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Résumé

Résumé

Cette these concerne la geometrie de la correspondence de Langlands p-adique. On donne
la formalisation des methodes de Emerton, qui permettrait d’établir la conjecture de
Fontaine-Mazur dans le cas general des groupes unitaires. Puis, on verifie que ce for-
malism est satisfait dans la cas de U(3) o on utilise la construction de Breuil-Herzig pour
la correspondence p-adique.

De point de vue local, on commence ’étude de cohomologie modulo p et p-adiques de
tour de Lubin-Tate pour GL2(Q)). En particulier, on demontre que on peut retrouver la
correspondence de Langlands p-adique dans la cohomologie completée de tour de Lubin-
Tate.

Mots-clefs

program de Langlands, variétés de Shimura, espaces de Rapoport-Zink, représentations
galoisiennes

Abstract

This thesis concerns the geometry behind the p-adic local Langlands correspondence. We
give a formalism of methods of Emerton, which would permit to establish the Fontaine-
Mazur conjecture in the general case for unitary groups. Then, we verify that our formal-
ism works well in the case of U(3) where we use the construction of Breuil-Herzig as the
input for the p-adic correspondence.

From the local viewpoint, we start a study of the modulo p and p-adic cohomology
of the Lubin-Tate tower for GLy(Q)). In particular, we show that we can find the local
p-adic Langlands correspondence in the completed cohomology of the Lubin-Tate tower.

Keywords

Langlands program, Shimura varieties, Rapoport-Zink spaces, Galois representations
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Introduction

The p-adic Langlands program in recent years burst out with activity. The goal is to
construct a bijection between p-adic local Galois representations p : Gal(F/F) — GL,(E)
(where F' and E are finite extensions of Q) and certain admissible Banach representations
of GL,(F) over E. Up to now, we have only a complete picture for GL2(Q,) (by the
work of Berger, Breuil, Colmez, Emerton, Kisin, Paskunas). In this case we have a
local construction of Colmez as well as Emerton’s proof that the p-adic local Langlands
correspondence appears in the completed cohomology of modular curves. Let us explain
this last result as it is the starting point of this thesis.

For any compact open subgroup K C GL2(Af) let us define open modular curves as
complex varieties

Y(K) = GL2(Q)\(C\R) x GL2(Ay)/K

Each Y (K) has a natural model over Q which we denote also by Y (K). Let us fix a
compact open subgroup KP? of GLQ(A’}). The p-adic completed cohomology of Emerton is
defined by

H'(K")p = (@@H&w(mmzw)) ®z, E
s Kp

where K, runs over compact open subgroups of GL2(Q,) and H{, denotes the étale co-
homology groups. Hence there is a natural action of Gg = Gal(Q/Q) and GL3(Q,) on
H(KP)g.

Let X be a set of places which contains p and all the primes at which K? is not hyperspecial.
We let Tp = E[1}, S)]igs be the abstract Hecke algebra generated by standard Hecke
operators 7y and S;. The Hecke algebra Tg acts on H{(KP)g. Let p : Gg — GL2(E) be a
continuous Galois representation. We say that p is pro-modular if the Hecke system A of Ty
associated to p is such that the A-isotypic part H L(KP)g[)] of the completed cohomology
is non-zero. Let p, = P Gal(@,/Qy) be the restriction of a pro-modular representation p and
let B(pp) be the admissible Banach E-representation corresponding to p, by the p-adic
local Langlands correspondence. One of the main results of Emerton says that we have a
Go x GL2(Q))-injection R

p @5 Blpy) — B (K");

Actually Emerton proves even more. Namely, he describes almost completely H YKP)g,
but we shall need only the above weak local-global compatibility result.

One of the upshots of the above injection is the proof of the Fontaine-Mazur conjecture for
GL2 over Q. This conjecture states that if a continuous Galois representation p : Gg —
GL2(E) is unramified almost everywhere and p, is de Rham, then p is modular (arises
as a Galois representation associated to a classical modular form). Using the above weak
local-global compatibility, Emerton proves that if p is pro-modular and p, is de Rham
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with distinct Hodge-Tate weights, then p is in fact modular. The idea is that modularity
is connected with certain locally algebraic vectors being non-zero, and this statement
follows from the inclusion above and the fact that the locally algebraic vectors of B(pp)
are non-zero, when p, is de Rham with distinct Hodge-Tate weights. We remark, that
for GLg over Q Emerton is able to deduce from this apparently weak statement of the
Fontaine-Mazur conjecture, the full version by appealing to modularity lifting theorems
and Serre’s conjecture. In this work we shall deal only with deducing that pro-modular
Galois representations which are regular de Rham above places dividing p are modular.
We will refer to this statement as the pro-modular Fontaine-Mazur conjecture.

Our point of departure is the weak local-global compatibility of Emerton. In Chapter I
we give a general formalism which allows us to prove the pro-modular Fontaine-Mazur
conjecture for unitary groups U(n) compact at infinity assuming the existence of a certain
weak approximation of the p-adic local Langlands correspondence satisfying some natural
hypotheses. A natural question is to ask for examples. The construction of Breuil-Herzig is
the first succesful construction in the p-adic Langlands program, which goes beyond GLs.
They have associated to upper-triangular representations p;, : Gg, — GL,(E) admissible
Banach E-representations I1(p,)°"¢, which are built out of principal series. Conjecturally,
H(pp)‘”"d should account for the ordinary part of the full p-adic local Langlands corre-
spondence II(p,) if it exists. We will show that their construction satisfies our formalism.
At the end of Chapter I we will prove the pro-modular Fontaine-Mazur conjecture in the
ordinary totally indecomposable setting for U(n) (see Corollary 1.4.19):

Theorem .0.1. Let z € Xgr(E), where Xgp is the eigenvariety of some tame level KP
associated to U(n) and let p be the Galois representation associated to z. For each v | p
we assume that

1. py is ordinary, de Rham and reqular;
2. the reduction p, is generic and totally indecomposable.

Then z is modular (i.e. p is isomorphic to the Galois representation associated to a
classical automorphic representation of U(n)).

In Chapter II (joint work with John Bergdall) we show that the construction of Breuil-
Herzig appears in the completed cohomology group of U(3). Let F'/FT be a CM extension
of number fields in which p is totally split and denote G = U(3) a definite unitary group
in three variables attached to F//Ft. Let us fix a compact open subgroup K? C G(AL™).
With this data in hand, we can define the completed cohomology group of Emerton

H(K")p = (@@H(’(G(@)\G(A%/pr,Z/p%) ®z, B
s Kp

where K, runs over open compact subgroups of G(Qy,). This space can be seen as a model
for p-adic automorphic representations on U(3).

If 7 is an automorphic representation on U (3) then it has an associated (in the usual sense)
global Galois representation p = pr : Gal(F/F) — GL3(E) (extending E if neccessary;
work of Blasius and Rogawski in this case). If 7 has tame level KP then p, is unramified
away from a finite set depending on KP.

For each place v | p of F™ we write v = 99¢ and consider the local Galois representation
py = py : Gal(Fy/F5) ~ Gal(Q,/Q,) — GL3(E). If py is generic and ordinary (these
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notions are defined in Chapter II) then the same is true for pge and II(ps)°* only depends
on v | pin F*, where II(p;)°*® is the representation of GL3(F};) associated to ps by [BH].
Hence we will denote it by II(p,)°". The following theorem (Theorem is our main
result. It is a weak form, in the case of U(3), of Conjecture 4.2.2 in [BH].

Theorem .0.2. Suppose that for all v | p, p, is generic ordinary and totally indecompos-
able. Then there is a closed embedding

—

R, T1(p0) = T ()

We emphasize that p is assumed to be modular in the above theorem

The techniques that we use in the proof of this theorem may be important in their own
right. Namely, we establish a connection between refinements of classical points on the
U(3)-eigenvariety and certain principal series. This allows us to conclude by using an
adjunction formula for the Jacquet functor of Emerton. We remark that these methods
should generalize to U(n), as well as to U(2, 1) for example, and this is the subject of our
current work in progress. This approach is a natural generalization of [BE10].

Searching for a way to generalize the p-adic local Langlands correspondence, lead us to
think about the geometric methods. The classical local Langlands correspondence was
proved only after the use of geometric methods by Harris-Taylor. They have used global
(Shimura varieties) as well as local objects (Rapoport-Zink spaces) in order to deduce the
correspondence. It is tempting to follow their approach also in the p-adic case. Even
though some of the methods are no longer available (harmonic analysis), there are also
new purely p-adic phenomena. We have started this introduction by recalling Emerton
results which constitute the global geometric part of the p-adic Langlands program. In
Chapters III and IV we have investigated local geometric methods and we have obtained
partial results in this direction.

Chapter IIT focuses on the mod p cohomology of the Lubin-Tate tower. Our main results
are

(1) In the first cohomology group HiTI—F of the Lubin-Tate tower for GL2(Q)) appears
P

the mod p local Langlands correspondence and the naive mod p Jacquet-Langlands cor-
respondence, meaning that there is an injection of representations

TQp—H iT,]F‘p
and 0 ® T ® p appears as a subquotient in H },T,JFZ,
of GL2(Q,), p is its associated local mod p Galois representation and o is the naive mod
p Jacquet-Langlands correspondence (definition is given in Chapter I1T).
(2) The first cohomology group HiT,c,]I_?p with compact support of the Lubin-Tate tower
does not contain any supersingular representations. This suprising result shows that the
mod p situation is much different from its mod [ analogue. It also permits us to show that
the mod p local Langlands correspondence appears in H! of the ordinary locus. Again
this fact is different from the l-adic setting for supercuspidal representations.
To obtain those results, especially (1), we compare modular curves with their supersingular
locus, which contains multiple copies of the Lubin-Tate tower. We work at the rigid-
analytic level with Berkovich spaces.

, Where 7 is a supersingular representation

In Chapter IV we study the p-adic completed cohomology of the Lubin-Tate tower. Our
main results are analogous to those mentioned above, though we take a slightly different
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approach, by working with adic spaces. This allows us to work with modular curves of
infinite level, which are perfectoid spaces by the recent work of Scholze. This seems to be
a conceptually clearer approach. One of our main results is the following

Theorem .0.3. Let p : Gg = Gal(Q/Q) — GLa(E) be a pro-modular representation
(i.e. associated to some p-adic Hecke eigensystem on the Hecke algebra). Assume that
Pp = PlGq, is absolutely irreducible. Then we have a GL2(Qp) x G, -equivariant injection

B(pp) ®@F pp — HI(MLT,OOa E)

where B(py) is the p-adic Banach representation of GL2(Q)) associated to p, by the p-adic
local Langlands correspondence and Myt~ is the Lubin-Tate space at infinity associated

to GL2 (Qp) .

Convention: In each chapter we refer to the results from this chapter by simply using the
arabic numbers. For example, in Chapter III, Corollary 8.4 will refer to Corollary I11.8.4.



Chapter 1

Weak local-global compatibility
and ordinary representations

1.1 Introduction

In [Emella], Emerton has shown that the completed cohomology of modular curves re-
alises the p-adic local Langlands correspondence and used this result to prove the Fontaine-
Mazur conjecture for GLy(Q). We start from the observation that Emerton’s methods can
be well formalized to work for other groups, at least if we assume certain hypotheses, for
example the existence of the p-adic Langlands correspondence. Fortunately, only a part
of properties of the conjectural p-adic local Langlands correspondence are needed for ap-
plications to the pro-modular Fontaine-Mazur conjecture. We list them under hypothesis
(H1) in the body of this chapter. After introducing this local definition, we move to the
global setting. We work on the unitary Shimura varieties of type U(n). After establishing
certain basic results on the completed cohomology of these objects, we introduce the no-
tion of an allowable set, which is a dense set of points on the eigenvariety, such that the
specialisation at its points of a certain universal deformation of p lies in the completed
cohomology of our Shimura varieties. This gives a necessary global condition to link the
local hypothesis (H1) with the completed cohomology. Having to deal only with allowable
sets is easier, as we may hope that the description of the p-adic Langlands correspondence
for certain representations (regular and crystalline) will be explicit.

We remark that eventually we use two deformation arguments: one at the local level
and the other at the global level (the existence of allowable points). They are related
to two hypotheses ((H1) and (H2) respectively) on our global Galois representation p.
Assuming also a mild hypothesis (H3), we are able to prove the pro-modular Fontaine-
Mazur conjecture for U(n) in the following form (actually, we develop even more general
formalism):

Proposition I.1.1. Let F' be a CM field and let E be a finite extension of Qp. Let
p: Gal(F/F) — GL,(E) be a continuous Galois representation such that

(1) p is pro-modular.
(2) py is de Rham and regular for every v|p.
(3) p satisfies hypotheses (H1)-(H3).

Then p is a twist of a Galois representation associated to an automorphic form on U(n).
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The pro-modularity condition is explained in Section 3. It should not be very restrictive,
as it is believed that any representation p for which p is modular, is pro-modular (this is
proved by Emerton for GLg over Q).

As a corollary to this proposition, we obtain a version of the Fontaine-Mazur conjecture
on the respective eigenvariety.

Corollary 1.1.2. Let p : Gal(F/F) — GL,(k) be a continuous Galois representation
which satisfies hypotheses (H1)-(H3). Let X[p| be the p-part of the eigenvariety X associ-
ated to U(n) by the construction of Emerton from [Eme06c]. Let x € X[p] be an E-point
such that its associated representation p, : Gal(F/F) — GL,(E) is de Rham and regular
at every place of F' above p. Then x is modular.

There is one principal example (besides GL2(Qp)) when our formalism is satisfied
and it was the motivation behind writing this chapter - namely, the recent construction
of the ordinary representations of Breuil-Herzig ([BH]). We review this setting in the
second part of this chapter and then we prove unconditionally the pro-modular Fontaine-
Mazur conjecture for U(n) in the ordinary totally indecomposable setting at the end of
this chapter. Interestingly, the proof is relatively simple and we do not use in it the full
construction of Breuil-Herzig. Our main unconditional result is

Theorem 1.1.3. Let z € X}’(r;i(E), where X}}rz‘} s the ordinary part of the eigenvariety of
some tame level KP associated to U(n) and let p be the Galois representation associated
to z. For each v | p we assume that

1. py is de Rham and regular;
2. the reduction p, is generic and totally indecomposable.
Then z is classical (i.e. z arises from a classical automorphic representation of U(n)).

This result is also implied by a well-known classicality theorem of Hida. Nevertheless,
our proof is completely different.

1.2 Definitions and basic facts

Let L denote an imaginary quadratic field in which p splits and let ¢ be the complex
conjugation. Choose a prime u above p. Let us denote by F'T a totally real field of degree
d. Set F' = LF*. We will assume that p totally decomposes in F'. Let D/F be a central
simple algebra of dimension n? such that F is the centre of D, the opposite algebra DP
is isomorphic to D ®, . L and D is split at all primes above u. Choose an involution of
the second kind * on D and assume that there exists a homomorphism A : C — Dpg for
which b — k(i) ~1b*h(i) is a positive involution on Dg.

Define the reductive group
G(R) ={(\,g9) € R* x D ®@q R | g9* = \}.

We assume that G is a unitary group of signature (0,n) at all infinite places.

We choose a p-adic field E with ring of integers O and residue field k. These will be our
coefficient rings.
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We will fix an integral model of G over Op+[1/N] (see for example 4.1 in [BH] for details).
We consider 0-dimensional Shimura varieties Sx = G(Q)\G(Af)/K for G, where K is a
compact open subgroup of G(Ay).

Let W be a finite-dimensional representation of G over E. By the construction described
in Chapter 2 of [Eme06¢], we can associate to W a local system Vi on Sk-.

Let us fix a finite set X of primes w of F, such that w)p+ splits and w does not divide pN.
We can now define the abstract Hecke algebra

TE = O[T ugs
where quf) are the Hecke operators for 1 < i < n. The operator Tg) acts on the Shimura

variety Sk by a double coset GL,(OF, ) ( 1”0’j wslj ) GL,,(Op, ), where w,, is a uniformiser
of O Fy-

We define the completed cohomology of Emerton by

HO(K?) = (limlim H(Sk, kv, O/w°0)) @0 E
Ky

S

where K, C G(Qp) and K? C G(A’}) are open compact subgroups. We also define its
O-submodule

S

H(K?)o = limlim HO(Sk, k», O/w°O)
KP

We will fix the tame level K? for the rest of the text. Let K* = [Ligs G(Z;). We assume
that (KP); = G(Z;) at each | ¢ X.

We write T(K,K?) for the image of T®* in Endo(H®(Sk, kv, ©)). Then we define

—
K

T = T(K?) :=lim T(K,K?)
P
where the limit runs over open compact subgroups K, of G(Q,). We remark that T has
a finite number of maximal ideals and is a product of its localisation at those maximal
ideals. We refer the reader to p. 28 of [Sorl12] for details. In particular, if m is a maximal
ideal of T, then Ty, is a direct factor of T.

We define also
H°(K?, V) = lig H*(Sk, kv, Viv)
KP

where W is an irreducible algebraic representation of G and Vyy is the E-local system on
(Sk) K associated to W.
We recall the definition of locally algebraic vectors from [Emellb].

Definition 1.2.1. Let G be the group of Q,-points in some connected linear algebraic
group G over Q, and let V' be a representation of G over E. Let W be a finite-dimensional
algebraic representation W of G over E. A wector v in V is locally W -algebraic if there
exists an open subgroup H of G, a natural number n, and an H -equivariant homomorphism
W™ — V whose image contains the vector v. We write Viy_i, for the set of locally W -
algebraic vectors of V.

Emerton proved in Proposition 4.2.2 of [Emellb] that Vi, is a G-invariant subspace
of V.
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Definition 1.2.2. A vector v in V is locally algebraic, if it is locally W -algebraic for some
finite-dimensional algebraic representation W of G. We denote the set of locally algebraic
vectors of V' by Viaig-

It is a G-invariant subspace of V' by Proposition 4.2.6 of [Emellb]. We have the
following proposition

Proposition 1.2.3. We have a G(Ax,)-equivariant isomorphism

ﬁO(Kp)l.alg = @HO(KI)’ VW) & W\/
w

where the sum is taken over all isomorphism classes of irreducible algebraic representations

of G.

Proof. This follows from the Emerton spectral sequence. See Corollary 2.2.18 of [Eme06¢].
O

Let m be a maximal ideal of T which we fix and let py : Gp — GL, (k) be the continuous
Galois representation which is unramified outside > and whose characteristic polynomial

satisfies
n

charpm (Frob,,) = Z(—l)”_i Nm(w) D270 X mod m
i=0
for all places w which do not belong to ¥ and which split when restricted to F'™. This
is the Galois representation associated to m. We refer the reader to Proposition 3.4.2 in
[CHTO08] for the construction. We remark that we can suppose that py, is valued in GL,, (k)
after possibly extending E (which we allow).

We assume that the maximal ideal m of T is non-Eisenstein, that is pn is absolutely
irreducible. We let py be the universal automorphic deformation of py over Ty, (its
construction is standard and we do not recall it here; precise references may be found in
Section 4.3 of [CS13]). It is an n-dimensional Galois representation over Ty, which satisfies

charpm (Frob,,) = Z(—l)"‘i Nm (w) ¢~ D/270) x°
=0

for all places w which do not belong to ¥ and which split when restricted to F'T.

1.3 General formalism

We now explain the general formalism for proving the pro-modular Fontaine-Mazur con-
jecture which we specialize at the end to the ordinary setting.

Let T}, be a local complete reduced O-algebra finite over Ty and let pl, : Gp —
GL,,(T,) be the pushout of the universal representation py to Ty,. In what follows, we
will always write p’ for an ideal of T/, and p for its inverse image in Ty,. In particular, we
will write m’ for the maximal ideal of Tj,.

We will make certain hypotheses (the last one depending on an ideal p’ € Spec T,):

e (H1) There exists an admissible representation II(py, ,) of GL,(Qp) over Ty, associ-
ated to each local representation pj, , for v|p. This representation is such that for
each prime ideal p’ of T}, which comes from Spm(T},[1/p]) (where Spm is the max-
imal spectrum, i.e. the set of maximal ideals) for which py, ,/p’[1/p] is regular and
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de Rham at all places v dividing p, the locally algebraic vectors of II(py,,,)/p'[1/p]
are non-zero for all v|p. Moreover we assume that the k-representation mm, :=
() /m’ is of finite length.

e (H2): There exists an allowable set of points for TI(pf, ,,) (for each v[p), that is, there
exists a dense set of points C in Spec(T},) which is contained in Spm(T},[1/p]) and
such that for each p’ € C we have

Homr,, (6(q,)] (Sulpl () /0 H(KP)) # 0
e (H3)[p']: Every non-zero Tn[G(Q,)]-linear map
Dufp(phy,0) /P — HO(KP)
is an embedding.
Let us make some comments before showing how these hypotheses imply the pro-

modular Fontaine-Mazur conjecture.

The hypothesis (H1) gives an existence of a representation which shall be viewed as an
approximation of the p-adic local Langlands correspondence applied to pl,. In what follows
(H1) will be satisfied by using the construction of Breuil-Herzig of the ordinary part of
the p-adic local Langlands correspondence.

Regarding the hypothesis (H3)[p] we will not say anything here. It is needed to deduce
that certain locally algebraic vectors are non-zero.

We are left with discussing (H2). Let us define
Hp = ®v|pH(p:n,v)

We define Tj,-module
X = Homy, (g, (I, H*(K?)o)

of T[G(Qp)]-linear homomorphisms which are G(Q))-equivariant and continuous, where
IL, is given the m-adic topology.

The hypothesis (H2) is equivalent to demanding the existence of an allowable set for
p that is a dense subset C on Spec T}, such that for all p’ € C we have

X[p'] = Homy, (¢ (q,) (/v H(KP)om) # 0
Let us prove a preliminary lemma:
Lemma 1.3.1. Homp (X, O) ®o E is a finitely generated T} [1/p]-module.

Proof. By Proposition C.5 of [Emella] we have to show that X is cofinitely generated.
By Definition C.1, because H(KP)p n is w-adically complete, separated and O-torsion
free, we are left to show that (X/wX)[m'] is finite-dimensional over k. But we have

(X/wX)[m'] = Homyg(q,) (Mp/m, HY(KP)pm)

and we show that Hom is finite-dimensional. Because II,/m’ = Qy|pTm,p and each my, is
of finite length, for each v we can choose a finite-dimensional k-subspace W, of 7y, which

generates my, as a GLy(Qp)-representation. Let W = ®@ypWy. Since W, is smooth and
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finite-dimensional we can choose a compact open subgroup K, fixing W, point-wise. Let
Kp = [I,)p Ky By restriction we have

Homyc (g, (Ip/m', HO(KP)jm) < Homyg | (W, HO(KP)jom)
Since K acts trivially on W we moreover have
Homy, g (W, HO(KP)m) = WY @ H(Sk, kv, k)m
which is of finite dimention over k. O

Lemma 1.3.2. Assume (H2). Then X[p'] # 0 for all p’ € Spec T},.

Proof. By Lemma C.14 of [Emella], we have
(T/p") @ Homo (X, 0) @0 E ~ Homp(X[p'], 0) ®0 E

and so it suffices to show that the elements on the right are non-zero for all p’ if and only
if they are non-zero for all p’ in C. Consider things in more generality. Let M be a finitely
generated Ty, [1/p]-module such that M/p’M # 0 for all p’ € C. Because T}, [1/p]/p’ is a
field, it follows that M /p’'M is a faithful T} [1/p]/p’-module. If ¢ € T} [1/p] acts by 0 on
M then it acts by 0 on M/p’M for all p’, and as M/p'M # 0 if p’ € C, we have t € p’
for all p’ € C, that is t € Nyeep’ = 0. So Ty, [1/p] acts faithfully on M. Now, let p’ be
any maximal ideal of T/ [1/p] and suppose that M/p'M = 0, that is M = p’M. As M
is finitely generated T, [1/p]-module, Nakayama’s lemma gives us a non-zero element ¢ of
T..[1/p] such that ¢M = 0, which is impossible as we have shown above. We deduce that
M/p'M # 0 for all p’. Applying this reasoning to M = Homp (X, O) ®o E which is finitely
generated by Lemma we conclude. O

Definition 1.3.3. We say that a representation p : Gal(F/F) — GL,(E) is pro-modular
with respect to Ty, if there exists a prime ideal p' of Ty, such that p =~ pw/p[1/p] and
HY(KP)[p] # 0, where p is the inverse image of p’ in T.

One natural source of pro-modular representations are representations attached to
points on the eigenvariety for G. We shall review this notion later on.

We say that p is modular if it is the Galois representation associated to some auto-
morphic representation of G of tame level KP. This is equivalent to H° (KP)1.aiglp] # 0 by
Proposition[[.2.3] Our three hypotheses imply the pro-modular Fontaine-Mazur conjecture
in the following form.

Theorem 1.3.4. Let p : Gal(F/F) — GL,(E) be a pro-modular Galois representation
with respect to T, with the associated prime ideal p’' of Tt,. Assume that p is de Rham
and regular at all places dividing p. Assume also that hypotheses (H1),(H2) and (H3)[p’]
hold. Then p is modular.

Proof. As p, is de Rham and regular for every v|p, by (H1) we have that II(py)1.q9 7 0
for every v|p. By Lemma and the hypothesis (H3)[p'] we conclude that also

HO(KP) aglp) # 0

which is what we wanted. OJ

In the rest of this text we will explain the ordinary setting.
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I.4 Ordinary case

In this section, we show that the ordinary part of Breuil-Herzig ([BH]) fulfills the formalism
presented in the previous section.

I1.4.1 Preliminaries on reductive groups

We recall certain results on reductive groups used in [BH]. Let G be a split connected re-
ductive Z,-group with a Borel subgroup B and a torus T' C B. Welet (X (T'), R, XV(T'), RY)
be the root datum of G, where R C X (T) (respectively RV C XV(T)) is the set of roots
(resp. coroots). For each o € R, let s, be the reflection on X (T') associated to . Let W
be the Weyl group, the subgroup of automorphisms of X (7") generated by s, for a € R.

We fix a subset of simple roots S C R and we let R™ C R be the set of positive roots
(roots in PaesZsoa). Let G be the derived group of G and let G be the dual group
scheme of G (which we get by taking the dual root datum). We have also dual groups B
and T

To a € R one can associate a root subgroup U, C G. We have a € R™ if and only if
Uy, C B. We let g, be the Lie algebra of U,. We call a subset C' C R closed if for each
a € C,B e C suchthat a+ 3 € R, we have a + 3 € C. If C C RT is a closed subset, we
let Uc C U be the Zariski closed subgroup of B generated by the root subgroups U, for
a € C. We let Bo = TU¢ be the Zariski closed subgroup of B determined by C.

Let us spell out all the assumptions that we put on G and its dual group G. We suppose
throughout this text that both G and G have connected centers. Moreover we suppose
that G is simply connected (some of these conditions are equivalent, see Proposition
2.1.1 in [BH]). This condition implies that there exist fundamental weights A, for o € S.
They satisfy for any 8 € S

1 ifa=p
</\a,5v>—{ 0 if o # 3

We define as in Section 3.1 of [BH] a twisting element 6 for G by setting 0 = Y cg Aa-
For any a € S we have (0, a") = 1.

If C C R is a closed subset, write G¢ for the Zariski closed subgroup scheme of G
generated by T, U, and U_, for a« € C. For C' = {a} we write simply G, for Go. A
subset J C S of pairwise orthogonal roots is closed (see the proof of Lemma 2.3.7 in [BH])
and hence we can define G; as above.

Lemma 1.4.1 (Lemma 3.1.4, [BH]). Let J C S be a subset of pairwise orthogonal roots.
Then there is a subtorus T, C T which is central in Gy such that

Gj~T)xGLy

We use this lemma in the construction of I1(p)°"¢ which we define as a sum over certain
induced representations of G ;(Qp). We construct representations of G ;(Q)) by using the
p-adic local Langlands correspondence for GL2(Q)).

1.4.2 Ordinary part of the p-adic local Langlands correspondence

Let E be a finite extension of Q, with ring of integers O and let k be its residue field. We
fix also a uniformiser w. Let A be a complete local Noetherian O-algebra with residue
field k.
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We have
T(Qp) = HomSpec(Qp)(SpeC(QP)a Spec(@p [X (T)])) = HomZ (X(T)7 Q;) =

— Homgz(X(T),Z) @z Q) = X(T) ©z QX

To a continuous character

X: Gal(@p/Qp) - Gal((@p/@p)ab - T(A)

we can associate a continuous character x : T'(Q,) — A* by taking the composite of the
maps

T(Qp) ~ X(T) @7 QF — X(T) ®z Gal(Q,/Q,)™ — X(T') @7 T(A) — A*

where the first injection comes from the local class field theory.

We define the p-adic cyclotomic character € : Gg, — A* by composing the standard
p-adic cyclotomic character which takes values in O* with the inclusion O* < A*. By
the local class field theory we can also consider it as a character of Q, which we tacitly
do in what follows.

Let us consider a continuous homomorphism
p: Gal(Q,/Qy) — G(A)

Definition 1.4.2. We say that p is triangular when it takes values in our fixed Borel

B(A) of G(A).

We let C,, C RTY be the smallest closed subset such that B(;p (A) contains all the p(g)
for g € Gal(Q,/Q,) (compare with Lemma 2.3.1 of [BH]). Thus p factorises via E’CP(A)

p:Gal(Q,/Q,) — Be,(A) € B(A) C G(A)
We associate a character \, to p by composing p with the natural surjection
Xp : Gal(Qp/Qy) = Be, (A) - T(A)

We attach to X, a continuous character x, : T(Q,) — A* by the local class field theory
as above.

Definition 1.4.3. We say that a triangular p is generic if " o %, ¢ {1,¢,e"'} for all
a € Rt (or equivalently all « € R). The same definition applies to the reduction p of p.

In what follows we will consider only triangular representations p. We assume that p
is generic.

We now construct several representations of G(Q,) over A attached to p. Let I C
SV be a subset of pairwise orthogonal roots. We shall firstly construct an admissible
continuous representation I(p); of Gv(Q,) over A. We imitate the proof of Proposition
3.3.3 in [BH]|, though we present a simplified construction, because we do not need to
show unicity of ﬁ(p) 7- Only later on and under additional assumptions we will show
that we retrieve the construction of Breuil and Herzig over fields. Then we obtain a
representation I1(p)°"® of G(Q,) over A, which generalizes the construction of Breuil and
Herzig over fields, and which we define as a direct limit of II(p); over different I (where
TI(p); is simply TI(p); induced to G(Q,)). In particular, we shall consider a representation



I.4. ORDINARY CASE 23

I(p)y = (Indgggi g Xp- (€710 9))00 which we use for the proof of the pro-modular Fontaine-
Mazur conjecture. All these representations are functorial in A and hence behave well
with respect to reduction modulo prime ideals.

If 3 €IV and xs: T(Q,) — A* is a continuous character, we define

CO
GL _
Hs(xp) = (Ind(I 28(;@10) x5 - (€ to 9)|TE(Qp))

This is a representation of GL2(Q,) which we use as a building block. We let pg :
Gal(Q,/Q,) — GLg gv(A) be the representation which we get by composing p : Gal(Q,/Q,) —
B(A) with B(A) — Bg(A) — GLggv(A). We define £ as the representation attached to
the 2-dimensional Galois representation pg by the p-adic local Langlands correspondence
for GL2(Qp). In order to have a functorial construction we fix a quasi-inverse MF~! to
the Colmez functor MF for GL2(Q),) (we use the notation of Emerton from [Emellal).
For any f it sends a lifting of pg to a lifting of 73 with a central character (where 7g

is the smooth representation over k corresponding to pg by the mod p local Langlands
correspondence). Then we define

£ = MF " (py)

We remark that over k this is an extension of IIz(ss(Xp15(Q,))) by Hs(X,7s(0Q,)) because
pgs is lower-triangular with the appropiate character on the diagonal (see Proposition 3.4.2
in [Emellal).

Let x|, ;v = X PIT! (@) We define an admissible continuous representation of 77, (Qp) X

GL2 (@p)lv

(p)r =X, ("o 071, @) @4 (©pervEs)
This is exactly the representation we look for.

We set o0
(p)r = (455G, 6,0 o) T0P)T)

where we view II(p)s as a continuous representation of B~(Q,)Gv(Q,) by inflation. By
the proposition above and by Theorem 3.1.1 in [BH| (which holds in our setting verbatim),
the representation II(p); of G(Q)) is admissible and continuous.

We now use an argument similar to the one of Breuil-Herzig appearing before Lemma
3.3.5 in [BH| to construct a direct limit. Following the proof of Proposition 3.4.2 of
[Emella] we have natural injections of Ig(X,1,(q,)) into . Indeed, Proposition 3.2.4
of [Emella] gives us a natural embedding X,1,(q,) < Ord(£s), where we have denoted
by Ord the ordinary part functor of Emerton. By adjointness property of Ord this gives
us a GL2(Qp)-equivariant injection Ilg(Xp1,(q,)) <> €s- We remark that those injections
will be functorial because of Proposition 3.2.4 of [Emella] and because we have fixed a
quasi-inverse MF 1.

By Theorem 4.4.6 and Corollary 4.3.5 of [Emel0a], we have for I' C I

Gv(Qp) ~ 0 7
Homgg,) (T1(p) 1, 11(p) 1) ~ Homg,, (g,) ((Indé—@i)mazv (@))G (@) 1P)1) ’H(p)f)

Observe that our injections
s (pira@p)) = &8



24 CHAPTER I. WEAK LOCAL-GLOBAL COMPATIBILITY

invoked above induce an injection

IndGIV (Qp)

1 C
(B (@G (@) (@) LA )T = L(p)1

and hence also a G(Q))-equivariant injection

H(p)r = I(p)1

This actually gives a compatible system of injections, by which we mean that for any
I" C I' C 1, the corresponding diagram of injections is commutative. We then define an
admissible continuous representation of G(Q,) over A by

I1(p)*"" = lim I(p)
I
where I runs over subsets of SV of pairwise orthogonal roots.

[.4.3 Compatibility with the construction of Breuil-Herzig

We study in this section how II(p)°"® behaves with respect to reduction modulo prime
ideals in A. Recall that G and its dual are split, hence we can canonically identify RV (A)
and RY(A/p) for any prime ideal p of A.

Lemma 1.4.4. Let A — A’ be a morphism of complete local O-algebras and let p be
triangular over A with p generic. Then

M(p@a A)r =Tl(p)r @4 A’
for any subset I C SV of pairwise orthogonal roots and
H(p R4 A/)ord ~ H(p)ord ®4 A

Proof. Observe that p ® 4 A’ is triangular because p is. By the definition of II(p); it is
enough to check, that the construction of f[(p) 1 we have given above is compatible with
the base change A — A’. This follows from the fact that the p-adic local Langlands
correspondence for GL2(Q,) is compatible with the base change A — A’.

O

To put more content into this lemma let us specialize to the totally indecomposable
case.

Definition 1.4.5. We say that p is totally indecomposable if C, = RV is minimal
among all conjugates of p by B (equivalently, Cp,,—1 = R™Y for allb € B).

We prove now that for GL,, we retrieve the construction of Breuil-Herzig after reducing
modulo p. Before continuing, we shall give another characterisation of totally indecom-
posable representations valable for G = GL,,.

Lemma 1.4.6. Let p : Gal(Q,/Q,) — GL,(A) be a triangular representation and A be a
field. The following conditions are equivalent:

1. All semi-simple subquotients of p are simple (equivalently, the graded pieces of the
filtration by the socle are irreducible).
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2. B is the unique Borel that contains the image of p (equivalently, the image of p fizes
a unique Borel B (flag)). Here B is the Borel we have fized before in the definition
of being triangular.

3. p is totally indecomposable.

Proof. (1. < 2.) If there exists soc;41 / soc; which is not irreducible then we can construct
two distinct flags which are stable by the image of p. On the other hand, if there exists
two distinct flags fixed by the image of p, say

VicVocC...CV,

and
vicvic..cVv!

and let j be the smallest index such that Vj # V/. Then (V; +V])/V;_1 is of dimension 2
and semi-simple, hence p is not totally indecomposable.

(2. & 3.) Suppose that p stabilizes another Borel B’ (apart from B). Let b € B be an
element which conjugates B’ into a Borel containing the maximal torus 7. This Borel
bB'b~! is of the form w(B) for some w in the Weyl group. Hence we see that Cjp-1 is
contained in the intersection of RTY and w(R™"), and in particular is different from R*V.

If C, is different from RTY, then there exists a positive simple root @ which does not
belong to C,. It follows that s,(C,) is contained in R™Y and hence the image of p is
contained in sq(B). O

Lemma 1.4.7. Let p : Gal(Q,/Q,) — GL,(O) be a triangular representation such that
p is triangular, generic and totally indecomposable. Then pg = p Qo E is also totally
indecomposable and generic.

Proof. The statement about genericity of pp is clear. Let us prove that it is totally
indecomposable. Let us denote by x; characters appearing on the diagonal of p which we
have supposed to be pairwise distinct hence linearly independent. Let B be a Borel in
GL,,(F) containing the image of p. It corresponds to a flag

VicV,c...CcV,=E"
By intersection with O™ we obtain a flag
wi Cwy C ... Cwy, =07

of O™ stable by the image of p which reduces to the standard flag modulo m by the
hypothesis that p is totally indecomposable. In particular, we see that G acts on V;/V;_
by a character y; with values in O* which lifts the character y;. By genericity of p, the
characters y; are mutually distinct and each appears in the semi-simplification of p with
multiplicity 1.

Suppose now that we have another Borel B’ different from B and stable by the image
of p with the associated flag

VicVic..cV,

Let i be the smallest index ¢ such that V/ # V;. Then G acts on the 2-dimensional
subquotient (V; +V/)/V;_1 by the character x;, which contradicts the fact that x; appears
with multiplicity 1. Hence B’ = B and we see that p is totally indecomposable by Lemma

[L4.6l O
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Proposition 1.4.8. Suppose that p is generic, triangular and totally indecomposable and
p is triangular. Then for any morphism A — E' (where E' is a finite extension of E), the
E'-Banach representation (p)°"d @4 E' is the representation II(p® 4 E')*Y of Breuil and
Herzig.

Proof. By Lemma we can suppose that A = Ops. Observe that pp = p ®o,, E' is
generic and totally indecomposable by Lemma [[.4.7] To finish the proof we have to show
that pgr is a good conjugate of itself (Definition 3.2.4 in [BH]). This follows from (3) of
Lemma and we conclude by Lemma 3.3.5 of [BH]. O

I.4.4 Universal ordinary modular representation

In this subsection we will apply the formalism developed above to a particular example.
We consider triangular deformations of modular representations and our goal is to define
H(pm’w)md, where pm 4 is a certain universal modular Galois representation at a place w|p.

We take up the setting of Section 2. For each place w|p of F* we choose a place @ of
F', so as to get an identification

G(Qp) ~ [[ GLn(F3) = GL(Qp)!
wlp

where f = [T : Q. We denote by B the upper triangular Borel subgroup and we have
B~ B, (Qp)f .

We will now define a certain quotient T(KP)°*d of T(KP). There are two equivalent
approaches for this.

Firstly, we may follow Geraghty who introduced in 2.4 [Gerl0] a certain direct factor
T(KPKp,(n))°¢ of T(KPK,(n)) where K,(n) denotes the group of matrices in GL,,(Z,)’
that reduce to a unipotent upper-triangular matrix mod p™. More precisely, in loc. cit is
defined the algebra Tf’ord(U (i™™),O). There, A is a dominant weight for G (but we take
A = 0 in this case), U(I™") is our KPKp(n) (our p is denoted by 1), T is our X. Beware
that Geraghty’s algebra contains diamond operators at places above p (his 1), in contrast
with ours. So our T(K?K,(n))"d is the image of T(K?) in Geraghty’s Ty " (U(I""), O).
When n varies, these constructions are compatible and we may take the projective limit
TE" YU (1), O). We get a quotient T(KP)°™d as the image of the natural map T(K?) —
TOT’()rd(U(lOO), O) in Geraghty’s notation on p.14 of loc. cit.

Alternatively, we may use Emerton’s ordinary part functor and define
T(KP)°™d := image of T(K?) in Endp(Ordp(H(KP)))

Note that Ordg(H°(KP)) is a continuous representation of T(Qp) over T(K?) and in
particular is a T(KP?)[[T(Zp)]]-module. Then Geraghty’s algebra can be identified with
the image of T(KP)[[T(Zp)]] in Endo(Ordp(H(KP))) (compare with 5.6 of [Emella)).

Let now m be a maximal ideal of T(K?) as in Section 2. We say that m is ordinary
if it comes from a maximal ideal of T(KP)°"d. The quotient map T(KP), — T(KP)od is
a surjection.

Let us fix an ordinary non-Eisenstein maximal ideal m of T(KP). Recall that we have
defined py and py in Section 2. For any prime ideal p in T(KP)%'d coming from the
maximal spectrum Spm(T(KP)2[1/p]), we will write

Pp 1= Pm Op(gpyord T(KP)0 /p[1/p]
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which is a continuous Galois representation over a finite extension of Q,. We will need
the following result of Geraghty:

Proposition 1.4.9. Consider the set PT%  of mazimal ideals in T(KP)%'[1/p] such that

HO(KPK,(0), Vw)[p] is non-zero for some irreducible algebraic representation W of G.
Then:

e This set is Zariski dense in Spec(T(KP)%4[1/p]).

o For any p in PSS .

each place dividing p.

the representation py is triangularisable (and crystalline) at

Proof. The point 2. follows from Corollary 2.7.8 of [Gerl(]. The point 1. is the density
of cristalline points which is proved in Corollary 4 of [Sorl2], or can be deduced from the
density result of Hida used by Geraghty in the proof of Corollary 3.1.4 in [Ger10)]. O

As a consequence of this proposition, the residual representation pm 4, is triangularisable
for each w|p.

We now assume further that pm ., is totally indecomposable and generic for each w|p.
Note that generic was only defined for triangular representations. However the defini-
tion extends unambiguously to triangularisable representations, provided they are totally
indecomposable, because such representations factor through a unique Borel subgroup.

In what follows we will write TS for T(KP?)3™d. This should cause no confusion.

Our goal is to define TI( Pmw)’¢ where p, 4 is the restriction of py to the decomposition

group G, = Gal(F,/F,) for any place w|p of F'. In order to do so, we need to prove that
Pmw is triangularisable. We basically do so, but not over ']T,?fd but rather over a bigger
O-algebra T},. This is sufficient for our applications.

Following Geraghty (Section 3.1 of [Ger10]) we introduce a subfunctor G of Spec T x
F defined on A-points as the set of O-homomorphisms T3¢ — A and filtrations Fil € F(A)
(F is the flag variety) preserved by the induced representation p4 .. In fact, Geraghty
defined this functor over a universal ring R, but we shall need it only over the Hecke
algebra.

This functor is representable by a closed subscheme G of Spec T% x F (Lemma 3.1.2
in [GerI0]). We consider the resulting morphism f : G — Spec TS,

Proposition 1.4.10. The morphism f : G — Spec T is proper with geometric fibres of
cardinal one.

Proof. The properness of f follows from that of the flag variety (cf. the proof of Lemma
3.1.3 in [Gerl0]). Let us now prove that each geometric fibre is of cardinal one. Let us
denote by X1,w; X2,w; ---» Xn,w characters of G, appearing on the diagonal of py, .. Firstly,
we remark that geometric fibres are non-empty. Indeed, f is dominant by Proposition
hence surjective since it is proper. On the other hand, there is at most one filtration
Fil over each geometric point, because py ., is generic and totally indecomposable hence
each j-th graded piece gr; = Fil; /Fil;_; has to be a lifting of X; ., (see proofs of Lemma
and Lemma [I.4.7)). This allows us to conclude. O

By Proposition above and Zariski Main Theorem we conclude that f is finite and hence
G = Spec T}, ,, for some O-algebra T}, ,, finite over Tord.



28 CHAPTER I. WEAK LOCAL-GLOBAL COMPATIBILITY

Corollary I1.4.11. The morphism f : Spec ’]I‘fn,w — Spec T is a homeomorphism which
induces an isomorphism of residual fields at each prime p’ € Spec Tin’w with perfect residual

field.

Proof. 1t follows from the fact that geometric fibres of f are of cardinal one. O

We define T/, to be the tensor product over TS of Ty for all w|p. This is still an
O-algebra finite over T with Spec T/, homeomorphic to Spec TS,

Consider the base-change of py to Ty, that is pi, : Gp — GL,(T},). By what we have
said above, pi, ,, can be conjugated to a triangular representation py, ,, for each wp, which
is also generic and totally indecomposable at each w|p, because pn 4, is by our assumption.
By Corollary above, for each prime ideal p associated to an automorphic representation 7
on G(A), there exists a unique p’ in T/, such that pl, /p'pL[1/P] = Pm/PPm[l/p].

The above discussion leads us to the following definition

T(pmw)™ = TPl 1) "

and similarly
T (pm,) 1 o= TI(ply o)1

for any I, in particular for I = () which we shall use below. These are representations over
T/,. To conclude using our precedent results that the reduction modulo prime ideals of
(i) is well-behaved and compatible with the construction of Breuil-Herzig we need
the following fact.

Lemma 1.4.12. For each prime ideal p of Ty, which comes from a mazimal ideal of
T, [1/p], the representation I1(p ,,)" /p[1/p] does not depend on the chosen triangulation
p{;’w of an,w (where by triangulation of p{mw we mean a triangular representation which
can be conjugated to pfmw).

Proof. By Proposition we deal with the construction of Breuil-Herzig and hence we
can use facts from [BH|. We have to prove that for any triangulation py ,, the reduction
Pim.w/P 18 & good conjugate of pm,/p (Definition 3.2.4 in [BH]). This would give our claim
by Lemma 3.3.5 of [BH]. By our assumption that py,, is generic triangular and totally
indecomposable, any triangular lift p of py . is totally indecomposable and generic by
Lemma Then we conclude by (3) of Lemma that each triangulation of py, ,,/p
(in particular py ,,/p) is a good conjugate of pf, ,,/p-

O]

We summarize our efforts so far in the following theorem.
Theorem 1.4.13. Let m be an ordinary non-Fisenstein ideal of T such that py . is totally

indecomposable and generic for each w|p in F. Then we have for any prime ideal p’ of T},
(with the inverse image p in TS) which comes from a mazimal ideal of T/[1/p):

T(Pfa) ™" /0 Ty 1) [1/P] = TP /P Prm 0 [1/])

Similar compatibilities with reduction modulo prime ideals hold for II(pm )7
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I[.4.5 On the pro-modular Fontaine-Mazur conjecture

We come back to our general formalism which we will apply to II(pmw)p. We assume that
m is a non-Eisenstein ordinary ideal of T such that pn , is triangular, generic and totally
indecomposable for each w|p. We take T}, to be T/, from preceding sections. We start
with two lemmas:

Lemma 1.4.14. Let 11,1, : Gal(Q,/Q,) — E be two de Rham characters such that
Yyt ¢ {16,671} and let 0 — b1 — V — by — 0 be the non-split extension (there is a
unique one; see below). Suppose thatV is de Rham. Then HT (1) < HT (¢2) (normalizing
HT(e) = —1).

Proof. The fact that there is a unique extension of 11 by o follows from the fact that
H' = HY(Gal(Q,/Qp), 115 1) is of dimension 1 because 115 " is generic. Observe that
V € H'. One can define the Selmer group H, = Hgl(Gal(@p/Qp), Y1105 1) which measures
whether V' is de Rham (we refer the reader to Chapter II of [Berl3|; Definition is given
before Proposition 2.17). By Corollary 2.18 of [Ber13] we see that V' € Hgl. Hence H; is of
dimension one. But Proposition 2.19 of [Ber13] gives us a formula for the dimension of H gl,
by which we infer in our case that dimH ; =1 is equal to the number of negative Hodge-
Tate numbers (compare with the discussion after Proposition 2.19 in [Berl3|). Hence
HT(41) < HT(2). O

Recall that we have defined ‘the character 0 in Section 4.1. For GL,, this character is
simply diag(z1, ..., zn) — [1; 20"

Lemma 1.4.15. Let p : Gal(Q,/Q,) — GL,(E) be a de Rham, triangular, totally in-

decomposable, generic Galois representation. Then the character x, - (6710 0) is locally
algebraic dominant.

Proof. Triangularity permits us to define x,. It is clear that the character is locally
algebraic because p is de Rham. We conclude that x,, - (¢~ 0 0) is dominant by applying
the lemma above to each pair of consecutive characters on the diagonal of p (which we
can do because p is totally indecomposable and generic). O

We can now check that for representations II(pm )¢ hypothesis (H1) holds:

(H1): We have to check that if p is a prime ideal of T}, corresponding to the Galois
representation p, which is de Rham and regular at all places w|p, then locally algebraic
vectors in II(pmw)p/P[1/p] = IL(ppw)g[l/p] are non-zero. Indeed, the locally algebraic
vectors in II(pyw)p[1/p] are non-zero because it is the representation induced from the
locally algebraic dominant character y = Xp®(€*1o¢9) (by Lemma; to see it we write
X = XsmOw for this character, where g, is smooth and dyy is algebraic corresponding to an
irreducible algebraic representation W of G(Q,). We have W = (Indg(_(gp) Sw)®9. Then

the universal completion of the locally algebraic representation (Indg(_(gp) Xsm)"™ @ W

is equal to (Indg(_%gp) x)¢ = I(pp.w)p[1/p] because x is unitary (we inject the locally

algebraic induction into the continuous induction by sending fs, ® fag to fom - faig, Where
fsm>faig are functions on smooth, respectively algebraic part). In particular, the set of
locally algebraic vectors in II(pp.)g[1/p] is non-empty. The fact that II(pmw)g/m’ is of
finite length is clear from the definition.

For p € P as in Proposition we know that each py ,, is crystalline triangular-

autom
isable. Our hypothesis on pn ., implies that py ,, is also totally indecomposable (Lemma

1.4.7) and generic. So we may unambigously associate to it a character x,, ,, of T (Qp).
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Let us recall a classical local-global compatibility result.

Lemma 1.4.16. Fiz p € P Let W be the irreducible algebraic representation of

autom*

G(Qp) such that H(KP?,Vi)[p] # 0. Let m be an automorphic representation such that
TrJpr C H(K?, Vw)[p]. Then

GLn,, — a
Y = 85 (o)

GLn, — sm
Tp = Oulp(d 5 15 (g (€70 0))am)

where we have denoted by (.)sm (respectively, (.)ag) the smooth (resp. algebraic) part of
the character.

Proof. The first isomorphism follows from Corollary 2.7.8(i) of [Gerl(] with the following
dictionary:

e our W is Geraghty’s M), therefore WV = Indg:" (wo) ™t
e his A = (A1) ptsp = (Aw)wp Since p was assumed to be totally split in F.
e for each w|p, loc. cit. tells us that (X, . )ag = (Worw) ' -0

The second isomorphism follows from Corollary 2.7.8(ii) of [Ger10] and the first formula
on p. 27 of |[Gerl0] (proof of Lemma 2.7.5). Namely, loc. cit. tells us that m, is the

unramified subquotient of (n — Indg%&;@p )(Xp,r) sm) @ | det |("=1/2 (normalized induction).

But the genericity of py,, implies that

GL,, —_
Tw = (n— IndB(Qg)@p)(Xpﬂ)Sm) ® | det |(" D/2
and smooth representation theory tells us that this is also

G n n— G n — n—
(n = Tndj= ) (X, )sm) @ | det | "~D/2 = (Ind 52783 (x,, ) em %) © | det 1)/

where dp is the modulus character. We conclude by observing that
5517 [ det |02 = (671 0 0) gt (21, 000y 20) > [ 26T
O

Using II(pmw)p we can make use of our formalism (Theorem [[.3.4)) to get the pro-
modular Fontaine-Mazur conjecture in the following form.

Theorem 1.4.17. Let m be an ordinary non-FEisentein ideal of T such that pm., is totally
indecomposable and generic for all w|p. Let p be pro-modular with respect to ']I‘,?fd and de
Rham reqular. Then p is modular.

Proof. To conclude by Theorem [.3.4] we have to check that hypotheses (H2) and (H3) hold
for II(pm,w)g. The hypothesis (H2) says that there exists an allowable set for II(pmw)p,
which means that there exists a dense set of prime ideals p in the Hecke algebra T},
for which the associated Galois representation py ., (w|p is a split place) gives a Banach
representation II(py )¢ with an injection

®w\pH(pp,w)@ — ﬁO(Kp)E
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We can prove it for the set P — which is dense by Proposition Indeed, if p
corresponds to a classical automorphic representation m with the Galois representation
pr. Following Lemma [[.4.16| we put xuw = Xp,w - (€' 060). Take y = QulpXw and write

X = XsmOw as above in the verification of (H1). Then by the description of locally algebraic

vectors of .FAIO(KP)EJ.&[Q from Proposition|[.2.3|we see that WV ® (Indg(,%gp) Xsm)®"™" injects
into ﬁO(Kp)Eyl,alg, (we use here Lemma [[.4.16)). Hence taking the completion we see
that the universal completion WV ® (Indg(_(%gp) Xsm)*™ of WY ® (Indg(_%gp) Xsm)®"™ sits in
ﬁO(Kp)E. But because x is unitary, we have
G(Q ¢ 0
WY& (IndB(—(%gp) Xsm)*™ = (IndB(—Qégp) X)C = ®w\pH(pp,w)®

by which we conclude.

The hypothesis (H3)[p’] (p’ is the prime ideal of T/, corresponding to p by our pro-
modularity assumption and Corollary [I.4.11]) says that we have a closed injection

W(ppr)o = HO(KP) [P

This is clear in our context because py ,, is generic and hence II(py )¢ is irreducible (see
Theorem 3.1.1(ii) in [BH]).

This allows us to conclude.
O

We can get a more explicit result by using eigenvarieties. In [Eme06c¢] Emerton has
constructed the eigenvariety X associated to the group G using completed cohomology.
We do not recall here this construction explicitly, but let us mention that X parametrises
(certain) pro-modular representations. Let X[pn|®™d be the pyn-part of the eigenvariety
associated to U(n) parametrising ordinary points (i.e. points associated to ordinary p-adic
automorphic forms). In particular every point x € X [ﬁm]ord is pro-modular with respect to
Tord, We denote by ), its corresponding Hecke character and by p, its associated Galois
representation.

The above theorem implies the following result

Corollary 1.4.18. Let m be an ordinary non-Eisenstein ideal of T such that pm., is
totally indecomposable and generic for all w|p. Let x be an E-point on the eigenvariety
X [pm|"4(E) such that for each place w|p the representation py ., is reqular and de Rham.
Then x is classical.

Proof. Modularity is clear so we need only to comment upon the classicality of z. It
follows under our assumptions by Lemma that py . has dominant weights which is
enough to conclude that x is classical as it was modular. O






Chapter 11

Ordinary representations for U(3)
(joint with J. Bergdall)

II.1 Introduction

Breuil and Herzig have recently pursued the construction of interesting p-adic Banach
space representations associated to local Galois representations by concentrating on the
ordinary case [BH]. In fact, if L is a finite extension of Q, and representation p, :
G(Q,/Qp) — GLy(L) is generic and ordinary then Breuil and Herzig constructed an
admissible continuous unitary representation I1(p,)°™d on an L-Banach space by taking
successive extensions of unitary principal series. Their recipe takes as key input the
splitting behavior of p, and thus forsees compatibility between the Galois and automorphic
sides of a p-adic Langlands program for GL,(Q)).

It is further conjectured that if p, gives rise to II(p,) under a conjectural local Lang-
lands correspondence for GL,(Q,) then II(p,)°*® should account for the maximal piece
of II(p,) which can be built out of principal series alone. That there is, or may be, a
discrepancy between I1(p,) and II(p,)°™ is an interesting feature of the situation beyond
GL2(Q,). Nevertheless, here we are concerned with the representation I1(p)°"¢ and the
insights it can bring concerning the p-adic local Langlands program.

In this work we explore the global aspect of [BH]. Let F/FT be a CM extension of
number fields in which p is totally split and denote G = U(3) a definite unitary group in
three variables attached to F//F*. Let us fix a compact open subgroup K? C G(AL?).
With this data in hand, we can define the completed cohomology group of Emerton

H(K?)p = (%LHH_H;H%G(Q)\G(A?)/KPKP, zp/p"zp>) ®z, L
Kp

n

where K, runs over open compact subgroups of G(Q,). This space can be seen as a model
for p-adic automorphic representations on U(3).

If 7 is an automorphic representation on U(3) then it has an associated (in the usual
sense) global Galois representation p = pr : Gal(F/F) — GL3(L) (extending L if necces-
sary). If m has tame level KP then p, is unramified away from a finite set depending on
KP.

For each place v | p we write v = 90° and consider the local Galois representation
po = pp : Gal(F/Fy) ~ Gal(Q,/Qp) — GL3(L). If py is generic and ordinary then the
same is true for pge and II(p;)°*® only depends on v | p in F+. The following (see Theorem
is our main result. It is a weaker form of the Conjecture 4.2.2 in [BHJ.
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Theorem A. Suppose that for allv | p, py is generic ordinary and totally indecomposable.
Then there is a closed embedding

—

o) = HO(KP),

This result, or the conjectures of Breuil and Herzig, can be seen as a generalization,
from GLj to U(3), of the work of Breuil and Emerton [BE10]. There are similarities and
differences between our work and [BE10]. Our representation-theoretic results naturally
overlap with [BEI0]. Most notably we give an adjunction formula (Theorem
between certain principal series and completed cohomology. The theorem is then reduced,
via the adjunction formula, to exhibiting the existence, or non-existence, of certain points
on an eigenvariety Xg» for U(3) (see Section for information on eigenvarieties). The
same reduction is done in [BEI0] but our argument works intrinsically on the eigenvariety
by studying the variation of Galois representations and making use of Kisin’s famous result
on the analytic continuation of crystalline periods over p-adic families. We remark also that
a similar result is proven in [BH| using completely different techniques. However, they put
stronger hypotheses on p, in particular they assume that each p, is totally indecomposable
(see Theorem 4.4.8 in [BHJ).

To end this introduction, let us remark briefly on the setting we have restricted our-
selves to at the present. As indicated following Theorem A, the adjunction formula reduces
our weak form of Breuil-Herzig to the existence or not of certain Hecke eigensystems in
spaces of p-adic automorphic forms. In the totally indecomposable case, this amounts to
showing certain Hecke eigensystems do not exist in spaces of p-adic automorphic forms.
The converse, constructing “overconvergent companion forms”, is a more serious matter.
In our work in progress that construction will allow us to prove Theorem A with only
the hypothesis that p, be indecomposable above p. This is done by the computations of
this text along with generalizing the Galois-theoretic construction of companion forms in
[Ber]. For general conjectures in this line, see [Bre] (which also contains partial results).

We remark that our methods are general enough to be applicable in other contexts.
First, the restriction to n = 3 is only used for brevity at the moment and we plan to have
a sequel dealing with general n > 3. Moreover, we can also prove similar results in the
non-compact case for unitary groups U(2,1). Details for that will be provided elsewhere.

I1.1.1 Notations

We introduce notations which we will use constantly throughout the text. Let G =
GL3(Qp) with the Borel B being the upper triangular matrices and its opposite Borel
B~ the lower triangular matrices. The diagonal torus is 7. The modulus character is
ép : T — Q, given by |- |?®1®|-|72. For an algebraic weight k we denote by dj, the
corresponding highest weight character of T

Let S5 be the symmetric group.

We denote the cyclotomic character by € and we normalize the local class field theory
so that € = z|2| (as a character of Q) with the Hodge-Tate weight —1.

II.2 Eigenvarieties

Before discussing eigenvarieties, we begin with local preliminaries on two separate notions
of refinements.
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I1.2.1 Refinements

Here we recall two notions of refinement, one on the Galois side and one on the automorphic
side. In the case of Galois representations, we explicitly highlight the case of crystalline
representations which are ordinary.

Suppose that p : Gq, — GL3(L) is a crystalline representation all of whose crystalline
eigenvalues are distinct and lie in L*. We further assume that p is regular, i.e. the
Hodge-Tate weights are distinct, with Hodge-Tate weights h; < hg < hs.

Definition I1.2.1. A refinement R of p is an ordering R = (¢1, ¢2, ¢3) for the crystalline
eigenvalues appearing in Deis(p).

If {¢1,...,¢;} is a list of crystalline eigenvalues then we denote by wt(¢1,..., ;)
the Hodge-Tate weight of the line Des(A?p)9=%1% C Dgis(A'p). It must be a sum of
distinct Hodge-Tate weights for p. Thus a refinement R defines an ordering (s1, s2, s3)
of the Hodge-Tate weights by declaring wt(¢1) = s1, wt(¢1,p2) = s1 + s2 and s3 is the
unique weight not equal to s; or ss.

Definition I1.2.2. If R is a refinement then we define its weight type as the permutation
T € S3 such that s; = h.y. If T =1 we say that R is non-critical. Otherwise, we say that
R is critical of type T.

For example if p = 11 @ 19 for two crystalline characters ; then there are two refine-
ments, one non-critical and one critical of type 7 = (12).

We now specialize to the case that p is upper triangularizable (and still regular with
distinct crystalline eigenvalues). Thus we assume that

Yroox ok
p~| 0y w (IL.1)
0 0 43

with the 1; crystalline characters. Without loss of generality (this uses the crystalline
property) we also assume that v; has Hodge-Tate weight h;, i.e. that p is ordinary. If we
denote by ¢y, the crystalline eigenvalue of 1; then v,(¢y,) = h;. Since Deris(p) is weakly
admissible we have that

Wt(¢¢z) < Up(¢¢i) = hl (fOI‘ 1=1, 27 3)
Wt(Py,;s Pyp;) < Vp(dy,) + vp(Py;) = hi + hy (for each pair (7, j))

The representation (II.1) fixes one particular refinement Ry. = (¢y,, Oy, Pyy) of p. Any
other refinement R must be of the form R = RY_ := (¢y,, )i with o € S3.

(12)
nc

Lemma I1.2.3. R, is always non-critical. If p is totally indecomposable then R and

1(1%3) are non-critical as well.
Proof. Since wt(¢y,) < hqy and h; is the least Hodge-Tate weight we have wt(¢y,) = hy.
Similarly, wt(¢y, , ¢y,) = k1 + ha. Thus Ry is non-critical.

Now assume that p is totally indecomposable and consider RS}CZ) = (Pupos Doy » Pypy) With
weight ordering (s1, s2, s3). By what we just said, s1 + s2 = Wt(¢py,, ¢y, ) = h1+ ho and so
RI(&;Q) is critical if and only if wt(¢y,) = ho. In that case, however, Deris (p)“’:%z C Deis(p)
is a weakly-admissible filtered p-module and thus 1 must define a subrepresentation of
p, contradicting that p is totally indecomposable.

The case of Rg%?’) is similar. If it were critical then the quotient p/1; would split into

Py B 3. O



36 CHAPTER II. ORDINARY REPRESENTATIONS FOR U(3) (JOINT WITH J. BERGDALL)

Remark I1.2.4. If p is totally indecomposable then it is possible that a R is critical if
o ¢ {1,(12), (23)}.

We end this section with a short definition.

Definition II.2.5. Suppose that p is ordinary and write p as in ({IL.1). We say that p is
generic ordinary if poy, # ¢y, fori=1,2.

We suppose that p is ordinary as in (II.1)). Using local class field theory we write each
character v; as

i = 27 nr(gy,).

It follows from the definition and this expression that p is generic ordinary if and only
if i)y ¢ {1,e1} for each i # j. Thus p is generic ordinary if and only if p is generic
ordinary in the sense of [BH, Section 3.3].

We now consider the automorphic side. The analog of a crystalline Gq,-representation
is an unramified principal representations of GL3(Q,). Denote by B(Q,) the upper tri-
angular Borel in GL3(Q,) and T'(Q,) the diagonal torus inside B(Q,). Suppose that

0 is a smooth character of T(Q,). In that case we can form the smooth induction

IndG%B(?p )(9)5“‘. If 7 is smooth admissible representation of GL3(Q,) which is unramified

then 7 necessarily appears as the unique unramified Jordan-Holder factor of Indc%é(?p ) (0)s™

for some smooth #. The character 6 is well-defined up to an action of S3: if o € S5 then

we denote

0 = 0% (0y) S8y

Then, the unique characters 6’ such that 7 appears in the Jordan-Holder series for IndG%é( ) ») (9")sm

are those of the form @' = 6(7).

Definition I1.2.6. Let m be an unramified smooth admissible representation of GL3(Qp).

A refinement of m is the choice of a smooth character 6 such that m C IndG](Si?p)(G)

In the terminology of [BCQ9], a refinement is the choice of § such that 7 appears as a
Jordan-Holder factor of Indg%éi?p )(Q)Sm and our refinement is their accessible refinement.

Thus every o € S3 defines a refinement 6(%) but only some o define an accessible refinement.
To that point, however, there is an equivalence

m . . —i0i ; ;
In dgl(g(?p)(ms is unramified < p’ 9]8:;)) # p*! for i # j. (IL.2)

If that is the case then 7 = Indg%éi?p )(H)Sm, every refinement is accessible and thus

T C IndG%3(?p )(9(" )™ for all ¢ € S3. Thus except in the exceptional case (I1.2)) , one

refinement @ for 7 gives all the refinements 6(°) for .

I1.2.2 Definite eigenvarieties

Here we will outline definite eigenvarieties. Our approach is to first describe the eigenva-
riety and its properties, and second to refer to an explicit construction of Emerton. The
explicit construction will be used in Section to generalize certain results of [BE10].

We fix F* a totally real field extension of the rational number Q and F/F*t a CM
extension. We assume that p is totally split in F' and we let 3, be the set of places v | p
in F™. For each v € 3, we fix now the choice of a place ¥ above v.
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Let G = U(3,F/F™) be a definite unitary group in three variables. If w is a place of
F7 split in F then each choice @ of place over w defines an isomorphism

G(F}) 2 GLy(Fy)

In particular, for each v € X, we have a fixed isomorphism G(F,") ~ GL3(Q,). Denote
now Gy, = G(F™ ®q Qp). Under these identifications we define T, to be the diagonal
torus, By, the upper triangular Borel and ng its lower triangular Borel. We denote as
well ng = N(Op+ ®z Z,) integral points of the unipotent part Ny, of By, . Finally, we

+ 0 4—1 0
let T3 ={t €Ty, | tNy 1= C Ny }.

We fix a compact open subgroup K? C G(A"Y). We factor K? into a product KP =
[L.y, K5 Choose a finite set of places 3P of F * such that if v ¢ 3P then KP? is maximal
hyperspecial compact in G(F,"). We write the above factorization as

K? = T[] K2 x [[ K% = K" K%,
v¢S veED

We define the unramified Hecke algebra
HP)™ o= WG ) /K7,

The places © above v € ¥, define isomorphisms G(F,') ~ GL,(F5) = GL3(Q,). If
we denote T, the diagonal torus in G(F, ) under this identification then we can define
Ty = Homjoc . an (T, GI8) and Ts, = HveEp Ty = Homyge . an(Tx,, Glis).

In what follows we fix an isomorphism Qp ~ C. Suppose that k € Ty, is a dominant
weight for Gy, and let Wy, be the irreducible algebraic representation of G's;, with highest
weight k. The space A(G, KP) of automorphic forms of weight k£ and tame level KP
decomposes as a H(KP)"-module

A EP) = @ (mf" ) (I1.3)

Too ZI/V]C

with 7 running over irreducible automorphic representations for G(Ap+) and m(7w) the
multiplicity of 7 appearing in L?(G(F*)\G(Ap+)). If 7 is an automorphic representation
for G(Ap+) of tame level KP we denote by A, : H(KP)™ — Q, the canonical character.

At p we consider a place v € ¥, and denote by , the local component of 7, a smooth
admissible representation of G(F,") ~ GL3(Q,). Write

TS, = ® Ty.

vEXp

We say that 7 is unramified at p if s, is unramified, or equivalently, each 7, is unramified.
If 7y, is unramified then a refinement 6 is the choice of a tuple 6 = (6,)vex, € Ts, wWhere
0, is a refinement of m, for each v € ¥,. Equivalently a refinement 0 is the choice of a

smooth character of Ty, such that s, C Indgzi 0.

We now consider the infinite component 7., (identified using our choice ¥ | v for
v € ¥,) of m. It is an irreducible algebraic representation of the compact group G (F;U) ~
U(3,R) and thus has an associated dominant weight k, = (k1 > k2, > k3,,). We denote
by k = (ky)ves, the corresponding highest weight for G's;, and the highest weight character

kl,'u k?2,1; k3,v

O = (2 " ®2y " ®237")y € Tx,.
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Thus, for a given m unramified at p, the choice of a refinement 8 defines a locally algebraic
character x := 06 € Ty, .

We use X = Xg»p to denote the eigenvariety of tame level KP. It is a reduced rigid
analytic space equipped as well with the following data

1. a finite map x : X — Ty,
2. a character A : H(KP)™ — I'(X, (’);i(g), and
3. a Zariski dense set of points X C X(Q,).
If z € X(L) we denote by x, = x(x) € T5,(Q,) and by A, the induced character

H(KP)™ 25 T(X,0%8) 22k 1,
Then the natural map

X(Qp) — 75,(Q,) x Hom(H(K?)™, Q,)
T (an )\:v)-

defines a bijection between X and pairs (x, Ar) attached to classical automorphic rep-
resentations m and for G(A p+) which are unramified at p and the choice of a refinement
described above.

If x € X then x, knows both the weight of x and information at p. We separate this
out as follows. If v € ¥, we denote W, = Hom(T(OFJ),G%g) and Wy, = [lyes, Wo-
Thus there is a natural projection Ty, — Ws, and we let the weight map x be the
composition

X 25Ty, 2w,

This deserves to be called the weight map for the following reason. If z = (x, ) is a
classical point associated to an automorphic representation 7 of weight k& = (k,) then
X = 065, with 6 smooth, so that §(z) = 0.

The succinct description of the eigenvariety is enough for some purposes. But the
conjectures of Breuil and Herzig [BH|] deal with certain subrepresentations of spaces of
p-adic automorphic forms and to understand this, it will be convenient for us to describe
one source of an eigenvariety construction, due to Emerton.

We let L/Q, be a finite extension with ring of integers O, and uniformizer wy,. The
p-adically completed cohomology of tame level KP and with coefficients in L is by definition

H(KP)p = (@@H%G(Q)\G(A%)/Km, zp/p"zp>) ®z, L
Ky

n

where K, runs over compact open subgroups of G(Qp). This is an L-Banach space
equipped with a continuous representation of Gy, x H(KP)™. If A : H(KP)"™ — Q,, is a

character we denote by HO° (K p)/L\ the corresponding Gy, -representation of the eigenspace
with respect to the character .

Within the space H?(KP?); we can take the locally analytic vectors HO(KP) Lan and
then this supplies us with a G'g -representation to which we can apply Emerton’s Jacquet

functor (see [Eme06a]). Thus we have a representation Jp,, (HO(KP) L,an) Of the torus 7%, .

For x € Tg,, we denote by ng (—) the x-eigenspace. We can read off the y-eigenspace
P

by the isomorphism
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The above isomorphism is Hecke equivariant and thus we can put the Hecke eigensystem
on both sides. We refer the reader to Proposition 2.3.3 in [Eme06¢] for it and for the
following proposition.

Proposition I1.2.7 (Emerton). Suppose that L'/L is a finite extension. A pair (x,\) €
Ts, (L") x Hom(H(KP)™, L") defines a point (x,\) € X(L') if and only if

L,an

~ ~ NO Td =y A
Ty, (HO(KP)) o) = HO(KP) 3057 0.

I1.2.3 The refined family of Galois representations

The eigenvariety carries as well a p-adic family of Galois representations. Suppose that
7 is a classical automorphic representation on G(Ap+) of tame level KP. We denote
¥ = Y¥PUX, and by the same symbol the set of places of F' above ¥. The work of Blasius
and Rogawski (and many others in a more general situation) associates to 7 a p-adic Galois
representation

Pr - GF,E — GLg(Qp).

It satisfies local-global compatibility at each finite place. If @ is a place of F' and p is a
representation of Gr, we denote by py the restriction p|GF~ . If v € 3, we further denote

by p, the representation p, := py. The representations p, éuatisfy the following

1. If @ ¢ X is a split place of F' then the Frobenius semi-simple Weil-Deligne repre-

sentation associated to pg corresponds to the GLg(Fy) ~ GLs(E;)-representation
Tw| det ™! | under the local Langlands correspondence for GLg(Fy).

2. If v € ¥, then pr, := pr5 is de Rham with Hodge-Tate weights h;, = —k; , +1— 1.

3. If myg, is unramified then p; , is crystalline for each v € ¥,. Moreover, if we make
the choice of a refinement 6 for s, then the set of crystalline eigenvalues of pr , are

given by {p*61,,(p), pb2.v(p),03.4(p)}-

By Chebotarev’s theorem, the first condition classifies p, up to the semi-simplification.
Consider the eigenvariety X = Xg» of tame level KP again. In that case, the above
associates to each classical point z € X a Galois representation p, := p, independent of
the refinement.
The choice of a refinement for 7y, however has the following interpretation. Suppose
that z € X corresponds to the refinement ¢ of 7y,. Then, for all v we can define a
refinement

Rz,v = (¢l,’uv ¢2,v7 ¢3,v) = (p291,v(p),p92,v(p), ‘93,11(]0))

of the local representation p. .. Recall that in Section [[T.2.T] we defined the weight type of
a refinement and what it means for a refinement to be non-critical.

Definition II.2.8. For a point z € X, we define its weight type to be the X,-tuple
T = (Tv)ves, where 7, is the weight type of R. .. We say that z is non-critical if it is of
weight type (1,), and critical of type T otherwise.

If we denote t, : Gpy — Qp the function g — tr(p,(g)) then ¢, is a three dimensional
pseudocharacter of Gy and extends on the eigenvariety to a global pseudocharacter

t: GF;) — F(X, O;;g)
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In particular, for each closed point x € X (Qp), specializing the pseudocharacter at x we
get t; : Grx — Q, and thus by Taylor’s theorem [Tay91, Theorem 1(2)] there is a unique
semi-simple representation p, : Grx — GL3(Q,) such that tr(p;) = t,.
Denote now
We, = [[ Wo W, =Hom(T(Op:+ ), G1E).
vED

Finally denote by 7 the composition

X 5w, 5 T (ee)’ = T (e (IT.4)
vEp vEDp

where s is the affine change of coordinates

(ar) = (ar)

(’U,l,’U,Q,U?,) = (_ula —ug + 17 —us3 + 2)

If z € X(Q,) then we write ns,(z) = (7;,0(2))s € [loes, (Qp>3. In this notation, if
z € X then n;,(2) = h;, is the ith Hodge-Tate weight at the place ©. Thus by [BC09,
Lemma, 7.5.12] we have that for a general z € X (Q,), n(x) is recording the Hodge-Tate-Sen
weights of pg ..

Ifr € X(L)and v € £, we denote by Xz = X1,0.0 @X2,0,0 @X3,0,2 the vth coordinate of
the x, € Ts,(L). Let n = 3 for clarity. We then define analytic functions F;, € I'(X, (’)Ei(g)
by

Fio(2) = p" X5 0,2(p)- (IL5)

If 2= (00, \) € X is a classical point then

pTr B E, y(2) = pliep T2, (p)ptie
=" bin(p).

Thus for z € X the collection R, = (R, ) of refinements is given by
Rz,v = (pm’v(z)Fl,v(z>7an’U(Z)FZ'u(z);p%’v(z)F&v(z))-

In particular, X together with the Galois pseudorepresentation ¢ of Gry forms a
refined family of Galois representations in the sense of [BC09, Ch. 4]. This implies that

we have the analytic continuouity of crystalline periods: for each z € X(Q,,), each v € ¥,
and each 7 we have

Fil® Deyia (Al pa (11,0 (1) + -+ 110 (2)))P=F10 @ Fia@) 2
In particular, we note the following result

Proposition I1.2.9. Suppose that x € X(Qp) and n;»(z) € Z for all i,v. Then
Fj]"lw(x)'i"“-i‘m,v(x) Dcris(/\ipwU)“":Pm’”mFlvv(I)“‘pm’”(”)Fivv(I) 7& 0.

The proof of this has been given in varying levels of generality in many different articles
now: [Kis03], [BC09|, [Liul3], [KPX].
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I1.3 Ordinary representations and the conjecture of Breuil-
Herzig

I1.3.1 Generic ordinary points on eigenvarieties

We now further elucidate the previous sections in the case of ordinary points on X. We
use the notation of the previous section.

Recall that a classical point z = (x, A) in X (Qp) is associated to the choice of a classical
automorphic representation 7 of G(A g+) with tame level KP, spherical above p, and the

choice of a smooth character 6 such that
G
s, CIndy" 6.
4

The character x is then specified as x = 0d; where k = (k) is the list of dominant weights
of Tso.

Fix for the moment an automorphic representation 7 such that 7 has tame level KP?,
7y, is unramified, 7 has weight k = (ky)ves, -

Definition I1.3.1. We say that 7 is generic ordinary if pr. is generic ordinary for all
v € Xp.

Suppose that 7 is generic ordinary and write

wl,v * *
Prv ™~ ¢2,U * (IIG)
w?),v

with the characters 1;, crystalline of Hodge-Tate weights hi, < ha, < hs3, for each
v € 3. If we denote ¢y, , the crystalline eigenvalue of ¢; , then

Yip =2 " nr(ey, ), (IL.7)

seen as a character of Q using local class field theory. Now consider the smooth character
of Q, given by

0p° = |- Pnr(¢y, ) ® |- [nr(dy,,) @ nr(dy,,)-

The character 6" is a refinement of 75, and defines a point zy. = (6", A) € Xq1.
Since prp is assumed generic ordinary, it is easy to see )¢ satisfies the condition ([II.2))

+
for all v € ¥,. Thus the smooth admissible representation Indggiai(egc)sm is unramified
and we can explicitly list the other refinements of 7y, as follows. If o = (0,)s € (S3)5,
then we denote by §2¢(9) = (036’(0”))1} the ¥,-tuple of characters given by

ne,(oy) . (pnc\oy (s—1/2 \o, 51/2
0, = (65%) (5B(Fu+>) 5B(Fv+>'

By the criterion (I1.2)) we have that 07<(?) defines a refinement of 7y, and all the refine-

ments are of this form. Thus each of the points zl({é) = (6"%(9)5,, \) € X is a point such
that pZt(lg) = Pr.

Definition I1.3.2. A point z € X is called generic ordinary if there exists a generic

ordinary ™ such that z = zg) as above.
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We could equivalently phrase the definition as follows. Suppose that z € X is a point
such that p, , is generic ordinary for all v € ¥,. We then write p,, as in (IL.6) and this
necessarily defines a point zy. = (0"°dx, \) € Xj; the point z is then one of the points

zr(f;) = (#"(9)§;,, \). The tuple o is then well-defined.
It will be convenient for us to realize that in terms of the Galois characters v;, we
have (use (II.7)) that

03 (7) = (g, (1) D @ Uy, (22" D ® Uy, (32 @) (|- P @] [@1).

Evaluating at p we get that

2—inC,(0w) ( \ _
’ i (p) = ¢¢av(i),v'
Thus in the generic ordinary case, to give a refinement of 7y is the same as to give a
collection R = (R;)ycyx, of refinements of pr .

Definition I1.3.3. An element o € (S3)x, is called simple if o, € {1,(12),(23)} for all
(o)

v € Xy,. A generic ordinary point z € Xq is called simple if z = zne’ with o simple.

Recall that in Section [[.2.3] we defined what it means for a point z € X to be critical
or non-critical.

(o)

Proposition I1.3.4. Suppose that z is generic ordinary and write z = zpe .

o If o =1 then z is non-critical.

(o)

o If z is simple and p., is totally indecomposable for all v € %, then zn,
critical.

1S non-

Proof. We write p,, as in (LL6) and define the refinement Ryco = (¢yy s Py, P, ) Of

pzw- The corresponding refinement at zr(f;) is given by RY_ . Thus both statements follow

from Lemma [[1.2.3] ]

I1.3.2 Bad points on the eigenvariety

We now introduce the notion of badness for points z = (x,A) on the eigenvariety X.
This notion will turn out to be crucial when relating principal series to the completed
cohomology group. It is related to the notion of z being critical but we will not make this
completely precise in this work. It can be defined in general for any connected reductive
algebraic group (G, B) to which we can associate an eigenvariety and we will take this
approach in a sequel.

Here though we consider the group Gy, and its upper triangular Borel By, and torus
Ty, . It will be important for us to use the infinitesimal actions of the Lie algebras of these
groups. Thus we use gz, by, ts,, ny, (for the opposite unipotent to nyg, = by, /ts,) etc.
to denote the corresponding Lie algebras. We use t’gp = Hom(tgp,Qp) to denote the dual

space to ty, (i.e. the linear dual space of ts, ®q, Q,). If x € T5,(Q,) then its differential
dx is an element of t*zp-

If we drop the subscript ¥, it is because we are talking about the group GL3(Q,). We
use the notation a; = e; —e9 and ag = e9 —e3 to denote the usual two simple positive roots
of gl3. They generate b; the third positive root of gly is a3 = a1 +ag. Since gs, = (gl3)s,,
the roots of gs, are of the form a = (ay)vex, wWhere a, is a root of gly and a, = 0 except
possibly at one place v € ¥,,. A root a # 0 is positive if and only if a,, > 0 for the unique



I1.3. ORDINARY REPRESENTATIONS AND THE CONJECTURE OF BREUIL-HERZIG 43

place v € X, at which a,, # 0. Since the roots of gs,, are all algebraic, we naturally confuse
notation and speak about roots a € t*zp and o € Ty,

If § € Ty, and a is a root, denote by o the corresponding co-root. We then consider
the locally analytic character (§,a") := §oa" : G — G!8. Let py denote the half-sum
of the positive roots.

Definition I1.3.5. A character 6 € T, is:

o a-integral if (5,aV) is of the form z — 2 for some k € Z, in which case we use
(8, ") to also denote this integer, and

e a-dominant if § is a-integral and (§ + pg, ) > 0.

A character x € Tg, is locally a-dominant if it is of the form x = 6§ where 0 is smooth
and § is a-dominant.

Recall that the Weyl group associated to our choice of root system has an associated
"dot action" on elements of t*zp- The Weyl group (S53)s, acts on weights p € t*zp by the
formula

o-p=o(p+po) — po,

where the o on the right hand side is the usual permutation action.

For each simple positive root o we have the associate Weyl element s, € (Sg)gp and
the dot action on ty, extends to elements x € Ty, which are locally a-integral in an
apparent way. Indeed when x is a-integral the element Sq - dX € t* differs from dy only
by integers. And thus there is a natural character s, -y € 7'2 such that d(Se - X) = Sa X
and the smooth parts of y and s, - x are the same. As an example consider an element
o€ 7;? of the form §, = zF1» @ zF2v ® z¥3». Then

Zk?1,’u ® Zkg,l) ® Zkg,’u lf av — O
(Sa - 0)y = { 2Pl @ ZFotl @ Jhsv if q, = ay (I1.8)

Zhe @ Zkse=l @ Zh2etlif o = .

This construction can be iterated to define a dot action of Weyl group elements s, - - - Sq,.
on locally integral elements of Tx,. For the reader who is familiar with Verma modules
(see below), the next definition will look familiar.

Definition II.3.6. Suppose that x,x' € Ts,. We write X' 1 x if x = X/, or there exists a
simple positive Toot o such that x is locally a-dominant and so - x = X'. We say that '
is strongly linked to x if there exists a sequence of simple positive Toots Sq,,- - ,Sa, Such
that

X/:(Soq“'socr)'XT(Saz"'say-)'XT"'Tsozr'XTX-

Before defining bad, let us point out what is happening in the most interesting case
where y = 6J; and ¢y is a dominant weight (that is k1 > ko2 > k3). Since this is just an
illustration, let us assume for simplicity that there is only one place and thus two simple
positive roots a7 and as. In that case, s, - § is defined for all simple positive roots «a.
Moreover, if k is regular then it is easy to see that w - x is defined for all elements w € S3
and that w - x is strongly linked to x by a chain of length equal to the length of w in the
Bruhat order on Sj3.

We now return to the eigenvariety setting of the previous sections. Thus we have
our eigenvariety Xg»(Q,,) of tame level KP parameterizing eigensystems (x,\) € Tg, X
H(KP)™ acting on spaces of p-adic automorphic forms.
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Definition I1.3.7. Suppose that z = (x,\) € Xk»(Q,). We say that the point z is bad if
there exists a pair (X', ) € Xk»(Q,) such that X" # x and X' is strongly linked to x. If z
is bad, we denote by w -z := (w-x,\) € Xkr(Q,) (where w-x is strongly linked to x) the
corresponding companion points on XKp(Qp).

Recall that in Section [[T.2.3] we defined the function 7 interpolating the Hodge-Tate-
Sen weights and the functions F; € ['(X,O%®) which, after normalization, interpolate
crystalline eigenvalues. For each simple positive root a of Gy, we simultaneously view its
associated reflexion s, as an element of the Weyl groups (S3)s,. Thus for each v € ¥, we
have a natural action of a,, on {1,2,3}.

Lemma I1.3.8. Suppose that z is bad and let z(z) = w - z be a point strongly linked to z.
Then p; ~ py(zy. Furthermore, for allv € ¥, and i = 1,2,3 we have

1. Miw(2(2)) = Ny (i),0(2) and
2. phir@E) R, (2(2) = ptv G, (2).

Proof. By definition A, = A;(;) and thus p, >~ p,(,) up to semi-simplifcation by Cheb-
otarev. However, since each is assumed semi-simple we get equality on the nose. The
other two identities follow from definition of bad points and the description (respec-
tively (IL5)) of the map 7 (respectively the F;). O

Proposition I1.3.9. If z € X is bad then z is critical.

Proof. Suppose that z is bad and let  be a point strongly linked to z. Without loss of
generality we can assume that x = s, - z for some simple positive root «. By Lemma

the point x has integral Hodge-Tate weights at each place v € ¥, and pg >~ p. 0.
Thus Proposition and Lemma [[T.3.8 implies that

0 7é Fﬂno‘”(i)’”(z) Dcris (pz v)so:pm’v(Z)Fl’v(z)

0 7& Fﬂﬁav(1),1;(2')""77%(2),11(2) Dcris(/\gpz U)‘p:p’ﬂl,v(Z)+712,v(Z)F1,U(Z)F2,U(Z) '

If o, = e1 — eg for some v € ¥, then the first equation implies that z is critical; if
oy, = ez — e3 for some v € X, then the second equation implies the same. O

Remark I1.3.10. The converse of Proposition[II.3.9is also true but requires slightly more
work. Since we do not need it here, we save it for a sequel. Both these statements can be
also deduced from the work of Christophe Breuil. The statement of the proposition follows
from Lemma 6.4 and Proposition 8.1 in [Bre]. The converse follows from Section 9 of
|Bre].

Corollary IL1.3.11. If z € X is a simple, generic ordinary point and p,, is totally
indecomposable then z is not bad.

Proof. Combine Proposition [[I.3:4 and Proposition [[I.3.9] O

I1.3.3 Principal series and completed cohomology

We now use results on bad points to prove that certain principal series appear in the com-
pleted cohomology. Our main result in this subsection is an adjunction formula analogous
to Theorem 5.5.1 and Proposition 5.2.1 in [BE10]. We apply this result to points zﬁi)

defined above. Our adjunction formula follows from the more general adjunction formula
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given by the main result of Emerton [Emel0a]. In order to apply Emerton’s result, we
first need to verify two separate lemmas.
We introduce some notations from [Eme06c]. Let £ be the coherent sheaf on Tx,

that corresponds to the strong dual of Jp,, (ﬁO(Kp)L,an) and let A be the commutative
subring of End (&) generated by H(KP?)™". Proposition 2.3.8 of [Eme06c] shows that Spec .4
contains the eigenvariety X = Xg» as a closed subspace. We will prove our adjunction
formula for points of Spec A.

Let (x, ) be a point of Spec A. We say that (x, A) is bad if there exists a pair (y/, \) €
Xkp (Qp) such that x’ # x and Y’ is strongly linked to . This extends Definition
We write L, for the one-dimensional space underlying x. Let § By, = (0B, )vex, be
the ¥,-tuple of modulus characters. We now prove our main theorem of this subsection,

which is the following adjunction formula.

Theorem I1.3.12. Let z = (x, A) € Spec A be not bad. Then there exists an isomorphism

Gy, —1 yan 770/ 7P\ A 70/ 17D ng’Tgp:X’/\ X 770 P\
HOHIGZP((II]ng X(SBEP) 7H (K )L,an) ~ H (K )L,an :JBEP(H (K )L,an)
i3

G
where we have denoted by (Indpr X(SZ;; )2 the analytic induction of X5§; seen as a
=p P P

sz -representation.

Before giving the proof we recall necessary material on Verma modules together with
some constructions of Emerton. We will ignore some of subscripts ¥, to make our writing
clearer and write simply g, b, G, T, 7%, B, B~, N, NV, 6 for gz,,bx,,Gx,,Ix,, Tgp,BZP,ng,
ng,ng,ész.

Recall that if H is any subgroup of G, then a (g, H)-module is a g-module V' with a
linear action of H such that for any X € g,h € H,v € V we have h - X - v = Ady(X)hv.

If a g-module V is locally n-nilpotent, then it carries a canonical (g, NV)-structure
obtained by integrating the n-action. Moreover, if V' has a structure of a (g,7")-module,
then the latter extends to a (g, B)-structure by integration of the n-action.

For a locally analytic character y of T' we define

M(x) = U(g) @u) Ly

and
M (x)" = Homy,—y(U(g), Ly)"

We endow M () (respectively, M(x)Y) with a g-action by left translations (respectively,

right translations) on U(g). This action is locally nilpotent. We let T" act by the adjoint

action on U(g) and by the character x on L,. This gives a structure of a (g, T")-module

on both M(x) and M (x)V, which extends canonically to a structure of a (g, B)-module.
Recall the decompostion U(g) = U(b™) @ U(g)n. We consider the map

Ulg) = U(g)/U(gin = U(b™) 5 L

as an element vV of M()Y. It is killed by n and is a x-eigenvector for T', therefore there
is a unique (g, B)-equivariant map

ay s M(x) = M(x)"

which takes vy :=1® 1 to v".
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Lemma I1.3.13.

(1) The map v is the unique (up to a scalar) (g, B)-equivariant map M(x) — M(x)".
Its image L(x) is an irreducible (g, B)-module.

(2) Modules M(x) and M(x)V have finite length and their simple subquotients are of the
form L(X') where X' is strongly linked to x.

Proof. (1) As g-modules, M (x) is the Verma module Ver(dyx), M(x)" is the dual Verma
module Ver(dx)" and ay, is the usual (unique up to a scalar) map Ver(dyx) — Ver(dy)"
whose image is known to be the simple g-module L(dx) of highest weight dx. Since o, is
also B-equivariant, we see that its image is a simple (g, B)-module which extends L(dx).

(2) The corresponding assertion for Verma modules is well-known. From the way it is
proved for Verma modules, it suffices to check that if 4’ is strongly linked to dx then

(a) There is a unique Y’ strongly linked to x with dy’ = u'.

(b) Any g-map Ver(dx’') — Ver(dy) is in fact T-equivariant, that is, is a map M (') —
M(x).

(b)” Any g-map Ver(dy)” — Ver(dy')" is in fact T-equivariant, that is, is a map
M(x)" — M(X')".

To prove (a), observe that if we write dy := p/ — dy, then we know that d- is integral
hence is the derivative of an algebraic character v. Thus x’ := - is the desired character.

The point (b) will follow if we prove that T acts via x’ on any highest weight vector v
of M(x) with weight dx’. But we know that v is of the form X - v, for some X € U(n™) of
weight dy = dx’ — dx for the adjoint action of t. Such an X is also a ~y-eigenvector for the
adjoint action of 7" on U(n™). It follows that X - v, is an eigenvector for 7' with weight

v-x=x"

A dual argument proves (b)". O

We now derive another description of M (x)V. It is well-known but we could not find a
good reference. We define CP?' (N, L, ) to be the space of L,-valued polynomial functions on
N. Tt carries a natural structure of B-module as explained after Lemma 2.5.3 in [Emel3].
It carries also a natural g-action defined as follows: any f € CP?(N, L, ) may be extended
to a locally analytic function on the big cell B~N by putting f(b~n) := x(b~)f(n). Since
B~ N is open in G we can make X € g act by left invariant derivation on f, that is
Xf = 8XﬁN. We then have a unique (g, B)-equivariant map S, : M(x) — CPY(N, L)
which takes 1 ® 1 to the constant function with value 1.

Lemma 11.3.14. There is a (g, B)-equivariant isomorphism CP°'(N,L,) ~ M(x)" that
carries the map 3y to o, up to a scalar.

Proof. Emerton constructs an isomorphism of vector spaces in (2.5.7) of [Emel3]. The
T-equivariance of this map is clear from the definitions. We note that Emerton defines the
g-action on CP?(N, L,) via this isomorphism. It follows from Lemma 2.5.24 of [Emel3]
that his action coincides with the one we have defined above. The remaining assertion
follows from the unicity of a,. O

Proof of the adjunction formula. Let us now start the proof of the adjunction formula.
We consider the following commutative diagram:
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Homg(Ind§ (x6-1), AO(K?)} ) W Hom (x, J5 (A°(K?)} )
~ (a) ~ ()
Hom g 5y (CPL (N, Ly) @ CI (N, Ly-1), AO(K?)} 1) S Hom g 5y (U(8) @urey x @ CE™(N, Ly-a), BOKP)} o,
- (0 - ()
Hom (g i (M(x)" @ C3"(N, Ly-1), (P} 1) — )+ Hom(g sy (M(x) @ (N, Ly-1), (P} )
(30) (3b)

Hom(gyB) (L(X) ® C’SWL(]\]'7 L(S*l), ﬁﬂ (Kp)27an)

Let us now explain all the identifications and maps. We want to prove that (1) is an
isomorphism.

We denote by C}/P(ng, L, ) the space of compactly supported locally L,-valued polyno-
mial functions on Ny, . Recall that CP(N, Lys—1)= CPOUN, Ly )®CS™(N, Ls-1). Because of
the natural open immersion Ny, < Gy, /By, , we can regard CP(Ns,, Ly) as a (g, By,)-

invariant subspace of Indgzl’ (x)™. The inclusion of C™(Ny,, Ly) in CP(Nx,, Ly) thus

induces a (g, ng)—equivariagt map
U(g) ®u () Ci™(Ns,, Ly) = CP(Nx,, Ly) (IL.9)

For (a) let Ind%_ (xd0~')(V) denote the subspace of Ind%_ (x~") of functions supported
on N. It generates Ind%_ (xd~1) as a G-representation (Lemma 2.4.13 of [Emel3]). More-
over, CP(N, L,5-1) is dense in Ind%_ (xd~')(N) as a (g, B)-representation (Proposition
2.7.9 in [Emel3d]). Those are basic ingredients to prove the following isomorphisms:

Homg (Ind- (x6™ "), H(K?)} an) = Homg gy (IndG- (x6 ") (N), H(KP)} o) =

L,an L,an
~ Hom(&B) (C(l:p(N, Lx6*1 )7 ﬁO (Kp)é,an)

which are proved as Theorems 4.1.5 and 4.2.18 in [Emel3].

The isomorphism (b) results from Theorem 3.5.6 in [Eme06a] (see also (0.17) in
[Emel3]). The identification (c) is Lemma [I1.3.14]

The map (2) is induced by It comes from a natural map of (g, B)-modules:
U(g) ®u(s) Ly — CP'(N, Ly)

which arises from the map
ay  M(x) = M(x)"

which we have introduced before the proof. Hence it factors through

M(x) = L(x) <= M(x)"

which gives maps (3a) and (3b).
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Lemma I1.3.15. If L(u) # L(x) is a constituent of M(x) or M(x)" then

Homg p)(L(p) ® C™(N, Ls-1), H'(K?)} 0) = 0

L,an

Proof. We have
Hom(ng) (L(/’L) by Cgm(N, L(;_l), HO(KP)A ) C

L,an

C Homyg p) (M (p) @ C™ (N, Ls1), H(KP)} o) =

L,an

= HomB(Cgm(Nv Lué—l), ﬁO(Kp)A ) ~ _ﬁ[O(Kp)NozT+:M7/\

L,an L,an

where the last isomorphism is given by evaluating homomorphisms on the characteristic
function 10 € C§™(N, L,5-1) (we remark that we normalize the action of T as Emerton
in Definition 3.4.2 in [Eme06a] and hence we get a twist by d). We conclude by remarking
that

HO(KPYNOTT=rA _

L,an

by the assumption that (x, A) is not bad. O
Corollary 11.3.16. The map (3b) is an isomorphism and the map (3a) is injective.

Proof. 1t follows from Lemma and the structure of Verma modules which we have
recalled above. O

To finish the proof of the adjunction formula we need to prove that (3a) is surjective.

Let us denote by p) the ideal of the Hecke algebra H(KP)™ corresponding to A and
by p;-z the ideal of L[Tt] corresponding to the character id. We start with an auxilary
lemma.

Lemma I1.3.17. Let VW be (g, B)-modules. We have
Hom g p)(V © C5™(N, Ls—1), W) = Homg(V, W) =i

We remark again that the twist by J in the T-action appears because we use the
normalization of Emerton from Definition 3.4.2 in [Eme06a] in defining the action of the
monoid T on the N'-invariants. If we were to make T act by correspondences [N+ N?],
then we would have T = §~! on the right.

Proof. Both sides are isomorphic to Homp(CS™ (N, Ls-1), Homg(V, W)), where we pass to
the right-hand side by evaluation at the characteristic function 1 yo. 0

We consider the exact sequence
0 — Homg(M (x)"/L(x), H'(K")p.an)™" —

— Homg (M (x)", HY(K?) 1 an)™" —

0

- HOmg(L(X), ﬁO(Kp)L,an)N —
0

— EXté(M(X)v/L(X)v ﬁO(Kp)L,an)N

We want to prove that

Homyg (M (x)", H'(KP) 1,an)™" [px, b = Homg(L(x), H*(K)an)™" [, b5
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Because of the exact sequence above it is enough to show

-~ 0
Homg(M(X)v/L(X)7 HO(KP)L,an)é\;’pZ = 0

Exty(M(x)" /L), HO(K?) o)

nypfd

=0

where the subscript p A,p;z denotes the localisation at respective ideals. By devissage, it
suffices to show that

Lemma I1.3.18. For u strongly linked to x we have

(a) Homg (L(p), HO(KP)} .Y . =0

L,an pAvpL

(b) Exctg (L (1), HO(KP)Lan)Y . =0

PA,PL

Proof. (a) We can replace L(p) by M (p). Thus it is enough to prove that

Homg (M (12), H*(K?) pan) ¥+ =0

pabl
But Homg(M(u),ﬁO(Kp)Lan)No = ﬁO(K”)giﬁ:“. It follows from Lemma 2.3.4(ii) of
[Eme06a] that H(KP)™ and T act by compact operators on HO(K p)NO’{:” because this

L,an
NO,f:u)

I an + 1s finite dimensional.
Y

space is of compact type. Hence the localisation (ﬁ O(KP) i
wid

Therefore
Homg (M (1), H*(K?) 1 an)"

pAP
is of py-torsion and of p;;l—torsion. Hence if this space is non-zero then also

Al = 0 Pt
Homg (M (1), HO(K?) 1,a0)™" [, bj) = HO(KP) 0 =+

L,an

is non-zero which would contradict our assumption that (yx,\) is not bad. Hence we
conclude.

(b) Let us prove firstly that Exté (L(w), ﬁIO(Kp)L,an)NO . is of py-torsion and of p;-

PxoPig
torsion. By the exact sequence

Homg (ker (M (1) = L(1)), H(K?) p.an)™" = Exctg(L(n), H(K?)pan)™" —

— EXté (MOJ’)? ﬁO(Kp)L,an)NO

and (a) it suffices to prove that Exté(M(u),ﬁIO(Kp)L@n)No = 0. We have

pasph
Ext) (M (1), H(KP) 1, an) = Extg (11, H*(KP) an) = H' (b, H'(KP) 1 an(—1))

We know that H O(KP) Lan is injective as a G(Zp)-module. The standard argument is
given for example in the proof of Proposition 4.9 in [Chol3], from which we infer that in
fact fIO(Kp)Lan ~ Cl%(G(Zy), L)®" for some integer r > 0 as G(Z,)-modules. Assume
we know that C'*(G(Z,), L) is b-acyclic and invariant under p-torsion (the second one is
clear), then

(b, BO(KP) 1 an(—11)) = 0
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This proves the claim. Now to prove (b) completely, remark that we get the surjection

Homg (ker(M (1) = L()), H°(KP) 1 an)Y". o = Bxt!(L(w), BO(KP)p o)’

PP pkvpjd

hence it suffices to show that Homg(ker(M (1) — L(u)),HO(Kp)L@n)NO + vanishes. But

PPy
this follows from (a) by devissage.

Let us now prove that C'%(G(Z,), L) is indeed b-acyclic (it is stated in the proof of
Proposition 5.1.2 in [BE10]; the following proof was communicated to us by Christophe
Breuil). Recall that we have a topological decomposition G(Z,) = G(Z,)/B(Z,) x B(Z,)
which gives us a B(Z)-equivariant isomorphism

C'(G(Zy), L) = C*(G(Zp) / B(Zy), L) ®r C'*(B(Zy), L)

See Proposition 2.1.11 in [EmelOb]. The cohomological complex for the b-cohomology is
made of

Homz(/\ b,C"(G(Z,), L))

and by the above fact this is isomorphic to
q ~
Hom,, </\ b,Cl“(B(Zp),L)> &1C"(G(Zy)/B(Zyp), L)
Observe that tensoring by C'(G(Z,)/B(Zy), L) is exact in the category of b-modules over
L. Indeed, for any b-module M, we have a b-equivariant isomorphism
M®LCZG(G(ZP)/B(Zp)a L)~ CZG(G(ZP)/B(Zp)a M)
Now if 0 = H - M — N — 0 is exact then
0 = C(G(Z,)/B(Zy), H) — C(G(Z,)/B(Zy), M) = C(G(Z,) [B(Zy), N) = 0

is exact by the proof of Proposition 2.1.23 in [Emellb]. Hence —®.C!%(G(Z,)/B(Zy), L)
is an exact functor.

It suffices now to prove that C'*(B(Z,), L) is b-acyclic. This is proved along the proof
of Proposition 3.1 in [ST05].

This finishes the proof of the adjunction formula.

Due to various convenient normalizations we will now write points z = (x, A) € Spec A
as pairs (£ (13)§ By, A) where { € Ty, and (13) is the usual twisting by the longest Weyl-
element (13):

E9608)P =666

and gy, = (0B, )vex, is the Yp-tuple of modulus characters. This allows us to pass

between Borel By, and its opposite ng:
Gy Gx -1
(Indei £ = (IndB; X(SBZP )an
P

We will use that tacitly in the rest of the text.
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We now come back to the situation from Section 3.1. Recall that for v € X, we have
associated to an automorphic representation 7 of weight k£ = (k,), an upper-triangular
crystalline Galois representation p , with crystalline characters 11, %2 v, %3, on the diag-
onal and Hodge-Tate weights hy, < ha, < h3,. We have denoted by ¢, , the crystalline
eigenvalue of 1;, and we have written v; , = z i nr(d)wi’v). For each o, € S3 we have
defined a smooth character

057 = (Yo, 2" ® @ Y, 2)2"® @ Y, 32" @)(| - [ @ | ©1)
and a classical point on the eigenvariety for each o = (0,)ves, € (S3)s, given by

AD = (06, 0)

In order to apply the theorem to the points zl(fé) we write them in the form zl({g) =

(X(l?’)égzp, A). We look at the refinements one place v € ¥, at a time. We regard three
cases as 0y € {(1)y, (12)y, (23),}:

(Do s (1] - P @ 2] - |2 @ h3027)s (I1.10)
— (0027 P a2 ,), b,
= (¢3,v€2 ® P2E ® %,v)ilg) OBy,
(12)y 1 (Yo, - P20 @ 4y o | - |10 Th20 T @ 4hg  27),
= (1/13,v| : |222 ® Y10 - |Zh1‘“7h’2"’+1 & wz,vzh“’hlvv)im) 5sz

13)
2 hiv—h how—h1 o)
= <¢37v5 ® ¢1,’U€Z 1,v 2,v ® ¢2,’UZ 2,v 1,v)v 6Bz;p

(13)

— (wzv’ . ‘thQ,u*hB,v+2 ® w&v‘ . ’ZhB«v*hQ,v+l ® wlvv) 6321)

(13)

v

2 _ha,—h h3,,—h
— (1/127115 z 2,v 3,v ® wS,’UaZ 3,v 2,v ® wl,’u) 6ng

v

We denote

XY = 3087 ® Yo @ P14
X'SJIQ) — 'I,Z)?,’USQ ® wlyvgzhl,v_hlv ® ¢2’Uzh2,v_h1,u

5)23) — w2,0522h2,v_h3’v ® w3,v6zh3’v_h2’v ® wl,v

We could make a similar easy computation for any other o, € S3, but explicitly we will
need only (1), (12),(23). Hence we could also define XI(,U“) for any o, € S3. We use it just
for the sake of a better exposition. For every o = (0y), € (53)s, we put X\ = (Xz(,a”))vegp

and we define a locally analytic representation

(mﬁii x(@)an (IL11)

Ean (Zr(lg))
(o)

. . g . . . .
associated to a point zpc’. Similarly we define a continuous representation

G
Eco(2{) = (Indj." %)
P
associated to a point zr(f;). Notice that if X(U) is a unitary character of Ggp then the

universal unitary completion of Ean(zr(lg)) is Eco (zf{;)) Summarizing our results so far, we
get:
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Corollary I11.3.19. If zr(fé) is a simple, generic ordinary classical point such that P,

nc »

is totally indecomposable for all v € ¥,,, then there exists a non-zero map

Ean(z(a)) — }/\IO(KP)%/

nc

Proof. By Corollary [I1.3.11| we know that zr(fé) is not bad, hence we get the desired map
by Theorem O

Let us also define for each v € X, two characters
X((‘,Ll)?gp,v = ¢3,v€2 ® ¢1,v€ ® 7,/12,1;

XE(Z)?r)lp,v = ¢2,v52 & ¢3,v5 ® wl,v
and then, for any o = (O’U)Uegp € {(12), (23)}%2? a character ngznp = (Xﬁg;ﬁpm)vegp.
Here the subscript "comp" stands for "companion", which comes from the proof of the
following result.

Corollary I11.3.20. If z,(fé) is a simple, generic ordinary classical point such that P (o)

nc »

is totally indecomposable for all v € ¥, then

comp

G p ~
Homgy,, (Indp.” (x{0up) " HO(KP)2) = 0

Proof. We remark that ngr)np is a refinement of a point 2(0) = (ngr)np, A) € Spec A which

is strongly linked to zr(fé) As zr(fé) is not bad, 2(°) does not appear on the eigenvariety and

thus is also not bad. We conclude by the adjunction formula applied to (7). O

I1.3.4 Unitary completions of locally analytic representations

We now relate our work to certain representations which arise in the work of Breuil-Herzig.
We will first describe a certain locally analytic representation of GL3(Q)) associated to a
totally indecomposable generic ordinary representation p, by Breuil and Herzig. Then we
show that it arises as a GL3(Qj)-subrepresentation of a completed cohomology space.

For each simple root r for GL3(Q,), positive with respect to the upper triangular Borel
B(Qp), we get a Levi component G, of a parabolic P, such that r is the unique simple
positive root appearing in B(Q,) N G,. For example,

x ok
B(Qp) N G€1—€2 = * C G61—€2 = |* * C Pejey =
Suppose that p, is a generic ordinary, crystalline representation of G'q, with Hodge-Tate
weights h1 < he < hz and write
(AR

Pp ~ vy x
3

with 1; having weight h;.
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We begin by describing the representation H(pp)ord constructed by Breuil and Herzig
in the totally indecomposable case. By [BH, Proposition B.2], each simple root r = e; —¢;
gives rise to a unique non-split extension

0— IndeQ )QP (126 © 1) = By ey — Ind?LQ()Q”)(w e®@ 1) =0, (IL12)
0 — Id%r 2 Q) (1362 @ 19e) " — Eoy ey — Ind T2 (4062 @ 136)° — 0. (IL13)

(

First define

¥) (*3)

GL3

Mae(pp) = Ind 2 W) (132 @ ghye @ )"

and then define

GL-
H(pp)61*62 = IndPeLf(Qp)(Eel*@ ® ¢3€2)CO’ and (11'14)

—eg

G
TI(pp)es—es = Ind 5\ (41 @ By _oy) ",

62 €3

By (II.12) and (II.13) we have two non-split extensions of GL3(Qj)-representations

0= Tne(pp) = T(pp)e, e, — Iy ¥ (1ge? @ e @ )™ =0, and  (IL15)

0— an(Pp) — H(pp)€2—€3 — IndB(Qp?”)(wze ® P3e ® 7!)1) _> 0.

Finally we define the amalgamated sum I1(p,)°*® = T1(pp)e, —es DL (pp) 1L(Pp)es—es- This
is the representation I1(p,)°™ of [BHL §3] up to normalizations (see the remarks following
Conjecture below).

In order to proceed we have to obtain another description of H(pp)ord. We start with
a simple general lemma.

Lemma 11.3.21. Let P C G be a parabolic subgroup of a p-adic reductive group G. Let
(Van, Tan) be a locally analytic L-representation of P and let (V,m) be its universal unitary
completion, which we assume to be non-zero. Suppose also that we have a P-equivariant
injection Van — V' (which is neccessarily dense). Then we have a dense P-equivariant
injection

Ind$ (Van )™ < IndG(V)°

Proof. Let f € IndIGD(V)CO. We want to approximate it by functions in Ind®(Vy,)2".
So let us take any € > 0. Remark that we have P\G ~ Py\Gp where Py C Gy are
respectively maximal compact subgroups of P,G. Let U be the opposite unipotent and
let H be any sufficiently small compact open subgroup of G. We have a decomposition
Go =11, Po x (HN U ) X go into finitely many pieces. Let us choose an element vy € V,p
such that for any h € H N U we have |f(hgy) — vo| < €. This is possible by density
of Van in V and choosing H sufficiently small (H will depend on f). Then we define
fan(Phgo) = Tan(p)vg for p € P and h € HNU. We make a similar definition for other
pieces in the decomposition hence obtaining a function fa, : G — Van. Observe that
because 7 is unitary, m is bounded on P and hence there exists sup,cp |7(p)| which is
finite. We have

|/ (phgo) — fan(phgo)| = |7 ()| - |f (hgo) — vo| < € sup |7 (p)]
peEP

which allow us to conclude as € was arbitrary. O
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We return to the extension classes of and (IL.13). By [BE10, Théoreme 2.2.2]
(see also [Eme06b, §6.3] but note that the Hodge-Tate weights of the reference(s) are the
negatives of ours) says each extension may be written explicitly as a universal unitary
completion

Eey_ep = Ind?Li )QP (g2 "2 @ gy 22 =)anA anq (IL.16)

E62 o5 IndGLZ Qp (,¢ 522h2 hs ® d} 52h3 hz)an/\

("3

Thus we obtain the description of the extensions ([1.15).

Proposition 11.3.22. We have

H(pp)el—eg ~ Indg%éi?p)(%g ® wlngnfhz ® ¢22h27h1 )an,/\ and

GL B B
THPp)es—ea = Tnd( P (92220271 @ e~ @ gy,

Proof. The proofs are symmetric so we only cover the first isomorphism. We write
GL — _
I = IndB 3(Qp)(,¢382 ® wlgzhl ho ® w2zh2 hl)an

= a9 (e & T2 (et gy )

the tensor representation in the second line being seen as a representation of P, _., via

inflation P, ¢, — Ge,—e,- By , and Lemma we see that there is a
dense inclusion I < II(pp)e,—e,. This induces a non-zero map I" — I(pp)e,—e,. Since
both representations are admissible, to show that it is an isomorphism we need only show
it is injective.

Since I is dense in II(pp)e,—e, We can pull back the unit ball and obtain an open,
separated, GL3(Q))-stable lattice A C I such that II(pp)e, —e, = 1&11 A1 /p"A1®Q,. Since
I # 0 we also obtain a minimal GL3(Q,)-stable lattice Ag such that "IN~ Jm Ao/p"Ao®
Q,. By minimiality Ag C Ay; since each is separated we have

= %HAO/PHAO ®z, Qp — y%nAl/p”Al ®z, Qp = (pp)es—es-

This completes the proof. ]

I1.3.5 On a conjecture of Breuil and Herzig

We now go back to our global setting. We suppose that z = (x.,\,) € X(L) is a generic
ordinary point such that p. , is totally indecomposable for each place v € X,. We define
a representation

—

H(pz,p)ord = ®v€2pﬂ(pz,v)ord

Note that this only depends on p, not on z itself (i.e. on A, not ). We use H° (Kp)zz’ord
to denote the ordinary part of the Gy -representation H O(Kp)éz. Let us now recall a
special case of the conjecture of Breuil and Herzig which describes this subspace.

Conjecture I1.3.23 ([BH, Conjecture 4.2.2]). Suppose that z € X (L) is a generic ordi-
nary point and p. . is totally indecomposable at each place v € Xy,. Then there exists an
integer d > 1 and a Gy, -equivariant isomorphism

od ~
(Mpsp)™) ™ = HO(RP)O
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Note that there are the following differences between our normalizations of those of
[BH]. First, we have used the upper triangular Borels throughout. Second, the represen-
tation defined in [BH, §3], temporarily denoted by II(p,)**4BH  differs from ours by the
equation

I1(p,) "B @ 2 o det = TI(p,)°".

Thus the conjecture we have written is the same as [BH, Conjecture 4.2.2]. We further
remark that the integer d should only depend on K? and A, (e.g. because the right hand
side depends only on those things).

We cannot completely prove the conjecture of Breuil-Herzig but we do give the follow-
ing strong evidence.

Theorem I1.3.24. Suppose that z € X(L) is a generic ordinary classical point and
pzw 5 totally indecomposable at each place v € X,. Then there exists an integer d > 1,
depending only on KP and X\,, and a G-equivariant closed embedding

®d ~
(H(Pz,p)ord) N HO(KP)EZ’Ord.

In order to prepare the proof we need an intermediate result, due to Chenevier, on
multiplicities in spaces of p-adic automorphic forms. Recall from Definition that an
element o € (S3)x, is said to be simple if o, € {1,(12),(23)} for all v € ¥,,. We recall also

that by Proposition [I1.3.22 Eé\n(zl(lg)) is an extension of Eco (Xﬁgﬁlp) by Eco (zr(llc))

Proposition 11.3.25. Suppose that o is simple. Then the natural map
Hom(Eco (=), Hy™*) = Hom(E}, (=(2), Hy™)
s an isomorphism.

Proof. We first note that we have a Gy -equivariant short exact sequence

0= Eco(28Y) = BN () = Ego(x(2),) — 0

comp

and thus an exact sequence

0 — Hom(Ego (x{3hp), Hy*) — Hom(EQ, (242)), H)™*) — Hom(Ego (24Y), Hy*).

mp c

By Corollary the first space is actually zero. Thus it suffices to check that the
(o)

dimensions of the two spaces in the proposition are the same. Since zne
each simple o we can apply Theorem [[I.3:12] So we aim to show that

is not bad for

(13) (3)
XDPE g A X0 g
dim J2¢ T (HO(K?)),) = dim 7,2 (HO(KP)),,) (IL17)

is independent of simple o € (S3)x,.

Here is where we apply the results of Chenevier. By [Bre, Proposition 7.2] the di-
mensions are the same as the dimensions of spaces of p-adic automorphic forms
defined in terms of locally analytic Iwahori principal series [Chelll, §4]. Since o is simple,
the points zr(;;) are all non-critical by Proposition Thus by [Chelll Proposition
4.2], every p-adic automorphic form with system of eigenvalues A, and refinement X (o) 18
actually classical: there must be a classical automorphic representation 7 as in on

G
which H" (KP) acts via A = A, and 7y, C Indep 0 (». Since z is generic ordinary, the

P ?nc
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Iwahori invariants 7Tg; contain each GZ((,) with multiplicity one. Thus in the notation of

(LL.3) we get

(13)
s th(\ccr) 6sz 770 p Az . KP
dlmJsz (H(KP)17an) = Z m(m) dim(7f )
Ar=As

is independent of o. O
We are now in a position to prove Theorem [[I.3.24]

Proof of Theorem[II.3.2]. Observe that if o is simple then Eé\n(zr(lg)) contains Ego (zr(lp)

Thus we can denote by @UEQH(ZIS?) the amalgamated sum of all these representations

over ECo(zélc)). We have two observations. First, for any GL3(Qj)-representation M,

Hom(®,E, (247), M) = x Hom(E" (2(2)), M). (IL18)

Hom(E o (1)), M)
Second, we see by inspection that
©o Epy(27) = T(p2 ). (I1.19)

To prove the theorem now, we take M = ﬁO(Kp)zfan. We plug (I1.19)) into the left hand
side of ([I.18]) and we apply Proposition [I1.3.25| to compute the right hand side. Thus we
get

Hom(I1(p,,,)", HO(K?)}*) = Hom(Eqo (2Y), HO(KP)}*) # 0.
Now notice that ECo(zfé)) is topologically irreducible and so any map E/CO(ZI(I%:)) —
HO(KP)}* is necessarily a closed embedding. Since every map II(p, )4 — HO(KP)}* is

uniquely determined by its restriction to Eqo (zl(ﬁ;)) we deduce that every map II(p, ;)" —
HO(KP)}* is a closed embedding as well. O



Chapter II1

On mod p non-abelian Lubin-Tate
theory

III.1 Introduction

By the recent work of Emerton (see [Emellal) we know that the p-adic completed (resp.
mod p) cohomology of the tower of modular curves realizes the p-adic (resp. mod p) Lo-
cal Langlands correspondence. In this Chapter we will obtain an analogous but weaker
result for the mod p cohomology of the Lubin-Tate tower over Q,. In fact, we will analyse
both the cohomology with compact support and the cohomology without support of the
Lubin-Tate tower. Here are the two main results which we prove:

(1) In the first cohomology group H} of the Lubin-Tate tower appears the mod p

LTF,
local Langlands correspondence and the naive mod p Jacquet-Langlands correspondence,

meaning that there is an injection of representations
™R ﬁ — H};T,E‘p

and o ®7® p appears as a subquotient in H! where 7 is a supersingular representation

LTF,’
of GL2(Qp), p is its associated local mod p Galois representation and o is the naive mod

p Jacquet-Langlands correspondence (for details, see Section 8).

(2) The first cohomology group HiT,c,pr with compact support of the Lubin-Tate tower
does not contain any supersingular representations. This suprising result shows that the
mod p situation is much different from its mod [ analogue. It also permits us to show that
the mod p local Langlands correspondence appears in H' of the ordinary locus - again a

fact which is different from the [-adic setting for supercuspidal representations.

Before sketching how we obtain the above results, let us outline the first main difference
with the non-abelian Lubin-Tate theory in the [-adic case. When [ # p the comparison
between the Lubin-Tate tower and the modular curve tower is made via vanishing cycles.
For that, we need to know that the stalks of vanishing cycles gives the cohomology of
the Lubin-Tate tower, or in other words we need an analogue of the theorem proved by
Berkovich in [Ber96]. But when [ = p, the statement does not hold anymore (see Remark
3.8.(iv) in [Ber96]) and hence we cannot imitate directly the arguments from the I-adic
theory.

To circumvent this difficulty, we work from the beginning at the rigid-analytic level and
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consider embeddings from the ordinary and the supersingular tubes into modular curves.
This gives two long exact sequences of cohomology, depending on whether we take compact
support or a support in the ordinary locus and we start our analysis by resuming facts
about the geometry of modular curves. We recall a decomposition of the ordinary locus,
which proves that its cohomology is induced from some proper parabolic subgroup of GLo.
We use this fact several times in order to have vanishing of the cohomology of ordinary
locus after localising at a supersingular representation m of GL2(Q,). We then recall
standard facts about admissible representations and review the functor of localisation at
7 which comes out of the work of Paskunas.

We then turn to the analysis of the supersingular locus. In this context, naturally
appears a quaternion algebra D* /Q which is ramified exactly at p and co. We define the
local fundamental representation of Deligne in our setting (which appeared for the first
time in the letter of Deligne [Del73]) and we show a decomposition of the cohomology of
supersingular locus. At this point we will be able to show that H! of the tower of modular
curves injects into H' of the Lubin-Tate tower hence proving part of (1).

Having established this result, we start analysing mod p representations of the p-adic
quaternion algebra and define a candidate for the mod p Jacquet-Langlands correspon-
dence o, which we later show to appear in the cohomology. It will a priori depend on a
global input, namely a maximal ideal m of a Hecke algebra corresponding to some mod-
ular mod p Galois representation p, but we conjecture that it is independent of m. This
is reasonable as it would follow from the local-global compatibility part of the Buzzard-
Diamond-Jarvis conjecture. After further analysis of oy, we are able to finish the proof of
(1).

Using similar techniques, we start analysing the cohomology with compact support of
the Lubin-Tate tower. By using the Hochschild-Serre spectral sequence, we are able to
reduce (2) to the question of whether supersingular Hecke modules of the mod p Hecke
algebra at the pro-p Iwahori level appear in the H! of the Lubin-Tate tower at the pro-p
Iwahori level. We solve this question by explicitly computing some cohomology groups.

While proving the above theorems, we will also prove that the first cohomology group
of the Lubin-Tate tower and the first cohomology group of the ordinary locus are non-
admissible smooth representations. In particular, they are much harder to describe than
their mod [ analogues. Moreover our model for the mod p Jacquet-Langlands correspon-
dence oy, (actually we propose three candidates for the correspondence which we discuss
in Section 7.4) is a representation of D*(Q,) of infinite length. This indicates that al-
ready for D*(Q,) the mod p Langlands correspondence is complicated (as in the work
of [BP12], representations in question are not of finite length). On the other hand, the
case of D*(Q,) is much simpler than that of GLa(F') for F' a finite extension of Q,, and
hence we might be able to describe oy, precisely. Natural question in this discussion is the
local-global compatibility part of the Buzzard-Diamond-Jarvis conjecture (see Conjecture
4.7 in [BDJ10]) which says that we have an isomorphism

Flm] >~ on © 77(p)

where F denotes locally constant functions on D*(Q)\D* (A ) with values in F, and 7P(p)
is a representation of GLso (AZ;) associated to p by the modified Langlands correspondence.

At the end, we remark that our arguments work well in the [ # p setting and omit the
use of vanishing cycles. As some of our arguments are geometric, we can also get similar
results in the p-adic setting. We hope to return to this issue in our future work. Also, the
geometry of modular curves is very similar to the geometry of Shimura curves and hence
we hope that some of the reasonings in this Chapter will give an insight into the nature
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of the mod p local Langlands correspondence of GLy(F') for F' a finite extension of Q.

III.2 Geometry of modular curves

Let X (Np™) be the Katz-Mazur compactification of the modular curve associated to the
moduli problem (I'(p™),'1(N)) (see [KMS85]) which is defined over Z[1/N, (;n], where (pn
is a primitive p™-th root of unity, that is X (Np™) parametrizes (up to isomorphism) triples
(E, ¢, a), where E is an elliptic curve, ¢ : (Z/p"Z)? — E[p"] is a Drinfeld level structure
and « : Z/NZ — E[N] is a I'; (IV)-structure. We consider the integral model of it defined
over Z"[(pn], where ZJ" is the maximal unramified extension of Z;, which we will denote
also by X (Np™). Let us denote by X (Np™)*" the analytification of X (Np™) which is a
Berkovich space.

Recall that there exists a reduction map 7 : X(Np™)*" — X (Np™), where X (Np™)
is the special fiber of X(Np™). We define X (Np™)ss (resp. X (Np™)orq) to be the set
of supersingular (resp. ordinary) points in X (Np™). Define the tubes X(Np™)ss =
7 X (Np™)gs) and X(Np™)prg = 7 H(X(Np™)opq) inside X (Np™)@™ of supersingular
and ordinary points respectively.

I1I1.2.1 Two exact sequences

We know that X (Np™)ss is an open analytic subspace of X (Np™)%" isomorphic to some
copies of Lubin-Tate spaces, where the number of copies is equal to the number of points in
X(Np™)ss (see section 3 of [Buz03]). We have a decomposition X (Np™)*" = X (Np™)ssU
X(Np™)orq and we put j : X(Np™)ss — X(Np™)* and i : X(Np"™)orqg — X (Np™)*™.
We remark that j is an open immersion of Berkovich spaces. Let F' be a sheaf in the étale
topos of X (Np™)®. By the general formalism of six operations (due in this setting to
Berkovich, see [Ber93]) we have a short exact sequence:

0= jj*F - F = i,'F — 0
which gives a long exact sequence of étale cohomology groups:
e = HYX(ND™)ordy i F) — HLH(X(Np™)ss, F) —

— HY(X(Np™)* F) — HY(X(Np™)gpq, i*F) — ...

On the other hand, we can consider a similar exact sequence for the cohomology
without compact support, but instead considering support on the ordinary locus. This
results in the long exact sequence

.= Hx (X(Np™)™, F)— H'(X(Np™)™,F) —

— HY(X(Np™)ss,i*F) = Hx, (X(Np™)*™, F) — ...

where we have denoted by H)l(wd (X (Np™)®™ F) the étale cohomology of X (Np™)*" with
support on X (Np™),,q. Because of the vanishing of the cohomology with compact support
of the supersingular locus localised at 7 (see the explanation in the next sections), this
exact sequence will be of more importance to us later on. We will analyse those two exact
sequences simultanously.
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II1.2.2 Decomposition of ordinary locus
Let us recall that we have the Weil pairing on elliptic curves
epm : E[p™] x E[p"] = ppm

Denote by (,m a p™-th primitive root of unity. For a € (Z/p™Z)* we define a substack
X(Np™), of X(Np™) as the moduli problem which classifies elliptic curves FE with level
structures (¢, a) such that eym (é(§),#(9)) = (fm. This moduli problem is representable
by a scheme over Z;" [(ym] (see chapter 9 of [KM85]). Moreover the coproduct [[, X (Np™)a
is a regular model of X(Np™) over Zy"[(pm].

Let us denote by X(Np™), .., the ordinary locus of the reduction of X (Np™),. We
recall (see for example chapter 13 of [KMS5]) that the set of irreducible components of
X (Np™),,.q consists of smooth curves Cy,(Np™) defined on points by:

Cap(Np™)(8) = {(E, ¢, a) € X(NDP™) g 6ra(S) | epm(¢(5), (})) = (fm and Ker ¢ = b}

where a € (Z/p™Z)* and b € PY(Z/p™Z) is regarded as a line in Z/p™Z x Z/p™Z. We
observe that (jm =1 modulo p.
We are interested in lifting C, ;(Np™) to characteristic zero and so we put

Xap(Np™) = 71 (Cap(Np™))

Hence {X,4(Np™)} for a € (Z/p™Z)*, b € PYZ/p™Z) form a decomposition of the
ordinary locus X (Np™)yrq because different C,,(Np™) intersect only at supersingular
points. The spaces X, ,(Np™) may be regarded as analytifications of Igusa curves. For
a detailed discussion, see [Col05]. We do not determine here whether X, ;(Np™) are
precisely the connected components of X (Np™),.4. We remark also that one can give a
moduli description of each X, ,(Np™).

There is an action of GLo(Z/p™Z) on X (Np™)*" which is given on points by:

(E7¢7a)'g:(E’¢ogva)

for g € GLo(Z/p™Z). Observe that if e,m(¢(§),o(9)) = Cm, then eym((¢ o 9)($), (g0
9)(9)) = Cgfetg for g € GL2(Z/p™Z) and so g induces an isomorphism between X, ,(Np™)
and Xa.detgﬂ—l.b(Npm).

For b € PY(Z/p™Z) there is a Borel subgroup B,,(b) in GLa(Z/p™Z) which fixes b
and hence the Borel subgroup By, (b)" = B,,(b) N SL2(Z/p™Z) in SLy(Z/p™Z) stabilises
Xop(Np™).

Let b =00 = (}) € P1(Z/p™Z). By the above considerations we have

HY (X (Np™)ora,i*F) EBH ab(ND™), (i F)x, y(Npm)) =~

~In dGL2((Z/PmZ <@Hz aoo(Np ) (Z*F)|Xaoo))>

and also '
Hy (X(Np™) EBHX (npm) (X (Np™)", F) =~

~ Indg, 27" (EB Koo (N X(Npm)a",F)>

Those results will be extremely useful for us later on, when we introduce the localisation
at a given supersingular representation.
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I11.2.3 Supersingular points

Let us denote by D the quaternion algebra over Q which is ramified precisely at p and
at co. We recall the description of supersingular points X (Np™)ss which has appeared
in [Del73] and then was explained in [Car86], sections 9.4 and 10.4. Fix a supersingular
elliptic curve E over F,, and a two-dimensional vector space V over Q,. Let det(EF) = Z
be the determinant of E. Denote by W (F,/F,) the Weil group of F, and put

A = (W(F,/F,) x Tsom(det(E) ©z Qyl1), A°V) ) /~

where ~ is defined by (o,3) ~ (o Frob*, p~%3) for k € Z, where Frob : = + 2P is a
Frobenius map. We define K, to be the kernel of D*(Z,) — D*(Z/p™Z) and we let
K(N)={(2%) € GLy(Z) | a=1 mod N and ¢ =0 mod N}, viewed as a subgroup of
GLQ(A?C) by the diagonal embedding. Then:

X(Npm)ss = A/Kvm ><D><(Q) GLQ(A?)/K(N)

Every 6 € A/K,, furnishes a supersingular elliptic curve E(J), so that for every 6 € A we
can consider the Lubin-Tate tower LT; = I‘me LTs(p™), which is the generic fiber of the
deformation space of the formal group attached to F(d) and where LT5(p™) denotes the
generic fiber of the deformation space of formal groups with p-level structure (see [Dat12]
for details on the Lubin-Tate tower). Let us denote by E(d) the universal formal group
deforming the formal group attached to E(6) and let E(A) = [[5ca E(6). By 9.4 of [Car86],
the universal formal group over lim Npm X (Np™)ss is isomorphic to E(A) X px(q) GLQ(A?)
and hence we conclude that

1'£1 X(Npm)ss ~ LTA XDX(Q) GLQ(A}})
Npm

where LTA = [[5ca LT5. We also get a description at a finite level
X(Npm)ss ~ LTA/Km XDX(Q) GLQ(A?)/K(N)

where LTx/k,, = Usea/k,, LT5(p™).
These results will allow us later on to define the local fundamental representation and

analyze the action of the quaternion algebra D*.

I11.3 Admissibility of cohomology groups

In this section we will recall the notion of admissibility in the context of mod p represen-
tations. It will be crucial in our study of cohomology.

IT1.3.1 General facts and definitions

We start with general facts about admissible representations. In our definitions, we will
follow [Emel0a]. Let k be a field of characteristic p and let G be a connected reductive

group over Q.

Definition II1.3.1. Let V be a representation of G over k. A vector v € V is smooth if
v 1s fized by some open subgroup of G. Let Vg, denote the subset of smooth vectors of V.
We say that a G-representation V' over k is smooth if V = Vgp,.

A smooth G-representation V. over k is admissible if V! is finitely generated over k
for every open compact subgroup H of G.
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Proposition 111.3.2. The category of admissible k-representations is abelian.

Proof. This category is (anti-)equivalent to the category of finitely generated augmented
modules over certain completed group rings. See Proposition 2.2.13 and 2.4.11 in [Emel0a].
O

Now, we will prove an analogue of Lemma 13.2.3 from [Boy99| in the [ = p setting. We
will later apply this lemma to the cohomology of the ordinary locus to force its vanishing
after localisation at a supersingular representation of GL2(Q)).

Lemma II1.3.3. For any smooth admissible representation (m,V') of the parabolic sub-
group P C G over k, the unipotent radical U of P acts trivially on V.

Proof. Let L be a Levi subgroup of P, so that P = LU. Let v € V and let Kp = Ky Ky
be a compact open subgroup of P such that v € VXP. We choose an element z in the
centre of L such that:

2 "Kpz"C..C2 'KpzC KpCzKpz~tc..Cc2"Kpz"C ..

and U~ 2"Kpz~" = K U. For every n and m, modules V= "KrP=" and V= "Er" are
of the same length as they are isomorphic via m(z"~"™) and hence we have not only an
isomorphism but an equality V* "Krz" = V= "Eprz™ = Thus for every z € VEP we have
x € VEP = V2" Kp2" — VKLU which is contained in VV. O

We also record the following result of Emerton for the future use.

Lemma I11.3.4. Let V = Indg W be a parabolic induction. If V is a smooth admissible
representation of G over k, then W is a smooth admissible representation of P over k.

Proof. This follows from Theorem 4.4.6 in [Emel0al. O

II1.3.2 Cohomology and admissibility

In [Eme06c|, Emerton has introduced the completed cohomology, which plays a crucial
role in the p-adic Langlands program. The most important thing for us right now is
the fact that those cohomology groups for modular curves are admissible as GL2(Q,)-
representations. We have

Proposition II1.3.5. The GL2(Q,)-representation

~

HY(X(N),Fp) = lim H' (X (Np™)*", Fp)

18 admissible.

Proof. This is Theorem 2.1.5 of [Eme06¢] (see also Theorem 1.16 in [CE12]). O

By formal properties of the category of admissible representations, which form a Serre
subcategory of the category of smooth representations (see Proposition 2.2.13 in [Emel0al),
the above result permits us to deduce admissibility for other cohomology groups which are
of interest to us. Let us remark that we can define also the cohomology of the Lubin-Tate
tower with compact support:
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Remark II1.3.6. A priori, cohomology with compact support is a covariant functor. But
using the adjunction map
A = T A~ A

where A is a constant sheaf and w : X (Np™+1) g — X (Np™)s is finite (hence w, = m) and
étale (hence ™ = 7* ) by the properties of Lubin-Tate tower, we get maps H (X (Np™)ss, A) —
HI{(X(Np™t1) s, A) compatible with H' (X (Np™)®, A) — HY (X (Np™Hl)g, A).

We start firstly by analysing cohomology groups which appear in the exact sequence
for the cohomology with compact support. We have

Proposition II1.3.7. The GL2(Q,)-representation

AO(X(N)ora, Fy) = limg HO(X(ND™) v Fy)

18 admissible.

Proof. The number of connected components of X(Np™),,q is finite and let d(Np™) be
their number. For s > 0, we have

HO(X(Np™)ora, ) = (F,) 7™
hence lim H O(X(Np™)ora, Fp) is admissible. O
We deduce
Proposition IT1.3.8. The GL2(Q))-representation

HY (X (N) e, Fp) = limg HL (X (ND™) e, )

1s admissible.
Proof. We consider the exact sequence from 2.1:
o = HY (X (N)ora, Fp) = HYX(N)ss, Fp) — HYX(N)™ F,) — HYX(N)ora, Fp) — ..

and we conclude using the fact that admissible representations form a Serre subcategory
of smooth representations and the propositions proved above. O

We remark that the cohomology with compact support of the Lubin-Tate tower is
much easier to work with than the cohomology without the support. This is because the
latter will turn out to be non-admissible.

We finish this section with the following proposition

Proposition II1.3.9. The GLy(Q,)-representation

HY, (X(N),F,) =lim H  (X(Np™)™,F,)
m

18 admissible.

Proof. This follows from the exact sequence (we use the notations from the previous
section)

HO(X(Np™)g,Fp) — H}(wd (X(Np™)™, F,) — HY(X(Np™)*" F,)

and Proposition 3.5. Again we use here the fact that admissible representations form a
Serre subcategory of smooth representations. O
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I11.4 Supersingular representations

In this section we recall results on the structure of admissible representations and we
apply them to the exact sequence of cohomology groups that we have introduced before,
getting the first comparison between the cohomology of the Lubin-Tate tower and the
cohomology of the tower of modular curves. We will start with a reminder on the mod p
local Langlands correspondence. The reader should consult [Berl1] for references to proofs
of cited facts.

I11.4.1 Mod p local Langlands correspondence

Let wy, be the fundamental character of Serre of level n which is defined on inertia group 1

/
% Let w be the mod p cyclotomic character. For h € N, we write Ind w

for the unique semisimple Fp-representatlon of G, which has determinant w" and whose

via 0 —

restriction to I is isomorphic to w? & WP @ ... ® wpnilh. If x : Gg, — k™ is a character,
we will denote by p(r, x) the representation Ind(w TH) ® x which is absolutely irreducible
if r € {0,...,p — 1}. In fact, any absolutely irreducible representation of Gg, of dimension

2 is isomorphic to some p(r,x) for r € {0,...,p — 1}. We remark that Ind w5 is not

G
isomorphic to the induced representation IndG P w2+1 because of the condition which we

put on the determinant. In fact, computing the determinant of IndGE w§+1, one sees

that .
Ind wi™ = Inng” (whth - sgn)
p

where sgn is the Fp-character of Gsz which factors through F;Q x Z and which is trivial on
IF;Q and takes the Frobenius of GQp2 to —1 in Z (we have to make a choice of a uniformiser
to have the map GQp2 —» IF;2 X Z, but in this context it suffices to take p).

On the GLg-side, one considers representations Sym” k% inflated to GLa(Z,) and then
extended to GLg(Zp)Q, by making p acts by identity. We then consider the induced
representation

GLZ(@p) r 1.2
Indg (%) Sym” k

2 « Sym" k?)

p)Qp
(Z,)Q,

One can show that the endomorphism ring (a Hecke algebra) Endgiar,(,)) (In d

L2(Q

La(Z
is isomorphic to k[T'], where T' corresponds to the double class GLa(Z,)Q, (5 ) GL2
For a character x : Gg, — k™ and A € k. we introduce representations:

GL2(Qp) T 1.2
In dGLZ(Zp)Qp Sym” k

T—A

For r € {0,...,p — 1} such that (r,\) ¢ {(0,£1), (p — 1, £1)}, the representation m(r, A, x)
is irreducible. One proves that xodet, Sp ®(yodet) (Sp is the special representation which
we do not define here) and 7(r, A, x) for r € {0,...,p—1} and (r, A) & {(0,£1), (p—1,£1)}
are all the smooth irreducible representations of GL2(Q)).

This explicit description gives a mod p correspondence by associating p(r, x) to 7(r, 0, x).

7T(’I“, )\7 X) - 024 (X o det)

II1.4.2 Supersingular representations

Let us a fix a supersingular representation = of GL2(Q,) on a Fp—vector space with a
central character . Recall the following result of Paskunas:



I11.4. SUPERSINGULAR REPRESENTATIONS 65

Proposition ITI1.4.1. Let 7 be an irreducible smooth representation of GL2(Qp) admitting
a central character. If ExtéLQ(@p)(ﬁ, T) # 0 then T ~ 7.

Proof. See [Pasl0] and [Pas11] for the case p = 2. O

This result permits us to conclude that the GL2(Qp)-block of any supersingular rep-
resentation consists of one element - the supersingular representation itself. Here, by a
GL2(Qp)-block we mean an equivalence class for a relation defined as follows. We write
m ~ 7 if there exists a sequence of irreducible smooth admissible Fp—representations of
GL2(Qp): mo = 7, m1, ..., 7 = 7T such that for each ¢ one of the following conditions holds:

1) m >~ g,

2) EXtéL2(Qp)(7Ti, mi+1) 7 0,

3) Ext%;LQ(Qp)(mH,m) #0.
One can find a description of all GLy(Q))-blocks in [Pasll] or [Pasl3]. The general
result of Gabriel on the block decomposition of locally finite categories gives:

Proposition 111.4.2. We have a decomposition:
Re adm (F ) — Re adm (fF ) @ Re adm (F )(7r)
PGL2(Qp) 6 \" P PaL2(Qp).6\" 2/ (m) PGLy () 6\ p

where Rep‘édﬁ’;((@pm(]lj’p) is the (abelian) category of smooth admissible F,-representations

admitting a central character &, Rep‘édﬁz((@pm(]ﬁ‘p)(ﬂ) (resp. Rep‘édﬂz((@pm(]?p)(“)) is the
subcategory of it consisting of representations I whose all the irreducible subquotients are
(resp. are not) isomorphic to .

Proof. See Proposition 5.32 in [Pas13]. O

This result permit us to consider the localisation functor with respect to m
V= V(W)

on the category of admissible representations such that all irreducible subquotients of V)
are isomorphic to the fixed .

Remark IT1.4.3. We note that the condition on the existence of central characters is not
important. Central characters always exist by the work of Berger ([Berl2]) in the mod p
case.

I11.4.3 Cohomology with compact support

We apply the localisation functor to the three admissible terms in the exact sequence
obtained from 2.1:

o = HY (X (N)opas Fp) = HYX(N)ss,Fp) — H (X (N)™ F,) = H (X (N)opa, Fp) — ...
getting the exact sequence

HO(X(N)oras Fp) () = HH(X (N)ss, Fy) ) = H' (X (M), Fp) )

For a € Z) let us define in the light of 2.2

~

H'(X,00(N),Fp) = lim H (X, 00 (Np™), )

)
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Recall now, that after 2.2, H "X (N)ord, IF‘p) is an admissible representation isomorphic to
the induced representation

GL2(Qp) 0 o
In dBoj(Qp” (EBH a,00( Fp)>

where B (Q,) is the Borel subgroup of upper triangular matrices in GL2(Qp), a goes
over Z, and we mean by @, HO(Xq.00(N ),Fp) smooth functions on Z, with values in

D, HO( a.00(N),Fp). On this representation unipotent group acts trivially by lemma 3.3
(which we can use thanks to lemma 3.4) and hence we see that it is induced from the
tensor product of characters. This means that after localisation at 7« this representation

vanishes
GL2(Qp) =
In dBon:) <@HO a,00( Fp)) =0
()
and we arrive at
Theorem II1.4.4. We have an injection of representations
j:[cl(X(N)SS’ IF‘ID)(ﬂ’) — ﬁl(X(N)7FP>(7T)
By taking yet another direct limit, we define
Hjs,c,li“p - %“Hcl (X(N)ss, Fp)
Hy = h%nH%X(m, Fp)
Corollary II1.4.5. We have an injection of representations
771
(H, o5 ) m) = (H )i
We define also for a future use
ﬁ;rd,]ﬁp = %ﬂ %ﬂ H' (X(Npm)orcb IF‘p)
N m

and for a € Z;
Hy o, = I M ' (Koo (NP™), )
I11.4.4 Cohomology without support

We can apply similar reasoning as above to the situation without compact support. The
roles of the ordinary locus and the supersingular locus are interchanged. By using again the
decomposition of the ordinary locus and lemmas 3.3 and 3.4, we get that the localisation
of fI}(Om vanishes

Hy, (X(N),Fp)m =0
and hence we get

Theorem II1.4.6. We have an injection of representations

ag! 1
(H]l_“p)(ﬂ') — H

ss ]Fp

where Hslsn?" is defined similarly as above.
'
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Later on, we will show that ﬁ;s 7 Is a non-admissible representation, and this is why
=P
we cannot localise it at 7. Let us finish by giving another definition for a future use (where
a€ly)
P

Hy 5= l'%hgHia,m(NpmxX(Npm)m,pr)
m

III.5 New vectors

Because there does not exist at the moment the Colmez functor in the context of quaternion
algebras, which would be similar to the one considered for example in [Pas13], we are forced
to look for a global definition of the mod p Jacquet-Langlands correspondence. To do that,
we prove an analogue of a classical theorem of Casselman in the context of the modified
mod [ Langlands correspondence of Emerton-Helm (see [EHI11]), which amounts to the
statement that for any prime [ # p, and for any local two-dimensional Galois representation
p of Gal(Q;/Q), there exists a compact, open subgroup K; C GLg(Z;) such that m(p)%
has dimension 1, where 7;(p) is the mod p representation of GL2(Q;) associated to p by
[EHII].

Let b be an ideal of Z,, and put To(b) = {(24) € GL2(Zp)|c =0 mod b}. Let us recall
the classical result of Casselman (see [Cas73]):

Theorem IIL.5.1. Let m be an irreducible admissible infinite-dimensional representation
of GLa(Q,) on Q-vector space and let € be the central character of m. Let c(m) be the
conductor of m which is the largest ideal of Z, such that the space of vector v with m(¢ Z)U =
e(a)v, for all (¢4) € To(c(m)) is not empty. Then this space has dimension one.

We will prove that the result holds also modulo p for the modified mod [ Langlands
correspondence. For that we need to assume that our prime p is odd.

Theorem II1.5.2. Let 7 = w(p) be the mod p admissible representation of GLa(Qy)
associated by the modified mod | Langlands correspondence to a Galois representation
p: Gg, — GLa(F,). Then there exists an open, compact subgroup K of GL2(Q) such that
dime K =1.

Proof. We recall the results of [EH11] concerning the construction of the modified mod [
Langlands correspondence. By Proposition 5.2.1 of [EH11], the theorem is true when p*
is not a twist of 16 |-|, by the reduction modulo p of the classical result of Casselman from
[Cas73], which in the | # p situation was proved by Vigneras in [Vig89b] (see Theorem 23
and Proposition 24). When this is not the case, we can suppose that in fact p** =1@ |- |
and we go by case-by-case analysis of the possible forms of 7(p) as described in [EH11]
after Proposition 5.2.1 and in [Hell2]. The m(p)’s which appear are mostly extensions of
four kinds of representations (and some combinations of them): trivial representation 1,
| - | o det, the Steinberg St, 7(1) of Vigneras (see [Vig89b]).

1) Suppose 0 — 7w(1) — m(p) = 1 — 0. In this case | = —1 mod p. Let I'g(p) =
{(2%) € GLa(Zp)|c =0 mod p,a=d =1 mod p}. Then we have a long exact sequence
associated with higher invariants by I'o(p) (which we denote by R*(.)Fo(®)):

0— m(p)o®) -1 — R'x(1)lo®

as m(1)7o?) = 0 by the Proposition 24 of [Vig89h]. We conclude by observing that
Rlz(1)Fo®) = 0 because |To(p)| = p™ and I J|To(p)| by our assumption.
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2) In the same way we deal with the situation when m(p) is an extension of | - | o det
by (1) with the same assumption on .

3) When [ = —1 mod p it is also possible to have 0 — 7(1) = w(p) = 1P |-|odet — 0.
Look at GL2(Zjp)-invariants. The associated long exact sequence is

0= 7(p)2®) S5 (16 |- | 0 det)S12E) 5 Rin(1)%12E) = Fxthy o (1, n(1)FPMa(E)

Let us denote by £ the extension of 1 by m(1) which we get from 0 — n(1) — w(p) —
1®|-|odet — 0. We remark that m(1)/+?M2(Zp) defines the same representation mod p
as the reduction of 7(1). The last map in the above exact sequence is explicit

(1&]-]odet)52) — Exty, @ (1, m(1) M)
(a7 b) = (CL + b)g

and we see that it gives a line in EXt%}LQ(Fp)(l, 7(1)1PM2(Zp)) and hence the kernel, i.e.
ﬂ(p)GL2(Zp) GL2(Zp)

4) The last non-banal case with which we have to deal is the case when p is odd, [ = 1
mod p and we have an extension:

, is one-dimensional as (1 @ | - | o det) has dimension two.

0—=St—=7(p)—=1—0

In this case Ext%;m((@p)(l, St) (here by St we mean in fact St/ PM2(Zs) but that also defines
the Steinberg representation mod p hence we use the same notation) is two-dimensional -
see Lemma 4.2 in [Hell2]. We look at the reduction map

Exté,(@,) (1 St) = Extp, (1, St)

Let us denote by £ the image of the class [7(p)] of m(p) in ExtéLZ(Fp)(l, St) under the
above reduction. We have two cases to consider. Suppose firstly that &€ = 0. Then we
claim that K = GLy(Z,) works. Indeed we have in this case

0 — w(p)K — 15 = Extl(1,St)

and as the image of 1% in Ext} (1, St) is £, we conclude by assumption.
Now let us suppose that £ % 0. Then we claim that the Iwahori subgroup K = [
works. We have
0 — St = 7n(p)X — 15 — Extl(1,St)

The image of 1¥ in Ext} (1,St) is non-zero by assumption, because ExtéLz(Zp)(l, St) —
Ext}(1,St). Hence 7(p)¥ is isomorphic to St¥ which is of dimension one.

5) We remark that there is also the so-called banal case when [ is not congruent
to £1 modulo p. In this case, there are two situations to consider. In the first one
7(p) = St ®| | odet and we can take K = I, the Iwahori subgroup. In the second one 7 (p)
is the unique non-split extension of |- |odet by St ®|-|odet. Because EXt%}LZ(Fp) (1,S8t) =0
as we are in the banal case, we conclude as above that K = GLy(Z,) works. ]

I11.6 The fundamental representation

Following the original Deligne’s approach to the non-abelian Lubin-Tate theory, we define
the local fundamental representation. Using it, we refine the Lubin-Tate side of the in-
jections we have considered. Then we recall Emerton’s results on the cohomology of the
tower of modular curves, yielding by a comparison an information on the local fundamental
representation. Our arguments are similar to those given in [Del73].
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II1.6.1 Cohomology of the supersingular tube

We have introduced in section 2.3, the set A, spaces LTk, = [lsea/x,, LTs and we
have obtained a description of the supersingular tube

X(Npm)ss ~ LTA/Km XDX(Q) GLQ(A?)/K(N)
Definition II1.6.1. Define the fundamental representation by
H}p .5 =limH(LTa )k, Fy)
m

Similarly we introduce the fundamental representation without support demoting it by
agl
HLT,IF‘,,'
From the description of supersingular points, we have
H (X (Np™)ss, Fp) = He (LTa/k,, % D (g) GL2(A})/K (N),Fy) =

= {f: D*(Q\D*(Ay)/K(N) = HN(LTak,, . Fp) 7" (@)
We take the direct limit:

lim H} (X (Np™)ss,Fp) = {f : D*(Q\D*(Af)/K(N) — lim H}(LTp x,,, )} (@)

Take the limit over N to obtain

H) o ~{f:D(Q\D*(As) — H]

_ }DX(@p) ~
ss,c,Fp T LT,cFp -

_ . *(Qp)
~ ({f: DX@\D* (k) ~ By s, ALy 5 )" ©

Let -
F={f:D*(Q\D*(Ay) = F,}

where f are locally constant functions, then

)DX(Qp)

~1 N o
HSS,C,IFP - (F ®Fp HLT,C,]FP (1111)

We get a similar result for the cohomology without support
) D*(Qp)

A]‘ ~ = A]‘ —
Hss,]Fp - (F ®Fp HLT,IF,,

I11.6.2 Emerton’s results

We recall Emerton’s results on the completed cohomology of modular curves. Remark
that we are using implicitly the comparison theorem for étale cohomology of a scheme and
its analytification which is proved in [Ber95].

Let us fix a finite set ¥ = Yo U {p}. Let K* = [Ligs Ki where K; = GLa(Z;) and
choose an open, compact subgroup Ky, of [[jcx, GL2(%;). Let p: Gg — GLa(F,) be an
odd, irreducible, continuous representation unramified outside 3. Remark that by Serre’s

conjecture (see [Kha06]) p is modular. Let us denote by m the maximal ideal in the Hecke
algebra T(Ky,) which corresponds to p. We write also PGy, = Indgg «, where a can
p2

be considered as a character of Q;Q by the local class field theory. For the definitions, see
Section 5 of [Emellal.
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Theorem II1.6.2. Assuming that p satisfies certain technical hypotheses (see below), we
have an isomorphism

Hg [m]"" ~ 7 @, m5,(p) ®5, p

where m is a representation of GL2(Qp) associated to p by the mod p local Langlands
correspondence and s, (p) is a representation GLg(A?O) associated to p by the modified
local Langlands correspondence mod | for 1 € ¥y (see [EHI1]).

For the exact assumptions, see Proposition 6.1.20 in [Emella]. Those assumptions are
not important for our applications, as we can always find p which satisfies them and which
at p is isomorphic to our fixed irreducible Galois representation p, (see below).

111.6.3 Comparison

We will use results of Emerton to describe a part of f]sls 7 - We start by comparing mod p
P

Hecke algebras for GLy and for D*. On F, after taking K>-invariants, there is an action
of a Hecke algebra. For [ ¢ X, we have a Hecke operator T; acting on functions of D* (Ay)
by
-1
Ti(f)(x) = f(zg) + > f(zg:)
=0

where g = ([ 9) and g; = (19) are both considered as elements of D*(Ay) having 1 at

places different from [. Let us denote by TP (Ky,) the Hecke algebra, which is the free O-
algebra spanned by the operators T; and S; for all | ¢ X, where S; = [Kx, K> (} 9) Kz, K*].
By the results of Serre (see letter to Tate from [Ser96]), systems of eigenvalues for (77) of
TP(Ky,) on F are in bijection with systems of eigenvalues for (7}) of T(Ks,) coming from
mod p modular forms. This allows us to identify maximal ideals of T?(Ksx,) with those
of T(Ky,) and in what follows we will make no distinction between them.

Let p, be the local Galois representation associated to a supersingular representation
7 of GL2(Qp) by the mod p Langlands correspondence. We assume that there exists
a representation p : Gg — GLo (F ») which is odd, irreducible, continuous, unramified
outside a finite set X = ¥y U {p}, and such that PG, = Pp- This is always the case by
the main result of [BG13]. See also the introduction to [Bre03| for a discussion (especially
Conjecture 1.5) of the reductions of Galois representations associated to modular forms.

Let us denote by m the maximal ideal in the Hecke algebra T(Ks,) corresponding to
p. Results of Emerton apply to p because we have assumed that p, is irreducible. We
denote by Ky x, an open compact subgroup of [[;cy,, GL2(%;) for which g, (p)Em=o is a
one-dimensional vector space (see section II1.5). We put Ky = Ky x, K> and we define:

om = F[m]&mn

This is a representation of D*(Q,). We remark that Breuil and Diamond in [BD12] also
define a representation of D*(Q,) which serves as a model for a local representation which
should appear conjecturally at the place p in the local-global compatibility of the Buzzard-
Diamond-Jarvis conjecture (see the next section for a discussion). Their construction is
different from our and uses "‘types"’ instead of new vectors.

Let us look again at our cohomology groups. Taking Ky-invariants, which commute
with D*(Q,)-invariants, we get

(L) = (F o, lgs)
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Let us define the dual o, = Homﬁp(am, [F,). It is not necesarily a smooth representation.
Taking [m]-part we get:

.l v

D*(Qp)
) 175, [m]

Ay )" = (on @, Hlps
ss,F, I = \9m OF, Hppg,
Thus, by the results proven earlier, we have

—~ o e 1 Km 2 1 Km ~ ~ 1 v
7 @5, p~ (HE [m]) - (A5 [m]) " ~ Al o]

and we arrive at

Theorem II1.6.3. We have a GL2(Q,) x Gg,-equivariant injection:

~ 771
s ®I§‘p P — HLT,FP [O’:{J
We will strengthen this result after proving additional facts about oy,. It is also possible
to obtain the analogous result in the p-adic setting. Details will appear elsewhere.

1I1.6.4 The mod p Jacquet-Langlands correspondence

We have defined above
Om = F[m]f

This is a mod p representation of D*(Q,) which is one of our candidates for the mod
p Jacquet-Langlands correspondence we search for. We will analyse this representation
more carefully in the next section, getting a result about its socle. The question we do
not answer here is whether this local representation is independent of the Hecke ideal m
and if yes, how to construct it by local means. We make a natural conjecture

Conjecture I11.6.4. Let m and m' be two maximal ideals of the Hecke algebra, which
correspond to Galois representations p and p' such that p, ~ ﬁ;). Then we have a D*(Qp)-
equivariant isomorphism

Om = Oy

This conjecture is natural in view of the fact that o, should play a role of the mod p
Jacquet-Langlands correspondence and it should depend only on a local data. In fact, this
conjecture follows from the local-global compatibility part of the Buzzard-Diamond-Jarvis
conjecture (see Conjecture 4.7 in [BDJ10])

Conjecture II1.6.5. We have a D*(A)-equivariant isomorphism
Flm] ~ o @ 7" (p)

where o is a D*(Q,)-representation which depends only on py,, where p is the Galois
representation assoctated to m.

The conjecture of Buzzard-Diamond-Jarvis would be proved if one could show the
existence of an analogue of the Colmez functor in the context of quaternion algebras.
Then, the methods of Emerton from [Emella) could be applied to give a proof. We come
back to the discussion of the mod p Jacquet-Langlands correspondence at the end of the
next section.
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II1.7 Representations of quaternion algebras: mod p theory

In this section we analyse more carefully mod p representations of quaternion algebras,
especially representations o, defined in the preceding section. We also define a naive mod
p Jacquet-Langlands correspondence.

II1.7.1 Naive mod p Jacquet-Langlands correspondence

By the work of Vigneras (see [Vig89a]), we know that all irreducible representations of
D* are of dimension 1 or 2 and are either
1) a character of D*(Qy), or

2) are of the form Ind? i « a where « is a character of Q.
ODQPQ P

Let p, be the mod p 2-dimensional irreducible Galois representation which corresponds
to the supersingular representation 7 of GL2(Q),) by the mod p Local Langlands corre-

G
spondence. As we have mentioned earlier, it is of the form Inng” (wh - sgn) @ x where x
p2

is a character and r € {1,...,p}.

Definition II1.7.1. The naive mod p Jacquet-Langlands correspondence is

Go DX
IndG@; (wj - sgn) ® x — Indog(@pz (wy) ® x
where wy is treated as a character of Q2 by the local class field theory and x is considered
both as a character of Gg, and D*(Qp). This gives a bijection between two-dimensional
representations of Gg, and two-dimensional representations of D*(Qp). Similar corre-
spondence holds for characters.

We remark that one may also would like to call this the naive mod p Langlands
correspondence for D*(Q,). We get the Jacquet-Langlands correspondence in the usual
sense, when we compose it with the mod p local Langlands correspondence for GL2(Q)).

Let a : Qp — IE};; be a character. We denote by p(a) the representation of G,

obtained by the local class field theory and an induction. We denote by o(a) the D*(Q,)-
D><

05Q,2
Langlands correspondence as

representation Ind (o). We remark that we also could define the naive mod p Jacquet-

pla) = o(a)
but we have chosen our normalisation with a twist by sgn to have the same condition on
determinants as for the classical [-adic Jacquet-Langlands correspondence.
I11.7.2 Quaternionic forms

Let D be the quaternion algebra over Q, ramified at p and at co. Let L be a finite extension
of Q, with ring of integers O and a uniformiser w. Define

F = limy H'(D* (Q)\D* (Af)/K.F,)
K
Fo = lim H(D*(Q)\D* (Af)/K., 0)
K

Define also F;, = Fo ®o L. We can make similar definitions for other F), or Zy-algebras
(for example for finite extensions of IF,, or for Z, in sz which we will use in the text).
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Recall that we have fixed a finite set ¥ = o U {p} and chosen an open, compact
subgroup Ky, of [[;cx, GL2(Z;). On each of the above spaces, after taking K >_invariants,
there is an action of the Hecke algebra TP (Ky,). Recall also that we have defined p :
Gg — GLQ(]FP) an odd, irreducible, continuous representation unramified outside ¥ and
we have denoted by m the maximal ideal in T(Ks,) (or in T”(Ky,)) which corresponds
to p. We write

PlGg, = P()

where « can be considered as a character of Q;z by the local class field theory.

Proposition IIL1.7.2. Take an open, compact subgroup K, of D*(Q,) and choose K,
to be an open, compact subgroup of [[;ex, GL2(Z;) such that KngOKE is neat. Then

KsoK» . . . . .
| is injective as a smooth representation of K.

We do not define the notion of neatness for which we refer to section 0.6 in [Pin90].
We only need this condition to ensure that K, acts freely as in the proof below. Any
sufficiently small open compact subgroup is neat.

Proof. Let M be any smooth finitely generated representation of K,. Hence M is of finite
dimension and its dual is also smooth. We have
FKEOKE _ hg FKZ’)KZOKE

Ky

where K, C K, runs over sufficiently small, normal open subgroups of OF, so that K}, acts
trivially on M. We can associate to M a local system M on D*(Q)\D*(As)/Kx,K=.
Because K, acts freely on D*(Q)\D* (Af)/Kx,K* by the assumption of neatness, we can
descend this system to each D*(Q)\D*(Af)/K,Ks,K*, where K, is as above. Moreover
on each D* (Q)\DX(Af)/K];KEOKE, M is a constant local system and hence:

HOpr(M’ FKE()KE) ~ thOpr(M, FK{,KEOKE) ~
K/

P

~ T (FF5 K50 K7 (M) Ko~ FEP RS0 K (M)

Kp

where F(MY) = HY(D*(Q)\D*(Af), M"). Because FEr K=o K™ (AMV) is an exact functor
(there is no H'), we get the result. O

. .. Ks, K*® .
We will now start to analyse socles of quaternionic forms Fy ° . Let us start with
the following lemma:

Lemma I11.7.3. Let 8 be a finite dimensional ]F'p—representation of OF. We have
Home,« (8, F") = F" {5}

where FE"{B} is the space of automorphic functions D(Q)\D(As)/KP — 5.
Proof. The isomorphism is given by an explicit map. See Lemma 7.4.3 in [EGH13]. O

Proposition II1.7.4. The only irreducible Fy,-representations of D*(Q,) which appear as

. Ks K= . .
submodules in Fiy°"  are isomorphic to ¥ = o(a)V.
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Proof. Observe that the only irreducible Fp-representations of OF which can appear in
the O}-socle of FX” are duals of the Serre weights of p. This follows from the lemma
above and the definition of being modular, i.e. p is modular of weight 8 (where § is a
representation of Of) if and only if there exists an open compact subset U of D*(Ay)
such that FYV{B8} # 0. By the lemma, this is equivalent to Homof7 (BY,FU) # 0 which

holds if and only if 8V € socoEFn[{ . Now the result follows from Theorem 7 in [KhaO1],

as the only possible weights which can appear in the socle are oV and (a”)Y. Hence the
D*(Qp)-socle contains only o(a)V. O

As a corollary we also get the [m]-isotypic analogue of the above

Corollary II1.7.5. The only irreducible representations which appear as submodules in

FKroK* [m] are isomorphic to 0¥ = o(a)”.

We are now ready to strengthen the theorem which has appeared before

Theorem II1.7.6. The representation o @ m Q@ p appears as a subquotient in ﬁiTI—F
- p

Proof. This follows from

T ﬁ — HiT,Fp [O-T\r/l]
and the fact that the only irreducible D*(Q),)-representation which appears as a quotient
of o is o. O

We remark that if
n= diml@p Hom px (@p)(o’(a)v, FKEOKz [m])

then one conjectures that n = 1 (even in the more general setting, see Section 8 of [Brel4]).

Before moving further, let us recall a structure theorem of Breuil and Diamond for our
D*(Qp)-representations, which shows that our candidate for the mod p Jacquet-Langlands
correspondence defined above is of entirely different nature than the one with complex
coeflicients.

Proposition II1.7.7. The D*(Q,)-representation FKzoK” [m] is of infinite length.

Proof. We give a sketch of the proof, which is contained in [BD12] as Corollary 3.2.4
(it is conditional on the local-global compatibility part of the Buzzard-Diamond-Jarvis
conjecture). Firstly observe that it is enough to prove that F i K7 [m] is of infinite
dimension over IF’p, because a representation of finite length will be also of finite dimension
as D* is compact modulo center. Suppose now that we have an automorphic form 7
such that the reduction of its associated Galois representation p, is isomorphic to p and

Ky K*®

K> # 0. Then there is a lattice Ar = F, 20 K2 K inside 7505 | Tts reduction
P

Ar=A; ®7, [, lies in F i K [m] so it is enough to prove that we can find automorphic

representations m as above with Ru K of arbitrarily high dimension. This is done by

explicit computations of possible lifts in [BD12]. O

This proposition indicates that ﬁi is a non-admissible smooth representation.

T,Fp
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I11.7.3 Non-admissibility
We have

Proposition IT1.7.8. The GLy(Qy)-representations flsls 7 and ﬁ; —are non-admissible
P

_ ordy]Fp
smooth Fy,-representations.

Proof. If one of them would be admissible, then also the second would because of the
exact sequence

731 1 1 732 732
HXorde’p — H — Hss]? — HXW,E — H]F
It is enough to prove that H ! _is non-admissible, or even that H}JTF is non-admissible.

Let us look at the Hochschﬂd Serre spectral sequence for the Iwahori level T of the Lubin-

Tate tower

J i+j
H'(I, HLT]FP) :>HLTIIF,,

i+j
where we have denoted by H LTI,

that if HiT 7, were admissible, then H(I, HiTF ) would be of finite dimension. Because

H\(I, H?T]F ) is of finite dimension (as HETF is), this would mean that HiT IF, is finite-

dimensional. But geometrically Lubin-Tate tower at level I is an annulus (this is a standard

fact, one can prove it by methods of section 8.1) and hence HiT IF has to be of infinite
P

dimension (see remark 6.4.2 in [Ber93]). This contradiction finishes the proof. O

the fundamental representation at I-level. Now observe

Corollary II1.7.9. The GL2(Q))-representation HéTF is a non-admissible smooth F,-

representation.

Proof. Follows from the proposition above. O

II1.7.4 On mod p Jacquet-Langlands correspondence

We come once again to the discussion of the mod p Jacquet-Langlands correspondence.
Remark that there are three possible candidates for the correspondence which appear in
our work:

1) The 2-dimensional irreducible representation o of D*(Q,) defined by the naive mod p
Jacquet-Langlands correspondence.

2) The representation oy, defined by global means and depending a priori on a maxi-
mal Hecke ideal m. It is of infinite length as a representation of D*(Q,) and contains ¢V
in its socle.

3) The representation defined via the cohomology
~ 71
orr = Homgy yary,) (P @, ™ Hip g )
By the results above, it contains ¢ as a subquotient.

In the l-adic setting, we can define representations of D*(Q,) in the similar way and
it is known that o7 ~ oy%. Moreover oy, in the l-adic setting is 2-dimensional (at least
in the moderately ramified case). This is not the case in the mod p setting as we have
showed that representations of 1) and 2) are different (one is 2-dimensional, the other is
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infinite-dimensional). The natural definition of the mod p correspondence seems to be
orr and it is also natural to ask what is the relation between opr and oy, for appropiate
m as considered before.

II1.8 Cohomology with compact support

In this section we will discuss what happens when we consider the cohomology with com-
pact support. Our basic result is negative and it states that the first cohomology group
with compact support of the fundamental representation ﬁiT’c’E—,p does not contain any
supersingular representation of GLy(Q)) as a subrepresentation. This suprising result,
which is very different from the situation known in the [-adic setting where [ # p, leads to
a similar exact sequence as we have considered for cohomology without support, but this

time, we get that 7 ® p is contained in the H! of the ordinary locus.

II1.8.1 Geometry at pro-p Iwahori level

1+pZy, pZ 14pZy 7 .
Let K(1) = ( p;pl’ ﬁp%p) and let I(1) = ( pép” 1+15Zp> be the pro-p Iwahori subgroup.
We let

MLT,K(I) = Spf RK(I)
Mpr 1y = Spf Ry

be the formal models for the Lubin-Tate space at levels K (1) and I(1) respectively. We
will compute Rj(;) explicitly. This is also done in a more general setting in the work of
Haines-Rapoport (see Corollary 3.4.3 in [HR12|]) but here we give a short and elementary
argument.

We know that Ry = R%H) and hence we can use the explicit description of Ry (q)
by Yoshida to get the result (see Proposition 3.5 in [Yos10]). Let W = W (F,) be the Witt
vectors of F,,. There is a surjection W[[X1, Xs]] —» R 1y which maps X, to X; where
X; (i = 1,2) are local parameters for Rp(;) which form a Fj-basis of mg,, [p] = {z €
MR, |[p](z) = 0}, where [p] is explained below. We will find parameters for R;) =

R!D. Observe that for b € [, we have (see chapter 3 of [Yos10])

K()*
1 b
(0 1) X1=X

1 b
(0 1) Xo = [b] X1 +5 X2
where +y is the addition on the universal deformation of the unique formal group over
[, of height 2 and [.] gives the structure of multiplication by elements of Z, on the same
universal deformation 3. See Chapter 3 of [Yosl0] for details. We see that X5 is not
invariant under I(1) and hence we define X3 = []jcp, ([b]X1 +x X2) which is. We claim

that (X1, X3) are local parameters for Rj(). Indeed if z belongs to Ry1) = R%%}) then
we may write it as z = P(X1) + X2Q(X1, X2), where P € W[[X;]] and Q € W[[X1, X2]].
As P(X) is invariant under (1), we see that also X2Q(X1, X3) has to be invariant under
I(1). Because of the action of (§%) on Xy described above and the fact that Ry is a
regular local ring hence factorial, we see that X} divides X2Q(X71, X3) (we use here the
fact that [b] X7 +x X2 and [b'] X1 +x X2 are not associated for b # b'; this follows from
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Proposition 4.2 in [Str08]). This leads to z = P(X1) + X5Q'(X1, X2) for some Q" which
is I(1)-invariant and hence we conclude by successive approximations (since Ry is X3-
adically complete) that there is a power series f such that z = f(X7, X%) (we use the fact
that polynomials are dense in formal series).

Let us observe that for a € )\ we have for i = 1,2: [a]X; = uX;, where u is a unit in
Rp(1)- Let us now look at the relation defining Rp(1) inside W[X1, X5]] which appears
in Proposition 3.5 of [Yos10]. We have

p=u 1T (la1] X1 +5 [a2]Xo)
(al,az)E]F%\{O,U}

where v is some unit in Ry (). Let us write a ~ b whenever a = ub for some unit v in
Ry (1). Thus we have

p~ I[I  (ulXitsfaoXo) ~ | I llXa | | T] 11 le2](fa1/a2] X1 +5 Xo)

(a1,a2)€FZ\{0,0} a1 €Fy a1€Fp gyeF)

~ | IT laddXa II x5 |~ xaxp)r !

al E]F;f a2 EIF;;

Hence we have p = /(X1 X%)P~! for some unit «/ in Rp (1) a priori, but we can see
that «' is in fact a unit in Ry;). Because W[[X,Y]] is a complete local ring with an
algebraically closed residue field there exists a (p — 1)-th root of u/, and hence we can
write p = (X]X%)P~1. We want to conclude that this is the only relation in Rp(1y which
means that there exists a surjection

B= W[[X{,Xé’ﬂ - RI(I)

with kernel f = (X]XY)P~1 — p. First of all, observe that Ry and B/fB are regular
local rings of dimension 2 with a surjection B/fB —» Rjy(1). We claim that this map has
to be necessarily an injection also. Indeed, this holds for any surjective morphism A — R
of regular local rings of the same dimension by using the fact that that for a regular local
ring we have gry A ~ Symmy /m124- This yields an isomorphism at the graded level which
lifts to the level of rings. All in all, we conclude that

Proposition II1.8.1. We have
Ryy = WX, Y]]/(XY)P~" —p)

This means that My 1(1) is made of p—1 copies of an open annulus in P! after a base
change to W[ r=/p]:

p—1
Riqy @w Wr/pl =~ [T WIX, YN/ (XY = »¥/p- (1)
i=1

I11.8.2 Cohomology at pro-p Iwahori level

We compute H} (M1 1(1),IF‘ ») (we will omit F,, from the notation in what follows). Let
A be an open annulus in P!. We can write a long exact sequence

0— HY(A) —» H'(P') - HO(PM\A) — HY(A) — H(P)
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We know that
HYPY) = H(A) =0

dimg H°(P') =1
dimgz H(P'\A) =2

and hence it follows that
dimg HY(A) =1
p

Because geometrically M7 r(1) is made of p — 1 copies of A, we have
dimg Hcl(MLT,I(l)) =p—1

Let H = Har,(I(1)) = Fp[I(1)\ GL2(Q,)/I(1)] be the mod p Hecke algebra at the pro-
p Iwahori level. Let I be the Iwahori subgroup of GLg(Z,). We look at the action of
F,[I/1(1)] ~ IF‘p[(IE‘If )?] on the cohomology. We know by [Str08] that it acts by determinant
on connected components of My k(1) and hence on connected components of My (1
so we have a decomposition of H} (M7, 7(1)) into p — 1 pieces of dimension 1:

H (M) = @ H(Miria)x

X:IF;,< ﬂﬂi‘;
where H! (Mrr,1(1))y is the part of H} (Mprr,1(1)) on which Fp[(F;)Q] acts through y odet.

I11.8.3 Vanishing result

We will now prove that the supersingular representation m does not appear in H!

LT,cFp°
First of all, remark that it is enough to prove that the H-module 7/ (1) does not appear
in (H 1 )M because the functor m — 7/(1) induces a bijection between supersingular

LT\c,F,
representations and supersingular Hecke modules (see [Vig04]). We have the Hochschild-

Serre spectral sequence
J i+j

o (I( ) HLTcIFp) = HLTcI( )IF

Z+j

LT 1(1)F, the fundamental representation at I(1)-level. This

where we have denoted by H
gives a long exact sequence

= (Hpp.p)""V = H(I(1), H] 7))

1 770 1
0—H (I(1),H )=~ H LTcF, LT F,

LT,c,F, LT,c,I(1),F,

Because HgT 7 =0as H, 9(Myr,Fp) =0 we have an H-equivariant isomorphism
7 »"p

Hl

LT,c,I(1),F, ~ (H] )i

HLT,C,FP
This means that if 7/(1) appears in (HiT ’]Fp)f(l) then it appears also in HLT’ T)E,” But

because H! consists as a GL2(Q))° = (ker(det))-representation of multiple copies

LT,c,1(1),F,
of H} (Mrr,1(1), Fp), it is enough to show that 711 does not appear in

GL2(Q = =
IndGLzE@ZgoQP Hcl (MLT,I(I)a ]Fp) = Hcl (MLT,I(1)7 ]Fp)@z

To prove it, it suffices to show that no supersingular H-module appears in it. Let M
be any supersingular H-module. Then we know that it is 2-dimensional and of the form
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M>5(0, z,w) as in Section 3.2 of [Vig04], where w is a character of I/I(1). If we write
I/1(1) =F; x Fy and w = n1 @ n2 then M = (1 ® n2) © (m2 ® m1) as a I/I(1)-module.
If M appears in H} (MLT’I(I),IF},), then I/I(1) acts on M by determinant and hence
m = n2. This would mean that H!(Mpr 1(1))m 18 at least 2-dimensional, which is a
contradiction. Hence the only possibility is in this case that two products 11 ® 1, appear
in different copies of H!(M LT, 1(1),I_Fp)@2. But this is also not possible. Indeed, let us
consider the operator S = I(1)({$)I(1). It acts on both copies of H}(Mprr(1),Fp) in
the same way, as can be seen by looking at the decomposition LT = [[ LT® (here LT
means the Rapoport-Zink space for GL2(Q))) which is GL2(Q,)° x D(Qp)°-equivariant
and hence we have GL2(Q))-equivariantly that LT®W ~ LT© . But on the other hand,
Vigneras in [Vig04] proves that S acts on M by two different scalars (one being zero, other

non-zero) and hence M cannot appear in Indgizggz ;"Qp HY (M LT, 1(1),Fp). All in all, we

I(1) does not appear in (ﬁl IM) and hence

conclude that 7 LT,c,]Fp)

Theorem I11.8.2. The supersingular representation w does not appear in ﬁéTcI—F .
' p
We could rephrase it also as

f_jl

LT,c,Fp,(m) — 0

Remark ITI.8.3. Observe that the above proof does not use in any particular form the fact
that we are working with GL2(Q,), besides the fact that the functor m — 7 induces a
bijection between supersingular representations and supersingular H-modules. Apart from
that, the results of Vigneras and Yoshida holds for GLa(F') as well, where F is a finite
extension Q, and show that there are no supersingular modules in the cohomology with
compact support of the Lubin-Tate tower at the pro-p Iwahori level. This leads to the
conclusion that supersingular representations of GLo(F') attached to these supersingular
modules by the construction of Paskunas (see [Pas0j)]) do not appear in the cohomology
with compact support of the Lubin-Tate tower at infinite level. We remark that, contrary
to F' = Q, case, those supersingular representations constructed by Paskunas do not con-
jecturally give all the supersingular representations of GLo(F).

The above theorem gives us, when combined with the exact sequence for the supersin-
gular locus, an appearance of the mod p local Langlands correspondence in the cohomology
of the ordinary locus (in contrast with the mod [ situation).

Corollary ITL.8.4. We have an GL2(Qy) x G, -equivariant injection

= 7l
T®p— Hord,I_Fp

Moreover, this vanishing result can be used in the study of non-admissibility and in
the description of the cohomology of certain Shimura curves.

I11.8.4 Non-admissibility

We will now show that our cohomology groups are non-admissible representations of
GL2(Qp). We start with:

Proposition IT1.8.5. The GL2(Qy)-representations ﬁfg,c,ﬁp and ﬁ;rdjp are non-admissible

smooth Fp-representations.
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Proof. 1If one of them would be admissible, then also the second would because of the
exact sequence

1 1 1 772 772
Hssc]lj' - H - HordIFp - Hssaﬁ‘p - Hﬁ‘p
But we know that Holr LF. 1san induced representation
P

IndGL2 (@ aooIF,,)

so if it were admissible, then the localisation of it at m would have to vanish. This is not

possible by the corollary above. O

Corollary II1.8.6. The GL(Q))-representation HLT 7 18 a non-admissible smooth Fp-
» »Wp

representation.

Proof. Follows from the proposition above. O

I11.8.5 Cohomology of Shimura curves

We will briefly sketch another consequence of vanishing of H iT eFp () and H} (M, IF‘p)(W).
Rt il 28]

Now recall the Faltings isomorphism (see [Far08]) which gives us
HY(Mpr,Fp)(ny = Ho (Mpr, Fp) () = 0

where M p, is the Drinfeld tower at infinity (see [Datl2] for details). We have a spectral
sequence coming from the p-adic uniformisation of the Shimura curve Sh associated to the
algebraic group G” arising from the quaternion algebra over Q which is ramified precisely
at p and some other prime q:

L = Extly o (H2"(Mpy i, F,). C(G/(Q\G'(4).F,)X") = HE (K 1p. F,)

where we have denoted by G’ the algebraic group arising from the quaternion algebra over
Q which is ramified precisely at ¢ and co. For this, see [Far04] where it is proven for Q
but the proof works also for F,, (the proof is also contained in the appendix B of [Dat06]).

Choose any non-Eisenstein maximal ideal n in the Hecke algebra of G” whose associated
Galois representation corresponds at p to the supersingular representation m we have
chosen before. Take the direct limit over K}, and localise the above spectral sequence at n
to get

Extl,, g (H2 (Mpr, By)ry, C(G (Q\G'(A), F,)K") = HIYU(SKg, Fy)a

The localisation of H>~9(Mp,,F,) at m appears because C®(G'(Q)\G'(A),F,)K" is n-
isotypic. We remark here that spaces H2~4(Mp,, IF‘p) are admissible as can be seen from
the spectral sequence and the fact that other appearing spaces are admissible. Using our
vanishing result we get an interesting isomorphism

Extp, g,) (He (Mbr, Fy)(m), OF(G(Q\G' (), Fp)y") = He (Shis, Fp)a

This can be possibly used to study the mod p cohomology of the Shimura curve Sh. We
shall treat this issue elsewhere.



II1.9. CONCLUDING REMARKS 81

II1.9 Concluding remarks

Let us finish by giving some remarks and stating natural questions.

I11.9.1 1l-adic case

Observe that our arguments work well also in the mod [ # p setting and circumvent
the use of vanishing cycles. The idea of localisation at a supersingular (supercuspidal)
representation appears also in the work of Dat. See especially [Datl12] where the author
discusses localisations both for GL,, and quaternion algebras and then uses it to describe
the supercuspidal part of the cohomology.

One might want also to see [Shi], which bears some resemblance to certain arguments
we use. Shin describes the mod [ cohomology of Shimura varieties by using results of Dat
about the mod [ cohomology of the Lubin-Tate tower. In our work, we start from global
results of Emerton to deduce from them statements about local objects.

I11.9.2 Beyond modular curves

The geometric arguments we have given also applies to Shimura curves considered by
Carayol in [Car86] and we can consider similar exact sequences relating the ordinary locus
and the supersingular locus in this setting. Nevertheless, in this case we cannot go on with
arguments as we do not have a definition of the mod p local Langlands correspondence for
extensions of Q,. In fact, such a construction seems a little bit problematic as might be
seen from the work of Breuil-Paskunas ([BP12]), where the authors show that there are
much more automorphic representations than Galois representations. The hope is that by
looking at the cohomology of the Lubin-Tate tower, one should be able to tell how the
correspondence should look like. We will pursue this subject in our subsequent work.

I111.9.3 Adic spaces

We have chosen to work with Berkovich spaces, but one might as well wonder how the
things translate into the setting of adic spaces of R. Huber ([Hub96]). In fact, everything
that we have considered can be rewritten in the language of adic spaces and we might
consider the same long exact sequences as above (though these exact sequences will be
inversed due to the fact that adic spaces behave like formal schemes). The main difference
between those two contexts lies in the ordinary locus which in the case of adic spaces will
contain additional points which lie in the closure of the ordinary locus from the setting
of Berkovich spaces. Nevertheless, the cohomology groups in both settings will be similar
and we refer a reader to Chapter IV for details. Let us remark also, that the comparison
between mod p étale cohomology of a formal scheme and its (adic) analytification is proved
in Theorem 3.7.2 of [Hub96].

I11.9.4 Serre’s letters

Though it does not appear explicitly in our work (besides the comparison of Hecke alge-
bras), we were influenced by two letters written by Jean-Pierre Serre (see [Ser96]). It is
there that in some sense appears for the first time the modified mod [ Local Langlands
correspondence which goes under the name of the universal unramified representation (see
the letter to Kazhdan). Indeed, if we were to suppose that our global lift p which we have
used is actually unramified everywhere outside p, then there is no need to recall either the
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modified mod [ Local Langlands correspondence or new vectors, and we could formulate
everything in the language of Serre.



Chapter 1V

On p-adic non-abelian Lubin-Tate
theory

IV.1 Introduction

This Chapter is a sequel to Chapter I1I, where we have studied the mod p étale cohomology
of the Lubin-Tate tower. Here we turn to the study of the p-adic completed and analytic
cohomologies. There are two goals which we want to accomplish. The first one is to show
a result analogous to the one obtained in Chapter III, namely to show that the p-adic local
Langlands correspondence for GL2(Q),) appears in the étale cohomology of the Lubin-Tate
tower at infinity. The methods we use are partly those of Chapter III (localisation at a
supersingular representation; use of the local-global compatibility of Emerton), though we
approach them differently by working in the setting of adic spaces (we have worked with
Berkovich spaces in Chapter III). This gives us more freedom as we can work directly at
the infinite level (modular curves at the infinite level; Lubin-Tate tower at the infinite
level) thanks to the work of Scholze on perfectoid spaces ([Schi2al, [Sch13], [SW13]). In
this way, we do not need anymore to pass to the limit in the cohomology, as working
at the infinite level is the same as working with the completed cohomology (see Chapter
IV of [Sch13] for torsion coefficients). We prove our main result (Theorem 4.3) for local
Galois representations p, which are restrictions of some global pro-modular (a notion from
[Emella]) representations p and such that the mod p reduction p, is absolutely irreducible.
We need these assumptions in order to be able to use the main result of [EmelITa].

The second goal of this Chapter is to discuss the folklore conjecture which roughly states
that the p-adic local Langlands correspondence appears in the de Rham cohomology of the
Drinfeld tower. As far as we know, this conjecture is not stated anywhere explicitly in the
literature, though there was some work done towards it. The reader should consult [Sch10]
for some partial progress at the 0-th level of the tower. Thanks to the work of Scholze-
Weinstein ([SW13]) we can work directly at the infinite level which we do. Moreover,
because of the duality of Rapoport-Zink spaces at the infinite level (which goes back to
Faltings; see Section 7 of [SW13]), we know that the Drinfeld space at infinity M p, o is
isomorphic to the Lubin-Tate space at infinity M7~ and hence we can consider only the
Lubin-Tate tower which is easier to relate to modular curves.

As to the folklore conjecture, we give a short argument at the beginning of Section 4,
which explains why the de Rham cohomology of M1 simplifies greatly. The reason is
that for any perfectoid space X (hence for M7 o after [SW13]) the cohomology groups
of j-th differentials H*(X, Q&) vanishes for j > 0 and any i. This reduces the study of
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the de Rham cohomology to the study of the cohomology of the structure sheaf (which we
refer to as the analytic cohomology - with topology defined by open subsets) which should
be a good substitute for the de Rham cohomology in the setting of perfectoid spaces. We
state the folklore conjecture for the analytic cohomology in the last section.

At the end we remark that one problem with the de Rham cohomology for perfectoid
spaces, if one would like to define it in some meaningful way, is the lack of finiteness
result. We should mention the work of Cais ([Cai09]), where the author consider integral
structures on the de Rham cohomology of curves. The aim is to p-adically complete the de
Rham cohomology of the tower of modular curves, as was done with the étale cohomology
by Emerton ([Eme06¢]). It seems interesting to determine what one would get by applying
his construction at each finite level and then passing to the limit and how it would relate
to the de Rham cohomology of the modular curve at the infinite level.

IV.2 Modular curves at infinity

In this section we review the geometric background which we use. We describe modular
curves (and their compactifications) at the infinite level and we deal with the ordinary
locus and the supersingular locus. We will use the language of adic spaces for which the
reader should consult [Hub96] and [Schi2al.

We let E be a finite extension of Q, with the ring of integers O and the residue field
k = O/w where w is a uniformiser. This is our coefficient field.

IV.2.1 Geometry of modular curves

We denote open modular curves over C for an open compact subset K C GLa(A¢) by
Y(K) = GLy(Q\(C\R) x GLay(Af)/K

There is a canonical algebraic model of it over Q. We fix some complete and algebraically
closed extension C' of Q,. Let O¢ be the ring of integers of C. We consider modular
curves as adic spaces over Spa(C, O¢) which we may do after base-changing each Y (K).

We let X(K) be the compactification of Y (K'), which we also consider as an adic
space over Spa(C,O¢). We will work with modular curves at the infinite level. We recall
Scholze’s results. We use ~ in the sense of Definition 2.4.1 in [SW13].

Theorem IV.2.1. For any sufficiently small level KP C GLQ(A‘?) there exist adic spaces
Y (KP) and X(KP) over Spa(C,O¢) such that

Y (KP) ~ %n Y (K,KP)
P

X (K?) ~ lim X (K,K?)
Kp

where K, runs over open compact subgroups of GLa(Q)).
Proof. See Theorem III.1.2 in [Sch13]. O

In what follows we will write Y = Y (KP?) and X = X (K?), having fixed one tame level
KP throughout the text.

For the maximal compact open subgroup GL2(Z,) we can define the supersingular
locus Y (GL2(Z,)K?)ss (respectively, the ordinary locus Y (GL2(Zp)K?)orq) as the inverse
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image under the reduction of the set of supersingular points (resp. closure of the inverse
image of the ordinary locus) in the special fiber of Y (GL2(Z,)K?). Then for any compact
open subgroup K, C GL3(Z,), we define Y (K,KP)ss (resp. Y (KpKP)qq) as the pullback
of Y(GLa(Zp)KP)ss (resp. Y (GL2(Zp)KP)orq). Hence Y (K, KP)oq is the complement of
Y (K, KP)s and hence a closed subspace of Y (K, K?). We define similarly the supersingular
locus X (K,KP)s and the ordinary locus X (K,KP)oq of X (K,KP). Using the pullback
from the finite level, we define also Xgg, Yss, Xord, Yord at the infinite level. The reader may
consult the discussion in [Schi3] which appears after Theorem II11.1.2.

Theorem 1V.2.2. There exist adic spaces Yss, Yora and Xss, Xora over Spa(C, O¢) such
that
}/SS ~ mY(Kpr)SS

and similarly for X and Xopq. Here K, runs over open compact subgroups of GL2(Qp).
Proof. Follows from Proposition 2.4.3 in [SW13]. O

One of the main results of [Sch13] (Theorem III.1.2), is the construction of the Hodge-
Tate period map 7yt which is a GL2(Q))-equivariant morphism

THT - X — (Pl)ad

where (P1) is the adic projective line over Spa(C, O¢). This morphism commutes with
Hecke operators away from p for the trivial action of these Hecke operators on (Pl)ad.
Moreover, the decomposition of X into the supersingular and the ordinary locus can be
seen at the flag variety level. Namely, we have (see the discussion after Theorem III.1.2
in [Sch13])

Xora = ik (P1(Q)

Xgs = Wﬁ%((Pl)ad\Pl (Qp))

We let
J:i Xgg— X

denote the open immersion and we put
11 Xord > X
For any injective étale sheaf I on X we have an exact sequence of global sections
0—-Tx, (X, I)=>T(X,I) = T'(Xs,5°I) =0

which gives rise to the exact sequence of étale cohomology for any étale sheaf F' on X
(take an injective resolution I* of F' and apply the above exact sequence to it)

. > H'(Xg, j*F) = Hx_ (X, F) = H'(X,F) = H'(Xs, j*F) — ...
By specialising F' to a constant sheaf O/w®*O (s > 0) we get an exact sequence

. = H' (X, 0/w*0) — Hy_ (X,0/w°0) — H'(X,0/w*0) = H'(Xs, O/w*0) — ...



86 CHAPTER IV. ON p-ADIC NON-ABELIAN LUBIN-TATE THEORY

We can obtain an analogous exact sequence for analytic cohomology which we review later.
In what follows we will be interested in the p-adic completed cohomology, introduced by
Emerton in [Eme06c]. We define

HY(X,E) = (@ H\(X, O/w30)> ®o E

Using the fact that X ~ lim X (KpKP) and Theorem 7.17 in [Schi2al, we have
p

HY(X,E) = (@hgﬂgt(X(Kpr),O/wSO)) ®o E
s K,

which is precisely the p-adic completed cohomology of Emerton. We use similar definitions
for Xg and Xopq.

IV.2.2 Ordinary locus

We recall the decomposition of the ordinary locus, which implies that representations
arising from the cohomology are induced from a Borel subgroup. This is a classical and
well-known result, but we shall give it a short proof using recent results of Scholze and the
fact that we are working at the infinite level. We have given a different proof in Section
2.2 of Chapter III.

Proposition IV.2.3. The étale (and also analytic) cohomology of Xorq is induced from
a Borel subgroup B(Qy) of upper-triangular matrices in GL2(Qp)

GL2(Q,

e w(F)

Hy (X, F)=Ind,
where F'= O/w*O is an étale constant sheaf on Xorq and W(F) is a certain cohomology
space defined below in the proof which depends on F' and admits an action of B(Qp).

Proof. Recall that Xo,q = WHT(IP’l (Qp)), where 7y is the Hodge-Tate period map. Let
oo = (§) € PY(Q,). The stabilizer of oo is equal to the Borel subgroup B(Q,) of upper-
triangular matrices in GL2(Q,). We have

Hi (X,F) = H(Xow,i'F) = H'(PY(Qy), Rmur«(i'F)) = In dG(L2<@p HO({o0}, Rimpr 1 (i F))

where the second isomorphism follows from the continuity of myp. Those are all smooth
spaces, because H'(X,.q,i'F) is smooth (by Theorem [IV.2.2| and recalling that F =
O/w*0).

IV.2.3 Supersingular locus

Let us denote by Mpr f, the Lubin-Tate space for GL2(Q)) at the level K, where K, is
a compact open subgroup of GL(Q,). See Section 6 of [SW13] for a definition. We just
recall that this is a deformation space for p-divisible groups with an additional data and
it is a local analogue of modular curves. We view it as an adic space over Spa(C, O¢).
Once again, we would like to pass to the limit and work with the space at infinity.
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Theorem IV.2.4. There exists a perfectoid space M1 o over Spa(C,O¢) such that

Mpreo ~ Im Mt K,
Kp

where K, runs over compact open subgroups of GLa(Qp).

Proof. This is Theorem 6.3.4 from [SW13]. One defines M7 o as a deformation functor
of p-divisible groups with a trivialization of Tate modules. O

To compare X and M7 o (hence their cohomology groups) we use the p-adic uniformi-
sation of Rapoport-Zink at the infinite level. Let us denote by D the quaternion algebra
over Q which is ramified exactly at p and co. The p-adic uniformisation of Rapoport-Zink
states

Proposition IV.2.5. We have an isomorphism of adic spaces

Xes ~ 1im D*(Q)\ (M0 x GLo(A)) /K, K
Kp

This isomorphism is equivariant with respect to the action of the Hecke algebra of level
KP,

Proof. The uniformisation at finite level is proved in [RZ96]. We adify their construction
and pass to the limit using Theorem O

IV.3 On admissible representations

Having recalled the geometric results, we now pass to the results about representations of
GL2(Qp). We review and prove some facts about Banach admissible representations. Then
we recall recent results of Paskunas which allow us to consider the localisation functor.

IV.3.1 General facts and definitions

We start with general facts about admissible representations. In our definitions, we will
follow [EmelOal. As before, let E be a finite extension of Q, with ring of integers O,
a uniformiser w and the residue field k. Let C(O) denote the category of complete
Noetherian local O-algebras having finite residue fields. Let us consider A € C(O). We
let G be any connected reductive group over Q.

Definition IV.3.1. Let V be a representation of G over A. A wvector v € V 1is smooth
if v is fized by some open subgroup of G and v is annihilated by some power m' of the
maximal ideal of A. Let Vg, denote the subset of smooth vectors of V.. We say that a
G-representation V over A is smooth if V.= Vgp,.

A smooth G-representation V over A is admissible if V¥ [m'] (the m'-torsion part of the
subspace of H-fixed vectors in V') is finitely generated over A for every open compact
subgroup H of G and every i > 0.

Definition IV.3.2. We say that a G-representation V' over A is w-adically continuous
if Vis w-adically separated and complete, V[w™] is of bounded exponent, V/w'V is a
smooth G-representation for any i > 0.
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Definition 1V.3.3. A w-adically admissible representation of G over A is a w-adically
continuous representation V. of G over A such that the induced G-representation on
(V/@wV)[m] is admissible smooth over A/m.

This definition implies that for every i > 0, the G-representation V/w'V is smooth
admissible. See Remark 2.4.8 in [Emel0al.

Definition IV.3.4. We call a G-representation V' over E Banach admissible if there
exists a G-invariant lattice V° C V' over O such that V° is w-adically admissible as a
representation of G over O.

Proposition 1V.3.5. The category of w-adically admissible representations of G over
A is abelian and moreover, a Serre subcategory of the category of w-adically continuous
representations.

Proof. The category is anti-equivalent to the category of finitely generated augmented
modules over certain completed group rings. See Proposition 2.4.11 in [Emel0a]. O

Now, we will prove an analogue of Lemma 13.2.3 from [Boy99| in the | = p setting. We
will later apply this lemma to the cohomology of the ordinary locus to force its vanishing
after localisation at a supersingular representation of GL2(Q,). We have proved it already
in the mod p setting as Lemma 3.3 in Chapter III.

Lemma IV.3.6. For any smooth admissible representation (w,V') of the parabolic sub-
group P C G over A, the unipotent radical U of P acts trivially on V.

Proof. Let L be a Levi subgroup of P, so that P = LU. Let v € V and let Kp = K Ky
be a compact open subgroup of P such that v € VEP. We choose an element z in the
centre of L such that:

2 "Kp2"C..Cz2 'KpzCKpCzKpz~tc..Ccz2"Kpz""C ..

and U,;s0 2"Kpz~" = Ky U. For every n and m, modules V= "KP2"[mi] and V* " KP=" [m]]
are of the same length for every i > 0, as they are isomorphic via 7w (z"~™). We natu-
rally have an inclusion V* "KP"[mi] c V* "KP2"[mi] and hence we get an equality
VT Ep i) = V2" KP2" i), By smoothness, there exists i such that v € V[m?]. Thus
we have v € VEP[mi] = V27 "KP2"[mi] = VELU[m!] which is contained in VY [m?]. O

Lemma IV.3.7. For any w-adically admissible representation (m,V) of the parabolic
subgroup P C G over A, the unipotent radical U of P acts trivially on V.

Proof. By the remark above, each V/@'V is admissible, and hence the preceding lemma
applies, so that U acts trivially on each V/@'V. But V = mz V/w'V, hence U acts
trivially on V. 0

Later on, we will need the following result.

Lemma IV.3.8. LetV = Indg W be a parabolic induction. IfV is a w-adically admissible
representation of G over A, then W is a w-adically admissible representation of P over

A.

Proof. This follows from Theorem 4.4.6 in [Emel0al. O
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IV.3.2 Localisation functor

Let 7 be a supersingular representation of GL2(Q,) over k. Recall that supersingular
representations correspond to irreducible two-dimensional Galois representations under
the local Langlands correspondence modulo p. See [Berll].

In [Pas13], Paskunas has proved the following result (Proposition 5.32)

Proposition IV.3.9. We have a decomposition:
Rep&ino,)¢(O/@°0) = Repdi™ 0,)£(O/7° O)(n) ® Repiin(g,) O/ 0)™

where RepGL (@,),£(O/@°O) is the (abelia,n) category of smooth admissible O [w®O-representations

admitting a centml character &, RepGL2 ,£(0/@*O) () (resp. RepGLQ(Q (Of@* 0)™)
is the subcategory of it consisting of representatzons I such that all Wreduczble subquotients
of IT are (resp. are not) isomorphic to .

We denote the projection

RepGLQ(Q (O/w® )HRGPGLQ(@ O/ O)(m)

by
V- V(W)

and we refer to it as the localisation functor with respect to m. The existence of a central
character follows from the work [DS13| for irreducible representations. In what follows,
we will ignore the central character £ in our notations, though whenever we localise we
mean that we firstly localise the representation at £ and then we project as above.

IV.4 p-adic Langlands correspondence and analytic coho-
mology

In this section we show that the p-adic local Langlands correspondence for GL2(Q),) ap-
pears in the étale cohomology of the Lubin-Tate tower at infinity. We also state a conjec-
ture about the analytic cohomology of the Lubin-Tate perfectoid.

IV.4.1 p-adic Langlands correspondence

For this section we refer the reader to [Berll] (for the Colmez functor) and [Pasl3] (for
equivalence of categories). We recall that Colmez has constructed a covariant exact functor
Y

V: Repp(GL2(Qp)) — Repp(Go,)

which sends O-representations of GLa(Q,) to O-representations of Gg, = Gal(Q,/Qp).
Moreover this functor is compatible with deformations and induces an equivalence of
categories when restricted to appropiate sub-representations. We call the inverse of this
functor the p-adic local Langlands correspondence and we denote it by B(-). For our
applications we will only need the fact that for p-adic continuous representations p :
Gq, — GL2(E), B(p) is a Banach admissible E-representation. Furthermore, when p is
irreducible, then B(p) is topologically irreducible.

Let p: Gg, — GLa(k) be the reduction of p which we assume to be irreductible. Let
7 be the supersingular representation of GL2(Q,) over k which corresponds to p by the
mod p local Langlands correspondence, that is V(7)) = p. Then one knows that B(p) is
an object of the category Repé‘i”;(Qp)(E)(ﬂ) defined above.
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IV.4.2 Etale cohomology

We recall the results of Emerton on the p-adic completed cohomology and then we prove
that certain p-adic Banach representations appear in the étale cohomology of M1 .
From now on we work in the global setting. Let p : Gg = Gal(Q/Q) — GLa(E) be a
continuous Galois representation. We assume that it is unramified outside some finite set
Y = ¥oU{p}. Moreover we assume that its reduction p is modular (that is, isomorphic to
the reduction of a Galois representation associated to some automorphic representation
on GL2(Q)) and p, = PlGg, is absolutely irreducible.

Let us recall that we have introduced spaces X, Y depending on the tame level KP. We
now assume that K? is unramified outside ¥. We shall factor K? as K? = Ky K Yo Let
Ty = O[T}, Si]igs; be the commutative O-algebra with 7j, S; formal variables indexed by
[ ¢ ¥. This is a standard Hecke algebra which acts on modular curves by correspondences.

To the modular Galois representation p : Gg — GL2(E) we can associate the maximal
Hecke ideal m of Ty which is generated by w (uniformiser of Q) and elements 7} + g
and 1S; — by, where [ is a place of Q which does not belong to ¥, X2 + ;X! + b; is the
characteristic polynomial of p(Frob;) and a;, b are any lifts of a;,b; to O.

We let 75, (p) = ®Qiex,m(p1) be the tensor product of E-representations of GLa(Q;)
(I € Xp) associated to p; = PGy, by the generic version of the [-adic local Langlands
correspondence (see [EH11]).

We assume that p is pro-modular in the sense of Emerton (see [Emellal). Let p be
the prime ideal of Ty associated to p (similarly as we have associated m to p). We have
an obvious inclusion p C m. We remark that pro-modularity is a weaker condition than
modularity and it can be seen as saying that p is a Galois representation associated to
some p-adic Hecke eigensystem coming from the completed Hecke algebra (the projective
limit over finite level Hecke algebras). Recall that we have assumed that p, = PlGq, is

absolutely irreducible. This permits us to state the main result of [Emella] as

Theorem IV.4.1. Let p : Gog — GLa(E) be a continuous Galois representation which is
pro-modular and such that py is absolutely irreducible. Then we have a Gg x GL2(Q)) x
[Lies, GL2(Qy)-equivariant isomorphism of Banach admissible E-representations.

H'(Y, E)[p] = p @5 Blpy) @ s, ()

We recall that the cohomology group on the left is the p-adic completed cohomology
of Emerton

HY(Y, E) = (@ngH;AY(Kpr), 0/w80>) ®0 F
s Kp

where K, runs over compact open subgroups of GL2(Q),).

Let us remark that the Galois action of Gg, arises on Y, X, Mpr o (which we treat
as adic spaces over Spa(C, O¢)) from the Galois action on the corresponding model over

Qp.

We also have a similar theorem for the compactification

Theorem 1V.4.2. With assumptions as in the theorem above, we have an isomorphism
of Banach admissible K -representations

HY (X, E)n ~ H(Y, E)n
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In particular,
H'(X, E)[p] = p ©r B(pp) ®p ms,(p)* 0

Proof. We have assumed that p, is absolutely irreducible and hence p is absolutely irre-
ducible which implies that m is a non-Eisenstein ideal. Now the theorem follows as in the
proof of Proposition 7.7.13 of [Eme06b]. O

We now come back to the exact sequence which we have obtained earlier
.. > H(X,0/w*0) = H_ (X,0/w*0) = H'(X,0/w*0) = H'(Xs, O/m*0) — ...

By Theorem 2.1.5 of [Eme06c], we get that H' (X, O/w*O) is a smooth admissible O /w*O-
representation of GLa(Q,). Moreover, also H%(Xgs, O/w*O) is a smooth admissible O /w*O-
representation of GL2(Q,) as X (K, KP) has only finite number of connected components
for each K, and KP. The category of smooth admissible O /w®O-representations is a Serre
subcategory of the category of smooth (not necessarily admissible) O/w?®O-representations
(see Proposition 2.4.11 of [Emel0al). Hence, as H)lford (X,0/w*0) is smooth, we infer
that it is also smooth admissible. By Proposition 2.4 we get that H}(Drd (X,0/w*0)
is induced from some representation W (O/w®0O) of the Borel B(Q,). We deduce from
Lemma 3.8 (Theorem 4.4.6 in [Emel0al) that W (O/w*O) is smooth admissible O/w*O-
representation of B(Q,). Thus, we can apply to it Lemma 3.7. If 7 is any supersingular
k-representation of GL2(Q)), it implies that

Hyx (X,0/@°0) ) =0

because by Proposition 2.3 the representation Hy (X, 0/w*0) is a smooth induction of
an admissible representation, hence no supersingular representation appears as a subquo-
tient of it.

Localising the exact sequence above at some supersingular k-representation m we get
an injection

HYX,0/w°0)(n) — H'(Xss, 0/w"0)

By passing to the limit with s we get an injection
HY(X,E)(n) = H' (Xs, E)
We can now prove our main theorem

Theorem IV.4.3. Let p : Gg = Gal(Q/Q) — GLa(E) be a pro-modular representa-
tion. Assume that p, = PlGg, is absolutely irreducible. Then we have a GL2(Q,) x Gg,-
equivariant injection

B(pp) @5 pp = H' (ML1,00, E)

Proof. Let 7 be the mod p representation of GL2(Q)) corresponding to p, by the mod p
local Langlands correspondence. It is a supersingular representation by our assumption
that p, is absolutely irreducible. Let p be the prime ideal of Ty, associated to p, where
Y =¥oU{p} is some finite set which contains p and all the primes at which p is ramified.
As above we have

HY(X,E)(r) = H' (Xs, E)

and hence also
Hl(Xa E)(w)[p] — Hl(XSS, E)[]J}
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Theorem 4.2 implies that (we keep track only of Gg,-action instead of Gg)
B(pp) QFE pp OF 5, (p)KEO — HI(XSSa E)[p]

Let Ky, be a compact open subgroup of [[;c s, GL2(Qy) for which we have dim 7, (p)K/EO =
1 where the dimension is over F. Such a subgroup always exists by classical results of
Casselman (see [Cas73]). Remark that we are using here the generic local Langlands
correspondence as explained in [EHII]: to generic representations we associate the same
representation as in the classical correspondence up to the twist by the determinant and for
non-generic ones we take Steinberg representations induced from a parabolic subgroup.
This allows us to still appeal to [Cas73] for the conclusion (compare also with Section
II1.5). Hence we have

B(pp) ©5 pp = H' (Xes, E)[p] "0

By Kunneth formula and Proposition 2.5 (the p-adic uniformisation of Rapoport-Zink) we
get, in the same way as in Section II1.6.1, that

~ D*(Q
H' (X B) = (H' (Myzoo, B)EES)

where we have denoted by S the p-adic quaternionic forms of level K?
HY(D*(Q)\D*(A)/KP? E) = (@@HO(DX(Q)\DX(A)/KPW,O/WSO)) ®o E
s K,

where K, runs over compact open subgroups of D*(Q,). As GL2(Q,) and Gg, act on
H!(Xgs, E) through HY(Mpr 0, E) (i.e. they act trivially on 8) we conclude by the
preceding discussion that

B(py) ®p pp — H' (Mr1,00, E)

as wanted. O

IV.4.3 Cohomology with compact support

We show that the cohomology with compact support of the Lubin-Tate tower does not
contain any p-adic representations which reduce to mod p supersingular representations.
Recall we have morphisms

J: Xs— X

and
7 Xord — X

which give an exact sequence for any étale sheaf F' on X

0— jijF - F — 4,i"F =0
This leads to an exact sequence of the cohomology
o = HY(Xyq, 0/w*0) = HY (X, 0/w*O) = HY (X, 0/w*O) = H (Xorq, O/w*O) — ...

Because H'(X,0/w*0) is smooth admissible as a O/w®O-representation of GL2(Q))
(by the result of Emerton) and H%(X,.q,0/w*0) is smooth admissible as a O/w*O-
representation of GL2(Q)) because at each finite level X,q has a finite number of con-
nected components, we infer that also H}(Xg, O/w*O) is smooth admissible (as the
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category of admissible O/w®O-representations is a Serre subcategory of smooth O/w*O-
representations). Passing to the limit with s, we infer that H!(Xg, E) is Banach admissible
over E. This means that we can localise H} (X, E) at supersingular representations.

Let 7 be a supersingular k-representation of GL2(Q)), where k is the residue field of
K. Observe that if H} (X, E)(r # 0, then also its reduction H!(Xs, k)(r) would be
non-zero. But Theorem 8.2 in Chapter III states that H] (X, k) () = 0. Hence we get

Theorem IV.4.4. For any supersingular k-representation m of GL2(Q)) we have
H(}(Xssa E)(TI’) =0

In particular

H(} (MLT,ooa E)(Tl’) =0

Proof. The first part follows from the preceding discussion, the second part follows from
the Rapoport-Zink uniformisation. O

This theorem implies that for any continuous p, : Gg, — GL2(E) which has an abso-
lutely irreducible reduction p, : Gg, — GL2(k), the GL2(Q,)-representation B(p;) associ-
ated to p, by the p-adic Local Langlands correspondence does not appear in H} (M 7,00, E).
Nevertheless, we believe that it appears in H2(M LT,00: F), though we could not prove it.

IV.4.4 Analytic cohomology

Let us explain, why we do not work with the de Rham cohomology as would the folklore
conjecture suggest (to be precise: we do, but we work only with the structure sheaf as
all the other differentials vanish as we show below). The reason for that is that there are
no good finiteness results for de Rham cohomology of adic spaces which are not of finite
type (as our Lubin-Tate perfectoid M7 o). Moreover, it seems that the (continuous) de
Rham cohomology does not suit well perfectoid spaces. Indeed H (X, o %) is zero for any
perfectoid space X and sheaves of continuous differentials 9X %> J > 0. We define here QJ
locally on Spa(R, Rt) over (K, K) by firstly defining

I — N J
P pace = B0 Qg sty

and then Qépa( RRH) = Q;% K= Qiﬁ K [1/p]. Thus, it is enough to prove the statement
for affinoid perfectoids X = Spa(R, R"). We can further reduce ourselves to the case
i = 0 by using the Cech complex associated to some rational covering of X (which will be

a covering by affinoid perfectoids by Corollary 6.8 of [Sctha]) Hence, we have to show

that global sections of Q are zero. It suffices to show that () Rt K+ is almost zero. This
follows from induction, as for n = 1 the sheaf Q( R+ /p)/(K+/p) is identically zero, and for

n > 1 we conclude using an exact sequence, as in the proof of Theorem 5.10 of [Schi2al:
0= R"/p— R /p" = R /p" 1 =0

Let us remark that this reasoning also implies that sheaves QJX are zero on a perfectoid
space X for j > 0. It is enough to check it at stalks where we have Q&x = ligler QJX(U )
and U runs over rational affinoid subsets of X containing . As such subsets are perfectoid
(Corollary 6.8 of [Sch12a]) we have (% (U) = 0 and hence the result.
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As M1 is a perfectoid space by [SW13], the above reasoning applies, showing that
de Rham cohomology of M1 . reduces to the study of the cohomology with values in
the structure sheaf. This is exactly the analytic cohomology we consider. By using recent
results of Scholze, it seems natural to work with the analytic cohomology (i.e. topology
defined by open subsets). We review this below. We believe that the ’folklore conjecture’
should be understood as the statement that the p-adic local Langlands correspondence
appears in the analytic cohomology of the appropiate Rapoport-Zink space at infinity.
We also remark that the same applies to Shimura varieties at the infinite level, which are
perfectoid spaces by [Sch13].

If Z is any adic space, we denote by Z,, its analytic topos which arises from the
topology of open subsets. For any (coherent) sheaf F on Z, we write H., (Z,F) for the
i-th cohomology group of Z,, with values in F.

By Theorem IV.2.1 of [Sch13| (where we pass to the limit with Z/p"Z and then use
the reasoning from the proof of Theorem 3.20 in [Schi2b|] to descent from the pro-étale
site to the étale site) we have an isomorphism

HY(X,E)®pC ~ H. (X,0x)

which is GL2(Q)p)-equivariant and also equivariant with respect to the Hecke action of Tsy;.

If we were to use the same reasoning as for the p-adic completed cohomology (i.e.
some exact sequence of analytic cohomology and localisation at a supersingular represen-
tation) to show that the p-adic local Langlands correspondence appears in the analytic
cohomology of the Lubin-Tate tower at infinity, then we would have to start by proving ad-
missibility of the cohomology groups. Unfortunately, this is not true. By the comparison
theorem of Scholze we get that H},(X,Ox) is a Banach admissible E-represention, but
H? (X, Ox.,) is not admissible (and it is not even clear whether it is a Banach space).
In order to prove that, it is enough to prove it for HY (M 17 00, Onm L1r.00) Dy the p-adic
uniformisation of Rapoport-Zink.

Proposition IV.4.5. The GLo(Qy)-representation HY, (M7 e, Oryyp..) is not admis-
sible.

Proof. In Section 2 (see especially 2.10) in [Weil3], Weinstein gives an explicit description
of the geometrically connected components of M7 . Each of them is isomorphic to
Spa(A ®o,. C,A R0, Oc), where K is the Lubin-Tate extension of Q, (see Section
2.3 of [Weil3|; we fix an embedding K, — C) and A is a perfectoid K-algebra with a
tilt (Corollary 2.9.11 of [Weil3])

A =T [[X, 77, X777

Hence, in HY,(Mr7,00, OMyr...) @PPears A®o,_ C (and in fact much more as this is the
set of all unbouded funtions on the Lubin-Tate perfectoid). We have an action of GL2(Z))
on A. Let K be any compact open subgroup of GLy(Zy). If H),(Mr1 00, Op, oy ) Were
admissible, then in particular for the lattice A ®o,_ Oc¢ in A ®o,_ C, the reduction of
K-invariants (A ®o,_ F,)" would be of finite dimension over F,, (by the very definition,
see Definition 2.7.1 of [Emel0a]). This is not possible. Indeed, observe that A% contains
(and probably equals to but we do not need it) the ring of integral analytic functions
on the Lubin-Tate space of K-level, which is a finite ring over the ring O¢[[X1, X2]] of
power-series over O¢. O
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This means that we cannot use the localisation functor and deduce our result from
the global results of Emerton. Hence, for now, we can only state a conjecture, which we
believe to be a correct version of the folklore conjecture.

Conjecture IV.4.6. Let p, : Go, — GL2(E) be a continuous de Rham Galois represen-
tation. Then, there is a non-zero GL2(Q))-equivariant injection

B(pp) — H;n(MLT,Om OMLT,oo)

Observe that in fact we can state a similar conjecture for HY, (M 17,00, Om 1.0 ) instead
of HL, . A priori, it is not clear which one should be true or whether both are. The
advantage of working with HO should be the fact that it is quite explicit by the work of
Weinstein.

Christophe Breuil has informed us that a similar conjecture was made by him and
Matthias Strauch in 2006 (unpublished note). The difference was that on the left side
they considered the locally analytic vectors of B(p,) while on the right side they had a
cohomology of the Drinfeld tower at some finite level. Results toward this conjecture for
special series appear in [Bre04].

We believe that there is also a more refined version of the folklore conjecture which
truly realizes the p-adic local Langlands correspondence in the sense that in the analytic
cohomology of the Lubin-Tate perfectoid should appear a tensor product of B(p,,) with the
associated (¢, I")-module of p,. We do not make precise here what kind of (¢, I')-modules
we consider and how the appropiate Robba ring acts on the Lubin-Tate perfectoid. We
shall come back to those issues elsewhere.

IV.4.5 Final remarks

Observe that our proof of Theorem 4.3 depends on the global data as we have to start
with a global pro-modular Galois representation p. As our result is completely local,
it is natural to ask whether the same thing holds for any absolutely irreducible Galois
representation p, of Gg, which is not necessarily a restriction of some global p (as in
Conjecture 4.6).

Another natural problem is to try to prove Theorem 4.3 without assuming that p, is
absolutely irreducible. This would require a more careful study of the cohomology of the
ordinary locus.

The most pertaining problem is whether one can reconstruct B(p,) from either the
p-adic completed or the analytic cohomology of the Lubin-Tate tower and hence give a
different proof of the p-adic local Langlands correspondence. This might be useful in
trying to prove the existence of the p-adic correspondence for groups other than GL2(Q))
as well as Theorem 4.3 for Galois representations p, not necessarily coming from global
Galois representations.
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