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Summaries

Francais

Le travail de thése présenté ici vise a caractériser et simuler les forces mé-
caniques impliquées dans le processus de fermeture dorsale chez 'organisme
Drosophila melanogaster. Ce processus est embryonnaire: il est I'un des
événements participant a la formation de la larve. En particulier, la ferme-
ture dorsale participe a I'acquisition par 'embryon de sa forme finale par le
biais de forces générées par de tissus cellulaires. Ainsi, 'objectif du travail
présenté ici est d’approfondir nos connaissances sur la mécanique des tissus,
ainsi que sur leur role dans 'embryogenése.

Les tissus impliqués dans la fermeture dorsale sont ’épiderme et I'amnioséreuse.
A ce stade du développement, I’épiderme entoure quasiment tout ’embryon.
Cependant, I'amnioséreuse couvre encore une zone située du coté dorsal, ap-
pelée trou dorsal. La fermeture dorsale consiste donc en la fermeture de ce
trou dorsale, ainsi qu’en la jonction des parties latérales de I’épiderme, dans
un processus similaire a la cicatrisation.

Afin de réaliser la jonction de I’épiderme au niveau de la ligne dorsale, celui-
ci doit étre tracté. Cette traction est réalisée a la fois par I'amnioséreuse
couvrant le trou dorsal, et par la rangée la plus dorsale de cellules de
I'épiderme (Leading Edge cells). Celles ci participent a la fermeture de
deux maniéres. D’une part, ces cellules forment un cable d’actine entourant
I’ensemble du trou dorsal, qui, en se contractant, participe a réduire I’aire
de 'amnioséreuse. D’autre part, les cellules du Leading Edge émettent des

protrusions, qui s’arriment, au Leading Edge opposé, et le tractent vers elles,
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jusqu’a ce que les deux parties de I’épiderme fusionnent. Ces protusions
ayant une taille limitée, la traction et la fusion (appelées aussi zipping) ne
sont possibles qu’aux extrémités antérieures et postérieures du trou dorsal
(appelées canthi), 1a o la distance entre les deux leading edge est suffisam-
ment petite.

Par ailleurs, 'amnioséreuse tracte elle aussi ’épiderme vers la ligne dorsale.
Elle produit des filaments d’actine et de la myosine (un moteur moléculaire),
qui forment un réseau contractile au sein des cellules leur permettant de tirer
sur les cellules du leading edge. Par ailleurs, les cellules de 'amnioséreuse
voient laire de leur c6té supérieur (coté apical) varier de maniére périodique.
Bien que ces variations d’aire aient été largement décrites, leur role dans la
fermeture dorsale reste inconnu.

L’objet de cette thése est d’améliorer notre compréhension des concepts mé-
caniques impliqués dans ces oscillations, et de construire un modéle physique
représentant ces mouvements. Le travail présenté ici étudie aussi les mou-
vements des cellules du leading edge, dans le but de comprendre 'effet du
cable d’actine sur la dynamique de la fermeture dorsale.

Afin d’étudier les mouvements des cellules et des tissus impliqués dans la
fermeture dorsale, un algorithme permettant de détecter les contours des
cellules, leur position ainsi que celle de leurs vertex (points de jonction entre
trois & quatre cellules) et de suivre leur déplacements au cours du temps a été
développé. Un interface utilisateur a été construit pour faciliter I’ajustement
des paramétres permettant cette détection, ainsi que la correction d’erreurs
éventuelles.

Différents modéles dynamiques ont ensuite été construits, prenant en compte
les différents comportements mécaniques que les cellules peuvent avoir. Ces
modéles ont été construits selon 'approche lagrangienne. Les systémes
d’équations dérivant des équations d’Fuler-Lagrange ont été résolues numérique-
ment, et leurs prédictions ont été comparées aux données issues de I'algorithme
de détection selon ’approche des moindres carrés. Les résultats ont été
validés en testant les résidus grace a la fonction d’autocorrélation.

Finalement, la dynamique du leading edge a été étudiée en caractérisant les
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mouvements des cellules situées a I'interface entre ’épiderme et ’amnioséreuse,
grace a l'algorithme de détection. Les dynamiques d’embryons non mutés
(wild-type) ont été comparées a celles d’embryons portant une mutation af-
fectant spécifiquement le cable d’actine.

Les résultats présentés dans cette thése nous permettent de mieux compren-
dre les processus mécaniques impliqués dans les oscillations des cellules de
I’amnioséreuse. Ils nous donnent aussi des indices sur leurs caractéristiques
biologiques. Ils nous permettent enfin de mieux appréhender le role du cable

d’actine dans ce processus proche de la cicatrisation.
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Italiano

Il lavoro di tesi presentato qui cerca di caratterizzare e simulare le forze mec-
caniche implicate nel processo di chiusura dorsale dall’organismo Drosophila
melanogaster. Questo processo € embrionale: é uno dei avvenimenti che
partecipano alla formazione della larva. In particolare, la chiusura dorsale
partecipa all’acquisizione per I’embrione della sua forma finale attraverso le
forze generate da tessuti cellulari. In tal modo, 'obiettivo del lavoro presen-
tato qui é di approfondire i nostre conoscenze sulla meccanica dei tessuti,
cosi come sul loro ruolo nell’embriogenesi.

I tessuti implicati nella chiusura dorsale sono ’epidermide e ’amniosierosa.
A questo stadio dello sviluppo, I'epidermide cinge quasi tutto ’embrione.
[’amniosierosa copre tuttavia ancora una zona localizzata del lato dor-
sale, chiamato buco dorsale. La chiusura dorsale consiste nella chiusura
di questo buco dorsale, cosi come nella congiunzione delle parti laterali
dell’epidermide, in un processo similare alla cicatrizzazione.

Per realizzare la congiunzione dell’epidermide al livello della linea dorsale,
questo deve essere trainato. Questa trazione é realizzata al tempo stesso
dall’amniosierosa che copre il buco dorsale, e per la fila piu dorsale di cel-
lule dell’epidermide, le Leading Edge cells. Queste partecipano alla chiusura
di due modi. Da una parte, queste cellule formano un cavo di actine che
cinge l'insieme del buco dorsale che, contrarsisi, participio a ridurre I'area
dell’amniosierosa. D’altra parte, le cellule del Leading Edge emettono dei
protrusioni che si stivano al Leading Edge oppositore, ed li tirano verso
esse, finché le due parti dell’epidermide fondono. Questi protrusioni hanno
una taglia limitata. Cosi, la trazione e la fusione, chiamate tanto zipping,
sono possibili solamente alle estremita anteriori e posteriori del buco dorsale,
chiamate canthi, la dove la distanza tra i due leading edge ¢ sufficientemente
piccola.

Peraltro, ’ammniosierosa tira lei anche ’epidermide verso la linea dorsale.
Produce dei filamenti di actine e del myosine, un motore molecolare che

forma una rete contrattile in seno alle cellule. Questa rete permette loro
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di tirare sulle cellule del leading edge. Peraltro, le cellule dell’amniosierosa
vedono ’area del loro lato superiore, lato apicale, variare in modo periodico.
Sebbene queste variazioni di area siano state descritte largamente, il loro
ruolo nella chiusura dorsale resta sconosciuto.

L’oggetto di questa tesi & di migliorare la nostra comprensione dei concetti
meccanici implicati in queste oscillazioni, e di costruire un modello fisico
rappresentante questi movimenti. Il lavoro presentato qui studia anche i
movimenti delle cellule del leading edge, nello scopo di comprendere 'effetto
del cavo di actine sulla dinamica della chiusura dorsale.

Per studiare i movimenti delle cellule e dei tessuti implicate nella chiusura
dorsale, un algoritmo che permette di scoprire i contorni delle cellule, la loro
posizione cosi come quella dei loro vertici (punti di congiunzione tra tre a
quattro cellule) e di seguire i loro spostamenti durante il tempo é stato svilup-
pato. Un interfaccia utente é stato costruito per facilitare I’adeguamento dei
parametri che permettono questa localizzazione, cosi come la correzione di
errori eventuali.

Differenti modelli dinamici sono stati costruiti poi, prendendo in conto i
differenti comportamenti meccanici che le cellule possono avere. Questi
modelli sono stati costruiti secondo 'approccio di Lagrangia. I sistemi di
equazioni che derivano delle equazioni di Euler-Lagrange sono stati risolti
numericamente, e le loro predizioni sono state paragonate ai dati generati
dell’algoritmo di localizzazione secondo ’approccio degli minimi quadrati. 1
risultati sono stati convalidati provando i resti grazie alla funzione di auto-
correlazione.

Finalmente, la dinamica del leading edge ¢é stata studiata caratterizzando i
movimenti delle cellule localizzate all’interfaccia tra ’epidermide e ’amniosierosa,
grazie all’algoritmo di localizzazione. Le dinamiche di embrioni non mutante
(wild-type) sono state paragonate a queste di embrioni che portano una mu-
tazione che affetta specificamente il cavo di actine.

[ risultati presentati in questa tesi ci permettono di comprendere meglio i
processi meccanici implicati negli oscillazioni delle cellule dell’amnioséreuse.

Ci danno anche degli indizi sulle loro caratteristiche biologiche. Ci perme-
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ttono infine di temere meglio il ruolo del cavo di actine in questo processo

vicino alla cicatrizzazione.

English

The work presented here aims at characterizing and simulating the me-
chanical forces involved in the process of Dorsal Closure in the organism
Drosophila melanogaster. This process is embryonic: it is an event partici-
pating in the formation of the larvae. In particular, Dorsal Closure partici-
pates in the acquisition of the final form of the embryo. Therefore, the work
presented here aims at fathoming our knowledge on tissues mechanics, as
well as their role in embryogenesis.

The tissues involved in Dorsal Closure are the epidermis and the amnioserosa.
At this stage of development, the epidermis surrounds almost all the embryo.
Nevertheless, the amnioserosa still covers a large area of the dorsal side called
dorsal hole. Hence, Dorsal Closure aims at shutting this hole and joining
the lateral sides of the epidermis, in a process similar to wound healing.

In order to fuse the two sides of the epidermis on the dorsal line, the epider-
mis must be drawn dorsalward. This movement is driven by the amnioserosa
on the one hand, and by the dorsalmost row of the epidermis (called Lead-
ing Edge cells) on the other hand. The latter participate in Dorsal Closure
in two ways. First, the Leading Edge cells form atranscellular Actin Ca-
ble around the dorsal hole. The cable, contracting, will reduce the area of
the dorsal hole covered by te amnioserosa. Second, the Leading Edge cells
emit protrusions that will attach to the opposite Leading Edge and drag it
toward themselves, untill the two sides of the epidermis fuse. These protru-
sions have a limited range, hence the dragging and fusion only take place at
the anterior and posterior ends of the dorsal hole (called canthi), where the
distance between the two Leading Edges is small enough.

The Amnioserosa also drags the epidermis toward the dorsal line. Its cells
produce actin filaments and myosin (a molecular motor), that will form a

3

contractile network within the cells. Interstingly, Amnioserosa cells see the
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area of their top side (apical side) vary in a periodic way. Although these
variations have been widely studied, their role in Dorsal Closure remains
unknown.

This PhD aims at improving our knowledge of the mechanical concepts in-
volved in these oscillations, and to build a physical model representing these
movements. The work presented here also studies the movements of the
Leading Edge cells, in order to understand the effect of the Actin Cable on
the dynamics of Dorsal Closure.

In order to study the cells movements and the role of the tissues involved
in Dorsal Closure, an algorithm was developped, allowing to detect the cells
edges, their position, as well as those of their vertices (multiple junction
between three or four cells) and to track them over time. A user interface
was also developped, in order to facilitate the adjustment of the parameters
allowing the detection, as well as the correction of possible errors.

Various dynamical models were then built, taking into account the possi-
ble mechanical behaviors cells may have. These models were built following
the lagrangian approach. The systems of equations deriving from the Euler-
Lagrange equations were numerically solved, and their predictions compared
to the biological data extracted thanks to the algorithm presented earlier,
following the least square approach. The model validation was performed
thanks to the autocorrelation function test.

Finally, the Leading Edge dynamics was studied characterising the cellu-
lar movements at the interface between the epidermis and the amnioserosa.
Wild type embryos dynamics were compared to those of mutated embryos
showing specific defects in the Actin Cable formation.

The results presented in this manuscript allow a better understanding of the
processes involved in in Amnioserosa cells oscicllations. They also give clues
on their biological characteristics. Finally, they assess the role of the actin

cable in this process similar to wound healing.






Chapter 1
Introduction

This doctoral thesis aims at improving our understanding of biological phe-
nomena with mean coming from physics. The system chosen for the fol-
lowing work is Dorsal Closure, a developmental event occurring during the

embryogenesis of the model organism Drosophila Melanogaster.

1.1 The Drosophila Melanogaster model

A model organism is an organism extensively studied to understand biologi-
cal phenomena, viewing to extend these discoveries to other organisms, and
in particular, to humans. Drosophila Melanogaster is a well-known model

organism used in laboratories for over a century.

1.1.1 A brief history of flies in science
First uses of the fruit fly

Scientists began to use Drosophila Melanogaster, also called fruit fly, or vine-
gar fly, for experimental purposes in the first decades of the X X' century.
Although Charles W. Woodworth is credited to be the first to extensively
breed fruit flies, and for suggesting that these species could be used for ge-

netic studies, the first experimental studies on the Drosophila Melanogaster
13



14 CHAPTER 1. INTRODUCTION

as a model organism began in 1909 under the direction of Thomas Hunt

Morgan at Columbia University.

Thomas Morgan’s early work on drosophila focused on sex determining
factors [1], [2]. At this time, the Sutton-Boveri theory, or chromosome the-
ory of inheritance, developed by Teodor Boveri and Walter Sutton in the
first years of the X X" century, was slowly settling. Chromatin was first
observed by Walther Friedmann in 1879, who later discovered the pairs of
chromosomes. Mitosis was described during the following decades, meio-
sis discovered in 1905 by J.B. Farmer and J.E.S. Moore, and XY the sex-
determination system was first suggested by E.B. Wilson and Nettie Stevens

the same year [3].

T.H. Morgan gave a proof of this sex-determination system thanks to the
drosophila model. He crossed white-eyed male fruit flies with red-eye female
flies, and then the 100% red-eyed progeny together, in the first test cross
ever performed with Drosophilas. While Mendel’s laws predicted a gender-
independent repartition of red and white-eyed flies, Morgan got every 100%
of the females with red eyes, and an equal repartition of red and white eyes
in males, as shown in Figure 1.1. These ratios can only be understood con-
sidering that the eye color character is transmitted through the "accessory

chromosomes" proposed by Wilson and Stevens.

Let us consider that males carry only one X chromosome, and an other
one called Y not accounting for eye color, while females carry two X chromo-
somes. Let the white-eye allele be recessive. Hence, crossing red-eye females
with white-eye males as shown in Figure 1.2a, one expects every fly in the
first generation of the test cross to have red eyes. Female progeny will carry
both the red-eye X chromosome (X*) and the white-eye X chromosome
(X™). The white eye allele being recessive, they will have red eyes. Males,
on the other hand, will carry the Y chromosome given by the father, not

determining eye color, and the X chromosome from the mother: X *. At this
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Outcome
Cross
Expected Phenotypes Observed Phenotypes
P1 Red 2 x P1 White F1 = All Red F1 = All Red
50% Red 2
75% Red © and 4
o 25% Red &
F1Red 2 x F1Red g 25% White © and 3
25% White &

Figure 1.1: FExpected test cross results according to Mendel laws versus

Morgan’s results. Morgan’s results show a gender-related bias. [4]

point, statistics do not show any difference with Mendel law’s predictions.

Differences arise with the next generation (Figure 1.2b): crossing X X"V
females with X 1Y males, Morgan obtained a progeny where every female
had red eyes: they inherited the X chromosome from their father, and
thus had red eyes, regardless of the chromosome given by the mother. Males
would receive the Y chromosome from their father, and hence, their eye
color would be determined by the chromosome they received from their
mother: 50% chances to receive the X+, 50% to receive the X"'. Mendel
laws couldn’t explain these results: they are bound to somatic (non sex-
ual) chromosomes. These statistics could only arise from the idea that sex
is determined by "Accessory chromosomes", having a different inheritance
pattern. Just by watching Drosophilas eye color, Morgan was able to de-
termine the existence, and the importance in gender determination, of these

sexual chromosomes.

Later on, still working with Drosophila, Morgan studied recombination
and genetic linkage, i.e. the tendency of characters to be transmitted to-
gether. Gathering data on genetic linkage, and considering that this linkage
was due to a physical proximity on chromosomes, he was able to build the
first genetic maps representing the position of genes on chromosomes [5]. He

received the first Nobel Prize rewarding a work on Drosophila in 1933, "for
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Male Gametes

xw
X+ XX Xty
Female
Gametes X+ X XW Xty

(a) Cross table of Morgan’s first cross.

Male Gametes

X+ Y
Female X xexe Xy
Gametes xw XExw XWY

(b) Cross table of Morgan’s second cross.

Figure 1.2: Morgan’s crosses tables for sexual chromosomes. X" stands
for the chromosome carrying the recessive white-eye allele, and X' for the

chromosome carrying the dominant wild type red-eye allele. [4]
his discoveries concerning the role played by the chromosome in heredity".

These studies were the first step in the building of the knowledge of both
drosophila’s genetic, and the genetic toolbox that makes the fruit fly such a

handy lab animal nowadays.

Other major discoveries through fruit flies

T.H. Morgan’s outstanding results with the Drosophila model subsequently
encouraged other scientists to use this species for experimental biology. Since
then, many great scientific advances stem from works on the fruit flies. Only
taking into account Nobel Prizes, four other major discoveries have to be

remembered.

Hermann Joseph Muller (one of Thomas Morgan’s students) was awarded
the Nobel Prize of Physiology and Medicine in 1946 "for the discovery of the
production of mutations by means of X-ray irradiation", work published in
1927. Irradiating flies with various doses of X-rays, he found a correlation

between the amount of radiation received and the number of lethal muta-



1.1. THE DROSOPHILA MELANOGASTER MODEL 17

tions appearing in flies. He later communicated on the dangers of radiations
for humans. Later on, his work also allowed scientists to generate genetically

modified flies, for instance to assess the effect of mutated genes [6].

In a paper released in 1980 [7], and later works [8], Christiane Nusslein-
Volhard and Eric F. Wieschaus used the full potential of Drosophila in ex-
perimental biology: they produced mutations in flies DNA randomly using
Ethyl methanesulfonate, and analyzed the effects of these mutations on over
40 000 flies lines in just three years of time. They were then able to identify
which gene was mutated for each embryonic defect they monitored. They
discovered that of the 13 000 genes in Drosophila’s genome, 5000 were im-
portant for embryonic development, and 140 were critical. They identified
numerous genes that are critical for embryonic shape establishment, not only
in Drosophila, but also in all Metazoans (animals). With this screen, they
unveiled a large part of the mechanism allowing multicellular organisms to
form from one single cell. For this work, they were awarded the Nobel Prize
in 1995 together with Edward Lewis, "for their discoveries concerning the

genetic control of early embryonic development".

Two others Nobel Prizes awarded findings on Metazoan systems were due
to Drosophila. In 2004, Richard Axel and Linda Buck, "for their discoveries
of odorant receptors and the organization of the olfactory system" - a work
mostly performed on rats though. And in 2011, Jules Hoffman, Bruce Beut-
ler and Ralph Steinmann for their discoveries around innate and adaptive
immunity. The former working on Drosophila, and the two latter on mice,
their work unraveled a shared system to protect both insects and mammals
against microbes. The two formers, in particular, identified a family of genes
responsible for anti-fungal and anti-microbian reactions both in Drosophila

and Mammals.

These works made the fruit flies an organisms of a great importance

in Biology. This non-exhaustive list of findings shows how much can be
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learned from this organism. Used at first because of its breeding conve-

niency, drosophila has now become a major model organism.

A convenient fly

There are several reasons why the fruit flies are used on a large-scale in
laboratories. First of all, Drosophila melanogaster is very convenient on the
context of a laboratory. They are cheap to feed, can be stocked in large
amounts in small spaces, and are vastly bred, since their generation time is

only two week.

This short generation time offers great possibilities in the genetic field.
Together with the fact that fruit flies have only four pairs of chromosomes
(three autosomal and one sexual), that female have a very high fecundity
(roughly 100 eggs per day), it enables the geneticists to generate great
amounts of lines (producing mutations or insertions for instance), and to

study them over several generations, in a reasonable amount of time.

Interestingly, although Drosophila is evolutionarily more distinct from
human than other model organisms, such as mouse or rat, it still shows a
astonishing genetic similarity with mammalians in general. In fact, 75%
of the genes involved in human disease have homologs in Drosophila, and
50% of the proteins produced by the fruit flies cells match a protein found
in mammals. In view of this, Drosophila comes very handy, since they are
much more convenient for experimentations than other species closer to hu-

mans, while they still show a satisfactory genetic similarity with us.
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1.1.2 Drosophila’s development
Drosophila’s life cycle

Drosophila life and reproduction cycle is short. Under ideal conditions
(25°C), their development is achieved from one generation to the next in
10 days. The egg, under such conditions, achieves its embryogenesis in ap-
proximately 12 to 15 hours, and then hatches. The resulting larva develops
during 4 days, molding twice in the process, one and two days after hatching.
The larva will then encapsulate in the pupa, and undergo metamorphosis
for about four days. The adult fly will then emerge, and it will take another
8 to 12 hours for the females to become fertile. Drosophila are then ready

to start another life cycle.

Drosophila’s embryogenesis

In what follows, we will focus on particular features of Drosophila embryo.
We will describe briefly the fruit fly’s egg maturation. Pictures of a few

embryonic stages are presented in Figure 1.3.

Drosophila embryogenesis is divided in seventeen stages regrouping every
event necessary to go from the unicellular state right after fertilization to
the ready-to-hatch larva [9,10].

During the first four stages, the embryo undergoes thirteen nuclear divisions,
with no membrane division. The embryo becomes a huge cell containing a
great number of nuclei. The embryo also experiences some morphological
changes (buds appearing and disappearing on the membrane, nuclei posi-
tioning at the periphery). Cell walls start to appear at stage 5, in a process
called Cellularization. Midventral cells are also preparing for their later in-

vagination. These stages last altogether roughly three hours.

Midventral cells invagination starts at stage six: ventral cells enter the
gastrulation process, forming a tissue called the ventral furrow. Mesoderm

and endoderm originate from these cells. A groove also appears at the an-
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terior part, marking the separation with the future head. At stage seven,
precursor tissues to the gut also invaginate. At stage 8 to 10, precursor
cells to the digestive system keep on invaginating, while the germ band (an
embryonic tail) is formed. The germ band is a ventral band of cells, that
expands and folds at the posterior end of the embryo, to eventually colonize
the dorsal side. Driven by a convergence and extension phenomenon (cells
intercalate to increase the number of cell "columns", and then expand along
the anterio-posterior axis), germ band eventually becomes a u-shaped struc-
ture surrounding the Amnioserosa. In the beginning of germ band extension,
the yolk sac (a nutrientfull bag) is also formed, and cells precursors to the
neural system (neuroblasts) start to multiply. At this point, the embryo has

approximately reached its fifth hour of development.

During the eleventh stage, the embryo experiences a major growth phase,
while parasegmental grooves start to form, and mandibula, labium and max-
illa begin to appear. At this stage, the Germ Band has reached its maximal

extension.

At stage twelve, the Germ Band starts to retract, due to its traction
by Amnioserosa, and by a lengthening of germband cells along the Dorso-
Ventral axis, and a shortening in the Antero-Posterior axis. The germ band
hence widens Dorso-Ventrally during the process, and the Amnioserosa cells,
which were elongated at early stage twelve, widen Antero-Posteriorly. The
Germ Bands movement causes one part of the gut (hindgut) to relocate at
the dorso-posterior part of the embryo, while the two other parts (anterior
and posterior midgut) fuse. The epidermal segments also form during the

process.

At stage 13, the Germ Band retraction is complete, leaving the Am-
nioserosa to cover the dorsal hole previously occupied by the Germ Band.
The Head Involution, aiming at covering the head with epidermis, and Dor-

sal Closure, both start during stage thirteen. Dorsal Closure consists in
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achieving the junction between the left and right sides of the epidermis, sep-

arated by the Amnioserosa at the time, on the dorsal midline of the embryo.

During stage fourteen, these two event continue, while the anal plate
moves ventrally from the posterior tip and the spiracles (external tracheal
apertures) become evident. At early stage fifteen, Dorsal Closure and Head
Involution are finished, and the guts have achieved a full fusion, and now
enclose the yolk sac. During stage 16, the epidermis reaches the full seg-
mentation that will be present in the larva. This segmented body plan is
important: the segments formed during embryogenesis are closely related
to those of the adult fly, and each adult segment is specialized in forming
particular structures (wings, legs...). At stage 17, the trachea are filled in

with air, and the larva hatches.

The Drosophila Embryonic Stages were presented here in a short and
simplified description of some of the processes required to form a healthy
larva, i.e. to perform a proper development. Many events of a great im-
portance weren’t thoroughly introduced, the goal of this paragraph being
to give an overview of Drosophila’s embryogenesis. In their globality, these
processes are of many types, and serve many purposes, from the acquisition
of cell and tissue identity to the shaping of the future larva. In the next
section, we will present an event belonging to the latter type, event which

is the subject of study of this thesis: Dorsal Closure.

1.2 The actors of Dorsal Closure

As presented earlier, Dorsal Closure is an embryonic event occurring between
stage 13 and 15, i.e. approximately between the tenth and the twelfth hour
of development. It aims at fusing the lateral sides of the epidermis on the
dorsal midline, in a process similar to wound healing. To reach a proper

closure, and in order to achieve an accurate pairing of epidermal segments
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Figure 1.3: Table of several embryonic stages. Pictures taken thanks to

electronic microscopy. [11]
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(each segment has to fuse with the corresponding one on the other side of

the epidermis), several motors of closure are required.

There are three of them:

e The Zipping: at the Canthi (i.e. the antero-posterior extremities of
the eye-shaped Dorsal Hole), protrusions (filopodia) sent by the dorsal-
most epidermal cells (Leading Edge cells) of both sides of the epidermis
fuse with the opposite Leading Edge, and pull both sides of the epi-
dermis toward each other. Filopodia also allow segment recognition.
They only fuse with cells of the same segment than the cell from which

they originate, allowing to achieve a proper segment matching [12].

e The Actin Cable: a transcellular structure produced by the Leading
Edge cells, made of actin (a filamentous protein) and non-muscular
Myosin II (a contractile protein). The Actin Cable surrounds the whole

dorsal hole, and, contracting, tends to reduce the hole’s surface.

e The Amnioserosa: Amnioserosa is an extra-embryonic tissue (i.e. a
tissue that will not form any tissue nor organ in the larva) that covers
the Dorsal Hole. Forming acto-myosin complexes, Amnioserosa cells
pull both sides of the epidermis toward the dorsal midline. The tissue

is eliminated during the process through area reduction and cell death.

Those structures and tissues are of great importance for the proper
achievement of Dorsal Closure. In the following sections, we will detail

their roles and known behaviors.

1.2.1 The Zipping

The zipping is most important in the last steps of Dorsal Closure, when
epidermal cells are close enough to each other. FEvery cell of the Leading
Edge sends protrusions, called filopodia, toward the center of the dorsal
hole. Filopodia have a limited range, and hence manage to connect with the

opposite Leading Edge only when it is close enough, i.e. at the canthi, or
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toward the end of dorsal closure. Therefore, zipping is mainly responsible of
the eye-shaped form of the dorsal hole: the dorsal edge of the epidermis is

convex at the extremities, and concave in its center.

The zipping also serve a second function: segment recognition. Indeed,
epidermal cells have various identities, and the location of these identities
follows a specific spatial pattern. It is visible on the last three pictures of
Figure 1.3 that the epidermis of the embryo has areas separated by grooves:
they are the segments. These segments’ appearance is due to complex gene

interactions during embryogenesis.

Segment formation begins with the diffusion of maternal factors like bi-
coid or caudal from the anterior and posterior extremities of the embryo and
inward. These factors activate the transcription of a group of genes called
"Gap genes" (hunchback, knirps for instance) coding transcription factors.
Each of these gap genes encompass wide zones of the epidermis, covering
areas that will give rise to several segments. These genes act as regulators
for each other, as well as for another set of genes: the pair-rule genes. The
pair-rule genes (such as even-skipped or hairy) are present in seven stripes
on the embryo, each stripe covering every other segment. They are to set the
transcription of another class of genes: the segment polarity genes (wingless,
hedgehog, engrailed...). Most of these genes are expressed in the fourteen
pre-segmentary stripes. As their names suggests, they give a polarity to
the segments, i.e., between the grooves separating each segment, different
cell types are found in the anterior and posterior halves. The result of this
cascade is an embryo with spatially repeated expression patterns, and cell
identities [13].

Therefore, different cellular identities are present in the epidermis, with
a spatially periodic pattern. In addition, each segment will have a particular
purpose to form the adult fly. On one will be formed the wings, on another

one pair of legs... Hence, it is important that, when joining both sides of the



1.2. THE ACTORS OF DORSAL CLOSURE 25

C
r

Figure 1.4: Still images of a live movie of an embryo expressing Engrailed-
Gal4, together with UAS-Moesin-RFP. In red, the sub-segmental compart-

ments expressing the segment polarity gene Engrailed. In (a), filopodia are
send over the dorsal hole but don’t find any corresponding filopodia to fuse
with. In (b) and (c), one can see filopodia meeting over the dorsal hole,

and then pulling the segments toward each other to perform fusion ((d) and

(e)- [12]

epidermis, each segment fuses with the corresponding one on the other side
of the epidermis. The zipping serves this purpose. Indeed, when exploring
the space in front of them, the filopodia only fuse with other cells or other
filopodia of the same cell type and segment than themselves [14|. An example

of cell matching is shown in Figure 1.4.

1.2.2 The Actin Cable

Another effector of Dorsal Closure is the Actin Cable. It is a transcellular
structure of non-muscular Myosin II, and actin filaments. The Actin Cable
is located at the dorsal-most edge of the Leading Edge cells, and goes from
a cantus to another and further, in the cells that used to be part of the

Leading Edge, before they fused with the opposite edge [16,17].
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Figure 1.5: Still confocal image of an embryo expressing actin::GFP,
displaying the Actin Cable at the border between the Amnioserosa and the
Epidermis, as well as the filopodia. [15]

First discovered in the early nineties, it plays a significant part in clo-
sure’s dynamics. Indeed, when the actin cable is disrupted (by laser cuts, or
genetic impairment), the closure processes in a slower manner [18|. It was
also found that the structure of the Leading Edge cells was impared [19].
When the cable is present, the Leading Edge cells display a shape stretched
dorso-ventrally, while when it is absent, the stretching is less visible, and the

orientation of their longest axis is rather random.

Being an important actor of closure, the effect of the Actin Cable on
closure dynamics has extensively been studied. Several studies assessed for
instance the mechanisms underlying its appearance. The Jun-Kinase and
Dpp pathways are known to be involved in the differentiation of the first
dorsalmost rows of epidermal cells [20-22]. Yet, the acquisition of polarity
they induce is not sufficient for the Actin Cable to appear. A step gradient
of Echinoid, a transmembranar protein, is also required between the Am-
nioserosa and the Epidermis [23]. This gradient was shown to appear at

the onset of Dorsal Closure, when Amnioserosa stops to produce the Echi-
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noid protein, and coincide with the appearance of the Actin Cable. When
Amnioserosa cells express ectopically Echinoid, causing the step gradient to

disappear, the Actin Cable does not form.

Nevertheless, although the impairment of Actin Cable have a significant
impact on the closure speed, the affected embryos still manage to achieve
a complete closure [18]. The Amnioserosa is in fact able to achieve Dorsal
Closure by itself [24].

1.2.3 The Amnioserosa

Figure 1.6: Still confocal image of an embryo expressing DE-

Cadherin::GFP, showing the Amnioserosa at the beggining of Dorsal Closure,

surrounded by the epidermis.

The Amnioserosa is an extra-embryonic tissue, i.e. it is a tissue present

in the embryo, but that will not form any structure in the living larva, and
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therefore needs to be removed by the end of the embryogenesis.

The Amnioserosa is a squamous (i.e. made of wide, flat cells) epithe-
lium. It originates from the cellular blastoderm, an epithelium surrounding
the whole embryo at stage five, right after Cellularization. At stage six, dur-
ing gastrulation, the Amnioserosa is formed, and partly covers the central
dorsal part of the embryo. During Germ Band elongation, the Amnioserosa
and its cells are stretched, forming a long and narrow tissue joining each
sides’ base of the Germ Band [10], as it is visible in the second picture of the
right panel in Figure 1.3. During Germ Band retraction, the amnioserosa
pulls the base of the Germ Band toward the central dorsal part of the em-
bryo, participating in its retraction [25]. When this process is over, the
Amnioserosa is made of flat, wide cells, surrounded by the epidermis, and
its cells start to pulse: their apical area undergoes periodic variations, driven
by the alternate aggregation and disaggregation of an acto-myosin complex
at their center. The apical area of Amnioserosa cells oscillates in antiphase
with the amount of central Myosin IT (Figure 1.7, panels A, B & C, [26,27].).

Dorsal Closure starts by the time Amnioserosa cells start to pulse.

Interestingly, some of the amnioserosa cells experience apoptosis during
Dorsal Closure. These events, triggered by mitochondrial Reactive Oxygen
Species |28|, are rather rare (around 10% of Amnioserosa cells undergo apop-
tosis), but yet, they account for an increase of 40% of the closure speed. This
process was called Apoptotic force, and is thought to increase the tension
accumulated in the Amnioserosa. Indeed, the cells surrounding the dying
cell show a stretch toward that dying cell, and this stretch eventually disap-
pear. Hence, Toyama et al. [29] propose that tension is generated by the loss
of cells, is first transmitted to their nearest neighbor and then throughout

the whole tissue, therefore fastening the Dorsal Closure.

The Amnioserosa plays a part in the Germ Band retraction, as a tissue

able to exert a pulling force on the Germ Band [25,30|. The participation
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Figure 1.7: A & B: plots of the apical radius of two amnioserosa cells, ver-
sus the intensity of central Myosin II Huorescence. C: Mean values of apical
mean radius, versus Myosin 11 intensity. D: Still images of a confocal movie,
of an embryo expressing a fusion of Myosin II Heavy Chain (Moesin) with
GFP, together with a fusion of Myosin II Regulatory Light Chain (Spaghetti
Squash) with mCherry (a red fluorescent protein). [27]
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Figure 1.8: A: Amnioserosa advancement: the width at a given time is
subtracted to the original width. In black, the control cases, in white, em-
bryos showing no cell death, and in grey embryos with an increased cell
death. B: Closure speeds in control embryos (in black), in embryos express-
ing p35 (an inhibitor of apoptosis, in white), and in embryos expressing grim,

a gene triggering apoptosis, in grey. [29]

of the Amnioserosa is required to achieve the process, even though it leads
to the disappearance of the tissue. In fact, it was recently shown that with-
out the Amnioserosa, the Dorsal Closure cannot be completed, making this
tissue the most important in the closure [24, 31].

The force exerted by the Amnioserosa is produced by a network of Actin
and non-muscular Myosin II present at the center (in a transient manner),
and at the periphery of each cell (in a permanent manner) [27]. Indeed,
the removal of Myosin II specifically in the Amnioserosa leads to a Dorsal
Open phenotype [31]. In addition, Dorsal Closure is thought to display two
distinct phases: an early phase (Slow phase), and a later phase (Fast phase).
In the Fast phase, the density of Myosin II in amnioserosa cells is dramati-
cally increased compared to the early phase (Figure 1.9). Yet, it is not clear
whether this increase in density coincide with the fastening of Dorsal Clo-
sure. Anyway, the closure speed is dramatically increased in a second phase.
Even though the cells keep on oscillating in this second phase, they show a

decrease of their mean area. The apical area of the peripheral Amnioserosa
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Overlay Phospho-myo

Figure 1.9: Immuno-stained embryos in the early steps of Dorsal Closure
(top row), and in the later steps of Closure (bottom row). Myosin II is
stained in green, and Cadherin in red. [27]

cells also shrinks and their oscillations stop, but faster than the rest of the
cells [32].

It is also interesting to note that most of the Amnioserosa dynamics is con-
centrated at the apical side of the cells. Indeed, when cells are cut at their
basal extremity, no cell relaxation is observed, while huge relaxations are
observed when the apical side is cut [33]. These results suggests that most
of the tension responsible for the contribution of Amnioserosa cells to Dorsal

Closure originates from their apical extremity.

This polarity, with accumulation of MyosinlII in the apical part, is a recur-
ring feature during embryogenesis. It is responsible for instance of the apical
constriction, and hence of tissue bending, for instance during mesoderm in-
vagination in Drosophila |34]. Periodic variations of Myosin II concentration
were also reported during another event of Drosophila embryogenesis. In-
deed, during Germ Band Elongation, epidermal cells also display Myosin II
pulses at the center of their apical area [35]. Interestingly, when these pulses

coincidate with a transient increase of Myosin II intensity at the periphery
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of the cell, the cell shrinks and stays in this contracted state, while when
no peripheral pulse is observed, the cell expands back to its original size.
During Dorsal Closure, we did not monitor any peripheral pulse, suggesting
that Amnioserosa cells display a behavior of the second type that is when
cells are able to regain their original size. Yet, some cells shrink and stop
ocillating early in Dorsal Closure (the peripheral Amnioserosa cells) and it
would be interesting to assess the putative variations of peripheral Myosin
IT in these cells in order to determine whether their shrinkage is related to
that observed during Germ Band Elongation.

Dorsal Closure is a morphogenetical event driven by forces generated by
cells and tissues. This process involves cellular and tissular mechanics. Dor-
sal Closure is also important for the shaping of the embryo. And, most im-
portant, it is a process highly similar to Wound Healing in animals [36, 37,
Eyelid formation in mammals [15], or Epiboly formation in Funduli [38].
Dorsal Closure is then a highly interesting system when it comes to study
the importance of mechanics in Biology, providing many possibilities to ex-
trapolate results to other species, and in particular to mammals. Therefore,
several studies have already aimed at reaching a better understanding of
Dorsal Closure mechanics, and at representing the closure’s movement by

physical and mathematical means.

1.3 Presenting previous models of Dorsal Clo-

sure

The first work assessing the mathematical representation of Dorsal Closure
was performed by Peralta et al. in 2007 [39]. With laser microsurgery, they
were able to cut at a subcellular level the Actin Cable, the canthi, and also
to perform large cuts in the Amnioserosa. Thanks to this method, they were
able to measure initial recoil velocities. Considering that these velocities are
proportional to the constraints accumulated previously at this point, they

were able to produce ratios of importance of the forces generated the Actin
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Cable, the Zipping and the Amnioserosa.

Considering that the two Leading Edges are symmetrical arcs, as shown in
Figure 1.10, they wrote the Leading Edge length as L = 2r6, denoting the
canthus to canthus width as W = 2rsinf, and the half-height at the center
of the antero-posterior axis as h = r(1 — cosfl). From there, they derived

two equations:

daw L d(in(k))
(1.1) ol cost i (Lcosd — W) o

dh 1 dL L d(in(k))
(1.2) i 232n9 ot (25271(9 —h) 7

Their laser microsurgery experiments showed that the right term of both

equations are an order of magnitude below the left ones. Hence, they ne-

e e . . ~ dh
glected them. Dividing 1.1 by 1.2, and considering that k., ~ —2%, they
obtained:

aw  —k,
1.3 — =
(13) dt tant

They extracted v.osure measuring Amnioserosa’s height dynamics in live
confocal movies. Considering that % = Velosure and is constant, and that the
Leading Edges remain arc-shaped all along the process, they obtain fairly
good results representing the dynamics of W.

Even though they obtained fairly good results, their model is in the end
based on closure speed measurement. Nevertheless, closure speed is in fact
the result of the forces involved during Dorsal Closure. Their work is there-
fore merely a simulation of the evolution of the geometry over time. Even
though they are able to predict the geometry dynamics of the Dorsal Hole,
this strategy gives no insight about the physical concepts involved in Dorsal

Closure, nor on the relative effects of each force generator.

Solon et al., in Cell, 2009 [32], used a mechanically more accurate ap-

proach, representing Amnioserosa cells as hexagons, with springs on the
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Figure 1.10: The set-up of the model developed in Peralta et al., Bio-
phys. Journal, 2007. The Leading Edges are represented as two symmetrical
arcs. The Leading Edges length is L = 2rf, the height at the center of the
Amnioserosa, and from the Antero-Posterior axis to the Leading Edge, is

h =r(1 — cosf), and the canthus to canthus length is W = 2rsinf. [39]
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Figure 1.11: Set up of the model developed in Solon et al., Cell, 2009. In
the left panel, the network of hexagonal cells. In red is represented the Actin
Cable length, that slowly decreases. In the right panel, a representation of
the network of springs. [32]

edges, and also springs connecting the summits to the center of hexagons,
as shown in Figure 1.11.

With this model, the Amnioserosa cells oscillations stop after some time,
due to a lack of tension in the tissue. The constriction of Amnioserosa
resulting from the action of the Zipping and the Actin Cable becomes too
important. The ratio between cellular tension and Amnioserosa compression
became too much in favor of the latter, preventing cells to oscillate. Inter-
estingly, they argue that the shrinking of the peripheral Amnioserosa cells
observed in vivo might restore tension enough to allow central cells to keep
on oscillating. Therefore, they introduced a sequential arrest of peripheral
cells in the shrinked state, consistently with live observations. As a result,
the modelled central cells kept oscillating. These simulations show that the
shrinking of the peripheral Amnioserosa cells play an important part in the
permanency of Amnioserosa cells oscillations. One can argue that the apop-
tosis occurring in Dorsal Closure (Toyama), and accounting for 40 to 50%
of the closure rate, might serve the same purpose.

Interestingly, their model shows that the oscillation of Amnioserosa cells
increases the closure speed. To explain this effect, they formulate the hy-
pothesis that the Actin Cable might act as a Ratchet, preventing cells to

go back to their former extended state once they are shrinked. This model
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then suggests that the shrinking that is important for cellular oscillation,
may come from the ratchet effect.

This model recapitulates rather well the behavior of amnioserosa cells. It
is also the first to introduce a mechanical understanding of Amnioserosa
cells behavior, and it shows interesting features, such as the need of ten-
sion in the Amnioserosa to allow the cells to keep on oscillating, or as the
oscillation-dependent fastening of closure. Nevertheless, the effect of zip-
ping is not taken into account. Furthermore, the autonomous essence of the
contraction of Amnioserosa cells is not proven, and the ratchet effect, at
the base of the interplay between oscillation dependent fastening, peripheral

cells shrinking, and Cable induced fastening, remains to be proven.

Another model recapitulates Dorsal Closure, taking into account cells
periodic contraction, but without taking into account the zipping. It was
developed by Wang et al., in Biophys. Journal, 2012 [40]. Also based on
the idea that cells contract autonomously, it includes a term in which the
contraction is regulated by the amount of myosin in the cells. The amount
of myosin itself is regulated by the putative reception of a molecular signal,

and molecular degradation:

dmi

dt = ]{5+Shi — k‘_mi

(1.4)

where m;j is the amount of myosin in the j* spring of the i'* cell. k*
and k£~ are the production and degradation rates of the myosin, respectively.
s; is the amount of molecular signal received by the cell, and h;; is a geomet-
ric factor handling the repartition of myosin on all the cell’s springs. The
amount of myosin influences the stiffness of the springs in the cell, causing os-

cillations. The geometry of the cells and of the tissue is shown on figure 1.12.

This model doesn’t take into account the zipping. The canthi were then
fixed in space. The Actin Cable is taken into account by adding around the

tissue, and attached to the anterior and posterior extremities of the tissue,
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Figure 1.12: The set up of the model developed by Wang et al. The point
i represents the center of the i'" cell, and the point j the extremity of the

gt spring connected to the cell center. [40]

a spring whose resting length slowly decreases. They include in their sim-
ulations a cellular actin cable, surrounding every single cell. They hence
built three models: one with only the Cable around the Amnioserosa, one
with a Cable only in cells, and one with both the tissular and cellular cable.
These models obtained fairly good results, especially recapitulating cellu-
lar oscillations, and especially the last one. Moreover, they also decrease
the resting length of the radial springs in the cells several times during the
process of closure, arguing that the density of contractile molecules (Myosin
IT) increases during the last phase of closure, based on fluorescence density
measurements. Doing so, the global area of Amnioserosa keeps on decreas-
ing. Nevertheless, there is no proof that this increase of fluorescence density
is not due to a decrease of cellular area, together with a constant amount of

contractile molecules.

Another model was published in 2011 in Journal of Theoretical Biology
by Almeida et al [41]. While being merely a mathematical model, not re-
capitulating the tissues physical behavior from a mechanical point of view,
it brings an accurate representation of every actor of Dorsal Closure. A

Laplace equation Au = 0, coming from elastic thin shell theory, was solved
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Figure 1.13: Solving domains and meshes (left panels) and examples of
velocity fields u, without extension of the model inside amnioserosa (top

panels), or with extension (bottom panels). [41]

on domains presented in figure 1.13, left panel. The forces acting on the clo-
sure of the dorsal hole were represented by Neumann boundary conditions,
on boundaries presented on Figure 1.13. Neumann conditions are presented

in Equation 1.5

w=0on M"UM"

Ous = Cinon M'U M
on
816,‘
(1.5) o = Corn + Csn on w;\ Z;
, 0
aul:C’;;n—l—( ) on w! N Z;
on —C,

- 0
aul:C’gn—l—< ) onwfﬂZi
on C,

where n is the normal at each interface (its orientation is shown on Fig-
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Figure 1.14: Scheme of the normals to each interface, and of the domains

on which is applied each boundary condition. [41]

ure 1.14, together with the domains on which each boundary condition is
applied). C4, Cy, C3 and Cy are some coefficients representing the opposing
force of the dragged epidermis, the Cable tension, the traction of the am-
nioserosa, and the zipping force, respectively. On M*UM?®, n, the normal to
this boundary, goes outward. Hence, the second equation in 1.5 is resistive.
In the third equation, s represents the curvature of the boundary w;. The
contribution of the Actin Cable is proportional to this curvature. On wj,
n is inward, thus the contribution of the contribution of the Amnioserosa
is constructive. Finally, in w; N Z;, the curvature of the Leading Edge is
almost null, the contribution of the Actin Cable can then be neglected in
this area. On the contrary, the zipping is important in this domain. It is
then accounted, considering that its effect is rather in a vertical direction,
than in a direction normal to the epidermis-amnioserosa interface. This is

why the zipping term is not accounted as a multiplier of the normal to the

x
interface, but as a vector of the form ( >
Y
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This model is continuous, it is solved on a mesh covering the whole domain,
and uses the same equation in the whole space. Such a model gives good
results at a tissue scale: it manages to recapitulate closure both in control
embryos, and in spastin mutant embryos (embryos in which the zipping force

is absent). Yet, it is not meant to recapitulate cellular behavior.

In conclusion, several works improved our knowledge on how to model
Dorsal Closure, each with its strengths and limitations. These limitations
leave some particular and interesting features to assess, such as the oscilla-
tory behavior of amnioserosa cells under constraints. Also, other strategies
exist to model tissular and cellular behavior. In particular, mass spring net-

works are often used to model biological tissues.

1.4 Understanding the mechanics of biological

systems

Dorsal Closure is a widely used system to understand the mechanics of bi-
ological systems. But many other interesting works assess the mechanics
of biological systems. The mechanics of biological systems is a wide field:
understanding molecules, cells and tissues reactions to mechanical stimuli,
and their capacity to generate forces, is of a great importance to under-
stand embryo and organs shaping during development, bacterial mobility,
tumor packing, cell differentiation... In view of this, many studies gave valu-
able information on the type of mechanical behavior cells, tissues, molecules
or molecular networks experience. In the following paragraphs, we will fo-
cus on the works on the reactions of these systems to mechanical stimuli.
Altogether, these works give a rather precise framework in which we can

accurately perform mechanical modelling in biology.
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1.4.1 Single molecule experiments

During the early nineties, several laboratories assessed the mechanical prop-
erties of single actin filaments. Two methods were used: measuring forces
and extension thanks to measurements of the bending of glass needles [42,43],
and X-ray diffraction [44,45|, measuring the size of an actin monomer inside
a muscle filament. Comparing the lengths of the monomers both in the re-
laxed and contracted state of the muscle fiber, they were able to extract an
elastic modulus for single filaments. Both methods found the same value of
E = 2.10° N.m~2 for the elastic modulus of actin filaments.

Rather simultaneously, other groups studied the buckling of microtubules
thanks to optical tweezers [46], or the pushing force generation by micro-
tubules assembly disassembly dynamics [47].

All these works provided many valuable information on the capacity of a cell
to react to a constraint, on the molecular origin of these reactions, and the
range of parameters values involved. Yet, real biological systems are much
more complicated: actin filaments and microtubules are interconnected in
complex networks, and therefore may present a much more complex behav-

ior, in particular under shearing constraints.

1.4.2 In Vitro grown actin networks and cellular prop-

erties

Therefore, several groups started to study In Vitro the behavior of actin gels
and networks. They were thus able to extract a huge amount of information
on the mechanics of structures behaving in a very similar way to cells. For
instance, it is possible to directly measure the shear and elastic moduli of
an actin network, growing this network between the two plates of a rheome-
ter [48].

Other studies allowed to discover that actin networks were also able to
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disperse energy after a characteristical time under constraint, which demon-
strate a viscous behavior [49,50]. They also discovered that the amount
and type of cross linkers in the actin gel could change that characteristic
time [51,52|. Other works also showed that actin networks could either stiffen
(when composed of a high density of actin and crosslinkers) or soften (when
composed of a low density of these molecules) when under constraint [53-55].
Again, the amount of crosslinkers in the networks modulates the mechanical
characteristics of the network, allowing the transition from softening to stiff-
ening, and adjusting the variation of the elastic modulus [56]. Interestingly,
it was reported that stiffness could also be modulated through phosphory-
lation of the regulatory light chain of non-muscle Myosin II, at much faster
rates than with crosslinkers |57,58|. All these results suggest that the cells
have at their disposal a great arsenal to adjust their mechanical properties
to their environment. These results were confirmed by experiments on single
cells, demonstrating that cellular mechanics is mainly due to the cytoskele-
ton |59-61].

1.4.3 Assessing forces present inside a tissue

Knowing the mechanical behavior of cells allows us to understand how cells
react to mechanical stimuli. Thus, to fully understand the dynamics of an
In Vivo tissue, one needs to access the forces applied on the cells inside the

tissues.

Numerous studies have used laser micro surgery to assess the forces present
at a given time in a tissue [62-64]. Measures of the recoil velocity of the cells
surrounding the hole created by the laser, one can estimate the amount of
stress that was accumulated in the region prior to ablation. This method is
very powerful, but has limitations: it destroys the tissue studied, prevent-
ing long term analysis and dynamics studies, and it only allows to compare
recoil velocities, to assess the forces patterns within a tissue. This method

cannot provide absolute measurements.
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Another method is used to measure the absolute force and elastic mod-
uli: the Atomic Force Microscopy. The AFM was genuinely conceived as a
microscopy technique, consisting in measuring the flexion of a lever when its
extremity is in contact with a surface [65]. A higher flexion of the lever indi-
cates a higher z at the surface of the sample. Yet, forcing the lever to indent
the surface, it is possible to extract the surface’s mechanical characteristics.
This method is used since the early nineties, to assess the mechanics of single
molecules, single cells, or tissues, providing a lot of valuable information on
live systems [66—69]. Its only limit is the accessibility of the systems it aims

at studying, since it needs a direct contact.

Recently, several In Silico methods were developed to assess forces patterns
in living tissues. Some combined with laser microsurgery [70], others with
AFM [71], to assess the mechanics of living systems. Inverse methods (using
the biological dynamics as an input, and finding the mechanical character-
istics giving the best fit to these data) were also used to extract physical
properties [72]. This method, non invasive, allows to study tissues anywhere
in the sample. Nevertheless, it often contains approximations (mainly on

the dimensionality: 2 or 3D).

In this thesis, we will propose such a method to extract mechanical prop-
erties of live Amnioserosa cells, comparing different hypothesis on cellu-
lar mechanics, with the objective of giving a better understanding of Am-

nioserosa cells peculiar behavior.

First, we will introduce the software developed to extract cellular dynam-
ics. Then, the model comparison and validation method will be presented.
Finally, a short study of Leading Edge dynamics, based on the software pre-

sented in the first section and signal treatment methods, will be reported.






Chapter 2

Materials and Methods

DE-Cadherin::GFP [73| flies were put in vials capped with an small plate
containing a concentration of 1.5% of agar, mixed with a small amount of
a source of sugar (blackcurrant syrup). Over the agar, a drop of water and
yeast was added. Flies were let at 25°C" an entire afternoon. In the evening,
the agar plate was changed, and the flies let overnight at 25°C". This method
allows to collect the next morning embryos coming from evenings feconda-
tions, the previous ones being laid on the previous agar plate. Dorsal Closure
happening between the 10" and the 13" hour of development, this strategy
allows to maximize the amount of embryo collected the next morning at the

correct stage.

The chorion (a mineral shell surrounding the embryo) was dissolved by
pouring bleach on the agar plate, and letting it act for two to three minutes.
Embryos were then filtered from the yeast and rinsed with water in a pill
dispenser with a small screen within its cap. Embryos are then collected
with tweezers under a binocular, and laid on a coverslip with Halocarbon oil
700, the dorsal side toward the glass, to facilitate imaging. Imaging was per-
formed on a confocal spinning disk microscope Leica-Roper-ERROL, with a

40x magnification oil lens.

A Z-projection of the resulting pictures was then performed with the
45
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software I'mageJ. A gaussian filtering was then performed with the same

software.

The projected pictures were segmented thanks to a software developed
during this PhD. This software is presented in the next chapter. This soft-
ware also allows to extract positional data from the movies. The position
of the cells vertices (junctions between three cells) and of the barycenter of
each cell was extracted for each frame. Possible point tracking errors were

corrected.

Cells were modeled as mass-spring-damper lattices. The corresponding
equations were written following a Lagrangian approach, and implemented
and solved in MATLAB®, thanks to the function ode45. The positional in-
formation on the surrounding (non-modeled) vertices and cells barycenters
was provided as an input to the model, to account for the external con-

straints.

The solution of the Lagrange equations was provided to a cost function
together with the real position of the modeled vertices. The cost function
was built following the least squares approach. The cost function was mini-
mized thanks to the function fmincon in MATLAB®. The residuals were

then tested by calculating their autocorrelation function.



Chapter 3

Image treatment and

Segmentation

In order to address the cellular mechanics in the Amnioserosa, we need before
all to build a tool that allows to easily gather data on cellular movement and
area evolution over time. Therefore, we need first to extract the cells position
and shape at each frame, from gray-scale images acquired with a confocal
microscope. To do so, we built a segmentation and cell tracking algorithm

in MATLAB®. The strategy we chose is presented in this chapter.

3.1 Pre-treatment

Prior to segment the image, and to enhance the efficiency of segmentation,
movies from confocal monitoring need to be processed. Even though such
treatments are possible with image processing programs like I'mage.J, we im-
plemented them in M ATLAB®, for convenience. Indeed, the data collected
thanks to the algorithm can later serve as inputs in models implemented in
this software. Furthermore, M AT LAB offers a more flexible environment

than I'mageJ.

The first step of the image treatment is to perform a lowpass gaussian

filtering, to flatten random noise. MATLAB®’s fspecial function was used
47
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Figure 3.1: 7 projection of "raw" confocal images displaying an em-
bryo expressing the fluorescent Cadherin-GFP protein, present at the apical
junctions of the cells. The picture has been pre-treated in ImageJ with a

Gaussian blur of width 1.

to generate the 2D gaussian curve. The filter2 function was then used to
perform filtering. This function basic principle is to pass the bi-dimensional
gaussian curve on a subset of points of the picture, and to give to the cen-
tral pixel a value calculated as the weighted mean of the subset of point
surrounding this central pixel. The weights are given by the gaussian value.
Hence, one can choose the weights (and therefore the effect filtering has on
the picture) by adjusting the mid-height width and the maximum value of
the gaussian curve. Adjusting the pixels intensity with this tool enables to
flatten the differences between one pixel and its neighbors, and therefore to

get rid of random white noise.

White noise is not the only unwanted feature appearing on our pictures.
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Unwanted fluorescence is also collected by the confocal microscope. It mainly
comes from parts of the embryo we do not wish to monitor, and in particular
from the yolk sac, a bag of nutrients lying underneath the Amnioserosa. To
improve the quality of our pictures, we wished to remove this background
signal. We used for this the imtophat function. imtophat performs Top-Hat

filtering: it subtracts to each picture of the movie its opening.

The opening is a morphological operation on the picture, composed it-
self by two consecutive operations: erosion and dilatation. To be performed,
the opening needs two inputs. One is obviously the original picture. The
other one is a structuring element. The structuring element, in our case, is
a disk of adjustable size. It is used during the two steps of opening (erosion
and dilatation): the pixel values of the picture are compared to those of the
structuring element, in a manner depending on the operation performed and
that we will present in the following paragraph. To complete the operations,

the structuring element is translated all over the picture.

During erosion of binary pictures, at each translation of the structuring
element, the pixel at the center is kept non-null only if every pixel inside
the structuring element is superior to zero. Hence, small objects (whose size
is smaller than the structuring element), are removed from the foreground.
Obviously, the outskirts of the structures of importance will be eroded too.
Every pixel in a peripheral band one pixel smaller than the structuring el-
ement will be removed as well. Thus, a dilatation is performed afterwards.
Dilatation follows the same principle, except that each time the structuring
element finds a non-null pixel, every pixel inside it will become non-null too.
The small structures that were entirely removed will not reappear, but the
bigger ones that were simply eroded will regain their original shape, with a

good approximation.

For grayscale pictures, the principle is similar: erosion will replace every

value of the part of the picture covered by the structuring element by the



50 CHAPTER 3. IMAGE TREATMENT AND SEGMENTATION

lowest of their values, while dilatation will perform the opposite. Combining
both of them, the result will be a picture in which the bright objects smaller

than the structuring element are absent.

Removing the opening to the original picture, i.e. performing Top-Hat
filtering, is often used in image treatment for background subtraction and
equalization. From its characteristics, one can easily understand that the
structuring element is a key feature for these operations. It removes bright
objects smaller than the structuring element from the picture: if the struc-
turing element is wisely chosen, every structure of importance in the picture
will be removed. They won’t be contained in the opening, and only the
background values will remain. Hence, once the opening is subtracted from
the original picture, only the important features will remain, and the back-

ground will be removed.

Removing the background increases the differences between the local
minima and maxima of the picture. The picture has then a better contrast,
as shown in Figure 3.2b. Hence, a satisfying contrast is recovered in the re-
gions where it was previously poor, in particular at the edges of the picture,
but also on parts of the cell membrane where the signal is low. Thanks to
Top-Hat filtering, we were able to compensate the losses of signal due to
biological variation or depth effects (some parts of the sample are deeper in
the embryo than the others, hence the amount of photons collected is lower)

in a satisfactory manner.

The pre-treatment of the picture is now over, the contrast and back-
ground intensity having reached satisfactory values. Yet, to reach a full,
and proper segmentation, the picture needs to undergo a Watershed trans-
form, and thus several other treatments need to be performed so that the

segmentation is as accurate as possible.
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(a) The image after low-pass filtering with a 2-dimensions gaussian filter of width

4 and height 1. The random noise is flattened, and the fluorescence of interest is

widened.

(b) The picture after top hat filtering. The background signal is almost absent,

with little effect on the signal of interest. The contrast is hence improved in the

regions were it was previously poor.

Figure 3.2: The same frame, prior to Top-Hat filtering (3.2a) and after
(3.2b)
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3.2 Segmentation by Watershed

The Watershed transform is a widely used segmentation algorithm. Even
though the version of the algorithm used here (M AT LAB’s watershed func-
tion) includes a few more refined features, its basic principle is simple: local
minima of a greyscale picture are chosen as "water sources", from which
the surrounding area is "flooded". Where water coming from two different
sources meet, a segment is added. Each region flooded by a source becomes

an independent region of the resulting picture.

Even though it is a very powerful tool of image treatment, it is still very
sensitive to noise and intensity variation. Pictures hence need to be properly
prepared before undergoing such a transformation. In particular, low levels
of intensity in the cell wall could lead a region to flood its neighbor. The

following treaments applied to the pictures aim at preventing this issue.

Figure 3.3: The binarized image. The background is now totally removed,

at the cost of a huge widening of the signal corresponding to cell walls.



3.2. SEGMENTATION BY WATERSHED 23

Figure 3.4: The inverted picture. The cell walls are now in black.

First, the image is binarized. Every pixel which intensity is greater than
a certain percentage of the mean value of the picture is set to a value of one,
and the rest of the pixels is set to zero. Wisely chosen, the threshold enables
to equalize to one all the pixels of the cell membranes. Being necessary, this
step yet introduces another issue: pixels from several background regions
are given the same value as the cell walls (Figure 3.3). Other treatments are

thus needed to correct this problem.

The picture is first inverted: every pixel with a value of one is set to zero,
and reciprocally (result shown in Figure 3.4). The cell membranes become
black: they are represented by null pixels, and this is important for what fol-
lows. Indeed, the last step consists in an Euclidian distance transformation:
every null pixel of the picture is given a value corresponding to its Euclidian
distance to the non-null pixel. The resulting picture, shown in Figure 3.5,
displays equalized cell walls: the crests at the edges of the cells are all at
the same levels. This feature has been conserved since the binarization of

the picture. It also has clear local minima at the center of the cells. And,
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although background signal is still present, its width is much lower than in

the binarized picture. Thus, the picture is now ready for Watershed trans-

form.

Figure 3.5: The picture after the Euclidian distance transformation.

The result of the Watershed transform is shown on Figure 3.6. As one
can easily see, there are several segmentation defects. These are due to the
remaining noise after pre-treatment. To minimize the amount of defects, one
has to carefully choose the parameters of every step of the pre-treatment pre-
sented earlier. But even then, and even though every step of the protocol
presented here have been carefully chosen so that the segmentation would
be as efficient as possible, these defects remain, and therefore have to be
removed so the final image fits biological data. Actually, a slight overseg-
mentation of the resulting picture is even required. Indeed, if the parameters
were chosen so that no supernumerary segment would be present on the pic-
ture after the Watershed transform, a number of segments of interest (in our

case, those representing cell junctions), would be absent. Thus, it is prefer-
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able to choose the parameters in order to obtain an oversegmented picture.

Figure 3.6

Nevertheless, removing the unwanted segments can be time-consuming,
especially since we are aiming at segmenting movies of several hundreds of
frames. Hence, we have been looking for a way to make the whole process
as efficient as possible. Also, the segmentation is very sensitive to the pa-
rameters chosen during the pre treatment. We were then also looking for a
practical way to adjust these parameters. The strategy we chose is presented

in the next section.

3.2.1 Graphic User Interface and Image post-treatement

For a more convenient running of the program, either for parameters choice
and for segmentation correction, we built a Graphic User Interface in M ATLAB’s
GUIDE. As shown in Figure 3.7, it includes two main blocks. On the left
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Figure 3.7

part, fields in which the user can type parameters values of his choice were
inserted. When clicking on "Test Parameters", the segmented picture will
appear on the right panel, allowing the user to study the effects of each piece
of the pre-treatment (Top-Hat filtering, Gaussian filtering, and threshold-
ing) on the segmented picture. In this part, one can also choose the name of
the input file (containing the original movie), and the output file, that will

contain every frame and the position of every vertex and cell on each picture.



3.2. SEGMENTATION BY WATERSHED o7

The user can also choose the frame he will be working on, allowing him to
choose the pre-treatment parameters for each frame, avoiding issues coming
from frame-to-frame intensity variation. He can also pick up his work where
he left off, as every frame is saved when the user decides modifications are

finished.

Once the parameters choice is made, the user can easily choose a contrast
parameter. Indeed, since the main goal of the GUI is to correct segmenta-
tion errors, the user will need to compare the original picture with the one
resulting from the watershed. The latter is binary: the pixel value is one
for a cell junction, and zero elsewhere, while the former can display a wide
range of values. They may be encoded in 8 bits, or 16, having pixel values
going either from 0 to 255 or from 0 to 65535. Furthermore, the intensity
of the staining depends mainly on the acquisition parameters chosen at the
microscope, giving a wide variation of maximum value, or of number of sat-
urated pixels, from a movie to another. Thus, to overcome this difficulty,
we introduced a contrast factor, that we will call f. The binary picture will
be multiplied by 10/, and then added to the original picture. The result
will be displayed in the right pannel, as shown in Figure 3.7. With the f
chosen, it is easy to distinguish both the original and the segmented picture,
and which segment corresponds to a cell junction, or does not. It is hence
easy to delete inappropriate segments, or to add missing ones, with the help

of the second block of the GUI, that we will describe in the next paragraphs.

Being able to remove segments from the picture implies that they were
previously individually identified, and labeled. This was done in the fol-
lowing manner. First, every node of the picture is detected, thanks to
MATLAB’s function bwmorph, with the branchpoint option. This pro-
vides a picture of the same size as the segmented one, but containing only
non-null pixels at the positions corresponding to the nodes. Then, this im-
age was dilated. Indeed, the goal of detecting the nodes is to remove them

from of the picture, in order to separate segments from each other. In some
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Figure 3.8

particular cases of node topology, removing only the nodal pixel wouldn’t
separate the segments. For instance, when a nodes connects four segments,
removing the node pixel would give rise to four other nodes (i.e. points with

at least three non-null neighbors).

For instance:

001 0O 001 0O
00100 00100
1 1 1 1 1| wouldbecome |1 1 0 1 1],
00100 00100
00100 00100

the two matrices representing a subset of pixels in the picture, with the
central vertex being a node in the first one, and four new nodes appearing,
next to the previous node both in the horizontal and vertical direction, in
the second one. To get rid of that issue, the nodes are expanded from a point

to a disk of a couple of pixels width. The resulting picture is then subtracted
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from the segmented image. Now that every segment is disconnected from
the others, it is easy to label each of them independently, using the function
bwlabel, and to store the position of each pixel included in each different
segment in a cell array. Now that the position of each segment is stored, we

can move on to the selection of the relevant segments.

To facilitate the selection of the relevant segments, we built a second
block containing five buttons. One is a "push button": once the user clicks
on "Start segmentation", the program will recollect every parameter chosen
earlier, perform the treatment and the watershed, and display the original
picture together with the segmented one. The four other buttons are "Toggle
buttons" (logical buttons), they return a logical value (0 or 1) depending on
whether they are selected or not. Three of them enable the user to choose his
course of action for the correction of the segmented picture: "ROI Deletion"
allows the user to define a polygonal region on the picture, by clicking on the
image on points that wil become the summits of the polygon. Then, every
segment having at least one pixel included in the polygon will be found in
the data previously stored, and removed. This feature comes particularly
handy when the contrast of the picture is poor, and the oversegmentation
important. It allows the user to delete vast regions of unwanted segments,
within, or around, cells. Yet, since segments are defined after an expansion
of the nodes, ’spur’ pixels are still present in both nodes region after the
deletion. They weren’t taken into account in the segment, since they were
close enough to the node to be covered by the expanded disk, and were then
removed from the picture with the node. Therefore, they were not taken
into account in the segment. Hence, the image suffers an erosion after the

segment deletion, to remove these remaining pixels.

Having the second button 'On’ allows the user to delete individual seg-
ments. When clicking on the picture, the program calculates the distance
between every pixel contained in a segment and the point chosen by the user

by clicking, detects the closest one, and removes the entire segment to which
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the point belongs. Again, the picture suffers an erosion to remove the spur

pixels. This option enables the user to precisely remove individual segments.

The last option allows the user to add a segment to the picture. The
user needs to click on two points of the picture between which he considers a
segment should be present. The program then considers several options. If
one of the chosen points is close enough to a point contained in a previously
existing segment, the new one will be connected to this point. If one of
the clicks is at a position close to the image edges, the new segment will be
connected to the nearest point of the edge. If neither of these cases is true,
the new segment will have an end at the exact point that was chosen by the
user. Every combination of the three possibilities is available (segment to
segment, segment to edge, edge to segment, clicked point to edge...). Once
the two points are chosen, a straight line is added to the picture between
them. The picture is then skeletonized, to ensure that the pixels of the
added straight line will have only two non-null neighbors, and therefore will
not be accounted as a node. This last feature is very convenient for instance
when a cell is slightly out of focus for a few frames, and therefore when
recovering its boundaries would be at an extreme oversegmentational cost.
A huge oversegmentation causing segmental noise (i.e. the accuracy of the
positioning of the segments and of the nodes dramatically decreases), this
feature enables the user to recover the data of this cell, without impairing
the data of the rest of them. Carefully choosing the points at which the new
segment will appear, by comparison with the raw picture, makes the error

induced by this technique negligible.

Once the user considers that the correction is over, he can click on the
last button, "Segmentation Over". The program will then display the final
corrected picture, an example of which is presented in Figure 3.8. The new
segmented frame is then saved in the file chosen by the user earlier, together
with the position of each vertex and cell in the picture. Once the movie is

entirely segmented, we can reorder all these data, to finally extract every



3.2. SEGMENTATION BY WATERSHED 61

cells and vertices dynamics.

3.2.2 Data sorting

We have now obtained the position and shape of the cells monitored by
confocal microscopy, for every frame. We also obtained the position of each
vertex monitored in every frame. We need now to reorder the data, to be
able to track individual cells and vertices over time, and therefore obtain

their dynamics.

To do so, we simply detect the closest vertex (or cell) in the next frame.
For a vertex present in a frame at time ¢, and numbered n, its distance to
every vertex present in the next picture (time ¢ + 1) will be calculated. The
vertex of the next picture showing the lowest distance is selected, and its
position is assigned to the vertex n, at time ¢ + 1. This operation is per-

formed for every vertex present at time t.

For cells, the position of their barycenter is first calculated, as the mean
of the position of every pixel contained in its limits. It is the barycenter
position that is compared from one time point to another, to address the
right label to each cell.

The cells and vertices labels are those they were given by the cell labeling

and node detection for the first frame.

Thanks to this set of algorithms, we are able to extract a great amount
of data from confocal microscopy. We can explore cell connection dynamics,
cell area periodicity, point dynamics at the edge between two tissues... A
few examples of these data are presented in Figure 3.9. These data will serve
as an input to the models presented in the next section. They will also serve

to assess the validity of the models.
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Figure 3.9: Examples of data extracted through segmentation, labelling

and tracking.
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Figure 3.10: Frame of a segmented movie, displaying the position of the

nodes present at the edge between the two tissues






Chapter 4

Amnioserosa cells oscillation

models

Dorsal Closure is a system that has been widely studied over the years, for
its similarity with wound healing, the number of major signaling pathways
involved, and the insight of cellular and tissular mechanics it provides.

The role of Amnioserosa cells in Dorsal Closure, and the mechanics of these
cells, have been the object of various studies as well, in particular how their
apical area oscillations influence closure. Yet, no consensus arose from these
studies to explain the action of Amnioserosa cells.

Furthermore, the mechanics of cellular systems have been proven to be an
important feature of the generation of shape and patterns during develop-
ment. Nevertheless, exploring mechanical characteristics of living systems
remains very difficult. Hence, many studies have focused on representing In
Silico cellular behavior, to assess molecular, cellular and tissular mechanics.
To improve our understanding of Amnioserosa cells mechanics, we built sev-
eral dynamical models of Amnioserosa cells movements. Solving the equa-
tions of motions, we compared the results obtained to the positional data
extracted thanks to the segmentation. The comparison was performed using
the least squares approach.

In this chapter, we consider the vertices (junctions between three cells) to

be focal points for forces. Hence, we built models on lattices whose nodes

65



66 CHAPTER 4. AMNIOSEROSA CELLS OSCILLATION MODELS

@®: Neighbor Vertex
@®: Calculated Vertex
@ : Cells Barycenter

Figure 4.1: Oscillatory Model Set Up. The distance from the central vertex
(light green) to the fixed vertices (red, position provided by biological data)
is approximated by the equation (4.1).

positions are the vertices. Since the amnioserosa cells are also capable to
contract and expand radially in a periodic manner, we also included the cells

barycenters in the lattice.

4.1 Oscillatory Model

Amnioserosa cells are known to show a periodic oscillation of their apical
area [27]. These oscillations are due to the periodic variation of the con-
centration of non-muscular myosin II at the center of the apical part of the
cell. Myosin II is a molecular motor, binding to actin fibers and generating
a contractile force. Hence, a natural way to represent Amnioserosa cells
movements is to consider them a set of autonomous oscillators interacting

with each other.
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4.1.1 Equations

We set up an oscillatory model using a simple cosine function (4.1) to make
the distance between the vertices and the neighboring cells barycenters vary,

as shown in Equation 4.1:

(4.1) d; = A, cos(w;t + ¢;)

Where d; is the vertex-vertex distance, A; the amplitude, given as a
percentage of the mean of the vertex-vertex distance extracted from the
movie, times the unity vector of this distance at each time €(t). w; and ¢;

are respectively the pulsation and phase associated to the cell .

4.1.2 Optimization

Following the least squares approach, we built the following objective cost

function to be minimized:

Tmaz

T= llya(t) —a@)II*,

where T},,4, is the last movie frame, y,(¢) the real position of the vertex at
each time ¢, and ¢(t) the position provided by the model. The minimization

of this cost function aims at finding the best fitting parameters (here, w; and

).

4.1.3 Results

This strategy unfortunately fails at representing the vertices movements, as
shown in Figure 4.2. This result suggests that to represent Amnioserosa cells
dynamics, other contributions have to be taken into account, such as cells
capacity to store and disperse energy. Hence, in the following, we studied

the importance of various possible mechanical contributions.



68 CHAPTER 4. AMNIOSEROSA CELLS OSCILLATION MODELS

Figure 4.2: Oscillatory Model results. In green, the cells’ barycenter,

extracted from segmentation and provided to the model. In yellow, the

position over time of the real vertex, and in red, the calculated vertex. In
(a),t=0,t=18s in (b), 36s in (c) and 60s in (d).
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4.2 Mechanical Model

4.2.1 Cellular Mechanics

Cellular mechanics has been widely studied over the years. It has been
shown that cells have the capacity to store energy ; they may have an elastic
behavior. They are also able to disperse energy, for instance by reorganizing
their cytoskeleton ; they are viscous. And, last but not least, they may have
an active reaction to mechanical stimuli, either by increasing their stiffness
(stress-stiffening), or by decreasing it (stress-softening).

Dynamical models were hence built and optimized with the least squares
technique, taking into account cells possible behavior. The strategy followed

is detailed in the next sections.

4.2.2 Elastic Model

We first implemented a linear elastic model. Indeed, depending on the char-
acteristics of the Acto-Myosin network present in the cells, the characteristic
time of transition between an elastic behavior and a viscous behavior might
be bigger than the period of the solicitations due to the neighbor cells ex-
pansion and contraction period.

The modelled node connects the central vertex of Figure 4.1 to its neighbor
vertices with springs, and ignores any contribution coming from the center of
the cells. We obtain the system of equations depicted in equation 4.2. The
extremity of the springs corresponding to the neighbor vertices are given the
position of these vertices at each time ¢. The other end of the springs is
attached to a point mass m. The resting lengths [y ;; between the vertex i
and its neighbors 7 = 1,2, 3 are calculated as the mean distance between the
couple of vertices 1, j, extracted from the movie. y; and y; are the positions

of the calculated vertex and its neighbors, respectively.
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@: Cell Barycenter
®: Neighbor Vertex
@) @: Calculated Vertex (b)

Figure 4.3: Minimal Mechanical Model. (a) The schematized cellular junc-
tions. The position of the cells barycenter (purple dots) and the neighbor
vertices (red dots) are provided to the model. The position of the central
(light green) vertex satisfies the equation (4.2) in case of a pure elastic be-
havior, and (4.3) in case of a visco elastic behavior. (b) Schematization of
the equations. Different viscous and/or elastic parameters are used, depend-
ing on whether the vertex is linked to a vertex (through a membrane, light
green spring and dashpot) or to a barycenter (through a cell, purple spring
and dashpot).
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Figure 4.4: FElastic Model results. In green, the neighbor vertices, extracted
from segmentation and provided to the model. In yellow, the position over
time of the real vertex, and in red, the calculated vertex. In (a), t = 60,
t =210s in (b), 360s in (¢) and 510s in (d).

A Kvertex i _ — -
(4.2) Yi = — m Z (Wi — v5 — loij)
j=1

The parameters to optimize in this model are K.+, and m. The cost func-
tion is the same as in the previous section. We manage to obtain a calculated
point moving around the real vertex, as shown in Figure 4.4. Even though
this strategy gives better results than the previous one, the average distance
between the model and the biological data is still unsatisfying, i.e., the cost

function value is too high.

Adding the radial component decreased the functional value, but even
then, the model failed to recapitulate properly the point dynamics. Move-

ments are too wide, and unrelated to the real points dynamics. We hence
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moved toward a model taking into account viscosity.

4.2.3 Visco-Elastic Model

In this new version of the model, we added a viscous term between ver-
tices, and between the barycenters and the calculated vertex. An elastic
term between the cells barycenter and the central vertex was also added,
as shown in equation 4.3. Two different sets of viscous and elastic param-
eters were optimized, one for the vertex-vertex connections, and another
for barycenter-vertex connections. Hence, the parameters to optimize are
Koertews Kpary (the elastic modulus of the connectivity between barycenters
and vertices), flyerter, the damping coefficient for a vertex vertex link, fipqry,
the damping coefficient for a vertex barycenter connectivity, and m, the

points mass. The setup is represented in figure 4.3.

Using such a strategy, we are close to what we think are the real mechani-
cal characteristics of the cells, given that elasticity alone cannot recapitulate
properly the vertex movement. We take into account both elasticity and
viscosity, and we also take into account in a different manner the radial and

peripheral contributions of the cells, which were shown to be different.

Nuvertex
Vi=— Y (Kuertea- (5 = U = losj) — tvertea- (i — 1))
(4.3) ~

Nbary

- Z (Kbary-(y_; - y_l; - lO,ik) - /Lbary-(y._% - y_l;))
k=1

As expected, the results are rather satisfying. The vertex position found
after optimization remains quite close to the real one. Indeed, the objective
cost function value is much smaller than in the previous case.

Nevertheless, even though this model seems satisfying, it does not include

any term taking into account myosin II quantity variation. Therefore, we
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Figure 4.5: Visco-Elastic Model results. In green, the neighbor vertices,

extracted from segmentation and provided to the model. In yellow, the

position over time of the real vertex, and in red, the calculated vertex. In
(a), t = 60, t = 210s in (b), 360s in (c¢) and 510s in (d).
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Figure 4.6: Still images of an embryo expressing the fusion of GFP with
Spaghetti-squash (i.e. the regulatory light chain of myosin II). One can
observe the periodic appearance of patches of myosin Il at the center of the

cells.

decided to add a new term to the model. Given the capacity of the cells to
change their mechanical properties when under constraints, we decided to
add a term of nonlinear elasticity, where the elastic modulus would be equal

to a constant term, plus a term depending on the elongation.

4.2.4 Non Linear Elastic component

As discussed earlier, cells have the capacity to adapt their stiffness, de-
pending on the amount of strain they undergo. This behavior relies on the
adaptation of their concentration in cytoskeletal cross linkers, in molecular
motors, or of the efficiency of these motors thanks to phosphorylation. Phos-
phorylation was recently proven to have an influence on Dorsal Closure [74].
There is a possibility that the variation in Myosin II concentration in Am-
nioserosa cells comes as a result of the constraints theses cells underwent.
To explore this possibility, we introduce a non-linear elasticity term between

the calculated vertex and the barycenters. And to represent the fact that
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Figure 4.7: Non Linear Visco Elastic Model results. In green, the neighbor
vertices, extracted from segmentation and provided to the model. In yellow,
the position over time of the real vertex, and in red, the calculated vertex.
In (a), t =60, t = 210s in (b), 360s in (c) and 510s in (d).

acto-myosin complexes have a strong pulling capacity, but hardly oppose to
compression, we made this contribution come to zero when the barycenter-

vertex distance felt under the resting length (i.e., when g; — i} < lo.;)-

Adding this characteristic decreased even more the functional value. The
calculated point remains very close to the real one, and the dynamics look
coherent with the data extracted from the movie. This result suggests that
Amnioserosa cells mechanics is driven by their viscous and elastic charac-
teristics, together with their capacity to modify these characteristics when
under constraints. Yet, these results remain to be confirmed by expanding

the model from the sub cellular level to the cellular scale.
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Figure 4.8: Bar graph of the cost function values for the different types of

mechanical models applied to one point.

4.3 Generalization of the Mechanical model

Now that we have proven the validity of our approach on a very simple
system, calculating the dynamics of one point alone, we built more general
models. We still want to assess which set of characteristics represents best
the biological data. Therefore, we are still testing the cases discussed in the
previous section. We built models capable of taking into account n cells

with n, vertices.

4.3.1 The Lagrangians

Similarly to the models presented in the previous sections, vertices are rep-
resented by point masses of Cartesian 2D coordinates (with respect to a
fixed frame). Their position is denoted by ¢;(t) € R* at time ¢ > 0 for
i=1,2,...,n, We assume that the mass of each of such points is m (con-
sidered equal for each point) and, for the sake of brevity, let ¢;(¢)? := ||q:(¢)]]?.
Thus, the velocity of the mass point i at time ¢ is denoted by ¢;(t) € R? and
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@®: Cell Barycenter

@: Calculated Vertex

Figure 4.9: Mechanical Model Set Up.(a) A scheme of a system of cells.
The segments in light green represent the apical junctions of the cell, and
part of its neighbor’s. The light green dots represent the vertices. The pur-
ple dots depict the neighbor cell’s barycenter. (b) The model joins these
same points with two distinct spring-damper systems: one joining the ver-
tices together (along the apical junctions, light green), the other joining the

vertices with the cells barycenter (across the cells, purple)
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similarly let ¢;(¢)? := ||¢;(¢)]|*>. As discussed earlier, the model requires the
introduction of the cell barycenters, each of which is without mass and with
coordinate r;(t) € R?* known upon measurements for all j =1,2,...,n. To
complete the model, we need in general to introduce the set of the indexes of
neighbor vertices and barycenters of a given vertex 4, which will be denoted
by V(i) and B(i), respectively. The system has 2n, degrees of freedom.
As said earlier, several types of mechanical characteristics are tested. The

following sections present the corresponding Lagrangians.

The Linear Elastic Model

In the case of the Linear Elastic Model, the total energy associated with the

point mass ¢ is given by the following Lagrangian:

Ky

(4.4) Lipm, = §m(iz‘(f)2 5 D (@) = qi(t) = 1)
JEV(3)
=S (at) )~ Do)

where K, and K, are the azimuthal (vertex-vertex connectivity) and radial
(vertex-barycenter connectivity) elastic moduli, respectively; 1y ;; and ly;;
the resting lengths of the springs between vertex ¢ and another vertex or
barycenter j, respectively. These resting lengths are extracted from the
movie, and are calculated as the mean distance between the vertex i, and
the corresponding point (vertex or barycenter) in such a way to reduce the
number of parameters to be estimated. To this end, we need to compute
the Euler Lagrange equations by using the Lagrangian L = 3 ™, Lygu, as

follows:

d (0L oL
- — =0,i=1,2,...,n,,j=1,2
dt(aq'”) ’/l/ ) b 7n .]
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where ¢;; denotes the j-th component of the mass point ¢. The resulting 2n,
equations can be written as follows:
(4.5) mi(t) — Ko > (a:(t) = q;(t) — lsj)
JEV (D)
— Ky Y (qi(t) = ri(t) = lgy) =0,i=1,2,...,n,.
jeB(i)
Thus, the identification of the LEM requires to estimate two parameters,

namely K, /m and K,/m.

The Linear Visco-Elastic Model

In the Lagrangian formalism, to represent the dissipation of energy, it is
necessary to account for the Rayleigh’s dissipation function. Such a function

for the mass point ¢ is here denoted as follows:

(4.6) Drvem; = — % Z (d:(t) — d;(t))”
JeVv (i)

=20 ST Gty — ()2,
jeB(i)

Where pu, and pu;, are the azimuthal and radial viscosity, respectively;
moreover, 7’; is the velocity of the j-th barycenter. The first term concerning
the kinetic energy is the same of the LEM, i.e., Liypm, = Ligy,. Thus, after
putting all together with L = Y™, Liygwm, and D = >, Diygm,. we obtain

the Euler Lagrange equations:

L L 0D
d(a) oL _ 9o —0i=1,2,....np,5=1,2

dt \ Oqi; 0q¢;;  0qij
And hence 2n, equations with four parameters to be estimated, i.e.,

Kv/ma Kb/m7 ,uv/ma and ﬂb/m

The Nonlinear Visco-Elastic Model

The NLVEM takes into account the possible effect of a nonlinear elastic

term, namely an elastic modulus depending linearly with elongation. Hence,
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in this case the Lagrangian is composed of the following contributions for

mass point i:

k
(4.7) Lnivem; =Livewm; — 30 Z (@it) = r5(t) = 3y)°

JEB()

Dyivem, =Divew, -

We can proceed to compute the Euler Lagrange equations as in the previ-
ous case. The identification of the NLVEM demands the estimation of five

parameters to be estimated, i.e., K,/m, Ky/m, p,/m, py/m, and ky/m.

The Input Driven Linear Visco Elastic Model

We discussed earlier in this chapter the fact that cells could act as au-
tonomous oscillators. We have also shown that this action taken alone failed
to recapitulate cellular movement. Yet, it is possible that this behavior,
taken into account together with viscosity and elasticity, would accurately
represent cellular dynamics. Hence, we also developed a model in which
the cells are viscous, elastic, and under the action of radial external forces
accounting for Myosin II dynamics: the Input Driven Visco-Elastic Model.

Thus, the IDLVEM is just the same of the LVEM, except that the cells
under the action of external forces acting on the vertices accounting for

stress-independent myosin dynamics, i.e.:

fi(t) = A; Z cos(wt + ¢;), 1 =1,2,...,n,
jeB(i)

where, in order to reduce the number of parameters to estimate, the
amplitude A; is taken as the mean distance between the vertex ¢ and the
neighbor barycenters in B(i) and the frequency w is considered constant
from a cell to another; finally, the phase ¢; is a parameter to be identified.
For the other cases, the parameters optimized are those that account for
elasticity and viscosity. Summing up, the parameters to be determined are
the following: ¢1, ¢, ..., ¢n, K,/m, Ky/m, p,/m, and u,/m.
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4.3.2 Optimization

To find the best fitting parameters, we performed a least squares optimiza-
tion, in order to find the models parameters allowing to obtain the best fit

possible to biological data, for each model.

Based on the video processing presented in the previous chapter, we have
indeed at disposal the measures of ¢;(t), r;(t) and 7;(¢) for all ¢ and j at given
time instants ¢t = k7T with k£ = 1,2,..., K with uniform sampling time T’
equal to 6 s. Let us denote such measures with y,, (k), y,(k), and g,, (k) and
let yq(k) == (qu(k), q2(k), ., qn, (F)) € R, yo(k) := (r1(k),72(K), ..., mn(K)) €
R, and ¢, (k) = (71(k),72(k), ..., (k)) € R™. Moreover, let [y := col(ly 5,7 =
L,2,...,ny,J € V(1)), lo := col(lok,i = 1,2,...,ny,k € B(i)), and finally
lo = (I, 12).

Following the least squares approach, we may regard the discretized Eu-
ler Lagrange equations derived from either LEM or LVEM or NLVEM or
IDLVEM as constraints to take into when performing the optimization to
find the best fitting parameters denoted by the parameter vector p, which
depends on the specific model, as described in Section 6.3. Toward this end,

let us refer to the generic discretized Euler Lagrange equation given by

Q(k + 1) = Fr (Q(k)7 yr(k>7y7“(k)7 lOaP) )
k=12, .. K—1

with the objective cost function

T = llyg(k) = (k)|

to be minimized. Such constraints are obtained by the Runge-Kutta method
with the variable time step. For a proper comparison with biological data,
the model output was resampled to fit data sampling. For a set of biological
data taken at time steps £k = 1,2,..., K and integration steps going from
tint = to, ..., s, the integration step t;,, corresponding to the data time

step k is taken as the nearest integer of the ratio of the final integration
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time over the last data time step, times k, i.e.: t;,; = [k. tf’“] Thus, in the

various modeling cases we need to solve the following prototype problem

(4.8a) min Z g (K k)|?

P:a(2),-,q(K) ©
(4.8b) subject to

q(k +1) = Fr (q(k), yr(k), 9 (K), lo, p) = 0,
(4.8¢) k=12 K—1
(4.8d) q(1) —y,(1) =0.

4.3.3 Model Identification

After identifying the best fitting parameters by solving 6.2, it is necessary
to asses the validity of the resulting model by using some specific tools.
More precisely, as usually done in identification problems, we performed the
autocorrelation test of the residuals e,(k) = ¢;(k) — ¢;(k) w.r.t. a given
output ¢;(k), where ¢;(k) is its prediction given by the identified model, by

using its autocorrelation function

Lo iy Do el = e)(ealh — o) — e2)
(4.9 (o) = : —

Zt:O(GZ(k) - ez)
where €, = Zszl e.(k)/(K +1). The plots of (6.3) for the various identified
models are shown in Figure 6.4, where the confidence bands are defined as
11.96/\/E. Table 6.1 reports the mean percentage of the out-of-band scores

obtained by the autocorrelation functions over all the vertices.

Table 4.1: Mean percentages of out-of-band points of the autocorrelation

functions.

LEM | LVEM | NLVEM | IDLVEM | LVEMcons | NLVEMcont
% | 2.8 4.6 3.9 1.9 7.9 2.9

The results of the identification are displayed also in the form of a movie

showing the position of the predicted points on the segmented movie). The
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cell area extracted from the movie is also plotted versus the predicted one,

as shown in Figures 4.10 to 4.14. These results will be discussed in Chapter 6.
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(a) Plot of the cell area over time (red curve) and its predic-
tion based on the identified model (blue curve).
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(b) Plot of the autocorrelation function (the 95% bands
are depicted with the red lines).

Figure 4.10: Plots of the autocorrelation function, and of the cells area

over time versus its prediction, for the Linear Elastic Model.
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Visco-Elastic
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(a) Plot of the cell area over time (red curve) and its predic-
tion based on the identified model (blue curve).
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(b) Plot of the autocorrelation function (the 95% bands
are depicted with the red lines).

Figure 4.11: Plots of the autocorrelation function, and of the cells area

over time versus its prediction, for the Linear Visco Elastic Model.
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(a) Plot of the cell area over time (red curve) and its predic-
tion based on the identified model (blue curve).
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(b) Plot of the autocorrelation function (the 95% bands
are depicted with the red lines).

Figure 4.12: Plots of the autocorrelation function, and of the cells area
over time versus its prediction, for the Linear Visco Elastic Model, with

constrained viscosity.
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(a) Plot of the cell area over time (red curve) and its predic-
tion based on the identified model (blue curve).
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(b) Plot of the autocorrelation function (the 95% bands
are depicted with the red lines).

Figure 4.13: Plots of the autocorrelation function, and of the cells area

over time versus its prediction, for the Non Linear Visco Elastic Model.
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(a) Plot of the cell area over time (red curve) and its predic-
tion based on the identified model (blue curve).
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(b) Plot of the autocorrelation function (the 95% bands
are depicted with the red lines).

Figure 4.14: Plots of the autocorrelation function, and of the cells area
over time versus its prediction, for the Non Linear Visco Elastic Model,

contractile only.



Chapter 5

A study of Leading Edge

dynamics

As discussed in the introduction, the actin cable is an important feature of
dorsal closure. Formed by the dorsal most epidermal cells, it is known to
increase the closure rate.

Various studies have discussed the type of action the Actin Cable would per-
form on Dorsal Closure. Some of them describe it as a "Purse String" mech-
anism, i.e. a rope-like structure surrounding the dorsal hole and decreasing
its length, therefore contributing to the decrease of the area it encloses.
Other recent works suggest that the effect of the Actin Cable could be a
"Ratchet-like" mechanism. Given that Amnioserosa cells oscillate, their
area alternates between shrinked and expanded states, the actin cable may
prevent the amnioserosa cells to reach back an expanded state, once they
are shrinked.

Another possibility, since the Actin Cable is a trans-cellular structure, would
be that it helps synchronizing the Leading Edge cells, increasing the syn-
chrony, and hence the efficiency, of their dorsalward movements.

With the segmentation and point tracking tool at hand, we wanted to assess
these putative effects of the Actin Cable on Dorsal Closure. A fly strain
showing an absence of Actin Cable during Dorsal Closure (carrying a muta-

tion called Zasp52A), and also expressing the fluorescent protein Shg::GFP,
89
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present at the cells membrane, was generated in the lab.

Although the Actin Cable is defective in this mutant, the rest of the Dor-
sal Closure seems rather unharmed: the embryo reaches a full closure (even
though delayed), the Leading Edge cells still elongate during the process, and
amnioserosa cells still oscillate. These observations suggest that the muta-
tion is highly specific and only affects the Actin Cable. Therefore, studying
the differences of behavior of the Leading Edge between mutant and control
embryos, we expect to find valuable information on the role of Actin Cable

during Dorsal Closure.

First, we segmented movies of Zasp52A mutant and control embryos,
and tuned the program to characterize Leading Edge cells and not only
Amnioserosa cells. We were able to detect the vertices of the Leading Edge
cells. Vertices are much closer to each other in the Leading Edge than
in the Amnioserosa, and yet show important global movements: due to the
Dorsal Closure dynamics, the whole set of vertices is likely to move together.
Hence, a vertex may move from its position at time ¢, to a point at time
t + 1 close to the position of its neighbor vertex at time ¢, causing tracking
defects that were absent in the Amnioserosa. These defects were corrected
manually, changing the values in the matrix carrying the vertices positions.
The tracking was then run again starting with the changed value.

Another issue was the insertion of mixer cells [75] among the Leading Edge
cells. The distance between the two points between which the mixer cell

fitted were ignored in the following calculations.

Once the positions are determined, we can go on to calculate the dorsal
ward movements in mutant and wild type. To do so, the distance covered
by a vertex between the time points ¢ and ¢ + 1 was given the sign of the
angle of the trajectory with respect to the horizontal:

Let ¢i(t) = (z;(t),v:(t)) and ¢;(t + 1) = (z;(t + 1), v:(t + 1)) be the position
of the i vertex at time ¢ and ¢ + 1, respectively. MN = G (t + 1) — G (2).

Let D, be the signed distance covered by a vertex. Hence,
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(5.1)

Dy = /it + 1) = w0 + (lt + 1) — (D) sgn(aretan( 21T

since tan((Oz), MN) = %
The segmented embryos are oriented with their antero-posterior axis along
the horizontal axis. Therefore, the strategy presented here allows to count
the number of dorsalward, and ventralward movements, and to measure their
amplitude. The results obtained are presented in Figure 5.2 and 5.3, for a
Control and a Mutant embryo, respectively. To compare these two embryos,
the same time sampling and magnification were used.

The first striking information emerging from these figures is the obvious

presence of negative displacements. This observation is hard to reconcile

with the Ratchet theory.

Another hypothesis on the Actin Cable action is that it would generate
an inward force by contracting and decreasing its length, thus participating
in the decrease of the dorsal hole. With these histograms, this hypothesis
also appears unlikely. Indeed, the difference between the mean displacement
values is not striking between the mutant and the control embryo. It is even
lesser for the control embryo, but in a non conclusive manner, since such a
small difference could come from either biologic variation or a small defect

in the antero-posterior orientation of the embryos.

Another striking feature is the spreading of the displacement values in
the mutant embryo, compared to the control embryo. Wider movements are
totally absent in the control embryo, while small displacements occur less in
the mutant embryo. It is not such a surprising observation: one can easily
observe on a live movie that mutant embryos movements of the Leading
Edge are much wider than the control ones. Yet, this observation, together
with the fact that the mean displacement is not strikingly different between

the two cases, shows that the Actin Cable constrains the cells, in the same
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Figure 5.2: Histogram grouping the values of signed distance covered by a

vertex in eight classes, in a Control Embryo. In red, the negative values, in

blue, the positive values, and in magenta, the gaussian fit of the repartition

of the data.
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Figure 5.3: Histogram grouping the values of signed distance covered by
a vertex in eight classes in a Mutant Embryo. In red, the negative values, in
blue, the positive values, and in magenta, the gaussian fit of the repartition
of the data.
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manner in their forward and backward movements.

Hence, the Actin Cable constrains cells movements both forwardly and
backwardly, and the forward bias observed in the histograms does not show
any difference between mutant and control embryos (the mean displacement
value is comprised between +0.5 and +1 in both cases). Thus, the Actin
cable does not only prevent backward movements, but only prevents long
range movements. Neither does it increase the forward movement. There-
fore, we wondered whether the Actin Cable would improve the efficiency of

the forward movement by synchronizing cellular movements.

Leading Edge displacements have indeed the appearance of a sinusoidal
signal perturbed by noise. We wondered what type of effect the Actin Cable
would have on this signal, and in particular whether it would help synchro-
nizing the Leading Edge movement, i.e. reduce the dispersion of the phases
and frequencies. Therefore, we have used the Hilbert transform of the ver-

tices’ movement to extract the phases and frequencies values.

In order to obtain the phase and the frequency of the Leading Edge
movement, we need to extract the instantaneous phase of the movement.
As shown in Figure 5.4, the vertices movement behaves like a perturbed
sinusoidal signal. Hence, it can be considered as a real signal. Being a real
signal, it can be written as g(t) = A(t)cos(6(t)). In a real signal, negative
frequencies are always present. Indeed, cos(0(t)) = M Hilbert
transform allows to get rid of the negative frequencies. Since H{g}(t) =

A(t)sin(0(t)), we can write:

g(t) +iH{g}(t)
2

(5.2) = A(t)(cos(0(t) + 1.sin(6(t)))

which yields:

(5.3) g(t) +iH{g}(t) = A(t).e"®
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From there, extracting the instantaneous phase is straightforward, neg-
ative frequencies are absent, and we got rid of the ambiguity coming from

the periodicity of the sin and cos functions.

The general expression of the instantaneous phase is 0(t) = w(t).t + ¢(t).
w and ¢ may vary over time. Interestingly, for every vertex considered here,
the instantaneous phase can be fitted with a great accuracy by a linear func-
tion, as shown in Figure 5.5. This result indicates that the frequency and the
initial phase of the movement can be considered constant for every vertex.
Therefore, we can extract the frequency and the phase of the movement of
every vertex, fitting the data with a polynomial of order one. The frequency
is the coefficient of order one, and the initial phase the coefficient of order
zero. As one can see in Figure 5.5, the Control embryo has two regimes.
This breaking point appears 3200s after the beginning of the movie, that
correlates with the formation of the Actin Cable. Hence, two curve fittings
were performed for the Control embryo, one for the first 3200 seconds, and
one for the rest of the movie, and two frequencies and initial phases were
extracted for each vertex. Once these values were extracted, we calculated
the mean values and the standard deviations for the initial phase and the
frequency, for the two regimes of the Control embryo and for the Mutant

embryo. Results are shown in Figure 5.6.

The first phase of the Control embryo shows a mean frequency and initial
phase with a dispersion of the same order than the Mutant (see values in
Table 5.1). On the contrary, the formation of the Actin Cable generates a
change of mean frequency (decreased by a factor of almost 3). It also dra-
matically increases the spreading of the frequency values (by a factor of 5,
roughly). The study of the values of the phase, and its standard deviation,
only show that the dispersion of the values seems to be embryo dependent: it
does not vary between the two phases, but vary greatly between the Control

and the Mutant embryos. No tendency emerges from the mean values.
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Figure 5.4: Plot of the signed distance for two vertices. In the upper panel,
the dynamics of two vertices in a Control embryo. In the lower panel, the

dynamics of two vertices in a Mutant embryo.
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Instantaneous phase of two vertices of a Control embryo
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Figure 5.5: Plot of the Instantaneous phase of two vertices, in a Control
embryo (upper panel), and in a Mutant embryo (lower panel). In blue and

green, the trends, in cyan and red, the real values.
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Mean S.D. % (L & 2)
Frequency Mutant 3.910° Hz | 3.18.107° Hz| 81%
Control, 1% | 4.14.107° Hz| 4.79.10° Hz| 116 %
Phase
Control, 274 | 1.59.107° Hz| 8.39.107° Hz| 526 %
Phase
Phase Mutant 0.12rad 0.58 rad 483%
Control, 1%t | —0.17rad 0.48 rad 282 %
Phase
Control, 27¢ | 0.8 rad 2.27rad 284 %
Phase
Table 5.1

This study showed that the formation of the Actin Cable does not in-
crease the mean forward movement. Neither does it prevent bacward move-
ments. The Actin Cable constrains the cells movements, both forwardly
(dorsalward movement) and backwardly (ventralward movement). Yet, con-
straining the movement increases the frequency spectrum present in the
oscillatory movements of the Leading Edge, and the formation of the Cable
increases the closure speed. Hence, since the Actin Cable does not seem to
have any mechanical effect, the influence of the geometrical changes induced
by the appearance of the Cable (Dorsal hole shape, Leading Edge straight-

ness) must be assessed.
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Modeling and Identification of
Amnioserosa Cell Dynamics by

Using Mass Spring Lattices
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6.1 Abstract

We propose various mechanical models of a live amnioserosa cell during
Drosophila melanogaster’s dorsal closure and identify the related parameters.
Such models are based on a Lagrangian approach and account for specific
biomechanical behaviors. The identification of the parameters that fit best
the cellular dynamics extracted from live images is accomplished according
to a least-squares approach, where the dynamic behavior is explicitly taken
into account as a constraint. For the purpose of comparison, the validation
of the resulting models is performed by using the autocorrelation function

of the residuals.
101
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6.2 Introduction

Mass-spring-damper lattice models are successfully used to model 2D cel-
lular systems [76, 77|, as they recapitulate two main physical features of
live tissues, namely viscosity and elasticity. Whereas viscosity enables the
system to dissipate the energy it receives, elasticity allows the system to
store energy. Viscosity and elasticity have been widely used in biology to
model the dynamics of cells and tissues under constraints, whether consid-
ering them only viscous [78|, or both viscous and elastic [79]. Tn addition,
cells can react to external actions or molecular signals, and to adapt their
mechanical characteristics. Such phenomenon is due to mechanical stress,
and it is either called stress softening in case of decrease of cell’s stiffness
or stress stiffening in case of increase [58,80]. Moreover, cell and tissue dy-
namics may also be modelled with an extra nonlinear elastic term and hence

with a stiffness that depends on the applied force.

Mechanical characteristics are also very difficult to probe in vivo. Most of
the biomechanical studies are performed in vitro, on single molecules [43,81],
single cells |82, 83|, or minimal systems such as in-vitro grown molecular
networks [84,85|. Laser perturbations can also provide valuable information
[63, 70|, although it can be very damaging for the organism studied. In
view of this, numerical studies may be helpful to provide a handy tool for
estimating the mechanical properties of biological systems in a non-invasive
manner. In the past few years, several works were focused on forces and
deformations in live organisms [72,86]. Yet, none of them allows one to
study the parameter variations over time, and neither do they permit to

assess the mechanical characteristics of a tissue.

In this work, we address the problem of estimating the mechanical char-
acteristics of a living tissue using Lagrangian formalism and least squares
optimization. This method only requires positional measures extracted from
movies of the tissue acquired thanks to confocal fluorescence microscopy. A
system of Lagrangian equations with generalized coordinates is derived to

account for specific mechanical behaviors that depend on a set of param-
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eters specific for each model. Such parameters are estimated by solving a
constrained least squares problem and validated by means of a convenient
statistical test. An approach to modeling and identification of planar cell
polarity dynamics is reported in |87| with the goal of matching theory, sim-
ulation, and experiment. In this paper, we pursue a similar objective, as the
accuracy of the fit with biological data allows one to identify the particular
mechanical model of the cellular dynamics.

The paper is organized as follows. Section 6.3 presents the complete fam-
ily of models under investigation. The method adopted for the identification
of such models and the results of the validation on the identified models are
shown and discussed in Section 6.4. Finally, the conclusions are drawn in
Section 6.5.

6.3 Lagrangian modeling

Drosophila melanogaster embryo’s dorsal closure is a process consisting in
the closure of a dorsal hole in the epidermis, covered by a tissue called
amnioserosa, and surrounded by a cable made of actomyosin fibers. The use
of Drosophila powerful genetics may be ascribed to the ease of live imaging, it
shows great similarities with ventral enclosure in Caenorhabditis elegans 88|
and Funduli’s epiboly formation [89], as well as wound healing [37] and
eyelid formation in mammals [90]. Interestingly, amnioserosa cells play a
major part in the process, although it leads to their removal [24]. They also
show a peculiar behavior: their area varies periodically. This is due to the
periodic assembly /disassembly of the apical cytoskeleton [27|. Indeed, in the
center of the apex, the non-muscular myosin II interacts with actin filaments
to induce cyclic contractions, whereas this complex is continuously present
at the edges of the cell, enabling stable cell adhesion. Myosin II is also
phosphorylated during the process, increasing cell contractility. This feature
is a crucial component for dorsal closure dynamics [74], and is also known
to be involved in cell-stiffening [58]. Nevertheless, there is no proof that

stress-stiffening is involved in Amnioserosa cells contraction, and cell area
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@: Cell Barycenter

@: Calculated Vertex

Figure 6.1: (a) An example of system of cells. The green and purple
nodes represent calculated vertices and cell barycenters, respectively. The
green segments stand for the apical junctions of the cells. (b) As detailed,
two distinct types of spring-damper link are considered: some joining the
vertices together (corresponding to the apical junctions, in green) and other

joining vertices with the cell barycenters (in purple).

variation may come either from molecular signalling (i.e., the stiffening is
independent of the stress applied) or from the stress-stiffening phenomenon,

as it will be discussed later on.

In order to avoid heavy computation and preserve the predictive capa-
bility of our model, we decided to group mechanical parameters into two
distinct sets: one accounting for the radial contribution of the cells, and
one accounting for the azymuthal contribution. Except for the points mass,

which we consider constant for every vertex.

To represent the cellular dynamics, we rely on lattice models such as
that depicted in Fig. 6.1. Such a model is in general composed of n cells
with n, vertices, each of which is a junction among cells. Such vertices
are regarded as the focal points of forces in the tissue and represented by
point masses of Cartesian 2D coordinates (with respect to a fixed frame)

denoted by ¢;(t) € R? at time ¢t > 0 for ¢ = 1,2,...,n, with ¢;; denoting
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the j-th component of the coordinate of the mass point i (clearly, j = 1,2).
We assume that the mass of each of such points is m and, for the sake of
brevity, let ¢;(¢)? := ¢;1(t)* + ¢;2(t)®. Thus, the velocity of the mass point i
at time ¢ is denoted by ¢;(¢) € R? and similarly let ¢;(¢)* := ¢;1(t)* + ¢i 2(t)*.
Moreover, let ¢;(t)% := q;1(t) + qi2(t)>.

The model requires also the introduction of the cell barycenters, each of
which is without mass and with coordinate r;(t) € R? known upon mea-
surements for all j = 1,2,...,n. To complete the model, we need in general
to introduce the set of the indexes of neighbor vertices and barycenters of
a given vertex i, which will be denoted by V(i) and B(i), respectively. The
system has 2n, degrees of freedom and in the following we will describe
different dynamic models by using a Lagrangian approach with a specific
energy function. More precisely, we will analyze four models: (a) linear
elastic (LEM), (b) linear visco-elastic (LVEM), (c¢) nonlinear visco-elastic
(NLVEM), and (d) input-driven linear visco-elastic (IDLVEM).

In the case of the LEM, the total energy associated with the point mass

7 18
1 . K,
Lipm; = §m%(t)2 5 Z (@i(t) = q;(t) = liy)?
JEV(2)
Ky
(6.1) - (qi(t) = r(t) — b2 5)?
JEB(1)

where K, and K, are the azimuthal (vertex-vertex connectivity) and radial
(vertex-barycenter connectivity) elastic moduli, respectively; [ ;; and ly; ;
the resting lengths of the springs between vertex ¢ and another vertex or
barycenter j, respectively. These resting lengths are calculated using the
video sequence as the mean distance between the vertex i, and the corre-
sponding point (vertex or barycenter) in such a way to reduce the number of
parameters to be estimated. Based on (6.1), we obtain the Euler Lagrange

equations

d (0L oL
— - — =0,2=1,2,...,n,, 5 =1,2
dt qu,j aqu
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where
Ny
L = E Ligm,
i=1

is the Lagrangian. The resulting 2n, equations can be written as follows:

mgi(t) — K, Z (q:(t) — q;(t) — liig)

JeV (@)
— Ky Y (qi(t) = ri(t) = lpig) =0,i=1,2,... .
jeB(i)

Thus, the identification of the LEM requires to estimate two parameters,
namely K,/m and K;/m.

For the LVEM, it is necessary to account for the Rayleigh’s dissipation
function, which is often used in Lagrangian mechanics to represent energy
loss due to friction. Such a function for the mass point i is here denoted as

follows:

Drvem; = — % Z (@:(t) — g;(1))?

JEV (D)
=523 @)~ ()
JeB(i)
where u, and p;, are the azimuthal and radial viscosity, respectively; more-
over, 7°; is the velocity of the j-th barycenter (the values of such velocities
are extracted from the movie). The first term concerning the kinetic energy
is the same of the LEM, i.e., Lyygm, = Lrem,. Thus, after putting all to-
gether with L = ", Liypm, and D = >, Dyygwm,, we obtain the Euler
Lagrange equations
d ( OL oL oD
dt (a%,j) Cdq; Oy
j=12

=0,i=1,2,...,n,,

and hence 2n,, equations with four parameters to be estimated, i.e., K,/m,
Ky/m, p,/m, and jip/m.
The NLVEM takes into account the possible effect of a nonlinear elastic

term, namely an elastic modulus depending linearly with elongation. Hence,
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in this case the Lagrangian is composed of the following contributions for
mass point i:

ko
Lnivem; =Livem; — 3 Z (q:(t) = 7j(t) = 1)’

JEB(1)

DNLVEMZ- :DLVEMi .

We can proceed to compute the Euler Lagrange equations as in the previ-
ous case. The identification of the NLVEM demands the estimation of five
parameters to be estimated, i.e., K,/m, Ky/m, p,/m, py/m, and ko/m.
The IDLVEM is just the same of the LVEM but under the action of ex-
ternal forces acting on the vertices accounting for stress-independent myosin

dynamics, i.e.,

fi(t) = A; Z cos(wt + ¢;), 1 =1,2,...,n,
JEB(7)

where, in order to reduce the number of parameters to estimate, the ampli-
tude A; is taken as the mean distance between the vertex i and the neighbor
barycenters in B(i) and the frequency w is considered constant for all the
cells; finally, the phase ¢; is a parameter to be identified. For the other cases,
the parameters optimized are those that account for elasticity and viscosity.
Summing up, the parameters to find are the following: w, ¢1, ¢o,..., ¢n,
K,/m, Ky/m, p,/m, and /m.

The nonlinear elasticity of the NLVEM in the former, and the autonomous
contractility of the IDLVEM are considered only in terms of radial contri-
bution, since changes in molecular concentrations are monitored only at the

center of the cells.

6.4 Model identification and validation

The positions of the vertices and barycenters as well as the related resting
lengths can be extracted from the video sequence such as that in Figure 6.2.
Movies acquired by fluorescence confocal microscopy were first pre-treated

with a 2D lowpass gaussian filtering to remove high frequency random noise,
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Figure 6.2: Left pannel: Confocal image of Amnioserosa cells showing the
apical (top) side of their membranes in dark. On the right pannel, the same
picture was segmented (i.e. separated in distinct regions: the cells). In blue,
the cell’s barycenter, in red, the neighbor vertices, and in green, the position

of the vertices to be modeled.

followed by a top-hat filtering, to remove background signal. The pictures
were then binarized thanks to a threshold, and the Fuclidian distance trans-
form of the binarized picture was computed. This pre-treatment aims at
preparing the pictures for the last step of segmentation, which consists in
performing a watershed transform, separating the cells present in the pic-
tures in labeled regions. A graphic interface was developed “ad hoc” to allow
the user to easily correct possible errors in the segmentation as well as to
control the parameters of the pre-treatment. Once the cells are labeled as
regions in the pictures, one can easily access to their center of mass (barycen-
ter of the points contained in the region) and to the vertices (nodes of the
pictures).

Based on this video processing, we have at disposal the measures of
¢;(t), rj(t) and 7;(t) for all + and j at given time instants ¢t = k7" with k =
1,2,..., K with uniform sampling time 7T equal to 6 s. Let us denote such
measures with yg, (k), yr,(k), and 9, (k) and let y4 (k) := (qu(k), @2(k), . . ., qn, (k)) €
Ry (k) := (r1(k),ra(k), ..., ra(k)) € R*™ and g, (k) := (#1(k),72(k), ..., 7 (k)) €
R2. Moreover, let Iy := col(ly;;,i=1,2,...,ny,J € V(i)), la := col(lax, i =
1,2,...,ny,k € B(7)), and finally Iy = (I3, l2).

Following the least squares approach, we may regard the discretized Eu-
ler Lagrange equations derived from either LEM or LVEM or NLVEM or

IDLVEM as constraints to take into account when performing the optimiza-
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tion to find the best fitting parameters. In the following, such parameters
will be denoted by the vector p, which depends on the specific model, as de-
scribed in Section 6.3. Toward this end, let us refer to the generic discretized

Buler Lagrange equation given by

q(k +1) = Fr (q(k), y- (), 9-(k), Lo, p) ,
k=1,2,... K—1

with the objective cost function

K
T =" (yq(k) — q(k))*
k=1
to be minimized. Such constraints are obtained by the Runge-Kutta method
with the variable time step. For a proper comparison with the measures, the
model output was resampled to fit data sampling. Since the measures taken
at time steps kK = 1,2, ..., K have to be associated with the time sequence of
the integration (denoted by i, = to,t1, ..., tr, we link the generic integration
step tine With the nearest integer of the ratio of the final integration time over
the last data time step, i.e., [kt;/K]|. Thus, in the various modeling cases

we need to solve the following prototype problem

(6.2a) gnin > (yq(k) — q(k))*

Psq(4),.--s q =2

subject to

Q(k + 1) - FT <Q(k)7 yr<k)7yr(k)a l07p) - 07
(6.2b) k=1,2,...,K—1
(6.2¢) (1) —y,(1) = 0.

After identifying the best fitting parameters by solving 6.2, it is necessary
to asses the validity of the resulting model by solving the problem (6.2)
with some specific tools. More precisely, as usually done in identification
problems, we performed the autocorrelation test of the residuals e, (k) =

qi(k) — ¢i(k) w.r.t. a given output ¢;(k), where ¢;(k) is its prediction given
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Figure 6.3: In the left pannel, the last segmented movie frame (t = 600s),
with the trajectories of each vertex. In blue, the model output, in red,
the real trajectories. In the box, a close-up of one vertex, with the first
five points of the model output (blue), and the real trajectories (red). The
cost function calculates the sum over the whole movie of the square of the

distance between each corresponding point (n°1 blue and red, n°2...).

by the identified model, by using its autocorrelation function

(6.3) Ru(o) = Dizales®) ~ E)leslb —0) — &)
Zt:0<€z(k) - ez)

where &, = S0 e.(k)/(K +1). The plots of (6.3) for the various identified
models are shown in Figure 6.4, where the confidence bands are defined as
j:1.96/\/f. Table 6.1 reports the mean percentage of the out-of-band scores

obtained by the autocorrelation functions over all the vertices.

Table 6.1: Mean percentages of out-of-band points of the autocorrelation

functions.

LEM | LVEM | NLVEM | IDLVEM
% | 2.8 4.6 3.9 1.9

The results of the identification are displayed also in the form of a movie
showing the position of the predicted points on the segmented movie (see
Figure 6.3). The cell area extracted from the movie is also plotted versus

the predicted one, as shown in Figure 6.5.
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Figure 6.4: Autocorrelation functions (the 95% bands are depicted with
the red lines).

Based on the results shown in Figures 6.4 -6.5 and Table 6.1, some com-
ments are in order. First, the cellular contraction may be regarded as an
autonomous mechanical phenomenon, as the cellular dynamics correspond-
ing to the IDLVEM is inconsistent with the biological data, even though
the number of points outside the confidence band is very satisfactory. Sec-
ond, the LEM is also ruled out. Although it provides a rather satisfactory
autocorrelation function (2.8% of out-of -band points), it displays a non pe-
riodic area variation over time and seems to be quite sensitive to noises, as
shown in Figure 6.5. Third, the LVEM exhibits a large enough percentage
of out-of-band points. Moreover, the corresponding cellular dynamics pro-
vides area oscillations with a rather small amplitude, which may be ascribed
to abnormally high viscous parameters, as resulting from the identification.

Even repeating the identification with additional constraints that keep the



112 CHAPTER 6. MODELING AMNIOSEROSA CELL DYNAMICS

Elastic Visco-Elastic
— o
x x
=2 =
© ©
Q £l Q 9
< <
k) k)
O & O ¢
300 200 500 00 o 00 200 a0
Time (s) Time (s)
(a) LEM (b) LVEM
Nonlinear Visco-Elastic Input-Independant Contraction
1200
1100
1000
o o a
% % o0
I ©
e 9 E 800
< <
% % 700
O o
00
500
00
0 00 200 500 00 500 w00 o 00 200 ES w00 E w00
Time (s) Time (s)
(c) NLVEM (d) IDLVEM

Figure 6.5: Cell areas over time (red curve) and their prediction based on

the identified model (blue curve).

viscous parameters low, we obtained bad results (not shown here). Summing
up, the model with the best fit appears to be the NLVEM. The prediction
of cellular dynamics is more precise than any other model, and the analysis

of the autocorrelation functions shows a rather satisfactory percentage of

out-of-band points.

6.5 Conclusions

Though a lot of literature exists on modeling of cellular dynamics, very little
is available on the identification of the various models proposed up to now.
In this paper, we have presented the results of a complete investigation

on both modeling and parameter identification of the planar dynamics of
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amnioserosa cells from live images. To our knowledge, such a joint work
is novel in the literature and bridges the gap between model construction
and identification of the related parameters, which needs to be supported
by a successful validation. Based on this framework, we have estimated
the parameters of the various mechanical models and found the best fitting
model, which is just that accounts for nonlinear elasticity.

Results on Dorsal Closure dynamics based on such a method are novel in
the literature, even though Amnioserosa cells and Dorsal Closure dynamics
have already been subject to various studies. Enabling us to discriminate
between several putative mechanical behaviors for cells, this approach is thus
a valuable tool to assess biological problematics.

Future work may concern the development of adaptive models that may
provide an increased precision thanks to the on-line tuning. Moreover, this
approach may be applied to the various cell types and fates of Dorsal Closure

to uncover their variations and differences of mechanical characteristics.
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