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Abstract

We investigate the local metric properties of level sets of mappings defined between
Carnot groups that are horizontally differentiable, i. e. with respect to the intrinsic sub-
Riemannian structure. We focus on level sets of mapping having a surjective differential,
thus, our study can be seen as an extension of implicit function theorem for Carnot
groups.

First, we present two notions of tangency in Carnot groups: one based on Reifen-
berg’s flatness condition and another coming from classical convex analysis. We show
that for both notions, the tangents to level sets coincide with the kernels of horizon-
tal differentials. Furthermore, we show that this kind of tangency characterizes the
level sets called “co-abelian”, i.e. for which the target space is abelian and that such a
characterization may fail in general.

This tangency result has several remarkable consequences. The most important one
is that the Hausdorff dimension of the level sets is the expected one. We also show
the local connectivity of level sets and, the fact that level sets of dimension one are
topologically simple arcs. Again for dimension one level set, we find an area formula
that enables us to compute the Hausdorff measure in terms of generalized Stieltjes
integrals.

Next, we study deeply a particular case of level sets in Heisenberg groups. We show
that the level sets in this case are topologically equivalent to their tangents. It turns out
that the Hausdorff measure of high-codimensional level sets behaves wildly, for instance,
it may be zero or infinite. We provide a simple sufficient extra regularity condition on
mappings that insures Ahlfors regularity of level sets.

Among other results, we obtain a new general characterization of Lipschitz graphs
associated with a semi-direct splitting of a Carnot group of arbitrary step. We use
this characterization to derive a new characterization of co-ablian level sets that can be
represented as graphs.

Keywords. Sub-Riemannian geometry, Carnot groups, Heisenberg groups, implicit function theorem,
tangent cones, Reifenberg flatness condition, Whitney extension theorem, Lipschitz graphs, intrinsic
regular surfaces, Hausdorff dimension, Hausdorff measure, Ahlfors regularity, Area formula, Stieltjes

integral, lacunary Fourier series, Lévy area, Holder continuous curves, rough path theory.



Résumé

Nous étudions les propriétés métriques locales des ensembles de niveau des applications
horizontalement différentiables entre des groupes de Carnot, c’est-a-dire différentiable
par rapport a la structure sous-riemannienne intrinséque. Nous considérons des applica-
tions dont la différentielle horizontale est surjective, et notre étude peut étre vue comme
une généralisation du théoréme des fonctions implicites pour les groupes de Carnot.

Tout d’abord, nous présentons deux notions de tangence dans les groupes de Carnot :
la premiére basée sur la condition de platitude au sens de Reifenberg et la deuxiéme
issue de l’analyse convexe classique. Nous montrons que dans les deux cas, 1’espace
tangent & un ensemble de niveau coincide avec le noyau de la différentielle horizontale.
Nous montrons que cette condition de tangence caractérise en fait les ensembles de
niveau dits “co-abéliens”, c’est-a-dire ceux pour lesquels 'espace d’arrivée est abélien,
et qu’une telle caractérisation n’est pas vraie en général.

Ce résultat sur les espaces tangents a plusieurs conséquences remarquables. La plus
importante est que la dimension de Hausdorff des ensembles de niveau est celle a laquelle
I'on s’attend. Nous montrons également la connectivité locale des ensembles de niveau,
et le fait que les ensembles de niveau de dimension 1 sont topologiquement des arcs
simples. Pour les ensembles de niveau de dimension 1 nous trouvons une formule de
I’aire qui permet d’exprimer la mesure de Hausdorff en termes d’intégrales de Stieltjes
généralisées.

Ensuite, nous menons une étude approfondie du cas particulier des ensembles de
niveau dans les groupes d’Heisenberg. Nous montrons que les ensembles de niveau
sont topologiquement équivalents a leurs espaces tangents. Il s’avére que la mesure
de Hausdorff des ensembles de niveau de codimension élevée est souvent irréguliére,
étant, par exemple, localement nulle ou infinie. Nous présentons une condition simple
de régularité supplémentaire pour une application pour assurer la régularité au sens
d’Ahlfors des ses ensembles de niveau.

Parmi d’autres résultats, nous obtenons une nouvelle caractérisation générale des
graphes Lipschitziens associés & une décomposition en produit semi-direct d’un groupe
de Carnot. Nous traitons, en particulier, le cas des groupes de Carnot dont le nombre de
strates est plus grand que 2. Cette caractérisation nous permet de déduire une nouvelle
caractérisation des ensembles de niveau co-abéliens qui admettent une représentation
en tant que graphe.

Mots-clés. Géométrie sous-riemannienne, groupes de Carnot, groupes d’Heisenberg, théoréme des
fonctions implicites, cones tangents, condition de platitude de Reifenberg, théoréme d’extension de Whit-
ney, graphes lipschitziens, surfaces réguliéres intrinséques, dimension de Hausdorff, mesure de Hausdorff,
régularité d’Ahlfors, formule de laire, intégral de Stieltjes, séries de Fourier lacunaires, aire de Lévy,

courbes Hoélder continues, théorie de chemins rugueux.
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1. Introduction

Au sens large ce papier est consacré a I’étude des propriétés métriques des sous-variétés
dans la géométrie sous-riemannienne. Le travail présenté dans cette thése s’inscrit dans
le programme général de la théorie métrique de la mesure sur les espaces métriques qui
a connu un développement actif ces derniéres années. Les variétés sous-riemanniennes
font partie des espaces métriques ayant gardé beaucoup de structures importantes des
espaces euclidiens, or, leurs propriétés métriques peuvent étre trés différentes, voire
surprenantes, comparées a celles des espaces classiques. Voici quelques références par-
ticulierement appréciables [Mon02 ; Gro96 ; FS82 ; AS04 ; CDPTO07].

Une variété sous-riemannienne est une variété riemannienne (connexe) (M, d) munie
de champs de vecteurs tangents {X; C TM | i = 1,...,n}, appelés horizontaus. Etant
donnés ces champs de vecteurs la métrique sous-riemannienne d qui porte aussi le nom
de métrique de Carnot-Carathéodory est définie comme

d(a, b) = inf{Length,(7)},

ot 'infimum est pris sur ’ensemble des courbes (appelées admissibles ou horizontales)
absolument continues 7: [0, 1] — M qui relient les deux points, a = v(0) et b = (1), et
dont le vecteur tangent 7'(¢) appartient au plan HM., ) = span{X;(y(t))}i=1,.» pour
presque tout ¢ € [0,1]. Le choix de champs de vecteurs {X;} n’est pas arbitraire en
géomeétrie sous-riemanniennes, on suppose notamment que {X;} forment un systéme
non-holonome. Cela veux dire qu’il existe un entier N telle que HyM = TM ou les
sous-espaces tangents H;M sont définis par récurrence

H1M = H1M7 H,L'+1M = HZM + [HlM, HlM]

Si deux sous-espaces tangents sont engendrés par des champs des vecteurs 77 =
span{Yy,..., Y} et Ty = span{Z;,...,Z;}, le sous-espace tangent [T7,T5] est défini
comme [T7,T5] =span{[Y;, Z;] |i=1,... .k, i=7j,..., k}.

Cette propriété est en fait suffisante pour garantir que pour toute paire de points
a,b € M peut étre liée par une courbe horizontale et les topologies induites sur M par
d et d sont équivalentes. Le résultat correspondant a été démontré indépendamment
par P. K. Rashevsky [Ras38| et W. L. Chow [Cho40]. Selon le domaine, cette propriété
peut apparaitre sous des noms différents comme, par exemple, condition de Hérmander,
propriété de Rashevsky-Chow, non-holonomie ou non-intégrabilité compléte, “bracket
generating condition”.

Dans ce travail nous allons considérer seulement un modéle local' qui correspond &
un espace tangent a une variétés sous-riemanniennes en point régulier. Ce modéle a

! Comme cela sera clair plus bas notre étude a toujours un caractére local et nous espérons que nos
résultats trouverons leur analogues sur des variétés sous-riemanniennes générales.



une structure en plus, - celle de groupe de Lie nilpotent stratifié (G,-) et il porte le
nom de groupe de Carnot (voir Section 2.1). La métrique d s’avére étre invariante par
rapport a l'action (a gauche) du groupe G. Un groupe de Carnot posséde aussi d’un
groupe d’automorphismes & un paramétre appelés dilatations {0;}4~0. Sur les vecteurs
horizontaux 'action induite par les dilatations est juste une multiplication par ¢ comme
celle d'une homothétie classique tandis que 6;(X) = #'X si X appartient a i-iéme strate.
La métrique d est également homogeéne par rapport a ces dilatations anisotropes.

La notion qui joue un roéle essentiel dans notre étude est celle de la différentiabilité
horizontale. Par analogie avec la définition classique, une application F': G — G? entre
deux groupes de Carnot d est horizontalement différentiable au point a € G! si au
voisinage de a elle peut étre approximée a l’ordre un en métrique de Carnot par un
morphisme homogene L: G — G? (c¢’est-a-dire, un homomorphisme qui commute avec
d; voir Definition 2.3.2). Ce morphisme est alors appelé la différentielle horizontale et
désigné par D, F'(a). Si D, F(-) existe et est continu sur un ouvert €2, alors on dit que
F € C}HQ,G?). La classe C} devient tout simplement C! si les deux groupes G! = R”
et G> = R™ sont abéliens. De facon remarquable, comme pour un calcul différentiel
classique, I'appartenance a la classe C} peut étre caractérisée par 1'existence de dérivées
partielles continues hormis le fait qu’il s’agit maintenant de dérivées le long des champs
de vecteurs horizontaux uniquement et le résultat d’une telle dérivation doit étre un
vecteur horizontal dans l'espace d’arrivée (voir Theorem 2.3.3).

Maintenant nous pouvons parler de l'objet clé de cette thése : les sous-variétés (in-
trinséques) dans un groupe de Carnot. L’ensemble S C G' est appelé une sous-variété
intrinséque si dans un voisinage de tout point p € S il coincide avec un ensemble de
niveau F~!(e) d’une application horizontalement différentiable F' € C}(G!,G?) telle
que la différentielle horizontale Dy, F(p) est surjective’. Cette définition est tout a fait
semblable & celle d’une sous-variété en géométrie différentielle.

Nous allons étudier les propriétés locales de S ce qui veut dire que nous pouvons
considérer S comme étant un ensemble de niveau de F' comme ci-dessus dans une petite
boule. Nous sommes donc dans une situation similaire a celle du théoréme classique des
fonctions implicites. Pour les groupes G! et G? fixes, un exemple trivial de S est donné
par Sy = L7(e) N B(e,r), r > 0, une équation “linéaire” avec un morphisme homogéne
surjectif L = Dy F(p): G' — G?. Les questions que nous nous sommes posées sur S sont
les suivantes :

e Existe-elle une paramétrisation “canonique” P: Sg — S7

Quelle est la topologie de S 7 Existe-il un homéomorphisme P: Sy — S'7

Quelle est la dimension métrique (de Hausdorff) de S 7 dim S = dim Sy ?

Quelle est la régularité de la mesure de Hausdorff H4™* sur S ?

Comment calculer effectivement cette mesure ?

e Existe-il un espace tangent Tan(S,p) vers S ?

’Bien entendu, pour que S soit non-vide il faut que dim HG! > dim HG?.



e Comment caractériser les sous-variétés sans parler des équations F' qui les dé-
crivent ?

Ces questions sont d’autant plus difficiles que la régularité de ’application F est faible.
En effet, si par exemple G = R™ alors pour une application générique F' € C} nous
avons grosso modo un comportement C' dans les directions horizontales et seulement
des estimations de type de Holder pour les directions de strates supérieures, ce qui est
clairement plus faible que C*.

Le théoréme des fonctions implicites classique dit que si G! = R" et G?> = R™ alors
'ensemble de niveau S = F 1(0) N B(0,7) peut étre représenté comme un graphe
(d’une application P € C') associé a une décomposition de 1’espace tangent en R" =
Ker dF(0) &R™™, ou la différentielle dF'(0) restreinte sur le deuxiéme facteur R™ est un
isomorphisme. Ainsi, ’étude locale de S se trivialise beaucoup grace a I'existence d’une
paramétrisation P ayant de bonnes propriétés. Le point de départ de notre travail était
une généralisation de ce théoréme classique sur les groupes de Carnot.

Theorem ([Magl3]). Etant donnés deux groupes de Carnot (G',d') et (G?,d?), consi-
dérons une application F € CL(Q,G?) définie sur un ouvert Q C G*. Supposons que la
différentielle horizontale Dy, F(a): G' — G? est surjective en un point a € Q. Supposons
en outre que le noyau K = Ker Dy F'(a) admet un sous-groupe homogéne complémentaire
H (ce qui veut dire que G = K x H est un produit semi-direct et nous pouvons parler
d’une décomposition associée a = ax - ay ). Alors il existe un voisinage Ux C K de ax et
un voisinage Uy C H de ay tel que localement ’ensemble de niveau F~'(F(a)) est un
KH-graphe donné par une application continue P: Ux — Uy, c’est-a-dire

F’l(F(a))ﬂUKUH:{yP(y) ’}’EUK}.

De plus, il existe une constante C > 0 telle que
d'(P(y),P(y)) < Cd'(y - P(y'),y - P(¥))-

En particulier, Uapplication P est de classe de Holder Holm (U, || 1), (Us, dY)), ot m
est la profondeur de G'.

Notons que 'exemple le plus simple et le plus étudié ou les hypothéses de ce théo-
réme sont réunies est le cas d’une application scalaire, G*> = R (S est alors appelé
une hypersurface réguliére). De nombreux résultats exploitant cette hypothése d’exis-
tence d’un complémentaire peuvent été retrouvés dans d’autres ouvrages. Citons a titre
d’exemple [F'SS03c|] pour les hypersurfaces dans les groupes d’Heisenberg, [FSS05 ;
F'SS07] pour les graphes de codimension supérieure dans les groupes d’Heisenberg,
[CMO6a] pour les hypersurfaces des variétés sous-riemanniennes, [Koz10] pour I'analo-
gue d’une décomposition en produit semi-direct sur des variétés sous-riemanniennes.

L’existence d’une telle paramétrisation permet de répondre plus aisément & beaucoup
de questions sur S. Tout d’abord, la continuité de P entraine que topologiquement
S et Sp sont équivalents (localement). Ensuite, bien que I’application P ne soit pas
lipschitzienne en général ([Vit08, Th. 4.35]), le volume (la mesure de Haar sur K) de la
projection sur K d’une boule B(r) C G! est de I'ordre de r™* (3 un facteur multiplicatif



prés). D’ott on peut déduire facilement que la dimension de Hausdorff est celle qu'on
attend, dim S = dimK, et que la mesure de Hausdorff H™9_S est Alhfors réguliére.
De plus, il est possible d’exprimer la densité (qui est en fait continue) de Py (HI™5L9)
par rapport & HU™S_K en terme des dérivées horizontales de F.

Il est clair que I’hypothése de l'existence d'une telle décomposition en un produit
semi-direct est assez restrictive. En effet, on voit apparaitre un nouveau phénomeéne
algébrique propre a la géométrie non-commutative. Etant donné un morphisme surjectif
L: G' — G2, il n’est pas toujours possible de trouver le facteur complémentaire H.
Autrement dit, dans la suite exacte de groupes

{0} — Ker L — G' %5 G2 — {0}

le morphisme L: G — H n’est pas toujours scindé a la différence du cas des groupes
abéliens R™ et R™. Notre premier objectif était de voir ce qui peux se produire en cas
d’absence du groupe complémentaire.

Dans le Chapter 3 nous présentons des résultats trés généraux sur les ensembles de
niveau. Grosso modo, nous démontrons qu'un ensemble de niveau S admet en tout
point p € S un espace tangent unique et continu en p, a savoir Ker Dy, F'(p), c’est-a-dire
celui qu’on attendait. Pour définir ’espace tangent nous avons utilisé deux approches
différentes en paralléle.

Dans la premiére, nous considérons une condition de platitude de Reifenberg (les
travaux [Rei60 ; DKTO1 ; DT99] nous servent de références). L’ensemble e-Reifenberg
plat S peut étre approximé en tout p € S et pour toute échelle » > 0 par un ensemble-
modéle W, , appartenant a une certaine famille (comme des sous-groupes distingués
dans notre cas) avec une erreur < er en métrique de Hausdorff, c’est-a-dire

disty (B(p, r)N S, B(p,r)N Wp,r) < er.

Notons que par rapport a cette formulation classique, nous allons considérer une condi-
tion de platitude plus forte qui dit que l’ensemble approximatif W), ne dépend pas
de D’échelle r. Cette condition (pour en un seul point p € S) entraine 'existence d’un
espace tangent unique au sens de Gromov-Hausdorff.

La deuxiéme approche consiste a adapter les notions de cones tangents et paratangents
(voir Definition 3.2.1) de I'analyse convexe classique pour les groupes de Carnot et a
exploiter le fait que certains d’entre eux coincident. D’une certaine fagon ces cones
tangents sont souvent plus pratiques notamment de point de vue calculatoire.

Nous démontrons le résultat suivant.

Theorem 1.0.1. Soient (G',d'), (G*,d?) deux groupes de Carnot et Q@ un ouvert de
G'. Supposons que pour une application F € C}(Q,G?) la différentielle D, F(p) est
surjective en p € ). Alors il existe un voisinage U de p tel que pour ’ensemble de
niveau S := F~1(F(p)) les deux propriétés équivalentes sont vérifiées :

1. SNU est un ensemble e-Reifenberg plat avec € — 0 lorsque ’échelle se raffine
par rapport aur noyaur de la différentielle horizontales de F. Autrement dit, il



existe une fonction €: (0,00) — (0,00), €(t) — 0+ avec t — 0+ telle que pour tout
acUNS

distg, (B(a, r)N S, B(a,r)N Wa) <er)yr, r>0,
avec W, = a - Ker D, F(a).

2. Les quatre cones tangents coincident en tout point a € SNU

pTang, (S, a) = Tanf, (S, a) = Tang, (S, a) = pTang, (S, a) = Ker D, F(a).

Nous démontrons d’abord la e-Reifenberg platitude dans le Theorem 3.1.1 et en
deuxiéme temps nous démontrons l’équivalence des deux propriétés dans le Theo-
rem 3.3.2. Pour montrer la platitude au sens de Reifenberg il faut montrer deux choses.
La premiére est que pour tout point de S N B(a,r) il existe un point proche sur W,.
C’est en fait une conséquence relativement facile de la différentiabilité horizontale. Tan-
dis que la deuxiéme, c’est-a-dire que pour tout point de W, il existe un point proche
sur S N B(a,r), nécessite un argument topologique en plus.

Nous nous demandons aussi & quel point le fait d’avoir des espaces tangents caracté-
rise une sous-variété intrinseque. Pour répondre a cette question il est indispensable de
faire appel au Théoréme d’extension de Whitney, Theorem 2.3.6. Il permet sous une
certaine condition d’étendre une fonction définie sur un sous-ensemble (F' = Const sur
S dans notre cas) en une fonction globale de la classe C}. La condition est satisfaite
lorsque S posséde des espaces tangents. La seule contrainte fondamentale qu’on ren-
contre ici est que ce théoréme ne s’applique en général que pour les groupes d’arrivé
G? = RY abeéliens. Ainsi, nous obtenons une réciproque partielle du Theorem 1.0.1 (voir
les Theorems 3.1.12 and 3.3.5).

Theorem 1.0.2. Soit S C G un fermé connexe. Les conditions suivantes sont équiva-
lentes :

1. S est une sous-variété intrinséque co-abélienne (c’est-a-dire avec G* = RY) de
codimension N ;

2. Les quatre cones tangents coincident en tout point a € S :
pTan{(S,a) = pTang (S, a)

et il existe un point p € S tel que pTang(S,p) est un sous-groupe vertical de
codimension N.

3. Il existe une famille {W, | a € S} d’ensembles fermés homogénes telle que W, est
un sous-groupe vertical de codimension N pour un certain point p € S et pour
tout S" € S il existe une fonction €: (0,00) — (0,00), €(t) — 0+ avec t — 0+,
telle que

distg (B(a,r) NS, B(a,r) N (a-W,)) < e(r)r, r>0, Vaecd.



Il est important de remarquer que le théoréme précédent ne peut pas étre généralisé
au cas oll G? est non-abélien. Dans le Lemma A.2.1 nous montrons pour un exemple
(emprunté a [DOWT11]) de groupe de Carnot ultrarigide G que toute application de
classe C} a valeurs dans dans un groupe G/K(Z) est en fait affine pourvu que sa
différentielle horizontale soit surjective. Ici, K(Z) est le sous-groupe engendré par un
vecteur de degré maximal Z. Ce qui veut dire que la classe des sous-variétés pour
cette paire de groupes G et G/K(Z) est réduite a des translations de K(Z). Or, il y a
beaucoup d’ensembles qui satisfont la condition de tangence comme nous le montrons
dans la Section 3.1.4.

Dans la continuation du Chapter 3, nous déduisons plusieurs conséquences de 1’exis-
tence d’espaces tangents pour les sous-variétés intrinséques. Dans le Lemma 3.4.4 nous
démontrons que S est connexe par arc. A ce stade-1a nous ne sommes pas capables de
dire plus sur la topologie de S sauf pour le cas de codimension topologique maximale
(c’est-a~dire Ker D, F(p) ~ R topologiquement) otl nous démontrons que S est un arc
(voir Theorem 3.4.5).

L’autre conséquence non-triviale est ’estimation de la dimension de Hausdorff, que
nous obtenons comme conséquence d’un énoncé plus général (Theorem 3.5.6).

Theorem 1.0.3. Soit Q C G' un ouvert, F € C}(;G?) et a € Q. Supposons que
Dy F(a) est surjective. Alors il eziste un voisinage U de a dans lequel la dimension de
Hausdorff de I’ensemble de niveau dim F~'(F(a)) N U est égale a dimG' — dim G

Nous obtenons ce résultat & comme conséquence d’un énoncé plus général (Theo-
rem 3.5.0) qui est en fait se situe dans un cadre trés similaire de celui du travail récent
de [DR13]. Notons également que ce résultat ne dit rien sur la régularité de la mesure
de Hausdorff HImS5_ g,

Dans le Chapter 4 nous nous plagons dans un groupe de Carnot G qui se décompose
comme un produit semi-direct des groupes homogenes K x H ot K est distingué. L’objet
clé associé & une telle décomposition est un KH-graphe S qui se décrit comme

S={2(y)=y-o(y) |y € Q}

oll ¢ est une application de €2 C K vers H. L’étude de ces objets est bien siir motivée
par le théoréme des fonctions implicites, [F'SS05 ; FSS07 ; Magl3], mais aussi par la
théorie de la réctifiabilité, [FSC06 ; MSCO09 ; FSS10 ; CM09 ; FMS13 ; BCC14 ; CM14].

Dans le Theorem 4.3.1 nous présentons une nouvelle caractérisation des sous-variétés
co-abéliennes. Etant donné une application ¢ continue, nous pouvons traduire de facon
canonique la condition de la tangence de Theorem 1.0.2 en une séries des conditions
(non-linéaires) sur ¢. Pour écrire ces conditions il faut procéder en deux étapes. Premié-
rement, soit mx: G — K la projection associée a la décomposition G = K x H. a chaque
champ de vecteurs Y invariant a gauche sur G et tangent a K a 'origine, nous faisons
correspondre le champ de vecteurs projeté Y sur K défini par Yy, = dmg(®(y))(Y). Le
champs de vecteurs f/y est continu et s’écrit de fagon polynomiale en termes de y et ¢(y)
(voir Section 4.4). Pour pouvons alors prendre une ligne intégrale de ce champ, qu’'on
note y(t) := Exp,(tY)(y), 7(0) = y. La trajectoire v n’est pas forcement unique (malgré
cette notation), mais des choix différents ménerons vers la méme conclusion. La seconde



étape consiste a regarder le comportement métrique de ¢ le long de . Ci-dessous nous
donnons I’énoncé précis.

Theorem 1.0.4. Supposons que G = K x H est une décomposition d’un groupe de
Carnot G avec H un sous-groupe horizontal et K vertical. Soit S un KH-graphe donné
par une application continue ¢: Q — H définie sur un ouvert Q C K. Les conditions
sutvantes sont équivalentes :

1. § C F~l(e) est une sous-variété co-abélienne de codimension dimH avec F €
CH(G,H) telle que
Ker DpyF(a)NH = {e}, a€S.

2. Pour tout champ de vecteursY € € et tout point'y € Q on définit une courbe intégrale
Y(t) := Expy(tY)(y). Selon le degré degY de Y, une des deuz conditions suivante
est satsifaite par ¢ o 7.

A. degY =1 : Il existe une application linéaire
wy: €Ngr —bh,  €=log(K), b=log(H),

continue en 'y € () telle que
d
£(¢ 0o )(t) = wyp(Y), tely)
B. degY > 2 : Alors,

¢ovycholm (LH), ye® IeI(y),

ot le petit-o dans la définition de la classe d’Hélder (Definition 2.1.12) est
uniforme pourvu que ||Y|| <1 et v(I) C Q' pour un ensemble Q' € Q fixé a
lavance.

Cette caractérisation peut étre considérée comme ’extension des résultats de [Vit08 ;
ASV06 ; BS10b| des groupes d’Heisenberg a des groupes de Carnot généraux. C’est
une extension partielle car il s’avére que pour les groupes d’Heisenberg, les conditions
du deuxiéme degré (c’est-a-dire pour le vecteur vertical Z) ne sont pas indispensables
et découlent des conditions horizontales (en tout cas en codimension 1, et ’argument
de [ASV06, Th. 1.3] semble pouvoir s’adapter aux codimensions supérieures). Nous
montrons dans Section 4.5 que les conditions verticales ne peuvent pas étre omises pour
les groupes de profondeur strictement plus grande de 2.

Outre le fait d’étre assez universelle, notre caractérisation, Theorem 1.0.4, facilite le
calcul algébrique des champs de vecteurs projetés Y. Remarquons également que le
Theorem 1.0.4 est le premier résultat qui pour une fonction scalaire ¢ décrivant un X-
graphe dans H' donne directement la différentiabilité de ¢ le long de toutes les courbes
intégrales de Y = 0, —4¢0,, sans faire appel a un argument d’approximation (comparer
avec [LM10]).



Nous obtenons le Theorem 1.0.4 comme une conséquence d’une caractérisation des
KH-graphes lipschitziens (locaux) (voir Definition 4.2.2). Ce résultat (Theorem 4.2.16)
est en fait méme plus facile & formuler car les champs de degré différents sont traités de
la méme facon et il suffit de remplacer hol #(7) par Hol (77 (qui pour degY = 1 devient
Lip). En guise d’application de ce dernier théoréme et des théorémes d’approximation de
graphes lipschitziens en codimension 1 ([CMPS14 ; BCC14]) nous déduisons le résultat
suivant pour des graphes lipschitziens de codimension 2 dans H?Z.

Theorem. Soit S C H? un graphe lipschitzien par rapport & la décomposition H? =
K x H ou H est un sous-groupe horizontal de dimension 2, dimH = 2. Supposons que
7k (S) = Q est un ouvert de K. Pour H**?T22_presque tout point p € S la propriété
suivante est vraie. Si 01, (p~' - S) — W converge localement en métrique de Hausdorff
pour {r;}i>o C Ry, r; — 0, alors W est un plan vertical.

Cet énoncé ne dit pas que des suites différentes de {r;} résulteront en un méme plan
vertical .

Le Chapter 5 est probablement le plus élaboré et contient le plus de détails car
c’était le point de départ de cette thése. Il est consacré a ’étude de 'exemple modéle
le plus simple d’une sous-variété intrinséque pour laquelle I’espace tangent n’admet pas
de complémentaire algébrique. Cet exemple est donné par une ligne de niveau d’une
application F' € C} définie sur le groupe d’Heisenberg H" et & valeurs dans R?". Notons
en plus que Ker D, F(a) ne dépend pas de a et est égal en tout point au sous-groupe
vertical Z = {exp(tZ) | t € R}. Nous résumons une partie des résultats obtenus ci-
dessous.

Theorem 1.0.5. Soit F' € C}(H",R*") telle que F(0) = 0 et la différentielle horizontale
D, F(0) est surjective. Alors il existe un voisinage compact U de I’élément neutre 0 € H™
tel que les propriétés swivantes sont satisfaites par T := F~10)NU :

1. L’ensemble T est un arc simple (topologiquement) qui est e-Reifenberg plat par
rapport & 7. avec € — 0 uniformément lorsque [’échelle se raffine. (Lemma 5.2.1/
and Theorems 5.5.5 and 5.5.7).

2. La dimension euclidienne de T peut prendre toute valeur dans lintervalle [1,2]
(Lemma 5.5.13).

3. La dimension de Hausdorff de I" vaut 2 et sa mesure de Hausdorff peut étre calculée
par la formule suivante (Corollary 5./.10) :

H*(T) = liminf Y d(a;, ai1)?

ol =0

ot o ={ay <a <...<a,} désigne une subdivision ordonnée de I' (ay et a,, sont
les extrémités de T"), et ||o|| = maxd(a;, a;y1).
(A

4. Si, en outre, F € C,i’a(H",]RQ"), a > 0, alors T' est fortement réguliere au sens
d’Ahlfors, et la formule de laire se réécrit (quitte a choisir la bonne orientation)

H2(F):/dz+2/xdy—2/ydx,
T T T

10



ot il s’agit d’intégrales de Stieltjes (Lemma 5.5.5).

5. 1l existe, néanmoins, des exemples de lignes de niveau I “rugueuses” telles que
e H*(T') = co (Example 5.6.16) ;
o H*(T') =0 (Example 5.6.17);

o ' est 2-Ahlfors réguliere n’admettant pas de densité volumique en tout point
(Example 5.6.19).

Nous appelons cette ligne de niveau ' une courbe verticale par analogie avec son cone
tangent. Le point conceptuel le plus dur ici est de comprendre que I' n’admet pas de
paramétrisation canonique. Le fait que I' soit une courbe injective est purement topolo-
gique. Nous devons mentionner que cette propriété topologique a été indépendamment
obtenue dans [LM10] pour le cas n = 1 par une technique différente (qui consiste a
regarder I' comme l'intersection de deux hypersurfaces) qui ne semble pas pouvoir se
généraliser au cas de n > 1. Notre démonstration passe par une paramétrisation a la
Reifenberg et elle est 1égérement différente de 'argument donné dans le Theorem 3.4.5.

Nous étudions tres en détail les propriétés métriques de I'. Pour en donner un cadre
un peu plus général, nous avons introduit dans la Section 5.4 la notion d’une courbe
plate A = (I, k) que nous voyons comme une quasi-métrique sur un intervalle I C R.
Par définition d’une courbe plate, pour tout triplet ordonné de points a > b > ¢,

|k(a,b) + K(b, ¢) — k(a,c)| < m(k(a,c))k(a,c),

o m(t) \, 0 avec t — 0 est un module de platitude. L’exemple auquel on pense ici est
celui de k = d?LTI". Nous établissons que A posséde une mesure de probabilité doublante
asymptotiquement optimale (voir Lemma 5.4.3 and Corollary 5.4.5). D’ot on peut dé-
duire que la dimension de Hausdorff de A égale 1 (Corollary 5.4.8) ainsi que la formule
de l'aire pour la mesure de Hausdorff (Lemma 5.4.9). Cette formule se transforme en
une intégrale abstraite de Stieltjes & condition de supposer une régularité supplémen-
taire du module m, notamment que m soit un module de Dini (Lemma 5.4.12). Si c¢’est
le cas, A est 1-Ahlfors réguliére au sens fort. Pour une courbe verticale I' nous pouvons
controler m par le biais des modules de continuité des dérivées horizontales de F'. Ainsi,
une dérivée de classe Holder, F' € C}lL’a, entraine la régularité de H2LI'. Notons que
nous obtenons une généralisation de la formule de ’aire pour I' qui était déja connue

([Mag04 ; Jea06])
HAT) = / 9,
N

ou ¢ est une forme de contact sur H".

L’existence des courbes verticales irréguliéres est un phénoméne assez surprenant qui
n’était pas observé auparavant ni dans R™ ni dans les groupes de Carnot. Dans ce
contexte il serait intéressant de savoir s’il existe toujours des lignes de niveau co-
abéliennes irréguliéres, sous des hypotheses algébriques sur les cones tangents. Par
exemple, si on prend une application F' € C}(E* R?) ou E* est un groupe d’Engel
de dimension 4 (Section 2.2.2), posséde-t-elle des lignes de niveau irréguliéres ?
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Pour construire des exemples de courbes verticales ayant des propriétés prescrites,
nous utilisons, en sus du théoréme de Whitney, deux autres ingrédients. Le premier
ingrédient est une caractérisation exacte des projections des courbes verticales sur le
plan horizontal (Eq. (5.38) et Lemma 5.6.12). L’idée d’utiliser une variation généralisée
dans cette caractérisation s’inspire notamment de la théorie de chemins rugueux qui a
connu un développement majeur ces derniéres années (on renvoie le lecteur a [LQ02 ;
LCLO07]| pour ses fondements). Pour les applications F' € C’,i’a, cela prend une forme plus
compacte. Ainsi, une courbe verticale I' est une ligne de niveau d’une application de
classe Cp*(H", R>"), o > 0, si et seulement si sa projection m(T') sur le plan horizontal
est 1£2-holderienne en distance euclidienne (Lemma 5.5.11).

Le deuxiéme ingrédient est le calcul des intégrales de Stieltjes associées a l'aire de
Lévy f7 xdy — ydx dans le plan. Pour construire des exemples irréguliers nous devons
produire des estimations trés précises pour les sommes des Stieltjes dans le cas ot la ré-
gularité de la courbe plane y est assez faible (typiquement v & (-, /2 Hol®), ce qui sort
du cadre du théoréme d’existence classique de Young-Kondurar (Theorem A.1.3). Ces
estimations ont été obtenues pour des courbes planes qui s’écrivent comme des séries de
Fourier lacunaires (voir Propositions 5.6.5 to 5.6.7). Les séries lacunaires sont en effet
trés commodes pour ce type d’estimations en raison de leur nature autosimilaire et des
interactions faibles entre les différentes fréquences. Ainsi, en jouant de fagon délicate
sur la vitesse de divergence (ou convergence) des aires de Lévy pour ces séries lacu-
naires nous sommes capables de construire une courbe verticale avec des irrégularités
souhaitées.

Dans le Chapter 6 nous considérons ensemble des lignes de niveau {I'), = F~1(p) } jegen
d’une application F' € C}(H",R?*") dont la différentielle est surjective. Nous utilisons
les propriétés de courbes verticales, la continuité des I', en métrique de Hausdorft (voir
Propositions 3.1.8 and 6.1.3 and Corollary 3.1.9) et un théoréme classique de sélection
continue pour montrer que les fibres de F' forment un feuilletage continu de H". Plus
précisément nous obtenons le résultat topologique suivant (Theorem 6.1.1).

Theorem 1.0.6. Soit F' € C}(H",R*") telle que F(0) = 0 et la différentielle horizontale
Dy F(0) est surjective. Alors il existe un homéomorphisme

[0,1] x [=8,8]*" 2 (t,p) — T,(t) eU CH", § >0,
sur un voisinage U de 0 € H" tel que for tout p € [—d, §]*"
1. Ty([0,1]) =UNF~(p) ;

2. la paramétrisation {[0,1] 3 t — Tp(t)} induit sur la courbe verticale U N F~(p)
une mesure doublante asymptotiquement optimale (voir Lemma 5./.3).

Encore une fois nous soulignons le fait qu'une telle paramétrisation n’est pas unique
ni canonique.

Une conséquence immédiate de ce résultat est que la topologie locale des sous-variétés
de codimension supérieure est la méme que celle de leurs cones tangents (Corollary 6.2.1).
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Theorem 1.0.7. Soit F € C}(H",R¥), 1 < k < 2n telle que F(0) = 0 et la différentielle
horizontale D, F'(0) est surjective. Alors il existe un voisinage U de 0 € H" telle que
F~1(0)NU est homéomorphe a Ker D, F(0).

Nous montrons que ces sous-variétés peuvent étre également irréguliéres dés que la
codimension est dans U'intervalle [n + 1,2n] (Corollary 6.2.4). Il est en effet suffisant de
prendre une sous-variété feuilletée par des courbes verticales irréguliéres.

A la fin du chapitre, nous montrons la formule de la co-aire (voir [Fed69| pour le
cas euclidien) pour les applications F' € C’}L’O‘(H”,R%), donc sous une hypothése de
régularité supplémentaire. La formule de la co-aire est connue pour les applications
lisses. De fagon générale, si nous prenons une approximation de I’application F' par des
applications lisses F},, alors les lignes de niveau F, !(p) vont converger localement vers
F~!(p) en métrique de Hausdorff. La (equi-)régularité forte d’Ahlfors de la mesure H?
sur F;!(p) permet d’obtenir la convergence en terme de mesure également.

Pour autant que nous le sachions, la formule de la co-aire n’a pas été démontrée pour
F € C}(H",R*) (ou pour F € Lip(H",R?")). Sa validité reste donc une question trés
intrigante. Si la formule de la co-aire était vérifiée, cela voudrait dire, par exemple, que
les fibres irréguliéres F~!(p) de mesure nulle n’arrivent que pour un ensemble négligeable
de p € R?". Notons que par l'inégalité générale de la co-aire, I’ensemble des fibres de
mesure infinie est négligeable dans R?".
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2. Basic notions and notations

2.1. Carnot Group

A Carnot group [FS82] is a nilpotent connected and simply connected Lie group (G, -)
whose Lie algebra g admits a stratification, i.e. a direct sum decomposition

g=9g1D D gm, dimg; > 2;
91,0:] =01, 1<i<m—1, [g1,0m) ={0}.

The brackets [, | here stand for commutators on g. The integer m is called depth (steps
number) of the Carnot group. The left and right translations will be denoted by L, and
R, respectively: L,(b) = a-band R,(b) = b-a. The symbol d represents the differential
in the usual sense. For instance, dL,(b)(V) means the differential of L, in point b € G
acting on the vector V € T,G. A vector field X € TG is said to be left-invariant if
X(a) = dL4(e){X(e)), where e denotes the identity element.

Vectors belonging to g, are called horizontal. The horizontal bundle HG is a sub-
bundle of TG defined by H,G = dL,(e){g1). A smooth submanifold S C G is called
horizontal if TS C HG.

Theorem. Let G be a connected, simply connected, nilpotent Lie group. Then the
exponential map exp: g — G s a global diffeomorphism.

Notation. The symbol log: G — g denotes the map inverse to the exponential. For
a € G the shifted exponent is defined as exp(X)(a) := Ly(exp(X)) = a - exp(X).

Definition 2.1.1. On the Lie algebra g we define the one-parametric multiplicative
group of automorphisms {d;};~0, called dilatations: §, acts on g; as multiplication by
t'. Via the exponential map exp: g — G we transfer the action of {d;};~¢ on G keeping
the same notation.

Notation. The degree deg(X) of X € g is the smallest integer k£ such that X €
01 D... D gk If now W C g, then we define degW := max{deg X | X € W}. If A C G,
then we put deg A := deglog(A).

A Carnot group G is a homogeneous space of topological dimension N := )" dim g,
and homogeneous dimension @ := " idimg;. If G is noncommutative, then the
homogeneous dimension is strictly greater than the topological one.
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2.1.1. Exponential coordinates.

A vector X € g is called homogeneous if it lies in some g, = §;(gx). Let’s fix a basis
{X1,..., Xy} in g that respects the stratification, i.e. all X; are homogeneous. This
gives rise to coordinates (zy,...,7ry) € RY = g. We always assume that the vectors X
are ordered in a such way that their degrees increase. We also define a scalar product
(-,-) (as well as the corresponding Euclidean norm || - ||) on g that makes the basis
{X1,..., Xy} orthonormal. (This scalar product is not canonical, at the same time, it
will not play an important role.)

Using the exponential map we induce the coordinates on G called “exponential”: if
a = exp(3N, 2;(a)X;) then a € G is identified with (z1(a),...,zx(a)) € RY. In
particular, e = 0 € RY and ™! = —(x,(a),...,zy(a)). The Lebesgue measure LY on
RN = G is a biinvariant Haar measure and d(5,£Y) = t2dLN.

According to the Baker-Campbell-Hausdorff formula the group operation on G turns
out to be polynomial when written in exponential coordinates. Here, we give Dynkin’s
combinatorial representation of this formula (see [Dyn47]):

-1

_1\n—1 n . .
log(eXpX-epr):Z& 3 (i (ri £ 50) (XTYSLXTYSE L Xy ]

7’1!51! . 'Tn!Sn!

n>0 ri+s;>0
1<i<n

where for X, Y € g we set

(XTYS XY = (XXX Y Y Y XXX Y YYD

.
v~ ' ~\~ v~

T1 S1 Tn Sn

The first few terms of its expansion are explicitly given by

log(exp X - exp¥) = X +Y + 11X, Y]+ (I, [X, Y] - [V, [X, Y]}) = o[V, [X, [X. Y]]

+ high order commutators.

2.1.2. Metric structure

Definition 2.1.2. An homogeneous norm p is a continuous function on G that enjoys
the following properties:

e positivity, p(a) > 0, p(a) = 0 if and only if a = ¢;

e symmetry, p(a™") = p(a);

e homogeneity, p(d:(a)) = tp(a), t > 0;

e generalized triangle inequality, p(a - b) < K(p(a) + p(b)), K > 1.
Example 2.1.3. One can put, for instance,

max ||‘/Z-]\1/i, V; € g;. (2.1)

i=1,...,m

plexp(Vi+--- +Vin))
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Remark. Two homogeneous norms on G, p’ and p, are equivalent [FS82|, p = p.

Notation. We write A < B for quantities A and B if there is a constant co > K > 0

independent of A and B such that A < KB. Sometimes when we want to emphasize
(a)
the dependence of K on some exterior parameter a, we shall write A < B. The relation

2 is defined analogously. We write A < B if A < B and A 2 B.
Definition 2.1.4. Using a homogeneous norm p, we construct the homogeneous dis-
tance d, on G: we put d,(a,b) = p(a~* - b) for all a,b € G.
Definition 2.1.5. A set F with a function d: Ex E — [0, 00) is called a QUASI-METRIC
SPACE if the following condition hold:

e d(z,2') >0 for every z,2’ € E and d(z,2') =0 if and only if z = 2/;

o d(z,2') =d(Z,z) for every 2,z € E;

o d(z,2") < K(d(z,2') +d(Z,2")) for every z,2/, 2" € E and some fixed K > 1.
The function d is called a quasi-metric. If K = 1, then (F,d) is a metric space.
Remark 2.1.6. If (E,d) is a metric space, then in general d” is not a metric on E for

p > 1, but still a quasi-metric.

Remark. By definition, d, is homogeneous and left invariant. In general, (G,d,) is only
quasi-metric space unless K = 1.

Remark. Most of the time we don’t care about a concrete choice of p. So, we shall write
merely d instead of d,. However, for some special Carnot groups (typically, Heisenberg
groups) d can be specified explicitly.

There is still one special example of metric d called Carnot-Carathéodory distance d..
that we should mention here because of its importance in the applications.

Remark. Let X;,...,X; € g1 be an orthonormal basis of horizontal vector fields. We
say that an absolutely continuous curve 7: [0,7] — G is a sub-unit horizontal curve if
there exist measurable functions ci(s), ..., c(s), s € [0,T], such that 37, ¢; <1 and

v (s) = Z.Cj(S)Xj<’Y<S))7 for almost every s € [0, T7.
j
For a,b € G, the metric d..(a,b) is given by
dec(a,b) = inf{T" > 0| ~:[0,7] = G is sub-unit, v(0) = a, y(T) = b}.

Since g; is bracket-generating the whole tangent space, d..(a,b) is finite for any a,b € G
(this fact is known as Rashevsky-Chow theorem). Moreover, it’s easy to check from the
definition that d.. is left-invariant and homogeneous.

Notation. B(a,r) = {y € G | d(a,b) <r} € G is an open ball in distance d.

Proposition 2.1.7 ([F'S82]). Given a Riemannian metric dyie, on G, for any compact
K € G there are positive constants C; et Cy such that

Cldm’em<a7 b) S d(CL, b) S C2dm'em(a7 b>#7 a, b € K.

In particular, d and d,ie., define the same topology.
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Hausdorff Measure. Let (X,d) be a quasi-metric space. We denote by diam F =
sup{d(a,b) | a,b € E} the diameter of set £ C X. Let 0 <k €R. Fore >0and £ C X
we define

o

HEE) = inf{Z(diam E) | EcC U E;,diam E; < 5} ,
i=1 i=1

SHE) = inf{Z(diam E)¥ | EC|JE; diamE; <¢ E; is a ball} .
=1

i=1
Definition. We define the k-dimensional Hausdorff measure H* of E as

Hk(E) = lim ’Hf(E) = sup?—[f(E),

e—0+ >0

as well as the k-dimensional spherical Hausdorff measure S* of E as

Those two measures, H* and S*, are exterior Borel regular on G that are mutually
comparable. We recall that the Hausdorff dimension of E is the number

dim E = sup{k | H*(E) = oo} = inf{k | H*(F) = 0}.

Remark. Observe that the different choices of left invariant homogeneous distance d
on G lead to comparable Hausdorff measures. The Hausdorff dimension of dimG = @)
and, in fact, a biinvariant Haar (volume) measure is proportional to H? on G and
HIME(B(a,r)) = CrimC for every a € G, r > 0.

Definition 2.1.8. Let \: [t_,t.] C R — (E,d) be a curve in a quasi-metric space.
Then for p > 0 the p-variation of A is defined as

-1 »
Var”(A) = sup {Z dA(ti), Atis1))" [ 1= <to<...<t < t+}
i=0
Remark. 1f d is a metric and ) is continuous and injective then Var'(\) = HY(A([t_,t.])).

Definition. We extend the distance d to a distance between point a € G and set £ C G
by putting
d(a, F) = inf{d(a,b) | b € E}.

Definition 2.1.9. We define Hausdorff distance disty between F, F5 C X by

disty(E1, E5) = max { sup d(a, Ey), sup d(b, Es) }.

ac€Es beEy

Restrict on compact subsets, the Hausdorff distance disty has all properties of metric.
Moreover, if X is compact, then the family of all compact subsets of X equipped with
the Hausdorff distance is a compact metric space.
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Definition 2.1.10. A Borel measure p on X is doubling if there is a constant C' > 1
such that for any metric ball B(a,r) C X

n(B(a,r)) < Cu(B(a,2r)).

Definition 2.1.11. A Borel measure p on X is k-Ahifors reqular (of dimension k > 0)
if there are constants ro, C' > 0 such that for any a € supp(i) and any 0 < r < rg

C~Yr* < u(B(a,r)) < Or*,

Definition 2.1.12. A map f: (X,dx) — (Y,dy) between two quasi-metric space is
Holder continuous of exponent 3 > 0, f € Hol’(X,Y), if

1l = sup  dy(f(a), f(b))dx(a,0)™"

dx(a,b)>0
is finite. A map f € hol’(X,Y) c Hol’(X,Y) if for any compact set K € X
dy(I(a),1(b)) = o(dx(a,b)’), a,be K, dx(a,b)— 0.

The space Hol! (X,Y) is also called the space of Lipschitz functions and denoted by
Lip(X,Y).

The following general result is called “coarea inequality” that is also known as Eilen-
berg’s inequality.

Theorem 2.1.13 ([Fed69, Th. 2.10.25|). If f: X — Y is a Lipschitz map between
metric spaces, A C X, 0 < k,m < oo, then

(k,m)

/ HHANF ) dH™(p) S Lip(f)" HH™(A),

provided either {p | H*(AN f~(p)) > 0} is the union of a countable family of sets with
finite H™ measure, orY is boundedly compact.

2.2. Some examples of Carnot Groups

2.2.1. Heisenberg groups

The n-th Heisenberg group H" is a Carnot group of topological dimension N = 2n + 1
whose the Lie algebra is of depth m = 2: g = g1 @ g-. Here, g; is of dimension 2n and
generated by the vectors Xi,..., X,,,Y1,...,Y,, whereas dim V5, = 1 and V5 = span{Z}.
Thus, the homogeneous dimension of H" equals () = 2n + 2. Non-trivial commutation
relations are generated by [X;,Y;] = —4Z. Let us denote 7(z,y, 2) := (z,y) € R* the
projection on so-called “horizontal plan”. By Baker-Campbell-Hausdorff formula we get
that the group operation on H” = R?"*! = R" x R" x R:

T x x+ a2
Y . y, = y—|—y, )
z z/ Z+Z,+2B((x;y)a(x/7y/))
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where
B((l’,y), (‘rlvy/)) = <x/7y>R" - <x7y/>R”~

The dilatations act by &;(z,y,z) = (tx,ty,t*z). The centre of H" is denoted by Z :=
{exp(tZ) | t € R}. For Heisenberg groups we will use the following homogeneous norm :

pla,y, z) = max{y/|lz[ + [ly|%, |2'/*}. (2.2)

By a straightforward computation one can show that the obtained distance d is, indeed,
a metric. Moreover, the diameter of a ball of radius r is equal to 2r. Remark however,
that d is not geodesic metric.

The basis of left invariant vector fields is given by

Xi(z,y,2) = Oy, + 24:0,, Yi(x,y,2) = 0y, — 22,0,
Z(xayaz):az:_i[Xi,Y;], 1=1,...,n.

The dual basis of differential forms is

w, =dr, w,=dy, w,=dz— QZ(ZUZ AYnsi — Yi ATpyi)-
i=1

The form w, carries the name of contact form (as a Heisenberg group carries also a
contact structure).

With the coordinates chosen above, the horizontal differential of f € C}(H",R) can
be written as follows

Dy f(a){v) = (Vi f(a), 7(v)), (2.3)
where Vi f 1= (le, oL XY f, ,Ynf) is the horizontal gradient of f at a.

2.2.2. Engel group

The Engle group E* is a Carnot group of depth m = 3, topological dimension n = 4
and homogeneous dimension ¢ = 7. The decomposition of Lie algebra is given by

g=01D gD gs,

where g; = span{V, X}, go = span{Y'}, g3 = span{Z}. Non-zero commutation relations
are the following
V,X]=Y, [V,Y]=Z

We use the realisation of E as R* via the exponential coordinates (v,x,v, 2), so the
group operation reads as

/ 'U“_U/

/ $+x/

/ y+y + 5w’ —av)

! 242+ vy — ) + 5 (v =) (va! — )

e 8
N ]
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The dilatations act by &;(v,z,y, z) = (tv, tx, t*y,t3z), t > 0. In the chosen coordinates
the left invariant vector fields read

V(v,z,y,2) = 0y — 50, — (% + qi—w)az,
X(,2,y,2) = 0y + 50, + 50,
Y(v,2,y,2) = 0y + 50,

Z(v,x,y,2) = 0,,

and their dual differential forms are

wy, =dv, w, =dr, w,= %xdv — %vda:+dy,
w, = (%y — %xv) dv + %UZ dx — %U dy + dz.

2.3. Horizontal differentiability

Let (G, 8}, p1,dy,e1) and (G2, 62, pa,da, €2) be two Carnot groups.

Homogeneous homomorphism

Definition. A continuous homomorphism L: G! — G? is called homogeneous (or hor-
izontal), if L o 6} = 6% o L for every t > 0.

Remark. The space of horizontal homomorphisms Homy(G!, G*) between G! and G? is
naturally endowed with a group structure and a norm

pa2(L(a))

|L|| = sup ———= < .
acG\ey pl(a)

To continuous morphism of Carnot group L: G! — G? corresponds the morphism
of Lie algebras £ = exp,'oL o exp;: g — g>. Homogeneity condition reads then
L(g1) C gi-

The kernel of homogeneous homomorphism Ker L = K is a normal subgroup of G*.
In the same way, Ker £ = K is homogeneous ideal of g!. The set is homogeneous if it is
invariant under the action of dilations. Observe that an homogeneous subspace W C g
admits a decomposition in direct sum: W= (W Ng) & ... (W Ngn).

Definition 2.3.1. A closed subgroup W C G is said to be vertical if
exp(go @ - - Dgr) CW.
Note that a vertical subgroup is automatically normal. Equipped with the natural

topology, family vertical subgroups of given dimension form an open set insight all
homogeneous subgroups of the same dimension.
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Horizontal derivative.

Definition 2.3.2 ([Pan89]). Let f: Q@ € G' — G? be a map defined on the open
set 2. Map f is called horizontally differentiable at © € G!, if there is a horizontal
homomorphism L: G' — G? such that

do(f(a)™" - f(a-h),L(h)) = o(di(h,e1)) when h — 0.

If this is the case, L will be unique. So, we denote it by Dy, f(a) and call the horizontal
differential of f at a.

If f is horizontally differentiable at every point a € Q and the differential D), f(a)
depends continuously on a, then f is said to be continuously horizontally differentiable
on Q. The class of those maps is denoted by C}(£,G?), or even shorter C}, if the
context determines without ambiguity the source and target spaces. As in the classical
situation, the chain rule holds for maps in C}, as well as some other arithmetic rules.
Remark that f € C}(G',G?) is locally Lipschitz w.r.t d; and ds.

Criterion in terms of horizontal partial derivatives. The result below (see [Vod07],
for instance) is an counterpart of the classical theorem saying that the continuity of
partial derivatives implies the continuous differentiability.

Theorem 2.3.3. A map f belongs to C}(Q2, G?) if and only if for each horizontal left
invariant vector field X € HG' the partial derivative X f(a) := L[f o exp(tX)(a)]i=o
is continuous on 2 and for all a € Q the vector X f(a) lies in horizontal bundle:
X f(a) € Hy)G*.

It will be important to recall a generalisation of another classical result.

Theorem 2.3.4 (“Lagrange”, [FFS82]). For f € C}(G,R), a,b € G the following in-
equality is verified

[f(a) = f(b) = Dpf(B)(b~" - a)| < Cd(a,b)  max X f() = XfO)loo,Bor), (2:4)

XeHG,||X||<1
where the radius r = Cd(a,b) and C < co some constant depending only on (G,d).

In the case of non-commutative target the generalization of Theorem 2.3.4 was ob-
tained in [Magl3, Th. 1.2]. Here we reformulate this result according to our notations.

Theorem 2.3.5 (Mean Value Inequality, [Mag13|). Let f € CL(Q,G?) with Q open in
G'. Then there exist a geometric constant K = K(G',d;) and an increasing function
c: Ry — R, such that

d>(f(a) " F0), D fO) (b))

(deg G')~2
< KCdl(a, b) ( max ||Xf() - Xf(b)Hoo,B(b,r)) )

XeHG, [X|<1

with C = ¢(maxycp. [|Df(V)]) holds for every a,b € G' such that the ball B(b,r) of

radius 7 = Kd(a,b) is compactly contained in ).
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Definition. We denote by C;*(G!,G?), 0 < a < 1, the space of functions f € C}
satisfying
I1Dnf(a)™" - Daf(0)] S di(a, b).

Whitney extension theorem. This result provides the sufficient condition for an ex-

tension scalar differentiable map initially defined only on closed set to the whole space.

Theorem 2.3.6 (|[VP06|). Let E C G be a closed set. Assume that f: E — R and
k: E'— Homy(G,R) are continuous. We put

R(a,b) :== f(a) = f(b) = k(a)(0™" - a),
and for a compact K C K

|[R(a, D)l
d(a,b)

If 0x(e) — 0 when ¢ — 0+ whatever compact K C F we take, then there evists a
function f € C;(G,R) such that fig = f et Dy fip = k.

Ik (€) ::sup{ |a,b€K,0<d(a,b)<5}.

We will also need a more precise version of Whitney extension theorem in order to
control the modulus of continuity of horizontal derivatives. Here we formulate it for
Holder classes.

Theorem 2.3.7 ([VP06]). Take K € G a compact set and fir0 < o < 1. Let f: K - R
and k : K — Homy (G, R) such that for any a,b € K

k(@) kD) < Md(,b)®,  |R(a,b)| < Md(a, b+,
then there exists a function f € Ci’a(G,R) satisfying ﬁK =7, DhﬁK =k and

IDyf(a)™ - Duf()| < Md(a,b)®, a,beG.
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3. Tangents to level sets

Some of the results of this chapter, in particular those of Sections 3.2 and 3.3, are
products of joint work with F. Bigolin and were present in [BK14].

Notation. In this chapter we are going to consider either one Carnot group denoted by
(G,d,e) (corresponding to a group, metric, neutral element) either two Carnot groups
denoted by (G!,dy,e;) and (G?,dy, e5). The symbol © will usually stay for an open set
either in G either in G*.

3.1. Reifenberg flatness of level sets

3.1.1. Level sets are Reifenberg vanishing flat

Theorem 3.1.1. Let G', G? be Carnot groups and let Q be open in G'. Assume that
DnF(p) is surjective at a point p € Q for a map F € CH(Q,G?). Then there is a
neighbourhood U of p in which the level set S := F~Y(F(p)) is vanishing Reifenberg flat
w. 1. t. kernels of horizontal differentials of F', that is, there is an increasing function
e: (0,00) = (0,00), €(t) — 0+ when t — 0+, such that for every a € UN S

dista, (B(a,r) NS, B(a,r) Na-Ker(DyF(a))) <e(r)r, r>0. (3.1)

Since we are looking at objects at scale r, the function € is always bounded by ¢(r) <
diam(B(a,r))/r S 1.

Proof. Let us first fix a homogeneous subspace t C g' transversal to log(Ker D, F(p)),
i.e.
t@log(Ker D, F(p)) =g' and 4,(t) =t, s> 0.

One can take, for instance, an orthogonal complement. Note that the choice of t is not
canonical. We denote T := exp(t). Since Dy, F' is continuous and surjective at p, we can
find a ball B(p, Ry) € 2, Ry > 0, and 1 > 0 such that

do(DpF(a)(v),es) > ndy(v,e1), veT, acl. (3.2)

Otherwise, by homogeneity, we could find a non-zero element v € T such that v €
Ker D, F(p) that contradicts t N log(Ker D, F(p)) = {0}.

By Theorem 2.3.5, the small “0” in the definition of horizontal differentiability is
uniform for the points from any compact part of 2. Therefore, there is an increasing
function w: Ry — Ry, w(r) — 0 for r — 0, such that

dy(F(a)™" - F(b), DyF(a)(a™ - b)) < w(di(a,b))dy(a,b), (3.3)

25



for all points a,b € B(p, R). In particular, for a,b € F~Y(F(p)) N B(p, Ry) we get that
do(DyF(a)(a™t - b), es) < w(di(a,b))di(a,b). (3.4)

In Lemma 3.1.2 below we show (with a help of topological degree theory for continuous
mappings) that the projection of S along 7" on a-Ker Dy, F(a) is (locally) surjective. So,
let Ry be as in Lemma 3.1.2 and let us put U = B(p, Ro/3). To show Eq. (3.1) means
for a € U N S to show two statements:

1. If b € SN B(a,r) there is b € a - Ker D, F(a) N B(a, ) such that d;(b,b) < €(r)r;
2. If b€ a-Ker D, F(a) N B(a,r) there is b € S N B(a,r) such that dy(b,b) < e(r)r.

Case 1. Letae SNU and b e SN B(a,r), r < R;. We write a™' - b = k - v where
k € Ker D,F(a) and v € T. Such k and v are indeed unique because the map

t: Ker DF(a) x T — G, o(k,v) =k -,

is a global diffeomorphism: since t® log(Ker D, F(a)) = g', di(ey,0) is invertible, so, by
inverse function theorem, ¢ is a local diffeomorphism, and by homogeneity it is a global
one. So, we define b=a-k € a-Ker D, F(a).

Case 2. Leta e SNU andb =a-k € B(a,r)N (a-Ker D,F(a)), r < Ry. Using
Lemma 3.1.2 we find a point b = a - k - v with v € T such that b € SN B(a,2R;).
In both cases we can use a common estimate following from Egs. (3.2) and (3.4)

di(b,b) = di(v,e1) < 7 do( Dy F(a)(v), es)
=0 tdy(DypF(a)(k - v), e5) = n  dy(DuF(a){a™" - b)), e3)
< n'w(di(a,b))di(a,b).

By the triangle inequality,
di(a,b) < di(b,b) +di(a,b) < 1~ w(di(a,b))di(a,b) + di(a,b).
Since d;(a,b) < Ry we have w(d;(a,b)) < n/2 and
di(a,0) < (1 =5~ w(di(a,0)))d1(a, b) < 2di(a,b),

therefore, di(a,b) ~ dl(a,B) ~ r. Thus, following Proposition 3.1.4 we can conclude
with e(r) < (w(r)/n)Y €6 r € (0, Ry). O

In the next auxiliary result we will keep the notations of the proof of Theorem 3.1.1.

Lemma 3.1.2. Take ¢ € (0,Ry/3) in such a way that |w(e)| < n/2 where w is as
in Eq. (3.3). There is Ry € (0, Ro/3) depending only on w, n, Lip(FLB(p, Ry)) such
that the following holds. Given arbitrary a € S N B(p, Ro/3), for any k € B(ey, R1) N
Ker Dy F(a) there is a point v(k) € T'N B(ey,€), such that

a-k-v(k) € F1(F(a)).
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Remark 3.1.3. Note that, in general, the point v(k) is not necessarily unique unless T
is a subalgebra. Indeed, assume that T is a subgroup and there are at least two such
points v(k),v(k) € T. By Eq. (3.4),

da(DnF(a){v(k)™" - v(k)'), e2) < w(di(v(k), v(k)))di(v(k),v(k)"),
but v(k)~! - v(k) € T, and, therefore, by applying Eq. (3.2),

da(DnF(a) (u(k)™ - v(k)), €2) = n i (v(k), v(k)),
we obtain a contradiction.

Proof. For k € Bley, Ry/3) N Ker Dy F(a) we introduce
Fy(v):=F(a-k-v), Fy:D.— G? D,:=Be;,e)NT.

(We must take ¢ < Ry/3 in order that a-k-D. C B(p, Ry).) If v € D., then by Egs. (3.2)
and (3.3) we get

day(Fe, (v), Fe, (€1)) = do(F(a - v), F(a))
> do(DpF(a)(v), e2) —w(di(v,e1))di (v, e1) (3.5)
> ndi(v,e1) — gdl(v, e1) = gdl(v,el).

This implies the image of the boundary F,, (0D.) does not meet F'(a). Let us take some
Ry > 0 and k € B(ey, Ry)NKer Dy F(a), then for v € 0D, we have (using Appendix A.5)
do(F(a-k-v),F(a)) > dy(F(a-v),F(a)) —da(F(a-k-v), F(a-v))
> % — Lip(FLB(p, Ro))d1(k - v,0)

ne

> = — Lip(FLB(p, Ry))C(e) R{™.

It is clear now that we can choose R > 0 independent of a so that the last difference is
strictly positive. This implies that F'(a) € Fy.(0D.) for every k € B(ey, Ry)NKer D, F'(a).

Each map F, € C°D.,G?) is obviously homotopic to F,, € C°(D.,G?) by means
of F. Note that T" and G? are diffeomorphic due to the surjectivity of D,F(a). So,
for k € B(e1, R1) N Ker D F(a) the topological degree deg (Fy, D., F(a)) (see, for in-
stance, [L1078]) is well defined and since it is homotopy invariant, we have

deg (Fx, D., F(a)) = deg (F.,, D., F(a)).

Observe that by Eq. (3.5), F'(F(a)) N D. = {e;}. Furthermore, F,, is homotopic (by

e

the actions of translation by F'(a)~! and dilation 44, s — 0) to the horizontal differential
of I' at a restricted on T that gives by surjectivity hypothesis

deg(Fy, D., F(a)) = deg(DyF(a), T, e3) € {1,—1}.

Since deg (Fy, D., F(a)) # 0, for all k € B(ey, R1) NKer D), F(a) there exists v(k) € D.
such that Fy(v(k)) = F(a-k-v(k)) = F(a). O
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Next two statements are technical and also needed in the proof of Theorem 3.1.1.

Proposition 3.1.4. Let S C G be closed containing the origin e and let W C G be
closed and homogeneous. Assume that for every r > 0,

1. for any b e SN Ble,r) there is b € W such that d(b,b) < re(r),
2. for any b € W N Ble,r) there is b € S such that d(b,b) < re(r).

Then, . )
distq(S N B(e,r), W N Ble,r)) < Te(r)l/dch‘

Proof. Imagine that in case 1. b does not lie inside B (e,r). Then b should be replaced
by ' as in Proposition 3.1.5. Let b & B(e,r) in case 2. This means b & B(e,r — €(r)r).
Then we should first consider ¥ € W N B(e,r — e(r)r) as in Proposition 3.1.5 (with
radius 7 := r — €(r)r) for which the closest ¥’ € S will be inside B(e,r). Applying the
triangle inequality allows to conclude. O

Proposition 3.1.5. Let W € G be a closed homogeneous set, beW and b e B(e,r).
Assume that d(b,b) < er with 0 < ¢ < 1. Then there is b/ € W N B(e,r) such that

d(b',b) < emeer,

Proof. By rescaling, we can assume without loss of generality that » = 1. By the triangle
inequality, b € B(e, 1 + ¢), so we can take i/ = by 110(b) € B(e, 1) that also belongs to
W due to homogeneity. Let us show that d(b, ) < /%G, Put b = exp(3, X;) with
X; € g;. Then || X,]|" <1 and ¥ = exp(Y, Xi/(1 + €)?). Therefore for the Euclidean
distance we have the following estimate,

euclzd b b/ Z HX +€ ZX H S GZ HX H S €.

By a basic comparison between between FEuclidean and Carnot distances we get
d(g, 6/) 5 deuclid(ga 6/)1/degG S El/degG’

so that 3 5 o
d(b,b') <d(b,b) +d(b, V) S e+ '/ 1BE < /e,

3.1.2. Continuity of level sets in Hausdorff distance

In fact, Lemma 3.1.2 gives almost for free some useful consequences about the local
continuity of levels sets of F' equipped with the Hausdorff distance. First, we should
note that F' restricted to translated plans 7T is locally surjective.

Corollary 3.1.6. With notations of Lemma 5.1.2, for any a € F~*(F(p))NB(p, Ry/3),

B(F(a), gr) C Fla-(TNBen,r)), 0<r<e.
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Proof. Equation (3.5) says that do(F'(a), F'(a-v)) > rn/2 for a € TNOB(e1,r). Therefore,
the degree deg(F,a- (TN B(ey,r)),b) is well defined for b € B(F(a),rn/2) and equal to
deg(F, (a-TNB(e1,)), F(a)) that is different from 0, so that, b € F(a-(TNB(ey,7))). O

Using Corollary 3.1.6 we want to formulate a statement about the bi-Lipschitz con-
tinuity of level sets in the Hausdorff distance. It seems to be technically hard to give
a formulation that provides an appropriate boundary condition, that is a neighbour-
hood ' of a point p where D, F'(p) is surjective in which level sets would be bi-Lipschitz
continuous. To overcome this we introduce a local analogue of the Hausdorft distance
distq, (see [Dav05, Sec. 34| for details).

Definition 3.1.7. Let Q C G! be open set. Take {£2,,},,>0, an increasing sequence of
compact sets such that Q,, C int(,,11) and {J,, 2, = Q. For two sets Ey, Ey C 2 we
define

dist,,(E1, E») :=max{ sup di(a,E»), sup di(b, Er)}.

a€E1NQm, bEE2NQm

We say Ej — FE locally inside € if dist,,(Ex, E) — 0 for all m > 0.
It is continent to adapt the following convention:
o d(a,F) =4+ if £ =g,
® SUpP,cp o, di(a, B) =0if E;NQ, = .
Proposition 3.1.8. Let G!, G? be Carnot groups and let 2 be open bounded set in G'.

Take two maps Fy, Fy € CL(Q,G?) such that DyFy(a), i = 1,2, is surjective at every
a € Q. Let Q,, be an exhaustion of Q@ as in Definition 3.1.7. Then fort € Fy(2) N F,(Q2)

(m, F1,Fy)
dist,,(F; (1), Fy (1) < €= maé(dQ(Fl(a),Fg(a)).
ac

Proof. Fix a compact ,, C Q. We need only consider ¢ € F;(,) (otherwise we
get 0 according to our convention). One should note that the constants n,e > 0 in
Corollary 3.1.6 can be bounded uniformly when p € €,,. This means that for any
p € F'(t) there is a homogeneous subset T, C G! such that the image Fy(p - (T, N
B(ey,r))) contains a ball B(Fi(p),nr) as soon as r < e. Recall that here we require
that p - (T, N Bley, 2¢)) C Q. So that, if € < ne then for r = 2~ 'e the intersection of
p- (T, N B(ey,r)) and F; '(t) contains some point p'. Thus,

dl(p7 F271(t>) S dl(pap/) S 277716'

If € is rather big (compared to n7'd;(Q,,0Q)), we can merely take any point p’ €
F;'(t) # @ and get some probably big but finite estimate (since € is bounded).
Our arguments are symmetric in F; and F5, and the conclusion follows. ]

'This choice is much simpler when Ker Dy, F(p) admits a complementary subgroup.
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Corollary 3.1.9. Let G, G? be Carnot groups and let Q be bounded open set in G*.
Assume that Dy F(p) is surjective at every point of p € Q for a map F € C}(Q,G?).
Then, for any t,t' € F(Q)

(m7F)
Lip(F) ' do(t, ') < dist,,,(F~H(t), F7Ht)) < do(t,t).

In particular, F~1(t') — F~1(t) locally in Q when t' — t.

Proof. The left-hand side inequality follows from Remark 3.1.11. To obtain the right-
hadn side one should apply Proposition 3.1.8 to Fy = F' and Fy, = Ly-1.p4 0 F. ]

We can also give its global version.

Proposition 3.1.10. Let F € C}(G',G?) such that D, F(p) is surjective at every
p € G'. Assume furthermore the following global bounds:

o there is C' > oo such that | Dy F(a)| < C for a € G';
e there is 1 > 0 such that DyF(a){B(e1,1)) D Bles,n) for a € G';

e there is a modulus w, w : Ry — Ry, w(r) — 0 for r — 0, such that for every
a,b e G' |DpF(a)™ - DLF()| < w(di(a,b)).

Then the map F(G') > a — F~'(a) is bi-Lipschitz in the Hausdorrf distance with the
constants depending only on C,n,w.

In this context we find relevant to give also the following simple and general facts
about the continuity of level sets.

Remark 3.1.11. If F': (X,dx) — (Y,dy) is a Lipschitz map of metric spaces then the
Hausdorft distance between level sets satisfies

Lip(F) dista, (F ' (y), F~(y) = dy (y,9).

Proposition ([DHO8|). If F': (X,dx) — (Y,dy) is a Lipschitz map of metric spaces,
then the following conditions are equivalent:

a. The natural function y — F~'(y) establishes a bi-Lipschitz equivalence between
F(X) and the space of fibers of F' equipped with the Hausdorff distance.

b. There is p > 0 such that dx(x, F~'(y)) < u-dy(F(z),y) for all z € X and
y € f(X).

Proposition ([DHO08]). Let F': X — Y be a surjective map of metric spaces. The
following properties are equivalent:

a. There exists p > 0 such that for any x € X andy €Y,
dx(z, F7!(y)) < pdy (F(z),y).
b. There exists A > 0 such that for any x € X and any R > 0,
B(F(z),A\R) C F(B(x,R)).
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3.1.3. Detecting level sets using flatness condition
Let us now present a converse of Theorem 3.1.1.

Theorem 3.1.12. Let S C G be a connected locally closed set. Assume that to each
point a € S corresponds a closed homogeneous set W,, and W, is a vertical subgroup of
codimension N for some p € S. Assume that for every relatively compact subset S" € S
there is an increasing function e: (0,00) — (0,00), €(t) — 0+ when t — 0+, such that
for any a € S’

distg (B(a,r) NS, B(a,r) N (a-W,)) < e(r)r, > 0. (3.6)
Then there exist an open neighbourhood U of S and a map F € CH(U,RY), such that
S=F"%0), KerD,F(a)=W,, Vacs.
We ought to make some comments about the statement of Theorem 3.1.12.

e We need to formulate the flatness condition only for points of compact subsets S’
of S, because we deal with estimates which are uniform in a € S’ and we want to
avoid a possible problem near the boundary of S.

e Compare to the usual definition of Reifenberg vanishing flat sets. We use here
a stronger version where “the approximated plane” W, does not depend on scale.
This automatically implies the continuity of the map a — W, see Lemma 3.1.13.

e We have to consider only vertical subgroups as tangents because the construction
of F' uses Whitney’s extension theorem which is known only for commutative
target spaces RY = G/W,.

We postpone the proof of Theorem 3.1.12 to the next section because we need some
additional ingredients based on (para)tangent cones.

Lemma 3.1.13. Suppose that a closed set S C G is vanishing Reifenberg flat w. r.t.
a family of closed homogeneous subsets {W, | a € S} as in Eq. (3.6). Then the map
a — W, is continuous in the following sense

distq(W, N 0B(e,1),W, N 0B(e,1)) =0, as S 2b— a.

Proof. Let a,b € S with d(a,b) =r > 0 small. For R > r > 0let v € W,N0dB(e, R) and
take ¢ =a-v € B(a, R) N (a-W,). Using flatness at point a we can find ¢ € SN B(a, R)
such that d(c, ¢) < Re(R). Note that d(b,c) < R+ r < 2R, so using flatness at point b
we get a point ¢ € B(a,2R)N(b-W}) such that d(c,d) < 2Re(2R). For v/ =b1-¢ e W,
we obtain thanks to Appendix A.5 that
3Re(2R) > d(6,&) =d(a-v,b-v) =dv™ - (b7 -a) -v,v-0)
>d(v,v") —d(v™t- (b7 a) - v,e) > d(v,v) — C(R)rt/4e©),

This means that if we take r = (R, €(2R)) > 0 small enough, we get d(v,v") < Re(2R).
It is easy to see that we can arrange this in such a way that R — 0 when r(R, ¢(2R)) — 0.
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(One can quantify the dependence of r on R and €(2R) in order to estimate a modulus
of continuity of the map a — W, that we don’t need here.) By rescaling v and v' we
get that

d(51/d(v,e)<v)a 51/d(v’,e) (U/)) 5 6(2R)

Of course, we could use a symmetric argument starting from v" € W,NB(e, R). So, at the
end we obtain that for every R > 0 and any two points a, b € S with d(a,b) < r(R,e(R))

distq(W, N 0B(e, 1), W, N 0B(e, 1)) < €(2R).

This concludes the proof. O

3.1.4. Flat sets vs level sets.

When the target Carnot group G? is not commutative, we have much less flexibility for
contact maps between G' and G2. In particular, we cannot apply Whitney extension
theorem, so a compact set S C G! satisfying a tangency condition Eq. (3.6) may not
arise as a level set of a horizontally differentiable map F': G! — G? with surjective
differential.

For instance, we show in Lemma A.2.1 that there is an example of rigid Carnot groups
G' and G? such that any C}-map between them with surjective horizontal differential
is up to translation a group homomorphism. That emphases a big gap that can ap-
pear between sets with tangency condition and actual level sets. Note that locally
any smooth curve tangent to centre(G') in Lemma A.2.1 satisfies the corresponding
tangency condition.

The situation is not even so clear for a rather large [War05] set of the contact maps
between jet spaces. For instance, a simple question can be: is there a Cj-map from
the Engel group E* (see Section 2.2.2) to the first Heisenberg group H' with surjective
differential admitting an “irregular” level set that, let say,

1. is merely different from its tangent;
2. is not bi-Lipschitz equivalent to its tangent.

On the example of E* we are going to show that there is a large variety of sets
satisfying the tangency condition Eq. (3.6). We shall use the next technical result.

Proposition 3.1.14. Take Z € centre(g) be a homogeneous vector field from the centre
of g. Let I': [0,1] — G be Holder continuous with exponent o > 1/degZ. Then there
is a large enough constant K = K(||I'||goe) > 0 such that the image S of the modified
curve

t—I'(t) exp(KtZ)

satisfies Eq. (3.6) with W, = exp(Z) for any a € S.

This result generalizes Proposition 5.5.8 whose proof is very similar and we will drop it.
On the contrary, let us describe a possible construction of such curves I" for o € (1/2,1]
that are tangent to Z € g, deg Z = 3, in E*
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Take any curve [0,1] 2 t — v(t) = (v(t),z(t)) € R? of Holder exponent a. We can
apply an extension theorem (for instance, [Lyo98, Th. 2.1.1], [LQ02, Th. 3.1.2|, with
p=1/a <2andn =1) to~ in order to construct a “lifted” curve I'': [0, 1] — (G3(R?),d)
with values in the free Carnot group of step 3 and rank 2 that is Holder continuous
with the same exponent a. The curve I is a lift of 7 in the sense that 7(I") = v where
7 : G3(R?) — R? is the canonical projection. Note also that the curve I" is unique with
those properties.

By the basic property of free Carnot groups, we can take a quotient of G3(IR?) by a well
chosen normal subgroup (containing all extra commutators) to obtain E*. This gives a
rise to a projection Pr : G3(R?) — E?*. This projection is always Lipschitz and commutes
with projections on horizontal planes Pror = 7’ o Pr, where 7'(v,x,y,2) = (v,z) in
coordinates on E. So, we should take I' = Pr(I") € Hol*([0, 1], E*) for which #'(T") = ~.

The technique presented above is quite general and can be used to construct lifted
“horizontal” curves in an arbitrary Carnot group.

But there is also a way to construct this “horizontal lift” directly in E* without passing
via G3(R?). Having (v, z) we should solve step by step the contact equations

1 1
§xdv—§vd:c+dy:0,
1 1 1 1
(§y— EIU) dv+6v2d:ﬁ— §Udy+dz =0.

(in rough sense) to find the y and z components. Concretely, first we put y(t) =
1/2 fot vdr — x dv as an integral in Stieltjes sense, Theorem A.1.3. Now we note that y
is also a Holder function with the same exponent « (see Remark 5.5.10). Obviously, the
functions xv and v? are also a-Hélder. Therefore, we can define z again as a Stieltjes
integral. Let us check that the curve I' = (v, z,y, z) obtained in this way is a-Holder
continuous in Carnot distance, that is

d(0(#),T(s)) < |t —s*, t.se[0,1].

Let t,s € [0,1], then by hypothesis we already have this bound for the x and v compo-
nents of I'(s)~! - I'(t). For the y component, it immediately follows from the estimate
in Theorem A.1.3. So, we only need to deal with the z component.

Since I' is uniquely defined by left-invariant differential equations, we can perform a
left-translation and assume without loss of generality that I'(s) = e. Otherwise we would
have a non-zero boundary term in the computation below. For the sake of simplicity
we also perform a translation in time and assume that s = 0 and ¢t > 0. Finally, we
need to prove that

11 1, 1 -
|z(t)\]/0 (2y 6a:v)dv—i—6v dx 2vdy\§t :

if v(0) = 2(0) = y(0) = 0. By Young’s estimate in Theorem A.1.3, we have

t
\/ v dv] S v ]lmoe[lzvllmae S 0 llmoe (12l [vllmoe + [[vlloll ] Hoe)-
0
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But the sup-norms of v and z on the interval [0,¢] are bounded by
[l S t*[[0ll01,  [12]lo0 S £ |01
Hence,

t
\/0 v dv| S ollnae (vl + 2 ]fioe)-

The same argument applies to fot v?dx. To get a good control on fot ydv or fot vdy
is enough to bound the Hoélder norm of y on [0,¢], that can be done as follows: if
t1,tz € 10, t], then
1
ly(tr) — y(t2)] < ly(tr) = y(t2) — (2(t)v(t) — z(t2)v(tr))]
1
+ 5le(t)v(te) — x(t2)v(t)]

S lollmore | llmoe [t = 21 + (lzlloollvlnae + 0]l 12 lla1=) [t — £

S 4t — to| v | more || || proter-

| «

3.2. Tangency and Paratangency in Carnot groups

Let us first give the definition of tangent and paratangent sets in Carnot group (G, d, d).
Definition 3.2.1. Let S C G and a € G.

e v € G belongs to Tan{;(S,a) (an upper tangent cone to S in a) iff

Htwtm C Ry, limt, =0, Ham}m C S such that

3.7
lima, =a, limdy,, (a™" - ay) =0 (3.7)
e v € G belongs to Tang (S, a) (a lower tangent vector to S in a) iff
V{tm}tm C Ry, limt, =0, FHan}ln, CS such that
" 3.8
lima,, =a, lim (51/tm(a_1 CQpy) = 0. (38)
e v € G belongs to pTanf(S,a) (an upper paratangent vector to S in a) iff
Httm CRy, limt,, =0,  FHamtm, {bm}m C S such that
" 3.9
lima, =a, lmd,, (b, an,) ="v. (3.9)
e v € G belongs to pTang(S,a) (a lower paratangent vector to S in a) iff
V{tm}m C Ry, limt, =0, Y{an}, CS, lima, =a,
" " (3.10)

I{bm}m C S such that lim ., (b, - am) = v.
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Remark. The following inclusions follow from definitions
pTang(S,a) C Tang (S, a) C Tanf(S,a) C pTang (S, a).

In order to define some properties of tangent and paratangent cones, let us introduce
the so-called Kuratowski limits of sets. Let A, be a subset of G indexed by points
a €S CG. The lower limit Li A, and upper limit Ls A, are defined by

S>a—ag S>a—ag

b . .
ve Li A, VH{am}m C S with an, — ao, {bm}m wit
§3a—ao b € A, eventually such that lim,, b, = v.

Hamtm C S with a,, — ag, 3{by, }m with
by € Ag,, eventually such that lim,, b,, = v.

S>a—ag

ve Ls Aa<:>{

In a metric space, Kuratowski convergence is weaker than convergence in Hausdorff
distance. These notions of convergence coincide when restricted to compact sets.

Remark 3.2.2. Notice that, by definition, Li, ., Aa C A, for any family of subsets A,.

Remark 3.2.3. By definition, e C pTang(S, a). Note also that Tang (S,a) = {e} if and
only if a is isolated point of S.

Let us give some simple properties of (para)tangent cones. First one justifies the
name ‘“cone”.

Proposition 3.2.4. Tangent and paratangent cones are closed and homogeneous sets
containing the origin e.

Proof. Homogeneity follows straightforward from the definition. To show closedness
one should use Cantor’s standard diagonal argument. [

Proposition 3.2.5. The lower paratangent cone pTang (S, a) is G-convez, i. e. satisfies
vy, vy € pTang (S, a) = vy - & (v;' - vy) € pTang(S,a), t€0,1].

Proof. Let us prove that vy,v, € pTang(S,a) = v; - vo € pTang(S,a). Fix two
sequences {an}m C S, {tm}tm C Ry such that lim,, d(ag,a,) = 0 and lim,, t,, = 0.
Since v; € pTang (S, a), there exists {by, },, C S such that

lim (51/tm(b;1 CQp) = V1.

Since lim,, d(ag, b,) = 0 and vy € pTang (S, a), there exists {¢,}m C S such that
lim &y 4, (¢! + byn) = o (3.11)

We can conclude that v; - v, € pTang (S, a), because for all {a,,}nm C S, {tm}m C Ry as
above we can find a sequence {¢,, },, C S, chosen as in Eq. (3.11), such that

liéﬂ 51/%(0;11 Cly) = li%n 81/t ((cgf b)) - (b;n1 . am)> = Uy - V.

Since pTang (9, a) is homogeneous, we can conclude by vy -6p(vy ' -ve) = d1_4(v1)-0¢(ve) €
pTang (S, a). O
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Proposition 3.2.6. The upper paratangent cone pTang (S, a) is bilateral, i. e. satisfies
v € pTanf (S, a) = v~ € pTan} (S, a).

Proof. Let v € pTan{; (S, a). By definition, there exist three sequences {a, }m, {bm }m C
S, {tm}m C Ry such that

limd(a,a,) =0, limt, =0, limd,, (b, an) =v.

Notice that in this case lim,, 81/, (a;,! - bn) = v~ ', therefore v € pTan{ (S, a). O

Remark. Observe that if pTang(S,a) = pTang(S,a), i.e. so all four cones coincide
at some point a € S then by Propositions 3.2.5 and 3.2.6 they will be homogeneous
subgroups.

We present now a characterization of horizontal differentiability in a Carnot group G.

Proposition 3.2.7. Let Q C G!' be an open set. Let F: Q — G? be a map between
Carnot groups. The following properties are equivalent:

i. F is horizontally differentiable at a € Q and L = Dy F(a).

ii. There exists a homogeneous homomorphism L: G' — G? such that
lim 61 y,, (F(a)™" - F(an)) = L{v)

for each v € G and for every {t,,}m C Ry and {an}m C Q as in Eq. (3.7).

Proof. Both implications are easy consequences of the definition of horizontal differen-
tiability. 0

We also give its paratangent version.

Proposition 3.2.8. Let Q C G' be an open set. Let F: Q — G? be a map between
Carnot groups. The following properties are equivalent:

i. F is uniformly horizontally differentiable at a € Q with L = DpF(a), meaning that
there is a horizontal homomorphism L: G' — G* such that

lim do(F(0)71 - Fle), L{b7t - ¢))

c,b—a dl(C> b) =0

ii. There exists a homogeneous homomorphism L: G' — G? such that

lim 6y 1, (F(by)™" - Flam)) = L(v)

for each v € G and for every {t,}m C Ry, {bn}tm C Q and {an}m C Q as
in Eq. (3.9).
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At the end of this section we present some result about the behaviour of tangents
w.r. t. limits.

Lemma 3.2.9. Let S C G be a closed connected set. Then

pTang (S, po) C Saiipo Tang; (S, p).
Proof. We adapt here a classical argument from [AF65]. Let us consider v € pTang (S, po)-
Fix any sequence {py, }m>0 C S converging to p. It can be shown (by a contradiction
argument, for instance) that v € pTang (S, po) implies that for every € > 0 there exist
N € N and 3 > 0 such that for any h € (0, 3] and any m > N we can find p” € S such
that
d(pp - v, pl) < he.

By compactness, for any m > N there is a limit point v,, of the sequence {p;,} - p!, }o<n<s
when h — 0. By definition, v,, belongs to Tanf; (S, p,,) and d(v,, v) < €. Since € > 0 is
arbitrary, we obtain the statement of Lemma. ]
Remark 3.2.10. By Remark 3.2.2, ; Li Tanf(S,p) C Tang (S, po) for S C G.
Sp—Ppo
By a direct application of the Cantor diagonal method we achieve the following

Lemma 3.2.11. Let S C G be a closed connected set. Then

Ls pTang (S, p) C pTang (S, po).
Sop—po
Lemma 3.2.12. Let E,E' C G be two closed subsets with E C E'. Assume that at
some point p € F,
pTang(p, E) = pTang (p, E').

Then E coincides with E' in some neighbourhood of p.

Proof. By contradiction, assume that there is a sequence {p,} C E’\ E such that
pn — p. Define b,, € F as a point such that d(b,,, p,) = minyeg d(b, p,). Up to extracting
a subsequence, dq(y, p,)-1(b," - p) converges (by definition) to some v € pTan™(p, ).
By hypothesis, v € pTang (p, £'), which means that we can find a sequence E > p,, — p
such that

Oa(bnpn)-1 (b7~ Pn) = 0.

Thus, 04, po-1 (P - Pn) — v-v~ ! = e, or, equivalently, d(p,', p,) = o(d(b,, p,)). This

contradicts the minimality in the definition of b,. ]

3.3. Four cones Theorem

The goal of this section is to provide a link between (para)tangent cones and Reifenberg
flatness for sets in Carnot groups.

Theorem 3.3.1. Let S C G is closed set and a € S. Two following conditions are
equivalent:
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I. There is a closed homogeneous set W such that

r~'distg (B(a,r) NS, B(a,r) N (a-W)) =0, r—0. (3.12)

1. Two tangent cones to S coincide at a

Tang (S, a) = Tang (S, a).

If these conditions are fulfilled then
W = Tang (S, a) = Tang (S, a).

Proof. There will be two parts.

| = Il. Let us first prove that Tang(S,a) C W. Take v € Tan}(S,a). By definition
there are {am}m C S, {tm}m C Ry such that

hmd<a’ am) = 07 lim tm, = 07 lim 51/tm(0fl . Clm) = .

We can find a sequence b, € (a - W) such that lim,, d(b,, a,,)/d(a,a,) = 0. Since
d(v,e) < oo, the ratio d(a, a,,)/t, stays bounded, so that

d(bp, am) — lim d(by, an) d(a, ay,)

tm, m d(a, CLm) tm

= 0.

lim
m

Hence,

v=1méy,, (a"" - ay) =lmd, (@™ by - b, - am) =liméy, (' - by) €W

because W is closed and homogeneous.

Now, we prove that W C Tang(S,p). Let v € W and fix an arbitrary sequence
{tm}m C Ry going to 0. Put b,, = a-d;, (v) € a-W and define a,, € S as a point
in SN B(a,r), r = d(a,by,) closest to b,. By hypothesis, lim,, d(b,, a,,)/d(a,b,) =
lim,,, d(by,, @)/ (tmd(v, €)) = 0. Then we conclude by

lim 014, (a - am) = lim 614, (a - b)) = v.
Il = 1. Let W = Tang(S,a). Assume that W = Tan{(S,a). Then W is a closed

homogeneous set. Suppose by contradiction that there are n > 0 and a positive sequence
rm — 0 such that

ot disty (B(a,r) NS, Bla,ry) N (a-W)) > .
Up to extracting a subsequence, there are two non-exclusive possibilities:

1. there exists w,, € W N B(e,ry,) such that d(a - w,,, S N B(a,r,)) > nrm;
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2. there exists a,, € SN B(a,r,) such that d(a,,, (a- W) N B(a,ry,)) > nrm.

In case 1., by compactness we may assume without loss of generality that &y, (wm,) —
w € W. Since w € Tang (S, a), for a sequence r,, — 0 we can find {a,, € S} such that
a, — a and

d((sl/rm<a_l : am>7 w) = r;zld(amv a- 57’m(w)) — 07 m — 0.

If a,, € B(a,ry), one should use an additional argument as in Proposition 3.1.4. We
can finally get a contradiction by

0<n<rtda-wn,SNBa,ry)) <rtdla- wn,an)
<r 'd(a-wy,a- o, (w)+da- 6, (w),an)) — 0.

In case 2., we may assume by extracting a subsequence that 6., (a™* - a,,) = w. By

definition, w € Tan{ (S, a) and we put w,, = d,,, (w) € W. The rest of the argument
repeats case 1. L]

Here is a trivial consequence of Theorem 3.3.1.

Corollary. If there is a closed homogeneous set W that satisfies Eq. (3.12) then such
a set is unique.

Theorem 3.3.2. Let S C G s closed set and U C G is an open set. The two following
conditions are equivalent:

I. For any U" € U there are a family of closed homogeneous sets {W, C G},es and a
function €(r) — 0, r — 0+, such that

disty (B(a,r) NS, B(a,r) N (a- W,)) < e(r)r, (3.13)
for allae SNU'".
1. The two paratangent cones to S coincide at every point a € SNU

pTang(S,a) = pTang (S, a). (3.14)

If those conditions are fulfilled then
W, = pTang (S, a) = pTan{ (S, a)
is a homogeneous subgroup for a € SNU and the map a — W, is continuous on SNU.

Proof. There will be two parts.
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I = Il. Letae SNU. We are going to prove first that any v € pTang (S, a) belongs to
W,. By definition, there are {am}m C S, {bm}m C S, {tm}m C Ry such that Eq. (3.9)
holds. Since U is open, we can assume that the sequences {a,, },, and {b,, }, take their
values inside SN U’ with U" € U. Using Eq. (3.13), we can find v,, € W, N B(e, 1)
such that d(by, am - vy) < €(rp)ry, with r,, = d(am,by,). By homogeneity of W,, |
01/t (Um) € W,,, and it is easy to check that d(vy,,v) < €(r) — 0 as m — oo. We
know from Lemma 3.1.13 that map p — W, is continuous on SN U’. That implies that
v = lim,, v,, € W,.

Now, let us show that any v € W, belongs to pTang (5, a). So, fix arbitrary sequences
{am}m C S, {tm}m C Ry such that lim,, a,, = a and lim,, ¢,, = 0. Pick an element
U € W, which is closest to v. By Lemma 3.1.13, lim,, d(v,,v) = 0. By Eq. (3.13),
used in reverse direction, we can define a sequence {b,,},, C S, b,, = a, in such a way
that d(by,, am - 0r,, (V) < €(Tpm)rm with r,, = t,,d(v,,e). Since d(v,e) < 00, 1y =~ by,
and

limd(él/tm(a;f b)), v) < limd(vy,,v) + limd(él/tm(a; b)), V) < lime(r,,) =0,

so that v € pTang (S, a).

Il = 1. We want to show that W, := pTang (S, a) = pTan{ (S, a) satisfies Eq. (3.13).
Observe that paratangent cones coincidence also guarantees the continuity of the map
p — W, on SN U thanks to Lemmas 3.2.9 and 3.2.11 (in the same topology as in
Lemma 3.1.13).

Let us argue by contradiction. Assume that there are a sequence {am,}, C SNU’,
U eU, a, — ac€ U, asequence {r,}, C Ry, r, — 0 and n > 0 such that one of two
cases is realized:

1. there exists w,,, € W, N B(e,ry,,) such that d(a,, - w,, S N B(a,rm)) = nrm;

2. there exists b, € SN B(am, rm) such that d(by,, (am - Wa,,) 0 B(am, Tm)) = 0.
In case 1., by compactness we may assume without loss of generality that

W, NOB(e,1) 3 b1 r, (W) — w € W, N OB(e, 1).

am

Since w € pTang (S, a), we can find {b,, € S} such that b,, = a and

A1/ (a7} - bn)y w) = 172d (b Oy - O, (W) — 0, M — 00.

If b,, & B(am,Tm), one should modify it as in Proposition 3.1.4. We can get a contra-
diction by
0<n<rtd(am - W, SO B(am, ™)) < 7t (A - Wi, by
<7 N d(am - Wi, @ - Oy, (W) + d(ap, - 6y, (W), b)) — 0.
In case 2., we may assume by extracting a subsequence that 8y, (a;,' - byn) = w € Wi,
By definition, w € pTang(S,a) and we put w, = 4, (w) € W,. The rest of the
argument repeats case 1.

At the end we note that W, has to be a subgroup. This follows from Propositions 3.2.5
and 3.2.0. L]
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Now we have all necessary element to prove of Theorem 3.1.12.

Proof of Theorem 5.1.12. Lemma 3.1.13 provides the continuity of the map S > a —
W,. It turns out that each W,, a € S, is a subgroup. This is a consequence of to
Theorem 3.3.2. Indeed, for any a € S there is a small neighbourhood U, such that
U,NS & S where we still have flatness condition Eq. (3.6). Note that the topology
used in Lemma 3.1.13 when restricted to the set of closed homogeneous subgroups is
equivalent to the natural topology on the corresponding Grassmannian. Because S is
connected and for some point W,,, p € S, is a vertical subgroup of codimension NV, the
continuity of the map a — W, forces W, to be a vertical (so, in particular, normal)
subgroup for all a € S.

Thus, we deal with a continuous family {W, | a € S} of vertical subgroups of codi-
mension N for which, therefore, we can find a continuous map k : S — Hom(G, RY)
such that Ker k(a) = W, for every a € S.

Fix an arbitrary compact subset S’ € S. Let us prove that F: S’ — RY, FF =0, and
k satisfy the condition of Whitney’s extension Theorem 2.3.6. By contradiction, we can
assume the existence of n > 0 and sequences a,, and b, belonging to S” such that

® a,,b, — ac S when m — oo,

o |F(bm) — Flam) — k(am)(az! - bm)| = |k(am)(az! - bm)| = nd(am, bn).
By the Reifenberg flatness of S’, we can find by € QA - W,,, such that d(l;m,bm) <
e(d(am, bm))d(am, bym). Since Ker k(a,,) = W,,,, we get a contradiction by

nd(am, bm) < \k(am)@;}'bmﬂ [k (am )@y, b by )|
= [k(am) (b - b)) < [[F(am)le(d(@m, bm))d(a@m, bm),

because €(r) — 0, » — 0+. Observe that the last argument uses only one-sided prox-
imity in Reifenberg flatness: proximity of S’ to its tangents and not the inverse one.

We see now that for any S’ € S by extension we can associate Fg € CL(G,RY)
such that S’ € F~!(0) and D,Fs = k on S’. We must recall that Whitney’s extension
Theorem has the following locality property. There is a geometric constant oo > K > 0
such that if d(z,S”) = r then the value of the extension Fg (z) depends only on the
initial data on F'N B(x, Kr). This can be seen in [VP06| by looking at the form of the
so-called “extension” operator (Eq. 3.12, p. 610) and the properties of Whitney’s type
decomposition (Lemma 3, p. 608).

So, let {S,, € S}m>0 be an increasing sequence of compact sets such that U,,S,, = S.
We can arrange this sequence in such a way that S,, and S, 12\ S;i1 are n,,-separated
with 7, > 0. Let F,, € C}(G,R™) be a map associated with S, as above, i.e. S,, C
F~Y0) and DyF,, = k on S,,. We define an open neighbourhood U,, of S,, as follows

Upn :={a€G|d(a,S,) < BK) '}, m>0.

By the locality properties of Whitney’s extension and the triangle inequality, F,, =
Foy1 on Uy, for all n > m 4+ 1. So, it is obvious that the sequence F,, converges to
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F € CHU,RN) locally in C}HU,RY) where U = U,,U,. It is also clear that U is a
neighbourhood of S and that S C F~!(0) with D,F(a) = k(a) for a € S.
We use Theorems 3.1.1 and 3.3.2 to say that

pTang (F~'(0),a) = pTang (F'(0),a) = Ker D,F(a) = Ker k(a) = W,

for any a € F~1(0) C U. Therefore, by Lemma 3.2.12 for any a € S there is a
neighbourhood U, C U of a such that SN U, = F~1(0) N U,. To conclude it is enough
to take U = U,esU,. O

3.3.1. Characterisation of intrinsic sub-manifolds

Now we are going to derive some consequences of this local equivalence between uni-
form Reifenberg flatness and four cones coincidence. First we give a analogue of Theo-
rem 3.1.1 in terms of paratangent cones.

Theorem 3.3.3. Let G, G? be Carnot groups and let Q be open in G'. Assume that
Dy F(p) is surjective at a point p € Q2 for some map F € C}(Q,G?). Then there is a
neighbourhood U of p in which the level set S := F~Y(F(p)) satisfies

pTanf(S,a) = pTang(S,a) = Ker D, F(a), VYae€UNS.
In particular, if Ker Dy F(a) is not trivial, then has no isolated point.

Combining Theorems 3.1.1, 3.1.12 and 3.3.2 we can derive a new characterization of
co-abelian intrinsic sub-manifolds in terms of their tangents.

Definition 3.3.4. A set S C G is called an co-abelian intrinsic sub-manifold of codi-
mension N if in a neighbourhood of every a € S, S coincides with a level set of a
horizontally differentiable map F € C}(G,RY) with Dj,F(a) surjective.

Theorem 3.3.5 (Four cones theorem). Let S C G be a closed connected set. The
following conditions are equivalent:

1. S is a co-abelian intrinsic sub-manifold of codimension N;

2. All four tangent cones coincide at every point a € S':
pTang (S, a) = pTang (S, a),

and there is some point p € S such that pTang(S,p) is a vertical subgroup of
codimension N.

3. There is a family {W, | a € S} of closed homogeneous sets such that W, is a
vertical subgroup of codimension N for some p € S and for every S" € S there is
an increasing function €: (0,00) — (0,00), €(t) — 04+ when t — 0+, such that

disty (B(a,r) NS, B(a,r) N (a-W,)) < e(r)r, r>0, Vaecd.
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3.4. Some applications

3.4.1. Connectedness of level sets.

In a general situation, we are not able to describe the local topology of level sets.
Meanwhile, we would like to conjecture the following

Conjecture 3.4.1. Let F' € C}(Q,G?) be a map defined on open set Q C G*. Take a
point p € Q such that Dy F(p) is surjective. Then there is a neighbourhood U C Q of p
such that F~Y(F(p)) N U is homeomorphic to Ker D, F(p).

The similar result was proved for Reifenberg flat sets in R™ ([Rei60]) using the Reifen-
berg parametrisation algorithm. This method fails to be directly applied in Carnot
groups. One of the obvious reasons is that in general projections on vertical subgroup
are not Lipschitz. Maybe, there are some other, more deep, reasons. Even if we strongly
believe in Conjecture 3.4.1, that is not clear what kind of metric properties we should
expect from a such homeomorphism. In particular, we don’t think that for Reifen-
berg vanishing flat sets in Carnot groups it is always possible to obtain an almost
bi-Lipschitz regularity in the contrast to Euclidean framework (see [DT99]). (For in-
stance, one should try to check out the example of [Vit08, Th. 4.35| for a non-existence
of -Hoélder homeomorphism with 5 < 1.)

Below we present only simple topological remarks.

Notation 3.4.2. In this section, for simplicity of calculations we are going to use a
homogeneous norm of the form

plexp(Y_ V7)) = max k;|[Yi[|'"', Y; € gi, (3.15)

with some positive parameters {k; > 0}. It can be shown [FFSS03a, Th. 5.1| that one
can choose a set of these parameters in such a way that the left-invariant distance d
built with p is a metric.

Proposition 3.4.3. If ¢ = exp(v) € G and ¢ = exp(v/2) (euclidean middle point
between ¢ and e) then,

d(c,d) =d(e, ) < 27@d(c, e). (3.16)

Proof. Vectors v and v/2 commute, so by Baker-Campbell-Hausdorff formula,

1
log(d™t-c)=(1- §)U = log(e- ™).

Hence, Eq. (3.16) holds for any homogeneous norm of the form Eq. (3.15). O

Lemma 3.4.4. Let F € C}(Q;G?), Q C G open, be such that DyF(ag) is surjective
for some ag € ). Then there is a neighbourhood U of ag and rq > 0 such that any
two points a,b € SNU with dy(a,b) < ry can be joined by a Holder continuous curve I'
lying on S == F~Y(F(ag)) whose diameter is uniformly controlled by d,(a,b)” with some
B > 0. In particular, S is uniformly locally connected inside U.
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Proof. By Theorem 3.1.1, there is a neighbourhood U of ag where S := F~(F(ap)) is
Reifenberg vanishing flat w.r. t. the family of normal subgroups {W, := Ker Dy (p) | p €
S}. Let us take two points a,b € SN U with dy(a,b) = r such that the modulus €(r)
in Theorem 3.1.1 is small. We are going to construct by dyadic iterations a continuous
curve I': [0,1] — S linking I'(0) = @ and I'(1) = b.

Let us explain one step of this dyadic construction. Take for bea-W, a closest
point to b which, therefore, satisfies d; (b, 5) < €(r)r. By applying Proposition 3.4.3 to
c=a"'-beW, we obtain a midpoint ¢’ that still belongs to the subgroup W,. and, if
we put ¥ = a - ¢ then

dy(a, ') = dy(,b) < 27 dy(a,b),

where a = max{deg X | X € W,} does not depend on a. We define I'(1/2) = b’ as a
point of S closest to ¢/, which by flatness hypothesis satisfies d(¥',b") < e(r)r. By the
triangle inequality,

d(I'(0),I'(1))
d(I'(0),I'(1/2)),d(I'(1/2),I'(1)) } L —F———-—4.
max{d(I'(0),T'(1/2)),d(I'(1/2), (1))} < 27— 2e(r)
So, from the beginning we should take 7 > 0 in such a way that 2% — 2¢(r) > K > 1
with some fixed K. By the same procedure, we define I'(1/4) starting from I'(0) and
I'(1/2), then I'(3/4) starting from I'(1/2) and I'(1), and so on for all dyadic points of
[0,1]. Note that in this construction, for m > 1 and [ =0,...,2™ — 1,

d(T(1/2™), T((1 + 1)/2™)) < d(T(0), (1)) K™ (3.17)

Since K > 1, a classical argument from [LV07, Lemma 2.| applied to Eq. (3.17), guar-
antees that the map I is Holder continuous with exponent 5 = log K /log2 on dyadics.
Therefore, I" admits a continuous extension on [0, 1] with values in S since S is closed.
In fact, because of € — 0, the curve I': [0,1] — S will be Hélder continuous with any
exponent 3 strictly less than a. O]

The following result generalizes Theorem 5.3.7.

Theorem 3.4.5 (One-dimensional level sets). Let F' € C}(Q,G?), Q is open in G', and
Dy F(ag) is surjective and Ker D, F(ag) is one-dimensional (viewed as a linear space).

Then there is a neighbourhood U of ag in which the level set T := F~1(F(ag))NU is a

stmple curve and (F,dfegKerDhF(aO)) is a flat curve (as in Equation (5.15)).

Remark 3.4.6. Note that assuming that Z is a normal homogeneous subgroup of linear
dimension one implies that Z is a subset of the centre of G. Indeed, if a = exp(X) € Z
and b = exp(Y) € G, then by the classical formula for the adjoint representation of the
Lie algebra, the element

boa-b :exp(X—l—[Y,X]—f—%[Y, v, X)) +...)

must belong to Z due to its normality. But all commutator terms have homogeneous
degree strictly bigger than X unless they are zero. So, b-a-b~' € Z if and only if
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Y, X] = 0 for all Y € g, which implies Z € centre(G). Thus, Theorem 3.4.5 can be
applied, for instance, in the situation where G' = G is a Carnot group and G*> = G/Z
is the quotient of G by a one-dimensional homogeneous subgroup Z from the centre of

G.

Proof of Theorem 3./.5. Thanks to Lemma 3.4.4, we can find an open ball B(ag, R),
R > 0, such that any point of S := F~'(F(ag)) N B(ag, R) can be joined by a curve
lying on F~'(F(ag)). Let us consider T := exp(t) a homogeneous subspace that is
complementary to Ker Dy, F'(ag) as in the proof of Theorem 3.1.1. Note that due to the
flatness of S, we can take a small radius R > 0 in such a way that

(a-T)NnS = {a} for any a € S. (3.18)

Since Z, := Ker D, F'(a) has (linear) dimension one, 7' is of co-dimension one, so that
G' \ T has exactly two connected components that we will denote by T+ and T~ (we
put also TF = a-T*). Thus, for any a € S we can decompose S as the following disjoint
union

S=(SnTH| |{a} | |(SNT,). (3.19)

Now let us take two point a,b € S. Let I': [0, 1] — S be an injective curve linking them.
We are going to show that there is a neighbourhood of I'((0,1)) in which I'((0,1)) and
S coincide. The argument is elementary: it consists of moving 7" along I' and applying
Eq. (3.18).

Indeed, take ¢ = I'(t), t € (0, 1) any interior point. By Eq. (3.19) and the continuity of
', we can assume by changing the sign that I'([0,¢)) C T.F. For s € [0, 1] we introduce
the set T'(s) =I'(s) - T'. By the choice of T', the intersection of T'(s) and (c- Z.) consists
of a unique point. This defines a continuous map s € [0,¢] = (¢- Z.) ~ R. The image of
this map covers a non-trivial closed interval in (¢ - Z.) N T, containing c¢. The interval
is non-trivial because the intersection T'(s) N 7T'(t) lies outside of some neighbourhood
of ¢ as soon as for |s — t| > § with any fixed § > 0 (otherwise, it would contradict
Eq. (3.18)). We can say the same about such a map s € [0,t] — (d - Z.) for points
d € T(t) close enough to ¢: the corresponding interval contains d and the length of
those intervals can be bounded from below. Thus, there is a neighbourhood U of ¢ such
that UNTH C {T(s) | s € [0,¢]}. This means that by Eq. (3.18) in U NT.} there is no
point of S except I'([0,¢)). This also forces I'((¢,1)) to lie in 7.7 where we can apply
the same argument. Therefore, we are able to find a neighbourhood U of ¢ such that
UNnS cTI((0,1)), and, thus, we are done.

Let us show that the curve I' endowed with quasi-metric d* is flat, « = deg Z,. Let
a,b,c € I'such that a < b < cw.r.t. alinear order on I'. We use the Reifenberg flatness
condition at the point b to find points a, ¢ € b - Z, such that

max{d(a,a),d(¢, c)} <e(r)r,

where r = max{d(a,b),d(b, ¢)}. Note that we can chose @, b in such a way that @ < b < &
w.r.t. an order on b - Z,. Indeed, since Z, belongs to the centre of G, the closest point
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map on it consists merely to take an orthogonal projection (in exponential coordinates).
Next, by taking a power in the triangle inequality, we get that

max {|d(d, b)* —d(a,b)?|,|d(¢, b)* —d(c,b)%|, |d(a,c)* —d(a, c)o‘|} < €(r)r?,
so that,
|d(a,b)* +d(c,b)* —d(a, )| < e(r)r® + |d(a,b)* +d(b,¢)* — d(a, ¢)?|.

As a < b < ¢, the last term is zero by a basic property of Euclidean distance d*L(b- Z;),
this finishes the proof. O]

3.4.2. Application to optimization problems

We present an application of the four cones theorem to optimality problems. In par-
ticular, we will consider a scalar function G : G — R and prove an intrinsic form of
Peano’s Regula for differentiable functions in the spirit of [DG07]. As a corollary, we
obtain an intrinsic version of the Lagrange Multipliers theorem.

Theorem 3.4.7 (Peano’s Regula). Let G: G — R be such that G is horizontally
differentiable at ay € S, where S C G. If G(ap) = max{G(a) | a € S} (resp. G(ay) =
min{G(a) | a € S}), then

D,G(ag)(v) <0, (resp. DpG(ag)(v) >0,) Vv e Tang(S, ap). (3.20)

Proof. Let v € Tang(S,ap). By definition, there exist two sequences {a,,},, C S and
{tm}m C R, such that (3.7) holds. As G is differentiable, by Proposition 3.2.7 we have

G(am) = Gao)

lim = D, G(ap)(v).
Since G(ag) = maxg G it follows that G(a,,) — G(ap) < 0 and thus we obtain Eq. (3.20).

O

Theorem 3.4.8 (Lagrange multipliers). Let F' € CL(G',G?) be such that DyF is
surjective at point ag € S := F~(ey). Assume also that ag € S is such that G(ag) =
max{G(a) | a € S} (resp. G(ap) = min{G(a) | a € S}) for a scalar function G: G* —
R. If G is horizontally differentiable at ag then

Ker Dy F(ap) C Ker DyG(ay)

Proof. Theorem 3.3.5 implies that Tang (S, ap) = Ker Dy F(ag). Therefore, by Theo-
rem 3.4.7 it follows that

DypG(ag){v) <0 Vv € Ker Dy, F(ap).
Since Ker Dy, F'(ay) is bilateral, this implies that

Dy G(ap){v) =0 Vv € Ker Dy F(ag).
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3.5. Dimension estimate

The main result of this section says that the Hausdorff dimension of level sets coin-
cide with the Hausdorff dimension of their tangents. However, it is not true that the
corresponding Hausdorff measure is finite or positive.

Theorem 3.5.1. Let F' € CL(Q;G?), Q C G' open, be such that Dy F(a) is surjective
for some a € Q). Then there is a neighbourhood U of a in which the Hausdorff dimension
of level set dim F~1(F(a)) NU is equal to dim G' — dim G2.

This theorem is a consequence (by Remarks 3.5.7 and 3.5.8) of the general Theo-
rem 3.5.6 and Reifenberg vanishing-flatness of the level sets, i.e. Theorem 3.1.1.
Let us first give some new definitions.

Definition 3.5.2. We say that metric space S belongs to A*(K_, K, Ry) with positive
parameters a > 0, K_ > 0, K, > 0, Ry > 0 if the following property holds:

1. every ball of radius R € (0, Ry| contains at most K, (R/r)" disjoint balls of radius
r > 0;

2. every ball of radius R € (0, Ro] cannot be covered by less than K_(R/r)” balls of
radius r > 0.

Remark. Observe that if properties 1. and 2. hold for some Ry > 0 then they hold for
any Ry > 0 with some modified K_ and K.

Remark 3.5.3. If the Hausdorff measure H* is a-Ahlfors regular on some metric space S
then (by merely (sub)additivity of measures) S € A® with some constants Ry, K, K_
that can be expressed in terms of the Ahlfors regularity constants.

Let us explain now, following the approach from [Gro81], the notion Gromov-Hausdorff
distance between metric spaces. For a metric space (5, d) and point a € S, pointed met-
ric space means simply a triple (S, d, a). For metric spaces (M, d;) and (Ms, dy) a metric
p on the disjoint union M; LI Ms is called admissible if p coincides with d; on M; and
with dQ on MQ.

Definition 3.5.4. The Gromov-Hausdorff distance dgy between any two pointed metric
spaces (M, dy,ay) and (Ms, ds, as) is defined as the infimum of all € > 0 such that there
exists an admissible metric p on M; LI M, for which

e play,az) < ¢
o p(My,a) <eforall a € B(ay,e )N My;
e p(My,a) < eforall a € B(ag,e ') N M.

Definition 3.5.5. A pointed metric space M belongs to the Gromov-Hausdorff tangent
Tangy (S, p) to S at point p if there is a sequence r; — 0+ such that the rescaled pointed
metric spaces (S, d/r;,p) converges as j — oo to M in distance dgp.
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Theorem 3.5.6. Let (S,d) be a complete metric space containing a dense countable
subset. Assume that there are an increasing function e: Ry — Ry, e(t) \ 0 as t \ 0+,
a real number a > 0 and strictly positive constants K_, Ky and Ry such that for every
p e Sand 0 <r < Ry one can find a pointed metric space Z,, € A*(K_, K., Ry)
satisfying

den ((S,d/r,p), Zy,) < €(r). (3.21)

Then the Hausdorff dimension of S equal dim S = «.

Before we start the proof, let us add some remarks.

Remark 3.5.7. It is easy to check that Reifenberg vanishing flatness of level sets implies
their uniform Gromov-Hausdorff convergence to the tangents. Of course, we should
take Z,, := (Ker D, F(p),dy, e;) independently of scale r. So, Tangy (S, p) will consist
of a unique element Z,, (see Definition 3.5.5).

Indeed, since Z,, is homogeneous, the dilated ambient metric d; /7 from G' will be
admissible for (S,d;/r,p) and Z,,, and, if

dist(B(p,r) N S, B(p,r) N (p- Ker Dy F(p))) < e(r)r, >0,
then, immediately from the definition of dgpy, we get that

dGH((Sa dl/r’ p)? Zpﬂ’) < €(7~),

where € satisfies

é(r) =e(r/é(r)). (3.22)
Using an elementary analysis one can see that for increasing and bounded ¢, Eq. (3.22)
has an increasing and bounded solution €, and if €(0) = 0 then €(0) = 0. In particular,
if €(r) ~ r? then é(r) ~ r? with 8 = 3/(1+ ).
Remark 3.5.8. All tangent spaces Z,,,, = (Ker D, F(p),d;, e;) belong to A* with uniform
constants for p such that D, F(p) is surjective. In fact, since Z,, is a homogeneous
subgroup in G, the Hausdorff measure H*(B(a, R)) of any ball is equal to C, R*. This
implies that we can take K_ = K, =1 and Ry = o0.

Proof of Theorem 5.5.6. To estimate the Hausdorff measure we are going to use a multi-
scale analysis technique. It is known (see, for instance, [HT13, Th. 2.4|) that for any
d € (0,1/2) there exists a filtration of maximal nets {A; C S}rez such that
Ak} g Ak+17
d(a,b) > 6* for a,b € A, with a # b,
d(S, Ak) < o
Let us fix 0 € (0,1/2) and a such filtration {A}.
Let us fix an arbitrary » > 0 and p € S. By the definition of dgy and the triangle

inequality, there is a map ¢ : B(p,r/e(r)) C S — Z,, (not necessarily continuous) such
that for every pair of points a,b € B(p,r/e(r))

lr~td(a,b) — dy(t(a),t(b))| < 2¢e(r), (3.23)
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where d, denotes the metric on Z,,. Observe that we can assume p being mapped by
t to the marked point of Z,, denoted by p. Symmetrically, for every r > 0 there is a
map ¢t : B(p, 1/e(r)) C Z,, — S such that for every pair of points a,b € B(p, 1/€(r))

|r~td(t(a), (b)) — d,(a,b)| < 2€(r). (3.24)

Obviously, we can also assume that ¢(t(a)) = a if t(a) € B(p, 1/e(r)).
Now, let us estimate the number of points of A;, inside a ball.

Proposition 3.5.9. Put A,(p, R) := B(p, R) N A;. Then

R o R+ “
K_ (m — 1) < #A;(p,R) < K4 (m) ; (3.25)

provided that 8 > 2¢(R)R and ¢(R) < 1.
Proof. Put r/e(r) = R, note that R > r. We deduce from Eq. (3.23) that
dy(t(a), t(b)) > 07 /r = 2¢(r), a,b € A;(p, R).

This means that the balls {B(t(a), 8’ /r — 2¢(r)) | a € A;(p, R)} are pair-wise disjoint.
All these balls are contained in the ball B(¢(p), R') where

&7 R Y R+
= I < = - — = )
R ae%%;fR) dy(t(p),t(a)) + . 2¢(r) < . + 2¢(r) + . 2¢(r) .

That is where the upper bound comes from.

In order to find the lower bound, let us show that the balls {B(t(a), /r + 2¢(r)) |
a € Aj(p,R)} cover B(p, R) where R = (R — §7)/r — 2¢(r). Note that R is chosen
in such a way that ¢{(B(p, R)) C B(p, R — §’) (see Eq. (3.24)). Observe also that the
balls {B(a,d?) | a € Aj(p,R)} cover B(p, R — ¢§’) because it cannot be reached from
S\ A;(p, R). So, if for some b € B(p, R)

dp(ba t<a)) > 5j/r + 26(7”),
then by Eq. (3.24), d(#(b),a) > ¢’ that is not possible for all a € A;(p, R). O

Let us take the starting scale jy such that €(67°) is small enough, say, €(6%072) < 610,
We can define an increasing sequence {j;};>o in such a way that 2§%Ji+ie(§%71) €
(1/4,1/2]. Observe that since € is increasing and tends to 0 at 0, the “scale jump”
A;j = Ji11 — Ji > 1 is increasing and tends to oo with ¢ — oo.

Let 5 > k > i and p € S. We know that B(p,d%) is covered by {B(a,d"*) | a €
Ak<p7 o + 5k>}7 S0,

HA (0 < Y H#HA(a, ) < H#Ap, 8 +6Y)  max  #A(a,6").

. a€ Ay (p, 5t 45k
a€ A (p, 5i-+6%) k(P )
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We recursively apply this argument following the scales j; and we use the estimates
Eq. (3.25) (that do not depend on the centre of ball) to count relative number of points
between two scales. We get that

—_

#AjN (pa 5j0) S

21:2

—_

1 62T 42
1 — 2¢(67i— )R-l

§Ji + 261
K+ (&m — 2¢(84i=1)§di~ )

A
L=
=

=z

IA

K+C(S_0¢Az] — §—aln— ]0) K+C,
i=0

s
Il
o

where C' € [1,00) is an absolute constant because of the choice of the sequence j; (note
that ¢% + §%i+1 < ¢4~ and additive constant 2 is negligible w.r.t. =2). For j > jo,
let N(j) be an index such that j € (jn, jn+1]- We use again Eq. (3.25) to count balls
of scale j inside a ball of scale jy, i.e.

) §IN 1§57 « §IN=I 41 «
#-Aj(&?(SJN)SKJr( ; : 5jN> §K+( ; i ) ) aeAjN?

§7 — 2¢(0in) 1 — 2¢(8in)§in=3

Since j < jnyi1, the denominator is larger than

w

26<5jN)(5jN*j >1— 26(5JN)5]'N*J'N+1 > =

H~

so by passing from scale jy to j we loose only a constant:

N-1

#Aj(a,67°) < CK.50~) T K.C.

If o/ > «, then, since A;j is increasing and tends to oo,

N@)-1
5@’(j—jo)#AjN (p,8°) < CK, H K, C§@=%3 50 j — o0, (3.26)

1=0

because for large ¢ the factors in the last product are less than and bounded away from
1. Thus, if o/ > «, the Hausdorff measure H®' of any small ball B(p, §7°) equals 0.

To show that H®' (B(p, 7)) = co when o/ < a, we will define a probability measure
p on B(p, ) such that u(B(a,r))r™ — 0 when r — +oco for all a. Note that this
argument requires the completeness of S. We know that balls {B(a,§*/2) | a € Ax} are
pair-wise disjoint, and so,

k (Sk

; o ;0
#A R0 > Y #A ) 2 #AP S - ) min #A(a, ).

2 sk
. a€Ag(p,6'—2%5)
a€Ak(p, 6*— %k )
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The measure ;1 will be constructed as a mass distribution. First, total mass 1 of B(p, §%°)
is uniformly shared among balls {B(a, ' /2) | a € A;,(p,0°)}, then the mass of each
B(a,’t/2) is uniformly shared among balls {B(b, 672 /2) | b € Aj,(a,d’*/2)}, and so on.
By an argument similar to the above upper bound, we can get a lower bound for the
number of balls of radius §’~¥ /2 supporting y, so that,

N-1

p(Bla, o /2))7 > g—ev=) [T K_C™', C > 1.

i=0
(Using balls of radius 6% /2 instead of §’* influences only the constant C.) For j €
(JnG)s ING)+1), we apply the lower bound of Eq. (3.25), and as before, we loose a constant

in our estimates
N(j)
u(B(a,67/2))™ > 67U TT K_C™.
i=0
Now, it is easy to see that p has the required behaviour.
To conclude (i. e. to pass from small balls to the whole set) we also need the technical
hypothesis that S has a countable dense subset. ]

3.5.1. Other concepts of metric dimension

At the end of the section we are going to discuss some other concepts of dimension.
Let (M,d) be a metric space, and let £ be a non-empty subset of M. For r > 0, let
N, (F) denote the least number of metric open balls of radius less than or equal to r
with which it is possible to cover the set E.

Definition 3.5.10 ([Ass79]). The Assouad dimension of E is defined to be the infimum
of a > 0 for which there exist positive constants C' and p such that, whenever 0 < r <
R < p, the following bound holds:

sup N, (B(z,R)NE) <C (E) .
el r

Definition. The lower and upper boz-counting dimension (or Minkowski-Bouligand
dimension) of E are defined respectively as the lower and upper limits when r — 0+ of

_ log(N,(E))
log(r)
If those two dimensions coincide, we can speak merely about box-counting dimension.
The basic relation between these dimensions can be stated as follows.

Proposition ([Luu98, Th. A.5|). For any metric space S,

dimHausdorff S S dimAssouad S .
and if S is bounded,

dimHausdorff S S di—mbox—countings S dimbox—countings S dimAssouad S.
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Remark 3.5.11. As the Hausdorff dimension, the Assouad dimension of a closed homo-
geneous subgroup W < G is equal to its homogeneous dimension o = dim W. More
generally, if M € A“ then it follows from the definition that

o = dimAssouad M.

Moreover, dimpyausaortt M = « if M is complete and contains a dense countable subset.
The lower bound follows immediately from Theorem 3.5.6 with € = 0. Indeed, we can
consider as Z,, the rescaled pointed space itself that belongs to A® with the same
constants for any » < 1. Note also that the Hausdorff measure of any small ball (of
radius less than Ry) in M is finite.

Proposition 3.5.12. Under the hypothesis of Theorem 5.5.0, the Assouad dimension
of S is equal to o, and if S is bounded, the box-counting dimension of S is equal to o.

Proof. Using Eq. (3.20) it is easy to derive that the Assouad dimension is less than o’
for any o > a. The rest follows from basic relations between the dimensions. ]

In particular, the Assouad dimension and Hausdorff dimension of level sets coincide
and are equal to the homogeneous dimension of their tangents, i.e. dim G' — dim G2.

In a recent preprint [DR13], the authors consider similar assumptions on metric spaces
with respect to their tangents. Concerning the Assouad dimension they show the fol-
lowing result.

Theorem (|[DR13, Th. 1.4|). Let M be a metric space which admits at every point
a single tangent space. Let M' C M be a relatively compact set. Assume that the
convergence towards the tangents is uniform on M'. Then

. . / .
sup dlmAssouad TmM S dlmAssouad M S sup dlmAssouad Tm M.
a€int M’ accl M’

Compared to this result, Theorem 3.5.6 requires stronger assumptions on tangent
spaces (in particular, a uniform lower bound in Definition 3.5.2) and gives a stronger
conclusion by providing a lower bound for the Hausdoftf dimension.

In the same context, we should also consider the Nagata dimension. We continue
following the presentation given in [DR13].

Definition (Nagata dimension). Let (M, d) be a metric space. The Nagata dimension,
or Assouad-Nagata dimension, of M is denoted by dimy M and is defined as the infimum
of all integers n with the following property: there exists a constant ¢ > 0 such that,
for all s > 0, M admits a cs-bounded cover with s-multiplicity at most n + 1.

We explain the terminology. Two subsets A, B C M are s-separated, for some constant
s >0, if inf{d(a,b) | a € A,b € B} > s. A family of subsets is called s-separated if each
distinct pair of elements in it is s-separated. Let B be a cover of a metric space M.
Then, for s > 0, the s-multiplicity of B is the infimum of all n such that every subset
of M with diameter at most s meets at most n members of the family 5. Furthermore,
B is called D-bounded, for some constant D > 0, if diam B < D for all B € B.

The Nagata dimension is invariant under quasi-symmetric homeomorphism.
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Theorem ([LS05, Th. 1.2.]). If f: (X, px) — (Y, py) is a quasi-symmetric homeomor-
phism of metric spaces, then dimy X = dimy Y.

The Nagata dimension is always greater or equal to the topological dimension. The
basic relation between the Nagata and the Assouad dimensions is the following.

Theorem (|[DR13, Th. 1.1]). For all metric spaces M, the Nagata dimension of M is
less than or equal to the Assouad dimension of M.

Regarding the tangents, the following results holds.

Theorem ([DR13, Th. 1.2]). Let M be a metric space which admits at every point
a single tangent space. Let M' C M be a relatively compact set with dimy M’ < oo.
Assume that the convergence toward the tangents is uniform on the closure of M'. Then
we have
sup dimy T, M < dimy M’ < sup dimy T, M.
xE€int M’ rEcl M’

Lang and Le Donne (see [DR13, Th. 4.2|) proved that the Nagata dimension of a
Carnot group (G, d) equals its topological dimension. Exactly the same argument can
be applied to show that any closed homogeneous subgroup W C G endowed with a
metric d induced from G has Nagata dimension equal to its topological dimension.
This leads to the following result about level sets.

Corollary 3.5.13. With the notation and assumptions of Theorem 5.5.1, the Nagata
dimension of level sets is equal to the topological dimension of its tangents, that is

dimy F~'(F(a)) NU = dimy G' — dimy G>.

It is also worth mentioning some general relation between the Nagata dimension of
level sets of Lipschitz maps and the Nagata dimensions of target and source spaces.

Theorem ([DHO08, Th. 3.4]). Suppose f: (X,px) — (Y, py) satisfies px(z, f1(y)) <
py (f(x),y) forallz € X andy €Y. If f is Lipschitz and

dimpy(f 7' (y)) <k
uniformly ° with respect to y € f(X), then dimy(X) < k + dimy(Y).

As an application of the last result, it can be shown (see [DHO8, Pr. 5.1]) that the
Nagata dimension of the discrete Heisenberg group H'(Z) equals 3.

2The concept of dimy(A,) < n uniformly with respect to s € S means that the constant c in the
definition of Nagata dimension can be chosen the same for all A, s € S.
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4. On graphs in Carnot groups

This chapter is devoted to the study of splittings of Carnot groups into semidirect
products and of the natural objects appearing in this context. As a main result, we
present a new universal characterization, Theorem 4.2.16, of Lipschitz graphs in terms
of the trajectory-wise metric behaviour of a graph-map. We use Theorem 4.2.16 to
derive a new characterization, Theorem 4.3.1, of co-abelian surfaces that can be rep-
resented as a graph. We also underline the difference between those characterizations
and corresponding characterizations in two-step Carnot groups.

4.1. Splitting of Carnot groups

Definition 4.1.1. Let K < G be a normal homogeneous subgroup. A homogeneous
subgroup H < G is said to be complementary to K if G is a semidirect product of K
and H, i.e. KNH = e and any element a € G can be written as a =n - h with n € K
and h € H.

Notation 4.1.2. Let G be split into a semidirect product G = K x H of two homo-
geneous subgroups, where K is normal. We introduce the projections on the splitting

factors:
v: G—=K, mg:G—H,

so that G 3 a = mk(a) - mg(a). We denote by £ = log(K) (it is a homogeneous ideal)
and by h = log(H) (it is homogeneous sub-algebra of g). It is clear that g = ¢® h and
we denote the projections on the respective subspaces by

meig— ¢ mprg— b

Of course, any tangent space can be decomposed accordingly, i.e. T,G = T,K & T,H,
a € G, where T,K = dL,(e)(¢) and T,H = dL,(e)(h) are left-invariant distributions.

Let us recall basic facts about semidirect products. First we list abstract algebraic
properties:

e for every a € G, a representation a = n - h with n € K, h € H is unique;

e every element a € G admits also a unique representation as a product a = h - n
with n € K, h € H;

e 7y is a group homomorphism that is identity on H and its kernel is K;

e the subgroup H is a naturally isomorphic to the quotient G/K.
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In fact, each of these properties can be taken as an equivalent definition of semidirect
product.

Proposition 4.1.3. Let H be complementary to K in a Carnot group G. Then the
properties below hold.

1. Both maps my and g are idempotent and homogeneous and

me = dmg(e), m = dmu(e).

2. Projection my s a group homomorphism and projection mx satisfies

mr(a - b) = mx(a) - Conj,, ) (Tr(b)),

1

where Conjg(h) :=g-h-g " is a group conjugation. In particular,

mu(a™t) = mu(a)™?,

me(a™t) = COHJWH(a)fl(WK(a)_l)-

3. expom, = T O exp.
4. The homogeneous subgroup H s itself a Carnot group.

Proof. The first property is rather obvious, let us check the others. Take a,b € G.
Then, by definition,

WK(G) : 7TH<CL) : 7TK<b) . WH(b) =a-b= 7TK<CZ . b) : WH(CL : b)

Therefore, by uniqueness, the following must hold:
WK(G : b) = ’/TK(CL) . ’/TH((Z) . ’/T]K(b) . WH(G)_l,
mu(a - b) = mu(a) - ma(b).

~1 still belongs

Note that because K is normal, Conj, ., (mx(b)) = mu(a) - 7k (b) - Ta(a)
to K. This proves 2.

Since 7y is a group homomorphisms, 3. is merely a basic property of the exponential
map. (Note that we also deduce this directly using the fact that € is an ideal ([¢, g] C ©)
in Baker-Campbell-Hausdorff formula.)

Since my, is a homogeneous homomorphism of Lie algebras and g, (Lie bracket) gen-

erates g, then h; = my(g1) generates h = my(g), i.e. H is a Carnot group. O

Notation 4.1.4. We introduce the map o,: K — K, a € G, defined by
g = Lyy(a)© ConjﬂH(a) .

Remark 4.1.5. The map o, is a composition of right and left translations, therefore for
any a € G it preserves a volume (Haar) measure on K.

56



Proposition 4.1.3 says in particular that the following diagrams commute:

Lrg(a)

H —> - H H L [ (4.1)
T 6T f T ) f

~
~
~
~

Remark 4.1.6. Because the inverse of L, is L,-1, the map o, is invertible with inverse
given by o,-1:

04-1(0) = Ly(a—1y © Conj,,-1)(b) = a ' b-mu(a).

4.1.1. Some examples.

Example 4.1.7 ([Magl3, Corollary 11.24]). The direct product of two Heisenberg
groups has a unique non-trivial factorization.

Example 4.1.8 ([FSS07, Lemma 3.26]). A vertical subgroup K in Heisenberg group
H" admits a complementary (horizontal) subgroup if and only if dim¢ N g; < n.

Example 4.1.9. Any vertical subgroup of codimension one has a one-dimensional
complementary subgroup.

Observe, that except from one codimensional case, the property “to have a comple-
mentary subgroup” is not codimension invariant.

Example 4.1.10. Consider the stratified two-step Lie algebra of dimension 5
g = span{X, Y1, Y2} ® span{Z;, Zu}.

with non-trival commutators given by [X,Y)] = Z; and [X, Y] = Z5. Inside g there are
two types of vertical sub-algebras £ C g of codimension 2:

o if £ Nspan{Yy, Ys} # {0}, then £ does not admit a complementary (horizontal)
sub-algebra (span{Y;, Y2} is the only horizontal sub-algebra);

e otherwise, it does (the complementary sub-algebra is just span{Y;, Y>2}).
Thus, in the Carnot group exp(g), the set of vertical subgroups of codimension 2 admit-

ting a complementary subgroup is open and dense in the natural topology, but different
from the whole set of vertical subgroups of codimension 2.

57



4.1.2. Compatible Coordinates.

Sometimes we will need to work in coordinates. For this purpose, we fix (as in Sec-
tion 2.1.1) a basis of homogeneous left-invariant vector fields, denoted by {V;}¥, C ¢
and {X;}M, C b, (N + M = dimg), such that

TK = span{Y;}, TH = span{X;}.

We also assume that degY; and deg X; are increasing functions of :. Thus, we obtain
an exponential coordinate system on G compatible with the splitting G =K x H :

N M
G9a:eXP(ZyzY;+Z%X])7 a= (Y7X) = (yla“')yNaxla"')xM)‘
=1 j=1

In particular, e = (0,0) and ! = (—y, —x). By abuse of notation, we will often write

x instead of (0,x) and y instead of (y,0) to denote the elements in G lying in H and
K respectively. (Note that in general y - x # (y,x).) For example, the group operation
given by Baker—Campbell-Hausdorff formula will be polynomial in these coordinates
and can be represented in the following form:

(Y7X> ’ (y/axl> = (Qy(y7 ylaxa X/)7 Qx(X7 X,))'

1
RO

Here, the polynomial @, = ( ., QM) does not depend on (y,y’) due to property 3.

in Proposition 4.1.3.

4.1.3. Base projector.

Definition 4.1.11. Let a splitting G = K x H be given. For every a € G we define a
linear map
I, :=drg(a), Il,: T,G = T, K,

that we shall call base projector.

Remark 4.1.12. We see through Eq. (4.1) that the base projector has the following
left-invariance property:

Iy, 0dL, =do,o1Il,, a,beG. (4.2)
In particular, by putting b = e we obtain
II,0dL, =do,om, acG. (4.3)

So, it is clear that KerII, = T,H. Take now a left-invariant vector field Y € ¢ and point
a=y-x,y €K x¢&H. Then expanding Eq. (4.3) by the chain rule we obtain that

I, (Y (a)) = dLy(e) o dLx(x~") o dRx-1(e)(Y (€)). (4.4)
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Remark 4.1.13. Note that II, = Id |¢ if a € K. This equality holds for every a € G if
G =K x H is a direct product of K and H. Indeed, in this case,

de(Xil) o de—l(e)le = d(Lx ] Rx—l)‘g =1Id ’g

because

1

LXORX71<y):X'y'X_ :yXX_lzy

Remark 4.1.14. Using the commutativity of mx with J,, we deduce the following invari-
ance of the base operator II, w.r.t. dilations:

II5,(a) © dby(a) = do,(mk(a)) oIl,, >0, acG. (4.5)

Proposition 4.1.15. In compatible coordinates, the action of operator Il on Y, € ¢
reads as follows:

MOie) =0+ Y Pyx)o: (46)

deg Y; >deg Yi

where PF(y,x) is a homogeneous polynomial of degree deg PF = degY; —deg Y;, meaning
that .
PF(6:(y), 0,(x)) = """ Pl (y,x).

The coefficients of these polynomials PF depend only on the splitting G = K x H and
don’t depend on a (see Section /. for some concrete examples of their computation).

Proof. We see from Eq. (4.4) that II,(Yi(a)) is a left translation, precisely by dLy(e) o
dLy(x71), of a right invariant vector field dRy,-1(e){(dx). So, the claimed form of
I1,(Yy(a)) can be derived easily from [FS82, section C, pr. 1.26]. O

4.1.4. Graphs in semidirect splitting

Definition 4.1.16. Let G = Kx H. A set S C G is called a KH-graph if the projection
Tk is injective when restricted on S.

Notation 4.1.17. If § is a KH-graph then it can be represented as

S={2(y) =y o(y) |y € =x(S) C K},

where ¢: mx(S) — H. (Thus, mx(®(y)) = y and mu(P(y)) = ¢(y) for &(y) € S.) In
this situation, we shall say that ¢ is the graph-map for S.

The following properties of KH-graphs are straightforward consequences of the prop-
erties of semidirect product in Proposition 4.1.3 (one can find those results in [FSS07,
pr. 3.9, 3.10]).

Proposition 4.1.18. Let S be a KH-graph with graph-map ¢.

e The dilated set 6,.(S), r > 0, is also a KH-graph with graph-map ¢, := 6,0 ¢p o -1
defined on §,(mx(S)) = mx(0,(S)).
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e Foranya € G, the left translated set L,(S) is also a KH-graph with the graph-map
G = Lry(a) © ¢ 0 041 defined on mg(La(S)) = 0a(mx(S)). In particular, if we put
a=®(yy)" !, then

day) = d(yo) - ¢(YO ~o(yo) -y - cb(y())_l), da(e) = e.

The next result aims at explaining the geometric meaning of the base projector II.

Proposition 4.1.19. Let S be a KH-graph with a C'-smooth graph-map ¢: K — H.
Then for every V € T,K, a € S, the following relation takes place:

7T€<Ha<v>q)> =V

Let us recall the notations. II,(V) being a vector in Tr, (K acts on the function ® by
differentiation and, so that, d®(IL,(V)) = I1,(V)® € T,G and we take the projection of
this vector on T,K = dL,(¢).

Proof. If the graph-map ¢ is smooth, then S is a smooth manifold. Indeed, the
parametrization ® is clearly injective and smooth. The trivial relation mx o & = Id |k
implies that 11, o d®(y) = Id |k, @ = ®(y), so that d® has maximal rank. By the way,
because KerIl, = T,H this also shows that for every V € T,K there is a unique vector
W e T,H such that V +W € T,S.

Since S is KH-graph, ®omk|s = Id |s, therefore, d®(y)oll,|r,s = Id |1,s. Let V € T, K
be arbitrary and W € T,H be such that W +V € T,S. Then

dd(y) o (V) = d®(y) o IL(V + W) =V + W,

and, by taking the projection on T,K in the last equality we obtain the conclusion. [J

4.2. Characterization of Lipschitz graphs
Now we return to metric considerations. Let G = K x H be a semidirect homogeneous
splitting.

Remark 4.2.1. Since 7k and 7y are homogeneous, p =< p o mx + p o Ty whatever homo-
geneous norm p we fix on G.

Definition 4.2.2 ([F'SC06, Def. 3.1]). A set S is called a Lipschitz KH-graph if there
is a constant 0 < C' < oo such that

porm(a~t-b) <Cpomg(at-b) foralla,beS. (4.7)

The smallest constant C' > 0 such that this inequality holds is called the Lipschitz
constant of S and denoted by Lip(S).

We start the study of these geometric objects with a list of simple remarks.

Remark 4.2.3. The notion of Lipschitz KH-graph does not depend on the choice of
homogeneous norm p (however, Lip(S) does).
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Remark 4.2.4. If S is a Lipschitz KH-graph then so is its closure S.

Remark 4.2.5. The notion of Lipschitz KH-graph is intrinsic in G. Indeed, if § is a
Lipschitz KH-graph then so are L,(S), a € G, and §,(S), r > 0, with the same constant
Lip(S).

Remark 4.2.6. 1t is clear that a Lipschitz KH-graph is indeed a KH-graph. A KH-graph
S with graph-map ¢ is Lipschitz if and only if

p(o(y1) ™" - d(y2)) < Lip(S) p(d(y1) ™" - ur ' - v2 - d(y1)), (4.8)

for all y1,y2 € mx(S). This explicit inequality Eq. (4.8) can be deduced from Eq. (4.1).
We note that Eq. (4.8) implies (see Appendix A.5) that

p(d(y1) " - d(y2)) S C(p(é(y1))) Lin(S) p(y; - ya)!/ 4B €,

In particular, since ¢ is locally bounded, it is also locally Hélder continuous with expo-
nent 1/degG.

Remark 4.2.7. If G is the direct product of K and H, then ¢ is merely a Lipschitz map
between K and H.

Proposition 4.2.8. Let S C G. A point a € S possesses a neighbourhood in which S
18 a Lipschitz KH-graph if and only if

pTang(S,a) NH = {e}. (4.9)

Proof. Recall that the notion of tangent cone is local, so, we can assume that S is a Lip-
schitz graph and v € pTang (S, a) (the largest among tangent cones in Definition 3.2.1).
Then by the definition of pTang and the homogeneity of the projections mx and 7y we
easily derive that p(mg(v)) < Lip(S)p(mk(v)). Therefore, if v € H, i.e. mx(v) = e, then
m(v) = e.

For the opposite implication, we argue by contradiction. Assume that no neighbor-
hood of a in § is a Lipschitz graph. This means that there are two sequences of points
{b,} and {c,} such that lim, b, = lim, ¢, = a and p(7x(b," - ¢,))/p(7u(b;"' - ¢,)) — 0.
Let v be a limit point of d,-1(b," - ¢,,) with t,, = p(b," - ¢,) = 0. Then v € pTang(S, a)
by definition and p(7g(v))/p(mr(v)) = 0, so that, v € H. This gives us a contradiction
because p(v) = 1. O

Thus, Proposition 4.2.8 shows that the notion of local Lipschitz KH-graph depends
only on H.

Corollary 4.2.9. Let S be a compact KH-graph. Then, S is a Lipschitz KH-graph if
and only if Eq. (4.9) holds and its graph-map is continuous.

Proof. The “only if” implication follows from Proposition 4.2.8 and Remark 4.2.6 in a
straightforward manner.

Let us show the opposite implication by contradiction. If & were not a Lipschitz
KH-graph, there should exist two sequences {ay}n, {bn}n C S such that

pomu(a,’ - by)
po WK(agl : bn)

— 00, Ay F by.
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In particular, since S is compact, mx(a, ' - b,) — e. The continuity of the graph-map
implies that mg(a!-b,) — e. So, up to extracting a subsequence, there is a point a € S
such that lima, = limb,, = a. And this gives us a contradiction with the fact that S is
a Lipschitz KH-graph in a neighbourhood of a by Proposition 4.2.8. O

Lemma 4.2.10. If S is a Lipschitz KH-graph and mx(S) C K is open, then S is locally
Ahlfors reqular of dimension dim K.

Proof. Consider the Borel regular measure p = (7mg)y Haarg on S. Note that p is
invariant under left-translation by Remark 4.1.5. Now we want to show that u(B(a,r)N
S) = rimk g € S and use next the standard mass distribution principle. The trick
here consists in replacing the homogeneous norm p by the equivalent one

p = Lip(S) p o g + p o my,

for which mx (Bj(a,r) NS) = mx(Bs(a,r)) as soon as mg(Bj(a,r)) C mx(S), which holds
for r > 0 small enough. And now we finish because

Haarg (mx(B,(e, 7)) = Haarg (B,(e, ) N K) = crmK,
O
Notation 4.2.11. For the rest of the chapter, {2 C K will denote a relatively open set.

Definition 4.2.12 (projected vector fields). Assume that ¢: Q — H is a graph-map
for a Lipschitz KH-graph. Then for every left-invariant vector field Y € £ we define a
continuous vector field Y on () through the action of base projector:

Y(y) = oY), ye

Remark 4.2.13. If y1,y, € Q and Y € ¢, then by Eq. (1.2)

570’2) = dad’(y1)—1-¢’(y2)(y1)<Y(YI>>-

Definition 4.2.14. According to Peano’s theorem, for each Y € £ and for any y, € (2
there is a curve v € C*(I(v),) defined on an open interval I(y) 3 0 such that for
tel(y)

V(1) = oY),  7(0) = yo.
We will always suppose that the lifetime interval I(vy) for each integral curve ~ is
maximal. Despite the absence of uniqueness for trajectories of Y (that are not Euclidean

Lipschitz in general), we introduce the notation Exp,(tY')(yo) := 7(t) where the choice
of a solution v of the ODE is arbitrary.

The next result presents the behaviour of these integral curves w.r.t. left translations
and dilations acting on the graph ®(Q2) in G.

Proposition 4.2.15. The integral curves Expy(-Y)(y) are
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o left-invariant, i. e.
0u(Expy(tY)(y)) = Exp,, (tY)(0u(y)), a€G, te I(Exp,(-Y)(y)),
e homogeneous, 1. e.
81/r 0 Expy (r*tY)(y) = Exp,, (1Y) (01 (y)), 7 >0, ter ™ I(Expy(-Y)(y)),

for any homogeneous vector field Y € €N gy.

Proof. This follows immediately from the corresponding properties of the base projector
(see Eq. (4.2) and Eq. (4.5)). O

In the next theorem we give a characterization of KH-graphs that are locally Lipschitz.
We limit our-selves to deal only with local conditions because in the global formulation
the implication “2. = 3.” may fail. Indeed, when we are trying to link points near
the boundary of ) to the inside points by Exp, trajectories an accessibility issue may
appear. To overcome that issue the natural approach would consist in imposing some
geometric conditions (aka John’s domain, see, for instance, [MMO5]) on the boundary
of €. Since it is much more complex we are not going treat this.

Theorem 4.2.16. Let ¢: 2 — H be a continuous map. The following conditions are
equivalent:

1. ®(§Y) is a Lipschitz KH-graph for every Q' € ().

2. For any Y € Q and for any left-invariant field Y € tNg;, [ = 1,...,degK, every
group valued curve

oExpy(-Y)(y), ye€,

b=2 , (4.10)
I's (I(Expy (- Y)(¥)). | - ) = @(?) C (G, d),

is Holder continuous with exponent ™' and uniformly bounded Hélder constant
provided that ||Y|| < 1.

3. For any Y € Q and for any left-invariant field Y € tNg;, [ = 1,...,degK, every
group valued curve

¢ o Expy(-Y)(y): (I(Expy(-Y)(¥)),[-]) = &(€¥) € (H,dy), ye, (4.11)

is Hélder continuous with exponent =1 and uniformly bounded Hélder constant
provided that ||Y]| < 1.

Notation 4.2.17. Given ®: Q — G, we denote by d(y,y’) =d(®(y), 2(y')), y, ¥y € Q
the distance induced on €2 by the graph. In the symbol d we don’t emphasize the
dependence of the induced distance on ® because this should be understood from the
context.

Proof. There are several implications to be proven.
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1. = 3. Since all objects are left-invariant, by performing a left translation of ® (')
we are free to assume that y = e € V', ¢(e) = e and I'(0) = e. In this situation, we
need to prove that

p(dor(1) S Lip(@(Q)) [t|=7, te I(y),

where 7(t) = Exp,(tY')(e) is any integral curve of Y.

We will work in compatible coordinates and to alleviate notation assume that Y =Y},
is one of the basic vector fields. Of course, there is no loss of the generality in this
assumption. According to the structure of the vector field Y = II(Y), see Eq. (4.6), the
coordinates of y(t) = (y*(t),...,¥"(t)) satisfy

Y(t) =0, if d; < dy, i #k,
() =t
Vi(t) = /Ot P,i(v(s), ) oy(s)) ds, if d; > d.
Here, we introduced a shorter notation for degY; = d;.
By homogeneity,
|Pi(y, x)| < CIY [ (p(x)"™" + p(y)"~"),

with some universal constant C' > 0. Let us only consider a positive range of values of
t and introduce two maximal functions

m(t) = max p(7(8)),

mg(t) = max p(¢ov(s)).

So, using the homogeneity of P} we can write a very naive estimate

< i\ T < I 4 - 1
p((£)) S max (7'(8) % S maxc £, thmy ()%, thmg() T ¢

By taking the maximum of its left-hand side we arrive to the following inequality:

+ L 1-% 1 _d
my(t) S max ( £%, thm, (80, thmy(t) %

And by solving it w.r.t. m, we obtain

1 1 1—%
my(t) S max S th, thimg(t) 4 o . (4.12)

It is time to use assumption 13., i.e. p(¢ o y(t)) < Lip(®(Y')) p(y(t)). Passing to
maximal functions, we derive

ms(t) < Cm, (1) < C'max {t tém¢(t)1—3’§} . O = Lip(®()).

di>dk

1
Again, by solving this inequality we get my(t) < Ct% , and, thus, we proved 3..
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3. < 2. It is obvious that 2. is stronger than 3. because 7y is a Carnot group
1
homomorphism. If 3. is verified, then the maximal function my satisfies my(t) < Ct|% .
1
Therefore, using Eq. (4.12) we obtain that p(v(t)) < C|t|% and, hence,

1
p(® o (t)) = p(v(t) + p(@o(t)) S Clt|%.
2. = 1. For two points a,b € (£’) we need to prove that

pomu(a™ ) Sor pomx(a™ - b).

Using left-invariance, we can always assume that a = e, so ¢(e) = e € ', in which case
we have to prove that p(gb(y)) < ply) fory € Q.

For a fixed compatible basis {Y;}i—1,. n on £ let us consider the set of points Qg . (y)
admitting a representation

e y' = EXp¢(tNYN) 0...0 Exp¢(t1§/1)(y), (tl, .. .tN) S RY. (413)

Fory’ € Qgy,, (y) we denote by (2 (y,y’) C  the union of all trajectories {Exp,(sYi)(yi-1) |
s € [0,t]}, i =1,...,N. It is a compact set. Note that because the matrix of vec-
tor fields {YZ}Z:l ~ is unipotent, the set Qg (y) contains some open neighbourhood
of y. We can view the tuple (t1,...,ty) as “second kind” coordinates (see [Var74,

p. 81], [FS82, Lemma 1.31]) on K w.r. t. to vector fields {}A/;}lle except the fact that
this tuple representation is not necessarily unique due to the possible lack of uniqueness
for trajectories Exp,.

For y € Qpy,(e) we introduce a chain of points {e = yo,y1,...,yny = y} with
yi = Exp,(t:Yi)(yi-1), see Figure 4.1. Due to the form of ffi, the following relations
between the coordinates of y; and {¢;} hold:

b il it
Y Y (4.14)
yi=y itl1<k<uq.
(Upper inscriptions are used for the coordinates index.) This allows us to effectively
find (¢4,...,tn) step by step.

Let the constant K = K(€(e,y)) be an upper bound for the Hoélder constants of
doExp, for trajectories Exp, from Q(e,y). Our goal now is to show that p(y:) Sk p(y)
for k = 0,..., N — 1. Indeed, this will imply that |t;| < p(y)%* for k =1,..., N, and
so, by our hypothesis and the triangle inequality, will give us that p(gb(y)) <k p(y)-

We proceed by induction over k. For k£ = 0, the statement is obvious because y, = e.
Let us assume that the statement holds for some £ > 0 and proceed to prove it for
k + 1. First of all, we note that

et = [y" =y < Y+ Iy S o)™ + ply) ™ Skeop(y)®,

by the induction hypothesis. Let y(t) := Expy(tYis1)(Yx), t € [0, te1]. Then 4'(t) =y
if ©+ < k+ 1, so there is nothing to do for those coordinates. We will now prove by
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v =y Y1
Exp,(tY2)
y2
EXP¢(t 3)
Ve =
€=Yo y2

y3

Figure 4.1.: Chain of points yg, y1,y2,y3 in K for dimK = 3

induction over d; > dy,; that [y (t)| <k p(y)%. Since among the coordinates of degree
di+1, only the (k 4+ 1)-th coordinate is changed:

fyk+1 (t) — t + y£+1’

therefore, the induction basis is verified. For the induction step, assuming that |7 (t)| <g
p(y)% for all j such that dyq < d; < d;, we need to show that |y (¢)] Sk p(y)% for
t € [0,t54+1]. These coordinates satisfy

V0 =3+ [ L) 602(s) ds

By our main assumption, p(¢ o y(s),¢ o v(0)) < K|s|'/%+1. By the first induction
assumption, we get that p(¢ o v(0)) = p(d(yr)) <k p(y), so that, by the triangle
inequality, p(¢ o v(s)) Sk p(y) + ||/ %+

The polynomial P} 41 is homogeneous of degree d; — dyy1 < d;, so it may effectively
depend only on the coordinates of degree strictly less than d;. With this remark, using

66



the second induction assumption we obtain that
01 il + [ 1Pl 60900 ds
< |t Itrsal j di—dp41 di—dp41
S lyil + p({7 (8)}a,<as) +p(po(s)) ds
0

[trt1] 4y
Sk p(y)" + / ply) =4t [s| % ds
0
d

S p(Y)E A+ [t |p(y) BB 4 [ty | e

; L dy i
S,K p(y)dz + p(y)dk+1p(y)d1 di+1 + P(Y) k1
< ply)™.

This accomplishes the second induction over d; and, as a consequence, the first induction
over k as well.

Thus, we obtain a local version of Lipschitz graph inequality Eq. (4.7), i.e. it is valid
for points a = ®(y) and b = ®(y’) such that y,y’ € 2 and y’ € Qpy,,(y). The constant
C = C(y,y’) here is uniformly bounded provided the distance from the trajectory set
Q(y,y’) to the boundary of Q stays uniformly bounded from below.

Our argument shows also that the size of the trajectory set diamz(Q(y,y’)) ~c
a(y, y'). The only obstruction for y’ € € to belong to Qgy,, (y) is that in the re-
current definition of trajectories {Exp,(#;Y;)} by Eq. (4.14) one of these trajectories
“reaches” the boundary of Q (or more correctly, leaves any compact of €2). Therefore,
if € Q' € Q are fixed and R = d(9,9Q") > 0, then there is r ~¢ R, C' = C(Q),
such that ~

{y eV ]dly,y) <r} CQpg,(y), ye,

Qy,y) c Q" if a(y, y)<r, yye.

To conclude, take y,y' € . If d(y,y') < r, then y € Q(y), we can use a local
estimate for Lipschitz KH-graphs with Lipschitz constant C' = C'(2"”). Otherwise, i.e.

d(y,y’) > r, we will perform a naive estimate using the boundedness of ¢ on 2. O

Remark 4.2.18. Observe that p(I'(¢)) 2 p(v(t)) 2 |t|i in the proof of Theorem 4.2.16
due to the presence of the explicit term ~v*(t) = t. This means that ' is in fact a
bi-Holder curve of exponent 1/ degY .

Remark 4.2.19. Note that under the assumptions of Theorem 4.2.16, if Eq. (4.13) holds
for y,y’ € Q then

where the equivalence constant K is a function of Lip(®(Q(y,y’))).
Remark 4.2.20. This remark is about the possible non-uniqueness of the trajectories
Exp,(-Y)(y) in Theorem 4.2.16 (or in Theorem 4.3.1 below). Note that in the im-

plication “1. = 3.” we prove in fact that Eq. (4.11) holds for any integral curve
Exp,(-Y)(y) and any Y € €. Meanwhile, for the inverse implication we only need that
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for every y € Q, Eq. (4.11) holds for some integral curve Exp,(-Y)(y) and, moreover,
only for vector fields Y that belong to {Yy }r—1__n some fixed in advance basis of £. The
proof of “3. <= 2.” establishes the equivalence between Eq. (4.10) and Eq. (4.11) for
the same choice of the integral curve Exp,(-Y)(y).

4.3. Characterization of regular surfaces

Theorem 4.3.1. Assume that G = K x H where H is horizontal and K is vertical. Let
S be a KH-graph with a continuous graph-map ¢: Q — H. The following conditions are
equivalent:

1. S € F~!(e) is a co-abelian surface of codimension dimH with F € C}(G,H) such
that

Ker DpyF(a)NH = {e}, a€S. (4.15)

2. For any Y € t and any y € Q we define an integral curve (t) := Exp,(tY)(y).
Depending on degY one of two statements below holds for ¢ o ~y.

A. degY = 1: There exists a linear map
Wy : EN g1 — b,

continuously depending on 'y € € such that

d
—(90)(t) = w,p(Y), tel(). (4.16)
B. degY > 2: Then
$oyehol®m I (IH), yeQ, Il (4.17)

where the small-o in the definition of Hélder class is uniform (see Defini-
tion 2.1.12) provided that ||Y|| <1 and v(I) C ) for some set ' € Q) fized
. advance.

Proof. We must prove two implications.

1. — 2. First, we observe that ®({)’) is a Lipschitz KH-graph for any ' € 2. Indeed,
by Theorem 3.3.3, pTang(S,a) C pTang(F~'(e),a) = Ker D, F(a), a € ®(Q2). By our
assumption, pTang (S, a)NH = {e} and ¢ is continuous, so we can apply Corollary 4.2.9.
Therefore, by Theorem 4.2.16 the composition ¢ oy € HolY Y (I H) where I € I(v)
such that v(I) C V.
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Case A: degY = 1. IfdegY =1, then ¢ o~ is a locally Lipschitz curve. In particular,
it is differentiable for almost all points ¢ € I(y). Let us take a point ¢t € I(y) of
differentiability of ¢oy. Then ¢ is obviously also a differentiability point of ®o~ (because
v € Ch). So, let us compute the differential of ® o v at point ¢. Since everything is
left-invariant, we can assume for simplicity that ¢(e) = e and 7(t) = e. Using the fact
that ®(y) = Ly(¢(y)) = Re(y)(y) we obtain that

(& 0 ) (t) = dLyy (6 0 1) (1) + ARy ( (1))
)

dt
= dLe((907)' (1)) + dRe(Il(Y)) = (9o 7)(t) +Y € (h +E) Ngu.

By assumption, F' is horizontally differentiable, hence we can apply the chain rule to
compute the derivative of the composition F' o ® o v = const at t. This results in the
following equation:

dnF(e)((907)/ (1) +Y) =0, (4.18)

where d, F'(e) = logoD; F(e) o exp is the horizontal differential of F' written on the Lie
algebra level.

Note that Eq. (4.15) ensures that dj,F'(a)Lb is a horizontal automorphism of b for any
a € S. Let us denote by T, : h — b the inverse of dj, F'(a) b, so that T,o0d, F(a)(X) =X
for all X € bh. It is clear that T, depends continuously on a € S because d;F'(a)
does. Using this we derive from Eq. (4.18) that (¢ 0 7)'(t) = —(Ta(y ) © dnF(a))(Y).
We see that this derivative is continuous in t € I(7), so that, ¢ oy € C'(I(v), H).
Furthermore, because (¢ o v)’(t) is horizontal, the C* curves ¢ oy and, therefore, ® o~y
are horizontal curves in H and G respectively. Thus, we have completed 2.A with
Wy = —Tq>(y) o th((I)(y))LE Ny

Case B: degY > 2. Fix an open set ) € Q. Take two points tog,t € I(y) such
v([to,t]) € €. Of course, this is only possible if v(I(7)) N Q' # @. Again by left-
invariance we assume that ®(y(tp)) = e. Since points ®(v(ty)) and P(y(¢)) lie on
F~(e), the definition of the horizontal differentiability of F' reads

p(DrF(e)(®ox(t))) = o(p(®ox(t)), t— to,

where the small-o is uniform. Note that because degY” > 2, according to the structure of
the vector field Y, the integral curve ~(¢) has no horizontal components: ,, (log oy(t)) =
0. Therefore,

DpF(e)(®o7(t)) = Du(e){y(t)) - Duk(e){d o v(t)) = Dnk(e){d o ¥(t)),
because the target space H has degree 1. Thanks to Eq. (4.15), we obtain that
p(DnF(a)(h)) Z p(h), heH, aed().
By Holder continuity, p(® o y(t)) < |t — to|/ 98, Thus, we conclude by

p(d0(t) S p(DuF(a)(® 0 y(1))) = o(p(® 0 4(t))) = o]t — to[/<=Y).
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2. — 1. To prove this implication we are going to verify that S satisfies the assump-
tions of Theorem 3.1.12. A natural candidate for the tangent space W, to S at point
a € § is the KH-graph with graph-map

Vo 1= €XP OWgy (q) © Meng, © lOg. (4.19)

In order to show that W, is a vertical (and, hence, homogeneous) subgroup of G, we
note that W, is the kernel of some homogeneous homomorphism ¢: G — H. We define
q at Lie algebra level, i.e. a linear map from g; to b, as follows:

X+Y =2 X —wnoY), Yetng, Xebh

Any element b € W, can be written in a unique way as b = exp(Y +Y”) - exp(wny () (Y))
where Y € €N gy, Y’ € € and 7y, (Y') = 0. Then, indeed, we check that Kerq = W, by

q(b) = q(exp(Y +Y")) - g(exp(wry(a)(Y)))
= exXp(—Wry() (V) - exp(wry () (Y))
= exp(—Wny() (V) + wre ) (Y)) = €.

We also don’t forget to mention that by definition W, NH = {e}.

Fix O € Q. Note that our assumptions are stronger that those of Theorem 4.2.16, so
that S is a local Lipschitz KH-graph. So, any point a € &' = ®({2’) has a neighbourhood
B(a,r) with some fixed radius r ~ d(8€',9Q) > 0 such that S N B(a,r) is a Lipschitz
KH-graph. As usual, by left-translating we may assume that a = e. In this situation,
since both S and W, are KH-graphs, in order to prove the Reifenberg flatness property
it is enough to show that

p(o(y) " Ya(y) = olp(®(y))), Q3y—e, (4.20)

where the small-o is uniform. To show this uniformity, we may consider only points
y € Bj(e,r) because the radius r is uniformly bounded from below. For such points y
we can replace p(®(y)) by p(y) in Eq. (4.20) loosing only the constant Lip(S N B(a,r)).

Let us reuse the notations from the proof of Theorem 4.2.16. We can assume that
the value of > 0 is small enough to state that Bj(e,r) C Qy(e), i.e. any y € Bj(e,r)
admits a representation

y = Exp,(tnYn) o ... o Expy(tiY1)(e).
According to Egs. (4.14) and (4.19), in compatible coordinates, 1, (y) reads as follows:
wa(y) = we<t1Y1 + ...+ tn1Yn1>7

where {Y; }
calculus

n, 1S a basis of €N g;. By Eq. (4.16) and the Fundamental theorem of

.....

P(yr) = A(yr-1) + /0 k WExp,, (svi) (yr_1) (Yr) = B(Yr—1) + trwe(Y) + trar(ty),
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where
la(ty)] < 25I€r[1(?t};i] [We (Vi) — Wesp, (svi) i) (YN — 0, tx — 0.

Applying this recursively we obtain that

O(Yny) = iwe(Y1) + ...+t we(Ya,) +o([ta] + .o+ [t )
= Ya(y) +o(lta] + ... + [tn]),

where the small-o is uniform. Next, for d, > 2 Eq. (4.17) gives a uniform estimate

p(d(yr—1)" - B(yr)) = o(|te]"/™).

Thus, by the triangle inequality,

p(Wa(y)™ - 6(y)) = o max [ta'/),

30y

Now we can conclude because by Theorem 4.2.16, p(y) =~ maxx—1__n \tk|1/dk. O

Let us now make some comments about Theorem 4.3.1. As in the previous char-
acterizations of regular surfaces (like Theorem 3.3.5), we are limited to consider only
the abelian group H ~ RM because the implication “2. = 1.” requires the Whit-
ney extension theorem. However, for a general subgroup H, what remains true is a
characterization of a locally Reifenberg flat set S C G with tangents W, that are com-
plementary to H C G, The family of these locally Reifenberg flat sets includes level sets
of C! maps, but it can also be larger as we already observed in Section 3.1.4.

Note that we don’t need any approximation of S by a smooth surface but derive our
results (such as Eq. (4.16)) directly using only metric considerations. That is one more
reason for such result to be interesting for non-abelian HI.

Remark 4.3.2. If ¢ is C' in a classical sense, then the trajectories Exp,(tY)(y) are
unique and C' depend on t and y. It is obvious that condition 2.B always holds for
such ¢ and condition 2.A merely means that (compare with Proposition 4.1.19)

o) (Y)o(y) = wy(Y), Y etng. (4.21)

In particular, a KH-graph with a C! graph-map is always a regular surface.

In which sense can we understand Eq. (4.21) for maps ¢ that are not C'' but merely
C%? One possibility can be to declare that a continuous function ¢: Q — H solves
Eq. (4.21) along characteristics if Eq. (41.16) is satisfied, see [BS10b; ASV06]. Indeed, it
does make a senses because for a continuous ¢ we can define characteristics Exp,(tY)(y)
and to look at the metric behaviour of ¢ along it. To handle the non-uniqueness
of the trajectories we can, for instance, either require that Eq. (4.16) holds for all
characteristics either that for every point y there is some characteristic starting at y
such that Eq. (4.16) holds.

For a scalar function ¢ (when H = R) there is another possibility: Eq. (4.21) can be
also understood in a weak sense. Let us illustrate this with an example. Consider a
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scalar function ¢ = ¢(v,y,2): 2 — R describing an X-graph in Engel group E* (see
Section 4.4.1). Here, we obtain one quasi-linear equation (since dim¢nNg; = 1)

Y+ vo

(av - ¢ay - 2

1 v
0.)6 = 0,6 — 50,6 — 50.6 — 10.6” = w(v,y,2).

Take now a test function ¢ € C*(Q2) with compact support supp(¢)) € Q. As usual, by
multiplying both sides with 1 and integrating by parts, we can put all partial derivatives

on : ) )

~[wo= [ 0w -So - o - o (422

Q Q

Now we see that it is problematic to perform the same trick for higher dimensional H
because the mixed terms like ... + ¢'0,¢> + ... can appear and it is not clear how to
handle them (see Remark 4.6.2). We think that in general these weak formulations are
only possible for the sets of codimension one because they rise as boundary of open
sets in G for which the notion of the finite perimeter preexists and naturally provides
a weak formulation.

Of course, Eq. (4.22) makes sense not only for ¢ € C! but also for ¢ € Ly 0.(Q).
So, one may wish to get such a formulation for a continuous function ¢ describing a
regular surface. The standard way to show Eq. (4.22) is to find a smooth approximation
¢n € CHQ,R) of ¢ such that ¢, — ¢ and Ilg, () (Y )¢, — w locally uniformly on Q. Yet,
an issue here is that the standard aka convolutional approximation ¢, = ¢*n, may fail
to accomplish this because it does not take into account the non-linear structure of the
equation. Nevertheless, in this situation the convenient approximation can be found
using the exterior geometric approach. Mainly, we recall that the surface described by ¢
is a level set of some map F € C}. We should first approximate F' by smooth mappings
F,, such that F, — F and DyF,, — DjF converge locally uniformly in G. Then we
consider the corresponding level set of F), that is also a KH-graph with a smooth (by
classical implicit function theorem) graph-map ¢,. It turns out that ¢, is a desired
smooth approximation of ¢. We can refer to [ASV06; CMO0Gb; MV12; CMPS14] to see
the implementation of this strategy.

4.4. Computations examples

In this section we perform explicit calculations of the base projector II for some splittings
in our favourite Carnot groups.

4.4.1. Graphs in Engel group

For the left and right translations in Engel group (see Section 2.2.2) we obtain the
following:

1 0 0 0
0 1 0 0
dL(v,x,y,z) (U/7 xla yla Z/) = _% % 1 0
_ byto(z’tx)  v(o—v) w 1
12 12 2
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1 0 0 O
0 1 0 O
dR(v,a:,y,z) (Ula .I'/, y/a Z,) = % _% 1 0
by—v(@’tz) _w(w—v) v
12 12 2

V-graph. Consider the splitting [E = K x H where

K={v=0}, H={exp(tV)|teR}.

Take
2
:(U70’0,0).(O7x7y72>:(U,x,y_%wz_%—i_%)'
Then
I, 0dLa(e) = dLozy,2)(€) © dL(0,0,0)(—v,0,0,0) 0 dR(_y0,0,0)(€) © e
1 000 10 00 00 00 00
L [E il IV (R Sl I B
2.0 10 0 5 L0 SO S B U
v? v G =
~¥ 00 1 0 % %1 05 31 0%

(Here, the symbol x stands for the matrix product.) This gives us
02
o (X) = 0, +v0, + Eaz, (YY) =0, +v0,, ., (Z)=0,.

X-graph. Consider now the splitting E = K x H where

K={x=0}, H={exp(tX)|teR}.

Take
:(O,x,0,0)-(v,O,y,z):(v,:p,y+ il z+2)
2 12
Then
I, o dLa(e) = dL(v,O,y,z)<e) © dL(O,x,O,O) (O, xz, 0, 0) © dR(O,—x 0,0) (6) O T =
10 0 0 1 000 1 0 00 1 0
0 1 00 » 0 1 00 « 0 000 | _ 0 0
0 5 10 -5 010 —%010_ —z 0
v?2 v “+xv
-4 5 5 1 0 0 01 0 0 01 50
This means that
M, (V) = 9, — 20 —yzmaz, (V) = 0, + 20, T{Z) =0,

S = OO

e — O O

_ o O O

(4.23)

_— o O O
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4.4.2. Graphs in Heisenberg group
Xi-graph. Consider the splitting H” = K x H in Heisenberg group where

K= {z; =0}, H={exp(tXy)|teR}.

The differentials of left and right translations read as follows

1n><n Onxn On
dL(x,y,z) (lju yla Zl) -
Onxn 1n><n On
=291 ... =2y, | 221 ... 22, | 1
1n><n Onxn On
dR(m’,y’,z’)(x>ya Z) =
Onxn 1n><n On
201 ... 2y | =22 ... =22 | 1

Then for

a= (0,29, ..., Tn, Y1, Yn,2) - (x1,0,...,0) = (T1,Z2, ..., Tp, Y1y - - -y Yn, 2 + 22191)
we derive that

I,(Y;) = 8, — 42,0.,
M(Y)=Y, f Y € {Xo,..., X0, Ya,..., Y, Z}.

4.5. Some counterexamples

For regular hypersurfaces in the Heisenberg groups the condition 2.B in Theorem 4.3.1
is in fact a consequence of the condition 2.A, see [ASV06, Th. 1.3|, [BS10b, Th. 1.2]
(the key argument can be found in [ASV06, Th. 5.8]). Even more is true. As we
explained above, since for hypersurfaces the mapping ¢ is scalar, for all X € €N g; we
can consider a weak (distributional) formulation corresponding to 2.A

H<I>(a;,y,z) <X>¢ = WwWx.

In the Heisenberg groups this weak formulation turns out to be equivalent to 2.A and
in fact characterises regular hypersurfaces, see [BS10a, Th. 1.2].

We think that this relaxation is also valid for regular hypersurfaces in all two-steps
Carnot groups and this phenomenon is one of manifestations of the rectifiability for the
sets of finite perimeter in this case, see [F'SS03b].

In the examples below we are going to show that condition 2.B cannot be dropped in
Theorem 4.3.1, i.e. in general a regular hypersurface cannot be characterized only by
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it horizontal geometry. Such examples are not unexpected and have already appeared
in [F'SS03b]. Since they cannot take place in a two-step Carnot group and as a frame-
work we choose the Engel group E* of three steps (see also [BL13] for some interesting
studies of sets in this framework).

Example 4.5.1. So, let ¢: Q C R3 — R be a continuous function, used as a graph-map
of a V-graph in E*, see notations in Section 4.4.1. The base projector acts on the only
horizontal vector field X € €N g; as

A 2
X(‘Ta Y, Z) = H@(m,y,2)<X> = am + (ﬁ(l’,y, z)ay + M&z

For simplicity, we will take ¢ = ¢(z, z) independent of y.
Let a curve v(x) = (x,z(z)) be the projection on the (z,z)-plane of some integral

~

curve Exp,(-X)((0,90, 20)) of X. By definition, the function z(x) € C" satisfies

() = ¢ ozv(x) ‘

Since ¢ does not depend on y, condition 2.A reads
(¢ o)(t) = w(v(#)) (4.24)
for some scalar continuous function w = w(z, z). Therefore, z € C? and

(x) = ¢(v(2))w(v(z)) = w(v(x))($(0, 20) + /Ox w(7(s))ds),

where we denote zy = z(0). Integrating this twice we obtain the integral representation
of z(x),

. X 1 X S 9
2(x) = 29 + §<Z>(O, 20)? + ¢(0, 2) /w(fy(s))(x —s)ds + 5/ (/w(’y(n)) dn) ds.
0 0 0
Let us take now w = —1 and ¢(0, z9) = —z¢ that gives us
(@) = 20+ Sleolf + L 4 2
Z\T,20) = %0 220 220 6

We observe that for any point (z, z) € R? there is a unique point 2 such that z(z, z) =
z and, moreover, the point zy = zy(z,y) depends continuously on (z,z). Indeed, if we

1
put a = z; then we need to solve the equation of degree 3 in a:

x? a3

P.(a) —z=0 with Pm(a):a3+ga2+?a+g.

Since the derivative P.(a) = 3a® + ra + ?/2 > 0, the function P, is strictly monotone
if |z| + |a| > 0, and, therefore, it can be continuously inversed. It is also obvious that
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20(w,2) — 0 = 25(0,0) when (z,z) — (0,0), and, thus, z, is continuous on R?. This
mean that the integral trajectories (x, z(x, zg)) are not crossing for different z, and form
a continuous flow on R

Recalling that (¢ o v)'(t) = w(y(t)) = —1 we find that the function ¢(z,z) =
—zo(x, z)% —x is continuous and, by construction, satisfies Eq. (4.24). However, ¢ & hols
along the trajectories of 0, = Ilp(y,y,-)(Z).

Remark 4.5.2. Imagine that we consider only continuous mappings ¢ that don’t depend
on y. Then, in both H' and E* we are dealing with a week equation

O + 0.G(0) = w,
h

where (up to the constant factor) Gy (h) = h? and Gga(h) = h3. Note that Gy is
a convex function (giving raise to the Burger’s equation) and Ggs is not. And it is
well known that this difference is fundamental in the theory of quasi-linear equations
(for the notion of entropy solutions, regularity results and so on). For instance, if a
continuous function ¢ is a global weak solution for Gy with constant w = C, then it
implies according to the results in [BS10a], that ¢ describes a boundary of sets of with
constant horizontal normal, so that, ¢(x, z) = Cz by rectifiability.

The example below emphasises this difference.

Example 4.5.3. Let us take a function ¢(z,y, z) = 3. Since ¢® =z € C, it is clear
that ¢ satisfies the equation

1 1
H(I)(x,y,z) <X>¢ = ag;QS + anqéQ -+ 682¢3 =w, (425)

in the weak sense with constant w = 1/6. However, ¢ ¢ hols (we don’t even speak about
some regularity improvement like in [BS10b, Th. 1.4]). We note also that there are
characteristics v(t)" = gy ) (X) such that (¢ o)’ (t) # w, for instance y(t) = (¢,0,0).
In fact, y(t) = (,0,¢%) is the only one among all the characteristics starting at the
origin for which (¢ ov)'(t) = w.

Example 4.5.4. A C*®-function on Q = R3\ {(0,—¢,0)}, c € R,

2z
Y+ c

¢(x7 y’ 2) =

is a in fact a strong solution of Eq. (4.25) with w = 0. This example is the coordinate
representation of the set with constant horizontal normal from [AKL09, Section 7.4].
This tells us that there is no hope to control the vertical (i.e. along integral lines of
Ha (2, (Y) and Ilg gy, (X)) behaviour of ¢ by some norm of w.

4.6. Application to the rectifiability problem

Here we show what one can derive about the tangent cones of Lipschitz graphs of higher
codimension in the Heisenberg groups using the rectifiability in codimension one and
Theorem 4.2.16. As a basic model we will consider the case of a Lipschitz graph of
codimension 2 in H?.
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Theorem 4.6.1. Let S C H? be a Lipschitz graph w.r.t. the splitting H> = K x H
where the horizontal subgroup H is of dimension two, dimH = 2. We also assume
that 7 (S) = Q is open in K. For H****? 2_every point p € S the following holds. If
o1/r;(p71 - S) — W locally converges in the Hausdorff distance for some {r;};>o C Ry,
r; — 0, then W is a vertical plane.

Proof. The proof contains several steps.

Coordinates setup. We can assume without loss of generality that S C H? is a Lips-
chitz graph w.r.t. the following decomposition:

K = exp(span({ Xy, Y2, Z})) with coordinates y = (z,y, z),
H = exp(span({Xs, Y1})) with coordinates ¢ = (¢1, ¢1),
S = {('%7 Oa 07 Y, Z) ' (07 ¢1($7 Y, Z)a ¢2(.1', Y, Z)? 07 0) ’ (.ﬁE, Y, Z) €N C K}

Indeed, the result we want to prove is local and therefore, by Proposition 4.2.8, it
depends only on the factor H. Since there is a transitive symplectic action on horizontal
subgroups in H?, we can choose any of such subgroups. And for H chosen as above
we are also free to fix an arbitrary complementary vertical subgroup K. We made the
above choice for the simplicity of calculations.

Imagine that we want to prove the result at some point p € S. Let us suppose (by
left-translation) that p = e, so that, 61/, (S) — W. It is clear that W is also a KH-
Lipschitz graph with Lip(W) < Lip(S) and let ¢ = (¢1, ¢2) be the graph-map of W. It
is easy to see that being a vertical plane for W is equivalent for the function ¢ to be
linear w.r.t. to horizontal coordinates:

¢1(x7yaz) :a$+bya QBZ(ZEJ%Z) :Cl'+dy

We recall that ¢,(z,y,z) = r~'¢(rz, ry,r?z) is the graph-map of 61 ,.(S). We observe
that the family of functions {¢,},~¢ is equi-continuous (because Lip(d;/-(S)) < Lip(S5))
so for any sequence {r;};>o there is a subsequence {r;,} C {r;} such that ¢r,, converges
locally uniformly. Therefore, the local convergence d/,,(S) — W in the Hausdorff
distance is equivalent to the locally uniform convergence

Gr, = 01r, © P00y, = ¢, i— 0.

We know by Lemma 4.2.10 that for a Lipschitz graph the Hausdorff measure H*LS
is locally comparable to ®,(£3L.Q). Thus, a subset Sy C S is H*-negligible on S if and
only if g (Sp) is £3-negligible.

Codimension one slicing. In the coordinates we choose, the action of the base projec-
tor reads as follows

X, = Ho(zy,(X1) = 0p — 401(2,y, 2)0-,
}}2 = H(I’(I»yaz) <Y2> = ay + 49252(.17, Y, Z>azv
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7 = a(sy(Z) = 0.

Theorem 4.2.16 says in particular that ¢, is (locally) Lipschitz along the integral lines
of X; and Hol'/? along the integral lines of Z. Let us consider y, € R for which the
plane {y = yo} C K intersects €. For these y, we denote Q,, = QN {y = yo}. We view
the restriction ¢;L(,, as a graph-map for K;H;-graph in the first Heisenberg group
H' with H; = exp(span{X;}) < H' and K; = {z; = 0} < H' (with the appropriate
notations in H'). The vector fields X, and Z with fixed y = 1o have exactly the same
structure as if they were in H!' with the graph-map ¢;. The plane {y = 3} is obviously
invariant under the generalized flows of X; and Z, i.e. if some integral line of one of
these vectorfields starts on {y = yo} then it will not leave this plane. Thus, using
the opposite implication in Theorem 4.2.16 we obtain that ¢, describes a locally
Lipschitz graph in H!. Let us now exploit at maximum this fact.

At this point we use a characterization of the codimension one Lipschitz graphs in
Heisenberg groups given in [BCC14, Th. 1.1]: there is a function wy, € Lj.(€,,), such
that the equation

Xi(¢1{y = yo}) = wy,
holds in distributional sense, i.e. for any test function f € C'(Q,,) with compact
support supp(f) € €2, the following is verified

| odus 2600 =~ [ wis (4.26)
Q

Y0 Qyo

One can also use a smooth approximation result [CMPS14, Th. 1.7] to deduce this
distributional equation.

The Eq. (4.27) comes with an estimate on w,, . Locally the L*-norm of w; can be
controlled by the Lipschitz constant of graph K H;-graph, that in its turn is controlled
(through the control in Theorem 4.2.16) by the Lipschitz constant of S. In other words,
for any € € Q,, thereis a constant C' = C(€;, ) > 0 such that [|w, LQ; |« < C Lip(S).
The constant C'(€2; ) stays in fact uniformly bounded (for Var1able yo) as long as the
distance from 0€2 ~to 0%, is bounded from below by some fixed ¢ > 0. Therefore,
using Fubini’s theorem and Eq. (4.27) we can derive that for any € € 2 there is a
constant C' such that

< C'Lip(9)

/Q | f‘ | (4.27)

for any f € CY(Q) With supp(f) C €. Therefore, by Riesz’ representation theorem,
there is a function w! € L2 () such that X;¢; = w' holds in distributional sense in Q.
We consider the following family of sets on K:

&= {oap)(Ee) |y €}, Ee={Ble,r) NK|r € (0,1)}.

The Lebesgue measure £2 on K is doubling w.r.t. this family of sets (see [Fec~l69,
section2.8]). Indeed, the family £ is merely a projection on K of the family' & =

lwith an appropriate choice of the homogeneous metric p as in Lemma 4.2.10
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{B(a,r) | a € S,r € (0,1)} that is clearly doubling w.r.t. H*L S since, for instance, it
is (locally) Ahlfors regular. This means that £3-almost every point y € Q is a density
point of w! w.r.t. £. Recall that being a density point means the following:

][ lw' —w(y)|dL* =0, r—0.
o (y) (Br(e)NK)

Since the definition of £ is left-invariant, let us suppose that y = (0,0,0) is such a
point and ¢(y) = 0. Take any subsequence of {r;};>9, 7 — 0+, such that the limit
(w.r.t. the local uniform convergence) ¢, — ¢ exists.

Since y is an interior point of €2, (;3 is a graph-map defined on the whole of K.

Let f € CY(K) be a test function with compact support. Then

/ 5100f —26,°0.f = lim / bunOf — 207, 0.1
K 1— 00 K

because starting from some r; small enough, 6,,(supp(f)) € @ € Q and we can use
local uniform convergence under the integral sign. Next, by a change of variables we
obtain that

/gblﬂ’iaxf_ 2¢irzazf = 7”7;_4/ Qsléx(fo(sl/ri) _QQﬁaz(foél/n)
K K
=t Yfobim).
it [ W rody)

Since we have taken the origin y = 0 as a density point of w!, a convergence takes place
in the last term when i — oo,

it [ wros) —w'o) [ f] <ot [ @ = wt o) oa)

<Wleri* [ ot = u'(0)
Sr; (supp(f))

i

< ||f||ooc4f ! —w'(0)] = 0,
BC’ri(e)

where C'is the supremum of r such that ¢, (supp(f)) C Bi(e).
Thus, any limit function ¢, satisfies the distributional equation in 2

Op1 — 4610.61 = w'(0)

with a constant right-hand side. Since there is no derivative w.r.t. y in this equation
and ¢, is continuous, this equation holds also when restricted on every slice {y =
yo} NK. Therefore, for a fixed yo, a continuous function ¢, ,, = ¢11L{y = yo} solves the
distributional Burgers equation with continuous right hand side. In this situation we can
apply the result from [Daf06, Th. 1| (see also its generalization [Bigl0, Th. 1.4.15] for
w!(0) #£ 0). Tt says that gz%w is also a solution along characteristics, i. e. for any integral
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curve (t) = (t, z(t)) such that 2/(t) = —261 ,,(7) we have that (¢, 07)'(t) = w'(0).
From this it is easy to deduce that ¢, = w'(0)z + C where C' is some constant.
Indeed, ¢1 4, is linear along characteristics which, as a consequence, are parabolic

v(t) = (t, =20 (0)t2 — 21,,(0, 2)t + 2), z €R.

Suppose that there are z; and z, such that qglyyg (0,21) # gz~51’y0(0, z1). This immediately
leads to a contradiction with the continuity of ¢, ,, because in this case two character-
istics -

N(E) = (t,~20" (0)F2 — 28140 (0, 20)t + 21),

Ya(t) = (t, =20 (0)#2 — 26014, (0, 22)t + 22),

will cross each other at the point

Z2 — 21
t_

N 2((;51@0 (07 22) - (Z;Lyo (O? Zl))

and the limits of é17y0 at the intersection point along each of them will obviously be
different.

Thus, we obtained finally that ¢,(z,y,2) = w'(0)z + C(y) for any limit function
O1r, — #1. Observe that the function C here may depend on the choice of the dilation
sequence {r;} but w!(0) does not.

Looking at different directions. The slicing argument that we presented above can
be applied in exactly the same way (only with different H; and K; in H') for ¢l {x =
const} and ¢o —¢1L_{x—y = const}. This corresponds in fact to the three distributional
equations that hold for ¢ in €:

Ou1 — 20,97 = w' € LS. (Q),

loc

Oyta + 20,05 = w? € L2 (Q),

loc

(am + ay)((bQ - ¢1) + 2(9Z(¢2 - ¢1)2 = wS € L?ooc(Q)'

Let Q C Q be a full measure set that is an intersection of density point sets of the
functions w?, i = 1,2,3. By left-translation, let us assume that y = 0 € Q and let
{ri}i»0, 7 — O+, be a sequence such that the limit ¢,, — ¢ exists. Then the limit
function ¢ satisfies

o1(z,y,2) = w' (0)z + Ci(y),
éZ(maya Z) = wz(o)y+02($)> (428)
(02 — ¢1)(2,y,2) = w’(0)(x + y) + Ca(z — y),
where the functions C1, Cy, C3 may depend on {r;}. Note that ¢ does not depend on

z and recall that ¢ describes a locally Lipschitz graph. Then, applying again Theo-
rem 4.2.16, we see that these functions Ci,Cy, C3 are indeed Euclidean Lipschitz (as
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well as é) and, therefore, they are differentiable almost everywhere. By taking the
derivatives (where it is possible) w.r.t. y in the equality

w?(0)y + Ca(x) — w'(0)z — Ci(y) = w’(0)(z +y) + Cs(z — )

we obtain
w?(0) = Ci(y) = w’(0) — C3(z — y).
The left-hand side does not depend on z, so must do the right-hand side. This leads us

to the conclusion that all functions C4, Cs, C3 are in fa~ct linear. Therefore, any limit of
d1/r,(S) is a vertical plane described by a graph-map ¢ of the form

oi(x,y,2) = w'(0)z + Ky,

(4.29)
Gl 2) = w(0)y + (20*(0) + w'(0) — w?(0) + K)a.

with some constant K that may still depend on {r;};>0. O

Remark 4.6.2. We should mention that the system Eq. (4.28) should be completed by
one missing independent equation whose the left-hand side can be one of two following
expressions

Xy = Osps — 410,02,
Y(bl = aﬂc(bl + 4¢2az¢1-
We could not find an obvious way to give a distributional meaning to this equation.

Remark 4.6.3. Let y € Q and ~(t) := Exp,(tY)(y) is an arbitrary integral curve of Y.
Then is easy to check that the constant K in Eq. (4.29) is independent of the choice
of {r;}i>o (i. e. the tangent is unique) if and only if the derivative (¢; 0 y)'(0) exists (in
which case it must be equal to K).

We know that ¢, is Lipschitz along the integral curves of Y. If, for instance, ¢,
was Euclidean Lipschitz then the integral curves Expy(-Y)(y) would form a Lipschitz
continuous flow and using the standard Rademacher theorem we would easily derive
that the derivative (¢, o Exp,(tY)(y))'(0) exists for almost every y € €2.
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5. Roughness of vertical curves in
Heisenberg group

5.1. Introduction to the problem

This chapter is devoted to the local study of one dimensional level sets in Heisenberg
groups. To be more precise, we are going to consider the solution of the equation
{F = 0} with F € C}(H",R*") from the metric point of view. We assume as in the
classical implicit function theorem that the horizontal differential is nondegenerate,
i.e. Im(DpF(a)) = R?*". Thus, the kernel of Ker D, F(a) = Z is the one-dimensional
centre of H" (we refer to this fact when speaking about one dimensional level sets). In
Heisenberg groups framework, it is common to call Z the vertical axis (it is where the
term “vertical curve” comes from).

This very particular and rather simple case turns out to be very fertile and opens the
horizon for further investigations. However, many important questions stay unsolved.
Let us mention as an important example the validity of the coarea formula for F €
C}H"™, R?>™).

Notation 5.1.1. In this chapter we denote F € C}(H",R*") normalized to F(0) =
0. We assume Dy F(0) being surjective. We recall the notation for the centre 7 :=
{exp(tZ) | t € R} of H".

Remark 5.1.2. Since the horizontal sub-bundle (complementary to Z) is non-integrable,
the kernel Ker D, F'(0) = Z does not admit a complementary subgroup.

Naive approach to compute #? of F~1(0) if I’ is smooth. In this case, according to
the classical implicit function theorem the set F~!(0) is a smooth curve that admits a
local representation

F0)NU = {T(2) = (1(2).2) | = € [-4.]}. (5.1)

where ~ takes values in R?". Moreover, the smoothness of v guaranties that the map
{z — I'(2)} is bi-Lipschitz from ([, ], |- ]%) to (H",d). Note that I' is never tangent
to the horizontal distribution because DF(a) o 7 is injective. Hence, we can compute
the density by

J(z) = tl_i}ror}r t1d(I(2),0(z + t))2 =1+ 2t1_i>r£r tT B((2),7(z + 1) = 1+ 2B(v,7).

Function J is continuous and strictly positive. By [Fed69, sec. 2.10.10,2.10.11] we know
that H*LT =T, (J(-)H3,), where H3 , is the Hausdorff measure on [—4, 6] built w.r. t.
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|- |2. Note that Hi, = L, and, thus,

HA(T) = /51+2B(%7) dz = /w,
-6

r

where w is the contact form. In general, a smooth simple curve I" that is never horizontal,
up to left translation, admits a local representation of the form Eq. (5.1). Therefore,
we showed that for such a curve I' the Hausdorff measure H? is given by the integral of
the contact form. Of course, the orientation of I' is chosen in order to make w positive
on I'. Further, we will generalize this formula. By the way, the geometric interpretation
of measure H?(T') is quite remarkable. For instance, in H' it is equal to the difference
between the increment of z-coordinate along I' and four times the algebraic area swept
by the projection 7(I') in the horizontal plane (see Figure 5.1).

z

% }AZ
Y

e

Area
X

Figure 5.1.: Geometric interpretation of H?(T') in H*

5.2. Flatness condition

In this section we show that level sets F~1(0) are exactly characterized by the property of
being a Reifenberg flat w.r.t. the vertical axis Z with vanishing constant. In particular,
the vertical axis plays the role of an approximation to £~1(0) at any point and at every
scale. To more precise let us introduce the following definitions and notations.

Notation 5.2.1. For £ C H", a € H" and r > 0 we put
e E,.:=B(a,r)NE,
e Z, = L(Z) = {exp(Zt)(a) | t € R},
® Zo, = Bla,r)NZ,.
Remark 5.2.2. d(b,Z,) = d(a,Zy) = ||r(a™ - 0)|| = ||7(b) — 7 (a)]| -
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Definition 5.2.3. A closed set £ C H" is called e-Reifenberg flat w.r.t. Z in U C H"
(starting from the scale ry > 0) if

distq(Ey s Zay) <er forallae ENU and 0 <1 < 1y. (5.2)

Definition 5.2.4. A closed set £ C H" is called Reifenberg flat w.r.t. Z. with vanishing
constant in U C H™ if there is a e(r) v 0 such that

distq(Eu s Zay) < e(r)r  forallae ENU.
Proposition 5.2.5. There is a compact neighbourhood U of 0 such that
[m(a™" - b)l| = o|=(a™" - )]Z), (5.3)

that holds uniformly when a,b € F~1(0)NU and b — a. Conversely, if on any compact
part of a closed set E C H" the estimate Eq. (5.3) holds uniformly, then we can find a
function F € C}(H", R*") such that E C F~(0) and Dy F(a) is surjective for all a € E.

Notation. We are going to call the relation Eq. (5.3) Whitney’s condition.

Notation 5.2.6. For I € C}(H", R*") we introduce some useful quantities character-
izing the behaviour of D, F on U C H™:

wp(U) = sup{[| Dy F(a)(b) — Dy F(a')(b)|| | a,a" € U, beH", |[x(b)]| =1},
np(U) = inf{|[DpF(a))|| |a €U, beH", ()] =1},
Np(U) = sup{[|[DnF(a){b)|| | a € U, beH", [lm(b)]| = 1}.

Proof. As Dy F is surjective at 0 and continuous, we can take a compact neighbourhood

U C H™ of 0 such that D,F(a) is surjective for all a € U. Therefore, for a € U the
value || Dy, F(a)(b)| is equivalent to ||7(b)]:

np({a})llr ()| < |DuF(a)b)]| < Ne({a})|7 (D).
Since F'(a) = F(b), Lagrange’s Theorem 2.3.4 reads
|DnF(a)(a™t - b)| < Cd(a,b)wr(B(a, Cd(a,b))).

Thus,
Iw(a™" - b)| < np({a}) "|DpF(a)(a " - b)
< Cnp({a}) td(a, b)wr(B(a, Cd(a,b))).
Observe that wp(B(a,Cd(a,b))) — 0 when b — a uniformly for a € U. So, by recalling
the definition of d we show Eq. (5.3).
To proof the inverse property, it is enough to put D, F(a)(b) = 7(b) and F(a) = 0 for
all a € F and to apply Whitney’s extension Theorem 2.3.6. ]

(5.4)

Remark 5.2.7. Thus, according to Whitney’s condition, d(a,b) = |z(a™* - b)|2 for any
a,b € F~1(0)NU close enough.
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Remark 5.2.8. We see from Whitney’s condition that the concrete values of D, F' on
F~1(0) gives no information about F~!(0) (provided, of course, that Dy, F is surjective).
For instance, D, F being very regular (like a constant map) along F~'(0) says nothing
about the regularity of F~1(0).

Proposition 5.2.9. Put h,, := B(a,r) Nexp(HH")(a). Let U be like in Proposi-
tion 5.2.5. There are constants v, K > 0 (depending on F' and U) such that for any
a€ F10)NU and b € h,, NU,

IF@®) = Kllm(a™ - b)ll.
In particular, h,, N F~1(0)NU = {a} for alla € F7}(0)NU.
Proof. Take a € F~'(0)NU and h,; > b — a. From Lagrange theorem,
|E(8) — DuF(a)la™ - B < Cd(a, blor(Bla, Cd(a, b))
By the invertibility of D, F(a) on horizontal plane,
IDrF(a)(a™" - b)|| = np(U)|x(a " - b)|

holds for all @ € U and all b € h,;. One can find » > 0 small enough such that for
a€ F710)NnU
2Cwr(B(a,Cr)) < np(U).
)

Since a~!-b is horizontal (i.e. z(a™!-b) = 0), d(a,b) = ||7(a~*-b)||, and the result follows
from the triangle inequality with K = ng(U)/2. O

The following Lemma says that the projection of F~1(0) on the vertical axis is sur-
jective.

Lemma 5.2.10. There are t > 0 et 6 > 0 such that for any z € [—4,0] one can find

a point v, € R*™ (not necessary unique, see Example A.J.1) with ||v.| < t such that
(72, 2) lies on F~1(0).

Proof. Denote by F,(z,y) = F(x,y,z) the restriction of F' on planes z = const. For
any z the map F,: R?*" — R?" is continuous. Moreover, F, is differentiable (in classical
sense) at 0 € R?™ and dF,(0) = D,F(0, 2) is invertible.

Take a radius t > 0 from Proposition 5.2.9 assuring that for any b in closed disc
D; = ho; @ R* the estimate |Fy(b)|| > Kb, K > 0, holds. Therefore, the image
of sphere 0D; by F, does meet the origin. By the continuity of F', there is 6 > 0
small enough such that 0 ¢ F,(0D;) for all z € I = [=4,0]. It is clear that any
F. € C°(D;,R*) is homotopic to Fy € C°(D;,R*") through F. We recall the the
topological degree (see [L1078]) deg (Fz,Dt,O) is homotopy invariant for all z € I,
because 0 € F, (8Dt).

Let’s check that the degree deg (Fo, Dy,0) belongs to {—1;1}. Observe that F, '(0) N
D, = {0}. Furthermore, F} is homotopic (by action of dilations d,) to its differential at
0, and thus,

deg (Fo, Dy, 0) = deg (dFy(0),R*",0) = deg (D, F(0) o 7, R*",0)
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= sign(det({X,F(0), Y;F(0) | i =0,...,n})) € {1,-1}.

As for z € I the degree deg (Fz,Dt,O) = deg (Fo, Dt,O) is different from 0, for every
z € I we can find 7, € D, such that 0 = F,(v,) = F(7,, 2). O

Remark 5.2.11. Let us be more precise about the dependence of ¢t and § on F. We see
that ¢ can be chosen in such a way that

wr(ho)nr({0}) < 1.

For §, we have (through Lip-continuity of F') that
82 2 tnp({0})Np(B(0,1)) .

Proposition 5.2.12. There exists a neighbourhood U of 0 € H" such that E = F~1(0)
satisfies )
distyq (Ew, Zw) <e(r)r forallae ENU, (5.5)

with (r) — 0 when r — 0.

Proof. First, consider 0 € F~1(0). If a € F7'(0) N B(0,7), then d(a,Z,) = ||7(a)| =
o(|z(a)|2) = o(r), for r — 0 according to Eq. (5.3). If a = (0,0,z) € Zy,, then for r <t
small enough thanks to Lemma 5.2.10 one can find a = (v,,2) € F~1(0). Again by
Eq. (5.3), d(a,a) = ||7.]| = o(r) and, thus, distq (Eo, Zo,) = o(r).

Imitating the proof of Lemma 5.2.10 we show that the continuity of D, F allows us
to choose a compact neighbourhood U of 0 that satisfies the following. Lemma 5.2.10
can be applied to shifted function F' o L,-1 with some ¢ > 0 and § > 0 independent
of a € F71(0) N U. Thus, we see that the argument above can be applied (by left
translation) to any a € F~1(0)NU, that gives disty (Ear,Za,) = o(r), where “small-0”
is uniform, exactly as in Eq. (5.3). O

Proposition 5.2.13. Assume that a closed set E C H" satisfies

d(b,Zay) < e(r)r for alla € ENU and b € E, .,
where () v 0 and U is compact. Then there exists a function F € C}(H",R*") such
that F(b) =0 and Dy F(b) o = Idge for anybe ENU.

Proof. As usual, we are going to check the Whitney’s condition Eq. (5.3) for ENU
(see Proposition 5.2.5). We take two points a,b € ENU close enough in such way that
g(r) <1 for r :=d(a,b). It is straightforward that ||7(a) — 7(b)|| = d(b, Z,,) < (r)r,
and hence, 7 = d(a,b) = |z(a~! - b)|2, and we are done. O

Finally, we obtain the following (local) purely metric characterization of level sets.

Lemma 5.2.14. In a neighbourhood of the origin, vertical curves of the form F~1(0)
are exactly characterized as Reifenberg flat set w. r.t. 7. with vanishing constant.

Proof. Combine Propositions 5.2.12 and 5.2.13. ]
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5.3. Reifenberg parametrization

Using Reifenberg flatness we’re going to show that locally F'~1(0) is a simple curve (i. e.
homeomorphic to an interval). We construct a (local) parametrization of F~1(0) by an
iterative (from big scales to small ones) dyadic procedure that is quite easy because
Z. is of topological dimension 1. This parametrization is not canonical but still enjoys
some good metric properties such as being bi-Holder.

Definition 5.3.1. The vertical cone with vertex a € H" and aperture ¢ € (0, 1) and of
radius r > 0 is the compact set

Cre(a) :={b e H" | d(b,Z,) < ed(a,b)} N B(a,r).
The vertical cone is naturally split into C,.(a) = C;_(a) UC, _(a), where

Ci(a) =Cre(a)N{b e H" | 2(a " - b) = 0}.

T,y

Figure 5.2.: Vertical cone C,.(0) (grey zone)

Remark 5.3.2. If E is e-Reifenberg flat w.r.t. Z in U, then a € C,.(b) for all a,b € ENU
such that r» < d(a,b) < ry. Indeed, it suffices to check it for » = d(a,b) for which we
have d(a, Zy,) < er = ed(a, b).

Remark 5.3.3. From the triangle inequality on R we derive the “squared” triangle in-
equality
d(0,a)* < d(o0,b)* +d(a, b). (5.6)

that holds for o0,a,b € H" with o' - a € Z.
Proposition 5.3.4. Take 0,a,b € H" with a € C}_(b), a € C/_(0) and b € C._(0). Then
2 2

d(a,b)? < d(0, ) +d(0,0)* — d(a,b)* < T

3

s d(a, b)2. (5.7)

Proof. Since € < 1, for max-type distance d we have d(a,b)> = z(b™! - a), d(0,b)* =
2(b~'-0) and d(0,a)? = z(0™' - a). We can estimate the difference of 2-components by
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the norm of a homogeneous polynomial of degree 2 containing components of o=! - b
and o~! - a that are complementary to z, concretely:

|d(o, )+d(0b) ( b)?| = |2 (b a)—Z(b_l-O)—Z(O_l-a)l

|
|
< 2¢%d(0, a)d(o, )

=2[B(r(b™" - 0),m(0™" - a))| < 2w (b - o)|[|7(b7" - o) (5.8)
< &*(d(0,a)* +d(0,)*),
and Eq. (5.7) follows immediately. O

Theorem 5.3.5 (of parametrization of vertically Reifenberg flat sets). Let F € H" be
e-Reifenberg flat w.r.t. 7 in B(0, R) starting from the scale ro > 0 with 0 < & < &
small enough. Then, locally the set EN B(0, R) is a simple curve admitting a bi-Hdélder
parametrization.

Proof. Take some point a € E'N B(0,R). We put r = min{rg,d(a,dB(0, R))}/2. Ac-
cording to Reifenberg condition Eq. (5.2), there is a point b € C,.(a) N E such that
d(b,exp(r?Z)(a)) < er. In fact, b € C_(a) because B(exp(r?Z)(a),er) N C,.(a) = &
when € < 1.

Put now r = d(a,b)/v2. We can find a point 0 € ENC, _(a) “in the middle” between
a and b such that d(o,exp(riZ)(a)) < ed(a, 0). This implies

o |z(a™! o) <%,
o max{||r(a™" - 0)||,|2(a™" - 0) = 1}|2} = d(0,exp(r}2)(a)) < d(a,0).
By Eq. (5.6) we get
r{ = d(a,exp(r1Z)(a))’ < d(a,0)* +d(o,exp(riZ)(a))* < d(a,0)*(1 + %),

so d(a,0)? > r?/(1+ &?).
It is easy to see that o € C_(a) NC,_(b). So we can use Eq. (5.7) to estimate d(o, b):

2 2 2 g’ 2 2¢? |,
dlo. b < dla b — d(o,0)* + ——d(a.b < (1 + )t
do.b)* > d(a,h)* — do,0)* — ——d(ab)? < (1+ )13

0,b)* > d(a, 0,a T aded)” < )

By summing up our estimates we obtain that

max{d(o,a),d(o,b)} < c;(e)d(a,b),
min{d(o,a),d(0,b)} > c_(e)d(a,b),

where ¢, (¢) = (1 + Ce?)/v/2 and c¢_(g) = (1 — Ce?)/+/2 with some universal constant
C' > 0. We assume that gy is small enough in such a way that ¢y (g9) < 1. In this proof
we are not seeking for an optimal value of €.

Now we define recursively a sequence of maps

(5.9)

I'T,—»E, T:={k7"k=0,...,2%clo1], [>0.
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To start with, we set I'((0) = @ and I'g(1) = b. Then we construct I';;; as an extension
of I'; by mapping a middle point of new dyadic generation to a corresponding “middle”
point on FE, i.e. Fl(%) = o, Fz(i) will be a “middle” point between a and o, and so on.
Each “middle” point is defined in the same way, i.e. as we've done for o and a,b. The
iterated estimates Eq. (5.9) give that

max d(Fl(;{;) Fl(k;1)> < cy(e)d(a,b),

kE+1

(5.10)
minlld(rl(g),Fl< 5 )) > c_(e)ld(a, b).

Merely by equi-continuity of {I';};>¢, there is unique map I': [0,1] — E that extends
[, for all [. We are going to show that the distortion rates Eq. (5.10) together with
flatness of I" assure that I" satisfies bi-Holder condition:

Cilt — 5P < d(T(t),T(s)) < Cylt — s|* (5.11)
with the exponents .
a=—In(cy(€))/In(2) ~ 5 C
g =—In(c_(¢))/In(2) = % C

In particular, I" will be simple (injective) curve.

To get the direct Holder inequality, one can use a classical argument, see for in-
stance [LV07, Lemma 2.]. Let us prove the inverse one. Take 0 < s < t < 1 with
27 > |t — 5| > 27! for some | > 0. We can always find s;,t; € T, such that
s < s1 <t; <t (see Figure 5.3) Note that if &', ¢’ € [0,1] with ' < ¢’ then by construc-

S1 tl
S \ 1 \ vty
1 t 1 t 1

Figure 5.3.: 4|ty — s1] > |t — 3]
tion z(['(s')~' - T'(¢')) > 0. So, by appling Eq. (5.7) we get

( (O
d(I(s), I'(t))* = (1 = £*)(d(I'(s), I'(s)” + d(I'(s"), T(1))*),
d(I'(s), T(t)* = (1 = ")(d(I'(s"), T(¢))* + d(T(¥), T'(#))%).

Therefore,
d(F(S)ar(t)) > ( )Qd( ( ) (t/))2 > (1 _ 52)26_(€)l+2d(a, b)z > 012—,8(1—1),

where C; = d(a,b)*(1 — %)%c_(g)® > 0.
Let us show that I'([0, 1]) = ENU, where U = C;} _(0)NC,, _(a). The main observation

T0,€

here is that the “middle” point 0o we’ve taken belongs to £ N U and thanks to flatness
condition we get the splitting ENU = (ENUy) U (ENU;), where
U C+ ()mcroe(> Uy = C+ ()mc

70, 70,€

b), so that UyNU; = {o}.

ros(
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So, by iterating this argument we get for any [ > 0

2l—1

ENnU=EnN U Uik, Ui = C (Fl(g)) ney (Fl(%»

70,E T0,E
k=0

Thus, I'/(T)) — ENU in terms of the Hausdorff distance because
—00

. . k kE+1
distq(ENU,T\(T7)) < max diam Uy, < m}?Xd(FZ(E)’Fl(T» < cy(e)'d(a,b).
We should apply the same arguments to show the existence of a point a € ENC,_(0),
d(a,exp(—r?Z)(0)) < ed(o,a), such that ENC,, (o) NC (a) is a simple curve as well.

T0,€

Since E N B(o,7) = ENC,.(0) for 0 < r < ry, we've finished the proof. O

Remark 5.3.6. If we are not too much interested in quantitative aspect we can obtain
the topological result in Theorem 5.3.5 as follows. We derive first that compact set F
is locally connected because the “middle” points can form a e-net on E for any € > 0.
Next, we observe that for a couple of points a,b € E close enough to each other, the
linear order a < b <= z(a~'-b) > 0 is well defined. Thus, the connected set £ N U
endowed with a linear order that respects topology is homomorphic to an interval. We
are going to realize this strategy in Theorem 3.4.5.

Notion of vertical curve

For the level sets we can now deduce from Lemma 5.2.14 and Theorem 5.3.5 the fol-
lowing theorem.

Theorem 5.3.7. Let F € C}(H",R*), F(0) = 0, be such that the differential of D, F'(0)
is surjective. Then there is a neighbourhood U of 0 € H" such that U N F~1(0) is a
simple curve.

This result give raise to the notion of vertical curve.

Notation 5.3.8. We call vertical curve the set T = U N F~*(0) from Theorem 5.3.7,
that is a connected part of F'~1(0) localised near 0. We assume, in particular, that

1. T enjoys the linear order: a < b <= z(a"'-b) > 0.

2. There is an increasing function a: Ry — R, a(r) - 0, called modulus of verti-
r—

cality, such that for any a,b € T’
I7(a) = =(b)|| < a(d(a,b))d(a, b).

For technical reasons (to start to use the flatness of I' from its biggest scale) we will
require that « is small enough. Certainly, o(diamI') < 1/10 should be sufficient.

Observe that 1. and 2. imply that (for max-type distance d as in Eq. (2.2))
a<b=d(a,b)?>=z(a"'-b)>0forabel.

For a,b € T with a < b, by the interval [a, b]r we mean {c € ' | a < ¢ < b}.
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Remark. In a trivial example, if = 0 then I' is a part of translated vertical axis.

Remark 5.3.9. By inspecting Eq. (5.4), we note that the modulus of verticality « for
' € F~1(0) can be bounded as follows

o(t) S maxnp({a}) " wr(B(a, C1))

< SUPxenm!; || x|=1 SUPbeB(a,Ct) | X (a) — X ()]
~ max B )
o T det({X,F(a), Y:F(a) [ i = 0, n})]

where C' = C(H",d) is a geometric constant.

Proposition 5.3.10. Let ' be a vertical curve. From Proposition 5.2.12 and Eq. (5.7)
we can deriwe the following relation:

|d(a,b)* +d(b,c)* — d(a, c)?| < 2a*(2d(a,c))d(a, c)? (5.12)
that holds fora < b <c onT.
Below we present some simple properties of vertical curve resulting from the flatness.
Proposition 5.3.11. Let o be a modulus of verticality of vertical curve I'.

1. For every c € H",
diam(B(c,7) NT) < v2r(1 + a(2r)).

2. For any a,b € T, the intersection B(a,r) N B(b,r) = @ is empty for

d(a,b)
V2

r =

(1 = a(d(a,b))),
unless a = 0.
3. For any a,b € T with a <b,
0 < diam([a, b]r) — d(a,b) < Kd(a,b)a(Kd(a,b))?, K =4.

4. For any a,b € T, the intersection B(a,7) N B(b,r)NT = @ is empty for

d(a,b)

(1 — a(2d(a,b))?), (5.13)

r =

&

unless o = 0.

5. Any sub-interval |a,blr C I lies insight a ball with centre on ¢ € I' of radius

d(a,b)
V2

r= (14 Ka(Kd(a,b))?), 0< K < oco.
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Proof. Assume that a,b € I' with b > a, then for any ¢ € H" we have

d(a,b)* = 2(b) — 2(a) — 2B(7(b), (a))
= (2(b) — 2(c) = 2B((b), 7(c))) — (2(a) — 2(c) — 2B(x(a), 7(c)))
—2(B(m(b), w(a)) — B(r(b), w(c)) + B(x(a), (c)))
< d(b,0)* +d(a,)* +2|B(w(b) — 7(a), 7(a) — 7(c))|
=d(b,0)* +d(a,0)* +2|B(n(b) — m(c), 7(a) — 7(c))].
Note also that |B(v,w)| < ||v]|||w]|. Now we are going to proceed case by case.
1. If a,b € B(c,7) N T we obtain that d(a,b)* < 2r? + 4r?a(2r).

2. If ¢ € B(a,r) N B(b,r), then d(a,b)* < 2r? + 2rd(a,b)a(d(a,b)). Solving this
quadratic equation one can derive the claimed value of r.

3. It follows from Propositions 5.3.10 and 5.4.2, that d(a,b)* > diam([a, b])?(1 —
4a(2 diam([a, b]))?). Since o < 1/10, we have first a rough bound diam([a,b]) <
2d(a,b), that gives diam([a, b])* < d(a,b)? + 8d(a, b)*«(4d(a,b))?. We conclude by
taking the square root in this inequality.

4. Assume that a < ¢ <bon I and d(a,c) < r and d(b,c) < r. Then by Eq. (5.12),
d(a,b)? < 2r% + 2d(a, b)*a(2d(a, b))?, from where we obtain the bound on r.

5. We take ¢ € [a,b]r such that d(a,c) = d(b,c¢) = 7. Applying Eq. (5.12), we get
that |272 — d(a,)?| < 2d(a,b)?a(2d(a,b))?. Tt is clear that [a,b]r C B(c,r) with
r = max{diam|a, c]r, diam|[c, b]r}. By the previous point, |r — 7| < 7a(7)?, and the
conclusion follows.

]

We give also some elementary consequences of Proposition 5.3.11.

Corollary 5.3.12. For any interior point c € I,
diam(B(c,7) NT) = vV2r(1 4+ o(1)), 7,0, (5.14)
where small-o is uniform for ¢ € [d',V]r, as soon as a’ > minl" and b’ < maxT.

Corollary 5.3.13 (Linear connexity of vertical curves). Let I" be a vertical curve with
a modulus of verticality a. For ¢ € H" and r > 0 such that I' N B(e,r) # @ we put
a=min{I'N B(c,r)} and b = max{I' N B(c,r)}. Then

max d(c,c) Sr.
¢ €la,blr

Definition. Let (X,dx) and (Y,dy) be two quasi-metric spaces. A homeomorphism
f: X — Y is said to be quasisymmetric if there is an increasing function 7 : [0, 00) —
[0,00) such that for any triple a, b, ¢ of distinct points in X, we have

dy(F(a). f(0) _  (dx(a.b)
dy(f(a), fe) =" <dx<a, c>> '

Observe that the inverse map f~': Y — X is also quasi-symmetric with 7 = n(¢t~!)~%.
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Proposition 5.3.14. A vertical curve (I',d) is quasi-symmetric equivalent to ([0, 1], |-]).
This follows from the following metric characterization of quasi-circles.

Theorem (|[TV80]). A metric Jordan curve is quasi-symmetric equivalent to the circle
St if and only if it is both bounded turning and doubling (that is, of finite Assouad
dimension).

A curve T is bounded turning if there is a constant C' > 0 such that diam[a, bp <
Cd(a,b) for any a,b € I". This property holds for a vertical curve even with C' — 1
when d(a,b) — 0. The Assouad dimension (Definition 3.5.10) of vertical curve is finite
merely because it is a subset of H" that has finite Assouad dimension. (In fact, the
Assouad dimension of (I',d) is equal to 2 by Proposition 3.5.12.)

5.4. Flat quasi-metric on interval

Let’s understand the properties of I' that can be derived from Eq. (5.12). We consider
here slightly more abstract situation.

Definition 5.4.1. Let x be a quasi-metric on [0, 1] continuous in the standard topology.
We assume that « is flat in the following sense:

|k(a,b) + k(b, c) — k(a,c)| < m(k(a,c))k(a,c), (5.15)

holds for 0 < a < b < ¢ < 1 with non-decreasing function m(t) N\, 0 when ¢t \, 0. We
are going to call A = ([0, 1], k) flat curve.

By Eq. (5.12), the function m for vertical curve I' endowed with d? can be bounded
as m(t) < 2a(2v/1)%.

Example. Any Reifenberg flat curve with vanishing constant in R” with induced eu-
clidean metric satisfies condition Eq. (5.15), see [DKTO01; DT99]. For instance, the flat
snowflakes curve (i.e. whose angles decrease with scale) will do. Note that they can
have infinite Hausdorff measure H!.

The following consequence of flatness (that we are going to use frequently) says that
at vanishing scales the diameter of an interval on A is equivalent to the distance between
the end-points.

Proposition 5.4.2. For [a,b] C A,
diam([a, b]) (1 — 2m(diam([a,b]))) < k(a,b) < diam([a, b]).
Proof. Take ¢,d € [a,b], ¢ < d, such that diam([a,b]) = k(c,d). Using Eq. (5.15), we
conclude by
k(a,b) > k(a,b) — k(a,c) — k(d,b)
= (k(a,b) — k(a,d) — k(d, b)) + (k(a,d) — k(a,c) — k(c,d)) + K(c, d)
r(c (

(¢, d) —m(r(a, b))k (a,b) — m(k(a, d))x(a,d)
(¢,d) —2m(k(c,d))k(c, d). O

(AVARAY
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Lemma 5.4.3. There exists a probability measure v on A and a constant 0 < m < 1
such that for every [b,c| C [a,b] C A with m(diam([a, b])) <m

" (Z%Z SB o )‘ = K/ ) (5.16)

where K = K () > 0 is some constant.

Proof. We build (by dyadic iterations) a sequence of families of closed intervals D* =
{If,. .. I5}, k=0,1,2,.... We put I{ = [0,1]. Assume that we’ve defined D*, then
each interval IF,i=1,. 2 , gives rise to two sub-intervals of D*'! as explained below.
If IF = [a,c] then If;ill = [a,b] and I5™ = [b, ¢] where the point ¢ € [a,b] is chosen is
such a way that x(a,b) = k(b,c) (by the continuity of  this is always possible). We
define probability measure x on A by putting u(I) = 27% for any I € D¥ £k =0,1,2,....
We put L(I) := k(a,b) for I = [a,b]. If I € D", we denote by I, k < n, a unique
interval of D* containing I. If I € Dy, is dyadic, then d(I) := k.

Let us take two dyadic intervals I* C I°. Assume that diam(I°) <1 < 1. According
to the flatness condition Eq. (5.15),

|L(L;-y) = 2L(I°)] < m(L(I;_1))L(I; 1),
so that,

2L(I%)

L= m(L(Tgey ) € o
N T

< 1+ m(L(Lg)-1))-

Repeating this, we show that

d(I°)—1 1°)—

[T (-mr)) < 2d<f*’>d<“>§g; < H 1+ m(L(I}))).

k=d(1?) —d(I%)

By taking the logarithm on this double inequality we obtain

d(I5)-1 (I
> (1= m(L(D) < o (ul1) ) < S (14 m(L(72).
k=d(I?) k=d(I")
that gives
d(I1%)—1 . . d(I1%)—1
Kati) 3 miadly) <o B < 3 ity

Since m is non-decreasing, by classical mean-value theorem
b
d(I%)—1 d(I%)—1 _ L(I7)

S° m(L(E) € Kolh) S m(L(T) In (%) < Ky () / m) .

k=d(I") k=d(I") L(1?)
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where Ky(1h) = maxj<j<, n(L(I_)L(I})™1) < —In((1 +m)/2). Thus, we've proved
Eq. (5.16) for dyadic intervals.

Let us next prove Eq. (5.16) for a dyadic interval I® € D; and an arbitrary interval
I* C I (compare the arguments with [Kor98, Th. 2]). General case can be reduced to
this one. Indeed, if I’ is not dyadic, we can find a dyadic interval I* such that I® ¢ I*
and 44(I°) > p(1°). Then we should apply our estimates twice: once for the distortion
between I? and I°, and a second time, for I and I*.

Let I®* = (U, I ¥ be the unique decomposition of I* into maximal dyadic intervals
{I*} ordered according to their size. Note that the largest interval I' € D, satisfies
() > p(I%)/4. Again recursively, using the flatness of A, we can obtain the estimate
(with convention Iy = I°)

ZL (1) 1:[ L+ m(L(L)) " < LI*) < 3 L(I%) ‘_ (1= m(L(L))) "

By the estimate for dyadic intervals, we get an upper bound

() (1) k—1 .
WV = 2 i i 1 1] )
d(I’“) 1 k—1
< Z A H 1+ m(LI)) TT (1 = m(L(1))) ™ =: P(1+ R)
k>1 l:d([b 1=0
where
d(I)—1
P = (1+m(L(1}))),
I=d(I")
and
p) ("5 P TT .
R= 0 T @+m@@) ] -mE@) -1
k>2 I=d(I') i=0

The factor P is good and can be bounded as before, so, let us deal with R.
Observe that by the maximality of the dyadic family {I,.}, d(I*) — d(I') > k/2.
Obviously, p(I*¥)/u(I*) < 240M~4UI%) " Since m is non-decreasing,

w(I%) [ (1 + m(L(I#)))4H-dam) e
RSZ (IS)< (1—TTL(L<[S))) —1>§ZQ() ()<q() ()_1)7

k>2

1+ m(L(I%))
(1= m(L(I*)))?
Assume that I° is small enough in such a way that ¢ < ¢o < 2. Then, using the fact
that (1+¢)" — 1 < It(1 +ty)" 1 if t € [0,%0] and the convergence of geometric series, we
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get that

R < (g—1) Y —auy (2)

: < Ka(imm(L(I*).

Thus, we obtain an appropriate upper bound. The lower bound can be obtained in
exactly the same way. O

Remark 5.4.4. Observe that a measure i in Lemma 5.4.3 is not canonical and there is
some flexibility in its definition (unless m = 0). Looking at the proof, we observe that
two new subintervals [; and I, inside I = I; U I, must satisfy

1—m(L(I)) < 2L(I) L)' <1+ m(L(I)), k=1,2,

in order to obtain the measure 1 with required properties. This means that each time
we can move a middle point ¢ = I1 N I by a distance < m(L(1))L(I).

Thus, returning to the vertical curves (T, d?), for each interval I = [a, b]r we can chose
as a middle point any point ¢ € I \ (B(a,r)U B(b,r)), where r as defined in Eq. (5.13)
(note that a(2d(a,b))* = m(L(I)) by Eq. (5.12)).

Corollary 5.4.5. Measure p is asymptotically optimally doubling on X (see [DKT01])
in the following sense: for any fized C' > 2

| uad) mad) oo 1
i sw {1500~ egl A CBACA wab <O <o

Proof. Indeed, for 6 — 0 we have

k(a,b)
k(c,d)

4k(a,b)
/ m) gy < m(4r(a,b))In (16

) < m(48) In(16C) — 0,
k(c,d)/4 t

so that,

d
— 1] —o0.

Below we give some useful consequences of the existence of measure 1 on A.

Corollary 5.4.6 (bi-Holder parametrization). For any € > 0 there is a constant K =
K(m, e, diam(\)) > 1 such that for every [a,b] C A

K= pu(la, b)) < k(a, b) < Kp([a, b)) (5.17)

Proof. For instance, for an upper bound we have
b diam X\ 1—e diam A\ _ 1—e
L)l_ < k([a, b)) exp (/ mit) dt) = exp (/ mit) ¢ dt> :
:u({aja b]) ¢ k(a,b)/4 t k(a,b)/4 t
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where
eln(k(a,b)) €

(1 —€)(In(k(a,b)) — In(4 diam X)) = 2(1—¢)’
provided that x(a,b)? < 4diam \. Since m \ 0, there is some moment ¢* > 0 such that
m(t) — < 0 for all ¢t < ¢*, and, hence,

diam A 1—e
K <exp (/ m<t2_ldt) :
t*
]

Corollary 5.4.7. Every flat curve \ has finite p-variation, Var’ A\ < oo, for any p > 1
and infinite p-variation Var’ A = oo if p < 1.

Corollary 5.4.8. The Hausdorff dimension of the flat curve X\ is equal to 1.

l:

2(1—¢)

Proof. Tt follows from the mass distribution principle, see [Fal03; Fed69], because by
Proposition 5.4.2 and Eq. (5.17)

0 if > 1;
li ,b]) di )™= 1 ,b )= ’ [
i (e, b) diam(fa, )7 = Tim Cpi(la, b])k(a, b) {Oo’ o<l
Lemma 5.4.9 (Area formula). For the flat curve A, the 1-dimensional Hausdorff mea-
sure can be computed by the formula

1
H'(N) = liminf Y  k(as, ai1), (5.18)
6—0 o
where the infimum is taken over all subdivisionso = {0 =ap < a; < ... < a; < a4 = 1}
such that ||o|| := max la; — ai1] < 6.

.....

Proof. Let’s denote the right hand side of Eq. (5.18) by T(\). By Proposition 5.4.2

: )
T\ = li%n ionfz diam([a;, a;11]). So, it is clear that H'(\) < T()\) because coverings
—Y =0

by intervals are more restricted than those in the definition of Hausdorff measure. Let
us assume that H!(\) < co and show the inverse inequality.
N
Let A C | Ei, 0 < diam(FE;) < €, E; is open, finite (due to the compactness of \)

=0
covering of A. Thanks to the continuity of x, we can consider only the coverings by open

sets. For E; # @ we define a; = inf{E;} and b; = sup{E;}. Obviously, A C |J;|a;, b;].
Then, we can find a sequence of points 0 = ¢y < ¢; < ... < ¢ < ¢41 = 1 such that any
interval [¢;, ¢;11] lies in some [a, b] and two successive intervals [¢;, ¢; 1] and [¢;41, ¢iya]
don’t belong to the same [ay, by]. By Proposition 5.4.2,

diam([a;, b;]) < K(a;, b;)(1 4 2m(e)) < diam(E;)(1 + 2m(e)).

Since m(e) — 0 when ¢ — 0, we conclude by

ke, civr) < diam([ag, b)) < (14 2m(e)) > diam(Ey). O

l
=0
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Example. Consider quasi-metrics of the form k(a,b) = |a — b|¢(Ja — b|) with some
positive smooth function ¢ : R, — R,. We want to see when « is flat in the sense of
Eq. (5.15). So, 0 < s < t, we need to have that

[to(t) + s6(s) — (t + 5)(t + 5)|
(t+s)o(t+s)

-0, t—0.

By mean value theorem, [t(t) + sé(s) — (t + s)(t + s)| < 2ts||o||jsr4q- Hence, it
suffices that s||¢||js145/0(t +s) — 0 when ¢t — 0. This is the case, for instance, for

é1(t) =1+ |In(t)|, and ¢o(t) = ¢1(t)~* for which we have
sl161 I 1+ )71 S [t + )71 =0,
sl|@2lis,e G2(t +5)7" < [In(s)| ™ — 0.

Note that by Eq. (5.18) the corresponding quasi-metrics satisfy
1 . 1 —
Hm([oa 1]) = 005 Hm([oa 1]) = 0.

Question 5.4.10. Can ([0, 1], k1) or ([0, 1], k2) be bi-Lipschitz equivalent to squared met-
ric (T, d?) induced on some vertical curve I' € H"? In general, one could think about
some intrinsic characterization (up to bi-Lipshitz equivalence) of metrics coming as an
induced metric on vertical curves (as, for instance, in [Roh01; HM12| for quasi-circles).

Definition 5.4.11. The flat curve ) is said to be p- Ahlfors regular if thereis 1 < K < oo
such that
K 'k(a,b)? < H*([a,b)) < Kr(a,b)?

holds for any [a,b] C A.

Remark. If X is p-Ahlfors regular, then
0 < K 'HP()\) < Var’(\) < KHP()) < oo.

Lemma 5.4.12 (Area formula in regular case). Assume that m satisfies Dini’s condition

diam(X)
D()) = ) g < oo (5.19)
O t

The flat curve X is 1-Ahlfors regular in a strong sense: for any [s,t] C A

l

H'([s,1]) = lim Z/{(tk,tkﬂ), c={s=ty<t; < - <t =t}
lol—0 &=

Cr(s,t) m
H([s,1]) — K(s,)| < Cr(s, 1) /0 @ dt, (5.20)

where C' = C(D(\)) < o0.

m(t)

= dt < oo is equivalent to the summability of Y-, m(r=")

Remark. Dini condition fo*
for any 1 < r < oo.
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Proof. Assume first that m(diam()\)) < m as in Lemma 5.4.3. We can always achieve
this condition by taking small pieces of A and loosing some constants in our estimates.

Since D(\) < oo, from Eq. (5.16) we see that the ratio Ry/C < k(c,d)/u([c,d]) < CRy
is bounded from above and from below when x(c,d) — 0, where C' = exp(D(\) +
m(diam()\))) + K and Ry = diam(A)/u(N). In particular, A is 1-Ahlfors regular.

We can chose a bi-Lipschitz parametrization ([0,77],|-|) — ([0, 1], ) in such a way
that |t — s|/C? < k(s,t) < |t — s| for [s,t] C [0,T]. So, the flatness condition Eq. (5.15)
will read

|k(s,t) + k(h,t) — k(s,h)] <m(|s —t|)|s—t|, helst]C[0,T].
To obtain the “regular” version of the area formula we should apply the following gen-

eralization of a classical result on Stieltjes integration (see, also [You38; Bur4g]).
Lemma 5.4.13 (about additive sewing, [FL06]). Let x : [0,1]* — R be a continuous
function such that

|k(a,b) + k(b,c) — k(a,c)| <w(la—c|), b€ a,d,

with a non-decreasing function w(t). Suppose that > ;° 2'w(27") < co. Then there
exists a unique (up to additive constant) function v : [0,1] — R such that

v(b) — v(a) — k(a,b)] <Y 2w(]b—al27).

i=0
Furthermore, the Stieltjes sums Zizo K(tiytiy1), where o ={a =1ty <t < --- <ty =
b} is a subdivision of |a,b|, converges to v(b) — v(a) when ||o| — 0.

In our case, w(t) = tm(t), so that

Z 2iw(|b—al27%) = |b— Z m(|b—al27) < C%k(a,b) Y m(C?k(a,b)27"),

i=0
and Eq. (5.20) follows. O

Remark. Observe that the doubling measure p on A is obtained by “top-bottom” scale
procedure whereas the Hausdorff measure H! by “bottom-top” one. We see that under
Dini’s condition Eq. (5.19), these two measures of different nature are comparable.

Elements of quantitative analysis. Assume that the flat curve X lives at scale N € Z,
i.e. diam(\) = 27V, Let
AN CAN_H C.AN+2 C...

be a filtration of nets on A such that Ay = {0,1} and A,,, n > N, is 27 "-scale skeleton
on \:

e for each a € X there is b € A,, such that x(a,b) <27
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k(b,0') > 27" for any couple of different points b,V € A,,.

There is no issue for the construction of a such filtration.

Each skeleton inherits the order structure from )\, so it can be seen as a subdivision
of A. To a subdivision {0 = a; < ... < axy; = 1} we naturally associate an ordered set
of covering intervals {[a;, a;+1] | i =1,...,k}. So, let Z,, be the set of covering intervals
associated to A,. We define a tree T encoding the hierarchy of the intervals in this
filtration:

e the set of nodes of T is | |, Zn;
e an interval [ € 7, is the parent of I’ if and only if I’ € Z,,,; and I' C I.

The symbol I™ stays for the set of children of the node I € T. Note that for all I € T
the number of children #(I™) < C is uniformly bounded. For I € T we introduce

o(I):= > diam(I') — diam(I).

For any interval I C A, we denote by T; a sub-tree of T whose root is the smallest
interval I’ € T containing I. For a tree, we call the cut (of variable depth) a set of
leaves of some finite sub-tree growing from the same root.

Lemma 5.4.14. Assume that ), . |0(I)| < co. Then the flat curve X satisfies
|H(I) — diam(])| < m(diam(I)) diam(] Z |o(1")] (5.21)
I'eTy
for any interval I C .

Proof. Let I € T, then for any cut cut(T;) of T; we have that

|diam(1) — > diam(I')| < > [0(])

I'ecut(Ty) IeTy

By density of “dyadic” points and the area formula, there is a sequence o,, of cuts of T;

with maxy,, diam(/") — 0 such that
n—

1 S . /
H(I)= 7}1_{20 I; diam(7").

Thus, Eq. (5.21) holds for any I € T (even without first term).
Take now arbitrary interval I C A. This interval can be represented as I = J,,., I’ a
(disjoint) union of dyadic intervals from T. Therefore,

[H(1) — diam(I)] < [diam(7) — Y diam(I')| + Y [H!(I') — diam(I")].

I'eo I'eo
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For the second term we already have a good estimate:

D HNI) —diam(I)[ <Y Yo" < Y o).

I'eo I'eo I"eTp I"eTy

For the first term we should use the flatness of \. We apply recursively Eq. (5.15) to
the intervals I’ € o ordered according to their sizes and due to the fact that those sizes
are exponentially decreasing we can get that

| diam (1) — ) diam(I")| < m(diam(I)) diam([).

This argument is very similar to the one at end of proof of Lemma 5.4.3, so the reader
should have no difficulties reconstruct it. ]

Remark. By Proposition 5.4.2, Eq. (5.21) is equivalent to

1H'((s,1)) — K(s,t)| < m(diam((s,t))) diam((s,t)) + Z 0(1")].

IIGT(Sﬂg)

5.4.1. Application to vertical curves. Area formula

We return to the properties of vertical curves. Let I' be a vertical curve as in Nota-
tion 5.3.8. Let 0 = {a=ag < a1 < -+ < a; < a;41 = b} be a subdivision of I" = [a, b]r.
We see that

l l

Z d(a;, ai+1)2 = Z Zip1 — zi + 2B(7(a;), (@i 1))

=0 =0

n l
= 2(b) = 2(a) + 2> > wl(yly —vl) — vl (@l — ),

j=1 i=0

where x] (y/ or z) is 27 (37 or z) coordinate of a;. Observe that if the image of
v € CO%[ti, tis1],R?) is a linear segment then

/:Udy = Yo (i) (v (tig1) — 1 (t:)),

so, it makes sense to use a piece-wise linear approximation of I'.

Definition 5.4.15. Let 0 = {a = ay < --- < a,, = b} be a subdivision of I = [a, D]
To o we associate an approximating curve I', such that I', coincides with [' on ¢ and
', is a linear segment (in R*"*1) between two consecutive points of o.

According to Eq. (5.12), (T',d?) is a flat curve. Since Hausdorff measure is invari-
ant under isometric embeddings, we derive from Corollary 5.4.8 and Lemma 5.4.9 the
following
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Corollary 5.4.16. Vertical curve I' C H" has Hausdorff dimension 2, dim ' = 2, and
two-dimensional Hausdorff measure of I' can be computed by the formula

H*(T) = 2(b) — 2(a) + 211m1nfzz (@lyl, —ylal)

llo]—0
=1 i=0

2 lim inf I dy — o da?
/Fdz+ 12115[1)2/”:16(134 y da?).

(5.22)

We can also formulate the area formula in term of the approximating curves.

Proposition 5.4.17. T, is also vertical curve with H*(T'y) =Y d(a;i1,a;)?. Further-
more, ', converges to I' in the sense of Hausdorff distance when ||o|| — 0 and, by the
area formula,

liminf H*(T,) = H*(T).

llo]|—0

On the contrary, the spherical Hausdorff measure of subsets depends in general on
the ambient space.

Proposition 5.4.18. For our choice of the metric d on H" (see Eq. (2.2)) the spherical
Hausdorff measure satisfies

S?LT =2H2LT.

Proof. We need to show two inequalities. We shall use the basic properties of vertical
curves from Proposition 5.3.11.

e On one hand, diam(B(c,r) N T) < v/2r(1 + o(1)), where small-o goes to 0 with
r — 0 uniformly w.r.t. c € H".

e On the other hand, any interval [a,b] C T' lies inside a ball of radius r =
d(a,b)/v/2(140(1)), with small-o going to 0 when @ — b uniformly w.r.t. a,b € I

]

Remark 5.4.19. Imagine that instead of d, we consider another left-invariant homoge-
neous quasi-metric d on H"”. We will have

2 1\ 2y2
H2(T) = c(dYHA(T),
where ¢(d) = a(q,exp(Z)(O))/d(O,eXp(Z)(O)) is the coefficient of dilatation along the
vertical axis of d w.r.t. our reference metric d. Indeed, because of the Whitney’s

condition, diamy(F) = ¢(d) diam(E)(1 + o(1)) when diam(FE) — 0 for E C T' and the
conclusion follows easily.
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5.5. Regular case

Definition 5.5.1. We say that the vertical curve I' is strongly Ahlfors reqular (or
w-regular), if there is a modulus w, such that w(¢) \, 0 when ¢ — 0 and

|H?([c,d]r) — d(c, d)?| < w(d(c,d)?)d(c,d)?, [e,d]p CT.

Remark. This definition is a counterpart of the notion of “vanishing chord-arc” (see, for
instance, [CKLO05, p. 10]).

Notation 5.5.2. For a curve v € CY([0,T], 7(H") = R?*") we introduce “symplectic”
Stieltjes integral

_Q/Zx]dy —]}Jdl’] =2 lim ZB Y(tis1)),

lle]|—0
v (&l

where 0 = {0 =ty < -+ < t;4; = T} is a subdivision of [0,7]. Remark that the
existence of Z(7y) does not imply in general the existence of any of single integrals
f7 27 dy’, so we cannot bring the sum over j = 1,...,n out of the limit over o.

We give here an immediate consequence of the definitions.

Corollary 5.5.3. Assume that the vertical curve I' @ H" is w-reqular. Then the area
formula reads

HA(T) = / dz + Z(x(T)).

The curve I' admits a natural parametrization t — T'(t) such that
H*(D([0,8])) = ¢, te[0,H*(D)].
This map, t — T'(t), is bi-Holder of exponent 1/2:
K(jt = s|)lt = s[* > d(I'(#), T(s)) > K (|t = s|)~'[t = 517,
with K(0) — 1 when § — 0, and it has the following form
t — (m(TL[0,1]),2(0) + ¢ — Z(x(L'L[0,1]))). (5.23)

Remark 5.5.4. If T' is w-regular vertical curve in H', then two integrals [.z'dy' and
Jry' da' exist individually. Indeed, w.r.t. natural parametrization the coordinates z'

and y' along I" belong to hol'/2 (by Whitney’s condition). By Remark A.1.4 integration
by parts is possible, that implies the existence of

2/F:c1 dy' = z'y'| + /(:c1 dy' — y'dat).

r

For higher Heisenberg groups this property is not necessary valid.
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In general, vertical curve I' is not w-regular (see Section 5.6). However, an additional
regularity of the map F' assures its level set be w-regular.

Lemma 5.5.5. Suppose that the horizontal differential of F' has a modulus of continuity
m7

IDrF(a)™" - DpF(b)]| < ap(d(a, b)),

with non-decreasing ar: Ry — Ry such that o satisfies Dini’s condition Eq. (5.19).
Then any vertical curve T C F~1(0) is w-regular with

KVt 2
w(t) < K/ ar(s) ds, K <oo.
0 s

(Of course, we suppose that Dy F' is surjective on I'.)
Proof. By Remark 5.3.9, the modulus of verticality a of I' can be controlled by ap. We

can apply Eq. (5.20) with a function m such that m(s) < ap(y/s)? by Proposition 5.3.10.
Thus, for any a,b € I" we have that

2 _ 2 Kd(a,b)? 2 VEKd(a,b) 2
P ) S0 g [ S g, g [T arl
d(a, b)? 0 s 0 s

]

Corollary 5.5.6. If ' € Cflb’a(]HI”,]R%), a > 0, then its level set T C F~1(0) is w-reqular
with w(t) < t*.

Remark. In the first Heisenberg group H!, one can show that if ap, satisfies Dini’s
condition for only one of the coordinate functions of F' = (F}, F,) then I is w-regular.

Question 5.5.7. Assume that I' is w-regular. Does this imply that a doubling measure
u (constructed in Lemma 5.4.3) is comparable to H? on I'?

5.5.1. Regular vertical lift

A straightforward consequence of Theorem A.1.3 is
Proposition. Let v € Hol*([0, T],R?"), a > 1/2. Then the “horizontally” lifted curve
t — (y(t), — Z(yL[0,t])) € Hol*([0, T],H") N Hol*([0, T], R***") (5.24)
1s Holder continuous in both Carnot and Fuclidean metrics. Conversely, if a curve
{t = (1), 2()} € Hol" (0. T, HY), o>

then for all t € [0,T)
2(t) = 2(0) — Z(yL_[0,]).
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Remark. There exists also a (non-unique and non-canonical) lift, see [LV07, Pr. 3|, of
any Holder curve v € Hol*([0, T], R?"), a < %, to a Holder map into H", that is a curve
(v, 2) € Hol*([0, T, H").

Proposition 5.5.8. Let {t — (v(t),2(t))} € Hol'%([0,1],H") be a Hélder curve such
that v € holV2([0,1],R?"). Then there is a constant K > 0 such that

['={t — (v(t),2(t) + Kt)}
s a vertical 2-Ahlfors reqular curve.

Proof. For all t, s € [0, 1]

so, by triangle inequality,
(K = Ot —s[ < [«(T7H(s) - T(1))] < (K + Ot — 5],

where C = ||(v, z)||§011/2. Put K = 2C. Because 7 € hol'/?, the following estimate holds
uniformly

l7(@(s)™" - T(s)I* = llv(t) = y(s)II* = o[t — s]) = o(|2(T'(s) ™" - T(1))1).

We see then that curve I satisfies Whitney’s condition (see Proposition 5.2.5), and, so,
it is vertical. Note also that (T, d) is bi-Lipschitz equivalent to ([0, 1],|-|2), this is where
2-Ahlfors regularity comes from. ]

Definition 5.5.9. Let v € C°([0,7],R?*") be a curve such that Z(y) exists. We call
regqular vertical lift of v a curve of the following form:

[0,7] 3 ¢t — (v(t), C — Z(yL[0,¢]) + ).

Remark 5.5.10. If v € Hol*([0,T],R*"), 1 > o > %, then regular vertical lift of ~ also
belongs to Hol*([0, 7], R*"™!). Indeed, using Theorem A.1.3,

| Z(yL[0,2]) = Z(yL[0,8]) +t — s| = | Z(vL[s,t]) +t — s
<t = s+ |Z(vL[s,t]) — 2B(v(s), v(t))|
+2|B(v(s),7(1))]
< |t = 5| + CallV o]t = s[** + 27 () [[[I7 () = 7(s)]
< |t = 5| + CallV o]t = sI** + CllvlloollVlnoie [t — |
<Ot =sl*, Cly) < oo

Lemma 5.5.11. Seen locally, level sets I' of map F € C}II’Q(H",]RQ"), a > 0, with
surjective D, F, are exactly regular vertical lifts of curves vy € HOIHTQ([O, T],R?").
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Figure 5.4.: Regular vertical lift for n = 3 (left) and n = 16 (right) of truncated Weierstrass curve
{t = (X0, 272 sin(2m2t), 31" | 272 (1 — cos(272't))) }. The intersections of lifted curve
with two horizontal planes are shown.

Proof. By Remark 5.3.9 the modulus of verticality of a vertical curve I' C F~1(0)
satisfies a(t) < t*. Note also that by Corollary 5.5.6, I' is w-regular with w(t) < t°.
This means, in particular, that ' admits the natural parametrization by the “length”,

i.e. H2LT. We see that 7(T') € Hol =" w. 1. t. this parametrization. Therefore, according
to Eq. (5.23) curve I is a regular vertical lift of 7(T).

Take now v € HOIHTQ([O,T],RQ") and define I' as a regular vertical lift of . By
Theorem A.1.3, for any t,s € [0,7] close enough we have that
d(T(),T())* > [t — s+ Z(yL[s,1]) — 2B(v(t),7(s))|
> |t —s| = CallVI} vyult — s
Hol 2

> Clt =] 2 ClI uya lh(®) ()75, € =C(3) > 0.

To conclude we only have to apply Whitney extension Theorem 2.3.7 for C’i’a—functions
to D FLI' = Idgz« and FLI' = 0. [

5.5.2. Euclidean Dimension.

Notation. The symbols H%, and dimg will stay for the Hausdorff measure and dimen-
sion w.r.t. the Euclidean metric on H".

Remark 5.5.12. According to the comparison theorem[BTWO09] between Euclidean and
SubRiemannian dimension, 1 < dimg[' < dim[" = 2. Since the projection 7 is 1-
Lipschitz (in Euclidean sense too), H%(I') > H%(n(I")) and dimg ' > dimg «(T"). If I is
2-Ahlfors regular, then up to change the parametrization = (I") € hol'/? and, therefore,
7(T) has area zero : L(7(T')) = 0.

Lemma 5.5.13. The Fuclidean dimension of vertical curves always belongs the closed
interval [1,2] and can take any value from it.
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Proof. We are going to make our construction in H!, the generalization to the higher
dimensional Heisenberg groups are trivial. For 1 < 8 < 2 we can always find a “quasi-
helix” curve of exponent 571, i.e. v: [0, 1] — R? such that

Iv(t) = y(s)| = |t — |7, s,t€0,1].

Such a curve can be explicitly built as Von Koch’s auto-similar curve. Then, of course,
dimg vy = . Take I' a regular vertical lift of v (see Definition 5.5.9) that is, by Propo-
sition 5.5.8, a vertical curve. By Remark 5.5.10, dimgI' < 3, on the other hand,
dimp I' > dimg 7(I") = 5. To obtain the dimension § = 2 see example below. O

Example 5.5.14. There is a 2-Ahlfors regular vertical curve I' C H! such that
dimT = dimg ' = dimg 7(T") = 2.

Proof. The main idea is to build first a curve 7: [0,1] — R? of Euclidean dimension 2
such that ||v(t) —~(s)|]* < |t — s|m, (|t — s|) and m, satisfies Dini’s condition Eq. (5.19).
Then, we can take a vertical curve I' as regular vertical lift of ~ that has the wished
properties. The curve v will be obtained iteratively as Von Koch’s curve with the factor
of similarity that increases slowly at each iteration.

Let us fix a decreasing sequence {h,} € (0,3), h, \, 0, and two points Aj and A in
R? with Iy := ||A} — AJ|| = 1. We are going to define by dyadic iterations a sequence
of the points {A'}, n > 0 and ¢ = 0,...,2". To iterate, we replace each segment of
n'-generation by two segments (n + 1)"-generation as on Figure 5.5. We alternate the
left and right sides (w.r.t. to old segments) on which new segments are added (so that
new formed triangles lie inside the old ones). The length of each segment [A}, A7, ] of

n'h_generation is equal to I, = 27"z ) Let v be a unique continuous function such

Af

Figure 5.5.: First and second generation of dyadic points

that v(i/2") = A} for every n > 0 and ¢ = 0,...,2". Observe that whatever h,, \, 0
we take, dimg vy = 2. In fact, it can be shown (compare to the proof of Theorem 5.3.5)
that for every g > 1/2

ly(®) =)l > [t = 5%, s,t€[0,1].

For any couple of points A} and A} such that 0 < |j —i| < 2”77, we can show by
recurrence over n =r + 1,..., that

A} — A7 <2 > Iy (5.25)
k=r+1
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From Equation (5.25) we derive that m., satisfies m.,(27") < 27(2>°72 ., lk)2. In partic-

k—o00

ular, v € hol? if khy, =% 0. The series Y00, m.(27") is bounded (up to multiplicative
and additive universal constants) by

Some) <Y (> W’

r=0 k=r+1

< Z 2 ULz r1g2r41) S ZT““WM < 22 )’

r=0; 7,k=1 j,k=1

(5.26)

Therefore, if Y 27" < oo, then Y, m,(27") < 0 converges, i.e. m, satisfies Dini’s
condition.
Let us take, for instance, h,, = (nln(n+1)?+2)~! and define v : [0, 1] — R? as above.

Put k(t,s) = 2(%(15) y(5) = 7y(t)72(s)) then
|K(s,q) + (g, 1) — K(s, )] S my(Jt = st —s], g €s, 1] C[0,1].

So, using Eq. (5.26) in Lemma 5.4.13, we see that the curve t — (y(t),Z(yL[0,t])) exists
and belongs to hol'/([0, 1], H') To conclude, we must now apply Proposition 5.5.8. [J

5.6. Irregular examples

As we have already mentioned flatness condition from Lemma 5.2.14 implies that
dimI" = 2 but says nothing about the regularity of Hausdorff measure H? on I'. In
this section we are going to develop the technique to be able to construct effectively
vertical curves carrying irregular Hausdorff measure H2. Typically, we think about
vertical curves having measure zero or infinity. Of course, those types of irregularities
can be manifested only by very particular level sets and, certainly, does not reflect the
generic behaviour. At least, we can assert this for vertical curves of infinite measure.
Remark 5.6.1. By the general coarea inequality for Lipschitz maps, see Theorem 2.1.13,
the measure H?(F~'(a) N K) < oo is finite for £>"-almost every a € R?" and every
K e H".

Still, if we believe in coarea formula for F' € Lip(H", R?"), vertical curves of measure
zero should be also rather exceptional.

Our construction technique is based on intrinsic characterization in Lemma 5.6.12 of
the curve m(I"). To apply this characterization requires exact calculus of the “symplectic”
Stieltjes sum (see Notation 5.5.2) for the curves v with lower regularity (going beyond
Lemma 5.4.13 and Theorem A.1.3). We are going to achieve this calculus for special
family of v given as lacunary Fourier series.

5.6.1. Stieltjes calculus for lacunary Fourier series

Notation 5.6.2. For n € Z we introduce the basic functions
Gn(t) :=(2m) ' exp(—2712"t),
Vo (t) :=(27) L exp(2n12"t).
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Let us also consider two series

— Z 272 (4 (t) + buthn(t)),  a@n,bn € C,

m

22 2 (Cmdm(t) + duton(t)),  Cmydm € C.

Observe that the functions f and g are real-valued if and only if a,, = b,, and ¢,, = d,,. In

all cases that we are interested in, we are going to assume that f, g € () Hol'/?7%([0, 1], C).
>0

For h > 0 we denote by k(h) a unique integer such that 27*"W=1 < p < 27*h)  For
h > 0, we have the following classical upper bound

13" 2 5 a(dalt + h) — 6a(1))]

k(h) o0
< 27 a,|lexp(2rI2°h) — 1|+ Y 27%|a,
n=0 n=k(h)+1
k(h)
<> 273 a,|h2" + 9= "% Z 2= "5 |a|
n=0 n=k(h)+1

< h2 Ly ({an}),

where we note

Le({an}) : Zmn\z 4 Z 273" |a,).

Thus,
[f(t+h) = FO)F < 2h(Lw ({an})® + Liw ({0a1)?).

It is clear that Ly({a,}) < ||an|/co, Where || - || stands for the usual norm in a [*°-space.

Therefore, || flgo2 S (J|anlloo + [|bn]loo). Observe also that if lim,, a,, = lim,, b, = 0 then

Li({an}) + Li({b,}) — 0 and, in this case, f € hol'/?. Similar remarks are valid for
—00

the function g.

Fix [s,t] C [0,1] and let k* = k(t —s). Let 0 = {s = tg < t; < -+ < ty <
tny41 = s} be a subdivision of [s,¢]. Our goal now is to estimate the Stieltjes sum
[, fdg— f(s)(g(t) — g(s)). We are going to pay attention to two different regimes:

1. t — s =1 (with a convention that k£* = 0);
2. t—sx 1.

We split this sum in two terms called diagonal (D, ) and secondary (S, ):

D, = i 27" (a,d, /(, Gn diby, + bncy, /a b ddn);
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S0 = 32 (wnd [ G+ [ 0d0)

n;ém

+ Z Uy Cry2 /¢nd¢m+b d 2—/wnd¢m,

n,m=0
where én() = (bn() - ¢n(s)7 and 1/?n() = wn() - wn(s)
Notation. We put At; :=t;1 —t;, k; = k(At;), and ||| := max |At;|.

Estimate of secondary term. Let us treat, for instance, the term S, . relative to the
coefficients a,c,,. We also split this term in two (“small” and “big”):

e _n+m ti+At; N )
Sue =S5, — 8. Z Z (U C 2 (6n(ti) — dn(l)) b

=0 n,m=0

CY e / (én(s) = 6n (D) dnD) di

n,m=0

Of course, formally speaking the last sum 5276 might not exist, but the reader should
think about it as a finite sum up to K big enough and, then, when we get our estimates,
make tend X' — oo. We don’t do this passage to the limit over K only in order to
simplify the notations.

Depending on the size of At; we can use one of the four following bounds that are
quite easy to find:

2 (AL,
[ 0l = )t a] < i ] T )
On(t;) — On()) (D) dl| <min{ - T (5.28
" 2" At
1.
For fixed ¢ € [0, V], according to Eq. (5.28) we get
o e ti+At; .
S fanenl 25| [ (Gult) = 0n0)dnlt)
n,m=0 ti
Do lanen[2 27 4 3 ay
nm<k; m>k; >n
+ Z e |27 270 4 Z | Com
n>ki>m n,m>k;
SPR 0 g o B S T S 1
= 2ki—n)/2 2 D(ki—m)]2 )2 SCEIE
n=0 m=0 n=0 m=k;+1
k; 00 0o o'}
- |Cm| |an ‘le
+22(k1—m)/2 Z 2(n—ki)/2+ Z 2(n—k;)/2 Z 2(n—k;)/
m=0 n==k;+1 n=k;+1 m=k;+1
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We derive from it that

el S Z 27" Ly, ({an}) L, ({em}),

150 <27 Lo ({an}) L (o).

Exactly in the same way we find an appropriate upper bound for the other terms of
S, = S5 — 5P so, after that we end up with

1551 S Z 278 (L, ({an}) + Li, ({bn})) (L, ({em}) + Li, ({dn})),

|S°] <ok (Li({an}) + Lis ({0 ) (Lo ({em}) + Lis ({din 1))

Observe that S® = 0 if t — s = 1 since each term in this sum will be zero in this case.

Estimate of diagonal term. We split the diagonal term as D, = DS — D° according
to the difference [ fdg — f(s)(g(t) — g(s)). Note also that D% =0 for t — s = 1.
Recall that for our choice of ¢, and 1,

(27)%0n(t:) (Yn(tiv1) — Pu(ti)) = exp(2rI2"At;) — 1,
(27)2¢n(ti)(¢n(ti+l) - ¢n(tz)) = eXp(_ZW]QnAti) -

and that for z € [0, 1]

. 2 1
lexp(zl) —1—Ix| < %
Therefore,
Z 22 2 (exp(2mI2"At;) — 1) + byca(exp(—2m 12" At;) — 1))
=0 n=0
N ki )
=211 Y > Ati(and, — bycy) + S5
i=0 n=0
and S¢ can be bounded as follows
~ N 00
|55] < Z Z 27" (|and, dn| + |brcal)
=0 n=k;+1 i=0 n=0
fe’e) k;
< Zz ki ( S 2 (ayd,| 4 [bocal) + > 2 Jand| + |bncn|)>
n=k;+1 n=0

“ (L ({an}) Li,({dn}) + Li, ({em}) L, ({04})) -

lMZ
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In the same way, for the boundary term D° we get

k*
(2m)2D° = 211 (t — s) Z(andn — bpcn) + S°,

n=0

|51 < 27 (L ({an}) L ({din}) + L ({€m }) L ({00 }))..

Results. In resume, taking into account that Zi]io At; = t— s, we obtain the following

estimate
[ o= 1s)at) = o) = <2w>1f§_v;mi Z(d —buea) £ B+ R (5.29)
where R = 0if t — s = 1, and,
RIS (=) max (La({o)) + Lu((0,1) (Balfen) + L)), (5.30)
RS (¢ = 5) (L Qand) + Lo (100 1) (Do () + Lo (i }). (5:31)

Now we reformulate this result in several different contexts.

m—ro0

Proposition 5.6.3. Take ||an||oo + ||bnlloc < 00, |cm| + |dm| — 0 and the functions
f and g given by Eq. (5.27). Then, fort—s=1

lim /fdg— (2m) 112 Ay — bpcy), (5.32)

lloll—=0

if and only if the last series converges (not necessary absolutely).

Proof. Assume that the series converges. Since vazo At; =1,

N k; 0o o) N
ZAtiZ(a” n — bncp) Z — bpep) = Z andy, bncn)ZAti(l{nSki} —1).
=0 n=0 n=0 n=k(|lo])) i=0

The last term tends to 0 when ||o|| — 0 because the function n — S~ Ati(Lgn<k,y — 1)
is monotone and bounded. []

Remark 5.6.4. The existence of Stieltjes integral fol f dg is equivalent to its existence
on any other non-empty interval [s,¢] C [0,1]. Indeed, due to similarity property of the
lacunary series, the restriction of our integral on a smaller dyadic interval makes us for-
get about some finite number of regular terms that changes nothing for the convergence
of series Eq. (5.32).
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Proposition 5.6.5. Take f and g as in Proposition 5.0.5. Then for a subdivision o of
any interval [s,t] C [0, 1]
| [ £d9- 16)o®) - 9(5)

k(At;) (5.33)
(2m) 1[ZAt D (andy — bucy)| < w([t = s|)|t — s,

n=k([t—s])
where w(h) — 0 when h ™\, 0.

Proposition 5.6.6. Take f and g real-valued functions given by Eq. (5.27). Assume
that for alln >0

max{||anloos [|bnllsc; [Ienlloo, |dnlloo} < K < o0,

Then for a subdivision o of any interval [s,t] C [0,1]

k(At;) (5.34)
—@m) Y AL Y (andn = bacy)| S Kt — 8.
o n=k(|t—s|)

m—ro0

Proposition 5.6.7. Assume that ||a,||s+ /0 HOO < 00 and |¢y| +|dy| — 0. Assume

also that the corresponding functions f € Hol? and g € hol'? are real-valued. Then for
t —s =1 the limit values of [ fdg when ||o|| — 0 fills the closed interval

n—oo n—oo

/ fdg hm inf A,,; limsup A ] A, =7t Z Im(agdy).
||U||HO

And if ||an|loo + [[bnlloo < 00 and ||en||oe + [|dmlloe < 00,

/ fdg  C[liminfA, — I(f,¢);limsup A, +1(f,9)],
llo]|—0

n—00 n—o00

where I(f,9) S (lanlloo + 1 lloc) (llcmlloo + [ldmlloc)-
Proof. Tt suffices to distribute in the right way the convex weights At;. ]

Application: 1/2-Hdlder curves in Heisenberg group.

Proposition 5.6.8. A curve v € Hol"?([0,1],R?) can be obtained as the projection
v = m(\) of some curve \ € Holl/Q([O, 1), H') if and only if the partial sums there is a
constant K < oo such that for any subdivision o0 = {s =ty < t; < --- < tj41 =t} of any
interval [s,t] C [0, 1]

| / ety — 12(8) (1) — ()] < Kt — . (5.35)
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Remark. As~ € Holl/z([O, 1],IR?), the property Eq. (5.35) is equivalent by Remark A.1.4
to its “mixte” counterpart

|ZB Y(tiv1)) — B(y(s),7(t))]
(5.36)
= | /(% dryy — Yy dye — Ve (8) 1y (1) + 72 ()1 (s))| < K[t — s].

Proof. First assume that A = (v, 2) € Hol"?([0, 1], H'). If K = ||A||;y,/2, then summing
up over ¢ the terms

K3 (tign — ti) < 2(tin) — 2(t) = 2B(y(t:), (i) < K2 (tivn — i),

and subtracting
—K*(t - 5) < 2(t) — 2(s) = 2B(y(s),7(1)) < K*(t - s),

we get that

|B( ZB V(i) < K2(t = ).

Conversely, assume that y € Hol/%([0, 1], R?) satisfies Eq. (5.35). Let us fix a sequence
of subdivisions o, of the interval [0, 1] such that ||o,|| — 0. Given o,,, we define o,([s, t])
its restriction on [s,t] C [0,1] as a subdivision containing s, ¢ and all points of o,
between s and ¢. The continuity of 7y and the property Eq. (5.36) imply that the family
of continuous functions {z,},>o on [0, 1] defined as

Z B z+1))

on([0,t])

is equi-continuous. The family {z, },>0 is clearly bounded, hence, it satisfies the hypoth-
esis of the classical Arzela—Ascoli theorem, i. e. is precompact. Thus, we can take some
limit point z of {z,},>0. By definition, for every [s, ] € [0, 1] and some subsequence 7y,

2(t) — 2(s) = lim B(y(t:),v(tis1))-

k—o0
ony, ([s:t])

Passing to the limit in Eq. (5.36), we get
|2(t) — 2(s) = B(y(s),y(t))| < K'|t — s,
so that, (v,2z) will be an appropriate lift. O]

Remark 5.6.9. If A € Hol'/?([0,1],H"), then curve t — exp(h(t)Z)(\(t)) is also in
Hol'/?([0,1], H') if and only if h: [0,1] — R is Lipschitz.
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From Proposition 5.6.6 and Proposition 5.6.8 we deduce a rather simple criterion for
lacunary series.

Corollary 5.6.10. Take f and g real-valued functions given by Eq. (5.27). Assume
that
max{|an/oc, bnlloos Ienlloos [[dnlloc} < Ky < 00

Then the curve v = {t — (f(t),9(t))} can be obtained as the projection v = m(\) of
some curve \ € Holl/z([O7 1],H') if and only if the partial sums

N
|ZIm(akdk)| < Ky < o0

k=0
are uniformly bounded.

Remark. Thus, not every v € Hol'/%([0, 1], R?) admits a lift to A € Hol'/?([0, 1], H").

5.6.2. Rough vertical lift

We fix an increasing function € : R, — R such that €(t) \, 0 when ¢ \, 0. We assume
also that the function, defined as h(t) = ¢(t)~'t for t > 0 and h(0) = 0, is continuous on
R,. Let v: [0,T] — R be a continuous curve. Given ¢ and v, we define a continuous
function Az: [0, T]> = R: for 0 <t,s < T we put

Az(t,s) = h(|7(t) = v(s)II?) + 2B((t), (). (5.37)

For ¢t € [0, T] we define a number, finite or infinite,

N
2(t) = Varjpy(Az) = sup {Z Az(tip1,t;) | 0=tg <ty < - <tny1 = t} . (5.38)
=0

The choice of v and € determines therefore uniquely z(t).

Definition 5.6.11. If z(T) < oo, then the curve I'(t) = (y(¢),2(t)): [0,T] — H" is
called the rough vertical lift of ~.

Lemma 5.6.12 (Characterization of m(I")). Let €, v, Az and z be as above.

1. Assume that z(T) < co. Then z: [0,T] — R is continuous and the rough vertical
lift T'(t) = (v(t), 2(t)) is a vertical curve.

2. The projection v = w(I') of any vertical curve I': [0,T] — H" admits a rough
vertical lift for some e.

Remark 5.6.13 (relaxation of €). For the existence of a rough vertical lift, the only
important properties is that €(t) P 0 and z(T) < oco. It is clear that z.(T) < z(T)
%
if € > e. Now, if z(T) < oo for € : Ry — Ry, €(t) e 0, then we can easily find
—>
continuous and monotone € > €, such that €(t) P 0, and €(t)~ ¢ P 0, that allows us
— —

to apply Lemma 5.6.12.
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Proof. 1. Since the function Az is continuous and the chain-variation z(¢) is bounded,
then the chain-variation z(t) is also continuous by Proposition A.3.5. It is clear that
Varjp(Az) > Varp q(Az) + Varp g(Az) for all 0 < s <t <T. Hence,

2(t) = 2(5) > Var(A2) > Az(t,s),
that gives
(1) = A(IP) (1) = 2(5) — 2B(y(1).7(s))) = 1y (8) —7(s)]>
We put a = [(), b = [(s). As ¢ is increasing,
e(cd(a,b)2)d(a, b)” > |[m(a) — 7(b)|%, ¢ = e(diam(7)?) < oo,

that is exactly the Whitney’s condition (see Proposition 5.2.5) for the set I'([0, 7).
2. If v is a constant curve, we just take a part of the vertical axis above v. Otherwise,
for 0 < ¢ < diam(v)? we define

) = max { L0210 < 15 <72 o) -0 <5}

According to the Whitney’s condition ||y(t) —v(s)||* = o(d(['(),'(s))?) when |t —s| — 0.
That is why in the definition of € the maximum is achieved and €(d) > 0 if § > 0. For
d, — 0, take t = t, and s = s,, that realise the value of €(d,) (i.e. argmax-points). By
compactness, we can assume that t, — ¢, s, — s. If £ = s, then lime(d,) = 0 by the
Whitney’s condition. If ¢ # s, then lim€(4,) < lim §, d(T'(¢),'(s)) "2 = 0 because we are
working with an injective parametrisation of I". This shows that €(d) N\, 0 when ¢ 0.

By its definition, the function Az built with those v and e satisfies Az(s,t) < z(I'(¢))—
2(I'(s)), 0 < s <t <T. Therefore, Varp r(Az) < 2(I'(T)) — 2(I'(0)). Of course, we still
need to slightly modify € as in Remark 5.6.13. The rough vertical lift T’ that we have
obtained can be different from I' that we started with. ]

5.6.3. Examples construction

We are going to make our constructions in H', the generalization on higher dimensions
is trivial.

Proposition 5.6.14. If {[0,1] 5t — ['(t)} is a vertical curve, then the Stieltjes sums
for its projection v = w(T")

23" B(y(tian) A(t) < 2(I(1) - 2(T(0)) < o

are uniformly bounded from above for all o = {0 =ty < t; < -+ < tyy1 = 1}. This
condition is sufficient for a curve v € hol"*([0,1],R?") to be the projection v = w(T') of
some vertical curve T'.
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Proof. Indeed, if 7 is different from constant, we can put

€(d)= max |t —s|7t, § € (0,diam(y)),

(&) =(s)[I>>6
and apply Lemma 5.6.12. O

Proposition 5.6.15. If for a curve vertical T',

hmmfZHW i) — m(T)]? >0

lloll—=0

then H*(T') = oc.
Proof. Immediately follows from the verticality condition and area formula. O
Example 5.6.16. There exists a vertical curve I' such that H?(T') = oo.

Proof. Let f and g be to real-valued functions given by Eq. (5.27). We choose the
coefficients {a,} and {d,,} in a such way that lima, = limd,, = 0 and the sequence
SN, Im(a,d,) tends to oo when N — oo (one should pay attention to the sign). The
curve v := (f, g) € hol?([0,1], R?) and the Stieltjes sum

> Bt ) = [adr= [ 1dg

are uniformly bounded from above by Eq. (5.29) and Remark A.1.4. By Proposi-
tion 5.6.14, the curve 7 admits a rough vertical lift I'. Using area formula Corol-
lary 5.4.16, Proposition 5.6.7 and Remark A.1.4 we obtain that

H*(I') = 2(I'(1)) — 2(T'(0)) + 2lim inf ( /fdg /gdf) = 0. O

lloll—0
Example 5.6.17. There exists a vertical curve I" such that H?*(T") = 0.

Proof. Take two real-valued functions f and g in the form of Eq. (5.27) with limb,, =
lime,, = 0 and define v := (f,g) € hol"/?([0, 1], R?). Our strategy is to find the coef-
ficients of f and g in such a way that for any subdivision o = {0 =ty < t; < ... <

tnp = 1},

ZAZ i+1,t Zh 1y(tisa) = () I1?) + 2B(v(tir), v(t:)

(5.39)
< 211msupZB (trt1), Y(t)) < o0,

lell—0 5

where h(t) = te(t)™! as in Lemma 5.6.12 (a suitable € will be specified later). Indeed, in
this case v admits a rough vertical lift I' and according to Eq. (5.38) its z-component
satisfies

z(1) — 2(0) = 211msupZB (trs1), v(tx)),

lell—0 5
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since the supremum can be reached by making ||o|| — 0. Moreover, by applying the
area formula from Corollary 5.4.16 we will find that

HAT) = 2(1) — 2(0) + 2liminf Y  B(y(t:), v(tiss))

o0

= 2(1) — 2(0) — 211msupZB (tis1), () = 0.

lo—=0

By Remark A.1.4 (fg{(l) = 0) and Proposition 5.6.7,

hmsupZB (trs1),v(tr)) = 211msup/gdf =21 111msupZIm biCr).

lell—=0 5 llell—0 n—oo 3T,

Using the notations of Section 5.6.1, we get

pRLLEIT ) = [ gdr g

ki
= 2/gdf +r, =21t Z At; Zlm(bkck) +7r, + R,
o k=0

g

where

o] < Z Iy(tis) = (&)1,
Ryl < CZ Aty (L, ({0n})* + L, ({em})?)-

Therefore, to fulfil Eq. (5.39), it will be sufficient that for any interval [t;, ¢;11],

1y (tiz1) = ()]
e([ly(tivr) — ()1

) + 2|7 (tia) = Y(E)° + 200t (Li, ({00 1)* + L, ({em})?)

n (5.40)
< Ar7tAt; limsup Z Im(byer) < 00

n—o00 |
Recall that we also have
17 (tis1) = y(E)I1? < 40 (Li, ({00 })? + Li, ({cm })?)-

It is convenient to take the sequences {b,} and {c,,} that tend to 0 very slowly in such
a way that

1. Im(b;c;) > 0 for all [ > 0;
2. for all k>0,

A(C +4) (Li({bu ))* + Li({em})?) Z Im(bye;) <
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Li({ba})* + Li({em})” _

3. lim —
k—o0 Zl:k Im(blcl)

One can always find such sequences, for instance, if —Ib, = ¢, = k~! for k big enough,

then Ly({b,})* = Ly({cm})? S k72 and >,°, Im(by¢;) = k~*. Given the sequences {b,}

and {c,,} satisfying the conditions above, we can produce a function €(t) P 0 that
—

meets Eq. (5.40). Indeed, for 0 < § < diam(y)? we can define

6((5) =20 max (‘If — S’Sk(‘t,sb)il, Si = Z Im(blcl).

V() =~v(s)[[2>6 I=k+1

Note that AtSyay is strictly decreasing when At ™\, 0. That is why the value of ¢(¢) is
achieved on the shortest interval s, #] such that ||v(#) —v(5)||* =3 > 0, i.e.

_ 2@ @I o Ergsn (e} + L {emd))
|3 - t’Sk(\E—ﬂ) Sk(|§_t_|) §—0

€(9)
Thus, the inequality Eq. (5.40) is fulfilled:

Iy (tis) — v (&)1

E(”W(tiﬂ) - ’V(tz’)HQ) 20y (tia) = (@)1 + 2048 (Lki({bn})Q + L’fi({cm})z)

At;S,,
2

< +2(4 + C)AL (L ({ba})? + Li({em )
o AliSy | ALSy,

- 2 2

A replacement of € (by some € > ¢, according to Remark 5.6.13) can be needed, but
this will make the last inequality only stronger. [

Example 5.6.18. There exists a vertical curve vertical ' such that Var?(r(T)) = oo
w.r.t. the Euclidean distance on R2.

Proof. This time we are going to consider two real-valued functions f and ¢ given by
Eq. (5.27) such that the sequences {b,} and {¢,,} tend (in norm) slowly to infinity.
By taking dyadic subdivisions, it is easy to show that in this case Var®(y) = oo for
v = (f,g). Remember that we still need to satisfy

X ) 2t * 250 ) S 5 <

for any subdivision o of [0, 1] with some €() = 0 and some fixed constant K. Note
ﬁ

that the first term of the last sum is positive and non-bounded that force the second
term to go to —oo.

Using a routine from Example 5.6.17, we see that it will be sufficient that for any
interval [tl, ti+1]
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Iy (tis1) — ()|

5(“7@41) _ 7(#)“2) + 2[|y(tig1) — 7(%)“2 + QCAti(Lki({bn})Q + Lki({Cm})Q)
< Ati( — 41 killm(bkck) + K)_ (5.41)

For the sequences {b,} and {c,,} this condition can be interpreted as follows

o < Led0n})” + Li({em})” koo,
— > Im(byey)

2. Addition technical condition: —27% EkH Im(byc;) N\ 0 when k& 7 co.

1.

0;

For instance, the sequences Ib, = ¢; = [¢ will do for « > 0. The end of the proof is
imitating the one of Example 5.6.17 (with Sy = m ~o Im(biy)). O

Example 5.6.19. There exists a 2-Ahlfors regular vertical curve ' such that the metric
density of H2LT does not exist at every point: for every interior point a € I’

H*(T' N B(a,r)) ~ limsup H*(T N B(a,r))

=1.
2T2 r—0 27“2

0 < liminf
r—0

Remark. We can replace here 2r? by diam(I' N B(a,))?, see Eq. (5.14).
Proof. Take v = (f, g) € hol'/?(]0, 1], R?) given by Eq. (5.27) such that the series

N

Z and,, — bycy, (5.42)
n=0
diverges when N — oo but stays bounded. By Corollary 5 ), there exists a lift A €

Hol'/2([0,1], H'), 7()\) = 7. By Proposition 5.5.8, the curve {t — F( ) =exp(CtZ)(A(t))}
is vertical for C' > 0 big enough. Furthermore, this parametrisation is 1/2-bi-Hélder,
i.e. d(T'(s),[(¢))* = |t — s|, and, therefore, T is 2-Ahlfors regular.

Take 0 < s <t <1 with |t — s| = 0. Let o stands for a subdivision of [s,t]. By area
formula Eq. (5.22), Proposition 5.6.5 and Remark A.1.4,

5 (4(T(). T(0)? — H(T (1. 1)

= 2y — Yoy — lim inf/(x dy — ydx)

llol|—0
k(At:)

= —liminf7r™ IIZAIS Z andy, — bpcy) + o(|t — s)).

ol =0

n=k(|t—s|)
Note that
k(At;)
—liminf ) At Z (and, — bpcy) = (t — s) lim sup Z (bpcn — andy,),
lollso £ o Nooo | Gt
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and, therefore, by 1/2-bi-Ho6lder equivalence,

H* (L ([, £])
E(s,t) :=1— W llgljolip k(zts)bcn andy) 4 o(1).

So, because the series Eq. (5.42) does not converge, there is some sequence |t — si| — 0

such that limy_,o £(Sg, tx) > 0. Observe also that there is always a sequence |t —sx| — 0
such that limy_, . (S, tr) = 0.

To finish, note that the flatness and the 2-Ahlfors regularity of I' implies that for any
interior point a € I

|H*(T' N B(a,r)) — H*([e,blr)| = o(r?), r—0,
[H*(T N Bla,r)) = H*([¢,V]p)] = o(r?), =0,
nd

where [c, b]r the smallest interval containing I'N B(a,r) and [¢/, b']r is the largest interval
contained in I' N B(a,r) (see also Proposition 5.4.1 7). O

Remark. The reader should not be surprised to see the exact value of lim sup equal to 1
r—0

in Example 5.6.19. Indeed, if H?*(T') < co then by a general measure-theory argument
in [Fed69, sec. 2.10.17— 2.10.19], we have that

HX (T NE)
diam(E)?
for H2-almost all point points ¢ € I". Recall also that due to the flatness of I, we can
use only subintervals of I' instead of an arbitrary set £. Moreover, observe that due to

auto-similar nature of the lacunary Fourier series, there is no more dependence on the

reference point ¢ when we are calculating lim sup.
r—0

Example 5.6.20. There is a vertical curve I' € Holl/2([0, T|,H'), T > 0, such that the

metric derivative (T LT
(b))
h—0 h

does not exist at every ¢t € (0,7).

lim su
6—0 p

|ce E, diam(E)§O<5}:

Proof. Take a curve I' from Example 5.6.19 and reparametrize it by “lenght” H?L.I'. O

Remark 5.6.21 (Lipschitz maps between graded groups). We can view A € Hol"/ 2(R,HY)
as an image of Lipschitz map from an Abelian homogeneous group Ry, = (R, | - |%, R
8¢(a) = t?a, (i.e. the snowflake on R of the exponent 1/2). In particular, Example 5.6.20
says that the Rademacher’s theorem' is not valid for Lipschitz maps between two graded

groups Ry and H! (certainly because we have dropped the brackets generating condition
for Ry).

Question 5.6.22. Does there exist a vertical curve I' C H' such that £*(7(T")) > 07 We
believe that answer is “YES”, but it is not sure that this can be done using lacunary
Fourier series.

! named after Hans Rademacher it states the following. If U is an open subset of R” and f : U — R™ is
Lipschitz, then f is differentiable almost everywhere in U. Its generalization is valid for the Lipschitz
maps between Carnot groups, see [Pan89).
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6. Foliation by vertical curves

6.1. Maximal codimension case

The goal of this section is to show that the level sets of a map in C}(H", R*") with
surjective horizontal differential form locally a continuous foliation of H".

Theorem 6.1.1. Let F € C}(H",R*"), F(0) =0 and D,F(0) is sujective. Then there
exists a homeomorphism

[0,1] x [=8,8]*" > (t,p) — T,(t) eU CH", § >0,
into some neighbourhood U of 0 € H" such that for every p € [—4d,6]*",
1. Ty([0,1]) = UN F~(p);

2. the parametrization {[0,1] 2 t — [',(t)} induces on the vertical curve U N F~1(p)
an asymptotically optimally doubling measure (as in Lemma 5./.53).

Before we start the proof, we present some auxiliary results.

Notation 6.1.2. We denote by d,F(a): exp(HH") — R?" the restriction of Dy F(a)
on horizontal plane. Thus, if D,F(a) is surjective, d; F'(a) is an isomorphism of linear
spaces.

We are going to use the topological argument of Corollary 3.1.6. Note that in our
case the only possible candidate for T is exp(HH").

Proposition 6.1.3 (On parallel transport). Let F' € C}(H",R*") such that D,F(a) is
surjective for every a € H". Assume that p,p’ € R*" and the norm of Ap :=p' — p is
small. By Corollary 5.1.6, for a,b € F~'(p) we can find a’ € exp(HH")(a) N F~1(p')
and b € exp(HH")(b) N F~1(p'). Then

alvd =mw(a - d) = [dpF(a)] " (Ap) + o(|Ap|),
b b =70 V) = [dyF (D) (Ap) + o(|Ap]),

and, if d(a,b) = r is small enough,
[d(a,0)* = d(a",b')’] < [z(a™" - b) — z(a""" - V)| < |Aplo(|Ap| + 1),

where the error terms small-o are uniform as soon as points a,b,a’, b’ belongs to some
compact part of H".
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Proof. The first two equations are rather obvious, so let us show the third one. The
facts that d(a,b) is small enough and that a,b belongs to some vertical curve ensure
that d(a,b)? = |z2(a™! - b)]. The same holds for a’, 1’ because Ap is small too. Because

a~'-a and b~ - ¥ are horizontal elements we have

[2(a™" - b) = 2(a"" V)| =
= [2(b) = 2(t) + 2(a') = 2(a) — 2B(x(a), 7 (b)) + 2B(7(a'), 7 (V'))]
=2|B(w(d), n(V)) = B(w(a), w(b)) + B(x ('), 7 (b)) — B(m(a'), 7 (a))]

(m(a’)
= 2|B(w(a’) — 7(b), (V) — 7(a))|
= 2|B(r(a') — w(a) + m(b) — w(t), 7(V) = w(b) + 7(b) — w(a))l
S ([dnF ()] = [dn F(0)]7")(Ap) + o(|Ap|)| [ Ap] + o(r),

from where the conclusion follows. ]

Corollary 6.1.4. If in Proposition 6.1.5 we take |Ap| = r small, then pairs a,b and
a’, b’ sit in the same order on the vertical curves on which they lie.

Proof. Tf, for instance, 0 < z(a™'-b) = r? but 2(a’! - ) < 0, then it would give a
contradiction: r* = o(r?). O

Continuous selection theorem. Let us recall one important topological result.

Theorem 6.1.5 ([Mic89]). Let X be a paracompact space and Y a complete metric
space. Take a lower-semi-continuous (l.s.c.) map ¢: (X,dx) — (2¥,distq, ) such that
o(x) C Y is closed for all x € X. Suppose that dimy,, X < n+1, ¢(x) is n-connected for
all x € X and {¢(z) | = € X} is locally equi-n-connected. Then ¢ admits a continuous
selection, that is a continuous map f: X —Y such that f(x) € ¢(x) for all z € X.

A metric space M is n-connected if, for every k < n, every continuous map from the
k-sphere S* to M is null homotopic (i.e. homotopic to a constant map). A collection
& C 2M is locally equi-n-connected if, for every y € Upce B, every neighbourhood V' of
y in M contains a neighbourhood W of y in M such that, for all B € £ and k£ < n,
every map from S* to W N B is null-homotopic over V N B (i.e. a homotopy taking
values in V' N B). The following classical example from [Mic56] should help the reader
understand the definitions.

Example. Consider ¢: [0,1] — 2%* defined by
_ J{@sin(t™h) [t € [2/2,2]}, z € (0,1];
o(z) = {{0} x [—1,1], z = 0.

Observe that ¢ is l.s.c., ¢(z) is homeomorphic to an interval, but the family {¢(z) |
x € [0,1]} is not equi-n-connected. By the way, if ¢ admitted a continuous selection, it
would imply that the image |J, ¢, () is arcwise connected, which is not true.

Proof of Theorem 0.1.1. The proof will be split in several parts.
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Part I: Globalization. This part is necessary in order to provide an appropriate bound-
ary condition for the homeomorphism I',(t) that we are going to construct.
Fix ¢ € C*°(H",R) such that 0 < ¢ <1 and

¢ = 1, =€ B(0,1);
10, z¢ B(0,2).

For R > 0 we put £g = £ 0 0y/g. Observe that ||Dyég|| < R™'. Now we define a map
Fr=¢&rF + (1 — &R)DyF(0). Its differential satisfies

DyFg(a) = DpF(0) = &r(a)(DnF(a) — Dy F(0)) + (F(a) — DaF(0)(a)) Drgr(a).
By the definition of the differentiability of F,
1€r(a)(DrF'(a) — DpF(0))|| < [[Drt'(a) — DuF(0)]| < wr(B(0,2R)),

and for a,b € B(0,2R)

I(F(a) = DuF(0){a)) Drér(a)| S B[ F(a) — DyF(0)(a)]| =
R7Y|F(a) — F(0) = DpF(0)(a)|| < R7'd(0, a)wF( (0,CR)) S wr(B(0,CR)),

therefore, for some universal constant C' > 0,

max
acH™

DyFr(a) — DyF(0)]| < Cwp(B(0,CR)) — 0, when R —0.  (6.1)

We can find Ry > 0 small enough such that 2Cwg(B(0,CRy)) < np({0}). In particular,
ng,(H") > np({0})/2 > 0 for R < Ry, so that, D,Fg(a) is surjective for every a € H".
What about the level sets of Ff in this case? We know that for each point a € F; L(p),
p € R? there is a neighborhood of a, containing a ball B(a,r,), in which the level
set F _1( ) is a vertical curve. Moreover, following the arguments to prove this fact
(see Lemma 5.2.10, Proposition 5.2.12, and Theorem 5.3.7), we see that the radius r,
of this ball can be bounded from below by some r* > 0 depending only on Ng,(H"),
np, (H") and wg, (H") (with a dependence emphasized in Remark 5.2.11). By the way,
Eq. (6.1) implies that when R < Ry the last three quantities can be controlled by their
counterpart for F restricted on B(0,CR). So, the radius 7* can be bounded from below
independently of R < Ry. Let us chose R < min{r*/4, Ry} (so that B(0,2R) C B(a,r")
for every a € B(0,2R)) and denote by F := Fj.

Of course, F~'(p) N B(0,R) = F~*(p) N B(0, R) since F and F coincide on B(0, R).
Obviously, outside B(0,2R), the level set £~ (p) is merely a left-translated vertical axis.
Moreover, due to our choice of R, for any p € F(B(0,2R)), the two intersection points
F~Y(p) N OB(0,2R) are connected by the vertical curve F~1(p) N B(0,2R), and, thus,
the whole level set F~!(p) is a vertical curve for any p € R?".

Part 11: Continuity. Denote by 2z, = (3R)? and let us consider for p € R?" the truncated

vertical curve T, := F~1(p) N {—20 < 2 < 2}
Let us introduce the metric space Y of all continuous maps v : [—1,1] — H" that
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e are vertically monotone : z(y(s)™! - ~(t)) > 0 for any t > s;
o satisfy the boundary condition : z(y(1)) = 2o and z(y(—1)) = —2o.

We endow Y with the sup metric dy (v1,72) = supye_11)d(71(f),72(t)) that turns it into
a complete metric space. Let X = (R*", |- ||) and let us define a multivalued map
¢ X — (2¥,distg, ),

op) = {y €Y |7([-1,1]) =T,}.

Each set ¢(p) C Y is obviously closed and, by the construction of F, not empty. The
linear order on I', naturally induces a partial order on ¢(p). Observe also that ¢(p)
is n-connected for all n > 0, because if we fix one injective parametrization on I', as
a reference, the set ¢(p) of all monotone parametrizations of I', will be clearly convex
w.r.t. it.

Proposition. The map ¢ is bi-Lipschitz.

Proof of Proposition. By Remark 3.1.11, the Hausdorff distance disty, between ¢(p')
and ¢(p) is greater than |p’ — p| Lip(F)~'. By symmetry, we only need to prove that for
any given v € ¢(p) there is a 7' € ¢(p’) such that dy(v,7') S Ap := [p' — p|. Of course,
it is enough to prove it for small Ap.

For a € T, let us denote by a* € I';y Nexp(HH")(a) a point closest to a. From
Corollary 3.1.6, we can derive that d(a,at) < KAp with a constant K depending
only on F. Choose a sequence of points {—1 =ty < t; < ... < ty = 1} such that
d(y(t;),¥(tiz1)) = Ap. Define ag =Ty N{z = =20}, ay = Ty N{z = 2z} and a; = v(t;)*
fori=1,...,N — 1. If Ap is small enough, then by Corollary 6.1.4 the sequence {a;}
respects the order on I'yy. To conclude we take any 7' € ¢(p’) such that v/(¢;) = a;. O

Let us check that the family {¢(p) | p € X} is locally equi-n-connected for any n > 0.
Fix v € ¢(p). For € > 0 and p’ € X we define two maps from [—1,1] to I, by

Ymin(t) = min{a € Ty | d(a,v(t)) < €},
Ymaz(t) = max{a € 'y | d(a,v(t)) < €}.

By definition, the convex interval I := {5 € ¢(0') | Ymin < ¥ < Ymaz} C Y contains the
intersection ¢(p')N By (7, €) and dy (7;,7) < € where i € {min, max}. Here, the use of the
metric dy still makes sense even if 7,,;, and 7,,., are not necessarily continuous and may
not belong to Y. By Corollary 5.3.13, distq, ({7}, I) < €, and therefore, {¢(p) | p € X}
is locally equi-n-connected, n > 0.

Thus, we are in a situation where we can apply the continuous selection Theorem 6.1.5
to the map ¢. It provides us with a continuous map R** 3 p — I',() such that I',(+) is a
parametrization of vertical curve I',. The issue now is that this individual parametriza-
tion is just monotone and not necessarily injective. Probably, there is a purely topo-
logical argument that allows to get a globally continuous injective reparametrization in
t of (p,t) — I',(t). But we will explore metric properties of vertical curves in order to
build an injective parametrization with fine metric properties.
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Part 11l: Equi-doubling measures. Here, we are going to use the equi-vertical flatness
of I', in order to construct on it an asymptotically optimally doubling measure ,
depending continuously on p.

Observe that the family of vertical curves {I',},cge» has some common modulus of
verticality denoted by a. Without loss of generality, we can assume that « is continuous.
We denote by r(p) the radius given in Eq. (5.13) for @ = I',(0) and b = I'y(1). In
particular, r(p) is continuous w.r.t. p because I',(0) and I',(1) are so. We introduce
two functions

s+(p) = inf{t [ d(I',(1), T (1)) <
s—(p) = sup{t [ d(I',(0), T'(t)) <

and two closed subsets of [0,1] x R?*",

Uy ={(t,p) [t =2 s:(p)} and U-={(t,p)|t<s-(p)}

By the choice of r(p), si(p) > s_(p) for every p. By elementary topology, there is a
continuous section separating U, and U_, i.e. a continuous map p — s12(p) € [0,1]
such that s_ < s1/2 < s;. Indeed, locally it is enough to check the separation by a
constant section that is obvious because the complement of (U, U U-) is open.

For the sake of notation, we put also sp = 0 and s; = 1. In the same way, starting
from the subfamilies of vertical curves

{Tp(®) [t € [s0(p)s s12(p)]}p - and  {Tp(1) [T € [s1/2(p), s1(P)]}p

we obtain respectively continuous sections s;/4 and s3/4. We repeat this dyadic proce-
dure to construct an ordered family of continuous sections {s, | ¢ € dyadic([0,1])}.
The construction of the vertically monotone map g — s,4(p) is a little bit different
from the procedure in the proof of Lemma 5.4.3, because each time we don’t take an
exact middle point. However, as it is shown in Remark 5.4.4, the measure p, induced
onI'y, by ¢ — s,4(p) still enjoys the same estimate Eq. (5.16) (with m depending only on
Q). In particular, by Corollary 5.4.6, the map ¢ — s,(p) is bi-Holder continuous (with
constants independent of p), and so, admits a bi-Holder continuous extension to [0, 1].
Thus, (p,t) — s¢(p) is a homeomorphism with the required properties (up to restriction
to an appropriate neighbourhood of 0). O

r(p)},
r(p)},

6.2. Applications

6.2.1. Local topology via vertical foliation.

Corollary 6.2.1. Let F € CHH",R*), 1 < k < 2n, with F(0) = 0 and D,F(0)
surjective. Then in some neighbourhood of 0 € H" the level set F~1(0) is locally
homeomorphic to Ker D, F(0).

Remark 6.2.2. The case of k < n is easy because locally a level set admits a local
parametrization as an intrinsic graph (see [F'SS07]).
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Proof. The level sets in the case of k = 2n correspond to vertical curves. Therefore, we
only need to prove the theorem for k¥ < 2n—1. We are going to use the fact that F~1(0) is
foliated by vertical curves. Since Dy, F(0) is surjective, we can find a (“complementary”)
horizontal homomorphism P: H" — R2*~* such that map F = (F, P): H* — R?" has
surjective horizontal differential at 0. Let T'),(¢): [—4,]*" x [0,1] — H" be the local
foliation of H" given by Theorem 6.1.1 with fibres T', = F~'(p). Thus, I',(t) provides
also a homeomorphism of ([—d, §]*" N (P(H"),0)) x [0,1] to F~1(0)NU, where U is some
neighbourhood of 0. Note that [—d,d]*" N (P(H"),0) is homeomorphic to a cube in
R?*"~* 5o that, F~1(0) is locally homeomorphic to R?"~**1, O

6.2.2. Irregular examples.

Remark 6.2.3. We can obtain easily a lower bound on the Hausdorff dimension of level
sets of FF € C{(H",R™), 1 < m < 2n, using a general coarea inequality for Lipschitz
maps. Assume that F'(0) = 0 and D F(0) is surjective. Take P as in Corollary 6.2.1.
Then for S := F~'(F(0)) N U, by the coarea inequality in Theorem 2.1.13, we get

/ HQ*G(S ) Pfl(p)) d?‘lQnim(p) 5 Lip(P)2n+2 H2n+27m75(s), € Z 0.
Ranm

We know that SN P~!(p) = F(0,p) is a vertical curve that has the Hausdorff dimension
2. Using a topological argument similar to Lemma 3.1.2 one can show that the image
P(S) has positive H**~™ measure. Thus, for any ¢ > 0 the left-hand side integral is
equal to +00, and, hence, dim S > 2n + 2 — m.

Corollary 6.2.4. For any integer k € [n + 1,2n] there exist maps g; € C}(H", RF),
i = 1,2, with g;(0) = 0 and Dyg;(0) surjective, and a neighbourhood U of 0 € H" such
that

HH (g1 (0) 1 1) = ocs

H2n+2—k(92—1(0) N U) =0.

Proof. Let T' be an irregular vertical curve in H', either with H?(T") = 0 or H*(T') = oo
(see Section 5.6). Let F' € C}(H', R?) be a map with surjective D, F' such that I' C
F1(0),

We define g € C}(H", R?*"*27%) as follows

g('Ila"'axn)yl)"'vynaZ) = (F<x1aylaz)ax27'"7xn7y27"'7yk—n)-

It is clear that Djg is surjective. Now let us look at g='(0). As a set it is the direct
product of I' and R*** 3 (yp_pn41,...,%2.). The key point is that the metric induced on
g~1(0) is nothing but a product metric. Indeed, because all coordinates xo = ... = z,, =
0 for every a,b € g~1(0), all non-commutative contributions of form 2z;y;, 2 <[ < n, to
the z-coordinate of a~! - b vanish.

e For the case of H?(I') = 0 we can apply classical results about product metrics.
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Theorem ([Fed69, Th. 2.10.45]). Let (I',d) be a metric space. Endow I" x R™
with a product metric

d((a,z), (b,y))* =d(a,0)* + [ly —¥|>, a,beTl, yy eR™

Then H*T™(U x V) = H*(U)L™(V') provided that H*(U) < oo, U C T.

e For the case of H*(T') = oo, we can use the coarea inequality Theorem 2.1.13
(recall that the projection on each factor is Lipschitz).

]

6.2.3. Coarea formula with extra regularity.

Theorem 6.2.5. Let F € C}L’O‘(H”,RQ”), a > 0. Then for any Borel set E C H", the
coarea formula holds

/ H*(F'(p)NE)dL™(p) = K / | det d, F(a)| dH*"*(a), (6.2)

where K = K(d,n, k) is a geometric constant.

Proof. First of all we should observe that Eq. (6.2) holds for any map F that is C!
regular in usual sense. This can be done by applying the standard Euclidean coarea
formula and next calculating the density of H* w.r.t. H.,, on level sets. See [Mag04]
for an implementation of this strategy in Heisenberg groups, or [KV13] for the general
situation. Observe next that by the coarea inequality [Mag02|, we can ignore the
characteristic set {a € H" | detd,F(a) = 0} and we may only consider the situation
where D, F is surjective on FE.

We use the approximation of F by smooth maps F,,, € C*°(H", R*") such that F,, — F
and Dy F,, — DpF locally uniformly. One can get it by taking a standard convolution
F,, = F % &, where &, is an approximation of the Dirac mass dy. Since |detd,F,,| —
| det dj, F'| locally uniformly on H", the right-hand side of Eq. (6.2) converges. Therefore,
it suffices to show that #?(F,,*(p) N E) converges to H*(F~'(p) N E) for any p € G*.

Note also that Eq. (6.2) is a local relation, it is enough to show it only, let say, for
small open sets E. Thus, we can assume that level set F'~(p)NE (as well as F,,}(p)NE
for every m) is made as a union of vertical curves.

Since we require an extra regularity of F, its level sets are w-regular, see Defini-
tion 5.5.1. Note that the same is true for level sets of F,,, essentially because w depends
on the modulus of continuity of horizontal derivatives and taking a convolution changes
it in a bounded way. Thus, we can step away a little bit from the boundary of £ and
consider a compact part of F~!(p)NE given as a finite number of vertical curves without
changing a lot the total H?-measure. We should recall also that the level sets of F,, con-
verges to the level sets of F locally in E in the Hausdorff distance (see Definition 3.1.7
and Proposition 3.1.8). And now the conclusion follows from Proposition 6.2.6. O]

129



The argument below reminds the uniform concentration principle (see [Dav05, Sec. 35])
that provides a sufficient condition for the lower semi-continuity of the Hausdorff mea-
sure w.r.t. the local convergence of sets in the Hausdorff distance. But because we
require the equi strong Ahlfors regularity of the family of approximative vertical curves
I',, and we know how the optimal (for H?) coverings are made on them, we can obtain
an upper bound too.

Proposition 6.2.6. Let {I',,} a sequence of vertical curves having a common modulus
of verticality o that converges to I' in the Hausdorff distance. Then I' is vertical curve
with the same modulus of verticality. If, furthermore, vertical curves I',, are all w-
reqular (with some fized modulus w) then H*(T',,) — H*(T) and, as a consequence, T is
also w-reqular.

Proof. By Golab’s theorem, I' is connected. Take two points a,b € I' such that a =
limy, a;, and b = limy, by, for ay, b, € I';,, and my, a subsequence of m. Then,

Ir(a™" - b)ll = Tim [j(a " - i)l < lima(z(ay - br))2(ay " - b) = alz(a™" - b))z(a™" - b),

so that, I' is a vertical curve a modulus of verticality a.

Put r,, := distq(I',T';,). Let t > 0 and {minT" = aqy < a; < ... < ay = maxI'} be a
subdivision on I' such that max; d(a;,a;+1) < t. For a; € T" we chose a* € T',,, a closest
to a; point on I'y,. By the triangle inequality, max; |d(aj", aj},) — d(a;, @iy1)| < 27y, It
is easy to see that when r,, is small compared to min;d(a;, a;41) the sequence {a"}
must respect the order on I';,,. Note also that 07' and 0% are close to the corresponding
end-points of I',,, that is, max{d(a{’, minT,),d(a}, maxl',,)} = 7, — 0. Using the
w-regularity of I',, we obtain

Zd ’L Y Z+1 | < Z |d Z Y ’L+1 ,HQ([G/:’L’ a?j—l]rm)
+ ’HQ([HHH Lo, ag']r,,) + H*([aly, max Ty, )
((t+ 2r,,)? Zd al’,al,)? + 72,

S w((t+2ry,) )7—[2( m) + 72

~ m*

We should add to this the following rather rough estimate:
|Zd a; z+1 _d(aiaai+1)2| SJNT’mt

Passing to the limit in m we get that

(1 — Kw(t?)) hmsup”;’-[2 ) < Zd i, aiv1)? < (1+ Kw(t?)) liminf H*(T,,),

with some 1 < K < oo. Hence, taking the limit when ¢ — 0 and using the area formula
for vertical curves we obtain the conclusion. O]
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A. Appendix

A.1. About Stieltjes integral

Here we recall some results concerning the theory of Stieltjes integral.

Definition A.1.1. Let z,y € C°([0,T],R) be two continuous functions. The Stieltjes
integral fOT x dy is defined as the limit (when it exists and is finite) of sums

l

[dyi= 3 alt) (ultien) ~ u(20)
o i=0
over all subdivisions 0 :={0 =1ty <t; <... <t <t1 =T}, when ||o| := max |t;11 —

Remark. Since x and y are continuous, if we replace in Definition A.1.1 the summand
w(ti) (y(tivr) — y(ti) by 2(§)(y(tirs) — y(t:)), where & is any point from [t;, 1], we
obtain the same value of fOT xdy.

Theorem ([Che05]). Let z,y € C°([0,T],R) be such that fOTxdy exists. Then it can
be represented as follows

T

/xdy = lim T_l/(y<t+7') —y(t))z(t) dt.

T—0+
0

Theorem ([Smi25]). If the Stieltjes integral fol Ve dryy exists for a curve v = (vy,7,) €
C°([0,1],R?), then
I

lim sup Z L£2(ch{~y([ti, tis1])}) =0, (A.1)
6—0 i—0
where the supremum is taken over all subdivisions {0 =ty < t; < ... <t; < tjy1 = 1}

with max |t;y1 — t;| < 0, and ch{E} stands for the convex hull of a set E C R*. In
particular, v has to be of area 0 in the plane, L£? (7([0, 1])) =0.

Remark A.1.2. Condition Eq. (A.1) is not sufficient for the existence of [ 7, dv,. Indeed,
note that Eq. (A.1) always holds if v € hol"?([0, 1], R?). However, one can find an
example of a curve v € hol*/? for which [ 7z dyy does not exist (see Section 5.6.1).
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Theorem ([Smi28|). Let v € hol'/?([0,1],R?) be a simple closed curve Let D C R? be
a bounded open set such that OF = ~. Then the Stieltjes integral exists and is equal to
(£ according to the orientation)

1

:I:/'yxd’yy = L*(D).

0

Remark. In general, the integral [ -, dv, does not exist even for a simple closed curve
(for instance, see [BesH5]).

Theorem A.1.3 ([Kon37; You36]). Let 2 € Hol*([0,T],R) and y € Hol’([0, T], R) with

a+ [ > 1. Then the integral fOTa:dy exists in Stieltjes’ sense, and, furthermore, for
any t € (0,7,

T
| [wdy = 2@)(u(T) = 90D < Coslelbuae s T
0

The last result can be extended to more general moduli of continuity for f and g, see
[You38; Bur48] and Lemma 5.4.13.

Remark A.1.4. Looking at the relation
1 l
| [+ [ ydo -] | =| S (altin) - st olti) -], (A2
i e i=0

we see that if z, y € Hol'/2([0, 1]), then for any sequence of subdivisions o,,, ||o,| — 0,
n— o0

1
[t [ wdys limn [ ydo =] | <l ol
n—oo J, 0 2 2

n—00

provided that the two limits exist. If, moreover, x € hol/? or Yy € hol'/2, then integration
by parts is valid, i.e. the relation

1
lim xdy + lim/ ydx:xy‘ ,
n—oo [ 0

n—oo
On

holds assuming only that one of two limits exists.

A.2. Example of Carnot groups with rigid fibres

Let us consider an example of ultra-rigid nilpotent stratified Lie algebra taken from [DOW11,
Ex. 3.6]. Its basis {Xi,..., X7} has the following stratification (of step three)

g, = Span{Xl, C 7X10} ) span{XH, e ,X16} () span{X17}
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with the following non-trivial commutators

(X1, Xo] = Xi1, (X1, X3] = Xi3, (X1, X4] = X4,
(X1, X5] = X5, (X1, X¢] = X6, [Xy, X3] = X13,
[Xo, X5] = Xy, (X2, X¢] = Xu4, (X3, X5] = X1,
(X5, X6] = Xis, (X3, X7] = X4, (X4, X5] = X1o,
(X4, X6| = Xi3, (X4, Xs] = Xi4, (X5, X6] = X3,
(X5, Xs] = Xia, (X5, Xo] = X1y, [ X, Xs] = Xo,
(X6, Xo] = X3, (X6, X10] = X4, (X7, Xg| = X4,
(X7, Xo] = Xi, (X7, X10] = Xus, [ Xg, Xo] = X3,
(X5, X10] = X4, (X9, X10] = — X2, (X1, X = X7

The validity of the Jacobi identity in g’ is obvious. We also consider the quotient
g = ¢'/span(Xy7) ~ span{ Xy, ..., Xis}, a nilpotent stratified Lie algebra of step two.
The authors assert in [DOW11] that g (as well as g’) is ultra-rigid and it can be verified
by hand or using MAPLE software. Being ultra-rigid for a Lie algebra here means that
its group of homogeneous automorphisms consists only of homogeneous dilations. Let
us note that for Lemma A.2.1, it would be sufficient to find a Carnot Lie-algebra g
having (up to dilations) a discrete group of homogeneous automorphisms.

Lemma A.2.1. Let G' = exp(g’) and G? = exp(g) be the Carnot groups associated with
the stratified Lie algebra g’ and g. Let F € C}(Q, G*) where Q C G' is an open connected
set. Assume thate; € Q, F(e1) = ey and D F(eq) is surjective, then F' = Dy F(e1) on Q.
In particular, any level set of F' is a subset of the left-translated center exp(span(Xi7)).

Proof. The ultra-rigidity of g implies that there is a continuous map ¢: {2 — R, such
that d,F(a) = exp, ' oD, F(a) o exp,: ¢ — g satisfies

dpF(a)(X;) = Oya)(X;) forany ¢=1,...,16,

and d, F(a)(X17) = 0. Thus, we need to prove that ¢(a) = const. Note that it is enough
to prove it for 2 an open connected neighbourhood of e; on which D), F' is surjective.

We are going to use an elegant argument from [Pan89, Th. 4, p. 56] that has been
used only for two-steps Carnot groups yet but fits also well g’ because there are only
few non-zero commutators of order three. Let us recall it in detail.

We call any set of the form {exp(sX)(a) | s € [s1,s2] C R} a X-horizontal segment
where X is a left-invariant horizontal vector field. For two horizontal vectors X, Y € g
and t € R we consider a quadrilateral that is a quadruple of points linked by horizontal
segments of the following form

(a,

a - exp(X),

a- exp(X) - exp(Y),
a-exp(X)-exp(Y) - exp(tX)).
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Assume that
(X,Y]#0, and [X,[X,Y]]=[Y,[X,Y]]=0. (A.3)

With this assumption let us see under which condition the quadruple is horizontally
closable (he-quadruple), i. e. its last and first vertices can be connected by a horizontal
segment. Projecting everything on horizontal level, we note that the only candidate for
this segment is exp(—Y — (1 4 ¢)X) and using Baker-Campbell-Hausdorff formula we
can write

exp(X) -exp(Y) -exp(tX) -exp(=Y — (1 +¢)X) =
exp(X +Y + %[X, Y]) - exp(tX) -exp(—=Y — (14+t)X) =
exp((1+8H)X +Y + %[X, Y] - %t[X, Y])-exp(=Y — (1+¢)X) =

exp((1— 1)5[X, V1)

This implies that a quadruple is a hc-quadruple if and only if ¢ = 1.

Let us take a he-quadruple in Q with XY satisfying Eq. (A.3). Since D, F(a){exp(Z))
= exp(t(a)X) for any horizontal Z € g;, by the Fundamental theorem of calculus, we
obtain that the image by F' of any Z-horizontal segment of {2 is a Z-horizontal segment
in G*> (maybe of a different length). In particular, the image by F of any hc-quadruple
in Q is ahc-quadruple in G2. Obviously, if the hc-quadruple in the domain satisfies
Eq. (A.3), then its image will do so as well. Thus, this implies that the lengths of
horizontal segments F'({a - exp(sX) | s € [0,1]}) and F({a-exp(X) -exp(Y) - exp(sX) |
s € [0,1]}) must be the same. Taking the limit when X — 0 in this equality we get
that dpF(a)(X) = dpF(exp(Y)(a))(X), so that t(a) = t(exp(Y)(a)).

We see that we can achieve the equality t(a) = t(exp(Y')(a)) as soon as for a given
horizontal vector Y, we can find some horizontal vector field X that enjoys Eq. (A.3).
Note that in g’ for any horizontal vector Y from the basis we arrange this : for instance,
for problematic Y = X; we cannot take X = X, but we can take X = Xj3. Therefore,
we obtain that the dilation factor t is constant along all horizontal segments. Due
to bracket generating condition, moving along them (without getting out of Q) we
can always cover some neighbourhood of any interior point of €2, and this finishes the
proof. ]

A.3. About generalized variation

Definition A.3.1. Let f: [0,1]* — R. We define the chain-variation of f on the interval
[s,t] as
I

Var[&t] f ‘= sup { Zf<tl+1’tz) | sS=tp <t <...<ty1 = t}

=0

Let us put F(t) = Varpy f.
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Remark A.3.2. As a function of intervals, Var f is, in general, only sub-additive. It is
additive if, for instance, f satisfies the triangle inequality :

f(t,s) < f(t,h)+ f(h,s), h € s, t].

Definition A.3.3. For a curve \: [0,1] — (F,d) in a quasi-metric space and p > 0 we
define the p-variation as follows

Var?(\) = (Var f)»  with  f(t,s) = d(A(t), A\(s)).
Proposition A.3.4. The following statements hold for p > 0.
1. Any curve X € Hol? has finite p-variation;

2. Any continuous curve of finite p-variation admits a reparametrization w. r. t. which
1
its belongs to Holr.

Proof. 1. Obviously follows from definitions.

2. This reparametrization can be given by t — ¢ + Var? (L0, t])P.
O]

Proposition A.3.5. Let f: [0,1]> = R be continuous and zero on the diagonal (f(t,t) =
0 for every t € [0,1]). If the chain-variation F(1) < oo is finite, then it is also
continuous, i.e. F' € C°([0,1], R).

Proof. For 0 < s<t<1,
F(t) > F(s) + Varyy f > F(s) + f(t,s),
because one can take s as point of subdivision in the definition of F(¢). Since f(¢,t) =0,

limsup F(s) < F(t), and liminf F'(t) > F(s).
s /'t tN\s

As F' is a bounded function, for any € > 0 one can find 0 = {0 =ty < ... <, < t,11 =
t} such that F(t) < > f(tis1,t;) +€ If s 7 t, we can assume that s € (¢,,t). Then
weput o' ={0 =ty <...<t, <s}and

F<8) Z Zf(ti+17ti) = f(svtn) - f(t>tn) + Zf(ti-‘rlati)
> f(satn) - f(tvtn) +F(t) — €.

By continuity of f, f(s,t,) — f(t,t,) — 0. Therefore,

. . > _ 3 — .
hrsnfltan(s)_F(t) ¢, and hence, IS%F(S) F(t)

By the same argument,

li = hich implies that i =0.
tlirsl\/ar[m}f Varp, ) f, which implies tha tl\ng\/ar[&t]f 0
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Fort N\, s,weput o’ ={0=ty < ... <t; <s<tpy1 <...<tpy1 =1}, and

F t) — € S Zf(tz—‘rhtz)

= f(tin,t) = fls,t0) = ftin, 8) + > f(tins )

o.//

< fltins t) = f(s 1) = f(tia, s) + F(s) + Varp g f.

By uniform continuity of f, f(t;11,t) — f(s,t;) — f(tis1,s) — 0 when ¢ N\ s. This gives
limsupy , F'(t) < F(s), and, finally, limy , F'(t) = F(s). O

A.4. Non-uniqueness of projection of vertical curve on
vertical axis

We show here an example of non-uniqueness of v, in Lemma 5.2.10.

Example A.4.1. Consider A = {0} U {a,}22, U {by}2, € H', where a,, = £(1,0,1)
and b, = %(1, —%, 1). We are going to check by elementary calculus that the compact
set A satisfies the Whitney condition Eq. (5.3) of Proposition 5.2.5.

Proof. Since 0 is the only limit point of A, it is enough to check that for n, k — oo
L ||m(ar) = m(an)|| = o(|z(a;" - ar)[2),
2. [lm(be) = 7(ba) | = o(|=(b" - be)]2),
3. [[m(bk) = m(an)l| = o(|2(az" - by)[2).

The first two cases are easy, so we will deal only with the third one, which is equivalent

to
1 1

-1+

n

Lol 1 1
= oln 5t 2

For fixed N large enough, let us estimate for &k > N

o
3 = sup(s(k,n) + t(k,n)),
n>N % + 2% n>N

where we denote by
s(k,n) :=nk2|k(k —n) + 2|7,
t(k,n) ==k —n)*n"'k(k —n) + 2|7
It is easy to see that s(k,n) < s(k,k) = 5z < 75 To get an upper bound for b(k,n) we
put g(z ):@Tkand h(z) = k(k — )+2. Onehas

(M)' _ (= k)R - 2) - (K + 2k))
h(x) 22(kx — 2 — k2) '
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The critical points of g(x)/h(z) are the following (in increasing order):

2 k* +2
ZL’1:O<N, ZL‘QZI{IZN, $3:k+z, 1)4:<k2_2)

<k+1.

In particular, g(x)/h(x) is decreasing on (0, k) and increasing on (k + 1,00). There-
fore, sup t(k,n) < max{t(k, N),t(k,00)} = max{t(k,N),z}. It is enough to estimate
n>N

sup t(k, N). The same calculation shows that the function N(;a%% is increasing for

k>N

x> N,sosupt(k,N)=t(co,N)=N"1 O
k>N

A.5. Norm of conjugate element

Let a,b € G. We want to estimate here a homogeneous norm p(k) of conjugate element
k=a"'-b-a. More precisely, we want to show that

p(k) < C(a)p(b)"/*=®),

where C(a) is bounded on compact subsets (that is in fact of polynomial growth). Let
us see the objects on Lie algebra’s side: we put a = exp(X), b = exp(Y), k = exp(Z).
Then the adjoint action reads

Z:Z%lX,[X,...,[X,Y],...]l.

-~

n~+1 brackets

Therefore, using comparison theorem between linear and homogeneous norm (Proposi-
tion 2.1.7), it is sufficient to produce the following estimate

deg(G)
e 1 n
p(k) O S|z < Y SIXIIY T < Y lleap(1X11) < p(b)ezp(p(a)),

n=0

where exp stands for the numerical exponential function.
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