
HAL Id: tel-01176641
https://theses.hal.science/tel-01176641v1
Submitted on 15 Jul 2015 (v1), last revised 18 Apr 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static Analysis by Abstract Interpretation of Functional
Temporal Properties of Programs

Caterina Urban

To cite this version:
Caterina Urban. Static Analysis by Abstract Interpretation of Functional Temporal Properties of Pro-
grams. Computer Science [cs]. École Normale Supérieure, 2015. English. �NNT : �. �tel-01176641v1�

https://theses.hal.science/tel-01176641v1
https://hal.archives-ouvertes.fr
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Abstract

The overall aim of this thesis is the development of mathematically sound
and practically e�cient methods for automatically proving the correctness of
computer software. More specifically, this thesis is grounded in the theory of
Abstract Interpretation, a powerful mathematical framework for approximat-
ing the behavior of programs. In particular, this thesis focuses on proving
program liveness properties, which represent requirements that must be even-
tually or repeatedly realized during program execution.

Program termination is the most prominent liveness property. This the-
sis designs new program approximations, in order to automatically infer su�-
cient preconditions for program termination and synthesize so called piecewise-
defined ranking functions, which provide upper bounds on the waiting time
before termination. The approximations are parametric in the choice between
the expressivity and the cost of the underlying approximations, which main-
tain information about the set of possible values of the program variables along
with the possible numerical relationships between them.

This thesis also contributes an abstract interpretation framework for prov-
ing liveness properties, which comes as a generalization of the framework pro-
posed for termination. In particular, the framework is dedicated to liveness
properties expressed in temporal logic, which are used to ensure that some de-
sirable event happens once or infinitely many times during program execution.
As for program termination, piecewise-defined ranking functions are used to
infer su�cient preconditions for these properties, and to provide upper bounds
on the waiting time before a desirable event.

The results presented in this thesis have been implemented into a prototype
analyzer. Experimental results show that it performs well on a wide variety of
benchmarks, it is competitive with the state of the art, and is able to analyze
programs that are out of the reach of existing methods.





Résumé

L’objectif général de cette thèse est le développement de méthodes mathémati-
ques correctes et e�caces en pratique pour prouver automatiquement la cor-
rection de logiciels. Plus précisément, cette thèse est fondée sur la théorie de
l’Interprétation Abstraite, un cadre mathématique puissant pour l’approxima-
tion du comportement des programmes. En particulier, cette thèse se concentre
sur la preuve des propriétés de vivacité des programmes, qui représentent des
conditions qui doivent être réalisés ultimement ou de manière répétée pendant
l’exécution du programme.

La terminaison des programmes est la propriété de vivacité la plus fréque-
ment considérée. Cette thèse conçoit des nouvelles approximations, afin de
déduire automatiquement des conditions su�santes pour la terminaison des
programmes et synthétiser des fonctions de rang définies par morceaux, qui
fournissent des bornes supérieures sur le temps d’attente avant la terminaison.
Les approximations sont paramétriques dans le choix entre l’expressivité et
le coût des approximations sous-jacentes, qui maintiennent des informations
sur l’ensemble des valeurs possibles des variables du programme ainsi que les
relations numériques possibles entre elles.

Cette thèse développe également un cadre d’interprétation abstraite pour
prouver des propriétés de vivacité, qui vient comme une généralisation du
cadre proposé pour la terminaison. En particulier, le cadre est dédié à des
propriétés de vivacité exprimées dans la logique temporelle, qui sont utilisées
pour s’assurer qu’un événement souhaitable se produit une fois ou une infinité
de fois au cours de l’exécution du programme. Comme pour la terminaison,
des fonctions de rang définies par morceaux sont utilisées pour déduire des
préconditions su�santes pour ces propriétés, et fournir des bornes supérieures
sur le temps d’attente avant un événement souhaitable.

Les résultats présentés dans cette thèse ont été mis en œuvre dans un
prototype d’analyseur. Les résultats expérimentaux montrent qu’il donne de
bons résultats sur une grande variété de programmes, il est compétitif avec
l’état de l’art, et il est capable d’analyser des programmes qui sont hors de la
portée des méthodes existantes.
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1
Introduction

1.1 Software Verification

In the last decades, software took a growing importance into all kinds of sys-
tems. As we rely more and more on software, the consequences of a bug are
more and more dramatic, causing great financial and even human losses. A
notorious example is the spectacular Ariane 5 failure1 caused by an integer
overflow, which resulted in more than $370 million loss. More recent examples
are the Microsoft Zune Z2K bug2 and the Microsoft Azure Storage service in-
terruption3 both due to non-termination, the Toyota unintended acceleration4

caused by a stack overflow, and the Heartbleed security bug5.

1.1.1 Testing

The most widespread (and in many cases the only) method used to ensure the
quality of software is testing. Many testing methods exist, ranging from black-
box and white-box testing to unit and integration testing. They all consist in
executing parts or the whole of the program with selected or random inputs
in a controlled environment, while monitoring its execution or its output.
Achieving an acceptable level of confidence with testing is generally costly
and, even then, testing cannot completely eliminate bugs. Therefore, while
in some cases it is acceptable to ship potentially erroneous programs and rely
on regular updates to correct them, this is not the case for mission critical
software which cannot be corrected during missions.

1
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

2
http://techcrunch.com/2008/12/31/zune-bug-explained-in-detail/

3
http://azure.microsoft.com/blog/2014/11/19/update-on-azure-storage-

service-interruption/

4
http://www.automotive-spin.it/uploads/12/12W_Bagnara.pdf

5
http://heartbleed.com

http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
http://techcrunch.com/2008/12/31/zune-bug-explained-in-detail/
http://azure.microsoft.com/blog/2014/11/19/update-on-azure-storage-service-interruption/
http://azure.microsoft.com/blog/2014/11/19/update-on-azure-storage-service-interruption/
http://www.automotive-spin.it/uploads/12/12W_Bagnara.pdf
http://heartbleed.com
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1.1.2 Formal Methods

Formal methods, on the other hand, try to address these problems by providing
rigorous mathematical guarantees that a program preserves certain properties.
The idea of formally discussing about programs dates back from the early
history of computer science: program proofs and invariants are attributed to
Robert W. Floyd [Flo67] and Tony Hoare [Hoa69] in the late 1960s, but may
be latent in the work of Alan Turing in the late 1940s [Tur49, MJ84]. Current
methods can be classified into three categories [CC10]: deductive methods,
model checking, and static analysis.

Formal deductive methods employ proof assistants such as Coq [BC04],
or theorem provers such as PVS [ORS92] to prove the correctness of programs.
These methods rely on the user to provide the inductive arguments needed for
the proof, and sometimes to interactively direct the proof itself.

Formal methods based on model checking [CE81, QS82] explore exhaus-
tively and automatically finite models of programs so as to determine whether
undesirable error states are accessible. Various successful model checking al-
gorithms based on SAT-solving, such as IC3 [Bra11], have been developed to
complement the traditional model checking based on Binary Decision Dia-
grams [Bry86]. A major di�culty of this approach is to synthesize the model
from the program and the property to check. In particular, the size of the
model is critical for the checking phase to be practical.

Formal static analysis methods analyze directly and without user inter-
vention the program source code at some level of abstraction. Due to decid-
ability and e�ciency concerns, the abstraction is incomplete and can result
in false alarms or false positives (that is, correct programs may be reported
as incorrect) but never false negatives. The programs that are reported as
correct are indeed correct despite the approximation. The most prominent
static analysis methods are based on Abstract Interpretation [CC77].

Abstract Interpretation. Abstract Interpretation [CC77] is a general the-
ory for approximating the behavior of programs, developed by Patrick Cousot
and Radhia Cousot in the late 1970s, as a unifying framework for static pro-
gram analysis. It stems from the observation that, to reason about a particular
program property, it is not necessary to consider all aspects and details of the
program behavior. In fact, reasoning is facilitated by the design of a well-
adapted semantics, abstracting away from irrelevant details. Therefore, there
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is no universal general-purpose program semantics but rather a wide variety
of special-purpose program semantics, each one of them dedicated to a partic-
ular class of program properties and reduced to essentials in order to ignore
irrelevant details about program executions.

In the past decade, abstract interpretation-based static analyzers began
to have an impact in real-world software development. This is the case, for
instance, of the static analyzer Astrée [BCC+10], which is used daily by indus-
trial end-users in order to prove the absence of run-time errors in embedded
synchronous C programs. In particular, by carefully designing the abstrac-
tions used for the analysis, Astrée has been successfully used to prove, with
zero false alarm, the absence of run-time errors in the primary flight control
software of the fly-by-wire systems of the Airbus A340 and A380 airplanes.

We provide a formal introduction to Abstract Interpretation in Chapter 2
and we recall the main results used in this thesis, which are later illustrated
on a small idealized programming language in Chapter 3.

1.2 Program Properties

Leslie Lamport, in the late 1970s, suggested a classification of program prop-
erties into the classes of safety and liveness properties [Lam77]. Each class
encompasses properties of similar character, and every program property can
be expressed as the intersection of a safety and a liveness property.

1.2.1 Safety Properties

The class of safety properties is informally characterized as the class of
properties stating that “something bad never happens”, that is, a program
never reaches an unacceptable state.

Safety properties represent requirements that should be continuously main-
tained by the program. Indeed, in order to prove safety properties, an invari-
ance principle [Flo67] can be used. A counterexample to a safety property can
always be witnessed by observing finite (prefixes of) program executions.

Examples of safety properties include program partial correctness, which
guarantees that all terminating computations produce correct results, and
mutual exclusion, which guarantees that no two concurrent processes enter
their critical section at the same time.
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1.2.2 Liveness Properties

The class of liveness properties, on the other hand, is informally char-
acterized as the class of properties stating that “something good eventually
happens”, that is, a program eventually reaches a desirable state.

Liveness properties typically represent requirements that need not hold
continuously, but whose eventual or repeated realization must be guaranteed.
They are usually proved by exhibiting a well-founded argument, often called
ranking function, which provides a measure of the distance from the realization
of the requirement [Tur49, Flo67]. Note that, a counterexample to a liveness
property cannot be witnessed by observing finite program executions since
these can always be extended in order to satisfy the liveness property.

Examples of liveness properties are program termination, which guaran-
tees that all program computations are terminating, and starvation freedom,
which guarantees that a process will eventually enter its critical section.

1.3 Termination

The halting problem, the problem of determining whether a given pro-
gram will always finish to run or could potentially execute forever, rose to
prominence before the invention of programs or computers, in the era of the
Entscheidungsproblem posed by David Hilbert: the challenge to formalize all
mathematics into logic and use mechanical means to determine the validity of
mathematical statements. In hopes of either solving the challenge, or showing
it impossible, logicians and mathematicians began to search for possible in-
stances of undecidable problems. The undecidability of the halting problem,
proved by Alan Turing [Tur36], is the most famous of those findings. In Ap-
pendix A.1, we propose a proof of the undecidability of the halting problem
reinterpreted by the linguist Geo↵rey K. Pullum.

However, relaxing the halting problem by asking for a sound but not neces-
sarily complete solution, allows us to overcome the barrier of its undecidability.
Indeed, in the recent past, termination analysis has benefited from many re-
search advances and powerful termination provers have emerged over the years
[BCF13, CPR06, GSKT06, HHLP13, LQC15, etc.].

This thesis stems from [CC12], where Patrick Cousot and Radhia Cousot
proposed a unifying point of view on the existing approaches for proving pro-
gram termination, and introduced the idea of the inference of a ranking func-
tion by abstract interpretation. We recall and revise their work in Chapter 4.



1.4. Liveness Properties 7

Chapter 5 and Chapter 6 are devoted to the construction of new abstractions
dedicated to program termination. More precisely, Chapter 5 presents abstrac-
tions based on piecewise-defined ranking functions, while Chapter 6 presents
abstractions based on ordinal-valued ranking functions. Some of the results
described in Chapter 5 and Chapter 6 have been the subject of publications
in international workshops and conferences [Urb13a, Urb13b, UM14a, UM14c,
UM14b] and are presented here with many extensions. In Chapter 7, we de-
tail how these abstractions can be used for proving termination of recursive
programs. The implementation of our prototype static analyzer [Urb15] and
the most recent experimental evaluation [DU15] are described in Chapter 8.

1.4 Liveness Properties

For reactive programs, which may never terminate, the spectrum of relevant
and useful liveness properties is much richer than the single property of termi-
nation. For example, it also includes the guarantee that a certain event occurs
infinitely many times.

In general, these liveness properties are satisfied only under fairness hy-
potheses, that is, a restriction on some infinite behavior according to eventual
occurrence of some events. A common property of these fairness notions is that
they all imply that, under certain conditions, each of a number of alternative or
competing events occur infinitely often in every infinite behavior of the system
considered. Nissim Francez distinguishes three main subclasses, depending
on the condition guaranteeing the eventual occurrence [Fra86]: unconditional
fairness guarantees that for each behavior each event occurs infinitely often
without any further condition; weak fairness implies that an event will not
be indefinitely postponed provided that it remains continuously enabled; and
strong fairness guarantees eventual occurrence under the condition of being
enabled infinitely often, but not necessarily continuously.

In Chapter 9, we generalize the abstract interpretation framework pro-
posed for termination by Patrick Cousot and Radhia Cousot [CC12], to other
liveness properties. In particular, we focus on two classes of program proper-
ties proposed by Zohar Manna and Amir Pnueli [MP90]: the class of guaran-
tee properties informally characterized as the class of properties stating that
“something good happens at least once”, and the class of recurrence proper-
ties informally characterized as the class of properties stating that “something
good happens infinitely often”. In order to e↵ectively prove these properties
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we reuse the abstractions proposed in Chapter 5 and Chapter 6. The results
described in Chapter 9 have been published in [UM15].

Note that the guarantee provided by liveness properties that something
good will eventually happen is not enough for mission critical software, where
some desirable event is required to occur within a certain time bound. Indeed,
these real-time properties are considered safety properties, and there is a gen-
eral consensus against the interest of proving liveness properties for mission
critical software. However, specifying and verifying real-time properties can
be cumbersome, while liveness properties provide a nice approximation, with-
out distracting timing assumptions, of real-time properties. The well-founded
measures used to prove these liveness properties can then be mapped back to a
real-time duration. In particular, this is the premise of ongoing research work
conducted at NASA Ames Research Center where some of the theoretical work
presented in this thesis is being used for the verification of avionics software.

We envision further future directions in Chapter 10.



II
Safety





2
Abstract Interpretation

This chapter introduces the notions that are at the foundation of our work
and will serve in subsequent chapters. We provide an overview of Abstract
Interpretation while defining the terminology and concepts used in this thesis.

Ce chapitre présente les notions à la base de notre travail et qui serviront dans
les chapitres suivants. Nous o↵rons un aperçu de l’Interprétation Abstraite
tout en définissant la terminologie et les concepts utilisés dans cette thèse.

2.1 Basic Notions and Notations

In the following, we briefly recall well-known mathematical concepts in order
to establish the notation used throughout this thesis.

Sets. A set S is defined as an unordered collection of distinct elements. We
write s 2 S (resp. s 62 S) when s is (resp. is not) an element of the set S. A
set is expressed in extension when it is uniquely identified by its elements: we
write {a, b, c} for the set of elements a, b and c. The empty set is denoted by ;.
A set is expressed in comprehension when its elements are specified through a
shared property: we write {x 2 S | P (x)} for the set of elements x of the set
S for which P (x) is true. The cardinality of a set S is denoted by |S|.

A set S is a subset of a set S 0, written S ✓ S 0, if and only if every element
of S is an element of S 0. The empty set is a subset of every set. The power
set P(S) of a set S is the set of all its subsets: P(S) def

= {S0 | S0 ✓ S}.
The union of two setsA and B, writtenA [ B, is the set of all elements ofA

and all elements of B: A [ B def
= {x | x 2 A _ x 2 B}. More generally, the union

of a set of sets S, is denoted by
SS: SS def

=
S

S02S S 0 = {x | 9S 0 2 S : x 2 S 0}.
The intersection A \ B of two sets A and B is the set of all elements that are
elements of both A and B: A \ B def

= {x | x 2 A ^ x 2 B}. More generally,
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the intersection of a set of sets S is denoted by
TS: TS def

=
T

S02S S 0 =
{x | 8S 0 2 S : x 2 S 0}. The relative complement of a set B in a set A,
denoted by A \ B, is the set of all elements of A that are not elements of

B: A \ B def
= {x | x 2 A ^ x 62 B}. When B ✓ A and the set A is clear

from the context, we simply write ¬B for A \ B and we call it complement
of B. The cartesian product of two sets A and B, denoted by A ⇥ B, is the
set of all pairs where the first component is an element of A and the second
component is an element of B: A ⇥ B def

= {hx, yi | x 2 A ^ y 2 B}. More

generally, S1⇥ · · ·⇥S
n

def
= {hx1, . . . , xni | x1 2 S1 ^ · · · ^ x

n

2 S
n

} and Sn

def
=

{hx1, . . . , xni | x1 2 S ^ · · · ^ x

n

2 S} is the set of n-tuples of elements of S.
A covering of a set S is a set P of non-empty subsets of S such that any

element s 2 S belongs to a set in P: S =
SP. A partition of a set S is a

covering P such that any two sets in P are disjoint, that is, any element s 2 S
belongs to a unique set in P: 8X,Y 2 P : X 6= Y ) X \ Y = ;.

Relations. A binary relation R between two sets A and B is a subset of the
cartesian product A⇥ B. We often write x R y for hx, yi 2 R.

The following are some important properties which may hold for a binary
relation R over a set S:

8x 2 S : x R x (reflexivity)

8x 2 S : ¬(x R x) (irreflexivity)

8x, y 2 S : x R y ) y R x (symmetry)

8x, y 2 S : x R y ^ y R x) x = y (anti-symmetry)

8x, y, z 2 S : x R y ^ y R z ) x R z (transitivity)

8x, y 2 S : x R y _ y R x (totality)

An equivalence relation is a binary relation which is reflexive, symmetric,
and transitive. A binary relation which is reflexive (resp. irreflexive), anti-
symmetric, and transitive is called a partial order (resp. strict partial order).
A preorder is reflexive and transitive, but not necessarily anti-symmetric. A
(strict) total order is a (strict) partial order which is total.

Ordered Sets. A partially ordered set or poset (resp. preordered set) hD,vi
is a set D equipped with a partial order (resp. preorder) v. A finite partially
ordered set hD,vi can be represented by a Hasse diagram such as the one
in Figure 2.1: each element x 2 D is uniquely represented by a node of the
diagram, and there is an edge from a node x 2 D to a node y 2 D if y covers x,
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{a, b, c}

{a, c}{a, b} {b, c}

{b}{a} {c}

;

Figure 2.1: Hasse diagrams for the partially ordered set hP({a, b, c}),✓i.

that is, x  y and there exists no z 2 D such that x  z  y. Hasse diagrams
are usually drawn placing the elements higher than the elements they cover.

Let hD,vi be a partially ordered set. The least element of the poset, when
it exists, is denoted by ?: 8d 2 D : ? v d. Similarly, the greatest element
of the poset, when it exists, is denoted by >: 8d 2 D : d v >. Note that
any partially ordered set can always be equipped with a least (resp. greatest)
element by adding a new element that is smaller (resp. greater) than every
other element. Let X ✓ D. A maximal element of X is an element d 2 X such
that, for each x 2 X , x v d. When X has a unique maximal element, it is
called maximum and it is denoted by maxX . Dually, a minimal element of X
is an element d 2 X such that, for each x 2 X , d v x. When X has a unique
minimal element, it is called minimum and it is denoted by minX . An upper
bound of X is an element d 2 D (not necessarily belonging to X ) such that,
for each x 2 X , x v d. The least upper bound (or lub, or supremum) of X is an
upper bound d 2 D of X and such that, for every upper bound d

0 2 D of X ,
d v d

0. When it exists, it is unique and denoted by
FX (or supX ). Dually, a

lower bound of X is an element d 2 D such that, for each x 2 X , d v x. The
greatest lower bound (or glb, or infimum) of X is a lower bound d 2 D of X such
that, for every lower bound d

0 2 D of X , d0 v d. When it exists, it is unique
and denoted by

dX (or inf X ). Note that, the notion of maximal element,
maximum, and least upper bound (resp. minimal element, minimum, and
greatest lower bound) are di↵erent, as illustrated by the following example.

Example 2.1.1
Let us consider the partially ordered set hP({a, b, c}),✓i represented in Fig-

ure 2.1 and the subset X def
= {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. The maximal
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elements of X are {a, b}, {a, c}, and {b, c}. Thus the maximum maxX of X
does not exist, while its least upper bound is supX = {a, b, c}. Similarly, the
minimal elements of X are {a}, {b}, and {c}. Thus, the minimum minX of
X does not exist, while its greatest lower bound is inf X = ;.

A set equipped with a total order is a totally ordered set. A totally ordered
subset C of a partially ordered set hD,vi is called a chain. A partially ordered
set hD,vi satisfies the ascending chain condition (ACC) if and only if any
infinite increasing chain x0 v x1 v · · · v x

n

v · · · of elements of D is not
strictly increasing, that is, 9k � 0 : 8j � k : x

k

= x

j

. Dually, a partially
ordered set hD,vi satisfies the descending chain condition (DCC) if and only
if any infinite decreasing chain x0 w x1 w · · · w x

n

w · · · of elements of D is
not strictly decreasing, that is, 9k � 0 : 8j � k : x

k

= x

j

.
A complete partial order or cpo hD,vi is a poset where every chain C has a

least upper bound
F C, which is called the limit of the chain. Note that, since

the empty set ; is a chain, a complete partial order has a least element? =
F ;.

Thus, a partially ordered set that satisfies the ascending chain condition and
that is equipped with a least element, is a complete partial order.

Lattices. A lattice hD,v,t,ui is a poset where each pair of elements x, y 2
D has a least upper bound, denoted by x t y, and a greatest lower bound,
denoted by x u y. Any totally ordered set is a lattice. A complete lattice
hD,v,t,u,?,>i is a lattice where any subset X ✓ D has a least upper bound
FX and a greatest lower bound

dX . A complete lattice has both a least

element ? def
=

dD =
F ; and a greatest element > def

=
FD =

d ;.

Example 2.1.2
The power set hP(S),✓,[,\, ;,Si of any set S is a complete lattice.

Functions. A partial function f from a set A to a set B, written f : A* B,
is a binary relation between A and B that pairs each element x 2 A with no
more than one element y 2 B. The set of all partial functions from a set A to
a set B is denoted by A * B. We write f(x) = y if there exists an element
y such that hx, yi 2 f , and we say that f(x) is defined, otherwise we say that
f(x) is undefined. Given a partial function f : A * B, we define its domain

as dom(f)
def
= {x 2 A | 9y 2 B : f(x) = y}. The totally undefined function,

denoted by ;̇, has the empty set as domain: dom(;̇) = ;. The join of two
partial functions f1 : A * B and f2 : A * B with disjoint domains, denoted
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by f1 [̇ f2 : A* B, is defined as follows:

f1 [̇ f2
def
= �x 2 A.

8

>

<

>

:

f1(x) x 2 dom(f1)

f2(x) x 2 dom(f2)

undefined otherwise

where dom(f1) \ dom(f2) = ;.
A (total) function f from a set A to a set B, written f : A! B, is a partial

function that pairs each x 2 A with exactly one element y 2 B. Equivalently,
a (total) function f : A! B is a partial function such that dom(f) = A. The
set of all functions from a set A to a set B is denoted by A! B.

We sometimes denote functions using the lambda notation �x 2 A. f(x),
or more concisely �x. f(x).

The composition of two functions f : A ! B and g : B ! C is another
function g � f : A! C such that 8x 2 A : (g � f)(x) = g(f(x)).

The following properties may hold for a function f : A! B:

8x, y 2 A : f(x) = f(y)) x = y (injectivity)

8y 2 B : 9x 2 A : f(x) = y (surjectivity)

A bijective function, also called isomorphism, is both injective and surjective.
Two sets A and B are isomorphic if there exists a bijective function f : A !
B. The inverse of a bijective function f : A ! B is the bijective function
f

�1 : B ! A defined as f�1 def
= {hb, ai | ha, bi 2 f}.

Let hD1,v1i and hD2,v2i be partially ordered sets. A function f : D1 !
D2 is said to be monotonic when, for each x, y 2 D1, x v1 y ) f(x) v2 f(y).
It is continuous (or Scott-continuous) when it preserves existing least upper
bounds of chains, that is, for each chain C ✓ D1, if

F C exists then f(
F C) =

F{f(x) | x 2 C}. Dually, it is co-continuous when it preserves existing greatest
lower bounds of chains, that is, if

d C exists then f(
d C) = d{f(x) | x 2 C}.

A complete t-morphism (resp. complete u-morphism) preserves existing least
upper bounds (resp. greatest lower bounds) of arbitrary non-empty sets.

Pointwise Lifting. Given a complete lattice hD,v,t,u,?,>i (resp. a lat-
tice, a cpo, a poset) and a set S, the set S ! D of all functions from S to D
inherits the complete lattice (resp. lattice, cpo, poset) structure of D: hS !
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D, v̇, ṫ, u̇, ?̇, >̇i where the dotted operators are defined by pointwise lifting :

f v̇ g

def
= 8s 2 S : f(s) v g(s)

˙G X def
= �s.

G

{f(s) | f 2 X}
l̇

X def
= �s.

l
{f(s) | f 2 X}

?̇ def
= �s. ?

>̇ def
= �s. >

(2.1.1)

Ordinals. The theory of ordinals was introduced by Georg Cantor as the
core of his set theory [Can95, Can97].

A binary relation R over a set S is well-founded when every non-empty
subset of S has a least element with respect to R. A well-founded total order is
called a well-order (or a well-ordering). A well-ordered set hW,i is a set W
equipped with a well-ordering . Every well-ordered set is associated with a
so-called ordered type. Two well-ordered sets hA,Ai and hB,Bi are said to
have the same order type if they are order-isomorphic, that is, if there exists
a bijective function f : A ! B such that, for all elements x, y 2 A, x A y if
and only if f(x) B f(y).

An ordinal is defined as the order type of a well-ordered set and it provides
a canonical representative for all well-ordered sets that are order-isomorphic
to that well-ordered set. We use lower case Greek letters to denote ordinals.
In fact, a well-ordered set hW,i with order type ↵ is order-isomorphic to
the well-ordered set {x 2 W | x < ↵} of all ordinals strictly smaller than the
ordinal ↵ itself. In particular, as suggested by John von Neumann [vN23], this
property permits to define each ordinal as the well-ordered set of all ordinals
that precede it: the smallest ordinal is the empty set ;, denoted by 0. The
successor of an ordinal ↵ is defined as ↵ [ {↵} and is denoted by ↵ + 1, or
equivalently, by succ(↵). Thus, the first successor ordinal is {0}, denoted by 1.
The next is {0, 1}, denoted by 2. Continuing in this manner, we obtain all nat-
ural numbers, that is, all finite ordinals. A limit ordinal is an ordinal number
which is neither 0 nor a successor ordinal. The set N of all natural numbers,
denoted by !, is the first limit ordinal and the first transfinite ordinal.

We use hO,i to denote the well-ordered set of ordinals. In the following,
we will see that the theory of ordinals is the most general setting for proving
program termination.

Fixpoints. Given a partially ordered set hD,vi and a function f : D ! D,
a fixpoint of f is an element x 2 D such that f(x) = x. An element x 2 D
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such that x v f(x) is called a pre-fixpoint while, dually, a post-fixpoint is an
element x 2 D such that f(x) v x. The least fixpoint of f , written lfp f , is a
fixpoint of f such that, for every fixpoint x 2 D of f , lfp f v x. We write lfp

d

f

for the least fixpoint of f which is greater than or equal to an element d 2 D.
Dually, we define the greatest fixpoint of f , denoted by gfp f , and the greatest
fixpoint of f smaller than or equal to d 2 D, denoted by gfp

d

f . When the
order v is not clear from the context, we explicitly write lfpv f and gfpv f .

We now recall a fundamental theorem due to Alfred Tarski [Tar55]:

Theorem 2.1.3 (Tarski’s Fixpoint Theorem) The set of fixpoints of a
monotonic function f : D ! D over a complete lattice is also a complete lattice.

Proof.
See [Tar55]. ⌅

In particular, the theorem guarantees that f has a least fixpoint lfp f =d{x 2 D | f(x) v x} and a greatest fixpoint gfp f =
F{x 2 D | x v f(x)}.

However, such fixpoint characterizations are not constructive. An alterna-
tive constructive characterization is often attributed to Stephen Cole Kleene:

Theorem 2.1.4 (Kleene’s Fixpoint Theorem) Let hD,vi be a complete
partial order and let f : D ! D be a Scott-continuous function. Then, f has
a least fixpoint which is the least upper bound of the increasing chain

? v f(?) v f(f(?)) v f(f(f(?))) v . . .

i.e., lfp f =
F{fn(?) | n 2 N}.

In case of monotonic but not continuous functions, a theorem by Patrick
Cousot and Radhia Cousot [CC79] expresses fixpoints as limits of possibly
transfinite iteration sequences:

Theorem 2.1.5 Let f : D ! D be a monotonic function over a complete
partial order and let d 2 D be a pre-fixpoint. Then, the iteration sequence:

f

�

def
=

8

>

<

>

:

d � = 0 (zero case)

f(f↵) � = ↵+ 1 (successor case)
F{f↵ | ↵ < �} otherwise (limit case)

converges towards the least fixpoint lfp
d

f .
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Proof.
See [CC79]. ⌅

In the following, the partial order between the fixpoint iterates is called
computational order, in order to distinguish it from the approximation order
defined in the next Section 2.2.2.

2.2 Abstract Interpretation

Abstract Interpretation [CC77, Cou78] is a general theory for approximating
the semantics of programs, originally developed by Patrick Cousot and Radhia
Cousot in the late 1970s, as a unifying framework for static program analysis.
In the following, we recall the main definitions and results that will be used
throughout this thesis. We refer to [CC92b] for an exhaustive presentation.

Transition Systems. The semantics of a program is a mathematical char-
acterization of all possible behaviors of the program when executed for all
possible input data. In order to be independent from the choice of a particular
programming language, programs are often formalized as transition systems:

Definition 2.2.1 (Transition System) A transition system is a pair h⌃, ⌧i
where ⌃ is a (potentially infinite) set of states and the transition relation
⌧ ✓ ⌃⇥ ⌃ describes the possible transitions between states.

In a labelled transition system h⌃,A, ⌧i, A is a set of actions that are used
to label the transitions described by the transition relation ⌧ ✓ ⌃⇥A⇥ ⌃.

Note that this model allows representing programs with (possibly un-
bounded) non-determinism. In the following, in order to lighten the notation,
a transition hs, s0i 2 ⌧ (resp. a labelled transition hs, a, s0i 2 ⌧) between a
state s and another state s

0 is sometimes written as s! s

0 (resp. s
a�! s

0).
In some cases, a set I ✓ ⌃ is designated as the set of initial states. The

set of blocking or final states is ⌦
def
= {s 2 ⌃ | 8s0 2 ⌃ : hs, s0i 62 ⌧}.

We define the following functions to manipulate sets of program states.

Definition 2.2.2 Given a transition system h⌃, ⌧i, post : P(⌃)! P(⌃) maps
a set of program states X 2 P(⌃) to the set of their successors with respect to
the program transition relation ⌧ :

post(X)
def
= {s0 2 ⌃ | 9s 2 X : hs, s0i 2 ⌧} (2.2.1)
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Definition 2.2.3 Given a transition system h⌃, ⌧i, pre : P(⌃)! P(⌃) maps
a set of program states X 2 P(⌃) to the set of their predecessors with respect
to the program transition relation ⌧ :

pre(X)
def
= {s 2 ⌃ | 9s0 2 X : hs, s0i 2 ⌧} (2.2.2)

Definition 2.2.4 Given a transition system h⌃, ⌧i, gpost : P(⌃)! P(⌃) maps
a set of states X 2 P(⌃) to the set of states whose successors with respect to
the program transition relation ⌧ are all in the set X:

gpost(X) = ⌃\post(⌃\X)
def
= {s0 2 ⌃ | 8s 2 ⌃ : hs, s0i 2 ⌧ ) s 2 X} (2.2.3)

Definition 2.2.5 Given a transition system h⌃, ⌧i, fpre : P(⌃)! P(⌃) maps
a set of states X 2 P(⌃) to the set of states whose predecessors with respect
to the program transition relation ⌧ are all in the set X:

fpre(X) = ⌃ \ pre(⌃ \X)
def
= {s 2 ⌃ | 8s0 2 ⌃ : hs, s0i 2 ⌧ ) s

0 2 X} (2.2.4)

2.2.1 Maximal Trace Semantics

The semantics generated by a transition system is the set of computations
described by the transition system. We formally define this notion below.

Sequences. Given a set S, the set Sn

def
= {s0 · · · sn�1 | 8i < n : s

i

2 S} is
the set of all sequences of exactly n elements from S. We write " to denote
the empty sequence, i.e., S0 , {"}.

In the following, let S⇤ def
=
S

n2N Sn be the set of all finite sequences,

S+ def
= S⇤ \ S0 be the set of all non-empty finite sequences, S! be the set of all

infinite sequences, S+1 def
= S+ [ S! be the set of all non-empty finite or infinite

sequences and S⇤1 def
= S⇤ [ S! be the set of all finite or infinite sequences of

elements from S. In the following, in order to ease the notation, sequences of
a single element s 2 S are often written omitting the curly brackets, e.g., we
write s

! and s

+1 instead of {s}! and {s}+1.
We write ��0 (or � ·�0) for the concatenation of two sequences �,�0 2 S+1

(with �" = "� = �, and ��0 = � when � 2 S!), T + def
= T \ S+ for the selection

of the non-empty finite sequences of T ✓ S+1, T !

def
= T \ S! for the selection

of the infinite sequences of T ✓ S+1 and T ; T 0 def
= {�s�0 | s 2 S ^ �s 2

T ^ s�

0 2 T 0} [ T ! for the merging of sets of sequences T , T 0 ✓ S+1.
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Traces. Given a transition system h⌃, ⌧i, a trace is a non-empty sequence
of states in ⌃ determined by the transition relation ⌧ , that is, hs, s0i 2 ⌧ for
each pair of consecutive states s, s

0 2 ⌃ in the sequence. Note that, the set
of final states ⌦ and the transition relation ⌧ can be understood as a set of
traces of length one and a set of traces of length two, respectively. The set of
all traces generated by a transition system is called partial trace semantics:

Definition 2.2.6 (Partial Trace Semantics) The partial trace semantics
⌧̇

+1 2 P(⌃+1) generated by a transition system h⌃, ⌧i is defined as follows:

⌧̇

+1 def
= ⌧̇

+ [ ⌧!

where ⌧̇+ 2 P(⌃+) is the set of finite traces:

⌧̇

+ def
=

[

n>0

{s0 · · · sn�1 2 ⌃n | 8i < n� 1 : hs
i

, s

i+1i 2 ⌧}

and ⌧! 2 P(⌃!) is the set of infinte traces:

⌧

!

def
= {s0s1 · · · 2 ⌃! | 8i 2 N : hs

i

, s

i+1i 2 ⌧}

Example 2.2.7
Let ⌃ = {a, b} and ⌧ = {ha, ai, ha, bi}. The partial trace semantics generated
by h⌃, ⌧i is the set of traces a+1 [ a

⇤
b.

Maximal Trace Semantics. In practice, given a transition system h⌃, ⌧i,
and possibly a set of initial states I ✓ ⌃, the traces worth of consideration
(start by an initial state in I and) either are infinite or terminate with a final
state in ⌦. These traces define the maximal trace semantics ⌧+1 2 P(⌃+1)
and represent infinite computations or completed finite computations:

Definition 2.2.8 (Maximal Trace Semantics) The maximal trace seman-
tics ⌧+1 2 P(⌃+1) generated by a transition system h⌃, ⌧i is defined as:

⌧

+1 def
= ⌧

+ [ ⌧!

where ⌧+ 2 P(⌃+) is the set of finite traces terminating with a final state in ⌦:

⌧

+ def
=

[

n>0

{s0 · · · sn�1 2 ⌃n | 8i < n� 1 : hs
i

, s

i+1i 2 ⌧, sn�1 2 ⌦}
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Example 2.2.9
The maximal trace semantics generated by the transition system h⌃, ⌧i of
Example 2.2.7 is the set of traces a! [ a

⇤
b. Note that, unlike the partial trace

semantics of Example 2.2.7, the maximal trace semantics does not represent
partial computations, i.e., finite sequences of a 2 ⌃.

In practice, in case a set of initial states I ✓ ⌃ is given, only the traces
starting from an initial state s 2 I are considered: {s� 2 ⌧+1 | s 2 I}.

Remark 2.2.10 It is worth mentioning that not all program semantics are
directly generated by a transition system. For example, this is the case of the
semantics of programs where the future evolution of a computation depends
on the whole computation history.

Example 2.2.11
Let ⌃ = {a, b}. The set of fair traces a⇤b, where the event b eventually occurs,
is an example of program semantics that cannot be generated by a transition
system. As seen in Example 2.2.7 and Example 2.2.9, the transition relation
⌧ = {ha, ai, ha, bi} introduces spurious traces in a

+1.

In fact, transition systems can only describe computations whose future
evolution depends entirely on their current state [Cou85]. We will often come
back to this remark throughout this thesis.

The following result provides a fixpoint definition of the maximal trace
semantics within the complete lattice hP(⌃+1),v,t,u,⌃!

,⌃+i, where the

computational order is T1 v T2
def
= T

+
1 ✓ T

+
2 ^ T

!

1 ◆ T

!

2 [Cou97]:

Theorem 2.2.12 (Maximal Trace Semantics) The maximal trace seman-
tics ⌧+1 2 P(⌃+1) can be expressed as a least fixpoint in the complete lattice
hP(⌃+1),v,t,u,⌃!

,⌃+i as follows:

⌧

+1 = lfpv �

+1

�

+1(T )
def
= ⌦ [ (⌧ ; T )

(2.2.5)

Proof.
See [Cou02]. ⌅
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T0 =

(

⌃!

)

T1 =

⇢

⌦
�

[
(

⌧ ⌃!

)

T2 =

⇢

⌦
�

[
⇢

⌧ ⌦
�

[
(

⌧ ⌧ ⌃!

)

T3 =

⇢

⌦
�

[
⇢

⌧ ⌦
�

[
⇢

⌧ ⌧ ⌦
�

[
(

⌧ ⌧ ⌧ ⌃!

)

...

Figure 2.2: Fixpoint iterates of the maximal trace semantics.

In Figure 2.2, we propose an illustration of the fixpoint iterates. Intuitively,
the traces belonging to the maximal trace semantics are built backwards by
prepending transitions to them: the finite traces are built extending other
finite traces from the set of final states ⌦, and the infinite traces are obtained
selecting infinite sequences with increasingly longer prefixes forming traces.
In particular, the ith iterate builds all finite traces of length i, and selects
all infinite sequences whose prefixes of length i form traces. At the limit we
obtain all infinite traces and all finite traces that terminate in ⌦.

2.2.2 Galois Connections

The maximal trace semantics carries all information about a program. It is
the most precise semantics and it fully describes the behavior of a program.

Then, usually another fixpoint semantics is designed that is minimal, sound
and relatively complete for the program properties of interest.

Program Properties. Following [CC77], a property is represented by the
set of elements which have this property. By program property we mean a
property of its executions, that is a property of its semantics. Since a program
semantics is a set of traces, a program property is a set of set of traces.
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The strongest property of a program with semantics S 2 P(⌃+1) is the
collecting semantics {S} 2 P(P(⌃+1)). This is the strongest property be-
cause any program with this property must have the same semantics.

We say that a program with semantics S 2 P(⌃+1) satisfies a property
P 2 P(P(⌃+1)) if and only if the property P is implied by the collecting
semantics {S} 2 P(P(⌃+1)) of the program, that is, if and only if {S} ✓ P .

In practice, a weaker form of program correctness is often used. In fact,
the traditional safety and liveness properties are trace properties and thus
can be modeled as sets of traces. In this case, a program satisfies a property
P 2 P(⌃+1) if and only if its semantics S 2 P(⌃+1) implies the property P ,
that is, if and only if S ✓ P .

Example 2.2.13
Let us consider a program with semantics S 2 P(⌃+1). We can model the
property of program termination as the set of all non-empty finite sequences
⌃+. The program terminates if and only if S ✓ ⌃+.

Note that, not all program properties are trace properties. As an example,
the non-interference policy is not a trace property, because whether a trace is
allowed by the policy depends on whether another trace is also allowed [CS10].

We prefer program semantics expressed in fixpoint form which directly
lead, using David Park’s fixpoint induction [Par69], to sound and complete
proof methods for the correctness of a program with respect to a property:

Theorem 2.2.14 (Park’s Fixpoint Induction Principle) Let f : D ! D
be a monotonic function over a complete lattice hD,v,t,u,?,>i and let d 2 D
be a pre-fixpoint. Then, given an element P 2 D, we have:

lfp
d

f v P , 9I 2 D : d v I ^ f(I) v I ^ I v P. (2.2.6)

Dually, we have:

P v gfp
d

f , 9I 2 D : I v d ^ I v f(I) ^ P v I. (2.2.7)

The element I 2 D is called inductive invariant.

Hierarchy of Semantics. As mentioned, to reason about a particular pro-
gram property, it is not necessary to consider all aspects and details of the
program behavior. In fact, reasoning is facilitated by the design of a well-
adapted semantics, abstracting away from irrelevant matters. Therefore, there
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is no universal general-purpose program semantics but rather a wide variety
of special-purpose program semantics, each one of them dedicated to a partic-
ular class of program properties and reduced to essentials in order to ignore
irrelevant details about program executions.

Abstract interpretation is a method for relating these semantics. In fact,
they can be uniformly described as fixpoints of monotonic functions over or-
dered structures, and organized into a hierarchy of interrelated semantics spec-
ifying at various levels of detail the behavior of programs [Cou97, Cou02].

Galois Connections. The correspondence between the semantics in the hi-
erarchy is established by Galois connections formalizing the loss of information:

Definition 2.2.15 (Galois Connection) Let hD,vi and hD\

,v\i be two par-

tially ordered sets. A Galois connection hD,vi ���! ���
↵

� hD\

,v\i is a pair of

monotonic functions ↵ : D ! D\ and � : D\ ! D such that:

8d 2 D, d

\ 2 D\ : ↵(d) v\

d

\ , d v �(d\) (2.2.8)

We write hD,vi ���!�! ����
↵

� hD\

,v\i when ↵ is surjective (or, equivalently, �

is injective), hD,vi ����!  ����
↵

� hD\

,v\i when ↵ is injective (or, equivalently, � is

surjective), and hD,vi ���!�!  ����
↵

� hD\

,v\i when both ↵ and � are bijective.

The posets hD,vi and hD\

,v\i are called the concrete domain and the
abstract domain, respectively. The function ↵ : D ! D\ is the abstraction
function, which provides the abstract approximation ↵(d) of a concrete element
d 2 D, and � : D\ ! D is the concretization function, which provides the
concrete element �(d\) corresponding to the abstract description d

\ 2 D\. Note
that, the notion of Galois connection can also be defined on preordered sets.

The orders v and v\ are called approximation orders. They dictate the
relative precision of the elements in the concrete and abstract domain: if
↵(d) v\

d

\, then d

\ is also a correct abstract approximation of the concrete
element d, although less precise than ↵(d); if d v �(d\), then d

\ is also a correct
abstract approximation of the concrete element d, although the element d

provides more accurate information about program executions than �(d\).

Remark 2.2.16 Observe that, the computational order used to define fix-
points and the approximation order often coincide but, in the general case,
they are distinct and totally unrelated. We will need to maintain this distinc-
tion throughout the rest of this thesis.
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The function � � ↵ : D ! D is extensive, that is, 8d 2 D : d v � � ↵(d),
meaning that the loss of information in the abstraction process is sound. The
function ↵ � � : D\ ! D\ is reductive, that is, 8d\ 2 D\ : ↵ � �(d\) v\

d

\,
meaning that the concretization introduces no loss of information.

Given a Galois connection hD,vi ���! ���
↵

� hD\

,v\i, the abstraction function
and the concretization function uniquely determine each other:

↵(d)
def
=

l
{d\ | d v �(d\)}

�(d\)
def
=
G

\{d | ↵(d) v\

d

\}

For this reason, we often provide only the definition of the abstraction function
or, indi↵erently, only the definition of the concretization function.

Another important property of Galois connections is that, given two Galois
connections hD,vi ���! ���

↵1

�1 hD#
,v#i and hD#

,v#i ���! ���
↵2

�2 hD\

,v\i, their com-

position hD,vi ������! ������
↵2�↵1

�1��2 hD\

,v\i is also a Galois connection. Hence, abstract

interpretation has a constructive aspect, since program semantics can be sys-
tematically derived by successive abstractions of the maximal trace semantics,
rather than just being derived by intuition and justified a posteriori.

Example 2.2.17
The function post 2 P(⌃) ! P(⌃) (cf. Definition 2.2.2) and the function
fpre 2 P(⌃)! P(⌃) (cf. Definition 2.2.5) form a Galois connection:

hP(⌃),✓i ����! ����
post

fpre hP(⌃),✓i.

Example 2.2.18 (Reachable State Semantics)
The reachable state semantics ⌧R 2 P(⌃) collects the set of states that are
reachable from a designated set I ✓ ⌃ of initial states. It can be derived
by abstraction of the maximal trace semantics ⌧+1 2 P(⌃+1) by means of

the Galois connection hP(⌃+1),✓i ����! ����
↵

R

�

R

hP(⌃),✓i where the abstraction

function ↵R : P(⌃+1)! P(⌃) is defined as follows:

↵

R(T )
def
= I [ {s 2 ⌃ | 9s0 2 I,� 2 ⌃⇤

,�

0 2 ⌃⇤1 : s0�s�0 2 T} (2.2.9)

This abstraction, from now on, is called reachability abstraction.
Note that, the approximation order ✓ of the concrete domain hP(⌃+1),✓i

di↵ers from the computational order v used to define the maximal trace se-
mantics in the complete lattice hP(⌃+1),v,t,u,⌃!

,⌃+i (cf. Equation 2.2.5).
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The reachable state semantics is thus defined as:

⌧R
def
= ↵

R(⌧+1)

It can be specified in fixpoint form as follows:

⌧R = lfp✓ �R

�R(S)
def
= I [ post(S)

(2.2.10)

In this case, the computational order ✓ used to define the semantics coincides
with the approximation order of the abstract domain hP(⌃),✓i.

Note that, while the traces belonging to the maximal trace semantics are
built backwards, the states belonging to the reachable state semantics are
build forward from the set of initial states I.

Remark 2.2.19 (Absence of Galois Connection) The use of Galois con-
nections squares with an ideal situation where there is a best way to approxi-
mate any concrete property by an abstract property. However, imposing the
existence of a Galois connection is sometimes too strong a requirement. In
[CC92b], Patrick Cousot and Radhia Cousot illustrate how to relax the Galois
connection framework in order to work with only a concretization function
or, dually, only an abstraction function. In practice, concretization-based ab-
stract interpretations are much more used and will be frequently encountered
throughout this thesis (cf. Section 3.4 and Chapter 5).

Fixpoint Transfer. The following theorem provides guidelines for deriv-
ing an abstract fixpoint semantics S\ by abstraction of a concrete fixpoint
semantics S, or dually, for deriving S by refinement of S\.

Theorem 2.2.20 (Kleenian Fixpoint Transfer) Let hD,vi and hD\

,v\i
be complete partial orders, let � : D ! D and �

\ : D\ ! D\ be monotonic
functions, and let ↵ : D ! D\ be a Scott-continuous abstraction function that
satisfies ↵(?) = ?\ and the commutation condition ↵ � � = �

\ � ↵. Then, we

have the fixpoint abstraction ↵(lfpv �) = lfpv
\
�

\.
Dually, let � : D\ ! D be a Scott-continuous concretization function that

satisfies ? = �(?\) and the commutation condition � � � = � � �\. Then, we

have the fixpoint derivation lfpv � = �(lfpv
\
�

\).

In particular, for the respective iterates of � : D ! D and �\ : D\ ! D\ from

? and ?\ (cf. Theorem 2.1.5) we have: 8� 2 O : ↵(��) = �

\

�

.
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Proof.
See [Cou02]. ⌅

When the abstraction function is not Scott-continuous, but it preserves
greatest lower bounds, we can rely on the following theorem.

Theorem 2.2.21 (Tarskian Fixpoint Transfer) Let hD,v,t,u,?,>i and
hD\

,v\

,t\,u\,?\

,>\i be complete lattices, let � : D ! D and �\ : D\ ! D\ be
monotonic functions, and let ↵ : D ! D\ be an abstraction function that is a
complete u-morphism and that satisfies �\ � ↵ v\

↵ � � and the post-fixpoint
correspondence 8d\ 2 D\ : �\(d\) v\

d

\ ) 9d 2 D : �(d) v d ^ ↵(d) = d

\

(i.e., each abstract post-fixpoint of �\ is the abstraction by ↵ of some concrete
post-fixpoint of �). Then, we have ↵(lfpv �) = lfpv �

\.

Proof.
See [Cou02]. ⌅

In the particular case when the abstraction function ↵ : D ! D\ is a com-
plete t-morphism, there exists a unique concretization function � : D\ ! D
such that hD,vi ���! ���

↵

� hD\

,v\i is a Galois connection.

Fixpoint Approximation. In case no optimal fixpoint abstraction of a
concrete semantics S can be defined, we settle for a sound abstraction, that
is, an abstract semantics S\ such that ↵(S) v\ S\, or equivalently S v �(S\),
for the approximation orders v and v\.

2.2.3 Widening and Narrowing

We must now address the practical problem of e↵ectively computing these
program semantics. In [CC76], Patrick Cousot and Radhia Cousot introduced
the idea of using widening and narrowing operators in order to accelerate
the convergence of increasing and decreasing iteration sequences to a fixpoint
over-approximation. In [Cou78], the dual operators are also considered.

Widening. The widening operator is used to enforce or accelerate the con-
vergence of increasing iteration sequences over abstract domains with infinite
or very long strictly ascending chains, or even over finite but very large ab-
stract domains. It is defined as follows:

Definition 2.2.22 (Widening) Let hD,vi be a partially ordered set. A
widening operator O : (D ⇥D)! D is such that:
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(1) for all element x, y 2 D, we have x v x O y and y v x O y;

(2) for all increasing chains x0 v x1 v · · · v x

n

v · · · , the increasing chain

y0
def
= x0

y

n+1
def
= y

n

O x

n+1

is ultimately stationary, that is, 9l � 0 : 8j � l : y
j

= y

l

.

Intuitively, given and abstract domain hD,vi and a function � : D ! D,
the widening uses two consecutive iterates y

n

and �(y
n

) in order to extrap-

olate the next iterate y

n+1
def
= y

n

O �(y
n

). This extrapolation should be an
over-approximation for soundness, that is y

n

v y

n+1 and �(y
n

) v y

n+1 (cf.
Definition 2.2.22(1)), and enforce convergence for termination (cf. Defini-
tion 2.2.22(2)). In this way, the widening allows computing in finite time an
over-approximation of a Kleenian fixpoint:

Theorem 2.2.23 (Fixpoint Approximation with Widening) Let hD,v
i be a complete partial order, let � : D ! D be a Scott-continuous function,
let d 2 D be a pre-fixpoint, and let O : (D⇥D)! D be a widening. Then, the
following increasing chain:

y0
def
= d

y

n+1
def
= y

n

O �(y
n

)

is ultimately stationary and its limit, denoted by �O, is such that lfp
d

� v �O.

Proof.
See [CC92c]. ⌅

In [CC92c], Patrick Cousot and Radhia Cousot demonstrated that com-
puting in an abstract domain with infinite ascending chains using a widening
is strictly more powerful than any finite abstraction. Intuitively, the widen-
ing adds a dynamic dimension to the abstraction, which is more flexible than
relying only on the static choice of an abstract domain.

Narrowing. The narrowing operator is used to enforce or accelerate the
convergence of decreasing iteration sequences. It is defined as follows:

Definition 2.2.24 (Narrowing) Let hD,vi be a partially ordered set. A
narrowing operator 4 : (D ⇥D)! D is such that:
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x

�(x)

OOO

4
�

Figure 2.3: Example of increasing iteration with widening (
OOO�!) followed by

a decreasing iteration with narrowing (
4�!) in order to over-approximate the

limit of an increasing iteration sequence (�!).

(1) for all element x, y 2 D, if x w y we have x w (x 4 y) w y;

(2) for all decreasing chains x0 w x1 w · · · w x

n

w · · · , the decreasing chain

y0
def
= x0

y

n+1
def
= y

n

4 x

n+1

is ultimately stationary, that is, 9l � 0 : 8j � l : y
j

= y

l

.

It is often the case that the limit �O of the iteration sequence with widening
is a strict post-fixpoint of �: �(�O) < �

O. Hence, the over-approximation �O

can be refined by a decreasing iteration without widening:

y0
def
= �

O

y

n+1
def
= �(y

n

)

However, this decreasing sequence can be infinite. The narrowing operator
is used to limit the refinement while enforcing termination (cf. Figure 2.3).
Intuitively, the narrowing uses two consecutive iterates y

n

and �(y
n

) in order to

compute the next iterate y

n+1
def
= y

n

4 �(y
n

). This should be an interpolation
for soundness, that is y

n

w y

n+1 w �(y
n

) (cf. Definition 2.2.24(1)), and
enforce convergence for termination (cf. Definition 2.2.24(2)). In this way, the
narrowing allows refining in finite time an over-approximation of a fixpoint:
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Theorem 2.2.25 (Fixpoint Refinement with Narrowing) Let hD,vi be
a complete partial order, let � : D ! D be a Scott-continuous function, let
d 2 D be a pre-fixpoint and let a 2 D be a post-fixpoint such that d v a, and
let 4 : (D ⇥D)! D be a narrowing. Then, the decreasing chain

y0
def
= a

y

n+1
def
= y

n

4 �(y
n

)

is ultimately stationary and its limit, denoted by �4, is such that lfp
d

� v �4.

Proof.
See [CC92c]. ⌅

Dual Widening. The dual widening operator is used to enforce or acceler-
ate the convergence of decreasing iterations sequences to a (greatest) fixpoint
under-approximation. Its definition is the dual of Definition 2.2.22:

Definition 2.2.26 (Dual Widening) Let hD,vi be a partially ordered set.
A dual widening operator Ō : (D ⇥D)! D is such that:

(1) for all element x, y 2 D, we have x w x Ō y and y w x Ō y;

(2) for all decreasing chains x0 w x1 w · · · w x

n

w · · · , the decreasing chain

y0
def
= x0

y

n+1
def
= y

n

Ō x

n+1

is ultimately stationary, that is, 9l � 0 : 8j � l : y
j

= y

l

.

The widening and the dual widening are extrapolators: they are used to
find abstract elements outside the range of known abstract elements [Cou15].

Dual Narrowing. The dual narrowing operator is used to enforce or accel-
erate the convergence of increasing iterations sequences to a (greatest) fixpoint
under-approximation. Its definition is the dual of Definition 2.2.24.

The narrowing and the dual narrowing are interpolators: they are used to
find abstract elements inside the range of known abstract elements [Cou15].

In conclusion, a sound and fully automatic static analyzer can be designed
by systematically approximating the semantics of programs, with an inevitable
loss of information, from a concrete to a less precise abstract setting, until the
resulting semantics is computable.



3
A Small Imperative Language

The formal treatment given in the previous chapter is language independent.
In this chapter, we look back at the notions introduced in the context of a
simple sequential programming language that will be used to illustrate our
work throughout the rest of this thesis.

Le traitement formel donné dans le chapitre précédent est indépendant du
langage. Dans ce chapitre, nous nous penchons sur les notions introduites
dans le contexte d’un simple langage de programmation séquentiel qui sera
utilisé pour illustrer notre travail dans le reste de cette thèse.

3.1 A Small Imperative Language

We consider a simple sequential non-deterministic programming language with
no procedures, no pointers and no recursion. The variables are statically
allocated and the only data type is the set Z of mathematical integers.

In Chapter 7 we will introduce procedures and recursion, while pointers
and machine integers and floats will remain out of the scope of this work.

Language Syntax. In Figure 3.1, we define inductively the syntax of our
programming language.

A program prog consists of an instruction followed by a unique label l 2 L.
Another unique label appears within each instruction. An instruction stmt is
either a skip instruction, a variable assignment, a conditional if statement,
a while loop or a sequential composition of instructions.

Arithmetic expressions aexp involve variables X 2 X , numeric intervals
[a, b] and the arithmetic operators +, �, ⇤, / for addition, subtraction, multi-
plication, and division. Numeric intervals have constant and possibly infinite
bounds, and denote a random choice of a number in the interval. This provides
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aexp ::= X X 2 X
| [i1, i2] i1 2 Z [ {�1}, i2 2 Z [ {+1}, i1  i2

| � aexp
| aexp ⇧ aexp ⇧ 2 {+,�,⇤,/}

bexp ::= ?

| not bexp
| bexp and bexp
| bexp or bexp
| aexp ./ aexpr ./ 2 {<,,=, 6=}

stmt ::= l

skip

| l

X := aexp l 2 L, X 2 X
| if

lbexp then stmt else stmt fi l 2 L
| while

lbexp do stmt od l 2 L
| stmt stmt

prog ::= stmt l

l 2 L

Figure 3.1: Syntax of our programming language.

a notion of non-determinism useful to model user input or to approximate
arithmetic expressions that cannot be represented exactly in the language.
Numeric constants are a particular case of numeric interval. In the following,
we often write the constant c for the interval [c, c].

Boolean expressions bexp are built by comparing arithmetic expressions,
and are combined using the boolean not, and, and or operators. The boolean
expression ? represents a non-deterministic choice and is useful to provide a se-
quential encoding of concurrent programs by modeling a (possibly, but not nec-
essarily, fair) scheduler. Whenever clear from the context, we frequently abuse
notation and use the symbol ? to also denote the numeric interval [�1,+1].

3.2 Maximal Trace Semantics

In the following, we instantiate the general definitions of transition system and
maximal trace semantics of Section 2.2 with our small imperative language.

Expression Semantics. An environment ⇢ : X ! Z maps each program
variableX 2 X to its value ⇢(X) 2 Z. Let E denote the set of all environments.
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JX K⇢ def
= { ⇢(X) }

J [a, b] K⇢ def
= {x | a  x  b }

J� aexp K⇢ def
= {�x | x 2 J aexp K⇢ }

J aexp1 + aexp2 K⇢ def
= {x + y | x 2 J aexp1 K, y 2 J aexp2 K⇢ }

J aexp1 � aexp2 K⇢ def
= {x � y | x 2 J aexp1 K, y 2 J aexp2 K⇢ }

J aexp1 ⇤ aexp2 K⇢ def
= {x ⇤ y | x 2 J aexp1 K, y 2 J aexp2 K⇢ }

J aexp1 / aexp2 K⇢ def
= { trnk(x / y) | x 2 J aexp1 K, y 2 J aexp2 K⇢, y 6= 0 }

where trnk : R! Z is defined as follows:

trnk(x)
def
=

(

max{y 2 Z | y  x} x � 0

min{y 2 Z | y � x} x < 0

Figure 3.2: Semantics of arithmetic expressions aexp.

The semantics of an arithmetic expression aexp is a function JaexpK : E !
P(Z) mapping an environment ⇢ 2 E to the set of all possible values for the
expression aexp in the environment. It is presented in Figure 3.2. Note that,
the set of values for an expression may contain several elements because of the
non-determinism embedded in the expressions. It might also be empty due
to undefined results. In fact, this is the case of divisions by zero. The trnk
function rounds the result of the division towards an integer.

Similarly, the semantics JbexpK : E ! P({true, false}) of boolean expres-
sions bexp maps an environment ⇢ 2 E to the set of all possible truth values
for the expression bexp in the environment. It is presented in Figure 3.3. In
the following, we write true and false to represent a boolean expression that
is always true and always false, respectively.

Transition Systems. A program state s 2 L ⇥ E is a pair consisting of a
label l 2 L and an environment ⇢ 2 E , where the environment defines the
values of the program variables at the program control point designated by
the label. Let ⌃ denote the set of all program states.

The initial control point iJ stmt K 2 L (resp. iJ prog K 2 L) of an instruc-
tion stmt (resp. a program prog) defines where the execution of the instruc-
tion (resp. program) starts, and the final control point fJ stmt K 2 L (resp.
fJ prog K 2 L) defines where the execution of the instruction stmt (resp. pro-
gram prog) ends. The formal definitions are in Figure 3.4 and Figure 3.5.
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J ? K⇢ def
= { true, false }

J not bexp K⇢ def
= {¬x | x 2 J bexp K⇢ }

J bexp1 and bexp2 K⇢ def
= {x ^ y | x 2 J bexp1 K, y 2 J bexp2 K⇢ }

J bexp1 or bexp2 K⇢ def
= {x _ y | x 2 J bexp1 K, y 2 J bexp2 K⇢ }

J aexp1 < aexp2 K⇢ def
= {x < y | x 2 J aexp1 K, y 2 J aexp2 K⇢ }

J aexp1  aexp2 K⇢ def
= {x  y | x 2 J aexp1 K, y 2 J aexp2 K⇢ }

J aexp1 = aexp2 K⇢ def
= {x = y | x 2 J aexp1 K, y 2 J aexp2 K⇢ }

J aexp1 6= aexp2 K⇢ def
= {x 6= y | x 2 J aexp1 K, y 2 J aexp2 K⇢ }

Figure 3.3: Semantics of boolean expressions bexp.

stmt ::= l

skip iJ l

skip K def
= l

| l

X := aexp iJ l

X := aexp K def
= l

| if

lbexp then stmt1 else stmt2 fi

iJ if lbexp then stmt1 else stmt2 fi K def
= l

| while

lbexp do stmt1 od

iJ while lbexp do stmt1 od K def
= l

| stmt1 stmt2 iJ stmt1 stmt2 K def
= iJ stmt1 K

prog ::= stmt l

iJ stmt l K def
= iJ stmt K

Figure 3.4: Initial control point of instructions stmt and programs prog.

Example 3.2.1
Let us consider the following program:

1
x := ?

while

2(1 < x) do
3
x := x� 1

od

4

We have the following final program control points:

fJ 1
x := ? while

2(1 < x) do 3
x := x� 1 od

4 K = 4
fJ 1

x := ? while

2(1 < x) do 3
x := x� 1 od K = 4

fJ 1
x := ? K = 2

fJ while 2(1 < x) do 3
x := x� 1 od K = 4
fJ 3

x := x� 1 K = 2

Note that, the final control point fJ stmt K 2 L of an instruction stmt does not
belong to the set of control points appearing in the instruction.
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stmt ::= l

skip fJ l

skip K def
= fJ stmt K

| l

X := aexp fJ l

X := aexp K def
= fJ stmt K

| if

lbexp then stmt1 else stmt2 fi

fJ if lbexp then stmt1 else stmt2 fi K def
= fJ stmt K

fJ stmt1 K def
= fJ stmt K

fJ stmt2 K def
= fJ stmt K

| while

lbexp do stmt1 od

fJ while lbexp do stmt1 od K def
= fJ stmt K

fJ stmt1 K def
= l

| stmt1 stmt2 fJ stmt1 stmt2 K def
= fJ stmt K

fJ stmt1 K def
= iJ stmt2 K

fJ stmt2 K def
= fJ stmt K

prog ::= stmt l

fJ stmt l K def
= l

Figure 3.5: Final control point of instructions stmt and programs prog.

A program execution starts at its initial program control point with any
possible value for the program variables. Thus, the set of initial states of a
program prog is I def

= {hiJ prog K, ⇢i | ⇢ 2 E}. It is sometimes useful to assume
that a set E ✓ E of initial environments is given, in which case the program
initial states correspond to the initial program control point paired with any
initial environment: I def

= {hiJ prog K, ⇢i | ⇢ 2 E}. The set of final states of a

program prog is Q def
= {hfJ prog K, ⇢i | ⇢ 2 E}.

Remark 3.2.2 In Section 2.2 we defined the final states to have no succes-
sors with respect to the transition relation, meaning that the program halts:
⌦

def
= {s 2 ⌃ | 8s0 2 ⌃ : hs, s0i 62 ⌧}. This is the case when the program

successfully terminates by reaching its final label, or when a run-time error
occurs. For the sake of simplicity, the definition of program final states given in
this section ignores possible run-time errors silently halting the program.

We now define the transition relation ⌧ 2 ⌃ ⇥ ⌃. In particular, in Fig-
ure 3.6, we define the transition semantics ⌧J stmt K 2 ⌃⇥ ⌃ of each program
instruction stmt. Given an environment ⇢ 2 E , a program variable X 2 X and
a value v 2 Z, we denote by ⇢[X  v] the environment obtained by writing
the value v into the variable X in the environment ⇢:

⇢[X  v](x) =

(

v x = X

⇢(x) x 6= X
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⌧J l

skip K def
= {hl, ⇢i ! hfJ l

skip K, ⇢i | ⇢ 2 E}
⌧J l

X := aexp K def
=

{hl, ⇢i ! hfJ l

X := aexp K, ⇢[X  v]i | ⇢ 2 E , v 2 JaexpK⇢}
⌧J if lbexp then stmt1 else stmt2 fi K def

=
{hl, ⇢i ! hiJ stmt1 K, ⇢i | ⇢ 2 E , true 2 JbexpK⇢} [ ⌧J stmt1 K [
{hl, ⇢i ! hiJ stmt2 K, ⇢i | ⇢ 2 E , false 2 JbexpK⇢} [ ⌧J stmt2 K

⌧J while lbexp do stmt od K def
=

{hl, ⇢i ! hiJ stmt K, ⇢i | ⇢ 2 E , true 2 JbexpK⇢} [ ⌧J stmt K [
{hl, ⇢i ! hfJ while lbexp do stmt od K, ⇢i | ⇢ 2 E , false 2 JbexpK⇢}

⌧J stmt1 stmt2 K def
= ⌧J stmt1 K [ ⌧J stmt2 K

Figure 3.6: Transition semantics of instructions stmt.

The semantics of a skip instruction simply moves control from the initial label
of the instruction to its final label. The execution of a variable assignment
l

X := aexp moves control from the initial label of the instruction to its final
label, and modifies the current environment in order to assign any of the
possible values of aexp to the variable X. The semantics of a conditional
statement if

lbexp then stmt1 else stmt2 fi moves control from the initial
label of the instruction to the initial label of stmt1, if true is a possible value for
bexp, and to the initial label of stmt2, if false is a possible value for bexp; then,
stmt1 and stmt2 are executed. Similarly, the execution of a while statement
while

lbexp do stmt od moves control from the initial label of the instruction
to its final label, if false is a possible value for bexp, and to the initial label of
stmt1, if true is a possible value for bexp; then stmt is executed. Note that,
control moves from the end of stmt to the initial label l of the while loop,
since l is the final label of stmt (cf. Figure 3.5). Finally, the semantics of the
sequential combination of instructions stmt1 stmt2 executes stmt1 and stmt2.
Note that, control moves from the end of stmt1 to the beginning of stmt2,
since the final label of stmt1 is the initial label of stmt2 (cf. Figure 3.5).

The transition relation ⌧ 2 ⌃⇥ ⌃ of a program prog is defined by the se-
mantics ⌧J prog K 2 ⌃⇥⌃ of the program as ⌧J prog K = ⌧J stmt l K def

= ⌧J stmt K.

Example 3.2.3
Let us consider again the program of Example 3.2.1:

1
x := ?

while

2(1 < x) do
3
x := x� 1

od

4
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The set of program environments E contains functions ⇢ : {x} ! Z mapping
the program variable x to any possible value ⇢(x) 2 Z. The set of program

states ⌃
def
= {1,2,3,4} ⇥ E consists of all pairs of labels and environments;

the initial states are I def
= {h1, ⇢i | ⇢ 2 E}. The program transition relation

⌧ 2 ⌃⇥ ⌃ is defined as follows:

⌧

def
= {h1, ⇢i ! h2, ⇢[x v]i | ⇢ 2 E ^ v 2 Z}
[ {h2, ⇢i ! h3, ⇢i | ⇢ 2 E ^ true 2 J1 < xK⇢}
[ {h3, ⇢i ! h2, ⇢[x ⇢(x)� 1]i | ⇢ 2 E}
[ {h2, ⇢i ! h4, ⇢i | ⇢ 2 E ^ false 2 J1 < xK⇢}

The set of final states is Q def
= {h4, ⇢i | ⇢ 2 E}. Note that, the definition of final

states assumes all possible values for the program variable x although when
executing the program we have x  1 on program exit.

Maximal Trace Semantics. In the following, we provide a structural def-
inition of the fixpoint maximal trace semantics ⌧+1 2 ⌃+1 (Equation 2.2.5)
by induction on the syntax of programs.

We recall that a program trace is a non-empty sequence of program states
in ⌃ determined by the program transition relation ⌧ .

Example 3.2.4
Let us consider again the program of Example 3.2.3:

1
x := ?

while

2(1 < x) do
3
x := x� 1

od

4

We write {hx, vi} to denote the environment ⇢ : {x}! Zmapping the program
variable x to the value v 2 Z. The following sequence of program states:

h1, {hx, 42i}ih2, {hx, 2i}ih3, {hx, 2i}ih2, {hx, 1i}ih4, {hx, 1i}i

is an example of program trace determined by the transition relation ⌧ .

We only consider program traces starting from the set I of initial states
of a program prog. Accordingly, in Figure 3.7 we define the trace seman-
tics ⌧+1J stmt K 2 P(⌃+1) ! P(⌃+1) of each program instruction stmt.
Analogously to Equation 2.2.5, the program traces are built backwards: each
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⌧

+1J l

skip KT def
=

⇢

hl, ⇢ihfJ l

skip K, ⇢i�
�

�

�

�

⇢ 2 E , � 2 ⌃⇤1

hfJ l

skip K, ⇢i� 2 T

�

⌧

+1J l

X := aexp KT def
=

⇢

hl, ⇢ihfJ l

X := aexp K, ⇢[X  v]i�
�

�

�

�

⇢ 2 E , v 2 JaexpK⇢, � 2 ⌃⇤1

hfJ l

X := aexp K, ⇢[X  v]i� 2 T

�

⌧

+1J if lbexp then stmt1 else stmt2 fi KT def
=

⇢

hl, ⇢ihiJ stmt1 K, ⇢i�
�

�

�

�

⇢ 2 E , true 2 JbexpK⇢, � 2 ⌃⇤1

hiJ stmt1 K, ⇢i� 2 ⌧+1J stmt1 KT

�

[
⇢

hl, ⇢ihiJ stmt2 K, ⇢i�
�

�

�

�

⇢ 2 E , false 2 JbexpK⇢, � 2 ⌃⇤1

hiJ stmt2 K, ⇢i� 2 ⌧+1J stmt2 KT

�

⌧

+1J while lbexp do stmt od KT def
= lfpv �

+1

�

+1(X)
def
=

⇢

hl, ⇢ihiJ stmt K, ⇢i�
�

�

�

�

⇢ 2 E , true 2 JbexpK⇢, � 2 ⌃⇤1

hiJ stmt K, ⇢i� 2 ⌧+1J stmt KX

�

[
⇢

hl, ⇢ihfJ while · · · od K, ⇢i�
�

�

�

�

⇢ 2 E , false 2 JbexpK⇢, � 2 ⌃⇤1

hfJ while · · · od K, ⇢i� 2 T

�

⌧

+1J stmt1 stmt2 KT def
= ⌧

+1J stmt1 K(⌧+1J stmt2 KT )

Figure 3.7: Maximal trace semantics of instructions stmt.

function ⌧

+1J stmt K 2 P(⌃+1) ! P(⌃+1) takes as input a set of traces
starting with the final label of the instruction stmt and outputs a set of traces
starting with the initial label of stmt.

The trace semantics of a skip instruction takes as input a set T 2 P(⌃+1)
of traces starting with environments paired with the final label of the instruc-
tion and, according to the transition relation semantics of the instruction, it
prepends to them the same environments paired with its initial label.

The trace semantics of a variable assignment l

X := aexp takes as input a
set T 2 P(⌃+1) of traces starting with the final label of the instruction and
it prepends to them all program states with its initial label that are allowed
by the transition relation semantics of the instruction (cf. Figure 3.6).

Similarly, given a conditional instruction if lbexp then stmt1 else stmt2 fi,
its trace semantics prepends all program states with its initial label that are
allowed by its transition relation semantics to the traces starting with the
initial labels of stmt1 and stmt2; these are obtained by means of the trace
semantics of stmt2 and stmt1 taking as input a set T 2 P(⌃+1) of traces
starting with the final label of the conditional instruction.

The trace semantics of a loop instruction while

lbexp do stmt od is defined
as the least fixpoint of the function �+1 : P(⌃+1)! P(⌃+1) within the com-
plete lattice hP(⌃+1),v,t,u,⌃!

,⌃+i, analogously to Equation 2.2.5. The
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X0 =

(

⌃!

)

X1 =

(

¬bexp
T

)

[
(

bexp stmt ⌃!

)

X2 =

(

¬bexp
T

)

[
(

bexp stmt ¬bexp
T

)

[
(

bexp stmt bexp stmt ⌃!

)

...

Figure 3.8: Fixpoint iterates of the trace semantics of a loop instruction.

iteration sequence, starting from all infinite sequences ⌃! 2 P(⌃+1), builds
the set of program traces that consist of an infinite number of iterations within
the loop, and it prepends a finite number of iterations within the loop to an
input set T 2 P(⌃+1) of traces starting with the final label of the loop instruc-
tion. In Figure 3.7, we have shortened fJ while lbexp do stmt od K by means
of fJ while · · · od K. In particular, the function �

+1 : P(⌃+1) ! P(⌃+1)
takes as input a set X 2 P(⌃+1) of traces: initially, X is the set of all infinite
sequences ⌃! and, at each iteration, the function prepends all program states
whose label is the initial label of the loop instruction, to the traces belonging
to the input set T , and to the traces that are obtained by means of the trace
semantics of the loop body stmt from the set X. In this way, after the ith
iteration, the set X contains the program traces starting at the initial label
of the loop instruction whose prefix consist of from zero up to i� 1 iterations
within the loop and whose su�x is a trace in T , and the sequences whose
prefix are program traces which consist of i � 1 iterations within the loop.
With a slight abuse of notation, we depict the fixpoints iterates in Figure 3.8.

Finally, the trace semantics of the sequential combination of instructions
stmt1 stmt2 takes as input a set T 2 P(⌃+1) of traces starting with the final
label of stmt2, determines from T the set of traces ⌧+1J stmt2 KT belonging
to the trace semantics of stmt2, and outputs the set of traces determined by
the trace semantics of stmt1 from ⌧

+1J stmt2 KT .
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The maximal trace semantics ⌧+1J prog K 2 P(⌃+1) of a program prog
is the maximal trace semantics ⌧+1 2 P(⌃+1) defined in Equation 2.2.5
restricted to the traces starting from the program initial states I, and it is
defined taking as input the set of program final states Q:

Definition 3.2.5 (Maximal Trace Semantics) The maximal trace seman-
tics ⌧+1J prog K 2 P(⌃+1) of a program prog is:

⌧

+1J prog K = ⌧

+1J stmt l K def
= ⌧

+1J stmt KQ (3.2.1)

where the trace semantics ⌧+1J stmt K 2 P(⌃+1)! P(⌃+1) of each program
instruction stmt is defined in Figure 3.7.

Note that, as pointed out in Remark 3.2.2, possible run-time errors are ignored.
More specifically, all traces containing run-time errors are discarded and do
not belong to the maximal trace semantics of a program prog.

In the following, we often simply write ⌧+1 instead of ⌧+1J prog K.

3.3 Invariance Semantics

The reachable state semantics ⌧R 2 P(⌃) introduced by Example 2.2.18 ab-
stracts the maximal trace semantics ⌧+1 2 P(⌃+1) by collecting the possible
values of the program variables at each program point and disregarding other
information. In the following, we provide an isomorphic invariance semantics
defined by induction on the syntax of our small language.

Note that the complete lattice hP(⌃),✓,[,\, ;,⌃i on which the reach-
able state semantics is defined is isomorphic by partitioning with respect to
the program control points and by pointwise lifting (cf. Equation 2.1.1) to
hL! P(E), ✓̇, [̇, \̇,�l. ;,�l. Ei. This can be formalized as a Galois connection

hP(⌃),✓i ���!�!  ����
↵

I

�

I

hL ! P(E), ✓̇i where the abstraction ↵

I : P(⌃) ! (L !
P(E)) and the concretization �I : (L! P(E))! P(⌃) are defined as follows:

↵

I(R)
def
= �l 2 L. {⇢ 2 E | hl, ⇢i 2 R}

�

I(I)
def
= {hl, ⇢i 2 ⌃ | ⇢ 2 I(l)}

(3.3.1)

This abstraction, from now on, is called invariance abstraction. In this form,
the reachable state semantics ⌧R 2 P(⌃) becomes an invariance semantics
⌧I 2 L ! P(E) associating to each program control point l 2 L an invariant
E 2 P(E) which collects the set of possible program environments for each
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⌧postJ l

skip KE def
= E

⌧postJ l

X := aexp KE def
= {⇢[X  v] 2 E | ⇢ 2 E, v 2 JaexpK⇢}

⌧postJ if lbexp then stmt1 else stmt2 fi KE def
=

⌧postJstmt1K{⇢ 2 E | true 2 JbexpK⇢} [
⌧postJstmt2K{⇢ 2 E | false 2 JbexpK⇢}

⌧postJ while lbexp do stmt od KE def
= {⇢ 2 lfp �post | false 2 JbexpK⇢}

�post(X)
def
= E [ ⌧postJstmtK{⇢ 2 X | true 2 JbexpK⇢}

⌧postJ stmt1 stmt2 KE def
= ⌧postJ stmt2 K(⌧postJ stmt1 KE)

Figure 3.9: Invariance semantics of instructions stmt.

time the program execution reaches that program control point. We can now
define the invariance semantics pointwise within the power set of environments.

In Figure 3.9, for each program instruction stmt, we define its postcon-
dition semantics ⌧postJ stmt K : P(E) ! P(E). Analogously to the states be-
longing to the reachable state semantics in Example 2.2.18, the environment
belonging to the postcondition semantics are built forward : each function
⌧postJ stmt K : P(E) ! P(E) takes as input a set of environments and outputs
the set of possible environments at the final control point of the instruction.

The postcondition semantics ⌧postJ prog K 2 P(E) of a program prog outputs
the set of possible program environments at the final program control point
fJ prog K 2 L. It is defined from the set of all program environments E as:

Definition 3.3.1 (Postcondition Semantics) Given a program prog, its
postcondition semantics ⌧postJ prog K 2 P(E) is:

⌧postJ prog K = ⌧postJ stmt l K def
= ⌧postJ stmt KE (3.3.2)

where the postcondition semantics ⌧postJ stmt K 2 P(E) ! P(E) of each pro-
gram instruction stmt is defined in Figure 3.9.

In this way, we can collect the set of possible program environments at each
program control point. At the initial control point, the possible environments
are all program environments:

⌧I(iJ prog K) def
= E .

Then, for each program instruction stmt, the set ⌧I(fJ stmt K) 2 P(E) of pos-
sible environments at its final control point is defined by the postcondition
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semantics (cf. Figure 3.9), taking as input the set E 2 P(E) of possible en-
vironments at the final control point of the instruction preceding stmt (or all
program environments in case stmt is the first instruction of the program):

⌧I(fJ stmt K) def
= ⌧postJ stmt KE.

In case of a while loop instruction, the set ⌧I(iJ while lbexp do stmt od K) 2
P(E) of possible environments at its initial control point is defined as the least
fixpoint greater than the input set E of the function �post : P(E) ! P(E)
defined in Figure 3.9:

⌧I(iJ while lbexp do stmt od K) def
= lfp

E

�post

At each iteration, the function �post : P(E) ! P(E) accumulates the possible
environments after another loop iteration from a given set of environments
X 2 P(E). The set ⌧I(iJ stmt K) 2 P(E) of possible environments at the initial
control point of the loop body is the set of possible environments at the initial
control point of the loop that satisfy the boolean expression bexp:

⌧I(iJ stmt K) def
= {⇢ 2 ⌧I(iJ while lbexp do stmt od K) | true 2 JbexpK⇢}

Example 3.3.2
Let us consider again the program of Example 3.2.4:

1
x := ?

while

2(1 < x) do
3
x := x� 1

od

4

The following are the set of possible program environments collected by the
invariance semantics at each program control point:

⌧I(1) = E
⌧I(2) = lfp

⌧postJ 1
x:=? K⌧I(1) �post = E

⌧I(3) = {⇢ 2 ⌧I(2) | true 2 J1 < xK⇢} = {⇢ 2 E | 2  ⇢(x)}
⌧I(4) = {⇢ 2 ⌧I(2) | false 2 J1 < xK⇢} = {⇢ 2 E | ⇢(x)  1}

where �post(X) = X [ ⌧postJ 3
x := x� 1 K{⇢ 2 X | true 2 J1 < xK⇢}.

In the next section, we present further abstractions of the invariance se-
mantics by means of numerical abstract domains.



3.4. Numerical Abstract Domains 43

3.4 Numerical Abstract Domains

We consider concretization-based abstractions of the following form:

hP(E),✓i �D � hD,vDi

which provide, for each program control point l 2 L, a sound decidable ab-
straction ⌧ \I (l) 2 D of the invariance semantics ⌧I(l) 2 P(E) (cf. Section 3.3).

We have ⌧I(l) ✓ �D(⌧
\

I (l)), meaning that the abstract invariance semantics

⌧

\

I (l) is an over-approximation of the set of environments ⌧I(l).
In some cases, there also exists a Galois connection (cf. Remark 2.2.19):

hP(E),✓i ����! ����
↵D

�D hD,vDi

By pointwise lifting (cf. Equation 2.1.1) we obtain the following:

hL! P(E), ✓̇i ˙�D � hL! D, v̇Di

or, when an abstraction function ↵D : P(E)! D also exists:

hL! P(E), ✓̇i ����! ����
↵̇D

˙�D hL! D, v̇Di

which provides a (concretization-based) abstraction of the invariance seman-
tics ⌧I 2 L! P(E) by partitioning with respect to the program control points.
No approximation is made on L. On the other hand, each program control
point l 2 L is associated with an element d 2 D.

Numerical Abstract Domains. The abstract domain hD,vDi is a numer-
ical abstract domain and it obeys the following signature:

Definition 3.4.1 (Numerical Abstract Domain) A numerical abstract do-
main is characterized by a choice of:

• a set D whose elements are computer-representable;

• a partial order vD together with an e↵ective algorithm to implement it;

• a concretization-based abstraction hP(E),✓i �D � hD,vDi or, when pos-

sible, a Galois connection hP(E),✓i ����! ����
↵D

�D hD,vDi;

• a least element ?D 2 D such that �D(?D) = ;;
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• a greatest element >D 2 D such that �D(>D) = E;
• a sound binary operator tD such that �D(d1) [ �D(d2) ✓ �D(d1 tD d2);

• a sound binary operator uD such that �D(d1) \ �D(d2) ✓ �D(d1 uD d2);

• a sound unary operator ASSIGNDJX :=aexp K : D ! D, together with an
e↵ective algorithm to handle a variable assignment l

X :=aexp, such that
⌧IJ l

X :=aexp K�D(d) ✓ �D(ASSIGNDJX :=aexp Kd);

• a sound backward operator B-ASSIGNDJX := aexp K : D ! D ! D, to-
gether with an e↵ective algorithm to refine an element d 2 D given the re-
sult r 2 D of the assignment l

X :=aexp, such that {⇢ 2 �D(d) | ⌧IJ l

X :=
aexp K{⇢} ✓ �D(r)} ✓ �D((B-ASSIGNDJX :=aexp Kd)(r)) ✓ �D(d);

• a sound unary operator FILTERDJ bexp K : D ! D, together with an ef-
fective algorithm to handle a boolean expression bexp, such that {⇢ 2
�D(d) | true 2 JbexpK⇢} ✓ �D(FILTERDJ bexp Kd);

• a sound widening operator OD, when hD,vDi does not satisfy the ACC;

• a sound narrowing operator OD, when hD,vDi does not satisfy the DCC;

The backward assignment operator B-ASSIGNDJX := aexp K : D ! D ! D,
is not directly used to abstract the invariance semantics. However, it usually
defined in order to allow the combination of forward and backward analyses
[CC92a]. It will also be useful in Chapter 5.

Abstract Invariance Semantics. The operators of the numerical abstract
domains can now be used to define the abstract invariance semantics.

In Figure 3.10 we define, for each program instruction stmt, its abstract
postcondition semantics ⌧DJ stmt K : D ! D. Each function ⌧DJ stmt K : D ! D
takes as input a numerical abstraction and outputs the possible numerical
abstraction at the final control point of the instruction. For a while loop, �OD
is the limit of the following increasing chain (cf. Theorem 2.2.23):

y0
def
= d

y

n+1
def
= y

n

OD �D(yn)

The abstract postcondition semantics ⌧DJ prog K 2 D of a program prog
outputs the possible numerical abstraction at the final program control point
fJ prog K 2 L. It is defined taking as input the element >D as:
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⌧DJ l

skip Kd def
= d

⌧DJ l

X :=aexp Kd def
= ASSIGNDJX :=aexp Kd

⌧DJ if lbexp then stmt1 else stmt2 fi Kd def
= F1(d) tD F2(d)

F1(d)
def
= ⌧DJ stmt1 K(FILTERDJ bexp Kd)

F2(d)
def
= ⌧DJ stmt2 K(FILTERDJ not bexp Kd)

⌧DJ while lbexp do stmt od Kd def
= FILTERDJ not bexp K�OD

�D(x)
def
= d tD ⌧DJ stmt K(FILTERDJ bexp Kx)

⌧DJ stmt1 stmt2 Kd def
= ⌧DJ stmt2 K(⌧DJ stmt1 Kd)

Figure 3.10: Abstract invariance semantics of instructions stmt.

Definition 3.4.2 (Abstract Postcondition Semantics) The abstract post-
condition semantics ⌧DJ prog K 2 P(E) of a program prog is:

⌧DJ prog K = ⌧DJ stmt l K def
= ⌧DJ stmt K>D (3.4.1)

where the abstract postcondition semantics ⌧DJ stmt K 2 D ! D of each pro-
gram instruction stmt is defined in Figure 3.10.

The following result proves the soundness of ⌧DJ prog K 2 D with respect to
the postcondition semantics ⌧postJ prog K 2 D (cf. Definition 3.3.1):

Theorem 3.4.3 ⌧postJ prog K ✓ �D(⌧DJ prog K)

Proof (Sketch).
The proof follows from the soundness of the operators of the numerical abstract
domain (cf. Definition 3.4.1) used for the definition of ⌧DJ prog K 2 D. ⌅

In this way, we can collect the possible numerical abstractions at each
program control point. At the initial control point, the possible numerical
abstraction is the element >D:

⌧

\

I (iJ prog K) def
= >D.

Then, for each instruction stmt, the numerical abstraction ⌧

\

I (fJ stmt K) 2 D
at its final control point is defined by the abstract postcondition semantics
(cf. Figure 3.10), taking as input the numerical abstraction d 2 D at the final
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control point of the instruction preceding stmt (or the element >D in case stmt
is the first instruction of the program):

⌧

\

I (fJ stmt K) def
= ⌧DJ stmt Kd.

For a while loop, the numerical abstraction ⌧ \I (iJ while lbexp do stmt od K) 2 D
at its initial control point is defined as the limit �OD of the increasing chain

y0
def
= d, y

n+1
def
= y

n

OD �D(yn), where d is the input numerical abstraction
and the function �D : D ! D is defined in Figure 3.10:

⌧

\

I (iJ while
lbexp do stmt od K) def

= �

O
D

The numerical abstraction ⌧ \I (iJ stmt K) 2 D at the initial control point of the
loop body is the numerical abstraction at the initial control point of the loop
filtered by the boolean expression bexp:

⌧

\

I (iJ stmt K) def
= FILTERDJ bexp K⌧ \I (iJ while

lbexp do stmt od K)

The following result proves, for each program control point l 2 L, the
soundness of the abstract invariance semantics ⌧ \I 2 D with respect to the
invariance semantics ⌧I(l) 2 P(E) proposed in Section 3.3:

Theorem 3.4.4 8l 2 L : ⌧I(l) ✓ �D(⌧ \I (l))

Proof (Sketch).
The proof follows from the definition of ⌧I(l) 2 P(E) (cf. Section 3.3) and

⌧

\

I 2 D, and from Theorem 3.4.3. ⌅

Various numerical abstract domains have been proposed in the literature.
We refer to [Min04] for an overview. In the following, we briefly recall the
well-known numerical abstract domains of intervals [CC76], convex polyhedra
[CH78], and octagons [Min06]. They are the foundation upon which we develop
new abstract domains in Chapter 5 and Chapter 6.

3.4.1 Intervals Abstract Domain

The intervals abstract domain is a non-relational numerical abstract domain.
Non-relational abstract domains abstract each program variable independently,
thus forgetting any relationship between variables. They are an abstraction
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of the power set of environments given by the Galois connection hP(E),✓
i ����! ����

↵

C

�

C

hX ! P(Z), ✓̇i where the abstraction ↵C : P(E) ! (X ! P(Z)) and

the concretization �C : (X ! P(Z))! P(E) are defined as follows:

↵

C(E)
def
= �X 2 X . {⇢(X) 2 Z | ⇢ 2 E}

�

C(f)
def
= {⇢ 2 E | 8X 2 X : ⇢(X) 2 f(X)}

(3.4.2)

This abstraction, from now on, is called cartesian abstraction.
Specifically, the interval abstract domain maintains an upper bound and a

lower bound on the possible values of each program variable. It was introduced
by Patrick Cousot and Radhia Cousot [CC76] and it is still widely used as it
is e�cient and yet able to provide valuable information crucial to prove the
absence of various run-time errors.

In the following, the intervals abstract domain is denoted by hB,vBi.
The abstraction is formalized by a Galois connection hX ! P(Z), ✓̇i ����! ����

↵B

�B

hB,vBi. Most operators of the domain rely on well-known interval arithmetics
[Moo66]. We do not discuss the details here and we refer instead to [Min04].

3.4.2 Polyhedra Abstract Domain

The polyhedra abstract domain, introduced by Patrick Cousot and Nicolas
Halbwachs [CH78], is a relational numerical abstract domain. Relational
abstract domains are more precise than non-relational ones since they are
able to preserve some of the relationships between the program variables.
Specifically, the polyhedra abstract domain allows inferring a�ne inequalities
c1X1 + . . .+ c

k

X

k

+ c

k+1 � 0 between the program variables.
In the following, the polyhedra abstract domain is denoted by hP,vPi. The

abstraction is formalized as a concretization-based abstraction hP(E),✓i �P �
hP,vPi. We again omit the details and we refer to [CH78, Min04].

3.4.3 Octagons Abstract Domain

The octagons abstract domain is a weakly-relational abstract domain. It was
introduced by Antoine Miné [Min06] to answer the need for a trade-o↵ between
non-relational abstract domains, that are very cheap but quite imprecise, and
relational abstract domains, that are very expressive but quite costly.

The octagons abstract domain, in the following denoted by hO,vOi, allows
inferring inequalities of the form ±X

i

±X

j

� c between the program variables.
It is based on the e�cient Di↵erence Bound Matrix data structure [LLPY97].
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The abstraction, since our program variables have integer values (cf. Sec-

tion 3.1), is formalized by a Galois connection hP(E),✓i ����! ����
↵O

�O hO,vOi. We

refer to [Min04, Min06] for a more detailed discussion.

Note that, the intervals [CC76], convex polyhedra [CH78], and octagons
[Min06] numerical abstract domains maintain information about the set of
possible values of the program variables along with the possible numerical
relationships between them using convex sets consisting of conjunctions of
linear constraints. The convexity of these abstract domains makes the analysis
scalable. On the other hand, it might lead to too harsh approximations and
imprecisions in the analysis, ultimately yielding false alarms and a failure of
the analyzer to prove the desired program property.

The key for an adequate cost versus precision trade-o↵ is handling dis-
junctions arising during the analysis (e.g., from program tests and loops). In
practice, numerical abstract domains are usually refined by adding weak forms
of disjunctions to increase the expressivity while minimizing the cost of the
analysis [CCM10, GR98, GC10a, SISG06, etc.].
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4
An Abstract Interpretation
Framework for Termination

In this chapter, we recall and revise the abstract interpretation framework for
potential and definite termination proposed by Patrick Cousot and Radhia
Cousot [CC12]. In particular, we recall their fixpoint semantics for definite
termination, which is at the basis of our work. For potential termination, we
choose a di↵erent fixpoint semantics. Then, we provide the definition of the
semantics for definite termination for our small language of Chapter 2.

Dans ce chapitre, nous rappelons et révisons le cadre de l’interprétation ab-
straite de terminaison et de terminaison potentielle proposé par Patrick Cousot
et Radhia Cousot [CC12]. En particulier, nous rappelons leur sémantique de
point fixe pour la terminaison, qui est à la base de notre travail. Pour la ter-
minaison potentielle, nous choisissons une sémantique de point fixe di↵érente.
Ensuite, nous fournissons la définition de la sémantique de terminaison pour
notre petit langage du Chapitre 2.

4.1 Ranking Functions

The traditional method for proving program termination dates back to Alan
Turing [Tur49] and Robert W. Floyd [Flo67]. It consists in inferring ranking
functions, namely functions from program states to elements of a well-ordered
set whose value decreases during program execution.

Definition 4.1.1 (Ranking Function) Given a transition system h⌃, ⌧i, a
ranking function is a partial function f : ⌃*W from the set of states ⌃ into
a well-ordered set hW,i whose value decreases through transitions between
states, that is 8s, s0 2 dom(f) : hs, s0i 2 ⌧ ) f(s0) < f(s).
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The best known well-ordered sets are the natural numbers hN,i and the
ordinals hO,i, and the most obvious ranking function maps each program
state to the number of program execution steps until termination, or some
well-chosen upper bound on this number.

Example 4.1.2
Let us consider again the loop within the program of Example 3.3.2:

while

2(1 < x) do
3
x := x� 1

od

4

The loop terminates whatever the initial value of the variable x. In order
to prove it, we define a ranking function f : ⌃ ! N whose domain coincides
with the set of program states and whose value is an upper bound on the
number of state transitions until termination. We have defined the program
transition relation ⌧ 2 ⌃⇥⌃ in Example 3.2.3. In particular, as in Section 3.3,
we partition with respect to the program control points, and we define the
ranking function f : L! (E ! N):

f(2)
def
= �⇢.

(

1 ⇢(x)  1

2⇢(x)� 1 1 < ⇢(x)

f(3)
def
= �⇢.

(

2 ⇢(x)  2

2⇢(x)� 2 2 < ⇢(x)

f(4)
def
= �⇢. 0

Note that, at the final program control point 4, the program is terminated
and thus no transitions are needed.

At the program control point 2 and 3, the value of the ranking function
depends on the value of the program variable x in the current environment ⇢.
As an example, given the state h2, {hx, 2i}i, the transitions needed to reach
termination are h2, {hx, 2i}i ! h3, {hx, 2i}i, h3, {hx, 2i}i ! h2, {hx, 1i}i, and
h2, {hx, 1i}i ! h4, {hx, 1i}i (cf. Example 3.2.4). Indeed, f(2){hx, 2i} = 3,
f(3){hx, 2i} = 2, and f(2){hx, 1i} = 1.

Now, let us consider the whole program of Example 3.3.2:

1
x := ?

while

2(1 < x) do
3
x := x� 1

od

4
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At the initial program control point 1, there is a non-deterministic assign-
ment which gives to the program variable x a random integer value. An upper
bound on the number of transitions until termination is thus !:

!

h1,⇢i

1
h2,⇢i

0
h4,⇢i

. . .

3
h2,{hx,2i}i

2

1

0
h4,{hx,1i}i

. . .

2n� 1
h2,{hx,ni}i

2n� 2

1

0
h4,{hx,1i}i

. . .

Thus, in order to prove that the program terminates, we define a ranking
function f : ⌃! O mapping the program states to ordinals:

f(1)
def
= �⇢.!

where f(2), f(3), and f(4) are defined as above. Note that, the value ! does
not provide an upper bound on the number of transitions until termination
that depends on the value of the program variable x but simply testifies that
this number is finite, meaning that the program always terminates. Indeed,
even when starting from !, a strictly decreasing function cannot decrease
forever since ordinals are a well-ordered set.

In the following, we also consider a weaker notion of ranking function,
called potential ranking function. The value of a potential ranking function
decreases at least along one transition during program execution.

Definition 4.1.3 (Potential Ranking Function) Given a transition sys-
tem h⌃, ⌧i, a potential ranking function is a partial function f : ⌃*W from
⌃ to a well-ordered set hW,i whose value decreases through at least one tran-
sition from each state, that is 8s 2 dom(f) : (9s0 2 dom(f) : hs, s0i 2 ⌧) )
9s0 2 dom(f) : hs, s0i 2 ⌧ ^ f(s0) < f(s).

4.2 Termination Semantics

In [CC12], Patrick Cousot and Radhia Cousot prove the existence of a most
precise program ranking function that can be derived by abstract interpreta-
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tion of the program maximal trace semantics. In the following, we recall from
[CC12] the results that are most relevant to our work.

Potential and Definite Termination. In presence of non-determinism,
we distinguish between potential termination or may-terminate properties and
definite termination or must-terminate properties. The property of potential
termination requires a program to have at least one finite execution trace.

Definition 4.2.1 (Potential Termination) A program with trace seman-
tics S 2 P(⌃+1) may terminate if and only if S \ ⌃+ 6= ;.

The property of definite termination requires all execution traces of a program
to be finite (cf. also Example 2.2.13).

Definition 4.2.2 (Definite Termination) A program with trace semantics
S 2 P(⌃+1) must terminate if and only if S ✓ ⌃+.

In the following, when clear from the context, we will refer to the property of
definite termination simply as property of termination.

4.2.1 Termination Trace Semantics

We present a first abstraction of the program maximal trace semantics (cf.
Definition 2.2.8 and Equation 2.2.5, and Definition 3.2.5) into a potential ter-
mination trace semantics and a definite termination trace semantics.

The definite (resp. potential) termination trace semantics eliminates the
program execution traces that are not starting with a state from which the
program execution must (resp. may) terminate.

Example 4.2.3
Let us consider the following non-deterministic program:

while

1( ? ) do
2
skip

od

3

The program has no variables: X def
= ;. Thus, the set of program environments

E only contains the totally undefined function ⇢ : ; ! Z. The set of program
states is ⌃

def
= {1,2,3}⇥ E , and the set of initial states is I def

= {1}⇥ E . The

program transition relation ⌧ 2 ⌃ ⇥ ⌃ is ⌧
def
= {h1, ⇢i ! h2, ⇢i | ⇢ 2 E} [

{h2, ⇢i ! h1, ⇢i | ⇢ 2 E} [ {h1, ⇢i ! h3, ⇢i | ⇢ 2 E}.
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The maximal trace semantics ⌧+1 2 P(⌃+1) of the program (cf. Def-
inition 3.2.5) contains the execution traces starting from the initial states

I that enter the while loop a non-deterministic number of times: ⌧+1 def
=

{h1, ⇢i(h2, ⇢i)⇤h3, ⇢i | ⇢ 2 E} [ {h1, ⇢i(h2, ⇢i)! | ⇢ 2 E}. In the following,
we abstract such maximal trace semantics into a definite termination trace
semantics and a potential termination trace semantics.

Potential Termination Trace Semantics. The potential termination trace
semantics ⌧m 2 P(⌃+) eliminates all program infinite traces. It can be derived
by abstract interpretation of the maximal trace semantics ⌧+1 2 P(⌃+1) by

means of the Galois connection hP(⌃+1),✓i ����!�! �����
↵

m

�

m

hP(⌃+),✓i, where the

abstraction function ↵m : P(⌃+1) ! P(⌃+) and the concretization function
�

m : P(⌃+)! P(⌃+1) are defined as follows:

↵

m(T )
def
= T \ ⌃+

�

m(T )
def
= T [ ⌃!

(4.2.1)

This abstraction, from now on, is called potential termination abstraction. It
forgets about non-terminating program executions.

Example 4.2.4
Let T = {ab, aba, ba, bb, ba!}. Then, the potential termination abstraction of
T is ↵m(T ) = {ab, aba, ba, bb}.

Definition 4.2.5 (Potential Termination Trace Semantics) The poten-
tial termination trace semantics ⌧m 2 P(⌃+) is defined as follows:

⌧m
def
= ↵

m(⌧+1)

where ⌧+1 2 P(⌃+1) is the maximal trace semantics (cf. Definition 2.2.8).

The following result provides, by Kleenian fixpoint transfer (cf. Theo-
rem 2.2.20) from the fixpoint maximal trace semantics (cf. Equation 2.2.5),
a fixpoint definition of the potential termination trace semantics within the
complete lattice hP(⌃+),✓,[,\, ;,⌃+i:
Theorem 4.2.6 (Potential Termination Trace Semantics) The poten-
tial termination trace semantics ⌧m 2 P(⌃+) can be expressed as a least fix-
point in the complete lattice hP(⌃+),✓,[,\, ;,⌃+i as follows:

⌧m = lfp✓ �m

�m(T )
def
= ⌦ [ (⌧ ; T )

(4.2.2)
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In this case, the abstraction function ↵

m : P(⌃+1) ! P(⌃+) is a com-
plete [-morphism and thus there also exists a Galois connection hP(⌃+1),v
i ����!�! �����

↵

m

�̄

m

hP(⌃+),✓i, where the concretization function �̄

m 2 P(⌃+) !
P(⌃+1) is defined as �̄m(T )

def
= T . Note that, because of the distinction be-

tween the approximation order ✓ and the computational order v, such Galois
connection is di↵erent from the potential termination abstraction presented
above (cf. Equation 4.2.1).

Example 4.2.7
Let us consider again the program of Example 4.2.3:

while

1( ? ) do
2
skip

od

3

Its potential termination trace semantics is ⌧m
def
= {h1, ⇢i(h2, ⇢i)⇤h3, ⇢i | ⇢ 2 E}

since an execution trace starting from the state h1, ⇢i may terminate (by
choosing a transition to the state h3, ⇢i).

Definite Termination Trace Semantics. The definite termination trace
semantics ⌧M 2 P(⌃+) eliminates all program execution traces potentially
branching, through local non-determinism, to non-termination.

We define the neighborhood of a sequence � 2 ⌃+1 in a set of sequences
T ✓ ⌃+1 as the set of sequences �0 2 T with a common prefix with �:

nbhd(�, T )
def
= {�0 2 T | pf(�) \ pf(�0) 6= ;} (4.2.3)

where pf 2 ⌃+1 ! P(⌃+1) yields the set of prefixes of a sequence � 2 ⌃+1:

pf(�)
def
= {�0 2 ⌃+1 | 9�00 2 ⌃⇤1 : � = �

0
�

00}. (4.2.4)

A program execution trace belongs to the definite termination trace semantics
if and only if it is finite and its neighborhood in the program semantics con-
sists only of finite traces. The corresponding definite termination abstraction
↵

M : P(⌃+1)! P(⌃+) is defined as follows:

↵

M(T )
def
= {� 2 T

+ | nhbd(�, T!) = ;}. (4.2.5)

where T + def
= T \ ⌃+ and T !

def
= T \ ⌃!.
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Example 4.2.8

Let T = {ab, aba, ba, bb, ba!}. Then, ↵M(T ) = {ab, aba} since pf(ab) \
pf(ba!) = ; and pf(aba) \ pf(ba!) = ;, while pf(ba) \ pf(ba!) = {ba} 6= ;
and pf(bb) \ pf(ba!) = {b} 6= ;.

Definition 4.2.9 (Definite Termination Trace Semantics) The definite
termination trace semantics ⌧M 2 P(⌃+) is defined as follows:

⌧M
def
= ↵

M(⌧+1)

where ⌧+1 2 P(⌃+1) is the maximal trace semantics (cf. Definition 2.2.8).

The following result provides, by Tarskian fixpoint transfer (cf. Theo-
rem 2.2.21) from the fixpoint maximal trace semantics (cf. Equation 2.2.5),
a fixpoint definition of the definite termination trace semantics within the
complete lattice hP(⌃+),✓,[,\, ;,⌃+i:

Theorem 4.2.10 (Definite Termination Trace Semantics) The definite
termination trace semantics ⌧M 2 P(⌃+) can be expressed as a least fixpoint
in the complete lattice hP(⌃+),✓,[,\, ;,⌃+i:

⌧M = lfp✓ �M

�M(T )
def
= ⌦ [ ((⌧ ; T ) \ ¬(⌧ ; ¬T ))

(4.2.6)

where ¬(⌧ ; ¬T ) stands for ⌃+ \ (⌧ ; (⌃+ \T )): the term ¬(⌧ ; ¬T ) eliminates
potential transition towards non-terminating executions.

Example 4.2.11

Let us consider again the program of Example 4.2.3:

while

1( ? ) do
2
skip

od

3

Its definite termination trace semantics is ⌧M
def
= ; since for any execution

trace starting from the state h1, ⇢i there is a possibility of non-termination
(by always choosing a transition to the state h2, ⇢i).
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4.2.2 Termination Semantics

We now further abstract the definite (resp. potential) termination trace se-
mantics into a definite (resp. potential) termination semantics, which is the
most precise ranking function (resp. potential ranking function) that can be
derived by abstract interpretation of the program maximal trace semantics.

Proposition 4.2.12 A program, whose maximal trace semantics is generated
by a transition system h⌃, ⌧i, terminates if and only if the program transition
relation ⌧ 2 ⌃⇥ ⌃ is well-founded.

When considering a given set I ✓ ⌃ of initial states, the program execution
traces starting from an initial state are terminating if and only if the pro-
gram transition relation is well-founded when restricted to reachable states:
⌧ ✓ ↵

R(⌧+1) ⇥ ↵

R(⌧+1), where ↵R : P(⌃+1) ! P(⌃) is the reachability
abstraction defined in Example 2.2.18.

In the case when the program semantics is not generated by a transition
system (cf. Remark 2.2.10), we might consider its transition abstraction given

by the Galois connection hP(⌃+1),✓i ���! ���!
↵

!
� hP(⌃ ⇥ ⌃),✓i where the ab-

straction function
!
↵ : P(⌃+1) ! P(⌃ ⇥ ⌃) extracts from a set of sequences

T ✓ ⌃+1 the smallest transition relation r ✓ ⌃⇥ ⌃ that generates T :

!
↵ (T )

def
= {hs, s0i | 9� 2 ⌃⇤

,�

0 2 ⌃⇤1 : �ss0�0 2 T}. (4.2.7)

Note, however, that in this case the condition of Proposition 4.2.12 is su�cient
but not necessary (i.e., the program execution traces starting from an initial
states are terminating if the program transition relation is well-founded when
restricted to reachable states), as shown by the following counterexample.

Counterexample 4.2.13 Let ⌃ = {a, b}. The program whose semantics T is
the set of fair traces a

⇤
b is terminating but the transition abstraction

!
↵ (T ) =

{ha, ai, ha, bi} generates the infinite trace a

! (cf. also Remark 2.2.10). Thus,
the transition relation restricted to the reachable states is not well-founded.

An over-approximation R ◆ ↵R(⌧+1) of the reachable states can be com-
puted by abstract interpretation, as we have seen in Section 3.4. The program
transition relation restricted to the reachable states ⌧ ✓ ↵R(⌧+1)⇥↵R(⌧+1)
is well-founded if its over-approximation r ✓ R ⇥ R is well-founded. More-
over, r ✓ R⇥R is well-founded if and only if there exists a ranking function
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f : ⌃ * W into a well-ordered set hW,i whose domain is R: dom(f) = R.
Thus, for programs whose maximal trace semantics is generated by a transi-
tion system, (potential) termination can be proved by exhibiting a (potential)
ranking function mapping invariant states to elements of a well-ordered set.

In the following, we consider the set of partial functions from the program
states ⌃ into the well-ordered set of ordinals hO,i.

Potential Termination Semantics. The potential termination semantics
is the most precise potential ranking function ⌧mt 2 ⌃* O for a program. It
is defined starting from the final states in ⌦, where the function has value zero,
and retracing the program backwards while mapping each program state in ⌃
potentially leading to a final state (i.e., a program state such that there exists
a terminating program execution trace to which it belongs) to an ordinal in O
representing the minimum number of program execution steps remaining to
termination. The domain dom(⌧mt) of ⌧mt is the set of states from which the
program execution may terminate: at least one trace branching from a state
s 2 dom(⌧mt) terminates in at least ⌧mt(s) execution steps, while all traces
branching from a state s 62 dom(⌧mt) do not terminate.

Intuitively, a potential ranking function f1 is more precise than another
potential ranking function f2 when it is defined over a smaller set of program
states, that is, it can disprove termination for more program states, and when
its value is always smaller, that is, the minimum number of program execution
steps required for termination is lower. The approximation order is then:

f1 v f2 () dom(f1) ✓ dom(f2) ^ 8x 2 dom(f1) : f1(x)  f2(x). (4.2.8)

Definition 4.2.14 (Potential Termination Semantics) The potential ter-
mination semantics ⌧mt 2 ⌃ * O is derived by abstract interpretation of the
maximal trace semantics ⌧+1 2 P(⌃+1):

⌧mt
def
= ↵

mrk(↵m(⌧+1)) = ↵

mrk(⌧m) (4.2.9)

where the potential ranking abstraction ↵mrk : P(⌃+)! (⌃* O) is:

↵

mrk(T )
def
= ↵

mv(
!
↵ (T )) (4.2.10)

where the function ↵

mv : P(⌃ ⇥ ⌃) ! (⌃ * O) provides the rank of the ele-
ments in the domain of a relation r ✓ ⌃⇥ ⌃:

↵

mv(;) def
= ;̇

↵

mv(r)s
def
=

8

>

<

>

:

0 8s0 2 ⌃ : hs, s0i 62 r

inf

(

↵

mv(r)s0 + 1

�

�

�

�

�

s

0 2 dom(↵mv(r))

^ hs, s0i 2 r

)

otherwise
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The following result provides, by Kleenian fixpoint transfer (cf. Theo-
rem 2.2.20) from the fixpoint potential termination trace semantics (cf. Equa-
tion 4.2.2), a fixpoint definition of the potential termination semantics within
the partially ordered set h⌃* O,vi, where the computational order coincides
with the approximation order defined in Equation 4.2.8:

Theorem 4.2.15 (Potential Termination Semantics) The potential ter-
mination semantics ⌧

mt

2 ⌃ * O of a program can be expressed as a least
fixpoint in the partially ordered set h⌃* O,vi:

⌧mt = lfpv
;̇
�mt

�mt(f)
def
= �s.

8

>

<

>

:

0 s 2 ⌦

inf {f(s0) + 1 | hs, s0i 2 ⌧} s 2 pre(dom(f))

undefined otherwise

(4.2.11)

Example 4.2.16

Let us consider the following trace semantics:

The fixpoint iterates of the potential termination semantics ⌧
mt

2 ⌃* O are:

0

0

1
1 0

0
2

1
1 0

0
2

1
1 0

0

where unlabelled states are outside the domain of the function.

Note that our definition of the potential termination semantics ⌧
mt

2 ⌃*

O di↵ers from [CC12]: the value of the ranking function for a state is the great-
est lower bound (instead of the least upper bound) of the value plus one of the
ranking function for its successors. In fact, the following example shows that
the definition of [CC12] does not guarantee the existence of a least fixed point.
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Example 4.2.17
Let us consider again the program of Example 4.2.7:

while

1( ? ) do
2
skip

od

3

The iterates of the potential termination semantics ⌧
mt

2 ⌃* O with respect
to the program control points are the following:

f0(1)
def
= ;̇ f0(2)

def
= ;̇ f0(3)

def
= ;̇

f1(1)
def
= ;̇ f1(2)

def
= ;̇ f1(3)

def
= �⇢. 0

f2(1)
def
= �⇢. 1 f2(2)

def
= ;̇ f2(3)

def
= �⇢. 0

f3(1)
def
= �⇢. 1 f3(2)

def
= �⇢. 2 f3(3)

def
= �⇢. 0

f4(1)
def
= �⇢. 1 f4(2)

def
= �⇢. 2 f4(3)

def
= �⇢. 0

Instead, the iterates of the potential termination semantics of [CC12] are:

f0(1)
def
= ;̇ f0(2)

def
= ;̇ f0(3)

def
= ;̇

f1(1)
def
= ;̇ f1(2)

def
= ;̇ f1(3)

def
= �⇢. 0

f2(1)
def
= �⇢. 1 f2(2)

def
= ;̇ f2(3)

def
= �⇢. 0

f3(1)
def
= �⇢. 1 f3(2)

def
= �⇢. 2 f3(3)

def
= �⇢. 0

f4(1)
def
= �⇢. 3 f4(2)

def
= �⇢. 2 f4(3)

def
= �⇢. 0

f5(1)
def
= �⇢. 3 f5(2)

def
= �⇢. 4 f5(3)

def
= �⇢. 0

f6(1)
def
= �⇢. 5 f6(2)

def
= �⇢. 4 f6(3)

def
= �⇢. 0

...

f

!

(1)
def
= �⇢. ! f

!

(2)
def
= �⇢. ! f

!

(3)
def
= �⇢. 0

f

!+1(1)
def
= �⇢. ! + 1 f

!+1(2)
def
= �⇢. ! + 1 f

!+1(3)
def
= �⇢. 0

...

In particular, note that the value of the potential termination semantics at
the program control points 1 and 2 is always increasing.

The potential termination semantics is sound and complete for proving
potential termination of a program for a given set of initial states I ✓ ⌃:

Theorem 4.2.18 A program may terminate for execution traces starting from
a given set of initial states I if and only if I ✓ dom(⌧mt).

Proof.
See Appendix A.2. ⌅
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Definite Termination Semantics. The definite termination semantics is
the most precise ranking function ⌧Mt 2 ⌃ * O for a program. It is de-
fined starting from the final states in ⌦, where the function has value zero,
and retracing the program backwards while mapping each program state in
⌃ definitely leading to a final state (i.e., a program state such that all pro-
gram execution traces to which it belongs are terminating) to an ordinal in
O representing an upper bound on the number of program execution steps
remaining to termination. The domain dom(⌧Mt) of ⌧Mt is the set of states
from which the program execution must terminate: all traces branching from
a state s 2 dom(⌧Mt) terminate in at most ⌧Mt(s) execution steps, while at
least one trace branching from a state s 62 dom(⌧Mt) does not terminate.

Intuitively, a ranking function f1 is more precise than another ranking
function f2 when it is defined over a larger set of program states, that is, it
can prove termination for more program states, and when its value is always
smaller, that is, the maximum number of program execution steps required
for termination is smaller. The approximation order is then:

f1 4 f2 () dom(f1) ◆ dom(f2) ^ 8x 2 dom(f2) : f1(x)  f2(x). (4.2.12)

Definition 4.2.19 (Definite Termination Semantics) The definite termi-
nation semantics ⌧Mt 2 ⌃ * O is derived by abstract interpretation of the
maximal trace semantics ⌧+1 2 P(⌃+1):

⌧Mt
def
= ↵

Mrk(↵M(⌧+1)) = ↵

Mrk(⌧M) (4.2.13)

where the ranking abstraction ↵Mrk : P(⌃+)! (⌃* O) is:

↵

Mrk(T )
def
= ↵

Mv(
!
↵ (T )) (4.2.14)

where the function ↵

Mv : P(⌃ ⇥ ⌃) ! (⌃ * O) provides the rank of the
elements in the domain of a relation r ✓ ⌃⇥ ⌃:

↵

Mv(r)s
def
=

8

>

<

>

:

0 8s0 2 ⌃ : hs, s0i 62 r

sup

(

↵

Mv(r)s0 + 1

�

�

�

�

�

s

0 2 dom(↵Mv(r))

^ hs, s0i 2 r

)

otherwise

The following result provides a fixpoint definition of the definite termina-
tion semantics within the partially ordered set h⌃* O,vi, where the compu-
tational order is defined as:

f1 v f2 () dom(f1) ✓ dom(f2) ^ 8x 2 dom(f1) : f1(x)  f2(x). (4.2.15)



4.2. Termination Semantics 63

Theorem 4.2.20 (Definite Termination Semantics) The definite termi-
nation semantics ⌧Mt 2 ⌃ * O can be expressed as a least fixpoint in the
partially ordered set h⌃* O,vi:

⌧Mt = lfpv
;̇
�Mt

�Mt(f)
def
= �s.

8

>

<

>

:

0 s 2 ⌦

sup {f(s0) + 1 | hs, s0i 2 ⌧} s 2 fpre(dom(f))

undefined otherwise

(4.2.16)

Example 4.2.21
Let us consider again the trace semantics of Example 4.2.16:

The fixpoint iterates of the definite termination semantics ⌧Mt 2 ⌃* O are:

0

0

1 0

0

2
1 0

0

2
1 0

0

where unlabelled states are outside the domain of the function.

Note that, the approximation order 4 and the computational order v
coincide when the ranking functions have the same domain:

Lemma 4.2.22 dom(f1) = dom(f2)) (f1 4 f2 () f1 v f2)

Proof.
The proof is immediate from Equation 4.2.12 and Equation 4.2.15. ⌅

The definite termination semantics is sound and complete for proving def-
inite termination of a program for a given set of initial states I ✓ ⌃:

Theorem 4.2.23 A program must terminate for execution traces starting
from a given set of initial states I if and only if I ✓ dom(⌧Mt).

Proof.
See [CC12]. ⌅
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4.3 Denotational Definite Termination Semantics

In this work, we are mostly interested in proving program definite termination.
In the following, we provide a structural definition of the fixpoint definite

termination semantics ⌧Mt 2 ⌃* O (cf. Equation 4.2.16) by induction on the
syntax of programs written in the small language presented in Chapter 3.

In Section 3.3 we partitioned the reachable state semantics ⌧R (cf. Equa-
tion 2.2.10) into an invariance semantics ⌧I 2 L ! P(E). Similarly, we parti-
tion ⌧Mt with respect to the program control points: ⌧Mt 2 L! (E * O). In
this way, to each program control point l 2 L corresponds a partial function
f : E * O, and to each program instruction stmt corresponds a termination
semantics ⌧MtJ stmt K : (E * O)! (E * O).

The termination semantics ⌧MtJ stmt K : (E * O) ! (E * O) of each
program instruction stmt outputs a ranking function whose domain represents
the terminating environments at the initial label of stmt, which is determined
taking as input a ranking function whose domain represents the terminating
environments at the final label of stmt, and whose value represents an upper
bound on the number of program execution steps remaining to termination.

The termination semantics of a skip instruction takes as input a ranking
function f : E * O whose domain represents the terminating environments
at the final label of the instruction, and increases its value by one to take
into account that from the environments at the initial label of the instruction
another program execution step is necessary before termination:

⌧MtJ l

skip Kf def
= �⇢ 2 dom(f). f(⇢) + 1 (4.3.1)

Similarly, the termination semantics of a variable assignment l

X := aexp
takes as input a ranking function f : E * O whose domain represent the
terminating environments at the final label of the instruction. The resulting
ranking function is defined over the environments that when subject to the
variable assignment always belong to the domain of the input ranking function.
The value of the input ranking function for these environments is increased by
one, to take into account another execution step before termination, and the
value of the resulting ranking function is the least upper bound of these values:

⌧MtJ l

X := aexp Kf def
= �⇢.

8

>

>

>

>

<

>

>

>

>

:

sup{f(⇢[X  v]) + 1 | v 2 JaexpK⇢}
9v 2 JaexpK⇢ ^

8v 2 JaexpK⇢ : ⇢[X  v] 2 dom(f)

undefined otherwise
(4.3.2)



4.3. Denotational Definite Termination Semantics 65

Note that, all environments yielding a run-time error due to a division by zero
do not belong to the domain of the termination semantics of the assignment.

Example 4.3.1
Let X def

= {x}. We consider the following ranking function f : E * O:

f(⇢)
def
=

8

>

<

>

:

2 ⇢(x) = 1

3 ⇢(x) = 2

undefined otherwise

and the backward assignment x :=x+[1, 2]. The termination semantics of the
assignment, given the ranking function, is:

⌧MtJx := x+ [1, 2] Kf(⇢) def
=

(

4 ⇢(x) = 0

undefined otherwise

In particular, note that the function is only defined when ⇢(x) = 0. In fact,
when ⇢(x) = �1, we have Jx + [1, 2]K⇢ = {0, 1} and ⇢[x  0] 62 dom(f).
Similarly, when ⇢(x) = 1, we have Jx+[1, 2]K⇢ = {2, 3} and ⇢[x 3] 62 dom(f).

Given a conditional instruction if

lbexp then stmt1 else stmt2 fi, its
termination semantics takes as input a ranking function f : E * O and derives
the termination semantics ⌧MtJ stmt1 Kf of stmt1, in the following denoted by
S1, and the termination semantics ⌧MtJ stmt2 Kf of stmt2, in the following
denoted by S2. Then, the termination semantics of the conditional instruction
is defined by means of the ranking function F [f ] : E * O whose domain is the
set of environments that belong to the domain of S1 and to the domain of
S2, and that due to non-determinism may both satisfy and do not satisfy the
boolean expression bexp:

F [f ]
def
= �⇢ 2 dom(S1) \ dom(S2).

8

>

<

>

:

sup{S1(⇢) + 1, S2(⇢) + 1}
JbexpK⇢ = {true, false}

undefined otherwise

and the ranking function F1[f ] : E * O whose domain is the set of environ-
ments ⇢ 2 E that belong to the domain of S1 and that must satisfy bexp:

F1[f ]
def
= �⇢ 2 dom(S1).

(

S1(⇢) + 1 JbexpK⇢ = {true}
undefined otherwise
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and the ranking function F2[f ] : E * O whose domain is the set of environ-
ments that belong to the domain of S2 and that cannot satisfy bexp:

F2[f ]
def
= �⇢ 2 dom(S2).

(

S2(⇢) + 1 JbexpK⇢ = {false}
undefined otherwise

The resulting ranking function is defined joining F [f ], F1[f ], and F [f ]:

⌧MtJ if lbexp then stmt1 else stmt2 fi Kf def
= F [f ] [̇ F1[f ] [̇ F2[f ]

(4.3.3)

Example 4.3.2
Let X def

= {x}. We consider the termination semantics of the conditional
statement if bexp then stmt1 else stmt2 fi. We assume, given a ranking
function f : E * O, that the termination semantics of stmt1 is defined as:

⌧MtJ stmt1 Kf(⇢) def
=

(

1 ⇢(x)  0

undefined otherwise

and that the termination semantics of stmt2 is defined as

⌧MtJ stmt2 Kf(⇢) def
=

(

3 0  ⇢(x)
undefined otherwise

Then, when the boolean expression bexp is for example x  3, the termination
semantics of the conditional statement is:

⌧MtJ if lbexp then stmt1 else stmt2 fi Kf(⇢) def
=

8

>

<

>

:

2 ⇢(x)  0

4 3 < ⇢(x)

undefined otherwise

Instead, when bexp is for example the non-deterministic choice ?, we have:

⌧MtJ if lbexp then stmt1 else stmt2 fi Kf(⇢) def
=

(

4 ⇢(x) = 0

undefined otherwise

The termination semantics of a loop instruction while

lbexp do stmt od
takes as input a ranking function f : E * O the domain of which represents the
terminating environments at the final label of the instruction, and outputs the
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ranking function which is defined as a least fixpoint of the function �Mt : (E *
O)! (E * O) within hE * O,vi, analogously to Equation 4.2.16:

⌧MtJ while lbexp do stmt od Kf def
= lfpv

;̇
�Mt (4.3.4)

where the computational order is defined as in Equation 4.2.15:

f1 v f2 () dom(f1) ✓ dom(f2) ^ 8x 2 dom(f1) : f1(x)  f2(x).

The function �Mt : (E * O) ! (E * O) takes as input a ranking function
x : E * O and adds to its domain the environments for which one more loop it-
eration is needed before termination. In the following, the termination seman-
tics ⌧MtJ stmt Kx of the loop body is denoted by S. The function �Mt is defined
by means of the ranking function F [x] : E * O whose domain is the set of envi-
ronments that belong to the domain of S and to the domain of the input func-
tion f , and that may both satisfy and not satisfy the boolean expression bexp:

F [x]
def
= �⇢ 2 dom(S) \ dom(f).

8

>

<

>

:

sup{S(⇢) + 1, f(⇢) + 1}
JbexpK⇢ = {true, false}

undefined otherwise

and the ranking function F1[x] : E * O whose domain is the set of environ-
ments ⇢ 2 E that belong to the domain of S and that must satisfy bexp:

F1[x]
def
= �⇢ 2 dom(S).

(

S(⇢) + 1 JbexpK⇢ = {true}
undefined otherwise

and the ranking function F2[f ] : E * O whose domain is the set of environ-
ments that belong to the domain of the input function f and that cannot
satisfy bexp:

F2[f ]
def
= �⇢ 2 dom(f).

(

f(⇢) + 1 JbexpK⇢ = {false}
undefined otherwise

The resulting ranking function is defined joining F [x], F1[x], and F2[f ]:

�Mt(x)
def
= F [x] [̇ F1[x] [̇ F2[f ] (4.3.5)

Finally, the termination semantics of the sequential combination of instruc-
tions stmt1 stmt2, takes as input a ranking function f : E * O, determines from
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f the termination semantics ⌧MtJ stmt2 Kf of stmt2, and outputs the ranking
function determined by the termination semantics of stmt1 from ⌧MtJ stmt2 Kf :

⌧MtJ stmt1 stmt2 Kf def
= ⌧MtJ stmt1 K(⌧MtJ stmt2 Kf) (4.3.6)

The termination semantics ⌧MtJ prog K 2 E * O of a program prog is
a ranking function whose domain represents the terminating environments,
which is determined taking as input the zero function:

Definition 4.3.3 (Termination Semantics) The termination semantics
⌧MtJ prog K 2 E * O of a program prog is:

⌧MtJ prog K = ⌧MtJ stmt l K def
= ⌧MtJ stmt K(�⇢. 0) (4.3.7)

where the function ⌧MtJ stmt K : (E * O) ! (E * O) is the termination se-
mantics of each program instruction stmt.

Note that, as pointed out in Remark 3.2.2 and accordingly to Defini-
tion 3.2.5, possible run-time errors silently halting the program are ignored.
More specifically, all environments leading to run-time errors are discarded and
do not belong to the domain of the termination semantics of a program prog.

The termination semantics ⌧MtJ prog K 2 E * O is usually not computable.
In the next Chapter 5 and Chapter 6, we present sound decidable abstractions
of ⌧MtJ prog K by means of piecewise-defined functions. The soundness is related
to the same approximation order defined in Equation 4.2.12 as:

f1 4 f2 () dom(f1) ◆ dom(f2) ^ 8x 2 dom(f2) : f1(x)  f2(x).



5
Piecewise-Defined Ranking

Functions

In this chapter, we present a parameterized numerical abstract domain for
e↵ectively proving program termination by abstract interpretation of the def-
inite termination semantics presented in Section 4.3. The domain is used to
automatically synthesize piecewise-defined ranking functions and infer su�-
cient preconditions for program termination. The elements of the abstract
domain are piecewise-defined partial functions represented by decision trees,
where the decision nodes are labeled with linear constraints, and the leaf nodes
belong to an auxiliary abstract domain for functions.

The abstract domain is parametric in the choice between the expressivity
and the cost of the numerical abstract domain which underlies the linear con-
straints labeling the decision nodes, and the choice of the auxiliary abstract
domain for the leaf nodes. We describe various instances based on the nu-
merical abstract domains presented in Section 3.4 for the decision nodes, and
a�ne functions for the leaf nodes.

Dans ce chapitre, nous présentons un domaine abstrait numérique paramétré
pour prouver e↵ectivement la terminaison de programmes par interprétation
abstraite de la sémantique de terminaison présentée dans la Section 4.3. Le
domaine est utilisé pour synthétiser automatiquement des fonctions de rang
définies par morceaux et en déduire des conditions su�santes pour la termi-
naison de programmes. Les éléments du domaine abstrait sont des fonctions
partielles définies par morceaux représentées par des arbres de décision, où les
nœuds de décision sont étiquetés avec des contraintes linéaires et les feuilles
appartiennent à un domaine abstrait auxiliaire pour fonctions.

Le domaine abstrait est paramétrique dans le choix entre l’expressivité et
le coût du domaine abstrait numérique qui sous-tend les contraintes linéaires
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étiquetant les nœuds de décision, et le choix du domaine abstrait auxiliaire
pour les feuilles. Nous décrivons di↵érentes instances sur la base des domaines
numériques abstraits présentés dans la Section 3.4 pour les nœuds de décision,
et les fonctions a�nes pour les nœuds feuilles.

5.1 Piecewise-Defined Ranking Functions

In order to abstract the termination semantics presented in Section 4.3, we
consider the following concretization-based abstraction:

hE * O,4i �T � hT ,4Ti

which provides a sound decidable abstraction ⌧ \MtJ prog K 2 T of the termina-
tion semantics of programs ⌧MtJ prog K 2 E * O with respect to the approxi-
mation order defined in Equation 4.2.12:

f1 4 f2
def
= dom(f1) ◆ dom(f2) ^ 8x 2 dom(f2) : f1(x)  f2(x).

We have ⌧MtJ prog K 4 �T(⌧
\

MtJ prog K), meaning that the abstract termina-

tion semantics ⌧ \MtJ prog K over-approximates the value of the ranking function
⌧MtJ prog K and under-approximates its domain of definition dom(⌧MtJ prog K).
In this way, an abstraction provides su�cient preconditions for program ter-
mination: if the abstract ranking function is defined on a program state, then
all program execution traces branching from that state are terminating.

By pointwise lifting (cf. Equation 2.1.1) we obtain the following:

hL! (E * O), 4̇i ˙�T � hL! T , 4̇Ti
which provides a concretization-based abstraction of the definite termination
semantics ⌧Mt 2 L ! (E * O) by partitioning with respect to the program
control points. No approximation is made on L. On the other hand, each
program control point l 2 L is associated with an element t 2 T .

Piecewise-Defined Ranking Functions. The elements of the abstract
domain hT ,4Ti are piecewise-defined partial functions.

Their internal representation is inspired by the space partitioning trees
[FKN80] developed in the context of 3D computer graphics and the use of deci-
sion trees in program analysis and verification [BCC+10, Jea02]: the piecewise-
defined partial functions are represented by decision trees, where the decision
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nodes are labeled with linear constraints, and the leaf nodes belong to an aux-
iliary abstract domain for functions. The decision trees recursively partition
the space of possible values of the program variables inducing disjunctions
into the auxiliary domain. The elements of the auxiliary domain are functions
of the program variables, which provide upper bounds on the computational
complexity of the program in terms of execution steps.

The partitioning is dynamic: during the analysis, partitions (resp. decision
nodes and constraints) are split (resp. added) by tests, modified by assign-
ments and joined (resp. removed) when merging control flows. In order to
minimize the cost of the analysis, a widening limits the height of the decision
trees and the number of maintained disjunctions.

The abstract domain is parametric in the choice between the expressivity
and the cost of the numerical abstract domain which underlies the linear con-
straints labeling the decision nodes, and the choice of the auxiliary abstract
domain for the leaf nodes. In this chapter, we propose various instances based
on the numerical abstract domains presented in Section 3.4 for the decision
nodes, and a�ne functions for the leaf nodes.

The following examples motivate the choice and illustrate the potential of
piecewise-defined ranking functions.

Example 5.1.1

Let us consider the following program from [PR04a]:

while

1(x � 0) do
2
x := �2x+ 10

od

3

The program is terminating since our program variables have integer values
(cf. Section 3.1). In case we admitted non-integer values, the program would
not terminate for x = 10

3 . However, the program does not have a linear ranking
function (cf. [PR04a]). As a result, well-known methods to synthesize ranking
functions like [PR04a, BMS05b], are not capable to guarantee its termination.

On the other hand, our method is not impaired from the fact that the
program does not have a linear ranking function. The decision tree t 2 T
inferred at the initial program control point is depicted in Figure 5.1a. It rep-
resents the following piecewise-defined ranking function �T(t) : E * O, which
proves that the program is terminating in at most nine program execution
steps independently from the initial value for the program variable:
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x� 6 � 0

�x. 3 x� 4 � 0

�x. 7 x� 3 � 0

�x. 9 x � 0

�x. 5 �x. 1

(a)

x

0 2 4 6

(b)

Figure 5.1: Decision tree representation (a) of the piecewise-defined ranking
function (b) for the program of Example 5.1.1. The linear constraints are
satisfied by their left subtree, while their right subtree satisfies their negation.
The leaves of the tree represent partial functions whose domain is determined
by the constraints satisfied along the path to the leaf node.

�T(t)
def
= �⇢.

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1 ⇢(x)  �1
5 0  ⇢(x)  2

9 ⇢(x) = 3

7 4  ⇢(x)  5

3 6  ⇢(x)
The graphical representation of the ranking function is shown in Figure 5.1b.

The fully detailed analysis of the program uses interval constraints based
on the intervals abstract domain (cf. Section 3.4.1) for the decision nodes, and
a widening delay of five iterations. It is proposed in Example 5.3.4.

Example 5.1.2
Let us consider the following program from [UM14b]:

while

1(r > 0) do
2
r := r + x

3
r := r � y

od

4

At each loop iteration, the value of r is increased by the value of x and de-
creased by the value of y. The program is terminating if and only if x < y.
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r � 1 � 0

x� y � 0

? �x.�y.�r. 3r + 1

�x.�y.�r. 1

Figure 5.2: Decision tree representation of the piecewise-defined ranking func-
tion for the program of Example 5.1.2. The leaf with value ? explicitly repre-
sents the undefined piece of the ranking function determined by the constraints
satisfied along the path to the leaf node.

Our method allows proving conditional termination. The decision tree
t 2 T inferred at the initial program control point is depicted in Figure 5.2.
It represents the following piecewise-defined ranking function �T(t) : E * O:

�T(t)
def
= �⇢.

8

>

<

>

:

1 ⇢(r) � 1

3r + 1 0  ⇢(r) ^ ⇢(x) < ⇢(y)

undefined otherwise

which proves that the program is terminating in at most 3r + 1 program
execution steps if the initial value of the program variable x is smaller than
the initial value of the program variable y. Note that the constraint x < y

does not explicitly appear in the program.
The fully detailed analysis of the program proposed in Example 5.1.2

uses polyhedral constraints based on the polyhedra abstract domain (cf. Sec-
tion 3.4.2) for the decision nodes.

We emphasize that, as shown by the previous example, the partitioning
induced by the decision trees is semantic-based rather than syntactic-based:
the linear constraints labeling the decision nodes are automatically inferred
by the analysis and do not necessarily appear in the program.

5.2 Decision Trees Abstract Domain

In the following, we give a more formal presentation of the decision trees
abstract domain. To this end, we introduce the family of abstract domains
T(D,C,F), parameterized by a family C of auxiliary abstract domains for the
linear constraints labeling the decision nodes, and a family F of auxiliary ab-
stract domains for the leaf nodes, both parameterized by a numerical abstract
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domain D from Section 3.4. Adopting an OCaml terminology, each T is an
abstract domain functor : a function mapping the parameter abstract domains
D, C and F into a new abstract domain T(D,C,F). T can be applied to various
implementations of D, C and F yielding the corresponding implementations
of T(D,C,F), with no need for further programming e↵ort. We first formally
define the families C, F and T. Then, we present all abstract operators needed
to manipulate decision nodes, leaf nodes, and decision trees.

5.2.1 Decision Trees

We first dive into some details on the families of auxiliary abstract domains C
and F. Then, we formally define the family of abstract domains T.

Linear Constraints Auxiliary Abstract Domain. The family of auxil-
iary abstract domains C is itself a functor parameterized by D, where D is any
of the numerical abstract domains hD,vDi. introduced in Section 3.4.

In the following, let X def
= {X1, . . . , X

k

} be the set of program variables.
The elements of the numerical abstract domains of Section 3.4 are equivalently
represented as sets (i.e., conjunctions) of linear constraints of the form:

±X

i

� c (intervals abstract domain)
±X

i

±X

j

� c (octagons abstract domain)
c1X1 + . . .+ c

k

X

k

+ c

k+1 � 0 (polyhedra abstract domain)

where c, c1, . . . , c
k

, c

k+1 2 Z. In the following, CB def
= {±X

i

� c | X

i

2
X , c 2 Z} denotes the set of interval constraints, CO def

= {±X

i

± X

j

�
c | X

i

, X

j

2 X , c 2 Z} denotes the set of octagonal constraints, and CP def
=

{c1X1+ . . .+ c

k

X

k

+ c

k+1 � 0 | X1, . . . , Xn

2 X , c1, . . . , c
k

, c

k+1 2 Z} denotes
the set of polyhedral constraints. Let C be any of these sets of constraints. We
have CB ✓ CO ✓ CP. In particular, any interval constraint ±X

i

� c is equiva-
lent to the polyhedral constraint 0X1 + . . .±X

i

+ . . .+ 0X
k

� c � 0, and any
octagonal constraint ±X

i

±X

j

� c is equivalent to the polyhedral constraint
0X1+ . . .±X

i

+ . . .±X

j

+ . . . 0X
k

�c � 0. Thus, in the following, we consider
all linear constraints in C to have the form c1X1+ . . .+c

k

X

k

+c

k+1 � 0. More-
over, in order to ensure a canonical representation of the linear constraints,
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we require gcd(|c1|, . . . , |c
k

|, |c
k+1|) = 1:

C def
=

8

<

:

c1X1 + . . .+ c

k

X

k

+ c

k+1 � 0

�

�

�

�

�

�

X1, . . . , X
k

2 X ,

c1, . . . , c
k

, c

k+1 2 Z
gcd(|c1|, . . . , |c

k

|, |c
k+1|) = 1

9

=

;

(5.2.1)
We can easily formalize the correspondence between the elements of the

numerical abstract domains of Section 3.4 and sets of linear constraints as a
Galois connection hP(C),vDi ����! ����

↵C

�C hD,vDi, where the abstraction function

↵C : P(C)! D maps a set of interval (resp. octagonal, polyhedral) constraints
to an interval (resp. an octagon, a polyhedron), and the concretization func-
tion �C : D ! P(C) maps an interval (resp. an octagon, a polyhedron) to a set
of interval (resp. octagonal, polyhedral) constraints. In particular, we define

�C(>D)
def
= ; and �C(?D)

def
= {?C}, where ?C represents the unsatisfiable

linear constraint �1 � 0.

The decision tree abstract domain is parametric in the choice between the
expressivity and the cost of the set C of linear constraints chosen for labeling
the decision nodes, which depends on the corresponding underlying numerical
abstract domain hD,vDi. As for boolean decision trees, where an ordering is
imposed on all decision variables, we assume the set of program variables X
to be totally ordered and we impose a total order <C on C. As an example,
we define <C to be the lexicographic order on the coe�cients c1, . . . , cn and
constant c

k+1 of the linear constraints c1X1 + . . .+ c

k

X

k

+ c

k+1 � 0:

a1X1 + . . .+ a

k

X

k

+ a

k+1 � 0 <C b1X1 + . . .+ b

k

X

k

+ b

k+1 � 0

() 9j > 0 : 8i < j : (a
i

= b

i

) ^ (a
j

< b

j

)
(5.2.2)

Thus, any set C equipped with <C forms a totally ordered set hC, <Ci.

We define the negation ¬c of a linear constraint c as follows:

¬(c1X1 + . . .+ c

k

X

k

+ c

k+1 � 0)
def
= �c1X1 � . . .� c

k

X

k

� c

k+1 � 1 � 0
(5.2.3)

Note that, we decrement the value of the constant of the negated linear con-
straint because our program variables have integer values (cf. Section 3.1).

Example 5.2.1
Let X def

= {x} and let us consider the linear constraint x� 2 � 0. Its negation
¬(x� 2 � 0) is the linear constraint �x+ 1 � 0 (i.e., x  1).
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In order to ensure a canonical representation of the decision trees, we forbid
a linear constraint c and its negation ¬c from simultaneously appearing in a
decision tree. As an example, between c and ¬c, we keep only the largest con-
straint with respect to the total order <C. We define the following equivalence
relation between a linear constraint and its negation:

c1 ⌘C c2
def
= c1 = ¬c2 ^ c2 = ¬c1 (5.2.4)

Let C denote any totally ordered set hC/⌘C, <Ci.

Functions Auxiliary Abstract Domain. The family of abstract domains
F is also a functor parameterized by any of the numerical abstract domains
D introduced in Section 3.4. It is dedicated to the manipulation of the leaf
nodes of a decision tree with respect to the set of linear constraints satisfied
along their paths from the root of the decision tree.

The elements of these abstract domains belong to the following set:

F def
= {?F} [

⇣

Z|X | ! N
⌘

[ {>F}. (5.2.5)

which consists of natural-valued functions of the program variables, plus the
element ?F and the element >F, whose meaning will be explained shortly.
In the following, the leaf nodes belonging to F \ {?F,>F} and {?F,>F}
are referred to as defined and undefined leaf nodes, respectively. Moreover,
the undefined leaf nodes belonging to {?F} are called ?F-leaves and those
belonging to {>F} are called >F-leaves.

As an instance, in the following we consider a�ne functions:

FA
def
=
n

f : Z|X | ! N
�

�

�

f(X1, . . . , X
k

) = m1X1 + . . .+m

k

X

k

+ q

o

[{?F,>F}.
(5.2.6)

We now define a computational order vF and an approximation order
4F where ?F-leaves and >F-leaves are comparable and incomparable, respec-
tively. These orders are parameterized by a numerical abstract domain element
D 2 D, which represents the linear constraints satisfied along the path to the
compared leaf nodes. Intuitively, these orders abstract the computational or-
der v defined in Equation 4.2.15 and the approximation order 4 defined in
Equation 4.2.12, respectively. We have observed in Lemma 4.2.22 that v and
4 coincide when the ranking functions have the same domain. Analogously,
the approximation order 4F and the computational order vF between defined
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f : Z|X | ! N

?F >F

(a)

>F

f : Z|X | ! N

?F

(b)

Figure 5.3: Hasse diagrams defining the approximation order 4F [D] (a) and
the computational order vF [D] (b) of the functions abstract domain.

leaf nodes are identical and defined as follows:

f1 4F [D] f2 () 8⇢ 2 �D(D) : f1(⇢(x1), . . . , ⇢(x
k

))  f2(⇢(x1), . . . , ⇢(x
k

))
(5.2.7)

f1 vF [D] f2 () 8⇢ 2 �D(D) : f1(⇢(x1), . . . , ⇢(x
k

))  f2(⇢(x1), . . . , ⇢(x
k

)).
(5.2.8)

Instead, when one or both leaf nodes are undefined, the approximation and
computational order are defined by the Hasse diagrams in Figure 5.3a and
Figure 5.3b, respectively. Note that, as we mentioned, in the approximation
order ?F-leaves and >F-leaves are incomparable.

A leaf node, together with its path from the root of the decision tree,
represents a (piece of a) partial ordinal-valued functions of environments. We
define the following concretization-based abstraction:

hE * O,4i �F[D] � hF ,4Fi
where D 2 D represents the path to the leaf node. The concretization function
�F : D ! F ! (E * O) is defined as follows:

�F[D]?F
def
= ;̇

�F[D]f
def
= �⇢ 2 �D(D) : f(⇢(x1), . . . , ⇢(x

k

))

�F[D]>F
def
= ;̇

(5.2.9)

Note that, both �F and >F represent the totally undefined function.
The following result proves that, given D 2 D, �F[D] is monotonic:
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Lemma 5.2.2 8f1, f2 2 F : f1 4F [D] f2 ) �F[D]f1 4 �F[D]f2.

Proof.
See Appendix A.3. ⌅

Note that, for now, we are approximating ordinal-valued functions by
means of natural-valued functions. The next Chapter 6, will be dedicated
to abstractions based on ordinal-valued functions.

Decision Trees Abstract Domain. We can now use the families of do-
mains D, C and F to build the decision trees abstract domains T(D,C,F).

The elements of these abstract domains belong to the following set:

T def
= {LEAF : f | f 2 F} [ {NODE{c} : t1; t2 | c 2 C, t1, t2 2 T } (5.2.10)

where F is defined in Equation 5.2.5 and C is defined in Equation 5.2.1. A
decision tree t 2 T is either a leaf node LEAF : f , with f an element of F (in
the following denoted by t.f), or a decision node NODE{c} : t1; t2, such that c
is a linear constraint in C (in the following denoted by t.c) and the left subtree
t1 and the right subtree t2 (in the following denoted by t.l and t.r, respectively)
belong to T . In addition, given a decision tree NODE{c} : t1; t2, we impose
that the linear constraint c 2 C is always the largest constraint, with respect
to <C, appearing in the tree. In the following, let ?T

def
= LEAF : ?F.

A decision tree represents a partial ordinal-valued function of environ-
ments. We define the following concretization-based abstraction:

hE * O,4i �T[D] � hT ,4Ti
where D 2 D represent an over-approximation of the reachable environments.
The concretization function �T : D ! T ! (E * O) is defined as follows:

�T[D]t
def
= �̄T[�C(D)]t (5.2.11)

where �̄T : D ! T ! (E * O). The function �̄T : D ! T ! (E * O) accu-
mulates into a set C 2 P(C) (initially equal to �C(D)) the linear constraints
satisfied along the paths of the decision tree up to a leaf node, where the con-
cretization function �F : D ! F ! (E * O) (cf. Equation 5.2.9) returns a
partially defined function over �D(↵C(C)):

�̄T[C]LEAF : f
def
= �F[↵C(C)]f

�̄T[C]NODE{c} : t1; t2
def
= �̄T[C [ {c}]t1 [̇ �̄T[C [ {¬c}]t2
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The approximation order 4T will be formally defined in the next section.

5.2.2 Binary Operators

In the following, we define the decision tree computational and approximation
ordering. Moreover, we define binary operators for the computational and
approximation join, and for the meet of decision trees.

The binary operators manipulate elements belonging to the following set:

TNIL
def
= {NIL}[{LEAF : f | f 2 F}[{NODE{c} : t1; t2 | c 2 C, t1, t2 2 TNIL}

(5.2.12)
A partial decision tree t 2 TNIL is either an empty tree NIL, or a leaf node leaf
node LEAF : f , with f an element of F , or a decision node NODE{c} : t1; t2,
such that c is a linear constraint in C and the left subtree t1 and the right
subtree t2 belong to TNIL. Note that T ✓ TNIL. Intuitively, the special
element NIL represent the absence of information regarding some partition of
the domain of the ranking function. Note that, an empty tree NIL is di↵erent
from an undefined leaf node LEAF : ?F or LEAF : >F, since an undefined leaf
node provides the information that the ranking function is undefined. The NIL

nodes serve an algorithmic purpose. They allow carving out parts of decision
trees and stitching them up on disjoint domains. In particular, NIL nodes are
only temporary. They are inserted in intermediate trees during computations
but disappear before the abstract operators return.

Tree Unification. The decision tree orderings and binary operators are
based on Algorithm 1 for tree unification: the main function unification,
given an over-approximation D 2 D of the reachable environments and two
decision trees t1, t2 2 TNIL, calls the auxiliary unification-aux to find a
common refinement for the trees.

The function unification-aux accumulates into a set C 2 P(C) (initially
equal to �C(D), cf. Line 36) the linear constraints encountered along the
paths of the decision trees (cf. Lines 12-13, Lines 21-22, Lines 31-32), possibly
adding decision nodes (cf. Line 14, Line 23) or removing constraints that are
redundant (cf. Line 7, Line 16, Line 26) or whose negation is redundant (cf.
Line 9, Line 18, Line 28) with respect to C.

The redundancy check is performed by the function isRedundant which,
given a linear constraint c 2 C and a set of linear constraints C 2 P(C),
tests the inclusion of the corresponding numerical abstract domain elements
↵C(C) 2 D and ↵C({c}) 2 D (cf. Line 2).
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Algorithm 1 : Tree Unification

1: function isRedundant(c,C) . c 2 C, C 2 P(C)
2: return ↵C(C) vD ↵C({c})
3:

4: function unification-aux(t1, t2,C) . t1, t2 2 TNIL, C 2 P(C)
5: if ¬isNode(t1) ^ ¬isNode(t2) then return (t1, t2)
6: else if ¬isNode(t1) _ (isNode(t1) ^ isNode(t2) ^ t1.c <C t2.c) then
7: if isRedundant(t2.c, C) then
8: return unification-aux(t1, t2.l, C)
9: else if isRedundant(¬t2.c, C) then

10: return unification-aux(t1, t2.r, C)
11: else . t2.c can be added to t1 and kept in t2

12: (l1, l2) unification-aux(t1, t2.l, C [ {t2.c})
13: (r1, r2) unification-aux(t1, t2.r, C [ {¬t2.c})
14: return (NODE{t2.c} : l1; r1, NODE{t2.c} : l2; r2)

15: else if ¬isNode(t2) _ (isNode(t1) ^ isNode(t2) ^ t2.c <C t1.c) then
16: if isRedundant(t1.c, C) then
17: return unification-aux(t1.l, t2, C)
18: else if isRedundant(¬t1.c, C) then
19: return unification-aux(t1.r, t2, C)
20: else . t1.c can be kept in t1 and added to t2

21: (l1, l2) unification-aux(t1.l, t2, C [ {t1.c})
22: (r1, r2) unification-aux(t1.r, t2, C [ {¬t1.c})
23: return (NODE{t1.c} : l1; r1, NODE{t1.c} : l2; r2)

24: else if isNode(t1) ^ isNode(t2) then
25: c t1.c . t1.c and t2.c are equal
26: if isRedundant(c, C) then
27: return unification-aux(t1.l, t2.l, C)
28: else if isRedundant(¬c, C) then
29: return unification-aux(t1.r, t2.r, C)
30: else . c can be kept in t1 and t2

31: (l1, l2) unification-aux(t1.l, t2.l, C [ {c})
32: (r1, r2) unification-aux(t1.r, t2.r, C [ {¬c})
33: return (NODE{c} : l1; r1, NODE{c} : l2; r2)

34:

35: function unification(D, t1, t2) . D 2 D, t1, t2 2 TNIL
36: return unification-aux(t1, t2, �C(D))
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x+ 1 � 0

�x.x+ 4 NIL

(a)

x � 0

NIL
�

(b)

x � 0

�x.x+ 4 x+ 1 � 0

�x.x+ 4 NIL

(c)

x � 0

NIL x+ 1 � 0

� �

(d)

Figure 5.4: Tree unification of the decision trees (a) and (b) of Example 5.2.3.
The resulting decision trees are represented in (c) and (d), respectively.

Note that the tree unification does not loose any information. Then, the
binary operations are carried out “leaf-wise” on the unified decision trees.

Example 5.2.3
Let X def

= {x}, let D be the intervals abstract domain hB,vBi, let C be the
interval constraints auxiliary abstract domain hCB/⌘C, <Ci, and let F be the
a�ne functions auxiliary abstract domain hFA,4Fi. We consider the decision
trees t1 2 TNIL represented in Figure 5.4a and t2 2 TNIL represented in

Figure 5.4b, where � 2 T is a leaf node. Let d
def
= >B and let C

def
= �C(d) = ;.

The function unification-aux adds a decision node for x � 0 to t1 (cf.
Line 14) and removes the redundant constraint x+1 � 0 from the resulting left
subtree (cf. Line 8). Moreover, unification-aux adds a decision node for x+
1 � 0 to the right subtree of t2 (cf. Line 23). The result of the tree unification
are the decision trees represented in Figure 5.4c and Figure 5.4d, respectively.

Ordering. The decision tree ordering is implemented by Algorithm 2: the
function order is parameterized by the choice of the ordering E between
leaf nodes and, given a sound over-approximation D 2 D of the reachable
environments and two decision trees t1, t2 2 T , calls the function unification
for tree unification (cf. Line 11) and then calls the auxiliary function order-
aux. The function order-aux accumulates into a set C 2 P(C) (initially
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Algorithm 2 : Tree Order

1: function order-aux(E, t1, t2,C) . t1, t2 2 T , C2P(C), E2{4F,vF}
2: if isLeaf(t1) ^ isLeaf(t2) then
3: return LEAF : t1.f E [↵C(C)] t2.f
4: else if isNode(t1) ^ isNode(t2) then
5: c t1.c

6: l order-aux(t1.l, t2.l, C [ {c})
7: r  order-aux(t1.r, t2.r, C [ {¬c})
8: return l ^ r

9:

10: function order(E,D, t1, t2) . D 2 D, t1, t2 2 T , E2{4F,vF}
11: (t1, t2) unification(D, t1, t2)
12: return order-aux(E, t1, t2, �C(D))

Algorithm 3 : Tree Approximation Order

1: function a-order(D, t1, t2) . D 2 D, t1, t2 2 T
2: return order(4F, D, t1, t2)

equal to �C(D), cf. Line 12) the linear constraints encountered along the
paths of the decision trees (cf. Lines 6-7) up to the leaf nodes, which are
compared by means of the chosen ordering E (cf. Line 3).

In particular, the approximation ordering 4T and the computational or-
dering vT are implemented by Algorithm 3 and Algorithm 4, respectively:
the functions a-order of Algorithm 3 and c-order of Algorithm 4 call the
function order of Algorithm 2 choosing respectively the approximation order
4F (cf. Equation 5.2.7 and Figure 5.3a) and the computational order vF (cf.
Equation 5.2.8 and Figure 5.3b).

The following result proves that, given D 2 D, the concretization function
�T[D] is monotonic with respect to the approximation order 4T [D]:

Lemma 5.2.4 8t1, t2 2 T : t1 4T [D] t2 ) �T[D]f1 4 �T[D]f2.

Proof.
See Appendix A.3. ⌅

Join. The join of decision trees represents a ranking function defined over
the union of their partitions. It is implemented by Algorithm 5: the function
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Algorithm 4 : Tree Computational Order

1: function c-order(D, t1, t2) . D 2 D, t1, t2 2 T
2: return order(vF, D, t1, t2)

Algorithm 5 : Tree Join

1: function join-aux(�, t1, t2,C) . t1, t2 2 TNIL, C2P(C), �2{gF,tF}
2: if isNil(t1) then return t2

3: else if isNil(t2) then return t1

4: else if isLeaf(t1) ^ isLeaf(t2) then
5: return LEAF : t1.f �[↵C(C)] t2.f
6: else if isNode(t1) ^ isNode(t2) then
7: c t1.c

8: (l1, l2) join-aux(t1.l, t2.l, C [ {c})
9: (r1, r2) join-aux(t1.r, t2.r, C [ {¬c})

10: return (NODE{c} : l1; r1, NODE{c} : l2; r2)

11:

12: function join(�,D, t1, t2) . D 2 D, t1, t2 2 TNIL, �2{gF,tF}
13: (t1, t2) unification(D, t1, t2)
14: return join-aux(�, t1, t2, �C(D))

join is parameterized by the choice of the join � between leaf nodes, which
will be presented shortly. Given a sound over-approximation D 2 D of the
reachable environments and two partial decision trees t1, t2 2 TNIL, join first
calls unification (cf. Line 13) and then calls the auxiliary function join-aux.
The latter collects the set C 2 P(C) (initially equal to �C(D), cf. Line 14) of
linear constraints encountered up to the leaf nodes (cf. Lines 8-9), which are
joined by the chosen operator � (cf. Line 5). In case it encounters an empty
tree, join-aux favors the possibly non-empty one (cf. Lines 2-3).

We define the approximation join operator gF and the computational join
operator tF between leaf nodes. The approximation join is the least upper
bound for the approximation order (cf. Figure 5.3a and Equation 5.2.7), and
the computational join is the least upper bound for the computational order
(cf. Figure 5.3b and Equation 5.2.8). These operators are parameterized by a
numerical abstraction D 2 D, which represents the linear constraints satisfied
along the path to the leaf nodes (cf. Line 5 of Algorithm 5).

The approximation and computational join di↵er when joining defined and
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undefined leaf nodes. In this case, the approximation join is defined as follows:

?F gF[D] f
def
= ?F f 2 F \ {>F}

f gF[D] ?F
def
= ?F f 2 F \ {>F}

>F gF[D] f
def
= >F f 2 F \ {?F}

f gF[D] >F
def
= >F f 2 F \ {?F}

(5.2.13)

and the computational join is defined as follows:

?F tF[D] f
def
= f f 2 F

f tF[D] ?F
def
= f f 2 F

>F tF[D] f
def
= >F f 2 F

f tF[D] >F
def
= >F f 2 F

(5.2.14)

In particular, note that the approximation join is undefined when joining ?F-
leaves and >F-leaves and always favors the undefined leaf nodes.

Instead, given two defined leaf nodes f1, f2 2 F \ {?F,>F}, their approx-
imation join f1 gF[D] f2 and their computational join f1 tF[D] f2 coincide
and they are defined as their least upper bound f 2 F \ {?F,>F} or, when
such least upper bound does not exist, >F:

f1 gF[D] f2
def
=

(

f f 2 F \ {?F,>F}
>F otherwise

(5.2.15)

f1 tF[D] f2
def
=

(

f f 2 F \ {?F,>F}
>F otherwise

(5.2.16)

where f

def
= �⇢ 2 �D(D). max{f1(⇢(X1), . . . , ⇢(X

k

)), f2(⇢(X1), . . . , ⇢(X
k

))}.

As an instance, let us consider two a�ne functions f1, f2 2 FA \{?F,>F}.
Let V 62 X be a special variable not appearing in any program. We define the
hypograph of a given a�ne function f 2 FA\{?F,>F} within a given numerical

abstraction D 2 D as f [D]# def
= {(X1, . . . , X

k

, V ) | �C(D), V  f(X1, . . . , X
k

)}.
The approximation join f1 gF[D] f2 and computational join f1 tF[D] f2 of
f1 and f2 are identical and defined as the a�ne function f 2 FA \ {?F,>F},
whose hypograph f [D]# is the convex-hull of the hypographs f1[D]# and f2[D]#
of f1 and f2, respectively; when such function does not exist, the result is >F:

f1 gF[D] f2
def
=

(

f f [D]# = convex-hull{f1[D]#, f2[D]#}
>F otherwise

(5.2.17)
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Figure 5.5: Example of join of two a�ne functions of one variable, shown in
(a) and (b), respectively. The result is shown in (c). In (d), (e), and (f) are
respectively shown the hypographs of (a), (b), and (c).

f1 tF[D] f2
def
=

(

f f [D]# = convex-hull{f1[D]#, f2[D]#}
>F otherwise

(5.2.18)

To clarify, let us consider the following example:

Example 5.2.5
Two a�ne functions f1, f2 2 FA \ {?F,>F} are shown in Figure 5.5a and
Figure 5.5b, respectively. Their domain of definition D 2 D is represented
by the set of linear constraints C

def
= �C(D) = {x � 1 � 0,�x + 5 � 0}. In

Figure 5.5d and Figure 5.5e are represented the hypographs f1[D]# and f2[D]#
of f1 and f2, respectively. Their convex-hull is shown in Figure 5.5e, and the
result of the join is the a�ne function f 2 FA\{?F,>F} shown in Figure 5.5c.

Example 5.2.6
Let X = {x}, and let f1

def
= �x. x and f2

def
= �x. � x be two a�ne functions,

whose domain of definition D 2 D is represented by the empty set of linear
constraints C

def
= �C(D) = ;. Then, since there is no a�ne function which is



86 5. Piecewise-Defined Ranking Functions

x1
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x1
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Figure 5.6: Example of join of two a�ne functions of two variables, shown in
(a) and (b), respectively. The result is shown in (c).

Algorithm 6 : Tree Approximation Join

1: function a-join(D, t1, t2) . D 2 D, t1, t2 2 TNIL
2: return join(gF, D, t1, t2)

the least upper bound of f1 and f2, the result of the join is >F.

Another example of join of a�ne functions is proposed in Figure 5.6.

The approximation join gT and the computational join tT of decision
trees are implemented by Algorithm 6 and Algorithm 7, respectively: the
functions a-join of Algorithm 6 and c-join of Algorithm 7 call the function
join of Algorithm 5 choosing respectively the approximation join gF and the
computational join tF between leaf nodes.

Example 5.2.7
Let X def

= {x}, let D be the intervals abstract domain hB,vBi, let C be the
interval constraints auxiliary abstract domain hCB/⌘C, <Ci, and let F be the
a�ne functions auxiliary abstract domain hFA,4Fi. We consider the decision
trees t1 2 T represented in Figure 5.4a and t2 2 T represented in Figure 5.4b,
where � 2 T is a leaf node. Let d

def
= >B and let C

def
= �C(d) = ;.

From Example 5.2.3, the result of the tree unification are the decision trees
represented in Figure 5.4c and Figure 5.4d, respectively. The decision tree re-
turned by the function a-join-aux is represented in Figure 5.7.
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Algorithm 7 : Tree Computational Join

1: function c-join(D, t1, t2) . D 2 D, t1, t2 2 TNIL
2: return join(tF, D, t1, t2)

x � 0

�x. x+ 4 x+ 1 � 0

(�x. x+ 4) gF � �

Figure 5.7: Tree approximation join of Figure 5.4a and Figure 5.4b.

Meet. The meet of decision trees represents a ranking function defined over
the intersection of their partitions. It is implemented by Algorithm 8: the
function meet, given a sound over-approximation D 2 D of the reachable
environments and two partial decision trees t1, t2 2 TNIL, calls unification
(cf. Line 12) and then calls the auxiliary function join-aux. The latter collects
the set C 2 P(C) (initially equal to �C(D), cf. Line 13) of linear constraints
encountered up to the leaf nodes (cf. Lines 8-9), which are joined by the
approximation join operator gF (cf. Line 4). However, unlike Algorithm 6,
meet-aux favors empty trees over non-empty trees (cf. Line 2).

5.2.3 Unary Operators

We now define the unary operators for handling skip instructions, backward
variable assignments and program tests on decision trees.

Skip. The step operator STEPT : T ! T for handling skip instructions is
implemented by Algorithm 9: the function step, given a decision tree t 2 T ,
descends along the paths of the decision tree (cf. Line 5) up to a leaf node,
where the leaves step operator STEPF is invoked (cf. Line 3).

The operator STEPF : F ! F , given a function f 2 F \ {?F,>F}, simply
increments its constant to take into account that one more execution step is
needed before termination; undefined leaf nodes are left unaltered:

STEPF(?F)
def
= ?F

STEPF(f)
def
= �X1, . . . , X

k

. f(X1, . . . , X
k

) + 1

STEPF(>F)
def
= >F

(5.2.19)
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Algorithm 8 : Tree Meet

1: function meet-aux(t1, t2,C) . t1, t2 2 TNIL, C 2 P(C)
2: if isNil(t1) _ isNil(t2) then return NIL

3: else if isLeaf(t1) ^ isLeaf(t2) then
4: return LEAF : t1.f gF[↵C(C)] t2.f
5: else if isNode(t1) ^ isNode(t2) then
6: c t1.c

7: (l1, l2) meet-aux(t1.l, t2.l, C [ {c})
8: (r1, r2) meet-aux(t1.r, t2.r, C [ {¬c})
9: return (NODE{c} : l1; r1, NODE{c} : l2; r2)

10:

11: function meet(D, t1, t2) . D 2 D, t1, t2 2 TNIL
12: (t1, t2) unification(D, t1, t2)
13: return meet-aux(t1, t2, �C(D))

Algorithm 9 : Tree Step

1: function step(t) . t 2 T
2: if isLeaf(t) then
3: return LEAF : stepF(t.f)
4: else if isNode(t) then
5: return NODE{t.c} : step(t.l); step(t.r)

The following result proves that for a skip instruction l

skip, given a sound
over-approximation R 2 D of ⌧I(l) and a sound over-approximation D 2 D of
⌧I(fJ l

skip K), the step operator STEPT is a sound over-approximation of the
termination semantics ⌧MtJ l

skip K defined in Equation 4.3.1:

Lemma 5.2.8 ⌧MtJ l

skip K�T[D]t 4 �T[R]STEPT(t).

Proof.
See Appendix A.3. ⌅

Tree Pruning. The remaining decision tree unary operators rely on Al-
gorithm 10 for pruning a decision tree with respect to a given set of linear
constraints. Only the subtrees whose paths from the root of the decision tree
satisfy these constraints are preserved, while the other subtrees are pruned
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Algorithm 10 : Tree Pruning

1: function prune(t,C, J) . t 2 T , C, J 2 P(C)
2: if isEmpty(J) then
3: if isLeaf(t) then return t

4: else if isNode(t) then
5: if isRedundant(t.c, C) then return prune(t.l, C, J)
6: else if isRedundant(¬j, C) then return prune(t.r, C, J)
7: else . t.c can be kept in t

8: l prune(t.l, C [ {t.c}, J)
9: r  prune(t.r, C [ {¬t.c}, J)

10: return NODE{t.c} : l, r

11: else if ¬isEmpty(J) then
12: j  max J . j is the largest linear constraint appearing in J

13: if isLeaf(t) _ (isNode(t) ^ (t.c <C j _ t.c <C ¬j) then
14: if isRedundant(j, C) then return prune(t, C, J \ {j})
15: else if isRedundant(¬j, C) then return NIL

16: else if ¬j <C j then . j can be added to t

17: return NODE{j} : prune(t, C [ {j}, J \ {j}),NIL

18: else if j <C ¬j then . ¬j can be added to t

19: return NODE{¬j} : NIL, prune(t, C [ {j}, J \ {j})
20: else if isNode(t) ^ j <C t.c ^ ¬j <C t.c then
21: if isRedundant(t.c, C) then return prune(t.l, C, J)
22: else if isRedundant(¬j, C) then return prune(t.r, C, J)
23: else . t.c can be kept in t

24: l prune(t.l, C [ {t.c}, J)
25: r  prune(t.r, C [ {¬t.c}, J)
26: return NODE{t.c} : l, r

27: else if isNode(t) ^ ¬j <C j then . t.c and j are equal
28: if isRedundant(j, C) then return prune(t.l, C, J \ {j})
29: else if isRedundant(¬j, C) then return NIL

30: elsereturn NODE{j} : prune(t.l, C [ {j}, J \ {j}),NIL

31: else if isNode(t) ^ j <C ¬j then . t.c and ¬j are equal
32: if isRedundant(j, C) then return prune(t.r, C, J \ {j})
33: else if isRedundant(¬j, C) then return NIL

34: else return NODE{¬j} : NIL, prune(t.r, C [ {j}, J \ {j})
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and substituted with empty trees. The function prune takes as input a de-
cision tree t 2 T , a set C 2 P(C) of linear constraints representing an over-
approximation of the reachable environments, and a set J 2 P(C) of linear
constraints that need to be added to the decision tree in order to prune it.
When J is empty (cf. Line 2), prune accumulates in C the linear constraints
encountered along the paths (cf. Lines 8-9) up to a leaf node (cf. Line 3),
possibly removing constraints that are redundant (cf. Line 5) or whose nega-
tion is redundant (cf. Line 6) with respect to C. When J is not empty (cf.
Line 11), the linear constraints J are added to the decision tree in descending
order with respect to <C. Note that not all constraints in J are in canonical
form, that is, J 62 P(C/⌘C): at each iteration a linear constraint j 2 C is ex-
tracted from J (cf. Line 12), which is the largest constraint in J with respect
to the constraints in canonical form.

Example 5.2.9
Let J

def
= {x� 1 � 0,�x+ 5 � 0}. Note that, �x+ 5 � 0 is not in canonical

form, since its negation x�6 � 0 is larger with respect to <C. However, when
comparing x� 1 � 0 and �x+5 � 0, their canonical forms are compared and
thus max J is the linear constraint �x+ 5 � 0.

Then, the function prune possibly adds a decision node for the linear con-
straint j or its negation ¬j (cf. Lines 13-19), or continues the descent along
the paths of the decision tree (cf. Lines 20-34). In the first case, prune tests
j and ¬j for redundancy with respect to C (cf. Lines 14-15): when ¬j is
redundant with respect to C the whole decision tree is pruned (cf. Line 15);
otherwise, prune adds a decision node for j while pruning its right subtree
(cf. Line 17), if j is already in canonical form (cf. Line 16), or it adds a
decision node for for ¬j while pruning its left subtree (cf. Line 19), if ¬j is
the canonical form of j (cf. Line 18). In the second case, prune accumulates
in C the encountered linear constraints (cf. Lines 24-25), possibly remov-
ing redundant decision nodes (cf. Lines 21-22) and pruning the decision tree
when the encountered linear constraints coincide with those appearing in J

(cf. Lines 27-30) or their negations (cf. Lines 31-34).

Example 5.2.10
Let X def

= {x}, let D be the intervals abstract domain hB,vBi, let C be the
interval constraints auxiliary abstract domain hCB/⌘C, <Ci, and let F be the
a�ne functions auxiliary abstract domain hFA,4Fi. We consider the decision
tree represented in Figure 5.7 from Example 5.2.7, and the set of constraints
J

def
= {�x+ 1 � 0}. Let d def

= >B and let C
def
= �C(d) = ;.
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x� 2 � 0

NIL x � 0

�x. x+ 4 x+ 1 � 0

(�x. x+ 4) gF � �

Figure 5.8: Tree pruning of Figure 5.7 with respect to {�x+ 2 � 0}.

The function prune adds a decision node for the negation x � 2 � 0 of
�x + 1 � 0, since �x + 1 � 0 is not in canonical form (cf. Line 18), and
prunes the left subtree (cf. Line 19). Then, it continues the descent along the
paths of the decision tree, without removing decision nodes. The result is the
decision tree represented in Figure 5.8.

Assignments. A variable assignment might impact some linear constraints
within the decision nodes as well as some functions within the leaf nodes.

We define the operator B-ASSIGNC to handle backward variable assign-
ments by manipulating linear constraints within the decision nodes by means
of the underlying numerical abstract domain hD,vDi:

B-ASSIGNCJX :=aexp KD def
= �c. ↵C(B-ASSIGNDJX :=aexp KD(�C({c})))

(5.2.20)

The operator B-ASSIGNCJX := aexp K : D ! C ! P(C) takes as input a nu-
merical abstraction D 2 D of the reachable environments at the initial control
point of the instruction and a linear constraint c 2 C, and produces a set
C 2 P(C) of linear constraints that need to be substituted to c in the decision
tree. It is often the case that the set C contains a single linear constraint.
However, when variable assignments and program tests cannot be exactly rep-
resented in the numerical abstract domain, the output set C contains multiple
linear constraints, as shown by the following example.

Example 5.2.11
Let X def

= {x, y}. We consider, as numerical abstract domain D, the intervals
abstract domain hB,vBi. Let c 2 CB be the linear constraint x � 0 and let
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D 2 B be the interval hy, [0,+1]i, which is isomorphic to the set of constraints
{y � 0}. The backward assignment x := x � y produces the set of linear

constraints C

def
= B-ASSIGNCJx := x � y KD(c) = {x � 0, y � 0}, since the

linear constraint x� y � 0, obtained by replacing x with x� y in c, cannot be
exactly represented in the intervals abstract domain.

We now define the operator B-ASSIGNF to handle backward variable assign-
ments within the leaf nodes of a decision tree. The operator B-ASSIGNFJX :=
aexp K : D ! D ! F ! F , given a numerical abstraction d 2 D of the reach-
able environments at the initial control point of the instructions, a numerical
abstraction D 2 D of the linear constraints accumulated along the path to the
leaf node, and a function f 2 F \{?F,>F}, substitutes the arithmetic expres-
sion aexp to the variable X with the function, and increments the constant
of the resulting function to take into account that one more program execu-
tion step is needed before termination; when such function does not exist, the
result is >F; undefined leaf nodes are left unaltered:

B-ASSIGNFJX :=aexp Kd[D]?F
def
= ?F

B-ASSIGNFJX :=aexp Kd[D]f
def
=

(

F F 2 F \ {?F,>F}
>F otherwise

B-ASSIGNFJX :=aexp Kd[D]>F
def
= >F

(5.2.21)

where F (X1, . . . , X, . . . ,X

k

)
def
= max{f(⇢(X1), . . . , v, . . . , ⇢(X

k

)) + 1 | ⇢ 2
�D(R), v 2 J aexp K⇢} and R

def
= B-ASSIGNDJX := aexp Kd(D). Note that, all

possible outcomes of the backward assignment are taken into account when
substituting the arithmetic expression aexp to the variable X.

As an instance, given an a�ne function f 2 FA \ {?F,>F}, the result
of the backward assignment is the a�ne function f

0 2 FA \ {?F,>F} whose
hypograph f

0[R]# within R is the convex-hull of the hypograph F [R]# of F ;
when such a�ne function does not exist, the result is >F:

B-ASSIGNFJX :=aexp Kd[D]f
def
=

(

f

0
f

0[R]# = convex-hull{F [R]#}
>F otherwise

(5.2.22)
To clarify, consider the following example:
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Algorithm 11 : Tree Assignment

1: function assign-auxJX :=aexp K(D, t,C) . D 2 D, t 2 T , C 2 P(C)
2: if isLeaf(t) then
3: return LEAF : b-assignFJX :=aexp KD[↵D(C)]t.f
4: else if isNode(t) then
5: I  b-assignCJX :=aexp Kd(t.c)
6: J  b-assignCJX :=aexp Kd(¬t.c)
7: if isEmpty(I) ^ isEmpty(J) then
8: t1  assign-auxJX :=aexp K(d, t.l, C)
9: t2  assign-auxJX :=aexp K(d, t.r, C)

10: return a-join(↵C(C), t1, t2)
11: else if isEmpty(I) ^ ?C 2 J then
12: return assign-auxJX :=aexp K(d, t.l, C)
13: else if ?C 2 I ^ isEmpty(J) then
14: return assign-auxJX :=aexp K(d, t.r, C)
15: else if (¬isEmpty(I) ^ ?C 62 I ^ ¬isEmpty(J) ^ ?C 62 J then
16: l assign-auxJX :=aexp K(d, t.l, C [ {t.c})
17: t1  prune(l, �C(d), I)
18: r  assign-auxJX :=aexp K(d, t.r, C [ {¬t.c})
19: t2  prune(r, �C(d), J)
20: return a-join(↵C(C), t1, t2)
21: else return Fail(“invalid argument”)

22:

23: function assignJX :=aexp K(D, t) . D 2 D, t 2 T
24: return assign-auxJX :=aexp K(D, t, �C(D))

Example 5.2.12
Let X def

= {x} and let D be the intervals abstract domain hB,vBi. We consider

the a�ne function f 2 FA \ {?F,>F} defined as f(x)
def
= x + 1 and the

backward assignment x :=x + [1, 2]. Let D 2 B be the interval hx, [1, 2]i and
let d 2 B be defined as d

def
= >B. The backward assignment produces the

interval R
def
= hx, [�1, 1]i and the a�ne function f

0 2 FA \ {?F,>F} defined

as f 0(x)
def
= x+ 4, since substituting the expression x+ [1, 2] to the variable x

within f gives f(x+[1, 2])+1 = x+[1, 2]+1+1 = x+[3, 4] and max{3, 4} = 4.

The operator B-ASSIGNTJX := aexp K : D ! T ! T for handling back-
ward assignments within decision trees is implemented by Algorithm 11: the
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function assignJX :=aexp K, given a sound over-approximation D 2 D of the
reachable environments before the assignment and a decision tree t 2 T , calls
the auxiliary function assign-auxJX := aexp K, which performs the assign-
ment on each linear constraint along the paths in the decision tree (cf. Lines 4-
21), and accumulates the encountered constraints into a set C 2 P(C) (initially
equal to �C(D), cf. Line 24), up to the leaf nodes, where the assignment is
performed by the operator B-ASSIGNF defined in Equation 5.2.21 (cf. Line 3).

In particular, for each linear constraint c 2 C appearing in the decision
trees, the auxiliary function assign-auxJX :=aexp K performs the assignment
on both c and its negation ¬c (cf. Lines 5-6) by means of the backward
assignment operator B-ASSIGNC defined in Equation 5.2.20. Then, assign-
auxJX := aexp K possibly (cf. Line 15) calls prune to add the resulting sets
of constraints I 2 P(C) and J 2 P(C) to the decision tree (cf. Lines 17-
19). In case both I and J are empty (cf. Line 7), it means that neither c

nor ¬c exist anymore and thus the subtrees of the decision tree are joined
by the approximation join A-JOIN (cf. Line 10). Note that, the function
prune introduces empty trees. However, they disappear when the subtrees
are joined. Indeed, since I and J are sets of constraints resulting from the
assignment on complementary linear constraints, they identify adjacent (or,
due to non-determinism, overlapping) partitions. In case I is empty and J

is an unsatisfiable set of constraints (cf. Line 11), it means that ¬c is no
longer satisfiable and thus only the left subtree of the decision tree is kept (cf.
Line 12). Similarly, in case I is an unsatisfiable set of constraints and J is
empty (cf. Line 13), it means that c is no longer satisfiable and thus only the
right subtree of the decision tree is kept (cf. Line 14). When both I and J

are unsatisfiable sets of constraints, an error is raised (cf. Line 21).

Example 5.2.13
Let X def

= {x}, let D be the intervals abstract domain hB,vBi, let C be the
interval constraints auxiliary abstract domain hCB/⌘C, <Ci, and let F be the
a�ne functions auxiliary abstract domain hFA,4Fi. We consider the deci-
sion tree represented in Figure 5.9a, where ↵,� 2 T are leaf nodes, and the
backward assignment x :=x+ [1, 2]. Let d

def
= >B.

The function assign-aux collects the set C

def
= {�x + 2 � 0, x � 1 � 0}

of encountered linear constraints up to the leaf node LEAF : �x.x + 1, where
B-ASSIGNF performs the assignment (cf. Line 3). From Example 5.2.12, the
result of the assignment is the leaf node LEAF : �x.x+ 4. Similarly, let � and
� be the results of the assignment to ↵ and �, respectively.

Then, the function assign-aux performs the assignment on x � 1 � 0
and its negation �x � 0 (cf. Lines 5-6) yielding the sets of constraints
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x� 3 � 0

↵

x� 1 � 0

�x. x+ 1 �

(a)

x� 2 � 0

�

x� 1 � 0

� gF (�x. x+ 4) x � 0

(�x. x+ 4) gF � �

(b)

Figure 5.9: Tree assignment on the decision tree (a) of Example 5.2.13. The
resulting decision tree is represented in (b).

I

def
= {x + 1 � 0} and J

def
= {�x � 1 � 0}, respectively. Note that, because

of non-determinism within the variable assignment, the partitions identified
by I and J overlap when x = �1. The leaf node LEAF : �x.x + 4 is pruned
with I (cf. Line 17) and the leaf node � is pruned with J (cf. Line 19); the
resulting decision trees respectively represented in Figure 5.4a and Figure 5.4b
are joined by the approximation join (cf. Line 20) yielding the decision tree
represented in Figure 5.7 (cf. Example 5.2.7).

Finally, assign-aux performs the assignment on x�3 � 0 and its negation
�x+2 � 0 yielding the sets of constraints I

def
= {x�1 � 0} and J

def
= {�x+1 �

0}, respectively. Note that, because of non-determinism, the partitions identi-
fied by I and J overlap when x = 1. The leaf node � is pruned with I and the
decision tree represented in Figure 5.7 is pruned with J ; the resulting decision
trees NODE{x�1 � 0} : �;NIL and Figure 5.8 (cf. Example 5.2.10) are joined
by the approximation join yielding the decision tree represented in Figure 5.9.

In absence of run-time errors, the following result proves that for a variable
assignment l

X := aexp, given a sound over-approximation R 2 D of ⌧I(l)
and a sound over-approximation D 2 D of ⌧I(fJ l

X := aexp K), the backward
assignment operator B-ASSIGNTJX :=aexp K is a sound over-approximation of
⌧MtJ l

X := aexp K defined in Equation 4.3.2:

Lemma 5.2.14 ⌧MtJ l

X :=aexp K�D[D]t 4 �T[R]((B-ASSIGNTJX :=aexp KR)(t)).

Proof.
See Appendix A.3. ⌅
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Algorithm 12 : Tree Filter

1: function filterJ bexp K(D, t) . D 2 D, t 2 T
2: switch bexp do
3: case ? : return t

4: case not bexp :
5: return filterJ¬bexp K(D, t)

6: case bexp1 and bexp2 :
7: return meet(D, filterJ bexp1 K(D, t), filterJ bexp2 K(D, t))

8: case bexp1 or bexp2 :
9: return a-join(D, filterJ bexp1 K(D, t), filterJ bexp2 K(D, t))

10: case aexp1 ./ aexp2 :
11: J  filterCJ aexp1 ./ aexp2 KD
12: return prune(step(t), �C(D), J)

Tests. In case of a program test, all paths that are feasible in the decision
tree are preserved, while all paths that for sure can never be followed according
to the tested condition are discarded.

We define the operator FILTERCJ bexp K : D ! P(C) which takes as input
a numerical abstraction D 2 D and, by means of the underlying numerical
abstract domain hD,vDi, produces a set C 2 P(C) of linear constraints that
need to be added to prune the decision tree:

FILTERCJ bexp KD def
= ↵C(FILTERDJ bexp KD) (5.2.23)

The operator FILTERTJ bexp K : D ! T ! T for handling tests within
decision trees is implemented by Algorithm 12: the function filterJ bexp K,
given a sound over-approximation D 2 D of the reachable environments before
the test and a decision tree t 2 T , reasons by induction on the structure of
the boolean expression bexp. In particular, when bexp is a conjunction of two
boolean expression bexp1 and bexp2 (cf. Line 6), the resulting decision trees are
merged by the function MEET defined in Algorithm 8 (cf. Line 7). Similarly,
when bexp is a disjunction of two boolean expression bexp1 and bexp2 (cf.
Line 7), the resulting decision trees are merged by the approximation join A-
JOIN defined in Algorithm 6 (cf. Line 9). Instead, when bexp is a comparison
of arithmetic expressions aexp1 ./ aexp2 (cf. Line 10), the function step (cf.
Algorithm 9) is invoked (cf. Line 12). Then, the resulting decision tree is
pruned (cf. Line 12) with the set of constraints J (cf. Line 11) produced by
the operator FILTERC defined in Equation 5.2.23.
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In absence of run-time errors, the following result provides a sound over-
approximation of ⌧MtJ if lbexp then stmt1 else stmt2 fi K defined in Equa-
tion 4.3.3, given a sound over-approximation R 2 D of ⌧I(l) and a sound
over-approximation D 2 D of ⌧I(fJ if lbexp then stmt1 else stmt2 fi K):

Lemma 5.2.15 Let F

\

1 [t]
def
= (FILTERTJ bexp KR)(⌧ \MtJ stmt1 Kt) and F

\

2 [t]
def
=

(FILTERTJ not bexp KR)(⌧ \MtJ stmt2 Kt). Then, for all t 2 T , we have:

⌧MtJ if lbexp then stmt1 else stmt2 fi K�T[D]t 4 �T[R](F \

1 [t] gT[R] F \

2 [t])

Proof.
See Appendix A.3. ⌅

Note that, FILTERT introduces empty trees. However, they disappear
when the decision trees F \

1 [t] and F

\

2 [t] are joined. Indeed, F \

1 [t] and F

\

2 [t] are
obtained from complementary boolean expressions.

Similarly, the next result provides, for a loop while

lbexp do stmt od, a
sound over-approximation �\Mt of �Mt defined in Equation 4.3.5, given sound
over-approximationsR 2 D of ⌧I(l) andD 2 D of ⌧I(fJ while lbexp do stmt od K):

Lemma 5.2.16 Let F

\

1 [x]
def
= (FILTERTJ bexp KR)(⌧ \MtJ stmt Kx) and F

\

2 [t]
def
=

(FILTERTJ not bexp KR)(t). Then, given t 2 T , for all x 2 T we have:

�Mt(�D[R]x) 4 �T[R](�\Mt(x))

where �\Mt(x)
def
= F

\

1 [x] gT[R] F \

2 [t].

Proof.
See Appendix A.3. ⌅

5.2.4 Widening

The widening operator OT requires a more thorough discussion. The widening
is allowed more freedom than the other operators, in the sense that it is tem-
porary allowed to under-approximate the value of the termination semantics
⌧Mt (cf. Section 4.3) or over-approximate its domain of definition, or both
— in contrast with the approximation order 4 (cf. Equation 4.2.12). This
is necessary in order to extrapolate a ranking function over the environments
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Figure 5.10: Unsound abstraction (b) of a most precise ranking function (a).

on which it is not yet defined. The only requirement is that, when the iter-
ation sequence with widening is stable for the computational order, its limit
is a sound abstraction of the termination semantics with respect to the ap-
proximation order. In the following, we discuss in detail how the widening
guarantees the soundness of the analysis.

As running example, let us consider Figure 5.10. In Figure 5.10a we de-
pict a transition system and the value of the termination semantics for the
well-founded part of its transition relation. In Figure 5.10b we represent the
concretization of a possible iterate of the analysis: we assume that the first
iterate has individuated the states marked with value zero, the second iter-
ate has individuated the states marked with value one, and the widening at
the third iterate has extrapolated the ranking function over the states marked
with value two. In this case the abstraction both under-approximates the
value of the termination semantics (on the second state from the left — case
B) and over-approximates its domain of definition (including the first and the
last state from the left — case A and C, respectively). In case A, the non-
terminating loop is outside the domain of definition of the unsound abstract
function, while in case C the loop is inside. The analysis continues iterating
until all these discrepancies are solved and, in the following, we explain and
justify why this works in general.

For a loop while

lbexp do stmt od, given a sound over-approximation
R 2 D of ⌧I(l), we define the iteration sequence with widening as follows:

y0
def
= ?T

y

n+1
def
=

(

y

n

�

\

Mt(yn) vT [R] y
n

^ �\Mt(yn) 4T [R] y
n

y

n

OT �
\

Mt(yn) otherwise

(5.2.24)
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Algorithm 13 : Tree Widening

1: function widen(D,t1,t2) . D 2 D, t1, t2 2 T
2: t2  caseA(D, t1, t2) . check for case A
3: (t1, t2) left-unification(tF, D, t1, t2) . domain widening
4: t2  caseBorC(D, t1, t2) . check for case B or case C
5: return widen-aux(t1, t1, t2, �C(D)) . value widening

Algorithm 14 : Check Case A

1: function caseA-aux(t1, t2,C) . t1, t2 2 T , C 2 P(C)
2: if isLeaf(t1) ^ isLeaf(t2) then
3: if t1.f vF [↵C(C)] t2.f then return t2.f

4: else return LEAF : >F

5: else if isNode(t1) ^ isNode(t2) then
6: l caseA-aux(t1.l, t2.l, C [ {t2.c})
7: r  caseA-aux(t1.r, t2.r, C [ {¬t2.c})
8: return NODE{t2.c} : l; r

9:

10: function caseA(D, t1, t2) . D 2 D, t1, t2 2 T
11: (t1, t2) unification(D, t1, t2)
12: return caseA-aux(t1, t2, �C(D))

In the following, its limit is denoted by lfp\ �\Mt. Note that, the usual con-

dition for halting the iterations �\Mt(yn) vT [R] y
n

has been strengthened to

�

\

Mt(yn) vT [R] y
n

^ �\Mt(yn) 4T [R] y
n

in order to force the iterations to con-
tinue in case of discrepancies as in Figure 5.10b. Indeed, in situations like case
A and case B, the usual halting condition �\Mt(yn) vT [R] y

n

can be satisfied
but the iteration sequence should not halt.

The widening OT is implemented by Algorithm 13: the function widen,
given a given a sound over-approximation D 2 D of the reachable environ-
ments and two decision trees t1, t2 2 T , calls in order the functions caseA
(cf. Line 2), left-unification (cf. Line 3), caseBorC (cf. Line 4), and
widen-aux (cf. Line 4). In the following, we detail all these functions.

Check for Case A. First, the widening OT has to detect situations like case
A in Figure 5.10b, where at some iterate y

i

in Equation 5.2.24 the domain of
the termination semantics has been over-approximated including environments
from which a non-terminating loop is reachable.

The following result proves in situations like case A that, given t 2 T ,
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a sound over-approximations R 2 D of ⌧I(l) and a sound-overapproximation

D 2 D of ⌧I(fJ while lbexp do stmt od K), an additional iterate of �\Mt removes
(a subset of) the incriminated environments from the abstraction:

Lemma 5.2.17 Let w
def
= ⌧MtJ while lbexp do stmt od K�T[D]t and, for some

iterate y

i

, let dom(�T[R]y
i

) \ dom(w) 6= ;. Then, in case A of Figure 5.10b,

we have dom(�T[R]�\Mt(yi)) \ dom(w) ⇢ dom(�T[R]y
i

) \ dom(w).

Proof.
Let dom(�T[R]y

i

) \ dom(w) 6= ;, for some iterate y

i

. It means that there ex-
ists at least an environment ⇢ 2 dom(�T[R]y

i

) such that the state hl, ⇢i 2 ⌃
belongs to a non-terminating program execution trace � 2 ⌃!. We assumed
to be in case A of Figure 5.10b. Thus, let hl0, ⇢0i 2 ⌃ where ⇢0 62 dom(�T[R]y

i

)
be a state reachable from hl, ⇢i on �. Without loss of generality, we can
assume that hl0, ⇢0i is the immediate successor of hl, ⇢i: hhl, ⇢i, hl0, ⇢0ii 2 ⌧ .
Thus, by definition of � (cf. Equation 4.3.5), we have ⇢ 62 dom(�(�T[R]y

i

))
and, by Lemma 5.2.16 and by definition of the approximaiton order 4 (cf.

Equation 4.2.12), we have dom(�T[R]�\Mt(yi)) ✓ dom(�(�T[R]y
i

)) which im-

plies ⇢ 62 dom(�T[R]�\Mt(yi)). This concludes the proof, for case A, that

dom(�T[R]�\Mt(yi)) \ dom(w) ⇢ dom(�T[R]y
i

) \ dom(w). ⌅

Therefore note that, in situations like case A, the iterate �\Mt(yi) is a de-

cision tree with more undefined leaf nodes than y

i

, that is y
i

4T [R] �\Mt(yi).
Moreover, when the newly added undefined leaf nodes are ?F-leaves, we have
�

\

Mt(yi) vT [R] y
i

. Thus, the widening OT has to detect whether some defined

leaf node in y

i

has become a ?F-leaf in �

\

Mt(yi) and, in case, turn it into a

>F-leaf in order to have y

i

vT [R] �\Mt(yi) but also to prevent successive iter-
ates from mistakenly including again the same environment in their domain.
This check is implemented by Algorithm 14: the main function caseA, given
a sound over-approximation D 2 D of the reachable environments and two
decision trees t1, t2 2 T , calls unification for tree unification (cf. Line 11)
and then calls the auxiliary function caseA-aux. The latter collects the set
C 2 P(C) (initially equal to �C(D), cf. Line 12) of the linear constraints
encountered up to the leaf nodes (cf. Lines 6-7), which are compared by the
computational order vF [↵C(C)] defined in Equation 5.2.8 and Figure 5.3b (cf.
Line 3) and, in case, turned into a >F-leaf (cf. Line 4).

Domain Widening - Left Unification. In order to ensure convergence,
the widening OT uses Algorithm 15 to limit the size of the decision trees,
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Algorithm 15 : Tree Left Unification

1: function left-unification-aux(�, t1, t2,C)
2: . t1, t2 2 T , C 2 P(C), �2{gF,tF}
3: if isLeaf(t1) ^ isLeaf(t2) then return (t1, t2)
4: else if isLeaf(t1) _ (isNode(t1) ^ isNode(t2) ^ t1.c <C t2.c) then
5: if isRedundant(t2.c, C) then
6: return left-unification-aux(t1, t2.l, C)
7: else if isRedundant(¬t2.c, C) then
8: return left-unification-aux(t1, t2.r, C)
9: else . t2.c should be removed from t2

10: return left-unification-aux(t1, t2, join(�,↵C(C), t2.l, t2.r))

11: else if isLeaf(t2) _ (isNode(t1) ^ isNode(t2) ^ t2.c <C t1.c) then
12: if isRedundant(t1.c, C) then
13: return left-unification-aux(t1.l, t2, C)
14: else if isRedundant(¬t1.c, C) then
15: return left-unification-aux(t1.r, t2, C)
16: else . t1.c can be kept in t1 and added to t2

17: (l1, l2) left-unification-aux(t1.l, t2, C [ {t1.c})
18: (r1, r2) left-unification-aux(t1.r, t2, C [ {¬t1.c})
19: return (NODE{t1.c} : l1; r1, NODE{t1.c} : l2; r2)

20: else if isNode(t1) ^ isNode(t2) then
21: c t1.c . t1.c and t2.c are equal
22: if isRedundant(c, C) then
23: return left-unification-aux(t1.l, t2.l, C)
24: else if isRedundant(¬c, C) then
25: return left-unification-aux(t1.r, t2.r, C)
26: else . c can be kept in t1 and t2

27: (l1, l2) left-unification-aux(t1.l, t2.l, C [ {c})
28: (r1, r2) left-unification-aux(t1.r, t2.r, C [ {¬c})
29: return (NODE{c} : l1; r1, NODE{c} : l2; r2)

30:

31: function left-unification(�,D, t1, t2)
32: . D 2 D, t1, t2 2 T , �2{gF,tF}
33: return left-unification-aux(t1, t2, �C(D))
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and thus avoid infinite sequences of partition refinements. Algorithm 15 is
a slight modification of Algorithm 1: the main function left-unificaiton
is parameterized by the choice of the join � between leaf nodes and, given
a sound over-approximation D 2 D of the reachable environments and two
decision trees t1, t2 2 T , calls the auxiliary function left-unification-aux
in order to force the structure of t1 on t2. Note that in this way, unlike
Algorithm 1, Algorithm 15 might loose information.

The function left-unification-aux accumulates into a set C 2 P(C)
(initially equal to �C(D), cf. Line 33) the linear constraints encountered along
the paths in the first decision trees (cf. Lines 17-18, Lines 27-28), possibly
adding decision nodes to the second tree (cf. Line 19) or removing decision
nodes from the second tree (cf. Line 10), or removing constraints that are
redundant (cf. Line 5, Line 12, Line 22) or whose negation is redundant (cf.
Line 7, Line 14, Line 24) with respect to C. When removing a decision node
from the second tree, the left and right subtree are joined by means of join
(cf. Line 10): in order to extrapolate the domain of the ranking function over
environments on which it is not yet defined, the widening OT invokes left-
unification choosing the computational join tF (cf. Line 3 of Algorithm 13).
For this reason, since ?F-leaves might disappear when joining subtrees, it is
important to check for situations like case A before the left unification.

Remark 5.2.18 Note that, in order to limit the loss of precision, it is possible
to adapt the idea presented in [CC92c] to design a domain widening parametric
in a finite set of thresholds. Is is also possible to integrate the state-of-the-art
precise widening operators proposed in [BHRZ05]. In [DU15], we used conflict-
driven learning to obtain an improvement of the precision that is similar in
spirit to using a more precise domain widening. We plan to investigate further
possibilities for the domain widening as part of our future work.

Check for Case B and C. Next, the widening OT has to detect situa-
tions like case B in Figure 5.10b, where at some iterate y

i

the value of the
termination semantics has been under-approximated, and situations like case
C in Figure 5.10b, where the domain of the termination semantics has been
over-approximating including a non-terminating loop.

The following result proves in situations like case B that, given t 2 T ,
a sound over-approximations R 2 D of ⌧I(l) and a sound-overapproximation

D 2 D of ⌧I(fJ while lbexp do stmt od K), an additional iterate of �\Mt strictly
increases the value of the abstraction for the incriminated environments:
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Algorithm 16 : Check Case B or C

1: function caseBorC-aux(t1, t2,C) . t1, t2 2 T , C 2 P(C)
2: if isLeaf(t1) ^ isLeaf(t2) then
3: if isDefined(t1.f) ^ ¬(t2.f 4F [↵C(C)] t1.f) then
4: return LEAF : >F

5: else return t2.f

6: else if isNode(t1) ^ isNode(t2) then
7: l caseBorC-aux(t1.l, t2.l, C [ {t2.c})
8: r  caseBorC-aux(t1.r, t2.r, C [ {¬t2.c})
9: return NODE{t2.c} : l; r

10:

11: function caseBorC(D, t1, t2) . D 2 D, t1, t2 2 T
12: return caseBorC-aux(t1, t2, �C(D))

Lemma 5.2.19 Let w
def
= ⌧MtJ while lbexp do stmt od K�T[D]t and, for some

iterate y

i

, let �T[R]y
i

(⇢) < w(⇢), for some ⇢ 2 dom(w) \ dom(�T[R]y
i

). For

all ⇢ 2 dom(�T[R]�\Mt(yi)) \ dom(w), we have �T[R]y
i

(⇢) < �T[R]�\Mt(yi)(⇢).

Proof.
For some iterate y

i

, let �T[R]y
i

(⇢) < w(⇢), for some environment ⇢ 2 dom(w) \
dom(�T[R]y

i

). It means that the state hl, ⇢i 2 ⌃ belongs to a program exe-
cution trace � 2 ⌃+ whose length from hl, ⇢i is greater than �T[R]y

i

(⇢). Let
hl0, ⇢0i 2 ⌃ where ⇢0 2 dom(w) \ dom(�T[R]y

i

) and w(⇢0)  �T[R]y
i

(⇢0), be
a state reachable from hl, ⇢i on �. Without loss of generality, we can assume
that � from hl, ⇢i is the longest program execution trace from hl, ⇢i and that
hl0, ⇢0i is the immediate successor of hl, ⇢i: hhl, ⇢i, hl0, ⇢0ii 2 ⌧ . Thus, by def-
inition of � (cf. Equation 4.3.5), by Lemma 5.2.16 and by definition of 4
(cf. Equation 4.2.12), we have w(⇢)  �(�T[R]y

i

)(⇢)  �T[R]�\Mt(yi)(⇢). This

concludes the proof that �T[R]y
i

(⇢) < �T[R]�\Mt(yi)(⇢). ⌅

The following result proves in situations like case C that, given t 2 T ,
a sound over-approximation R 2 D of ⌧I(l) and a sound-overapproximation

D 2 D of ⌧I(fJ while lbexp do stmt od K), an additional iterate of �\Mt strictly
increases the value of the abstraction for the incriminated environments:

Lemma 5.2.20 Let w
def
= ⌧MtJ while lbexp do stmt od K�T[D]t and, for some

iterate y
i

, let dom(�T[R]y
i

)\dom(w) 6= ;. Then, for all ⇢ 2 dom(�T[R]�\Mt(yi))\
dom(w) in case C of Figure 5.10b, we have �T[R]y

i

(⇢) < �T[R]�\Mt(yi)(⇢).
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Proof.
Let dom(�T[R]y

i

) \ dom(w) 6= ;, for some iterate y

i

. It means that there
exists at least an environment ⇢ 2 dom(�T[R]y

i

) such that the state hl, ⇢i 2 ⌃
belongs to a non-terminating program execution trace � 2 ⌃!. We assume
to be in case C of Figure 5.10b. For all ⇢ 2 dom(�T[R]y

i

) \ dom(w) 6= ;, by
definition of � (cf. Equation 4.3.5), by Lemma 5.2.16, and by definition of 4
(cf. Equation 4.2.12), we have �T[R]y

i

(⇢) < �(�T[R]y
i

)(⇢)  �T[R]�\Mt(yi)(⇢).
This concludes the proof, for case C. ⌅

Note that, an additional iterate of �\Mt is not able to distinguish between
an under-approximation of the value of the termination semantics as in case
B, and an over-approximation of its domain of definition as in case C.

Therefore, the widening OT has to detect whether the value of some defined
leaf node in y

i

has increased in �\Mt(yi) and, in such case, turn it into a >F-leaf
in order to prevent an indefinite growth. This check is implemented by Algo-
rithm 16: the main function caseBorC, given a sound over-approximation
D 2 D of the reachable environments and two decision trees t1, t2 2 T , calls
the auxiliary function caseBorC-aux, which collects into a set C 2 P(C)
(initially equal to �C(D), cf. Line 12) the linear constraints encountered along
the paths up to the leaf nodes (cf. Lines 7-8), which are compared (cf. Line 3)
and, in case, turned into a >F-leaf (cf. Line 4).

Remark 5.2.21 Note that, it is also possible to allow the ranking function
to increase using a finite set of thresholds instead of returning directly >F.
In this way, in situations like case C, it simply delays the iteration that must
return >F. However, in situations like case B, it may discover the correct
ranking function and avoid losing precision.

Value Widening Finally, the widening OT extrapolates the value of the
ranking function over the environments on which it was not defined before
the domain widening. The heuristic that we chose consists in widening leaf
nodes with respect to their adjacent leaf nodes. The rationale being that
programs often loop over consecutive values of a variable, to infer the shape
of the ranking function over the environments on which it was not defined we
use the information available in adjacent partitions of its domain of definition.

We define an extrapolation operator HF[D1, D2] between two defined leaf
nodes f1, f2 2 F \ {?F,>F}, given the numerical abstractions D1 2 D and
D2 2 D representing their path from the root of the decision tree.
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In particular, given two a�ne functions f1, f2 2 FA \ {?F,>F}, the op-
erator extrapolates the a�ne function f 2 FA \ {?F,>F}, whose hypograph
f [D2]# within D2 is the convex-hull of the hypographs f

0[D2]# of the a�ne
functions f 0 2 FA \ {?F,>F} lying on the boundaries of convex-hull{f1[D1]#,
f2[D2]#}; when such a�ne function does not exist, the result is >F:

f1 HF[D1, D2] f2
def
=

(

f f [D2]# = convex-hull{f 0[D2]# | f 0 2 F}
>F otherwise

(5.2.25)

where F
def
= {f 2 FA \{?F,>F} | f [D1tDD2]#◆ convex-hull{f1[D1]#, f2[D2]#

}} is the minimal set of a�ne functions whose hypographs within D1 tD D2

determine convex-hull{f1[D1]#, f2[D2]#}, that is, 8f 2 F : 6 9f 0 2 F : f [D1 tD
D2]#� f

0[D1tDD2]#◆ convex-hull{f1[D1]#, f2[D2]#} and
T

f2F f [D1tDD2]#=
convex-hull{f1[D1]#, f2[D2]#}.

To clarify, let us consider the following example:

Example 5.2.22
Two a�ne functions f1, f2 2 FA \ {?F,>F} are shown in Figure 5.11a and
Figure 5.11b, respectively. Their domains of definition D1 2 D and D2 2 D
are represented by the set of linear constraints C1

def
= �C(D1) = {x � 6 �

0,�x + 10 � 0} and C2
def
= �C(D2) = {�x + 5 � 0}. In Figure 5.11d and

Figure 5.11e are represented the hypographs f1[D1]# and f2[D2]# of f1 and f2,
respectively. Their convex-hull is shown in Figure 5.11e, and the result of the
extrapolation is the a�ne function f 2 FA \ {?F,>F} shown in Figure 5.11c.

The heuristic for widening adjacent leaf nodes within decision trees is im-
plemented by Algorithm 17: the function widen-aux in Algorithm 17 is given
as input two decision trees t1, t2 2 T , a copy t 2 T of t1 and a set C 2 P(C)
initially equal to �C(D), where D 2 D is a sound over-approximation of the
reachable environments (cf. Line 5 of Algorithm 13). It accumulates into C

the linear constraints accumulated along the paths up to the leaf nodes (cf.
Lines 36-37). The leaf nodes defined in t2 and undefined in t1 (cf. Line 29) are
extrapolated with respect to their adjacent defined leaf nodes (cf. Line 31) by
means of the extrapolation operator HF (cf. Line 32).

The adjacent leaf nodes are determined by the function adjacent (cf.
Line 31). Note that, not all linear constraints appearing in a decision tree
necessarily appear along a path in the decision tree. For this reason, given a
decision tree t 2 T and a set C 2 P(C) of linear constraints encountered along
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Algorithm 17 : Tree Value Widening

1: function constraints(t) . t 2 T
2: if ¬isNode(t) then return ;
3: else if isNode(t) then
4: return constraints(t.l) [ {t.c} [ constraints(t.r)

5:

6: function leaf(t,C, J) . t 2 T , C, J 2 P(C)
7: if ¬isNode(t) then
8: if isLeaf(t) ^ isDefined(t.f) then return {(↵C(C), t)}
9: else return ;

10: else if isNode(t) then
11: j  max J . j is the largest linear constraint appearing in J

12: if t.c <C j then return leaf(t, C, J \ {j})
13: else if j <C t.c then return leaf(t.r, C [ {¬t.c}, J \ {j})
14: else return leaf(t.l, C [ {t.c}, J \ {j})
15:

16: function adjacent(t,C) . t 2 T , C 2 P(C)
17: K  C

18: for all c 2 constraints(t) do
19: if c 62 K ^ ¬c 62 K then
20: if isRedundant(c,K) then K  K [ {c}
21: else if isRedundant(¬c,K) then K  K [ {¬c}
22: A ;
23: for all c 2 C do A A [ leaf(t, ;,K \ {c} [ {¬c})
24: return A

25:

26: function widen-aux(t, t1, t2,C) . t, t1, t2 2 T , C 2 P(C)
27: if isNil(t1) _ isNil(t2) then return Fail(“invalid argument”)
28: else if isLeaf(t1) ^ isLeaf(t2) then
29: if ¬isDefined(t1.f) ^ isDefined(t2.f) then
30: f  t2.f

31: for all (d1, f1) 2 adjacent(t, C) do
32: f  (f1 HF[d1,↵C(C)] t2.f) tF[↵C(C)] f

33: return f

34: else return t2.f

35: else if isNode(t1) ^ isNode(t2) then
36: l widen-aux(t, t1.l, t2.l, C [ {t2.c})
37: r  widen-aux(t, t1.r, t2.r, C [ {¬t2.c})
38: return NODE{t2.c} : l; r
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Figure 5.11: Example of extrapolation between two a�ne functions of one
variable, shown in (a) and (b), respectively. The hypographs of (a) and (b)
are respectively shown in (d) and (e). Their convex-hull is shown in (f) to-
gether with the a�ne functions lying on its boundaries. The result of the
extrapolation is shown in (c).

the path to a leaf node, the function adds to a set K 2 P(C) (initially equal
to C, cf. Line 17) all the redundant constraints (cf. Lines 20-21) that appear
in the decision tree (cf. Line 18) but are missing from the path represented by
C (cf. Line 19). Then, the adjacent leaf nodes are sought negating one by one
in K the linear constraint in C, and are collected into a set A (cf. Line 23).

The search for a leaf node determined by a set of constraints J 2 P(C)
is conducted by the function leaf: the function extracts from J the linear
constraints in decreasing order (cf. Line 11) and uses them to choose a path
in the decision tree while accumulating into an initial empty set C 2 P(C) the
linear constraints e↵ectively encountered (cf. Lines 12-14). In case the path
leads to a defined leaf node, the function returns a set containing the leaf node
together with the numerical abstract domain ↵C(C) 2 D representing its path
(cf. Line 8). Otherwise, the function returns an empty set (cf. Line 9).

The linear constraints appearing in a decision tree are determined by the
function constraints by visiting in-order the decision tree (cf. Line 4).
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Remark 5.2.23 Note that, besides establishing relationships between adja-
cent leaf nodes, other value widening heuristics are possible. An example
would be establishing relationships between leaf nodes based on the parity of
some variable, or based on numerical relationships between variables. We plan
to investigate these possibilities as part of our future work.

The following result provides, for a loop while

lbexp do stmt od, a sound
over-approximation of ⌧MtJ while lbexp do stmt od K defined in Equation 4.3.4,
given a decision tree t 2 T , a sound over-approximation R 2 D of ⌧I(l), and a
sound over-approximation D 2 D of ⌧I(fJ while lbexp do stmt od K):

Lemma 5.2.24 Let �\Mt(x)
def
= F

\

1 [x] gT[R] F \

2 [t] as defined in Lemma 5.2.16
for any given t 2 T . Then, we have:

⌧MtJ while lbexp do stmt od K�T[D]t 4 �T[R](lfp\ �\Mt)

where lfp\ �\Mt is the limit of the iteration sequence with widening: y0
def
= ?T,

y

n+1
def
= y

n

O �

\

Mt(yn) (cf. Equation 5.2.24).

Proof.
See Appendix A.3. ⌅

5.3 Abstract Definite Termination Semantics

The operators of the decision trees abstract domains can now be used to define
the abstract definite termination semantics.

Note that, pure backward analysis is blind with respect to the program
initial states. For this reason, in the following, we assume to have, for each
program control point l 2 L, a sound numerical over-approximation R 2 D of
the reachable environments ⌧I(l) 2 P(E): ⌧I(l) ✓ �D(R) (cf. Section 3.4).

In Figure 5.12 we define the semantics ⌧ \MtJ stmt K : T ! T , for each pro-

gram instruction stmt. Each function ⌧

\

MtJ stmt K : T ! T takes as input a
decision tree over-approximating the ranking function corresponding to the fi-
nal control point of the instruction, and outputs a decision tree defined over a
subset of the reachable environments at iJ stmt K, which over-approximates the
ranking function corresponding to the initial control point of the instruction.

The abstract termination semantics ⌧ \MtJ prog K 2 T of a program prog out-
puts the decision tree over-approximating the ranking function corresponding
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⌧

\

MtJ l

skip Kt def
= STEPT(t)

⌧

\

MtJ l

X :=aexp Kt def
= (B-ASSIGNTJX :=aexp KR)(t)

⌧

\

MtJ if lbexp then stmt1 else stmt2 fi Kt def
= F

\

1 [t] gT[R] F \

2 [f ]

F

\

1 [t]
def
= (FILTERTJ bexp KR)(⌧ \MtJ stmt1 Kt)

F

\

2 [t]
def
= (FILTERTJ not bexp KR)(⌧ \MtJ stmt2 Kt)

⌧

\

MtJ while lbexp do stmt od Kt def
= lfp\ �\Mt

�

\

Mt(x)
def
= F

\[x] gT[R] (FILTERTJ not bexp KR)(t)

F

\[x]
def
= (FILTERTJ bexp KR)(⌧ \MtJ stmt Kx)

⌧

\

MtJ stmt1 stmt2 Kt def
= ⌧

\

MtJ stmt1 K(⌧ \MtJ stmt2 Kt)

Figure 5.12: Abstract termination semantics of instructions stmt.

to the initial program control point iJ prog K 2 L. It is defined taking as input
the leaf node LEAF : �X1, . . . , X

k

. 0 as:

Definition 5.3.1 (Abstract Termination Semantics) The abstract ter-

mination semantics ⌧ \MtJ prog K 2 T of a program prog is:

⌧

\

MtJ prog K = ⌧

\

MtJ stmt l K def
= ⌧

\

MtJ stmt KLEAF : �X1, . . . , X
k

. 0 (5.3.1)

where the abstract termination semantics ⌧ \MtJ stmt K 2 T ! T of each program
instruction stmt is defined in Figure 5.12.

The following result proves the soundness of the abstract termination se-
mantics ⌧ \MtJ prog K 2 T with respect to the termination semantics ⌧MtJ prog K 2
E * O, given a sound numerical over-approximation R 2 D of the reachable
environments ⌧I(iJ prog K):

Theorem 5.3.2 ⌧MtJ prog K 4 �T[R]⌧ \MtJ prog K

Proof (Sketch).
The proof follows from the soundness of the operators of the decision trees ab-
stract domain (cf. Lemma 5.2.8, Lemma 5.2.14, Lemma 5.2.15, Lemma 5.2.16,

and Lemma 5.2.24) used for the definition of ⌧ \MtJ prog K 2 T . ⌅

In particular, the abstract termination semantics provides su�cient pre-
conditions for ensuring definite termination of a program for a given over-
approximation R 2 D of the set of initial states I ✓ ⌃:

Corollary 5.3.3 A program must terminate for execution traces starting from
a given set of initial states �D(R) if �D(R) ✓ dom(�T[R]⌧ \MtJ prog K).
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Examples. In the following, we recall the examples introduced at the begin-
ning of the chapter and we present the fully detailed analyses of the program
using the abstract domain of decision trees.

Example 5.3.4
Let us consider again the program of Example 5.1.1 [PR04a]:

while

1(x � 0) do
2
x := �2x+ 10

od

3

We present the analysis of the program using interval constraints based on the
intervals abstract domain (cf. Section 3.4.1) for the decision nodes, and a�ne
functions for the leaf nodes (cf. Equation 5.2.6).

The starting point is the zero function at the program final control point:

3 : LEAF : �x. 0

The ranking function is then propagated backwards towards the program ini-
tial control point taking the loop into account:

1 : NODE{x � 0} : (LEAF : ?F); (LEAF : �x. 1)

The first iterate of the loop is able to conclude that the program terminates in
at most one program step if the loop condition x � 0 is not satisfied. Then, at
program control point 2, the operator ASSIGNT replaces the program variable
x with the expression �2x+ 10 within the decision tree:

2 : NODE{x� 6 � 0} : (LEAF : �x. 2); (LEAF : ?F)

Note that, ASSIGNT has also increased the value of the ranking function in
order to count one more program execution step to termination. The second
iterate of the loop concludes that the program terminates in at most three
execution steps, when x � 6 and thus the loop is executed only once, and in
at most one program step, when the loop is not entered:

1 : NODE{x� 6 � 0} :
LEAF : �x. 3;
NODE{x � 0} : (LEAF : ?F); (LEAF : �x. 1)

In this particular case, there is no need for convergence acceleration and the
analysis is rather precise: at the sixth iteration, a fixpoint is reached providing
the decision tree shown in Figure 5.1.
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In the following example, the widening is required for convergence.

Example 5.3.5
Let us consider again the program of Example 5.1.2 [UM14b]:

while

1(r > 0) do
2
r := r + x

3
r := r � y

od

4

We present the analysis of the program using polyhedral constraints based on
the polyhedra abstract domain (cf. Section 3.4.2) for the decision nodes, and
a�ne functions for the leaf nodes (cf. Equation 5.2.6).

The starting point is the zero function at the program final control point:

3 : LEAF : �x.�y.�r. 0

The ranking function is then propagated backwards towards the program ini-
tial control point taking the loop into account:

1 : NODE{r � 1 � 0} : (LEAF : ?F); (LEAF : �x.�y.�r. 1)

The first iterate of the loop is able to conclude that the program terminates in
at most one program step if the loop condition r > 0 is not satisfied. Then, at
program control point 3, the operator ASSIGNT replaces the program variable
r with the expression r � y within the decision tree:

3 : NODE{y � r � 0} : (LEAF : �x.�y.�r. 2); (LEAF : ?F)

and at program control point 2, it replaces r with r + x:

2 : NODE{x� y + r � 1 � 0} : (LEAF : ?F); (LEAF : �x.�y.�r. 3)

The second iterate of the loop concludes that the program terminates in at
most four execution steps, when the loop is executed only once, and in at most
one program step, when the loop is not entered:

1 : NODE{r � 1 � 0} :
NODE{x� y + r � 1 � 0} : (LEAF : ?F); (LEAF : �x.�y.�r. 4);
LEAF : �x.�y.�r. 1

The third iterate concludes that the program terminates in at most seven
execution steps when the loop is executed twice, in at most four steps when
the loop is executed once, and in at most one step when the loop is not entered:
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1 : NODE{r � 1 � 0} :
NODE{x� y + r � 1 � 0} :

NODE{2x�2y+r�1 � 0} : (LEAF : ?F); (LEAF : �x.�y.�r. 7);
LEAF : �x.�y.�r. 4

LEAF : �x.�y.�r. 1

The widening that we defined in Section 5.2.4 extrapolates the ranking func-
tion on the partitions over which it is not yet defined:

1 : NODE{r � 1 � 0} :
NODE{x�y+r�1 � 0} : (LEAF : �x.�y.�r. 7); (LEAF : �x.�y.�r. 4);
LEAF : �x.�y.�r. 1

Note, in particular, that the ranking function is now temporarily defined even
when x � y and the program does not terminate. Indeed, the fourth iterate
of the while loop identifies a situation like case C in Figure 5.10b:

1 : NODE{r � 1 � 0} :
NODE{x�y+r�1 � 0} : (LEAF : �x.�y.�r. 10); (LEAF : �x.�y.�r. 4);
LEAF : �x.�y.�r. 1

and the widening corrects the ranking function yielding a fixpoint:

1 : NODE{r � 1 � 0} :
NODE{x� y + r � 1 � 0} : (LEAF : >F); (LEAF : �x.�y.�r. 4);
LEAF : �x.�y.�r. 1

The fixpoint represents the following piecewise-defined ranking function:

�⇢.

8

>

<

>

:

1 ⇢(r) � 1

4 0  ⇢(r) ^ ⇢(r)  ⇢(y)� ⇢(x)
undefined otherwise

which proves that the program is terminating in at most 4 program execution
steps if the initial value of the program variable r is smaller than or equal
to the di↵erence between the initial value of the program variable y and the
initial value of the program variable x.

In Remark 5.2.18, we mentioned various possibilities to improve the pre-
cision of the widening operator. In particular, an adaptation of the domain
widening using the evolving rays technique proposed in [BHRZ05] yields the
more precise decision tree shown in Figure 5.2. The same result can be ob-
tained using conflict-driven learning [DU15].
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5.4 Related Work

We conclude the chapter with a discussion of the most relevant related work.

Decision Trees. The use of (binary) decision trees (Binary Decision Dia-
grams [Bry86], in particular) for verification has been devoted a large body of
work, especially in the area of timed-systems and hybrid-system verification
[Jea02, LPWY99, MLAH99, etc.].

In this thesis, we focus on common program analysis applications and, in
this sense, our decision trees abstract domain is mostly related to the ones pre-
sented in [CCM10, GC10a]: both ours and these abstract domains are based on
decision trees extended with linear constraints. However, the abstract domains
proposed in [CCM10, GC10a] are designed for the disjunctive refinement of
numerical abstract domains, while our abstract domain is designed specifically
in order manipulate ranking functions. Moreover, while our abstract domain
is based on binary decision trees, in [CCM10] the choices at the decision nodes
may di↵er at each node and their number is not bounded a priori.

In general, despite all the available alternatives [BCC+10, CCM10, GR98,
GC10a, GC10b, SISG06, etc.], it seems to us that in the literature there is no
disjunctive abstract domain well-suited for program termination. A first (mi-
nor) reason is the fact that most of the existing disjunctive abstract domains
are designed specifically for forward analyses while ranking functions are in-
ferred through backward analysis (cf. Section 5.3). However, the main reason
is that adapting existing widening operators to ranking functions is not obvi-
ous due to the coexistence of an approximation and computational ordering
in the termination semantics domain (cf. Section 4.3 and Section 5.2.4).

Termination. In the recent past, termination analysis has benefited from
many research advances and powerful termination provers have emerged over
the years [BCF13, CPR06, GSKT06, HHLP13, LQC15].

Many results in this area [BCC+07, CPR06, etc.] are based on the transi-
tion invariants method introduced in [PR04b]. In particular, the Terminator
prover [CPR06] is based on an algorithm for the iterative construction of tran-
sition invariants. This algorithm searches within a program for single paths
representing potential counterexamples to termination, computes a ranking
function for each one of them individually (as in [PR04a]), and combines the
obtained ranking functions into a single termination argument. Our approach
di↵ers in that it aims at proving termination for all program paths at the
same time, without resorting to counterexample-guided analysis. In partic-
ular, we emphasize that our approach is able to deal with arbitrary control
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structures, and thus it is not limited to simple loops as [PR04a] or to non-
nested loops as [BMS05a]. Moreover, it avoids the cost of explicit checking for
the well-foundedness of the termination argument. The approach presented
in [TSWK11] shares similar motivations, but prefers loop summarization to
iterative fixpoint computation with widening, as considered in this thesis.

The majority of the literature is based on the indirect use of invariants for
proving termination [ADFG10, BCC+07, BCF13, CS02, LORCR13, etc.]. On
the other hand, our approach infers and manipulates ranking functions directly
as invariants associated to program control points. In this sense, [ADFG10] is
the closest approach to ours: the invariants are pre-computed, but each pro-
gram point is assigned with a ranking function (that also provides information
on the execution time in terms of execution steps), as in our approach.

The strength of our approach is being an abstract interpretation of a com-
plete semantics for termination. For any given terminating program, it is
always possible to design an abstraction able to prove its termination. In par-
ticular, this is stronger than fixing a priori an incomplete reasoning method
that can miss terminating programs. For example, various methods to synthe-
size ranking functions based on linear programming [ADFG10, CS01, PR04a,
etc.] are complete for programs with rational -valued variables, but not with
integer-valued variables. Indeed, as we have seen in Example 5.1.1 at the be-
ginning of the chapter, there are programs that terminate over the integers
but do not terminate over the rationals.

Finally, in the literature, we found only few works that have addressed the
problem of automatically inferring preconditions for program termination. In
[CGLA+08], the authors proposed a method based on preconditions generating
ranking functions from potential ranking functions, while our preconditions are
inherently obtained from the inferred ranking functions as the set of programs
state for which the ranking function is defined. Thus, our preconditions are de-
rived by under-approximation of the set of terminating states as opposed to the
approaches presented in [GG13, Mas14] where the preconditions are derived
by (complementing an) over-approximation of the non-terminating states.

The abstract domain that we have presented in this chapter has been in-
stantiated only with a�ne functions, while several methods in the literature
use more powerful lexicographic ranking functions. This limitation will be ad-
dressed in the next chapter Chapter 6 using ordinal-valued ranking functions.
We postpone the comparison between our work and related work based on
lexicographic ranking functions to the end of the next chapter.



6
Ordinal-Valued Ranking

Functions

In this chapter, we address the limitation to natural-valued functions of the de-
cision trees abstract domain presented in Chapter 5. In particular, we propose
a functions auxiliary abstract domain based on ordinal-valued functions. More
specifically, these functions are polynomials in !, where the polynomial coef-
ficients are natural-valued functions of the program variables. The abstract
domain is parametric in the choice of the maximum degree of the polynomials,
and the types of functions used as polynomial coe�cients.

Dans ce chapitre, nous levons la limitation à des fonctions à valeur naturelle
du domaine abstrait d’arbres de décision présentés au Chapitre 5. En par-
ticulier, nous proposons un domaine abstrait auxiliaire de fonctions basé sur
des fonctions à valeurs dans les ordinaux. Plus précisément, ces fonctions
sont basées sur des polynômes en !, où les coe�cients des polynômes sont
des fonctions à valeur naturelle des variables du programme. Le domaine est
paramétrique dans le choix du degré maximum des polynômes, et des types de
fonctions utilisées comme coe�cients des polynômes.

6.1 Ordinal-Valued Ranking Functions

In many cases, a single natural-valued ranking function is not su�cient. In
particular, this is the case in the presence of unbounded non-determinism,
as we have seen in Example 4.1.2. In order to further motivate the need for
ordinal-valued ranking functions, we propose the following example.

Example 6.1.1
Let us consider the following program from [CPR11]:
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x  0
y  0
0

x  0
y = 1
0

x  0
y = 2
0

. . .

x  0
y = n

0
. . .

x = 1
y  0
0

x = 1
y = 1
1

x = 1
y = 2
2

. . .

x = 1
y = n

n

. . .

x = 2
y  0
0

x = 2
y = 1
!

x = 2
y = 2
! + 1

. . .

x = 2
y = n

! + n� 1
. . .

. . .. . .. . .. . .. . .. . .

x = n

y  0
0

x = n

y = 1
! · (n� 1)

x = n

y = 2
! · (n� 1) + 1

. . .

x = n

y = n

! · (n� 1) + n� 1
. . .

. . .. . .. . .. . .. . .. . .

Figure 6.1: Transitions between states at program control point 1 for the
program of Example 6.1.1. There is an edge from any node where y has value
k > 0 (and y > 0) to all nodes where y has value k� 1 (and y has any value).
In every node we indicate the maximum number of loop iterations needed to
reach a blocking state with no successors.

while

1(0 < x ^ 0 < y) do
if

2( ? ) then
3
x := x� 1

4
y := ?

else

5
y := y � 1

fi

od

6

Each loop iteration, either decrements the value of y, or decrements the value
of x and resets the value of y, until either program variable becomes less than
or equal to zero. There is a non-deterministic choice between the branches
of the conditional if instruction at program control point 2, and the value
of the variable y is chosen non-deterministically at program control point 4.
The program always terminates, whatever the initial values for x and y, and
whatever the non-deterministic choices during execution.

In the graph of Figure 6.1, each node represents a possible state of the pro-
gram at program control point 1, and each edge represents a loop iteration.
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The nodes with a double outline are blocking states with no successor. We de-
fine a ranking function for the program following the intuition behind the defi-
nite termination semantics of Section 4.2.2: we start from the blocking states,
where we assign value 0 to the function; then, we follow the edges backwards,
and for each state that we encounter (whose successors belong to the domain
of the function) we define the value of the ranking function as the maximum of
all values of the function plus 1 for all successors of the state. Hence, we need
a transfinite value whenever we encounter a state leading through unbounded
non-determinism to program executions of arbitrary length. In particular, in
this case, we need ordinal numbers for all states where x > 1 and y > 0

The analysis of the program using our decision trees abstract domain ex-
tended with ordinal-valued functions is proposed in Example 6.4.4

Lexicographic Ranking Functions. It is also possible to prove the termi-
nation of the program of Example 6.1.1 using a lexicographic ranking function
(x, y). Indeed, a lexicographic tuple (f

n

, . . . , f1, f0) of natural numbers is an
isomorphic representation of the ordinal !n · f

n

+ · · · + ! · f1 + f0 [MP96].
However, reasoning directly with lexicographic ranking functions, poses the
additional di�culty of finding an appropriate lexicographic order. Existing
methods [BMS05a, CSZ13, etc.] use heuristics to explore the space of possible
orders, which grows very large with the number of program variables. Instead,
the coe�cients f

n

, . . . , f1, f0 (and thus their order) of our ordinal-valued rank-
ing functions are automatically inferred by the analysis. Moreover, there exist
programs for which there does not exist a lexicographic ranking function but
there is a piecewise-defined ordinal-valued ranking function as considered in
this chapter, and we will provide an example in Example 6.4.5. We refer to
Section 6.5 at end of the chapter for further discussion on the comparison
between lexicographic and ordinal-valued ranking functions.

6.2 Ordinal Arithmetic

The theory of ordinals was introduced by Georg Cantor as the core of his set
theory [Can95, Can97]. We recall from Chapter 2 that the smallest ordinal is
denoted by 0. The successor of an ordinal ↵ is denoted by ↵+1, or equivalently,
by succ(↵). A limit ordinal is an ordinal which is neither 0 nor a successor
ordinal. In the following, we provide the definition and some properties of
addition, multiplication and exponentiation on ordinals [Kun80].
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Addition. Ordinal addition is defined by transfinite induction:

↵+ 0
def
= ↵ (zero case)

↵+ (� + 1)
def
= (↵+ �) + 1 (successor case)

↵+ �

def
=

[

�<�

(↵+ �) (limit case)
(6.2.1)

Ordinal addition generalizes the addition of natural numbers. It is associative,
i.e. (↵+�)+ � = ↵+ (�+ �), but not commutative, e.g. 1+! = ! 6= !+1.

Multiplication. Ordinal multiplication is also defined inductively:

↵ · 0 def
= 0 (zero case)

↵ · (� + 1)
def
= (↵ · �)+ ↵ (successor case)

↵ · � def
=

[

�<�

(↵ · �) (limit case)
(6.2.2)

Ordinal multiplication generalizes the multiplication of natural numbers. It is
associative, i.e. (↵ · �) · � = ↵ · (� · �), and left distributive, i.e. ↵ · (�+ �) =
(↵ ·�)+ (↵ · �). However, commutativity does not hold, e.g. 2 ·! = ! 6= ! · 2,
and neither does right distributivity, e.g. (! + 1) · ! = ! · ! 6= ! · !+ !.

Exponentiation. We define ordinal exponentiation by transfinite induction:

↵

0 def
= 1 (zero case)

↵

�+1 def
= (↵�) · ↵ (successor case)

↵

�

def
=

[

�<�

(↵�) (limit case)
(6.2.3)

Cantor Normal Form. Using ordinal arithmetic, we can build all ordinals
up to "0 (i.e. the smallest ordinal such that "0 = !

"0):

0, 1, 2, . . . ,!,!+1,!+2, . . . ,! · 2,! · 2+1,! · 2+2, . . . ,!2
, . . . ,!

3
, . . . ,!

!

, . . .

In the following, we use the representation of ordinals based on Cantor Normal
Form [Kun80], i.e. every ordinal ↵ > 0 can be uniquely written as

!

�1 · n1 + · · ·+ !

�k · n
k

where k is a natural number, the coe�cients n1, . . . , n
k

are positive integers
and the exponents �1 > �2 > · · · > �

k

� 0 are ordinal numbers. Throughout
the rest of the thesis we will consider ordinal numbers only up to !!.



6.3. Decision Trees Abstract Domain 119

6.3 Decision Trees Abstract Domain

In the previous Chapter 5 we have presented the decision trees abstract domain
T(D,C,F), parameterized by a numerical abstract domain D, an auxiliary
abstract domain C for the decision nodes, and an auxiliary abstract domain
F based on natural-valued functions for the leaf nodes (cf. Section 5.2). In
the following, we address the limitations of F by means of auxiliary abstract
domain W(F) based on ordinal-valued functions. Thus, the decision trees
abstract domain T(D,C,F) is lifted to T(D,C,W(F)).

6.3.1 Decision Trees

We now formally define the family of auxiliary abstract domains W. Then, we
illustrate its integration within the family of abstract domains T.

Ordinal-Valued Functions Auxiliary Abstract Domain. The family
of abstract domains W is a functor which lifts any auxiliary abstract domain
F introduced in Section 5.2 to ordinal-valued functions. As F, it is dedicated
to the manipulation of the leaf nodes of a decision tree with respect to the
linear constraints satisfied along their paths from the root of the decision tree.

Let X def
= {X1, . . . , X

k

} be the set of program variables. The elements of
these abstract domains belong to the following set:

W def
= {?W} [

(

X

i

!

i · f
i

�

�

�

�

�

f

i

2 F \ {?F,>F}
)

[ {>W} (6.3.1)

where F is defined in Equation 5.2.5, which consists of ordinal-valued func-
tions of the program variables, plus the counterparts ?W and >W of ?F and
>F, respectively. More specifically, the ordinal-valued functions are polynomi-
als in ! (that is, ordinals in Cantor Normal Form), where the coe�cients are
natural-valued functions of the program variables belonging to F \ {?F,>F}.
The maximum degree of the polynomials, in the following denoted by M , is
another parameter of the abstract domain.

The computational order vW and the approximation order 4W are pa-
rameterized by a numerical abstract domain element D 2 D, which represents
the linear constraints satisfied along the path to the leaf nodes. According to
Lemma 4.2.22, they coincide when the compared leaf nodes are both defined :
X

i

!

i · f
i1 4W [D]

X

i

!

i · f
i2 () 8⇢ 2 �D(D) :

X

i

!

i · f
i1(⇢(X1), . . . , ⇢(X

k

)) 
X

i

!

i · f
i2(⇢(X1), . . . , ⇢(X

k

))
(6.3.2)
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p : Z|X | ! O

?F >F

(a)

>F

p : Z|X | ! O

?F

(b)

Figure 6.2: Hasse diagrams for approximation order 4F [D] (a) and compu-
tational order vF [D] (b) of the ordinal-valued functions abstract domain.

X

i

!

i · f
i1 vW [D]

X

i

!

i · f
i2 () 8⇢ 2 �D(D) :

X

i

!

i · f
i1(⇢(X1), . . . , ⇢(X

k

)) 
X

i

!

i · f
i2(⇢(X1), . . . , ⇢(X

k

))
(6.3.3)

Instead, when one or both leaf nodes are undefined, the approximation and
computational orders are defined by the Hasse diagrams in Figure 6.2a and
Figure 6.2b, respectively. Note that, as in Figure 5.3a and Figure 5.3b, ?W-
leaves and >W-leaves are incomparable and comparable, respectively.

We define the following concretization-based abstraction:

hE * O,4i �W[D] � hW ,4Wi
where D 2 D represents the path to the leaf node. The concretization function
�W : D !W ! (E * O) is defined as follows:

�W[D]?W
def
= ;̇

�W[D]
X

i

!

i · f
i

def
= �⇢ 2 �D(D) :

X

i

!

i · f
i

(⇢(X1), . . . , ⇢(X
k

))

�W[D]>W
def
= ;̇

(6.3.4)

As in Equation 5.2.9, ?W and >W represent the totally undefined function.
The following result proves that, given D 2 D, �W[D] is monotonic:

Lemma 6.3.1 8p1, p2 2W : p1 4W [D] p2 ) �W[D]p1 4 �W[D]p2.

Proof.
See Appendix A.4. ⌅
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Decision Trees Abstract Domain. We can now use the family of abstract
domains W to lift the decision trees abstract domain to T(D,C,W(F)).

Specifically, the decision trees now belong to the following set:

T def
= {LEAF : p | p 2W} [ {NODE{c} : t1; t2 | c 2 C, t1, t2 2 T } (6.3.5)

where W is defined in Equation 6.3.1 and C is defined in Equation 5.2.1.

In the following, we lift to ordinal-valued functions all the abstract domain
operators, focusing on the operators used to manipulate leaf nodes.

6.3.2 Binary Operators

The need for ordinals arising from non-deterministic boolean expressions (cf.
Example 6.1.1) gets reflected into the binary operator for the computational
and approximation join of decision tree.

Join. The join of decision trees is parameterized by the choice of the join
between leaf nodes and yields a ranking function defined over the union of their
partitions (cf. Algorithm 5). We lift Algorithm 5 to ordinal-valued functions
by simply defining the join between ordinal-valued leaf nodes.

The approximation join gW and the computational join tW are parameter-
ized by a numerical abstraction D 2 D, which represents the linear constraints
satisfied along the path to both leaf nodes, after the decision tree unification
(cf. Line 5 of Algorithm 5). They di↵er when joining defined and undefined
leaf nodes. Specifically, the approximation join is defined as follows:

?W gW[D] p
def
= ?W p 2W \ {>W}

p gW[D] ?W
def
= ?W p 2W \ {>W}

>F gW[D] f
def
= >W p 2W \ {?W}

p gW[D] >W
def
= >W p 2W \ {?W}

(6.3.6)

and the computational join is defined as follows:

?W tW[D] p
def
= p p 2W

p tW[D] ?W
def
= p p 2W

>W tW[D] p
def
= >F p 2W

p tW[D] >W
def
= >F p 2W

(6.3.7)
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Algorithm 18 : Ordinal-Valued Function Join

1: function w-join(�,D, p1, p2)
2: . D 2 D, p1, p2 2W \ {?W,>W}, �2{gF,tF}
3: r  P

i

!

i · (�X1, . . . , X
k

. 0)
4: i 0
5: carry  false

6: while i < M do . join carried out in ascending powers of !
7: f  p1[i] �[D] p2[i]
8: if f = >F then
9: carry  true

10: else
11: if carry then
12: r[i] STEPF(f)
13: carry  false

14: else
15: r[i] f

16: i i+ 1
17: if ¬carry then
18: return r

19: else . maximum degree of the polynomial exceeded
20: return >W

In particular, as in Equation 5.2.13, the approximation join is undefined when
joining ?W-leaves and >W-leaves and always favors the undefined leaf nodes.

Instead, the approximation and computational join between defined leaf
nodes coincide. Algorithm 18 is a generic implementation parameterized by
the choice of the join � between natural-valued leaf nodes. Given an ordinal
valued function p

def
=
P

i

!

i · f
i

2 W \ {?W,>W}, we write p[i] to denote
the coe�cient f

i

. The join of two given ordinal-valued functions p1, p2 2
W \{?W,>W} is carried out in ascending powers of !, joining the coe�cients
of terms with the same power of ! (cf. Line 7), up to the maximum degree M
(cf. Line 6). In case the join of natural-valued leaf nodes yields >F (cf. Line 8),
the function w-join sets the coe�cient to equal the zero function (cf. Line 3)
and propagates a carry of one execution step (cf. Line 9 and Lines 12) to the
unification of terms with next higher degree; unless the maximum degree M

has been reached, in which case w-join returns >W (cf. Line 20).

To clarify, let us consider the following example:



6.3. Decision Trees Abstract Domain 123

Algorithm 19 : Ordinal-Valued Function Approximation Join

1: function a-w-join(D, p1, p2) . D 2 D, p1, p2 2W \ {?W,>W}
2: return w-join(gF, D, p1, p2)

Algorithm 20 : Ordinal-Valued Function Computational Join

1: function c-w-join(D, p1, p2) . D 2 D, p1, p2 2W \ {?W,>W}
2: return w-join(tF, p1, p2, C)

Example 6.3.2
Let X def

= {x, y}, let D be the intervals abstract domain hB,vBi, and let F
be the a�ne functions auxiliary abstract domain hFA,4Fi. We consider the

ordinal-valued functions p1
def
= ! ·x+y and p2

def
= ! ·(x�1)�y and we assume

that their domain of definition D 2 D is defined as D
def
= >B. The join of p1

and p2 is carried out in ascending powers of ! starting from the coe�cients
f10

def
= y and f20

def
= �y. However, there does not exists a natural-valued a�ne

function which is the least upper bound of f10 and f20 within D. Thus, we

force their join to equal zero and we carry one to the join of f11
def
= x� 1 and

f21
def
= x which becomes x+1 (i.e., x after the join and x+1 after propagating

the carry). Thus, the result of the join of p1 and p2 is r
def
= ! · (x+ 1).

Intuitively, whenever natural-valued functions are not su�cient, w-join
naturally resorts to ordinal numbers: given two terms !k ·f1 and !k ·f2, forcing
their join to equal zero and carrying one to the terms with next higher degree is
equivalent to considering their join to be equal to ! and applying the limit case
of ordinal multiplication (cf. Equation 6.2.2): !k ·! = !

k+1 ·1+!k ·0 = !

k+1.
The approximation join gW and the computational join tW between de-

fined leaf nodes are implemented by Algorithm 19 and Algorithm 20, respec-
tively: the functions a-w-join of Algorithm 19 and c-w-join of Algorithm 20
call the function w-join of Algorithm 18 choosing respectively the approxima-
tion join gF and the computational join tF between natural-valued leaf nodes.

6.3.3 Unary Operators

In the following, we lift to ordinal-valued functions the unary operators for
handling skip instructions and backward variable assignments. In particu-
lar, the assignment operator reflects the need for ordinals arising from non-
deterministic assignments (cf. Example 4.1.2 and Example 6.1.1).
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Algorithm 21 : Ordinal-Valued Function Assignment

1: function w-assignJX :=aexp K(d,D, p)
2: . d,D 2 D, p 2W \ {?W,>W}
3: r  P

M

i=1 !
i · (�X1, . . . , X

k

. 0)
4: i 0
5: carry  false

6: while i < M do . assignment carried out in ascending powers of !
7: f  b-assignFJX :=aexp Kd[D]p[i]
8: if f = >F then
9: carry  true

10: else
11: if carry then
12: r[i] STEPF(f)
13: carry  false

14: else
15: r[i] f

16: i i+ 1
17: if ¬carry then
18: return STEPW(r)
19: else . maximum degree of the polynomial exceeded
20: return >W

Skip. We lift the step operator for handling skip instructions (cf. Algo-
rithm 9) defining the step operator STEPW for ordinal-valued leaves.

The operator STEPW : W !W, given an ordinal-valued function p 2W \
{?W,>W}, simply invokes the step operator STEPF for natural-valued leaves
on the constant term of the polynomial; undefined leaf nodes are unaltered:

STEPW(?W)
def
= ?F

STEPW(
X

i

!

i · f
i

)
def
= STEPF(f0) +

X

i>0

!

i · f
i

= (
X

i

!

i · f
i

) + 1

STEPW(>W)
def
= >F

(6.3.8)

Assignments. We now define the operator B-ASSIGNW to handle backward
assignments within ordinal-valued leaf nodes, in order to lift the operator
B-ASSIGNT (cf. Algorithm 11) to ordinal-valued functions.

The operator B-ASSIGNWJX :=aexp K : D ! D !W !W is implemented
by Algorithm 21. The assignment, given a numerical abstraction d 2 D of
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the reachable environments at the initial control point of the instruction, a
numerical abstraction D 2 D of the linear constraints accumulated along the
path to the leaf node, is carried out in ascending powers of !, invoking the
B-ASSIGNF operators on the coe�cients (cf. Line 7), up to the maximum
degree M (cf. Line 6). In case the assignment of natural-valued leaf nodes
yields >F (cf. Line 8), the function w-assign lets the coe�cient to equal
the zero function (cf. Line 3) and carries one execution step (cf. Line 9 and
Line 12) to the term with next higher degree; unless the maximum degree M

has been reached, in which case w-assign returns >W (cf. Line 20). The
operator STEPW is invoked before returning (cf. Line 18) to take into account
that one more program execution step is needed before termination.

To clarify, let us consider the following example:

Example 6.3.3
Let X def

= {x, y}, let D be the intervals abstract domain hB,vBi, and let F
be the a�ne functions auxiliary abstract domain hFA,4Fi. We consider the

ordinal-valued functions p
def
= ! · x+ y and the non-deterministic assignment

x :=?. We assume that the domain of definition D 2 D and d 2 B are defined
as D

def
= >B and d

def
= >B. The assignment is carried out in ascending powers

of ! starting from the coe�cient f0
def
= y, which remains unchanged since

the assignment only involves the variable x, whereas the coe�cient f1
def
= x

is reset to zero and carries one to the term with next higher degree !2. In
fact, the non-deterministic assignment x := ? allows x (and consequently f1)
to take any value, but there does not exists a natural-valued a�ne function
that properly abstracts all possible outcomes of the assignment. The resulting
ordinal-valued function, after the invocation of STEPW, is r

def
= !

2 ·1+(y+1).

6.3.4 Widening

The widening operator, unlike the join and assignment operators, is not al-
lowed to introduce ordinals of higher degree to avoid missing cases like case B
and case C in Figure 5.10b, where the value of the abstract ranking function
increases between iterates. We lift Algorithm 13 to ordinal-valued functions
defining an extrapolation operator HW between ordinal-valued leaf nodes.

The extrapolation operator HW[D1, D2] is implemented by Algorithm 22.
The extrapolation, given the numerical abstractions D1 2 D and D2 2 D
representing the path to the leaf nodes from the root of the decision tree,
is carried out in ascending powers of ! invoking the extrapolation operator
HF[D1, D2] on the coe�cients (cf. Line 6), up to the maximum degree M (cf.
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Algorithm 22 : Ordinal-Valued Function Extrapolation

1: function w-widen(D1,D2, p1, p2)
2: . D1, D2 2 D, p1, p2 2W \ {?W,>W}
3: r  P

M

i=1 !
i · (�X1, . . . , X

k

. 0)
4: i 0
5: while i < M do . widening carried out in ascending powers of !
6: f  p1[i] HF[D1, D2] p2[i]
7: if f = >F then
8: return >W

9: else
10: r[i] f

11: i i+ 1
12: return r

Line 5). In case the extrapolation of natural leaf nodes yields >F (cf. Line 7),
the function w-widen returns >W (cf. Line 8).

6.4 Abstract Definite Termination Semantics

The lifted operators of the decision trees abstract domain can now lift to
ordinal-valued functions the abstract termination semantics of a program in-
struction stmt, defined in Figure 5.12, and the abstract termination semantics
of a program prog, defined in Definition 5.3.1.

The following result proves, for program instruction stmt, the soundness of
the abstract termination semantics ⌧ \MtJ stmt K with respect to the termination
semantics ⌧MtJ stmt K defined in Section 4.3, given sound over-approximations
R 2 D of ⌧I(iJ stmt K) and D 2 D of ⌧I(fJ stmt K):

Lemma 6.4.1 ⌧MtJ stmt K(�T[D]t) 4 �T[R](⌧ \MtJ stmt Kt).

Proof.
See Appendix A.4. ⌅

Similarly, the following result proves the soundness of the abstract termi-
nation semantics ⌧ \MtJ prog K 2 T with respect to the termination semantics
⌧MtJ prog K 2 E * O, given a sound numerical over-approximation R 2 D of
the reachable environments ⌧I(iJ prog K) at the initial program control point:
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Theorem 6.4.2 ⌧MtJ prog K 4 �T[R]⌧ \MtJ prog K

Proof (Sketch).
The proof follows from the soundness of the operators of the decision trees
abstract domain (cf. Lemma 6.4.1) used for the definition of ⌧ \MtJ prog K 2 T .⌅

In particular, the abstract termination semantics provides su�cient pre-
conditions for ensuring definite termination of a program for a given over-
approximation R 2 D of the set of initial states I ✓ ⌃:

Corollary 6.4.3 A program must terminate for execution traces starting from
a given set of initial states �D(R) if �D(R) ✓ dom(�T[R]⌧ \MtJ prog K).

Examples. In the following, we recall the example introduced at the begin-
ning of the chapter and we describe in some detail the analysis of the program
using the abstract domain of decision trees. Then, we propose further exam-
ples to illustrate the expressiveness of the abstract domain.

Example 6.4.4
Let us consider again the program from [CPR11]:

while

1(0 < x ^ 0 < y) do
if

2( ? ) then
3
x := x� 1

4
y := ?

else

5
y := y � 1

fi

od

6

We present the analysis of the program using interval constraints based on
the intervals abstract domain (cf. Section 3.4.1) for the decision nodes, and
ordinal-valued functions for the leaf nodes (cf. Equation 6.3.1).

The starting point is the zero function at the program final control point:

6 : LEAF : �x.�y. 0

The ranking function is then propagated backwards towards the program ini-
tial control iterating through the while loop. We use a widening delay of three
iterations. At the fourth iteration, the decision tree at program control point
1 represents the following piecewise-defined ranking function:
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�⇢.

8

>

<

>

:

1 ⇢(x)  0 _ ⇢(y)  0

3y + 2 ⇢(x) = 1

undefined otherwise

where 3y + 2 is the result of the widening between adjacent leaf nodes with
consecutive values for y (i.e., between LEAF : �x.�y. 5 within ⇢(x) = 1 ^
⇢(y) = 1 and LEAF : �x.�y. 8 within ⇢(x) = 1 ^ ⇢(y) = 2).

Ordinals appear for the first time at program control point 4 due to the
non-deterministic assignment to y:

�⇢.

8

>

<

>

:

2 ⇢(x)  0

!+ 9 ⇢(x) = 1

undefined otherwise

In the first case the value of the function is simply increased to count one
more program step before termination, but (since y can now have any value)
its domain is modified forgetting all constraints on y (i.e. y  0). In the
second case, 3y + 2 becomes ! + 9 due to the non-deterministic assignment.

At the seventh iteration, the decision tree associated with program control
point 1, represents the following ranking function:

�⇢.

8

>

>

>

>

<

>

>

>

>

:

1 ⇢(x)  0 _ ⇢(y)  0

3y + 2 ⇢(x) = 1

!+ (3y + 9) ⇢(x) = 2

undefined otherwise

where !+(3y+9) is the result of the widening between LEAF : �x.�y. !+12
within ⇢(x) = 2 ^ ⇢(y) = 1 and LEAF : �x.�y. !+15 within ⇢(x) = 2 ^ ⇢(y) =
2. The widening is carried out in ascending powers of !: from the constants
12 and 15, the widening infers the value 3y + 9; then, since the coe�cients of
! are equal to one, the inferred coe�cient is again one. Thus, the result of
the widening is ! + (3x+ 9) within ⇢(x) = 2.

Finally, at the eleventh iteration, the analysis reaches a fixpoint:

�⇢.

8

>

>

>

>

<

>

>

>

>

:

1 ⇢(x)  0 _ ⇢(y)  0

3y + 2 ⇢(x) = 1

!+ (3y + 9) ⇢(x) = 2

! · (x� 1)+ (7x+ 3y � 5) otherwise
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where 3y + 2 and ! + (3y + 9) are particular cases (within ⇢(x) = 1 and
⇢(x) = 2, respectively) of ! · (x� 1)+ (7x+ 3y � 5) and are explicitly listed
only due to the amount of widening delay we used. The ranking function
proves that the program is always terminating, whatever the initial values for
x and y, and whatever the non-deterministic choices during execution. The
reason why we obtain a di↵erent and more complex ranking function with
respect to Figure 6.1 is because we count the number of program execution
steps whereas, for convenience of presentation, in Figure 6.1 we simply count
the number of loop iterations.

Example 6.4.5
Let us consider the following program:

while

1(x 6= 0 ^ 0 < y) do
if

2(0 < x) then
if

3( ? ) then
4
x := x� 1

5
y := ?

else

6
y := y � 1

fi

else

if

7( ? ) then
8
x := x+ 1

else

9
y := y � 1

10
x := ?

fi

fi

od

11

which is an involved variation of Example 6.1.1. Each loop iteration, when
x is positive, either decrements the value of x, or decrements the value of x
and resets the value of y; when x is negative, either increments the value of x,
or decrements the value of y and resets the value of x to any value (possibly
positive). The loop exits when x is equal to zero or y is less than zero.

Note that, there does not exist a lexicographic ranking function for the
loop. In fact, the variables x and y can be alternatively reset to any value
at each loop iteration: the value of y is reset at the program control point 5,
while the value of x is reset at the control point 10.
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Figure 6.3: Transitions between states at control point 1 for the program in
Figure 6.4.5. There is an edge from any node where x has value k > 0 (and
y > 0) to all nodes where x has value k � 1 (and y has any value); there is
also an edge from any node where y has value h > 0 (and x < 0) to all nodes
where y has value h � 1 (and x has any value). In every node we indicate
the maximum number of loop iterations needed to reach a blocking state: the
highlighted nodes require ordinals greater than !2.
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Nonetheless, the program always terminates, regardless of the initial val-
ues for x and y, and regardless of the non-deterministic choices taken during
execution. Let us consider the graph in Figure 6.3. Whenever y is reset to
any value, we move towards the blocking states decreasing the value of x, and
whenever x is reset to any value, we move towards the blocking states decreas-
ing the value of y. Moreover, whenever x is reset to a positive value, its value
will only decrease until it reaches zero (or y is reset to a value less than zero).

The analysis of the program using interval constraints based on the inter-
vals abstract domain (cf. Section 3.4.1) for the decision nodes, ordinal-valued
functions for the leaf nodes (cf. Equation 6.3.1), yields the following piecewise-
defined ranking function at program control point 1:

�⇢.

8

>

<

>

:

!

2 + ! · (y � 1)+ (�4x+ 9y � 2) ⇢(x)  0 _ 0 < ⇢(y)

1 ⇢(x) = 0 _ y  0

! · (x� 1)+ (9x+ 4y � 7) 0 < ⇢(x) _ 0  ⇢(y)

In Figure 6.3, we justify the need for !2. Indeed, from any state where x < 0
and y = h > 0, whenever x is reset at program control point 10, it is possible
to jump to any state where y = h � 1. In particular, for example from the
state where x = �1 and y = 2, it is possible to jump through unbounded non-
determinism to states with value of the most precise ranking function equal
to an arbitrary ordinal number between ! and !2, which requires !2 as upper
bound of the maximum number of loop iterations needed to reach a final state.

Finally, note the expressions identified as coe�cients of !: where x < 0,
the coe�cient of ! is an expression in y (since y guides the progress towards
the blocking states), and where 0 < x, the coe�cient of ! is an expression
in x (because x rules the progress towards termination). The expressions are
automatically inferred by the analysis without any assistance from the user.

6.5 Related Work

Interestingly, ordinal-valued ranking functions already appeared in the work
of Alan Turing in the late 1940s [Tur49, MJ84]. To the best of our knowl-
edge, the automatic inference of ordinal-valued ranking functions for proving
termination of imperative programs is unique to our work.

The approach presented in this chapter is mostly related to [ADFG10]:
both techniques handle programs with arbitrary structure and infer ranking
functions (that also provide information on the program computational com-
plexity in terms of executions steps) attached to program control points. In
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[ADFG10], lexicographic ranking functions are obtained by a greedy algorithm
based on Farkas lemma that, analogously to the operators of our abstract do-
main, constructs the ranking functions by adding one dimension at a time.
However, the method proposed in [ADFG10], although complete for programs
with rational-valued variables, is incomplete for integer-valued variables. In
contrast, there is no completeness limitation to our method, only a choice of
relevant abstract domains. In [GMR15], the authors improve over [ADFG10]
and present an SMT-based method for the inference of lexicographic rank-
ing functions. However, both [ADFG10] and [GMR15] remain focused only
on proving termination for all program input, while our work naturally deals
with proving conditional termination as well.

In a di↵erent context, a large amount of research followed the introduction
of size-change termination [LJBA01]. The size-change termination approach
consists in collecting a set of size-change graphs (representing function calls)
and combining them into multipaths (representing program executions) in such
a way that at least one variable is guaranteed to decrease. Compared to size-
change termination, our approach avoids the exploration of the combinatorial
space of multipaths with the explicit manipulation of ordinals. In [Lee09,
BAL09], algorithms are provided to derive explicit ranking functions from
size-change graphs, but these ranking functions have a shape quite di↵erent
from ours which makes it di�cult for us to compare their expressiveness. For
example, the derived ranking functions use lexicographic orders on variables
while our polynomial coe�cients are arbitrary linear combinations of variables.
In general, an in-depth comparison between such fairly di↵erent methods is
an open research topic (e.g., see [HJP10] for the comparison of the transition
invariants and the size-change termination methods).

Finally, we have seen that there exist programs for which there does not
exist a lexicographic ranking function (cf. Example 6.4.5). In [CSZ13] the
authors discuss the problem and propose some heuristics to circumvent it.
Interestingly these heuristics rediscover exactly the need for piecewise-defined
ranking functions, even if implicitly and in a roundabout way.
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Recursive Programs

In the small programming language introduced in Chapter 3 only loops present
a challenge when proving termination. In this chapter, we illustrate a simple
extension of the language with recursive procedures. We revisit the definition
of its maximal trace semantics (cf. Section 3.2) and its definite termination
semantics (cf. Section 4.3). Moreover, we propose a sound decidable abstrac-
tion for proving termination of recursive programs based the piecewise-defined
ranking functions introduced in Chapter 5 and Chapter 6.

Dans le petit langage de programmation introduit dans le Chapitre 3 seules les
boucles présentent un défi pour prouver la terminaison. Dans ce chapitre, nous
montrons une simple extension du language avec des procédures récursives.
Nous reviendrons sur la définition de sa sémantique de traces maximales (cf.
Section 3.2) et sa sémantique de terminaison (cf. Section 4.3). De plus, nous
proposons une abstraction décidable correcte pour prouver la terminaison des
programmes récursifs basée sur les fonctions de rang définies par morceaux
introduites au Chapitre 5 et au Chapitre 6.

7.1 A Small Procedural Language

In Figure 7.1, the syntax of our programming language proposed in Figure 3.1
is extended with possibly recursive procedures.

A program prog consists of a procedure declaration followed by a unique
label l 2 L. A procedure declaration mthd is either a main procedure dec-
laration or a sequential composition of declarations. The main procedure is
always declared last. A procedure consists in an instruction statement labelled
by a unique procedure name M 2M [ {main}.

The set of language instructions is extended with call and return state-
ments: a call statement branches to the initial control point of the called
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stmt ::= . . .

| l

call M M 2M

ret ::= l

return

mthd ::= main: stmt
| M : stmt ret mthd M 2M

prog ::= mthd l

l 2 L

Figure 7.1: Syntax of our programming language extended with procedures.

procedure; the return statement branches back to the control point after the
call statement. With the exception of the main procedure, the last instruction
of all procedures is a return statement. For simplicity, we assume that any
mutual recursion is reduced into a single recursive procedure [KRP93].

Note that, this extension of the language allows us to also encode programs
containing functions with arguments and return values, thanks to variables.
Therefore, we do not explicitly introduce such features in the language.

7.2 Maximal Trace Semantics

We now define the transition semantics of our extended language. In particu-
lar, since a procedure might be called during the execution of another proce-
dure, we introduce a stack to recover the right calling control point: the proce-
dure call statement pushes the calling control point onto the stack, whereas
the procedure return statement pops the last calling control point from the
top of the stack and branches to this control point. Then, we define the
maximal trace semantics of the language by induction on its extended syntax.

Transition Systems. A stack k 2 L⇤ is a possibly empty sequence of pro-
gram control points. Let K denote the set of all stacks.

The set of all program states ⌃
def
= L ⇥ E is extended to pairs K ⇥ ⌃

consisting of a stack k 2 K and a program state s 2 ⌃, which in turn consists
of a program control point l 2 L paired with an environment ⇢ 2 E .

In Figure 7.2 we define the initial control point of a program prog, a call

instruction stmt and a return instruction ret. The initial control point of a
program prog is the initial control point of the main procedure. The initial
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stmt ::= . . .

| l

call M iJ l

call M K def
= l

ret ::= l

return iJ l

return K def
= l

mthd ::= main: stmt iJmain : stmt K def
= iJ stmt K

| M : stmt ret mthd1 iJM : stmt ret mthd1 K def
= iJmthd1 K

prog ::= mthd l

iJmthd l K def
= iJmthd K

Figure 7.2: Initial control point of stmt, ret, and prog.

stmt ::= . . .

| l

call M fJ l

call M K def
= fJ stmt K

prog ::= mthd l

fJmthd l K def
= l

Figure 7.3: Final control point of stmt and prog.

control point of other instructions stmt is unchanged from Figure 3.4. Simi-
larly, in Figure 7.3 we define the final control point of a program prog and a
call instruction stmt. The final control point fJ l

return K of a return instruc-
tion ret cannot be defined statically; it is a dynamic information depending
on the calling control point on the stack during execution. The final control
point of other instructions stmt is unchanged from Figure 3.5.

In the following, the function i : M ! L maps procedure names to their
initial control point: given a declaration M : stmt ret, i(M)

def
= iJ stmt K.

The set of initial states is extended to {"}⇥I def
= {h", hiJ prog K, ⇢ii | ⇢ 2 E}

and the set of final states is extended to {"}⇥Q def
= {h", hfJ prog K, ⇢ii | ⇢ 2 E}.

We now redefine the transition relation ⌧ 2 (K⇥⌃)⇥(K⇥⌃). In particular,
in Figure 7.4, we define the transition semantics ⌧J stmt K 2 (K⇥⌃)⇥ (K⇥⌃)
and ⌧J ret K 2 (K ⇥ ⌃) ⇥ (K ⇥ ⌃) of a call instruction and a return in-
struction, respectively. The semantics of other instructions stmt is defined
analogously to Figure 3.6, extending the states with a stack, which is left un-
changed by the instruction. The execution of a call instruction pushes the
final control point of the instruction onto the stack and branches to the initial
control point of the called procedure. The function ⌧ : M ! L maps proce-
dure names to their transition semantics: given a declaration M : stmt ret,
⌧(M)

def
= ⌧J stmt K [ ⌧J ret K. The execution of a return instruction branches

to the control point popped from the top of the stack.
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⌧J lcall M K def
=

{hk, hl, ⇢ii ! hfJ lcall M K · k, hi(M), ⇢ii | k 2 K, ⇢ 2 E} [ ⌧(M)

⌧J lreturn K def
= {hr · k, hl, ⇢ii ! hk, hr, ⇢ii | r 2 L, k 2 K, ⇢ 2 E}

Figure 7.4: Transition semantics of stmt and ret.

The transition relation ⌧ 2 (K⇥⌃)⇥ (K⇥⌃) of a program prog is defined
by the semantics ⌧J prog K 2 (K ⇥ ⌃)⇥ (K ⇥ ⌃) of the program as follows:

⌧J prog K = ⌧Jmthd l K def
= ⌧Jmthd K

where ⌧Jmain : stmt K def
= ⌧J stmt K and ⌧JM : stmt ret mthd K def

= ⌧Jmthd K.
In other words, the semantics ⌧J prog K of a program prog is defined by the
semantics ⌧Jmain : stmt K 2 (K ⇥ ⌃)⇥ (K ⇥ ⌃) of the main procedure.

Example 7.2.1
Let us consider the recursive version of the program of Example 4.1.2:

f :
if

1(1 < x) then
2
x := x� 1

3
call f

else

4
skip

fi

5
return

main :
6
x := ?

7
call f

8

The set of program environments E contains the functions ⇢ : {x} ! Z map-
ping the program variable x to any possible value ⇢(x) 2 Z. The set of program
states ⌃

def
= {1,2,3,4,5,6,7,8}⇥E consists of all pairs of numerical labels and

environments; the extended initial states are {"} ⇥ I def
= {h", h6, ⇢ii | ⇢ 2 E}.

The program transition relation ⌧ 2 (K ⇥ ⌃)⇥ (K ⇥ ⌃) is defined as follows:

⌧

def
= {h", h6, ⇢ii ! h", h7, ⇢[x v]ii | ⇢ 2 E ^ v 2 Z}
[ {h", h7, ⇢ii ! h8 · ", h1, ⇢ii | ⇢ 2 E}
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[ {hk, h1, ⇢ii ! hk, h2, ⇢ii | k 2 K, ⇢ 2 E ^ true 2 J1 < xK⇢}
[ {hk, h2, ⇢ii ! hk, h3, ⇢[x ⇢(x)� 1]ii | k 2 K, ⇢ 2 E}
[ {hk, h3, ⇢ii ! h5 · k, h1, ⇢ii | k 2 K, ⇢ 2 E}
[ {hk, h1, ⇢ii ! hk, h4, ⇢ii | k 2 K, ⇢ 2 E ^ false 2 J1 < xK⇢}
[ {hk, h4, ⇢ii ! hk, h5, ⇢ii | k 2 K, ⇢ 2 E}
[ {h5 · k, h5, ⇢ii ! hk, h5, ⇢ii | k 2 K, ⇢ 2 E}
[ {h8 · ", h5, ⇢ii ! h", h8, ⇢ii | ⇢ 2 E}

The extended set of final states is {"}⇥Q def
= {h", h8, ⇢ii | ⇢ 2 E}.

Maximal Trace Semantics. The maximal trace semantics ⌧+1 2 P((K⇥
⌃)+1) of our extended language is generated by the extended transition sys-
tem hK ⇥ ⌃, ⌧i as in Section 3.2. In particular, the following result restates
Theorem 2.2.12 and defines the maximal trace semantics in fixpoint form:

Theorem 7.2.2 (Maximal Trace Semantics) The maximal trace seman-
tics ⌧+1 2 P((K⇥⌃)+1) can be expressed as a least fixpoint in the complete
lattice hP((K ⇥ ⌃)+1),v,t,u, (K ⇥ ⌃)!, (K ⇥ ⌃)+i as follows:

⌧

+1 = lfpv �

+1

�

+1(T )
def
= ({"}⇥Q) [ (⌧ ; T )

(7.2.1)

In the following, we provide a structural definition of the maximal trace
semantics by induction on the extended syntax of programs.

Remark 7.2.3 From now on, we assume that procedures have a single recur-
sive call. We plan to generalize the framework as part of our future work.

We do not explicitly represent the stack. Instead, we use least fixpoints as
denotations of recursive procedures. Thus, we have ⌧+1 2 P(⌃+1).

In Figure 7.5, for any procedure P, we define the semantics ⌧+1J stmt KPS :
P(⌃+1) ! P(⌃+1) and ⌧

+1J ret KPS : P(⌃+1) ! P(⌃+1) of a call in-
struction and a return instruction, respectively. The traces are built back-
wards: each function ⌧+1J stmt KPS (resp. ⌧+1J ret KPS) takes as input a set
of traces starting with the final label of the instruction stmt (resp. ret) and
outputs a set of traces starting with the initial label of stmt (resp. ret). The
parameter set of traces S 2 P(⌃+1) is used to handle recursive calls.

The trace semantics of a recursive call instruction, when the called proce-
dure coincides with the caller, is parameterized by a set of traces S representing



138 7. Recursive Programs

⌧

+1J l

call M KMS(T )
def
=

⇢

hl, ⇢ihi(M), ⇢i�
�

�

�

�

⇢ 2 E , � 2 ⌃⇤1

hi(M), ⇢i� 2 S ; T

�

⌧

+1J l

call M KPS(T )
def
=

⇢

hl, ⇢ihi(M), ⇢i�
�

�

�

�

⇢ 2 E , � 2 ⌃⇤1

hi(M), ⇢i� 2 C

�

P 6= M

C

def
= lfpv⌃!(�S. ⌧+1(M)S(T ))

⌧

+1J l

return KPS(T )
def
= {hl, ⇢ihr, ⇢i� | r 2 L, ⇢ 2 E , � 2 ⌃⇤1

, hr, ⇢i� 2 T}

Figure 7.5: Maximal trace semantics of instructions stmt and ret.

the trace semantics of the following recursive calls, followed by a set of traces
T starting with the final label of the instruction. The traces belonging to S ; T
start with environments paired with the initial control point of the procedure.
Thus, the trace semantics of the instruction simply prepends to them the same
environments paired with the initial label of the instruction.

The trace semantics of a non-recursive call instruction, when the called
procedure M is di↵erent from the caller P , takes as input a set of traces T

starting with the final label of the instruction, determines from T the trace
semantics C of the callee, and prepends to the initial states of the traces
belonging to C the same environments paired with the initial label of the
instruction. The called procedure M can be a recursive procedure. Thus,
its trace semantics is defined as the least fixpoint of �S. ⌧+1(M)S(T ) within
the complete lattice hP(⌃+1),v,t,u,⌃!

,⌃+i, analogously to Equation 2.2.5.
Note that, we assumed that mutual recursion is reduced into a single recursive
procedure. The function ⌧+1 : M! (P(⌃+1)! P(⌃+1)! P(⌃+1)) maps
procedure names to their maximal trace semantics: given a declaration M :
stmt ret, ⌧+1(M)S(T )

def
= ⌧

+1J stmt KMS(⌧+1J ret KMS(T )). The iteration
sequence, starting from all infinite sequences ⌃!, builds the set of program
traces that consist of an infinite number of recursive calls, and it prepends a
finite number of recursive calls to an input set T 2 P(⌃+1) of traces starting
with the final label of the call instruction.

Finally, the semantics of a return instruction takes as input a set of traces
starting from the calling control point, and prepends to them the same initial
environments paired with the initial control point of the instruction.

The trace semantics ⌧+1J stmt KPS : P(⌃+1)! P(⌃+1) of other instruc-
tions stmt is defined as follows:

⌧

+1J stmt KPS
def
= ⌧

+1J stmt K (7.2.2)

where ⌧+1J stmt K : P(⌃+1)! P(⌃+1) is defined in Figure 3.7.
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The maximal trace semantics ⌧+1J prog K 2 P(⌃+1) of a program prog is
defined by the maximal trace semantics of the main procedure taking as input
the infinite sequences ⌃! and the final states Q:

Definition 7.2.4 (Maximal Trace Semantics) The maximal trace seman-
tics ⌧+1J prog K 2 P(⌃+1) of a program prog is:

⌧

+1J prog K = ⌧

+1Jmthd l K def
= ⌧

+1Jmthd K⌃!(Q) (7.2.3)

where ⌧+1Jmain : stmt K def
= ⌧

+1J stmt Kmain and ⌧+1JM : stmt ret mthd K def
=

⌧

+1Jmthd K, and where the semantics ⌧+1J stmt KPS : P(⌃+1)! P(⌃+1) of
each program instruction stmt is defined in Figure 7.5.

Example 7.2.5
Let us consider the recursive version of the program of Example 4.2.3:

f :
if

1( ? ) then
2
skip

else

3
call f

fi

4
return

main :
5
call f

6

The set of program environments E only contains the totally undefined func-
tion ⇢ : ; ! Z, since the program has no variables. The set of all program
states is ⌃

def
= {1,2,3,4,5,6}⇥E , while the set of initial states is I def

= {5}⇥E ,
and the set of final states is Q def

= {6}⇥ E .
The maximal trace semantics of the program is defined by the maximal

trace semantics of the main procedure: ⌧

+1
mainJ 5

call f K⌃!(Q) (cf. Defini-
tion 3.2.5). The semantics of the call statement determines the maximal trace
semantics of the procedure f (cf. Figure 7.5). The fixpoint iterates are depicted
in Figure 7.6. Thus, the maximal trace semantics of the program contains
the traces that starting from the initial states I call the procedure f a non-
determinist number of times: {h5, ⇢i(h1, ⇢ih3, ⇢i)⇤h1, ⇢ih2, ⇢ih4, ⇢ih8, ⇢i | ⇢ 2
E} [ {h5, ⇢i(h1, ⇢ih3, ⇢i)! | ⇢ 2 E}
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S0 =

(

⌃!

)

S1 =

(

?

skip

return

)

[
(

?

call f ⌃!

)

S2 =

(

?

skip

return

)

[
(

?

call f

?

skip

return

)

[
(

?

call f

?

call f ⌃!

)

...

Figure 7.6: Fixpoint iterates of the maximal trace semantics for Example 7.2.5.

7.3 Definite Termination Semantics

We now extend the structural definition given in Section 4.3 of the fixpoint
definite termination semantics ⌧Mt 2 ⌃ * O (cf. Equation 4.2.16). Then,
we propose a sound decidable abstraction of ⌧Mt based on piecewise-defined
ranking functions (cf. Chapter 5 and Chapter 6).

7.3.1 Definite Termination Semantics

We partition the definite termination semantics ⌧Mt with respect to the pro-
gram control points: ⌧Mt 2 L! (E * O). In this way, to each program control
point l 2 L corresponds a partial function f : E * O, and, for any procedure P,
to each program instruction stmt and ret corresponds a termination semantics
⌧MtJ stmt KP : (E * O)! (E * O) and ⌧MtJ ret KP : (E * O)! (E * O).

Each function ⌧MtJ stmt KPF and ⌧MtJ ret KPF takes as input a ranking func-
tion whose domain represents the terminating environments at the final label
of the instruction and outputs a ranking function whose domain represents
the terminating environments at the initial label of the instruction, and whose
value is an upper bound on the number of program execution steps remaining
to termination. The parameter F 2 E * O is used to handle recursive calls.
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The termination semantics of a recursive call, when the called procedure
coincides with the caller, is parameterized by a ranking function F : E * O
representing the termination semantics of the following recursive calls, and
takes as input a ranking function f : E * O whose domain represents the
terminating environments at the final label of the instruction. The domain of
termination semantics of the instruction is the intersection of the domains of
f and F , and its value is the sum of the value of f and F plus one, to take
into account that from the environments at the initial label of the instruction
another program execution step is necessary before termination:

(⌧MtJ l

call M KMF )(f)
def
= �⇢ 2 dom(f) \ dom(F ). f(⇢) + F (⇢) + 1

(7.3.1)
The termination semantics of a non-recursive call, when the called pro-

cedure M is di↵erent from the caller P , takes as input a ranking function
f : E * O, determines from f the termination semantics I : E * O of the
callee, and increases its value to account of another program execution step:

(⌧MtJ l

call M KPF )(f)
def
= �⇢ 2 dom(I). I(⇢) + 1 P 6= M

I

def
= lfpv

;̇
(�F. (⌧Mt(M)F )(f))

(7.3.2)

The termination semantics of the possibly recursive called procedure M is de-
fined as the least fixpoint of �F. (⌧Mt(M)F )(f) within the partially ordered
set hE * O,vi, analogously to Equation 4.2.16. The rationale being that
the call from P to M may be a call to a sequence of recursive calls to M ,
which are collected by the fixpoint. The function ⌧Mt : M ! ((E * O) !
(E * O) ! (E * O)) maps procedure names to their termination seman-

tics: given a procedure declaration M : stmt ret, we have (⌧Mt(M)F )(f)
def
=

(⌧MtJ stmt KMF )((⌧MtJ ret KMF )(f)). The iteration sequence, starting from the
totally undefined function ;̇, builds the ranking function whose domain is the
set of environments from which a finite number of recursive calls is made.

Finally, the termination semantics of a return instruction takes as input
a ranking function whose domain represents the terminating environments at
the calling control point and increases its value to take into account another
program execution step before termination:

(⌧MtJ l

return KPF )(f)
def
= �⇢ 2 dom(f). f(⇢) + 1 (7.3.3)

The termination semantics ⌧MtJ stmt KPF : (E * O) ! (E * O) of other
instructions stmt is defined as follows:

⌧MtJ stmt KPF
def
= ⌧MtJ stmt K (7.3.4)
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where ⌧MtJ stmt K : (E * O)! (E * O) is defined in Section 4.3. For a condi-
tional statement if lbexp then stmt1 else stmt2 fi, F has to be passed to the
termination semantics of stmt1 and stmt2. For a loop while

lbexp do stmt od,
F has to be passed to the termination semantics of the loop body stmt. For a
sequential composition of instructions stmt1 stmt2, F has to be passed to the
termination semantics of the components stmt1 and stmt2.

The termination semantics ⌧MtJ prog K 2 E * O of a program prog is a rank-
ing function whose domain represents the terminating environments, which is
determined by the termination semantics of the main procedure taking as
input the totally undefined function and the zero function:

Definition 7.3.1 (Termination Semantics) The termination semantics
⌧MtJ prog K 2 E * O of a program prog is:

⌧MtJ prog K = ⌧MtJmthd l K def
= (⌧MtJmthd K;̇)(�⇢. 0) (7.3.5)

where ⌧MtJmain : stmt K def
= ⌧MtJ stmt Kmain and ⌧MtJM : stmt ret mthd K def

=
⌧MtJmthd K, and where the function ⌧MtJ stmt KPF : (E * O)! (E * O) is the
termination semantics of each program instruction stmt.

7.3.2 Abstract Definite Termination Semantics

We propose a sound decidable abstraction of the definite termination semantics
⌧MtJ prog K 2 E * O based on piecewise-defined ranking functions.

In particular, we supplement the set of operators of the decision trees
abstract domain (cf. Chapter 5 and Chapter 6) with a sum operator +T.

Sum. The sum operator +T is implemented by Algorithm 23: the function
sum, given a sound over-approximation D 2 D of the reachable environments
and two decision trees t1, t2 2 T , first calls unification (cf. Line 10) for tree
unification and then calls the auxiliary function sum-aux (cf. Line 11). The
latter descends along the paths of the decision trees (cf. Lines 5-6), up to the
leaf nodes where the leaves sum operator +F is invoked.

The sum +F between defined and undefined leaf nodes is analogous to the
leaves approximation join gF (cf. Equation 5.2.13):

?F +F f

def
= ?F f 2 F \ {>F}

f +F ?F
def
= ?F f 2 F \ {>F}

>F +F f

def
= >F f 2 F \ {?F}

f +F >F
def
= >F f 2 F \ {?F}

(7.3.6)
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Algorithm 23 : Tree Sum

1: function sum-aux(t1, t2,C) . t1, t2 2 T
2: if isLeaf(t1) ^ isLeaf(t2) then
3: return LEAF : t1.f +F t2.f

4: else if isNode(t1) ^ isNode(t2) then
5: (l1, l2) sum-aux(t1.l, t2.l)
6: (r1, r2) sum-aux(t1.r, t2.r)
7: return (NODE{c} : l1; r1, NODE{c} : l2; r2)

8:

9: function sum(D, t1, t2) . D 2 D, t1, t2 2 T
10: (t1, t2) unification(D, t1, t2)
11: return sum-aux(t1, t2)

(⌧ \MtJ l

call M KMT )(t)
def
= STEPT(t +T T )

(⌧ \MtJ l

call M KPT )(t)
def
= STEPT(I) P 6= M

I

def
= lfp\ (�T. (⌧ \Mt(M)T )(t))

(⌧ \MtJ l

return KPT )(t)
def
= STEPT(t)

Figure 7.7: Abstract termination semantics of instructions stmt.

In particular, the sum is undefined between ?F-leaves and >F-leaves and al-
ways favors the undefined leaf nodes.

Instead, given two defined leaf nodes f1, f2 2 F \ {?F,>F}, their sum
f1 +F f2 is defined as expected:

f1 +F f2
def
= f1 + f2 (7.3.7)

Example 7.3.2
Let X = {x}, and let f1

def
= �x. x and f2

def
= �x. �x+5 be two a�ne functions.

Then, their sum is the a�ne function f1 +F f2
def
= �x. x� x+ 5 = �x. 5.

Abstract Definite Termination Semantics. In the following, as in Sec-
tion 5.3, we assume to have, for each program control point l 2 L, a sound nu-
merical over-approximation R 2 D of the reachable environments ⌧I(l) 2 P(E):
⌧I(l) ✓ �D(R) (cf. Section 3.4).

In Figure 7.7, for any procedure P, we define ⌧ \MtJ stmt KPT : T ! T and

⌧

\

MtJ ret KPT : T ! T for a call instruction stmt and a return instruction

ret, respectively. Each function ⌧

\

MtJ stmt KP and ⌧

\

MtJ ret KP takes as input a
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decision tree over-approximating the ranking function corresponding to the
final control point of the instruction, and outputs a decision tree defined over
a subset of the reachable environments R 2 D, which over-approximates the
ranking function corresponding to the initial control point of the instruction.

The parameter T 2 T is used to handle recursive calls. In particular, the
decision tree T abstracts the termination semantics F : E * O of the following
recursive calls (cf. Equation 7.3.1). Then, the semantics of a recursive call

instruction invokes STEPT (cf. Algorithm 9) on the sum +T (cf. Algorithm 23)
between T and the input decision tree t 2 T .

The following result proves that for a recursive call instruction l

call M ,
given sound over-approximations R 2 D of ⌧I(l), S 2 D of ⌧I(i(M)), and

D 2 D of ⌧I(fJ l

call M K), the abstract semantics ⌧ \MtJ l

call M KM is a sound
over-approximation of ⌧MtJ l

call M KM defined in Equation 7.3.1:

Lemma 7.3.3 (⌧MtJ l

call M KM�T[S]T )(�T[D]t) 4 �T[R](STEPT(t +T T )).

Proof.
See Appendix A.5. ⌅

The semantics of a non-recursive call, when the called procedure M is
di↵erent from the caller P , invokes the STEPT operator on the semantics
I 2 T of the callee. The semantics of the called procedure M is defined as
the limit of the iteration sequence with widening (cf. Equation 5.2.24) of

�T. ⌧

\

Mt(M)T (t). The function ⌧

\

Mt : M ! (T ! T ! T ) maps procedure
names to their semantics: given a procedure declaration M : stmt ret, we have
⌧

\

Mt(M)T (t)
def
= ⌧

\

MtJ stmt KMT (⌧ \MtJ ret KMT (t)).

The abstract semantics ⌧ \MtJ l

call M KP of a non-recursive call instruc-
tion l

call M , given sound over-approximations R 2 D of ⌧I(l), S 2 D of
⌧I(i(M)), and D 2 D of ⌧I(fJ l

call M K), is a sound over-approximation of
the termination semantics ⌧MtJ l

call M KP defined in Equation 7.3.2:

Lemma 7.3.4 (⌧MtJ l

call M KP�T[S]T )(�T[D]t) 4 �T[R](STEPT(I)), where

I

def
= lfp\ (�T. (⌧ \Mt(M)T )(t)).

Proof.
See Appendix A.5. ⌅

Finally, the semantics of a return instruction simply invokes the STEPT

operator on the given input decision tree.
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The following result proves, given sound over-approximations R 2 D of
⌧I(l) and D 2 D of ⌧I(fJ l

return K), the soundness of the abstract semantics

⌧

\

MtJ l

return KP with respect to ⌧MtJ l

return KP defined in Equation 7.3.3:

Lemma 7.3.5 (⌧MtJ l

return KP�T[D]T )(�T[D]t) 4 �T[R](STEPT(t)).

Proof.
See Appendix A.5. ⌅

The semantics ⌧ \MtJ stmt KPT : T ! T of other instructions stmt is:

⌧

\

MtJ stmt KPT
def
= ⌧

\

MtJ stmt K (7.3.8)

where ⌧ \MtJ stmt K : T ! T is defined in Figure 5.12. For a conditional state-
ment if lbexp then stmt1 else stmt2 fi, T has to be passed to the termination
semantics of stmt1 and stmt2. For a loop while

lbexp do stmt od, T has to
be passed to the termination semantics of the loop body stmt. For a se-
quential composition of instructions stmt1 stmt2, T has to be passed to the
termination semantics of the components stmt1 and stmt2. Given sound over-
approximations R 2 D of ⌧I(iJ stmt K) and D 2 D of ⌧I(fJ stmt K), ⌧ \MtJ stmt KP
is a sound over-approximation of ⌧MtJ stmt KP defined in Equation 7.3.4:

Lemma 7.3.6 (⌧MtJ stmt KP�T[D]T )(�T[D]t) 4 �T[R]((⌧ \MtJ stmt KPT )(t)).

Proof (Sketch).
The proof follows from Equation 7.3.4 and Equation 7.3.8 and from the sound-
ness of ⌧ \MtJ stmt K defined in Figure 5.12 with respect to ⌧MtJ stmt K defined in
Section 4.3 (cf. Lemma 5.2.8, Lemma 5.2.14, Lemma 5.2.15, Lemma 5.2.16,
Lemma 5.2.24, and Lemma 6.4.1). ⌅

The abstract termination semantics ⌧ \MtJ prog K 2 T of a program prog out-
puts the decision tree over-approximating the ranking function corresponding
to the initial program control point iJ prog K 2 L. It is defined by means of
the abstract termination semantics of the main procedure taking as input ?T

and the leaf node LEAF : �X1, . . . , X
k

. 0:

Definition 7.3.7 (Abstract Termination Semantics) The abstract ter-

mination semantics ⌧ \MtJ prog K 2 T of a program prog is:

⌧

\

MtJ prog K = ⌧

\

MtJmthd l K def
= (⌧ \MtJmthd K?T)(LEAF : �X1, . . . , X

k

. 0)
(7.3.9)
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where ⌧ \MtJmain : stmt K def
= ⌧

\

MtJ stmt Kmain and ⌧

\

MtJM : stmt ret mthd K def
=

⌧

\

MtJmthd K, and where the abstract semantics ⌧ \MtJ stmt KPT : T ! T of each
program instruction stmt is defined in Figure 7.7 and Equation 7.3.8.

The following result proves the soundness of the abstract termination se-
mantics ⌧ \MtJ prog K 2 T with respect to the termination semantics ⌧MtJ prog K 2
E * O, given a sound numerical over-approximation R 2 D of the reachable
environments ⌧I(iJ prog K) at the initial program control point:

Theorem 7.3.8 ⌧MtJ prog K 4 �T[R]⌧ \MtJ prog K

Proof (Sketch).
The proof follows from the soundness of the operators of the decision trees
abstract domain (Lemma 7.3.3, Lemma 7.3.4, Lemma 7.3.5, and Lemma 7.3.6)

used for the definition of ⌧ \MtJ prog K 2 T . ⌅

In particular, the abstract termination semantics provides su�cient pre-
conditions for ensuring definite termination of a program for a given over-
approximation R 2 D of the set of initial states I ✓ ⌃:

Corollary 7.3.9 A program must terminate for execution traces starting from
a given set of initial states �D(R) if �D(R) ✓ dom(�T[R]⌧ \MtJ prog K).

Example. In the following, we recall the example introduced at the begin-
ning of the chapter and we present the fully detailed analysis of the program
using the abstract domain of decision trees.

Example 7.3.10
Let us consider again the recursive program of Example 7.2.1:

f :
if

1(1 < x) then
2
x := x� 1

3
call f

else

4
skip

fi

5
return

main :
6
x := ?

7
call f

8
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We present the analysis of the program using interval constraints based on
the intervals abstract domain (cf. Section 3.4.1) for the decision nodes, and
ordinal-valued functions for the leaf nodes (cf. Chapter 6).

The starting point is the zero function at the program final control point:

8 : LEAF : �x. 0

The ranking function is then propagated backwards towards the program ini-
tial control point taking into account the call to the recursive procedure f.

At program control point 5 the semantics of the return instruction simply
increases the value of the ranking function:

5 : LEAF : �x. 1.

The semantics of the skip instruction does the same at program point 4:

4 : LEAF : �x. 2.

Instead, the recursive call at program control point 3 returns:

3 : LEAF : ?F

which is propagated by the variable assignment at program control point 2:

2 : LEAF : ?F.

Thus, the first iterate of the call to f is able to conclude that the procedure
terminates in at most three execution steps when 1 < x is not satisfied:

1 : NODE{x� 2 � 0} : (LEAF : ?F); (LEAF : �x. 3)

Then, during the second iterate, the recursive call at program control
point 3 increases the value of the ranking function obtained after the first
iterate (plus the ranking function obtained at program control point 5):

3 : NODE{x� 2 � 0} : (LEAF : ?F); (LEAF : �x. 5)

and, at program control point 2, the operator ASSIGNT replaces the program
variable x with the expression x� 1 within the decision tree:

2 : NODE{x� 3 � 0} : (LEAF : ?F); (LEAF : �x. 6).

Thus, the second iterate of the call to f is able to conclude that the procedure
terminates in at most seven execution steps, when it calls itself recursively only
once, and in at most three program steps when 1 < x is not satisfied:
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1 : NODE{x� 3 � 0} :
LEAF : ?F;
NODE{x� 2 � 0} : (LEAF : �x. 7); (LEAF : �x. 3)

Similarly, the third iterate of the call to f concludes that the procedure
terminates in at most eleven execution steps, when it calls itself recursively
twice, in at most seven execution steps, when it calls itself recursively only
once, and in at most three program steps when 1 < x is not satisfied:

1 : NODE{x� 4 � 0} :
LEAF : ?F;
NODE{x� 3 � 0} :

LEAF : LEAF : �x. 11;
NODE{x� 2 � 0} : (LEAF : �x. 7); (LEAF : �x. 3)

Then, the widening extrapolates the ranking function on the partitions
over which it is not yet defined:

1 : NODE{x� 3 � 0} :
LEAF : �x. 4x� 1;
NODE{x� 2 � 0} : (LEAF : �x. 7); (LEAF : �x. 3)

yielding a fixpoint for the call to f within the main procedure.

The ranking function associated with program control point 7 is:

7 : NODE{x� 3 � 0} :
LEAF : �x. 4x;
NODE{x� 2 � 0} : (LEAF : �x. 8); (LEAF : �x. 4)

Finally, the non-deterministic assignment at program control point 6 yields:

6 : LEAF : �x. ! + 8.

which proves that the program is always terminating, whatever the initial
value of the program variable x.

The results presented in this chapter are only preliminary, more general
results being necessary to cover all practical cases.



8
Implementation

This chapter presents our prototype static analyzer FuncTion which is based
on piecewise-defined ranking functions. We also propose the most recent ex-
perimental evaluation.

Ce chapitre présente notre prototype d’analyseur statique FuncTion qui est
basé sur des fonctions de rang définies par morceaux. Nous présentons aussi
l’évaluation expérimentale la plus récente.

8.1 FuncTion

We have implemented a prototype static analyzer FuncTion based on the
decision trees abstract domain presented in Chapter 5. It is available online:
http://www.di.ens.fr/

~

urban/FuncTion.html.
The prototype accepts programs written in a (subset of)C, without struct

and union types. It provides only a limited support for arrays and pointers.
The only basic data type are mathematical integers, deviating from the stan-
dard semantics of C. The prototype is written in OCaml and, at the time
of writing, the available numerical abstractions for handling linear constraints
within the decision nodes are based on the intervals abstract domain [CC76]
(cf. Section 3.4.1), the convex polyhedra abstract domain [CH78] (cf. Sec-
tion 3.4.2), and the octagons abstract domain [Min06] (cf. Section 3.4.3),
and the available abstraction for handling functions within the leaf nodes are
based on a�ne functions. The numerical abstract domains are provided by the
APRON library [JM09]. It is also possible to activate the extension to ordinal-
valued ranking functions presented in Chapter 6, and tune the precision of the
analysis by adjusting the widening delay.

To improve precision, we avoid trying to compute a ranking function for the
non-reachable states: FuncTion runs a forward analysis to over-approximate

http://www.di.ens.fr/~urban/FuncTion.html
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Figure 8.1: Comparison of di↵erent parameterizations of FuncTion.

the reachable states using a numerical abstract domain (cf. Section 3.4).
Then, it runs the backward analysis to infer a ranking function, intersecting
its domain at each step with the states identified by the previous analysis.

The analysis proceeds by structural induction on the program syntax, iter-
ating loops and recursive procedures (cf. Chapter 7) until an abstract fixpoint
is reached. In case of nested loops, a fixpoint on the inner loop is computed for
each iteration of the outer loop, following [Bou93, MH92]. It is also possible
to activate the extension of FuncTion with conflict-driven learning [DU15].

8.2 Experimental Evaluation

We evaluated our prototype implementation FuncTion against 288 terminat-
ing C programs collected from the termination category of the 4th Interna-
tional Competition on Software Verification (SV-COMP 2015). FuncTion
provides only a limited support for arrays and ponters. Therefore, we were
not able to analyze 17% of the SV-COMP 2015 benchmark test cases.

The experiments were performed on a system with a 1.30GHz 64-bit Dual-
Core CPU (Intel i5-4250U) and 4GB of RAM, and running Ubuntu 14.04.

In Figure 8.1, we compared di↵erent parameterizations of FuncTion. The
results match the expectations: FuncTion parameterized with interval con-
straints based on the intervals abstract domains (cf. Section 3.4.1) and a
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Tot Time Timeouts

FuncTion 200 1.5s 15

AProVE [SAF+15] 256 15.9s 24

FuncTion [Urb15] 175 0.7s 5

HIPTnT+ [LQC15] 246 1.2s 4

Ultimate [HDL+15] 226 15.3s 35

(a)

FuncTion

⌅ N ⇥ #
AProVE [SAF+15] 15 71 185 17

FuncTion [Urb15] 25 0 175 88

HIPTnT+ [LQC15] 22 68 178 20

Ultimate [HDL+15] 41 67 159 21

(b)

Figure 8.2: Overview of the experimental evaluation.

widening delay of two iterations is the fastest but least precise, and Func-
Tion parameterized with polyhedral constraints based on the polyhedra ab-
stract domain (cf. Section 3.4.2) and a widening delay of three iterations is
the slowest but most precise. We observed that delaying the widening further
marginally improves precision but significantly increases running times.

We also compared FuncTion to the other tools that participated to the
termination category of SV-COMP 2015 : AProVE [SAF+15], the prelim-
inary version of FuncTion [Urb15], HIPTnT+ [LQC15], and Ultimate
[HDL+15]. FuncTion, with respect to its preliminary version, has been ex-
tended with conflict-driven learning [DU15]. In the comparison, we imple-
mented FuncTion to use interval constraints and a two iteration widening
delay, and respond to failure to prove a program terminating by using polyhe-
dral constraints with three iterations widening delay. The reported execution
times are for the entire run, which may involve trying both parameterizations.
It was not possible to run all the tools on the same system because we did not
have access to the competition versions of AProVE, HIPTnT+ and Ulti-
mate. For these tools, we used the results of SV-COMP 2015 1 even though
the competition was conducted on more powerful systems with a 3.40GHz
64-bit Quad-Core CPU (Intel i7-4770) and 33GB of RAM.

Figure 8.2 summarizes our experimental evaluation and Figure 8.3 shows
a detailed comparison of FuncTion against each other tool. In Figure 8.2a,
the first column reports the total number of programs that each tool could
prove terminating, the second column reports the average running time in
seconds for the programs where the tool proved termination, and the last
column reports the number of time outs. We used a time limit of 180 seconds
for each program test case. In Figure 8.2b, the first column (⌅) lists the total
number of programs that the tool was not able to prove termination for and

1
http://sv-comp.sosy-lab.org/2015/results/Termination.table.html

http://sv-comp.sosy-lab.org/2015/results/Termination.table.html
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Figure 8.3: Detailed comparison of our prototype FuncTion against its pre-
vious version [Urb15] (a), AProVE [SAF+15] (b), HIPTnT+ [LQC15] (c),
and Ultimate [HDL+15] (d).

that FuncTion could prove terminating, the second column (N) reports the
total number of programs that FuncTion was not able to prove termination
for and that the tool could prove terminating, and the last two columns report
the total number of programs that both the tool and FuncTion were able (⇥)
or unable (#) to prove terminating. The same symbols are used in Figure 8.3.

Figure 8.2a shows that FucTion improves by around 9% the result of
its preliminary version. The increase in the execution time is not evenly dis-
tributed, and about 2% of the program test cases require more than 20 seconds
to be proved terminating by FuncTion (cf. also Figure 8.3a). The reason
for this overhead is the heuristic that we have chosen to guide the conflict-
driven analysis, which appears to be unfortunate in these cases [DU15]. From
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Tot Time Timeouts

FuncTion 20 0.1s 1

AProVE [SAF+15] 20 4.5s 3

FuncTion [Urb15] 18 0.2s 0

HIPTnT+ [LQC15] 19 0.3s 1

Ultimate [HDL+15] 22 7.4s 1

(a)

FuncTion

⌅ N ⇥ #
AProVE [SAF+15] 3 3 17 2

FuncTion [Urb15] 2 0 18 5

HIPTnT+ [LQC15] 5 4 15 1

Ultimate [HDL+15] 3 5 17 0

(b)

Figure 8.4: crafted: overview of the experimental evaluation.

Figure 8.3a it also emerges that, as expected, the previous version of Func-
Tion gives up earlier when unable to prove termination. Instead, FuncTion
persists in the analysis and times out slightly more frequently.

In Figure 8.3b and Figure 8.3d we clearly notice that, despite the fact
that AProVE and Ultimate were run on the more powerful machines of
SV-COMP 2015, FuncTion is generally faster but able to prove termination
of respectively 19% and 9% fewer program test cases (cf. also Figure 8.2a).

HIPTnT+ is able to prove termination of 16% more programs than Func-
Tion (cf. Figure 8.2a), but FuncTion can prove termination of 52% of the
programs that HIPTnT+ is not able to prove terminating (8% of the total
program test cases, cf. Figure 8.2b). Note that, when performing the exper-
iments with the previous version of FuncTion [Urb15] we observed that the
SV-COMP 2015 machines provided a 2x speedup. Thus, the comparison of
the execution times of FuncTion and HIPTnT+ is currently inconclusive.

Finally, we noticed that 1% of the SV-COMP 2015 program test cases
could be proved terminating only by FuncTion (2.7% only by AProVE, 1%
only by HIPTnT+, and 1.7% only by Ultimate). None of the tools was able
to prove termination for 0.7% of the programs.

In the following, we further detail our experimental evaluation. In par-
ticular, we further discuss the comparison of our prototype implementation
FuncTion with each of the other tools that participated to the termination
category of SV-COMP 2015.

The SV-COMP 2015 program test cases for termination are arranged into
four verification tasks, according to the characteristics of the programs: crafted
(programs manually crafted by the participants to the competition), crafted-lit
(programs collected from the literature), memory-alloca (programs with dy-
namic memory allocation), and numeric (programs implementing numerical
algorithms). For each verification task, a dedicated overview of the exper-
imental evaluation is shown in Figure 8.4a and 8.4b (crafted), Figure 8.6a



154 8. Implementation

0.01 0.1 1 10 100
0.01

0.1

1

10

100

FuncTion

A
P
r
o
V
E

[S
A
F
+
15

]

(a) crafted

0.01 0.1 1 10 100
0.01

0.1

1

10

100

FuncTion
A
P
r
o
V
E

[S
A
F
+
15

]

(b) crafted-lit

0.01 0.1 1 10 100
0.01

0.1

1

10

100

FuncTion

A
P
r
o
V
E

[S
A
F
+
15

]

(c) memory-alloca

0.01 0.1 1 10 100
0.01

0.1

1

10

100

FuncTion

A
P
r
o
V
E

[S
A
F
+
15

]

(d) numeric

Figure 8.5: Detailed comparison of FuncTion against AProVE [SAF+15].

and 8.6b (crafted-lit), Figure 8.8a and 8.8b (memory-alloca), and Figure 8.10a
and 8.10b (numeric). As in Figure 8.2a, the first column of the tables reports
the total number of programs that each tool was able to prove termination
for, the second column reports the average running time in seconds for the
programs where the tool proved termination, and the last column reports the
number of time outs. We used a time limit of 180 seconds for each program
test case. As in Figure 8.2b, the first column (⌅) of the tables reports the total
number of programs that FuncTion was able to prove terminating and that
the tool was not, the second column (N) reports the total number of programs
that the tool was able to prove terminating and that FuncTion was not, and
the last two columns report the total number of programs that both the tool
and FuncTion were able (⇥) or unable (#) to prove terminating. The same
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Tot Time Timeouts

FuncTion 72 1.9s 10

AProVE [SAF+15] 105 13.2s 16

FuncTion [Urb15] 64 0.7s 2

HIPTnT+ [LQC15] 115 0.8s 3

Ultimate [HDL+15] 113 10s 5

(a)

FuncTion

⌅ N ⇥ #
AProVE [SAF+15] 9 42 63 13

FuncTion [Urb15] 8 0 64 55

HIPTnT+ [LQC15] 2 45 70 10

Ultimate [HDL+15] 7 48 65 7

(b)

Figure 8.6: crafted-lit: overview of the experimental evaluation.

symbols are used for the detailed comparison of FuncTion against AProVE
(Figure 8.5), its previous version (Figure 8.7), HIPTnT+ (Figure 8.9), and
Ultimate (Figure 8.11).

Figure 8.5 shows, for each verification task, a detailed comparison of Func-
Tion against AProVE [SAF+15]. In the crafted verification task, the tool
are able to prove the termination of the same number of programs (cf. also
Figure 8.4a), while in the crafted-lit verification task, AProVE performs much
better than FuncTion (cf. also Figure 8.6a). In all verification tasks, Func-
Tion is faster despite running on a less powerful machine than AProVE. In
particular, we observe that AProVE times out on most of the programs that
only FuncTion is able to prove terminating.

In Figure 8.7, we observe a comparison of FuncTion against its previous
version [Urb15]. The numeric verification task is where FuncTion improves
the most the result of its previous version (around 17%, cf. also Figure 8.10a).
In the crafted-lit verification task, we clearly see that, as expected, Func-
Tion spends more execution time and often times out when unable to prove
termination (cf. also Figure 8.6a).

The comparison of FuncTion against HIPTnT+ is shown in Figure 8.9.
In the crafted-lit verification task HIPTnT+ performs better than FuncTion
(cf. also Figure 8.6a), while FuncTion performs better than HIPTnT+ in
the memory-alloca verification task (cf. also Figure 8.8a). Note that, as men-
tioned, when performing the experiments with the previous version of Func-
Tion [Urb15] we observed that the more powerful SV-COMP 2015 machines
provided a 2x speedup in the execution time. Nonetheless, in the crafted

verification task FuncTion is faster than HIPTnT+ (cf. also Figure 8.4a),
and in the numeric verification task the execution time of the tools is at least
comparable (cf. also Figure 8.10a).

Figure 8.11 provides, for each verification task, a dedicated comparison of
FuncTion against Ultimate [HDL+15]. Similarly to HIPTnT+, Ultimate
performs much better than FuncTion in the crafted-lit verification task (cf.
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Figure 8.7: Detailed comparison of FuncTion against its previous version
[Urb15].

also Figure 8.6), while FuncTion performs much better in the memory-alloca

verification task (cf. also Figure 8.8). Moreover, despite running on a less
powerful machine, FuncTion is faster while Ultimate often times out.

Finally, the programs that could be proved terminating only by Func-
Tion were 4% of the programs for the crafted verification task (4% only by
Ultimate), 0.7% of the programs for the crafted-lit verification task (1.5% only
by AProVE and HIPTnT+, and 3.1% only by Ultimate), and 1.7% of the
programs for the numeric verification task (1.7% only by AProVE). For the
memory-alloca, 6.5% and 1.3% of the programs could be proved terminating
only by AProVE and HIPTnT+, respectively. All the programs that none
of the tools could prove terminating belong to the crafted-lit verification task.
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Tot Time Timeouts

FuncTion 61 2.5s 3

AProVE [SAF+15] 74 26.8s 3

FuncTion [Urb15] 56 1.1s 2

HIPTnT+ [LQC15] 60 2.9s 0

Ultimate [HDL+15] 42 42.4s 28

(a)

FuncTion

⌅ N ⇥ #
AProVE [SAF+15] 1 14 60 2

FuncTion [Urb15] 5 0 56 16

HIPTnT+ [LQC15] 11 10 50 6

Ultimate [HDL+15] 25 6 36 10

(b)

Figure 8.8: memory-alloca: overview of the experimental evaluation.
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Figure 8.9: Detailed comparison of FuncTion against HIPTnT+ [LQC15].
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Tot Time Timeouts

FuncTion 47 0.3s 1

AProVE [SAF+15] 57 10.7s 2

FuncTion [Urb15] 37 0.3s 1

HIPTnT+ [LQC15] 52 0.2s 0

Ultimate [HDL+15] 49 7.9s 1

(a)

FuncTion

⌅ N ⇥ #
AProVE [SAF+15] 2 12 45 0

FuncTion [Urb15] 10 0 37 12

HIPTnT+ [LQC15] 4 9 43 3

Ultimate [HDL+15] 6 8 41 4

(b)

Figure 8.10: numeric: overview of the experimental evaluation.
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Figure 8.11: Detailed comparison of FuncTion against Ultimate Au-
tomizer [HDL+15].
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9
A Hierarchy of Temporal

Properties

In this chapter, we generalize the abstract interpretation framework proposed
for termination by Patrick Cousot and Radhia Cousot [CC12] and presented
in Chapter 4, to other liveness properties. In particular, with reference to the
hierarchy of temporal properties proposed by Zohar Manna and Amir Pnueli
[MP90], we focus on guarantee (“something good occurs at least once”) and
recurrence (“something good occurs infinitely often”) temporal properties.

Specifically, static analyses of guarantee and recurrence temporal prop-
erties are systematically derived by abstract interpretation of the program
maximal trace semantics presented in Chapter 2 and Chapter 3. These meth-
ods automatically infer su�cient preconditions for the temporal properties by
leveraging the abstract domains based on piecewise-defined ranking functions
presented in Chapter 5 and Chapter 6. We augment these abstract domains
with new operators including a dual widening.

Finally, we describe the implementation of the static analysis methods
for guarantee and recurrence temporal properties into our prototype static
analyzer FuncTion described in Chapter 8.

Dans ce chapitre, nous généralisons le cadre de l’interprétation abstraite pro-
posé pour la terminaison par Patrick Cousot et Radhia Cousot [CC12] et
présenté dans le Chapitre 4, à d’autres propriétés de vivacité. En partic-
ulier, en référence à la hiérarchie des propriétés temporelles proposée par Zo-
har Manna et Amir Pnueli [MP90], nous nous concentrons sur les propriétés
temporelles de garantie (“quelque bon chose se produit au moins une fois”) et
de récurrence (“quelque bon chose se produit infiniment souvent”).

Plus précisément, les analyses statiques pour les propriétés temporelles de
garantie et de récurrence sont dérivées systématiquement par interprétation
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abstraite de la sémantique de traces maximales des programmes présentée
dans le Chapitre 2 et le Chapitre 3. Ces méthodes déduisent automatiquement
des conditions su�santes pour les propriétés temporelles en s’appuyant sur
les domaines abstraits basés sur des fonctions de rang définies par morceaux
présentées dans le Chapitre 5 et le Chapitre 6. Nous enrichissons ces domaines
abstraits avec de nouveaux opérateurs, dont un élargissement dual.

Enfin, nous décrivons la mise en œuvre des méthodes d’analyse statique
pour les propriétés temporelles de garantie et de récurrence dans notre proto-
type d’analyseur statique FuncTion décrit dans le Chapitre 8.

9.1 A Hierarchy of Temporal Properties

Leslie Lamport, in the late 1970s, suggested a classification of program prop-
erties into the classes of safety and liveness properties [Lam77]. The class of
safety properties is informally characterized as the class of properties stating
that “something bad never happens”, that is, a program never reaches an un-
acceptable state. The class of liveness properties is informally characterized
as the class of properties stating that “something good eventually happens”,
that is, a program eventually reaches a desirable state (cf. Section 1.2).

Zohar Manna and Amir Pnueli, in the late 1980s, suggested an alterna-
tive classification of program properties into a hierarchy [MP90], which dis-
tinguishes four basic classes making di↵erent claims about the frequency or
occurrence of “something good” mentioned in the informal characterizations
of the classes proposed by Leslie Lamport: safety properties, guarantee prop-
erties, recurrence properties, and persistence properties.

In the following, we only consider program properties expressible by tempo-
ral logic. To this end, we assume an underlying specification language, which
is used to describe properties of program states.

For instance, for the small imperative language presented in Chapter 3, we
define inductively the syntax of the state properties as follows:

' ::= bexp | l : bexp | ' ^ ' | ' _ ' l 2 L (9.1.1)

where bexp is a boolean expression (cf. Figure 3.1). The predicate l : bexp
allows specifying a program state property at a particular program control
point l 2 L. When a program state s 2 ⌃ satisfies the property ', we write
s |= ' and we say that s is a '-state. We also slightly abuse notation and write
' to also denote the set {s 2 ⌃ | s |= '} of states that satisfy the property '.
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Example 9.1.1
Let us consider the following program:

while

1(x � 0) do
2
x := x+ 1

od

while

3( true ) do
if

4(x  10) then
5
x := x+ 1

then

6
x := �x

fi

od

7

The first loop is an infinite loop for the values of the variable x greater than or
equal to zero: at each iteration the value of x is increased by one. The second
loop is an infinite loop for any value of the variable x: at each iteration, the
value of x is increased by one or negated when it becomes greater than ten.

The set of program environments E contains functions ⇢ : {x} ! Z map-
ping the program variable x to any possible value ⇢(x) 2 Z. The set of program
states ⌃

def
= {1,2,3,4,5,6,7}⇥ E consists of all pairs of numerical labels and

environments; the initial states are I def
= {h1, ⇢i | ⇢ 2 E}.

An example of state property allowed by the specification language de-
fined in Equation 9.1.1 is the property x = 3. The set of states that satisfy
this property is {1,2,3,4,5,6,7} ⇥ {hx, 3i}. Note however, that the states
h6, {hx, 3i}i and h7, {hx, 3i}i are not reachable from the initial states.

Another examples of state property allowed by the specification language
is 7 : x = 3, which is only satisfied by the unreachable state h7, {hx, 3i}i.

The program properties within the hierarchy are then defined by means of
the temporal operators always 2 and eventually 3.

9.1.1 Safety Properties

The class of safety properties is informally characterized as the class of prop-
erties stating that “something good alway happens”, that is, a program never
reaches an unacceptable state. The safety properties that we consider are
expressible by a temporal formula of the following form:

2
'

where ' is a state property. The temporal formula expresses that all program
states in every program trace satisfy the state property '.
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In general, these safety properties are used to express invariance of some
program state property over all computations.

A typical safety property is program partial correctness, which guaran-
tees that all terminating computations produce correct results, and which is
expressible by the following temporal formula:

2(l
e

:  )

where l

e

2 L denotes the program final control point and the formula  

specifies the postcondition of the program.
Another typical safety property is mutual exclusion, which guarantees that

no two concurrent processes can enter their critical section at the same time,
and which is expressible by the following temporal formula:

2(l1 : false _ l2 : false)

where l1 2 L and l2 2 L denote the program control points representing the
critical section of the first and second process, respectively.

Example 9.1.2
Let us consider again the program of Example 9.1.1:

while

1(x � 0) do
2
x := x+ 1

od

while

3( true ) do
if

4(x  10) then
5
x := x+ 1

then

6
x := �x

fi

od

7

An example of safety property is the formula 2(x = 3), which is never satisfied
by the program. Instead, since the first while loop increases the value of the
variable x at each iteration, the safety property 2(3  x) is satisfied when
the program initial states are limited to the set {h1, ⇢i 2 ⌃ | 3  ⇢(x)}.

The class of safety properties that we consider are closed under conjunction.
In fact, any temporal formula of the form 2

'1 ^ 2
'2 is equivalent to the

safety property formula 2('1 ^ '2).
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9.1.2 Guarantee Properties

The class of guarantee properties is informally characterized as the class of
properties stating that “something good happens at least once”, that is, a
program eventually reaches a desirable state. The guarantee properties that
we consider are expressible by a temporal formula of the following form:

3'

where ' is a state property. The temporal formula expresses that at least one
program state in every program trace satisfies the property ', but it does not
promise any repetition.

In general, these guarantee properties are used to ensure that some event
happens once during a program execution.

A typical guarantee property is program termination, which ensures that
all computations are finite, expressible by the following temporal formula:

3(l
e

: true)

where l

e

2 L denotes the program final control point.
Another typical guarantee property is program total correctness, which

ensures that all computations starting in a '-state terminate in a  -state,
expressible by the following temporal formula:

3(l
i

: ¬' _ l

e

:  )

where l
i

, l

e

2 L respectively denote the initial and final program control point.

Example 9.1.3
Let us consider again the program of Example 9.1.1:

while

1(x � 0) do
2
x := x+ 1

od

while

3( true ) do
if

4(x  10) then
5
x := x+ 1

then

6
x := �x

fi

od

7
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An example of guarantee property is the formula 3(x = 3), which is satisfied
when the program initial states are limited to the set {h1, ⇢i 2 ⌃ | ⇢(x) 
3}. In particular, note that when the program initial state are limited to
{h1, ⇢i 2 ⌃ | 0  ⇢(x)  3}, the guarantee property is satisfied within the first
while loop. Instead, when the program initial states are limited to {h1, ⇢i 2
⌃ | ⇢(x) < 0}, the guarantee property is satisfied within the second while loop.

Another example of guarantee property is the formula 3(3  x), which is
always satisfied by the program whatever its initial states.

The class of guarantee properties that we considered are closed under dis-
junction. In fact, any temporal formula of the form 3'1 _3'2 is equivalent
to the guarantee property formula 3('1 _ '2).

The classes of safety and guarantee properties that we consider are not
closed under negation. On the other hand, the negation of a safety property
formula 2

' is a guarantee property formula 3¬'. Similarly, the negation of
a guarantee property formula 3' is a safety property formula 2¬'.

9.1.3 Obligation Properties

The program properties that cannot be expressed by either a safety or a guar-
antee property formula belong to the compound class of obligation properties,
which contains program properties expressible as a boolean combination of a
safety property formula and guarantee property formula. The obligation prop-
erties that we consider are represented by a temporal formula of the form:

2
' _3 

where ' and  are state properties.

9.1.4 Recurrence Properties

The class of recurrence properties is informally characterized as the class of
properties stating that “something good happens infinitely often”, that is, a
program reaches a desirable state infinitely often. The recurrence properties
that we consider are expressible by a temporal formula of the following form:

23'

where ' is a state property. The temporal formula expresses that infinitely
many program states in every program trace satisfy the property '.
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In general, these recurrence properties are used to ensure that some event
happens infinitely many times during a program execution.

A typical recurrence property is program starvation freedom, which ensures
that a process will eventually enter its critical section, and which is expressible
by the following temporal formula:

23(l
c

: true)

where l

c

2 L is the program control point representing the critical section.

Example 9.1.4
Let us consider again the program of Example 9.1.1:

while

1(x � 0) do
2
x := x+ 1

od

while

3( true ) do
if

4(x  10) then
5
x := x+ 1

then

6
x := �x

fi

od

7

The recurrence property represented by the formula 23x = 3 is satisfied
when the program initial states are limited to the set {h1, ⇢i 2 ⌃ | ⇢(x) < 0}.
In particular, note that the recurrence property is satisfied only within the
second while loop. Instead, the recurrence property 233  x is always
satisfied by the program whatever its initial states.

The class of recurrence properties that we consider are closed under dis-
junction. In fact, any temporal formula of the form 23'1 _ 23'2 is
equivalent to the recurrence property formula 23('1 _ '2).

9.1.5 Persistence Properties

The class of persistence properties is informally characterized as the class of
properties stating that “something good eventually happens continuously”,
that is, a program eventually reaches a desirable state and continues to stay
in a desirable state. The persistence properties that we consider are expressible
by a temporal formula of the following form:

32
'
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where ' is a state property. The temporal formula expresses that all but
finitely many program states (and, in particular, all program states from a
certain point on) in every program trace satisfy the property '.

In general, these persistence properties are used to ensure the eventual
stabilization of the program into a state. They allow an arbitrary delay until
the stabilization, but require that once it occurs it is continuously maintained.

Example 9.1.5
Let us consider again the program of Example 9.1.1:

while

1(x � 0) do
2
x := x+ 1

od

while

3( true ) do
if

4(x  10) then
5
x := x+ 1

then

6
x := �x

fi

od

7

An example of persistence property is the formula 32
x = 3, which is never

satisfied by the program. Instead, the persistence property represented by
the formula 323  x is satisfied when the program initial states are limited
to the set {h1, ⇢i 2 ⌃ | 0  ⇢(x)}. In particular, note that the persistence
property is satisfied only within the first while loop.

The class of persistence properties that we consider are closed under con-
junction. In fact, any temporal formula of the form 32

'1 ^ 32
'2 is

equivalent to the persistence property formula 32('1 ^ '2).

The classes of recurrence and persistence properties that we consider are
not closed under negation but, analogously to the classes of safety and guar-
antee properties, the negation of a formula in one of the classes belongs to the
other. The negation of a recurrence property formula 23' is a persistence
property formula 32¬'. Similarly, the negation of a persistence property
formula 32

' is a recurrence property formula 23¬'.

9.1.6 Reactivity Properties

The program properties that cannot be expressed by either a recurrence or a
persistence property formula belong to the compound class of reactivity prop-
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erties, which contains program properties expressible as a boolean combination
of a recurrence property formula and a persistence property formula. The re-
activity properties that we consider are represented by a temporal formula of
the following form:

23' _32
 

where ' and  are state properties.

9.2 Guarantee Semantics

In the following, we generalize Section 4.2 and Section 4.3 from definite ter-
mination to guarantee properties. We define a sound and complete semantics
for proving guarantee temporal properties by abstract interpretation of the
program maximal trace semantics (cf. Equation 2.2.5). The generalization is
straightforward but provides a building block for the next Section 9.3. Then,
we propose a sound decidable abstraction based on piecewise-defined ranking
functions (cf. Chapter 5 and Chapter 6).

9.2.1 Guarantee Semantics

The guarantee semantics, given a set of desirable states S ✓ ⌃, is a ranking
function ⌧g[S] 2 ⌃* O defined starting from the states in S, where the func-
tion has value zero, and retracing the program backwards while mapping every
state in ⌃ definitely leading to a state in S (i.e., a state such that all the traces
to which it belongs eventually reach a state in S) to an ordinal in O represent-
ing an upper bound on the number of program execution steps remaining to
S. The domain dom(⌧g[S]) of ⌧g[S] is the set of states definitely leading to a
desirable state in S: all traces branching from a state s 2 dom(⌧g[S]) reach a
state in S in at most ⌧g[S]s execution steps, while at least one trace branching
from a state s 62 dom(⌧g[S]) never reaches S.

Note that the program traces that satisfy a guarantee property can also
be infinite traces. In particular, guarantee properties are satisfied by finite
subsequences of possibly infinite traces. Thus, in order to reason about sub-
sequences, we define the function sq: P(⌃+1) ! P(⌃+), which extracts the
finite subsequences of a set of sequences T ✓ ⌃+1:

sq(T )
def
= {� 2 ⌃+ | 9�0 2 ⌃⇤

,�

00 2 ⌃⇤1 : �0��00 2 T} (9.2.1)

We recall that the neighborhood of a sequence � 2 ⌃+1 in a set of sequences
T ✓ ⌃+1 is the set of sequences �0 2 T with a common prefix with � (cf.
Equation 4.2.3). A finite subsequence of a program trace satisfies a guarantee
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property if and only if it terminates in the desirable set of states (and never
encounters a desirable state before), and its neighborhood in the subsequences
of the program semantics consists only of sequences that are terminating in the
desirable set of states (and never encounter a desirable state before). The cor-
responding guarantee abstraction ↵

g[S] : P(⌃+1) ! P(⌃+) is parameterized
by a set of desirable states S ✓ ⌃ and it is defined as follows:

↵

g[S]T
def
=
�

�s 2 sq(T )
�

�

� 2 S̄

⇤
, s 2 S, nhbd(�, sf(T ) \ S̄

+1) = ; 
(9.2.2)

where S̄

def
= ⌃ \ S and the function sf : P(⌃+1) ! P(⌃+1) yields the set of

su�xes of a set of sequences T ✓ ⌃+1:

sf(T )
def
=
[

{� 2 ⌃+1 | 9�0 2 ⌃⇤ : �0� 2 T}. (9.2.3)

Example 9.2.1
Let T

def
= {(abcd)!, (cd)!, a!, cd!} and let S

def
= {c}. We have sf(T ) \ S̄

+1 =
{a!, d!}. Then, we have ↵g[S]T = {c, bc}. In fact, let us consider the trace
(abcd)!: the subsequences of (abcd)! that are terminating with c and never
encounter c before are {c, bc, abc, dabc}; for abc, we have pf(ab) \ pf(a!) =
{a} 6= ; and, for dabc, we have pf(dab) \ pf(d!) = {d} 6= ;. Similarly, let
us consider (cd)!: the subsequences of (cd)! that are terminating with c and
never encounter c before are {c, dc}; for dc, we have pf(d) \ pf(d!) = {d} 6= ;.

We can now define the guarantee semantics ⌧g[S] 2 ⌃* O:

Definition 9.2.2 (Guarantee Semantics) Given a desirable set of states
S ✓ ⌃, the guarantee semantics ⌧g[S] 2 ⌃ * O is an abstract interpretation
of the maximal trace semantics ⌧+1 2 P(⌃+1) (cf. Equation 2.2.5):

⌧g[S]
def
= ↵

Mrk(↵g[S](⌧+1)) (9.2.4)

where the abstraction ↵

Mrk : P(⌃+) ! (⌃ * O) is the same ranking abstrac-
tion defined in Equation 4.2.14.

The following result provides a fixpoint definition of the guarantee seman-
tics within the partially ordered set h⌃ * O,vi, where the computational
order is defined as in Equation 4.2.15 as:

f1 v f2 () dom(f1) ✓ dom(f2) ^ 8x 2 dom(f1) : f1(x)  f2(x).
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Theorem 9.2.3 (Guarantee Semantics) Given a desirable set of states S ✓
⌃, the guarantee semantics ⌧g[S] 2 ⌃* O can be expressed as a least fixpoint
in the partially ordered set h⌃* O,vi:

⌧g[S] = lfpv
;̇
�g[S]

�g[S]f
def
= �s.

8

>

<

>

:

0 s 2 S

sup {f(s0) + 1 | hs, s0i 2 ⌧} s 62 S ^ s 2 fpre(dom(f))

undefined otherwise
(9.2.5)

Example 9.2.4
Let us consider the following trace semantics:

where the highlighted states are the set S of desirable states.
The fixpoint iterates of the guarantee semantics ⌧g[S] 2 ⌃* O are:

0

0

0

1
0

0

0

2
1

0

0

0

2
1

0

0

0

where unlabelled states are outside the domain of the function.

Note that, when the set of desirable states S is the set of final states ⌦,
unsurprisingly we rediscover the definite termination semantics presented in
Section 4.2, since �g[⌦] = �Mt (cf. Equation 4.2.16).

Let ' be a state property. The '-guarantee semantics ⌧'g 2 ⌃* O:

⌧

'

g
def
= ⌧g['] (9.2.6)

is sound and complete for proving a guarantee property 3':

Theorem 9.2.5 A program satisfies a guarantee property 3' for execution
traces starting from a given set of initial states I if and only if I ✓ dom(⌧'g ).

Proof.
See Appendix A.6. ⌅
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9.2.2 Denotational Guarantee Semantics

In the following, we provide a structural definition of the '-guarantee seman-
tics ⌧'g 2 ⌃* O by induction on the syntax of programs written in the small
language presented in Chapter 3.

We partition ⌧

'

g with respect to the program control points: ⌧'g 2 L !
(E * O). In this way, to each program control point l 2 L corresponds a
partial function f : E * O, and to each program instruction stmt corresponds
a guarantee semantics ⌧'g J stmt K : (E * O)! (E * O).

The guarantee semantics ⌧'g J stmt K : (E * O)! (E * O) of each program
instruction stmt takes as input a ranking function whose domain represents the
environments always leading to ' from the final label of stmt, and determines
the ranking function whose domain represents the environments always leading
to ' from the initial label of stmt, and whose value represents an upper bound
on the number of program execution steps remaining to '.

The guarantee semantics of a skip instruction resets the value of the input
ranking function f : E * O for the environments that satisfy ', and otherwise
it increases its value to take into account another program execution step to
reach ' from the environments at the initial label of the instruction:

⌧

'

g J l

skip Kf def
= �⇢.

8

>

<

>

:

0 hl, ⇢i |= '

f(⇢) + 1 hl, ⇢i 6|= ' ^ ⇢ 2 dom(f)

undefined otherwise

(9.2.7)

Similarly, the guarantee semantics of a variable assignment l

X := aexp
resets the value of the input ranking function f : E * O for the environments
that satisfy '; otherwise, the resulting ranking function is defined over the
environments that, when subject to the variable assignment, always belong
to the domain of the input ranking function. The value of the input rank-
ing function for these environments is increased by one, to take into account
another execution step, and the value of the resulting ranking function is the
least upper bound of these values:

⌧

'

g J l

X := aexp Kf def
= �⇢.

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0 hl, ⇢i |= '

sup{f(⇢[X  v]) + 1 | v 2 JaexpK⇢}
hl, ⇢i 6|= ' ^ 9v 2 JaexpK⇢ ^

8v 2 JaexpK⇢ : ⇢[X  v] 2 dom(f)

undefined otherwise
(9.2.8)
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Note that all environments yielding a run-time error due to a division by zero
do not belong to the domain of the termination semantics of the assignment.

Example 9.2.6
Let X def

= {x}. We consider the following ranking function f : E * O:

f(⇢)
def
=

8

>

<

>

:

2 ⇢(x) = 1

3 ⇢(x) = 2

undefined otherwise

the backward assignment x :=x+ [1, 2] and the guarantee property 3(x = 3).
The guarantee semantics of the assignment, given the ranking function, is:

⌧

x=3
g Jx := x+ [1, 2] Kf(⇢) def

=

8

>

<

>

:

4 ⇢(x) = 0

0 ⇢(x) = 3

undefined otherwise

In particular, note that unlike Example 4.3.1, the function is also defined when
⇢(x) = 3, since the environment satisfies the property x = 3.

Given a conditional instruction if

lbexp then stmt1 else stmt2 fi, its
guarantee semantics takes as input a ranking function f : E * O and derives
the guarantee semantics ⌧'g J stmt1 Kf of stmt1, in the following denoted by S1,
and the guarantee semantics ⌧'g J stmt2 Kf of stmt2, in the following denoted
by S2. Then, the guarantee semantics of the conditional instruction is defined
by means of the ranking function F [f ] : E * O whose domain is the set of
environments that belong to the domain of S1 and to the domain of S2, and
that may both satisfy and not satisfy the boolean expression bexp:

F [f ]
def
= �⇢ 2 dom(S1) \ dom(S2).

8

>

<

>

:

sup{S1(⇢) + 1, S2(⇢) + 1}
JbexpK⇢ = {true, false}

undefined otherwise

and the ranking function F1[f ] : E * O whose domain is the set of environ-
ments ⇢ 2 E that belong to the domain of S1 and that must satisfy bexp:

F1[f ]
def
= �⇢ 2 dom(S1).

(

S1(⇢) + 1 JbexpK⇢ = {true}
undefined otherwise
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and the ranking function F2[f ] : E * O whose domain is the set of environ-
ments that belong to the domain of S2 and that cannot satisfy bexp:

F2[f ]
def
= �⇢ 2 dom(S2).

(

S2(⇢) + 1 JbexpK⇢ = {false}
undefined otherwise

The resulting ranking function is defined by joining F [f ], F1[f ], and F2[f ],
and resetting the value of the function for the environments that satisfy ':

⌧

'

g J if lbexp then stmt1 else stmt2 fi Kf def
= �⇢.

8

>

>

>

>

<

>

>

>

>

:

0 hl, ⇢i |= '

G(⇢) hl, ⇢i 6|= ' ^
⇢ 2 dom(G)

undefined otherwise
(9.2.9)

where G

def
= F [f ] [̇ F1[f ] [̇ F2[f ].

Example 9.2.7
Let X def

= {x}. We consider the guarantee property 3(x = 3) and the guaran-
tee semantics of the conditional statement if bexp then stmt1 else stmt2 fi.
We assume, given a ranking function f : E * O, that the guarantee semantics
of stmt1 is defined as:

⌧

x=3
g J stmt1 Kf(⇢) def

=

8

>

<

>

:

1 ⇢(x)  0

0 ⇢(x) = 3

undefined otherwise

and that the guarantee semantics of stmt2 is defined as

⌧

x=3
g J stmt2 Kf(⇢) def

=

8

>

>

>

>

<

>

>

>

>

:

3 0  ⇢(x) < 3

0 ⇢(x) = 3

3 3 < ⇢(x)

undefined otherwise

Then, when the boolean expression bexp is for example x  3, the guarantee
semantics of the conditional statement is:

⌧

x=3
g J if lbexp then stmt1 else stmt2 fi Kf(⇢) def

=

8

>

>

>

>

<

>

>

>

>

:

2 ⇢(x)  0

0 ⇢(x) = 3

4 3 < ⇢(x)

undefined otherwise



9.2. Guarantee Semantics 175

Instead, when bexp is for example the non-deterministic choice ?, we have:

⌧

x=3
g J if lbexp then stmt1 else stmt2 fi Kf(⇢) def

=

8

>

<

>

:

4 ⇢(x) = 0

0 ⇢(x) = 3

undefined otherwise

Note that, unlike Example 4.3.2, both functions are also defined when ⇢(x) =
3, since the environment satisfies the property x = 3.

The guarantee semantics of a loop instruction while

lbexp do stmt od

takes as input a ranking function f : E * O whose domain represents the
environments leading to ' from the final label of the instruction, and outputs
the ranking function which is defined as the least fixpoint of the function
�

'

g : (E * O)! (E * O) within hE * O,vi, analogously to Equation 9.2.5:

⌧

'

g J while lbexp do stmt od Kf def
= lfpv

;̇
�

'

g (9.2.10)

where the computational order is defined as in Equation 4.2.15:

f1 v f2 () dom(f1) ✓ dom(f2) ^ 8x 2 dom(f1) : f1(x)  f2(x).

The function �

'

g : (E * O) ! (E * O) takes as input a ranking function
x : E * O, resets its value for the environments that satisfy ', and adds to its
domain the environments for which one more loop iteration is needed before
'. In the following, the guarantee semantics ⌧'g J stmt Kx of the loop body is
denoted by S. The function �

'

g is defined by means of the ranking function
F [x] : E * O whose domain is the set of environments that belong to the
domain of S and to the domain of the input function f , and that may both
satisfy and not satisfy the boolean expression bexp:

F [x]
def
= �⇢ 2 dom(S) \ dom(f).

8

>

<

>

:

sup{S(⇢) + 1, f(⇢) + 1}
JbexpK⇢ = {true, false}

undefined otherwise

and the ranking function F1[x] : E * O whose domain is the set of environ-
ments ⇢ 2 E that belong to the domain of S and that must satisfy bexp:

F1[x]
def
= �⇢ 2 dom(S).

(

S(⇢) + 1 JbexpK⇢ = {true}
undefined otherwise
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and the ranking function F2[f ] : E * O whose domain is the set of environ-
ments that belong to the domain of the input function f and that cannot
satisfy bexp:

F2[f ]
def
= �⇢ 2 dom(f).

(

f(⇢) + 1 JbexpK⇢ = {false}
undefined otherwise

The resulting ranking function is defined by joining F [x], F1[x], and F2[f ],
and resetting the value of the function for the environments that satisfy ':

�

'

g (x)
def
= �⇢.

8

>

<

>

:

0 hl, ⇢i |= '

G(⇢) hl, ⇢i 6|= ' ^ ⇢ 2 dom(G)

undefined otherwise

(9.2.11)

where G

def
= F [x] [̇ F1[x] [̇ F2[f ].

Finally, the guarantee semantics of the sequential combination of instruc-
tions stmt1 stmt2, takes as input a ranking function f : E * O, determines
from f the guarantee semantics ⌧'g J stmt2 Kf of stmt2, and outputs the ranking
function determined by the guarantee semantics of stmt1 from ⌧

'

g J stmt2 Kf :

⌧

'

g J stmt1 stmt2 Kf def
= ⌧

'

g J stmt1 K(⌧'g J stmt2 Kf) (9.2.12)

The guarantee semantics ⌧'g J prog K 2 E * O of a program prog is a ranking
function whose domain represents the environments always leading to ', which
is determined by taking as input the constant function equal to zero for the
environments that satisfy ', and undefined otherwise:

Definition 9.2.8 (Guarantee Semantics) The guarantee semantics
⌧

'

g J prog K 2 E * O of a program prog is:

⌧

'

g J prog K = ⌧

'

g J stmt l K def
= ⌧

'

g J stmt K
 

�⇢.

(

0 hl, ⇢i |= '

undefined otherwise

!

(9.2.13)
where the function ⌧'g J stmt K : (E * O)! (E * O) is the guarantee semantics
of each program instruction stmt.

Note that, as pointed out in Remark 3.2.2, possible run-time errors are
ignored. Thus, all environments leading to run-time errors do not belong to
the domain of the guarantee semantics of a program prog.
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9.2.3 Abstract Guarantee Semantics

In the following, we propose a sound decidable abstraction of the guarantee
semantics ⌧'g J prog K 2 E * O, which is based on the piecewise-defined ranking
functions presented in Chapter 5 and Chapter 6. The abstraction is sound with
respect to the same approximation order defined in Equation 4.2.12 as:

f1 4 f2 () dom(f1) ◆ dom(f2) ^ 8x 2 dom(f2) : f1(x)  f2(x).

In particular, we complement the operators of the decision trees abstract
domain presented in Chapter 5 with a new unary operator RESETTJ' K, which
resets the leaves of a decision tree that satisfy a given property '.

Reset. The operator RESETTJ' K : L ! D ! T ! T for the reset of de-
cision trees is implemented by Algorithm 24: the function reset, given a
program control point p 2 L, a sound over-approximation d 2 D of the reach-
able environments, and a decision tree t 2 T , reasons by induction on the
structure of the property '. In particular, when ' specifies the property at a
particular program control point l 2 L (cf. Line 55), the decision tree is reset
only if l coincides with p (cf. Line 57). Instead, when ' is a conjunction of
two properties '1 and '2 (cf. Line 58), or a conjunction of two boolean ex-
pressions bexp1 and bexp2 (cf. Line 44), the resulting decision trees are merged
by the function MEET defined in Algorithm 8 (cf. Line 59 and Line 47).
Similarly, when ' is a disjunction of two properties '1 and '2 (cf. Line 60),
or a disjunction of two boolean expressions bexp1 and bexp2 (cf. Line 48), the
resulting decision trees are merged by the approximation join A-JOIN defined
in Algorithm 6 (cf. Line 61 and Line 51). Finally, when ' is a comparison of
arithmetic expressions aexp1 ./ aexp2 (cf. Line 52), a set of constraints J is
produced by the operator FILTERC defined in Equation 5.2.23 (cf. Line 53),
which is used by the auxiliary function reset-aux (cf. Line 54).

The function reset-aux augments a decision tree with a given set of linear
constraints. Then, only the subtrees whose paths from the root of the decision
tree satisfy these constraints are reset. In particular, the function reset-aux
takes as input a decision tree t 2 T , a set C 2 P(C) of linear constraints
representing an over-approximation of the reachable environments, and a set
J 2 P(C) of linear constraints that need to be added to the decision tree.
When J is not empty (cf. Line 12), the linear constraints J are added to
the decision tree in descending order with respect to <C: at each iteration a
linear constraint j 2 C is extracted from J (cf. Line 13), which is the largest
constraint in J with respect to the constraints in canonical form. Then, the
function reset-aux possibly adds a decision node for the linear constraint j
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Algorithm 24 : Tree Reset

1: function reset-aux(t,C, J) . t 2 T , C, J 2 P(C)
2: if isEmpty(J) then
3: if isLeaf(t) then return LEAF : RESETF(t.f)
4: else if isNode(t) then
5: if isRedundant(t.c, C) then return reset-aux(t.l, C, J)
6: else if isRedundant(¬j, C) then
7: return reset-aux(t.r, C, J)
8: else . t.c can be kept in t

9: l reset-aux(t.l, C [ {t.c}, J)
10: r  reset-aux(t.r, C [ {¬t.c}, J)
11: return NODE{t.c} : l, r

12: else if ¬isEmpty(J) then
13: j  max J . j is the largest linear constraint appearing in J

14: if isLeaf(t) _ (isNode(t) ^ (t.c <C j _ t.c <C ¬j) then
15: if isRedundant(j, C) then return reset-aux(t, C, J \ {j})
16: else if isRedundant(¬j, C) then return t

17: else if ¬j <C j then . j can be added to t

18: return NODE{j} : reset-aux(t, C [ {j}, J \ {j}), t
19: else if j <C ¬j then . ¬j can be added to t

20: return NODE{¬j} : t,reset-aux(t, C [ {j}, J \ {j})
21: else if isNode(t) ^ j <C t.c ^ ¬j <C t.c then
22: if isRedundant(t.c, C) then return reset-aux(t.l, C, J)
23: else if isRedundant(¬j, C) then
24: return reset-aux(t.r, C, J)
25: else . t.c can be kept in t

26: l reset-aux(t.l, C [ {t.c}, J)
27: r  reset-aux(t.r, C [ {¬t.c}, J)
28: return NODE{t.c} : l, r

29: else if isNode(t) ^ ¬j <C j then . t.c and j are equal
30: if isRedundant(j, C) then return reset-aux(t.l, C, J \ {j})
31: else if isRedundant(¬j, C) then return t

32: elsereturn NODE{j} : reset-aux(t.l, C [ {j}, J \ {j}), t
33: else if isNode(t) ^ j <C ¬j then . t.c and ¬j are equal
34: if isRedundant(j, C) then return reset-aux(t.r, C, J \ {j})
35: else if isRedundant(¬j, C) then return t

36: else return NODE{¬j} : t,reset-aux(t.r, C [ {j}, J \ {j})
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Algorithm 24 : Tree Reset

37: function resetJ' K(p, d, t) . p 2 L, d 2 D, t 2 T
38: switch ' do
39: case bexp :
40: switch bexp do
41: case ? : return t

42: case not bexp :
43: return resetJ¬bexp K(p, d, t)
44: case bexp1 and bexp2 :
45: t1  resetJ bexp1 K(p, d, t)
46: t2  resetJ bexp2 K(p, d, t)
47: return meet(d, t1, t2)

48: case bexp1 or bexp2 :
49: t1  resetJ bexp1 K(p, d, t)
50: t2  resetJ bexp2 K(p, d, t)
51: return a-join(d, t1, t2)

52: case aexp1 ./ aexp2 :
53: J  filterCJ aexp1 ./ aexp2 Kd
54: return reset-aux(t, �C(d), J)

55: case l : bexp :
56: if p 6= l then return t

57: else return resetJ bexp K(p, d, t)
58: case '1 and '2 :
59: return meet(d,resetJ bexp1 K(p, d, t),resetJ bexp2 K(p, d, t))
60: case '1 or '2 :
61: return a-join(d,resetJ bexp1 K(p, d, t),resetJ bexp2 K(p, d, t))

or its negation ¬j (cf. Lines 14-20), or continues the descent along the paths of
the decision tree (cf. Lines 21-36). In the first case, reset-aux tests j and ¬j
for redundancy with respect to C (cf. Lines 15-16): when ¬j is redundant with
respect to C the whole decision tree is returned unmodified; otherwise, reset-
aux adds a decision node for j while leaving unmodified its right subtree (cf.
Line 18), if j is already in canonical form (cf. Line 17), or it adds a decision
node for for ¬j while leaving unmodified its left subtree (cf. Line 20), if
¬j is the canonical form of j (cf. Line 19). In the second case, reset-aux
accumulates in C the encountered linear constraints (cf. Lines 26-27), possibly
removing redundant decision nodes (cf. Lines 22-24) and leaving the right
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⌧

'\

g J l

skip Kt def
= RESETTJ' K(l, R, STEPT(t))

⌧

'\

g J l

X :=aexp Kt def
= RESETTJ' K(l, R, (B-ASSIGNTJX :=aexp KR)(t))

⌧

'\

g J if lbexp then stmt1 else stmt2 fi Kt def
=

RESETTJ' K(l, R, F

\

1 [t] gT[R] F \

2 [f ])

F

\

1 [t]
def
= (FILTERTJ bexp KR)(⌧'\g J stmt1 Kt)

F

\

2 [t]
def
= (FILTERTJ not bexp KR)(⌧'\g J stmt2 Kt)

⌧

'\

g J while lbexp do stmt od Kt def
= lfp\ �'\g

�

'\

g (x)
def
= RESETTJ' K(l, R, F

\[x] gT[R] (FILTERTJ not bexp KR)(t))

F

\[x]
def
= (FILTERTJ bexp KR)(⌧'\g J stmt Kx)

⌧

'\

g J stmt1 stmt2 Kt def
= ⌧

'\

g J stmt1 K(⌧'\g J stmt2 Kt)

Figure 9.1: Abstract guarantee semantics of instructions stmt.

or left decision subtree unmodified when the encountered linear constraints
coincide with those appearing in J (cf. Lines 29-32) or their negations (cf.
Lines 33-36). When J is empty (cf. Line 2), reset-aux accumulates in C the
linear constraints encountered along the paths (cf. Lines 9-10) up to a leaf
node, possibly removing constraints that are redundant (cf. Line 5) or whose
negation is redundant (cf. Line 6) with respect to C.

Once reached a leaf node, the operator RESETFJ' K : F ! F is invoked
(cf. Line 3): given a function f 2 F , it simply resets its value to zero:

RESETF(f)
def
= �X1, . . . , X

k

. 0 (9.2.14)

Abstract Guarantee Semantics. The operators of the decision trees ab-
stract domain can now be used to define the abstract guarantee semantics.

In the following, as in Section 5.3 we assume to have, for each program
control point l 2 L, a sound numerical over-approximation R 2 D of the
reachable environments ⌧I(l) 2 P(E): ⌧I(l) ✓ �D(R) (cf. Section 3.4).

In Figure 9.1 we define the semantics ⌧'\g J stmt K : T ! T , for each program

instruction stmt. Each function ⌧'\g J stmt K : T ! T takes as input a decision
tree over-approximating the ranking function corresponding to the final control
point of the instruction, and outputs a decision tree defined over a subset of the
reachable environments R 2 D, which over-approximates the ranking function
corresponding to the initial control point of the instruction. Note that each
function ⌧

'\

g J stmt K invokes the reset operator RESETT. For a while loop,
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lfp\ �'\g is the limit of the iteration sequence with widening:

y0
def
= ?T

y

n+1
def
=

(

y

n

�

'\

g (y
n

) vT [R] y
n

^ �'\g (y
n

) 4T [R] y
n

y

n

OT �
'\

g (y
n

) otherwise

(9.2.15)

In absence of run-time errors, the abstract semantics ⌧'\g J stmt K, given
sound over-approximations R 2 D of ⌧I(iJ stmt K) and D 2 D of ⌧I(fJ stmt K), is
a sound over-approximation of the semantics ⌧'g J stmt K defined in Section 9.2.2:

Lemma 9.2.9 ⌧

'

g J stmt K�T[D]t 4 �T[R]⌧'\g J stmt Kt.

Proof.
See Appendix A.6. ⌅

The abstract guarantee semantics ⌧'\g J prog K 2 T of a program prog out-
puts the decision tree over-approximating the ranking function corresponding
to the initial program control point iJ prog K 2 L. It is defined by taking as
input the leaf node LEAF : ?F as:

Definition 9.2.10 (Abstract Guarantee Semantics) The abstract guar-

antee semantics ⌧'\g J prog K 2 T of a program prog is:

⌧

'\

g J prog K = ⌧

'\

g J stmt l K def
= ⌧

'\

g J stmt KRESETTJ' K(l, R,LEAF : ?F)
(9.2.16)

where the abstract guarantee semantics ⌧'\g J stmt K : T ! T of each program
instruction stmt is defined in Figure 9.1.

In absence of run-time errors, the following result proves the soundness of
the abstract guarantee semantics ⌧'\g J prog K 2 T with respect to the guarantee
semantics ⌧'g J prog K 2 E * O, given a sound numerical over-approximation
R 2 D of the reachable environments ⌧I(iJ prog K):

Theorem 9.2.11 ⌧

'

g J prog K 4 �T[R]⌧'\g J prog K

Proof (Sketch).
The proof follows from the soundness of the operators of the decision trees
abstract domain (cf. Lemma 9.2.9) used for the definition of ⌧'\g J prog K 2 T .⌅
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In particular, the abstract guarantee semantics provides su�cient precon-
ditions for ensuring a guarantee property 3' for a given over-approximation
R 2 D of the set of initial states I ✓ ⌃:

Corollary 9.2.12 A program satisfies a guarantee property 3' for execution
traces starting from a set of states �D(R) if �D(R) ✓ dom(�T[R]⌧'\g J prog K).

9.3 Recurrence Semantics

In the following, along the same approach used in the previous Section 9.2 for
guarantee properties, we define a sound and complete semantics for proving
recurrence temporal properties by abstract interpretation of the program max-
imal trace semantics (cf. Equation 2.2.5). Then, we propose a sound decidable
abstraction based on piecewise-defined ranking functions.

9.3.1 Recurrence Semantics

The recurrence semantics, given a set of desirable states S ✓ ⌃, is a ranking
function ⌧r[S] 2 ⌃ * O defined starting from the states in S, where the
function has value zero, and retracing the program backwards while mapping
every state in ⌃ definitely leading infinitely often to a state in S (i.e., a state
such that all the traces to which it belongs reach a state in S infinitely often)
to an ordinal in O representing an upper bound on the number of program
execution steps remaining to the next state in S. The domain dom(⌧r[S]) of
⌧r[S] is the set of states definitely leading infinitely often to a desirable state
in S: all traces branching from a state s 2 dom(⌧r[S]) reach the next state in
S in at most ⌧r[S]s execution steps, while at least one trace branching from a
state s 62 dom(⌧g[S]) never reaches S.

In particular, the recurrence semantics reuses the guarantee semantics of
Section 9.2 as a building block: from the guarantee that some desirable event
happens once during program execution, the recurrence semantics ensures that
the event happens infinitely often. A finite subsequence of a program trace
satisfies a recurrence property if and only if it terminates in the desirable set
of states, and its neighborhood in the subsequences of the program semantics
consists only of sequences that are terminating in the desirable set of states,
and that are prefixes of traces in the program semantics that reach infinitely
often the desirable set of states. The corresponding recurrence abstraction
↵

r[S] : P(⌃+1)! P(⌃+) is parameterized by a set of desirable states S ✓ ⌃



9.3. Recurrence Semantics 183

and it is defined as follows:

↵

r[S]T
def
= gfp✓

↵

g[S]T  

r[T, S]

 

r[T, S]T 0
,

def
= ↵

g[fpre[T ]T 0 \ S]T
(9.3.1)

where fpre[T ]T 0 def
= {s 2 ⌃ | 8� 2 ⌃⇤

,�

0 2 ⌃⇤1 : �s�0 2 T ) pf(�0) \ T

0 6= ;}
is the set of states whose successors all belong to a given set of subsequences,
and ↵g[S] : P(⌃+1)! P(⌃+) is the guarantee abstraction of Equation 9.2.2.

To explain intuitively Equation 9.3.1, we use the dual of Kleene’s Fixpoint
Theorem (cf. Theorem 2.1.4) to rephrase ↵r[S] as follows:

↵

r[S]T =
\

i2N
T

i+1

T

i+1
def
= [ r[T, S]]i (↵g[S]T )

Then, for i = 0, we get the set T1 = ↵

g[S]T of subsequences of T that guarantee
S at least once. For i = 1, starting from T1, we derive the set of states S1 =
fpre[T ]T1 \ S (i.e., S1 ✓ S) whose successors all belong to the subsequences in
T1, and we get the set T2 = ↵

g[S1]T of subsequences of T that guarantee S1 at
least once and thus guarantee S at least twice. Note that all the subsequences
in T2 terminate with a state s 2 S1 and therefore are prefixes of subsequence
of T that reach S at least twice. More generally, for each i 2 N, we get the set
T

i+1 of subsequences which are prefixes of subsequences of T that reach S at
least i+ 1 times, i.e., the subsequences that guarantee S at least i+ 1 times.
The greatest fixpoint thus guarantees S infinitely often.

Example 9.3.1
Let T

def
= {(cd)!, ca!, d(be)!} and let S

def
= {b, c, d}. For i = 0, we have

T1 = ↵

g[S]T = {b, eb, c, d}. For i = 1, we derive S1 = {b, d}, since c(dc)! 2 T

and pf((dc)!) \ T1 = {d} 6= ; but ca

! 2 T and pf(a!) \ T1 = ;. We get
T2 = ↵

g[S1]T = {b, eb, d}. For i = 2, we derive S2 = {b}, since d(be)! 2 T

and pf((be)!) \ T1 = {b} 6= ; but d(cd)! 2 T and pf((cd)!) \ T2 = ;. We get
T3 = ↵

g[S2]T = {b, eb} which is the greatest fixpoint: the only subsequences
of sequences in T that guarantee S infinitely often start with b or eb.

We can now define the recurrence semantics ⌧r[S] 2 ⌃* O:

Definition 9.3.2 (Recurrence Semantics) Given a desirable set of states
S ✓ ⌃, the recurrence semantics ⌧r[S] 2 ⌃ * O is an abstract interpretation
of the maximal trace semantics ⌧+1 2 P(⌃+1) (cf. Equation 2.2.5):

⌧r[S]
def
= ↵

Mrk(↵r[S](⌧+1)) (9.3.2)
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where the abstraction ↵

Mrk : P(⌃+) ! (⌃ * O) is the same ranking abstrac-
tion defined in Equation 4.2.14.

The following result provides a fixpoint definition of the recurrence seman-
tics within the partially ordered set h⌃ * O,vi, where the computational
order is defined as in Equation 4.2.15 as:

f1 v f2 () dom(f1) ✓ dom(f2) ^ 8x 2 dom(f1) : f1(x)  f2(x).

Theorem 9.3.3 (Recurrence Semantics) Given a desirable set of states
S ✓ ⌃, the recurrence semantics ⌧r[S] 2 ⌃* O can be expressed as a greatest
fixpoint in the partially ordered set h⌃* O,vi:

⌧r[S] = gfpv
⌧g[S]

�r[S]

�r[S]f
def
= �s.

(

f(s) s 2 dom(⌧g[fpre(dom(f)) \ S])

undefined otherwise

(9.3.3)

Note that, the recurrence semantics can be equivalently simplified as:

⌧r[S] = gfpv
⌧g[S]

�r[S]

�r[S]f
def
= �s.

(

f(s) s 2 fpre(dom(f))

undefined otherwise

(9.3.4)

Indeed, there is not need to redefine ⌧g[S] at each iterate since the various
subsequences of a program traces manipulated by the recurrence abstraction
(cf. Equation 9.3.1) have been abstracted into program states. The rest of the
chapter refers to this simplified version of the recurrence semantics.

Example 9.3.4
Let us consider the following trace semantics:

where the highlighted states are the set S of desirable states.
The fixpoint iterates of the recurrence semantics ⌧r[S] 2 ⌃* O are:

2

0
1

0
0

2

0
1

0

0
1

0
1
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where unlabelled states are outside the domain of the function.

Let ' be a state property. The '-recurrence semantics ⌧'r 2 ⌃* O:

⌧

'

r
def
= ⌧r['] (9.3.5)

is sound and complete for proving a recurrence property 23':

Theorem 9.3.5 A program satisfies a recurrence property 23' for execu-
tion traces starting from a given set of states I if and only if I ✓ dom(⌧'r ).

Proof.
See Appendix A.6. ⌅

9.3.2 Denotational Recurrence Semantics

We now provide a structural definition of the '-recurrence semantics ⌧'r 2
⌃* O by induction on the syntax of our idealized imperative language.

We partition ⌧

'

r with respect to the program control points: ⌧'r 2 L !
(E * O). In this way, to each program control point l 2 L corresponds a
partial function f : E * O, and to each program instruction stmt corresponds
a recurrence semantics ⌧'r J stmt K : (E * O)! (E * O).

The recurrence semantics ⌧'r J stmt K : (E * O)! (E * O) of each program
instruction stmt takes as input a ranking function whose domain represents
the environments always leading infinitely often to ' from the final label of
stmt, and determines the ranking function whose domain represents the en-
vironments always leading infinitely often to ' from the initial label of stmt,
and whose value represents an upper bound on the number of program execu-
tion steps remaining to the next occurrence of '. In particular, each function
⌧

'

r J stmt K 2 (E * O) ! (E * O) behaves as described in Section 9.2.2 and
also ensures that each time ' is satisfied, it will be satisfied again in the fu-
ture: the value of the input ranking function is reset for the environments that
satisfy ' only if all their successors by means of the instruction stmt belong
to the domain of the input ranking function.

The recurrence semantics of a skip instruction resets the value of the input
ranking function f : E * O for the environments that belong to its domain
and satisfy ', and otherwise it increases its value to take into account another
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program execution step from the initial label of the instruction:

⌧

'

r J l

skip Kf def
= �⇢.

8

>

<

>

:

0 hl, ⇢i |= ' ^ ⇢ 2 dom(f)

f(⇢) + 1 hl, ⇢i 6|= ' ^ ⇢ 2 dom(f)

undefined otherwise

(9.3.6)

Similarly, the recurrence semantics of a variable assignment l

X := aexp
is defined over the environments that when subject to the assignment always
belong to the domain of the input ranking function f : E * O. The value of
the input ranking function for these environments is reset when they satisfy ';
otherwise, it is increased by one to account for another execution step, and the
value of the resulting ranking function is the least upper bound of these values:

⌧

'

r J l

X := aexp Kf def
= �⇢.

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

0 hl, ⇢i |= ' ^ 9v 2 JaexpK⇢ ^
8v 2 JaexpK⇢ : ⇢[X  v] 2 dom(f)

sup{f(⇢[X  v]) + 1 | v 2 JaexpK⇢}
hl, ⇢i 6|= ' ^ 9v 2 JaexpK⇢ ^

8v 2 JaexpK⇢ : ⇢[X  v] 2 dom(f)

undefined otherwise
(9.3.7)

Example 9.3.6
Let X def

= {x}. We consider the following ranking function f : E * O:

f(⇢)
def
=

8

>

<

>

:

2 ⇢(x) = 0

3 ⇢(x) = 1

undefined otherwise

the backward assignment x :=x+ [1, 2] and the recurrence property 23(x =
3). The recurrence semantics of the assignment is:

⌧

x=3
r Jx := x+ [1, 2] Kf(⇢) def

=

(

4 ⇢(x) = 0

undefined otherwise

In particular, note that unlike Example 9.2.6, the function is not defined when
⇢(x) = 3, since the environment satisfies the property x = 3 but Jx+[1, 2]K⇢ =
{4, 5} and ⇢[x 4] 62 dom(f) and ⇢[x 5] 62 dom(f).



9.3. Recurrence Semantics 187

Given a conditional instruction if

lbexp then stmt1 else stmt2 fi, its
recurrence semantics takes as input a ranking function f : E * O and derives
the recurrence semantics ⌧'r J stmt1 Kf of stmt1, in the following denoted by S1,
and the recurrence semantics ⌧'r J stmt2 Kf of stmt2, in the following denoted by
S2. Then, the recurrence semantics of the conditional instruction is defined
by means of the ranking function F [f ] : E * O whose domain is the set of
environments that belong to the domain of S1 and to the domain of S2, and
that may both satisfy and not satisfy the boolean expression bexp:

F [f ]
def
= �⇢ 2 dom(S1) \ dom(S2).

8

>

<

>

:

sup{S1(⇢) + 1, S2(⇢) + 1}
JbexpK⇢ = {true, false}

undefined otherwise

and the ranking function F1[f ] : E * O whose domain is the set of environ-
ments ⇢ 2 E that belong to the domain of S1 and that must satisfy bexp:

F1[f ]
def
= �⇢ 2 dom(S1).

(

S1(⇢) + 1 JbexpK⇢ = {true}
undefined otherwise

and the ranking function F2[f ] : E * O whose domain is the set of environ-
ments that belong to the domain of S2 and that cannot satisfy bexp:

F2[f ]
def
= �⇢ 2 dom(S2).

(

S2(⇢) + 1 JbexpK⇢ = {false}
undefined otherwise

The resulting ranking function is defined by joining F [f ], F1[f ], and F2[f ],
and resetting the value of the function for the environments that belong to its
domain and satisfy ':

⌧

'

r J if lbexp then stmt1 else stmt2 fi Kf def
= �⇢.

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0 hl, ⇢i |= ' ^
⇢ 2 dom(R)

R(⇢) hl, ⇢i 6|= ' ^
⇢ 2 dom(R)

undefined otherwise
(9.3.8)

where R

def
= F [f ] [̇ F1[f ] [̇ F2[f ].

Example 9.3.7
Let X def

= {x}. We consider the recurrence property 23(x = 3) and the recur-
rence semantics of the conditional statement if bexp then stmt1 else stmt2 fi.
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We assume, given a ranking function f : E * O, that the recurrence semantics
of stmt1 is defined as:

⌧

x=3
r J stmt1 Kf(⇢) def

=

(

1 ⇢(x)  0

undefined otherwise

and that the recurrence semantics of stmt2 is defined as

⌧

x=3
r J stmt2 Kf(⇢) def

=

8

>

>

>

>

<

>

>

>

>

:

3 0  ⇢(x) < 3

0 ⇢(x) = 3

3 3 < ⇢(x)

undefined otherwise

Then, when the boolean expression bexp is for example x  3, the recurrence
semantics of the conditional statement is:

⌧

x=3
r J if lbexp then stmt1 else stmt2 fi Kf(⇢) def

=

8

>

<

>

:

2 ⇢(x)  0

4 3 < ⇢(x)

undefined otherwise

Instead, when bexp is for example the non-deterministic choice ?, we have:

⌧

x=3
r J if lbexp then stmt1 else stmt2 fi Kf(⇢) def

=

(

4 ⇢(x) = 0

undefined otherwise

Note that, like Example 4.3.2 and unlike Example 9.2.7, both functions are
undefined when ⇢(x) = 3, even though the property x = 3 is satisfied. In fact,
the ranking function for the then branch of the if is undefined when ⇢(x) = 3.

The recurrence semantics of a loop instruction while

lbexp do stmt od

takes as input a ranking function f : E * O whose domain represents the en-
vironments leading infinitely often to ' from the final label of the instruction,
and outputs the ranking function which is defined as a greatest fixpoint of the
function �'r : (E * O)! (E * O) within hE * O,vi:

⌧

'

r J while lbexp do stmt od Kf def
= gfpv

G

�

'

r (9.3.9)

where G

def
= ⌧

'

g J while lbexp do stmt od Kf is the guarantee semantics of the
loop instruction defined in Equation 9.2.10, and the computational order is
defined as in Equation 4.2.15:

f1 v f2 () dom(f1) ✓ dom(f2) ^ 8x 2 dom(f1) : f1(x)  f2(x).
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In essence, from the guarantee that some desirable event eventually happens,
the recurrence semantics ensures that the event happens infinitely often. The
function �'r : (E * O)! (E * O) takes as input a ranking function x : E * O,
resets its value for the environments that belong to its domain and that satisfy
', and adds to its domain the environments for which one more loop iteration is
needed before the next occurrence of '. In the following, the recurrence seman-
tics ⌧'r J stmt Kx of the loop body is denoted by S. The function �'r is defined by
means of the ranking function F [x] : E * O whose domain is the set of environ-
ments that belong to the domain of S and to the domain of the input function
f , and that may both satisfy and not satisfy the boolean expression bexp:

F [x]
def
= �⇢ 2 dom(S) \ dom(f).

8

>

<

>

:

sup{S(⇢) + 1, f(⇢) + 1}
JbexpK⇢ = {true, false}

undefined otherwise

and the ranking function F1[x] : E * O whose domain is the set of environ-
ments ⇢ 2 E that belong to the domain of S and that must satisfy bexp:

F1[x]
def
= �⇢ 2 dom(S).

(

S(⇢) + 1 JbexpK⇢ = {true}
undefined otherwise

and the ranking function F2[f ] : E * O whose domain is the set of environ-
ments that belong to the domain of the input function f and that cannot
satisfy bexp:

F2[f ]
def
= �⇢ 2 dom(f).

(

f(⇢) + 1 JbexpK⇢ = {false}
undefined otherwise

The resulting ranking function is defined by joining F [x], F1[x], and F2[f ], and
resetting its value for the environments that belong to its domain and satisfy ':

�

'

r (x)
def
= �⇢.

8

>

<

>

:

0 hl, ⇢i |= ' ^ ⇢ 2 dom(R)

R(⇢) hl, ⇢i 6|= ' ^ ⇢ 2 dom(R)

undefined otherwise

(9.3.10)

where R

def
= F [x] [̇ F1[x] [̇ F2[f ].

Finally, the recurrence semantics of the sequential combination of instruc-
tions stmt1 stmt2, takes as input a ranking function f : E * O, determines
from f the recurrence semantics ⌧'r J stmt2 Kf of stmt2, and outputs the ranking
function determined by the recurrence semantics of stmt1 from ⌧

'

r J stmt2 Kf :

⌧

'

r J stmt1 stmt2 Kf def
= ⌧

'

r J stmt1 K(⌧'r J stmt2 Kf) (9.3.11)
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The recurrence semantics ⌧'r J prog K 2 E * O of a program prog is a ranking
function whose domain represents the environments always leading infinitely
often to ', which is determined by taking as input the totally undefined func-
tion, since the program final states cannot satisfy a recurrence property:

Definition 9.3.8 (Recurrence Semantics) The recurrence semantics
⌧

'

r J prog K 2 E * O of a program prog is:

⌧

'

r J prog K = ⌧

'

r J stmt l K def
= ⌧

'

r J stmt K;̇ (9.3.12)

where the function ⌧'r J stmt K : (E * O)! (E * O) is the recurrence semantics
of each program instruction stmt.

As pointed out in Remark 3.2.2, possible run-time errors are ignored. Thus,
all environments leading to run-time errors are discarded and do not belong
to the domain of the recurrence semantics of a program prog.

9.3.3 Abstract Recurrence Semantics

We now propose a sound decidable abstraction of the recurrence semantics
⌧

'

r J prog K 2 E * O, based on the piecewise-defined ranking functions pre-
sented in Chapter 5 and Chapter 6. The abstraction is sound with respect to
the usual approximation order defined in Equation 4.2.12:

f1 4 f2 () dom(f1) ◆ dom(f2) ^ 8x 2 dom(f2) : f1(x)  f2(x).

In particular, we revisit the definition of the unary operator RESETTJ' K
and we introduce a dual widening operator ŌT.

Reset. The operator RESETTJ' K : T ! T should reset the leaves of a de-
cision tree that not only satisfy a given property ' but also guarantee that
the property will be satisfied again in the future. To this end, we redefine the
operator RESETFJ' K : F ! F invoked when Algorithm 24 reaches a leaf node
(cf. Line 3): given a function f 2 F \ {?F,>F}, RESETFJ' K simply resets its
value to zero; undefined leaf nodes are instead left unaltered:

RESETF(?F)
def
= ?F

RESETF(f)
def
= �X1, . . . , X

k

. 0

RESETF(>F)
def
= >F

(9.3.13)
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Algorithm 25 : Tree Dual Widening

1: function dual-widen-aux(t1, t2,C) . t1, t2 2 T , C 2 P(C)
2: if isLeaf(t1) ^ isLeaf(t2) then
3: if t2.f vF [↵C(C)] t1.f then return t2.f

4: else return LEAF : ?F

5: else if isNode(t1) ^ isNode(t2) then
6: l dual-widen-aux(t1.l, t2.l, C [ {t2.c})
7: r  dual-widen-aux(t1.r, t2.r, C [ {¬t2.c})
8: return NODE{t2.c} : l; r

9:

10: function dual-widen(d,t1,t2) . d 2 D, t1, t2 2 T
11: (t1, t2) left-unification(gF, d, t1, t2) . domain widening
12: return dual-widen-aux(t1, t2, �C(d)) . value widening

Dual Widening. The recurrence semantics of a while loop instruction, as
defined in Equation 9.3.9, involves a greatest fixpoint. Greatest fixpoints are
solved by iterations using a new dual widening operator ŌT.

The dual widening ŌT is implemented by Algorithm 25: the function
dual-widen, given a given a sound over-approximation d 2 D of the reach-
able environments and two decision trees t1, t2 2 T , calls the function left-
unification (cf. Line 11) to limit the size of the decision trees in order
to ensure convergence. Unlike Algorithm 13, Algorithm 25 invokes left-
unification choosing the approximation join gF. Then, Algorithm 25 calls
the auxiliary function dual-widen-aux, which collects into a set C 2 P(C)
(initially equal to �C(d), cf. Line 12) the linear constraints encountered along
the paths up to the leaf nodes (cf. Lines 6-7), which are compared (cf. Line 3)
and, in case, turned into a ?F-leaf (cf. Line 4).

In Figure 9.2 we depict an example of dual widening. In essence, the dual
widening maintains the value of a piecewise-defined ranking function only on
the pieces where it stays defined between two iterate, and if a piece where it
is defined shrinks, we remove it entirely.

Abstract Recurrence Semantics. In the following, we assume to have, for
each program control point l 2 L, a sound numerical over-approximation R 2
D of the reachable environments ⌧I(l) 2 P(E): ⌧I(l) ✓ �D(R) (cf. Section 3.4).

In Figure 9.3 we define the semantics ⌧'\r J stmt K : T ! T , for each pro-

gram instruction stmt. Each function ⌧

'\

r J stmt K : T ! T takes as input a
decision tree over-approximating the ranking function corresponding to the
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x

6 9

(a)

x

2 6 9

(b)

x

6 9

(c)

Figure 9.2: Example of dual widening of piecewise-defined function of one
variable, shown in (a) and (b), respectively. The result is shown in (c).

⌧

'\

r J l

skip Kt def
= RESETTJ' K(l, R, STEPT(t))

⌧

'\

r J l

X :=aexp Kt def
= RESETTJ' K(l, R, (B-ASSIGNTJX :=aexp KR)(t))

⌧

'\

r J if lbexp then stmt1 else stmt2 fi Kt def
=

RESETTJ' K(l, R, F

\

1 [t] gT[R] F \

2 [f ])

F

\

1 [t]
def
= (FILTERTJ bexp KR)(⌧'\r J stmt1 Kt)

F

\

2 [t]
def
= (FILTERTJ not bexp KR)(⌧'\r J stmt2 Kt)

⌧

'\

r J while lbexp do stmt od Kt def
= gfp\

G(t) �
'\

r

G

def
= ⌧

'\

g J while lbexp do stmt od K
�

'\

r (x)
def
= RESETTJ' K(l, R, F

\[x] gT[R] (FILTERTJ not bexp KR)(t))

F

\[x]
def
= (FILTERTJ bexp KR)(⌧'\r J stmt Kx)

⌧

'\

r J stmt1 stmt2 Kt def
= ⌧

'\

r J stmt1 K(⌧'\r J stmt2 Kt)

Figure 9.3: Abstract recurrence semantics of instructions stmt.

final control point of the instruction, and outputs a decision tree defined over
a subset of the reachable environments R 2 D, which over-approximates the
ranking function corresponding to the initial control point of the instruction.
Each function ⌧'\r J stmt K invokes the redefined reset operator RESETT. For a

while loop, gfp\ �'\r is the limit of the iteration sequence with dual widening:

y0
def
= G(t)

y

n+1
def
=

(

y

n

y

n

vT [R] �'\r (y
n

) ^ y

n

4T [R] �'\r (y
n

)

y

n

ŌT �
'\

r (y
n

) otherwise

(9.3.14)

where G is the guarantee semantics of the loop (cf. Figure 9.1).
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In absence of run-time errors, the abstract semantics ⌧'\r J stmt K, given
sound over-approximations R 2 D of ⌧I(iJ stmt K) and D 2 D of ⌧I(fJ stmt K), is
a sound over-approximation of the semantics ⌧'r J stmt K defined in Section 9.3.2:

Lemma 9.3.9 ⌧

'

r J stmt K�T[D]t 4 �T[R]⌧'\r J stmt Kt.

Proof.
See Appendix A.6. ⌅

The abstract recurrence semantics ⌧'\r J prog K 2 T of a program prog out-
puts the decision tree over-approximating the ranking function corresponding
to the initial program control point iJ prog K 2 L. It is defined by taking as
input the leaf node LEAF : ?F as:

Definition 9.3.10 (Abstract Recurrence Semantics) The abstract recur-

rence semantics ⌧'\r J prog K 2 T of a program prog is:

⌧

'\

r J prog K = ⌧

'\

r J stmt l K def
= ⌧

'\

r J stmt KRESETTJ' K(l, R,LEAF : ?F)
(9.3.15)

where the abstract recurrence semantics ⌧'\r J stmt K : T ! T of each program
instruction stmt is defined in Figure 9.3.

In absence of run-time errors, the abstract recurrence semantics ⌧'\r J prog K 2
T , given a sound numerical over-approximation R 2 D of the reachable envi-
ronments ⌧I(iJ prog K), is sound with respect to ⌧'r J prog K 2 E * O:

Theorem 9.3.11 ⌧

'

r J prog K 4 �T[R]⌧'\r J prog K

Proof (Sketch).
The proof follows from the soundness of the operators of the decision trees
abstract domain (cf. Lemma 9.3.9) used for the definition of ⌧'\r J prog K 2 T .⌅

In particular, the abstract recurrence semantics provides su�cient precon-
ditions for ensuring a recurrence property23' for a given over-approximation
R 2 D of the set of initial states I ✓ ⌃:

Corollary 9.3.12 A program satisfies a recurrence property 23' for execu-
tion traces starting from a set of states �D(R) if �D(R) ✓ dom(�T[R]⌧'\r J prog K).
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9.4 Implementation

We have incorporated the static analysis methods for guarantee and recurrence
temporal properties that we have presented in this chapter into our prototype
static analyzer FuncTion that we have presented in Chapter 8.

The prototype, when the guarantee or recurrence analysis methods are
selected, accepts state properties written as C-like pure expressions.

The following examples illustrate the potential and e↵ectiveness of our new
static analysis methods. These and additional examples are available from
FuncTion web interface: http://www.di.ens.fr/

~

urban/FuncTion.html.

Example 9.4.1
Let us consider again the program of Example 9.1.1:

while

1(x � 0) do
2
x := x+ 1

od

while

3( true ) do
if

4(x  10) then
5
x := x+ 1

then

6
x := �x

fi

od

7

and the guarantee property 3(x = 3). FuncTion, using interval constraints
based on the intervals abstract domain (cf. Section 3.4.1) for the decision
nodes and a�ne functions for the leaf nodes (cf. Equation 5.2.6), infers the
following ranking function associated with program control point 1:

�x.

8

>

<

>

:

�3x+ 10 x < 0

�2x+ 6 0  x ^ x  3

undefined otherwise

which bounds the wait (from the program control point 1) for the desirable
state x = 3 by �3x+10 program execution steps when x < 0, and by �2x+6
execution steps when 0  x ^ x  3. The analysis is inconclusive when
3 < x. In this case, when 3 < x, the guarantee property is never satisfied (cf.
Example 9.1.3). Thus, the precondition x  3 induced by the domain of the
ranking function is the weakest precondition for 3(x = 3).

http://www.di.ens.fr/~urban/FuncTion.html
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Let us consider now the recurrence property 23(x = 3). FuncTion
infers the following ranking function associated with program control point 1:

�x.

(

�3x+ 10 x < 0

undefined otherwise

which induces the precondition x < 0 for 23(x = 3). Indeed, when 0  x ^
x  3, the desirable state x = 3 does not occur infinitely often but only once.
Again x < 0 is the weakest precondition for 23(x = 3).

Instead, for both 3(x = 3) and 23(x = 3), FuncTion infers the follow-
ing ranking function associated with program control point 3:

�x.

8

>

<

>

:

�3x+ 9 x  3

�3x+ 72 3 < x  10

3x+ 12 10 < x

which bounds the wait (from the program control point 3) for the next occur-
rence of x = 3 by �3x+9 execution steps when x  3, by �3x+72 execution
steps when 3 < x  10, and by 3x+ 12 execution steps when 10 < x.

Example 9.4.2
Let us consider the following program:

1
c := 1
while

2( true ) do
3
x := c

while

4(0 < x) do
5
x := x� 1

6
c := c+ 1

od

od

7

Each iteration of the outer loop, assigns to the program variable x the value
of some counter c, which initially has value one; then, the inner loop decreases
the value of x and increases the value of the counter c until the value of x
becomes less than or equal to zero.

FuncTion, using interval constraints based on the intervals abstract do-
main (cf. Section 3.4.1) for the decision nodes and a�ne functions for the
leaf nodes (cf. Equation 5.2.6), is able to prove that the recurrence property
23(x = 0) is always satisfied by the program. The piecewise-defined rank-
ing function inferred at program control point 1 bounds the wait for the next
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occurrence of the desirable state x = 0 by five program execution steps (i.e.,
executing the variable assignment c := 1, testing the outer loop condition,
executing the assignment x := c, testing the inner loop condition and execut-
ing the assignment x := x� 1). The analysis infers a more interesting raking
function associated to program control point 4:

�x. �c.

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

3c+ 2 x < 0 ^ 0 < c

3 x < 0 ^ c = 0

1 x = 0 ^ 0  c

3x� 1 (x = 1 ^ �1  c) _ (2  x ^ �2  c)

undefined otherwise

The function bounds the wait for the next occurrence of x = 0 by 3c + 2
execution steps when x < 0 ^ 0 < c, by 3 execution steps when x < 0 ^ c = 0
(i.e., testing the inner loop condition, testing the outer loop condition and
executing the assignment x := c), by 1 execution step when x = 0 ^ 0  c

(i.e., testing the inner loop condition) and by 3x � 1 execution steps when
(x = 1 ^ �1  c) _ (2  x ^ �2  c). In the last case there is a precision
loss due to a lack of expressiveness of the intervals abstract domain: if x is
strictly positive at program control point 4, the weakest precondition ensuring
infinitely many occurrences of the desirable state x = 0 is �x  c, which is
not representable by the intervals abstract domain.

Example 9.4.3
Let us consider the following program:

while

1( true ) do
2
x := ?

while

3(x 6= 0) do
if

4(0 < x) then
5
x := x� 1

else

6
x := x+ 1

fi

od

od

7

Each iteration of the outer loop, resets the value of the program variable x

with the non-deterministic assignment x := ?; then, the inner loop decreases
or increases the value of x until it becomes equal to zero.
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The recurrence property 23(x = 0) is clearly satisfied by the program.
However, because of the non-deterministic assignment x := ?, the number
of execution steps between two occurrences of the desirable state x = 0 is
unbounded. FuncTion is able to prove that the property is satisfied using
interval constraints based on the intervals abstract domain (cf. Section 3.4.1)
for the decision nodes and ordinal-valued functions for the leaf nodes (cf.
Chapter 6). The inferred ranking function at program control point 1:

�x. ! + 8

means that, whatever the value of the variable x, the number of execution
steps between two occurrences of x = 0 is unbounded but finite.

Example 9.4.4
Let us consider Peterson’s algorithm [Pet81] for mutual exclusion:

1
flag1 := 0

2
flag2 := 0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

while

3( true ) do
4
flag1 := 1

5
turn := 2

while

6

0

@

flag2 6= 0
^

turn 6= 1

1

A

do

7
skip

od

8 CRITICAL SECTION
9
flag1 := 0

od

10

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

k

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

while

3( true ) do
4
flag2 := 1

5
turn := 1

while

6

0

@

flag1 6= 0
^

turn 6= 2
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do

7
skip

od

8 CRITICAL SECTION
9
flag2 := 0

od
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Note that weak fairness assumptions are required to guarantee bounded by-
pass (i.e., a process cannot be bypassed by any other process in entering the
critical section for more than a finite number of times. At the moment our
prototype FuncTion is not able to directly analyze concurrent programs.
Thus, we have modeled the algorithm as a fair non-deterministic sequential
program which interleaves execution steps from both processes while enforcing
1-bounded bypass (i.e., a process cannot be bypassed by any other process in
entering the critical section for more than once). FuncTion, using interval
constraints based on the intervals abstract domain (cf. Section 3.4.1) for the
decision nodes and a�ne functions for the leaf nodes (cf. Equation 5.2.6),
is able to prove the recurrence property 23(8 : true), meaning that both
processes are allowed to enter their critical section infinitely often.
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9.5 Related Work

In the recent past, a large body of work has been devoted to proving liveness
properties of (concurrent) programs.

A successful approach for proving liveness properties is based on a transfor-
mation from model checking of liveness properties to model checking of safety
properties [BAS02]. The approach looks for and exploits lasso-shaped coun-
terexamples. A similar search for lasso-shaped counterexamples has been used
to generalize the model checking algorithm IC3 to deal with liveness proper-
ties [BSHZ11]. However, in general, counterexamples to liveness properties in
infinite-state systems are not necessarily lasso-shaped. Our approach is not
counterexample-based and is meant for proving liveness properties directly,
without reduction to safety properties.

In [PR05], Andreas Podelski and Andrey Rybalchenko present a method for
the verification of liveness properties based on transition invariants [PR04b].
The approach, as in [Var91], reduces the proof of a liveness property to the
proof of fair termination by means of a program transformation. It is at the
basis of the industrial-scale tool Terminator [CGP+07]. By contrast, our
method is meant for proving liveness properties directly, without reduction
to termination. Moreover, it avoids the cost of explicit checking for the well-
foundedness of the transition invariants.

A distinguishing aspect of our work is the use of infinite height abstract
domains, equipped with (dual) widening. We are aware of only one other such
work: in [Mas03], Damien Massé proposes a method for proving arbitrary
temporal properties based on abstract domains for lower closure operators. A
small analyzer is presented in [Mas04] but the approach remains mainly the-
oretical. We believe that our framework, albeit less general, is more straight-
forward and of practical use.

An emerging trend focuses on proving existential temporal properties (e.g.,
proving that there exists a particular execution trace). The most recent ap-
proaches [BPR13, CK13] are based on counterexample-guided abstraction re-
finement [CGJ+03]. Our work is designed for proving universal temporal prop-
erties (i.e., valid for all program execution traces). We leave proving existential
temporal properties as part of our future work.

Finally, to our knowledge, the inference of su�cient preconditions for guar-
antee and recurrence properties, and the ability to provide upper bounds on
the time before a program reaches a desirable state, is unique to our work.
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Future Directions

With this thesis, we have proposed new abstract interpretation-based methods
for proving termination and other liveness properties of programs.

In particular, our first contribution is the design of new abstract domains
suitable for the abstract interpretation framework for termination proposed by
Patrick Cousot and Radhia Cousot [CC12]. These abstract domains automat-
ically infer su�cient preconditions for program termination, and synthe-
size piecewise-defined ranking functions through backward analysis (cf.
Chapter 5 and Chapter 6). The ranking functions provide upper bounds on
the program execution time in terms of execution steps. The abstract domains
are parametric in the choice between the expressivity and the cost of the un-
derlying numerical abstract domain (cf. Section 3.4). They are shown to be
e↵ective for proving termination of recursive programs in Chapter 7.

Our second contribution is an abstract interpretation framework for
liveness properties, which comes as a generalization of the framework pro-
posed for termination [CC12]. In particular, we have proposed new abstract
interpretation-based methods for proving guarantee and recurrence prop-
erties (cf. Chapter 9). We have also reused the abstract domains based on
piecewise-defined ranking functions (cf. Chapter 5 and Chapter 6) to e↵ec-
tively infer su�cient preconditions for these properties, and to provide upper
bounds on the time before a program reaches a desirable state.

Our last contribution is a prototype implementation of a static analyzer
based on piecewise-defined ranking functions (cf. Chapter 8). The earlier
versions of the prototype participated in the 3rd International Competition
on Software Verification (SV-COMP 2014), which featured a category for
termination for the first time, and in the 4th International Competition on
Software Verification (SV-COMP 2015).
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We conclude with some perspectives for future research.

Potential Termination and Non-Termination. In Chapter 4 we have
introduced the definite and potential termination semantics for a pro-
gram [CC12]. Then, throughout the rest of the thesis we have focused our
attention only on the definite termination semantics, and proposed decidable
abstractions in Chapter 5 and Chapter 6. As part of our future work, we plan
to do a similar work for the potential termination semantics.

We plan to use the same domains based on piecewise-defined ranking func-
tions (cf. Chapter 5 and Chapter 6) but adapt their operators in order to au-
tomatically infer necessary preconditions for program termination, which
are not very interesting per se but provide complementary su�cient precon-
ditions for non-termination. In this way, we could complement our analysis
method for proving program termination with an analysis method for prov-
ing program non-termination. In particular, we envision to run the analyses
simultaneously in order to improve precision.

Abstract Domains. In Chapter 5 we have proposed the decision trees ab-
stract domain, which we have designed to be parameterized by a convex nu-
merical abstract domain, such as intervals [CC76], convex polyhedra [CH78],
and octagons [Min06]. In the future, we would like to also allow non-convex
abstract domain, such as congruences [Gra89].

Moreover, the decision tree abstract domain has been instantiated with
a�ne functions, in Chapter 5, and ordinal-valued functions, in Chapter 6. It
remains for future work to support non-linear functions, such as polyno-
mials [BMS05b] or exponentials [Fer05]. Non-linear functions would provide
more precise upper bounds on the program execution time for programs with
non-linear computational complexity. On this account, we plan to explore
further the possible potential of our approach in the termination-related field
of automatic cost analysis [DLH90, SLH14, Weg75].

In Chapter 5, we also mentioned various ideas for improving the widening
of decision trees, by introducing thresholds [CC92c] and integrating state-of-
the-art precise widening operators [BHRZ05]. We plan to investigate these
and further possibilities.

The decision trees abstract domain could also o↵er an alternative dis-
junctive refinement of numerical abstract domains [CCM10, GR98, GC10a,
SISG06, etc.]. We would also like to explore its potential to be adapted to
other program semantics and for proving other program properties.
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Fairness and Liveness Properties. In Chapter 9, we have proposed an ab-
stract interpretation framework for guarantee and recurrence temporal prop-
erties [MP90]. The verification of liveness properties is a di�cult problem,
with not many satisfying solutions. We have made a first step that shows how
Abstract Interpretation can also be used for proving liveness properties and
that, we believe, opens many possibilities.

We mentioned in Chapter 1 that some of the theoretical work presented
in this thesis is being used as part of ongoing research work aimed at the
verification of real-time properties of avionics software.

It remains for future work the integration of fairness properties [Fra86].
We also plan to extend the present framework to the full hierarchy of temporal
properties [MP90], and more generally to arbitrary (universal and existential
[BPR13, CK13]) liveness properties.

Machine Integers and Floats In this thesis we have only considered pro-
grams that operate over mathematical integers. The reality is that most pro-
grams operate over variables that range over fixed-width numbers, such as
32-bit integers or 64-bit floating-point numbers, with the possibility of
overflow or underflow. In particular, we cannot ignore the fixed-width se-
mantics, as overflow and underflow can for example cause non-termination
in programs that would otherwise terminate. We plan, as part of our fu-
ture work, to make the decision trees abstract domain aware of the low-level
memory representation of data-types.

Heap-Manipulating Programs. We also plan to prove termination and
liveness properties of more complex programs, such as heap-manipulating
programs. We would like to investigate the adaptability of existing meth-
ods [BCDO06] and existing abstract domains for shape analysis [CR13], and
possibly design new techniques.

Concurrent Programs. Finally, in this thesis we have developed meth-
ods for proving termination and liveness properties of sequential programs. A
natural future direction is considering concurrent programs. When analyz-
ing concurrent programs, it is necessary to consider all possible interactions
between concurrently executing threads. The usual method for proving con-
current programs correct is based on rely-guarantee or assume-guarantee style
of reasoning, which considers every thread in isolation under assumptions on
its environment and thus avoids reasoning about thread interactions directly
[GCPV09, Min14]. We plan to extend these strategies to liveness properties.
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[Mas03] Damien Massé. Property Checking Driven Abstract
Interpretation-Based Static Analysis. In VMCAI, pages
56–69, 2003.
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Ordinal-Valued Ranking Functions. In ESOP, pages 412–431,
2014.

[UM14b] Caterina Urban and Antoine Miné. A Decision Tree Abstract
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A
Proofs

A.1 Missing Proofs from Chapter 1

Theorem A.1.1 (Halting Problem) The halting problem is undecidable.

Proof (by Geo↵rey K. Pullum).

Scooping the Loop Snooper

No general procedure for bug checks will do.
Now, I won’t just assert that, I’ll prove it to you.
I will prove that although you might work till you drop,
you cannot tell if computation will stop.

For imagine we have a procedure called P
that for specified input permits you to see
whether specified source code, with all of its faults,
defines a routine that eventually halts.

You feed in your program, with suitable data,
and P gets to work, and a little while later
(in finite compute time) correctly infers
whether infinite looping behavior occurs.

If there will be no looping, then P prints out ‘Good.’
That means work on this input will halt, as it should.
But if it detects an unstoppable loop,
then P reports ‘Bad!’ — which means you’re in the soup.
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Well, the truth is that P cannot possibly be,
because if you wrote it and gave it to me,
I could use it to set up a logical bind
that would shatter your reason and scramble your mind.

Here’s the trick that I’ll use — and it’s simple to do.
I’ll define a procedure, which I will call Q,
that will use P’s predictions of halting success
to stir up a terrible logical mess.

For a specified program, say A, one supplies,
the first step of this program called Q I devise
is to find out from P what’s the right thing to say
of the looping behavior of A run on A.

If P’s answer is ‘Bad!’, Q will suddenly stop.
But otherwise, Q will go back to the top,
and start o↵ again, looping endlessly back,
till the universe dies and turns frozen and black.

And this program called Q wouldn’t stay on the shelf;
I would ask it to forecast its run on itself.
When it reads its own source code, just what will it do?
What’s the looping behavior of Q run on Q?

If P warns of infinite loops, Q will quit;
yet P is supposed to speak truly of it!
And if Q’s going to quit, then P should say ‘Good.’
Which makes Q start to loop! (P denied that it would.)

No matter how P might perform, Q will scoop it:
Q uses P’s output to make P look stupid.
Whatever P says, it cannot predict Q:
P is right when it’s wrong, and is false when it’s true!

I’ve created a paradox, neat as can be —
and simply by using your putative P.
When you posited P you stepped into a snare;
Your assumption has led you right into my lair.

So where can this argument possibly go?
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I don’t have to tell you; I’m sure you must know.
A reductio: There cannot possibly be
a procedure that acts like the mythical P.

You can never find general mechanical means
for predicting the acts of computing machines;
it’s something that cannot be done. So we users
must find our own bugs. Our computers are losers!

A.2 Missing Proofs from Chapter 4

Theorem 4.2.18 A program may terminate for execution traces starting from
a given set of initial states I if and only if I ✓ dom(⌧mt).

Proof of Theorem 4.2.18.

The proof follows by Park’s Fixpoint Induction Principle (cf. Theorem 2.2.14)
along the lines of the proof of Theorem 4.2.23 proposed in [CC12].

We have I ✓ dom(⌧mt) if and only if 9v : ⌃ * O : ⌧mt v v ^ I ✓
dom(v). From Theorem 4.2.15, we have 9v : ⌃ * O : ⌧mt v v if and only if
9v : ⌃ * O : lfpv

;̇
�mt v v. From Park’s Fixpoint Induction Principle, we

have 9v : ⌃ * O : lfpv
;̇
�mt v v if and only if 9v : ⌃ * O : 9v0 : ⌃ * O :

;̇ v v

0 ^ �mt(v0) v v

0 ^ v

0 v v and, by definition of v (cf. Equation 4.2.8)
and choosing v

0 = v, 9v : ⌃ * O : �mt(v) v v. Then, by definition of v, we
have 9v : ⌃ * O : �mt(v) v v if and only if 9v : ⌃ * O : dom(�mt(v)) ✓
dom(v) ^ 8s 2 dom(�mt(v)) : �mt(v)s  v(s). Now, by definition of �mt

(cf. Equation 4.2.11), we have 9v : ⌃ * O : dom(�mt(v)) ✓ dom(v) ^ 8s 2
dom(�mt(v)) : �mt(v)s  v(s) if and only if 9v : ⌃ * O : 8s 2 dom(v) :
inf {v(s0) + 1 | 9s0 2 dom(v) : hs, s0i 2 ⌧}  v(s), that is, if and only if
9v : ⌃ * O : 8s 2 dom(v) : (9s0 2 dom(v) : hs, s0i 2 ⌧) ) 9s0 2 dom(v) :
hs, s0i 2 ⌧ ^ v(s0) < v(s). From Definition 4.1.3, v : ⌃ * O is a potential
ranking function. Thus, choosing I ✓ dom(v), concludes the proof. ⌅

A.3 Missing Proofs from Chapter 5

Lemma 5.2.2 8f1, f2 2 F : f1 4F [D] f2 ) �F[D]f1 4 �F[D]f2.
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Proof of Lemma 5.2.2.
Let D 2 D. We reason by cases. First, we consider the case of defined and
undefined leaf nodes. Then, we consider the case of defined leaf nodes.

Let f1 2 F \ {?F,>F} and let f2 2 {?F,>F}. We have f1 4F [D]f2 from
Figure 5.3a. Moreover, from Equation 5.2.9, we have �F[D]f2 = ;̇. Thus,
since dom(�F[D]f2) = ;, we have dom(�F[D]f1) ◆ dom(�F[D]f2) and, from
Equation 4.2.12, we have �F[D]f1 4 �F[D]f2.

Let f1, f2 2 F \ {?F,>F} such that f1 4F [D]f2. From Equation 5.2.9,
we have dom(�F[D]f1) = dom(�F[D]f2) and, in particular, dom(�F[D]f1) ◆
dom(�F[D]f2). Moreover, from Equation 5.2.7, for all ⇢ 2 �D(D) we have
f1(⇢(x1), . . . , ⇢(x

k

))  f2(⇢(x1), . . . , ⇢(x
k

)). Thus, from Equation 4.2.12, we
have �F[D]f1 4 �F[D]f2.

This concludes the proof that �F[D] is monotonic. ⌅

Lemma 5.2.4 8t1, t2 2 T : t1 4T [D] t2 ) �T[D]f1 4 �T[D]f2.

Proof of Lemma 5.2.4.
Let D 2 D and let t1, t2 2 T such that t1 4T [D] t2 The approximation order-
ing 4T between decision trees is implemented by Algorithm 3: the functions
a-order calls (the function order of Algorithm 2, which in turn calls) Algo-
rithm 1 for tree unification, and then compares the decision trees “leaf-wise”.
Algorithm 1 forces the decision trees to have the same structure. Indeed, the
missing linear constraints (cf. Line 6 and Line 15) are added to the decision
trees (cf. Line 14 and Line 23). Thus, after the tree unification, all paths to
the leaf nodes coincide between the decision trees. Let C 2 C denote the set
of linear constraints satisfied along a path of the unified decision trees, and let
f1, f2 2 F denote the leaf nodes reached following the path C within the first
and the second decision tree, respectively. We have f1 4F [↵D(C)] f2, since by
hypothesis t1 4T [D] t2. The proof follows from Lemma 5.2.2. ⌅

Lemma 5.2.8 ⌧MtJ l

skip K�T[D]t 4 �T[R]STEPT(t).

Proof of Lemma 5.2.8.
We have ⌧IJ l

skip K�D(R) ✓ �D(D), since R 2 D and D 2 D are sound over-
approximations of ⌧I(l) and ⌧I(fJ l

skip K), respectively.
Let C

def
= ⌧MtJ l

skip K�T[D]t and let A
def
= �T[R]STEPT(t). We prove that

dom(C) ◆ dom(A) and 8⇢ 2 dom(A) : C(⇢)  A(⇢) (cf. Equation 4.2.12).
Let us assume, by absurd, that dom(C) ⇢ dom(A). Then, there exists an

environment ⇢ 2 E such that ⇢ 2 dom(A) and ⇢ 62 dom(C). In particular, ⇢ 2
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�D(R). Thus, since ⌧IJ l

skip K�D(R) ✓ �D(D) and by definition of ⌧IJ l

skip K
(cf. Figure 3.9), we have �D(R) ✓ �D(D) which implies ⇢ 2 �D(D). Moreover,
since ⇢ 2 dom(A) and by definition of STEPT (cf. Algorithm 9), we must
have ⇢ 2 dom(�T[D]t). In fact, Algorithm 9 simply invokes STEPF for every
leaf node of a decision tree, which leaves undefined leaf nodes unaltered (cf.
Equation 5.2.19). Thus, by definition of ⌧MtJ l

skip K (cf. Equation 4.3.1), we
have ⇢ 2 dom(C), which is absurd. Therefore, we have dom(C) ◆ dom(A).

Let us assume now, by absurd, that 9⇢ 2 dom(A) : C(⇢) > A(⇢). We have,
by definition of ⌧MtJ l

skip K, C(⇢) = (�T[D]t)(⇢) + 1. Moreover, by definition
of STEPT (cf. Algorithm 9), we have (�T[D]t)(⇢) < A(⇢). In fact, Algorithm 9
invokes STEPF, which increases the value of the defined leaf nodes of a decision
tree (cf. Equation 5.2.19). Thus, C(⇢)  A(⇢), which is absurd. Therefore,
we conclude that 8⇢ 2 dom(A) : C(⇢)  A(⇢).

This concludes the proof. ⌅

Lemma 5.2.14 ⌧MtJ l

X :=aexp K�D[D]t 4 �T[R]((B-ASSIGNTJX :=aexp KR)(t)).

Proof of Lemma 5.2.14.
We have ⌧IJ l

X := aexp K�D(R) ✓ �D(D), since R 2 D and D 2 D are sound
over-approximations of ⌧I(l) and ⌧I(fJ l

X :=aexp K), respectively.
Let C

def
= ⌧MtJ l

X := aexp K�D[D]t and let A

def
= �T[R]((B-ASSIGNTJX :=

aexp KR)(t)). We prove that dom(C) ◆ dom(A) and 8⇢ 2 dom(A) : C(⇢) 
A(⇢) (cf. Equation 4.2.12).

Let us assume, by absurd, that dom(C) ⇢ dom(A). Then, there exists an
environment ⇢ 2 E such that ⇢ 2 dom(A) and ⇢ 62 dom(C). In particular,
⇢ 2 �D(R). Thus, since ⌧IJ l

X := aexp K�D(R) ✓ �D(D) and by definition of
⌧IJ l

X := aexp K (cf. Figure 3.9), we have 8v 2 J aexp K⇢ : ⇢[X  v] 2 �D(D).
Moreover, since ⇢ 2 dom(A) and by definition of B-ASSIGNT (cf. Algo-
rithm 11), we must have 8v 2 J aexp K⇢ : ⇢[X  v] 2 dom(�T[D]t). In fact, an
environment ⇢[X  z] 62 dom(�T[D]t) for some z 2 J aexp K⇢, must be repre-
sented by an undefined leaf node f 2 F\{?F,>F} in t 2 T (cf. Equation 5.2.11
and Equation 5.2.9). Moreover, Algorithm 11 invokes B-ASSIGNF for every leaf
node of a decision tree, which leaves undefined leaf nodes unaltered (cf. Equa-
tion 5.2.21), and a-join to handle possibly overlapping partitions (cf. Line 10
and Line 20), which favors undefined leaf nodes over defined leaf nodes (cf.
Algorithm 6 and Equation 5.2.13). Thus, by definition of ⌧MtJ l

X :=aexp K (cf.
Equation 4.3.2) and in absence of run-time errors, we have ⇢ 2 dom(C), which
is absurd. Therefore, we conclude that dom(C) ◆ dom(A).

Let us assume now, by absurd, that 9⇢ 2 dom(A) : C(⇢) > A(⇢). We have,
by definition of ⌧MtJ l

X := aexp K, C(⇢) = sup{(�T[D]t)(⇢[X ! v]) + 1 | v 2
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J aexp K⇢}. Moreover, by definition of B-ASSIGNT (cf. Algorithm 11), we have
sup{(�T[D]t)(⇢[X ! v]) + 1 | v 2 J aexp K⇢}  A(⇢). In fact, Algorithm 11
invokes B-ASSIGNF, which after the assignment increases the value of the
defined leaf nodes of a decision tree (cf. Equation 5.2.21). Thus, C(⇢)  A(⇢),
which is absurd. Therefore, we conclude that 8⇢ 2 dom(A) : C(⇢)  A(⇢).

This concludes the proof. ⌅

Lemma 5.2.15 Let F

\

1 [t]
def
= (FILTERTJ bexp KR)(⌧ \MtJ stmt1 Kt) and F

\

2 [t]
def
=

(FILTERTJ not bexp KR)(⌧ \MtJ stmt2 Kt). Then, for all t 2 T , we have:

⌧MtJ if lbexp then stmt1 else stmt2 fi K�T[D]t 4 �T[R](F \

1 [t] gT[R] F \

2 [t])

Proof of Lemma 5.2.15.
We have ⌧IJ if lbexp then stmt1 else stmt2 fi K�D(R) ✓ �D(D), given that
R 2 D is a sound over-approximation of ⌧I(l) and D 2 D is a sound over-
approximations of ⌧I(fJ if lbexp then stmt1 else stmt2 fi K).

Let C

def
= ⌧MtJ if lbexp then stmt1 else stmt2 fi K�T[D]t and let A

def
=

�T[R](F \

1 [t] gT[R] F \

2 [t]). By structural induction, we have ⌧MtJ stmt1 K�T[D]t 4
�T[R](⌧ \MtJ stmt1 Kt) and ⌧MtJ stmt2 K�T[D]t 4 �T[R](⌧ \MtJ stmt2 Kt). We prove
that dom(C) ◆ dom(A) and 8⇢ 2 dom(A) : C(⇢)  A(⇢) (cf. Equation 4.2.12).

Let us assume, by absurd, that dom(C) ⇢ dom(A). Then, there exists an
environment ⇢ 2 E such that ⇢ 2 dom(A) and ⇢ 62 dom(C). Since ⇢ 2 dom(A),
by definition of 4T [D] (cf. Algorithm 6) and FILTERT (cf. Algorithm 12), we

have ⇢ 2 dom(�T[R](⌧ \MtJ stmt1 Kt)) or ⇢ 2 dom(�T[R](⌧ \MtJ stmt2 Kt)), or both.
In fact, Algorithm 12 prunes a decision tree (cf. Line 12) and Algorithm 6
favors undefined leaf nodes over defined leaf nodes (cf. Equation 5.2.13).
Thus, by structural induction, we have ⇢ 2 dom(⌧MtJ stmt1 K�T[D]t) or ⇢ 2
dom(⌧MtJ stmt2 K�T[D]t), or both. In absence of run-time errors, by definition
of ⌧MtJ if lbexp then stmt1 else stmt2 fi K (cf. Equation 4.3.3), we have
⇢ 2 dom(C) which is absurd. Therefore, we conclude that dom(C) ◆ dom(A).

Let us assume now, by absurd, that 9⇢ 2 dom(A) : C(⇢) > A(⇢). Let
S1 denote ⌧MtJ stmt1 K�T[D]t and let S2 denote ⌧MtJ stmt2 K�T[D]t. We have,
by definition of ⌧MtJ if lbexp then stmt1 else stmt2 fi, C(⇢) = S1(⇢) + 1

or C(⇢) = S2(⇢) + 1 or C(⇢) = sup{S1(⇢) + 1, S2(⇢) + 1}. Let S

\

1 denote

�T[R](⌧ \MtJ stmt1 Kt) and let S\

2 denote �T[R](⌧ \MtJ stmt2 Kt). We have, by struc-
tural induction, S1(⇢) < A(⇢) or S2(⇢) < A(⇢) or sup{S1(⇢) + 1, S2(⇢) + 1} <

A(⇢). In fact, Algorithm 12 invokes step which increases the value of the
defined leaf nodes of a decision tree (cf. Algorithm 9. Thus, C(⇢)  A(⇢),
which is absurd. Therefore, we conclude that 8⇢ 2 dom(A) : C(⇢)  A(⇢).
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This concludes the proof. ⌅

Lemma 5.2.16 Let F

\

1 [x]
def
= (FILTERTJ bexp KR)(⌧ \MtJ stmt Kx) and F

\

2 [t]
def
=

(FILTERTJ not bexp KR)(t). Then, given t 2 T , for all x 2 T we have:

�Mt(�D[R]x) 4 �T[R](�\Mt(x))

where �\Mt(x)
def
= F

\

1 [x] gT[R] F \

2 [t].

Proof of Lemma 5.2.16.
Let C

def
= �Mt(�D[R]x) and let A

def
= �T[R](�\Mt(x)). By structural induction,

we have ⌧MtJ stmt K�T[R]x 4 �T[R](⌧ \MtJ stmt Kx). We prove that dom(C) ◆
dom(A) and 8⇢ 2 dom(A) : C(⇢)  A(⇢) (cf. Equation 4.2.12).

Let us assume, by absurd, that dom(C) ⇢ dom(A). Then, there exists an
environment ⇢ 2 E such that ⇢ 2 dom(A) and ⇢ 62 dom(C). Since ⇢ 2 dom(A),
by definition of 4T [D] (cf. Algorithm 6) and FILTERT (cf. Algorithm 12), we

have ⇢ 2 dom(�T[R](⌧ \MtJ stmt Kx)) or ⇢ 2 dom(�T[D]t), or both. In fact, Algo-
rithm 12 prunes a decision tree (cf. Line 12) and Algorithm 6 favors undefined
leaf nodes over defined leaf nodes (cf. Equation 5.2.13). Thus, by structural
induction, we have ⇢ 2 dom(⌧MtJ stmt K�T[R]x) or ⇢ 2 dom(�T[D]t), or both.
In absence of run-time errors, by definition of �Mt (cf. Equation 4.3.5), we have
⇢ 2 dom(C) which is absurd. Therefore, we conclude that dom(C) ◆ dom(A).

Let us assume now, by absurd, that 9⇢ 2 dom(A) : C(⇢) > A(⇢). Let S

denote ⌧MtJ stmt K�T[R]x. We have, by definition of �Mt, C(⇢) = S1(⇢) + 1
or C(⇢) = (�T[D]t)(⇢) + 1 or C(⇢) = sup{S1(⇢) + 1, (�T[D]t)(⇢) + 1}. Let S\

denote �T[R](⌧ \MtJ stmt Kx). We have, by structural induction, S1(⇢) < A(⇢)
or (�T[D]t)(⇢) < A(⇢) or sup{S1(⇢) + 1, (�T[D]t)(⇢) + 1} < A(⇢). In fact,
Algorithm 12 invokes step which increases the value of the defined leaf nodes
of a decision tree (cf. Algorithm 9. Thus, C(⇢)  A(⇢), which is absurd.
Therefore, we conclude that 8⇢ 2 dom(A) : C(⇢)  A(⇢).

This concludes the proof. ⌅

Lemma 5.2.24 Let �\Mt(x)
def
= F

\

1 [x] gT[R] F \

2 [t] as defined in Lemma 5.2.16
for any given t 2 T . Then, we have:

⌧MtJ while lbexp do stmt od K�T[D]t 4 �T[R](lfp\ �\Mt)

where lfp\ �\Mt is the limit of the iteration sequence with widening: y0
def
= ?T,

y

n+1
def
= y

n

O �

\

Mt(yn) (cf. Equation 5.2.24).
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Proof of Lemma 5.2.24.
Let C

def
= ⌧MtJ while lbexp do stmt od K�T[D]t and let A

def
= �T[R](lfp\ �\Mt).

We prove that dom(C) ◆ dom(A) and 8⇢ 2 dom(A) : C(⇢)  A(⇢) (cf.
Equation 4.2.12).

The proof follows from Lemma 5.2.16, Lemma 5.2.17, and Lemma 5.2.19,
and Lemma 5.2.20 and from the definition of OT (cf. Algorithm 13). In
fact from Lemma 5.2.16, whenever some iterate y

n

under-approximates the
value of the termination semantics or over-approximates its domain of defini-
tion (cf. Figure 5.10), it cannot be the limit of the iteration sequence with

widening because it violates either �\Mt(yn) vT [R] y
n

or �\Mt(yn) 4T [R] y
n

(cf. Equation 5.2.24). Moreover, from Lemma 5.2.17, and Lemma 5.2.19, and
Lemma 5.2.20 and from the definition of OT (cf. Algorithm 13), we know that
further iterates resolve the issue. In fact, Algorithm 13 specifically invokes
caseA and caseBorC to this end.

Thus, this concludes the proof since the limit of the iteration sequence
with widening must over-approximate the value of the termination semantics
and under-approximate its domain of definition. ⌅

A.4 Missing Proofs from Chapter 6

Lemma 6.3.1 8p1, p2 2W : p1 4W [D] p2 ) �W[D]p1 4 �W[D]p2.

Proof of Lemma 6.3.1.
Let D 2 D. We reason by cases. First, we consider the case of defined and
undefined leaf nodes. Then, we consider the case of defined leaf nodes.

Let p1 2 W \ {?W,>W} and let p2 2 {?W,>W}. We have p1 4W [D]p2
from Figure 6.2a. Moreover, from Equation 6.3.4, we have �W[D]p2 = ;̇. Thus,
since dom(�W[D]p2) = ;, we have dom(�W[D]p1) ◆ dom(�W[D]p2) and, from
Equation 4.2.12, we have �W[D]p1 4 �W[D]p2.

Let p1, p2 2 W \ {?W,>W} such that p1 4W [D]p2, where p1
def
=
P

i

!

i ·
f

i1 and p2
def
=
P

i

!

i · f
i2 . From Equation 6.3.4, we have dom(�W[D]p1) =

dom(�W[D]p2) and, in particular, dom(�W[D]p1) ◆ dom(�W[D]p2). Moreover,
from Equation 6.3.2, for all ⇢ 2 �D(D) we have

P

i

!

i ·f
i1(⇢(X1), . . . , ⇢(X

k

)) 
P

i

!

i·f
i2(⇢(X1), . . . , ⇢(X

k

)). Thus, from Equation 4.2.12, �W[D]p1 4 �W[D]p2.
This concludes the proof that �W[D] is monotonic. ⌅

Lemma 6.4.1 ⌧MtJ stmt K(�T[D]t) 4 �T[R](⌧ \MtJ stmt Kt).
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Proof of Lemma 6.4.1 (Sketch).

The proof for a skip instruction follows from Lemma 5.2.8 and the defini-
tion of the STEPW operator (cf. Equation 6.3.8). The proof for a variable
assignment follows from Lemma 5.2.14 and the definition of the B-ASSIGNW

operator (cf. Algorithm 21). The proof for a conditional if instruction fol-
lows from Lemma 5.2.15 and the definition of the approximation join gW (cf.
Algorithm 19). The proof for a while loop follows from Lemma 5.2.24 and
the definition of the computational join tW (cf. Algorithm 20) and the ex-
trapolation operator HW (cf. Algorithm 22). ⌅

A.5 Missing Proofs from Chapter 7

Lemma 7.3.3 (⌧MtJ l

call M KM�T[S]T )(�T[D]t) 4 �T[R](STEPT(t +T T )).

Proof of Lemma 7.3.3.

Let C
def
= (⌧MtJ l

call M KM�T[S]T )(�T[D]t) and let A
def
= �T[R](STEPT(t +T

T )). We prove that dom(C) ◆ dom(A) and 8⇢ 2 dom(A) : C(⇢)  A(⇢) (cf.
Equation 4.2.12).

Let us assume, by absurd, that dom(C) ⇢ dom(A). Then, there exists
an environment ⇢ 2 E such that ⇢ 2 dom(A) and ⇢ 62 dom(C). Thus, since
⇢ 2 dom(A) and by definition of the step operator STEPT (cf. Algorithm 9)
and the sum operator +T (cf. Algorithm 23), we must have ⇢ 2 dom(�T[D]t)
and ⇢ 2 dom(�T[D]T ). In fact, Algorithm 23 invokes the leaves sum opera-
tor +F, which favors undefined leaf nodes over defined leaf nodes (cf. Equa-
tion 7.3.6 and Equation 7.3.7) and Algorithm 9 simply invokes STEPF for every
leaf node of a decision tree, which leaves undefined leaf nodes unaltered (cf.
Equation 5.2.19). Thus, by definition of ⌧MtJ l

call M KM (cf. Equation 7.3.1),
we have ⇢ 2 dom(C), which is absurd. Therefore, we have dom(C) ◆ dom(A).

Let us assume now, by absurd, that 9⇢ 2 dom(A) : C(⇢) > A(⇢). We
have, by definition of ⌧MtJ l

call M KM, C(⇢) = (�T[D]t)(⇢)+ (�T[D]T )(⇢)+1.
Moreover, by definition of STEPT (cf. Algorithm 9) and +T (cf. Algorithm 23),
we have (�T[D]t)(⇢)+ (�T[D]T )(⇢) < A(⇢). In fact, Algorithm 23 invokes +F,
which additions the value of the leaf nodes that are defined in both decision
trees (cf. Equation 7.3.7), and Algorithm 9 invokes STEPF, which increases
the value of the resulting defined leaf nodes (cf. Equation 5.2.19). Thus,
C(⇢)  A(⇢), which is absurd. Therefore, 8⇢ 2 dom(A) : C(⇢)  A(⇢).

This concludes the proof. ⌅
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Lemma 7.3.4 (⌧MtJ l

call M KP�T[S]T )(�T[D]t) 4 �T[R](STEPT(I)), where

I

def
= lfp\ (�T. (⌧ \Mt(M)T )(t)).

Proof of Lemma 7.3.4.
The soundness of I follows from the definition of (⌧MtJ l

call M KP (cf. Equa-
tion 7.3.2) and from Lemma 5.2.24.

Let C
def
= (⌧MtJ l

call M KP�T[S]T )(�T[D]t) and let A
def
= �T[R]STEPT(C).

We prove that dom(C) ◆ dom(A) and 8⇢ 2 dom(A) : C(⇢)  A(⇢) (cf.
Equation 4.2.12).

Let us assume, by absurd, that dom(C) ⇢ dom(A). Then, there exists
an environment ⇢ 2 E such that ⇢ 2 dom(A) and ⇢ 62 dom(C). Thus, since
⇢ 2 dom(A) and by definition of STEPT (cf. Algorithm 9), we must have
⇢ 2 dom(�T[D]t). In fact, Algorithm 9 simply invokes STEPF for every leaf
node of a decision tree, which leaves undefined leaf nodes unaltered (cf. Equa-
tion 5.2.19). Thus, by definition of (⌧MtJ l

call M KP, we have ⇢ 2 dom(C),
which is absurd. Therefore, we have dom(C) ◆ dom(A).

Let us assume now, by absurd, that 9⇢ 2 dom(A) : C(⇢) > A(⇢). We
have, by definition of (⌧MtJ l

call M KP, C(⇢) = (�T[D]t)(⇢) + 1. Moreover,
by definition of STEPT (cf. Algorithm 9), we have (�T[D]t)(⇢) < A(⇢). In
fact, Algorithm 9 invokes STEPF, which increases the value of the defined leaf
nodes of a decision tree (cf. Equation 5.2.19). Thus, C(⇢)  A(⇢), which is
absurd. Therefore, we conclude that 8⇢ 2 dom(A) : C(⇢)  A(⇢).

This concludes the proof. ⌅

Lemma 7.3.5 (⌧MtJ l

return KP�T[D]T )(�T[D]t) 4 �T[R](STEPT(t)).

Proof of Lemma 7.3.5.
Let C

def
= (⌧MtJ l

return KP�T[D]T )(�T[D]t) and let A
def
= �T[R]STEPT(t). We

prove that dom(C) ◆ dom(A) and 8⇢ 2 dom(A) : C(⇢)  A(⇢) (cf. Equa-
tion 4.2.12).

Let us assume, by absurd, that dom(C) ⇢ dom(A). Then, there exists
an environment ⇢ 2 E such that ⇢ 2 dom(A) and ⇢ 62 dom(C). Thus, since
⇢ 2 dom(A) and by definition of STEPT (cf. Algorithm 9), we must have
⇢ 2 dom(�T[D]t). In fact, Algorithm 9 simply invokes STEPF for every leaf
node of a decision tree, which leaves undefined leaf nodes unaltered (cf. Equa-
tion 5.2.19). Thus, by definition of ⌧MtJ l

return K (cf. Equation 7.3.3), we
have ⇢ 2 dom(C), which is absurd. Therefore, we have dom(C) ◆ dom(A).

Let us assume now, by absurd, that 9⇢ 2 dom(A) : C(⇢) > A(⇢). We
have, by definition of ⌧MtJ l

return K, C(⇢) = (�T[D]t)(⇢) + 1. Moreover, by
definition of STEPT (cf. Algorithm 9), we have (�T[D]t)(⇢) < A(⇢). In fact,
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Algorithm 9 invokes STEPF, which increases the value of the defined leaf nodes
of a decision tree (cf. Equation 5.2.19). Thus, C(⇢)  A(⇢), which is absurd.
Therefore, we conclude that 8⇢ 2 dom(A) : C(⇢)  A(⇢).

This concludes the proof. ⌅

A.6 Missing Proofs from Chapter 9

Theorem 9.2.5 A program satisfies a guarantee property 3' for execution
traces starting from a given set of initial states I if and only if I ✓ dom(⌧'g ).

Proof of Theorem 9.2.5 (Sketch).
The proof follows by Park’s Fixpoint Induction Principle (cf. Theorem 2.2.14)
along the lines of the proof of Theorem 4.2.23 proposed in [CC12] and the
proof of Theorem 4.2.15 proposed in Appendix A.2. ⌅

Lemma 9.2.9 ⌧

'

g J stmt K�T[D]t 4 �T[R]⌧'\g J stmt Kt.

Proof of Lemma 9.2.9 (Sketch).
The proof follows from Equation 9.2.7 and Lemma 5.2.8 (for a skip instruc-
tion), from Equation 9.2.8 and Lemma 5.2.14 (for a variable assignment),
from Equation 9.2.9 and Lemma 5.2.15 (for a conditional if statement), and
from Equation 9.2.10 and Lemma 5.2.24 (for a while loop), together with
Lemma 6.4.1 and Algorithm 24 and Equation 9.2.14 (cf. Figure 9.1). ⌅

Theorem 9.3.5 A program satisfies a guarantee property 3' for execution
traces starting from a given set of initial states I if and only if I ✓ dom(⌧'g ).

Proof of Theorem 9.3.5 (Sketch).
The proof follows by Park’s Fixpoint Induction Principle (cf. Theorem 2.2.14)
along the lines of the proof of Theorem 4.2.23 proposed in [CC12] and the
proof of Theorem 4.2.15 proposed in Appendix A.2. ⌅

Lemma 9.3.9 ⌧

'

r J stmt K�T[D]t 4 �T[R]⌧'\r J stmt Kt.

Proof of Lemma 9.3.9 (Sketch).
The proof follows from Equation 9.3.6 and Lemma 5.2.8 (for a skip instruc-
tion), from Equation 9.3.7 and Lemma 5.2.14 (for a variable assignment),
from Equation 9.3.8 and Lemma 5.2.15 (for a conditional if statement), and
from Equation 9.3.9 and Lemma 5.2.24 (for a while loop), together with
Lemma 6.4.1 and Algorithm 24 and Equation 9.3.13 (cf. Figure 9.3). ⌅
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