over prolonged period of time. 

3.3.2.  Polymer 

The biodegradable polymer PLGA has been widely used in the formulation of in 

situ polymer precipitation systems. The biodegradation of PLGA provides great benefits to 
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the drug delivery system because of its capacity to modulate drug release profile. The 

effect of physico-chemical properties of PLGA on the resulting drug release kinetics has 

been extensively investigated in the literature. 

3.3.2.1.  Molecular weight 

The molecular weight (Mw) is a substantial property of PLGA, which is 

proportional to the polymer chain length and thus also proportional to its inherent 

viscosity. According to Ahmed et al. [91], low Mw PLGA results in a less hydrophobic 

polymer with increased rate of water absorption and matrix degradation, thus provide 

faster drug release rate compared to the higher Mw. The release profiles of the protein p55 

tumor necrosis factor receptor (sp55-R) from an injectable implant system significantly 

reduced when increasing PLGA 50:50 Mw (inherent viscosity η increased from 0.24 to 

0.38, 0.47 and 0.55 dL/g, respectively). This was explained by the fact that higher Mw 

polymers tend to solidify faster than low Mw polymers, leading to a smaller burst release 

and a higher amount of drug entrapped into polymer matrix. Regarding the degradation, it 

was found that low Mw polymer (η = 0.24 dL/g) degrades in a shorter time (5 days) to 

produce oligomers of 10 kDa compared to high Mw polymer (η = 0.59 dL/g) (over 40 

days). This trend is in agreement with slower release observed for high Mw polymer 

systems.  

In another study comparing the leuprolide acetate (LA) release profiles from 

PLGA/NMP systems, the PLGA RG 502 H led to a much lower initial release than RG 503 

H (18.8 vs. 48.1 %). Subsequently, a fast release phase was observed with RG 502 H, 

whereas a much slower release rate was observed with RG 503 H [92]. These trends were 

further evaluated and clarified later by Astaneh et al. [93]. It has been found that the 

morphology of PLGA-based solid depot correlated with the drug release profile. Among 3 

types of PLGA different in Mw, PLGA RG 502 H (Mw = 12 kDa) and PLGA RG 504 H 

(Mw = 48 kDa) presented thin skin and finger-like pore structure and thus similar shape of 

release profile. Due to the higher Mw, system based on RG 504 H released drug in a 

slower rate compared to RG 502 H. However, the PLGA RG 503 H (Mw = 34 kDa) depot 

exhibited a cellular-based surface with a sub-layer presenting a sponge-like structure. The 

cracking of cells containing dissolved LA leads to the highest content of initial drug 
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release compared to the others. After this burst, drug release from RG 503 H formulation 

was very slow because of the lack of diffusion path in such spongy structure.   

3.3.2.2.  Polymer concentration 

The effect of polymer concentration on the drug release kinetic from in situ 

polymer precipitation devices has widely been studied in the literature. Higher polymer 

concentration leads to increased viscosity and hydrophobicity of polymer solution 

compared to lower polymer concentration. Consequently, water influx rate, phase 

separation rate and diffusion of drug into release medium were limited, leading to slower 

release rates [82]. For instance, PLGA 50:50/glycofurol systems with increasing polymer 

concentration from 10 %, 15 % to 20 % reduced the bovine serum albumin (BSA) burst 

release. Similarly, the initial protein sp55-R release from 20 % PLGA matrix was smaller 

than from 10 % PLGA matrix. However, in both case, the long-term release kinetics after 

the burst were independent on the polymer concentration [91], [94].  

Moreover, it is suggested that higher polymer concentration conducts to a dense 

polymer matrix structure, hence increases the required time for degradation of the solid 

implant [95]. Graham et al. [82] reported the change in morphology of PLGA/NMP depots 

from finger to sponge transition when PLGA concentration increased from 40 % to 50 % 

and 60 %. As a result, the initial release was slowed down. In a recent study, it has been 

shown that in situ implant formulations with increasing PLGA concentration (20 %, 30 % 

and 40 %) sustained the release of haloperidol more effectively, regardless the type of 

solvent. For instance, in DMSO, the initial burst of drug was reduced (20 %, 17 % and 15 

% within the first 24 hours) and the release was extended over 24, 31 and 45 days, 

respectively [87].  

The degradation of PLGA matrix is known as a hydrolytic process resulting in the 

formation of carboxyl end groups which are able to catalyze the hydrolysis of other ester 

bond, namely autocatalysis [96]. Depending on matrix size, the diffusion pathways of 

degradation products are different; altering the neutralization of generated acids [97].  

Thus, the local degradation rate and subsequently the erosion characteristic of PLGA 

matrices are varied on system morphology. This dependence was pronounced in the case 

of PLGA-based films or PLGA-based microparticles, where degradation rate increased 
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with increasing device size [97], [98]. Similar effect can also be observed in the case of 

PLGA-based ISFI, hence altering the underlying drug release profiles. 

3.3.2.3.  Functional-end group 

The end group of polymer PLGA can be uncapped (carboxyl-end group) or capped 

with a hydrophobic ester group (ester-end group), leading to change in its chemical 

properties. Polymers with carboxyl-end group are more hydrophilic, thus increase the rate 

of water absorption and subsequent hydrolysis and erosion [81], [87]. Therefore, the 

functional-end group has a considerable impact on the drug release rate.  

In some prior studies, PLGA with carboxyl-end group has been reported to slow 

down the drug release rate compared to PLGA with ester-end group because of polymer-

protein interaction. For instance, the interaction of PLGA RG 503 H (carboxyl-end group) 

and the protein L-Asparaginase reduced the burst and subsequent release of drug compared 

to PLGA RG 503 (ester-end group) [99]. An ionic interaction between the terminal 

carboxylic end groups of PLGA and the basic amino acids of leuprolide acetate possibly 

occurred, thereby hindered drug diffusion [92]. 

3.3.2.4.  Ratio of lactic/glycolic acid (L:G) 

PLGA copolymers can be prepared in any ratio of lactic to glycolic acids. This 

proportion affects the polymer cristallinity and thus, the water uptake and degradation rate 

[91]. Due to the more hydrophilic property of PGA compared to PLA, low L:G ratio 

PLGA polymers are less hydrophobic than high L:G ratio. Consequently, they absorb more 

water and degrades more quickly [87], [95]. Since primary hydrolysis site of PLGA are the 

G-G or L-G linkages, the ester linkages of PLGA 50:50 are more accessible to water than 

those of the PLGA 75:25, causing faster degradation. Especially, the PLGA 50:50 

polymers are hydrolyzed and degrade much faster than those with higher proportion of 

either monomer. Consequently, both the burst release and the overall release rate can be 

reduced by increasing L:G ratio of PLGA. In practical results, Eliaz and Kost [91] have 

found that at high Mw, the PLGA 50:50 (η = 0.55 dL/g) leaded to higher protein release 

rate than PLGA 75:25 (η = 0.59 dL/g). Whereas at low Mw (η = 0.24 dL/g), the initial 

release reduced in increasing L:G ratio from 50:50 to 75:25. 
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3.3.3.  Drug 

3.3.3.1.  Drug properties 

In ISFI systems, drug can either be dissolved or dispersed into the polymeric 

solution, depending on its solubility in organic solvent. Since diffusion is considered as the 

main drug release mechanism, in which the drug must be dissolved in water before being 

release, the solubility of drug in the release medium is also an important parameter [81]. 

For example, risperidone and paliperidone present good solubility in NMP (69 mg/mL and 

40 mg/mL, respectively) but low solubility in DMSO (< 10 mg/mL) and poor solubility in 

phosphate buffer (< 0.2 mg/mL). These drugs were either dissolved in NMP or dispersed 

in DMSO (20 % drug loading). The resulting drug release kinetics were significantly 

different. Both ISFIs exhibited fast extraction of solvent in the surrounding aqueous 

medium. This led to a rapid release of the dissolved drugs from NMP-based ISFI but a 

sustained release in DMSO-based ISFI because most of the dispersed drug particles were 

encapsulated in the matrix after fast polymer precipitation [100]. On the other hand, the 

solubility of drug can alter the solvent exchange of the polymer solution, thus modify the 

drug release rate. Generally, hydrophilic drug leads to higher diffusion (swelling) rate and 

degradation rate than hydrophobic drug. It was assumed that the practical insoluble drug 

haloperidol could inhibit water diffusion into the matrix, thereby slowed down the erosion 

of implant and caused further decrease in drug release [87]. 

The release of drug from PLGA matrix is also dependent on the chemical property 

of drug. The basic drugs were found to create a strong ionic interaction with the polymer, 

keeping drugs dissolved in the matrix. This interaction shields the polymer terminal 

carboxyl groups, therefore declines the matrix erosion. Consequently, the drug diffusion 

through the matrix is restrained. In contrast, due to weak interaction with PLGA, the acidic 

and neutral drugs quickly precipitate out as crystals in the matrix during release time. 

Therefore, the solubility of these drugs in the hydrated matrix becomes the dominant 

parameter affecting drug diffusion [101], [102].  

On the other hand, drug can accelerate polymer degradation, thus leading to its 

faster release. The free acid N-acetyl cysteine encapsulated in PLGA 50:50 implant led to 

plasticization, increased catalytic degradation of polymer matrix, resulting in faster drug 
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release [103]. Another acidic drug, aspirin was found to facilitate the degradation of PLGA 

polymers and consequently faster release of drug from PLGA-based in situ gel system 

[78]. The plasticization effect was also observed in the case of ketoprofen, where hydrogen 

bonding of this drug and PLGA caused a lubricant effect on polymer chain and thus an 

accelerated drug release [104], [105]. 

3.3.3.2.  Drug concentration 

Drug loading can play a considerable role in modifying the release mechanism and 

resulting release rate of ISFI systems. Eliaz and Kost [91] investigated the impact of drug 

loading in injectable implant containing the protein sp55-R as an active agent and bovine 

serum albumin (BSA) acted as a carrier for sp55-R. They demonstrated that for both 

proteins, the release rate from the devices depended on the drug loading. At BSA loading 

of 3 % or lower, similar drug release profiles were observed, suggesting that the release 

mechanism was degradation dependent. At BSA loading of 10 % or higher, the drug 

release rate increased with increasing BSA content, indicating that both the diffusion and 

degradation affected the drug release. It was assumed that the high protein loading led to a 

more porous structure matrix, providing interconnected diffusion pathways, thus increasing 

matrix degradation and protein release. This correlates well with the in vivo results, in 

which more extended sp55-R serum concentration was measured in the case of 10 % BSA 

loading compared to 3 % (35 days vs. 20 days) [94]. 

For low Mw drug, the effect of drug loading was also found to be in agreement 

with these previous studies. When altering the fluorescein content of PLGA/NMP systems 

from 0.5 to 5 %, two different trends were observed. At low drug content (0.5 % or 1 %), 

there was no significant difference in drug release rate at 1 hour, 1 day and 1 week. 

However at higher drug content (2 % and 5 %), significantly higher release rates were 

observed [106]. Consequently, the increased drug loading did not only increase the initial 

drug release concentration but also the total release rate. 

3.3.4.  Additives 

The presence of a second polymer is often reported to modify drug release kinetics 

from in situ forming polymer matrices. It was suggested that the addition of a hydrophilic 

polymer into NMP-based depots could be a valuable tool to adjust their release properties. 
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For example polyvinylpyrrolidone (PVP) is known to influence the morphology of phase 

inversion membranes. Graham et al. [82] showed that the addition of only 3 wt. % PVP 

increased dramatically (8-fold) the liquid-liquid phase separation rate of PLGA/NMP 

solution. However, neither the water influx rate nor the overall depot morphology did 

change significantly. In contrast, the drug release rate, especially during the gel formation 

period (t < 1 day) was much higher for the solution containing PVP.  

The amphiphilic copolymer Pluronic also altered the release of lysozyme from 

PDLA/NMP solution but under different mechanisms. Pluronic triblock copolymers 

consist of blends of poly(ethylene oxide) (PEO)/poly(propylene oxide) (PPO)/poly-

(ethylene oxide) (PEO). In polymer blend systems, the hydrophobic PPO segments anchor 

in the polymer matrix, while the hydrophilic PEO segments extend into the surrounding 

aqueous phase. Due to the increased water uptake related to hydrophilic PEO blocks, the 

phase inversion rate of polymer solution increased. Nevertheless, the preferential 

segregation of Pluronic (PEO segments) into the hydrophilic polymer-lean phase primarily 

affected the release characteristic of the system. Increasing the Pluronic concentration 

(from 3.6 to 7.2 %) resulted in a decrease in the initial release rates as well as a change in 

the overall release profile. On the other hand, at the same Pluronic concentration (5.4 %), 

increasing PEO block length led to a reduced burst release but did not affected the drug 

release rate [84], [107]. Patel et al. [106] however found that Pluronic only reduced the 

burst release of fluorescein form PLGA/NMP system at 2.5 %. No significant difference in 

release profiles was reported when using Pluronic at lower neither higher concentration. 

Another way in which the drug release can be influenced by the change of phase 

inversion rate is by adding a co-solvent. Co-solvents with low water miscibility were 

reported to restrain the phase inversion process, leading to less porous structure and 

subsequently slower burst release. Such investigated co-solvents were glycerol, ethyl 

heptanoate [108] or triacetin [82], [109]. 

Some other authors have investigated the effect of plasticizer additive on the 

release profile of the semi-cristalline polymer PLLA matrix. As expected, the high Tg of 

polymer PLLA reduced from 67.3 oC to 59.4 oC after adding 5 wt. % PEG 4000 into the 

matrix, thus accelerated the polymer degradation onset. Consequently, the burst release of 

heparin from plasticized matrix was suppressed, followed by a faster drug release 
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compared to the matrix without plasticizer. This could be explained by the increased 

hydrophilicity of PEG-plasticized PLLA that improved the solubility of heparin in the 

matrix [110]. Similarly, the addition of PEG 400 into the PLGA/NMP solution led to the 

suppression of the initial release of aspirin. However, the subsequent release of aspirin did 

not change significantly [78]. 

Finally, the addition of an excipient that can interact with the drug is also an 

effective way to modify drug release profile from PLGA system. For instance, the cationic 

chitosan can interact with negatively charged drugs to hinder drug diffusion out of the 

matrix. It has been found that the re-encapsulation of thymosin alpha 1 in chitosan before 

charging into PLGA/NMP ISFI systems effectively slowed down drug release. Not only a 

much lower initial release was reported but the overall continuous release period was also 

prolonged [109]. 

3.3.5.  Injection site 

In vitro – in vivo correlation is an important issue for any drug delivery systems, 

due to the fact that in vitro conditions cannot always imitate the real in vivo condition. 

Especially for ISFI systems, there is no standardized in vitro release method so far, the in 

vitro release set-ups are very different and can lead to significant variations in the obtained 

results. To understand this correlation, there were some studies investigating the influence 

of injection site on ISFI drug release kinetics, including the impact of composition of body 

fluid in vitro as well as the real release profiles in vivo. 

3.3.5.1.  Bath composition 

It is known that there are many potential reactions between the injectable drug 

solution and the surrounding aqueous solution at injection site. For example, acids and 

bases can have pronounced effects on PLGA degradation, subsequently influencing the 

drug release rate. In vitro condition normally employs the phosphate-buffered saline (PBS) 

pH 7.4 as the physiological solution for testing. However, there are other compositions 

existing in the body fluid (enzyme, ester lipid, organic salts…), among that, triglyceride 

and organic salts are found in subcutaneous space.  

The impacts of triglyceride (triacetin) and deoxycholate (an organic bile salt) on the 
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phase inversion and drug release dynamics of lysozyme on PLGA/solvent systems were 

investigated by Brodbeck et al. [83]. It was found that the addition of 6 % triacetin in PBS 

solution resulted in a decrease in the burst release of PLGA/NMP, but still presented as a 

rapid phase inversion, high burst system. Nevertheless, in the PLGA/ethyl benzoate 

system, a much higher initial release and significant elevation in overall protein release 

rate was reported. This could be explained by the fact that the strong, hydrophilic solvent 

NMP-based system was insensitive to the weak, less hydrophilic solvent triacetin 

presented in the bath. Thus, the phase inversion and drug release dynamic of NMP systems 

was not significantly influenced. In contrast, for the hydrophobic solvent ethyl benzoate, 

triacetin could diffuse from the aqueous solution and therefore increased the hydrophilicity 

of the polymer solution. Consequently, overall depot viscosity decreased and water uptake 

increased, leading to faster phase inversion dynamic and faster drug release. Regarding the 

impact of deoxycholate on the PLGA/ethyl benzoate system, a steep increase of protein 

release was reported after addition of this organic salt from 0.5 to 3 wt. %. Whereas no 

change in phase inversion dynamic and water absorption was observed, this alteration was 

supposed to be the result of PLGA erosion at the surface of the injected depot. 

3.3.5.2.  In vitro – in vivo correlation 

To understand the correlation between in vitro and in vivo behavior of PLGA-based 

ISFI, Patel et al. [111] conducted a study, in which implant formation and drug release 

were measured in both conditions. The administration of ISFI in vivo was varied from 

subcutaneous injection to necrotic, non-necrotic and ablated tumor (in rat). The obtained 

results showed that the burst release from ISFI in vivo was significantly greater than in 

vitro for all formulations. Varying in vivo environment led to variations in drug release 

with fastest release in ablated tumor followed by implants in non-necrotic tumor, in 

subcutaneous tissue and finally in necrotic tumor. In addition, ultrasound implant imaging 

method revealed that in vivo ISFI solidified much quicker than what has previously been 

shown in vitro. Thus, the rate of implant formation correlated with the rate of implant drug 

release.  

However, these results are discordant with a previous study, in which little 

difference between solvent exchange and implant precipitation in vitro and in vivo 

(subcutaneous in rat) was found by electron paramagnetic resonance (EPR) method [112]. 
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Regarding the release kinetics, some previous studies reported good agreement between in 

vitro and in vivo release. Liu et al. [109] found that the release of thymosin alpha1 from 

PLGA/NMP/triacetin in vitro was slightly slower than in vivo (subcutaneous in rat). 

Nevertheless, both in vitro and in vivo release followed Higuchi kinetics and the linear 

correlation coefficient between them was 0.9, showing a good correlation. In a precedent 

study, the sustained release of human growth hormone in vivo by injection into 

subcutaneous tissue of rat was obtained from PLGA/ethyl benzoate solution, as in the case 

of in vitro experimentation [80].  

Since there existed controversial results on the correlation between in vitro – in 

vivo release of ISFI, it is so still challenging to conclude about the difference in the 

behavior of ISFI systems in these two environments. Besides the effect of different 

composition of release medium in vitro and in vivo, its amount is also a factor altering 

implant formation and subsequent drug release. Generally, the amount of body fluid in vivo 

is low, thus the depot structure can be varied. The shape of hardened depot is also not 

similar in vivo to in vitro, possibly leading to different degradation rates of PLGA matrix. 

Eliaz et al. [94] showed that increased injection speed of polymer solution into 

subcutaneous tissue can result in the formation of a more compacted structure of implant, 

thus burst release can be reduced in vivo. Therefore, artificial effects should also be taking 

into consideration when comparing the results from in vitro and in vivo tests. 

4.  Research objectives 

The present study aimed to develop new in situ forming implants (ISFI) for the 

treatment of periodontitis with improved adhesive properties. These systems were prepared 

from the biodegradable polymer, polylactic acid (PLA) or poly(lactic-co-glycolic acid) 

(PLGA) dissolved in the biocompatible solvent N-methyl pyrrolidone (NMP). With the 

addition of bioadhesive agents and plasticizers, the developed ISFI would have 

bioadhesiveness and convenient mechanical properties to avoid the risk of premature 

expulsion from periodontal pocket. The release of antibiotic from depot system would be 

controlled for a prolonged period of at least 7 days, simultaneously with the degradation of 

PLGA matrix. However, the underlying drug release profile would be modified due to the 

presence of these additives. Therefore, their effects on the drug release kinetics were 

investigated to compromise both mentioned requirements. 
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The main objectives of this research includes: 

(i) Preparation and characterization of the mechanical properties of ISFI. 

(ii) Investigation of the effects of formulation parameters (the type and content of 

PLGA polymer, bioadhesive agent, plasticizer) on resulting drug release kinetics. 

(iii) Elucidation of underlying drug release mechanisms based on the physico-chemical 

techniques such as: optical microscopy, gel permeation chromatography (GPC), 

electron paramagnetic resonance (EPR), proton nuclear magnetic resonance (1H 

NMR). 

(iv) Evaluation of antimicrobial activity of developed ISFI by microbiological tests on 

the complex periodontal samples and on isolated bacteria from gingival crevicular 

fluid of periodontitis patients.  

!  
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Abstract 

Novel in situ forming implants are presented showing a promising potential to overcome 

one of the major practical hurdles associated with local periodontitis treatment: limited 

adhesion to the surrounding tissue, resulting in accidental expulsion of at least parts of the 

implants from the patients’ pockets. This leads to high uncertainties in the systems’ 

residence times at the site of action and in the resulting drug exposure. In the present study, 

the addition of different types and amounts of plasticizers (acetyltributyl citrate and dibutyl 

sebacate) as well as of adhesive polymers (e.g., cellulose derivatives such as 

hydroxypropyl methylcellulose) is shown to allow for a significant increase in the 

stickiness of poly(lactic-co-glycolic acid)-based implants. The systems are formed in situ 

from N-methyl pyrrolidone-based liquid formulations. Importantly, at the same time, good 

plastic deformability of the implants can be provided and desired drug release patterns can 

be fine-tuned using several formulation tools. The antimicrobial activity of this new type 

of in situ forming implants, loaded with doxycycline hyclate, was demonstrated using the 

agar well diffusion method and multiple Streptococcus strains isolated from the oral 

microflora of patients suffering from periodontitis. 

Keywords: in situ forming implant; periodontitis; local drug delivery; PLGA; doxycycline 
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1. Introduction 

“Periodontitis” can be defined as “a disease that affects the periodontal structures 

and, as a result of interactions between periodontopathogens and the host immune 

response, leads to the destruction of the tooth supporting tissues, periodontal ligament and 

alveolar bone” [1–3]. Briefly, microorganisms colonizing the patients’ periodontal pockets 

are considered as a major factor, causing inflammation and tissue destruction [4]. It seems 

that the microflora in the disease state is different from that in healthy subjects. For 

example, the number of gram negative anaerobic bacteria is likely to be increased and 

certain clinical forms of periodontitis might be associated with specific microbiota [5]. 

Recently, Silva-Boghossian et al. [1] reported that Streptococcus species (such as 

Streptococcus sanguinis) are also associated with suppuration in periodontitis subjects. Up 

to date, the exact mechanisms underlying this disease are not yet fully understood. It is 

hypothesized that: (i) suspected periodontal pathogens produce biologically active 

molecules, which directly attack the host tissue, and/or that (ii) the immune response of the 

host to these pathogens results in the tissue destruction. The consequence of the tissue loss 

is the deepening of the periodontal pockets, and -once the mechanical anchorage of the 

tooth becomes insufficient -the latter is lost. Periodontitis is indeed the main cause for 

tooth loss in adults [6]. 

At present, the standard treatment method of periodontitis is the mechanical 

removal of the bacteria (especially of the bacterial biofilms): a procedure, which is also 

called “root planing”. However, the geometry of the patients’ pockets can be very 

disadvantageous, hindering complete bacterial removal and in various cases the pathogens 

re-colonize the cavities after the treatments. To minimize the risk of this re-appearance of 

the pathogenic microorganisms, the use of different antimicrobial drugs has been proposed 

[4,7,8], in combination with root planing. This includes antibiotics (e.g., tetracycline 

[9,10], doxycycline [11–14], minocycline [15–17], and metronidazole [18,19]) as well as 

antiseptic agents (e.g., chlorhexidine) [20–22]. A major challenge for this type of drug 

treatment is the appropriate administration: (i) Systemic administration leads to the 

exposure of the entire organism to the respective drugs, resulting in potentially severe side 

effects and development of bacterial resistances. (ii) Mouth rinsing does not allow 

achieving sufficient drug concentrations in the periodontal pockets. (iii) Local drug 
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delivery systems, releasing the active agent in a time-controlled manner over a pre-

determined period of time directly at the site of action, are currently considered as the most 

promising approach. 

A variety of local controlled drug delivery systems for periodontitis treatment have 

been proposed, including fibers [23,24], films and strips [25–28], inserts and wafers [29–

32], microparticles [32–34], gels and other semi-solid formulations [35–41], and 

biodegradable in situ forming implants [42]. The latter type of systems provides important 

advantages, namely: (i) Relatively easy administration using standard syringes. 

(ii) Efficient spreading within the periodontal pockets. Consequently, the geometry and 

size of the resulting implants is adapted to each individual cavity (“personalized”). 

(iii) The resulting drug release rate can be time-controlled. (iv) There is no need to remove 

empty remnants. (v) Biocompatible excipients can be used. 

Atridox® is such an in situ forming implant formulation, which is commercially 

available. It consists of the biodegradable and biocompatible matrix former poly(D,L-lactic 

acid) (PLA, 36.7 %), the organic solvent N-methyl pyrrolidone (NMP, 63.3 %), and is 

loaded with 10 % doxycycline hyclate. The PLA is dissolved in the NMP. Upon injection 

into the periodontal pocket, the NMP diffuses into the surrounding environment and water 

penetrates into the formulation. Consequently, the solubility of the PLA decreases and the 

polymer precipitates, entrapping the drug [43–46]. The latter is released at the site of 

action through the degrading polyester matrix during about 1 week. A multicenter clinical 

trial has shown the superior efficacy of Atridox® compared to oral hygiene in patients with 

chronic adult periodontitis [47]. However, a major practical disadvantage of this type of 

systems is the limited adhesion of the in situ formed implants to the environmental tissue. 

Consequently, parts of the devices, or the entire implants can accidentally be expulsed 

from the periodontal pockets. This is in part caused by the non-negligible flow of gingival 

crevicular fluid in these cavities: a few to dozens of microliters per hour have been 

reported in the literature, depending on the severity of disease [48]. Thus, there is a 

considerable uncertainty how much drug really reaches its target site. To reduce this 

uncertainty, the administration of Atridox® is recommended to be accompanied with the 

placement of a periodontal dressing or cyanoacrylate dental adhesive. But this additional 

procedure complicates the administration of the system (increasing the costs and 
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prolonging the time of the intervention), and the efficacy of such “in-place holders” is not 

guaranteed. 

The major aim of the present study is to help overcoming this crucial practical 

hurdle of limited bioadhesion of the in situ formed implants. The idea is to add different 

types of compounds, namely plasticizers and bioadhesive polymers, to the liquid 

formulations in order to improve the adherence of the devices to the surrounding tissue, 

resulting in prolonged and more reliable residence times in the periodontal pockets. In 

addition, the impact of these additives on other key properties of the systems was to be 

investigated, namely their plasticity/elasticity and drug release kinetics. For reasons of 

comparison, the commercially available drug product Parocline® was studied [a “dental 

gel” consisting of hydroxyethylcellulose, magnesium chloride, Eudragit® RS, triacetin, 

glycerol and minocycline (2 %)]. 

2. Materials and methods 

2.1. Materials 

Poly(D,L-lactic-co-glycolic acid) (PLGA, Resomer® RG 502 H; Evonik, 

Darmstadt, Germany); acetyltributyl citrate (ATBC) and dibutyl citrate (DBS) (Morflex, 

Greensboro, NC, USA); hydroxypropyl methylcellulose (HPMC, Methocel® E5, E50; 

Colorcon, Dartford, UK); poloxamer (Lutrol® micro 68, 127) and polyvinylpyrrolidone 

(PVP; Kollidon® 25) (BASF, Ludwigshafen, Germany); hydroxypropyl cellulose (HPC; 

Klucel® LF Pharm) and hydroxyethyl cellulose (HEC; Natrosol® 250 G Pharm) (Hercules, 

Wilmington, DE, USA); N-methyl pyrrolidone (NMP, 99 %), glucose and cysteine 

hydrochloride (Acros organics, Geel, Belgium); doxycycline hyclate (Fagron, Colombes, 

France); sodium metabisulfite (Merck, Darmstadt, Germany); agarose (GenAgarose® LE; 

Genaxxon BioScience, Ulm, Germany); Columbia agar base and agar (Oxoid, 

Basingstoke, UK); defibrinated horse blood (E&O Laboratories, Burnhouse, UK); 

Parocline® (2 % minocycline; Sunstar France, Levallois-Perret, France). 

2.2. Preparation of the liquid formulations 

PLGA (28 %, 32 % or 37 % w/w, based on the total liquid formulation without 

drug) was dissolved in NMP at 25 °C for 30 min under stirring in a glass vial. Optionally, a 
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plasticizer (ATBC or DBS) and a second polymer (10 % or 20 % w/w, based on the PLGA 

mass) was/were added and the mixture vortexed for 3 min, followed by standing for 3 h at 

25 °C. Subsequently, doxycycline hyclate (2 %, 5 % or 10 % w/w, based on the total liquid 

formulation without drug) was added, and the mixture vortexed for 3 min, followed 

standing for 3 h at 25 °C. To eliminate air bubbles, the formulations were ultrasonicated for 

10 min. The formulations were stored at -20 °C and protected from light to avoid drug 

degradation. 

2.3. In situ implant formation and drug release measurements 

One hundred microliters of the respective formulation was injected at the bottom of 

an Eppendorf vial using a standard syringe. One and a half milliliters preheated (37 °C) 

phosphate buffer pH 7.4 (USP 35) was carefully added using a pipette, initiating solvent 

exchange and implant formation. The vials were horizontally shaken at 37 °C at 80 rpm 

(GFL 3033; Gesellschaft fuer Labortechnik, Burgwedel, Germany). At pre-determined 

time points, the bulk fluid was completely withdrawn and replaced with fresh phosphate 

buffer pH 7.4. The drug content in the samples was determined UV-spectrophotometrically 

(λ = 325 nm; UV-1650PC, Shimadzu, Champs-sur-Marne, France). For reasons of 

comparison, the commercially available formulation Parocline® was also studied (note that 

this product contains a different drug: minocycline). In this case, the 100 µL of formulation 

was injected using the supplied syringe and 0.01 % sodium metabisulfite was added to the 

release medium to improve the drug’s stability. The drug content was determined UV-

spectrophotometrically at λ = 324 nm (UV-1650PC). Each experiment was conducted in 

triplicate, and the results are presented as mean values ± standard deviation. 

2.4. Monitoring of dynamic changes in the implants’ mass 

Implants were prepared and treated as described in Section 2.3. In situ implant 

formation and drug release measurements. At pre-determined time points, implants were 

weighed (after removal of excess water by careful blotting with precision wipes) [mass 

(t)]. The mass change in percent was calculated as follows: 

mass change (%) = 100 * [mass (t) – mass (t=0)] / mass (t=0)  (1) 

where mass (t=0) is the initial weight of the formulation used for implant preparation.  
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2.5. Mechanical and adhesive properties 

The mechanical and adhesive properties of the investigated in situ forming implants 

were determined with a texture analyzer (TA.XT.Plus; Stable Micro Systems, Surrey, UK) 

using the experimental set-up schematically illustrated in Figure 1.  

 

Figure'1.! Schematic!presentation!of! the!experimental! set2up!used! to!determine! the!
mechanical!and!adhesive!properties!of!the!investigated!in#situ!forming!implants.!
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Agarose was dissolved in boiling water (0.6 % w/v), and the solutions were cast 

into Petri dishes (diameter = 9 cm). Upon cooling to room temperature, gels formed. At the 

center of the gels, cylindrical holes (diameter = 6 mm) were made and filled with 100 "L 

liquid formulation using a standard syringe and a drop of distilled water. Upon solvent 

exchange, the implants formed. At pre-determined time points, a spherical probe (diameter 

= 5 mm) was driven downwards (at a speed of 0.5 mm/s). Once in contact with the 

implant, the applied force and displacement of the probe were recorded as a function of 

time. When the penetration depth was 1.5 mm, this position was held for 60 s. Then, the 

probe was driven upwards at a speed of 10 mm/s.  

 

!"#$%&'*)!89*)#'1!:/.+#%2()&%;!4)'6+'&!.<(')-%4!=)($!($%!'**1)%4!%0*%+)&%-('1!,%(23*!
(.! 4%(%+&)-%! ($%!&%#$'-)#'1! '-4! '4$%,)5%! *+.*%+()%,! ./! ($%! )-5%,()6'(%4! )&*1'-(,7!
8$%!4)//%+%-(!/.+#%,!'+%!%0*1')-%4!)-!($%!(%0(7!

Figure 2 shows a typical force-time diagram obtained with this type of 

measurements. Here, the maximum deformation force (Fmax deformation) is the force measured 

at maximum probe penetration into the implant. The force measured after the 60 s holding 

time is called “remaining force” (Fremaining). In this study, the “adhesion force” is defined as 

the maximum force measured with this set-up during the upward movement of the probe, 

accounting for the negative sign/direction of the force (Fadhesion). The ratio “Fremaining/Fmax 

deformation” is used as a measure for the elasticity/plasticity of the implant. High values 

indicate high elasticity, low values indicate high plasticity. Each experiment was 

conducted in triplicate, and the results are presented as mean values ± standard deviation. 

!

Fmax deformation 

Fremaining 

Fadhesion 
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2.6. Antibacterial activity 

The in vitro efficacy of the investigated implants against bacteria associated with 

periodontitis was assessed using the agar well diffusion method. Columbia agar was 

prepared from Columbia base, glucose, cysteine hydrochloride, and agar. The systems 

were sterilized in an autoclave (121 oC for 15 min). Prior to plating, Columbia agar was 

enriched with defibrinated horse blood (5 % v/v) and cast into Petri dishes. After cooling 

to room temperature, 0.1 mL of the following bacterial suspensions were inoculated onto 

the agar surface: Streptococcus sp. (1) (D36A12), Streptococcus sp. (2) (D20B9), 

Streptococcus salivarius (D28A9), Streptococcus sanguinis (D28A11), and Streptococcus 

cristatus (D18A2) (which were isolated from samples from periodontal pockets from 

patients suffering from periodontitis). A cylindrical hole (diameter = 6 mm) was 

subsequently made at the center of the agar, and filled with 30 µL of liquid formulation 

using a standard syringe. Upon solvent exchange, the implants formed in situ. The Petri 

dishes were incubated for 4 d under optimum culture conditions (35 °C, anaerobic 

atmosphere) (Whitley A85 workstation, Don Whitley Scientific, West Yorkshire, UK). 

The diameter of the observed bacteria growth inhibition zones around the center of the 

Petri dishes was measured using a ruler. Each experiment was conducted in triplicate, and 

the results are presented as mean values ± standard deviation. 

3. Results and discussion 

3.1. Effects of the addition of plasticizers 

Figure 3a shows the impact of adding 10 % or 20 % ATBC or DBS on the adhesion 

forces of in situ forming implants, based on PLGA RG 502 H (37 % w/w) and loaded with 

10 % doxycycline hyclate. The adhesion force was measured as a function of the exposure 

time to phosphate buffer pH 7.4. For reasons of comparison, also plasticizer-free implants 

(dotted curve) as well as the commercially available product Parocline® were studied. Very 

clearly, the addition of the plasticizers significantly increased the adhesion forces of the 

systems (probably due to the increased mobility of the macromolecules, allowing for 

facilitated interaction with the environment). This can be expected to be a great benefit in 

practice, since accidental expulsion of the implants (or parts thereof) from the periodontal 

pockets of the patient is a major source of uncertainty for all currently available 
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formulations. This can at least partially be attributed to the non-negligible flow of gingival 

crevicular fluid [48]. Consequently, it is uncertain how much drug is delivered for which 

period of time at the site of action. The plasticizer-containing systems show a promising 

potential to overcome this crucial practical hurdle: As it can be seen in Figure 3a, all 

ATBC/DBS containing implants showed much higher adhesive forces than the 

commercially available product Parocline® during the entire observation period. The 

observed time-dependent changes can at least partially be explained by the dynamic 

changes in the systems’ composition (e.g., decreasing NMP content, increasing water 

content), which are particularly pronounced at early time points. Furthermore, it can be 

seen in Figure 3a that increasing the plasticizer level generally leads to increased adhesion 

forces, irrespective of the type of plasticizer. 

In addition to the adhesion/stickiness of the in situ formed implants, also their 

elasticity/plasticity can be expected to play a major role for their residence times in the 

patients’ periodontal pockets: If the system is difficult to deform plastically, the implant is 

unlikely to be able to adapt its geometry to dynamic changes in the periodontal pocket’ 

size and shape with time. A fully elastic implant would force the periodontal pocket to 

keep its geometry and dimensions, which is not desirable. As a measure for the “plasticity” 

of the investigated in situ forming implants, the ratio of the “force remaining at the end of 

the 60 s holding time” (Fremaining) to the “maximum deformation force” (Fmax deformation) was 

used in this study (Figures 1 and 2). A value of “1” indicates that the system is ideally 

elastic (does not change its inner structure during the holding time in a permanent manner 

and fully recovers, once the pressure is released), whereas a low value indicates that the 

implant structure at least partially changes in a permanent manner during the holding time. 

As it can be seen in Figure 3b, all the investigated in situ forming implants exhibit much 

lower Fremaining/Fmax deformation ratios than Parocline®, indicating that they are much more 

easy to deform in a permanent manner and can more likely adapt to changes in the 

patients’ pockets’ geometry. 
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a) 

 

b) 

 

Figure'3.!Effects!of!the!addition!of!different!types!and!amounts!of!plasticizers!on!the:!
a)!adhesion!force,!and!b)!mechanical!properties!of!in#situ!forming!implants,!based!on!
PLGA!RG!502!H!(37!%!w/w)!and!loaded!with!10!%!doxycycline!hyclate.!For!reasons!
of!comparison,!also!Parocline®!was!studied.!

Based on these results, it can be expected that adding ATBC or DBS to PLGA 

based in situ forming implants is likely to allow for a substantial increase in the residence 

time in the periodontal pockets of the patients (due to increased adhesion), while the 

systems provide good deformability. This can be expected to help overcoming a crucial 

current hurdle for efficient local periodontitis treatment. However, the addition of the 

plasticizers might also affect the resulting antimicrobial activity of the implants. For this 

reason, the capability of the different systems to inhibit the growth of bacterial strains 

isolated from periodontal pockets has been studied.   
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3.2. Antimicrobial activity 

Figure 4a shows the inhibition zones observed with in situ forming implants based 

on PLGA RG 502 H (37 % w/w), loaded with 10 % doxycycline hyclate and containing 10 

% or 20 % ATBC or DBS (as indicated). For reasons of comparison, also “plasticizer-free” 

and “plasticizer-free and drug-free” systems have been studied. The investigated bacteria 

(isolated from periodontal pockets from patients suffering from periodontitis) were 5 

Streptococcus strains, two strains could not be identified to the species level, the others 

were Streptococcus salivarius, Streptococcus sanguinis and Streptococcus cristatus. Very 

clearly, all drug-loaded implants were effectively limiting the growth of all these bacteria. 

The measured inhibition zone diameter varied from 2.4 to 3.5 cm, depending on the 

specific bacterial strain. Importantly, the addition of 10 % or 20 % ATBC or DBS did not 

alter the antimicrobial activity of the systems. As an example, Figure 4b shows a picture of 

a Petri dish incubated with Streptococcus sanguinis for 4 d. The white circle in the middle 

shows an in situ formed implant based on PLGA RG 502 H (37 % w/w), loaded with 10 % 

doxycycline hyclate and containing 10 % ATBC. Figure 4c is a zoom on the center of this 

Petri dish, highlighting the inhibition zone and the implant. The negative controls 

(implants free of drug) did not show any inhibition of the proliferation of the bacteria 

(Figure 4a). 

Based on these results, 10 % ATBC was selected for further experiments, showing 

a substantial increase in the adhesive force, while providing good deformability as well as 

a clear antimicrobial activity, and requiring only the addition of a limited amount of 

substance. To further improve the implants’ properties (especially, adhesion to the 

periodontal pocket and plasticity), a second type of polymer was added to the systems. 
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3.3. Effects of the addition of a second type of polymer 

Figure 5a shows the adhesive forces (and dynamic changes thereof with time) of 

doxycycline hyclate-loaded (10 %) in situ forming implants based on PLGA RG 502 H 

(37 %), ATBC (10 %) and 10 % hydroxypropyl methylcellulose (Methocel® E5 or E50), 

hydroxypropyl cellulose (Klucel® LF), hydroxyethyl cellulose (Natrosol® 250 G), 

polyvinylpyrrolidone (Kollidon® 25), or poloxamer (Lutrol® micro 68, 127). These 

polymers have been reported to show a promising potential for bioadhesion, since they can 

be expected to be able to attract water from the gingival crevicular fluid, hydrate and 

facilitate adhesive interactions [49-54]. For reasons of comparison, also implants free of 

these polymers as well as the commercially available product Parocline® were studied. As 

it can be seen, all implants showed much higher adhesive forces than Parocline®. 

Interestingly, some of the 2nd polymers further improved the systems’ adhesion during the 

observation period, namely Methocel® E5 and E50, whereas others decreased the implants’ 

stickiness, namely Lutrol® micro 68 and 127. This might at least partially be attributable to 

differences in the interactions between these compounds with PLGA, ATBC, NMP and 

water. The observed time-dependent changes in the adhesive forces of the systems can at 

least partially be attributed to the time-dependent changes of the implants’ composition: 

NMP leaches out into the surrounding environment and water penetrates into the systems. 

Figure 5b shows the Fremaining/Fmax deformation ratios of the respective in situ forming implants 

as well as time-dependent changes thereof. Again, the two Lutrol® types had a negative 

effect on the systems’ properties with respect to expected prolonged residence times in the 

patients’ periodontal pockets, whereas an increase in plasticity was observed at later time 

points with Natrosol® 250G and Kollidon® 25. The mechanical properties of Methocel®-

free and Methocel®-containing implants were rather similar. In all cases, the plastic 

deformability was significantly superior to that of the commercial reference product 

Parocline®. Since the most promising adhesion results were obtained with the two 

hydroxypropyl methylcellulose types (differing in their molecular weight), while not 

affecting the plasticity of the implants, Methocel® E5 or E50 were selected for all further 

studies. 
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a)            

 

  b) 

 

Figure' 5.! Impact! of! the! addition! of! a! second! type! of! polymer! (indicated! in! the!
diagrams,! 10!%!w/w)! on! the:! a)!adhesion! force,! and! b)!mechanical! properties! of! in#
situ!forming!implants!based!on!PLGA!RG!502!H!(37!%),!ATBC!(10!%),!and!loaded!with!
10!%!doxycycline!hyclate.!For!reasons!of!comparison,!also!Parocline®!was!studied.!

Figure 6a illustrates the impact of the addition of different amounts (10 % and 

20 %) of Methocel® E5 and E50 on the adhesive forces of in situ forming implants based 

on PLGA RG 502 H, ATBC (10 %), loaded with 10 % doxycycline hyclate, but containing 

only 32 % PLGA in the liquid formulation. The change in PLGA concentration from 37 to 

32 % was required to allow for the incorporation of higher amounts of HPMC, otherwise 

the liquid formulations became too viscous for injection. Note that this difference in PLGA 

concentration can be expected to impact the resulting solvent exchange kinetics (NMP 

leaching into the aqueous phase and water penetration into the implants). Thus, some 

caution should be paid when comparing these results (Figure 6) with those shown in 

0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

Time, h

A
dh

es
io

n 
fo

rc
e,

 N

Kollidon® 25

Klucel® LF

Natrosol® 250G

Methocel® E50

Methocel® E5

Lutrol® micro127

Lutrol® micro 68

No 2nd polymer

Parocline®

0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

Time, h

F r
em

ai
ni

ng
/F

m
ax

 d
ef

or
m

at
io

n

Parocline®

Lutrol® micro127
Lutrol® micro 68

Methocel® E5

Methocel® E50

No 2nd polymer

Klucel® LF

Natrosol® 250G

Kollidon® 25



 CHAPTER I 
!

! 67!

Figure 5. Importantly, the implants’ stickiness could be further increased when increasing 

the HPMC content (Figure 6a): Adhesion forces as high as 0.4 N were measured with 20 % 

of the higher molecular weight Methocel®. This might be explained as follows: The longer 

the polymer chains, the easier they can create highly entangled networks. Furthermore, the 

higher the HPMC content, the denser and stronger are the resulting macromolecular 

networks. Again, the dynamic changes in the implants’ stickiness at early time points can 

probably be explained by the dynamic changes in the systems’ composition, due to solvent 

exchange. Note that the presence of the hydrophilic HPMC can be expected to impact the 

rate at which water enters the system and to impact the rate at which NMP leaches into the 

bulk fluid. Importantly, the adhesion forces of the implants remained high during the entire 

observation period.  

However, the presence of significant amounts of a hydrophilic polymer might also 

significantly affect the plasticity/elasticity of the respective in situ formed implants, e.g. 

via altered solvent exchange kinetics (which might affect polymer precipitation and, thus, 

the inner implants’ structure) as well as via the presence of an additional polymeric 

network. This is why also the mechanical properties of the implants (and potential dynamic 

changes thereof with time) were measured. As it can be seen in Figure 6b, the plasticity of 

the systems decreased, especially in the case of Methocel® E50 (the Fremaining/Fmax deformation 

ratio increased). This is in contrast to Figure 5b, showing systems prepared with a higher 

PLGA concentration (37 % versus 32 %). Thus, the difference can probably be explained 

by altered polymer precipitation kinetics, resulting in altered inner implant structures. In 

any case, the Fremaining/Fmax deformation values remained well below the reference values 

observed for the commercially available drug product Parocline®. Again, the observed 

time-dependent changes are likely to be attributable to time-dependent changes in the 

implants’ composition, following solvent exchange. 

In practice, a compromise should be made, taking into account the adhesiveness of 

the system as well as its deformability to optimize the resulting residence times in the 

patients’ periodontal pockets. Of course, in addition to these key properties, also the drug 

release kinetics of the in situ formed implants is of major importance for the systems’ 

performance. This is why the impact of the addition of different amounts and types of 

HPMC on doxycycline release was studied.!
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a) 

 

b) 

 

Figure'6.!Effects!of!the!addition!of!different!types!and!amounts!of!HPMC!(Methocel®!
E5! and! E50)! on! the:! a)!adhesion! force,! b)!mechanical! properties! of! in# situ! forming!
implants,! based! on! PLGA! RG! 502! H! (32!%),! ATBC! (10!%),! and! loaded! with! 10!%!
doxycycline!hyclate.!For!reasons!of!comparison,!also!Parocline®!was!studied.!
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3.4. Drug release kinetics 

Figure 7 shows the drug release kinetics from in situ forming implants based on 

PLGA RG 502 H (32 %), ATBC (10 %) and 10 or 20 % Methocel® E5 or E50 (as 

indicated). The initial drug loading was varied from: a) 10 %, b) 5 %, to c) 2 % 

doxycycline hyclate. For reasons of comparison, also doxycycline release from HPMC-

free systems is indicated (dotted curves). Furthermore, drug release from the commercially 

available product Parocline® is illustrated. However, some care should be taken when 

comparing the results with this commercially available product, since the drug is different: 

minocycline hydrochloride (in Parocline®) versus doxycycline hyclate (in the investigated 

PLGA implants). Very clearly, drug release is sustained during several days from all 

systems. Importantly, the novel in situ forming implants show significantly slower drug 

release than the commercially available product at all drug loadings (Parocline® contains 

2 % drug). Furthermore, it can be seen that the addition of HPMC generally decreases the 

resulting drug release rate, irrespective of its molecular weight and the initial drug loading. 

Interestingly, the addition of shorter chain Methocel® E5 seems to retard drug release more 

effectively than the addition of longer chain Methocel® E50, and there is no clear tendency 

concerning the effect of the amount of added HPMC: 0 % versus 10 % versus 20 %. The 

addition of 10 % HPMC generally results in the slowest drug release patterns, irrespective 

of the Methocel® type and initial drug loading. 

To better understand the observed effects of the addition of HPMC to the in situ 

forming implants on the resulting drug release kinetics, the dynamic changes in the 

systems’ mass were monitored gravimetrically. These changes reflect the solvent exchange 

kinetics: NMP leaching into the bulk fluid and water penetration into the implants. 

Figure 8 shows the experimentally measured changes in the mass of the implants, drug 

release of which is illustrated in Figure 7 (being based on 32 % PLGA RG 502 H, 10 % 

ATBC, 10 % or 20 % Methocel® E5 or E50, and loaded with 2 to 10 % doxycycline 

hyclate). 
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       a) 

 

b) 

 

    c) 

 

Figure'7.!Impact!of!the!addition!of!different!types!and!amounts!of!HPMC!(Methocel®!
E5!and!E50)!on!drug!release!from!in#situ!forming!implants!based!on!PLGA!RG!502!H!
(32!%)! and! ATBC! (10!%),! loaded!with:! a)!10!%,! b)!5!%,! c)!2!%! doxycycline! hyclate.!
For! reasons!of! comparison,! also!minocycline! release! from!Parocline®! is! shown,! but!
note!that!this!is!a!different!drug.!
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a) 

 

b) 

 

c) 

 

Figure'8.!Impact!of!the!addition!of!different!types!and!amounts!of!HPMC!(Methocel®!
E5!and!E50)!on!the!dynamic!changes!in!the!mass!of!in#situ!forming!implants!based!on!
PLGA! RG! 502! H! (32!%)! and! ATBC! (10!%),! loaded! with:! a)!10!%,! b)!5!%,! c)!2!%!
doxycycline!hyclate.!
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As it can be seen, in all cases the implant mass increases with time during the 

observation period, which can be attributed to a more important water penetration into the 

devices than NMP leaching out of the systems. Interestingly, the addition of the 

hydrophilic compound HPMC generally decreases the rate and extent of this increase in 

mass, irrespective of the Methocel® type and initial drug loading. This might eventually be 

attributable to altered polymer precipitation kinetics: The presence of hydrophilic HPMC 

can be expected to facilitate water penetration into the system, leading to accelerated 

polymer precipitation and, hence, altered inner implant structures. Furthermore, it can be 

seen that longer chain Methocel® E50 generally more effectively hinders the mass increase 

at all initial drug loadings than shorter chain Methocel® E5. This correlates with generally 

faster drug release from these systems (Figure 7). Furthermore, there is a rough ranking 

order with respect to the effect of the amount of added HPMC on the rate and extent in 

mass increase of the implants: 0 % > 10 % > 20 %. This is in contrast to the observed drug 

release kinetics, where 10 % Methocel® resulted in the slowest release rates (Figure 7). 

These findings clearly point out: (i) that the underlying mass transport phenomena are not 

straightforward, and (ii) that the addition of different amounts and types of HPMC can be 

effectively used to fine-tune desired drug release kinetics (in addition to improving the 

implants’ stickiness, while providing good deformability). 

As a potential further tool to adjust desired drug release kinetics from the 

investigated in situ forming implants, the impact of varying the concentration of the PLGA 

in the liquid formulation was studied: Figure 9a shows the release of doxycycline from 

implants based on only 28 % (instead of 32 % as in Figure 7) PLGA RG 502 H, 10 % 

ATBC, and loaded with 5 % doxycycline hyclate. Comparing Figure 9a with Figure 7b 

(showing the same type of system, but with a higher PLGA concentration in the liquid 

formulation), it can be seen that the PLGA concentration indeed plays a crucial role for 

drug release. At 28 % PLGA content, the addition of HPMC seems to have only a very 

minor effect, even up to 30 % Methocel® E50 (Figure 9a). This is in contrast to the 

implants prepared with 32 % PLGA, for which HPMC addition impacted drug release 

(Figure 7b). Figure 9b shows the significant impact of adding 20 %, 25 % or 30 % 

Methocel® E50 to implants prepared with 28 % PLGA on their dynamic changes in mass. 

Interestingly, the addition of all three HPMC levels similarly strongly hindered the 

increase in implant mass (compared to HPMC-free systems, dotted curve). This confirms 
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the complex interplay between the two types of polymers (PLGA and HPMC), the 

plasticizer (ATBC), the drug (doxycycline hyclate) and the two solvents (NMP and water). 

Future studies using advanced characterization methods (such as EPR and NMR 

measurements) will aim at a better understanding of the involved mass transport processes. 

a) 

 

b) 

 

Figure'9.!Effects!of!the!addition!of!different!types!and!amounts!of!HPMC!(Methocel®!
E5!and!E50)!on!the:!a)!drug!release!kinetics,!b)!dynamic!changes!in!the!mass!from/of!
in#situ! forming! implants!based!on!PLGA!RG!502!H!(28!%)!and!ATBC!(10!%),! loaded!
with!5!%!doxycycline!hyclate.!
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4. Conclusion 

The newly presented in situ forming implants show an interesting potential for the 

local treatment of periodontitis, since they are much more adhesive than prior art systems, 

while providing appropriate plasticity, the ability to control drug release during several 

days and show antimicrobial activity against relevant Streptococcus strains. In future 

studies the underlying mass transport mechanisms will be further elucidated and different 

types of drug incorporated. 
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Abstract 

In situ forming implant formulations based on poly(lactic-co-glycolic acid) 

(PLGA), acetyltributyl citrate (ATBC), minocycline HCl, N-methyl pyrrolidone (NMP) 

and optionally hydroxypropyl methylcellulose (HPMC) were prepared and thoroughly 

characterized in vitro. This includes electron paramagnetic resonance (EPR), nuclear 

magnetic resonance (1H NMR), mass change and drug release measurements under 

different conditions, optical microscopy, size exclusion chromatography (SEC) as well as 

antibacterial activity tests using gingival crevicular fluid samples from periodontal pockets 

of periodontitis patients. Based on these results, deeper insight into the physico-chemical 

phenomena involved in implant formation and the control of drug release could be gained. 

For instance, the effects of adding HPMC to the formulations, resulting in improved 

implant adherence and reduced swelling, could be explained. Importantly, the in situ 

formed implants effectively hindered the growth of bacteria present in the patients’ 

periodontal pockets. Interestingly, the systems were more effectively hindering the growth 

of pathogenic bacterial strains (e.g., Fusobacterium nucleatum) than of physiological 

strains (e.g., Streptococcus). In vivo, such a preferential action against the pathogenic 

bacteria can be expected to give a chance to the healthy flora to re-colonize the periodontal 

pockets. 

Keywords: In situ forming implant; periodontitis; PLGA; antibacterial activity; 

EPR; NMR. 
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1. Introduction 

Periodontitis is a highly prevalent, chronic inflammatory disease of the periodontium 

[1–3]. It may be defined as “a disease that affects the periodontal structures and, as a result of 

interactions between periodontopathogens and the host immune response, leads to the 

destruction of the tooth supporting tissues, periodontal ligament and alveolar bone” [1]. 

Briefly, microorganisms colonizing the patients’ periodontal pockets are considered as a major 

factor, causing inflammation and tissue destruction [4]. It seems that the bacterial flora in the 

disease state is different from that in healthy subjects. For example, the number of gram 

negative anaerobic bacteria is likely to be increased, and certain clinical forms of periodontitis 

might be related to specific microbiota [5]. For instance, Silva-Boghossian et al. [1] reported 

that Streptococcus strains (such as Streptococcus sanguinis) are associated with suppuration in 

periodontitis subjects. However, up to date, the exact mechanisms underlying this disease are 

not yet fully understood. It is hypothesized that: (i) suspected periodontal pathogens produce 

biologically active molecules, which directly attack the host tissue, and/or that (ii) the immune 

response of the host organism (human body) to these pathogens results in the tissue 

destruction. The consequence of the tissue loss is the deepening of the periodontal pockets, and 

-once the mechanical anchorage of the tooth becomes insufficient -the latter is lost. 

Periodontitis is in fact the main cause for tooth loss in adults [6]. A recent survey estimates that 

47 % of the US adults have mild, moderate or severe periodontitis [7]. The prevalence rate 

even increases to 64 % for adults, which are older than 65 years. 

At present, the standard treatment method of periodontitis is the mechanical removal of 

the bacteria (in particular of bacterial biofilms). This is a procedure also called “root planing”. 

But the geometry of the patients’ pockets can be very challenging for this type of treatment: 

Parts of the pockets might be very difficult to access with the dentist’s instruments. Thus, the 

removal of the bacteria might be incomplete. In theses cases, the remaining pathogenic 

microorganisms have a chance to re-colonize the periodontal pockets soon after the treatment. 

In order to reduce the risk of such pathogen re-appearance, it has been suggested to combine 

mechanical root planing with drug treatments [4,8,9]. However, appropriate delivery of drugs 

to the site of action is difficult, since many compounds do not easily partition into the 

periodontal pockets. In addition, the gingival crevicular fluid (GCF) flow generally rapidly 

eliminates the drug from its site of action [10]. For instance, it has been estimated that the 
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contents in a 5 mm periodontal pocket is renewed 40 times per hour [11]. Thus, using 

conventional administration routes, often high systemic drug levels are required, while the 

drug concentrations at the target site remain low. This leads to potentially severe side effects 

combined with limited or insufficient therapeutic efficacy, despite the availability of highly 

potent drugs, able to act against the pathogenic flora and inflammation. Controlled local drug 

delivery systems offer the possibility to overcome these crucial hurdles of limited drug 

accessibility to the site of action and rapid elimination, releasing the drug in a controlled 

manner directly in the periodontal pockets during prolonged periods of time [4,12–14]. In situ 

forming implants are particularly promising for this purpose, since these are liquid 

formulations, which upon injection into the periodontal pockets form customized solid 

implants: The fluids readily spread within the cavities, assuring that the entire pockets are filled 

with formulation and that the shape and geometry of the resulting implants are fully adapted to 

the characteristics of every single patient and each single pocket. 

In this study, poly(lactic-co-glycolic acid) (PLGA) has been chosen as a matrix former 

for such in situ forming implants for periodontitis treatment, due to its biocompatibility and 

biodegradability. Together with the drug (here minocycline HCl) the polymer is dissolved in 

N-methyl pyrrolidone (NMP). Once injected, the organic solvent diffuses into the surrounding 

environment and aqueous biological fluids from the periodontal pocket penetrate into the 

liquid formulations. Since PLGA is not soluble in water, it subsequently precipitates and 

entraps the drug. This type of advanced local drug delivery systems for periodontitis treatment 

offers various important advantages, including: (1) A relatively easy administration (injection 

of a liquid, compared for instance with the placement of a pre-formed implant). (2) There is no 

need to remove empty remnants upon drug exhaust, due to complete biodegradability of the 

system. (3) The geometry and size of the resulting implants are adapted to the patient’s dental 

pockets (personalized medicine). (4) The incorporated drug is locally released in a time-

controlled manner through the slowly degrading polymeric system. 

However, up to date major challenges remain to be addressed, namely the fact that: 

(i) The adherence of such in situ formed implants to human tissue is yet poor, resulting in pre-

mature and uncontrolled expulsion of at least parts of the implants from the dental pockets due 

to the non-negligible flow of gingival crevicular fluid [15]. This leads to a considerable 

uncertainty with respect to the amount of drug, which really reaches the target site and with 
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respect to the time periods during which therapeutic drug levels are provided. (ii) The 

elasticity/plasticity of the formed implants is generally not adapted to this type of local 

administration: Systems, which are difficult to deform plastically are not able to adapt their 

geometry to dynamic changes in the periodontal pocket’ size and shape with time. Also, fully 

elastic implants force the periodontal pockets to keep their geometry and dimensions, which is 

not desirable. It has recently been proposed to add plasticizers, such as acetyltributyl citrate 

(ATBC) as well as a second type of polymer, such as hydroxypropyl methylcellulose (HPMC) 

to the liquid formulations in order to improve the adhesive and mechanical properties of the 

resulting implants [16]. However, yet it is unclear how these additives affect the underlying 

physico-chemical phenomena involved in implant formation and the control of drug release, 

and whether the antibacterial activity of the implants is altered. 

It is well documented that the physical and chemical processes in the formation of 

implants based on such solvent induced phase separation are complex and that the impact of 

the composition of the systems on drug release is not straightforward [17–22]. For example, 

McHugh and co-workers reported that the addition of polyvinylpyrrolidone (PVP) accelerates 

the phase separation and increases the release rate of lysozyme at early time points, but does 

not significantly affect the water influx rate and implant morphology [23]. Increasing the 

polymer concentration in the formulation led to a decrease in the phase separation rate, a 

decreased water uptake rate and significant changes in the implants’ porosity. The addition of 

triacetine also slowed down the phase separation rate and altered the implants’ morphology, 

resulting in decreased drug release rates. Interestingly, the type of release medium (water 

versus phosphate buffer versus horse serum) did not affect the phase separation and water 

uptake rates as well as the implants’ morphology to a noteworthy extent. In a later study, they 

also showed that the addition of Pluronic® led to faster phase separation and increased water 

uptake, but decreased lysozyme release rates [24]. Importantly, advanced physico-chemical 

characterization techniques, such as electron paramagnetic resonance (EPR) and nuclear 

magnetic resonance (1H NMR) measurements can be expected to be able to provide highly 

valuable new insight into the underlying mass transport phenomena [25,26].  

The aim of this study was to better understand the physico-chemical processes 

involved in the formation of PLGA-based implants and the control of drug release. EPR, 1H 

NMR, mass change and drug release measurements under different conditions, optical 
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microscopy and size exclusion chromatography (SEC) were applied. Particular attention was 

paid to: (i) the impact of adding HPMC to the formulation, which improves the adhesive forces 

and mechanical properties of the implants, as well as (ii) the antibacterial activity of the 

systems, using gingival crevicular fluid samples, obtained from periodontal pockets of 

periodontitis patients.  

2. Materials and methods 

2.1. Materials 

  Poly(D,L-lactic-co-glycolic acid) (PLGA, Resomer® RG 504 H; Evonik, 

Darmstadt, Germany); acetyltributyl citrate (ATBC; Morflex, Greensboro, NC, USA); 

hydroxypropyl methylcellulose (HPMC, Methocel® E50; Colorcon, Dartford, UK); N-

methyl pyrrolidone (NMP, 99 %), glucose and cysteine hydrochloride (Acros organics, 

Geel, Belgium); minocycline hydrochloride dihydrate (minocycline HCl; Fagron, 

Colombes, France); ascorbic acid (Cooper, Melun, France); sodium metabisulfite (Merck, 

Darmstadt, Germany); dimethyl sulfoxide (DMSO, 99.5 %; Gruessing, Filsum, Germany); 

tetrahydrofuran (THF, 99.99 %, analytical reagent grade, stabilized with 0.025 % 

butylhydroxytoluene), acetonitrile (HPLC grade) (Fisher Scientific, Loughborough, UK); 

oxalic acid (Sigma-Aldrich, Saint-Quentin Fallavier, France); ethylenediamine tetraacetic 

acid (EDTA; VWR, Haasrode, Belgium); 4-hydroxy-tempo benzoate (TB; Sigma-Aldrich, 

Seelze, Germany); agarose (GenAgarose® LE; Genaxxon BioScience, Ulm, Germany); 

Columbia agar base and agar (Oxoid, Basingstoke, UK); defibrinated horse blood (E&O 

Laboratories, Burnhouse, UK); Parocline® (2 % minocycline; Sunstar France, Levallois-

Perret, France). 

2.2. Preparation of the liquid formulations 

PLGA (25 % w/w, based on the total liquid formulation without drug) was 

dissolved in NMP at 25 °C in a glass vial (30 min stirring). Optionally, the plasticizer 

ATBC (10 % w/w, based on the PLGA mass) and/or HPMC (10, 15, 20, 25 or 30 % w/w, 

based on the PLGA mass) was/were added and the mixture was vortexed for 3 min, 

followed by standing for 3 h at 25 °C. Subsequently, minocycline HCl (2 % w/w, based on 

the total liquid formulation) and ascorbic acid (0.01 % w/w, based on the total liquid 

formulation; minimizing drug oxidation) were added, and the mixture was vortexed for 
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3 min, followed by standing for 3 h at 25 °C. To eliminate air bubbles, the liquids were 

ultrasonicated for 10 min. The formulations were stored at -20 °C and protected from light 

to avoid drug degradation. 

2.3. In situ implant formation and drug release measurements 

Agitated vials: One hundred microliters of the respective formulation was injected 

at the bottom of an Eppendorf vial using a standard syringe. One and a half milliliters 

preheated (37 °C), degassed phosphate buffered saline pH 7.4 (Ph. Eur. 7) containing 0.01 

% sodium metabisulfite (to minimize drug oxidation) was carefully added using a pipette, 

initiating solvent exchange and implant formation. The vials were horizontally shaken at 

37 °C at 80 rpm (GFL 3033; Gesellschaft fuer Labortechnik, Burgwedel, Germany). At 

pre-determined time points, the bulk fluid was completely withdrawn and replaced with 

fresh medium. The drug content in the samples was determined UV-

spectrophotometrically (λ = 324 nm; UV-1650PC, Shimadzu, Champs-sur-Marne, France) 

(degraded and non-degraded drug) and by HPLC (non-degraded drug). The HPLC system 

was equipped with a ProStar 210 pump, a ProStar 410 auto-sampler, a ProStar 335 

Photodiode Array Detector (Varian, Agilent Technologies, Les Ulis, France). A Kinetex 

column C8 (2.6 µm, 100 x 4.6 mm; Phenomenex, Le Pecq, France) was used for the 

separation. The mobile phase consisted of 22 % acetonitrile and 78 % of an aqueous 

solution (deionized water) of oxalic acid (0.02 M) and EDTA (0.0005 M), which was 

adjusted to pH 2.8 with aqueous sodium hydroxide solution (2 M). The operating mode 

was isocratic, the flow rate 1.0 mL/min, the injection volume 20 µL and the drug was 

detected by UV-Vis spectrophotometry at 351 nm. For reasons of comparison, also the 

commercially available formulation Parocline® was studied. In this case, the 100 µL of the 

formulation was injected using the supplied syringe. 

Flow-through cells: A continuous flow-through system, as described in detail by 

Aubert-Pouessel et al. [27], was used. Briefly, 100 µL of the respective formulation was 

filled into an empty Omega column (4.6 x 50 mm; Upchurch Scientific, Oak Harbor, WA, 

USA) using a standard syringe. Degassed phosphate buffered saline pH 7.4 (Ph. Eur. 7) 

containing 0.01 % sodium metabisulfite was pumped through the column at 44 µL/h (PHD 

2000 syringe pump; Harvard Apparatus, Holliston, MA, USA), simulating the continuous 

gingival fluid flow in patients’ periodontal pockets [15]. The column was maintained at 
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37 °C with a water bath. The eluent was cooled to 4 °C to minimize minocycline 

degradation and analyzed by UV and HPLC as described above. 

All tests were performed in triplicate and the results were shown as mean values ± 

standard deviation. 

2.4. Monitoring of dynamic changes in the implants’ mass 

Implants were prepared and treated as described in Section 2.3. Agitated vials. At 

pre-determined time points, implants were weighed [mass (t)]. The mass change in percent 

was calculated as follows: 

mass change (%) (t) = 100 * [mass (t) – mass (t=0)] / mass (t=0)  (1) 

where mass (t=0) is the initial weight of the formulation used for implant preparation.  

2.5. Electron paramagnetic resonance (EPR) measurements 

In situ forming liquid implant formulations were prepared as described in section 

2.2. The spin probe 4-hydroxy-tempo benzoate (TB) was dissolved in these liquids 

(1 mM). Two hundred µL of the formulations were placed into cylindrical holders, which 

were immerged into 3 mL phosphate buffered saline pH 7.4 (Ph. Eur. 7). As illustrated in 

Figure 1a, only the top circular surface of the cylindrical holder was open, the other 

surfaces were impermeable. The system was kept constant at 37 °C and horizontally 

shaken at 30 rpm (GFL 1083; Gesellschaft fuer Labortechnik, Burgwedel, Germany). At 

pre-determined time points, samples (implants with holders) were withdrawn and analysed 

using an EPR L-band spectrometer (MagnetTech, Berlin, Germany), operating at a low 

microwave frequency (1 GHz). To create EPR images, twenty-five scans were 

accumulated using the following parameters: field centre = 48.9 mT; scan range = 8 mT; 

scan time = 40 s. For the measurement of EPR spectra, a scan range of 10 mT and scan 

time of 100 s were applied. The typical EPR parameters were calculated from the recorded 

EPR spectra or spectral cut of EPR images (Figures 1b and 1c). 
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2.6. 1H NMR measurements 

One hundred "L of the respective formulation was injected at the bottom of an 

Eppendorf vial filled with 1.5 mL phosphate buffered saline pH 7.4 (Ph. Eur. 7), using a 

standard syringe. The vials were kept constant at 37 °C and horizontally shaken at 30 rpm

(GFL 1083). At predetermined time points, implants were withdrawn, carefully dried with 

a tissue paper and subsequently dissolved in DMSO (1:10 w/v). NMR spectra were 

recorded with a 400 MHz 1H NMR spectrometer (Varian Gemini 2000; Varian, Agilent 

Technologies, Waldbronn, Germany). 

2.7. Optical microscopy 

Implants were prepared as described in Section 2.3. At predetermined time points, 

implants were withdrawn and freeze-dried (Epsilon 2-4 LSC; Christ, Osterode, Germany). 

! 
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The process consisted of 3 phases: (i) freezing at -45 °C for 2 h; (ii) primary drying at 

0.014 mbar and -9 °C shelf temperature for 10 h; (iii) secondary drying at 0.0014 mbar and 

20 °C shelf temperature for 10 h. Cross-sections were obtained with a knife and analysed 

with a SMZ-U zoom 1:10 microscope (Nikon, Tokyo, Japan), equipped with a TV lens C-

0.45x (Nikon) and a digital camera AxioCam ICc1 (Carl Zeiss, Oberkochen, Germany). 

2.8. PLGA degradation 

The weight average molecular weight (Mw) of PLGA was determined by size 

exclusion chromatography (SEC) using a Varian Prostar HPLC System (Varian, Agilent 

Technologies, Les Ulis, France) consisting of a Galaxie system controller, a ProStar 410 

autosampler, a Prostar 230 pump and a Varian 356-LC RI detector. Freeze-dried implants 

were dissolved in tetrahydrofuran (0.3 % w/v) prior to the measurements. Fifty µL samples 

were injected into a PLGel pre-column (5 µm, 50 x 7.5 mm), which was followed by a 

PLGel High performance GPC column (5 µm, MIXED-D, 300 x 7.5 mm) (Polymer 

laboratories, Varian). The mobile phase was tetrahydrofuran, the flow rate 1.0 mL/min, the 

column temperature 35 °C. Polystyrene narrow molecular weight standards (Polystyrene 

calibration kit S-M2-10, 580 – 271,800 Da; Agilent Technologies) were used for 

calibration. The Mw was calculated using the Cirrus GPC software (Agilent 

Technologies). 

2.9. Microbiological tests 

Samples from periodontal pockets of periodontitis patients: Thirteen patients (4 

women, 9 men; from 35 to 69 years old) were enrolled in this study (14 periodontal 

pockets were sampled). They were admitted at the clinical site of the Faculty of Dental 

Surgery, University of Lille, France. Participants did not receive any hygienic treatment at 

the teeth with periodontitis prior to sampling. Sterile paper points (Roeko, Coltene, 

Germany) were carefully inserted into each periodontal pocket (1 paper point per pocket) 

and left for 10 s to allow for absorption of gingival crevicular fluid (GCF). Each paper 

point was placed into an Eppendorf vial, filled with 1.5 mL of Ringer Cysteine. 

Independently, 10 paper points were weighed before and after sampling to estimate the 

mean amount of GCF absorbed (5.7 ± 0.6 mg) to allow for the quantification of bacteria. 

Further tenfold dilutions (-2 to -7) of these GCF solutions (-1) were obtained for 
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microbiological testing. 

Susceptibility of periodontal bacteria to minocycline: Columbia agar was prepared 

from Columbia agar base, glucose, cysteine hydrochloride, and agar. The systems were 

sterilized in an autoclave (121 °C for 15 min). Prior to plating, Columbia agar was 

enriched with defibrinated horse blood (5 % v/v), without or with minocycline (32 mg/L) 

and cast into Petri dishes. After cooling to room temperature, 0.1 mL of diluted GCF 

solutions (from -1 to -7) was inoculated onto the agar surface (35 °C, anaerobic 

atmosphere; Whitley A85 workstation, Don Whitley Scientific, West Yorkshire, UK). 

After 5 d of incubation, the number of bacterial colonies was counted for each Petri dish, 

the predominant colonies were subcultured and identified to enlarge the strain collection, 

and the mean log CFU/g was calculated. 

Antibacterial activity of the in situ forming implants: The in vitro efficacy of the 

investigated implants was assessed by their antibacterial activity against the whole 

periodontitis samples and against isolated bacterial strains, using the agar well diffusion 

method. Columbia agar was enriched with horse blood (5 % v/v) and cast into Petri dishes. 

After cooling to room temperature, 0.1 mL of diluted GCF (dilution -2 and -3) or isolated 

bacterial suspension was inoculated onto the agar surface. A cylindrical hole (diameter = 

6 mm) was subsequently made at the center of the agar, and filled with 30 µL of liquid 

formulation using a standard syringe. Upon solvent exchange, the implants formed in situ. 

The Petri dishes were incubated for 4 d (isolated bacterial strains) or 5 d (diluted entire 

GCF samples) under optimum culture conditions (35 °C, anaerobic atmosphere; Whitley 

A85 workstation). The diameter of the observed bacteria growth inhibition zones around 

the center of the Petri dishes was measured using a ruler. Each experiment was conducted 

in triplicate, the results are presented as mean values ± standard deviation. 

Minimal inhibitory concentration (MIC) of minocycline on selected strains: The 

MIC of minocycline was determined using the broth dilution method [28]. One hundred 

µL of Wilkins-West broth were pipetted into each well of a 96-well plate, except for the 

first column. A minocycline stock solution (64 mg/L) was prepared in the same broth, 

200 µL of which were introduced into the first column of microplate wells. After thorough 

mixing, 100 µL of the first well was added to the second well and so on. Finally, 100 µL of 

bacterial suspension in Ringer Cysteine solution was introduced into each well, leading to 
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2-fold dilution of the drug concentration (1-fold dilution in the first well). At the end, each 

well row contained a dilution series of the drug from the left to the right, with 

progressively lower concentrations (decreasing from 32 to 0.016 mg/L). After incubation 

at 35 °C under anaerobic conditions (Whitley A85 workstation), the lowest concentration 

of drug that prevented visible growth of bacteria was determined as the MIC. According to 

the 2013 guideline of the Société Française de Microbiologie (SFM), a microorganism is 

called “susceptible” to minocycline if MIC ≤ 4 mg/L and “resistant” to minocycline if MIC 

> 8 mg/L [29]. For these tests, the bacterial strains were provided from the collection of the 

Laboratory of Bacteriology of the College of Pharmacy, University of Lille, France (also 

obtained from patients suffering from periodontitis). 

3. Results and discussion 

3.1. Impact of HPMC addition on the implants’ key properties 

Significant implant swelling with time can lead to accidental and premature 

expulsion of at least parts of the formulations from the patients’ periodontal pockets. 

Hence, ideally, system swelling should remain limited with time. Figure 2 shows the 

experimentally measured changes in the mass of implants prepared with formulations 

containing 25 % PLGA, 10 % ATBC and optionally up to 30 % HPMC, upon exposure to 

phosphate buffer. For reasons of comparison also the behavior of the commercially 

available drug product Parocline® is illustrated. Very clearly, Parocline® exhibits a 

substantial increase in system mass with time, indicating very important water uptake. This 

is consistent with the visually observed significant swelling of the gel and can at least 

partially explain the reported premature expulsion of parts of this formulation from the 

patients’ pockets. Very importantly, the addition of increasing amounts of HPMC to the 

investigated PLGA-based implants substantially decreased the increase in system mass 

(Figure 2), which is highly promising with respect to the in vivo performance of these 

devices. 
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Figure' 2.! Effects! of! the! addition! of! different! amounts! of! HPMC! (indicated! in! the!

figure)!on!the!dynamic!changes!in!the!mass!of!in"situ!forming!implants!prepared!with!

formulations! containing! 25!%! PLGA! and! 10!%! ATBC,! upon! exposure! to! phosphate!

buffer!(agitated!vial!setPup).!

Furthermore, it has been reported that the addition of HPMC to PLGA implants 

increases the latter’s stickiness [16]. However, the presence of this hydrophilic polymer 

can also be expected to impact other implant characteristics, its drug release kinetics. The 

effects of adding different amounts of HPMC to liquid formulations based on PLGA 

(25 %) and ATBC (10 %) on the resulting minocycline release kinetics from the in situ 

formed implants are shown in Figure 3 (2 % initial drug loading). In Figure 3a, the total 

amount of drug release is illustrated, in Figure 3b the percentages of degraded drug in the 

withdrawn samples. Importantly, minocycline is not stable in aqueous solution. This is not 

a concern in vivo, since the living body eliminates the drug anyway, once it is released. 

The decisive question is whether the observed in vitro drug degradation occurs within the 

implants, or only once the drug is released into the bulk fluid. As it can be seen in 

Figure 3b, the percentage of degraded drug in the withdrawn samples strongly depended 

on the sampling frequency: When the sampling interval was short, the percentage of 

degraded drug was much lower compared to large sampling intervals. This is a good 

indication for the fact that a major part of minocycline degradation occurred outside of the 

implants. Within the implants, the acidic microenvironment induced by PLGA degradation 

may be responsible for a part of drug degradation. However, this limit can be minimized in 

practice considering the tinier volume of periodontal pockets (up to 1.5 µL [15]) than in 

vitro set-up (100 µL). Interestingly, the addition of HPMC to the implants led to increasing 
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release rates. This is in contrast to previously observed moderate to pronounced decreasing 

release rates when adding HPMC to PLGA-based in situ forming implants containing the 

drug doxycycline [16]. For reasons of comparison, also minocycline release from the 

commercial product Parocline® was measured (filled circles in Figure 3a). As it can be 

seen, drug release from all the investigated PLGA-HPMC implants was slower than from 

the commercial product. This can be expected to be advantageous in practice, combined 

with the improved adhesion and reduced system swelling described above. To better 

understand the underlying mass transport mechanisms, also EPR and NMR spectroscopy 

were applied to characterize the systems and dynamic changes thereof during drug release. 

!

 

Figure' 3.! Drug! release! from! in" situ! forming! implants! prepared! from! liquid!

formulations! based! on! PLGA! (25!%),! ATBC! (10!%)! and! 2!%! minocycline! HCl:!

a)!cumulative! total! drug! release,! b)!percentage! of! degraded! drug! within! the!

withdrawn!samples!(agitated!vial!setPup).  
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3.2. Monitoring of the in situ implant formation by EPR and 1H NMR 

It is well known that the spectral splitting of nitroxyl radicals is sensitive to both, 

the molecular motion (microviscosity of the surrounding) and the polarity of their direct 

environment [30]. In this study, the spin probe 4-hydroxy-tempo benzoate (TB) was 

initially dissolved in the different liquid formulations, which formed implants in situ. Upon 

contact with phosphate buffer, solvent exchange led to substantial changes in the 

environment of this probe. To monitor these changes, the dependence of the hyperfine 

splitting (2aN) on the composition of a “NMP:phosphate buffer” mixture was studied. As it 

can be seen in Figure 4a, the 2aN values increased linearly (R2 = 0.9886) with increasing 

buffer content (polarity). Based on this dependence, 2aN values measured in in situ forming 

implants can be used as indicators for the solvent exchange process. 

      

 

Figure' 4.! a)!Polarity! dependence! of! the! hyperfine! splitting! of! TBPloaded!

“NMP:phosphate!buffer”!mixtures.!b)!Spatially! resolved!profiles!of!TBPloaded! in" situ!

forming!implants.!!
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Figure 4b shows the experimentally determined hyperfine splitting of TB in in situ 

forming implants prepared with formulations based on PLGA (25 %), ATBC (10 %) and 

optionally HPMC (20 %). The set-up schematically illustrated in Figure 1a was used, the 

spatial position is plotted on the x-axis: 3.1 mm corresponds to the interface “formulation – 

release medium”, 0 mm corresponds to the bottom of the cylindrical holder. The 

measurements were made before exposure to the phosphate buffer (t = 0), as well as after 

1, 4 and 8 h exposure. As it can be seen, the 2aN values were about position-independent 

and very similar at t = 0 for HPMC-free and HPMC-containing systems: around 32.3 G. 

This is consistent with the results shown in Figure 4a, indicating 0 % phosphate buffer for 

this 2aN value. Importantly, after 1 h, clear spatial hyperfine splitting gradients were visible 

in both types of formulations: The 2aN values decreased from about 33.3 to 32.7 G from 

the interface “formulation – release medium” to the bottom of the cylindrical holder. This 

indicates that water started to penetrate into the formulations and that surface near regions 

were much more hydrated than regions far from the surface at this time point. 

Interestingly, there was still no major difference between HPMC-containing and HPMC-

free systems. At 4 h exposure time, much higher water contents were observed than after 

1 h, and there were still spatial gradients visible between the surface and the bottom of the 

system, although less steep. Importantly, HPMC-containing implants showed higher water 

contents than HPMC-free implants at this time point (filled versus open triangles), 

indicating that the presence of HPMC facilitates the penetration of water into the devices. 

At 8 h, the water content in HPMC-containing implants is about homogeneous throughout 

the device (filled diamonds) and, again, higher than the water content in HPMC-free 

implants. The latter still exhibited a spatial concentration gradient (open diamonds). This 

further confirms that the presence of the hydrophilic polymer HPMC facilitates the 

penetration of water into the in situ forming implants, especially after a couple of hours, 

when the systems become more and more hydrophobic due to PLGA precipitation. 

Figure 5a shows the 1H NMR spectra of a liquid in situ forming implant 

formulation containing PLGA (25 %), ATBC (10 %), NMP, minocycline HCl (2 %), 

ascorbic acid (0.01 %), and HPMC (20 %) before exposure to the release medium (t = 0). 

Figure 5b shows the same system, but after 3 d exposure to phosphate buffer pH 7.4. Table 

1 lists the peak assignments for these spectra (obtained with reference spectra of the 

different pure compounds). Clearly, upon exposure to the phosphate buffer, the peak 
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intensity of NMP decreased, whereas the peak intensity of water increased (Figure 5b 

versus 5a). 

!

!

Figure' 5.! 1H! NMR! spectrum! of:! a)!a! liquid! in" situ! forming! implant! formulation!

containing! PLGA! (25!%),! ATBC! (10!%),! NMP,! minocycline! HCl! (2!%),! ascorbic! acid!

(0.01!%),! and!HPMC! (20!%);! (b)!the! system! shown! in! a),! but! after! 3!d! exposure! to!

phosphate!buffered!saline!pH!7.4!(agitated!vial!setPup).!
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peaks!observed!in!the!1H!

NMR!spectra!of!the!in"situ!

forming!implant!formulations!

shown!in!Figure!5!(the!

implants!were!dissolved!in!

DMSO!to!obtain!the!NMR!!!!!!!!!!!!!
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Figure 6 shows the dynamic changes in these peak intensities for HPMC-free and 

HPMC-containing systems as a function of the exposure time to the release medium. 

Clearly, the peak intensity of NMP (and, thus, the amount of NMP remaining within the in 

situ forming implant) decreases much more rapidly in HPMC-containing devices 

compared to HPMC-free formulations (black versus white bars in Figure 6a). At the same 

time, the water penetration rate into the system is initially increased in the presence of 

HPMC, as it can be seen in Figure 6b at 1 d. This is consistent with the above described 

EPR measurements (e.g., Figure 4) and confirms that the presence of this hydrophilic 

polymer facilitates water uptake into the formulation. However, at much later time points 

(e.g., 3 d), the water content of HPMC-containing devices is lower than the water content 

of HPMC-free systems (Figure 6b). This might be explained by the fact that HPMC is well 

known to be able to form hydrogels, which can limit mass transport [31] and is in good 

agreement with the observed dynamic changes in implants’ mass (Figure 2). 

 

Figure'6.!Dynamic!changes!in!the!peak!intensity!of:!a)!NMP!and!b)!water!observed!by!
1H!NMR!spectroscopy!in!in"situ!forming!implant!formulations!based!on!PLGA!(25!%),!

ATBC!(10!%),!NMP!and!optional!HPMC!(20!%)!upon!exposure!to!phosphate!buffer.!
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Thus, the EPR and 1H NMR measurements clearly showed that the addition of 

HPMC significantly affected the solvent exchange kinetics in in situ forming implants: The 

leaching of NMP out of the formulations is facilitated, whereas the penetration of water 

into the devices is accelerated at early time points (leading to faster polymer precipitation), 

but slowed down at late time points. Furthermore, the building up and disappearance of 

water concentration gradients within the systems could be evidenced. 

3.3. Optical microscopy 

Figure 7 shows optical microscopy pictures of cross-sections of in situ formed 

implants after different exposure times to the release medium (as indicated). The systems 

were based on PLGA, ATBC, minocycline HCl and optionally contained HPMC. Note that 

the structures on the left hand side collapsed during sample preparation. Since the implants 

were prepared using the agitated vial set-up, they all have a cone-like shape (the geometry 

of the bottom of an Eppendorf vial). Clearly, the presence of HPMC within the formulation 

led to a rapid PLGA precipitation throughout the system: an about homogeneous, highly 

porous inner implant structure is visible on the right hand side of Figure 7. In contrast, 

highly heterogeneous inner structures were visible in HPMC-free implants (Figure 7, left 

hand side): A more dense outer shell can be distinguished from a highly porous, not even 

yet completely solidified inner core at early time points. These very marked differences in 

the implants’ morphology are in good agreement with the above discussed water 

penetration kinetics into the systems (e.g., Figure 4b) as well as NMP diffusion kinetics out 

of the systems (e.g., Figure 6a), and can (at least partially) explain the observed drug 

release kinetics (Figure 3): In the presence of the hydrophilic polymer HPMC, water 

penetration into and NMP transport out of the formulation is facilitated, leading to rapid 

PLGA precipitation throughout the device and a highly porous system structure, resulting 

in high drug mobility within the implant and, thus, increased release rates. In contrast, in 

the absence of HPMC, the system is less hydrophilic, water penetration into the 

formulation and NMP transport out of the system is slowed down, leading to the formation 

of a denser outer system shell and a more slowly solidifying inner core. Drug transport 

through the denser outer PLGA shell is effectively hindered, leading to reduced drug 

release rates.  
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However, care should be taken when drawing conclusions from in vitro 

experiments, especially in the case of PLGA-based systems and in situ forming devices, 

since the surrounding environment might potentially significantly affect the polymer 

precipitation kinetics and the overall mass transport processes [32–34]. For these reasons, 

the same liquid formulations were also used to prepare in situ forming implants in a flow-

          0 % HPMC 20 % HPMC  

1 d 

5 d 

7 d 
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through cell set-up [27]. Briefly, the liquids were filled into empty HPLC columns, 

through which the release medium was pumped at 44 µL/h. The idea was to better simulate 

the continuous gingival fluid flow in patients’ periodontal pockets. As it can be seen in 

Figure 8a, the type of release set-up tremendously affected the resulting drug release 

kinetics: (1) In HPMC-free systems, drug release was much faster in flow-through cells 

than in agitated vials, whereas (2) in HPMC-containing systems drug release was very 

similar for both types of release set-ups. (3) The addition of HPMC significantly 

accelerated drug release in agitated vials and had only a moderate effect in flow-through 

cells. To better understand these phenomena, also the PLGA degradation kinetics in these 

systems as well as the latter’s morphology were monitored (Figures 8b and 9). 

As it can be seen in Figure 8b, PLGA degradation was much faster when using the 

agitated vial set-up compared to the flow-through cell set-up. Also, the addition of HPMC 

led to a slight slowing down of polymer degradation, irrespective of the experimental 

conditions. Comparing Figures 9 and 7, it becomes visible that the shape of the implants 

was very much dependent on the experimental set-up: the implants were “cone”-shaped in 

the case of agitated vials (please note the collapse in HPMC-free systems during sample 

preparation), and more “film”-like in the case of flow-through cells. This difference is due 

to the difference in the surrounding geometry during implant formation (cone-shaped 

bottom of an Eppendorf vial versus inner cylinder of an HPLC column, through which the 

release medium flows). Obviously, this difference in device geometry fundamentally 

affects the resulting polymer precipitation kinetics, PLGA degradation kinetics and drug 

release rates. In the case of flow-through cells, the film-like geometry leads to a high 

surface area in contact with the release medium and rapid polymer precipitation through 

the implants in all cases (HPMC-free and HPMC-containing systems), because the 

distances to be overcome by the water and NMP are short. This leads to a relatively 

similar, highly porous inner implant structure, irrespective of the presence of HPMC. The 

short pathways to be overcome and high system porosity lead to high and similar drug 

release rates (Figure 8a, top curves). These observations are also in good agreement with 

the relatively slow PLGA degradation rates observed in flow-through cells (Figure 8b), 

since the creation of acidic microclimates within the implants is unlikely. In contrast, in the 

case of agitated vials, the diffusion pathways to be overcome by acids generated upon 

PLGA degradation are much longer within cone-shaped implants. This renders the creation 
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of acidic microclimates much more likely, resulting in more pronounced autocatalytic 

effects [35–39] and, thus, accelerated polymer degradation, as it can be seen in Figure 8b. 

The longer diffusion pathways and the formation of the above discussed denser outer 

implant shells in the case of HPMC-free formulations are responsible for the observed 

slow release from these systems in agitated vials (Figure 8a). 

 

 

Figure' 8.! Impact! of! the! experimental! setPup! on:! a)!drug! release,! and! b)!PLGA!

degradation! from/of! in" situ! forming! implants! (25!%! PLGA,! 10!%! ATBC,! 2! %!

minocycline!HCl),!optionally!containing!20!%!HPMC.!
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3.4. Antimicrobial activity  

First, the susceptibility of the bacteria present in the periodontal pockets of patients 

suffering from periodontitis against minocycline was studied. For this purpose, gingival 

crevicular fluid (GCF) samples were incubated in the presence or absence of minocycline 

on Columbia agar enriched with defibrinated horse blood in Petri dishes. After 5 d, the 

number of bacterial colonies was counted. Table 2 shows the mean log CFU (Colony 

Forming Units) per gram GCF, observed with 14 samples from deep periodontal pockets 

of 13 patients. As it can be seen, there was no obvious relation between the pockets’ depth 

and the CFU/g value, indicating the diversity of the bacterial levels in the different 

subjects. No colonies formed upon incubation of GCF samples on minocycline-loaded agar 

in 12 samples. Two samples showed growth of 1 colony, identified as Candida pelliculosa 

and Candida albicans, which are fungi. Thus, the calculated mean log CFU/g values for 

bacteria were ≤ 3.42 (our detection level) for all samples. On minocycline-free agar, much 

higher log CFU/g values were found, ranging from 5.37 to 10.07. The differences of mean 

log CFU/g found between the two types of agar varied from 1.94 to 6.64. It is assumed that 

there was less than 1 bacterium over 100 to 10,000,000 that may be resistant to 

minocycline. These results indicate that minocycline is suitable for the antibiotherapy of 

periodontitis. 

In addition to these studies on bacterial cocktails, also the Minimum Inhibitory 

Concentration (MIC) of minocycline against ten isolated bacterial strains from periodontal 

pockets of patients suffering from periodontitis was determined. As shown in Table 3, 8 of 

the investigated 10 strains were susceptible to minocycline according to the Société 

Française de Microbiologie (SFM) requirements; and all strains were susceptible at the 

minocycline concentration used in the in situ forming implant formulations (2 %). 
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Table'2.!Susceptibility!of!periodontal!pathogenic!bacteria!to!minocycline!(n.m.!=!not!

measured).!

Sample 
Pocket depth 

(mm) 
Mean log CFU/g of GCF 

on non selective agar 
Mean log CFU/g of GCF  

on minocycline agar 

D86 n.m. 6.88 <3.42 

D87 n.m. 8.08 <3.42 

D88 7 7.10 <3.42 

D89 9 8.21 <3.42 

D90 9 6.63 <3.42 

D91 6 5.37 <3.42 

D92 9 7.70 <3.42 

D93 6 7.84 <3.42 

D94 7 8.04 3.42 

D95 7 8.68 <3.42 

D96 6 8.15 <3.42 

D97 8 7.72 <3.42 

D98 5 10.07 <3.42 

D99 6 7.97 3.42 
 

Table' 3.! Minimum! Inhibitory! Concentration! (MIC)! of! minocycline! against! specific!

periodontal!strains.!

Bacterial strain Reference MIC (mg/L) 
Streptococcus vestibularis D28A1 0.1 
Veillonella sp. D18B13 0.1 
Fusobacterium nucleatum  JD7 0.1 
Veillonella sp. D36A19 0.2 
Streptococcus mitis D29A5 32 
Streptococcus sanguinis D28A11 0.2 
Streptococcus australis D37A12 0.1 
Streptococcus salivarius D28A9 0.1 
Streptococcus cristatus D18A2 0.1 
Streptococcus sanguis D30A3 16 
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Furthermore, the activity of the in situ forming implants against the bacteria cocktails 

present in the patients’ periodontal pockets were studied. Figure 10 shows the inhibition zone 

diameters observed upon incubation of GCF samples in Columbia agar enriched with horse 

blood in Petri dishes. Cylindrical holes were made at the center of the agar and filled with 30 

µL of liquid formulation. Upon solvent exchange, the implants formed in situ, and the Petri 

dishes were incubated for 5 d under anaerobic conditions. The biological samples were diluted 

either 100 times, or 1000 times, as indicated. Drug-free formulations served as negative 

controls. For reasons of comparison, also the activity of the commercial product Parocline® 

was studied with certain GCF samples. Clearly, all drug-loaded in situ forming implants could 

effectively inhibit the growth of the various bacteria present in the patients’ pockets (the 

inhibition zone diameter varied from 1.7 to 5.3 cm). The negative controls showed negligible 

or only very minor growth inhibition, with 1 exception – the “D91” sample. In this case, the 

D91-2 and D91-3 Petri dishes recorded inhibition zone diameters of 1 and 2.9 cm, 

respectively. This can probably be attributed to the exceptionally low CFU concentrations 

present in these specific cases (9 and 88 CFU/g, respectively), leading to non-representative 

bacterial amounts in 0.1 mL inoculated solution. Otherwise, the bacterial loads were much 

higher. For instance, 1 mL of 1000 times diluted “D90” sample contained about 16,000 CFU 

and 1 mL of 100 times diluted “D90” sample about 160,000 CFU. As expected, the inhibition 

zone diameters were generally higher in the case of the 1000 fold dilutions compared to the 

100 fold dilutions (since the bacterial load was 10-fold smaller). Importantly, the antibacterial 

efficacy of the investigated formulations forming implants in situ was comparable to the 

activity of the commercial product Parocline®. 
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Figure'10.!Antimicrobial!activity!of!in"situ!forming!implants!(25!%!PLGA,!10!%!ATBC,!20!

%! HPMC,! 2!%!minocycline! HCl)! against! bacterial! cocktails! present! in! the! periodontal!

pockets!of!periodontitis!patients:! Inhibition!zone!diameters!measured!upon! incubation!

of!GCF!samples!in!agar!(“#”!indicates!n!=!2!instead!of!3;!“*”!indicates!that!no!inhibition!

zone! was! detected;! “100! x”! indicates! a! sample! dilution! by! a! factor! of! 100;! “1000! x”!

indicates!a!sample!dilution!by!a!factor!of!1000).!For!reasons!of!comparison,!Parocline®!

was!also!tested!with!certain!samples.!

The observed variation in the inhibition zone diameters can at least partially be 

attributed to the variability of the composition of the bacterial cocktails present in different 

GCF samples (with respect to quality and quantity). Indeed, the microflora of periodontal 

pockets is known to be diversified, depending for instance on the severity of the disease and 

on the individual subject. To get a better understanding of which specific bacterial strains 

might be of importance, the dominant colonies of all samples after incubation were isolated 

and identified. The antibacterial efficacy of the new in situ forming implants was also tested 

against these isolated bacteria strains. Out of the total 23 isolated microorganisms, there were 

21 anaerobes comprising 3 gram positive, 6 gram negative obligate anaerobes and 12 gram 

positive facultative anaerobes. Only 2 aerobes were found, including 1 gram negative 

bacterium and 1 fungus. These results are in good agreement with reports in the literature, 

indicating a dominance of anaerobic bacteria in periodontal pockets [8,40–42]. These 
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microorganisms included both, “initial colonizers” (Streptococcus spp., Actinomyces spp., 

Veillonella spp.) as well as strains frequently found in more mature biofilms (Fusobacterium 

spp., Prevotella spp.) [42]. The microbial “orange complex” associated with periodontitis was 

also found, including black-pigmented Prevotella sp. and Fusobacterium nucleatum [8]. This 

is a good indication for the fact that the bacteria isolated in this study are likely to be 

representative for the microorganisms, which can be found in the periodontal pockets of 

patients suffering from periodontitis. As it can be seen in Figure 11, the investigated in situ 

forming implants were effectively inhibiting the growth of the various isolated bacteria strains, 

whereas the negative controls (formulations free of drug) showed no, or only very minor 

inhibitory effects, with 1 exception: Candida pelliculosa, a fungus that can be found in the 

mouth. But this microorganism is not specifically associated with periodontitis and is not 

susceptible to minocycline. Importantly, the antimicrobial efficacy of the in situ forming 

implants was comparable to that of the commercial product Parocline® with the investigated 

strains. 

In addition, it has to be pointed out that the inhibition zone diameters observed with the 

commensal oral bacteria were generally smaller than those observed with pathogenic bacteria: 

The average inhibition zone diameters obtained with 7 Streptococcus species (commensal 

flora) was 2.0 cm, while those obtained with Prevotella sp. and Fusobacterium nucleatum 

(pathogenic strains) were 4.8 cm and 5.2 cm, respectively. This is a very interesting 

difference, since it indicates that minocycline is likely to rapidly destroy pathogenic bacteria, 

but not as quickly inhibit commensals. The commensal flora will, thus, have a chance to 

continue colonization and subsequently re-establish the natural microbiological balance, as in 

healthy subjects.  

Furthermore, the impact of the amount of added HPMC on the antibacterial activity of 

the in situ forming implants was studied, using 4 selected periodontal strains. Parocline® as 

well as drug-free and HPMC-free systems were tested for reasons of comparison. As it can be 

seen in Figure 12, all drug-containing systems effectively inhibited the growth of all 4 

bacterial strains, irrespective of their HPMC content. This is of importance, since HPMC 

addition can significantly improve key features of the implants, such as their adhesion forces, 
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but does not impact their antimicrobial activity to a significant extent. Also, the activity of the 

in situ forming implants was similar to the antibacterial activity of Parocline®. 

 

Figure'11.!Antimicrobial!activity!of!in"situ!forming!implants!(25!%!PLGA,!10!%!ATBC,!20!

%! HPMC,! 2! %! minocycline! HCl)! against! isolated" bacteria! strains! obtained! from! GCF!

samples! from! periodontitis! patients:! Inhibition! zone! diameters! measured! upon!

incubation!in!agar!(“#”!indicates!n!=!2!instead!of!3;!“!”!indicates!n!=!1!instead!of!3;!“*”!

indicates! that!no! inhibition!zone!was!detected).!For!reasons!of!comparison,!Parocline®!

was!also!tested!with!certain!bacteria!strains.!

                                                                                                 
Figure' 12.! Effects! of! the! addition! of!
different! amounts! of! HPMC! to! the! in" situ!
forming! implant! formulations! on! the!

antimicrobial! activity! of! the! systems!

(25!%!PLGA,!10!%!ATBC,!2!%!minocycline!

HCl).! For! reasons! of! comparison,! also!

Parocline®! and! drugPfree! and! HPMCPfree!

systems! were! studied! (“*”! indicates! that!

no!inhibition!zone!was!detected).!
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4. Conclusion 

The proposed in situ forming implant formulations exhibit a promising potential for 

improved periodontitis treatment. The addition of HPMC increases the systems’ adhesive 

forces and limits system swelling, while the antibacterial activity remains about unaltered. The 

novel insight obtained by EPR and NMR measurements allows for a better understanding of 

the underlying mass transport mechanisms in these rather complex systems and, thus, 

facilitated device optimization in the future, including other applications (e.g. for different 

drugs or drug combinations). Interestingly, the implants more strongly inhibited the growth of 

pathogenic bacterial strains isolated from the periodontal pockets of patients suffering from 

periodontitis compared to bacteria encountered in healthy subjects. In vivo, such a preferential 

action against the pathogenic strains can be expected to give a chance to the healthy flora to 

re-colonize the periodontal pockets. 
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Abstract 

Periodontitis is the primary cause of tooth loss in adults and a very widespread 

disease: 47 % of the US adults have mild, moderate or severe periodontitis, and 64 % of 

the population older than 65 years is affected. The treatment of periodontitis is highly 

challenging, because drug partitioning into the periodontal pockets is not very pronounced 

and gingival crevicular fluid flow rapidly eliminates drugs from their site of action. Thus, 

using conventional administration routes high systemic drug levels are required, while the 

drug concentration at the target site remains low, resulting in potentially severe side effects 

and low or negligible treatment efficacy. Biodegradable in situ forming implants offer an 

interesting potential to overcome these hurdles: These are liquid formulations, which upon 

injection into the periodontal pockets form solid implants. The latter subsequently controls 

drug release at the site of action during pre-programmed periods of time. However, 

currently available systems suffer from poor adherence to the human tissue, resulting in 

pre-mature and uncontrolled expulsion of implant fragments from the periodontal pockets 

during the treatment period. This leads to unreliable drug exposure to the patient. 

Composite implants based on a drug release rate controlling polymer and an adhesive 

polymer can overcome this limitation. However, the processes involved in implant 

formation and the control of drug release are complex and the relationships between the 

systems’ composition and the implants’ performance are yet unclear. This study applies 

advanced characterization techniques, such as EPR analysis, to better understand in situ 

forming implants based on two different types of poly(lactic-co-glycolic acid) (PLGA), 

hydroxypropyl methylcellulose (HPMC) and doxycycline or metronidazole. Interestingly, 

HPMC addition to shorter chain PLGA slightly decreased drug release, whereas in the case 

of longer chain PLGA the release rate substantially increased. These tendencies could be 

explained based on the mass transport kinetics during implant formation and the systems’ 

inner structures. Furthermore, the implants’ antimicrobial activity against microorganisms 

present in the periodontal pockets of patients suffering from periodontitis is evaluated. 

Interestingly, the systems more effectively hinder the growth of pathogenic bacteria than of 

physiological microorganisms. Thus, a re-colonization of the patients’ pockets with 

healthy flora can be expected to be favored in vivo. 

Keywords: in situ forming implant; periodontitis; PLGA; EPR; doxycycline!
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1. Introduction 

Periodontitis is a highly prevalent, chronic inflammatory disease of the 

periodontium. A recent survey estimates that 47 % of the US adults have mild, moderate or 

severe periodontitis [1]. Prevalence rates increase to 64 % for adults older than 65 years. 

Periodontitis is characterized by a progressive loss of the alveolar bone and periodontal 

ligament, leading to the formation of periodontal pockets [2–4]. If untreated, periodontitis 

can lead to the loosening and subsequent loss of the teeth. It is indeed the primary cause of 

tooth loss in adults [5]. The initiating factors of periodontitis are likely to be pathogenic 

bacteria and bacterial products, which form a biofilm covering the teeth’ surface in the 

subgingival area. It seems that the microflora in the disease state is different from that in 

healthy subjects. For example, the number of gram negative anaerobic bacteria is likely to 

be increased and certain clinical forms of periodontitis might be associated with specific 

microbiota [6]. Recently, Silva-Boghossian et al. [2] reported that Streptococcus strains 

(such as Streptococcus sanguinis) are also associated with suppuration in periodontitis 

subjects. However, up to date, the exact mechanisms underlying this disease are not yet 

fully understood. It is hypothesized that: (i) the suspected periodontal pathogens produce 

biologically active molecules, which directly attack the host tissue, and/or that (ii) the 

immune response of the host organism (human body) to these pathogens results in the 

tissue destruction. The consequence of the tissue loss is the deepening of the periodontal 

pockets, and -once the mechanical anchorage of the tooth becomes insufficient -the latter is 

lost. 

The treatment of periodontitis is highly challenging, since drug partitioning into the 

periodontal pockets is generally not very pronounced and gingival crevicular fluid flow 

rapidly eliminates drugs from the site of action [7]. For example, it has been estimated that 

the contents in a 5 mm periodontal pocket is renewed 40 times per hour [8]. Thus, using 

conventional administration routes (such as oral, intravenous, intramuscular, subcutaneous 

etc.) often high systemic drug levels are required, while the drug concentration at the target 

site remains low. This leads to potentially severe side effects and limited or insufficient 

therapeutic efficacy, despite the availability of highly potent drugs able to act against the 

pathogenic flora and inflammation. Importantly, the crucial hurdles of limited accessibility 

of the site of action and rapid elimination can be overcome using advanced local drug 
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delivery systems, releasing the drug in a time-controlled manner in the periodontal pockets 

during prolonged periods of time [9–16]. Biodegradable in situ forming implants are 

particularly promising for this purpose [17]. These are liquid formulations, which upon 

injection into the periodontal pockets form solid implants. The implant formation can be 

induced by different mechanisms [12,18–21], for example solvent exchange: Briefly, the 

basic idea is to dissolve the drug and a biocompatible and biodegradable matrix former 

[e.g., poly(lactic-co-glycolic acid), PLGA] in an appropriate organic solvent [e.g., N-

methyl pyrrolidone, NMP] [22–26]. This liquid phase can easily be injected into the 

periodontal cavities. Once injected, the NMP diffuses into the surrounding environment 

and water from the periodontal pocket penetrates into the liquid formulations. Since PLGA 

is not soluble in water, it subsequently precipitates and entraps the drug. Major advantages 

of this type of biodegradable, in situ forming implants include the fact that: (i) The 

injection of a liquid formulation is relatively easy (compared to the implantation of “pre-

formed” implants). (ii) There is no need to remove empty remnants upon drug exhaust, due 

to complete biodegradability of the system. (iii) The geometry and size of the implants are 

adapted to the patient’s periodontal pockets (customized systems, personalized medicine). 

(iv) The incorporated drug is locally released in a time-controlled manner through the 

slowly degrading polymer network. 

However, up to date major challenges remain to be addressed, namely the fact that: 

(i) The adherence of in situ formed implants to human tissue is yet poor, resulting in pre-

mature and uncontrolled expulsion of implant fragments from the periodontal pockets due 

to the non-negligible flow of gingival crevicular fluid [8,27]. This leads to a considerable 

uncertainty with respect to the amount of drug reaching the target site and the time periods 

during which therapeutic drug levels are provided. (ii) The elasticity/plasticity of the 

formed implants is generally not adapted to this type of local administration: Systems, 

which are difficult to deform plastically are not able to adapt their geometry to dynamic 

changes in the periodontal pocket’ size and shape with time. In contrast, fully elastic 

implants force the periodontal pockets to keep their geometry and dimensions, which is 

also not desirable. Recently, the addition of plasticizers, such as acetyltributyl citrate and 

dibutyl sebacate, as well as a second type of polymer, such as hydroxypropyl 

methylcellulose, has been proposed to increase the adhesiveness of the implants [28,29]. 

However, yet it is unclear how the systems’ composition affects the key properties of the 



 CHAPTER III 
 

! 116!

in situ formed implants. The aim of this study was to better understand the physico-

chemical phenomena involved in implant formation and the control of drug release as well 

as to evaluate the antimicrobial activity of doxycycline-loaded formulations. 

2. Materials and methods 

2.1. Materials 

Poly(D,L-lactic-co-glycolic acid) (PLGA, Resomer® RG 502 H and 504 H; Evonik, 

Darmstadt, Germany); acetyltributyl citrate (ATBC; Morflex, Greensboro, NC, USA); 

hydroxypropyl methylcellulose (HPMC, Methocel® E5 and E50; Colorcon, Dartford, UK); 

N-methyl pyrrolidone (NMP, 99 %), glucose and cysteine hydrochloride (Acros organics, 

Geel, Belgium); doxycycline hyclate and metronidazole (Fagron, Colombes, France); 4-

hydroxy-tempo benzoate (TB; Sigma-Aldrich, Seelze, Germany); agarose (GenAgarose® 

LE; Genaxxon BioScience, Ulm, Germany); Columbia agar base and agar (Oxoid, 

Basingstoke, UK); defibrinated horse blood (E&O Laboratories, Burnhouse, UK); 

Parocline® (2 % minocycline; Sunstar France, Levallois-Perret, France). 

2.2. Preparation of the liquid formulations 

PLGA (28 or 32 % w/w, based on the total liquid formulation without drug) was 

dissolved in NMP at 25 °C in a glass vial (30 min stirring). Optionally, the plasticizer 

ATBC (10 % w/w, based on the PLGA mass) and/or HPMC (10, 20, 25 or 30 % w/w, 

based on the PLGA mass) was/were added and the mixture was vortexed for 3 min, 

followed by standing for 3 h at 25 °C. Subsequently, 5 or 10 % doxycycline hyclate or 1 or 

10 % metronidazole (w/w, based on the total liquid formulation without drug) was added, 

and the mixture was vortexed for 3 min, followed by standing for 3 h at 25 °C. To 

eliminate air bubbles, the liquids were ultrasonicated for 10 min. The formulations were 

stored at -20 °C and protected from light to avoid drug degradation. 

2.3. In situ implant formation and drug release measurements 

One hundred microliters of the respective formulation was injected at the bottom of 

an Eppendorf vial using a standard syringe. One and a half milliliters preheated (37 °C), 

degassed phosphate buffer pH 7.4 (USP 35) was carefully added using a pipette, initiating 

solvent exchange and implant formation. The vials were horizontally shaken at 37 °C at 
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80 rpm (GFL 3033; Gesellschaft fuer Labortechnik, Burgwedel, Germany). At pre-

determined time points, the bulk fluid was completely withdrawn and replaced with fresh 

medium. The drug content in the samples was determined UV-spectrophotometrically (λ = 

325 nm for doxycycline and λ = 351 nm for metronidazole; UV-1650PC, Shimadzu, 

Champs-sur-Marne, France). All tests were performed in triplicate and the results were 

shown as mean values ± standard deviation. 

2.4. Monitoring of dynamic changes in the implants’ mass 

Implants were prepared and treated as described in Section 2.3. In situ implant 

formation and drug release measurements. At pre-determined time points, implants were 

weighed [mass (t)]. The mass change in percent was calculated as follows: 

mass change (%) (t) = 100 * [mass (t) – mass (t=0)] / mass (t=0) 

where mass (t=0) is the initial weight of the formulation used for implant preparation.  

2.5. Electron paramagnetic resonance (EPR) measurements 

In situ forming liquid implant formulations were prepared as described in section 

2.2. Preparation of the liquid formulations. The spin probe 4-hydroxy-tempo benzoate 

(TB) was dissolved in these liquids (1 mM). Two hundred µL of the formulations were 

placed into cylindrical holders, which were immerged into 3 mL phosphate buffer pH 7.4 

(USP 35). As illustrated in Figure 1a, only the top circular surface of the cylindrical holder 

was open, the other surfaces were impermeable. The system was kept constant at 37 °C 

and horizontally shaken at 30 rpm (GFL 1083; Gesellschaft fuer Labortechnik, Burgwedel, 

Germany). At pre-determined time points, samples (implants with holders) were 

withdrawn and analysed using an EPR L-band spectrometer (MagnetTech, Berlin, 

Germany), operating at a low microwave frequency (1 GHz). To create EPR images, 

twenty-five scans were accumulated using the following parameters: field centre = 48.9 

mT; scan range = 8 mT; scan time = 40 s. For the measurement of EPR spectra, a scan 

range of 10 mT and scan time of 100 s were applied. The typical EPR parameters were 

calculated from the recorded EPR spectra (first derivative) or integrated first derivative 

(absorption). Figures 1b shows an EPR spectrum of TB dissolved in NMP and Figure 1c 

shows examples for data recorded with an implant prepared from a liquid formulation 
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containing 32 % PLGA RG 502 H, 10 % ATBC, 20 % HPMC and 1 mM TB before and 

after exposure to phosphate buffer pH 7.4.  
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2.6. Mechanical and adhesive properties 

The mechanical and adhesive properties of the investigated in situ forming implants 

were determined with a texture analyzer (TA.XT.Plus; Stable Micro Systems, Surrey, UK) 

using the experimental set-up, which has previously been described in detail [28]. Briefly, 

agarose was dissolved in boiling water (0.6 % w/v), and the solutions were cast into Petri 

dishes (diameter = 9 cm). Upon cooling to room temperature, gels formed. At the center of 

the gels, cylindrical holes (diameter = 6 mm) were made and filled with 100 µL liquid 

formulation using a standard syringe and a drop of distilled water. Upon solvent exchange, 

the implants formed. At pre-determined time points, a spherical probe (diameter = 5 mm) 

was driven downwards (at a speed of 0.5 mm/s). Once in contact with the implant, the 

applied force and displacement of the probe were recorded as a function of time. When the 

penetration depth was 1.5 mm, this position was held for 60 s. Then, the probe was driven 

upwards at a speed of 10 mm/s. The maximum deformation force (Fmax deformation) is the 

force measured once the probe reaches the maximum penetration depth into the implant. 

The force measured after the 60 s holding time is called “remaining force” (Fremaining). In 

this study, the ratio “Fremaining/Fmax deformation” is used as a measure for the 

elasticity/plasticity of the implant. High values indicate high elasticity, low values indicate 

high plasticity. The “adhesion force” is defined as the maximum force measured with this 

set-up during the upward movement of the probe, accounting for the negative 

sign/direction of the force (Fadhesion). Each experiment was conducted in triplicate, the 

results are presented as mean values ± standard deviation. 

2.7. Optical microscopy 

Implants were prepared as described in Section 2.3. In situ implant formation and 

drug release measurements. At predetermined time points, implants were withdrawn and 

freeze-dried (Epsilon 2-4 LSC; Christ, Osterode, Germany). The process comprised 3 

phases: (i) freezing at -45 °C for 2 h; (ii) primary drying at 0.014 mbar and -9 °C shelf 

temperature for 10 h; (iii) secondary drying at 0.0014 mbar and 20 °C shelf temperature for 

10 h. Cross-sections were obtained with a knife and analysed with a SMZ-U zoom 1:10 

microscope (Nikon, Tokyo, Japan), equipped with a TV lens C-0.45x (Nikon) and a digital 

camera AxioCam ICc1 (Carl Zeiss, Oberkochen, Germany). 
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2.8. Microbiological tests 

Samples from periodontal pockets of periodontitis patients: Thirteen patients (4 

women, 9 men; from 35 to 69 years old) were enrolled in this study (14 periodontal 

pockets were sampled). They were admitted at the clinical site of the Faculty of Dental 

Surgery, University of Lille, France. Participants did not receive any hygienic treatment at 

the teeth with periodontitis prior to sampling. Sterile paper points (Roeko, Coltene, 

Germany) were carefully inserted into each periodontal pocket (1 paper point per pocket) 

and left for 10 s to allow for absorption of gingival crevicular fluid (GCF). Each paper 

point was placed into an Eppendorf vial, filled with 1.5 mL of Ringer Cysteine. 

Independently, 10 paper points were weighed before and after sampling to estimate the 

mean amount of GCF absorbed (5.7 ± 0.6 mg) to allow for the quantification of bacteria. 

Further tenfold dilutions (-2 to -7) of these GCF solutions (-1) were obtained for 

microbiological testing. 

Susceptibility of periodontal bacteria to doxycycline: Columbia agar was prepared 

from Columbia agar base, glucose, cysteine hydrochloride, and agar. The systems were 

sterilized in an autoclave (121 °C for 15 min). Prior to plating, Columbia agar was 

enriched with defibrinated horse blood (5 % v/v), without or with doxycycline hyclate 

(32 mg/L) and cast into Petri dishes. After cooling to room temperature, 0.1 mL of diluted 

GCF solutions (from -1 to -7) was inoculated onto the agar surface (35 °C, anaerobic 

atmosphere; Whitley A85 workstation, Don Whitley Scientific, West Yorkshire, UK). 

After 5 d of incubation, the number of bacterial colonies was counted for each Petri dish, 

the predominant colonies were subcultured and identified. 

Antibacterial activity of the in situ forming implants: The in vitro efficacy of the 

investigated implants was assessed by their antibacterial activity against entire 

periodontitis samples from patients’ periodontal pockets and against isolated bacterial 

strains, using the agar well diffusion method. Columbia agar was enriched with horse 

blood (5 % v/v) and cast into Petri dishes. After cooling to room temperature, 0.1 mL of 

diluted GCF (dilution -2 and -3) or isolated bacterial strains was inoculated onto the agar 

surface. A cylindrical hole (diameter = 6 mm) was subsequently made at the center of the 

agar, and filled with 30 µL of liquid formulation using a standard syringe. Upon solvent 

exchange, the implants formed in situ. The Petri dishes were incubated for 4 d (isolated 
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bacterial strains) or 5 d (diluted entire GCF samples) under optimum culture conditions 

(35 °C, anaerobic atmosphere; Whitley A85 workstation). The diameter of the observed 

bacteria growth inhibition zones around the center of the Petri dishes was measured using a 

ruler. Each experiment was conducted in triplicate, the results are presented as mean values 

± standard deviation. 

Minimal inhibitory concentration (MIC) of doxycycline on selected strains: The 

MIC of doxycycline was determined using the broth dilution method [30]. One hundred µL 

of Wilkins-West broth were pipetted into each well of a 96-well plate, except for the first 

column. A doxycycline stock solution (64 mg/L) was prepared in the same broth, 200 µL 

of which were introduced into the first column of microplate wells. After thorough mixing, 

100 µL of the first well was added to the second well and so on. Finally, 100 µL of 

bacterial suspension in Ringer Cysteine solution was introduced into each well, leading to 

2-fold dilution of the drug concentration (1-fold dilution in the first well). At the end, each 

well row contained a dilution series of the drug from the left to the right, with 

progressively lower concentrations (decreasing from 32 to 0.016 mg/L). After incubation 

at 35 °C under anaerobic conditions (Whitley A85 workstation), the lowest concentration 

of drug that prevented visible growth of bacteria was determined as the MIC. According to 

the 2013 guideline of the Société Française de Microbiologie (SFM), a microorganism is 

called “susceptible” to doxycycline if MIC ≤ 4 mg/L and “resistant” to doxycycline if MIC 

> 8 mg/L [31]. For these tests, the bacterial strains were provided from the collection of the 

Laboratory of Bacteriology of the College of Pharmacy, University of Lille, France (also 

obtained from patients suffering from periodontitis). 
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3. Results and discussion 

3.1. Key properties of the implants: Adhesiveness, plasticity and drug 
release 

The therapeutic efficacy and safety of in situ forming implants used for 

periodontitis treatment strongly depends on the systems’: (i) ability to remain within the 

periodontal pockets during the treatment period (and, thus, on their adhesiveness to the 

surrounding tissue), (ii) mechanical properties, in particular their capacity to adapt their 

size and shape to dynamic changes in the pockets’ geometry, and (iii) drug release kinetics. 

These factors are fundamental to assure reliable drug delivery to the site of action at a pre-

programmed rate during a pre-defined period of time. 

Figure 2a shows the adhesion forces of composite implants formed in situ, 

measured with a texture analyzer and a spherical probe, as described in detail in the 

Materials and Methods section. Briefly, liquids containing the matrix former PLGA, the 

drug, a plasticizer and optionally a second polymer dissolved/dispersed in an organic, 

water-miscible solvent were injected into cylindrical holes at the center of agar gels in 

Petri dishes. The formulations contained PLGA RG 504 H (25 % w/w, referred to the total 

liquid), ATBC (10 % w/w, referred to the PLGA), NMP (solvent), metronidazole (1 % 

w/w, referred to the total liquid), and optionally up to 30 % HPMC (Methocel® E50; w/w, 

referred to the PLGA). Upon injection the solvent diffuses into the surrounding agarose gel 

and water from this gel penetrates into the liquid formulations, resulting in PLGA 

precipitation and drug entrapment. At different time points, a spherical probe moves 

downwards, penetrates into the formulation up to 1.5 mm depth, is held for 60 s and moves 

again upwards, while recording the forces and displacements. The maximum measured 

force during the upward movement of the probe is defined as the adhesion force in this 

study. For reasons of comparison, also the adhesiveness of the commercially available 

drug product Parocline® was measured (filled circles in Figure 2a). Clearly, the stickiness 

of the implants significantly increased with increasing HPMC contents. Importantly, the 

proposed new systems exhibit much higher adhesive forces than the commercial reference 

product. Thus, they show a very promising potential to overcome one of the fundamental 

bottlenecks of the current state of the art: The uncontrolled expulsion of at least parts of the 
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implants during the treatment period, resulting in unreliable drug exposure to the target 

site. 

a) 

 

b) 

 

Figure'2.! Importance!of! the!composition!of! the! liquid!formulations!on!the!resulting!

implants’:! a)!adhesion! force,! b)!mechanical! properties.! The! formulations! contained!

25!%! PLGA! RG! 504! H,! 10!%! ATBC,! NMP,! 1!%!metronidazole,! and! optionally! up! to!

30!%!HPMC!(here!Methocel®!E50).!For!reasons!of!comparison,!also! the!commercial!

product!Parocline®!was!studied.!

Furthermore, the impact of the formulations’ composition on the 

plasticity/elasticity of the in situ forming implants was quantified: The ratio of the force 

measured after the 60 s holding time to the maximum deformation force (“Fremaining/Fmax 

deformation“) was used for this purpose. A value of 1 indicates ideally elastic behavior, values 

0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

Time, h

A
dh

es
io

n 
fo

rc
e,

 N

0 % 
20 % 

30 % Methocel® E50
25 % 

Parocline®

0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

Time, h

F re
m

ai
ni

ng
/F

m
ax

 d
ef

or
m

at
io

n

0 % 

20 % Methocel® E50

30 % 
25 % 

Parocline®



 CHAPTER III 
 

! 124!

well below 1 indicate high plasticity. Again, the commercial product Parocline® was 

studied for reasons of comparison. As it can be seen in Figure 2b, the proposed new 

composite implants all exhibit substantially higher plasticity than the commercially 

available reference formulation. Thus, these composite implants can much easier adapt 

their size and shape to dynamic changes in the geometry of the periodontal pockets of the 

patients suffering from periodontitis. This key property will further contribute to a more 

reliable maintenance of the systems at their target site and, hence, improve the therapeutic 

efficacy of the treatment and the patients’ safety. Interestingly, the addition of up to 30 % 

HPMC did not substantially affect the “Fremaining/Fmax deformation“ ratio. 

The effects of adding up to 30 % HPMC to liquid formulations forming implants in 

situ on the resulting drug release kinetics are illustrated in Figure 3. To simulate the limited 

volumes of liquid the formulations are exposed to in the periodontal pockets, the 

experiments were conducted in Eppendorf vials. Briefly, 100 µL of a formulation was 

injected at the bottom of a vial, and 1.5 mL phosphate buffer pH 7.4 was added, followed 

by horizontal shaking at 37 °C. At pre-determined time points, the bulk fluid was 

completely exchanged with fresh medium. Two types of PLGA were investigated: PLGA 

502 H and PLGA 504 H, differing in the average polymer molecular weight (Mw ≈ 12 and 

50 kDa, respectively). Also two types of drugs were studied: metronidazole and 

doxycycline. The drug loadings were 1 and 5 %, respectively. Interestingly, the addition of 

HPMC substantially increased the resulting drug release rate in the case of longer chain 

PLGA 504 H, whereas it slightly decreased the release rate in the case of shorter chain 

PLGA 502 H. This was true for both types of drugs. This opposite impact on drug release 

was rather surprising, since the only difference in the formulations was the polymer 

molecular weight. All other compounds were identical as well as the relative amounts of 

all ingredients. The slight decrease in drug release upon addition of up to 30 % HPMC in 

the case of PLGA 502 H-based implants was further confirmed with systems containing 

10 % (instead of 1 %) metronidazole, prepared with more concentrated PLGA solutions 

(32 instead of 28 %) and containing two types of HPMC: Methocel® E5 and E50 (differing 

in the average polymer molecular weight) (Figure 4a). Thus, the phenomenon was also 

independent of the initial drug loading, the polymer content of the formulation and the 

polymeric chain length of the HPMC (at least within the investigated ranges). From a 

practical point of view, it is very important to precisely control the resulting drug release 
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rate at the site of action: Too high drug concentrations lead to potentially serious side 

effects, whereas drug concentrations below the minimal effective concentration lead to 

treatment failure. To better understand why the addition of HPMC (improving the 

implants’ adhesiveness and plasticity, as shown above) substantially increased the release 

rate in the case of PLGA 504 H, but decreased the release rate in the case of PLGA 502 H, 

the respective systems were thoroughly characterized physico-chemically during implant 

formation and drug release. 

!

  

Figure'3.! Impact!of! the!addition!of!different!amounts!of!HPMC!(Methocel®!E50)!on!

drug! release! from! in# situ! forming! implants! based! on! PLGA!RG! 502!H! (top! row)! or!

PLGA!RG!504!H! (bottom!row)! (28!%,! referred! to! the! total! liquid)! and!ATBC! (10!%,!

referred! to! the!PLGA).!On! the! left!hand! side! systems!containing!1!%!metronidazole!

are!shown,!on!the!right!hand!side!formulations!initially!loaded!with!5!%!doxycycline!

hyclate.!
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a)   b) 

!  

Figure'4.'Effects!of!adding!different!types!and!amounts!of!HPMC!(Methocel®!E5!and!

E50)!on:!a)!drug!release,!b)!dynamic!changes!in!the!mass!of!in#situ!forming!implants!

based! on! PLGA! RG! 502! H! (32!%,! referred! to! the! total! liquid)! and! ATBC! (10!%,!

referred!to!the!PLGA),!loaded!with!10!%!metronidazole.!!

3.2. Underlying mass transport mechanisms 

Figures 4b and 5 show the dynamic changes in the systems’ mass upon exposure to 

the release medium. The observed mass change is essentially a consequence of the NMP 

diffusion into the phosphate buffer and water penetration into the formulations. As it can 

be seen, in all cases the mass generally increased during the observation period. This 

indicates that the mass gain due to water penetration is more important than the mass loss 

due to NMP diffusion. In practice, it is important that the mass gain is not too pronounced. 

Otherwise, the implants will increase too much in volume in the periodontal pockets, 

increasing the risk of accidental device expulsion. Importantly, the addition of HPMC led 

to less pronounced water uptake in all cases, further confirming the very positive impact of 

this compound on the maintenance of the systems within the patients’ pockets. However, 

there is no straightforward relationship between the changes in the systems’ mass and the 

observed release rates (Figures 3-5): HPMC addition led to faster drug release in the case 

of PLGA 504 H and slower drug release in the case of PLGA 502 H, whereas the increase 

in implant mass was reduced, irrespective of the type of PLGA. This was true for both 

types of drug, all investigated initial drug loadings, PLGA concentrations and HPMC 

polymer molecular weights. 
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Figure'5.! Impact!of! the!addition!of!different!amounts!of!HPMC!(Methocel®!E50)!on!

the!dynamic!changes!in!the!mass!of!in#situ!forming!implants!based!on!PLGA!RG!502!H!

(top! row)!or!PLGA!RG!504!H! (bottom!row)! (28!%,! referred! to! the! total! liquid)! and!

ATBC! (10!%,! referred! to! the! PLGA).! On! the! left! hand! side! systems! containing! 1!%!

metronidazole! are! shown,! on! the! right! hand! side! formulations! initially! loaded!with!

5!%!doxycycline!hyclate.!

To gain deeper insight into the rather complex phenomena involved in the in situ 

formation of the investigated implants and the control of drug release from the systems, 

Electron paramagnetic resonance (EPR) was applied. Briefly, an EPR spin-probe [in this 

study,! 4-hydroxy-tempo benzoate (TB), 1 mM] was incorporated into the liquid 

formulations. TB is a nitroxyl radical, the spectral splitting of which is sensitive to both: 

the molecular motion (microviscosity of the surrounding) as well as the polarity of its 

environment [32]. Once the liquid formulation comes into contact with the release 

medium, the solvent NMP diffuses out and water penetrates into the system. This leads to 

PLGA precipitation and significant changes in the spin probe’s environment, which can be 

monitored by EPR analysis. To be able to estimate the water contents of the systems at a 
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specific position and time point, a quantitative relationship between the measured 

hyperfine splitting (2aN) and the phosphate buffer content in the spin probe’s environment 

(here, NMP:phosphate buffer mixtures) was established. Figure 6a shows that a linear 

relationship was obtained in this case (R2 = 0.9886). Thus, experimentally measured 2aN 

values can be used as indicators for the changes in the systems’ composition. 

a) b) 

!  

Figure' 6.! a)! Polarity! dependence! of! the! hyperfine! splitting! of! TB[loaded!

“NMP:phosphate! buffer”! mixtures.! b)!Spatially! resolved! profiles! of! TB[loaded!

implants!based!on!PLGA!RG!502!H!(32!%),!ATBC!(10!%)!and!optionally!20!%!HPMC.!

Figure 6b shows the hyperfine splitting values measured at different time points in 

implants forming in situ upon exposure of NMP solutions of PLGA 502 H (32 %), ATBC 

(10 %) and optionally 20 % HPMC (Methocel® E50) to phosphate buffer. The spatial 

position is plotted on the x-axis and corresponds to the experimental set-up shown in 

Figure 1a: “0 mm” indicates the bottom of the holder and “3.1 mm” the interface “liquid 

formulation/implant – release medium”. Before exposure to the release medium, the 2aN 

values were about 32.3 G and constant within the liquid, irrespective of the presence or 

absence of HPMC in the formulation (open and filled circles). According to Figure 6a, 

32.3 G corresponds to about 0 % phosphate buffer. This is sound, since the formulations 

were not yet exposed to the release medium. Importantly, the EPR measurements allowed 

visualizing clear water concentration gradients built up within the formulations after 1 h 

exposure time to the phosphate buffer (squares in Figure 6b). This indicates that surface 

near regions of the implants are water-rich compared to regions close to the bottom of the 

holder. Interestingly, the water concentration gradients in these PLGA 502 H-based 
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systems were very similar, irrespective of the presence or absence of 20 % HPMC (filled 

versus open symbols in Figure 6b). This is in contrast to previous findings with PLGA 

504 H-based formulations, which showed accelerated water penetration into the systems in 

the presence of HPMC [29]. The difference might be explained by the different relative 

hydrophilicity of the two PLGA types: Both, PLGA 502 H and PLGA 504H exhibit more 

hydrophilic end groups at their chains (-COOH groups) and more lipophilic polymer 

backbones. Since the average polymer molecular weight is smaller for PLGA 502 H than 

for PLGA 504 H (about 12 versus 50 kDa), PLGA 502 H is more hydrophilic than 

PLGA 504H. This is consistent with the more pronounced water uptake of PLGA 502 H-

based implants compared to PLGA 504 H-based implants shown in Figure 5 (top versus 

bottom row). Thus, adding hydrophilic HPMC to more hydrophobic PLGA 504 H has a 

more pronounced impact than when adding it to less hydrophobic PLGA 502 H. In the 

case of the more hydrophobic PLGA 504 H, the presence of HPMC very much facilitates 

water penetration into the system, whereas this effect is less pronounced in the case of the 

less hydrophobic PLGA 502 H. This tendency is confirmed also at later time points, 

namely 4 and 8 h (triangles and diamonds in Figure 6b): The water concentration profiles 

in PLGA 502 H-based implants are very similar in HPMC-containing and HPMC-free 

systems. Note that at these late time points in HPMC-containing systems, the 2aN values 

close to the interface “implant – release medium” decrease (in contrast to HPMC-free 

devices). This is probably due to the fact that the formation of a HPMC gel alters the 

microviscosity of the environment of the spin probe and, thus, biases the measurements. In 

fact, increasing the viscosity of the probe’s environment has been reported to decrease the 

molecular tumbling rate of the nitroxyl radical [32]. 

Interestingly, the fact that the addition of HPMC has a major impact on the water 

penetration kinetics in the case of PLGA 504 H-based implant formulations (as reported in 

[29]) corresponds well to the major impact of HPMC addition on the resulting drug release 

kinetics from these systems (Figure 3). And the absence of such a major effect of HPMC 

addition on the water penetration kinetics in the case of PLGA 502 H-based formulations 

(Figure 6b) corresponds well with the absence of a major effect on the resulting drug 

release kinetics from these systems (Figures 3 and 4a). This clearly demonstrates that the 

water penetration kinetics into the in situ forming implants is decisive for the systems’ key 

properties. But yet it is unclear why accelerated water penetration into the formulations 
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leads to accelerated drug release. To better understand these phenomena, the morphology 

of the implants was studied using optical microscopy. Figures 7 and 8 show pictures of 

cross-sections of in situ formed implants based on PLGA 502 H and PLGA 504 H, 

respectively. The systems were exposed to phosphate buffer pH 7.4 for different time 

periods, as indicated (treated as for the drug release studies). The left columns show 

implants free of HPMC, the right columns systems containing 20 % HPMC (Methocel® 

E50). Very clearly, the implants solidified more rapidly in the presence of HPMC, 

irrespective of the PLGA type. This can probably at least partially be attributed to a faster 

NMP diffusion rate out of the systems, as reported in the literature [29]. Interestingly, 

longer chain PLGA 504 H led to a more porous inner implant structure compared to PLGA 

502 H (right columns in Figures 8 versus 7) in HPMC-containing devices. This might at 

least partially be explained by the higher hydrophobicity of PLGA 504 H compared to 

502 H, resulting in more rapid polymer precipitation upon water penetration into the 

systems and NMP diffusion out of the formulations. Importantly, the resulting high 

implant porosity can explain the significant increase in the drug release rate upon HPMC 

addition to these systems (Figure 3). In contrast, the much lower porosity observed in the 

case of PLGA 502 H corresponds very well to the substantially different effect of HPMC 

addition on drug release from these systems (Figures 3 and 4a). In all cases, the absence of 

HPMC led to slower implant solidification (Figures 7 and 8). 
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The EPR measurements could also be used to quantify the release of the spin probe 

TB: The “normalized AUC” calculated from the EPR spectra can be used as a measure for 

the amount of TB still remaining within the system. Figure 9 illustrates how these values 

decreased with time upon exposure of formulations based on PLGA 502 H to the release 

medium. Open symbols correspond to HPMC-free formulations, closed symbols to 

HPMC-containing formulations. The triangles, squares and circles correspond to three 

different samples. As it can be seen, the “normalized AUC” values decreased more rapidly 

in HPMC-free systems than in HPMC-containing devices. This indicates faster TB release 

from HPMC-free implants and is consistent with the generally faster drug release observed 

with HPMC-free formulations based on PLGA 502 H compared to HPMC-containing 

systems (Figures 3 and 4). Eventually, the presence of HPMC leads to gel formation in the 

tiny implant pores and, thus, increased resistance for drug and spin probe diffusion [33]. 

 

Figure' 9.! Release! of! the! EPR! spin! probe! TB! (expressed! as! the! decrease! in! the!

normalized!AUC)!from!implants!based!on!PLGA!RG!502!H!(32!%),!ATBC!(10!%),!being!
free! of! Methocel®! E50! (open! symbols)! or! containing! 20!%!Methocel®! E50! (closed!

symbols)! upon! exposure! to! phosphate! buffer! pH!7.4,! determined! via! double!

integration! of! EPR! spectra.! The! triangles,! squares! and! circles! correspond! to! three!

different!samples.!

3.3. Antimicrobial implant activity 

For the efficacy of the periodontitis treatment the sensitivity of the bacteria in the 

patients’ pockets against the drug is decisive: In case of resistance, the treatment fails, even 

if the drug reaches its target site. For this reason it was important to verify whether or not 
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the bacteria, which are present in the periodontal pockets of patients suffering from 

periodontitis, are sensitive to the drug (here, we selected doxycycline). To be able to do so, 

gingival crevicular fluid (GCF) samples from 13 patients (4 women, 9 men; from 35 to 69 

years old) were incubated on Columbia agar (containing or not doxycycline), enriched with 

defibrinated horse blood in Petri dishes. Upon 5 days of incubation, the number of Colony 

Forming Units (CFU) (per gram GCF) was counted. Table 1 shows the mean log (CFU)/g 

GCF values for 14 pocket samples. Importantly, no colonies formed in 13 out of the 14 

samples in the presence of drug; and the only growth observed (in sample D99) was 

identified as Candida albicans, which is a fungus. Thus, the calculated mean log CFU/g 

for bacteria was ≤ 3.42 (our detection level) for all the samples. In contrast, on 

doxycycline-free agar, much higher log CFU/g values were found, ranging from 5.37 to 

10.07. The differences of mean log CFU/g found between the two types of agar varied 

from 1.94 to 6.64. It is assumed that there was less than 1 bacterium over 100 to 

10,000,000 that may be resistant to doxycycline. This result indicates that doxycycline is 

suitable for the antibiotherapy of periodontitis. Furthermore, Table 1 shows that there was 

no clear relationship between the pockets’ depth and number of Colony Forming Units, 

indicating the diversity of the bacterial levels in the enrolled subjects. In addition to these 

studies on bacterial cocktails, also the activity of doxycycline against isolated bacterial 

strains, which were obtained from periodontal pockets of periodontitis patients was 

determined. For this purpose, the Minimum Inhibitory Concentration (MIC) of drug for 

specific strains was measured. Briefly, different dilutions were prepared and the 

concentration identified above which bacterial growth was inhibited. The results are shown 

in Table 2 and indicate that 8 out of the 10 strains are susceptible to doxycycline according 

to the Société Française de Microbiologie (SFM) requirements; and all strains were 

susceptible at the doxycycline concentration used in the investigated in situ forming 

implant formulations (5 or 10 %). 
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Table'1.'Susceptibility!of!periodontal!bacteria!from!periodontitis!patients!to!

doxycycline!(n.m.!=!not!measured).!

Sample 
Pocket depth 

(mm) 
Mean log CFU/g of GCF 

on non selective agar 
Mean log CFU/g of GCF  

on doxycycline agar 

D86 n.m. 6.88 < 3.42 

D87 n.m. 8.08 < 3.42 

D88 7 7.10 < 3.42 

D89 9 8.21 < 3.42 

D90 9 6.63 < 3.42 

D91 6 5.37 < 3.42 

D92 9 7.70 < 3.42 

D93 6 7.84 < 3.42 

D94 7 8.04 < 3.42 

D95 7 8.68 < 3.42 

D96 6 8.15 < 3.42 

D97 8 7.72 < 3.42 

D98 5 10.07 < 3.42 

D99 6 7.97 3.42 
 

Table'2.'Minimum!inhibitory!concentration!(MIC)!of!doxycycline!against!periodontal!

strains.'

Bacterial strain Reference MIC (mg/L) 
Streptococcus vestibularis D28A1 0.5 
Veillonella sp. D18B13 0.1 
Fusobacterium nucleatum  JD7 0.03 
Veillonella sp. D36A19 1.0 
Streptococcus mitis D29A5 32 
Streptococcus sanguinis D28A11 1.0 
Streptococcus australis D37A12 0.2 
Streptococcus salivarius D28A9 0.2 
Streptococcus cristatus D18A2 0.5 
Streptococcus sanguis D30A3 32 
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The activity of the in situ forming implants against the bacteria cocktails present in 

the patients’ periodontal pockets was measured as follows: 30 µL of the liquid 

formulations (containing 32 % PLGA RG 502 H, 10 % ATBC, 20 % Methocel® E50, 10 % 

doxycycline hyclate) were injected into cylindrical holes at the center of Columbia agar 

plates, enriched with horse blood and inoculated with 100- or 1000-times diluted gingival 

crevicular fluid (GCF) samples from patients. Upon contact with the agar gel, NMP 

diffused out of the formulations and water into the systems, resulting in PLGA 

precipitation and drug entrapment. The Petri dishes were incubated for 5 days under 

optimum culture conditions (35 °C, anaerobic atmosphere). In case of bacterial growth 

inhibition, an inhibition zone around the in situ formed implant was visible. The diameter 

of this zone was measured with a ruler. For reasons of comparison, also drug-free 

formulations were studied (as negative controls) and the commercially available drug 

product Parocline®  (as reference, with two of the GCF samples: D90 and D91). Figure 10 

shows the observed inhibition zone diameters. As it can be seen, the microorganisms 

present in all samples were susceptible to the in situ forming implants loaded with 

doxycycline as well as to Parocline® (note that this product contains a different drug: 

minocycline). The inhibition zone diameters varied from 1.9 to 5.7 cm, depending on the 

specific GCF sample, with 1 exception: For the sample D91-3, the inhibition zone of 

doxycycline-loaded implants was at least as large as the Petri dish. The negative controls 

(in situ forming implants free of drug) did not inhibit bacterial growth (*) or exhibited 

small inhibition zones (diameter ≤ 0.7 cm), with 1 exception: For the samples D91-2 and 

D91-3, the recorded inhibition zone diameter of the negative controls was 2.4 and 5.1 cm, 

respectively. This exception can be attributed to the low bacterial concentration present in 

these specific samples, namely: 88 and 9 CFU/g, respectively. Such a low contamination 

leads to non-representative numbers of Colony Forming Units resulting from incubation of 

0.1 mL solution. The bacterial loads in the other samples were much higher: For instance, 

1 mL D90-2 solution contained 160,000 CFU. As expected, the inhibition zone diameters 

were generally smaller in the case of 100-fold dilutions compared to 1000-fold dilutions 

(since the bacterial concentration was 10-fold higher). 
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Figure'10.!Antimicrobial!activity!of! in#situ! forming!implants!(32!%!PLGA!RG!502!H,!

10! %! ATBC,! 20! %! Methocel®! E50,! 10! %! doxycycline! hyclate)! against! bacterial!

cocktails!sampled!from!periodontal!pockets!of!periodontist!patients:!Inhibition!zone!

diameters!measured!upon!incubation!of!gingival!crevicular!fluid!samples!in!agar!(“*”!

indicates!that!no!inhibition!zone!was!detected;!“⊗”indicates!that!inhibition!zone!was!

at!least!as!large!as!the!Petri!dish;!“100!x”!indicates!a!100[fold!sample!dilution;!“1000!

x”!indicates!a!1000[fold!sample!dilution;!“#”!indicates!n!=!2!instead!of!3;!“!”!indicates!

n!=!1!instead!of!3).!For!reasons!of!comparison,!drug[free!formulations!were!studied!
as!negative!controls!and!Parocline®!as!a!reference!(with!some!samples).!

The observed variation in the inhibition zones can be explained by the different 

compositions of the contents of the periodontal pockets of the patients: It is well known 

that this microflora is highly diverse and the quality and quantity of bacteria present 

depends on many factors, including the severity of disease state. To better understand 

which bacterial strains are likely to be of importance, the dominant colonies in all the 

samples from periodontitis patients were isolated and identified. In this study, 23 

microorganisms were isolated: 21 anaerobes (3 gram positive, 6 gram negative obligate 

anaerobes and 12 gram positive facultative anaerobes) and only 2 aerobes (1 gram negative 

bacterium and 1 fungus). These results are in good agreement with data reported in the 

literature, showing the dominance of anaerobic bacteria in periodontal pocket [34–37]. The 

isolated microorganisms included both, initial colonizers (Streptococcus spp., Actinomyces 

spp., Veillonella spp.) as well as strains frequently present in more mature biofilms 
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(Fusobacterium spp., Prevotella spp.) [37]. The so-called microbial “orange complex” 

associated with periodontitis was also found, including black-pigmented Prevotella sp. and 

Fusobacterium nucleatum [34]. This indicates that the bacteria identified in this study are 

likely to be representative for the principal microorganisms present in periodontal pockets 

of periodontitis patients. 

Once having identified these microorganisms, it was interesting to determine how 

active the proposed novel in situ forming implants were against them. For this reason, the 

same experimental set-up was used as described above for the entire fluid samples from 

the periodontal pockets, but inoculating only the isolated bacteria. Figure 11 shows the 

measured inhibition zone diameters observed with in situ forming implants prepared from 

formulations containing 32 % PLGA 502 H, 10 % ATBC, 20 % HPMC (Methocel® E50) 

and 10 % doxycycline hyclate. For reasons of comparison, also drug-free systems were 

studied (as negative controls) and the commercially available Parocline® (as a reference, 

with some of the bacterial strains). Clearly, efficient growth inhibition was observed with 

all drug-containing systems in 22 out of 23 cases. The only exception was Candida 

pelliculosa, but this is a fungus (and not a bacterium), and it can be found in the 

physiological mouth flora. It is not surprising that doxycycline is not active against it. 

Depending on the type of microorganism, the inhibition zone diameter varied from 1.5 to 

6.5 cm (Figure 11). This variation is due to the different susceptibility of the respective 

bacteria to the drug. Importantly, the corresponding inhibition zone diameters observed 

with the placebo-formulations were generally much smaller, ranging from 0.0 to 3.4 cm. 

The 3.4 cm value was measured upon incubation of Prevotella nigrescens. Although this 

value is about 2-fold smaller than the corresponding value obtained with doxycycline-

loaded formulations (6.5 cm), it indicates a possible susceptibility of this bacterium to the 

drug-free implant systems, eventually because of the decrease in pH upon PLGA 

degradation. Furthermore, it can be seen in Figure 11 that the activity of the novel in situ 

forming implants was similar to the activity of Parocline® (in the case of the investigated 

strains). 
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Figure'11.!Antimicrobial!activity!of! in#situ! forming!implants!(32!%!PLGA!RG!502!H,!

10!%!ATBC,!20!%!Methocel®!E50,!10!%!doxycycline!hyclate)!against!isolated#bacteria!

strains! obtained! from! gingival! crevicular! fluid! samples! of! periodontitis! patients:!

Inhibition! zone! diameters!measured! upon! incubation! in! agar! (“*”! indicates! that! no!

inhibition! zone!was! detected;! “#”! indicates! n! =! 2! instead! of! 3;! “!”! indicates! n! =! 1!

instead! of! 3).! For! reasons! of! comparison,! drug[free! formulations! were! studied! as!

negative!controls!and!Parocline®!as!a!reference!(with!some!bacterial!strains).!

In addition, it has to be pointed out that the inhibition zone diameters of the 

commensal oral bacteria were smaller than the ones of pathogenic bacteria. For example, 

the average inhibition zone diameter observed with 7 Streptococcus strains (commensal 

flora) was 1.9 cm, while the one from Prevotella sp. and Fusobacterium nucleatum 

(pathogenic strains) were 4.9 and 4.7 cm, respectively. This difference indicates that the 

investigated implants are likely to rapidly destroy pathogens and not as quickly inhibit 

commensals. Thus, the commensal flora will have an opportunity to continue to colonize 

the periodontal pockets of the patients, re-establishing the natural microbiological balance 

as in healthy subjects. This is a very important aspect in practice, since the current standard 

treatment “root planing” suffers from a high risk of re-colonization of the pockets with 

pathogenic bacteria. 
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4. Conclusion 

The novel composite in situ forming implants show a very promising potential as 

innovative local and controlled drug delivery systems for the treatment of periodontitis: 

They are likely able to overcome crucial current bottlenecks in this field, including 

unreliable residence times at the site of action (due to accidental system expulsion) and re-

colonization with pathogenic bacteria. Future studies should address the in vivo activity of 

these novel types of advanced drug delivery systems. 
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Conclusion 

Periodontitis is a highly prevalent disease worldwide. Its treatment is 

challenging due to the complexity of its etiology and common recurrence post-

treatment. In situ forming implant was reported to be an effective local periodontitis 

treatment, even though the lack of bioadhesiveness is still a limitation unsecuring the 

therapy efficacy. In this thesis, we developed biodegradable and bioadhesive in situ 

forming implants loaded with antibiotics for the treatment of periodontitis. By means 

of characterization techniques, the properties and antimicrobial activity of drug 

devices were evaluated. 

In the Introduction, general definition, cause and treatment methods of 

periodontitis were reviewed. Short summary about the antibiotherapy was shown 

including various systemic or local antibiotic delivery systems and their reported 

clinical results. Among that, in situ forming implants are particularly promising for 

the treatment of periodontitis. The formulation composition and their impact on the 

controlled drug release capacity of these drug devices were briefly introduced.  

Chapter 1 presented new in situ forming implants based on PLGA in NMP for 

the local treatment of periodontitis, with good mechanical properties by means of 

addition of a plasticizer ATBC and a second polymer HPMC. Indeed, these systems 

perform much higher adhesiveness than prior art systems and provide appropriate 

plasticity, which favor their residence times in the patients’ periodontal pockets. The 

ability to control drug release during more than 7 days and good antimicrobial activity 

against relevant Streptococcus strains makes these in situ forming implants very 

promising for improved periodontitis treatment.  

Chapter 2 focused on the controlled drug release capacity of the in situ 

forming implants and its mechanism. It was demonstrated that the presence of HPMC 

in the systems was a key parameter to increase the systems’ adhesive forces and limit 

system swelling. The role of HPMC in modifying drug release kinetics was exhibited 

by advanced characterization techniques such as EPR and NMR measurements. In the 

PLGA RG 504 H matrices, the presence of HPMC increased significantly the solvent 

exchange rates in in situ forming implants, leading to rapid PLGA precipitation 

throughout the device and a highly porous system structure. These phenomena 

resulted in high drug mobility within the implant and, thus, increased release rates. 
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The addition of HPMC is an interesting tool to achieve desired drug release kinetics 

of PLGA-based in situ forming implants.  

Chapter 3 investigates how the formulation composition determines system 

performance. In contrast to the substantial effect of HPMC in higher molecular weight 

PLGA (RG 504 H), the impact of HPMC is negligible in lower molecular weight 

PLGA (RG 502 H), irrespective of the type of drug. Interestingly, the increase in 

implant mass was reduced, irrespective of PLGA type. This was true for all 

investigated initial drug loadings and drug type, PLGA concentrations and HPMC 

polymer molecular weights. This insight can be very helpful for device optimization 

in the future, including other applications (e.g. for different drugs or drug 

combinations). 

 Chapter 2 and Chapter 3 showed that the proposed in situ forming implant 

formulations (loaded with 10 % doxycycline hyclate or 2 % minocycline 

hydrochloride) exhibited good antimicrobial activity against all the tested complex or 

isolated bacteria from periodontitis patients.  Interestingly, the implants more strongly 

inhibited the growth of pathogenic bacterial strains isolated from the periodontal 

pockets of patients suffering from periodontitis compared to bacteria encountered in 

healthy subjects. This preferential activity is highly expected to favor the re-

establishing of healthy microorganisms after treatment period.  

In the future, the in vivo activity of these novel types of advanced drug 

delivery systems should be addressed. 
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Résumé  

Les maladies parodontales sont des infections diverses des tissus parodontaux, y 

compris la gingivite et la parodontite. Ces maladies sont causées par un biofilm bactérien 

résidant sur les dents adjacentes à la gencive, conduisant à une inflammation des gencives. 

Alors que la gingivite est la forme la plus douce, qui ne nuit pas aux structures de soutien 

sous-jacent des dents et est réversible, la parodontite quant à elle mène à la perte de tissus 

conjonctifs et de soutien de l'os. 

Selon la classification de l'Académie américaine de parodontologie, la parodontite 

peut être divisée en plusieurs catégories: la parodontite chronique, la parodontite agressive, 

la parodontite associée à la maladie systémique et la parodontite nécrosante. Elles sont 

généralement caractérisées par une destruction du ligament alvéolo-dentaire, une 

résorption de l’os alvéolaire et une migration de la jonction épithéliale le long de la surface 

de la dent, menant à la formation de poches parodontales.  

La cause principale de ces maladies est la prolifération de bactéries pathogènes 

bouleversant l'équilibre naturel de défense de l'hôte et de la flore commensale. Ces 

organismes se développent sur les surfaces dentaires d’abord en tant que micro-colonies, 

puis s’attachent les uns aux autres et forment des biofilms. La gingivite est souvent causée 

par une hygiène buccale insuffisante, provoquant la formation de la plaque dentaire. Les 

autres facteurs qui peuvent contribuer à la cause de cette maladie sont la génétique, le 

tabac, la consommation d'alcool, les carences nutritionnelles, l'infection au VIH, 

l'ostéoporose, le diabète, le stress, la réponse de l'hôte altérée et certains médicaments. Les 

lésions gingivales non traitées peuvent évoluer en parodontite, dans laquelle la plaque 

s’élargit et remonte sous la gencive, créant encore un meilleur environnement pour les 

colonies bactériennes, notamment les bactéries à gram négatif et anaérobies. 

La microflore orale normale (108 bactéries/mL de salive) contient principalement 

des aérobies à gram positif  ainsi que plusieurs espèces pathogènes à faible virulence. Les 

espèces pathogènes associées à la parodontite se composent principalement d’anaérobies à 

gram négatif. Chaque type de parodontite présente une flore sous-gingivale spécifique avec 

ses micro-organismes propres. Le changement de composition bactérienne associé à 

l'apparition des souches bactériennes spécifiques dans les canaux radiculaires infectés 

pourrait être un facteur déterminant dans la progression de la maladie. Le premier 

complexe bactérien associé à la parodontite est appelé «complexe orange» et se compose 
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des bacilles gram négatif anaérobies strictes comme Prevotella intermedia et 

Fusobacterium nucleatum. La forme la plus sévère s’accompagne du  «complexe rouge» 

formé par l’association de 3 bactéries: Porphyromonas gingivalis, Tannerella forsythia et 

Treponema denticola. Le gram négatif facultatif tel que Actinobacillus (maintenant 

Aggregatibacterium actinomycetemcomitans) est aussi communément associé à cette 

maladie, en particulier chez les jeunes adultes. 

Le traitement des maladies parodontales vise à rétablir la santé parodontale en 

interrompant la progression de la maladie, en prévenant la récidive et en maintenant des 

dents en bonne santé. Cet objectif peut être atteint par diverses thérapies chirurgicales et 

non chirurgicales, en fonction de la maladie et de sa gravité. La première possibilité pour le 

traitement des maladies parodontales consiste en l'élimination de la plaque, qui est 

effectuée par le soin d'hygiène bucco-dentaire et le traitement professionnel appelé le 

détartrage et le surfaçage radiculaire. Ces 2 techniques doivent être réalisées régulièrement 

pour maintenir l'hygiène buccale et stabiliser la flore buccale normale, interrompant 

l'inflammation gingivale. Cette thérapie non chirurgicale peut avoir une bonne efficacité 

dans la parodontite initiale comme la baisse de l'inflammation des tissus et l’amélioration 

du « clinical periodontal attachment”. Toutefois, dans les cas graves, ce traitement 

mécanique ne suffit pas pour atteindre les résultats cliniques souhaités. Par exemple, la 

recolonisation des espèces pathogènes associées aux maladies et la récurrence de la 

parodontite sont très fréquentes. 

Afin de renforcer le traitement non chirurgical de la parodontite, une thérapie 

antimicrobienne est souvent utilisée comme complément au détartrage et au surfaçage 

radiculaire. L’antibiothérapie systémique est également utilisée pour le traitement de la 

parodontite sévère. Cependant, cette voie d'administration présente des désavantages en 

raison de leurs effets secondaires, à savoir l'hypersensibilité et l'intolérance gastro-

intestinale. Par ailleurs, la concentration du principe actif au niveau du site d'action (le 

parodonte) est assez faible et ne suffit pas pour un traitement antimicrobien efficace. Ces 

limites pourraient être améliorées par l'administration locale d’agents antimicrobiens. La 

mise en place d’un système à libération contrôlée contenant un principe actif dans la poche 

parodontale pourrait améliorer de manière significative sa concentration locale. En 

contrôlant la libération de ces systèmes, les effets secondaires pourraient également être 

réduits. 
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Cette forme galénique doit être facilement administrée et libérer l’antibiotique au 

sein de la poche parodontale à un taux optimum sur une longue période. Le premier 

système commercialisé sous-gingival est Actisite®: il est constitué de fibres de 

poly(éthylvinylacétate) (EVA) chargées en chlorhydrate de tétracyclines. Malgré une 

libération prolongée pendant 9 jours in vitro et une efficacité clinique démontrée, les 

cliniciens rapportent des difficultés avec la technique de placement d’Actisite®. Chez les 

patients, les principaux inconvénients sont l’anesthésie nécessaire pour le placement, 

l'inconfort pendant le traitement et des effets indésirables significatifs (rougeur gingivale, 

pigmentation de la langue). En outre, ce système doit être fixé par un adhésif cyanoacrylate 

à cause du manque de bioadhésivité. Le produit commercialisé Elyzol® contenant 25% de 

métronidazole peut être facilement placé dans la poche parodontale par une seringue 

fournie. Néanmoins, suite aux études cliniques, l'efficacité de ce gel utilisé en combinaison 

avec le détartrage et le surfaçage radiculaire est controversée. Ceci est probablement dû à 

la mauvaise rétention de gel Elyzol® à l'intérieur de la poche parodontale. De même, 

l'efficacité clinique de Periochip®, un insert biodégradable composé de gluconate de 

chlorhexidine à la gélatine hydrolysée n'a pas été confirmée. Cet insert adhésif peut 

maintenir la libération du principe actif pendant 7 jours. Toutefois, suite à une étude 

clinique systématique, les résultats cliniques et microbiologiques de Periochip® en 

combinaison avec le détartrage et le surfaçage radiculaire sont limités et controversés. Par 

ailleurs, le gel de minocycline à 2 % qui a été commercialisé sous plusieurs marques 

(Dentomycin®, Periocline®, Parocline®) semble être meilleur au niveau de la thérapie 

clinique. Il a été rapporté que le Dentomycin® fournissait une réduction importante du « 

probing depth » et du « clinical attachment gain” ainsi que de meilleurs résultats pour le 

« bleeding on probing”. Toutefois, ces gels manquent encore de biodégradabilité, d'où la 

nécessité de retrait du dispositif vide après le traitement. Un autre système injectable 

biodégradable largement étudié est Atridox®. Ce système est constitué d'un polymère 

biodégradable, l’acide polylactique (PLA) dissous dans le solvant biocompatible N-

méthyl-2-pyrrolidone (NMP) chargé à 10 % hyclate de doxycycline. Il s'agit d'un système 

de formation in situ en raison de son changement d’état de liquide à solide après l’injection 

dans la poche parodontale. Cet implant peut maintenir la libération de la doxycycline sur 7 

jours. Dans deux grandes études cliniques (n = 411), Atridox® a démontré une efficacité 

clinique supérieure à l'hygiène bucco-dentaire et au véhicule seul. Cependant, l’Atridox® 
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tend à sortir prématurément de la poche parodontale (mécaniquement), l’addition de colles 

parodontales a pour effet de minimiser cet inconvénient. 

Les implants se formant in situ (ISFI) sont des formulations galéniques liquides 

parentérales qui se transforment en dépôt (semi-) solide après injection par une seringue. 

L’ISFI a d'abord été étudié au début des années 1980 avec pour objectif de développer des 

formulations injectables antimicrobiennes pour le traitement local des maladies 

parodontales. Jusqu'à présent, l’ISFI retient encore beaucoup l'attention des chercheurs en 

raison de son avantage par rapport aux autres dispositifs d'administration de médicaments 

par voie parentérale tels que les liquides, les liposomes, les émulsions, les microsphères et 

les microparticules. Les principaux avantages des ISFI sont leur plus faible coût de 

production et un procédé de fabrication simple.  

Les ISFI peuvent être classés en 3 groupes principaux, en fonction du mécanisme 

de formation de l'implant: (i) les systèmes réticulés, (ii) les organogels solidifiant et (iii) les 

systèmes de séparation de phases. Parmi ceux-ci, le système de séparation de phase par 

échange de solvant est très attractif en raison de son grand potentiel commercial. En effet, 

cette thèse se concentre sur les implants se formant in situ à base d’échange de solvant, 

l’abréviation ISFI sera utilisée pour désigner les systèmes de séparation de phase par 

l’échange de solvant. La formulation de ces systèmes ISFI est généralement constituée d'un 

solvant, d’un polymère et d’un principe-actif. Des quantités relativement élevées de 

solvant sont utilisées dans la formulation d’ISFI pour dissoudre le polymère, formant une 

solution polymérique. Cette dernière est ensuite injectée dans le corps et se diffuse dans les 

tissus environnants, le solvant utilisé doit donc répondre à certaines exigences. Il doit être 

non toxique et biocompatible, par conséquent, il ne provoquera aucune irritation sévère des 

tissus ni de nécrose au site d'injection. Par ailleurs, le solvant doit être miscible à l'eau pour 

diffuser rapidement dans le fluide corporel et permettre à l'eau de diffuser dans la solution 

polymérique, conduisant à la précipitation du polymère. Les solvants préférés comprennent 

la N-méthyl-2-pyrrolidone, la 2-pyrrolidone, l'acétone, le diméthylsulfoxyde, en raison de 

leur capacité de solvatation et de leur biocompatibilité. Il existe un grand choix de 

polymères biodégradables qui peuvent être utilisés dans l’ISFI. Les polymères à faible 

degré de cristallinité et grande hydrophobicité sont préférables en raison de leur grande 

solubilité dans les solvants organiques. Des exemples de tels polymères sont les 

polylactides, les polycaprolactones et les acides poly(lactique-co-glycolique). Ils 
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présentent des régions plus amorphes pour améliorer la solubilité. Ces polymères sont 

également largement étudiés en raison de leur sécurité approuvée par la FDA et une longue 

histoire d'utilisation clinique. L’acide poly(lactique-co-glycolique) (PLGA) est un 

copolymère de l’acide polylactique (PLA) et de l’acide polyglycolique (PGA). La gamme 

des produits de PLGA est large en raison de la capacité de copolymérisation des deux 

polymères PLLA et PDLLA avec différents ratios de monomères. Le PLGA se dégrade 

dans l'eau par hydrolyse de ses liaisons esters. Pour les systèmes à libération contrôlée, le 

choix d'un PLGA avec une cinétique de dégradation appropriée est important pour obtenir 

une cinétique de libération souhaitée. Le PLGA est à ce jour considéré comme le polymère 

le mieux défini disponible pour les systèmes à libération contrôlée à l'égard de la 

conception et de la performance. Le choix du principe actif dépend de l'application de 

l’ISFI. Pour le traitement de la parodontite, les substances choisies sont des antiseptiques 

ou des antibiotiques à large spectre antibactérien approprié. Pour le traitement du cancer de 

la prostate, le peptide agoniste des récepteurs hormonaux, l’acétate de leuprolide a été 

choisi comme principe actif. Par ailleurs, de nombreux dispositifs d’ISFI ont été étudiés en 

utilisant de petites molécules comme le diclofénac sodique et l'aspirine ainsi que de 

grandes molécules de protéines comme l'albumine de sérum bovin et l’hormone de 

croissance humaine. Les propriétés de la substance active (le poids moléculaire, la 

solubilité, l'affinité pour le solvant) et sa teneur dans la formulation peuvent affecter son 

profil de libération à partir des systèmes d’ISFI. 

La libération du principe actif à partir de l’ISFI de PLGA est le résultat d'un 

processus physico-chimique complexe se produisant dans la matrice de PLGA, de 

l'injection de la solution polymérique jusqu'à la fin de la dégradation de la matrice. Ce 

processus commence par l'échange de solvant provoquant la précipitation du polymère, 

aboutissant à la formation d'un dépôt solide. Au sein de la matrice de PLGA, la présence 

d'eau provoque l'hydrolyse du PLGA, coupant les liaisons ester et augmentant la mobilité 

des chaînes polymériques. La diminution de la masse moléculaire du polymère conduit 

finalement à l'érosion de la matrice polymérique, ce qui pourrait affecter la libération du 

principe actif. En bref, le mécanisme sous-jacent de libération de la substance active peut 

se résumer à deux procédés principaux: la diffusion et l'érosion. Ces mécanismes peuvent 

se produire simultanément et sont influencés par des paramètres de formulation et par 

l'environnement du site d'injection. La diffusion a été décrite comme l'un des mécanismes 
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de libération principal contrôlant la libération du principe actif à partir de systèmes à base 

de PLGA. Elle est directement liée à la porosité de la matrice polymérique, et par 

conséquent au processus de formation de pores. Dans le cas de l’ISFI, l'échange de solvant 

se produit lors du contact de la solution polymérique avec l'environnement aqueux 

conduisant à une séparation de phases liquide-liquide et à la formation des pores. Le 

coefficient de diffusion du principe actif à partir de l’ISFI dépend du coefficient de 

diffusion dans les pores remplis par le liquide, sa porosité et sa tortuosité. Par conséquent, 

ce paramètre n'est pas constant mais il change en fonction du temps car l’altération de la 

structure du dépôt est induite par la dégradation du polymère. L'érosion commence quand 

le poids moléculaire du polymère passe en dessous d'un seuil de 15 kDa. Dans un premier 

temps, l'érosion augmente la formation des pores et augmente ainsi la vitesse de diffusion. 

Par ailleurs, l'érosion peut être considérée comme un vrai mécanisme de libération, 

induisant une libération directe de principe actif en même temps qu’une perte de masse du 

polymère. D'autres mécanismes de libération de la substance active à partir des systèmes à 

base de PLGA comprennent la diffusion au travers du réseau polymérique et le pompage 

osmotique. Dans le cas de l’ISFI, l'absorption de l'eau conduit à un gonflement du 

polymère. Ce phénomène peut alors compenser la pression osmotique à l'intérieur des 

systèmes. Par conséquent, la diffusion à travers des pores remplis d'eau est généralement le 

mécanisme de libération dominant. 

De nombreux facteurs peuvent influencer la libération du principe actif des ISFI de 

PLGA, y compris les paramètres de formulation et les propriétés de l'environnement du 

site d'injection.  Le solvant organique a un impact significatif sur la formation de la matrice 

polymérique et la libération de principe actif sous-jacente. En fonction de la force du 

solvant (la miscibilité dans l'eau), la matrice polymérique peut être poreuse ou presque 

non-poreuse. Les solvants ayant une grande miscibilité dans l’eau (NMP, DMSO...) 

favorisent une rapide séparation de phase liquide-liquide et par conséquent la formation de 

la structure poreuse, ce qui peut augmenter la libération du principe actif. En revanche, la 

structure plus uniforme créée par les solvants les plus faibles (la triacétine, l'acétate 

d'éthyle, le benzoate d'éthyle ...) conduit à une libération du principe actif plus lente. Les 

propriétés physico-chimiques du PLGA ont également un impact significatif sur la 

cinétique de libération du principe actif à partir de l’ISFI de PLGA. Tout d'abord, la masse 

moléculaire (Mw) est une propriété importante du PLGA, celle-ci est proportionnelle à la 
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longueur de la chaîne du polymère, et par conséquent proportionnelle à sa viscosité 

intrinsèque. Selon Ahmed et al. (2012), une Mw faible conduit à un polymère moins 

hydrophobe avec une augmentation du taux d'absorption de l'eau et de la dégradation de la 

matrice, ce qui entraîne une vitesse de libération plus rapide par rapport aux Mw élevées. 

Deuxièmement, une concentration en polymère plus élevée conduit à une augmentation de 

la viscosité et de l'hydrophobicité de la solution polymérique. Par conséquent, le taux 

d'afflux de l'eau, le taux de séparation des phases et la diffusion du principe actif dans le 

milieu de libération sont limités, conduisant à des taux de libération plus lents. Ensuite, le 

groupement situé à l’extrémité du PLGA peut être un acide carboxylique ou un ester, 

entraînant un changement de ses propriétés chimiques. Des polymères avec un groupement 

carboxylique sont plus hydrophiles, donc augmentent la vitesse d’absorption de l’eau, de 

l’hydrolyse et de l'érosion. Par conséquent, le groupe d'extrémité a un impact considérable 

sur le taux de libération du principe actif. Enfin, le PLGA peut se composer de n'importe 

quel rapport acide lactique/acide glycolique (L:G). Cette proportion influence la 

cristallinité du polymère et donc son absorption d'eau et sa vitesse de dégradation. Grâce 

aux propriétés plus hydrophile du PGA par rapport au PLA, le PLGA avec un L:G plus 

faible est moins hydrophobe que celui avec un rapport L:G plus haut. Par conséquent, il 

absorbe plus d'eau et se dégrade plus rapidement. Dans l’ISFI, le principe actif peut être 

dissous ou dispersé dans la solution polymérique, en fonction de sa solubilité dans le 

solvant organique. Etant donné que la diffusion est considérée comme le mécanisme 

principal de libération, la solubilité du principe actif dans le milieu de libération est un 

paramètre important. D'une part, la nature du principe actif peut modifier l'échange de 

solvant de la solution polymérique et ainsi modifier la vitesse de libération. Généralement, 

une substance active hydrophile conduit à un taux de diffusion et de dégradation plus élevé 

que les substances hydrophobes. Certains principes actifs acides (le N-acétyl cystéine, 

l'aspirine) ont montré qu’ils facilitaient la dégradation de la matrice de PLGA et donc 

amélioraient leurs libérations à partir de l’ISFI de PLGA. D’autre part, la libération du 

principe actif à partir de la matrice de PLGA dépend aussi de ses propriétés chimiques. Les 

substances basiques peuvent créer une interaction ionique forte avec le polymère, en les 

gardant dissoutes dans la matrice. Cette interaction protège les groupes carboxyliques 

terminaux du polymère, ce qui entraîne une érosion plus lente de la matrice et réduit la 

diffusion à travers la matrice. En revanche, en raison de leur faible interaction avec le 
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PLGA, les substances acides et neutres précipitent rapidement sous la forme de cristaux 

dans la matrice pendant la libération. Par conséquent, la solubilité de ces principes actifs 

dans la matrice hydratée devient un paramètre dominant affectant sa diffusion. Plusieurs 

additifs ont été ajoutés dans la formulation des ISFI de PLGA pour modifier ses propriétés 

de libération. Les polymères hydrophiles comme la polyvinylpyrrolidone (PVP) ou les 

Pluronics ont démontré un impact sur la vitesse de libération à partir des ISFI. L’addition 

d’un co-solvant, d’un plastifiant ou d’un excipient qui peut interagir avec le principe actif 

peut également affecter le profil de libération de l’ISFI. 

L’objectif de ces travaux était de développer de nouveaux implants biodégradables 

se formant in situ pour le traitement des maladies parodontales, les infections les plus 

fréquentes au monde. Ces implants permettront de délivrer localement le principe actif et 

de contrôler sa libération. L’avantage des implants se formant in situ est la possibilité 

d’épouser parfaitement la poche parodontale. Ces implants sont basés sur un polymère 

biodégradable et biocompatible, l’acide polylactique (PLA) ou l’acide poly(lactique-co-

glycolique) (PLGA). Il est aussi important de souligner que l’un des pré-requis pour ces 

nouveaux systèmes est de présenter une bonne bioadhésion et des propriétés mécaniques 

permettant d’éviter une expulsion prématurée hors de la poche parodontale. Les cinétiques 

de libération résultantes seront contrôlées sur au moins 7 jours avec une dégradation 

simultanée de la matrice polymérique. Les principaux objectifs de cette thèse incluaient: (i) 

la préparation et la caractérisation physico-chimique d’implants se formant in situ, (ii) 

l’étude de l’effet des paramètres de formulation et de procédé (ex: différents types et 

teneurs en polymère, agent bioadhésif et plastifiant) sur les cinétiques de libération 

résultantes, (iii) l’élucidation des mécanismes de libération sous-jacents en se basant sur 

les propriétés physico-chimiques des implants caractérisés par microscopie optique, suivi 

des cinétiques de libération, chromatographie à perméation de gel (GPC), résonance 

paramagnétique électronique (EPR) et (iv) l'évaluation de l'activité antimicrobienne des 

implants développés par des tests microbiologiques sur la flore complexe et sur des 

bactéries isolées du fluide gingival de patients atteints de parodontite. 

Dans un premier temps les travaux menés dans le cadre de cette thèse se sont 

attachés à développer de nouveaux implants se formant in situ avec un potentiel 

prometteur pour surmonter l'un des inconvénients majeurs liés au traitement local de la 
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parodontite: l’adhérence limitée aux tissus environnants, entraînant l'expulsion accidentelle 

d'au moins une partie des implants de la poche parodontale. Cela conduit à de fortes 

incertitudes quant au temps de résidence des systèmes au site d'action et ainsi au temps 

d'exposition au principe actif. Dans cette étude, l'addition de diverses concentrations de 

différents types de plastifiants (l’acetyltributyl citrate, ATBC et le dibutyl sebacate, DBS) 

et de polymères adhésifs (dérivés cellulosiques tels que l'hydroxypropyl méthylcellulose, 

HPMC) ont permis d’obtenir une augmentation significative de l’adhésion des implants à 

base de l’acide poly(lactique-co-glycolique) (PLGA). Ces systèmes sont formés in situ à 

partir des formulations liquides de N-méthyl-2-pyrrolidone (NMP). Il est important de 

noter que, dans le même temps, une bonne aptitude à la déformation plastique des implants 

a été obtenue et les cinétiques de libération du principe actif souhaitées ont pu être affinées 

à l'aide de plusieurs outils de formulation. L'activité antimicrobienne de ce nouveau type 

d'implants se formant in situ, chargés à l’hyclate de doxycycline, a été démontrée en 

utilisant la méthode de diffusion en gélose sur plusieurs souches de Streptococcus isolées à 

partir de la microflore buccale des patients souffrant de parodontite. 

L’objectif dans un deuxième temps visait à une meilleure compréhension des 

mécanismes de formation in situ des implants. Des implants se formant in situ à base de 

PLGA, d’ATBC, de chlorhydrate de minocycline, de NMP et d’HPMC, ont été préparés et 

caractérisés en détail in vitro. Pour cela différentes techniques ont été utilisées: la 

résonance paramagnétique électronique (EPR), la résonance magnétique nucléaire (1H 

NMR), le suivi de l’évolution de la masse et la cinétique de libération du principe actif 

dans différentes conditions, la microscopie optique, la chromatographie d'exclusion 

stérique (SEC), ainsi que des tests d'activité antibactériens utilisant des échantillons de 

fluide gingival des poches parodontales des patients atteints de parodontite. En se basant 

sur ces résultats, une vision approfondie sur les phénomènes physico-chimiques impliqués 

dans la formation de l'implant et sur le contrôle de la libération du principe actif a pu être 

acquise. Par exemple, les effets de l'ajout d’HPMC dans la formulation, qui améliore 

l'adhérence de l'implant et réduit le gonflement, ont pu être expliqués. De manière 

importante, les implants se formant in situ ont efficacement empêché la croissance 

bactérienne dans les poches parodontales des patients. Il est intéressant de noter que ces 

systèmes ont été plus efficaces sur la croissance des souches bactériennes pathogènes (par 

exemple le Fusobacterium nucleatum) que sur des souches physiologiques (par exemple 
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les Streptococcus). In vivo, on peut donc s'attendre à une action préférentielle contre les 

bactéries pathogènes permettant ainsi à la flore saine de recoloniser les poches 

parodontales. 

Enfin dans un dernier temps, l’impact de la composition des implants sur la 

performance des systèmes a été étudié. Les processus impliqués dans la formation de 

l'implant et dans le contrôle de la libération du principe actif sont complexes et les relations 

entre la composition des implants et ses performances sont encore obscures. Afin 

d’élucider ces relations, des techniques de caractérisation de pointe, telles que l'analyse 

EPR ont été utilisées pour mieux comprendre les implants se formant in situ basés sur deux 

différents types de PLGA, d’HPMC et de doxycycline ou de métronidazole. Il est 

intéressant de noter que l’ajout d’HPMC et de PLGA de plus faible poids moléculaire a 

légèrement diminué la libération du principe actif, alors que dans le cas de PLGA de poids 

moléculaire plus élevé, la vitesse de libération a substantiellement augmenté. Ces 

tendances peuvent être expliquées en se basant sur la cinétique du transport de masse au 

cours de la formation de l'implant et des structures internes des systèmes. En outre, 

l'activité antimicrobienne des implants contre les micro-organismes présents dans les 

poches parodontales de patients atteints de parodontite a été évaluée. Il est intéressant de 

noter que ces systèmes gênent plus efficacement la croissance des bactéries pathogènes 

que celle des micro-organismes physiologiques. Ainsi, une recolonisation de la flore saine 

dans les poches des patients peut être envisagée in vivo. 

Pour conclure, cette thèse présente des implants se formant in situ à base de PLGA 

qui se dissolvent dans le NMP, sont bioadhésifs et chargés en antibiotique (la minocycline, 

la doxycycline ou le métronidazole) pour le traitement des parodontites. L’ajout de 

diverses concentrations de plastifiants (l’ATBC et le DBS) et de polymères adhésifs 

(dérivés cellulosiques tels que l’HPMC) a apporté une bonne aptitude à la déformation 

plastique des implants. Parallèlement, les cinétiques de libération de substance active 

souhaitées ont pu être affinées à l'aide de plusieurs outils de formulation. En utilisant 

plusieurs techniques de caractérisation in vitro, une vision approfondie des phénomènes 

physico-chimiques impliqués dans la formation de l'implant et du contrôle de la libération 

du principe actif a pu être acquise. Par exemple, les effets de l'ajout d’HPMC dans la 

formulation, qui améliore l'adhérence de l'implant et réduit le gonflement, ont pu être 
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expliqués. En outre, l'activité antimicrobienne des implants contre les micro-organismes 

présents dans les poches parodontales de patients atteints de parodontite a été évaluée. Il 

est intéressant de noter que ces systèmes sont plus efficaces contre la croissance des 

souches bactériennes pathogènes que contre celle des souches physiologiques. Ces 

résultats préliminaires ouvrent des perspectives pour évaluer plus en détail ces 

formulations in vivo. 
 


