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Résumé des résultats

Soit F un corps local commutatif à corps résiduel fini kF . Dans cette thèse
nous étudions, pour n ≥ 2, la restriction d’une représentation lisse irréductible
de GLn(F ) à un sous-groupe compact maximal K. En particulier, nous nous
intéressons aux représentations irréductibles lisses (appelées représentations
K-typiques) de K qui déterminent le support inertiel de la représentation lisse
irréductible donnée. Dans le contexte de la correspondance de Langlands lo-
cale, ces représentations ont eu des applications arithmétiques importantes.
Dans cette thèse, nous essayons de réaliser, dans de nombreux cas, la classifi-
cation de ces représentations lisses irréductibles de K pour un support inertiel
donné s.

Motivation

Correspondance de Langlands locale pour GLn

Nous fixons une clôture algébrique séparable F̄ de F . Soit Fun la sous-
extension maximale non-ramifiée dans F̄ . Nous avons une application canon-
ique

Gal(F̄ /F )→ Gal(Fun/F ).

Le groupe Gal(Fun/F ) est canoniquement isomorphe au groupe de Galois du
corps résiduel kFun de Fun sur kF . Comme kFun est la clôture algébrique du
corps fini kF nous obtenons l’application

Gal(F̄ /F )→ Gal(kFun/kF ) ' Ẑ. (1)

Soit q le cardinal du corps résiduel kF . On note par ΦF l’automorphisme
de kFun qui envoie un élément x à xq. Soit WF le groupe constitué par
les éléments de Gal(F̄ /F ) qui induisent une puissance entière de ΦF par
l’application (1). Le groupe WF est appelé le groupe de Weil de F . Le groupe
WF devient un groupe localement compact en déclarant les sous-groupes ou-
verts de Gal(F̄ /Fun) (avec sa topologie profinie) sous-groupes ouverts de WF .
Ainsi nous obtenons une suite exacte de groupes topologiques

0→ Gal(F̄ /Fun)→WF → ΦZ
F → 0

où ΦZ
F est muni de la topologie discrète.

La théorie des corps de classes locaux nous donne un isomorphisme
topologique

W ab
F ' F×,

où W ab
F est le quotient de WF par l’adhérence du groupe dérivé de WF . Cela

nous donne une bijection entre les caractères continus de WF et ceux de
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F×. La correspondance de Langlands locale établit un analogue en dimension
supérieure de la correspondance entre les caractères obtenus par la théorie du
corps de classes local. Une telle correspondance peut être formulée en termes
de certain objets algébriques appelés représentations de Weil-Deligne. Pour
commencer, nous introduisons une norme ‖‖ sur le groupe de Weil WF . Soit
x un élément de WF , d’image ΦrF par la application (1), alors ‖x‖ = q−r. Une
représentation de Weil-Deligne de dimension n est un triplet (r, V,N) où V
est un espace vectoriel complexe de dimension n, r est un homomorphisme de
WF dans GL(V ) dont le noyau est ouvert, N est un élément de EndC(V ) qui
satisfait

r(x)Nr(x)−1 = ‖x‖N.

pour tout x ∈ WF . Nous disons qu’un triplet (r, V,N) est Frobenius semi-
simple si la représentation (r, V ) est semi-simple. La correspondance de Lang-
lands locale (voir [LRS93] pour le cas où la caractéristique de F est non nulle
et [HT01] et [Hen00] pour le cas où la caractéristique de F est égal à zéro)
est une correspondance naturelle entre l’ensemble des classes isomorphismes
de représentation Weil-Deligne de dimension n, Frobenius semi-simples, et
l’ensemble des classes d’isomorphisme de représentations irréductibles com-
plexes lisses de GLn(F ). (Une représentation (π, V ) est dite lisse si et seule-
ment si pour tout v ∈ V le stabilisateur de v est ouvert dans GLn(F ) pour la
topologie induite à partir de F ).

Soit Bn l’ensemble des couples (M,σ) où M est un sous-groupe de Levi
d’un sous-groupe parabolique de GLn(F ) et σ une représentation irréductible
cuspidale de M . Nous rappelons que l’équivalence inertielle est une re-
lation d’équivalence sur l’ensemble Bn définie par (M1, σ1) ∼ (M2, σ2) si et
seulement s’il existe un élément g ∈ G et un caractère non ramifié χ de M2 tel
que M1 = gM2g

−1 et σg1 ' σ2 ⊗ χ. Nous utilisons la notation [M,σ] pour la
classe d’équivalence contenant le couple (M,σ). Les classes d’équivalence sont
également appelées classes inertielles. Chaque représentation irréductible
lisse intervient dans une représentation induite parabolique iGLn(F )

P (σ) où σ
est une représentation irréductible cuspidale d’un sous-groupe de Levi M de
P . Le couple (M,σ) est bien déterminé à GLn(F )-conjugaison près (voir
[BZ77][Theorem 2.5 Theorem 2.9(a)(i)]). La classe [M,σ] est appelé le sup-
port inertiel de π.

Étant donné deux triples (r1, V1, N1) et (r2, V2, N2), il se trouve que les
restrictions de r1 et r2 au groupe Gal(F̄ /Fun) sont isomorphes si et seule-
ment si les représentations lisses π1 et π2 associées par la correspondance de
Langlands locale pour (r1, V1, N1) et (r2, V2, N2) respectivement ont le même
support inertiel. Dans plusieurs applications arithmétiques (par exemple voir
[BM02] et [EG14]) on cherche à associer à un support inertiel donné, disons
s, une représentation lisse irréductible τ de GLn(OF ) qui a la propriété que si
HomGLn(OF )(τ, π) 6= 0 alors le support inertiel de π est s. Une telle représen-
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tation est appelée GLn(OF )-représentation typique.

Théorie des types
Soit G le groupe de F -points d’un groupe réductif algébrique. Il a été montré
par Bernstein que la catégorie des représentations lisses M(G) admet une
décomposition

M(G) =
∏

s∈B(G)

Ms(G)

oùMs(G) est la sous-catégorie pleine composée des représentations lisses telles
que tous leurs sous-quotients irréductibles ont support inertiel s. La théorie des
types développée initialement par Bushnell-Kutzko (voir [BK98] pour une dis-
cussion générale sur les représentations lisses et la théorie des types) donne une
construction de couples (Js, λs) où Js est un sous-groupe ouvert compact de G
et λs est une représentation irréductible lisse de Js telle que HomJs(λs, π) 6= 0
si et seulement si π ∈Ms(G) pour toutes les représentations lisses irréductibles
π de G. Un tel couple (Js, λs) est appelé un type pour s. Un tel type (Js, λs)
donne une équivalence naturelle de catégories entreMs(G) et la catégorie des
modules sur l’algèbre de Hecke sphérique H(Js, λs).

Soit K un sous-groupe compact maximal de G et s une classe inertielle
de G. Soit (Js, λs) un type pour s telle que Js ⊂ K. Soit Γ une sous-
représentation irréductible de

indKJs(λs). (2)

Soit π une représentation lisse irréductible de G telle que resK π contient Γ.
Alors resJs π contient λs par réciprocité de Frobenius. Donc le support inertiel
de π est s. Cela montre que les sous-représentations irréductibles de (2) sont
K-typiques. Comme l’existence de types n’est pas connue dans tous les cas,
les questions naturelles suivantes se posent:

1. Est-ce qu’une représentation K-typique existe?

2. Pour une classe inertielle s, est-ce que les représentations K-typiques
sont en nombre fini?

3. Comment classifier les représentations K-typiques?

Pour G = GLn(F ) des types (Js, λs) ont été explicitement construits par
Bushnell-Kutzko dans les articles [BK93] et [BK99]. Pour GLn(F ), nous choi-
sissons “le type de Bushnell-Kutzko” (Js, λs) tel que Js ⊂ GLn(OF ) pour tout
s ∈ Bn. Dans cette thèse, nous donnons des réponses aux questions ci-dessus
pour G = GLn(F ) en termes de la théorie des types. Pour #kF > 3 nous
montrons dans de nombreux cas que les sous-représentations irréductibles de

ind
GLn(OF )
Js

(λs)

7



sont précisément les représentations typiques pour la classe inertielle s. En ce
sens, nous classifions les représentations typiques pour la classe s. Notons que
les types construits par Bushnell-Kutzko ne sont pas toujours uniques, même à
conjugaison près. Nous utilisons la terminologie “le type de Bushnell-Kutzko”
pour le couple (Js, λs), le type pour s = [M,σ] construit par la procédure in-
ductive dans l’article [BK99] après la fixation d’un type pour la classe inertielle
[M,σ] de M .

Il existe différentes méthodes de construction de types (J, λ) pour une classe
inertielle donnée s (en ce sens que le couple (J, λ) a la propriété HomJ(λ, π) 6= 0
si et seulement si le support inertiel de π est s pour toute représentation lisse
irréductible π de G). Pour une telle construction et K un sous-groupe compact
maximal contenant J , les sous-représentations irréductibles de

indKJ (λ)

sont des représentations K-typiques pour s. La théorie des représentations
typiques, au moins pour le cas de GLn, vise à donner une approche uniforme.
Il pourrait être intéressant de prouver au moins la finitude du nombre des
représentations K-typiques dans le cas général.

Résultats connus

Le cas de GL2(F ) est traité par Henniart dans l’annexe à l’article [BM02].
Il a complètement classifié les représentations typiques pour toutes les classes
inertielles. Henniart prédit que ses résultats peuvent être étendus à GLn(F ).
Paskunas a classé les représentations typiques pour les classes inertielles
[GLn(F ), σ]. Nous décrivons maintenant les résultats d’Henniart et de Pasku-
nas. Nous remarquons que Js peut être conjugué à un sous-groupe de GLn(OF ).
Nous supposerons que Js est un sous-groupe de GLn(OF ).

Théorème 0.0.1 (Henniart). Soit s une classe inertielle pour GL2(F ). Soit
(Js, λs) le type de Bushnell-Kutzko pour la classe inertielle s. Si #kF > 2 et
s = [GL2(F ), σ] alors les représentations typiques de s sont les
sous-représentations irréductibles de

ind
GL2(OF )
Js

(λs).

Soit T le tore maximal de GL2(F ) constitué des matrices diagonales et soit
s = [T, χ] une classe inertielle pour GL2(F ). Nous identifions T à F× × F×
et le caractère χ à χ((a, b)) = χ1(a)χ2(b) pour deux caractères χ1 et χ2 de
F×. Soit B un sous-groupe de Borel contenant T . Soit B(m) le groupe
des matrices de GL2(OF ) qui, sous la réduction mod Pm

F se trouvent dans le
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groupe B(OF /P
m
F ). Soit N le niveau de χ1χ

−1
2 . Si χ1χ

−1
2 6= id, et si #kF = 2,

Henniart a montré que

ind
GL2(OF )
B(N) (χ) et ind

GL2(OF )
B(N+1) (χ)

sont typiques pour la classe inertielle s. Le type de Bushnell-Kutzko pour la
classe inertielle s = [T, χ] est donné par (B(N), χ). Donc, cela montre que
dans le cas présent il y a en effet des représentations supplémentaires autres
que les sous-représentations irréductibles de (2) qui sont typiques pour s. Pour
toutes les autres classes inertielles [T, χ] Henniart montre que les représenta-
tions typiques sont des sous-représentations de (2).

Pour la classe inertielle s = [GLn(F ), σ] il découle facilement que

ind
GLn(OF )
Js

(λs)

est une représentation irréductible et Paskunas dans l’article [Pas05] a montré
le théorème suivant.

Théorème 0.0.2 (Paskunas). Pour tout entier n > 1 et pour toute classe
inertielle s = [GLn(F ), σ] il existe une seule représentation typique pour s.

Résultats de cette thèse

Dans cette thèse, nous nous intéressons à la classification des représentations
typiques pour les classes inertielles [M,σ] où M est un sous-groupe de Levi
propre de GLn(F ) et n ≥ 3. Alors nous choisissons le type de Bushnell-
Kutzko (Js, λs) est conjugué de sorte que Js ⊂ GLn(OF ). Nous donnons une
description détaillée des résultats de chaque chapitre.

Résultats du chapitre 2

Si τ est une représentation typique pour une classe inertielle s alors nous
montrons que τ est un sous-représentation d’une représentation irréductible
lisse notée π ∈ Ms(G) de GLn(F ). Nous choisissons un représentant (M,σ)
de s tel que M est le sous-groupe de Levi composé de matrices diagonales par
blocs et σ naturellement une représentation supercuspidale deM . Maintenant,
la représentation π est une sous-représentation de

i
GLn(F )
P (σ ⊗ χ)

où P est un sous-groupe parabolique contenantM comme sous-groupe de Lévi
et iGLn(F )

P est l’induction parabolique et χ est un caractère non ramifié de M .
Ainsi, pour la classification des représentations typiques, il faut trouver les
représentations typiques qui apparaissent dans la représentation

resGLn(OF ){i
GLn(F )
P (σ)} ' ind

GLn(OF )
P∩GLn(OF )(σ). (3)
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Maintenant, nous identifions M au produit

GLn1(F )×GLn2(F )× . . .GLnr (F )

pour une partition ordonnée (n1, n2, . . . , nr) de n et σ au produit tensoriel
σ1 � σ2 � · · ·� σr où σi est une représentation cuspidale de GLni(F ). Soit τi
la représentation typique unique dans σi. Il a été montré par Will Conley que
la représentation

ind
GLn(OF )
P∩GLn(OF )(�

r
i=1τi)

admet un complément X dans (3) tel que les GLn(OF )-sous-représentations
irréductibles de X sont non-typiques pour la classe inertielle s.

Maintenant, toutes les représentations typiques pour s sont des GLn(OF )
sous-représentations irréductibles de

ind
GLn(OF )
P∩GLn(OF )(�

r
i=1τi).

Cette représentation est toujours une représentation de dimension infinie. La
première idée est de construire des sous-groupes compacts ouverts Hm pour
m ≥ 1 tels que Hm+1 ⊂ Hm,

∩m≥1Hm = P ∩GLn(OF )

et que �ri=1τi se prolonge à une représentation deH1. Avec quelques conditions
supplémentaires, nous montrons que

ind
GLn(OF )
P∩GLn(OF )(�

r
i=1τi) '

⋃
m≥1

ind
GLn(OF )
Hm

(�ri=1τi).

Pour tout support inertiel nous définissons les Hm dans chaque chapitre et
nous analysons les représentations

ind
GLn(OF )
Hm

(�ri=1τi).

En plus de cela, nous montrons plusieurs lemmes qui sont fréquemment utilisés
dans l’ensemble de cette thèse.

Résultats du chapitre 3

Ce chapitre concerne les classes inertielles, dites classes inertielles de niveau
zéro,

[M =

r∏
i=1

GLni(F ),�ri=1σi]

où chaque σi contient un vecteur non nul fixé par le sous-groupe de congru-
ence principal de niveau un. Le type de Bushnell-Kutzko pour σi est donné par
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(GLni(OF ), τi) où τi est obtenu par inflation d’une représentation cuspidale
de GLni(kF ) pour tous i ≤ r. Maintenant, choisissons P le groupe de matrices
diagonales supérieures par blocs contenant M comme un sous-groupe de Levi.
Pour un entier m ≥ 1 nous désignons par P (m) le groupe de matrices dans
GLn(OF ) qui, par réduction mod-Pm

F appartiennent au groupe P (OF /P
m
F ).

Maintenant, la représentation �ri=1τi peut être vue comme une représentation
de P (1) par inflation. La suite des groupes Hm, que nous avons annoncée dans
la sous-section précédente, est donnée par les P (m).

Pour simplifier la notation, nous noterons Vm la représentation

ind
GLn(OF )
P (m) (�ri=1τi).

Par récurrence sur l’entier positif m, nous montrons le théorème suivant.

Théorème 0.0.3. Les GLn(OF )-sous-représentations irréductibles de Vm/V1

ne sont pas typiques pour la classe inertielle s = [M,σ].

Nous construisons en fait un complément de V1 dans Vm.

Nous notons que le type de Bushnell-Kutzko pour la classe inertielle s
est donnée par le couple (P (1),�ri=1τi). Du théorème ci-dessus, nous pouvons
conclure que le théorème ci-dessus classe complètement les représentations typ-
iques dans ce cas. Grâce à notre analyse, nous gagnons quelques informations
supplémentaires. Nous concluons le résultat dans le théorème suivant.

Théorème 0.0.4. Soit s = [M,σ] une classe inertielle de niveau zéro. Soit Γ
une représentation typique pour la classe inertielle s. La représenaentation Γ
est une sous-représentation irréductible de V1 et

dimC HomGLn(OF )(Γ, V1) = dimC HomGLn(OF )(Γ, i
GLn(F )
P (σ)).

Résultats du chapitre 4

Soit Tn le tore maximal composé des matrices diagonales inversibles dans
GLn(F ). Pour #kF > 3 nous déterminons les représentations typiques pour
les classes inertielles s = [Tn, χ]. Nous allons montrer que les représentations
typiques apparaissent comme des sous-représentations de

ind
GLn(OF )
Js

(λs).

Premièrement, notre but est de définir les groupes Hm tel que Hm+1 ⊂ Hm et
∩m≥1Hm = Bn(OF ) où Bn est le sous-groupe de Borel composé de matrices
triangulaires supérieures inversibles. Nous notons que le type de Bushnell-
Kutzko (Js, λs) dans ce cas, a la propriété Js ∩Bn = Bn(OF ). Nous pouvons
donc choisir H1 = Js et les autres groupes doivent être définies plus précisé-
ment. Nous esquissons les détails.
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Nous identifions Tn au groupe ×ni=1F
× et le caractère χ à �ni=1χi où χi est

un caractère lisse de F×. On note l(χ) l’entier k > 0 minimal tel que 1 + Pk
F

est contenu dans le noyau de χ. Soit Jχ(m) l’ensemble constitué de matrices

(aij) où aij ∈ P
l(χiχ

−1
j )+m−1

F pour tout i > j, aii ∈ O×F et aij ∈ OF pour
tout i < j. Nous allons montrer que Jχ(m) est en effet un sous-groupe ouvert
compact et nous établissons également que

1. Js = Jχ(1)

2. ∩m≥1Jχ(m) = Bn(OF )

3. Le caractére χ de T (OF ) s’étend à un caractère de Jχ(1).

Par conséquent, nous définissons Hm = Jχ(m) pour tout m ≥ 1. Cela montre
que

resGLn(OF ) i
GLn(F )
Bn

(χ) '
⋃
m≥1

ind
GLn(OF )
Jχ(m) (χ)

On note Vm(χ) la représentation

ind
GLn(OF )
Jχ(m) (χ).

En utilisant une réccurence sur les entiers n > 0 et m > 0, nous montrons le
théorème suivant.

Théorème 0.0.5. Les GLn(OF ) sous-représentations irréductibles de
Vm(χ)/V1(χ) ne sont pas typiques pour les classes inertielles de s = [Tn, χ].

Résultats du chapitre 5

Dans ce chapitre, nous nous intéressons à la classification des représentations
typiques pour les classes inertielles s = [GLn(F ) × GL1(F ), σ � χ]. Dans ce
chapitre et le suivant, nous allons utiliser les techniques de [BK93] comme
des chaînes de réseaux, ordres héréditaires, suites de réseaux, β-extensions
etc. avec des références précises. Soit P un sous-groupe parabolique composé
des matrices triangulaires supérieures par blocs de type (n, 1). On note M le
sous-groupe de Levi de P constitué de matrices diagonales par blocs. Nous
rappelons que P (m) a le sens habituel. On note τ la représentation typique
unique, apparaissant dans la représentation cuspidale σ. Nous pouvons ainsi
supposer que χ est trivial.

Les représentations typiques se produisent comme des sous-représentations
de la représentation

Vm := ind
GLn+1(OF )
P (m) (τ � id).

pour un entierm ≥ N (N sera défini explicitement plus tard). Pour des raisons
qui seront expliquées plus tard, nous définissons un sous-groupe compact ou-
vert P 0(m) de P (m) tel que P 0(m)∩M = J0 ×O×F , P 0(m)∩U = P (m)∩U ,
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P 0(m) ∩ Ū = P (m) ∩ Ū et λ� id se prolonge à une représentation de P 0(m).
Nous montrons également que

ind
GLn+1(OF )
P 0(m) (λ� id) ' ind

GLn+1(OF )
P (m) (τ � id).

Par récurrence sur m, m ≥ N , nous montrons que les GLn+1(OF ) sous-
représentations de Vm/V1 sont non typiques.

Le type de Bushnell-Kutzko Js est assez près de P 0(N), dans le sens que
P 0(N)∩P = Js∩P et de plus Ū($N

F ) ⊂ P 0(N)∩ Ū ⊂ Js∩ Ū ⊂ Ū($N−1OF ).
En utilisant la décomposition de indJsP 0(N)(id), nous prouvons le théorème suiv-
ant.

Théorème 0.0.6. Soit Γ une représentation typique de la classe inertielle
s = [GLn(F )×GL1(F ), σ� χ] et #kF > 2. La représentation Γ est unique et
se plonge avec multiplicité un dans

i
GLn+1(F )
P (σ � χ).

Résultats du chapitre 6

Dans ce chapitre, nous allons classifier les représentations typiques pour cer-
taines classes inertielles

s = [GL2(F )×GL2(F ), σ1 � σ2].

Soit P le sous-groupe parabolique composé de matrices triangulaires supérieures
par blocs de type (2, 2). Soit M le sous-groupe de Levi de P et soit U le
radical unipotent de P . On note P̄ le sous-groupe parabolique opposé de
P par rapport à M . Soit Ū le radical unipotent de P̄ . Soient (J0

1 , λ1) et
(J0

2 , λ2) les types de Bushnell-Kutzko pour les classes inertielles [GL2(F ), σ1]
et [GL2(F ), σ2] respectivement. Les groupes P (m) auront le sens habituel pour
m ≥ 1. Nous définissons aussi un groupe P 0(m) pour m ≥ N où N sera défini
explicitement dans le texte principal du chapitre 6. Les groupes P 0(m) ont
leur décomposition d’Iwahori par rapport à P et M ; P 0(m) ∩ Ū = P (m) ∩ Ū ,
P 0(m) ∩ U = P (m) ∩ U et P 0(m) ∩M = J0

1 × J0
2 ; et

ind
GL4(OF )
P (m) (τ1 � τ2) ' ind

GL4(OF )
P 0(m) (λ1 � λ2)

pour tous m ≥ N .

Par des méthodes similaires à celles des chapitres 2, 3, 4, 5 nous allons ré-
duire le problème de la classification des représentations typiques de s à trouver
des représentations typiques se produisant en tant que sous-représentations de

ind
GL4(OF )
P 0(N+1)(λ1 � λ2). (4)

13



Il se trouve que le type de Bushnell-Kutzko pour s n’est pas de la forme
(P 0(N + 1), λ1 �λ2) pour presque tous les cas. Cela signifie que nous ne pou-
vons pas conclure directement que les représentations typiques pour la classe
inertielle s sont précisément les sous-représentations de (4).

Nous prévoyons (au moins lorsque #kF > 2) que les représentations typ-
iques doivent se produire en tant que sous-représentations des

ind
GL4(OF )
Js

(λ1 � λ2).

Nous avons comparé les dimensions de la représentation ci-dessus avec celle
de (4) et avons observé qu’elles sont en effet différentes et cela nous a donné
la première heuristique pour s’attendre à ce qu’il y a des sous-représentations
irréductibles non typiques qui se produisent dans (4). Nous avons essayé et
même réussi dans de nombreux cas à classer les représentations typiques ap-
paraissant dans (4). Nous allonons expliquer le résultat principal après avoir
rappelé quelques aspects de la construction par Bushnell-Kutzko d’un type
semi-simple pour s.

Soit [A1, n1, 0, β1] et [A2, n2, 0, β2] deux strates simples définissant les types
de Bushnell-Kutzko (J0

1 , λ1) et (J0
2 , λ2) respectivement. On note e1 et e2 les

indices de ramification des ordres héréditaires A1 et A2 respectivement. On
note φi le facteur irréductible du polynôme caractéristique associé aux strates
simples [Ai, ni, 0, βi] pour i ∈ {1, 2} (voir [BK93][Section 2.3]). Nous avons
deux cas.

1. n1/e1 6= n2/e2; n1/e1 = n2/e2 but φ1 6= φ2.

2. n1/e1 = n2/e2 and φ1 = φ2

Les représentations σ1 et σ2 sont appelés complètement distinctes si elles
satisfont à la condition (1). Sinon, elles sont dites avoir une approximation
commune. Le cas d’approximation commune peut être divisé en 2 cas. Le
premier est appelé cas homogène, approximation commune au niveau zéro.
Le cas homogène dans notre situation actuelle (à la fois σ1 et σ2 sont des
représentations de GL2(F )) signifie que A1 = A2 := A, n1 = n2 := n et
β1 = β2 := β. Et le caractère simple définissant l’extension β, κ, est isomorphe
pour σ1 and σ2. Le deuxième cas est celui d’une approximation commune au
niveau l > 0. En raison du manque de temps, nous ne traitons pas le cas où σ1

et σ2 ont approximation commune au niveau l > 0. Notre théorème principal
est le suivant.

Théorème 0.0.7. Soit #kF > 3 et s la classe inertielle

[GL2(F )×GL2(F ), σ1 � σ2]

où σ1 et σ2 sont complètement distinctes ou homogènes. Les représentations
typiques pour la classe inertielle s sont précisément les sous-représentations
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irréductibles de
ind

GL4(OF )
Js

(λs).

Nous allons d’abord examiner la classification des représentations typiques
pour le cas homogène. Nous esquissons la preuve en détail.

Le type de Bushnell-Kutzko, (Js, λs), pour la classe inertielle s = [M,σ1 �
σ2], avec chaque σi contenant le type (J0, λi) (qui est défini par les strates
simples [A, n, 0, β]) est donnée par λs = λ1 � λ2 et

Js :=

(
J0 OE + P

(n−t)
A

PE + Pt+1
A J0

)
pour e = [n/2] et E = F [β]. Une observation importante est que Js ∩ U 6=
U(OF ). Cela nous donne le problème principal. Pour attaquer cette situation,
nous essayons d’abord de modifier les représentations induites (4) au niveau
des sous-groupes à proximité de P 0(N + 1) et de Js. Nous allons expliquer
cela dans le cas non ramifié (e(E|F ) = 1) où les notations sont déjà définies.

La première étape consiste à scinder la représentation

ρ1 := ind
P 0(t+1)
P 0(n+1)(λs).

L’idée est de remplacer le groupe P 0(n + 1) par le groupe Js et de voir
l’entrelacement entre ρ1 et

ρ2 := ind
P 0(t+1)
Js

(λs).

Mais nous ne pouvons pas faire cela pour la raison très simple que P 0(t) ne
contient pas le groupe Js. Alors nous utilisons un petit groupe J ′s tel que J ′s
est contenu dans le groupe P 0(t). Le seul changement entre J ′s et Js est leur
intersection avec le groupe unipotent inférieur. Ce groupe J ′s a la propriété
que P 0(n+ 1)J ′s = P 0(t) et la représentation

ρ3 := ind
P 0(t)
J′s

(λs)

est irréductible. Nous sommes en bonne situation pour la décomposition de
Mackey, l’espace des opérateurs d’entrelacement entre ρ1 et ρ3 est de dimen-
sion un et tout opérateur d’entrelacement non nul est surjectif en raison de
l’irréductibilité de ρ3. Le reste de la preuve consiste à montrer que le noyau
de cet opérateur d’entrelacement non trivial a des sous-représentations irré-
ductibles qui apparaissent également dans ρ1 pour certaines représentations
λ1 and λ2.

L’opérateur d’entrelacement non trivial I entre ρ1 et ρ3 est donné par
l’intégrale suivante:

I(f)(p) =

∫
u−∈ P (s,t)∩Ū

f(u−p)du−.
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Si f est une fonction dans le noyau de I alors nous avons∫
u−∈ P 0(t)∩Ū

f(u−u+(u−)−1u−)du− = 0

pour tout u+ ∈ P 0(t). Soient u− et u+ représentés dans des matrices par blocs
comme

u− =

(
id 0
U− id

)
, u+ =

(
id U+

0 id

)
respectivement. L’équation intégrale peut être écrite comme∫

u−∈ P 0(t)∩Ū
ψ(βU+−U+β)(1 + U−)f(u−)du− = 0. (5)

Nous notons tout d’abord que le groupe des caractères du groupe

P 0(t+ 1)/P 0(n+ 1) ' (P 0(t+ 1) ∩ Ū)/(P 0(n+ 1) ∩ Ū) ' Pt+1
A /Pn+1

A

est isomorphe à P−nA /P−tA . Le noyau de I est engendré par les caractères
qui ne sont pas dans l’image de [β, ·]. Nous allons utiliser le fait dans le
lemme 6.2.3 pour montrer à l’aide des applications de co-restriction que les
sous-représentations irréductibles de

ind
GL4(OF )
P 0(t) (W ),

où W est une sous-représentation de ker(I), sont non typiques.

Maintenant, il nous reste à comprendre les sous-représentations typiques
de

ind
GL4(OF )
J′s

(λs). (6)

Puisque λs est une représentation de Js en utilisant les techniques des chapitres
précédents, nous pouvons montrer que la représentation

ind
GL4(OF )
Js

(λs).

admet un complément Γ dans la représentation (6) tel que toutes les sous-
représentations irréductibles de Γ ne sont pas typiques.

Maintenant, nous traitons le cas où σ1 et σ2 sont complètement distinctes.
Une modification délicate de la représentation

ind
GLn(OF )
P 0(N+1)(λ1 � λs)

donne la classification dans le cas où σ1 et σ2 sont complètement distinctes.
Nous utilisons des techniques similaires à celles développées pour traiter le cas
homogène. Ceci est la raison pour laquelle nous choisissons de mettre cette
situation plutôt simple à la fin.
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Chapter 1

Introduction

Let F be a non-discrete non-Archimedean locally compact field. This thesis
is concerned with the study of the restriction of an irreducible smooth rep-
resentation of GLn(F ) to a maximal compact subgroup K where n ≥ 2.
In particular we are interested in those irreducible representations (called K-
typical representations) of K which determine the inertial support of the
given irreducible smooth representation. In the context of local Langlands
correspondence, such representations have seen significant arithmetic applica-
tions. In this thesis we try and achieve in many cases the classification of such
irreducible smooth representations of K for a given inertial support s.

1.1 Motivation

Local Langlands Correspondence

Let F̄ be a separable algebraic closure of F . Let Fun be the maximal unram-
ified sub-extension of F̄ . We have the canonical quotient map

Gal(F̄ /F )→ Gal(Fun/F ).

The group Gal(Fun/F ) is canonically isomorphic to the Galois group of the
residue field kFun of Fun over kF . Since kFun is the algebraic closure of the
finite field kF we get the map

Gal(F̄ /F )→ Gal(kFun/kF ) ' Ẑ. (1.1)

Let q be the cardinality of the residue field kF . We denote by ΦF the automor-
phism of kFun which sends an element x to xq. LetWF be the group consisting
of those elements of Gal(F̄ /F ) which map to a power of ΦF under the map
(1.1). The group WF is called the Weil group of F . The group WF can be
made a locally compact group by declaring the open subgroups of Gal(F̄ /Fun)
(under its pro-finite topology) as open subgroups of WF . Hence we obtain an
exact sequence of topological groups

0→ Gal(F̄ /Fun)→WF → ΦZ
F → 0

where ΦZ
F is given discrete topology.

Local class field theory gives us a canonical topological isomorphism

W ab
F ' F×.
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where W ab
F is the quotient of WF by the closure of the derived group of WF .

This gives us a one-to-one correspondence between the set of continuous char-
acters ofWF and F×. The local Langlands correspondence establishes a higher
dimensional analogue of the correspondence between the characters obtained
via local class field theory. Such a correspondence can be stated with a certain
algebraic object called Weil-Deligne representation. To begin with we intro-
duce a norm ‖‖ on the Weil group WF . Let x be an element of WF and the
image of x under the map (1.1) be ΦrF then ‖x‖ = q−r. An n-dimensional
Weil Deligne representation is a triple (r, V,N) where V is an n-dimensional
complex vector space, r is a homomorphism of WF into GL(V ) with open
kernel, N ∈ EndC(V ) such that

r(x)Nr(x)−1 = ‖x‖N

for all x ∈WF . We call the triple (r, V,N) Frobenius semi-simple if the repre-
sentation (r, V ) is semi-simple. The local Langlands conjecture (see [LRS93]
for the case where characteristic of F is greater than zero and [HT01] and
[Hen00] for the case where characteristic of F is zero) is a natural corre-
spondence between the set of isomorphism classes of n-dimensional Frobenius
semi-simple Weil-Deligne representations and the set of isomorphism classes
of irreducible smooth complex representations of GLn(F ) (A representation
(π, V ) is called smooth if and only if the stabiliser of a vector v ∈ V contains
an open subgroup of GLn(F ) for the topology induced from F ).

Let Bn be the set of pairs (M,σ) whereM is a Levi-subgroup of a parabolic
subgroup of GLn(F ) and σ is a supercuspidal representation of M . We re-
call that inertial equivalence is an equivalence relation on the set Bn de-
fined by setting (M1, σ1) ∼ (M2, σ2) if and only if there exists an element
g ∈ G and an unramified character χ of M2 such that M1 = gM2g

−1 and
σg1 ' σ2⊗χ. We use the notation [M,σ] for the equivalence class containing the
pair (M,σ) the equivalence classes are also called as inertial classes. Every
irreducible smooth representation π of GLn(F ) occurs as a sub-representation
of a parabolically induced representation iGLn(F )

P (σ) where σ is a supercuspidal
representation of a Levi-subgroup M of P . The pair (M,σ) is well determined
upto GLn(F )-conjugacy (see [BZ77][Theorem 2.5 Theorem 2.9(a)(i)]). The
class [M,σ] is called the inertial support of π. ( Inertial equivalence is de-
fined for any reductive group G over F but we need it only for GLn(F ) in this
thesis).

Given two triples (r1, V1, N1) and (r2, V2, N2), it turns out that the re-
strictions of r1 and r2 to the group Gal(F̄ /Fun) are isomorphic if and only
if the smooth representations π1 and π2 associated by the local Langlands
correspondence to (r1, V1, N1) and (r2, V2, N2) respectively have the same in-
ertial support. In several arithmetic applications (see [BM02] and [EG14] for
instance ) it is desirable to associate with a given inertial support say s an
irreducible smooth representation τ of GLn(OF ) which has the property that
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HomGLn(OF )(τ, π) 6= 0 implies that the inertial support of π is s and such
a representation is called a GLn(OF )-typical representation or typical
representation. We bring to the attention of the reader that we can expect
at best an implication in one direction. One can produce easy examples for
s such that there exists no irreducible smooth representation τs of GLn(OF )
such that HomGLn(OF )(τs, π) 6= 0 if and only if the inertial support of π is s.

Theory of Types

Let G be the group of F -rational points of an algebraic reductive group (exam-
ples being GLn(F ), SLn(F ) and SO(V, q) for some finite dimensional quadratic
space (V, q) over F , etc). It was shown by Bernstein that the category of
smooth representationsM(G) admits a decomposition

M(G) =
∏

s∈B(G)

Ms(G)

where Ms(G) is the full sub-category consisting of smooth representations
with all their irreducible sub-quotients having inertial support s. The theory of
types developed initially by Bushnell-Kutzko (see [BK98] for a general discus-
sion on smooth representations via types) gives a construction of pairs (Js, λs)
where Js is a compact open subgroup of G and λs is a smooth irreducible
representation of Js such that HomJs(λs, π) 6= 0 if and only if π ∈Ms(G) for
all irreducible smooth representations π of G and such a pair (Js, λs) is called
a type for s. Such a type (Js, λs) gives a natural equivalence of categories
Ms(G) and the category of modules over the spherical Hecke algebraH(Js, λs).

Let K be a maximal compact subgroup of G and s be an inertial class
of G. If we know the existence of a type (Js, λs) such that Js ⊂ K then by
Frobenius reciprocity any irreducible sub-representation of

indKJs(λs) (1.2)

if contained in a smooth irreducible representation π of G then π contains the
representation λs on restriction to the group Js and hence the inertial support
of π is s. This shows that irreducible sub-representations of (1.2) are K-typical
representations. As types are not known to exist in every case the following
natural questions appear :

1. Does there exist a K-typical representation?

2. For a given inertial class s is the cardinality of K-typical representations
finite?

3. What are all typical representations?
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For G = GLn(F ) types (Js, λs) are explicitly constructed by Bushnell-Kutzko
in the articles [BK93] and [BK99]. For GLn(F ) we may and do choose “the
Bushnell-Kutzko type” (Js, λs) such that Js ⊂ GLn(OF ) for all s ∈ Bn. In this
thesis we will see that the above questions for G = GLn(F ) can be answered
in terms of and by the use of theory of types. For #kF > 3 we show in many
cases that the irreducible sub-representations of

ind
GLn(OF )
Js

(λs)

are precisely the typical representations for the component s. In this sense we
classify typical representations for the component s. We bring to attention of
the reader that the types constructed by Bushnell-Kutzko may not be unique
even up to conjugation. We use the terminology “the Bushnell-Kutzko type”
for the pair (Js, λs) a type for s = [M,σ] constructed by the inductive pro-
cedure in the article [BK99] after fixing a type for the inertial class [M,σ] ofM .

There can be various constructions of types (J, λ) for a given component s
(in the sense that the pair (J, λ) has the property HomJ(λ, π) 6= 0 if and only
if the inertial support of π is s for any irreducible smooth representation π of
G). For any such construction and K a maximal contact subgroup containing
J , the irreducible sub-representations of

indKJ (λ)

are a K-typical representation. Hence the theory of typical representation,
at least for the case of GLn, aims to give a uniform approach. It could be
interesting to prove at least the finiteness of typical representations in general
case.

1.2 Known results

The case of GL2(F ) is treated by Henniart in the appendix to the article
[BM02]. He completely classified typical representations for all possible iner-
tial classes. Henniart predicted that his results can be extended to GLn(F )
by similar techniques he used at least in those cases where the underlying
Levi-subgroup of the inertial class s is GLn(F ). Paskunas has classified the
typical representations for the inertial classes [GLn(F ), σ]. We now describe
the results of Henniart and Paskunas. Before going any further we note that
Js can be conjugated to a subgroup of GLn(OF ) and we assume that indeed
Js is a subgroup of GLn(OF ).

Theorem 1.2.1 (Henniart). Let s be an inertial class for GL2(F ). Let (Js, λs)
be the Bushnell-Kutzko type for the inertial class s. If #kF > 2 or s =
[GL2(F ), σ] then the typical representations for s occur as sub-representations
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of
ind

GL2(OF )
Js

(λs).

Let T be the maximal torus of GL2(F ) consisting of diagonal matrices and
s = [T, χ] be an inertial class for GL2(F ). Let us identify T with F××F× and
the character χ be χ((a, b)) = χ1(a)χ2(b) for two characters χ1 and χ2 of F×.
Let B be a Borel subgroup containing T . Let B(m) be the group of matrices
of GL2(OF ) which under the mod Pm

F reduction lie in the group B(OF /P
m
F ).

If χ1χ
−1
2 6= id, N is the level of χ1χ

−1
2 and #kF = 2 then Henniart showed

that
ind

GL2(OF )
B(N) (χ)

and
ind

GL2(OF )
B(N+1) (χ)

are typical for the inertial class s. The Bushnell-Kutzko type for the inertial
class s = [T, χ] is given by (B(N), χ). So this shows that in the present case
there are indeed additional representations other than those irreducible sub-
representations of (1.2) which are typical for s. For all other inertial classes
[T, χ] the typical representations are shown to be sub-representations of (1.2).

For the inertial class s = [GLn(F ), σ] it follows easily that

ind
GLn(OF )
Js

(λs)

is an irreducible representation and Paskunas in the article [Pas05] showed
that

Theorem 1.2.2 (Paskunas). For any positive integer n > 1 and for any
inertial class s = [GLn(F ), σ] there exists a unique typical representation.

1.3 Results of this thesis

In this thesis we are interested in the classification of typical representations
for the inertial classes [M,σ] where M is a proper Levi-subgroup of GLn(F )
and n ≥ 3. Here we assume the Bushnell- Kutzko type (Js, λs) is conjugated
such that Js ⊂ GLn(OF ). We give a detailed description of the results from
each chapter. Our goal is to describe the results and method of proof briefly.

Results of Chapter 2

If τ is a typical representation for an inertial class s then we show that τ occurs
in a smooth irreducible representation say π ∈Ms(G) of GLn(F ). We choose
a representative (M,σ) for s such that M is the Levi-subgroup consisting of
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block diagonal matrices and σ naturally a supercuspidal representation of M .
Now the representation π occurs in some representation

i
GLn(F )
P (σ ⊗ χ)

where P is any parabolic subgroup containing M as a Levi-subgroup and
i
GLn(F )
P denotes the parabolic induction and χ is an unramified character of
M . Hence for the classification of typical representations we have to look for
the typical representations occurring in the representation

resGLn(OF ){i
GLn(F )
P (σ)} ' ind

GLn(OF )
P∩GLn(OF )(σ). (1.3)

Now we identify M with the product GLn1(F ) × GLn2(F ) × . . .GLnr (F )
for some ordered partition (n1, n2, . . . , nr) of n and σ as a tensor product
σ1 � σ2 � · · · � σr where σi is a cuspidal representation of GLni(F ). Let τi
be the unique typical representation occurring in σi. It was observed by Will
Conley that the representation

ind
GLn(OF )
P∩GLn(OF )(�

r
i=1τi)

admits a complement in (1.3) whose GLn(OF )-irreducible sub-representations
are non-typical for the component s. We extend Conley’s result, to be used for
proofs by induction on n. But for sake of brevity we cannot go into details here.

Now any typical representation occurs among the GLn(OF )-irreducible
sub-representations of

ind
GLn(OF )
P∩GLn(OF )(�

r
i=1τi).

This representation is still an infinite dimensional representation. The first
idea is to construct compact open subgroups groups Hm for m ≥ 1 such that
Hm+1 ⊂ Hm, ∩m≥1Hm = P∩GLn(OF ) and�ri=1τi extends to a representation
of H1. With some additional conditions we show that

ind
GLn(OF )
P∩GLn(OF )(�

r
i=1τi) '

⋃
m≥1

ind
GLn(OF )
Hm

(�ri=1τi).

Now depending on the inertial support we have to define Hm in each chapter
and analyse the representations

ind
GLn(OF )
Hm

(�ri=1τi).

In addition to this we show several technical lemmas which are frequently
used in the entire thesis.
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Results of Chapter 3
This chapter concerns those components (called level zero inertial classes)

[M =

r∏
i=1

GLni(F ),�ri=1σi]

where each σi contains a non-zero vector fixed by the principal congruence
subgroup of level one. In other words the Bushnell-Kutzko type for σi is given
by (GLni(OF ), τi) where τi is obtained by inflating a cuspidal representation
of GLni(kF ) for all i ≤ r. Now choose P to be the group of block upper diag-
onal matrices containing M as a Levi-subgroup. For a positive integer m we
denote by P (m) the group of matrices in GLn(OF ) which under the mod-Pm

F

reduction lie inside the group P (OF /P
m
F ). Now the representation �ri=1τi

extends to a representation of P (1) by inflation. The sequence of groups Hm

we described in the earlier sub-section are given by P (m).

To simplify the notation we denote by Vm the representation

ind
GLn(OF )
P (m) (�ri=1τi).

Using induction on the positive integer m we show the theorem

Theorem 1.3.1. The GLn(OF )-irreducible sub-representations of Vm/V1 are
not typical for the inertial class s = [M,σ].

We actually construct a complement of V1 in Vm.

We note that the Bushnell-Kutzko type for the inertial class s is given by
the pair (P (1),�ri=1τi), from which we can conclude that the above theorem
completely classifies the typical representations in this case. Through our
analysis we gain some additional information. We conclude the result in the
following theorem.

Theorem 1.3.2. Let s = [M,σ] be a level zero inertial class. Let Γ be a typical
representation for the inertial class s. The representation Γ is an irreducible
sub-representation of V1 and

dimC HomGLn(OF )(Γ, V1) = dimC HomGLn(OF )(Γ, i
GLn(F )
P (σ)).

We now sketch the proof of the above theorems. The essential features
of the proof are captured in two cases, the first case: M is isomorphic to
GLn1

(F ) × GLn2
(F ) and the the second case is: M is the diagonal torus of

GLn(F ).

To begin with lets consider the case n1 = n2 = 1. In this case Henniart
in the article [BM02][Appendix] uses Casselman’s description (see [Cas73]) of
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the complete decomposition of the restriction of a smooth representation to
the maximal compact subgroup GL2(OF ). Casselman shows that two smooth
representations with the same central character have isomorphic restriction to
GL2(OF ) except for a finite part. He effectively controls this finite part as
well. It turns out in most of the cases (at least in the principal series case)
that this finite part is

ind
GL2(OF )
Js

(λs).

The rest of the restriction depends only on the conductor and the central char-
acter. Henniart manages to produce two smooth representations with same
central character and conductor but changing the inertial support. This gives
the result. Although additional work has to be carried out when #kF = 2.

Let n1 + n2 > 2. When n ≥ 3 we do not in general know the complete
decomposition into irreducible summands of the restriction of an irreducible
smooth representations to the maximal compact subgroup GLn(OF ). In prac-
tice we found that such result is not required for our purpose. We already
reduced to check for typical representations occurring in the representations

ind
GLn(OF )
P (m) (τ1 � τ2)

for m ≥ 1. Notice that we have

ind
GLn(OF )
P (m+1) (τ1 � τ2) ' ind

GLn(OF )
P (m) {ind

P (m)
P (m+1)(id)⊗ (τ1 � τ2)}. (1.4)

By Frobenius reciprocity we know that id occurs with multiplicity one in the
representation

ind
P (m)
P (m+1)(id).

By means of Clifford theory we achieve the following decomposition,

ind
P (m)
P (m+1)(id) ' id⊕

t⊕
j=1

ind
P (m)
Zj

(Uj)

where Zj is a compact open subgroup which is “small enough”. We will come
back to what we mean by “small enough". Now let us return to 1.4. We have

ind
GLn(OF )
P (m+1) (τ1 � τ2) ' ind

GLn(OF )
P (m) (τ1 � τ2)⊕

⊕
1≤j≤t

ind
GLn(OF )
Zj

{Uj ⊗ (τ1 � τ2)}.

For some fixed j we wish to compare the terms ind
GLn(OF )
Zj

{Uj ⊗ (τ1 � τ2)}
for various τ1 and τ2. It is exactly in this context that we refer to Zj being
“small enough". We have shown that for every irreducible sub-representation
ξ of resZj (τ1 � τ2) we can find an irreducible representation τ ′1 � τ ′2 such that

1. τ ′1 � τ ′2 is the inflation of a non-cuspidal representation of M(kF ).
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2. ξ occurs in the representation resZj (τ
′
1 � τ ′2).

This is enough to show that the irreducible sub-representations of

ind
GLn(OF )
Zj

{Uj ⊗ (τ1 � τ2)}

are non-typical. By means of induction on the positive integer m we prove the
theorem.

The above attempt does not work if both τ1 and τ2 are characters. The
reason is thatM(kF ) has no non-cuspidal representations in this case. For the
case of principal series case i.e. s = [T, χ] (T is the maximal torus consisting
of invertible diagonal matrices of dimension n > 2) we use slightly different
techniques. We assume that we know the result for n−1 and show that typical
representations occur only in

Wm := ind
GLn(OF )
R(m) {(ind

GLn−1(OF )
Bn−1(1) (�n−1

i=1 (χi))) � χn}

where R is a parabolic subgroup of the type (n − 1, 1) and Bn−1 is the
Borel subgroup consisting of upper triangular matrices. We now use induction
on m as done earlier to show that the typical representations occur as sub-
representations of W1. The induction step is achieved by comparing the terms

ind
GLn(OF )
Zj

{Uj ⊗ (ind
GLn−1(OF )
Bn−1(1) (�n−1

i=1 (χi)) � χn)}. (1.5)

The mod PF reduction of the group Zj ∩ N (N is the Levi-subgroup of R
consisting of block diagonal matrices of size (n − 1, 1)) is contained in the
following subgroup

A B 0
0 d 0
0 0 d

 |A ∈ GLn−2(kF );B ∈Mn−2×1(kF ); d ∈ k×F

 .

We will further decompose the representation 1.5 by first decomposing the
restriction of the representation

ind
GLn−1(OF )
Bn−1(1) (�n−1

i=1 (χi))

to the group

P(n−2,1)(kF ) :=

{(
A B
0 d

)
|A ∈ GLn−2(kF );B ∈Mn−2×1(kF ); d ∈ k×F

}
.

We then compare the terms

ind
GLn(OF )
Zj

{Uj ⊗ (γp � χn)}

where γp is the inflation of an irreducible representation of

resP(n−2,1)(kF ){ind
GLn−1(kF )
Bn−1(kF ) (�n−1

i=1 χi)}.

We combine these ideas to complete the proof of theorem 3.0.9.
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Results of Chapter 4
Let Tn be the maximal torus, consisting of invertible diagonal matrices in
GLn(F ). For #kF > 3 we classify the typical representations for the com-
ponents s = [Tn, χ]. We will show that the typical representations occur as
sub-representations of

ind
GLn(OF )
Js

(λs).

First our goal is to define the groups Hm such that Hm+1 ⊂ Hm and

∩m≥1Hm = Bn(OF )

where Bn is the Borel subgroup consisting of invertible upper triangular ma-
trices. We note that the Bushnell-Kutzko type (Js, λs) in this case has the
property that Js∩Bn = Bn(OF ). We can hence choose H1 = Js and the other
groups need to be defined more carefully. We sketch the details.

We identify Tn with the group ×ni=1F
× and the character χ with �ni=1χi

where χi is a character of F×. We denote by l(χ) the least positive integer
k such that 1 + Pk

F is contained in the kernel of χ. Let Jχ(m) be the set

consisting of matrices (aij) where aij ∈ P
l(χiχ

−1
j )+m−1

F for all i > j, aii ∈ O×F
and aij ∈ OF for all i < j. We will show that Jχ(m) is indeed a compact open
subgroup and we also establish the following

1. Js = Jχ(1)

2. ∩m≥1Jχ(m) = Bn(OF )

3. The character χ of T (OF ) extends to a character of Jχ(1).

Hence we define Hm = Jχ(m) for m ≥ 1. This shows that

resGLn(OF ) i
GLn(F )
Bn

(χ) '
⋃
m≥1

ind
GLn(OF )
Jχ(m) (χ)

We denote by Vm(χ) the representation

ind
GLn(OF )
Jχ(m) (χ).

By using induction on the positive integers n and m we show the following
theorem:

Theorem 1.3.3. The GLn(OF )-irreducible sub-representations of Vm(χ)/V1(χ)
are not typical for the component s = [Tn, χ].

From the induction hypothesis on the positive n we can show that the
typical representations occur in the following sub-representation of Vm:

ind
GLn(OF )
Jχ(1,m) (χ).
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The group Jχ(1,m) contains Jχ(m) and ∩≥mJχ(1,m) is of the form{(
A B
0 c

)
|A ∈ J�n−1

i=1 χi
(1);B ∈Mn−1×1(OF ); c ∈ O×F

}
.

Now as seen earlier we decompose the representation

ind
Jχ(1,m)

Jχ(1,m+1)(id)

as follows
ind

Jχ(1,m)

Jχ(1,m+1)(id) ' id⊕
⊕

1≤j≤p

ind
Jχ(1,m)
Zj

(Uj)

and show that resZj∩Tn(χ) = resZj∩Tn(χ′) for some character χ′ such that
[T, χ′] 6= [T, χ] and Jχ(1) = Jχ′(1). This shows that the irreducible sub-
representations of

ind
GLn(OF )
Zj

(Uj ⊗ χ)

are not typical. This proves the main result by induction on m. We bring to
the attention of the reader that the decomposition of the group

ind
Jχ(m)

Jχ(m+1)(id)

is much more involved than the decomposition of the corresponding representa-
tion obtained by replacing Jχ(m) and Jχ(m+ 1) by Jχ(1,m) and Jχ(1,m+ 1)
respectively. This is the reason why we adapt to do induction on both the
variables n and m.

Review of chapter 5
In this chapter we are interested in classification of typical representations for
the inertial classes s = [GLn(F ) × GL1(F ), σ � χ]. In this chapter and the
next we will use the apparatus of [BK93] like lattice chains, hereditary orders,
stata, simple characters, β-extensions etc with precise references. Let P be a
parabolic subgroup consisting of block upper triangular matrices of the type
(n, 1). We denote by M the Levi-subgroup of P consisting of block diagonal
matrices. We recall that P (m) has the usual meaning. We denote by τ the
unique typical representation occurring in the cuspidal representation σ. We
can as well assume that χ is trivial.

Typical representations occur as sub-representations of the representation

Vm := ind
GLn+1(OF )
P (m) (τ � id).

for some positive integer m ≥ N (N will be explicitly defined later). Let
[A, l, 0, β] be a simple stratum defining the Bushnell-Kutzko type (J0, λ) for
the component [GLn(F ), σ]. The representation τ is isomorphic to

ind
GLn+1(OF )
J0 (λ).
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As we did in the previous situations we will need the decomposition of the
representation

ind
P (m)
P (m+1)(id).

The above representation is decomposed in chapter 3 as

ind
P (m)
P (m+1)(id) ' id⊕

⊕
j

ind
P 0(m)
Z′j

(Uj).

Now recall that the groups Z ′j ∩ M might be smaller than M(OF ). Now
resZ′j∩M (τ � id) would involve complicated Mackey decompositions and more-
over the structure of (J0×OF

×)u∩(J0×OF
×) can be complicated for a given

u ∈ GLn(OF )×OF
×. To overcome this problem we define a compact open sub-

group P 0(m) of P (m) such that P 0(m)∩M = J0×O×F , P 0(m)∩U = P (m)∩U ,
P 0(m) ∩ Ū = P (m) ∩ Ū and λ� id extends to a representation of P 0(m). We
also show that

ind
GLn+1(OF )
P 0(m) (λ� id) ' ind

GLn+1(OF )
P (m) (τ � id).

Now we show that

ind
P 0(m+1)
P 0(m) (id) ' id⊕

⊕
1≤j≤p

ind
P 0(m)
Zj

(Uj)

where Zj ∩M contained a priori in J0 ×O×F is “small enough” in this group.

To explain the meaning of “small enough” we need to recall certain aspects
of the type (J0, λ). Let B be the algebra EndF [β](A ⊗ F ). Let B be the
order EndF [β](A ⊗ F ) ∩ A. The group J0 has a normal subgroup J1 such
that J0/J1 ' U0(B)/U1(B). The group U0(B)/U1(B) ' GLn′(kF [β]). The
representation λ is isomorphic to κ⊗λ′ where λ′ is a cuspidal representation of
J0/J1 and κ is a certain representation called β-extension. We refer to Zj∩M
as “small enough” in the sense that Zj ∩ (U0(B)×O×F ) satisfies the important
property: when n′ > 1 for every irreducible sub-representation ξ of

resZj∩(U0(B)×O×F )(κ⊗ λ
′)

there exists a non-cuspidal representation λ′′ of J0/J1 such that ξ occurs in

resZj∩(U0(B)×O×F )(κ⊗ λ
′′).

With this we conclude that any irreducible sub-representation Γ of

ind
GLn+1(OF )
Zj

(λ� id) (1.6)

occurs as an irreducible representations of

ind
GLn+1(OF )
Zj

(τ ′ � id)
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(τ ′ may depend on Γ) where we show that irreducible sub-representations of τ ′
occur in the restriction to GLn(OF ) of an irreducible non-cuspidal representa-
tion of GLn(F ). For showing that τ ′ occurs in the restriction to GLn+1(OF ) of
an irreducible non-cuspidal representation we use the novel feature of simple
characters and their compatibility with change of rings (A) due to Bushnell-
Kutzko (see [BK93][Section 3.6, Proposition 8.3.5]). This shows that irre-
ducible sub-representations of 1.6 are not typical representations. Hence by
using induction on integer m, m ≥ N , we can show that GLn+1(OF ) sub-
representations of Vm/V1 are non-typical.

The Bushnell-Kutzko type Js is almost close enough to P 0(N). In the
sense that P 0(N) ∩ P = Js ∩ P and moreover

Ū($N
F ) ⊂ P 0(N) ∩ Ū ⊂ Js ∩ Ū ⊂ Ū($N−1OF ).

We decompose the representation

indJsP 0(N)(id) = id⊕
⊕
j

indJsZj (Uj)

for “small enough” groups Zj and show that irreducible sub-representations of

ind
GLn+1(OF )
Zj

{Uj ⊗ (λ� id)}

are not typical representations. This gives the result:

Theorem 1.3.4. Let Γ be a typical representation for the inertial class

s = [GLn(F )×GL1(F ), σ � χ]

and #kF > 2. The representation Γ is unique and occurs with a multiplicity
one in the representation

i
GLn+1(F )
P (σ � χ).

We show that typical representations should occur as sub-representations
of

ind
GLn+1(OF )
Js

(λ� χ).

We know from the Bushnell-Kutzko theory that the above representation is
irreducible. This gives our uniqueness of typical representation. The multi-
plicity one result is not known to the author without the results of this thesis.
We note that typical representations for the inertial classes of GL3(F ) where
#kF > 3 are precisely the sub-representations of

ind
GL3(OF )
Js

(λs).
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Review of chapter 6
In this chapter we will classify typical representations for certain inertial classes

s = [GL2(F )×GL2(F ), σ1 � σ2].

Let P be the parabolic subgroup consisting of block upper triangular matrices
of the type (2, 2). Let M be the Levi-subgroup of P and U be the unipotent
radical of P . We denote by P̄ the opposite parabolic subgroup of P with
respect toM . Let Ū be the unipotent radical of P̄ . Let (J0

1 , λ1) and (J0
2 , λ2) be

Bushnell-Kutzko’s types for the inertial classes [GL2(F ), σ1] and [GL2(F ), σ2]
respectively. The groups P (m) will have the usual meaning for m ≥ 1. We
also define a group P 0(m) for m ≥ N where N will be defined explicitly in
the main text of the chapter 6. The groups P 0(m) has Iwahori decomposition
with respect to P and M ; P 0(m) ∩ Ū = P (m) ∩ Ū , P 0(m) ∩ U = P (m) ∩ U
and P 0(m) ∩M = J0

1 × J0
2 ; and

ind
GL4(OF )
P (m) (τ1 � τ2) ' ind

GL4(OF )
P 0(m) (λ1 � λ2)

for all m ≥ N.

By methods similar to those of chapters 2,3,4,5 we will reduce the problem
of classifying typical representations for s to finding typical representations
occurring as sub-representations of

ind
GL4(OF )
P 0(N+1)(λ1 � λ2). (1.7)

It turns out that the Bushnell-Kutzko type for s is not of the form
(P 0(N + 1), λ1 � λ2) for almost all cases. This means that we cannot directly
conclude that typical representations for the inertial class s are precisely the
sub-representations of (1.7).

We expect (at least when #kF > 2) that typical representations must occur
as sub-representation of

ind
GL4(OF )
Js

(λ1 � λ2).

We compared the dimensions of the above representation with that of (1.7)
and observed that they are indeed different and this gave us the first heuristic
to expect that there are non-typical irreducible sub-representations occurring
in (1.7). We tried and indeed succeed in many cases to classify typical rep-
resentations occurring in (1.7). This is the a new feature we show in this
chapter. We can explain the main result by first recalling some aspects of the
construction of Bushnell-Kutzko (semi-simple) type for s.

Let [Ai, ni, 0, βi] be a simple strata defining the Bushnell-Kutzko type
(J0
i , λi) for i ∈ 1, 2. We denote by e1 and e2 the ramification indices of

the orders A1 and A2 respectively. We denote by φi the irreducible factor of
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the characteristic polynomial associated to the simple stratas [Ai, ni, 0, βi] for
i ∈ {1, 2} (see [BK93][Section 2.3]). We have broadly two cases.

1. n1/e1 6= n2/e2; n1/e1 = n2/e2 but φ1 6= φ2.

2. n1/e1 = n2/e2 and φ1 = φ2

The representations σ1 and σ2 are called completely distinct if they satisfy
condition (1). Otherwise they are said to have common approximation.
The case of common approximation can be divided into 2 cases. The first is
called homogeneous case i.e common approximation to level zero. The homo-
geneous case in our present situation (i.e both σ1 and σ2 are representations
of GL2(F )) means that A1 = A2 := A, n1 = n2 := n and β1 = β2 := β. And
the simple character defining the β extension κ is also the same for σ1 and σ2.
The second case is common approximation to level l > 0. Due to lack of time
we do not treat the case where σ1 and σ2 admit common approximation to
level l > 0. Our main theorem is:

Theorem 1.3.5. Let #kF > 3 and s be the inertial class

[GL2(F )×GL2(F ), σ1 � σ2]

where σ1 and σ2 are completely distinct or homogenous. The typical represen-
tations for the inertial class s are precisely the irreducible sub-representations
of

ind
GL4(OF )
Js

(λs).

We will first consider the classification of typical representations for the
homogeneous case. We sketch the proof in some detail:

The Bushnell-Kutzko’s type (Js, λs) for the inertial class s = [M,σ1 � σ2]
with each σi containing type (J0, λi) (which is defined by the simple strata
[A, n, 0, β]) is given by λs = λ1 � λ2 and

Js :=

(
J0 OE + P

(n−t)
A

PE + Pt+1
A J0

)
for t = [n/2] and E = F [β]. One important observation is that Js ∩ U 6=
U(OF ). This gives us the main problem. To tackle this situation we first try
to modify the induced representation (1.7) at the level of subgroups close to
the P 0(n + 1) and Js. We will explain this in the unramified (e(E|F ) = 1)
case since most of notations are already defined.

The first step is to split the representation

ρ1 := ind
P 0(t+1)
P 0(n+1)(λs).
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The idea is to replace the group P 0(n + 1) with the group Js and see the
intertwining between ρ1 and

ρ2 := ind
P 0(t+1)
Js

(λs).

But we cannot do this for the very basic reason that P 0(t) does not contain
the group Js. Now we use a smaller group J ′s such that J ′s is contained in the
group P 0(t). The only change between the J ′s and Js is their intersection with
the lower unipotent group. This group J ′s has the property that P 0(n+1)J ′s =
P 0(t) and the induction

ρ3 := ind
P 0(t)
J′s

(λs)

is irreducible. We are in good situation since by Mackey decomposition the
space of intertwining operators between ρ1 and ρ3 are one dimensional and
any non-zero intertwining operator is surjective from the irreducibility of ρ3.
The rest of the proof is showing that the kernel of this non-trivial intertwining
operator has irreducible sub-representations which also occur in ρ1 for some
suitably modified λ1 and λ2. The proof of this will now include the action of
the group U(OF ). Which so far acts trivially on such inductions.

The non-trivial intertwining operator I between ρ1 and ρ3 is given by the
following integral:

I(f)(p) =

∫
u−∈ P (s,t)∩Ū

f(u−p)du−.

If a function f is in the kernel of I then we have∫
u−∈ P 0(t)∩Ū

f(u−u+(u−)−1u−)du− = 0

for all u+ ∈ P 0(t). Let u− and u+ be represented in 2× 2 block matrices as

u− =

(
id 0
U− id

)
, u+ =

(
id U+

0 id

)
respectively. The above integral-equation can be written as∫

u−∈ P 0(t)∩Ū
ψ(βU+−U+β)(1 + U−)f(u−)du− = 0. (1.8)

We first note that the group of characters of the group

P 0(t+ 1)/P 0(n+ 1) ' (P 0(t+ 1) ∩ Ū)/(P 0(n+ 1) ∩ Ū) ' Pt+1
A /Pn+1

A

is isomorphic to P−nA /P−tA . The kernel of I is spanned by the characters which
are not in the image of [β, ·] (the commutator bracket with β on P−nA /P−tA ).
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Let W be a sub-representation of ker(I). We will use the fact in lemma 6.2.3
show that irreducible sub-representations of

ind
GL4(OF )
P 0(t) (W )

are non-typical with the help of co-restriction map.

Now we are left to understand the representation

ind
GL4(OF )
J′s

(λs).

The group J ′s is contained in Js and by familiar transitivity and pull-back
push-forward technique we write

ind
GL4(OF )
J′s

(λs) ' ind
GL4(OF )
Js

{indJsJ′s(id)⊗ (λ) ' ind
GL4(OF )
Js

(λs)⊕ Γ

and we show that irreducible sub-representations of Γ are non-typical. Which
shows that typical representations are precisely the irreducible
sub-representations of the first summand in the above decomposition.

We point out that the proof of the facts about the kernel of the intertwin-
ing operator we introduced earlier depends on the exact-sequence machinery
of Bushnell-Kutzko. The surjectivity of the operator also follows from the cal-
culation of the sets N(A, β). For the ramified case (e(E|F ) > 1) we will meet
a situation to calculate N(A, β) when E = F [β] does not normalize the order
A. This requires some attention otherwise we can use the Bushnell-Kutzko
machinery to complete the classification.

Now we have to treat the case where σ1 and σ2 are completely distinct. A
careful modification for the representation

ind
GLn(OF )
P 0(N+1)(λ1 � λs)

gives the theorem in the case where σ1 and σ2 are completely distinct. We
will use techniques similar to those developed to treat the homogenous case.
This is the reason we choose to put this rather simpler situation at the end.
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Chapter 2

Preliminaries

The following notation will be used in all chapters of this thesis.

2.1 Basic notation

Let F be a non-Archimedean local field with ring of integers OF , maximal
ideal PF and a finite residue field kF . We denote by G the F -rational points
of an algebraic reductive group and by P a F -rational parabolic subgroup of
G. All our representations are on vector spaces over C. Let σ be a smooth
representation of a Levi-subgroupM of P . We denote by iGP (σ) the normalized
parabolically-induced representation.

Let H be a closed subgroup of G and (τ, V ) be a smooth representation
of H, we denote by indGH(τ) the space of functions f : G → V such that
f(hg) = τ(h)f(g) and there exists a compact open subgroup Kf of G such
that f(gk) = f(g) for all g ∈ G and k ∈ Kf . The group G acts on these
functions by right multiplication i.e (g′f)(g) = f(gg′) for all g, g′ ∈ G and
f ∈ indGH(τ). We denote by c-indGH(τ) the sub-space of indGH(τ) consisting of
functions f such that sup(f) ⊂ HXf where Xf is a compact set. This is the
compactly induced representation.

Let H1 and H2 be two subgroups such that H2 ⊂ H1, σ be a representa-
tion of H1 we denote by resH2

(σ) the restriction of σ to H2. We use � and ⊗
for the tensor product of representations of two different groups and the same
group respectively. If H2 is a subgroup of a group H1, τ is a representation of
H2 and h ∈ H1 then we denote by τh the representation of hH2h

−1 given by
h′ 7→ τ(h−1h′h) for all h′ ∈ hH2h

−1.

After recalling some general definitions we will restrict ourself to the case
G = GLn(F ) and we will use the following notation: Let I = (n1, n2, n3, . . . , nr)
be an ordered partition of a positive integer n. Let PI be the group of invertible
block upper triangular matrices of the type (n1, n2, . . . , nr). We denote byMI

and UI the group of block diagonal matrices of the type I and the unipotent
radical of PI respectively. We call PI andMI the standard parabolic subgroup
and standard Levi-subgroup of type I respectively. We denote by Kn(m) the
principal congruence subgroup of GLn(OF ) of level m.
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2.2 Bernstein decomposition and typical repre-
sentations

Let B(G) be the set of pairs (M,σ) where M is a Levi-subgroup of a F -
parabolic subgroup P of G and σ is an irreducible supercuspidal representation
of M . We define an equivalence relation on B(G) by setting

(M1, σ1) ∼ (M2, σ2)

if and only if there exists an element g ∈ G and an unramified character χ of
M2 such that M1 = gM2g

−1 and σg1 ' σ2 ⊗ χ. We denote by BG the set of
such equivalence classes called inertial classes or Bernstein components.
Any irreducible smooth representation π of G occurs as a sub-representation
of a parabolic induction iGP (σ) where σ is an irreducible supercuspidal rep-
resentation of a Levi-subgroup M of P . The pair (M,σ) is well determined
up to G-conjugation. We call the class s = [M,σ] the inertial support of
π. Let M(G) be the category of all smooth representations of G. For an
inertial class s = [M,σ] we denote byMs(G) the full sub-category consisting
of smooth representations all of whose irreducible sub-quotients appear in the
composition series of iGP (σ⊗χ) where χ is an unramified character of M . It is
shown by Bernstein (see [Ren10][VI.7.2, Theorem]) that the category M(G)
decomposes as a direct product of Ms(G) in particular every smooth repre-
sentation can be written as a direct sum of objects in the categoriesMs(G).
We denote by AG(s) the set of isomorphism classes of simple objects in the
category Ms(G). If G = GLn(F ) we use the notation An(s) for AG(s) and
Bn for BGLn(F ).

Given an irreducible smooth representation ρ of a maximal compact sub-
group K of G the compact induction π := c- indGK(ρ) is a finitely generated
smooth representation of G and hence there exists an irreducible G-quotient
of π. By Frobenius reciprocity [BH06, Proposition 2.5] we get that ρ occurs
in a smooth irreducible representation of G. For a given inertial class, we are
interested in the representations ρ of K which only occur in irreducible smooth
representations with inertial support s.

Definition 2.2.1. Let s be an inertial class for G. An irreducible smooth
representation τ of a maximal compact subgroup K of G is called K-typical
representation for s if for any irreducible smooth representation π of G,
HomK(τ, π) 6= 0 implies that π ∈ AG(s).

In this thesis we will confine ourself to the case where G = GLn(F ),
K = GLn(OF ) and n ≥ 2 and in this case we call a K-typical representa-
tion for s a typical representation for s. An irreducible representation τ of
GLn(OF ) is called atypical if τ occurs in two smooth representations π1 from
Ms(GLn(F )) and π2 fromMs′(GLn(F )) such that s 6= s′.
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For any component s ∈ Bn, the existence of a typical representation can
be deduced from the theory of types developed by Bushnell and Kutzko in the
articles [BK99] and [BK93]. Bushnell and Kutzko constructed a pair (Js, λs)
where Js is a compact open subgroup of GLn(F ) and λs is an irreducible
representation of Js. Let π be an irreducible smooth representation of GLn(F ).
The pair (Js, λs) satisfies the condition

HomJs(π, λs) 6= 0 ⇔ π ∈ An(s).

In the case of GLn(F ), the group Js can be arranged to be a subgroup of
GLn(OF ) by conjugating with an element of GLn(F ) and hence we assume
that Js ⊂ GLn(OF ). It follows from Frobenius reciprocity that any irreducible
sub-representation of

ind
GLn(OF )
Js

(λs) (2.1)

is a typical representation. The irreducible sub-representations of (2.1) are
classified by Schneider and Zink in [SZ99, Section 6, TK,λ functor].

For s = [GLn(F ), σ], Paskunas in the article [Pas05][Theorem 8.1] showed
that up to isomorphism there exists a unique typical representation for s. More
precisely,

Theorem 2.2.2 (Paskunas). Let n be a positive integer greater than one and
σ be an irreducible supercuspidal representation of GLn(F ). Let (Js, λs) be a
Bushnell-Kutzko type for the component s = [GLn(F ), σ] with Js ⊂ GLn(OF ).
The representation

ind
GLn(OF )
Js

(λs)

is the unique typical representation for the component [GLn(F ), σ] and occurs
with multiplicity one in σ ⊗ χ for all unramified characters χ of GLn(F ).

We will consider the classification of typical representations for components
[M,σ] whereM is a Levi-subgroup of a proper parabolic subgroup of GLn(F ).

Let s = [M,σ] be an inertial class of GLn(F ). We will choose a rep-
resentative for s. Let P be a parabolic subgroup with M a its Levi-factor.
There exists a g ∈ GLn(F ) such that gPg−1 = PI for some ordered partition
I = (n1, n2, . . . , nr) of n. The groups gMg−1 and MI are two Levi-factors
of PI hence we get an u ∈ RadPI such that ugM(ug)−1 = MI . This shows
that there exists an element g′ ∈ GLn(F ) such that g′Mg′−1 = MI . Let J
be a permutation of the ordered partition (n1, n2, . . . , nr). We can choose a
g′′ ∈ GLn(F ) such that MI and MJ are conjugate, the two pairs (M,σ) and
(MJ , σ

g′g′′) are inertially equivalent. In certain cases it is convenient to choose
a particular permutation. For example in the proof of the main theorem of
chapter 3 we choose J = (n′1, n

′
2, . . . n

′
r) such that n′i ≤ n′j for all i ≤ j. We

denote by σI and σJ the representations σg
′
and σg

′g′′ respectively and hence
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s = [MI , σI ] = [MJ , σJ ].

Let τ be a typical representation for the component s. The representation τ
occurs as a GLn(OF ) sub-representation of a GLn(F )-irreducible smooth rep-
resentation π (see the reasoning given in the paragraph above Definition 2.2.1).
From the above paragraph π occurs in the composition series of iGLn(F )

PI
(σI)

where σI is a supercuspidal representation of MI . Hence to classify typical
representations we fix a pair (MI , σI) ∼ (M,σ) and examine the GLn(OF )-
irreducible sub-representations of

resGLn(OF )(i
GLn(F )
PI

(σI)),

looking for possible typical representations for s.

By the Iwasawa decomposition GLn(F ) = GLn(OF )PI we get that

resGLn(OF )(i
GLn(F )
PI

(σI)) ' ind
GLn(OF )
PI∩GLn(OF )(σI).

We write σI as �ri=1σi where σi is a supercuspidal representation of GLni(F )
for 1 ≤ i ≤ r. We denote by τi the unique typical representation for the com-
ponent [GLni(F ), σi] for 1 ≤ i ≤ r and let τI be the MI(OF )-representation
�ri=1τi. Will Conley observed in his thesis that the representation

ind
GLn(OF )
PI∩GLn(OF )(τI)

admits a complement in ind
GLn(OF )
PI∩GLn(OF )(σI) whose irreducible sub-representations

are atypical for s. We prove a mild generalization which will be used later in
proofs by induction.

Let ti = [Mi, λi] be a Bernstein component of GLni(F ) for 1 ≤ i ≤ r. Let
σi be a smooth representation fromMti(GLni(F )). We suppose
resGLni (OF ) σi = τ0

i ⊕τ1
i for 1 ≤ i ≤ r such that irreducible sub-representations

of τ1
i are atypical. We denote by t the Bernstein component

[M1 ×M2 × · · · ×Mr, λ1 � λ2 � · · ·� λr]

of GLn(F ). The component t is independent of the choice of representatives
(Mi, λi). Let τ0

I = �ri=1τ
0
i and σI = �ri=1(σi).

Proposition 2.2.3. The representation

ind
GLn(OF )
PI∩GLn(OF )(τ

0
I )

admits a complement in iGLn(F )
PI

(σI) with all its irreducible sub-representations
atypical for t.
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Proof. Any GLn(OF )-irreducible sub-representation of iGLn(F )
PI

(σI) occurs as
a sub-representation of

ind
GLn(OF )
PI∩GLn(OF )(�

r
i=1γi) (2.2)

where γi is a GLni(OF )-irreducible sub-representation of σi. If γi occurs in τ1
i

for some i = N with N ≤ r then there exists a component t′N ∈ BN such that
t′N = [M ′N , λ

′
N ] 6= tN and γN occurs in the restriction resGLn(OF ) i

GLnN (F )

P ′N
(λ′N ).

Hence the representation (2.2) occurs as a GLn(OF )-sub-representation of

i
GLn(F )
P {iGLn1

(F )

P1
(λ1) � · · ·� i

GLnN (F )

P ′N
(λ′N ) � · · ·� i

GLnr (F )
Pr

(λr)}

The inertial support t′ of the above representation is

[M1 × · · · ×M ′N × · · · ×Mr, λ1 � · · ·� λ′N � · · ·� λr].

We may assume that Mi is a standard Levi-subgroup for 1 ≤ i ≤ r. Now

[MN =

p∏
j=1

GLmj (F ), λN = �pj=1ζj ] 6= [M ′N =

p′∏
j=1

GLm′j (F ), λ′N = �p
′

j=1ζ
′
j ]

implies that there exists a cuspidal component [GLmk(F ), ζk] occurring in the
multi-set

{[GLm1(F ), ζ1], [GLm2(F ), ζ2], . . . , [GLmp(F ), ζp]}

which has a different multiplicity in

{[GLm′1(F ), ζ ′1], [GLm′2(F ), ζ ′2], . . . , [GLmp′ (F ), ζ ′p′ ]}.

Adding cuspidal components with the same multiplicity to the above two multi-
sets cannot make the multiplicities of the component [GLk(F ), ζk] the same.
This shows that t′ 6= t and hence the desired complement is the direct sum of
the representations as in (2.2) such that γi occur in τ1

i for some i ∈ {1, 2, . . . , r}.

Lemma 2.2.4. Let ti = [GLni(F ), σi] be a Bernstein component for GLni(F )
and τi be a typical representation for ti. The representation

ind
GLn(OF )
PI∩GLn(OF )(τI)

admits a complement in iGLn(F )
PI

(σI) whose irreducible sub-representations are
atypical.

Proof. We use the uniqueness of typical representations for supercuspidal rep-
resentations (see [Pas05]) to decompose resGLn(OF ) σi as τi ⊕ τ1

i such that
irreducible sub-representations of τ1

i are atypical. The lemma follows as a
consequence of proposition 2.2.3.
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Given a component s = [MI , σI ] of GLn(F ) the above lemma shows that
typical representations only occur as sub-representations of

ind
GLn(OF )
PI∩GLn(OF )(τI)

The above representation is still an infinite dimensional representation of the
compact group GLn(OF ). We write the above representation as an increasing
union of finite dimensional representations.

Let {Hi}i≥1 be a decreasing sequence of compact open subgroups of the
maximal compact subgroup GLn(OF ). Let ŪI be the unipotent radical of
the opposite parabolic subgroup P̄I of PI with respect to the Levi-subgroup
MI . We assume that Hi satisfies Iwahori decomposition with respect to the
parabolic subgroup PI and Levi-subgroup MI for all i ≥ 1 i.e. the product
map

(Hi ∩ ŪI)× (Hi ∩MI)× (Hi ∩ UI)→ Hi

is a homeomorphism for any ordering of the factors on the left hand side
and that

⋂
i≥1Hi = GLn(OF ) ∩ PI . Let τ be a finite dimensional smooth

representation of the group MI(OF ). We assume that τ extends to a repre-
sentation of Hi for all i ≥ 1 such that Hi ∩ UI and Hi ∩ ŪI are contained in
the kernel of τ . By definition the representation ind

GLn(OF )
Hi

(τ) is contained in
ind

GLn(OF )
GLn(OF )∩PI (τ).

Lemma 2.2.5. The union of the representations

ind
GLn(OF )
Hi

(τ)

for all i ≥ 1 is equal to the representation

ind
GLn(OF )
GLn(OF )∩PI (τ).

Proof. Let W be the underlying space for the representations τ . Any element
f on in the space

ind
GLn(OF )
GLn(OF )∩PI (τ)

is a function f : GLn(OF )→W such that

1. f(pk) = τ(p)f(k) for all p ∈ GLn(OF ) ∩ PI and k ∈ GLn(OF ),

2. There exists a positive integer m (depending on f) such that f(gk) =
f(g) for all k ∈ Kn(m) and g ∈ GLn(OF ).

Now there exists a positive integer i such that Hi ∩ Ū ⊂ Kn(m). For such
a choice of i and h ∈ Hi write h = h−h+ where h+ ∈ GLn(OF ) ∩ P , h− ∈
Hi ∩ Ū and we can do so by Iwahori decomposition of Hi. We observe that
f(hk) = f(h−h+k) = f(h+k(h+k)−1h−(h+k)) = f(h+k) = τ(h+)f(k) (since
(h+k)−1h−(h+k) ∈ Kn(m)). Hence f ∈ ind

GLn(OF )
Hi

(τ).
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We shall need the following technical lemma for frequent reference. Let
P be any parabolic subgroup of GLn(F ) with a Levi-subgroup M and U be
the unipotent radical of P . Let J1 and J2 be two compact open sub-groups of
GLn(OF ) such that J1 contains J2. Suppose J1 and J2 both satisfy Iwahori
decomposition with respect to the Levi-subgroup M , J1 ∩ U = J2 ∩ U and
J1 ∩ Ū = J2 ∩ Ū . Let λ is an irreducible smooth representation of J2 which
admits an Iwahori decomposition i.e. J2 ∩ U and J2 ∩ Ū are contained in the
kernel of λ.

Lemma 2.2.6. The representation indJ1J2(λ) is the extension of the represen-
tation indJ1∩MJ2∩M (λ) such that J1 ∩ U and J1 ∩ Ū are contained in the kernel of
the extension.

Proof. From Iwahori decomposition we get that (J1 ∩M)J2 = J1 and Mackey
decomposition we get that

resJ1∩M indJ1J2(λ) ' indJ1∩MJ2∩M (λ).

We now verify that J1 ∩U and J1 ∩ Ū act trivially on indJ1J2(λ). Observe that

resJ1∩P indJ1J2(λ) ' indJ1∩PJ2∩P (λ).

Since the double coset representatives for

J1 ∩ P
J2 ∩ P

can be chosen fromM∩J1 the group J1∩U acts trivially on indJ1J2(λ). Similarly
J1 ∩ Ū acts trivially on indJ1J2(λ). This concludes the lemma.

Lemma 2.2.7. Let G be the F -rational points of an algebraic reductive group
and χ be a character of G. Let τ be a K-typical representation for the compo-
nent s = [M,σ]. The representation τ ⊗ χ is a typical representation for the
component [M,σ ⊗ χ].

Proof. Let HomK(τ ⊗ χ, π) 6= 0 for some irreducible smooth representation π
of G. We now have HomK(τ, π ⊗ χ−1) 6= 0. This implies that π ⊗ χ−1 occurs
in the composition series of

iGP (σ ⊗ η)

for some parabolic subgroup P containing M is a Levi-factor and η an un-
ramified character of M . Now π occurs in the composition series for the
representation

iGP (σ ⊗ χ⊗ η)

hence τ ⊗ χ is a K-typical representation for the component [M,σ ⊗ χ].
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We now sketch the general strategy to classify typical representations. We
choose the sequence {Hi | i ≥ 1} depending on certain class of components s
and then we will construct a representation say Ui(τI) such that

Ui(τI)⊕ ind
GLn(OF )
H1

(τI) = ind
GLn(OF )
Hi

(τI)

for i ≥ 2. We will show by induction on the integer i that the irreducible
sub-representations of Ui(τI) are atypical for s. This shows that typical rep-
resentations occur as sub-representations of

ind
GLn(OF )
H1

(τI). (2.3)

It is indeed possible that all irreducible sub-representations of (2.3) are typ-
ical for s. This will be the case for many Bernstein components for example
level-zero (to be defined in the next chapter), principal series components and
s = [GLn−1(F ) × GL1(F ), σ � χ] for n ≥ 2. The choice of Hi, construction
of Ui(τI) and showing irreducible sub-representations of Ui(τI) are atypical
representations for various classes of components will occupy the next three
chapters.
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Chapter 3

Level zero inertial classes

Definition 3.0.8. Let I = (n1, n2, . . . , nr) be an ordered partition of n. An
inertial class s = [MI ,�ri=1σi] is called a level-zero inertial class if for ev-
ery σi there exists an irreducible representation τi of GLni(OF ) such that
τi is the inflation of an irreducible cuspidal representation of GLni(kF ) and
HomGLni (OF )(τi, σi) 6= 0.

We fix a level-zero inertial class s = [MI , σI ] with the pairs (GLni(OF ), τi)
as in the above definition. The pair (GLni(OF ), τi) is the Bushnell-Kutzko
type for the inertial class [GLni(F ), σi]. Let m be a positive integer and
PI(m) be the inverse image of PI(OF /Pm

F ) under the mod-Pm
F reduction map

πm : GLn(OF )→ GLn(OF /Pm
F ).

The representation �ri=1τi of MI(kF ) extends to a representation of PI(kF )
by inflation via the quotient map

PI(kF )→ PI(kF )/UI(kF ) 'MI(kF ).

The representation �ri=1τi of PI(kF ) extends to a representation of PI(1) by
inflation via the map π1. We note that PI(1)∩UI and PI(1)∩ŪI are contained
in the kernel of this extension. The pair (PI(1), τI) is the Bushnell-Kutzko
type for the component s (see [BK99][Section 8.3.1]). The irreducible sub-
representations of

ind
GLn(OF )
PI(1) (τI)

are thus typical for s.

We note that the groups PI(m) satisfy Iwahori decomposition with respect
to PI and MI . The MI(OF ) representation τI extends to a representation of
PI(m) such that PI(m) ∩ UI and Pi(m) ∩ ŪI are contained in the kernel of
the extension. This shows that the sequence of groups {PI(m) | m ≥ 1} and
τI satisfy the hypothesis for the groups {Hm |m ≥ 1} and τ in lemma 2.2.5
hence we have the isomorphism⋃

m≥1

ind
GLn(OF )
PI(m) (τI) ' ind

GLn(OF )
PI∩GLn(OF )(τI).

We recall that the lemma 2.2.4 shows that typical representations for the com-
ponent s can only occur in the above representation.
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Using Frobenius reciprocity we get that the representation τI occurs in
ind

PI(1)
PI(m)(τI) with multiplicity one. Let m ≥ 1 and U0

m(τI) be the PI(1)-

stable complement of the representation τI in ind
PI(1)
PI(m)(τI). Let Um(τI) be the

representation
ind

GLn(OF )
PI(1) (U0

m(τI)).

We note that

ind
GLn(OF )
PI(1) (τI)⊕ Um(τI) ' ind

GLn(OF )
PI(m) (τI)

We will show that irreducible sub-representations of Um(τI) are atypical.

Theorem 3.0.9 (Main). Let m ≥ 1. The GLn(OF )-irreducible subrepresen-
tations of Um(τI) are atypical.

The classification of typical representations for the inertial class s is given
by the following corollary.

Corollary 3.0.10. The irreducible sub-representations of ind
GLn(OF )
PI(1) (τI) are

precisely the typical representations for the level-zero inertial class [MI , σI ].
Moreover if Γ is a typical representation then

dimC HomGLn(OF )(Γ, ind
GLn(OF )
PI(1) (τI)) = dimC HomGLn(OF )(Γ, i

GLn(F )
PI

(σI)).

Proof. Given a typical representation Γ for the inertial class s, the theorem
shows that Γ is a sub-representation of ind

GLn(OF )
PI(1) (τI) and the multiplic-

ity formula follows from 2.2.4 and the above theorem. Conversely if Γ is
a sub-representation of ind

GLn(OF )
PI(1) (τI) then by Frobenius reciprocity we get

that HomPI(1)(τI ,Γ) 6= 0. If Γ is contained as a GLn(OF )-irreducible sub-
representation in an irreducible smooth representation π of GLn(F ) then the
restriction of π to PI(1) contains the representation τI . The pair (PI(1), τI) is
the Bushnell-Kutzko type for the inertial class s = [MI , σI ] hence the inertial
support of π is s. Hence Γ is a typical representation and this proves the
corollary.

We will need a few lemmas before the proof of this theorem. Let
I = (n1, n2, . . . , nr) be the ordered partition of the positive integer n as fixed at
the beginning of this chapter. Until the beginning of the section 3.1 we
assume that r > 1. We denote by I ′ the ordered partition (n1, n2, . . . , nr−1)
of n− nr. Let m be a positive integer and PI(1,m) be the following set{(

A B
$m
F C D

)
|A ∈ PI′(1);B,Ct ∈Mnr×(n−nr)(OF );D ∈ GLnr (OF )

}
.

Note that PI(1, 1) = PI(1).
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Lemma 3.0.11. The set PI(1,m) is a subgroup of PI(1).

Proof. The group GLn(OF ) acts on the set of lattices of Fn contained in the
lattice OF

n. If r − 1 = 1 the set PI(1,m) is the GLn(OF )-stabilizer of the
lattice (OF )n1 ⊕ ($m

F OF )n2 . In the case r − 1 > 1 the set PI(1,m) is the
GLn(OF )-stabilizer of lattices Lk for 1 < k ≤ r − 1 defined as:

Lk = (OF )n1⊕· · ·⊕(OF )nk−1⊕($F OF )nk⊕· · ·⊕($F OF )nr−1⊕($m
F OF )nr .

This shows that PI(1,m) is a subgroup and is contained in PI(1) from the
definition.

The structure of the representation

ind
PI(1,m)
PI(1,m+1)(id)

will be used in the proof of the main theorem. Using Clifford theory we decom-
pose the above representation. LetKI(m) be the groupKn(m)U(n−nr,nr)(OF ).

Lemma 3.0.12. The group KI(m) is a normal subgroup of PI(1,m) and
KI(m) ∩ PI(1,m+ 1) is a normal subgroup of KI(m).

Proof. The groups KI(m) and PI(1,m) satisfy Iwahori decomposition with
respect to U(n−nr,nr), Ū(n−nr,nr) and M(n−nr,nr). We also note that

KI(m) ∩ U(n−nr,nr) = PI(1,m) ∩ U(n−nr,nr)

and
KI(m) ∩ Ū(n−nr,nr) = PI(1,m) ∩ Ū(n−nr,nr).

Hence PI(1,m)∩U(n−nr,nr) and PI(1,m)∩Ū(n−nr,nr) normalize KI(m). Since
KI(m) is a product of the group Kn(m) and U(n−nr)(OF ) the group
PI(1,m)∩M(n−nr,nr) normalizes the group KI(m). This shows the first part.

Notice thatKI(m)∩U(n−nr,nr) is equal toKI(m)∩PI(1,m+1)∩U(n−nr,nr)

and KI(m)∩M(n−nr,nr) is equal to KI(m)∩PI(1,m+ 1)∩M(n−nr,nr) hence
it is enough to check that KI(m) ∩ Ū(n−nr,nr) normalizes the group KI(m) ∩
PI(1,m + 1). Since KI(m) ∩ PI(1,m + 1) ∩ Ū(n−nr,nr) is abelian and is con-
tained in KI(m) ∩ Ū(n−nr,nr) hence we need to check that u−j(u−)−1 and
u−u+(u−)−1 are contained in KI(m) ∩ PI(1,m+ 1) for all u−, j and u+ in

KI(m) ∩ Ū(n−nr,nr),

KI(m) ∩ PI(1,m+ 1) ∩M(n−nr,nr) and

KI(m) ∩ PI(1,m+ 1) ∩ U(n−nr,nr) = U(n−nr,nr)(OF )
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respectively.

Let u+, u− and j be three elements from Un−nr,nr (OF ), KI(m)∩Ū(n−nr,nr)

and KI(m) ∩ PI(1,m + 1) ∩M(n−nr,nr) respectively. We write them in their
block form as:

u+ =

(
1n−nr B

0 1nr

)
where B ∈M(n−nr)×nr (OF ),

u− =

(
1n−nr 0
$m
F C 1nr

)
where C ∈Mnr×(n−nr)(OF ) and

j =

(
J1 0
0 J2

)
.

We observe that u−j(u−)−1 = j{j−1u−j(u−)−1} and the commutator
{j−1u−j(u−)−1} in its block form is as follows:(

1n−nr 0
J−1

2 ($m
F CJ

−1
1 −$m

F C) 1nr

)
.

We note that J2 ∈ Knr (m) and J1 ∈ Kn−nr (m) hence J−1
2 ($m

F CJ
−1
1 −$m

F C)
belongs to $m+1

F M(n−nr)×nr (OF ). This shows that

{j−1u−j(u−)−1} ∈ KI(m) ∩ PI(m+ 1)

Now the element (u−)u+(u−)−1 is of the form(
1n−nr −$m

F BC B
−$2m

F CBC 1nr +$m
F CB

)
. (3.1)

Since 2m ≥ m + 1 the matrix in (3.1) is contained in the group KI(m) ∩
PI(1,m+ 1).

We now observe that KI(m)PI(1,m + 1) = PI(1,m). From Mackey de-
composition we get that

resKI(m) ind
PI(1,m)
PI(1,m+1)(id) ' ind

KI(m)
KI(m)∩PI(1,m+1)(id).

Hence the above restriction decomposes into a direct sum of representations
of the group

KI(m)

KI(m) ∩ PI(1,m+ 1)
. (3.2)

The inclusion map of KI(m) ∩ Ū(n−nr,nr) in KI(m) induces the natural ho-
momorphism

θ̃I :
KI(m) ∩ Ū(n−nr,nr)

PI(1,m+ 1) ∩ Ū(n−nr,nr)

→ KI(m)

KI(m) ∩ PI(1,m+ 1)
.
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Lemma 3.0.13. The map θ̃I is an M(n−nr,nr)∩PI(1,m) equivariant isomor-
phism.

Proof. The map is clearly injective and surjectivity follows from the Iwahori
decomposition of KI(m) with respect to the Levi-subgroup MI . The inclusion
ofKI(m)∩Ū(n−nr,nr) inKI(m) is anMn−nr,nr∩PI(1,m) equivariant map.

Let u− be an element of the group KI(m) ∩ Ū(n−nr,nr) and its block form
be given by (

1(n−nr,nr) 0
U− 1nr

)
.

The map u− 7→ $−mF U− induces an isomorphism between the groups
KI(m)∩ Ū(n−nr,nr) and Mnr×(n−nr)(OF ). Let Ū− be the image of U− in the
mod-PF reduction of Mnr×(n−nr)(OF ). The map u− 7→ $−mF U− induces an
isomorphism of the quotient (3.2) with the group of matricesMnr×(n−nr)(kF ).
The group M(n−nr,nr)(OF ) = GLn−nr (OF ) × GLnr (OF ) acts on the group
Mnr×(n−nr)(kF ) through its mod-PF reduction GLn−nr (kF )×GLnr (kF ), the
action is given by (g1, g2)U = g2Ug

−1
1 for all g1 in GLn−nr (kF ), g2 in GLnr (kF )

and U inMnr×(n−nr)(kF ). The map u− 7→ $−mF U− is hence aM(n−nr,nr)(OF )-
equivariant map between the quotient (3.2) and Mnr×(n−nr)(kF ). Moreover
the action of M(n−nr,nr)(OF ) factors through its quotient M(n−nr,nr (kF ).

In general the group G := GLm(Fq)×GLn(Fq) acts on the set of matrices
Mn×m(Fq) by setting (g1, g2)U = g2Ug

−1
1 . We also have a G action on the set

of matrices Mm×n(Fq) by setting (g1, g2)V = g1V g
−1
2 .

Lemma 3.0.14. There exists a G-equivariant isomorphism between the groups
Mm×n(Fq) and ̂Mn×m(Fq).

Proof. Let ψ be a non-trivial character of the additive group Fq. We define
a pairing B between Mm×n(Fq) and Mn×m(Fq) by defining B(V,U) = ψ ◦
tr(V U). The pairing is non-degenerate and hence we obtain a map T between
Mm×n(Fq) and ̂Mn×m(Fq) defined by the equation

T (V )(U) = ψ ◦ tr(V U).

The map T is G equivariant since

(g1, g2)T (V )(U) = ψ ◦ tr(V g−1
2 Ug1) = ψ ◦ tr(g1V g

−1
2 U) = T ((g1, g2)V )(U).

The above lemma gives a M(n−nr,nr) ∩ PI(1,m) equivariant map between
the groups ̂Mnr×(n−nr)(kF ) and M(n−nr)×nr (kF ). Hence we get an

M(n−nr,nr) ∩ PI(1,m)
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equivariant isomorphism say θI between the group of characters of

KI(m)

KI(m) ∩ PI(1,m+ 1)

and the group of matrices M(n−nr)×nr (kF ).
Since the group KI(m) is a normal subgroup of PI(1,m), we have an action

of this group PI(1,m) on the set of characters of the abelian group

KI(m)

KI(m) ∩ PI(1,m+ 1)
.

If η is one such character we denote by Z(η) the PI(1,m)-stabilizer of this
character η. Clifford theory now gives the decomposition

ind
PI(1,m)
PI(1,m+1)(id) '

⊕
ηk

ind
PI(1,m)
Z(ηk) (Uηk)

where {ηk} is a set of representatives for the orbits under the action of PI(1,m)
and Uηk is some irreducible representation of the group Z(ηk). We also note
that Z(id) = PI(1,m) and the identity character occurs with multiplicity one
(which follows from Frobenius reciprocity) and hence

ind
PI(1,m)
PI(1,m+1)(id) ' id⊕

⊕
ηk 6=id

ind
PI(1,m)
Z(ηk) (Uηk). (3.3)

Observe that

Z(ηk) = (Z(ηk) ∩M(n−nr,nr))KI(m).

Since we have a M(n−nr,nr) ∩ PI(1,m) equivariant map between the group of
characters of (3.2) and M(n−nr)×nr (kF ), note that

Z(ηk) ∩M(n−nr,nr) = ZM(n−nr,nr)∩PI(1,m)(A)

for some matrix A in M(n−nr)×nr (kF ). The group M(n−nr,nr) ∩ PI(1,m) acts
on the group of matrices M(n−nr,nr)(kF ) through its mod-PF reduction. The
mod-PF reduction of the group PI(1,m) ∩M(n−nr,nr) is equal to the group
PI′(kF )×GLnr (kF ). In the next lemma we will bound the mod PF reduction
of the group Z(ηk)∩MI for the proof of the main theorem . Let OA be an orbit
for the action of PI′(kF )×GLnr (kF ) on the set of matrices M(n−nr)×nr (kF ).
Let pj be the jth projection of the group MI(kF ) =

∏r
i=1 GLni(kF ).

Lemma 3.0.15. Let OA be an orbit consisting of non-zero matrices in

M(n−nr)×nr (kF ).

We can choose a representative A such that the PI′(kF )×GLnr (kF )-stabilizer
of A,

ZPI′ (kF )×GLnr (kF )(A)

satisfies one of the following conditions.
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1. There exists a positive integer j, j ≤ r such that the image of

pj : ZPI′ (kF )×GLnr (kF )(A) ∩MI(kF )→ GLnj (kF )

is contained in a proper parabolic subgroup of GLnj (kF ).

2. There exists an i with 1 ≤ i ≤ r − 1 such that pi(g) = pr(g) for all
g ∈ ZPI′ (kF )×GLnr (kF )(A) ∩MI(kF ).

Proof. Let A = [U1, U2, . . . , U(r−1)]
tr be the block form (Uk is a matrix of size

nr × nk for 1 ≤ k ≤ r− 1) of a representative m for an orbit Om consisting of
non-zero matrices. If ((Aij), B) ∈ ZPI′ (kF )×GLnr (kF )(A) then we have

(Aij)[U1, U2, ..., U(r−1)]
tr = [U1, U2, ..., U(r−1)]

trB. (3.4)

Since (Aij) ∈ PI′(kF ), we have Aij = 0 for all i > j. Let l′ ≤ r−1 be the least
non-negative integer such that Ur−1−l′ (Aii matrix of size ni× ni) is non-zero
and such an l′ exists since m 6= 0. From (3.4) we get that AllU trl t = U trl B
where l = r − 1 − l′. There exist matrices P ∈ GLnr (kF ) and Q ∈ GLnl(kF )
such that PU tlQ is a matrix of the form(

1t 0
0 0

)
(3.5)

where t is the rank of the matrix U trl . Now we may change the representative
A to A′ = [U ′1, U

′
2, . . . , U

′
r]
tr by the action of the element

diag(1n1
, . . . , P, . . . , 1nr−1

, Q−1)

in PI′(kF )×GLnr (kF ) such that U ′trl is the matrix (3.5). If t = nl = nr then
condition (2) is satisfied. Consider the maps T1 : knlF → knrF and T2 : knrF → knlF
given by

(a1, a2, . . . , anl) 7→ (a1, a2, . . . , anl)U
tr
l

and
(a1, a2, . . . , anr ) 7→ U trl (a1, a2, . . . , anr )

tr

respectively. If t = nl = nr does not hold then either of T1 or T2 has a non-
trivial proper kernel (since Ul 6= 0). If T1 has a non-trivial proper kernel then
All preserves this kernel and hence belongs to a proper parabolic subgroup of
GLnr (kF ). If T2 has a non-trivial proper kernel then B preserves this kernel
and hence belongs to a proper parabolic subgroup of GLnl(kF ). Hence if
t = nl = nr does not hold true then condition (1) is satisfied.

The following lemma is due to Paskunas but we give a mild modification
for our applications (see [Pas05, Proposition 6.8]).
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Lemma 3.0.16. Let m > 1, σ be any irreducible representation of the group
GLm(Fq) and H be a subgroup contained in a proper parabolic subgroup of
GLm(Fq). For every irreducible representation γ of H contained in resH(σ),
there exists an irreducible non-cuspidal representation σ′ of GLm(Fq) such that
HomH(γ, σ′) 6= 0.

Proof. Let P be a proper parabolic subgroup of GLm(Fq) containing H and Ū
be the unipotent radical of an opposite parabolic subgroup of P . We observe
that Ū ∩H = id. Now if the lemma is false, we have ind

GLm(Fq)
H (γ) ' ⊕k∈Λσk

such that σk is a cuspidal representation. Using Mackey decomposition we get
that

HomŪ (id, ind
GLm(Fq)
H (γ)) =

⊕
u∈Ū\GLm(Fq)/H

HomŪ∩Hu(id, γu).

If Ū ∩H = id then HomH∩Ū (id, γ) is non-zero and by the above decomposition

HomŪ (id, ind
GLm(Fq)
H (γ)) 6= 0.

This shows that HomŪ (id, σk) 6= 0 for some k ∈ Λ and this is a contradiction
to our assumption.

Lemma 3.0.17. Let m ≥ 2, H be the diagonal subgroup of GLm(Fq) ×
GLm(Fq) and σ1�σ2 be an irreducible representation of GLm(Fq)×GLm(Fq).
For every irreducible representation γ occurring in resH σ1 � σ2 there exists
an irreducible non-cuspidal representation σ′1 � σ′2 of GLm(Fq) × GLm(Fq)
containing γ.

Proof. Let Ū and U be the subgroups of lower unipotent and upper unipo-
tent matrices of GLm(Fq). Consider the unipotent subgroup V := Ū × U of
GLm(Fq)×GLm(Fq). Suppose the lemma is false then

ind
GLm(Fq)×GLm(Fq)
H (γ) ' ⊕k∈Λσ

k
1 � σk2

such that σk1 and σk2 are cuspidal representations for all k ∈ Λ. We observe
that V ∩H = id and by Mackey decomposition we have

HomV (id, ind
GLm(Fq)×GLm(Fq)
H (γ)) 6= 0.

Now by our assumption we have HomV (id, σk1 � σk2 ) 6= 0 for some k ∈ Λ and
hence a contradiction.

The following lemma is similar to proposition 2.2.3. The lemma is just a
modified version of the proposition 2.2.3 for our present use.

Lemma 3.0.18. Let Γ be a GLn−nr (OF )-irreducible sub-representation of

ind
GLn(OF )
P(n−nr,nr)(m){Um(τI′) � τr}.
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If the irreducible sub-representations of Um(τI′) are atypical for the component
s = [MI′ , σI′ ], then the representation Γ is atypical for the component s =
[MI , σI ].

Proof. Let ρ be an irreducible sub-representation of Um(τI′). If ρ is not typical
then, there exists another Bernstein component [MJ , λJ ] of GLn−nr (F ) such
that

[MI′ , σI′ ] 6= [MJ , λJ ]

and ρ is contained in

resGLn−nr (OF ) i
GL(n−nr)(F )

PJ
(λJ)

where J = (n′1, n
′
2, . . . , n

′
r′−1) and λJ = �r

′−1
i=1 λi. The representation

ind
GLn(OF )
P(n−nr,nr)(m){ρ� τr}

is contained in
ind

GLn(OF )
P(n−nr,nr)∩GLn(OF ){ρ� τr}. (3.6)

The representation (3.6) is contained in the representation

resGLn(OF ) i
GLn(F )
P(n−nr,nr)

{iGLn−nr (F )
PJ

(λJ) � σr}.

Since [MI′ , σI′ ] 6= [MJ , λJ ] there exist an inertial class [GLp(F ), σ] occur-
ring in the multi-set

{[GLn1(F ), σ1], [GLn2(F ), σ2], . . . , [GLnr−1(F ), σr−1]}

with a multiplicity not equal to its multiplicity in the multi-set

{[GLn′1(F ), λ1], [GLn′2(F ), λ2], . . . , [GLn′
r′−1

(F ), λr′−1]}.

Hence the classes [MI , σI ] and [MJ ×GLnr (F ), λJ �σr] represent two distinct
Bernstein components for the group GLn(F ).

3.1 Proof of the main theorem

Proof of theorem 3.0.9. We prove the theorem by using induction on the posi-
tive integer n, the rank of GLn(F ). The theorem is true for n = 1 since Um(τI)
is zero. We assume that the theorem is true for all positive integers less than
n+1. We will show the theorem for the positive integer n+1. Let s = [MI , σI ]
be a level-zero inertial class. We assume that the partition I = (n1, n2, . . . , nr)
of n+ 1 satisfies the hypothesis ni ≤ nj for all 1 ≤ i ≤ j ≤ r. If r = 1 we have
Um(τI) = 0 and the theorem holds by default. We now assume that r > 1 and
let I ′ = (n1, n2, . . . , nr−1).

We now break the proof into two cases. The first case is nr = 1 and the
second case is nr > 1.
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3.1.1 The case where nr = 1

In this case ni = 1 for 1 ≤ i ≤ r and PI = Bn where Bn is the Borel subgroup
of GLn. We denote by Tn and Un the maximal torus and the unipotent radical
respectively. We also use the notation Bn(m) for the subgroup PI(m) and χIn
for τI since I = (1, 1, . . . , 1) is a tuple of length n. The proof is by induction
on the integer n, the rank of Tn. The statement is immediate for n = 1 and for
n = 2 we refer to [BM02, A.2.4] for a proof (We will require the proof for later
use and we will recall it at that stage). So we prove the theorem for n ≥ 3.
Suppose the theorem is true for some positive integer n ≥ 2. The rest of this
subsection is to prove the main theorem for n+ 1. By definition of Um(χIn+1

)
we have

ind
GLn+1(OF )
Bn+1(m) (χIn+1

) ' Um(χIn+1
)⊕ ind

GLn+1(OF )
Bn+1(1) (χIn+1

).

We have the isomorphism

ind
GLn+1(OF )
Bn+1(m) (χIn+1

) ' ind
GLn+1(OF )
P(n,1)(m) {ind

GLn(OF )
Bn(m) (χIn) � χn+1)}.

We also have the decomposition

ind
GLn+1(OF )
P(n,1)(m) {ind

GLn(OF )
Bn(m) (χIn) � χn+1} '

ind
GLn+1(OF )
P(n,1)(m) {Um(χIn) � χn} ⊕ ind

GLn+1(OF )
P(n,1)(m) {ind

GLn(OF )
Bn(1) (χIn) � χn+1}.

By induction hypothesis and lemma 3.0.18 irreducible sub-representations of

ind
GLn+1(OF )
P(n,1)(m) {Um(χIn) � χn+1}

are atypical representations. We now consider the irreducible factors of the
representation

ind
GLn+1(OF )
P(n,1)(m) {ind

GLn(OF )
Bn(1) (χIn) � χn+1}. (3.7)

We use induction on the integer m to show that the representation

ind
GLn+1(OF )
P(n,1)(1) {ind

GLn(OF )
Bn(1) (χIn) � χn+1}

' ind
GLn+1(OF )
Bn+1(1) (χIn+1)

has a complement say U1,m(χIn+1) in the representation (3.7) whose irre-
ducible sub-representations are all atypical representations. This shows that
irreducible sub-representations of Um(χIn+1

) are atypical. To reduce the nota-
tions we denote by P (m) the subgroup P(n,1)(m). Applying the decomposition
(3.3) to the parabolic subgroup P(n,1) we get that

ind
P (m)
P (m+1)(id) = id⊕ ind

P (m)
Z(η) (Uη)
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where η (in the present situation we just have one orbit consisting of non-
trivial characters) is any non-trivial character of the group Kn+1(m)Un,1(OF )
which is trivial on
Kn+1(m)Un,1(OF ) ∩ P (m+ 1) and Kn+1(m) is the principal congruence sub-
group of level m. We have shown a M ∩ P (m) equivariant map between the
group of characters of

Kn+1(m)Un,1(OF )

Kn+1(m)Un,1(OF ) ∩ P (m+ 1)

and Mn×1(kF ). We choose η to be the character corresponding to the matrix
[1, 0 . . . , 0].

For the above choice of a non-trivial character we have

ind
GLn+1(OF )
P (m+1) {ind

GLn(OF )
Bn(1) (χIn) � χn+1}

' ind
GLn+1(OF )
P (m) {ind

GLn(OF )
Bn(1) (χIn) � χn+1}

⊕ ind
GLn+1(OF )
Z(η) {Uη ⊗ resZ(η)∩M(n,1)

{ind
GLn(OF )
Bn(1) (χIn) � χn+1}}.

Since the representation ind
GLn(OF )
Bn(1) (χIn)�χn+1 is a level-zero representation,

resZ(η)∩M(n,1)
{ind

GLn(OF )
Bn(1) (χIn) � χn+1}

is isomorphic to the inflation of the representation

res
Z(η)∩M(n,1)

{ind
GLn(kF )
Bn(kF ) (χIn) � χn+1}

where Z(η) ∩M(n,1) is the mod-PF reduction of the group Z(η)∩M(n,1). The
group Z(η) ∩M(n,1) is contained in the following subgroup

A B 0
0 d 0
0 0 d

 |A ∈ GLn−1(kF ), B ∈M(n−1)×1(kF ) and d ∈ k×F

 . (3.8)

Let Mirk be the following group{(
A B
0 1

)
|A ∈ GLk−1(kF ), B ∈M(k−1)×1(kF ),

}
Now we have to understand the restriction

resP(n−1,1)
ind

GLn(kF )
Bn(kF ) (χIn)

which is reduced to understanding the restriction

resMirn−1
ind

GLn(kF )
Bn(kF ) (χIn).
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We use the theory of derivatives (originally for GLn(F ) due to Bernstein and
Zelevinsky (see [BZ76])) to describe this restriction in a way sufficient for our
application. We refer to [Zel81, Chapter 3, §13] for details of these construc-
tions.

In the case of finite fields from Clifford theory one can define four exact
functors and we recall the formalism here. The precise definitions are not
required for our purpose except for one functor Ψ+ which will be recalled
latter:

M(Mirk−1) M(Mirk) M(GLk−1(kF ))
Φ+

Φ−

Ψ−

Ψ+

The key results we use from Zelevinsky are summarised below (see [Zel81,
Chapter 3, §13]).

Theorem 3.1.1 (Zelevinsky). The functors Ψ+ and Φ− are left adjoint to
Ψ− and Φ+ respectively. The compositions Φ−Φ+ and Ψ−Ψ+ are naturally
equivalent to identity. Moreover Φ+Ψ− and Φ−Ψ+ are zero. The diagram

0→ Φ+Φ− → id→ Ψ+Ψ− → 0

obtained from these properties is exact.

Using this theorem and following Bernstein-Zelevinsky one can define a
filtration Fil on a finite dimensional representation τ of Mirn, for all n > 1.
The filtration Fil is given by

0 ⊂ τn ⊂ ... ⊂ τ3 ⊂ τ2 ⊂ τ1 = τ

where τk = (Φ+)k−1(Φ−)k−1 and τk/τk+1 = (Φ+)k−1Ψ+Ψ−(Φ−)k−1(τ) for all
k ≥ 1. The representation τ (k) := Ψ−(Φ−)k−1(τ) for all k ≥ 0 of GLn−k(kF )
is called the kth-derivative of τ and by convention τ (0) := τ .

Let Rn be the Grothendieck group of GLn(kF ) for all n ≥ 1 and set R0 = Z.
Zelevinsky defined a ring structure on the group R = ⊕n≥0Rn by setting
parabolic induction as the product rule. Recall that the ring R has a Z-linear
map D defined by setting D(π) =

∑
k≥0(π|Mirn)(k) for all π in Rn. It follows

from [Zel81, Chapter 3, §13] that

D(ind
GLn(kF )
P (τ1 � · · ·� τr)) =

r∏
i=1

D(τi)

where the product on the right hand side is in the ring R. The map D is
hence an endomorphism of the ring R. If π is a supercuspidal representation
of GLn(kF ) then by Gelfand-Kazhdan theory it follows that π(n) = 1, π(0) = π
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and all other derivatives are zero (see [Zel81, Chapter 3, §13]). Let 1R ∈ R0

be the identity element of R.
In our present situation we have

D(ind
GLn(OF )
Bn(1) (χIn)) =

n∏
i=1

D(χi) =

n∏
i=1

(χi + 1R).

Let Xn−k be the term of degree (n − k) in the expansion of the above
product (it is a representation of GLn−k(kF ) in the Grothendieck group Rn−k.
Since the coefficients of the above expansion are positive Xn−k is actually a
representation and not just a virtual representation.) Then we have

resMirn−1
ind

GLn(kF )
Bn(kF ) (χIn) '

n⊕
k≥1

(Φ+)k−1Ψ+(Xn−k).

Observe that P(n−1,1) = Mir(n−1) k
×
F (here k×F is the centre of GLn(kF ))

and Mir(n−1) ∩k×F = id. The representation

ρ := (Φ+)k−1Ψ+(Xn−k)

extends to a representation of P(n−1,1) by setting ρ(a) = χ(a) for all a ∈ k×F
where χ is the central character of the representation

ind
GLn(kF )
Bn(kF ) (�ni=1χi).

Since the central character will play some role, we denote the extended repre-
sentation by

ext{(Φ+)k−1Ψ+(Xn−k)}.

By inflation we extend the P(n,1)(kF )× k×F -representation

ext{(Φ+)k−1Ψ+(Xn−k)}� χn+1

to a representation of Z(η) ∩M(n,1). We continue to use the notation

ext{(Φ+)k−1Ψ+(Xn−k)}� χn+1

for the extended representation. We now have

ind
GLn+1(OF )
P (m+1) (χIn) ' ind

GLn+1(OF )
P (m) (χIn)⊕

n⊕
k≥1

ind
GLn+1(OF )
Z(η) {ext{(Φ+)k−1Ψ+(Xn−k)}� χn+1}.

We will show that any irreducible sub-representation of

ind
GLn+1(OF )
Z(η) (ext{(Φ+)k−1Ψ+(Xn−k)}� χn+1)}
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is atypical for the component [Tn, χIn ].

We first consider the case when k ≥ 2. The representation Xn−k is a direct
sum of the representations:

ind
GLn−k(kF )
Bn−k(kF ) (χi1 � χi2 � . . . · · ·� χin−k).

The above term also occurs in the expansion

n−k∏
j=1

(1R + χij )(1R + λ)

where λ is a cuspidal representation of GLk(kF ). To shorten the notation
we use the symbol × for the multiplication in the ring R. We get that the
representation

(Φ+)k−1Ψ+(×n−kj=1 χnj )

occurs in the representation

resMirn−1
(×n−kj=1 χnj × λ).

Since the mod-PF reduction of the group Z(η) ∩M(n,1) is contained in the
subgroup of the form (3.8), even if the central characters of ×nj=1χj and
×n−kj=1 (χj)× λ are different we may change χn+1 to χ′n+1 such that the repre-
sentation

resZ(η)∩M(n,1)
{ext((Φ+)k−1Ψ+(×n−kj=1 χnj ))}� χn+1

occurs in the representation

resZ(η)∩M(n,1)
(×n−kj=1 (χj)× λ) � χ′n+1.

Hence an irreducible sub-representation of

ind
GLn+1(OF )
Z(η) {(ext{(Φ+)k−1Ψ+(Xn−k)}� χn+1)⊗ Uη} (3.9)

occurs as a sub-representation of

ind
GLn+1(OF )
Z(η) {{(χn1

� χn2
� · · ·� χnk � λ� χ′n+1)} ⊗ Uη}. (3.10)

The above representation occurs as a sub-representation of

ind
GLn+1(OF )
P(1,1,...,k,1)∩GLn+1(OF ){χn1

� χn2
� · · ·� χnk � λ� χ′n+1}. (3.11)

Hence the sub-representation of (3.9) are not typical representations.
Now we are left with the term

ind
GLn+1(OF )
Z(η) {(ext{Ψ+(Xn−1)}� χn+1)⊗ Uη}. (3.12)
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We might as well repeat the same strategy as for k ≥ 2 and now λ is one
dimensional but the representations (3.11) and ×n+1

j=1χj may not have distinct
inertial support. In order to tackle the terms of the above representation we
use a different technique. We now recall the definition of the representation
Uη, the functor Ψ+ and some facts due to Casselman regarding the restric-
tion of an irreducible smooth representation to the maximal compact subgroup
GL2(OF ).

The representation Uη is a character on the group Z(η). From (3.8) any
element of the group Z(η) is of the form A B X ′

$FC d y
$m
F X $m

F y
′ e

 (3.13)

where A ∈ GLn−1(OF ); (X ′)t, Xt, B, Ct ∈ M(n−1)×1(OF ); e, d ∈ O×F ; y, y′ ∈
OF and d ≡ e(PF ). The character Uη is given by A B X ′

$FC d y
$m
F X $m

F y
′ e

 7→ η($m
F y).

The functor
Ψ+ :M(GLk−1(kF ))→M(Mirk)

is the inflation functor via the quotient map of Mirk modulo the unipotent
radical of Mirk.

Let (π, Vπ) be an irreducible smooth representation of GL2(F ). We denote
by c(π) and $π the conductor and central character of the representation
π respectively. Let V N be the space of all vectors fixed by the principal
congruence subgroup of level N for all N ≥ 1. For all i > c($π) we define the
representation Ui(χ) as the complement of the representation ind

GL2(OF )
B2(i−1) (χ)

in ind
GL2(OF )
B2(i) (χ). For i = c($π) we set

Ui($π) = ind
GL2(OF )
B2(i) ($π � id).

It follows from [Cas73, Proposition 1] that the representation Ui($π) is an
irreducible representation of GL2(OF ). From the result [Cas73, Proposition
2] we get that c(π) ≥ c($π). By [Cas73, Theorem 1] we have

resGL2(OF ) Vπ = V (c(π)−1) ⊕
⊕
i≥c(π)

Ui($π). (3.14)

We now describe the representation Ui($π) in our language. Let κ be a non-
trivial character of the group K2(m)U(1,1)(OF ) trivial modulo
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K2(m)U(1,1)(OF ) ∩ B2(m + 1). Let Z(κ) be a B2(m) stabilizer of κ. Any
element of the group Z(κ) is of the form (for an appropriate choice of a non-
trivial character κ) (

a b
$m
F c d

)
where a, d ∈ O×F ; b ∈ OF , c ∈ Pm

F and d ≡ a modulo PF . We define a
character Uη by setting (

a b
c d

)
7→ η(c).

We then have
Um($) ' ind

GL2(OF )
Z(η) (Uη ⊗ ($ � id)).

Now let us resume the proof in the general case n > 2 the representation

ind
GL(n+1)(OF )

Z(η) {(ext{Ψ+(Xn−1)}� χn+1)⊗ Uη}

is contained in the representation

ind
GL(n+1)(OF )

P(n−1,2)(m) (Xn−1 � Um(χ)) (3.15)

where χ is given by
∏n
i=1 χi of O

×
F . This representation, by the theorem of

Casselman (see the decomposition 3.14) is contained in the representation

ind
GL(n+1)(OF )

P(n−1,2)∩GL(n+1)(OF )(X
′
n−1 � σ)

where σ is a supercuspidal representation of level-zero with central character
χ (see the remark below for the existence) and X ′n−1 is the (n− 1) derivative
of the representation

i
GLn(F )
Bn

(χIn).

Hence irreducible sub-representations of (3.12) are atypical. This completes
the proof that irreducible sub-representations of

ind
GLn+1(OF )
Z(η) {Uη ⊗ resZ(η)∩M(n,1)

{ind
GLn(OF )
Bn(1) (χIn) � χn+1}}

are atypical. From the decomposition

ind
GLn+1(OF )
P (m+1) {ind

GLn(OF )
Bn(1) (χIn) � χn+1}

' ind
GLn+1(OF )
P (m) {ind

GLn(OF )
Bn(1) (χIn) � χn+1}

⊕ ind
GLn+1(OF )
Z(η) {Uη ⊗ resZ(η)∩M(n,1)

{ind
GLn(OF )
Bn(1) (χIn) � χn+1}}.

we get the theorem for the case where nr = 1.
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Remark 3.1.2. The existence of the cuspidal representation of GL2(kF ) with
a given central character can be deduced from the explicit formula for such
representations, we refer to [BH06, Theorem section 6.4]. To be precise we
begin with a quadratic extension k of kF and θ a character of k× such that
θq 6= θ where q = #kF . These characters are called regular characters and
for any regular character one can define a supercuspidal representation πθ
and conversely all supercuspidal representations are of the form πθ for some
regular character θ. The central character of πθ is given by resk×F

(θ). Now to
get a supercuspidal representation with a central character χ we begin with a
character χ on k×F , there are #kF + 1 possible extensions to k×. The set of
characters θ such that θq = θ has cardinality #kF − 1. Hence there exists at
least one supercuspidal representation with a given central character χ. This
shows that irreducible sub-representations of (3.15) are not typical and this
completes the proof of the theorem in this case.

3.1.2 The case where nr > 1

By transitivity of induction we have

ind
PI(1)
PI(m)(τI) ' ind

PI(1)
PI(1,m){ind

PI(1,m)
PI(m) (τI)}.

We note that PI(1,m) ∩ U(n−nr+1,nr) is equal to PI(m) ∩ U(n−nr+1,nr) and
PI(1,m) ∩ Ū(n−nr+1,nr) is equal to PI(m) ∩ Ū(n−nr+1,nr) hence lemma 2.2.6
gives the isomorphism

ind
PI(1)
PI(1,m){ind

PI(1,m)
PI(m) (τI)} ' ind

PI(1)
PI(1,m){(ind

PI′ (1)
PI′ (m)(τI′)) � τr)}.

Splitting the representation ind
PI′ (1)
PI′ (m)(τI′) as τI′ ⊕ U0

m(τI′) we get that

ind
PI(1)
PI(1,m){(ind

PI′ (1)
PI′ (m)(τI′))� τr)} ' ind

PI(1)
PI(1,m){U

0
m(τI′)� τr}⊕ ind

PI(1)
PI(1,m)(τI).

From Frobenius reciprocity the representation τI occurs in ind
PI(1)
PI(1,m)(τI) with

multiplicity one. Let U0
(1,m)(τI) be the complement of τI in ind

PI(1)
PI(1,m)(τI).

With this we conclude that

ind
PI(1)
PI(m)(τI) ' ind

PI(1)
PI(1,m){U

0
m(τI′) � τr} ⊕ U0

(1,m)(τI)⊕ τI .

By definition Um(τI) = ind
GLn(OF )
PI(1) (U0

m(τI)) which shows that

Um(τI) ' ind
GLn+1(OF )
PI(1,m) {U0

m(τI′) � τr} ⊕ ind
GLn+1(OF )
PI(1) (U0

(1,m)(τI)).

We observe that PI(1,m) ∩ U(n−nr+1,nr) = P(n−nr+1,nr)(m) ∩ U(n−nr+1,nr)

and PI(1,m) ∩ Ū(n−nr+1,nr) = P(n−nr+1,nr)(m) ∩ Ū(n−nr+1,nr) hence lemma
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2.2.6 applied to the groups J2 = PI(1,m) and J1 = P(n−nr+1,nr)(m) and
λ = U0

m(τI′) � τr gives us the isomorphism

ind
GLn+1(OF )
PI(1,m) {U0

m(τI′) � τr} ' ind
GLn+1(OF )
P(n−nr+1,nr)(m){Um(τI′) � τr}.

With this we are in a place to use the induction hypothesis through the iso-
morphism

Um(τI) ' ind
GLn+1(OF )
P(n−nr+1,nr)(m){Um(τI′)�τr}⊕ind

GLn+1(OF )
PI(1) (U0

(1,m)(τI)). (3.16)

By induction hypothesis GLn−nr+1(OF )-irreducible sub-representations of
Um(τI′) are atypical for the component [MI′ , σI′ ]. Now lemma 3.0.18 and the
equation (3.16) reduce the proof of the theorem to showing that irreducible
sub-representations of ind

GLn+1(OF )
PI(1,m) (U0

(1,m)(τI)) are atypical representations.

Proposition 3.1.3. The irreducible sub-representations of

ind
GLn+1(OF )
PI(1) (U0

(1,m)(τI))

are atypical for m ≥ 1.

Proof. We observe that

ind
PI(1)
PI(1,m+1)(τI) ' ind

PI(1)
PI(1,m){ind

PI(1,m)
PI(1,m+1)(τI)}

and the decomposition (3.3) gives us the isomorphism

ind
PI(1)
PI(1,m+1)(τI) = ind

PI(1)
PI(1,m)(τI)⊕

⊕
ηk 6=id

ind
PI(1)
PI(1,m){(ind

PI(1,m)
Z(ηk) (Uηk)⊗ τI}

which gives the equality

U0
(1,m+1)(τI) = U0

(1,m)(τI)⊕
⊕
ηk 6=id

ind
PI(1)
PI(1,m){(ind

PI(1,m)
Z(ηk) (Uηk))⊗ τI}.

If we show that the irreducible sub-representations of

ind
GLn+1(OF )
PI(1,m) {(ind

PI(1,m)
Z(ηk) (Uηk))⊗ τI}

(for ηk 6= id) are atypical for [MI , σI ] then induction on the positive integer
m completes the proof of the proposition in this case. To begin with we note
that

ind
GLn+1(OF )
PI(1,m) {ind

PI(1,m)
Z(ηk) (Uηk)⊗ τI}

ind
GLn+1(OF )
PI(1,m) {ind

PI(1,m)
Z(ηk) (Uηk ⊗ resZ(ηk)∩MI

τI)}.
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The representation τI is a level zero representation. Hence resZ(ηk)∩MI
τI is

isomorphic to the inflation of the representation res
Z(ηk)∩MI

τI where Z(ηk) ∩MI

is mod-PF reduction of Z(ηk) ∩MI . Let A = θI(ηk) where θI is the map
defined in the paragraph just after lemma 3.0.14. The mod-PF reduction
Z(ηk) ∩MI is contained in ZPI′ (kF )×GLnr (kF )(A). If ηk is a nontrivial charac-
ter then A 6= 0 and we can apply lemma 3.0.15. For convenience we break the
proof of this proposition into subsections considering different possibilities in
lemma 3.0.15.

3.1.3 Condition (1) of lemma 3.0.15
We first assume that A satisfies the condition (1) in lemma 3.0.15. There exists
at least one nj with 1 ≤ j ≤ r such that the image of the projection

pj : ZPI′ (kF )×GLnr (kF )(A) ∩MI → GLnj (kF )

is contained in a proper parabolic subgroup of GLnj (kF ). Here pj is the
projection onto the j-th factor ofMI . In particular nj is greater than 1. Let γ
be an irreducible sub-representation of the restriction resH τj where H is the
image of MI ∩ Z(ηk) under the projection pj . It follows from lemma 3.0.16
that there exists an irreducible non-cuspidal representation τ ′ of GLnj (kF )
such that τj 6' τ ′ and γ is contained in resH τ

′. Let τ ′ (as a representation of
GLnj (OF ) obtained by inflation) be a sub-representation of

Γ = i
GLnj (OF )

PJ (1) (κJ)

where J = (m1,m2, . . . ,mt) is an ordered partition of the positive integer nj
and each of κl for 1 ≤ l ≤ t is a cuspidal representation of GLml(kF ). Define
a representation τ1

I (a first modification of τI) of Z(ηk) ∩MI by setting

τ1
I := τ1 � τ2 � · · ·� τj−1 � γ � τj+1 � · · ·� τr.

The representation

ind
GLn+1(OF )
PI(1,m) {ind

PI(1,m)
Z(ηk) (Uηk ⊗ τ1

I )} (3.17)

is contained in the representation

ind
GLn+1(OF )
PI(1,m) {ind

PI(1,m)
Z(ηk) (Uηk ⊗ resZ(ηk)∩MI

τ2
I )}

where τ2
I (the second modification) is the representation

τ1
I := τ1 � τ2 � · · ·� τj−1 � Γ � τj+1 � · · ·� τr.

Observe that

ind
GLn+1(OF )
PI(1,m) {ind

PI(1,m)
Z(ηk) (Uηk ⊗ τ2

I )} ' ind
GLn+1(OF )
PI(1,m) {ind

PI(1,m)
Z(ηk) (Uηk)⊗ τ2

I }
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The representation ind
GLn(OF )
PI(1,m) {ind

PI(1,m)
Z(ηk) (Uηk) ⊗ τ2

I } is a sub-representation

of the representation ind
GLn(OF )
PI(1,m+1)(τ

2
I ) which in turn is contained in the rep-

resentation ind
GLn(OF )
PI∩GLn(OF )(τ

2
I ). We denote by I1 the refinement of the or-

dered partition I obtained by replacing nj with the ordered partition J =
(m1,m2, . . . ,mt). We define κI1 a representation of MI1(OF ) by setting

κI1 := τ1 � · · ·� τj−1 � κ1 � · · ·� κt � τj+1 � · · ·� τr.

By setting these notations we now note that

ind
GLn(OF )
PI∩GLn(OF )(τ

2
I ) ⊂ ind

GLn(OF )
PI1∩GLn(OF )(κI1).

Since I1 is a proper partition of I the Bushnell-Kutzko types (PI(1), τI) and
(PI1(1), κI1) represent two distinct inertial classes.

3.1.4 Condition (2) of lemma 3.0.15

Let A = θI(ηk) satisfy the condition (2) in the lemma 3.0.15. In this case there
exists a j with 1 ≤ j < r such that the mod PF reduction of Z(ηk) ∩MI is
contained in the subgroup of the form

{(A1, . . . , Aj , . . . , Ar)| Ai ∈ GLni(kF ) ∀ i ∈ {1, 2, . . . , r} and Aj = Ar} .

Note that nj = nr and we assumed that nr > 1. Consider the representation
τj � τr of GLnj (kF )×GLnr (kF ) and H = {(A,A) |A ∈ GLnr (kF )}. For every
irreducible sub-representation γ of resH(τj� τr) using lemma 3.0.17 we obtain
an irreducible non-cuspidal representation τ1

j � τ1
r such that γ is contained in

resH(τ1
j � τ1

r ). Now define a representation τ1
I by setting

τ1
I := τ1 � τ2 � · · ·� τ1

j � · · ·� τ1
r .

We note here that τ1
I may not be independent of γ in the sense that that

(τ1
j , τ

1
r ) depends on the irreducible sub-representation γ of resH(τk� τr). Any

irreducible sub-representation Γ of

ind
GLn+1(OF )
PI(1,m) {ind

PI(1,m)
Z(ηk) (Uηk ⊗ resZ(ηk)∩MI

τI)}

occurs as a sub-representation of some

ind
GLn+1(OF )
PI(1,m) {ind

PI(1,m)
Z(ηk) (Uηk ⊗ resZ(ηk)∩MI

τ1
I )}. (3.18)

The representation in (3.18) is contained as a sub-representation of

ind
GLn+1(OF )
PI∩GLn+1(OF )(τ

1
I ). (3.19)
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Let τ1
j and τ1

r be sub-representations of ind
GLnk (OF )

PJ1 (1) (κJ1) and ind
GLnr (O) F

PJ2 (1) (κJ2)

respectively. Let I1 be the partition of the positive integer n obtained by re-
placing nj and nr by the partitions J1 and J2 in (n1, n2 . . . , nj , . . . , nr). We
denote by τI1 the representation

τn1
� · · ·� τnj−1

� κJ1 � τnj+1
� · · ·� κJ2

of MI1(OF ). The representation (3.19) is contained in the representation

ind
GLn+1(OF )
PI1∩GLn+1(OF )(τI1).

The Bushnell-Kutzko types (PI(1), τI) and (PI1(1), τI1) represent two distinct
inertial classes since I1 is a proper refinement of I (see lemma 3.0.17).

This completes the proof of the proposition and also the proof of the the-
orem.
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Chapter 4

Principal series components

We denote by Bn the Borel subgroup of GLn(F ) consisting of upper triangular
matrices. Let Tn and Un be the maximal torus and the unipotent radical of
Bn respectively. In this chapter we will classify typical representations for
the components s = [Tn, χ] where χ is a character of Tn. Let τ be a typical
representation for the component s. The GLn(OF )-representation τ occurs in
a GLn(F )-irreducible smooth representation π. Let B be a Borel subgroup,
T the maximal torus of B and χ′ be a character of T . If (T, χ′) and (Tn, χ)
are inertially equivalent then the representation π occurs as a sub-quotient
of iGLn(F )

B (χ′′) where χ′′ is obtained from χ′ by twisting with an unramified
character of T . Now to classify typical representations it is enough to say
which GLn(OF )-irreducible sub-representations of iGLn(F )

B (χ′) are typical for
the component [Tn, χ]. Let σ be a permutation of the set {1, 2, . . . , n} and
χ = �ni=1χi be a given characer of Tn =

∏n
i=1 F

×. We denote by χσ the
character �ni=1χσ(i) of Tn. We observe that the pairs (Tn, σ(χ)) and (Tn, χ) are
inertially equivalent. We will use a convenient permutation σ which satisfies
the condition in the following lemma. For a character χ of F× we denote by
l(χ) the level of χ, i.e. the least positive integer m such that 1 + PF

m is
contained in the kernel of χ.

Lemma 4.0.4. Given any sequence of characters xi = χi of O×F , there exists
a permutation {yi |1 ≤ i ≤ n} of {xi |1 ≤ i ≤ n} such that

l(yiy
−1
k ) ≥ max{l(yiy−1

j ), l(yjy
−1
k )}.

for all 1 ≤ i ≤ j ≤ k ≤ n.

Proof. For any ultrametric space (X, d) and given any n points x1, x2, x3, . . . , xn
inX we may choose a permutation y1, y2, . . . , yn of the sequence {xi|1 ≤ i ≤ n}
such that

d(yi, yk) ≥ max{d(yi, yj), d(yj , yk)}

for all i ≤ j ≤ k. Now apply this fact to the space X consisting of characters
of O×F and the distance function d(χ1, χ2) is defined as the level l(χ1χ

−1
2 ) if

χ1 6= χ2 and 0 otherwise. We point out that this ordering is not unique in
general. We refer to [How73][lemma 1] for a proof of these results.

Remark 4.0.5. We note that the condition l(yiy−1
k ) ≥ max{l(yiy−1

j ), l(yjy
−1
k )}

is equivalent to an equality since we always have

l(yiy
−1
k ) ≤ max{l(yiy−1

j ), l(yjy
−1
k )}.
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Given a principal series component [Tn, χ] we choose the representative
(Tn, χ

σ) where σ is a permutation such that

l(χσ(i)χ
−1
σ(k)) ≥ max{l(χσ(i)χ

−1
σ(j)), l(χσ(j)χ

−1
σ(k))}.

From now on we assume that the pair (Tn,�ni=1χi) satisfies the con-
dition

l(χiχ
−1
k ) ≥ max{l(χiχ−1

j ), l(χjχ
−1
k )} (4.1)

for all i ≤ j ≤ k.

4.1 Construction of compact open subgroups Hm

Let A = (aij) be a lower nilpotent matrix of size n × n such that aij is non-
negative for i > j and

aki = max{aji, akj} (4.2)

for all i, j and k such that 1 ≤ i < j < k ≤ n. We denote by J(A) the set of
n×n matrices (mpq) such that mpq ∈ OF for p < q and mpq ∈ P

apq
F for p ≥ q.

As a consequence of the condition aki = max{aji, akj} we get two important
inequalities

ai1 ≥ ai2 ≥ · · · ≥ aii−1 (4.3)

and
aj+1j ≤ aj+2j ≤ · · · ≤ anj . (4.4)

The first is a consequence of aik−1 = max{akk−1, aik} for k < i and the second
is a consequence of ak+1j = max{ak+1k, akj} for j < k.

Lemma 4.1.1. The set J (A) is an order in Mn(OF )

Proof. The set J (A) is an additive group. We now check that the set J (A) is
closed under multiplication. Let (mij) and (m′ij) be two matrices from J(A). If
i > j then the i×j term in the product matrix (mij)(m

′
ij) can be split into three

terms: t1 := mi1m
′
1j+mi2m

′
2j+ · · ·+mijm

′
ji, t2 := mij+1m

′
j+1k+ · · ·+miim

′
ij

and t3 := mii+1m
′
i+1j + · · · + minm

′
nj . The valuation of the term mikm

′
kj is

greater or equal to ai1 for k ≤ j. This shows that valuation of t1 is greater or
equal to min{ai1, ai2, . . . , aij} and min{ai1, . . . , aij} ≥ aij . The valuation of
the term mikm

′
kj is greater or equal to aik +akj for all j ≤ k ≤ i and aik +akj

is greater or equal to aij . This shows that the valuation of t2 is greater or
equal to aij . Finally the valuation of mikmkj is greater or equal to akj for
k > i. The valuation of the term t3 is greater or equal to min{ai+1j , . . . , anj}
and min{ai+1j , . . . , anj} ≥ aij . Hence the additive group J (A) is closed under
multiplication. Since J (A) is an OF lattice in Mn(F ) we get that J (A) is an
order in Mn(OF ).

We denote by J(A) the set of invertible elements of J (A). The following
are a few examples of J(A).
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1. If A = 0 then the group J(A) is GLn(OF ).

2. If A = (aij) with aij = 1 for i > j, then J(A) is the Iwahori subgroup
with respect to the standard Borel subgroup Bn.

3. Let s = [Tn,�ni=1χi] be an inertial class satisfying the condition 4.1 and
Aχ be the lower nilpotent matrix (aij) where aij = l(χiχ

−1
j ) for i > j.

The examples (2) and (3) satisfy Iwahori decomposition with respect to the
standard Borel subgroup Bn. The next lemma concerns the Iwahori decom-
position of J(A) in general.

Let A = (aij) be a lower nilpotent matrix such that aki = max{akj , aji} for
1 ≤ i < j < k ≤ n. We define an ordered partition I of n by induction on the
set of positive integers m ≤ n. I1 := (1) now if we know Im = (n1, n2, . . . , nr)
for some m ≤ n− 1 then Im+1 is the partition (n1, n2, . . . , nr, 1) if am+1m 6= 0
and (n1, n2, . . . , nr + 1) if am+1m = 0. We denote by I(A) the partition In.

Lemma 4.1.2. The group J(A) satisfies Iwahori decomposition with respect
to the parabolic subgroup PI(A) and the standard Levi-subgroup MI(A). We
have J(A) ∩MI(A) = MI(A)(OF ), J(A) ∩ UI(A) = UI(A)(OF ).

Proof. We use induction on the positive integer n. If n = 1 then J(A) is O×F
and the lemma is vacuously true. We assume that the lemma is true for all
positive integers less than n. Let I(A) be the ordered partition (n1, n2, . . . nr).
If r = 1 then the lemma is true by default. We suppose r > 1. We will show
below that every element j ∈ J(A) can be written as a product u1j1 with
u1 ∈ J(A) ∩ Ū(n1,n−n1) and j1 ∈ J(A) ∩ P(n1,n−n1). Now j1 can be written
as j2u+

1 where u+
1 ∈ U(n1,n−n1)(OF ) and j2 ∈ M(n1,n−n1) ∩ J(A). Now j2

can be written as j3u+
2 where j3 ∈ J(A) ∩MI(A) and u+

2 ∈ UI(A)(OF ). The
group J(A) ∩M(n1,n−n1) is equal to GLn1

(OF ) × J(A′) where the nilpotent
matrix A′ = (a′ij) is given by a′ij = ai+n1j+n1

. By induction hypothesis J(A′)
satisfies Iwahori decomposition with respect to the standard parabolic sub-
group PI(A′) and its Levi-subgroup MI(A′) and I(A′) = (n2, n3, . . . , nr). Let
j3 = (j0

3 , j
1
3) where j0

3 ∈ GLn1
(OF ) and j1

3 ∈ J(A′). Now j1
3 = u−3 j4u

+
3 where

u−3 ∈ ŪI(A′) ∩ J(A′), u+
3 ∈ UI(A′) ∩ J(A′) and j4 ∈ MI(A′) ∩ J(A′). Hence

j = u1u
−
3 (j0

3 , j4)u+
3 u

+
2 (with a slight abuse of notation the elements u−3 and

u+
3 are considered as elements of ŪI(A) and UI(A) respectively and (j0

3 , j4) is
an element of J(A) ∩MI(A) = GLn1

(OF )× (J(A′) ∩MI(A′))).

We now prove that j ∈ J(A) can be written as a product u1j1 with
u1 ∈ J(A) ∩ Ū(n1,n−n1) and j1 ∈ J(A) ∩ P(n1,n−n1). Let j = (jpq). Let C1

i be
the ith-column of the first diagonal block (of size n1 × n1) on the diagonal. If
every entry of C1

i has positive valuation then, we claim that the all the entries
of the ith column Ci have positive valuation. Suppose the kth entry jki of Ci is
an unit for some k > n1. This shows that aki the kith-entry of A is zero. Now
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the inequality (4.3) gives aki ≥ akn1 and this implies that akn1 = 0. Now note
that akn1

≥ an1+1n1
from the inequality (4.4). This shows that an1+1n1

is zero
which gives a contradiction from the definition of I(A). We now deduce that
jki is not invertible. This shows the claim. Since j is invertible we conclude
that at least one entry of C1

i is an unit. Let Eij(c) = In + eij(c) where eij(c)
is the matrix with its ij entry c and all other entries 0. The left multiplication
of Eij(c) results in the row operation Rj + cRi. Since at least one entry of
C1
i is an unit we assume that its qth-entry is an unit. We can perform row

operations Rp + cRq for all p ≥ n1 to make the pth-entry trivial. We also note
that the elementary matrix corresponding to this row operation also belongs
to the group J(A) (note that q ≤ n1 ≤ p). This completes the task of making
j as the product u1j1.

The uniqueness of the Iwahori decomposition is standard. The proof is in-
cluded for the completeness. If u−1 j1u

+
1 = u−2 j2u

+
2 then (u−2 )−1u−1 j1u

+
1 (u+

2 )−1 =
j2. Let u−3 = (u−2 )−1u−1 and u+

3 = u+
1 (u+

2 )−1. We then have u−3 j1u
+
3 = j2.

The equality can be rewritten as

u−3 j1j
−1
2 = (j2u

+
3 j
−1
2 )−1.

The right hand side of the above equality is an upper block matrix with identity
on diagonal blocks and the left hand side is lower block matrix. This shows
that right hand side is identity matrix. Similar reasoning shows that u−3 and
u+

3 are both identity matrices and j1 = j2. This proves the uniqueness of the
Iwahori decomposition.

Let s = [Tn, χ] be an inertial equivalence class. Let m be a positive integer
and Aχ(m) be the lower nilpotent matrix (amij ) where amij = l(χiχ

−1
j ) +m− 1.

As shown earlier the representative (Tn, χ = �ni=1χi) can be chosen such that

aik = max{aij , ajk}

for all i < j < k. We denote by Jχ(m) the group J(Aχ(m)). Note that
Jχ(m′) ⊂ Jχ(m) for all m′ ≥ m. In our situation we have I(Aχ(m)) is
(1, 1, . . . , 1) since none of amii+1 are zero and hence by lemma 4.1.2 Jχ(m)
satisfies Iwahori decomposition with respect to Bn.

Lemma 4.1.3. The character χ = �ni=1χi of T (OF ) extends to a character
of Jχ(1) such that Jχ(1) ∩ Un and Jχ(1) ∩ Ūn are contained in the kernel of
the extension.

Proof. Letm = (mij) be an element of Jχ(1). We define χ̃(m) =
∏n
i=1 χi(mii).

We verify that χ̃ is a character of the group Jχ(1). This is very computational
in nature. We sketch the proof here and for complete details see [Roc98,
Section 3, Lemma 3.1, Lemma 3.2 ] or [How73, Pg 278-279]. The idea is to
get an open normal subgroup U of Jχ(1) such that Jχ(1)/U is isomorphic to
T (OF )/Tχ where Tχ is an open subgroup of T (OF ) which is contained in the
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kernel of χ. The subgroup U is generated by Jχ(1) ∩ Ūn and Jχ(1) ∩ Un =
Un(OF ). One shows that U satisfies Iwahori decomposition with respect to
the Borel subgroup Bn and U ∩Tn is given by

∏
α∈Φ α

∨(1 +P
l(χα∨)
F ) where Φ

is the set of roots of GLn with respect to Tn and α∨ stands for the dual root.
We observe that U ∩ Tn is contained in the kernel of χ.

We apply lemma 2.2.5 to the sequence of groups Hm = Jχ(m) for m ≥ 1
and τ = χ to get the isomorphism

resGLn(OF ) i
GLn(F )
Bn

(χ) =
⋃
m≥1

ind
GLn(OF )
Jχ(m) (χ).

We denote by Aχ(1,m) the lower nilpotent matrix (aij) where aij = l(χiχ
−1
j )

for j < i < n, anj = l(χnχ
−1
j ) + m − 1. Given a lower nilpotent matrix

A = (aij) such that aki = max{akj , aji} we associated a compact subgroup
J(A). The condition aki = max{akj , aji} is a sufficient condition to define
the group J(A) in a similar recipe and this condition can be verified easily.
The matrix Aχ(1,m) need not satisfy this condition but we can still associate
the group J(Aχ(1,m)) to the matrix Aχ(1,m). We will prove this in the next
lemma.

Lemma 4.1.4. Let J (Aχ(1,m)) be the set consisting of matrices (mij) such
that mij ∈ P

aij
F for all i, j. The set J (Aχ(1,m)) is an order in Mn(OF ).

Proof. The set J (Aχ(1,m)) is clearly an additive group and is open. We have
to verify that J (Aχ(1,m)) is closed under multiplication. Let (mij) and (m′ij)

be two elements of the set J (Aχ(1,m)). We suppose i > j. The ijth-term of
the product (mij)(m

′
ij) is the sum of the terms:

t1 := mi1m
′
1j +mi2m

′
2j + · · ·+mijm

′
ji,

t2 := mij+1m
′
j+1k + · · ·+miim

′
ij

and
t3 := mii+1m

′
i+1j + · · ·+minm

′
nj .

The valuation of the term t1 is greater or equal to the minimum value among
the valuation of mikm

′
kj for 1 ≤ k ≤ j and the valuation of mikm

′
kj is given

by aik. If i < n then aik = l(χiχ
−1
k ) and aij ≤ aik for all k ≤ j < i.

This shows that t1 has valuation at least aij . If i = n then the values of
aik = ank = l(χnχ

−1
k ) +m− 1 ≥ l(χiχ−1

j ) +m− 1 = aij for all k ≤ j < n. We
conclude that in every possibility the valuation of t1 is greater or equal to aij .

Consider the term t2. The valuation of t2 is at least the minimum among
the valuation of mikm

′
kj for j < k ≤ i. The valuation of mikm

′
kj is given by

aik + akj for j < k ≤ i. If i < n aik = l(χiχ
−1
k ) and akj = l(χkχ

−1
j ). From

our assumption on the arrangement of characters χi for 1 ≤ i ≤ n, we get
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that l(χiχ−1
j ) = max{l(χiχ−1

k ), l(χkχ
−1
j )}. At the same time i < n implies

aij = l(χiχ
−1
j ). This shows that the valuation of the term is mikm

′
kj given by

aik + akj is at least aij . Consider the case i = n and ank = l(χnχ
−1
k ) +m− 1.

Now akj = l(χkχ
−1
j ) and anj = l(χnχ

−1
j )+m−1. From the equality l(χiχ−1

j ) =

max{l(χiχ−1
k ), l(χkχ

−1
j )} we deduce that

l(χiχ
−1
k ) + l(χkχ

−1
j ) > l(χiχ

−1
j )

and adding m− 1 on both sides we get aij > aik + akj . We conclude that the
valuation of the term t2 is at least aij .

The valuation of the term mikm
′
kj for i < k < n is given by akj = l(χkχ

−1
j )

which is greater or equal to aij and anj = l(χnχ
−1
j ) + m − 1 ≥ aij and we

conclude that the valuation of t3 is at least aij . This shows that the valuation
of t1 + t2 + t3 is at least aij which proves our result.

Let Jχ(1,m) be the group of units of J (Aχ(1,m). We will need the struc-
ture of the representation

ind
Jχ(1,m)

Jχ(1,m+1)(id)

for the proof of our main theorem. We follow the strategy already established
in the previous chapter. Let Kχ(1,m) be the set of matrices (mij) such that
mij ∈ PF for i < j < n and min ∈ OF for i < n, mii ∈ 1 + PF for i ≤ n and
mij ∈ PF

aij for i > j and (aij) is the matrix Aχ(1,m).

Lemma 4.1.5. The set Kχ(1,m) is a normal subgroup of Jχ(1,m).

Proof. We first check that Kχ(1,m) is closed under matrix multiplication. Let
(mij) and (m′ij) be two matrices from the set Kχ(1,m). Let i < j < n the
ijth term is the sum of

t1 = mi1m
′
1j +mi2m

′
2j + · · ·+miim

′
ij ,

t2 = mii+1m
′
i+1j +mii+2m

′
i+2j + · · ·+mijm

′
jj

and
t3 = mij+1m

′
j+1j + · · ·+minm

′
nj .

The valuation of m′kj is positive for 1 < k ≤ i hence t1 has positive valua-
tion. The valuation of mik is positive for i < k ≤ j and hence t2 is positive.
The valuation of m′kj is positive for j < k ≤ n hence valuation of t3 is positive.
This shows that ijth-term of the matrix product has positive valuation. The
rest of the verifications on congruence conditions are verified in lemma 4.1.4.
The existence of inverse for an element in Kχ(1,m) follows from Gaussian
elimination.
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Now we establish the normality of Kχ(1,m). The group Kχ(1,m) satisfies
Iwahori decomposition with respect to the subgroups P(n−1,1) and M(n−1,1).
We also note that Kχ(1,m) ∩ U(n−1,1) is equal to Jχ(1,m) ∩ U(n−1,1) and
Kχ(1,m) ∩ Ū(n−1,1) is equal to Jχ(1,m) ∩ Ū(n−1,1). To check the normality
of Kχ(1,m) we have to check that Jχ(1,m) ∩M(n−1,1) normalizes Kχ(1,m).
This is equivalent to checking that Kχ(1,m) ∩M(n−1,1) is a normal subgroup
of Jχ(1,m) ∩M(n−1,1).

We note that Jχ(1,m) ∩M(n−1,1) = Jχ′(1)×O×F where χ′ = �n−1
i=1 χi. Let

p1 be the projection of Jχ(1,m)∩M(n−1,1) onto Jχ′(1) and π1 be the reduction
mod PF map. Note that Kχ(1,m) ∩M(n−1,1) is the kernel of π1 ◦ p1.

From the above lemma the groupKχ(1,m) is a normal subgroup of Jχ(1,m).
We also note that Jχ(1,m) ∩ Ū(n−1,1) is contained in Kχ(1,m). From this we
conclude that Jχ(1,m) = Kχ(1,m)Jχ(1,m + 1). From the Mackey decompo-
sition we get that

resKχ(1,m) ind
Jχ(1,m)

Jχ(1,m+1)(id) ' ind
Kχ(1,m)

Kχ(1,m)∩Jχ(1,m+1)(id).

From the definition ofKχ(1,m) we get thatKχ(1,m)∩Jχ(1,m+1) = Kχ(1,m+
1) and

resKχ(1,m) ind
Jχ(1,m)

Jχ(1,m+1)(id) ' ind
Kχ(1,m)

Kχ(1,m+1)(id). (4.5)

Lemma 4.1.6. The group Kχ(1,m+ 1) is a normal subgroup of Kχ(1,m).

Proof. Since the groups Kχ(1,m) satisfy Iwahori decomposition,
Kχ(1,m)∩U(n−1,1) is equal to Kχ(1,m+1)∩U(n−1,1) and Kχ(1,m)∩M(n−1,1)

is equal to Kχ(1,m + 1) ∩M(n−1,1). We have to check that u−j(u−)−1 and
u−u+(u−)−1 belong to Kχ(1,m+ 1) for all u−, j and u+ in

Kχ(1,m) ∩ Ū(n−1,1),

Kχ(1,m) ∩M(n−1,1) and

Kχ(1,m) ∩ U(n−1,1).

respectively.

We first consider the case u−j(u−)−1. We can rewrite u−j(u−)−1 as
j{j−1u−j(u−)−1}. Since j ∈ Kχ(1,m) ∩M(n−1,1) = Kχ(1,m+ 1) ∩M(n−1,1),
it is enough to show that j−1u−j(u−)−1 belongs to the group Kχ(1,m + 1).
Let j and u− be written in their block matrix form as follows.

j =

(
J1 0
0 j1

)
u− =

(
1n 0
U− 1

)
The conjugation j−1u−j(u−)−1 in its block form is given by(

1n−1 0
j−1
1 U−J1 − U− 1

)
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Let U− = [u1, u2, . . . , un−1] and J1 = (jij). The kth entry of the matrix
U−J1 is the sum of t1 = u1j1k + u2j2k + · · · + uk−1jk−1k, t2 = ukjkk and
t3 = uk+1jk+1k + · · · + un−1jn−1k. Let l(χkχ−1

n ) > 1 then valuation of utjtk
for t < k is at least l(χtχ−1

n ) +m− 1 + 1 which is at least l(χkχ−1
n ) +m this

shows that valuation of the term t1 is at least l(χkχ−1
n )+m−1. The valuation

of utatk for k < t is at least l(χtχ−1
n ) + l(χtχ

−1
k ) +m− 1 > l(χkχ

−1
n ) +m− 1.

This shows that t1 + t2 + t3 ≡ t2 = ukjkk = u2 mod PF
l(χkχ

−1
n )+m. We note

that j−1
1 u2 ≡ u2 hence the matrix(

1n 0
j−1
1 U−J1 − U− 1

)
is contained in Kχ(1,m+ 1) ∩ Ū(n−1,1)

Let us consider the conjugation u−u+(u−)−1. We write u+ in the block
form as (

1n U+

0 1

)
The conjugated matrix u−u+(u−)−1 is given by(

1n−1 − U+U− U+

−U−U+U− U−U+ + 1

)
.

Let 1n−1−U+U− = (uij). The valuation of uij for i > j is greater or equal to
l(χnχ

−1
j ) and l(χnχ−1

j ) is greater or equal to l(χiχ−1
j ). From this we conclude

that u−u+(u−)−1 ∈ Kχ(1,m+ 1).

4.2 Preliminaries for main theorem

The inclusion map of Kχ(1,m) ∩ Ūn in Kχ(1,m) induces an isomorphism of
the quotient Kχ(1,m)/Kχ(1,m+ 1) with the abelian quotient

Kχ(1,m) ∩ Ū(n−1,1)

Kχ(1,m+ 1) ∩ Ū(n−1,1)

. (4.6)

Hence the representation ind
Kχ(1,m)

Kχ(1,m+1)(id) splits into characters ηk with 1 ≤
k ≤ p. The group Jχ(1,m) acts on these characters and let Z(ηk) be the
Jχ(1,m)-stabilizer of the character ηk. From Clifford theory we get that

ind
Jχ(1,m)

Jχ(1,m+1)(id) '
⊕
ηnk

ind
Jχ(1,m)

Z(ηnk ) (Uηnk ) (4.7)

where ηnk is a representative for an orbit under the action of Jχ(1,m) and
Uχnk is an irreducible representation of the group Z(ηnk). Since

Jχ(1,m) = (Jχ(1,m) ∩M(n−1,1))Kχ(1,m)
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we get that Z(ηk) = (Z(ηk) ∩M(n−1,1))Kχ(1,m).

The final step in our preliminaries is to understand the mod PF reduction
of the group

Z(ηk) ∩M(n−1,1)

for some non-trivial character ηk. The group Jχ(1,m) ∩M(n−1,1) is equal to
Jχ′(1)×O×F acts on the quotient

Kχ(1,m) ∩ Ū(n−1,1)

Kχ(1,m+ 1) ∩ Ū(n−1,1)

(4.8)

by conjugation. Let j and u− be two elements from Jχ(1,m)∩M(n−1,1) (which
is Jχ′(1)×O×F for χ′ = �n−1

i=1 χi) and Kχ(1,m)∩ Ū respectively. We write the
elements j and u− written in their block diagonal form as(

J1 0
0 j1

)
and

(
12 0
U− 12

)
respectively. The map u− 7→ $

−(m−1)
F U− induces an isomorphism between the

group (4.8) and M1×(n−1)(kF ). The group Jχ(1) × O×F acts through its mod
PPF reduction-Bn−1(kF )×k×F on the set of matricesM1×(n−1)(kF ) by setting
(b, x)(A) = xAb−1 for all b ∈ Bn−1(kF ), x ∈ k×F and A ∈M1×(n−1)(kF ). Hence
the map u− 7→ $

−(m−1)
F U− gives an Jχ(1) × OF

×-equivariant map between
M1×(n−1)(kF ) and the group (4.8). We also have a M(n−1,1)(kF )-equivariant
map between the group of characters of M1×(n−1)(kF ) and M(n−1)×1(kF ) (see
lemma 3.0.14). Hence we obtain a Jχ(1)×OF

× equivariant map between the
group of characters of the quotient (4.8) and the group M(n−1)×1(kF ) where
Jχ(1) acts through its mod PF reduction-B(n−1)(kF ) × k×F and the action
is (b, x)A = bAx−1 (see lemma 3.0.14). Hence the group Z(ηk) ∩ M(n−1,1)

for non-trivial ηk is equal to ZBn−1(kF )×k×F
(A) for some non-zero matrix A in

M(n−1)×1(kF ) .

Let p be the projection of Bn−1(kF )× k×F onto the diagonal torus

Tn−1(kF )× k×F = Tn(kF ),

let pi be the ith projection of Tn(kF ) onto k×F . The centralizer ZBn−1(kF )×k×F
(A)

of a non-zero matrix A = [u1, u2, . . . , un−1]tr satisfies the following property:
there exists j < n such that pj(p(t)) = pn(p(t)) for all t ∈ ZBn−1(kF )×k×F

(m)

(see lemma 3.0.15). This shows that for any non-trivial character ηnk , Z(ηnk)∩
Tn satisfies the property that

pj(t) ≡ pn(t)

mod PF .

73



The character χ = �ni=1χi of Jχ(1) occurs with multiplicity one in the
representation

ind
Jχ(1)

Jχ(m)(χ).

We denote by U0
m(χ) the complement of χ in ind

Jχ(1)

Jχ(m)(χ). We denote by
Um(χ) the representation

ind
GLn(OF )
Jχ(1) {U0

m(χ)}.

4.3 Main theorem

Theorem 4.3.1. Let #kF > 3. The irreducible sub-representations of Um(χ)
are atypical for the component s.

Proof. We prove the theorem by using induction on the positive integers n and
m. For n = 1 the representation Um(χ) is trivial and the theorem is vacuously
true. Let n be a positive integer greater than one. We assume that the theorem
is proved for all positive integers less than n. We will use the induction hypoth-
esis to show the theorem for n. We note that Jχ(1,m) and Kχ(1,m) satisfy
Iwahori decomposition with respect to the parabolic subgroup P(n−1,1) and
standard Levi-subgroup M(n−1,1), Jχ(1,m) ∩ U(n−1,1) = Kχ(1,m) ∩ U(n−1,1)

and Jχ(1,m) ∩ Ū(n−1,1) = Kχ(1,m) ∩ Ū(n−1,1). Now lemma 2.2.6 shows that

ind
Jχ(1,m)∩M(n−1)

Jχ(m)∩M(n−1)
(χ) extends to a representation of Jχ(1,m) and this extension

is given by
ind

Jχ(1,m)

Jχ(m) (χ).

If we denote by χ′ the character �n−1
i=1 χi of

∏n−1
i=1 F

× then we have

ind
Jχ(1,m)∩M(n−1)

Jχ(m)∩M(n−1)
(χ) ' ind

Jχ′ (1)

Jχ′ (m)(χ
′) � χn.

We also have
ind

Jχ′ (1)

Jχ′ (m)(χ
′) � χn ' U0

m(χ′) � χn ⊕ χ.

Combining the above isomorphisms we get that

ind
GLn(OF )
Jχ(m) (χ) ' ind

GLn(OF )
Jχ(1,m) {U

0
m(χ′) � χn}

⊕
ind

GLn(OF )
Jχ(1,m) (χ). (4.9)

We will use the induction hypothesis to show that GLn(OF )-irreducible
sub-representations of

ind
GLn(OF )
Jχ(1,m) {U

0
m(χ′) � χn} (4.10)

are atypical representations. By induction hypothesis any GLn−1(OF )-irreducible
sub-representation of Um(χ′) occurs as sub-representation of some

i
GLn−1(F )
PI

(σ)
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where [Tn−1, χ
′] and [MI , σ] are two distinct inertial classes. We now get that

irreducible sub-representations of 4.10 occur as sub-representations of

i
GLn(F )
PI′

(σ � χn)

where I ′ is obtained from I by adding 1 at the end of the ordered partition
I of n − 1. If I 6= (1, 1, . . . , 1) then the Levi sub-groups MI′ and Tn are not
conjugate and hence the inertial classes [MI′ , σ � χn] and [Tn, χ] are distinct
inertial classes and this proves our claim in this case. Now let MI = Tn−1

and σ = �n−1
i=1 σi be the tensor factorization of Tn−1. Since the components

[Tn−1, χ
′] and [Tn−1, σ] are distinct we get a character χt occurring with non-

zero multiplicity in the multi-set {χ1, χ2, . . . , χn−1} but with a different mul-
tiplicity in the multi-set {σ1, σ2, . . . , σn−1}. Adding the character χn to both
multi-sets above keeps the multiplicities of the character χt distinct and this
shows that [Tn, χ] and [Tn, σ � χn] are different inertial classes.

This shows that any typical representation must occur as a sub-representation
of

ind
GLn(OF )
Jχ(1,m) (χ).

The character χ occurs with multiplicity one in the representation ind
Jχ(1)

Jχ(1,m)(χ).

We denote by U0
1,m(χ) the complement of the character χ in ind

Jχ(1)

Jχ(1,m)(χ). We
denote by U1,m(χ) the representation

ind
GLn(OF )
Jχ(1) {U0

1,m(χ)}.

We first note that

Um(χ) ' ind
GLn(OF )
Jχ(1,m) {U

0
m(χ′) � χn} ⊕ U1,m(χ).

We already showed that the first summand on the right-hand side of the above
equation has all its irreducible sub-representations atypical. We now show
that irreducible sub-representations of U1,m(χ) are atypical and this proves
the main theorem.

We first note that

ind
Jχ(1)

Jχ(1,m+1)(χ) ' ind
Jχ(1)

Jχ(1,m){ind
Jχ(1,m)

Jχ(1,m+1)(id)⊗ χ}.

Using the decomposition 4.7 we get that

ind
Jχ(1)

Jχ(1,m+1)(χ) '
⊕
ηnk

ind
Jχ(1)

Z(ηnk ){Uηnk ⊗ χ}.

Recall that ηnk is a representative for the orbit under the action of the group
Jχ(1,m) on the characters ηt of Kχ(1,m) which are trivial on Kχ(1,m + 1)
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and Z(ηnk) is the Jχ(1,m)-stabilizer of the character ηnk . There is exactly
one orbit consisting of the id character and hence

ind
Jχ(1)

Jχ(1,m+1)(χ) ' ind
Jχ(1)

Jχ(1,m)(χ)
⊕

ηnk 6=id

ind
Jχ(1)

Z(ηnk ){Uηnk ⊗ χ}. (4.11)

Consider the representation

ind
Jχ(1)

Z(ηnk ){Uηnk ⊗ χ}

for some representative ηnk 6= id. Now recall that Z(ηnk) ∩ Tn is a subgroup
of Tn(OF ) =

∏n
i=1OF

× and there exists a positive integer j < n such that
pj(t) ≡ pn(t) mod PF for all t ∈ Z(ηnk). Let κ be a character of F× such
that κ is ramified and 1 + PF is contained in the kernel of κ. Let χκ be the
character

χ1 � χ2 � χjκ� · · ·� χnκ
−1.

We observe that resZ(ηnk )(χ) = resZ(ηnk )(χ
κ) and hence

ind
Jχ(1)

Z(ηnk ){Uηnk ⊗ χ} ' ind
Jχ(1)

Z(ηnk ){Uηnk ⊗ χ
κ}. (4.12)

From the above paragraph we get that

U0
1,m+1(χ) ' U0

1,m(χ)
⊕

ηnk 6=id

ind
Jχ(1)

Z(ηnk ){Uηnk ⊗ χ}.

and from the above identity we conclude that

U1,m+1(χ) ' U1,m(χ)
⊕

ηnk 6=id

ind
GLn(OF )
Z(ηnk ) {Uηnk ⊗ χ}. (4.13)

From the equation (4.12) we get that

ind
GLn(OF )
Z(ηnk ) {Uηnk ⊗ χ} ' ind

GLn(OF )
Z(ηnk ) {Uηnk ⊗ χ

κ}.

If we choose κ such that the components [Tn, χ] and [Tn, χ
κ] are two distinct

inertial classes then we can conclude that irreducible sub-representations of

ind
GLn(OF )
Z(ηnk ) {Uηnk ⊗ χ}

are atypical and hence using the identity (4.13) recursively we get that ir-
reducible sub-representations of U1,m(χ) are atypical representations for all
positive integers m.

To prove the theorem we have to justify that we can choose a character
κ as in the previous paragraph. Now for any character κ non-trivial on OF

×

(such a character exists since #kF > 2) and trivial on 1 + PF , the equality
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of the inertial classes [Tn, χ] and [Tn, χ
κ] implies the equality of multiplicities

of χj in the multi-sets {χ1, χ2, . . . , χn} and {χ1, χ2, . . . , χjκ, . . . , χnκ
−1}. The

equality of multiplicities implies χjχ−1
n = κ. Now if #kF > 3 we have at least

two non-trivial tame characters and hence we can choose κ distinct from a
possibly tame character χjχ−1

n .

The pair (Jχ(1), χ) is the Bushnell-Kutzko type for the component s (see
[BK99, Section 8]). Hence from the above theorem we deduce that irreducible
sub-representations of

ind
GLn(OF )
Jχ

(χ)

are precisely the typical representations for the component s = [Tn, χ] and
#kF > 3. Moreover we have

Corollary 4.3.2. Let #kF > 3. Let τ be a typical representation for the
component s = [T, χ] then

dimC HomGLn(OF )(τ, i
GLn(F )
Bn

(χ)) = dimC HomGLn(OF )(τ, ind
GLn(OF )
Jχ

(χ))

Remark 4.3.3. When #kF = 2 and n = 2 Henniart showed in [BM02][A.2.6,
A.2.7] that the Bushnell-Kutzko type for the component s = [T2, χ1 � χ2],
χ1χ

−1
2 6= id has two typical representations one given by

ind
GL2(OF )
Jχ(1) (χ)

and the other representation turns out to be the (it can be shown a priori that
there is a unique complement (see [Cas73][Proposition 1(b)])) complement of
ind

GL2(OF )
Jχ(1) (χ) in ind

GL2(OF )
Jχ(2) (χ). But for #kF > 2 and n > 3 we expect that

typical representations are precisely the irreducible sub-representations of

ind
GLn(OF )
Jχ(1) (χ).

For #kF = 2 and n > 2 a typical representation may not be contained in the
above representation as shown by Henniart for the case of GL2(F ).
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Chapter 5

The inertial class with Levi-subgroup of
type (n,1)

Let V and V1 be two F -vector spaces of dimensions n > 1 and 1 respectively.
Let P be the parabolic subgroup of GL(V ⊕ V1) fixing the flag V ⊂ V ⊕ V1.
We denote by M its Levi-subgroup fixing the decomposition V ⊕V1 and hence
we have M = GL(V )×GL(V1). In this chapter we are interested in the clas-
sification of typical representations for the component [M,σ� χ] where σ is a
cuspidal representation of GL(V ) and χ is a character of GL(V1). Let (J0, λ)
be a maximal simple (Bushnell-Kutzko’s) type contained in the representation
σ. We recall certain important features of this type for our purpose.

5.1 Bushnell-Kutzko semi-simple type

We denote by A the algebra EndF (V ). Let [A, l, 0, β] be a simple strata in
A defining the maximal simple type (J0, λ). We denote by B the algebra of
endomorphisms commuting with E = F [β]. Let B = A ∩B. We denote by P
and D the radicals of A and B respectively. Given any hereditary order A, we
define the filtration U i(A) by setting

U i(A) = 1n + Pi

for all i ≥ 1 and U0(A) is the set of units of A. The type (J0, λ) is called
maximal if B is a maximal hereditary order in B. The group J0 contains
U0(B). There is a normal subgroup J1 such that J1 ∩ U0(B) = U1(B) and

U0(B)

U1(B)
' J0

J1
.

The group U0(B)/U1(B) is a general linear group of a vector space over a
finite field. The representation λ is an irreducible representation which is is
given by a tensor product κ ⊗ ρ where κ is a representation of J0, called
β-extension (see [BK93, Chapter 5, Definition 5.2.1]) and ρ is a cuspidal rep-
resentation of U0(B)/U1(B) (considered as a representation of J0 through the
quotient J0/J1). We refer to [BK93, Chapter 5] for complete details of these
constructions. For the precise definition and description see [BK93, chapter 5,
Definition 5.5.10].

We fix the following conventions. Let e and f be the ramification index
and inertial index of E. We fix a lattice chain L defining the order B. Let
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A be the hereditary order defined by the lattice chain L. We fix a OE-basis
(w1, w2, . . . wn/ef ) for the lattice chain L and then a OF -basis for OEwi for
1 ≤ i ≤ ef . (see [BK93, Chapter 1, 1.1.7]). We can now extract a F -basis
(v1, v2, . . . vn+1) for the vector space V ⊕ V1 where V1 is a one dimensional
vector space over F . In this basis we write all our endomorphisms as matrices
of Mn+1(F ). This also provides J0 ⊂ GLn(OF ).

Let I be the ordered partition (n, 1) of n + 1. We are interested in the
classification of typical representations for the component [MI , σ � χ]. From
the lemma 2.2.7 it is enough to classify the typical representations for the
component s = [MI , σ � id].

To classify typical representations for the component s = [MI , σ � id] it is
enough to examine which GLn+1(OF )-irreducible sub-representations of

resGLn+1(OF ) i
GLn+1(F )
PI

(σ � id)

are typical for the component [M,σ � id]. Let τ be the unique typical repre-
sentation contained in the representation σ. It follows from lemma 2.2.4 that
the representation

ind
GLn+1(OF )
PI∩GLn+1(OF )(τ � id)

has a complement in

resGLn+1(OF ) i
GLn+1(F )
PI

(σ � χ)

whose irreducible sub-representations are atypical.

Now we have to look for typical representations occurring in the represen-
tation

ind
GLn+1(OF )
PI∩GLn+1(OF )(τ � id).

For this purpose we will define the groups Hm for m ≥ N0 for some positive
integer N0, ∩m≥N0

Hm = PI(OF ), Hm has Iwahori decomposition with respect
to PI and its Levi-subgroup MI and τ � id admits an extension to HN0 with
HN0 ∩ ŪI and HN0

∩ UI in the kernel of this extension. The construction of
Hm would give us

ind
GLn+1(OF )
PI∩GLn+1(OF )(τ � id) '

⋃
m≥N0

ind
GLn+1(OF )
Hm

(τ � id).

Before we start this construction it is instructive to first examine the Bushnell-
Kutzko semi-simple type for the component [MI , σ � id].

Let us recall some standard material required from [BK99]. First let us
begin with lattice sequences. A lattice sequence is a function Λ from Z to the
set of OF -lattices in a F -vector space V such that Λ(n+ 1) ⊆ Λ(n) for n ∈ Z
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and there exists an e(Λ) ∈ Z such that Λ(n+ e(Λ)) = PF Λ(n) for all n ∈ Z.
A lattice chain is a lattice sequence with the strict inclusion between Λ(n+ 1)
and Λ(n) for all n ∈ Z. One extends the function Λ to the set of real numbers
by setting

Λ(r) = Λ(−[−r])

for all r ∈ R and [x] is the greatest integer less than or equal to x. Given two
lattice sequences Λ1 and Λ2 in the vector spaces V1 and V2 over F , Bushnell
and Kutzko defined the direct sum say Λ of Λ1 and Λ2, a lattice sequence, in
the vector space V1 ⊕ V2. Let e = lcm(e(Λ1), e(Λ2)) Then

Λ(er) = Λ1(e1r)⊕ Λ(e2r).

Given a lattice sequence Λ in a vector space V one can define a filtration
{ar(Λ) | r ∈ R} on the algebra EndF (V ) given by the equation

ar(Λ) = {x ∈ EndF (V )| xΛ(i) ⊆ Λ(i+ r) ∀ i ∈ Z}.

We also define ur(Λ) for r > 0 and r ∈ Z to be 1 + ar(Λ) and u0(Λ) is the
group of units in the order a0(Λ).

Let (Js, λs) be the Bushnell-Kutzko type for the component

[GLn(F )×GL1(F ), σ � id].

The group Js satisfies Iwahori decomposition with respect to the parabolic
subgroup PI and the Levi-subgroupMI . Let us recall that we have the stratum
[A, l, 0, β] defining the simple type (J0, λ) for the inertial class [GLn(F ), σ].
The order A is defined by a lattice chain Λ1 with values in sub-lattices of OnF .
We denote by Λ2 the lattice chain defined by Λ2(i) = Pi

F for all i ∈ Z. Then
we have

1. Js ∩ U(n,1) = u0(Λ1 ⊕ Λ2) ∩ U(n,1).

2. Js ∩M is J0 ×O×F .

3. Js ∩ Ū(n,1) = ul+1(Λ1 ⊕ Λ2) ∩ Ū(n,1).

4. The restriction of λs to Js ∩ M is isomorphic to λ � id, the groups
Js ∩ Ū(n,1) and Js ∩ U(n,1) are contained in the kernel of λs.

We refer to [BK99][Section 8, paragraph 8.3.1] for the construction of the above
Bushnell-Kutzko’s type.

Now we make an explicit calculation of the terms ul+1(Λ1 ⊕ Λ2) ∩ Ū(n,1)

and u0(Λ1 ⊕Λ2)∩U(n,1). Note that the periodicity of the direct sum Λ1 ⊕Λ2

is the least common multiple of the periodicity of the two lattice sequences Λ1

and Λ2. We hence deduce that the periodicity of the lattice sequence Λ is e
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where e is the period of the lattice chain Λ1. Let t be an integer such that
0 ≤ t ≤ e − 1 and L0 be the free OF module On/eF . The lattice chain Λ1 is
given by :

Λ1(t) = (L0 ⊕ L0 ⊕ · · · ⊕ L0)⊕ ($FL0 ⊕$FL0 ⊕ · · · ⊕$FL0)

where the L0 is repeated e− t times and $FL0 is repeated t times in the first
and second direct summand respectively. Hence the lattice chain Λ is given by

Λ(0) = Λ1(0)⊕ Λ2(0) = (L0 ⊕ L0 ⊕ · · · ⊕ L0)⊕OF

and

Λ(t) = Λ1(t)⊕Λ2(t/e) = (L0⊕L0⊕· · ·⊕L0)⊕($FL0⊕$FL0⊕· · ·⊕$FL0)⊕PF .

for 0 ≤ t ≤ e − 1. We observe that the lattice sequence Λ is a lattice
chain and the units of the hereditary order a0(Λ) corresponding to Λ, in
the notation of chapter 3, are given by PJ(1) where J = (n/e, n/e, . . . (e −
1 times) . . . , n/e, n/e+ 1).

We note that u0(Λ)∩U(n,1) = U(n,1)(OF ). Let n̄(n,1) be the lower nilpotent
matrices of the type (n, 1) i.e the Lie-algebra of Ū(n,1). We have the identity

ul+1(Λ) ∩ Ū(n,1) = 1 + (al+1(Λ) ∩ n̄(n,1)).

Let l + 1 = el′ + r where 0 ≤ r < e. Then from the observation that Λ is a
lattice chain of periodicity e we deduce that

al+1(Λ) ∩ n̄(n,1) = $l′

F (ar(Λ) ∩ n̄(n,1)).

Finally it remains to calculate the group ar(Λ)∩ n̄(n,1). We note that ar(Λ)∩
n̄(n,1) is the following set

{x ∈Mn+1(F ) ∩ n̄(n,1) | xΛ(i) ⊆ Λ(i+ r) ∀ i ∈ Z}.

For r ≥ 1 the matrix A = [M1,M2, . . . ,Me, 0] in n̄(n,1) (Mi is a matrix of
type 1× n/e for 1 ≤ i ≤ e) belongs to the set ar(Λ) ∩ n̄(n,1) if and only if the
following conditions are satisfied.

1. Mi ∈ $2
FM1×e(OF ) for i ≤ r − 1 and

2. Mi ∈ $FM1×e(OF ) for i > r − 1.

If r = 0 and e > 1 then we know that Mi ∈ $FM1×n/e(OF ) for 1 ≤ i ≤ e− 1
and Me ∈ M1×n/e(OF ). If r = 0 and e = 1 then we have A ∈ M1×n(OF ).
This completes the description of the Bushnell-Kutzko semi-simple type.
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5.2 Preliminaries.

Let m be a positive integer and PI(m) be the inverse image of the group
PI(OF /PF

m) under the mod-PF
m reduction of GLn+1(OF ). There exists a

positive integer N1 such that the principal congruence sub-group of level N1

is contained in the kernel of the representation τ . The representation τ � id of
MI(OF /PF

m) now extends to a representation of PI(m) by inflation for all
m > N1. We note that PI(m) ∩ ŪI and PI(m) ∩UI are both contained in the
kernel of this extension. Now applying lemma 2.2.5 to the sequence of groups
PI(m) and τ � id for m ≥ N1 we get that

ind
GLn+1(OF )
PI∩GLn+1(OF )(τ � id) '

⋃
m≥N1+1

ind
GLn+1(OF )
PI(m) (τ � id).

This concludes that the typical representations occur as sub-representations
of

ind
GLn+1(OF )
PI(m) (τ � id)

for some positive integer m ≥ N1 + 1.

For making Mackey decompositions easier and other reasons, it is conve-
nient to work with a smaller subgroup P 0

I (m) of PI(m). We now modify the
representation

ind
GLn+1(OF )
PI(m) (τ � id).

We recall thatKn(p) is the principal congruence subgroup of level p of GLn(OF ).
The group J0 contains the group U [l/2]+1(A) ( U [l/2]+1(A) ⊂ H0 ⊂ J0 ). The
representation λ restricted to the group U [l/2]+1(A) is a direct sum of the same
character ψβ which is trivial on the group U l+1(A). We also recall the notation
that l+ 1 = el′+ r where 0 ≤ r ≤ e− 1. We note that U l+1(A) = 1n +$l′

FP
r
A.

If r = 0 then Kn(1) ⊂ Pr
A. If r > 1 then from the formulas [BK93][2.5.2] we

get that Kn(2) ⊂ Pr
A for 0 ≤ r < e. This shows that the representation λ is

trivial on Kn(Ns) where Ns is given by:

Notation 5.1. From now we fix Ns = [(l + 1)/e] + 1 if r = 0 and e > 1, if
r = 0 and e = 1 then Ns = l + 1 and Ns = [(l + 1)/e] + 2 if r ≥ 1.

Let π be the projection map

PI(OF )→MI(OF ).

For m ≥ Ns we denote by P 0
I (m) the group Kn+1(m)π−1(J0 × O×F ). Since

Kn+1(m) ∩ PI ⊂ π−1(J0 × O×F ) the group P 0
I (m) satisfies Iwahori decom-

position with respect to the subgroup PI and its Levi-subgroup MI i.e we
have

P 0
I (m) = (P 0

I (m) ∩ UI)(P 0
I (m) ∩MI)(P

0
I (m) ∩ ŪI)
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where P 0
I (m) ∩ UI is UI(OF ), P 0

I (m) ∩MI is J0 × O×F and (P 0
I (m) ∩ ŪI) is

Kn+1(m) ∩ ŪI . We observe that λ� id extends to a representation of P 0(m)
for all m ≥ Ns. Now the representation τ � id of GLn(OF )×O×F is isomorphic
to

{ind
GLn(OF )
J0 (λ)}� id .

Applying lemma 2.2.6 to the groups J1 = PI(m) and J2 = P 0
I (m) and λ =

λ� id we get that

ind
GLn(OF )
PI(m) (τ � id) ' ind

GLn(OF )

P 0
I (m)

(λ� id)

for all m ≥ Ns. Hence we have

ind
GLn+1(OF )
PI∩GLn+1(OF )(τ � id) '

⋃
m≥Ns

ind
GLn+1(OF )

P 0
I (m)

(λ� id).

Now a typical representation occurs as a sub-representation of

ind
GLn+1(OF )

P 0
I (m)

(λ� id)

for some m ≥ Ns.

As we did in the previous chapters we first have to understand the repre-
sentation

ind
P 0
I (m)

P 0
I (m+1)

(id)

for m ≥ Ns. The strategy is fairly standard by now. We will first consider
a convenient normal subgroup KI(m) of PI(m) such that P 0

I (m) is equal to
KI(m)P 0

I (m + 1) and KI(m) ∩ P 0
I (m + 1) = KI(m + 1) for m ≥ Ns. For

m ≥ Ns we define KI(m) to be the group Kn+1(m)π−1(Kn(Ns)× (1 +PNs
F )).

This group does satisfy the above two properties.

Lemma 5.2.1. The group KI(m) is a normal subgroup of P 0
I (m) and KI(m+

1) is a normal subgroup of KI(m) for all m ≥ Ns.

Proof. By definition of the groups KI(m) we have KI(m) ∩ UI = P 0
I (m) ∩ UI

and KI(m)∩ ŪI = P 0
I (m)∩ ŪI . To show the normality of KI(m) in PI(m) we

have to verify that P 0
I (m)∩MI normalize the group KI(m). But P 0

I (m)∩MI

normalizes the group KI(m) ∩ UI = UI(OF ) and KI(m) ∩ ŪI = ŪI($
m
F OF ).

The groupKI(m)∩MI is a normal subgroup ofMI(OF ) and hence P 0
I (m)∩MI

normalizes KI(m) ∩MI . This shows the first part of the lemma.

Since KI(m) ∩ PI = KI(m + 1) ∩ PI , we have to check that KI(m) ∩ ŪI
normalizes the group KI(m+ 1). We note that ŪI is abelian hence we have to
check that the conjugations u−j(u−)−1 and u−u+(u−)−1 belong to the group
KI(m+ 1) for all u− ∈ KI(m) ∩ ŪI , j ∈ KI(m+ 1) ∩MI = KI(m) ∩MI and
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u+ ∈ KI(m + 1) ∩ UI = UI(OF ). Let us begin with the element u−j(u−)−1.
We have u−j(u−)− = j{j−1u−j(u−)−1}. Let

j =

(
J1 0
0 j1

)
u− =

(
1n 0
U− 1

)
be the block diagonal form of j and u−; J1 ∈ Kn(Ns), j1 ∈ 1 + PF

Ns and
U− ∈ $m

FM1×n(OF ). The element j−1u−j(u−)−1 is of the form(
1n 0

j−1
1 U−J1 − U− 1

)
We note that the matrix j−1

1 U−J1 − U− belongs to $m+1
F M1×n(OF ). This

shows that j−1u−j(u−)−1 ∈ KI(m+ 1) ∩ ŪI . Hence we get that

u−j(u−)−j{j−1u−j(u−)−1} ∈ KI(m+ 1).

We now consider the conjugation u−u+(u−)−1. We write u+ in its block
matrix form as (

1n U+

0 1

)
where U+ ∈ Mn×1(OF ). Now the conjugation u−u+(u−)−1 in the block ma-
trix from is as follows (

1n − U+U− U+

−U−U+U− U−U+ + 1

)
.

Since U−U+U− ∈ $m+1M1×n(OF ), we conclude that u−u+(u−)−1 ∈ KI(m+
1). This ends the proof of this lemma.

We use Mackey decomposition to the double coset decomposition P 0
I (m) =

KI(m)P 0
I (m+ 1) to get that

resKI(m) ind
P 0
I (m)

P 0
I (m+1)

(id) ' ind
KI(m)
KI(m+1)(id).

It follows from Iwahori decomposition that the inclusion of KI(m) ∩ ŪI in
KI(m) induces an isomorphism between KI(m)/KI(m + 1) and the abelian
group

KI(m) ∩ ŪI
KI(m+ 1) ∩ ŪI

.

Hence the representation ind
KI(m)
KI(m+1)(id) decomposes as a direct sum of char-

acters ηk for 1 ≤ k ≤ p where ηk is trivial on KI(m + 1). The group P 0
I (m)
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acts on these characters and let ηnk be the set of representatives for the or-
bits under this action. We also denote by Z(η) the P 0

I (m)-stabilizer of the
character η. Now Clifford theory gives us the isomorphism

ind
P 0
I (m)

P 0
I (m+1)

(id) =
⊕
ηnk

ind
P 0
I (m)

Z(ηnk )(Uηnk ) (5.1)

where ηnk is a representative for the action of P 0
I (m) on the set of characters

ηk and Uηnk is an irreducible representation of Z(ηnk).

Now we have to bound the group Z(η). We note that P 0
I (m) is equal to

(P 0
I (m) ∩MI)KI(m) and hence Z(η) = (Z(η) ∩MI)KI(m). To bound the

group Z(η) we can only need to control Z(η)∩MI . Let u− ∈ KI(m)∩ ĪI and(
1n 0
U− 1

)
be the block form of u− where U− is a matrix in $m

FM1×n(OF ). The map
u− 7→ $−mF U− induces anMI(OF )-equivariant isomorphism betweenM1×n(kF )
and the quotient

KI(m) ∩ ŪI
KI(m+ 1) ∩ ŪI

.

We also have an MI(OF )-equivariant isomorphism between Mn×1(kF ) and
̂M1×n(kF ) (see lemma 3.0.14). We note that P 0

I (m) ∩MI = J0 ×O×F .

Let η be a non-trivial character of KI(m) which is trivial on KI(m +
1). We will now bound the subgroup Z(η) ∩ (U0(B) × O×F ) for η 6= id and
this will be enough for our purpose. Since we have a MI(OF )-equivariant
isomorphism between the group of characters on the quotient KI(m)/KI(m+
1) with Mn×1(kF ), we can as well study the group Z(A) ∩ (U0(B) × O×F )
where Z(A) is the MI(OF )-stabilizer of a non-zero matrix A ∈ Mn×1(kF ).
The action of the group MI(OF ) factorizes through Kn(1) × (1 + PF ) from
which we conclude that (1n +De)× (1 +PF ) is contained in the kernel of the
action of MI(OF ). This reduces our situation to the following setting. The
group GLn(kF )× k×F acts on Mn×1 by setting

(g1, g2)A = g1Ag
−1
2

where g1 ∈ GLn(kF ), g2 ∈ k×F and A ∈ Mn×1(kF ). If we fix a OE-basis as in
the previous paragraph then a kF -basis for the vector space

(OE/$FOE)n/ef = (OE/Pe
E)n/ef

we get the inclusion

GLn/ef (OE /PE
e) = U0(B)/Ue(B) ↪→ GLn(kF ).
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We are interested in the mod PE reduction of the first projection of

ZGLn/ef (OE /PE
e)×k×F

(A)

for some non-zero matrix A inMn×1(kF ) (recall that λ = κ⊗ρ where ρ is a cus-
pidal representation of GLn/ef (kE) = U0(B)/U1(B) ). We put n0 = n/ef .

Let $E be a uniformizer of OE . Let N be the operator on the kE-vector
space V := (OE/Pe

E)n0 given by

N(v) = $E .v.

Since OE/Pe
E = kE⊕kE$E⊕kE$E

2⊕· · ·⊕kE$E
e−1, we obtain a decompo-

sition of V = V1⊕V2⊕· · ·⊕Ve such that N restricted to Vi is an isomorphism
onto Vi+1 for i < e and N acts trivially on Ve. The mod PE -reduction of V is
the projection onto the first factor V1. Any kE [N ]-linear map T is determined
by its restriction to the space V1. Given a map T ∈ HomkE (V1, V ) we obtain
an extension T̃ ∈ EndkE [N ](V ) by setting

T̃ (v) = N (i−1)T (N−(i−1)v)

for all v ∈ Vi and 1 ≤ i ≤ e. The map T 7→ T̃ gives us an isomorphism of
vector spaces

HomkE (V1, V ) ' EndkE [N ](V, V ). (5.2)

We may write V = V1⊕NV . This shows that the mod PE reduction map say
πE is given by sending T̃ to p1 ◦ T̃|V1

where p1 is the projection onto the first
factor of the direct sum V1 ⊕ V2 ⊕ · · · ⊕ Ve. Now EndkE (V1) is a subspace of
HomkE (V1, V ) and mod PE reduction of ˜EndkE (V1) (the image of EndkE (V1)
under the map T 7→ T̃ ) is identity on EndkE (V1). Hence AutkE [N ](V ) is the

semi-direct product ˜AutkE (V1) ker(πE).

Now we have the embedding of GLn0(OE/Pe
E) in GLn(kF ) by considering

V as a kF -vector space. Let P be a parabolic subgroup fixing the flag F i =
⊕ij=1Vi and M be its Levi-subgroup fixing the decomposition V1 ⊕ V2 ⊕ · · · ⊕
Ve. Now ˜AutkE (V1) diagonally embeds in M and ker(πE) is a subgroup of
the radical of P . The group GLn(kF ) × k×F acts on Mn×1(kF ) by the map
(g1, g2)A 7→ g1Ag

−1
2 where g1 ∈ GLn(kF ), g2 ∈ k×F and A ∈ Mn×1(kF ). We

now have the action of GLn0
(OE/Pe

E)× k×F on Mn×1(kF ) by restriction from
GLn(kF )× k×F . We are interested in

(πE × id){ZGLn0
(OE/PeE)×k×F

(A)}

for some A ∈ Mn×1(kF )\{0}. We first look at ZP×k×F (A). Let (Aij) be an
element of P in its block form. Let (A1, A2, . . . , Ae)

tr be the block form of
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A where Aj is a block of size 1 × n0. If k is the largest positive integer
such that Ak 6= 0 and Ak = 0 then we get that AkkAka−1 = Ak for all
((Aij), a) ∈ ZP×k×F (A). Hence {Akk | ((Aij), a) ∈ ZP×k×F (A)} is contained in
a proper parabolic subgroup of AutkF (Vk). We now conclude that

(πE × id){ZGLn0 (OE/PeE)×k×F
(A)}

is a subgroup of H × k×F where H is a subgroup of AutkE (V1) whose image
under the inclusion map AutkE (V1) ↪→ AutkF (V1) is contained in a proper
kF -parabolic subgroup of AutkF (V1).

We recall the following proposition due to Paskunas (see [Pas05, Definition
6.2, lemma 6.5, Proposition 6.8]).

Proposition 5.2.2. Let V be a kE-vector space with (finite) dimension greater
than one. Let ρ be a cuspidal representation of AutkE (V ). Let H be a subgroup
of AutkE (V ) such that the image of H under the inclusion map AutkE (V ) ↪→
AutkF (V ) is contained in a proper parabolic subgroup of AutkF (V ). For ev-
ery H-irreducible sub-representation ξ of resH(ρ) there exists an irreducible
representation ρ′ of AutkE (V ) such that ρ′ 6' ρ and HomH(ξ, ρ′) 6= 0.

Going back to Z(η) ∩ (U0(B) × O×F ), for n0 > 1, we get that for every
irreducible sub-representation ξ of

resZ(η)∩(U0(B)×O×F )((κ⊗ ρ) � id)

there exists an irreducible representation ρ′ of U0(B)/U1(B) such that

HomZ(η)∩(U0(B)×O×F )(ξ, (κ⊗ ρ
′) � id) 6= 0.

For the case n0 = 1 and #kF > 2, we have to look at

(πE × id){ZOE/PeE××k×F (A)} (5.3)

for some nonzero matrix A ∈ Mn×1(kF ). We notice that the group (5.3) is
of the form {(a, a)|a ∈ k×F } if kE = kF . Let kE be a proper extension of
kF . If (a, b) be an element of the centralizer (5.3) then aAkb

−1 = Ak (Ak
is defined in the previous paragraph). This shows that a lies in a proper
parabolic subgroup of GLf (kF ). This shows that the group (5.3) is of the
form {(a, b) |a ∈ F×, b ∈ k×F } where F is a proper sub-field of kE . In the first
case we consider a non-trivial character η of U0(B)/U1(B) = k×F . We observe
that

resZ
J0×O×

F
(A)(λη � η−1) ' resZ

J0×O×
F

(A)(λ� id)
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and moreover [M,σ� id] and [M,σ′� η−1] are two distinct inertial classes for
any cuspidal representation σ′ containing (J0, λ⊗ η).

In the second case where kE is a proper extension of kF , we consider a
non-trivial character η of k×E which is trivial on F×. We note that

resZ
J0×O×

F
(A)(λη � id) ' resZ

J0×O×
F

(A)(λ� id)

and moreover [M,σ � id] and [M,σ′ � id] are two distinct inertial classes for
any cuspidal representation σ′ containing (J0, λ⊗ η).
With this we finish our preliminaries.

5.3 Main result

In this section we will prove the main result of this chapter. By Frobenius
reciprocity we get that λ� id occurs with multiplicity one in ind

P 0
I (Ns)

P 0
I (m)

(λ� id)

for all m ≥ Ns. We denote by U0
m(λ � id) the complement of λ � id in

ind
P 0
I (Ns)

P 0
I (m)

(λ� id). We use the notation Um(λ� id) for the representation

ind
GLn+1(OF )

P 0
I (Ns)

{U0
m(λ� id)}.

Theorem 5.3.1. Let #kF > 2. The GLn+1(OF )-irreducible sub-representations
of Um(λ � id) are atypical for the component [GLn(F ) × F×, σ � id] for all
m ≥ Ns.

Proof. We prove the theorem by induction on the positive integerm ≥ Ns. For
m = Ns the representation Um(λ� id) is trivial hence the theorem is vacuously
true. We suppose the theorem is true for some positive integer m > Ns we
will show the same for m+ 1. We first note that

ind
GLn+1(OF )

P 0
I (m+1)

(λ� id) ' ind
GLn+1(OF )

P 0
I (m)

{ind
P 0
I (m)

P 0
I (m+1)

(id)⊗ (λ� id)}.

From the decomposition (5.1) we get that

ind
GLn+1(OF )

P 0
I (m+1)

(λ� id) '
⊕
ηnk

ind
GLn+1(OF )
Z(ηnk ) {(λ� id)⊗ Uηnk }.

Since there is a unique orbit of characters ηk consisting of the identity we get
that

ind
GLn+1(OF )

P 0
I (m+1)

(λ�id) ' ind
GLn+1(OF )

P 0
I (m)

(λ�id)⊕
⊕

ηnk 6=id

ind
GLn+1(OF )
Z(ηnk ) {(λ�id)⊗Uηnk }.

(5.4)
Let Γ be an irreducible sub-representation of

ind
GLn+1(OF )
Z(ηnk ) {(λ� id)⊗ Uηnk }. (5.5)
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We have two cases n0 = 1 and n0 > 1. If n0 = 1 we have seen that we can
find a non-trivial character η of k×E = U0(B)/U1(B) such that

ind
GLn+1(OF )
Z(ηnk ) {(λ� id)⊗ Uηnk } ' ind

GLn+1(OF )
Z(ηnk ) {(λη � η−1)⊗ Uηnk }

or

ind
GLn+1(OF )
Z(ηnk ) {(λ� id)⊗ Uηnk } ' ind

GLn+1(OF )
Z(ηnk ) {(λη � id)⊗ Uηnk }.

Hence in this case the irreducible sub-representations of

ind
GLn+1(OF )
Z(ηnk ) {(λ� id)⊗ Uηnk }

are atypical representations.

Now consider the case n0 > 1. In this case there exists an irreducible
representation ξ of p1(Z(η)∩(U0(B)×O×F )) such that Γ is a sub-representation
of

ind
GLn+1(OF )
Z(ηnk ) {((ξ ⊗ κ) � id)⊗ Uηnk }. (5.6)

Now proposition 5.2.2 gives us an irreducible representation ρ′ 6' ρ of U0(B)
obtained by inflation of an irreducible representation of U0(B)/U1(B) such
that ξ is contained in ρ′. Now the representation 5.6 is a sub-representation of

ind
GLn+1(OF )
Z(ηnk ) {((ρ′ ⊗ κ) � id)⊗ Uηnk }.

The above representation is contained in

ind
GLn+1(OF )

P 0
I (m+1)

(ρ′ � κ) � id).

The above representation by lemma 2.2.6 is isomorphic to the representation

ind
GLn+1(OF )
PI(m+1) (τ ′ � id) (5.7)

where τ ′ is
ind

GLn(OF )
J0 (ρ′ � κ).

We will show that irreducible sub-representations of (5.7) are atypical for
the component

[GLn+1(F ), σ � id].

Any irreducible sub-representation of (5.7) occurs as a sub-representation
of

ind
GLn+1(OF )
PI(m) (γ � id)

where γ is an irreducible sub-representation of τ ′. Now γ is contained in an
irreducible smooth representation say π of GLn(F ). By Frobenius reciprocity
this is possible only if the representation ρ′ ⊗ κ of J0 is contained in π. We

90



have two possible situations either ρ′ is cuspidal or otherwise. If ρ′ is cuspidal
then we can say that π is a supercuspidal representation such that π 6' σ hence
the representation

ind
GLn+1(OF )
PI(m+1) (γ � id)

occurs in
resGLn+1(OF ) i

GLn+1(F )
PI

(π � id)

at the same time [GLn(F )×F×, π� id] 6= [GLn(F )×F×, σ� id]. This shows
that irreducible sub-representations of 5.7 are atypical representations.

If ρ′ is not cuspidal the representation ρ′ � κ is still irreducible [BK93,
Chapter 5, Proposition 5.3.2(3)]. If (J0, ρ′ � κ) is contained in a smooth
irreducible representation π then π also contains a simple-type (J0

1 , ρ1 � κ1)
which is not maximal [BK93, Chapter 8, 8.3.5] (we also refer to the article
[BH13, Lemma 2, Proposition 1] for quick reference). From this we conclude
that π is not a cuspidal representation hence (5.7) is contained in a

resGLn+1(OF ) i
GLn+1(F )
PJ

(σJ)

where J is a strict refinement of the partition I. Hence we get that the
irreducible sub-representations of (5.7) are atypical representations.

The above theorem shows that typical representations occur as
sub-representations of

ind
GLn+1(OF )

P 0
I (Ns)

(λ� id).

The above representation may still contain atypical representations. We will
indeed show that this is the case and complete the classification.

The first observation is that the (the semi-simple type after fixing J0)
Bushnell-Kutzko type Js for s = [MI , σ � id] is contains the group P 0(Ns).
Hence we will try to decompose the representation

indJs
P 0
I (Ns)

(id). (5.8)

We also note that P 0(Ns)∩PI = Js ∩PI . Let l+ 1 = el′+ r where 0 ≤ r < e.
If e = 1 then Js = P 0

I (Ns) hence we have nothing to analyse further the theo-
rem 5.3.1 completes the classification of typical representations. From now we
assume that e > 1. We will first verify that the group UI(OF ) acts trivially
on the representation (5.8).

Let u+ and u− be two matrices from Js ∩ UI = UI(OF ) and Js ∩ ŪI
respectively. Let u+ and u− in block form be written as(

1n U+

0 1

)
and

(
1n 0
U− 1

)
.

91



The block form of the conjugation u−u+(u−)−1 is given by(
1n − U+U− U+

−U−U+U− U−U+ + 1

)
.

Now U− ∈ al+1(Λ) ∩ n̄I = $l′

F (ar(Λ) ∩ n̄I). If r ≥ 1 the valuation of each
entry of a matrix in ar(Λ) ∩ n̄I is at least one. This shows that the valuation
of each entry in U−U+U− is at least l′ + 2 this shows that the conjugation
u−u+(u−)−1 lies in the group P 0(Ns). If r = 0 and l′ = 0 we are in the case
where σ is a level-zero cuspidal representation and in this case Js = P 0

I (Ns).
If r = 0 and l′ > 0 then valuation of each entry in U−U+U− has valuation
2l′ > l′ + 1 and hence u−u+(u−)−1 ∈ P 0

I (Ns). Hence the group UI(OF ) acts
trivially on the representation (5.8).

From the Iwahori decomposition of the group Js we get that Js is equal to
(Js ∩ P̄I)P 0

I (Ns). Hence we get that

resJs∩P̄I indJs
P 0
I (Ns)

(id) ' indJs∩P̄I
P 0
I (Ns)∩P̄I

(id).

Note that Js∩P̄I is a semi-direct product of the groups (Js∩MI) and (Js∩ŪI).
Let ηk for 1 ≤ k ≤ t (we mean counting them with their multiplicity, but in
our case the multiplicity is one) be all the characters of the group Js ∩ ŪI
which are trivial on the group P 0

I (Ns) ∩ ŪI . The group Js ∩ P̄I acts on these
characters and let {ηkp} be a set of representatives for the orbits under this
action. We denote by Z(ηkp) the Js ∩ P̄I stabiliser of the character ηkP . Now
Clifford theory gives the decomposition

indJs∩P̄I
P 0
I (Ns)∩P̄I

(id) '
⊕
ηkp

indJs∩P̄IZ(ηkp )(Uηkp )

where Uηkp is an irreducible representation of Z(ηkp). We note that the char-
acter id occurs with a multiplicity one in the list of characters ηk.

The representation Uηkp is the isotypic component of the character ηkp in
the representation

indJs∩P̄I
P 0
I (Ns)∩P̄I

(id).

which naturally has the action of Z(ηkp). Now if Ks is the kernel of the
representation (5.8) then Ks ∩ Z(ηkp) acts trivially on Uηkp . Hence we can
extend the representation Uηkp to the group Z(ηkP )Ks such that Ks acts
trivially on the entered representation. Now consider the representation

π = indJsZ(ηkP )Ks
Uηkp .

Note that Ks∩ P̄I is contained in the group Z(ηkp)∩ P̄I and moreover UI(OF )
is contained in Ks hence Js = (Js ∩ P̄I)Z(ηkp)Ks hence from Mackey decom-
position we have

resJs∩P̄I indJsZ(ηkP )Ks
Uηkp ' indJs∩P̄I

Z(ηkP )Ks∩(Js∩P̄I)
(Uηkp ) ' indJs∩P̄IZ(ηkp )(Uηkp ).
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We hence have
indJs

P 0
I (Ns)

(id) '
⊕
ηkp

indJsZ(ηkp )Ks
Uηkp . (5.9)

Now using the decomposition (5.9) we get the decomposition

ind
GLn+1(OF )

P 0
I (Ns)

(λ� id) '
⊕
ηkp

ind
GLn+1(OF )
Z(ηkp )Ks

{Uηkp ⊗ (λ� id)}.

Note that the character id occurs with multiplicity one among the charac-
ters ηk and the fact that Z(id)Ks = (Js ∩ P̄I)Ks = Js implies the following
isomorphism

ind
GLn+1(OF )

P 0
I (Ns)

(λ�id) ' ind
GLn+1(OF )
Js

(λ�id)⊕
⊕
ηkp 6=id

ind
GLn+1(OF )
Z(ηkp )Ks

{Uηkp⊗(λ�id)}.

(5.10)

Lemma 5.3.2. Let #kF > 2 and ηkp be a non-trivial character. The irre-
ducible sub-representations of

ind
GLn+1(OF )
Z(ηkp )Ks

{Uηkp ⊗ (λ� id)}

are atypical.

Proof. We observe that Z(ηkp) = (Z(ηkP ) ∩MI)(Js ∩ ŪI). This shows that
we have to bound the group Z(ηkP ) ∩MI for ηkp 6= id. Recall that ηk for
1 ≤ k ≤ t are the characters on the quotient group

(Js ∩ ŪI)
(P 0
I (Ns) ∩ ŪI)

(5.11)

Now let u− be a matrix from the group Js ∩ ŪI . In the block form the matrix
u− is of the form (

1n 0
U− 1

)
where U− = [M1,M2, . . . ,Me],Mi is a matrix of size (1×n/e). Let δ = Ns−1
then the map Φ

[M1,M2, . . . ,Me] 7→ [$δ
FM1, $

δ
FM2, . . . , $

δ
FMe]

identifies the quotient 5.11 with the subspace ofM1×n(kF ). We have aMI(OF )
equivariant map from group of characters of M1×n(kF ) and Mn×1(kF ) more-
over MI(OF ) acts through the quotient MI(kF ) (see lemma 3.0.14). The map
Φ commutes with the action of MI ∩ Js since Φ is none other than conju-
gation by an element from the Z(MI) (The centre of MI). Now the group
(U0(B)×O×F ) ⊂ Js ∩MI acts on a non-zero matrix A in the space Mn×1(kF )
through the quotient by (1n + De)× (1 + PF ). Now recall that we denote by
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πE by mod PE reduction map. We have seen that (The paragraph above the
proposition 5.2.2)

(πE × id){ZGLr(OE/PeE)×k×F
(A)}

is a subgroup of H × k×F where H is a subgroup of GLn/ef (kE) whose image
under the inclusion map GLn/ef (kE) ↪→ GLn(kF ) is contained in a proper
kF -parabolic subgroup of GLn(kF ). From the result of Paskunas 5.2.2 we get
that for every irreducible representation ξ of

resZ(ηkp ){Ukp ⊗ ((κ⊗ ρ) � id)}

we can find an irreducible representation ρ′ 6' ρ such that ξ occurs in the
representation

resZ(ηkp ){Ukp ⊗ ((κ⊗ ρ′) � id)}.

Hence irreducible sub-representations of

ind
GLn+1(OF )
Z(ηkp )Ks

{Uηkp ⊗ (λ� id)}

occur as a sub-representation of

ind
GLn+1(OF )
Z(ηkp )Ks

{Uηkp ⊗ ((κ⊗ ρ′) � id)}.

Now the above representation occurs as a sub-representation of

ind
GLn+1(OF )

P 0
I (Ns)

{(κ⊗ ρ′) � id} ' ind
GLn+1(OF )
PI(Ns)

(τ ′ � id)}

where τ ′ is given by
ind

GLn(OF )
J0 (κ⊗ ρ′ � id).

Any irreducible representation γ of τ ′ occurs in an irreducible smooth rep-
resentation π of GLn(F ). If ρ′ is cuspidal then κ ⊗ ρ′ is contained in the
representation γ and hence is contained in π which gives that π is cuspidal
but it is not isomorphic to an unramified twist of σ. Now if ρ′ is not cuspidal
π is not cuspidal. Hence in every case π is not inertially equivalent to σ. This
shows that irreducible sub-representations of

ind
GLn+1(OF )
PI(Ns)

(γ � id)

are atypical. This shows the lemma.

Theorem 5.3.3. Let Γ be a typical representation for the component

s = [MI , σ � χ]

then Γ is isomorphic to the representation

ind
GLn+1(OF )
Js

(λs)
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where (Js, λs) is the Bushnell-Kutzko semi-simple type for the component s. If
P is a parabolic subgroup containing MI as a Levi-factor then Γ occurs with a
multiplicity one in the representation

resGLn+1(OF ) i
GLn+1(F )
P (σ � χ).

Proof. The representation ind
GLn+1(OF )
Js

(λs) is irreducible since the intertwin-
ing of this representation is bounded by the group Ws where Ws is the set of
representatives for NG(s)/MI . We can see that in our case Ws is trivial. We
refer to [BK98][Lemma 11.5] for these results. Hence the uniqueness of the
typical representation. The multiplicity follows from the results 2.2.4, 5.3.1
and 5.3.2.
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Chapter 6

The inertial class with Levi-subgroup of
the type (2,2)

6.1 Preliminary elimination of atypical repre-
sentations

We denote by I the partition (2, 2). Let σ1 and σ2 be two cuspidal representa-
tions of GL2(F ). We denote by P , M and U the standard parabolic subgroup,
the standard Levi-subgroup and the unipotent radical of P corresponding to
the partition I. We denote by P̄ and Ū the opposite parabolic subgroup of
P with respect to the Levi-subgroup M and unipotent radical of P̄ . In this
chapter we are interested in the classification of typical representations for the
inertial class [M,σ1 � σ2]. We denote by π the canonical quotient map

π : P (OF )→M(OF )

For any positive integer r we denote by P (r) the inverse image of P (OF /P
r
F )

under the mod-Pr
F reduction of GL4(OF ). Let τ1 and τ2 be GL2(OF )-typical

representations occurring in σ1 and σ2 respectively. From the lemma 2.2.4 we
get that the representation

ind
GL4(OF )
P∩GL4(OF )(τ1 � τ2)

has a complement say Γ in

resGL4(OF ) i
GL4(F )
P (σ1 � σ2)

such that GL4(OF )-irreducible sub-representations of Γ are atypical.

Let [A1, n1, 0, β1] and [A2, n2, 0, β2] be two simple strata defining simple
types (J1, λ1) and (J2, λ2) contained in σ1 and σ2 respectively. We may and
do assume that A1 and A2 are defined by lattice chains L1 and L2 such that
L1(0) = L2(0) = OF ⊕OF . We deduce that A1 and A2 are contained in
M2(OF ).

The representation λi restricted to U [ni/2]+1(Ai) is isomorphic to a direct
sum ⊕pkiψβi (for the definition of ψβ we refer to [BK93][1.1.6]) and hence λi
is trivial on Uni+1(Ai) for i ∈ {1, 2}. If e(Ai) = 2 then

K2([(ni + 1)/2] + 1) ⊂ Uni+1(Ai) ⊂ K2([(ni + 1)/2]).
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Notation 6.1. We denote by Nλi the positive integer [(ni + 1)/2] if ei = 2
and ni if ei = 1. Let N be the positive integer max{Nλ1

, Nλ2
}.

The representation τ1 � τ2 contains M ∩ K4(N + 1) in its kernel. We
extend the representation τ1 � τ2 of M(OF /PF

r) to a representation of P (r)
for r ≥ N + 1 via the inflation map

πr : P (r)→ P (OF /PF
r)→M(OF /PF

r).

Note that P (r)∩U and P (r)∩ Ū are contained in the kernel of this extension.
The groups P (r) for r ≥ N + 1 and τ = τ1 � τ2 satisfy the hypothesis for the
lemma 2.2.5 hence we obtain

ind
GL4(OF )
P∩GL4(OF )(τ1 � τ2) =

⋃
r≥N+1

ind
GL4(OF )
P (r) (τ1 � τ2).

Hence to classify typical representations we need to examine the typical
representations occurring as irreducible sub-representations of

ind
GL4(OF )
P (r) (τ1 � τ2)

for all r ≥ N + 1. As we did in the previous chapter, it is convenient to work
with a smaller subgroup P 0(r). Let r be a positive integer greater than N then
P 0(r) = K4(r)π−1(J1 × J2) (We consider J1 × J2 as a subgroup of M(OF )).
The group P 0(r) satisfies Iwahori decomposition with respect to P and M .
Observe that P 0(r) ∩ U = P (r) ∩ U and P 0(r) ∩ Ū = P (r) ∩ Ū and since
r ≥ N + 1 we get that P 0(r) ∩M = J0

1 × J0
2 . Now we apply lemma 2.2.6 for

J1 = P (r) and J2 = P 0(r) and λ = λ1 � λ2 and obtain an isomorphism

ind
GL4(OF )
P (r) (τ1 � τ2) ' ind

GL4(OF )
P 0(r) (λ1 � λ2).

We will need the decomposition of the representation

ind
P 0(r)
P 0(r+1)(id)

for the proof of the theorem 6.1.2. We will prove the theorem by induction
on r and the decomposition of the above representation is crucial. Let r be a
positive integer greater than or equal to N + 1. Let KI(r) be the group

K4(r)π−1(K2(N + 1)×K2(N + 1)).

We note that KI(r)P
0(r+ 1) = P 0(r). It follows from Mackey decomposition

that
resKI(r) ind

P 0(r)
P 0(r+1)(id) ' ind

KI(r)
KI(r+1)(id).
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Lemma 6.1.1. The group KI(r) is a normal subgroup of P 0
I (r) and KI(r+1)

is a normal subgroup of KI(r).

Proof. By definition of the groups KI(r) we have KI(r) ∩U = P 0(r) ∩U and
KI(r)∩ Ū = P 0(r)∩ Ū . To show the normality of KI(r) in P 0(r) it is enough
to verify that P 0(r) ∩M normalizes the group KI(r). P 0(r) ∩M normalizes
the group KI(r)∩U = U(OF ) and KI(r)∩ Ū = Ū(Pr

F ). The group KI(r)∩M
is a normal subgroup of P 0(r)∩M and hence P 0(r)∩M normalizes KI(r)∩M .
This shows the first part of the lemma.

SinceKI(r)∩P = KI(r+1)∩P , we have to check thatKI(r)∩Ū normalizes
the group KI(r + 1). We note that Ū is abelian hence we have to check that
the conjugations u−j(u−)−1 and u−u+(u−)−1 belong to the group KI(r + 1)
for all u− ∈ KI(r) ∩ ŪI , j ∈ KI(r + 1) ∩ MI = KI(r) ∩ MI and u− ∈
KI(r+1)∩UI = UI(OF ). Let us begin with the element u−j(u−)−1. We have
u−j(u−)− = j{j−1u−j(u−)−1}. Let

j =

(
J1 0
0 J2

)
u− =

(
12 0
U− 1

)
be the block diagonal form of j and u−; J1 ∈ K2(N + 1), J2 ∈ K2(N + 1) and
U− ∈ $r

FM2×2(OF ). The element j−1u−j(u−)−1 is of the form(
12 0

J−1
2 U−J1 − U− 12

)
We note that the matrix J−1

1 U−J1 − U− belongs to $r+1
F M2×2(OF ). This

shows that j−1u−j(u−)−1 ∈ KI(r + 1) ∩ ŪI . Hence the element u−j(u−)−

which can be rewritten as j{j−1u−j(u−)−1} belongs to KI(r + 1).

We now consider the conjugation u−u+(u−)−1. We write u+ in its block
matrix form as (

12 U+

0 12

)
where U+ ∈M2×2(OF ). Now the conjugation u−u+(u−)−1 in its block matrix
from is as follows (

12 − U+U− U+

−U−U+U− U−U+ + 12

)
.

Since U−U+U− ∈ $2rM2×2(OF ) and 2r ≥ r+1, we conclude that u−u+(u−)−1

belongs to KI(r + 1). This ends the proof of this lemma.

From the above lemma and Iwahori decomposition for the group KI(r)
we get that the inclusion KI(r) ∩ Ū in KI(r) induces an isomorphism of the
quotient KI(r)/KI(r + 1) with

(KI(r) ∩ Ū)/(KI(r + 1) ∩ Ū). (6.1)
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The representation ind
KI(r)
KI(r+1)(id) splits as a direct sum of characters of KI(r)

which are trivial on KI(r + 1). We denote these characters by ηk for 1 ≤
k ≤ t. The group P 0(r) acts on these characters and let Z(ηk) be the P 0(r)-
stabilizer of the character ηk. We note that the trivial character id occurs with
multiplicity one. From Clifford theory we get that

ind
P 0(r)
P 0(r+1)(id) = id⊕

⊕
ηnk 6=id

ind
P 0(r)
Z(ηnk )(Uηnk ) (6.2)

where ηnk is a representative for the P 0(r)-orbit and Uηnk is an irreducible
representation of Z(ηnk). Note that Z(ηnk) = (Z(ηnk) ∩M)KI(r).

The next step is to bound the group Z(ηnk) ∩M for some ηnk 6= id. Let
u− be an element of the group KI(r) ∩ ŪI . We represent the element u− in
its block form as (

12 0
U− 12

)
.

The map u− 7→ $−rF U− gives us an isomorphism of KI(r)∩ ŪI with M2(OF ).
Further the map u− 7→ $−rF U− (we denote by U the class of U ∈ M2(OF )
in the quotient M2(OF )/$FM2(OF )) gives an isomorphism of the quotient
(KI(r)∩ŪI)/(KI(r+1)∩ŪI) withM2×2(kF ). This isM(OF )-equivariant. We
also have an M(OF )-equivariant isomorphism between the character group of
M2×2(kF ) andM2×2(kF ) (see 3.0.14). We finally obtain anM(OF )-equivariant
isomorphism

̂KI(r)/KI(r + 1) 'M2×2(kF ). (6.3)

Note that the group M(OF ) acts through its quotient M(kF ).

In order to calculate Z(ηnk)∩M for some ηnk 6= id, we can as well calculate
ZJ1×J2(m) for some non-zero matrix m in M2(kF ). It will be useful to first
recall the ZM(kF )(m) for m 6= 0. We have the following possibilities

1. Ifm is a full rank matrix then ZM(kF )(m) = {(g,mgm−1) |g ∈ GL2(kF )}.

2. If m is not a full rank matrix then ZM(kF )(m) = {(g1, g2) |g2m = mg1 }.
Since m is non-zero and has a kernel, we can see that g1 fixes the kernel
hence the first projection of ZM(kF )(m) is contained in a proper parabolic
subgroup of GL2(kF ). The conclusion in this case is symmetric for the
second projection as well.

We denote by λs the representation λ1 �λ2 of J1×J2. The representation
λs occurs with multiplicity one in ind

P 0(N+1)
P 0(r) (λs). We denote by U0

r (λs) the

complement of λs in ind
P 0(N+1)
P 0(r) (λs). Let Ur(λs) be the representation

ind
GL4(OF )
P 0(N+1)(U

0
r (λs)).
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Theorem 6.1.2. Let #kF > 3. The GL4(OF )-irreducible sub-representations
of Ur(λs) are atypical for all r ≥ N + 1.

Proof. We prove this theorem by induction on the integer r ≥ N + 1. The
theorem is vacuously true for r = N + 1 since Ur(λs) = 0. We suppose that
the theorem is true for some positive integer r we will prove the same holds
for r + 1. We first note that

ind
P 0(N+1)
P 0(r+1) (λs) ' ind

P 0(N+1)
P 0(r) {ind

P 0(r)
P 0(r+1)(id)⊗ λs}.

Now using the decomposition 6.2 we get that

ind
P 0(N+1)
P 0(r+1) (λs) ' ind

P 0(N+1)
P 0(r) (λs)

⊕
ηnk 6=id

ind
P 0(N+1)
Z(ηnk ) (λs ⊗ Uηnk ).

From the definition of U0
r (λs) we get that

U0
r+1(λs) ' U0

r (λs)⊕
⊕

ηnk 6=id

ind
P 0(N+1)
Z(ηnk ) (λs ⊗ Uηnk ). (6.4)

Now applying the induction functor to the maximal compact subgroup GL4(OF )
we have

Ur+1(λs) ' Ur(λs)⊕
⊕

ηnk 6=id

ind
GLn(OF )
Z(ηnk ) (λs ⊗ Uηnk ). (6.5)

Let ηnk 6= id. We will show that the irreducible sub-representations of

ind
GLn(OF )
Z(ηnk ) (λs ⊗ Uηnk ) (6.6)

are atypical for the component [M,σ1 � σ2]. We choose to treat this case by
case depending on the different classes of supercuspidal representations σ1 and
σ2.

Case 1: We will first consider the case where both σ1 and σ2 are twists
of level-zero cuspidal representations. From our assumptions λi ' χi ⊗ λ′i
where χi is a character of F× and λ′i is the inflation of a cuspidal represen-
tation of GL2(kF ) for i ∈ {1, 2}. Let m be the non-zero matrix associated
to the non-trivial character ηnk . We observe that Z(ηnk) ∩ M is equal to
ZGL2(OF )×GL2(OF )(m). Hence mod PF reduction of Z(ηnk) ∩M satisfies one
of the properties listed in (6.3). We know from the results of chapter three
(see 3.0.16, 3.0.17) that any irreducible sub-representation of

resZ(ηnk )(χ1λ
′
1 � χ2λ

′
2)

occur in
resZ(ηnk )(χ1λ

′′
1 � χ2λ

′′
2)
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where λ′′1�λ′′2 is the inflation of a non-cuspidal representation ofM(kF ). Hence
we deduce that the irreducible sub-representations of

ind
GLn(OF )
Z(ηnk ) (λs ⊗ Uηnk )

occurs in the representation

ind
GL2(OF )
Z(ηnk ) {(χ1λ

′′
1 � χ2λ

′′
2)⊗ Uηnk }

which occurs in the representation

ind
GL4(OF )
P∩GL4(OF )(χ1λ

′′
1 � χ2λ

′′
2).

Since λ′′1 � λ′′2 is the inflation of a non-cuspidal representation of M(kF ), the
above representation occurs in

resGL4(OF ) i
GL4(F )
P ′ (π)

where P ′ is a parabolic subgroup contained properly in P . This shows that
the irreducible sub-representations of (6.6) are atypical.

Case 2: Let (J1, λ1) be defined by a simple strata [A, n1, 0, β1] such that
[E1 := F [β1] : F ] > 1 and (J2, λ2) be such that J2 = GL2(OF ) and λ2 is
χ⊗ λ′2 where χ is a character of GL2(F ) and λ′2 is the inflation of a cuspidal
representation of GL2(kF ). Let m be the matrix in M2×2(kF ) associated to
the non-trivial character ηnk in the isomorphism (6.3). We first consider the
easier case when m is a non-zero matrix with rank one. We note that the
second projection of ZM(kF )(m) is contained in a proper parabolic subgroup
say B of GL2(kF ). Hence by lemma 3.0.16 we get that for any irreducible sub-
representation ξ of resB λ

′
2 there exists a GL2(kF )-irreducible non-cuspidal

representation λ3 such that ξ occurs as a sub-representation of resB λ3 and
λ′2 6' λ3. This shows that any irreducible sub-representation of

ind
GLn(OF )
Z(ηnk ) (λs ⊗ Uηnk )

is contained in
ind

GLn(OF )
Z(ηnk ) ((λ1 � χλ′3)⊗ Uηnk ).

for some irreducible representation λ′3 of GL2(OF ) obtained by inflating an
irreducible representation λ3 of GL2(kF ). Hence for every irreducible sub-
representation say γ of

ind
GL4(OF )
Z(ηnk ) (λs � Uηnk )

there exists λ′3 (obtained by inflating an irreducible non-cuspidal representa-
tion of GL2(kF )) such that γ occurs as sub-representation of

ind
GL4(OF )
P 0(m+1)(λ1 � χλ′3).
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The above representation is contained in

ind
GL4(OF )
P∩GL4(OF )(σ1 � σ′2)

where σ′2 is an irreducible smooth representation of GL2(F ) which contains the
type (GL2(OF ), χλ′3). Since λ′3 is the inflation of a non-cuspidal representation
of GL2(kF ), σ′2 is not a cuspidal representation hence the irreducible sub-
representations of

ind
GLn(OF )
Z(ηnk ) (λs � Uηnk )

are atypical.

This paragraph concerns the case where m is a matrix of full rank. We
begin with the observation that Z(ηnk)∩M = ZJ1×J2(ηnk). Let [E1 = F [β1] :
F ] > 1. The group J1 contains a normal subgroup J1

1 such that J1 = O×E1
J1

1

and J1/J
1
1 ' O×E1

/U1(E1) and J1
1 is a pro-p subgroup (see [BK93, Chapter 3,

3.1.14]). Now we have to understand ZO×E1
J1
1×GL2(OF )(m). The action of the

group (O×E1
J1

1 )×GL2(OF ) factors through its quotient

(U0(E1)J1
1K2(1)/K2(1))×GL2(kF ).

We now have two different possibilities: e1 = 1 and e1 = 2.

If e1 = 1 then we have U0(E1)J1
1K2(1)/K2(1) = U0(E1)/Ue1(E1) = k×E1

where kE1
is a quadratic extension of kF . Now it is clear that

ZU0(E1)/Ue1 (E1)×GL2(kF )(m) ∩ ({id} × U) = {id}

where U is the unipotent radical of any Borel subgroup of GL2(kF ).

If e1 = 2 the group U0(E1)J1
1K2(1)/K2(1) is k×FX where X is a p-group.

Now the second projection of Zk×FX×GL2(kF )(m) is contained in the product of
the center k×F and a p-group. Hence we conclude that the mod PF -reduction
of the image of the second projection of ZJ1×J2(m) is contained in a Borel
subgroup say B of GL2(kF ). If B̄ is the opposite Borel subgroup then its its
unipotent radical U satisfies the property that

Zk×FX×GL2(kF )(m) ∩ ({id} × U) = {id}.

Let H be a subgroup of GL2(kF ) such that H ∩U = {id} and σ be a cuspidal
representation of GL2(kF ). For any irreducible sub-representation ξ of resH(σ)
we can find an irreducible non-cuspidal representation σ′ of GL2(kF ) such that
HomH(ξ, σ′) 6= 0 and σ′ 6' σ. This is because Mackey decomposition shows
that

HomU (ind
GL2(kF )
H (ξ), id) 6= 0
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and hence ind
GL2(kF )
H (ξ) cannot be a sum of cuspidal representations. This

shows that for any irreducible sub-representation γ of

ind
GLn(OF )
Z(ηnk ) (λs ⊗ Uηnk )

there exists an irreducible representation λ3 of GL2(OF ) obtained by inflating
a non-cuspidal representation of GL2(kF ) such that γ occurs in

ind
GLn(OF )
Z(ηnk ) {(λ1 � χλ3) � Uηnk ).

The above representation occurs in the representation

ind
GL4(OF )
P 0(m+1){(λ1 � χλ3) � Uηnk )

and we have

ind
GL4(OF )
P 0(m+1){(λ1 � χλ3) � Uηnk ) ⊂ ind

GL4(OF )
P∩GL4(OF )(σ1 � σ′2)

the representation σ′2 is an irreducible smooth representation containing the
type (GL2(OF ), χλ3). hence γ is not typical representation. This shows that
irreducible sub-representations of (6.6) are atypical.

Case 3: We now consider the case where both (J1, λ1) and (J2, λ2) are
defined by simple strata [A1, n1, 0, β1] and [A2, n2, 0, β2] respectively such that
[Ei = F [βi] : F ] > 1 where i ∈ {1, 2}. We have to look at the stabilizer
Z(ηnk) ∩ M = ZJ1×J2(m). We consider the possibilities (e1, e2) = (1, 1);
(e1, e2) = (2, 1) and (e1, e2) = (2, 2), the other case is similar.

Case 3.1: Here e1 = 1 and e2 = 1, J1
1 × J1

2 is contained in the group
K2(1)×K2(1). The group J1 × J2 acts through its mod-PF reduction hence
it acts through its quotient k×E1

× k×E2
. We are reduced to bound the group

Zk×E1
×k×E2

(m). Let m be a matrix of rank one and (a, b) ∈ Zk×E1
×k×E2

(m). Now

am = mb and let v be a vector in k2
F which is contained in the kernel of m.

Now mb(v) = 0 implies that b(v) is in the kernel of m. This shows that b has
eigen-values in kF hence we must have b ∈ k×F , similarly a ∈ k×F and am = mb
implies that a = b (since at least one of the entries of m is non-zero). If m is
a matrix of full rank then a = mbm−1 implies that a ∈ mk−1

E2
m× ∩ k×E1

. Now
mkE2

m−1 ∩ kE1
is a sub-field of kE1

and there are two possibilities: either
mkE2m

−1 ∩ kE1 is a proper sub-field or mkE2m
−1 = kE1 . The first one would

imply that a, b ∈ k×F and a = b. We conclude that Zk×E1
×k×E2

(m) has the form

{(a, a) |a ∈ k×F }

or there exist a field isomorphism θ of kE1
onto kE2

such that

Zk×E1
×k×E2

(m) = {(a, θ(a)) |a ∈ k×E1
}.
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In every possibility the mod PF reduction of ZJ0
1×J0

2
(m) is a subgroup

of {(e, θ(e) | e ∈ k×E} for some θ. Let χ1 = (θ ◦ χ2)−1 and χ2 be two non-
trivial characters of J1 and J2 which are trivial on J1

1 and J1
2 respectively. Let

σ′1 and σ′2 be two supercuspidal representations containing Bushnell-Kutzko
types (J1, λ

′
1 = λ1 ⊗ χ1) and (J2, λ

′
2 = λ2 ⊗ χ2) respectively. If (M,σ1 �

σ2) and (M,σ′1 � σ′2) are inertially equivalent for all χ2 then we must have
intertwining between (J1, λ1) and (J2, λ2⊗χ2) (because (J1, λ1) and (J1, λ1⊗
χ1) cannot intertwine see [BK93, Chapter 5, Theorem 5.5.2(3)]) for any non-
trivial character χ2 of J0

2/J
1
2 . Now we use the intertwining implies conjugacy

theorem [BK93, Chapter 6, 6.2.4] to get a g ∈ GL2(F ) such that J2 = gJ1g
−1

and λg1 ' λ2 ⊗ χ2. Since conjugacy is an equivalence relation we get that
(J2, λ2⊗χ2) are all conjugate for all non-trivial characters χ2 of J2/J

1
2 . There

exist two distinct non-trivial characters of k×E2
(since the cardinality of k×E2

is
at least 3) hence we get a contradiction to the assumption that (M,σ1 � σ2)
and (M,σ′1 � σ′2) are inertially equivalent. Moreover by definition we have

resZJ1×J2 (m)(λ1 � λ2) ' resZJ1×J2 (m)(λ
′
1 � λ′2).

With this observation we have

ind
GLn(OF )
Z(ηnk ) ((λ1 � λ2) � Uηnk ) ' ind

GLn(OF )
Z(ηnk ) ((λ′1 � λ′2) � Uηnk ).

Hence the irreducible sub-representations of

ind
GLn(OF )
Z(ηnk ) (λs � Uηnk )

are atypical.

Case 3.2: Let us consider the case where e1 = 1 and e2 = 2. The group
J1× J2 now acts via the quotient k×E1

×U0(E2)J1
2K2(1)/K2(1). Let m be the

matrix associated to the character ηnk . If m has rank one then every element
of the first projection of Zk×E1

×U0(E2)J1
2K2(1)/K2(1)(m) is contained in k×F . If m

is a full rank matrix then for all (a, b) ∈ Zk×E1
×U0(E2)J1

2K2(1)/K2(1)(m) we have

a = mbm−1. Note that U0(E2)J1
2K2(1)/K2(1) is a product k×FX where X is a

p-group. This shows that the first projection is contained in k×F . In each case
the first projection of Zk×E1

×U0(E2)J1
2K2(1)/K2(1)(m) is contained in k×F . Let χ

be a character of k×E1
which is trivial on k×F . Such a character exists since

the cardinality of k×E1
/k×F is q + 1 ≥ 3. Let σ′1 be a cuspidal representation

of GL2(F ) containing the type (J1, λ1 ⊗ χ). We note that σ1 and σ2 are not
inertial twist of each other (see [BK93, Chapter 5, Theorem 5.5.2(3)]). Hence
(M,σ1 �σ2) and (M,σ′1 �σ2) are not inertially equivalent. Moreover we have

resZJ1×J2 (m)(λ1 � λ2) ' resZJ1×J2 (m)(λ
′
1 � λ2).

With this observation we have

ind
GLn(OF )
Z(ηnk ) ((λ1 � λ2) � Uηnk ) ' ind

GLn(OF )
Z(ηnk ) ((λ′1 � λ2) � Uηnk ).
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Hence the irreducible sub-representations of

ind
GLn(OF )
Z(ηnk ) (λs � Uηnk )

are atypical for s = [M,σ1 � σ2].

Case 3.3: We are left with the case where e1 = 2 and e2 = 2. The group
(J1 × J2) acts through its quotient

U0(E1)J1
1K2(1)/K2(1)× U0(E2)J1

2K2(1)/K2(1).

We write this quotient as k×FX1 × k×FX2 where X1 and X2 are two p-groups.
The group X1×X2 is a p-group and there is a decreasing filtration of M2(kF )
by sub-spaces F i such that X1 ×X2 acts trivially on F i/F i+1 and ∩iF = 0.
Let k be the largest positive integer such that m ∈ Fk. Let m̄ be the image
of m in Fk/Fk+1. If (ax1, bx2) ∈ Zk×FX1,k

×
FX2

(m) then (ax1, bx2) fixes the
element m̄. The group k×F × k

×
F acts on M2(kF ) by the character ψ given by

ψ(m) = bma−1. The group k×F × k×F has cardinality relatively prime to p.
Hence we get that the action of k×F × k

×
F on Fk/Fk+1 decomposes as a direct

sum of isomorphic copies of ψ. From this we conclude that a = b.

Let η be a non-trivial character of the group J1/J
1
1 = k×F . Let σ

′
1 and σ′2 be

two cuspidal representations containing the Bushnell-Kutzko types (J1, λ1⊗η)
and (J1, λ1 ⊗ η−1). If the pairs (M,σ1 � σ2) and (M,σ′1 � σ′2) are inertially
equivalent for every η then we have (J1, λ1) and (J2, λ2⊗η−1) must intertwine
and hence they should be G-conjugate which implies that (J2, λ2⊗η−1) are all
G conjugate. Now by our assumption that #kF > 3, we can find two distinct
non-trivial characters of k×F which is a contradiction by [BK93, Chapter 5,
Theorem 5.5.2(3)]. Hence there is a non-trivial character η of J0

1/J
1
1 such that

[M,σ1 � σ2] and [M,σ′1 � σ′2] are distinct inertial classes and

resZJ1×J2 (m)(λ1 � λ2) ' resZJ1×J2 (m)(λ1η � λ2η
−1).

With this observation we have

ind
GLn(OF )
Z(ηnk ) ((λ1 � λ2) � Uηnk ) ' ind

GLn(OF )
Z(ηnk ) ((λ1η � λ2η

−1) � Uηnk ).

Hence the irreducible sub-representations of

ind
GLn(OF )
Z(ηnk ) (λs � Uηnk )

are atypical.
Now by using induction on the positive integer r we prove that Ur(λs) does

not contain any atypical representations.
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The previous theorem reduces the problem of classifying typical representa-
tions for the component s = [M,σ1 � σ2] to classifying typical representations
occurring in the representation

ind
GL4(OF )
P 0(N+1)(λs) (6.7)

where λs is a J1 × J2 representation isomorphic to λ1 � λ2. The representa-
tion (6.7) may still contain atypical representations. To examine this we need
the Bushnell-Kutzko semi-simple type (Js, λs) for the component s. To write
explicitly the structure of the semi-simple type (Js, λs) we need to recall the
characteristic polynomial associated to the strata [A, n, 0, β]. For any given
strata [A, n, 0, β] in M2(F ), define g to be gcd(n, e). The element $n/g

F βe/g

lies in the ring A. Since we assume that our hereditary order A is defined by
a lattice chain L such that L(0) = OF ⊕ OF , the element $n/g

F βe/g belongs
to (the maximal hereditary order containing A) M2(OF ). The characteristic

polynomial associated to the class $n/g
F βe/g inM2(kF ) will be called the char-

acteristic polynomial associated to the strata [A, n, 0, β].

Let [A1, n1, 0, β1] and [A2, n2, 0, β2] be two simple strata defining the max-
imal simple types (J0

1 , λ1) and (J0
2 , λ2) respectively. In our situation the char-

acteristic polynomials associated to the above strata are powers of irreducible
polynomials φ1 and φ2 respectively (see [BK93][2.3.11]). The underlying com-
pact group Js of the semi-simple type depends on the data n1/e1, n2/e2 and
φ1 and φ2. We have two possibilities:

1. n1/e1 6= n2/e2 or n1/e1 = n2/e2 but φ1 6= φ2

2. n1/e1 = n2/e2 and φ1 = φ2.

In the first case σ1 and σ2 are said to be completely distinct. In the second case
σ1 and σ2 are said to have common approximation. We will classify typical
representations in two important cases: the first case when σ1 and σ2 have a
common approximation of level zero, they are also called homogenous inertial
classes and the second case where σ1 and σ2 are completely distinct.

6.2 Homogenous inertial classes

In this section we assume that #kF > 3. So far we have shown that
typical representations occur as sub-representations of

ind
GL4(OF )
P 0(N+1)(λ1 � λ2).

This may not (although we believe that this is never the complete classification
when σ1 and σ2 have common approximation) be the complete classification
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in the case where σ1 and σ2 admit common approximation. In this section we
treat the case where n1/e1 = n2/e2 and φ1 = φ2; and σ1 and σ2 have level-zero
common approximation. This means that the simple characters of σ1 and σ2

intertwine and hence they are conjugate. We may as well assume that A1 is
equal to A2, n1 is equal to n2, β1 is equal to β2. We henceforth assume that σ1

and σ2 contain the simple strata [A, n, 0, α]. Moreover the simple characters
defining σ1 and σ2 are the same. We denote by E = F [α] and [E : F ] > 1.
We refer to [BK99][Section 4.3] for further details.

Let σ1 and σ2 be two supercuspidal representations of GL2(F ) containing
the simple stratum [A, n, 0, α]. Let (J0, λ1) and (J0, λ2) be Bushnell-Kutzko
type,s associated to [A, n, 0, α], contained in σ1 and σ2 respectively. We also
define a non-negative integer t = [n/2]. After twisting by a character χ of
GL4(F ) we may assume that α is minimal in the sense [BK93][1.4.14]. The
group Js in the Bushnell-Kutzko type (Js, λs) for the component s = [M,σ1 �
σ2] is given by (

J0 J0

H1 J0

)
.

We refer to [BK99][Section 7.2] for this construction. We also refer to the
article [Blo06][Corollaire 1] for an exposition. It follows from the minimality
of β that

H1 = PE + Pt+1
A and J0 = OE + Pn−t

A .

We refer to [BK93][Definition 3.1.7] for the definition of the lattices H1 and
J0. From the above description the group Js is of the form

Js =

(
J0 OE + Pn−t

A

PE + Pt+1
A J0

)
.

The representation λ1 � λ2 of J0 × J0 extends to a representation of Js such
that Js ∩ U and Js ∩ Ū are contained in the kernel of the extension. We de-
note by λs the extension of λ1 � λ2. The pair (Js, λs) is the Bushnell-Kutzko
semi-simple type for the component s.

6.2.1 The complete classification when E is unramified
We first understand the case when E is an unramified extension of F . In
particular A = M2(OF ).

Recall that the compact groups P 0(n + 1) and P 0(t + 1) represented in
block form are as follows: (

J0 A
Pt+1

A J0

)
and (

J0 A

P
(n+1)
A J0

)
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respectively. We also define an auxiliary subgroup J ′s:(
J0 OE + Pn−t

A

Pt+1
A J0

)
.

Lemma 6.2.1. The representation ind
P 0(t+1)
J′s

(λs) is an irreducible represen-
tation of P 0(t+ 1).

Proof. The double coset representatives for J ′s\P 0(t + 1)/J ′s can be chosen
from U(OF ) = P 0(t+ 1)∩U . Let u+ be a coset representative represented in
the block diagonal form as

u+ =

(
id U
0 id

)
.

Suppose T is a non-zero operator in the space

HomJ′s∩(J′s)
u+ (λs, λ

u+

s ).

The operator T satisfies the relation

T (

(
id 0
C id

)
v) =

(
id +UC −UCU
C −CU + id

)
T (v).

Further we take C in Pt+1
A . Now we get that

ψα(id +UC)ψα(−CU + id) = 1.

Hence we have ψ(αU−Uα)(1 + C) = 1. This shows us that U belongs to
N−t(α,A) which is equal to OE +Pn−t

A (See [BK93, Remark page 42]). Since
J ′s ∩ U is equal to OE + P

[(n+1)/2]
A , u+ is equivalent to id. This shows the

lemma with Mackey criterion.

We observe that P 0(t+1) can be decomposed as (J ′s)P
0(n+1) and Mackey

decomposition applied to this decomposition shows that the space of intertwin-
ing operators

HomP 0(t+1)(ind
P 0(t+1)
P 0(n+1)(λs), ind

P 0(t+1)
J′s

(λs))

has dimension 1. Now we need to find the complement of the representation
π2 := ind

P 0(t+1)
J′s

(λs) in π1 = ind
P 0(t+1)
P 0(n+1)(λs).

Let f be an element of the representation π1. Let I(f) be a function defined
by the equation

I(f)(p) =

∫
u−∈ P 0(t+1)∩Ū

f(u−p)du−

for all p ∈ P 0(t+ 1).
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Lemma 6.2.2. The operator I is a non-zero intertwining operator between π1

and π2.

Proof. Let p ∈ P 0(t + 1) and u+ ∈ J ′s ∩ U . It is enough to show that
I(f)(u+p) = λs(u

+)I(f)(p) = I(f)(p). Let u− and u+ be represented in
2× 2 block matrices as

u− =

(
12 0
U− 12

)
, u+ =

(
12 U+

0 12

)
respectively. Now observe that∫

u−∈ P 0(t+1)∩Ū
f(u−u+p)du− =

∫
u−∈ P 0(t+1)∩Ū

f(u−u+(u−)−1u−p)du−

(6.8)
The above integral can be written as∫

u−∈ P 0(t+1)∩Ū
ψ(αU+−U+α)(1 + U−)f(u−p)du−. (6.9)

Since U+ ∈ OE + Pn−t
A we get that αU+ − U+α ∈ P−tA since valuation of α

with respect to the filtration Pk
A, k ∈ Z, is −n. This shows that I(f) ∈ π2.

To see that I is non-zero we can take a function f ∈ π1 which is constant on
P 0(t+ 1) ∩ Ū and observe that I(f)(14) 6= 0.

Notation 6.2. For an element u+ ∈ U the 2× 2 block matrix form is always
denoted by (

12 U+

0 12

)
.

Similarly, for any element u− ∈ Ū the 2×2 block matrix form is always denoted
by (

12 0
U− 12

)
.

We note that I is surjective and ker(I) is the complement of π1 in π2. If
f is in the kernel of I then the above integral vanishes for all U+ ∈ A. Hence
the representation ker I is contained in the space S(α) given by

{
f ∈ π1|

∫
u−∈ P 0(t+1)∩Ū

ψ(αU+−U+α)(1 + U−)f(u−)du− = 0 ∀ U+ ∈ A

}
.

(6.10)

Lemma 6.2.3. Let W be an irreducible sub-representation of ker(I). Then
irreducible sub-representations of ind

GL4(OF )
P 0(t+1) (W ) are atypical representations.
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Proof. We first define a subgroup

Ht =

(
1 + Pt+1

A A
Pt+1

A 1 + Pt+1
A

)
.

of P 0(t + 1). Now Ht is a normal subgroup of P 0(t + 1) and P 0(t + 1) =
HtP

0(n+ 1). Mackey decomposition gives us

resHt ind
P 0(t+1)
P 0(n+1)(λs)

' indHtP 0(n+1)∩Ht(resP 0(n+1)∩Ht λs)

' indHtP 0(n+1)∩Ht((ψα � ψα)dimλs).

The character ψα is defined in [BK93][1.1.6]. We first describe the irreducible
sub-representations of indHtHt∩P 0(n+1)(ψα � ψα).

The group Ht ∩M acts by the character ψα � ψα on the representation
indHtHt∩P 0(n+1)(ψα � ψα). Note that (Ht ∩ Ū)P 0(n + 1) = P 0(t + 1) and by
Mackey decomposition we have

resHt∩Ū indHtHt∩P 0(n+1)(ψα � ψα) = indHt∩Ū
P 0(n+1)∩Ū (id).

Hence the restriction splits as distinct characters of (Ht ∩ Ū)/(P 0(n+ 1)∩ Ū).
The map u− 7→ U− gives us the isomorphism

(Ht ∩ Ū)/(P 0(n+ 1) ∩ Ū) ' Pt+1
A /Pn+1

A .

The group of characters of Pt+1
A /Pn+1

A is identified in the standard (as in
[BK93][1.1.6]) way with the group P−nA /P−tA .

We can choose a basis {fV |V ∈ P−nA /P−tA } for the space of functions
indHt∩Ū

P 0(n+1)∩Ū (id) such that(
id 0
U1 id

)
fV = ψV (U1)fV

where ψU− is the character of Pt+1
A /Pn+1

A corresponding to U− ∈ P−nA /P−tA .
Let eX be the characteristic function for the coset X + Pn+1

A . The function
fV can be written as

fV =
∑

X∈Pt+1
A /Pn+1

A

ψV (X)eX .

Let u+ ∈ Ht ∩ U . We first observe that

u+eX = ψα(1 + U+X)ψα(1−XU+)eX = ψ[α,U+](1 +X)eX .
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Now

u+fV

=
∑

X∈Pt+1
A /Pn+1

A

ψV (X)u+eX

=
∑

X∈Pt+1
A /Pn+1

A

ψV (X)ψ[α,U+](1 +X)eX = fV+[α,U+].

Any irreducible sub-representation W of indHtHt∩P 0(n+1)(ψα � ψα) contains
a character ψV for some V ∈ P−nA /P−tA . Now consider the space spanned by
the set

{fV , fV+[α,U+]| ∀ U+ ∈ A}.

By the observation on the action of the element u+, we get that the span is
stable under the action of Ht ∩ U and by construction it is stable under the
action of Ht ∩ Ū . Moreover the group Ht ∩M acts by a character ψα � ψα.
Hence W = < fV , fV+[α,U+]|∀ U+ ∈ A >. Let us denote the representation
W by W (V ) where V is a coset representative for P−nA / img([α, ]) This de-
scription will be sufficient for our present purpose.

Now we return to the proof of the lemma 6.2.3. The subgroup Ht is a
normal subgroup of P 0(t+ 1). Using Clifford theory we can write ker(I) as a
direct sum of irreducible sub-representations:

Γ := ind
P 0(t+1)
ZP0(t+1)(W (V )){W̃ (V )}

for some V ∈ P−nA and W̃ (V ) is an irreducible representation of ZP 0(t+1)(W (V )).

(The representation W̃ (V ) is the isotopic component of W (V ) in the repre-
sentation indHtHt∩P 0(n+1)(ψα � ψα). But we do not make use of this.). Let
sE/F be a tame co-restriction of A with respect to E (see [BK93][Definition
1.3.3]). Suppose sE/F (V ) belongs to P−tE for such a V then V = [α,U ] (since
the kernel of the map induced by sE/F on P−nA /P−tA is given by the image
of [α, ·] see [BK93][corollary1.4.10]) and hence a contradiction to the identity
(6.10). This shows sE/F (V ) does not belong to P−tE for all V such that W (V )
is contained in Γ.

Note that (ZP (t+1))(W (V )))(P 0(t+ 1) ∩ P ) is equal to P 0(t+ 1). Mackey
decomposition shows that

resP 0(t+1)∩P ind
P 0(t+1)
ZP0(t+1)(W (V )){W̃ (V )} ' ind

P 0(t+1)∩P
ZP0(t+1)(W (V ))∩P W̃ (V ).

It follows from Frobenius reciprocity that HomP 0(n+1)(Γ, λs) 6= 0. In par-
ticular HomP 0(n+1)∩P (Γ, λs) 6= 0. We note that P 0(n + 1) ∩ P is equal to
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P 0(t+ 1)∩P and as a consequence HomP 0(t+1)∩P (Γ, λs) 6= 0. Again applying
Frobenius reciprocity we note that

HomZP0(t+1)(W (V ))∩P (W̃ (V ), λs) 6= 0.

We will construct in the next paragraph another typical representation λs′
such that s′ 6= s and

resZP0(t+1)(W (V ))∩P (λs) ' resZP0(t+1)(W (V ))∩P (λs′). (6.11)

The group P 0(n+ 1) ∩ Ū acts trivially on Γ and on λs′ . The condition (6.11)
now shows that

HomP 0(n+1)(Γ, λs′)

is non-zero. Which shows that the representation Γ occurs in the representa-
tion

ind
P 0(n+1)
P 0(t+1) (λs′).

Hence the representation ind
GL4(OF )
P 0(t+1) (Γ) is atypical for the component s.

Now we give the construction of λs′ satisfying equation (6.11). We first
bound the group ZP 0(t+1)(W (V ))∩M . The elements of ZP 0(t+1)(W (V ))∩M
act on the characters ψV such that(

j1 0
0 j2

)
ψV = ψj1V j−1

2
= ψV+[α,U+]

for some U+ ∈ A. We now get that

j1V j
−1
2 + P−tA = V + [α,U+] + P−tA . (6.12)

Recall that V ∈ PA, valuation of α with respect to the filtration Pk
A, k ∈ Z, is

−n and U+ ∈ A. Applying a tame co-restriction sE/F on both sides of (6.12)
and taking j1 and j2 in O×E we get that

j1sE/F (V )j−1
2 + P−tE = sE/F (V ) + P−tE .

The above equation implies that j1 ≡ j2 modulo PE .

The representation λs is λ1 � λ2 where (J0, λi) are typical representations
of σi for i ∈ {1, 2}. Now J0/J1 is isomorphic to k×E . Since #kE > 3 we can
choose a nontrivial character η of k×E such that the multi-set of types {λ1, λ2}
and {λ1η, λ2η

−1} are distinct. Let λs′ = λ1η � λ2η
−1. The pair (Js, λ

′
s) is a

type for the component s′ = [GL2(F )×GL2(F ), σ′1 � σ′2] where σ′1 and σ′2 are
supercuspidal representations containing (J0, λη) and (J0, λη−1) respectively.
Moreover we observe that s′ 6= s and

resZP0(t+1)(W (V ))∩P (λs) ' resZP0(t+1)(W (V ))∩P (λs′).
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From the above lemma typical representations for the component s occur
as sub-representations of

ind
GL4(OF )
J′s

(λs).

Since Js contains the group J ′s we have

ind
GL4(OF )
Js

{indJsJ′s(id)⊗ λs} ' ind
GL4(OF )
J′s

(λs).

Frobenius reciprocity implies that indJsJ′s(id) contains id with multiplicity one.
Let ε(s) be the complement of id in indJsJ′s(id).

Lemma 6.2.4. Irreducible sub-representations of

ind
GL4(OF )
Js

{ε(s)⊗ λs}

are not typical representations.

Proof. The subset PE ∩Pt+1
A is an ideal in OE and PE ∩Pt+1

A = Pt+1
E . We

first define a sequence of subgroups of Js as follows:

Hi =

(
J0 OE + Pn−t

A

Pi
E + Pt+1

A J0

)
∀ 1 ≤ i ≤ t+ 1.

We note that that H1 = Js and Ht+1 = J ′s. Now

ind
GL4(OF )
H(i+1)

(λs) = ind
GL4(OF )
Hi

(λs)⊕ ind
GL4(OF )
Hi

(εi(s)⊗ λs).

Where εi(s) is the complement of id in the representation indHiH(i+1)
(id). If

ind
GL4(OF )
Hi

(λs) admits a complement of ind
GL4(OF )
H1

(λs) containing only atyp-
ical representations then we show the same for i + 1. For this we verify that
irreducible sub-representations of ind

GL4(OF )
Hi

(εi(s) ⊗ λs) are atypical for the
component s. Hence by induction we show the above lemma. Consider the
representation

indHiH(i+1)
(id).

The group Hi ∩ U acts trivially on this representation. To see this let u+ be
an element of Hi ∩ U . We can choose coset representatives u− for Hi/H(i+1)

from Hi ∩ Ū . Let u+ and u− represented in their block form be(
12 U+

0 12

) (
12 0
U− 12

)
respectively. Moreover we may assume that U− ∈ Pi

E . We observe that
(u−)−1u+u− is of the form(

12 − U+U− U+

−U−U+U− 12 + U−U+

)
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and this is clearly in the group H(i+1). Hence u+ acts trivially on indHiH(i+1)
(id).

Define S(i) = Hi ∩ P̄ where P̄ is the opposite group of P with respect to
the Levi-subgroup M . Observe that

resHi∩Ū indHiH(i+1)
(id) = ⊕ηi

where ηi are distinct characters of (Hi ∩ Ū)/(H(i+1) ∩ Ū). Now the group
S(i) ∩M acts on these characters and splits them into two different orbits id
and the rest of the characters. Applying Clifford theory we have

resS(i) indHiH(i+1)
(id) = id⊕ ind

S(i)
ZS(i)(η)(Uη)

where η is a nontrivial character of (Hi ∩ Ū)/(H(i+1) ∩ Ū) and Uη is an irre-
ducible representation of the group ZS(i)(η). This decomposition extends to a
representation of Hi.

For all U− ∈ Pi
E , the element

u− =

(
12 0
U− 12

)
is contained in the group Hi ∩ Ū . Now the map U− 7→ u− gives us an isomor-
phism

Pi
E/P

i+1
E ' (Hi ∩ Ū)/(Hi+1 ∩ Ū).

The above isomorphism is O×E × O
×
E (considered as a subgroup of M) equiv-

ariant.

Let (
j1 0
0 j2

)
be an element in ZS(i)(η) ∩M and j1, j2 belong to O×E . Since η is non-trivial
we have j1 ≡ j2 modulo PE . As in the previous lemma we can construct
another component s′ such that s′ 6= s and

resZS(i)(η)(λs) = resZS(i)(η)(λs′).

This shows us that the irreducible sub-representations of

ind
GL2(OF )
Hi

(ind
S(i)
ZS(i)(η)(Uη)⊗ λs) ' ind

GL2(OF )
Hi

(εi(s)⊗ λs)

are not typical representations. Hence we show the lemma.

With this discussion we conclude that all typical representations for the
component s occur as sub-representations of

ind
GL4(OF )
Js

(λs).

115



6.2.2 The complete classification when E is ramified

Although ideas in this section are essentially inspired from previous section,
we have to do additional work at various instances to finish the complete clas-
sification of typical representations when e(A) = 2.

Let M and J be two hereditary orders corresponding to the lattice chains
L1(i) = PF

i⊕PF
i and L2(2i) = PF

i⊕PF
i,L2(2i + 1) = PF

i⊕PF
i+1 re-

spectively. Let [J, 2n− 1, 0, α] be a simple strata contained in σ1 and σ2. We
have vJ(α) = −(2n− 1) (the valuation given by the filtration Pk

J, k ∈ Z) and
from the inclusions

P
−(n−1)
M ⊂ P

−(2n−2)
J ⊂ P

−(2n−1)
J ⊂ P−nA

we get that vM(α) = −n. Let sE/F be a tame co-restriction map. Now

sE/F (Pi
M) = sE/F ($2i

J M) = $2i+r
E OE

where r is given by sE/F (M) = Pr
E . Hence we have a sequence

M

OE + PM

P−nM

P
−(n−1)
M

P−2n+r
E

P
−2(n−1)+r
E

[α, ] sE/F

(6.13)

Lemma 6.2.5. The sequence (6.13) is exact.

Proof. The composition of the maps

M

PM

P−nM

P
−(n−1)
M

M

PM

[α, ] $n
F

is given by a map m 7→ [$n
Fα,m] from M2(kF ) to M2(kF ). Here $nα is

the class of $n
Fα in M/PM. We have $2n

F α2 = $4n
J α2 = $F ($4n−2

J α2) and
$4n−2

J α2 ∈ J. This shows that the $n
Fα is a nontrivial nilpotent matrix. The

dimension of the commutator of a nontrivial nilpotent element is 2. Now OE
is in the kernel and we observe that OE/$FOE is a 2 dimensional vector space
over kF . This shows that kernel is exactly OE +PM. Since the image of [α, ]
in the sequence (6.13) is of dimension 2 we get that img[α, ] = ker sE/F . This
concludes the proof of the lemma.

The proof of the above lemma shows thatN = {u ∈M | [α, u] ∈ P
−(n−1)
M } =

OE + PM. We denote by H1, H2 the groups(
J0 M

Pn+1
M J0

)
and

(
J0 M
Pn

M J0

)
.
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Note that these groups are P 0(n + 1) and P 0(n) defined in the previous sec-
tion. We note that the group J0 × J0 (considered as a subgroup of M(OF ))
normalizes the group

U(OE + PM) =

{(
12 B
0 12

)
| B ∈ OE + PM

}
hence we have the semi-direct product (J0×J0)U(OE +PM). Now we define
H3 to be the subgroup K4(n)(J0 × J0)U(OE + PM). The group H3 in the
block form is as follows : (

J0 OE + PM

Pn
M J0

)
.

Lemma 6.2.6. The representation λs of H3 ∩M extends to a representation
of H3 such that H3∩U and H3∩ Ū are contained in the kernel of the extended
representation.

Proof. The representation λs extends to a representation of

H ′3 =

(
J0 OE + PM

Pn+1
M J0

)
since res12+Pn+1

M
λs = id. Now H3 = H ′3(H3 ∩ Ū). Let

u+ =

(
12 B
0 12

)
be an element of (H ′3 ∩ U) = (H3 ∩ U) and

u− =

(
12 0
C 12

)
be an element of H3 ∩ Ū . We observe that u−u+u−

−1 is of the form(
12 −BC B
−CBC CB + 12

)
.

The above element belongs to the group H ′3 and

λs(u
−u+u−

−1
) = ψ[α,B](1 + C) = 1.

Hence the representation λs extends to a representation of H3 such that H3∩Ū
is contained in the kernel of the extension.

By Mackey decomposition we get that

dimC HomH2
(indH2

H1
(λs), indH2

H3
(λs)) = 1.
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Let π1 and π2 be the representations indH2

H1
(λs) and indH2

H3
(λs) respectively.

Let I be an operator from the space π1 to the space of functions on H1 given
by

I(f)(h) =

∫
H1∩Ū

f(uh)du.

Lemma 6.2.7. The operator I is a non-trivial intertwining operator from π1

to π2.

Lemma 6.2.8. The representation indH2

H3
(λs) is an irreducible representation

of H2.

Lemma 6.2.9. The irreducible sub-representations of ind
GL4(OF )
H2

(ker(I)) are
not typical representations.

We prove lemmas 6.2.7, 6.2.8 and 6.2.9 in an axiomatic way as the same
argument is used in various contexts. Let us first recall some definitions (see
[BK93][1.1.4]). Let ψ be an additive character of F which is trivial on PF

but not on OF and A be the set of matrices M2(F ). We denote by ψA the
character x 7→ ψ(tr(x)). For a given subset S ⊂ A, we denote by S∗ the set

{x ∈ A | ψA(xs) = 0 ∀ s ∈ S}.

Let (H1, H2, H3, λs) be a tuple consisting of three groups Hi for 1 ≤ i ≤ 3 and
λs a representation of a common subgroup of Hi for 1 ≤ i ≤ 3. We assume
that the tuple satisfies the following conditions

1. H1 =

(
J0 N1

P2 J0

)
.

2. H2 =

(
J0 N1

P1 J0

)
.

3. H3 =

(
J0 N2

P1 J0

)
.

4. J0 is the group J0
α for the simple strata [A, n, 0, α] and λs is a representa-

tion λ1�λ2 of J0×J0 such that (J0, λ1) and (J0, λ2) are Bushnell-Kutzko
types for some supercuspidal representations σ1 and σ2 respectively.

5. The lattices Pi and Ni for i in {1, 2} satisfy the inclusion relations P2 ⊆
P1, P1P1 ⊆ P2, N2 ⊆ N1 and P1N1P1 ⊆ P2. The map ψα sending
x to tr(αx) is a character of the quotient P1/P2 where α is in P∗2. λs
extends to a representation of H1 and H3.

6. λ1 and λ2 are representations of J0 such that the restriction to 12 + P1

is a multiple of the character of the form x 7→ ψα(1 + x)
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7. We have an exact sequence

0→ N1

N2
→ P∗2

P∗1
→ s(P∗2)

s(P∗1)
→ 0 (6.14)

such that the first arrow is given by [α, ] and the second by s the tame
co-restriction with respect to the field F [α]/F .

It follows from Mackey decomposition that up to scalars there exists a unique
non-trivial intertwining operator between the representations π1 = indH2

H1
(λs)

and π2 = indH2

H3
(λs). Let f be a function in the space π1. Let I be the operator

from π1 to the space of functions on H1 given by

I(f)(h) =

∫
H2∩Ū

f(uh)du

for all h ∈ H1.

Lemma 6.2.10. The operator I is a non-trivial intertwining operator between
the space π1 and π2.

Proof. The proof is a repetition of the proof of 6.2.2. Let h ∈ H2 and u+ ∈
H3 ∩U . It is enough to show that I(f)(u+h) = λs(u

+)I(f)(h) = I(f)(h). Let
u− and u+ be represented in 2× 2 block matrices as

u− =

(
12 0
U− 12

)
, u+ =

(
12 U+

0 12

)
respectively.∫

u−∈ H1∩Ū
f(u−u+p)du− =

∫
u−∈ H1∩Ū

f(u−u+(u−)−1u−p)du− (6.15)

Using the axiom 6 the above integral can be written as∫
u−∈ H1∩Ū

ψ(αU+−U+α)(1 + U−)f(u−p)du−. (6.16)

Since U+ ∈ N2 and by the exact sequence in axiom (7) we get that αU+−U+α
belongs to P∗1. This shows that I(f) ∈ π2. To see that I is a non-zero operator
we can take a function f ∈ π1 which is a non-zero constant on H1 ∩ Ū and
observe that I(f)(14) 6= 0.

Lemma 6.2.11. The representation π2 is an irreducible representation of H2.
Any irreducible sub-representation in the kernel of this intertwining operator
I also occurs as a sub-representation of

indH2

H1
(λ1η � λ2η

−1)

for any tame character η of O×E .
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Proof. Except for few changes the proof is a repetition of lemma 6.2.3. We first
prove that π2 is irreducible. The double coset representatives for H3\H2/H3

can be chosen from H2 ∩U . Let u+ be a coset representative. We write u+ in
block diagonal form as

u+ =

(
id U
0 id

)
.

Suppose T be a non-zero operator in the space

HomH3∩(H3)u+ (λs, λ
u+

s ).

The operator T satisfies the relation

T (

(
id 0
C id

)
v) =

(
id +UC −UCU
C −CU + id

)
T (v).

where C ∈ P1. Now we get that

ψα(id +UC)ψα(−CU + id) = 1.

Hence we have ψ(αU−Uα)(1 + C) = 1 for all C ∈ P1. The first arrow of the
exact sequence (6.14) shows that U ∈ N2 and hence u+ belongs the double
coset represented by id. By Mackey irreducibility criteria π2 is irreducible. For
the second part let f be a function in ker(I) then we have

I(f)(u+) =

∫
u−∈H2∩Ū

f(u−u+)du− = 0

for all u+ in H2 ∩ U . We write u+ and u− in their block diagonal form as(
id U+

0 id

)
and (

id U−

0 id

)
respectively. We observe that u−u+u−

−1 is of the form(
12 − U+U− U+

−U−U+U− U−U+ + 12

)
.

The above matrix is an element of H1. We now have∫
H2∩Ū

f(u−u+)du−

=

∫
H2∩Ū

λs(u
−u+u−

−1
)f(u−)du−

=

∫
U−∈P1

ψα(12 − U+U−)ψα(12 + U−U+)f(U−)dU−.
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This shows that ker(I) consists of functions which satisfy the identity∫
U−∈P1

ψ(αU+−U+α)(1 + U−)f(U−)dU− = 0

for all U+ ∈ N1. We denote by H ′ the group(
12 + P1 N1

P1 12 + P1

)
.

We have H ′H1 = H2 hence by Mackey decomposition we get that

resH′ indH2

H1
(λs) = indH

′

H1∩H′(λs).

Let resH′∩M λs be (ψα � ψα)n. Now we get that

indH
′

H1∩H′(λs) ' (indH
′

H1∩H′(ψα � ψα))n.

The representation
indH

′

H1∩H′(ψα � ψα)

can be realised as space of functions on the abelian group

H ′

H1 ∩H ′
' P1

P2
(6.17)

If eu− is the characteristic function for the coset representative u−, the element
u+ acts by the constant ψαU+−U+α(U−) on eu− . The element j = diag(j1, j2)
of H ′ ∩M acts by sending eU− to

ψα(j1j2)ej1u−j−1
2

= ψα(j1j2)eu− (see 6.12). The space of functions on the
group (6.17) are spanned by the characters on the abelian quotient (6.17).
The set of characters of the group (6.17) can be identified with the standard
isomorphism

P∗2
P∗1
' P̂1

P2

sending U to ψU . The action of the element u+ on ψV is given by

ψV 7→ ψV+[α,U+].

Let W (V ) be a space spanned by the functions of the form ψV+[α,U+] for all
U+ ∈ N1. This space is stable for the action of H ′ and is irreducible. Hence
we have

indH
′

H1∩H′(λs) '
⊕

V ∈P∗2/ img([α, ])

(W (V ))n

Now the group H2 acts on the set of representations W (V ) of H ′ and we get
that

indH2

H1
(λs) '

⊕
Vi

(indH2

Z(W (Vi))
(W̃ (Vi)))

n
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where Vi|1 ≤ i ≤ l is the representatives for the action of H2, Z(W (Vi)) is the
stabilizer of the group W (Vi) and W̃ (Vi) is the isotopic component of W (Vi).

Let sE/F be a tame co-restriction on A with respect to E (see [BK93][1.3.3])
If sE/F (Vi) = 0 then by the exact sequence (6.14) we get that Vi = [α,U+] for
some U+ ∈ N1/N2. This shows that the representation

Γ := indH2

Z(W (Vi))
(W̃ (Vi))

contains a function ψ[α,U+]. Hence the above representation is not contained
in the space ker(I). Hence the kernel consists of representations W (V ) with
sE/F (V ) 6= 0 Now Z(W (V )) = {(J0 × J0) ∩ Z(W (V ))}H ′. Note that J0 =

O×EJ1 and (O×E×O
×
E)∩{(J0×J0)∩Z(W (V ))} is contained in the group of the

form {(a, b) | a, b ∈ O×E ; a ≡ b mod PE}. Let η be a character of J0/J1 ' k×E .
We observe that

resZ(W (V )) λ1 � λ2 ' resZ(W (V )) λ1η � λ2η
−1

Now we note that (Z(W (V )) ∩ P )H1 = H2 and H1 ∩ P = H2 ∩ P . From
Frobenius reciprocity we get that HomH2∩P (Γ, λs) 6= 0. We have

HomH2∩P (Γ, λs′)

= HomZ(W (V ))∩P (W̃ (V ), λs′)

= HomZ(W (V ))∩P (W̃ (V ), λs).

and HomZ(W (V ))∩P (W̃ (V ), λs) is equal to HomH2∩P (Γ, λs) which shows that
HomH1(Γ, λs′) is non-zero.

Proof of lemma 6.2.8 and 6.2.9. We apply lemma 6.2.11 for the tuple

(H1, H2, H3, λs)

defined at the beginning of this subsection with (J0, λ1) and (J0, λ2) being
the Bushnell-Kutzko types for the representations σ1 and σ2 respectively. The
exact sequence is provided by (6.13). The irreducible sub-representations of
ker(I) also occur in the representation

indH2

H1
(λ1η � λ2η

−1).

for any tame character η of O×E . If #kF > 3 then we can choose a character
η of k×E = k×F such that the multi-sets of types {λ1, λ2} and {λ1η, λ2η

−1}
are distinct. If σ′1 and σ′2 are two supercuspidal representations containing
(J0, λ1η) and (J0, λ2η

−1) respectively then s′ = [M,σ′1 �σ
′
2] and s = [M,σ1 �

σ2] are different inertial classes and hence the irreducible sub-representations
of ind

GL4(OF )
H2

(ker(I)) occur as sub-representations of ind
GL4(OF )
H2

(λ1η�λ2η
−1)

and hence are atypical.

122



Now typical representations occur as sub-representations of ind
GL4(OF )
H3

(λs)
or rather the complement of this representation in the parabolic induction

i
GL4(F )
P (σ1 � σ2)

contains only atypical representations for the component s.

Lemma 6.2.12. The group OE + PJ is equal to OE + PM.

Proof. Since the group group PM is contained in PJ, OE + PJ is a subset of
OE +PM. We will now show that PJ ⊂ OE +PM. We recall that the groups
PJ and PM are given by(

PF OF
PF PF

)
and

(
PF PF

PF PF

)
respectively. Let Π be the matrix of the form(

0 1
$F 0

)
.

We note that
OFΠ + PM = PJ. (6.18)

Since the element Π normalizes the hereditary order J, we have Π = $Ej for
some j ∈ U(J). Now multiplying j−1 on both sides of the equation (6.18) we
get that $EOF + PM = PJ. This shows the lemma.

Hence the group H3 is of the following form.(
J0 OE + PJ

Pn
M J0

)
.

Let a, b be integers such that a + b = 2n, a ≥ n and b ≥ 0. We denote by
H(a, b) the set consisting of the matrices{(

A B
C D

)
A,D ∈ OE + Pn

J ; B ∈ OE + Pb
J;C ∈ Pa

J

}
.

Lemma 6.2.13. The set H(a, b) is an order.

Proof. Let h1 and h2 be two matrices from the set H(a, b) we write h1 and h2

in its block form as (
A1 B1

C1 D1

) (
A2 B2

C2 D2

)
The product of h1h2 has the 1 × 1 entry A1A2 + B1C2 Since a + b = 2n
we can see that B1C2 ∈ OE + Pn

J + Pa
J since we assumed a ≥ n we have

B1C2 ∈ Pn
J and hence A1A2 +B1C2 ∈ OE +Pn

J . The 1× 2 term is contained
in (OE +Pn

J)(OE +Pb
J) and this product set is contained in (OE +Pb

J). The
2× 1 term of the product is easily seen to be contained in Pa

J. The 2× 2 term
is similar to 1× 1.
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We denote by H(a, b) the group of units of H(a, b). In the block form the
group H(a, b) is as follows: (

J0 OE + Pb
J

Pa
J J0

)
.

Lemma 6.2.14. The representation λs of H(a, b)∩M extends to a represen-
tation of H(a, b) such that H(a, b) ∩ U and H(a, b) ∩ Ū are contained in the
kernel of the extension.

Proof. The proof is similar to that of 6.2.6. We note that H(a, b) is equal
to H(2n, b)(H(a, b) ∩ Ū). The representation λs extends to a representation
of H(2n, b) since resid +P2n

J
(λs) = id. Let u+ and u− be two elements of

H(a, b) ∩ U and H(a, b) ∩ Ū respectively and we take them in the block form
as in lemma 6.2.6. We observe that λs(u−u+u−

−1
) = ψ[α,B](id +C). Now

B ∈ O×E + Pb
J hence [α,B] ∈ P

−(2n−1)+b
J and hence ψ[α,B](id +C) = 1 for

all C ∈ Pa
J. This shows that λs(u−u+u−

−1
) = 1. Hence the representation

λs extends to H(a, b) such that H(a, b) ∩ Ū is in the kernel of the extended
representation.

Since Pn
M ⊂ P2n−1

J we get that H3 ⊂ H(2n − 1, 1). The induction
ind

H(2n−1,1)
H3

(λs) has a unique complement of the representation λs (here λs
is considered as a representation of H(2n − 1, 1)). Let U(3, 2n − 1) be the
complement of λs in ind

H(2n−1,1)
H3

(λs).

Lemma 6.2.15. The irreducible sub-representations of

ind
GL4(OF )
H(2n−1,1)(U(3, 2n− 1))

are not typical representations.

Proof. The proof is similar to the proof of 6.1.2. We denote by H ′ the groupid +Pn
J OE + PJ

P2n−1
J id +Pn

J

 .

We observe that H ′ is a normal subgroup of H(2n−1, 1) and H ′H3 = H(2n−
1, 1). Using Mackey decomposition we get that

resH′ ind
H(2n−1,1)
H3

(id) ' ⊕pj=1ηj

where ηj are characters of H ′ which are trivial on H ′ ∩ H3. The quotient is
given by P2n−1

J /Pn
M. Now the group H(2n − 1, 1) acts on these characters

ηi and let Z(η) be the H(2n − 1, 1) stabilizer of η. Note that Z(η) = (O×E ×
O×E)H(2n− 1, 1). From Clifford theory we get that

ind
H(2n−1,1)
H3

(id) ' ⊕i∈Λ ind
H(2n−1,1)
Z(ηi)

(Uηi)
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where Λ is a set of representatives for the action of H(2n− 1, 1) on the char-
acters ηj for 1 ≤ j ≤ p and Uηi is an irreducible representation of Z(ηi). The
action of O×E ×O

×
E on the quotient P2n−1

J /Pn
M factors through U2(E) and if η

is non-trivial character, from the arguments of Case 3.3 in theorem 6.1.2 we
get that moduloPE reduction of the group Z(η) is of the form {(e, e) | e ∈ k×F }.
This shows that for #kF > 3 we can choose a character η of k×F such that the
multi-sets {λ1η, λ2η

−1} and {λ1, λ2} are distinct. Moreover

ind
H(2n−1,1)
Z(ηi)

{Uηi ⊗ (λ1 � λ2)}

' ind
H(2n−1,1)
Z(ηi)

{Uηi ⊗ (λ1η � λ2η
−1)}

for any η 6= id. This shows that irreducible sub-representations of

ind
GL4(OF )
H(2n−1,1)(U(3, 2n− 1))

are atypical representations.

The above lemma shows that typical representations can only occur as sub-
representations of ind

GL4(OF )
H(2n−1,1)(λs). We suppose that typical representations

occur as sub-representations of ind
GL4(OF )
H(a,b) (λs) for some positive integer b such

that 1 ≤ b < n − 1 then we show that typical representations occur as sub-
representation of ind

GL4(OF )
H(a−1,b+1)(λs). By Mackey decomposition we note that

dimC Hom(ind
H(a−1,b)
H(a,b) (λs), ind

H(a−1,b)
H(a−1,b+1)(λs)) = 1.

Let I(a, b) be the non-trivial intertwining operator between ind
H(a−1,b)
H(a,b) (λs)

and ind
H(a−1,b)
H(a−1,b+1)(λs).

Lemma 6.2.16. The representation ind
H(a−1,b)
H(a−1,b+1)(λs) is irreducible.

Lemma 6.2.17. The irreducible sub-representations of ind
GL4(OF )
H(a−1,b)(ker(I(a, b)))

are not-typical representations.

Proof of lemma 6.2.16 and 6.2.17. We apply the formalism developed in lemma
6.2.11 for the tuple (H(a, b), H(a − 1, b), H(a − 1, b + 1), λs). We have N1 =
OE + Pb

J and N2 = OE + Pb+1
J . In the language of Bushnell-Kutzko N1 =

N−2n+b+1(β, J) and N2 = N−2n+b+2(β, J). We note that P∗2 = P1−a
J =

P−2n+b+1
J and P∗1 = P−2n+b+2

J . The exact sequence 6.14 is given by [BK93,
corollary 1.4.10] which says that the sequence

Nk(β, J)

Nk+1(β, J)

Pk
J

Pk+1
J

Pk
E

Pk+1
E

[α, ] sE/F
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is exact for all k ≥ k0(β, J) and in our context k0(β, J) = −2n + 1 and k =
−2n + b + 1. The irreducible sub-representations of ker(I(a, b)) also occur in
the representation

ind
H(a−1,b)
H(a,b) (λ1η � λ2η

−1).

for any tame character η of O×E . If #kF > 3 then we can choose a charac-
ter η of k×E = k×F such that the multi-sets types {λ1, λ2} and {λ1η, λ2η

−1}
are distinct. If σ′1 and σ′2 are two supercuspidal representations containing
(J0, λ1η) and (J0, λ2η

−1) respectively then s′ = [M,σ′1 �σ
′
2] and s = [M,σ1 �

σ2] are different inertial classes and hence the irreducible sub-representations
of ind

GL4(OF )
H(a−1,b)(ker(I(a, b))) occur as sub-representations of ind

GL4(OF )
H(a,b) (λ1η �

λ2η
−1) and hence are atypical.

This brings us to the final step of this section from the lemma 6.2.17 we
conclude that typical representations occur as sub-representations of

ind
GL4(OF )
H(n+1,n−1)(λs).

From lemma 6.2.4 we get that typical representations occur as sub-representations
of ind

GL4(OF )
Js

(λs) where (Js, λs) is the Bushnell-Kutzko type for the compo-
nent s.

6.3 Completely distinct inertial classes

In this section we assume that #kF > 3 We fix Bushnell-Kutzko types
(J0

1 , λ1) and (J0
2 , λ2) contained in the supercuspidal representations σ1 and σ2

respectively. Let [A1, n1, 0, β1] and [A2, n2, 0, β2] be two simple strata defining
the types (J0

1 , λ1) and (J0
2 , λ2) respectively. Let ei = e(Ai| OF ) for i ∈ {1, 2}.

In this section we consider the case where σ1 and σ2 are completely distinct.
We will always assume that n1/e1 ≥ n2/e2. We denote by Λi the lattice
sequence Λi(r) = Li(−[−r]) for all r ∈ R where Li is the lattice chain defining
the hereditary order Ai and moreover we assume that Li(0) = OF ⊕ OF for
i ∈ {1, 2}.

Let U and Ū be the unipotent radicals of P and the opposite parabolic sub-
group of P with respect to M respectively. We denote by e the least common
multiple of e(Λ1) and e(Λ2) respectively. Let l be the positive integer such
that l/e = max{n1/e1, n2/e2}. Let Λ be the direct sum of lattice sequences
Λ1 and Λ2. The Bushnell-Kutzko type Js satisfies the Iwahori decomposition
with respect to the parabolic subgroup P and the Levi-subgroup M . The pair
(Js, λs) is characterised by the following properties

1. Js ∩ U = u0(Λ) ∩ U ,

2. Js ∩ Ū = ul+1(Λ) ∩ Ū ,
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3. Js ∩M = J0
1 × J0

2 .

4. The restriction of the representation λs to the subgroup Js ∩M is iso-
morphic to λ1 � λ2 and Js ∩U and Js ∩ Ū are contained in the kernel of
λs.

We refer to [BK99][Section 8, paragraph 8.3.1] for the construction of the pair
(Js, λs). We will explicitly compute u0(Λ)∩U and ul+1(Λ)∩Ū in the following
possibilities e1 = e2 = 1; e1 = 1, e2 = 2; e1 = 2, e2 = 1; and e1 = 2, e2 = 2.

We first consider the case e1 = e2 = 1. In this case

Λ(0) = OF ⊕OF ⊕OF ⊕OF

and Λ(i + 1) = $FΛ(i). Hence u0(Λ) is GL4(OF ) and ul+1(Λ) is the prin-
cipal congruence subgroup of level l + 1 inside GL4(OF ). This shows that
u0(Λ) ∩ U= U(OF ) and ul+1(Λ) ∩ Ū = Ū(Pl+1

F ). Moreover N = l Hence we
observe that in this case Js = P 0(N + 1). Hence the theorem 6.1.2 completes
classification of typical representations in the case where e1 = e2 = 1 and σ1

and σ2 are completely distinct.

We will now consider the case e1 = 1, e2 = 2. In this situation

Λ(0) = OF ⊕OF ⊕OF ⊕OF

Λ(1) = Λ1(1/2)⊕ Λ2(1) = PF ⊕PF ⊕OF ⊕PF

and Λ(i+2) = $FΛ(i). Let n and n̄ be the upper and lower nilpotent matrices
of the type (2, 2) i.e the Lie algebras of U and Ū respectively. Now ui(Λ)∩U =
1 + (ai(Λ)∩n) and ui(Λ)∩ Ū = 1 + (ai(Λ)∩ n̄) ( ai(Λ) is defined in the section
5.1). We note that a0 ∩ n is the set

{x ∈M4(F ) ∩ n | xΛ(i) ⊂ Λ(i)∀i ∈ Z}

In our case it is given by the set
0 0 PF OF

0 0 PF OF

0 0 0 0
0 0 0 0

 .

Similarly the groups a0(Λ) ∩ n̄ and a1(Λ) ∩ n̄ are given by
0 0 0 0
0 0 0 0
OF OF 0 0
OF OF 0 0

 and


0 0 0 0
0 0 0 0
OF OF 0 0
PF PF 0 0


respectively. Let l+1 = 2l′+r with r ∈ {0, 1} then al+1(Λ)∩n̄ = $l′

F (ar(Λ)∩n̄).
We recall that N = max{n1, [(n2 +1)/2]} and l/2 = max{n1, n2/2} = n1 since
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we assume that n1 ≥ n2/2. Since n1 is a positive integer, n1 ≥ n2/2 if and
only if n1 ≥ [(n2 + 1)/2]. In this case N = n1. Hence we deduce that 2N = l.
From this we get that al+1(Λ) ∩ n̄ = $N

F (a1(Λ) ∩ n̄). The first observation is
that the dimensions of the representations

ind
GL4(OF )
P 0(N+1)(λ1 � λ2) and ind

GL4(OF )
Js

(λ1 � λ2)

are the same and moreover the intertwining of the second representation from
the lemma [BK98][lemma 11.5] is bounded by the cardinality ofNGL4(F )(s)/M .
Since the representations σ1 and σ2 are not inertially equivalent we get that
the cardinality of NGL4(F )(s)/M is one. Hence the representation

ind
GL4(OF )
Js

(λ1 � λ2)

is irreducible. Now at least one typical representation must be contained in
i
GL4(F )
P (σ1 � σ2) and lemma 2.2.4, theorem 6.1.2 gives the inclusion of the
above representation in

ind
GL4(OF )
P 0(N+1)(λ1 � λ2)

Hence we have the isomorphism

ind
GL4(OF )
Js

(λ1 � λ2) ' ind
GL4(OF )
P 0(N+1)(λ1 � λ2). (6.19)

Let us consider the case where e1 = 2 and e2 = 1. In this case Λ(i+ 2) =
$FΛ(i) and

Λ(0) = OF ⊕OF ⊕OF ⊕OF ,

Λ(1) = Λ1(1)⊕ Λ2(1/2) = OF ⊕PF ⊕PF ⊕PF .

The group a0(Λ) ∩ n is given by
0 0 OF OF

0 0 OF OF

0 0 0 0
0 0 0 0


The group a0(Λ) ∩ n̄ and a1(Λ) ∩ n̄ is given by

0 0 0 0
0 0 0 0

PF OF 0 0
PF OF 0 0

 and


0 0 0 0
0 0 0 0

PF PF 0 0
PF PF 0 0

 .

In this situation n1/2 ≥ n2 and hence l/2 = max{n1/2, n2} = n1/2. Now
consider the positive integer N = max{[(n1 + 1)/2], n2}. Since n1/2 ≥ n2 and
[(n1 +1)/2] ≥ n1/2 we get that N = [(n1 +1)/2]. Here we can use the fact that
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n1 is odd and we have al+1(Λ) ∩ n̄ = $
(n1+1)/2
F (a0(Λ) ∩ n̄) = $N

F (a0(Λ) ∩ n̄).
Observe that P 0(N + 1) ⊂ Js.

The representation λs occurs with multiplicity one in the representation
indJsP 0(N+1)(λs). We denote by U0

N (λs) the unique complement of λs in the
representation indJsP 0(N+1)(λs). We denote by UN (λs) the representation

ind
GL4(OF )
Js

(U0
N (λs)).

Lemma 6.3.1. The irreducible sub-representations of UN (λs) are atypical.

Proof. The proof of this lemma is similar to 5.3.2. The first step is to split the
representation

indJsP 0(N+1)(id).

To begin with we will show that the group U(OF ) acts trivially on the above
representation. Let u+ be an element of U(OF ) and u− be an element of
Js ∩ Ū . We denote u+ and u− in their respective block form as(

12 U+

0 12

)
and

(
12 0
U− 12

)
.

Now the conjugation u−u+(u−)−1 is of the form(
12 − U+U− U+

U−U+U− 12 + U−U+

)
.

We observe that U−U+U− ∈ $N+1M2(OF ). This shows that the conjugation
u−u+(u−)−1 lies in the group P 0(N+1). Hence the group U(OF ) acts trivially
on

indJsP 0(N+1)(id). (6.20)

From the Iwahori decomposition of the group Js we get that Js is equal to
(Js ∩ P̄ )P 0(N + 1). Hence we get that

resJs∩P̄I indJsP 0(N+1)(id) ' indJs∩P̄
P 0(N+1)∩P̄ (id).

Note that Js∩ P̄ is a semi-direct product of the groups (Js∩M) and (Js∩ Ū).
Let ηk for 1 ≤ k ≤ t (we mean counting them with their multiplicity, but
in our case the multiplicity is one) be all the characters of the group Js ∩ Ū
which are trivial on the group P 0(N + 1)∩ Ū . The group Js ∩ P̄ acts on these
characters and let {ηkp} be a set of representatives for the orbits under this
action. We denote by Z(ηkp) the Js ∩ P̄ stabiliser of the character ηkp . Now
Clifford theory gives the decomposition

indJs∩P̄
P 0(N+1)∩P̄ (id) '

⊕
ηkp

indJs∩P̄Z(ηkp )(Uηkp )
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where Uηkp is an irreducible representation of Z(ηkp). We note that the char-
acter id occurs with a multiplicity one in the list of characters ηk.

The representation Uηkp is the isotypic component of the character ηkp in
the representation

indJs∩P̄
P 0(N+1)∩P̄ (id).

which naturally has the action of Z(ηkp). Now if Ks is the kernel of the repre-
sentation (6.20) then Ks ∩Z(ηkp) acts trivially on Uηkp . Hence we can extend
the representation Uηkp to the group Z(ηkp)Ks such that Ks acts trivially on
the extended representation. Now consider the representation

π = indJsZ(ηkp )Ks
Uηkp .

Note that Ks∩ P̄ is contained in the group Z(ηkp)∩ P̄ and moreover U(OF ) is
contained in Ks hence Js = (Js ∩ P̄ )Z(ηkp)Ks. Using Mackey decomposition
we have

resJs∩P̄ indJsZ(ηkp )Ks
Uηkp ' indJs∩P̄

Z(ηkp )Ks∩(Js∩P̄ )
(Uηkp ) ' indJs∩P̄Z(ηkp )(Uηkp ).

We hence obtain

indJsP 0(N+1)(id) '
⊕
ηkp

indJsZ(ηkp )Ks
Uηkp . (6.21)

Now using the decomposition (6.21) we get that the decomposition

ind
GL4(OF )
P 0(N+1)(λ1 � λ2) '

⊕
ηkp

ind
GL4(OF )
Z(ηkp )Ks

{Uηkp ⊗ (λ1 � λ2)}.

Note that the character id occurs with multiplicity one among the charac-
ters ηk and the fact that Z(id)Ks = (Js ∩ P̄I)Ks = Js implies the following
isomorphism

ind
GL4(OF )
P 0(N+1)(λ1�λ2) ' ind

GL4(OF )
Js

(λ1�λ2)⊕
⊕
ηkp 6=id

ind
GL4(OF )
Z(ηkp )Ks

{Uηkp⊗(λ1�λ2)}.

(6.22)
Let Γ be an irreducible sub-representations of

ind
GL4(OF )
Z(ηkp )Ks

{Uηkp ⊗ (λ1 � λ2)}.

From the reasoning given in Case 3.2 of theorem 6.1.2, for #kF > 3, we
can find two types (J0

1 , λ
′
1) and (J0

2 , λ
′
2) such that [M,σ1 � σ2] 6= [M,σ1 � σ2]

where σ′1 and σ′2 are two supercuspidal representations containing (J0
1 , λ
′
1) and

(J0
2 , λ
′
2) respectively,

resZ(ηkp )(λ1 � λ2) ' resZ(ηkp )(λ
′
1 � λ′2).

This shows that the representation Γ is not a typical representation.
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Now we look at our last possibility e1 = e2 = 2. In this case Λ(i + 2) =
$FΛ(i), Λ(0) = OF ⊕OF ⊕OF ⊕OF and Λ(1) = OF ⊕PF ⊕OF ⊕PF . The
group a0(Λ) ∩ n is given by 

0 0 OF OF

0 0 PF OF

0 0 0 0
0 0 0 0

 .

The groups a0(Λ) ∩ n̄ and a1(Λ) ∩ n̄ are given by the groups
0 0 0 0
0 0 0 0
OF OF 0 0
PF OF 0 0

 and


0 0 0 0
0 0 0 0

PF OF 0 0
PF PF 0 0


respectively. We have l/2 = max{n1/2, n2/2} = n1/2 and hence l = n1. At the
same time N = max{[(n1 + 1)/2], [(n2 + 1)/2]} = [(n1 + 1)/2]. We use the fact
that n1 is odd and get that al+1(Λ)∩n̄ = $

(n1+1)/2
F (a0(Λ)∩n̄) = $N

F (a0(Λ)∩n̄).

Let H1 be the group(
J0

1 $FM2(OF )
$N
FM2(OF ) J0

2

)
.

The group H1 is contained in the group P 0(N).

Lemma 6.3.2. The representation λs of J0
1 × J0

2 extends to a representation
of H1 such that H1∩U and H1∩Ū are contained in the kernel of this extension.

Proof. The representation λs = λ1�λ2 extends to the on the group P 0(N+1)
such that P 0(N + 1)∩U and P 0(N + 1)∩ Ū are contained in the kernel of the
extension. Hence the representation λs extends to the group H1 ∩P 0(N + 1).
We note that H1 = (P 0(N) ∩ Ū)(H1 ∩ P 0(N + 1)). Let u− be an element
of P 0(N) ∩ Ū . To prove the lemma it is enough to verify that (u−)−1u+u−

belongs to H1 ∩P 0(N + 1) and λs((u−)−1u+u−) = 1 for all u− ∈ H1 ∩ Ū and
u+ ∈ H1 ∩ U respectively.

We write u− and u+ in the block form as(
12 0
U− 12

)
and

(
12 U+

0 12

)
respectively and U− ∈ $N

FM2(OF ) and U+ ∈ $FM2(OF ). The conjugation
(u−)−1u+u− in the block form is given by(

12 − U+U− U+

−U−U+U− U−U+ + 12

)
.
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Since U−U+U− ∈ $2N+1
F M2(OF ) we get that the above matrix belongs to

H1 ∩ P 0(N + 1). The element 12 + U−U+ and 12 − U+U− are contained in
the kernel of λ2 and λ1 respectively. Hence λs((u−)−1u+u−) = 1.

From the observation P 0(N) = P 0(N + 1)H1 we get that

dimC HomP 0(N)(ind
P 0(N)
P 0(N+1)(λs), ind

P 0(N)
H1

(λs)) = 1.

Lemma 6.3.3. The representation ind
P 0(N)
H1

(λs) is an irreducible representa-
tion of P 0(N).

Proof. We prove the lemma by showing that the support of the intertwining
of the representation considered in the lemma is contained in the double coset
containing identity. The double coset representatives for H1\P 0(N)/H1 can
be chosen from the group P 0(N) ∩ U . Let u+ be an element from the group
P 0(N) ∩ U . Let the following matrix be the block from of u+:(

12 U+

0 12

)
where U+ ∈M2(OF ). Let T be a non-zero operator in the space

HomH1∩(H1)u+ (λs, (λs)
u+

).

Now T must satisfy the relation

T (

(
id 0
C id

)
v) =

(
id +U+C −U+CU+

C −CU+ + id

)
T (v).

for all v ∈ ind
P 0(N)
H1

(λs) and C ∈ $N
FM2(OF ). This implies that the character

ψβ1U+−U+β2
(1 + C) = 1. Since characteristic polynomials of β1 and β2 are

relatively prime we get that U+ ∈ $FM2(OF ) (see [BK99][lemma 4 p.72]).
Hence the intertwining is supported only on the double coset containing iden-
tity. This shows the lemma.

We note that ind
P 0(N)
P 0(N+1)(λs) and ind

P 0(N)
H1

(λs) are of the same dimension.
The above lemma together with the transitivity of induction we get that

ind
GL4(OF )
P 0(N+1)(λs) ' ind

GL4(OF )
H1

(λs).

Let H2 be the group (
J0

1 PA1

$N
FM2(OF ) J0

2

)
.

(Note that A1 is a hereditary order defined by the lattice sequence Λ1 with
periodicity 2 and Λ1(0) = OF ⊕OF and Λ1(1) = OF ⊕PF .) We observe that
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H1 ⊂ H2 and moreover H1 ∩ Ū = H2 ∩ Ū and H1 ∩M = H2 ∩M . We will
also need another group H3 given by(

J0
1 PA1

P2N−1
A1

J0
2

)
.

The representation λs of H3 ∩M = J0
1 × J0

2 extends to a representation of
H3 such that λs extends to a representation of H3 such that H3 ∩ U and
H3 ∩ Ū are contained in the kernel of the extension the proof is similar to
6.3.2, the only important fact is that kernels of λ1 and λ2 contain the group
U2N (A1). Since $N

FM2(OF ) ⊂ P2N−1
A1

, we get that H2 ⊂ H3. From this
we also get that the representation λs of H2 ∩M extends to a representation
of H2 such that H2∩U and H2∩Ū are contained in the kernel of this extension.

It is by now a standard practice (see lemma 6.3.1) to decompose ind
Hi+1

Hi
(id)

as a direct sum
id⊕

⊕
j

ind
Hi+1

Zij
(Uj)

where the mod PF reduction of Zij ∩M is contained in the M(kF ) stabiliser
of a non-zero matrix A in M2×2(kF ) for i ∈ {1, 2}. From the arguments in
the Case 3.3 of theorem 6.1.2, for #kF > 3, we can find two types (J0

1 , λ
′
1)

and (J0
2 , λ
′
2) such that [M,σ1 � σ2] 6= [M,σ1 � σ2] where σ′1 and σ′2 are two

supercuspidal representations containing (J0
1 , λ
′
1) and (J0

2 , λ
′
2) respectively,

resZij (λ1 � λ2) ' resZij (λ
′
1 � λ′2).

This shows that irreducible sub-representations of

ind
GL4(OF )

Zij
{λs ⊗ Uj}

are atypical for #kF > 3 and i ∈ {1, 2}.

Now observe that the dimensions of ind
GL4(OF )
Js

(λs) and ind
GL4(OF )
H3

(λs)
are the same. Note that the type (Js, λs) occurs in the smooth representation
i
GL4(F )
P (σ1 � σ2). This shows that at least one irreducible sub-representation
of

ind
GL4(OF )
Js

(λs) (6.23)

must be contained in iGL4(F )
P (σ1�σ2). The representation (6.23) is irreducible

and typical. From our results so far typical representations for s = [M,σ1 �

σ2] must occur as sub-representations of ind
GL4(OF )
H3

(λs). Hence we have an
isomorphism

ind
GL4(OF )
Js

(λs) ' ind
GL4(OF )
H3

(λs).

This concludes the classification of typical representations in this case.

The results of this chapter can be collected in the following theorem.
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Theorem 6.3.4. Let s = [M,σ1 �σ2] be an inertial class such that σ1 and σ2

are either completely distinct or homogenous. Let #kF > 3. If Γ is a typical
representation for the component s then Γ is a sub-representation of

ind
GL4(OF )
Js

(λs)

where (Js, λs) is the Bushnell-Kutzko semi-simple type for s and moreover

dimC HomGL4(OF )(Γ, ind
GL4(OF )
Js

(λs)) = dimC HomGL4(OF )(Γ, i
GL4(F )
P (σ1�σ2))

where P is any parabolic subgroup containing M as its Levi-subgroup.
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Abstract

In this thesis we classify typical representations for certain non-cuspidal Bern-
stein components of GLn over a non-Archimedean local field. Following the
work of Henniart in the case of GL2 and Paskunas for the cuspidal Bernstein
components, we classify typical representations for Bernstein components of
level-zero for GLn for n ≥ 3, principal series components, components with
Levi subgroup of the form (n, 1) for n > 1 and certain components with Levi
subgroup of the form (2, 2).

Each of the above component is treated in a separate chapter. The clas-
sification uses the theory of types developed by Bushnell and Kutzko in a
significant way. We will give the classification in terms of Bushnell-Kutzko
types for a given inertial class.
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Samenvatting

In deze scriptie classificeren wij typische representaties voor bepaalde niet-
cuspidale Bernstein componenten van GLn over een niet Archemedisch lokaal
lichaam. Gebruik makend van het werk van Henniart in het geval van GL2

voor de cuspidale Bernstein componenten, classificeren wij representaties voor
Bernstein componenten van niveau nul voor GLn voor n ≥ 3, voor principal
series components, voor componenten met Levi ondergroep van de vorm (n, 1)
met n > 1 en sommige componenten met Levi ondergroep van de vorm (2, 2).

Alle bovenstaande componenten worden in hun eigen hoofdstuk behandeld.
De classificatie berust zwaar op de theorie van typen ontwikkeld door Bushnell
en Kutzko en deze zal ook gegeven worden in de termen van de Bushnell-
Kutzko typen behorend bij een gegeven inertie klasse.



Résumé

Dans cette thèse, nous classifions les représentations typiques pour certaines
composantes de Bernstein de GLn sur un corps localement compact non Archimé-
dien. Suite aux travaux de Henniart dans le cas de GL2 et de Paskunas pour
les composantes de Bernstein cuspidales, nous classifions les représentations
typiques pour les composants de Bernstein de niveau zéro pour n ≥ 3, les
composantes de séries principales, les composantes dont le sous-groupe de Levi
est de forme (n, 1) pour n > 1 et certaines composantes dont le sous-groupe
de Levi est de la forme (2, 2).

Chacune des composantes ci-dessus est traitée dans un chapitre distinct. La
classication utilise d’une manière significative la théorie des types développée
par Bushnell-Kutzko, et elle est établie en termes de tels types.
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