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Abstract

In the first part of this thesis, we review the Universal Extra-Dimensional Model compacti-
fied on a S1/Z2 orbifold, and the renormalisation group evolution of quark and lepton masses,
mixing angles and phases both in the UED extension of the Standard Model and of the Min-
imal Supersymmetric Standard Model (the five-dimensional MSSM). We consider two typical
scenarios: all matter fields propagating in the bulk, and matter fields constrained on the brane.
The two possibilities give rise to quite different behaviours. For the quark sector we study
the Yukawa couplings and various flavor observables and for the neutrino sector, we study the
evolution of neutrino masses, mixing angles and phases. The analysis is performed in the two
cases for different values of tan β and different radii of compactification. The resulting renor-
malisation group evolution equations in these scenarios are compared with the existing results
in the literature, together with their implications.

In the second part, we present a simulation study about anomaly mediated supersymmetry
breaking and its extensions. Anomaly mediation is a popular and well motivated supersym-
metry breaking scenario. Different possible detailed realisations of this set-up are studied and
actively searched for at colliders. Apart from limits coming from flavour, low energy physics and
direct collider searches, these models are usually constrained by the requirement of reproducing
the observations on dark matter density in the universe. We reanalyse these bounds and in par-
ticular we focus on the dark matter bounds both considering the standard cosmological model
and alternative cosmological scenarios. We briefly discuss the implications for phenomenology
and in particular at the Large Hadron Collider. After that we update our analysis by using new
limits from observables and adding recent Higgs boson measurements for the mass and signal
strengths in different decay channels.

Keywords:
Beyond the Standard Model, Extra Dimensional Model, Renormalization Group Equations,

Supersymmetry, CKM Matrix, PMNS Matrix, Neutrinos, Dark Matter, Cosmology, Large
Hadron Collider, Higgs Boson.
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Résumé

Dans la première partie de cette thèse, je présenterai le 5D MSSM qui est un modèle super-
symétrique avec une dimension supplémentaire. (Five Dimensional Minimal Supersymmetric
Standard Model). Après compactification sur l’orbifold S1/Z2, le calcul des équations du
groupe de renormalisation (RGE) à une boucle montre un changement dans l’évolution des
paramètres phénoménologiques. Dès que l’énergie E = 1/R est atteinte, les états de Kaluza-
Klein interviennent et donnent des contributions importantes. Plusieurs possibilités pour les
champs de matière sont discutés : ils peuvent se propager dans le "bulk" ou ils sont localisés
sur la "brane".

Je présenterai d’une part l’évolution des équations de Yukawa dans le secteur des quarks
ainsi que les paramètres de la matrice CKM, d’autre part, les effets de ce modèle sur le secteur
des neutrinos notamment les masses, les angles de mélange, les phases de Majorana et de Dirac.

Dans la deuxième partie, je parlerai du modèle AMSB et ses extensions (MM-AMSB et HC-
AMSB). Ces modèles sont des scénarios de brisure assez bien motivés en supersymétrie. En
calculant des observables issues de la physique des particules puis en imposant des contraintes
de cosmologie standard et alternative sur ces scénarios, j’ai déterminé les régions qui respectent
les contraintes de la matière noire et les limites de la physique des saveurs.

Je reprendrai ensuite l’analyse de ces modèles en utilisant de nouvelles limites pour les
observables. La nouvelle analyse est faite en ajoutant les mesures récentes sur la masse du
Higgs et les rapports de branchement pour plusieurs canaux de désintégrations.

Mots-clés :
Au delà du Modèle Standard, Dimensions supplémentaires, Equations du Groupe de Renor-

malisation, Supersymétrie, Matrice CKM, Matrice PMNS, Neutrinos, Matière noire, Cosmolo-
gie, Large Hadron Collider, Boson de Higgs.
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Introduction

The Standard Model (SM) of elementary particle physics is one of the cornerstones of all
science and one of the great triumphs of the 20th century. It has been carefully experimentally
verified in many ways, especially during the past decades and it provides a correct description
of virtually all known microphysical nongravitational phenomena. However, there are a number
of theoretical and phenomenological issues that the SM fails to address adequately: the gauge
hierarchy problem, description of gravity, triggering electroweak symmetry breaking, gauge cou-
pling unification, explanation of family structure and fermion (neutrino) masses, cosmological
challenges including the issue of dark matter...

The masses of the quarks and charged leptons are determined in the Standard Model (SM)
via Yukawa couplings to the Higgs boson. The origin of their structure (masses and mixing
angles) has no explanation within the SM and presents as one of the major challenges for
physics beyond the SM. Among these models those with extra spatial dimensions offer many
possibilities for model building and TeV-scale physics scenarios which can now be explored or
constrained at the Large Hadron Collider (LHC). Extra-dimensional models give, for example,
a way to generate electroweak symmetry breaking or supersymmetry breaking through the
choice of appropriate boundary conditions. In addition, for the case of flat extra-dimensions,
the presence of towers of excited Kaluza-Klein (KK) states induces a power-law enhancement
of the gauge couplings, leading to possible low-scale unification. This effect can be applied to
other couplings, such as Yukawa couplings, giving an original way to generate mass hierarchies.

SUSY is a lovely theoretical construct, which is included in the most general set of symme-
tries of local relativistic field theories, has the virtue of solving the gauge hierarchy problem and
it has captured the imagination of many theoretical physicists. It allows for a new synthesis
of particle interactions, and offers a new direction for the incorporation of gravity into particle
physics. The supersymmetric extension of the Standard Model also ameliorates the situation
of phenomenological problems in the physics of elementary particles, if superpartners exist at
the TeV scale. These new states may well be discovered in experiments at high energy collid-
ers. Since SUSY relates the scalar and fermionic sectors, the chiral symmetries which protect
the masses of the fermions, also protect the masses of the scalars from quadratic divergences,
leading to an elegant solution of the hierarchy problem. We saw that apart from this, SUSY
leads to unification of gauge couplings, provides cold dark matter candidate and provides a
framework to discuss gravity.

The study of the renormalisation group equations (RGEs) provides a way by which partial
explorations of the physics implications at a high energy scale is possible, as the theories at
asymptotic energies may reveal new symmetries or other interesting properties which may lead

1
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to deeper insights into the physical content.
The RGEs help us to study the asymptotic properties of the Lagrangian parameters like

the Yukawa coupling constants and mixing angles, and explore the possibility of a model in
which the CKM matrix might have a simple, special form at asymptotic energies. We will also
treat the neutrino masses and several parameters of the PMNS matrix. However, our results
will be limited by the fact that extra-dimensional theories are only effective ones, limited by a
cut-off in their physical description of fundamental phenomena. Therefore the following study
can only be used as an indication of the behaviour of couplings and mixing parameters at an
intermediate scale between the electroweak scale (at which these parameters are measured) and
the higher scale at which the effective theory ceases to be valid. However, in the range of the
LHC energies (of the order of a few TeV), and beyond, one can indeed test if the departure from
the usual behaviour of the coupling evolution can be seen in precision flavour measurements.

String theory is a realistic attempt to provide a unified quantum picture of all known in-
teractions in physics. Consistent string theories indicate the existence of supersymmetry and
compactified extra dimensions in their low energy phenomenology. Though a rigorous con-
nection between string theory and low energy phenomenological models with extra dimensions
has not yet been possible, it provides enough motivation to study higher dimensional super-
symmetric theories. From a purely phenomenological point of view, such higher dimensional
supersymmetric theories have various virtues to their credit, including the explanation of the
fermion mass hierarchy from a different angle, providing a cosmologically viable dark matter
candidate, possible interpretation of the Higgs as a composite leading to a successful electroweak
symmetry breaking without the necessity of a fundamental Yukawa interaction, and lowering
the unification scale down to a few TeV. Supersymmetrization provides a natural mechanism to
stabilize the Higgs mass in extra dimensional scenarios. We note that all supersymmetric mod-
els in four dimensions necessarily introduce the paradigm of further new physics that controls
SUSY breaking in this class of models. Embedding supersymmetric models in extra dimension
provides various avenues to realize soft breaking of supersymmetry.

In order to present the results, I divided this thesis in three parts:
– Part 1 is an introduction to the main concepts necessary to understand the Standard

Model of particle physics, supersymmetry, cosmology and dark matter.
– Part 2 consists of two chapters in which I describe my work about phenomenology in

the 5D MSSM and the comparison between different observables in our model and others
UED models. I present in chapter 2 a theoretical description of the model, describe
in a compact form the RGE of various parameters as well as results related to quarks
sector and CKM matrix. I will discuss a five dimensional N = 1 supersymmetric model
compactified on the S1/Z2 orbifold as a simple testing ground for the effects of the extra-
dimension on the quark Yukawa couplings and the CKM matrix observables.
In chapter 3 I present the results related to neutrino sector and PMNS matrix.

2



Part 2 is based on the following papers:
1. A. Cornell, A. Deandrea, L. Liu, A. Tarhini. Scaling of the CKM Matrix in the 5D

MSSM [arXiv:1110.1942],
Published in Phys. Rev. D85 (2012) 056001.

2. A. Cornell, A. Deandrea, L. Liu, A. Tarhini. The evolution of neutrino masses and
mixings in the 5D MSSM [arXiv:1206.5988],
Published in Eur.Phys.J.Plus 128 (2013) 6.

3. A. Cornell, A. Deandrea, L. Liu, A. Tarhini. Renormalisation running of masses and
mixings in UED models [arXiv:1209.6239],
Published in Mod. Phys. Lett. A 28, 1330007 (2013).

– Part 3 also consists of two chapters. I study the scan of parameter space in various
anomaly mediation SUSY breaking scenarios and how it is constrained by the flavour
physics, Higgs physics and the dark matter limits using the SuperIso Relic program. In
chapter 4 I present a detailed study with many observables from B-physics and I see how
the alternative cosmology can lead to new favoured regions in the parameter space. In
chapter 5 I will use updated results and more constrained limits on flavour observables.
I study also the effects of Higgs mass and branching ratios to these models.

Part 3 is based on the following papers:
1. A. Arbey, A. Deandrea, A. Tarhini. Anomaly mediated SUSY breaking scenarios in the

light of cosmology and in the dark (matter) [arXiv:1103.3244],
Published in JHEP 1105:078,2011.

2. A. Arbey, A. Deandrea, F. Mahmoudi, A. Tarhini. Anomaly mediated supersymmetric
models and Higgs data from the LHC [arXiv:1304.0381],
Published in Phys. Rev. D 87 (115020) 2013.

Part 2 and part 3 are independent. Finally some appendices will help the reader to find details
about concepts and equations in the different chapters.
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Chapter 1

General context and overview

1.1 The Standard Model of particle physics

1.1.1 Description and particle content

Our current understanding of High Energy Physics can be summarized in the theory known
as the Standard Model (SM) [1]. It is a renormalizable quantum field theory describing the
elementary particles of matter and their fundamental interactions. The SM describes collec-
tively the electromagnetic, weak and strong interactions between the fundamental constituents
of matter, quarks and leptons. In mathematical terms, the SM is a non-Abelian gauge the-
ory based on the symmetry group GSM = SU(3)C × SU(2)L × U(1)Y . As a gauge theory,
the Standard Model is based on the fundamental concept of gauge symmetries. Unlike global
symmetries, gauge symmetries are not new symmetries of nature, in the sense that they do not
imply the existence of new conserved charges. However, their existence is of a much deeper
significance, since they determine in a unique way how the the fields (particles) interact.

The development of the SM proved to be difficult, due to the fact that gauge symmetries
can be broken, i.e. they may not be manifest in physical observables. Symmetry breaking
in the form of phase transitions was well known in classical physics and had been formalized
by Landau [2, 3]. Considering for instance a ferromagnet, we know that, above the Curie
temperature, the net magnetization is zero, the spins are randomly oriented and the system
displays a symmetry under SO(3) transformations (3-dimensional rotations). Below the Curie
temperature, the system obtains a net magnetization with the spins pointing along a certain
direction and the symmetry being reduced ("broken") from SO(3) to SO(2) (rotations about the
external field direction). In this less symmetric phase, one needs additional degrees of freedom
in order to describe the system. These have been dubbed order parameters.

In an analogous way, Higgs, Brout, Englert, Guralnik, Hagen and Kibble proposed a way
to apply these principles in systems of quantum fields [4–8]. Glashow, Weinberg and Salam
then applied the idea of symmetry breaking to the description of the electromagnetic and weak
interactions as a unified gauge field theory.
In the electroweak theory [9–11], one starts from a symmetric phase which is invariant under
the transformations of the gauge group SU(2)×U(1)Y , where Y = Q− I3

2 is the hypercharge, Q
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CHAPTER 1. GENERAL CONTEXT AND OVERVIEW

is the charge and I3 the projection of the isospin along the z axis. Along with the electroweak
gauge bosons, the electroweak theory predicts the existence of a scalar field (called the Higgs
field), which plays the role of the order parameter of the theory. Below a certain energy
scale, the Higgs field acquires a non-zero vacuum expectation value and the SU(2) × U(1)Y

symmetry is broken down to U(1)Q, which is the gauge symmetry of electromagnetism. In
the process, the weak bosons acquire masses and appear thus to be non-invariant under the
gauge transformations 1. The electroweak theory has been consolidated by the discovery of the
neutral current interactions and the W and Z bosons by the Gargamelle and UA1 experiments
at CERN. This paved the way towards the construction of the Standard Model, which started
with the works of Glashow, Weinberg and Salam [9–11].

The development of Quantum Chromodynamics (QCD) as the gauge theory of strong in-
teractions began with the introduction of the quark model for the classification of hadron
resonances [12,13]. The colour charge was introduced as a new degree of freedom in an attempt
to solve the Δ++ puzzle, i.e. to allow for the existence of resonances with antisymmetric wave-
functions comprised of three quarks with identical flavour and spin [14]. The measurement of
the cross-section ratio σ(e+e− → hadrons)/σ(e+e− → μ+μ−) at SLAC [15] provided evidence
for the existence of three colours and the discovery of 3-jet events in e+e− collisions by the
TASSO experiment at DESY [16] established the existence of gluons thus proving that the
strong interactions could be described as a gauge theory with a SU(3) symmetry group.

The SM accommodates twelve fundamental fermions of spin 1/2 that are divided into two
categories: leptons which do not interact with strong interactions and quarks which inter-
act with strong interactions and come in three colours; and three generations. To each of
these particles one associates an antiparticle by charge conjugation. The fundamental fermions
are described by different representations of the SM gauge group GSM . Right-handed quarks
and right-handed leptons are SU(2) singlets and the right-handed neutrinos are GSM singlets.
Fermion interactions are mediated by the gauge bosons that transform under the adjoint repre-
sentation of GSM . The standard model also predicts the existence of a Higgs boson, which is a
spin 0 particle. Its recent discovery in 2012opens the way to the detailed study of its properties.
In the table 1.1, we give the SM field content and their charges under the three different gauge
groups and their electric charges.

1.1.2 Standard Model Lagrangian

The Standard Model Lagrangian can be split into four parts [17]: the gauge sector LG, the
fermion sector LF , the Higgs sector LH and the Yukawa sector Ly.

LSM = LG + LF + LH + Ly (1.1)

1. In the electroweak sector (weakly coupled sector), the associated gauge fields are respectively W 1,2,3 and
B. The gauge symmetry breaking introduces masses for three new mass-eigenstates: W ± and Z. One eigenstate
will remain massless, the photon γ.

6



1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

Field Notation SU(3)C SU(2)W U(1)Y U(1)EM

Quarks (s=1/2) QL =
(

uL

dL

)
,

(
cL

sL

)
,

(
tL

bL

)
3 2 1/6

(
2/3

−1/3

)

uR, cR, tR 3 1 2/3 2/3
dR, sR, bR 3 1 −1/3 −1/3

Leptons (s=1/2) LL =
(

νe

eL

)
,

(
νμ

μL

)
,

(
ντ

τL

)
1 2 −1/2

(
0

−1

)

eR, μR, τR 1 1 1 −1

Gauge (s=1) g 8 1 0 0
W 3, W± 1 3 0 0, ±1

B 1 1 0 0

Higgs (s=0) Φ =
(

φ+

φ0 = 1√
2(v + h + iϕ0)

)
1 2 1/2

(
1
0

)

Table 1.1: The SM fields with their representations under SU(3)C and SU(2)W and their
charges under U(1)Y and U(1)EM . Q is the electric charge and s is the spin of the field.

Gauge sector

The first term is the kinetic term of the gauge fields:

LG = − 1
4g2

1
BμνBμν − 1

4g2
w

3∑
a=1

W a,μνWa,μν − 1
4g2

s

8∑
A=1

GA,μνGA,μν (1.2)

where Bμν , W a,μν and GA,μν are the field strength of the associated gauge fields given by:

Bμν = ∂μBν − ∂νBμ

W a,μν = ∂μW a,ν − ∂νW a,μ + gw εabc W b,μW c,ν (1.3)

GA,μν = ∂μGA,ν − ∂νGA,μ + gs fABC GB,μGC,ν

gs, gw and g1 are the coupling constants associated to SU(3)C , SU(2)W and U(1)Y . εabc and
fABC are the structure constants of SU(2) and SU(3). They are defined by the commutation

7



CHAPTER 1. GENERAL CONTEXT AND OVERVIEW

relation between the generators ta for SU(2) or T A for SU(3) 2, where a = 1..3 and A = 1..8.

[ta, tb] = iεabctc and [T A, T B] = ifABCT C (1.4)

Fermion sector

The gauge interaction of fermions can be derived from the covariant derivative, once the
various charges of the fields are known. The peculiarity of the SM is that the left-handed part
of a fermion has a different coupling compared to the right-handed one. For instance, only
left-handed fields couple to W bosons.

LF = iQ̄i
L

/DQi
L + iūi

R
/Dui

R + id̄i
R

/Ddi
R + iēi

R
/Dei

R + iL̄i
L

/DLi
L (1.5)

The index i = 1..3 is a flavour index which takes into account the three families of quarks and
leptons, /D = γμDμ where γμ are the Dirac’s matrices. The colour indices have been removed
for more readability and the covariant derivative is given by:

Dμ = ∂μ − igsθSGμ,AT A − igwθW W μ,ata − ig1Y Bμ (1.6)

θS = 0 for singlets and 1 for triplets of SU(3)C , θW = 0 for singlets and 1 for doublets of
SU(2)W and Y is the charge under U(1)Y .

Higgs sector

This part of the Lagrangian will generate the spontaneous breaking of gauge symmetry.
The gauge Lagrangian Eq.(1.2) contains massless gauge bosons because a mass term such as
1
2m2BμBμ is forbidden by the gauge symmetry, which also forbids fermion mass terms mf̄f =
m(f̄RfL + f̄LfR) in the fermion Lagrangian Eq.(1.5) because the left-chiral and right-chiral
components of the fields transform differently under the gauge symmetry. To generate masses
of the gauge bosons (other than the photon) and the chiral fermions in a gauge invariant way,
we introduce a new complex scalar field Φ whose Lagrangian will respect all the symmetry of
the SM but whose vacuum expectation value will not, and the gauge symmetries are respected
everywhere in the theory but are broken by the vacuum state.

Φ =
(

φ+

φ0

)
→ 〈Φ〉 = 1√

2

(
0
v

)
(1.7)

The Lagrangian of the Higgs field is given by:

LH = (DμΦ)†(DμΦ) − μ2Φ†Φ + λ(Φ†Φ)2 (1.8)

2. ta = σa/2 with a = 1..3 for the fundamental representation of SU(2). Here σa are the Pauli matrices.
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1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

where Dμ = ∂μ − igwW μ,ata − ig1YhBμ. This expression of the potential is the easiest renor-
malizable possibility. For μ2 < 0 and λ > 0 we can show that it will generate the vacuum
expectation value (vev) for the Higgs field v =

√
−μ2

λ
. We notice that the charged component

of Φ does not take a (vev) in order to conserve the invariance under U(1)EM .

Then we can do an expansion of the Higgs field around the minimum v in function of real
fields θ1,2,3 and H:

Φ =
(

θ1 + iθ2
1√
2(v + H) − iθ3

)
= eiθata

(
0

1√
2(v + H)

)
(1.9)

Here, one can use the SU(2)L gauge invariance of Φ and we can eliminate the degrees of
freedom θ1,2,3 which become non-physical:

Φ(x) → e−iθa(x)taΦ(x) = 1√
2

(
0

(v + H)

)
(1.10)

By expanding the kinetic term of the Lagrangian, we will generate mass terms for the gauge
bosons:

(DμΦ)†(DμΦ) =
∣∣∣∣
(

∂μ − igwW μ,ata − i

2g1B
μ
)

Φ
∣∣∣∣
2

= 1
2(∂μH)2 + 1

8gw
2(v + H)2

∣∣∣Wμ
1 + iWμ

2
∣∣∣2 + 1

8(v + H)2
∣∣∣gwWμ

3 − g1Bμ

∣∣∣2 .

(1.11)

If we define the physical gauge fields Wμ
±, Zμ and Aμ

Wμ
± = 1

2(Wμ
1 ∓ iWμ

2), Zμ = gwWμ
3 − g1Bμ√

g2
w + g2

1
, Aμ = gwWμ

3 + g1Bμ√
g2

w + g2
1

(1.12)

the equation Eq.(1.11) can be rewritten as:

(DμΦ)†(DμΦ) = 1
2(∂μH)2 + MW

2Wμ
+W −μ + 1

2MZ
2ZμZμ + 1

2MA
2AμAμ. (1.13)

The diagonalization of the mass matrix of the gauge fields gives the eigenstates Zμ and Aμ

of the theory:

(
Zμ

Aμ

)
=
(

cos θW − sin θW

sin θW cos θW

)(
W 3

μ

Bμ

)
(1.14)
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CHAPTER 1. GENERAL CONTEXT AND OVERVIEW

where θW is the Weinberg angle given by:

cos θW = gw√
g2

w + g2
1

and sin θW = g1√
g2

w + g2
1

. (1.15)

The masses of vector bosons are therefore given by

MW = vgw

2 , MZ = v

2
√

g2
w + g2

1, MA = 0. (1.16)

The photon A is always massless because it is protected by the U(1)EM symmetry which is
not broken. We have four initial degrees of freedom of Φ, three of them are being absorbed by
W ± and Z, and the last one will correspond to the new scalar particle: the Higgs boson.

Yukawa sector

From symmetry considerations we are free to add gauge-invariant interactions between the
scalar fields and the fermions 3. These are called the Yukawa terms in the Lagrangian and they
are responsible of generating fermion masses and the mixing between different families.

LY = −
3∑

i=1
Y u

ij Q†
Li(iσ2H

∗)uRj −
3∑

i=1
Y d

ijQ
†
LiHdRj −

3∑
i=1

Y e
ijL

†
LiHeRj + h.c. (1.17)

where Y u, Y d and Y l are the 3 × 3 complex Yukawa matrices. Once the Higgs field gets a vev
v, we will have fermion masses:

(mu)ij ∼ (Y u)ijv, (md)ij ∼ (Y d)ijv, (ml)ij ∼ (Y l)ijv. (1.18)

These mass matrices are in the flavour basis, and not in the mass basis. To diagonalize them
and define the real mass eigenstates, we introduce unitary matrices which affect, in the quark
sector, the interactions containing both quark types with W ±. This lead to a non diagonal
term in the Lagrangian which ensures couplings between different quark generations through
the CKM matrix (see more details in section 2.6). It should be noted that due to the absence
of their right chiral components, the neutrinos remain massless in the SM; this consideration
has changed after the observation of neutrinos oscillation and this is a way how to go beyond
the SM.

1.1.3 Electroweak precision tests of the Standard Model
The Standard Model is a consistent, renormalizable quantum field theory that accounts for

a wide variety of experimental data over an energy range up to about 100 GeV. Initially, the
SM was tested at the tree level, but the remarkable agreement between SM predictions and

3. We use the Higgs doublet in order to write down a mass term which connects right-handed and left-handed
components which are respectively singlets and doublets of SU(2)W .
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1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

the precision measurements at the CERN LEP collider and TEVATRON have confirmed the
SM to at least a part per mille and have established that radiative corrections as given by
the SM are essential for agreement with these data. The SM also qualitatively explains why
baryon and lepton numbers appear to be approximately conserved: with its particle content,
it is impossible to write renormalizable interactions that do not conserve baryon and lepton
numbers, so that these interactions (if they exist) must be suppressed by (powers of) some new
physics scale [18].

There are 19 parameters within the SM 4: 9 for the masses of charged fermions, 2 for the
Higgs boson (Higgs vev v and quartic coupling λ), 3 gauge couplings constants (related to
αs,αew and sin θW ), 4 parameters from the CKM matrix and the QCD θ parameter. We use
three input parameters to compare theoretical predictions of SM and the experimental data:
the Z-mass determined by LEP1, MZ = 91.1876± 0.0021 GeV, the fine structure constant
α = 1/137.035999084(51), extracted from measurement of the anomalous magnetic moment of
the electron, and the Fermi constant extracted from the muon lifetime, GF = 1.166364(5) ×
10−5 GeV −2.

From these inputs we can predict the other observables of the SM, which can be observed in
colliders, by including quantum correction effects. The main progress in the domain was made
in LEP e+e− collider in 1990, and it has already permitted us to give bounds on the top and
Higgs masses. The observation of the top quark was confirmed in 1995 by the TEVATRON (a
pp̄ collider) [19, 20]. Recently the new results from ATLAS and CMS indicate the presence of
a Higgs like boson with a mass about 126 GeV (see fig. 1.1), this discovery opens up an era of
precision studies of its production and decay properties.

The Z pole observables experiments [23] included the variables, MZ , ΓZ , σ, branching ratios
into e+e−, μ+μ−, τ+τ−, qq̄, cc̄, bb̄. From these data we can obtain constraint on the number
of families of neutrino Nν = 2.984 ± 0.009 which give the first experimental indication of the
three generation flavour structure of the SM. These experiments also measured a number of
asymmetries, including forward-backward (FB), polarization and mixed FB polarization which
can determine θW . Some of the results in fig. 1.2 show how the precision of these measurements
allows deviations which are often under the percent level. There is a hint of tension between the
lepton and quark asymmetries which appears in A0,b

fb . This may suggest new physics affecting
the third family. For more details about experimental status of the SM and discussion of
different observables, the reader can refer to [20].

Constraints on new physics

The radiative corrections to the gauge boson self-energies dominate the radiative effects on
electroweak observables because all fermions couple to SU(2)L gauge fields. The ρ0 parameter
describes new sources of electroweak symmetry breaking [20] and can test some new physics
models

ρ0 = m2
W

m2
Zcos2θW ρSM

(1.19)

4. There are also 9 additional parameters from neutrino sector: 3 masses, 3 mixing angles and 3 phases.
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CHAPTER 1. GENERAL CONTEXT AND OVERVIEW

Figure 1.1: Left panel : The Δχ2 of the Standard Model fit of the electroweak precision
observables as a function of the Higgs mass. The minimum of this curve, at 94 GeV, is the
mass of the Higgs bosons which is preferred by EWPT with an experimental uncertainty of
+29 and -24 GeV (at 68% confidence level). Extracted from Ref. [21].
Right panel : The 95% CL upper limits on the cross section ratio σ/σSM for the SM Higgs
boson hypothesis as function of mh. The observed values are shown by the solid line. The
dashed line indicates the expected median of results for the background only hypothesis, while
the green and yellow bands indicate the ranges that are expected to contain 68% and 95% of
all observed excursions from the median, respectively. Extracted from Ref. [22].

where ρSM = m2
W /(m2

Zcos2θW ) is the default parameter assuming the validity of the SM.
Another set of parameters, S, T and U can be used to constrain many new physics models
beyond SM; they give constraints about heavy physics which affect the gauge self-energies and
it can be applied to precision observables 5. We denote the contributions of new physics to the

5. The STU-parametrization [24]: T measures the difference between the new physics contributions of neutral
and charged current processes at low energies and S (U) describe new physics contributions to neutral (charged)
current processes at different energy scales.
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1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

Figure 1.2: This table is extracted from PDG review [20] on electroweak precision test. The
Pull column give the deviation considering the Higgs mass as a free parameter and the Dev
column is given for mh = 124.5GeV. Γ’s represent the partial and total width of the Z and
Rx = Γhad/Γx, AF B the forward-backward asymmetry in the distribution of ff̄ production
which originates from interferences between the vector and the axial-vector couplings.

various self-energies by Πnew
ij , we have [20]:

α̂(MZ)T = Πnew
W W (0)
M2

W

− Πnew
ZZ (0)
M2

Z

,

α̂(MZ)
4ŝ2

Z ĉ2
Z

S = Πnew
ZZ (M2

Z) − Πnew
ZZ (0)

M2
Z

− ĉ2
Z − ŝ2

Z

ĉZ ŝZ

Πnew
Zγ (M2

Z)
M2

Z

− Πnew
γγ (M2

Z)
M2

Z

,

α̂(MZ)
4ŝ2

Z

(S + U) = Πnew
W W (M2

W ) − Πnew
W W (0)

M2
W

− ĉZ

ŝZ

Πnew
Zγ (M2

Z)
M2

Z

− Πnew
γγ (M2

Z)
M2

Z

, (1.20)

where ŝ2
Z = sin2 θ̂W (MZ), ĉ2

Z = cos2 θ̂W (MZ) and α̂(MZ)−1 = 127.944±0.014 . Setting STU
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equal to zero in the SM case and assuming that 115.5 GeV < mh < 127 GeV, present limits on
these parameters are given by [20]:

S = 0.00+0.11
−0.10 sin2θW = 0.23125 ± 0.00016

T = 0.00+0.11
−0.12 αs(mZ) = 0.1197 ± 0.0018

U = 0.08 ± 0.11 mt = 173.4 ± 1.0 GeV
(1.21)

These variables depend on mh and give constraints on some exotic extensions of the SM by
calculating the masses and couplings of extra-particles. For example, a heavy degenerate family
of fermions 6 is excluded by the current electroweak precision test because the S parameter
present a deviation of 5.7 σ.

1.1.4 Problems with the Standard Model
The SM is not a complete model. Some of the experimental arguments in support of this

are:
– The SuperKamiokande collaboration in 1998 and other new experiments on the neutrino

sector gives the solar and atmospheric neutrino data and presents definitive evidence for
neutrino oscillations. This strongly implies masses for neutrinos.

– The presence of Dark Matter (discussed in section 1.3) in the Universe which suggests (a)
new stable particle(s), not predicted by the SM. This is due to the Zwicky’s observations
in 1933 and the study of fluctuations in the spectrum of Cosmic Microwave Background.

– Observations of type Ia supernovae and CMB radiation suggest that the bulk of the energy
of the Universe resides in a novel form called dark energy which constitutes 74 % of the
energy density. This could be the cosmological constant introduced by Einstein.

There is more in nature than the SM. Some theoretical questions and considerations going
in this way are:

– Quantum Gravity : At the quantum level, the SM describes three of the four funda-
mental interactions. However, gravity is only treated classically and quantum discussion
of gravity should be an effective field theory valid at scales smaller than MP l.

– Gauge group : The SM does not explain the choice of GSM = SU(3)C ×SU(2)L×U(1)Y .
Why are there three families and four interactions? Why 3+1 space time dimensions?

– Strong CP problem : In the QCD sector, there is a coupling allowed by SM symmetries
which takes the form of θεμνρσGA

μνGA
ρσ, where θ is an arbitrary dimensionless parameter.

This term breaks the CP symmetry (charge conjugation followed by parity). The exper-
imental bound on the neutron electric dipole moment implies θ < 10−11 but we cannot
simply set θ to zero because of the CP violation in the electroweak sector. The main
problem refers to the fact that θ is unnaturally small and if a parameter is naturally
small, then one can set it to zero with a symmetry protecting its value (for example the
Peccei-Quinn symmetry) but this is not the case here.

6. This is not the case of the heavy non-chiral fermions (known as vector-like particles) which do not con-
tribute to STU parameters (or to ρ0).
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– Confinement : Why is it only possible for quarks to exist confined in hadrons such as
protons and neutrons? The value of the strong coupling increases with decreasing energy
so the strong interactions are asymptotically free, and at low energies, they are so strong
that they do not allow quarks to separate.

– Hierarchy problem : There exists a large mass hierarchy in the matter sector of the SM:
the electron mass is about 0.511 MeV and the top mass is around 173 GeV. Another issue
is why there are totally different energy scales: Mew ∼ 102 GeV and MP l ∼ 1019 GeV.
This we will refer to as a naturalness problem, then a fine tuning should be performed
at each order in perturbation theory to avoid Mew to take the value of the cutoff scale
(which can be ∼ MP l).

– Fine-Tuning : The chiral symmetry protects fermion masses from large radiative cor-
rections. However, as seen in fig. 1.3, the Higgs boson mass receives radiative correc-
tions from its self-couplings, gauge boson loops and fermion loops. These corrections are
quadratically divergent and very sensitive to the UV physics, they are given by:

δm2
h ∼ 1

32π2 ((1
4(3g2

w + g2
1) + 6λ − 6y2

t )Λ2 + O(log Λ)) (1.22)

The physical mass is obtained by adding the bare mass and the one-loop correction
m2

h(phys) ∼ m2
h(bare) + c

16π2 Λ2, where we have dropped the (lnΛ) terms and the c coeffi-
cient depends on the various coupling constants of the SM. If we take Λ = MGUT ∼ 1016

GeV, then the Lagrangian mass parameter m2
h will have to be fine tuned to 1 part in 1026

to cancel this quadratic effect and provide a physical Higgs mass around 100 GeV. This
makes the SM less natural and this is know as naturalness or fine-tuning problem.

Beyond the Standard Model

For the above reasons, SM cannot represent a fundamental theory of the Universe but it
can be an effective field theory at low energies. We need to find an extension that could solve
some or all problems of the SM in order to generalize it. The above arguments all point to
new physics but they do not indicate decisively the scale for this new physics except the last

Figure 1.3: Radiative corrections to Higgs mass in SM from top, Higgs self-interaction and
W, Z.
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argument because we have an idea about the Higgs mass, so we can choose the value of Λ in
Eq.(1.22) to be around TeV. In this case one can avoid fine-tuning problem.

One of the important ideas to go beyond SM is to try to generalize symmetries of SM [25]:
– Internal symmetry : Consider for example Grand Unified Theories (GUT) in which the

SM symmetries are themselves the result of the breaking of a larger symmetry (containing
as an example new gauge groups SU(5), SO(10), ...). This extension is elegant because
it unifies in one single symmetry the three gauge interactions of the SM and it decreases
the number of parameters. However, it does not solve the open problems of the SM and
with our present precision understanding, the running of the three gauge couplings does
not unify at a single point at higher energies.

– Space-time symmetry I : Extra Dimensions models (for example: Large Extra Dimen-
sion (ADD), Warped Extra Dimension (RS), UED) that try to bridge the gap between
the two scales of the SM. They have a more general coordinate transformations and this
idea is similar to extra dimensions in Kaluza Klein theory. Our 4 dimensional Universe
is restricted on a brane or a surface inside a larger dimensional one. These models can
solve many problems of the SM such as the hierarchy problem.

– Space-time symmetry II : Supersymmetry is a symmetry under the exchange of bosons
and fermions, it solves the most important problem of the SM, the naturalness issue of
the hierarchy problem due to cancellations between contributions of fermions and bosons
to the Higgs mass. SUSY also solves the unification of the gauge couplings and provides
the best candidate for cold dark matter.

There is also models with no fundamental scalars in which there is a possibility to describe the
elementary Higgs fields in terms of some dynamical symmetry breaking mechanism based on
new strong dynamics such as technicolour, composite Higgs model.

1.2 Supersymmetry
Supersymmetry (SUSY) is a proposed invariance under generalized space-time transforma-

tions linking fermions and bosons. One can say that it is one of the most beautiful ideas in
Physics. SUSY enables a fermion to transform into a boson and vice versa. It admits super-
multiplets with fermionic and bosonic members. The couplings of those members get related
and their masses are split by SUSY breaking effects. For more details or further explanation of
any part of this section, the reader can refer to [18,26–30].

1.2.1 Motivations for SUSY
The motivations for supersymmetry are numerous and in the following we list some of them:
– Solving the hierarchy problem : Due to the symmetry between bosons and fermions

in SUSY, we have cancellation of quadratic divergences for scalar masses and we avoid
the fine-tuning problem. As an example, let us consider just the top correction to Higgs
in equation (1.23):
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Figure 1.4: Radiative corrections to Higgs mass in SM from the top quark and new cancelling
contribution from the two top partners: t̃1, t̃2.

Δm2
h ∼ − y2

t

16π2 (2Λ2 + 6m2
t log

(
Λ
mt

)
+ ...) (1.23)

Here Λ is the cut-off scale of SM which is expected to be around MP l. Therefore, if we
add two new scalars to the SM, with the same quantum number as the top quark, one
superpartner for each top’s chirality as it is shown in the fig. 1.4, and we denote λS their
couplings with the Higgs and mS, their masses, then they will give corrections to the
Higgs mass:

Δm2
h ∼ 2 ×

(
λS

16π2 (Λ2 + 2m2
t̃ log

(
Λ
mt̃

)
+ ...)

)
(1.24)

If λS = y2
t , there is a compensation between the two loops and the divergence is now

logarithmic.
– Unification of the gauge coupling : The values of running gauge couplings do not

unify if we evolve these to high energies using the renormalisation group equations of
the SM. However, if we use supersymmetric evolution equations, they unify at the scale
MGUT ∼ 2 × 1016 GeV as we can see in fig. 1.5.

– Cold dark matter candidate : SUSY with conserved R-parity can provide a dark
matter candidate [26]. The lightest supersymmetric particle (LSP) cannot decay due to
the R-parity that forbids vertices with odd number of supersymmetric particles. Then
the LSP is stable and could thereby become a viable candidate for the observed cold Dark
Matter in the Universe.

– Connection to Gravity : if we consider the local SUSY transformations rather than
global ones, we will have a spin 2 massless gauge field, the graviton [18], which mediates
gravitational interactions together with its superpartner is the gravitino (in the same way
as the local gauge invariance requires to introduce gauge bosons). The local supersym-
metry dictates the dynamics of supergravity which includes Einstein general relativity 7.

7. Taking the parameters to be local or space-time dependent in Eq.(1.33), one gets a local translations that
result in a theory of (super) gravity.
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1.2.2 Algebra
Supersymmetry (SUSY) is based on a new symmetry between fermionic and bosonic degrees

of freedom. From a technical point of view, this can be formulated in the following way: the
new generators of this transformation will extend the Poincaré algebra into a superalgebra.
This is allowed by Coleman-Mandula theorem only by adding also anticommuting generators.
In the minimal extension, we add to the translation generator P μ and Lorentz transformation
generator Mμν , one new fermionic generator Q =

(
Qα, Q̄α̇

)T
which transforms like a spin-

1/2 [26]. These operators change the spin of the state

Qα|fermion >= |boson > Q̄α̇|boson >= |fermion > (1.25)

The new coordinates are Grassmann variables transforming as two-compnent Weyl spinors

{θα, θβ} = 0 {θ̄α̇, θ̄β̇} = 0 (1.26)

where the α, β, α̇, β̇ indices take the values 1 or 2.
The new superalgebra becomes

[Pμ, Pν ] = 0, [Mμν , Pρ] = i(gμρPν − gνρPμ),

[Mμν , Mρσ] = i(Mμσgνρ + Mνσgμρ − Mμρgνσ − Mνσgμρ)

[Mμν , Qα] = (σμν)β
αQβ, and [Pμ, Qα] = 0

{Qα, Qβ} = 0, and {Qα, Q̄β̇} = 2σμ

αβ̇
Pμ (1.27)

where gμν is Minkowski’s metric, σμ = (1, σi) are Pauli’s matrices, σμν = 1
4 [σμ, σν ] and

Pμ = i∂μ, iQα = ∂

∂θα
− iσμ

αα̇θ̄α̇∂μ, iQ̄α̇ = − ∂

∂θ̄α̇
+ iθασμ

αα̇∂μ . (1.28)
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Figure 1.5: Gauge couplings g1 (red), g2 (blue), g3 (green) in the SM (left panel), and in the
MSSM (right panel) as a function of a scale parameter t = ln( μ

MZ
) .
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We define the covariant fermionic derivatives

Dα = ∂

∂θα
+ iσμ

αα̇θ̄α̇∂μ D̄α̇ = − ∂

∂θ̄α̇
− iθασμ

αα̇∂μ . (1.29)

The derivatives Dα and D̄α̇ anticommute with the generators of SUSY and they obey algebra :

{Dα, D̄α̇} = 2iσμ
αα̇∂μ {Dα, Dβ} = {D̄α̇, D̄β̇} = 0. (1.30)

1.2.3 Superspace and Superfields
The superfield formalism is quite useful in SUSY [26, 28–30]. These superfields describe

the quantum fields, their superpartners and the auxiliary fields in the same object which are
reducible representations of SUSY algebra 8. The calculation using superfields is easier than
the calculation with each component of superfields (the fermionic fields, scalars, vector bosons,
...) because one supergraph contains many graphs of standard fields. Superspace corresponds
to our standard space-time with the addition of two spinorial anticommuting coordinates , θα

and θ̄α̇. The superfields live in superspace in which the integration over the variables θ and θ̄
is defined as 9

∫
d2θ = 0,

∫
d2θ̄ = 0,

∫
d2θ θ2 = 1,

∫
d2θ̄ θ̄2 = 1. (1.31)

The elements of integration are

d2θ = −1
4dθαdθβεαβ, d4θ = d2θd2θ̄,

d2θ̄ = −1
4dθ̄α̇dθ̄β̇εα̇β̇, d8z = d4xd4θ. (1.32)

In the superspace, the functions δ(θ) = θ2 and δ(θ̄) = θ̄2 act as Dirac delta distributions.

The supertranslation in superspace of the coordinates xμ, θ and θ̄ are

xμ → xμ + aμ + iθσμξ̄ − iξσμθ̄,

θ → θ + ξ,

θ̄ → θ̄ + ξ̄, (1.33)

where ξ and ξ̄ play a role of Grassmannian transformation parameters.

8. Irreducible representations of the SUSY algebra are obtained by imposing constraints which are covariant
under the supersymmetry algebra

9. Integration and derivation are identical for the anticommuting Grassmann variables.
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A superfield is a function of xμ, θ, θ̄ and its expansion is finite because the anticommuting
propriety of the coordinates θ and θ̄

F (xμ, θ, θ̄) = f(x) + θχ(x) + θ̄χ̄(x) + θ2m(x) + θ̄2n(x) + θσμθ̄vμ(x),

+ θ2θ̄λ̄(x) + θθ̄2λ(x) + θ2θ̄2d(x) . (1.34)

This superfield contains 16 bosonic and 16 fermionic degrees of freedom. The action of the
SUSY algebra on the superfields

F (xμ, θ, θ̄) → ei(−aμPμ+ξQ+ξ̄Q̄)F (xμ, θ, θ̄) . (1.35)

Chiral superfield

A chiral superfield (left) Φ(x, θ, θ̄) satisfies the condition

D̄α̇Φ(x, θ, θ̄) = 0 , (1.36)

When we develop the chiral superfield, the usual fields arise as the coefficients in an expan-
sion of F (xμ, θ, θ̄) in powers of θ and θ̄

Φ(x, θ, θ̄) = φ(x) + iθσμθ̄∂μφ(x) + 1
4θ2θ̄2∂2φ(x),

+
√

2θψ(x) − i√
2

θ2∂μψ(x)σμθ̄ ,

+ θ2F (x) , (1.37)

where φ is a complex scalar field, ψ is a left-handed Weyl spinor field and F is an auxiliary
complex scalar field.

One can also construct an antichiral (right) superfield Φ†(x, θ, θ̄) that has the component
field expansion

Φ†(x, θ, θ̄) = φ†(x) − iθσμθ̄∂μφ†(x) + 1
4θ2θ̄2∂2φ†(x),

+
√

2θ̄ψ̄(x) + i√
2

θ̄2θσμ∂μψ̄(x) ,

+ θ̄2F †(x) , (1.38)

which obeys the condition

DαΦ†(x, θ, θ̄) = 0 , (1.39)
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The SUSY transformation of a chiral superfield in Eq.(1.35) induces transformations of its
components. Under an infinitesimal SUSY transformation the left-handed superfield change as
follows

Φ → Φ + δΦ ,

δΦ = i(ξQ + ξ̄Q̄)Φ = δφ(x) +
√

2θδψ(x) + θ2δF (x) + ... (1.40)

If we use the explicit expressions in Eq.(1.28), we find

δφ =
√

2ξψ ,

δψ = i
√

2σμξ̄∂μφ +
√

2ξF ,

δF = i
√

2∂μψσμξ̄ . (1.41)

As expected the change in the bosonic (fermionic) component of the superfield is propor-
tional to the fermionic (bosonic) fields. It is important to notice that the change in F component
under a SUSY transformation is a total derivative. This can be used for the construction of
SUSY Lagrangians as we will see in section 1.2.4. The product of chiral (antichiral) superfields
is a chiral (antichiral) one, but this is not the case of a term such as Φ̄Φ.

Vector Superfield

One can also define the vector superfield with the hermitian constraint

V = V † . (1.42)

Its expansion in terms of the coordinates θ and θ̄ gives

V (x, θ, θ̄) = C(x) + iθξ(x) − iθ̄ξ̄(x)

+ i

2θ2[M(x) + iN(x)] − i

2 θ̄2[M(x) − iN(x)] − θσμθ̄vμ(x)

+ iθ2θ̄[λ̄(x) + i

2 σ̄μ∂μξ(x)] − iθ̄2θ[λ(x) + i

2σμ∂μξ̄(x)]

+ 1
2θ2θ̄2[D(x) + 1

2∂2C(x)] (1.43)

where C, D, M , N are real scalar fields, ξ is a Weyl spinor and vμ is a vector field (gauge
boson).

The supersymmetric generalization of the abelian gauge transformation is given by

V → V + i(Φ − Φ†) . (1.44)

In the Wess-Zumino gauge, this transformation will be an ordinary gauge transformation for
the vector field vμ and the other fields C, M , N and χ are eliminated. Therefore

VW Z = −θσμθ̄vμ(x) + iθ2θ̄λ̄(x) − iθ̄2θλ(x) + 1
2θ2θ̄2D(x) (1.45)
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where vμ should be associated with the gauge field (vector boson), λ is a Weyl fermion (the
gaugino) and D is an auxiliary field. As for the chiral superfield, we can determine the transfor-
mation properties of the component fields of V (x, θ, θ̄) under infinitesimal SUSY transformation

δλα = −iDξα − 1
2(σμσ̄ν)β

αξβVμν ,

δV μ = i(ξσνλ̄ − λσν ξ̄) − ∂μ(ξχ + ξ̄χ̄) ,

δD = ∂μ(−ξσνλ̄ + λσν ξ̄) , (1.46)

where Vμν = ∂μVν − ∂νVμ. Note that the variation of the D field is a total derivative as in the
case of F field. Since total divergences vanish when integrated over the space time, the F (D)
component of chiral (vector) superfields can be used to construct SUSY Lagrangians.

For an arbitrary V , not necessarily in the Wess-Zumino gauge, one can construct left and
right chiral spinorial field-strength superfields

Wα = −1
4D̄2DαV W̄α̇ = −1

4D2D̄α̇V (1.47)

as superfield generalizations of the abelian field-strength tensor (Fμν is in the θ component of
Wα).

1.2.4 SUSY Lagrangians
The general form of a renormalizable action for a chiral field theory is

S =
∫

d8z
(
Φ̄iΦi + W (Φi)δ(θ̄) + W †(Φi)δ(θ)

)

=
∫

d8z Φ̄iΦi +
(

aiΦi + 1
2mijΦiΦj + 1

3!λijkΦiΦjΦk

)
δ(θ̄) + h.c. (1.48)

The first term correspond to the kinetic contribution of Φ. In the expansion of Φ̄iΦi, we
have a term proportional to θ2θ̄2 which is called the D term. The second part of the Lagrangian
is the superpotential W which corresponds to the mass and Yukawa coupling terms. We have
in the expansion components with θ2 which is called the F term. We set ai = 0 in the following
since Φi will not be a gauge singlet.

The kinetic Lagrangian of a free vector superfield is

Lgauge = 1
4W αWα|θ2 + 1

4W̄α̇W̄ α̇|θ̄2 (1.49)

Abelian case of a supersymmetric gauge theory

The (anti) chiral superfields transform under the U(1) gauge transformations as

Φl → e−iQlΛΦl, Φl → eiQlΛΦl (1.50)
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where Λ is the scalar chiral superfield associated with the U(1) gauge transformation and
Ql are charges of matter superfields Φl. In order to have an invariant kinetic part in Eq.(1.48),
one should modify it

Lkinetic = Φle
i2QlV Φl (1.51)

Therefore, we have the most general renormalizable action in the abelian SUSY gauge

S =
∫

d8z[Φle
i2QlV Φl + 1

4W αWαδ(θ̄) + 1
4W α̇W

α̇
δ(θ)

+ (1
2mijΦiΦj + 1

3!λijkΦiΦjΦk)δ(θ̄) + h.c.] (1.52)

Non-Abelian case of a supersymmetric gauge theory

In the non-abelian case, the Lie algebra of the gauge group generators is

[T a, T b] = ifabcT c (1.53)

where fabc is the structure constants and the generators T a are normalized as

Tr(T aT b) = kδab, k > 0 (1.54)

The chiral superfields transformations are generalized to

Φi → e−iΛij Φj, Φi → eiΛij Φj (1.55)

where Λij = T a
ijΛa.

In order to insure the gauge invariance of the chiral kinetic term, the vector superfield has
to be transformed as

e2gV → e−iΛ̄e2gV eiΛ (1.56)
where V = T aV a. And the field-strenght superfields are written as

Wα = −1
4D

2
e−2gV Dαe2gV (1.57)

W α̇ = −1
4D2e−2gV Dα̇e2gV (1.58)

and should be transformed as

Wα → e−iΛWαeiΛ, W α̇ → eiΛW α̇e−iΛ (1.59)

The most general renormalizable action is therefore

SSY M = Sgauge + Smat (1.60)

where
Sgauge =

∫
d8z

Tr

16kg2 (W αWαδ(θ̄) + W α̇W
α̇
δ(θ)) (1.61)
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and
Smat =

∫
d8z

[
Φle

i2QlV Φl + (1
2mijΦiΦj + 1

3!λijkΦiΦjΦk)δ(θ̄)
]

(1.62)

The quantification of this action introduce a gauge fixing term
∫

d8z LGF and a Faddeev-Popov
ghost term

∫
d8z LF P , which we do not detail here. We can find them and the Feynmann rules

in [31].

1.2.5 Minimal Supersymmetric Standard Model (MSSM)
The MSSM is the minimal SUSY extension of the SM. It contains scalar degrees of free-

dom associated with the left-handed and right-handed SM fermions, i.e. the left-handed and
right-handed sfermions. It must also includes the fermionic partners of the SM gauge bosons
(gauginos) and Higgs boson (Higgsinos).

We use one Higgs doublet in the SM to generate masses for fermions through Yukawa
interactions. The first term in Eq.(1.17) gives the mass for up-types quarks using the conjugate
Higgs doublet. In SUSY, the Higgs-fermion Yukawa interactions originate from superpotential
only which can not involve any conjugate superfield (W (Φi) is an analytic function of chiral
superfields). Therefore we introduce a second Higgs doublet H2 with the opposite hypercharge
which gives masses to the up-type quarks [27]. It also ensures the cancellation of anomalies.
The MSSM includes the following sets of chiral superfields presented in table 1.2.

Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

quarks, squarks
(×3 families)

Q
ū

d̄

(ũL d̃L)
ũ∗

R

d̃∗
R

(uL dL)
u†

R

d†
R

(3, 2, 1
6)

(3, 1, −2
3)

(3̄, 1, 1
3)

leptons, sleptons
(×3 families)

L
ē

(ν̃ ẽL)
ẽ∗

R

(ν eL)
e†

R

(1, 2, −1
2)

(1, 1, 1)

Higgs, higgsinos Hu

Hd

(H+
u H0

u)
(H0

d H−
d )

(H̃+
u H̃0

u)
(H̃0

dH̃−
d )

(1, 2, 1
2)

(1, 2, −1
2)

Table 1.2: Chiral supermultiplets in the MSSM. The spin-0 fields are complex scalars, and the
spin-1/2 fields are left-handed two-component Weyl fermions [26].

The Higgs scalar fields in the MSSM consist of two complex SU(2) doublet, or eight real
scalar degrees of freedom. When the electroweak symmetry is broken, three of them will be
the Nambu-Goldstone bosons G0, G± and they represent the longitudinal modes for Z0 and
W ±. Five Higgs scalar eigenstates remain which consist of two CP-even neutral scalars h and
H (mh < mH), one CP-odd neutral scalar A0 and two charged Higgs H±.

After electroweak symmetry breaking, the neutral Higgsinos (H̃0
u and H̃0

d) and the neutral
gauginos (B̃ and W̃ 0) mix to form four neutral mass eigenstates called Neutralinos Ñi (i =
1, 2, 3, 4). The charged Higgsinos (H̃+

u and H̃−
d ) and Winos (W̃ + and W̃ −) combine to form

two charged mass eigenstates called Charginos C̃±
j (j = 1, 2).
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The gauge bosons are put in vector superfields with their superpartners (the gauginos). the
gauge supermultiplets are presented in table 1.3.

Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g (8, 1, 0)
winos, W bosons W̃ ± W̃ 0 W ± W 0 (1, 3, 0)

bino, B boson B̃0 B0 (1, 1, 0)

Table 1.3: Gauge supermultiplets in the MSSM [26].

After presenting the particles content of the MSSM, we need to include to the MSSM
Lagrangian the superpotential which is the sum of the products of chiral superfields.

WMSSM = yU
ijQiu

c
jH2 + yD

ij Qid
c
jH1 + yL

ijLie
c
jH1 + μH1H2 , (1.63)

where i and j are family indices. The Yukawa couplings are dimensionless 3 × 3 matrices that
determine the masses of quarks and charged leptons as well as the phase of the CKM matrix.
The μH1H2 term is responsible of the masses of Higgsinos.

One can add the following term to the superpotential which violate either lepton and baryon
number

W /B /L = λ1
ijkLiLjek + λ2

ijkLiQjdk + λ3
ijkuc

id
c
jd

c
k + μ1

i LiH2 , (1.64)

This term lead to a rapid proton decay and it is absent in the SM. The most general renormal-
izable gauge invariant superpotential of the simplest SUSY extension is WMSSM + W /B /L.

The baryon and lepton number violating processes could be suppressed by postulating
invariance under R-Parity transformations which forbids all terms in W /B /L

R = (−1)3(B−L)+2S (1.65)

where S is the spin of the particle and R = +1 (-1) for all observed particles (superpartners).
The existence of R-parity would have important phenomenological implications:

– The lightest superpartner (LSP) is stable and can play the role of non-baryonic dark
matter. In most SUSY scenarios, the neutralino is the (LSP) which is a mixture of
Higgsinos, Binos and Winos. It is a heavy weakly interacting particle which can provide
the correct dark matter relic abundance if its mass is around EW scale.

– In colliders, superparticles are produced in pairs which then decay to (LSP) and give a
signal of missing energy.

1.2.6 SUSY Breaking
SUSY predicts mass degenerate superpartners of the SM fields but they have not been

observed in colliders. Therefore SUSY must be broken at some scale MSUSY and all sparticles
have to be heavy. Simultaneously, the correlation between different couplings does not change
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in order to preserve the cancellation of quadratic divergences of scalar mass corrections. The
terms that fulfill these conditions are called soft SUSY breaking terms.

SUSY can be broken spontaneously as any other gauge theory. We introduce a simple
example in the following.

A field φi in a gauge theory transforms under finite and infinitesimal group elements as [25]

φi → (eiαaT a)j
i φj , δφi = iαa(T a)j

i φj . (1.66)

We know that a gauge symmetry is broken if the vacuum state (φvac)i transforms in a non-trivial
way

(αaT a)j
i (φvac)j �= 0 . (1.67)

In U(1) symmetry, we have φ = ρeiθ, then infinitesimally

δφ = iαφ ⇒ δρ = 0, δθ = α (1.68)

where the last term corresponds to a Goldstone Boson.
Similary, SUSY is broken if the vacuum state |vac〉 satisfies Qα|vac〉 �= 0. From SUSY

algebra in Eq.(1.27), one can show that

(σ̄0)β̇α{Qα, Q̄β̇} =
2∑

α=1
(QαQ†

α + Q†
αQα) = 4P 0 = 4E (1.69)

Since 〈vac|QαQ†
α + Q†

αQα|vac〉 > 0, then in broken SUSY, the energy is strictly positive E > 0.
As an example, let us take the case of the F -term breaking: we should have at least one of

the three transformations different from zero in Eq.(1.41) to break SUSY. To preserve Lorentz
invariance, we need to have

〈ψ〉 = 〈∂μφ〉 = 0 (1.70)
So our SUSY breaking condition simplifies to

〈F 〉 �= 0 ⇒ δψ �= 0 (1.71)

In this case, we call ψ a Goldstone fermion or Goldstino 10. Since the F -term in the scalar
potential is VF = ∑

i F †
i F , this will affect the shape of V .

However, This picture of spontaneous breaking of SUSY cannot be implemented in the
MSSM because we will have problems with the F and D-terms when they develop a (vev) [32].

Soft SUSY breaking in the MSSM

We have two sectors in the SM: the observable sector (quarks) and the symmetry breaking
mechanism (Higgs). These sectors are related through Yukawa couplings. In SUSY, we have
an additional sector since it is broken in a hidden sector. The observable and SUSY breaking
sectors are related via a messenger sector which involves three types of mediation [25].

10. It is not the supersymmetric partner of some Goldstone boson.
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– Gravity mediation
In this scenario, the mediating field couples to the SM with gravitational strength and the
coupling is suppressed by the inverse planck mass which is the natural scale of gravity. One
can include a mass square to have a right dimension for mass splitting in the observable
sector.

δm =
M2

/SUSY

MP l

(1.72)

We want Δm ∼ 1 TeV and we know that MP l ∼ 1018 GeV, so M /SUSY ∼ 1011 GeV. The
gravitino gets a mass m3/2 of the order of Δm (around TeV).

– Gauge mediation
G = GSM × G /SUSY = (SU(3) × SU(2) × U(1)) × G /SUSY

Matter fields are charged under G which gives a M /SUSY of order of Δm in the TeV range.
In that case, the gravitino m3/2 is given by M2

/SUSY

MP l
∼ 10−3 eV.

– Anomaly mediation
Auxiliary field of supergravity get a vacuum expectation value and the conformal anomaly
play an important role in this case. We will see this scenario with more details in section
4.1.

In all scenarios, the Lagrangian for the observable sector has contributions L = LSUSY +L /SUSY

where LSUSY is the summation of Eq.(1.61) and Eq.(1.62) and

L /SUSY = m2
0φ

∗φ + (Mλλλ + c.c.) + (aφ3 + c.c.) (1.73)

where the first, second and third term correspond respectively to the scalar masses, gaugino
masses and the trilinear couplings. Mλ, m2

0 and a are called soft breaking terms.
The soft SUSY breaking terms in the MSSM are

− LMSSM
soft = 1

2
(
M3g̃g̃ + M2W̃W̃ + M1B̃B̃ + c.c.

)
(1.74)

+
(

˜̄uauQ̃Hu − ˜̄dadQ̃Hd − ˜̄eaeL̃Hd + c.c.
)

+ Q̃†m2
QQ̃ + L̃†m2

LL̃ + ˜̄um2
ū
˜̄u† + ˜̄dm2

d̄
˜̄d† + ˜̄em2

ē
˜̄e†

+ m2
Hu

H∗
uHu + m2

Hd
H∗

dHd + (bHuHd + c.c.)

To avoid fine-tuning, the SUSY breaking mass parameters are expected to be in the TeV
range. We note that most of the parameters of the MSSM (>100) come from this part of the
Lagrangian.
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1.3 Cosmology and Dark Matter

1.3.1 Standard Model of cosmology
How the universe behaves and has behaved is of course linked to what it is made of. There-

fore, from the observation of the universe on its large scales, it is possible to find constraints
on particle physics. This is one of the aims of cosmology, studying the largest scales we can
observe.

In the same way that there is a Standard Model of Particle Physics, there is a Standard
Model of Cosmology. Since Hubble’s observation of a global isotropic expansion of our universe,
and through the assumption that this isotropy is homogeneous, meaning that our viewpoint
should not be peculiar in any way, the image we have of the universe has evolved into the one
of a space expanding ever since a hot big-bang occured.

When using these constraints of homogeneity and isotropy, the most general metric that
can be written is the Friedmann-Lemaître-Robertson-Walker metric [33]:

ds2 = dt2 − a(t)2
[

dr2

1 − kr2 + r2(dθ2 + sin2 θdφ2)
]

(1.75)

where t is time, r the co-moving distance, a(t) the scale factor that we will study further in
this section, and k the spatial curvature. The value of the curvature k depends on the geometry
of the universe and can be taken as 1, 0 or −1 wihout loss of generality thanks to the rescaling
factor a. If k = 0, the universe is flat and the co-moving coordinates are Euclidean. If k = −1,
the geometry of the universe is hyperbolic and the universe is open and infinite. Finally, the
case k = 1 corresponds to the geometry of a sphere, and the universe has a finite volume.

What interests us then is how the universe decribed this way behaves. In order to study this
behaviour, we should first find the meaning of the scale factor a(t). We can see from the metric
that a(t) is defined as the scale factor between the physical distance between two points in
space dl and their co-moving coordinate difference dr, dl = a(t)dr. Therefore when considering
the rate dv at which this physical distance evolves, we obtain dv = H dl, with:

H(t) = ȧ(t)
a(t) (1.76)

and H is the Hubble constant. Hubble’s discovery in 1929 that all galaxies are moving away
from us at a speed proportional to their distance from us leads to believe that this movement
due to the expansion of the universe with a homogeneous Hubble constant H rather than a
movement in co-moving coordinates of the galaxies. It is therefore interesting to study the
evolution of the Hubble constant and of the scale factor, which is determined by the Einstein
equations:

Rμν − 1
2gμνR = 8πGTμν
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where Rμν and R are the Ricci tensor and scalar.
The solution to these equations depends on the energy density in the universe, which can be

divided in three parts: the non-relativistic matter ρM (baryons, Dark Matter, heavy leptons),
relativistic matter ρrad (photons, light neutrinos with mass less than 10−4 eV) and Dark Energy
ρΛ. If considered to be perfect gases, the various ρ obey the equation of state p = w ρ, with
w = 1/3 for relativistic gases, w = 0 for non-relativistic matter, and w = −1 for Dark Energy.
This leads to a solution of the Einstein equation of the form:

H2 = 8πG

3 ρR + 8πG

3 ρM + 8πG

3 ρΛ − k

a2 with ρ ∝ a−3(w+1) (1.77)

where G is Newton’s gravitation constant. We can see that a critical density appears in this
expression ρc = 3H2

8πG
, defining the ratios Ωi = ρi

ρc
. The solution for H then transforms for a flat

universe into:

1 = Ωtot = ΩR + ΩM + ΩΛ with k = 0 (1.78)

In the end, the set of five parameters ΩM , Ωrad, ΩΛ, H0, k is sufficient to describe the shape
and evolution of the FLRW universe [33]. This is the reason why for the last 30 years one of
the goals of observational cosmology has been to measure them more and more precisely.

1.3.2 A brief history of the universe
Another point of interest in the history of the universe is the first stages of its evolution,

when its content changed radically to become the most part of what it is now. This is what a
few scientists tried to think about for the few years after the discovery of the FLRW metric.
The first model developed, called "Cold Big Bang" was proposed, with the assumption of an
expansion due to the dominant presence of the pressureless matter that makes up galaxies.
It was then abandonned in favor of the Hot Big Bang scenario, which turned out to be more
consistent with nucleosynthesis studies. In the Hot Big Bang scenario, the early universe
was dominated by radiation, modifying the way nucleosynthesis occured with respect to the
cold one. Since then, many efforts have been put into the study of this scenario, as well in
experimental observations as in theoretical predictions.

The very first moments of the universe are not yet fully understood and not well described,
such as inflation. According to the most common theories, gravitation became classical when
the temperature of the universe went under the so-called Planck scale, about 10−43s giving
ρ ∼ (MP l = 1018GeV )4 after the time t = 0 such that a(0) = 0. Then follows a brief period of
brutal expansion called inflation possibly linked to the breaking of the symmetry of a Grand
Unified Theory around t ∼ 10−32s. After that, a step called reheating occured, when the scalar
field responsible tfor inflation decayed into the various particles of the Standard Model. When
temperature reached the whereabouts of the Higgs boson mass, T ∼ 100 GeV, for t ∼ 10−6s,
the electroweak symmetry was spontaneously broken, followed shortly at t ∼ 10−4s, T ∼ 100
MeV by the QCD phase transition, producing hadrons form unconfined quarks and gluons [33].
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The next step, lasting for the few first hundred seconds of the universe, was nucleosynthesis,
where the hadrons formed previously combined into the light nuclei such as H, He and Li. The
observation of the composition of today’s Universe, compared to theoretical predictions from
Big Bang Nucleosynthesis models, allows us to estimate the density of baryons in the universe:
ΩBh2 = 0.021 ± 0.005, making up only for 4% of the universe energy density. In this part of
History, the energy density was dominated by radiation, until around t ∼ 104yr, when matter
became predominant, changing the rate of expansion. At that time, through electromagnetic
interaction, the nuclei, electrons and photons were in thermal equilibrium. At t ∼ 105yr, the
electrons and nuclei formed atoms in the step called recombination, forming neutral states
and therefore decoupling from photons. From this time on, photons propagated almost freely
until now, forming what we see as the Cosmic Microwave Background and from which we can
therefore get direct information from that time. The final step of the formation of the universe
was the gravitational evolution of small inhomogeneities, leading to the formation of stars and
galaxies from dust clouds. This brief description can be shown in fig. 1.6.

The future of the Universe is now mainly determined by its curvature, and the energy
density, the struggle between the momentum of expansion and the pull (or push) of gravity.
The current rate of expansion is measured by the Hubble Constant, while the strength of gravity
depends on the density and pressure of the matter in the universe.

If the density of the universe is less than the critical density, meaning negative curvature,
then the universe will expand forever, like the green or blue curves in fig. 1.6. For such a
universe, ever expanding, there might be a "Big Rip", where the Universe tears apart, or a "Big
Freeze", because the expansion of the Universe causes its cooling. If the density of the universe
is greater than the critical density (positive curvature), then expansion will stop at some point,
and gravity will have the Universe collapse in the so called Big Crunch, like the orange curve
on fig. 1.6.

Recent observations of distant supernova have suggested that the expansion of the universe
is actually accelerating, like the graph’s red curve, which implies the existence of a form of
matter with a strong negative pressure, such as the cosmological constant, which would make
the Universe expand forever if dominant.

1.3.3 Evidences of Dark Matter
One of the fundamental questions in particle physics and cosmology is the nature of dark

matter. Currently, there are several evidence leading us to believe that a big part of the Universe
is made of a material having a nature still unknown. For a review about this subject, the reader
can refer for example to [35].

As shown in fig. 1.7, WMAP (Wilkinson Microwave Anisotropy Probe) data reveals that
the content of our Universe include 4.6% atoms, the building blocks of stars and planets. Dark
matter comprises 23% of the universe. This matter, different from atoms, does not emit or
absorb light. It has only been detected indirectly by its gravity. 72% of the universe, is
composed of "dark energy", that acts as a sort of an anti-gravity. This energy, distinct from
dark matter, is responsible for the present-day acceleration of the universal expansion. WMAP
data is accurate to two digits, so the total of these numbers is not 100%. This reflects the
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Figure 1.6: Left Panel : The past history of the Universe. Right Panel : Possible fates of
the Universe. Those plots are extracted from WMAP collaboration website [34].

current limits of WMAP’s ability to define Dark Matter and Dark Energy.
Some of the observations which suggest the presence of Dark Matter from astrophysical to

cosmological scale are presented below:

Galaxy clusters and Gravitational lensing

The first evidence of the existence of dark matter comes from Zwicky in 1933 when he
studied the speed distribution of galaxies in the Coma cluster. A cluster of galaxies is a combi-
nation of more than one hundred galaxies linked together by gravitational interactions. After
estimating the gravitational mass of the cluster, he found that this mass is much greater than
the total sum of the masses of the luminous objects in the cluster (visible matter). Therefore,
to explain the existence of clusters, it was necessary to assume the presence of a gravitationally
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Figure 1.7: Content of the Universe. This plot is extracted from WMAP collaboration website
[34].

interacting non-luminous matter.

From Einstein general relativity predictions, we know that the curvature of the space-time
produced by the matter leads to a deviation in the path of light. This phenomena is called
Gravitational lensing. The deviation angle depends from the mass of the object causing this
deviation. We can estimate the mass of astrophysical objects (planets, galaxies, clusters, ...)
and consider that some of these objects are very brilliant. By observing the deviation in the
path of light, one can have an idea about the mass located beyond the cluster. These observa-
tions show also the existence of large amount of Dark Matter in the clusters [36].

Another hint of Dark Matter evidence at the galaxy scale is the observation of the Bullet
cluster [37]. In fig. 1.8, we see the collision of two galaxy clusters: in red and yellow, the famous
bullet shape represents the X-rays emissions coming from the heating of interacting baryonic
matter. On the other hand, the green contours show the distribution of mass which is quite
isotropic and seems not affected by the collisions. This observation is difficult to explain with
modified gravity while it can be understood by the presence of a massive and weakly interacting
kind of invisible matter.

Galaxy rotation curves

The direct evidence of the presence of dark matter at the galactic scale comes from the
measurements of the galaxy rotation curves. These measurements have been done in 1970s and
were originally performed by V.C. Rubin and other astronomers [38]. Consider a mass M(R)
inside a sphere of radius R with an equilibrium between kinetic and gravitational energies.
From Newton’s mechanics, the circular velocity v of an object on a stable orbital of radius R
is given by
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v2

R
= GM(R)

R2 ⇒ v =
√

GM(R)
R

(1.79)

where G is the gravitational constant and v the velocity of the stars. Beyond the visible part of
the galaxy, M(R)visible is constant and we expect that v decreases as 1/

√
R when we go away

from the galaxy centre for large distances. However, the measurements of the velocities of stars
and gas clouds in function of their distance from the galactic centre show a flat behaviour at
large distances (see fig. 1.8). The discrepancy between the expected "Keplerian" behaviour
and the observations can be explained by the existence of a halo of non-visible matter which
will play a gravitational role. It will have a mass M(r) ∝ r and density ρ(r) ∝ 1/r2 for large
distances with

M(r) = 4π
∫ r

0
r2ρ(r)dr. (1.80)

Note that there are other ways to explain the rotation curves of galaxies and clusters, the
effect of gravitational lensing and CMB anisotropies, which does not require the introduction
of dark matter. In these models, the gravity is modified at galactic scale. For example, the
theory MOND (MOdified Newtonian Dynamics) [39] proposed that gravity does not follow the
predictions of Newtonian dynamics for very small accelerations. In general, this theory can

Figure 1.8: Left Panel : Rotation curve for the spiral galaxy NGC6530, extracted from [38].
Right Panel : Direct evidence for Dark Matter in the bullet cluster (1E0657-56). In this plot
reproduced from [37]: the visible matter (red and yellow), observed in X-rays by the CHANDRA
satellite, only contributes little to the total mass of the two colliding clusters (density contours
in green). This total mass has been measured by gravitational lensing with VLT and Hubble
satellite.
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explain some astrophysical observations, but new data about some galaxy clusters disfavour
such theories of gravity modification and they are not satisfactory to describe the current
cosmological observations.

Cosmology

The observation of galaxy clusters and spiral galaxy rotation curves give a clear signature
of the dark matter existence. However, they do not permit to determine the quantity of this
matter in the Universe. This quantity could be extracted from the precision measurements of
the Cosmic Microwave Background (CMB).

Firstly discovered by Penzias and Wilson [40], the temperature distribution of those photons
has been extremely well measured at 2.725K by experiment of Cosmical Microwave Background
(CMB) detection. As we will see, the CMB is a probe of the early universe structure and will
contain information of the content of matter and radiation in the earlier universe (fig. 1.9).
This radiation comes from the propagation of photons which are decoupled from the matter in
the primordial Universe.

The first observations of the CMB started with COBE (Cosmic Background Explorer) in
1989 which is the predecessor to the WMAP Project [41, 42]. COBE was launched by NASA
into an Earth Orbit in 1989 to make a full sky map of the Cosmic Microwave Background
(CMB) radiation leftover from the Big Bang. After many decades of experimental effort, the
CMB is known to be isotropic at the 10−5 level and to follow with extraordinary precision the
spectrum of a black body corresponding to a temperature T = 2.725K. Today, the analysis of
CMB anisotropies and fluctuations enables accurate testing of cosmological models and puts
stringent constraints on cosmological parameters.

From the analysis of the WMAP data alone, the following values are found for the abundance
of baryonic matter density Ωb and the total one in the Universe ΩM [43].

Ωbh
2 = 0.02260 ± 0.00053 , ΩMh2 = 0.13334+0.0056

−0.0055 (1.81)

where h = H0/100 km.s−1.Mpc−1 = 0.704. This implies that the dark matter density ΩDMh2 =
0.1123 ± 0.0035 makes about 83% of the total mass density.

The CMB data show the small scale fluctuations (fig. 1.9) in the primordial plasma which
allow us to infer the cosmological parameters.The angular spectrum of the CMB is fitted by
the ΛCDM model assuming a gaussian, adiabatic and nearly scale invariant power spectrum
of primordial fluctuations. The structure of this spectrum requires the introduction of a cold
dark matter to our description of the Universe [44]. We can try to explain such effects with
relic density of neutrinos which are also weakly interacting but WMAP estimates their relic
abundance at Ωνh2 ≤ 0.0145 which is not sufficient (this value is measured by WMAP and the
combined result is given in table 1.4).

Other studies on cosmological scale are the analyses of the large scale structure of the
Universe which give evidence for dark matter. By calculating the distance to galaxies using
their redshifts, cosmologists have been able to map out the approximate locations of more than
1.5 million galaxies. For instance, the Sloan Digital Sky Surveys (SDSS) has created a map of
the sky with more than 900,000 galaxies, 120,000 quasars and 400,000 stars [45]. Using these
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Figure 1.9: Top : The detailed, all-sky picture of the infant universe from three years of
WMAP data. The image reveals 13.7 billion year old temperature fluctuations (shown as
colour differences) that correspond to the seeds that grew to become the galaxies. This image
shows a temperature range of ± 200 mK.
Bottom : The all-sky image produced by the COBE Satellite. It is a low resolution image
of the sky (7 degree resolution), but obvious cold and hot regions are apparent in the image.
The large red band is the microwave emissions from our own galaxy. This image shows a
temperature range of ± 100 mK. It was processed through the same data pipe as the first year
WMAP data. The largest version of the image has a scale added.
Extracted from the WMAP collaboration website [34].

maps, we can look at the signatures of density perturbations which were in the primordial
plasma (Baryonic Acoustic Oscillation) [46]. Then we can generate the small fluctuations at
early time from the large scale structures. Therefore, by measuring these structures, we can
infer the power spectrum of those initial fluctuations. This leads to an estimate of matter
abundance of ΩM = 0.286 ± 0.018.
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Another studies that can lead to an evidence of dark matter existence are the measurements
of luminosity curves of Supernovae Ia as a function of their redshifts [43]. With these data,
we can then estimate the deviations from Hubble law and constrain the Hubble parameter and
ΩM − ΩΛ as shown in fig. 1.10.

The set of parameters which define the ΛCDM model will be constrained by these experi-
ments, as it is presented in table 1.4. In this table, the total density is Ωtot = 1 which means
that we assume that the universe is flat (k = 0). Then we remark that the dark energy compo-
nent is quite important and dominates the dynamics of our present universe. We do not know
the physical origin of such term which could be related to gravity and early Universe dynamics.
Finally we can stress that the amount of baryonic matter is very small compared to the total
matter density.

Ωγ Ων Ωb Ωdm ΩΛ H0(km/s/Mpc)
4.6+0.5

−0.5 × 10−5 < 0.0125 0.0456+0.0016
−0.0016 0.227+0.014

−0.014 0.728+0.015
−0.016 70.4+1.3

−1.4

Table 1.4: Constraints on ΛCDM model obtained combination of Cosmic Microwave Back-
ground, Baryonic Acoustic Oscillations and the SuperNovae Surveys assuming Ωtot = 1 [47] in
the Supernova Cosmology Project Collaboration.

1.3.4 Dark matter candidates
As we have seen in the previous section, the evidence for non-baryonic dark matter is

compelling at all observed astrophysical scales. It is therefore natural to ask what is the
dark matter made of? In this section, we present some of the candidates discussed in the
literature [35].

In general, if the dark matter particles have a low mass, we call them warm dark matter; and
if they have masses about few GeV, they are called cold dark matter. Actually, the observations
of galaxy and cluster dynamics prefer the cold dark matter. In the SM, the only stable and
neutral particle which can be responsible for the relic abundance of dark matter is the neutrino.
However, its very tiny mass and very high velocity lead to a big problem in the formation of
structures. This is not the case if the dark matter is heavy since the ordinary matter will gather
to form galaxies and clusters.

Supersymmetric candidates

As we mentioned, a solution to dark matter candidates can be brought by particle physics
by considering a Weakly Interacting Massive Particle (WIMP), whose abundance remains un-
changed after decoupling from the primordial plasma. Since the SM does not contain any
heavy candidate that interacts weakly with the matter, we are required to study models of
new physics. As we already seen in SUSY models with conserved R-parity, the LSP is stable
and could be a good candidate for dark matter. In the MSSM, the possible candidates are the
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Figure 1.10: 68.3%, 95.4% and 99.7% confidence level contours on ΩΛ and ΩM obtained from
the Supernova Cosmology Project Collaboration: Cosmic Microwave Background, Baryonic
Acoustic Oscillations and the SuperNovae Surveys as well as their combinations (assuming
w = −1 for the dark energy), extracted from [43].

sneutrino, the neutralino and in some cases the gravitino. The other supersymmetric particles
are excluded because they are charged.

– Neutralino
In the MSSM, the lightest neutralino χ0

1, described in section 1.2.5, is the candidate for
the dark matter. The neutralino is formed from the mixing of gauginos and higgsinos;
this mixing will determine the characteristics of neutralino and its coupling to others
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particles. Its mass vary from a few GeV to a few hundred GeV depending on the model
in which we work. We can learn about the properties of χ0

1 by studying the annihilation
of two neutralinos to quarks, leptons, vector bosons, Higgs bosons ...

– Sneutrino
A sneutrino is the superpartner of a SM neutrino in supersymmetric models. Its mass and
couplings are typically at the electroweak scale and it is a good candidate for WIMPs.
However, it has an important coupling to the Z boson and that leads to a quick annihila-
tion which generates a very small relic density. It has been shown that sneutrinos will have
a cosmologically interesting relic density if their mass is in the range of 550 to 2300 GeV.
However, the scattering cross section of a sneutrino with nucleons is easily calculated and
is much larger than the limits found by direct dark matter detection experiments [48].

– Gravitino
Supersymmetric theories which contain gravity predict the existence of spin 3/2 particle,
the gravitino, which takes a mass after the spontaneous SUSY breaking. In the gauge
mediated supersymmetry for example, gravitinos can be the lightest supersymmetric par-
ticle and be stable. Theoretically, they are strongly motivated but it is very difficult to
observe and detect them in direct searches since they are only sensitive to gravitational
interactions [49]. There is also a problem in theories with conserved R-parity: if the grav-
itino is the LSP, the Next-LSP particle should decay to the LSP and others SM particles
via gravitational interaction. So the NLSP will have a very long life-time which lead
to cosmological problems related to the abundances of light elements in the primordial
nucleosynthesis. In this case, the gravitino mass has to be less than 1 GeV [50],which does
not correspond to a good candidate for cold dark matter. However, this problem can be
solved in some scenarios [51] with R-parity violation with 5 < m3/2 < 300 GeV.

Others candidates

We present here some candidates for the dark matter.
– Axions

Axions could be also considered as a dark matter candidate. They are introduced in
order to solve the problem of CP violation in particle physics. Laboratory searches,
stellar cooling and the dynamics of supernova 1987A constrain axions to be very light
(≤ 0.01 eV). Furthermore, they are expected to be extremely weakly interacting with
ordinary particles, which implies that they were not in thermal equilibrium in the early
Universe. Its relic density calculation is uncertain but it is possible to find an acceptable
range where axions satisfy constraints and represent a possible dark matter candidate [52].

– Axinos
The superpartners of the axion, were believed until recently to only be capable of acting
as a warm, or hot, dark matter candidate [53]. It has been shown, however, that for quite
low reheating temperatures, cold axino dark matter may be possible [54].

– Lightest Kaluza-Klein particle
Universal Extra Dimension (UED) models offer another candidate for cold dark matter.
In these models as described in section 2.1, the SM fields can propagate in the spatial

38



1.3. COSMOLOGY AND DARK MATTER

extra dimensions compactified on a circle of radius R. For every SM particle φ0 corre-
spond a tower of Kaluza-Klein states φn with masses proportional to n/R. A remnant of
momentum conservation along the fifth coordinate implies the KK number conservation
at tree level and the KK parity conservation at loop level. This KK parity ensures the
stability of the lightest KK particle in the same way that R-parity makes the LSP stable.
The Lightest Kaluza-Klein Particle (LKP) provide a good candidate for the cold dark
matter [55].

1.3.5 Cold WIMP relic density calculation

We have presented, in the previous section, the current model used to describe our universe
and we have emphasized the fact that a Dark Matter component has to be added to our
description. In the early Universe, very energetic and massive particles were created and existed
in thermal equilibrium. As the Universe expanded and cooled, lighter particles do not have
sufficient energy to produce heavier ones through interactions and the expansion dilutes the
density of particles such that interactions did not occur as frequently.

The probability of interaction between individual particles depends on a cross-section σ and
on their relative velocity v. In thermal equilibrium, the interaction between two species i and jis
characterized by a thermally averaged cross-section 〈σv〉. The interaction rate (or scattering
rate) of i is given by Γi = nj〈σv〉. The scattering is efficient enough for maintaining i in
thermal equilibrium with j provided that the scattering rate Γi is larger than the inverse of the
characteristic time set by the universe expansion Γi > H. When Γi < H, the cross-section is so
low or the species j is so diluted that the chance for i to scatter over j within a time comparable
to the age of the universe becomes negligible. When all possible scattering reactions which
could maintain i in thermal equilibrium have Γi < H, the species i decouples from thermal
equilibrium. In this case, assuming that the particles are stable and non-interacting, they can
only free-stream with a frozen distribution.

The exact moment or temperature of freeze-out can be calculated by equating the reaction
rate to the Hubble expansion rate. We present in the following how SM extensions can solve
this problem and how Dark Matter can contribute to the total matter budget of the universe.

Solving the Boltzmann equation

We present here the standard calculation of the relic abundance of a particle species χ which
can explain the observed matter density. We will explain how this massive stable particle
went out of the thermal equilibrium and decoupled, because of the universe expansion. We
suppose that the particle is stable or long-lived, so that in the Boltzmann equation only the
annihilation term is relevant. The relic abundance of χ can be found by solving the Boltzmann
equation [55–57]:

dn

dt
= −3Hn − 〈σv〉(n2 − n2

eq) (1.82)
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where n is the density of the relic particle and neq is the density at the thermal equilibrium.
v is the relative velocity of the two χ and 〈σv〉 = 〈σ(χχ → SM)v〉 is the thermally averaged
total annihilation cross-section. The first term corresponds to a dilution term of the relic χ, the
second one is the annihilation term and the third one is the production term from SM particles
in the thermal bath. As we are interested in cold Dark Matter, we have to look at two different
regimes: at high temperature (T � m), χ is still relativistic and its equilibrium density is given
by

neq ∼ T 3 (1.83)

At low temperature (T  m), neq is given by the non-relativistic limit:

neq = g
(

mT

2π

)3/2
e−m/T (1.84)

Here m is the mass of the relic particle χ, T is the temperature and g is the number
of internal degrees of freedom such as spin, colour, and so on. As it can be seen from the
numerical solution in fig. 1.11, at early time, χ annihilated (was created) with its own anti-
particle into (from) Standard Model states. Then, because of the expansion, the temperature
will drop (a(t) ∼ 1/T ) and the annihilation rate Γ = n〈σv〉 will be smaller than the Hubble
parameter. In this case, the particles cannot annihilate anymore due to lack of reagents and
their density will remain fixed. This decoupling of the stable particles from the thermal bath
of the primordial plasma is called freeze-out and will occur at temperature denoted TF which
corresponds roughly to the time where Γ ∼ H.

〈σv〉 is often approximated by its non-relativistic expansion:

〈σv〉 = a + b〈v2〉 + O(〈v4〉) ≈ a + 6b

x
+ O(1/x2) where x = m

T
(1.85)

Then by solving the Boltzmann equation analytically, we obtain the relic density Ωχ:

Ωχh2 ≈ 1.04 × 109

MP

xF√
g∗(xF )

1
a + 3b/xF

(1.86)

where MP = 1.22 × 1019 GeV is the Planck mass and g∗ is the total number of effectively
massless degrees of freedom and is given to a first approximation by:

g∗(x) =
∑

i=bosons

gi + 7
8

∑
j=fermions

gi (1.87)

In g∗, the coefficient 7/8 comes from the Fermi-Dirac statistics and the dependence on temper-
ature is due to the fact that the thermal bath will quickly lose a lot of massive species as the
temperature will drop below their masses. The freeze-out “temperature”, xF , is found from the
equation:

xF = ln
⎛
⎝c(c + 2)

√
45
8

g

2π3
mMP (a + 6b/xF )√

g∗(xF )xF

⎞
⎠ (1.88)
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Figure 1.11: Numerical simulation for the evolution of the comoving relic density taken from
Ref. [58]. This comoving density Y ∝ nT −3 includes the dilution effect coming from the
expansion of the universe. The solid line represents the equilibrium density and the dashed one
the current density .

where the value of the constant c can be found after numerical computation. Usually we use
c = 1/2 because of the weak dependence of xF on its value. Finally, sub-leading effects can
be taken into account [56] like, for instance, relativistic corrections by the simple replacement
b → b − 1

4a.

1.4 Alternative cosmological scenarios
In the following, we consider that dark matter is composed of exclusively one particle pro-

duced thermally.
The density number of supersymmetric particles is determined by the Boltzmann equation
Eq.(1.82). The expansion rate H is determined by the Friedmann equation

H2 = 8πG

3 ρrad , (1.89)
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and the entropy evolution reads

ds

dt
= −3Hs , (1.90)

where s is the total entropy density. Solving and evolving simultaneously Eqs.(1.82, 1.89) and
Eq.(1.90) enable to compute the relic density in our present Universe. In the standard cosmol-
ogy, the dominant component before Big-Bang Nucleosynthesis is considered to be radiation,
which is constituted of all relativistic particles. This assumption is however relaxed in many
cosmological scenarios. The last two equations can indeed be written more generally as [59]

H2 = 8πG

3 (ρrad + ρD) , (1.91)

ds

dt
= −3Hs + ΣD , (1.92)

ρD parametrises a modified evolution of the total density of the Universe, beyond radiation
density ρrad. ΣD parametrises here effective entropy fluctuations due to unknown properties of
the Early Universe. The radiation energy and entropy density evolutions are known and can
be written as usual:

ρrad = geff(T )π2

30T 4 , srad = heff(T )2π2

45 T 3 . (1.93)

In the following, we consider two scenarios in which the energy density is modified, and two
scenarios with a modified entropy content.

1.4.1 Quintessence
The quintessence model is one of the most well-known models for dark energy. It is based

on a cosmological scalar field which has presently a negative constant pressure P and a positive
constant energy density ρ such as P ≈ −ρ [60]. This behaviour is achieved when the kinetic
term of the scalar field equilibrates the potential. However, in the early Universe, the scalar field
has a dominating kinetic term, leading to a positive pressure such as P ≈ ρ. During this period,
the energy density was varying very quickly, such as ρ ∝ T 6. We study here a quintessence
scenario in which the quintessence field before Big-Bang Nucleosynthesis was dominating the
expansion of the Universe. In this case [61]:

ρD(T ) = κρρrad(TBBN)
(

T

TBBN

)6
, (1.94)

where κρ is the proportion of quintessence to radiation at the BBN temperature (∼1 MeV).
We consider that κρ is a free parameter, which can be constrained using the BBN abundance
constraints. To compute the abundance of the elements produced during the primordial nu-
cleosynthesis, we use the code AlterBBN [62] integrated into SuperIso Relic. Comparing the
abundances to the observational constraints, we obtain limits on κρ.
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1.4.2 Late decaying inflaton

The second scenario we consider here is a late decay of an inflaton field. The inflaton field is
a scalar field which is considered to be responsible for the rapid inflation of the early Universe.
Generally, the inflaton is considered to decay into standard particles much before the relic
decoupling from the primordial soup. However, several models evoke the possibility of a late
decay of the inflaton, around the time of BBN. From [63,64], there exist cosmological models in
which the late decay of a scalar field reheats the Universe to a low reheating temperature , which
can be smaller than the freeze-out temperature, without spoiling primordial nucleosynthesis.
The decay of this scalar field into radiation increases the entropy and modifies the expansion
rate of the Universe. We consider here such a scenario in which we neglect the eventual entropy
production, and we takes [61]

ρD(T ) = κρρrad(TBBN)
(

T

TBBN

)8
. (1.95)

The exponent is here increased from 6 to 8 in comparison to the quintessence field, as mentioned
also in [63, 64]. Such a modification of the expansion rate can be also achieved in a Universe
with extra-dimensions modifying the Friedmann equations [65].

1.4.3 Primordial entropy production

In this third scenario, we assume that a primordial entropy production due to an unknown
component occurs. In general, such an entropy production should be accompanied with energy
production, but to better estimate the deviation of the relic density in such a cosmological
scenario, we neglect here the energy production, and we consider that the Universe has, in
addition to the standard radiation entropy density, a dark entropy density evolving like [59]

sD(T ) = κssrad(TBBN)
(

T

TBBN

)3
, (1.96)

where κs is the ratio of effective dark entropy density over radiation entropy density at the time
of BBN. The corresponding entropy production is related to sD by the relation

ΣD =
√

4π3G

5
√

1 + ρ̃DT 2
[√

geffsD − 1
3

heff

g
1/2
∗

T
dsD

dT

]
, (1.97)

with

g1/2
∗ = heff√

geff

(
1 + T

3heff

dheff

dT

)
, (1.98)

and
ρ̃D = ρD

ρrad

. (1.99)
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1.4.4 Late reheating
In this last scenario, the reheating temperature TRH is smaller than the neutralino freeze out

temperature (Tf.o. � mχ/20 GeV) [64], TRH should be considered as a cosmological parameter
that can take any value around a few MeV and then the neutralinos decoupled from the plasma
before the end of the reheating process so their relic density will differ from its standard value.
We consider that the inflaton decays around the time of Big-Bang nucleosynthesis, generating
entropy. From the standard late reheating scenarios, we assume that the entropy production
evolves like [59]

ΣD(T ) = κΣΣrad(TBBN)
(

TBBN

T

)
(1.100)

for T > 1 MeV and that this entropy production stops at the time of BBN. We again neglect
the energy production or non-thermal production of particles in order to better understand the
effects of a reheating entropy production on the relic density. In term of entropy density, we
have

sD(T ) = 3
√

5
4π3G

heffT 3
∫ T

0
dT ′ g

1/2
∗ ΣD(T ′)√

1 + ρD

ρrad

h2
effT ′6

. (1.101)
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Introduction

The Standard Model (SM), by meeting almost all confrontations with experiments, stands
as a remarkably simple parameterisation of known physics. Yet it has many unsatisfactory as-
pects such as a large number of parameters, a triplication of chiral families, and three different
gauge structures. Consequently, it is strongly believed among theorists that there must exist a
simpler underlying structure of which the SM is the low energy piece. Many think that such
a structure will make its appearance at much higher energies, somewhere in the unexplored
region between a few TeV and the Planck scale. Experimentalists can only proceed one or two
orders of magnitude at a time in their exploration of those scales. Theorists, on the other hand,
have mainly a twofold approach in divining this structure. In the first, the quantum numbers
of the SM are grouped into mathematically pleasing structures (constrained however by the
predictions affecting the low energy part of the theory), resulting in an exercise in quantum
pattern recognition. This has led to Grand Unified Theories (GUTs) [66]. The second ap-
proach is to use the renormalisation group to extrapolate the SM parameters to the unexplored
scales [67]. The purpose is to find if those parameters satisfy interesting relations at higher
energies. When used in conjunction with the former approach, this can give powerful hints of
the physics expected at higher energies.

We shall also recall that in order to obtain finite results in quantum field theory, in a higher
order than the tree level, one has to perform the renormalisation program. The independence
of the renormalisation procedure from the renormalisation point leads to the dependence of
the Lagrangian parameters on the point of renormalisation. This dependence is governed by
the renormalisation Group Equations (RGEs) for the coupling constants and other parameters
of the Lagrangian. As such, it all depends on having accurate data to input as initial condi-
tions on the RGEs, as well as a strong theoretical basis for the evolution equations themselves.
These theories, at asymptotic energies, may reveal some new symmetries or other interesting
properties that give deeper insight into the physical content. Also, from the requirement of the
stability of the theory one can, for example, give bounds on the physical parameters, like the
Higgs mass in the SM or its extensions.

In the SM, the runnings of the gauge, Yukawa and quartic scalar couplings is logarithmic
with the energy scale. Although the gauge couplings do not all meet at a point, they tend to
unify near 1015GeV. Extensions to the SM such as extra-dimensional scenarios accessible to SM
fields have the virtue, thanks to the couplings now having a power law running, of bringing
the unification scale down to an explorable range [68]. Note that many other extensions to
the SM exist which alter the runnings in different ways, such as supersymmetry, where a range
of new particles ensure the gauge couplings do meet at a point, but runnings remain logarithmic.

The story of extra-dimensional physics can be thought to begin in the 1920s with Kaluza
(1919) and Klein (1926) [69] who had the idea to add a fifth dimension to unify the only two
forces known at this time. Later in the 1970s and 1980s the birth of supergravity and super-
string theories renewed the interest in extra-dimensional models. However these dimensions are
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expected to be very small (MP ∼ 10−35m) and will not be probed by experiments any time soon.
However, beginning in the 1990s new extra-dimensional scenarios which could be larger than
the Planck length appeared. Antoniadis [70] proposed TeV −1 scale extra-dimensions to explain
the supersymmetry breaking, and in order to solve the hierarchy problem, the Large Extra Di-
mensions approach was introduced by Arkani-Hamed, Dimopoulos and Dvali (ADD) [71–74].
In these models, the metric is flat and the strength of the gravitational interaction is diluted,
which leads to interesting consequences for low-energy phenomenology.

Another approach was introduced by Randall and Sundrum [75] with only one curved extra-
dimension (warped extra-dimensions). The new dimension is compactified on a finite interval
0 ≤ y ≤ L, with the endpoints of the interval being 3-branes. The metric of this space is not
flat, where the gravity fields propagating in the fifth dimension suffer exponential suppression
and live on a different brane to the SM particles.

Extra-dimensional models lead to many phenomenological implications which can be tested
at colliders and also can be used as a tool to answer many issues in the SM, such as the hierar-
chy problem [71–75]; TeV scale extra-dimensional scenarios giving rise to new supersymmetry
breaking mechanisms [70]; the generation of neutrino mass and new sources of CP violation [76];
the unification without supersymmetry (SUSY) with suppression of proton decay [77]; trigger-
ing electroweak symmetry breaking without a Higgs boson [78], providing cosmologically viable
dark matter candidates [79] and many other applications related to black holes and gravity [80].

With the Large Hadron Collider (LHC) now up and running, exploration of the realm of
new physics that may operate at the TeV scale has begun [81, 82]. Among these models those
with extra spatial dimensions might be revealed in such higher energy collider experiments,
where the UED model makes for an interesting TeV scale physics scenario [70, 83]; as it fea-
tures a tower of Kaluza-Klein (KK) states for each of the SM fields, all of which have full
access to the extended spacetime manifold [81, 84]. This particular scenario has recently been
extensively studied in the literature, such as investigations of electroweak symmetry breaking,
proton stability, gauge hierarchy and fermion mass hierarchy problems, B physics, dark matter
etc. [85–91]. This model has been a fruitful playground for addressing a variety of puzzles in
the SM.

We therefore collect in a comprehensive manner and in one place the necessary tools for
making renormalisation group analyses of the SM and its UED extensions. We view this com-
pendium as a template for general applications of the running of parameters from the mZ scale
to the Planck scale. The observable parameters of the SM are: 6 quark masses, 3 lepton masses,
4 parameters of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [92] and 3 gauge couplings.
The RGEs for the CKM matrix being obtained from the RGEs for the Yukawa couplings. This
can also be extended to include neutrino masses and mixings possible in the leptonic sector.

In the following we first introduce the various models we shall consider (section 2.1 and
section 2.2 for the supersymmetric extensions to this), next deriving the RGEs for the gauge
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couplings constants (section 2.3) and Yukawa couplings for the SM and UED scenarios (section
2.4) and 5-dimensional Minimal Supersymmetric SMs (5D MSSM) (section 2.5). This shall be
followed by a review of the CKM parameters evolution (sections 2.6 and 2.7). The summary
of chapter 2 is in section 2.8.

In chapter 3, we start with a brief introduction in section 3.1. After that we present in
section 3.2 extensions to massive neutrino scenarios and their mixing evolution. We summarize
and give conclusions of our results in section 3.3.
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Chapter 2

Quarks and CKM Matrix in UED
models

2.1 The UED Standard Model
Space or Time extra dimensions ?

We should first precise the type of extra dimensions in our work. If we suppose that our
theory is Lorentz invariant at D dimensions, the dispersion relation for a massless particle :

P 2 = 0 = gMNP MP N , (2.1)

If we choose a flat metric and one extra dimension gMN = (1, −1, −1, −1, ±1), then we have

P 2 = 0 = p2
0 − p2 ± p2

5 , (2.2)

so pμpμ = ∓p2
5. If the extra dimension is time-like, we have a massive particle m2 = −p2

5. The
particle will be a tachyon and this leads to a serious problem of causality. In general, we only
take spatial extra dimensions.

The UED model places particles of the SM in the bulk of one or more compactified extra
dimensions [93]. In our case we have a single flat extra dimension of size R, compactified on
an S1/Z2 orbifold. As such we will have an infinite tower of KK modes with the zero modes
corresponding to the SM states. These KK modes are in the TeV scale and modify the running
of the RGEs at relatively low energy scales [94]. The UED model, like any higher dimensional
theory, is an effective field theory which is valid up to some scale Λ, at which a new physics
theory emerges. Between the scale R−1 where the first KK states are excited and the cutoff
scale Λ, there are finite quantum corrections to the Yukawa and gauge couplings from the ΛR
number of KK states. Up to the scale R−1 the first step KK excitation occurs, the RG evolution
is logarithmic, controlled by the SM beta functions. With the increasing of the energy, that is,
when the KK threshold is crossed for each successive mode, new excitations come into play and
govern new sets of beta functions. The values of physical parameters such as Yukawa couplings
and gauge couplings do not run in the old SM fashion, instead they receive finite quantum
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corrections whose magnitudes depend explicitly on the value of this cutoff parameter. As a
result, once the KK states are excited, these couplings exhibit power law dependencies on Λ.
This can be illustrated if ΛR � 1, to a very good accuracy, the generic SM beta function is
shown to have the power law evolution behaviour [87]:

β4D → β4D + (S(μ) − 1) β̃ , (2.3)

where β̃ is a generic contribution from a single KK level, and where its coefficient is not a
constant but instead S(μ) = μR, with μMax = Λ, reflecting the power law running behaviour.
As a result of faster running, the gauge couplings tend to lower the unification scale down to a
relatively low scale, which might be accessible to collider experiments, such as the LHC or the
proposed International Linear Collider (ILC). Therefore, constraints from precision electroweak
tests and current (or future) collider data would yield bounds on the compactification radius
R. The RGE are an important tool for the search of the properties of the quark masses and
the Cabibbo-Kobayashi-Maskawa (CKM) matrix at different energy scales. It is therefore of
great interest to have an implementation of the UED model in studying these RGE.

The first version of this model we shall consider, the bulk UED model, sometimes known
as the minimal UED model, has one extra dimension compactified on a circle of radius R
with a Z2 orbifolding which identifies the fifth coordinate y → −y. The 5-dimensional KK
expansions of the weak doublet and singlet as well as the Higgs and gauge fields are shown (the
corresponding coupling constants among the KK modes are simply equal to the SM couplings
up to normalisation factors, e.g. YU = Y 5

U√
πR

) below:

H(x, y) = 1√
πR

{
H(x) +

√
2

∝∑
n=1

Hn(x) cos
(

ny

R

)}
,

Aμ(x, y) = 1√
πR

{
A0

μ(x) +
√

2
∝∑

n=1
An

μ(x) cos
(

ny

R

)}
,

u(x, y) = 1√
πR

{
uR(x) +

√
2

∞∑
n=1

[
un

R(x) cos
(

ny

R

)
+ un

L(x) sin
(

ny

R

)]}
,

Q(x, y) = 1√
πR

{
qL(x) +

√
2

∞∑
n=1

[
Qn

L(x) cos
(

ny

R

)
+ Qn

R(x) sin
(

ny

R

)]}
,

d(x, y) = 1√
πR

{
dR(x) +

√
2

∞∑
n=1

[
dn

R(x) cos
(

ny

R

)
+ dn

L(x) sin
(

ny

R

)]}
,

L(x, y) = 1√
πR

{
LL(x) +

√
2

∞∑
n=1

[
Ln

L(x) cos
(

ny

R

)
+ Ln

R(x) sin
(

ny

R

)]}
,

e(x, y) = 1√
πR

{
eR(x) +

√
2

∞∑
n=1

[
en

R(x) cos
(

ny

R

)
+ en

L(x) sin
(

ny

R

)]}
. (2.4)

The zero modes in the above equations are identified with the 4-dimensional SM fields, whilst
the complex scalar field H and the gauge field Aμ are Z2 even fields, and there is a left-handed
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and a right-handed KK mode for each SM chiral fermion. Note that in models with UED
momentum conservation in the extra dimensions, we are led to the conservation of KK number
at each vertex in the interactions of the 4-dimensional effective theory (or strictly speaking, the
KK parity (−1)n is what remains conserved, where n is the KK number). In the bulk we have
the fermion and gauge field interactions as follows:

LLeptons =
πR∫
0

dy{iL̄(x, y)ΓMDML(x, y) + iē(x, y)ΓMDMe(x, y)} ,

LQuarks =
πR∫
0

dy{iQ̄(x, y)ΓMDMQ(x, y) + iū(x, y)ΓMDMu(x, y) + id̄(x, y)ΓMDMd(x, y)} ,

(2.5)

where ΓM = (γμ, iγ5), and M = 0, 1, 2, 3, 5. Explicitly, the kinetic terms are given by:

DMQ(x, y) =
(

∂M + ig5
3GM + ig5

2WM + i
1
6g5

1BM

)
Q(x, y) ,

DMu(x, y) =
(

∂M + ig5
3GM + i

2
3g5

1BM

)
u(x, y) ,

DMd(x, y) =
(

∂M + ig5
3GM + i

−1
3 g5

1BM

)
d(x, y) ,

DML(x, y) =
(

∂M + ig5
2WM + i

−1
2 g5

1BM

)
L(x, y) ,

DMe(x, y) =
(
∂M − ig5

1BM

)
e(x, y) . (2.6)

The gauge couplings g5
3, g5

2 and g5
1 refer to those of the SU(3), SU(2) and U(1) gauge groups

respectively, and are related to the 4-dimensional SM coupling constants by gi = g5
i√
πR

, and the
five dimensional gauge fields have the generic form AM = (Aμ, A5). After integrating out the
compactified dimension, the 4-dimensional effective Lagrangian has interactions involving the
zero mode and the KK modes. However, these KK modes cannot affect electroweak processes
at tree level, and only contribute to higher order electroweak processes. For the one-loop
diagrams of the Yukawa couplings we choose the Landau gauge in what follows, as many one-
loop diagrams are finite in the Landau gauge and have no contribution to the renormalisation of
the Yukawa couplings. We therefore consider the RGE for the quark- Higgs Yukawa couplings
from which we obtain the evolution of the quark masses and the CKM matrix. The one-loop
Feynman diagram contributions to the Yukawa couplings in the SM and UED model have
been explicitly illustrated in [87,95–97]. In the UED model, where for each energy level ni, we
effectively have a heavier duplicate copy of the entire SM particle content. That is, at each KK
excited level, the KK tower corresponding to the fields in Eq.(2.4) exactly mirror the SM field
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ground states. However, new contributions from the A5,

A5(x, y) =
√

2
πR

∞∑
n=1

An
5 (x) sin

(
ny

R

)
, (2.7)

interactions (that of the fifth component of the vector fields, i.e. A5 = {G5, W5, B5}) also
contribute as illustrated in fig. 2.1. In contrast, the fifth component of the gauge bosons A5(x, y)
is a real scalar and does not have any zero mode, transforming in the adjoint representation of
the gauge group.

A simple alternative to this model is that of the brane localised UED model, where we have
the same fields but where the fermion matter fields cannot propagate in the bulk and they are
restricted to the brane. In the brane localised UED model, extra dimensional models make an
interesting TeV scale physics scenario and as discussed earlier might be revealed in higher energy
collider experiments, as they feature states that have full access to the extended spacetime
manifold. For the case of brane localised matter fields, only the boson fields (the gauge fields
and the scalar fields) can propagate in the bulk space. However, if the compactification radius
R is sufficiently large, due to the power law running of the gauge couplings, it will enable us to
bring the unification scale down to an exportable range at the LHC scale.

The information of the physical observables at the scale MZ can be extrapolated to a higher
energy scale by means of the RGE. It is well known from Eq.(1.17) that the evolution of
the generic Yukawa coupling which describes the fermion-boson interactions, is given by the
beta function. Although the bare constants are independent of the renormalisation scale, the
renormalized coupling constants will depend on the choice of the scale parameter μ. As a result,
the Yukawa coupling renormalisation depends on the corresponding beta functions, including
contributions from the anomalous dimensions of the field operators. That is, its evolution is
given by:

μ
∂

∂μ
ln Y R = 1

2μ
∂

∂μ
ln ZψL

+ 1
2μ

∂

∂μ
ln ZψR

+ 1
2μ

∂

∂μ
ln Zφ − μ

∂

∂μ
ln Zcouping , (2.8)

where Y R is the renormalized Yukawa coupling constant, and ZψL
, ZψR

and Zφ are the wave
function renormalisation constants related to left-handed, right-handed fermions and Higgs

Figure 2.1: The one-loop corrections of the additional diagrams (to the SM type diagrams)
from the fifth component of the vector fields to the Yukawa couplings, introduced at each KK
excited level. The dashed line is for the Higgs field, the dotted line is for the A5 scalar.
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boson respectively, and Zcoupling is the vertex renormalisation constant; or in terms of the
anomalous dimensions, γwave = 1

2μ
∂

∂μ
lnZwave, γcoupling = μ

∂

∂μ
lnZcoupling. After the calculation

of these functions, one can obtain the coefficients of gauge couplings in section 2.4.2.

2.2 The 5D MSSM
Another useful model we shall consider is the 5D MSSM defined in [31,68,98–106]. The 5D

MSSM is a five dimensional N = 1 supersymmetric model compactified on the S1/Z2 orbifold
which breaks the 5D Lorentz invariance to the usual 4D one. This breaking gives a momentum
conservation along the fifth dimension which conserves the KK number at tree level and KK
parity at loop level. One of the main implications of KK-parity invariance is that the lightest
KK mode is stable and can be a cold dark matter candidate. In this compactification we can
recover the MSSM at zero mode since we obtain chiral fermions. Note though, that since we
are working with a supersymmetric model, the beta function can be derived in the superfield
formalism, where we shall discuss N = 1 supersymmetry in a five-dimensional Minkowski space
and its description in terms of 4D superfields. The space-time coordinates being labeled by
(xμ, y).

The gauge sector is then described by a 5D N = 1 vector supermultiplet which consists
(on-shell) of a 5D vector field AM , a real scalar S and two gauginos, λ and λ′. The action for
which can be given by:

Sg =
∫

d5x
1

2kg2 Tr
[
−1

2F MNFMN − DMSDMS − iλΓMDMλ

− iλ
′ΓMDMλ′ + (λ + λ

′)[S, λ + λ′]
]

, (2.9)

with DM = ∂M + iAM and ΓM = (γμ, iγ5). F MN = − i
g
[DM , DN ] and k normalises the trace

over the generators of the gauge groups.
From the decomposition of the 5D supercharge (which is a Dirac spinor) into two Majorana-

type supercharges, which constitute a N = 2 superalgebra in 4D, one can rearrange these fields
in terms of a N = 2, 4D vector supermultiplet, Ω = (V , χ):

– V : N = 1 vector supermultiplet containing Aμ and λ,
– χ : N = 1 chiral supermultiplet containing λ′ and S ′ = S + iA5.

Both V and χ (and their component fields) are in the adjoint representation of the gauge group
G. Using the supermultiplets one can write the original 5D N = 1 supersymmetric action
Eq.(2.9) in terms of N = 1 4D superfields and the covariant derivative in the y direction [100]:

Sg =
∫

d5xd2θd2θ
1

4kg2 Tr
[1
4(W αWαδ(θ2) + h.c) + (e−2gV ∇ye2gV )2

]
, (2.10)

with W α = −1
4D

2
e−2gV Dαe2gV . Dα is the covariant derivative in the 4D N = 1 superspace

and ∇y = ∂y + χ. To find the Feynman rules to a given order in the gauge coupling g,
one can expand and quantise the action [98]. The beta functions for the couplings of the
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operators in the superpotential are governed by the wave function renormalisation constants
Zij = 1 + δZij due to the non-renormalisation theorem [107] (there is no contribution from
masses and gauge coupling constants renormalisation). The Feynman diagrams related to
the wave-function renormalisation are given in fig. 2.2. For more details about superspace
perturbation theory, supergraphs technics, Feynman rules, propagators in superfield theory,
loop calculation methods, beta functions and all that, the reader can refer to [28,29] as well as
chapter 6 in Ref. [30].

Besides the renormalizable operators, there can be higher dimensional and non-renormalizable
operators in an effective theory. But this is simplified in our case since we have a supersymmet-
ric theory: due to the non-renormalisation theorem [30], only wave function renormalisation
has to be considered for operators of the superpotential and no vertex corrections contribute.
The supergraphs technique allows to use this theorem since SUSY is kept manifest and it has
the advantage that the number of independent diagrams is reduced compared to the compo-
nent field calculations. We avoid the quadratic divergences to the Higgs mass to all order in
perturbation theory as a consequence of the non-renormalisation theorem and we do not have
the fine tuning problem. This is the essence of naturalness due to SUSY.

The Higgs superfields and gauge superfields will always propagate into the fifth dimension.
Different possibilities for the matter superfields will be discussed, where superfields containing
SM fermions can propagate in the bulk or are restricted to the brane. For the case where all

Figure 2.2: The one-loop diagrams related to the wave-function renormalisation of the matter
superfields, in which diagrams a)-e) refer to the case where all the matter fields are in the bulk,
and the excited KK states are labeled by the number without the bracket; whereas diagrams
a), c) and d) are related to the brane localised matter fields case, in which the KK states are
labeled by the number inside the bracket [98,102].
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fields can propagate in the bulk, the action for the matter fields would be [98]:

Smatter =
∫

d8zdy
{
Φ̄iΦi + Φc

i Φ̄c
i + Φc

i∂5Φiδ(θ̄) − Φ̄i∂5Φ
c

iδ(θ)

+g̃(2Φ̄iV Φi − 2Φc
iV Φ̄c

i + Φc
iχΦiδ(θ̄) + Φ̄iχ̄Φ̄c

iδ(θ))
}

. (2.11)

Again, this action can be expanded and quantised. The χ-field should be odd under Z2 sym-
metry because it appears together with a derivative ∂y, whereas V is even. For the two matter
superfields, we choose Φ to be even and the conjugate Φc to be odd such that Φc vanishes on
the brane. Only the even fields have zero modes. The Fourier decomposition of the fields being:

V (x, y) = 1√
πR

[
V (0)(x) +

√
2
∑
n≥1

V (n)(x)cos
(

ny

R

) ]
,

χ(x, y) =
√

2
πR

∑
n≥1

χ(n)(x)sin
(

ny

R

)
, (2.12)

Φ(x, y) = 1√
πR

[
Φ(0)(x) +

√
2
∑
n≥1

Φ(n)(x)cos
(

ny

R

) ]
,

Φc(x, y) =
√

2
πR

∑
n≥1

Φc(n)(x)sin
(

ny

R

)
.

We can write the action for the second case where all superfields containing SM fermions
are restricted to the brane. In which case the part of the action involving only gauge and
Higgs fields is not modified, whereas the action for the superfields containing the SM fermions
becomes:

Smatter =
∫

d8zdyδ(y)
{
Φ̄iΦi + 2g̃Φ̄iV Φi

}
. (2.13)

Due to the 5D N = 1 supersymmetry, Yukawa couplings are forbidden in the bulk. However,
they can be introduced on the branes, which are 4D subspaces with reduced supersymmetry.
One can also add the effective neutrino mass operator (also called lepton number violating
Weinberg operator), with dimensionfull coupling k̃ij in which we are interested to show its
evolution and therefore the Majorana mass term for neutrinos. We will write the following
interaction terms, called brane interactions, containing Yukawa-type couplings:

Sbrane =
∫

d8zdyδ(y)
{(

1
6 λ̃ijkΦiΦjΦk − k̃ij

4M
LiHuLjHu

)
δ(θ̄) + h.c.

}
, (2.14)

where L and Hu are the lepton and up-type Higgs doublet chiral superfields respectively. This
operator is used to study neutrino masses and mixings, where RGEs for this effective operator
have been derived in the context of the four-dimensional SM [108] and MSSM [109] and shall be
discussed further in section 3.2. An extension to compactified extra-dimensions was considered
in Ref [98], and we shall use a similar formalism in the next section.

From fig. 2.2 we obtain the wave function renormalisation of the matter superfields and
then we calculate the beta function described in section 2.2.1. If we exclude the effects of extra
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dimensions, one can obtain the beta function of the usual MSSM. The figs. 2.2 a)-e) refer to the
case where matter superfields are able to propagate in the bulk (excited KK states are labeled
by the number without brackets) and diagrams in figs. 2.2 a), c), d) represent the case of brane
localised matter superfields (excited KK states are labeled by the number inside brackets).

Comments about cut-off regularization [18]

We could ask how interactions modify the photon mass: If one introduces a cut-off to regu-
larize the integrals for vacuum polarization, it is well know that the corrections to the squared
mass of the photon are quadratically divergent. This would imply that electromagnetic gauge
invariance is broken! The cut-off is not a gauge invariant regulator: Under gauge transfor-
mations, Aμ(x) → Aμ(x) − ∂μ(x), or in k-space, Aμ(k) → Aμ(k) − ikμα(k) for all values of
k. Even if we cut off the modes with k > Λ in one gauge, these do not vanish in different
gauge, so a cut-off of the momentum integrals is a gauge-dependent notion. If instead we use
a gauge invariant regulator such as dimensional regularization, the radiative correction to the
photon mass vanishes. We say that gauge invariance protects the photon from acquiring a
mass. The leading divergence is logarithmic in any quantity in quantum electrodynamics of
fermions. There are no quadratic or linear divergence.
However, this is not the case for scalars in field theories and especially in our model in which
we should use the regularization by cut-off since we have linear and quadratic divergence which
appear in supergraph calculations. If we use dimensional regularization, only logarithmic di-
vergences appear.

2.2.1 β-functions in 5D MSSM

Usual result for 4D MSSM

We recall that, for a general gauge supersymmetric theory, the superpotential is given by
the second term in Eq.(1.62). The beta functions for the couplings of the operators in the
superpotential are governed by the wave function renormalisation constants Zij = 1 + δZij.
For the chiral superfields, they receive two types of corrections : one from loop with chiral
superfields and the other from loop with chiral and vector superfields. Zij relate the bare to
the renormalized superfileds

Φi
B =

NΦ∑
j=1

Z
1/2
ij Φj

R . (2.15)

The sum runs over all NΦ chiral superfileds of the model. The result for the wave function
renormalisation constant at one loop for a chiral superfield reads [28]

−(16π2)δZij =
⎛
⎝−4

Ng∑
n=1

g2
nC2(Ri

n)δij +
NΦ∑

k,l=1
λ∗

iklλjkl

⎞
⎠ 1

ε
(2.16)
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The sum over n runs over all gauge groups of the theory. The group-theoretical constants
C2(R) are defined as

C2(R)δab =
∑
A

(T AT A)ab , (2.17)

where T A are matrix representations of the generators of the gauge group corresponding to the
irreducible representation R under which the fields Φi transform.

β-functions

In the paper [109], they develop a method to obtain the beta-function of the couplings
for an arbitrary operator using the renormalisation constants for the wave functions (in a
supersymmetric theory). The result for the Weinberg operator and its coupling k coupling
is [110]

β5D
k = dk(Λ)

d log(ΛR)

= −δZHu .k − 1
2δZT

L .k − 1
2k.δZL (2.18)

and for the Yukawa couplings

βYd
= −1

2Λ ∂

∂Λ(δZT
DcYd + YdδZQ + YdδZHd

)

βYu = −1
2Λ ∂

∂Λ(δZT
UcYu + YuδZQ + YuδZHu)

βYe = −1
2Λ ∂

∂Λ(δZT
EcYe + YeδZL + YeδZHd

) (2.19)

Firstly, we calculate the equivalent of the result in Eq.(2.16) in a 5D supersymmetric theory
with a brane interaction between chiral superfields as described in Eq.(2.14). Due to the non-
renormalisation theorem, we calculate only the renormalisation constants for the wave functions.
The external superfileds do not have Kaluza-Klein excitations, and we will have different types
of contributions (see fig. 2.2) :

– The bulk term contributions (modes n > 0) which consist in a loop of V and Φ, χ and
Φ, or Φ and Φ.

– In the brane case, only the Higgs and gauge superfields can propagate in the fifth dimen-
sion. The term contributions consist in a loop of V (n) and Φ0, or Φ(n) and Φ0.

– For the two above contributions, we add those of zero modes in the loop.
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Bulk equations

In total, we obtain for the self-energy for chiral superfield

−(16π2)δZ5D
Φ =

⎛
⎝−8

Ng∑
n=1

g2
nC2(Ri

n)δij

⎞
⎠ΛR +

⎛
⎝2π

NΦ∑
k,l=1

λ∗
iklλjkl

⎞
⎠Λ2R2 (2.20)

Some steps of the calculation of Eq.(2.20) is detailed in appendix A. This result can be
applied to matter superfields as well as Higgs superfields (since both superfields are able to
propagate in the bulk). Then, we have

−(16π2)δZHu = 12πTr(Y †
u Yu)Λ2R2 − (6

5g2
1 + 6g2

2)ΛR

−(16π2)δZHd
= 4π[3Tr(Y †

d Yd) + Tr(Y †
e Ye)]Λ2R2 − (6

5g2
1 + 6g2

2)ΛR

−(16π2)δZL = 4π(Y †
e Ye)Λ2R2 − (6

5g2
1 + 6g2

2)ΛR

−(16π2)δZEc = 8π(Y ∗
e Y T

e )Λ2R2 − (24
5 g2

1)ΛR

−(16π2)δZDc = 8π(Y ∗
d Y T

d )Λ2R2 − ( 8
15g2

1 + 32
3 g2

3)ΛR

−(16π2)δZQ = 4π(Y †
u Yu + Y †

d Yd)Λ2R2 − ( 2
15g2

1 + 6g2
2 + 32

3 g2
3)ΛR

−(16π2)δZUc = 8π(Y ∗
u Y T

u )Λ2R2 − (32
15g2

1 + 32
3 g2

3)ΛR (2.21)

From Eqs.(2.18, 2.19, 2.21), we obtain Eqs.(2.38, 2.41).

Brane equations

To avoid the quadratic divergences when we localize the Yukawa interactions and the neu-
trino mass effective operator, we forbid fermions to propagate in the fifth dimension. Then
the KK excitations for these fields are absent, we do not have a double sum of KK in the loop
and no quadratic divergences. We will have in this case logarithmic or linear divergences. The
Higgs can always propagate in the fifth dimension, so the renormalisation constants will be
different between matter superfields and Higgs superfields. Then, we have

−(16π2)δZf
Φ =

⎛
⎝−16

Ng∑
n=1

g2
nC2(Ri

n)δij + 4
NΦ∑

k,l=1
λ∗

iklλjkl

⎞
⎠ΛR

−(16π2)δZH =
⎛
⎝−8

Ng∑
n=1

g2
nC2(Ri

n)δij

⎞
⎠ΛR +

⎛
⎝ NΦ∑

k,l=1
λ∗

iklλjkl

⎞
⎠ log(ΛR) (2.22)
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It is straightforward to deduce the following renormalisation constants for the matter and
Higgs superfields

−(16π2)δZHu = 6Tr(Y †
u Yu)log(ΛR) − (6

5g2
1 + 6g2

2)ΛR

−(16π2)δZHd
= 2[3Tr(Y †

d Yd) + Tr(Y †
e Ye)]log(ΛR) − (6

5g2
1 + 6g2

2)ΛR

−(16π2)δZL = [8(Y †
e Ye) − 12

5 g2
1 − 12g2

2]ΛR

−(16π2)δZEc = [16(Y ∗
e Y T

e ) − 48
5 g2

1]ΛR

−(16π2)δZDc = [16(Y ∗
d Y T

d ) − 16
15g2

1
64
3 g2

3]ΛR

−(16π2)δZQ = [8(Y †
u Yu + Y †

d Yd) − 4
15g2

1 − 12g2
2 − 64

3 g2
3)]ΛR

−(16π2)δZUc = [16(Y ∗
u Y T

u ) − 64
15g2

1 − 64
3 g2

3]ΛR (2.23)

From Eqs.(2.18, 2.19, 2.23), we obtain Eqs.(2.38, 2.42).

2.3 Gauge couplings
The evolution of the gauge couplings in four dimension at one loop are given by:

16π2 dgi

dt
= bigi

3 , (2.24)

where bSM
i = (41

10 , −19
6 , −7) and bMSSM

i = (33
5 , 1, −3) [18, 111], using a SU(5) normalisation. If

we consider our 5D theory as effective up to a scale Λ, we have contributions from the KK
modes which give a power law evolution to the gauge couplings since extra-dimensions cause
their running to vary much more rapidly. Eq.(2.3)can be written in terms of the scale parameter
t:

16π2 dgi

dt
= [bi + (S(t) − 1)b̃i]gi

3 , (2.25)

where b̃i take the following form in the case of the model UED SM [95,112]:

(b̃1, b̃2, b̃3) =
( 1

10 , −41
6 , −21

2

)
+ 8

3η , (2.26)

with η being the number of generations of matter fields in the bulk. Therefore, for all our
matter fields propagating in the bulk (that is, η = 3), we have for the UED SM bulk case:

b̃i =
(81

10 ,
7
6 , −5

2

)
. (2.27)
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Similarly, for all our matter fields localised to the 3-brane (that is, η = 0), we have for the UED
SM brane case:

b̃i =
( 1

10 , −41
6 , −21

2

)
. (2.28)

Next we consider the beta functions of the gauge couplings in the 5D MSSM. In fact, after
compactification of the 5D MSSM, we have two 4D N = 1 chiral supermultiplets, Φ and Φc,
where the zero modes of Φ give us the normal matter fields and Higgs fields as well as their
super partners, while Φc is a new supermultiplet. In the component field formalism, at each
KK level, aside from the quantum corrections that mirror those of the 4D MSSM, the only new
one-loop contributions to the Aμ Feynman diagrams are from the wave function renormalisation
of Aμ (which contribute via the coupling of Aμ to the complex scalar field and its super-partner
in the superfield χ, and the coupling of Aμ with the new fermion field and its super-partner
in the superfield Φc associated with the two doublets of the Higgs fields and the matter fields
respectively in the bulk). This then gives rise to the master beta functions of the gauge couplings
in the 5D MSSM as follows [102]:

(b̃1, b̃2, b̃3) =
(6

5 , −2, −6
)

+ 4η , (2.29)

where η represents the number of generations of fermions which propagate in the bulk. This
calculation is detailed in appendix B. So in the two cases we shall consider, that of all fields
propagating in the bulk (η = 3) we have [113]:

b̃i =
(66

5 , 10, 6
)

. (2.30)

Similarly, for all our matter fields localised to the 3-brane (that is, η = 0), we have:

b̃i =
(6

5 , −2, −6
)

. (2.31)

In figs. 2.3 and 2.4 we have plotted the running of the gauge couplings for the UED
SM case and the 5D MSSM respectively for the brane localised and bulk field cases, and
for several choices of compactification scales for the extra-dimension (R). From these plots,
and the discussion given in ref. [113], we find that for the three gauge coupling constants to
approach a small region at some value of t requires an extremely large value of 1/R, which
is of no phenomenological interest at present. For the case of our fields being brane localised
in the UED model, we see a similar behaviour: the extra-dimensions naturally lead to gauge
coupling unification at an intermediate mass scale for the compactification radii considered
here. Furthermore, as illustrated in fig. 2.3, the extra spacetime dimensions naturally lead to
the appearance of GUTs at scales substantially below the usual GUT scale.

We assume the fundamental scale is not far from the range of LHC scale, and set the
compactification radii to be R−1 = 2 TeV, 8 TeV, and 15 TeV respectively. In the limit when
the energy scale is much smaller than R−1, since the energy of the system is less than the
excitations of the first KK modes, the theory reduces to the usual 4-dimensional SM, and the
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existence of the KK excitations are ignored. When μ > R−1, excitations of many KK modes
become possible, and the contributions of these KK states must be included in all physical
calculations. This is characterized by the second term in Eq.(2.3) in the general beta function.
Once the energy passes R−1 the excited KK modes tend to increase rapidly the running of
the gauge couplings, and ultimately change the scale dependence of the gauge couplings from
logarithmic to those of a power law as a function of μ. Quantitatively, due to the fast running
of the gauge couplings, we find they nearly meet at around t = 6.4, 7.8, 8.4 for radii R−1 = 2,
8, 15 TeV respectively. The extra dimensions naturally lead to gauge coupling unification at
an intermediate mass scale.

Similarly, in fig. 2.4 we have plotted the evolutions of the brane localised and bulk field
cases for several choices of compactification scales for the 5D MSSM. From these plots, and as
noted above, we find that for the three gauge coupling constants to approach a small region at
some value t requires an extremely large value of 1/R, whereas, for the case of our fields being
brane localised, the extra dimensions naturally lead to gauge coupling unification at a similarly
valued intermediate mass scale for the compactification radii considered here.

2.4 Yukawa evolutions in the SM and UED SM
In the quark sector of the SM, we have ten experimentally measurable parameters, i.e. six

quark masses, three mixing angles, and one phase (these angles and phase being encoded in the
CKM matrix which we shall discuss in section 2.6). A completely satisfactory theory of fermion
masses and the related problem of mixing angles is certainly lacking at present, however, there
has been considerable effort to understand the hierarchies of these mixing angles and fermion
masses in terms of the RGEs [97, 111, 114–118]. First though we must recall that in order to
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Figure 2.3: Gauge couplings g1 (red), g2 (blue), g3 (green) with: in the left panel, all matter
fields in the bulk (UED bulk); and the right panel for all matter fields on the brane (UED brane);
for three different values of the compactification scales: 2 TeV (solid line), 8 TeV (dot-dashed
line), 15 TeV (dashed line) as a function of the scale parameter t in the UED SM.
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explore the physics at a high energy scale we use RGEs as a probe to study the momentum
dependence of the Yukawa couplings, the gauge couplings, and from these the CKM matrix
elements themselves. As such we can consider one of the primary goals of the LHC as being
to uncover any new dynamics within the TeV range, where instead of assuming the RGE goes
from the MZ scale up to the GUT scale (1015 GeV) by using the SUC(3) × SUL(2) × UY (1)
symmetry, we know that models with extra dimensions may bring down the unification to a
much lower energy scale. However, when using the RGEs as a probe, the initial values we shall
adopt are very important, where we shall scale for the gauge couplings and the fermion masses
at the MZ scale are shown in Table 2.1.

Parameter Value Parameter Value
α1 0.01696 me 0.48657 MeV
α2 0.03377 mμ 102.718 MeV
α3 0.1184 mτ 1746.24 MeV
mu 1.27 MeV |Vub| 0.00347
mc 0.619 GeV |Vcb| 0.0410
mt 171.7 GeV |Vus| 0.2253
md 2.90 MeV J 2.91 × 10−5

ms 55 MeV
mb 2.89 GeV

Table 2.1: Initial values for the gauge couplings, fermion masses and CKM parameters at MZ

scale. Data is taken from Ref [102,119,120].
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Figure 2.4: Gauge couplings g1 (red), g2 (blue), g3 (green) with: in the left panel, all matter
fields in the bulk; and the right panel for all matter fields on the brane; for three different values
of the compactification scales: 2 TeV (solid line), 8 TeV (dot-dashed line), 15 TeV (dashed line)
as a function of the scale parameter t in the 5D MSSM.
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Furthermore, we shall also attempt, in section 3.2, to develop the RGEs of the lepton sector
(including possible mixing angles and phases), which will require knowledge of the evolution
of a parameter k, where the lowest order operator which generates Majorana neutrino masses
after electroweak symmetry breaking (EWSB), is the lepton-number violating Weinberg op-
erator [121]. This lowest order operator (appearing with dimension d = 5 in four space-time
dimensions) can be written as:

− k̃ij

4M
(L̄ci

α εαβφβ)(Lj
δε

δγφγ) + h.c. , (2.32)

where L and φ are the lepton and the Higgs doublet fields. M is the typical heavy energy scale
for the range of validity of the low-energy effective theory. An operator of this type can be
generated, for instance, by the usual see-saw mechanism. In which case the heavy scale M can
be identified with the mass of the heavy right-handed neutrino. After EWSB the Higgs acquires
a vacuum expectation value (vev) and the operator in Eq.(2.32) gives a Majorana mass term
for the neutrinos. In the context of the MSSM it can be written in the form:

− k̃ij

4M
(Li

αεαβHu
β )(Lj

δε
δγHu

γ ) , (2.33)

where L and Hu are the lepton and up-type Higgs doublet chiral superfields respectively. This
operator is crucial for the study of neutrino masses and mixings, where renormalisation group
equations for this effective operator have been derived in the context of the four-dimensional
SM and MSSM [108,109].

In the present case we consider the effective neutrino mass operator with dimensional cou-
pling k̃ij; after spontaneous symmetry breaking, the Majorana neutrino masses can be written
as mν ≡ kv2sin2β (v being the vev of the Higgs field and tan β, the ratio of the vevs of our
two Higgs doublets) and k = k̃ij/(2MπR) for bulk propagating, and k = k̃/(2M) for brane
localised matter superfield scenarios respectively.

As such, we have set MZ as the renormalisation point, and use t = ln( μ
MZ

) and S(t) =
etMZR. The general form of evolution equations for Yukawa couplings and neutrino k coupling
at the one loop can be written in the following form Refs [122–124]:

16π2 dYd

dt
= Yd

{
TtC1 − Gd + 3

2(Y †
d Yd − Y †

u Yu)C2

}
,

16π2 dYu

dt
= Yu

{
TtC1 − Gu + 3

2(Y †
u Yu − Y †

d Yd)C2

}
, (2.34)

16π2 dYe

dt
= Ye

{
TtC1 − Ge + 3

2(Y †
e Ye)C2

}
,

16π2 dk

dt
= αk +

(
[Ye

T Ye
∗]k + k[Ye

†Ye]
)

C3 .

where Tt = Tr
[
3Y †

d Yd + 3Y †
u Yu + Y †

e Ye

]
.
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2.4.1 Standard Model
The SM is a limiting case for the UED, where the KK states decouple. The coefficients in

the evolution equation are defined by:

GdSM =
(1

4g2
1 + 9

4g2
2 + 8g2

3

)
,

GuSM =
(17

20g2
1 + 9

4g2
2 + 8g2

3

)
, (2.35)

GeSM =
(9

4g2
1 + 9

4g2
2

)
,

αSM = 2 Tt − 3g2
2 + λ ,

C1SM = 1 ,

C2SM = 1 ,

C3SM = −3
2 .

Note that there is a difference in the coefficients of the gauge coupling g1 between Ref [122].
and Ref [123]. due to the SU(5) normalisation factor 3/5.

2.4.2 UED SM Bulk
The UED contribution is obtained when KK states enter, where due to the orbifolding the

zero mode for fermions are chiral, which are replaced by Dirac fermions at each KK level. This
lead to the factor 2 appearing in C1 and C2 since the KK left and right-handed chiral states
contribute to the closed fermion one loop diagrams. That is,

GdUEDBulk =
( 17

120g2
1 + 15

8 g2
2 + 28

3 g2
3

)
(S(t) − 1) ,

GuUEDBulk =
(101

120g2
1 + 15

8 g2
2 + 28

3 g2
3

)
(S(t) − 1) , (2.36)

GeUEDBulk =
(99

40g2
1 + 15

8 g2
2

)
(S(t) − 1) ,

αUEDBulk = (S(t) − 1)
(

4Tt − 3
20g2

1 − 11
4 g2

2 + λ
)

,

C1UEDBulk = 2(S(t) − 1) ,

C2UEDBulk = (S(t) − 1) ,

C3UEDBulk = (S(t) − 1) .

Following the convention of Ref [95]. we use the coefficient (S(t)−1) = (μR−1), which depends
on the energy scale and also lead to a reproduction of the SM before crossing the threshold of
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the first KK state at μ = 1/R. This coefficient corresponds to s = μ
μ0

for the UED case only in
Ref [122].

2.4.3 UED SM Brane
For the case where the fermions are restricted to the brane, we obtain the coefficients from

Ref [112]. and Ref [122]. with a difference related to the SU(5) normalisation factor:

GdUEDBrane =
(1

4g2
1 + 9

4g2
2 + 8g2

3

)
2(S(t) − 1) ,

GuUEDBrane =
(17

20g2
1 + 9

4g2
2 + 8g2

3

)
2(S(t) − 1) , (2.37)

GeUEDBrane =
(9

4g2
1 + 9

4g2
2

)
2(S(t) − 1) ,

αUEDBrane = 2(S(t) − 1)
(

− 3g2
2 + λ

)
,

C1UEDBrane = 0 ,

C2UEDBrane = 2(S(t) − 1) ,

C3UEDBrane = 2(S(t) − 1) .

Note that the coefficient C1 = 0 since we do not have a trace of fermionic loops as the fermions
are restricted to the brane.

2.5 Yukawa evolutions in the MSSM and 5D MSSM
In the following we write the general form of the evolution equations for the various MSSMs

we shall consider here, where we shall use a notation similar to the ones of Refs. [98, 124].
Note that the beta functions contain terms quadratic in the cut-off, where this part dominates
the evolution of the Yukawa couplings and of k. The top Yukawa coupling becomes non-
perturbative before the gauge couplings thus limiting the range of validity of the effective
theory.

16π2 dYd

dt
= Yd

{
TdC̃ − Gd + (3Y †

d Yd + Y †
u Yu)C

}
,

16π2 dYu

dt
= Yu

{
TuC̃ − Gu + (3Y †

u Yu + Y †
d Yd)C

}
, (2.38)

16π2 dYe

dt
= Ye

{
TeC̃ − Ge + (3Y †

e Ye)C
}

,

16π2 dk

dt
= αk +

(
[Ye

T Ye
∗]k + k[Ye

†Ye]
)

C .
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where

Td = 3 Tr(Y †
d Yd) + Tr(Y †

e Ye) ,

Tu = 3 Tr(Y †
u Yu) , (2.39)

Te = 3 Tr(Y †
d Yd) + Tr(Y †

e Ye) .

2.5.1 MSSM

The MSSM, as a limiting case of the 5D models we shall consider in the following, and also
when 0 < t < ln( 1

MZR
) (that is the energy we consider for the evolution from MZ to 1/R) the

coefficients in the evolution equations are:

GdMSSM =
( 7

15g2
1 + 3g2

2 + 16
3 g2

3

)
,

GuMSSM =
(13

15g2
1 + 3g2

2 + 16
3 g2

3

)
, (2.40)

GeMSSM =
(9

5g2
1 + 3g2

2

)
,

αMSSM = 2 Tu − 6
5g2

1 − 6g2
2 ,

CMSSM = 1 ,

C̃MSSM = 1 .

These coefficients are modified when we enter the energy regime where the effects of the extra
dimensions set in. The modifications depend on which particles are decoupled and on the
structure of the model. We shall consider two cases, one in which all particles can propagate in
the extra dimensions (bulk case) and the other in which fermionic matter fields are constrained
to the brane (brane case).

2.5.2 Bulk

When the energy scale E > 1/R or when the energy scale parameter t > ln( 1
MZR

), the
coefficients in the 5D MSSM, for all three generations propagating in the bulk, can be expressed
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as:

Gd5Dbulk =
( 7

15g2
1 + 3g2

2 + 16
3 g2

3

)
S(t) ,

Gu5Dbulk =
(13

15g2
1 + 3g2

2 + 16
3 g2

3

)
S(t) , (2.41)

Ge5Dbulk =
(9

5g2
1 + 3g2

2

)
S(t) ,

α5Dbulk = 2C̃5DbulkTu − (6
5g2

1 + 6g2
2)S(t) ,

C5Dbulk = πS(t)2 ,

C̃5Dbulk = πS(t)2 .

2.5.3 Brane
However, when all matter superfields are constrained to live on the 4D brane, the quadratic

evolution due to the sum over the two KK towers will be milder. We note also that the traces
are the same in the MSSM because we do not have a fermionic loop in the extra-dimension in
the brane case. The coefficients of the evolution equations are given by:

Gd5Dbrane =
(19

30g2
1 + 9

2g2
2 + 32

3 g2
3

)
S(t) ,

Gu5Dbrane =
(43

30g2
1 + 9

2g2
2 + 32

3 g2
3

)
S(t) , (2.42)

Ge5Dbrane =
(33

10g2
1 + 9

2g2
2

)
S(t) ,

α5Dbrane = 2 Tu − (9
5g2

1 + 9g2
2)S(t) ,

C5Dbrane = 2S(t) ,

C̃5Dbrane = 1 .

2.6 Scaling of the Yukawa couplings and the CKM ma-
trix

It is well known that in the SM, the quark sector’s flavour mixing is parameterized by the
CKM matrix:

VCKM =

⎛
⎜⎝ Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎠ =

⎛
⎜⎝ V11 V12 V13

V21 V22 V23
V31 V32 V33

⎞
⎟⎠ , (2.43)
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which makes it possible to explain all flavour changing weak decay processes and CP-violating
phenomena to date, where the 10 year run of Babar at SLAC [125] and the Belle detector at
KEK [126] has greatly improved our knowledge of the CKM matrix elements. In particular,
for the standard parameterization of the CKM matrix, which has the form:

VCKM =

⎛
⎜⎝ c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

⎞
⎟⎠ , (2.44)

where s12 = sin θ12, c12 = cos θ12 etc. are the sines and cosines of the three mixing angles θ12,
θ23 and θ13, and δ is the CP violating phase.

The CKM matrix arises from a consideration of the square of the quark Yukawa coupling
matrices being diagonalized by using two unitary matrices U and V ,

diag
(
f 2

u , f2
c , f2

t

)
= UY †

u YuU † ,

diag
(
h2

d, h2
s, h2

b

)
= V Y †

d YdV † , (2.45)

in which f 2
u , f 2

c , f 2
t and h2

d, h2
s, h2

b are the eigenvalues of Y †
u Yu and Y †

d Yd respectively. It follows
that the CKM matrix appears as a result of the transition from the quark flavour eigenstates
to the quark mass eigenstates upon this diagonalization of the quark mass matrices:

VCKM = UV † . (2.46)

From the full set of one-loop coupled RGE for the Yukawa couplings and the CKM matrix,
together with those for the gauge coupling equations, one can obtain the renormalisation group
flow of all observables related to up- and down-quark masses and the CKM matrix elements.

The RGEs are very important tools to show the properties of the quark masses and the
CKM matrix at different energy scales. We write down the general form for the evolution of
f 2

i , h2
j and the variation of each element of the CKM matrix Vik [95, 102, 112] in the SM, the

UED SM, the MSSM and the 5D MSSM.

2.6.1 SM, UED Bulk SM and UED Brane SM

16π2 df2
i

dt
= f 2

i [2(TuA − Gu) + 3Bf 2
i − 2B

∑
j

h2
j |Vij|2] ,

16π2 dh2
j

dt
= h2

j [2(TdA − Gd) + 3Bh2
j − 2B

∑
i

f 2
i |Vij|2] , (2.47)

16π2 dy2
e

dt
= y2

e [2(TeA − Ge) + 3By2
e ] ,

16π2 dVik

dt
= −3

2B

⎡
⎣ ∑

m,j �=i

f 2
i + f 2

j

f 2
i − f 2

j

h2
mVimV ∗

jmVjk +
∑

j,m�=k

h2
k + h2

m

h2
k − h2

m

f 2
j V ∗

jmVjkVim

⎤
⎦ ,
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where A = B = 1 in the SM, A = 2S(t) − 1, B = S(t) in the UED Bulk SM and A = 0,
B = 2S(t) in the UED Brane SM. The gauge couplings G for the SM, the UED Bulk SM and
the UED Brane SM are written in Eq.(2.35), Eq.(2.36) and Eq.(2.37) respectively.

2.6.2 MSSM, 5D bulk and 5D brane

16π2 df2
i

dt
= f 2

i [2(TuC̃ − Gu) + 6Cf2
i + 2C

∑
j

h2
j |Vij|2]

16π2 dh2
j

dt
= h2

j [2(TdC̃ − Gd) + 6Ch2
j + 2C

∑
i

f 2
i |Vij|2] , (2.48)

16π2 dy2
e

dt
= y2

e [2(TeC̃ − Ge) + 6Cy2
e ] ,

16π2 dVik

dt
= C

⎡
⎣ ∑

m,j �=i

f 2
i + f 2

j

f 2
i − f 2

j

h2
mVimV ∗

jmVjk +
∑

j,m�=k

h2
k + h2

m

h2
k − h2

m

f 2
j V ∗

jmVjkVim

⎤
⎦ ,

where we use the same forms as in Eqs.(2.40,2.41,2.42) to fix the coefficients C, C̃ and gauge
couplings G to describe each model.

2.7 Comparison of the models and implications
In the following we compare the main results for the different models and their physical

meaning both in term of experimental limits and of the theoretical implications. However,
as pointed out in the appendix C, there is a subtlety involved the running of the physical
parameters in the UED bulk model. Although we plot their running up to the gauge unification
scale, in fact, as illustrated in fig. C.1, the introduction of new ultraviolet cutoff becomes
imperative due to the scalar potential stability condition, and beyond this scale new physics
should appear. For further discussion and quantitative analysis in the UED bulk model, refer
to Ref [127] for details. In contrast, in the UED brane model, the physics parameters have a
full running till the gauge unification scale, since the Higgs self coupling evolution has a finite
value which thus excludes the vacuum stability concern and validates the theory up its full
scale [112].

2.7.1 Top Yukawa coupling
UED SM: Bulk and Brane cases

In fig. 2.5 the initial Yukawa couplings are given by the ratios of the fermion masses to the
Higgs vacuum expectation value. The Yukawa couplings evolve in the usual logarithmic fashion
when the energy is below 2 TeV, 8 TeV, and 15 TeV for the three different cases. However, once
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the first KK threshold is reached, the contributions from the KK states become more and more
significant. The evolution of ft (see Eq.(2.47)) depends explicitly on the cutoff Λ, which have
finite one-loop corrections to the beta functions at each massive KK excitation level. Therefore,
the running of the Yukawa couplings, or more precisely, the one-loop KK corrected effective four
dimensional Yukawa couplings, begins to deviate from their normal orbits and start to evolve
faster and faster. For the compactification radius R−1 = 2 TeV, the Yukawa couplings evolve
faster than the other two, reaching its minimum value at the unification scale, after that point
their evolution will “blow-up" due to the faster running of the gauge couplings and new physics
would come into play. For the radius R−1 = 8 TeV, we find similar behaviour to the R−1 = 2
TeV case, where the blow-up scale is not very far from that of 2 TeV case. However, for the third
choice of radius, since the compactification radius is now much higher than the other two, we
need more energy to push it further toward its “blow-up" point, which is at a higher unification
scale. We also observe that the Yukawa couplings are quickly evolving to zero, however, a
satisfactory unification of these seems to still be lacking. In the UED scenario, the unification
of the Yukawa couplings is very desirable due to the fast power law running. As such, we have
so far observed the Yukawa couplings all decrease with increasing energy, which agrees with
what is observed in the SM, however, the Yukawa couplings are driven dramatically towards
extremely weak values at a much faster rate. This is an interesting feature that distinguishes
the UED model from that of the SM.

5D MSSM Bulk

The 4D MSSM contains the particle spectrum of a two-Higgs doublet model extension of
the SM and the corresponding supersymmetric partners. After the spontaneous breaking of
the electroweak symmetry, five physical Higgs particles are left in the spectrum. The two
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Figure 2.5: The Yukawa coupling ft for the top quark in the UED SM as a function of the scale
parameter t, for the bulk case (left panel) and the brane case (right panel) where the solid line
is the SM evolution and for different compactification scales: R−1 = 2 TeV (red, dotted line),
8 TeV (blue,dot-dashed line), and 15 TeV (green,dashed line).
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Higgs doublets Hu and Hd, with opposite hypercharges, are responsible for the generation of
the up-type and down-type quarks respectively. The vacuum expectation values of the neutral
components of the two Higgs fields satisfy the relation vu

2 + vd
2 =

(
246√

2

)2
= (174GeV )2. The

fermion mass matrices appear after the spontaneous symmetry breaking from the fermion-
Higgs Yukawa couplings. As a result, the initial Yukawa couplings are given by the ratios of
the fermion masses to the appropriate Higgs vacuum expectation values as follows:

fu,c,t = mu,c,t

vu

, hd,s,b = md,s,b

vd

, ye,μ,τ = me,μ,τ

vd

, (2.49)

where we define tan β = vu/vd, which is the ratio of vacuum expectation values of the two Higgs
fields Hu and Hd.

From the complete sets of the RGEs we can run the renormalisation group flow of all
observables related to up- and down-quark masses and the quark flavour mixings. For our
numerical analysis we assume the fundamental scale is not far from the range of LHC scale,
and set the compactification scale to be R−1 = 2 TeV, 8 TeV, and 15 TeV respectively.

Actually, below the supersymmetric breaking scale the Yukawa and gauge couplings run
in the usual logarithmic fashion, giving a rather slow change for their values. Therefore, for
supersymmetric breaking theories around TeV scales, for simplicity, we take the supersymmetric
breaking scale MSUSY = MZ in the present numerical study, and run the RGEs from MZ up
to the high energy scales for our three different compactification scales.

Additionally, as illustrated in fig. 2.6, for the case of universal 5D MSSM, once the first KK
threshold is crossed at μ = R−1, the power law running of the various beta functions causes the
Yukawa coupling to rapidly increase following the rapid increase in the gauge coupling constants
in the left panel of fig. 2.4. From Eq.(2.48) and Eq.(2.41) we can find the quadratic term of
S(t) providing a positive contribution to the Yukawa beta functions, which is in contrast to
beta functions of the gauge couplings (which include terms only linear in S(t)). Therefore, from
Eq.(2.48), the positive contribution from S(t) terms will dominate the negative contributions
from the gauge couplings, and cause the Yukawa couplings to increase rapidly. This behaviour
can be observed for both small and large tan β cases. However, as illustrated in the first graph
of fig. 2.6, for small tan β, the Yukawa coupling has a large initial value, therefore it blows
up at a relatively low energy as compared with the case for large tan β. As a result, as one
evolves upward in the scale, the top Yukawa coupling is rising with a fast rate and is pushed
up against the Landau pole where it becomes divergent and blows up. In the vicinity of this
singular point the perturbative calculation becomes invalid, and the higher order corrections
become significant. The Landau pole also indicates that there is an upper limit on the value of
the gauge couplings where new physics must emerge before the Yukawa couplings diverge.

5D MSSM Brane

In the brane localised matter field scenario, the beta function has only linear terms in
S(t), which is comparable with the S(t) term in the beta function for the gauge couplings.
As depicted in fig. 2.7, for a small value of tan β, we have a large initial value of ft and the
gauge coupling contribution to the Yukawa beta function is sub-dominant only. Therefore, as
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discussed previously, the Yukawa coupling ft increases rapidly as one crosses the KK threshold
at μ = R−1, resulting in a rapid approach of the singularity before the unification scale is
reached. However, for an intermediate value of tan β, we have a relative smaller initial condition
for the top Yukawa coupling and the Yukawa terms in the beta function become less important.
The contributions from the gauge couplings may then become significant, which leads to a net
negative contribution to the beta functions. Therefore, the curvature of the trajectory of the
top Yukawa evolution might change direction, and the Yukawa evolution will decrease instead
of increasing. This behaviour would become more obvious for a large value of tan β. As
observed in fig. 2.7, for tan β = 30, we indeed observe the decreasing behaviour of the top
Yukawa couplings. This behaviour provides a very clear phenomenological signature, especially
for scenarios with a larger tan β and that are valid up to the unification scale where the gauge
couplings converge.

2.7.2 CKM Matrix

Because of the arbitrariness in choice of phases of the quark fields, the phases of individual
matrix elements of the VCKM are not themselves directly observable. Among these we therefore
use the absolute values of the matrix element |Vij| as the independent set of rephasing invariant
variables. Of the nine elements of the CKM matrix, only four of them are independent, which
is consistent with the four independent variables of the standard parametrisation of the CKM
matrix. For definiteness we choose the |Vub|, |Vcb|, |Vus| and the Jarlskog rephasing invariant
parameter J = ImVudVcsV

∗
usV

∗
cd as the four independent parameters of VCKM .
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Figure 2.6: The Yukawa coupling ft for the top quark in the bulk case of 5D MSSM as a
function of the scale parameter t, for (left panel) tan β = 1 and (right panel) tan β = 30 where
the solid line is the MSSM evolution and for different compactification scales: R−1 = 2 TeV
(red, dotted line), 8 TeV (blue, dot-dashed line), and 15 TeV (green, dashed line).
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UED SM

In fig. 2.8 we specially plot the evolution of |Vub| for the UED bulk and brane cases. For the
evolution of |Vcb| and |Vus| we can observe similar behaviours, i.e., they all increase with the
energy scale; the variation rate become faster once the KK threshold is passed. The absolute
values of all the remaining magnitudes of the CKM matrix elements can be obtained from the
unitarity equations, as depicted in fig. 2.8, with increasing energy the running of the CKM
matrix shows a pronounced pattern at the point where the KK modes are excited, thus we
could determine the renormalisation group evolutions of the full CKM matrix. As can be seen
from Eq.(2.47), the evolution of the CKM matrix is governed by the Yukawa couplings and
the factor S(t). They evolve faster in the region where the power law scaling of the Yukawa
couplings becomes substantial. Therefore, the renormalisation effect is explicit for mixings
involving the third family, i.e., |Vub| and |Vcb|, due to the large value of their Yukawa couplings.
Because of the smallness of the Yukawa coupling terms, the renormalisation group flow of the
mixing between the first two families, i.e., the Cabibbo angle of |Vus|, turns out to be very
small. Although the mixing angle increases all the time, it is rather inert, even in the UED
model.

5D MSSM

In figs. 2.9 and 2.10 we plot the energy dependence of |Vub| from the weak scale all the way
up to the high energy scales for different values of compactification radii R−1 for the bulk 5D
MSSM case brane localised matter fields case respectively. In these sets of pictures we consider
two indicative choices of tan β, that of tan β = 1 and tan β = 30.

The running of the CKM matrix is governed by the terms related to the Yukawa couplings.
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Figure 2.7: The Yukawa coupling ft for the top quark in the brane case of 5D MSSM as a
function of the scale parameter t, for (left panel) tan β = 1 and (right panel) tan β = 30 where
the solid line is the MSSM evolution and for different compactification scales: R−1 = 2 TeV
(red, dotted line), 8 TeV (blue, dot-dashed line), and 15 TeV (green, dashed line).
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These Yukawa couplings are usually very small, except for the top Yukawa coupling (which
could give a sizeable contribution). The CKM matrix element Vub � θ13e

−iδ can be used to
observe the mixing angle, θ13. It decreases with the energy scale in a similar manner regardless
of whether tan β is small or large. However, for a large initial value of ft (small tan β), the
mixing angles have a more rapid evolution and end in the regime where the top Yukawa diverges
and develops a singularity. Quantitatively we observe from these plots that the value of |Vub|
change by more than 50%.
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Figure 2.8: The CMK matrix elements |Vub| in the UED SM as a function of the scale parameter
t, for the bulk case (left panel) and the brane case (right panel) where the solid line is the SM,
for different compactification scales: R−1 = 2 TeV (red, dotted line), 8 TeV (blue,dot-dashed
line), and 15 TeV (green, dashed line).
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Figure 2.9: The CMK matrix elements |Vub| in the bulk case of 5D MSSM as a function of the
scale parameter t, for (left panel) tan β = 1 and (right panel) tan β = 30 where the solid line is
the MSSM evolution and for different compactification scales: R−1 = 2 TeV (red, dotted line),
8 TeV (blue, dot-dashed line), and 15 TeV (green, dashed line).
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2.7.3 The Jarlskog parameter

UED SM

We next turn our attention to the quark flavour mixing matrix, especially the complex phase
of the CKM matrix which characterizes CP-violating phenomena. This phenomena has been
unambiguously verified in a number of K − K̄ and B − B̄ systems. For the parameter J (fig.
2.11), the characteristic parameter for the CP non-conservation effects, its variation becomes
very significant. The larger the value of the compactification radius R, the faster J evolves to
reach its maximum. We observe an approximate 30% increase for J at the unification scale
compared with its initial value.

5D MSSM

From figs. 2.12, in contrast, the Jarlskog parameter decreases quite rapidly once the initial
KK threshold is passed. However, when tan β is large, we have a relatively longer distance
between the initial and terminating energy track, the evolution of J can be driven towards
zero or even further. Besides, as can be seen explicitly in [111], the beta functions of the
evolution equations of the CKM elements are up to the third order of the CKM elements,
which are comparable smaller than that of Jarlskog parameter’s quadratic dependence on the
CKM elements. This fact then leads to the relatively large variation of J with the increase of
energy. Furthermore, for tan β = 30, the Jarlskog parameter drops almost to zero, which sets
the effect of the SM CP violation to being very small. Note, however, that in a supersymmetric
theory other sources of CP violation beyond the SM ones are typically present, therefore only
a complete and detailed study of a specific model would allow us to establish the strength of
the CP violating effects.
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Figure 2.10: The CMK matrix elements |Vub| in the brane case of 5D MSSM as a function of
the scale parameter t, for (left panel) tan β = 1 and (right panel) tan β = 30 where the solid
line is the MSSM evolution and for different compactification scales: R−1 = 2 TeV (red, dotted
line), 8 TeV (blue, dot-dashed line), and 15 TeV (green, dashed line).
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For the matter fields constrained to the brane, in figs. 2.10 and 2.13 we observe that
the evolutions of these mixing angles and CP violation parameter are decreasing irrespective
of whether the top Yukawa coupling grows or not. For small tan β we see similar evolution
behaviours for these parameters as in the bulk case. The decreases in the value of Vub and J
are much steeper, due to rapid growth of the top Yukawa coupling near the singular point.
However, as tan β becomes larger, e.g. tan β = 30, the top Yukawa coupling evolves downward
instead of upward. The decreases in these CKM parameters then becomes much milder towards
the unification scale; though the reduction to effectively zero in the Jarlskog parameter persists.
As a result, for the brane localised matter field scenario, it is more desirable to have a large
tan β for theories that are valid up to the gauge coupling unification scale.

2.8 Conclusion
In summary, for the two 5D MSSM scenarios with matter fields in the bulk or on the brane,

we have performed the numerical analysis of the evolution of the various parameters of the
CKM matrix, and both cases give us a scenario with small or no quark flavour mixings at high
energies, especially for the mixings with the heavy generation. The evolution equations which
relate various observables at different energies, and also allow the study of their asymptotic
behaviours, are particularly important in view of testing the evolution of the Yukawa couplings.
In the universal 5D MSSM model, the evolution of these CKM parameters have a rapid variation
prior to reaching a cut-off scale where the top Yukawa coupling develops a singularity point
and the model breaks down. For the brane localised matter fields model, we can only observe
similar behaviours for small values of tan β, while for large tan β, the initial top Yukawa coupling
becomes smaller, the gauge couplings then play a dominant role during the evolution of the
Yukawa couplings, which cause the Yukawa couplings to decrease instead of increasing. As such
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Figure 2.11: The Jarlskog parameter J in the UED SM as a function of the scale parameter t,
for the bulk case (left panel) and the brane case (right panel) where the solid line is the SM,
for different compactification scales: R−1 = 2 TeV (red, dotted line), 8 TeV (blue, dot-dashed
line), and 15 TeV (green, dashed line).
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Figure 2.12: The Jarlskog parameter J in the bulk case of 5D MSSM as a function of the scale
parameter t, for (left panel) tan β = 1 and (right panel) tan β = 30 where the solid line is the
MSSM evolution and for different compactification scales: R−1 = 2 TeV (red, dotted line), 8
TeV (blue, dot-dashed line), and 15 TeV (green, dashed line).
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Figure 2.13: The Jarlskog parameter J in the brane case of 5D MSSM as a function of the scale
parameter t, for (left panel) tan β = 1 and (right panel) tan β = 30 where the solid line is the
MSSM evolution and for different compactification scales: R−1 = 2 TeV (red, dotted line), 8
TeV (blue, dot-dashed line), and 15 TeV (green, dashed line).
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the variations of these CKM parameters have a relatively milder behaviour, and the theory is
valid up the gauge coupling unification scale.
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Chapter 3

Masses and Mixing angles evolution for
neutrinos in UED models

3.1 Introduction
In the last decade, our perspectives in the search for physics Beyond the Standard Model

(BSM) have seen the development of theories with extra (compact) dimensions. TeV-scale
extra-dimensional models have allowed us to build effective models which can be tested at the
present and next generation of colliders, where these wide varieties of extra-dimensional models
have been proposed to solve, or at least understand from a geometrical perspective, different
theoretical problems arising in the Standard Model (SM) and in its four-dimensional space-time
extensions.

Another ingredient which can be introduced, supersymmetry, and in particular its minimal
low energy construction, the MSSM, has long been held to play a central role in BSM physics;
even if at present there is no evidence at colliders for the supersymmetric partners of the SM
particles. From a theoretical point of view, supersymmetry plays a key role in resolving many
problems in the SM and BSM physics; from gauge coupling unification, to the hierarchy prob-
lem, to the building of realistic grand unification models. The combination of supersymmetry
and the physics of extra-dimensions has the added bonus of stabilising the extra-dimensional
theory from quantum fluctuations, as well as the extra-dimensions potentially providing a mech-
anism for supersymmetry breaking. Indeed, four-dimensional supersymmetric models typically
lack a simple mechanism for supersymmetry breaking, which the extra-dimensions may offer.

Neutrinos are generally taken to be massless in the SM, and the experimental evidence for
nonzero neutrino masses implicit in the neutrino oscillations measurements, gives an important
indication for physics BSM. In fact, neutrino masses are many orders of magnitude smaller
than those of quarks and charged leptons. However, contrary to the small mixings in the quark
sector, two of the lepton mixing angles are identified as being rather large, close to maximal.
For an overview of the present knowledge of neutrino masses and mixings see Refs. [128,129] and
references therein. The most recent experimental evidence of this fact is the measurement of
the θ13 mixing parameter by the Daya Bay, Double Chooz and RENO experiments [130–132].
The implication of three sizable mixing angles are huge, and will surely boost the number
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of investigations of the neutrino mixings and phases in the near future; in particular, this
result suggests the possibility of measuring leptonic CP violation. The neutrino sector seems,
therefore, to continue to play a special role in understanding BSM physics.

The generation of such masses and phases remains an open question. By including right-
handed neutrinos into the Standard Model, it is possible to explain the neutrino masses with
SM Higgs mechanism only. However the Yukawa couplings of neutrinos will be very small. In
this context, theorists develop already some models, like the see-saw model [133], which address
the smallness of the neutrino masses by giving large masses to right-handed neutrinos that will
couple with left-handed neutrinos through Yukawa couplings. Moreover many properties of the
PMNS matrix, like unitarity or majorana phases, need to be understood.

Recall also that quark and lepton masses and mixing angles are free parameters in minimal
extensions to the SM. Also, as neutrino mixing angles show a pattern that is completely different
from that of quark mixings, the relative wealth of the latest experimental data has motivated
efforts on the theoretical side to understand the possible patterns of neutrino masses and
mixings, and therefore to expose the underlying fundamental symmetries behind them. As
such, understanding the evolution of these neutrino sector parameters will be critical as higher
energy experiments probe this sector.

3.2 Neutrino parameter evolutions
In a similar way to what done for quark parameters, we can study the evolution of the

masses, mixing and phases in the neutrino sector. In the following we first establish our
conventions for these parameters and introduce the main present bounds and values from
experiments. We than introduce the corresponding renormalisation evolution equations in the
various models and discuss the numerical values obtained for the evolution of the parameters
in different models, as previously done for the quark sector.

3.2.1 Conventions for masses and mixing parameters
The mixing matrix which relates gauge and mass eigenstates is defined to diagonalize the

neutrino mass matrix in the basis where the charged lepton mass matrix is diagonal. It is
usually parameterised as follows [134]:

U =

⎛
⎜⎝ c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
−iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

⎞
⎟⎠
⎛
⎜⎝ eiφ1

eiφ2

1

⎞
⎟⎠ ,

with cij = cos θij and sij = sin θij (ij = 12, 13, 23). We follow the conventions of Ref. [124] to
extract mixing parameters from the PMNS matrix.

Experimental information on neutrino mixing parameters and masses is obtained mainly
from oscillation experiments. In general Δm2

atm is assigned to a mass squared difference be-
tween ν3 and ν2, whereas Δm2

sol to a mass squared difference between ν2 and ν1. The current
observational values are summarized in Table 3.1. Data indicates that Δm2

sol  Δm2
atm, but
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the masses themselves are not determined. In this work we have adopted the masses of the
neutrinos at the MZ scale as m1 = 0.1 eV, m2 = 0.100379 eV, and m3 = 0.11183 eV, as the
normal hierarchy (whilst any reference to an inverted hierarchy would refer to m3 = 0.1 eV,
with m3 < m1 < m2 and satisfying the above bounds). For the purpose of illustration, we
choose values for the angles and phases as the MZ scale as: θ12 = 34o, θ13 = 8.83o, θ23 = 46o,
δ = 300, φ1 = 80o and φ2 = 70o.

Parameter Value (90% CL)
sin2(2θ12) 0.861(+0.026

−0.022)
sin2(2θ23) > 0.92
sin2(2θ13) 0.092 ± 0.017

Δm2
sol (7.59 ± 0.21) × 10−5eV 2

Δm2
atm (2.43 ± 0.13) × 10−3 eV 2

Table 3.1: Present limits on neutrino masses and mixing parameters used in the text. Data is
taken from Ref. [120] and from Ref. [130] for sin2(2θ13).

The evolution equation for the observables in our 5D MSSM are taken from [103]. As
expected tan β plays an important role as all the mixing angles and phases depend on yτ (see
appendix D). However, the new degrees of freedom (the extra-dimensional fields giving rise to
KK excitations of the zero modes) become important at energies corresponding to their masses.
In the following we study the evolution of the relevant parameters, such as Δm2

sol, Δm2
atm and

the angles and phases, as a function of the energy scale and of tan β. Only some selected plots
will be shown and we will comment on the other similar cases not explicitly shown.

3.2.2 Δm2
sol and Δm2

atm

For the UED SM, we see different behaviour for the brane case fig. 3.1 and bulk case fig.
3.2. Once the KK threshold is reached, both Δm2

sol and Δm2
atm decrease with increasing energy

in the brane case, but they increase with the energy in the bulk case for the different radii of
compactification. The evolution of masses depends on the evolution of yτ and k coupling and
the RG runnings in the UED SM bulk model are generally larger than those in UED SM brane
model. This is due to the fact that the coefficient C1 = 0 in the brane model (see Eq.(2.37))
and 2(S(t) − 1) in the bulk model (see Eq.(2.36)) and also there is difference in α in the two
equations due to the trace of charged-fermion Yukawa couplings in bulk model whereas such a
contribution does not exist in brane model due to the absence of fermion KK excitations (see
the T term in Eq.(2.35)). This lead to the increasing of observables in the bulk case and the
decreasing in the brane case.

For the 5D MSSM, in general, in the brane case, the evolution has the same form for the
three masses m1, m2, m3. This leads to a reduction of up to a factor of two for the masses
at t = 6 (for a large radius, R−1 = 1 TeV) with respect to the MSSM values at low energies
(smaller radii give a weaker effect as the KK excitations contribute to the evolution equations
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Figure 3.1: Evolution of Δm2
sol (left panel) and Δm2

atm (right panel) as a function of the scale
t = ln(μ/MZ) with matter fields constrained to the brane in the UED SM. The black line is
the SM evolution, the red (small dashes) is for R−1 ∼ 1 TeV, the blue (dash-dotted) R−1 ∼ 4
TeV, the green (large dashes) R−1 ∼ 15 TeV.
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Figure 3.2: Evolution of Δm2
sol (left panel) and Δm2

atm (right panel) as a function of the scale
t = ln(μ/MZ) with matter fields in the bulk in the UED SM. The black line is the SM evolution,
the red (small dashes) is for R−1 ∼ 1 TeV, the blue (dash-dotted) R−1 ∼ 4 TeV, and the green
(large dashes) R−1 ∼ 15 TeV.
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Figure 3.3: Evolution of Δm2
sol (left panel) and Δm2

atm (right panel) as a function of the scale
t = ln(μ/MZ) with matter fields constrained to the brane for tan β = 30 in the 5D MSSM.
The black line is the MSSM evolution, the red (small dashes) is for R−1 ∼ 1 TeV, the blue
(dash-dotted) R−1 ∼ 4 TeV, the green (large dashes) R−1 ∼ 15 TeV.
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Figure 3.4: Evolution of Δm2
sol (left panel) and Δm2

atm (right panel) as a function of the scale
t = ln(μ/MZ) with matter fields in the bulk for tan β = 30 in the 5D MSSM. The black line is
the MSSM evolution, the red (small dashes) is for R−1 ∼ 1 TeV, the blue (dash-dotted) R−1 ∼ 4
TeV, and the green (large dashes) R−1 ∼ 15 TeV. The evolution is towards a non-perturbative
regime, where the Yukawa coupling develops a Landau pole and the effective theory becomes
invalid.

85



CHAPTER 3. MASSES AND MIXING ANGLES EVOLUTION FOR NEUTRINOS IN
UED MODELS

at higher energies). This prediction is extremely stable and can be explained as the evolution
of the masses is governed by the equation

ṁi = 1
16π2 mi

(
α + Ciy

2
τ

)
, (3.1)

where the coefficients Ci induce a non-universal behaviour and the parameter α contains the
up Yukawa couplings and the gauge coupling terms (detailed in appendix D and Eq.(2.42). In
contrast to the MSSM, the evolution in the brane case is completely dominated by the universal
part. The essential point is that in the MSSM the positive contribution to α, approximately
6y2

t , is of the same order as the negative contribution from the gauge part. In our case the
gauge part has a large pre-factor S(t) = etMZR with respect to the MSSM which makes it
completely dominant compared to any other contribution. As energy increases, we can write:

ṁi ∼ 1
16π2 mi

[
6y2

t −
(9

5g2
1 + 9g2

2

)
S(t)

]
< 0 . (3.2)

From this approximation we immediately see that all masses decrease with increasing energy
and eventually tend to zero if the evolution equations can be trusted up to a high energy.

In the 5D MSSM bulk case the evolution has again the same form for the three masses m1,
m2, m3, but the behaviour is the opposite as the masses increase at high energy because all
matter fields propagate in the bulk and contribute to the evolution. In detail this can be seen
by the fact that even if the gauge part gets a large pre-factor S(t), the Yukawa part gets in this
case a pre-factor S(t)2, which changes the sign of the derivative with respect to the previous
case:

ṁi ∼ 1
16π2 mi

[
πS(t)26y2

t −
(6

5g2
1 + 6g2

2

)
S(t)

]
> 0 . (3.3)

From this approximation we see that all masses increase with increasing energy scale.
The situation is more involved when analyzing the mass squared differences. We plot in

figs. 3.3 and 3.4 the evolution of Δm2
sol and Δm2

atm both for the matter fields on the brane
and for all fields in the bulk for tanβ=30 and different radii of compactification. In the brane
case different behaviours as a function of the energy scale are possible as a relatively large
interval in energy range is allowed for the effective theory. As explicitly illustrated in fig. 3.3,
the relevant radiative corrections controlled by the gauge fields in Eq.(3.2) become dominant
as energy goes up, which tends to reduce mass splitting, and an approximately degenerate
neutrino masses spectrum at the high energy scale m1 ≈ m2 ≈ m3 becomes favourable. This is
in contrast with the MSSM, where the neutrino mass splitting becomes large at an ultraviolet
cut-off. Therefore, it is very appealing that the neutrino mass splitting at low energy could be
attributed to radiative corrections resulting from a degenerate pattern at a high energy scale.
In fig. 3.4, the bulk case tends to a non-perturbative regime, where the unitarity bounds of the
effective theory are reached much faster and only a much shorter running can be followed using
the effective theory. As seen in Eq.(3.3), the quadratic terms related to S(t) dominate during
the fast evolution. As such, the neutrino mass splitting becomes even larger at a high energy
scale.
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Figure 3.5: Evolution of θ13 as a function of the parameter t = ln(μ/MZ) with matter fields
in the bulk (left panel) and on the brane (right panel) respectively in the UED SM. The black
line is the SM evolution, the red (small dashes) is for R−1 ∼ 1 TeV, the blue (dash-dotted)
R−1 ∼ 4 TeV, and the green (large dashes) R−1 ∼ 15 TeV.

2 3 4 5 6 7
8.60

8.65

8.70

8.75

8.80

8.85

8.90

t

Θ 1
3�

de
gr

ee
�

Runnings of Θ13 for tanΒ�5 for Bulk fields

2 3 4 5 6 7
7.0

7.5

8.0

8.5

t

Θ 1
3�

de
gr

ee
�

Runnings of Θ13 for tanΒ�30 for Bulk fields

Figure 3.6: Evolution of θ13 as a function of the parameter t = ln(μ/MZ) with matter fields in
the bulk for tan β = 5 (left panel) and tan β = 30 (right panel) in the 5D MSSM respectively.
The black line is the MSSM evolution, the red (small dashes) is for R−1 ∼ 1 TeV, the blue
(dash-dotted) R−1 ∼ 4 TeV, and the green (large dashes) R−1 ∼ 15 TeV.
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3.2.3 Mixing angles

Concerning the evolution of the mixing angles, as can be seen in figs. 3.5–3.10, in the UED
bulk and brane cases, we have very small variation from the SM case because we do not have
dependence on tan β and there is not a quadratic term of S(t) in the RGEs so there is no
strong enhancement in the running. However the mixing angles variation is more significant in
the 5D MSSM in which the largest effect is for θ12, with changes of more than 70% possible
for the brane localised matter field scenario. As observed, due to the large quadratic term of
S(t) in the beta function, the θ12 has a rapid and steep variation in the bulk case. However,
for the brane case, it has a relatively longer evolution track with the θ12 then being pulled
further down until the termination point (where the effective theory becomes invalid). In
contrast, the running of θ13 and θ23 is much milder. As demonstrated in figs. 3.6 and 3.7,
changes in the values of θ13 vary only a couple of degrees. For a larger value of tan β we have a
relatively large Yukawa coupling to τ , which leads to a large magnitude for its beta function,
resulting in a relatively large variation during the evolution. However, a running to θ13 = 0
cannot be observed in any situation. From the evolution behaviour of θ13, one can see that
the renormalisation group running effects or finite quantum corrections are almost impossible
to generate θ13 = 0 at a high energy scale, even though the power law enhanced evolution is
considered during the running. Therefore, for the tri-bimaximal mixing pattern [135], in the
current context with no other extreme conditions being taken into account, a slightly changed
θ13 could not be accommodated during the whole range of the energy scale. Similar trajectories
are also observed for θ23 (see fig. 3.10).
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Figure 3.7: Evolution of θ13 as a function of the parameter t = ln(μ/MZ) with matter fields
constrained to the brane for tan β = 5 ( left panel) and tan β = 30 (right panel) in the 5D
MSSM respectively. The black line is the MSSM evolution, the red one (small dashes) is for
R−1 ∼ 1 TeV, the blue (dash-dotted) R−1 ∼ 4 TeV, and the green (large dashes) R−1 ∼ 15
TeV.
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Figure 3.8: Evolution of θ12 as a function of the parameter t = ln(μ/MZ) with matter fields
in the bulk (left panel) and on the brane (right panel) respectively in the UED SM. The black
line is the SM evolution, the red (small dashes) is for R−1 ∼ 1 TeV, the blue (dash-dotted)
R−1 ∼ 4 TeV, and the green (large dashes) R−1 ∼ 15 TeV.
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Figure 3.9: Evolution of θ12 in the bulk (left panel) and on the brane (right panel) as a function
of the scale t = ln(μ/MZ) for tan β = 30 in the 5D MSSM. The black line is the MSSM
evolution, the red one (small dashes) is for R−1 ∼ 1 TeV, the blue (dash-dotted) R−1 ∼ 4 TeV,
and the green (large dashes) R−1 ∼ 15 TeV.
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3.2.4 δ phase

The variation of the Dirac phase δ in the UED SM case is stable and similar for the bulk
and brane cases, there is very small deviation from the SM because all other mixing angles
vary only by small quantities and the coefficient C which appear in the variation of δ (see
appendix E) are linear in S(t) and there is no dependence on tan β.

Noting that the Dirac phase δ determines the strength of CP violation in neutrino oscilla-
tions. In the 5D MSSM, the runnings we include follow the general features presented in figs.
3.11 and 3.12, with large increases possible once the first KK threshold is crossed. From these
studies we have seen that the variation is bigger for high tan β with large changes appearing in
the brane case when approaching the high energy scale. The recent results from the Daya bay
and RENO reactor experiments have established a non zero values of θ13. Therefore, the leptonic
CP violation characterized by the Jarlskog invariant J ∼ sin θ12 cos θ12 sin θ23 cos θ23 sin θ13cos2θ13 sin δ
becomes promising to be measured in the future long baseline neutrino oscillation experiments.
As plotted, we can observe a relatively large evolution for the Dirac phase, even the maximum
CP violation case δ = π

2 could be achieved for relatively small input values. For leptogenesis
related to the matter-antimatter asymmetry, we should note that the parameters entering the
leptogenesis mechanism cannot be completely expressed in terms of low-energy neutrino mass
parameters. Note that in some specific models the parameters of the PMNS matrix (which con-
tains CP asymmetry effects) can be used [129, 136]. Here, the CP-violating effects induced by
the renormalisation group corrections could lead to values of the CP asymmetries large enough
for a successful leptogenesis, and the models predicting maximum leptonic CP violation, or
where the CP-violating phase δ is not strongly suppressed, become especially appealing. Spe-
cific models with large extra dimensions in which leptogenesis is relevant at low scale can also
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Figure 3.10: Evolution of θ23 in the bulk (left panel) and on the brane (right panel) as a function
of the parameter t = ln(μ/MZ) for tan β = 30 in the 5D MSSM. The black line is the MSSM
evolution, the red one (small dashes) is for R−1 ∼ 1 TeV, the blue (dash-dotted) R−1 ∼ 4 TeV,
and the green (large dashes) R−1 ∼ 15 TeV.
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Figure 3.11: Evolution of the phase δ as a function of the parameter t = ln(μ/MZ) with matter
fields in the bulk for tan β = 30 ( left panel) and tan β = 50 (right panel) in the 5D MSSM
respectively. The black line is the MSSM evolution, the red one (small dashes) is for R−1 ∼ 1
TeV, the blue (dash-dotted) R−1 ∼ 4 TeV, and the green (large dashes) R−1 ∼ 15 TeV.
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Figure 3.12: Evolution of the phase δ as a function of the parameter t = ln(μ/MZ) with matter
fields constrained to the brane for tan β = 30 ( left panel) and tan β = 50 (right panel) in the
5D MSSM respectively. The black line is the MSSM evolution, the red one (small dashes) is
for R−1 ∼ 1 TeV, the blue (dash-dotted) R−1 ∼ 4 TeV, and the green (large dashes) R−1 ∼ 15
TeV.
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be found in Ref. [137].
The running of the mixing angles are entangled with the CP-violating phases [103,104]. The

phases φ1 and φ2 do not affect directly the running of the masses, while the phase δ has a direct
effect on the size of dm/dt, although its importance is somewhat reduced by the magnitude of
θ13. For further discussions of the correlation between these phases and mixing angles, refer to
Refs [124,138] for details.

Finally, whilst the above results and analysis were for the normal hierarchy of neutrino
masses, we did also consider an inverted hierarchy, where from an analysis of the equations
presented in the appendix D we obtain the same features and results for neutrino mass runnings
(though with different initial values at the MZ scale). As such, the figures for Δm2

sol and Δm2
atm

remain unchanged. Possible changes in the angles and phases arise from the different signs for
the (mj −mi)/(mj +mi) terms present in each evolution equation, where the θ12 results remain
approximately the same (given the relative ordering of masses in these two hierarchies), and
the small runnings of θ13 and θ23 would be up rather than down (though as already discussed,
these runnings are quite small).

3.3 Summary and Outlook
The present work of the renormalisation group evolution of the masses, mixing angles and

phases of the UED models in the quark and lepton sectors brings together the results we and
other groups have obtained in the recent years in this subject using a common notation. The
important physical points are discussed and the equations are written in compact way to show
the unified approach to the different sectors of these models. For more technical details we
refer to the existing literature.

Concerning the UED standard model the evolution of the gauge couplings has a rapid
variation in the presence of the KK modes and this leads to a much lower unification scale
than in the SM. Due to the power law running of the Yukawa couplings, the rapid decrease of
the Yukawa couplings with energy is in contrast to the logarithmic running predicted by the
SM. The UED model has substantial effects on the hierarchy between the quark and lepton
sectors and provides a very desirable scenario for grand unification. As for the energy scaling of
the Jarlskog parameter J , the contribution of KK modes is substantial. Its numerical analysis
shows that its variation can be raised to more than 30%. The scale deviation of renormalisation
curves from the usual SM one depends closely on the value of the compactified radius R. The
smaller the radius is, the higher the energy scale we need to differentiate the UED curve from
the SM one. A comparison between theoretical predictions and experimental measurements
will be available once the LHC will be running at its full centre of mass energy. This will set
limits on the parameters of the UED model, and a precise determination of J , |Vub| or |Vcb| at
high energy may lead to a discrimination between the SM and extra dimensional models.

In the case of the 5D MSSM, we have reviewed the behaviour of the evolution equations for
the quark and neutrino sector in a minimal supersymmetric model with one extra-dimension.
For quarks, the 5D MSSM scenarios with matter fields in the bulk or on the brane, give both
results with small or no quark flavour mixings at high energies, especially for the mixings with
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the heavy generation. The evolution equations are particularly important in view of testing
the evolution of the Yukawa couplings. The evolution of these CKM parameters have a rapid
variation prior to reaching a cut-off scale where the top Yukawa coupling develops a singularity
point and the model breaks down. For the brane localised matter fields model, we can only
observe similar behaviour for small values of tan β, while for large tan β, the initial top Yukawa
coupling becomes smaller, the gauge couplings then play a dominant role during the evolution
of the Yukawa couplings, and therefore the Yukawa couplings decrease instead of increasing. As
such the variations of these CKM parameters have a relatively milder behaviour, and the theory
is valid up the gauge coupling unification scale. Concerning the neutrino sector, the evolution
equations for the mixing angles, phases, Δm2

sol and Δm2
atm, within the two distinct scenarios,

is also considered. A larger tan β typically leads to larger renormalisation group corrections.
Neutrino masses evolve differently in the two models due to the sign of the (different) dominant
contributions in the bulk and in the brane cases. For the brane case we find the approximate
degenerate neutrino mass spectrum becomes more favourable at the ultraviolet cut-off. In
the bulk case, the neutrino splitting becomes even more severe as the unitarity bounds of
the effective theory are reached faster. Contrary to the large renormalisation effect of θ12,
the runnings of θ13 and θ23 are relatively mild. We found a non-zero value for θ13 during the
evolution, which has no appreciable RGE running effects, even when power law evolution effects
are considered. Therefore it is necessary to introduce new physics effects in order to achieve
the tri-bimaximal pattern. The maximum CP violation case, δ = π

2 , could be achieved starting
from a relatively small initial value. In general we can see that radiative effects may have
a significant impact on neutrino physics. A non-zero Jarlskog invariant, which measures the
magnitude of leptonic CP violation (expected to be measured in future long baseline neutrino
oscillation experiments), could open the door for measurable CP violation in the leptonic sector.

We would like to note some of the remaining incomplete areas of investigation in the study
of quark and lepton sector runnings in UED models. Whilst we have reviewed the simplest
SM and MSSM UED models, other alternative extra-dimensional geometries exist. Note that
our two scenarios of all matter fields freely propagating in the bulk or brane localised represent
the only possibilities for calculating unitary CKM or PMNS matrices, where extensions to the
runnings of Yukawas with different numbers of matter fields in the bulk or brane are trivial
extensions of the equations already reviewed here. Alternative extra-dimensional geometries
are still to be investigated, such as 2UED models (preliminary work [139] contains errors and is
an incomplete study of these sectors) or situations with warped Randall-Sundrum style extra-
dimensions; though warp factors provide an additional problem of vertex factors now depending
on the KK numbers, and so the equations would become of a completely different form to the
ones provided here (excepting extreme limiting cases).
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Introduction
The search for supersymmetry and its breaking, in addition to the direct searches at LEP, B-

factories, Tevatron and the Large Hadron Collider (LHC), is actively pursued using the WMAP
limits on the relic density constraints. However, because the lightest supersymmetric particle
relic density is sensitive to the cosmological expansion rate before Big-Bang Nucleosynthesis
(BBN), the relic density can be modified considerably by variations of the expansion rate, even
if these variations are modest and have no for the cosmological observations. Such variations
could therefore change the constraints on the supersymmetric parameter space [59,61].

In standard cosmology the dominant component before BBN is radiation, however energy
density and entropy content can be modified. The precision of the WMAP data should there-
fore not make us forget the hypotheses which are implied by the use of standard cosmology.
We discuss the implications of precision B-physics, direct searches and cold dark matter relic
abundance for anomaly mediated models in three cases: firstly, the case of minimal anomaly
mediated supersymmetry breaking [140,141], secondly, mixed moduli-anomaly mediation [142]
and thirdly, hypercharge anomaly mediation [143]. We do this for both standard cosmology as
well as for scenarios of alternative cosmologies. We also discuss similar supersymmetry breaking
scenarios in the case of the next-to-minimal supersymmetric standard model [144].

In section 4.1 we discuss the different anomaly mediated supersymmetry breakings in the
MSSM in terms of the parameter spaces for these models. In section 4.2 we show the constraints
from flavour observables due to the present data from particle physics experiments and the relic
dark matter density assuming the standard model of cosmology. In section 4.3 we describe and
comment the plots in different models. In section 4.4 similar scenarios are considered in the
Next-to-Minimal Supersymmetric Standard Model (NMSSM) and the corresponding particle
and cosmological bounds are discussed. In section 4.5 we discuss how alternative cosmologi-
cal models can affect dramatically the bounds on the parameter space of the models we have
considered while letting unchanged the observable cosmology. Four different alternatives to
the standard cosmology are discussed which share this behaviour. Section 4.6 and section 4.7
discuss respectively the constraints implied by these different cosmological scenarios and the
perspectives at the LHC for a list of benchmark points which are representative of the available
parameter space for these AMSB models. The conclusions of chapter 4 are given in section 4.8.

We update our results in chapter 5 and we add new constraints from the Higgs sector. In
section 5.2 the implications of the flavour physics and relic density constraints are presented, as
well as the Higgs mass constraints and the possibilities to obtain branching ratios for the light
CP-even Higgs in agreement with the present results at the LHC for the parameter spaces of
the different AMSB models. Results and discussion are presented in section 5.3. Conclusions
of chapter 5 are given in section 5.4.
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Chapter 4

Dark matter in Anomaly Mediated
SUSY breaking scenarios in standard
and alternative cosmology

4.1 Anomaly mediated symmetry breaking in the MSSM
The superconformal Anomaly Mediated Supersymmetry Breaking (AMSB) mechanism [140,

141] is one of the most well-known and attractive set-ups for supersymmetry breaking. Super-
symmetry breaking effects in the observable sector have in this framework a gravitational origin.
Superconformal symmetry is classically preserved in theories without dimensional parameters
and it is in general broken by the quantum effects. As anomalies only depend on the low-
energy effective theory, the same will be true for the soft terms. Usually the AMSB scenario
cannot be applied to the MSSM, as it leads to tachyonic sleptons. However the presence of an
intermediate threshold can displace the soft terms and avoid this problem. In superconformal
gravity one introduces a chiral superfield playing the role of the compensating multiplet for
super-Weyl transformations, called the Weyl or conformal compensator. The F-term vacuum
expectation value of the conformal compensator is turned on by the supersymmetry breaking in
the hidden sector and the soft breaking of supersymmetry in the visible sector appears through
the chiral anomaly supermultiplet. As the soft SUSY breaking terms arise from the anomaly,
the supersymmetry breaking terms do not dominate at tree-level. Several soft SUSY breaking
scenarios can be realised starting from this setup. We discuss in the following some of these
realisations.

4.1.1 Minimal AMSB
The minimal AMSB (mAMSB) scenario [140] has very attractive properties, since the soft

SUSY breaking terms are calculated in terms of one single parameter, namely the gravitino
mass m3/2, and the soft terms are renormalisation group invariants which can be calculated for
any scale choice. However, the AMSB scenarios suffer from the problem that slepton squared
masses are found to be negative, leading to tachyonic states. A solution to this problem is to
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consider that the scalar particles acquire a universal mass m0 at the GUT scale, which when
added to the AMSB soft SUSY breaking terms, makes them positive. Therefore, the mAMSB
model relies on only four parameters:

m0, m3/2, tan β, sgn(μ) . (4.1)

The Planck mass scale is set by the VEV of a scalar field φ that is part of a non-dynamical
chiral supermultiplet (called the conformal compensator). As the field acquires a VEV of 〈φ〉=1,
the local superconformal invariance is spontaneously broken. In the presence of spontaneous
SUSY breaking 〈F 〉 �= 0 in the hidden brane, the auxiliary field component obtains a non-zero
VEV as well:

〈Fφ〉 ∼ 〈F 〉
MP

∼ m3/2 (4.2)

The conformal compensator φ is dimensionless so that Fφ has dimensions of mass. The soft
terms are [141]:

Ma = 〈Fφ〉βga

ga

,

(m2)i
j = 1

2 |〈Fφ〉|2 d

dt
γi

j = 1
2 |〈Fφ〉|2

[
βga

∂

∂ga

+ βykmn

∂

∂ykmn
+ βy∗

kmn

∂

∂y∗
kmn

]
γi

j,

aijk = −〈Fφ〉βyijk , (4.3)

where γi
j are the anomalous dimensions.

This scenario has been thoroughly studied in the literature, but is known to have cosmolog-
ical consequences incompatible with the WMAP observations of the dark matter density [145].

4.1.2 HCAMSB
Another possibility to solve the negative slepton squared masses of the original AMSB

scenario has been proposed: the hypercharge anomaly mediated supersymmetry breaking
(HCAMSB) scenario [143], in which the MSSM resides on a D-brane and the hypercharge
gaugino mass is generated in a geometrically separated hidden sector [146]. In this way, ad-
ditional contribution to the gaugino mass M1 is generated, and the large value of M1 then
increases the weak scale slepton masses beyond tachyonic values, solving the generic AMSB
problem [143].

The HCAMSB scenario has four parameters:

α = M̃1

m3/2
, m3/2, tan β, sgn(μ) . (4.4)

where M̃1 is the HCAMSB contribution to M1.
Not only does the anomaly mediation and hypercharge mediation have common theoretical

setup , but also they are able to heal phenomenological shortcomings of each other. The min-
imal AMSB model predicts a negative mass squared for the sleptons (and features relatively
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heavy squarks). Nevertheless, the pure hypercharge mediation suffers from negative squared
masses for stops and sbottoms (and features relatively heavy sleptons). Eventually ,combining
the hypercharge and anomaly mediation will result in a phenomenologically viable spectra for a
sizable range of the parameter space of the model. The electroweak symmetry is broken radia-
tively by the large top-quark Yukawa coupling and the symmetry breaking gives the following
masses and parameters values [146]:

M1 = M̃1 + b1g
2
1

16π2 m3/2,

Ma = bag2
a

16π2 m3/2, a = 2, 3

m2
i = −1

4

{
dγ

dg
βg + dγ

df
βf

}
m2

3/2

Af = βf

f
m3/2, (4.5)

where (b1, b2, b3)=(33/5,1,-3), βf is the beta function for the corresponding superpotential cou-
pling, and γ = ∂lnZ

∂lnμ
with Z the wave function renormalisation constant. The wino and gluino

masses (M2 and M3) receive a contribution from the bino mass at the two loop level [146].

4.1.3 MMAMSB
Contrary to the two previous AMSB scenarios, the Mixed Modulus Anomaly mediated

SUSY breaking (MMAMSB) scenario [142] provides viable dark matter candidates, in addition
to solving the negative slepton mass problem naturally. This scenario is based on type-IIB
superstrings with stabilised moduli [147]. The study of supersymmetric scale gives predictions
on what the string theory gives at an energy of order 1 TeV (SUSY phenomenology). Since the
physical couplings are determined by the fundamental states of this moduli, the presence of
some flat directions in the space of scalar Fields (the moduli) aids in determining the physical
couplings. The spatial extra dimensions are compactified (reduction of space dimension) with
flux that conduce to a minimum in the potential of moduli and represent a starting point to
find fundamental state that lead to MSSM at low energy and is compatible with the constraints
of cosmologie [147]. In this scenario, an interesting result is that the soft SUSY breaking terms
receive comparable contributions from both anomaly and modulus, resulting in positive slepton
masses. We examine here the minimal MMAMSB scenario 1, which relies on four parameters:

α, m3/2, tan β, sgn(μ) . (4.6)

α here parametrises the relative contributions of modulus mediation and anomaly mediation
to the soft breaking terms: the largest α is, the more mediation comes from modulus; indeed

1. We note that in the general MMAMSB, there are two more parameters, ni and lα, which represent
respectively the modular weights of visible sector of the matter fields and the gauge kinetic function, and which
can modify the mass spectra.

101



CHAPTER 4. DARK MATTER IN ANOMALY MEDIATED SUSY BREAKING
SCENARIOS IN STANDARD AND ALTERNATIVE COSMOLOGY

in the limit where α → 0, we obtain the SSB terms which are purely AMSB with a negative
squared mass for the sleptons. For an intermediate values of α which are more interesting for
our studies, the problem of tachyonic sleptons is absent [142].

The mass scale of supersymmetry breaking parameters is given by the gravitino mass m3/2.
The gaugino mass parameters, trilinear parameters and sfermion mass parameters, all renor-
malized just below the unification scale (which we take to be Q = MGUT ), are respectively
given by [147]

Ma = Ms(laα + bag2
a),

Aijk = Ms(−aijkα + γi + γj + γk),

m2
i = M2

s (c2
i + 4αξi − γ̇i). (4.7)

where Ms = m3/2/(16π2), ba are the gauge β function coefficients for gauge group a and ga are
the corresponding gauge couplings, and

ci = 1 − ni, aijk = 3 − ni − nj − nk, ξi = ∑
j,k aijk

y2
ijk

4 − ∑
a lag2

aCa
2 (fi).

where ni are the modular weights of visible sector of the matter fields, la are the gauge kinetic
function, yijk are the superpotential Yukawa couplings, Ca

2 is the quadratic Casimir for the ath

gauge group corresponding to the representation to which the sfermion f̃i belongs, γi is the
anomalous dimension and γ̇i = 8π2 ∂γi

∂logμ
.

4.2 Flavour constraints and Tools
The first flavour observable that we consider here is the branching ratio of B → Xsγ, which

has been thoroughly studied in the literature and is still under scrutiny. This observable is very
interesting, as its SM contributions only appear at loop level, and its theoretical uncertainties as
well as the experimental errors are now under control. It provides strong constraints on the su-
persymmetric parameter space, especially for large tan β, where it receives large enhancements
from its supersymmetric contributions. We use the following interval at 95% C.L. [148,149]:

2.16 × 10−4 < BR(B → Xsγ) < 4.93 × 10−4 . (4.8)

Another interesting observable is the branching fraction of Bs → μ+μ−, which is also a loop
level observable, and which can receive extremely large contributions from SUSY at large tan β,
and can receive an enhancement of several orders of magnitude compared to the SM branching
ratio. This decay mode has not yet been observed, and we have at 95% C.L. [148,150] :

BR(Bs → μ+μ−) < 4.7 × 10−8 . (4.9)

We also consider a set of tree-level observables which are very sensitive to the charged Higgs
mass as well as tan β, and we use the following 95% level intervals, which include the theoretical
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and experimental errors [148,151,152]:

0.56 <
BR(B → τν)

BRSM(B → τν) < 2.70 , (4.10)

4.7 × 10−2 < BR(Ds → τν) < 6.1 × 10−2 , (4.11)

0.151 <
BR(B → D0τν)
BR(B → D0eν) < 0.681 , (4.12)

0.982 < R�23(K → μν) < 1.018 . (4.13)

The observable R�23(K → μν) is related to the decay of K → μν and is detailed in [152].
For the relic density constraint, we use the WMAP constraints [44] increased by 10% of theo-
retical error to account for the uncertainties in the calculation of the relic density:

0.088 < ΩDMh2 < 0.123 . (4.14)

We perform here an updated analysis of the mAMSB parameter space constraints from
flavour physics and cosmological relic density. For this study, we generate mass spectra and
couplings using Isajet 7.80 [153]. The calculation of flavour observables and the computation
of the relic density are performed with SuperIso Relic v3.0 [148, 154]. In the following, we
disregard the case of negative sgn(μ) since it is disfavoured by the muon anomalous magnetic
moment constraint, and we scan over the intervals m0 ∈ [0, 2000] GeV, m3/2 ∈ [0, 100] TeV and
tan β ∈ [0, 60].

4.3 Description of results
Figure 4.1 presents projection plots of the parameter space into the possible different planes.

The green region in the plots corresponds to the parameter zone which is not excluded by
flavour constraints or mass limits. The red stars corresponds to points leading to a favoured
relic density but excluded by other constraints, whereas black stars are favoured by all the
presented constraints, including the relic density constraint. As can be seen, no black star is
visible in these plots, and the whole parameter space presented here is disfavoured either by
flavour or direct constraints, or by the relic density constraint which tends to favour the low
m3/2 region. Disregarding the relic density constraint, a large zone at low m3/2 is excluded.

In fig. 4.2, we show the relic density values as a function of the AMSB parameters. The
green zones correspond to regions favoured by the flavour and direct constraints, whereas the
other points are either excluded by these constraints or by cosmological considerations (charged
relic or sneutrino relic, which interact therefore strongly). Two green zones clearly appear on the
m0 and tan β plots, for Ωh2 around 10−4 and 10−9. These areas are far from the WMAP dark
matter allowed interval, making the mAMSB scenario disfavoured by the standard cosmology.

In fig. 4.3, we scan over the whole parameter space, and project the results in two-
dimensional planes. The results are somehow similar to those of the mAMSB scenario: the
constraints exclude low m3/2 values. A large part of the parameter space is favoured by flavour
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Figure 4.1: Constraints on the minimal AMSB parameter space. The exclusion regions are
plotted in the order given in the legend. The red zones are excluded by the inclusive branching
ratio of B → Xsγ, the yellow ones correspond to charged LSP, the olive-green areas are excluded
by direct collider constraints, the light blue zones are excluded by BR(B → τν), the dark blue
zones by BR(Bs → μ+μ−), the magenta zones by R�23, the orange zones by BR(B → Dτν)
and the grey zones by BR(Ds → τν). The green area are in agreement with all the previously
mentioned constraints. The stars are points favoured by the relic density observable, in red
if disfavoured by any other constraints and in black if in agreement with all the constraints
simultaneously.
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Figure 4.2: Relic density in function of the AMSB parameters. The green points are favoured by
all the constraints, the yellow points corresponds to a charged LSP, the blue points correspond
to left sneutrino LSP, and the red points are excluded by the other constraints (flavour and
direct limits).
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and direct constraints, but unfortunately no part of the parameter space respects at the same
time the relic density and the other constraints, so that HCAMSB is also disfavoured by the
standard cosmology.

In fig. 4.4, we show the relic density values as a function of the HCAMSB parameters.
Again, the results are similar to those of the mAMSB scenario, with two distinct zones which
are not excluded by flavour and direct constraints, corresponding to a relic density Ωh2 around
10−4 and 10−8.

In fig. 4.5, the parameter space is scanned over, and it is projected in two-dimensional
planes. The resulting plots are different from those of mAMSB and HCAMSB. Indeed, a large
part of parameter space escapes the flavour and direct constraints, and zones around α ∼ 0 or
at low m3/2 also fulfil the relic density constraint.

In fig. 4.6, we present the relic density values in function of the MMAMSB parameters.
The relic density of points favoured by flavour and direct constraints takes values between 10−9

and 103. We can notice however that most of the points are in the interval [1, 103], and some
points fit in the WMAP interval. For this reason, MMAMSB is a scenario which can appear as
attractive, as it fulfils simultaneously the standard cosmology and particle physics constraints.

4.4 Anomaly mediated symmetry breaking in the NMSSM
An interesting extension of the MSSM is the NMSSM, which brings a solution to the μ-

problem [155]. It has an extended Higgs sector involving additional Higgs bosons, modifying
the relic density and flavour physics constraints. Moreover, the couplings being modified,
the NMSSM can escape direct constraints, and new parameter zones can be allowed by the
constraints used in the previous section.

We consider here the simplest version of the NMSSM, where the term μĤu ·Ĥd of the MSSM
superpotential is replaced by

λĤu · ĤdŜ + κ

3 Ŝ3 , (4.15)

in order for the superpotential to be scale invariant. The soft breaking terms

m2
Hu

|Hu|2 + m2
Hd

|Hd|2 + m2
S|S|2 +

(
λAλSHu · Hd + 1

3κAκS3 + h.c.
)

, (4.16)

are a priori independent. Using the minimisation conditions for the potential, the scalar mass
parameters mHu,d

can be replaced by the vacuum expectation values of the doublet vu and vd,
with

v2
u + v2

d = v2 ≈ (174 GeV)2 , tan β = vu

vd

. (4.17)

The singlet field mass parameter can also be replaced by the singlet expectation value vs.
Expanding the singlet field S around vs gives rise to an effective parameter μeff = λvs.

One can also define an effective doublet mass such as

m2
A ≡ λvs

sin β cos β
(Aλ + κvs) . (4.18)
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Figure 4.3: Constraints on the HCAMSB parameter space. The colour codes are the same as
in fig. 4.1.

107



CHAPTER 4. DARK MATTER IN ANOMALY MEDIATED SUSY BREAKING
SCENARIOS IN STANDARD AND ALTERNATIVE COSMOLOGY

Figure 4.4: Relic density in function of the HCAMSB parameters. The colour codes are the
same as in fig. 4.2.
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Figure 4.5: Constraints on the MMAMSB parameter space. The colour codes are the same as
in fig. 4.1.
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Figure 4.6: Relic density in function of the MMAMSB parameters. The colour codes are the
same as in fig. 4.2.
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Once the MSSM-like parameters (and in particular μeff ) have been fixed by the specifi-
cation of the AMSB scenario, we are left with four additional independent NMSSM-specific
parameters:

λ, κ, Aκ, MA . (4.19)

We scan over the intervals λ ∈ [−0.7, 0.7] GeV, κ ∈ [−0.7, 0.7], Aκ ∈ [−2000, 2000] GeV and
MA ∈ [5, 1000]. We review in the following the differences between the different AMSB scenarios
when applied to the NMSSM.

4.4.1 mNAMSB
Minimal NMSSM-AMSB (mNAMSB) parameter points are generated here using NMSSM-

Tools 2.3.4 [156], and flavour constraints and relic density are computed with SuperIso Relic
v3.0 [148,154].

In fig. 4.7, the parameter space of mNAMSB is presented. As in fig. 4.1, no point satisfy
simultaneous flavour, direct and relic density constraints. The direct limits are less constraining
than in the MSSM, but the flavour constraints are stronger and exclude a larger part of the
NAMSB parameter space in comparison with AMSB.

Fig. 4.8 reveals more differences between the mAMSB and mNAMSB models. First, the
zone not excluded by flavour and direct constraints having a relic density around 10−9 does not
exist in the NAMSB, a new green zone appears for m3/2 > 60, and its relic density around 10−2

is much closer to the WMAP constraint. However, as in the mAMSB scenario, the mNAMSB
model is globally disfavoured by the standard cosmology.

4.4.2 NHCAMSB
We generate the NMSSM-HCAMSB (NHCAMSB) parameter points using NMSSMTools

2.3.4 [156]. The obtained constraints are shown in fig. 4.9. Again, we see that no param-
eter point satisfies at the same time the relic density constraint and the direct and flavour
constraints. Similarly to the mNAMSB scenario, NHCAMSB is less constrained by the direct
mass limits, but is more excluded by the flavour constraints.

Fig. 4.10 shows the relic density in function of the different parameters. The green re-
gion that exists in the HCAMSB scenario for a relic density around 10−8 disappears in the
NHCAMSB, and a new region opens up around 10−2. However, as the mNAMSB scenario, the
NHCAMSB scenario remains also disfavoured by the standard cosmology.

4.4.3 NMMAMSB
The NMSSM-MMAMSB (NMMAMSB) scenario leads to similar results as the MMAMSB

scenario. As can be seen in fig. 4.11, there exists many points satisfying all the constraints,
including relic density, especially for values of α near to 0.

Fig. 4.12 reveals a difference, as the calculated relic density takes values between 10−4 and
103, which is more restrictive in comparison to the MSSM case.
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Figure 4.7: Constraints on the mNAMSB parameter space. The colour codes are the same as
in fig. 4.1.
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Figure 4.8: Relic density in function of the mNAMSB parameters. The colour codes are the
same as in fig. 4.2.
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Figure 4.9: Constraints on the NHCAMSB parameter space. The colour codes are the same
as in fig. 4.1.
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Figure 4.10: Relic density in function of the NHCAMSB parameters. The colour codes are the
same as in fig. 4.2.
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Figure 4.11: Constraints on the NMMAMSB parameter space. The colour codes are the same
as in fig. 4.1.
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Figure 4.12: Relic density as a function of the NMMAMSB parameters. The colour codes are
the same as in fig. 4.2.
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4.5 AMSB and relic density in alternative cosmology
We have seen in the previous section that the relic density imposes severe constraints to

the parameter spaces, excluding a major part of the AMSB scenarios. However, the relic
density calculation is generally based on the simplistic standard model of cosmology. In this
section, we reinterpret the previous results by considering four different alternatives to the
cosmological standard scenario described in section 1.4. For this study, we focus our interest on
six different benchmark points, which are described in Table 4.1 and are representative of the
allowed parameter space in the different models. The mass spectra associated to these points
are shown in fig. 4.13.

4.5.1 BBN constraints and modified relic density
The different scenarios discussed in section 1.4 do not have impact on the cosmological

observations, but they can modify the abundance of the elements. We compute with AlterBBN
[62] the abundance of the elements in the different scenarios for each benchmark points, varying
the single parameter for a given scenario, and we apply the following conservative constraints
[157]:

0.240 < Yp < 0.258 , 1.2 × 10−5 < 2H/H < 5.3 × 10−5 , (4.20)

0.57 < 3H/ 2H < 1.52 , 7Li/H > 0.85 × 10−10 , 6Li/ 7Li < 0.66 ,

for the helium abundance Yp and the primordial 2H/H, 3H/ 2H, 7Li/H and 6Li/ 7Li ratios.
In fig. 4.14, we consider the relic density calculated for each of the benchmark points (A-F,

from top to bottom) and for different cosmological scenarios (from left to right).
These plots reveal that the quintessence and inflaton scenarios globally increase the relic

density, while the entropy and reheating scenarios decrease it. The comparison with the BBN
constraints is also represented, and the red part of the curves is excluded at 95% C.L., while
the blue part gives a correct abundance of the elements. As general features, the quintessence
and inflaton scenarios can increase the relic density by three orders of magnitudes without
interfering with the BBN constraints, and the entropy and reheating scenarios can decreased to
a factor of 106. Therefore, apart from point B which has an extremely low relic density value
in the standard cosmological scenario, all the other benchmark points can have a relic density
value compatible with the cosmological observations if a non minimal cosmological scenario is
considered.

4.6 Generalised relic density constraints
We have shown with different well-known cosmological scenarios, that the relic density

constraints can be very strongly relaxed. Therefore, we propose to compare the relic density
calculated in the standard model of cosmology to the following interval

10−4 < ΩDMh2 < 105 (4.21)

118



4.6. GENERALISED RELIC DENSITY CONSTRAINTS

Point A Point B

0

200

400

600

800

1000

1200

1400

1600

1800

2000

M
as

s
/

G
eV

h0

A0
H0

H±

q̃L

q̃R

b̃1

t̃2

t̃1

ν̃L
�̃L

τ̃1

ν̃τ

g̃

χ̃0
1

χ̃0
2

χ̃±
1

χ̃0
3

χ̃0
4 χ̃±

2

b̃2

�̃R τ̃2

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

M
as

s
/

G
eV

h0

A0
H0

H±

q̃L

q̃R

b̃1

t̃2

t̃1

ν̃L
�̃L

τ̃1

ν̃τ

τ̃2

g̃

χ̃0
1

χ̃0
2

χ̃±
1

χ̃0
3

χ̃0
4 χ̃±

2

b̃2

�̃R

Point C Point D

0

800

1600

2400

3200

4000

4800

M
as

s
/

G
eV

h0

A0
H0

H±

q̃L

g̃

t̃1

b̃1

ν̃L
�̃L

ν̃τ

τ̃1

χ̃0
1

χ̃0
2

χ̃0
3

χ̃±
1

χ̃0
4

χ̃±
2

q̃R b̃2

t̃2

�̃R τ̃2

0

400

800

1200

1600

2000

2400

M
as

s
/

G
eV

h0

A0
H0

H±

g̃
q̃L

b̃1

t̃2

t̃1

ν̃L
�̃L

τ̃1

ν̃τ

τ̃2

χ̃0
1

χ̃0
2 χ̃±

1

χ̃0
3

χ̃0
4 χ̃±

2

q̃R

b̃2

�̃R

Point E Point F

0

3200

6400

9600

12800

16000

19200

22400

25600

M
as

s
/

G
eV

h0

A0
H0

H±
g̃
q̃L

t̃2

b̃1

t̃1

�̃L

ν̃L

τ̃1

ν̃τ

τ̃2

χ̃0
1

χ̃0
2 χ̃±

1

χ̃0
3

χ̃0
4 χ̃±

2

q̃R b̃2

�̃R

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

M
as

s
/

G
eV

h0

H0

A0 H±

q̃L

q̃R

b̃1

t̃2

t̃1
ν̃L
�̃L

τ̃1

ν̃τ

g̃

χ̃0
1

χ̃0
2

χ̃±
1

χ̃0
3

χ̃0
4 χ̃±

2

b̃2

�̃R τ̃2

Figure 4.13: Mass spectra of the six benchmark points. Note that the scales are not identical
for all spectra.
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Figure 4.14: Relic density in function of the cosmological model parameters. The red lines
correspond to points excluded by the BBN constraints in Eq.(4.20), whereas the blue lines
correspond to a region with a correct abundance of the elements. The green squares correspond
to points allowed by the BBN constraints and giving a relic density in agreement with the
WMAP dark matter interval.
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Point Model ΩDMh2 m0 (GeV) α m3/2 (TeV) tan β MA(GeV) mh0 (GeV)
A mAMSB 3.33 × 10−4 1000 n/a 80 30 1060.5 118.15
B mAMSB 4.63 × 10−10 2000 n/a 20 40 1322.8 115.7
C HCAMSB 3.24 × 10−4 n/a 0.1 80 10 1931.3 116.32
D MMAMSB 5.98 n/a 10 20 30 1904.4 124.31
E MMAMSB 6.95 × 102 n/a 20 100 10 2320.5 128.24
F mNAMSB 1.21 × 10−2 1300 n/a 70 20 770 118

Table 4.1: Benchmark points for testing alternative cosmology scenarios. All these points
have μ > 0 and are in agreement with all the flavour and direct search constraints but would
be excluded by WMAP constraints based on the standard cosmology. For the point F extra
parameters are needed to specify a point in the parameter space, which are chosen to be:
λ = −0.1, κ = 0.5 and Aκ = 1500 GeV.

to take into consideration the fact that it is possible to increase any relic density calculated in
the standard cosmology by three orders of magnitude, and to decrease it by six orders, with
non-standard cosmological scenarios in agreement with the current cosmological data. We can
re-apply the relic density constraints, and the results are shown in figs. 4.15-4.20. As in the
figures of section 4.1, the green zones correspond to regions in agreement with all flavour and
direct constraints, but not necessarily with the relic density constraint. We added in the figures
black points, which correspond to regions also in agreement with the new dark matter interval.
It is clear that the allowed regions are therefore much larger than with the initial relic density
interval, but a surprising result is that even with the very large interval we use here for the
relic density, the relic density constraint still excludes large part of the parameter spaces. In
particular, in the mAMSB and HCAMSB scenarios and their NMSSM counterparts, the relic
density constraints clearly exclude the region m3/2 ∼< 40 TeV. The MMAMSB scenario however
is not constrained anymore when using the new dark matter interval.

4.7 LHC phenomenology
The benchmark points selected for testing alternative cosmology scenarios are in agreement

with precision flavour and direct search constraints. It turns out that the phenomenology
expected at the LHC is quite peculiar. The mass spectra for the benchmark points we considered
show that the lightest neutralino is the LSP and the lightest chargino is in most cases very close
in mass to the neutralino (points A, B, C, F). This will give rise to peculiar signatures due to
the very limited number of open channels for the decay modes. We analyse in more detail in
the following each of the six benchmark points previously selected. Production of charginos
and neutralinos takes place at the LHC via cascade decays of squark and gluinos and via the
direct production channels

pp → χ̃iχ̃j + X (4.22)
where the s-channel exchange of an off-shell W or Z or photon, and the contribution of SUSY-
QCD diagrams are important. Indeed these cross-sections receive important SUSY-QCD cor-
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Figure 4.15: Constraints on the minimal AMSB parameter space. The exclusion regions
are plotted in the order given in the legend. The red zones are excluded by the inclusive
branching ratio of B → Xsγ, the yellow ones correspond to charged LSP, the olive green area
is excluded by direct collider constraints, the light blue zones are excluded by BR(B → τν),
the dark blue zones by BR(Bs → μ+μ−), the magenta zones by R�23, the orange zones by
BR(B → Dτν) and the grey zones by BR(Ds → τν). The green areas are in agreement
with all the previously mentioned constraints. The black area corresponds to parameters in
agreement with all constraints, including the revised relic density interval given in Eq.(4.21).
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Figure 4.16: Constraints on the HCAMSB parameter space with the revised relic density
interval given in Eq.(4.21). The colour codes are the same as in fig. 4.15.
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Figure 4.17: Constraints on the MMAMSB parameter space with the revised relic density
interval given in Eq.(4.21). The colour codes are the same as in fig. 4.15.
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Figure 4.18: Constraints on the mNAMSB parameter space with the revised relic density
interval given in Eq.(4.21). The colour codes are the same as in fig. 4.15.
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Figure 4.19: Constraints on the NHCAMSB parameter space with the revised relic density
interval given in Eq.(4.21). The colour codes are the same as in fig. 4.15.
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Figure 4.20: Constraints on the NMMAMSB parameter space including the revised relic density
interval. The colour codes are the same as in fig. 4.15.
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rections, typical values are given in [158] or can be obtained using a Monte Carlo program
including the relevant K-factors or the detailed next-to-leading matrix elements.

4.7.1 mAMSB point A
The minimal AMSB scenario is disfavoured by the standard cosmology as very far from the

WMAP dark matter allowed interval. The region allowed in our more general analysis typically
favours points in which the lightest chargino and neutralino are very close in mass and not so
heavy. For point A, mχ̃0

1
= 231.76 GeV and mχ̃+

1
= 231.93 GeV so that the mass splitting is only

170 MeV. Due to this small mass splitting, the open decay modes for the χ̃+
1 are (neglecting

very small modes below the 10−3 level) χ̃+
1 → χ̃0

1lν, where

BR(χ̃+
1 → χ̃0

1μ
+νμ) � 1.87 × 10−2 (4.23)

BR(χ̃+
1 → χ̃0

1e
+νe) � 1.87 × 10−2 (4.24)

BR(χ̃+
1 → χ̃0

1π
+ → χ̃0

1e
+νe) � 0.96 , (4.25)

so that l = e and l = μ have the same branching through the three body decays while most of
the signal with χ̃0

1e
+νe is through the two body production of a charged pion. The next lightest

particle is the χ̃0
2, decaying mainly to χ̃+

1 and W or χ̃0
1 and SM-like Higgs as for the light Higgs

for this point (118.15 GeV) the decay is kinematically allowed :

BR(χ̃0
2 → χ̃±

1 W ∓) � 0.75 (4.26)

BR(χ̃0
2 → χ̃0

1h
0) � 0.19 (4.27)

BR(χ̃0
2 → χ̃0

1l
+l−) � 5.5 × 10−3 , (4.28)

where l = e, μ. Since the branching of the mode χ̃±
1 → χ̃0

1l
±ν is 100% and the mode χ̃0

2 → χ̃0
1l

+l−

is non-negligible one can study the clean trilepton signal usually suggested at hadron colliders
[159,160].

4.7.2 mAMSB point B
The benchmark point B is in the minimal AMSB scenario too. The situation is similar

to the previous point with in this case the lightest chargino and neutralino lighter than the
SM-like Higgs boson. For point B, mχ̃0

1
= 52.70 GeV and mχ̃+

1
= 53.07 GeV so that the mass

splitting is only 63 MeV. The decay modes for the lightest chargino are similar to the previous
case

BR(χ̃+
1 → χ̃0

1μ
+νμ) � 5.26 × 10−2 (4.29)

BR(χ̃+
1 → χ̃0

1e
+νe) � 5.26 × 10−2 (4.30)

BR(χ̃+
1 → χ̃0

1π
+ → χ̃0

1e
+νe) � 0.89 , (4.31)

128



4.7. LHC PHENOMENOLOGY

and for the second neutralino

BR(χ̃0
2 → χ̃±

1 W ∓) � 0.8 (4.32)

BR(χ̃0
2 → χ̃0

1h
0) � 0.1 (4.33)

BR(χ̃0
2 → χ̃0

1Z
0) � 9.6 × 10−2 . (4.34)

The SM-Higgs boson (with a mass of 115.7 GeV) decays with a sizeable branching to pairs
of lightest charginos and pairs of lightest neutralinos (branching 1.1 × 10−1 and 7.9 × 10−2

respectively) while the largest mode is h0 → bb̄ with a branching of 6.5 × 10−1.

4.7.3 HCAMSB point C
The HCAMSB scenario is disfavoured by standard cosmology and excluded by the WMAP

dark matter allowed interval as for the minimal AMSB scenario discussed above. Also in this
case the lightest chargino and neutralino are very close in mass. The masses are mχ̃0

1
= 229.41

GeV and mχ̃+
1

= 229.58 GeV with a splitting of only 17 MeV. In this situation the lightest
chargino decays are very close to the numbers for point A. The decay modes for the lightest
chargino are :

BR(χ̃+
1 → χ̃0

1μ
+νμ) � 1.72 × 10−2 (4.35)

BR(χ̃+
1 → χ̃0

1e
+νe) � 1.72 × 10−2 (4.36)

BR(χ̃+
1 → χ̃0

1π
+ → χ̃0

1e
+νe) � 0.96 , (4.37)

and for the second neutralino

BR(χ̃0
2 → χ̃±

1 W ∓) � 0.67 (4.38)

BR(χ̃0
2 → χ̃0

1h
0) � 7.3 × 10−2 (4.39)

BR(χ̃0
2 → χ̃0

1Z
0) � 0.26 (4.40)

In this case the trilepton mode pp → χ̃±
1 χ̃0

2 → 3l + E/T is especially interesting as the branching
fraction χ̃+

1 → χ̃0
1lν is 100% and the one for χ̃0

2 → χ̃0
1Z

0 is 26%.

4.7.4 MMAMSB point D
The Mixed Modulus AMSB supersymmetry breaking scenario allows for viable dark matter

candidates. Benchmark point D has the neutralino LSP with a mass mχ̃0
1

= 736 GeV. The next-
to-lightest supersymmetric particle is the stau with a mass mτ̃ = 860 GeV while the lightest
chargino and the second lightest neutralino are heavier and almost degenerate with a mass of
1095 and 1098 GeV respectively. The stau decays to tau and the lightest neutralino

BR(τ̃ → χ̃0
1τ) = 1 , (4.41)
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while the lightest chargino decays mainly to

BR(χ̃+
1 → τ̃ ντ ) � 0.84 (4.42)

BR(χ̃+
1 → χ̃0

1W ) � 0.16 . (4.43)

The second lightest neutralino decays to stau and tau while as the SM-like Higgs is light enough
to be produced (124.3 GeV), the decay χ̃0

2 → χ̃0
1h

0 is also kinematically open

BR(χ̃0
2 → τ̃ τ) � 0.83 (4.44)

BR(χ̃0
2 → χ̃0

1h
0) � 0.16 . (4.45)

4.7.5 MMAMSB point E
For the same model as in the previous paragraph we have also an example of a higher mass

spectrum in which all supersymmetric partners are quite heavy with the neutralino LSP above
7 TeV and all other particles above 10 TeV.

4.7.6 mNAMSB point F
NMSSM with minimal AMSB scenario is one of the models considered in the previous

sections. It is disfavoured by the relic density constraints if standard cosmology is assumed.
Point F is in the allowed zone for flavour, low energy and direct search constraints and is allowed
if standard cosmology constraints are relaxed as discussed in the previous sections. From the
point of view of LHC searches, this point is similar to point A. For point F, mχ̃0

1
= 230.03 GeV

and mχ̃+
1

= 231.02 GeV so that the mass splitting is 99 MeV. Apart from these two particles,
the next supersymmetric particle (in terms of mass) is the second neutralino (see fig. 4.13)
with a mass of 721 GeV.

4.8 Conclusions and perspectives
We have considered in details the constraints on different possible realisations of supercon-

formal anomaly mediation breaking mechanisms in supersymmetry. These constraints include
the usual LEP, B-factories, Tevatron and LHC searches, but also precision constraints of cos-
mological origin, namely the WMAP limits on the relic density of cold dark matter. We have
discussed the standard cosmological approach and also alternative cosmological scenarios which
do not change the cosmological observations but which can affect strongly the constraints on
the parameter space of these supersymmetric models based on the relic abundance of dark
matter. We therefore show how the dark matter constraints can be weakened in order to avoid
strong model dependent assumptions in the choice of the cosmological model. Based on differ-
ent benchmark points for AMSB models, we performed a detailed analysis of the constraints
imposed by particle data and cosmology (both standard and alternative) and finally we gave
the typical mass spectra and decay modes relevant for the LHC searches. The main lesson that
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can be learnt in such an exercice is that usual bounds on the parameter space of these models
are too restrictive and bear a strong hidden cosmological model dependence in the assumption
of the standard cosmological scenario. Concerning the LHC searches, points which are excluded
in the standard analysis but permitted in this more general approach, may be quite relevant
for testing not only the particle theory models themselves but also alternative cosmological sce-
narios at the LHC, as in many cases relatively low mass supersymmetric particles are allowed
with a peculiar spectrum where the lightest neutralino and chargino are very close in mass.
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Chapter 5

Impact of Higgs data on AMSB,
HCAMSB and MMAMSB

5.1 Introduction
The ATLAS and CMS experiments at the Large Hadron Collider (LHC) have reported

the discovery of a new boson compatible with the Standard Model (SM) Higgs in July 2012
[161,162], and updated results of the measurements of the Higgs couplings with more precision
have been recently released [163–168] and [177, 178, 178–183]. All the results are compatible
with the predictions for a SM Higgs boson with a mass of about 126 GeV. This discovery is
especially important in the context of new physics models, and in particular supersymmetry
(SUSY), where the Higgs mass and decay rates can be related to the SUSY parameters.

The mass of the lightest CP-even Higgs particle is bounded from above and it depends on
SUSY parameters that enter radiative corrections

Mmax
h ≈ MZ | cos(2β)| + radiative corrections ≤ 110 − 135GeV (5.1)

The requirement that h boson mass coincides with the value of the Higgs particle observed
at LHC would place strong constraints on the MSSM parameters through their contributions to
radiative corrections to Higgs sector. At the one-loop level, Mh receives corrections that grow
as the fourth power of the top quark mass mt, and logarithmically with the SUSY breaking
scale. Also the trilinear coupling in the stop sector At plays an important role.

ε = 3 m4
t

2π2v2 sin2 β

(
logM2

S

m2
t

+ X2
t

2M2
S

(
1 − X2

t

6M2
S

))
(5.2)

where MS = √
mt̃1mt̃2 and Xt = At − μ

tan β
.

We obtain a large value for Mh in the so-called maximal mixing scenario where Xt =
√

6MS
1.

One can also obtain a larger value for Mh if we have heavy stops (we choose MS ∼3 TeV as
1. We note that there is also the no mixing scenario in which the radiative corrections are smaller for Xt ∼ 0.

Another scenario is the typical mixing one in which Xt is of the same order of MS , i.e. Xt ∼ MS .
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maximal value to have acceptable fine-tuning) and if we are in the decoupling regime where the
pseudo-scalar Higgs boson is heavy MA ∼ TeV [169].

5.2 Tools and Constraints
In order to study the different AMSB scenarios, we used ISAJET 7.82 [153] to generate

the SUSY spectra, compute the flavour observables and relic density with SuperIso Relic
v3.2 [148, 154], and we generate the Higgs branching fractions and decay widths with HDECAY
5.11 [170]. In the following, we disregard the case of negative sign(μ) since it is disfavored by
the muon anomalous magnetic moment constraint. Also, we impose the condition on the SUSY
breaking scale MS = √

mt̃1mt̃2 < 3 TeV as a typical scale to limit fine-tuning.

5.2.1 flavour bounds
It is well known that flavour physics observables provide important constraints on the

MSSM. Similar considerations apply also in the case of the models under study. The first
flavour observable that we consider here is the inclusive branching ratio of B → Xsγ, which
has been thoroughly studied in the literature and is still under scrutiny. This observable is
very interesting, as its SM contributions only appear at loop level, and its theoretical uncer-
tainties as well as the experimental errors are now very well under control. It provides strong
constraints on the supersymmetric parameter space, especially for large tan β, where it receives
large enhancements from its supersymmetric contributions. We use the following interval at
95% C.L. [148,149]:

2.63 × 10−4 < BR(B → Xsγ) < 4.23 × 10−4 . (5.3)

Another interesting observable is the branching fraction of Bs → μ+μ−, which is also a
loop level observable, and which can receive extremely large contributions from SUSY at large
tan β, and can be enhanced by several orders of magnitude as compared to the SM branching
ratio. The first evidence for this decay has been reported by the LHCb collaboration very
recently [171]. We use the following 95% C.L. interval which includes 10% theoretical error :

0.99 × 10−9 < BR(Bs → μ+μ−)untag < 6.47 × 10−9 , (5.4)

where untag denotes the untagged branching fraction, which can be derived from the CP-
averaged branching fraction and directly compared to the experimental measurement [172–174].

The purely leptonic decay of Bu → τν on the other hand is sensitive to supersymmetry
through the exchange of a charged Higgs boson already at tree level, which does not suffer from
the helicity suppression of the SM contribution with the exchange of a W boson. This decay
can therefore provide stringent constraints, and we use:

0.56 × 10−4 < BR(Bu → τν) < 2.7 × 10−4 . (5.5)

Other flavour observables could be added to this list, however we have just included the
most stringent ones for this analysis. A more complete analysis including all flavour information
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requires in principle a global fit to all observables, similar to the ones performed to test the
Standard Model. This however goes beyond the scope of this preliminary screening of the
extensions of AMSB models discussed here.

5.2.2 Relic density
The WMAP data [44] provide precise observations of the cold dark matter density in the

Universe. We use them to impose constraints on the AMSB parameter spaces by computing the
relic density with SuperIso Relic. We consider the WMAP interval at 95% C.L. increased by
10% of theoretical error to account for the uncertainties in the calculation of the relic density:

0.068 < Ωχh2 < 0.155 . (5.6)

However the relic density constraint can be falsified in alternative cosmological model [61]
or if dark matter is composed by more than one species, and we therefore also consider a loose
interval:

10−4 < Ωχh2 < 0.155 , (5.7)
in which we relaxed the lower bound.

In addition to these bounds, we impose the neutralino to be the lightest supersymmetric
particle (LSP) to avoid problems with charged or not-so-weakly-interacting relics. This con-
straints could be avoided if R-parity is violated or if a lighter neutral SUSY particle like a
gravitino is present.

5.2.3 Higgs searches
The discovery of a Higgs-like particle at the LHC provides important information on the

MSSM [169,175,176]. In the following, we associate the newly discovered boson to the lightest
CP-even Higgs h. The Higgs mass value close to 126 GeV brings constraints on the parameter

Value Experiment
Mh 125.7±2.1 GeV ATLAS [177], CMS [178]
μγγ 1.20±0.30 ATLAS [179], CMS [180]
μZZ 1.10±0.22 ATLAS [181], CMS [178]
μW W 0.77±0.21 ATLAS [182], CMS [183]
μbb̄ 1.12 ± 0.45 ATLAS [184], CMS [185], CDF,D0 [186]
μττ 1.01 ± 0.36 ATLAS [184], CMS [187]

Table 5.1: Experimental average for the Higgs mass and rates.

space of supersymmetric models due to the well known fact that the Higgs boson mass is
linked to the electroweak scale and can not be much larger than the Z-boson mass in low
scale supersymmetry. The extra information provided by the measurements of Higgs branching
ratios, provides extra useful constraints. The latest LHC measurements of the Higgs mass and
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decay rates are summarized in Table 5.1. We use in the following the by now standard notation
of signal strengths normalized to the SM expectation, and defined as:

μγγ,V V = σ(gluon fusion)
σSM(gluon fusion)

BR(h → γγ, V V )
BRSM(H → γγ, V V ) , (5.8)

μττ = σ(VBF)
σSM(VBF)

BR(h → ττ)
BRSM(H → ττ) , (5.9)

μbb̄ = σ(HV)
σSM(HV)

BR(h → bb̄)
BRSM(H → bb̄)

, (5.10)

where V V refers to vector boson ZZ or WW production, and VBF and HV stand for vector
boson fusion and associated Higgs vector boson production.

To evaluate the Higgs production cross sections normalized to the SM values, we use:

σ(gluon fusion)
σSM(gluon fusion) ≈ Γh

ΓH
SM

BR(h → gg)
BRSM(H → gg) , (5.11)

σ(VBF)
σSM(VBF) ≈ σ(HV)

σSM(HV) ≈ Γh

ΓH
SM

BR(h → V V )
BRSM(H → V V ) , (5.12)

where Γh and ΓH
SM are respectively the MSSM h and SM H total decay widths.

In the following, we do not impose strict intervals on the calculated signal strengths, but
we comment on the compatibility of the results with the experimental data.

5.3 Results
We consider the constraints from flavour physics, dark matter and LHC Higgs searches in

the context of minimal AMSB, hypercharge AMSB and mixed-moduli AMSB. We show in the
following how the available parameter space is reduced in these different models when applying
the available constraints.

5.3.1 mAMSB
To study the mAMSB scenario, we perform flat scans by varying the parameters in the

following ranges:

m0 ∈ [50, 10000] GeV; m3/2 ∈ [0, 500] TeV; tan β ∈ [1, 55] , (5.13)

and use a sample of more than 3 million points.

We first consider the constraints obtained from the Higgs mass measurement. In fig. 5.1, we
present the light CP-even Higgs mass as a function of tan β and Xt/MS, and show the points
compatible with the flavour and relic density constraints. First, we see that Mh is limited
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to values below 122 GeV, as already pointed out in [175]. The reason is related to the fact
that the points of the mAMSB scenario, Xt/MS is small, corresponding to a no mixing regime
which leads to a lower Higgs mass. Second, no mAMSB point is compatible with the tight
relic density interval of Eq. (5.6), but there exist points compatible with the loose relic density
interval of Eq. (5.7). One of the limiting factors for the light CP-even Higgs mass comes from
the restriction MS < 3 TeV that we impose to limit fine-tuning [188].

We consider now the Higgs signal strengths in fig. 5.2 as a function of tan β. We include
the 2-σ constraint from the Higgs mass on the plots. We first notice that most of the valid
points are close to the SM values of the Higgs strengths. Also, all the Higgs strengths can be
strongly decreased, which corresponds to a strong suppression in the production cross-sections.
Concerning the Higgs to diphoton decay, the predicted strength mainly stands below the 2σ
experimental lower bound. We see however that points not compatible with the cosmology
constraints can have an increased signal in γγ for tan β ∼ 20. However, all these points
correspond to a scenario in which the lightest supersymmetric particle (LSP) is a stau, and
the increase is induced by light stau loops as described in [189]. Nevertheless, scenarios with
charged LSP are strongly disfavored by the cosmology requirements for a neutral dark matter
stable particle.

As a consequence, the mAMSB scenario is compatible with the Higgs mass measurements
only marginally at the two-sigma level since the maximum attainable Higgs mass is below 122
GeV, and also the relic abundance constraint can only be met with the loose bounds described
above.

5.3.2 HC-AMSB
The HC-AMSB scenario provides a modification of the M1 bino mass, as discussed in Sec. ??.

We have generated a sample of more than 2 million points through flat scans over the parameters
in the following intervals:

α ∈ [−0.3, 0.3]; m3/2 ∈ [0, 500] TeV; tan β ∈ [1, 55] . (5.14)

In fig. 5.3, we plot the light Higgs mass as functions of tan β and Xt/MS. Contrary to the
mAMSB scenario, the Higgs mass can reach 126 GeV and therefore be fully consistent with
the mass constraint. The sfermions are lighter in this scenario as compared to in the mAMSB
scenario and Xt/MS can reach larger values. On the other hand, no point in this scenario is at
the same time consistent with the tight relic density constraint of Eq.(5.6), but many points
fulfil both the Higgs and loose relic density bounds. More specifically, the allowed points have
tan β ∼> 5 and Xt ∼> MS, and therefore correspond to the typical or maximal mixing regimes.

In fig. 5.4, we consider the μW W , μγγ, μbb̄ and μττ signal strengths of the Higgs as a function
of tan β. First, the bulk of points compatible with the flavour constraints are consistent with
the SM signal strengths. When imposing the Higgs mass constraint, tan β is restricted to
large values, as already noticed in fig. 5.3, and most of the points with low signal strengths
are removed. We notice that in the region of tan β ∼ 25 − 30, the Higgs to two photon
channel can be enhanced as in the mAMSB due to the presence of light staus. Finally, we
impose the neutralino LSP and loose relic density constraints, and note that this requirement
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Figure 5.1: Light Higgs mass as functions of tan β (left panel) and Xt/MS (right panel) in
mAMSB. The red points are all points compatible the constraints from flavour physics described
in Sec. 5.2.1. The yellow points have also a neutralino LSP. The black points are in addition
consistent with the upper bound of the relic density constraint. The horizontal solid line
corresponds to the central value of the Higgs mass and the dashed lines to the 2σ deviations.

removes points with enhanced γγ signal strength. While this scenario is well compatible with
the latest Higgs search results, it may be disfavoured in the future if the γγ signal strength
value is confirmed to be larger than the SM value. Thus, the HC-AMSB model can explain
simultaneously flavour physics, loose relic density bounds and the current Higgs search results,
but can be challenged by future more precise data.

5.3.3 MM-AMSB
As we already showed in [144], the MM-AMSB has the advantage of providing solutions

consistent with the tight relic density constraint. We confront here this model to the latest
Higgs constraints. To study this scenario, we vary the parameters in the following ranges:

α ∈ [−30, 30]; m3/2 ∈ [0, 500] TeV; tan β ∈ [1, 55] , (5.15)

using flat scans generating more than 2 million points.
In fig. 5.5, we plot the light Higgs mass as functions of tan β and Xt/MS. As for the HC-

AMSB scenario, the Higgs mass can reach 126 GeV, in a region corresponding to typical and
maximal mixing regimes in the stop sector. In this scenario, both the sfermion masses and
trilinear couplings are modified by the modulus mediation. We note that imposing the lower
bound of the relic density constraint makes apparent two distinct regions of compatibility: a
large one with tan β ∼< 30 and Xt/MS ∼> 1 − 2 corresponding to a typical mixing, and a narrow
strip around tan β ∼ 37 and Xt ∼> 2MS corresponding to a maximal mixing.

In fig. 5.6 we consider the effects of the constraints in the (α, tan β) and (m3/2, tan β)
parameter planes. We see clearly the difference between the two regions highlighted in fig. 5.5:
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Figure 5.2: μW W (top left), μγγ (top right), μbb̄ (bottom left) and μττ (bottom right) as functions
of tan β in the mAMSB model. The red points are favored by the flavour physics constraints, the
cyan points are compatible with the Higgs mass constraint, the yellow points have a neutralino
LSP and the black points in addition are compatible with the upper bound of the relic density
constraint. The horizontal solid line corresponds to the experimental central value given in
Table 5.1 and the dashed lines to the 2σ values.

the low tan β region has positive values of α typically around 6, while the tan β ∼ 37 strip
corresponds to negative α and small m3/2. In terms of physical spectra, in both scenarios
the neutralino is relatively heavy (∼> 500 GeV). The negative α region corresponds to Higgs
resonances, with a bino-like neutralino 1 mass approximately half the H and A Higgs masses,
while the positive α region has stau and stop masses close to the neutralino mass, resulting in
important co-annihilations, and the neutralino 1 is a mixed bino-wino state.

In fig. 5.7, we consider the μW W , μγγ, μbb̄ and μττ signal strengths of the Higgs as a function
of tan β. In comparison with the other AMSB scenarios, we find for the MM-AMSB model
a situation similar to the one of the HC-AMSB model, where the Higgs mass constraint is
satisfied, the signal strength for the decay of the Higgs boson to two photons is consistent with
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Figure 5.3: Light Higgs mass as functions of tan β (left panel) and Xt/MS (right panel) in HC-
AMSB. The red points are all points compatible the constraints from flavour physics described
in Sec. 5.2.1, the yellow points have a neutralino LSP and the black points are in addition
consistent with the upper bound of the relic density constraint. The horizontal solid line
corresponds to the central value of the Higgs mass and the dashed lines to the 2σ deviations.

the preferred dark matter region of the parameter space within two sigmas.
We can also note that before imposing the the cosmology constraints, there is a possible

enhancement for μγγ at small tan β ∼ 17, but similarly to mAMSB and HC-AMSB, the LSP
in this case is the stau, and is therefore disfavored by cosmology.

5.4 Conclusions
Anomaly mediation and its extensions including hypercharge and moduli for supersymmetry

breaking are attractive models from the theoretical point of view. The well-known shortcomings
of these models have been largely discussed and corrected in the literature. However detailed
phenomenological implications of the recent dark matter, Higgs, flavour and collider data were
not yet considered. In this paper we have discussed these limits, taking into account the most
important recent flavour and Higgs search results, together with the dark matter constraints in
order to establish, which among these models are still compatible with data.

The minimal AMSB model is consistent with the loose relic density dark matter constraints,
but consistency is only marginal at the two-sigma level, especially due to the Higgs mass con-
straint. We consider therefore this minimal scenario much less attractive, once the phenomeno-
logical constraints are imposed.

Concerning the HC-AMSB model, it is consistent with the loose relic density dark matter
constraints and with the Higgs mass value. Relaxing the neutralino LSP requirement and the
relic density constraints allows for points with increased μγγ in the region of light stau masses.
This scenario with light staus has been thoroughly studied in the literature, however in the HC-
AMSB scenario it corresponds to a region in which the stau is the LSP, making it inconsistent
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Figure 5.4: μW W (top left), μγγ (top right), μbb̄ (bottom left) and μττ (bottom right) as func-
tions of tan β in the HC-AMSB model. The red points are favored by the flavour physics
constraints, the cyan points are compatible with the Higgs mass constraint, the yellow points
have a neutralino LSP and the black points in addition are compatible with the upper bound of
the relic density constraint. The horizontal solid line corresponds to the experimental central
value given in Table 5.1 and the dashed lines to the 2σ values.

with cosmology. However, models with gravitino LSP could revive such possibility.
Contrary to the mAMSB and the HC-AMSB, the MM-AMSB model provides solutions

compatible with flavour, collider data and the full relic density constraint. It also features the
same μγγ enhancement possibility by light staus. Therefore, the MM- and, to a lesser extent, the
HC-AMSB model, are attractive solutions of supersymmetry breaking which are also consistent
with present data. Future improvements in the precision of the Higgs mass measurements may
easily rule out the minimal AMSB model if the present central value is confirmed. The MM- and
HC-AMSB models will be still consistent in that case, but further constraints can be obtained
from more precise determinations of the signal strength in the measured decay channels. This
shows the importance of present and future LHC data, in combination with flavour and dark
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Figure 5.5: Light Higgs mass as functions of tan β (left panel) and Xt/MS (right panel) in
MM-AMSB. The red points are all points compatible with the constraints from flavour physics
described in Sec. 5.2.1. The yellow points have also a neutralino LSP. The black points are
consistent with the loose relic density constraint of Eq.(5.7). The green points are in addition
consistent with the tight relic density constraint given in Eq.(5.6). The horizontal solid line
corresponds to the central value of the Higgs mass and the dashed lines to the 2σ deviations.

Figure 5.6: Constraints from flavour physics, Higgs mass and relic density in the (α, tan β)
(left panel) and (m3/2, tan β) parameter planes (right panel) in the MM-AMSB model. The
red points are favored by the flavour physics constraints, the cyan points are compatible with
the Higgs mass constraint, the yellow points have a neutralino LSP, and the green points are
in addition compatible with the tight relic density constraint.

matter constraints to suggest the path to be followed in the investigation of physics beyond the
standard model.
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Figure 5.7: μW W (top left), μγγ (top right), μbb̄ (bottom left) and μττ (bottom right) as func-
tions of tan β in the MM-AMSB model. The red points are favoured by the flavour physics
constraints, the cyan points are compatible with the Higgs mass constraint, the yellow points
have a neutralino LSP, and the green points in addition are compatible with the tight relic den-
sity constraint. The horizontal solid line corresponds to the experimental central value given
in Table 5.1 and the dashed lines to the 2σ values.
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Conclusion & perspectives

In this thesis I discussed the one-loop expressions of the quark Yukawa couplings in two su-
persymmetric five-dimensional models, with bulk matter fields and with brane-localized matter
fields. I derived the cutoff dependence of the CKM mixing matrix and found that the brane-
localized matter with large tan β has rather different dependence from the others.

For the two 5D MSSM scenarios with matter fields in the bulk or on the brane, I performed
the numerical analysis of the evolution of the various parameters of the CKM matrix, and both
cases give us a scenario with small quark flavor mixings at high energies, especially for the
mixings with the heavy generation. The evolution equations which relate various observables
at different energies, and also allow the study of their asymptotic behaviours, are particularly
important in view of testing the evolution of the Yukawa couplings. In the universal 5D MSSM
model, the evolution of these CKM parameters have a rapid variation prior to reaching a cut-
off scale where the top Yukawa coupling develops a singularity point and the model breaks
down. For the brane localised matter fields model, I can only observe similar behaviours for
small values of tan β, while for large tan β, the initial top Yukawa coupling becomes smaller,
the gauge couplings then play a dominant role during the evolution of the Yukawa couplings,
which cause the Yukawa couplings to decrease instead of increasing. As such the variations of
these CKM parameters have a relatively milder behaviour, and the theory is valid up the gauge
coupling unification scale.

I studied also, in the same framework, the neutrino sector using the updated value of θ13
and other mixing parameters. We have presented the evolution equations for the physical
mixing angles, phases, Δm2

sol and Δm2
atm, within two distinct scenarios, where a larger tan β

typically leads to more significant renormalization group corrections. Neutrino masses evolve
differently in the two models due to the sign of the (different) dominant contributions in the
bulk and in the brane cases. For the brane case we find the approximate degenerate neutrino
mass spectrum becomes more favourable at the ultraviolet cut-off, whilst in the bulk case, the
neutrino splitting becomes even more severe as the unitarity bounds of the effective theory are
rapidly reached. As the evaluation of RGEs may play a crucial role in searching for realistic
mixing patterns we also studied the evolution of mixing angles and phases. Contrary to the
large renormalization effect of θ12, the runnings of θ13 and θ23 were relatively mild. We found a
non-zero value for θ13 during the evolution, which has no appreciable RGE running effects, even
when power law evolution effects are considered. Therefore it is necessary to introduce new
physics effects in order to achieve the tri-bimaximal pattern. Here, we also find the maximum
CP violation case, δ = π

2 , could be achieved starting from a relatively small initial value. In
this regard, radiative effects have a very significant impact on neutrino physics. A non-zero
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Jarlskog invariant, which measures the magnitude of leptonic CP violation and is expected to
be measured in future long baseline neutrino oscillation experiments, could open the door for
CP violation in the lepton sector.

We provide also in this thesis a detailed phenomenological analysis, focusing particularly on
the dark matter aspect of several SUSY breaking scenarios involving the anomaly mediation as
one of the major components. Anomaly mediation models are well motivated supersymmetry
breaking scenarios which appear as alternatives to the mSUGRA paradigm. These models are
quite compelling from the theoretical point of view and it is therefore important to test if they
are also viable models for phenomenology. We perform a study of these models in the light of
all standard flavor, collider and dark matter constraints, including also the recent Higgs boson
measurements for the mass and signal strengths in the different decay channels. The minimal
AMSB scenario can satisfy in part of its parameter space both the dark matter requirement and
is marginally consistent with the current Higgs boson mass value within a two sigma deviation.
The HyperCharge-AMSB and Mixed Moduli-AMSB scenarios can better describe present data
from dark matter, flavor, low energy physics and are consistent with the measured mass of the
Higgs boson. The inclusion of the preferred signal strengths for the Higgs boson decay channels
shows that in the range 5 < tan β < 50 the HC-AMSB and MM-AMSB models are consistent
with the present Higgs boson channels. In contrast the minimal AMSB has a narrower allowed
range in tan β. These different AMSB scenarios, while consistent with present Higgs boson
measurements, can be further tested by future more precise data in the Higgs boson sector.
We study also alternative cosmology: the possibility to loosen the dark matter constraint on
AMSB model and its extensions by modifying the cosmological scenario and this is a new result
which includes also a very detailed analysis of some interesting parameter points.
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Appendix A

Example for Loop calculation in 5D

We present in this appendix an example of loop calculation in the 5D MSSM which is the
first diagram (a) in fig. 2.2. We draw this diagram more clearly as shown in fig. A.1, and we
present in fig. A.2 the vertex needed to do the calculation.

We start by presenting the Feynman rules for supergraphs [28,29] ;

– Integrate over
∫

d4θ at each vertex.
– For a chiral vertex with n external lines, (n − 1) factors [−1

4D̄2] act on the propagators.
– For an anti-chiral vertex with n external lines, (n − 1) factors [−1

4D2] act on the propa-
gators.

– Multiply by a symmetry factor.
– For every loop with momentum k running in it, integrate over

∫ d4k
(2π)4 .

– For every external line, write a chiral superfield Φ or Φ̄.

The chiral and vector propagators are

= −i

p2 + n2

R2 − iε
δijδmnδ4(θ1 − θ2)

= i

p2 + n2

R2 − iε
δabδmnδ4(θ1 − θ2)
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Figure A.1: The one-loop diagram correction for chiral superfields with two KK states running
in the loop for Φ and V .

Figure A.2: The V ΦΦ vertex relevant for our one loop calculation in fig. A.1.

δZ
(a)
ij =

∑
n≥0

∫ d4k

(2π)4 d4θ1(2igT A)iδ(4)(θ1 − θ2)
2(k2 + n2

R2 )
× (−1

4D̄2
1)

× (−1
4D2

2)d4θ2(2igT A)(−i)δ(4)(θ1 − θ2)δij

(p + k)2 + n2

R2

× Φ(0)
i (θ1)Φ̄(0)

j (θ2)

= (−4g2T AT A)δij

∑
n≥0

∫ d4k

(2π)4 d4θ1d
4θ2

iδ(4)(θ1 − θ2)
2(k2 + n2

R2 )

× ( 1
16D̄2

1D2
2)(−i)δ(4)(θ1 − θ2)

(p + k)2 + n2

R2

× Φ(0)
i (θ1)Φ̄(0)

j (θ2) (A.1)
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From Eq.(2.17), we have T AT A = C2(R) and if we integrate over d4θ2, we obtain

δZ
(a)
ij = [−2g2C2(R)]δij

∑
n≥0

∫ d4k

(2π)4 d4θ1 × ( 1
16D̄2

1D2
2)δ(4)(θ1 − θ2)

× 1(
k2 + n2

R2

) (
(p + k)2 + n2

R2

) × Φ(0)
i (θ1)Φ̄(0)

j (θ1) (A.2)

However, δ(4)(θ1 − θ2) = δ(2)(θ1 − θ2)δ(2)(θ̄1 − θ̄2) and

∫
d4θ1D̄

2
1D2

2δ(2)(θ1 − θ2)δ(2)(θ̄1 − θ̄2) = 16
∫

d4θ1 (A.3)

So we will have

δZ
(a)
ij = −2g2C2(R)δij

∑
n≥0

∫ d4k

(2π)4
1(

k2 + n2

R2

) (
(p + k)2 + n2

R2

)

×
∫

d4θ1Φ(0)
i (θ1)Φ̄(0)

j (θ1) (A.4)

One can divide the sum into two parts n = 0 and n ≥ 1

δZ
(a)
ij = −2g2C2(R)δij

( ∫ d4k

(2π)4
1

k2(p + k)2 +
∑
n≥1

∫ d4k

(2π)4
1(

k2 + n2

R2

) (
(p + k)2 + n2

R2

))

×
∫

d4θ1Φ(0)
i (θ1)Φ̄(0)

j (θ1) (A.5)

The first integral of the first line in this equation contains logarithmic divergence and the
second one contains both logarithmic and linear divergences as we can see easily by a simple
power counting. These two integrals are calculated in the paper [98] ,

δZ
(a)
ij = −2g2C2(R)δij

16π2

(
2log(ΛR) + 2ΛR − log(ΛR)

)
×
∫

d4θ1Φ(0)
i (θ1)Φ̄(0)

j (θ1)

= −2g2C2(R)δij

16π2

(
2ΛR + log(ΛR)

)
×
∫

d4θ1Φ(0)
i (θ1)Φ̄(0)

j (θ1) (A.6)

In the same way we can obtain the wave function renormalization constants for the other
one-loop diagrams in fig. 2.2. We find respectively for diagrams b), c), d) and e)
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δZ
(b)
ij = −2g2C2(R)δij

16π2

(
2ΛR − log(ΛR)

)

δZ
(c)
ij =

λiklλ
∗
jkl

16π2 log(ΛR)

δZ
(d)
ij =

λiklλ
∗
jkl

16π2

(
4ΛR − log(ΛR)

)

δZ
(e)
ij =

λiklλ
∗
jkl

16π2

(
2π(ΛR)2 − 8ΛR + log(ΛR)

)
(A.7)

We only displayed the integral over the θ coordinate for the first contribution, omitting it
in the others. Summing the different contributions, we obtain the result in Eq.(2.20).

For the brane case, the calculation is quite similar and we will not have contributions from
the last diagram, this is why the quadratic divergence term (ΛR)2 is absent.
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Appendix B

Gauge Coupling Coefficient Calculation
in 5D MSSM

The evolution of the gauge couplings

16π2 dgi

dt
= bigi

3 (B.1)

In the Standard Model

(b1, b2, b3) = (41
6 , −19

6 , −7) (B.2)

or (b1, b2, b3) = (41
6 × 3

5 , −19
6 , −7) = (41

10 , −19
6 , −7) (B.3)

in the SU(5) normalization. (refer to Ref. [111])
In the 4D MSSM

(b1, b2, b3) = (11, 1, −3) (B.4)

or (b1, b2, b3) = (11 × 3
5 , 1, −3) = (33

5 , 1, −3) (B.5)

in the SU(5) normalization. (refer to Ref. [111])
In the 5D MSSM

16π2 dgi

dt
= [bi

MSSM + (S(t) − 1)b̃i]gi
3 (B.6)

where bi
MSSM = (33

5 , 1, −3),

b̃i = (66
5 , 10, 6) (B.7)

(refer to Eq.(11) of Ref. [87])
Possible hints to check the beta function of the gauge couplings:

a. Consider the normal 4D MSSM gauge beta functions, especially for the Feynman dia-
grams of the gauge Aμ field (Not the vector superfield)
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b. At each KK level, the only new one-loop contributions to the Aμ Feynman diagrams are
from the wave function renormalization of Aμ, contributed by:
the coupling of Aμ with the complex scalar field and its super-partner in the superfield χ (the
superfield described after Eq.(2.9)
the coupling of Aμ with the new fermion field and its super-partner in the superfield Φc (the
superfield Φc described after Eq.(2.11), includes Φc corresponding to the two doublet of the
Higgs fields, and the matter fields in the bulk)

The RGE of the gauge couplings have the following form in the standard model [18]:

16π2 dg

dt
= [−11

3 C2(G) + 2
3
∑

Ti(R) + 1
3
∑

Ta(R)]g3 (B.8)

And in the 4D MSSM [18]:

16π2 dg

dt
= [−3C2(G) +

∑
Ti(R) +

∑
Ta(R)]g3 (B.9)

Where the first term is related to the gauge (and gaugino) field contributions, the second
term is related to the fermion (and s-fermion) field contributions, the third one related to
the scalar (and s-scalar) field contributions, and C2(G) = N for SU(N) group, T (R) = 1

2 for
fundamental representation.

In 5D MSSM, all the matter field in the bulk, for g3, at each KK level,

b5D MSSM
3 = b4D MSSM

3 (Feynman diagram mirror 4D MSSM)

+ C2(G)(Superfield χ scalar and fermion contribution)

+
∑

Ti(R)(Superfield ΦC scalar and fermion contribution)

= −3 + 3 + 1
2 × 12(total 12 flavor uL, uR, dL etc)

= 6 (B.10)
for g2, at each KK level,

b5D MSSM
2 = b4D MSSM

2 (Feynman diagram mirror 4D MSSM)

+ C2(G)(Superfield χ scalar and fermion contribution)

+
∑

Ti(R)(Superfield ΦC scalar and fermion contribution for matter field)

+
∑

TR(R)(Superfield ΦC scalar and fermion contribution for 2 Higgs doublet)

= 1 + 2 + 1
2 × (3 (color)for quark doublet + 1 (lepton doublet)) × 3 (generation)

+ 1
2 × 2(Higgs doublet)

= 1 + 2 + 1
2 × 12 + 1

2 × 2

= 10 (B.11)
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for g1, at each KK level, no χ coupling to the gauge field (abelian group)

b5D MSSM
1 = b4D MSSM

1 (Feynman diagram mirror 4D MSSM)

+
∑

Ti(R)(Superfield ΦC scalar and fermion contribution for matter field)

+
∑

TR(R)(Superfield ΦC scalar and fermion contribution for 2 Higgs doublet)

= 33
5 + 2(T (R) is 2 for doublet) × 1

6(quark doublet hypercharge)

× 1
6 × 3 (generation) × 3 (color)

+ 2(T (R) is 2 for doublet) × 1
2(lepton doublet hypercharge) × 1

2 × 3 (generation)

+ 1(T (R) is 1for singlet) × 1
3(quark singlet hypercharge)

× 1
3 × 3 (generation) × 3 (color)

+ 1(T (R) is 1for singlet) × 2
3(quark singlet hypercharge)

× 2
3 × 3 (generation) × 3 (color)

+ 1(T (R) is 1for singlet) × 1 (lepton singlet hypercharge) × 1 × 3(generation)

+ 2(T (R) is 2 for doublet) × 1
2(Higgs doublet hypercharge) × 1

2 × 2 (two Higgs doublet)

= 33
5 + 11 × (3

5 rescale)

= 66
5 (B.12)

In 5D MSSM, if there are η generation matter fields in the bulk, for g3, at each KK level,

b5D MSSM
3 = C2(G)(superfield χ scalar and fermion contribution)

+ b4D MSSM
3 (Feynman diagram 4D MSSM related to gauge gaugino contribution)

+ b4D MSSM
3 (Feynman diagram 4D MSSM related to η generation matter contribution)

+ T (R)(η generation superfield ΦC contribution)

= 3 − 9 + 1
2 × 4 × η + 1

2 × 4 × η

= −6 + 4η (B.13)
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for g2, at each KK level,

b5D MSSM
2 = C2(G)(Superfield χ scalar and fermion contribution)

+ b4D MSSM
2 (Feynman diagram 4D MSSM related to gauge gaugino contribution)

+ b4D MSSM
2 (Feynman diagram 4DMSSM related to η generation matter contribution)

+ T (R)(η generation superfield ΦC contribution)

+ T (R)(two Higgs superfield mirror 4D MSSM contribution)

+ T (R)(two Higgs superfield for ΦC)

= 2 − 6 + 1
2 × 4 × η + 1

2 × 4 × η + 1 + 1

= −2 + 4η (B.14)

for g1, at each KK level,

b5D MSSM
1 = b4DMSSM

1 (Feynman diagram 4DMSSM related to η generation matter contribution)

+ T (R)(two Higgs superfield mirror 4D MSSM contribution)

+ T (R)(η generation superfield ΦC contribution)

+ T (R)(two Higgs superfield for ΦC)

= (10
3 × η + 1 + 10

3 × η + 1)3
5

= (20
3 × η + 2)3

5

= 6
5 + 4 × η (B.15)

So

(b1, b2, b3)5D MSSM = (6
5 , −2, −6) + 4η (B.16)
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Appendix C

Higgs Self Coupling Evolution in 5D
UED SM

In the SM, the Higgs boson mass is given by mH =
√

λ v, where λ is the Higgs self-coupling
parameter and v is the vacuum expectation value of the Higgs field (where v = (

√
2GF )−1/2 =

246 GeV is fixed by the Fermi coupling GF ). From the requirement that the scalar potential
energy of the vacuum be bounded from below, the quartic coupling λ should be positive at any
energy scale. If mH is too small, λ becomes negative at certain energy scales and then induces
a false and deep minimum at large field values, destabilizing the EW vacuum. Therefore, above
that scale, the validity of the SM is expected to fail and must be embedded in some more
general theories that give rise to a wealth of new physics phenomena.

In the five dimensional UED model compactified on a circle of radius R with a Z2 orbifolding,
motivated by the new bounds on the mass of the SM Higgs boson around 125 GeV of ATLAS
and CMS collaborations [190] , we quantitatively analyse the Higgs self coupling evolution
from the EW scale up to the unification scale and exploit its evolution behaviors for different
compactification radii.

The kinetic term of the scalar doublet has the following forms in the 5D UED model:

LHiggs =
πR∫
0

dy(DMΦ(x, y))†DMΦ(x, y) , (C.1)

where the covariant derivative is

DMΦ(x, y) =
{

∂M + ig5
2T aWM + i

2g5
1BM

}
Φ(x, y) , (C.2)

where the gauge fields GM(x, y)
(

GA
M

λA

2

)
, WM(x, y)

(
W a

M

τa

2

)
and BM(x, y) refer to the

SU(3), SU(2) and U(1) gauge groups respectively. Note also the five dimensional gauge cou-
pling constants g5

3, g5
2 and g5

1 are related to the four dimensional SM coupling constants (up to

a normalization factor) by gi = g5
i√
πR

, and similarly for the quartic coupling λ = λ5
√

πR
.
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The evolution of the Higgs quartic coupling is given by the beta function as follows

16π2 dλ

dt
= βSM

λ + βUED
λ , (C.3)

where [191]

βSM
λ = 12λ2 −

(9
5g2

1 + 9g2
2

)
λ + 9

4

( 3
25g4

1 + 2
5g2

1g2
2 + g4

2

)
+ 4λTr[3Y †

UYU + 3Y †
DYD + Y †

EYE]

−4Tr[3(Y †
UYU)2 + 3(Y †

DYD)2 + (Y †
EYE)2] (C.4)

and

βUED
λ = (S(t) − 1)

{
12λ2 − 3

(3
5g2

1 + 3g2
2

)
λ +

( 9
25g4

1 + 6
5g2

1g2
2 + 3g4

2

)}
+ 2(S(t) − 1)

{
4λTr[3Y †

UYU + 3Y †
DYD + Y †

EYE] − 4Tr[3(Y †
UYU)2 + 3(Y †

DYD)2 + (Y †
EYE)2]

}
(C.5)

for the UED bulk model, [87, 192] where both the fermion fields and the boson fields can
propagate in the bulk, and

βUED
λ = (S(t) − 1)

{
12λ2 − 3

(3
5g2

1 + 3g2
2

)
λ +

( 9
25g4

1 + 6
5g2

1g2
2 + 3g4

2

)}
(C.6)

for the UED brane model [112] , where the SM matter fields are localized to the brane, whilst
the gauge and Higgs fields are propagating in the bulk. Note that the pure gauge terms in
Eq.(C.6) are different from these in Ref. [122, 193] . Explicitly, these terms cannot exactly
resemble what is in the SM, since there are extra contributions from the couplings of the Higgs
field with the A5 component in the bulk space as well.

In Fig.C.1, starting from the initial value of mH = 125 GeV, we focus on the evolution of the
Higgs self-coupling and explore its behavior and constraints on the compactification radii for
which the validity of the theory is satisfied. For interesting values of a Higgs mass around 125
GeV, we can observe that, in the whole range from the EW scale up to the gauge unification
scale, in the UED brane model the Higgs self coupling λ(t) remains positive and its trajectory
goes upward but remains finite when approaching the unification scale, whilst for the SM and
the UED bulk model λ(t) evolves towards a zero value before reaching the unification scale,
which then incurs the vacuum instability and introduces an ultraviolet cutoff for the theory.
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Figure C.1: The evolution of the Higgs self coupling for mH = 125 GeV, where the solid (black)
line is the SM, the upward [downward] dotted (red) line is the R−1 = 2 TeV UED brane model
[UED bulk model], the upward [downward] dotted-dashed (blue) line is the R−1 = 8 TeV UED
brane model [UED bulk model], and the upward [downward] dashed (green) line is the R−1 = 15
TeV UED brane model [UED bulk model]. The ultraviolet cutoff incurred from the vacuum
instability are observed around t = 4.5, 5.7, 6.3 for R−1 = 2, 8, 15 TeV respectively in the UED
bulk model.
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Appendix D

Mass and mixing angles evolution

As such, for the four dimensional MSSM, where C = 1 and α = 6Tr(Y †
u Yu) − 6

5g2
1 − 6g2

2 =
6(y2

t + y2
c + y2

u) − 6
5g2

1 − 6g2
2, we have:

16π2 dm1

dt
= m1

{
α + Cy2

τ

(
2 sin2(θ12) sin2(θ23) − sin(θ13) sin(2θ12) sin(2θ23) cos(δ)

+2 sin2(θ13) cos2(θ12) cos2(θ23)
)}

,

16π2 dm2

dt
= m2

{
α + Cy2

τ

(
2 cos2(θ12) sin2(θ23) + sin(θ13) sin(2θ12) sin(2θ23) cos(δ)

+2 sin2(θ13) sin2(θ12) cos2(θ23)
)}

,

16π2 dm3

dt
= m3

{
α + Cy2

τ

(
2 cos2(θ13) cos2(θ23)

)}
, (D.1)

and for the mixing angles:

16π2 dθ13

dt
= 1

2Cy2
τ

(
m1 + m3

m1 − m3
cos(δ − φ1

2 ) cos(θ12) cos(θ13)
(

− cos(φ1

2 ) sin(θ12) sin(2θ23)

+ 2 cos(δ − φ1

2 ) cos(θ12) sin(θ13) cos2(θ23)
)

+ m2 + m3

m2 − m3
cos(δ − φ2

2 ) sin(θ12)
(

cos(φ2

2 ) cos(θ12) cos(θ13) sin(2θ23)

+ cos(δ − φ2

2 ) sin(θ12) sin(2θ13) cos2(θ23)
))

, (D.2)
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16π2 dθ12

dt
= 1

2Cy2
τ

(
m1 + m2

m1 − m2
cos(φ1 − φ2

2 )
(1

2 cos(φ1 − φ2

2 ) cos2(θ13) sin(2θ12)

+ {1
4 cos(φ1 − φ2

2 )(−3 + cos(2θ13)) cos(2θ23) sin(2θ12) − [cos δ cos(φ1 − φ2

2 ) cos(2θ12)

+ sin δ sin(φ1 − φ2

2 )] sin(θ13) sin(2θ23)}
)

+ m1 + m3

m1 − m3
cos(δ − φ1

2 ) sin(θ12) sin(θ13)
(

− cos(φ1

2 ) sin(θ12) sin(2θ23)

+ 2 cos(δ − φ1

2 ) cos(θ12) sin(θ13) cos2(θ23)
)

+ m2 + m3

m2 − m3
cos(δ − φ2

2 ) cos(θ12) tan(θ13)
(

cos(φ2

2 ) cos(θ12) cos(θ13) sin(2θ23)

+ cos(δ − φ2

2 ) sin(θ12) sin(2θ13) cos2(θ23)
))

, (D.3)

16π2 dθ23

dt
= 1

2Cy2
τ

(
m1 + m3

m1 − m3
cos(φ1

2 ) sin(θ12)
(

cos(φ1

2 ) sin(θ12) sin(2θ23)

−2 cos(δ − φ1

2 ) cos(θ12) sin(θ13) cos2(θ23)
)

+ m2 + m3

m2 − m3
cos(φ2

2 ) cos(θ12) sec(θ13)
(

cos(φ2

2 ) cos(θ12) cos(θ13) sin(2θ23)

+ cos(δ − φ2

2 ) sin(θ12) sin(2θ13) cos2(θ23)
))

, (D.4)

As we have already mentioned, the transition to the bulk case will be done by making the
replacement of C = C(μ) = πμ2R2 = πS(t)2 and α = 6πS(t)2Tr(Y †

u Yu) − (6
5g2

1 + 6g2
2)S(t).

Similarly, we will also have the same equations in the brane case, and with C = C(μ) = 2μR =
2S(t) and α = 6Tr(Y †

u Yu) − (9
5g2

1 + 9g2
2)S(t).
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Dirac and Majorana phases evolution

As already discussed, in the MSSM C = 1, in the 5D brane case C = 2μR = 2S(t), and in
the bulk case C = C(μ) = πμ2R2 = πS(t)2. In which case, the equations for the evolution of
the phases can be expressed as:

16π2 dφ1

dt
= 1

2Cy2
τ

(
1
2

m1 + m2

m1 − m2
sin(φ1 − φ2

2 ) cot(θ12)
(

− 2 cos(φ1 − φ2

2 ) cos2(θ13) sin(2θ12)

−
{

cos(φ1 − φ2

2 )(−3 + cos(2θ13)) cos(2θ23) sin(2θ12)

− 4
[
cos δ cos(φ1 − φ2

2 ) cos(2θ12) + sin δ sin(φ1 − φ2

2 )
]

sin(θ13) sin(2θ23)
})

+ m1 + m3

m1 − m3
2 cos(θ13)

(
− cot(θ23) sin(φ1

2 ) sin(θ12) sec(θ13) + 2 cos(θ12) sin(δ − φ1

2 ) tan(θ13)

+ sec(θ13) tan(θ23) sin(φ1

2 ) sin(θ12)
)(

− 2 cos(δ − φ1

2 ) cos(θ12) sin(θ13) cos2(θ23)

+ cos(φ1

2 ) sin(θ12) sin(2θ23)
)

+ m2 + m3

m2 − m3

(
sin(δ − φ2

2 ) sin(θ12) tan(θ13) + cos(θ12)
{

cot(θ23) sec(θ13) sin(φ2

2 )

− cos(φ2

2 ) cot(θ12) sin δ tan(θ13) + sin(φ2

2 ) cos(θ12) cos δ tan(θ13) − sec(θ13) tan(θ23) sin(φ2

2 )
})

×
(

− 2 cos(φ2

2 ) cos(θ12) cos(θ13) sin(2θ23)

− 2 cos(δ − φ2

2 ) sin(θ12) sin(2θ13) cos2(θ23)
))

, (E.1)
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16π2 dφ2

dt
= 1

2Cy2
τ

(
1
2

m1 + m2

m1 − m2
sin(φ1 − φ2

2 ) tan(θ12)
(

− 2 cos(φ1 − φ2

2 ) cos2(θ13) sin(2θ12)

− {cos(φ1 − φ2

2 )(−3 + cos(2θ13)) cos(2θ23) sin(2θ12) − 4[cos δ cos(φ1 − φ2

2 ) cos(2θ12)

+ sin δ sin(φ1 − φ2

2 )] sin(θ13) sin(2θ23)}
)

− m1 + m3

m1 − m3
2 cos(θ13)

(
cot(θ23) sin(φ1

2 ) sin(θ12) sec(θ13) − cos(θ12) sin(δ − φ1

2 ) tan(θ13)

+ sin(θ12){sin δ cos(φ1

2 ) tan(θ12) tan(θ13) − sin(φ1

2 ) cos δ tan(θ12) tan(θ13)

− sin(φ1

2 ) sec(θ13) tan(θ23)}
)

×
(

− 2 cos(δ − φ1

2 ) cos(θ12) sin(θ13) cos2(θ23) + cos(φ1

2 ) sin(θ12) sin(2θ23)
)

+ m2 + m3

m2 − m3

(
sin(φ2

2 ) cos(θ12) cos(2θ23) csc(θ23) sec(θ13) sec(θ23)

+ 2 sin(δ − φ2

2 ) sin(θ12) tan(θ13)
)

×
(

− 2 cos(φ2

2 ) cos(θ12) cos(θ13) sin(2θ23)

− 2 cos(δ − φ2

2 ) sin(θ12) sin(2θ13) cos2(θ23)
))

, (E.2)
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16π2 dδ

dt
= 1

4Cy2
τ

(
m1 + m2

m1 − m2
sin(φ1 − φ2

2 ) csc(2θ12)
(

− 2 cos(φ1 − φ2

2 ) cos2(θ13) sin(2θ12)

−
{

cos(φ1 − φ2

2 )(−3 + cos(2θ13)) cos(2θ23) sin(2θ12) − 4[cos δ cos(φ1 − φ2

2 ) cos(2θ12)

+ sin δ sin(φ1 − φ2

2 )] sin(θ13) sin(2θ23)
})

− m1 + m3

8(m1 − m3)

(
cos(φ1

2 )
{

2 − 6 cos(2θ12) + cos(2θ12 − 2θ13) − 6 cos(2θ13)

+ cos(2θ12 + 2θ13)
}

csc(θ13) sec(θ12) sin δ + 4 cos(θ12)(−3 + cos(2θ13)) csc(θ13) sin(δ − φ1

2 )

+ sin(φ1

2 )
{

− cos(δ)[2 − 6 cos(2θ12) + cos(2θ12 − 2θ13) − 6 cos(2θ13)

+ cos(2θ12 + 2θ13)] csc(θ13) sec(θ12) + 16 sin(θ12) cot(θ23) − 16 sin(θ12) tan(θ23)
})

×
(

− 2 cos(δ − φ1

2 ) cos(θ12) sin(θ13) cos2(θ23) + cos(φ1

2 ) sin(θ12) sin(2θ23)
)

− m2 + m3

4(m2 − m3)

(
[−5

2 + 3
2 cos(2θ12) − 1

4 cos(2θ12 − 2θ13) − 1
2 cos(2θ13) − 1

4 cos(2θ12 + 2θ13)]

× csc(θ12) csc(θ13) sec(θ13) sin(δ − φ2

2 ) + cos(θ12) sec(θ13)

× [− cos(φ2

2 )(−3 + cos(2θ13)) cot(θ12) csc(θ13) sin δ

− 4 sin(φ2

2 ) cot(θ23) + sin(φ2

2 ) cos δ(−3 + cos(2θ13)) cot(θ12) csc(θ13) + 4 sin(φ2

2 ) tan(θ23)]
)

×
(

− 2 cos(φ2

2 ) cos(θ12) cos(θ13) sin(2θ23)

− 2 cos(δ − φ2

2 ) sin(θ12) sin(2θ13) cos2(θ23)
))

. (E.3)
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