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Résumé

Dans ma thèse, je décris les feuilles stables et instables pour le flot géodésique sur l'espace des géodésiques non-errant de type espace d'un espace-temps de Margulis et je démontre des propriétés de contraction des feuilles sous le flot. Je montre aussi que la monodromie d'un espace-temps de Margulis est une représentation Anosov dans un groupe de Lie non semisimple. En outre, je montre que les applications limites de ces représentations Anosov et les reparamétrisations du flot géodésique initial. Enfin, à l'aide de la propriété métrique Anosov, nous définissons la métrique de pression sur l'espace modulaire des espaces-temps de Margulis sans pointes et je démontre qu'elle est définie positive sur les sections d'entropie constante.

Description en français

Un espace-temps de Margulis M est un quotient de l'espace affine A de dimension trois par un groupe libre, non-abélien Γ agissant par des transformations affines dont la partie linéaire est discrète.

Grigory Margulis a utilisé ces espaces, dans [START_REF] Margulis | Free completely discontinuous groups of affine transformations[END_REF] et [START_REF] Margulis | Complete affine locally flat manifolds with a free fundamental group[END_REF], comme des exemples pour répondre par la négative à la question suivante de Milnor.

Question 1. Est-ce que le groupe fondamental d'une variété complète, plate et affine est virtuellement polycyclique?

Si M est un espace-temps de Margulis, alors le groupe fondamental π 1 (M) ne contient aucune translation. Les résultats de Fried-Goldman et Mess, dans [START_REF] Fried | Three-dimensional affine crystallographic groups[END_REF], [START_REF] Mess | Lorentz spacetimes of constant curvature[END_REF], impliquent qu'une variété affine plate complète soit est un espace-temps de Margulis, soit admet comme groupe fondamental un groupe polycyclique.

Dans ma thèse, je ne considère que les espace-temps de Margulis dont la partie linéaire ne contient aucun élément parabolique, bien que par des résultats de Drumm, il existe des espace-temps de Margulis dont la partie linéaire contient des éléments paraboliques.

Fried-Goldman ont montré dans [START_REF] Fried | Three-dimensional affine crystallographic groups[END_REF] qu'un conjugué de la partie linéaire de l'action affine du groupe fondamental de M est un sous-groupe de SO(2, 1) dans GL(3, R). Par conséquent, les espace-temps de Margulis proviennent d'homomorphismes injectifs ρ : Γ -→ SO 0 (2, 1) R 3 où Γ est un groupe libre non-abélien de rang fini.

Notons l'espace des homomorphismes injectifs d'un groupe libre Γ dans un groupe de Lie G par Hom(Γ, G) et l'espace de cocycles par Z 1 (L ρ (Γ), R 3 ). Notons l'espace des homomorphismes ρ dans Hom(Γ, G) tels que ρ(Γ) agit proprement sur A et que L ρ (Γ) est discret et ne contient aucun élément parabolique par Hom M (Γ, G) où G := SO 0 (2, 1) R 3 . Notons aussi l'espace des modules des espace-temps de Margulis par M. On remarque que:

M ∼ = Hom M (Γ, G)/ ∼ où ρ 1 ∼ ρ 2 si et seulement si ρ 1 est un conjugué de ρ 2 par un élément du groupe G. Soient Hom S (Γ, SO 0 (2, 1)) l'espace de toutes les représentations Schottky de Γ dans SO 0 (2, 1) et T := Hom S (Γ, SO 0 (2, 1))/ ∼ où 1 ∼ 2 si et seulement si 1 est un conjugué de 2 par un élément du groupe SO 0 (2, 1). Goldman-Labourie-Margulis ont montré dans [START_REF] Goldman | Proper affine actions and geodesic flows of hyperbolic surfaces[END_REF] que:

1 Theorem 0.0.1. [Goldman-Labourie-Margulis] L'espace des modules des espace-temps de Margulis M est une partie ouverte dans le fibré tangent de la variété analytique T .

En conséquence, Proposition 0.0.2. L'espace des modules des espace-temps de Margulis M est une variété analytique.

Les classes de parallélisme des géodésiques de type temps de M peuvent être paramétrées par une surface hyperbolique complète Σ. Des travaux récents de Danciger-Guéritaud-Kassel dans [START_REF] Danciger | Geometry and Topology of Complete Lorentz SpaceTimes of Constant Curvature[END_REF] montrent que M est une fibration de R sur Σ dont les fibres sont des géodésiques type temps.

Les travaux antérieurs de Charette-Goldman-Jones dans [START_REF] Charette | Recurrent Geodesics in Flat Lorentz 3-Manifolds[END_REF], Goldman-Labourie-Margulis dans [START_REF] Goldman | Proper affine actions and geodesic flows of hyperbolic surfaces[END_REF] et Goldman-Labourie dans [START_REF] Goldman | Geodesics in Margulis spacetimes[END_REF] ont montré que la dynamique de M est étroitement liée à celle de Σ. Jones-Charette-Goldman ont montré dans [START_REF] Charette | Recurrent Geodesics in Flat Lorentz 3-Manifolds[END_REF] qu'elle existe des géodésiques bi-spirales dans M et qu'ils correspondent aux géodésiques bi-spirales de Σ. Goldman-Labourie ont montré dans [START_REF] Goldman | Geodesics in Margulis spacetimes[END_REF] que les géodésiques non errantes de type espace de M correspondent aux géodésiques non errantes de Σ.

En effet, soient ρ ∈ Hom M (Γ, G) et Σ ρ := L ρ (Γ)\H où L ρ (Γ) la partie linéaire de ρ(Γ) et H le modèle de l'hyperboloïde du plan hyperbolique. Également, soient U rec Σ ρ et U rec M ρ les espaces des points non errantes du flot géodésique, respectivement sur UΣ ρ et sur UM ρ , soit U ρ rec H son relèvement dans UH et soit U rec A le relèvement de U rec M dans UA, où UA et UH sont les fibrs tangents unitaires de A et de H respectivement.

Dans [START_REF] Goldman | Proper affine actions and geodesic flows of hyperbolic surfaces[END_REF] Goldman-Labourie-Margulis démontre le théorème suivant:

Theorem 0.0.3. [Goldman-Labourie-Margulis] Soit ρ : Γ → G un homomorphisme donnant lieu à un espace-temps de Margulis dont la partie linéaire L ρ (Γ) ne contient aucun élément parabolique. Alors il existe une application

N ρ : U ρ rec H -→ A
et une fonction hölderienne positive

f ρ : U ρ rec H -→ R telles que 1. pour tout γ ∈ Γ on a f ρ • L(ρ(γ)) = f ρ , 2. pour tout γ ∈ Γ on a N ρ • L(ρ(γ)) = ρ(γ)N ρ , et 3. pour tout g ∈ U ρ rec H et pour tout t ∈ R on a N ρ ( φt g) = N ρ (g) +   t 0 f ρ ( φs (g))ds   ν(g)
où ν est la section neutrale.

On appelle N ρ une section neutralisée. Maintenant, en utilisant l'existence d'une section neutralisée, Goldman-Labourie ont demontré que: Theorem 0.0.4. [Goldman-Labourie] Soit ρ : Γ → G un homomorphisme donnant lieu à un espace-temps de Margulis tel que la partie linéaire L ρ (Γ) ne contient aucun élément parabolique. Également, soient U rec Σ Lρ et U rec M ρ définis comme ci-dessus. Maintenant, si N ρ est une section neutralisée, alors il existe une application injective Nρ telle que le diagramme suivant commute,

U ρ rec H Nρ ----→ UA π     π U rec Σ Lρ Nρ ----→ UM
où N ρ := (N ρ , ν). En plus, Nρ est une homéomorphism hölderienne sur U rec M ρ qui est aussi une équivalence des orbites.

Dans ma thèse, je commence par rappeler quelques notions préliminaires afin de préparer le terrain pour décrire explicitement les laminations stables et instables pour le flot géodésiques Φ de U rec M. Definition 0.0.5. Soit (X , d) un espace métrique. Une lamination L de X est une relation d'équivalence sur X telle que pour tout x dans X il existe un voisinage ouvert U x de x dans X , deux espaces topologiques U 1 et U 2 et un homéomorphisme f x de U 1 × U 2 sur U x vérifiant les propriétés suivantes, 1. pour tous w, z dans U x ∩ U y on a p 2 f -1

x (w) = p 2 f -1 x (z) si et seulement si p 2 f -1 y (w) = p 2 f -1 y (z) , où p 2 est la projection de U 1 × U 2 sur U 2 , 2. pour tous w, z dans X , on a wLz si et seulement s'il existe une suite finie des points w 1 , w 2 , .., w n dans X avec w 1 = w et w n = z, telle que w i+1 est dans U w i , où U w i est un voisinage de w i et p 2 f -1 w i (w i ) = p 2 f -1 w i (w i+1 ) pour tout i dans {1, 2, .., n -1}.

On appelle un tel homéomorphisme f x une carte et les classes d'equivalence les feuilles. Une plaque ouverte dans la carte correspondant à f x est un ensemble de la forme f x (V 1 × {x 2 }) où x = f x (x 1 , x 2 ) et V 1 est un ouvert dans U 1 . La topologie plaque sur L x est engendrée par des plaques ouvertes. Un voisinage plaque de x est un voisinage pour la topologie plaque sur L x . Definition 0.0.6. Une structure du produit local sur X est une paire de deux laminations (L 1 , L 2 ) vérifiant les propriétes suivantes: pour tout x dans X , il existe deux voisinages plaques U 1 , U 2 de x, respectivement dans L 1 , L 2 et un homéomorphisme f x de U 1 × U 2 sur un voisinage W x de x, tel que f x definit une carte pour les laminations L 1 et L 2 .

Supposons que ψ t est un flot sur X . Une lamination L invariante sous le flot ψ t est transverse au flot, si pour tout x dans X , il existe un voisinage plaque U x de x dans L x , un espace topologique V, un positif et une homéomorphism f x de U x × V × (-, ) sur un voisinage ouvert W x de x dans X vérifiant les propriétés suivantes:

ψ t (f x (u, v, s)) = f x (u, v, s + t)
pour u dans U x , v dans V et pour s, t dans l'intervalle (-, ). Soit L . une lamination transverse au flot ψ t . Définissons une nouvelle lamination L .,0 , appellée la lamination centrale, obtenue à partir de L . comme suit: on dit que y, z dans X appartiennent à la même classe d'equivalence de L .,0 s'il existe t ∈ R tel que ψ t y et z appartiennent à la même classe d'equivalence de L . . Definition 0.0.7. Une lamination L invariante sous un flot ψ t est contractée sous le flot si et seulement s'il existe un nombre réel T 0 tel que pour tout x dans X , il existe une carte f x d'un voisinage ouvert W x de x, et pour deux points arbitraires y, z dans W x avec y, z appartenant à la même classe d'equivalence de L, on a, d(ψ t y, ψ t z) < 1 2 d(y, z) pour tout t > T 0 .

Definition 0.0.8. Un flot ψ t sur un espace métrique compact est un flot métrique Anosov, si et seulement s'il existe deux laminations L + et L -de X telles que les conditions suivantes soient satisfaites:

1. (L + , L -,0 ) définit une structure de produit locale sur X , 2. (L -, L +,0 ) définit une structure de produit locale sur X , 3. les feuilles de L + sont contractées par le flot, 4. les feuilles de L -sont contractées par le flot inverse.

Dans un tel cas, L + , L -, L +,0 et L -,0 sont appelés respectivement les laminations stables, instables, stables centrales and instables centrales.

Je montre alors le résultat suivant:

Lemma 0.0.9. Il existe une métrique sur U rec M qui est localement équivalente de manière bilipschitz à une métrique sur U rec A obtenue à partir de la restriction de n'importe quelle métrique euclidienne sur TA ∼ = A × V où V l'espace vectoriel correspondant à l'espace affine A et TA le fibré tangent de A.

Soit v un vecteur de type espace de norme un et soient v + et v -deux vecteurs dans le cône de lumière futur tels que det[v -, v, v + ] > 0. Alors, je définis Definition 0.0.10. Les partitions positives de U rec A sont respectivement données par,

L + (X,v) := L+ (X,v) ∩ U rec A où (X, v) ∈ U rec A et L+ (X,v) := {(X + s 1 v + , v + s 2 v + ) | s 1 , s 2 ∈ R}. Definition 0.0.11. Les partitions négatives de U rec A sont respectivement données par, L - (X,v) := L- (X,v) ∩ U rec A où (X, v) ∈ U rec A et L- (X,v) := {(X + s 1 v -, v + s 2 v -) | s 1 , s 2 ∈ R}.
Proposition 0.0.12. Les partitions L + et L -décrivent deux laminations sur U rec M.

Je prouve aussi que:

Theorem 0.0.13. Les laminations (L + , L -,0 ) et (L -, L +,0 ) définissent une structure de produit locale sur U rec A.

En fait, les laminations sont équivariantes sous l'action de Γ et sous le flot de géodésique.

Definition 0.0.14. Les projections de L + et L -sur l'espace U rec M sont notées respectivement par L + et L -, où L + , L -sont définis comme ci-dessus.

Ensuite, je démontre le résultat suivant:

Theorem 0.0.15. Soient L + et L -deux laminations de l'espace métrique U rec M telles qu'elles sont définies dans la définition ci-dessus. Le flot géodésique sur l'espace des géodésiques non errantes de type espace dans M contracte exponentiellement la lamination L + par le flot positif et contracte exponentiellement la lamination L -par le flot negatif.

Il s'en suit que U rec M a une structure métrique Anosov. En outre, dans cette thèse je définis la notion d e représentation Anosov dans le contexte du groupe de Lie non semisimple SO 0 (2, 1) R 3 . La notion d'une représentation Anosov d'un groupe discret dans un groupe de transformations G a été introduite par Labourie dans [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF]. En suite, Guichard-Wienhard ont étudié les représentations Anosov dans les groupes de Lie semisimples en plus de détail dans [START_REF] Guichard | Anosov representations: Domains of discontinuity and applications[END_REF]. Récemment, dans [START_REF] Bridgeman | The pressure metric for convex homomorphisms[END_REF] Bridgeman-Canary-Labourie-Sambarino ont introduite le flot géodésique d'une représentation Anosov et le formalisme thérmodynamique dans ce cas, encore dans le contexte de G étant un groupe de Lie semisimple. Dans cette thèse, j'étudie des cas spéciaux et de nouveaux exemples de représentations Anosov lorsque G est le groupe non semisimple SO 0 (2, 1) R 3 .

Soit X l'espace de tous les plans affines nulles. On observe que G agit transitivement sur X. Par conséquent, pour tout P ∈ X, on a

X = G.P ∼ = G/Stab G (P ).
Definition 0.0.16. Si P ∈ X, je définis

P P := Stab G (P ).
J'appelle P P un sous-groupe pseudo-parabolique de G.

Soit P X,w 1 ,w 2 le plan passant par un point X ∈ A avec l'espace vectoriel correspondant engendré par les vecteurs w 1 et w 2 . On fixe un point O ∈ A et definit:

P ± := Stab G (P O,v 0 ,v ± 0 ).
Aussi soit L = P + ∩ P -. Notons la boundary de Gromov du groupe Γ par ∂ ∞ Γ et le flot géodesique de Gromov sur

U 0 Γ := Γ\(∂ ∞ Γ (2) × R) par ψ.
Definition 0.0.17. On dit que ρ dans Hom(Γ, G) est (G, P ± )-Anosov si et seulement s'il existe deux applications continues

ξ ± ρ : ∂ ∞ Γ -→ G/P ±
telles que les suivantes sont vraies:

1. Pour tout γ dans Γ, on a ξ ± ρ • γ = ρ(γ).ξ ± ρ . 2. Si x = y dans ∂ ∞ Γ, alors (ξ + ρ (x), ξ - ρ (y)) réside dans G/L. 3. Le fibré induit Ξ + ρ := (ξ + ρ • π 1 ) * E + est contracté par le révetement du flot ψt quand t → ∞, et le fibré induit Ξ - ρ := (ξ - ρ • π 2 ) * E -est contracté par le révetement du flot ψt quand t → -∞.
Les applications ξ ± ρ sont les applications limites associées à la representation (G, P ± )-Anosov ρ.

Proposition 0.0.18. Si ρ est dans Hom M (Γ, G), alors ρ est (G, P ± )-Anosov.

En d'autres termes, les monodromies de l'espace-temps de Margulis sont "des représentations Anosov dans le groupe de Lie non semi-simple SO 0 (2, 1) R 3 ". J'utilise cette propriété Anosov et la théorie du formalisme thérmodynamique qui est développée par Bowen, Bowen-Ruelle, Parry-Pollicott, Pollicott et Ruelle et d'autres dans [START_REF] Bowen | Symbolic dynamics for hyperbolic flows[END_REF], [START_REF] Bowen | The ergodic theory of axiom A flows[END_REF], [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF], [START_REF] Pollicott | Symbolic dynamics for Smale flows[END_REF], [START_REF] Ruelle | Thermodynamic Formalism[END_REF] pour définir l'entropie et l'intersection. En outre, j'utilise la propriété métrique Anosov pour montrer que l'entropie et l'intersection varient analytiquement sur M. Enfin, je définis et j'étudie la métrique de pression sur M.

L'étude de la métrique de pression dans le cadre des variétés de représentation a été initiée par McMullen et Bridgeman-Taylor respectivement dans [START_REF] Mcmullen | Thermodynamics, dimension and the Weil-Petersson metric[END_REF], [START_REF] Bridgeman | An extension of the Weil-Petersson metric to quasi-Fuchsian space[END_REF]. McMullen a donné la métrique de Weil-Petersson en termes de métrique de pression sur l'espace de Teichmüller. Bridgeman-Taylor ont généralisé le résultat au cas quasi-fuchsien dans [START_REF] Bridgeman | An extension of the Weil-Petersson metric to quasi-Fuchsian space[END_REF]. Bridgeman a également étudié la métrique de pression dans le cadre du groupe de Lie semi-simple SL(2, C) dans [START_REF] Bridgeman | Hausdorff dimension and the Weil-Petersson extension to quasifuchsian space[END_REF].

Les résultats récents de Bridgeman-Canary-Labourie-Sambarino dans [START_REF] Bridgeman | The pressure metric for convex homomorphisms[END_REF] prolongent cela dans le contexte de n'importe quel groupe de Lie semi-simple. Dans cette thèse, j'étudie le cas où le groupe de Lie en question est SO 0 (2, 1) R 

h ρ = lim T →∞ 1 T log (#R T (ρ)) .
Je démontre que R T (ρ) est de cardinal fini et h ρ est bien défini, fini et positif.

Definition 0.0.20. L'intersection de deux représentations ρ 1 , ρ 2 est donnée par:

I(ρ 1 , ρ 2 ) = lim T →∞ 1 #R T (ρ 1 ) [γ]∈R T (ρ 1 ) α ρ 2 (γ) α ρ 1 (γ)
.

Definition 0.0.21. L'intersection renormalisée de deux représentations ρ 1 et ρ 2 est donnée par:

J ρ 1 (ρ 2 ) = I(ρ 1 , ρ 2 ) h ρ 2 h ρ 1 .
Je démontre que l'intersection et l'intersection renormalisée sont bien définies et je montre aussi la proposition suivante: Proposition 0.0.22. Les applications suivantes sont analytiques réelles:

h : M → R I : M × M → R J : M × M → R
Afin de montrer que l'entropie et l'intersection varie analytiquement je prouve les deux résultats téchniques suivantes: Theorem 0.0.23. Soit {ρ u } u∈D une famille analytique réelle dans Hom(Γ, G) parametrisée par une disque D centrée en 0. Si ρ 0 est (G, P ± )-Anosov avec des applications limites

ξ ± 0 : ∂ ∞ Γ -→ G/P ± alors il existe une sous-disque D 0 de D (contenant 0), un positif µ et une application continue ξ + : D 0 × ∂ ∞ Γ -→ G/P +
avec les propriétes suivantes:

1. Si u est dans D 0 , alors ρ u est une représentation (G, P ± )-Anosov avec l'application limite µ-Hölder donnée par

ξ + u : ∂ ∞ Γ -→ G/P + x -→ ξ + (u, x),
2. Si x est dans ∂ ∞ Γ, alors l'application suivante est analytique réelle

ξ + x : D 0 -→ G/P + u -→ ξ + (u, x), 3. L'application de ∂ ∞ Γ à C ω (D 0 , G/P + ) donnée par x → ξ + x est µ-hölderienne, 4. L'application de D 0 à C µ (∂ ∞ Γ, G/P + ) donnée par u → ξ + u est analytique réelle.
Il s'ensuit des resultats de Goldman-Labourie-Margulis et de Goldman-Labourie respectivement dans [START_REF] Goldman | Proper affine actions and geodesic flows of hyperbolic surfaces[END_REF] et dans [START_REF] Goldman | Geodesics in Margulis spacetimes[END_REF] qu'il existe un homéomorphisme qui est aussi une équivalence des orbites entre U 0 Γ et U rec M ρ tel que le flot affine linéaire sur U rec M ρ est une réparametrisation hölderienne du flot de Gromov. Donc pour tout ρ ∈ Hom M (Γ, G) on a une application hölderienne, positive Enfin, je définis la métrique de pression comme étant la Hessienne de J, c'est-à-dire, Definition 0.0.25. Soit ρ ∈ Hom M (Γ, G) et soient v, w ∈ T ρ Hom M (Γ, G). La métrique de pression est définie comme

f ρ : U 0 Γ → R
P ρ (v, w) := D 2 ρ J ρ (v, w).
Il résulte du formalisme thérmodynamique que la métrique de pression P sur Hom M (Γ, G) est definie non-negative. Je continue en démontrant:

Proposition 0.0.26. Soit {ρ t } un chemin lisse dans Hom M (Γ, G) avec d dt t=0 ρ t = v. Si P ρ (v, v) = 0 et d dt t=0 h ρt = 0, alors pour tout γ dans Γ d dt t=0 α ρt (γ) = 0.
Bridgeman-Canary-Labourie-Sambarino ont démontré le résultat suivant dans [START_REF] Bridgeman | The pressure metric for convex homomorphisms[END_REF].

Proposition 0.0. 

( (γ n η n ) -(γ n ) -(η n )) = log b (η -, γ -, γ + , η + )
où ρ (γ) est la longueur de la géodesique fèrmée correspondant à (γ).

En outre, dans [START_REF] Goldman | Flat Lorentz 3-manifolds and cocompact Fuchsian groups[END_REF] (voir aussi [START_REF] Goldman | The Margulis Invariant of Isometric Actions on Minkowski (2+1)-Space[END_REF]) Goldman-Margulis ont démontré que:

Theorem 0.0. 

(α ρt (γ n η n ) -α ρt (γ n ) -α ρt (η n )) = X ρt(γ) -X ρt(η) | ν ρt η -, γ + + ν ρt η + , γ -, d dt t=0 X ρt(γ) -X ρt(η) | ν ρt η -, γ + + ν ρt η + , γ - = lim n→∞ d dt t=0 (α ρt (γ n η n ) -α ρt (γ n ) -α ρt (η n ))
où ν est la section neutrale et | est la métrique Lorentzienne standarde sur R 3 .

Theorem 0.0.30. Soit { t } t∈(-1,1) un chemin lisse dans Hom S (Γ, SO 0 (2, 1)) tel que ρ := ( 0 , ˙ 0 ) ∈ Hom M (Γ, G) oú ˙ 0 := d dt t=0 t . Alors on a Soit h ρ l'entropie topologique qui est liée à une représentation ρ ∈ Hom M (Γ, G). Ensuite, je définis les sections d'entropie constante de Hom M (Γ, G) pour tout k > 0 comme:

X ρ(γ) -X ρ(η) | ν ρ (η -, γ + ) + ν ρ (η + , γ -) = d dt t=0 log b t (η -, γ -, γ + , η + ) où X ρ(γ
Hom M (Γ, G) k := {ρ ∈ Hom M (Γ, G) | h ρ = k} . (0.0.1)
Notons que, si ( , u) est dans Hom M (Γ, SO 0 (2, 1) R 3 ) = Hom M (Γ, G) alors ( , cu) l'est aussi où c > 0.

Lemma 0.0.33. Soit ( , u) ∈ Hom M (Γ, SO 0 (2, 1) R 3 ) alors pour c > 0, on a

h ( ,cu) = 1 c h ( ,u) .
Proposition 0.0.34. L'espace Hom M (Γ, G) k est une sous-variété analytique de codimension un dans Hom M (Γ, G) pour tout k > 0.

Remark 0.0.35. L'application suivante:

I k : Hom M (Γ, G) 1 -→ Hom M (Γ, G) k ( , u) -→ , 1 k u donne un isomorphisme analytique entre Hom M (Γ, G) 1 et Hom M (Γ, G) k .
Proposition 0.0.36. L'espace Hom M (Γ, G) est isomorphe analytiquement à l'espace produit Hom M (Γ, G) 1 × R.

Definition 0.0.37. Le multivers de Margulis avec entropie k est

M k := Hom M (Γ, G) k / ∼ où k > 0 et ρ 1 ∼ ρ 2 si et seulement si ρ 1 est un conjugué de ρ 2 par un élément du groupe G = SO 0 (2, 1) R 3 .
Enfin, je démontre que:

Theorem 0.0.38. Soient M k une section d'entropie constante de la variété analytique M avec entropie k et P la métrique de pression sur M. Alors (M k , P| M k ) est une variété riemannienne analytique.

Et je conclus ma thèse en montrant le résultat suivant:

Theorem 0.0.39. La signature de la métrique de pression P sur l'espace des modules M est (dim(M) -1, 0).

Introduction

A Margulis Space Time M is a quotient of the three dimensional affine space by a free, non-abelian group acting as affine transformations with discrete linear part. Grigory Margulis used these spaces, in [START_REF] Margulis | Free completely discontinuous groups of affine transformations[END_REF] and [START_REF] Margulis | Complete affine locally flat manifolds with a free fundamental group[END_REF], as examples to answer Milnor's following question in the negative. Question 2. Is the fundamental group of a complete, flat, affine manifold virtually polycyclic? [START_REF] Milnor | On fundamental groups of complete affinely flat manifolds[END_REF] If M is a Margulis Space Time then the fundamental group π 1 (M) does not contain any translation. By combining results of Fried-Goldman and Mess from [START_REF] Fried | Three-dimensional affine crystallographic groups[END_REF], [START_REF] Mess | Lorentz spacetimes of constant curvature[END_REF], a complete flat affine manifold either has a polycyclic fundamental group or is a Margulis Space Time. In this thesis I will only consider Margulis Space Times whose linear part contains no parabolic elements, although by Drumm there exist Margulis Space Times whose linear part contain parabolic elements.

Fried-Goldman showed in [START_REF] Fried | Three-dimensional affine crystallographic groups[END_REF] that a conjugate of the linear part of the affine action of the fundamental group forms a subgroup of SO(2, 1) in GL(3, R). Hence, Margulis Space Times arise from the injective homomorphisms

ρ : Γ -→ SO 0 (2, 1) R 3
where Γ is a non-abelian free group with finitely many generators. Goldman-Labourie-Margulis show in [START_REF] Goldman | Proper affine actions and geodesic flows of hyperbolic surfaces[END_REF] that M, the Moduli Space of Margulis Space Times, is an open subset of the representation variety. Therefore M is an analytic manifold.

The parallelism classes of timelike geodesics of M can be parametrized by a noncompact complete hyperbolic surface Σ. Recent work by Danciger-Guéritaud-Kassel in [START_REF] Danciger | Geometry and Topology of Complete Lorentz SpaceTimes of Constant Curvature[END_REF] have shown that M is a R-bundle over Σ and the fibers are time like geodesics.

Previous works of Charette-Goldman-Jones in [START_REF] Charette | Recurrent Geodesics in Flat Lorentz 3-Manifolds[END_REF], Goldman-Labourie-Margulis in [START_REF] Goldman | Proper affine actions and geodesic flows of hyperbolic surfaces[END_REF] and Goldman-Labourie in [START_REF] Goldman | Geodesics in Margulis spacetimes[END_REF] showed that the dynamics of M is closely related to that of Σ. Jones-Charette-Goldman showed in [START_REF] Charette | Recurrent Geodesics in Flat Lorentz 3-Manifolds[END_REF] that bispiralling geodesics in M exists and they correspond to bispiralling geodesics in Σ. Goldman-Labourie showed in [START_REF] Goldman | Geodesics in Margulis spacetimes[END_REF] that non-wandering spacelike geodesics in M correspond to non-wandering geodesics in Σ.

In this thesis, I first chalk out some preliminary notions, in order to prepare the ground to explicitly describe the stable and unstable laminations of U rec M, the space of non-wandering spacelike geodesics in M, under the geodesic flow Φ. I carry on to show that the stable laminations get contracted by the forward flow and the unstable laminations get contracted by the backward flow. More precisely, I prove the following, Theorem 0.0.40. Let L + and L -be two laminations of the metric space U rec M as defined in definition 5.2.13. The geodesic flow on the space of non-wandering spacelike geodesics in M contracts L + exponentially in the forward direction of the flow and contracts L - exponentially in the backward direction of the flow.

Hence it follows that U rec M has a metric Anosov structure. Moreover, in this thesis I define the notion of an Anosov representation in the context of the non-semisimple Lie group SO 0 (2, 1) R 3 . The notion of an Anosov representation of a discrete group in a group G of transformations was first introduced by Labourie in [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF]. Later, Guichard-Wienhard studied Anosov representations into semisimple Lie groups in more details in [START_REF] Guichard | Anosov representations: Domains of discontinuity and applications[END_REF]. Recently, in [START_REF] Bridgeman | The pressure metric for convex homomorphisms[END_REF] Bridgeman-Canary-Labourie-Sambarino introduce the geodesic flow of an Anosov representation and the thermodynamical formalism in this picture, again in the context of G being any semisimple Lie group. In this thesis I study special cases and new examples of Anosov representations when G is the non-semisimple Lie group SO 0 (2, 1) R 3 . Using this definition I carry on to prove the following theorem: Theorem 0.0.41. Let N be the space of all oriented space-like affine lines in the three dimensional affine space and let L be the orbit foliation of the flow Φ on U rec M. Then there exist a pair of foliations on N so that (U rec M, L) admits a geometric (N, SO 0 (2, 1) R 3 ) Anosov structure.

In other words, monodromies of Margulis Space Times are "Anosov representations in the non semisimple Lie group SO 0 (2, 1) R 3 ".

I use this Anosov property and the theory of thermodynamical formalism developed by Bowen, Bowen-Ruelle, Parry-Pollicott, Pollicott and Ruelle and others in [START_REF] Bowen | Symbolic dynamics for hyperbolic flows[END_REF], [START_REF] Bowen | The ergodic theory of axiom A flows[END_REF], [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF], [START_REF] Pollicott | Symbolic dynamics for Smale flows[END_REF], [START_REF] Ruelle | Thermodynamic Formalism[END_REF] to define the entropy and intersection. Moreover, I use the metric Anosov property to show that the entropy and intersection vary analytically over M. Finally, I define and study the Pressure metric on M.

The study of Pressure metric in the context of representation varieties was started by McMullen and Bridgeman-Taylor respectively in [START_REF] Mcmullen | Thermodynamics, dimension and the Weil-Petersson metric[END_REF], [START_REF] Bridgeman | An extension of the Weil-Petersson metric to quasi-Fuchsian space[END_REF]. McMullen gave a Pressure metric formulation of the Weil-Petersson metric on the Teichmüller Space. Bridgeman-Taylor generalised the result to the quasi-Fuchsian case in [START_REF] Bridgeman | An extension of the Weil-Petersson metric to quasi-Fuchsian space[END_REF]. Bridgeman also studied the Pressure metric in the context of the semisimple Lie group SL(2, C) in [START_REF] Bridgeman | Hausdorff dimension and the Weil-Petersson extension to quasifuchsian space[END_REF]. Recent results by Bridgeman-Canary-Labourie-Sambarino in [START_REF] Bridgeman | The pressure metric for convex homomorphisms[END_REF] extend it in the context of any semisimple Lie group. In this thesis I study the case where the Lie group in question is SO 0 (2, 1) R 3 , a non-semisimple Lie group.

Let ρ : Γ → SO 0 (2, 1) R 3 be a representation giving rise to a Margulis Space Time and let α ρ (γ) be the Margulis Invariant of γ ∈ Γ for the representation ρ. Now for a positive real number T let

R T (ρ) := {γ ∈ O | α ρ (γ) T }
where O is the collection of all conjugacy classes of elements of Γ. Let us define the entropy as follows:

h ρ = lim T →∞ 1 T log (#R T (ρ)) .
I will show that R T (ρ) has finite cardinality and h ρ is well defined, finite and positive (follows from theorem 0.0.40, theorem 3.2.1 and proposition 7.2.1). Moreover, let us define the intersection of two representations ρ 1 , ρ 2 as

I(ρ 1 , ρ 2 ) = lim T →∞ 1 #R T (ρ 1 ) [γ]∈R T (ρ 1 ) α ρ 2 (γ) α ρ 1 (γ) ,
and the renormalised intersection of the two representations ρ 1 , ρ 2 as

J ρ 1 (ρ 2 ) = I(ρ 1 , ρ 2 ) h ρ 2 h ρ 1 .
I show that the intersection and the renormalised intersection are well defined (follows from theorem 0.0.40, theorem 3.2.1, equation 7.3.1). I also show that the maps h, I, J are analytic over the analytic manifold M (follows from proposition 7.4.5 and proposition 8.3.1). Finally, I define the pressure metric as the Hessian of J, that is,

P(v, w) = D 2 [ρ] J [ρ] (v, w)
where v, w ∈ T [ρ] M. And I prove the following two theorems:

Theorem 0.0.42. Let M k be a constant entropy section of the analytic manifold M with entropy k and let P be the Pressure metric on M.

Then (M k , P| M k ) is an analytic Riemannian manifold.
Theorem 0.0.43. The Pressure metric P has signature (dim(M) -1, 0) over the moduli space M.

In the process I also obtain a new formula for the deformation of the cross ratio (theorem 8.4.4).

Finally, I would like to mention that section 6, 7, 9 and 10 of this thesis contain most of my original work.

Chapter 1

Affine Geometry

An affine space is a set A together with a vector space V and a faithful and transitive group action of V on A. We call V the underlying vector space of A and refer to its elements as translations. An affine transformation F between two affine spaces A 1 and A 2 , is a map such that for all x in A 1 and for all v in V 1 , F satisfies the following property:

F (x + v) = F (x) + L(F ).v (1.0.1)
for some linear transformation L(F ) between V 1 and V 2 . Therefore, by fixing an origin O in A, one can represent an affine transformation F , from A to itself as a combination of a linear transformation and a translation. More precisely,

F (O + v) = O + L(F ).v + (F (O) -O) . (1.0.2)
We denote (F (O) -O) by u(F ). Let us denote the space of affine automorphisms of A onto itself by Aff(A).

Let GL(V) be the general linear group of V. We consider the semidirect product GL(V) V of the two groups GL(V) and V where the multiplication is defined by

(g 1 , v 1 ).(g 2 , v 2 ) := (g 1 g 2 , v 1 + g 1 .v 2 ) (1.0.3) for g 1 , g 2 in GL(V) and v 1 , v 2 in V.
Using equation 1.0.2 we obtain that the following map:

F → (L(F ), u(F ))
defines an isomorphism between Aff(A) and GL(V) V.

Let us denote the tangent bundle of A by TA. The tangent bundle TA of an affine space A is a trivial bundle and is canonically isomorphic to A × V as a bundle. The geodesic flow Φ on TA is defined as follows,

Φt : TA -→ TA (1.0.4) (p, v) → (p + tv, v).
Chapter 2

Hyperbolic Geometry 2.1 The Hyperboloid model

Let R 2,1 , | be a Minkowski Space Time where the quadratic form corresponding to the metric | is given by

Q :=   1 0 0 0 1 0 0 0 -1   . (2.1.1) 
Let SO(2, 1) denote the group of linear transformations of R 2,1 preserving the metric | and SO 0 (2, 1) be the connected component containing the identity of SO(2, 1). The cross product associated with this quadratic form is defined as follows:

u v := (u 2 v 3 -u 3 v 2 , u 3 v 1 -u 1 v 3 , u 2 v 1 -u 1 v 2 ) t (2.1.2)
where u, v is denoted by (u 1 , u 2 , u 3 ) t and (v 1 , v 2 , v 3 ) t respectively. The cross product satisfies the following properties for all u, v in R 2,1 :

u, v w = det[u, v, w], u v, u v = u, v 2 -u, u v, v , (2.1.3) 
u v = -v u.
Now for all real number k we define,

S k := {v ∈ R | v, v = k}.
We note that S -1 has two components. We denote the component containing (0, 0, 1) t as H. The quadratic form gives rise to a Riemannian metric of constant negative curvature on the submanifold H of R 2,1 . The space H is called the hyperboloid model of hyperbolic geometry. Let UH denote the unit tangent bundle of H. The map

Θ : SO 0 (2, 1) -→ UH (2.1.4) g -→ g(0, 0, 1) t , g(0, 1, 0) t ,
gives an analytic identification between SO 0 (2, 1) and UH. Let φt denote the geodesic flow on UH ∼ = SO 0 (2, 1). We note that φt (g) = g.a(t) where

a(t) :=   1 0 0 0 cosh(t) sinh(t) 0 sinh(t) cosh(t)   .
(2.1.5)

We also note that φt is the image of the geodesic flow on PSL(2, R) under the identification of PSL(2, R) and SO 0 (2, 1).

The Horocycles

There is a canonical metric d UH on the unit tangent bundle UH whose restriction on H is the hyperbolic metric. The metric d UH is unique up to the action of the maximal compact subgroup of SO 0 (2, 1). Let g ∈ SO 0 (2, 1) ∼ = UH. We recall that the horocycles H± g for the geodesic flow φ passing through the point g is defined as follows:

H+ g := {h ∈ UH | lim t→∞ d UH ( φt g, φt h) = 0}, (2.2.1) H- g := {h ∈ UH | lim t→-∞ d UH ( φt g, φt h) = 0}. (2.2.2)
We note that under the identification Θ, the horocycle H± g passing through g is given by g.u ± (t), where u ± (t) are defined as follows:

u + (t) :=   1 -2t 2t 2t 1 -2t 2 2t 2 2t -2t 2 1 + 2t 2   , (2.2.3) u -(t) :=   1 2t 2t -2t 1 -2t 2 -2t 2 2t 2t 2 1 + 2t 2   . (2.2.4)
We also note that H± is the image of the horocycles of PSL(2, R) under the identification of PSL(2, R) and SO 0 (2, 1).

The neutral section and the limit sections

In this section we define the following important maps and describe their properties. Let ν be defined as follows:

ν : SO 0 (2, 1) -→ S 1 (2.3.1) g -→ g(1, 0, 0) t ,
and also let ν ± be defined as follows:

ν ± : SO 0 (2, 1) -→ S 0 (2.3.2) g -→ g. 0, ± 1 √ 2 , 1 √ 2 t .
The map ν is called the neutral section and the maps ν + (respectively ν -) are called the positive (respectively negative) limit sections. We list a few properties of the neutral section and the limit sections as follows:

ν( φt g) = ν(g), (2.3.3) ν(h.g) = h.ν(g), (2.3.4) ν ± ( φt g) = e ±t ν ± (g), (2.3.5) ν ± (h.g) = h.ν ± (g), (2.3.6) ν + (g.u + (t)) = ν + (g), (2.3.7) ν -(g.u -(t)) = ν -(g). (2.3.8)
where t ∈ R and g, h ∈ SO 0 (2, 1).

Relation with the cross ratio

Let ∂ ∞ H denote the boundary of H. We recall that

UH/ ∼ ∼ = ∂ ∞ H × ∂ ∞ H \ ∆ (2.4.1)
where g ∼ φt (g) for all real number t and ∆ denotes the diagonal of ∂ ∞ H × ∂ ∞ H. Now from equation 2.3.3 we get that the neutral section is invariant under the geodesic flow on UH. As the neutral section is invariant under the geodesic flow it induces an analytic map,

ν : ∂ ∞ H × ∂ ∞ H \ ∆ -→ S 1 . (2.4.2)
Let γ be a hyperbolic element of SO 0 (2, 1) acting on H and

γ ± := lim n→±∞ γ n x
where x is some point in H. We recall that the definition of γ ± is independent of the point x in H. We notice that (2.4.10)

γν(γ -, γ + ) = ν(γ -, γ + ), (2.4.3) that is, ν(γ -, γ + ) is an eigenvector of γ with eigenvalue 1. Moreover for a, b, c, d in ∂ ∞ H let b(a, b, c, d) := 1 2 (1 + ν(a, d) | ν(b, c) ) . ( 2 
We notice that b is the classical cross ratio.

Quotient surfaces

Let Γ be a free, nonabelian subgroup with finitely many generators. We consider the left action of Γ on UH. We notice that the action of Γ being from the left and the action of a(t) being from the right, the two actions commute. Furthermore, given a free and proper action of Γ on UH, one gets an isomorphism between Γ\UH and UΣ, where UΣ is the unit tangent bundle of the surface Σ := Γ\H. We note that the flow φ on UH gives rise to a flow φ on UΣ. Let x 0 be a point in H. Let Γ.x 0 denote the orbit of x 0 under the action of Γ. We denote the closure of Γ.x 0 inside the closure of H by Γ.x 0 . We define the limit set of the group Γ to be the space Γ.x 0 \Γ.x 0 and denote it by Λ ∞ Γ. We note that the collection Γ.x 0 \Γ.x 0 is independent of the particular choice of x 0 . We also know that Λ ∞ Γ is compact.

A point g ∈ UΣ is called a wandering point of the flow φ if and only if there exists an -neighborhood B (g) ⊂ UΣ around g and a real number t 0 such that for all t > t 0 we have that

B (g) ∩ φ t B (g) = ∅.
Moreover, a point is called non-wandering if and only if it is not a wandering point.

Let U rec Σ be the space of all non-wandering points of the geodesic flow φ on UΣ. We denote the lift of the space U rec Σ in UH by U rec H. Now if the action of Γ on H is free and proper and moreover Γ contains no parabolics, then the space U rec Σ is compact. We note that the subspace U rec H can also be given an alternate description as follows:

U rec H = (x, v) ∈ UH | lim t→±∞ φ1 t x ∈ Λ ∞ Γ
where φt (x, v) = ( φ1 t x, φ2 t v). Furthermore, we note that the space U rec H can be identified with the space (

Λ ∞ Γ × Λ ∞ Γ \ {(x, x) | x ∈ Λ ∞ Γ}) × R. Chapter 3
Margulis Space Times

Definition and Existence

A Margulis Space Time M is a quotient manifold of the three dimensional affine space A by a free, non-abelian group Γ which acts freely and properly as affine transformations with discrete linear part. In [START_REF] Margulis | Free completely discontinuous groups of affine transformations[END_REF] and [START_REF] Margulis | Complete affine locally flat manifolds with a free fundamental group[END_REF] Margulis showed the existence of these spaces. Later in [START_REF] Drumm | Fundamental polyhedra for Margulis space-times[END_REF] Drumm introduced the notion of crooked planes and constructed fundamental domains of a certain class of Margulis Space Times. In his construction the crooked planes give the boundary of appropriate fundamental domains for a certain class of Margulis Space Times. Recently, in [START_REF] Danciger | Geometry and Topology of Complete Lorentz SpaceTimes of Constant Curvature[END_REF] Danciger-Guéritaud-Kassel showed that for any Margulis Space Time one can find a fundamental domain whose boundaries are given by union of crooked planes.

If Γ 0 is a subgroup of GL(R 3 ) R 3 such that M 0 := Γ 0 \A is a Margulis Space Time then by a result proved by Fried-Goldman in [START_REF] Fried | Three-dimensional affine crystallographic groups[END_REF] we get that a conjugate of L(Γ 0 ) is a subgroup of SO 0 (2, 1). Therefore without loss of generality we can denote a Margulis Space Time by a conjugacy class of homomorphisms

ρ : Γ -→ G := SO 0 (2, 1) R 3
where Γ is a free non-abelian group with finitely many generators. In this thesis I will only consider Margulis Space Times [ρ] such that L(ρ(Γ)) contains no parabolic elements.

Margulis Space Times and Surfaces

Let M ρ := ρ(Γ)\A be a Margulis Space Time such that L(ρ(Γ)) contains no parabolic elements. Then the action of L(ρ(Γ)) on H is Schottky. Hence Σ Lρ := L(ρ(Γ))\H is a non-compact surface with no cusps. Now let TM ρ be the tangent bundle of M ρ . As L(ρ(Γ)) ⊂ SO 0 (2, 1) we have that TM ρ carries a Lorentzian metric | . Let

UM ρ := {(X, v) ∈ TM ρ | v | v X = 1}.
We note that UM ρ ∼ = ρ(Γ)\UA where UA := A × S 1 . The geodesic flow Φ on TA gives rise to a flow Φ on UM ρ .

We recall that a point (X, v) ∈ UM ρ is called a wandering point of the flow Φ if and only if there exists an -neighborhood B (X, v) ⊂ UΣ around (X, v) and a real number t 0 such that for all t > t 0 we have that

B (X, v) ∩ Φ t B (X, v) = ∅.
Moreover, a point is called non-wandering if and only if it is not a wandering point.

We denote the space of all non-wandering points of the flow Φ on UM ρ by U rec M ρ . Moreover, we denote the lift of U rec M ρ into UA by U ρ rec A. In [START_REF] Goldman | Proper affine actions and geodesic flows of hyperbolic surfaces[END_REF] Goldman-Labourie-Margulis proved the following theorem: Theorem 3.2.1. [Goldman-Labourie-Margulis] Let ρ : Γ → G be a homomorphism giving rise to a Margulis Space Time and let L(ρ(Γ)) contains no parabolic elements. Then there exists a map N ρ : U ρ rec H -→ A and a positive Hölder continuous function

f ρ : U ρ rec H -→ R such that 1. for all γ ∈ Γ we have f ρ • L(ρ(γ)) = f ρ , 2. for all γ ∈ Γ we have N ρ • L(ρ(γ)) = ρ(γ)N ρ , and 3 
. for all g ∈ U ρ rec H and for all t ∈ R we have

N ρ ( φt g) = N ρ (g) +   t 0 f ρ ( φs (g))ds   ν(g).
We call N ρ a neutralised section. Using the existence of a neutralised section Goldman-Labourie proved the following theorem in [START_REF] Goldman | Geodesics in Margulis spacetimes[END_REF]: Theorem 3.2.2. [Goldman-Labourie] Let ρ : Γ → G be a homomorphism giving rise to a Margulis Space Time such that L(ρ(Γ)) contains no parabolic elements. Also let U rec Σ Lρ and U rec M ρ be defined as above. Now if N ρ is a neutralised section, then there exists an injective map Nρ such that the following diagram commutes,

U ρ rec H Nρ ----→ UA π     π U rec Σ Lρ Nρ ----→ UM
where N ρ := (N ρ , ν). Moreover, Nρ is an orbit equivalent Hölder homeomorphism onto U rec M ρ .

The Representation Variety

Let Γ be a free group with n generators and G = SO 0 (2, 1) R 3 . Also let

ρ : Γ -→ G γ -→ (L ρ (γ), u ρ (γ))
be an injective homomorphism of Γ where L ρ (γ) := L(ρ(γ)) and u ρ (γ) := u(ρ(γ)) for all γ in Γ. We call L ρ the linear part of ρ and u ρ the translation part of ρ. If ρ is an injective homomorphism of Γ into G then L ρ is an injective homomorphism of Γ into SO 0 (2, 1)) and u ρ satisfies the cocycle identity, that is,

u ρ (γ 1 .γ 2 ) = L ρ (γ 1 )u ρ (γ 2 ) + u ρ (γ 1 ).
We denote the space of all injective homomorphisms from a free group Γ into a Lie group G by Hom(Γ, G) and the space of cocycles by Z 1 (L ρ (Γ), R 3 ). We denote the space of all homomorphisms ρ in Hom(Γ, G) such that ρ(Γ) acts properly on A and L ρ (Γ) is discrete containing no parabolic elements by Hom M (Γ, G). We note that any homomorphism ρ in Hom M (Γ, G) gives rise to a Margulis Space Time

M ρ := ρ(Γ)\A.
Let Hom S (Γ, SO 0 (2, 1)) denote the space of all in Hom(Γ, SO 0 (2, 1)) such that (Γ) is Schottky. We note that Hom S (Γ, SO 0 (2, 1)) is an analytic manifold and for any in Hom S (Γ, SO 0 (2, 1)) the tangent space T Hom S (Γ, SO 0 (2, 1)) of Hom S (Γ, SO 0 (2, 1)) at the point can be identified with Z 1 ( (Γ), R 3 ). Also note that

L : Hom M (Γ, G) -→ Hom S (Γ, SO 0 (2, 1)) (3.3.1) ρ -→ L ρ
is a bundle over Hom S (Γ, SO 0 (2, 1)) with projection map given by L. We note that Hom M (Γ, G) can be identified with a sub-bundle of the tangent bundle THom S (Γ, SO 0 (2, 1)) of Hom S (Γ, SO 0 (2, 1)).

Lemma 3.3.1. The space Hom M (Γ, G) is an analytic manifold.

Proof. We know that the space Hom S (Γ, SO 0 (2, 1)) is an analytic manifold. Hence the tangent bundle THom S (Γ, SO 0 (2, 1)) is also an analytic manifold. Now from [START_REF] Goldman | Proper affine actions and geodesic flows of hyperbolic surfaces[END_REF] we get that the set of all ρ in Hom M (Γ, G) with fixed linear part is an open convex cone in T Hom S (Γ, SO 0 (2, 1)). Therefore we conclude that Hom M (Γ, G) is an analytic manifold.

The Margulis Invariant

Let ρ : Γ → G be a homomorphism such that the action of L ρ (Γ) on H is Schottky. We define the Margulis Invariant of an element γ in Γ for a given homomorphism ρ as follows

α ρ (γ) := u ρ (γ) | ν ρ γ -, γ + . (3.4.1)
where u ρ (γ) := u(ρ(γ)) and ν ρ (γ -, γ

+ ) := ν ((L ρ (γ)) -, (L ρ (γ)) + ).
In [START_REF] Margulis | Free completely discontinuous groups of affine transformations[END_REF] and [START_REF] Margulis | Complete affine locally flat manifolds with a free fundamental group[END_REF] Margulis showed the follwing result, In [START_REF] Goldman | Proper affine actions and geodesic flows of hyperbolic surfaces[END_REF] Goldman-Labourie-Margulis generalised the previous result and proved the following: Theorem 3.4.2. [Goldman-Labourie-Margulis] Let ( 0 , u) : Γ → G be a homomorphism such that the action of 0 (Γ) on H is Schottky. Also let C B (Σ 0 ) be the space of φ-invariant Borel probability measures on UΣ 0 and C per (Σ 0 ) ⊂ C B (Σ 0 ) be the subspace consisting of measures supported on periodic orbits. Then the following holds:

1. The map

C per (Σ 0 ) -→ R µ γ -→ α ( 0 ,u) (γ) 0 (γ) 
, where 0 (γ) is the length of the corresponding closed geodesic of Σ 0 , extends to a continuous map

C B (Σ 0 ) -→ R µ -→ Υ ( ,u) (µ).
2. Moreover, the representation ( 0 , u) acts properly on A if and only if Υ ( ,u) (µ) = 0 for all µ ∈ C B (Σ 0 ).

We note that the generalization of the normalized Margulis invariant as stated above was given by Labourie in [START_REF] Labourie | Fuchsian affine actions of surface groups[END_REF].

Moreover, in [START_REF] Goldman | Flat Lorentz 3-manifolds and cocompact Fuchsian groups[END_REF] (see also [START_REF] Goldman | The Margulis Invariant of Isometric Actions on Minkowski (2+1)-Space[END_REF]) Goldman-Margulis showed:

Theorem 3.4.3. [Goldman-Margulis] Let { t } ⊂ Hom S (Γ, SO 0 (2, 1
)) be a smooth path.

Then for all γ ∈ Γ we have

d dt t=0 t (γ) = α ( 0 , ˙ 0 ) (γ)
where t (γ) is the length of the closed geodesic of Σ t corresponding to t (γ) ∈ t (Γ) and ˙ 0 := d dt t=0 t .

Chapter 4

Metric Anosov Property

The definitions in this chapter, which can also be found in subsection 3.2 of [START_REF] Bridgeman | The pressure metric for convex homomorphisms[END_REF], has been included here for the sake of completeness.

Definition 4.0.4. Let (X , d) be a metric space. A lamination L of X is an equivalence relation on X such that for all x in X there exist an open neighborhood U x of x in X , two topological spaces U 1 and U 2 and a homeomorphism f x from U 1 × U 2 onto U x satisfying the following properties,

1. for all w, z in U x ∩ U y we have

p 2 f -1 x (w) = p 2 f -1 x (z) if and only if p 2 f -1 y (w) = p 2 f -1 y (z)
where p 2 is the projection from U 1 × U 2 onto U 2 , 2. for all w, z in X we have wLz if and only if there exists a finite sequence of points w 1 , w 2 , .., w n in X with w 1 = w and w n = z, such that w i+1 is in U w i , where U w i is a neighborhood of w i and p 2 f -1

w i (w i ) = p 2 f -1 w i (w i+1
) for all i in {1, 2, .., n -1}. The homeomorphism f x is called a chart and the equivalence classes are called the leaves.

A plaque open set in the chart corresponding to f x is a set of the form

f x (V 1 × {x 2 }) where x = f x (x 1 , x 2 ) and V 1 is an open set in U 1 .
The plaque topology on L x is the topology generated by the plaque open sets. A plaque neighborhood of x is a neighborhood for the plaque topology on L x . Definition 4.0.5. A local product structure on X is a pair of two laminations L 1 , L 2 satisfying the following property: for all x in X there exist two plaque neighborhoods U 1 , U 2 of x, respectively in L 1 , L 2 and a homeomorphism f x from U 1 × U 2 onto a neighborhood W x of x, such that f x defines a chart for both the laminations L 1 and L 2 . Now let us assume that ψ t be a flow on X . A lamination L invariant under the flow ψ t is called transverse to the flow, if for all x in X , there exists a plaque neighborhood U x of x in L x , a topological space V, a positive and a homeomorphism f x from U x × V × (-, ) onto an open neighborhood W x of x in X satisfying the following condition:

ψ t (f x (u, v, s)) = f x (u, v, s + t)
for u in U x , v in V and for s, t in the interval (-, ). Let L . be a lamination which is transverse to the flow ψ t . We define a new lamination L .,0 , called the central lamination, starting from L . as follows, we say y, z in X belongs to the same equivalence class of L .,0 if for some real number t, ψ t y and z belongs to the same equivalence class of L . . Definition 4.0.6. A lamination L invariant under a flow ψ t is said to contract under the flow if and only if there exists a positive real number T 0 such that for all x in X , the following holds: there exists a chart f x of an open neighbourhood W x of x, and for any two points y, z in W x with y, z being in the same equivalence class of L, we have,

d(ψ t y, ψ t z) < 1 2 d(y, z)
for all t > T 0 .

Remark 4.0.7. We note that a lamination 'contracts under a flow' if and only if the lamination contracts exponentially under the flow.

Definition 4.0.8. A flow ψ t on a compact metric space is called Metric Anosov, if and only if there exist two laminations L + and L -of X such that the following conditions hold:

1. (L + , L -,0 ) defines a local product structure on X , In such a case we call L + , L -, L +,0 and L -,0 respectively the stable, unstable, central stable and central unstable laminations.

Chapter 5

Metric Anosov structure on Margulis Space Time

Let M be a Margulis Space Time. In this chapter, first we define a distance function d on U rec M such that (U rec M, d) is a metric space. Next, we define two laminations L ± on the metric space (U rec M, d) which are invariant under the flow Φ t on U rec M. Finally, we show that the lamination L + is a stable lamination and the lamination L -is an unstable lamination for the flow Φ t on (U rec M, d). We note that the method used in this thesis to construct the distance function d and to prove contraction properties of the lamination is inspired by [START_REF] Bridgeman | The pressure metric for convex homomorphisms[END_REF].

Metric space structure

The restriction of any euclidean metric on A × V to the subspace U rec A, defines a distance on U rec A. We call this distance the euclidean distance on U rec A. In this section we will define a distance on the space U rec A such that the distance is locally bilipschitz equivalent to any euclidean distance on U rec A and also is Γ-invariant, so as to get a distance on the quotient space U rec M. We note that any two euclidean metric on A × V are bilipschitz equivalent with each other and hence any two euclidean distances on U rec A are also bilipschitz equivalent with each other. Fix an euclidean distance d on U rec A. The action of Γ on the space A × V gives rise to a collection of distances related to d defined as follows: for any γ in Γ define,

d γ : U rec A × U rec A -→ R (5.1.1) (x, y) -→ d γ -1 x, γ -1 y
Since each element of Γ acts as a bilipschitz automorphism with respect to any euclidean distance, any two distances in the family {d γ } γ∈Γ are bilipschitz equivalent with each other.

Compactness of U rec Σ implies that U rec M is compact and hence we can choose a precompact fundamental domain D of U rec M inside U rec A with an open interior. We can also choose a suitable precompact open set U which contains the closure of D. We note that properness of the action of Γ on U rec A implies that the cover of U rec A by the open sets {γ.U } γ∈Γ , is locally finite.

A path joining two points x and y in U rec A is a pair of tuples,

P = ((z 0 , z 1 , .., z n ), (γ 1 , γ 2 , .., γ n ))
where z i ∈ U rec A and γ i ∈ Γ such that the following two conditions hold, Proof. If P = ((z 0 , z 1 , .., z n ), (γ 1 , γ 2 , .., γ n )) is a path joining γx and γy, then the path,

1. x = z 0 ∈ γ 1 .U and y = z n ∈ γ n .U, 2. for all n > i > 0, z i ∈ γ i .U ∩ γ i+1 .U.
γ -1 .P := γ -1 z 0 , γ -1 z 1 , .., γ -1 z n , γ -1 γ 1 , γ -1 γ 2 , .., γ -1 γ n
is a path joining x and y. Moreover,

l(P) = n-1 i=0 d γ i+1 (z i , z i+1 ) = n-1 i=0 d γ -1 i+1 z i , γ -1 i+1 z i+1 = n-1 i=0 d γ -1 γ i+1 -1 γ -1 z i , γ -1 γ i+1 -1 γ -1 z i+1 = n-1 i=0 d γ -1 γ i+1 γ -1 z i , γ -1 z i+1 = l γ -1 .P .
Hence, using the definition of d we get d(γx, γy) is equal to d(x, y).

We also notice that l(P) is a sum of distances. So l(P) is non-negative and hence d is non-negative.

It remains to show that d is a metric and d is locally bilipschitz equivalent to any euclidean distance. As all euclidean distances are bilipschitz equivalent with each other, it suffices to show that d is locally bilipschitz equivalent with d. Proof. Let z be a point in U rec A. There exists a neighbourhood V of z in U rec A such that

A := {γ | γ.U ∩ V = ∅}
is a finite set. We fix V and choose a positive real number α so that

γ∈A {x | d γ (z, x) α} ⊂ V.
We have seen that any two distances in the family {d γ } γ∈Γ are bilipschitz equivalent with each other. Hence A being a subset of Γ, any two distances in A are bilipschitz equivalent with each other. Now finiteness of A implies that we can choose a constant K such that for all β 1 , β 2 in A we have that d β 1 and d β 2 are K-bilipschitz equivalent with each other. We set,

W := γ∈A x | d γ (z, x) α 10K .
We note that W is a subset of V because K is bigger than 1. By construction, if x, y is in W then for all γ in A we have,

d γ (x, y) d γ (x, z) + d γ (z, y) α 5K . (5.1.2) 
Now let x be any point in W , y be any general point and

P = ((z 0 , z 1 , .., z n ), (γ 1 , γ 2 , .., γ n ))
be a path joining x and y. We notice that x = z 0 is in γ 1 U . On the other hand x is also an element of W , which is a subset of V . Therefore,

γ 1 U ∩ V = ∅
Hence γ 1 is in A. If there exists k such that γ k is not in A then we choose j to be the smallest k such that γ k is not in A.

l(P) = n-1 i=0 d γ i+1 (z i , z i+1 ) j-1 i=0 d γ i+1 (z i , z i+1 ).
(5.1.3) Now using the fact that d γ j-1 is K-bilipschitz equivalent with d γ i for any γ i in A we get,

j-1 i=0 d γ i+1 (z i , z i+1 ) 1 K j-1 i=0 d γ j-1 (z i , z i+1 ). (5.1.4)
Now from the triangle inequality it follows that

1 K j-1 i=0 d γ j-1 (z i , z i+1 ) 1 K d γ j-1 (z 0 , z j ) (5.1.5) 1 K (d γ j-1 (z, z j ) -d γ j-1 (z, z 0 )).
The point z 0 = x, belongs to W and γ j-1 belongs to A. Therefore, by the definition of W we get that

d γ j-1 (z, z 0 ) α 10K . (5.1.6)
We also know that γ j is not in A. Hence γ j .U does not intersect with V . The point z j by definition belongs to γ j .U and so z j is not in V . Therefore by the choice of α it follows that

d γ j-1 (z, z j ) > α.
(5.1.7)

Using the inequalities 5.1.3 and 5.1.6 we get that

1 K d γ j-1 (z, z j ) -d γ j-1 (z, z 0 ) > 1 K α - α 10K . (5.1.8)
Now as K is bigger than 1 we have,

1 K α - α 10K 1 K α - α 10 > α 5K .
(5.1.9)

Finally, using the inequalities from 5.1.3 to 5.1.9 we get that if there exists k such that γ k is not in A then,

l(P) > α 5K . (5.1.10) 
On the other hand, if for all k we have γ k in A, then for all γ ∈ A we have,

l(P) = n-1 i=0 d γ i+1 (z i , z i+1 ) 1 K n-1 i=0 d γ (z i , z i+1 ).
(5.1.11)

And using triangle inequality it follows that

1 K n-1 i=0 d γ (z i , z i+1 ) 1 K d γ (x, y).
(5.1.12)

Therefore, in the case when for all k, γ k is in A, we have for all γ in A, The above is true for any arbitrary choice of z and hence it follows that d is a metric. Moreover, if x, y are points in W and γ is in A then from the inequality 5.1.2 we get,

l(P) 1 K d γ (x, y). ( 5 
d γ (x, y) α 5K α 5
and hence for all x, y in W and γ in A,

inf α 5 , d γ (x, y) = d γ (x, y). (5.1.16)
Therefore, from the inequalities 5.1.14 and 5.1.16 it follows that for x, y in W and for any γ in A,

d(x, y) 1 K d γ (x, y).
(5.1.17)

We know that there exists γ a such that the point z is inside the open set γ a .U . We note that the above defined γ a is also an element of A. Finally, we set W a to be the intersection of of the set W with the set γ a .U . Let x, y be any two points in W a . We choose the path P 0 = ((x, y), (γ a , γ a )) and get that d(x, y) = inf {l(P) | P joins x and y} l(P 0 ) = d γa (x, y).

Hence, d is bilipschitz equivalent to d γa on W a and the distance d is bilipschitz equivalent to d γa . Therefore, d is bilipschitz to d on W a . Since z was arbitrarily chosen it follows that d is locally bilipschitz equivalent to d.

The lamination and its lift

In this section, we explicitly describe two laminations of U rec A for the flow Φ t on U rec A and show that the laminations are equivariant under the action of the flow and the action of Γ. We will also define the notion of a leaf lift.

Let Z be a point in U rec A. We know from the theorem 3.2.2 that for all Z ∈ U rec A there exists an unique g ∈ U rec H such that Z = N(g). Definition 5.2.1. The positive and central positive partition of U rec A are respectively given by,

L + N(g) := L+ N(g) ∩ U rec A L +,0 N(g) := L+,0 N(g) ∩ U rec A
where

L+ N(g) := {(N (g) + s 1 ν + (g), ν(g) + s 2 ν + (g)) | s 1 , s 2 ∈ R}, L+,0 N(g) := {(N (g) + s 1 ν + (g) + tν(g), ν(g) + s 2 ν + (g)) | t, s 1 , s 2 ∈ R}.
Definition 5.2.2. The negative and central negative partition of U rec A are respectively given by, 

L - N(g) := L- N(g) ∩ U rec A L -,0 N(g) := L-,0 N(g) ∩ U rec A where L- N(g) := {(N (g) + s 1 ν -(g), ν(g) + s 2 ν -(g)) | s 1 , s 2 ∈ R}, L-,0 N(g) := {(N (g) + s 1 ν -(g) + tν(g), ν(g) + s 2 ν -(g)) | t,
(h) = ν(g) + ν(h), ν -(g) ν + (g), ν -(g) ν + (g).
Proof. Let h be a point of t∈R H+ φtg . Hence there exist real numbers t 1 , t 2 such that h = ν(ga(t 1 )u + (t 2 )). Therefore, we have

ν(h) = ν(ga(t 1 )u + (t 2 )) = ga(t 1 )u + (t 2 )   1 0 0   = ga(t 1 )   1 2t 2 2t 2   = ga(t 1 )     1 0 0   +   0 2t 2 2t 2     = ν(g) + 2t 2 .ga(t 1 )   0 1 1   = ν(g) + 2t 2 (cosh t 1 + sinh t 1 ).g   0 1 1   = ν(g) + 2 √ 2 t 2 (cosh t 1 + sinh t 1 ).ν + (g).

Now we notice that

ν(h), ν -(g) = ν(g) + 2 √ 2 t 2 (cosh t 1 + sinh t 1 ).ν + (g), ν -(g) = 2 √ 2 t 2 (cosh t 1 + sinh t 1 ). ν + (g), ν -(g) .
Combining the above two calculations we get

ν(h) = ν(g) + ν(h), ν -(g) ν + (g), ν -(g) ν + (g).
Now let g, h be two points in UH satisfying,

ν(h) = ν(g) + a 1 ν + (g)
for some real number a 1 . Using the definition of ν and ν + we observe that the above equation is equvalent to the following equation,

g.u + a 1 2 √ 2 -1 .h   1 0 0   = u + a 1 2 √ 2 -1   1 a 1 / √ 2 a 1 / √ 2   =   1 0 0   .
We know that the only elements of SO 0 (2, 1) fixing the vector

  1 0 0   are of the form a(t)
for some real number t. Hence there exist a real number t 1 such that

g.u + a 1 2 √ 2 -1
.h = a(t 1 ).

Therefore,

h = g.u + a 1 2 √ 2 .a(t 1 ) = g.a(t 1 ).u + a 1 exp(-t 1 ) 2 √ 2
and the result follows.

Corollary 5.2.4. Let g, h be two points in UH and h is in t∈R

H+ φtg then ν(g), ν -(h) ν + (h), ν -(h) ν + (h) = - ν(h), ν -(g) ν + (g), ν -(g) ν + (g).
Proof. We know that if h is in t∈R H+ φtg then g is in t∈R H+ φth . Therefore using lemma 5.2.3 we get

ν(h) = ν(g) + ν(h), ν -(g) ν + (g), ν -(g) ν + (g) and ν(g) = ν(h) + ν(g), ν -(h) ν + (h), ν -(h) ν + (h).
Hence

ν(g), ν -(h) ν + (h), ν -(h) ν + (h) = - ν(h), ν -(g) ν + (g), ν -(g) ν + (g).
Definition 5.2.5. For all g in U rec H we define,

H ± g := H± g ∩ U rec H.
Therefore for all h in H + g and for all real number t we have det[(N ( φt g) -N ( φt h)), ν(g), ν + (g)] = 0.

Hence there exist real numbers a 1 , b 1 such that

N ( φt h) = N ( φt g) + a 1 ν(g) + b 1 ν + (g) (5.2.4) = N (g) +   a 1 + t 0 f ( φs (g))ds   ν(g) + b 1 ν + (g).
Combining lemma 5.2.3 and equation 5.2.4 we get that

L +,0 N(g) ⊇ N(h) | h ∈ t∈R H + φtg Now let W ∈ L +,0 N(g)
. By theorem 3.2.2 we know that there exist h ∈ U rec H such that W = N(h). Now the choice of W implies that there exist some real number a 2 such that 

ν(h) = ν(g) + a 2 ν + (g).
L +,0 N(g) ⊆ N(h) | h ∈ t∈R H + φtg .
Similarly the other equality follows.

Proposition 5.2.7. Let U N(g) ⊂ U rec A be a neighborhood of a point N(g) in U rec A. Then the following map is a local homeomorphism:

N(g) : U N(g) → (Λ ∞ Γ × Λ ∞ Γ \ ∆) × R N(h) → h -, h + , N (h) -N (g), ν g -, h +
where h ± := lim t→±∞ π( φt h) and π is the projection from UH onto H.

Proof. Let g be a point in U rec H. We note that for g ∈ U rec H the points g ± lies in Λ ∞ Γ. We observe that ∂H \ {g + } is homeomorpic to R. Given any g, let V g -denote a connected bounded open neighborhood of g -in ∂H \ {g + } and

V g + be a connected open neighborhood of g + in ∂H \ {g -} such that V g -∩ V g + is empty and V g -× V g + is a subset of ∂H × ∂H \ ∆. We define U g ± := V g ± ∩ Λ ∞ Γ. Let U g be the open subset of U rec H corresponding to the open set U g -× U g + × R.
We consider the following continuous map,

N g : U g -→ A h -→ N (h) -N (h) -N (g), ν(g -, h + ) ν(h)
We notice that

ν(g -, h + ) = ν -(g) ν + (h) ν -(g), ν + (h) .
Hence for all real number t we have

N g ( φt h) = N g (h).
Now we define the following continuous map:

Π g : U g -× U g + × R -→ U rec A (h -, h + , t) -→ (N g + tν, ν) (h -, h + , t)
and conclude by observing that

N(g) • Π g = Id, Π g • N(g) = Id.
Proposition 5.2.8. Let L + be as defined in definition 5.2.1. Then L + is a lamination of U rec A.

Proof. We now show that the equivalence relation L + on U rec A satisfy properties (1) and (2) of definition 4.0.4 for the local homeomorphism .

Property (1): Let g 1 , g 2 be two points in U rec H, h 1 , h 2 be two points in the intersection U g 1 ∩ U g 2 and p +,0 be the projection from

U g -× U g + × R onto U g + × R. We notice that if p +,0 • N(g 1 ) (N(h 1 )) = p +,0 • N(g 1 ) (N(h 2 )) then h + 1 = h + 2 and N (h 1 ) -N (g 1 ), ν(g - 1 , h + 1 ) = N (h 2 ) -N (g 1 ), ν(g - 1 , h + 2 ) .
Now using proposition 5.2.6, corollary 5.2.4 and the fact that

h + 1 = h + 2 we get ν + (h 2 ) = cν + (h 1 ) N (h 2 ) = N (h 1 ) + sν + (h 1 ) + tν(h 1 )
where c, s, t ∈ R. Hence for i ∈ {1, 2}

ν(g - i , h + 2 ) = ν(g - i , h + 1 ).
Finally using the fact that

N (h 2 ) -N (h 1 ), ν(g - 1 , h + 1 ) = 0 and ν(g -, h + ) = ν -(g) ν + (h) ν -(g), ν + (h)
we get t = 0. Therefore

N (h 2 ) -N (h 1 ), ν(g - 2 , h + 1 ) = sν + (h 1 ), ν -(g 2 ) ν + (h 1 ) ν -(g 2 ), ν + (h 1 ) = 0.
Hence

N (h 1 ) -N (g 2 ), ν(g - 2 , h + 1 ) = N (h 2 ) -N (g 2 ), ν(g - 2 , h + 2 )
and it follows that

p +,0 • N(g 2 ) (N(h 1 )) = p +,0 • N(g 2 ) (N(h 2 )).
Similarly if we have

p +,0 • N(g 2 ) (N(h 1 )) = p +,0 • N(g 2 ) (N(h 2 )) then p +,0 • N(g 1 ) (N(h 1 )) = p +,0 • N(g 1 ) (N(h 2 )).
Property (2): Let {N(h i )} i∈{1,2,..,n} be a sequence of points such that for all i ∈ {1, 2, .., n -1} we have

N(h i+1 ) ∈ U N(h i ) and p +,0 • N(h i ) (N(h i )) = p +,0 • N(h i ) (N(h i+1 )).

Hence we have h +

i = h + i+1 and 0 = N (h i ) -N (h i ), ν(h - i , h + i ) = N (h i+1 ) -N (h i ), ν(h - i , h + i+1 ) .
Now using proposition 5.2.6, corollary 5.2.4 and

h + i = h + i+1 we get that ν + (h i+1 ) = c i ν + (h i ), N (h i+1 ) = N (h i ) + s i ν + (h i ) + t i ν(h i )
for some real numbers c i , s i and t i . Hence

ν(h - i , h + i ) = ν(h - i , h + i+1 ).

Now using the fact that

N (h i+1 ) -N (h i ), ν(h - i , h + i+1 ) = 0
we get t = 0. Hence we have

L + N(h i ) = L + N(h i+1 ) .
Therefore we conclude that

L + N(h 1 ) = L + N(hn) .
Now we show the other direction. Let h ∈ U rec H such that N(h) ∈ L + N(g) . Using proposition 5.2.6 we get that

h + = g + . Let V g -be a connected bounded open neighborhood of g - in ∂ ∞ H \ {g + } containing the point h -and let V g + be a connected open neighborhood of g + in ∂ ∞ H \ {g -} such that the intersection V g + ∩ V g -is empty. We denote the sets V g ± ∩ Λ ∞ Γ respectively by U g ± , the open subset of U rec H corresponding to the open set U g -× U g + × R by U g
and the open set N(U g ) around N(g) by U N(g) . Now we consider the chart U N(g) , N(g) and notice that

p +,0 • N(g) (N(g)) = g + , 0 . Since N(h) ∈ L + N(g) , using the definition of L + N(g) we get N (h) -N (g), ν(g -, g + ) = 0.
Now using corollary 5.2.4 and the fact that h + = g + we obtain ν(g -, g + ) = ν(g -, h + ).

Hence N (h) -N (g), ν(g -, h + ) = 0 and we finally have

p +,0 • N(g) (N(g)) = p +,0 • N(g) (N(h)).
Therefore we conclude that L + defines a lamination with plaque neighborhoods given by the image of the open sets U g -for g -in Λ ∞ Γ \ {g + }.

Proposition 5.2.9. Let L -,0 be as defined in definition 5.2.2. Then L -,0 is a lamination of U rec A. Moreover, it is the central lamination corresponding to the lamination L -.

Proof. We show that the equivalence relation L -,0 on U rec A satisfy properties ( 1) and ( 2) of definition 4.0.4 for the local homeomorphism .

Property (1): Let g 1 , g 2 be two points in U rec H, h 1 , h 2 be two points in the intersection U g 1 ∩ U g 2 and p +,0 be the projection from

U g -× U g + × R onto U g + × R. We see that p -• N(g 1 ) (N(h 1 )) = p -• N(g 1 ) (N(h 2 )) if and only if p -• N(g 2 ) (N(h 1 )) = p -• N(g 2 ) (N(h 2 ))
since we have

p -• N(g 1 ) (N(h 1 )) = h - 1 = p -• N(g 2 ) (N(h 1 )) and p -• N(g 1 ) (N(h 2 )) = h - 2 = p -• N(g 2 ) (N(h 2 )
). Property (2): Let {N(h i )} i∈{1,2,..,n} be a sequence of points such that for all i ∈ {1, 2, .., n -1} we have

N(h i+1 ) ∈ U N(h i ) and p -• N(h i ) (N(h i )) = p -• N(h i ) (N(h i+1 )).
Hence for all i ∈ {1, 2, .., n -1} we have h - i = h - i+1 . Now using proposition 5.2.6 we get that L -,0

N(h i ) = L -,0 N(h i+1 )
for all i in {1, 2, .., n -1}. Hence

L -,0 N(h 1 ) = L -,0 N(hn) .

Now we show the other direction

. Let h ∈ U rec H such that N(h) ∈ L -,0 N(g) . Using proposition 5.2.6 we get that h -= g -. Let V g + be a connected bounded open neighborhood of g + in ∂ ∞ H \ {g -} containing the point h + and let V g -be a connected open neighborhood of g - in ∂ ∞ H \ {g + } such that V g + ∩ V g -is empty. We denote the sets V g ± ∩ Λ ∞ Γ respectively by U g ± , the open subset of U rec H corresponding to the open set U g -× U g + × R by U g
and the open set N(U g ) around N(g) by U N(g) . Now we consider the chart U N(g) , N(g) and notice that

p -• N(g) (N(g)) = g -= h -= p -• N(g) (N(h)).
Therefore we conclude that L -,0 defines a lamination with plaque neighborhoods given by the image of the open sets U g + × R for g + in Λ ∞ Γ \ {g + }. Now the fact that L -,0 is the central lamination corresponding to the lamination L - follows from definition 5.2.2. Theorem 5.2.10. The laminations (L + , L -,0 ) and (L -, L +,0 ) define a local product structure on U rec A.

Proof. Using proposition 5.2.7, 5.2.8 and 5.2.9 we get that (L + , L -,0 ) defines a local product structure. In a similar way one can show that (L -, L +,0 ) also defines a local product structure. Proposition 5.2.11. The laminations are equivariant under the action of Γ.

Proof. Let Z be in U rec A such that Z = N(g) for some g ∈ U rec H and W ∈ L + Z . Therefore there exist real numbers s 1 , s 2 such that

W = ( Ñ (g) + s 1 ν + (g), ν(g) + s 2 ν + (g)).
Now for all γ in Γ we get,

γ.Z = γ.N(g) = N(γ.g) and γ.W = γ.( Ñ (g) + s 1 ν + (g), ν(g) + s 2 ν + (g)) = (γ. Ñ (g) + s 1 .γ.ν + (g), γ.ν(g) + s 2 .γ.ν + (g)) = ( Ñ (γ.g) + s 1 ν + (γ.g), ν(γ.g) + s 2 ν + (γ.g)).
Therefore γ.W ∈ L+ γ.Z and U rec A is invariant under the action of Γ implies that γ.W ∈ L + γ.Z . Hence we get that for all γ in Γ,

L + γ.Z = γ.L + Z .
Similarly one can show that for all γ in Γ,

L - γ.Z = γ.L - Z .
Proposition 5.2.12. The laminations are equivariant under the geodesic flow.

Proof. Let Z be in U rec A such that Z = N(g) for some g ∈ U rec H and W ∈ L + Z . Therefore there exist real numbers s 1 , s 2 such that W = ( Ñ (g) + s 1 ν + (g), ν(g) + s 2 ν + (g)).

We have for all real number t,

Φt Z = Φt N(g) = (N (g) + tν(g), ν(g)) and Φt W = Φt (N (g) + s 1 ν + (g), ν(g) + s 2 ν + (g)) = (N (g) + s 1 ν + (g) + t.(ν(g) + s 2 ν + (g)), ν(g) + s 2 ν + (g)) = ((N (g) + tν(g)) + (s 1 + ts 2 )ν + (g), ν(g) + s 2 ν + (g)).
Therefore for all real number t we have Φt .W ∈ L+ Φt.Z and U rec A is invariant under the geodesic flow implies that Φt .W ∈ L + Φt.Z . Hence we get that for all real number t,

L + Φt.Z = Φt .L + Z .
Similarly one can show that for all real number t,

L - Φt.Z = Φt .L - Z .
where X is in T N(g) (A × V). Now from equation 2.3.4, equation 2.3.6 and theorem 3.2.1 we get that . is Γ-invariant, that is,

γX γN(g) = X N(g) .
Let Z = N(g) be in U rec A and W ∈ L+ Z . Therefore there exists real numbers s 1 and s 2 such that W = (N (g) + s 1 ν + (g), ν(g) + s 2 ν + (g)).

Hence the norm is

i + Z (W ) -i + Z (Z) Z = (s 1 ν + (g), s 2 ν + (g)) Z = s 2 1 + s 2 2 . (5.3.1) 
We note that Φt Z = (N (g) + tν(g), ν(g)) and using theorem 3.2.1 we get that there exists a positive real number t 1 such that

N (g) + tν(g) = N ( φt 1 g).
Moreover t and t 1 are related by the following formula,

t = t 1 0 f ( φs g)ds.
Therefore we have

i + ΦtZ ( Φt W ) -i + ΦtZ ( Φt Z) ΦtZ = ((s 1 + ts 2 )ν + (g), s 2 ν + (g)) ΦtZ = ((s 1 + ts 2 )ν + (g), s 2 ν + (g)) N(φt 1 g) = (s 1 + ts 2 ) 2 + s 2 2 . (ν + (g), 0) N(φt 1 g) = (s 1 + ts 2 ) 2 + s 2 2 . e -t 1 (ν + (φ t 1 g), 0) N(φt 1 g)
Hence the norm is

i + ΦtZ ( Φt W ) -i + ΦtZ ( Φt Z) ΦtZ = (s 1 + ts 2 ) 2 + s 2 2 . e -t 1 √ 2 s 2 1 + s 2 2 (1 + t)e -t 1 . (5.3.2) 
We also know that U rec Σ is compact. Hence f is bounded on U rec H. Therefore there exists a constant c 1 such that

t = t 1 0 f ( φs g)ds t 1 0 c 1 ds = c 1 t 1 .
We choose a constant c bigger than max{1, 2c 1 } and get that

(1 + t)e -t 1 ce -t 2c 1 . (5.3.3) 
Now by combining equation 5.3.1, inequalities 5.3.2 and 5.3.3 we get that

i + ΦtZ ( Φt W ) -i + ΦtZ ( Φt Z) ΦtZ √ 2ce -t 2c 1 i + Z (W ) -i + Z (Z) Z .
Hence for all positive integer n, there exists

t n ∈ R such that if t > t n , Z ∈ U rec A and W ∈ L + Z then i + ΦtZ ( Φt W ) -i + ΦtZ ( Φt Z) ΦtZ 1 2 n i + Z (W ) -i + Z (Z) Z .
Proposition 5.3.2. Let d be a Γ-invariant distance on U rec A which is locally bilipschitz equivalent to an euclidean distance and let . be the Γ-invariant map from U rec A to the space of euclidean metrics on R 3 × R 3 as constructed in the proof of proposition 5.3.1. There exist positive constants K and α such that for any Z ∈ U rec A and for any W ∈ L + Z , the following statements are true,

1. If d(W, Z) α, then i + Z (Z) -i + Z (W ) Z Kd(W, Z), 2. If i + Z (Z) -i + Z (W ) Z α, then d(W, Z) K i + Z (Z) -i + Z (W ) Z .
Proof. Since Γ acts cocompactly on U rec A and both d and . are Γ-invariant, it suffices to prove the above assertion for Z in a compact subset D of U rec A, where D is the closure of a suitably chosen fundamental domain. We can define an euclidean distance d Z on U rec A, uniquely using the euclidean metric . Z on R 3 × R 3 , by taking the embedding of U rec A in A × R 3 . We notice that for any Z in U rec A and for any C ). Finally, set α to be min{ β 1 C , β} and K to be CK 0 to get that for any Z in U rec A and W in L + Z we have,

W in L + Z , d Z (W, Z) is equal to i + Z (W ) -i + Z (Z) Z . Now,
1. If d(W, Z) α, then i + Z (Z) -i + Z (W ) Z Kd(W, Z), 2. If i + Z (Z) -i + Z (W ) Z α, then d(W, Z) K i + Z (Z) -i + Z (W ) Z .
. Theorem 5.3.3. Let L ± be two laminations on U rec A as defined in definitions 5.2.1, 5.2.2 and let d be the Γ invariant metric, as defined in definition 5.1.2. Under these assumptions, for the metric d on U rec A we have that 1. L + is contracted in the forward direction of the geodesic flow, and, 2. L -is contracted in the backward direction of the geodesic flow.

Proof. Let . be the Γ-invariant map from U rec A to the space of euclidean metrics on R 3 × R 3 as constructed in the proof of proposition 5.3.1 and let K and α be as in the proposition 5.3.2 for the distance d. We choose a positive integer n such that

K 2 n < 1 , K 2 2 n 1 2 .
Let t n be the constant as in proposition 5.3.1 for our chosen n. Also let Z be in U rec A and W be in L + Z , so that d(W, Z) α. Then using proposition 5.3.2 we get

i + Z (W ) -i + Z (Z) Z K d(W, Z).
Furthermore, using proposition 5.3.1 we get for all t > t n that

i + ΦtZ ( Φt W ) -i + ΦtZ ( Φt Z) ΦtZ 1 2 n i + Z (W ) -i + Z (Z) Z .
It follows that

i + ΦtZ ( Φt W ) -i + ΦtZ ( Φt Z) ΦtZ Kα 2 n α.
Hence again using proposition 5.3.2 we have

d( Φt W, Φt Z) K i + ΦtZ ( Φt W ) -i + ΦtZ ( Φt Z) ΦtZ .
Combining the above inequalities, for all t > t n we get

d( Φt W, Φt Z) K 2 2 n d(W, Z) 1 2 d(W, Z). (5.3.4) 
Hence L + is contracted in the forward direction of the geodesic flow. The proof of the contraction of L -follows similarly.

Metric Anosov structure on the quotient

Let us now consider what happens in the quotient, that is, U rec M. Let Z be in U rec A and be a positive real number. We define,

L ± (Z) := L ± Z ∩ B d(Z, ),
and

K (Z) := Π Z L + (Z) × L -(Z) × (-, ) ⊂ U rec A
where Π Z is the local product structure at Z defined by the stable and unstable leaves. We know that there exists a positive real number 0 such that for any non identity element γ of Γ and for Z in U rec A we have,

γ(K 0 (Z)) ∩ K 0 (Z) = ∅.
Proof of Theorem 0.0.40. Let us fix α as in proposition 5.3.2 and let 1 be from the open interval 0, min α, 0

2

. Now let z be any point of U rec M and let Z be a point in U rec A in the preimage of z. Our choice of 1 gives us that the inequality 5.3.4 holds for the geodesic flow on U rec A for the points in the chart K 1 (Z). Hence the inequality 5.3.4 also holds for the geodesic flow on U rec M for points in the chart which is in the projection of K 1 (Z).

Therefore L + , the projection of L + in U rec M, is contracted in the forward direction of the geodesic flow on U rec M. A similar proof holds for L -, the projection of L -in U rec M, too.

Proof. We start by observing that N is open and dense in X × X. Now let (P 1 , P 2 ) and (Q 1 , Q 2 ) be two arbitrary points in N . We consider the vector v(P 1 , P 2 ) ∈ S 1 corresponding to the point (P 1 , P 2 ) and the vector v(Q 1 , Q 2 ) ∈ S 1 corresponding to the point (Q 1 , Q 2 ). Now as SO 0 (2, 1) acts transitively on S 1 we get that there exist g ∈ SO 0 (2, 1)

such that v(Q 1 , Q 2 ) = g.v(P 1 , P 2 ).
We choose

X(Q 1 , Q 2 ) ∈ Q 1 ∩ Q 2 and X(P 1 , P 2 ) ∈ P 1 ∩ P 2 and observe that (e, X(Q 1 , Q 2 ) -O) • (g, 0) • (e, X(P 1 , P 2 ) -O) -1 .P 1 = Q 1 , (e, X(Q 1 , Q 2 ) -O) • (g, 0) • (e, X(P 1 , P 2 ) -O) -1 .P 2 = Q 2 ,
where e is the identity element in SO 0 (2, 1). Therefore N is an open G orbit in X × X. Now as X × X is connected the result follows.

Let N be the space of oriented space like affine lines. We think of N as the space UA/ ∼ where (X, v) ∼ (X 1 , v 1 ) if and only if (X 1 , v 1 ) = Φt (X, v) for some t ∈ R. We denote the equivalence class of (X, v) by [(X, v)]. Now let us consider the following map

ı : N -→ N (P 1 , P 2 ) -→ [(X(P 1 , P 2 ), v(P 1 , P 2 ))]
where X(P 1 , P 2 ) is any point in P 1 ∩ P 2 . We observe that ı gives a G equivariant map.

Let us denote the plane passing through X with underlying vector space generated by the vectors w 1 and w 2 by P X,w 1 ,w 2 . Now we consider another map

ı : UA -→ N (X, v) -→ (P X,v,v + , P X,v,v -)
where v ± ∈ C such that v ± | v = 0 and (v + , v, v -) gives the same orientation as (v + 0 , v 0 , v - 0 ). We observe that ı is a G equivariant map. Now as P X+tv,v,v + = P X,v,v + and P X+tv,v,v -= P X,v,v -we get that the map ı gives rise to a map, which we again denote by ı, ı : N -→ N .

Moreover, we observe that ı • ı = Id and ı • ı = Id.

Geometric Anosov structure

Geometric Anosov structures were first intoduced by Labourie in [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF]. In this section we give an appropriate definition of geometric Anosov property and show that (U rec M, L) admits a geometric Anosov structure. Let (P + , P -) ∈ N such that P + := P O,v 0 ,v + 0 and P -:= P O,v 0 ,v - 0 . We denote Stab G (P ± ) respectively by P ± . We note that the pair X ± := G/P ± gives a pair of continuous foliations on the space N whose tangential distributions E ± satisfy

TN = E + ⊕ E -.
restriction of this action on ∂ ∞ Γ (2) is the diagonal action coming from the standard action of Γ on ∂ ∞ Γ. There is a metric on U 0 Γ such that the Γ action is isometric. The metric is well defined up to Hölder equivalence. Moreover, every orbit of the R action gives a quasi-isometric embedding and the geodesic flow ψt acts by Lipschitz homeomorphisms. The flow ψt on U 0 Γ descends to a flow ψ t on the quotient U 0 Γ := Γ\ ∂ ∞ Γ (2) × R . We call it the Gromov geodesic flow. We denote the projection onto the first coordinate of U 0 Γ by π 1 and the projection onto the second coordinate of U 0 Γ by π 2 . More details about this construction can be found in Champetier [START_REF] Champetier | Petite simplification dans les groupes hyperboliques[END_REF] and Mineyev [START_REF] Mineyev | Flows and joins of metric spaces[END_REF].

Anosov structure

Let G = SO 0 (2, 1) R 3 and let

P ± := Stab G (P O,v 0 ,v ± 0 ).
Also let L = P + ∩ P -. We note that L = Stab G ([P + ], [P -]) for the diagonal action of G on G/P + × G/P -. Moreover, using proposition 6.1.2 we get that the G orbit of the point

([P + ], [P -]) ∈ G/P + × G/P -is the unique open G orbit in G/P + × G/P -. We also note that G/L = G.([P + ], [P -]).
Moreover, the pair G/P ± gives a continuous set of foliations on the space G/L whose tangential distributions E ± satisfy

T(G/L) = E + ⊕ E -.
We denote the Lie algebras associated to the Lie groups G, P ± and L respectively by g, p ± and l. We notice that g = p + + p -and l = p + ∩ p -. (6.4.1)

If we complexify, we obtain the Lie algebras p ± C and l C , so that the same equation 6.4.1 is satisfied, that is,

g C = p + C + p - C and l C = p + C ∩ p - C . (6.4.2) 
Now as SO 0 (2, 1) is a subgroup of GL(R 3 ) we get

G C = SO(3, C) C 3 .
We call a complex plane P degenerate if and only if there exist a non zero vector (v 1 , v 2 , v 3 ) t ∈ P such that for all (v 1 , v 2 , v 3 ) t ∈ P we have

v 1 v 1 + v 2 v 2 + v 3 v 3 = 0.
Let us denote the space of all complex degenerate planes by Y C . The group SO(3, C) acts transitively on the space Y C . Moreover, the action of the group SO(3, C) is transitive on the following space:

Y (2) C := {(P 1 , P 2 ) ∈ Y C × Y C | P 1 = P 2 }.
Now let X C be the space of all affine degenerate planes in C 3 . We consider the following open subspace:

N C := {(P 1 , P 2 ) ∈ X C × X C | V(P 1 ) = V(P 2 )}
and using the fact that SO(3, C) acts transitively on the space Y

C , we deduce that the action of the group G C = SO(3, C) C 3 on the space N C is transitive. Moreover, we fix (P 1 , P 2 ) ∈ N C and observe that

L C ∼ = Stab G C (P 1 , P 2 )
where L C denote the complexification of the group L. Hence

G C /L C ∼ = N C .
Now using equation 6.4.2 we get that G C /L C is foliated by two foliations, whose stabilizers are P ± C respectively. We denote the tangential distributions corresponding to the foliations G C /P ± C respectively by E ± C and observe that

T(G C /L C ) = E + C ⊕ E - C .
Definition 6.4.1. We say that ρ in Hom(Γ, G) (respectively Hom(Γ, G C )) is (G, P ± )-Anosov (respectively (G C , P ± C )-Anosov) if and only if there exist two continuous maps

ξ ± ρ : ∂ ∞ Γ -→ G/P ± (respectively G C /P ± C )
such that the following conditions hold:

1. For all γ in Γ we have ξ ± ρ • γ = ρ(γ).ξ ± ρ .

If

x = y in ∂ ∞ Γ then (ξ + ρ (x), ξ - ρ (y)) lies in G/L (respectively G C /L C ).

The induced bundle Ξ

+ ρ := (ξ + ρ • π 1 ) * E + (respectively (ξ + ρ • π 1 ) * E + C
) gets contracted by the lift of the flow ψt as t → ∞, and the induced bundle

Ξ - ρ := (ξ - ρ • π 2 ) * E - (respectively (ξ - ρ • π 2 ) * E - C
) gets contracted by the lift of the flow ψt as t → -∞. The maps ξ ± ρ are called the limit maps associated with the (G, P ± )-Anosov (respectively (G C , P ± C )-Anosov) representation ρ. The notion of an Anosov representation was first introduced by Labourie in [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF]. Furthermore, Guichard-Wienhard studied Anosov representations in more details in [START_REF] Guichard | Anosov representations: Domains of discontinuity and applications[END_REF].

Proposition 6.4.2. If ρ is in Hom M (Γ, G) then ρ is (G, P ± )-Anosov.
Proof. Let (X, v) ∈ UA. Let v ⊥ be the plane which is perpendicular to the vector v in the Lorentzian metric. We note that v ⊥ ∩ C is a disjoint union of two half lines where C is the upper half of S 0 \{0}. We choose v ± ∈ v ⊥ ∩ C such that (v + , v, v -) gives the same orientation as (v + 0 , v 0 , v - 0 ). Let P X,v,v ± respectively be the affine null plane passing through X such that its underlying vector space is generated by v and v ± . We notice We note that:

1. If f and g are Livsic cohomologous then they have the same integral over any φinvariant measure, and 2. If f and g are both positive and Livsic cohomologous, then the flows φ f and φ g are Hölder conjugate.

Periods and measures

Let us denote the set of all periodic orbits of φ by O. Now if a ∈ O then its period as a φ f periodic orbit is

p(a) 0 f (φ s (x))ds
where p(a) is the period of a for the flow φ and x ∈ a. In particular, if δ a is the probability measure invariant under the flow and supported by the orbit a, and if

δ a = δ a δ a | 1 ,
then we have that Now let m be a φ-invariant probability measure on X and let φ f be the reparametrization of φ by f . We define f.m as follows:

δ a | f =
f.m := 1 m | f f.m.
We notice that the map m → f.m gives a bijection between φ-invariant probability measures and φ f -invariant probability measures. In fact if δ f a is the unique φ f invariant probability measure supported by a, then δ f a = f.δ a .

Hence we have that

δ f a | g = δ a | f.g δ a | f . (7.1.1)
Proposition 7.2.1. [Bowen] The topological entropy of a topologically transitive metric Anosov flow φ = {φ t } t∈R on a compact metric space X is finite and positive. Moreover,

h top (φ) = lim T →∞ 1 T log (#{a ∈ O | p(a) T }) .
In particular, for a nowhere vanishing Hölder continuous function f ,

h f := lim T →∞ 1 T log (#R T (f )) = h top (φ f )
is finite and positive.

Theorem 7.2.2. [Bowen-Ruelle, Pollicott] Let φ = {φ t } t∈R be a topologically transitive metric Anosov flow on a compact metric space X and let g : X → R be a Hölder continuous function, then there exists a unique equilibrium state m g for g. Moreover, if f : X → R is a Hölder continuous function such that m f = m g , then f -g is Livsic cohomologous to a constant.

We note that in such a situation it follows from [START_REF] Bowen | The ergodic theory of axiom A flows[END_REF] that the pressure function can be described in the following alternative way:

℘(φ, g) = lim T →∞ 1 T log   a∈R T (1) 
e δa|g   .

Theorem 7.2.3.

[Bowen] A topologically transitive metric Anosov flow φ on a compact metric space X has a unique probability measure m φ of maximal entropy. Moreover,

m φ = lim T →∞   1 #R T (1) a∈R T (1) δ a   .
The probability measure of maximal entropy for φ is called the Bowen-Margulis measure of φ.

Intersection and renormalised intersection 7.3.1 Intersection

Let φ be a topologically transitive metric Anosov flow on a compact metric space X . Also let f : X → R + be a positive Hölder continuous function and g : X → R be any continuous function. Definition 7.3.1. We define the intersection of f and g as follows:

I(f, g) := g f dm φ f ,
where m φ f is the Bowen-Margulis measure of the flow φ f . Using theorem 7.2.3 and equation 7.1.1 we get that

I(f, g) = lim T →∞   1 #R T (f ) a∈R T (f ) δ a | g δ a | f   . (7.3.1)
Morever, using the second part of the lemma 7.1.3 we have

I(f, g) = gdm -h f f f dm -h f f
where h f is the topological entropy of φ f and m -h f .f is the equilibrium state of -h f .f . Now as δ a | f depends only on the Livsic cohomology class of f and δ a | g depends only on the Livsic cohomology class of g we get that the intersection I(f, g) depends only on the Livsic cohomology classes of f and g.

Renormalized intersection

Definition 7.3.2. Let f, g : X → R + be two positive Hölder continuous functions. We define the renormalized intersection as follows:

J(f, g) := h g h f I(f, g),
where h f and h g are the topological entropies of φ f and φ g .

We note that the renormalized intersection J is not necessarily symmetric. Now using the uniqueness of the equilibrium states and the definition of the pressure we get that: Proposition 7.3.3. If φ is a topologically transitive metric Anosov flow on a compact metric space X , and f : X → R + and g : X → R + are positive Hölder continuous functions, then J(f, g) 1.

Moreover, J(f, g) = 1 if and only if h f f and h g g are Livsic cohomologous.

Variation of the pressure and the pressure form

We note that a more detailed version of the following constructions can be found in [START_REF] Bridgeman | The pressure metric for convex homomorphisms[END_REF].

It is also similar to a construction that was introduced by McMullen in [START_REF] Mcmullen | Thermodynamics, dimension and the Weil-Petersson metric[END_REF].

First and second derivatives

Let g be a Hölder continuous function. We say that g has mean zero with respect to f if and only if

gdm f = 0.
The variance of a mean zero Hölder continuous function g with respect to f is defined as follows:

Var(g, m f ) := lim

T →∞ 1 T T 0 g(φ s x)ds 2 dm f (x),
where m f is the equilibrium state of f . Similarly, for two mean zero Hölder continuous functions g and h, the covariance of g and h with respect to f is defined as follows:

Cov(g, h, m f ) := lim 

∂ ∂t t=0 ℘(φ, f + tg) = gdm f , 3. If gdm f = 0 then ∂ 2 ∂t 2 t=0 ℘(φ, f + tg) = Var(g, m f ), 4 
. If Var(g, m f ) = 0 then g is Livsic cohomologous to zero.

The pressure form

Let C h (X ) be the set of all real valued Hölder continuous functions on X and let P(X ) be the set of all pressure zero Hölder continuous functions on X , that is,

P(X ) := {f ∈ C h (X ) | ℘(f) = 0}.
The tangent space of P(X ) at f is the set

T f P(X ) = ker (d f ℘) = g ∈ C h (X ) | gdm f = 0
where m f is the equilibrium state of f. Definition 7.4.2. The pressure semi-norm of g ∈ T f P(X ) is defined as follows:

g 2 ℘ := - Var(g, m f ) fdm f .
Lemma 7.4.3. Let φ be a topologically transitive metric Anosov flow on a compact metric space X . If {f t } t∈(-1,1) is a smooth one-parameter family contained in P(X ) then

ḟ0 2 ℘ = f0 dm f 0 f 0 dm f 0 .
be a bundle whose fibers are M . The bundle π : E → D C ×X is called transversely complex analytic if and only if it admits a family of trivializations of the form {D C × U β × M } (where the collection {U β } is an open cover of X ) so that the the corresponding change of coordinate functions are transversely complex analytic. Similarly, the bundle π : E → D C × X is called µ-Hölder (or Lipschitz) transversely complex analytic if and only if it admits a family of trivializations so that the the corresponding change of coordinate functions are µ-Hölder (or Lipschitz) transversely complex analytic. In such a case, a section σ of E is called µ-Hölder (or Lipschitz) transversely complex analytic, if and only if in any of the trivializations the corresponding map to M is µ-Hölder (or Lipschitz) transversely complex analytic.

Similarly, µ-Hölder (or Lipschitz) transversely real analytic bundles and sections can be defined by replacing the complex disk D C with a real disk D and the complex analytic manifold M with a real analytic manifold.

Theorem 8.1.3. Let X be a compact metric space and let M be a complex analytic manifold. Suppose that π : E → D × X is a Lipschitz transversely complex analytic bundle with fibre M and D is a complex (or real) disk. Let f : X → X be a Lipschitz homeomorphism and let F be a Lipschitz transversely complex analytic bundle automorphism of E lifting id × f . Suppose that σ 0 is a section of the restriction of E over {0} × X which is fixed by F and that F contracts along σ 0 . Then there exists a neighborhood U containing 0 in D, a positive real number µ > 0, a µ-Hölder transversely complex analytic section η over U × X and a neighborhood B of η(U × X ) in π -1 (U × X ) such that 1. The bundle automorphism F fixes η, Let U be a subset of D. We say that a section σ over U × X is fixed by F if and only if

F (σ(u, x)) = σ(u, f (x)).
In such a case, we further say that F contracts along σ if there exists a continuously varying fibrewise Riemannian metric . on the bundle E such that if

D f F σ(u,x) : T σ(u,x) π -1 (u, x) → T σ(u,f (x)) π -1 (u, f (x))
is the fibrewise tangent map, then

D f F σ(u,x) < 1.
The following result has been taken from [START_REF] Bridgeman | The pressure metric for convex homomorphisms[END_REF]. A similar statement appeared in Hubbard [START_REF] Hubbard | Teichmüler theory and applications to geometry, topology and dynamics[END_REF]. Lemma 8.1.5. Let D be a complex (or real) disk, let M be a complex analytic manifold, let X be a compact metric space and let f : D × X → M be a µ-Hölder transversely complex analytic function, then the map f : D → C µ (X , M ) u → f u is complex analytic, where f u (.) := f (u, .).

Analyticity of limit maps

In this section we show that the limit maps vary analytically over the analytic manifold Hom M (Γ, G). The proofs given in this section are inspired by some of the proofs given in the section 6 of [START_REF] Bridgeman | The pressure metric for convex homomorphisms[END_REF].

Theorem 8.2.1. Let {ρ u } u∈D be a real analytic family in Hom(Γ, G) parameterized by a disk D around 0. If ρ 0 is (G, P ± )-Anosov with limit maps ξ ± 0 : ∂ ∞ Γ -→ G/P ± then there exists a sub-disk D 0 of D (containing 0), a positive real number µ and a continuous map ξ + : D 0 × ∂ ∞ Γ -→ G/P + with the following properties:

1. If u is in D 0 then ρ u is a (G, P ± )-Anosov representation with µ-Hölder limit map given by ξ + u : ∂ ∞ Γ -→ G/P + x -→ ξ + (u, x),

2. If x is in ∂ ∞ Γ then the following map is real analytic ξ + x : D 0 -→ G/P + u -→ ξ + (u, x),

3. The map from ∂ ∞ Γ to C ω (D 0 , G/P + ) given by x → ξ + x is µ-Hölder, 4. The map from D 0 to C µ (∂ ∞ Γ, G/P + ) given by u → ξ + u is real analytic. We will prove Theorem 8.2.1 using the following more general result. where γ is in Γ and notice that the quotient bundle A := Γ\ à is a Lipschitz transversely complex analytic G C /P + C -bundle over D C × U 0 Γ. The geodesic flows { ψt } t∈R and {ψ t } t∈R respectively on U 0 Γ and U 0 Γ lift to geodesic flows { Ψt } t∈R and {Ψ t } t∈R on à and A respectively. We note that the flow { Ψt } t∈R acts trivially on the D C and G C /P + C factors. Now as ρ 0 is (G C , P ± C )-Anosov with limit maps

ξ ± 0 : ∂ ∞ Γ → G C /P ± C ,
the following map σ0 defines a Γ-equivariant section of the restriction of the bundle à over {0} × U 0 Γ, σ0 : {0} × U 0 Γ -→ à (0, (x, y, t)) -→ (0, (x, y, t), ξ + 0 (x)).

Therefore the section σ0 gives rise to a section σ 0 of A over {0} × U 0 Γ. Since ρ 0 is (G C , P ± C )-Anosov, the bundle Ξ + ρ 0 over {0}×U 0 Γ with fiber T σ 0 (0,X) π -1 (0, X) gets contracted by the lift of the geodesic flow ψ t as t goes to ∞. Hence there exists a real number t 0 such that for all X in U 0 Γ we have

D ψt 0 Ψ t 0 σ 0 (0,X) < 1 
Moreover, for any Γ-invariant metric d on U 0 Γ and given any z ∈ ∂ ∞ Γ there exist t z such that lim Therefore if we take p n = η u (γ n (γ -, z, t z -nt γ ))

then the sequence is eventually in B d (η u (γ -, γ + , 0), k 0 ) and we get that 0 = lim n→∞ d(η u (γ -, γ + , 0), γ -n η u (γ n (γ -, z, t z -nt γ )))

= lim n→∞ d(η u (γ -, γ + , 0), η u (γ -, z, t z -nt γ )). Now as η(u, (x, y, t)) is independent of t we get that 0 = lim n→∞ d(η u (γ -, γ + , 0), η u (γ -, z, 0)) and hence η u (γ -, γ + , 0) = η u (γ -, z, 0). Moreover, as the fixed points of infinite order elements are dense in ∂ ∞ Γ we conclude that η(u, (x, y, t)) is independent of the variable y. Therefore there exists a Γ-equivariant Hölder transversely complex analytic map 

(ξ + 0 , ξ - 0 )({0} × ∂ ∞ Γ (2) ) ⊂ G C /L C ,
we get that there exists a sub-disk D C 0 ⊂ D C 1 ∩ D C 2 containing 0 such that (ξ + , ξ -)(D C 0 × ∂ ∞ Γ (2) ) ⊂ G C /L C . Therefore we have proved properties (1), ( 2) and (3). Now property (4) follows from lemma 8.1.5 and this completes the proof of Theorem 8.2.2.

We now show that Theorem 8.2.1 follows from Theorem 8.2.2.

where k t : D 0 × U 0 Γ → R is a µ-Hölder transversely real analytic function and for all real number t π 2 ψ * t σ(u, (x, y, t 0 )) = π 2 σ(u, (x, y, t 0 )). (8.3.5) Let t γ be the period of the geodesic {(γ -, γ + , t) | t ∈ R} fixed by γ in Γ. We further notice that L ρu (γ)π 2 σ(u, (γ -, γ + , t 0 )) = π 2 σ(u, γ(γ -, γ + , t 0 )) = π 2 σ(u, (γ -, γ + , t 0 + t γ ))

= π 2 σ(u, (γ -, γ + , t 0 )).

We also recall that π 2 σ(0, (γ -, γ + , t 0 )) = ν ρ 0 (γ -, γ + ). Therefore we deduce that π 2 σ(u, (γ -, γ + , t 0 )) = ν ρu γ -, γ + . (8.3.6)

Furthermore, for all real number t 0 and t we have, k t+tγ (u, (γ -, γ + , t 0 ))π 2 σ(u, (γ -, γ + , t 0 )) =(k t (u, (x, y, t 0 )) + α ρu (γ))π 2 σ(u, (γ -, γ + , t 0 )).

Therefore we get that for all real number t 0 k t+tγ (u, (γ -, γ + , t 0 )) = k t (u, (γ -, γ + , t 0 )) + α ρu (γ). (

We also note that for all real number t and t we have k t+t (u, (x, y, t 0 ))π 2 σ(u, (x, y, t 0 )) = k t (u, (x, y, t 0 + t ))π 2 σ(u, (x, y, t 0 + t ))

+ k t (u, (x, y, t 0 ))π 2 σ(u, (x, y, t 0 )).

And using equation 8.3.5 we get that k t+t (u, (x, y, t 0 )) = k t (u, (x, y, t 0 + t )) + k t (u, (x, y, t 0 )). (8.3.8) Now we fix some real number r > 0 and define Now we finish our proof by considering the collection

K t (
{f u := f T u | u ∈ D 1 }
and noticing that it satisfies all the required properties.

  qui donne la réparametrisation. En plus, notons que pour tout γ ∈ Γ, on a γ f ρ = α ρ (γ) où α ρ (γ) est l'invariante de Margulis. Dans ma thèse je démontre que: Proposition 0.0.24. Soit {ρ u } u∈D une famille des homomorphismes analytiques réels où ρ u ∈ Hom M (Γ, G) est parameterisée par une disque D centrée en 0. Alors, il existe une sous-disque D 1 centrée en 0 et une famille analytique réelle {f u : U 0 Γ → R} u∈D 1 de fonctions hölderienne, positives telles que la fonction f u est cohomologue de Livsic à la fonction f ρu .

.4. 4 )

 4 Now we list a few identities satisfied by ν and b: ν(a, b) + ν(b, a) = 0, (2.4.5) ν(a, b) | ν(a, c) = 1, (2.4.6) b(d, b, c, a)ν(a, b) + b(a, b, c, d)ν(a, c) = ν(a, d), (2.4.7) b(a, b, c, d) = b(b, a, d, c) = b(d, c, b, a), (2.4.8) b(a, b, c, d) + b(d, b, c, a) = 1, (2.4.9) b(a, w, c, d)b(w, b, c, d) = b(a, b, c, d).

Lemma 3 . 4 . 1 .

 341 [Opposite sign lemma] If ρ : Γ → G is a homomorphism giving rise to a Margulis Space Time, then 1. either α ρ (γ) > 0 for all γ ∈ Γ, 2. or α ρ (γ) < 0 for all γ ∈ Γ.

  2. (L -, L +,0 ) defines a local product structure on X , 3. the leaves of L + are contracted by the flow, 4. the leaves of L -are contracted by the inverse flow.

Definition 5 . 1 . 1 .

 511 The length of a path is defined by, l(P) := n-1 i=0 d γ i+1 (z i , z i+1 ) Definition 5.1.2. We then define, d(x, y) := inf {l(P) | P joins x and y} Lemma 5.1.3. d is a Γ-invariant pseudo-metric.

Lemma 5 .

 5 1.4. d is a metric and d is locally bilipschitz equivalent to d.

.1. 13 ) 14 )

 1314 Combining the inequalities 5.1.10 and 5.1.13 and using the definition of d we have that for any point x in W , any general point y and for all γ in A, Therefore for any point y distinct from z we have, d(z, y) > 0.(5.1.15) 

Using lemma 5

 5 

  any two euclidean distances are bilipschitz equivalent with each other and by our hypothesis, d is locally bilipschitz equivant to an euclidean distance. Therefore, in particular, d is locally bilipschitz equivalent with d Z for Z in D, that is, there exist constants K Z depending on Z, and open sets U Z around Z, such that the distance d Z and d are K Z bilipschitz equivalent with each other on U Z . Let C (X,Y ) for any X and Y in D, be a constant such that the distance d X and d Y are C (X,Y ) bilipschitz equivalent with each other. It follows from the construction of the norm . , as done in proposition 5.3.1, that we can choose the constants C (X,Y ) in such a way that C (X,Y ) vary continuously on (X, Y ). As D is compact it follows that C (X,Y ) is bounded above by some constant C. Hence, for all X and Y in D, d X and d Y are C bilipschitz equivalent with each other. Now, we consider the open cover of D by the open sets U Z . As D is compact, there exist points Z 1 , Z 2 , .., Z n in D such that U Z 1 , U Z 2 , .., U Zn covers D. Let β be the Lebesgue number of this cover for the distance d and K 0 be the maximum of K Z 1 , K Z 2 , .., K Zn . Therefore, for any Z in D, the open ball of radius β around Z for the metric d, denoted by B d (Z, β), lies inside U Z j for some j in {1, 2, .., n}. Hence, d and d Z j are K 0 bilipschitz equivalent with each other on B d (Z, β). As d Z and d Z j are C bilipschitz equivalent with each other, it follows that d and d Z are CK 0 bilipschitz equivalent with each other on B d (Z, β). Moreover, we note that the constants β, C, K 0 and hence also CK 0 , does not depend on Z. Therefore, d and d Z are CK 0 bilipschitz equivalent with each other on B d (Z, β), for all Z in D. As any two distances d X and d Y , for all X, Y in D are C bilipschitz equivalent with each other. Without loss of generality we can choose a point X in D and consider the distance d X . The note that the set {B d (Z, β) : Z ∈ D} is an open cover of D. Let β 1 be a Lebesgue number for this cover for the metric space (D, d X ). Therefore, the open ball B d X (Y 1 , β 1 ) for any Y 1 in D, lies inside an open ball B d (Y 2 , β) for some point Y 2 in D. Now, as d and d Z are CK 0 bilipschitz equivalent with each other on the ball B d (Z, β) for all Z in D, it follows that d and d X are CK 0 bilipschitz equivalent with each other on the ball B d X (Y 2 , β 1 ). As Y 2 was chosen arbitrarily we have that d and d X are CK 0 bilipschitz equivalent with each other on the ball B d X (Y, β 1 ), for all Y in D. Now, we know that d X and d Z are C bilipschitz equivalent with each other. Therefore we get that d and d Z are CK 0 bilipschitz equivalent with each other on the ball B d Z (Y, β 1 C ), for all Y in D. In particular one has, d and d Z are CK 0 bilipschitz equivalent with each other on the ball B d Z (Z, β 1

p(a) 0 f

 0 (φ s (x))ds and p(a) = δ a | 1 . In general, if m is a φ-invariant measure on X and f : X → R is a Hölder continuous function, then let us use the following notation: m | f := X f dm.

2 .

 2 The bundle automorphism F contracts E along η, 3. The restriction η| {0}×X = σ 0 , and 4. If ζ : U × X → E is a section with ζ(U × X ) ⊂ B and ζ is fixed by F , then ζ = η. Definition 8.1.4.

Theorem 8 . 2 . 2 . 3 .

 8223 Let {ρ u } u∈D C be a complex analytic family in Hom(Γ, G C ) parameterized by a diskD C around 0. If ρ 0 is (G C , P ± C )-Anosov with limit maps ξ ± 0 : ∂ ∞ Γ → G C /P ± Cthen there exists a sub-disk D C 0 of D C (containing 0), a positive real number µ and a continuous mapξ + : D C 0 × ∂ ∞ Γ → G C /P + Cwith the following properties:1. If u is in D C 0 then ρ u is a (G C , P ± C)-Anosov representation with µ-Hölder limit map given byξ + u : ∂ ∞ Γ -→ G C /P + C x -→ ξ + (u, x), 2. If x is in ∂ ∞ Γ then the following map is complex analytic ξ + x : D C 0 -→ G C /P + C u -→ ξ + (u, x), The map from ∂ ∞ Γ to C ω (D C 0 , G C /P + C ) given by x → ξ + x is µ-Hölder, 4. The map from D C 0 to C µ (∂ ∞ Γ, G C /P + C )given by u → ξ + u is complex analytic.Proof. Let {ρ u } u∈D C ⊂ Hom(Γ, G C ) be a complex analytic family of homomorphisms such that ρ 0 is (G C , P ± C )-Anosov. Let us consider the trivial G C /P + C -bundle over D C × U 0 Γ as follows:π : à := D C × U 0 Γ × G C /P + C -→ D C × U 0 Γ.Furthermore, we consider the following action of Γ on à γ(u, x, [g]) = (u, γ(x), [ρ u (γ)g])

  (γ -, γ + , 0), ψt (γ -, z, t z )) = 0. Hence 0 = lim n→∞ d((γ -, γ + , -nt γ ), (γ -, z, t z -nt γ )) = lim n→∞ d(γ -n (γ -, γ + , 0), (γ -, z, t z -nt γ )) = lim n→∞ d((γ -, γ + , 0), γ n (γ -, z, t z -nt γ )).

ξ + : D C 1 ×

 1 ∂ ∞ Γ → G C /P + C extending the map ξ + 0 . In a similar way we get that there exists a sub-disk D C 2 ⊂ D C containing 0 such that there exists a Γ-equivariant Hölder transversely complex analytic map ξ -:D C 1 × ∂ ∞ Γ → G C /P - C extending the map ξ - 0 . Moreover, we recall that N C is open in X C × X C and we know that G C /L C ∼ = N C . Hence G C /L C is an open subset of G C /P + C × G C /P - C . Now as

tγ 0 f

 0 u (γ -, γ + , s)ds = tγ 0 ∂ ∂t t=s K t (u, (γ -, γ + , 0))ds (8.3.12) = K tγ (u, (γ -, γ + , 0)) -K 0 (u, (γ -, γ + , 0)) = α ρu (γ). Therefore if u ∈ D 0 then γ f u = γ f ρufor all γ ∈ Γ. Now using theorem 7.1.4 we deduce that f u is Livsic cohomologous to the positive Hölder function f ρu for all u ∈ D 0 . Therefore for any flow invariant measure m on U 0 Γ we havef u dm = f ρu dm > 0.Now using lemma A.1 and lemma A.2 of[START_REF] Goldman | Geodesics in Margulis spacetimes[END_REF] and transverse analyticity of f u we derive that there exist a neighborhood D 1 ⊂ D 0 and there exist a real number T > 0 such that for all u ∈ D 1 f T u (x, y, t 0 ) := 1 T T 0 f u (x, y, t 0 + s)ds > 0.

  

  [START_REF] Margulis | Complete affine locally flat manifolds with a free fundamental group[END_REF].[Goldman-Margulis] Soit { t } t∈(-1,1) ⊂ Hom S (Γ, SO 0 (2, 1)) un chemin lisse. Alors pour toutes γ ∈ Γ, on a Soient {ρ t } t∈(-1,1) un chemin lisse dans Hom M (Γ, G) et X ρt(γ) un point quelconque sur la seule droite affine fixée par ρ t (γ) où γ ∈ Γ. Alors, pour touts γ, η dans Γ, on a

	d dt t=0	t (γ) = α ( 0 , ˙ 0 ) (γ)
	où t (γ) est la longueur de la géodesique fèrmée de Σ t correspondant à t (γ) ∈ t (Γ) et
	˙ 0 := d dt t=0 t .	
	J'utilise l'intuition acquise dans les deux théorèmes précédents pour démontrer ce qui
	suit:	
	Proposition 0.0.29. lim n→∞	

  ) est un point quelconque sur la seule droite affine fixée par ρ(γ) et X ρ(η) est un point quelconque sur la seule droite affine fixée par ρ(η). Soit {ρ t } t∈(-1,1) un chemin lisse dans Hom M (Γ, G) avec

	Proposition 0.0.32. d dt t=0	ρ t = ρ0 .
	Si P ρ 0 ( ρ0 , ρ0 ) = 0 et d dt t=0 h ρt = 0 alors
		[ ρ0 ] = 0
	dans H 1 ρ 0 (Γ, g) où g est l'algèbre de Lie du groupe de Lie G et H 1 ρ 0 (Γ, g) est la cohomologie
	de groupe.	
	En plus, en utilisant les résultats ci-dessus, je montre que:
	Lemma 0.0.31. Si pour tout γ ∈ Γ on a d dt t=0 α ρt (γ) = 0 alors pour touts γ, η ∈ Γ on a
	d dt t=0	b ρt η + , γ -, γ + , η -= 0.
	Et la proposition suivant s'ensuit:

  s 1 , s 2 ∈ R}.

	Lemma 5.2.3. Let g, h be two points in UH then
	h is in

t∈R H+ φtg if and only if ν

  Proposition 7.4.1. [Parry-Pollicott, Ruelle] Suppose that φ is a topologically transitive metric Anosov flow on a compact metric space X , and f : X → R and g : X → R are Hölder continuous functions. If m f is the equilibrium state of f , then

	T →∞	1 T	0	T	g(φ s x)ds	0	T	h(φ s x)ds dm f (x).

1. The function t → ℘(f + tg) is analytic, 2. The first derivative is given by

  u, (x, y, t 0 )) := log r+t t exp(k s (u, (x, y, t 0 )))ds r 0 exp(k s (u, (x, y, t 0 )))ds . Using equation 8.3.7 we get thatK t+tγ (u, (γ -, γ + , t 0 )) = K t (u, (γ -, γ + , t 0 )) + α ρu (γ). (8.3.9) Moreover, using equation 8.3.8 we get that K t+t (u, (x, y, t 0 )) = K t (u, (x, y, t 0 + t )) + K t (u, (x, y, t 0 )). (exp(k s+r (u, (x, y, t 0 ))) -exp(k s (u, (x, y, t 0 )))) ds r 0 exp(k s (u, (x, y, t 0 )))ds = exp(k r (u, (x, y, t 0 ))) -exp(k 0 (u, (x, y, t 0 ))) r 0 exp(k s (u, (x, y, t 0 )))ds . Therefore f u (x, y, t 0 ) is also µ-Hölder transeversely real analytic. Moreover, using equation 8.3.10 one gets ∂ ∂t t=0 K t (u, (x, y, t 0 )) = ∂ ∂t t=t 0 K t (u, (x, y, 0)).

	We notice that				
	∂ ∂t t=0	K t (u, (x, y, t 0 )) =	∂ ∂t t=0	log	r+t t r 0 exp(k s (u, (x, y, t 0 )))ds exp(k s (u, (x, y, t 0 )))ds
	=	∂ ∂t t=0	log	t	r+t	exp(k s (u, (x, y, t 0 )))ds
		∂		t		
	= 0 Hence we have ∂t t=0		
							(8.3.10)
	Finally we define				
					f u (x, y, t 0 ) :=	∂ ∂t t=0	K t (u, (x, y, t 0 )).	(8.3.11)
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Proposition 5.2.6. The following equations are true for all g in U rec H,

Proof. We start with defining a function,

Using equation 2.3.3 and theorem 3.2.1 we get that

for all t ∈ R. Again using equation 2.3.4 and theorem 3.2.1 we get that the neutralised section and the neutral section are equivariant under the action of Γ. Hence for all γ in Γ we have,

= det[γ(N (g) -N (h)), γν(g), γν(h))]

= det[γ] det[(N (g) -N (h)), ν(g), ν(h)]

= det[(N (g) -N (h)), ν(g), ν(h)]

= F (g, h).

Now for a fixed real number c 0 we consider the space,

Compactness of U rec Σ implies that K Γ , the projection of K in Γ\(U rec H×U rec H), is compact. Now continuity of F implies that F is uniformly continuous on K Γ . Let g and h be two points in U rec H such that h is in H + g . Given any such choice of g and h we can choose a sufficiently large t 0 such that d UH ( φt 0 g, φt 0 h) is arbitrarily close to zero, hence we have F ( φt 0 g, φt 0 h) arbitrarily close to zero. Therefore by using equation 5.2.2 it follows that F (g, h) is zero for all h in H + g . Now using equation 5.2.2, equation 2.3.3 and lemma 5.2.3 we have, 0 = F ( φt g, φt h) = det[(N ( φt g) -N ( φt h)), ν( φt g), ν( φt h)]

= det[(N ( φt g) -N ( φt h)), ν(g), ν(h)]

= det[(N ( φt g) -N ( φt h)), ν(g), ν(g) + ν(h), ν -(g) ν + (g), ν -(g) ν + (g)] = ν(h), ν -(g) ν + (g), ν -(g) det[(N ( φt g) -N ( φt h)), ν(g), ν + (g)].

Definition 5.2.13. We denote the projection of L ± , L ±,0 on the space U rec M respectively by L ± and L ±,0 , where L ± , L ±,0 are as defined in definition 5.2.1.

Now we define the notion of a leaf lift. The leaf lift is a map from the leaves of the lamination through a point, to the tangent space of UA at that point. We will use this leaf lift to compare distance between the metric d and the norm on the tangent space on any point of the leaves. We define the leaf lift as follows:

The positive leaf lift is the map, i + N(g) : L+ N(g) -→ T N(g) UA (5.2.5)

(N (g) + s 1 ν + (g), ν(g) + s 2 ν + (g)) -→ (s 1 ν + (g), s 2 ν + (g)).

and the negative leaf lift is the map, i - N(g) : L-N(g) -→ T N(g) UA (5.2.6)

where we identify T N(g) UA with T N (g) A × T ν(g) S 1 .

Contraction Properties

In this section we will prove that the leaves denoted by L + contracts in the forward direction of the geodesic flow and the leaves denoted by L -contracts in the backward direction of the geodesic flow. We will prove it only for the forward direction of the flow.

The other case will follow similarly. We start with the following construction whose raison d'être would be apparent in proposition 5.3.2.

Proposition 5.3.1. There exists a Γ-invariant map from U rec A into the space of euclidean metrics on R 3 × R 3 sending Z to . Z such that for all positive integer n, there exists a positive real number t n satisfying the following property: if t > t n , Z ∈ U rec A and W ∈ L+

Proof. Let | N(g) be a positive definite bilinear form on the tangent space T N(g) (A × V) satisfying the following properties,

where δ αβ is the dirac delta function with α, β in {., +, -}. We define the map . as follows,

Chapter 6

Anosov representations

In this chapter we define the notion of an Anosov representation in the context of the non-semisimple Lie group G := SO 0 (2, 1) R 3 .

Pseudo-Parabolic subgroups

Let X be the space of all affine null planes. We observe that G acts transitively on X.

Hence for all P ∈ X we have

Definition 6.1.1. If P ∈ X then we define

We call P P a pseudo-parabolic subgroup of G.

Let V(P ) denote the vector space underlying a null plane P , let v 0 := (1, 0, 0) t and v ± 0 := (0, ±1, 1) t and let C be the upper half of S 0 \{0}. Now we consider the space

and define the following map

where

gives the same orientation as (v + 0 , v 0 , v - 0 ). We observe that v(P 1 , P 2 ) = -v(P 2 , P 1 ).

Proposition 6.1.2. The space N is the unique open G orbit in X × X for the diagonal action of G on X × X. Definition 6.2.1. We say that a vector bundle E over a compact topological space whose total space is equipped with a flow {ϕ t } t∈R of bundle automorphisms is contracted by the flow as t → ∞ if and only if for any metric . on E, there exists positive constants t 0 , A and c such that for all t > t 0 and for all v in E we have

Definition 6.2.2. Let L denote the orbit foliation of U rec M under the flow Φ. We say that (U rec M, L) admits a geometric (N, G)-Anosov structure if and only if there exist a map F : U rec M -→ N such that the following holds:

1. For all γ ∈ Γ we have

. By the flow invariance, the bundles F ± := F * E ± are equipped with a parallel transport along the orbits of Φ. The bundle F + gets contracted by the lift of the flow Φt as t → ∞ and F -gets contracted by the lift of the flow Φt as t → -∞.

Proof of Theorem 0.0.41. Let us define the map F as follows:

We note that the map F is clearly Γ-equivariant and is also invariant under the flow Φ. Now we observe that

gives the same orientation as (v + 0 , v 0 , v - 0 ). Now using proposition 5.3.1 we notice that F + gets contracted by the lift of the flow Φt as t → ∞ and F -gets contracted by the lift of the flow Φt as t → -∞. Moreover, as U rec M is compact we have that the convergence is independent of the choice of the metric.

Gromov geodesic flow

Now let ∂ ∞ Γ be the Gromov boundary of the free group Γ. Also let

Let R acts on U 0 Γ := ∂ ∞ Γ (2) × R by translation on the last factor. In [START_REF] Gromov | Hyperbolic groups[END_REF] Gromov defined a proper cocompact action of Γ on ∂ ∞ Γ (2) × R which commutes with the action of R. The that P X,v,v + = P X,v,v -. Now using proposition 6.1.2 we get that there exist g

.g (X,v) ∈ P + . Therefore the following is a well defined map:

We notice that η + is G-equivariant. Similarly, we define another G-equivariant map

Moreover, for all (X, v) ∈ UA we see that

Now let ρ ∈ Hom M (Γ, G). Hence L ρ ∈ Hom S (Γ, SO 0 (2, 1)). Now Γ being a free group we get that there exists a Γ-equivariant homeomorphism

We define

and observe that for any [g.P + ] ∈ G/P + we have

Now using proposition 5.2.6 we notice that the maps η ± ρ • N ρ gives rise to a pair of Γequivariant continuous maps

We also observe that

0 . Now using proposition 5.3.1 we conclude that ρ is (G, P ± )-Anosov.

Chapter 7

Thermodynamical formalism

In this chapter, we describe the theory of thermodynamical formalism as appeared in [START_REF] Bridgeman | The pressure metric for convex homomorphisms[END_REF]. We include this chapter for the sake of completeness. The theory had been originally developed by Bowen, Parry-Pollicott, Ruelle and others. We also describe a variation of a construction of McMullen, which produces a pressure form on the space of pressure zero functions on a flow space.

Hölder flows

Let X be a compact metric space with a Hölder continuous flow φ = {φ t } t∈R without fixed points.

Reparametrizations

Let f : X → R be a positive Hölder continuous function. Now as X is compact, f has a positive minimum and for all x ∈ X , the function κ f : X × R → R, defined by

for all (x, t) ∈ X × R. The reparametrization of the flow φ by f is denoted by the flow φ f = {φ f t } t∈R on X and is defined as follows:

, where t ∈ R and x ∈ X .

Livsic-cohomology

Definition 7.1.1. Let f, g : X → R be two Hölder continuous functions. We say that f is Livsic-cohomologous to g if and only if there exists a function V : X → R such that V is C 1 in the direction of the flow and for all x ∈ X

Entropy and pressure

Let m be a φ-invariant probability measure on X and let h(φ, m) be its metric entropy. Now we describe a relation between the metric entropies of a flow and its reparameterization as follows:

We note that the above equation is called the Abramov formula. Now let φ be the set of all φ-invariant probability measures.

Definition 7.1.2. We define the pressure of a function f : X → R as follows:

In particular,

is called the topological entropy of the flow φ.

We note that the pressure ℘(φ, f ) only depends on the Livsic cohomology class of f . We say that a measure m ∈ φ on X is an equilibrium state of f if and only if the following equation holds:

An equilibrium state for the function f ≡ 0 is called a measure of maximal entropy.

Lemma 7.1.3. [Sambarino [START_REF] Sambarino | Quantitative properties of convex representations[END_REF], Lemma 2.4] If φ is a Hölder continuous flow on a compact metric space X and f : X → R is a positive Hölder continuous function, then

) and m is an equilibrium state of -hf , then f.m is a measure of maximal entropy for the reparameterized flow φ f . Theorem 7.1.4. [Livsic] Let f : X → R be a Hölder continuous function, then δ a | f = 0 for all a ∈ O if and only if f is Livsic cohomologous to zero.

Entropy and pressure for Anosov flows

Let f : X → R + be a positive Hölder continuous function and let T be a real number. We define

We note that R T (f ) only depends on the Livsic cohomology class of f .

We note that the following result can also be found in [START_REF] Bridgeman | The pressure metric for convex homomorphisms[END_REF] and is a generalized version of a previous work done by Bonahon in [4]: Proposition 7.4.4. Let φ be a topologically transitive metric Anosov flow on a compact metric space X . If

is a one-parameter family of positive Hölder continuous functions and

Therefore the pressure semi-norm arises naturally from the pressure form P which is the symmetric 2-tensor on T f P(X ) given by the Hessian of J f := J(f, .). We also note that if f, g ∈ T f P(X ), then Deformation Theory

Transverse Analyticity

In this section we mention some definitions and theorems introduced by Hirsch-Pugh-Shub in [START_REF] Hirsch | Invariant manifolds[END_REF] and which appeared in more details in [START_REF] Bridgeman | The pressure metric for convex homomorphisms[END_REF]. We use these theorems to prove the analyticity results in coming sections.

Definition 8.1.1. [Transversely regular functions] Let D C be a complex disk, let X be a compact metric space and let M be a complex analytic manifold. A continuous function

is called transversely complex analytic if and only if the following two conditions are satisfied:

1. The function

is complex analytic for every x ∈ X .

2. The function from X to C ω (D C , M ) given by x → f x is continuous.

Furthermore, the function f is called µ-Hölder (or Lipschitz) transversely complex analytic if and only if the map in ( 2) is µ-Hölder (or Lipschitz) continuous.

Similarly, µ-Hölder (or Lipschitz) transversely real analytic functions can be defined by replacing the complex disk D C by a real disk D, replacing the complex analytic manifold M by a real analytic manifold and by requiring that the maps in (1) are real analytic and requiring in (2) that the map from X to C ω (D, M ) is µ-Hölder (or Lipschitz).

In a similar fashion transverse regularity of bundles is defined in terms of the transverse regularity of their trivializations. Definition 8.1.2. [Transversely regular bundles] Let M be a complex analytic manifold and let

where

is the fiberwise map of the bundle automorphism induced by ψ t 0 or in short "lift of ψ t 0 ". Now using theorem 8.1.3 we get that there exists a sub-disk D C 1 ⊂ D C containing 0, a positive real number µ, and a µ-Hölder transversely complex analytic section

that extends σ 0 , is fixed by Ψ t 0 and such that for all X in U 0 Γ and u in D C 1 we have

We now use the uniqueness portion of the theorem 8.1.3 to deduce that σ is fixed by Ψ t for all real number t. Therefore we get that there exists a sub-disk D C 1 ⊂ D C containing 0, a positive real number µ, and a µ-Hölder transversely complex analytic section σ of the bundle A that extends σ 0 , is fixed by the flow {Ψ t } t∈R and such that Ψ t is contracting along σ as t goes to ∞. Now we can lift the section σ to get a section σ as follows:

Therefore we get a map

Since σ is fixed by the flow {Ψ t } t∈R we get that the map η is invariant under the flow {ψ t } t∈R . Hence η(u, (x, y, t)) is independent of the variable t. Now let γ be an infinite order element of Γ with period t γ . We notice that as η u (γ -, γ + , 0) is independent of the variable t we have

and hence η u (γ -, γ + , 0) is a fixed point of γ -1 . We claim that it is an attracting fixed point. Indeed, as Ψt is contracting as t goes to ∞ and as . is Γ-equivariant we have for all X in T ηu(γ -,γ

Hence for m large enough the operator norm γ -m < 1 and we have that there exists a ball B d (η u (γ -, γ + , 0), k 0 ) of radius k 0 around η u (γ -, γ + , 0) for some metric d on G C /P + C such that γ -m is contracting on the ball. Hence γ -1 is also contracting on the ball. We call the ball B d (η u (γ -, γ + , 0), k 0 ) a basin of convergence for the action of γ -1 around η u (γ -, γ + , 0). Therefore in particular for any sequence

Proof. Let {ρ u } u∈D ⊂ Hom(Γ, G) be a real analytic family of homomorphisms such that ρ 0 is (G, P ± )-Anosov. We observe that a (G, P ± )-Anosov representation is also a (G C , P ± C )-Anosov representation. Now on a sub-disk D 3 of D, containing 0, we can extend {ρ u } u∈D 3 to a complex analytic family of representations {ρ u } u∈D C 3 ⊂ Hom(Γ, G C ), where D C 3 is the complexification of D 3 . Now using theorem 8.2.2 we get that there exists a Γ-equivariant Hölder transversely complex analytic map

We claim that there exist a sub-disk D 01 ⊂ D 0 , containing 0, such that

Indeed, to begin with we notice that ξ + ({0} × ∂ ∞ Γ) ⊂ G/P + . Now using theorem 8.1.3 (4) we get that there exist a sub-disk D C 4 ⊂ D C 0 , containing 0, and a neighborhood B of ξ + (D C 4 × ∂ ∞ Γ) such that the limit map is unique in B. Let i be the anti-holomorphic involution on G C /P + C . As i is continuous and i • ξ + 0 = ξ + 0 we obtain that there exist a sub-disk

We define

and by local uniqueness of the limit map we notice that for all u in D C 01 the following holds:

Now for all u in D C

01 satisfying i • ρ u = ρ u we get that u = iu and hence we conclude that

We also note that the restrictions of complex analytic functions to real analytic submanifolds are real analytic. Therefore the map ξ + | D 01 satisfies all the properties required by Theorem 8.2.1.

Analyticity of Reparametrizations

Let U 0 Γ be the Gromov geodesic flow of the free group Γ and let ρ be an element of Hom M (Γ, G). Moreover, let Σ L(ρ) := L ρ (Γ)\H and M ρ := ρ(Γ)\A. Now as Γ is a free group we have an orbit equivalent homeomorphism between U 0 Γ and U rec Σ L(ρ) . Moreover, the flow on U rec Σ L(ρ) coming from the geodesic flow on UΣ L(ρ) is a Hölder reparametrization of the Gromov flow on U 0 Γ. Also from [START_REF] Goldman | Proper affine actions and geodesic flows of hyperbolic surfaces[END_REF] and [START_REF] Goldman | Geodesics in Margulis spacetimes[END_REF] we know that there exists an orbit equivalent homeomorphism between U rec Σ L(ρ) and U rec M ρ such that the flow on U rec M ρ coming from the affine linear flow is a Hölder reparametrization of the flow on U rec Σ L(ρ)

coming from the geodesic flow on UΣ L(ρ) . Therefore there exist an orbit equivalent homeomorphism between U 0 Γ and U rec M ρ such that the affine linear flow on U rec M ρ is a Hölder reparametrization of the Gromov flow. Hence for any ρ ∈ Hom M (Γ, G) we get a positive Hölder continuous map

which gives the reparametrization. We recall that positivity follows from lemma 3 of [START_REF] Goldman | Geodesics in Margulis spacetimes[END_REF]. We further note that for all γ ∈ Γ we have Proof. We start by constructing the following line bundle:

is a line bundle over G/L. Now using proposition 6.4.2 and theorem 8.2.1 we get that there exist a sub-disk D 0 ⊂ D, containing 0, and µ-Hölder transversely real analytic maps,

Let us consider the the projection map,

and note that the map (ξ + , ξ -) • π is µ-Hölder transversely real analytic. We take the pullback of this map to define a µ-Hölder transversely real analytic bundle B := ((ξ

The free group Γ acts on this bundle as follows:

We observe that the action of Γ gives rise to a quotient bundle Γ\ B over D 0 × U 0 Γ. Let σ be a µ-Hölder transversely real analytic section of this bundle and let σ be its lift onto D 0 × U 0 Γ. Let { ψt } t∈R be the flow on D 0 × U 0 Γ such that ψt (u, (x, y, t 0 )) := (u, (x, y, t + t 0 )). Also let π 1 , π 2 denote the map which sends (X, v), P X,v,v + , P X,v,v -to X and v respectively. We observe that for all real number t π 1 ψ * t σ(u, (x, y, t 0 )) =π 1 σ(u, (x, y, t 0 )) (8.3.4) + k t (u, (x, y, t 0 ))π 2 σ(u, (x, y, t 0 ))

Deformation of the cross ratio

In this section we obtain a formula for the variation of the cross ratio which is similar in taste to the theorem 3.4.3. We start by stating an alternative version of the proposition 10.4 from [START_REF] Bridgeman | The pressure metric for convex homomorphisms[END_REF].

Proposition 8.4.1. [Bridgeman, Canary, Labourie, Sambarino] Let be a point in Hom S (Γ, SO 0 (2, 1)). Then

where ρ (γ) is the length of the closed geodesic corresponding to (γ). Lemma 8.4.2. Let {ρ t } be a smooth path in Hom M (Γ, G). Then the following holds

Moreover, the rate of convergence is exponential.

Proof. As {ρ t } is a path in Hom M (Γ, G) we can consider it as a path in {ρ u } u∈D , a complex analytic family in Hom(Γ, G C ) parametrized by a complex disk D around 0. Using theorem 8.2.2 we get that the limit maps ξ + and ξ -are µ-Hölder transversely complex analytic. Hence

is a sequence of complex analytic maps converging to zero on D. Moreover, as (γ n η n ) - converges to η -at an exponential rate and the limit map ξ + is µ-Hölder we get that the rate of convergence is exponential. Now as

is a sequence of complex analytic functions on D converging exponentially to zero, using Cauchy's Integral formula we get that the derivative of the sequence is also converging exponentially to zero. Now restricting the limit maps on the real part we get that lim

with the convergence rate being exponential. Similarly we get that

where the convergence rate is exponential. Let π2 be the projection from UA onto S 1 . We note that π2 gives rise to a projection map π 2 : N -→ S 1 .

We conclude our proof by recalling from equation 8.3.6 that

Proposition 8.4.3. Let {ρ t } be a smooth path in Hom M (Γ, G). Also let X ρt(γ) be any point on the unique affine line fixed by ρ t (γ) where γ is in Γ. Then for all γ, η in Γ we have

Proof. We begin the proof by mentioning that the first identity is a variation of an identity worked out by Charette-Drumm in [START_REF] Charette | Strong marked isospectrality of affine Lorentzian groups[END_REF]. In fact I use the same method used by them to compute both the identities. Let l ρ(η) be the unique affine line fixed by ρ(η) and let l - ρ(γ) be the affine plane parallel to the plane tangent to the null cone and containing l ρ(γ) . As the space like affine lines l ρ(η) and l ρ(γ) are not parallel to each other we have that l ρ(η) intersects l - ρ(γ) in a unique point Q ρ . Also let R be the point on l ρ(γ) such that

where ν ρ (γ) := ν ρ (γ -, γ + ). We note that as Q ρ ∈ l ρ(η) we have

and as R ∈ l ρ(γ) we have

Now we observe that

We observe that the vector (Q ρ -R) is an eigenvector of L ρ (γ) with eigenvalue λ ρ (γ) such that |λ ρ (γ)| < 1. Therefore we get that

We recall that

Hence we get

Now using the fact that ν ρ (γ n η n ) converges exponentially to ν ρ (η -, γ + ), while α ρ (γ n ) has polynomial growth and the fact that |λ ρ (γ)| < 1 we obtain

Moreover, using lemma 8.4.2 and the fact that |λ ρ (γ)| < 1 we deduce that

Finally, we conclude by observing that

where X ρ(γ) ∈ l ρ(γ) and X ρ(η) ∈ l ρ(η) are any two points for γ, η ∈ Γ.

Theorem 8.4.4. Let { t } be a smooth path in Hom S (Γ, SO 0 (2, 1)) such that ρ := ( 0 , ˙ 0 ) ∈ Hom M (Γ, G) where ˙ 0 := d dt t=0 t . Then we have

where X ρ(γ) is any point on the unique affine line fixed by ρ(γ) and X ρ(η) is any point on the unique affine line fixed by ρ(η).

Proof. The result follows from using theorem 3.4. 

where O(Γ) is the set of closed orbits of U 0 Γ. We also recall that for all γ ∈ Γ γ f ρ = α ρ (γ).

Therefore we see that h fρ only depends on the Livsic cohomology class of f ρ . Hence we denote h fρ by h ρ and we get that ρ -→ h ρ is analytic. We recall that the Gromov flow ψ on the compact metric space U 0 Γ is Hölder. Now using lemma 7.1.3 and proposition 8.3.1 we deduce that the pressure of the map -h ρ f ρ is zero with respect to the Gromov flow ψ. Let H(U 0 Γ) be the set of all Livsic cohomology classes of pressure zero functions.

Definition 9.1.1. We define the thermodynamic mapping as follows,

Lemma 9.1.2. The map T is analytic.

Proof. The result follows from proposition 8.3.1 and the fact that the entropy funtion is also analytic.

The Pressure metric

Let I(f, g) be the intersection number of the two reparametrizations f and g. As our flow is metric Anosov, using theorem 7.2.3 and equation 7.1.1 we get that 

if and only if d dt t=0 h ρt f ρt is Livsic cohomologous to zero.

Definition 9.2.2. Let ρ ∈ Hom M (Γ, G) and let v, w ∈ T ρ Hom M (Γ, G). We define

The map P is called the pressure form on Hom M (Γ, G).

Remark 9.2.3. We notice that by proposition 9.2.1 the pressure form P on Hom M (Γ, G) is non-negative definite.

Vectors with Pressure norm zero

In this section we will describe the zero vectors of the pressure norm. Proof. We start by using proposition 9.2.1 and notice that d dt t=0 h ρt f ρt is Livsic cohomologous to zero. Hence for all closed orbits [γ] ∈ O(Γ) we have that

We conclude by recalling that the entropy h ρ 0 is positive and hence our result follows.

Lemma 9.3.2. If for all γ ∈ Γ we have d dt t=0 α ρt (γ) = 0 then for all γ, η ∈ Γ we have

Proof. Using proposition 8.4.3 we get that

and also d dt t=0 X ρt(γ) -X ρt(η) | ν ρt η + , γ + + ν ρt η -, γ -= 0. Now using identities 2.4.5, 2.4.7 and 2.4.9 we get that

Therefore we deduce that

for all γ, η ∈ Γ. b ρt η + , γ -, γ + , η -= 0 for all γ, η ∈ Γ. Now using proposition 10.1 of [START_REF] Bridgeman | The pressure metric for convex homomorphisms[END_REF] we deduce that

)). Therefore without loss of generality we can take

for all t. Now again using proposition 9.3.1 we get that

for all γ ∈ Γ. We notice that ν ρ only depends on L ρ . Therefore

for all t and we obtain

for all γ ∈ Γ. Now using theorem 1.2 of [START_REF] Charette | Strong marked isospectrality of affine Lorentzian groups[END_REF] we deduce that

Margulis Multiverse

Let h ρ be the topological entropy related to a representation ρ ∈ Hom M (Γ, G). We recall from equation 9.1.1 that

Moreover, we also recall that the map

is analytic. Now we define the constant entropy sections of Hom M (Γ, G) for any positive real number k as follows:

We note that if ( , u) is in Hom M (Γ, SO 0 (2, 1) R 3 ) = Hom M (Γ, G) then so is ( , cu) where c is some positive real number. Proof. We consider the analytic map h and using lemma 9. We conclude our result by observing that h • h = Id and h • h = Id.

Definition 9.4.5. We define the Margulis multiverse with entropy k to be

where k is a positive real number and ρ 1 ∼ ρ 2 if and only if ρ 1 is a conjugate of ρ 2 by some element of the group G = SO 0 (2, 1) R 3 .

Riemannian metric on Margulis Multiverse

In this section we finally prove that the pressure metric P restricted to the constant entropy sections of Hom M (Γ, G) is Riemannian.

Proof of Theorem 0.0.42. We consider the definition 9.4.5 and observe that the result follows from proposition 9.3.3 and proposition 9.4.2.

Proof of Theorem 0.0.43. Let ρ = (L ρ , u ρ ) be a point in Hom M (Γ, G) and for > 0 let {ρ t := (L ρ , (1 + t)u ρ )} t∈(-, ) be a smooth path in Hom M (Γ, G). We notice that if f 0 is a reparametrization coming from ρ then f t := (1 + t)f 0 is a reparametrization which comes from ρ t . We also notice that the entropy

Therefore we get d dt t=0 h ρt f ρt = d dt t=0 h ρ f ρ = 0.

Hence by proposition 9.2.1 we get that P( ρ0 , ρ0 ) = 0 where ρ0 := d dt t=0 ρ t and [ ρ0 ] = 0 in H 1 ρ 0 (Γ, g). Now using remark 9.2.3 we conclude that P has signature (dim(M) -1, 0) over the moduli space M.