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ABSTRACT

The Gravity Recovery and Climate Experiment (GRACE) is a joint satellite gravimetry mis-

sion between the National Aeronautics and Space Administration (NASA) and the German

Aerospace Center (DLR), which provides the mean and time-varying global gravity fields.

Since its launch in 2002, GRACE has proven to be an invaluable tool for monitoring the mass

transport and redistribution in the Earth’s fluid envelopes.

In this thesis, regional terrestrial water storage and sea level variations from GRACE

are investigated. Groundwater storage variations (GWS) in North China are estimated from

GRACE, and compared with in situ water table observations, groundwater model, and ground-

water bulletins. Based on GWS estimates from GRACE and ground observations, seasonal

groundwater variations in North China respond to the combined effect of anthropogenic irri-

gation (discharge of groundwater aquifers from spring to summer) and natural precipitation

(recharge of groundwater aquifers from summer to winter). Interannual changes of ground-

water from GRACE and ground observations agree well with year-over-year precipitation

anomalies. The rate of groundwater depletion in North China based on GRACE and land

surface models is 15.7 ± 2.4 mm/yr from 2003 to 2010, which is equivalent to a volume of

7.1 ±1.0 km3/yr. However, the groundwater depletion rates in shallow aquifers according to

in situ water table observations and groundwater bulletins are 1.2 and 2.0 km3/yr, respectively,

which are significantly lower than the GRACE estimate. The difference in groundwater deple-

tion rates estimated from GRACE, ground observations, and bulletins indicates the important

contribution from deep aquifers in the plain and piedmont regions of North China, which has

been underestimated until now.

In addition, GRACE detects obvious seasonal variations of seawater mass in the northern



shallow water of South China Sea (SCS), with an annual amplitude of 5.0± 0.4 cm. This sea-

sonal variability of seawater mass is also validated by steric-corrected altimetry. In the deep

ocean basin at the eastern part of SCS, to the west Luzon Island, seasonal sea level variations

(SLV) observed by altimetry are dominated by the thermosteric SLV. The observed SLV in

the East China Sea (ECS) and the Yellow Sea (YS) are also dominated by the thermosteric

effect on seasonal timescales. Additionally, intra-seasonal mass variations in the ECS and

YS are detected by GRACE, which also agree with steric-corrected altimetry. On interan-

nual timescales, sea level fluctuations in the SCS are dominated by the thermosteric effect and

driven by El Niño-Southern Oscillation (ENSO) events. By comparing the three observing

systems over the SCS, i.e., altimetry, GRACE, and oceanographic measurements, a system-

atic drift problem after 2008 is identified in oceanographic datasets, which might result from

the underestimation of steric SLV due to the poor sampling of temperature and salinity mea-

surements in the shallow water of SCS. Especially, the problem would significantly hamper

the steric SLV estimation when the ocean heating migrates from deep ocean basin to shallow

coastal waters.

In the Red Sea, an annual amplitude of ∼18 cm mass-induced SLV is detected from

GRACE and steric-corrected altimetry from 2003 to 2011. The annual mass variations in the

region dominate the mean SLV, and generally reach maximum in late January/early February.

This seasonal variability of seawater mass is well explained by the water exchange between

the Red Sea and the Gulf of Aden, which is driven by the seasonal reversal of monsoon. The

annual steric component of the mean SLV in the Red Sea is relatively small and out of phase of

the mass-induced SLV. In-situ bottom pressure records at the eastern coast of the Red Sea vali-

date the high mass variability observed by steric-corrected altimetry and GRACE. In addition,

the horizontal water mass flux of the Red Sea estimated from GRACE and steric-corrected

altimetry is validated by hydrographic observations.
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RÉSUMÉ

La mission GRACE (Gravity Recovery and Climate Experiment) est une mission spatiale con-

jointe entre la National Aeronautics and Space Administration (NASA) et le Centre aérospa-

tial allemand (DLR), dédiée à l’observation du champ de gravité terrestre et de ses variations

temporelles. Depuis son lancement en 2002, GRACE s’est avéré être un outil précieux pour

la surveillance, à la fréquence mensuelle voire décadaire, des transferts de masse au sein du

système Terre et de leur redistribution dans ses enveloppes fluides.

Dans cette thèse, les variations régionales de niveau d’eau sur des domaines continentaux

et océaniques sont étudiées à l’aide de GRACE et d’autres types d’observations.

Pour ce qui est de la partie continentale, nous avons étudié les variations de stockage

de l’eau souterraine dans les plaines du nord de la Chine. Les variations estimées à partir

de GRACE sont comparées aux observations in situ de la nappe phréatique, à des modèles

hydrologiques et aux bulletins officiels des organismes hydrographiques chinois. A partir

de ces observations, nous établissons que les variations saisonnières des eaux souterraines

en Chine du Nord répondent à l’effet combiné de l’irrigation d’origine anthropique (décharge

des nappes aquifères du printemps à l’été) et des précipitations naturelles (recharge des nappes

aquifères de l’été à l’hiver). Les modifications interannuelles des eaux souterraines vues par

GRACE et les observations au sol sont en bon accord avec les anomalies de précipitations

enregistrées sur cette zone. Le taux de déplétion des eaux souterraines dans le nord de la

Chine, sur la base des modèles GRACE et des modèles hydrologiques, est de 15.7 ± 2.4

m/an de 2003 à 2010, ce qui équivaut à un volume de 7.1 ±1.0 km3/an. Cependant, les taux

d’épuisement des eaux souterraines dans les aquifères peu profonds, selon les observations in

situ de la nappe phréatique et les bulletins officiels sur les eaux souterraines, sont seulement



de 1.2 et 2.0 km3/an respectivement, ce qui est nettement inférieur à l’estimation de GRACE.

La différence dans les taux d’épuisement des eaux souterraines estimées à partir de GRACE,

des observations au sol, et des bulletins indique la contribution importante des aquifères pro-

fonds dans les régions de plaine et de piémont de la Chine du Nord, qui était sous-estimée

auparavant.

Pour ce qui est de la partie océanique, notre étude a porté sur deux zones bien distinctes

: les mers de Chine et la mer Rouge. GRACE détecte d’évidentes variations saisonnières de

la masse d’eau de mer dans la partie peu profonde du nord de la mer de Chine du Sud (SCS),

avec une amplitude annuelle de 5.0 ± 0.4 cm. Cette variabilité saisonnière de la masse d’eau

de mer est également corroborée par l’altimétrie corrigée de l’effet stérique. Dans la partie

profonde de la SCS, en particulier à l’ouest de l’île de Luçon, les variations du niveau de la

mer (SLV) saisonnières observées par altimétrie sont dominées par les SLV thermostériques.

La SLV observée dans la mer de Chine orientale (ECS) et la mer Jaune (YS) sont également

dominées par l’effet thermostérique aux échelles saisonnières. En outre, les variations de

masse intra-saisonnières dans l’ECS et YS sont détectées par GRACE, en bonne corrélation

avec l’altimétrie corrigée de l’effet stérique. Sur des échelles de temps interannuelles, les

fluctuations du niveau de la mer dans la SCS sont dominées par l’effet thermostérique et

entraînées par l’oscillation El Niño. En comparant les trois systèmes d’observation sur cette

zone, c’est à dire l’altimétrie, GRACE et les mesures océanographiques, un problème de dérive

systématique après 2008 a été identifié dans les données océanographiques. Cela pourrait

résulter de la sous-estimation de la composante stérique en raison du mauvais échantillonnage

de température et de salinité dans les eaux peu profondes de la SCS. En particulier, le problème

pourrait affecter de manière significative l’estimation de la SLV stérique lorsque le chauffage

de l’océan profond migre vers les eaux côtières peu profondes.

Pour la mer Rouge, une amplitude annuelle de SLV de ∼18 cm d’origine massique est

détectée à partir de GRACE et de l’altimétrie corrigée de l’effet stérique sur la période 2003-

2011. La SLV dans la région est dominée par les variations de masse annuelles, le maximum

étant généralement atteint fin janvier/début février. Cette variabilité saisonnière de la masse

d’eau de mer est bien expliquée par l’échange d’eau entre la mer Rouge et le golfe d’Aden

x



qui est entraînée par le renversement saisonnier de la mousson. La composante stérique an-

nuelle de la SLV dans la mer Rouge est relativement petite et en opposition de phase avec la

composante massique. Les enregistrements des capteurs de pression fond de mer sur la côte

orientale de la mer Rouge permettent de valider les variations élevées de masse observées

par l’altimétrie et GRACE. En outre, le flux horizontal de masse d’eau de la Mer Rouge es-

timé à partir de GRACE et de l’altimétrie corrigée de l’effet stérique est corroboré par des

observations courantométriques in situ dans le détroit de Bab-el-Mandeb.
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CHAPTER 1

INTRODUCTION

Sea level variations (SLV), melting of polar ice caps and mountain glaciers, extreme droughts

and floods - these and those issues of global climate change are closely related to the mass

variations on the Globe. Detailed knowledge on mass transport and redistribution among

continents, oceans, atmosphere and cryosphere will help us better understand the physics of

global climate change (Figure 1.1). Since the last two decades, modern space geodesy have

developed dramatically. A series of altimetry satellites (e.g., TOPEX/Poseidon, Jason-1/2,

ERS-1/2, Envisat) bring the revolutionary changes in understanding the spatial and temporal

variations of global sea surface height [Fu and Cazenave, 2001]. High-precision GPS obser-

vations not only record the displacement information of ground motion, but also provide the

surface water storage variations based on the elastic loading theory [Argus et al., 2014; Kusche

and Schrama, 2005; Wu et al., 2003]. The Ice, Cloud and land Elevation Satellite (ICESat)

mission provides the surface height observations of ice caps and mountain glaciers in different

laser altimeter campaigns, which can be used to deduce the surface mass variations with the

firn density data [Gunter et al., 2009; Schutz et al., 2005].

Launched in March 2002, the Gravity Recovery and Climate Experiment (GRACE) satel-

lite mission has provided the direct observations of global gravity field and its temporal varia-

tions with an unprecedented accuracy [Tapley et al., 2004]. As a joint satellite mission between

the National Aeronautics and Space Administration (NASA) and the German Aerospace Cen-

ter (DLR), GRACE has proven to be an invaluable tool for monitoring the mass transport and

redistribution in the Earth’s fluid envelopes. To measure the Earth’s gravity field from space,
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two GRACE satellites fly at an altitude of ∼450 km in the same near polar orbit with one 220

km ahead of the other. Any mass variation in the Earth’s surface, in principle, will cause the

change of distance between two GRACE satellites, which will be detected at µm precision.

Thus, by observing the distance between two satellites by the K-band ranging (KBR) instru-

ment and orbit perturbations by GPS tracking, GRACE satellites can “sense” the gravity field

and its variations in a direct way. Figure 1.2 demonstrates the schematic diagram of GRACE

satellites and the instruments.

Figure 1.1: An overview of mass transport, mass variations, and mass exchange in the Earth

system (From: Panet et al. [2013]).

Figure 1.2: (Left) A schematic diagram of the twin GRACE satellites in orbit. (Right) Internal

view of GRACE satellite instruments. (From: http://www.csr.utexas.edu/grace/)
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Figure 1.3 shows the global trend map of mass variations observed by GRACE during

2003-2012. Numerous studies have demonstrated that GRACE has gained many achieve-

ments in Earth science, e.g., terrestrial water storage (TWS) variations and relevant droughts

and floods in the Amazon River basin [Becker et al., 2011; Chen et al., 2010a, 2009b; Frappart

et al., 2012; Tapley et al., 2004], ice sheet mass balance in Antarctica and Greenland [Chen

et al., 2009a; King et al., 2012; Ramillien et al., 2006; Schrama et al., 2014; Shepherd et al.,

2012; Velicogna and Wahr, 2006a,b; Williams et al., 2014], mass balance in High Mountain

Asia [Jacob et al., 2012; Matsuo and Heki, 2010; Yi and Sun, 2014], groundwater storage

depletion in northern India [Rodell et al., 2009; Tiwari et al., 2009], mass-induced global

sea level variations [Boening et al., 2012; Cazenave et al., 2009; Chambers, 2006; Fasullo

et al., 2013; Leuliette and Miller, 2009; Willis et al., 2008], and coseismic and post-seismic

gravity change caused by the 2004 Sumatra-Andaman Earthquake [Chen et al., 2007a; Han

et al., 2006; Panet et al., 2007]. Considering the tremendous success of GRACE mission and

its unique contribution to geodesy, hydrology, oceanography, and glaciology, the new U.S.-

German GRACE Follow-On satellites are scheduled to launch in 2017, to ensure the conti-

nuity of the GRACE data with a potential higher accuracy by taking advanced laser ranging

instruments (http://gracefo.jpl.nasa.gov/).

(a) (b) 

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

cm/yr

Figure 1.3: Global trend map of mass variations during 2003-2012 from (a) GRGS RL03 and

(b) CSR RL05 GRACE solutions. North-south “strips” caused by correlated errors in GRACE

Stokes coefficients are suppressed in GRGS solutions thanks to the stabilization applied in the

gravity inversion [Bruinsma et al., 2010; Lemoine et al., 2007]. Glacial Isostatic Adjustment

(GIA) effect has been removed.
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1.1 Terrestrial Water Storage Variations from GRACE

As a major component of global water cycle, terrestrial water is defined as an integrated mea-

sure of all forms of water stored on and below the surface of the Earth, which includes surface

water, soil moisture and permafrost, groundwater, snow and ice, and wet biomass. Early,

based on some simulations from hydrological, oceanic, and atmospheric models, Wahr et al.

[1998] validated the detectability of TWS variation signal using GRACE and proposed the

basic method for constructing mass variations from the GRACE gravity coefficients. Later,

Swenson andWahr [2002] devised spatial averaging kernels to extract regional mass variations

from GRACE. Since its launch in 2002, GRACE has proven to be an extremely useful tool

for observing TWS variations [Tapley et al., 2004; Wahr et al., 2004]. As the largest drainage

basin in the world, Amazon River basin exhibits large-scale TWS variations, which is prone to

be observed by GRACE firstly [Tapley et al., 2004]. Significant seasonal variability of TWS

in the Amazon River basin was detected by GRACE, and was in general agreement with the

predictions of a hydrological model [Wahr et al., 2004] . With the increase of GRACE ob-

servations and the improvement of data processing methods, interannual variations of TWS

in the Amazon River basin are further validated based on GRACE observations. The drought

events in 2005 and 2010 and the flood in 2009 in the Amazon River basin are detected by

GRACE [Chen et al., 2010a, 2009b; Feng et al., 2012; Frappart et al., 2012]. By comparing

with in situ river level records, precipitation observations, and hydrological models, GRACE

has proven to successfully capture both seasonal and interannual variations of TWS in the

Amazon River basin [Alsdorf et al., 2010; Becker et al., 2011; Xavier et al., 2010; Zeng et al.,

2008]. Additionally, GRACE-observed TWS variations even have the potential to improve the

fire forecasts for the southern Amazon [Chen et al., 2013]. Besides the Amazon river basin,

GRACE also detects hydrological signals in many parts of the world, e.g., the Congo River

basin [Crowley et al., 2006], the Lower Ob basin [Frappart et al., 2010], the Yangtze River

basin[Hu et al., 2006; Zhong et al., 2009], the Illinois and Texas of U.S. [Long et al., 2013;

Swenson et al., 2006], the East African great lakes region [Becker et al., 2010], the North

America and Scandinavia [Wang et al., 2013], and the central Europe [Andersen et al., 2005].
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Groundwater, soil water and surface water are three main components of terrestrial water.

With the development of remote sensing and the increase of ground observation data, surface

water and soil water can be observed or modeled at different spatial and temporal resolutions

[Crétaux et al., 2011; Famiglietti, 2004; Kerr et al., 2001; Rodell et al., 2004; Sheffield et al.,

2009]. As an important component of global water cycle, groundwater is a vital source of

fresh water for agriculture, industry, public supply, and ecosystems in many parts of the world.

However, there are no extensive ground-based networks for monitoring large-scale groundwa-

ter storage (GWS) variations. Globally, groundwater provides more than 50% of drinking

water, 40% of industrial water, and 20% of irrigation water [Zektser and Everett Lorne, 2004].

Over-exploitation of groundwater has resulted in groundwater depletion and pollution as well

as soil salinization and land subsidence, particularly in places where groundwater-based irri-

gation is intensive, such as in the North China Plain (NCP), northern India, and the central

United States [Scanlon et al., 2007; Shah et al., 2000; Wada et al., 2010]. However, informa-

tion regarding the spatial and temporal variability of GWS is extremely limited [Shah et al.,

2000]. The impact of groundwater on global water cycle is still veiled. Preliminary study in-

dicates that global groundwater depletion rate since 2000 is ∼145 km3/yr (equivalent to 0.40

mm/yr of sea-level rise, or 13% of the reported rate of 3.1 mm/yr) [Konikow, 2011]. However,

Wada et al. [2012]’s results show that the contribution of groundwater depletion to sea-level

rise is about 0.57 ± 0.09 mm/yr in 2000, which is significant larger than that from Konikow

[2011]. The latest estimate based on WaterGAP global hydrological model from Döll et al.

[2014] is 113 km3/yr (equivalent to 0.31 mm/yr of sea-level rise) for the period 2000-2009,

which is smaller than other two estimates derived from different global hydrological modeling

[Konikow, 2011; Wada et al., 2012]. So the modeling uncertainties of global groundwater

depletion rate remain high.

In a prelaunch study, Rodell and Famiglietti [2002] evaluated the GRACE’s potential for

isolating changes in the groundwater component of TWS in the High Plains aquifer of the

central United States. After its launch, numerous studies have shown that GRACE can be

used to detect large-scale GWS changes in many parts of the world. Rodell et al. [2007] and

Strassberg et al. [2007] isolated GWS anomalies from GRACE-derived total TWS and soil
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moisture storage variations simulated from Land Surface Models (LSMs) for the Mississippi

River basin and High Plains Aquifer. They found good correspondence in these areas between

GRACE-LSMs estimates and those derived from monitoring well-based observations. When

ground soil moisture measurements are available, GWS can be estimated more independently

after removing monitored SM from GRACE-derived TWS. Yeh et al. [2006], Swenson et al.

[2008a] and Strassberg et al. [2009] estimated GWS variations in Illinois, Oklahoma and High

Plains using GRACE and ground soil moisture measurements, and found good agreement

between GRACE-derived GWS and monitoring well level data.

The early studies mainly focus on seasonal GWS variations using GRACE. However, with

the increase of GRACE observations, more attention are paid to long-term large-scale GWS

variations. In northern Indian, more than 75% of irrigation water stems from groundwater.

Rodell et al. [2009] found that groundwater in this region was being depleted at a mean rate

of 4.0 ± 1.0 cm/yr during 2002-2008, which is equivalent to 17.7 ± 4.5 km3/yr in volume.

They concluded that this unsustainable consumption of groundwater resulted from irrigation

and other anthropogenic uses in this region. Tiwari et al. [2009] extended the study area

to the whole northern India, and found a GWS loss at a rate of 54 ± 9 km3/yr during 2002-

2008. California’s Central Valley is one of the most highly-productive agricultural areas in US,

where groundwater supplies the bulk of the irrigation water. In particular during the drought

conditions prevailing in the Central Valley over 2006-2009, groundwater is over-exploited.

Although the area of the Central Valley (52,000 km2) is below spatial resolution of GRACE

footprint (∼200,000 km2), the large GW mass variations in the aquifer are still detected by

GRACE [Famiglietti et al., 2011; Scanlon et al., 2012]. From 2006 to 2010, the annual decline

rate of GWS in the Central Valley is about 8.9 ± 0.8 km3/yr [Scanlon et al., 2012]. Addition-

ally, in the Middle East, where ground observations are severely limited, GRACE is able to

provide valuable GWS estimates. From 2003 to 2009, GWS declined by 91.3 ± 10.9 km3

in the north-central Middle East [Voss et al., 2013]. In this region, the largest groundwater

depletion occurs in Iran, with a decline rate of 25 ± 3 km3/yr [Joodaki et al., 2014]. Based on

a priori spatial patterns of TWS variations from hydrological models and surface reservoir wa-

ter storage variations from altimetry, Forootan et al. [2014] further studied the GRACE-based
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GWS variations over six basins of Iran using the Independent Component Analysis (ICA)

method. They concluded that the largest GWS decline was located in the Urmia basin, i.e.,

the northwestern Iran.

Figure 1.4 shows the percentage of each 5 arc min grid cell equipped for irrigation with

groundwater globally [Siebert et al., 2010]. As mentioned above, numerous studies have

demonstrated that GRACE can detect seasonal and long-term GWS changes in many heavily

groundwater-based irrigated areas shown in Figure 1.4, such as in northern India and Pak-

istan [Rodell et al., 2009; Tiwari et al., 2009], the High Plains aquifer [Strassberg et al., 2007,

2009], the Central Valley [Famiglietti et al., 2011; Scanlon et al., 2012], and the alluvial aquifer

along the Mississippi River in the United States [Rodell et al., 2007]. In Figure 1.4, irriga-

tion in North China also heavily relies on groundwater, which motivates us to study the GWS

variations in North China from GRACE in depth.

Central Valley, US 

High Plains US 

Mississippi River basin  

!

Northern India 

North China 

Figure 1.4: The area equipped for irrigation with groundwater, given as a percentage of cell

area, for 5′×5′ cells [Siebert et al., 2010]. The high percentages of area equipped for irrigation

with groundwater are shown in Central Vally, High Plains, Mississippi River basin, northern

India, and North China.
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1.2 Global Sea Level Variations from Altimetry and GRACE

By defining the sea level relative to the Earth’s geocenter (i.e., geocentric sea level), the phys-

ical causes of sea level change can be expressed as either the ocean volume change or ocean-

basin shape change [Willis et al., 2010]. Changes of ocean-basin shape mainly result from the

Glacial Isostatic Adjustment (GIA) effect, which is the Earth’s viscoelastic response to the last

deglaciation [Lambeck and Nakiboglu, 1984; Peltier, 1986]. GIA effect causes a net sinking

of ocean basin relative to the Earth’s geocenter, which would imply, if the surface of the sea

remained at a constant distance to the center of the Earth, a globally averaged sea level rise

rate of 0.3 mm/yr [Peltier, 2009]. Usually, this effect is therefore added to global sea level

change observed by altimetry and tide gauges. So, in a general sense, global sea level change

refers to the changes in the ocean’s volume.

Global mean sea level (GMSL) change results from two major processes: (i) thermal ex-

pansion caused by heating of the global ocean (i.e., thermosteric sea level), and (ii) ocean mass

change caused by the exchange of water between oceans and other reservoirs (i.e., glaciers and

ice caps, ice sheets, and other land water reservoirs) [IPCC AR5, 2013] . Although haline ef-

fects might be significant in some regional ocean, the globally averaged salinity content stay

relatively constant [Antonov et al., 2002; Munk, 2003]. Thus, the net increase of ocean heat

content and the freshwater imports from continents are the two dominant reasons of global sea

level rise.

Based on tide gauge measurements, global sea level rise rate over the 20th century is about

2 mm/yr, as released by the latest IPCC Fifth Assessment Report (AR5) [2013]. However, the

number and spatial distribution of tide gauge observations are highly limited [Mitchum et al.,

2010]. In addition, since tide gauge observes the sea level variations relative to the land, the

crustal deformation in the tide gauge station need to be estimated, which is still difficult for

many tide gauge stations. Figure 1.5 shows the estimated, observed, and projected global sea

level rise from 1800 to 2100 [Shum et al., 2008;Willis et al., 2010], which exhibits a significant

acceleration in sea level rise since about 1900. Since early 1990s, satellite altimetry provides a

high coverage of the spatial and temporal variations of the sea level globally. The GMSL rise
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rate during 1993-2013 observed by satellite altimetry is about 3.2 mm/yr. This GMSL rise rate

is relatively stable since 1993 [Ablain et al., 2009; Cazenave et al., 2009; Kuo, 2006; Leuliette

and Scharroo, 2010; Nerem et al., 2010; Shum et al., 2008; Willis et al., 2010]. Although

the quality and quantity of sea level observations have improved significantly in recent two

decades, the projected sea level rise remains controversial, especially from semi-empirical

models [Gregory et al., 2006; Grinsted et al., 2010; Holgate et al., 2007; Rahmstorf, 2007;

Schmith et al., 2007; Taboada and Anadon, 2010; Vermeer and Rahmstorf, 2009, 2010].

It is worth noting that the global sea level rise rate is inhomogeneous in spatial domain

[Cazenave and Llovel, 2010]. As shown in Figure 1.6a, in some regions, such as the Western

Pacific Ocean, sea level rises rapidly; while in the eastern coast of Northern Pacific Ocean, sea

level falls. Additionally, sea level exhibit rise and drop alternately in oceans, where there are

high-speed currents, e.g., Kuroshio Current, Gulf Stream, and Antarctic Circumpolar Current.

When the global mean sea level rise rate of 3.2 mm/yr is removed, the nonuniform distribu-

tion of regional sea level trends relative to GMSL rise is further highlighted (Figure 1.6b).

For example, sea level rise rate in the warm pool region of the Western Pacific Ocean is sig-

nificantly larger than the global mean value. Keep in mind that this inhomogeneous pattern

of sea level rise rate also contains the response of sea level to climate change events on in-

terannual to decadal timescales, e.g., El Niño-Southern Oscillation (ENSO), North Atlantic

Oscillation (NAO), and Pacific Decadal Oscillation (PDO). Thus, it is worthwhile to analyze

the nonuniform sea level change in different ocean regions.

Although altimetry provides the temporal and spatial variations of global sea level, it is not

able to isolate the steric sea level variations (SLV) and mass-induced SLV. Steric SLV can be

calculated from ocean temperature and salinity data based on oceanographic observations or

ocean models [Fukumori, 2002; Ishii et al., 2006; Levitus et al., 2005]. The Argo project

is a global ocean observing system for measuring temperature and salinity in the Earth’s

oceans since the early 2000s [Guinehut et al., 2004; Hadfield et al., 2007; Roemmich and

Owens, 2000]. Since 2007, the Argo array contains more than 3000 high-quality temperature

and salinity profiles in or near real time, which significantly improve the coverage of global

oceanographic observations (http://www.argo.ucsd.edu/).
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Figure 1.5: Estimated, observed, and projected global sea level rise from 1800 to 2100, mod-

ified from Willis et al. [2010] and Shum et al. [2008]. Pre-1900 estimates are based on geo-

logical interpretations [Lambeck et al., 2002]. The tide gauge record is shown from 1900 to

2005 (red, from Church and White [2006]), and the satellite altimetry record is shown from

1985 to 2005 (blue, from Kuo [2006]). The projected twenty-first century sea level rise of

26-59 cm is based on coupled climate models using the A1F1 scenario (pink envelope, from

IPCC, [2007]). The projected sea level rise from semi-empirical methods (50-140 cm) is much

higher than that from IPCC AR4 [Rahmstorf, 2007]. The inset shows global mean sea level

rise from satellite altimetry from 1993 to 2013 (blue). Red curve shows interannual variations

of global mean sea level with seasonal cycles removed and a 3-month moving average applied.

GIA correction of -0.3 mm/yr is removed.

(a) (b) 

−10 −8 −6 −4 −2 0 2 4 6 8 10

mm/yr

Figure 1.6: (a) Spatial trend pattern of global sea level change observed by satellite altimetry

from 1993 to 2013. (b) Same as (a), but a uniform global mean sea level rise rate of 3.2 mm/yr

is removed.
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Besides the steric SLV, the mass-induced SLV is the other important component of global

sea level change. The way to directly observe ocean mass variations is to measure the pressure

of the water column and the overlaying atmosphere on the ocean floor, i.e., the ocean bottom

pressure (OBP) [Ponte, 1999]. However, the sparse distribution of in situ OBP observations in

the ocean and the systematic drift problem over time extremely limit the application of OBP

records in estimating long-term ocean mass variations [Chambers and Schroter, 2011]. Since

2002, GRACE provides the direct observations of mass-induced SLV from space. Firstly,

Chambers et al. [2004] estimated the seasonal ocean mass variations from GRACE, and val-

idated this seasonal variability with steric-corrected altimetry and model results [Chen et al.,

1998; Minster et al., 1999]. With the increase of observations from altimetry, GRACE, and

Argo, subsequent studies have mainly focused on the global sea level budget, i.e., total SLV

from altimetry should equal the sum of the steric SLV from Argo and mass-induced SLV from

GRACE. Lombard et al. [2007] found that the rate of global steric SLV inferred from altime-

try minus GRACE was 1.9 ± 0.2 mm/yr over the period 2002-2006. However, in contrast,

the steric SLV estimated from the Ishii oceanographic dataset exhibits a negative slope, i.e.,

-2.8± 0.2 mm/yr, over the same period. A net loss of 3.2 (±1.1)×1022 J of ocean heat content

is also claimed to be found between 2003 and 2005 from in situ oceanographic measurements

[Lyman et al., 2006]. Later, further studies indicate that there exist systematic errors in Argo

profiles and eXpendable BathyThermograph (XBT) data [Ishii and Kimoto, 2009; Willis et al.,

2007, 2009]. However, after removing these errors from oceanographic observations, Willis

et al. [2008] still found significant trend differences among the three observing systems, i.e.,

altimetry, GRACE, and Argo. In their study, the observed GMSL rise rate from altimetry

was 3.6 ± 0.8 mm/yr from 2003 to 2007; however, the estimate from GRACE and Argo was

0.3± 0.6 mm/yr for the same period. However, Leuliette and Miller [2009] found a closed sea

level rise budget from 2004 to 2007. Their analysis showed that a sum of steric SLV and mass-

induced SLV has a trend of 1.5 ± 1.0 mm/yr, in agreement with the total sea level rise rate

observed by altimetry (2.4 ± 1.1 mm/yr). Leuliette and Miller [2009] concluded that the poor

Argo sampling before mid-2004 may result in the underestimation of steric sea level rise rate

in the study of Willis et al. [2008]. Cazenave et al. [2009] also found a closed sea level bud-
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get from 2003 to 2008, but adopted a GIA correction of 2 mm/yr from Peltier [2009], which

was proved to be overestimated [Chambers et al., 2010]. [Chambers et al., 2010] concluded

that the Paulson et al. [2007] GIA model is more appropriate for correcting GRACE-observed

ocean mass variations. After adopting this GIA model and the latest altimetry, GRACE, and

Argo data, the sea level budget is closed in most recent studies [Boening et al., 2012; Cham-

bers et al., 2010; Leuliette and Willis, 2011]. As shown in Figure 1.7, the sum of ocean mass

variations from GRACE and steric SLV from Argo agrees closely with the observed GMSL

change from altimetry. It is important noting that there is a V-shaped GMSL change from 2010

to 2011, which is mainly caused by terrestrial water storage anomalies related to the 2010/11

La Niña event [Boening et al., 2012; Fasullo et al., 2013].

Figure 1.7: Global mean sea level from altimetry during 2005-2012 (blue). Ocean mass varia-
tions from GRACE are shown in green and steric SLV from Argo are shown in red. The black
dash line shows the sum of ocean mass variations and steric SLV. (Updated from Boening
et al. [2012])

1.3 Outline of the Thesis

This thesis comprises five chapters. Besides the current Introduction Chapter, the rest of the

thesis is organized as follows.
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Chapter 2 introduces the basic principle of temporal gravity fields and describes the post-

processing methods for GRACE Stokes coefficients. Regional mass variation estimation,

leakage and bias corrections, and error assessment are summarized as well. In addition, the

steric sea level variations calculation and relevant notice in combining altimetry, GRACE and

oceanographic data are described.

Chapter 3 evaluates the groundwater storage variations (GWS) in North China fromGRACE,

and compares the estimates with in situ water table observations, groundwater bulletins and

groundwater model. Effects of anthropogenic irrigation and natural precipitation to GWS vari-

ations are discussed on seasonal and interannual timescales. The uncertainty of GRACE-based

GWS variations is assessed in detail.

Chapter 4 discusses sea level variations in China seas (i.e., South China Sea, East China

Sea and Yellow Sea) and in the Red Sea from altimetry, GRACE and oceanographic observa-

tions.

Chapter 5 concludes the study with recommendations for future studies.
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CHAPTER 2

METHODOLOGY

2.1 Basics of Temporal Gravity Field

In general, global gravity field is defined as the shape of geoid, which is the equipotential

surface that coincides with mean sea surface height. The geoid can be expressed as a sum of

spherical harmonics [see, e.g., Chao and Gross, 1987]:

N(θ ,λ ) = a
∞

∑
l=0

l

∑
m=0

P̃lm(cosθ)
[
Clm cos(mλ )+Slm sin(mλ )

]
(2.1)

where a, θ , λ are Earth’s radius, co-latitude and longitude, respectively; l, m are degree

and order; Clm, Slm are spherical harmonic (SH) coefficients (i.e., Stokes coefficients); and

P̃lm(cosθ) are fully normalized associated Legendre functions.

The temporal variation of geoid (∆N) can also be represented as changes of SH coefficients

(∆Clm, ∆Slm):

∆N(θ ,λ ) = a
∞

∑
l=0

l

∑
m=0

P̃lm(cosθ)
[
∆Clm cos(mλ )+∆Slm sin(mλ )

]
(2.2)

We define ∆σ as the variation of mass density in a thin layer of the Earth’s surface:

∆σ(θ ,λ ) =
∫

thin layer
∆ρ(r,θ ,λ )dr (2.3)

15



Methodology

which is the radial integral of density redistribution ∆ρ .

We expand ∆σ as a sum of SH coefficients:

∆σ(θ ,λ ) = aρw

∞

∑
l=0

l

∑
m=0

P̃lm(cosθ)
[
∆Ĉlm cos(mλ )+∆Ŝlm sin(mλ )

]
(2.4)

where ρw is the density of water (1000 kgm−3). The ratio ∆σ/ρw is defined as the equivalent

water thickness (EWT), which is often used for GRACE applications.

Suppose the observable mass redistribution of the Earth occurs within the thin surface

layer, the SH coefficients of geoid change is a combination of direct gravitational attraction of

surface mass change and an additional contribution caused by the solid Earth’s loading effect

[Chao, 1994; Farrell, 1972; Wahr et al., 1998]:




∆Clm

∆Slm



=

3(1+ kl)

4πaρE(2l +1)

∫
∆σ(θ ,λ )P̃lm(cosθ)





cos(mλ )

sin(mλ )



sinθ dθ dλ (2.5)

where kl is the load Love number of degree l, ρE is the average density of the Earth (5517 kgm−3).

By comparing equation 2.4 and 2.5, it is easy to find the relation between (∆Clm, ∆Slm) and

(∆Ĉlm, ∆Ŝlm): 


∆Clm

∆Slm



=

3ρw

ρE

1+ kl

2l +1




∆Ĉlm

∆Ŝlm



 (2.6)

Or, conversely, 


∆Ĉlm

∆Ŝlm



=

ρE

3ρw

2l +1

1+ kl




∆Clm

∆Slm



 (2.7)

Finally, we can find the change of surface mass density from changes of geoid SH coeffi-

cients (∆Clm, ∆Slm):

∆σ(θ ,λ ) =
aρE

3

∞

∑
l=0

l

∑
m=0

P̃lm(cosθ)
2l +1

1+ kl

[
∆Clm cos(mλ )+∆Slm sin(mλ )

]
(2.8)

Equation 2.8 is widely used to estimate the change of surface mass density (or in EWT)

from geoid SH coefficients provided by GRACE gravity field solutions. Keep in mind we
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assume that all temporal gravity signals originates from the Earth’s surface. Since most mass

fluctuations of the Earth occurs in atmosphere, cryosphere, ocean and upper crust within a 10-

15 km layer, thin layer assumption is reasonable. Additionally, it is worthwhile to note that,

considering the term 2l + 1 in equation 2.8, the errors in high degree terms of geoid Stokes

coefficients will be amplified significantly in estimation of change of surface mass density. In

other words, although high degree SH coefficients can give more details of gravity field, the

corresponding signals may be significantly suppressed by the potential errors in high degree

SH coefficients. The methods to reduce errors in high degree SH coefficients will be discussed

in the next section.

2.2 Post-processing Methods

2.2.1 Gaussian Smoothing

Gaussian filter on the sphere was firstly developed by Jekeli [1981] to smooth the Earth’s

gravity field. Then, Wahr et al. [1998] adopted Jekeli’s Gaussian smoothing method to process

Stokes coefficients of GRACE temporal gravity fields. In this method, the spatial averages of

the surface mass density is expressed as:

∆σ(θ ,λ ) =
∫

sinθ
′
dθ

′
dλ

′
∆σ(θ

′
,λ

′
)W (θ ,λ ,θ

′
,λ

′
) (2.9)

whereW (θ ,λ ,θ
′
,λ

′
) is an averaging function. Using equation 2.8 in the above equation gives

∆σ(θ ,λ ) =
aρE

12π∑
l,m

P̃lm(cosθ) ∑
l
′
,m
′

2l
′
+1

1+ k
l
′

[
(∆C

l
′
m
′W l

′
m
′
c

lmc +∆S
l
′
m
′W l

′
m
′
s

lmc )cos(mλ )

+(∆C
l
′
m
′W l

′
m
′
c

lms +∆S
l
′
m
′W l

′
m
′
s

lms )sin(mλ )
]

(2.10)
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where





W l
′
m
′
c

lmc

W l
′
m
′
c

lms

W l
′
m
′
s

lmc

W l
′
m
′
s

lms





=
∫

sinθ dθ dλ

∫
sinθ

′
dθ

′
dλ

′





cos(m
′
λ
′
)cos(mλ ))

cos(m
′
λ
′
)sin(mλ ))

sin(m
′
λ
′
)cos(mλ ))

sin(m
′
λ
′
)sin(mλ ))





×W (θ ,λ ,θ
′
,λ

′
)P̃lm(cosθ)P̃l

′
m
′ (cosθ

′
) (2.11)

If W is defined as a function of angle α between points (θ ,λ ) and (θ
′
,λ

′
), equation 2.10

can be simplified to

∆σ(θ ,λ ) =
2aρEπ

3

∞

∑
l=0

l

∑
m=0

2l +1

1+ kl

WlP̃lm(cosθ)
[
∆Clm cos(mλ )+∆Slm sin(mλ )

]
(2.12)

where

Wl =
∫ π

0
W (α)Pl(cosα)sinα dα (2.13)

where Pl = P̃lm=0/
√
2l +1 are the Legendre polynomials.

We adopt Jekeli’s Gaussian averaging function [Jekeli, 1981] but normalize it so that global

integral of W is 1:

W (α) =
b

2π

exp[−b(1− cosα)]

1− e−2b
(2.14)

b =
ln(2)

1− cos(r/a)
(2.15)

where a is the Earth’s radius, r is the Gaussian averaging radius which is the distance on

the Earth’s surface at which W drops to half of its value at α = 0. The recursion relations
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among Wl are:

W0 =
1

2π

W1 =
1

2π
[
1+ e−2b

1− e−2b
−

1

b
]

Wl+1 =−
2l +1

b
Wl +Wl−1 (2.16)

In Figure 2.1, we summarize the relations among fitered/unfiltered changes of surface

mass density in terms of EWH (∆σ , ∆σ ), fitered/unfiltered geoid (∆N, ∆N), and their SH

coefficients ([∆Ĉlm, ∆Ŝlm], [∆Ĉlm, ∆Ŝlm], [∆Clm, ∆Slm] and [∆Clm, ∆Slm]).

19



M
eth

o
d
o
lo
g
y

 S
lm lm

CD D ˆ ˆ S
lm lm

CD D

ND

rD

sD

ˆ ˆ S
lm lm

CD D

ND

ˆ
2 2 1

3 1ˆS

lm lmE

l

lmw l
lm

C Cl
W

Sk

r p

r

ì üD Dì ü+ï ï
=í ý í ý

D+ î þï ïDî þ

0 0

ˆ ˆ( , ) (cos )( cos( ) sin( ))

l

w lm lm lm

l m

a P C m S ms q r q
¥

= =

D l = D l + D lå å s )((cos )((co(co(cos )(s )(s )(s )(s )((cos )((cos )((cos )(s )((cos )((co(co(cos )(

0 0

ˆ ˆ( , ) (cos )( cos( ) sin( ))

l

w lm lm lm

l m

a P C m S ms q r q
¥

= =

D l = D l + D lå å cos )( cos( , ) (cos )( , ) (cos )( , ) (cos )cos )( coscos )( coscos )( coscos )( coscos )( cos( , ) (cos )( , ) (cos )( , ) (cos )( , ) (cos )( , ) (cos )( , ) (cos )( , ) (cos )( , ) (( , ) (cos )

ˆ cos( )1
sin d d ( , ) (cos )

ˆ sin( )4

lm

lm

w
lm

C m

P

maS

q q s q q
p r

ì üD lì üï ï
= l ´ D lí ý í ý

lD î þï ïî þ
ò

ì ü
í ý í, ) (cos ), ) (, ) (, ) (cos, ) (cos, ) (, ) (, ) (, ) (, ) (, ) (

ì üì üˆ cos( )1
sin d d ( , ) (cos )

sin( )4ˆ

lm

lm

w
lm

C m

P

ma
S

q q s q q
p r

ì üD lì üï ï
= lD lí ý í ý

lî þï ïDî þ
ò

ì ü
í ý í, ) (cos ), ) (, ) (, ) (cos, ) (, ) (, ) (, ) (, ) (, ) (

ì üì ü

' ' ' ' ' ' '
( , ) sin d d ( , ) ( , , , )Ws q q q s q q qD l = l D l l lò

0 0

2 2 1
( , ) ( , ) (cos )( cos( ) sin( ))

3 1

For land ( , ) 1 over land, ( , ) 0 over ocean

For ocean ( , ) 0 over land, ( , ) 1 over ocean

l

ave

l lm lm lm

l m l

a l
C W P C m S m

k

C C

C C

r p
s q q q

q q

q q

¥

= =

+
D l = l D l + D l

+

l = l =

l = l =

å å (cos )((co(cos )((co(cos )(s )(s )(s )(s )((cos )((cos )((cos )(s )((cos )((co(co(cos )(

0 0

2 1
( , ) (cos )( cos( ) sin( ))

3 1

l

E

lm lm lm

l m l

a l
P C m S m

k

r
s q f q

¥

= =

+
D = D l + D l

+
å å cos )( cos( , ) (( , ) (( , ) (cos )( , ) (cos )( , ) (cos )cos )( coscos )( coscos )( cos( cos( , ) (cos )( , ) (cos )( , ) (cos )( , ) (cos )( , ) (cos )( , ) (cos )cos )

thin layer
( , ) ( , , )dr rs q f r qD = D lò

2
cos( )3

( , , ) (cos )( ) sin d d d
sin( )4 (2 1)

lm l

lm

lm ave

C mr
r P r

S ma l a

r q q q q
p r

+
D lì ü ì ü

= D l lí ý í ý
D l+ î þî þ

òí ý í) (cos )( ) s) (cos )( ) s) (c) (c) (cos )( ) s) (cos )( ) s) (c) (c) (cos )( ) s) (cos )( ) s) (c) (c

E

ˆ
3 1

ˆ2 1

lm lmw l

lm
lm

C Ck

S l S

r

r

ì üD Dì ü + ï ï
=í ý í ý

D + Dî þ ï ïî þ

' '

' ' ' ' ' '

' ' ' ' '
' ' '

' ' ' '

'

,

(2 1)(1 )1

2 (2 1)(1 )

l m lm

lm l m l m l mlm l

l l m l m
l mlm l lm lml m l m

F C G SC l k
W

l kS G C H S

ì üì üï ï ï ï
í ý í ý
ï ï ï ïî þ î þ

D + DD + +
=

+ +D D + D
å

0 0

( , ) (cos )( cos( ) sin( ))

l

lm lm lm

l m

N a P C m S mq q
¥

= =

D l = D l + D lå å (cos )((co(cos )((co(cos )(s )(s )(s )(s )((cos )((cos )((cos )(s )((cos )(s )(

0 0

3 1
ˆ ˆ( , ) (cos ) ( cos( ) sin( ))

2 1

l

w l

lm lm lm

l mE

a k
N P C m S m

l

r
q q

r

¥

= =

+
D l = D l + D l

+
å å (cos ) ((co(cos ) ((co(cos ) (

w l
a k3 13 1

s ) (s ) (s ) (s ) (s ) ((cos ) ((cos ) ((cos ) (s ) ((cos ) (s ) ((cos ) (s ) (0 0

3 1
ˆ ˆ( , ) (cos ) ( cos( ) sin( ))

2 1

l

w l

lm lm lm

l mE

a k
N P C m S m

l

r
q q

r

¥

= =

+
D l = D l + D l

+
å å (cos ) ((co

w l
a k3 13 1

(cos ) ((co(cos ) (s ) (s ) (s ) (s ) (s ) ((cos ) (s ) ((cos ) (s ) ((cos ) ((co(cos ) ((cos ) (s ) (

!"#$%
&$'(")"%*+,--*

%".-$(/ +,--*%".-$(/

!"#$%&$'(")"%*!"#$%

+,--*%".-$(/

sD
&$'(")"%*+,--*

%".-$(/

 S
lm lm

CD D

&$'(")"%*!"#$%

0 0

2 1
( , ) 2 (cos )( cos( ) sin( ))

1

l

l lm lm lm

l m l

l
N a W P C m S m

k

q p q
¥

= =

+
D l = D l + D l

+
å å2 (cos )( co2 (c2 (cos )2 (c2 (c2 (cos )os )( coos )( coos )( coos )( co2 (cos )2 (cos )2 (cos )2 (cos )2 (cos )2 (c2 (c2 (cos )

2
lmlm

l

lmlm

CC
W

SS

p
Dì üD ì ü

=í ý í ý
DD î þî þ

Figure 2.1: Relations among fitered/unfiltered changes of surface mass density in terms of EWH, fitered/unfiltered geoid, and their

SH coefficients.
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2.2 Post-processing Methods

2.2.2 Destriping Methods

In spatial domain, original unconstrained monthly gravity field observed by GRACE shows

north-south stripes, which represent the correlated errors in the gravity coefficients. As a

example, spatial pattern of mass variations in October 2013 from original GRACE Stokes

coefficients is shown in Figure 2.2. Swenson and Wahr [2006] found that, for a given order

m, Stokes coefficients of the same parity are correlated with each other. They proposed a

method to reduce this correlation by using quadratic polynomial in a moving window of width

w centered at degree l . For example, for Cl,m, they used the Stokes coefficients Cl−2α,m, ...,

Cl−2,m, Cl,m, Cl+2,m, ..., Cl+2α,m to fit a quadratic polynomial, and removed the fitted value

from original Cl,m to derive the de-correlated Cl,m. The relation between the width of moving

window w (i.e., the number of coefficients used for quadratic polynomial fitting) and α is

w = 2α+1. In Swenson and Wahr [2006]’s paper, the detailed algorith to determine the width

of moving window was not provided. Referring to Swenson and Wahr’s unpublished results,

Duan et al. [2009] provided the window width in the form of

w =max(Ae−
m
K +1,5) (2.17)

where m is order (≥5), max() takes the larger one of the two arguments. Swenson and Wahr

[2006] have empirically chose A = 30 and K = 10 based on a trial-and-error procedure.

To estimate ocean mass change using GRACE, Chambers [2006] modified the algorithm

described above. For RL02 GRACE solutions, they keep 7× 7 portion of the coefficients

unchanged, and fit a 7th order polynomial to the remaining coefficients to degrees with the

same parity for each order up to 50. In their method, only one polynomial is used for each odd

or even set for a given order, unlike the method from Swenson and Wahr [2006]. For RL04

GRACE solutions, they keep 11× 11 portion of the coefficients unchanged, and a 5th order

polynomial is applied. For latest RL05 GRACE solutions, the optimal parameterization based

on the model test is to start filtering at degree 15, and adopt a 4th polynomial [Chambers and

Bonin, 2012]. This processing method is denoted as P4M15.

Chen et al. [2007a] used the P3M6 method to process GRACE data and estimated co-
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seismic and post-seismic deformation from the Sumatra-Andaman earthquake using GRACE.

Later, they adopted the P4M6 method to estimate mass balance in ice caps, mountain glaciers,

and terrestrial water storage change [Chen et al., 2009a, 2010a, 2007b, 2008, 2009b, 2010b].

Different from the above methods, Duan et al. [2009] determined the unchanged portion

of coefficients based on the error pattern of the coefficients. Their unchanged portion of coef-

ficients and the width of moving window depend on both degree and order in a more complex

way. As a example, Figure 2.2 shows the global mass variations in October 2013 fromGRACE

Stokes coefficients based on different destriping methods. As shown in Figure 2.2(c-f), there is

a general agreement among results from different destriping methods. In addition, destriping

process suppresses the north-south stripes more efficiently, comparing the results with only

the Gaussian smoothing applied.

In summary, the parameterization of destriping (or decorrelation) method for GRACE is

dependent on the following criterion: (i) Determination of unchanged portion of coefficients:

Swenson and Wahr [2006], Chambers and Bonin [2012] and Chen et al. [2007a] keep the first

4, 14 and 5 degree and order unchanged respectively; while Duan et al. [2009] determined the

unchanged portion of coefficients based on their error pattern, which depends on both degree

and order. (ii) Choice of the degree of polynomial fitting; (iii) How to apply the polynomial

fitting to coefficients (moving window vs. fixed window): Swenson and Wahr [2006] adopted

a moving window with the width, which depends on the degree; while Duan et al. [2009]

determined the width of moving window as a function of both degree and order. In addition,

Chambers [2006] and Chen et al. [2007a] do not move the window, but use a fixed window to

fit the polynomial.

In addition, many filters are devised to reduce the noise of GRACE solutions, e.g., classic

Gaussian filter [Jekeli, 1981; Wahr et al., 1998], non-isotropic filter [Han et al., 2005], statisti-

cal filter [Davis et al., 2008], DDK filter [Kusche, 2007], wavelet filter [Schmidt et al., 2006],

wiener filter [Sasgen et al., 2007], fan filter [Zhang et al., 2009], and so on. In this thesis,

we mainly adopt Swenson and Wahr [2006]’s destriping method to estimate regional terres-

trial water storage variations and Chambers and Bonin [2012]’s destriping method to estimate

regional ocean mass change inferred from GRACE.
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(a) (b) 

(c) (d) 

(e) (f) 

−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30

cm

Figure 2.2: (a) Spatial pattern of mass variations in October 2013 from GRACE Stokes coeffi-

cients, no destriping and Gaussian smoothing applied. (b) Same as (a), but a 400 km Gaussian

smoothing applied. (c-f) Same as (b), but destriping methods from Swenson and Wahr [2006],

Chambers and Bonin [2012], Chen et al. [2007b], and Duan et al. [2009] applied.

2.2.3 GRACE Measurement Error

Wahr et al. [2006] determined the uncertainties in the GRACE Stokes coefficients as the stan-

dard deviation of the residuals of coefficients when seasonal cycles are removed. This method

may overestimate the GRACE measurement error, since we assume that all non-seasonal vari-

ability of Stokes coefficients results from the measurement error. We randomly take the CSR

RL05 GRACE solution in November 2011 for example. Figure 2.3 shows the spatial patterns

of GRACE measurement error from original Stokes coefficients and from filtered Stokes coef-

ficients with 300 km Gaussian smoothing. As shown in the figure, the GRACE measurement
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errors depend on latitude and show high uncertainties in tropics and low uncertainties in polar

regions. It is fairly reasonable since there are more GRACE observations in polar regions due

to its near-polar orbit. In Figure 2.3b, when a 300 km Gaussian smoothing is applied, the

magnitude of GRACE measurement error decreases significantly.

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚

−90˚

−60˚

−30˚

0˚

30˚

60˚

90˚

0 20 40 60 80

cm

(a)

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚

(b)

0 2 4 6 8 10

cm

Figure 2.3: Spatial patterns of GRACE measurement error in November 2011 (a) without

Gaussian smoothing and (b) with a 300 km Gaussian smoothing.

In addition, Chen et al. [2009b] proposed a simple approach to estimate the GRACE mea-

surement error when they analyzed the terrestrial water storage variations in the Amazon River

basin. Chen et al. [2009b] estimated the measurement error as root-mean-square variability

over the oceans at the same latitude as the study region on land. If the ocean and atmosphere

models perfectly simulate the mass change over the oceans, after the de-aliasing processing,

there will be no mass change detected by GRACE. Therefore the residuals over the ocean can

approximately represent the GRACE measurement error. Keep in mind that ocean variability

and the deficiencies in de-aliasing products might be included in estimates of GRACE error.

So this approach might overestimate the GRACE error too.

2.2.4 Basin-scale Mass Variations from Temporal Gravity Field

For a given region, we define the following basin kernel function:

ϑ(θ ,λ ) =





1, inside the basin

0, outside the basin
(2.18)
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The spherical harmonics of the above kernel function can be expressed as:

ϑ(θ ,λ ) =
1

4π

∞

∑
l
′
=0

l
′

∑
m
′
=0

P̃
l
′
m
′ (cosθ)

[
ϑ c

l
′
m
′ cos(mλ )+ϑ s

l
′
m
′ sin(mλ )

]
(2.19)





ϑ c

l
′
m
′

ϑ s

l
′
m
′



=

∫
ϑ(θ ,λ )P̃

l
′
m
′ (cosθ)





cos(mλ )

sin(mλ )



 dΩ (2.20)

By using equation 2.4 in the above two equations, we find

∆σ region =
1

Ωregion

∫
∆σ ϑ dΩ

=
aρw

Ωregion

1

4π

∞

∑
l=0

l

∑
m=0

P̃2
l=l′,m=m′(cosθ)(∆Ĉlmϑ

c
lm +∆Ŝlmϑ

s
lm)

=
aρw

Ωregion

∞

∑
l=0

l

∑
m=0

(∆Ĉlmϑ
c
lm +∆Ŝlmϑ

s
lm) (2.21)

whereΩregion is angular area of the given region (ratio of area of the given region to the Earth’s

radius squared).

With equation 2.6, equation 2.21 becomes

∆σ region =
aρE

3Ωregion

∞

∑
l=0

l

∑
m=0

2l +1

1+ kl

(ϑ c
lm∆Clm +ϑ s

lm∆Slm) (2.22)

Mass change in terms of EWT in a given region can be expressed as:

∆hregion =
aρE

3Ωregionρw

∞

∑
l=0

l

∑
m=0

2l +1

1+ kl

(ϑ c
lm∆Clm +ϑ s

lm∆Slm) (2.23)

Mass change in volume in a given region can be expressed as:

∆V region =
a3ρE

3ρw

∞

∑
l=0

l

∑
m=0

2l +1

1+ kl

(ϑ c
lm∆Clm +ϑ s

lm∆Slm) (2.24)

To reduce the GRACE measurement error, Gaussian smoothing kernel is often applied to
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equation 2.23 and 2.24.

Leakage and Bias

Considering the limitation of GRACE observation accuracy, the Stokes coefficients of GRACE

solutions are truncated to a limited degree lmax. So, the spatial resolution of GRACE products

is limited to 20000/lmax km. Truncation of spherical harmonic coefficients in spectral domain

is a low-pass filter in spatial domain. The real mass variation signal in a given region might

be dampened due to the truncation of SH coefficients. In addition, the destriping, Gaussian

smoothing, and regional averaging might make the estimate biased in a given region. The

signal in the target region might leak out to the surrounding areas, which would cause an

amplitude damping in the region (leakage out). Meanwhile, the signal from the surrounding

areas might leak into the target region too (leakage in). Wahr et al. [1998] and Swenson and

Wahr [2002] considered “leakage” to include both the signal leaking out of the target region

and the signal leaking into the target region from the surrounding areas. However, Klees et al.

[2007] and Longuevergne et al. [2010] considered the leakage out effect as “bias”, and the

leakage in effect as “leakage”. In their naming convention, “leakage” only represents the

contamination from the outside of the target region in a narrow sense. In this study, if not

mentioned specifically, we refer to the latter name convention.

Suppose the function S describes the real mass variations on the Earth’s surface, then the

mean value of mass variations over the region of interest R is

S0 =
1

R0

∫

Ω

ShdΩ (2.25)

where R0 is the area of the region, h is the ideal basin kernel function (1 inside the basin, 0

outside), Ω represents the entire Earth surface.

The GRACE estimate of mean value over the region of interest R is

Ŝ0 =
1

R0

∫

Ω

ŜhdΩ (2.26)

where Ŝ represents the filtered GRACE estimate of mass variation.
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To recover the real average mass variation signal S0 in a given region from the GRACE

estimate Ŝ0, there are two following methods. In the first method, real average mass variation

signal S0 in a given region is re-written as [Klees et al., 2007]

S0 = Ŝ0−Sleakage +Sbias (2.27)

with

Sleakage =
1

R0

∫

Ω−R
Sout ĥdΩ (2.28)

Sbias =
1

R0

∫

R
Sin(h− ĥ)dΩ (2.29)

where Sin and Sout represent the real mass variations in the region of interest and outside, ĥ

represents the averaging kernel function applied to GRACE data.

In this method, we need to remove the leakage Sleakage from the GRACE estimate Ŝ0 first,

then add the bias Sbias back. To calculate the leakage and bias for a given region, a priori in-

formation about mass variations both in the region of interest and outside should be available,

which usually comes from hydrological models and ocean models. Based on a calibrated re-

gional hydrological model for Southern Africa, Klees et al. [2007] estimated the leakage and

bias effect to GRACE-based terrestrial water storage variations in the Zambezi river basin.

They found that, after applying leakage and bias corrections from a priori hydrological model,

the fit between GRACE and the hydrological model is improved significantly. Even if another

independent hydrological model is used to estimate leakage and bias corrections, the agree-

ment between GRACE and the original hydrological model is still significant. Therefore, it is

necessary to apply leakage and bias corrections to the GRACE estimate, if a priori information

about mass variations is available. Keep in mind that the uncertainty of the priori information

would cause the overestimation or underestimation of the leakage and bias.

In the other method, we give the following equation:

S0 = k(Ŝ0−Sleakage) (2.30)
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where k is the scaling factor (or multiplicative factor), which is expressed as

k =

∫
R SinhdΩ
∫

R SinĥdΩ
(2.31)

If the reliable mass variations over the study region are available, we can use the above

equation to estimate the scaling factor. However, it is not always the case. Assuming that a

uniform distribution of mass within the region of interest, k can be simplified to

k =
1

∫
R ĥdΩ

(2.32)

Based on equation 2.32, to estimate the scaling factor, we need to construct a ideal kernel

function for the region of interest (1 inside and 0 outside), decompose it into truncated spher-

ical harmonics, then apply the destriping and smoothing to these spherical harmonics. After

that, the reciprocal of the signal left within the region is considered as the scaling factor. To

calibrate GRACE estimate in the study of mass balance in Antarctica, Velicogna and Wahr

[2006b] applied the averaging function to a uniform mass variation over the ice sheet, and the

left signal inside the region was 0.62. Thus, they applied the GRACE estimate with a scaling

factor 1/0.62 to recover the real mass variation signal over the whole ice sheet. In addition, a

scaling factor of 1.95 is obtained when they studied the ice mass loss in Greenland [Velicogna

and Wahr, 2006a]. To obtain the mass variations in the Mediterranean Sea using GRACE,

Fenoglio-Marc et al. [2006] estimated a scaling factor of 1/0.56 based on original and filtered

mass variations from steric-corrected altimetry. In the Caspian Sea, a scaling factor of 1/0.37

is multiplied with GRACE original estimate to analyze the water storage variations [Swenson

and Wahr, 2007]. A scaling factor of 1.95 is determined to recover the magnitude damping of

GRACE-based groundwater storage variations in northern India [Rodell et al., 2009].

The above two methods are widely used to estimate time series of regional mass variations

from GRACE. In addition, the leakage effect can be estimated and removed in spatial do-

main. We proposed a modification of Wahr et al. [1998]’s method to reduce the leakage using

GRACE observations as follows: (i) Convert the original GRACE SH coefficients into grids;

(ii) Keep the values over land unchanged, and set the values over ocean to zeros; (iii) Then,

28



2.2 Post-processing Methods

convert the grids to SH coefficients and do the specified destriping and Gaussian smoothing;

(iv) After that, convert the filtered coefficients to grids again. The values over ocean in these

grids, to first order, represent the leakage effect from the continent, which should be removed

from GRACE results. This method is carried out in spatial domain, but is equivalent to Wahr

et al. [1998]’s method which is employed in spectral domain. As shown in Figure 2.4, the stan-

dard deviation of ocean mass changes from GRACE is significantly reduced near the coast of

large river basins (e.g., the Amazon basin), when leakage corrections are applied.
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Figure 2.4: Standard deviation of ocean mass changes from GRACE (CSR RL05) during

2003-2011 (a) without leakage correction and (b) with leakage correction.

Error Estimation for Basin-scale Mass Variations

As summarized by Longuevergne et al. [2010], when we estimate basin-scale mass variations

using the scaling factor method, the total error induced by the GRACE data processing ∆Stotal

can be written as

∆Stotal = k∆Ŝ0+∆k(Ŝ0+Sleakage)+ k∆Sleakage (2.33)

where k∆ ˆ̄S0 is the scaled GRACE measurement error, ∆k(Ŝ0+ Sleakage) represent the errors

caused by the uncertainty of the scaling factor estimation, and k∆Sleakage is the error due to the

uncertainty of the leakage correction.

As a summary, Figure 2.5 shows the processing flow of the basin-scale mass variation

estimation and error estimation from GRACE.
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Figure 2.5: Synthesis of basin-scale mass variation estimation and error estimation from

Stokes coefficients of GRACE temporal gravity fields. (From Longuevergne et al. [2010])

2.3 Combination of Altimetry, GRACE and Oceanographic

Data

Satellite altimetry can observe the total SLV over the global ocean, while GRACE and oceano-

graphic data can be used to estimate mass-induced SLV and steric SLV respectively. Never-

theless, to study the global sea level budget using these three independent observations, some

attention should be paid to make these observations in a self-consistent way.

2.3.1 Steric Sea Level Variations

Steric sea level variations (SLV) is produced by the expansion and contraction of the water

column due to seawater density change, which can be expressed as [Gill and Niiler, 1973;

Pattullo et al., 1955; Tomczak and Godfrey, 1994]

η
′

st(θ ,λ , t) =−
1

ρ0

[

∫ η

−h

∂ρ

∂T
T
′
(θ ,λ ,z, t)dz+

∫ η

−h

∂ρ

∂S
S
′
(θ ,λ ,z, t)dz

]

(2.34)

where ρ0 is the reference seawater density, θ , λ and z are the latitude, longitude and depth of

a given point respectively, t is time, ∂ρ/∂T and ∂ρ/∂S is the partial derivatives of density

to temperature and salinity at a given point, T
′
and S

′
are changes of temperature and salinity

at the point, η represents the sea surface height (SSH) relative to the reference bottom of the

30



2.3 Combination of Altimetry, GRACE and Oceanographic Data

upper layer in a two layer fluid, −h represents the depth of the lower layer.

The equation 2.34 can be simplified to

η
′

st(θ ,λ , t) =
∫ η

−h
α(θ ,λ ,z, t)T

′

(θ ,λ ,z, t)dz+
∫ η

−h
β (θ ,λ ,z, t)S

′

(θ ,λ ,z, t)dz (2.35)

where α =− 1
ρ0

∂ρ
∂T

is the thermal expansion coefficient of seawater, β =− 1
ρ0

∂ρ
∂S

is the salinity

expansion coefficient of seawater. The first term on the right-hand side of equation is ther-

mosteric SLV, while the second term represents the halosteric SLV.

In general, the haline contribution to global steric sea level variation is negligible, although

it might be significant in some regional ocean, such as the subpolar Altantic Ocean [Antonov

et al., 2002]. Neglecting the halosteric SLV leaves,

η
′

st(θ ,λ , t) =
∫ η

−h
α(θ ,λ ,z, t)T

′

(θ ,λ ,z, t)dz (2.36)

Furthermore, assuming that the thermal expansion coefficient α is constant over the depth,

we obtain the relation between the steric SLV and seawater temperature anomalies:

η
′

st(θ ,λ , t) = α0(θ ,λ , t)
∫ η

−h
T

′

(θ ,λ ,z, t)dz (2.37)

2.3.2 Glacial Isostatic Adjustment

Glacial Isostatic Adjustment is the Earth’s viscoelastic response to the last deglaciation follow-

ing the last glacial maximum (LGM) [Lambeck and Nakiboglu, 1984; Peltier, 1986]. To esti-

mate ocean mass trends from GRACE observations, the long-term gravitational signal caused

by GIA should be removed. In addition, the long-term sea bottom deformation caused by GIA

should be removed from geocentric sea level variations observed by satellite altimetry. In this

thesis, we adopt the GIA model from A et al. [2013], which is an update of the GIA model

from Paulson et al. [2007] and uses the ICE-5G deglaciation history and the PREM-based

Earth model [Dziewonski and Anderson, 1981; Peltier, 2004]. Figure 2.6 demonstrates the

GIA mass rate and uplift rate with SH expansion up to degree 100.
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Figure 2.6: (a) GIA mass rate in terms of equivalent water thickness and (b) GIA uplift rate

with SH expansion up to degree 100. (Adapted from A et al. [2013])

2.3.3 Elastic Loading Deformation

Owing to the elastic loading effect, mass change in the water column produces a vertical dis-

placement in the ocean bottom, which may not be negligible in some regional ocean [Kuo

et al., 2008]. This elastic loading deformation should be removed from altimetry, when com-

paring with GRACE results. The following equation is used to calculate this loading deforma-

tion:

∆H(θ ,λ ) = a
∞

∑
l=0

l

∑
m=0

P̃lm(cosθ)
hl

1+ kl

[
∆Clm cos(mλ )+∆Slm sin(mλ )

]
(2.38)

where a is the Earth’s radius, θ , λ are co-latitude and longitude respectively, l is degree and

m is order, P̃lm(cosθ) is the fully normalized associated Legendre function, ∆Clm, ∆Slm are

geopotential spherical harmonics respectively, kl is potential Love number, and hl is vertical

Love number.

Stokes coefficients from GRACE products are employed to compute the vertical loading

deformation in the ocean bottom. Figure 2.7 shows the vertical loading deformation in the

ocean bottom in January 2003 based on GRACE-observed ocean mass variations in the same

month.
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Figure 2.7: Vertical loading deformation in the sea bottom in January 2003 based on GRACE-

observed ocean mass variations in the same month. A 300 km Gaussian smoothing is applied

to GRACE data.

2.3.4 Inverted Barometer Corrections

In this study, inverse-barometer (IB) corrected gridded altimetry data from the Archiving, Val-

idation and Interpretation of Satellite Oceanographic (AVISO) data are used. When comparing

IB-corrected altimetry with GRACE, the time-varying mass of the atmosphere averaged over

the ocean should be considered and removed from GRACE results. From integration of the

hydrostatic equation over the whole water column, the ocean bottom pressure (OBP) Pbot is a

sum of the atmosphere pressure and the pressure from the water column [Ponte, 1993]:

Pbot = Patm +g

∫ η

−H
ρ dz≈ Patm +gρ0η+g

∫ 0

−H
ρ dz (2.39)

where Pbot is ocean bottom pressure, Patm is surface atmospheric pressure, g is gravity constant,

ρ is seawater density, ρ0 is mean seawater density (1025 kgm−3), and η is the sea surface

height (SSH) with respect to the geoid. The OBP anomaly at a given point at time t1 is

∆Pbot,1 = ∆Patm,1+gρ0(η1−η)+g

∫ 0

−H
(ρ1−ρ)dz (2.40)
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where ∆Patm,1 is the surface atmospheric pressure anomaly at the given point, η is the mean

SSH at the given point, ρ is the mean density at a given depth.

According to the definition of IB effect, IB-corrected SSH at this point at t1 can be written

as

ηIB,1 = η1+
Patm,1−Pocean,1

ρ0g
(2.41)

where Patm,1 is surface atmospheric pressure at the given point at t1 and Pocean,1 is the average

atmospheric pressure over the ocean at t1.

Considering the average of IB-corrected SSH at the given point for the period from t1 to

tn, we have

η IB = η+
Patm−Pocean

ρ0g
(2.42)

where Patm = ∑i Patm,i

n
and Pocean =

∑i Pocean,i

n
.

From equation 2.41 and 2.42, we get

∆Patm,1−∆Pocean,1

gρ
= (ηIB,1−η IB)− (η1−η) (2.43)

Introducing equation 2.43 into 2.40, we get

∆Pbot,1

gρ0
=
∆Pocean,1

gρ0
− (ηIB,1−η IB)− [−

1

ρ0

∫ 0

−H
(ρ1−ρ)dz] (2.44)

Equation 2.44 reveals the relation between IB-corrected altimetry and GRACE. The left-

hand side of equation 2.44 represents the OBP anomaly in terms of EWT observed by GRACE,

when the the atmosphere/ocean de-aliasing model (GAD) is added back to GRACE Stokes

coefficients. On the right-hand side of equation 2.44, the first term represents the anomaly of

atmosphere pressure averaged ovear the ocean at time t1, the second term is the anomaly of

IB-corrected SSH from altimetry, and the last one is the steric sea level variations. Thus, to

be consistent with IB-corrected altimetry, the time-varying mass of the atmosphere averaged

over the ocean should be removed from GRACE-observed OBP anomaly. This can be easily

calculated from the atmosphere/ocean de-aliasing model provided by GRACE products. As

shown in Figure 2.8, the annual amplitude of this correction is about 6 mm.
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Figure 2.8: Time-varying mass of the atmosphere averaged over the ocean based on GRACE

GAD data.

2.3.5 Boussinesq Approximation

In most ocean models (e.g., ECCO), Boussinesq approximation is widely used. With this

approximation, most ocean models conserve the volume of the ocean unchanged. However,

actually, ocean volume is not strictly conserved. For example, a global warming of the ocean

will decrease the seawater density, and the volume of the ocean will increase, but no changes

in mass involved. However, with the Boussinesq approximation, since the volume of the

ocean keeps constant, the decrease of seawater density will cause a negative OBP anomaly,

i.e., the loss of ocean mass, which is unreal. To correct for the missing physics, a spatially

homogeneous sea level signal should be added to the steric SLV calculated from Boussinesq

ocean models, as corrections for the unmodeled volume changes [Ponte, 1999]:

δηρ =−
1

A

∫

V

δρ

ρ0
dV (2.45)

where A and V are the surface area and volume of the ocean respectively, δρ is the seawater

density anomaly relative to the reference density ρ0. Based on the temperature and salinity

data from the ECCO ocean model, we calculated the time series of the Boussinesq correction

(Figure 2.9).
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Figure 2.9: Boussinesq correction for the steric SLV based on the temperature and salinity

data from the ECCO ocean model.

2.4 Summary

In this chapter, we introduced the basics of temporal gravity fields and described the post-

processing methods for GRACE level-2 Stokes coefficients. Especially, the regional mass

variation estimation from GRACE temporal gravity fields, related leakage and bias correc-

tions, and error assessment are given in detail. The steric sea level variations calculation and

relevant notice in combining altimetry, GRACE and oceanographic data are described.
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CHAPTER 3

GROUNDWATER STORAGE VARIATIONS IN NORTH CHINA FROM

GRACE

3.1 Introduction

Groundwater in the North China Plain (NCP), the largest wheat/maize production zone in

China, is of great importance for water resources management, agricultural development, and

ecosystem health in the region. The NCP includes one shallow unconfined aquifer and three

deep confined aquifers of different depths (40-60 m, 120-170 m, 250-350 m, and 400-600

m) [Sakura et al., 2003]. The aquifers consist of sand, gravel, clay, and silt. The region

belongs to the littoral and semi-arid climatic zone with nearly 70% of the rainfall occurring

from June to September and 10% fromMarch to May. Annual rainfall in this area ranges from

approximately 400-600 mm/yr, whereas the evaporation rate is approximately 1,000 mm/yr

[Liu et al., 2002]. Since the 1970s, rapid agricultural and industrial development has resulted

in great demand for water resources. Nearly all of the major rivers in North China, including

the Hai River, are dammed for hydro-electric power generation and urban water use. The

Yellow River flows through the western and southern parts of the study region. However, only

a small percentage of surface water here is used for agricultural irrigation [Yang et al., 2010].

Instead groundwater is pumped for use in agricultural irrigation. In the NCP, more than 60% of

fresh water comes from groundwater [Ministry of Water Resources of China (MWR), 2010],

and agricultural irrigation in this area relies heavily on groundwater [Kendy et al., 2003; Yang
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et al., 2010]. In the piedmont region of the Taihang Mountains where irrigation requirements

are high, shallow groundwater level differences between 1958 and 1998 are as high as 50 m,

whereas deep groundwater level differences over the same time period are as high as 90 m

[World Bank, 2001]. By 2004, there were more than 7.6 million tube wells in North China,

and 68% of irrigation here came from groundwater [Wang et al., 2007]. In 2009, groundwater

accounted for 61% of the total water supply in Beijing, 26% in Tianjin, 80% in the Hebei

province, and 58% in the Shanxi province [Ministry of Water Resources of China (MWR),

2010]. With continued groundwater consumption, large depression cones have formed in the

NCP [Liu et al., 2001]. Based on the hydrogeological dataset for North China, Foster et al.

[2004] concluded that the excessive abstraction of groundwater has led to severe groundwater

depletion in the piedmont and flood plain regions of the NCP.

As mentioned in the Introduction chapter, the GRACE mission presents a new opportunity

to monitor groundwater storage (GWS) variations. GRACE-observed terrestrial water stor-

age (TWS) change is the vertically integrated measure of groundwater storage (GWS), soil

moisture storage (SMS), snow water equivalent storage (SWES), and surface water reservoir

storage (RESS). To isolate GWS from total TWS, other components must be estimated from

land surface models (LSMs) or observations: ∆GWS = ∆TWS - ∆SWES - ∆RESS - ∆SMS.

Recently, two studies have reported the water mass loss in the NCP from GRACE. Zhong

et al. [2009] studied TWS trends in China using early GRACE data (level 2, Release 04) and

found a TWS loss in Beijing, Hebei, and Tianjin at a rate of 2.4 cm/yr from 2003-2007. Su

et al. [2011] also found a decline TWS rate of 1.1 cm/yr in North China. Moiwo et al. [2009]

estimated TWS changes in the Hai River basin of North China based on gridded GRACE

data (level 3, Release 04) collected over 4 years and compared the results with in situ hydro-

logical measurements. They found a TWS loss in the range of 1.3-2.4 cm/yr for the period

from 2003-2006. However, the regional TWS time series based on level 3 GRACE data are

potentially contaminated by leakage and amplitude-damping effects in GRACE data process-

ing. In this study, we use the latest level 2 GRACE products and consider the leakage and

amplitude-damping effects to make the estimate more reliable. We explore the potential of

GRACE to monitor groundwater storage variations in North China, and compare the GRACE
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estimates with those from ground observations, groundwater modeling, and government re-

ports. As shown in Figure 3.1, our study region includes Beijing, Tianjin, Hebei province,

Shanxi province, and parts of Henan province and Shandong province. The boundaries of Hai

River basin and North China Plain are also shown in Figure 3.1. Our study region includes the

whole North China Plain and nearly the whole Hai River basin. The area of our study region

is large enough (∼ 434,000 km2) to be observed by the GRACE satellites.

110˚ 112˚ 114˚ 116˚ 118˚ 120˚

34˚

36˚

38˚

40˚

42˚

−6

−3

0

3

6
km

Shanxi

T
a
ih

a
n
g
 M

o
u
n
ta

in
s

Hebei

BJ

TJ

Bohai Sea

SD

HN

Figure 3.1: Location and shaded relief topography of North China. Boundaries of Beijing

(BJ), Tianjin (TJ), Hebei province and Shanxi province are shown in black lines. Blue and

green lines show the boundaries of Hai River basin and North China Plain respectively. Parts

of Henan (HN) province and Shandong (SD) province are also included in our study region

(red boundaries), since they belongs to the NCP.

3.2 Data and Methods

3.2.1 GRACE Data and Processing

We used the monthly Release 05 GRACE solutions provided by the Center for Space Re-

search (CSR) at the University of Texas at Austin. The solutions were expressed in the form

of spherical harmonic (SH) coefficients truncated to degree and order (d/o) 60. The degree
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2 order 0 (C20) coefficients in the GRACE data were replaced by estimates obtained from

satellite laser ranging [Cheng and Tapley, 2004]. Monthly geocenter estimates calculated by

Swenson et al. [2008b] were used to account for the degree 1 coefficients of the gravity field,

which GRACE does not observe. The GRACE data were corrected for glacial isostatic ad-

justment (GIA) based on the model of Paulson et al. [2007], which was updated by A et al.

[2013]. The SH coefficients were filtered to remove north-south stripes [Swenson and Wahr,

2006] and to reduce high frequency noise (200 km Gaussian smoothing). Furthermore, we

applied the following regional kernel function to these SH coefficients to obtain the TWS in

the study area [Swenson and Wahr, 2002]:

ˆ̄S0 =
4πa3ρE

3R0

Lmax

∑
l=0

l

∑
m=0

2l +1

1+ k
′

l

(ϑ c
lm∆Clm +ϑ s

lm∆Slm) (3.1)

where R0 is the area of the region, a and ρE are the mean radius and density of the Earth,

k
′

l is the lth load potential Love number, ∆Clm and ∆Slm are the SH coefficients anomalies

with respect to the mean gravity field for the period ranging from 2003-2010, and ϑ c
lm and

ϑ s
lm are the SH coefficients of the kernel function ĥ . We constructed the kernel function

by decomposing the mask grid (1 at points inside the region and 0 at those outside) into SH

coefficients, which were truncated to degree Lmax=60.

All of the processes mentioned above (i.e., truncation of SH coefficients to d/o 60, de-

striping, smoothing, and applying the kernel function) could make the TWS estimate biased

within a given region. The signal in the target area might leak out to the surrounding areas,

which would cause an amplitude damping in the area (bias). Meanwhile, the signal from the

surrounding areas might leak into the target area (leakage). In theory, the regional water stor-

age value S̄0 estimated by the above method can be presented in the following integral forms

[Klees et al., 2007]:

S̄0 =
1

R0

∫

Ω

S0ĥdΩ

=
1

R0

∫

R

SinĥdΩ+
1

R0

∫

Ω−R

Sout ĥdΩ (3.2)
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where S0 is the true water storage variation field, Sin and Sout are the true variations inside and

outside the basin, and S̄0 is the original regional estimate before bias and leakage corrections

are applied. The first item on the right side of the equation is the biased estimate, and the

second item is the leakage effect from outside of the basin. The true value in the basin is

1
R0

∫
R SinhdΩ, where h is the exact kernel (1 inside the basin, 0 outside). To recover this true

value in the basin, we removed the leakage effect from the original estimate and corrected the

biased estimate.

The time series for leakage around the basin can only be estimated from mass change

models, because there are no reliable observations of global large-scale mass variations except

from GRACE. To estimate this “leakage in” signal, we constructed the synthetic global mass

change from four hydrological models (see next section) and ocean bottom pressure data from

a Jet Propulsion Laboratory (JPL) version of the Estimating Circulation and Climate of the

Ocean general circulation model [Lee et al., 2002]. We added a uniform layer to the global

ocean to conserve the total land and ocean mass at every time step [Velicogna and Wahr,

2006a,b]. The average values and standard deviations of the leakage time series from four

models were calculated as our final leakage corrections and uncertainties.

Furthermore, we used the scaling factor method to restore the amplitude-damped TWS

time series. Many researchers have applied this method to study ice sheet mass loss in Green-

land and Antarctica [Velicogna and Wahr, 2006a,b], mass-induced sea level variations in the

Mediterranean Sea and the Caspian Sea [Fenoglio-Marc et al., 2006; Swenson and Wahr,

2007], and seasonal water storage variations in major drainage basins of the world [Chen et al.,

2007c]. We used a scaling factor of 2.51 (corresponding to 200 km Gaussian smoothing) to

restore the TWS time series (more details, see Section 3.3.4).

In this study, we did not use the TWS and SMS time series to estimate GWS anomalies

directly. Instead, we used a new method proposed by Scanlon et al. [2012], in which SMS

data are filtered in the same way as GRACE data initially (i.e., projection of model grids to

SH coefficients, truncation to d/o 60, application of a 200 km Gaussian smoothing). Next we

removed this filtered SMS value from the GRACE-derived TWS value to obtain the filtered

GWS value. Because we assumed that GWS changes are concentrated inside the area of
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interest, restoring the filtered GWS only requires bias correction (i.e., applying scaling factor)

and no leakage correction (no external groundwater masses leaking into the area of interest)

is needed. Therefore, errors of leakage corrections outside the area should be minimized.

The scaling factor could be estimated using information on the spatial distribution of GWS

changes, which is generally estimated from groundwater models or groundwater observations.

Note that because the scaling factor is a parameter describing the relative change, the possible

underestimates from groundwater models or statistical data will not affect the scaling factor

estimate. We applied the gridded groundwater observations released by the Ministry of Water

Resources of China (MWR) to estimate the scaling factor for GWS changes (1.99, see Section

3.3.4).

3.2.2 Land Surface Models

We used seven land surface models (LSMs): four versions (NOAH, VIC, CLM and MOSAIC)

of the GLDAS model from NASA [Dai and Zeng, 1997; Ek et al., 2003; Koster and Suarez,

1992; Liang et al., 1994; Rodell et al., 2004], the Climate Prediction Center (CPC) model

from the National Oceanic and Atmospheric Administration (NOAA) [Fan and van den Dool,

2004], the WaterGAP Hydrology Model (WGHM) [Döll et al., 2003], and the version 4.5

of Community Land Model (CLM4.5) [Oleson et al., 2013]. Soil water outputs from seven

LSMs and snow water equivalents from GLDAS models are averaged to get the best estimates

of natural water change. The snow water component is typically small, and its contribution to

the long-term TWS trend of North China is negligible (<0.01 km3/yr). WGHM and CLM2.5

models end in 2010. GLDAS and CPCmodels do not include the groundwater or surface water

storage components. In WGHM, the effect of water use (e.g., irrigation) to soil water is taken

into account. WGHM and CLM4.5 also model the groundwater storage variations. However,

WGHM still fails to simulate GWS variations in North China [Döll et al., 2014]. The GWS

change in North China derived from CLM4.5 is very small and not taken into account in our

study, since we aim to isolate total GWS change from GRACE-derived TWS change. The

average values and standard deviations of the different hydrological models were calculated

as the best estimates and uncertainties of SMS. To isolate the GWS changes from the TWS
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changes, we also need to remove the contribution from the surface water reservoir storage.

Nearly all of the major rivers in North China are dammed for municipal and industrial use.

Although surface water storage changes is unlikely to contribute significantly to long-term

TWS changes in North China during the study time period, we still estimate it using data from

Water Resources Bulletins of Hai River Basin (available at: http://www.hwcc.gov.cn).

3.2.3 Ground-based Measurements

Gridded groundwater table depth maps of shallow aquifers in North China Plain were obtained

from contour maps released by Ministry of Water Resources of China (available at: http:

//sqqx.hydroinfo.gov.cn/shuiziyuan/). Released monthly contour map is the relative changes

compared to the map in the same month of previous year. We digitized these maps into gridded

ones with the resolution of 0.25◦×0.25◦. These maps show the changes of groundwater table

depth in the plains of Huang-Huai-Hai basin, which contains the North China Plain.

Time series of monthly groundwater table depth changes of 19 cities in our study region

were also obtained from the website of MWR. We get the area-weighted mean groundwater

level change series in the NCP from these time series.

To convert the gridded groundwater table depth change to the GWS change, the spatial

pattern of specific yields has to be estimated. In the NCP, the specific yield of shallow aquifers

increases westwards from <0.05 in the coastal plain around the margin of the Bohai Sea to

>0.2 in the piedmont region of the Taihang Mountains. We digitized the contour map of

specific yields in the NCP provided by Zhang and Fei [2009]. The mean value of specific

yields in the NCP is 0.059, which we used to estimate mean GWS changes in the study region.

We also used the GWS statistics of shallow aquifers from the Groundwater Bulletin of

China Northern Plains (GBCNP), which is issued annually by the Ministry of Water Resources

of China (MWR), and the Groundwater Bulletin of Hebei Plain (GBHP), which is issued

quarterly by the Department of Water Resources in the Hebei Province (DWRHP) [MWR,

2010; DWRHP, 2010].

In addition, monthly precipitation data of China were obtained from China Meteorological

Data Sharing Service System (CMDSSS) (available at: http://cdc.cma.gov.cn/). The spatial
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resolution of the precipitation data is 0.5◦×0.5◦.

3.2.4 Groundwater Model

Cao et al. [2013] built a multilayer, heterogeneous and anisotropic groundwater model to sim-

ulate the flow system in the NCP using MODFLOW-2000. This groundwater model was

calibrated by historical groundwater level contour maps from 1960 to 1992 and monitoring

water level time series from 1993 to 2008. Yearly GWS anomaly in shallow and deep aquifers

were estimated in this groundwater model. Generally, extensive groundwater pumpage from

deep aquifers will cause the ground subsidence, which can be used as the important constrains

of groundwater modeling. However, considering the lack of land subsidence monitoring data

in the NCP, the GWS anomaly in deep aquifers estimated by the model is significantly smaller

than that in shallow aquifers, which might be significantly underestimated (personal commu-

nication, G. L. Cao). The time period of the model is from 1970 to 2008.

3.3 Results

The spatial pattern of TWS trends estimated from GRACE data for China and its surrounding

regions from 2002-2013 is shown in Figure 3.2. The most obvious negative trend is located in

northern India and Pakistan, which is believed to be caused by groundwater depletion [Rodell

et al., 2009; Tiwari et al., 2009]. GRACE-derived glacial mass loss in the Himalayas and Tian

Shan shown in the figure was discussed by Matsuo and Heki [2010]. As shown in Figure 3.2,

the water impoundment in the Three Gorges Reservoir of China was also detected by GRACE

[Wang et al., 2011]. Figure 3.2 also shows the obvious TWS loss in North China, specifically

in Beijing, Tianjin, Hebei province, and Shanxi province.

Figure 3.3 shows the percentage of each 5-arc-minute grid cell equipped for irrigation

with groundwater in North China [Siebert et al., 2010]. As shown in Figure 3.3, the high

percentage of area equipped for irrigation with groundwater is mapped for the North China

Plain, especially in the plains of Hebei province. We further investigated how much of the

GRACE-derived TWS loss in North China is caused by groundwater depletion.

44



3.3 Results

Figure 3.4 illustrates the time series of GRACE-derived TWS changes in North China,

which show an obvious seasonal and interannual water storage variations. The TWS increase

is detected in two different time periods, i.e., 2002-2004 and 2012-2013. A persistent mass

loss is observed from 2004 to 2012. The averaged SMS+SWES changes from the land surface

models showed a smaller amplitude than the GRACE-derived TWS changes. The time series

from LSMs reflects rainfall anomalies rather well during the period (see precipitation data

in Figure 3.7). The trend of SMS+SWES time series is 0.2 ± 0.1 cm/yr during 2002-2013,

which is significantly smaller than that of TWS (-2.2 ± 0.3 cm/yr). On seasonal timescales,

the highest TWS occurs in November, which lags SMS+SWES about 25 days.

70˚ 80˚ 90˚ 100˚ 110˚ 120˚ 130˚

20˚

30˚

40˚

50˚

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
cm/yr

Figure 3.2: Trend map of terrestrial water storage (TWS) changes in China and its surrounding

regions from GRACE during 2002-2013. Destriping and 200 km Gaussian smoothing were

applied. In addition to the TWS loss in northern India and Pakistan, the figure shows the

obvious TWS loss in North China.
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Figure 3.3: The area equipped for irrigation with groundwater in North China, given as a

percentage of cell area, for 5′× 5′ cells [Siebert et al., 2010]. The high percentage of area

equipped for irrigation with groundwater is mapped for the North China Plain.
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Figure 3.4: TWS variations estimated from GRACE and SMS+SWES variations estimated

from seven LSMs (GLDAS_NOAH, GLDAS_VIC, GLDAS_CLM, GLDAS_MOSAIC, CPC,

CLM4.5, and WGHM)
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3.3.1 Seasonal GWS Variations

Figure 3.5 depicts the GWS changes estimated as the difference between GRACE-derived

TWS and simulated SMS+SWES from LSMs, and the mean groundwater level changes ob-

served by monitoring wells. These two independent groundwater change estimates agree with

each other rather well both on seasonal and interannual timescales. Figure 3.6 further shows

the seasonal monthly variations of groundwater storage, groundwater level, and precipitation

in the study region. On seasonal timescales, the trough of GRACE-based GWS and ground-

water level variations occurs in June/July. However, the precipitation peaks in July, which is

in anti-phase with groundwater variations. GWS decreases rapidly from spring to summer,

and is recovered continuously from summer to autumn and stabilized in winter. The recovery

of GWS generally begins in July/August, when precipitation reaches maximum, which means

a delayed response of groundwater to precipitation.

−20

−10

0

10

20

E
q

u
iv

a
le

n
t 
w

a
te

r 
h

e
ig

h
t 

[c
m

]

2002 2004 2006 2008 2010 2012 2014

−2

−1

0

1

2

G
ro

u
n

d
w

a
te

r 
le

v
e

l 
a

n
o

m
a

ly
 [

m
]

GRACE minus LSMs

Groundwater observations

Figure 3.5: Comparison between monthly GWS variations estimated from GRACE minus

LSMs and monthly groundwater level changes observed by monitoring wells during 2002-

2013.
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Figure 3.6: Seasonal monthly variations of groundwater storage, groundwater level, and pre-

cipitation in the study region during 2002-2013.

3.3.2 Interannual GWS Variations

To better understand the interannual GWS variations in North China, we further removed an-

nual and semiannual cycles and applied a 3-month moving average to time series. As shown

in Figure 3.7, GRACE-based GWS variations and groundwater level changes show a rapid

groundwater depletion in 2002, which is consistent with the less precipitation in the same

year. From 2003 to 2004, GRACE and ground monitoring wells observe a sharp increase of

GWS, which agrees rather well with abundant precipitation in these two years. After that,

groundwater level shows a persistent decrease from 2005 to 2010, and then increases again

after 2010. There is a rather good agreement between interannual variations of GRACE-based

GWS and that of groundwater level. From 2012 to 2013, obvious groundwater increase is

detected by the two independent observations, which agree with the increase of annual precip-

itation in the same time period. It is worthwhile to note that, there are two main discrepancies

between the two independent observations, i.e., from mid-2006 to mid-2008 and from late

2011 to 2012. They will be discussed in the Discussion of this chapter.
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Figure 3.7: Interannual GWS variations derived by GRACE minus LSMs and interannual

groundwater level changes observed by groundwater monitoring wells (same as the time series

in Figure 3.5, but with annual and semi-annual cycles removed using least-square-fit and a 3-

month moving average applied). Monthly precipitation in the study region is also shown.

Figure 3.8a shows the yearly GWS variations in mass estimated from GRACE minus

LSMs, groundwater monitoring well observations, groundwater bulletins, and groundwater

model. As shown in Figure 3.8a, although the interannual variations of groundwater level

observed by monitoring wells is highly consistent with that of GRACE-based GWS (Figure

3.7), the GWS depletion rate in volume during 2002-2013 observed by monitoring wells,

when converted to integrated mass, is significantly smaller than the estimate from GRACE

minus LSMs. It is also the case for the estimates from groundwater bulletins and groundwater

model. Yearly GWS variations in volume from groundwater monitoring well data were com-

puted by converting the groundwater level changes to groundwater storage changes using the

mean specific yield of NCP, and then multiplying it with the area of NCP. The original values

from groundwater bulletins and groundwater model are given by yearly GWS depletion in

volume. The groundwater level decline rate in the NCP observed by groundwater monitoring

wells is -14.1 ± 1.1 cm/yr from 2002 to 2013, which is equivalent to -0.8 ± 0.1 cm/yr of

GWS depletion rate (-1.2 ± 0.1 km3/yr in volume). As shown in Table 3.1, the GWS deple-

tion rate released by groundwater bulletins from 2002 to 2013 is -2.0 km3/yr, which is still
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smaller than the estimate from GRACE, i.e., -7.1 ± 1.0 km3/yr. The GWS depletion rate over

2002-2008 estimated by the groundwater model is -4.0 km3/yr, which is in the estimation in-

terval of GRACE-based result. However, the estimates from groundwater observations and

groundwater bulletins are still significantly smaller than that from GRACE.
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Figure 3.8: (a) Yearly GWS variations (in Gigatonne (Gt), which is equivalent to km3) derived

by GRACE minus LSMs, groundwater monitoring wells, groundwater bulletins, and ground-

water model. (b) Yearly precipitation anomalies from CMDSSS and yearly GWS depletion,

i.e., the GWS difference between the beginning and end of a given year, from GRACE minus

LSMs, groundwater monitoring wells, groundwater bulletins, and groundwater model.
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Table 3.1: Groundwater depletion rates (km3/yr) estimated from GRACE minus LSMs,

groundwater monitoring wells, groundwater bulletins, and groundwater model during 2002-

2013 and 2002-2008.

Observations Bulletins Model GRACE

2002-2013 -1.2 ± 0.1 -2.0 – -7.1 ± 1.0

2002-2008 -1.8 ± 0.2 -2.5 -4.0 -5.0 ± 1.8

Table 3.2: Yearly precipitation anomalies (mm/yr) and yearly groundwater depletion (Gt/yr)

from groundwater observations, groundwater bulletins, and GRACE minus LSMs.

Precipitation Observations Bulletins GRACE-LSMs

2002 -86 -9.586 -2.187 -28.181

2003 101 7.165 0.662 8.206

2004 3 -0.336 -1.865 16.300

2005 -30 -4.563 -3.957 -21.398

2006 -63 -5.267 -3.955 -0.272

2007 -15 -3.695 -3.105 -10.773

2008 4 1.291 0.432 -13.665

2009 -23 -1.301 -2.077 -24.475

2010 0 -0.912 -3.307 8.643

2011 20 1.518 -3.277 -21.893

2012 52 3.31 0.541 10.911

2013 38 -2.097 2.431 18.635

To better evaluate year-over-year GWS variations, we further calculated the yearly GWS

change in volume between the beginning and end of a given year. The GWS change at the

beginning or end of a given year is the average of GWS variations in December of previous

year and that in January of this year. As shown in Figure 3.8b and Table 3.2, in general, when

yearly precipitation anomaly is negative, the yearly GWS depletion is also negative; and vice

versa. It is especially the case for results from groundwater observations and groundwater
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bulletins. Considering the results from groundwater observations and groundwater bulletins

only represent the GWS anomalies in shallow aquifers, good agreement between year-over-

year precipitation and GWS indicates the response of groundwater in shallow aquifers to the

precipitation. The yearly GWS depletion fromGRACEminus LSMs is still significantly larger

than that from groundwater observations and bulletins. The discrepancy between them may

indicate the effect the GWS change in deep aquifers.

As shown in Figure 3.9, the yearly groundwater level variations from groundwater moni-

toring wells indicates large groundwater decline in the piedmont region of the NCP, especially

in Hebei province. Figure 3.10 shows the spatial pattern of specific yields in the NCP. Figure

3.11 demonstrates the spatial patterns of yearly GWS variations from groundwater monitoring

wells, which show the similar distribution to those from groundwater level variations. In order

to compare with GRACE results, we further filtered the results in Figure 3.11 in the same way

as GRACE data processing (i.e., projection of grids to spherical harmonic coefficients, trun-

cation to d/o 60, application of destriping and 200 km Gaussian filtering). As shown in Figure

3.12 and Figure 3.13, spatial patterns of yearly GWS variations from groundwater observa-

tions and GRACE minus LSMs agree with each other rather well, although the magnitude of

estimates from groundwater observations is generally smaller than that from GRACE minus

LSMs. Based on the results from GRACE minus LSMs, GWS change reaches minimum in

2012, and increases after that. Results from groundwater observations also show the GWS

increase from 2012 to 2013, which agree with those from GRACE minus LSMs.

As shown in Figure 3.14, the yearly GWS variations from groundwater model also indi-

cates the large GWS loss in the piedmont region of the NCP from 2002 to 2008. However, the

magnitude of GWS estimates from groundwater model is larger than that from groundwater

observations, which is also confirmed by results in Table 3.2.
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Figure 3.9: Spatial patterns of yearly groundwater level variations from groundwater monitor-

ing wells.
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Figure 3.10: Spatial pattern of specific yields in the NCP (modified from Zhang and Fei

[2009]).
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Figure 3.11: Spatial patterns of yearly GWS variations from groundwater monitoring wells.
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Figure 3.12: Spatial patterns of yearly GWS variations from groundwater monitoring wells at

GRACE resolution.
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Figure 3.13: Spatial patterns of yearly GWS variations from GRACE minus LSMs.
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Figure 3.14: Spatial patterns of yearly GWS variations from groundwater model.

3.3.3 Long-term GWS Variations

As shown in Figure 3.15a, the GRACE-based GWS trend showed the largest groundwater de-

pletion in the piedmont region of the Taihang Mountains, where irrigation relies heavily on

groundwater [Kendy et al., 2003; Siebert et al., 2010; Yang et al., 2010]. The spatial pattern

of the GWS trend estimated from groundwater monitoring wells also demonstrates obvious

groundwater depletion in the piedmont region of the Taihang Mountains, especially in Hebei

province (Figure 3.15b). However, based on groundwater monitoring well data, GWS in-

creases at a rate of about 1 cm/yr in the eastern part of the study region from 2002 to 2013.

To make the GWS trend map estimated from groundwater observations consistent with that
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from GRACE minus LSMs, we then transformed the gridded GWS trend map from ground-

water observations to the SH domain, truncated to d/o 60, destriped, and smoothed with a 200

km Gaussian filter. As shown in Figure 3.15a and c, the spatial pattern of GWS trend map

derived from groundwater observations at GRACE spatial resolution agrees rather well with

the GRACE-based results. Note that the magnitude of GWS trend map from groundwater

observations is smaller than that from GRACE minus LSMs. The possible GWS changes in

deep aquifers are not included in Figure 3.15b. The groundwater depression cones in shallow

aquifers are mainly located in the piedmont region of the Taihang Mountains, whereas most

of the groundwater depression cones in deep aquifers are located in the central plain region of

Hebei province (Figure 3.15c) [Ministry of Land and Resources of China, 2009]. Although

the spatial resolution of groundwater depletion from GRACE data is limited to approximately

300 km, there is a good correlation between the location of GRACE-observed groundwater de-

pletion and that of groundwater depression cones, which confirms that GRACE does observe

the groundwater depletion occurring in North China.

For the time period of 2002-2008, the spatial patterns of GWS trend from filtered ground-

water observations and ground model are also generally consistent with that from GRACE

minus LSMs (Figure 3.16).
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Figure 3.15: Spatial patterns of GWS trends estimated from (a) GRACE minus LSMs, (b)

groundwater observations, and (c) filtered groundwater observations from 2002 to 2013. The

location and size of groundwater depression cones in shallow aquifers (black circles) and deep

aquifers (red circles) are also shown in panel (c).
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Figure 3.16: Spatial patterns of GWS trends estimated from (a) GRACE minus LSMs, (b)

groundwater model, (c) filtered groundwater model, (d) groundwater observations, and (e)

filtered groundwater observations from 2002 to 2008.

Figure 3.17 shows locations of cities in the North China Plain. As shown in Figure 3.18a,

the rates of groundwater level decline in cities, which are located in the piedmont region of

Hebei province, are significantly larger than those in cities located in the central plain and

coastal region of the NCP. The largest groundwater level decline is located in Shijiazhuang,

at a rate of -1.1 m/yr. As shown in Figure 3.18b, the groundwater levels in cities of Henan

province and Shandong province do not show significant decline as those in cities of Hebei

province. The time series of groundwater level changes in Liaocheng, Dezhou and Binzhou

show a significant jump at the end of 2010, which correspond to the increase of precipitation

in the same year rather well. Results in Figure 3.18 are consistent with the spatial pattern of

GWS trends estimated from groundwater observations (Figure 3.15b).
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Figure 3.17: Locations of cities in the NCP.
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Figure 3.18: Groundwater level changes in cities of the NCP.

61



Groundwater Storage Variations in North China from GRACE

3.3.4 Error Estimation of GRACE-based GWS Variations

Although GRACE shows the great potential in monitoring groundwater storage variations in

many parts of the world, the uncertainties related to GRACE results are still very high and

should be assessed carefully. Firstly, considering the polar orbit design of GRACE satellites

and observation errors of GRACE’s payload, there are systematic error and random noise in

GRACE resolutions. In spatial domain, systematic error is shown as so-called “north-south

stripes”. In order to reduce these stripes, researchers devised some destriping methods [Cham-

bers, 2006; Chen et al., 2006; Duan et al., 2009; Swenson and Wahr, 2006]. In addition, many

filters are devised to reduce the random noise of GRACE results, e.g., classic Gaussian filter

[Jekeli, 1981; Wahr et al., 1998], non-isotropic filter [Han et al., 2005], statistical filter [Davis

et al., 2008], DDK filter [Kusche, 2007], wavelet filter [Schmidt et al., 2006], wiener filter

[Sasgen et al., 2007], fan filter [Zhang et al., 2009], and so on. The error of GRACE observa-

tions and the uncertainty of GRACE data processing related to different smoothing methods

should be considered. Secondly, in order to estimate GWS variations, other components of

TWS should be estimated and removed from GRACE observations, i.e., soil moisture stor-

age, surface water reservoir storage, and snow water equivalent storage. In fact, nearly all of

the major rivers in North China are dammed for municipal and industrial use. The surface

water reservoir storage change and snow water equivalent storage change are negligible on

interannual and long-term timescales [Han et al., 2008]. The snow water equivalent storage

change estimated from LSMs is also negligible. The largest uncertainty exists in soil moisture

storage. In this section, the uncertainty of soil moisture storage variation in our study region

is assessed using the standard deviation of different LSMs’ SMS outputs.

We considered the uncertainty of GWS changes derived from GRACE minus LSMs. As

summarized by Longuevergne et al. [2010], the errors induced by the GRACE data processing

include the scaled GRACE measurement error (k∆ ˆ̄S0), the error due to leakage correction

(k∆Sleakage), and the uncertainty of the scaling factor (∆k ˆ̄S0 and ∆kSleakage). The error from

hydrological models, processing error from applying Gaussian smoothing with different radii

and different destriping methods, and the error from GIA were also considered here.
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To estimate GRACE measurement error, we used the method proposed by Chen et al.

[2009b]. The measurement error was determined from root-mean-square variability over the

Pacific Ocean at the same latitude as the North China, in which true mass variation should be

small, as barotropic ocean mass variations have been removed by the de-aliasing process. A

potential limitation of the scaling method is how mass change is distributed inside the basin.

We applied the mass distribution within the study area determined from five hydrological mod-

els and under uniformity assumption to estimate the uncertainty of the scaling method (Table

3.3). Based on our simulation, we conclude that the uncertainty of the scaling factor estima-

tion (∆k) is less than 5%, which we included in our final error budget. Based on the GWS

trends estimated by applying Gaussian smoothing with different radii and applying different

destriping methods, we concluded that the uncertainty of GRACE data processing is about

0.12 cm/yr, which is included in our final error budget too (Table 3.4). The GIA effect in our

study area is approximately 0.19 cm/yr. We pessimistically assumed that the uncertainty of

the GIA correction was ± 50% and thus 0.10 cm/yr.

Table 3.6 lists the different error components in the final error budget of monthly GWS

estimates and the trend. As shown in Table 3.6, the errors primarily result from the SMS

error, GRACE measurement error, processing error, and leakage error. The LSMs used in this

study only simulate SMS above 2 m. There might be significant variations in unsaturated water

storage below 2 m, which would not be included in the hydrological models. This is especially

true for the western part of the Hebei province, where the mean water table depth is usually

tens of meters [Foster et al., 2004]. Therefore, the unmodeled SMS could lead to errors in our

final groundwater estimate. The error from leakage corrections estimated from hydrological

models might be underestimated as well. The final error estimate of the GWS trend based

on GRACE and LSMs was 0.24 cm/yr, based on the assumption that no correlations exist

between the individual trend errors.

Figure 3.19 shows the time series of GWS variations in our study region estimated from

different GRACE products released by CSR, GFZ, JPL, and GRGS. Groundwater depletion

rates in North China estimated from CSR, GFZ, and JPL are 1.57 ± 0.24, 1.60 ± 0.24, and

1.58 ± 0.24 cm/yr, respectively, for 2002-2013. Estimate from GRGS is 1.36 ± 0.30 cm/yr
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for 2003-2012, for which a scaling factor of 0.84 is applied. The spatial patterns of GWS

trends for 2002-2013 obtained from CSR, GFZ, and JPL GRACE data agree well with each

other (Figure 3.20).

Figure 3.21a is the duplicate of Figure 3.19a, but for the period of 2003-2012. Destriping

and 200 km Gaussian smoothing is applied to CSR RL05 GRACE data in Figure 3.21a. In

Figure 3.21b, only 200 km Gaussian smoothing is applied. The difference between Figure

3.21a and b indicates the effect of destriping on spatial pattern of GWS trends. Figure 3.21c

demonstrates the spatial pattern of GWS trends from GRGS RL03 GRACE data from 2003-

2012. The difference between CSR and GRGS results indicates that uncertainty still remains

within GRACE products derived using different gravity field inversion strategies.

Table 3.3: Scaling factors for rescaling TWS time series estimated from uniformity assump-

tion, four GLDAS models (NOAH, VIC, CLM, and MOSAIC) and the CPC model over 2002-

2013. SH expansion, destriping, kernel function and Gaussian smoothing with different radii

are applied to simulate GRACE data processing. The mean values with different radii are

shown in the last column. Obviously, the remaining signal in the basin will be attenuated

significantly when we apply a large Gaussian smoothing radius. Therefore, the biggest scal-

ing factor is retrieved when the largest Gaussian smoothing radius is applied. With the same

Gaussian smoothing radius, the estimates from different models are consistent with each other.

Based on the simulation, we conclude that the uncertainty of scaling factor estimation (∆k) is

smaller than 5%, which we include in our final error budget.

Uniformity assumption NOAH VIC CLM MOSAIC CPC Mean

300 km 3.12 3.20 3.23 3.16 3.27 3.15 3.19

250 km 2.78 2.84 2.87 2.80 2.91 2.80 2.83

200 km 2.51 2.55 2.58 2.51 2.62 2.52 2.55

150 km 2.29 2.32 2.35 2.28 2.39 2.29 2.32

100 km 2.14 2.16 2.19 2.12 2.23 2.14 2.16

50 km 2.04 2.07 2.09 2.02 2.13 2.04 2.07

0 km 2.01 2.03 2.06 1.99 2.10 2.01 2.03
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Table 3.4: GRACE data processing error of applying Gaussian smoothing with different radii

and applying different destriping methods on the trend estimation. Trend estimates of ground-

water depletion corresponding to different Gaussian smoothing radii and different destriping

methods in GRACE data processing are computed (unit: mm/yr). We compared three de-

striping methods, proposed by Swenson and Wahr [2006], Duan et al. [2009], and Chen et al.

[2006]. The uncertainty of these estimates is 1.2 mm/yr, which we included in our final er-

ror budget as the uncertainty of GRACE data processing error. Scaling factors adopted for

rescaling GWS time series are shown in Table 3.5.

Swenson Duan Chen

300 km -16.3 -16.8 -15.8

250 km -16.4 -16.2 -14.9

200 km -16.3 -15.7 -13.9

150 km -16.2 -15.2 -13.0

100 km -16.0 -14.8 -12.4

50 km -15.9 -14.5 -11.9

0 km -15.8 -14.4 -11.8

Table 3.5: Scaling factors for rescaling GWS time series with different destriping methods

and different radii of Gaussian smoothing. We adopted gridded groundwater observations

released by MWR to estimate these scaling factors. SH expansion, destriping, kernel function

and Gaussian smoothing with different radii are applied to simulate GRACE data processing.

We adopt the Swenson’s destriping method in this study, since it’s widely used to estimate

terrestrial water storage changes and groundwater storage changes.

Swenson Duan Chen

300 km 2.59 2.16 2.12

250 km 2.26 1.88 1.79

200 km 1.99 1.64 1.53

150 km 1.78 1.46 1.33

100 km 1.63 1.34 1.20

50 km 1.55 1.27 1.12

0 km 1.52 1.24 1.09
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Table 3.6: Different error components in the final error budget of monthly GWS estimates

and the trend. Processing error represents the uncertainty of applying Gaussian smoothing

with different radii and applying different destriping methods. Uncertainties in the trends

were estimated by applying a least squares fit through the error propagation from the monthly

data using a covariance matrix. The final error estimate of the GWS trend based on CSR

RL05 GRACE data and LSMs was 0.24 cm/yr, under the assumption that no correlations exist

between the individual trend errors.

Monthly (cm) Trend (cm/yr)

Measurement error (k∆ ˆ̄S0) 3.84 0.11

Leakage (k∆Sleakage) 2.64 0.07

TWS ∆k ˆ̄S0 <1.39 0.04

(GRACE) ∆kSleakage <0.33 0.01

Processing error – 0.12

GIA – 0.1

Total 4.87 0.21

SMS+SWES Land surface models 4.26 0.12

GWS GRACE-LSMs 6.47 0.24
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Figure 3.19: Interannual GWS variations based on CSR, GFZ, JPL, and GRGS GRACE prod-

ucts and LSMs.
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Figure 3.20: Spatial patterns of GWS trends estimated from (a) CSR, (b) GFZ, and (c) JPL

GRACE products from 2002 to 2013.
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Figure 3.21: Spatial patterns of GWS trends estimated from (a) CSR GRACE data with de-

striping and 200 km Gaussian smoothing applied, (b) CSR GRACE data with only 200 km

Gaussian smoothing applied, and (c) GRGS GRACE products without destriping and Gaus-

sian smoothing from 2003 to 2012.

3.3.5 Discussion

North China Plain is one of largest agricultural production zone in China. Winter wheat and

summer maize are the two staple crops in the NCP. Winter wheat is generally sown in October

and harvested in June, while maize occupies the field from the middle of June to the end of

September. Generally, the seedling stage of winter wheat is completed in November. From

November to February, water requirement by winter wheat is very low owing to the low winter

temperature [Yang et al., 2006]. In March, wheat begins to turn green. After that, wheat

experiences the stage of jointing, booting, flowering, and grain filling from April to June, i.e.,
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the growing season of wheat. More than 70% of irrigation water is consumed during the wheat

growing season, which mainly stems from groundwater pumping. As shown in Figure 3.6,

GRACE-based GWS and groundwater level variations show the rapid groundwater decline

from spring to early summer, due to the extensive wheat irrigation with groundwater pumping.

Although the seasonal monthly precipitation climbs from nearly zero to about 130 mm during

January to July, the groundwater continues to decrease for the same period because of crop

irrigation. So, we conclude that anthropogenic effect, i.e. irrigation, is the main factor of

groundwater decline in the NCP from spring to summer. After the harvest of winter wheat in

June, drought-tolerant maize is cultivated. The demand of groundwater-based irrigation begins

to decrease after June/July so that groundwater aquifers are recharged during the rainy summer

and groundwater storage increases continuously until stabilized in winter and spring of next

year (shown in Figure 3.6). Note that the response of groundwater to precipitation has a delay

because of the infiltration effect of precipitation to groundwater aquifers. Based on the above

discussion, we conclude that both anthropogenic irrigation and natural precipitation contribute

to climatological groundwater storage change in North China. From spring to summer, the

groundwater decline is mainly caused by the extensive irrigation for wheat. From summer to

winter, the groundwater aquifers are recharged gradually due to natural precipitation.

On interannual timescales, time series of GRACE-based GWS variations and groundwater

level change agree with each other rather well (Figure 3.7). Interannual groundwater variations

estimated from two independently groundwater observations agree well with year-over-year

precipitation anomalies. The discrepancy on interannual timescales between these two inde-

pendent estimates occurs in two periods, i.e., from mid-2006 to mid-2008 and from late 2011

to 2012. Note that groundwater observations only represent the groundwater level changes

in shallow aquifers of NCP. However, GWS variations from GRACE minus LSMs represent

the whole groundwater change information which also includes the change of groundwater

storage in deep aquifers of NCP. This may explain the differences of groundwater changes in

these two periods. For example, GRACE observes a sharp GWS decline from 2011 to 2012 in

North China, which may mainly represent the groundwater depletion in deep aquifers. How-

ever, the groundwater level changes from observations of shallow aquifers shows a persistent

68



3.3 Results

increase after 2010, when the annual precipitation begins to increase. Obviously, the recharge

from precipitation for deep aquifers lags than that for shallow aquifers. It can explain the

decline of GRACE-based GWS from late 2011 to 2012 well. In addition, these discrepancies

may reflect uncertainties in GRACE, LSMs and groundwater monitoring well data. Except

these two short-period discrepancies, GRACE and ground observations agree with each other

very well. From 2012 to 2013, both GRACE and ground observations detect a GWS increase,

which agree with the continued increase of precipitation.

Our final estimate of the groundwater depletion rate in North China based on GRACE data

and land surface models was 1.57 ± 0.24 cm/yr for 2002-2013, which is equivalent to a vol-

ume rate of 7.1 ± 1.0 km3/yr. For the same time period, the estimated groundwater depletion

rate in shallow aquifers according to the groundwater bulletins was approximately 2.0 km3/yr,

which is less than one-third of our estimate. The estimate from groundwater monitoring well

data was even smaller, i.e., -1.2 ± 0.1 km3/yr. One of the main reasons for these differences

is that the ground-based estimate includes only groundwater information in shallow aquifers

of China northern plains, whereas the GRACE observes all GWS changes from all aquifers.

Some studies have shown that the deep groundwater table is also decreased greatly in the pied-

mont region of the Taihang Mountains and the central plain region of Hebei province [World

Bank, 2001; Foster et al., 2004; Tamanyu et al., 2009]. The high groundwater depletion rate

estimated using GRACE data indicates the important contribution of groundwater depletion

in deep aquifers of North China. In addition, the contribution of possible groundwater deple-

tion in the mountain areas of North China is not included in the GBCNP. The mountain areas

of Shanxi province are among the largest coal-producing regions in China. Large-scale coal

mining processes could destroy the aquifers and result in the observed groundwater depletion.

However, determining the effect of coal mining processes on groundwater depletion is beyond

the scope of the current study. Recently, Konikow [2011] estimated the contribution of global

groundwater depletion since 1900 to sea level rise. Based on groundwater level measurements

and groundwater flow models, cumulative net groundwater depletion in the NCP was found to

be 130.3 km3 and 170.3 km3 for the 1900-2000 and 1900-2008 periods, respectively, which

indicates that the groundwater depletion rate was 5 km3/yr from 2001-2008. Our estimate
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based on GRACE data was 5.0 ± 1.8 km3/yr for 2002-2008. Although the two time periods

are not the same, our GRACE-based estimate is consistent with that reported by Konikow

[2011]. Note that GRACE-based GWS increased after 2012, which leads to the difference

in GRACE-based groundwater depletion rates between 2002-2008 and 2002-2013. Based on

the above analysis, we conclude that the current depletion of groundwater resources in North

China is more serious than previously reported in official groundwater bulletins.

The spatial pattern of groundwater depletion based on GRACE data shows significant

groundwater loss in the piedmont and central plain regions of North China. In these regions,

numerous studies have reported the consequences of groundwater depletion, such as ground-

water depression, land subsidence, soil salinization, groundwater pollution, and seawater in-

trusion [Foster and Chilton, 2003; Foster et al., 2004; Liu et al., 2002; Shah et al., 2000; Wang

et al., 2007], and demonstrated that extensive groundwater-based irrigation is the main cause

of groundwater depletion in North China [Foster et al., 2004; Kendy et al., 2004].

3.3.6 Summary

GRACE satellite gravimetry offers an important approach to estimate GWS changes in North

China. In this study, regional groundwater depletion in North China was estimated from

GRACE-derived TWS and simulated SMS+SWES data during 2002-2013. The estimate

was compared with in situ water table observations, groundwater bulletins and groundwa-

ter model. On seasonal timescales, groundwater variations respond to the combined effect of

anthropogenic irrigation (discharge of groundwater aquifers from spring to summer) and nat-

ural precipitation (recharge of groundwater aquifers from summer to winter). On interannual

timescales, groundwater variations are consistent with precipitation variations. Based on the

GRACE-derived TWS and simulated SMS+SWES estimates, the groundwater depletion rate

in North China was 7.1 ± 1.0 km3/yr from 2002-2013, which is more than three times higher

than the official estimate of the groundwater depletion rate in shallow plain aquifers from

the GBCNP for the same period (2.0 km3/yr). The difference between our estimate and the

GBCNP result indicates the potential deep groundwater depletion in the plain and piedmont

regions of North China. Even if we apply the low bound of our estimate conservatively, the
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study region lost approximately 70 km3 of groundwater from 2002 to 2013, which is greater

than the capacity of China’s Three Gorges Reservoir, the largest power station in the world.

Given the continuous groundwater depletion observed by GRACE in North China, more

effective measures should be taken to curb groundwater loss, such as artificial recharge of wa-

ter into aquifers [Han, 2003], crop structure adjustment [Yang and Zehnder, 2001], and rein-

troducing fallow periods [Kendy et al., 2004]. China’s South-North Water Transfer Project,

which takes water from the Yangtze River and the Han River in the south to the arid region

of North China, could partially ease the water shortage in North China and also reduce the

dependence on groundwater.
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CHAPTER 4

REGIONAL SEA LEVEL VARIATIONS FROM GRACE

4.1 Introduction

Since its launch in 2002, GRACE satellite provides direct observations of global temporal

gravity variations, which includes the mass redistribution information on land and in the ocean

[Chambers et al., 2004; Tapley et al., 2004; Wahr et al., 1998]. Although the annual amplitude

of global mean ocean mass change observed by GRACE is only about 7 mm [Chambers and

Schroter, 2011; Chambers et al., 2004; Leuliette andWillis, 2011], the spatial pattern of annual

global ocean mass change from GRACE is also inhomogeneous. As shown in Figure 4.1, the

annual ocean mass variation signal in the Gulf of Thailand and the Gulf of Carpentaria is sig-

nificantly larger than the global mean value. Tregoning et al. [2008] found an annual periodic

amplitude in sea surface height of 40 cm in the Gulf of Carpentaria using GRACE and steric-

corrected altimetry. Later, Wouters and Chambers [2010] studied annual mass variations in

the Gulf of Thailand, which reaches about 20 cm. In Figure 4.1, annual seawater mass change

in the China seas and in the Red Sea is also significantly larger than the global mean value

of 7 mm, which motivates us to further analyze the mass-induced sea level variations in these

two regions. In this chapter, we discuss the sea level variations in the China seas and in the

Red sea on seasonal and interannual timescales using altimetry, GRACE and oceanographic

observations. In this study, the China seas includes the South China Sea (SCS), the East China

Sea (ECS) and the Yellow Sea (YS). As for the Red Sea, it is an interesting study area because
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of its semi-enclosed nature and arid continental surroundings.

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚

−60˚

−30˚

0˚

30˚

60˚

0 1 2 3 4 5 6 7 8

cm

Figure 4.1: Spatial pattern of annual global ocean mass change observed by GRACE from

2003 to 2012.

4.2 Sea Level Variations in China Seas

4.2.1 Data

Satellite Altimetry

We use the merged Maps of Sea Level Anomalies (MSLA) derived from TOPEX/Poseidon,

Jason-1/2, ERS-1/2 and Envisat, which are provided by the Archiving, Validation and Inter-

pretation of Satellite Oceanographic (AVISO) data (for details, see the AVISO User Handbook

available at http://www.aviso.oceanobs.com/). Here we use the 0.25◦×0.25◦ gridded products

with a daily temporal resolution. Monthly-averaged maps are calculated for comparing with

other oceanographic observations. All standard geophysical and environmental corrections

have been applied, including the ionospheric correction, dry and wet tropospheric correc-

tions, solid Earth and ocean tides, ocean tide loading, pole tide, electromagnetic bias, inverted

barometer corrections and instrumental corrections [Ducet et al., 2000; Minster et al., 1999]
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4.2 Sea Level Variations in China Seas

Ishii Oceanographic Dataset

The Ishii oceanographic dataset is a historical objective analysis of oceanic temperature and

salinity database, which is carried out on a monthly basis from 1945 to 2012. The Ishii

analysis oceanographic dataset is based on the World Ocean Database (WOD) from Na-

tional Oceanographic Data Center of the National Ocean and Atmosphere Administrations

in US (NODC/NOAA), GTSPP (Global Temperature Salinity Profile Program), and Argo

floats data from Global Data Assembly Center (GDAC). The horizontal resolution of the Ishii

dataset is 1◦× 1◦, ranging from 0.5◦E-359.5◦E in longitude and from 89.5◦S-89.5◦N in lat-

itude. The dataset contains 24 layers from 0-1500m. The depths of first 12 layers are 0,

10, 20, 30, 50, 75, 100, 125, 150, 200, 250, and 300m respectively. From 300 to 1500m,

the depth interval is 100m. In this study, we used the latest v6.13 version of Ishii dataset

(https://amaterasu.ees.hokudai.ac.jp/~ism/pub/ProjD/).

NODC Oceanographic Dataset

NODC/NOAA provides temperature and salinity products for depths 0-700 m with pentadal,

yearly, and 3-monthly temporal resolution. For years 2005 to present, yearly and 3-monthly

temperature and salinity products are available for depths 0-2000 m. In this study, we adopt

temperature and salinity fields for depths 0-2000 m from NODC/NOAA with 3-monthly res-

olution. The horizontal resolution of NODC dataset is 1◦ × 1◦. Steric sea level variations

calculated from NODC 3-monthly dataset is compared with that from Ishii dataset. More

details can be available at http://www.nodc.noaa.gov/OC5/indprod.html.

ECCO Ocean Model

The ECCO model (Estimation of the Circulation and Climate of the Ocean) is a state-of-the-

art ocean general circulation, which is based on the Massachusetts Institute of Technology

general circulation model (http://ecco.jpl.nasa.gov/). The model is configured in a near-global

domain (0.5◦E-359.5◦E, 72.5◦S-72.5◦N) with a uniform zonal gird spacing of 1◦ longitude.

The meridional grid spacing is 0.3◦ latitude within 10◦ of the Equator and increases to 1◦ in the
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extratropics. The model contains 46 levels in the vertical with 10 m spacing from the surface

to 150 m, and gradually increasing to 400 m spacing at depth. The outputs of the ECCO

model includes Sea Surface Height (SSH), Ocean Bottom Pressure (OBP), temperature and

salinity, and so on. In this study, we use temperature and salinity data from the kf080 version

ECCO model to compute the steric sea level variations over the SCS. In this version ECCO

model, sea level variations from altimetry are assimilated into the model using a Kalman filter

[Fukumori, 2002].

GRACE Data

We use monthly Release-05 GRACE products from the Center for Space Research (CSR) at

the University of Texas at Austin [Bettadpur, 2007], which are expressed in the form of spher-

ical harmonic (SH) geopotential coefficients up to degree and order (d/o) 60. We adopt the

destriping filter proposed by Chambers and Bonin [2012] and a 300 km Gaussian smoothing

to reduce the stripes in CSR solutions. In spatial domain, the leakage from mass variations

on the land is removed based on the method proposed by Wahr et al. [1998]. The GRACE

data are further corrected for glacial isostatic adjustment (GIA) based on the model of Paulson

et al. [2007], which was updated by A et al. [2013]. To estimate the seawater mass changes in

the China seas, the atmospheric and ocean de-aliasing model, which have been modeled and

removed, are added back to GRACE solutions. In order to make GRACE-derived ocean mass

changes comparable with inverse-barometer corrected altimetry data, we further remove the

time-variable mass of the atmosphere averaged over the global ocean [Leuliette and Miller,

2009; Willis et al., 2008].

Sea Level Report of China

We adopt yearly sea level variations in the SCS, ECS and YS from the annual Sea Level Report

of China released by the State Oceanic Administration of China (available at http://www.coi.

gov.cn/gongbao/haipingmian/). These data are based on the tide gauge measurements in the

coast of China.
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4.2 Sea Level Variations in China Seas

4.2.2 Study Region

In our study, if not mentioned specifically, time series of SLV in the SCS represents the sea

level change in the region of SCS deeper than 200 m (shown in Figure 4.2 as red boundary).

In addition, we define two regions of SCS, i.e., eastern part of SCS (ESCS, 115◦E-120◦E,

15◦N-20◦N) in the west of Luzon Island and northern part of SCS (NSCS, 105◦E-115◦E,

15◦N-22◦N) near the coast. NSCS includes the shallow water region of northern SCS. Selected

study regions in the Yellow Sea and the East China Sea are defined as the following regions,

119◦E-126◦E33◦N-37◦N and 120◦E-127◦E26◦N-33◦N.
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Figure 4.2: Selected study regions for the South China Sea (red boundary), eastern part of

SCS (green rectangle), northern part of SCS (blue rectangle), Yellow Sea (purple rectangle)

and East China Sea (black rectangle).
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4.2.3 Spatial Patterns of Seasonal Sea Level Variations in China Seas

In order to make the altimetry results, steric SLV results and GRACE results comparable in

spatial domain, we convert altimetry and steric SLV grids to spherical harmonic coefficients

and truncate them to d/o 60. A 300 km Gaussian filter is also applied to the SH coefficients of

observed SLV from altimetry and steric SLV from Ishii. As shown in Figure 4.3a, altimetry

observes strong annual SLV in the Yellow Sea (YS) and the East China Sea (ECS), which peak

maximum in September . In addition, significant annual variations of sea level are detected by

altimetry in the eastern part and northern part of South China Sea. In Figure 4.3b, the steric

SLV based on temperature and salinity data from the Ishii dataset also show the similar annual

variations in the YS, ECS, and eastern part of South China Sea (ESCS). The annual phase of

steric SLV from Ishii also agrees well with that from altimetry in the same region. As shown in

Figure 4.3 c-d, steric-corrected altimetry results indicate that significant seasonal ocean mass

change exists in the northern part of South China Sea (NSCS), which is further confirmed

by GRACE. The annual amplitude of largest mass-induced SLV observed by steric-corrected

altimetry and GRACE is about 6 mm in the northern coastal part of South China Sea.

We further calculated the spatial patterns of correlation coefficients between total altimetric

SLV vs. steric SLV from Ishii, total altimetric SLV vs. mass-induced SLV from GRACE,

and total altimetric SLV vs. SLV from Ishii+GRACE. As shown in Figure 4.4, results from

altimetry agree with Ishii-based steric SLV better in the YS, ECS, and ESCS. Mass-induced

SLV from GRACE show high correlations with that from altimetry in the coastal region of the

South China Sea and the YS, where high annual ocean mass change is detected by GRACE and

steric-corrected altimetry. The correlation coefficients between altimetry and “Ishii+GRACE”

show high values in most parts of China seas, except in the western of SCS with latitudes from

10◦N-15◦N. The possible reason of this low-value region will be discussed in the Discussion

and Summary section.

Then, we computed the seasonal maps of SLV from altimetry, Ishii, GRACE, and “Ishii+GRACE”.

As shown in Figure 4.5a, SLV in the YS, ECS, and ESCS observed by altimetry reach mini-

mum in winter, and maximum in summer. These features are confirmed by the steric SLV from
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4.2 Sea Level Variations in China Seas

Ishii. In addition, the Ishii-based steric SLV also show a significant dipole mode in the open

ocean region of Western Pacific Ocean. GRACE observes large ocean mass loss in spring and

ocean mass gain in autumn in the NSCS, which is confirmed by altimetry results. The seasonal

spatial patterns of SLV from “Ishii+GRACE” agree well with those from altimetry.

Based on the above results, we conclude that seasonal SLV in the YS and ECS observed

by altimetry are mainly induced by the steric SLV, i.e., density change due to the expan-

sion/contraction of seawater. In the ESCS, seasonal SLV are also caused by the steric effect.

However, in the NSCS, ocean mass change dominates the total SLV observed by altimetry.
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Figure 4.3: Annual amplitude of (a) total SLV from altimetry, (b) steric SLV from Ishii, (c)

mass-induced SLV from steric-corrected altimetry, and (d) mass-induced SLV from GRACE

in the China seas during 2003-2012. (e-h): Same as (a-d), but for annual phase.
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Figure 4.4: Spatial patterns of correlation coefficients between (a) total SLV from altimetry

vs. steric SLV from Ishii, (b) total SLV from altimetry vs. mass-induced SLV from GRACE,

and (c) total SLV from altimetry vs. SLV from “Ishii+GRACE” during 2003-2012.
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Figure 4.5: Spatial patterns of seasonal maps of SLV in China seas in winter (January-March),

spring (April-June), summer (July-September), and autumn (October-December) from altime-

try, Ishii, GRACE, and “Ishii+GRACE” during 2003-2012.
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4.2.4 Sea Level Variations in the South China Sea

Seasonal SLV in the SCS

As shown in Figure 4.6, total SLV from altimetry, steric SLV from Ishii, and mass-induced

SLV from GRACE show strong seasonal variations in the SCS. As shown in Table 4.1, the

annual amplitude of total SLV in the SCS is 3.3±0.4 cm, which peaks in mid-September. The

steric SLV in the SCS has a similar amplitude as total SLV, but peaks about one month ear-

lier. Altimetric SLV and steric SLV in the SCS also show the similar interannual fluctuations

in Figure 4.6a. Figure 4.6b illustrates the time series of steric SLV, thermosteric SLV, and

halosteric SLV from Ishii in the SCS. As shown in the figure, thermosteric SLV dominates the

total steric SLV in the SCS. The annual amplitude of mass-induced SLV in the SCS observed

by GRACE is 2.8±0.3 cm, which agrees with the estimate from steric-corrected altimetry.

As shown in Figure 4.7b, the magnitude of seasonal steric SLV in the NSCS is signifi-

cantly smaller than that in the SCS. However, the annual amplitude of mass-induced SLV in

the NSCS from GRACE reaches 5.0±0.4 cm, which is more than twice higher than that of the

Ishii-based steric SLV (Table 4.2). In addition, the annual phase of mass-induced SLV in the

NSCS agrees well with that of total SLV from altimetry, which reach maximum in Novem-

ber. As shown in Figure 4.7c, there is a rather good agreement between GRACE and steric-

corrected altimetry on seasonal timescales in the NSCS. Different from that in the NSCS, the

seasonal variability of ocean mass change in the ESCS is small (Figure 4.8c). In contrast, an-

nual amplitude of steric SLV in the ESCS is three times higher than that of mass-induced SLV.

The seasonal variability of steric SLV in the ESCS is also larger than that in the NSCS and that

over the whole SCS. Based on the above results, we find that, the mass-induce SLV is domi-

nant in northern coastal regions of SCS, whereas the steric SLV has more contribution to the

total SLV in the deep basin of SCS. Over the whole SCS, both steric SLV and mass-induced

SLV contribute to the total SLV on seasonal timescales. Based on these three independent

observations, i.e., altimetry, oceanographic measurements, and GRACE, we successfully iso-

lated seasonal steric and eustatic components of observed SLV in the SCS.

Apart from the seasonal variability, one of the most striking features in Figure 4.6c is the
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difference in trend between the mass-induced SLV from GRACE and steric-corrected altime-

try over 2003-2012 which, according to Figure 4.7c and 4.8c, comes mostly from the ESCS.

This point will be addressed in detail in the next section.
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Figure 4.6: Time series of (a) total SLV from altimetry and steric SLV from Ishii, (b) steric,

thermosteric, and halosteric SLV from Ishii, (c) mass-induced SLV from GRACE and steric-

corrected altimetry in the SCS during 1993-2012.
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Figure 4.7: Same as Figure 4.6, but for the NSCS.
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Figure 4.8: Same as Figure 4.6, but for the ESCS.
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Table 4.1: Annual amplitudes (cm) and phases (◦) of total SLV from altimetry, steric SLV,

thermosteric SLV, and halosteric SLV from Ishii in the SCS, NSCS, and ESCS during 1993-

2012.

SCS NSCS ESCS

Amplitude (Phase) Amplitude (Phase) Amplitude (Phase)

MSLA (altimetry) 3.3±0.4 (258±7) 4.1±0.4 (315±1) 6.1±0.5 (232±5)

Steric SLV (Ishii) 3.5±0.4 (214±7) 2.2±0.3 (204±7) 6.8±0.5 (217±4)

Thermosteric SLV (Ishii) 3.3±0.3 (221±5) 1.8±0.2 (230±8) 5.7±0.4 (222±3)

Halosteric SLV (Ishii) 0.4±0.2 (148±29) 1.0±0.2 (149±10) 1.2±0.2 (190±11)

Table 4.2: Annual amplitudes (cm) and phases (◦) of total SLV from altimetry, steric SLV from

Ishii, mass-induced SLV from steric-corrected altimetry (“MSLA-Ishii”), and mass-induced

SLV from GRACE in the SCS, NSCS, and ESCS during 2003-2012.

SCS NSCS ESCS

Amplitude (Phase) Amplitude (Phase) Amplitude (Phase)

MSLA (altimetry) 3.2±0.5 (259±9) 4.1±0.5 (317±3) 6.0±0.6 (230±7)

Steric SLV (Ishii) 3.3±0.6 (216±9) 2.1±0.4 (208±10) 6.7±0.7 (217±6)

MSLA-Ishii 2.4±0.5 (332±11) 5.2±0.5 (339±5) 1.6±0.5 (339±18)

GRACE 2.8±0.3 (315±1) 5.0±0.4 (322±5) 2.0±0.4 (308±12)

Interannual SLV in the SCS

As one of the largest marginal sea in the tropics, South China Sea connects the East China Sea,

the Pacific Ocean and the Indian Ocean through Taiwan Strait, Luzon Strait andMalacca Strait.

To investigate the main driving climate factor of interannual SLV in the SCS, we analyzed

the correlation between total SLV/steric SLV and NINO4 index. NINO4 index is defined

as the mean sea surface temperature over the central tropic Pacific Ocean (i.e., 160◦E-150◦W,

5◦N-5◦S), which is used to monitor the occurence of the El Niño-Southern Oscillation (ENSO)

events. We downloaded the NINO4 index data from http://www.esrl.noaa.gov/psd/gcos_wgsp/
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Timeseries/Nino4/index.html. Figure 4.9a shows the low-pass filtered NINO4 and detrended

interannual variations of altimetric sea level and steric sea level in the SCS. As shown in Figure

4.9a, altimetric SLV and steric SLV show similar interannual fluctuations in the SCS, and

match the interannual variations of inverse NINO4 index well. For the inverse NINO4 index,

negative anomaly represents El Niño event, while positive anomaly means La Niña event. As

indicated by the NINO4 index, the El Niño event occurs in 1997/98 and 2009/2010, while

the La Niña event happens in 1998/2000, 2007/08, and 2010/11. As indicated in Figure 4.9a,

during the El Niño event, observed sea level and steric sea level in the SCS drop dramatically;

and vice versa, when the La Niña event happens. For example, during the period of the

1997/98 El Niño and the following 1998/2000 La Niña, the sharp V-shaped sea level change

is observed in the SCS. It is obvious that interannual sea level change in the SCS is modulated

by ENSO. In addition, the steric SLV is the dominant component of SLV in the SCS on

interannual timescales. It is worthwhile to note that, in 2011, there is a large sea level drop

in the SCS. The peak-to-trough fluctuation is more than 5 cm. In fact, global mean sea level

(GMSL) also dropped 5 mm between the beginning of 2010 and mid 2011, when a strong La

Niña event occurred. Considering the global averaging effect, this 5 mm drop is a rather big

value for GMSL. This drop in GMSL is primarily driven by an ENSO-related transfer of water

mass between the oceans and the continents [Boening et al., 2012; Fasullo et al., 2013]. As

shown in 4.9a, the sea level drop during the 2010/11 La Niña is amplified in the SCS.

Furthermore, we calculated the correlations between total SLV/steric SLV and NINO4

index corresponding to different lag times. Positive lag time represents the lead of NINO4 over

total SLV/steric SLV. As shown in Figure 4.9, the maximum correlation coefficient between

total SLV and NINO4 is 0.64, when NINO4 leading the total SLV 2 months. The correlation

coefficient between steric SLV and NINO4 reaches maximum, i.e., 0.55, when there is no lag

between them. Good agreement between altimetric SLV/steric SLV and NINO4 indicates that

the interannual variations of sea level in the SCS is closely related to ENSO.
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Figure 4.9: (a) Interannual time series of total SLV from altimetry and steric SLV from Ishii

in the SCS during 1993-2012. Seasonal cycles and the trend are removed using least-square-

fit and a one-year low-pass filter is applied. Time series of inverse NINO4 index is also

superimposed. The mean value of inverse NINO4 index is removed and a one-year low-pass

filter is applied. (b) Correlation coefficients corresponding to different lag times between total

SLV/steric SLV and NINO4 index.

We further calculated the nonseasonal variations of sea level in the SCS, NSCS, and ESCS,

i.e., only removing seasonal cycles of SLV. As shown in Figure 4.10a, the total SLV from al-

timetry over the whole SCS is dominant by interannual fluctuations, with strong increases over

89



Regional Sea Level Variations from GRACE

1993-1999 and 2005-2012 and a significant decrease over 2000-2004. The rate of altimetry-

observed SLV in the SCS is 8.7±1.8 and -12.3±1.8 mm/yr, respectively, during 1993-1999

and 2000-2004, which is fairly consistent with the estimates from Li et al. [2002] and Cheng

and Qi [2007]. The mean sea level rise rate in the SCS is 4.3±0.5 mm/yr over the period 1993-

2012. Additionally, yearly sea level variations from the annual Sea Level Report of China also

show similar large interannual oscillations as altimetry-observed SLV (Figure 4.10a). The

mean sea level rise rate in the SCS based on the government report is 3.6 mm/yr from 1993-

2012. Keep in mind that the yearly values reported by the State Oceanic Administration of

China only represent the mean sea level variations near the coast of China, since they are based

on tide gauge observations.

In Figure 4.10a, steric SLV estimated from the Ishii dataset shows similar interannual

fluctuations as that from altimetry before 2008. It indicates that the steric SLV is the dominant

component of total SLV in the SCS on interannual timescales. However, since 2008, the steric

SLV decreases significantly, which is quite different from the altimetric SLV. This discrepancy

will be discussed later.

As shown in the panel (b) and (c) of Figure 4.10, the magnitude of interannual fluctuations

is dampened in the NSCS, but amplified in the ESCS. It is fairly reasonable since the steric

component of interannual SLV is dominant in the SCS and the magnitude of seasonal steric

SLV is large in the ESCS, but small in the NSCS. More importantly, since 2008, the discrep-

ancy between altimetric SLV and steric SLV is also manifested in the ESCS and NSCS.

We calculated the trend maps of sea level change in the SCS over three time periods:

1993-1999, 2000-2004, and 2007-2012. As shown in Figure 4.11, both the Ishii-based steric

SLV and altimetric SLV show the significant sea level rise in the central ocean basin of SCS

over 1993-1999. Then, the total sea level observed by altimetry drops rapidly in the central

ocean basin of SCS during 2000-2004. The Ishii-baed steric SLV also captures the similar

features, but with smaller magnitude, for the same time period. The large discrepancy between

altimetry and Ishii appears over the period 2007-2012. Altimetry detects rapid sea level rise

in the surrounding boundary regions of SCS, i.e., the shallow water region, over 2007-2012.

There are two separate domes of weak sea level decrease in the central deep ocean basin of
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SCS, detected by altimetry. The steric SLV from Ishii also demonstrate a small sea level drop

in the central SCS over 2007-2012 (Figure 4.11f). However, more importantly, the sea level

rise rate from steric SLV in the shallow water region of SCS is significantly smaller than that

from altimetry. This apparent discrepancy in the shallow water region of SCS is exactly the

reason for the difference between interannual time series of altimetric SLV and that of steric

SLV since 2008, which are indicated in Figure 4.10.
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Figure 4.10: Interannual time series of total SLV from altimetry and steric SLV from Ishii

in the SCS, NSCS, and ESCS during 1993-2012. Seasonal cycles are removed using least-

square-fit and a 3-month moving average is applied. Yearly sea level variations in the SCS

from the annual Sea Level Report of China are superimposed in panel (a).
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Table 4.3: Trends of total SLV from altimetry and steric SLV from Ishii in the SCS in different

time periods (mm/yr).

1993-1999 2000-2004 2005-2007 2008-2012 1993-2012

MSLA (altimetry) 8.7±1.8 -12.3±2.3 13.6±6.0 2.2±3.4 4.3±0.5

Steric SLV (Ishii) 7.4±2.2 -5.9±3.1 12.8±7.1 -1.8±4.3 1.6±0.5
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Figure 4.11: Trend maps of total SLV from altimetry and steric SLV from Ishii in the SCS

over three time periods: 1993-1999, 2000-2004, and 2007-2012.

To validate our findings, we further calculated the steric SLV in the SCS, NSCS, and ESCS

using the temperature and salinity observation dataset from NODC and simulation datasets

from the ECCO ocean model. As shown in Figure 4.12 (a-c), the steric SLV based on NODC
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oceanographic observation dataset is also obviously different from altimetric SLV since late

2007, which agrees rather well with results from Ishii. However, the steric SLV from ECCO

shows fairly good agreement with altimeric SLV, although there is a slight discrepancy in last

two or three years. Keep in mind that, for the ECCO model, sea level anomalies are assim-

ilated into the model using a Kalman filter [Fukumori, 2002], which might explain the good

agreement between the ECCO steric SLV and altimetric SLV. However, when another simu-

lation version of ECCO is used with no data assimilated (kf079), the steric SLV based on this

veriosn of ECCO also agrees with altimetric SLV better than that from oceanographic obser-

vations from Ishii and NODC (shown in Figure 4.12a). For the NODC and Ishii datasets, the

similar in-situ temperature and salinity observation database is adopted, but using different

interpolation methods (i.e., mapping strategies). In addition, the NODC provides the temper-

ature and salinity dataset from 0 to 2000 m every three months, while the Ishii provides the

temperature and salinity dataset from 0 to 1500 m every month. However, we find that, the

difference of steric SLV caused by different intergrated depth is negligible (not shown).

We computed the interannual mass-induced SLV in the SCS, NSCS, and ESCS from

GRACE, “MSLA-Ishii”, and “MSLA-ECCO” over the period 2003-2012. Considering the

large discrepancy between altimetric SLV and Ishii steric SLV, there exists a high rate of

mass-induced sea level rise estimate from “MSLA-Ishii”, i.e., 7.7±1.1 mm/yr in the SCS

over 2003-2012 (Figure 4.12d and Table 4.4). However, the trend of mass-induced SLV from

GRACE is not significantly different from zero, i.e., 0.2±0.8 mm/yr in the SCS over 2003-

2012. The corresponding estimate from “MSLA-ECCO” is 1.4±0.7 mm/yr, which agrees

with the GRACE estimate better than that from “MSLA-Ishii”. The similar conclusions can

be drawn in the NSCS and ESCS.

In spatial domain, trend map of steric SLV from ECCO matches well with that from al-

timetry over 2003-2012, shown in Figure 4.13. However, the Ishii-based steric SLV fails to

capture the sea level increase in the whole basin of SCS. The secular seawater mass increase

rate inferred from “MSLA-Ishii” is as high as 1 cm/yr in the central SCS, which is unrealis-

tic, since both GRACE and “MSLA-ECCO” do not observe so large trend signal in the same

region.
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Figure 4.12: (a) Interannual time series of total SLV from altimetry and steric SLV from Ishii,

NODC, and ECCO in the SCS during 2003-2012. Results from another version of ECCO

model (kf079) are also shown. To be comparable, the mean value of every time series during

2003-2006 is removed. The mean value of NODC time series during 2005-2012 is set to be

the same as that of Ishii time series for the same period. (b-c) Same as (a), but for the NSCS

and ESCS. (d) Interannual time series of mass-induced SLV from GRACE, “MSLA-Ishii”,

and “MSLA-ECCO” in the SCS during 2003-2012. (e-f) Same as (d), but for the NSCS and

ESCS. Seasonal cycles are removed using least-square-fit and a 3-month moving average is

applied.
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Figure 4.13: Trend maps of total SLV from altimetry, steric SLV from Ishii and ECCO, mass-

induced SLV from GRACE, “MSLA-Ishii”, and “MSLA-ECCO” in the SCS during 2003-

2012.
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Table 4.4: Trends of total SLV from altimetry, steric SLV from Ishii and ECCO, mass-induced

SLV from steric-corrected altimetry and from GRACE in the SCS, NSCS, and ESCS during

2003-2012 (mm/yr).

SCS NSCS ESCS

MSLA (altimetry) 9.1±1.2 5.7±1.2 9.9±1.6

Steric SLV (Ishii) 1.4±1.4 0.9±0.9 1.4±1.6

Steric SLV (ECCO) 7.7±1.3 3.8±0.9 7.0±1.7

Mass-induced SLV (MSLA-Ishii) 7.7±1.1 4.8±1.2 8.4±1.2

Mass-induced SLV (MSLA-ECCO) 1.4±0.7 1.9±0.9 2.9±0.8

Mass-induced SLV (GRACE) 0.2±0.8 -0.2±1.0 2.1±1.0

4.2.5 Sea Level Variations in the East China Sea and Yellow Sea

As shown in Figure 4.14a and Figure 4.15a, SLV in the ECS and YS from altimetry demon-

strate a similar large seasonal variability, with an annual amplitude of about 8 cm and peaking

in September. The annual amplitude of steric SLV in the ECS is 7.5±0.2 cm, which is con-

sistent with that of total SLV from altimetry. However, the annual amplitude of steric SLV in

the YS is only 4.6±0.1 cm. Nevertheless, the thermosteric SLV is the dominant component of

steric SLV in the YS, which is also the case of ECS (Figure 4.14b and Figure 4.15b).

In Figure 4.14c, mass-induced sea level estimated from steric-corrected altimetry (“MSLA-

Ishii”) mainly show high-frequency variations in the ECS. GRACE-observed seawater mass

change in the ECS also demonstrates similar high-frequency variations. The standard devia-

tion of mass-induced SLV in the ECS estimated from “MSLA-Ishii” is 2.4 cm, the same as

that from GRACE. The root-mean-square (RMS) of differences between mass-induced SLV

from “MSLA-Ishii” and GRACE is 2.2 cm, which does not decrease significantly. However,

there is a high correlation coefficient between them in the ECS (i.e., 0.62). As shown in Fig-

ure 4.15c, mass-induced SLV from “MSLA-Ishii” shows a good agreement with that from

GRACE in the YS. The correlation coefficient between them reaches as high as 0.78. The

standard deviation of mass-induced SLV in the YS estimated from “MSLA-Ishii” and from
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GRACE is 3.4 cm and 2.9 cm, respectively. The RMS of differences between mass-induced

SLV from “MSLA-Ishii” and GRACE in the YS decreases to 2.2 cm.

As shown in Figure 4.16, on interannual timescales, SLV in the ECS and YS estimated

from altimetry show similar features. Sea level anomaly reaches minimum in 1995, which is

5 cm lower than the mean sea level. From 1995 to 1998, a rapid sea level rise is detected in

the ECS and YS. The sea level rise rate in the ECS and YS is 12.8±4.9 mm/yr and 12.8±6.8

mm/yr respectively over the period 1995-1998. Since 1999, the mean sea level in the ECS and

YS is rather stable, except a significant increase during 2011-2012. On interannual timescales,

the change of steric SLV in the YS is negligible, while steric SLV in the ECS shows some

fluctuations. However, no significant rate of steric SLV exists in the ECS and YS. The mean

sea level rise rate in the ECS and YS observed by altimetry is 2.2±0.5 mm/yr and 1.8±0.6

mm/yr, respectively, during 1993-2012, which is lower than the global mean sea level rise rate

for the same time period (i.e., 3.2 mm/yr) [Boening et al., 2012; Meyssignac and Cazenave,

2012].

In Figure 4.16, yearly sea level variations released by the annual Sea Level Report of China

from State Oceanic Administration (SOA) of China also show the sea level drop in 1995 and

a rapid sea level increase from 1995 to 1998, which confirm our findings from altimetry. Sea

level from the government report also shows a large positive anomaly in 2012, which agrees

well with our altimetric SLV. Keep in mind that sea level variations from the government

report are based on the coastal tide gauge measurements, while our altimetric SLV represent

the mean sea level change averaged in a specific ocean region. The mean sea level rise rate

in the ECS and YS based on the government report is 2.6 and 3.4 mm/yr respectively from

1993-2012.
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Figure 4.14: Same as Figure 4.6, but for the ECS.
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Figure 4.15: Same as Figure 4.6, but for the YS.
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Figure 4.16: Interannual time series of total SLV from altimetry and steric SLV from Ishii in

the ECS and YS during 1993-2012. Seasonal cycles are removed using least-square-fit and

a 3-month moving average is applied. Yearly sea level variations released by the annual Sea

Level Report of China from State Oceanic Administration of China are superimposed.
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Table 4.5: Annual amplitudes (cm) and phases (◦) of total SLV from altimetry, steric SLV,

thermosteric SLV, and halosteric SLV from Ishii in the ECS and YS during 1993-2012.

East China Sea Yellow Sea

Amplitude (Phase) Amplitude (Phase)

MSLA (altimetry) 7.8±0.4 (257±3) 7.6±0.5 (251±4)

Steric SLV (Ishii) 7.5±0.2 (246±2) 4.6±0.1 (253±1)

Thermosteric SLV (Ishii) 6.5±0.2 (248±2) 3.9±0.1 (254±1)

Halosteric SLV (Ishii) 1.1±0.1 (227±5) 0.8±0.1 (250±3)

4.2.6 Discussion and Summary

Among China seas, the East China Sea exhibits the largest seasonal variations of observed

sea level from altimetry, which is generally high in September and low in March. Annual

amplitude of steric SLV in this sea is also as high as 7.5±0.2 cm, which is comparable with

that from altimetry (7.8±0.4 cm). Since the halosteric effect is rather small, the expansion and

contraction of seawater due to temperature changes dominates the sea surface height changes

in the ECS. It is well known that the Kuroshio Current is the main driving factor of this

seasonal steric SLV in the ECS [Ichikawa and Beardsley, 2002; Jayne et al., 2009]. Neverthe-

less, intra-seasonal fluctuations of mass-induced SLV in the ESC is also obvious, both from

steric-corrected altimetry and GRACE. In the Yellow Sea, the seasonal and intra-seasonal

fluctuations of mass-induced SLV from steric-corrected altimetry and GRACE is more evi-

dent. Wakata [2009] established a simple ocean model to investigate the seasonal SLV along

the East China Sea due to annual southward monsoons. Because of the sloping sea floor and

seasonal strong monsoon winds, seawater mass and volume transport is considered to be the

main reason of the continental boundary current and sea level seasonal variation in the East

China Sea. In winter, strong monsoon blow from the northeast to the southwest; and vice

versa in summer. Thus, the seasonal and intra-seasonal fluctuations of seawater mass change

in the coastal region of the ECS and YS observed by steric-corrected altimetry and GRACE

are most probably caused by the monsoon.
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In the northern shallow water region of South China Sea, GRACE detects obvious seasonal

variations of seawater mass with an annual amplitude of 5.0±0.4 cm, which agrees with steric-

corrected altimetry. For the SCS, Zhuang et al. [2010] established a regional ocean model

forced by surface wind stress from QuickScat measurements. They focused on intra-seasonal

variability in sea surface height over the SCS, and found striking variations on the northern of

SCS shelf, which is strongest in autumn and weakest in spring. In response to the seasonal SCS

monsoon, sea surface height rises and falls via Ekman transport and coastal waves [Zhuang

et al., 2010]. The strong variations they found in the NSCS agrees well with our GRACE-

observed seawater mass change in the same region. Thus, we conclude that, as in the ECS and

YS, seawater mass variability on the shallow continental shelf of NSCS is also dominated by

the response of sea level to seasonal wind stress forcing. As we discovered, the high-frequency

variations of sea level modeled by Zhuang et al. [2010] in the shallow water of NSCS is also

the case of ECS and YS (Figure 4.14c and Figure 4.15c).

In the deep ocean basin of South China Sea, the seasonal variability of SLV observed

by altimetry is dominated by the thermosteric effect, i.e., the contribution of density changes

due to expansion and contraction of seawater. The largest seasonal SLV is located in west of

Luzon Island, which is consistent with an anticyclonic circulation in summer with maximum

sea surface height in west of Luzon Island [Ho et al., 2000; Qu et al., 2000]. The annual

amplitude of steric SLV in the ESCS reaches 6.7±0.7 cm.

Over the whole SCS (depth>200 m), both steric SLV from Ishii and mass-induced SLV

from GRACE exhibit the evident seasonal variability. The annual amplitude of observed SLV

from altimetry over the SCS is 3.2±0.5 cm, peaking in mid-September. The annual steric SLV

in the SCS heads the annual observed SLV ∼44 days, while the annual mass-induced SLV lags

the annual observed SLV ∼57 days. It indicates that the ocean heat content in the SCS reaches

maximum in early-August, while the ocean mass reaches maximum in mid-November. In

Figure 4.4c, the observed SLV from altimetry show high correlations with “Ishii+GRACE”

over most parts of SCS, except in the western part of central SCS, which is a dynamically

active region. In summer, the southwesterly winds are blocked by Annam Cordillera (a north-

south running mountain range on the east coast of Vietnam) and form a strong wind jet at its
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southern tips. The accompanying wind stress curls result in the ocean upwelling off the coast

[Qu et al., 2000; Xie et al., 2003]. We suspect that this eastward offshore flow and upwelling

off Vietnam might cause the low correlation between altimetry and “Ishii+GRACE”.

On the interannual timescales, the mean SLV in the SCS from altimetry show large fluc-

tuations, which are mainly caused by the steric effect. High correlation between interannual

mean SLV in the SCS and NINO4 index indicates that sea level change in the SCS is driven

by ENSO events on the interannual timescales. However, since 2008, the Ishii-based steric

SLV in the SCS shows a long-term drift, which is significantly lower than the observed SLV.

Considering the good agreement between interannual variability of steric SLV and observed

SLV during 1993-2007, the reality of this drift is skeptical. However, good agreement be-

tween two temperature and salinity datasets (Ishii vs NODC) using different data processing

strategies suggests that this drift is not caused by the difference in data processing procedure.

So, what is suspicious is the uncertainty of oceanographic observations themselves. We fur-

ther checked the steric SLV in the SCS using temperature and salinity outputs from the ECCO

model. Different from steric SLV from Ishii and NODC, ECCO-based steric SLV in the SCS

shows similar interannual fluctuations as the observed SLV from altimetry, and there is no

obvious drift between them (Figure 4.12).

As another independent measurement, GRACE is used to validate the problem in Ishii and

NODC datasets. Over the period 2003-2012, no significant long-term trend of mass-induced

SLV is detected by GRACE, which agrees with ECCO-based steric-corrected altimetry. So,

the rapid ocean mass increase estimated from Ishii-based steric-corrected altimetry is unreal.

In other words, there exist systematic errors in oceanographic datasets.

It is worthwhile to mention that the existence of systematic errors in the oceanographic

dataset has been proved before. Lombard et al. [2007] found that the Ishii-based steric SLV

shows a dramatic negative trend since 2003, which is in complete disagreement with the esti-

mate from altimetry minus GRACE. A net loss of 3.2 (±1.1) ×1022 J of heat from the upper

ocean between 2003 and 2005 is claimed to be found from in situ ocean measurements too

[Lyman et al., 2006]. Later, this cooling signal is proved to be an artifact that is mainly caused

by systematic errors in eXpendable BathyThermograph (XBT) data [Ishii and Kimoto, 2009;
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Willis et al., 2007]. When these biases are corrected, the ocean cooling signal becomes in-

significant [Ishii and Kimoto, 2009; Willis et al., 2007]. With the improvement of quality and

spatial distribution of in situ oceanographic observations, the systematic errors in the global

mean steric SLV seems to be reduced significantly. However, our findings show that the sys-

tematic errors in oceanographic observations could be significant in some regional oceans and

seas, e.g., the South China Sea. As shown in Figure 4.11, oceanographic observations suc-

cessfully capture the observed sea level increase and decrease in the deep ocean basin of SCS

over the period 1993-1999 and 2000-2004 respectively. However, the trend signal of SLV

in the SCS from altimetry has migrated from deep ocean basin to surrounding shallow shelf

over the period 2007-2012. Since the trend signal of SLV on shallow shelf from GRACE is

insignificant, we conclude that there should be significant steric sea level rise on shallow shelf

of SCS during 2007-2012. Unfortunately, oceanographic observations fail to capture this trend

signal. We suspect that the steric sea level variations from in situ oceanographic observations

in shallow water of SCS is totally underestimated. Considering the transfer of trend signal

from deep ocean basin to shallow water, this problem emerges after 2008. So, the uncertainty

on trend estimates of regional steric SLV from oceanographic observation is still large. More

investigation should be carried out in the future.

4.3 Sea Level Variations in the Red Sea

4.3.1 Introduction

The Red Sea is a semi-enclosed basin and exchanges water with the Gulf of Aden through the

strait of Bab-el-Mandeb at the southern end of the sea. The seasonally reversing Indian Mon-

soon (prevailing southerly and southeasterly winds in winter and northerly and northwesterly

winds in summer) dominates the circulation in the southern Red Sea, while the northerly and

northwesterly winds prevail in the northern Red Sea all the year round [Patzert, 1974]. There

exist two distinct seasonal modes of water exchange between the Red Sea and the Gulf of Aden

(Figure 4.17). In winter, the wind-driven fresh Gulf of Aden SurfaceWater (GASW) enters the

Red Sea through the Bab-el-Mandeb above the Red Sea Outflow Water (RSOW). In summer,
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a three-layer flow structure prevails in the strait of Bab-el-Mandeb. The northerly and north-

westerly monsoon winds drive surface currents and RSOW outflow, while an upwelling of

Gulf of Aden Intermediate Water (GAIW) penetrates into the south of the Red Sea [Cromwell

and Smeed, 1998; Murray and Johns, 1997; Smeed, 1997]. A lot of previous studies have

reported the seasonal variations of the flow between the Red Sea and the Gulf of Aden, vali-

dated from flux observations [Murray and Johns, 1997], XBT data [Smeed, 1997] and ocean

models [Siddall et al., 2002; Sofianos and Johns, 2002]. Besides these hydrographic observa-

tions and models, the development of satellite altimetry provides more information on ocean

dynamics [Fu and Cazenave, 2001]. Sofianos and Johns [2001] found a good agreement be-

tween TOPEX/Poseidon altimetry data and the predictions from a simple model that balances

the sea surface elevation against the wind stress. They concluded that the basic mechanism

responsible for the sea level variations (SLV) in the Red Sea on seasonal timescales is the wind

pattern. In fact, wind stress can also cause the ocean mass change and ocean bottom pressure

change, which can be detected by satellite gravimetry. Many studies have shown that GRACE

has been successfully used to estimate the mass-induced SLV in global oceans and regional

seas on seasonal and interannual timescales. The annual amplitude of global mean ocean mass

variations detected by GRACE is about 7 mm [Chambers et al., 2004; Leuliette and Willis,

2011]. However, seawater mass variation signal can be tens of times higher than the global

mean value in some regional shallow seas. For example, GRACE observes an amplitude of

∼20 cm ocean mass variations in the Gulf of Thailand and ∼40 cm in the Gulf of Carpentaria

[Tregoning et al., 2008; Wouters and Chambers, 2010]. Besides these two gulfs, Fenoglio-

Marc et al. [2006] and García et al. [2006] studied the seasonal SLV in the Mediterranean Sea

using altimetry, ocean models and GRACE. Furthermore, Calafat et al. [2010] found a seawa-

ter mass increase in the Mediterranean Sea from GRACE over the period 2002-2006, which

is consistent with the result from the steric-corrected altimetry. Swenson and Wahr [2007]

found a good agreement between the GRACE-derived SLV and the steric-corrected altimetry

observations in the Caspian Sea on seasonal and interannual timescales.

The subject of this study is to analyze the mass-induced SLV in the Red Sea using GRACE,

and compare the results with those from steric-corrected altimetry, in-situ bottom pressure
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records, and hydrographic observations. The Red Sea is an ideal study target for GRACE

since it is nearly enclosed and surrounded by dry areas. Thus, the leakage from hydrological

signals outside the Red Sea is relatively small for GRACE-derived mass variations in the

region. In addition, the area of the Red Sea is large enough (438,000 km2) for GRACE to

detect the mass-induced SLV. All these conditions provide the possibility to estimate seawater

mass variations in the Red Sea using GRACE. This study has led to the publication of a paper

[Feng et al., 2014], which was the first one published on this topic. Later, Wahr et al. [2014]

also reported the similar results in the Red Sea.

Figure 4.17: (a) Map of Red Sea bathymetry and surrounding topography. (b) The seasonal

exchange regime in the Red Sea. GAIW is Gulf of Aden Intermediate Water, GASW is Gulf

of Aden Surface Water, RSOW is Red Sea Overflow Water, RWS is Red Sea Water, RSDW is

Red Sea Deep Water, RSSW is Red Sea Surface Water. Panel b is from Siddall et al. [2002].

4.3.2 Data and Processing

4.3.3 GRACE Data

To estimate the mass-induced SLV in the Red Sea, we use two sets of GRACE products, i.e.,

ten-day Release-02 products from the Groupe de Recherche de Géodésie Spatiale (GRGS)

[Bruinsma et al., 2010; Lemoine et al., 2007] and monthly Release-05 products from the
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Center for Space Research (CSR) at the University of Texas at Austin [Bettadpur, 2007].

It must be noted that these two sets are based on different releases of the GRACE Level-1B

measurements: GRGS-RL02 is based on version 1 of the Level-1B measurements, whereas

CSR-RL05 is based on the more recent version 2 of the same data which was reprocessed and

released in 2012 by JPL. These two GRACE products are expressed in the form of spherical

harmonic (SH) geopotential coefficients up to degree and order (d/o) 50 for GRGS and d/o 60

for CSR. These solutions are derived using different gravity inversion strategies. The GRGS

GRACE products are stabilized towards the EIGEN-GRGS.RL02.MEAN-FIELD mean grav-

ity field at each given epoch, with a constraint law that depends on the degree and on the

order of each coefficient (http://grgs.obs-mip.fr/grace). Thus there is no need to de-stripe and

smooth the GRGS solutions. The CSR solutions are unconstrained solutions and usually need

de-striping and Gaussian smoothing to reduce the correlated north-south-oriented stripes and

short-wavelength random noises [Swenson and Wahr, 2006; Wahr et al., 1998]. We adopt the

de-striping filter proposed by Chambers [2006] to reduce the stripes in CSR solutions. Com-

parison of these two GRACE solutions derived from different processing strategies allows us

to estimate the confidence of GRACE-derived mass variations in the Red Sea.

For both GRACE solutions, atmospheric pressure and ocean mass variations have been

modeled and removed. To be consistent with steric-corrected altimetry for oceanographic

analyses, these removed models have to be added back [Willis et al., 2008]. For CSR, ECMWF

operational atmospheric model and the baroclinic OMCT ocean model are added back using

CSR RL05 GAD products to recover the ocean bottom pressure (OBP) [Bettadpur, 2007].

For GRGS, ECMWF atmospheric model and the barotropic MOG2D ocean model [Carrère

and Lyard, 2003] are restored using GRGS RL02 GAA and GAB products. In order to make

GRACE-derived ocean mass changes comparable with inverse-barometer corrected altimetry

data, we further remove the time-variable mass of the atmosphere averaged over the global

ocean [Leuliette and Miller, 2009; Willis et al., 2008]. The GRACE data are further corrected

for glacial isostatic adjustment (GIA) based on the model of Paulson et al. [2007].

Since the SH coefficients of GRACE data are truncated to some d/o (50 for GRGS and 60

for CSR) and filtered (in the case of CSR), the mass signal in the Red Sea may be contaminated
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by the leakage from continental hydrology and ocean mass change outside. To estimate the

mass-induced SLV time series using GRACE, we first have to remove the above mentioned

leakage time series. Thus, we construct a synthetic mass change model based on soil moisture

data from the Noah land surface model produced by NASA’s Global Land Data Assimilation

System [Ek et al., 2003; Rodell et al., 2004] and ocean bottom pressure data from a JPL version

of the Estimating Circulation and Climate of the Ocean general model [Lee et al., 2002]. We

add a uniform layer to the global ocean to conserve the total land and ocean mass at every

time step [Velicogna and Wahr, 2006b]. The synthetic gridded data (zeros in the Red Sea)

are converted to the SH coefficients, truncated to some d/o (50 for GRGS and 60 for CSR),

filtered (in the case of CSR) and spatially averaged to get the leakage time series.

In addition, the truncation and filtering of SH coefficients would make the amplitude of

GRACE-based estimate in the area of interest damped. To restore the “real” mass variation

signal in the Red Sea, we multiply the leakage-removed time series with a scaling factor

[Swenson and Wahr, 2007; Velicogna and Wahr, 2006b]. For GRGS, we construct a mask

grid (1 inside the Red Sea, 0 outside) and convert it to SH coefficients truncated to d/o 50,

which reduces the amplitude by a factor 0.55. Thus the GRACE-derived mass-induced SLV

series from GRGS are multiplied by 1/0.55 (i.e., 1.81) to recover the “real” mass variation

signal in the Red Sea. In the case of CSR, we compare the restored mass change time series

using different scaling factors corresponding to the Gaussian smoothing with the half-width

varying from 0 km to 500 km. We find that the Gaussian smoothing with different half-width

produces insignificant differences in the Red Sea. The variance of the difference between

restored time series using 0 km Gaussian smoothing and reference series from steric-corrected

altimetry is smaller than other restored time series. Consequently we only do the de-striping

to CSR solutions, but no Gaussian smoothing is applied. The scaling factor corresponding

to 0 km Gaussian smoothing is 1.59 for CSR. Briefly, we firstly remove the leakage time

series from the original GRACE-observed mass-induced SLV time series, and then multiply

the scaling factors to the leakage-removed time series to recover the unbiased mass-induced

SLV time series from GRACE. The uncertainty of GRACE-derived mass-induced SLV time

series is estimated using the method proposed by Wahr et al. [2006], which are 3.4 cm for the
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monthly CSR values and 4.2 cm for ten-day GRGS values. To be consistent with monthly CSR

values and steric-corrected altimetry results, monthly-average GRGS values are estimated, the

uncertainty of which is 2.4 cm.

4.3.4 Steric-corrected Altimetry Data

We use the merged Maps of Sea Level Anomalies (MSLA) derived from TOPEX/Poseidon,

Jason-1/2, ERS-1/2 and Envisat, which are provided by the Archiving, Validation and Inter-

pretation of Satellite Oceanographic (AVISO) data (for details, see the AVISO User Handbook

available at http://www.aviso.oceanobs.com/). Here we use the 0.25◦×0.25◦ gridded data at

monthly interval for the period of January 2003 to December 2011. All standard geophysical

and environmental corrections have been applied, including the ionospheric correction, dry

and wet tropospheric corrections, solid Earth and ocean tides, ocean tide loading, pole tide,

electromagnetic bias, inverted barometer corrections and instrumental corrections. The uncer-

tainty of altimetry-derived monthly SLV in the Red Sea is about 2.3 cm, based on the error

files provided by AVISO.

Owing to the elastic loading effect, mass change in the water column produces a deforma-

tion in the sea bottom, which may not be negligible in the altimetry data [Kuo et al., 2008].

We estimate the loading effect from GRACE data and remove it from altimetry. The peak-to-

peak amplitude of loading deformation in the Red Sea is about 10 mm, accounting for about

3% of steric-corrected altimetry observations. The GIA effect on the long-term sea bottom

deformation is also removed from altimetry, which is negligible in the Red Sea [Paulson et al.,

2007]. To estimate the steric SLV in the Red Sea, we use the latest oceanographic temperature

and salinity dataset provided by Ishii et al. [2006] for the period of January 2003 to December

2011 (1◦× 1◦ global grids at monthly interval). The steric SLV calculated from Ishii dataset

are further interpolated to match the spatial resolution of altimetry observations, and then be

removed from altimetry to get the steric-corrected SLV. However, the coverage of original

year-to-year hydrographic data in the Red Sea is poor and mapping approach is used to fill the

gaps [Ishii et al., 2006]. The uncertainty in the Ishii-based steric SLV in the Red Sea could be

significant, so we further verify the validity of the Ishii-based steric SLV using the NOAA’s
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World Ocean Atlas (WOA09) climatological hydrographic data [Levitus et al., 2009]. Both

data show similar spatial patterns and magnitudes. The uncertainty of the Ishii-based steric

SLV is assessed using the RMS difference between the Ishii-based steric SLV and the WOA-

based steric SLV in the Red Sea (i.e., 1.5 cm). The uncertainty of the steric-corrected SLV

is estimated to be 2.7 cm assuming that errors in the altimetry data and the Ishii data are

uncorrelated.

4.3.5 Bottom Pressure Records

We use ocean bottom pressure (OBP) time series from three bottom pressure records (BPRs)

at Jeddah, Thuwal and Rabigh along the Saudi Arabian coast, which are deployed by King

Abdullah University of Science and Technology (KAUST) and Woods Hole Oceanographic

Institution (WHOI) (Figure 4.18b). The period of BPRs covers April 2008 to May 2011

with a temporal resolution of 5 minutes (available at http://www.whoi.edu/science/PO/coastal/

RedSeaPressure/index.html). Monthly means of BPRs observations are derived to be con-

sistent with GRACE results. OBP time series from three BPRs agree well with each other

(correlations>0.99). The RMSs among them are smaller than 2 cm. So three BPRs series are

averaged to compare with GRACE results.

4.3.6 Results and Discussion

Seawater Mass Variations from Steric-corrected Altimetry and GRACE

In order to make the steric-corrected altimetry and GRACE comparable in spatial domain, we

convert steric-corrected altimetry grids to SH coefficients and truncate them to d/o 50 (corre-

sponding to ∼400 km resolution). SH coefficients of CSR solutions are also truncated to d/o

50 to be consistent with GRGS solutions. As stated before, we only do the de-striping to CSR

solutions and no Gaussian smoothing is applied. Figure 4.18a shows the annual amplitude of

steric-corrected altimetry in the Red Sea from 2003 to 2011, which reaches a maximum of

∼13 cm in the central part of the Red Sea. The spatial patterns of mass-induced annual SLV’s

amplitude from GRGS and CSR also show high amplitude in the same region of the Red Sea
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(Figure 4.18b-4.18c), which agree well with that of the steric-corrected altimetry. To inves-

tigate the reason of dome-shaped annual mass variations, we compute the annual amplitude

of the original steric-corrected altimetry grids, which shows the homogeneous annual mass

variations in the Red Sea (not shown). It indicates that the spherical harmonic truncation of

the narrow and elongated Red Sea induces the signal attenuation in the two ends of the sea

and causes the latitudinal mass variations from truncated steric-corrected altimetry. For the

same reason, the limitation of GRACE’s resolution causes the same spatial patterns shown in

Figure 4.18b and 4.18c. The annual phase of mass variations from steric-corrected altimetry

is fairly homogeneous in the Red Sea and is in good agreement with GRACE results (Fig-

ure 4.18d-4.18f). In the Red Sea, seawater mass variations generally reach maximum in late

January/early February.
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Figure 4.18: Annual amplitude of mass-induced SLV in the Red Sea from (a) steric-corrected

altimetry, (b) GRGS, and (c) CSR. (d-f): Same as (a-c), but for annual phase. Harmonic

analysis is used to obtain the annual amplitude and phase. Locations of three BPRs (Jeddah,

Thuwal, and Rabigh) are shown in pannel (b).

In addition to the good agreement in spatial patterns of annual cycle, the mean mass vari-
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ation time series in the Red Sea from steric-corrected altimetry and GRACE also agree well

with each other (Figure 4.19a). The correlation coefficient between steric-corrected altimetry

and GRGS/CSR is 0.93/0.95 (95% confidence intervals, 0.90-0.95/0.93-0.97). We further cal-

culate the magnitude squared coherences between every two series with Matlab’s mscohere

function using Welch’s averaged modified periodogram method [Welch, 1967], and the confi-

dence level estimated using the method proposed by Carter [1987]. As shown in Figure 4.20,

the maximum and second maximum peaks of the coherence curve between steric-corrected

altimetry and GRACE occur in the annual and semi-annual cycle. Coherences between CSR

and GRGS also show the similar characteristics. At frequencies lower than 1.3 cycle/yr, CSR

results agree with steric-corrected altimetry better than GRGS, which is confirmed from the in-

terannual time series in Figure 4.19b too. However, at frequencies from 1.4 cycle/yr to 2.5 cy-

cle/yr, GRGS series give higher coherences with steric-corrected altimetry. At higher frequen-

cies (>2.5 cycle/yr), CSR-altimetry coherences become higher again than GRGS-altimetry co-

herences, which indicate CSR series perform better than GRGS series. Significant coherence

occurs between 0.3 and 2.8 cycle/yr for GRGS-altimetry and GRGS-CSR. However, coher-

ences between CSR and steric-corrected altimetry are significant in most frequency bands.

The origin of the different performance between CSR and GRGS results probably lies in the

way the two series are processed in order to avoid the striping inherent to unconstrained solu-

tions. In the GRGS products, a small constraint is applied in the inversion process towards an

a priori mean field, which contains annual and semi-annual terms. Thus the 1 cycle/yr to 2 cy-

cle/yr signal is well preserved while the signals at other frequencies tends to be attenuated. In

the case of the CSR products, the removal of the striping is obtained through a post-processing

(de-striping and Gaussian smoothing), thus producing a small attenuation of the signal at all

frequencies, but with a uniform treatment over all the frequencies.
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Figure 4.19: (a) Time series of seawater mass variations in the Red Sea estimated from steric-

corrected altimetry (red), GRGS (blue), and CSR (black). A scaling factor of 1.81/1.59 is

applied to GRGS/CSR time series to restore the “real” mass variation signal in the Red Sea.

(b) Same as pannel (a), but with seasonal cycles removed. A 3-month boxcar smoothing is

applied in pannel (b).

As listed in Table 4.6, the annual amplitude of mass-induced SLV from GRGS/CSR is

17.5/17.7 cm and peaks in late January/early February. The steric-corrected SLV from altime-

try have an annual amplitude of 17.8 cm peaking early in February, which agree well with

GRACE (GRGS/CSR) results. The annual amplitude of the steric SLV here is 2.6 cm, which

is significantly smaller than that of the mass-induced SLV. Small steric SLV indicate that the

mean SLV in the Red Sea are dominated by seawater mass variations on the annual timescale.

The out-of-phase relationship between the steric SLV and the mass-induced SLV indicates that

when the Red Sea gains the mass from inflow water in winter, the steric SLV fall, and vice

versa in summer.
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On the interannual timescales, the mass-induced SLV from CSR are in good agreement

with the steric-corrected SLV from altimetry before 2006 (Figure 4.19b). However, GRGS

series show a negative trend from 2003 to 2006, which is significantly different from CSR

and altimetry results. Nevertheless, the peaks of three series from 2003 to 2006 match well.

Since then, steric-corrected SLV from altimetry rise from 2007 to 2008 and decrease since

2010. However, the interannual mass-induced SLV from GRACE after 2007 do not agree

with altimetry so well as that happens for the period 2003-2006. It indicates there is still

relatively large uncertainty in the estimation of interannual water mass changes in the Red

Sea from GRACE and steric-corrected altimetry. The discrepancy between two independent

satellite results might result from the uncertainty in GRACE and that in steric SLV.
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Figure 4.20: Coherences between steric-corrected altimetry and GRGS, steric-corrected al-

timetry and CSR, and GRGS and CSR at different frequencies. The dashed horizontal green

line indicates significance at the 95% confidence level.
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Table 4.6: Annual amplitudes and phases of different SLV components in the Red Sea from

2003 to 2011. Uncertainties in amplitudes and phases have been estimated as two standard

deviations after propagation of monthly value errors in the least squares fit procedure, which

represent the 95% confidence interval.

Annual amplitude (cm) Annual phase (◦)

Altimetry 15.7 ± 0.6 32 ± 2

Steric SLC (Ishii) 2.6 ± 0.4 239 ± 9

Altimetry-Steric SLV 17.8 ± 0.7 37 ± 2

Mass-induced SLV (GRGS) 17.5 ± 0.7 29 ± 2

Mass-induced SLV (CSR) 17.7 ± 1.0 38 ± 2

Comparison Between BPRs and GRACE

Besides the comparison between GRACE and steric-corrected altimetry, we further validate

GRACE-derived mass variations in the Red Sea with some in-situ BPRs. As shown in Fig-

ure 4.21a, OBP time series from BPRs, GRGS and CSR show strong annual cycles and have

generally good agreement with each other. The correlation between OBP series from BPRs

and GRGS/CSR is 0.96/0.88 (95% confidence intervals, 0.92-0.98/0.78-0.94). The annual

amplitude and phase of OBP time series from BPRs are 20.1 ± 1.7 cm and 28◦± 5◦, which

agree with GRGS results (18.1 ± 1.1 cm, 33◦± 3◦) better than CSR results (12.8 ± 2.0 cm,

46◦±15◦). The root-mean-square (RMS) of OBP difference between GRGS and BPRs is 4.5

cm, which is smaller than that between CSR and BPRs (7.9 cm). In addition, the annual signal

observed by BPRs along the Saudi Arabian coast is also consistent with mean water mass vari-

ations in the Red Sea from steric-corrected altimetry (Table 4.6). We further remove seasonal

cycles and trends from time series to get the residuals of OBP time series (Figure 4.21b). The

correlation of residual time series between CSR and BPRs is 0.69 (95% confidence interval,

0.43-0.84), which is significantly higher than the correlation between GRGS and BPRs (i.e.,

0.28).
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Figure 4.21: (a) Time series of OBP along the Saudi Arabian coast of Red Sea measured by

BPRs and GRACE (GRGS/CSR). (b) Same as pannel (a), but with seasonal cycles and trends

removed.

Horizontal Water Mass Flux

The water mass fluxes of the Red Sea are the sum of horizontal mass flux (i.e., runoff from

rivers, water exchange through Bab-el-Mandeb) and vertical mass flux (i.e., evaporation and

precipitation), which can be measured by GRACE and steric-corrected altimetry. To isolate

the horizontal mass flux of the Red Sea, the vertical mass flux has to be removed from GRACE

and steric-corrected altimetry. The land adjacent to the Red Sea is very arid and the precipita-

tion is small. The evaporation rate here is one of the highest in the world ocean with a mean

net rate of 2.06 ± 0.22 m/yr [Sofianos et al., 2002]. Here we adopt the climatological monthly

precipitation minus evaporation (P-E) data from Sofianos and Johns [2002] to estimate the

vertical mass flux of the Red Sea, which is further removed from GRACE and steric-corrected

altimetry to obtain the horizontal mass flux. The runoff from rivers near the Red Sea is neg-

ligible [Siddall et al., 2004]. So the water exchange through the Bab-el-Mandeb, the only
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substantial connection to the open ocean, represents the horizontal mass flux of the Red Sea.

Sofianos et al. [2002] estimated the freshwater volume budget, temperature and salinity at

Bab-el-Mandeb from current-meter arrays and temperature-salinity chain moorings between

June 1995 and November 1996. We further estimate the horizontal water mass flux through the

Bab-el-Mandeb using water volume fluxes, temperature and salinity data from [Sofianos et al.,

2002]. The horizontal water mass flux from these hydrographic observations is converted to

equivalent water height for comparison with results from GRACE and steric-corrected altime-

try. Considering there are no more than two years’ water flux observations at Bab-el-Mandeb

and its time range is different from that of altimetry and GRACE, we only calculate the clima-

tological monthly horizontal water mass flux in the Red Sea from hydrographic observations,

GRACE, and steric-corrected altimetry.

As shown in Figure 4.22, the climatological horizontal water mass fluxes estimated from

steric-corrected altimetry and GRACE (GRGS/CSR) show strong similarities in signatures

and magnitudes. The uncertainty assessment of results from steric-corrected altimetry and

GRACE indicates that they lie well within the error bars (Figure 4.22). These two indepen-

dent satellite-based results indicate that the seawater flows into the Red Sea reaching maxi-

mum in October/November, which leads the estimate from hydrographic observations about

three months. The root-mean-square (RMS) of horizontal mass flux from hydrographic ob-

servations (∼6 cm/month) is only 60% of the size of satellite-based estimates (∼10 cm/month

for GRACE and steric-corrected altimetry).

The discrepancies in amplitude and phase between hydrographic observations and two sets

of satellite-based estimates can have several explanations. One main problem is the interan-

nual variability of horizontal mass flux. We calculate the horizontal mass flux series from 2003

to 2011 based on GRACE and steric-corrected altimetry, then retrieve the maximum and mini-

mum values of estimates in the same month of different years, which are shown as the two blue

dash-dot lines in Figure 4.22. Most of the flux estimates from hydrographic observations are

within the envelope of interannual variability of satellite-based estimates (Figure 4.22). Note

that the hydrographic observations at Bab-el-Mandeb were carried out for an 18-month period

between June 1995 and November 1996 [Sofianos et al., 2002]. Therefore, the interannual
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variability of horizontal mass flux can explain the discrepancies between hydrographic obser-

vations and satellite-based estimates in Figure 4.22. Another potential explanation could be

the uncertainties in hydrographic observations (i.e., velocity, temperature, and salinity profiles

at Bab-el-Mandeb), which might result in the uncertainty in horizontal water flux estimates

too. In addition, the vertical water mass flux corrections (i.e., P-E), which are used to isolate

the horizontal flux from steric-corrected altimetry and GRACE, could induce the discrepan-

cies too. Seasonal P-E variability peaks in November [Sofianos and Johns, 2002], which

agrees with the seasonal horizontal mass flux from steric-corrected altimetry and GRACE.

The RMS of seasonal P-E variability is about 3 cm/month based on the results from Sofianos

and Johns [2002], which accounts for 30% of seasonal horizontal mass flux variability from

steric-corrected altimetry and GRACE. Therefore, the P-E corrections might have a potentially

significant impact on the horizontal mass flux estimation from satellite observations too.
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Figure 4.22: The climatological monthly horizontal water mass fluxes in the Red Sea estimated

from steric-corrected altimetry, GRACE (GRGS/CSR), and hydrographic observations. The

error bars represent the standard deviations of climatological flux estimates in the same month

of different years based on the steric-corrected altimetry and GRACE. The two blue dash-dot

lines represent the upper and lower bounds of estimates from steric-corrected altimetry and

GRACE during 2003-2011.
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Although there are discrepancies in amplitude and phase between hydrographic observa-

tions and two sets of satellite-based estimates, the mean flux estimates from hydrographic

observations, steric-corrected altimetry, GRGS, and CSR are 17.5 cm/month, 16.7 cm/month,

16.8 cm/month, and 16.0 cm/month, respectively, which agree well with each other.

4.3.7 Summary

In this study, we have shown that GRACE satellites successfully detect the significant sea-

sonal water mass variations in the Red Sea, which increase in winter when the Red Sea gains

the water mass from the Gulf of Aden and vice versa in summer. The annual amplitude of

the mass-induced SLV inferred from GRACE is ∼18 cm, which agrees well with that from

steric-corrected altimetry. The annual steric component of the mean SLV calculated from

oceanographic temperature and salinity data is relatively small and peaks about seven months

later than mass variations. It indicates that the steric and mass-induced contributions to the

annual SLV in the Red Sea counteract each other.

A first comparison of in-situ OBP with GRACE in the Red Sea also reveals large annual

seawater mass variations. GRGS GRACE solutions agree with in-situ OBP observations better

than CSR solutions both in annual amplitude and phase. However, CSR solutions exhibit

higher correlation with in-situ OBP when seasonal cycles and trends are removed.

The climatological monthly horizontal water mass flux estimated from hydrographic ob-

servations is in general agreement with that from GRACE and steric-corrected altimetry, while

some discrepancies in magnitude and phase is found. Considering the timespan of the hydro-

graphic observations is different from that of two sets of satellite observations, the interannual

variability of horizontal water mass flux is most likely to explain these discrepancies. In the

future, more than two years’ long-term hydrographic observations in the Red Sea would be

able to give another independent measure to validate the interannual water mass flux estimated

from GRACE satellites and steric-corrected altimetry.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

This thesis contains two major parts. In the first part, we investigated the groundwater storage

(GWS) variations in North China using GRACE and land surface models, and compared the

results with the estimates from in situ groundwater observations, groundwater model, and of-

ficial bulletins. An important finding of this part is that GRACE successfully observes the

seasonal variations of groundwater storage in North China, and isolates the effect of an-

thropogenic irrigation from that of natural precipitation. From spring to summer, although

the precipitation increases, the extensive irrigation for wheat growing results in a significant

groundwater depletion in the North China Plain (NCP). After the harvest of wheat in June, the

decrease of irrigation demand for the drought-tolerant maize and the abundant precipitation

result in the recharge of groundwater aquifers from summer to winter. This seasonal variabil-

ity of groundwater in the NCP is detected by GRACE for the first time, and there is a good

agreement between GRACE and ground observations. GRACE also observes the obvious in-

terannual fluctuations of GWS in the NCP, which is consistent with year-to-year precipitation

anomalies. The largest GWS depletion observed by GRACE occurs in the piedmont of NCP,

which is confirmed by groundwater observations and groundwater model. It is worthwhile to

note that a significant increase of GWS from 2012 to 2013 is detected by GRACE, which cor-

responds to the abundant precipitation in these two years. Besides the interannual fluctuations,
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there exists a long term groundwater depletion in North China, at a rate of 7.1 ±1.0 km3/yr

from GRACE. However, the groundwater depletion rates in shallow aquifers according to in

groundwater observations and official bulletins are 1.2 and 2.0 km3/yr, respectively, which are

significantly lower than the GRACE estimate. We conclude that GRACE observes the impor-

tant contribution from deep aquifers to the groundwater depletion in the plain and piedmont

regions of North China, which was underestimated until now.

In the second part, we focused on regional sea level variations in China seas and in the

Red Sea using GRACE, altimetry, and oceanographic data. Large seasonal mass variations

in the northern shallow water of South China Sea (SCS) are detected by GRACE and steric-

corrected altimetry, while thermosteric sea level variations (SLV) dominate the total SLV in

the deep ocean basin of eastern SCS on seasonal timescales. On interannual timescales, sea

level fluctuations in the SCS are dominated by the thermosteric effect and driven by El Niño-

Southern Oscillation (ENSO) events. More importantly, a systematic drift of steric SLV cal-

culated from oceanographic observations is identified in the SCS, which is confirmed by the

comparison with altimetry and GRACE. The altimetric SLV in the East China Sea (ECS) and

the Yellow Sea (YS) mainly reflect the thermal expansion and contraction of seawater on sea-

sonal timescales. Nevertheless, GRACE detects intra-seasonal mass variations in the ECS and

YS, which agree with steric-corrected altimetry. For the Red Sea, large seasonal variability

of seawater mass is also detected by GRACE and steric-corrected altimetry, which is well

explained by the water exchange between the Red Sea and the Gulf of Aden driven by the sea-

sonal reversal of monsoon. In-situ bottom pressure records at the eastern coast of the Red Sea

confirm the GRACE observations too. In addition, the horizontal water mass flux observed

by current-meter arrays at Bab-el-Mandeb, i.e. the mouth of the Red Sea, further validate our

GRACE estimates.

5.2 Future Work

Besides GRACE, other geodetic observations can also provide the information on ground-

water storage variations. It is important to note that secular extensive groundwater pumping
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of deep confined aquifers has resulted in many large-scale cones of depression in the NCP

[Liu et al., 2001; Ministry of Land and Resources of China, 2009]. The ground subsidence

in cones of groundwater depression can be detected by geodetic observations from Global

Navigation Satellite System (GNSS) and Interferometric Synthetic Aperture Radar (InSAR).

The ground deformation velocity in the central NCP between 2007 and 2010 was estimated

by using differential InSAR technique [Zhang et al., 2013]. A recent study also indicated that

the seasonal elastic ground deformation caused by withdraw and recharge of aquifers can be

detected by InSAR [Chaussard et al., 2014]. In addition, the existing ground gravity observa-

tions in the NCP from the Crustal Movement Observation Network of China (CMONC) can

also provide the underground mass variation information, if the vertical deformation effect

and surface mass variations can be removed. Assimilating these geodetic observations, which

are in different spatial and temporal resolutions, into the groundwater model, will probably

improve the estimation of current GWS variations and the prediction of GWS variations in

future (personal communication, C. M. Zheng).

Currently, the spatial resolution of GRACE results is limited to 300-500 km, which limits

our knowledge on mass variations at the finer spatial scales. The GRACE Follow-On mission,

scheduled for launch in 2017, may provide us mass variations of the Earth system in a higher

spatial resolution with an experimental interferometric laser ranging system (http://gracefo.

jpl.nasa.gov/). In addition, more advanced gravity satellite missions (e.g., GRACE II and

e.motion) have been proposed by scientific communities [Panet et al., 2013]. Besides these

gravity missions, the Surface Water and Ocean Topography (SWOT) satellite, a joint NASA-

CNES mission, is planned to be launched in 2019. Over land, SWOT can measure water

surface height changes in all wetlands, lakes, and reservoirs whose area exceeds 250 m2;

over ocean, SWOT can measure ocean currents and eddies at scales shorter than 200 km

(https://swot.jpl.nasa.gov/). By analyzing the water surface height variations from SWOT and

water mass variations from future gravity satellites in higher spatial resolutions, we can better

understand the mass transport and redistribution in the Earth system, e.g., the terrestrial water

cycle and sea level variations.
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