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1BGeneral introduction

After World War II, many industrial and civil sectors needed to be rebuild. During the
« glorious thirty period », an important economic and societal development was initiated and
was accompanied by an increase of the population. For many years the keyword was
“development”, however considering the demographic explosion, some people wonder about
the limits of our resources: consciousness awakens. We realize, over the years, that our
growth cannot depend only on the economy, and must take into account other criteria such as
the society and the environment. The presages of “sustainable development” were initiated.

From that moment, the society, the economy and the environment must be reconciled.

Given the current environmental degradation (global warming, depletion of natural resources
and energy, pollution ...), politicians gradually introduce new rules in view to ensure the
sustainability of our "societies". International conferences are arranged according to this
vision (Earth Summits: Stockholm, Rio, Johannesburg ..; Protocols of Montreal, Kyoto ...).
France is included in this approach and, formed several groups of experts working on the
choices to be made in terms of sustainable development. The syntheses of these meetings are
the bases for the Grenelle laws (I and II). These laws stipulate especially in terms of energy
the respects of the rule of 3 X 20 until 2020:

- "20% reduction in emissions of Greenhouse Gases

- reducing of 20 % the energy consumption,

- 20% part of renewable energy in the total energy. "

Our society currently faces three challenges: resource depletion, waste accumulation and
environmental degradation. Indeed, the activity of our industrialized societies generates a
significant amount of waste or by-products, and at the same time the application of
environmental rules is more and more stringent. Thus, waste treatment and reuse (circular

economy) is becoming one of the main challenges of our society.

Waste or by-products treatments depend on their properties (humidity, organic and inorganic
contents, viscosity, and so on). Biological, physico-chemical and thermo-chemical processes
are gaining attention as they are used to destroy or valorize materials. Among these processes,
thermo-chemical treatments are identified especially for waste and biomass valorization into
useful materials and/or energy. In addition, thermo-chemical processes are offering dry and
wet routes. For wet matter (high water content), wet routes namely hydrothermal processes
are usually employed. Depending on degradation or valorization objectives, oxidation or
conversion would be selected respectively. Indeed, hydrothermal processes use the properties

of water, as reactant, solvent and catalyst; under high pressure (P > 15 MPa) and high

15



1BGeneral introduction

temperature (T > 250°C), to degrade wet biomass (80 wt% of water content). Under oxidative
and supercritical conditions (T > 374°C; P > 22.1 MPa), the organic matter is completely
destroyed leading to minerals dissolved in clean water, and carbon dioxide. Under sub or
supercritical water conditions without oxidant addition, organics are converted into useful
products, such as hydrogen, building blocks molecules, or carbonaceous solids, which give a

second life to the wastewater and wet by-product.

Industrially, hydrothermal conversion raises many technical, technological and scientific
challenges. In order to contribute to optimize the process, hydrothermal conversion in batch
reactor is the subject of this work. Indeed, the understanding of the phenomena taking place
during hydrothermal conversion is essential to control and optimize the process. For this study
black liquor was used as real biomass, due to its high content in water, organics and minerals.
Black liquor is an alkaline by-product coming from the step of wood cooking in Kraft

process; its composition is very complex.

Black liquor is currently used in the paper industry to recycle white liquor (salts mixture for
cooking step), and generate energy by burning organics. Although energy recovery allows
quite energy self-sufficiency, extra volumes, limitations in this process and complete
destruction of organic matter (lignin), prompt the paper industry to investigate alternative
processes. Valorization of black liquor is not the objective of the thesis, but some prospects
for its alternative valorization will be mentioned along the manuscript. Black liquor is used as

tool study for the understanding of hydrothermal processes, which is our main objective.

For that, the point of view of reaction pathway and the point of view of process are adopted

with the following focus:

- One of the hydrothermal processes issues is the solid formation which plugs partially
or completely pipes in continuous reactor or modifies physico-chemical equilibrium in batch
reactor. Based on these observations, solid formation (coke formation and salts precipitation)
has to be understood. A focus will be made on the mechanism of solid formation. A batch
approach with a rapid heating and rapid cooling will allow approaching the conditions of

continuous reactors.

- The conversion of a complex organic matter under hydrothermal conversion leads to
useful products. As hydrothermal gasification into hydrogen is concerned, high temperatures
(500-700°C) and thus expensive technology is required. One of the new challenges is to

consider catalytic hydrothermal gasification in order to decrease the reactor temperature.

16



1BGeneral introduction

Focus will be made on the catalyst action for the hydrothermal conversion of residues for H
production. As previously, a rapid heating and cooling will approach the conditions of

continuous reactor.

Regarding literature data on model molecules and black liquor (chapter 1), a preliminary
parametric study is made (chapter 3) to apprehend the black liquor hydrothermal conversion
into gas, liquid and solid phases and thus to guide the next studies.

Hydrothermal conversion generates solid formation but as solid phase is considered as
undesired phase, the understanding of its formation (chapter 4) could be used to optimize the
control of hydrothermal processes. What are the best operating conditions to study solid
formation? What parameter is predominant? What are the phenomena involved?

If solid phase inhibition is desired, the addition of material is necessary such as CeO, catalyst.
CeO; is known to avoid solid formation and to favor hydrogen production. The consequences
of its addition on the reactivity during hydrothermal conversion of black liquor will be studied

(chapter 5).

More specifically:

The first chapter is devoted to the context of the study. Firstly, properties of supercritical
water are described following their evolutions as a function of temperature and pressure.
Reactions identified during hydrothermal processes are also summarized. A part of this
chapter will be focused on the technical, technological and scientific issues of hydrothermal
processes as regards to industrial applications. A presentation of the raw black liquor is then
exposed, through origin, composition and its current use in paper industry. Then, a detailed
review is made on hydrothermal conversion of black liquor and its model molecules from

literature. In conclusion the goals of the work are presented.

The second chapter describes materials and methods used along the studied. Reagents (black
liquor, model molecules, catalyst), and reactors used for experiments are presented. The
experimental procedures applied are also detailed. The last section exposes the analysis tools

to characterize solid, liquid and gaseous phases.

A preliminary study is exposed along Chapter 3 in order to evaluate the influence of operating
conditions during hydrothermal conversion. Reaction time under sub and supercritical
conditions, concentration and temperature are investigated considering carbon balance
between the phases recovered. Then the focus is made on the influence of temperature as
regards to solid formation and gasification. Nevertheless the liquid phase analysis is
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systematically carried out as the black liquor is originally a liquid by-product. In addition, the
valorization aspect of black liquor is implicit in the results and it is therefore a scientific basis
for further studies. The conclusions of this chapter figure out the background of the operating
conditions selected towards solid generation and catalytic gasification, which are detailed in

following chapters.

Chapter 4 is focused on the contributions to knowledge about mechanism of solid formation
in batch reactor during hydrothermal conversion at 350°C. After a quick theoretical basis on
carbonaceous solid formation theories and their limits, solid formation is investigated over
reaction time. Trends in solid and liquid phase properties are the optimal indicators of solid
generation. Solid generation is mainly followed toward its chemical composition, its
morphology and its yield. Liquid composition is characterized using global parameters and
concentration of some key compounds. The influence of heating and cooling rate is also
investigated as regards to solid morphology and salts precipitation. Carbonaceous solids are
mainly recovered in this study, while minerals are still dissolved in the aqueous phase. A

mechanism for carbon-based solid generation at 350°C is finally proposed.

Chapter 5 deals with catalytic hydrothermal gasification in order to remove coke formation
and to favor hydrogen production at moderate temperatures using CeO, nanocatalyst. Firstly,
a comparative study of black liquor hydrothermal gasification is conducted under sub and
supercritical conditions. Hydrogen production efficiency is then integrated in a short overview
of energy balance regarding the catalytic and non-catalytic process. Secondly, in order to
better understand phenomena involved during black liquor hydrothermal conversion, lignin
and guaiacylglycerol-p-guaiacyl ether (GGGE) are used as model compounds. Reactions
involved during GGGE conversion are figured out and a mechanism pathway of black liquor

conversion has been proposed.

The main results of the work are finally summarized in the conclusion and some prospects
concerning hydrothermal conversion and its applicative possibilities to the black liquor

problematics are mentioned.
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Aprées la Deuxiéme Guerre Mondiale, de nombreux secteurs industriels tout comme civils ont
dd étre reconstruits. Pendant la période des «Trente Glorieuses », un important
développement économique et sociétal a été initi€¢ et accompagné par un accroissement de la
population. De ce fait, depuis de nombreuses années le maitre mot est devenu développement.
Cependant, en considérant 1’explosion démographique, de nombreuses personnes se sont
souciées des limites de nos ressources faisant naitre une conscience de ce sujet. En effet,
I’économie n’est pas le seul ¢lément du développement, elle doit s’accompagner de
considérations liées a la société et a I’environnement. Les présages du développement durable

ont alors été initiés, mélant plus intimement les aspects société, économie et environnement.

Etant donné la dégradation environnementale actuelle (réchauffement climatique, raréfaction
des ressources naturelles et énergétiques, pollution...), les politiques ont introduit
progressivement de nouvelles régulations afin d’assurer la durabilité de nos « sociétés ». des
conférences internationales ont été dédiées a cette vision des choses (sommets mondiaux :
Stockholm, Rio, Johannesburg... ; les protocoles de Montréal, Kyoto...). La France s’est
insérée dans cette approche pour faire émerger une politique de développement durable. Les
lois Grenelle de I’environnement (I et II) sont le résultat de ce travail et stipulent les régles du
3 X 20 concernant 1’énergie a 1’horizon 2020 :

- réduction de 20% des émissions des gaz a effet de serre

- réduction de 20% de 1’énergie consommeée

- introduction de 20% d’énergie renouvelable dans la demande globale en énergie.

Notre société doit actuellement faire face a 3 challenges : la raréfaction des ressources,
I’accumulation de déchets et la dégradation de I’environnement. En effet, I’activité de nos
sociétés industrialisées génere une quantité significative de déchets et sous-produits, alors que
dans le méme temps 1’application des réglementations environnementales deviennent de plus
en plus astringentes. En définitive, le traitement des déchets et leur réutilisation (économie

circulaire) apparait comme ’un des principaux challenges de notre société.

Le traitement des déchets et sous-produits dépend de leurs propriétés (humidité, contenu
organique et minéral, viscosité,...). Les procédés biologiques, physico-chimiques et
thermochimiques sont de plus en plus mis en avant pour détruire ou valoriser ces déchets
spéciaux. Parmi ces procédés, le traitement thermochimique est particuliecrement identifié
pour la valorisation matiere et énergie de biomasse et de déchets. De plus, la voie
thermochimique offre la possibilité de travailler en milieu sec ou humide. Tout naturellement,

les eaux usées se tournent vers un traitement en voie humide, plus communément appelés
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procédés hydrothermaux. En fonction de I’objectif, dégradation ou valorisation, les procédés
d’oxydation ou de conversion seront sélectionnés. En effet, les procédés hydrothermaux
reposent sur les propriétés simultanées de solvant, réactif et catalyseur qu’atteint I’eau a haute
pression (P > 15 MPa) et haute température (T > 250°C) ; lui permettant de dégrader la
biomasse humide (environ 80% massique d’eau). Sous des conditions oxydantes et
supercritiques (T > 374°C; P > 22,1 MPa), la matiere organique est compleétement détruite et
résulte en la production d’une eau « propre » contenant des sels dissous et du CO,. Pour des
conditions sous ou supercritique, mais sans addition d’oxydant, les composés organiques sont
convertis en produits a haute valeur ajoutée tels que I’hydrogéne, les molécules plateforme ou

des solides carbonés, offrant une « seconde vie » au résidu.

Industriellement, la conversion hydrothermale souléve de nombreux défis scientifiques,
techniques et technologiques. Afin de contribuer a optimiser le procédé, ce travail concerne la
conversion hydrothermale en réacteur batch. En effet, la compréhension des phénomenes
impliqués est essentielle pour le contrdle et 1’optimisation de ces procédés de conversion
hydrothermale. Pour cette étude, la liqueur noire est utilisée en tant que biomasse réelle, en
raison de son important contenu en eau et de sa haute concentration en composés organiques
et minéraux. La liqueur noire est un sous-produit alcalin de composition complexe, qui

provient de I’étape de cuisson du bois dans le procédé Kraft.

La liqueur noire est actuellement utilisée dans 1’industrie papetiere pour recycler la liqueur de
cuisson (liqueur blanche) et générer de 1’énergie par combustion de la matiére organique.
Bien que I’énergie récupérée permette une quasi autosuffisance, les surplus en volumes, les
limites du procédé Kraft et la destruction complete de la matiére organique (lignine) orientent
les industriels papetiers vers de nouveaux procédés alternatifs. La valorisation de la liqueur
noire n’est pas 1’objectif de la theése, mais quelques perspectives seront énoncées dans ce sens
tout au long du manuscrit. La liqueur noire est utilisée en tant qu’outil d’étude pour la

compréhension des procédés hydrothermaux, ce qui est notre principal objectif.

Pour cela, les points de vue adoptés seront ceux des mécanismes réactionnels et des procédés ;

avec les objectifs précis suivants :

- L’un des verrous de développement des procédés hydrothermaux est la formation de
solide, car celui-ci peut obstruer les réacteurs continus ou modifier les équilibres physico-
chimiques en réacteur batch. La formation de solide devient un enjeu majeur (formation de

coke et précipitation des sels) de développement et doit étre mieux appréhendée. Une
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attention particuliére sera mise sur 1’établissement du mécanisme de formation du solide.
L’approche en réacteur batch avec une chauffe et un refroidissement rapides permet

d’approcher autant que possible les conditions du réacteur continu.

- la conversion d’une matieére organique complexe en conditions hydrothermale donne
lieu a des produits a haute valeur ajoutée comme par exemple I’hydrogéne. Dans ce contexte,
les hautes températures généralement nécessaires (500-700°C) a la gazéification impliquent
de maniére sous-jacente des matériaux de construction onéreux. De ce fait, un défi nouveau
est de catalyser la réaction afin d’abaisser la température de réaction. Cette fois 1’attention
sera portée sur ’action du catalyseur lors de la conversion hydrothermale pour la production
de H,. De méme que précédemment, la chauffe et le refroidissement permettront d’approcher

les conditions du réacteur continu.

Au vue des données proposées par la littérature sur les molécules modeles et sur la liqueur
noire (chapitre 1), une étude paramétrique préliminaire est réalisée (chapitre 3) afin
d’appréhender les potentialités de la conversion hydrothermale de la liqueur noire en gaz,
liquide et solide, afin de guider les futures voies d’études.

La conversion hydrothermale engendre la formation de solide. Cette phase est considérée
comme indésirable ; ainsi la compréhension de sa formation (chapitre 4) peut étre utilisée
pour optimiser le controle des précédés hydrothermaux. Quelles sont les meilleures conditions
opératoires pour 1’étude du solide ? Quel parametre opératoire est le prédominant ? Quels sont
les phénomenes mis en jeux ?

Si I’inhibition de la phase solide est désirée, un réactif supplémentaire doit étre ajouté comme
par exemple le catalyseur CeO,. Ce dernier est en effet connu pour empécher la formation de
solide et favoriser la production d’hydrogéne. Les conséquences des ont addition sur la

réactivité lors de la conversion hydrothermale de la liqueur noire seront étudiées (chapitre 5).

Plus précisément :

Le premier chapitre est dédi¢ au contexte de I’é¢tude. Tout d’abord, les propriétés de I’eau sont
décrites en suivant leurs évolutions en fonction de la température et de la pression. Les
réactions identifiées au cours des procédés hydrothermaux sont aussi résumées. Une partie de
ce chapitre se concentre sur les verrous scientifiques, techniques et technologiques de ces
procédés par rapport aux applications industrielles. Une présentation du résidu, la liqueur
noire, est développée depuis son origine et sa composition jusqu’a sa réutilisation actuelle

dans I’industrie papetiere. Ensuite, la conversion hydrothermale de la liqueur noire et de ses
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composés modeles est présentée a partir des données bibliographiques. En conclusion, les

objectifs du travail sont exposés.

Le deuxiéme chapitre détaille les matériaux et les méthodes utilisés tout au long du manuscrit.
Les réactifs (liqueur noire, molécules modeles, catalyseur) et les réacteurs utilisés pour les
expériences sont présentés et les procédures détaillées. La derniére partie expose les outils

analytiques permettant la caractérisation des phases solides, liquides et gazeuses.

Une ¢tude préliminaire est proposée au chapitre 3 dans le but d’évaluer I’influence des
conditions opératoires lors de la conversion hydrothermale. Le temps de réaction, en
conditions sous et super critiques, la concentration et la température ont été investigués en
regard du bilan du carbone entre les phases. Ensuite I'influence de la température a été
approfondie vis-a-vis de la formation du solide et de la gazéification. Néanmoins, 1’analyse de
la phase liquide a été systématiquement réalisée étant donné que la liqueur noire est un déchet
aqueux. De plus, 1’aspect valorisation de la liqueur noire se retrouve de maniére implicite
dans les résultats et constitue une base scientifique pour des expérimentations
complémentaires. Les conclusions de ce chapitre permettent de préciser les conditions
opératoires sélectionnées pour les deux études approfondies suivantes qui concernent la

génération de solide et la gazéification catalytique.

Le chapitre 4 s’attache a apporter une contribution au mécanisme de formation du solide en
conditions hydrothermales a 350°C dans un réacteur batch. Apres une bréve introduction des
théories, et leurs limites, de formation des solides carbonés, la formation du solide est étudiée
en fonction du temps de réaction. Les évolutions des propriétés des phases solides et liquides
apparaissent comme des indicateurs optimaux de la génération du solide. La formation de
solide est principalement suivie en regard de sa composition chimique, sa morphologie et son
taux de conversion. La composition du liquide est caractérisée par des parameétres globaux
ainsi que par le suivi de la composition de quelques composants clés. L’influence des vitesses
de chauffe et de refroidissement sur la morphologie du solide et la précipitation des sels a
aussi fait ’objet de I’étude. Ces travaux ont montré que le solide récupéré est essentiellement
carboné tandis que les minéraux restent dissous dans la phase aqueuse. Une proposition de

mécanisme de génération du solide carboné a 350°C conclut cette partie de la these.

Le chapitre 5 traite de la gazéification catalytique en conditions hydrothermales en vue de
produire de I’hydrogene et de diminuer la formation de coke, en utilisant un nanocatalyseur
d’oxyde de cérium. Premiérement, une étude comparative entre les conditions sous et super
critiques a ¢té réalisée en utilisant le catalyseur pour la gazéification de la liqueur noire.
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L’efficacité de production d’hydrogene est ensuite intégrée dans une étude succincte de bilan
énergétique mettant en balance le bénéfice d’utilisation du catalyseur. Deuxiémement, le
mécanisme de conversion de la liqueur noire étant complexe, des molécules modeles ont été
utilisées pour approcher quelques clés de ce mécanisme. Bien que la lignine soit un bon
modele de la liqueur noire, la molécule guaiacylglycerol-p-guaiacyl ether (GGGE) a permis

de dessiner les traits d’'un mécanisme de conversion hydrothermale de la liqueur noire.

Les principaux résultats de ce travail ont été résumés dans la conclusion et quelques
perspectives concernant la conversion hydrothermale ont été énoncées, de méme que quelques

pistes pour son intégration dans la problématique industrielle.
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Summary of 3BChapter 1: Context and objectives of the study

Résumé du chapitre 1: Ce chapitre a pour objectif premier de poser les bases de notre
raisonnement, ainsi en faisant appel aux références théoriques et bibliographiques nous
pourrons développer nos discussions (chapitres 3, 4 et 5). La vocation de cette thése est de
contribuer a la compréhension des procédés hydrothermaux ; pour cela nous avons utilisé
comme outil d’étude la liqueur noire, sous-produit de 1’industrie papetiére. Ce chapitre se

divise en 3 parties, chaque partie est résumée ci-apres.

Les procédés hydrothermaux :

Les procédés hydrothermaux utilisent I’eau a haute température et haute pression pour
convertir tout ou partie de la matiére organique qui lui est mélangée, ils apparaissent comme
des traitements adéquat de la biomasse humique (quantité d’eau >70% en masse). Dans ces
conditions, I’eau atteint des conditions subcritiques ou supercritiques (T > 374°C et
P > 22,1 MPa) ; alors, I’eau agit comme solvant, catalyseur et/ou réactif. En conditions sous
critique (T < 374°C et P > 22,1 MPa), I’eau est un solvant polaire dans lequel les sels sont
solubles a I’inverse des molécules organiques, la solvatation des ions favorise les réactions
ioniques. A I’état supercritique (T > 374°C et P > 22,1 MPa), les propriétés de 1’eau changent
radicalement I’eau est un solvant apolaire permettant la solubilisation des molécules
organiques, le produit ionique de 1’eau diminue drastiquement impliquant la précipitation des
sels et favorisant les réactions radicalaires. La solubilisation des molécules organiques avec
I’eau autorise bon nombre de réactions chimiques telles que des réactions acides/bases, des
réactions organométalliques, des réactions d’oxydation et des réactions de réductions... ces
réactions sont aussi bien des réactions de dégradation que des réactions de synthéses
organiques. De ce fait, le choix des conditions opératoires permet d’orienter les réactions vers
des produits a valeur ajoutée et ainsi de donner une seconde vie a la biomasse ou aux sous-
produits humides. Les procédés hydrothermaux sont envisagés en réacteurs batchs ou
continus, chacun présentant des avantages et des inconvénients. Un inconvénient des procédés
hydrothermaux commun aux deux types de réacteurs est la formation de solide lors de la
conversion hydrothermale résultant des réactions de condensation, dont 1’origine est
organique et inorganique. Nous nous sommes concentrés sur cet inconvénient majeur, ainsi
notre objectif global pour cette thése est la formation de solide (dans quelles conditions est-
elle favorisée ? Dans quelles conditions est-elle évitée ?...). Pour cela, nous avons choisi
comme outil d’étude la liqueur noire, sous produit de 1’industrie papetiére hautement chargé

en matiere organique et inorganique.
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La liqueur noire et ’industrie papetiére :

La liqueur noire provient de 1’étape de cuisson du bois par la liqueur blanche (NaOH + Na,S)
lors du procédé Kraft. Cette étape permet de déstructurer la lignine contenue dans les copeaux
de bois et d’en dissoudre une partie dans la liqueur blanche, ainsi a I’issue de la cuisson la
partie non dissoute du bois est dirigée vers la ligne de production de papier et la partie liquide
aqueuse, appelée la liqueur noire, est traitée. Elle est majoritairement composée d’eau et de
matiere seche dont une partie organique (lignine dissoute, fragment de cellulose et
hémicelluloses) et une partie inorganique (sels constituant la liqueur blanche et sels du bois).
Le contenu détaillé de la liqueur noire utilisée lors de nos expériences se trouve dans la partie
1 du chapitre 2, cependant une composition type est déja présentée a ce niveau du manuscrit
(partie 2 chapitre 1). Cette partie développe, étape par étape, le devenir et la valorisation de la

liqueur noire actuellement appliqués dans le procédé Kraft au sein de la papeterie.

Aprés la cuisson du bois par la liqueur blanche, la liqueur noire est récupérée (23% en
massede matiére seéche) puis évaporée (70% en masse de mati¢re seche) et brulée dans une
chaudiére a liqueur noire. A I’issue de cette ¢étape, la matiére organique est complétement
convertie en CO, et la partie inorganique est récupérée sous forme de sels fondus qui sont
ensuite mélangés a de I’eau pour former la liqueur verte. De la chaux est ensuite ajoutée a la
liqueur verte (étape de caustification) afin de réagir avec le carbonate de sodium et
reconstituer les ¢léments de la liqueur blanche, qui sera réinjectée en entrée du procédé Kraft
pour cuire le bois. Lors de cette étape du carbonate de calcium est formé, et est dirigé vers
I’ultime étape : la calcination. La calcination du carbonate de calcium produit du CO; et
régénere la chaux qui est ensuite réutilisée pour la caustification. Le procédé Kraft permet a la
papeterie d’€tre quasi autonome énergétiquement et présente I’avantage de régénérer 95 % de
ses besoins en composés inorganiques (liqueur blanche). Cependant, deux inconvénients
majeurs poussent les papetiers a chercher une autre voie de valorisation de la liqueur noire :
I’étape d’évaporation est trés énergivore et I’étape de combustion n’offre pas de valorisation
intéressante de la partie organique de la liqueur noire principalement constituée de lignine. En
effet, de nombreux intermédiaires réactionnels peuvent €tre envisagés si une conversion
partielle de cette molécule est considérée. La premicre partie de ce chapitre soutient cette
hypothése en considérant les propriétés de 1’eau mises en jeu par la conversion
hydrothermale. Un premier état de 1’art sur la conversion hydrothermale de la liqueur noire et
de ses molécules modeles (guiaicol, catéchol, GGGE...) montre que de nombreux produits

solides, liquides et gazeux peuvent étre obtenus par des mécanismes réactionnels complexes.
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Les objectifs de la thése :

Tel que mentionné dans I’introduction, le principal objectif de cette thése est de mieux
comprendre les procédés hydrothermaux d’un point de vue mécanisme réactionnel et d’un

point de vue procédé, avec un intérét particulier sur les points suivants :

- Le probléme de formation du solide lors de la conversion hydrothermale : un
mécanisme de formation du solide sera proposé en chapitre 4

- La production d’hydrogéne avec un focus mis sur la conversion catalytique, le
choix du catalyseur est fait en vue d’éviter la formation de solide : L’impact du
catalyseur sur les réactions mises en jeu lors de la conversion hydrothermale sera
expliqué compte tenu des produits obtenus

- Dans chaque chapitre le réacteur continu sera approché autant que possible par le
choix des conditions de fonctionnement du réacteur batch : une chauffe aussi

rapide que possible précédera la réaction, un refroidissement par trempe la suivra.

***Fin du résumé
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Wastewater and by-product management is one of the major points of the sustainable
approach, implemented in the development of industrial processes. The general objective is to
“close” industrial processes by promoting a circular flow of matter and energy, reducing in-
and out-flows and therefore, the environmental footprint of industry. Several treatments, such
as biochemical, physico-chemical, thermochemical ..., are currently used in order to clean

wastewater or by-product and valorize their content as energy or useful materials.

Along thermochemical treatment, dry and wet routes are offered. Depending on the content of
water, organic and inorganic in the by-product, one treatment will be preferred over the other.
For aqueous by-product (80 wt% of water), hydrothermal processes are appropriate. They use
the properties of water at high temperature and for high pressure to degrade the organic
matter, avoiding evaporation. During several decades, hydrothermal process was particularly
used for oxidation to destroy completely organic matter, transforming into CO,, and let the
water almost clean [1]. However, without pushing the degradation of organic matter to its
maximum it is possible to form intermediate molecules that can be valuable after separation.
In this consideration, by-product finds a second utility. Degradation mechanisms are complex
and raises technical, technological and scientific issues. To evaluate the hydrothermal
conversion modalities, a raw biomass has been chosen in our study: black liquor. Black liquor

is an alkaline by-product coming from the step of wood cooking in Kraft process.

This chapter lays the foundations for understanding the hydrothermal conversion of black
liquor, firstly, exposing the properties of water and reactions related to hydrothermal
conversion, then with a description of the black liquor and a state of the art of its

hydrothermal conversion.
I. Hydrothermal processes

Hydrothermal processes use water, as reactant, solvent and catalyst, at high
temperatures and pressures, to convert biomass. Biomass is defined as organic matter having
vegetable or animal origin. Hydrothermal processes, particularly supercritical water oxidation
and gasification were applied from several decades due to its solvent and reactant properties
[2], [3], [4]. In this section, the properties of water at high temperatures and pressures are

presented prior to detail the hydrothermal processes.
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I.1. Definition of supercritical water

Supercritical conditions of water are reached when temperature is higher than 374°C

and pressure is higher than 22.1 MPa (blue square on Figure 1).

¢! &o
O i Critical P(Qint
L (PC)

Pc=22.1 MPa

Tt =0.01°C Tc=374°C
Figure 1: Phase diagram of water'.

Equilibrium between liquid and gas is possible for a temperature between triple
temperature (Tt = 0.01°C) and critical temperature (Tc = 374°C). After critical point
(Pc =22.1 MPa and Tc = 374°C) only one phase is observed. Indeed, progressively following
this equilibrium curve from triple point to the critical point, differences between liquid and
gas properties decrease to reach specific properties of a homogeneous phase: the supercritical
phase. Supercritical water has physico-chemical properties from gas and liquid, which are
detailed in the next section.

Water is basically found under 3 phases: liquid, solid and gaseous phases; a fourth phase
called supercritical phase is detailed when T > 374°C and P > 22.1 MPa are simultaneously
reached. An experiment conducted in space by CNES, in the DECLIC program has shown

that supercritical water looks like fog between liquid and gas (Figure 2).

Figure 2: Supercritical water observation in DECLIC (from CNES).

"http://neel.cnrs.fr/spip.php?article992
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I.2. Macroscopic and microscopic properties of supercritical water

Macroscopic and microscopic properties of water at high temperature and high

pressure are able to explain the specific behavior of this “magic solvent”.
L.2.1. Sub and supercritical water: a solvent as well as a reactant

Macroscopic aspect: density and dielectric constant
Density:

Density of water at atmospheric pressure decreases significantly from liquid phase to
vapor phase, going from 997.048 kg.m™ at 20°C to 0.597 kg.m™ at 100°C. The density of
water at 400°C, 25 MPa is close to 170 kg.m™ that is included between liquid and gas values.
For P = 15 MPa, a drastic change occurs around the critical temperature. Density evolves
from a liquid mixture directly to a vapor mixture. For higher pressure, the evolution is softer,
suggesting the pressure controls temperature effects on density and phases mixture, favoring
dense phase. Thus, even under supercritical conditions, water remains a good solvent for

molecules and a media where gases have a great miscibility.
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Figure 3: Density evolution with temperature (100°C to 700°C) and pressure (15 MPa to 40 MPa).

Dielectric constant

The dielectric constant is defined as the ratio of its permittivity to the permittivity of
free space. The dielectric constant characterized the bonds between solute and solvent, like
hydrogen or ionic bonds. A solvent with a high dielectric constant like water at conditions of

ambient temperature and pressure (78.5) is able to solubilize salts. Water at ambient
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conditions is a polar solvent able to dissolve salts. On the contrary, non polar organics are
immiscible. Besides, it is known that the dielectric constant of a fluid is directly related to its
density. As the density of water differs greatly in subcritical and supercritical states, important
dielectric constant evolution is expected (Figure 4) as well as changes in salts solubilization

and organics miscibility.
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Figure 4: Dielectric constant evolution with temperature (200°C to 700°C) and pressure (15 MPa to 40 MPa).
Others dielectric constants of typical organic solvent are indicated on figure 4, as reference.
Thereby, in subcritical conditions, dielectric constant of water is close to that of acetone, an
organic polar solvent; and under supercritical conditions it is close to hexane, an organic non
polar solvent. Depending on the couple temperature/pressure, supercritical water is able to
gain properties of non polar solvent and so become a good solvent for organic matter. In these
conditions, water is reactive. However, as water is non polar, salts are immiscible and

processes limited by interphase transfer are not more operating.

Moreover, Gibbs energy depends on dielectric constant and affect kinetics [5].
Depending on its pressure and temperature; considering only the dielectric constant, water
properties are different:

- In subcritical conditions: water is a poor polar solvent; salts are less soluble and

organics more miscible compare to ambient conditions.

- In supercritical conditions: water is a non polar solvent, miscible with organics
components. The salts are not soluble and precipitate. Ionization is not favored in

supercritical phase.

- Kinetics reactions are changed by decreasing the dielectric constant.
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Besides, water reactivity is explained regarding its microscopic properties.

Microscopic aspect: collisions frequency and dipole moment

Water (H" or HO") becomes a reactant close to the supercritical point, as follow through the

microscopic properties.

Collision frequency:

Chemical reactions in gas phase are subjected to the efficiency of molecules collisions.
Collision frequency depends on distance between molecules, their movement, their steric
configuration, their concentration. Higher this frequency is, more reactions are efficient.

As seen previously, density of supercritical water is comprised between steam and
liquid water ones. Among diffusion, convection and migration phenomena, the first one is
predominant. Therefore collisions frequency is comprised between liquid and gas ones,
consequently the diffusion is faster than in liquid and less efficient than in gas.

Considering the water as solvent (high concentration), the reaction temperature (T>

374°C) and the media diffusivity (low density), the kinetics of reactions will be higher.

Non-polarity of supercritical water:

Water molecules preserve the same structure whatever the conditions of temperature and
pressure. However, under supercritical conditions, water molecules are paired and form
dimers or clusters. Taken together, these kinds of combinations (Figure 5) form a non-polar

structure.

Figure 5: Water dimers: in bifurcated form (a) and reverse form (b) (from [6]).

Bushuev et Davletbaeva [13] showed that under supercritical conditions reverse dimers are
predominant [7], so water appears as a non polar solvent. In these conditions, ions are less

dissolved in the media.
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1.2.2. Salts precipitation

Macroscopic aspect: ionic product

Ionic product (Kw) characterized the ionization ability of water. Figure 6 shows the
evolution of pKw with the temperature and the pressure. The pKw decreases continuously to
the region of critical point, reaching a minimum of about 11 closely before the supercritical
conditions. Continuing the heating in isobar condition, pKw increases to much higher

volumes (20-26) in the supercritical region.

Higher the pKw is, less ionized species can be produced. Subcritical ionizing power of
water is higher than in normal conditions, supercritical ionizing form of water is much lower
than for water in standard conditions. When the temperature rises near to the critical
temperature, pKw decreases reflecting the fact that water ionizes better salts but as soon as Tc
is overshot, the ionizing power falls drastically. This is due to the coupled action of a low
density and a low dielectric constant. Consequently solubilization and stabilization of ions

decrease dramatically in supercritical state.
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Figure 6: Evolution of ionic product as a function of temperature (from 20°C to 600°C) and pressure (15 MPa
to 40 MPa).

Water close to the critical point is more ionized and is able to be acid or basic catalyst.
Thus ionic reactions are favored at subcritical conditions, while radical reactions are promoted

at supercritical ones.
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Microscopic aspect: hydrogen bonds and ions solvatation

Hydrogen bonds:

The frequency of hydrogen bonds has an effect on diffusion phenomenon in the

supercritical phase, [8], [9], [10].

In liquid phase, as the phase is dense, molecules are closer to each other and so many
hydrogen bonds are established. Kinetics of formation/destruction of these bonds is extremely

fast but the balance is in favor of formation, consequently many hydrogen bonds exist.

On the contrary, under supercritical conditions hydrogen bond number is small.
Indeed, thermal agitation, as well as the density decrease affects the distance between water

molecules.

lons solvation:
As seen previously, ionic product decreases drastically at supercritical conditions.

The solvation of ions takes place using superimposed solvation spheres surrounding
ions ([11], [12], [13]). The first one is relatively stable and exists in all conditions. At ambient
conditions, many others “layers” are grafted over the first solvation sphere, contributing to the
stable ions solvation. It has been shown ([14], [15]) that less solvation spheres or layers are
found at high temperature. However, its low density is not able to ensure the cluster solvation

and salts precipitate.

This section deals with chemical properties as regards to the reactivity. The next part presents

physico-chemical properties that impact the process design.
1.2.3. Water properties related to process design
Macroscopic aspect: Dynamic viscosity

The dynamic viscosity reflects the resistance of fluid to the flow. At atmospheric
conditions, dynamic viscosity is 10° Pa.s then decrease to 20.10° Pa.s at Tc and finally

increases again slightly up 25.10° Pa.s.
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Figure 7: Evolution of dynamic viscosity as a function of temperature (100°C to 700°C) and pressure (15 MPa
to 40 MPa).

The resistance of supercritical water is lower under supercritical conditions than
at ambient conditions and is similar to gas resistance (air: 18.10° Pa.s). So a weak flow

resistance has to be considered during process design.

In addition, energetic aspects have to be also considered.

Macroscopic aspect: enthalpy, heat capacity and thermal

conductivity

Enthalpy

The enthalpy reflects the amount of energy required to cross the critical temperature.
Figure 8 shows that enthalpy increased sharply around Tc. However, higher the
pressure is, lower the energy required to reach the supercritical state is.
A balance has to be found in process technology between a “low” pressure requiring a high
amount of energy but a more common technology; and high pressure requiring less amount of

energy but a special and expensive technology.
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Figure 8: Evolution of enthalpy as a function of temperature (100°C to 700°C) and pressure (15 MPa to
40 MPa).

Heat capacity

The water heat capacity (Cp) is the energy required to increase 1kg of water of 1°C.
Up to around 300°C, the Cp is almost stable but a peak is then observed for each pressure.
Higher the pressure is, higher the peak temperature is. According to the simulation Figure 9,

peaks at 25 and 30 MPa are the highest.
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Figure 9: Evolution of heat capacity as a function of temperature (100°C to 700°C) and pressure (15 MPa to 40
MPa).

A pressure around 25 MPa corresponds to heat capacity optimum and constitutes

a good compromise regarding technology cost.
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Thermal conductivity

This parameter is related to the heat transfer. Figure 10 shows that thermal
conductivity tumbles down until 350°C; then, close to the critical point, lower the pressure is,
greater the curve falling is. In this area, the value of thermal conductivity is intermediate
between liquid water (0.6 W.m".K™") and steam (0.025 W.m™"'.K™). After 500°C, thermal
conductivity increases slightly.
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Figure 10: Evolution of thermal conductivity as a function of temperature (100°C to 700°C) and pressure (15
MPa to 40 MPay).

In supercritical conditions, heat exchanges are worse than in subcritical
conditions.

1.2.4. To conclude: sub and supercritical water properties

Sub and supercritical water show following properties ([16], [17]) presented in

Table 1.

Table 1: Synthesis of water properties at subcritical and supercritical conditions.

Subcritical conditions supercritical conditions

Phase L/G/S supercritical / S

miscibility salts gases / organics
[H'], [HO] high / ionic reactions Low / Radical reactions

kinetics fast very fast
low energy required / energy high amount of energy required /
heat transfer high energy transfer low
fluid resistance high low
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The combination of supercritical water properties gives it a significant interest as
reactive media for biomass treatment. Indeed, as the water is solvent, catalyst, reactant ... a
plurality of reactions occurs during hydrothermal process leading to the formation of gas,
liquid and solid. However, instruments and technologies are limiting industrial applications of
supercritical water processes.

I.3. Hydrothermal treatment of wet biomass

As seen previously, water under supercritical conditions or close to supercritical conditions
has reactive properties which combined, give it interesting applications based on chemical
reactions ([18], [19], [20], [21], [22], [23]) such as waste treatment ([24], [25], [1], [26], [3]),
biomass conversion ([27], [28], [29], [30], [31], [32]), nanoparticles synthesis ([33], [34],
[35], [36], [37], [38], [39D).

Chemical reactions and mechanism pathways are guided by operating conditions. Indeed, as
shown by Kruse et al., the modification of temperature process acts on the product obtained
during hydrothermal conversion, by favoring certain reactions to other. Thus supercritical

conditions favors radical reactions while subcritical water enhance ionic reactions.
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Figure 11: Preferred reaction pathway following process temperature [4].
Combining water properties and operating conditions, the applications are possible (Figure

12):
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Figure 12: Applications of supercritical water properties.

Water properties promote certain reactions, as indicated on Figure 13.

Water =

Triple bonds — Carbonyl .
acid/base

Hydrolysis

Rearrangments:
Pinacol
BECKMANN...

Decarboxylation
Aldol - splitting

CANNIZZARO

Water = product

Alcohols — Double bonds
FRIEDEL-CRAFTS-Alkylation/Acylation

Aldol - condensation

\

Water =

Solvent +

Reduction with
NaHCO, (Pd) DIELS-ALDER

Partial Oxidation

Organometallic cat.
Cyclisation of triple bonds
Hydroformylation

Figure 13: Synthesis reactions considering water properties [5].

Main reactions occurring in liquid phase are detailed after; equations are schematically

presented without stoichiometry:
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Hydrolysis: For example, studies on hydrolysis of esters show different mechanisms under
sub and supercritical conditions ([5]). Reactions lead to corresponding alcohols and

decarboxylation of the acids formed.

o) OH
T vme=— I o
HsC”~ “OCH,CH; HsC”+ ~OCH,CHs
H
o OH Ty
+ 2H0 — |pec1-af H
H3C™ + "OCH,CH3
OCH,CH;
CH3;COOH
H OH
« H—-0
HsC o’\ H — » HiC OH —_— +
- HyO" OCH,CH
OCH,CHs 2CHs CH3CH,0H

Figure 14: Hydrolysis of esters from [5].

Condensation: In these reactions water is considered as acid catalyst (source of H' ions).
They lead to water elimination from alcohols forming double bonds (dehydration). Another
type of condensation occurring during hydrothermal conversion is the Friedel-Craft alkylation
(Figure 15) and acylation (Figure 16), especially under subcritical conditions where pKw is

the lower ([40], [41]).

OH
CHs Ho0
+ HgC—I—OH
CHs

Figure 15: Friedel-Craft alkylation ([5])
(0] 0

i L

0
+ A — +
OH
CH
OH

Figure 16: Friedel- Craft acylation ([5]).

+ H0
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Water is also basic catalyst and lead for example to intramolecular Claisen condensation or
Dieckmann condensation ([42]). Under supercritical conditions, water has sufficient basicity

to allow aldol condensation or Cannizzaro reaction (Figure 18).

2 WO — > o

Figure 17: Aldol condensation ([5]).

H. =0 CH,OH COOH

' TO 0

In addition, the reactivity of molecules under these conditions (temperature and pressure)

Figure 18: Cannizzaro reaction.

makes the Diels-Alder reaction possible [5].

I/CO Et %COH
O — %PD\
CO,Et

Figure 19: Diels-alder reaction.

Oxidations: Oxidations occur during hydrothermal conversion, such as formation of methanol
from methane or aldehyde oxidations, ketones and acids from alkylarenes oxidations ([43],
[44]). However the balance between kinetic reactions of their formation/disappearance is not
in favor of their formation so their yields are often very low. To promote the formation of
their compounds, the addition of catalyst, transitions-metal compounds especially, or addition

of oxidizing species such as O; is required.

Reductions: Reduction reactions are possible with addition of reducing agents under
subcritical conditions. Usually a catalyst like platinum is needed for the reduction of alkynes
and alkenes in alkanes with NaHCO, as reducing agent ([45]). Under supercritical conditions,
the presence of Hy, produced by water-gas-shift reaction, is used as reducing agent ([46], [47],
[48]). The water reactivity, under supercritical conditions, creates a good media for

hydrogenation reactions.
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Organometallic reactions: Under supercritical conditions organometallics reactions (Heck

coupling, Glaser coupling reactions, cyclotrimerization of alkynes), have been considered

[49], [50] in presence of catalyst.

The gas phase is created by the gasification of small molecules like formaldehyde or formic

acid, which gives CHa4, CO,, CO and H; by decarboxylation ((1), (2) and (3)). Gases produced

by this first gasification react with water according to water-gas-shift reaction (4), CO,

methanation (5) and CO methanation (6) [51].
CH;COOH - C0O, + CH,

HCOOH - CO, + H,

HCHO - CO + H,

CO+ H,0 - (CO,+ H,

C0,+ 4H, —» CH, + 2H,0

CO+ 3H, - CH, + 2H,0

After reaction, products are distributed in thr

(1
2)
3)
(4)
)
(6)

ee phases at normal conditions: gas phase [29],

liquid phase [5] and solid phase [52], [37] (Figure 20). Reactions are as follow:

Reactions

{ Expected products W

Water-Gas-Shift
Gas

Methanation
Hydrogenation

Liquid Hydrolysis

SCW +
biomass

Rearrangements
Oxidation
Reductions

Solid Dehydration

Polymerisation

Decarboxylation

Condensation (Friedel- Craft)
Diels-Alderreactions

Decarboxylation

H,, CO, CO,, CH,, low
HCs

Fuel

Building blocks molecules

Organometallic reactions

Coke (hydrochar)

Figure 20: Reactions occurring during hydrothermal conversion of biomass.
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Catalytic activity of alkali salts has to be considered also because of the alkali content
of black liquor. Alkali components are usually used as catalyst. They break C-C bond during
the hydrothermal conversion which increases gas formation. The water-gas-shift reaction is
promoted while CO and CO, methanation reactions are inhibited. A reactivity order of
catalyst has been reported by Wu ([51]) as K,CO; > KOH > Na,CO3; > NaOH. As gasification
is improved, the proportion of carbon remaining into liquid and solid phase should be lower.

Depending on operating conditions (T, P, reaction time, concentration...), and
reagents (biomass, oxidant, catalyst...), products are different. Increasing the temperature,
predominant phase evolves from solid phase to the gaseous one. Figure 21 shows added-value
products recovered as energy carrier or molecules from each phase (gas [53], [54], [55], [56];
liquid [57], [58], [59]; solid [60], [61], [62], [63]). In figure 21, green color is used for energy
recovery and orange color for chemicals recovery. Hydrochar can be considered as product

forming energy and chemicals recovery.

Expected products J L Applications W

T at
P = Cst
Gasification H,. CO, CO,, CH,, low Energy recovery
450°C - 600°C HCs
Fuel Energy recovery
SCW + Liquefaction
biomass | 300°c-450°C Buildine blocks Redirection to the
mol ecu'Tes pharmaceutical and chemical
industries
Carbonization Coke (hydrochar) Energy recovery if high LHV
180°C -250°C Use as material if interesting

properties (catalyst,
adsorbent, grafting support...)

Figure 21: Products obtained by SCW and their applications.

Hydrothermal conversion in supercritical conditions has three purposes:
- Energy production (or energy carriers)
- Waste Treatment (i.e. by oxidation)

- Production/fractionation/extraction of building blocks molecules

Theoretically hydrothermal processes allow considering a lot of reactions but the industrial

implementation of these processes is difficult.
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I.4. Implementation of hydrothermal processes: progress and limitations

The first consideration is on reactor type: batch or continuous? Usually, reactors implemented
in industry are continuous reactor for production reasons and facilities for monitoring
parameters such as temperature, pressure, products quality, etc. Batch reactors are usually not
implanted because of volume capacity and the difficulties to monitor the reactions. However,
considering hydrothermal processes, applications with continuous processes are limited for
safety reasons, thus several locks are yet to be solved formation of solid being one of the most
important.
During hydrothermal process, solid is formed from inorganic and organic matters. To palliate
inorganic solid, coming from salts precipitation, several technologies have been developed
such as fluidized bed reactors, reverse flow reactors, cooled-wall reactor, transpiring-wall
reactor and conversely tubular reactors. However to palliate completely organic solid
formation, no technologies exist. The only solution to avoid organic solid formation is
oxidation under supercritical water which degrades the whole organic matter in CO,.
Otherwise, plugging reactor is inevitable.
In addition, the reactor materials must be corrosion resistant, withstand high pressures and
high temperatures, and which is very expensive. Furthermore, it is often impossible to find the
material that satisfies all constraints.
So, hydrothermal processes raise the following issues:

- Formation of organic solid

- Formation of inorganic solid

- Gasification requires high temperature and consequently expensive materials.
In order to study the complexity of hydrothermal processes, a perfect “study tool” is a
biomass with high water, organic and inorganic contents. Thus, black liquor has been chosen.
Black liquor is alkaline by-product, coming directly from the paper industry using Kraft
process. Its inorganic and organic content allow us to investigate solid formation in
hydrothermal process, one of the major drawbacks. Due to its alkalinity, salts would act as

catalyst to improve hydrogen production.
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I1. Black liquor and the paper industry

Paper is mainly made from the fibrous part of the wood. Wood is composed of three
polymers: cellulose and hemicelluloses constituting the fibers of the wood and lignin giving
wood’s rigidity. To isolate and recover fibers, lignin must be altered. The most widely used
process for lignin fragmentation is the Kraft process detailed in Figure 22. Lignin is damaged

during cooking step.

wood

T Whit= Liquor

(MN20H + Na8)

Cooking

digesier

Wezk
Elack Liquor Liguor

Pulp Lime

(C20) mud

Grasn

Leaching Evaporation Combustion Causticizing

Black Liquor ~

Paper

Calcination

Figure 22: Kraft process.
Based on the simplified flow sheet from Figure 22, each step is more detailed in next sections.
II.1. Cooking and leaching steps: black liquor origin and composition
IL.1.1. Cooking step

Kraft process is characterized by the use of white liquor (mainly composed of NaOH,
Na,S with a pH between 13 and 14) as cooking liquor to extract lignin. During the cooking
step, wood chips are mixed with white liquor at 165°C during 8 hours with a pressure of

~0.75 MPa into a batch reactor called digester.
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Digester

Figure 23: Cooking step.

Inside the digester, white liquor attacks wood. Mechanism of the digestion is proposed and

summarize Figure 24 [64]:

-The first and main important step is the diffusion of ions (HO", HS” and S*) within

the chips. It results the fragmentation of cellulose fibers from wood.

-The second step consists in the reaction between ions and wood polymers: cellulose,
hemicelluloses and lignin; during this stage delignification and partial hydrolysis of
hemicelluloses and cellulose occur. Thus, lignin is fragmented into smaller molecules or ions

by ionic reaction.

-The third and last step is the diffusion of extracted compounds (Kraft lignin and

sugars) from the wood.

Reaction area

Kraft Lignin

Glucose

Figure 24: Process of Kraft pulping (adapted from [64]).
I1.1.2. Kraft lignin

Lignin represents between 25 to 30 wt% of wood components [65].

It is an aromatic natural polymer with a very complex structure which is different for
each wood species. It is therefore impossible to draw a single molecule. However, it is

recognized that the lignin is made by the uncontrolled polymerization of 3 sub-units of
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monolignols [66] different in degree of methoxylation: p-coumarylic, coniferylic
sinapylic; called respectively H, G and S units

H unit

G unit

S unit

_ OH OH
= e
5 3
OCH;  gco OCH,
(a) OH (b) °H (©

Figure 25: (a) p-coumarylic Alcohol, (b) coniferylic alcohol and (c) sinapylic alcohol

Given what we know, once polymerized, lignin structure could be as follow
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Figure 26: Possible structure of lignin [67]
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Lignin formation results from two types of bonds, each of the sub-units association

made a single lignin, [65], [66]:

- B-O-4 bond between G and G units and G and S units: “labile” bonds. These bonds

are broken during Kraft process.

Lignine

< ™ .
" Action of

v

Kraft process

Figure 27: Labile bond of lignin: liaisons p-O-4.

-Biphenyl bond mainly between G and G units: « Strong » bonds

Lignine

Lignine

Figure 28: Strong bond of lignin.

Lignin in hardwood is mainly composed by G and S units while lignin in softwood,
like maritime pine, is mainly composed by G units. Lignin reactivity (i.e. degradation) is due

to its hydroxyl and ether functions.

During the cooking step, f-O-4 bonds are broken with the action of hydroxyl ions that

reduce the molecular weight of molecules. The cleavage of ether bond with alkali releases
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phenolate functional group in the reaction medium that improves lignin dissolving in the
cooking juice (liquid phase). Thus reticulation reaction would be expected [68], then

hydrosulphide ions react to form thiolignin or Kraft lignin as described in Figure 29.

H,COH H,COH

| 1
HCR!' ”‘f‘“ R = H, Alkyl or Aryl
HCOR HCOR R' = aroxyl, aryl or alkyl

HO

y———

f" |
10} "ﬁ)‘ocri
&

Heﬁ H,C-$
|
?‘H‘ HC - R’
-RO" .
CH +2HS™ -H* |
I — > S-CH
-—
HCOH  -H,0 ]
|
ol Z N OCH, OCH,
HC 9 )
rlk
|
-"K(Locn3
S chlson
o HS_ H'C-'R
-l |
N‘ S—CH
o
I
H,COH H2(’|JOH
\
R . " Kraft lignin
~ — H
' ¢ structure
" OCH, OCH,
0 0

Figure 29: Lignin degradation mechanism during Kraft process (adapted from [68]).

Furthermore as cooking liquid of wood, black liquor content is a very complex mixture of

organics and inorganics.
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I1.1.3. Typical composition of black liquor

Black liquor is a highly alkaline solution with a very complex composition. It is a
combustible, toxic and corrosive material. In addition to a substantial amount of water

(~ 80%), following families of compounds have been identified:

- Inorganic compounds: Liquors circuit is closed in the Kraft process, so it is quite

possible to find some unwanted inorganic compounds, moving along the recycling process.
The main part of inorganic salts are sodium salts (NaOH, Na,S, Na,CO;3, Na,SO,4, NaCl,
Na,S,03, Na,S0s3), a small amount is due to potassium salts contained in the raw wood and
the other part corresponds to the calcium salts such as CaCOs;. Some free ions are also

identified: Na" and K.

- Organic acids: They are the second largest family. They mainly come from the

degradation of cellulose and hemicelluloses; and they are in ionic form. Most important acids

are acetic acid and formic acid.

- Fatty acids and resin acids: they are the third largest family of compounds and are

commonly called “tall oil” (II.1.4). The main part of the fatty acids (~ 95%) consists of oleic
and linoleic acids. The distribution of the compounds in tall oil is:

- 45% of fatty acids

- 35% of resin acid

- 20% other acids not listed

- Carbohydrates: During wood cooking, a part of the cellulose and hemicellulose are

degraded by the white liquor. This reaction is called "peeling-reaction" and produces hydroxy
acid whose the main is glucose.

- Lignin: This is the major constituent of black liquor. In the Kraft process, lignin is
called “Kraft lignin” or thiolignin. Lignin is a compound with high added value. Of all the
components of the black liquor, lignin mainly provides organic matter, so it will be mostly

from it that valuable molecules will be created.

- Methanol, produced by the demethylation of methoxyl groups in the lignin structure,

is also identified in the composition of black liquor

In industry, black liquor is recovered and directly recycled, as described in the next section.
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I1.1.4. Leaching step

Once the cooking is completed, the pulp (fibrous part) is separated from the cooking
liquid by washing (leaching) and goes to paper process. The recovered juice contains Kraft
lignin, depolymerized cellulose and hemicelluloses (hydrolyzed during cooking by hydroxide
ions action), unused white liquor, minerals from wood. Its black color and its sweet

appearance refers to the name of "black liquor".

In cooking step, approximatively 160 million of tons of chemical pulp are produced per year

and 50 million tons of lignin are dissolved and treated.

Leaching step is followed by the pre-evaporation to concentrate black liquor to 23 wt% of
total dry matter. Then a first by-product, called also “soap”, is extracted from this black

liquor.

Soap is washed, acidified and then decanted to obtain tall oil [69]. Tall oil is currently
the only valuable product recovered from black liquor. During the leaching step, soap is

extracted from black liquor. It is then acidified with sulfuric acid to produce “crude tall oil:

R — COONa + H;0* - R — COOH + H,0 + Na* (7)
Crude tall oil is mainly composed of: fatty acid (oleic acid, linoleic acid...), resin acid (abietic
acid, pimaric acid) and unsaponifiables (hydrocarbons, sterols...)[69]. Unsaponifiables are
not used in the industry so this part is considered as unwanted. The valuable components

(green boxes in Figure 30) of crude tall oil are shown in Figure 30, the process is not detailed:
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Figure 30: Tall oil process (extracted from [69]).
Actually, black liquor is directly recycled in the plant for white liquor and energy

recovery. The steps and the technical issue encountered are detailed in the next section.
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I1.2. Current valorization of black liquor
I1.2.1. Treatment of black liquor

Once soap extracted, the black liquor is processed in the plant following four steps

(evaporation, combustion, causticizing and calcination) to convert it into white liquor.
Evaporation

Black liquor is industrially evaporated thanks to vapor at 0.3 MPa, in multiple effect
and counter-current evaporators. The final outflow of black liquor is 70 wt% of dry matter.

After evaporation, black liquor is stored and then burnt by combustion.
Combustion

The combustion of black liquor (70 wt%) is one of the most important process units. It
allows recovering energy by burning the organic matter of the black liquor and
simultaneously, to recycle the inorganic matter for the white liquor as melting salts.

It takes place in a specific reactor divided into three sections: reduction, drying and oxidation

zones and detailed in figure 31.

In the boiler, black liquor (thick liquor) is sprayed into the secondary air. Organics are
pyrolysed and pyrolysis products are oxidized in the oxidation zone by a tertiary air. Pyrolysis
and combustion gases rise to the top of the boiler. The temperature is therefore higher on the
top. All combustion gases are washed for environmental reasons and routed to the heat

recovery steam generator. Produced steam is used subsequently in the plant for different steps.

The unbalanced equation for the combustion of black liquor may be written:

Black liquor + 0, —» Na,S + Na,C03 + Combustion gases (8)
The combustion gases contain: Ny, O, NOy, CO,, H,O, SOx and a low amount of CO

and H,S. The NOy, SOy and H,S contents are drastically reduced in the extracted gases after

washing.

The inorganic compounds, in form of molten residue, fall to the bottom of the boiler,

and are further processed as molten salts: mainly Na,S and Na,COj (saline).

Thus, the organic part of the black liquor generates steam by burning and 65 % of its

energy is recovered.
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Figure 31: Reactions into black liquor boiler’.

The storage and combustion of the liquor is a bottleneck in the pulp production
because of sprayed black liquor flow limitation. In addition, the combustion of the black

liquor has numerous disadvantages such as:

- Size of elements and amount of fume treated
-Potential issue with operating equipment

-Environmental footprint (CO,, NOy, SOx...) and human risks (ATEX area)

? http://www.ineris.fr/ippc/sites/default/interactive/brefpap/bref_pap/francais/bref fr_kraft_niveau.htm (july

2014)
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Causticizing

After combustion, saline flow (melted salts, mainly Na,S and Na,COs3) is recovered
and dissolved in water. This mixture, giving to the water a greenish color, is called "green
liquor”. The aim of causticizing step is to complete the regeneration of white liquor (Na,S +
NaOH) from the saline flow as sodium sulphide (Na,S) is already in the desired form. Green

liquor is transferred into causticizers where quick lime is added.

Quick lime
(Ca0)

Green Liquor

(Na,S + Na,CO, l

CaO + H,0 -> Ca(OH), + (HO")

Ca(OH), + Na,CO,; -> CaCO,; +

Q

l

(Na,S + NaOH)

®

——> White Liquor recycled

l

Calcination
step

Figure 32: Causticizing step.

The reaction between quicklime (CaO) and water of green liquor forms calcium
hydroxide (Ca(OH);) which reacts with sodium carbonate (Na,COs) to produce calcium
carbonate (CaCO3) and to reform sodium hydroxide (NaOH). The sodium hydroxide (NaOH)
and sodium sulphide (Na,S) are soluble (white liquor is recovered) in contrast to the calcium
carbonate (CaCO;) which precipitate. In causticizers outlet, the solid-liquid mixture is

transferred to a settling tank in order to separate white liquor from CaCOs precipitate.

The recycled white liquor represents 97 % of the initial white liquor [70] introduced
into the process for cooking step. Regarding the calcium carbonate slurries, they are conveyed

to the final part of the recycling zone, namely calcination.
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Calcination

Calcium carbonate recovered by filtration is calcinated in a rotary kiln into lime (CaO) and
CO; (9). The enthalpy of this reaction is equal to +1786 kJ/kgcqaco, at normal temperature
and pressure. Temperature of this step is around 850°C. The necessary energy is obtained

from the gases of the combustion of black liquor.

CaCO; - Ca0 + CO, 9)
Then lime obtained is reintroduced in the causticizing step while CO, in released to
atmosphere. Gas flow, for this step, is about 1000 Nm®/ton of pulp and energy consumption is

about 1.5 to 1.8 GJ/ton of pulp.
11.2.2. Mass and heat balance

Pulps production by Kraft process has a yield between 45 to 55 wt%. For each ton of pulp
produced [70], about 10 tons of weak black liquor (15 wt %) is recovered; about 1.5 ton of
black liquor dry matter is burned in the boiler to recover about 375 kg of cooking chemicals
and to produce more than 5 tons of high pressure steam. During cooking step the ratio

liquor/wood is between 3-5 L of white liquor/kg of wood chips [71].

Energy recovery comes from the boiler where organic content of black liquor is oxidized to
produce steam at high pressure (11 bars). Then steam is partially used to generate electricity
[70]. 13 000 to 15 000 kJ can be recovered per kg of black liquor. Typically, about 3.8 kg of
steam/kg of dry black liquor are produced. The resulting high pressure steam goes through a
turbine to generate electricity. The burning of 1500 tons of solid black liquor per day
generates 25 to 35 MW of electricity [70].

I1.3. Industrial issue

Despite Kraft process provides optimization (white liquor recycling, heat recovery, added-
value products valorization), but many industrial issues can occur and decrease its efficiency.

This aspect is detailed in annex 1.
I1.3.1. Technical and technological issues

Technical and technological issues [70] concern both mechanical and process problems
mainly due to black and white liquors composition. Each unit of the process, presented
previously, is the seat of potential problems such as fouling, tube corrosion, leakage, cracking.
These issues lead to higher energy demand and lower efficiency of the process. They are

associated to gases emissions.
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11.3.2. Environmental issue

Considering black liquor composition, gases emissions are mostly due to sulfur emissions as
methyl mercaptans, dimethyl disulfide, sulfur dioxide, and above all hydrogen sulfide which
is very toxic. However, H,S is not considered has a main issue, it is used for white liquor

recycling.

NOy, particles and CO, emissions from the process contributes also to its whole
environmental impact. CO, emissions come from the combustion of organics in black liquor.
The non-valorization of this organic carbon into useful material is a problem for the paper

industry.
I1.4. Conclusion

Black liquor has a high organic and inorganic content. Its recycling is a looped
industrial process, based on the burning of the organic matter and inorganic recycling.
Throughout this process, the added-value products extracted are the tall oil, the white liquor
and the heat recovered for production process uses. Kraft process has the ability to handle
both softwood and hardwood, and to recover almost 97% of white liquor. However,
compositions of black and white liquors lead to technical and technological issues. With
environmental restrictions, significant improvements have been made to respect air emissions,

effluent discharge [70], noise, etc. Figure 33 shows a synthesis of it flowsheet.

In addition to the cost, operational problems and environmental issues, some disadvantages of

Kraft process push the paper industry to look for new technologies:

- Evaporation steps need a high amount of energy; it is the area with the highest

energy demand.

- On the one hand, to respect the environmental standards boiler limits the flow rate of
incoming black liquor, and on the other hand, to respect the imposed flow of pulp paper for

paper production, black liquor could necessarily stored after evaporation.

In reason of its high organic, inorganic and water content, black liquor is a good subject for
hydrothermal conversion study. In reason of its alkalinity and its lignin contents, black liquor
could have a high potential of alternative valorization as currently. The following section is
devoted to the state of art of hydrothermal conversion of black liquor and its model

compounds.
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Green is used for advantages and red is used for drawbacks of Kraft process.

wood
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Figure 33: Synthesis of black liquor treatment in paper industry.
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II.5. State-of-the-art on hydrothermal conversion of black liquor and its

associated model compounds

In contrast to model molecules, a real waste has a complex composition which is not
exactly known. Literature shows a lack of knowledge considering the industrial black liquor
hydrothermal conversion. Oxidation and gasification of black liquor have been studied [53],
[72]. However, composition varies from the different authors as well as the process design. It
was noticed that Kang et al. [73] studied the hydrothermal carbonization of black liquor
powder (acidified black liquor), coming from a chemical industry. They suggested that the
carbonization of dried black liquor is due to either the polymerization of aldehyde with
powder of black liquor non dissolved or phenolic compounds. However, no significant
contributions of raw liquid black liquor liquefaction or carbonization have been yet published.

On the contrary, numerous research teams work on hydrothermal conversion of model
compounds, with and without oxidant or catalyst, and suggest reaction pathways [74], [75]
which will be used as baseline of reasoning. Thus, a first state to understand the hydrothermal
conversion of black liquor is to consider its associated model molecules. It means lignins such
as alkali lignin, organosolv lignin and others types of lignin. However, hydrothermal
conversion of model lignins is also too complicated. Thus smaller model molecules of lignins
such as guaiacol (Figure 34), catechol (Figure 35), guaiacylglycerol-B-guaiacyl ether known
as GGGE (Figure 36) are needed.

OCHj
OH

Figure 34: Guaiacol formula.

OH
OH

Figure 35: Catechol formula.
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OH (|:H1
0
HO
0
OH
0
CH,

Figure 36: GGGE formula.

The best way to understand the hydrothermal conversion of black liquor is to consider

hydrothermal conversion of lignin and its smallest model molecules.
IL.5.1. Model compounds: mechanism of hydrothermal treatment

Kang et al. ([76]), suggested reactions pathways for hydrothermal liquefaction and

gasification of lignin, as follow:

- Hydrolysis and cleavage of the ether bond and the C-C bond ecsscecse = Alkylation

——— Demethoxylation —————> Condensation

Alkylated benzenes

Methoxylated benzenes Ho | N @. @_\
OH I F
—o0 o] o
—o OH g
OH
o~ o
Lignin \

s

Aromatic oligomers
[j‘@

Hydroxylated benzenes

= wo

OH 0
s o OH
—OH )k HOJK/

Oxygenated hydrocarbons

Figure 37: Mechanisms suggested by Kang et al. for the hydrothermal liquefaction of lignin [76].
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Decomposition

Lignin > H,, CO, CO,, CHy, etc.
CO + H,0 CO, +H,
2CO +2H,~——=CH,; + CO,
(C\e‘a"“‘ge 0
Liquid products
(Phenolics)

Figure 38: Reactions pathways suggested by Kang et al. for the hydrothermal gasification of lignin [76].

Liquefaction and gasification have been performed at various temperature conditions.

Probably, aromatics and others smaller molecules produced by liquefaction should be

converted to gas at higher temperature.

Fang et al. [23] suggest the following reaction pathways for hydrothermal conversion of

lignin:
Homogeneous
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Figure 39: Reactions paths for hydrothermal conversion of lignin suggested by Fang et al. ([23]).

As shown by Fang et al., hydrothermal conversion of lignin model compound is extremely
complex. A plurality of typical reactions intermediates has been identified. After reaction, at
normal conditions, three phases are expected as gas phase, solid phase and liquid phase

(divided into aqueous and oily phases), each one resulting of series of reactions.
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The main products obtained by the degradation of black liquor model compounds (lignin,
alkali lignin, guaiacol, GGGE...) are referenced in the Table 1 and confirm the mechanism
pathways of degradation seen previously (Figures 37, 38 and 39). Even if different lignins
exist (organosolv, Kraft...), they are usually used to recover phenolic compounds in liquid
phase. Some studies (Table 2) show a catalytic effect of alkali salts on specific reactions, and
the formation of solid residue by repolymerization. In these papers, incoming lignin is solid
and mixed with a solvent; products recovered are mainly in liquid phase. In the following
table, “HT” means “hydrothermal”, “HTC” means hydrothermal conversion and “A-L” means

“Alkali Lignin”.
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Table 2: Main products expected by conversion of black liquor model compounds

Process/
Reactor
Ref incoming . Products Objectives Comments
e
material P
) ) . - Alkaline additive promote the degradation of
Peng et al. Pyrolysis/ Fixed bed Phenolic ) ‘ ;
- Material decarboxylation and decarbonylation.
[77] Lignin reactor molecules
— Removal of unsaturated alkyl branch
Gosselink et Aromatic
SCF/ Lignin Batch Material CO,/acetone/H,0
al. [78] molecules
Wet .
Aromatics Ether bond cleavage and oxidation on a-carbon
oxidation/ Batch Material
o aldehydes during conversion
Lignin
Kang et al. . .
Cleavage of bonds: Ether, aliphatic C-C,
[76] HT
aliphatic C=C, fragmentation reaction;
gasification/ Batch Fuel Gas Energy )
o interaction between gas formed and liquid
Lignin
products
HT -Phenolic . L
Azadi et al. ) ) - Material Cleavage of bonds: ether, aliphatic C-C;
liquefaction/ Batch molecules
[57] o - -Energy reactions of demethoxylation, alkylation
Lignin -Bio-oil
HT
Okuda et al.  liquefaction/ Phenolic Solvent: water/p-cresol
. Batch Material
[74] Guaiacol, molecules Less coke formed
GGGE
HT . Solvent: water/ Phenol
Okuda et al. . . Phenolic _ - ;
liquefaction/ Batch Material - the presence of phenol inhibits coke formation
[58] o molecules ) .
Lignin (=solid residue)
HT
. Phenolic
liquefaction/ batch Material Cleavage of C-O bond and C-C bond
molecules
Pinkowska AL
et al. [79] HT - o
- . _ Repolymerization of liquid products and
carbonization/ Batch Biochar Material
formation of solid residue
AL
Guo et al. Pyrolysis/ Batch Biofuel Energy Catalytic action of NaOH and Na,CO; on
atc
[80] Gasification Chemicals Material gasification and pyrolysis reactions
HT Catalytic effects of existing form of Na: Organic
Guo et al.
[81] Gasification/ Batch Gas bound Na or inorganic bound Na
AL => organic Na improve amount of H,

Addition of alkali salts promotes degradation forming especially H,; reactions favored are

decarboxylation and decarbonylation. Degradation of lignin leads to aromatic phenolic

compounds in liquid phase by cleavage of bonds (ether, C-C, C-O....), these molecules

polymerize easily forming a solid residue. Similar products would be expected after

hydrothermal conversion of black liquor despites its complexity.
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I1.5.2. Hydrothermal treatment of Black Liquor conversion

A similar table (Table 3) presents an overview of the processes used for black liquor

treatment.

Table 3: Principal products expected by back liquor (BL) conversion

Process/ Reactor
Ref Products Objectives Comments
incoming type
-When black liquor is diluted, the
. . H,, CO, CO,, . _
Sricharoen- Gasification/ Continuous conversion rate is higher
low Energy
chaikul [82] BL reactor -The amount of Hj is high and the
hydrocarbons .
amount of CO, is low
-catalytic effects of salts
-at 400°C (40% of H,) and at 600°C
) ) ) H,, CO, CO,, (60% of Hy)
Cao et al. Gasification/ Continuous o
low Energy -salts precipitation in reactor
[53] BL reactor . .
hydrocarbons (redissolution at ~360°C)
-pH of liquid product is lower than
incoming black liquor
Comparison between air or oxygen
) ) o H,, CO, CO,,
Nagqvi et al. Gasification/ Fluidized supply
low Energy ) ) )
[83] dry BL bed => higher synthetic natural gas with
hydrocarbons
O, supply
] ) Kinetics of reaction between (CHj3),S
Nong et al. Gasification/ . )
Gas turbine H,S, CH, Matter and H, with ZnO
[84] BL S
=>H,S is absorbed by alkali solution
HT ‘
Kang et al. - ) Formaldehyde use to polymerize
carbonization/ batch Solid fuel Energy
[73] phenols compounds
BL
Cooling has effect on gas
Wiinikka et Gasification/ composition => low cooling rate:
gasifier Energy
al. [85] BL higher amount of H, and lower
amount of CO,
Haggstrom Gasification/ Combined Methanol from M Use of syngas to produce methanol
atter
et al. [86] BL process syngas by catalytic synthesis
Xiao et al. ) ) Pyrolysis and Gas Gaseous sulfides are produced from
Pyrolysis/ BL Gas turbine ) )
[87] sulfide gases treatment black liquor pyrolysis
Zhao et Energy or polymerization of aldehyde with BL
Carbonization Batch Solid .
al.[88] matter non dissolved or products of HTC

Black liquor could be used particularly to produce gas by supercritical water
gasification, with a low amount of CO, and hydrocarbons, and an interesting amount of Hy;
sulfur is also noticed is the gas phase as H,S. Comparing processes, hydrogen production is

higher with supercritical water gasification than regular gasification. Solid formed from the
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conversion is due to the polymerization of phenolic compounds with aldehydes. Gasification
has been studied in continuous and batch reactors while carbonization has been studied
exclusively in batch reactor. Hydrothermal liquefaction of black liquor is not particularly

investigated.
I11. Objectives of the thesis

As mentioned in the introduction, the main objective of my thesis is to better understand the
hydrothermal processes from the point of view of the reaction mechanism and from the point
of view of process with the following focus:

- Problem of solid formation: mechanism of its formation

- Hydrogen production with a focus on catalytic conversion: impact of the catalyst on
the different reactions

- Batch versus continuous reactor: by fast heating and cooling rate, batch process

approaches continuous process.
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Summary of 4BChapter 2: Materials & Methods

Résumé du chapitre 2 : Matériel & Méthodes

Dans ce chapitre les procédures expérimentales sont décrites ainsi que les entrants, les
réacteurs batchs utilisés et les techniques d’analyse employées pour caractériser les phases

obtenues apres réaction (apres ouverture du réacteur). Ce chapitre se divise en 3 parties.
Les entrants :

La liqueur noire est une solution aqueuse basique, corrosive et toxique pour 1’environnement,
elle contient 23 % massique de maticre séche dont 7% de matiere inorganique et 16% de
matiere organique. Elle est considérée comme un sous produit de 1’industrie papetiére et non
comme un déchet ; pour nous elle est considérée comme une biomasse humide a haute teneur
en maticres organique et inorganique. Elle nous est fournie directement par le papetier aprés
récupération du tall oil (unique valorisation maticre de la liqueur noire dans le procédé Kraft).
Afin de constituer les solutions qui nous serviront lors de nos expériences, nous mélangeons
de I’eau pure a cette liqueur noire afin d’obtenir des solutions a 10 % massique en liqueur
noire. Pour les expériences réalisées dans le cadre de I’étude catalytique relatée dans le
chapitre 5, de I’oxyde de cérium (CeO;) est utilisé en tant que nanocatalyseur. Ce catalyseur
est de structure cubique et tient son action catalytique de son activité redox qui lui permet de
capter et relacher ’oxygeéne des molécules d’eau présentes. Cette action sera décrite plus en
détails dans le chapitre consacré a cette étude (chapitre 5). L’oxyde de cérium cubique est
synthétisé au sein du laboratoire du Professeur Adschiri, a I’université de Tohoku au Japon.
L’utilisation de ce nanocatalyseur a également été mise en ceuvre au sein du laboratoire du

professeur Adschiri.
Les réacteurs :

Dans cette these les réacteurs utilisés sont des réacteurs batchs exclusivement. Trois réacteurs
différents ont été utilisés : 2 réacteurs de 5 mL et 1 réacteur de 500 mL. Ils différent
principalement par leur systtme de chauffe. Toute la partie 2 de ce chapitre est consacrée a

leur description, le tableau 4 compare les conditions de fonctionnement de ces réacteurs.

Les sortants : caractérisations des phases obtenues aprés réaction.

Apres réaction, les réacteurs sont refroidis puis ouverts. Trois phases sont généralement
obtenues : une phase gazeuse, une phase liquide et une phase solide. Chaque phase est

récupérée et analysée.

73



Summary of 4BChapter 2: Materials & Methods

La quantité de la phase gazeuse est mesurée puis les composés sont quantifiés par u-GC. La
phase liquide est analysée au travers de la mesure de paramétres globaux COT (carbone
organique total), DCO (demande chimique en oxygene), GPC chromatographie de perméation
de gaz), mais aussi en identifiant et quantifiant des composés organiques (formaldéhyde,
phénols, GC-MS pour identifications plus précises) et minéraux (ICP-OES). La phase solide
est analysée d’un point de vue de sa composition (analyse élémentaire, thermogravimétrique,
cristallographie, fonctions chimiques par IRTF et spectroscopie RAMAN) mais aussi de sa
morphologie, sa texture et de ses propriétés de surface (MEBE, BET, Pycnométre,

granulométrie laser et MET).

Toutes ces analyses nous permettent de caractériser autant que possible les phases afin de

comprendre les réactions mises en jeu lors de la conversion hydrothermale.

*** Fin du résumé
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In this chapter experimental procedures are described as well as reactors, raw materials and

outflow characterizations.

\

r'Fl?cl'hzm' material

Raw black
liquor L

- ;

Water

L _/

Figure 40: Experimental procedures for hydrothermal conversion of black liquor.

In the previous chapter, properties of supercritical water and general presentation of black
liquor have been introduced. The first part of this chapter is devoted to the characterization of

our black liquor.

The second part of the chapter presents the description of the three kinds of batch reactors

used. They differ in their volume, shape and processing.

The third part of the chapter inventories the characterizations of the outflowing phases. Some
of them have been carried out in RAPSODEE Center and other in Professor’s Adschiri and
Watanabe laboratories, at the Tohoku University, Sendai, Japan. Therefore, the Japanese

laboratories will be mentioned when necessary.

I. Raw material:

I.1.  Black liquor

I'rl?é.zwv materia?"

Raw black
liquor
+
Water
L _J/

Figure 41: Reagents in hydrothermal process.

Black liquor is used as such, obtained after tall oil recovering, and pure water are introduced

to obtain a 10 wt% black liquor solution.
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To understand and explain as well as possible reactions that occur during the hydrothermal
conversion, the most complete possible characterization of the black liquor is required. A
typical composition of black liquor has been given by the industrial furnisher Smurfit Kappa,

Cellulose du Pin (paper plant) and is reported hereafter:

Organic content 16 wt.%
Inorganic content 7 wt.%
Sodium Na 19.2 wt.% Lignin content 36.2wt.%
Potassium K 13.8 wt.% Polysaccharides 2.5 wt.%
Sulfur ] 3. 4wt.% Sum ofhydroxy acids 73.0g/kg
Carbonates CO5* 5.7 wt.% Aceticacid 19.0g/kg
Sulfate SO> 1.1wt.% Formic acid 21.0gkg
Sulfide s> 2.3wt.%

Residual alkali NaOH 5.2wt.%

Figure 42: Black liquor composition given by Smurfit Kappa cellulose du Pin, Facture.

This analysis confirms that black liquor is a complex mixture, highly charged in organic and
inorganic matter. Black liquor is an alkaline aqueous media (pH = 13.2) containing 23 wt% of
dry matter, with a density of 1.12 kg.L™". The ratio inorganic/organic content is equal to 0.44;
this ratio means that inorganic and organic represent respectively 30 wt% and 70 wt% of the
dry matter. The proportion of lignin in the black liquor is ~36 wt %; being considered as the
main part of its organic content. RMN analysis confirms that aliphatic and phenolic

compounds exist in black liquor.

Details about the procedures used to characterize the black liquor are presented in the section

II1.

Considering CHNOS elemental analysis (RAPSODEE), the black liquor has the following
composition: C (22.50 wt%), H (5.30 wt%), N (0.14 wt%), O (37.34 wt%), S (2.50 wt%)).
Looking at the composition given by Smurfit Kappa, the remaining percentages are mostly

due to sodium, Na. Thus, by difference the amount of sodium is calculated (10):

Y%ona = 100 % — THNOS o, = 32.22 wt% (10)
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Converted in atomic percentage, the composition is: C (17%), H (48%), N (0%), O (21%), S
(0.7%), Na (15%).

For the experiences, raw black liquor has been diluted to obtain a solution at 10 wt% of black
liquor. Its carbon repartition into organic and inorganic carbon, obtained by total organic
carbon measurements, gives: 10.7 g.L"! of organic carbon and 0.6 g.L" of inorganic carbon.
However, the organic matter contains only 0.104 g.L"' of phenolic compounds and 0.0557

gL of formaldehyde. The chemical oxygen demand of black liquor is 20.75 g.L™.
I.2. Cerium oxide

We used in some experiments a specific nano catalyst, the CeO,. It is synthesized in
Professor’s Adschiri laboratory by hydrothermal synthesis and provided for our experiments
by his research team. After reaction, solid phase (coke and catalyst) are recovered by filtration
and dried at 60°C under vaccum. Then solid is weighted and calcinated at 450°C to remove

coke and to recover CeO; catalyst.
I1. Reactors

Hydrothermal conversion has been carried out using several kind of batch reactors which are

described in this part.

II.1. Batch reactors used for experiments

A part of this PhD has been made in France at RAPSODEE center, the other one has been
made in Japan in Professor Adschiri’s Laboratory, Tohoku University. Reactors used for
hydrothermal conversion are different in volume and design. Three different kinds of reactors

have been used, two in France (5 and 500 mL) and one in Japan (5 mL).

I1.1.1. 5 mL batch reactor —- RAPSODEE center

We dispose of a serie of 30 industrial minireactor (5 mL). The 5 mL reactor allows reaching a
couple (T, P) of (600°C, 30 MPa). Each mini-autoclave (Figure 43) is a hollow cylinder made
of stainless steel (316 Ti). The reactor consists of two parts: a body and a cap. They are
screwed together and the sealing is maintained with a joint in copper between the two parts.
The inner volume is 5 mL and a hole has been made to release the gas during the opening

procedure of the reactor (Figure 44). This reactor is unstirred and the direct monitoring of
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temperature and pressure is impossible. Pressure is induced by the volume of solution initially
introduced (I1.2).

Figure 43: 5 mL batch reactor: mini-autoclave.

Once the autoclave is closed, the system is placed in the opening-closing system (Figure 44).

Figure 44: Opening / closing apparatus.

The clamping is operated by applying a torque of 100 Nm to ensure pressure resistance. Then,
the hermetically sealed autoclaves are placed in an oven (external heating). Two ovens have
been used, the first one is Nabertherm L5/11/P320 oven with a heating rate of 20°C.min'1, the

second one is a gas chromatography oven with a heating rate of 40°C.min"'

When the target temperature in the oven is reached, reaction time started. At the end of the

desired reaction time, reactors are removed from the oven and cooled down.
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Two cooling methods have been applied. The first one is a slow cooling: at the end of reaction
time, warm reactors are cooled under air circulation to bring them to ambient temperature. For

this method, cooling time is around 30 min.

The second method is a quenching cooling: at the end of experiments, warm reactors are
placed in a bath of ice and water to bring them to ambient conditions. For this method,

cooling time is less than one minute and it could be considered as “instantaneous”.

Reactors, at ambient temperature, are opened. The opening system is linked to a sampling

system to collect gases (Figure 45).
@’
@
\ Manometer 2,

\ Nitrogen

Figure 45: Sampling for collect gas for 5 mL batch reactor.
The autoclave is placed into the system, at room temperature, and covered by a cap to seal the
opening-closing system. The system is closed, and regulated by valves (A, B and C); N, is
then injected in continuous through the system to eliminate the air contained in the tubes,
(Pn,system = Patm ). For gas sampling, valves are closed and reactor is then opened; gas
escapes through the hole in the cap of the reactor (Figure 42). Gas generates an overpressure
Ps, measured by the manometer (2.5 MPa — WIKA EN 837-1) after the opening of the
autoclave. Taking into account the loop volume (V,2;,; = 29.32 mL) in which the gas has
spread [51], the total moles of gas is calculated. The gas sampling system is flushed with N,

and gas collected in a sampling bag to be analyzed using the overpressure and volume of the

) is assumed to be constant before and

system as follows. The volume of liquid (V29

. . .. . . empt .
after the reaction since the water is in large excess relatively to the biomass. V;wtf Cl):we is the

unoccupied inner volume of the reactor with:
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in _ 1/liq empty
autoclave — Vautoclave + Vautoclave
Equation 11: Volumes considered in the reactor
_ n,9as N _ N2
n= Nyortal nsystem Nautoclave
Equation 12: Calculation of the number of moles of gas produced
With:
0 empty
gas _ (Vmini + Vautoclave X (Patm + PS)
total RXT
Equation 13: Calculation of the number of total moles in the gas
0 N3
Ny . Vmini X Psystem
nsystem - RXT

Equation 14: Calculation of the number of moles of N, in the system

empty N
N, _ Vautoclave X Xair

system ~ RXT

X Pgim

Equation 15: Calculation of the number of moles of N, in the system

I1.1.2. 5 mL batch reactor — Professor ADSCHIRI’s laboratory

At Tohoku University, another serie of 5 mL batch reactor has been used to performed
experiments. These reactors allow a couple (T, P) of (500°C, 30 MPa). They are non stirred;
pressure and temperature are neither monitored. Pressure is induced by initial volume of black
liquor and temperature indication (external temperature) is given by the oven. However, in the
Japanese laboratory, heating system is different; reactors are heated thanks to heating blocks

as described in Figure 46.

Reactors used in Japan are slipped inside the heating block with a quasi “instantaneous”

heating of the media.

Reactors were cooled by quenching in a mixture of ice and water as quenching fluid

(temperature 0°C).

The opening system is similar to the system used at RAPSODEE Center, without manometer
neither system to collect gas. Therefore, the volume of gas produced cannot be directly
known. For that, a specific cap is placed on the top of the reactor to connect it directly to the
gas analyzer (u-GC). Thus, thanks to a calibration curve the volume of gas can be known; in

addition to obtain the gas composition.
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Black liquor Batch type V

solution reactors Electric furnace — Temperature

heating bloc quenching

Figure 46: 5 mL batch reactor (Adschiri Laboratory).
I1.1.3. 500 mL batch reactor - RAPSODEE center

This reactor has been used a couple of times to study the influence of temperature rate on
hydrothermal conversion. The 500 mL reactor, Figure 47, allows reaching a couple (T, P) of
(500°C, 30 MPa). The specific volume is equal to 553 mL. Reaction pressure is induced by
the initial volume of black liquor solution and the controlled temperature in the reactor. The
system is monitored by a control unit which regulates and displays the stirring rate,

temperature and pressure during the experiment.

The reactor consists of a stainless steel body with an inner diameter of 6.5 cm and a jacket
made in Inconel 718 where a stainless steel beaker (316 Ti) is placed to prevent the corrosion
and holds the pressure. The thickness of the beaker is 1 mm. The thickness of the jacket is 6
mm and allows on the one hand resisting to corrosion of supercritical water and on the other
hand improving the heat transfer (316 Ti thermal conductivity at 500°C is 21.4 W.m™ K" and
Inconel 718 at 538°C is 19.4 W.m™.K'"). This reactor is stirred (agitator blades) that improves

the heating and homogenizes the media.

Heating is provided by a heating collar disposed on the body of the reactor and also by
heating rods put on the cap which allow a heating rate of 7°C.min"". The maximum power
delivered by the device is 2000 W for heating the body and of 200 W for the four heating rods

on the cap.

Cooling is achieved by injecting cold air into the stainless steel body of the autoclave. The

cooling is not instantaneous.

When the system is at room temperature, the final pressure in the reactor is measured (Ps) by
the unit control. When gas is noticed, gaseous products are recovered at the cooled outlet of

the system in a gas collector to measure the volume and then in a sampling bag. The gas
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collector is a cylinder filled with water, and graduated. Gas is finally pumped in a gas bag and
analyzed if necessary. Reactions made with this reactor were performed at 350°C; the gas

phase was too low to be collected, so the system to collect gas was not used.

/
[ [ thermocouples

/ ’(
i

J S 1.
Admission N, ( / ampung

1) T

Figure 47: 500 mL batch reactor.

Table 4 summarizes reactor conditions.

Table 4: Comparison of reactor conditions.

France Japan
Volume(mL) 500 5 5
Temperature range T <500°C T <600°C T <500°C
°O
Pressure P <30 MPa P <30 MPa P <30 MPa
range(MPa)
Dimensions (inner 6.5cm/ 12 cm I.5cm/4 cm lecm/ 10 cm
diameter/ height)
Material Inconel Stainless steel 316 Stainless steel 316
Stirring/ Stirring Yes / 1000 tr.min™" No No
speed
Heating system heating blocks heated air heating blocks
Temperature rate 7°C.min”" 20°C.min” Instantaneously
40°C.min™

After the reactor opening, phases are recovered and analyzed. Characterization tools are

detailed in the following part.
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I1.2. Experimental procedure
The experimental procedure can be divided into five steps described as following.
I1.2.1. Reactors filling

Temperature is fixed and controlled by the heating system but pressure is induced by the mass
introduced in the batch reactor at ambient conditions. The calculation of the introduced mass
is based on the density of the media at the experimental temperature and pressure of reaction

and the total volume of the reactor. The introduced mass is calculated as follows.

The density of black liquor solution (psotion) Was calibrated previously (chapter 2-11.1.1); it is
slightly different from that of pure water (peay). The ratio f (16) between the two densities at
ambient conditions (Timp, Pam) 1S assumed to be constant regardless of the operating

conditions.

f — Psolution (T amb,Patm) (16)
Peau (Tamb,Patm)

With the software “Water & Steam” provided by Springer, using the temperature and pressure
fixed for the experiment, the density of pure water is calculated. Using the ratio f, the density
of the solution under experimental conditions is estimated. Then, from the internal volume of
the reactor and the density at experimental conditions, the total mass of the solution (mgelytion)

is obtained (17).

— in
Msotution = Psolution (Texprpexp) X Vautoclave (17)

The initial volume of solution (Voution) 1s finally estimated (18).

Mgolution (1 8)

Veorution =
Solution
Psotution (Tamb,Patm)

The mass of solution (Mg, ytion) 18 introduced using a micropipette, the mass is controlled by

an analytical balance. Reactors are then closed and heated.
I1.2.2. Heating system and heating rate

Each type of reactor has a specific heating system, detailed previously for each type of

reactor.
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I1.2.3. Temperature profile and reaction time

One of the experimental difficulties comes from the difference between the temperature
indicated by the furnace and the effective temperature in the reactor. A simulation performed
using Comsol showed that for a reactor initially taken at ambient temperature and placed in
preheated oven at 400°C, temperature of 371°C is reached in the autoclave in 20 min; while

the oven reaches these temperature 5 minutes faster.

Because of the different experimental conditions (mass of liquid, final temperature,
differences in the heating rate...), it is difficult to estimate precisely the temperature profile
during the heating. Therefore, we consider as heating time, for all systems, the time required
for the heating system to reach the setting temperature. Thus, to compare experiments,

reaction time starts when oven temperature is stable.

Temperature
///
// Slow
/ Heating cooling
// time rate
/
Time

Figure 48: Temperature profiles.

I1.2.4. Cooling

Two cooling methods have been used for the mini reactors (5 mL). The first one is a slow
cooling (cooling under air circulation) and the second one by quenching (cooling in ice water

mixture). Slow cooling is 30 min and quenching is considered as instantaneous (t < 1 min).

After cooling, reactors are placed in the opening system to be opened, to separate gas, liquid

and solid phases produced by reactions and collect them.
I1.2.5. Opening reactor
As reactors were sealed, they are replaced in the opening / closing system to be opened.

Each reactor has a particular opening system detailed in the Chapter 2 I1.1.
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Given the quantities introduced into the reactors and recovered after reaction, it is impossible
to estimate errors due to experience. However, it is possible to take into account errors due to

analysis techniques. Errors have been taken into account when it showed an interest.
II1. Outflow materials: Phases characterization

Thereafter the methods employed to qualify and quantify black liquor and respectively the
phases produced by hydrothermal conversion are listed. Principles of following analysis are

detailed in annexes (annex 2).

Once the hydrothermal process finished, gas phase is analyzed directly after reactor opening.

The mixture liquid and solid is recovered then filtered to separate the two phases.

France Japan
CHNOS G wee
NMRE
TGA | L. Fomm ae
Formaldehvde | Rawblack liquor Phenols CPy
Phenols P (23 wit%) Batch L+8S ST - - —. GC-MS
gg% | + reactor ) | .:.
ICP-OES | Water 'P- OES
7 TGA
ESEM
BET TEM
Pvcnometer
L~ § < FTIR/RAMAN
CHNOS
XBRD
Particles size
\ distribution

Figure 49: Scheme of characterizations tools.

III.1. Gas analysis

Gaseous phases were exclusively analyzed by micro-gas chromatography with a micro-GC —
Agilent 3000 but the modules of analysis are different in France and Japan. This technique is
used to separate, identify and quantify the components. For both columns the length is 10
meters. Each module is composed of an injector, a column, a flow control system and a

thermal conductivity detector (TCD), able to do analyses in few seconds.

France: Four modules are used. Gases detected are:
-A module (column: molecular sieve): H,, CHy4, CO.
-B module (column: PLOT U): CO,, C;H,, C,H4 and C,Hg.

-C module (column: Alumine): C3Hg.
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-D module (column: OV-1): C¢He.

For A module, carrier gas is Argon while for B, C and D modules, carrier gas is Helium.
Japan: Two modules are used. Carrier gas is Argon. Gases detected are:

-A module (column: Molesieve 5A): H,, N, O,, CHy, CO.

-B module (column: PoraPLOT Q): channel A, CO,, C;H,, C,Hs4, CoHg and all others low
hydrocarbons.

u-GC allows identifying and quantifying the proportion of initial carbon converted into gas

phase:

%Carbon converted = —<arboningasphase 40 (19)

Minitial carbon

I11.2. Liquid analysis

Liquid phase is analyzed using several techniques hereafter presented.

Total Organic Carbon (TOC): The results given by the Shimadzu COT-meter (COT-5050)

are the amounts of total carbon (TC) and inorganic carbon (IC). The difference between these
two values is the total organic carbon (TOC). The values of TOC contents in the liquid phase
before reaction and after reaction allow assessing the conversion of organic carbon from the
liquid phase. Error due to TOC measurement is 2%.

TOC;— TOC;

%TOC removal = oc.

* 100 (20)

Chemical oxygen demand: COD (Hach Lange): COD indicates the mass of oxygen (O,)

consumed by compounds per liter of solution. It is expressed in mg/L or ppm. This parameter
gives information on the oxidation degree of molecules in the aqueous media. Indeed, COD
measures the amount of O, required to achieve oxidation. This analysis is carried out under
acid conditions in a solution with sulfuric acid and potassium dichromate with cuvette test
(LCKO14, LCK514). After reaction, the sample is analyzed at the wavelength 605 nm for
ranges 100-2000 mg.L™' (LCK514) and 1000-10000 mg.L™" (LCKO014).

Phenols _and formaldehydes measurement: Phenols and formaldehyde are measured using

cuvette tests. Tubes contain specific solution reacting with the molecules to be measured.

Several ranges of concentration are available.

Ultra-violet spectroscopy measurement: Spectroscopy UV HP8452 with diode array. This

technique was used to mesure chromophorous concentration evolution in liquid phase.
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Moleules containing n or m-electrons absorb the energy of UV light. The method to create the

spectrogram is based on Beer-Lambert law considering attenuation of intensity by the liquid.

Inductively Couple Plasma Optical Emission-spectrometry (ICP-OES): ICP JOBIN YVON-

ULTIMA 2. This analysis instrument is composed of a sample introduction system, a plasma
torch, a high frequency generator, optical transfer equipment, a spectrometer and a computer

interface.

Gel Permeation chromatography (GPC): (HP1100). This chromatography is a part of size

exclusion chromatography which separates molecules towards their size. GPC separates

compounds using molecular weight of molecules.

Gas chromatography coupled with mass spectroscopy (GC-MS): (GC: Agilent 7890A;

MS:Agilent 5975C) This analysis combined features of gas chromatography and mass

spectrometry. The features of the GC-MS used in Japan are the following:

Column: HP-5MS (OD: 250 um, film thickness: 0.25 pum, length: 30 m; Column pressure:
48.7 kPa)

Inject type: Splitless

Injection temperature: 300°C

Column oven temperature program: 5 min at 40°C, raised at the rate of 10°C/min up to
300°C, 5 min at 300°C

Ion chamber temperature: 230°C
II1.3. Solid analysis

Solid obtained from hydrothermal carbonization and presented in chapter 4 is characterized
using particles size distribution, elemental analysis, microscopy (transmission electron
microscopy and environmental scanning electron microscopy), total surface and specific
surface measurements with BET, density (helium pycnometer), thermogravimetric analysis,

Fourier Transform infrared spectroscopy, RAMAN spectroscopy, X-ray diffraction.

Particles size distribution: Mastersizer 3000 Malvern. The size of the analyzed particles can

vary from a few nanometers to several millimeters. An in-situ analysis gives the particles size
distributions in the reaction media. Repartition distribution is made following volume

represented by each class.
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CHNOS: elemental analysis (Thermo NA 2100). The weight fraction of C, H, N, S and O is
estimated. The analyses of C, H, N, S and O are separated. On the one hand C, H, N, S and on

the other hand O, are estimated. Oxygen is calculated by difference or by analysis.

Electronic_microscopy.: In France, Environmental scanning electron microscopy (ESEM,

Philips XL 30 FEG) has been used and in Japan, transmission electron microscopy (TEM,
Hitachi H7650). TEM measurements have been made with an acceleration voltage of 100 kV

to see the morphology of the solid residue and to analyze chemically the sample.

BET: Tristar I 3020. This technique allows measuring the surface area of the material.

Equations are detailed in annexes part

Pycnometer: ACCUPYC 1330 Micromeritics. This analysis is used to know the relative

density of a sample at P = 1.4 bars and T = 20°C with gas displacement. Gas used is helium.

Thermogravimetric analysis (TGA): TG-ATD 92, Setaram. This technique measures the mass

loss of a sample depending on the temperature. TGA analyses are used for solid
characterization:

-Isotherm of 10 min. at 30°C

-Slope from 30°C to 260°C with 5°C/min

-Isotherm of 1h at 260°C

-Slope from 250°C to 360°C at 5°C/min

-Isotherm of 1h at 350°C

-Slope from 360°C to 1100°C at 5°C/min

-Cooling to 30°C

AT(°O)

8 S

Slope of
5°C/min

1h
ST /Tsotherm
30 of 1h
Isotherm
of 10 min

Figure 50: Procedures for solid thermogravimetric analysis.

Tie
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Fourier Transformed Infrared Spectroscopy: FTIR (PERKIN ELMER 200 FTIR). This is an

analysis for solid, liquid and gas. In our work, it has been used for solid analysis. FTIR is an

easy way to identify the presence of such functional group in a molecule.

RAMAN spectrometry: RAMAN — AFM: Alpha 300R, WiTec RAMAN spectroscopy is a

vibrational spectroscopy like infrared spectroscopy, based on inelastic scattering of a

monochromatic source laser at 514 nm.

X-ray diffraction (XRD): (PANalyvtical X'Pert MPD diffractometer)

An X-ray diffractometer is used to identify the crystallinity/amorphism of a solid. Indeed,
each crystalline phase has a single diffractometer with specific fine peaks. On the contrary if
the structure is amorphous, this indicates that it is composed by not organized atoms. X-rays

are then diffracted in all directions, pattern are then obtained with large peaks.

Parameters used for XRD analysis are: Cu Ko (1.543 A) radiation source at 45 kV and 40 mA
of intensity. The reflections were collected in the 2*theta ranges from 9° to 80° with a step
size of 0.017°, a scan step time of 29.89 s. The irradiated length is 5 mm. The phase

identification was carried out with the JCPDS database.
II1.4. Conclusions

Phase’s characterization allows us to analyze properly the phases obtained and thus increase
our understanding on batch hydrothermal conversion. The different phases are characterized
to get data either on efficiency (H, production, TOC removal...) or solid formation (particle

size, chemical composition...).
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Résumé du chapitre 3 : Potentialités de la conversion hydrothermale de la liqueur noire

au travers d’une étude paramétrique en réacteur batch.

L’objectif de ce chapitre est, au travers d’une étude paramétrique, de mettre en évidence les
conditions opératoires permettant de répondre a nos objectifs : I’étude de la formation de

solide, celle de son annihilation... (cf introduction)

Les réacteurs batchs :

Compte tenu de nos objectifs pour cette thése et des objectifs de cette étude (présentée dans ce
chapitre 3), les réacteurs batch sont bien adaptés. En effet, ils permettent de récupérer les
phases gaz, liquide et solide, et ils offrent une grande flexibilité d’utilisation et une bonne
robustesse ; ils permettent ainsi de balayer une large gamme de conditions opératoires pour
identifier les voies d’études intéressantes (chapitres 4 et 5). Cependant les désavantages liés
aux réacteurs batchs ne permettent pas d’obtenir des résultats fiables quantitativement a
I’issue de chaque expériences, il est donc nécessaire de multiplier les expériences pour obtenir
des résultats statistiquement pertinents. Le mode opératoire des réacteurs batchs se divise en 5
étapes : le remplissage des réacteurs aux conditions ambiantes, 1’atteinte des conditions de
température et pression souhaitées, le temps de réaction aux conditions souhaitées, le retour

aux conditions ambiantes.

La conversion hydrothermale de la liqueur noire est un processus complexe de gazéification,
liquéfaction et carbonisation. L’étude paramétrique se concentre sur 1’effet de parametres

choisis sur les phases sortantes.

Influence des conditions opératoires sur la proportion des phases obtenues :

Les parametres d’étude sont le temps de réaction, la concentration et la température.

L’influence du temps de réaction a été étudiée en conditions sub (350°C) et supercritiques
(500°C). Cette ¢tude montre que ce parametre a une forte influence sur la conversion du
carbone de la phase liquide initiale a la phase gazeuse dans les conditions supercritiques. La
réactivité (ou la dégradation) est clairement mise en évidence par les spectres UV-Visible et la
production de gaz. Au contraire, la conversion du carbone de la phase liquide initiale est
moins affectée par le temps de réaction en conditions subcritiques. La conversion de carbone
de la phase liquide initiale a la phase solide augmente avec le temps de réaction quelque soit

les conditions opératoires (sub et supercritiques)
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L’influence de la concentration n’est pas significative sur la conversion du carbone lors de la

conversion hydrothermale de la liqueur noire dans la gamme opératoire considérée.

La température est le parametre opératoire le plus influant. En fonction de la température du
procédé, 3 régions de températures sont délimitées pour orienter la gazéification, la
liquéfaction ou la carbonisation ; en fonction des produits souhaités, la température guide la

conversion.

Influence de la température sur la composition des phases obtenues :

La gasification hydrothermale de la liqueur noire (entre 450°C et 600°C) montre une
intéressante proportion d’hydrogéne dans le gaz formé et une faible proportion de CO, (due a
I’alcalinité de la solution aqueuse). A partir de 500°C, de I’hydrogene sulfuré est identifi¢, ce
qui pose des problémes au niveau laboratoire pour 1’analyse des gaz en u-GC (gaz corrosif
nécessitant des colonnes d’analyses adaptées et coliteuses) mais ne posant pas de problémes
au niveau industriel notamment pour les papetiers qui utilisent ce gaz pour reformer la liqueur
blanche. En paralléle d’une phase gazeuse intéressante, une phase solide est systématiquement

produite. Ce solide est d’origine organique et inorganique.

La liquéfaction hydrothermale est étudiée entre 400°C et 500°C, I'intérét se concentre au
niveau de la phase liquide qui présente une composition complexe de composés phénoliques

ayant un intérét industriel fort. Cependant, leur séparation présente un challenge important.

La carbonisation hydrothermale est prépondérante en dessous de 400°C. A ces températures,
la phase gazeuse est quasiment inexistante alors que la phase solide est prépondérante. A ces
températures, la polymérisation des composés phénoliques avec le formaldéhyde est une des
réactions favorables. Vers 350°C, le solide est constitu¢ de microparticules de carbone

sphériques présentant un fort intérét.

Ainsi, la conversion hydrothermale révéle la formation de 3 phases dont la proportion et
I’intérét sont guidés par la température. La phase solide est systématiquement formée, sa
morphologie évolue d’une structure microparticulaire sphérique a une structure informe pour

des conditions plus séveéres.
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A TI’issue de ces conclusions, 2 voies d’étude se dessinent :

- La premiére en conditions subcritique a 350°C afin d’étudier la formation et
I’évolution de la phase solide formée de microparticules de carbone (chapitre 4).

- La deuxiéme portant sur la formation d’hydrogeéne a basse température, permettant
ainsi de travailler sans hydrogene sulfuré. L’ajout d’un catalyseur (CeO;) est étudié
afin d’augmenter la production d’hydrogeéne et d’éviter la formation de solide lors de

la réaction.

*** Fin du résumé
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Hydrothermal conversion processes are used to convert wet biomass or wastes, under pressure
and temperature. This conversion is more or less complete and depends strongly on the
operating conditions which impact its efficiency and thus the chemical composition of the
phases. Indeed, the operating conditions could favor gasification, liquefaction or

carbonization processes as mentioned in the first chapter.

According to the literature, black liquor is essentially converted by hydrothermal gasification
to produce hydrogen [53] by virtue of its alkalinity. As hydrogen is actually produced at high
temperatures; liquid fuels would be recovered at lower temperature following the concept of
bio-refinery [89]. Liquefaction of lignin, main component of black liquor, lead to a promising
full range of phenolic compounds [90], [76] which could be also expected during black liquor
liquefaction. Always, lignin conversion leads more or less to coke formation, due to
polymerization [91], [92], [58]. As mentioned previously, solid formation is a technological
issue of continuous reactor developments. The same process would be observed during black

liquor carbonization.

Hydrothermal conversion process can be performed in continuous or batch reactors. Because
of the precipitation of alkali salts contained in black liquor, we choose to do experiments in
batch reactor to prevent irregular performance of the system (blocking of the tubular reactors).
In fact, operating of batch reactor in the conditions of our experiments is easier then

continuous processes.

1. Batch reactors

I.1. Batch process description

Batch reactors are considered as the simplest type of reactors existing in term of operating
process [93]. They are usually easy to use and allow testing very quickly the influence of
operating conditions on reactions. Literature presents different types of batch reactors (quartz
capillary, diamond anvil cell...) employed in supercritical water processes, and different
heating systems. For high pressure processes, batch reactors are called autoclaves.

The advantages and drawbacks of autoclaves for hydrothermal treatment are presented

hereafter (Table 5):
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Table 5: Advantages and drawbacks of batch reactor

Advantages Disadvantages

Adapted to gas, liquid, solid and paste [94] Low volume

) ) ) ) ) Pressure induced by mass of material and process
High concentration of biomass and inorganic matter

temperature
Flexibility to use [94] Inconstant final quantity[94]
High feedstock concentration Analysis are usually made after reaction
Robust Catalytic effect of the reactor walls
Reduce of reaction volume, that increase collision
Low total yield

frequency and so accelerate reaction

Mixture by convection for unstirred reactors

Batch operation can be separated into 5 steps:

- Loading reagents, at ambient conditions

- Setting conditions of temperature and pressure,

- Setting reaction time (contact time in the fixed parametric conditions),
- Return to ambient conditions of temperature and pressure,

- Reactor discharge.
I.2. Reactor design

1.2.1. Stirred or unstirred reactor

Stirred reactor has a guaranty of homogeneity of temperature and concentration

(homogeneous mixture) during reaction.
[.2.2. Heating system

The performance of heating system is measured by:

- Its response time to modify the temperature (heating rate),

- The uniformity of the temperature in the reactor,

- The stability of the temperature (temperature control).
These points are crucial in case of crystallization processes and operations with temperature
dependent products. Heating system is also the crucial point to reach and maintain the
pressure in the reactor. Because of the general low heating conduction in the batch reactor, the
quality and performance of heating system are very important for the supercritical water

equipment.
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1.2.3. Operating conditions: temperature, pressure, concentration,

reaction time and catalyst

As seen previously, hydrothermal conversion is influenced by operating conditions.

Temperature and pressure: in batch process, pressure is governed by the reaction temperature
and by the initial loading of the vessel; so temperature and pressure have to be considered
connecting one to the other. Many studies [32] have shown that temperature is the most
important parameter for biomass hydrothermal conversion when pressure is high (P > 20
MPa). Temperature guides reactions, to form mainly solid, liquid (oily and aqueous phase) or
gas. Higher the temperature is; faster reactions will be. First solvolysis of biomass begins at
190°C to finish at 220°C. During solvolysis, hemicellulose and lignin are dissolved in water
[32]. For low temperature (T < 300°C and a self-generated pressure) carbonization is favored
and solid phase is mainly obtained. At higher temperature (T~300°C) and P < P critique,
degradation of raw material occurs with reactions such as dehydration, decarboxylation,
fragmentation, rearrangement, condensation, polymerization... At middle temperature (300°C
< T < 450°C) and high pressure (P > Pc) liquefaction is promoted and liquid phase is
quantitatively the major obtained phase. Very high temperature (>500°C) and high pressure
(P > Pc) promotes gasification process and influences the yield of each gas formed [95]

because of the endothermicity of the reaction [76].

Concentration: Concentration of organic matter is an important parameter for the

hydrothermal conversion. Indeed, the efficiency of gasification is better considering a low
concentration (~10 wt%) of initial biomass. In contrast, for obtaining liquid phase, a high
concentration of biomass increases the content of products in liquid and solid phase. An
optimization of the content of water has to be performed in relation to the objective of the

process: to produce more liquid, solid or gas phase in the experimental conditions (fixed T, P)

Reaction time: The yield of the different conversions changes with reaction time. For
example, char production yield decreases with reaction time whereas, gas production yield
increases for experiments performed in same conditions of pressure and temperature.
However, Kang et al. [76] has reported that hydrogen percentage of gaseous product is
favored by short reaction time with metal catalyst like copper, iron.... Considering complete
degradation (oxidation), a good balance between reaction time, temperature and oxidant has

to be found. Considering a conversion and not a complete degradation, if reaction time is too
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short, decomposition of black liquor will not be enough and if the reaction time is too long,

undesirable products such as coke would be produced in large quantity.

Catalyst: Alkali salts, metal oxide, activated carbon.... are catalysts used to obtain higher
yields at lower temperature, improving the process efficiency and/or promoting some

reactions (hydrogenation, oxidation, water-gas-shift reaction...).

Hydrothermal conversion of black liquor under supercritical conditions, or close to these
conditions, is a complex process of gasification, liquefaction and carbonization. The

parametric study that will be developed in this chapter investigates their response:

- How temperature impacts the distribution of the three phases rather than the other
parameters?

- What is the effect of the reaction time on the global kinetics of conversion?

- Effect of organic and mineral concentrations (black liquor concentration) on the
kinetics of conversion?

- The effect of temperature on solid formation and thus on mineral recovery?

- An hydrogen production efficiency as regards to the temperature range?
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I1. Influence of operating conditions on phases distribution and Kinetics

Carbon or mass balances are basically used to evaluate the distribution of products in the three
phases. In the literature, temperature appears as the most important parameter to be
considered. However, reaction time and concentration of raw material have also been studied

to confirm this assumption.

The operating conditions used in this section are summarized in Table 6. Reactors used are

5 mL reactors in RAPSODEE center.

Table 6: Range of operating conditions studied under constant reaction pressure of 25 MPa under supercritical

conditions and under self generated pressure for subcritical conditions.

Parametric study

Reaction time | Concentration Temperature
@ Temperature
E 350 and 500 500 350 | 400 | 450 | 500 | 550 | 600
= °C)
=
=
3 o
o0 Reaction time
g ; 081530 15 15
g (min)
2.
=)
Pressure
25 or 16.4 (at 350°C)
(MPa)
Concentration
10 5110 (20130 10
(Wt %)

I1.1. Influence of reaction time

Reaction time has been studied at sub and supercritical conditions for solution of 10 wt% of
raw black liquor. Indeed, the distribution of organics is related to the conversion efficiency,
improved at high temperature. Thus the carbon distribution to the three phases is presented at
350°C and 500°C. The evaluation of the carbon in each phase is at least based on the

measurement of the total organic carbon in the liquid phase.
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I1.1.1. Subcritical conditions

Figure 50 presents the variation of normalized TOC concentration in the liquid phase at

subcritical condition for reaction times in a short range (0-30 min).

At subcritical conditions, the conversion seems to be quickly “activated” during the heating of
the media as 20% of the TOC was removed before reaching the reaction temperature. A
stabilization of carbon conversion is observed during the first 8 min of reaction time then the

carbon conversion decreases quite linearly (R =0.99). The equation of this linear decrease is:
normalized TOC concentration = —0.013 x + 0.9547 8 min <x <30 min (21)

This profile indicates that the TOC removal is a phenomenon with constant kinetics; either
organic carbon has been transferred to gaseous, liquid or solid phases or mineralized. The

error related to TOC measurement is 2% of the value indicated on graphs.

TOC =f (reaction time)

1,00
= L 4
2 o0 ®
= 2
3
g 060 *
o
2
g 040 #350°C
=
S
= 020
£
—
(=]
“ 0,00

0 5 10 15 20 25 30 35
Reaction time (min)

Figure 51: Normalized TOC concentration at 350°C depending on reaction time.

After 30 min of reaction time at subcritical conditions only 42% of the initial TOC was
removed from the liquid phase. The color of the solutions is shown in Figure 52. The dark
brown color is due to aromatics and conjugated systems such as a-carbonyls groups and
quinines. In Figure 52, the color variation is not appreciable versus reaction time. This result

could be explained in two ways:
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- 1) The color is not changing because the solution contains the same organic
compounds. As the TOC removal kinetics is quite constant, it means that all molecules

are just degraded for one step (removal of one carbon for example).

- 2) The color is not changing because the color is very intense even if the
concentrations of the chromophore groups are low. In this assumption, some
molecules are not degraded while another fraction is quite mineralized. As the TOC
removal is varying linearly, it would suggest that the TOC removal has the same

kinetics whatever the complexity of the molecule.

To discuss these two hypothesis, the UV-Vis spectrum of each solution was also plotted in

Figure 53. The region between 254 nm and 280 nm is characteristic of aromatics.

Figure 52: Collected liquids after treatment versus reaction time (black liquor solution is 10 wt%, self generated

pressure, 350°C, batch reactor 5 mL)

Abzorbance (ALl

._'_

200 SDID 4EIIIZI SDID BDID TEIIIZI avelength (nm)I
Figure 53: Influence of reaction time at 350°C (Black liqguor, 0 min, 8 min, , 30 min)

From black liquor to the solution after hydrothermal treatment, the main differences are

obtained at 270 nm and 340 nm in terms of absorbance. Surprisingly the values of absorbance
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are increasing with reaction time. This suggests that aromatics concentration is increasing
with time, due to the reaction: at 350°C, aromatization is promoted by reaction time,
implicitely, gas production also. This analysis shows rapidly that the process has a weak
influence on the chromophore groups that explains the deep brown color. Taking into account
that 2 regions of the spectra are mainly affected by the reaction time, and the weak gas

production, the TOC variation would be preferably explained by the second hypothesis.

Organic carbon is thus mainly recovered in liquid phase but its proportion in liquid phase
decreases with reaction time at 350°C. The analysis of gaseous and solid phases, as well as

the inorganic liquid carbon, informs us about the carbon distribution.

Given the volume introduced and uncertainties linked to the measurements, the Figure 54
represents approximatively the trend of carbon distribution following reaction time. The error

related to carbon distribution is 1 %.

0 min 8 min 15 min 30 min
350°C
G <1% ~12%
L
~63%
S
~11% ~25%

Figure 54: Carbon distribution at 350°C as a function of reaction time
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I1.1.2. Supercritical conditions

At 500°C and 25 MPa, the normalized TOC concentration was also measured for different
reaction time. Figure 55 shows that the TOC removal variation is quasi linear between 0 and
15 min and then was quite stabilized for 30 minutes of reaction time. The linear equation

(R*=0.97) is:

Normalized TOC concentration = —0.0476 x + 0.8275 0<x<15min (22)

At 500°C, the conversion is 3.7 times faster than that at 350°C. As mentioned at subcritical
conditions, the linear TOC variation indicates that the organic carbon is removed from the
solution with the same kinetics. Compared to subcritical conditions, reaction time influences
more the degradation and so the conversion under supercritical conditions. For a temperature
above 374°C, properties of water changes drastically as mentioned in the chapter 1 that
upgrades the conversion due to its higher reactivity. After 30 min only 15% of the initial TOC
is recovered in the liquid phase. As mentioned previously, the error related to TOC

measurement is 2% of the value indicated on graphs.

TOC = f (reaction time)

1,00
= a
=]
g 080
5
=
Q
2 0.60
=]
o
2
e 040 | W500°C
=
= 0,20
= [ ]
5 [ ]
“ 0,00 !

0 5 10 15 20 25 30 35
Reaction time (min)

Figure 55: Normalized TOC concentration at 500°C depending on reaction time

Figure 56 shows the color variation of solutions obtained after various reaction times. The
deep brown color disappears at 15 min reaction time leading to an orange color. After 30 min
of reaction the solution is totally clear and uncolored. Under supercritical conditions, reaction

time influences greatly the conversion.
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Figure 56 Collected liquids after treatment versus reaction time (black liquor solution is 10 wt%, 25 MPa,
500°C, batch reactor 5 mL)

As for subcritical conditions, UV-Vis spectra are presented in Figure 57. The lighting of the
brown color is clearly related to a rapid consumption of aromatics that absorbs around 280

and 340 nm.

W
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Figure 57: Influence of reaction time at 500°C (black liquor, 0 min, 8 min, /5 min, 30 min)

Once again, organic carbon is distributed to the three phases. Figure 8 represents
approximatively the trend of carbon distribution following reaction time. At 30 min reaction
time and 500°C, the major part of carbon is observed in the gas phase, while in the solid and

liquid phases its repartition is very similar. The error related to carbon distribution is 1 %.
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0 min 8 min 15 min 30 min
500°C
G <1% ~42%
S
~10% ~30%

Figure 58: Carbon distribution at 500°C as a function of reaction time
I1.1.3. Inorganic carbon distribution

Figure 58 shows the evolution of pH at 350°C and 500°C in terms of reaction time. Initial
black liquor solution has a pH of 12, with an inorganic contained of 7 wt%. After reaction pH
is a little lower at ~10 and still basic, due to the liquid alkalinity. Reaction times do not
influence the pH of the solutions as it was measured at atmospheric conditions. The error

related to pH measurement is 0.1 ph unit.

pH

14,0

12,0

10,0 :

8,0
6,0 €350°C
W500°C

He
L) 4
me

pH

4,0

2,0

0,0
0 5 10 15 20 25 30 35

Reaction time (min)

Figure 59: pH of the liquid obtained at 350°C and 500°C in term of reaction time.
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To conclude, reaction time has a great influence on carbon conversion from liquid to gaseous
phase in supercritical conditions. The reactivity (or degradation) is clearly highlighted through
UV-Vis spectra and gas production. On the contrary, the conversion of carbon from liquid
phase is less affected by reaction time in subcritical conditions. The carbon conversion from
liquid to solid phase increases with reaction time and seems to follow the same trends
(Figures 54 and 58). Thus, the amount of carbon recovered in solid is the same for both

temperatures.
I1.2. Influence of concentration

The influence of the second parameter (Table 6) experimented is the concentration of raw
material. Considering that water is more reactive at supercritical rather than at subcritical
conditions, the influence of the concentration is investigated at 500°C. Figure 60 presents the
fraction of TOC remaining in the solution after 15 min reaction time. The increase of black
liquor concentration leads to a similar conversion of organic matter, as the remaining TOC
stabilized at ~15 wt%. So the conversion efficiency is the same. This could be due to the
“constant” catalytic action of minerals, which are increased in the same order of magnitude as
the organic content. As mentioned previously, the error related to TOC measurement is 2% of

the value indicated on graphs.

_ TOC = f (concentration)
3
2 025
5
=}
8 020
5] & ¢
© 015 *
3 *
= 010 #500°C
i _
S 005
E 2
£
5 0,00
z 0% 10% 20% 30% 40%
mass concentration (wt%)

Figure 60: Normalized TOC concentration at 500°C depending on black liquor concentrations.
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Pictures in the Figure 61 shows the color of the remaining liquids

500°C 5 500°C 10 500°C 20 500°C 30
wt% wt% wt% wt%

Figure 61: Liquid obtained after 15 min of reaction time at 500°C, for four different concentrations of raw black
liguor: 5 wt%, 10 wt%, 20 wt% and 30 wt%.

Color changes from yellow, at low concentrations, to dark orange, for higher concentrations.
As mentioned in the previous section, color is linked to the remaining organic and its
distribution between the different classes, especially aromatic content: higher the

concentration is, higher the remaining of aromatic amount will be.

In addition, whatever the concentration of the initial solution, pH of final liquid is around 10
at 5 wt% and 10 wt% then increase to 11, Figure 62 shows this result. The value of pH is
essentially due to alkalinity of the salts contained in the liquid; higher their concentration is,
higher the pH will be. Results in Figure 62 suggest that salts mostly remained in the liquid

phase. The error related to pH measurement is 0.1 ph unit.

pH

14,0
12,0
10,0 + &
8.0
6.0
4,0
2,0
0.0

+500°C

0 5 10 15 20 25 30 35
mass concentration (%)

Figure 62: pH of the liquid obtained at 500°C, 15 min of reaction time, various initial concentrations.
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Abzorbance (ALY
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Figure 63: Influence of the concentration (Black liquor, 10 wt%, 20 wt%, ) at 500°C.

As regards to the UV-Vis spectra (Figure 63), the profiles are similar, and the absorbance is
increasing with the concentration. The relative composition of the solutions, especially their
aromatic content, respects the initial black liquor concentration. Therefore, it seems that black
liquor concentration has low influence on the aromatics degradation process at 500°C and 15

min reaction time. The increase in absorbance is due to a more intense color.

Total carbon is distributed in the same way independently of the concentration as shown in
Figure 63. The overall results seem to indicate that concentration of black liquor is not a
limitative factor for hydrothermal conversion efficiency in our experimental conditions. The
alkali salts in the black liquor are assumed to catalyze the conversion its kinetics seems to be a

linear function of organic and mineral concentrations. The error related to carbon distribution

is 1 %.

5 wt% 10 wt% 20 wt% 30 wt%

500°C
G ~40% ~40%
L B
S
~25% ~25%

Figure 64: Carbon distribution at 500°C as a function of concentration
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I1.3. Influence of temperature

Results obtained after the study of the influence of reaction time suggest that temperature is a
determinant parameter in hydrothermal conversion. Thus, reaction temperature is studied
from 350°C to 600°C, at 15 min of reaction time with raw black liquor solution at 10 wt%.
Figure 65 presents the relative TOC concentration in the final liquid phase versus reaction
temperature. TOC removal increases with temperature for the same reaction time. The profile
is quite linear up to 500°C and then decreases slower (stabilization tendancy). TOC evolution
confirms that temperature is the most influencing parameter as regards to the carbon
distribution in the three phases. As mentioned previously, the error related to TOC

measurement is 2% of the value indicated on graphs.

TOC =f{ (temperature)

1.0
0,9
0.8 v

0,7 v
0,6
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Normalized TOC concentration

300 350 400 450 500 550 600 650
Temperature (°C)

Figure 65: Normalized TOC concentration in liquids obtained after 15 min of reaction time, with initial black
liquor at 10 wt%, for temperatures range from 350°C to 600°C.

Figure 66 presents the color of the obtained liquid. The color of the solutions at 350°C and
400°C are very similar, in accordance with a less TOC removal. Then the color decreases
simultaneously with an increase of TOC removal. Similar colors have been observed by Cao

et al. [53] during hydrothermal conversion of black liquor in continuous reactor.
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450°C 500°C 550°C

Figure 66: Liquid obtained after hydrothermal conversion conducted at temperature from 350°C to 600°C, at 15
min of reaction time with black liquor at 10 wt%

The deep color is clearly related to the composition of the solution which contains phenols
and oligomers coming from lignin and its incomplete degradation [96], [97]. The increase of
the temperature influences directly the aromatic content of the solution: higher the
degradation is, lower the content of aromatics in the liquid will be and the black color
disappear. As well as for the others parameters, temperature reaction does not change the pH

value, it remains equal to 10.

The carbon balance is thus summarized in the Figure 67. The error related to carbon

distribution is 1 %.

350°C 400°C 450°C 500°C 550°C 600°C

M

Figure 67: Carbon distribution after 15 min reaction time as a function of temperature.

In conclusion, three regions of temperature are determined to direct gasification, liquefaction
or carbonization. According to literature Figure 69 summarizes the main ways to process

hydrothermal conversion of biomass [53], [98], [76], [73], [97], [37].
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f[ Gasification (400°C - 1080°C):
H,
Blagk liquor Liquefaction (350°C - 500°C):
Lignin model Hydrothermal o
Alkali llgnln Conversion Bulldmg ]{)locks molecules
Real biomass Oily phase
Carbonization (150°C - 350°C):
Coal
Hydrochar

Figure 68: Summary of expected products from hydrothermal conversion of biomass

I1.4. Conclusion

According to the results, temperature is the most influencing parameter in the hydrothermal
conversion of black liquor. Depending on the products desired, temperature can be used to
guide the conversion. Reaction time increases the conversion initiated by temperature and
concentration is an adjusting parameter to optimize the route.

The next section is devoted to temperature influence on the black liquor conversion. In

particular the composition of the three phases will be investigated.
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I11. Changing in phases composition as a function of temperature

The hydrothermal conversion of black liquor to valuable products is mainly controlled by
temperature reaction: Gaseous phase is favored at high temperature or under supercritical
conditions; liquid phase containing building-block molecules has to be considered at
moderate temperature or subcritical conditions; and solid phase is the desired phase obtain at
low temperature. This section is focused on the three processes mentioned previously:

gasification, liquefaction and carbonization.

I11.1. Hydrothermal gasification

In general, the goal of gasification is to produce hydrogen. Taking into account a proximate

molar composition of the liquid [2], the complete gasification can be expressed (23).
Ci0H1250, +13 H,0 - 10C0, + 19.25 H, (23)

Equation 23 indicates that one equivalent mol of black liquor can produce about 20 mol of
hydrogen. At high temperature, pressurized water is extremely reactive. Under these
conditions, gasification reactions such as water gas-shift, decarboxylation, methanation and
dehydrogenation are overriding. For this reason, researches are developed for the gasification
process. The molar structure of our black liquor is C;oH,5015 5 (chapter 2) so the hydrolysis

(24) would lead to higher amounts of hydrogen.
Ci0Hy80125 + 7.5 H,0 - 10 C0, + 21.5 H, (24)

The amount of gas obtained is too low to be collected and analyzed up to 400°C. The gases
identified are listed in Table 7 from micro-GC analysis. The composition changes with the

temperature: low hydrocarbons are detected at 450°C: CH4, C,Hg which disappear at 600°C:

Table 7: Composition of gas obtained after 15 min reaction time, 25 MPa and a 10 wt% initial solution of black
liquor.

450°C 500°C 550°C 600°C
H, H, H, H,
o, Co, CO, CO,
Co co co
CH,
C,H;
H,S H,S H,S
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H,S in the gas mixture is detected by mass spectroscopy analyzer but was not quantified. This
gas has been also detected during hydrothermal conversion of black liquor in continuous
process by Cao et al. [53]. H,S is only formed at high temperature. In addition to the usual

reactions of gasification; equations given by (25), (26) and (27) could also occur [99].

COg) t+ Hz0(g) = COzg) + Hy (25)

H,S could also come from inorganic sulfur compounds abundant in the black liquor.

As the temperature increases, the total amount of gaseous phase increases. Table 8 illustrates
gas compositions, excepting H,S not quantified. The production of hydrogen (23) and CO,
would be the double. However, the basic pH of the solution increases the chemical absorption
and fixing of CO; into carbonates in the liquid phase [82]. The capture of CO; is improved
with reaction time. Carbon monoxide was also recovered into the gas phase. Its low part can
be explained by the enhancement of the water gas shift reaction (which consumes CO) in
presence of alkaline salts. This results is in accordance with the literature using either batch or
continuous process [82], [53].

Table 8: Comparative molar composition of gas obtained for black liquor at 10 wt%, 25 MPa, 600°C, batch

autoclave.

600°C, 15 min 600°C, 30 min
H,=284,7% H,=287,8 %
CO,=142% CO,=11,5%
CO=1,1% CO=0,7%

The error related to percentage calculated from p-GC results is 0.1%. As H,S was not
quantified, a molar ratio of hydrogen to carbon dioxide amounts was defined. This molar ratio
is equal to 2.2 and 6 at 450°C and 600°C respectively. The literature data show an efficient
production of hydrogen but with a lower ratio. Sricharoenchaikul et al [82] obtained in

capillary reactor, a ratio Ho/CO; equal to 3.1 at 375°C, 1.9 at 500°C and 0.9 at 650°C for a

3 0SC : Organosulfur compounds (organic molecules which contains sulfur such as thiols, polysulfides,
thiosulfonates, thioethers...)
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reaction time of 60 sec. Ronnlund et al. [72] obtained in continuous reactor a ratio < 1; Cao et
al. [53] obtained in continuous reactor at 450°C a ratio H,/CO; equal to 1.12 and at 600°C a

ratio equal to 0.8.

This high hydrogen production confirms the gasification efficiency of the batch process

developed by our experiments.

At 450°C, TOC removal from the liquid (Figure 65) equals 60% whereas it equals 95% at
600°C. Indeed, GC-MS analysis of the liquid at 600°C (Figure 69) confirms the presence of

only few types of molecules.

1001 5E

% 766

Figure 69: GC-MS of the liquid obtained at 600°C and 15 min of reaction time
The main molecules detected are: Phenol (6.36 min); 2-methyl-phenol (7.37 min) and
3-methyl-phenol (7.66 min). The composition of liquids after supercritical water gasification
at 500°C, 600°C and 650°C was previously studied in the literature [100] and showed that
phenol and derivatives are almost present in the solution above 500°C. Polymerization of
phenolic compounds started immediately after production that conducts to the formation of a
carbonaceous solid, namely hydrochar [58], [101]. The analysis of this solid phase was
realized at high temperature (600°C). Figure 69 shows its surface as an example. The solid
phase was mainly composed of carbon, oxygen and some minerals have been detected by

EDX analysis. However, minerals do not play a role on the surface morphology [51].
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Figure 70: Solid obtained after 600°C 15 min of reaction time, 10 wt% of black liquor
In conclusion, efficient hydrothermal gasification is realized at high temperature range. In a
short reaction time the amount of H,, as well as its proportion in the gaseous phase, are of
great interest. However, this high hydrogen content is simultaneously obtained with H,S. This
gas is toxic and the gaseous phase needs to be purified before subsequent use. Even at high
temperature, the solid formation was not suppressed. The amount is low in the batch process
but it is an issue to be considered. Salts, probably precipitated during the supercritical phase

of the process, are redissolved in normal conditions (by cooling)

Considering medium temperatures, more organics should be recovered in liquid phase and

H;,S production will be reduced or inhibited.
I11.2. Hydrothermal liquefaction

Hydrothermal liquefaction is basically carried out close to the critical temperature. Between
400°C and 500°C, TOC in the liquid falls from 80% to 20% of its initial value. By
consequent, in this temperature region, organic content is expected to be particularly high. In
the liquid, GC-MS analysis of the liquid obtained at 450°C, 15 min of reaction time is
presented in Figure 70, and confirms a complex composition with a dominant presence of
various phenolic compounds. Color of the liquid at 450°C is lighter (Figure 66). This

attenuation is due to rings opening [72].
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Figure 71: GC-MS analysis of the liquid obtained at 450°C, 15 min of reaction time
Main phenolic compounds represented in the Figure 71 are: (2-hydroxy-2-cyclopenten-1-one
(4.65 min); (R)-(+)-3-methylcyclopentanone (4.75 min); 2-methyl-2-cyclopenten-1-one
(5.45 min); phenol (6.38 min), 2-methyl-phenol (7.39 min) and so on). These molecules,
despite of their diversity, are chemically interesting and are considered as building block
molecules. A solution to recover the most interesting ones could be increase the selectivity of
the process to increase their concentration, by modifying operating conditions. Indeed, as
mentioned in chapter 1, water reactivity depends on temperature and pressure applied to the

hydrothermal process. Then, use a membrane to separate the molecules.

The pH of the collected residual aqueous phase remains alkaline (pH>10). On the contrary,
the pH of the outflow was measured in the neutral region in a continuous process [53]. The
authors processed the pH measurement during the cooling step and showed that the pH was
increasing. This phenomenon was due to the dissolving of alkaline salts which were deposited
on reactor walls at supercritical conditions. In our batch reactor salts are dissolved during the
cooling and thus before phase recovery. That could explain the alkaline pH measured in the

final liquid after cooling.
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Figure 72: ICP measurements of the liquid obtained after hydrothermal conversion, 15 min of reaction time. The
error related to ICP measurement is around 5 %.

The salt concentrations were measured in the final liquid. Potassium, sulfur and sodium are
the main inorganic components of black liquor, so their concentrations have been followed.
Figure 73 presents the mass concentration of the salts in the liquid phase, compared to the
initial solution of black liquor. Potassium, sulfur and sodium are not significantly transferred
to other phases as the concentrations remain high in the liquid. Low diminutions observed in
Figure 73 suggest a limited transfer of salts from the liquid to the solid phase as mentioned in

the literature [100].

Figure 73 and Figure 74 show solids obtained at 450°C and 500°C, after 15 min of reaction
time. Black parts of the pictures represent carbonaceous material while bright spots

correspond to minerals. This result confirms the recovery of inorganic matter in solid phase.
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Figure 74: ESEM pictures for solid obtained at 500°C and 15 min of reaction time

Hydrothermal liquefaction is the objective of conversion at medium temperature range; the
most part of organics is recovered in the liquid phase. The phenolic compounds are mainly
recovered in an aqueous phase with the operating conditions investigated, and a
complementary study is required to favor and increase selective building-block molecules.
The separation of the different aromatic species from the collected liquid should be a
challenge step. The formation of shapeless solid residue is not avoided using these operating

conditions.
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I11.3. Hydrothermal carbonization

Hydrothermal carbonization corresponds to processes performed at temperatures lower than
400°C. For this range of temperatures, no gas is quantitatively formed and hydrothermal
carbonization reactions such as polymerization, demethanation, decarboxylation are favored
[37]. During black liquor hydrothermal conversion, phenolic compounds polymerize together

with aldehydes [58], [75], [23].

GC-MS analysis of the liquid obtained at 350°C and 15 min of reaction time, in Figure 75,
shows two main peaks: 2-methoxy-phenol (7.88) mainly and 2-methoxy-4-methyl phenol
(9.21). In addition to the high TOC measured, this result confirms that the degradation of

black liquor has just started during this short reaction time.
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Figure 75: GC-MS analysis of liquid obtained at 350°C, 15 min of reaction time

At the end of experiments at 350°C, 15 min reaction time, two liquid phases are observed: a
very low volume of oily phase and an aqueous phase. However only aqueous phase can be
recovered and analyzed, the oily phase is too insufficient. Although the amount of oily phase
is low, we suppose that it would contain high concentrations of organics such as phenolic
compounds, furfurals etc, which are widely precursors of polymerization reactions [72]. After
reaction, solid is recovered and filtered from liquid phase. Considering that TOC of the liquid
is around 25% its initial value, the remaining carbon is recovered in the oily and in the solid

phases.
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Figure 76: ESEM pictures for solid obtained at 350°C and 15 min of reaction time, 10 wt% of black liquor
solution

At 350°C, under subcritical conditions, the solid is composed of spherical microparticles as
shown in Figure 76. The shape of the microparticles are supposed to come from the interfacial
energies [72] of oil-in-water dispersion [39]. No minerals are observed on the solid using

EDX detector.
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Figure 77: ESEM pictures for solid obtained at 400°C and 15 min of reaction time with a 10 wt% black liquor

solution

Although the hydrothermal carbonization is not carried out to produce bio-oils, this phase

seems to be required to obtain a specific shape, size and structure of the carbonaceous solid.
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IVv. Conclusion & Prospects

IV.1. Conclusion

Hydrothermal process revealed the formation of three phases. Among the different operating
parameters investigated, the temperature controls the composition and distribution into the
phases of the different species obtained by the hydrothermal conversion of black liquor

(Figure 78).
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Figure 78: Summary on the presence of the phases

At high temperature a high proportion of hydrogen and a low proportion of CO; and the

presence of H,S are revealed in the gaseous mixture.

At medium temperature, liquid-liquid conversion is favored and produced a mixture of
interesting phenolic compounds such as phenol, 2-methyl-phenol (guaiacol), cresols. The
proportion of carbon converted increased with temperature; meaning that a part of organic
carbon was transferred to solid and/or gaseous phase. Minerals mostly remain in liquid phase

while a slight amount covered the solid surface.

At low temperature, no quantitative gas formation is detected; liquid phase is still enriched in
organics and black liquor begins to be degraded into lower phenolic compounds. These latter
are automatically used to produce carbon microspheres in an oil-water emulsion. So, the solid
recovered presents an interesting morphology, and would be valorize as useful material,

according to the literature [102], [37], [103].

Whatever the reaction temperature, solid is always observed after reactions as shown in

Figure 79. Carbon-based microparticles are only obtained at subcritical conditions as regards
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to the range of reaction temperature. The morphology evolves from microparticles at 350°C to
shapeless structure under severe conditions. The structure becomes denser and could be due to
an evolution of microparticles by sintering or agglomeration of particles over the range of

temperature.

350°C 400°C 450°C 500°C 550°C 600°C

Figure 79: ESEM pictures of solid residue obtained after filtration of reaction media
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IV.2. Prospects

These preliminary experiments, performed at small scale in stainless steel batch reactor,
highlight that black liquor is converted into valuable compounds. However, two mains

observations have to be taken into account:

1) Solid is formed during hydrothermal conversion whatever the conditions, but proportions
are changing. Coke formation is a huge problem in continuous as batch processes. In
continuous process the formation of coke is responsible of partial or total plugging of pipes.
In batch reactor, coke development alters reaction media. If coke is formed along the walls,
the catalyst effect of these latters is diminished. If salts are quantitatively trapped inside coke,
pH and chemical equilibria are modified and some reactions favored. Given that, a better
understanding of the coke formation during hydrothermal conversion of black liquor is a good
way to avoid and optimize the process. As presented in the chapter, the preliminary
experiments confirm the interest of the black liquor as raw material to study coke formation as
organic and mineral matter. The following chapter is dedicated to the solid formation under

subcritical conditions at 350°C, regarding also valorization options of this material.

2) High amount of hydrogen is produced at 600°C and its ratio to CO, is significantly high.
However, this temperature appears too high to develop an industrial process taking into
account the corrosion and other technological difficulties, so it could be interesting to
investigate quantitative hydrogen formation at lower temperature. In addition, if coke
formation could be avoided, the black liquor conversion would be interesting for continuous
process. Thus a catalytic study becomes interesting, especially using a nanocatalyst whose
size is significantly lower than the diameter of continuous plug flow reactors. Chapter 5 will

present these investigations using CeO; nanocatalyst.
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V. To remember the chapter
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Résumé du chapitre 4 : Etude de la génération de particules

L’objectif de ce chapitre est d’étudier la formation de solide, pour cela, nous nous sommes
placés dans des conditions opératoires nous permettant de suivre au mieux 1’évolution de sa
formation ; c'est-a-dire nous placer dans des conditions pour lesquelles le solide est homogéne
et de morphologie connue : & 350°C, en conditions subcritiques pour des temps de réaction
allant de 15 min a 24 h ; la pression en conditions subcritiques est auto générée et vaut 16,4
MPa. Dans ces conditions de température, la carbonisation hydrothermale est prépondérante
par rapport aux autres processus (gazéification et liquéfaction). C’est un chapitre dense, la

théorie s’y rattachant est placée en téte de chapitre.

Nous avons étudié dans ce chapitre 1’effet du temps de réaction sur la morphologie du solide
puis nous avons expliqué les phénomenes identifiés. Ce chapitre se divise en 5 grandes
parties : une partie sur la théorie de la formation de solide et la carbonisation hydrothermale,
une deuxiéme sur le choix des conditions opératoires, une troisiéme sur ’effet du temps de
réaction puis une quatriéme sur I’explication de ce qui est observé et enfin I’influence de la
rampe de montée en température et le refroidissement sur la morphologie du solide en

réacteur batch.
Pour ce chapitre un résumé global sera fait et non partie par partie.

La partie théorique révele que la formation de solide peut se reposer sur 2 théories : celle de
Brooks et Taylor et celle d’Inagaki. La bibliographie nous apprend également que le solide
résulte de la polymérisation des composés phénoliques avec des molécules plus petites telles
que le formaldéhyde, servant de connecteurs entre deux molécules phénoliques. Ainsi toutes

les discussions se basent sur I’étude des phases liquides et solides.

Le liquide et le solide obtenus apres réaction sont récupérés a pression et température
atmosphérique. Méme si le chauffage rapide et le refroidissement rapide sont utilisés pour
avoir une meilleure représentation de l'influence du temps de réaction, il est tres difficile de

savoir précisément distinguer les phénomenes impliqués dans chaque étape.

Les informations apportées par l'analyse de la phase liquide et solide peuvent étre résumées

comme suit :
*** Trois étapes peuvent €tre identifiées au cours du processus de la formation solide :

De 15 min a 90 min : des particules isolées sont formées, ensuite la croissance des particules

se produit et enfin la coalescence. Entre 2 h et 4 h : des blocs carbonés sont identifiés. Aucune
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sphére n’est observée. Dés 6 h : les particules semblent émerger d'une couche. Cette couche
semble étre un support continu qui est solide a température et pression atmosphériques. Cette

couche est donc probablement visqueuse pendant la réaction.

*** La composition ¢lémentaire montre que le degré d'aromaticité augmente avec le temps de
réaction. Ce point est confirmé par I'analyse ATG ce qui suggere que les solides ne présentent
pas les mémes fonctions chimiques ou organiques en fonction du temps de réaction appliqué.

Les solides présentent de plus une coque hydrophile qui est observée.

*** La composition du liquide change rapidement et n’évolue plus significativement pour des
temps de réaction longs, ce qui suggere que les modifications morphologiques de la phase

solide sont dues a un réarrangement physique.

La confrontation avec la littérature suggere que dans un premier temps les composés
organiques de la liqueur noire se décomposent en composés phénoliques et aldéhydes qui se
regroupent puis polymérisent en une matiére solide carbonée. Les particules obtenues a court
temps de réaction dans nos expériences sont similaires a ceux obtenus par Titirici. Au
contraire, certains auteurs, comme Ayache ou Inagaki et al. considérent que les particules
carbonées sont créées a partir d'un support continu en changeant d’aromaticité, ce qui traduit
la morphologie du solide pour de longs temps de réaction. La notion de mésophase est
introduite par Ayache et Inagaki pour traduire la phase « solide-liquide » dans laquelle se
forment les particules. Ces deux théories suggerent des mécanismes de formation différents
mais les deux mécanismes semblent expliquer 1'évolution de la morphologie solide dans nos
expériences. En fait, les mécanismes chimiques et physiques impliqués dans la conversion
hydrothermale de la solution de liqueur noire coexistent et fonctionnent avec des cinétiques
différentes tout au long du temps de réaction. De plus, 1'étape de refroidissement, quelque soit
sa vitesse, a une influence inconnue sur les caractéristiques du solide. Une couche de
transition est formée, au sein des gouttelettes de phase organique, entre la phase organique et
les particules carbonées. Cette couche est a considérer comme un réservoir de sous-unités

« phénols- formaldéhydes ».
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On peut résumer toute la formation du solide avec les schémas suivants :

Heating Sursaturation Radial

Sursaturation
Nucleation
Growth
Maturation
Agglomeration

VK La Mer, Ind Eng. Chem, vol. 44, 1052
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La rampe de chauffe et le refroidissement n’influent que sur la taille des particules et n’agit

pas les phénomeénes mis en jeu.

Ces particules présentent un certain nombre d’applications présentées par le professeur Titirici

et mentionnées dans la partie perspectives de ce chapitre.

*** Fin du résumé
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As explained in Chapter I, the formation of solids has to be avoided in continuous
hydrothermal processes of gasification or liquefaction. On the contrary, hydrothermal
carbonization concerns the generation of solids with controlled properties. Therefore, the
understanding of phenomena that occurred in solid formation under pressure is fundamental
to optimize the hydrothermal conversion of raw materials. Alkali salts deposition and coke
formation are the most important issues in hydrothermal processes at high pressure as it

results in the corrosion of material and reduction of heat transfer efficiency [73].

Thus this chapter is focused on the solid formation during hydrothermal conversion of black
liquor. Two points are discussed:

- Mechanism of solid formation in view to better understand phenomena involved in
continuous processes: use of subcritical conditions to limit salts precipitation and
study of the impact of heating and cooling rate

- Influence of operating conditions on solid carbonaceous properties (morphology,
physico-chemical properties...) in subcritical processes to improve knowledge about
hydrothermal carbonization research subject presenting more attention this last decade

Hydrothermal carbonization has common features with coalification, explanations of some

phenomena can be found in the coalification theory [104].

I. Theory of coke generation

The solid generated by hydrothermal processes, called hydrochar or coke, is formed by the
polymerization of components from liquid phase [105], [75]. The characteristics of this solid
are directly linked to the molecules formed during degradation of the initial raw material.
Black liquor is a complex mixture of lignin-based molecules. Studies about lignin ([73], [58],
[75]) have shown that under sub/supercritical conditions, the decomposition of lignin forms
phenolic aromatics compounds and aldehydes. These two molecules are then involved in
polymerization reactions, where aldehydes connect the aromatic structures. Generally a

reactive mixture of aromatic and aliphatic hydrocarbons causes polymerization[106].

The first study made on carbon residue generation was conducted by Friedrich Bergius in
1911 [107]. He studied carbon gasification, at high temperature (T > 900°C) and high
pressure (P > 20 MPa), without CO generation according to the reaction
C + H,0 = CO, + H, [103]. He discovered that the formation of solid residue from
biomass agreed with coalification (natural process occurring over millions years). From these

observations, he concluded that the best conditions to form solid were to create an intimate
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link between biomass and water at low temperature (~200°C) in a pressurized reactor to avoid

the decomposition into gases.

From the first Bergius’s experiments until 90’s, numerous researches have been performed
considering coal formation. The renewed interest in solid formation using hydrothermal
conversion dates back to few decades ago with Qing Wang et al.’s works [108] on particles

generation from glucose. The interest on this subject keeps growing nowadays.

Coke formation is due to physico-chemical processes involved, as well as phase equilibrium

as discussed in the following paragraphs.
I.1. Carbonaceous solid generation: reactions involved

During hydrothermal carbonization, solid formation occurs according to temperature and
pressure conditions that involve degradation reactions. Reactions firstly occur in liquid phase
and then in solid phase as follow [62], [109]: hydrolysis, dehydration, fragmentation,
decarboxylation, polymerization and condensation, polymer aromatization, nucleation and
then particles growth or disappearance. Reactions such as dehydration and decarboxylation
lead to high degree of aromaticity in the solid residue, and explain its important amount of
carbon content. A gaseous phase is also formed, especially obtained for long reaction time as
a result of, inter alia, decarboxylation and demethanation reactions. However, depending on
the feedstock and thus kinetics, the hydrothermal carbonization will follow a precise
mechanism pathway [110]: if the components react quickly, at low temperature, fines

spherules will precipitate; if the components react slowly, mesophase* spherules precipitate.

Effects of alkali salts of the black liquor in the solid formation have been studied ([111],
[112]). Minerals are intercalated in the lattice of amorphous carbon during carbonization,

which promotes the reaction of gasification and create porosity into the char particles.

Reactions involved are not only responsible of carbonization thus the phase equilibrium has to
be taken into account. The following part is devoted to particles generated by hydrothermal

carbonization.
I.2. Particles generation: phase equilibrium

It is well known that hydrothermal carbonization, which reproduces the natural process of
coal formation [103], [113], takes place at low temperature (130°C — 250°C) and self-

generated pressure. It typically generates micro particles which can have interesting textural,

* The term of “mesophase” is used to describe an intermediate media describes as “liquid-crystal” hydrocarbon
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morphological or physico-chemical applications [103]. However, a lot of studies deal with

model molecules such as glucose, starch but rarely with real material or wastewater.

Brooks and Tailor as explained in [106] worked on particles generated by hydrothermal
carbonization and introduced the concept of mesophase particles formation during
carbonization. Indeed, they have shown that the microsize solid particles obtained by
carbonization came from the solidification of mesophase microspheres. This mesophase is an
intermediary state between a liquid and a solid but it has liquid properties. Walker [110]
considered that mesophase properties depend on:

- “The extent of planarity of intermediate molecules,

- Rates of carbonization,

- Fluidity of the phases and mesophase,

- Solid effect on mesophase formation and coalescence.”

Reactions occurring during thermal decomposition and carbonization processes depend on the
interface between carbonaceous particles and the surrounding phase. This interface modifies
the texture of the resulting particles. According to the annex 3, under pressure carbonaceous
solid has a spherical shape because of liquid/liquid interface which minimizes interfacial

energy between the two phases [114].

Based on the theory of Brooks and Taylor, other authors ([115], [116], [106], [117], [118]),
completed the mesophase theory, considering that carbonaceous microspheres formed under
pressure have a radius texture. It means that the aromatics based structure of the solid material
is built following the radius of the particles. Then, the aggregation of particles to each other
occurs due to a thin layer of plastic phase with the same constitution of aromatics structure.
When spheres are covered by the plastic layer, a continuous media is formed and apparently
only the viscous phase is seen. Then, new nucleation occurs as new spheres are coming from
the demixing of drops from the plastic layer. The demixing is driven by a change in
aromaticity degree of the carbonized precursor that suggests emergence of particles from the
plastic layer [115]. Inagaki followed Brooks and Taylor’s theory and mentioned that
carbonization mechanism and, as a result, carbonaceous structures, is based on its precursors

and heat treatment conditions [118].

Inagaki introduced the importance of precursors in carbonization process and initiate the
concept of BSU (Basic Structural Unit) for the creation of particles coming from the plastic
layer. BSU is the first stable size of polymer (stable structure having the smallest number of
monomers) that organizes carbonaceous particles by connecting together. Thus, once
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organized, BSU, are able to build particles. The addition of BSU (growth of particle) under
pressure is made following the radius of the particles [117], and increases the aromaticity of
the particles. The size of particles is defined by the critical radius which allows a permanent
existence of the particles. Particles with a smaller radius will disappear by evaporation or
coalesce. Even for the particles with a large radius, the evolution in supercritical conditions is
to evaporate or to coalesce.
To complete the “mesophase theory”, Azami et al.[119] have shown that the mesophase
formation at the origin of spherical particles follows the Arrhenius equation. The mesophase
formation is seen as an autocatalyzed process because its formation promotes the stacking of
others molecules in the matrix. This mesophase is built as followed, assuming to the authors:

-“Generation of mesogen (precursor of mesophase) with aromatic molecules inside,

- Diffusion of mesogen to build the mesophase through an isotropic phase,

- Rearrangement into the mesophase, by condensation reactions, to build bigger

molecules. These reactions lead to molecules with a distribution of molecular weight.”

Hydrothermal carbonization results in particle generation and a lot of researchers have tried to
understand this general theory such as La Mer[120] which presents another viewpoint. His
work synthesizes studies of others contributions (J. W. Gibbs, Ostwald, Farkas, Frenkel,
Volmer, Becker and Doering) about the nucleation in phase transition [120]. Indeed, from La
Mer, “nucleation is a process of generating within a metastable mother phase the initial
fragments of a new and more stable phase capable of developing spontaneously, into gross

fragments of the stable phase.”

From La Mer theory [120], solid particles are generated in the liquid phase from a nucleus
created by local oversaturation in the liquid. It can be seen as molecules with an excess of
surface energy sufficient to produce the aggregate as a new phase in the presence of the
mother phase. Reactions lead to an incompatibility in the liquid phase resulting in a liquid
separation and solid formation follows the formation of the new phase either by liquid-phase
separation or by flocculation. This immiscibility leads to the formation of dispersed
anisotropic droplets in the liquid phase. The interface between the two phases has to be seen
as transition layer where properties of this layer evolve from liquid phase to solid phase
progressively; and not as an abrupt surface. Some of the formed particles can disappear, other,
on contrary will growth. From Kruse et al. microspheres particles formation starts at 180°C

and the presence of lignin increases the homogeneity and the purity of microspheres [109].
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In both theories, operating conditions such as temperature and reaction time are extremely
important during hydrothermal carbonization. Fang et al. [121] have performed experiments
at 410°C and 350°C in diamond anvil cell and studied the influence of heating rate. In
particular, during slow heating at 350°C, they have shown that around 250°C, gas bubbles
formed during the ebullition disappeared and a huge amount of particles precipitated. At
280°C the cell is entirely filled with black microparticles. After reaction, three phases are
obtained: an oily orange film, and aqueous liquid phase and solid phase at the bottom of the
cell. The same phases have been observed by Modell et al in the 1970’s after their

experiments on forest products [122].

Inagaki has exposed that during the cooling, non-condensed phase containing the dissociated

units serves as gluing material linking particles together.

In conclusion, operating conditions are very important during batch hydrothermal
carbonization, influencing the repartition of phases, as well as their chemical and physical
characteristics. If general behavioral trends are expected, the real mechanism in batch reactor
during reaction is more difficult to be identified. The mechanism is a compromise between
physical considerations (creation of spheres) and chemistry (polymerization reaction).

Many parameters are of interest to study particles generation. in our project the influence of

heating, cooling rate and reaction time in batch reactor has been chosen.
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II. Summary of operating conditions selected and methods

The previous chapter has shown that solid phase represents ~ 20 wt% of the total initial
carbon and has a morphology evolving from micrometer spherical particles, at 350°C and
self-generated pressure, to shapeless structure under severe conditions. Carbonaceous
microspheres are only obtained at subcritical conditions as regards to the range of reaction
temperature. The formation of these microspheres is promising considering their possible
applications (see section VI. 2 in this chapter).

As operating conditions influence solid morphology and, consequently, its applications,
experiments have been performed for a better understanding of the solid formation.

To optimize the control parameters, a preliminary work has been performed [123] (annex 4)
in our laboratory. As observed, the most influencing parameters are, for a fixed temperature:

reaction time, heating and cooling rate.
This chapter is devoted to the study of the impact of these three parameters.

To sum up, 5 mL reactors are filled following the procedure explained in the chapter 2. The
temperature of experiments is 350°C; the pressure is self-generated and equal to 16.5 MPa,
considering vapor-liquid equilibrium. The weight of 10 wt% black liquor solution introduced

for experiments at 350°C is 3.1624 g. Studied parameters are summarize in Table 9.

Table 9: Summarize of operating conditions

Influencing parameter Range of study
Reaction time [15 min-24 h ]
20°C.min"'(C)

Heating rate .
40°C.min" (N)

Quench (T) : ~1 min
Ambient air (L) : ~30 min

Cooling rate

The abbreviations for the furnace operating conditions are written on the Figure 80 for
memorizing: C or N describe the type of oven; T or L describe the type of cooling

C is noted to define the chromatography oven

N is for the brand of the other oven (Nabertherm)

T is for cooling by quench (“Trempe” in French)

L is for slow cooling (“Lent” in French)

The focus is made on CT experiments (rapid heating and rapid cooling) to approach

continuous process in case of coke formation. Then the influence of heating rate and cooling
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rate are investigated because hydrothermal carbonization is usually performed in batch
reactor. To finish, solids are characterized. Investigated reaction times are 15 min, 30 min, 45

min, 60 min, 90 min and also 2 h, 3 h,4h, 6 h, 15 h, 18 h, and 24 h.

Eight reactors have been placed in parallel. Six were filtered after reaction to separated solid

and liquid and two were immediately submitted to a granulometric analysis.
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Figure 80: Temperature profile
I11. Effect of reaction time on the solid formation

This section is devoted to the influence of reaction time for the CT series (rapid heating and
rapid cooling). These conditions would be suitable to recover particles size with morphology
of solid as close as possible to the reaction, avoiding processes of shape change during
cooling. Indeed, a very rapid cooling allows limiting the rearrangements of the particles
(growing, disappearance, and so on). After cooling, solid and liquid are separated to be

analyzed, solid is weighed. The Table 10 centralized solid mass for some reaction times.

Table 10: Masses introduced in 6 reactors, weight of solid recovered by filtration and overpressure measured
during opening of reactors. The errors related to mass is 0.1 mg.

240 900 1440
Reaction Time (min) 30 60 90
(4 h) (15 h) (24 h)
Initial organic mass (mg) 305.5 305.5 305.5 305.5 305.5 305.5
Solid mass (mg) 46.4 39.3 55.7 40.7 313 26.8
Overpressure (bar) 0 0 0.04 0.08 0.1 0.125

The mass of recovered solids increases until 90 min and then decreases. Experimentally, the
filtration of the solid obtained at long reaction time present technical problems. An oily phase
appears during the reaction and its proportion increases with reaction time. This observation
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has been also made in the literature [124]. Therefore the oil phase alters the complete

recovery of the suspension in the reactor and the mass of solid recovered is underestimated.

The solid recovered was analyzed by ESEM and pictures are shown in Figure 81, for the same

previous selected reaction times.

S0min 4H 15H 24H b

Figure 81: ESEM pictures of solids obtained by CT experiments, same magnification.

Particles obtained at 30 min are spherical with an average diameter size of 3 pm. These
particles grow with reaction time to reach the average diameter size of 7 um at 60 min. These
particles are covered by others fine particles (average size of 250 nm). At 90 min, the particles
continue to swell into agglomerates whose shape is not spherical. 90 min is the limit in
reaction time where isolated particles are still noticed, then the accretion (or coalescence) of
particles dominates. This deformation of morphology increases with longer reaction time.
Between 2 h and 4 h, the solid appears as blocks. From 6 h to 24 h, the recovered solid is
agglomerated and has no specific form. For long reaction time (from 15 h in the figure 2),
spherical shapes are distinguished once again. These particles seem to emerge from a
continuous media. This observation has also been made by Ayache et al. [115] and Inagaki et
al. [117]. The solid obtained appears to be composed of fine particles coated with a "film".
The confrontation between our solid evolution and carbonization theories is summarized in

Figure 82; the yellow circle represents the oily phase droplet formed during reaction. To
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ensure continuity between them, we propose a hypothesis. Part IV of this chapter is devoted

to its justification:
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Figure 82: Confrontation between carbonization theories and our solids evolution.
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To complete this observation and have global information about the suspension, particles size

distribution has been obtained by laser granulometry and are presented Figure §3.
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Figure 83: Size distribution for the solids obtained by CT experiments.
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Between 30 min and 15 h, the average particle size increases from ~2 um to ~80 um.
However, for 4 h (240 min) and 15 h of reaction time, in addition of the main peak, another
class of particles has been identified at 0.2 um and 10 um average size. The class at 0.2 um
was also identified at 4 h reaction time. Its corresponding volume, relative to the total volume,
is low but increases over reaction time. On the contrary two medium sizes are clearly obtained
at 24 h of reaction time. The volume of the very fine particles becomes predominant while the

peak representing the largest particles is refined.

Until 90 min, this observation is consistent with ESEM pictures. However, for longer reaction
time, a consideration has to be taken between the analysis of isolated particles and the
analysis of agglomerated particles which are identified for particles size > 10 pm. In addition,

the possibility of a new nucleation could explain the peak at 0.2 um.

Confrontation with literature:

ESEM observations and size measurements indicate that the particles and agglomerates sizes,
as well as the solid morphology, are influenced by the reaction time. Particles are generated at
short reaction time, then form patches at 4 h reaction time, when coalescence process

becomes important. Then particles emerge from a continuous media at longer reaction times.

First of all, ESEM pictures were taken after reactor cooling and liquid filtration. So, we
cannot absolutely avoid artifacts due to this procedure. However, observations resonate with
literature.

According to the La Mer model [120], longer the process time is, bigger are the particles and
more heterogeneous becomes their size distribution. These observations confirm that reaction
time is an influencing parameter for particles generation and rearrangement of their
distribution [103]. Similar morphology as for 15 h reaction time have been observed by

Titirici et al. [125] for hydrothermal carbonization of C-maltose and C-sucrose.

An oily phase and an aqueous phase are observed in the experiments performed at 350°C ,
that agrees with the literature [109]. Under subcritical conditions, the oily phase is dispersed
into the aqueous phase like oil-in-water emulsion, with a spherical shape to minimize
interfacial energies. At this step of the study, one hypothesis considers microparticles
generating inside the dispersed organic droplets and then become solid during cooling. The
remaining organic phase is recovered at the top of the reactor after cooling. Consequently,
organic phase contains precursor of polymerization reactions: phenol and formaldehyde that

can generate nuclei of particles. However, Ayache et al. [126] have shown that during
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carbonization, two organic phases are created simultaneously with a morphology depending
on the reactor section: a thin layer phase and a spherical phase. Depending on the reactor
section, a thin layer phase and/or a spherical phase are observed. When both phases are
present, they are mixed and the solid residue looks like particles embedded into a plastic thin
phase. In this case, the aggregation between two spheres is not due to the coalescence between
them but due to the adhesion by a thin layer. Rahmani et al. [127] explained that during
coalescence, active dispersion forces as well as Brownian, hydrodynamic and surface forces
act as the driving forces for the droplets to merge. A high viscosity of the phase existing

between droplets will inhibit the transition to a single spherical droplet.

As shown with the solid analyses, the morphology seems to be the most impacted property by
the reaction time, as the mass of solid is experimentally underestimated. To understand the
mechanism of solid formation, liquid analysis would give more data on the conversion of

organics and phenomena involved.
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IVv. Explanation of the phenomena identified

IV.1. Liquid analysis

The analysis of the recovered liquid phase brings information on the black liquor

decomposition and on the conversion from liquid to solid phase.
IV.1.1. TOC/COD

The organic phase is too low to be recovered; only the aqueous phase has been analyzed. In
the aqueous phase total organic carbon (TOC), chemical oxygen demand (COD), then phenols
and formaldehyde concentrations have been measured. Errors related to TOC and COD

measurements are 2%, errors related to phenols and formaldehyde measurements are 5 mg/L.
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Figure 84: Evolution of TOC and COD removal with reaction time.

TOC and COD are global analyses of the solution giving data on organic carbon content and
oxidation power. TOC and COD removal have similar evolution (Figure 4) versus reaction
time. TOC and COD removal reached rapidly 50% in 30 min and then are almost stabilized
around 70% after 4 h (240 min). This quasi plateau suggests that conversion reactions of
black liquor have almost reached an equilibrium. Oxidation and mineralization, as well as
carbonization reactions, are almost stabilized beyond 4 h reaction time. This would mean that
the evolution of the solid morphology observed beyond 4 h is not due to chemical reactions
occurring in the liquid to solid. From 240 min to the end of reaction time studied, TOC and
COD do not evolve, so the degradation of black liquor seems to be stopped at this reaction

temperature.
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As mentioned previously, phenols and formaldehyde form solid by polymerization. Their

concentrations have been monitored and are shown in Figure 85.

IV.1.2.  Phenols and formaldehydes monitoring
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Figure 85: Evolution of phenols and formaldehyde concentrations over time

A peak of phenolic components is observed at 15 min, which means its rate of formation is
higher than its consumption at the beginning of the reaction. Then it overall decreases as well
as the formaldehyde content. The two reactants responsible of the solid formation have
similar evolution with reaction time, corresponding in an increase of recovered solid until 4 h
of reaction time. After 4 h reaction time, formaldehyde and phenols concentration appears to
be stabilized, in accordance with the quasi plateau of TOC and COD values.

The decrease of TOC, COD, as well as phenols and formaldehyde concentrations, is
accompanied by a color change of the recovered liquid (Figure 86). It becomes less and less
dark with the increase of the reaction time, which is due to the decrease in the amount of

chromophorous compounds (e.g. phenols, aromatic oligomers, and so on).

Figure 86: Liquids color evolution over time.
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The composition and the evolution of the liquid phase seem to be significant until 4 h of
reaction time. The morphology of the solid changed clearly at 3 h reaction time, by
consequent, the liquid phase composition seems not to be the only parameter involved in solid
formation and evolution. To better understand the evolution of the solid morphology its

chemical properties have to be determined.
IV.2. Chemical analysis of solid

Chemical analyzes, such as FTIR, TGA and C, H, N, O, S content contribute to better

understand chemical structure and consequently the composition of the solid generated.
IV.2.1.  The elemental composition of the solids

Evolution of elemental analysis over time is plotted Figure 87. Errors related to ultimate

composition are 0.1 %.
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Figure 87: Evolution of C, H, and O in CT solids over reaction time

Figure 87 shows the evolution of carbon, hydrogen and oxygen compositions in the solid
samples whereas sulfur and nitrogen are only detected as traces. The “0” point corresponds to
the raw dried black liquor. The amounts of carbon and hydrogen increase over time, while the
amount of oxygen decreases, in accordance with carbonization phenomena [128]. From 30
min of reaction, the amounts are quite stabilized. The proportions obtained over 30 min of
reaction show an atomic distribution close to CsH4O. Titirici [103] has shown that more sp2
carbons (graphitic, aromatics) and less carbonyl groups (lower O content) are identified in the
solid residue. This result suggests that high temperature (> 200°C) and long reaction time

leads to more condensed matter, with less oxygen, coming from intramolecular
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condensations, dehydration and decarboxylation reactions. She also suggests that above

280°C, demethanation reaction occurred during the process increasing aromatization.

Using ultimate composition, ratios H/C and O/C can be calculated and a Van Krevelen

diagram can be drawn like Figure 88.
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Figure 88: Reactions evolution on Van Krevelen diagram.

Van Krevelen diagram is also used to compare heating recovery from biomass (Figure 89).
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Figure 89: Biomass Van Krevelen diagram’.

3 http://www.handbook.ifrf.net/handbook/cf.html?id=23
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From our ultimate composition, a Van Krevelen has been drawn (Figure 90) to figure out the
types of reactions (or rearrangements) occurring during hydrothermal carbonization process.
This Van Krevelen diagram suggests that dehydration and decarboxylation reactions occurred
in the solid phase during carbonization process over reaction time. On the contrary,
demethanation does not seem to be involved at 350°C during carbonization process. Over

reaction time solid approach “coals” region (cf. Figure 89).
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Figure 90: Van Krevelen diagram for CT solids compared to black liquor (atomic ratios).

Taking into account the global molar formula deduced previously, aromatization happened

over reaction time with dehydration and decarboxylation reaction.

FTIR analysis brings information on the surface of the carbonaceous solid. All the spectrums

were similar to this one presented in Figure 89.

The peaks observed close to 3000 cm™ correspond to CH stretching (in -CH;z and -CH,-) of
saturated (under) and unsaturated molecules (above). The peaks around 1600 cm™ and
1450 cm™ correspond to the C=C bonds of the aromatic rings. The large peak around
3300 cm™ corresponds to the free -OH function and/or -OH intermolecular bonds (hydrogen
bonding).
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Figure 91: FTIR spectrum of solid residue obtained after reaction.

The combination of these peaks reveals the presence of alcohol function and aromatic rings
which derived from phenolic compounds obtained by cleavage of the lignin; and their
repolymerization. The profile obtained is in accordance with other hydrochars from biomass
[129]. The other peaks are difficult to identify precisely: 1350 cm™ may correspond to a
double bond S=0O. That is in accordance with microanalysis realized with EDS detector that
highlighted the presence of sulfur. The broad peak at 1250 cm™ may correspond to the
vibration of the CO bond of acetate.

FTIR analysis suggests hydrophilic surface of the obtained carbonaceous solid. The literature
confirms that hydrothermal carbonization is known to produce carbonaceous microparticles

with a hydrophilic shell [130].
IV.2.2. Thermogravimetric analysis

The intensity of the peaks from FTIR is not suitable for quantifying the relative proportions of
each organic function. Thermogravimetric analysis (TGA) was also carried out to analyze the

thermal stability of hydrochars and to highlight differences in composition.

The derivative curves (DTG) of solids obtained after 15, 60 and 120 min reaction time are
shown in Figure 92, comparing the influence of degradation temperatures. DTG curves

present four main zones for each sample.
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Figure 92: TGA of CT solids

The first peak (around 100°C) corresponds to the dehydration of the sample.

Two other peaks are observed between 100°C and 260°C and have different intensities for the
three solids. These two families of compounds degraded in this region have different relative
proportions. The peak at 260°C appears after 15 min of reaction time then the peak at 180°C

appears from 60 min of reaction time.

The third series of peaks is obtained around 330°C, the curve for 2h shows two peaks (instead
of one for the other curves). This means that two families of different compounds are present

corresponding to different chemical composition of the solids.

From 400°C, the profiles are very similar. The peak at 600°C decreases by increasing reaction

time. This means that this compound is gradually removed from the solid.

Analysis results show that solids do not present the same chemical structure and organics

functions regarding to the operating conditions.

To complete the chemical analysis of solid phase and to understand the evolution distribution

of chemical functions, XRD, Raman analysis, and then BET analysis have been made.
IV.2.3.  XRD analysis & Raman spectroscopy

XRD spectra show a large peak, characteristic of amorphous carbon. The solid obtained is

amorphous and its structure does not evolve over time (annex 5).
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In addition, RAMAN analysis shows the molecular structure of the residue by measurement
of lattice vibration that allows considering the degree of structure disorder or crystalline

structure and also amorphous structure can be clearly identified [131][132].

The literature describes amorphous carbon Raman spectra as two peaks overlapped ([133],
[134], [135]) with maxima observed at ~1300 cem™ and ~1600 cm™ so the range of Raman
shift considering is [800 cm™ — 2000 cm™]. A fast analysis attributes to the peak at 1300 cm™,
the disordered carbon contribution (D band) and the contribution to the graphitic carbon (G
band) at ~1600 cm™, in the carbonaceous structure. A more precise data analysis is the peaks
deconvolution. In our case, deconvolution in ten peaks is the best one since error is less than
3% (the highest error obtained is 5 %). Thus Raman spectra is a combination of the following
carbonaceous chemical structure given by Keown et al. [134]:

Gy band at 1700 cm™: Carbonyl group C=0

G band at 1590 cm™: Graphite Ezzg ; aromatic ring quadrant breathing; alkene C=C

Gg band at 1540 cm™: Aromatics with 3-5 rings; amorphous carbon structures

VL band at 1465 cm™: Methylene or methyl; semi-circle breathing of aromatic rings;
amorphous carbon structures

Vr band at 1380 cm™: Methyl group; semi-circle breathing of aromatic rings;
amorphous carbon structures

D band at 1300 cm™: D band on highly ordered carbonaceous material; C-C between
aromatic rings and aromatics with not less than 6 rings.

Sy band at 1230 cm™: Aryl-Alkyl ether; para-aromatics

S band at 1185 cm™: Chpromatics - atkyl » aromatics (aliphatic) ethers; C-C on
hydroaromatic rings; hexagonal diamond carbon sp>; C-H on aromatics rings

Sg band at 1060 cm™: C-H on aromatics rings; benzene (ortho-di-substituted) ring

R band between 960 and 800 cm™: C-C on alkanes and cyclic alkanes; C-H on

aromatic rings

The deconvolution of Raman spectra has been performed with a Matlab program. The Raman
spectra is fitting considering the least square minimization equation between the calculated

signal If* and the Raman one I7*? [136]:
OF = ZZ1Uf™ = 17y (28)

The ratio of I(gr4vL+vr)/Ip indicates the ratio of small to large aromatics ring systems. If this

ratio is <I, it means that the degree of graphitic carbon is less than amorphous carbons.
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For our particles, three spectra have been observed, for a solid obtained after 60 min of

reaction is Figure 93:
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Figure 93: Raman spectra of solid obtained after 60 min (a) spectra of the core, (b) spectra of surface & core,

(c) spectra of surface.

152



6BChapter 4: Study of particles generation

For the same sample, 3 spectra have been observed. Raman analysis is a surface analysis.
Probably, some organic phases remained probably, on the surface of the particles and have

been identified.

According to the observations, the core of the particle is an amorphous carbon, in agreement
with literature. The spectra with 3 peaks and 1 peak refer to the organic phase, organic layer
on the particles. This peak is noticed at 1100 cm™, which corresponds to a shift of the peak at
1185 cm™ for Caromatics-Caikcyr> aromatics (aliphatic) ethers; C-C on hydroaromatic rings;

hexagonal diamond carbon sp’; C-H on aromatics rings.

In the organic phase, aromatic carbons are linked to alkyl carbons, as expected in a
carbonaceous particles generated by phenol-aldehyde polymerization. This demonstrates that
the organic phase is a transition layer between aqueous phase and carbon spherules, with a

degree of arrangements lower than the carbon spherules.

For Raman spectra constituted by only one peak, the G band does not exist, therefore the
following ratio calculation is not possible. For the spectrum with 2 bands, the calculus of the

ratio is ID / IG ~= 0.8 as mentioned by Park et al. [137].

Limits of the method and interpretation:

However, a precaution has to be taken about deconvolution method. Because, deconvolution
peaks are controversia, RAMAN measurement has to be considered as a qualitative
technique. In addition, the laser beam of RAMAN analysis graphitizes a little the sample.
Results obtained from this analysis are considered as elements helping to validate hypothesis

for the solid formation.
Conclusion:

Carbonaceous particles are made thanks to an organic phase, using as transition and storage

layer. The aromatization of the particles is higher than the aromaticity of the organic phase.

The rearrangement of aromatic molecules is accompanied by the creation of internal porosity.
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IV.2.4.  Density/Porosity:

Density and then porosity have been investigated. Table 11 shows the results for density

values.

Table 11: Density of solid obtained after 30 min and 60 min of reaction time

Time (min) CT (g/cm3)
30 1,52
60 1,47

Solid obtained for 30 min reaction time are denser than solid obtained for 60 min of reaction
time. Furthermore, particles size increases over time (sections III and 1V) so reaction time
increases porosity. Particles porosity can be explained by the formation of gas or liquid
bubbles due to the formation of volatile components during the hydrothermal carbonization
such as decarboxylation, demethanation etc. Gas bubbles could also be due to the gas in the
reactor which is trapped into viscous droplets when emulsion occurred, creating “pockets” in
the solid. During the cooling, gases are either released creating open porosity or encapsulated
in the particles (non-connected porosity), influencing the density. Higher non connected
porosity, lower is the solid density. These values of densities are similar to the densities value
of 1.66 g/cm’ obtained from several hydrocarbons by Jin et al.[138]. However, the sensibility
of the measurements does not allow concluding on the influence of operating parameters on

the density.

BET measurements lead to a surface area of around 7 m?/g of particles. These values are
similar to those obtained for carbon spherules made from mesitulene (8 m?/g) [133] and
confirmed by Titirici et al. [38]. Moreover, she showed that the solid obtained directly after
hydrothermal carbonization has a small surface area (compared to activated carbon) and a
small number of micropores. BET results mean that particles are completely smooth with very

small pores (~10 nm).

Given the composition of black liquor (e.g its high alkaline content) the determined surface
area are in contradiction with literature. Titirici observed that hydrothermal material, obtained
in the presence of KOH [37] or others alkali salts, has a surface area of 2200 m?/g, a pore

volume of ~1 cm’.g™! and a microporosity (< 2pum).

Solids washed with demineralized water, after filtration have been observed by ESEM (Figure
94).
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Figure 94: Particles obtained for different heating rate, after 60 min of reaction time and washed after filtration

This picture shows that particles are formed by a porous core and a non-porous shell.

The internal porosity is reaction time dependent and corresponds to the aromatization
reactions created by dehydration and decarboxylation. During the cooling a non-porous shell
is probably formed around, encapsulating the porosity and given, less dense porous particles

with increasing reaction time. Further analysis such as tomography of the particles should

confirm these observations.
IV.3. Mechanism of solid formation - Discussions

Liquid and solid obtained after reaction are recovered at atmospheric pressure and
temperature. Even if rapid heating and rapid cooling are used to have a better representation
of the influence of reaction time, it is very difficult to know precisely what happened in the

autoclave during the hydrothermal process.
IV.3.1.  Analyses discussion

We summarize the information brought by the analysis on solid and liquid phase:
***Three steps can be identified during the process of solid formation:

From 15 min to 90 min: isolated particles are formed corresponding to the

polymerization of phenols and aldehyde, then the grow and start the coalescence.

Between 2 h and 4 h: carbonaceous block are identified. No spherical material is

observed.

From 6 h: particles seem to emerge from a layer. This layer seems to be a continuous

media; solid at atmospheric temperature and pressure, probably viscous during reaction.
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***Elemental composition shows that the degree of aromaticity increases with reaction time.
This point is supported by TGA analysis which suggests that solids do not present the same
chemical structure or organics functions regarding to the operating conditions e.g reaction

time. Independently of change in their aromaticity, solids present a hydrophilic shell.
***Solid formation is due to the polymerization of phenols with aldehyde.
*** After 90 min of reaction time, liquid composition is almost constant.

***Regarding liquid composition, black liquor conversion in the liquid phase occurs mainly
at short reaction time (~15 min). Morphological changes in the solid are thus mainly due to
structural rearrangements with low kinetics in the phase’s system maintained at constant

temperature and pressure.

*** Solid formation is accompanied by a color change of liquid. Over reaction time, color
solution change from black to red color showing the presence of lower molecules such as

aromatic compounds and oligosaccharides.
Iv.3.2. Showdown between literature and results

Two reactions pathway for hydrothermal carbonization are often proposed in the literature
[76]. The first one considers liquid-solid conversion, from the raw material to “based unit
molecules” then to solid; while the second one considers a solid-solid conversion. However,
as the black liquor solution is a liquid phase without suspension inside, the reaction pathway
considering solid-solid conversion is not an option, at least at the beginning of the process.
The assumption is based on the decomposition of lignin into phenolic compounds and
aldehydes as intermediate based-units, then from phenols-aldehyde as based units, to

carbonaceous material.

From the literature, some authors, such as La Mer or Titirici et al., explain that firstly carbon
microspheres are formed, then grow and coalesce to form a continuous media. The particles

obtained for short reaction time in our experiments are similar to those obtained by Titirici.

On the contrary, some authors, such as Inagaki or Ayache et al. [126], [115], consider that
carbonaceous particles are born from a continuous media by aromaticity changing. In the
carly stages of nucleation and growth, the mesophase appears as small “spherules® emerging

in the media [139]. As the reactions proceed, spherules grow, meet and coalesce into large

6 = carbonaceous spherical particles, like mesphase describes earlier
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anisotropic media. The coalescence process of microparticules considered as mesophase
spherules results in the formation of continuous mesophase matrix. Furthermore, the spheres
or agglomerated spheres of carbonaceous particles suggests that this material was liquid or
plastic at operating conditions [127]. These latter suggestions could describe the solid

formation in our experiments conducted for long reaction time.

Conclusion: both mechanisms seem to explain the evolution of solid morphology in our
experiments. In fact, chemical and physical mechanisms involved in the hydrothermal
conversion of the black liquor solution coexist and operate with different kinetics all along the
reaction time. More, the cooling step, how fast it is, has in our experiments an unknown
influence on the characteristics of the solids. A transition layer is formed, within the droplets

of organic phase, between the organic phase and the carbonaceous particles.

IV.3.3. Mechanism proposition for the carbonaceous solid formation from

black liquor solution in batch

Assuming the previous hypothesis, solid formation occurs according to the following
mechanisms. However, the physical and chemical processes are not sequential but they are,

more probably, simultaneous in time, even if their relative intensity is changing.

***Decomposition of black liquor creates, inter alia, phenols and aldehyde which polymerize
together and form an intermediate based-Unit similar to the based structural units describe by
Inagaki in section 1.2. Even if phenol and formaldehyde are miscible in aqueous phase, for a
high concentration of “intermediate based unit” immiscibility begins, which creates an “oil in
water” emulsion. This oily phase corresponds to the bio-oil formed by hydrothermal
liquefaction concentrated in organic reactive compounds oxygenated such as hydroxy

aldehyde, hydroxyketones, carboxyliques acid and polyphenolic compounds [140].

***0Oily phase 1s composed of different organics including phenols and aldehyde. When the
concentration is over saturation, nucleation occurs locally and then maturation. Probably
during this step the transition media (also called transition layer or transition phase) appears at

the interface of carbon spherules as shown in the Figure 95.

Figure 95: Scheme of the organic droplet organization in the subcritical water.
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In the scheme different colors were used. The yellow circle represents the oily droplet, the
brown circle the transition layer and the black circle the carbonaceous particle. The amount of
transition phase is balanced between its production from the organic phase and its
consumption by the carbon spherules. Therefore a radial gradient of phenols-aldehyde
intermediate concentration exists from the surface of oily phase to the carbon spherule. As
much as coalescence is observed, several particles could be generated within a same oily

droplet.

***For short reaction time (<90 min) the transition layer is extremely thin and strongly linked
to the particle interface. After cooling transition layer and carbon spherules are indivisible and

a remaining oily phase is recovered on the top of the aqueous phase.

At 90 min, coalescence begins due to Brownian movement (efficient collisions), such as
drawn in Figure 96, dominates the mass agglomeration process. By consequent, bigger

particles are created.

cooling
| —

Figure 96: Coalescence of particles by solidification of particles and transition layer.

***For reaction time between 2 h and 4 h, the amount of transition layer increases and oily
droplets coalesce in the reactor. Transition layers coalesce also and carbon spherules are jailed
in this media. Over time, all the spherules are trapped. After cooling patches of carbon are

observed.

***For long reaction time (> 6h), in addition to the previous carbon spherules formed and due
to carbonization process, aromatization of some based-unit change and then nucleation occurs
in the transition media. New carbon spherules are created and emerge from the continuous

media. After cooling, a solid is formed with buds.

This suggested mechanism is based only on the organic content of both liquid and solid phase.
However the mineral content in black liquor is high and would play an important role in the

solid formation.
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IV.3.4. Inorganic matter

At the operating conditions (350°C, 16.4 MPa), the salts are prone to precipitate, so their
participation cannot be excluded as a carrier for the formation of solid, as shown by Rahmani
et al. [127]. Indeed, ICP analysis made after hydrothermal conversion has shown that 10 % of
minerals disappeared from liquid phase during batch process. Salts have been detected in the
carbonaceous solid phase using EDX detector during TEM analyses. Microanalysis showed
that sodium (Na) is included in solid particles. The content of calcium and potassium is very

low. Sulfur is agglutinated around carbon particles as seen in the Figure 97.

Ca Kal K Kal Na Kal 2

Figure 97: TEM observation of particles obtained at 350°C, 60 min and 10 wt%.

Mochida et al. [141] have studied sulfur behavior during hydrothermal carbonization and have
shown that desulfurization of organic matter occurred firstly forming organic sulfur
compounds in liquid phase or sulfured salts which precipitate. Then carbonaceous particles

aromatization happened.
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IV.4. Conclusions

By increasing reaction time, the morphology of the solid differs. Isolated microparticles are
favored at short reaction times. chemical processes seems to control the process until 3 h of
reaction time, then the rearrangement of the solid phases becomes dominant. The evolution of
the structure is then more related to phase equilibria. This is summed up in the Figures 98 and

99.

Reaction was studied in this section; however the heating and cooling steps are of great
importance regarding particle formation. The next section considers the effect of reaction time

using 2 heating and cooling rates.
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Figure 98: Scheme of particle generation

The specificities of each step is drawn Figure 99
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V. Influence of heating and cooling rate

Heating and cooling rate influence the characteristics of the solid formed [123] and are key

issues regarding the operation of batch and continuous processes.
V.1. Influence of heating rate

This part describes the influence of heating rate (at same cooling rate) on the morphology and
physico-chemical properties of the carbonaceous solid. To remember, the abbreviations are
CT vs. NT with a quench cooling (iced water); CL vs. NL when a slow cooling is applied

(ambient air), C and N refereeing to the type of ovens used.
V.1.1. Solid analysis

In both cases, and for each reaction time, the weight of solid obtained is higher with rapid
than slow heating rate. As regards to the particles, Figure 100 shows the solids obtained after

30 min reaction time, with slow cooling.

Spot Magn Det
0 6400x _BS

(a)

Figure 100: Morphology of particles obtained with rapid heating (a) and slow heating (b) after 30 min of

reaction time, same magnificance

The spherical particles obtained with a rapid heating have a large size distribution from
0.4 pm to 5 um. On the contrary, when the heating is slower, the spherical particles have a
finer distribution from 0.2 um to 1.5 pm. At higher reaction time, the same difference in size
and distribution of particles was observed. Moreover the particle size distribution obtained by

laser granulometry reveals that sizes of particles increase with heating rate (Figure 101).

A fast heating rate in batch process (without stirring) leads to higher mass of solid generation,
characterized by bigger particles with a larger size distribution due to a higher turbulence

which favors the proximity between particles and therefore the maturation process.
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Figure 101: Influence of heating rate (20°C.min"" vs. 40°C.min"") on the size distribution at 350°C, 30 min and

2 h with a quench cooling.

Other analyses such as TGA, C, H, N, O, S composition and Van Krevelen diagram have
been realized and presented in annex 6. The TGA degradation profiles are similar to that in
section 1V.2.2, as well as Van Krevelen diagram in the section IV.2.1. In conclusion, the
heating rate influences only the solid yield and size distribution in the unstirred batch

hydrothermal conversion of black liquor solution.

The simultaneous obtained liquid phases have been also analyzed by COD, TOC, phenols and

formaldehyde concentrations to compare rapid (CT) and slow heating rate (NT).
V.1.2. Liquid analysis

Figure 102 shows that the values of TOC and COD are higher at slow heating rate (NT) up to
2 h of reaction time. Then the values are similar. This indicates that up to 2 h, oxidation
reactions and organic carbon removal are faster at high heating rate (CT). In addition, the
amount of phenols is significantly higher at high heating rate, especially for 15 min reaction
time (annex 6). Therefore, the TOC disappearance of the liquid phase and the high phenols

concentration explain an increase in the amount of solids recovered with rapid heating.

164



6BChapter 4: Study of particles generation

TOC and DCO evolution
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Figure 102: Evolution of TOC and COD of CT and NT liquids

To conclude: Considering the liquid analysis, for short reaction time, heating rate influences
the transfer of based units molecules to the organic phase then to particles. The turbulence due
to the rapid heating acts on the emulsion dispersion of the oily phase in the aqueous phase and
improve the collision frequencies and efficiencies between particles, accelerating the

maturation (coalescence or disappearance) process of oilydroplets.
V.2. Influence of cooling rate

In this section two types of cooling have been studied (c.f chapter 2 I1.2.3): cooling by
quenching (rapid cooling = 2 min) namely T or cooling at ambient temperature (slow heating

= 30 min), called L.

Pictures on the Figure 103 show that particles are bigger with a slow cooling. This

observation is similar with the other oven, and is corroborated by particles size distribution in

Figure 104.
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Figure 103: Morphology of solid obtained after a rapid heating and 30 min of reaction time: with slow cooling:
CL (a) and by quenching: CT (b), same magnification.

Physical and chemical processes continue during the cooling with different relative
intensities; whereas reaction media is “congealed” by quench cooling. Therefore, collisions
required for coalescence are dramatically low. This result also explains that the weight of

solid obtained is higher with slow cooling rate.
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Figure 104: Size distribution considering cooling rate at 60 min reaction time

TOC, COD, phenols and formaldehydes concentrations curves are presented in annex (annex
7). The results are similar for the whole set of experiments, the cooling does not influence the
global liquid composition. However particle sizes are different and a higher mass of solid is
recovered for slow cooling. We expected a difference in the liquid composition, especially as
regards to phenols and formaldehyde. The same liquid composition for both cooling
experiments shows that the dominant mechanisms are physical (rearrangement of particles)
for this set of experiments. The assumption would be the transfer of intermediate molecules
(phenols-formaldehydes based units) in a transition phase used as a tank of “based-units” for
the polymerization. The kinetics of lignin decomposition seems to be very fast (the maximum

conversion reached into phenols and formaldehydes evolution). However as the liquid
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composition after reaction is independent of the cooling, the transfer to the transition layer is
supposed to be higher than the kinetics of polymerization. These results confirm also that

carbonaceous particles are formed into the organic phase.

The thermogravimetric analysis shows quite similar curves comparing to the cooling methods
(annex 7). Van Krevelen diagram suggests that during carbonization with rapid heating and

slow cooling, the first reaction is dehydration, followed by decarboxylation.
The cooling affects particles size and to a lesser extent the elemental composition that suggest
during the cooling physical rearrangements continue.

V.3. General conclusion on heating and cooling rates:

V.3.1. What the analysis bring as information?

*** The turbulence created by a rapid heating rate in the non stirred fluid, acts on the oily
phase dispersion in the aqueous phase that accelerate the maturation process by collision.
With a chemical point of view, rapid heating produces molecules in liquid phase with higher
degree of mineralization and oxidation. However, with both heating rates, elemental analyses

of solids formed are similar.
*** The cooling rate acts only on the particles size.
V.3.2. What the literature bring as other information?

*#*Chuntanapum et al. [142], observed the formation of carbonaceaous microspheres under
subcritical conditions (at 350°C) in continuous reactor. Emulsion and particles formation is

not depending on the type of process, batch or continuous.

***Kumar et al. [143].confirmed that the ultimate analysis are similar changing the heating

rate and 60 min reaction time.
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VI. Summary of chapter

VI.1. Phenomena involved during particles generation

To conclude, the mechanisms of solid formation described in (IV.3.3) are not dramatically

influenced by the heating and cooling rate.
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Figure 105: Confrontation between carbonization theories and our solids evolution.

Hydrothermal carbonization is a physico-chemical phenomena. Morphology is guided by

chemical reactions, phase equilibria and reorganizations (Figure 106).
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Figure 106: Morphology is due to a combination of chemical reaction and physical phenomena.

However, because we used unstirred batch reactors, during low heating and cooling processes,
the physical mechanisms control the physical characteristics of the formed solids

(granulometry, shape, etc), if the reaction is sufficient.
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VI.2. Applications of carbonaceous materials

In our society, many applications for carbon materials exist such as adsorbents, catalyst
supports, batteries and energy storage, filters, drug delivery and so on. Thus, carbon spherules
could be considered as matter or template. Depending on the materials properties, some
applications are possible: conductivity leads to electronic applications; surface functionality

leads to adsorption and acid/base lead to catalysis. Some applications are detailed thereafter.

Carbon as template is used in hollow spheres formation such as: CoO [144], TiO; [145], CeO,
[146], MnO, [147], Cr,05 [144], WOs5 [148], ZnO [149]. Indeed, if microspheres particles are
mixed with inorganics salts, hybrid carbon/metal material is formed by hydrothermal
processes. Metal oxide hollow spheres are created by coating carbon particles. then carbon is
removed by calcination. Hollow sphere become very attractive in several applications as

catalysis, delivery and controlled release drugs microcapsule reactor and so on [150].

Carbon can also be considered as matter and can be linked to the energy storage as shown in

Figure 107, serving as electrode in Li-ion batteries (LIBs) or Na-ion batteries (NIBs) for

example.
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Figure 107: « Green » carbon materials used as basis of electrochemical devices for renewable energy

generation, storage and utilization [103].
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Carbon matter from hydrothermal conversion is also used as heterogeneous catalyst. They
have the specificity to be synthetized at low temperature (<180°C) enabling them to have
polar surface functionalities. Polar groups are hydrophilic so reactions taking place are

selective.

Carbonaceous microspheres can be modified in situ by addition of heteroatoms (N, S ...), or
after hydrothermal carbonization process by secondary chemical reaction as nucleophilic
substitutions, cycloadditions... Thus, the study may enable to better fit the properties of the

solid to the request.
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Résumé du chapitre 5 : conversion catalytique hydrothermale en utilisant le CeO; en

tant que nano catalyseur pour la production d’hydrogéne et la suppression de coke.

Ce chapitre s’attache a I’étude de la conversion catalytique de la liqueur noire a basse
température afin de s’affranchir de 1’émission d’hydrogeéne sulfuré. L’ajout d’un catalyseur
(CeOy) est étudié afin d’augmenter la production d’hydrogéne et d’éviter la formation de
solide lors de la réaction. Ainsi, la comparaison des résultats obtenus avec et sans catalyseur
nous permet d’identifier les phénomenes complexes de la formation du solide et des autres

molécules intéressantes et donc de mieux comprendre les phénomeénes hydrothermaux.

La partie expérimentale a été faite au Japon dans les laboratoires du Professeur Adschiri, a

P’université de Tohoku.

Ce chapitre se divise en 4 parties: la présentation du catalyseur utilisé, 1’étude des
phénomenes impliqués dans la conversion hydrothermale de la liqueur noire, une premiere
¢tude de faisabilité énergétique pour une mise en place industrielle et enfin une étude
préliminaire avec 2 molécules modeles de la liqueur noire afin d’établir les mécanismes

réactionnels mis en jeu lors de la conversion hydrothermale avec et sans catalyseur.
Ce résumé sera ¢galement fait d’un seul tenant et non partie par partie.

Le catalyseur utilisé est de ’oxyde de cérium, ce catalyseur est synthétisé au sein du groupe
du Professeur Adschiri. Sa taille moyenne est de 8 a 10 nm. L’activité catalytique de 1’oxyde
de cérium provient de son activité rédox via le cycle Ced4+/Ce3+, celui-ci est accompagné par
la capture et le relargeage de I’oxygene. L’oxyde de Cérium CeO2 est connu pour avoir une
capacité de stockage de ’oxygene tres élevé (OSC). Celle de ’oxyde de cérium cubique est
de 340 pg-O/g-cat, ce qui est 3,4 fois plus important que celle de 1’oxyde de cérium

octaédrique. Pour cette raison, I’oxyde de cérium cubique a été utilisé pour nos expériences.

Les expériences ont ét¢ faites en réacteurs batch de 5 mL, ce type de réacteur est décrit dans le
chapitre 2, ils peuvent supporter une pression de 50 MPa et une température de 500°C. La
liqueur noire diluée est introduite dans les réacteurs avec de 1’oxyde de cérium, puis le
réacteur est fermé. Aprés un ajout de N2 dans le réacteur, celui-ci est chauffé dans un four
¢lectrique at 350°C et 450°C pendant 15 ou 60 min. Apres le temps de réaction, le réacteur est
refroidi par trempe dans de I’eau glacée pour arréter la réaction immédiatement. Les produits

sont collectés et séparés en 3 fractions : le gaz, le liquide et le solide.
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Les principaux résultats sont les suivants :

En conditions supercritiques :

Apres 60 min de réaction, en l'absence de CeQO,, la conversion hydrothermale de la liqueur
noire produit 22% de H, dans la phase gazeuse. En présence de CeO,, la conversion
hydrothermale produit 24% de H,. Bien que la quantité de H, soit presque la méme, la
proportion de carbone transformé en phase gazeuse avec le catalyseur est supérieure de 5%;
ce qui confirme une meilleure conversion au cours de la réaction avec catalyseur. Les especes
actives d'hydrogéne créées par la division de la molécule d'eau, peuvent former directement
H; ou réagir avec des molécules organiques pour former des molécules plus petites ou
stabiliser également des especes intermédiaires réactives en limitant leur réaction. Si c’est le
cas, cela signifie que plus d'especes d’H activées ou H, sont formées, mais simultanément
I'hydrogeéne peut étre utilisé pour stabiliser des molécules phénoliques et ainsi produire des
molécules de plus faible poids moléculaire. Ce point est confirmé par I'analyse GPC des
liquides. En parall¢ele, le role des especes actives d'oxygene sont principalement impliqués
dans des réactions d'oxydation. Plus l'oxydation est avancée, plus du CO; est produit. Cette
meilleure conversion en présence de catalyseur est soutenue par la masse de solide formée.
Apres 60 min, la masse du solide obtenue est de 12 mg sans CeO, et 4,5 mg avec CeOs,.
Pendant le «cycle redox» du CeO,, les molécules d’eau sont libérées et capturées facilement.
L'oxygene libéré promeut la conversion du carbone contenu dans la phase liquide initiale a la
phase gazeuse finale. L'oxydation se produit jusqu'a ce que l'aldéhyde soit converti en CO; ce

qui bloque la formation de coke, et inhibe la liaison entre les composés phénoliques.

En conditions subcritiques :

La quantité de H, produite est significativement accrue en présence de catalyseur.

Les especes actives d’hydrogéne, réagissent en continu pour former H, en phase gazeuse. En
conditions subcritques, H, est également produit par réaction de déshydrogénation des
alcanes. Toutefois, la quantité d’H, est liée a la fois a la production et a la consommation des
especes actives d’hydrogene. En conditions sous-critiques, la diffusion interfaciale est limitée
ce qui limite les réactions entre I’hydrogene (et toute la phase gazeuse) et la phase liquide ;
ceci explique sa faible consommation. La quantité¢ de carbone dans la phase gazeuse (~ 2 ou
3%) est plus faible dans des conditions sous-critiques que dans des conditions supercritiques.
Cette tendance était en accord avec la plus faible quantité de produits gazeux. Une hypothese

pour expliquer la faible proportion de carbone en phase de gaz serait que I’oxydation des
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molécules organiques est partielle et évite la production de CO,. Cette hypothese est validée

par I’analyse de la phase liquide.

Suite a ces principaux résultats, une premicre €tude énergétique est faite et montre que les
meilleures conditions opératoires pour obtenir un bilan positif sont: 450°C, 60 min de
réaction au minimum et une concentration massique en liqueur noire de 100 %, avec

catalyseur.

Ce dernier chapitre se termine par la proposition de mécanismes réactionnels de la conversion
hydrothermale de 2 des molécules modeles de la liqueur noire : la lignine et la GGGE. Les
mécanismes sont proposés avec et sans catalyseur. Ils permettent 1’établissement en dernier

lieu du mécanisme de conversion hydrothermale de la liqueur noire avec et sans catalyseur.

*** Fin du résumé
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Hydrogen production from black liquor gasification is particularly efficient at high
temperature close to 600°C, as demonstrated in section I1.3 of chapter 3. However, this
production is linked, above 500°C, with hydrogen sulphide which is an undesirable gas.
Therefore a catalytic study has been considered at lower temperature to increase hydrogen
production without hydrogen sulphide emission. Nevertheless, at these temperatures range,
coke is still formed and useless. Given that, the choice of the catalyst is predominant to

increase hydrogen production and decrease coke formation.

This work has been performed in Japan, in the Professor Adschiri’s Laboratory at Tohoku
University, where a previous PhD candidate studied the catalytic cracking of bitumen. CeO,

nanocatalyst was used to increase hydrogen production and to limit coke formation.

The objectives of this study are to perform catalytic hydrothermal gasification of black liquor
to improve hydrogen production at temperature lower than 500°C, as well as to reduce coke
formation. The focus is made on the catalytic role of cerium oxide on the composition of
liquid and gaseous phases, in view to figure out a simplified mechanism pathway. However
the complex composition of black liquor is an obstacle to draw a clear route. Thus the study is
completed by the use of model molecules to improve the knowledge on reactions involved.
Lignin and Guaiacylglycerol-pB-guaiacyl ether, namely GGGE, have been used as model
molecules. The work is completed by an energetic preliminary study that deals with the

feasibility of a continuous process.

Results on the catalytic conversion of black liquor are already submitted in the Journal of

Supercritical Fluids.
I. Catalyst characterization & its expected action

CeO, nanocatalyst is homemade and synthetized in Professor Adschiri’s Laboratory by
hydrothermal process [105], [34]. CeO, has been chosen for its redox activities which

facilitate the oxidation and hydrogenation reactions during hydrothermal conversion.
I.1. Characteristic of cubic CeO2 nanocatalyst

The catalytic activity of CeO, arises from its redox activity via Ce*"/Ce’* cycle, which is
accompanied with the catch and release of oxygen. CeO, is available under two
morphologies: cubic and octahedral. However oxygen storage capacity (OSC) is used to select
the best morphology. The OSC analysis reflects the redox catalytic activity. The OSC of cubic
CeO; is 340 pg-O/g-cat that is 3.4 times higher than octahedral CeO, [105]. Moreover, the
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study on bitumen cracking with CeO, [105] showed that cubic CeO; had a better efficiency on
the catalytic conversion of bitumen. Therefore, cubic CeO; has been chosen for the study. The

average size of Cubic CeO; nanoparticles was around 8 nm.
The ratio of catalyst to the reactants was defined (29):

R = Mass of Catalyst/Mass of dry matter (29)

I.2. Expected action of CeO2

During reaction CeO; acts as a catalyst and splits water into two actives species: H and O
[105]. These hydrogen active species can form directly H, or stabilize the reactive
intermediate species which are then reacting with organic molecules to form smaller
molecules following capping reaction. The amount of H, formed is also linked to
hydrogenation / dehydrogenation reactions that occurred for big molecules from liquid phase.
The role of active oxygen species were mainly involved in oxidation reactions. The more the
oxidation is achieved, the more CO; is produced. The concentration of these active species is
expected to increase in the presence of CeO, catalyst and thus the carbon conversion would be
enhanced.
So the main reactions considered to interpret the results are:

- Hydrogenation: alkene + H, = alkane.

- Dehydrogenation: alkane = alkene + H .

- Ogxidation: partial to complete (CO;) by adding oxygen on molecules.

- Capping reaction: Hydrogen activated species react with organic active site and block

other organic reactions.
- Water Gas Shift reaction (cf section 1.3 of chapter 1).
- Aldolisation: condensation reaction.

Retro aldolisation: fragmentation reactions, breaking C-C bonds.

180



Chapter5: Catalytic hydrothermal conversion using CeO; for H, production

II. Understanding of the phenomena involved during the hydrothermal

conversion of black liquor

Hydrothermal conversion of black liquor was studied at sub (350°C, self generated pressure)
and supercritical (450°C, 25 MPa) conditions based on the results from chapter 3. The
catalytic effect will be evaluated as regards to hydrogen production and carbon conversion
using either or not CeO, nanocatalyst. Liquid phase is also investigated to elucidate secondary
reactions that occurred between gas phase and molecules formed in liquid phase. Then in a

third part, catalytic effect of CeO; is discussed by comparing sub and supercritical media.
II.1. Catalytic conversion of black liquor under supercritical conditions

Experiments at supercritical conditions were carried out in 5 mL batch autoclaves at 450°C,
25 MPa. Reaction time of 15 min and 60 min, as well as the amount of catalyst, were
investigated. The catalytic effect was evaluated towards coke formation and hydrogen
production. To highlight the reactions involved, the liquid is also analyzed and compared

according to the operating conditions.
II.1.1. Coke formation

Black liquor is mainly composed of dissolved lignin. During hydrothermal conversion lignin
is expected to be degraded into aromatics molecules [151] such as phenolic compounds and
smaller molecules such as small aldehydes. Polymerization of the phenolic molecules takes
place thanks to these smaller molecules, which connect aromatic components together. Coke
formation was the result of this polymerization and was formed since the splitting of lignin
molecule began [75].

TEM analysis reveals that a shapeless solid (Figure 108) has been recovered without catalyst.
A microanalysis with EDX detector shows the presence of carbon, oxygen and minerals;
particularly sulfur (darkest spots on Figure 108). According to literature [51], minerals
recovered in the solid phase are not involved in the morphology of the carbonaceous material.
So, the coke recovered after reaction is composed of organic compounds and to a less extent
of minerals that influence the mass recovered. However as the proportion of minerals is low,

the contribution of coke is assumed to be the overall weight.
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Figure 108: Solid obtained afier 450°C, 15 min of reaction time, without catalyst.

The amount of coke was evaluated for the set of experiments and summarized in Table 12.
The error related to mass of solids is 0.1 mg. The mass of coke produced during the reaction
is about two times lower using CeO, catalyst. This result confirms that the use of catalyst
reduces the coke formation. However, the amount of coke is ten times higher by increasing
the reaction time. This same order of magnitude is observed using either or not the catalyst.

Using supercritical conditions, radical reactions are favored and result in the efficient
degradation of lignin into phenolic compounds. So, several condensation reactions [73] are
expected to take place and explain this non negligible amount of coke formed. Reaction time

increased these phenomena as seen in Table 12.

Table 12: Proportion and weight of coke formed after reaction at 450°C, with /without catalyst.

Meoke + cat = (8) Y0 coke formed Meoke = (MQ)
60 min R=5 3,31E-02 13,87% 4.59
60 min 1,17E-02 11.7
1Smin R=5 1,00E-03 54,55% 0.50
15 min 1,00E-03 1.00

CeO, catalyst is able to oxidize organics more efficiently or rapidly than in supercritical
water. Thus, the whole organics (aromatic and aliphatic molecules) are subjected to efficient
oxidation reactions. Small molecules such as aldehyde, are known as promoter for
polymerization of phenolic compounds [75]. In presence of catalyst, the kinetics of aldehyde
oxidation is expected to be enhanced that results in a decrease of polymerization reactions and
then a decrease of coke formation. Simultaneously, this complete oxidation of aliphatic

compounds would increase the amount of CO; released in the gas phase.
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I1.1.2. Gas formation

The gaseous phase analyzed directly after reaction is composed of H,, CO, CO,, and light
hydrocarbons. However the proportion changes slightly regarding parameters studied
(reaction time and catalyst). Indeed, reaction time, as well as the catalysts, played an
important role in the carbon conversion and enhanced the gasification particularly towards H»
production. Moreover a large amount of CO, is dissolved as carbonates due to the basic pH of
the remaining solutions (pH = 10).

Figure 109 presents the proportion of carbon recovered in gas phase versus reaction time. The
error related to percentage obtained from p-GC results is 1%. The main part of carbon in the
gas phase was due to CO and CO,, produced from oxidation and water-gas shift reactions.
Moreover the amount of carbon in gas phase increases with reaction time using or not the
catalyst. At long reaction time, the compositions of both gaseous products are almost similar.
The amounts of carbon dioxide, and to a lesser extent carbon monoxide and methane, are
increasing the amount of carbon recovered in the gaseous phase at long reaction time.

As regards to the catalytic effect, Figure 109 shows that the amount of carbon converted to the
gaseous phase is slightly higher at long reaction time (60 min) due to oxidation and water gas
shift reactions. At short reaction time, carbon conversion to gas phase is surprisingly lower
using catalyst. Indeed the gas produced using catalyst contains six times fewer methane and
three times fewer CO, and light hydrocarbons. Moreover the amount of CO was under the
detection limit and was not quantified using catalyst. As the volume of gas produced is almost
the same in both experiments (15 min), it suggests that other gases are produced. Indeed the
amount of oxygen in gas phase is tripled using catalyst and reaches 145 umol. Taking into
account the role of catalyst on water splitting, these results would indicate that oxygen active
species are recombined into O, and the carbon gasification efficiency is affected by reactions
involving these species. Kinetics of reaction between oxygen active species is expected to be
higher than that of oxygen active species on organics, for short reaction time. This result
underscores that the recombination of oxygen activated species could be a preliminary
reaction in the global oxidation reaction of organics. Nevertheless, for a higher reaction time
(450°C-60min), competition occurs between water gas shift reaction and extreme oxidation of
organic molecules that released CO; also. This double production generates more CO,. After
reaction an equilibrium between liquid and gas should occur and limit the capture of CO, in
the liquid phase. Therefore it could explain the existence of CO, in gas phase and more

amount of CO; in the presence of catalyst.
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Considering the global action of CeO, on hydrothermal conversion, this catalyst increased the

conversion of carbon into CO; by promoting oxidation and water gas-shift reactions.

Carbon in gas phase
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Figure 109: Proportion of carbon converted into gas phase at 450°C.

During the catalytic hydrothermal conversion of black liquor, hydrogen activated species are
also expected. Figure 106 shows the amount of H, produced for the same operating conditions
as previously. The error related to the calculation of produced H; is 0.02 mmol. For a long
reaction time (60 min), the amounts of H, reached 345 pumol and 322 pmol using or not
catalyst respectively. The amount of H, measured was related to its production and its
consumption. Active hydrogen species that was produced from water splitting would easily
and continuously react with another active hydrogen to form H,; as the amount of light
hydrocarbons is lower using catalyst, the consumption of H; could be related to

hydrogenation or/and capping reactions with organic molecules to form smaller molecules in

liquid phase.
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Figure 110: H, produced into gas phase after reaction at 450°C.
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For short reaction time, the amount of H, is 5 times lesser using catalyst. This low amount of
H,, while the amount of O, is high, indicated its consumption in other reactions. As described
previously, the amount of light hydrocarbons is also lower using catalyst meaning that H,

produced could be consumed in reactions such as hydrogenation in liquid phase.

To conclude, at long reaction time the catalyst improves gasification, mainly for CO,, and H»
production. At short reaction time, the catalyst has a strong effect on O, production while H,
and C amounts in gas phase are lower with catalyst than without catalyst. The proportion of
carbon converted into gas phase suggested that exchange can occur between gaseous and
liquid phases (high pH). In this case, hydrogenation reactions with liquid phase are supposed

to play an important role.
I1.1.3. Liquid phase

Gel permeation chromatography (GPC) was used to separate molecules towards their
molecular weight. The profiles of the curves are plotted in Figure 104, where the intensity is
reported as function of the molecular weight. The profile obtained for black liquor indicates
that molecules have mainly a molecular weight centered at log M = 2.05. Moreover, a
significant amount of molecules presents higher molecular weight up to log M = 3.5. Firstly,
the profiles of liquids recovered after reaction show the sharp decrease of the number of
molecules between a log M of 2.7 and 3.5. Simultaneously, the liquid was yellow (almost
transparent) and the color became lighter by increasing reaction time. This is supposed to be
due to the conversion of oligomer molecules to smaller colorless molecules (such as acids,
aldehydes, alcohols...), polycyclic (2 or 3) aromatics molecules and/or to solid residues.
Hydrothermal conversion, whatever the conditions used, is efficient to either convert organics
into smaller structures (C removal) or hydrogenate molecules (O removal and H addition).
Catalyst and reaction time are improving this phenomenon. Nevertheless this strong decrease

could be also attributed to coke formation.
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Figure 111: Catalyst influence on molecular weight at 450°C.

For experiments performed with catalyst, intensity at low molecular weight is higher,
meaning that CeO, improved degradation of black liquor. At longer reaction time and using
catalyst, the number of heavy molecules decreases while that of medium molecules increases
with a molecular weight center at log M = 1.77. Thus it explains the higher release of carbon
to gaseous phase. Simultaneously, GC-MS analyses were carried out and confirmed that
smaller molecules were detected in the presence of catalyst:

At 15min: 3- butanoic acid ; propane ; 3-methyl butanal ; phenol, etc.

At 60 min: acetone ; cyclopropane, 1-ethyl-2-methyl-, cis- ; butanal, 3-methyl ; phenol, etc.
The degradation of black liquor during reaction is confirmed by the presence of these smaller
molecules. Moreover oxidation by CeO; on the black liquor is completed and leads to the
release of CO; into gas phase.

The basicity of the liquid phase after reaction is preserved (pH>10), and CO, is captured by
liquid phase until liquid and gas phase equilibrium. The saturation of the chains in liquid

phase does not change suggesting rather capping reactions.

I1.1.4. Conclusions about the catalytic effect of CeO, under supercritical

conditions

CeO, nanocatalyst was selected to decrease coke formation and improve hydrogen
production. The objectives have been achieved considering gas and liquid analysis. Under
supercritical conditions splitting of water occurred efficiently, with the use of cubic CeOy;
forming oxygen and hydrogen activated species. On the one hand, complete oxidation

happened for smaller molecules to release CO,. A first step of oxygen activated species
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recombination into O, has to be considered. On the other hand, the hydrogen actives species
seemed to react into homolytic reaction to form H, and also into capping reaction to form
smaller aromatics molecules. CeO, improved water-gas shift reaction that can explain also the

higher amount of H, and CO,, and lower amount of CO.
Under subcritical conditions, most of the reactions occurred into liquid phase.

I1.2. Catalytic conversion of black liquor under subcritical conditions

Experiments at subcritical conditions were carried out in 5 mL batch autoclaves at 350°C, self
generated pressure. Reaction time of 15 min and 60 min, as well as the amount of catalyst,
were investigated. The catalytic effect was evaluated towards coke formation and hydrogen

production as previously.
I1.2.1. Coke formation

At 350°C, under subcritical conditions, reaction media is made by the mixture of three phases:
aqueous phase, oily phase and gaseous phase. Due to the pressure, it assumed that the gaseous
phase is weak. During the conversion, polymerization of phenolic compounds occurred, and

formed spherical micro particles (see chapter 4).

L L
HD-2700 200kV x40.0k TE 14/01/30 16:39 800nm

Figure 112: Solid obtained afier 350°C, 60 min of reaction time, without catalyst.

Coke from black liquor at 350°C is still composed of carbon, oxygen and minerals. Sulfur
(darkest spots on figure 112) is still detected. Minerals are observed as independent crystals to
the coke.

However, in the presence of catalyst, spherical particles disappeared and the amount of coke

formed is less. Coke is not visible by TEM observation, only the nanoparticles of catalyst as
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shown in Figure 113. Thus the coke is not recovered as particles but as deposit on the catalyst
surface. Simultaneously, the color of the virgin catalyst changed from yellow to dark brown

after reaction.

L I I I B S |
80.0nm

Figure 113: Solid obtained after 350°C, 60 min of reaction time, with catalyst.

The mass of coke was also evaluated after experiments and summarized in Table 13. The
error related to mass of solids is 0.1 mg. At both reaction times, the amount of coke is almost
halved using the catalyst.

Table 13: Proportion and weight of coke formed after reaction at 350°C (R=35).

Moke + cat = () %0 coke Meoke = (MQ)
60 min R =20 9,85E-01 1,56% 15.4
60 min R=5 1,34E-01 3,81% 5.1
60 min 9,30E-03 9.3
15min R=5 2,51E-01 2,70% 6.8
15 min 1,01E-02 10.1

A second experiment was carried out using higher catalyst ratio (R=20) for 60 min reaction
time. The total amount of coke formed was higher in mass (15.4 mg at R=20 compared to 5.1
mg at R=5) but lower in mass percentage in the solid (1.56 wt% compared to 3.81 wt% at
R=20 and 5 respectively). A hypothesis was an antagonist effect of CeO, as catalyst and as
carrier of coke formation. In addition, probably oxidation is not complete because catalyst
efficiency is low under subcritical conditions and water properties are less optimal for

reactivity.

Analyzes of gaseous phase can give first information on the level of oxidation made by CeO,

on aromatic molecules regarding in particular carbon conversion.
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11.2.2. Gas formation

The volumes of the gaseous phases are not strongly affected by reaction time and catalyst.
Gaseous phase is mainly composed of H,, CO, CO,, and light hydrocarbons. The carbon
conversion to gas phase has been calculated and was found surprisingly low at long reaction
time. The error related to percentage obtained from p-GC results is 1%. The analysis of CO,
distribution shows that it is mainly recovered as carbonates. Therefore, the percentage of
initial carbon recovered in the gaseous phase, as well as dissolved carbonates (inorganic
carbon in liquid phase) was calculated and presented in Figure 114. For both reaction times,
the amount of organic carbon converted increased slightly using the catalyst. The reactivity of
CeQO; is not significantly demonstrated with these conditions except with a ratio of 20 (not
shown). The overall low conversion would be due to subcritical temperature which improves
reactions in liquid phase rather than in gas phase. The compositions of the gaseous phases

were also compared.
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Figure 114: Distribution of initial organic carbon in gas phase and dissolved carbonates at 350°C.

Concerning the total amount of CO, (in gas phase and dissolved as carbonates), it is
significantly higher using catalyst at higher reaction time. For short reaction time using the
catalyst, the amounts of light hydrocarbons are 2 to 3 times higher while at higher reaction
time, the amount of CH, increased significantly in presence of catalyst (10 times higher). For
short reaction time, carbon monoxide was also detected. The proportion of organic carbon

being higher (alkane and alkenes), the catalyst enhances the reactivity of the media.

Probably, the action of CeO, on water under subcritical conditions is the same as supercritical
conditions with lower efficiency. Into subcritical conditions, in the same way as supercritical
conditions, hydrogen active species can form directly H, or react with organic molecules.
Simultaneously, other reactions occurred like dehydrogenation that release H, in gas phase

from alkenes formation.
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Figure 115 shows that the amount of produced H, is significantly increased in the presence of
the catalysts at 350°C and 60 min. The error related to the calculation of produced H, is 0.02

mmol. The other experimental conditions demonstrate a moderate effect of the catalyst.
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Figure 115: H, produced into gas phase after reaction at 350°C.

Active hydrogen species that was produced from water splitting would easily and
continuously react in gas phase to form H,. H, was also produced by water-gas-shift reaction
and by dehydrogenation reaction from alkane. However the increase in active hydrogen
species would simultaneously increase reactions with organic molecules. Concerning the
experiments carried out at 350°C and 60 min, the amount of H, was multiplied by 10 using
CeO; as a catalyst. This means that H, consumption was higher at long reaction time without
catalyst while H, production would be higher using catalyst. The amount of H, was not
affected by the catalyst ratio (R=5 or 20, 350°C and 60 min) even with a higher ratio of 20.
As the amount of H, produced from water splitting would be higher especially for R = 20, H;
produced would be used for capping reaction in liquid phase to produce smaller molecules;
also committed into hydrogenation/dehydrogenation reactions.

Conversion of carbon into CO; is not high at long reaction time that can suggest oxidation is
not complete to release CO, but to produce smaller molecules containing oxygen. H, seemed
to be limited or used with faster kinetics into concurrent reactions. The analysis of liquid

phase should help to better understand.
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I1.2.3. Liquid composition

From gas phase analysis, black liquor conversion is expected to be less than under
supercritical conditions. As the proportion of carbon converted into CO, is less, partial
oxidation of liquid molecules is expected using catalyst. Regarding catalyst action, as
previously, the focus is made on hydrogenation and oxidation reactions.

The oxidation of molecules is noticed; by GC-MS in the presence of catalyst, especially at 60
min; R=20 and R=5; with oxidized molecules like 1(3H)-Isobenzofuranone, 6,7-dimethoxy-3-
[2-(2-methoxyphenyl)-2-oxoethyl]. Alkynes were also detected with 2-
Methylphenylacetylene so reaction of dehydrogenation occurred in the same time as
retroaldol reactions, favored in basic media. As a result, these reactions compete with capping
reactions. Probably kinetics (at 350°C) for dehydrogenation reaction is higher than kinetics
for capping reaction. This tendency can explain why the amount of H, remains the same. A

high amount of aromatic compound was obtained into liquid and less coke was formed.

Some heavy molecules were remained into liquid phase (cf. GC-MS results). This result was
supported by liquid color. The deep color is due to the presence of phenolic compounds [72].

The liquid was still brown and no color variation was observed within the reaction time. The
color became lighter with increase of reaction time and for a high ratio (R=20). These results
mean that degradation is slow under subcritical conditions and most of molecules were still
polycyclic molecules. This observation was supported by gas permeation chromatography

(Figure 116).
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Figure 116: Catalyst influence on molecular weight at 450°C and 350°C.
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The main peak of log M observed for original black liquor is slightly decreased using catalyst.
The curve obtained after 15 min reaction time without catalyst presents a shift of the main
peak to higher molecular weights. This significant increase of M would be due to O or C
addition rather than H addition. For the whole set of conditions, the molecules in the region of
log M comprised between 2.2 and 2.5 seem to be particularly reactive as the peaks of the
original BL are smoothed. However the intensity of log M in the region of 2.5 to 3 suggests
the recovery of polycyclic molecules.

The shift of the curve for R=20 means other populations of molecules were more represented.
For this temperature, all curves are stackable to Log M = 2; so no smaller molecules are
formed.

11.2.4. Action of CeO2 in the conversion under subcritical conditions

Under subcritical conditions, splitting of water occurred by CeO, making water more reactive.
From results obtained, most of reactions were in liquid phase. On the one hand, H reacts into
hydrogenation / dehydrogenation reaction to form alkene and saturated cycle like indane. On
the other hand, O is used to oxidize molecules but under these conditions oxidation is partial.
That can explain the low percentage of carbon that was converted into gas phase and into
coke. Under subcritical conditions retro-aldol reactions occurred also that decreased the

availability of small aldehyde to connect phenolic compounds into coke.

Action of CeO; on water is the same under sub and supercritical reaction but main reactions

differ between these both conditions

I1.3. Comparison between the catalytic conversion of Black Liquor under

sub and supercritical conditions.

I1.3.1. Carbon conversion

The quantity of coke was increased in the supercritical conditions; due to the efficiency of
water under these conditions on the high degradation of lignin in phenolic compounds.
Radical reactions were increased in supercritical conditions so a high level of condensation
reactions is expected and they explain that no negligible weight of coke is formed. Reaction
time increases this phenomenon.

The degradation of organic carbon to gas phase (or inorganic carbon) is higher at 450°C as
expected. So gasification is favored under supercritical conditions. Indeed ~20 wt% of initial

carbon is converted into gas phase at 450°C whereas only 5 wt% max is converted into gas
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phase under subcritical conditions. This observation suggested that efficiency of catalyst is
higher under supercritical conditions especially due to oxidation reactions. At the same time,
the analyses of liquid phases (GPC, GC-MS and color) confirm the production of molecules
with lower molecular weights at high temperature as reported in Figure 117 (GPC results). As
a result, partial oxidation was obtained at subcritical conditions while the process is more

achieved at high temperature.
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Figure 117: Comparison of GPC results at 350 and 450°C. t= 15 min and R = 5.

As regards to coke formation, for both temperatures, coke was formed (Tables 12 and 13); its
proportion was increased in the supercritical conditions. The proportion of coke formed
decreased when the ratio of catalyst increases at 350°C. The efficiency of catalyst seems to be
higher at low temperature (subcritical conditions). Under subcritical conditions, amount of
coke would be lower due to a combined effect of catalyst and retro-aldol reaction. Thus the
efficiency of the catalyst towards the reduction of coke formation seems to be higher at
subcritical conditions. The analysis of the solid morphologies reveals some differences.
Indeed, Figure 118 (a) presents TEM images of solid recovered at 450°C (60 min, using
catalyst). A micro-analysis with EDX detector was performed and showed the presence of

mineral content in the solid formation (Figure 118 b-f).
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Figure 118: TEM image (a) and micro-analysis (b-g) of solid recovered after experiment (450°C, t= 60 min,
R=5)
The pictures from Figure 118 (a and b) shows a rod-shape solid. However this rod-shape is

not attributed to the carbonaceous solid (i.e. coke) as regards to C distribution (Figure 118 a
and b). Oxygen is a one of main element recovered in the solid formed (Figure 118 b and d).
However this solid formed is not composed of carbon, but with minerals, such as Na, Mn, P
(Figure 118 e-g) or Ca, S (not showed), are also recovered. These analyses highlight the high
use of oxygen active species for oxidation or complexation reactions, either with organics or
minerals. To conclude, the solid obtained from catalytic conversion at supercritical conditions
seems to contain higher amounts of minerals compared to the solid obtained without catalyst.

On the contrary, in the presence of cubic CeO; at 350°C, carbonaceous solid was not visible
by TEM but the cartography was able to measure some carbon (Figure 119 a). Figure 119
presents the TEM pictures and micro-analysis of solid residue recovered at subcritical
conditions (350°C, t= 60 min, R = 5). The shape of the solid recovered is different from that
obtained at supercritical conditions. Figure 119 (b and c) shows that carbonaceous solid is

dispersed on the catalyst. The amount of oxygen is still high but seems to be more distributed
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between organic and mineral parts. The amount of minerals, especially oxygenated
compounds, seems to be lower at subcritical conditions. Aside from the quenching that would
lead to high amounts of precipitate salts at supercritical conditions, oxygen species from water
splitting seem to be less available for mineral oxidation at subcritical conditions. Thus the
effect of catalyst towards oxygen release seems to be higher at 450°C as regards to oxidation

reactions in solid phase. In addition, the carbon conversion to solid phase requires an

elemental analysis to be calculated.
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Figure 119: TEM image (a) and micro-analysis (b-g) of solid recovered after experiment (350°C, t= 60 min,
R =)

11.3.2. H, production

As mentioned previously the effect of catalyst has to be evaluated towards coke inhibition and
hydrogen production. To compare the results, the amount of H, produced (in pmol) was
divided by the mass of organic content introduced (mg). The values obtained are close to 2 at
subcritical conditions for both reaction time with catalyst; while this ratio reaches 10 to 40 at

supercritical conditions respectively at 15 min and 60 min of reaction time with catalyst. So
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the amount of hydrogen produced is clearly enhanced by temperature. Concerning the gaseous
phase composition, light hydrocarbons with single bonds (C, and Cs;) are in higher
concentration at supercritical conditions compared to C, and C; compounds with double
bonds. On the contrary, concentrations of alkenes are higher than alkanes at 350°C. So these
results indicate that hydrogenation is enhanced at 450°C. Hydrogenation reactions would be
favored as the amount of hydrogen, such as hydrogen active species or dihydrogen, is higher
at 450°C.

Hydrogen formed by water splitting is used to react with organic molecules. Reactions
pathways are guides by operating conditions. Under subcritical conditions,
hydrogenation/dehydrogenation is favored whereas, under supercritical conditions, capping

reaction is predominant.

I1.4. Conclusion

The goal of the study was to investigate the catalytic effect of cerium oxide nanocatalyst
towards hydrothermal conversion of black liquor. The use of catalyst would lead to an
increase of hydrogen production and an inhibition of the coke formation. First the analyses of
gaseous phases reveal that catalyst seems to improve hydrogen production, as well as the
temperature and the reaction time. Although this amount was lower using catalyst (450°C),
the amount of hydrogenated products was increased. Concerning coke formation, the amount

was lower using catalyst.

As expected, cerium oxide nanocatalyst is efficient to improve black liquor conversion.

As the trend observed for hydrogen concentration was not clearly defined, the mechanism or
action of catalyst was also investigated. The hypothetic action was suggested through water
splitting into hydrogen and oxygen active species. This active species are either able to react
with organic and mineral compounds (i.e. hydrogenation, oxidation) or with other actives
species. Indeed, H, molecules can be consumed by hydrogenation reaction from alkane or is
released when dehydrogenation occurred. A part of these active species can react also with
liquid molecules by capping to form smaller molecules (fewer complexes). GPC and color of
liquid attested this degradation.

Active oxygen species are able to oxidize organic molecules that release CO, and CO at the
final stages. The low amounts of CO suggested its consumption in water gas shift reaction;
which was promoted by alkaline salts and CeO, catalyst. As the oxidation would be almost

complete using catalyst, the amount of alcohols or aldehydes was limited compared to acids.
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When oxidation was extreme, CO, was released to gas mixture. Thus polymerization of

phenolic compounds and aldehydes is limited.

We also noticed that the amount of O, and H; at 450°C, short reaction time and using catalyst
was significantly modified compared to the experiment without catalyst. Indeed, a higher O,
content was measured and hydrogenated products (such as alkanes) were identified. By
increasing reaction time, O, would be used for oxidation reaction that increases CO, CO, and
intermediates of oxidation. In the same way the amount of mineral oxide in the solid phase
seems to be favored by catalyst and temperature increase. Moreover the ratios between
oxygen (or hydrogen) and initial organic content showed that the reaction were improved at

high temperature where the splitting would be favored.
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I11. Preliminary study for technical industrial feasibility

Considering the H, production from catalytic conversion of the black liquor, a preliminary
feasibility study for energy balance can be done. It is based on experimental results and
consists in heat and mass balances of the reaction. This study aims to determine the best
operating conditions and the parameters in order to fit the industrial requirements of process
implementation in industry. This first approach considers batch hydrothermal conversion of
black liquor. The study highlights a list of routes to be explored and they are also exposed

concerning continuoustreatment.
II1.1. Batch process

The fixed parameters for this study are:

- a 60 min reaction time,
- a70% recovery of the heat used to perform the hydrothermal conversion,
- initial incoming reagent temperature and pressure (20°C, 0.1 MPa).

The other parameters for this study are:

- concentration of black liquor (10 wt. % of raw black liquor or raw black liquor),
- use of CeO; as catalyst (yes or not),
- final temperature (350°C or 450°C),
- final pressure (0.1 MPa or 25 MPa).

The global scheme of the process is drawn Figure 120.
The calculations are based on the hereafter assumptions:

- Black liquor enthalpy is treated as water enthalpy,

- Hj; production rate at 25 MPa and at 0.1 MPa are equals,

- Thermal efficiency of H; use is 100 %,

- H; production from raw black liquor is 10 times the H, production from 10 wt% black
liquor solution,

- CeO; has no influence on the final pressure and on the heat required.
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(x).heating

Black liquor Solid and aqueous phases
VL
T.=20°C Ty=350°C/450°C
P.=0.1 MPa Hydrothermal P;=0.1 MPa /25 MPa

—_— —_—

conversion of black

—— % liquor >

Cerium Oxide CeO, — Hydrogen

Ny, (mol/Ly;)

AH,

combustion

(kJ/moly.)

Q

‘recovered ("')-Hg
Figure 120: First approach for heat balance of hydrothermal conversion of black liquor.

The other parameters used for these calculations are:

- Molecular weight of water: 18 g/mol

- Molecular weight of hydrogen: 2 g/mol

- 10 wt. % black liquor density: %5, .. = 1.0112

- Pure black liquor density: dbj,e = 1.12

- Hydrogen heat of combustion: AH ,S‘;mb”“i‘m = 241.83 kJ/mol

- Hydrogen production with 10 wt% black liquor are experimentally:

without CeO»:

o At350°C income . =3.12mL => ni2Produced — 340 %1075 mol

o At450°C  Vineome = 0544mlL => ni2Produced = 3774107 mol
with CeO,:

o At350°C  vingome =312mL => nj2Protueed = 338 % 107* mol

o At450°C  Vineome = 0544mL => ni2Produced — 3434107 mol
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Regarding previous scheme nomenclature (Figure 120), the calculations can be lead following

equations 1 to 5 as follow:
Qheating = hpt(Pf,Tf) - hpt(Pe,Te) kJ/kg income (1)

= 0.7 * Qneating kJ/kg income (2)

Qrecovered

H duced
pfiz produce

Hp _ 10% wt BL combustion :
Q10% wt BL = Jincome . gt * AHp, kJ/kg income (3)
10% wt BL 10% wt

Hy produced

H n i .
Qplztre BL — 10 * inclt(a):ﬁeWt B BL T AHﬁgmbuStwn kJ/kg mcome (4)
Vio0% wt BL* Apure

overall _ Hy :
heat balance — Qrecovered + QBL - Qheating kJ/kg mcome (5)

The operating conditions corresponding to interesting heat balance are hydrothermal
conversion of pure black liquor, with or without CeO, catalyst, at 25 MPa and 450°C. These
results can be explained by the higher amount of hydrogen produced with pure black liquor on
the one hand and by the lower heat required to heat black liquor up to 25 MPa on the other
hand.

In order to achieve the energy balance, the minimum heat recovery rate has also been
calculated regarding the chosen calculation. For a hydrothermal conversion of raw black
liquor with CeO; catalyst, the minimum heat recovery must be 47%. It gives a direct

indication of the energy amount available to fit other process thermal needs.
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The calculations results are presented in the Table 14. Green blocks show positive heat balance: Raw black liquor, 60 min of reaction time at

450°C.

Table 14: Black liqguor hydrothermal conversion preliminary feasibility study results

H, production | Heat production Overall heat | Heat available in
Overall energy
needed (kJ/kg rate from Hz Heat recovery balance case of BL pre-
Income Tr (°C) Ps (MPa) income) (mol H, / kg combustion (kJ/kg income) (kJ/kg heating at 0.1
Qv income) (kJ/kg income) Qrecovered income) MPa
heating Q:IOZ% wt BL ggg;%ltilance (k.]/kg income)
0.1 3091.81 2164.26 -924.94 -
i 350 0.0108 2.60
Dﬂ“ltieqd :ia"k 25 1539.85 1077.90 ~461.96 3
u
0.1 3298.80 2309.16 -848.20 -
10 wt% 450 0.5849 141.44
e 25 2866.37 2006.46 -859.91 -
0.1 3091.81 2164.26 -901.50 -1232.37
Pulri:b(li"k 320 25 1539.85 01077 2604 1077.90 -461.96 -792.83
u
0.1 3298.80 2309.16 424 .81 93.94
100 wt% 450 5.8489 1414.45
e 25 2866.37 2006.46 554.54 223.67
Diluted black 0.1 3091.8 2164.26 -909.31 -
350 0.0754 18.23
liquor 25 1539.85 1077.90 -443.73 -
10 wt% 0.1 3298.80 2309.16 -838.97 -
450 0.6230 150.67
+ CeO, 25 2866.37 2006.46 -709.24 -
Pure black 0.1 3091.81 2164.26 -745.26 -1076.13
350 0.7538 182.29
liquor 25 1539.85 1077.90 -461.96 -792.83
100 wt% 0.1 3298.80 2309.16 517.05 186.18
450 6.2304 1506.69
+ CeO, 25 2866.37 2006.46 646.78 31591
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Considering that heat recovery is used for black liquor income pre-heating at 0.1 MPa to a
limited temperature, chosen 6°C lower than boiling point (105°C — 6°C = 99°C), the heat
transfer can be optimized as followed and changes the heats required and available for other

process needs (respectively Q ,,,.in o ANd Q .
g recovered

(\). heating: Qheating - {'\).pre-heating

Solid and aqueous phases

T=350°C/450°C

Cerium Oxide CeO, Hydrothermal P;=0.1 MPa /25 MPa
R — ) S
conversion of black
Black liquor Aigguor Hydi‘o .
Var — n (mBlf’L )
T, = 99°C o o
P,=0.1 MPa AH_ o
combustion
( \ (kJ/moly.)
(-\’}pre-heating )
Pre- <
heater QHa
Black liquor v (-‘) fecovered - ('x).l‘ecovered - ('v;,).pre-heating
VaL
T, =20°C
P.=0.1 MPa

Figure 121: First approach for heat balance of hydrothermal conversion of black liquor with preheating heat

recovery.
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II1.2. Continuous process

Considering continuous hydrothermal conversion of black liquor, the energy recovery can be

made directly using black liquor or using an intermediate heat transfer fluid. The use of

intermediate fluid is most likely necessary because of products content (aqueous and solid

phase) but also because of operating risks in case of fluid ingress for example.

With a view to reinstatement in the papermaking process, the temperature of products after

heat recovery has been chosen very close to green liquor one before filtration and pre-

treatment of caustisizing, 80°C.

These two options are presented in the Figures 122 and 123; and the heat available for other

needs, are presented in the Table 14.

Option 1 : black liquor is
used as heat transfer fluid

Cerium Oxide CeO,

Q’

5

heating - (\).heating -

Black liquor
ViL

T, =99°C
P,=0.1 MPa

N

Q

< pre-heating (\)H-)

Hydrogen ﬁ

nH: (nlOL;LBL) > AI_Icomhustion (kJ "'{I'IIOIH:)

_J

Black liquor
preheating

Qp:f-‘;1ea:1:1g

Black liquor
ViL

T, =20°C
P.=0.1 MPa

T:=350°C/450°C
P;=0.1 MPa /25 MPa

-
Hydrothermal conversion of
black liquor
.
' '
A YAVAVAVAVAVAVAVAV
—"\ ./A‘"..‘"“\ AVAVAVA AYAY
—V\VAAAANANAN A
Higher energy level
T thermal process needs
Reaction products
T =280°C
P.=0.1 MPa

Figure 122: First approach for heat balance of continuous hydrothermal conversion of black liquor with

preheating without intermediate heat transfer fluid.
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Option 2: use of an )

intermediate heat

(\). heating - (x).heating - (".vpre—heating ('x),Hj

transfer fluid @ Hydrogen ﬁ

Cerium Oxide Ce02 ' \nHz (HIOI““{LBL) -] AI_Icomb‘_lstion (kJ’;‘nlOIH:,)
Hydrothermal conversion of >
black liquor
Black liquor b < T;=350°C/450°C
Ve , n P;=0.1 MPa /25 MPa
T,=99°C ' ‘ ’
P,=0.1 MPa VAVAAAAANAA A
Higher energy level
thermal process needs
e ™ ' ™
Black liquor : Intermediate
preheating ; heat exchanger
Q;fe»':w_:g..ug i
— —
Black liquor Reaction products
VeL @ T =80°C
T,=20°C P.=0.1 MPa
P.=0.1 MPa

Figure 123: First approach for heat balance of continuous hydrothermal conversion of black liquor with

preheating with intermediate heat transfer fluid.

Other possible optimizations for this process are:

material and/or energy valorization of the solids obtained,

oily phase energy valorization,

material valorization in chemical products contained in the aqueous phase

conversion operating conditions optimum (heat balance optimization with temperature
and pressure and also reaction time)

optimum use of recovered heat available to reach the highest energy level of black
liquor (balance between auxiliary consumption for pressurizing for example and

energy available after pre-heating)

Conditions for a positive energy balance are 450°C and 60 min of reaction time. To improve

the balance, a continuous process with a counter current flow to preheat the black liquor could

be investigated.
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IV. Study of catalytic conversion of black liquor model molecules

Regarding the results from section II, black liquor is a very complex aqueous mixture and its
complete composition is hard to analyze. To highlight its reactivity, studying its model
molecules, such as lignin, and to a lesser extent GGGE, is essential. GGGE means

Guaiacylglycerol-B-guaiaicyl ether; its formula is represented in Figure 124.

OH CH,

0

(8]

OH

Figure 124: GGGE formula.

Among model molecules, lignin could come from different raw materials or different
separation processes; and would be thus modified. Two kind of lignin were characterized to
check their correspondence with black liquor and use one of them as model molecule: Alkali
lignin and lignin. A GPC analysis (molecular weight) has been made and Figure 125 shows

that lignin matches more with black liquor molecular weight profile than alkali lignin.

Model molecules

@]
[os) —_
T
-

—BL
/\ —lic
\ —AL

—
>%‘;

Normalized intensity
O ~
o~
p—
v
[—

o

Log M

Figure 125: GPC results for the comparison between lignin, alkali lignin and black liquor.
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Experiments made with black liquor have been reproduced with lignin under supercritical
conditions and under subcritical conditions. The objective of this last section is a contribution
to the comprehensive mechanism of catalytic decomposition of black liquor in sub and

supercritical water
IV.1. Study of the conversion of lignin

To confirm the adequacy between black liquor and lignin, experiments with and without

catalyst at 450°C and 350°C at 60 min of reaction time have been performed. Solutions of

model molecules have been prepared in order to have the same ratio: Water/ Dry matter 8

black liquor. As previously, liquid, solid and gas have been analyzed after hydrothermal

process.
IV.1.1.  Catalytic conversion under supercritical conditions

Figure 127 represents the profiles of GPC curves of liquid obtained after black liquor and
lignin conversion. The profile of lignin is centered at Log M = 2.1 whereas the profile of
black liquor is centered at Log M = 2.2. Except for this predominant peak, curves have the

same trend. So under supercritical conditions, lignin has the same behavior as black liquor.

450°C _60min 10 wt%
1
0.9
=08 LiG without
207 Cat
B , , Black
=05 77 " Liquor
504 AS - without Cat
Z03
202
0.1
D —
1.5 2 25 3
LogM

Figure 126: GPC results for liquid obtained from lignin conversion with and without catalyst (R=5), under
supercritical conditions.

Figure 127 shows the influence of the catalyst on lignin conversion. After reaction with
catalyst, the curve is shifted to smaller molecular weight. For experiments performed with

catalyst, intensity at low molecular weight is higher; meaning that CeO, improved

degradation of lignin.
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450°C_60min 10 wt%
1
0.9
i LiG with
H 0.7 Cat
206
L Lignin
= - without Cat
E 04
= 03
z 0.2
0,1
0 s
1.5 2 2.5 3
LogM

Figure 127: GPC results for liquid obtained after 60 min of reaction time without catalyst with lignin and black
liquor under supercritical conditions.

The composition of the liquid is detailed Table 15.

Table 15: Molecules identified in liquid phase after hydrothermal conversion of lignin at 450°C during 60 min.

Without catalyst With catalyst
Propane Propane
(E)-2-Butenal, Furan, 2,3-dihydro-
Toluene Toluene
3-Buten-1-ol Cyclohexane, ethyl-
Phenol Ethylbenzene
25 CyCtheXz(ilizI;fh}lli:tg;?; ¢, 2,6-bis(1,1 Benzene, (1-methylethyl)-
Butylated Hydroxytoluene Benzene, propyl-
2,5-Cyclohexadiene-1,4-dione, 2,6-bis(1,1-
Retene .
dimethylethyl)-

Phenol, 2,2'-methylenebis[6-(1,1-
dimethylethyl};- 4-methy1f Butylated Hydroxytoluene
Benzene, (1-pentylheptyl)-
Benzene, (1-butyloctyl)-
Benzene, (1-propylnonyl)-
Retene
Phenol, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-
methyl-

As exposed in Table 15 in the presence of catalyst, smaller molecules are identified with a
plurality of monocyclic molecules with ramification such as I-pentylheptyl-Benzene, 1-
butyloctyl-Benzene, 1-methylethyl-Benzene, 1-propylnonyl-benzene, propyl Benzene, ethyl-
Cyclohexane, Ethylbenzene. Substitutions are constituted by aliphatic group; these long

carbonaceous chains are due to opening cycle (retroaldol reaction) of retene molecules (C;g).
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The degradation of lignin during reaction is confirmed by the presence of these ramified
phenyl molecules. No more oxygenated molecules were detected meaning that oxidation by
CeO; is a complete oxidation leading to the release of CO; into gas phase. The basicity of the
liquid phase after reaction is preserved (pH>10) and CO; is captured by liquid. The saturation
of aliphatic group in liquid phase suggested hydrogenation reactions while the presence of
monocyclic mono benzene molecules suggested capping reactions.

Analyses of gaseous phases are exposed in Figure 128. The difference of the proportion of
carbon converted in the gas phase (mostly CO,) between lignin and black liquor is probably
due to alkali salts contained in black liquor which increase the water gas shift reaction.
Moreover, lignin in black liquor is a lignin degraded by white liquor and so more easily
oxidable than chemical lignin. CeO, does not seem to affect the conversion of carbon during

lignin conversion. Considering GPC and GC-MS results, a part of carbon corresponds to CO,

dissolving.
450°C_60min 450°C_60min
35% 4,0E-04

o 30% X @ LiG - without 3.5E-04 . *LiG - without
£ 25% cat 3 cat
; 20% B LiG - with cat _§ 3,0E-04 BLIG - with cat
1) e i
s 15% 8 BL - without o 2,5E-04 BL - without
' 10% cat T 2,0E-04 cat
= i X BL - with cat

5%, XBL - with cat 1.5E-04 'S with ca

0% 1,0E-04 | =

50 60 70 50 60 70

reaction time (min) reaction time (min)

Figure 128: Gas analysis - Comparison between lignin and black liquor, with and without catalyst (R=20).
Errors are 1% for the percentage of carbon in gas phase, 0.02 mmol for H, produced.

Hydrogen production from lignin conversion is lower with catalyst. The catalyst promotes
formation of more activated hydrogen that reacts in hydrogenation reactions. Indeed, as

exposed in the GC-MS results saturated aliphatic groups are formed that consumes hydrogen.

Differences observed are due to alkalinity of the black liquor which improves water-gas shift
reaction. During catalytic conversion, CO, formed by oxidation reaction is dissolved in liquid
phase and H, produced is used in hydrogenation reactions. Alkali salts interfere with CeO,

catalyst and seem to improve the effect of the catalyst.
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IV.1.2.  Catalytic conversion under subcritical conditions

Under subcritical conditions, Figure 129 shows that the molecular weight profiles, after
reaction, are similar for black liquor and lignin. Thus without catalyst, bond breaking leads to

molecules with similar molecular weight. It is assumed that these two molecules have the

same reactivity.

350°C_60min_10wt%

—_—

g 0.8 Lignin
é 0.6 without cat
= 04 B!ack liquor
g Y without cat
T 0.2
:
Z 0

1,5 2 2,5 3 3,5

LogM

Figure 129: GPC results for liquid obtained after 60 min of reaction time without catalyst with lignin and black

liquor under subcritical conditions.

As shown in Figure 129, catalyst has the same effect on lignin as on black liquor (Figure 116).
The curve shifts to lower molecular weight with the formation of two populations
(Log M = 2.2 and Log M = 2.5). Degradation is enhanced in the presence of CeO; catalyst as

expected and observed during black liquor hydrothermal conversion in the same conditions.

350°C_60min_10wt%
1
é‘ 0,8 ,":'. ------ Lignin
s o without cat
E 0.4 E::‘ ST ~ . =T Lignin with
S ) :",‘ .- et IR T cat (R=20)
] S S
£ 02 g
z ! IR
O -._ edet
1,5 2 2,5 3 3,5
LogM

Figure 130: GPC results for liquid obtained from lignin conversion with and without catalyst (R=20), under

supercritical conditions.
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The results from GC-MS analysis are exposed in Table 16.

Table 16: Molecules identified in liquid phase after hydrothermal conversion of lignin at 350°C during 60 min.

Without catalyst With catalyst (R = 20)
Furan, 2,3-dihydro- Propane
2-Furanol, tetrahydro- Butanal, 3-methyl-
Butyrolactone Toluene
Phenol Butyrolactone
p-Cymene Phenol, 2-methoxy-
Phenol, 2-methoxy- 2,5-Cyclohexadiene-1,4-dione, 2,6-bis(1,1-
dimethylethyl)-
2-Methoxy-6-methylphenol Butylated Hydroxytoluene

Phenol, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-
Creosol
methyl
Phenol, 4-ethyl-2-methoxy-
Phenol, 2-methoxy-4-propyl-

Homovanillic acid

Catalyst opens the cycles creating molecules such as propane or 3-methyl-butanal by
retroaldol reactions. In the same time, molecules identified in the presence of catalyst are
polycyclic and highly substituted such as 2,5-Cyclohexadiene-1,4-dione, 2,6-bis(1,1-
dimethylethyl)- and Phenol, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl. Molecules
with a higher oxidation degree are formed such as 2,5-Cyclohexadiene-1,4-dione, 2,6-bis(1,1-
dimethylethyl)-. These results suggest a more complex conversion of the initial carbon but
hydrogen generation was not enhanced by the presence of catalyst, as shown in Figure 131.
Figure 131 compares the percentage of initial carbon converted in gas phase and the amount

of hydrogen produced, from black liquor and lignin with and without catalyst.
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350°C_60min 350°C_60min
0,
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2 3% T cat -§ 1,5B-04 ~@—BL - with
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g 2% Lig - ~ 1,0E-04 ,
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L 1% LiG - with 5,0E-05 * without cat
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Figure 131: Gas analysis - Comparison between lignin and black liquor, with and without catalyst (R=20).
Errors are 1% for the percentage of carbon in gas phase, 0.02 mmol for H, produced.

The proportion of carbon converted in the gas phase is higher in the presence of catalyst for
both materials. However, the amount of hydrogen from lignin conversion is not significantly
affected by the catalyst either because of its utilization by hydrogenation reaction in liquid

phase or because the amount produced is low.

Furthermore, alkali components in black liquor play an important role that explains
differences observed between results from lignin and black liquor. The alkaline media in
black liquor improves water gas-shift reaction producing hydrogen that increases the
conversion of carbon to the gaseous phase. Differences observed in the composition of gas

can be linked to the presence of alkali salts in black liquor.

In both conditions, sub and supercritical conditions, coke is formed during reaction. In the

presence of catalyst, these amounts are less.

To conclude: even if no main similar molecules are highlighted, lignin and black liquor
conversions lead to the same trends of phase evolutions. Similar mechanisms would occur.
Due to the presence of alkali salts in black liquor, water gas shift reaction is improved that

shifts chemical equilibrium.
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IV.1.3. Main mechanism pathway for lignin conversion

H, production

LiG Complete oxidation
+ —— 450°C - Water split < — > Capping/ hydrogenation reactions/
Water t “~__ Retro aldol reaction

Block coke formation

» H, production --
LiG Water st /"~ Partial oxidation
+ 350°C P

> Hydrogenation / Dehydrogenation
Water

= Block coke formation

Figure 132: Summary of reactions during catalytic conversion of lignin

To understand more precisely the mechanism of the catalytic conversion, a smaller model
molecule is required. A good model molecule for lignin is considered pure Guaiacylglycerol-
B-guaiacyl ether (GGGE). GGGE molecules present similar bonds and functional groups like
lignin: ether, hydroxy, etoxy, phenols ... (Figure 124). Thus as the molecular structure of
GGGE is well known, analyses of liquid phase after its hydrothermal conversion will let us to

determine which reactions occur.
IV.2. Study of the conversion of GGGE

GGGE is known to be a good model molecule for lignin as well as lignin is a good model
molecule for black liquor. The elucidation of reaction pathway during hydrothermal
conversion of GGGE will help to understand that of lignin ans so of black liquor. The

following analysis is exclusively devoted to the liquid phase.
IV.2.1.  Catalytic conversion under supercritical conditions

The catalytic conversion of GGGE has been studied under supercritical conditions with and

without catalyst at 15 min, 30 min, 45 min and 60 min.
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Without catalyst

Profiles of GPC plotted Figure 129 present same peaks, only intensities change. As expected,
reaction time enhances degradation creating both smaller molecules (peak at Log M = 2.1

increase with reaction time) and polymerized molecules (Log M >2.4).

450°C

1,8
1,6
1,4

1,2 15min

0,8 - 30m1n

0,6 ——45min
0,4
0,2

Normalized Intensity

—— 60min

1,5 2 2,5 3 3,5
LogM

Figure 133: GPC results for liquid obtained after hydrothermal conversion of GGGE under supercritical
conditions, without catalyst.

GC-MS results are presented in table 6. GGGE is degraded under supercritical water by the
cleavage of the B-O-4 linkage to form guaiacol and guaiacylglycerol then each of these
molecules react to form the molecules identified and detailed in Table 17. Phenol is obtained
by retroene elimination. C-C bonds in glycerol are broken under supercritical condition; and
generate formaldehyde and acetaldehyde. Under supercritical conditions formaldehyde is
known to react with phenolic compounds to form molecules such as Phenol, 2,2'-
methylenebis [6-(1,1-dimethylethyl)-4-methyl-]. Ramified phenolic compounds such as 2-
methyl phenol, 3-methylphenol, or bi-substituted such as 2,3-dimethyl phenol and 2,4
dimethylphenol and so on are coming from alkylation reaction on phenol. Aldolisation

reaction is able to formed alkanes identified such as tetracosane, hexadecane, and so on.
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Table 17: GC-MS results for the liquid obtained after hydrothermal conversion of GGGE under supercritical

conditions with catalyst

15 min 30 min 45 min 60 min
Phenol Cyclohexane, ethyl- Propane Cyclohexane, ethyl-
loh
Phenol, 2-methyl- Phenol Cyclohexane, Phenol
ethyl-
Phenol, 3-methyl- Phenol, 2-methyl- Phenol p-Cresol

Guaiacol p-Cresol
Phenol, 2-(1,1-
dimethylethyl)-4- Guaiacol
methyl-

Butylated Phenol, 2,3-
Hydroxytoluene dimethyl-
3,5-di-tert-Butyl-4- Phenol, 2.4-
hydroxybenzyl dimethyl-
alcohol
Phenol, 2,2'-

Phenol, 2-(1,1-
dimethylethyl)-4-
methyl-

methylenebis[6-(1,1-
dimethylethyl)-4-
methyl-
Butylated
Hydroxytoluene

E-15-Heptadecenal

Tetracosane

Phenol, 2,2'-
methylenebis[6-(1,1-
dimethylethyl)-4-
methyl-
Hexadecane
Tetracosane

Eicosane

Phenol, 2-methyl- Phenol, 2-methoxy-

p-Cresol Phenol, 2,6-dimethyl-
2,5-
Cyclohexadiene-
1,4-dione, 2,6-
bis(1,1-
dimethylethyl)-

Phenol, 2,4-dimethyl-

Butylated
Phenol, 3-ethyl-
Hydroxytoluene enol, 3-cthy
Phenol, 2-(1,1-
dimethylethyl)-4-
methyl-

Butylated
Hydroxytoluene
1,2-Benzenediol, 3,5-
bis(1,1-
dimethylethyl)-
3,5-di-tert-Butyl-4-
hydroxybenzyl
alcohol

Octadecanoic acid,
ethyl ester

1-Acetoxynonadecane
Tetracosane
Cyclohexadecane,
1,2-diethyl-
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With CeO2 catalyst

GPC curves are plotted Figure 134. Profiles are similar versus reaction time, only intensities
change. GPC results suggest that catalyst improve the degradation to form higher quantity of
small molecules. Curves look like the profile obtained for black liquor conversion at 450°C

and 60 min reaction time without catalyst.

450°C

1,4

= 1,2
g 1
&}
S .
—= 0,8 15min cat
B
= 0,6 30min cat
[a]
g 0,4 45min cat
“ 0,2 —— 60min cat

0

1,5 2 2,5 3 3,5

LogM

Figure 134: GPC results for liquid obtained after hydrothermal conversion of GGGE, without catalyst.

Table 18 presents GC-MS results. Similar types of molecules, as previous section, are
observed. Previous mechanisms are completed by the reactions due to cerium oxide. Looking
at the molecules identified, differences are due to the degree of substitution of the phenols
such as 2,3- dimethyl-phenol. Similar condensed molecules are observed over reaction time,
only their concentration decrease regarding GPC results. It is due to the oxygen activated
species which oxidizes aldehyde and limits polymerization. Oxygen activated species also

improve radical reaction of acetaldehyde splitting allowing alkylation of phenol [74]. (cf

mechanism).

Considering GPC results, small molecules are more concentrated than big molecules and so

capping reaction would also take place.
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Table 18: GC-MS results for the liquid obtained after hydrothermal conversion of GGGE under supercritical

conditions with catalyst

15 min 30 min 45 min 60 min

Phenol Propane Propane Toluene

Phenol, 2-methyl- Cyclohexane, Phenol Phenol
ethyl-

Phenol, 3-methyl- Phenol Phenol, 2-methyl- Phenol, 2-methyl-
p-Cresol Phenol, 2-methyl- p-Cresol p-Cresol
Guaiacol p-Cresol Guaiacol Guaiacol

Phenol, 2-(1.1- ) Butylated Phenol, 2,3-
dimethylethyl)-5- Guaiacol Hvdroxvioluene dimethyl-
methyl- y vt Y
2,5-
Cyclohexadiene-
H (I?ruglatid N 1,4-dione, 2,6- Phenol, 3-ethyl-
ydroxytoluene bis(1,1-
dimethylethyl)-
Butylated Phenol, 3,5-
Hydroxytoluene dimethyl-
Phenol, 3,4-
dimethyl-

Phenol, 2-(1,1-
dimethylethyl)-4-
methyl-
Butylated
Hydroxytoluene

3,5-di-tert-Butyl-4-
hydroxybenzyl
alcohol

E-15-Heptadecenal

Phenol, 2,2'-
methylenebis[6-(1,1-
dimethylethyl)-4-
methyl-
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IV.2.2. Catalytic conversion under subcritical conditions
Similar experiments have been performed at subcritical conditions.
Without catalyst

Profiles of molecular weight of the component in the liquid are almost similar from 15 min to
45 min of reaction time (Figure 135), only intensities change. For 60 min of reaction time

small molecules disappear and bigger one are in majority.
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Figure 135: GPC results for liquid obtained after hydrothermal conversion of GGGE under subcritical
conditions, without catalyst

GC-MS results are presented in the Table 19. GGGE is degraded under subcritical water by
the cleavage of the f-O-4 linkage to form guaiacol (phenol, 2-methoxy) and guaiacylglycerol

then each of them react to form the molecules identified in Table 19.

A plurality of substituted phenolic compounds is identified over reaction time in addition to
polycyclic molecules. These polycyclic molecules are oxygenated and formed by
condensation reactions between phenolic molecules and cyclization of unsaturated aldehyde

molecules. The mechanisms to obtain these molecules are not detailed.

Substituted phenolic compounds such as Phenol, 2-methoxy-3-methyl, Phenol, 4-ethyl-2-
methoxy-, Phenol, 2-methoxy-3-methyl-, Phenol, 2-methoxy-4-propyl-, Phenol, 2-methoxy-4-
(1-propenyl)- and so on are obtained by alkylation reactions on guaiacol. On the contrary to
the conversion under supercritical conditions, phenol is not identified and does not seem to be
a stable intermediate. Polymerization of phenolic compounds is allowed by the reaction

between phenolic compounds and aldehyde which is formed by the cleavage of glycerol.
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Molecule such as

2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl-Phenol,

has been

identified. Condensation reactions between aldehydes in the media would explain the

formation of linear ether such as heneicosyl acetate, linoleic acid ethyl ester, octadecanoic

acid, ethyl ester. Conjugated alkenes such as Phenol, 2-methoxy-4-(1-propenyl)- and alkene

such as linoleic acid ethyl ester are produced.

Table 19: GC-MS results for the liquid obtained after hydrothermal conversion of GGGE under subcritical

conditions without catalyst

15 min 30 min

45 min

60 min

Furan, 2,3-dihydro- Phenol, 2-methoxy-

Phenol, 2-methoxy- Phenol, 2-methoxy-3-

methyl-
B -
enzene, 1,2 Creosol
dimethoxy-
Phenol, 2-methoxy-
€nol, ~-methoxy Benzofuran, 7-methoxy-
3-methyl-
Creosol Phenol, 4-ethyl-2-methoxy-
Benzofuran, 7- Butvlated Hydroxvtoluene
methoxy- Y Y g
Phenol, 4-ethyl-2- .
enol, 4-ctny Heneicosyl acetate
methoxy-

Phenol, 2,2'-
methylenebis[6-(1,1-
dimethylethyl)-4-methyl-
Cyclopenta[d]antrhacene-
6,8,11-
trione,1,2,3,3a,4,5,6,6a,7,8,
11,12-dodecahydro-3-(1-
methylethyl)

Phenol, 2-methoxy-
4-(1-propenyl)-

Butylated
Hydroxytoluene

Dibenz[a,c]cyclohept
ane, 2,3,7-
trimethoxy-
4H-1-Benzopyran-4-
one, 2-(3,4-
dimethoxyphenyl)-7-
hydroxy-

Phenol, 2-methyl-
Phenol, 2-methoxy-

Phenol, 2-methoxy-3-
methyl-

Creosol
Benzofuran, 7-methoxy-
Phenol, 4-ethyl-2-methoxy-
Phenol, 2-methoxy-4-
propyl-

Phenol, 2-methoxy-4-(1-
propenyl)-

Butylated Hydroxytoluene

E-15-Heptadecenal

Phenol, 2,2'-
methylenebis[6-(1,1-
dimethylethyl)-4-methyl-

Methyl 3-(1-formyl-3,4-
methylenedioxy)benzoate
Cyclopenta[d]antrhacene-

6,8,11-
trione, 1,2,3,3a,4,5,6,6a,7,8,
11,12-dodecahydro-3-(1-
methylethyl)

Cyclohexane, ethyl-
Phenol, 2-methoxy-

Phenol, 2-methoxy-3-
methyl-

2-Methoxy-5-methylphenol
Creosol

3,4-Dimethoxytoluene
Phenol, 4-ethyl-2-methoxy-

Phenol, 2-(1,1-
dimethylethyl)-5-methyl-

1,4-Dimethoxy-2,3-
dimethylbenzene

Phenol, 2-methoxy-4-
propyl-

Butylated Hydroxytoluene

Linoleic acid ethyl ester

Octadecanoic acid, ethyl
ester

1-Acetoxynonadecane
Cyclohexadecane, 1,2-
diethyl-
Phenol, 2,2'-
methylenebis[6-(1,1-
dimethylethyl)-4-methyl-
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Methyl 3-(1-formyl-3,4-
methylenedioxy)benzoate
4H-1-Benzopyran-4-one, 2-
(3,4-dimethoxyphenyl)-7-
hydroxy-
Cyclopenta[d]antrhacene-
6,8,11-
trione, 1,2,3,3a,4,5,6,6a,7,8,
11,12-dodecahydro-3-(1-
methylethyl)
Tetracosane

With CeO?2 catalyst

Profiles obtained from 15 min to 60 min with catalyst are quite similar (Figure 136), excepted
for the profile obtain with R = 20 where the main peak is observed for Log M = 2 and other
peaks are shifted to the lower molecular weight. Furthermore, profiles obtained with catalyst
are quite similar with profiles obtained without catalyst, only intensities change. Indeed, for
each reaction time the intensity of the peak at Log M = 2 are higher with catalyst. This

suggests that more small molecules are formed.

350°C

0,8
0,7
2
‘% 0,6
5 .
=05 15min cat
?{é 0,4 30min cat
'Tés 0,3 45min cat
2 0,2 —— 60min cat
0,1 J —— 60 min R=20
0

1,5 2 2,5 3 3,5 4 4,5
LogM

Figure 136: GPC results for liquid obtained after hydrothermal conversion of GGGE under subcritical
conditions, without catalyst.

These results are confirmed with the identification of the molecules obtained by GC-MS and
summarize in Table 20. With catalyst same substituted phenols molecules are identified and
from 45 min, phenol is noticed. However, no oxygenated condensed molecules are identified,

especially with a ratio of catalyst R = 20. This suggests oxidation reactions took place,
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increasing the degree of oxidation of the molecules and leading to the degradation of the

condensed molecules or to their inhibition.

Table 20: GC-MS results for the liquid obtained after hydrothermal conversion of GGGE under subcritical
conditions with catalyst

15 min 30 min 45 min 60 min 60 min R=20
Hiemall 2 Phenol, 2-methoxy- Phenol Phenol Phenol
methoxy-

. Phenol, 2-

Creosol Benzene, 1,2-dimethoxy- Phenol, 2-methyl- Phenol, 2-methyl- methyl-

Phenol, 4-cthyl- Phenol, 2-methoxy-3- Phenol, 2-
e e Phenol, 2-methoxy- Phenol, 2-methoxy- R
Butylated . Phenol, 2-methoxy-3- Benzene, 1,2-
Hydroxytoluene Creosol Benzene, 1,2-dimethoxy- methyl- dimethoxy-
Phenol, 2,2'-
S 5 GE B 0 Phenol, 4-ethyl-2- Phenol, 2-methoxy-3- 2-Methoxy-5-
(ol methoxy- methyl- Cizerl methylphenol
dimethylethyl)- y y yip
4-methyl-
Butylated Creosol Phenol, 4-ethyl-2- Phenol, 4-ethyl-
Hydroxytoluene methoxy- 2-methoxy-
Phenol, 2,2'-
methylenebis[6-(1,1- Benzofuran, 7-methoxy- Phenol, ?;m:rih%)fy-*(l- - (I?rlgtylaéidene
dimethylethyl)-4-methyl- propeny ydroxytolu
Phenol, 2,2'-
Dibenz[a,c]cycloheptane, Phenol, 4-cthyl-2- Butylated methy(lf nle_bls[6-
1,2,9-trimethoxy- methoxy- Hydroxytoluene dimethylethyl)-
4-methyl-
Butylated 3,5-di-tert-Butyl-4-
Hydroxytoluene hydroxybenzyl alcohol
Phenol, 2,2'-

methylenebis[6-(1,1-
dimethylethyl)-4-methyl-

Dibenz[a,c]cycloheptane,
2,3,7-trimethoxy-

1-Hexadecanol, acetate

E-15-Heptadecenal

Phenol, 2,2'-
methylenebis[6-(1,1-
dimethylethyl)-4-methyl-

Dibenz[a,c]cycloheptane,
2,3,7-trimethoxy-
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IV.2.3. Mechanism under sub and supercritical conditions with and

without catalyst

GGGE is first degraded in guaiacol then to phenol. The other part of the GGGE molecule

gives formaldehyde and acetaldehyde molecules.

Under supercritical conditions without catalyst, polymerization, alkylation and aldolisation
reaction occurred. Under supercritical conditions with CeO, catalyst, in addition to the
previous reactions, capping reaction occurred to limit phenols reactivity as confirmed by GPC
results: small molecules are more concentrated than big molecules. Big molecules are less
present due to the oxidation of formaldehyde and other small aldehyde which used to favor
the polymerization and the condensation between phenolic molecules. In addition, CeO2
shifts probably the equilibrium of radical decomposition of acetaldehyde by oxidation that

increases the number of alkyl group available to react.

Under subcritical conditions, phenol was not observed suggesting either this intermediate is
rapidly consumes or not produced. Moreover, guaiacol seems to be also an important
intermediate of reaction. Without catalyst, alkylation, aldolisation and condensation reactions
lead to oxygenated molecules. With CeO, catalyst, oxidation of the molecules is more

achieved as smallest molecules are recovered.

Mechanisms of GGGE with and without catalyst under super and subcritical conditions are
exposed as follows (Figure 137 and 138). From these mechanisms, probable reaction
pathways for lignin (Figure 140 and 141) and black liquor (Figure 142 and 143) have been
drawn. All that is green in mechanisms relates to the catalyst. All of the green labels in the
mechanism figures are related to the catalyst action. These mechanisms are proposal of
reaction pathways from initial material to the products obtained; ways exposed do not take

into account of intermediates reaction
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Figure 137: Mechanism of GGGE hydrothermal conversion with and without catalyst under supercritical conditions
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Figure 138: Mechanism of GGGE hydrothermal conversion with and without catalyst under subcritical conditions
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These mechanisms can be linked to supercritical water reactivity as suggested in chapter 1:
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Figure 139: Reactions promoted under sub and supercritical conditions without catalyst
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V. Summary of chapter

The goal of the study was to investigate the effect of cerium oxide nanocatalyst towards
hydrothermal conversion of black liquor. The use of catalyst would lead to an increase of

hydrogen production and an inhibition of the coke formation.

As expected, cerium oxide nanocatalyst is efficient to improve black liquor conversion.

The hypothetic action was suggested through water splitting into hydrogen and oxygen active
species. These activated species are either able to react with organic and mineral compounds
(i.e. hydrogenation, oxidation) or with other activated species. Indeed, H, molecules can be
formed by recombination of active species or during dehydrogenation of alkanes. A part of
these activated species can also react with liquid molecules by capping reaction to form
smaller molecules (fewer complexes). GPC and color of liquid attested this degradation. Thus,
activated hydrogen species lead to H, molecules, which could be involved in hydrogenation
reaction to form alkane at high temperature or in the liquid at subcritical conditions. H, could
be also released from dehydrogenation.

Active oxygen species are able to oxidize organic molecules that release CO, and CO at the
final stages. The low amounts of CO suggest its consumption in water gas shift reaction;
which was promoted by alkaline salts and CeO; catalyst. When oxidation was extreme, CO; is
released to gas mixture; CO, was also due to the consumption of CO by the water gas shift
reaction which was promoted by alkaline salts and CeO, catalyst. Thus, polymerization of
phenolic compounds and aldehydes is limited.

We also noticed that the amount of O, and H, at 450°C, short reaction time and using catalyst
was significantly modified compared to the experiment without catalyst. Indeed, a high
oxygen content was measured and hydrogenated products (such as alkanes) were identified.
By increasing reaction time, oxygen activated species would be used for oxidation reaction
that increases CO, CO; and intermediates of oxidation. In the same way the amount of
mineral oxide in the solid phase seems to be favored by catalyst and temperature increase.
Moreover the ratios between oxygen (or hydrogen) and initial organic content showed that the
reaction were improved at high temperature where the splitting was favored. So the water
splitting into activated species would be suitable to describe the system.

To elucidate more precisely the mechanism of black liquor conversion, model molecules have
been used. Lignin represents correctly the behavior of black liquor. However lignin structure
is also too complex therefore GGGE (Guaiacylglycerol-B-guaiacyl ether) was used. In

addition to the reactions highlighted by CeO, catalyst, condensation, aldolisation and
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alkylation (Friedel-Craft reaction) occurred leading to polycyclic molecules, aldehyde and

substituted phenolic compounds.

The evaluation of the energy balance, regarding to the amount of hydrogen produced,

suggests that the best operating conditions are 450°C 60 min of reaction time.
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I. Conclusion

Hydrothermal processes are gaining attention the last decades in order to convert biomass,by-
products or wastes into valuable compounds. This wet thermo-chemical treatment is based on
the physico-chemical properties of water at high temperature and pressure. Gasification,
liquefaction, as well as carbonization, are applied for energy or useful materials recovery. The
main issues limiting the industrial development of these processes are solid formation which
block the pipes and initiate corrosion, while expensive building materials are required at high
temperatures (>400°C) and high pressure (P > 20 MPa). The goals of the work were to
improve knowledge about these issues. In this context, black liquor was selected as raw
material regarding its high water, organic and mineral content. Black liquor is an alkaline by-

product of paper industry, coming from the step of wood cooking.

The first results presented the influence of operating conditions on carbon conversion during
hydrothermal treatment of black liquor. It was concluded that initial concentration modifies
mainly the amount of resulting organics, reaction time promotes degradation and the
temperature drives the type of process, favoring one phase among others. At high temperature
(600°C), the gaseous phase revealed a high proportion of H, and a low proportion of CO,.
Hydrothermal gasification of black liquor is therefore an interesting and efficient process.
However, this high temperature imposes expensive building materials and a pollutant toxic
gas, H,S, was unfortunately recovered. In fact, H,S is not a problem for paper industry
(recycling into white liquor) but at laboratory scale H,S avoid gas analysis because it is very
corrosive. At the same time, solid formation was not avoided although its yield is low. At
medium temperature (450°C), organic carbon conversion indicates that liquefaction was
predominant, and resulted in a bouquet of valuable phenolic compounds such as phenol,
guaiacol, p-cresol and so on. In addition, gasification is less efficient but H,S formation was
avoided, and carbonaceous solid was still recovered. At low temperature (350°C), 15 to 20
wt% of initial organic mass was recovered in the solid phase while no gas was detected. Black
liquor began to be degraded into phenolic compounds partially incorporated in solid. Carbon-
based microspheres were recovered at short reaction time. The first results let to conclude

that:

- Solid, mainly carbonaceous, is recovered over the range of reaction temperature and
its generation versus reaction temperature is not suitable at high temperature. The solid
formation was studied at 350°C, as the microparticles have spherical and well-defined

shape at this temperature.
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- Hydrogen production is efficient at 600°C but H,S is simultaneously produced that is
an important at laboratory scale for gas analysis. Thus catalytic gasification is
proposed at lower temperature (450°C), where H,S is not produced, and at subcritical

conditions.

- Liquefaction process conducts to a very complex mixture of organic molecules more
or less interesting as building blocks. Their separation is considered as a technological

challenge.

A focus has been made on solid formation at 350°C as function of reaction time and at
different heating and cooling rates. Literature considers that solid formation during
hydrothermal carbonization mimics coalification. However, although multiple authors are
interested in phenomena leading to spherical particles during hydrothermal processes, no one
has elucidated completely the mechanisms involved in their formation. Fixing temperature
and pressure, reaction time with heating and cooling rate appear as mostly influencing
parameters. Among them, reaction time is the most significate one on solid morphology while
heating and cooling rate act principally on particles size distribution. Data collected from the
analysis of liquid and solid phases allow us to propose a mechanism of solid formation during
hydrothermal conversion. Solid is formed by the polymerization of phenolic compounds with
smaller linear molecules such as aldehyde. The mechanism of particle generation resonates on
the one hand, for short reaction time, with La Mer theory and on the other hand with Brooks’s
and Taylor’s one for long reaction time. Considering continuity between them, the hypothesis
of a transition layer around the particle, in organic phase, has been made; providing a radial
concentration gradient (polymerizing units) between the structural organic phase and the
particles. Thin for short reaction time, its increasing leads to a gluing-type phase trapping
particles. Then, this phase becomes the seat of a new small particles generation by
aromatization of the polymerizing units. Demixing gives the appearance of budding. In
addition to these physical considerations, chemical analysis informs on an uniform
hydrophilic shell (transition layer) and a porous core due to gas released by aromatization
reactions leading to a lower solid density. Solid formation is a complex balance between
physical and chemical phenomena, and cannot be totally avoided. In order to avoid/limit solid
formation during hydrothermal conversion, the addition of a CeO, nanocatalyst was

experimented.
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Finally, a focus is made on the catalytic hydrothermal conversion of black liquor using CeO,
nanocatalyst under sub and supercritical conditions. CeQO, allows to generate hydrogen
without H,S and to avoid solid formation during the process. CeO, nanocatalyst has the
ability to split water molecules into hydrogen and oxygen activated species. H, molecules are
also obtained by dehydrogenation from alkane and consumed by hydrogenation of no
saturated molecules or react with phenolic compounds by capping to form smaller aromatic
molecules. Oxygen activated species are able to oxidize organic molecules to CO,, if
oxidation is complete. CO, is also produced form of CO by the water gas shift reaction; which
was promoted by alkaline salts and CeO, catalyst. Oxidative action of CeO, allows the

oxidation of small molecules such as aldehyde that limits solid formation by polymerization.

In addition to the reactions highlighted by CeO, catalyst, model molecules (GGGE, Lignin...)
have been used to understand the mechanism of black liquor hydrothermal gasification/
conversion with and without CeO, catalyst. Even for these simple molecules, the reactive
processes developed are very complex. Accompanying the mentioned oxidation,
hydro/dehydrogenation reactions, others have been identified, like condensation, aldolisation
and alkylation (Friedel-Craft reaction), leading to polycyclic molecules, linear aldehydes and
substituted phenolic compounds. The evaluation of the energy balance in view to industrial
applications, regarding the amount of hydrogen produced, suggests that the best operating

conditions are 450°C and 60 min of reaction time.

The study on hydrothermal conversion of black liquor allows an overview on the valorization
options of this raw material by hydrothermal process such as useful carbon-based solids with

spherical microparticles or as energy through hydrogen production.

I1. Prospects

Based on the main conclusions of our work, some prospects could be drawn in academic or

industrial points of view.

Following the results obtained on the solid formation, the mechanism proposed would be
confirmed by using a reactor equipped with a window. However to see the solution evolution,
the initial solution has to be light color. That means the initial solution should be very diluted
if black liquor solution is considered or should be made with model molecules, which are
transparent at the beginning of the reaction. Solid formation mechanisms are mainly based on
phase equilibrium, the observation of the phases will be of great interest. In addition, the

batch reactor, even with quenching, was not suitable to observe salts precipitation. As the
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amount of salts is particularly high in black liquor, a reactor with window will help to
highlight the potential role of salts on solid formation and or morphology. This work could be
also considered as a scientific basis for further developments on hydrothermal carbonization
mechanisms. The carbon-based solid obtained at 350°C and short reaction time is composed
of spherical microparticles and the specific surface area equals 7 m* g"'. This solid, namely
hydrochar, is supposed to be used in various applications (support for catalyst or for hollow
sphere formation) but this aspect has to be checked. To better measure the impact of
temperature on the morphology of the solid phase, it could be interesting to conduct the study
using a reactor equipped with a temperature monitoring. It may be possible to estimate the
pressure by state equations. To better understand the transfer of material during the
hydrothermal conversion, a comparative study between the reactor 5 mL and 500 mL could be
conducted. The use of software, such as Prosim, with the use of data on model molecules

helps to understand the phase’s behavior.

Concerning the catalytic gasification, the mechanism of black liquor conversion might be
generalized as this work stated about a model molecule GGGE. Further studies may move to
continuous reactors to evaluate the hydrogen production efficiency. Industrial application

requires treatment of high volumes that is more in accordance with continuous processes.

In this study, black liquor was used as reagent for two main purposes. However, salts
recovery from black liquor using alternative process is an actual industrial challenge. Batch
hydrothermal process showed that salts are dissolved in the recovered final solution rather
than precipitated. If the conversion to gas or solid phase is achieved, inorganics remain in
liquid phase which can be re-injected in white liquor recovery process. In these conditions, it

is possible to imagine a process as followed (Figure 144):
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Figure 144: Integration of hydrothermal conversion of black liquor in Kraft process.

In this option, an exhaustive identification of inorganic compounds would be done. To
decrease the cost of this kind of process, catalytic conversion would be considered in
continuous reactors at moderate temperatures. It could be interesting to investigate the
catalytic activity of inorganics contained in black liquor to optimize the process with catalyst,

and the real efficacy of other catalysts.

In a way to recover building block molecules in liquid phase, a catalytic study, longer than 1h
at 350°C, should be considered taking into account the energy gain to work under subcritical
conditions. The study of hydrothermal liquefaction with bigger volumes of black liquor would

allow the study of bio-oil formed during reaction.
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I. Conclusions

Ces dernieres décennies, les procédés hydrothermaux ont émergé notamment pour la
conversion de biomasse, sous-produits et de résidus en composés valorisables. Ce traitement
thermochimique en voie humide est basé sur les propriétés physico-chimiques de I’eau a haute
température et haute pression. Les procédés hydrothermaux, qui regroupent les opérations de
gazéification, liquéfaction, ainsi que carbonisation, permettent d’atteindre une valorisation
sous forme d’énergie ou de matieére. Les principaux verrous limitant leur développement
industriel concernent la formation de solide (obstruction des tubes et corrosion entre autres) et
’utilisation de matériaux techniques de haute résistance aux conditions séveres (alliages
onéreux). Les objectifs de ce travail sont d’améliorer la connaissance scientifique en regard de
ces principaux verrous. Pour cela, la liqueur noire a été sélectionnée comme maticre d’étude,
de par ses quantités élevées en eau et en maticres organiques et minérales. Ce déchet

industriel aqueux et tres alcalin provient de 1’étape de cuisson du bois d’un procédé Kraft.

Les premiers résultats présentent 1’influence des conditions opératoires sur la conversion du
carbone au cours de la conversion hydrothermale de la liqueur noire. La concentration initiale
n’impacte que la quantité de matiere organique récupérée et le temps de réaction augmente le
taux de dégradation, alors que la température oriente le procédé en favorisant la composition
d’une phase. A hautes températures (600°C), la phase gazeuse est enrichie en H; tandis que la
proportion de CO, est faible. La gazg€ification en conditions hydrothermale de la liqueur noire
est donc un procédé¢ intéressant et efficace. Cependant, ces conditions opératoires imposent
d’une part I’utilisation de matériaux onéreux pour la construction des réacteurs et d’autre part
s’accompagne de la production de H,S, un gaz toxique et indésirable nécessitant ainsi le
traitement du flux gazeux. Simultanément, la production de solide, méme si elle est faible, n’a
pas pu étre évitée. A températures modérées (450°C), le procédé de liquéfaction domine,
donnant lieu a des molécules phénoliques telles que le phénol, le guaiacol ou encore le p-
crésol, molécules plateforme de la chimie. Dans le méme temps, le gaz produit, en plus faibles
quantités, est dépourvu d’H,S et la formation de solide carboné est a nouveau observée. A
basses températures (350°C), la phase solide récupérée représente 15 a 20% de la masse
initiale de composés organiques. La dégradation de la liqueur noire conduit aussi a la
formation de composés phénoliques incorporés partiellement dans le solide, tandis que la
proportion de la phase gazeuse n’est pas significative. Le matériau carboné récupéré est
composé de microsphéres pour des temps de réaction courts. La premiére partie de ce travail a

permis de conclure que :
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- La phase solide, principalement carbonée, est obtenue pour I’ensemble des conditions
de température de réaction étudiées. A hautes températures, la géométrie du solide
formé est difficilement étudiable alors qu’a 350°C des microspheres sont obtenues. De
ce fait, le mécanisme de formation du solide a été approfondi a température fixe

(350°C) et pour des temps de réaction différents.

- H; est produit efficacement a 600°C, mais s’accompagne de la production d’H,S. la
gazéification catalytique est donc étudiée en vue de réduire la température de réaction,
mais aussi de limiter la production de ce gaz indésirable. Par exemple ce gaz toxique
n’est pas formé a 450°C en I’absence de catalyseur, donc la gazéification catalytique a

été développée a cette température et aussi en conditions sous critiques.

- Le procédé de liquéfaction conduit a un mélange complexe de molécules organiques
plus ou moins assimilables a des molécules plateforme. Leur isolation apparait comme

un véritable challenge technologique.

La formation de solide a 350°C en fonction du temps de réaction et des vitesses de chauffe et
de refroidissement a fait 1’objet d’une étude approfondie. La carbonisation hydrothermale est
un procéd¢ de plus en plus convoité et de nombreux auteurs s’attachent a comprendre les
phénomeénes mis en jeu lors de la formation de ces particules sphériques. Le mécanisme
complet de formation n’a pas encore été ¢lucidé et de nombreuses contributions sont encore
nécessaires. Dans ce travail, 'impact des vitesses de chauffe et de refroidissement ainsi que
du temps de réaction a été développé. Le temps de réaction apparait comme un parameétre plus
significatif envers la morphologie tandis que les vitesses de chauffe et de refroidissement
impactent la taille des particules. Une analyse détaillée des phases solides et liquides ont
permis de proposer un mécanisme de formation du solide au cours de la conversion
hydrothermale. Le solide provient de la copolymérisation des composés phénoliques avec des
molécules plus petites telles que des aldéhydes. Le mécanisme proposé est en accord avec les
deux théories de formation du solide qui prédominent la littérature, cependant la théorie de La
Mer convient aux temps de réaction courts tandis que la théorie de Brooks s’adapte mieux aux
temps de réaction plus longs. Une continuité a été apportée entre ces deux théories au travers
de I’hypothése de formation d’une couche de transition autour des particules dans la phase
organique. Cette couche de transition génére alors un gradient de concentration radial (unités
de polymérisation) entre la phase organique structurante et les particules. Aux courts temps de

réaction, cette phase est fine. Lorsque son épaisseur augmente, cette phase visqueuse agit
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comme un isolant et conduit a encapsuler les particules. Alors ces unités isolées de
polymérisation contenues dans cette couche de transition peuvent devenir le siege de la
génération de nouvelles particules indépendamment des premiéres particules encapsulées. De
ce fait, de fines particules se forment et se déposent sur les premiéres particules de taille plus
importante générées précédemment. En plus de ces considérations physiques, des analyses
chimiques ont montré que les particules sont constituées d’une couche extérieure hydrophile
(couche de transition) renfermant un coeur poreux. Cette porosité au sein de la particule est
certainement due a la production de gaz au cours des réactions d’aromatisation, et abaisse la
densit¢ du solide obtenu. La formation du solide est un équilibre complexe entre les
phénomenes physiques et chimiques et ne semble pas pouvoir étre totalement évitée. Une
solution envisagée et expérimentée pour réduire la formation de ce solide dans les procédés de

conversion hydrothermale est I’ajout de nanocatalyseur d’oxyde de cérium (CeO,).

Dans une derniére partie, la conversion catalytique de la liqueur noire, en présence de
nanocatalyseur de CeO,, a été étudié¢e aux conditions sous et super critiques. La présence de
I’oxyde de cérium a permis de mener la production d’H, sans polluant toxique, H,S
notamment, et de limiter la quantité de solide formé. Ce nanocatalyseur est utilisé
essentiellement car il permet de rompre les molécules d’eau et de générer des especes actives
de l'oxygeéne et de I’hydrogéne. Les molécules d’H, sont donc obtenues soit par
recombinaison de ces especes actives soit par déshydrogénation des alcanes. Cependant H, est
aussi potentiellement consommé lors de 1’hydrogénation des alcénes ou la réaction de
« capping » pour former des molécules aromatiques plus petites. Les espéces actives de
I’oxygene agissent principalement sur les réactions d’oxydation, de maniére plus ou moins
avancée, pour former du CO,. Le CO, est aussi issu de la consommation du CO par la
réaction du « water-gas-shift », laquelle est généralement catalysée en présence de sels
alcalins. D’un autre c6té le pouvoir oxydant des especes actives de I’oxygene a pour avantage
d’oxyder jusqu’a I’état ultime de CO, les molécules de faible poids moléculaire comme les

aldéhydes, ce qui réduit la concentration de précurseurs de la polymérisation.

En plus des réactions mettant en évidence I’action du catalyseur d’oxyde de cérium, I’étude
du mécanisme réactionnel catalytique a ¢été approfondie au travers de 1’utilisation de
molécules modeles (GGGE, Lignine...). Méme pour ces molécules plus simples, le
mécanisme développé reste trés complexe. En plus des réactions d’oxydation et
d’hydrogénation/déshydrogénation, des réactions telles que la condensation, 1’aldolisation et

I’alkylation (Friedel-Craft) ont été identifiées et donnent lieu a des molécules polycycliques,
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des aldéhydes linéaires des composés phénoliques substitués. L’évaluation du bilan
énergétique, en tenant compte de la quantité d’hydrogeéne produite, suggere que la
gazéification catalytique serait industriellement favorisée a 450°C et pour 60 minutes de

temps de réaction.

L’¢tude de la conversion hydrothermale de la liqueur noire a permis de mettre aussi en
évidence quelques options de valorisation de ce déchet comme des solides carbonés constitués

de microspheres ou la production d’hydrogéne comme vecteur énergétique.
I1. Perspectives

A partir des conclusions principales de ce travail, les perspectives suivantes peuvent étre

énonceées, que ce soit d’un point de vue académique ou industriel.

Le mécanisme de formation du solide proposé pourrait étre amélioré et confirmé par
’utilisation de réacteur équipé de fenétres transparentes. Les équilibres de phase ont été les
principales forces motrices de ce mécanisme et leur observation permettrait d’améliorer la
connaissance sur le mécanisme proposé. Le réacteur batch, malgré le refroidissement par
trempe, n’a pas permis d’observer la précipitation des sels. Alors un réacteur permettant la
visualisation directe in-situ permettrait d’accéder au rdle des sels, et leur précipitation, vis-a-
vis de la formation et de la morphologie du solide. Ce travail peut aussi constituer une base
scientifique pour de nouveaux développements concernant la carbonisation hydrothermale.
Les solides carbonés obtenus a 350°C et pour des temps de réaction courts sont composés des
microparticules sphériques et présentent une surface spécifique de I’ordre de 7 m* g'. Ce type
de solide peut étre envisagé dans des applications multiples telles que support de catalyseur
ou pour la formation de sphéres creuses, mais ces investigations doivent étre menées. Afin de
mieux mesurer I’impact de la température sur la morphologie du solide obtenu, il serait
intéressant de mener une étude similaire avec un réacteur équipé d’un dispositif permettant le
suivi de température en temps réel. La pression serait estimable par des équations d’états.
Afin de mieux comprendre le trnasfert de mati¢re lors de la conversion hydrothermale, une
¢tude comparative doit étre menée en utilisant les réacteurs de 5 mL et 500 mL en parall¢le.
L’utilisation de logiciel type Prosim, avec des molécules modeles permettrait également de

mieux comprendre le comportement des phases.

Concernant la gazéification catalytique, le mécanisme de la conversion de la liqueur noire
pourrait éventuellement étre généralisé du fait de 1’utilisation de molécules modeles (GGGE)

comme support de ce travail. Des études complémentaires pourraient initier le passage vers le
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procéd¢ continu pour évaluer I’efficacit¢ de production de I’hydrogéne puisque le

fonctionnement continu est plus 8 méme de répondre a une problématique industrielle.

Dans cette étude, la liqueur noire a été choisie comme maticre premicre pour satisfaire deux
objectifs académiques principaux. Cependant, la récupération des sels dans la phase aqueuse
peut constituer un procédé de recyclage alternatif du fait que le recyclage des sels est un réel
challenge des industries papeticres. En effet, le procédé hydrothermal en mode discontinu a
démontré que les sels étaient dissous plutdt que précipités. Alors si la conversion de la matiére
organique est quasi complete, la récupération et le recyclage des sels directement dans le
procédé seront immédiats. Dans ces conditions, il serait possible d’imaginer une intégration

du procéd¢ hydrothermal dans le procédé Kraft comme suit (figure 145) :
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Figure 145: Integration du precédé de conversion hydrothermale de la liqueur noire dans le procédé Krafft.

Dans cette éventualité, une identification plus approfondie des composés inorganiques est
nécessaire. Les réacteurs batchs ne sont pas parfaitement adaptés aux débits €levés alors un
procédé continu de récupération des sels doit €tre plutdt envisagé. L’option permettant
d’abaisser le cott de ce traitement serait d’envisager une conversion catalytique a température

modérée. 1l serait intéressant d’étudier I’activité catalytique des inorganiques contenus dans la

245



9BConclusion générale et perspectives

liqueur noire afin d’optimiser le procédé avec catalyseur, et la véritable efficacité des

catalyseurs en général sur sa conversion hydrothermale.

Dans une optique de recuperation de molecules plateformes en phase liquid, une etude
catalytique de plus d’une heure a 350°C, devrait étre menée. En effet, la voie subcritique
permet un gain d’énergie non négligeable par rapport a la voie supercritique. L’étude de
liquefaction hydrothermale avec des volumes plus importants de liqueur noire permettrait

I’étude de la bio-oil formée lors de la reaction
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I. Annex 1: Industrial issues in Kraft process

Technical and technological issues

Multi-effect evaporators: Fouling, tube corrosion, foaming are the main issues that occur as

the black liquor is concentrated. Leakage may also occur, that dissipates steam and requires a

supply of water. Sometime a low amount of solid is also formed in liquid and foul pipes.

Boiler: fouling of heat transfer tubes and flue gas passage, tube corrosion and cracking, floor
tube damage, poor water circulation, low steam production, air emissions and so on can
appear in the boiler that reduces process efficiency and causes environmental problems. The
boiler represents a high initial investment and its operation and maintain are important

operation cost of the plant.

The boiler is the main bottleneck of the black liquor treatment. Its capacity could limit paper

production.

Causticizing plant: problems often encountered are overliming, poor washing efficiency, high

sodium and low solids contents in the lime mud, low liquor causticizing efficiency, and

liquor-line corrosion in storage tanks.

Lime kiln: faced to following kinds of degraded modes: low thermal efficiency, high fuel

consumption, chain damage, poor lime quality and also emissions going to calcination step.

Recycling chain: some problems are found with the accumulation of inorganics like non

process element such as chloride (Cl), potassium (K), Na,CO; and Na,SO,.

These operational problems result in an increase of mill energy consumption and a poor
recycling of black liquor; which lead to a decrease of the capacity and the availability of the

plant to produce paper.
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Environmental issue

Environmental issues come firstly from emissions throughout the process:
Sulfur emissions:

Digester and evaporator:

In the digester, sulfur compounds (methyl mercaptan, hydrogen sulfide, dimethyl disulfide)
are emitted and are responsible for Kraft odor. To limit them, incinerators of gases are

installed.
Boiler:

During sulfur reduction to sulfide in the reducing zone (figure 21), a low amount of H>S is
produced. If its oxidation into SO; is not achieved, some H,S would be carried by combustion

gases. H,S is toxic.
Sulfur emissions from the boiler depend on several parameters:

- In the oxidizing zone sulfur is transformed into sulfur dioxide which combines with
Na in the gaseous phase producing sodium sulphate. So the ratio S/Na is important. If S/Na is
too high, the amount of Na is not enough to link sulfur and consequently SO, is emitted
instead of producing Na,SOy. It’s necessary to connect the boiler to wet scrubbers, which treat

vapors before discharging them.

- Air supply and air distribution inside the boiler are important to oxidize correctly

sulphur and others elements and to control the temperature.
Lime kiln:

Some sulfur dioxide is noticed in the lime kiln. Usually it is capted by sodium carbonate

(NayCOs3) but when sodium carbonate is saturated SO; is emitted.

Hydrogen sulfide (H,S) can also be produced if sodium sulfide (Na,S) comes in the cold

drying zone of the lime kiln where CO, and water are present as follows:

Na,S + CO,+ H,0 > H,S+ Na,COs (1)
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NOx issues:

Boiler:
NOx emissions, with a maximum value of 2 kg/ton of produced pulp, are due to the initial

amount of nitrogen in the black liquor and the excess of O, from the combustion.
Particles emissions:

Boiler:
To prevent particulate emissions outlet, boilers are equipped with dry bottom electrostatic

precipitators.
Lime kiln:

Lime kiln is equipped also with either wet scrubbers or precipitators for lime and sodium dust.

Others emissions:

From lime kiln, CO, is also emitted.
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I1. Annex 2: Phases characterization

Gas analysis

Gaseous phases were exclusively analyzed by gas chromatography. This technique is used to

separate, identify and quantify the components.

The principle is based on the equilibrium of compounds concentrations between stationary
phase and mobile phase. Compounds are transported by mobile phase and more or less
retained by the stationary phase. This difference of affinity separates molecules. At the end of
the column, molecules are detected and quantified if possible. In France and Japan, the same

u-GC was used: Micro-GC — Agilent 3000.

Liquid analysis

Total Organic Carbon (TOC):

This analysis is made in two stages with the measurement of total carbon and inorganic
carbon. To measure the total carbon (TC) sample is injected with a syringe in a packed bed at
720°C. The sample is evaporated under an air flow and oxidized to CO, thanks to a platinum
catalyst. Then CO, is measured by infrared spectroscopy at the output of the oven. To
measure inorganic carbon (IC) a new sample of the solution is taking again and injected in
phosphoric acid (30%) where a neutralization reaction (equation 2) occurs. Solution is
subjected to bubbling with air to release, the inorganic carbon of the solution (COs>, HCO5,

H,COs3) as CO;. CO; is then measured by infrared spectroscopy.

CO3 gy + 2H{q) = €Oy gy + H,0 (2)
TOC is suitable to evaluate the mineralization of the solution.

TOC =x X M. X [CyH,0,] (3)
With

M, Atomic mass of carbon (g.mol™),

[CxHyOZ] The concentration (mol.L™") and,

TOC (gC -L;ollution)ﬂ

x is the number of carbon atom in the molecule.
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Chemical oxygen demand: COD (Hach Lange):

The sample is introduced in a tube (cuvette test Hach Lange) containing the oxidizing agent
together with a catalyst. Tubes are then placed in a heating device (HT 200 S, Hach Lange) to
perform reaction (170°C during 15 min). During oxidation, chrome ions change their
oxidation degree which is accompanied by a change of color. When the tube is cooled, the

intensity of this color change is measured using a spectrometer (Hach Lange DR 6000).

The equation for oxidation is:

cxHyosz+(x+%—§—¥)02 —>x602+(§— 3—)H20+bNH3 4)

c
2
NHs3 is then oxidized as follow:

NH;+ 20, - NO3 + H;0* (5)

The analysis wavelength is 605 nm for the ranges 100-2000 mg.L" (LCK514) and 1000-
10000 mg.L™" (LCKO014).

Phenols and formaldehydes measurement:

Phenols react with 4-aminoantipyrine (AAP) and formed a colored complex in the presence of
oxidizing agent. This reaction can occur if the pH sample is between 2 and 11 at ambient
temperature. Ranges of concentration measured are 5 to 50 mg/L and 20 to 200 mg/L with
LCK346 cuvettes. For these latest tubes, phenols react with 4-nitroaniline to form a yellow

color complex, the color is measured by photometer at 510 nm (Hach Lange DR 6000).

Formaldehyde reacts with ammonium ions and acetylacetone to give a yellow dye. The pH
sample has to be between 3 and 10 and temperature from 15 to 25°C. Reaction needs heat so
tube is placed in thermostat at 40°C during 10 min (Hach Lange, HT 200 S). The

measurement is made by spectrometer (Hach Lange DR 6000) after cooling at 413 nm.

Inductively Couple Plasma Optical Emission-spectrometry (ICP-OES):

The solution is nebulized and sprayed in the argon plasma flame (at a temperature of 6000-

8000°C). Compounds are decomposed into atoms and ions. Plasma flame drives atoms and
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ions into an excited state. During the transition to the non-excited state, elements emit light.
The elements are then detected by a photomultiplier tube according to the specific wavelength
of emitted light. Thanks to calibration, light intensities are converted into compounds

concentration.

Gel Permeation chromatography (GPC): (HP1100).

The stationary phase is made by porous beads packed in a column. The mobile phase is
constituted by a solvent (Tetrahydrofuran was used for analysis presented in this work).
Smaller molecules are retained into pores while bigger are not stopped. Molecules with high

molecular weight are eluted before molecules with low one.

Gas chromatography coupled with mass spectroscopy (GC-MS): (GC: Agilent 7890A;
MS:Agilent 5975C)

This analysis combined features of gas chromatography and mass spectrometry. It is
particularly advantageous to identify compounds separated after chromatography. Indeed, first
GC allows separating and then MS allows identifying compounds in a mixture with a

percentage of identification.

Solid analysis

Solid obtained from hydrothermal carbonization and presented in chapter 3 is characterized
using particle size distribution, elemental analysis, microscopy (transmission electron
microscopy and environmental scanning electron microscopy), total surface and specific
surface measurements with BET, density (helium pycnometer), thermogravimetric analysis,

Fourier Transform infrared spectroscopy, RAMAN spectroscopy, X-ray diffraction.

Particle size distribution: Mastersizer 3000 Malvern

Laser granulometry is a technique which allows observing the size distribution of a set of
particles using optical properties resulting from the interaction between this and set an
incident laser wavelength. The measurement can be made on a dispersed gas (smoke) solid or

a liquid (suspension) but also dispersed in another liquid fluid (emulsion).

The optical bench is composed by the red laser source (633 nm), the blue one (470 nm) and

detectors. The blue laser allows a better resolution on the finest particles (<0.1 microns) after
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running red laser. A measuring cell is filled by the wet sample. The liquid is dispersed by

ultrasound.

CHNOS: elemental analysis (Thermo NA 2100).

Analyses of C, H, N, and S are first made of a combustion oven where the solid phase is burnt
by combustion at 1050°C under helium and oxygen flows. Then, combustion gases go
through a tube reduction filled with copper where oxygen is retained and nitrogen oxides are
transformed in nitrogen. The reduction step is made at 450°C. At the end of the reduction
step, emitted gases (CO,, H,O, SO, and N) are routed through the detector by helium. After

that, C, H, N and S are quantified based on mass balance calculations.

The oxygen is calculated by difference or analyses separately. Combustion is made at
1800°C, CO is formed and goes through an oxidation tube where it is transformed in CO,.

Then CO; is detected and O is quantified.

Electronic microscopy:

ESEM: environmental scanning electron microscopy (ESEM, Philips XL 30 FEG).

The basic principle of this microscope is the differential vacuum maintained in different parts
of the electron column between the barrel and chamber object [152]. The observation is
possible thanks to the detection of secondary electrons emerging from the sample. It is
possible to use different voltages of direct electrons that allow observing sample at different
depths. The different contrasts (Like topographic contrast, chemical contrast) available
provide numerous features about the compounds in the sample. In addition, a local elementary
microanalysis using X-ray spectrometry is possible. Analyses made using ESEM are surface
analysis. It allows us to observe non-conductive samples in different atmospheres (wet, dry,
oxidizing or reducing atmospheres). With ESEM, it is possible to observe distinctly with
magnification of 50 000 or 100 000; it means that a 100 nm sample can be observed.
Depending on the type of contrast, the beam depth is not the same: for a topographic contrast,
the detector captures secondary electrons with a depth of 10 nm; for a chemical contrast, the
detector captures back-scattering electrons (the depths for analysis is 100 to 200 nm); and
finally for an analysis of the chemical composition, detector captures X-rays, the depth of this
elementary analysis is ~1 um. The depths of these observations have to be known to
understand results given by the ESEM. When the size of the interesting element is 1 um, it is

impossible to differentiate if the surface and the core have different compositions. On the
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contrary it is impossible to make a chemical analysis on a big sample if the sample is

heterogeneous. In this last case, the analysis is not representative.

Transmission Electron Microscopy TEM: (TEM, Hitachi H7650)

Measures have been made with an acceleration voltage of 100 kV. The principle of the
measurement is the same as SEM or ESEM, the resolution is higher with just few nm
observed distinctly, that allows to examine also fine details of bigger structure. TEM sample

are prepared on a 3 mm support called “grid” in copper.
BET: Tristar II 3020.

This technique has been invented by Stephen Brunauer, Paul Hugh Emmett and Edward
Teller. This theory is an extension of the Langmuir one which is based on the adsorption of a
gas as multilayer on a solid surface. This adsorption allows measuring the surface area of the

material. The technique is also based on several assumptions [153]:

1 - As it is a physical adsorption, it is guided by Van der Wall’s forces.

2 - When the equilibrium pressure tends to vapor saturation pressure, the number of layer
tends to infinity.

3 — The first layer is adsorbed according to the Langmuir model, i.e. each adsorption site is
energetically identical and without lateral interactions between adsorbed molecules. The
Langmuir theory can be applied to each layer.

4 - The layer of adsorbed molecules is considered as sites of adsorption for the next layer

The BET equation is:
_ PP _ 1 P 1 P
V (1-P/Py) Vi€ x Py + VimC AX Py +B (6)

With: P: equilibrium pressure; P: saturation pressure; V: adsorbed volume at P pressure, Viy:

monolayer adsorbed gas quantity; C is the BET constant:
E1—E
€ = exp() ™

With E;: heat of adsorption for the first layer and Ey: heat of adsorption for the second and
higher layers. These energies correspond to heat of liquefaction.

BET relation is the equation of an adsorption isotherm and can be plotted as a straight line

P/Pgy

with y-axis as Va-p/P)

and with x-axis as Pi. A is the slope and B the y-intercept.
0

From this plot it is possible to obtain the following parameters: V;, = ﬁ andC =1+ %.

Then it is possible to calculate the total surface area and the specific surface area as:
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Vi N S s : .
Stotal = =" ) and Sggr = “’Tml with m: mass of solid sample.
Pycnometer:

Pycnometer determines density and volume of solid sample by measuring the pressure change
of helium in a calibrated volume. Analysis measures sample volume, from which density can
be derived automatically if sample weight has been entered. Calibration is used to determine
the size of the cell and expansion chambers within the instrument. After calibration, the cell
and expansion chamber volumes are automatically stored in the set-up parameters. Density is

automatically given by the software installed on computer and linked to the device.

Thermogravimetric analysis (TGA): TG-ATD 92, Setaram

This technique measures the mass loss of a sample depending on the temperature.

It consists of a thermostated sealed chamber to control the atmosphere of the sample, a
furnace for temperature control, a weighing module, thermocouple for temperature
measurement and a computer to monitor and record all the data. Analyses are conducted

under inert atmosphere (nitrogen). Thermocouples record the variation of heating flow.

Fourier Transform Infrared: FTIR (PERKIN ELMER 200 FTIR).

Principle: the device used the Mickelson interferometer. A source generates lights across the
spectrum of interest. 'The light passes through a beam splitter, which sends the light in two
directions at right angles. One beam goes to a stationary mirror then back to the beam splitter.
The other goes to a moving mirror. The motion of the mirror makes the total path length
variable versus the stationary-mirror beam one. When the two meet up again at the beam
splitter, they recombine, but the difference in path lengths creates constructive and destructive
interference: an interferogram. Then the recombined beam passes through the sample. The
difference between spectrum of molecule and original spectrum is sent to the detector. The
obtained interferogram is converted to spectrum thanks to Fourier transform. The spectrum
obtained is transmittance as a function of wavenumbers. The wavenumbers are between 400

and 4000 cm™.

RAMAN spectrometry: RAMAN — AFM: Alpha 300R, WiTec

The ample is illuminated with a laser beam. Electromagnetic radiation from the illuminated

spot is collected with a lens and sent through a monochromator. The elastic scattered radiation

7 http://chemistry.oregonstate.edu/courses/ch361-464/ch362/irinstrs.htm
(30 Aug 2014)
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at the laser line wavelength is called elastic Rayleigh scattering. It is filtered out while the rest

of the collected light is dispersed onto a detector by either a notch filter or a band pass filter.

X-ray diffraction (XRD): (PANalyvtical X'Pert MPD diffractometer)

An X-ray diffractometer is used to identify the crystallinity/amorphism of a compound and
the evolution of the amorphism. Indeed, each crystalline phase has a single diffractometer
with specific fine peaks. On the contrary if the structure is amorphous, this indicates that it is
composed by not organized atoms. X-rays are then diffracted in all directions, pattern are then

obtained with large peaks.
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I11. Annex 3: Carbon and texture characterizations obtained by

carbonization from Inagaki

Table 21: Carbon and texture characterizations obtained by carbonization from Inagaki

Carbon Formation conditions Interface Texture
thermal decomposition of o ;
carbon blacks liquid/gas concentric
hydrocarbon gases
) decomposition of oil onto o o )
Fluid cokes solid/liquid & liquid/gas concentric
carbon nucleus
. precipitation of molten - ;
graphite nodules ; solid/liquid concentric
cast 1rron
segregation in molten o ]
mesophase sphere ) liquid/liquid radial
pitches
decomposition &
Carbon spherule carbonization under liquid/liquid radial
presuure
) solid carbonization of )
Glass-like carbon spheres solid/gas random

organic precursors
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IVv. Annex 4: Preliminary study on hydrothermal carbonization of

black liquor (Proceeding for SFGP congress)

Generation of Carbon Microparticules by Hydrothermal

Conversion of Black Liquor

H.Boucard'®, E. Weiss-Hortala', R. Barna'

'Université de Toulouse; Mines Albi; CNRS; Centre RAPSODEE, Campus Jarlard, F-81013 Albi Cedex 09,

France

ABSTRACT

Black liquor is a waste of paper industry containing important concentration of organic
compounds (140 g.L") and quantity of water (77 wt%). A preliminary study was focused on
the scanning of the operating conditions for the conversion of black liquor by supercritical
water. The results obtained lead us to explore the solid phase more in detail. Indeed, the
carbonaceous solid produced at low temperature presents microscopic spherical particles

which can be used, for example, to form hollow sphere.

This paper focuses on the characterization of the solid phase recovered as regards to the
operating conditions involved in the batch hydrothermal conversion of 10 wt% black liquor
solutions. The structure of the solid obtained is complex, varying from aggregates of
micrometric spherical particles (0.4-1 pm or 1-11 um) to more massif structure showing an
external porosity. Under certain operating conditions, an internal porosity was also

highlighted for long reaction time. DVS analysis suggests a modification of the surface.
INTRODUCTION

As papers only contain cellulose, lignin and hemicellulose has to be separated from cellulose.
Paper industry operates the delignification of wood through the wood cooking with white
liquor (Na,S and NaOH mixture of Kraft process). Kraft lignin is then recovered in the
cooking juice (black liquor) [1]. As white liquor is a basic mixture, black liquor is also a basic
aqueous solution (pH ~13), containing dissolved lignin, fragments of cellulose and
hemicellulose and several minerals and salts (Na, K, Ca, S.... carbonates, sulfates, sulfides...).

Although black liquor serves an auto-energetic supply of industrial Kraft process facilities [2],

¥ Corresponding author : helene.boucard@mines-albi. fr
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extra volumes of black liquor are produced. Thus this part of black liquor would be valorized
as useful materials. As a result, thanks to its high water content, black liquor is an interesting
candidate to be converted using sub and supercritical water properties.

Supercritical water has been firstly used to achieve total oxidation of waste and more recently
is used to recycle waste by generating energetic gas, building block molecules or added-value
solids. Indeed, above its critical point (T > 374°C and P > 22.1 MPa) water is a reactant and a
solvent. In subcritical condition (T < 374°C and P < 22.1 MPa), water is a polar solvent in
which salts are partially miscible while organic molecules are immiscible. In supercritical
state, the properties of water change drastically. The water molecules form clusters [3] that
results in a nonpolar solvent and thus free radical reactions are favored. As black liquor is a
wet biomass (~80 wt%) composed of long aliphatic and aromatic chains, hydrothermal
process is suitable to use its high water content to convert its significant organic content
(~ 140 gC.L™"). Therefore some studies are devoted to the supercritical water gasification [4,
5] and revealed the efficiency and the interest of the process in batch and continuous process.
As the black liquor is a very complex mixture of organics, containing aliphatic together with
aromatic fractions, the gasification process requires a complete cut-down of the long
molecules to form hydrogen that increases the energetic cost of the treatment. Another point
of view is to use BL to produced materials with relatively long carbon chains that will
decrease the cost.

Thus the present work is focused on solid generation with sub or supercritical water, namely

hydrothermal carbonization (HTC).

The solid residue from HTC is mainly composed of carbon and oxygen and comes from
phenolic compounds polymerization [6, 7]. HTC experiments realized with lignin, glucose or

other carbohydrates as raw materials produces carbon particles [7-12].

The microspheres obtained by hydrothermal conversion could be used as hollow sphere
containing inorganic compounds [6], sorbent [8], highly functionalized carbon materials or
hybrid materials [9, 10] and spherical activated carbons [12]. As the main studies used model
feedstock, this paper focuses on the operating conditions impact on the generation of carbon

particles from the real feedstock: black liquor.
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MATERIALS AND METHODS
1- Reagents

Black liquor was supplied by a paper industry: Smurfit Kappa Cellulose du Pin in Facture,
France. It comes from the digester after recovery of tall oil in Kraft process. The dry matter is
of 23 wt% (organic and mineral) while the other part is water (77 wt%). Moreover, the

organic compounds represent 65 wt% of the dry mass that equals to 140 gC.L™".
2- Experimental protocol

Experiments are performed at 350°C in a pressure-resistant batch reactor with an inner
volume of 5SmL. The black liquor is introduced into reactor which is capped tightly. 5
autoclaves are placed together in an oven. The reaction time starts when oven has reached
target temperature. The reactor is filled at atmospheric temperature and pressure, with the
amount of black liquor required to reach reaction temperature and pressure. After reaction
time (15, 30 or 60 min), reactor is cooled by quench into frozen water to stop immediately the
reaction (rapid cooling) or cooled by ambient air (slow cooling). After reaction liquid and

solid are collected. Both fractions are separated by filtration.
3- Analysis of gas, liquid and solid phases

Liquid and solid phases were analyzed and characterized after reaction.

Liquid phase:

Total Organic Carbon was quantified with a TOC-analyzer (Shimadzu 5050A) and the pH

was measured after reaction.
Solid phase:

Carbonaceous solid residues were analyzed by environmental scanning electron microscopy

(ESEM, Philips XL 30 FEG), optical microscopy and FTIR (PERKIN ELMER 200 FTIR).
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RESULTS

1- Solid morphology related to reaction temperature

Black liquor is an aqueous liquid which can be turned to hydrochar under certain conditions.
However, the goal is to obtain carbon particles. Thus, hydrothermal experiments were carried
at various temperatures and the morphologies of remaining carbonaceous solids were
compared. Figure 146 shows ESEM pictures of solid residues obtained by hydrothermal
conversion of a solution of 10wt% black liquor, after 15 min of reaction and under 25 MPa of

pressure for supercritical temperatures or self-generated pressure for subcritical temperatures.

|350°C 400°C 450°C 500°C 550°C 600°C >

Figure 146: ESEM pictures of solid residue at various reaction temperatures. Black liquor concentration = 10
wt%, P = 25 MPa or self generated pressure, t = 15 min.

The solid phase represents ~ 20 wt. % of the total initial carbon. Its composition remains quite
the same: carbon, oxygen and minerals. However, minerals do not play a role on the surface
morphology. The morphology evolves from microparticles at 350°C to shapeless structure
under severe conditions. Thus, carbon-based microparticles are only obtained at subcritical
conditions as regards to the range of reaction temperature. At the end of experiments at
350°C, 2 liquid phases are observed: an oily and an aqueous phase. Although the amount of
oily phase is low, it would contain high concentrations of organics such as phenolic
compounds, furfurals and so on, which are widely precursors of polymerization reactions [7].
At subcritical, the oily phase would be dispersed into the aqueous phase that can form the

microparticles of solid due to interfacial energies [7].

Figure 146 shows that the structure becomes denser at higher temperatures, probably due to
by sintering or agglomeration of particles. It could be also due to the interfaces between the

carbon residue and the reactor, salts, liquid/gas or supercritical phase.
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Solids obtained at various temperatures demonstrate various morphologies. The proprerties of
these carbon-based solids would favor a valorization either as energy [7] or useful materials
[8-12]. Indeed, energy recovery should be considered for a solid with high LHV in
substitution of coal. Material recovery will be justified if the solid is porous (catalyst support,
adsorbent ...), if it is filled with minerals or metals (new catalyst, hollow spheres), if it has
structural or crystalline qualities (electrochemical applications, nanotubes carbon ....). All
current challenge is to develop future materials from waste and / or renewable resources with

specific textures.

Others operating conditions act also on the particles morphology but only a few parameters

are summarized in the following sections.
2- Influencing parameters

Influence of reaction time with slow cooling

Size and porosity are influenced by reaction time as showed in Figure 2.

(b)
Figure 147: Particles obtained after 15 min (a), 30 min (b) and 60 min (c) of reaction.

The increase of reaction time indicates an increase of particle diameter. After 60 min of
reaction, particles become porous and fragile/ friable inside. One hypothesis is that the
precipitation was carried out in several stages to create a core and a shell. Thus the properties
of the different “layers” could be different in composition and in terms of physico-chemical
properties. A second hypothesis is to assume that liquid or gaseous phases are trapped inside
the particles during their maturation, and then are degraded prior to go back to ambient

conditions. The influence of cooling rate has been studied.

Influence of heating rate and cooling rate

For experiments performed with rapid heating and pure black liquor, the solid is built in
contact with the walls of the reactor as a continuous phase (Figurel48 a). This phase is a

porous network as shown in Figure 148 b. In contrast to slow heating rate (20°C.min™"), the
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solid phase is concentrated at the bottom of the reactor (Figure 148 c), suggesting that a small
interface (or an exchange surface) between solid and liquid phases occurs during the reaction.
This can also suggest a higher solid density. The carbon conversion to the solid phase is
reduced by more than half at slow heating rate, and the solid (Figure 148 c) is denser and
remains less porous. Thus high heating would promote the formation of solid or
polymerization of species present initially in pure black liquor. Another hypothesis is that a

rapid heating increases the agitation of molecules and thus polymerization reactions by

increasing the number of successful collisions.

¥ (b)

Figure 148: Solid formation inside the reactor for a pure black liquor solution.

(©

Thereafter, experiments were carried out with diluted black liquor (10wt%) from 20°C to
350°C with controlled temperature ramp: 7°C.min”', 20°C.min"" and 40°C.min" and a slow
cooling rate (duration ~40 min). It appears that rapid heating favors the formation of
microparticles and a slow heating leads to the formation of larger particles (~ 20 um). These

latter have a brittle and porous core (Figure 149).

Figure 149: 350°C, 60 min temperature rate 7°C.min'1, black liquor 10 wt%, batch reactor (500 mL).

For rapid heating and a slow cooling, the size distribution of particles is from 1 um to 5 pm,

and particles are bigger than with slow heating.

The study about cooling rate showed that quench cooling homogenized particle size and
decreased their size favoring nanoparticles. This means that either the growth of particles
occurs during cooling step or the reaction continues during cooling, and therefore the
maturation step is not achieved after 15 min of reaction time. The reaction nuclei
supersaturation evolves with time, to a growth or a complete disappearance of the particle. A

study about particle size distribution is under progress.

268



Annexes

Organic functions in solid phase

FTIR analysis was applied to the solid recovered. All the spectrums were similar (Figure
150). The ordinate axis represents the transmittance (%) and the abscissa the wave number

(cm™).

9 |
[ S , m.‘.,,,,,,.,,‘.H,.,‘,‘.‘.\,,
4000 3750 3500 3250 3000 25 200 250 2000 1750 1500 1250 1000 750 500

Figure 150: FTIR spectrum of solid residue obtained after reaction.

The profile obtained was similar to that obtained by Liu et al. [13] in their study on the
hydrothermal conversion of solid biomass (coconut fiber and Eucalyptus leaves). The large
peak around 3300 cm™ corresponds to the free -OH function and/or -OH intermolecular bonds
(hydrogen bonding). The peaks observed close to 3000 cm™ correspond to CH stretching (in -
CH3 and -CH2-) of saturated (under) and unsaturated molecules (above). The peaks around
1600 cm™ and 1450 cm™ correspond to the C=C bonds of the aromatic rings. So these peaks
reveal the presence of alcohol function and aromatic rings which derived from phenolic
compounds obtained by cleavage of the lignin; and their repolymerization. The other peaks
are difficult to identify precisely: one at 1350 cm™ may correspond to a double bond S=O.
that is in accordance with microanalysis realized with EDS detector that highlighted the
presence of sulfur. The broad peak at 1250 cm™ may correspond to the vibration of the CO
bond of acetate. These organic functions are observed on all the solids obtained and confirm

that the solids would have quite similar chemical compositions.

269



Annexes

CONCLUSION

Black liquor contains a high concentration of lignin that was converted into carbonaceous
material, using sub-/supercritical water in batch reactor. The focus was the study of operating
conditions that provide microparticulate solid. The results show that microparticles are only
obtained at sub critical conditions, in a short reaction time, from a dispersed oily phase. The
heating and cooling rate are key steps influencing the morphology of these particles,
especially for a short reaction time. High heating and cooling rate are clearly favoring the
smallest size of microparticles together with a short reaction time. Thus kinetics of particle
formation is currently in progress as regards to the liquid composition. As phenolic
compounds and formaldehyde are assumed to initiate the polymerization, their concentrations

will be followed in the liquid phase
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V. Annex 5: XRD of CT series — carbonization study.

1200

1000
800 M —]
- i 'M —— 30min
gﬁ“ o ' —— 45min
% 400 — 60mmn
& | —— 90min
20| —————— o

0

0 20 40 60 80 100
Iobs [cts]

Figure 151: XRD of CT series — carbonization study.
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VL. Annex 6: Influence of heating rate NT/CT.

TGA analysis to compare CT and NT series at 60 min reaction time:
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Figure 152: TGA analysis to compare CT and NT series at 60 min reaction time.

Van Krevelen diagram for NT series:

NT

®NL
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Figure 153: Van Krevelen diagram for NT series.
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Monitoring of TOC, COD phenols and formaldehyde to compare CL and NL series over

reaction time,
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Figure 154: TOC and COD monitoring over reaction time.
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Figure 155: Formaldehyde and phenols monitoring over reaction time.
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VIL. Annex 7: Influence of cooling rate — CL/CT.

TGA analysis to compare CL and CT series at 60 min reaction time,:
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Figure 156: TGA analysis to compare CT and NT series at 60 min reaction time.
Van Krevelen diagram of CL series:
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Figure 157: Van Krevelen diagram for NT series.
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Monitoring of TOC, COD. phenols and formaldehyde to compare CL and CT series

over reaction time
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Figure 158: TOC and COD monitoring over reaction time.
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Figure 159: TOC and COD monitoring over reaction time.
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VIII.

conversion under sub (350°C) and supercritical (450°C) conditions

with and without CeQO, catalyst.

Under supercritical conditions at 450°C for 15 min and 60 min reaction time with and without

catalyst.

Table 22: GC-MS results for liquid recovered after black liquor conversion under supercritical (450°C)

Annex 8: GC-MS results for liquid recovered after black liquor

conditions with and without CeO), catalyst for 15 min and 60 min of reaction time.

15 min without
catalyst

15 min with catalyst

R=5)

60 min with catalyst

R=3)

Toluene

2-Furanol, tetrahydro-

Butyrolactone

Butanoic acid,
anhydride

Retene

Propane

3-Butenoic acid

Butanal, 3-methyl-

Toluene

Butyrolactone

Butanoic acid,
anhydride

Phenol

Retene

Acetone

Cyclopropane, 1-ethyl-
2-methyl-, cis-

Butanal, 3-methyl-

Toluene

Butyrolactone

Butanoic acid,
anhydride

Phenol

Retene
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Under subcritical conditions at 350°C for 15 min and 60 min reaction time with and without

catalyst

Table 23: GC-MS results for liquid recovered after black liquor conversion under subcritical (350°C) conditions

with and without CeO; catalyst for 15 min and 60 min of reaction time.

15 min 15 min with 60 min 60 min with 60 min with
without catalyst without catalyst catalyst
catalyst (R=5) catalyst (R=5) (R=20)
Acetone Toluene Toluene Furan, 2,3-dihydro-  Furan, 2,3-dihydro-
Toluene 2-Furanol, 2-Furanol, Toluene Toluene
tetrahydro- tetrahydro-
2-Furanol, Butanoic acid, 2(3H)-Furanone,
Butyrolactone 3-Buten-1-ol dihydro-3,5-
tetrahydro- 4-hydroxy- .
dimethyl-
Butyrolactone Phenol, 2- Butyrolactone 2-Furanol, 2-Furanol,
y methoxy- ¥ tetrahydro- tetrahydro-
2-Butenal, 2- Benzene, 1-
Butyrolactone Butyrolactone
ethenyl- butynyl-
Phenol Phenol Indane
1(3H)-
Phenol, 2- 2 Methyl Isob?nzofuranone,
6,7-dimethoxy-3-[2-
methoxy- phenylacetylene

2-Cyclopenten-1-
one, 3,4,5-trimethyl-
(E)-1-Phenyl-1-
butene

Benzene, 1-butynyl-

Benzene, (2-
cyclopropylethenyl)-
10,18-Bisnorabieta-
8,11,13-triene
1(3H)-
Isobenzofuranone,
6,7-dimethoxy-3-[2-
(2-methoxyphenyl)-
2-oxoethyl]-

(2-methoxyphenyl)-
2-oxoethyl]-
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(350°C) conditions with and without CeO, catalyst for 15 min and 60 min of reaction time.
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Résumé :

La liqueur noire, sous-produit de I’industrie papetiére, est convertie par un processus
hydrothermal. Elle a été choisie pour son contenu élevé en eau (80 wt%), matiere organique
(14 wt%) et minéraux (6 wt%) qui font d'elle une biomasse a haute valeur ajoutée bien
qu'encore peu exploitée. L'étude en batch, balayant une large gamme de température (350°C-
600°C), permet d'identifier deux flux sortant : une proportion d'hydrogene élevée dans la
phase gazeuse (600°C), ainsi qu'une phase solide, appelée coke, générée quelques soient les
conditions opératoires utilisées. La génération de solide modifie la composition du milieu
réactionnel en procédé batch et peut poser probléme en cas de transposition en réacteur
continu. Il est donc important de comprendre sa formation pour pallier ces verrous. L'analyse
du résidu montre qu'a 350°C, pour des temps de réaction courts (<2h), de micro-particules
carbonées se forment. Leur taille est influencée par les vitesses de montée et descente en
température. Pour des températures plus hautes, le solide ne présente pas d'intérét
morphologique et sa proportion massique augmente avec la température. Ainsi, une
production d'hydrogéne significative s'accompagnera d'un dépot solide dans le réacteur. Une
¢tude catalytique a donc ét€¢ menée en vue d'augmenter la quantité d'hydrogéne et de diminuer
la formation de coke tout en travaillant a plus basse température. Cette étude, menée a 350°C
et 450°C, montre que les réactions d'hydrogénation et d'oxydation mises en jeu par le
catalyseur conduisent aux résultats escomptés. La conversion de molécules modeles de la
liqueur noire, menée dans les mémes conditions d'expériences, a permis d'appréhender les
mécanismes majeurs mises en jeu lors de la conversion hydrothermale. Les micro-particules a
350°C peuvent étre valorisées. Cependant, le changement de taille et de morphologie au cours
du temps interroge sur la possibilité de passer en réacteur continu. La formation de solide peut
étre évitée a partir de 450°C en présence de catalyseur, favorisant en paralléle la production
d'hydrogéne. De ce fait, ce travail de thése aborde les verrous scientifiques, techniques et
technologiques liés a la conversion hydrothermale de la liqueur noire et notamment de la
formation du solide, en présence ou non de catalyseur.

Mots clés : Biomasse humide, Liqueur noire, Procédés hydrothermaux, Réacteur batch,
Production d’H,, Génération de microparticules, Mécanismes de conversion hydrothermale.
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Abstract :

Black liquor, a by-product of paper industry, is converted by hydrothermal process. It was
chosen for its high water content (80 wt%), organic material (14 wt%) and minerals (6 wt%)
that make it a high-value biomass while still untapped. The study in batch, screening a wide
temperature range (350°C-600°C), used to identify two outgoing flows: a high proportion of
hydrogen in the gas phase (600°C) and a solid phase, called coke, generated regardless the
operating conditions used. The generation of solid changes the composition of the reaction
medium in batch process and can be problematic in case of transposition in continuous
reactor. Thus it is important to understand its formation to overcome these obstacles. Analysis
of the residue shows that at 350°C, for short reaction times (< 2h), carbonaceous micro-
particles are formed. Their size is influenced by the temperature rates of rise and fall. For
higher temperatures, the solid is of no morphological interest and its weight proportion
increased with temperature. Thus, a significant production of hydrogen will be associated
with a solid deposit in the reactor. A catalytic study was conducted to increase the amount of
hydrogen and reduce the formation of coke while working at lower temperature. This study,
conducted at 350°C and 450°C, shows that hydrogenation and oxidation reactions involved
with the catalyst, lead to the expected results. Converting models molecules of black liquor,
conducted with the same experimental conditions, helped to understand the major
mechanisms involved during the hydrothermal conversion. The micro-particles at 350°C can
be valorized. However, the change in size and morphology over time wondered about the
possibility of implement in continuous reactor. The solid formation can be prevented from
450°C in the presence of catalyst, favoring in parallel hydrogen production. Therefore, this
thesis deals with scientific, technical and technological locks related to hydrothermal
conversion of black liquor and especially the solid formation, with or without catalyst.

Keywords: Wet biomass, Black liquor, Hydrothermal processes, Batch reactor, H,
production, Microparticles generation, Mechanism of hydrothermal conversion.
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