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This thesis concerns in some topics on calculus on metric measure spaces, in connection with optimal transport theory and curvature-dimension conditions. We study the continuity equations on metric measure spaces, in the viewpoint of continuous functionals on Sobolev spaces, and in the viewpoint of the duality with respect to absolutely continuous curves in the Wasserstein space. We study the Sobolev spaces of warped products of a real line and a metric measure space. We prove the 'Pythagoras theorem' for both cartesian products and warped products, and prove Sobolev-to-Lipschitz property for warped products under a certain curvature-dimension condition. We also prove the identification of p-weak gradients under curvature-dimension condition, without the doubling condition or local Poincaré inequality. At last, using the non-smooth Bakry-Émery theory on metric measure spaces, we obtain an improved Bochner inequality and propose a definition of N-Ricci tensor.

Résumé des Travaux

Dans une suite des travaux par Lott-Villani (voir [START_REF] Lott | Weak curvature conditions and functional inequalities[END_REF][START_REF]Ricci curvature for metric-measure spaces via optimal transport[END_REF]) et Sturm (voir [40,[START_REF]On the geometry of metric measure spaces[END_REF]), la théorie de l'espace métrique mesuré avec la courbure de Ricci minorée (ou condition de courbure-dimension) a été construit. Plus récemment, les outils de calcul développés par Ambrosio-Gigli-Savaré (voir [START_REF]Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF][START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF], [START_REF]Non-smooth differential geometry[END_REF][START_REF]On the differential structure of metric measure spaces and applications[END_REF]) nous offre des outils pour l'étudier des espaces métriques mesurés. Dans cette thèse, mon premier objectif est d'étudier la théorie des espaces de Sobolev dans les espaces métriques mesurés générals, le deuxième objectif est d'obtenir une meilleure compréhension de la structure différentielle des RCD espaces.

L'équation de continuité

Dans l'article d'Otto ( [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF]) et ), ils prouvent que les courbes absolument continues dans l'espace de Wasserstein peuvent être caractérisés par les équations de continuité. Dans Chapitre-2, nous étudions cette correspondance en cas de non-lisse, en utilisant le transport optimal et la théorie de l'espace de Sobolev.

Tout d'abord, nous donnons une définition de l'équation de continuité dans les espaces métriques mesurés généraux.

Définition 2.10. Soit (X, d, m) un espace métrique mesuré, {µ t } t∈[0,1] ⊂ P 2 (X) une courbe W 2 -continue avec compression bornée, et {L t } t∈[0,1] une famille de fonctionelles sur S 2 (X).

Nous disons que {µ t } t résout l'équation de continuité

∂ t µ t = L t , (1) si: 
xi Résumé des Travaux xii i) Pour chaque f ∈ S 2 (X) l'application t � → L t (f ) est mesurable et l'application

N : [0, 1] � → [0, ∞] définie par 1 2 N 2 t := ess sup f ∈S 2 (X) L t (f ) - 1 2 �f � 2 µt , (2) 
est L 2 (0, 1) intégrable, i.e. pour toute f , 1 2 N 2 t ≥ L t (f ) - ii) Il y a une famille de fonctionelles {L t } t∈[0,1] sur S 2 (X) t.q. {µ t } t résout l'équation de continuité [START_REF] Ambrosio | Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope[END_REF].

Enfin, on a

N t = | μt |, p.p. t ∈ [0, 1].
L'espace de Sobolev sur le produit tordu Dans Chapitre-3 nous étudions les espaces de Sobolev sur produits cartésiens ainsi que des produits tordus de l'ensemble des réels et d'un espace métrique mesuré, qui sont utiles de la construction de nouveaux espaces.

On définit BL(X w ) comme le sous-ensemble de L 2 (X w , m w ) des fonctions f t.q.

i) pour m-p.p. x ∈ X, on a f (x) ∈ W 1,2 (R, w m L 1 ),

Résumé des Travaux xiii ii) pour w m L 1 -p.p. t ∈ R, on a f (t) ∈ W 1,2 (X), iii) |Df | w (t, x) := � w -2 d (t)|Df (t) | 2 X (x) + |Df (x) | 2 R (t)
est L 2 (X w , m w ) intégrable.

Ensuite, nous avons le théorème suivant qui caractérise l'espace de Sobolev.

Théorème Soit w d , w m les fonctions continues t.q. {w m = 0} ⊂ I est discret et

w m (t) ≤ C inf s:wm(s)=0
|t -s|, ∀t ∈ R. En cas de variété riemannienne, il est connu que ces questions ont des réponses positives.

Alors W 1,2 (X w ) = BL(X w ) et pour chaque f ∈ W 1,2 (X w ) = BL(X w ),
Mais dans les espaces métriques mesurés généraux, les réponses sont négatifs (voir [START_REF] Marino | The p-weak gradient depends on p[END_REF] Résumé des Travaux xiv pour un contre-exemple et aussi voir [START_REF]Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces[END_REF] pour un contre-exemple proposé par Koskela).

Cependant, sous conditions de doublement et d'inégalité de Poincaré, |Df | p est vraiment indépendant de p comme prouvé par Cheeger dans [START_REF] Cheeger | Differentiability of Lipschitz functions on metric measure spaces[END_REF].

Notre résultat principal est le théorème suivant. Sous condition de RCD(K, ∞), mais sans condition de doublement de mesure ou d'inégalité de Poincaré, nous montrons également l'identification des p-gradients faibles.

Théorème 4.9 (L'identification des p-gradients faibles) Soit p, q ∈ (1, ∞) et f ∈ S p loc (X) t.q. |Df | p ∈ L q loc (X). Alors f ∈ S q loc (X) et

|Df | q = |Df | p , m -p.p..

N -tenseur de Ricci

Soit M une variété riemannienne avec tenseur métriquee �•,

•� : [T M ] 2 � → C ∞ (M ). Nous
avons formule de Bochner:

Γ 2 (f ) = Ricci(∇f, ∇f ) + �H f � 2 HS , (3) 
pour toute fonction lisee f , où �H f � HS est la norme de Hilbert-Schmidt de la Hessienne H f := ∇df et l'opérateur Γ 2 est définie par

Γ 2 (f ) := 1 2 LΓ(f, f ) -Γ(f, Lf ), Γ(f, g) := 1 2 � L(f g) -f Lg -gLf � où L = ∆ est l'opérateur de Laplace-Beltrami.
Soit M un RCD(K, ∞) espace. Nous avons formule de Bochner qui est montré (définie) par Gigli dans [START_REF]Non-smooth differential geometry[END_REF]:

Γ 2 (f ) = Ricci(∇f, ∇f ) + �H f � 2 HS m (4) 
pour chaque f ∈ TestF(M ). Donc, nous voulons savoir si nous pouvons définir/ montrer une formule similaire dans les espaces métriques mesurés de condition de courbure-dimension RCD * (K, N ).

Résumé des Travaux

xv Tout d'abord, nous étudions la dimension d'un RCD * (K, N ) espace qui est considéré comme la dimension de la (L ∞ -) module tangent L 2 (T M ). Dans Chapitre-5 nous montrons que les dimensions des RCD * (K, N ) espaces sont majorée par N .

Proposition 5.12 Soit M = (X, d, m) un RCD * (K, N ) espace, alors dimM ≤ N . En plus, si la dimension locale de la module tangent dans un ensemble Borel E est N , alors trH f (x) = ∆f (x) m-p.p.

x ∈ E pour f ∈ TestF.

Ensuite, nous obtenons une inégalité améliorée de Bochner.

Théorème 5. [START_REF] Bakry | Transformations de Riesz pour les semi-groupes symétriques[END_REF]. Soit M = (X, d, m) un RCD * (K, N ) espace métrique mesuré, où N ≥ dim M . Alors, pour chaque f ∈ TestF, on a

Γ 2 (f ) ≥ � K|Df | 2 + �H f � 2 HS + 1 N -dim loc (trH f -∆f ) 2 � m
où dim loc est la dimension locale.

Définition 5.15 (Ricci tensor) On définit Ricci N comme une application

[H 1,2 H (T M )] 2 � → Meas(M ) tel que pour X, Y ∈ TestV(M ) Ricci N (X, Y ) = Γ 2 (X, Y ) -�(∇X) b , (∇Y ) b � HS m -R N (X, Y ) m. où Γ 2 (X, Y ) := ∆ �X, Y � 2 + � 1 2 �X, (∆ H Y b ) � � + 1 2 �Y, (∆ H X b ) � � � m, et R N (X, Y ) :=      1 N -dim loc � tr(∇X) b -divX �� tr(∇Y ) b -divY � dim loc < N, 0 dim loc ≥ N.
Comme un corollaire, nous pouvons écrire Théorème 5.13 et Théorème 3.6.7 de [START_REF]Non-smooth differential geometry[END_REF] comme:

Théorème 5.16 Soit M est RCD * (K, N ), alors

Ricci N (X, X) ≥ K|X| 2 m,

Résumé des Travaux xvi et Γ 2 (X, X) ≥ � (divX) 2 N + Ricci N (X, X) � m pour chaque X ∈ H 1,2 H (T M ). D'autre part, si M est RCD(K � , ∞), et (1) dimM ≤ N (2) tr(∇X) b = divX m -p.p. dans {dim loc = N }, ∀X ∈ H 1,2 H (T M ) (3) Ricci N ≥ K pour certains K ∈ R, N ∈ [1, +∞], alors M est RCD * (K, N ).
Chapter 1

Introduction

In a sequence of seminal papers by Lott-Villani (see [START_REF] Lott | Weak curvature conditions and functional inequalities[END_REF][START_REF]Ricci curvature for metric-measure spaces via optimal transport[END_REF]) and Sturm (see [START_REF] Sturm | On the geometry of metric measure spaces[END_REF][START_REF]On the geometry of metric measure spaces[END_REF]), the theory of metric measure spaces with synthetic lower Ricci curvature bounds (or curvature-dimension condition) was constructed. Thereafter, the research on metric measure space using optimal transport theory became more and more popular. More recently, the calculus tools developed by Ambrosio-Gigli-Savaré (see [START_REF]Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF][START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF], [START_REF]Non-smooth differential geometry[END_REF][START_REF]On the differential structure of metric measure spaces and applications[END_REF] ) offer us powerful analysis tools for the study of metric measure spaces. In this thesis, my first goal is to study the theory of Sobolev spaces on general metric measure spaces, the second goal is to obtain a better understanding of Sobolev calculus on the metric measure spaces with Ricci curvature bounded from below.

From the work of Otto ( [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF]) and ), we know that absolutely continuous curves in Wasserstein space can be described by continuity equations. In

Chapter-2, we study this correspondence in non-smooth case, using the vocabulary of optimal transport and Sobolev space theory developed by Ambrosio-Gigli-Savaré in [START_REF]Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF] and [START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF].

In Chapter-3 we study Sobolev space of cartesian products as well as warped products of the real line and metric measure spaces, which are useful ways of constructing new spaces. The 'Pythagoras type' formulas make it possible to compute the weak gradients in such products. Furthermore, we prove the Sobolev-to-Lipschitz property in a relevant class of spaces which includes the key cases of spheres and cones.

Considering the Sobolev space W 1,p (X) with p > 1 where X is R n or more generally a manifold, we know that the distributional derivative of any f ∈ W 1,p (X) is well defined and independent of p. However, this is not the general case for non-smooth spaces. For example in [START_REF] Marino | The p-weak gradient depends on p[END_REF] the authors construct an example showing that the p-weak gradient |Df | p really depends on the choice of p, i.e. we may find a Sobolev function f ∈ W 1,p (X) ∩ W 1,q (X) with |Df | p � = |Df | q . This phenomenon makes it reasonable to ask what happens under additional assumptions on the space. From [START_REF] Cheeger | Differentiability of Lipschitz functions on metric measure spaces[END_REF] we know the identification for metric measure spaces which are doubling and supporting a local Poincaré inequality. In particular the identification holds for CD(K, N ) spaces. In Chapter-4, Theorem 4.9, we extend the identification result to RCD(K, ∞) spaces and partially answer a question posed in [START_REF] Ambrosio | Equivalent definitions of BV space and of total variation on metric measure spaces[END_REF] about the BV and W 1,1 spaces.

In the last chapter, as an application of the Sobolev theory, differential structure of metric measure spaces and the Bakry-Émery theory on RCD(K, ∞) metric measure spaces, we study the dimension bound of RCD * (K, N ) spaces. Furthermore, we prove an improved Bochner inequality and give a definition of finite dimensional Ricci tensor on non-smooth metric measure spaces.

Basic notions

Let (X, d) be a complete metric space. We denote the space of continuous curves on X as C([0, 1], X) and denote the space of absolutely continuous curves as AC([0, 1], X).

We denote the space of geodesics as Geo(X). For t ∈ [0, 1], the evaluation map e t :

C([0, 1], X) � → X is given by e t (γ) := γ t , ∀γ ∈ C([0, 1], X).

For t, s ∈ [0, 1] the map restr s t from C([0, 1], X) to itself is given by (restr s t γ) r := γ t+r(s-t) , ∀γ ∈ C([0, 1], X).

The length of γ ∈ AC([0, 1], X) is computed by � 1 0 | γt | dt where | γt | is the metric speed of γ. Let p > 1, the space of p-absolutely continuous curves is defined as the space of γ ∈ AC([0, 1], X) such that � 1 0 | γt | p dt < +∞, and is denoted as AC p ([0, 1], X).

In this thesis, we are not only interested in metric structures, but also in the interaction between metrics and measures. For the metric measure space (X, d, m), basic assumptions used in this thesis are:

Assumption 1.1. The metric measure space (X, d, m) satisfies:

• (X, d) is a complete and separable geodesic metric space;

• m is a σ-finite Borel measure with respect to d;

• m is finite on bounded sets;

• supp m = X.

Moreover, for brevity we will not distinguish X, (X, d) or (X, d, m) when no ambiguities exist. For example, we can write W 1,2 (X) instead of W 1,2 (X, d, m) (See next section).

Let P(X) be the space of probability measures and p ∈ [1, ∞). We define P p (X) as its subset consisting of measures with finite p-moment, i.e. µ ∈ P p (X) if µ ∈ P(X) and � d p (x, x 0 ) dµ(x) < +∞ for some x 0 ∈ X. In optimal transport theory, we know P p (X) equipped with the p-Wasserstein distance W p is a complete and separable geodesic space.

If Y is another metric space and f : X � → Y a Borel map, we denote f � µ ∈ P(Y ) as the push-forward measure (or image measure) of µ ∈ P(X), which is also a probability measure such that f � µ(B) = µ(f -1 (B)) for any Borel set B ⊂ Y .

We have a correspondence between geodesics (absolutely continuous curves) {µ t } t in (P p (X), W p ) and probability measures P 2 (Geo(X)) (P p (AC([0, 1], X)) respectively), i.e.

µ t = (e t ) � π with π ∈ P(Geo(X)) ( P(AC p ([0, 1], X)) respectively. We call such π a lifting of {µ t } t ) such that π has the minimal energy � � 1 0 | γt | p dt dπ(γ). More details can be found in [START_REF] Lisini | Characterization of absolutely continuous curves in Wasserstein spaces[END_REF].

We use CD(K, ∞), CD(K, N ), CD * (K, N ) (RCD(K, ∞), RCD(K, N ), RCD * (K, N )) to denote the curvature-dimension conditions, where K means lower Ricci bound and N means upper dimension bound (or N = ∞ for the dimension free case). In general, the pair (K, N ) should be seen as a unity, there makes no sense to understand them separately. The letter R in the notion of RCD(K, ∞), RCD(K, N ) and RCD * (K, N ) means 'Riemannian like' which are the metric measure spaces which are also infinitesimally Hilbertian. All the precise definitions can be found in Chapter-3 or in the references [START_REF] Ambrosio | A user's guide to optimal transport[END_REF], [START_REF] Bacher | Localization and tensorization properties of the curvature-dimension condition for metric measure spaces[END_REF] and [START_REF] Villani | Optimal transport. Old and new[END_REF].

Sobolev spaces and continuity equation

Let (X, d) be a metric space. For f : X � → R, the local Lipschitz constant lip(f ) : If (X, d) is a geodesic metric space, we have Lip(f ) = sup x lip(f )(x) for Lipschitz functions.

X � → [0, ∞]
Now we introduce the Sobolev space on metric measure spaces, the first definition of Sobolev class is based on a relaxation procedure. We say that f ∈ W 1,p (X), p > 1 if we can find a sequence of Lipschitz functions {f n } ⊂ L p (X) such that f n → f in L p and lip(f n ) → G for some G ∈ L p .

Another equivalent definition (see Theorem 7.4 in [START_REF]Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces[END_REF]) of the Sobolev space is as the following. A Borel function f : X � → R belongs to the Sobolev class S p (X) if there exists a function 0 ≤ G ∈ L p (X), called p-weak upper gradient such that

� |f (γ 1 ) -f (γ 0 )| dπ(γ) ≤ � � 1 0 G(γ s )| γs | ds dπ(γ),
for all q-test plans π. A q-test plans π is probability measure concentrated on P(AC q ([0, 1], X)), 1 p +

1 q = 1 satisfying � 1 0 � | γt | q dπ(γ) dt < +∞,
and having bounded compression, i.e. there exists C > 0 such that

(e t ) � π ≤ Cm, ∀t ∈ [0, 1].
From [START_REF]Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF], we know that there exists a minimal function G in the m-a.e. sense among all the p-weak upper gradients of f . We denote such minimal function by |Df | p and call it p-minimal weak upper gradient or p-weak gradient for simplicity. Then the Sobolev space W 1,p (X, d, m) is defined as W 1,p (X, d, m) := S p (X, d, m) ∩ L p (X, m) endowed with the norm �f � p W 1,p (X,d,m) := �f � p L p (X,m) + �|Df | p � p L p (X,m) .

It can be seen from the definition that the W 1,p norm � • � W 1,p is a lower semi-continuous functional on L p (X, m) with respect to L 1 convergence. This lower semi-continuity plays an important role in some of our topics later.

It is known (see [START_REF] Cheeger | Differentiability of Lipschitz functions on metric measure spaces[END_REF] and [START_REF]Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF]) that W 1,p (X) is a Banach space. In general W 1,2 (X) is not a Hilbert space, For instance, in the case of Finsler manifolds, W 1,2 (X) is a Hilbert space if and only if X is a Riemannian manifold. We say that (X, d, m) is an infinitesimally Hilbertian space if W 1,2 (X) is an Hilbert space.

In the followings of this section, we study the absolutely continuous curves in (P 2 (X), W 2 ) using the Sobolev space W 1,2 (X). We will not assume that W 1,2 (X) is a Hilbert space at this moment.

From the article by Otto (see [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF]), and the work of Benamou-Brenier (see [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF]), we know that absolutely continuous curves of measures {µ t } t∈[0,1] w.r.t. the 2-Wasserstein distance W 2 on R d can be interpreted as solutions of the continuity equation

∂ t µ t + ∇ • (v t µ t ) = 0, (1.1) 
where the vector fields v t should be considered as the 'velocity' of the moving mass µ t and, for curves with square-integrable speed, satisfy

� 1 0 � |v t | 2 dµ t dt < ∞. (1.2) 
This intuition has been made rigorous by Ambrosio, Gigli and Savaré in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF], where it has been used to develop a rigorous first order calculus on the space (P 2 (R d ), W 2 ), with particular focus on the study of gradient flows.

Heuristically speaking, the continuity equation describes the link existing between the 'vertical derivative' ∂ t µ t and the 'horizontal displacement' v t . In this sense it provides the crucial link between analysis made on the L p spaces, where the distance is measured 'vertically', and the one based on optimal transportation, where distances are measured by 'horizontal' displacement. This is indeed the heart of the crucial substitution made by Otto in [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF] who, to define the metric tensor g µ on the space (P 2 (R d ), W 2 ) at a measure µ = ρL d considers a 'vertical' variation δρ such that � δρ dL d = 0, then looks for solutions of δρ = -∇ • (∇ϕρ), (1.3) and finally defines g µ (δρ, δρ) := � |∇ϕ| 2 dµ.

(1.4)

The substitution (1.3) is then another way of thinking at the continuity equation, while the definition (1.4) corresponds to the integrability requirement (1.2).

On Euclidean spaces it often happens that the continuity equation can be written in the form:

∂ t µ t + ∇ • (∇ϕ t µ t ) = 0,
for some functions ϕ t , i.e. the vector fields v t can be represented as gradients of functions.

In particular, we have two examples.

The first one is the heat flow, which can be seen as the gradient flow of the relative entropy:

∂ t µ t + ∇ • (∇(-log(ρ t ))µ t ) = 0,
where µ t = ρ t m.

The second example is the geodesic in Wasserstein space:

∂ t µ t + ∇ • (∇φ t µ t ) = 0, with φ t = -Q 1-t (-ϕ c
) for the geodesics, where ϕ is a Kantorovich with respect to the pair (µ 0 , µ 1 ). This result can also be seen as a corollary of the famous Brenier's theorem.

Then we want to know whether the above discussions have non-smooth counterparts.

We have the following questions to answer: To answer these questions, it is natural to consider the interaction between the Sobolev space W 1,2 (X, d, m) and absolutely continuous curves. To explain the ideas and motivations, we go back to the case when X = R d . Let {µ} t ⊂ P(R d ) be an absolutely continuous curve. We define

Tan µt = {∇ϕ, ϕ ∈ C ∞ c (R d )} L 2 (µt) . Now we let D ⊂ C ∞ c (R d
) be a countable set such that {∇ϕ : ϕ ∈ D} is dense in Tan µt for every t ∈ [0, 1]. Then one can show that (see [START_REF] Ambrosio | A user's guide to optimal transport[END_REF]) there exists a set A ∈ [0, 1] of full Lebesgue measure such that t � → � ϕ dµ t is differentiable at t ∈ A for every ϕ ∈ D and the metric derivative | μt | exists. Then for each t ∈ A we define the functional L t : {∇ϕ : ϕ ∈ D} � → R as:

∇ϕ � → L t (∇ϕ) := d dt � ϕ dµ t .
With some work (see [START_REF] Lisini | Characterization of absolutely continuous curves in Wasserstein spaces[END_REF]) and [START_REF] Ambrosio | A user's guide to optimal transport[END_REF]) one can also check that

|L t (∇ϕ)| ≤ �∇ϕ� L 2 (µt) | μt |
and therefore L t can be extended to a continuous linear functional on Tan µt . Thus by the Riesz representation theorem there exists a vector field v t ∈ Tan µt such that

L t (∇ϕ) = � �∇ϕ, v t � dµ t , ∀ϕ ∈ D,
and

�L t � * = �v t � ≤ | μt |.
Conversely, using the Kantorovich dual formula in optimal transport theory and a argument by Kuwada in [START_REF] Kuwada | Duality on gradient estimates and Wasserstein controls[END_REF], we can prove absolutely continuity from a continuity equation.

Following the ideas above, in Chapter-2 we answer the questions.

Answer to a): Functionals {L t } t can be defined in the same way as in R d , but we might be not able to find a dense set D as above, therefore {L t } t should only be seen as a family of functionals. At this point, let us recall that

{µ t } t∈[0,1] ⊂ P 2 (X) has bounded compression if µ t ≤ Cm ∀t ∈ [0, 1] for some C ∈ R. Definition 2.10 Let (X, d, m) be a metric measure space, {µ t } t∈[0,1] ⊂ P 2 (X) a W 2 -
continuous curve with bounded compression, and {L t } t∈[0,1] a family of maps from S 2 (X)

to R.

We say that {µ t } t solves the continuity equation

∂ t µ t = L t , (1.5 
)

provided: i) for every f ∈ S 2 (X) the map t � → L t (f ) is measurable and the map N : [0, 1] � → [0, ∞] defined by 1 2 N 2 t := ess sup f ∈S 2 (X) L t (f ) - 1 2 �f � 2 µt , (1.6) 
belongs to L 2 (0, 1), i.e. for any f , ii) There is a family of maps {L t } t∈[0,1] from S 2 (X) to R such that {µ t } t solves the continuity equation (1.5).

1 2 N 2 t ≥ L t (f ) -1 2 �f �
Finally, we have

N t = | μt |, a.e. t ∈ [0, 1].
It can be seen in the following way that this continuity equation, or the family of maps

{L t } t∈[0,1]
is nothing but the 'optimal lift' of the corresponding absolutely continuous curve.

As we have mentioned in the last subsection, the absolutely continuous curves can be characterized by probability measures on the space of curves as follows:

(Superposition principle, [START_REF] Lisini | Characterization of absolutely continuous curves in Wasserstein spaces[END_REF]) Let (X, d) be a complete and separable metric space,

and {µ t } t∈[0,1] ∈ AC 2 ([0, 1], P 2 ). Then there exists a measure π ∈ P(C([0, 1], X)) con- centrated on AC 2 ([0, 1], X) such that: (e t ) � π = µ t , ∀t ∈ [0, 1] � | γt | 2 dπ(γ) = | μt | 2 , a.e. t.
Here, as we know the inequality

� | γt | 2 dπ(γ) ≥ | μt | 2 , a.e. t
holds for any π with (e t ) � π = µ t , the superposition principle tells us that there exists a plan π ∈ P(AC([0, 1], X)) whose 'energy' is minimal. Using the language of Definition 2.10 and Theorem 2.11 we know this superposition plan corresponds to the continuity

equation {L t } t with N t = | μt |.
Answer to c): In the general case, Df (∇g) may not be certainly defined. However, by a variational procedure we have the functions D ± f (∇g) : X � → R which are m-a.e. well defined by

D + f (∇g) := lim ε↓0 |D(g + εf )| 2 -|Dg| 2 2ε , D -f (∇g) := lim ε↑0 |D(g + εf )| 2 -|Dg| 2 2ε .
It can be seen from the convexity of the map

� � → |D(g+�f )| 2 that D -f (∇g) ≤ D + f (∇g).
In case (X, d, m) is a Riemannian manifold, the D + f (∇g) and D -f (∇g) are coincide and are equal to Df (∇g).

Therefore, we say that a continuity equation is in gradient form if it satisfies 

� D -f (∇ϕ t ) dµ t ≤ d dt � f dµ t ≤ � D + f (∇ϕ t )
� g(γ t ) -g(γ 0 ) t dπ(γ) ≥ 1 2 � |Dg| 2 (γ 0 ) dπ(γ) + 1 2 lim t↓0 1 t � � t 0 | γs | 2 ds π(γ).
Then we have: 

Theorem 2.

Sobolev space in warped products

The construction of new metric measure spaces from old ones is an important subject of metric geometry. One useful method is to construct cartesian product or more generally warped product space based on given ones.

We know that some important geometry results are related to the curvature-dimension of (warped) product spaces of an interval and metric measure spaces, for example cones and spheres (see [START_REF] Ketterer | Cones over metric measure spaces and the maximal diameter theorem[END_REF] for the proof of the maximal diameter theorem). To use the calculus tools on metric measure spaces, it is useful to study the Sobolev space of the (warped) product spaces of a real line and a metric measure space (X, d, m) first. In particular, we want to know the relationship between the Sobolev spaces of (warped) product spaces and the Sobolev spaces of (X, d, m).

We start from the case of the cartesian product space (or product space for abbreviation), which is basic but important. Here, we recall that the product space of two metric 

d c ((x 1 , y 1 ), (x 2 , y 2 )) = � d 2 X (x 1 , x 2 ) + d 2 Y (y 1 , y 2 ), for any pairs (x 1 , y 1 ), (x 2 , y 2 ) ∈ X × Y .
The second one is to minimize the length of curves:

d c (A, B) = inf{l[γ] : γ is an absolutely continuous curve from A to B},
where the l[γ] is the length of γ defined as

l[γ] = � 1 0 � | γX | 2 (t) + | γY | 2 (t) dt,
where | γX | and | γY | represent the speed of the curves γ X , γ Y respectively. Now we switch to the study of Sobolev space on cartesian products. Inspired by the case in R d , we expect to prove the following 'Pythagoras formula':

|Df | 2 (t, x) = |Df (x) | 2 R (t, x) + |Df (t) | 2 X (t, x), a.e. (t, x) ∈ R × X, (1.7 
)

for f ∈ W 1,2 (R × X), where |Df (t) | X (t, x) and |Df (x) | R (t, x) represent the weak gradient of f (t) := f (t, •) and f (x) := f (•, x) at (t, x) ∈ R × X respectively.
In [START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF] the authors give the affirmative answer provided (X, d, m) is a RCD(K, ∞) space.

In Chapter-3 we study the Sobolev spaces W 1,2 of the cartesian products of the real line and metric measure spaces. Unlike the work in [START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF], we will be able to prove that the natural 'Pythagoras type' formula holds in full generality. The rigorous description is as the following:

Let (X, d, m) be a metric measure space. We put

X c := R × X, m c := L 1 × m and d c � (t, x), (s, y) � := � |s -t| 2 + d 2 (
x, y). We define the Beppo Levi space BL(X c ):

Definition 1.5. The space BL(X c ) ⊂ L 2 (X c , m c ) is the space of functions f ∈ L 2 (X c , m c ) such that i) f (x) ∈ W 1,2 (R) for m-a.e. x, ii) f (t) ∈ W 1,2 (X) for L 1 -a.e. t, iii) the function |Df | c (t, x) := � |Df (t) | 2 X (x) + |Df (x) | 2 R (t) belongs to L 2 (X c , m c ).
Then we have the following result.

Theorem 3.18

We have W 1,2 (X c ) = BL(X c ) as sets and for every f

∈ W 1,2 (X c ) = BL(X c ) the identity |Df | Xc = |Df | c L 1 × m -a.e.,
holds.

Remark 1.6. It is proved in [START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF], the inequality

|Df | Xc ≥ |Df | c L 1 × m -a.e.,
holds for all Sobolev functions, the opposite inequality holds under on the RCD(K, ∞) assumption of (X, d, m).

Our strategy to prove this theorem is as the following. Firstly we prove that a family of Sobolev functions A are dense in energy in BL(X c ), i.e. for any f ∈ BL(X c ) we can find

a sequence of functions {f n } n ⊂ A such that f n → f in L 2 and � |Df n | 2 c dm → � |Df | 2 c dm.
Next, we prove the equality |Df | Xc = |Df | c for f ∈ A. At last, combining the lower semi-continuity and the inequality in Remark 1.6 we prove the theorem.

Based on the results on cartesian products, we turn to warped product spaces, which is a generalization of the cartesian products. Let w d , w m be continuous functions such that

{w d (t) = 0} ⊂ {w m (t) = 0}.
One can construct the warped product (X w , d w , m w ) in a pure intrinsic way (see Definition 3.11). In the case when X is a Riemannian manifold M n equipped with a metric tensor g, the usual warped product with respect to the warping function w is a Riemannian manifold, with metric tensor d w d = dt 2 + w 2 (t)g and measure w m = w n (t). In general, let X be general metric space. We can also define a complete metric on it by the following procedure. More details can be found in Chapter-3.

Let (X, d) be a complete geodesic space, and w be a continuous non negative function.

Let γ = (γ R , γ X ) : [0, 1] � → R × X be a curve where γ R and γ X are absolutely continuous.

Then the w-length of γ is defined in the following way:

l w [γ] := lim τ n � i=1 � |γ R (t i-1 ), γ R (t i )| 2 + w 2 (γ R (t i-1 ))d 2 X (γ X (t i-1 ), γ X (t i )),
where τ := {0 = t 0 , t 1 , ..., t n = 1} is a partition of I = [0, 1] and the limit is taken with respect to the refinement ordering of partitions. It can be proved that the definition above is well posed, i.e. the limit exists. Furthermore, we have the formula Picking w as a constant in the formula (1.8), we can see the above definition for warped products coincides with the definition for product spaces. This observation tells us that we can use the results on cartesian products to study warped products. Now, we turn to prove our main theorem for warped products, which extends the Theorem-3.18. Our strategy is to 'approximate' a warped product by cartesian products. More precisely, as we can approximate the warping function by piecewise constant functions, we expect to prove that the Sobolev space of the warped product can be equally approximate by the Sobolev space of cartesian products. Using Lemma-3.22, and the formula in Theorem-3.18, we can turn this observation into a rigorous proof.

l w [γ] = � 1 0 � | γR | 2 (t) + w 2 (γ R (t))| γX | 2 (t) dt, (1.8 
We then consider the Beppo-Levi space BL(X w ) defined as follows:

Definition 1.7 (The space BL(X w )). As a set, BL(X w ) is the subset of L 2 (X w , m w ) made of those functions f such that: i) for m-a.e. x ∈ X we have

f (x) ∈ W 1,2 (R, w m L 1 ), ii) for w m L 1 -a.e. t ∈ R we have f (t) ∈ W 1,2 (X), iii) the function |Df | w (t, x) := � w -2 d (t)|Df (t) | 2 X (x) + |Df (x) | 2 R (t) (1.9) belongs to L 2 (X w , m w ).
On BL(X w ) we put the norm

�f � BL(Xw) := � �f � 2 L 2 (Xw) + �|Df | w � 2 L 2 (Xw) .
We also define the 'local' Beppo-Levi space as Definition 1.8 (The space BL 0 (X w )). Let V ⊂ BL(X w ) be the space of functions f

which are identically 0 on Ω × X ⊂ X w for some open set Ω ⊂ R containing {w m = 0}. BL 0 (X w ) ⊂ BL(X w ) is defined as the closure of V in BL(X w ).
The goal of Chapter-3 is to compare the spaces BL(X w ) and W 1,2 (X w ) and their respec- 

BL 0 (X w ) ⊂ W 1,2 (X w ) ⊂ BL(X w )
and (see Proposition 3.23) that for any f ∈ W 1,2 (X w ) ⊂ BL(X w ) the identity

|Df | Xw = |Df | w
holds m w -a.e., so that in particular the above inclusions are continuous. Without additional hypotheses it is unclear to us whether W 1,2 (X w ) = BL(X w ) (on the other hand, it is easy to construct examples where BL 0 (X w ) is strictly smaller than BL(X w )). Still, if we assume that the set {w m = 0} ⊂ I is discrete (1.10) and that w m decays at least linearly near its zeros, i.e.

w m (t) ≤ C inf s:wm(s)=0 |t -s|, ∀t ∈ R, (1.11) 
for some constant C ∈ R, then we can prove -using capacity arguments -that BL 0 (X w ) = BL(X w ).

Hence that the three spaces considered are all equal. We remark that these two additional assumptions on w m are satisfied in all the geometric applications we have in mind, because typically one considers cone/spherical suspensions and in these cases w m has at most two zeros and decays polynomially near them.

Then our main theorem is as the following.

Theorem 1.9. Let w d , w m be warping functions and assume that w m has the properties (1.10) and (1.11). Then W 1,2 (X w ) = BL(X w ) as sets and for every f

∈ W 1,2 (X w ) = BL(X w ) the identity |Df | Xw = |Df | w m w -a.e.
holds.

From [START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF] we know that RCD(K, ∞) spaces have the Sobolev-to-Lipschitz property, i.e.

for any function f ∈ W 1,2 with |Df | ∈ L ∞ , there exists a Lipschitz function f such that f = f a.e. and Lip(f ) = ess sup |Df |. It is known in [START_REF]Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds[END_REF][START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF] that the cartesian product of RCD spaces is still RCD, therefore it has the Sobolev-to-Lipschitz property.

The Sobolev-to-Lipschitz property builds the connection between Sobolev space and the metric structure. For example, it can be seen that the Sobolev-to-Lipschitz property implies the following duality formula:

d(x, y) = max{f (x) -f (y) : |Df | ≤ 1}.
This formula is required in the Bakry-Émery theory which we will discuss later. Therefore we would like to know whether we can prove this property for some warped products with less curvature-dimension assumptions.

In Chapter-3, we prove the following theorem: Then the warped product (X w , d w , m w ) has the Sobolev to Lipschitz property.

The proof is based on the following property which is satisfied by RCD(K, ∞) spaces:

Definition 3.28 We say that (X, d, m) is a 'good' space if for m × m-a.e. (x, y) ∈ X × X
and any � > 0, there exists a family of W 2 -absolutely continuous curves {µ t,� } t∈[0,1] in

P 2 (X) with µ t,� < C � m for some positive constant C � , µ 0,� = 1 Br � (x) m(Br � (x)) m and µ 1,� = 1 Br � (y) m(Br � (y)) m such that lim �→0 l[{µ t,� }] = d(x, y), lim �→0 r � = 0.
Then, using the ideas and techniques from optimal transport theory, we prove that doubling and 'good' spaces have the Sobolev-to-Lipschitz property. As a consequence, we can prove the Theorem-3.30 above.

Independence on p of weak upper gradients

In Section-1. 

f ∈ W 1,p 2 (X, d, m) ? Furthermore, if f ∈ W 1,p 1 and f, |Df | p 1 ∈ L p 2 (X), can we say that f ∈ W 1,p 2 ?
Let us recall the smooth case. We assume that M is a complete Riemannian manifold, then we can use the Sobolev space using integration by part. The Sobolev space W 1,p can be defined in this way: f ∈ L p is a Sobolev function if there exists a vector field

g f ∈ L p (T M ) such that � (∇ • v)f dV = � g f • v dV (1.12)
for any smooth vector fields v.

Another equivalent definition is that there exists a constant C such that

� � � � � (∇ • v)f dV � � � � ≤ C�v� L p (T M ) (1.13)
for any smooth vector fields v.

It is known that (1.12) and (1.13) are equivalent when 1 < p < ∞. In the case of p = 1: (1.12) is the definition of W In general metric measure spaces, the answers to the above questions are negative (see [START_REF] Marino | The p-weak gradient depends on p[END_REF] for a counterexample and also see [START_REF]Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces[END_REF] for a counterexample proposed by Koskela).

However, if we assume that the metric measure space is doubling and satisfies a local-Poincaré inequality, the weak gradient is really independent of p as proved by Cheeger in [START_REF] Cheeger | Differentiability of Lipschitz functions on metric measure spaces[END_REF]. It has been proved in [START_REF] Lott | Weak curvature conditions and functional inequalities[END_REF][START_REF]Ricci curvature for metric-measure spaces via optimal transport[END_REF] that CD(K, N ) spaces satisfy these assumptions.

In Chapter 4 we prove the identification of p weak gradients for RCD(K, ∞) spaces, i.e.

CD(K, ∞) spaces which are also infinitesimally Hilbertian. Our result does not depend on finite dimension hypothesis but needs the linearity of the heat flow on RCD(K, ∞)

space. Definition and properties of the heat flow can be found in Chapter-4, Section-

4.2.2.
Our idea is to prove the existence of a family of Sobolev functions A which is dense in energy in W By definition and lower-semicontinuity we have the following proposition:

Proposition 4.6 Let (X, d, m) be a RCD(K, ∞) space, p ∈ (1, ∞), f ∈ W 1,p (X) and t ≥ 0. Then H t (f ) ∈ W 1,p (X) and |DH t f | p p ≤ e -pKt H t (|Df | p p ), m -a.e..
Then we can control the local Lipschitz constant of H t (f ) by its weak gradient. 

Proposition 4.7 Let (X, d, m) be a RCD(K, ∞) space, p ∈ (1, ∞), f ∈ W 1,p (X) such that f, |Df | p ∈ L ∞ (X)
f ∈ S p loc (X) such that |Df | p ∈ L q loc (X). Then f ∈ S q loc (X) and |Df | q = |Df | p , m -a.e...

Bakry-Émery's theory and Ricci tensor

Let M be a Riemannian manifold equipped with a metric tensor �•,

•� : [T M ] 2 � → C ∞ (M ).
We have the Bochner formula

Γ 2 (f ) = Ricci(∇f, ∇f ) + �H f � 2 HS , (1.14) 
valid for any smooth function f , where �H f � HS is the Hilbert-Schimidt norm of the Hessian H f := ∇df and the operator Γ 2 is defined by

Γ 2 (f ) := 1 2 LΓ(f, f ) -Γ(f, Lf ), Γ(f, f ) := 1 2 L(f 2 ) -f Lf where Γ(•, •) = �∇•, ∇ • �, and L = ∆ is the Laplace-Beltrami operator.
In particular, if the Ricci curvature of M is bounded from below by K, i.e. Ricci(v, v)(x) ≥ K|v| 2 (x) for any x ∈ M and v ∈ T x M , and the dimension is bounded from above by

N ∈ [1, ∞],
we have the Bochner inequality

Γ 2 (f ) ≥ 1 N (∆f ) 2 + KΓ(f ). (1.15)
Conversely, it is not hard to show that the validity of (1.15) for any smooth function f implies that the manifold has lower Ricci curvature bound K and upper dimension bound N , or in short that it is a CD(K, N ) manifold.

Being this characterization of the CD(K, N ) condition only based on properties of L, one can take (1.15) as definition of what it means for a diffusion operator L to satisfy the CD(K, N ) condition. This was the approach suggested by Bakry-Émery in [START_REF] Bakry | Diffusions hypercontractives[END_REF], we refer to [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF] for an overview on the subject. 

) := Γ 2 (f ) -�H f � 2 HS , (1.16) 
and it is clear that if Ricci ≥ K, then (1.15) holds with N = ∞. There are few things that need to be understood in order to make definition (1.16) rigorous and complete in the setting of diffusion operators:

1) If our only data is the diffusion operator L, how can we give a meaning to the Hessian term in (1.16)?

2) Can we deduce that the Ricci curvature defined as in (1.16) is actually bounded from below by K from the assumption (1.15)?

3) Can we include the upper bound on the dimension in the discussion? How the presence of N affects the definition of the Ricci curvature?

This last question has a well known answer: it turns out that the correct thing to do is to define, for every N ≥ 1, a sort of 'N -dimensional' Ricci tensor as follows:

Ricci N (∇f, ∇f ) :=        Γ 2 (f ) -�H f � 2 HS - 1 N -n(x) (trH f -Lf ) 2 , if N > n, Γ 2 (f ) -�H f � 2 HS -∞(trH f -Lf ) 2 , if N = n, -∞, if N < n, (1.17) 
where n is the dimension of the manifold (recall that on a weighted manifold in general we have trH f � = ∆f ). It is then not hard to see that if Ricci N ≥ K then indeed (1.15) holds.

It is harder to understand how to go back and prove that Ricci N ≥ K starting from (1.15). A first step in this direction, which answers (1), is to notice that in the smooth setting the identity

2H f (∇g, ∇h) = Γ(g, Γ(f, h)) + Γ(h, Γ(f, g)) -Γ(f, Γ(g, h))
for any smooth g, h characterizes the Hessian of f , so that the same identity can be used to define the Hessian starting from a diffusion operator only. The question is then whether one can prove any efficient bound on it starting from (1.15) only. The first results in this direction where obtained by Bakry in [START_REF] Bakry | Transformations de Riesz pour les semi-groupes symétriques[END_REF] and [START_REF]L'hypercontractivité et son utilisation en théorie des semigroupes[END_REF], and only recently

Sturm [START_REF]Ricci tensor for diffusion operators and curvature-dimension inequalities under conformal transformations and time changes[END_REF] concluded the argument showing that (1.15) implies Ricci N ≥ K. In Sturm's approach, the operator Ricci N is not defined as in (1.17), but rather as

Ricci N (∇f, ∇f )(x) := inf g : Γ(f -g)(x)=0 Γ 2 (g)(x) - (Lg) 2 (x) N (1.18)
and it is part of his contribution the proof that this definition is equivalent to (1.17).

All this for smooth, albeit possibly abstract, structures. On the other hand, there is as of now a quite well established theory of (non-smooth) metric measure spaces satisfying a curvature-dimension condition: that of RCD * (K, N ) spaces introduced by Ambrosio-Gigli-Savaré (see [START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF] and [START_REF]On the differential structure of metric measure spaces and applications[END_REF]) as a refinement of the original intuitions of Lott-Sturm-

Villani ([35] and [START_REF] Sturm | On the geometry of metric measure spaces[END_REF][START_REF]On the geometry of metric measure spaces[END_REF]) and ). In this setting, there is a very natural Laplacian and inequality (1.15) is known to be valid in the appropriate weak sense (see [START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF] and [START_REF] Erbar | On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces[END_REF]) and one can therefore wonder if even in this low-regularity situation one can produce an effective notion of N -Ricci curvature. Part of the problem here is the a priori lack of vocabulary, so that for instance it is unclear what a vector field should be.

In the recent paper [START_REF]Non-smooth differential geometry[END_REF], Gigli builds a differential structure on metric measure spaces suitable to handle the objects we are discussing (see the preliminary section of Chapter-5 for some details). One of his results is to give a meaning to formula (1.16) on RCD(K, ∞)

spaces and to prove that the resulting Ricci curvature tensor, now measure-valued, is bounded from below by K. Although giving comparable results, we remark that the definitions used in [START_REF]Non-smooth differential geometry[END_REF] are different from those in [START_REF]Ricci tensor for diffusion operators and curvature-dimension inequalities under conformal transformations and time changes[END_REF]: it is indeed unclear how to give a meaning to formula (1.18) in the non-smooth setting, so that in [START_REF]Non-smooth differential geometry[END_REF] the definition (1.16) has been adopted.

Gigli worked solely in the RCD(K, ∞) setting. The contribution of the current work is to adapt Gigli's tool and Sturm's computations to give a complete description of the N -Ricci curvature tensor on RCD * (K, N ) spaces for N < ∞.

Our main result is the fact that the N -Ricci curvature is bounded from below by K on a RCD(K � , ∞) space if and only if the space is RCD * (K, N ). Now we introduce some notations and necessary backgrounds of non-smooth Bakry-Émery theory. More details can be found in [START_REF]Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds[END_REF] (for RCD(K, ∞) space) and [START_REF] Erbar | On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces[END_REF] (for RCD * (K, N ) space) where the authors construct the non-smooth counterparts of the Bakry-Émery theory, which builds the link between the Bakry-Émery theory and Lott-Sturm-Villani's theory based on optimal transport.

We shall denote by �∇f, ∇g� the carré du champ associated to the canonical Dirichlet form (or call it Cheeger energy) on a RCD(K, ∞) space (X, d, m). We then define the space D(∆) ⊂ W 1,2 (X) as the space of f ∈ W 1,2 (X) such that there exists a measure µ satisfying

� h µ = - � �∇h, ∇f � m, ∀h : X � → R, Lipschitz with bounded support.
In this case the measure µ is unique and we shall denote it by ∆f . If ∆f � m, we still denote its density by ∆f .

We define the set TestF(X) ⊂ W 1,2 (X) of test functions as

TestF(X) := {f ∈ D(∆) ∩ L ∞ : |Df | ∈ L ∞ and ∆f ∈ W 1,2 (X)}.
It is proved in [START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF], [START_REF]Non-smooth differential geometry[END_REF] that TestF(X) is dense in W 1,2 (X).

For f ∈ TestF(X) we define the measure Γ 2 (f )

Γ 2 (f ) = 1 2 ∆|Df | 2 -�f, ∆f � m,
and we define the Hessian of f ∈ TestF(X) as

H f (∇g, ∇h) = 1 2 � �∇�∇f, ∇g�, ∇h� + �∇�∇f, ∇h�, ∇g� -�∇�∇g, ∇h�, ∇f � � ,
for every g, h ∈ TestF(X).

The interest of this vocabulary is in the fact that, like in the case of smooth manifolds, it can be used in the non-smooth context to characterize lower Ricci bounds. Indeed, as proved in [START_REF]Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds[END_REF] and [START_REF] Erbar | On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces[END_REF], on a RCD * (K, N ) space, the following Bochner type inequality (1.19) holds for every f ∈ TestF(X).

Γ 2 (f ) ≥ � K|Df | 2 + 1 N (∆f ) 2 � m. (1.19)
Conversely, if an infinitesimally Hilbertian space (X, d, m) satisfies the Sobolev-to-Lipschitz property and the above inequality holds in the appropriate weak sense for sufficient many f 's, then it is a RCD * (K, N ) space.

Inequality (1.19) has been improved in [START_REF]Non-smooth differential geometry[END_REF] in the case N = ∞ to incorporate the Hessian of the functions:

Γ 2 (f ) ≥ � K|Df | 2 + �H f � 2 HS � m
for every f ∈ TestF(X). See [START_REF]Non-smooth differential geometry[END_REF] for the definition of the Hilbert-Schmidt norm of the Hessian.

In [START_REF]Ricci tensor for diffusion operators and curvature-dimension inequalities under conformal transformations and time changes[END_REF], under additional smoothness assumptions, the analysis has been pushed further to incorporate informations coming from the finite dimensionality. It is then natural to ask whether these results can be proved in the full generality of RCD * (K, N ) spaces.

The difficulty of extending the result in [START_REF]Ricci tensor for diffusion operators and curvature-dimension inequalities under conformal transformations and time changes[END_REF] is the lack smooth tangent fields and smooth tensors on a non-smooth metric measure space. In [START_REF]Non-smooth differential geometry[END_REF], Gigli defines the L ∞ -module L 2 (T M ) as the non-smooth counterpart of the tangent bundle and defines the nonsmooth tensors in the viewpoint of L ∞ -module. In Chapter-5 we use these tools to study the differential structure of RCD * (K, N ) space. More details can be found in the preliminary part of Chapter-5 (or see [START_REF]Non-smooth differential geometry[END_REF] for the relevant definitions).

First of all, we study the dimension of a RCD * (K, N ) space which is understood as the dimension of L 2 (T M ) as a L ∞ (M )-module.

Proposition 5.12 Let M = (X, d, m) be a RCD * (K, N ) metric measure space, then dimM ≤ N . Furthermore, if the local dimension dim loc on a Borel set E is N , then

trH f (x) = ∆f (x) m-a.e.
x ∈ E for f ∈ TestF.

Notice that the equality trH f = ∆f does not hold even in smooth metric measure spaces (for example, weighted Riemannian manifolds). In this case, the term 1 N -dim loc (trH f -∆f ) 2 is not trivial and makes sense on a RCD * (K, N ) space.

Then by a variational argument and change of variables formula in [START_REF] Savaré | Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in RCD(K, ∞) metric measure spaces[END_REF], we prove the following theorem:

Theorem 5.13 Let M = (X, d, m) be a RCD * (K, N ) metric measure space. Then Γ 2 (f ) ≥ � K|Df | 2 + �H f � 2 HS + 1 N -dim loc (trH f -∆f ) 2
� m holds for any f ∈ TestF, where

1 N -dim loc (trH f -∆f ) 2 �
is taken 0 by definition on the set {x : dim loc (x) = N }.

As an application of the theorem above, we can define the Ricci tensor Ricci N (∇f, ∇f ) as:

Ricci N (∇f, ∇f ) := Γ 2 (f ) -�H f � 2 HS m -R N (f )
where

R N (f ) :=          1 N -n(x) (trH f -∆f ) 2 � m, if n < N, +∞(trH f -∆f ) 2 m if n = N, +∞, if n > N.
It can be seen easily that the definition above fulfills all the requirement for Ricci N . In particular, we can rewrite the inequality in Theorem 5.13 as:

Γ 2 (f ) ≥ Ricci N (∇f, ∇f ) + � �H f � 2 HS + 1 N -dim loc (trH f -∆f ) 2 � m.
Furthermore, using the vocabulary in [START_REF]Non-smooth differential geometry[END_REF] we can extend the results above and the definition of the N -Ricci tensor to more general tangent fields, more details about TestV(M ), H 1,2 H (T M ) can be found in Chapter-5 or [START_REF]Non-smooth differential geometry[END_REF].

Definition 5.15 (Ricci tensor) We define Ricci N as a measure valued continuous

map on [H 1,2 H (T M )] 2 such that for any X, Y ∈ TestV(M ) it holds Ricci N (X, Y ) = Γ 2 (X, Y ) -�(∇X) b , (∇Y ) b � HS m -R N (X, Y ) m.
where

Γ 2 (X, Y ) := ∆ �X, Y � 2 + � 1 2 �X, (∆ H Y b ) � � + 1 2 �Y, (∆ H X b ) � � � m, and 
R N (X, Y ) :=    1 N -dim loc � tr(∇X) b -divX �� tr(∇Y ) b -divY � dim loc < N, 0 dim loc ≥ N.
It can be seen that Ricci N is a well defined tensor, i.e. (X, Y ) � → Ricci N (X, Y ) is a symmetric TestF(M )-bilinear form. Then we prove the following theorem.

Theorem 5.16 Let M be a RCD * (K, N ) space. Then

Ricci N (X, X) ≥ K|X| 2 m, and

Γ 2 (X, X) ≥ � (divX) 2 N + Ricci N (X, X) � m holds for any X ∈ H 1,2 H (T M ). Conversely, on a RCD(K � , ∞) space M , assume that (1) dimM ≤ N (2) tr(∇X) b = divX m -a.e. on {dim loc = N }, ∀X ∈ H 1,2 H (T M ) (3) Ricci N ≥ K for some K ∈ R, N ∈ [1, +∞], then it is RCD * (K, N ).
Chapter 2

The continuity equation on metric measure spaces

Abstract

In this chapter, we show that it makes sense to write the continuity equation on a metric measure space (X, d, m), and that absolutely continuous curves {µ t } t w.r.t. the distance W 2 can be completely characterized as solutions of the continuity equation itself, provided we impose the condition µ t ≤ Cm for every t and some C > 0. We also show that our frameworks are adaptable to several classical results. The results in this chapter are contained in [START_REF] Gigli | The continuity equation on metric measure spaces[END_REF].

Résumé

Introduction

A crucial intuition of Otto [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF], inspired by the work of Benamou-Brenier [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF], has been to realize that absolutely continuous curves of measures {µ t } t w.r.t. the quadratic transportation distance W 2 on R d can be interpreted as solutions of the continuity equation

∂ t µ t + ∇ • (v t µ t ) = 0, (2.1) 
where the vector fields v t should be considered as the 'velocity' of the moving mass µ t and, for curves with square-integrable speed, satisfy

� 1 0 � |v t | 2 dµ t dt < ∞. (2.2)
This intuition has been made rigorous by the first author, Ambrosio and Savaré in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF],

where it has been used to develop a solid first order calculus on the space (P

2 (R d ), W 2 ),
with particular focus on the study of gradient flows.

Heuristically speaking, the continuity equation describes the link existing between the 'vertical derivative' ∂ t µ t (think to it as variation of the densities, for instance) and the 'horizontal displacement' v t . In this sense it provides the crucial link between analysis made on the L p spaces, where the distance is measured 'vertically', and the one based on optimal transportation, where distances are measured by 'horizontal' displacement. This is indeed the heart of the crucial substitution made by Otto in [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF] who, to define the metric tensor g µ on the space (P 2 (R d ), W 2 ) at a measure µ = ρL d considers a 'vertical' variation δρ such that � δρ dL d = 0, then looks for solutions of

δρ = -∇ • (∇ϕρ), (2.3) 
and finally defines

g µ (δρ, δρ) := � |∇ϕ| 2 dµ. (2.4)
The substitution (2.3) is then another way of thinking at the continuity equation, while the definition (2.4) corresponds to the integrability requirement (2.2).

It is therefore not surprising that each time one wants to put in relation the geometry of optimal transport with that of L p spaces some form of continuity equation must be studied. In the context of analysis on non-smooth structures, this has been implicitly done in [START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF][START_REF] Gigli | Heat flow on Alexandrov spaces[END_REF] to show that the gradient flow of the relative entropy on the space (P 2 (X), W 2 ) produces the same evolution of the gradient flow of the energy (sometime called Cheeger energy or Dirichlet energy) in the space L 2 (X, m), where (X, d, m) is some given metric measure space.

The purpose of this paper is to make these arguments more explicit and to show that:

i) It is possible to formulate the continuity equation on general metric measure spaces

(X, d, m),
ii) Solutions of the continuity equation completely characterize absolutely continuous curves {µ t } t ⊂ P(X) with square-integrable speed w.r.t. W 2 and such that µ t ≤ Cm for every t ∈ [0, 1] and some C > 0.

In fact, the techniques we use can directly produce similar results for the distances W p , p ∈ (1, ∞), and for curves whose speed is in L 1 rather then in some L p , p > 1. Yet, we prefer not to discuss the full generality in order to concentrate on the main ideas.

Let us discuss how to formulate the continuity equation on a metric measure space where no a priori smooth structure is available. Notice that in the smooth setting (2.1) has to be understood in the sense of distributions. If we assume weak continuity of {µ t } t , this is equivalently formulated as the fact that that for every

f ∈ C ∞ c (R d ) the map t � → � f dµ t is absolutely continuous and the identity d dt � f dµ t = � df (v t ) dµ t , holds for a.e. t ∈ [0, 1].
In other words, the vector fields v t only act on differential of smooth functions and can therefore be thought of as linear functionals L t from the space of differentials of smooth functions to R.

Recalling (2.2), the norm �L t � * µt of L t should be defined as 1 2 (�L t � * µt ) 2 = sup f ∈C ∞ c (R d ) L t (f ) - 1 2 � |df | 2 dµ t ,
so that being {µ t } t 2-absolutely continuous is equivalent to require that t � → �L t � * µt ∈ L 2 (0, 1).

Seeing the continuity equation in this way allows for a formulation of it in the abstract context of metric measure spaces (X, d, m). Indeed, recall that there is a well established notion of 'space of functions having distributional differential in L 2 (X, m)', which we will denote by S 2 (X) = S 2 (X, d, m) and that for each

function f ∈ S 2 (X) it is well defined the 'modulus of the distributional differential |Df | ∈ L 2 (X, m)'.
Then given a linear map L : S 2 (X) � → R and µ such that µ ≤ Cm for some C > 0 we can define the norm �L� * µ as

1 2 (�L� * µ ) 2 := sup f ∈S 2 (X) L(f ) - 1 2 � |Df | 2 dµ. (2.5)
Hence given a curve {µ t } t ⊂ P(X) such that µ t ≤ Cm for some C > 0 and every t ∈ [0, 1] and a family

{L t } t∈[0,1] of maps from S 2 (X) to R such that � 1 0 (�L t � * µt ) 2 dt < ∞,
we can say that the curve {µ t } t ⊂ P(X) solves the continuity equation

∂ t µ t = L t , provided: i) for every f ∈ S 2 (X) the map t � → � f dµ t is absolutely continuous, ii) the identity d dt � f dµ t = L t (f ), (2.6) 
holds for a.e. t.

Then we show that such formulation of the continuity equation fully characterizes absolutely continuous curves {µ t } t with square-integrable speed on the space (P 2 (X), W 2 ), provided we restrict the attention to curves such that µ t ≤ Cm for some C > 0 and every t ∈ [0, 1]. See Theorem 4.9.

Concerning the proof of this result, we remark that the implication from absolute continuity of {µ t } t to the 'PDE' (2.6) is quite easy to establish and follows essentially from the definition of Sobolev functions. This is the easy implication even in the smooth context whose proof carries over quite smoothly to the abstract setting, the major technical difference being that we don't know if in general the space S 2 (X) is separable or not, a fact which causes some complications in the way we can really write down the equation (2.6), see Definition 2.10.

The converse one is more difficult, as it amounts in proving that the differential identity (2.6) is strong enough to guarantee absolute continuity of the curve. The method used in the Euclidean context consists in regularizing the curve, apply the Cauchy-Lipschitz theory to the approximating sequence to find a flow of the approximating vector fields which can be used to transport µ t to µ s and finally in passing to the limit. By nature, this approach cannot be used in non-smooth situations. Instead, we use a crucial idea due to Kuwada which has already been applied to study the heat flow [START_REF]Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF][START_REF] Gigli | Heat flow on Alexandrov spaces[END_REF]. It amounts in passing to the dual formulation of the optimal transport problem by noticing that

1 2 W 2 2 (µ 1 , µ 0 ) = sup � Q 1 ϕ dµ 1 - � ϕ dµ 0 , (2.7) 
the sup being taken among all Lipschitz and bounded ϕ : X � → R, where Q t ϕ is the evolution of ϕ via the Hopf-Lax formula. A general result obtained in [START_REF]Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF] has been that

it holds d dt Q t ϕ(x) + lip(Q t ϕ) 2 (x) 2 ≤ 0, (2.8) 
for every t except a countable number, where lip(f ) is the local Lipschitz constant f .

Thus we can formally write

� Q 1 ϕ dµ 1 - � ϕ dµ 0 = � 1 0 d dt � Q t ϕ dµ t dt by (2.6) = � 1 0 � d dt Q t ϕ dµ t dt + � 1 0 L t (Q t ϕ) dt, by (2.5), (2.8) ≤ � 1 0 - lip(Q t ϕ) 2 2 dµ t dt + 1 2 � 1 0 (�L t � * µt ) 2 dt + 1 2 � 1 0 � |DQ t ϕ| 2 dµ t dt.
Using the fact that |Df | ≤ lip(f ) m-a.e. for every Lipschitz f we then conclude that

� Q 1 ϕ dµ 1 - � ϕ dµ 0 ≤ 1 2 � 1 0 (�L t � * µt ) 2 dt.
Here the right hand side does not depend on ϕ, hence by (2.7) we deduce

W 2 2 (µ 1 , µ 0 ) ≤ � 1 0 (�L t � * µt ) 2 dt, which bounds W 2 in terms of the L t 's only. Replacing 0, 1 with general t, s ∈ [0, 1]
we deduce the desired absolute continuity. As presented here, the computation is only formal, but a rigorous justification can be given, thus leading to the result. See the proof of Theorem 4.9.

It is worth pointing out that Kuwada's lemma works even if we don't know any uniqueness result for the initial value problem (2.6). That is we don't know if given µ 0 and a family of operators L t from S 2 (X) to R the solution of (2.6) is unique or not, because

we "can't follow the flow of the L t 's". Yet, it is possible to deduce anyway that any solution is absolutely continuous.

It is also worth to make some comments about the assumption µ t ≤ Cm. Notice that if we don't impose any condition on the µ t 's, we could consider curves of the kind t � → δ γt , where γ is a given Lipschitz curve. In the smooth setting we see that such curve solves

∂ t δ γt + ∇ • (γ � t δ γt ) = 0,
so that to write the continuity equation for such curve amounts to know the value of γ � t at least for a.e. t. In the non-smooth setting to do this would mean to know who is the tangent space at γ t for a.e. t along a Lipschitz curve γ, an information which without any assumption on X seems quite too strong. Instead, the process of considering only measures with bounded density has the effect of somehow 'averaging out the unsmoothness of the space' and allows for the possibility of building a working differential calculus, a point raised and heavily used in [START_REF] Gigli | The splitting theorem in non-smooth context[END_REF]. Here as application of the continuity equation to differential calculus we provide a Benamou-Brenier formula and describe the derivative of 1 2 W 2 2 (•, ν) along an absolutely continuous curve.

We then study situations where the operators L t can be given somehow more explicitly.

Recall that on the Euclidean setting the optimal (in the sense of energy-minimizer) vector fields v t appearing in (2.1) always belong to the L 2 (µ t )-closure of the set of gradients of smooth functions and that is some case they are really gradient of functions, so that (2.1) can be written as

∂ t µ t + ∇ • (∇φ t µ t ) = 0, (2.9) 
for some given smooth {φ t } t∈[0,1] , which means that for f smooth it holds d dt

� f dµ t = � df (∇φ t ) dµ t .
To interpret the equation (2.9) in the abstract framework we need to understand the duality relation between differentials and gradients of Sobolev functions on metric measure spaces. This has been done in [START_REF]On the differential structure of metric measure spaces and applications[END_REF], where for given f, g ∈ S 2 (X) the two functions D -f (∇g) and D + f (∇g) have been introduced. If the space is a Riemannian manifold or a Finsler one with norms strictly convex, then we have D -f (∇g) = D + (∇g) a.e. for every f, g, these being equal to the value of the differential of f applied to the gradient of g obtained by standard means. In the general case we do not have such single-valued duality, due to the fact that even in a flat normed situation the gradient of a function is not uniquely defined should the norm be not strictly convex. Thus the best we can do is to define D -f (∇g) and D + f (∇g) as being, in a sense, the minimal and maximal value of the differential of f applied to all the gradients of g.

Then we can interpret (2.9) in the non-smooth situation by requiring that for f ∈ S 2 (X)

it holds � D -f (∇φ t ) dµ t ≤ d dt � f dµ t ≤ � D + f (∇φ t ) dµ t , a.e. t,
and it turns out that this way of writing the continuity equation, which requires two inequalities rather than an equality, is still sufficient to grant absolute continuity of the curve.

Notice that in the Euclidean setting, if the functions φ t are smooth enough we can construct the flow associated to ∇φ t by solving

         d dt T (x, t, s) = ∇φ t (T (x, t, s)), T (x, t, t) = x,
so that the curves t � → T (x, t, s) are gradient flows of the evolving function φ t and a curve {µ t } t solves (2.6) if and only if µ t = T (•, t, 0) � µ 0 for every t ∈ [0, 1]. Interestingly enough, this point of view can be made rigorous even in the setting of metric measure spaces and a similar characterization of solutions of (2.6) can be given, see Theorem 2.23.

We conclude the paper by showing that the heat flows and the geodesics satisfy the same sort of continuity equation the satisfy in the smooth case, namely

∂ t µ t + ∇ • (∇(-log(ρ t ))µ t ) = 0,
for the heat flow, where µ t = ρ t m, and

∂ t µ t + ∇ • (∇φ t µ t ) = 0, with φ t = -Q 1-t (-ϕ c
) for the geodesics, where ϕ is a Kantorovich potential inducing the geodesic. Here the aim is not to prove new results, as these two examples were already considered in the literature [START_REF]Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF][START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF][START_REF] Gigli | The splitting theorem in non-smooth context[END_REF][START_REF] Gigli | Heat flow on Alexandrov spaces[END_REF], but rather to show that they are compatible with the theory we propose. We also discuss in which sense and under which circumstances an heat flow and a geodesic can be considered not just as absolutely continuous curves on (P 2 (X), W 2 ), but rather as C 1 curves.

Preliminaries

Metric spaces and optimal transport

We quickly recall here those basic fact about analysis in metric spaces and optimal transport we are going to use in the following. Standard references are [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF], [START_REF] Villani | Optimal transport. Old and new[END_REF] and [START_REF] Ambrosio | A user's guide to optimal transport[END_REF].

Let (X, d) be a metric space. Given f : X � → R the local Lipschitz constant lip(f ) :

X � → [0, ∞] is defined as lip(f )(x) := lim y→x |f (y) -f (x)| d(x, y) ,
if x is not isolated and 0 otherwise. Recall that the Lipschitz constant of Lipschitz function is defined as:

Lip(f ) := sup x� =y |f (y) -f (x)| d(x, y)
In particular, if (X, d) is a geodesic space, we have Lip(f ) = sup x lip(f )(x).

A curve γ : [0, 1] � → X is said absolutely continuous provided there exists f ∈ L 1 (0, 1)

such that d(γ s , γ t ) ≤ � s t f (r) dr, ∀t, s ∈ [0, 1], t < s. (2.10)
For an absolutely continuous curve γ it can be proved that the limit If there exists f ∈ L 2 (0, 1) for which (2.10) holds, we say that the curve is 2-absolutely continuous (2-a.c. in short). In the following we will often write

� 1 0 | γt | 2 dt
for a curve γ which a priori is only continuous: in this case the value of the integral is taken by definition +∞ if γ is not absolutely continuous.

The space of continuous curves on [0, 1] with values in X will be denoted by C([0, 1], X) and equipped with the sup distance. Notice that if (X, d) is complete and separable, then C([0, 1], X) is complete and separable as well. For t ∈ [0, 1] we denote by e t :

C([0, 1], X) � → X the evaluation map defined by e t (γ) := γ t , ∀γ ∈ C([0, 1], X).
For t, s ∈ [0, 1] the map restr s t from C([0, 1], X) to itself is given by

(restr s t γ) r := γ t+r(s-t) , ∀γ ∈ C([0, 1], X).
The set of Borel probability measures on X is denoted by P(X) and P 2 (X) ⊂ P(X) is the space of probability measures with finite second moment. We equip P 2 (X) with the quadratic transportation distance W 2 defined by

W 2 2 (µ, ν) := inf � d 2 (x, y) dγ(x, y), (2.11) 
the inf being taken among all γ ∈ P(X 2 ) such that

π 1 � γ = µ, π 2 � γ = ν. Given ϕ : X � → R ∪ {-∞} not identically -∞ the c-transform ϕ c : X � → R ∪ {-∞} is defined by ϕ c (y) := inf x∈X d 2 (x, y) 2 -ϕ(x).
ϕ is said c-concave provided it is not identically -∞ and ϕ = ψ c for some ψ :

X � → R ∪ {-∞}. Equivalently, ϕ is c-concave if it is not identically -∞ and ϕ cc = ϕ. Given a c-concave function ϕ, its c-superdifferential ∂ c ϕ ⊂ X 2 is defined as the set of (x, y) such that ϕ(x) + ϕ c (y) = d 2 (x, y) 2 ,
and for x ∈ X the set

∂ c ϕ(x) is the set of y's such that (x, y) ∈ ∂ c ϕ. Notice that for general (x, y) ∈ X 2 we have ϕ(x) + ϕ c (y) ≤ d 2 (x,y) 2
, thus y ∈ ∂ c ϕ(x) can be equivalently formulated as

ϕ(z) -ϕ(x) ≤ d 2 (z, y) 2 - d 2 (x, y) 2 , ∀z ∈ X.
It turns out that for µ, ν ∈ P 2 (X) the distance W 2 (µ, ν) can be found as maximization of the dual problem of the optimal transport (2.11):

1 2 W 2 2 (µ, ν) = sup � ϕ dµ + � ϕ c dν, (2.12) 
the sup being taken among all c-concave functions ϕ. Notice that the integrals in the right hand side are well posed because for ϕ c-concave and µ, ν ∈ P 2 (X) we always have max{ϕ, 0} ∈ L 1 (µ) and max{ϕ c , 0} ∈ L 1 (ν). The sup is always achieved and any maximizing ϕ is called Kantorovich potential from µ to ν. For any Kantorovich potential we have in particular ϕ ∈ L 1 (µ) and ϕ c ∈ L 1 (ν). Equivalently, the sup in (2.12) can be taken among all ϕ : X � → R Lipschitz and bounded.

We shall make frequently use of the following superposition principle, proved in [START_REF] Lisini | Characterization of absolutely continuous curves in Wasserstein spaces[END_REF] (see also the original argument in the Euclidean framework [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]):

Proposition 2.1. Let {µ t } t ⊂ P 2 (X) be a 2-a.c. curve w.r.t. W 2 .
Then there exists

π ∈ P(C([0, 1], X)) such that (e t ) � π = µ t , ∀t ∈ [0, 1], � 1 0 | μt | 2 dt = � � 1 0 | γt | 2 dt dπ(γ),
and in particular π is concentrated on the set of 2-a.c. curves on X. For any such π we also have

| μt | 2 = � | γt | 2 dπ(γ), a.e. t ∈ [0, 1].
Any plan π associated to the curve {µ t } t as in the above proposition will be called lifting

of {µ t } t .

Metric measure spaces and Sobolev functions

Spaces of interest for this paper are metric measure spaces (X, d, m) which will always be assumed to satisfy:

• (X, d) is complete and separable,

• the measure m is a non-negative and non-zero Radon measure on X.

In this paper, for the abbreviation we will not distinguish X, (X, d) or (X, d, m) when no ambiguities exist. For example, we write S 2 (X) instead of S 2 (X, d, m).

Given a curve {µ t } t ⊂ P(X) we shall say that it has bounded compression provided there

is C > 0 such that µ t ≤ Cm for every t ∈ [0, 1]. Similarly, given π ∈ P(C([0, 1], X))
we shall say that it has bounded compression provided t � → µ t := (e t ) � π has bounded compression.

We shall now recall the definition of Sobolev functions 'having distributional differential in L 2 (X, m)'. The definition we adopt comes from [START_REF]On the differential structure of metric measure spaces and applications[END_REF] which in turn is a reformulation of the one proposed in [START_REF]Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF]. For the proof that this approach produces the same concept as the one discussed in [START_REF] Heinonen | Nonsmooth calculus[END_REF] and its references, see [START_REF]Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF].

Definition 2.2 (Test plans). Let (X, d, m) be a metric measure space and π ∈ P(C([0, 1], X)).

We say that π is a test plan provided it has bounded compression and

� � 1 0 | γt | 2 dt dπ(γ) < +∞.
Definition 2.3 (The Sobolev class S 2 (X)). Let (X, d, m) be a metric measure space.

The Sobolev class S 2 (X) = S 2 (X, d, m) is the space of all Borel functions f :

X � → R such that there exists a function G ∈ L 2 (X, m), G ≥ 0 such that: � |f (γ 1 ) -f (γ 0 )| dπ(γ) ≤ � � 1 0 G(γ t )| γt | dt dπ(γ),
for every test plan π. In this case, G is called a weak upper gradient of f .

It can be proved that for f ∈ S 2 (X) there exists a minimal, in the m-a.e. sense, weak upper gradient: we shall denote it by |Df |.

Basic calculus rules for |Df | are the following, all the expressions being intended m-a.e.:

Locality For every f, g ∈ S 2 (X) we have

|Df | = 0, on f -1 (N ), ∀N ⊂ R, Borel with L 1 (N ) = 0, (2.13) |Df | = |Dg|, m -a.e. on {f = g}. (2.14)
Weak gradients and local Lipschitz constants. For any f :

X � → R locally Lipschitz it holds |Df | ≤ lip(f ). (2.15)
Vector space structure. S 2 (X) is a vector space and for every f, g ∈ S 2 (X), α, β ∈ R we have

|D(αf + βg)| ≤ |α||Df | + |β||Dg|. (2.16) Algebra structure. L ∞ ∩ S 2 (X) is an algebra and for every f, g ∈ L ∞ ∩ S 2 (X) we have |D(f g)| ≤ |f ||Dg| + |g||Df |.
(2.17)

Similarly, if f ∈ S 2 (X) and g is Lipschitz and bounded, then f g ∈ S 2 (X) and the bound (2.17) holds.

Chain rule. Let f ∈ S 2 (X) and ϕ : R � → R Lipschitz. Then ϕ • f ∈ S 2 (X) and

|D(ϕ • f )| = |ϕ � | • f |Df |, (2.18) 
where |ϕ � | • f is defined arbitrarily at points where ϕ is not differentiable (observe that the identity (2.13) ensures that on

f -1 (N) both |D(ϕ • f )| and |Df | are 0 m-a.e., N
being the negligible set of points of non-differentiability of ϕ).

We equip S 2 (X) with the seminorm �f � S 2 := �|Df |� L 2 (X) . In the following, we will sometimes need to work with spaces (X, d, m) such that S 2 (X) is separable, we thus recall the following general criterion:

Proposition 2.4. Let (X, d, m) be a metric measure space where m is locally bounded.

If the the Sobolev space W 1,2 (X, d, m) defined as

L 2 ∩ S 2 (X) equipped with the norm �f � 2 W 1,2 := �f � 2 L 2 + �f � 2 S 2 is reflexive, then S 2 (X) is separable.
In particular, let (X, d, m) be a metric measure space satisfying one of the following properties below: i) (X, d) is doubling, i.e. there is N ∈ N such that for any r > 0 any ball of radius 2r can be covered by N balls of radius r. And m is locally bounded.

ii) The seminorm � • � S 2 satisfies the parallelogram rule, and m gives finite mass to bounded sets.

We know S 2 (X) is separable.

Proof. In [START_REF] Ambrosio | Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope[END_REF] it has been proved that if W 1,2 (X) is reflexive, then it is separable.

Thus to conclude it is sufficient to show that if W 1,2 (X) is separable and m gives finite mass to bounded sets (this being trivially true in the case (i)), then S 2 (X)

is separable as well. To this aim, let f ∈ S 2 (X), consider the truncated functions

f n := min{n, max{-n, f }} and notice that thanks to (2.40) we have �f n -f � S 2 → 0 as n → ∞. Thus we can reduce to consider the case of f ∈ L ∞ ∩ S 2 (X). Let
B n ⊂ X be bounded nondecreasing sequence of sets covering X, and for each n ∈ N, χ N : X � → [0, 1] a 1-Lipschitz function with bounded support and identically 1 on B n .

For f ∈ L ∞ ∩ S 2 (X), by (2.17) we have f χ n ∈ L ∞ ∩ S 2 (X) as well and furthermore supp( χ n f ) is bounded. Given that m gives finite mass to bounded sets we deduce that

f χ n ∈ W 1,2 (X)
, and the locality property (2.14) 

ensures that � χ n f -f � S 2 → 0 as n → ∞.
At last, still in [START_REF] Ambrosio | Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope[END_REF], it has been shown that if (X, d) is doubling, then W 1,2 (X) is reflexive.

On the other hand, if (ii) holds, then it is obvious that W 1,2 (X) is Hilbert, and hence reflexive. Therefore S 2 (X) is separable if (i) or (ii) holds.

Hopf-Lax formula and Hamilton-Jacobi equation

Here we recall the main properties of the Hopf-Lax formula and its link with the Hamilton-Jacobi equation in a metric setting. For a proof of these results see [START_REF]Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF].

Definition 2.5 (Hopf-Lax formula). Given f : X � → R a function and t > 0 we define

Q t f : X � → R ∪ {-∞} as Q t f (x) := inf y∈X f (y) + d 2 (x, y) 2 .
We also put Q 0 f := f . Proposition 2.6 (Basic properties of the Hopf-Lax formula). Let f : X � → R be Lipschitz and bounded. Then the following hold.

i) For every t ≥ 0 we have

Lip(Q t f ) ≤ 2 Lip(f ). ii) For every x ∈ X the map [0, ∞) � t � → Q t f (x)
is continuous, locally semiconcave on (0, ∞) and the inequality

d dt Q t f (x) + lip(Q t f ) 2 (x) 2 ≤ 0,
holds for every t ∈ (0, ∞) with at most a countable number of exceptions.

iii

) The map (0, ∞) × X � (t, x) � → lip(Q t f )(x) is upper-semicontinuous.

The continuity equation

∂ t µ t = L t 2.3.

Some definitions and conventions

Let µ ∈ P 2 (X) be such that µ ≤ Cm for some C > 0. We define the seminorm

� • � µ on S 2 (X) as �f � 2 µ := � |Df | 2 dµ.
Definition 2.7 (The cotangent space CoTan µ (X)). For µ ∈ P 2 (X) with µ ≤ Cm for some C > 0 consider the quotient space S 2 (X)/ ∼ µ , where f ∼ µ g if �f -g� µ = 0.

The cotangent space CoTan µ (X) is then defined as the completion of S 2 (X)/ ∼ µ w.r.t. its natural norm. The norm on CoTan µ (X) will still be denoted by � • � µ .

Given a linear map L : S 2 (X) � → R and µ as above, we denote by �L� * µ the quantity given by 1

2 (�L� * µ ) 2 := sup f ∈S 2 (X) L(f ) - 1 2 �f � 2 µ .
Linear operators L : S 2 (X) � → R such that �L� * µ < ∞ are in 1-1 correspondence with elements of the dual of CoTan µ (X). Abusing a bit the notation, we will often identify such operators L with the induced linear mapping on CoTan µ (X).

A localization argument

In this section {µ t } t ⊂ P 2 (X) is a given W 2 -continuous curve with bounded compression and we consider a functional L : S 2 (X) � → L 1 (0, 1) satisfying the inequality

� s t L(f )(r) dr ≤ � � s t G 2 r dr � � s t �f � 2 µr dr
with G ∈ L 2 (0, 1), for every f ∈ S 2 (X) and t, s ∈ [0, 1], t < s. The question we address is up to what extent we can deduce that for such L there are operators

L t : S 2 (X) � → R such that L(f )(t) = L t (f ) for L 1 -a.e. t ∈ [0, 1]
. We will see in a moment that this is always the case in an appropriate sense, but to deal with the case of S 2 (X) non separable we need to pay some attention to the set of Lebesgue points of L(f ).

Thus for given g ∈ L 1 (0, 1) we shall denote by Leb(g) ⊂ (0, 1) the set of t's such that the limit of -

� t+ε t-ε g s ds,
as ε ↓ 0 exists and is finite. Clearly the set Leb(g) contains all the Lebesgue points of any representative of g and in particular we have L 1 (Leb(g)) = 1. We shall denote its value by ḡ, so that ḡ : Leb(g) � → R is a well chosen representative of g everywhere defined on Leb(g).

It is obvious that for t ∈ Leb(g), we have:

lim ε 1 ,ε 2 ↓0 - � t+ε 1 t-ε 1 - � t+ε 2 t-ε 2 |g s -g r | ds dr = 0.
We then have the following result.

Lemma 2.8. Let {µ t } t ⊂ P 2 (X) be a W 2 -continuous curve of bounded compression and L : S 2 (X) � → L 1 (0, 1) be a linear map such that for some G ∈ L 2 (0, 1) the inequality

� s t L(f )(r) dr ≤ � � s t G 2 r dr � � s t �f � 2 µr dr, ∀t, s ∈ [0, 1], t < s, ∀f ∈ S 2 (X), (2.19) 
holds.

Then there exists a family {L t } t∈[0,1] of maps from S 2 (X) to R such that for any f ∈ S 2 (X) we have

L(f )(t) = L t (f ), a.e. t ∈ [0, 1], (2.20) |L t (f )| ≤ |G t |�f � µt , a.e. t ∈ [0, 1]. (2.21)
Remark 2.9. As a direct consequence of (2.20), if { Lt } t∈[0,1] ia another family of maps satisfies the above, then for every f ∈ S 2 (X) we have

L t (f ) = Lt (f ) for a.e. t ∈ [0, 1].
Thus L is unique as a map from S 2 (X) to L 1 (0, 1).

Proof. For f ∈ S 2 (X) consider the set Leb(L(f )) and for t ∈ (0, 1) let

V t ⊂ S 2 (X) be the set of f 's in S 2 (X) such that t ∈ Leb(L(f )). The trivial inclusion Leb(α 1 g 1 + α 2 g 2 ) ⊃ Leb(g 1 ) ∩ Leb(g 2 ),
valid for any g 1 , g 2 ∈ L 1 (0, 1) and α 1 , α 2 ∈ R and the linearity of L grant that V t is a vector space for every t ∈ (0, 1). 

|L(f )(t)| ≤ � G 2 t �f � µt , ∀t ∈ Leb(L(f )) ∩ Leb(G 2 ),
which we can rewrite as: for any t ∈ Leb(G 2 ) it holds

|L(f )(t)| ≤ � G 2 t �f � µt , ∀f ∈ V t .
In other words, for any t ∈ Leb(G 2 ) the map

V t � f � → L t (f ) := L(f )(t) is a well defined linear map from V t to R with norm bounded by � G 2 t .
By Hahn-Banach we can extend this map to a map from S 2 to R with norm bounded by G(t). Noticing that by construction we have f ∈ Vt for a.e. t ∈ [0, 1] for any f ∈ S 2 , the family of maps Lt fulfill the thesis. To conclude notice that trivially it holds

� G 2 t = |G t | for L 1 -a.e. t.

Main theorem

We start giving the definition of 'distributional' solutions of the continuity equation in our setting: Definition 2.10 (Solutions of ∂ t µ t = L t ). Let (X, d, m) be a metric measure space, {µ t } t ⊂ P 2 (X) a W 2 -continuous curve with bounded compression and {L t } t∈[0,1] a family of maps from S 2 (X) to R.

We say that {µ t } t solves the continuity equation

∂ t µ t = L t , (2.22) provided: 
i) for every f ∈ S 2 (X) the map t � → L t (f ) is measurable and the map N :

[0, 1] � → [0, ∞] defined by 1 2 N 2 t := ess sup f ∈S 2 (X) L t (f ) - 1 2 �f � 2 µt , (2.23) 
belongs to L 2 (0, 1), i.e. for any f , Finally, we have

1 2 N 2 t ≥ L t (f ) -1 2 �f �
N t = | μt |, a.e. t ∈ [0, 1].
Remark 2.12. It is obvious that if { Lt } t∈[0,1] is another family of maps such that {µ t } t solves ∂ t µ t = Lt , then for every f ∈ L 1 ∩ S 2 (X) we have

L t (f ) = Lt (f ), a.e. t ∈ [0, 1],
thus {L t } t∈[0,1] is unique as a map from S 2 (X) to L 1 (0, 1).

Proof. (i) ⇒ (ii) Let π be a lifting of {µ t } t and notice that π is a test plan. Hence for

f ∈ L 1 ∩ S 2 (X) we have � � � � � f dµ s - � f dµ t � � � � ≤ � |f (γ s ) -f (γ t )| dπ(γ) ≤ � � s t |Df |(γ r )| γr | dr dπ(γ) ≤ � � s t � |Df | 2 dµ r dr � � s t � | γr | 2 dπ(γ) dr.
(2.24)

Taking into account that � |Df | 2 dµ r ≤ C � |Df | 2 dm for every t ∈ [0, 1], this shows that t � → � f dµ t is absolutely continuous. Define L : S 2 (X) � → L 1 (0, 1) by L(f )(t) := ∂ t � f dµ t and notice that the bound (4.3) gives � � � � � s t L(f )(r) dr � � � � ≤ � � s t � |Df | 2 dµ r dr � � s t G 2 r dr, ∀t, s ∈ [0, 1], t < s, for G t := | μt | = � � | γr | 2 dπ(γ) ∈ L 2 (0, 1
). Hence we can apply Lemma 2.8 and deduce from (2.21) that for every f ∈ S 2 (X) we have

L t (f ) - 1 2 �f � 2 µt ≤ 1 2 | μt | 2 , a.e. t ∈ [0, 1].
By the definition (2.23), this latter bound is equivalent to

N t ≤ | μt | for a.e. t ∈ [0, 1]. (ii) ⇒ (i)
To get the result it is sufficient to prove that

W 2 2 (µ t , µ s ) ≤ |s -t| � s t N 2 r dr, ∀t, s ∈ [0, 1], t < s.
We shall prove this bound for t = 0 and s = 1 only, the general case following by a simple rescaling argument. Recalling that

1 2 W 2 2 (µ 0 , µ 1 ) = sup ψ � ψ dµ 0 + � ψ c dµ 1 = sup ϕ � Q 1 ϕ dµ 1 - � ϕ dµ 0 ,
the sup being taken among all Lipschitz and bounded ψ, ϕ, to get the claim it is sufficient

to prove that � Q 1 ϕ dµ 1 - � ϕ dµ 0 ≤ 1 2 � 1 0 N 2 t dt, (2.25) 
for any Lipschitz and bounded ϕ : X � → R. Fix such ϕ and notice that

� Q 1 ϕ dµ 1 - � ϕ dµ 0 = lim n→∞ � n-1 � i=0 � (Q i+1 n ϕ -Q i n ϕ) dµ i+1 n + � Q i n ϕ d(µ i+1 n -µ i n ) � .
(2.26)

Recalling point (ii) of Proposition 2.6 we have

n-1 � i=0 � (Q i+1 n ϕ -Q i n ϕ) dµ i n ≤ n-1 � i=0 � � i+1 n i n - lip(Q t ϕ) 2 2 dt dµ i n = � X×[0,1] - lip(Q t ϕ) 2 (x) 2 dµ n (x, t).
where

µ n := � n-1 i=0 µ i n × L 1 | [ i n , i+1 n ]
. The continuity of {µ t } t easily yields that (µ n ) converges to µ := dµ t (x)⊗dt in duality with C b (X ×[0, 1]). Furthermore, the assumption µ t ≤ Cm for every t ∈ [0, 1] yields µ n ≤ Cm × L 1 for every n ∈ N and thus by the Dunfort-Pettis theorem (see for instance Theorem 4.7.20 in [START_REF] Bogachev | Measure theory[END_REF]) we deduce that (µ n )

converges to µ ∈ P(X × [0, 1]), dµ := dµ t ⊗ dt, in duality with L ∞ (X × [0, 1]). Being (t, x) � → lip(Qtϕ) 2 (x) 2 bounded (point (i) of Proposition 2.6), we deduce that lim n→∞ n-1 � i=0 � (Q i+1 n ϕ -Q i n ϕ) dµ i n ≤ � � 1 0 - lip(Q t ϕ) 2 (x) 2 dµ t dt. (2.27)
On the other hand we have

n-1 � i=0 � Q i n ϕ d(µ i+1 n -µ i n ) = n-1 � i=0 � i+1 n i n L s (Q i n ϕ) ds ≤ n-1 � i=0 1 2 � i+1 n i n N 2 s ds + n-1 � i=0 � i+1 n i n � |DQ i n ϕ| 2 2 dµ s ds ≤ 1 2 � 1 0 N 2 t dt + � X×[0,1] f n (t, x) dµ,
where

f n (t, x) := lip(Q i n ϕ) 2 (x) 2 for t ∈ [ i n , i+1 n
) and dµ(t, x) := dµ t (x) ⊗ dt. Recall that by points (i), (iii) of Proposition 2.6 we have that the f n 's are equibounded and satisfy

lim n f n (t, x) ≤ f (t, x) := lip(Qtϕ) 2 (x) 2 , thus Fatou's lemma gives lim n→∞ � X×[0,1] f n (t, x) dµ ≤ � X×[0,1] f (t, x) dµ,
and therefore 

lim n→∞ n-1 � i=0 � Q i+1 n ϕ d(µ i+1 n -µ i n ) ≤ 1 2 � 1 0 N 2 t dt + � � 1 0 lip(Q t ϕ)
L 1 -negligible set N ⊂ [0, 1] and, for every t ∈ [0, 1] \ N, a linear map L t : S 2 (X) � → R such that: i) every t ∈ [0, 1] \ N is a Lebesgue point of s � → | μs | 2 , the metric speed | μs | exists at s = t and we have | μt | = �L t � * µt , ii) for every f ∈ L 1 ∩ S 2 (X) the map t � → � f dµ t is absolutely continuous, differen-
tiable at every t ∈ [0, 1] \ L and its derivative is given by or for some n ∈ N the map s � → � f dµ s is not differentiable at t. Then by Theorem 4.9

d dt � f dµ t = L t (f ), ∀t ∈ [0, 1] \ N. Proof. Let {f n } n∈N ⊂ S 2 (X)
we know that N is negligible.

For n ∈ N and t ∈ [0, 1] \ N, inequality (4.3) gives, after a division for |s -t| and a limit s → t, the bound

� � � � d dt � f n dµ t � � � � ≤ | μt | � � |Df n | 2 dµ t ≤ C| μt | � � |Df n | 2 m.
This means that the map S 2 (X)

� f n � → d dt � f n dµ t can be uniquely extended to a linear operator L t from S 2 (X) to R which satisfies �L t � * µt ≤ | μt |. For f ∈ L 1 ∩S 2 (X) denote by I f : [0, 1] � → R the function given by I f (t) := � f d(µ t -µ 0 ).
Then the map f � → I f is clearly linear and satisfies

|I f (t)| ≤ � |f (γ t ) -f (γ 0 )| dπ(γ) ≤ � � t 0 |Df |(γ s )| γs | ds dπ(γ) ≤ √ C�f � S 2 � � � 1 0 | γt | 2 dπ(γ).
Hence given that we have

I fn (t) = � t 0 L t (f n ) dt for every n ∈ N and that {f n } is dense in L 1 ∩ S 2 (X) w.r.t. the (semi)distance of S 2 (X), from the bound N t ≤ | μt | for L 1 -a.e. t, we deduce that I f (t) = � t 0 L t (f ) dt for every f ∈ L 1 ∩ S 2 (X) and every t ∈ [0, 1].
Along the same lines we have that

|I f (s) -I f (t)| ≤ � |f (γ s ) -f (γ t )| dπ(γ) ≤ � � s t |Df |(γ r )| γr | dr dπ(γ) ≤ ≤ � C|s -t| � � s t | γs | 2 dr dπ(γ)�f � S 2 = � C|s -t| � s t | μr | 2 dr�f � S 2
and therefore for every

t ∈ [0, 1] Lebesgue point of s � → | μs | 2 and such that | μt | exists we have lim s→t � � � � I f (s) -I f (t) s -t � � � � ≤ √ C�f � S 2 | μt |.
Taking into account that, by construction, we have lim s→t

I fn (s)-I fn (t) s-t = L t (f n ) for every t ∈ [0, 1]
\ N and the density of {f n }, we deduce that lim s→t

I f (s)-I f (t) s-t = L t (f ) for every f ∈ L 1 ∩ S 2 (X) and t ∈ [0, 1] \ N . It remains to prove that �L t � * µt = | μt | for t ∈ [0, 1] \ N.
From Theorem 4.9 we know that N t = | μt | for L 1 -a.e. t and to conclude use the separability of S 2 (X) to get

1 2 (�L t � * µt ) 2 = sup n∈N L t (f n ) - 1 2 �f n � 2 µt = ess sup f ∈S 2 (X) L t (f ) - 1 2 �f � 2 µt = 1 2 N 2 t , a.e. t,
so that up to enlarging N we get the thesis.

Some consequences in terms of differential calculus

As discussed in [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF], see also [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF], the continuity equation plays a key role in developing a first order calculus on the space (P 2 (R d ), W 2 ). In this section, we show that the continuity equation plays a similar role on metric measure spaces, where no smooth structure is a priori given. The only technical difference one needs to pay attention to is the fact that only curves with bounded compression should be taken into account.

We start with the Benamou-Brenier formula. Recall that on R d , and more generally Riemannian/Finslerian manifolds, we have the identity

W 2 2 (µ 0 , µ 1 ) = inf � 1 0 � |v t | 2 dµ t dt, (2.29) 
where the inf is taken among all 2-a.c. curves {µ t } t joining µ 0 to µ 1 and the v t 's are such that the continuity equation

∂ t µ t + ∇ • (v t µ t ) = 0, (2.30) 
holds. We want to investigate the validity of this formula in the metric-measure context.

To this aim, notice that formula (2.29) expresses the fact that the distance W 2 can be realized as inf of length of curves, where this length is measured in an appropriate way.

Hence there is little hope to get an analogous of this formula on (X, d, m) unless we require in advance that (X, d) is a length space. Furthermore, given that in the nonsmooth case we are confined to work with curves with bounded compression, we need to enforce a length structure compatible with the measure m, thus we are led to the following definition:

Definition 2.14 (Measured-length spaces). We say that (X, d, m) is measured-length provided for any µ 0 , µ 1 ∈ P 2 (X) with bounded support and satisfying µ 0 , µ 1 ≤ Cm for some C > 0 the distance W 2 (µ 0 , µ 1 ) can be realized as inf of length of absolutely continuous curves {µ t } t with bounded compression connecting µ 0 to µ 1 .

On measured-length spaces we then have a natural analog of formula (2.29), which is in fact a direct consequence of Theorem 4.9:

Proposition 2.15 (Benamou-Brenier formula on metric measure spaces). Let (X, d, m) be a measured-length space and µ 0 , µ 1 ∈ P 2 (X) with bounded support and satisfying µ 0 , µ 1 ≤ Cm for some C > 0.

Then we have Then ϕ n ∈ S 2 (X) and (ϕ n ) is a Cauchy sequence w.r.t. the seminorm � • � µ → 0 for every µ ∈ P 2 (X) such that µ ≤ Cm for some C > 0.

W 2 2 (µ 0 , µ 1 ) = inf � 1 0 (�L t � * µt ) 2 dt
Proof. We first claim that sup B ϕ c < ∞. Indeed, if not there is a sequence (y n ) ⊂ B such that ϕ c (y n ) > n for every n ∈ N. Hence for every x ∈ X we would have

ϕ(x) ≤ inf n∈N d 2 (x, y n ) -ϕ c (y n ) ≤ inf n∈N 1 2 � d(x, B) + diam(B) � 2 -n = -∞,
contradicting the definition of c-concavity. Using the assumption we have

ϕ(x) = inf y∈B d 2 (x, y) 2 -ϕ c (y) ≥ d 2 (x, B) 2 -sup B ϕ c . (2.32)
This proves that ϕ is bounded from below and that it has bounded sublevels. Hence the truncated functions ϕ n are constant outside a bounded set. Now let x, x � ∈ X and

y ∈ ∂ c ϕ(x) ∩ B. Then we have ϕ(x) -ϕ(x � ) ≤ d 2 (x, y) -d 2 (x � y) 2 ≤ d(x, x � ) � d(x, B) + d(x � , B) 2 + diam(B) � .
Inverting the roles of x, x � we deduce that ϕ is Lipschitz on bounded sets and the pointwise estimate

lip(ϕ)(x) ≤ d(x, B) + diam(B), ∀x ∈ X. (2.33)
It follows that the ϕ n 's are Lipschitz and, using the fact that m gives finite mass to bounded sets, that ϕ n ∈ S 2 (X) for every n ∈ N.

To conclude, notice that the bound (2.33) ensures that for any µ ∈ P 2 (X) we have lip(ϕ) ∈ L 2 (µ). Thus for µ such that µ ≤ Cm for some C > 0 we have |Dϕ| ≤ lip(ϕ) µ-a.e. and thus |Dϕ| ∈ L 2 (µ) as well. Now observe that

�ϕ m -ϕ n � 2 µ = � {ϕm� =ϕn} |Dϕ| 2 dµ,
and that the right hand side goes to 0 as n, m → ∞, because by (2.32) we know that

∪ n {ϕ = ϕ n } = X.
Thanks to this lemma we can, and will, associate the Kantorovich potential ϕ as an element of CoTan µ (X): it is the limit of the equivalence classes of the truncated functions

ϕ n .
Recall that for µ, ν ∈ P 2 (X), there always exists a Kantorovich potential ϕ from µ to ν such that

ϕ(x) = inf y∈supp(ν) d 2 (x, y) 2 -ϕ c (y), ∀x ∈ X, (2.34) 
hence if ν has bounded support, a potential satisfying the assumption of Lemma 2.16 above can always be found.

We can now state and prove the following result about the derivative of W Proof. Let N ⊂ [0, 1] be the L 1 -negligible set given by Proposition 2.13. We shall prove formula (2.35) for every t ∈ [0, 1] \ N such that 1 2 W 2 2 (µ • , ν) is differentiable at t. Fix such t, let ϕ t be as in the assumptions and notice that

1 2 W 2 2 (µ t , ν) = � ϕ t dµ t + � ϕ c dν, 1 2 W 2 2 (µ s , ν) ≥ � ϕ t dµ s + � ϕ c dν, ∀s ∈ [0, 1],
and thus

W 2 2 (µ s , ν) -W 2 2 (µ t , ν) 2 ≥ � ϕ t d(µ s -µ t ).
Recall that max{ϕ t , 0} ∈ L 1 (µ) for every µ ∈ P 2 (X) and that ϕ t ∈ L 1 (µ t ), so that the integral in the right hand side makes sense. 

� � � � � (ϕ n,t -ϕ m,t )d µ s -µ t s -t � � � � ≤ 1 |s -t| � (ϕ n,t -ϕ m,t )(γ s ) -(ϕ n,t -ϕ m,t )(γ t ) dπ(γ) ≤ 1 |s -t| � � s t |D(ϕ n,t -ϕ m,t )|(γ r )| γr | dr dπ(γ) ≤ � - � s t �D(ϕ n,t -ϕ m,t )� 2 µr dr � � - � s t | γr | 2 dr dπ(γ),
and that the dominated convergence theorem ensures that - � s t �D(ϕ n,tϕ m,t )� 2 µr dr → 0 as n, m → ∞.

The continuity equation

∂ t µ t + ∇ • (∇φ t µ t ) = 0 2.4.

Preliminaries: duality between differentials and gradients

On Euclidean spaces it is often the case that the continuity equation (2.30) can be written as

∂ t µ t + ∇ • (∇φ t µ t ) = 0, (2.36) 
for some functions φ t , so that the vector fields v t can be represented as gradient of functions. In some sense, the 'optimal' velocity vector fields (i.e. those minimizing the L 2 (µ t )-norm) can always be thought of as gradients, as they always belong to the closure of the space of gradients of smooth functions w.r.t. the L 2 (µ t )-norm (i.e. they belong to the cotangent space CoTan µt (R d )), see [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]. Yet, the process of taking completion in general destroys the property of being the gradient of a smooth/Sobolev functions, so that technically speaking general absolutely continuous curves solve (2.30) and only in some cases one can write it as in (2.36).

It is then the scope of this part of the paper to investigate how one can give a meaning to (2.36) in the non-smooth setting and which sort of information on the curve we can obtain from such 'PDE'. According to our interpretation of the continuity equation given in Theorem 4.9, the problem reduces to understand in what sense we can write L t (f ) = � Df (∇φ t ) dµ t , and thus ultimately to give a meaning to 'the differential of a function applied to the gradient of another function'. This has been the scope of [START_REF]On the differential structure of metric measure spaces and applications[END_REF],

we recall here the main definitions and properties.

Definition 2.18 (The objects D ± f (∇g)). Let (X, d, m) be a m.m.s. and f, g ∈ S 2 (X).

The functions D ± f (∇g) : X � → R are m-a.e. well defined by

D + f (∇g) := lim ε↓0 |D(g + εf )| 2 -|Dg| 2 2ε , D -f (∇g) := lim ε↑0 |D(g + εf )| 2 -|Dg| 2 2ε .
It is immediate to check that for ε 1 < ε 2 we have

|D(g + ε 1 f )| 2 -|Dg| 2 2ε 1 ≤ |D(g + ε 2 f )| 2 -|Dg| 2 2ε 2 , m -a.e.,
so that the limits above can be replaced by inf ε>0 and sup ε<0 respectively.

Heuristically, we should think to D + f (∇g) (resp. D -f (∇g)) as the maximal (resp.

minimal) value of the differential of f applied to all possible gradients of g, see [START_REF]On the differential structure of metric measure spaces and applications[END_REF] for a discussion on this topic.

The basic algebraic calculus rules for D ± f (∇g) are the following:

|D ± (f 1 -f 2 )(∇g)| ≤ |D(f 1 -f 2 )||Dg|, (2.37) 
D -f (∇g) ≤ D + f (∇g), D + (-f )(∇g) = D + f (∇(-g)) = -D -f (∇g), (2.38) 
D ± g(∇g) = |Dg| 2 .
(2.39)

We also have natural chain rules: given ϕ : R � → R Lipschitz we have

D ± (ϕ • f )(∇g) = ϕ � • f D ±signϕ � •f f (∇g), D ± f (∇ϕ • g) = ϕ � • gD ±signϕ � •g f (∇g), (2.40) 
where ϕ � • f (resp. ϕ � • g) are defined arbitrarily at those x's such that ϕ is not differentiable at f (x) (resp. g(x)). In particular, D ± f (∇(αg)) = αD ± f (∇g) for α > 0.

Notice that as a consequence of the above we have that for given g ∈ S 2 (X) the map

S 2 (X) � f � → D + f (∇g) is m-a.e. convex, i.e. D + ((1 -λ)f 1 + λf 2 )(∇g) ≤ (1 -λ)D + f 1 (∇g) + λD + f 2 (∇g), m -a.e., (2.41) 
for every f 1 , f 2 ∈ S 2 (X), and λ

∈ [0, 1]. Similarly, f � → D -f (∇g) is m-a.e. concave.
Furthermore, it is easy to see that for g ∈ S 2 (X) and π test plan we have

lim t↓0 � g(γ t ) -g(γ 0 ) t dπ(γ) ≤ 1 2 � |Dg| 2 (γ 0 ) dπ(γ) + 1 2 lim t↓0 1 t � � t 0 | γs | 2 ds π(γ). (2.42)
We are therefore lead to the following definition:

Definition 2.19 (Plans representing gradients). Let (X, d, m) be a m.m.s. g ∈ S 2 (X) and π a test plan. We say that π represents the gradient of g provided it is a test plan and we have

lim t↓0 � g(γ t ) -g(γ 0 ) t dπ(γ) ≥ 1 2 � |Dg| 2 (γ 0 ) dπ(γ) + 1 2 lim t↓0 1 t � � t 0 | γs | 2 ds π(γ). (2.43)
It is worth noticing that plans representing gradients exist in high generality (see [START_REF]On the differential structure of metric measure spaces and applications[END_REF]).

Differentiation along plans representing gradients is tightly linked to the object D ± f (∇g) defined above: this is the content of the following simple but crucial theorem proved in [START_REF]On the differential structure of metric measure spaces and applications[END_REF] as a generalization of a result originally appeared in [START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF].

Theorem 2.20 (Horizontal and vertical derivatives). Let (X, d, m) be a m.m.s., f, g ∈ S 2 (X) and π a plan representing the gradient of g.

Then � D -f (∇g) d(e 0 ) � π ≤ lim t↓0 � f (γ t ) -f (γ 0 ) t dπ(γ) ≤ lim t↓0 � f (γ t ) -f (γ 0 ) t dπ(γ) ≤ � D + f (∇g) d(e 0 ) � π.
( 

ε � f (γ t ) -f (γ 0 ) t dπ ≤ 1 2 � |D(g + εf )| 2 -|Dg| 2 d(e 0 ) � π
Divide by ε > 0 (resp. ε < 0), let ε ↓ 0 (resp. ε ↑ 0) and use the dominate convergence theorem to conclude.

The result

We are now ready to define what it is a solution of the continuity equation (2.36) in a metric measure context.

Definition 2.21 (Solutions of ∂ t µ t + ∇ • (∇φ t µ t ) = 0). Let {µ t } t ⊂ P 2 (X) be a W 2 -
continuous curve with bounded compression and {φ t } t∈[0,1] ⊂ S 2 (X) a given family. We say that {µ t } t solves the continuity equation

∂ t µ t + ∇ • (∇φ t µ t ) = 0, (2.45) provided: 
i) for every f ∈ S 2 (X) the maps (t, x) � → D ± f (∇φ t )(x) are L × m measurable and the map Ñ :

[0, 1] � → [0, ∞] given by 1 2 Ñ 2 t := ess sup f ∈S 2 (X) � D + f (∇φ t ) dµ t - 1 2 �f � 2 µt (2.46)
is in L 2 (0, 1) where ess sup has the same meaning as we mentioned before.

ii) for every f ∈ L 1 ∩S 2 (X) the map t � → � f dµ t is absolutely continuous and satisfies 

� D -f (∇φ t ) dµ t ≤ d dt � f dµ t ≤ � D + f (∇φ t )
{φ t } t∈[0,1] ⊂ S 2 (X). Then {µ t } t is 2-a.c. and we have | μt | ≤ Ñt for a.e. t ∈ [0, 1]. If furthermore S 2 (X) is separable, then Ñt = | μt | = �φ t � µt for a.e. t.
Proof. We claim that for every f ∈ S 2 (X) it holds max

�� � � � � D + f (∇φ t ) dµ t � � � � , � � � � � D -f (∇φ t ) dµ t � � � � � ≤ �f � µt Ñt , a.e. t.
(2.48)

To this aim, fix a representative of Ñ , a function f ∈ S 2 (X) and notice that for every λ ≥ 0, by definition of Ñ and the second of (2.40) we have

λ � D + f (∇φ t ) dµ t ≤ λ 2 2 �f � 2 µt + 1 2 Ñ 2 t , (2.49) 
for L 1 -a.e. t. Replacing f with -f and recalling that -

� D + f (∇φ t ) dµ t = � D -(-f )(∇φ t ) dµ t ≤ � D + (-f )(∇φ t ) dµ t ,
we deduce that (2.49) holds for every λ ∈ R. In particular, there is a L 1 -negligible set N ⊂ [0, 1] such that for every t ∈ [0, 1] \ N the inequality (2.49) holds for every λ ∈ Q.

Given that all the terms in (2.49) are continuous in λ, we deduce that (2.49) holds for every t ∈ [0, 1] \ N and every λ ∈ R, which yields

� � � � � D + f (∇φ t ) dµ t � � � � ≤ �f � µt Ñt , a.e. t.
Arguing analogously with D -f (∇φ t ) in place of D + f (∇φ t ) we obtain (2.48). Now define a linear operator L : S 2 (X) � → L 1 (0, 1) as

L(f )(t) := d dt � f dµ t ,
and observe that for every t, s ∈ [0, 1], t < s, taking into account (2.47) and (2.48) we have

� s t |L(f )(r)| dr ≤ � s t max �� � � � � D + f (∇φ r ) dµ r � � � � , � � � � � D -f (∇φ r ) dµ r � � � � � dr ≤ � s t �f � µr Ñr dr ≤ � � s t Ñ 2 r dr � � s t �f � 2 µr dr.
Hence we can apply first Lemma 2.8 (with G := Ñ ) and then Theorem 4.9 to deduce

that {µ t } t is 2-a.c. with | μt | ≤ Ñt for a.e. t ∈ [0, 1].
If S 2 (X) is separable, then arguing exactly as in the proof of Proposition 2.13 and using the convexity (resp. concavity

) of f � → � D + f (∇φ t ) dµ t (resp. f � → � D -f (∇φ t ) dµ t )
expressed in (2.41) we deduce the existence of a L 1 -negligible set N ⊂ [0, 1] such that for t ∈ [0, 1] \ N the conclusions (i), (ii) of Proposition 2.13 hold and furthermore

� D -f (∇φ t ) dµ t ≤ L t (f ) ≤ � D + f (∇φ t ) dµ t , ∀f ∈ S 2 (X).
Choosing f := φ t and recalling (2.39) we obtain Proof.

�φ t � 2 µt = L t (φ t ) ≤ �φ t � µt �L t � * µt , ∀t ∈ [0, 1] \ N,
(i) Let A ⊂ (0, 1) be the set of t's such that (restr 1 t ) � π represents the gradient of (1-t)φ t , so that by assumption we know that L 1 (A) = 1. Pick f ∈ S 2 (X) and recall that by Theorem 4.9 we know that d dt 

� f dµ t = L t (f ), a.e. t ∈ [0, 1]. ( 2 
� f dµ t = lim h↓0 � f (γ t+h ) -f (γ t ) h dπ(γ) = 1 1 -t lim h↓0 � f (γ h ) -f (γ 0 ) h dπ t (γ),
so that recalling (2.44) and (2.40) we conclude.

(ii) With exactly the same approximation procedure used in the proof of Proposition 2.13, we see that there exists a L 1 -negligible set N ⊂ [0, 1] such that the thesis of Proposition 2.13 is fulfilled and furthermore for every t ∈ [0, 1] \ N we have

� D -f (∇φ t ) dµ t ≤ L t (f ) ≤ � D + f (∇φ t ) dµ t , ∀f ∈ S 2 (X). (2.51) 
Fix t ∈ [0, 1] \ N and observe that by point (i) of Proposition 2.13 we have that

| μt | 2 = lim h↓0 1 h � � t+h t | γs | 2 dπ(γ) = 1 (1 -t) 2 lim h↓0 1 h � � h 0 | γs | 2 dπ t (γ).
(2.52)

Now pick f := φ t in (2.51) and recall the identity

D ± f (∇f ) = |Df | 2 m-a.e. valid for every f ∈ S 2 (X) to deduce � |Dφ t | 2 dµ t = L t (φ t ) = lim h↓0 � φ t d µ t+h -µ t h = 1 1 -t lim h↓0 � φ t (γ h ) -φ t (γ 0 ) h dπ t (γ).
This last identity, (2.52) and the fact that �L t � * µt = | μt | ensure that π t represents the gradient of (1t)φ t , as claimed.

Two important examples

We conclude the paper discussing two important examples of absolutely continuous curves on P 2 (X): the heat flow and the geodesics. These examples already appeared in the literature [START_REF]Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF][START_REF] Gigli | The splitting theorem in non-smooth context[END_REF][START_REF] Gigli | Heat flow on Alexandrov spaces[END_REF], we report them here only to show that they are consistent with the concepts we introduced.

We start with the heat flow. Recall that the map E :

L 2 (X, m) � → [0, ∞] given by E(f ) :=    1 2 � |Df | 2 dm, if f ∈ S 2 (X), +∞, otherwise,
is convex, lower semicontinuous and with dense domain. Being L 2 (X) an Hilbert space, we then know by the classical theory of gradient flows in Hilbert spaces (see e.g. [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] and references therein) that for any ρ ∈ L 2 (X) there exists a unique continuous curve 

[0, ∞) � t � → ρ t ∈ L 2 (X) with f 0 = f
∂ t µ t + ∇ • (∇(-log ρ t )µ t ) = 0.
To this aim, recall that for any heat flow (ρ t ) we have the weak maximum principle

ρ 0 ≤ C (resp. ρ 0 ≥ c) m -a.e. ⇒ ρ t ≤ C (resp. ρ t ≥ c) m -a.e. for any t > 0, (2.53) 
where c, C ∈ R and the estimate

� ∞ 0 �∆ρ t � 2 L 2 (X) dt ≤ E(ρ t ). (2.54) Furthermore, if m ∈ P(X) then L 2 (X, m) ⊂ L 1 (X, m
) and the mass preservation property holds:

� ρ t dm = � ρ 0 dm, ∀t > 0.
(2.55)

See [START_REF]Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF] for the simple proof of these facts.

We can now state our result concerning the heat flow as solution of the continuity equation.

Proposition 2.24 (Heat flow). Let (X, d, m) be a metric measure space with m ∈ P 2 (X) and ρ 0 a probability density such that c ≤ ρ 0 ≤ C m-a.e. for some c, C > 0 (in particular

ρ 0 ∈ L 2 (X, m)
) and E(ρ 0 ) < ∞. Let (ρ t ) be the heat flow starting from from ρ 0 .

Then the curve [0, 1] � t � → µ t := ρ t m solves the continuity equation

∂ t µ t + ∇ • (∇(-log ρ t )µ t ) = 0.
Proof. By (2.55) and (2.53) we know that ρ t is a probability density for every t and

(2.53) again and the assumptions m ∈ P 2 (X) and ρ 0 ≤ Cm ensure that µ t ∈ P 2 (X) for every t ∈ [0, 1] and that {µ t } t has bounded compression. The W 2 -continuity of ({µ t } t is a simple consequence of the L 2 -continuity of (ρ t ) and the bounds ρ t ≤ C, m ∈ P 2 (X).

Also, recalling the chain rule (2.18) and the maximum principle (2.53) we have 

� log ρ t � 2 µt = � |D(log ρ t )| 2 dµ t = � |Dρ t | 2 ρ t dm ≤ 1 c � |Dρ t | 2 dm
� D -f (∇(-log ρ t )) dµ t ≤ d dt � f dµ t ≤ � D + f (∇(-log ρ t )) dµ t .
Taking into account the chain rule (2.40) the above can be written as 

- � D + f (∇ρ t ) dm ≤ d dt � f dµ t ≤ - � D -f (∇ρ t ) dm. ( 2 
� � � � d dt � f ρ t dm � � � � ≤ � |f ||∆ρ t | dm ≤ 1 2 �f � 2 L 2 + 1 2 �∆ρ t � 2 L 2 ,
the bound (2.54) and the assumption E(ρ 0 ) < ∞ ensure that the derivative of t � → � f ρ t dm is in L 1 (0, 1), so that this function is absolutely continuous on [0, 1].

The fact that -d dt ρ t ∈ -∂ -E(ρ t ) for a.e. t grants that for ε ∈ R we have d dt

� εf ρ t dm = � εf d dt ρ t dm ≤ E(ρ t -εf ) -E(f ), a.e. t.
(2.57)

Divide by ε > 0 and let ε ↓ 0 to obtain d dt

� f ρ t dm ≤ lim ε↓0 E(ρ t -εf ) -E(f ) ε = lim ε↓0 � |D(ρ t -εf )| 2 -|Dρ t | 2 2ε dm = - � D -f (∇ρ t ) dm,
which is the second inequality in (3.7). The first one is obtained starting from (2.57), dividing by ε < 0 and letting ε ↑ 0.

The general case of f ∈ L 1 ∩ S 2 (X) can now be obtained with a simple truncation argument, we omit the details.

We now turn to the study of geodesics. In the smooth Euclidean/Riemannian framework a geodesic {µ t } t solves

∂ t µ t + ∇ • (∇φ t µ t ) = 0,
where

φ t := Q 1-t (-ϕ c
) and ϕ is a Kantorovich potential inducing {µ t } t .

We want to show that the same holds on metric measure spaces, at least for geodesics with bounded compressions. This will be achieved as a simple consequence of Theorem 2.23 and the following fact:

Theorem 2.25. Let (X, d, m) be a m.m.s., {µ t } t ⊂ P 2 (X) a geodesic with bounded compression and ϕ ∈ S 2 (X) a Kantorovich potential from µ 0 to µ 1 . Then: i) Any lifting π of {µ t } t represents the gradient of -ϕ.

ii) For any t ∈ (0, 1] the function

(1 -t)Q 1-t (-ϕ c ) is a Kantorovich potential from µ t to µ 1 .
Point (i) of this theorem is a restatement of the metric Brenier theorem proved in [START_REF]Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF],

while point (ii) is a general fact about optimal transport in metric spaces whose proof can be found in [START_REF] Villani | Optimal transport. Old and new[END_REF] or [START_REF] Ambrosio | A user's guide to optimal transport[END_REF].

In stating the continuity equation for geodesics we shall make use of the fact that for µ, ν ∈ P 2 (X) with bounded support, there always exists a Kantorovich potential from µ to ν which is constant outside a bounded set: it is sufficient to pick any Kantorovich potential satisfying (2.34) and proceed with a truncation argument. This procedure ensures that if m gives finite mass to bounded sets, then these Kantorovich potentials are in S 2 (X).

We then have the following result: In many circumstances, both heat flows and geodesics have regularity which go slightly beyond that of absolute continuity. Let us propose the following definition: Definition 2.27 (Weakly C 1 curves). Let {µ t } t ⊂ P 2 (X) be a 2-a.c. curve with bounded compression. We say that {µ t } t is weakly C 1 provided for any f ∈ L 1 ∩ S 2 (X) the map

t � → � f dµ t is C 1 .
In presence of weak C 1 regularity, the description of the operators L t in Theorem 4.9 can be simplified avoiding the use of the technical Lemma 2.8: it is sufficient to define

L t : S 2 (X) � → R by L t (f ) := d dt � f dµ t , ∀f ∈ S 2 (X).
Let us now discuss some cases where the heat flow and the geodesics are weakly C 1 . We recall that (X, d, m) is said infinitesimally strictly convex provided

D -f (∇g) = D + f (∇g), m -a.e. ∀f, g ∈ S 2 (X).
We then have the following regularity result:

Proposition 2.28 (Weak C 1 regularity for the heat flow). With the same assumptions of Proposition 2.24, assume furthermore that (X, d, m) is infinitesimally strictly convex.

Then {µ t } t is weakly C 1 .

Proof. We have already seen in the proof of Proposition 2.24 that for any ρ ∈ D

(∆) = D(∂ -E) and v ∈ -∂ -E(ρ) ⊂ L 2 (X, m) we have � D -f (∇ρ) dm ≤ � f v dm ≤ � D + f (∇ρ) dm.
Thus if (X, d, m) is infinitesimally strictly convex, the set ∂ -E(ρ) contains at most one element. The conclusion then follows from the weak-strong closure of ∂ -E.

We now turn to geodesics: we will discuss only the case of infinitesimally Hilbertian spaces, although weak C 1 regularity is valid on more general circumstances (see [START_REF] Gigli | The splitting theorem in non-smooth context[END_REF]).

We recall that (X, d, m) is infinitesimally Hilbertian provided

�f + g� 2 S 2 + �f -g� 2 S 2 = 2�f � 2 S 2 + 2�g� 2 S 2 , ∀f, g ∈ S 2 (X),
and that on infinitesimally Hilbertian spaces we have

D -f (∇g) = D + f (∇g) = D -g(∇f ) = D + g(∇f ), m -a.e. ∀f, g ∈ S 2 (X),
so that in particular infinitesimally Hilbertian spaces are infinitesimally strictly convex.

The common value of the above expressions will be denoted by ∇f • ∇g.

The proof of weak C 1 regularity is based on the following lemma, proved in [START_REF] Gigli | The splitting theorem in non-smooth context[END_REF]:

Lemma 2.29 ('Weak-strong' convergence). Let (X, d, m) be an infinitesimally Hilbert space. Also: i) Let {µ n } ⊂ P 2 (X) a sequence with uniformly bounded densities, such that letting ρ n be the density of µ n we have and ρ n → ρ m-a.e. for some probability density ρ.

Put µ := ρm.

ii) Let {f n } ⊂ S 2 (X) be such that:

sup n∈N � |Df n | 2 dm < ∞,
and assume that f n → f m-a.e. for some Borel function f .

iii) Let (g n ) ⊂ S 2 (X) and g ∈ S 2 (X) such that g n → g m-a.e. as n → +∞ and:

sup n∈N � |Dg n | 2 dm < ∞, lim n→∞ � |Dg n | 2 dµ n = � |Dg| 2 dµ.
Then plus uniform bound on the density grant weak convergence in duality with L 1 (X, m)).

lim n→∞ � ∇f n • ∇g n dµ n = � ∇f • ∇g dµ.
Thus by Lemma 2.29 we deduce the desired continuity of the right hand side of (2.58) for t ∈ [0, 1). Continuity at t = 1 is obtained by considering the geodesic t � → µ 1-t .

It is worth recalling that the assumptions of Proposition 2.30 are fulfilled on RCD(K, ∞) spaces when {µ t } t is a (in fact 'the') geodesic connecting two measures with bounded support and bounded density (see [START_REF] Gigli | The splitting theorem in non-smooth context[END_REF]).

with a function |Df | X ∈ L 2 (X, m), called minimal weak upper gradient, playing the role of what the modulus of the distributional differential is in the smooth setting.

In this paper we are interested in the structure of the Sobolev spaces and the correspoding minimal weak upper gradients under some basic geometric constructions. The basic problem is the following. Let (X, d X , m X ) and (Y, d Y , m Y ) be two metric measure spaces. We consider the space X ×Y endowed with the product measure m c := m X ×m Y and the product distance d c defined as

d 2 c � (x 1 , y 1 ), (x 2 , y 2 ) � := d 2 X (x 1 , x 2 ) + d 2 Y (y 1 , y 2 ), ∀x 1 , x 2 ∈ X, y 1 , y 2 ∈ Y.
Then one asks what is the relation between Sobolev functions on X × Y and those on X, Y . Guided by the Euclidean case, one might conjecture that f ∈ W 1,2 (X × Y ) if and only for m X -a.e. x the function y � → f (x, y) is in W 1,2 (Y ), for m Y -a.e. y the function

x � → f (x, y) is in W 1,2 ( 
X) and the quantity

� |Df (•, y)| 2 X (x) + |Df (x, •)| 2 Y (y) is in L 2 (X × Y, m c ).
Then one expects the above quantity to coincide with |Df | X×Y .

Curiously, this kind of problem has not been studied until recently and, despite the innocent-looking statement, the full answer is not yet known.

The first result in this direction has been obtained in [START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF], where it has been proved that the conjecture is true under the very restrictive assumption that the spaces considered satisfy the, there introduced, RCD(K, ∞) condition for some K ∈ R. Such restriction was necessary to use some regularization property of the heat flow.

The curvature condition has been dropped in the more recent paper [START_REF] Ambrosio | Tensorization of Cheeger energies, the space H 1,1 and the area formula for graphs[END_REF]. There the authors prove that the above conjecture holds provided either both the base spaces are doubling and support a weak local 1-2 Poincaré inequality, or on both the spaces the integral of the local Lipschitz constant squared is a quadratic form on the space of Lipschitz functions.

Our contribution to the topic is the proof that the above conjecture is always true, provided one of the two spaces is R or a closed subinterval of R. Our strategy is new and also allows to cover the case of warped product of a space and a closed interval, thus permitting to consider basic geometric constructions like that of cone and spherical subspension of a given space.

In fact, this line of research is motivated by the study of geometric properties of metric measure spaces, typically having Ricci curvature bounded from below in the appropriate weak sense, via the study of Sobolev functions on them (see in particular [START_REF] Gigli | The splitting theorem in non-smooth context[END_REF] and [START_REF] Ketterer | Cones over metric measure spaces and the maximal diameter theorem[END_REF] for two examples where this project has been carried out).

In the last section of the paper we study the Sobolev-to-Lipschitz property (see Section 3.3.3 for the definition) of a warped product. Such notion, introduced in [START_REF] Gigli | The splitting theorem in non-smooth context[END_REF], is key to deduce precise metric information from the study of Sobolev functions. It is therefore interesting to ask whether warped products have this property. We will show that this is the case under very general assumptions on the warping function, assuming that the base space X is RCD(K, ∞) and doubling.

Preliminaries

Metric measure spaces

Let (X, d) be a complete metric space. By a curve γ we shall typically denote a a continuous map γ : [0, 1] � → X, although sometimes curves defined on different intervals will be considered. The space of curves on [0, 1] with values in X is denoted by C([0, 1], X).

The space C([0, 1], X) equipped with the uniform norm is a complete metric space.

We define the length of γ by

l[γ] := sup τ n � i=1 d(γ(t i-1 ), γ(t i ))
where τ := {0 = t 0 , t 1 , ..., t n = 1} is a partition of [0, 1]. The supreme here can be changed to 'lim' and the limit is taken with respect to the refinement ordering of partitions.

The space (X, d) is said to be a length space if for any x, y ∈ X we have

d(x, y) = inf γ l[γ]
where the infimum is taken among all γ ∈ C([0, 1], X) which connect x and y.

If the infimum is always a minimum, then the space is called geodesic space and we call the minimizers pre-geodesics. A geodesic from x to y is any pre-geodesic which is parameterized by constant speed. Equivalently, a geodesic from x to y is a curve γ such that:

d(γ s , γ t ) = |s -t|d(γ 0 , γ 1 ), ∀t, s ∈ [0, 1], γ 0 = x, γ 1 = y.
The space of all geodesics on X will be denoted by Geo(X). It is a closed subset of

C([0, 1], X).
Given p ∈ [1, +∞] and a curve γ, we say that γ belongs to

AC p ([0, 1], X) if d(γ s , γ t ) ≤ � t s G(r) dr, ∀ t, s ∈ [0, 1], s < t
for some G ∈ L p ([0, 1]). In particular, the case p = 1 corresponds to absolutely continuous curves, whose class is denoted by AC([0, 1], X). It is known (see for instance Theorem 1.1.2 of [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]) that for γ ∈ AC([0, 1], X), there exists an a.e. minimal function G satisfying this inequality, called the metric derivative which can be computed for a.e.

t ∈ [0, 1] as

| γt | := lim h→0 d(γ t+h , γ t ) |h| .
It is known that (see for example [START_REF] Ambrosio | Topics on analysis in metric space[END_REF], [START_REF] Burago | A course in metric geometry[END_REF]) the length of a curve γ ∈ AC([0, 1], X) can be computed as

l[γ] := � 1 0 | γt | dt.
In particular, on a length space X we have

d(x, y) = inf γ � 1 0 | γt | dt
where the infimum is taken among all γ ∈ AC([0, 1], X) which connect x and y.

Given f : X � → R, the local Lipschitz constant lip(f ) : X � → [0, ∞] is defined as

|lip(f )|(x) := lim y→x |f (y) -f (x)| d(x, y)
if x is not isolated, 0 otherwise, while the (global) Lipschitz constant is defined as

Lip(f ) := sup x� =y |f (y) -f (x)| d(x, y) .
If (X, d) is a length space, we have Lip(f ) = sup x lip(f )(x).

We are not only interested in metric structure, but also in the interaction between metric and measure. For the metric measure space (X, d, m), basic assumptions used in this paper are:

Assumption 3.1. The metric measure spaces (X, d, m) satisfies:

• (X, d) is a complete and separable length space,

• m is a non-negative Borel measure with respect to d finite on bounded sets,

• supp m = X.

Moreover, for brevity we will not distinguish X, (X, d) or (X, d, m) when no ambiguities exist. For example, we write S 2 (X) instead of S 2 (X, dm) (see the next section).

Optimal transport and Sobolev functions

The set of Borel probability measures on (X, d) will be denoted by P(X). We also use P 2 (X) ⊆ P (X) to denote the set of measures with finite 2-moment, i.e. µ ∈ P 2 (X) if µ ∈ P(X) and � d 2 (x, x 0 ) dµ(x) < +∞ for some (and thus every) x 0 ∈ X.

For t ∈ [0, 1], the evaluation map e t : C([0, 1], X) → X is given by

e t (γ) := γ t , ∀γ ∈ C([0, 1], X).
Then we consider (P 2 (X), W 2 ), where we endow P 2 (X) with the 2-Wasserstein distance W 2 defined as:

W 2 2 (ν, µ) := inf π � d 2 (x, y) dπ(x, y),
where the inf is taken among all plans π with marginal µ and ν, i.e. (Π 1 ) � π = µ and (Π 2 ) � π = ν where (Π i ) � π means the measure push forward by the projection maps.

It is know that there exist an optimal transport plan π realizing the infimum in the Kantorovich problem. We denote the set of optimal transport plans between µ and ν by Opt(µ, ν).

Some other important properties of the distance W 2 are the following.

Proposition 3.2 (Geodesics in the Wasserstein space, [START_REF] Ambrosio | A user's guide to optimal transport[END_REF])). Let (X, d) be a metric space and µ, ν ∈ P 2 (X). Then the curve (µ t ) is a constant speed geodesic connecting µ and ν,

i.e. it satisfies

W 2 (µ s , µ t ) = |s -t|W 2 (µ 0 , µ 1 ), ∀ s, t ∈ [0, 1] (3.1)
and µ 0 = µ, µ 1 = ν, if and only if there exists a plan π ∈ P 2 (Geo(X))

⊆ P 2 (C([0, 1], X))
such that

µ t = (e t ) � π ∀ t ∈ [0, 1]; (e 0 ) � π = µ, (e 1 ) � π = ν,
and (e 0 , e 1 ) � π ∈ Opt(µ 0 , µ 1 ). We denote the set of these measures in P 2 (Geo(X)) by OptGeo(µ 0 , µ 1 ).

In particular, if X is geodesic, the space (P 2 (X), W 2 ) is also a geodesic space.

Moreover, absolutely continuous curves in (P 2 , W 2 ) are characterized by the following theorem:

Theorem 3.3 (Superposition principle, [START_REF] Lisini | Characterization of absolutely continuous curves in Wasserstein spaces[END_REF])). Let (X, d) be a complete and separable metric space, and (µ t ) ∈ AC 2 ([0, 1], P 2 (X)). Then there exists a measure π ∈ P(C([0, 1], X)) concentrated on AC 2 ([0, 1], X) such that:

(e t ) � π = µ t , ∀t ∈ [0, 1] � | γt | 2 dπ(γ) = | μt | 2 , a.e. t.
Moreover, the minimum of the energy

� 1 0 � | γt | 2 dπ(γ)
dt among all the plans π � satisfying (e t ) � π � = µ t for every t ∈ [0, 1] is obtained by this plan π.

Definition 3.4 (Test plan). Let (X, d, m) be a metric measure space and π ∈ P(C([0, 1], X)).

We say that π has bounded compression provided there exists C > 0 such that

(e t ) � π ≤ Cm, ∀t ∈ [0, 1].
Then we say that π is a test plan if it has bounded compression, is concentrated on

AC 2 ([0, 1], X) and � 1 0 � | γt | 2 dπ(γ) dt < +∞.
The notion of Sobolev function is given by duality with that of test plan: 

G ∈ L 2 (X, m) (resp. L 2 loc (X, m)) such that � |f (γ 1 ) -f (γ 0 )| dπ(γ) ≤ � � 1 0 G(γ s )| γs | ds dπ(γ), ∀ test plan π.
In this case, G is called a 2-weak upper gradient of f , or simply weak upper gradient.

It is known, see e.g. [START_REF]Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF], that there exists a minimal function G in the m-a.e. sense among all the weak upper gradients of f . We Another basic -and easy to check -property of minimal weak upper gradients that we shall frequently use is their semicontinuity in the following sense: if

(f n ) ⊂ S 2 (X, d, m)
is a sequence m-a.e. converging to some f and such that (

|Df n |) is bounded in L 2 (X, m), then f ∈ S 2 (X, d, m) and |Df | ≤ G, m -a.e.,
for every L 2 -weak limit G of some subsequence of (|Df n |).

Then the Sobolev space W 1,2 (X, d, m) is defined as W 1,2 (X, d, m) := S 2 (X, d, m) ∩ L 2 (X, m) and is endowed with the norm �f � 2 W 1,2 (X,d,m) := �f � 2 L 2 (X,m) + �|Df |� 2 L 2 (X,m) .
W 1,2 (X) is always a Banach space, but in general it is not an Hilbert space. Following [START_REF]On the differential structure of metric measure spaces and applications[END_REF], we say that (X, d, m) is an infinitesimally Hilbertian space if W 1,2 (X) is an Hilbert space.

In [START_REF]Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces[END_REF][START_REF]Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF] the following result has been proved.

Proposition 3.6 (Density in energy of Lipschitz functions). Let (X, d, m) be a metric measure space and f ∈ W 1,2 (X). Then there exists a sequence (f n ) of Lipschitz functions

L 2 -converging to f such that the sequence (lip(f n )) L 2 -converges to |Df |.

Product spaces

In this subsection we recall the basic concepts and results about the Cartesian product and the warped product of two spaces. Both metric and metric measure structures are considered.

Given two metric measure spaces (X, d Here

d c = d Y × d X means: d c ((x 1 , y 1 ), (x 2 , y 2 )) = � d 2 Y (y 1 , y 2 ) + d 2 X (x 1 , x 2 ),
for any pairs (y 1 , x 1 ), (y 2 , x 2 ) ∈ Y × X.

There is a natural and simple to prove (see e.g. [START_REF] Gigli | The splitting theorem in non-smooth context[END_REF]) link between Sobolev functions on the product depending on just one variable and Sobolev functions on the base spaces:

Proposition 3.8. Let (X, d X , m X ) and (Y, d Y , m Y ) be two metric measure spaces, g ∈ L 2 loc (X) and define f ∈ L 2 loc (Y × X) as f (y, x) := g(x)
.

Then f ∈ S 2 loc (Y × X) if and only if g ∈ S 2
loc (X) and in this case the identity

|Df | Y ×X (y, x) = |Dg| X (x),
holds for m c -a.e. (y, x).

To define the warped product metric we need first to introduce the corresponding notion of length: Definition 3.9 (Warped length of curves). Let (X, d X ) and (Y, d Y ) be two complete and separable metric spaces and w d :

Y → R + a continuous function. Let γ = (γ Y , γ X )
be a curve such that γ X , γ Y are absolutely continuous. Then the w d -length of γ is defined as

l w [γ] := lim τ n � i=1 � d 2 Y (γ Y t i-1 , γ Y t i ) + w 2 (γ Y t i-1 )d 2 X (γ X t i-1 , γ X t i ),
where τ := {0 = t 0 , t 1 , ..., t n = 1} is a partition of I = [0, 1] and the limit is taken with respect to the refinement ordering of partitions.

It is not hard to check that the limit exists and that the formula

l w [γ] = � 1 0 � | γY t | 2 + w 2 d (γ Y t )| γX t | 2 dt holds.
Then we can define the metric d w using this length structure: Definition 3.10 (Warped product of metric spaces). With the same assumptions of Definition 3.9, we define a pseudo-metric d w on the space Y × X by d w (p, q) := inf{l w [γ] : γ is an absolutely continuous curve from p to q}, for any p, q ∈ Y × X.

d w induces an equivalent relation on Y × X: two points p, q are declared equivalent provided d w (p, q) = 0. The completion of the quotient of Y × X via this equivalence relation will be denoted by Y × w X. Then d w induces a distance on Y × w X which we shall continue to denote as d w . Abusing a bit the notation, we shall also denote the typical element of Y × w X as (y, x) with y ∈ Y and x ∈ X (there is no abuse in doing this if w d (y) > 0 and points in the completion not coming from points in Y × X will be negligible w.r.t. the warped product of measures and the same holds for the set of (y, x)

such that w d (y) = 0, see below).

Notice that by definition (Y × w X, d w ) is a complete, separable and length space.

When considering the warped product of two metric measure spaces, we shall need to fix two warping functions: one for the distance and another for the measure. In this case, the measure m w is defined via the formula:

� f (x)g(y) dm w (y, x) = � �� f (x)w m (y) dm X (x) � g(y) dm Y (y), (3.4) 
for any Borel non-negative functions f and g.

The warped product of (X, d X , m X ), (Y, d Y , m Y ) via the functions w d , w m is then defined as (Y × w X, d w , m w ).

It is immediate to verify that the assumption {w d = 0} ⊂ {w m = 0} grants that formula (3.4) truly defines a Borel measure on the space (Y × w X, d w ).

The result 3.3.1 Cartesian product

Throughtout this section (X, d, m) is a fixed complete, separable and length space and I ⊂ R a closed, possibly unbounded, interval. We are interested in studying the Cartesian product (X c , d c , m c ) of I, endowed with its Euclidean structure, and (X, d, m).

Given a function f : X c → R and x ∈ X we denote by f (x) : I → R the function given by f (x) (t) := f (t, x). Similarly, for t ∈ I we denote by f (t) : X → R the function given by f (t) (x) := f (t, x).

We start introducing the Beppo Levi space BL(X c ):

Definition 3.12 (The space BL(X c )). The space BL(X c ) ⊂ L 2 (X c , m c ) is the space of functions f ∈ L 2 (X c , m c ) such that i) f (x) ∈ W 1,2 (I) for m-a.e. x, ii) f (t) ∈ W 1,2 (X) for L 1 -a.e. t iii) the function |Df | c (t, x) := � |Df (t) | 2 X (x) + |Df (x) | 2 I (t), belongs to L 2 (X c , m c ).
On BL(X c ) we put the norm

�f � 2 BL(Xc) := �f � 2 L 2 (Xc) + �|Df | c � 2 L 2 (Xc) .
The space BL loc (X c ) is the subset of L 2 loc (X c , m c ) of functions which are locally equal to some function in BL(X c ).

The main result of this section is the identification of the spaces W 1,2 (X c ) and BL(X c ) and of their corresponding weak gradients |Df | Xc and |Df | c .

One inclusion has been proved in [START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF]: Proposition 3.13 (Proposition 6.18 of [START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF]). We have W 1,2 (X c ) ⊂ BL(X c ) and

� Xc |Df | 2 c dm c ≤ � Xc |Df | 2 Xc dm c , ∀f ∈ W 1,2 (X c ). (3.5)
To prove the other one it is useful to introduce the following classes of functions:

Definition 3.14 (The classes A and Ã). We define the space of functions A ⊂ BL loc (X c ) as

A := � g 1 (x) + h(t)g 2 (x) ∈ BL loc (X c ) : g 1 , g 2 ∈ W 1,2 (X), h : I → R is Lipschitz � ,
and the space à ⊂ BL loc (X c ) as the set of functions f ∈ BL loc (X c ) which are locally equal to some function in A.

Notice that Proposition 3.8 and the calclulus rules (3.2), (3.3) ensure that

à ⊂ S 2 loc (X c ). (3.6)
We start with the following purely metric lemma:

Lemma 3.15. Let f : X c → R be of the form f (t, x) = g 1 (x) + h(t)g 2 (x) for Lipschitz functions g 1 , g 2 , h. Then lip(f ) 2 (t, x) ≤ lip X (f (t) ) 2 (x) + lip I (f (x) ) 2 (t)
for every (t, x) ∈ X c .

Proof. Let (t, x), (s, y) ∈ X c , and notice that

|f (s, y) -f (t, x)| = |g 1 (y) + h(s)g 2 (y) -g 1 (x) -h(t)g 2 (x)| ≤ |h(s) -h(t)||g 2 (y)| + |g 1 (y) -g 1 (x) + h(t)(g 2 (y) -g 1 (x))| ≤ |h(s) -h(t)||g 2 (y)| |s -t| |s -t| + |g 1 (y) -g 1 (x) + h(t)(g 2 (y) -g 1 (x))| d(x, y) d(x, y) ≤ � |h(s) -h(t)| 2 |g 2 (y)| 2 |s -t| 2 + |g 1 (y) -g 1 (x) + h(t)(g 2 (y) -g 1 (x))| 2 d 2 (x, y) d c � (s, y), (t, x) � .
Dividing by d c � (s, y), (t, x) � , letting (s, y) → (t, x) and using the continuity of g 2 we get the conclusion.

The interest of functions in à is due to the next two results:

Proposition 3.16. Let f ∈ Ã. Then |Df | Xc = |Df | c m c -a.e..
Proof. Notice that by (3.6) the statement makes sense. Moreover, due to the local nature of the statement we can assume that f (t, x) = g 1 (x) + h(t)g 2 (x) ∈ A with h having compact support. With this assumption we have that f ∈ W 1,2 (X c ) so that keeping in mind Proposition 3.13, to conclude it is sufficient to prove that

|Df | 2 Xc (t, x) ≤ |Df (x) | 2 I (t) + |Df (t) | 2 X (x), m c -a.e. (t, x). (3.7)
To this aim, it is in turn sufficient to show that for any [a, b) ⊂ I and any Borel set For

E ⊂ X we have � Ẽ |Df | 2 Xc (t, x) dt dm(x) ≤ � Ẽ |Df (x) | 2 I (t) + |Df (t) | 2 X (x) dt dm(x) (3.
k, i ∈ N, k > 0, we define f k,i ∈ W 1,2 (X) as f k,i (x) := g 1 (x) + h( i k )g 2 (x) and f k ∈ BL(X c ) as f k (t, x) := (kt -i)f k,i+1 (x) + (i + 1 -kt)f k,i (x), for t ∈ � i k , i+1 k � . Notice that f k → f in L 2 (X c , m x )
. By Proposition 3.6, for each (k, i) we can find a sequence of Lipschitz functions

f k,i,n ∈ Lip (X) converging to f k,i in L 2 (X, m) such that lim n→∞ lip(f k,i,n ) = |Df k,i | X in L 2 (X, m).
Then we define F k,n ∈ Lip(X c ) as

F k,n (t, x) := (kt -i)f k,i+1,n (x) + (i + 1 -kt)f k,i,n (x), for t ∈ � i k , i+1 k � .
By construction we have F k,n ∈ Ã, so that Lemma 3.15 gives

|lip(F k,n )| 2 ≤ |lip X (F k,n )| 2 + |lip I (F k,n )| 2 , L 1 × m -a.e.,
moreover, since lim n→∞ F k,n = f k in L 2 (X c , m c ) for every k, the lower semicontinuity of minimal weak upper gradients gives that

� Ẽ |Df | 2 Xc dm c ≤ lim k→∞ lim n→∞ � Ẽ lip X (F k,n ) 2 dm c + lim k→∞ lim n→∞ � Ẽ lip I (F k,n ) 2 dm c . (3.9)
Another direct consequence of the definition is that lim

k→∞ lim n→∞ lip I (F (x) k,n )(t) = |Df (x) | I (t), m c -a.e. (t, x),
which together with an application of the dominate convergence theorem grants that

lim k→∞ lim n→∞ � Ẽ lip I (F (x) k,n ) 2 (t) dm c (t, x) = � Ẽ |Df (x) | 2 I (t) dm c (t, x). (3.10)
On the other hand, the continuity of h grants that R � t � → f (t) ∈ W 1,2 (X) is continuous so that also the map

I � t � → � E |Df (t) | 2
X dm is continuous. In particular, its integral on [0, 1] and coincides with the limit of the Riemann sums:

� Ẽ |Df (t) | 2 X (x) dm c (t, x) = lim k→∞ 1 k k � i=0 � E |Df k,i | 2 X dm = lim k→∞ lim n→∞ 1 k k � i=0 � E lip X (f k,i,n ) 2 dm. (3.11)
From the very definition of F k,n we get that lip X (F

(t) k,n ) 2 ≤ � (kt -i)lip X (f k,i+1,n ) + (i + 1 -kt)lip X (f k,i,n ) � 2 ≤ (kt -i)lip X (f k,i+1,n ) 2 + (i + 1 -kt)lip X (f k,i,n ) 2 ,
on X for every t ∈ [ i k , i+1 k ], and thus

� Ẽ lip X (F (t) k,n ) 2 (x) dm c (t, x) ≤ � X 1 k k � i=0 lip X (f k,i,n ) 2 - 1 2 � lip X (f k,0,n ) 2 + lip X (f k,k,n ) 2 � dm ≤ � X 1 k k � i=0 lip X (f k,i,n ) 2 dm.
This inequality together with (3.11) give

lim k→∞ lim n→∞ � Ẽ lip X (F (t) k,n ) 2 (x) dm c (t, x) ≤ � Ẽ |Df (t) | 2 X dt dm,
which together with (3.10) and (3.9) gives (3.8) and the conclusion.

Proposition 3.17 (Density in energy). For any function f ∈ BL(X c ) there exists a

sequence (f n ) ⊂ BL(X c ) ∩ A loc converging to f in L 2 (X c , m c ) such that |Df n | c → |Df | c in L 2 (X c , m c ) as n → ∞.
Proof. We shall give the proof for the case I = R, the argument for arbitrary I being similar.

With a standard cut-off, truncation and diagonalization argument we can, and will, assume that the given f ∈ BL(X c ) is bounded and with bounded support. Then for any n ∈ N and i ∈ Z we define

g i,n (x) := n � (i+1) n i n f (x, s) ds, and 
h i,n (t) := χ n � t - i n � ,
where χ n : R � → R is given by:

χ n (t) :=              0, if t < -1 n , nt + 1, if -1 n ≤ t < 0, 1 -nt, if 0 ≤ t < 1 n , 0, if 1 n < t.
(3.12)

Then we define the sequence (f n ) as:

f n (t, x) := � i∈Z h i,n (t)g i,n (x),
the sum being well defined because g i,n is not zero only for a finite number of i's and it is immediate to check that f n ∈ Ã.

We claim that

f n → f in L 2 (X c , m c ) as n → ∞. Integrating the inequality � f n (t, x) � 2 = � � i∈Z h i,n (t)g i,n (x) � 2 ≤ � i∈Z h i,n (t) � g i,n (x) � 2 ≤ � i∈Z h i,n (t)n � (i+1)/n i/n f 2 (s, x) ds,
on x and t we obtain �f n � L 2 (Xc) ≤ �f � L 2 (Xc) , for every n ∈ N. This means that the linear operator T n from L 2 (X c , m c ) into itself assigning f n to f is 1-Lipschitz for every

n ∈ N. Since obviously f n → f in L 2 (X c , m c ) if f is Lipschitz with bounded support, the uniform continuity of the T n 's grant that f n → f in L 2 (X c , m c ) for every f ∈ L 2 (X c , m c ).
Now, taking into account the L 2 -lower semicontinuity of the BL-norm, to conclude it is sufficient to show that for every n ∈ N we have

� Xc |Df (t) n | 2 X (x) dm c (t, x) ≤ � R×X |Df (t) | 2 X (x) dm c (t, x), � Xc |Df (x) n | 2 R (t) dm c (t, x) ≤ � R×X |Df (x) | 2 R (x) dm c (t, x). (3.13)
Start noticing that the definition of the functions g i,n , the convexity of minimal weak upper gradients and their L 2 -lower semicontinuity yields that g i,n ∈ W 1,2 (X) for every i, n with �

X |Dg i,n | 2 X dm ≤ n � X � (i+1)/n i/n |Df (t) | 2 X � dt dm. (3.14)
Then from the trivial identity

f (t) n = (1 + i -nt)g i,n + (nt -i)g i+1,n ,
valid for every n and a.e. t ∈ [ i n , i+1 n ] we know that f

(t) n ∈ W 1,2 (X) and |Df (t) n | 2 X ≤ � (1 + i -nt)|Dg i,n | X + (nt -i)|Dg i+1,n | X � 2 ≤ (1 + i -nt)|Dg i,n | 2 X + (nt -i)|Dg i+1,n | 2 X ,
for every n and a.e. t ∈ [ i n , i+1 n ]. This yields the bound

� Xc |Df (t) n | 2 X (x) dm c (t, x) ≤ 1 n � i∈Z � X |Dg i,n | 2 X (x) dm(x) by (3.14) ≤ � i∈Z � X � (i+1)/n i/n |Df (t) | 2 X (x) dt dm(x) = � Xc |Df (t) | 2 X (x) dm c (t, x), (3.15) 
which is the first in (3.13).

Similarly, for m-a.e. x ∈ X the function f

(x) n : R → R is L 1 -a.e.
well defined and given by

f (x) n (t) = (1 + i -nt)g i,n (x) + (nt -i)g i+1,n (x), L 1 -a.e. t ∈ � i n , i+1 n � .
Arguing as before we get that f

(x) n ∈ W 1,2 (R) for m-a.e. x and 
� (i+1)/n i/n |Df (x) n | 2 R (t) dt = � (i+1)/n i/n n 2 � g i+1,n (x) -g i,n (x) � 2 dt = n � g i+1,n (x) -g i,n (x) � 2 = n 3 � � (i+2)/n (i+1)/n f (t, x) dt - � (i+1)/n i/n f (t, x) dt � 2 = n 3 � � (i+1)/n i/n f (x) (t + 1/n) -f (x) (t) dt � 2 ≤ n 3 � � (i+1)/n i/n � t+1/n t |Df (x) | R (s) ds dt � 2 ≤ n � (i+1)/n i/n � t+1/n t |Df (x) | 2 R (s) ds dt, which yields � Xc |Df (x) n | 2 R (t) dm c (t, x) ≤ � Xc |Df (x) | 2 R (t) dm(t, x),
which is the second in (3.13) and the conclusion.

We now have all the tools to prove the main result of this section:

Theorem 3.18. The sets W 1,2 (X c ) and BL(X c ) coincide and for every f

∈ W 1,2 (X c ) = BL(X c ) the identity |Df | Xc = |Df | c m c -a.e.,
holds.

Proof. Proposition 3.13 gives the inclusion W 1,2 (X c ) ⊂ BL(X c ). Now pick f ∈ BL(X c ) and find a sequence (f n ) ⊂ BL(X c ) ∩ A loc as in Proposition 3.17. By Proposition 3.16

we know that

|Df n | Xc = |Df n | c m c -a.e., ∀n ∈ N.
By construction, the right hand side converges to |Df | c in L 2 (X c , m c ) as n → ∞, and

since f n → f in L 2 (X c , m c
), by the lower semicontinuity of weak upper gradients we

deduce that f ∈ W 1,2 (X c ) and |Df | Xc ≤ |Df | c , m c -a.e.,
which together with inequality (3.5) gives the thesis.

Warped product

Throughtout this section w d , w m : I → R + are given warping functions as in Definition 3.11. We are interested in studying Sobolev functions on the warped product space (X w , d w , m w ), where X w := I × w X.

Like in the Cartesian case, given f : X w → R and t ∈ I we shall denote by f (t) : X → R the function given by f (t) (x) := f (t, x). Similarly f (x) (t) := f (t, x) for x ∈ X.

We then consider the Beppo-Levi space BL(X w ) defined as follows:

Definition 3.19 (The space BL(X w )). As a set, BL(X w ) is the subset of L 2 (X w , m w ) made of those functions f such that: i) for m-a.e. x ∈ X we have f (x) ∈ W 1,2 (R, w m L 1 ), ii) for w m L 1 -a.e. t ∈ R we have f (t) ∈ W 1,2 (X), iii) the function |Df | w (t, x) := � w -2 d (t)|Df (t) | 2 X (x) + |Df (x) | 2 R (t) (3.16) 
belongs to L 2 (X w , m w ).

On BL(X w ) we put the norm

�f � BL(Xw) := � �f � 2 L 2 (Xw) + �|Df | w � 2 L 2 (Xw) .
It will be useful to introduce the following auxiliary space:

Definition 3.20 (The space BL 0 (X w )). Let V ⊂ BL(X w ) be the space of functions f which are identically 0 on Ω × X ⊂ X w for some open set Ω ⊂ R containing {w m = 0}.

BL 0 (X w ) ⊂ BL(X w ) is defined as the closure of V in BL(X w ).
The goal of this section is to compare the spaces BL(X w ) and W 1,2 (X w ) and their respective notions of minimal weak upper gradients, namely |Df | w and |Df | Xw . Under the sole continuity assumption of w d , w m and the compatibility condition

{w d = 0} ⊂ {w m = 0} we can prove that BL 0 (X w ) ⊂ W 1,2 (X w ) ⊂ BL(X w )
and that for any

f ∈ W 1,2 (X w ) ⊂ BL(X w ) the identity |Df | Xw = |Df | w
holds m w -a.e., so that in particular the above inclusions are continuous. Without additional hypotheses it is unclear to us whether W 1,2 (X w ) = BL(X w ) (on the other hand, it is easy to construct examples where BL 0 (X w ) is strictly smaller than BL(X w )). Still, if we assume that the set {w m = 0} ⊂ I is discrete (3.17) and that w m decays at least linearly near its zeros, i.e.

w m (t) ≤ C inf s:wm(s)=0 |t -s|, ∀t ∈ R, (3.18) 
for some constant C ∈ R, then we can prove -using basically arguments about capacities -that BL 0 (X w ) = BL(X w ), so that the three spaces considered are all equal. We remark that these two additional assumptions on w m are satisfied in all the geometric applications we have in mind, because typically one considers cone/spherical suspensions and in these cases w m has at most two zeros and decays polynomially near them.

We turn to the details. The following result is easily established: Proposition 3.21. Let w d , w m be warping functions. Then W 1,2 (X w ) ⊂ BL(X w ).

Proof. Pick f ∈ W 1,2 (X w ) and use Proposition 3.6 to find a sequence (f n ) of Lipschitz functions on X w such that f n → f and lip(f n ) → |Df | Xw in L 2 (X w ). Up to pass to a fast converging subsequence, not relabeled, we can further assume that for m-a.e. x ∈ X, we have f

(x) n → f (x) in L 2 (I, w m L 1
) and that for w m L 1 -a.e. t ∈ I we have f

(t) n → f (t) in L 2 (X, m).
Observe that for every (t, x) ∈ X w we have

lip(f n )(t, x) = lim (s,y)→(t,x) |f n (s, y) -f n (t, x)| d w ((s, y), (t, x)) ≥ lim s→t |f n (s, x) -f n (t, x)| d w ((s, x), (t, x)) = lim s→t |f (x) n (s) -f (x) n (t)| |s -t| = lip R (f (x) n )(t)
and therefore by Fatou's lemma we deduce

� X lim n→∞ � I lip I (f (x) n ) 2 (t) d(w m L 1 )(t) dm(x) ≤ lim n→∞ � Xw lip(f n ) 2 (t, x) dm w (t, x) = � Xw |Df | 2 Xw dm w < ∞. Since f (x) n → f (x) in L 2 (I, w m L 1
) for m-a.e. x ∈ X, this last inequality together with the lower semicontinuity of minimal weak upper gradients ensures that f (x) ∈ W 1,2 (I, w m L 1 ) for m-a.e. x ∈ X and

� Xw |Df (x) | 2 I (t) dm w (t, x) ≤ � Xw |Df | 2 Xw dm c . (3.19) 
An analogous argument starting from the bound

lip(f n )(t, x) = lim (s,y)→(t,x) |f n (s, y) -f n (t, x)| d w ((s, y), (t, x)) ≥ lim y→x |f n (t, y) -f n (t, x)| d w ((t, y), (t, x)) = lim y→x |f (t) n (y) -f (t) n (x)| w(t)d(x, y) = 1 w(t) lip I (f (t) n )(x)
valid for every t ∈ I such that w d (t) > 0, grants that

f (t) ∈ W 1,2 (X) for w m L 1 -a.e. t ∈ I (recall that {w d = 0} ⊂ {w m = 0}) and � Xw |Df (t) | 2 X (x) dm w (t, x) ≤ � Xw |Df | 2 Xw dm w . (3.20) 
The bounds (3.19) and (3.20) ensure that f ∈ BL(X w ), so that the inclusion W 1,2 (X w ) ⊂ BL(X w ) is proved.

In order to prove that for f ∈ W 1,2 (X w ) ⊂ BL(X w ) the minimal weak upper gradient |Df | Xw coincides with the 'warped' gradient |Df | w defined in (3.16), we shall make use of the following simple comparison argument, which will then allow us to reduce the proof to the already known cartesian case. and the opposite inequality valid for the metric speeds.

We can then prove the following result:

Proposition 3.23. Let w d , w m be warping functions and f ∈ W 1,2 (X w ) ⊂ BL(X w ).

Then

|Df | Xw = |Df | w , m w -a.e..
Proof. Fix � > 0 and t 0 ∈ R such that w m (t 0 ) > 0 so that also w d (t 0 ) > 0. Use the continuity of w d to find δ > 0 so that

� � � w d (t) w d (s) � � � ≤ 1 + � ∀t, s ∈ [t 0 -2δ, t 0 + 2δ] (3.21) 
and let χ : R → [0, 1] be a Lipschitz function identically 1 on [t 0δ,

t 0 + δ] with support contained in [t 0 -2δ, t 0 + 2δ].
We introduce the continuous functions wd , wm : R → R as

wd (t) :=        w d (t 0 -2δ), if t < t 0 -2δ, w d (t), if t ∈ [t 0 -2δ, t 0 + 2δ], w d (t 0 + 2δ), if t > t 0 + 2δ, wm (t) :=        w m (t 0 -2δ), if t < t 0 -2δ, w m (t), if t ∈ [t 0 -2δ, t 0 + 2δ],
w m (t 0 + 2δ), if t > t 0 + 2δ, the corresponding product space (X w, d w, m w) and consider the function f :

X w → R
given by f (t, x) := χ (t)f (t, x) which belongs to W 1,2 (X w ) and therefore, by what we just proved, to BL(X w ). The locality property of minimal weak upper gradients ensure

that |Df | Xw = |D f | Xw and |Df | w = |D f | w m w -a.e. on [t 0 -δ, t 0 + δ] × X.
Since f has support concentrated in the set of (t, x)'s with t ∈ [t 0 -2δ, t 0 + 2δ] and w d is positive in such interval, we can think at f also as a real valued function X w. With this identification in mind it is clear that

|D f | Xw = |D f | X w and |D f | w = |D f | w m w -a.e. on [t 0 -2δ, t 0 + 2δ] × X.
We now consider the cartesian product (X c , d c , m c ) of (X, d, m) and R. Notice that the sets X w and X c both coincide with R × X and that by construction (recall also (3.21))

we have

cm c ≤ m w ≤ Cm c and w d (t 0 ) 1 + ε d c ≤ d w ≤ w d (t 0 )(1 + ε)d c
for some c, C > 0. Hence by Lemma 3.22 we deduce that m w-a.e. it holds

|D f | Xc w d (t 0 )(1 + ε) ≤ |D f | X w ≤ 1 + ε w d (t 0 ) |D f | Xc and |D f | c w d (t 0 )(1 + ε) ≤ |D f | w ≤ 1 + ε w d (t 0 ) |D f | c .
Since by Theorem 3.18 we know that

|D f | Xc = |D f | c m c -a.e.
, collecting what we proved we deduce that

|Df | Xw (1 + ε) 2 ≤ |Df | w ≤ (1 + ε) 2 |Df | Xw m w -a.e. on [t 0 -δ, t 0 + δ] × X.
By the arbitrariness of t 0 such that w m (t 0 ) > 0 and the Lindelof property of {w m > 0} ⊂ R we deduce that the above inequality holds m w -a.e..

The conclusion then follows letting ε ↓ 0.

We now turn to the general relation between BL 0 (X w ) and W 1,2 (X w ):

Proposition 3.24. Let w d , w m be warping functions. Then BL 0 (X w ) ⊂ W 1,2 (X w ).

Proof. Taking into account Proposition 3.23 it is sufficient to prove that V ⊂ W 1,2 (X w ).

Notice that for arbitrary f ∈ BL(X w ), considering the functions χ n (t) := 0 ∨ (n -|t|) ∧ 1 and defining f n (t, x) := χ n (t)f (t, x), via a direct verification of the definitions we have f n ∈ BL(X w ), while inequality (3.3) and the dominate convergence theorem grant that

f n → f in BL(X w ).
Therefore, using again Proposition 3.23 whcih ensures that BL-

convergence implies W 1,2 -convergence, to conclude it is sufficient to show that any f ∈ V with support contained in (I ∩ [-T, T ]) × X ⊂ X w for some T > 0 belongs to W 1,2 (X w ). Thus fix such f ∈ V , for r > 0 denote by Ω r ⊂ R the r-neighborhood of {w m = 0}
and find r ∈ (0, 1) such that f is m w -a.e. zero on Ω 2r × X. Then by continuity and compactness and recalling that {w d = 0} ⊂ {w m = 0} we deduce that there are constants

0 < c ≤ C < ∞ such that c ≤ w d (t), w m (t) ≤ C, ∀t ∈ I ∩ [-T, T ] \ Ω r/2 .
We are now going to use a comparison argument similar to that used in the proof of Proposition 3.23. Find two continuous functions w � d , w m agreeing with w d , w m on [-T, T ] \ Ω and such that c ≤ w � d , w � m ≤ C on the whole R and consider the warped product (X w � , d w � , m w � ) and the cartesian product (X c , d c , m c ) of I and X. We then have the equalities of sets:

BL(X w � ) = BL(X c ) = W 1,2 (X c ) = W 1,2 (X w � ),
the first and last coming from Lemma 3.22 and the properties of w � d , w � m and the middle one being given by Theorem 3.18.

By the construction of w � d , w � m we see that f ∈ BL(X w � ) and thus, by what we just proved, that f ∈ W 1,2 (X w � ). Then Proposition 3.6 grants that there exists a sequence

(f n ) of d w � -Lipschitz functions converging to f in L 2 (X w � ) with sup n∈N � lip � (f n ) 2 dm w � < ∞
uniformly bounded in n, where by lip � we denote the local Lipschitz constant computed w.r.t. the distance d w � . Notice that up to replacing f n with (-C n ) ∨ f n ∧ C n for a sufficiently large C n , we can, and will, assume that f n is bounded for every n ∈ N.

Now find a Lipschitz function χ : I → [0, 1] identically 0 on Ω r ∪ (I \ [-T -1, T + 1]), identically 1 on I ∩ [-T, T ] \ Ω 2r and put fn (t, x) := χ (t)f n (t, x)
. By construction it is immediate to check that the fn 's are still d w � -Lipschitz, converging to f in L 2 (m w � ) and

satisfying sup n∈N � lip � ( fn ) 2 dm w � < ∞. (3.22) 
We now claim that the fn 's are d w -Lipschitz, converging to f in L 2 (X w ) and such that 

sup n∈N � lip( fn ) 2 dm w < ∞, (3.23 
d w � (s, y), (t, x) � d w � � (s, y), (t, x) � = 1, ∀(t, x) ∈ ([-T, T ] \ Ω r ) × X.
In particular, we have lip( fn ) = lip � ( fn ) in ([-T, T ] \ Ω r ) × X, so that (3.23) follows from (3.22). Finally, recalling that a Borel function on [0, 1] whose local Lipschitz constant is uniformly bounded by some constant L is in fact L-Lipschitz (as shown by a direct covering argument) and using the fact that (X w , d w ) is by definition a length space we see that for every n ∈ N it holds

Lip(f n ) = sup Xw lip(f n ) = sup X w � lip � (f n ) = Lip � (f n ) < ∞,
where Lip � (f n ) denotes the d w � -Lipschitz constant. Hence f n is d w -Lipschitz for every n ∈ N and the proof is achieved.

Finally, we prove that if the set of zeros of w m is discrete and w m decays at least linearly close to its zeros, then BL 0 (X w ) = BL(X w ):

Proposition 3.25. Let w d , w m be warping functions and assume that w m has the properties (3.17) and (3.18).

Then BL 0 (X w ) = BL(X w ).

Proof. A standard truncation argument shows that BL ∩ L ∞ (X w ) is dense in BL(X w ), so to conclude it is sufficient to show that for any f ∈ BL ∩ L ∞ (X w ) we can find a sequence

(f n ) ⊂ V converging to it in BL(X w ). Thus pick f ∈ BL ∩ L ∞ (X w ), put D(t) := min s:wm(s)=0 |t -s| and for n, m ∈ N, n > 1 consider the cut-off functions σ m (x) := 0 ∨ (m -d(x, x)) ∧ 1, η n (t) := 0 ∨ � 1 - | log(D(t))| log(n) � ∧ 1, ηn (t) := 0 ∨ � n -|t| � ∧ 1,
where x ∈ X is a chosen, fixed point, and define

f n,m (t, x) := η n (t)η n (t)σ m (x)f (t, x). Since (t, x) � → η n (t)η n (t)σ m (x)
is Lipschitz and bounded for every n, m, a direct check of the definition of BL(X w ) shows that f n,m ∈ BL(X w ) for every n, m and, since η n is 0 on a neighborhood of {w m = 0}, we also have f n,m ∈ V for every n, m.

Using the fact that the functions (t, x) � → η n (t)η n (t)σ m (x) are uniformly bounded by 1 and pointwise converge to 1 as n, m → ∞ and the dominate convergece theorem we see

that f n,m → f in L 2 (X w ) as n, m → ∞.
Next, recalling (3.3) and using that σ m is 1-Lipschitz we see that

|D(f (t) -f (t) n,m )| X (x) ≤ � � η n (t)η n (t)σ m (x) -1 � � |Df (t) | X (x) + |f (t, x)|1 {d(•,x)≥m-1} (x)
for m w -a.e. (t, x), so that the dominate convergence theorem again gives that

� |D(f (t) - f (t) n,m )| 2 X (x) dm w (t, x) → 0 as n, m → ∞.
Similarly, we have

|D(f (x) -f (x) n,m )| I (t) ≤ � � η n (t)η n (t)σ m (x) -1 � � |Df (x) | I (t) + |f (t, x)|1 {|•|≥n-1} (t) + |f (t, x)|1 {d(•,x)≤m} (x)1 {|•|≤n} (t)|∂ t η n |(t)
for m w -a.e. (t, x) and again by dominate convergence we see that the first two terms in the right hand side go to 0 in L 2 (X w ) as n, m → ∞. For the last term, we use the fact that f is bounded and our assumptions on w m . Observe indeed that |∂ t η n |(t) ≤ so that letting x 1 , . . . , x N be the finite number of zeros of w m in [-n -1, n + 1] we have

� |f (t, x)| 2 1 {d(•,x)≤m} (x)1 {|•|≤n} (t)|∂ t η n | 2 (t) dm w ≤ �f � L ∞ m(B m (x)) log(n) 2 � [-n,n]∩D -1 ([n -1 ,1]) 1 D 2 (t) w m (t) dt ≤ C �f � L ∞ m(B m (x)) log(n) 2 � [-n,n]∩D -1 ([n -1 ,1]) 1 D(t) dt ≤ C �f � L ∞ m(B m (x)) log(n) 2 N � i=1 � {t:|t-x i |∈[n -1 ,1]} 1 |t -x i | dt = 2N C �f � L ∞ m(B m (x)) log(n) .
Since the last term goes to 0 as n → ∞ for every m ∈ N, we just proved that

lim m→∞ lim n→∞ � |D(f (x) -f (x) n,m )| 2 I (t) dm w (t, x) = 0,
which is sufficient to conclude.

Sobolev-to-Lipschitz property

We recall the following definition: Aim of this section is to study the Sobolev-to-Lipschitz property on warped products.

Metric measure spaces with the Sobolev-to-Lipschitz property are, in some sense, those whose metric properties can be studied via Sobolev calculus. Only quite regular metric measure structures possess this property (for instance, doubling& Poincaré are not sufficient to ensure the Sobolev-to-Lipschitz property) and it is a non-trivial fact that RCD(K, ∞) spaces have such property (see [START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF] for the definition of RCD(K, ∞) spaces and the proof of the claim).

The fact that RCD(K, ∞) spaces have such property is tightly linked to the following regularity result for geodesic interpolation in the space of probability measures:

Proposition 3.27. Let (X, d, m) be a RCD(K, ∞) space and µ 0 , µ 1 ∈ P 2 (X) with bounded support and such that µ 0 , µ 1 ≤ Cm for some C > 0. Then there exists only one geodesic (µ t ) connecting µ 0 to µ 1 and such geodesic satisfies

µ t ≤ C � m, ∀t ∈ [0, 1], (3.24) 
for some C � > 0.

It was proved in [START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF] that the Cartesian product of two RCD(K, ∞) spaces is still RCD(K, ∞) and thus in particular it has the Sobolev-to-Lipschitz property. Here we consider the warped product of an RCD(K, ∞) space (X, d, m) and an interval I.

We observe that under the only assumption that w d , w m are warping functions we cannot hope to prove that X w has the Sobolev-to-Lipschitz property. Indeed, if w m is 0 on some subinterval of I which disconnects I, then there are functions on X w which are locally constant on the support of m w , hence Sobolev with 0 weak upper gradient, without being constant on X w .

We shall therefore only consider the case where w m is strictly positive in the interior of I, a condition which is satisfied in the standard geometric constructions like that of cone/spherical subspension.

We introduce the following auxiliary concept, which is a sort of length property which takes into account the reference measure:

Definition 3.28 (Good space). We say that a metric measure space (X, d, m) is a good space if for some Borel subset A ⊂ X of full m-measure and every x, y ∈ A there exists a family of W 2 -absolutely continuous curves t � → µ t,� ∈ P 2 (X) indexed by a parameter

� > 0 such that: a) µ 0,� = 1 Br � (x) m(Br � (x)) m and µ 1,� = 1 Br � (y) m(Br � (y)) m for some r � > 0 such that lim �↓0 r � = 0, b) µ t,� ≤ C � m for every t ∈ [0, 1] and some constant C � > 0, c) l[µ •,� ] ≤ d(x, y) + err(ε) for some err(�) > 0 such that lim �↓0 err(�) = 0.
In what follows we shall say that a space (X, d, m) is m-a.e. locally doubling provided for m-a.e. x ∈ X there exist C, R > 0 such that

m(B 2r (y)) ≤ Cm(B r (y)), ∀y ∈ B R (x), r ≤ R. (3.25)
We recall that on a doubling space m-a.e. point is a Lebesgue point of a given L 

� |f (γ 0 ) -f (γ 1 )| dπ � (γ) ≤ � 1 0 � |Df | X (γ t )| γt |dπ � (γ) dt ≤ (ess sup|Df |) � 1 0 � | γt |dπ � dt ≤ (ess sup|Df |) � � 1 0 � | γt | 2 dπ � dt = (ess sup|Df |) � � 1 0 | μt,� | 2 dt = (ess sup|Df |)l[µ •,� ],
where in the last step we used the fact that t � → µ t,� has constant speed.

Letting � go to 0 and using the fact that x, y are Lebesgue points we get

|f (y) -f (x)| = lim �→0 � � � � f dµ 1,� - � f dµ 0,� � � � = lim �→0 � � � � f (γ 1 ) -f (γ 0 ) dπ � (γ) � � � ≤ (ess sup|Df |)d(x, y).
This proves that the restriction of f to A∩B is Lipschitz with Lipschitz constant bounded by ess sup|Df |. Since A ∩ B has full m-measure, this concludes the proof.

We now turn to the main result of the section: Then the warped product (X w , d w , m w ) has the Sobolev to Lipschitz property.

Proof. It is trivial to check that the cartesian product of two doubling spaces is still doubling. It follows that if (t, x) ∈ X w is such that w m (t) > 0, then property (3.25) is satisfied for a sufficiently small R and some constant C. Since by definition of m w we know that m w -a.e. (t, x) ∈ X w is such that w m (t) > 0, we deduce that (X w , d w , m w ) is m w -a.e. locally doubling. Hence to conclude it is sufficient to show that it is a good space. We shall divide the proof of this fact in two cases.

Step 1. We assume that w m is strictly positive on the whole I.

Let (t 0 , x 0 ), (t 1 , x 1 ) ∈ X w be with t 0 < t 1 , � > 0 and γ = (γ R , γ X ) a curve joining (t 0 , x 0 ) to (t 1 , x 1 ) with l w (γ) ≤ d w ((t 0 , x 0 ), (t 1 , x 1 )) + �. Then the curve γ R has image contained Now let N be the integer part of 2 δ + 1, let 0 = t 0 < . . . < t N = 1 be such that |t i+1t i | ≤ δ 2 for every i = 0, . . . , N -1, and define the measures

in J := I ∩ [t 0 -l w (γ) -�, t 1 + l w (γ) + �].
µ i := 1 B δ 2 /4 (γt i ) m w (B δ 2 /4 (γ t i ))
m w ∈ P 2 (X w ), i = 0, . . . , N.

For every i = 1, . . . , N -1 consider the constant warping functions w i,d (t) := w d (t i ) and w i,m (t) := w m (t i ) and the corresponding warped product spaces, which we shall denote as (X i , d i , m i ), of X and R. These warped products are in fact cartesian products of a rescaled version of X, which is an RCD(K � , ∞) space for some K � -see [START_REF] Sturm | On the geometry of metric measure spaces[END_REF], and R and therefore they are RCD(K � , ∞). Consider µ i , µ i+1 as measures on X i and let [t i , t i+1 ] � t � → µ i,t be the W d i 2 -geodesic connecting them and notice that µ i,t has support in the strip [t iδ/2, t i+1 + δ/2] × X. Since w m is bounded from above on J, we see that µ i , µ i+1 have density w.r.t. m i bounded from above. Therefore by (3.24) we deduce that

µ i,t ≤ C i m i , ∀t ∈ [t i , t i+1 ], (3.27) 
for some constant C i .

The bound (3.26) easily yields that for (t, x) � = (s, y) ∈ [t iδ/2, t i+1 + δ/2] × X we have

1 1 + � ≤ d 2 w � (t, x), (s, y) � d 2 i � (t, x), (s, y) � ≤ 1 + �.
Then the analogous inequality is true for metric speeds, for W 2 -distances between probability measure concentrated on [t iδ/2, t i+1 + δ/2] × X and metric speeds of curves of measures. Thus we have

l w (µ i,• ) = � t i+1 t i | μi,t | w dt ≤ √ 1 + � � t i+1 t i | μi,t | i dt = √ 1 + � W d i 2 (µ i , µ i+1 ) ≤ (1 + �)W dw 2 (µ i , µ i+1 ).
(3.28)

We then define the curve [0, 1] � t � → µ t ∈ P(X w ) as 

µ t := µ i,t if t ∈ [t i ,
l w (µ t ) = N -1 � i=0 l w (µ i,t ) ≤ (1 + �) N -1 � i=0 � d w (γ t i , γ t i+1 ) + δ 2 /2 � ≤ (1 + �) � 2 δ + 1 � δ 2 2 + (1 + �) N -1 � i=0 d w (γ t i , γ t i+1 ) ≤ 2�(1 + �) + (1 + �)l w (γ) ≤ (1 + �) � 2� + d w � (t 0 , x 0 ), (t 1 , x 1 ) � � ,
which is our claim.

Step 2. We drop the positivity assumption of w m on the extrema of I.

We define A ⊂ X w as the product of the interior of I and X. Notice that A has full m w measure. Let (I δ ) δ>0 be a family of bounded closed intervals such that I δ ⊃ I δ � for δ < δ � whose union is the interior of I, pick (t 0 , x 0 ), (t 1 , x 1 ) ∈ A and let δ 0 > 0 so that t 0 , t 1 ∈ I δ 0 .

For every δ ∈ (0, δ 0 ) consider the warped product of I δ and X via the warping functions w d , w m , which we shall denote by (X δ , d δ , m δ ). From the continuity of w d it is easy to check that a curve with values in X δ is d δ -absolutely continuous if and only if it is d wabsolutely continuous and in this case the two metric speeds agree. Then the analogous statement is valid for curves of probability measures and their W 2 -speeds in the two spaces.

Now observe that the inequality d w ≤ d δ is obvious and that given a curve t � → The conclusion then follows by applying the previous step in the space X δ , passing to the limit as δ ↓ 0 and using a diagonalization argument to produce the desired family of curves of measures in X w .

(γ R t , γ X t ) ∈ X w the curves t � → (δ ∨ γ R t , γ X t ) ∈ X δ have
W 1,p (X, d, m) it is well defined a non-negative function |Df | p ∈ L p (X, m), called minimal p-weak upper gradient, which, if (X, d, m) is a smooth space, coincides m-a.e. with the modulus of the distributional differential of f .

A key difference between the smooth and non-smooth case is that in the latter the minimal p-weak upper gradient may depend on p: say for simplicity that m(X) = 1, then for p < q ∈ (1, ∞) and f ∈ W 1,q (X) one always has f ∈ W 1,p (X) but in general only the inequality

|Df | p ≤ |Df | q , m -a.e., (4.1) 
holds. The inequality above can be strict even on doubling spaces, see [START_REF] Marino | The p-weak gradient depends on p[END_REF] for an example and more details on the issue.

Worse than this, one might have

a function f ∈ W 1,p (X) with f, |Df | p ∈ L q (X) such that f / ∈ W 1,q (X), (4.2) 
see [START_REF]Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces[END_REF] for an example proposed by Koskela.

To have a p-weak upper gradients independent on p is a regularity property of the metric measure space in question. For instance, as a consequence of the analysis done in [START_REF] Cheeger | Differentiability of Lipschitz functions on metric measure spaces[END_REF] one has that on doubling space supporting a 1-1 weak local Poincaré inequality, equality always holds in (4.1). In particular, this applies to CD(K, N ) spaces with N < ∞.

In this note we show that on RCD(K, ∞) spaces not only (4.1) holds with equality, but also that the situation in (4.2) never occurs. The argument is based on some regularization properties of the heat flow proved in [START_REF] Savaré | Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in RCD(K, ∞) metric measure spaces[END_REF] and on the density in energy of Lipschitz functions in Sobolev spaces established in [START_REF]Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces[END_REF].

At least in the case of proper RCD(K, ∞) spaces, this identification extends to BV functions. The problem in non-proper spaces is the lack of an approximation result of BV functions with Lipschitz ones.

This result, beside its intrinsic usefulness in Sobolev calculus, has also the pleasant conceptual effect of somehow relieving the definition of RCD(K, ∞) spaces from the dependence on the particular Sobolev exponent p = 2. Recall indeed that one of the equivalent definitions of RCD(K, ∞) space is that of a CD(K, ∞) space such that W 1,2 (X)

is Hilbert or equivalently such that

|D(f + g)| 2 2 + |D(f -g)| 2 2 = 2 � |Df | 2 2 + |Dg| 2 2 � , m-a.e. ∀f, g ∈ W 1,2 (X).
As a consequence of our result, a posteriori one could replace the minimal 2-weak upper gradients with p-weak upper gradients in the above.

Preliminaries

Sobolev classes

We assume the reader familiar with the basic concepts of analysis in metric measure spaces and recall here the definition of Sobolev class S p (X). We fix a complete and separable space (X, d, m) such that m is a non-negative Borel measure finite on bounded sets.

Definition 4.1 (Test plans). Let π be a Borel probability measure on C([0, 1], X). We say that π has bounded compression provided there exists C = C(π) > 0 such that

(e t ) � π ≤ Cm, ∀t ∈ [0, 1],
where e t : C([0, 1], X) � → X is the evaluation map defined by e t (γ) := γ t for every

γ ∈ C([0, 1], X).
For q ∈ (1, ∞) we say that π is a q-test plan if it has bounded compression, is concentrated on AC q ([0, 1], X) and

� 1 0 � | γt | q dπ(γ) dt < +∞.
The notion of Sobolev function is then introduced by duality with test plans. Borel functions f : X � → R for which there exists a non-negative function G ∈ L p (X) such that for any q-test plan π the inequality

� |f (γ 1 ) -f (γ 0 )| dπ(γ) ≤ � � 1 0 G(γ s )| γs | ds dπ(γ)
holds, where 1 p + 1 q = 1. Any such G is called p-weak upper gradient.

It is immediate to see that for f ∈ S p (X) there is a unique p-weak upper gradient of minimal L p -norm: we shall call such G minimal p-weak upper gradient and denote it by

|Df | p .
Basic important properties of minimal weak upper gradients are the locality, i.e.:

|Df | p = |Dg| p , m-a.e. on {f = g}, ∀f, g ∈ S p (X), and the lower semicontinuity, i.e.

(f n ) ⊂ S p (X), sup n �|Df | p � L p < ∞, f n → f m-a.e.        ⇒       
f ∈ S p (X) and for any weak limit G of (

|Df n | p ) in L p (X) it holds |Df | p ≤ G m-a.e.
The Sobolev space W 1,p (X) is defined as W 1,p (X) := S p ∩ L p (X) endowed with the norm

�f � p W 1,p (X) := �f � p L p (X) + �|Df | p � p L p (X)
.

By Lip X we denote the space of Lipschitz functions on X and for f ∈ Lip X the local Lipschitz constant lip(f ) :

X � → [0, ∞) is defined as lip(f )(x) := lim y→x |f (y) -f (x)| d(x, y) , if x is not isolated, 0 otherwise.
In [START_REF]Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces[END_REF] the following approximation property has been proved: Then there exists a sequence (f n ) ⊂ W 1,p ∩ Lip X of functions with bounded support converging to f in L p (X) and such that lip(f n ) → |Df | p in L p (X) as n → ∞.

We conclude this introduction noticing that the locality property of p-weak upper gradients allows for a natural definition of the space of locally Sobolev functions. By L p loc (X) we shall intend the space of Borel functions G : X � → R whose p-power is integrable on every bounded set. The role of the locality of the p-weak upper gradient is to ensure that the definition of |Df | p is well posed. Also, it is not hard to check that S p (X) ⊂ S p loc (X) and that a function f ∈ S p loc (X) belongs to S p (X) if and only if |Df | p ∈ L p (X).

For p 1 < p 2 ∈ (1, ∞) and q 1 > q 2 ∈ (1, ∞) such that 1 p i + 1 q i = 1, the fact that the class of q 1 -test plans is contained in the one of q 2 -test plans grants that S p 2 loc (X) ⊂ S p In order to keep this preliminary part as short as possible, we shall assume the reader familiar with the definition of RCD(K, ∞) spaces and focus only on those properties they have which are relevant for our discussion. We refer to [START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF], [START_REF] Ambrosio | Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure[END_REF] and [START_REF] Savaré | Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in RCD(K, ∞) metric measure spaces[END_REF] for the throughout discussion.

From now on we shall assume that (X, d, m) is a RCD(K, ∞) space for some K ∈ R and that the support of m is the whole X. Recall that in particular we have m(B) < ∞ for any bounded Borel set B ⊂ X.

In such space the 2-Energy functional E : L 2 (X) � → [0, ∞] defined as

E 2 (f ) := � 1 2 � X |Df | 2 2 dm, if f ∈ W 1,2 (X),
+∞, otherwise, is a strongly local and regular Dirichlet form. We shall denote by (H t ) the associated linear semigroup. Then it can be seen that for every f ∈ L 2 (X) and p ∈ [1, ∞) we have

�H t (f )� L p (X) ≤ �f � L p (X) , ∀t ≥ 0,
and thus (H t ) can, and will, be extended to a linear non-expanding semigroup on L p (X).

On the other hand, there exists a unique EVI K -gradient flow of the relative entropy functional on (P 2 , W 2 ) which we shall denote by (H t ) and provides a one parameter semigroup of continuous linear operators on (P 2 , W 2 ), see [START_REF]Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF][START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF] and [START_REF] Ambrosio | Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure[END_REF].

The non-trivial link between (H t ) and (H t ) is the fact that for µ ∈ P(X) such that µ = f m for some f ∈ L 2 (X)

we have H t (µ) = H t (f )m for every t ≥ 0, and from the fact that (H t ) is self adjoint one can verify that for any p ∈ [1, ∞) and every t ≥ 0 it holds

H t (f )(x) = � f dH t (δ x ), m -a.e.. x ∀f ∈ L p (X). (4.4) 
Moreover, for f ∈ L ∞ (X) and t > 0 the formula

Ht (f )(x) := � f dH t (δ x ),
is well defined for any x ∈ X producing a pointwise version of the heat flow for which the L ∞ � → Lip regularization holds:

Lip Ht (f ) ≤ 1 � 2I 2K (t) �f � L ∞ (X) , ∀t > 0, (4.5) 
where I 2K (t) := � t 0 e 2Ks ds.

Th crucial regularization property of the heat flow that we shall use to identify p-weak gradients is the following version of the Bakry-Émery contraction rate, proved in [? ]:

lip( Ht (f )) ≤ e -Kt Ht (lip(f )) pointwise on X, (4.6) 
valid for every Lipschitz function f with bounded support and every t ≥ 0.

We conclude recalling another useful regularity property of RCD(K, ∞) spaces, this one concerning displacement interpolation of measures, see [START_REF] Rajala | Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm[END_REF] for a proof: 

Proof of the main result

The identification of p-weak gradients will come via a study of the regularization properties of the heat flow.

Proposition 4.6. Let p ∈ (1, ∞), f ∈ W 1,p (X) and t ≥ 0. Then H t (f ) ∈ W 

p ∈ (1, ∞), f ∈ W 1,p (X) such that f, |Df | p ∈ L ∞ (X) and t > 0.
Then Ht (f ) is Lipschitz and

lip( Ht (f )) ≤ e -Kt p � Ht (|Df | p p ), pointwise on X.
Proof. The fact that Ht (f ) is Lipschitz follows from (4.5). To prove the thesis, pick x, y ∈ X, r > 0, consider the measures µ 0,r := m(B r (x)

) -1 m | Br(x) , µ 1,r := m(B r (y)) -1 m | Br(y)
and let π be given by Proposition 4.5. Then we know that (e s ) � π ≤ Cm for some C > 0 and every s ∈ [0, 1] and that | γs | ≤ d(x, y) + 2r for π-a.e. γ and a.e. s ∈ [0, 1]. In particular, π is a q-test plan, where 1 p + 1 q = 1, and since H t (f ) ∈ W 1,p (X) we know that that by the locality property of the weak upper gradients it is not restrictive to assume that f has bounded support, so that in particular f ∈ L ∞ ∩ W 1,p (X). Let t > 0 and apply Proposition 4.7 to deduce that Ht (f ) ∈ Lip X with lip( Ht (f )) q ≤ e -qKt Ht (|Df

� � � � Ht (f ) d(µ 1,r -µ 0,r ) � � � ≤ � | Ht (f )(γ 1 ) -Ht (f )(γ 0 )| dπ(γ) ≤ � � 1 0 |D Ht (f )| p (γ s )| γs | ds dπ(γ) ≤ (d(x, y) + 2r) p � � � 1 0 |D Ht (f )| p p (γ s ) ds dπ(γ) ≤ (d(x, y) + 2r)e -Kt p � � � 1 0 Ht (|Df | p p )(γ s ) ds dπ(γ),
| p p ) q p ≤ e -qKt Ht (|Df | q p ), pointwise,
having used Jensen's inequality and formula (4.4) in the last step and the fact that |Df | q p ∈ L 1 (X), which follows from the fact that f is Lipschitz bounded support. Since |D Ht (f )| q ≤ lip( Ht (f )) m-a.e., it follows that

� |D Ht (f )| q q dm ≤ e -qKt � Ht (|Df | q p ) dm, ∀t > 0,
and letting t ↓ 0 and using the lower semicontinuity of q-weak upper gradients we conclude that

� |Df | q q dm ≤ � |Df | q p dm,
which is sufficient to get the thesis.

Theorem 4.9 (Identification of weak upper gradients). Let p, q ∈ (1, ∞) and f ∈

S p loc (X) such that |Df | p ∈ L q loc (X). Then f ∈ S q loc (X) and |Df | q = |Df | p , m -a.e..
Proof. Assume that p < q and notice that by (4.3) it is sufficient to prove that |Df | p ≥ |Df | q m-a.e.. Replacing if necessary f with max{min{f, n}, -n} and using the locality property of weak upper gradients and the arbitrariness of n ∈ N we can assume that f ∈ L ∞ (X). Similarly, with a cut-off argument we reduce to the case in which f has bounded support and thus in particular |Df | p ∈ L p ∩ L q (X).

With these assumptions we have f ∈ W 

|DH t f | q ≤ e -Kt p � H t (|Df | p p ), m -a.e..
Using the assumption that |Df | p ∈ L q (X) and Jensen's inequality in formula (4.4) we deduce that |DH t f | q q ≤ e -qKt H t (|Df | q p ) m-a.e. and thus

� |DH t f | q q dm ≤ e -qKt � H t (|Df | q p ) dm, ∀t > 0.
Letting t ↓ 0 and using the lower semicontinuity of q-weak upper gradients we conclude that

� |Df | q q dm ≤ � |Df | q p dm,
which is sufficient to prove the thesis. 

To see why, notice that the fact that (X, d) is proper and the definition of BV(X) ensures that for f ∈ BV(X) there is a sequence (f n ) of Lipschitz functions with bounded support such that (f n ) → f in L 1 (X) and lip(f n )m → |Df | weakly in duality with C c (X). Hence arguing as for Proposition 4.6 one gets by approximation that

f ∈ BV(X) ⇒ H t (f ) ∈ BV(X) |DH t (f )| ≤ e -Kt H t (|Df |). (4.10) 
Then, using the a priori estimates on the relative entropy of H t (µ) in terms of the mass of µ (see [START_REF] Ambrosio | Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure[END_REF]) one obtains that for a sequence of non-negative measures (µ n ) weakly converging to some measure µ in duality with C b (X) and t > 0, the sequence n � → g n := dHt(µn) dm converges to g := dHt(µ) dm weakly in duality with L ∞ (X). Therefore, for π as in the proof of Proposition 4.7 and (f n ) ⊂ Lip X converging to f ∈ BV(X) and so that lip(f n )m → |Df | weakly in duality with C b (X), we can pass to the limit in the inequality

� |H t (f n )(γ 1 ) -H t (f n )(γ 0 )| dπ(γ) ≤ � � 1 0 lip(H t (f n ))(γ t )| γt | dt dπ(γ) ≤ e -Kt � � 1 0 H t (lip(f n ))(γ t )| γt | dt dπ(γ), to deduce that � |H t (f )(γ 1 ) -H t (f )(γ 0 )| dπ(γ) ≤ e -Kt � � 1 0 dH t (|Df | w ) dm (γ t )| γt | dt dπ(γ).
In particular, arguing as in the proof of Proposition 4.7 we get that

f ∈ BV ∩ L ∞ (X), |Df | w ≤ Cm ⇒ lip(H t (f )) ≤ e -Kt H t � d|Df | w dm � . (4.11)
Then following the same lines of thought of Proposition 4.8 and Theorem 4.9 the claim (4.9) follows.

Notice also that from (4.10) and with a truncation and mollification argument we deduce

that for f ∈ BV(X) with |Df | � m there is a sequence (f n ) ⊂ Lip X such that f n → f and lip(f n ) → d|Df | dm strongly in L 1 (X) as n → ∞.
In particular, the three notions of space W 1,1 (X) discussed in [START_REF] Ambrosio | Equivalent definitions of BV space and of total variation on metric measure spaces[END_REF] all coincide.

All this if the space is proper. It is very natural to expect that the same results hold even without this further assumption, but in the general case it seems necessary to define BV functions taking limits of locally Lipschitz functions, rather than Lipschitz ones (see the proof of Lemma 5.2 in [START_REF] Ambrosio | Equivalent definitions of BV space and of total variation on metric measure spaces[END_REF]). The problem then consists in the fact that the property (4.6) is not available for locally Lipschitz functions with local Lipschitz constant in L 1 .

�

where n is the dimension of the manifold (recall that on a weighted manifold in general we have trH f � = ∆f ). It is then not hard to see that if Ricci N ≥ K then indeed (5.2) holds.

It is harder to understand how to go back and prove that Ricci N ≥ K starting from (5.2). A first step in this direction, which answers (1), is to notice that in the smooth setting the identity

2H f (∇g, ∇h) = Γ(g, Γ(f, h)) + Γ(h, Γ(f, g)) -Γ(f, Γ(g, h))
for any smooth g, h characterizes the Hessian of f , so that the same identity can be used to define the Hessian starting from a diffusion operator only. The question is then whether one can prove any efficient bound on it starting from (5.2) only. The first results in this direction where obtained by Bakry in [START_REF] Bakry | Transformations de Riesz pour les semi-groupes symétriques[END_REF] and [START_REF]L'hypercontractivité et son utilisation en théorie des semigroupes[END_REF], and only recently Sturm [START_REF]Ricci tensor for diffusion operators and curvature-dimension inequalities under conformal transformations and time changes[END_REF] concluded the argument showing that (5.2) implies Ricci N ≥ K. In Sturm's approach, the operator Ricci N is not defined as in (5.4), but rather as

Ricci N (∇f, ∇f )(x) := inf g : Γ(f -g)(x)=0 Γ 2 (g)(x) - (Lg) 2 (x) N (5.5) 
and it is part of his contribution the proof that this definition is equivalent to (5.4).

All this for smooth, albeit possibly abstract, structures. On the other hand, there is as of now a quite well established theory of (non-smooth) metric measure spaces satisfying a curvature-dimension condition: that of RCD * (K, N ) spaces introduced by Ambrosio-Gigli-Savaré (see [START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF] and [START_REF]On the differential structure of metric measure spaces and applications[END_REF]) as a refinement of the original intuitions of Lott-Sturm-Villani ( [START_REF]Ricci curvature for metric-measure spaces via optimal transport[END_REF] and [START_REF] Sturm | On the geometry of metric measure spaces[END_REF][START_REF]On the geometry of metric measure spaces[END_REF]) and ). In this setting, there is a very natural Laplacian and inequality (5.2) is known to be valid in the appropriate weak sense (see [START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF] and [START_REF] Erbar | On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces[END_REF]) and one can therefore wonder if even in this low-regularity situation one can produce an effective notion of N -Ricci curvature. Part of the problem here is the a priori lack of vocabulary, so that for instance it is unclear what a vector field should be.

In the recent paper [START_REF]Non-smooth differential geometry[END_REF], Gigli builds a differential structure on metric measure spaces suitable to handle the objects we are discussing (see the preliminary section for some details). One of his results is to give a meaning to formula (5.3) on RCD(K, ∞) spaces and to prove that the resulting Ricci curvature tensor, now measure-valued, is bounded from below by K. Although giving comparable results, we remark that the definitions used in [START_REF]Non-smooth differential geometry[END_REF] are different from those in [START_REF]Ricci tensor for diffusion operators and curvature-dimension inequalities under conformal transformations and time changes[END_REF]: it is indeed unclear how to give a meaning to formula (5.5) in the non-smooth setting, so that in [START_REF]Non-smooth differential geometry[END_REF] the definition (5.3) has been adopted.

Gigli worked solely in the RCD(K, ∞) setting. The contribution of the current work is to adapt Gigli's tool and Sturm's computations to give a complete description of the N -Ricci curvature tensor on RCD * (K, N ) spaces for N < ∞.

Our main result is the fact that the N -Ricci curvature is bounded from below by K on a RCD(K � , ∞) space if and only if the space is RCD * (K, N ).

Preliminaries

Let M = (X, d, m) be a RCD(K, ∞) metric measure space for some K ∈ R (or for simply, a RCD space). We denote the space of finite Borel measures on X by Meas(M ), and equip it with the total variation norm � • � TV .

The Sobolev space W 1,2 (M ) is defined as in [START_REF]Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF], and the weak gradient of a function

f ∈ W 1,2 (M ) is denoted by |Df |. It is part of the definition of RCD(K, ∞) space that W 1,2 ( 
M ) is a Hilbert space, in which case (X, d, m) is called infinitesimally Hilbertian space. In order to introduce the concepts of 'tangent/cotangent vector field' in nonsmooth setting, we will use the vocabulary of L ∞ -module. the elements with the from {(A i , f i )} i∈N , where {A i } i∈N is a Borel partition of X, and

Definition 5.1 (L 2 -normed L ∞ -module). Let M = (X, d, m) be a metric measure space. A L 2 -normed L ∞ (M ) module is a Banach space (B, � • � B ) equipped with a bilinear map L ∞ (M ) × B � → B, (f, v) � → f • v such that (f g) • v = f • (g • v), 1 • v = v for every v ∈ B and f, g ∈ L ∞ (M ), where 1 ∈ L ∞ (M )
{f i } i are Sobolev functions such that � i � A i |Df i | 2 < ∞.
We define an equivalence relation on PCM via

{(A i , f i )} i∈N ∼ {(B j , g j )} j∈N if |D(g j -f i )| = 0, m -a.e. on A i ∩ B j .
We denote the equivalence class of

{(A i , f i )} i∈N by [(A i , f i )].
In particular, we call [(X, f )] the differential of a Sobolev function f and denote it by df .

Then we define the following operations:

1) [(A i , f i )] + [(B i , g i )] := [(A i ∩ B j , f i + g j )],
2) Multiplication by scalars: λ

[(A i , f i )] := [(A i , λf i )],
3) Multiplication by simple functions: (

� j λ j χ B j )[(A i , f i )] := [(A i ∩ B j , λ j f i )], 4) Pointwise norm: |[(A i , f i )]| := � i χ A i |Df i |,
where χ A denote the characteristic function on the set A.

It can be seen that all the operations above are continuous on PCM/ ∼ with respect to

the norm �[(A i , f i )]� := � � |[(A i , f i )]| 2 m
and the L ∞ (M )-norm on the space of simple functions. Therefore we can extend them to the completion of (PCM/ ∼, � • �) and we denote this completion by L 2 (T * M ). As a consequence of our definition, we can see [START_REF]Non-smooth differential geometry[END_REF] for a proof). It can also be seen from the definition and the infinitesimal Hilbertianity assumption on M that L 2 (T * M ) is a Hilbert space equipped with the inner product induced by �

that L 2 (T * M ) is the � • � closure of { � i∈I a i df i : |I| < ∞, a i ∈ L ∞ (M ), f i ∈ W 1,2 } (see Proposition 2.2.5 in
• �. Moreover, (L 2 (T * M ), � • �, | • |) is a L 2 -normed
module according to the Definition 5.1, which we shall call cotangent module of M .

We then define the tangent module L

2 (T M ) as Hom L ∞ (M ) (L 2 (T * M ), L 1 (M )), i.e. T ∈ L 2 (T * M ) if it
is a continuous linear map from L 2 (T * M ) to L ! (M ) viewed as Banach spaces satisfying the homogeneity:

T (f v) = f T (v), ∀v ∈ L 2 (T * M ), f ∈ L ∞ (M ).
It can be seen that L 2 (T M ) has a natural L 2 -normed L ∞ (M )-module structure and is isometric to L 2 (T * M ) both as a module and as a Hilbert space. We denote the corresponding element of df in L 2 (T M ) by ∇f and call it the gradient of f (see also the Riesz theorem for Hilbert modules in Chapter 1 of [START_REF]Non-smooth differential geometry[END_REF]). The natural pointwise norm on L 2 (T M ) (we also denote it by |

• |) satisfies |∇f | = |df | = |Df |. We can also prove that { � i∈I a i ∇f i : |I| < ∞, a i ∈ L ∞ (M ), f i ∈ W 1,2 } is dense in L 2 (T M ).
In other words, since we have a pointwise inner product �

•, •� : [L 2 (T * M )] 2 � → L 1 (M ) satisfying �df, dg� := 1 4 (|D(f + g)| 2 -|D(f -g)| 2 )
for f, g ∈ W 1,2 (M ). We can define the gradient ∇g as the element in L 2 (T M ) such that ∇g(df ) = �df, dg�, m-a.e. for every f ∈ W 1,2 (M ). Therefore, L 2 (T M ) inherits a pointwise inner product from L 2 (T * M ) and we still use �•, •� to denote it.

Then we can define the Laplacian by duality (integration by part) as on a Riemannian manifold.

Definition 5.2 (Measure valued Laplacian, [START_REF]Non-smooth differential geometry[END_REF][START_REF]On the differential structure of metric measure spaces and applications[END_REF]). The space D(∆) ⊂ W 1,2 (M ) is the space of f ∈ W 1,2 (M ) such that there is a measure µ satisfying

� h µ = - � �∇h, ∇f � m, ∀h : M � → R, Lipschitz with bounded support.
In this case the measure µ is unique and we shall denote it by ∆f . If ∆f � m, we denote its density by ∆f .

We define TestF(M ) ⊂ W 1,2 (M ), the set of test functions by

TestF(M ) := {f ∈ D(∆) ∩ L ∞ : |Df | ∈ L ∞ and ∆f ∈ W 1,2 (M )}.
It is known from [START_REF]Metric measure spaces with riemannian Ricci curvature bounded from below[END_REF] that TestF(M ) is dense in W 1,2 (M ) when M is RCD.

It is proved in [START_REF] Savaré | Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in RCD(K, ∞) metric measure spaces[END_REF] that �∇f, ∇g� ∈ D(∆) ⊂ W 1,2 (M ) for any f, g ∈ TestF(M ). Therefore we can define the Hessian and Γ 2 operator as follows.

Let f ∈ TestF(M ). We define the Hessian H f : {∇g : g ∈ TestF(M )} 2 � → L 0 (M ) by 2H f (∇g, ∇h) = �∇g, ∇�∇f, ∇h�� + �∇h, ∇�∇f, ∇g�� -�∇f, ∇�∇g, ∇h�� for any g, h ∈ TestF(M ). It can be seen that H f can be extended to a symmetric L ∞ (M )-bilinear map on L 2 (T M ) and continuous with values in L 0 (M ).

Let f, g ∈ TestF(M ). We define the measure Γ 2 (f, g) as

Γ 2 (f, g) = 1 2 ∆�∇f, ∇g� - 1 2 � �∇f, ∇∆g� + �∇g, ∇∆f � � m,
and we put Γ 2 (f ) := Γ 2 (f, f ).

Then we recall some results on the non-smooth Bakry-Émery theory.

Proposition 5.3 (Bakry-Émery condition, [START_REF]Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds[END_REF], [START_REF] Erbar | On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces[END_REF]). Let M = (X, d, m) be a RCD space. Then it is a RCD * (K, N ) space with K ∈ R and N ∈ [1, ∞] if and only if

Γ 2 (f ) ≥ � K|Df | 2 + 1 N (∆f ) 2 � m for any f ∈ TestF(M ). Lemma 5.4 ([39]). Let M = (X, d, m) be a RCD * (K, N ) space, n ∈ N, f 1 , ..., f n ∈ TestF(M ) and Φ ∈ C ∞ (R n ) be with Φ(0) = 0. Put f = (f 1 , ..., f n ), then Φ(f ) ∈ TestF(M ). In particular, Γ 2 (Φ(f )) ≥ � K|DΦ(f )| 2 + (∆Φ(f )) 2 N � m.
Lemma 5.5 (Chain rules, [START_REF]L'hypercontractivité et son utilisation en théorie des semigroupes[END_REF], [START_REF] Savaré | Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in RCD(K, ∞) metric measure spaces[END_REF]). Let f

1 , ..., f n ∈ TestF(M ) and Φ ∈ C ∞ (R n ) be with Φ(0) = 0. Put f = (f 1 , ..., f n ), then |DΦ(f )| 2 m = n � i,j=1 Φ i Φ j (f )�∇f i , ∇f j � m, Γ 2 (Φ(f )) = � i,j Φ i Φ j (f )Γ 2 (f i , f j ) + 2 � i,j,k Φ i Φ j,k (f )H f i (∇f j , ∇f k ) m + � i,j,k,l Φ i,j Φ k,l (f )�∇f i , ∇f k ��∇f j , ∇f l � m, and 
∆Φ(f ) = n � i=1 Φ i (f )∆f i + n � i,j=1 Φ i,j (f )�∇f i , ∇f j � m.
At the end of this section, we discuss the dimension of M which is understood as the dimension of L 2 (T M ) as a L ∞ -module. Let A be a Borel set. We denote the subset of

L 2 (T M ) consisting those v such that χ A c v = 0 by L 2 (T M ) | A .
Definition 5.6 (Local independence). Let A be a Borel set with positive measure. We 

say that {v i } n 1 ⊂ L 2 (T M ) is independent on A if � i f i v i = 0, m -a.
i,n } mn i=1 ⊂ L ∞ (M ), n = 1, 2, ..., such that χ An v = mn � i=1 f i,n v i,n
for each n. We call the closure of Span A (V ) the space generated by V on A.

We say that L 2 (T M ) is finitely generated if there is a finite family v 1 , ..., v n spanning L 2 (T M ) on X, and locally finitely generated if there is a partition • For every subset B of E ∞ with finite positive measure, there exists a unit orthogonal

{E i } of X such that L 2 (T M ) | E i is
set {e i,B } i∈N∪{∞} ⊂ L 2 (T M ) | B which generates L 2 (T M ) | B ,
where unit orthogonal of a countable set

{v i } i ⊂ L 2 (T M ) on B means �v i , v j � = δ ij m-a.e. on B.
Definition 5.10 (Global Dimension). We say that the dimension of L 2 (T M ) is k if k = sup{n : m(E n ) > 0} where {E n } n∈N∪{∞} is the decomposition given in Proposition 5.9. We define the dimension of M as the dimension of L 2 (T M ) and denote it by dim M .

Improved Bochner inequality

In this part, we will study the dimension of RCD * (K, N ) metric measure spaces and prove an improved Bochner inequality.

First of all, we have a lemma.

Lemma 5.11 (Lemma 3.3.6, [START_REF]Non-smooth differential geometry[END_REF]). Let µ i = ρ i m + µ s i , i = 1, 2, 3 be measures with µ s i ⊥ m. We assume that

λ 2 µ 1 + 2λµ 2 + µ 3 ≥ 0, ∀λ ∈ R.
Then we have For the same reason, we can replace c i by h i . Then we obtain the following inequality. It can be seen that H f (∇f, ∇g) = 1 2 �∇|Df | 2 , ∇g�. Therefore, all the terms in A � , B � m and C � m vary continuously w.r.t. � • � TV as g varies in W 1,2 (M ). Hence the inequality (5.7) holds for any Lipschitz function g with bounded support. In particular, we can pick g identically 1 on some bounded set Ω ⊂ X, so that we have |Dg| = 0 and H f (∇f, ∇g) = 0 m-a.e. on Ω. By the arbitrariness of Ω we can replace g by 1 which is the function identically equals to 1 on X. Then the inequality (5.7) becomes:

A � (λ) ≥ � KB � (λ) + 1 N (C � ) 2 (λ) � m, (5.7 
λ 2 Γ 2 (f ) + � 2λ � i H f (∇h i , ∇h i ) + � i,j |�∇h i , ∇h j �| 2 -Kλ 2 |Df | 2 � m - � λ 2 (∆f ) 2 N + 2λ ∆f N |Dh i | 2 + ( � i |Dh i | 2 ) 2 N � m ≥ 0.
Let γ 2 (f ) m be the absolutely continuous part of Γ 2 (f ). By Lemma 5.11 we have the inequality

� � � � � � i � H f (∇h i , ∇h i ) - ∆f N |Dh i | 2 � � � � � � 2 ≤ � γ 2 (f ) -K|Df | 2 - (∆f ) 2 N �� � i,j |�∇h i , ∇h j �| 2 - ( � i |Dh i | 2 ) 2 N � .
In particular, since γ 2 (f ) where {e i,N } N i=1 is a unit orthogonal basis on E N . This is the same as to say that trH f = ∆f , m-a.e. on E.

-K|Df | 2 -(∆f )
According to this proposition, on RCD * (K, N ) spaces, we can see that the pointwise Hilbert-Schmidt norm �T � HS of a L ∞ -bilinear map T : [L 2 (T M )] 2 � → L 0 (M ) is always well defined by the following procedure. We denote dim loc : M � → N as the local dimension which is defined as dim loc (x) = n on E n , where {E n } n∈N∪{∞} is the partition of X in Proposition 5.9. Let T 1 , T 2 : [L 2 (T M )] 2 � → L 0 (M ) be symmetric bilinear maps, we define �T 1 , T 2 � HS as a function such that �T 1 , T 2 � HS := � i,j T 1 (e i,n , e j,n )T 2 (e i,n , e j,n ), m-a.e. on E n , where {E n } n≤N is the partition of X in Proposition 5.9 and {e i,n } i , n = 1, ..., �N � are the corresponding unit orthogonal basis. Clearly, this definition is well posed. In particular, we define the Hilbert-Schmidt norm of T 1 by � �T 1 , T 1 � HS and denote it by �T 1 � HS , and the trace of T 1 can be written in the way that trT 1 = �T 1 , Id dim loc � HS where Id dim loc is the unique map satisfying Id dim loc (e i,dim loc , e j,dim loc ) = δ ij , m-a.e. on E dim loc .

In the following theorem, we prove an improved Bochner inequality.

Theorem 5.13. Let M = (X, d, m) be a RCD * (K, N ) metric measure space. Then

Γ 2 (f ) ≥ � K|Df | 2 + �H f � 2 HS + 1 N -dim loc (trH f -∆f ) 2
� m holds for any f ∈ TestF, where � N i,j c i,j c i c j + c � N i=1 c 2 i . Then we have Φ x,i = Φ x,x = 0, Φ i,j = -c i,j -2cδ ij Φ x = 1, Φ i = -� j c i,j (y jc j ) -2c(y ic i ).

Let f, h 

(h i -c i )J i m ≥ K � |Df | 2 + � i (h i -c i )I i � m + 1 N � ∆(f ) - � i,j (c i,j + 2cδ ij )�∇h i , ∇h j � + � i (h i -c i )K i � 2 m.
Using the same argument as in the proof of last Proposition, we can replace the constants c i by any simple function. Furthermore, by an approximation argument we can replace the constant c, c i , c i,j by arbitrary L 2 functions. Then pick c i = h i , the inequality becomes in the inequality above, where C = (c i,j ) is a symmetric dim loc -matrix, c i,j are L 2 functions. It can be seen (as in R n ) that there is a one-to-one correspondance between such matrix and symmetric bilinear maps from [L 2 (T M )] 2 to L 2 (M ). For convenient, we still use C to denote the corresponding map of (c i,j ).

Γ 2 (f ) -2 � i,
(c i,j + 2cδ ij )(c i,j + 2cδ ij ) � m ≥ K|Df | 2 m + 1 N � ∆(f ) -
Then we obtain the inequality

Γ 2 (f ) ≥ � K|Df | 2 -�C� 2 HS + 2�C, H f � HS � m + � 1 N (trC) 2 + 1 N (∆f ) 2 - 2 N (∆f )(trC) � m + � (N trH f -dim loc ∆f ) 2 + (dim loc -N ) 2 (trC) 2 + 2(dim loc -N )(trC)(N trH f -dim loc ∆f ) � N dim loc (N -dim loc ) m = � K|Df | 2 + 1 N (∆f ) 2 + 1 N dim loc (N -dim loc ) (N trH f -dim loc ∆f ) 2 � m - � �C -H f + trH f dim loc Id dim loc � 2 HS + �H f - trH f dim loc Id dim loc � 2 HS + 1 dim loc (trC) 2 � m
where �•, •� HS is the inner product induced by the Hilbert-Schmidt norm and Id dim loc is the dim loc -identity matrix. It can be seen from the Proposition 5.12 that this inequality still makes sense if we accept 0 0 = 0.

Then we pick C = H f -trH f dim loc Id dim loc in this inequality and finally obtain

Γ 2 (f ) ≥ � K|Df | 2 + 1 N (∆f ) 2 + 1 N dim loc (N -dim loc ) (N trH f -dim loc ∆f ) 2 � m + �H f - trH f dim loc Id dim loc � 2 HS m = � K|Df | 2 + �H f � 2 HS + 1 (N -dim loc ) (trH f -∆f ) 2 � m,
which is the thesis.

N -Ricci tensor

In this section, we use the improved version of Bochner inequality that we obtained in the last section to give a definition of N -Ricci tensor.

We recall that the class of test vector fields TestV(M ) ⊂ L 2 (T M ) is defined as TestV(M ) := { n � i=1 g i ∇f i : n ∈ N, f i , g i ∈ TestF(M ), i = 1, ..., n}.

It can proved that TestV(M ) is dense in L 2 (T M ) when M is RCD.

Let X = � i g i ∇f i ∈ TestV(M ) be a test vector field. We define ∇X ∈ L 2 (T M ) ⊗ L 2 (T M ) by the following formula:

�∇X, v 1 ⊗ v 2 � HS := � i �∇g i , v 1 ��∇f i , v 2 � + � i g i H f i (v 1 , v 2 ), ∀v 1 , v 2 ∈ TestV(M ).
It can be seen that this definition is well posed and that the completion of TestV(M ) with respect to the norm � • � C :=

� � • � 2 L 2 (T M ) + � �∇ • � 2
HS m can be identified with a subspace of L 2 (T M ), which is denoted by H 1,2 C (T M ).

Let X ∈ L 2 (T M ). We say that X ∈ D(div) if there exists a function g ∈ L 2 (M ) such that � hg m = -� �∇h, X� m for any h ∈ W 1,2 (M ). We then denote such function which is clearly unique by divX.

It is easy to see that div• is a linear operator on D(div), that TestV(M ) ⊂ D(div) and that the formula: div(g∇f ) = �∇g, ∇f � + g∆f, f, g ∈ TestF(M ) holds.

It is unknown whether there is any inclusion relation between D(div) and H 1,2 C (T M ). However, in [START_REF]Non-smooth differential geometry[END_REF] it has been introduced the space (H 1,2

H (T M ), �•� H 1, 2 
H
) which is contained in both D(div) and H 1,2 C (T M ), and will be useful for our purposes. In the smooth setting, H 1,2 H (T M ) would be the space of vector fields corresponding to L 2 1-forms having both exterior derivative and co-differential in L 2 (M ).

The properties of H 1,2 H (T M ) that we shall need are: First of all, as we know (∇∇f ) b = H f and div(∇f ) = ∆f , the equality (5.8) holds for every X of the form ∇f for some f ∈ TestF(M ).

Secondly, for any X = � i g i ∇f i ∈ TestV, the assertion holds followings recalling the identities ∇(g∇f ) = ∇g ⊗ ∇f + g∇(∇f ) and div(g∇f ) = ∇g • ∇f + gdiv(∇f ).

Finally, for any X ∈ H 1,2 H (T M ), we can find a sequence {X i } i ⊂ TestV such that X i → X in H 1,2 H (T M ). Therefore �(∇X i ) b , Id dim loc � HS → �(∇X) b , Id dim loc � HS in L 2 because � • � H 1,2 H convergence is stronger than the � • � H 1,2 C convergence. Then tr(∇X i ) b = �(∇X i ) b , Id dim loc � HS → �(∇X) b , Id dim loc � HS = tr(∇X) b in L 2 . Since X i → X in H 1,2 H (T M ) implies divX i → divX in L 2 , we conclude that divX = tr(∇X) b m-a.e. on E.

We shall now use the result of Theorem 5.13 to define the N -Ricci tensor.

We start defining Γ 2 (•, •) : [TestV(M )] 2 � → Meas(M ) by

Γ 2 (X, Y ) := ∆ �X, Y � 2 + � 1 2 �X, (∆ H Y b ) � � + 1 2 �Y, (∆ H X b ) � � � m,
where X, Y ∈ [TestV(M )] 2 and ∆ H is the Hodge Laplacian. It is proved in [START_REF]Non-smooth differential geometry[END_REF] that Γ 2 (∇f, ∇f ) = Γ 2 (f ) for f ∈ TestF(M ) and that Γ 2 (•, •) can be continuously extended to [H 1,2 H (T M )] 2 . Furthermore, it is known from Theorem 3.6.7 of [START_REF]Non-smooth differential geometry[END_REF] that Ricci(X, Y ) := Γ 2 (X, Y ) -�∇X, ∇Y � HS m is a symmetric TestF(M )-bilinear form on [H 1,2 H (T M )] 2 .

We then define the measure valued map

R N on [H 1,2 H (T M )] 2 by R N (X, Y ) :=    1 N -dim loc � tr(∇X) b -divX �� tr(∇Y ) b -divY � dim loc < N, 0 dim loc ≥ N.
From the continuity of div• and tr(∇•) b on H 1,2 H (T M ), we deduce that (X, Y ) � → R N (X, Y ) m is continuous on [H 1,2 H (T M )] 2 with values in Meas(M ). From the calculus rules developed in [START_REF]Non-smooth differential geometry[END_REF], it is easy to see that (X, Y ) � → R N (X, Y ) m is homogenous with respect to the multiplication of test functions, i.e. First of all, notice that for X = ∇f , this is exactly the inequality in Theorem 5.13.

Hence (5.10) holds for any X = ∇f , f ∈ TestF(M ).

Secondly, we need to prove (5.10) for any X ∈ TestV(M ). Let X = � i g i ∇f i be a test vector field. From the homogeneity of R N m and Γ 2 (•, •) -�∇•, ∇ • � HS m which is proved in [START_REF]Non-smooth differential geometry[END_REF] we know that Ricci N (•, •) is a symmetric TestF(M )-bilinear form. Therefore Ricci N (X, X) = � i,j g i g j Ricci N (∇f i , ∇f j ). Thus we need to prove the inequality � i,j g i g j Ricci N (∇f i , ∇f j ) ≥ K � i,j g i g j �∇f i , ∇f j � m.

Hence by an approximation argument, it is sufficient to prove this inequality for simple functions g i = � K i k i =1 a i,k i χ E i,k i , i.e. � i,j,k i ,k j a i,k i a j,k j χ E i,k i ∩E j,k j Ricci N (∇f i , ∇f j ) ≥ K � i,j,k i ,k j a i,k i a j,k j χ E i,k i ∩E j,k j �∇f i , ∇f j � m.

  of f S p (X, d, m) p-Sobolev class W 1,p (X, d, m) Sobolev space |Df | p p-weak gradient of f X × w Y warped prodcut of X and Y with warping function w RCD(K, ∞) metric measure spaces with Ricci curvature bounded below by K RCD * (K, N ) metric measure spaces with lower Ricci bound and upper dimension bound

  on a |Df | Xw = |Df | w m wp.p.. En particulier, nous montrons la propriété Sobolev-à-Lipschitz sous une certaine condition de courbure-dimension. Théorème 3.30. Soit (X, d, m) un espace de RCD(K, ∞) doublement, I ⊂ R un intervalle fermé, w d , w m : I → R fonctions continues. Supposons que w m est positif dans l'intérieur du I. Alors, le produit tordu (X w , d w , m w ) a la propriété Sobolev-à-Lipschitz. L'identification des p-gradients faibles Il est connu que |Df | p , le p-gradient faible de f ∈ S p (X), peut être définie par relaxation des constantes de Lipschitz locales. Comme p � → � • � L p est non-décroissante, par définition nous savons que p � → |Df | p est également non-décroissante. Une question naturelle sur p-gradient faible est que si |Df | p dépend de p ou non. C'est à dire: soit m ∈ P(X), 1 < p 1 < p 2 , peut-on dire que |Df | p 1 = |Df | p 2 pour toute f ∈ W 1,p 2 (X, d, m)? En plus, si f ∈ W 1,p 1 et f, |Df | p 1 ∈ L p 2 (X), peut-on dire que f ∈ W 1,p 2 (X, d, m)?

  is defined as lip(f )(x) := lim y→x |f (y)f (x)| d(x, y) if x is not isolated, and 0 otherwise. The Lipschitz constant is defined as Lip(f ) := sup x� =y |f (y)f (x)| d(x, y) .

  measure spaces (X, d X , m X ) and (Y, d Y , m Y ) is defined as a metric measure space (X × Y, d c , m c ), for the distance d c := d X × d Y and the measure m c := m X × m Y . We know that d c = d X × d Y can be equivalently defined in the following two ways: The first one is the 'Pythagoras formula'

  ) where | γR | and | γX | represent the speed of the curves γ R , γ X respectively. Then, we can define a pseudo-metric d w on the space R × X as d w (A, B) = inf{l w [γ] : γ is an absolutely continuous curve from A to B}, where A, B ∈ R × X, and we define R × w X as the quotient of R × X with respect to the pseudo-metric d w

  tive notions of minimal weak upper gradients, namely |Df | w and |Df | Xw . Under the sole continuity assumption of w d , w m and the compatibility condition {w d = 0} ⊂ {w m = 0} we can prove (see Proposition 3.21 and Proposition 3.24) that

Theorem 3 . 30 (

 330 Sobolev-to-Lipschitz property) Let (X, d, m) be a doubling RCD(K, ∞) space, I ⊂ R a closed, possibly unbounded interval and w d , w m : I → R a pair of warping functions. Assume that w m is strictly positive in the interior of I.

  t+h , γ t ) |h| , exists for a.e. t and thus defines a function, called metric speed and denoted by | γt |, which is in L 1 (0, 1) and is minimal, in the a.e. sense, among the class of L 1 -functions f for which (2.10) holds.

Lemma 2 . 16 .

 216 Let (X, d, m) be a m.m.s. such that m gives finite mass to bounded sets and ϕ a c-concave function such that ∂ c ϕ(x) ∩ B � = ∅ for every x ∈ X and some bounded set B ⊂ X. Define ϕ n := min{n, ϕ}.

Definition 3 . 5 (

 35 Sobolev class). Let (X, d, m) be a metric measure space. A Borel function f : X → R belongs to the Sobolev class S 2 (X, d, m) (resp. S 2 loc (X, d, m)) provided there exists a non-negative function

  denote such minimal function by |Df | or |Df | X to emphasize which space we are considering and call it minimal weak upper gradient. Notice that if f is Lipschitz, then |Df | ≤ lip(f ) m-a.e., because lip(f ) is a weak upper gradient of f . It is known that the locality holds for |Df |, i.e. |Df | = |Dg| a.e. on the set {f = g}, moreover S 2 loc (X, d, m) is a vector space and the inequality |D(αf + βg)| ≤ |α||Df | + |β||Dg|, ma.e., (3.2)holds for every f, g ∈ S 2 loc (X, d, m) and α, β ∈ R and the space S 2 loc ∩ L ∞ loc (X, d, m) is an algebra, with the inequality|D(f g)| ≤ |f ||Dg| + |g||Df |, ma.e.,(3.3)being valid for any f, g ∈ S 2 loc ∩ L ∞ loc (X, d, m).

  X , m X ) and (Y, d Y , m Y ), we define their (Cartesian) product as: Definition 3.7 (Cartesian product). We define the space (Y × X, d c , m c ) as the product space Y ×X equipped with the distance d c := d Y ×d X and the measure m c := m Y ×m X .

Definition 3 . 11 (

 311 Warped products of metric measure spaces). Let (X, d X , m X ), (Y, d Y , m Y ) be two metric measure spaces and w d , w m : Y → R + two functions. We say that w d , w m are warping functions provided they are continuous and such that {w d = 0} ⊂ {w m = 0}.

  8) with Ẽ := [a, b) × E. Indeed if this holds, taking into account that open sets in X c can always written as disjoint countable union of sets of the form [a, b) × E, we deduce that (3.8) holds with Ẽ generic open set in X c , so that using the fact that the integrand are in L 1 (X c , m c ) by exterior approximation we get that (3.8) holds for arbitrary Borel sets Ẽ ⊂ X c and thus (3.7) and the conclusion. Thus fix E ⊂ X Borel, let Ẽ := [a, b) × E and up to a simple scaling argument assume also that [a, b) = [0, 1).

Lemma 3 . 22 . 1 ≤

 3221 Let X be a set, d 1 , d 2 two distances on it and m 1 , m 2 two measures. Assume that (X, d 1 , m 1 ) and (X, d 2 , m 2 ) are both metric measure spaces satisfying the Assumptions 3.1, that for some C > 0 we have m 2 ≤ Cm 1 and that for some L > 0 we have d Ld 2 . Then denoting by S(X 1 ), S(X 2 ) the Sobolev classes relative to (X, d 1 , m 1 ) and (X, d 2 , m 2 ) respectively and by |Df | 1 , |Df | 2 the associated minimal weak upper gradients, we have S(X 1 ) ⊂ S(X 2 ) and for every f ∈ S(X 1 ) the inequality |Df | 2 ≤ L|Df | 1 , holds m 2 -a.e.. Proof. The assumptions ensure that the topology induced by d 2 is finer than the one induced by d 1 , hence every d 1 -Borel function is also d 2 -Borel. Then observe that the assumption d 1 ≤ Ld 2 ensures that d 2 -absolutely continuous curves are also d 1 -absolutely continuous, the d 1 -metric speed being bounded by L-times the d 2 -metric speed. Then considering also the assumption m 2 ≤ Cm 1 we see that (X, d 2 , m 2 ) -test plans are also (X, d 1 , m 1 )-test plans, which, by definition, gives the inclusion S(X 1 ) ⊂ S(X 2 ). The inequality |Df | 2 ≤ L|Df | 1 m 2 -a.e. is then obtained by the m 2 -a.e. minimality of |Df | 2

  ) from which the conclusion follows by the lower semicontinuity of weak upper gradients and the bound lip(f n ) ≤ |Df | Xw valid m w -a.e.. Since all the functions fn and f are concentrated on ([-T, T ] \ Ω r ) × X and on this set the measures m w and m w � agree, we clearly have L 2 (X w )-convergence. Moreover, since w d and w d � agree on ([-T, T ]\Ω r )×X, the topologies on ([-T, T ] \ Ω r ) × X induced by d w and d w � agree (with the product topology, given that these functions are positive) and a direct use of the definition yields lim (s,y)→(t,x)

Definition 3 . 26 (

 326 Sobolev-to-Lipschitz property). We say that a metric measure space (X, d, m) has Sobolev to Lipschitz property if for any function f ∈ W 1,2 (X) with |Df | X ∈ L ∞ (X), we can find a function f such that f = f m-a.e. and Lip(f ) = ess sup |Df | X .

Theorem 3 . 30 .

 330 Let (X, d, m) be a doubling RCD(K, ∞) space, I ⊂ R a closed, possibly unbounded interval and w d , w m : I → R a couple of warping functions. Assume that w m is strictly positive in the interior of I.

The function w d is 2 ≤ 1 +

 21 strictly positive on J (because {w d = 0} ⊂ {w m = 0} = ∅) and continuous. Hence log(w d ) is uniformly continuous on J and we can find δ ∈ (0, � ∧ 1) � for every t, s ∈ J with |t -s| ≤ δ. (3.26)

Definition 4 . 2 (

 42 Sobolev classes). Let p ∈ (1, ∞). The space S p (X) is the space of all

Proposition 4 . 3 (

 43 Density in energy of Lipschitz functions). Let (X, d, m) be a complete separable metric space with m being Borel non-negative and assigning finite mass to bounded sets. Let p ∈ (1, ∞) and f ∈ W 1,p (X).

Definition 4 . 4 (

 44 The spaces S p loc (X)). We say that f ∈ S p loc (X) provided for any Lipschitz function with bounded support χ we have χ f ∈ S p (X). In this case we define|Df | p ∈ L p loc (X) as |Df | p := |D( χ f )| p , m-a.e. on { χ = 1},for every χ as before.

Proposition 4 . 5 .

 45 Let (X, d, m) be a RCD(K, ∞) space and µ, ν two Borel probability measures with bounded support and such that µ, ν ≤ Cm for some C > 0.Then there exists a Borel probability measure π on C([0, 1], X) such that (e t ) � π ≤ C � m for every t ∈ [0, 1] for some C � > 0 and for which the inequalityLip γ ≤ sup x∈supp(µ) y∈supp(ν) d(x, y),holds for every γ in the support of π.

having used Proposition 4 . 6 Proposition 4 . 8 .

 4648 in the last step. Noticing that d(x, γ s ) ≤ d(x, y) + 3r for π-a.e. γ and every s ∈ [0, 1] we deduce that� � � � Ht (f ) d(µ 1,rµ 0,r ) � � � ≤ (d(x, y) + 2r)e -Kt p � sup B d(x,y)+3r Ht (|Df | p p ),and letting r ↓ 0 and using the continuity of Ht (f ) we deduce that| Ht (f )(y) -Ht (f )| d(x, y) ≤ e -Kt p � sup B d(x,y)+ε Ht (|Df | p p ), ∀ε > 0.Letting y → x using the continuity of Ht (|Df | p p ) (which follows from the hypothesis |Df | p ∈ L ∞ (X) and (4.5)) and the arbitrariness of ε > 0 we conclude. Let p, q ∈ (1, ∞) and f ∈ Lip X. Then|Df | q = |Df | p , ma.e..Proof. Assume p < q. Then we already know by (4.3) that |Df | p ≤ |Df | q m-a.e.. Notice

Remark 4 . 10 (

 410 The case of BV functions). Recalling the notation and results of[START_REF] Ambrosio | Equivalent definitions of BV space and of total variation on metric measure spaces[END_REF] about BV functions and denoting by |Df | the total variation measure of f ∈ BV(X), assume for a moment that (X, d, m) is a proper (=bounded closed sets are compact) RCD(K, ∞) space. Then the very same arguments just used allow to prove that if f ∈ BV(X) is such that |Df | � m with d|Df | dm ∈ L p loc (X) for some p > 1, then f ∈ § p loc (X) and |Df | p = d|Df | dm m-a.e..

  is the function identically equals to 1 on X, and a 'pointwise norm' | • | : B � → L 2 (M ) which maps v ∈ B to a non-negative function in L 2 (M ) such that �v� B = �|v|� L 2 |f • v| = |f ||v|, ma.e. for every f ∈ L ∞ (M ) and v ∈ B. Now we define the tangent and cotangent modules of M which are particular examples of L 2 -normed module. We define the 'Pre-Cotangent Module' PCM as the set consisting

µ s 1 ≥

 1 0, µ s 3 ≥ 0 and |ρ 2 | 2 ≤ ρ 1 ρ 3 , ma.e.. Now we prove that N is an upper bound of the dimensions of RCD * (K, N ) spaces. Proposition 5.12. Let M = (X, d, m) be a RCD * (K, N ) metric measure space. Then dimM ≤ N . Furthermore, if the local dimension on a Borel set E is N , we have trH f (x) = ∆f (x) m-a.e. x ∈ E for every f ∈ TestF.Proof. Let {E m } m∈N∪{∞} be the partition of X given by Proposition 5.9. To prove dimM ≤ N , it is sufficient to prove that for any E m with positive measure, we havem ≤ N .Then, let m ∈ N ∪ {∞} be such that m(E m ) > 0, and n ≤ m a finite number. We define the function Φ(x, y, z 1 , ..., z n ) := λ(xy+ x)by + � n i (z ic i ) 2 -� n i c 2 i where λ, b, c i ∈ R. Then we have Φ x,i = 0, Φ y,i = 0, Φ i,j = 2δ ij , Φ x,y = λ Φ x = λy + λ, Φ y = λxb, Φ i = 2(z ic i ).From Lemma 5.4 we knowΓ 2 (Φ(f )) ≥ � K|DΦ(f )| 2 + (∆Φ(f )) 2 N � mfor any f = (f, g, h 1 , ..., h n ) where f, g, h 1 , ..., h n ∈ TestF.Combining the chain rules (see Lemma 5.5), the inequality above becomes: A(λ, b, c) ≥ � KB(λ, b, c) , b, c) = (λfb)

i 2 + 2 (

 22 �∇f, ∇h i ��∇g, ∇h i � m B(λ, b, c) = (λfb) 2 |Dg| 2 + (λg + λ) 2 |Df | λg + λ)(λfb)�∇f, ∇g� + 4 � i (λg + λ)(h ic i )�∇f, ∇h i � + 4 � i (λfb)(h ic i )�∇g, ∇h i � + 4 � i,j (h ic i )(h jc j )�∇h i , ∇h j � C(λ, b, c) = (λg + λ)∆f + (λfb)∆g + 2 � i (h ic i )∆h i + 2λ�∇f, ∇g� + 2 � i |Dh i | 2 .Let B be an arbitrary Borel set. From the inequality (5.6) we knowχ B A(λ, b, c) ≥ � K χ B B(λ, b, c) + 1 N χ B C 2 (λ, b, c) � m.Combining this observation and the linearity of A, B, C with respect to b, we can replace the constant b in (5.6) by an arbitrary simple function. Pick a sequence of simplefunctions {b n } n such that b n → λf in L ∞ (M ). Since Γ 2 (f, g) and H f (∇g, ∇h) m have finite total variation for any f, g, h ∈ TestF, we can see that A(λ, b n , c), B(λ, b n , c)m, C 2 (λ, b n , c)m converge to A(λ, λf, c), B(λ, λf, c)m, C 2 (λ, λf, c)m respectively with respect to the total variation norm � • � TV . Therefore, we can replace b in (5.6) by λf .

2

 2 

N ≥ 0 H

 0 (by Proposition 5.3), we have� i,j |�∇h i , ∇h j �| 2 ≥ ( � i |Dh i | 2 ) 2 N , ma.e..This inequality remains true if we replace ∇h i by v := � k χ A k ∇f k where f k are test functions and A k are disjoint Borel sets. Therefore by density we can replace {∇h i } n 1 by any {e i,m } n i=1 which is a unit orthogonal subset of L 2 (T M ) | Em , whose existence is guaranteed by Proposition 5.9 and the choice of m, n, E m at the beginning of the proof.Then we obtainn = � i,j |�e i,m , e j,m �| 2 ≥ ( � i |e i,m | 2 ) 2 N = n 2 N , ma.e. on E m ,which implies n ≤ N on E m . Since the finite integer n ≤ m was chosen arbitrarily, we deduce m ≤ N . Furthermore, if E N has positive measure, we obtain f (e i,N , e i,N )ma.e. on E N ,

1 N 2 N

 12 -dim loc (trH f -∆f )2 � is taken 0 by definition on the set {x : dim loc (x) = N }.Proof. We define the function Φ asΦ(x, y 1 , ..., y N ) := x -1 � i,j c i,j (y ic i )(y jc j )c N � i=1 (y ic i ) 2 + C 0where c, c i , c i,j = c j,i are constants, C 0 = 1 2

N

  trH fdim loc ∆f -(Ndim loc )trC) 2n(Ndim loc )on {x : dim loc (x) � = N }, 0 on {x : dim loc (x) = N }.

  (a) TestV(M ) is dense in H 1,2 H (T M ), (b) H 1,2 H (T M ) is contained in H 1,2 C (T M ) with continuous embedding, (c) H 1,2 H (T M ) ⊂ D(div) and for any X n → X in H 1,2 H (T M ), we have divX n → divX in L 2 (M ).Now, we can generalize the Proposition 5.12 in the following way. We denote the natural correspondences (dualities) between L 2 (T M ) and L 2 (T * M ) by (•) b and (•) � (same notation for L 2 (T M ) ⊗ L 2 (T M ) and L 2 (T * M ) ⊗ L 2 (T * M )). For example, (∇f ) b = df , (H f ) � = ∇∇f for f ∈ TestF(M ). Proposition 5.14. Let M = (X, d, m) be a RCD * (K, N ) metric measure space, E ⊂ X be a Borel set. Assume that the local dimension of M on E is N , then tr(∇X) b = divX m-a.e. x ∈ E for any X ∈ H 1,2 H (T M ). Proof. Thanks to the Proposition 5.12, it is sufficient to prove the equality tr(∇X) b = divX ma.e. on E (5.8) for any X ∈ H 1,2 H (T M ), under the assumption that trH f = ∆f m-a.e. on E for any f ∈ TestF(M ).

9 )( 3 ) 1 N 10 )

 93110 λR N (X, Y ) m = R N (λX, Y ) mfor any λ ∈ TestF(M ). Therefore we can define Ricci N (•, •) on [H1,2 H (T M )] 2 in the following way: Definition 5.15 (Ricci tensor). We define Ricci N as a measure valued map on [H 1,2H (T M )] 2 such that for any X, Y ∈ H 1,2 H (T M ) it holds Ricci N (X, Y ) = Γ 2 (X, Y ) -�(∇X) b , (∇Y ) b � HS m -R N (X, Y ) m.Combining the discussions above and Proposition 5.12, we know Ricci N is a well defined tensor, i.e. (X, Y ) � → Ricci N (X, Y ) is a symmetric TestF(M )-bilinear form. Then, we can prove the following theorem by combining our Theorem 5.13 and Theorem 3.6.7 of[START_REF]Non-smooth differential geometry[END_REF].Theorem 5.16. Let M be a RCD * (K, N ) space. ThenRicci N (X, X) ≥ K|X| 2 m, andΓ 2 (X, X) ≥ � (divX) 2 N + Ricci N (X, X) holds for any X ∈ H 1,2 H (T M ). Conversely, on a RCD(K � , ∞) space M , assume that (1) dimM ≤ N (2) tr(∇X) b = divX ma.e. on {dim loc = N }, ∀X ∈ H 1,2 H (T M ) Ricci N ≥ K for some K ∈ R, N ∈ [1, +∞], then it is RCD * (K, N ).Proof. From the definition and Proposition 5.12, we know that RicciN (X, X) ≥ K|X| 2 m means Γ 2 (X, X) ≥ � K|X| 2 + �(∇X) b � 2 HS + dim loc (tr(∇X) b -divX)Hence we need to prove (5.10) for any X ∈ H 1,2 H (T M ).

  1 2 �f � 2 µt , p.p. t et pour toute Nt satisfaisant cette propriété, on a N t ≤ Nt for p.p. t. ii) Pour chaque f ∈ L 1 ∩ S 2 (X) l'application t � → � f dµ t est absolument continue et

	d dt	�	f dµ

t = L t (f ), pour p.p. t ∈ [0, 1]. Notre résultat principal affirme que pour une courbe {µ t } t avec compression bornée, l'équation de continuité caractérise W 2 -absolument continuité. Théorème 2.11. Soit {µ t } t ⊂ P(X) une courbe W 2 -continue avec compression bornée. Alors les suivantes sont équivalentes. i) {µ t } t est W 2 -absolument continue.

  It can be seen (in R d ) that the continuity equation can be written in a gradient form with some vector fields ∇ϕ t if and only if the equalityL t (∇ϕ t ) = �∇ϕ t � L 2 (µt) | μt | holds.In non-smooth case, this corresponds to the following definition which is proposed by De Giorgi as another type of gradient flow.

dµ t , a.e. t for suitable {ϕ t }. Definition 1.3 (Plans representing gradients). Let (X, d, m) be a metric measure space, g ∈ W 1,2 (X) and π a test plan. We say that π represents the gradient of g if it is a test plan and lim t↓0

  Then {µ t } t solves the continuity equation (2.45).ii) Assume that S 2 (X) is separable and that {µ t } t solves the continuity equation (2.45). Then (restr1 

23 Let {µ t } ∈ AC p ([0, 1], P 2 (X) be a curve with bounded compression, (t, x) � → φ t (x) a Borel map such that φ t ∈ S 2 (X) for a.e. t ∈ [0, 1] and π a lifting of {µ t } t . Then i) Assume that (restr 1 t ) � π represents the gradient of (1t)φ t for a.e. t ∈ [0, 1]. t ) � π represents the gradient of (1t)φ t for a.e. t ∈ [0, 1]. Remark 1.4. From the results in [1] we know that S 2 (X) is separable if (X, d, m) is doubling and m finite on bounded sets (see also Proposition-2.4 for more details).

  2, we introduce a way of constructing the Sobolev space on metric measure spaces. It is known that the p-minimal weak upper gradient of a Sobolev function f , which is denoted by |Df | p can be defined equivalently via relaxation of local Lipschitz constants or duality with respect to test plans. Since the map p � → � • � L p is nondecreasing, from the definition we know p � → |Df | p is also non-decreasing. This property can also be deduced from the observation that p 1 -test plans are always p 2 -test plans for p 1 ≥ p 2 . A natural question about the p-weak gradient is whether |Df | p depends on p or not, which means: say that m ∈ P(X), 1 < p 1 < p 2 , can we say that |Df | p 1 = |Df | p 2 for any

  1,2 , such that for any f ∈ A, |Df | q = |Df | p , m-a.e., then use the lower semicontinuity and monotonicity of |Df | p with respect to p to finish the proof. Here, due to the regularity of the heat flow on RCD(K, ∞) space, we can choose this family

	A as the bounded Lipschitz functions.
	Let (X, d, m) be a RCD(K, ∞) metric measure space. For any bounded Lipchitz function f , we know from [8, 9] that the heat flows H t (f ) and H t (lip(f )) are well defined and
	H t (f ) is Lipschitz. By the result in [39] we know
	lip(H t (f )) ≤ e -kt H t (lip(f )).

  The W 2 -continuity of {µ t } t grants in particular continuity w.r.t. convergence in duality with C b (X) and the further assumption that µ t ≤ Cm for any t ∈ [0, 1] ensures continuity w.r.t. convergence in duality with L 1 (X, m). Thus the map t � → � |Df | 2 dµ t is continuous for any f ∈ S 2 (X). Hence from inequality (2.19) we deduce that for any f ∈ S 2 (X) it holds

  2 µt a.e. t and for any other Nt satisfying this property, we have: N t ≤ Nt for a.e. t. ii) for every f ∈ L 1 ∩ S 2 (X) the map t � → � f dµ t is in absolutely continuous and the Theorem 2.11. Let {µ t } t ⊂ P (X) be a W 2 -continuous curve with bounded compression.

	identity	d dt	�	f dµ t = L t (f ),
	holds for a.e. t.			
	Our main result is that for curves of bounded compression, the continuity equation
	characterizes 2-absolute continuity.			
	Then the following are equivalent.			

i) {µ t } t is 2-absolutely continuous w.r.t. W 2 .

ii) There is a family of maps {L t } t∈[0,1] from S 2 (X) to R such that {µ t } t solves the continuity equation

(2.22)

.

  be a countable dense set and N ⊂ [0, 1] the set of t's such that either the metric speed | μt | does not exist, or t is not a Lebesgue point of s � → | μs | 2

  , the inf being taken among all 2-absolutely continuous curves {µ t } t with bounded compression joining µ 0 to µ 1 and the operators (L t ) are those associated to the curve via Theorem 4.9.Proof. By Theorem 4.9 we know that for a 2-absolutely continuous curve {µ t } t with bounded compression we have | μt | = �L t � * µt for a.e. t ∈ [0, 1], the operators {L t } being those associated to the curve via Theorem 4.9 itself. The conclusion then follows directly from the definition of measured-length space.We now discuss the formula for the derivative of t � → 1 2 W 2 2 (µ t , ν), where {µ t } t is a 2-a.c. curve with bounded compression. Recall that on the Euclidean setting we have As we shall see in a moment (Proposition 2.17) this is actually the case in quite high generality, but before coming to the proof, we need to spend few words on how to interpret the right hand side of (2.31) because in general we don't have ϕ t ∈ S 2 (X) so that a priory ϕ t is outside the domain of definition of L t . This can in fact be easily fixed by considering ϕ t as element of CoTan µ (X), as defined in Section 2.3.1. This is the scope of the following lemma.

	d dt 2 (µ the metric-measure setting we have 1 2 W 2
	d dt	1 2	W 2 2 (µ

t , ν) = � ∇ϕ t • v t dµ t , a.e. t, where ϕ t is a Kantorovich potential from µ t to ν for every t ∈ [0, 1] and the vector fields (v t ) are such that the continuity equation (2.30) holds. Due to our interpretation of the continuity equation in the metric measure setting, we are therefore lead to guess that in t , ν) = L t (ϕ t ), a.e. t. (2.31)

  2 2 (•, ν). It is worth noticing that formula (2.35) below holds even for spaces which are not length spaces. Proposition 2.17 (Derivative of W 2 2 (•, ν)). Let {µ t } t ⊂ P 2 (X) be a 2-a.c. curve with bounded compression, ν ∈ P 2 (X) with bounded support and notice that t � → 1 2 W 2 2 (µ t , ν) is absolutely continuous. Assume that S 2 (X) is separable and that m gives finite mass to bounded sets. Then the for a.e. t ∈ [0, 1] the formula

	d dt	1 2	W 2 2 (µ

t , ν) = L t (ϕ t ),

(2.35) 

holds, where ϕ t is any Kantorovich potential from µ t to ν fulfilling the assumptions of

Lemma 2.16. 

  Put ϕ n,t := min{n, max{-n, ϕ t }} so that by Lemma 2.16 above we have ϕ n,t ∈ S 2 (X) for every n ∈ N and �ϕ n,tϕ m,t � µ → 0 as n, m → ∞. For every n ∈ N we know that d ds � ϕ n,t dµ s | s=t = L t (ϕ n,t ) and by Lemma 2.16 we know that L t (ϕ n,t ) → L t (ϕ t ) as n → ∞. To conclude it is sufficient to notice that for any lifting π of {µ t } t we have the bound

  We then have the following result, analogous to the implication (ii) ⇒ (i) of Theorem 4.9. As already recalled, even in the smooth framework not all a.c. curves solve (2.36), so the other implication is in general false.

	dµ t ,	a.e. t.	(2.47)

Proposition 2.22. Let (X, d, m) be a m.m.s. and {µ t } t ⊂ P 2 (X) a continuous curve with bounded compression solving the continuity equation (2.45) for some given family

  On the other hand, letting (f n ) ⊂ S 2 (X) be a countable dense set, by(2.37) we know that 1 Theorem 2.23. Let {µ t } t ⊂ P 2 (X) be a 2-a.c. curve with bounded compression, (t, x) � → φ t (x) a Borel map such that φ t ∈ S 2 (X) for a.e. t ∈ [0, 1] and π a lifting of {µ t } t . Then {µ t } t solves the continuity equation (2.45). ii) Assume that S 2 (X) is separable and that {µ t } t solves the continuity equation (2.45). Then (restr 1 t ) � π represents the gradient of (1t)φ t for a.e. t ∈ [0, 1].

	2 t = sup The continuity equation (2.45) has very general relations with the concept of 'plans Ñ 2
	representing gradients', as shown by the following result:
	The following are true.

and hence �φ t � µt ≤ �L t � * µt = N t = | μt | for a.e. t. n D + f n (∇φ t ) -1 2 �f n � 2 µt for a.e. t and thus Ñt ≤ �φ t � µt for a.e. t. i) Assume that (restr 1 t ) � π represents the gradient of (1t)φ t for a.e. t ∈ [0, 1].

  which is locally absolutely continuous on (0, ∞)

	and that satisfies	d dt	ρ t ∈ -∂ -E(ρ t ),	a.e. t > 0.

As in

[START_REF]Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF]

, we shall call any such gradient flow a heat flow. It is immediate to check that defining D(∆) := {ρ : ∂ -E(ρ) � = ∅} and for ρ ∈ D(∆) the Laplacian ∆ρ as the opposite of the element of minimal norm in ∂ -E(ρ), for any heat flow (ρ t ) we have ρ t ∈ D(∆) for any t > 0 and d dt ρ t = ∆ρ t , a.e. t > 0, in accordance with the classical case. It is our aim now to check that, under reasonable assumptions, putting µ t := ρ t m, the curve {µ t } t solves

  Proof.The assumption that ϕ is constant outside a bounded set easily yields that ϕ c is Lipschitz and constant outside a bounded set and that for some B ⊂ X bounded, φ t is constant outside B for any t ∈ [0, 1]. Also, recalling point (i) of Proposition 2.6 we get that the φ t 's are uniformly Lipschitz so that the assumption that m gives finite mass to bounded sets yields that sup t∈[0,1] �φ t � S 2 < ∞. In particular, the function Ñ defined in (2.46) is bounded and hence in L 2 (0, 1), so that the statement makes sense. Now let π be a lifting of {µ t } t and notice that π is a test plan so that t � → � f µ Thus by Theorem 2.25 above we deduce that π t represents the gradient of (1t)φ t .

	The conclusion follows by point (i) of Theorem 2.23.

Proposition 2.26 (Geodesics). Let (X, d, m) be a m.m.s. with m giving finite mass to bounded sets, {µ t } t ⊂ P 2 (X) a geodesic with bounded compression such that µ 0 , µ 1 have bounded supports and ϕ a Kantorovich potential from µ 0 to µ 1 it which is constant outside a bounded set. Then

∂ t µ t + ∇ • (∇φ t µ t ) = 0, where φ t := -Q 1-t (-ϕ c ) for every t ∈ [0, 1]. t is

absolutely continuous. For t ∈ [0, 1) the plan π t := (restr 1 t ) � π is a lifting of s � → µ t+s(1-t) .

  Proposition 2.30 (Weak C 1 regularity for geodesics). With the same assumptions of Proposition 2.26 assume furthermore that (X, d, m) is infinitesimally Hilbertian and that for the densities ρ t of µ t we have that ρ s → ρ t in L 1 (X, m) as s → t.Then {µ t } t is a weakly C 1 curve.

	Proof. By Proposition 2.26, its proof and taking into account the assumption of in-
	finitesimal Hilbertianity we know that for every t ∈ [0, 1) and f ∈ L 1 ∩ S 2 (X) we have
	lim h↓0	�	f dµ t+h -h	�	f dµ t	=	�	∇f • ∇φ t dµ t .	(2.58)
	To conclude it is enough to show that the right hand side of the above expression is

continuous in t. Pick t ∈ [0, 1) and let {t n } n ⊂ [0, 1] be a sequence converging to t. Up to pass to a subsequence, not relabeled, and using the assumption of strong convergence in L 1 (X, m) of ρ tn to ρ t , we can assume that ρ tn → ρ t m-a.e. as n → ∞. The proof of Proposition 2.26 grants that sup n �φ tn � S 2 < ∞ and that by point (ii) of Proposition 2.6 we know that φ tn (x) → φ t (x) as n → ∞ for every x ∈ X. Finally, it is obvious that

lim n→∞ � |Df | 2 dµ tn = � |Df | 2 dµ t (because weak convergence in duality with C b (X)

  1 loc function. As the definition of Lebesgue point is local in nature, we see that the same property holds in m-a.e. locally doubling spaces in the above sense. The concepts of good and m-a.e. locally doubling spaces are linked to the Sobolev-to-Lipschitz property via the following simple result: Proposition 3.29. Let (X, d, m) be a m-a.e. locally doubling and good space. Then it has the Sobolev-to-Lipschitz property.Proof. Let f ∈ W 1,2 (X) with ess sup |Df | < ∞ and B ⊂ X the set of Lebesgue points of f . Since (X, d, m) is m-a.e. locally doubling we know that m(X \ B) = 0. Let A ⊂ X be the set given in the definition of good space and pick x, y ∈ A ∩ B. Then we know that there exists a family of curves t � → µ t,� as in Definition 3.28. Up to a reparametrization we can assume that such curves have constant speed, so that in particular such speeds are in L 2 (0, 1) and we can apply the superposition principle in Theorem 3.3 to find plans π � such that for every � > 0 we have (e t ) � (π � ) = µ t,� for everyt ∈ [0, 1] and � | γt | 2 dπ � (γ) = | μt,�| 2 for a.e. t ∈ [0, 1]. These two facts together with the bound µ t,� ≤ C � m grant that π � is a test plan. Therefore we have:

  t i+1 ] which is, by the above discussion, absolutely continuous. It clearly satisfies condition (a) in Definition 3.28. Property (b) follows directly from (3.27) and the fact that w m is bounded from below on J. To prove that it has property (c), notice that by construction we have W dw 2 (µ i , µ i+1 ) ≤ d w (γ t i , γ t i+1 ) + δ 2 /2, therefore from (4.7) we deduce

  length converging to that of the original curve as δ ↓ 0. It follows that

	lim δ→0	d δ	�	(t 0 , x 0 ), (t 1 , x 1 )	�	= d w	�	(t 0 , x 0 ), (t 1 , x 1 )	�	.

  The fact that H t (f ) ∈ L p (X) follows from the fact that f ∈ L p (X). By Proposition 4.3 we can find a sequence (f n ) ⊂ W 1,p ∩ Lip X converging to f in L p (X) and such that lip(f n ) → |Df | p in L p (X). By the property (4.6) we know that lip( Ht (f n )) p ≤ e -pKt Ht (lip(f n ) p ), pointwise on X. |D Ht (f n )| p ) is bounded in L p (X) and up to pass to a subsequence, not relabeled, we can assume that it weakly converges to some G ∈ L p (X). By (4.7) and (4.8) we have G ≤ Ht (|Df | p p ) m-a.e. while the lower semicontinuity of p-weak upper gradients ensures that H t (f ) ∈ S p (X) with |Df | p ≤ G m-a.e. and the thesis follows.

	1,p (X) and so that in particular (4.7) grants that the sequence (lip( Ht (f n ))) is bounded in L p (X). |DH t f | p p ≤ e -pKt H t (|Df | p p ), m -a.e.. The continuity in L 1 (X) of the heat flow grants that Ht (|lip(f n )| p ) → Ht (|Df | p p ), in L 1 (X), (4.8) Proof. (4.7) Therefore also (Proposition 4.7. Let

  1,p (X) and thus for t > 0 Proposition 4.6 gives|DH t f | p ≤ e -Kt p

	�	H t (|Df | p p ),	m -a.e..
	Moreover, the fact that f is bounded grants, by (4.5), that H t (f ) has a Lipschitz repre-
	sentative Ht (f ) and thus Proposition 4.8 gives	

  A with the following property: there exist a Borel decomposition {A n } n∈N of A and families of vectors {v i,n } mn i=1 ⊂ L 2 (T M ) and functions {f

e. on A holds if and only if f i = 0 m-a.e. on A for each i. Definition 5.7 (Local span and generators). Let A be a Borel set in X and V := {v i } i∈I ⊂ L 2 (T M ). The span of V on A, denoted by Span A (V ), is the subset of L 2 (T M ) |

  finitely generated for every i ∈ N. Definition 5.8 (Local basis and dimension). We say that a finite set v 1 , ..., v n is a basis on Borel set A if it is independent on A and Span A {v 1 , ..., v

n } = L 2 (T M ) | A . If L 2 (T M )

has a basis of cardinality n on A, we say that it has dimension n on A, or that its local dimension on A is n. If L 2 (T M ) does not admit any local basis of finite cardinality on any subset of A with positive measure, we say that L 2 (T M ) has infinite dimension on A.

It can be proved (see Proposition 1.4.4 in

[START_REF]Non-smooth differential geometry[END_REF] 

for example) that the definition of basis and dimension are well posed. As a consequence of this definition, we can prove the existence of a unique decomposition {E n } n∈N∪{∞} of X such that for each E n with positive measure, n ∈ N ∪ {∞}, L 2 (T M ) has dimension n on E n . Furthermore, thanks to the infinitesimal Hilbertianity we have the following proposition. Proposition 5.9 (Theorem 1.4.11,

[START_REF]Non-smooth differential geometry[END_REF]

). Let (X, d, m) be a RCD(K, ∞) metric measure space. Then there exists a unique decomposition {E n } n∈N∪{∞} of X such that • For any n ∈ N and any B ⊂ E n with finite positive measure, L 2 (T M ) has a unit orthogonal basis {e i,n } n i=1 on B,

  2 Γ 2 (g) + (λg + λ) 2 Γ 2 (f ) + c i )(h jc j )Γ 2 (h i , h j ) + 2λ(g + 1)(λfb)Γ 2 (f, g) + � i 4(λg + λ)(h ic i )Γ 2 (f, h i ) + � i 4(λfb)(h ic i )Γ 2 (g, h i ) + 8λ � i (h ic i )H h i (∇f, ∇g) m + λ)H f (∇h i , ∇h i ) m + 4 � i (λfb)H g (∇h i , ∇h i ) m + 4λ(λfb)H g (∇f, ∇g) m + 4λ(λg + λ)H f (∇f, ∇g) m (h ic i )H h i (∇h j , ∇h j ) m + 2λ 2 |Df | 2 |Dg| 2 m + 2λ 2 |�∇f, ∇g�| 2 m

	� i,j 4(h i + 4 �
	+ 8	�
		i,j
	+ 4	�

i (λg i,j |�∇h i , ∇h j �| 2 m + 8λ �

  λ)H f (∇h i , ∇h i ) m + 2λ 2 |Df | 2 |Dg| 2 m + 2λ 2 |�∇f, ∇g�| 2 m |�∇h i , ∇h j �| 2 m + 8λ � i �∇f, ∇h i ��∇g, ∇h i � m + (λg + λ) 2 Γ 2 (f ) + 4λ(λg + λ)H f (∇f, ∇g) B � (λ) = (λg + λ) 2 |Df | 2 C � (λ) = (λg + λ)∆f + 2λ�∇f, ∇g� + 2 �

	where	
	A � (λ) = 4	�
	+ 4	�
		i,j
		)

i (λg + i |Dh i | 2 .

  1 , ..., , h N be test functions. Using the chain rules we have|DΦ(f, h 1 , ..., h N )| 2 = |Df | 2 + � i (h ic i )I i , Γ 2 (Φ(f, h 1 , ..., h N )) = Γ 2 (f ) -2 � i,j (c i,j + 2cδ ij )H f (∇h i , ∇h j ) m (c i,j + 2cδ ij )(c k,l + 2cδ kl )�∇h i , ∇h k ��∇h l , ∇h j � m + � (c i,j + 2cδ ij )(c k,l + 2cδ kl )�∇h i , ∇h k ��∇h l , ∇h j � m + �

	-	� i,j,k,l
		i

i (h ic i )J i , ∆Φ(f, h 1 , ..., h N ) = ∆f -� i,j (c i,j + 2cδ ij )�∇h i , ∇h j � + � i (h ic i )K i

where {I i , K i } i are some L 1 (M )-integrable terms and {J i } i are measures with finite mass.

Then we apply Lemma 5.4 to the function Φ(f, h 1 , ..., h N ) to obtain the inequality

Γ 2 (f ) -2 � i,j (c i,j + 2cδ ij )H f (∇h i , ∇h j ) m -� i,j,k,l

  j (c i,j + 2cδ ij )H f (∇h i , ∇h j ) m (c i,j + 2cδ ij )(c k,l + 2cδ kl )�∇h i , ∇h k ��∇h l , ∇h j � m (c i,j + 2cδ ij )�∇h i , ∇h j � � 2 m.Now we restrict the inequality above onBorel set E n , n ≤ N where {E n } �N � n=1 is the partition of X in Proposition 5.9. The inequality remains true if we replace ∇h i by v := � k χ A k ∇f k where f k are test functions and A k are disjoint Borel subsets of E n . Therefore by density we can replace {∇h i } n 1 by any {e i,n } n i=1 which is a unit orthogonal basis of L 2 (T M ) | En . Doing this replacement on every E n , we obtain Γ 2 (f )c i,j + 2cδ ij )H f (e i,dim loc , e j,dim loc ) +

	-	� i,j,k,l		
	≥ K|Df | 2 m +	1 N	�	∆(f ) -	� i,j
	�	2	dim loc �			dim loc �
			i,j=1			i,j=1

(

D -1 ([n -1 ,1]) (t) D(t) log n
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Chapter 3

Sobolev Spaces on Warped Products

Abstract

In this chapter, we study the structure of Sobolev spaces on the cartesian/warped products of a given metric measure space and an interval. We prove the 'Pythagoras theorem' for both cartesian products and warped products, and prove Sobolev-to-Lipschitz property for warped products under a certain curvature-dimension condition.

Résumé

Dans ce chapitre, nous étudions les espaces de Sobolev sur le produit tordu de l'ensemble des réels et d'un espace métrique mesuré. Nous montrons le 'théorème de Pythagore' pour les produits cartésiens et des produits tordus, sans condition de courbure-dimension.

En suite, nous montrons la propriété Sobolev-à-Lipschitz sous une certaine condition de courbure-dimension.

The results in this chapter are contained in [START_REF]Sobolev spaces on warped products[END_REF].

Introduction

There is a well established definition of the space W 1,2 (X, d, m) of real valued Sobolev functions defined on a metric measure space (X, d, m), see e.g. [START_REF]On the geometry of metric measure spaces[END_REF] for an overview of the topic and [START_REF] Ambrosio | Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope[END_REF] for more recent developments. A function f ∈ W 1,2 (X, d, m) comes Chapter 4 Independence on p of weak upper gradients on RCD spaces

Abstract

In this chapter, we study p-weak gradients on RCD(K, ∞) metric measure spaces and prove that they all coincide for p > 1. On proper spaces, our arguments also cover the extremal situation of BV functions.

Résumé

Dans ce chapitre, nous étudions p-gradients faibles dans les espaces métriques mesurés.

Sous une condition de courbure-dimension RCD(K, ∞), nous montrons l'identification des p-gradients faibles. Dans les espaces propres, nos arguments couvrent également la situation des fonctions à variation bornée.

The results in this chapter are contained in [START_REF]Independence on p of weak upper gradients on RCD spaces[END_REF].

Introduction

There is a large literature concerning the definition of the Sobolev space W 1,p (X, d, m) of real valued functions defined on a metric measure space (X, d, m), we refer to [START_REF] Heinonen | Nonsmooth calculus[END_REF] and [START_REF]Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces[END_REF] for historical comments and a presentation of the various -mostly equivalentapproaches.

The definition of space W 1,p (X, d, m) comes with the definition of an object playing the role of the modulus of the distributional differential. More precisely, for f ∈ The results in this chapter are contained in [START_REF] Han | Ricci tensor on RCD * (K, N ) spaces[END_REF].

Introduction

Let M be a Riemannian manifold equipped with a metric tensor �•,

We have the Bochner formula

valid for any smooth function f , where �H f � HS is the Hilbert-Schimidt norm of the Hessian H f := ∇df and the operator Γ 2 is defined by

In particular, if the Ricci curvature of M is bounded from below by K, i.e. Ricci(v, v)(x) ≥ K|v| 2 (x) for any x ∈ M and v ∈ T x M , and the dimension is bounded from above by

we have the Bochner inequality

Conversely, it is not hard to show that the validity of (5.2) for any smooth function f implies that the manifold has lower Ricci curvature bound K and upper dimension bound N , or in short that it is a CD(K, N ) manifold.

Being this characterization of the CD(K, N ) condition only based on properties of L, one can take (5.2) as definition of what it means for a diffusion operator L to satisfy the CD(K, N ) condition. This was the approach suggested by Bakry-Émery in [START_REF] Bakry | Diffusions hypercontractives[END_REF], we refer to [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF] for an overview on the subject.

Following this line of thought, one can wonder whether in this framework one can recover the definition of the Ricci curvature tensor and deduce from (5.2) that it is bounded from below by K. From (5.1) we see that a natural definition is

and it is clear that if Ricci ≥ K, then (5.2) holds with N = ∞. There are few things that need to be understood in order to make definition (5.3) rigorous and complete in the setting of diffusion operators:

1) If our only data is the diffusion operator L, how can we give a meaning to the Hessian term in (5.3)?

2) Can we deduce that the Ricci curvature defined as in (5.3) is actually bounded from below by K from the assumption (5.2)?

3) Can we include the upper bound on the dimension in the discussion? How the presence of N affects the definition of the Ricci curvature?

This last question has a well known answer: it turns out that the correct thing to do is to define, for every N ≥ 1, a sort of 'N -dimensional' Ricci tensor as follows:

Let E ∈ X be a Borel set with positive measure such that E = ∩ I (E i,k i ∩ E j,k j ) where

We then restrict the inequality above on E

which is equivalent to

Clearly, this is true due to Theorem 5.13. Then we can repeat this argument on all E which is a decomposition of X and complete the proof.

Next, it is sufficient to prove that (5.10) can be continuously extended to H H (T M ). Therefore we know (5.10) holds for all X ∈ H 1,2 H (T M ).

Moreover, from the definition of Ricci N we can see that

which is the inequality (5.9).

Conversely, picking X = ∇f , f ∈ TestF in Ricci N (X, X) ≥ K|X| 2 m, we have the following inequality according to the definition

Then by Cauchy-Schwarz inequality we obtain