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General Introduction

The invention of the laser, in 1960 [Maiman, 1960], is truly one of the towering achieve-
ments of the twentieth century. Soon after this first demonstration, numerous types of
lasers have emerged, such as, solid-state, semiconductor, gas, dye lasers, etc. Because of
their several fascinating properties, nowadays, lasers are used almost everywhere, start-
ing from optical communication, information-storing in digital recordings, spectroscopy,
imaging, micromachining, precision metrology, to biology, medical surgery, military ap-
plications, entertainment displays, and so on. Some of the key features which have made
lasers an essential tool for such a wide range of applications are good spatial and temporal
coherence, high optical power, excellent beam quality, etc. Among others, the semiconduc-
tor [Agrawal and Dutta, 1993; Chow and Koch, 1999; Kapon, 1999a] and the solid-state
lasers [Koechner and Bass, 2003; Hooker and Webb, 2010] have come out as the pre-
ferred ones for applications like fiber-optic communication, high resolution spectroscopy,
short pulse generation, etc, because of their compact construction, chemical and mechan-
ical stability, durability, wide wavelength coverage, ability of high-speed modulation, and
low-cost.

Recently, the development of a special type of semiconductor laser, namely vertical-
external cavity surface-emitting laser (VECSEL) [Kuznetsov et al., 1997; Tropper et al.,
2004; Keller and Tropper, 2006], has drawn considerable attention because of its unique
qualities. These lasers include advantages of both the semiconductor and solid-state
lasers. For example, on the one hand, semiconductor diode lasers are well known for
coverage of wide range of wavelengths, small size, electrical excitation and modulation,
good efficiency [Agrawal and Dutta, 1993; Kapon, 1999b]. However, achieving a good
beam quality together with a multiwatt output power level is difficult with semiconductor
lasers, even though such a combination is useful for several applications. On the other
hand, solid-state lasers can provide very high optical power (hundreds of watts) with a
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General Introduction

very good beam quality, but with a limited wavelength coverage due to the discrete values
of the electronic transitions in ions [Koechner, 2006]. This leads to the development of
VECSELs, which can cover a wide wavelength range as well as deliver several watts
of output power with an excellent beam quality [Okhotnikov, 2010]. Nevertheless, the
importance of solid-state lasers, in particular the ones pumped by laser diodes, cannot
be put aside either for applications in science and technology or for fundamental research
[Koechner and Bass, 2003; Hooker and Webb, 2010].

The advancement of laser technologies has revolutionized the modern communica-
tion systems, in particular, the fiber-optic communications [Agarwal, 2002] upon which
internet, telephone, television, etc., are dependent. Moreover, the integration of lasers
with microwave systems, commonly known as microwave photonics, constitutes one key
building block of broadband wireless access networks, sensor networks, radar, satellite
communications, instrumentation, and electronic warfare systems. The optical genera-
tion of a high spectral purity widely tunable microwave local oscillator is one of the major
functions of any modern microwave photonics link [Seeds and Williams, 2006; Yao, 2009].
To optically generate a microwave signal one can heterodyne two optical signals with
a frequency difference in the radio frequency (RF) range. Moreover, it is worth men-
tioning also that apart from microwave photonics applications, two optical waves with
a high degree of correlation is also an interesting tool for applications like atomic clock
[Knappe et al., 2007; Vanier, 2005], pump-probe experiment, metrology [Nerin et al.,
1997; Du et al., 2005], among many others. However, in this thesis, we mainly focus on
the microwave photonics applications. There exist several techniques to emit two optical
frequencies such as using two different lasers or two longitudinal modes of a single laser
[Scheller et al., 2010]. Unfortunately, the use of two different lasers due to their indepen-
dent fluctuations leads to a relatively large linewidth of the generated microwave signal,
whereas the microwave signal generated by optical mixing of two longitudinal modes of a
single laser suffers from a poor tunability. It is therefore useful to develop a laser source
that can emit two modes with, in one hand, a widely tunable frequency difference in the
RF range and having, on the other hand, low noises with a high degree of correlation.
This paves the way for dual-frequency lasers, which sustain simultaneous oscillation of
two linear-orthogonal polarization modes with a frequency difference lying in the radio
frequency (RF) range and tunable over a wide range. Moreover, since the two modes in
a dual-frequency laser oscillate inside the same optical cavity and they are pumped by
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General Introduction

the same source, one could expect their fluctuations to be strongly correlated. Such dual-
frequency oscillation has been realized for both solid-state (mainly Nd3+-, Er3+-doped)
[Brunel et al., 1997; Alouini et al., 1998; Czarny et al., 2004] and semiconductor active
media (VECSEL) [Baili et al., 2009; De et al., 2013b; Dumont et al., 2014].

Ideally, one would want a laser source, which can deliver one or more optical sig-
nals, depending on the requirement, with a well defined amplitude, phase, and frequency.
However, in reality, there hardly exits such a laser source. Generally, a laser exhibits fluc-
tuations of amplitude, phase and frequency. The fluctuations of the amplitude lead to the
fluctuations of the laser output power, whereas the phase or frequency noise is reflected
in the spectral width of the laser light. Laser noises can arise from several sources such
as spontaneous emission, mechanical or acoustic vibration, thermal fluctuations, pump
sources (electrical or optical), etc. For many years, the noise in lasers has been a subject
of strong interest among the scientific community not only for numerous laser applica-
tions but also because of very rich underlying physics. For example, laser noise can be
a good probe for the illustration of the laser dynamics [McCumber, 1966]. Moreover, for
metrology applications like extremely precise interferometric length measurements useful
for gravitational wave detection, spectroscopic measurements, high performance atomic
clocks, etc, the precise knowledge of the laser noise is of utmost importance. Therefore,
a good understanding of the noise mechanisms in a laser is essential, on the one hand,
to further implement this knowledge for other types of laser to understand their noise
properties, and on the other hand, to upgrade the performance of several laser based
applications. Analyzing the noise properties of a dual-frequency laser is even more fas-
cinating as in such two mode lasers, there exists competition between the modes for the
gain. The competition becomes strong or weak depending on whether the gain-saturation
by one mode reduces the gain for the other mode by a large or a small amount. This
mode competition dictates both steady-state and transient behaviors of a two-mode laser.
For example, the degree of mode competition determines different stability regimes e.g.,
bistability or simultaneity, of the two-mode lasers [Sargent III et al., 1974]. Moreover,
this mode competition establishes nonlinear coupling between the two modes. As a result,
the laser dynamics becomes complex and noise analysis in such two-mode lasers therefore
becomes extremely challenging.

In the context of the targeted microwave photonics applications, the spectral purity of
the optically generated microwave signal is of particular interest [Alouini et al., 2001; Pillet
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General Introduction

et al., 2008]. Any phase fluctuation of the microwave signal degrades its spectral purity.
The spectral purity of the microwave signal, generated by optically mixing the two modes
of a dual-frequency laser, depends on the phase noises of the laser modes. Specifically,
the phase noise of the microwave beatnote is equal to the difference between the phase
noises of the two laser modes. Moreover, in semiconductor lasers, the phase fluctuations
are coupled with intensity fluctuations as in semiconductor active media carrier density
fluctuations cause refractive index fluctuations. This phase-intensity coupling is usually
described by the large linewidth enhancement factor or α-factor of the semiconductor laser
media [Henry, 1982; Agrawal, 1989]. Consequently, the spectral purity of the microwave
beatnote is governed not only by the phase noises, but also by the intensity noises of the
two laser modes. Moreover, the intensity noises of the two laser modes dictate the beatnote
amplitude noise, which deteriorates the beatnote signal to noise ratio. Additionally, since
the correlated part of the noises are canceled out in the beatnote, the correlations between
different noises of the two laser modes also play an important role to determine the spectral
purity of the microwave beatnote.

The main objective of the work presented in this thesis is to thoroughly investigate
the noise mechanisms in both semiconductor (VECSEL) and solid-state (Nd:YAG) dual-
frequency lasers, and then to understand how these laser noises propagate to the mi-
crowave beatnote, generated by optically mixing the two laser modes. The focus of this
thesis is mainly experimental. However, we have consistently proposed new analytical
models or adopted the models already existing in the literature to verify and interpret
the experimental results in order to gain a better understanding. The present manuscript
is divided into two parts. In the first part, Part I, we deal with noise in dual-frequency
VECSELs, and the second part, Part II, includes noise analysis in dual-frequency solid-
state lasers, particularly, dual-frequency Nd:YAG lasers.

Part I is distributed in three chapters. In Chapter 1, we start by recalling the de-
scription of a dual-frequency VECSEL operating at 1µm. Then following [Baili et al.,
2009], we reproduce the spectral properties of the optically-carried microwave signal, gen-
erated by beating the two cross-polarized modes of the 1µm dual-frequency VECSEL.
In particular, we study the phase and amplitude noise spectra of the RF beatnote. Our
focus will be mainly on how class-A dynamical behavior, achieved by making photon life-
time inside the cavity longer than the population inversion lifetime, leads to an improved
noise performance of the RF beatnote of the DF-VECSEL. Furthermore, knowing that
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General Introduction

the most suitable wavelength for the fiber-optic communication is the telecom wavelength,
we demonstrate, for the first time, a low noise optically-pumped dual-frequency VECSEL
operating at 1.55µm. The detailed descriptions of the composition of the gain-structure,
the cavity configuration are presented. Finally, we try to gauge the potentialities of the
telecom wavelength dual-frequency VECSEL for the optical generation of the microwave
signal by primarily looking at the beatnote phase noise spectrum.

In Chapter 2, we carry out a thorough analysis of the noise properties of a dual-
frequency VECSEL operating at telecom wavelength. We investigate the spectral behav-
iors of the correlation between the intensity noises of the two modes of the VECSEL, the
phase noise of the RF beatnote, and the correlation between the RF beatnote phase noise
with the intensity noises of the two laser modes, which generate the beatnote via optical
mixing. The influence of the mode competition on the spectral behaviors of the differ-
ent noises and their correlations by controlling the degree of cross-gain saturation is also
explored. We introduce a simple rate-equation based heuristic model for the illustration
of how the intensity noise of the pump laser in the dual-frequency VECSEL propagates
to the phase noise of the RF beatnote. Finally, we give a physical interpretation of the
results in terms of the linear response of two-coupled over-damped oscillators.

In Chapter 3, we propose a developed theoretical model to describe different steady-
state and transient behaviors of the dual-frequency VECSEL. The modeling of the dual-
frequency VECSEL is done by taking into account the spin-dependent dynamics of the
carriers in the quantum-well based active medium [San Miguel et al., 1995]. We illus-
trate how this developed model can successfully explain few important features of the
dual-frequency VECSEL regarding nonlinear coupling strengths, stability of oscillation,
etc, which the simple rate equation model are unable to do. Moreover, we show that one
can recover the previous heuristic model from the present developed model by adopting
approximations valid for our dual-frequency VECSEL. Finally, to further check the con-
sistency of this developed model, the spectral properties of the intensity noises and their
correlation are reproduced using the predictions of the present model.

In the second part, Part II, of this manuscript, our interest lies in exploring the noise
properties of dual-frequency solid-state lasers, in particular, Nd:YAG lasers. In Chap-
ter 4, we report the spectral behaviors of the intensity noises and their correlations for
different nonlinear coupling strengths between the two laser modes of the dual-frequency
Nd:YAG laser. We mainly look at the influence of the class-B dynamics of the Nd:YAG
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laser coming from the shorter photon lifetime inside the cavity than the population in-
version lifetime on its intensity noise properties. In particular, our focus is to realize how
the presence of the relaxation oscillations in dual-frequency Nd:YAG lasers inherent to
their class-B dynamics modifies the intensity noise correlation spectra. In the support
of the experimental results, we introduce a theoretical model following the formalism of
[Schwartz et al., 2009] assuming that the light emitting dipoles behave as if they were
aligned along the crystallographic axes in the Nd:YAG active medium. Similar to the
dual-frequency VECSEL, we interpret the results in the framework of the linear response
of two-coupled weakly damped oscillators.

Finally, in the last chapter, Chapter 5, we describe an experimental technique for the
minimization of the anti-phase relaxation oscillation peak in the intensity noise spectra
of the two cross-polarized modes in a dual-frequency Nd:YAG laser. The anti-phase noise
reduction technique relies on the proper design of the laser architecture paying special
attention to the active medium cut and the polarization directions of the two laser modes.
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Chapter 1. Dual-frequency VECSELs

1.1 Introduction

High-purity and widely tunable microwave or millimeter wave signals are interesting for
many applications such as radars, wireless communications, remote sensing, modern in-
strumentation, metrology, etc. The generation of such microwave or millimeter wave
signals in electrical form includes multi-stage electronic circuitry, which is complex and
costly. Moreover, the high losses of electrical transmission lines, like coaxial cables, limit
the use of microwave signals in electrical form for applications requiring distribution of
microwave signals to remote places. On the other hand, the use of optical fibers permits
to obtain large bandwidth, extremely low loss, immunity to external radiations, paral-
lel signal processing, etc. This leads to the very concept of microwave-photonics link,
which takes into account advantages of both microwave and optical technologies for the
above mentioned applications. In any microwave photonics link, optical generation of mi-
crowave or millimeter-wave appears to be one of the main functions among others such as
processing, amplification, control, and distribution of signals [Seeds and Williams, 2006;
Yao, 2009]. Specifically, optical generation of microwave and millimeter-wave signals is
emerging as a key building block for future optoelectronic communication systems such as
broadband mobile systems [Ni et al., 1990], satellite networks [Gliese et al., 1991], short-
range video transmission [O’Reilly and Lane, 1994], long-range transmission of high-purity
radio frequency (RF) references [Alouini et al., 2001; Narbonneau et al., 2007], wide-band
radar signal processing [Tonda-Goldstein et al., 2006; Rideout et al., 2007], and so on.
These applications require the following properties for the optically carried microwave sig-
nal: good spectral purity, continuous tunability over a wide range, and 100% modulation
depth. In addition to that, the optical system must be compact and easy to implement.
There exists several techniques to generate optically-carried microwave signals, such as di-
rect or external modulation of a single mode laser [O’Reilly and Lane, 1994], heterodyning
of two independent lasers [Steele, 1983; Williams et al., 1989; Ni et al., 1990; Scott et al.,
1992], optical mixing of two longitudinal modes of a single laser [Lima et al., 1995], mode
locking of semiconductor lasers [Lau, 1988], and so on. However, all these techniques
suffer from different drawbacks, such as poor modulation depth as well as requirement of
bulky and expensive RF signal generator for external modulation of a laser source, large
linewidth of the RF signal generated by heterodyning two independent lasers, poor tun-
ability of the RF signal obtained from optical mixing of two longitudinal modes of single
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Chapter 1. Dual-frequency VECSELs

laser, etc. This leads to the concept of dual-frequency laser, which has the capability to
overcome all the shortcomings of the previously mentioned techniques, and can provide
high spectral purity, wide tunability, and 100% modulation depth of the optically-carried
microwave signal. In dual-frequency lasers (DFLs), the cavity sustains simultaneous os-
cillation of two linear orthogonal polarization modes with tunable frequency difference
in the RF range (Fig. 1.1). Therefore, the RF signal can be generated by optical mixing
of the two-cross polarized modes from a DFL using a polarizer at 45◦. The photodector
following the polarizer enables us to obtain the RF beatnote in electrical form (Fig. 1.1).
Such dual-frequency oscillation has been realized in different optically-pumped solid-state

Polarizer 
@ 45⁰ 

 

D 
DFL 

𝜈𝑦  

𝜈𝑥  
𝑓𝑅𝑅 = 𝜈𝑦 − 𝜈𝑥  

e 
o 

Dual-frequency laser 

Figure 1.1: Optical generation of a radio frequency (RF) signal using a dual-frequency
laser (DFL). D: photodiode.

lasers, e.g., in Nd:YAG [Brunel et al., 1997], Yb,Er:Glass [Alouini et al., 1998], Yb:KGW
lasers [Czarny et al., 2004]. However, these solid-state lasers suffer from relaxation os-
cillations (ROs) inherent to their class-B dynamical behavior. This is due to the fact
that the photon lifetime inside the cavity is shorter than or comparable to the population
inversion lifetime inside these solid-state active media [Arecchi et al., 1984; Taccheo et al.,
1996]. As a result, the spectral purity of the RF beatnote generated by such solid-state
lasers is severely degraded due to the presence of the excess noise peaks at the RO fre-
quencies [Alouini et al., 2001]. One of the ways to overcome these ROs is that the laser
exhibits class-A dynamical behavior, which requires the photon lifetime inside the cav-
ity to be much longer than the population inversion lifetime inside the active medium.
The population inversion lifetime inside the above mentioned solid-state active media is
of the order of few hundreds of microseconds. Therefore, to achieve class-A dynamical
behavior in such solid-state lasers, the cavity should be km-long for a few percent of
intra-cavity losses, which is quite difficult to design. On the other hand for lasers based
on semiconductor active media, it is quite easy to achieve class-A dynamics as the pop-
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ulation inversion lifetime inside such semiconductor hetero-structure is typically of the
order of few nanoseconds, and hence cm-long cavities having sufficiently high finesses can
provide intra-cavity photon lifetimes of the order of few tens of nanoseconds. Class-A dy-
namical behavior has been indeed achieved for a vertical external-cavity surface-emitting
laser (VECSEL) having a cm-long high-finesse cavity [Baili et al., 2007, 2008]. Moreover,
dual-frequency oscillation in class-A VECSELs operating at different wavelengths such as
1µm [Baili et al., 2009; De et al., 2013b], 852 nm [Dumont et al., 2014], has also been
demonstrated.

In this chapter, our aim is to investigate the potentialities of the VECSELs in terms
of dual-frequency oscillation. The chapter is organized as follows: in Sec. 1.2, we repro-
duce the results of optically-pumped DF-VECSEL operating at 1µm, which has first been
demonstrated by G. Baili et. al., [Baili et al., 2009]. In particular, we describe the de-
sign of the gain structure, the architecture of the cavity, and finally the spectral behavior
of the RF beatnote generated by optical mixing of the two cross-polarized modes of the
DF-VECSEL. However, the DF-VECSEL operating at 1µm is incompatible with most mi-
crowave photonics applications. As we know, the most suitable wavelength for microwave
photonics applications is the telecom wavelength. It is important to mention here that we
started with 1µm-VECSEL as it was the only laser we had at the beginning. Then, high
power and low noise single mode optically-pumped VECSEL operating at telecom wave-
length was realized by G. Baili, et al., [Baili et al., 2014]. But as discussed previously, the
targeted microwave photonics applications require not only VECSEL operating at tele-
com wavelength, but also simultaneous oscillation of two linear cross-polarized modes with
different frequencies inside the laser cavity. We have demonstrated, for the first time, a
class-A dual-frequency VECSEL operating at telecom wavelength [De et al., 2014a]. This
DF-VECSEL is optically pumped with a diode laser at 980 nm. It is worth mention-
ing here that the ultimate goal is to have a DF-VECSEL with electrical pumping, since
otherwise an additional pump laser with its pump optics and power supplies is required.
However for VECSELs, which typically have large beam area, electrical pumping suffers
from several issues such as non-uniform current injection, current crowding, Joule heating,
free carrier absorption in the doped layers, etc, [Tropper et al., 2004]. Nevertheless, the
electrically-pumped VECSEL is on its way somewhat overcoming the above mentioned
hurdles [Hadley et al., 1993; Kurdi et al., 2004; Keeler et al., 2005; Frougier et al., 2013],
but still not readily available. In Sec. 1.3, we describe in detail the composition of the gain
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structure, the cavity configuration for the telecom DF-VECSEL. Additionally, we analyze
the performance of the telecom DF-VECSEL for the targeted application of generating
optically carried RF signal. Particularly, we give a first observation of the phase noise
properties of the RF beat signal generated by optically mixing the two-cross polarized
modes of the DF-VECSEL.

1.2 1-micron dual-frequency VECSEL

In this section, we discuss the results obtained from a DF-VECSEL operating at 1 micron
wavelength. Specifically, we are interested in reproducing the results of [Baili et al.,
2009], which has demonstrated the generation of high-purity optically carried microwave
signal using DF-VECSEL at 1µm. These results will serve as an introduction to (i) the
demonstration of DF-VECSELs operating at 1.5µm of Sec. 1.3 and (ii) the detailed noise
analysis of Chapter 2.

1.2.1 Description of the 1/2-VCSEL structure

The DF-VCSEL operating at 1 micron wavelength is based on a semiconductor gain
structure, called a 1/2-VCSEL [Baili, 2008]. The 1/2-VCSEL structure has been grown
by Isabelle Sagnes and her collaborators at Laboratoire de Photonique et de Nanostrutures
(LPN) using metal organic chemical vapor deposition (MOCVD) technique [Laurain et al.,
2009]. The 1/2-VCSEL structure contains a Bragg mirror and an active region made of
quantum wells (QWs) and barriers. The name, 1/2-VCSEL, suggests that the structure
corresponds to the half of a standard VCSEL (vertical-cavity surface-emitting laser),
which consists of an active region sandwiched between two Bragg mirrors forming the
laser cavity. The detailed description of the 1/2-VCSEL structure is given in Fig. 1.2. The
Bragg mirror consists of 27 pairs of GaAs/AlAs layers of thickness λ/4n where n is the
refractive index of the semiconductor and λ is the wavelength of the laser emission. The
number of GaAs/AlAs pairs, knowing the contrast of their refractive indices, is chosen
in such a way that the reflectivity of the mirror becomes higher than 99.9% at 1µm
wavelength. The active region includes GaAs barriers and 6 strained-QWs of InGaAs.
Each strained InGaAs QW of thickness 8 nm is sandwiched between two GaAsP layers of
thickness 28 nm for the compensation of the strain. The QWs are positioned inside the
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Figure 1.2: Description of the 1/2-VCSEL structure of a DF-VECSEL at wavelength
λ = 1µm. n; local refractive index inside the semiconductor, I; intensity distribution

inside the micro-cavity.

barriers having thicknesses equal to multiples of λ/2n. This positioning of the QWs at the
intra-cavity standing wave antinodes inside the semiconductor structure, know as resonant
periodic gain arrangement [Raja et al., 1989], permits to optimize the efficiency of the
laser. By choosing the thickness of the last barrier as λ/4n instead of λ/2n, the Fabry-
Perot effect between the Bragg mirror and the air-semiconductor interface is reduced.
One protective layer is added after the last GaAs barrier. This protective layer is made of
a 30 nm thick AlAs, a 10 nm thick GaAs layer, and an InGaP cap layer of thickness 8 nm
to prevent the oxidation of the aluminum layer. Finally, an anti-reflection (AR) coating
of Si3N4 is deposited by means of plasma enhanced chemical vapor deposition (PECVD).
This helps to reduce the residual etalon effect of the micro-cavity formed between the
Bragg mirror and the air-semiconductor interface. The structure is grown in reverse
order. The relatively poor thermal conductivity of GaAs (∼ 45 W.m−1.K−1) limits the
heat removal from the active region to the heat sink through the Bragg mirror. As a
result the semiconductor structure is heated up excessively, resulting in low efficiency of
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the laser. For better heat dissipation, the structure is bonded onto a 270 µm-thick SiC
substrate, having high thermal conductivity (∼ 490 W.m−1.K−1), by solid-liquid inter-
diffusion (SLID) bonding with AuIn2, on the Bragg mirror side.

1.2.2 Cavity configuration

The cavity architecture of the 1µm DF-VECSEL, sustaining simultaneous oscillation of
two linear orthogonal polarization modes with a frequency difference in the RF range, is
schematized in Fig. 1.3. The 1/2-VCSEL structure as shown in Fig. 1.2 is glued on top of a
Peltier thermoelectric cooler using thermal grease. The Peltier cooler is fixed on a copper
heat sink and the temperature of the structure is maintained at 20◦C. We recall that our
aim is to design a laser cavity such that the laser exhibits class-A dynamical behavior.
As we know, this can be achieved by making the photon lifetime (τcav) inside the cavity
much longer than the population inversion lifetime (τ) inside the active medium. Previous
studies with this kind of 1/2-VCSEL structure have shown that τ is around 3 ns [Baili,
2008; Baili et al., 2008]. Consequently, we need to make τcav at least of the order of 10 ns.
Now, we know that τcav depends on the optical length of the cavity (Lcav), the intrinsic
linear losses (αi), and the reflectivities (R1, R2) of the end mirrors of the cavity in the
following manner:

τcav = Lcav

c
[
ln
(

1
R1R2

)
+ αiLcav

] , (1.1)

where c is the velocity of the light inside the cavity. Moreover, the round-trip gain of the
1/2-VCSEL structure is typically around 2% [Baili, 2008; Baili et al., 2008]. Henceforth,
the total losses inside the cavity per round-trip must be less than 2% for lasing. Thus,
τcav of the order of 10 ns can be achieved by making a few centimeter long cavity and
choosing the output coupler with a transmitivity around 1%. It is important to note that
the intrinsic losses inside the mostly free-space cavity are normally quite small in this
kind of external-cavity laser due to a small thickness (few microns) of the highly lossy
semiconductor structure (typically αi = 3 cm−1). This is a huge advantage compared to
the all semiconductor-cavity laser such as VCSELs. In our DF-VECSEL, the length of the
laser cavity is nearly equal to 1.5 cm and it is closed with a concave mirror having radius
of curvature of 2.5 cm and transmitivity equal to 0.5%. This leads to a τcav of about
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Figure 1.3: Schematic of the cavity-architecture for a DF-VECSEL. d: spatial separation
between the ordinary (o) and extraordinary (e) polarizations inside the active medium,
BC: birefringent crystal, BS: beam splitter, λ/2: half-wave plate, OI: optical isolator,

FPI: Fabry-Perot interferometer.

20 ns, provided the transmission of the output coupler is the dominant source of losses.
Thus τcav should be sufficiently longer than τ (3 ns). The DF-VECSEL based on the 1/2-
VCSEL structure of Fig. 1.2 operates at 1µm wavelength for pumping at 808 nm with a
fiber-coupled diode laser. The fiber is multi-mode with a core diameter of 105µm, and
numerical aperture (NA) of 0.22. The pump laser can deliver up to 3 W of continuous wave
power and the angle of incidence on the gain structure is around 40◦. The pump diode is
placed on a heat radiator and its temperature is maintained at 25◦C to stabilize the pump
laser emission. An YVO4 birefringent crystal (BC) with AR coating at 1µm is introduced
inside the cavity to lift the polarization degeneracy. Since the semiconductor structure
exhibits a linear gain dichroism as the QWs are strained, the maximum gain axis must be
oriented along the bisector of the ordinary (o) and extra-ordinary (e) eigenpolarization
directions of the BC to provide nearly identical gain for the two polarizations. The BC,
cut at 45◦ of its optic axis, spatially separates the o- and e-polarized modes inside the gain
structure by a distance d depending on its thickness. It is important to introduce a spatial
separation between the two modes inside the gain medium as their robust simultaneous
oscillation requires the nonlinear coupling constant C between them to be less than unity
[Sargent III et al., 1974; Baili et al., 2009; Pal et al., 2010]. The present cavity configuration
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leads to a waist radius of 62µm for both laser modes inside the gain structure. We
use, as a first try, a 1 mm-thick BC, leading to d of 100µm, which is large enough to
allow simultaneous oscillation of the two modes. The gain bandwidth of the 1/2-VCSEL
structure is quite large (of the order of few nm). As a result, the laser cavity with a free
spectral range (FSR) close to 3 GHz permits oscillation of several longitudinal modes for
both polarizations. The introduction of a 150µm-thick uncoated glass etalon forces each
polarization to oscillate in a single longitudinal mode. The output of the DF-VECSEL
is continuously analyzed with a Fabry-Perot interferometer (FPI) of FSR equal to 10
GHz, followed by an oscilloscope. This enables us to check that the two perpendicularly
polarized modes oscillate simultaneously inside the laser cavity without any mode hopping
during the duration of the data acquisition. The optical isolator (OI) in front of the FPI
prevents any unwanted reflection from the FPI which could disturb the laser stability.
Moreover, we also make sure oscillation of only the fundamental transverse mode for
both polarizations by optimizing the overlap between the pump and the two laser beams.
Additionally, this optimized overlapping between the pump and the laser beams provides
maximum efficiency of our DF-VCSEL, and induces nearly identical powers in the two
polarizations.

1.2.3 Generation and characterization of the RF beatnote in
DF-VECSEL

As mentioned previously, the DF-VECSEL is an interesting source for microwave photon-
ics applications [Seeds and Williams, 2006; Yao, 2009], in particular, for the generation of
high spectral purity, widely tunable RF signal. The RF signal can be generated simply
by optical heterodyning the two cross-polarized modes of the DF-VECSEL (Fig. 1.1). Let
us assume that the electric fields of the two cross-polarized modes of the laser can be
expressed as follows

Ex = E0x cos(2πνxt+ φx) , (1.2)
Ey = E0y cos(2πνyt+ φy) . (1.3)

Here, E0x, E0y are the amplitudes, νx, νy are the frequencies, and φx, φy are the phases
of the x(o)- and y(e)- polarized modes of the DF-VECSEL, respectively. When the two
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cross-polarized modes are mixed with a polarizer at 45◦ and the polarizer output is sent
to a photodector (Fig. 1.1), the photodector output current is given by

ID = A0 (1 + p cos [2π(νy − νx)t+ (φy − φx)])
= A0 (1 + p cos [2πfRF t+ ∆φRF ]) , (1.4)

where p = 1, if E0x = E0y. Here, the current amplitude A0 is determined by E0x, E0y and
the responsivity of the detector. It is worth mentioning that the sum frequency is blocked
by the detector due to its limited bandwidth. Therefore, for p = 1, the RF component of
the detector output reads as

IRF = A0 cos [2πfRF t+ ∆φRF ] , (1.5)

Equation (1.5) shows that an electrical signal with a frequency (fRF ) equal to the difference
of the optical frequencies (νy, νy) of the two cross-polarized modes of the DF-VECSEL is
generated. As can be seen from Eq. (1.5), the RF beatnote electrical signal has a constant
amplitude A0 and a constant phase ∆φRF , provided the amplitudes (E0x, E0y) and the
phases (φx, φx) of the two optical waves are constant. However, in reality this hardly
occurs as the amplitudes and the phases of the laser modes always undergo fluctuations
due to several noise sources (mechanical noise, acoustic noise, thermal noise, pump noise,
etc.,). Then, the RF beatnote signal can be written as

IRF (t) = A(t) cos [2πfRF t+ ∆φRF (t)] , (1.6)

where

A(t) = A0 + δA(t) , (1.7)
∆φRF (t) = ∆φRF + δφRF (t) . (1.8)

Here, δA(t) and δφRF(t) respectively denote the amplitude and the phase fluctuations
of the RF beat signal. For the sake of simplicity, we assume ∆φRF = 0. Considering
small fluctuations i.e., δφRF (t)� 2π and δA(t)/A0 � 1, and keeping only the first order
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fluctuation terms, we can simplify Eq. (1.6) as

IRF (t) ' A0

[
cos(2πfRF t) + δA(t)

A0
cos(2πfRF t)− δφRF (t) sin(2πfRF t)

]
. (1.9)

Equation (1.9) proves that the amplitude fluctuations are in-phase, whereas the phase
fluctuations are in phase quadrature with the carrier signal (RF beatnote). However,
both of these fluctuations degrade the spectral purity of the RF beat signal. The spectral
properties of the RF beatnote generated by optical mixing of two cross-polarized modes
of a DF-VECSEL at 1µm have been first reported by G. Baili et al. [Baili et al., 2009].
In the same spirit, we have analyzed the spectral behavior of the RF beatnote in our
DF-VECSEL operating at 1µm. All the measurements have been performed for a pump
power of 1.5 W, which provides total output power of 60 mW for the DF-VECSEL. The
schematics of the measurement setup for the RF beatnote spectrum are given in Fig. 1.4.
The x(o)- and y(e)- polarized modes of our DF-VECSEL are mixed with the combination
of a half-wave plate (λ/2) placed in front of a polarization beam splitter (PBS). The RF
beatnote is detected using a high-speed photodetector (D), then the detector output is
amplified with a RF amplifier (RFA). Finally, the beatnote spectrum is recorded with an
electrical spectral analyzer (ESA). The difference between the optical frequencies (νx, νy)
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Figure 1.4: Schematic of the measurement setup of the RF beatnote. λ/2: half-wave
plate, PBS: polarization beam splitter, D: photodetector, RFA: RF amplifier, ESA:

electrical spectrum analyzer.

of the two modes is linked to their optical cavity length difference introduced by the BC.
The frequency difference between the two modes can be expressed as follows,

fRF ≡ (νy − νx) = c

2

[
my

Lcav,y
− mx

Lcav,x

]
, (1.10)
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where c is the vacuum speed of light, Lcav,x, Lcav,y are the optical cavity lengths, and
mx, my are the mode numbers for x− and y−polarized modes, respectively. To simplify
Eq. (1.10), we consider following approximations,

νy = ν + fRF
2 , νx = ν − fRF

2 . (1.11)

In the same way, we define m, ∆m, and Lcav, ∆Lcav. Moreover, we also consider that
∆m � m, fRF � ν, and ∆Lcav � Lcav. Then, Eq. (1.10) can be simplified in the first
order approximation as

fRF = c

2Lcav

[
∆m− m∆Lcav

Lcav

]
, (1.12)

Equation (1.12) shows that the beatnote frequency can be tuned using different parameters
related to the cavity geometry. However, changing Lcav or m is not a practical choice
for beatnote tuning, as this requires a modification of the macroscopic length of the
cavity while maintaining simultaneous oscillation of the two modes. This is extremely
difficult to implement. The most convenient way to tune the beatnote frequency is either
by adjusting the intra-cavity birefringence (∆Lcav) or the difference between the mode
numbers (∆m) of the two polarizations. In our experiment, ∆Lcav is varied simply by
rotating the BC, and ∆m is adjusted by properly orientating the intra-cavity etalon. By
doing so, in principle, the RF beatnote can be tuned over the entire gain spectrum (few
nm). Figure 1.5 represents one such example of beatnote spectrum obtained from our
DF-VECSEL operating at 1µm wavelength. The beatnote spectrum is recorded with
an ESA with resolution bandwidth (RBW) and video bandwidth (VBW) equal to 30
kHz. The beatnote is centered at about 4.082 GHz, which is higher than the FSR of our
DF-VECSEL cavity (3 GHz). This shows that the two eigenpolarizations correspond to
longitudinal modes of different orders (mx 6= my). The linewidth of the beatnote is of few
kilohertz in the free-running condition of our DF-VECSEL. This is comparable to free
running dual-frequency solid-state lasers. Moreover, there are no side peaks around the
RF beatnote, in particular, for offset frequencies within few kilohertz to few megahertz.
This shows the absence of relaxation oscillations, contrary to dual-frequency solid-state
lasers [Alouini et al., 2001; Pillet et al., 2008]. This corresponds to a great improvement
of the noise performance of the DF-VECSEL for the generation of optically-carried RF
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Figure 1.5: Spectrum of the RF beatnote measured with an ESA with resolution
bandwidth (RBW) = 30 kHz and video bandwidth (VBW) = 30 kHz.

signals.
However, the beatnote signal is sitting over a pedestal of a few megahertz width,

resulting from different noises as shown in Eq. (1.9). This degrades the spectral purity
of the RF beat signal, and limits its use in stringent applications like high phase-purity
optolectronics oscillators [Yao and Maleki, 1996, 1997]. Therefore, it is important to give
a clear look at the different noise spectra of the RF beatnote. Measuring these noises is
not at all straightforward, in particular if the phase and amplitude noises are comparable.
This is linked with the fact that an electrical spectrum analyzer, which is only sensitive
to the magnitude, cannot distinguish between these noises. Moreover, we have observed
that the RF beatnote exhibits a frequency jitter of approximately 1 MHz for a millisecond
time scale. This jitter limits the resolution at which the linewidth of the beat signal can
be measured. Therefore, to further characterize the RF beatnote, we have followed the
temporal measurement scheme as depicted in Fig. 1.6. One part of the RF beat signal is
sent to the ESA to record its spectrum as described previously (Fig. 1.4). The other part
of the RF beatnote is downshifted to intermediate frequency (IF) of few tens of megahertz
by mixing it with a local oscillator (LO, Stanford-SG386). Suppose the local LO current
can be written as

ILO = ALO cos (2πfLOt+ φLO) , (1.13)

where fLO is the LO signal frequency. Here, LO signal amplitude ALO and phase φLO are
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Figure 1.6: Schematic of the RF beatnote noise measurement setup. λ/2: half-wave
plate, PBS: polarization beam splitter, D: photodetector, RFA: RF amplifier, ESA:

electrical spectrum analyzer.

assumed to be constant. This assumption is reasonable as the amplitude and the phase
noises of the LO, we used, were much lower than the respective noises of the RF beatnote.
Again, for the sake of simplicity, we set φLO = 0. Then, at the mixer output, we have

IIF (t) = ALO cos (2πfLOt)

×A0

[(
1 + δA(t)

A0

)
cos(2πfRF t)− δφRF (t) sin(2πfRF t)

]
. (1.14)

After a little algebra and low-pass filtering to remove sum frequency components, we
obtain

IIF (t) = ALOA0

2 cos [2π(fRF − fLO)t]

+ALOA0

2

[
δA(t)
A0

cos [2π(fRF − fLO)t]− δφRF (t) sin [2π(fRF − fLO)t]
]
(1.15)

Then, the IF signal as shown in Eq. (1.15), is recorded in temporal domain using a deep
memory digital oscilloscope. Finally, the oscilloscope data are processed to obtain phase
and amplitude noise power spectral densities (PSDs) separately (AppendixA). We have
found that the amplitude noise is very low compared to the phase noise [i.e., δA(t)

A0
�

δφRF (t)] in the considered frequency range (1 Hz to 50 MHz). The spectral behavior of
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the phase noise of the RF beatnote of Fig. 1.5 is reproduced in Fig. 1.7. Figures 1.7(a),(b)
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Figure 1.7: RF beatnote phase noise spectrum for (a) low, and (b) high offset
frequencies.

show the phase noise of the RF beatnote for low (1 Hz to 1 MHz) and high (10 kHz to
50 MHz) offset frequencies, respectively. The phase noise spectra of Figs. 1.7(a),(b) are
obtained for different frequency resolutions achieved by choosing different time windows
in the oscilloscope. This permits us to obtain the phase noise spectrum over a wide offset
frequency range, i.e., from 1 Hz to 50 MHz. Additionally, the fact that the measurements
reproduced in Figs. 1.7(a),(b) lead to the same results from 10 kHz to 1 MHz confirms
the validity of our measurement technique. In Figs. 1.7(a),(b), the pink curve represents
the measured phase noise and the black curve is the measurement floor limited by the
amplitude noise of the RF beatnote. It is important to note here that the noise PSD
is expressed in the units of dBc/Hz. Here, dBc/Hz is preferred over the usual units of
dBrad2/Hz for phase noise as then both amplitude and phase noise can be presented using
the same scale and hence can be compared. It is worth mentioning that, here dBc/Hz
simply means 3 dB less than dBrad2/Hz (AppendixA). One can notice that the slope of
the phase noise spectrum is not uniform for all offset frequencies, which indicates different
sources for the phase noise. The phase noise for offset frequencies lower than 5 kHz can be
attributed to technical noises (mechanical vibrations, acoustic noise, etc.). For example,
the peak at about 50 Hz can be identified as the electrical power supply noise. The
change of slope at about 5 kHz offset frequency (Fig. 1.7(a)) shows that the phase noise
for frequencies higher than 5 kHz originates from a different mechanism. Similarly, we
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find that the slope changes again for frequencies higher than few hundreds of kilohertz,
indicating another noise source for these frequencies (Fig. 1.7(b)). The important point
to note here is that the phase noise spectrum does not exhibit the huge noise peak at
the relaxation oscillation frequencies typically within few kilohertz to few megahertz as
in dual-frequency solid-state lasers [Alouini et al., 2001; Pillet et al., 2008]. This again
proves the interest of the DF-VECSEL for the targeted application of generating high
spectral purity optically carried microwave signals.

1.3 Dual-frequency VECSEL at telecom wavelength

In the previous section, we have dealt with the DF-VECSEL operating at 1µm wave-
length. However, the most relevant source, in particular for fiber-optic applications, would
be a DF-VECSEL operating at wavelength of 1.55µm. In this section, we present the first
demonstration of such a DF-VECSEL operating at 1.55µm [De et al., 2014a]. One may
wonder why it took so long to come into reality, while 1µm DF-VECSELs were already
there. The main reason behind this is the difficulty to fabricate a Bragg mirror with a high
reflectivity as well as a good thermal conductivity. 1.5µm-VECSEL is typically fabricated
on InP substrates. One serious limitation of the InP-based structures is that the DBR
must be thick because (i) the wavelength is long and (ii) the available refractive index
contrast is low relative to that of GaAs/AlAs [Tropper et al., 2004; Tropper and Hoog-
land, 2006; Okhotnikov, 2010]. As a result the absorption and scattering losses become
significant, and therefore the overall efficiency of the reflector is compromised. To counter
this issue, several solutions have been realized recently such as (i) fusing GaAs/AlAs
Bragg mirrors to the InP-based gain region, (ii) deposition of a gold layer to improve the
reflectivity of InP/InGaAlAs mirrors, and so on [Kurdi et al., 2004; Bousseksou et al.,
2006]. However, all these fabrication techniques are quite complex, explaining why it is
more difficult to develop a VECSEL at 1.5µm than at 1µm.

1.3.1 Layer structure of the 1/2-VCSEL

The DF-VECSEL operating at 1.55µm is based on a 1/2-VCSEL structure as depicted
in Fig. 1.8. This structure has been grown by Sophie Bouchoule and her collaborators
in LPN [Zhao et al., 2011]. It consists of an InP-based active region, including eight
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Figure 1.8: Description of the 1/2-VCSEL structure for DF-VECSEL operating at
λ = 1.55µm. n; local refractive index inside the structure, I; intensity distribution

inside the micro-cavity.

strained InGaAlAs quantum wells, which are distributed among three optical standing
wave antinode positions with a 4-2-2 distribution. One serious limitation of the InP-based
structures is the lack of availability of lattice-matched materials with high refractive index
contrast for the fabrication of the Bragg mirror like in GaAs material system [Kuznetsov
et al., 1999]. This leads to the requirement of thicker mirrors with more layers to achieve
sufficient reflectivity for lasing [Lindberg et al., 2005], and consequently provides higher
thermal impedance, thus limiting the laser efficiency. One standard way to avoid this
problem is to grow the Bragg mirror with GaAs-based materials with high refractive
index contrast in a separate wafer than the active region and then bonding it with the
InP-based active region wafer. The bonding is done using wafer fusion technique, which
thus does not require any lattice matching [Rautiainen et al., 2008]. In the 1/2-VCSEL
structure we use, there is a metamorphic Bragg mirror containing 17 pairs of alternating
GaAs/AlGaAs layers grown by molecular beam epitaxy (MBE). The reflectivity of the
Bragg mirror is larger than 99.9% at 1.55µm thanks to the deposition of a 150 nm−thick
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gold (Au) layer. The overall gain structure is bonded on a chemical vapor deposition
(CVD) polycrystaline diamond substrate thanks to an AuIn2 eutectic bonding [Tourrenc
et al., 2008]. The very high thermal conductivity (∼ 2000 Wm−1K−1) of CVD-diamond
substrate rapidly dissipates the pump induced heat leading to a good efficiency of our
DF-VECSEL. A quarter-wavelength SiNx AR-coating at the pump wavelength is finally
deposited on the sample surface. Before that, the thickness of the top InP layer acting
as phase layer is etched, so that the position of the resonant mode of the 1/2-VCSEL
microcavity nearly coincides with the gain maximum after AR layer deposition, in a so
called resonant periodic gain arrangement [Corzine et al., 1989].

1.3.2 Demonstration of dual-frequency oscillation in a 1.55-µm
VECSEL

The basic configuration of the cavity for the DF-VECSEL operating at 1.55µm can be
again represented by Fig. 1.3. In this case, the pumping is done with a CW fiber-coupled
diode laser at 980 nm delivering up to 4 W optical power with an incidence angle of 40◦.
The fiber is highly multimode with a core diameter of 105µm, and NA equal to 0.22. The
optical length of the cavity is equal to 4.76 cm leading to a FSR of 3.15 GHz. The output
coupler of the cavity is a concave mirror with 99.4% reflectivity at 1.55µm, and radius of
curvature of 5 cm. Supposing that the cavity losses predominantly come from the output
coupler, the photon lifetime is expected to be around 53 ns. This ensures the targeted
relaxation oscillation free class-A dynamical behavior of the DF-VECSEL, as the photon
lifetime becomes much longer than the population inversion lifetime (typically of the order
of 1 ns) inside the 1/2-VECSEL structure. Moreover, this cavity configuration leads to a
mode size of 72µm for the two polarizations. The pump spot size on the gain structure is
adjusted to obtain a maximum and nearly identical powers for the two laser modes. In this
DF-VECSEL also, a 150µm-thick uncoated glass etalon located between the BC and the
output coupler inside the cavity ensures single longitudinal mode oscillation for the two
eigenpolarizations. To have simultaneous and robust oscillation of the two perpendicularly
polarized modes, their nonlinear coupling is reduced by spatially separating them inside
the gain medium with an intra-cavity YVO4 BC, cut at 45◦ with respect to its optic axis
and AR coated at 1.55µm.

Before going into the analysis of the performance of the DF-VECSEL for the generation
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of optically-carried microwave signal, we check the robustness and the efficiency of the
laser. We start by verifying that the laser is indeed sustaining two-mode oscillation. The
optical spectrum of the laser, recorded with an optical spectrum analyzer with a resolution
of 0.01 nm, is reproduced in Fig. 1.9(a). The two peaks in the spectrum prove the existence
of two modes with different frequencies centered around 1.55662µm. The output of the
laser is also analyzed with an FPI with FSR of 10 GHz (Fig. 1.3). The temporal signal
recorded with the oscilloscope is shown in Fig. 1.9(b). The yellow curve represents the
FPI output and the blue curve stands for the ramp signal applied to the FPI for scanning.
The two peaks in the output signal of the FPI within each period of the ramp signal again
confirm the two-mode oscillation of the VECSEL. Moreover, this desired two-frequency
oscillation is found to be stable without any mode hopping for several tens of minutes.
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Figure 1.9: Observation of the dual-frequency oscillation at 1.55µm: (a) optical
spectrum recorded by an optical spectrum analyzer with resolution of 0.01 nm, and (b)
the ramp signal and the output signal of the FPI, showing the two peaks corresponding

to the simultaneous two-mode oscillation (time scale, 10 ms per division).

The other important property of the DF-VECSEL, after the robustness of two-mode
oscillation, is the efficiency. We find that the spatial separation d between the two modes
plays an important role to determine the efficiency of our DF-VECSEL. A smaller sepa-
ration between the modes leads to a higher efficiency of the laser as the pump beam can
be more tightly focused for nearly identical and optimal pumping of the two modes. On
the contrary and as discussed previously, a large spatial separation is desirable for good
robustness and stable simultaneous oscillation of the two modes because it decreases the
nonlinear coupling between the modes much below unity. Therefore, it is important to
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find an optimal value of d, which would be a good trade-off for both the robustness and
the efficiency of our DF-VECSEL. Figure 1.10 shows the variation of the total output
power of the DF-VECSEL with the variation of the pump power for nearly identical and
optimal pumping of the two modes. The black squares represent the results for 0.5 mm
thick BC, which corresponds to d = 50µm. The results for 1 mm thick BC corresponding
to d = 100µm are shown by the red circles. As expected, the lasing threshold is lower
and the efficiency is better for the smaller value of d. In both cases, the laser power starts
to saturate for pump powers higher than 2 W as the pump-induced heating of the gain
structure leads to an increasing spectral mismatch between the gain maximum and the
micro-cavity resonance. In spite of the intra-cavity losses and the spatial separation of
the two beams reducing the overlap with the pump, we can obtain more than 100 mW
of optical power from our DF-VECSEL for a pump power around 2.5 W with a 0.5 mm
thick BC inside the cavity. One might wonder, then, why not further reduce the spatial
separation d between the modes. We try to further reduce it by using a 0.2 mm thick
BC, corresponding to d = 20µm. However, this leads to a quite unstable dual-frequency
oscillation. In particular, balancing the powers of the modes became extremely difficult.
This proves that the coupling between the modes becomes too strong for robust simulta-
neous two-mode oscillation. Therefore, we may infer that a 0.5 mm thick BC is not far
from being the optimal choice for our DF-VECSEL cavity.
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Figure 1.10: DF-VECSEL output optical power versus pump power for 1 and 0.5 mm
thick BCs, respectively correspond to spatial separations d of 100µm and 50µm

between the modes of waist size 72µm inside the active medium.
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1.3.3 Spectral analysis of the RF beatnote

After having discussed the effect of the spatial separation d between the modes on the
robustness and the efficiency, it is important to analyze if there is any significant impact
of d on the spectral purity of the RF beatnote generated by optical mixing of the two laser
modes. The spectra of the RF beatnote and their phase noises have been investigated
for two different BCs of thicknesses of 1 mm and 0.5 mm. The measurement scheme of
the RF beatnote and its phase noise is identical to the one given in Fig. 1.5. The results
for 1 mm thick BC, corresponding to spatial separation d = 100µm between the modes,
are shown in Fig. 1.11. Figure 1.11(a) shows the beatnote spectrum measured with an
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Figure 1.11: Phase noise spectrum for (a) low, and (b) high offset frequencies.

ESA with RBW and VBW equal to 10 kHz. The beatnote is centered around 4.322 GHz
and has a linewidth of less than 10 kHz. The absence of side peaks in the vicinity of
the beatnote proves the relaxation oscillation free class-A dynamical behavior of the DF-
VECSEL. This greatly improves the spectral purity of the RF signal generated by the
DF-VECSEL compared to dual-frequency erbium lasers operating at telecom wavelength
[Pillet et al., 2008]. However, the beatnote signal having a width of few kilohertz is again
associated with a few megahertz wide pedestal coming from the phase noise. The phase
noise spectrum is shown in Fig. 1.11(b). As in the case of the 1µm DF-VECSEL, the
change of slope in the phase noise spectrum at different offset frequencies reflects the
presence of different noise sources. The phase noise for frequencies lower than 1 kHz
mainly originates from the technical noise, whereas for higher frequencies there must be
other sources of noise, which will be explored in later chapters. Additionally, the change
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of slope in the phase noise spectrum around few hundreds of kilohertz infers that there is
more than one mechanism giving rise to the phase noise for high offset frequencies.

Previously, we have found that 0.5 mm thick BC corresponding to a spatial separation
d of 50µm is a good choice to have both the robust and efficient dual-frequency oscillation.
Therefore, it is important now to compare the performance of the DF-VECSEL with 0.5
mm and 1 mm thick BC, in particular, regarding the spectral behaviors of the RF beatnote
and its phase noise. The RF beatnote, measured with an ESA (RBW/VBW = 10kHz),
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Figure 1.12: Phase noise spectrum for (a) low, and (b) high offset frequencies.

is now centered at about 2.593 GHz as reproduced in Fig. 1.12(a). Again, the beatnote
spectrum is free from side peaks induced by the relaxation oscillation. However, the
beatnote is found again to be resting on a pedestal of few megahertz width linked with
the phase noise. Figure 1.12(b) shows the PSD of the phase noise. In this case also,
the phase noise spectrum exhibits different slopes for different offset frequency ranges.
For frequencies lower than 1 kHz, the technical fluctuations predominantly give rise to
the beatnote phase noise. The phase noise for higher offset frequencies originates from
other mechanisms. The change of slope of the phase noise spectrum around few hundreds
of kilohertz proves the presence of more than one mechanism deteriorating the spectral-
purity of the RF beatnote. Finally, if we compare the phase noise spectra of the RF
beatnote for 1 mm and 0.5 mm thick BC, the noise levels are almost identical proving the
fact that 0.5 mm thick BC is indeed a better choice for our DF-VECSEL.
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1.4 Conclusions

In this chapter, we have reproduced the results of a DF-VECSEL operating at 1µm as
previously reported by G. Baili et al. [Baili et al., 2009]. Specifically, we have described
the gain structure, the architecture of the cavity, and the spectral properties of the RF
signal generated by beating the two linear cross-polarized modes of the DF-VECSEL.
However, 1µm wavelength is not so interesting for microwave photonics applications.
The most relevant wavelength for the targeted microwave photonics applications is the
telecom wavelength. We have demonstrated for the first time dual-frequency oscillation
in a VECSEL operating at telecom wavelength. It has been found that a robust and
highly efficient dual-frequency oscillation requires an optimized choice of the intra-cavity
birefringent crystal, which spatially separates the two cross-polarized modes inside the
active medium, and hence reduces their nonlinear coupling. We have shown that a 0.5
mm thick birefringent crystal corresponding to approximately 50% overlap between the
modes is close to the ideal choice for optimum efficiency, robustness, and noise performance
of the DF-VECSELs. The DF-VECSELs exhibit class-A dynamical behavior, and hence
do not suffer from relaxation oscillation. As a result, the RF beatnote, generated by
optical mixing of the two cross-polarized modes of the DF-VECSEL, does not posses any
side peak originating from the relaxation oscillation. This shows why the DF-VECSELs
are better than the dual-frequency solid-state lasers, which suffer from relaxation due to
their inherent class-B dynamics. However, the RF beatnote obtained from a DF-VECSEL
has been found to be associated with a few megahertz wide pedestal. We have evidenced
that this pedestal mainly originates the phase noise of the beatnote. We have analyzed
the spectral behavior of the RF beatnote phase noise for offset frequencies ranging from
100 Hz to 50 MHz. It has been found that the phase spectrum exhibits different slopes for
different offset frequency ranges. This indicates the possible existence of different noise
sources that deteriorate the spectral of the RF beatnote. In the following chapters of this
first part of the thesis, we will elucidate those different noise mechanisms.
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The following table summarizes the results presented in this chapter:

• Description of a DF-VECSEL operating at 1µm as reported in [Baili et al.,
2009].

• Demonstration of a DF-VECSEL at 1.55µm for the first time.
• Optical generation of the RF signal by beating the two cross-polarized modes

of the DF-VECSEL.
• High spectral purity of the RF beatnote due to relaxation oscillation free class-

A dynamics of the DF-VECSEL.
• Existence of noise pedestal in the RF beatnote linked with its phase noise.
• Observation of different slopes in the RF phase noise spectrum indicating the

presence of different noise sources.
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2.1 Introduction

In the previous chapter, we have shown that the DF-VECSEL can indeed be an interesting
choice for the generation of high-purity widely tunable optically-carried radio frequency
(RF) signals, which are extremely essential for any modern microwave photonics link
[Seeds and Williams, 2006; Yao, 2009]. It has been found that the class-A dynamics of
our DF-VECSEL leads to a low phase noise of the RF beatnote, generated by optically
mixing the two cross-polarized modes of the laser. In particular, the RF beatnote does
not possess any side peak due to relaxation oscillation, unlike in dual-frequency solid-state
lasers [Alouini et al., 2001; Pillet et al., 2008]. However, the experiments as described in
the preceding chapter have shown that the RF beatnote with a few kilohertz width is
sitting on a few megahertz wide pedestal. We have figured out that the pedestal of the
RF beatnote mainly originates from its phase noise. One can wonder now from where
this phase noise is coming. Of course, this is linked with the optical phase noises of
the two laser modes, which generate the RF beatnote via optical mixing. Specifically,
the phase noise of the RF beatnote is equal to the difference between the optical phase
noises of the two laser modes. However, this is somewhat surprising, knowing that the
two modes of the DF-VECSEL share the same optical cavity and are pumped by a single
diode laser. Therefore, we expected the optical phase fluctuations of the two modes to
be fully correlated, and hence they should have canceled out in the beatnote. Now, the
presence of the pedestal is compatible with a total correlation of the modes if at least
one of the two following conditions is fulfilled: i) the two noises have different ampli-
tudes; or ii) the phase of the correlation is not zero. In addition to that, the phase and
intensity fluctuations are expected to be strongly coupled in the DF-VECSEL due to the
large α−factor of the semiconductor active medium [Henry, 1982, 1986; Agrawal, 1989].
Therefore, the knowledge of the phase noise spectrum only, as described in the previous
chapter, is not sufficient for complete understanding of the noise pedestal associated with
the RF beatnote. It also requires exact knowledge about the correlation between different
noises (intensity noise, phase noise) of the two laser modes. Moreover, the two cross-
polarized modes of our DF-VECSEL are nonlinearly coupled due to their partial spatial
overlap inside the gain structure. As a consequence, it is also important to investigate the
effect of the nonlinear coupling between the two laser modes on the correlation between
different noises. In this chapter, we explore the spectral behaviors of the intensity noises
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of the modes and the phase noise of the RF beatnote, generated by optical mixing of the
two modes of the DF-VECSEL [De et al., 2015]. Additionally, the correlation between
the intensity noises of the two modes, and the correlation between the phase noise of the
RF beatnote with the intensity noises of the two modes that generate the beatnote are
studied. Moreover, the effect of the nonlinear coupling between the two cross-polarized
modes of the DF-VECSEL on different noise correlation spectra is investigated. All the
noises and their correlation spectra are analyzed in the frequency range of 10 kHz to 35
MHz. It is found that, in this frequency range, the intensity noise of the pump diode laser
is the dominant source of noise for our DF-VECSEL. To put our understanding about
the noise properties of the DF-VCSEL on more solid basis, we analyze the spectral be-
havior of the pump noise within the frequency range of our interest (10 kHz to 35 MHz).
Additionally, we study how the two laser modes, which are spatially separated inside the
active medium but pumped by the same pump laser, intercept the intensity fluctuations
of the pump laser in different manners depending on their spatial separation. We evi-
dence the fact that this dependence of pump noise properties on the spatial separation
between the modes, defining the nonlinear coupling between them, plays an important
role to determine the correlations between different noises of our DF-VECSEL. To better
understand the influence of the pump noise on the noise properties of the DF-VECSEL,
we introduce a simple theoretical model based on rate equations. The theoretical model
shows good success to explain all the experimental results.

The chapter is organized as follows: we start by developing a theoretical model to
describe the noise properties of our DF-VECSEL in Sec. 2.2. In Section 2.3, we present
the spectral behavior of the pump noise, which is found to be the dominant source of
noise in the targeted frequency range (10 kHz to 35 MHz). Section 2.4 provides a detailed
description of the noise correlation measurement scheme. The spectral behaviors of the
intensity noises and their correlation for different nonlinear coupling strengths between
the two modes of the DF-VECSEL are illustrated in Sec. 2.5. Section 2.6 deals with
spectral behaviors of the RF beatnote and its phase noise again for different nonlinear
couplings between the two laser modes. The spectra of correlation between the phase
noise of the RF beatnote with the intensity noises of the two laser modes, generating the
beatnote via optical mixing for different nonlinear coupling between them, are reported
in Sec. 2.7.
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2.2 Theory: rate equation model of DF-VECSELs

In this section, our aim is to develop a theoretical model, which will be able to explain all
the noise properties of our DF-VECSEL. Figure 2.1 shows a simplified cavity architecture
of a DF-VECSEL, which we have described in detail in the previous chapter. In the
DF-VECSEL, two linear orthogonal polarizations (x(o) and y(e)), having a frequency
difference in the RF range, oscillate simultaneously inside the same laser cavity. The two
cross-polarized modes are partially spatially separated inside the gain medium by an intra-
cavity birefringent crystal (BC), and are pumped by a single pump laser. This spatial
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Figure 2.1: Schematic of the basic principle of the DF-VECSEL. The birefringent
crystal (BC) spatially separates the two modes polarized along the ordinary (o) and
extraordinary (e) directions by a distance d. The two polarizations partially overlap

inside the semiconductor gain medium. The length of the semiconductor structure and
the external cavity are LSC, Lext, respectively. Lopt denotes the total optical length of

the cavity.

separation is required in order to make the simultaneous dual-mode operation robust by
reducing their nonlinear coupling below unity [Baili et al., 2009; Pal et al., 2010]. Before
going into the details of the theoretical modeling to obtain different noise spectra and
their correlations, its important to define them first, which is done in the following.
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2.2.1 Definition of noise spectra and correlations

The two cross-polarized modes of the DF-VECSEL can be characterized by their respec-
tive intensities, phases, and frequencies with the associated noises. Let us thus call Fx(t)
and Fy(t) the (dimensionless) intra-cavity numbers of photons in the x− and y−polarized
modes, respectively. When theses two modes oscillate, their average steady-state intensi-
ties inside the cavity are denoted as Fx0 and Fy0. Then the fluctuations in the numbers
of photons are introduced as:

Fx(t) = Fx0 + δFx(t) , (2.1)
Fy(t) = Fy0 + δFy(t) , (2.2)

where δFx(t) and δFy(t) denote the fluctuations of photon numbers in x− and y−polarized
mode, respectively. The relative intensity noise (RIN) of the two polarizations are then
defined by:

RINx(f) =

〈
|δ̃F x(f)|2

〉
F 2
x0

, (2.3)

RINy(f) =

〈
|δ̃F y(f)|2

〉
F 2
y0

, (2.4)

where f is the noise frequency and the tilde ∼ denotes Fourier-transformed quantities.
Similarly, we introduce the optical phase noises δφx(t) and δφy(t) of the two modes, and
thus the phase noise of the beatnote generated via optical mixing of the two polarizations
can be written as:

δφBeat(t) = δφx(t)− δφy(t) . (2.5)

Therefore, the power spectral density (PSD) of the phase noise of the beatnote is expressed
as following

SBeat(f) =
〈
|δ̃φBeat(f)|2

〉
. (2.6)

After defining the noises and their spectra, we aim at defining the spectra of correlations
between different noises. The normalized correlation spectrum between the intensity
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noises of the two laser modes is defined as

ΘFx−Fy(f) =

〈
δ̃F x(f)δ̃F ∗y(f)

〉
√〈
|δ̃F x(f)|2

〉 〈
|δ̃F y(f)|2

〉 . (2.7)

Additionally, we are interested in the spectral behaviors of the correlations between the
phase noise of the beatnote and the intensity noises of the x− and y−polarized modes
generating the beatnote via optical mixing. The normalized spectra of these correlation
functions are defined as following:

ΘBeat−Fx(f) =

〈
δ̃φBeat(f)δ̃F ∗x(f)

〉
√〈
|δ̃FBeat(f)|2

〉 〈
|δ̃F x(f)|2

〉 . (2.8)

ΘBeat−Fy(f) =

〈
δ̃φBeat(f)δ̃F ∗y(f)

〉
√〈
|δ̃FBeat(f)|2

〉 〈
|δ̃F y(f)|2

〉 . (2.9)

The correlation spectra given by Eqs. (2.7-2.9) are complex quantities and thus have a
modulus equal/smaller than 1, and an argument. The square of the modulus is called the
correlation amplitude spectrum, whereas the argument is named as the correlation phase
spectrum. A modulus equal to unity represents the situation of perfect correlation and
the argument determines the phase of the correlation. The next parts of this section are
devoted to the derivation of all these noise correlation spectra.

2.2.2 Simple rate equation model for a monomode laser

Before going into the complex scenario of our two-mode VECSEL, we start from the
simple case of a single mode laser polarized along a fixed direction. To describe the
dynamical properties of a laser, the convenient way is to write the rate equations for the
laser variables. Considering the plane wave form of the intra-cavity field oscillating at an
angular frequency ω, it can be written as

E(z, t) = A(z, t)e−i(ωt−kz) + c.c. (2.10)
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Here, we assume that light is propagating along the z-direction inside the cavity. The fixed
polarization direction of the field has allowed us to treat it as a scalar quantity. A(z, t)
defines the slowly varying complex amplitude (dimensionless) of the field, meaning that
its dependence on t and z is much slower than the plane wave term e−i(ωt−kz). In the
most general case, the laser dynamics is governed by three dynamical variables, namely
the dipole polarization, the intra-cavity field, and the population inversion. However, in
most semiconductor lasers, the polarization dynamics is so fast that it can be adibatically
eliminated from the laser rate equations. This is valid for our VECSEL as well. Then,
the laser dynamics can be described by the population inversion N(t) and the intra-cavity
field A(z, t). Moreover, in the limit of weak losses and gain, the z dependence of A can
be ignored leading to the following rate equations for A(t) and N(t) of a single mode
semiconductor laser [Agrawal and Dutta, 1993]

dA(t)
dt

= −γcav2 A(t) + κ

2 (1 + iα)A(t)N(t) , (2.11)

dN(t)
dt

= −Γ [N(t)−N0(t)]− κN(t)|A(t)|2 . (2.12)

Here, γcav and Γ respectively denote the inverse of the photon lifetime inside the cavity
and the inverse of the carrier1 lifetime. κ is the stimulated emission coefficient. N0 is the
unsaturated population inversion as ΓN0 represents the rate of pumping. α stands for the
so-called linewidth enhancement factor or Henry factor. It is defined as follows [Henry,
1982],

α = ∂χRe(N)/∂N
∂χIm(N)/∂N , (2.13)

where ∂χRe(N)/∂N and ∂χIm(N)/∂N respectively describe the change of the real and
imaginary parts of the susceptibility (χ = χRe + iχIm) with the population inversion N .
The α-factor is responsible for the phase evolution of the field. Here, the presence of
the α−factor in the rate equation of A(t) is the signature of a semiconductor laser. The
effect of the α−factor will be more evident, if one writes separate rate equations for the
modulus and argument of the complex field amplitude A(t). To this aim, we express A(t)

1In a semiconductor laser the population inversion is the same thing as the carrier.
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as

A(t) =
√
F (t)eiφ(t) , (2.14)

where F (t) denotes the number of photons inside the laser cavity and φ(t) is the phase
of the intra-cavity laser field. Substituting Eq. (2.14) in Eqs. (2.11-2.12), we obtain the
following equations governing the laser dynamics

dF (t)
dt

= −γcavF (t) + κF (t)N(t) , (2.15)

dN(t)
dt

= −Γ [N(t)−N0(t)]− κN(t)F (t) , (2.16)

dφ(t)
dt

= α

2 κN(t) . (2.17)

Equations (2.15-2.17) shows that the phase of the laser field is driven by the population
inversion, which is again coupled with the laser intensity or the photon number through
gain saturation. Thus the nonzero α-factor, alternatively known as saturable dispersion
coefficient, establishes phase-intensity coupling in lasers. In case of most gas and solid-
state lasers, the gain spectrum (χIm) is symmetric as it includes single atomic transition.
Since the lasing takes place close to the gain maximum, both χRe and ∂χRe(N)/∂N are zero
at the transition frequency following from the Kramers-Kronig relation. On the contrary,
for a semiconductor laser, the gain spectrum is not symmetric as the dipole transitions
include energy bands and the occupation probability of these bands follows Fermi-Dirac
distribution. Consequently, the gain maximum occurs at a frequency different from the
transition linecenter. This leads to the non-zero values for χRe and ∂χRe(N)/∂N, and thus
a non-zero α value for semiconductor active medium [Vahala et al., 1983; Yariv, 1975].
This accounts for the phase-sensitive dynamics of lasers based on semiconductor active
media like our VECSEL. Our goal now is to extend this simple rate equation model of a
single mode semiconductor laser to our two-mode VECSEL.

2.2.3 Modified rate equations for a DF-VECSEL

The main difficulty for modeling a two-mode laser such as the DF-VECSEL is to take
into account competition between the modes for the gain and to analyze its consequences
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on the laser dynamics . Generally, the problem of gain saturation in two-mode lasers
is not at all straightforward to handle. However, we have chosen the simplest possible
approach of introducing this mode competition heuristically, hoping to be able to explain
different physical phenomena, in particular, the noise properties of the DF-VECSEL. The
rate equations for a two-mode VECSEL can be written in their simplest form as follows,

dFx
dt

= −γxFx + κFxNx , (2.18)
dFy
dt

= −γyFy + κFyNy , (2.19)
dNx

dt
= −Γ(Nx −N0x)− κNx(Fx + ξxyFy) , (2.20)

dNy

dt
= −Γ(Ny −N0y)− κNy(Fy + ξyxFx) , (2.21)

dφx
dt

= α

2 κNx , (2.22)
dφy
dt

= α

2 κNy . (2.23)

Here κ, Γ, and α have the same meaning as in Eqs. (2.15-2.17). Nx and Ny denote the
population inversions corresponding to x− and y−polarized modes, respectively. γx, γy
are the inverse of the photon lifetimes inside the cavity for the two modes. N0x and
N0y stand for the unsaturated population inversions for the two modes as the pumping
rates for them are given by ΓN0x and ΓN0y. The reason behind considering unequal
intracavity photon lifetimes or pumping rates for the two modes is to take into account
different losses/gains for them, which is the case in our experiments as discussed later.
The coefficients ξxy and ξyx describe the ratios of the cross- to self-saturation coefficients,
which take into account the effect of partial overlap between the modes inside the gain
medium. Therefore,

C = ξxyξyx (2.24)

defines the nonlinear coupling constant [Sargent III et al., 1974]. This nonlinear coupling
constant C determines different stability regimes for the steady-state solutions of a two-
mode laser. We are interested in the situation of stable simultaneous oscillation of the two
modes for which C < 1 must be satisfied [Sargent III et al., 1974]. It must be noted that
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this definition of nonlinear coupling constant is a convenient way to phenomenologically
take into account all the coupling/uncoupling mechanisms independently of their origin
including mode polarization and geometrical overlap [Alouini et al., 2000]. This simple
approach allows us to take into account different nonlinear coupling situations only by
changing the values of ξxy and ξyx, which are linked to the degree of spatial overlap
between the modes [Pal et al., 2010].

In the absence of noise, N0x and N0y can be replaced by their time averaged values N0x

and N0y, and the steady-state solution of Eqs. (2.18-2.21) corresponding to simultaneous
oscillation of the two cross-polarized modes is

Fx ≡ Fx0 = Γ/κ [(rx − 1)− ξxy(ry − 1)]
(1− C) , (2.25)

Fy ≡ Fy0 = Γ/κ [(ry − 1)− ξyx(rx − 1)]
(1− C) , (2.26)

Nx ≡ Nxth = γx
κ
, (2.27)

Ny ≡ Nyth = γy
κ
. (2.28)

Here, rx = N0x/Nxth and ry = N0y/Nyth are the excitation ratios for the two modes.
In reality, the laser never remains in perfectly stable situation. Different fluctuations
(mechanical vibrations, thermal fluctuations, fluctuations of the pump, etc.) always drive
the laser out of its steady-state leading to intensity, phase, and frequency noises of the
laser. According to our experimental observations, which we will describe afterwards, the
intensity fluctuations of the pump laser diode are the dominant source of noise in the
targeted frequency range of 10 kHz to 35 MHz. In the following, we aim at introducing
this pump noise in our model to be able to describe the different noise properties of our
DF-VECSEL.

2.2.4 Pump noise properties

We choose to introduce the pump fluctuations for the two modes in the following manner,

N0x(t) = N0x + δN0x(t) , (2.29)
N0y(t) = N0y + δN0y(t) , (2.30)
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where δN0x(t), δN0y(t) denote the fluctuations of the unsaturated population inversion
numbers around the corresponding steady-state values N0x, N0y, respectively. Before
proceeding further to describe the effect of pump noise on the noise properties of our DF-
VECSEL, it is important to first characterize the pump noise itself. In the DF-VECSEL,
two laser modes are pumped by the same laser. However, the two modes are facing
different regions of the pump beam, as they are spatially separated. Keeping all this in
mind, we introduce the following approximations

〈
|δ̃N0x(f)|2

〉
=

〈
|δ̃N0y(f)|2

〉
=
〈
|δ̃N0|2

〉
, (2.31)

〈
δ̃N0x(f)δ̃N∗0y(f)

〉
= η

〈
|δ̃N0|2

〉
eiψ , (2.32)

where tilde ∼ denotes Fourier transformed quantities. Equation (2.31) describes the fact
that the pump noises entering into the two laser modes are white noises (independent of
frequency) of identical amplitudes within the considered frequency range (10 kHz to 35
MHz). Our ultimate goal is to recover the correlation spectra of different noises in the
DF-VECSEL. The noise correlation in the DF-VECSEL should depend on correlations
between the noise sources, i.e. the pump noises. We assume the pump noise correlation
spectrum as in Eq. (2.32). η denotes the correlation amplitude, and ψ stands for the
correlation phase. We assume η and ψ to be constant in the frequency range of our interest
(10 kHz to 35 MHz). It is important to mention here that all these approximations are
verified by experiment as presented later. The RIN spectra of the pump noises for the
two modes are defined as

RINPump(f) =

〈
|δ̃N0x(f)|2

〉
N

2
0x

=

〈
|δ̃N0y(f)|2

〉
N

2
0y

. (2.33)

Of course, this way of linking the fluctuations of the unsaturated population inversions
to the pump RINs would no longer be true at frequencies higher than the inverse of
the electron relaxation time constants, i.e. higher than several hundreds of megahertz.
However, within the frequency range of our interest (10 kHz to 35 MHz), this definition
of pump RIN is perfectly valid. Next, we will utilize these pump noise spectral properties
to recover the actual correlation spectra between different noises of the DF-VECSEL. In
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the following, we start by analyzing the intensity noise properties of the DF-VECSEL.

2.2.5 Intensity noises

The pump fluctuations create fluctuations in the photon numbers defined in Eqs. (2.1-
2.2), and also fluctuations in population inversion numbers around their steady-state
values [Eqs. (2.27-2.28)], which we write as

Nx(t) = Nxth + δNx(t) , (2.34)
Ny(t) = Nyth + δNy(t) . (2.35)

Substituting Eqs. (2.1-2.2), Eqs. (2.29-2.30), and Eqs. (2.34-2.35) in Eqs. (2.18-2.21) and
then performing standard linearization around the steady-state solutions [Eqs. (2.25-
2.28)], we obtain

d

dt
δFx(t) = κFx0δNx(t) , (2.36)

d

dt
δFy(t) = κFy0δNy(t) , (2.37)

d

dt
δNx(t) = −γxδFx(t)− ξxyγxδFy(t)− rxΓδNx(t) + ΓδN0x(t) , (2.38)

d

dt
δNy(t) = −γyδFy(t)− ξyxγyδFx(t)− ryΓδNy(t) + ΓδN0y(t) . (2.39)

Thereafter, Fourier transforming Eqs. (2.36-2.39) and doing some simplification, we obtain
the following expression relating the photon number fluctuations [δ̃F x(f), δ̃F y(f)] of the
two laser modes to the two pump fluctuations [δ̃N0x(f), δ̃N0y(f)]:

δ̃F x(f)
δ̃F y(f)

 =
Mxx(f) Mxy(f)
Myx(f) Myy(f)

δ̃N0x(f)
δ̃N0y(f)

 , (2.40)

where

Mxx(f) = Γ

[
γy − 2iπf

κFy0
(ryΓ− 2iπf)

]
∆(f) , (2.41)

Mxy(f) = −Γγxξxy
∆(f) , (2.42)
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Myx(f) = −Γγyξyx
∆(f) , (2.43)

Myy(f) = Γ

[
γx − 2iπf

κFx0
(rxΓ− 2iπf)

]
∆(f) , (2.44)

with

∆(f) =
[
γx −

2iπf
κFx0

(rxΓ− 2iπf)
] [
γy −

2iπf
κFy0

(ryΓ− 2iπf)
]
− Cγxγy . (2.45)

Therefore, the RIN spectra of the two laser modes and their intensity noise correlation
spectrum can be easily obtained from the definitions given by Eqs. (2.3),(2.4),(2.7) using
Eqs. (2.40-2.45).

2.2.6 Phase noise of the RF beatnote

We have emphasized earlier that the targeted microwave photonics applications demand
high spectral purity of the RF beat signal, generated by optically heterodyning the two
cross-polarized modes of the DF-VECSEL. In the previous chapter, we have shown that
the spectral purity of the RF beatnote is degraded mainly due to its phase noise. Here,
our aim is to model this phase noise of the RF beatnote. The RF phase noise is nothing
but the difference between the optical phase noises of the two modes of the DF-VECSEL
as defined in Eq. (2.5). Now, using Eqs. (2.22-2.23), we obtain

d

dt
δφαBeat(t) = α

2 κ [δNx(t)− δNy(t)] . (2.46)

The superscript ‘α’ indicates that the phase fluctuation δφαBeat(t) considers only the phase-
intensity coupling effect due to the large α-factor of the semiconductor active medium.
Therefore, the RF phase noise in the frequency domain can be calculated using Eqs. (2.36-
2.37) in Eq. (2.46) and then performing Fourier transformation, leading to

δ̃φ
α

Beat(f) = α

2

[
δ̃F x(f)
Fx0

− δ̃F y(f)
Fy0

]
. (2.47)

52



Chapter 2. Study of noise in Dual-frequency VECSELs

The PSD of the RF phase noise as defined in Eq. (2.6), then reads

SαBeat(f) = α2

4


〈
|δ̃F x(f)|2

〉
F 2
x0

+

〈
|δ̃F y(f)|2

〉
F 2
y0

−
2Re

〈
δ̃F x(f)δ̃F ∗y(f)

〉
Fx0Fy0

 . (2.48)

One can notice in Eq. (2.48) that the phase-intensity coupling mechanism can indeed
induce strong phase noise for the RF beatnote, when α is large. Moreover, the right hand
side (RHS) of Eq. (2.48) indicates that the RF phase noise does not only depend on the
intensity noises of the two modes (first two terms), but also on their correlation (last
term). Additionally, Eq. (2.48) suggests that the RF phase noise can even be completely
canceled out provided the sum of the first two terms inside the square brackets in the RHS
is equal to the last term. This occurs when the intensities of the two modes are balanced
and their noises are perfectly correlated. After developing the theoretical model, our goal
is now to check the validity of this model by comparing with experimental results. In the
model, the pump noise has been considered as the the dominant of source of noise in the
considered frequency range from 10 kHz to 35 MHz. Moreover, we have assumed that the
pump noises entering into the two laser modes are white noises of identical amplitudes
[Eq. (2.31)]. However, they are partially correlated, η < 1, with a correlation phase ψ
equal to zero [Eq. (2.32)]. In the following, we aim at testing these pump noise properties
experimentally.

2.3 Pump noise measurement

In this chapter, we focus on the DF-VECSEL operating at 1.55µm for which pumping
is performed with a multimode fiber-coupled diode laser operating at 980 nm. As shown
in Fig. 2.1, the two perpendicularly polarized modes of the DF-VECSEL are partially
spatially separated inside the active medium, but pumped by the same pump laser source
(Fig. 2.1). This spatial separation between the modes inside the gain medium forces them
to face different regions of the spatially multimode pump beam (Fig. 2.1). Moreover,
our ultimate goal is to analyze the noise properties of the DF-VECSEL for different
nonlinear coupling strengths between the two laser modes, which will be achieved by
changing the spatial separation between the two modes. In order to fully characterize the
pump noises seen by the two modes, we mimic this situation by the setup schematized
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in Fig. 2.2(a). Here, the pump beam is separated into two paths using a beam spliter
(BS). In both paths, we introduce pinholes of identical radii (75 µm) mimicking the
two laser modes (w ' 75µm). The two pinholes are placed on translation stages, which

D 

Osc 

RFA 

Pump 

D 

RFA 
Mirror 

Pinholes 

BS 
(a) (b) 

(d) Ph
as

e 
ψ 

(d
eg

re
es

) d = 25 µm 

d = 75 µm 

d = 100 µm 

d = 50 µm 

(c) 

d = 0 

C
or

re
la

tio
n 

A
m

pl
itu

de
 (η

)  

Figure 2.2: (a) Schematic of the pump noise correlation measurement setup. BS: beam
spliter D: detectors, RFA: RF amplifiers. (b) Pump RIN spectrum. (c), (d) Noise
correlation amplitude, and phase spectra respectively, for different values of d. The

black staircase-line in (c) shows the measurement floor.

permit to obtain the situation when one pinhole acts as the exact image of the other.
This situation reproduces the condition of perfect overlapping of the two laser modes
inside the gain medium, i.e. d = 0. Therefore, by translating one of the pinholes in
the horizontal direction we can reproduce the situations of different spatial separations d
between the modes inside the gain structure of our DF-VECSEL. After passing through
the pinholes, the pump beams are detected using photodiodes (D). The detected signals
are then amplified with identical RFAs, and finally recorded with a digital oscilloscope.
Then the oscilloscope data are processed using an algorithm designed by Grégoire Pillet
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from Thales Research and Technology (TRT) to obtain the spectra of the pump noises
and their correlation.

We investigate the pump noises for different values of d such as 0, 25µm, 50µm,
75µm, and 100µm. In all these cases, the RIN spectra of the two pump beams are
nearly identical and given by Fig. 2.2(b). This confirms that the pump noises entering
into the two spatially separated laser modes can be modeled identical white noises as
assumed in Eqs. (2.31). Now, we check the validity of the approximations of Eq. (2.32),
which describes the pump noise correlation spectrum. Figures 2.2(c),(d) respectively show
the pump noise correlation amplitude (η) and phase (ψ) spectra for different values of
d. Figure 2.2(c) proves that the pump noises entering the two spatially separated laser
modes are partially correlated (η < 1 ), and the degree of correlation decreases with the
increase of spatial separation d between the modes. Moreover, the correlated part of the
pump intensity noises entering into the two laser modes are in phase (ψ = 0) for all
values of d as presented in Fig. 2.2(d). Besides, these results confirm that η and ψ do not
depend on the noise frequency f in the targeted frequency range from 10 kHz to 35 MHz
(Figs. 2.2(c),(d)). However, one can wonder now why the pump noise correlation factor
η depends on the spatial separation d. Actually, in our DF-VECSEL the pump beam is
coming from a step-index multimode fiber-coupled diode laser. The maximum number
of modes in a step-index multimode fiber can be calculated using the following simple
expression,

Nmax = V 2

2 , (2.49)

where V = πD
λp
×NA. In our case, the multimode fiber [AFS105/125Y(0.22)] carrying the

pump beam has a core diameter (D) of 105µm, and a numerical aperture (NA) of 0.22.
Therefore, at pump wavelength (λp = 980 nm) the maximum number of guided modes
(Nmax) in this fiber is equal to 2741. This large number of modes in the fiber carrying the
pump beam interfere to form speckle pattern at the fiber output, leading to a nonuniform
intensity distribution of the pump beam on the gain structure. This explains why the
degree of correlation (η) of the pump noises entering into the two laser modes decreases
with d.

In the following, these pump noise properties will be utilized to figure out different
noise correlation spectra of the DF-VECSEL. We start by describing the noise correlation
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measurement scheme.

2.4 Noise correlation measurement setup

The detailed description of the cavity architecture for the DF-VECSEL at 1.55µm has
already been provided in the previous chapter (Sec. III). The noise correlation measure-
ments are performed keeping this DF-VECSEL configuration intact. Figure 2.3 shows
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Figure 2.3: Schematic of noise correlation measurement setup. λ/2: half-wave plate, BS:
beam spliter, PBS: polarization beam spliter, D1, D2, D3: detectors, RFA1, RFA2, RF3:

RF amplifiers, ESA: electrical spectrum analyzer.

the schematic of the noise correlation measurement setup. As mentioned before, we are
interested in analyzing the noise correlations for different nonlinear couplings between
the modes. To this aim, we have used three different intra-cavity BCs of thicknesses 1
mm, 0.5 mm, and 0.2 mm, leading to d of 100µm, 50µm, and 20µm, respectively. The
coupling constant C, in addition to d, depends on the mode radii (w) of the two modes
inside the gain structure as follows [Pal et al., 2010]:

C = C0

∫
I(x, y)I(x− d, y)dxdy√∫

I2(x, y)dxdy
∫
I2(x− d, y)dxdy

= C0 exp
(
− d

2

w2

)
, (2.50)
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where I(x, y) denotes the Gaussian intensity profiles of radii w of the laser modes. C0 = 0.8
corresponds to the coupling constant when the two modes fully overlapped inside the gain
structure [Pal et al., 2010]. We recall here that the planar-concave cavity of our DF-
VECSEL as described in the previous chapter, leads to identical radii for the two modes,
w = 72µm. However, thermal heating of the gain structure by the pump modifies the
planar-concave cavity configuration of the VECSEL cavity. Actually, the intensity profile
of the pump beam induces a temperature gradient and, consequently, a refractive index
gradient inside the structure. For the InP-based gain structure of the 1.55µm-VECSEL,
the temperature dependence of the refractive index is positive ( dn

dT
∼ 2×10−4 K−1), leading

to a positive lens induced by the pump intensity distribution. Considering the Gaussian
intensity profile of the pump beam with a radius wPump on the gain structure, the focal
length (flens) of the pump induced thermal lens can be approximated as [Laurain, 2010]

flens '
w2
PumpRTPPump

2ln(2)LSC

(
dn

dT

)
, (2.51)

where LSC , RT respectively denote the length and the thermal impedance of the semicon-
ductor structure, and PPump is the pump power. Using the parameter values corresponding
to our experimental conditions (LSC = 2µm, RT = 8 K.W−1, PPump = 1.7 W), we find
that flens is around 30 cm. Taking into account this positive thermal lensing effect, the
mode radii on the gain structure for the two modes become w ' 75µm. Considering
this modified mode radii (w ' 75µm), we obtain the following coupling constant values
from Eqs (2.50): C ' 0.12 for d = 100µm corresponding to 1 mm-thick BC, C ' 0.5 for
d = 50µm corresponding to 0.5 mm-thick BC, and C ' 0.75 for d = 100µm correspond-
ing to 0.2 mm-thick BC. We perform all the noise correlation measurements for a fixed
pump power equal to 1.7 W, which leads to a total laser power of 25 mW, 40 mw and 60
mW for the 1 mm-, 0.5 mm-, and 0.2 mm-thick BCs, respectively. This difference in the
output powers of our DF-VECSEL for different thicknesses of BC is linked with the fact
that the pump beam could be more tightly focused for thinner BC, as then the spatial sep-
aration of the two laser modes is smaller. The key feature of the experimental scheme, as
shown in Fig. 2.3, is the ability to measure all the relevant noises simultaneously, which is
important to analyze their correlations. The output beam of our DF-VECSEL is divided
into two parts using a beam spliter (BS), and then one part is used for intensity noise
measurements, whereas the other one is utilized to generate the beatnote and measure its
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phase noise. To measure the intensity noises of the two polarizations, we separate them
using the combination of a half-wave plate (λ/2) followed by a polarization beam spliter
(PBS). Thereafter, the two modes are detected using photodiodes (D1, D2). The signals
are then amplified by two identical RF amplifiers (RFA1, RFA2), and finally sent to the
two different channels of a deep-memory digital oscilloscope. To obtain the beatnote, the
two polarizations are mixed using the combination of a λ/2-plate in front of a PBS. The
RF beat signal is detected using a high-speed photodiode (D3). The detected signal is
then amplified using a RF amplifier (RFA3). After that, one part of the signal is directly
sent to an electrical spectrum analyzer (ESA) to record the spectrum of the RF beat-
note. The other part is downshifted to an intermediate frequency (IF) by mixing it with
a high purity local oscillator. Thereafter, the IF signal is sent to the third channel of the
oscilloscope. This permits to measure the phase noise of the RF beatnote simultaneously
with the intensity noises. Finally, all the channels of the oscilloscope are recorded simul-
taneously, and then these data are processed to obtain the noises and their correlation
spectra.

2.5 Intensity noises and their correlations

The correlation between the intensity noises of the two modes in the DF-VECSEL is
expected to play a pivotal role to determine the spectral purity of the RF beatnote, gen-
erated by optical mixing of the two modes. The reason behind this is twofold, (i) the phase
fluctuations are coupled with the intensity fluctuations due to the large α−factor of the
semiconductor active medium of the DF-VECSEL, and (ii) the positively correlated part of
the optical phase fluctuations of the two laser modes cancel out in the beatnote, generated
by optical mixing of the modes. Now, it is well known that the dynamics of a multimode
laser is strongly influenced by the nonlinear coupling between the modes [Otsuka et al.,
1992]. Additionally, we have already evidenced that the correlation between the noise
sources (pump noises) for the two laser modes of the DF-VECSEL depends on the spatial
separation between the modes that defines their coupling strengths (Fig. 2.2). Therefore,
the knowledge about intensity noise correlation and its dependence on nonlinear coupling
strengths between the modes is of utmost importance for a better understanding of the
spectral behavior of the RF beatnote and its phase noise in our DF-VECSEL. In this
section, we present experimental and theoretical intensity noise correlation spectra for

58



Chapter 2. Study of noise in Dual-frequency VECSELs

different coupling strengths between the two cross-polarized modes of the DF-VECSEL.

2.5.1 Impact of nonlinear coupling

Intensity noise correlation spectra are studied for three coupling situations: weak (C =
0.12), intermediate (C = 0.50), and moderately strong (C = 0.74) coupling2, which
are obtained by using 1 mm-, 0.5 mm-, and 0.2 mm-thick BCs, respectively. In the
following, we disclose how the noise correlation spectrum changes with the change of
coupling strengths.

Weak coupling

The results for the weak coupling (C = 0.12) are shown in Fig. 2.4. Figures 2.4(a) rep-
resents the measured RIN spectra of the two modes in the DF-VECSEL, whereas the
corresponding theoretical prediction is reproduced in Fig. 2.4(b). The red and the blue
line correspond to the RIN spectra of x− and y−polarized modes, respectively. The
RIN spectra of both the laser modes are flat before they roll off starting from 1 MHz
due to the limited bandwidth of the laser cavity. This first-order filter like behavior of
the RIN spectra of the two laser modes confirms the relaxation oscillation free class-A
dynamical behavior of our DF-VECSEL. It illustrates one more time how the intensity
noise of the laser can be a good probe for the laser dynamics [McCumber, 1966]. The
RINs of the two modes are slightly different as their losses and/or gains are not exactly
identical. The experimental and theoretical correlation amplitude spectra are given in
Figs. 2.4(c),(d), respectively. The degree of noise correlation is about - 7 dB for frequen-
cies lower than 1 MHz, then it drops to a very low value (- 30 dB) around 5 MHz, and
finally it increases slightly to become approximately -25 dB for all frequencies higher than
10 MHz. Figures 2.4(e),(f) respectively show the experimental and theoretical correlation
phase spectra. These spectra describe that the correlation phase is π for frequencies lower
than 1 MHz, then it starts to roll down and reaches zero at about 5 MHz and remains at
zero for all higher frequencies. The staircase like black curve in Fig. 2.4(c) indicates the
theoretical estimation of the minimum correlation that can be detected by our algorithm

2We do not use the phrase "strong coupling" because it would correspond to C > 1, a situation in
which stable simultaneous oscillation of the two modes is impossible [Sargent III et al., 1974].
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Figure 2.4: Results for the weak coupling (C = 0.12): The spectra of RINs: (a)

experimental, (b) theoretical; correlation amplitude: (c) experimental, (d) theoretical;
correlation phase: (e) experimental, (d) theoretical. The black line in (c) is the
measurement floor. Parameter values used for simulation: rx = 1.2, ry = 1.15,

1/γx = 9.9 ns, 1/γy = 10.4 ns, 1/Γ = 1 ns, η = 0.2, ψ = 0, RINPump = −145 dB/Hz.

used to compute the correlation spectrum. Indeed, this algorithm3 averages the correla-
tion amplitude over a number of samples which increases with the frequency. Thus, by
supposing that the two signals are completely uncorrelated, the algorithm gives the level
of correlation described by this black line. The theoretical predictions for RIN, correlation

3The algorithm is designed by Grégoire Pillet of Thales Research and Technology.

60



Chapter 2. Study of noise in Dual-frequency VECSELs

amplitude, and correlation phase spectra (Figs. 2.4(b),(d),(f), respectively) nicely agree
with the corresponding experimental results (Figs. 2.4(a),(c),(e), respectively).

Intermediate coupling

The results for the intermediate coupling (C = 0.50) are presented in Fig. 2.5. Fig-
ure 2.5(a) shows the experimental RIN spectra, and Fig. 2.5(b) reproduces the theoretical
prediction, confirming good agreement with the experiment. The RIN spectra of the two
modes in this coupling case again prove the class-A dynamical of our DF-VECSEL. The
RINs of the two modes are not exactly identical as their losses/gains are different. The
experiment shows that, in this coupling case, the spectral behaviors of the correlation am-
plitude (Fig. 2.5(c)), and correlation phase (Fig. 2.5(e)) have changed quite significantly
compared to the weak coupling situation. There is a dip in the spectrum of correlation
amplitude at about 2 MHz, whereas it becomes - 3 dB, and - 5 dB respectively for frequen-
cies lower and higher than 2 MHz. This spectral behavior of the correlation amplitude is
also nicely reproduced by our theoretical model (Fig. 2.5(d)). The correlation phase spec-
trum ((Fig. 2.5(e)) exhibits a phase jump around 2 MHz. The phase is π for frequencies
lower than 2 MHz and zero for higher frequencies. The model predicts the same spectral
behavior for the correlation phase as shown in Figs. 2.5(f).

Moderately strong coupling

Figure 2.6 shows the results for the moderately strong coupling situation (C = 0.75). The
RIN spectra, both experimental (Fig. 2.6(a)) and theoretical (Fig. 2.6(b)), again illustrate
the class-A dynamical behavior of the laser. The inequality of the RINs for the two modes
are coming from their different losses and/or gains. More importantly, one can notice a
significant change of slope around 1 MHz in the RIN spectra, which was less prominent
in the case of intermediate coupling (Fig. 2.5(a),(b)), and hardly visible for the weak cou-
pling (Fig. 2.4(a),(b)). In this coupling case, the correlation amplitude (Figs. 2.6(c),(d))
also exhibits a significantly different spectral behavior compared to the weak or interme-
diate couplings. As obtained from the experiment (Fig. 2.6(c)), the correlation amplitude
shows a dip at about 1 MHz, whereas it reaches almost 0 dB for frequencies lower than
1 MHz, and is close to −2 dB for frequencies higher than 1 MHz. The theoretical pre-
diction, as shown in Fig. 2.6(d), nicely reproduces the experimental correlation amplitude

61



Chapter 2. Study of noise in Dual-frequency VECSELs

1 0 k 1 0 0 k 1 M 1 0 M
- 1 5 0
- 1 4 0
- 1 3 0
- 1 2 0
- 1 1 0

RIN
 (d

B/H
z)

F r e q u e n c y  ( H z )

 R I N y  
 R I N x

( a )

1 0 k 1 0 0 k 1 M 1 0 M
- 1 5 0
- 1 4 0
- 1 3 0
- 1 2 0
- 1 1 0 ( b )

RIN
 (d

B/H
z)

F r e q u e n c y  ( H z )

 R I N x
 R I N y

1 0 k 1 0 0 k 1 M 1 0 M
- 3 0

- 2 0

- 1 0

0 ( c )

 E x p e r i m e n t a l
 F l o o rCo

rre
lati

on 
Am

pli
tud

e (
dB

)

F r e q u e n c y  ( H z )
1 0 k 1 0 0 k 1 M 1 0 M

- 3 0

- 2 0

- 1 0

0 ( d )
Co

rre
lati

on 
Am

pli
tud

e (
dB

)

F r e q u e n c y  ( H z )

1 0 k 1 0 0 k 1 M 1 0 M
- 1 8 0
- 1 2 0
- 6 0

0
6 0

1 2 0
1 8 0 ( e )

Co
rre

lati
on 

Ph
ase

 (d
egr

ees
)

F r e q u e n c y  ( H z )
1 0 k 1 0 0 k 1 M 1 0 M

- 1 8 0
- 1 2 0
- 6 0

0
6 0

1 2 0
1 8 0 ( f )

Co
rre

lati
on 

Ph
ase

 (d
egr

ees
)

F r e q u e n c y  ( H z )

Figure 2.5: Results for the intermediate coupling (C = 0.50). The spectra of RINs: (a)
experimental, (b) theoretical; correlation amplitude: (c) experimental, (d) theoretical;

correlation phase: (e) experimental (d) theoretical. Parameter values used for
simulation: rx = 1.32, ry = 1.35, 1/γx = 13.9 ns, 1/γy = 16.7 ns, 1/Γ = 1 ns, η = 0.6,

ψ = 0, RINPump = −145 dB/Hz.

spectrum (Fig. 2.6(c)). In the correlation phase spectrum, obtained from both experiment
(Fig. 2.6(e)) and theory (Figs. 2.6(f)), there is a π-phase jump at about 1 MHz, whereas
the phase is π for lower frequencies and zero for higher frequencies. The theory again
shows very good matching with the experiment.

The parameter values used for simulations in all three coupling conditions are obtained
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Figure 2.6: Results for the moderately strong coupling (C = 0.75). The spectra of RINs:
(a) experimental, (b) theoretical; correlation amplitude: (c) experimental, (d)

theoretical; correlation phase: (e) experimental (d) theoretical. Parameter values used
for simulation: rx = 1.4, ry = 1.42, 1/γx = 20.2 ns, 1/γy = 21.2 ns, 1/Γ = 1 ns, η = 0.75,

ψ = 0, RINPump = −145 dB/Hz.

from the experimental conditions except for the value of τ (1 ns), which is taken from
previous experiments performed using this structure [Zhao et al., 2011; Baili et al., 2014].
Here, the important points to note are the values of the pump RIN, the pump noise
correlation amplitude η, and phase ψ used for different coupling situations. The pump
RIN is equal to -145 dB/Hz for all coupling situations, whereas η = 0.2 for the weak
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coupling (d = 100 µm), η = 0.6 for the intermediate coupling (d = 50 µm), and η = 0.75
for the moderately strong coupling (d = 20 µm) and ψ is zero in all the cases. These values
are obtained from the pump noise measurements as shown in Figs. 2.2(c),(d). The good
agreement between the experiment and the theoretical model in all the coupling situations
proves the validity of our model. However, we are willing to fully understand why the
spectral behaviors of the intensity noises and their correlations change significantly with
the change of nonlinear coupling strengths. This leads to the physical interpretation of
the noise correlation results contained in the following section.

2.5.2 Physical interpretation

We start by recalling the analogy between a single mode laser and a single mechani-
cal oscillator (for example a mass attached to a spring). If this mechanical oscillator is
driven out of its steady-state, it comes back to its steady-state either exponentially or
in a damped-oscillatory manner depending on the level of damping. Similarly, the re-
laxation mechanism of a single mode laser around its steady-state is either exponential
if the laser is class-A type or damped-oscillatory for the class-B laser. If one considers
now the case of a two-coupled mechanical oscillator system, the relaxation mechanism
of such a system can be analyzed by introducing the eigenrelaxation mechanisms of the
global system such as the in-phase and the anti-phase relaxation mechanisms [Otsuka
et al., 1992]. These two eigenrelaxation mechanisms exhibit different eigenfrequencies
and/or damping rates. The dual-frequency laser, sustaining simultaneous oscillation of
two coupled modes, is an exact analogue of a two-coupled mechanical oscillator system.
Moreover, the class-A dynamics of the DF-VECSEL has some similarities with the over-
damped behavior of a two-coupled mechanical oscillator system. Therefore, analogous to
any coupled-oscillator system, the dynamical behavior of our DF-VECSEL must rather
be analyzed by considering the in-phase and the anti-phase relaxation mechanism of the
global system4. The transfer functions of the in-phase and anti-phase responses can be
calculated by diagonalizing the 2 × 2 matrix of Eq. (2.40). The detailed derivation has
been provided in AppendixC. The normalized spectra of the in-phase and the anti-phase
noises [Eqs. (C.16-C.16) in AppendixC] for all three coupling situations are depicted in

4The in-phase and anti-phase relaxation modes are exact only when the two modes have the same
gain and losses. In general, the relaxation modes are combinations of the two laser modes (AppendixC).
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Fig. 2.7. It is important to note that the noise response of each laser mode is actually
the superposition of the in-phase and the anti-phase response. With this simple physical
analogy, we can well explain all the noise correlation spectra.

In the case of weak coupling, the anti-phase mechanism dominates over the in-phase
one for frequencies lower than 5 MHz, whereas for higher frequencies the in-phase mecha-
nism prevails, but by a very little margin, as shown by both experiment (Fig. 2.7(a)) and
theory (Fig. 2.7(b)). This explains the π and the zero correlation phase respectively for
frequencies lower and higher than 5 MHz in Figs. 2.4(e),(f). Additionally, the correlation
amplitude is low (- 7 dB) for frequencies lower than 5 MHz and it becomes even lower (-
25 dB) for higher frequencies (Fig. 2.4(c),(d)). This low noise correlation is linked to the
fact that the noise sources (pump noises) for the two laser modes are hardly correlated
(η = 0.2). Moreover, the difference between the correlation amplitudes for frequencies
higher and lower than 5 MHz is coming from the different degrees of dominance between
the anti-phase and in-phase mechanisms (Fig. 2.7(a),(b)).

Figures 2.7(c),(d) represent the in-phase and anti-phase noise spectra for the inter-
mediate coupling situation obtained from experiment and theory, respectively. These
figures show that the anti-phase response is dominating over the in-phase one for fre-
quencies lower than the anti-phase cut-off frequency of about 2 MHz, whereas above this
cut-off frequency the in-phase mechanism becomes dominant. As a consequence, the cor-
relation phase is π and zero respectively for frequencies lower and higher than 2 MHz
(Figs. 2.5(e),(f)). Moreover, the π−phase jump around 2 MHz is associated with the
fact that the transition from dominant anti-phase to dominant in-phase behavior occurs
around this cut-off frequency. Additionally, the higher degree of correlation compared to
the weak coupling case on both sides of the dip at 2 MHz in the correlation amplitude
spectrum (Figs. 2.5(c),(d)) is linked with the facts that pump noises for the two modes are
more correlated and the coupling is stronger than previously. The dip in the correlation
amplitude spectrum around 2 MHz originates from the destructive interference between
the nearly identical intensity noises of the two modes as the correlation phase exhibits
a π-phase jump around this frequency (Figs. 2.5(e),(f)). Moreover, different degrees of
dominance between the in-phase and anti-phase responses (Figs. 2.7(c),(d)) lead to the
unequal values of correlation amplitude for frequencies lower and higher than 2 MHz. In
this coupling case, the cut-off frequency of the anti-phase response (2 MHz) is lower than
the weak coupling case (5 MHz) due to higher excitation ratios (rx, ry) of the two modes,
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Figure 2.7: In-phase and anti-phase noise spectra. Weak coupling (C = 0.12): (a)
experimental, (b) theoretical; intermediate coupling (C = 0.50): (c) experimental, (d)
theoretical; moderately strong coupling (C = 0.75): (e) experimental, (f) theoretical.
Parameter values used for simulation: (b) rx = ry = r = 1.2, τx = τy = τ = 10 ns,
η = 0.2; (d) rx = ry = r = 1.34, τx = τy = τ = 15 ns, η = 0.6; (f) rx = ry = r = 1.41,

τx = τy = τ = 20.5 ns, η = 0.75; ψ = 0, RINpump = −145 dB/Hz in all cases.

in addition to the stronger coupling.

For the moderately strong coupling, the in-phase and anti-phase noise spectra are
reproduced in Fig. 2.7(e) (experimental) and Fig. 2.7(f) (theoretical). Figures 2.7(e),(f)
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illustrate that the anti-phase response strongly dominates over the in-phase one for fre-
quencies lower than 1 MHz, whereas for higher frequencies the in-phase response becomes
stronger. Moreover, in this case the stronger coupling leads to a higher relative degree of
dominance between the in-phase and anti-phase responses than the weak and the inter-
mediate coupling situations. In addition to that, here the correlation between the pump
noises for the two modes is also higher than the preceding coupling cases (Fig. 2.2). All
these lead to a higher degree of correlation than the weak or the intermediate coupling
case on both sides of the dip as depicted in Figs. 2.6(c),(d). Here also the dip in the corre-
lation amplitude spectrum at 1 MHz originates from the destructive interference between
the nearly identical intensity noises of the two laser modes as the correlation phase jumps
by π at this frequency (Figs. 2.6(e),(f)). This π−phase jump at 1 MHz in the correlation
phase spectrum is linked with the transition from dominant anti-phase to dominant in-
phase behavior. Moreover, the correlation phases of π and zero for frequencies higher and
lower than 1 MHz respectively come from dominant anti-phase and dominant in-phase
responses as shown by Figs. 2.7(e),(f). Finally, the RIN spectra of the two laser modes,
which can be obtained by superposing the in-phase and the anti-phase response, show a
significant change of slope at about 1 MHz (Figs. 2.6(a),(b)). This is again linked with
the fact that the anti-phase and in-phase noise spectra cross around 1 MHz. This crossing
here occurs at a lower frequency than the weak or intermediate coupling, as the coupling
between the two modes is stronger and their excitation ratios (rx, ry) are higher.

This simple physical picture does not only make our understanding better but also
put our theoretical model on a more solid basis. To further prove the generality of
the theoretical model, the intensity noise correlation measurements have been performed
for a DF-VECSEL operating at 1µm wavelength. For the 1µm DF-VECSEL also, the
theoretical model shows excellent agreement with the experimental results. The intensity
noise correlation results for the 1µm DF-VECSEL are reported in AppendixB.

2.6 RF beatnote and its phase noise

After describing the spectral behaviors of the intensity noises and their correlation, our
goal now is to investigate the spectral behavior of the RF beatnote generated by optical
mixing of the two modes and its phase noise. In the previous chapter, we have seen
that the phase noise spectrum exhibits different slopes for different offset frequencies.
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On the other hand, the intensity noise measurements, presented in the previous section,
have revealed that the intensity noises of the two modes of our DF VECSEL are never
perfectly correlated. Additionally, we have evidenced that the intensity noise correlation
spectra strongly depend on the nonlinear coupling between the two laser modes. As
predicted by our theoretical model [Eq. (2.48)], these intensity noise spectral properties
can have a significant effect on the phase noise spectrum of the RF beatnote due to the
large α−factor of the semiconductor active medium of the DF-VECSEL. In the following,
we aim at verifying all these facts by measuring the RF beatnote and its phase noise
spectrum for different coupling situations, and comparing with the predictions of the
theoretical model.

2.6.1 RF phase noise for different nonlinear couplings

We have measured the RF beatnote and its phase noise spectra in the targeted frequency
range (10 kHz to 35 MHz) for three different coupling situations, similar to the intensity
noise measurement such as the weak (C = 0.12), intermediate (C = 0.50), and moderately
strong couplings (C = 0.75).

Weak coupling

Figure 2.8 presents the results for the weak coupling situation (C = 0.12). The PSD of
the RF phase noise is presented in Fig. 2.8(a), whereas the corresponding RF beatnote
spectrum is shown in Fig. 2.8(b). In Fig. 2.8(a), the filled-pink circles represent the ex-
perimental phase noise PSD, and the theoretical prediction from Eq. (2.48) is reproduced
by the dash-dotted blue line. The black squares shows the measurement noise floor.
Therefore, the model describes that for the weak coupling, the dominant contribution
to the RF phase noise for offset frequencies higher than 500 kHz comes from the pump
intensity noise via phase-intensity coupling due to the large α−factor of the quantum-well
based active medium of our DF-VECSEL. However, as can be seen from Fig. 2.8(a), for
lower frequencies the measured phase noise level is much higher than the theoretical pre-
diction. This will be clarified hereafter. The remaining small discrepancy between theory
and experiment for frequencies higher than 5 MHz comes from the fact that the phase
noise reaches the measurement floor. Therefore, it should not be taken into account for
the discussion. In the beatnote spectrum as shown in Fig. 2.8(b), one can clearly see that
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Figure 2.8: Results for the weak coupling (C = 0.11). (a) Power spectral density (PSD)
of the phase noise of the RF beatnote. (b) Beatnote spectrum, measured by the ESA
with resolution bandwidth (RBW) = 5 kHz and video bandwidth (VBW) = 5 kHz.

Parameter values: α = 10, the other parameter values are as in Fig. 2.4.

the beat signal centered at 2.208 GHz is sitting on a pedestal, originating from the phase
noise as depicted in Fig. 2.8(a).

Intermediate coupling

The results for the intermediate coupling (C = 0.50) are given in Fig. 2.9. Figure 2.9(a)
shows the experimental and theoretical results for the phase noise PSD, and Fig. 2.9(b)
reveals the corresponding beatnote spectrum. Similar to the weak coupling case, here the
beatnote centered at 4.1912 GHz is resting over a few megahertz wide pedestal linked
with the phase noise of Fig. 2.9(a). One can see from Fig. 2.9(a) that the theory (dash-
dotted blue line) reproduces the measured phase noise level (filled-pink circles) only for
frequencies higher than 300 kHz, whereas for low frequencies the experiment exhibits a
much higher phase noise level than what is expected from our theoretical model. This
confirms that for frequencies higher than 300 kHz, the phase noise of the RF beat note
comes from the pump intensity noise trough phase-intensity coupling linked with the large
α−factor of the semiconductor active medium of our laser. We again do not take into
account the phase noise values for frequencies higher than 3 MHz as they are limited by
the measurement floor (black squares).
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Figure 2.9: Results for the intermediate coupling (C = 0.5). (a) Power spectral density
(PSD) of the phase noise of the RF beatnote. (b) Beatnote spectrum, measured by ESA

with resolution bandwidth (RBW) = 5 kHz and video bandwidth (VBW) = 5 kHz.
Parameter values: α = 10, the other parameter values are as in Fig. 2.5.

Moderately strong coupling

The results corresponding to the moderately strong coupling situation are reproduced in
Fig. 2.10. Here, the measured RF phase noise spectrum and the corresponding theoretical
spectrum are respectively represented by the filled-pink circles and the dash-dotted blue
line in Fig. 2.10(a). Similar to the preceding coupling cases, the theoretical spectrum
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Figure 2.10: Results for the moderately strong couplning C = 0.74. (a) Power spectral
density (PSD) of the phase noise of the RF beatnote. (b) Beatnote spectrum, measured
by ESA with resolution bandwidth (RBW) = 5 kHz and video bandwidth (VBW) = 5

kHz. Parameter values: α = 10, the other parameter values are as in Fig. 2.6.

is obtained from Eqs. (2.48), which takes into account only the phase-intensity coupling
mechanism due to large α−factor of the semiconductor gain medium of our laser. One can
find in Fig. 2.10(a) that the theoretical prediction matches nicely the experiment only for
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frequencies higher than 100 kHz, whereas for lower frequencies the experimental results
show much higher phase noise level than what could be expected from the theory. For
this moderately strong coupling situation, the beatnote centered at 3.692 GHz is again
siting on a pedestal of a few megahertz width as shown in Fig. 2.10(b), and this pedestal
originates from the phase noise of Fig. 2.10. Here also the mismatch between theory and
experiments for frequencies higher than 2 MHz should not be considered as the phase
noise reaches the measurement floor (black squares).

If now one carefully observes the theoretically expected phase noise spectra for different
coupling situations, it can be found that the phase noise level increases for stronger
coupling in the low frequency region of the spectra. Moreover, the matching between
the experiment and theory is better for stronger coupling. In the following, we try to
provide a physical explanation for this dependence of the RF phase noise on the nonlinear
coupling strengths between the laser modes.

Explanation

To model the phase noise of the RF beatnote, we have only taken into the contributions
from the intensity noises of the two modes via phase-intensity coupling mechanism, gov-
erned by the large α−factor of the VECSEL. Therefore, since the intensity noises and
their correlations are strongly dependent on the coupling strengths between the modes,
so is it for the phase noise of the RF beatnote generated by mixing the two laser modes.
To describe the intensity noise correlation spectra in the previous section, we have invoked
the idea of the in-phase and anti-phase relaxation mechanisms. The same very idea can
be utilized to explain the phase noise results as well. For low offset frequencies where
the anti-phase mechanism is dominating (Fig. 2.7), the last term in the RHS of Eq. (2.48)
becomes negative and effectively adds up to the first two terms, thus providing a high
RF phase noise. On the contrary, for high offset frequencies the in-phase mechanism
dominates (Fig. 2.7). Consequently, the last term of Eq. (2.48) remains positive and must
be subtracted from the first two terms, leading to a low RF phase noise. Moreover, the
relative dominance of the in-phase and anti-phase responses is dependent on the coupling
strengths as shown in Fig. 2.7. Therefore, the stronger the nonlinear coupling, the stronger
is the degree of dominance of the anti-phase response over the in-phase one for frequencies
lower than the anti-phase cutoff frequency. This explains why the part of the phase noise
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coming from phase-intensity coupling increases for low frequencies with the increase of
the coupling strength (Figs. 2.8(a)-2.10(a)). Moreover, the in-phase response dominates
for frequencies higher than the anti-phase cutoff frequency. Usually, in-phase response
does not depend on the strength of coupling. However, if we compare the phase noise
spectra of different coupling situations (Figs. 2.8(a)-2.10(a)), we can find that the phase
noise level decreases with the increase of the coupling strength in the frequency range of
dominating in-phase mechanism. This is due the fact the degree of correlation (η) be-
tween the noise sources (pump noises) for the two laser modes increases with the increase
of nonlinear coupling. However, there is always some discrepancies between the measured
phase noises and the corresponding theoretical predictions in all coupling situations for
low frequencies as illustrated in Figs. 2.8(a)-2.10(a). This indicates that there must be
some other mechanism apart from the phase-intensity coupling effect that degrades the
spectral purity of the RF beatnote. In our DF-VECSEL, it is the thermal fluctuations,
which predominantly contribute to the phase noise of the RF beatnote in these low offset
frequencies. In the following, we further describe this thermal effect.

2.6.2 Thermal noise

Thermal fluctuations can deteriorate the noise performance of the laser by introducing
fluctuations of the laser cavity length either by varying the effective refractive index inside
the cavity or by varying the physical length of the cavity [Horak et al., 2006]. These cavity
length fluctuations are translated into fluctuations of the optical phases of the laser modes.
In the present section, we start by deriving the PSD of the optical phase noise for a single
mode laser induced by such thermal fluctuations [Tropper and Hoogland, 2006; Laurain
et al., 2009, 2010]. Then, we extend this to the case of our dual-frequency VECSEL.

Single mode laser

The instantaneous angular frequency of a laser, which is an integer multiple of the free
spectral range of the cavity, is given by

ω(t) = q
πc

Lopt(t)
, (2.52)
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where q is an integer and c is the vacuum speed of the light. The time varying quantity
Lopt(t) denotes the total optical length of the laser cavity, which can be expressed as

Lopt(t) = Lext + nSCLSC , (2.53)

where Lext is the length of the external cavity, and where nSC and LSC are the effective
refractive index and the thickness of the semiconductor structure (Fig. 2.1). Then the
variation of the optical frequency due to a variation of the total cavity length can be
given as

δωT (t) = −ω(t)δLopt(t)
Lopt(t)

. (2.54)

We know that the optical length of the cavity can vary due to the variation of either the
physical length of the cavity or the refractive index. Therefore, the variation of the total
length of the cavity can be approximated as

δLopt(t) = δLext(t) + δn(t)LSC , (2.55)

where δn(t) is the temporal fluctuations of the refractive index, thermally induced and
averaged over the volume of the optical mode. Here, we have neglected the variation of
the physical length of the semiconductor structure (LSC). Therefore the variation of the
optical frequency can be given by

δωT (t) ' − ω0

Lext

[
δLext(t) + δn(t)LSC

]
. (2.56)

The dominant contribution in the thermal fluctuations of the optical length of the cavity
comes from the fluctuations of the refractive index of the semiconductor structure [Laurain
et al., 2009, 2010], leading to:

δωT (t) ' − ω0

Lext
δn(t)LSC . (2.57)

We can re-write it as

δωT (t) ' −ω0ΓT δT (t) , (2.58)

73



Chapter 2. Study of noise in Dual-frequency VECSELs

where δT (t) denotes the fluctuation of the temperature, averaged over the optical mode
volume and ΓT is defined as

ΓT = LSC

Lext

dn

dT
. (2.59)

In general, the temperature fluctuation δT (t) of the semiconductor structure averaged
over the optical mode volume is the sum of two terms [Laurain, 2010]:

δT (t) = δTk(t) +RT δPPump(t) ∗ h(t) , (2.60)

where δTk(t) defines the fundamental thermodynamic fluctuations of the semiconductor,
when it is maintained at a fixed temperature T and the last term of the right hand side
describes the effect of temperature fluctuations induced by the pump power fluctuations.
‘∗’ represents the convolution product. RT is the thermal impedance of the semiconduc-
tor structure, averaged over the volume of the optical mode. δPPump(t) holds for the
fluctuations of the pump power and h(t) defines the impulse temperature response of the
semiconductor structure to the pump power. As usually performed [Laurain et al., 2010],
we model the thermal transfer function H(f), which is the Fourier transform of h(t), as
a first-order low-pass filter, leading to:

|H(f)|2 = 1
1 + (2πfτT )2 . (2.61)

The order of magnitude of the response time (τT ) of thermal diffusion is given as [Davis
et al., 1998]

τT '
w2
Pump

2πDT

, (2.62)

where wPump is the waist of the pump beam on the semiconductor medium and DT is
the thermal diffusion coefficient. To evaluate the order of magnitude of the first term
in the right-hand side of Eq. (2.60), we write the variance of the intrinsic temperature
fluctuations of the semiconductor due to the fundamental thermodynamic fluctuations
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from [Chui et al., 1992; Gorodetsky and Grudinin, 2004; Lauer and Amann, 2005]:

〈
δT 2

k

〉
= kBT

2

CvV
. (2.63)

Here kB is Boltzman’s constant (kB = 1.38×10−23 J.K−1), Cv is the specific heat capacity,
and V ' πw2LSC represents the volume of the semiconductor, occupied by the optical
mode (w, laser beam waist). Using parameter values relevant for our InP-based 1.55µm-
VECSEL (T = 290 K, Cv = 1.2 × 106 J.K−1.m−3, w = 75µm, LSC = 5µm), we obtain a
temperature noise of

√
〈δT 2

k 〉 ' 4µK. Considering a Gaussian distribution for δTk leads to
a full width at half maximum (FWHM) of about 10µK. This temperature noise induces
refractive index fluctuations inside the gain medium due to its temperature dependence
(dn/dT ' 2×10−4 K−1, dλ/dT ' 0.1 nm.K−1), leading to a FWHM linewidth of about 50
kHz. It is important to mention that this is a rough estimation of the effect. To be more
rigorous, one needs to evaluate phase fluctuations due to this temperature fluctuations,
and then Fourier transform it to obtain the spectrum. However, in our VECSEL the
effect of this fundamental thermodynamic fluctuations is extremely small compared to
the pump noise induced thermal effect as shown in the following.

The PSD of the thermal fluctuations induced by the fundamental thermodynamic
fluctuations is given by [Laurain, 2010]

STh(f) = 4kBτTT 2

CvV
. (2.64)

Similarly, the thermal noise PSD induced by the pump power fluctuations can be expressed
as

SP(f) = R
2
T |H(f)|2RINPump(f)P 2

Pump , (2.65)

where RINPump(f) is the pump RIN as defined in Eq. (2.33), and PPump is the incident
pump power. For our laser, if we compare the PSD of the thermodynamic fluctuations
(STh(f)) with the PSD of the thermal fluctuations, induced by the pump power fluctu-
ations (SP (f)), we find that the effect of the fundamental thermodynamic fluctuations
is very small (∼ 105 times smaller) compared to the effect of the pump power fluctua-
tions. Therefore, in the following, we neglect the effect of fundamental thermodynamical

75



Chapter 2. Study of noise in Dual-frequency VECSELs

fluctuations, i.e., the first term in the right-hand side of Eq. (2.60). We can then Fourier
transform Eq. (2.58) and obtain the optical phase noise PSD as

ST (f) = ω2
0Γ2

TR
2
T

4π2f 2 |H(f)|2RINPump(f)P 2
Pump

= |Λ(f)|2|δ̃N0(f)|2 , (2.66)

where the transfer function Λ(f) reads

|Λ(f)|2 =
ω2

0Γ2
TR

2
TP

2
Pump

4π2f 2N2
0
|H(f)|2 . (2.67)

In the following, we will extend this thermal noise model of a single mode laser to our
DF-VECSEL, sustaining simultaneous oscillation of the two cross-polarized modes.

Dual-frequency VECSEL

Our interest now is to evaluate the contribution from the thermal effect to the phase noise
of the RF beatnote, generated by optical mixing of the two modes of the DF-VECSEL.
We know that the phase noise of the RF beatnote is equal to the difference between the
optical phase noises of the two laser modes [Eq. (2.5)]. Therefore, the phase fluctuations
of the RF beatnote only due to the thermal fluctuations of the refractive index of the
active medium induced by pump intensity noise can be expressed as

δ̃φ
T

Beat(f) = δ̃φ
T

x (f)− δ̃φTy (f)
= Λx(f)δ̃N0x(f)− Λy(f)δ̃N0y(f) , (2.68)

where δ̃φTx (f), δ̃φTy (f) are the fluctuations of the optical phases of the two laser modes
due to the thermal noise and δ̃φ

T

Beat(f) is the corresponding RF phase fluctuation in
the frequency domain (the superscript ‘T ’ indicates that we consider only the thermal
noise). Moreover, δ̃N0x(f) and δ̃N0y(f) are the pump fluctuations for the two cross-
polarized laser modes as defined by Eqs. (2.29-2.30). Now, we have already evidenced
that (Figs. 2.2), the pump noises entering into the two laser modes are white noises of
identical amplitudes, and are partially correlated with a correlation amplitude η < 1,
and a phase ψ = 0. Additionally, since the two cross-polarized modes with a frequency
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difference in the RF range are oscillating inside the same cavity and pumped by the same
laser, we can consider |Λx(f)|2 = |Λy(f)|2 = |Λ(f)|2 [Eq. (2.67)]. Therefore, the RF phase
noise PSD in our dual-frequency VECSEL due to the thermal fluctuations induced by
pump intensity noise reads as

STBeat(f) = 2(1− η cosψ)|Λ(f)|2|δ̃N0|2 . (2.69)

It is important to mention here that Eq. (2.69) is valid only when the other mechanism is
neglected. Nevertheless, Eq. (2.69) infers that the phase noise of the RF beatnote due to
the pump noise induced thermal fluctuations of the refractive index of the semiconductor
medium does not only depend on the PSD of the pump noise, but also on the correlation
(η, ψ) between the pump fluctuations entering into the two laser modes. More specifically,
the pump noise induced thermal fluctuations provide a significant contribution to the RF
phase noise as long as the pump fluctuations for the two laser modes are not perfectly
correlated (η < 1). Once more time this proves the importance of the pump noises and
their correlation to determine the noise properties of our DF-VECSEL.

2.6.3 Total phase noise of the beatnote

Now, one can wonder whether the two mechanisms, thermal effect and phase-intensity
coupling effect, should be added coherently or incoherently to obtain the total phase noise
of the RF beatnote. To clarify this doubt one should consider the driving forces behind
these two mechanisms. In our DF-VECSEL, both the thermal and the phase-intensity
coupling mechanisms are driven by the same source, which is the pump intensity noise.
Therefore, the contributions from the thermal effect and the phase-intensity coupling
effect must be added coherently to obtain the total phase noise, leading to

δ̃φBeat(f) = δ̃φ
α

Beat(f) + δ̃φ
T

Beat(f) . (2.70)

This gives the following expression for the PSD of the total phase noise of the RF beatnote

SBeat(f) = SαBeat(f) + STBeat(f) + 2Re
[
δ̃φ

α

Beat(f)δ̃φTBeat(f)∗
]
. (2.71)
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It is important to note that the third term in the right hand side of Eq. (2.71) becomes zero
if the two mechanisms, thermal effect and phase-intensity coupling effect, are incoherent.

In the following, we will compare the RF phase noise spectra as obtained from the
experiment with the theoretical prediction of Eq. (2.71).

2.6.4 Complete description of the RF phase noise spectrum

We have already shown that the phase-intensity coupling mechanism due to the large
α−factor of our DF-VECSEL can only explain the high frequency part of the RF phase
noise spectrum for all coupling cases (Figs. 2.8-2.10). Consequently, we have introduced
the pump noise induced thermal effect in the model, hoping to be able to fully explain the
phase noise spectrum of the RF beatnote. Moreover, the effect of spontaneous emission
has also been investigated (see AppendixD). In Fig. 2.11, we have reproduced the theoreti-
cal predictions of the phase noise levels coming from different mechanisms such as thermal
effect (dashed green line), phase-intensity coupling effect (dash-dotted blue line), sponta-
neous emission effect (dash-dotted red line) and compared with the measured phase noise
spectra (filled-pink circles) in all three coupling cases. Figures 2.11(a),(b),(c) respectively
represent the results for weak (C = 0.12), intermediate (C = 0.50), and moderately strong
(C = 0.75) coupling situations. As one can observe in Fig. 2.11, in all three coupling situa-
tions, the RF phase noise for the low offset frequencies predominantly originates from the
thermal noise, whereas the phase-intensity coupling effect dominates for the high frequen-
cies. Moreover, the crossing between the contributions of the thermal (dashed green line)
and phase-intensity coupling (dash-dotted blue line) mechanisms occurs at a lower offset
frequency for a stronger coupling (Fig. 2.11). Additionally, the theoretical prediction of
the phase noise coming from spontaneous emission (dash-dotted red line) shows that this
effect hardly contributes in our laser.

Now, if we carefully look at the level of the phase noise coming from the thermal
effect, we can notice that the noise level decreases with the increase of the nonlinear
coupling strengths (Fig. 2.11). This is again linked with the fact that the pump noise
correlation factor η is higher for smaller spatial separation (d), consequently stronger
coupling (Fig. 2.2(c)), leading to lower RF phase noise as predicted in Eq. (2.69). This
decrease of thermal noise also explains why the crossing between the dashed green and
dash-dotted blue lines moves to a lower frequency for a stronger coupling. Therefore, we

78



Chapter 2. Study of noise in Dual-frequency VECSELs

10k 100k 1M 10M

-140

-120

-100

-80

-60

-40 Experimental
Theoretical
α-factor effect
Thermal effect
Spontaneous
emission
Noise floor

Ph
as

e
N

oi
se

(d
B

c/
H

z)

Frequency (Hz)

(a)

10k 100k 1M 10M

-140

-120

-100

-80

-60

-40 Experimental
Theoretical
α-factor effect
Thermal effect
Spontaneous
emission
Noise floor

Ph
as

e
N

oi
se

(d
B

c/
H

z)

Frequency (Hz)

(b)

10k 100k 1M 10M

-140

-120

-100

-80

-60

-40 Experimental
Theoretical
α-factor effect
Thermal effect
Spontaneous
emission
Noise floor

(c)

Ph
as

e
N

oi
se

(d
B

c/
H

z)

Frequency (Hz)

Figure 2.11: Comparison between the experiment and the complete theoretical model
for the RF beatnote phase noise, (a) weak coupling, (b) intermediate coupling, and (c)

moderately strong coupling. Parameter values: DT = 0.372 cm2S−1,
dn/dt = 2.0× 10−4 K−1, LSC = 5µm, Lext = 4.76 cm, wp = 50µm, RT = 12 KW−1,
PPump = 1.7 W. The other parameter values are identical as in Figs. 2.4,2.5,2.6

respectively for (a),(b),(c).

79



Chapter 2. Study of noise in Dual-frequency VECSELs

can conclude that our theoretical model is good enough to explain not only the intensity
noise properties but also the phase noise spectra of the RF beatnote in our DF-VECSEL.
The RF phase noise measurements are also performed with a DF-VECSEL operating
at 1 µm. For this DF-VECSEL also, theory quite nicely reproduces all the experimental
results. The phase noise spectra for the 1 µm DF-VECSEL for different coupling strengths
between the two laser modes are presented in AppendixB. This again proves the generality
of our simple theoretical model based on modified rate equations.

2.7 Correlation between RF phase noise and inten-
sity noises

In the preceding sections, we have proved that the theoretical model can indeed fully
explain the following noise properties of our DF-VECSEL, (i) the intensity noises and their
correlations, and (ii) the phase noise of the RF beatnote for different coupling situations.
However, in order to further test this model, in particular, the scenario that we have
proposed for the propagation of the pump noise to the RF beatnote phase noise, we
choose to measure the correlation between the phase noise of the RF beatnote and the
intensity noises of the two laser modes generating the RF beatnote for all three previous
coupling situations. Then, we compare these measured noise correlation spectra with the
theoretically expected spectra.

Weak coupling

The experimental and theoretical results for the weak coupling (C = 0.12) are repro-
duced in Fig. 2.12. Figure 2.12(a) shows the measured correlation amplitude spectra. The
red-squared-line and blue-circled-line represent the amplitude of the correlation between
the RF phase noise with the intensity noises of x- and y-polarized modes, respectively.
The correlation amplitudes for the two modes are not perfectly identical as their intensity
noises are different (see Figs. 2.4(a),(b)) due to the difference between their losses and/or
gains. The correlation amplitude is high (- 4 dB) for low frequencies and it starts to de-
crease for frequencies above 1 MHz. The theoretical model satisfactorily reproduces this
behavior, as shown in Fig. 2.12(b). In Fig. 2.12(a), the decrease of the correlation ampli-
tude for frequencies higher than 5 MHz is due to the fact that the RF phase noise reaches
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Figure 2.12: Correlation of the RF phase noise with the intensity noises for the weak
coupling. Correlation amplitude: (a) experiment, (b) theory; correlation phase: (c)

experiment, (d) theory.

the measurement floor level for these frequencies (Fig. 2.11(a)). This explains the dis-
crepancy here with the theory (Fig. 2.12(b)). The experimental correlation phase spectra
are reproduced in Fig. 2.12(c). The corresponding theoretical spectra (Fig. 2.12(d)) show
good agreement with the experiment. The noise correlation phase associated with the
x−polarized mode (red squares) always differs by π from the correlation phase associated
with y− polarized mode (blue circles). Moreover, the correlation phase is +π/2(−π/2)
for low frequencies, then it starts to roll-off around 100 kHz and reaches zero (±π) at
about 1 MHz, and remains at zero (±π) for all higher frequencies for the y-polarized
(x-polarized) mode. This phase shift is due to the transition between the frequency range
where thermal phase noise dominates and the frequency range where the phase-intensity
coupling mechanism dominates. We do not take into account the fall of the phase values
for frequencies higher than 5 MHz in the experimental correlation phase spectra (Fig.
2.12(c)) as the RF phase noise approaches the measurement floor (Fig. 2.11(a)).
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Intermediate coupling

Figure 2.13 reveals the correlation spectra between the intensity noises of the two-cross po-
larized modes with the RF phase noise for the intermediate coupling situation (C = 0.5).
The measured correlation amplitude spectra are given in Fig. 2.13(a), whereas Fig. 2.13(b)
shows the corresponding theoretical predictions. For the intermediate coupling also,
the noise correlation amplitudes corresponding to the two modes (blue circled-line, red
squared-line) differ due to their nonidentical intensity noises (see Figs. 2.5(a),(b)) linked
with their unequal losses/gains. In this coupling case, the correlation amplitude becomes
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Figure 2.13: Correlation of the RF phase noise with the intensity noises for the
intermediate coupling. Correlation amplitude: (a) experiment, (b) theory; correlation

phase: (c) experiment, (d) theory.

slightly higher (- 3 dB) than the weak coupling one for frequencies lower than 500 kHz,
and for higher frequencies it decreases as in the weak coupling case. Figures 2.13(c),(d)
respectively represent the experimental and theoretical noise correlation phase spectra.
Like in the weak coupling case, here also the correlation phases associated with x− (red
squares) and y−polarized mode (blue circles) always differ by π. In addition to that,
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the correlation phase is +π/2 (−π/2) at the starting frequency of 10 kHz, then it starts
rolling off and becomes zero (±π) around 500 kHz, and maintains this value for all higher
frequencies for the y−polarized (x−polarized) mode. The theoretical predictions for both
correlation amplitude (Fig. 2.13(b)) and phase spectra (Fig. 2.13(d)) are in good agree-
ment with the corresponding experimental ones (Fig. 2.13(a),(c), respectively), except for
frequencies higher than 3 MHz. This discrepancy is again linked with the fact that the
phase noise of the RF beatnote is close to the measurement floor for these frequencies
(Fig. 2.11(b)), and hence this should not be taken into account.

Moderately strong coupling

The results corresponding to the moderately strong coupling situation (C = 0.75) are re-
produced in Fig. 2.14. In this case also, the difference between the correlation amplitudes
for the two modes (blue circled-line, red squared-line) is coming from their different inten-
sity noises (see Figs. 2.6(a),(b)) due to nonidentical losses and/or gains of them. For the
moderately strong coupling as shown in Fig. 2.14(a), the correlation amplitude is higher
(- 2 dB) compared to both the weak and intermediate couplings for low frequencies. How-
ever, the correlation amplitude starts to decrease for high frequencies starting from 300
kHz. Here again, we find a very good agreement between experiment (Fig. 2.14(a)) and
theory (Fig. 2.14(b)). The decrease of experimental correlation amplitude for frequencies
higher than 2 MHz is irrelevant as it is limited by the measurement floor for these fre-
quencies (Fig. 2.11(c)). Additionally, as shown in Fig. 2.14(c), the noise correlation phases
associated with the two modes (red squares, and blue circles) always differ by π, similarly
to the two previous coupling situations. Moreover, starting from +π/2 (−π/2) at 10 kHz,
the correlation phase rolls off to zero (±π) at about 300 kHz and remains at zero (±π) for
all higher frequencies for the y−polarized (x−polarized) mode. The theoretical predic-
tion (Fig. 2.14(d)) again shows nice agreement with the experiment (Fig. 2.14(c)). For the
correlation phase also, the mismatch between the theory and experiment for frequencies
higher than 2 MHz is linked with the identical levels for the measured phase noise and
the measurement floor, and hence should be neglected.

In all three coupling situations, the reason behind the π phase difference between the
correlation phases of x− and y−polarized modes is the minus sign in Eq. (2.5). In addition
to that, the change of correlation phases by π/2 centered around offset frequency of few
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Figure 2.14: Correlation of the RF phase noise with the intensity noises for the
moderately strong coupling. Correlation amplitude: (a) experiment, (b) theory;

correlation phase: (c) experiment, (d) theory.

hundreds of kilohertz for both x− and y−polarized modes, is related to the low pass filter
like behavior of the thermal noise (Fig. 2.11). Indeed, a π/2-phase change is associated
with this passage through the cut-off frequency, like in any first-order filter. Additionally,
we observe that the correlation amplitude for low frequencies acquires higher value for
stronger coupling between the two laser modes. This can be explained from the fact that
the pump noise correlation factor η becomes higher for stronger coupling (Fig. 2.2(c)).
Moreover, the thermal rolling-off of the correlation phase moves to a lower frequency with
the increase of coupling strength as the cross-over between the thermal noise and the noise
from the phase-intensity coupling effect occurs at a lower frequency for stronger coupling
(Figs. 2.11).
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2.8 Conclusion

In this chapter, we have explored, both experimentally and theoretically, the spectral be-
haviors of different noises in our DF-VECSEL, sustaining simultaneous oscillation of two
linear cross-polarized modes with a frequency difference lying in the RF range. Specif-
ically, we have analyzed the intensity noise spectra of the two modes and also the cor-
relation between these intensity noises for three different coupling strengths between the
modes. Moreover, we have presented the spectral behavior of the RF beatnote generated
by optically mixing the two modes, and its phase noise spectra again for the three previ-
ous coupling situations. Additionally, we have demonstrated the correlation between the
phase noise of the RF beatnote and the intensity noises of the two cross-polarized modes
generating the beatnote via optical mixing for the three considered different coupling situ-
ations. We have evidenced the fact that the spectral behavior of the pump intensity noise,
which happens to be the dominant source of noise in the targeted frequency range (10 kHz
to 35 MHz), plays a significant role to determine the correlations between different noises
of our DF-VECSEL. We have succeeded to measure the different pump noise properties
using a dedicated experimental setup. The measurements show that the pump noises
entering into the two spatially separated laser modes are white noises of identical ampli-
tudes. Moreover, the pump noises for the two laser modes exhibit partial correlation with
a degree of correlation (η) dependent on the amount of spatial separation (d) between the
modes, that controls their coupling. Additionally, the correlated parts of the pump noises
for the two modes are found to be always in phase. These pump noise properties are
linked with the nonuniform intensity distribution of the pump beam on the gain structure
due to the speckle pattern coming from the multimode fiber carrying the pump beam.
The measurements of the pump noises, intercepted by the two spatially separated laser
modes, have helped us to recover the following noise properties of the DF-VECSEL.

The intensity noises of the two laser modes never exhibit a perfect correlation as their
noise sources (pump noises) are only partially correlated. Additionally, the intensity noise
correlation spectra show strong dependence on the nonlinear coupling between the modes.
To explain this, we have invoked the notion of the in-phase and anti-phase eigenrelaxation
mechanisms of a two coupled-oscillator system. Indeed, we have succeeded in explaining
the intensity noise correlation spectra by showing different degrees of dominance between
the in-phase and anti-phase responses depending on the strength of coupling between the
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two modes. In addition to that, the dependence of the pump noise correlation factor η on
the spatial separation d between the two modes defining their coupling strength governs
the intensity noise correlation spectra of our DF-VECSEL.

We have demonstrated the pump noise propagation scheme to the phase noise of the
RF beatnote, that deteriorates its spectral purity. We have figured out two different
mechanisms through which the pump noise degrades the spectral purity of the RF beat-
note namely, (i) thermal fluctuation of the refractive index of the active medium, and
(ii) coupling between the phase and the intensity fluctuations due to the large α−factor
of semiconductor active medium of the DF-VECSEL. Moreover, the nonlinear coupling
between the laser modes also strongly impacts the RF phase noise spectrum. The reason
for this is twofold: (i) the correlation between the noise sources (pump noises) for the
two laser modes depend on the spatial separation between the modes, that determines
their coupling, and (ii) the intensity noises of the two modes and their correlation, which
contribute significantly to the phase noise of the RF beatnote via phase-intensity coupling
mechanism due to large α− factor of the semiconductor active medium, exhibit strong
dependence on the coupling between the modes.

We have further proved the pump noise propagation scheme to the phase noise of
the RF beatnote by measuring the correlation spectra between the RF beatnote and the
intensity noises of the two cross-polarized laser modes generating the beatnote via optical
mixing. In particular, the different spectral behaviors of the correlation spectra depending
on the offset frequencies further confirmed the presence of two dominant mechanisms, the
thermal effect and the phase-intensity coupling effect, through which pump noise degrades
the spectral purity of the RF beatnote.

Finally, we have introduced a simple theoretical model based on modified rate equa-
tions. The model has shown great success in explaining all the noises and their correlation
spectra. Additionally, the generality of the model has been proved by analyzing the noise
properties of DF-VECSELs operating at two different wavelengths (1.55µm, 1µm). How-
ever, the success of the simple model is quite surprising, when one considers that the model
has completely overlooked the spin-dependent carrier dynamics [San Miguel et al., 1995],
which is usually introduced to explain different polarization dynamics of QW-based lasers
such as VCSELs. The next chapter of this first part of the thesis deals with modeling our
dual-frequency VECSEL by taking into account the spin dynamics of the carriers.
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The following table summarizes the main results presented in this chapter:

• Exploration of the spectral behaviors of intensity noises and their correlation
in DF-VECSELs operating at 1.55µm and 1µm wavelengths.

• Spectral analysis of the phase noise of the RF beatnote generated by optical
mixing of the two cross-polarized of the DF-VECSELs.

• Demonstration of the correlation between the phase noise of the RF beatnote
and the intensity noises of the two laser modes, which generate the RF beatnote
via optical mixing.

• Investigation of the influence of the nonlinear coupling strengths between the
two laser modes on the intensity and the phase noise correlations in DF-
VECSEL.

• Measurement of the pump noises and their correlations, entering into the two
spatially separated modes of the optically-pumped DF-VECSEL, which has
enabled us to explain all the noise properties of the DF-VECSEL.

• Development of a simple theoretical model based on modified rate equations
explaining the pump noise propagation scheme to the phase noise of the RF
beatnote, that deteriorates its spectral purity.
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3.1 Introduction

In the preceding chapter, we have proved that different noise properties of a dual-frequency
VECSEL can be well explained by a simple theoretical model based on modified rate equa-
tions. This simple heuristic model has been surprisingly successful, even though it has
completely overlooked the spin-dependent dynamics of the carriers in the semiconductor
active medium. On the other hand, the spin-flip model [San Miguel et al., 1995], ab-
breviated as SFM model, has achieved great success in explaining different polarization
properties of quantum well (QW) based vertical-cavity surface-emitting lasers (VCSELs),
such as selection of polarization state [Jewell et al., 1989], polarization dynamics [Chang-
Hasnain et al., 1991b,a], switching of polarization state [George Pan et al., 1993]. This
four-level model considers two different electronic transitions associated with different
magnetic sublevels of the conduction and heavy-hole valence bands which provide gain
for the two circularly polarized components of laser light of opposite helicities. Later, the
SFM model has been extended to incorporate the effect of material birefringence (linear
phase anisotropy), gain dichroism (gain anisotropy), saturable dispersion (linewidth en-
hancement factor or Henry factor), etc., which dictate different stability criteria of the
linearly polarized modes of a VCSEL [Travagnin et al., 1996; Martín-Regalado et al.,
1996, 1997; Travagnin et al., 1997; van Exter et al., 1998c,a; Martín-Regalado et al.,
1999; Prati et al., 2002]. Moreover, many other properties such as the effect of nonlinear
phase anisotropy [van Exter et al., 1998b], influence of polarization dynamics on the noise
properties [Mulet et al., 2001; Kaiser et al., 2002], existence of elliptical or higher order
transverse modes and possibilities of having chaotic behavior even in free running lasers
[Virte et al., 2013b,a], have been quite successfully explained based on the fundamental
ideas of spin dependent carrier dynamics as described in the SFM model. This leads to
the subject of the present chapter as to analyze the properties of the two orthogonally
polarized modes of a dual-frequency VECSEL from the perspective of the SFM model [De
et al., 2014c]. We start by writing the rate equations for our laser based on the ideas of the
SFM model and taking into account the partial spatial overlap between the modes. We
also aim at adiabatically eliminating the carrier dynamics as our laser is of class-A type,
hoping to be able then to derive the heuristic equations that we have used in Chapter 2.

The chapter is organized as follows: in Sec. 3.2, we recall the standard SFM model,
developed for VCSELs. In Sec. 3.3, a developed rate equation model relevant for our dual-
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frequency VECSEL is derived taking into account the ideas of the SFM model. Section 3.4
describes how these rate equations can be simplified thanks to the adiabatic elimination
of the fast variables and averaging over rapidly varying phases. In Sec. 3.5, we use this
model to define the nonlinear coupling between the two linear eigenpolarizations. The
intensity noise properties are analyzed in Sec. 3.6. Finally, in Sec. 3.7, we summarize the
main conclusions of this chapter.

3.2 Spin-flip model for VCSEL

In this section, we rederive the standard SFMModel [San Miguel et al., 1995], developed to
describe the polarization dynamics of a VCSEL incorporating QW-based active medium.
The polarization of the light from such laser, in addition to the anisotropies inside the
laser cavity, depends on the angular momentum of the quantum states involved in the
lasing transitions between the conduction and the valence bands. The band structure near
the band gap can be schematized as shown in Fig. 3.1. The laser emission is assumed to be

E x 
y 

z 
VCSEL 
output 

J = 3/2 

J = 1/2 

J = 3/2 

J = 1/2 

Conduction  

Heavy hole 

Light hole 

Split-off 
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Jz = ±3/2 

Jz = ±1/2 

Jz = ±1/2 

Figure 3.1: Schematic of the band structure of a quantum well (QW) based VCSEL. E
denotes the laser field.

along z-direction, perpendicular to the surface of the QW based active medium slab, and
the electric field is in the x− y plane (Fig. 3.1). Considering the band structure near the
band gap, the conduction band has zero orbital angular momentum, and thereby denoted
by the quantum numbers J = 1/2, Jz = ±1/2. The valence bands having orbital angular
momentum equal to 1 are commonly named as heavy hole (hh), light hole (lh), and split-
off (so) bands, and respectively described by the quantum numbers J = 3/2, Jz = ±3/2;
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J = 3/2, Jz = ±1/2; J = 1/2, Jz = ±1/2. In a VCSEL, the energy difference between the
split-off and conduction bands is large enough to neglect any lasing transitions between
them. Moreover, the quantum confinement along the z-direction inside the QWs lifts the
degeneracy between the hh and lh bands, and splits them by such a large margin that
the lasing transitions between the conduction and lh bands can be disregarded (Fig. 3.1).
Thereby, the two remaining allowed dipole transitions, satisfying ∆Jz = ±1, between the
conduction and valence bands are as follows: the transition from Jz = −1/2 to Jz = −3/2
associated with right circularly polarized light (σ+), and Jz = 1/2 to Jz = 3/2 associated
with left circularly polarized light (σ−). Therefore, the laser transitions can be simply
described by a four-level scheme as depicted in Fig. 3.2. The vector electric field for a

Figure 3.2: Level scheme involved in the SFM model [San Miguel et al., 1995]. N+ and
N− are the population inversions for the σ+ and σ− transition, respectively. The decay

rate of these population inversions is Γ. The spin-flip rate is γS.

single mode laser can be written as

E = [Ex(x, y, t)x̂ + Ey(x, y, t)ŷ]ei(kz−ωt) + c.c. , (3.1)

where Ex, and Ey denote the slowly varying field amplitudes along the x- and y-axis.
However, since the lasing transitions in the scheme of Fig. 3.2 are associated with circularly
polarized light, it is convenient to express the field amplitudes in terms of right and left
circularly polarized components as

E± = 1√
2

(Ex ± iEy) , (3.2)

where E± corresponds to the transitions from ∓1/2 to ∓3/2 .
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3.2.1 Standard four-level model in circular polarization basis

In circular polarization basis, the laser dynamics can be described by the following
Maxwell-Bloch equations [San Miguel et al., 1995]:

∂E±
∂t

= −γcav2 E± − ig∗0P± , (3.3)
∂P±
∂t

= −[γ⊥ + i(ω0 − ω)]P± + ig0E±(N ± n) , (3.4)
∂N

∂t
= −Γ(N −N0) + [ig∗0(E∗+P+ + E∗−P−) + c.c.] , (3.5)

∂n

∂t
= −γSn+ [ig∗0(E∗+P+ − E∗−P−) + c.c.] . (3.6)

In the above equations, all the transverse spatial effects have been ignored. The slowly
varying amplitudes of the dipole polarizations associated with the two lasing transitions
are denoted with P±. n and N respectively represent the spin population difference and
the total population difference, which are defined as follows

N = 1
2[(N 1

2
+N− 1

2
)− (N 3

2
+N− 3

2
)] = 1

2(N+ +N−) , (3.7)

n = 1
2[(N− 1

2
−N− 3

2
)− (N 1

2
−N 3

2
)] = 1

2(N+ −N−) , (3.8)

where N± i
2
denotes the population of the spin sublevel ± i

2 , and N+, N− define the popula-
tion inversions associated with σ+ and σ− transitions, respectively (Fig. 3.2). The nonzero
value of n introduces coupling between the σ+ and σ− transitions. Table 3.1 summarizes

Parameter Description
ω Cavity frequency.
ω0 Resonant transition frequency for the active medium.
g0 Atom-field coupling constant.
N0 Incoherent pumping.
γcav Inverse of photon lifetime inside the cavity.
γ⊥ Relaxation rate of dipole polarizations.
Γ Decay rate of the total population difference.
γS Relaxation rate of spin-population difference.

Table 3.1: Parameters of the spin-flip model.
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the parameters used in Maxwell-Bloch Eqs. (3.3-3.6) and describes the physical processes
these parameters correspond to. It is important to mention that, in this model, the spin
relaxation rate γS is introduced phenomenologically. It takes into account all the micro-
scopic spin relaxation processes. In general, the relaxation rate of the dipole polarization
(γ⊥) is much faster than all the other time scales involved in the dynamics of the laser,
hence the dipole polarization can be adiabatically eliminated by taking their steady-state
values as

P± = χ±E± = g0(−Ω + iγ⊥)
γ2
⊥ + Ω2 (N ± n)E± , (3.9)

where Ω = ω−ω0 is the detuning. Then, the so-called constant α−factor [Henry, 1982] of
single-mode semiconductor laser can be associated with a large detuning Ω, and obtained
simply by dividing the real and imaginary parts of the susceptibility (χ±) as

α = Reχ±
Imχ±

= − Ω
γ⊥

. (3.10)

Thereafter, substituting Eqs. (3.9-3.10) in Eqs. (3.3-3.6), we obtain the rate equations in
much convenient form as

∂E±
dt

= −γcav2 E± + κ

2 (1 + iα)(N ± n)E± , (3.11)
∂N

dt
= −Γ(N −N0)− κ(|E+|2 + |E−|2)N − κ(|E+|2 − |E−|2)n , (3.12)

∂n

dt
= −γSn− κ(|E+|2 − |E−|2)N − κ(|E+|2 + |E−|2)n , (3.13)

where κ = 2 |g0|2
γ2

⊥+Ω2 is the stimulated emission coefficient. Without any anisotropy inside
the laser cavity, any linearly polarized field is a solution of Eqs. (3.11-3.13), but the ori-
entation is arbitrary and dynamically diffuses because of noise. However, the presence of
optical anisotropies inside the VCSEL forces laser emission along a fixed direction.

3.2.2 Four-level model in linear polarization basis

In general, VCSELs possess two types of linear anisotropies, amplitude anisotropy or
dichroism and phase anisotropy or birefringence. Conventionally, these two anisotropies
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can be modeled via two parameters, γa/2 and γp/2, respectively correspond to dichroism
and birefringence. The introduction of these two anisotropies modifies the rate equations
[Eq. (3.11)] of the fields as follows,

∂E±
dt

= −γcav2 E± + κ

2 (1 + iα)(N ± n)E± −
1
2(γa + iγp)E∓ , (3.14)

while the equations [Eqs. (3.12-3.13)] for the populations remain unchanged. To better
understand the effects of the anisotropies, it is convenient to express the rate equations
in linear polarization basis as

dEx
dt

= −γx2 Ex − i
γp
2 Ex + κ

2 (1 + iα)(NEx + inEy) , (3.15)
dEy
dt

= −γy2 Ey + i
γp
2 Ey + κ

2 (1 + iα)(NEy − inEx) , (3.16)
dN

dt
= −Γ(N −N0)− κN(|Ex|2 + |Ey|2)− iκn(E∗xEy − ExE∗y) , (3.17)

dn

dt
= −γSn− κn(|Ex|2 + |Ey|2)− iκN(E∗xEy − ExE∗y) , (3.18)

where γx = γcav + γa, and γy = γcav − γa respectively define the decay rates of x−,
y−polarized photons inside the cavity. From the above equations (3.15-3.18), one can
notice that the birefringence (γp/2) leads to a frequency difference of γp between the x−
and y−polarized modes, whereas dichroism (γa/2) provides different thresholds for the
two linear eigenpolarizations. Here, we insist on the fact that n is created only when Ex
and Ey are non-zero [Eq. 3.18]. The significance of this fact will be clarified later. In the
following, we will extend this model to our DF-VECSEL.

3.3 Extension of SFM model to the DF-VECSEL

The aim of this section is to utilize the ideas of the standard SFM model for the modeling
of a dual-frequency VECSEL, sustaining oscillation of two orthogonal linearly polarized
modes, which are partially spatially separated by an intra-cavity birefringent crystal (BC)
as schematized in Fig. 3.3. This dual-frequency VECSEL has two main differences com-
pared to the standard VCSEL. The first difference is the cm-long external cavity, which
ensures class-A dynamical behavior of the laser as then the intra-cavity photon lifetimes
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Figure 3.3: Schematic representation of the dual-frequency VECSEL. The intra-cavity
birefringent crystal (BC) spatially separates (d) the ordinary (o) and extraordinary (e)

polarized modes inside the gain medium.

(∼ 10 ns) for the two modes become longer than the population inversion lifetime (∼ 1 ns)
as evidenced in the preceding chapters. On the contrary, in standard VCSELs the photon
lifetime (∼ 1 ps) inside the cavity is usually much shorter than the population inversion
lifetime (∼ 1 ns) leading to a class-B dynamical behavior of the laser [Scott et al., 1994;
Tauber et al., 1993]. The second difference originates from the intra-cavity BC, which
spatially separates the two modes inside the gain structure. This ensures simultaneous
oscillation of the two orthogonally polarized modes by reducing their nonlinear coupling
below unity [Sargent III et al., 1974]. The nonlinear coupling is lowered as the partial
overlap between the modes reduces the cross-saturation effect. Moreover, this permits to
achieve different nonlinear coupling strengths between the two laser modes simply by vary-
ing the thickness of the BC as described in Chapter 2. Besides, the BC introduces a strong
linear phase anisotropy inside the cavity, which enables to obtain a frequency difference
in the RF range between the two modes polarized along the ordinary and extraordinary
eigenpolarizations of the BC (Chapter 2).

Therefore, the main difficulty to model our dual-frequency VECSEL in the framework
of the SFM model is to incorporate the effect of the partial spatial overlap between the
two laser modes. This has been taken care of by introducing the dimensionless parameter
Π (0 ≤ Π ≤ 1), which we define as:

Π =
∫
I(x, y)I(x− d, y)dxdy√∫

I2(x, y)dxdy
∫
I2(x− d, y)dxdy

= exp
(
− d

2

w2

)
, (3.19)

where I(x, y) denotes the Gaussian intensity profiles of radius w of the laser modes in
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the active medium and d is the spatial separation between the axes of the ordinary and
extraordinary modes inside the gain structure (see Fig. 3.4). In is important to mention

Π 

Figure 3.4: Schematic representation of the two modes in the gain medium of the
dual-frequency VECSEL. We model the two beams as two top-hat cylindrical beams

with circular sections. Ex (resp. Ey) is the complex amplitude of the x-polarized (resp.
y-polarized) field. N1 (resp. N3) is the total population inversion in the region where
only the x-polarized (resp. y-polarized) mode has a non-zero intensity. N2 is the total
population inversion and n2 is the population inversion difference in the region where
both modes are superimposed. The parameters d and Π respectively represent the

spatial separation and the relative overlap between the two modes.

here that Π could also be used to model other effects which tend to increase the effective
overlap between the two modes such as carrier diffusion. However, in case of our DF-
VECSEL based on either GaAs (VECSEL at 1µm) or InP (VECSEL at 1.5µm) material
system, the diffusion length of electrons (having higher mobility than holes) is typically
of the order of few microns [Dargys and Kundrotas, 1994; Levinshtein et al., 1996], which
is much less than the mode size (∼ 60 − 70µm) of our DF-VECSEL inside the active
medium. Therefore, we can safely neglect the carrier diffusion effect in our DF-VECSEL.
The basic hypotheses of our model are schematized in Fig. 3.4. For the sake of simplicity,
we model the two modes as two top-hat cylindrical beams with circular sections, with an
overlap Π. We then choose to consider three population reservoirs associated with the
three different regions schematized in Fig. 3.4: Region 1 (resp. 3) is the region where only
the x-polarized (resp. y-polarized) mode is present with a complex field amplitude Ex
(resp. Ey) while region 2 is the place where both modes overlap. We can then model the
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dual-frequency VECSEL using the following rate equations:

dEx
dt

= −γx2 Ex − i
γp
2 Ex + κ

2 (1 + iα) [(N1 +N2)Ex + in2Ey] , (3.20)
dEy
dt

= −γy2 Ey + i
γp
2 Ey + κ

2 (1 + iα) [(N2 +N3)Ey − in2Ex] , (3.21)
dN1

dt
= −Γ(N1 −N01)− κN1|Ex|2 , (3.22)

dN2

dt
= −Γ(N2 −N02)− κN2(|Ex|2 + |Ey|2)− iκn2(E∗xEy − ExE∗y) , (3.23)

dN3

dt
= −Γ(N3 −N03)− κN3|Ey|2 , (3.24)

dn2

dt
= −γSn2 − κn2(|Ex|2 + |Ey|2)− iκN2(E∗xEy − ExE∗y) , (3.25)

where the notations Ex, Ey, γx, γy, Γ, γS, γp, κ, and α have the same meaning as in
Eqs. (3.15-3.18). It is worth noticing that all the populations entering these equations,
denoted as N1, N2, N3, and n2, and their pumping terms N01, N02, and N03, are di-
mensionless number of atoms. Since the quantities N1, N2, and N3 that we have used in
Eqs. (3.20-3.25) are dimensionless number of atoms, they are already the results of the inte-
gration of the density of atoms over the transverse mode field distributions. Consequently,
they have already taken into account the confinement factors of the two modes that ap-
pears explicitly when the equations are written in terms of atomic densities [Sargent III
et al., 1974; Wieczorek and Chow, 2004, 2005]. Moreover, since only the x-polarized (resp.
y-polarized) mode is present in region 1 (resp. 2) of Fig. 3.4, we need to introduce only a
total population inversion N1 (resp. N3) in this region, and no population inversion dif-
ference n1 (resp. n3) is created in this region. On the contrary, in region 2 where the two
modes overlap, we introduce both the total population inversion N2 and the population
inversion difference n2. Indeed, the population inversion difference n can exist only when
both Ex and Ey are non-zero [Eq. 3.18].

Here, the overlapping factor Π between the two modes has entered the model through
the pumping rates N01, N02, and N03. More precisely, the amount of overlap determines
the strength of the pumping N02 that goes to the region of the active medium where the
two modes overlap with respect to the pumping rates N01 and N03 in the regions where
only one of the modes has a non vanishing intensity. Quantitatively, if we introduce the
total pumping rates N0x and N0y for the x- and y-polarized modes, respectively, then N01,
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N02, and N03 can be defined by:

N01 = N0x − ΠN0x +N0y

2 , (3.26)

N02 = ΠN0x +N0y

2 , (3.27)

N03 = N0y − ΠN0x +N0y

2 . (3.28)

One can notice from Eqs. (3.20-3.25) that, if we suppose that one of the modes vanishes
(for example Ey = 0 or N02 = N03 = 0), we then retrieve the two usual rate equations
for Ex and Nx = N1 +N2. Moreover, in the case where the modes totally overlap (Π = 1
and N0x = N0y, or similarly N01 = N03 = 0 and N02 6= 0), Eqs. (3.20-3.25) reduce to Eqs.
(3.15-3.18) with N = N2, n = n2, and N1 = N3 = 0. This proves the consistency of the
present model for the DF-VECSEL with the standard SFM model.

3.4 Simplification of the rate equations

The aim of the present section is to simplify the general rate equations (3.20-3.25) by
considering different approximations valid for our DF-VECSEL. We start by adiabatic
elimination of the spin dynamics as this is much faster than all other time scales involved
in the laser dynamics.

3.4.1 Adiabatic elimination of the spin dynamics

Actually, the spin-flip processes tend to balance the populations associated with the σ+

and σ− transitions inside the QW-based active medium as shown in Fig. 3.2. All the
microscopic spin-flip relaxation processes have been incorporated in the model by the
decay parameter γS. Measurements have shown that γ−1

S is of the order of a few tens
of picoseconds inside quantum wells [Damen et al., 1991; Bar-Ad and Bar-Joseph, 1992],
whereas Γ−1 ≈ 1 ns and γ−1

x , γ−1
y ≈ 10 ns for our DF-VECSEL, as described in the

previous chapters. Therefore, one can adiabatically eliminate the dynamics of n2 from
the laser rate equations by setting dn2/dt = 0 in Eq. (3.25). This leads to

n2 =
−iκN2(E∗xEy − ExE∗y)
γS + κ(|Ex|2 + |Ey|2) . (3.29)
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To obtain Eq. (3.29), we have also assumed that the relative phase between the two fields
evolves slower than the spin relaxation rate, namely, γp � γS. This is indeed true for our
DF-VECSEL, which sustains oscillation of two cross-polarized modes with a frequency
difference (γp) of few gigahertz as shown in the preceding chapters. We can now suppose
that the field amplitudes Ex and Ey in Eqs. (3.20-3.25) are normalized in such a way that
the squares of their moduli correspond to the numbers of photons Fx and Fy inside the
cavity for the two polarization states, leading to:

Ex =
√
Fxe

iφx , Ey =
√
Fye

iφy , (3.30)

where we have introduced the phases φx and φy of the two modes. We define their
difference as

φ = φx − φy . (3.31)

With these notations, Eq. (3.29) reads

n2 = −2εκΓN2

√
FxFy sinφ , (3.32)

where we have supposed that the large value of γS leads to κ

γS
Fx,y � 1, and where we

have introduced

ε = Γ/γS , (3.33)

which is assumed to be much smaller than 1. Replacing n2 in Eqs. (3.20-3.24) by its
steady-state value [Eq. (3.32)], we obtain

dFx
dt

= −γxFx + κ(N1 +N2)Fx − 2κ2 ε

ΓN2FxFy sinφ(sinφ− α cosφ) , (3.34)
dFy
dt

= −γyFy + κ(N3 +N2)Fy − 2κ2 ε

ΓN2FxFy sinφ(sinφ+ α cosφ) , (3.35)
dN1

dt
= −Γ(N1 −N01)− κN1Fx , (3.36)

dN2

dt
= −Γ(N2 −N02)− κN2(Fx + Fy) + 2κ2 ε

ΓN2FxFy , (3.37)
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dN3

dt
= −Γ(N3 −N03)− κN3Fy , (3.38)

dφ

dt
= −γp + κ

2α(N1 −N3)

−κ
2ε

2Γ N2[Fy(sin 2φ+ 2α sin2 φ)− Fx(sin 2φ− 2α sin2 φ)] . (3.39)

3.4.2 Averaging the relative phase

The frequency difference between the two cross-polarized modes of our DF-VECSEL is
typically of the order of few gigahertz as shown in the preceding chapters. Moreover, this
is also the interesting frequency range for the targeted microwave photonics applications.
Now, The frequency difference of a few gigahertz between the two cross-polarized modes
of the DF-VECSEL is ruled by the term γp [Eq. (3.39)], coming mainly from the intra-
cavity BC. This leads to a much faster dynamics of the relative phase (φ) between the
two laser fields than the population inversion decay rate (Γ ≈ 3 × 108 s−1) in the gain
medium, allowing us to further simplify the rate equations (3.34-3.38) by averaging over
all values φ from 0 to 2π. Then, we obtain

dFx
dt

= −γxFx + κ(N1 +N2)Fx − κ2 ε

ΓN2FxFy , (3.40)
dFy
dt

= −γyFy + κ(N2 +N3)Fy − κ2 ε

ΓN2FxFy , (3.41)
dN1

dt
= −Γ(N1 −N01)− κN1Fx , (3.42)

dN2

dt
= −Γ(N2 −N02)− κN2(Fx + Fy) + 2κ2 ε

ΓN2FxFy , (3.43)
dN3

dt
= −Γ(N3 −N03)− κN3Fy . (3.44)

3.4.3 Class-A approximation

In the previous chapters, we have demonstrated that our DF-VECSEL exhibits class-A
dynamics as the intra-cavity photon lifetimes (γ−1

x , γ−1
y ∼ 10 ns) of the two laser modes

are higher than the lifetime of the population inversions (Γ−1 ∼ 1 ns). Therefore, we
can adiabatically eliminate N1, N2, and N3 from Eqs. (3.40-3.44) by setting dN1/dt = 0,
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dN2/dt = 0, and dN3/dt = 0 in Eqs. (3.42-3.44). This leads to

N1 = N01

1 + κ
ΓFx

, (3.45)

N2 = N02

1 + κ
Γ(Fx + Fy)− 2κ2ε

Γ2 FxFy
, (3.46)

N3 = N03

1 + κ
ΓFy

. (3.47)

By injecting Eqs. (3.45-3.47) into Eqs. (3.40-3.41), we obtain the two following equations

dFx
dt

= −γxFx + κ

[
N01

1 + κ
ΓFx

+ N02

1 + κ
Γ(Fx + Fy)− 2κ2ε

Γ2 FxFy

(
1− κε

Γ Fy

)]
Fx , (3.48)

dFy
dt

= −γyFy + κ

[
N03

1 + κ
ΓFy

+ N02

1 + κ
Γ(Fx + Fy)− 2κ2ε

Γ2 FxFy

(
1− κε

Γ Fx

)]
Fy . (3.49)

3.4.4 Weak saturation limit

Most often, it is convenient to express the laser rate equations in the so-called “third order
of field” version. In the case where the laser is just above threshold and the saturation
of the active medium is weak, i. e., κFx/Γ, κFy/Γ � 1, one can keep only terms up to
first order in κFx/Γ and κFy/Γ in Eqs. (3.48-3.49), leading to the following “third order
in field” version for Eqs. (3.48-3.49):

dFx
dt

= −γxFx + κ
[
(N01 +N02)(1− κ

ΓFx)−
κ

ΓN02(1 + ε)Fy
]
Fx , (3.50)

dFy
dt

= −γyFy + κ
[
(N03 +N02)(1− κ

ΓFy)−
κ

ΓN02(1 + ε)Fx
]
Fy . (3.51)

Equations (3.50-3.51) end up in the same form as the classical equations of Lamb’s model
[Sargent III et al., 1974]. In particular, the coefficients ξxy, ξyx which define the ratios
between the cross- to self-saturation coefficients and which describe the nonlinear coupling
of the two laser modes are given by

ξxy = N02(1 + ε)
N01 +N02

= Π
2 (1 + ε)

(
1 + N0y

N0x

)
, (3.52)

ξyx = N02(1 + ε)
N03 +N02

= Π
2 (1 + ε)

(
1 + N0x

N0y

)
. (3.53)
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Equations (3.50-3.51) allow us to retrieve the heuristic model that was used in Chap-
ter 2. However, in that simple model ξxy and ξyx were introduced heuristically. On the
contrary, the present model provides analytical expressions for these coupling coefficients
[Eqs. (3.52-3.53)], showing their dependence on the amount of spatial overlap (Π) between
the modes and the value of the spin-relaxation decay rate (γS) relatively to the popula-
tion inversion decay rate (Γ). It is indeed expected that the spin-flip process, mixing the
populations associated with σ+ and σ− polarizations, must have some kind of influence
on the gain cross-saturation, and hence on the coupling coefficients.

3.5 Transient and steady-state behaviors of DF-
VECSEL

In this section, we aim at analyzing the transient and the steady-state behaviors of our
DF-VECSEL to check the validity of the theoretical model derived in the previous section.
We start by looking at the transient behavior during the laser switching on.

3.5.1 Laser switch-on

To analyze the dynamical behavior of a laser one standard way is to study how the
laser switches on. We have used Eqs. (3.40-3.44) to simulate the switching on of our DF-
VECSEL. The temporal evolution of the intra-cavity photon numbers (Fx, Fy) of the two
modes and of the populations for different values of the spatial separation d are displayed
in Fig. 3.5. These values of d correspond to those used in the experiments described in
Chapter 2. Moreover, to perform the numerical integration of Eqs. (3.40-3.44), we have
chosen values of the parameters w, κ, Γ, γx, γy representative of the experiments reported
in Chapter 2. Only the value of ε has been estimated from the orders of magnitude
of γS that one can find in the literature [Damen et al., 1991; Bar-Ad and Bar-Joseph,
1992]. We have supposed that the laser is 1.3 times above threshold, that the two cross-
polarized modes are equally pumped, i. e., N0x = N0y, but that the x-polarized mode
experiences slightly more losses than the y-polarized one. The results of Fig. 3.5 show
that the two polarization eigenstates can oscillate simultaneously for all three values of
d. However, when d decreases, the increase of the competition makes the final unbalance
between their intensities more important. This is consistent with the picture expected
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Figure 3.5: Time evolution of (a) the intra-cavity photon numbers Fx and Fy and (b)
the population inversions N1, N2, and N3 for d = 100µm, w = 62µm, 1/γx = 6 ns,

1/γy = 6.05 ns, 1/Γ = 3 ns, ε = 0.02, κ = 6.3× 10−2 s−1, N0x = N0y = 1.3× γx/κ. In this
case Π = 0.074. (c),(d): Same as (a),(b) for d = 50µm, corresponding to Π = 0.52.

(e),(f): Same as (a),(b) for d = 20µm, corresponding to Π = 0.90.

from an increase of nonlinear coupling due to an increase of Π. The comparison of the
evolution of the populations N1, N2, and N3 in the three cases of Figs. 3.5(b), 3.5(d),
and 3.5(f) is also interesting. One can notice that when d decreases, the increase of the
overlap of the two modes leads to an increase of the relative weight of N2 with respect
to N1 and N3. Moreover, this decrease of d also leads to a decrease of the total number
N1 +N2 +N3 of atoms providing gain to the laser. This is consistent with an increase of
the competition between the two modes. Before going further into the exploration of the
behavior of steady-state solutions in our model, we check its consistency by verifying that
it can also describe the well known damped relaxation behavior of a class-B laser. We
have thus strongly increased the value of 1/Γ and simulated the switching on of the laser
using Eqs. (3.40-3.44). The results are reproduced in Fig. 3.6. The laser clearly exhibits
the in-phase and anti-phase relaxation oscillations, showing that our model consistently
describes the behavior of class-B lasers also [Arecchi et al., 1984; Oka and Kubota, 1988].

To further check the generality of our model, we choose to simulate Eqs. (3.34-3.39)
by considering a large value of 1/Γ as in Fig. 3.6, but for two different values of 1/γp:
one is of the same order as 1/Γ, and the other one is much smaller than 1/Γ. Figure 3.7
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Figure 3.6: Same as Fig. 3.5(c,d) in the case of a class-B lasers. The values of the
parameters are d = 50µm, w = 62µm, 1/γx = 6 ns, 1/γy = 6.05 ns, 1/Γ = 100 ns,

ε = 0.02, κ = 6.3× 10−2 s−1, N0x = N0y = 1.3× γx/κ.

reproduces the simulation results. The results illustrate that when the beatnote frequency
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Figure 3.7: Time evolution of (a) the intra-cavity photon numbers Fx and Fy, (b) the
population inversions N1, N2, and N3, and (c) the beatnote phase φ for d = 50µm,

w = 62µm, 1/γx = 6 ns, 1/γy = 6.05 ns, ε = 0.02, κ = 6.3× 10−2 s−1,
N0x = N0y = 1.3× γx/κ, 1/Γ = 100 ns. In this case γp = 100 ns. (d),(e),(f): Same as

(a),(b),(c) for γp = 1 ns.

γp is of the same order as the carriers’ decay rate Γ, the dynamics of the beatnote phase
governs the dynamics of the photon numbers and population inversion numbers as repro-
duced in Figs. 3.7(a),(b),(c). In this case, one can again notice pulsations of the photon
numbers and the population inversions ensuring class-B dynamical behavior of the laser
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(Figs. 3.7(a),(b)). However, these pulsations are not at all straightforward to analyze as
apart from the two usual dynamical variables (photon number and population inversion
number) of a standard single mode class-B laser, the dynamics of DF-VECSEL includes
the nonlinear coupling between the two laser modes and their relative phase (Figs. 3.7(c)).
In principle, this might even give rise to chaotic behavior like in a standard single mode
class-C laser as the laser dynamics involves more than two coupled dynamical variables
[Bergé et al., 1987; Arecchi et al., 1986; Pieroux et al., 1994]. However, further inves-
tigations are required to confirm this point. Figures 3.7(d),(e),(f) show the simulation
results, when the beatnote frequency γp is considered to be much larger than the carriers’
decay rate Γ. One can observe that the temporal evolution of the photon numbers and
population inversion numbers as represented by Figs. 3.7(d),(e) are exactly identical to
those of Figs. 3.6(a),(b), respectively. This emphasizes the fact that the dynamics of rel-
ative phase between the two modes does not influence the dynamics of photon numbers
and population inversions. Therefore, it can be eliminated from the laser rate equations
(3.34-3.38) for γp much larger than Γ as done in Eqs. (3.40-3.44).

3.5.2 Steady-state solutions

After having analyzed the transient behavior, we now investigate the steady-state behavior
of our DF-VECSEL as predicted by the present model. In particular, our focus is on the
class-A case corresponding to our experimental situation. In this case, the steady-state
solutions for the laser intensities can be obtained by finding the steady-state solutions
of Eqs. (3.48-3.49). Specifically, we have plotted the intra-cavity photon numbers for the
two modes versus pumping rates N0x and N0y, as shown in Fig. 3.8 keeping the other
parameters as in Fig. 3.5. Here, we again choose three different values of d, just like
in Fig. 3.5. The two modes are considered to have slightly different losses (γx > γy),
but equal pumping rates (N0x = N0y). This fact is reflected by the different pumping
thresholds for the two modes. Additionally, one can see that the unbalance in photon
numbers increases with the decrease of d. This again proves the picture we considered for
our DF-VECSEL that the mode competition becomes stronger for smaller separation (d)
between the modes.
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Figure 3.8: Evolution of the steady-state photon numbers Fx and Fy versus pumping
rate N0x = N0y. The values of the parameters are w = 62µm, 1/γx = 6 ns,

1/γy = 6.05 ns, 1/Γ = 3 ns, ε = 0.02, κ = 6.3× 10−2 s−1. (a) d = 100µm; (b) d = 50µm;
(c) d = 20µm.

3.6 Nonlinear coupling constant

In the previous chapter, we have figured out how the nonlinear coupling between the two
cross-polarized modes dictates the noise properties of the DF-VECSEL. Moreover, the
nonlinear coupling is a key phenomenon when one considers the stability of the laser.
Whether the coupling constant, C = ξxyξyx, is higher or lower than 1 leads respectively to
two distinct regimes such as bistability or simultaneity. In a DF-VECSEL, the nonlinear
coupling constant C has already been measured [Pal et al., 2010]. However, in that study
C has been estimated only by considering the amount of spatial overlap between the two
modes. This is also what we have followed in the previous chapter. On the other hand,
Eqs. (3.52-3.53) indicate that the spin-relaxation mechanism should have some kind of
impact on the nonlinear coupling strength between the modes. This leads to the subject
of the present section as to thoroughly analyze the nonlinear coupling constant in our
DF-VECSEL from the view point of the present spin-flip model. To this aim, we consider
the situation in which the laser exhibits class-A dynamics, as in Figs. 3.5 and 3.8, which
corresponds to the experimental results of the previous chapter we wish to reproduce. In
the case of weak saturation, Eqs. (3.52-3.53) have shown that the coupling does not only
depend on the overlap Π, as expected and as shown by the simulations of Fig. 3.5,3.8. It
also depends on the ratio ε between the spin and the population relaxation rates. Fig. 3.9
shows the results obtained when one simulates the laser switch-on for different values of
ε when the two modes experience slightly different losses. This simulation is performed
using Eqs. (3.40-3.44). It is clear from this figure that the larger ε, the stronger is the
coupling between the two modes. By increasing ε from 0.01 to 0.1, one can see that a
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small difference between the losses γx and γy experienced by the two modes (which have
the same gain) can lead either to a small difference in intensities (Figs. 3.9(a),(b)) when
ε is small or to the fact that the stronger mode forbids oscillation of the other one (Figs.
3.9(e),(f)) when ε is larger.
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Figure 3.9: Time evolution of (a),(c),(e) the intra-cavity photon numbers Fx and Fy and
(b),(d),(f) the population inversions N1, N2, and N3 for d = 20µm, w = 62µm,

1/γx = 6 ns, 1/γy = 6.05 ns, 1/Γ = 3 ns, κ = 6.3× 10−2 s−1, N0x = N0y = 1.3× γx/κ.
(a),(b) ε = 0.01; (c),(d) ε = 0.05; (e),(f) ε = 0.1.

Equations (3.52-3.53) also predict that ifN0x 6= N0y, i.e., if the pumping or equivalently
the gain to loss ratios for the two modes are not identical, then the two coupling coefficients
ξxy and ξyx are not identical as soon as ε is different from 0. To check whether this
prediction remains valid beyond the third order approximation, we generalize Eqs. (3.52-
3.53) using the following definitions [Pal et al., 2010]:

ξxy = −∂Fx/∂γy
∂Fy/∂γy

, (3.54)

ξyx = −∂Fy/∂γx
∂Fx/∂γx

. (3.55)

Fig. 3.10 illustrates the evolution of ξxy and ξyx versus δN0 when one varies the pumping
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rates of the two modes in two opposite ways, namely:

N0x = N0(1 + δN0) , (3.56)
N0y = N0(1− δN0) . (3.57)

Fig. 3.10 compares the results obtained from Eqs. (3.54-3.55) using the steady-state pho-
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Figure 3.10: Evolution of ξxy (dashed blue line) and ξyx (full red line) versus δN0 with
N0x = N0(1 + δN0) and N0y = N0(1− δN0). Thick lines: calculation from Eqs.
(3.54-3.55) using the steady-state photon numbers Fx and Fy obtained from Eqs.

(3.48-3.49). Thin lines: calculation from Eqs. (3.52-3.53). The values of the parameters
are d = 50µm, w = 62µm, 1/γx = 6 ns, 1/γy = 6 ns, 1/Γ = 3 ns, ε = 0.02,

κ = 6.3× 10−2 s−1, N0 = 1.3γx/κ.

ton numbers Fx and Fy obtained from Eqs. (3.48-3.49) with the results obtained using
the weak saturation approximation [Eqs. (3.52-3.53)]. One can see that both calculations
indicate that the coefficients ξxy and ξyx become asymmetric when the pumping rates for
the two modes become different (N0x 6= N0y). However, although the values of ξxy and
ξyx given by the weak saturation approximation [Eqs. (3.52-3.53)] are close to the ones
obtained from the complete model [Eqs. (3.54-3.55)], their evolution with the asymmetry
of the pumping rates are opposite. Additionally, the difference between ξxy and ξyx leaves
C = ξxyξyx unchanged, at least for small values of the pumping asymmetry δN0. This can
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also be seen in the weak saturation limit using Eqs. (3.52-3.53):

C = ξxyξyx '
Π2

4 (1 + 2ε)(N0x +N0y)2

N0xN0y
, (3.58)

which, at first order, does not depend on δN0 when N0x and N0y obey Eqs. (3.56-3.57),
and reads as

C ' Π2(1 + 2ε) . (3.59)

Therefore, the observation of unequal values of the two coefficients ξxy and ξyx that was
found by previous experiments [Pal et al., 2010] can be explained in our model. Notably,
the simple model of Chapter 2 was not able to explain nonidentical values of ξxy and ξyx.
Therefore, this is a significant achievement of the present model, which includes spin-
dynamics of the carrier. Moreover, the present model explains why the variations of ξxy
and ξyx leave C constant, as experimentally observed.

0 20 40 60 80 1000.0
0.2
0.4
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1.0
1.2

d �Μm�

C

Figure 3.11: Evolution of C = ξxyξyx (full line) versus d obtained from Eqs. (3.54-3.55)
using the steady-state photon numbers Fx and Fy obtained from Eqs. (3.48-3.49).

Dashed line: calculation from Eq. (3.58). The values of the parameters are w = 62µm,
1/γx = 6 ns, 1/γy = 6 ns, 1/Γ = 3 ns, ε = 0.02, κ = 6.3× 10−2 s−1, N0x = N0y = 1.3γx/κ.

Fig. 3.11 reproduces the evolution of C with d. The results obtained either from the
full calculation based on Eqs. (3.54-3.55) using the steady-state photon numbers Fx and
Fy obtained from Eqs. (3.48-3.49), or from the simplified expressions of Eq. (3.58) lead to
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almost the same result. This explains why the simplified heuristic model of the previous
chapter has been so successful. The maximum value of C, obtained for d = 0, depends on
ε. The fact that it is larger than unity explains why a partial spatial separation is necessary
to obtain simultaneous oscillation of the two polarizations. Moreover, this predicts the
existence of polarization bistability for d close to 0. This is also a new achievement of this
spin-flip model of the DF-VECSEL compared to the previous simple model.

In the following, the present model will be utilized to reproduce the intensity noise
properties of the DF-VECSEL as described in detail in the previous chapter.

3.7 Intensity noise properties

Till now, we have shown that the present model can successfully reproduce different tran-
sient and steady-state phenomena of our DF-VECSEL. Moreover, this developed model
could explain few properties of the DF-VECSEL such as unequal values of the coupling
coefficients, bistability, which were not possible to deduce from the simple model of Chap-
ter 2. However, in the previous chapter we have realized that the simple model can well
explain different noise properties of the DF-VECSEL, suitable for numerous microwave
photonics applications. Specifically, the simple heuristic model has led to a very good
agreement with the measurements of intensity noise spectra and of intensity noise corre-
lations between the two modes. In the previous chapter, we have also figured out that
the predominant source of intensity noise for the dual-frequency VECSEL is the pump
intensity noise. This is an important issue for microwave photonics applications because
this intensity noise is then transferred to the phase noise through the phase-intensity
coupling mechanism as demonstrated in Chapter 2. The aim of the present section is
thus to apply the present model, and more precisely Eqs. (3.40-3.44), to the description
of the intensity noises of the two modes of the laser, including their correlations. The
intensity fluctuations of the two cross-polarized modes are introduced through the photon
number fluctuations as in Eqs. (2.1-2.2) of Chapter 2. Additionally, the pump intensity
fluctuations are modeled as in Eqs. (2.29-2.30) of the previous chapter. Then by lineariz-
ing Eqs. (3.40-3.44) around their steady-state solutions with Mathematica, we succeed to
extract linear relations between the fluctuations of the photon numbers, of the popula-
tion inversions, and of the pumping rates. After taking the Fourier transforms of these
equations, we can eliminate the fluctuations of the population inversions and end up with
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numerical expressions relating the fluctuations of the photon numbers δ̃F x(f), δ̃F y(f) in
the frequency domain to the pump fluctuations δ̃N0x(f) and δ̃N0y(f). Finally, we calcu-
late the RINs of the two modes using the definition of Eqs. (2.3-2.4) and the normalized
spectrum of the correlation between the intensity noises of the two modes from Eq. (2.7)
of Chapter 2.
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Figure 3.12: (a) Relative intensity noise (RIN), (b) correlation amplitude, and (c)
correlation phase spectra calculated from the present model. The values of the
parameters are w = 62µm, 1/γx = 6 ns, 1/γy = 6.05 ns, 1/Γ = 3 ns, ε = 0.02,

κ = 6.3× 10−2 s−1, N0x = N0y = 1.3× γx/κ, RINp = −135 dB/Hz, and d = 100µm,
corresponding to an overlap Π = 0.074. (d),(e),(f): Same as (a)-(c) for d = 50µm,

corresponding to Π = 0.52. (g),(h),(i): Same as (a)-(c) for d = 20µm, corresponding to
Π = 0.90.

Figure 3.12 reproduces the results obtained for three values of the spatial separation
d, namely 100, 50, and 20 µm as in the experiments described in Chapter 2. These results
are in good agreement with the corresponding experiments and with the spectra obtained
from the simple heuristic model that we have developed in the previous chapter. In par-
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ticular, these results reproduce the fact that for the weak coupling (C ' 0, Fig. 3.11)
corresponding to d = 100µm (Figs. 3.12(a)-(c)), the relative intensity noise (RIN) spectra
look like the transfer function of first order filters and hence illustrate the class-A dy-
namical behavior of our laser (Fig. 3.12(a)). The RIN spectra for the two modes are not
identical as we have taken slightly different losses for the two modes. The intensity noises
for the two modes are partially correlated (Fig. 3.12(b)) and their correlated parts are in
phase (Fig. 3.12(c)) all over the considered frequency range (10 kHz - 100 MHz). These
results show excellent agreement with the experiments as well as the predictions of the
simple theoretical model (Fig. B.2 of AppendixB).

The simulation results for a spatial separation d = 50µm between the modes are shown
in Figs. 3.12(d)-(f). In this intermediate situation, the coupling constant C is nearly equal
to 0.3 as shown in Fig. 3.11. The RIN spectra again look like the transfer function of first
order filters (Fig. 3.12(d)). As shown by Figs. 3.12(e),(f), the correlation amplitude is very
low for frequencies lower than ∼1 MHz, whereas the correlation amplitude is strong and
the correlation phase is 0 for higher frequencies. The results are again in good accordance
with the experiment and the spectra obtained from the simple theoretical model as shown
in Fig. B.3 of AppendixB.

Finally, Figs. 3.12(g)-(i) reproduce the simulation results for a spatial separation d =
20µm between the modes, which corresponds to a moderately strong nonlinear coupling
(C ' 0.8) as shown in Fig. 3.11. The RIN spectra as presented in Fig. 3.12(g) now exhibit
a change of slope at about 1 MHz. The correlation amplitude is strong except for a
dip around 1 MHz, as reproduced in Fig. 3.12(h). The correlation phase jumps from π

at frequencies lower than 1 MHz to 0 for higher frequencies, as reported in Fig. 3.12(i).
These predictions are in good agreement with the experiments and the predictions of the
simple model (Fig. B.4 of AppendixB).

As described in the previous chapter, these spectral behaviors of the intensity noises
and their correlations for different nonlinear coupling strengths between the modes can
again be physically interpreted in the framework of the in-phase and anti-phase eigenre-
laxation mechanisms for the out-of-equilibrium fluctuations of any two-coupled oscillator
system [Otsuka et al., 1992]. To this aim, we calculate the in-phase and anti-phase noise
spectra from the present model and the simulation results are shown in Fig. 3.13. To cal-
culate the in-phase and anti-phase noise spectra we use the definitions of Eqs. (C.10-C.11).
From the in-phase and anti-phase noise spectra of Fig. 3.13 we can perfectly explain all
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Figure 3.13: In-phase (dashed-blue line) and anti-phase (solid-red line) noise spectra for
(a) d = 100µm (RIN), (b) d = 50µm, and (c) d = 20µm calculated from the present

model. The values of the parameters are same as in Fig. 3.12.

the spectral behaviors of the intensity noises and their correlations. One can observe in
Fig. 3.13 that the in-phase response is independent of the coupling, whereas the anti-phase
response strongly depends on the coupling and has a cut-off frequency (∼1 MHz for our
VECSEL) much lower lower than the in-phase one. For d = 100µm, the two laser modes
are almost uncoupled (C ' 0). As a result, the in-phase response dominates over the
anti-phase response for all frequencies within 10 kHz to 100 MHz (Fig. 3.13(a)). This
leads to partially correlated (Fig. 3.12(b)) and in phase (Fig. 3.12(c)) intensity noises in-
duced by partially correlated (η < 1), in phase (ψ = 0) pump fluctuations. For C ' 0.3,
corresponding to d = 50µm, the amplitude of anti-phase response becomes comparable to
the amplitude of the in-phase response for frequencies lower than the cut-off frequency of
the anti-phase response (∼1 MHz), whereas for higher frequencies the in-phase response
dominates (Fig. 3.13(b)). This explains the low values of the correlation amplitude for
frequencies lower than 1 MHz, and the high values of the correlation amplitude and 0
correlation phase for frequencies higher than 1 MHz (Figs. 3.12(e,f)). For d = 20µm,
which corresponds to a stronger coupling situation (C = 0.8), the anti-phase response
strongly dominates over the in-phase response for frequencies lower than anti-phase cut-
off frequency (1 MHz), but the in-phase response always dominates for higher frequencies
(Fig. 3.13(c)). Consequently, the correlation phase is π for frequencies lower than 1 MHz
but 0 for higher frequencies (Fig. 3.12(i)). Moreover, the phase jump at about 1 MHz
(Fig. 3.12(i)) due to the transition of the laser dynamics from dominant anti-phase to
in-phase behavior gives rise to the dip in the correlation amplitude (Fig. 3.12(h)) as the
fluctuations of nearly identical amplitudes of the two modes interfere destructively. These
spectral behaviors of the intensity noises and their correlations are exactly identical to
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the spectra obtained from experiments and the simple theoretical model as described in
Chapter 2 (1.55µm DF-VECSEL) and in AppendixB.

3.8 Conclusion

In this chapter, we have developed a rate equation model taking the spin dynamics of
the carriers into account in order to predict the different properties of a dual-frequency
VECSELs sustaining simultaneous oscillation of two linear orthogonal polarization modes.
Specifically, we have shown how the relative value of the spin relaxation rate of the carri-
ers with respect to the carrier decay rate inside the QW-based gain medium determines
the dynamics of the dual-frequency VECSEL. Moreover, this model has achieved great
success in describing the steady-state and transient behaviors of the laser for both class-A
and class-B dynamics. Another important achievement of this model has been to de-
rive an analytical expression for the nonlinear coupling between the two modes showing
how the coupling depends on the degree of spatial overlap between the modes and the
spin-relaxation of the carriers for our DF-VECSEL. In addition to that, the properties of
the intensity noises and their correlations have also been successfully reproduced by this
model. Furthermore, this theoretical approach to the dual-frequency VECSEL, based
on the ideas of SFM model, generalizes the previous simple heuristic model, described
in Chapter 2. In addition to that, the present model has predicted a few properties of
dual-frequency VECSELs such as the possible existence of bistability of the two modes
and unequal values of the ratios of cross- to self-saturation coefficients, which could not
be explained by the simple model. Moreover, it has opened interesting perspectives con-
cerning the laser dynamics when the frequency difference between the two modes becomes
too slow to be averaged out, leading to possible self-pulsing [Brunel et al., 1999a,b] and
other dynamical phenomena such as chaos [Virte et al., 2013b,a].
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The main results of this chapter are summarized in the following table:

• Development of an improved rate equation model for DF-VECSELs taking
into account the spin dynamics of the carriers.

• Analyzing the importance of the relative value of the spin-relaxation rate of
the carriers with respect to carriers’ decay rate inside the QW-based active
medium to determine the laser dynamics.

• Successful description of the steady-state and transient behaviors of the laser
for both class-A and class-B dynamics by the present model.

• Explanation regarding the unequal values of the ratios of cross- to self-
saturation coefficients, which was not possible by the simple model.

• Finding analytical expressions for the ratios of the cross- to self-saturation
coefficients, and hence the nonlinear coupling constant between the two modes.

• Reproduction of the properties of the intensity noises and their correlations
with great success by this developed model.

• Generalization of the previous simple heuristic model, described in Chapter 2.
• Predictions concerning possible existence of bistability, chaos in DF-VECSELs.
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4.1 Introduction

In the first part of this thesis, we have explored different noise properties of dual-frequency
VECSELs, which are emerging as a key building block for numerous microwave photon-
ics applications. The DF-VECSELs, sustaining simultaneous oscillation of two linear-
orthogonal polarizations with a frequency difference lying in the RF range, are based on
quantum-well based active medium. In Chapter 2, we have analyzed the spectral behav-
iors of the following phenomena in a DF-VECSEL: (i) intensity noises of the two laser
modes and the correlation between these noises, (ii) the RF beatnote generated by optical
mixing of the two laser modes and the phase noise of the RF beatnote, and (iii) the cor-
relation between the phase noise of the RF beatnote with the intensity noises of the two
laser modes, which generate the RF beatnote via optical mixing. It has been found that
the spectral behaviors of all these noises and their correlations strongly depend on several
factors such as the nonlinear coupling between the two laser modes, the spectral behaviors
of the pump noises and their correlations, and finally the class-A dynamical behavior of
the DF-VECSEL. On the other hand, dual-frequency oscillation has also been realized in
several solid-state lasers [Brunel et al., 1997; Alouini et al., 1998; Czarny et al., 2004]. Ob-
viously, there are some differences between the gain mechanisms in the solid-state lasers
and the semiconductor lasers such as VECSELs. More importantly, solid-state lasers ex-
hibits class-B dynamics, whereas VECSELs obey class-A dynamical behavior as shown
previously. The class-B dynamical behavior of the solid-state lasers is linked with the
fact that the population inversion lifetime (few hundreds of microseconds) in solid-state
active medium is typically much longer than the photon lifetime (few nanoseconds) inside
the few centimeter-long cavity. Because of this class-B dynamics, the noise properties of
solid-state lasers largely differ from the class-A VECSELs. The most significant differ-
ence is the presence of a resonant peak in the intensity noise spectrum of the solid-state
lasers at low frequencies i.e., from a few kilohertz to a few megahertz, due to relaxation
oscillations [Taccheo et al., 1996; Alouini et al., 2001]. This is a huge drawback compared
to the class-A laser like VECSEL, in which the intensity noise spectrum is analogous to a
first-order function as demonstrated previously. Moreover, for a dual-frequency solid-state
laser, which sustains simultaneous oscillation of two perpendicularly polarized modes in-
side the cavity, the situation is even worse. Then, each laser mode exhibits two peaks in
its intensity noise spectrum. The first one is linked with the well known in-phase (stan-
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dard) relaxation oscillation, for which the intensities of the two mode relax in phase. The
second one, which is inherent to all coupled oscillator systems, corresponds to the anti-
phase relaxation regime of the intensities of the two eigenstates [Otsuka et al., 1992]. This
causes severe degradation of the intensity noise properties of dual-frequency solid-state
laser, and limits its use for microwave photonics applications [Alouini et al., 2001; Pillet
et al., 2008]. Additionally, these relaxation mechanisms deteriorate the spectral purity of
the RF beatnote, generated by optically mixing the two laser modes of the dual-frequency
solid-state lasers. This is also a notable disadvantage of a dual-frequency solid-state laser
compared to its class-A counterpart like a dual-frequency VECSEL.

However, in a dual-frequency VECSEL, because of its semiconductor active medium,
the phase noises of the two oscillating modes are coupled with the intensity noises of
these modes via the α−factor [Henry, 1982]. This is why it was important to understand
and control the correlations between the intensity noises of the two modes in such a
dual-frequency VECSEL as described in Chapter 2. On the contrary, the value of the
α−factor is usually very small in solid-state lasers, leading to a negligible phase/intensity
coupling. In spite of that, a complete understanding of the noise characteristics of such
dual-frequency solid-state lasers is highly desirable. In all cases, as far as the addressed
application requires the use of the two laser modes (atomic clock [Knappe et al., 2007;
Vanier, 2005], pump-probe experiments, metrology [Nerin et al., 1997; Du et al., 2005],
etc...), the degree of intensity noise correlation between the two modes must be known
precisely. This explains why it is also important to explore the correlations between the
intensity noises of the two modes of a dual-frequency solid-state laser.

The aim of this chapter is therefore to investigate the intensity noise correlation be-
havior for a dual-frequency solid-state laser, specifically a dual-frequency Nd:YAG laser
[De et al., 2013a]. In particular, the main interest here is to analyze how the presence of
the relaxation oscillation peaks in the intensity noise spectra of a class-B dual-frequency
Nd:YAG laser modifies the spectral behavior of the noise correlation compared to the
class-A DF-VECSEL. In the present chapter, we thus investigate, both experimentally
and theoretically, the relative intensity noise (RIN) spectra and also the correlation be-
tween the intensity noises of the two lasing modes for different coupling situations in
the same spirit as demonstrated for dual-frequency VECSEL in Chapter 2. The present
chapter is organized as follows: in section 4.2, we remind the spectroscopic properties of
Nd:YAG active medium and the cavity configuration of the dual-frequency laser based
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on Nd:YAG gain medium. In Sec. 4.3, we develop a theoretical model, based on the
assumption that the emitting dipoles behave as if they are aligned along the crystallo-
graphic axes of the gain medium [Schwartz et al., 2009]. Moreover, in the model we
consider that the intensity noise of the pump laser is the dominant source of noise in the
frequency range of 0-120 kHz, where the laser intensity noise is well above shot noise. This
is subsequently verified by experiment. In Sec. 4.4, we give a detailed description of the
experimental setup aiming at measuring the intensity noise correlation between the two
orthogonally polarized modes of the dual-frequency Nd:YAG laser. Thereafter, we provide
a comparative analysis between the intensity noise correlation spectra as obtained from
the experiment and predicted by the theoretical model. Then, we try to give a physical
insight for further comprehension.

4.2 Description of dual-frequency Nd:YAG laser

Before going into analyzing the noise properties of a dual-frequency Nd:YAG laser, in this
section we provide a brief description of the key elements inside the laser. We start by
reminding the spectroscopic properties of the Nd:YAG active medium.

4.2.1 Nd:YAG gain-medium

Neodymium-doped yttrium aluminum garnet, abbreviated as Nd:YAG, is one of the pre-
ferred active medium for building a laser. In Nd:YAG, the Nd3+ ion replaces the Y3+ ion
of the host YAG (Y3Al5O12). The size of the Nd+3 (98 pm) is greater than the size of
the Y+3 (90 pm), limiting the doping of Nd+3 to less than 1.5% without undue straining
of the crystal. It is worth mentioning that a 1% concentration of Nd+3 corresponds to
a density of 1.386× 1020 cm−3. The electronic configuration of the trivalent neodymium
ion reads as Nd3+ : [Xe]4f35s25p6, where [Xe] represents the ground state configuration of
xenon. The fluorescence spectra of neodymium ions arise from the electronic transitions
between the energy levels of the partially filled 4f shell. One key feature of the trivalent
rare-earth ions (Nd3+) in crystalline host media (YAG) is that the partially filled 4f states
are well-shielded by fully occupied 5s and 5p shells. The interaction with the field of the
host-crystal is therefore weak leading to a series of manifolds that are slightly perturbed
from those of the free ion. However, it is important to note that the optical cross-sections
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of the transitions may vary significantly. In Nd:YAG, there exist several closely spaced
manifolds above the metastable 4F3/2 manifold which are separated by energies less than
the maximum phonon energy (850 cm−1) in YAG. These manifolds provide a broad ab-
sorption band, ideal for optical pumping. Once the ions are optically pumped to this broad
band, they can rapidly cascade down via non-radiative transitions and end up being in the
metastable 4F3/2 manifold. The decay rate of 4F3/2 is very slow as it is not coupled to the
lower 4I manifolds by phonon vibrations. It can only decay by radiative transitions to the
4I manifolds, leading to a long fluorescent lifetime around 230µs. On the other hand, the
levels of the 4I manifolds are separated by energies less than the maximum phonon energy
leading to a very short lifetime (in the order of 100 ps) of these levels as they are coupled
by non-radiative transitions. This shows that the energy level structure of Nd:YAG is
ideal for laser oscillation. In Nd:YAG, lasing has been obtained for several wavelengths
centered at about 0.9 µm, 1.06 µm, and 1.35 µm corresponding to transitions from 4F3/2

manifold to 4I13/2, 4I11/2, and 4I9/2 manifolds, respectively. However, the most common
and the strongest one, used for our experiment too, is the transition between 4F3/2 and
4I11/2, centered at 1064 nm wavelength. The energy level scheme of this lasing transition
can be simply modeled as a four-level model like in Fig. 4.1 [Hooker and Webb, 2010]. As
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4F3/2 

4I11/2 

4I9/2 

1064 nm 
Optical 
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Rapid non- 
Radiative decay 

Rapid 
 relaxation 

Figure 4.1: Simplified energy level diagram of Nd:YAG for 4F3/2 to 4I11/2 laser transition.

one can notice in Fig. 4.1 that the 4F3/2 meta-stable manifold (2) can be populated by
rapid non-radiative transitions from the broad pump band (3), while the 4I11/2 (1) man-
ifold acting as the lower laser level decays very rapidly to the 4I9/2 manifold (0), which
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is the ground level. The laser emission between 4F3/2 and 4I11/2 manifolds includes two
transitions: (i) from the upper doublet of 4F3/2 to the Y3 level of 4I11/2 centered at 1064.15
nm (R2 line), and (ii) from the lower doublet of 4F3/2 to the Y2 level of 4I11/2 centered
at 1064.4 nm (R1 line). At room temperature and for low pumping rates the R1 line
contributes very little to the overall gain, and hence in our case we mostly deal with the
R2 transition. At room temperature, the R2 line is homogeneously broadened by phonon
collisions leading to a full-width at half-maximum bandwidth of approximately 190 GHz.

4.2.2 Cavity design for dual-frequency oscillation

Figure 4.2(a) shows the architecture of the laser cavity1. The cavity sustains simultaneous
oscillation of x− and y-polarized modes having a frequency difference in the RF range.
The laser is based on a 〈100〉-cut Nd:YAG crystal. The 〈100〉-cut crystal leads to the fact
that 〈010〉 and 〈001〉 crystal axes lie in the transverse plane of the cavity, whereas the
〈100〉 axis corresponds to the light propagation direction inside the cavity. The reason
behind this particular choice of crystal-cut will be clarified afterwords. The laser cavity is

D 

Oscilloscope 

(a) (b) 
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010  

001  

α 
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x 

Figure 4.2: (a) Schematic representation of the cavity configuration; LD: laser diode;
QWP: quarter-wave plate; HWP: half-wave plate; BS: beam splitter; PBS: polarization
beam splitter. (b) Orientations of the two eigen-polarizations, x and y, with respect to

the crystallographic axes 〈010〉 and 〈001〉.

1This experiment was performed in Institut de Physique de Rennes together with Abdelkrim El Amili,
Goulc’hen Loas, and Mehdi Alouini.
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a linear one of 9-cm length, and it is closed by a planar and a concave mirror. The planar
mirror has a maximum reflection at 1.064µm, and it transmits the pump wavelength.
The concave mirror, acting as the output coupler, has a transmission of 2 % at 1.064µm
and a radius of curvature of 10 cm. We introduce a quarter-wave plate (QWP) inside the
cavity to lift the polarization degeneracy. Because the Nd:YAG active medium is optically
isotropic, the two eigenpolarizations are linear and aligned along the directions x and y
of the neutral axes of the QWP. Therefore, to change the orientations of the eigenpo-
larizations one simply needs to rotate the QWP. To this aim, the QWP is placed on a
precise rotation mount. This permits to adjust the angle α between the eigenpolarization
directions and the transverse crystallographic axes (Fig. 4.2(b)), and hence enables us to
assign different nonlinear coupling between the two modes [Schwartz et al., 2009]. We
will subsequently elaborate this point. The Nd:YAG crystal is 2-cm long, and it is placed
inside a copper mount to limit thermally induced birefringence. The crystallographic axes
of the Nd:YAG are precisely determined by x-ray diffraction. The pumping is provided by
a continuous wave (CW) multimode fiber-coupled laser diode, operating at 808 nm and
delivering 300 mW of optical power. The dual-frequency laser is operating at 1.064µm
and its total output power is about 20 mW. We have checked that the pump beam is
unpolarized, avoiding any unwanted pump-induced gain anisotropy. The free spectral
range (FSR) of the laser cavity is about 1.67 GHz, which is much smaller than the gain
bandwidth (∼190 GHz). This leads to multi-longitudinal mode oscillation of each eigen-
polarization. To force single longitudinal mode oscillation of each polarization state, we
place a 1 mm-thick uncoated YAG etalon inside the cavity. The laser spectrum is con-
tinuously analyzed with a scanning Fabry-Perot interferometer to make sure that each
eigenpolarization always oscillates in single-frequency regime without any mode hopping
during data acquisition.

Before presenting the experimental results, we introduce a theoretical model to prop-
erly describe the noise properties of our dual-frequency Nd:YAG laser.

4.3 Theoretical model

In this section, our aim is to develop a theoretical model to assess how the intensity noise
of the pump laser, which acts as the dominant source of noise in the considered frequency
range (0-120 kHz), is transferred to the intensity noises of the two orthogonally polar-
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ized modes of our dual-frequency Nd:YAG laser. In Chapter 2, we have shown that the
noise properties of a dual-frequency VECSEL can be very well explained by a rate equa-
tion based theoretical model. We follow the same footsteps here for the dual-frequency
Nd:YAG laser. To this aim, we first need to write suitable rate equations explaining
the laser dynamics. In solid-state active media like Nd:YAG, the main difficulty arises
from the fact that the transition dipoles typically have certain preferred orientations de-
pending on the symmetry of the crystalline site. Therefore, the polarization direction of
the light also becomes important, and hence one needs to consider the vector nature of
the light-matter interaction. To clarify this further, we start by reminding the standard
semiclassical description of a laser, in which the light is treated classically but the matter
is described quantum mechanically. According to this semiclassical formalism, the tran-
sition electric-dipole is usually modeled by a quantum mechanical operator d̂. Since the
dipoles in Nd:YAG crystal typically have a specified orientation, the dipole operator d̂
can be expressed as d̂ = d̂u, where u is the unit vector along the direction of the electric-
dipole. On the other hand, light is described classically with a linearly polarized electric
field E = Ev, where v is the unit vector parallel to the electric field. Then, the interac-
tion between the dipole d̂ and the electric field E can be described by the electric-dipole
Hamiltonian ĤI = −d̂.E. As a result, in the rate equations for the intra-cavity photon
number F and the population inversion number N of a single mode laser, the dipolar
interaction terms can be expressed as follows [Schwartz et al., 2009; Siegman, 1986]

dF

dt

∣∣∣∣∣
I

= κNF cos2(v̂,u) , (4.1)

dN

dt

∣∣∣∣∣
I

= −κNF cos2(v̂,u) , (4.2)

where κ is the stimulated emission coefficient. It is worth mentioning that to obtain
the above rate equations we have assumed that the atomic polarization lifetime is much
shorter than the photon lifetime (γ−1

cav) inside the cavity and the population inversion
lifetime (Γ−1). Consequently, the complete rate equations for F and N can be written as

dF

dt
= −γcavF + κNF cos2(v̂,u) , (4.3)

dN

dt
= −Γ(N −N0)− κNF cos2(v̂,u) , (4.4)
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where N0 stands for the unsaturated population inversion number as ΓN0 is the pumping
rate. In the following, we will extend this single mode rate equation model to the two-
mode situation.

As one can notice in Eqs. (4.1-4.4), the dipolar interaction strength depends on the
relative orientations of the transition dipoles and the laser field. Therefore, to model
the rate equations of a solid-state laser, one must have the precise knowledge about the
dipole orientations in the active medium. It has been found that the crystal symmetry
plays a significant role to determine the dipole orientations in saturable absorbers based
on YAG-host such as Cr : YAG [Eilers et al., 1992; Brignon, 1996; Brunel et al., 1999c],
Tm : YAG [Greiner et al., 1999], etc. However, the link between the dipole orientations
and crystal symmetry in Nd:YAG crystal is still a point to debate. On the one hand, as
described in [Schwartz et al., 2009], the light emitting dipoles in Nd:YAG behave as if
they were aligned along the crystallographic axes. On the other hand, there are several
studies suggesting more complex dipole orientations in Nd:YAG crystal [Lukac et al., 1992;
Kravtsov et al., 2004; McKay et al., 2007]. To model our dual-frequency Nd:YAG laser,
we follow the simple formalism of [Schwartz et al., 2009]. In the following, we redevelop
the rate equations for our dual-frequency Nd:YAG laser as done in [Schwartz et al., 2009].
Thus, the transition dipoles are assumed to be oriented along the three crystallographic
axes (u1,u2,u3) and associated with population inversions N1, N2 and N3, respectively
(Fig. 4.3(a)). Our dual-frequency laser is based on 〈100〉-cut Nd:YAG crystal. This leads
to the fact that the wave vectors (k) of both x- and y-polarized mode are aligned along
one of the three crystallographic axes (say, u3), whereas the other two crystallographic
axes (u1, and u2) are lying in the same plane as the two polarizations (Fig. 4.3(b)). This
ensures that the dipoles aligned along u3 do not take part in the lasing transitions, and
hence N3 can be discarded from the laser rate equations. In this configuration, the two
eigenpolarizations can be defined as

x =


cosα
sinα

0

 , y =


− sinα
cosα

0

 (4.5)

where the coordinates have been written in the basis (u1,u2,u3) of the crystallographic
axes. The two eigenpolarizations, x and y, make angle α with crystal axes u1 and u2,
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respectively (Fig. 4.3(b)). Therefore, Eqs. (4.3-4.4) for a single mode laser can be extended
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Figure 4.3: (a) Schematic representation of the crystallographic axes (u1, u2, u3) and
the orientation of the dipoles of a 〈100〉-cut Nd:YAG crystal; (b) Orientation of the
eigenpolarizations x, and y with respect to the crystallographic axes u1, and u2.

to our dual-frequency laser as follows:

dFx
dt

= −γxFx + κFx[N1 cos2 α +N2 sin2 α] , (4.6)
dFy
dt

= −γyFy + κFy[N2 cos2 α +N1 sin2 α] , (4.7)
dN1

dt
= Γ(N01 −N1)− κN1[Fx cos2 α + Fy sin2 α] , (4.8)

dN2

dt
= Γ(N02 −N2)− κN2[Fy cos2 α + Fx sin2 α] , (4.9)

where Fx, Fy denote the intracavity photon numbers for x− and y−polarized mode,
respectively. We assume that the stimulated emission coefficient κ is identical for the
two modes. γx, γy are the cavity decay rates (inverse of photon lifetimes, τx and τy,
respectively) for the two modes, which we suppose to be different as in our experiment the
two modes experience slightly different losses. Γ stands for the inverse of the population
inversion lifetime τ as previously. We consider different pumping rates, N01/τ and N02/τ ,
for the two families of dipoles. As done in [Schwartz et al., 2009] to better fit the nonlinear
coupling measurements, we phenomenologically introduce a small dipole ellipcity β � 1
in the model (Fig. 4.3). This leads to the following modified version of the rate equations
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of the dual-frequency Nd:YAG laser:

dFx
dt

= −γxFx + κFx
[
N1(cos2 α + β sin2 α) +N2(sin2 α + β cos2 α)

]
, (4.10)

dFy
dt

= −γyFy + κFy
[
N2(cos2 α + β sin2 α) +N1(sin2 α + β cos2 α)

]
, (4.11)

dN1

dt
= Γ(N01 −N1)− κN1

[
Fx(cos2 α + β sin2 α) + Fy(sin2 α + β cos2 α)

]
,(4.12)

dN2

dt
= Γ(N02 −N2)− κN2

[
Fy(cos2 α + β sin2 α) + Fx(sin2 α + β cos2 α)

]
.(4.13)

Here, β takes into account the possible coupling between different dipole families aligned
along different crystal axes. One possible reason behind the origin of β is the arbitrary
orientations of the neodymium ions residing in the defect sites of the host YAG matrix
that may induce energy transfer between dipoles from different intrinsic crystal sites. It
is worth mentioning that in Eqs. (4.10-4.13), we have neglected the role of N3 as it would
only give terms of the order of β2 or smaller. We rewrite Eqs. (4.10-4.13) as

dFx
dt

= −γxFx + κFx [N1A+N2B] , (4.14)
dFy
dt

= −γyFy + κFy [N2A+N1B] , (4.15)
dN1

dt
= Γ(N01 −N1)− κN1 [FxA+ FyB] , (4.16)

dN2

dt
= Γ(N02 −N2)− κN2 [FyA+ FxB] , (4.17)

where the coefficients A and B read

A = cos2 α + β sin2 α , (4.18)
B = sin2 α + β cos2 α . (4.19)

Therefore, the A and B coefficients simply determine the strengths of the interaction of
the two eigenpolarizations with the two dipole families aligned along the two crystal axes
of the 〈100〉-cut Nd:YAG. This leads to the following expression for the nonlinear coupling
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constant (C) (AppendixE):

C = 4A2B2

(A2 +B2)2 . (4.20)

Equation (4.20) indicates that the nonlinear coupling strength between the two modes of
the dual-frequency Nd:YAG laser can be changed simply by changing the angle α between
the eigenpolarizations and the transverse crystallographic axes (Fig. 4.3(b)). In our laser
architecture as schematized in Fig. 4.2, the choice of 〈100〉-cut crystal along with the
intra-cavity QWP permits us to change α simply by rotating the QWP, which defines the
directions of the eigenpolarizations. More importantly, this configuration may even lead
to nearly complete decoupling of the two modes by aligning them along the two transverse
crystallographic axes i.e. by making α = 0 , hence assigning two almost independent sets
of dipoles for the two eigenpolarizations. The utility of this will be stressed in the next
chapter. Among the steady-state solutions of Eqs. (4.14-4.17), the one corresponding to
the simultaneous oscillation of the two orthogonally polarized modes is given as:

Fx ≡ Fx0 = Γ[A(r1 − 1)−B(r2 − 1)]
κ(A2 −B2) , (4.21)

Fy ≡ Fy0 = Γ[A(r2 − 1)−B(r1 − 1)]
κ(A2 −B2) , (4.22)

N1 ≡ N1th = (Aγx −Bγy)
κ(A2 −B2) , (4.23)

N2 ≡ N2th = (Aγy −Bγx)
κ(A2 −B2) , (4.24)

where r1 = N01/N1th and r2 = N02/N2th are defined as the standard excitation ratios of
a usual single-mode laser, although in this case none of them can be attributed to one
mode only.

Our aim is now to calculate the fluctuations of Fx and Fy around the corresponding
steady-state values. In our dual-frequency Nd:YAG laser, the dominant source of noise is
the intensity noise of the pump diode laser. We model the pump fluctuations for the two
dipole families as following

N01(t) = N01 + δN01(t) , (4.25)
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N02(t) = N02 + δN02(t) . (4.26)

Because of the pumping fluctuations, the population inversions corresponding to the two
dipole families and the number of photons in the two laser modes fluctuate around their
steady-state values [Eqs. (4.21-4.24)], which we model as

Fx(t) = Fx0 + δFx(t) , (4.27)
Fy(t) = Fy0 + δFy(t) , (4.28)
N1(t) = N1th + δN1(t) , (4.29)
N2(t) = N2th + δN2(t) . (4.30)

Now, substituting Eqs. (4.25-4.30) into Eqs. (4.14-4.17), and then performing Fourier
transformation after linearization, we obtain the following expression relating the fluc-
tuations of the photon numbers [δ̃F x(f), δ̃F y(f)] of the two lasing modes to the two
pump fluctuations [δ̃N01(f), δ̃N02(f)] in the frequency domain:

δ̃F x(f)
δ̃F y(f)

 =
M11(f) M12(f)
M21(f) M22(f)

 δ̃N01(f)
δ̃N02(f)

 , (4.31)

where the tilde ∼ denotes Fourier transformed quantities and f corresponds to the fre-
quency of the considered spectral component of the fluctuations. The coefficients of the
linear response transfer matrix of Eq. (4.31) are given by

M11(f) =
A(A2 −B2)Γ

[
(Aγy −Bγx)− 2iπf

κFy0
(r2Γ− 2iπf)

]
∆ , (4.32)

M12(f) = −
B(A2 −B2)Γ

[
(Aγx −Bγy) + 2iπf

κFy0
(r1Γ− 2iπf)

]
∆ , (4.33)

M21(f) = −
B(A2 −B2)Γ

[
(Aγy −Bγx) + 2iπf

κFx0
(r2Γ− 2iπf)

]
∆ , (4.34)

M22(f) =
A(A2 −B2)Γ

[
(Aγx −Bγy)− 2iπf

κFx0
(r1Γ− 2iπf)

]
∆ , (4.35)
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where the denominator ∆ of these matrix elements reads

∆ = A2
[
(Aγx −Bγy)−

2iπf
κFx0

(r1Γ− 2iπf)
] [

(Aγy −Bγx)−
2iπf
κFy0

(r2Γ− 2iπf)
]

−B2
[
(Aγx −Bγy) + 2iπf

κFy0
(r1Γ− 2iπf)

] [
(Aγy −Bγx) + 2iπf

κFx0
(r2Γ− 2iπf)

]
.

(4.36)

In our dual-frequency Nd:YAG laser, the pumping is done by a multimode fiber-coupled
diode laser, leading to an unpolarized pump beam. Therefore, we consider that the pump
fluctuations for two dipole families are white noises of identical amplitude as〈∣∣∣δ̃N01(f)

∣∣∣2〉 =
〈∣∣∣δ̃N02(f)

∣∣∣2〉 =
〈∣∣∣δ̃N0

∣∣∣2〉 . (4.37)

Therefore, the pump relative intensity noise (RIN) for the two dipole families can be
expressed as

RINPump =

〈∣∣∣δ̃N0

∣∣∣2〉
N

2
0

, (4.38)

where we consider N0x ≡ N0y = N0. This assumption of identical pump RINs for the two
dipole families as defined in Eq (4.38) are verified by experiment, which will be reported
afterwards. Moreover, we assume that the pump fluctuations for the two dipole families
are partially correlated with a correlation amplitude 0 < η < 1 and a correlation phase
ψ = 0. Thus, the pump noise correlation spectrum reads

〈
δ̃N01(f)δ̃N∗02(f)

〉
= η

〈∣∣∣δ̃N0

∣∣∣2〉 eiψ . (4.39)

Finally, the RINs for the two modes and the intensity noise correlation spectrum of the
dual-frequency Nd:YAG laser can be obtained from the definitions respectively given in
Eqs. (2.3-2.4), and Eq. (2.7) of Chapter 2.

In next section, we compare the predictions of the theoretical model developed here
with the results obtained from the experiment.
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4.4 Results: experiment and theory

We remind here that such noise correlation spectra have been already explored for the
dual-frequency VECSEL in Chapter 2. However, the transient behaviors of the Nd:YAG
laser and the VECSEL are significantly different, when the former is damped oscillatory,
the latter one is exponentially damped due to their respective class-B and class-A dynam-
ics. Therefore, it is interesting to visualize how this class-B dynamics of the dual-frequency
Nd:YAG laser qualitatively modifies the intensity noise correlation spectrum compared
to the class-A DF-VECSEL. To this aim, in this section, we report the experimental and
theoretical results regarding the spectral behavior of the correlation between the intensity
noises of the two cross-polarized modes of our dual-frequency Nd:YAG laser. We first
describe the noise correlation measurement scheme.

4.4.1 Noise correlation measurement setup

The noise correlation measurement scheme for our dual-frequency Nd:YAG laser is pre-
sented in Fig. 4.4. To measure the correlation between the intensity noises of the two
laser modes, they should be detected separately without mixing them. The two linear
cross-polarized modes are separated using the combination of the half-wave plate (λ/2)
followed by a polarization beam spliter (PBS). Then, the two modes are detected using

PBS 

λ/2 

D 

Oscilloscope 

RFA 

DF- 
Nd:YAG 

D 

RFA 
Mirror 

y 

x 

y 

x 

Figure 4.4: Schematic of the noise correlation measurement setup for dual-frequency
Nd:YAG (DF-Nd:YAG) laser. λ/2: half-wave plate, PBS: polarization beam spliter, D:

photodiode, RFA: RF amplifier.

fast photodiodes (D). We have used two identical InGaAs photodiodes (Epitaxx Inc, 3.7
MHz bandwidth) for the detection of the two modes. The detected signals are then ampli-
fied using identical low-noise homemade RF amplifiers (RFA). Thereafter, the amplified

135



Chapter 4. Intensity noise correlations in dual-frequency Nd:YAG lasers

signals are recorded in time domain by a deep memory digital oscilloscope. Finally, the
oscilloscope data are numerically processed to obtain the RINs and the intensity noise
correlation spectra. We repeat here that the main interest of this temporal measurement
scheme is to measure the two intensity noises simultaneously, which is essential to analyze
their correlation.

4.4.2 Intensity noise correlation

The nonlinear coupling between the modes, in addition to the laser dynamics class is
expected to play a significant role to determine the spectral behavior of the noise cor-
relation. In the experiment, different nonlinear coupling strengths have been achieved
by changing α, the angle between the eigenpolarizations and the crystallographic axes as
shown in Fig. 4.2(b). We have measured the RIN spectra and the noise correlation spectra
for three different values of α, such as 20◦, 30◦, and 52◦, which according to Eq. (4.20)
correspond to C ' 0.09, C ' 0.40, and C ' 0.75, respectively.

The results for α = 20◦ corresponding to C ' 0.09 are shown in Fig. 4.5. The RIN
spectra for both the laser modes, as obtained from the experiment (Fig. 4.5(a)), exhibit
two relaxation oscillation peaks. The peak lying in the high frequency region of the noise
spectra (∼ 90 kHz ) is due to the standard relaxation oscillation, whereas the low fre-
quency peak (∼ 50 kHz ) is caused by the anti-phase relaxation oscillation (Fig. 4.5(a)).
The presence of these relaxation oscillation peaks in the noise spectra illustrates the
class-B dynamical behavior of our laser [McCumber, 1966]. The RIN spectra of x− and
y−polarized mode, respectively corresponding to red-squared-line and blue-circled-line in
Fig. 4.5(a), are not exactly identical since in the experiment it is difficult to assign per-
fectly identical losses and/or gains for the two modes. The RIN spectra obtained from
our theoretical model are displayed in Fig. 4.5(b). They show very good agreement with
the experiment, except from the fact that the position of the anti-phase peak is at about
65 kHz in the theoretical RIN spectra (Fig. 4.5(b)), instead of at ∼ 50 kHz as obtained
from the experiment (Fig. 4.5(a)). When one observes the experimental correlation ampli-
tude spectrum (Fig. 4.5(c)), one can notice the presence of two dips at about 30 kHz and
55 kHz, respectively. In addition to that the correlation amplitude becomes maximum
(close to 0 dB) at about 50 kHz, and it remains close to 0 dB for all frequencies higher
than 70 kHz. The correlation amplitude is almost flat and equal to about -5 dB for fre-
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Figure 4.5: Results for α = 20◦, which corresponds to C = 0.09. RIN spectra: (a)
experimental, and (b) theoretical; correlation amplitude spectra: (c) experimental and

(d) theoretical; correlation phase spectra: (e) experimental and (f) theoretical.
Parameter values used for simulations: β = 0.025, r1 = 1.35, r2 = 1.4, τx ' 5 ns, τy '

5.2 ns, τ = 200 µs, RINPump = −110 dB/Hz, η = 0.75, ψ = 0.

quencies lower than 20 kHz. The theoretical correlation amplitude spectrum is plotted in
Fig. 4.5(d). It also predicts two dips, at about 50 kHz and 70 kHz, whereas the correlation
amplitude reaches its maximum value (0 dB) between these dips and becomes maximum
again at 80 kHz and above. It is also almost flat (at −5dB) for frequencies lower than
30 kHz. Hence, the theoretical correlation amplitude spectrum (Fig. 4.5(d)) exhibits nice
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agreement with the experimental one (Fig. 4.5(c)). However, the positions of the dips in
the theoretical correlation amplitude spectrum do not exactly match the experiment. Fi-
nally, the experimental correlation phase spectrum (Fig. 4.5(e)) exhibits two phase jumps:
from zero to π at about 30 kHz and from π back to zero at about 55 kHz. Moreover, the
correlation phase is zero for frequencies lower than 30 kHz and also for frequencies higher
than 55 kHz, whereas it is π within 30 kHz to 55 kHz. The theoretical correlation phase
spectrum (Fig. 4.5(f)) reproduces these two phase jumps, but again at slightly different
frequencies (50 kHz, and 70 kHz, respectively) with respect to the experiment.

Figure 4.6 shows the results for α = 30◦, which leads to a coupling constant C equal
to 0.4, according to Eq. (4.20). The experimental and theoretical RIN spectra for the
two laser modes are presented in Figs. 4.6(a),(b), respectively. In the experimental RIN
spectra (Fig. 4.6(a)), the in-phase peak occurs at ∼ 90 kHz and the anti-phase peak is po-
sitioned at ∼ 50 kHz. The RIN spectra for the two modes (red-squared line, blue-circled
line) are again slightly different as their losses and/or gains are not identical. The theo-
retical RIN spectra, given in Fig. 4.6(b), is in good agreement with the experiment apart
from the fact that the anti-phase peak appears at about 40 kHz (Fig. 4.6(b)), whereas
experimentally we find it at about 50 kHz (Fig. 4.6(a)). The measured noise correla-
tion amplitude and phase spectra are shown in Figs. 4.6(c),(e), respectively. There are
two dips in the correlation amplitude spectrum at about 30 kHz and 60 kHz as repro-
duced in Fig. 4.6(c). Additionally, Fig. 4.6(c) also shows that the correlation amplitude
reaches 0 dB once at about 50 kHz, and again at 70 kHz and maintains 0 dB value
for all higher frequencies. Moreover, in the experimental correlation phase spectrum
(Fig. 4.6(e)), one can observe two jumps, one from zero to π at about 30 kHz and the
other one at about 60 kHz from π to zero. Furthermore, the correlation phase is zero for
frequencies lower than 30 kHz and also for frequencies higher than 60 kHz, whereas it is
π within 30− 60 kHz. The theoretical correlation amplitude and phase spectra, respec-
tively reported in Figs. 4.6(d),(f), exhibit satisfactory agreement with the corresponding
experimental spectrum (Figs. 4.6(c),(e), respectively). However, the positions of the phase
jumps in the correlation phase spectrum (Fig. 4.6(f)), and consequently the dips in the
correlation amplitude spectrum (Fig. 4.6(d)) as predicted by the theoretical model do not
exactly match the phase jumps and the dips respectively in experimental correlation phase
(Fig. 4.6(e)) and amplitude spectra (Fig. 4.6(c)).

Finally, the results for α = 52◦, which corresponds to C = 0.75 according to Eq. (4.20),
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Figure 4.6: Results for α = 30◦, which corresponds to C = 0.40. RIN spectra: (a)
experimental, and (b) theoretical; correlation amplitude spectra: (c) experimental and

(d) theoretical; correlation phase spectra: (e) experimental and (f) theoretical.
Parameter values used for simulations: β = 0.025, r1 = 1.35, r2 = 1.4, τx ' 5 ns, τy '

5.2 ns, τ = 200 µs, RINpump = −110 dB/Hz, η = 0.75, ψ = 0.

are produced in Fig. 4.7. In this coupling situation, the in-phase relaxation oscillation
peak lies at about 100 kHz as obtained from both experiment (Fig. 4.7(a)) and theory
(Fig. 4.7(b)). However, the positions of the anti-phase peak are different in the exper-
imental (at 60 kHz as in Fig. 4.7(a)) and theoretical (at 30 kHz as in Fig. 4.7(b)) RIN
spectra. Nevertheless, the presence of these noise peaks resonant to the relaxation oscil-
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lations reflects the class-B dynamical behavior of the dual-frequency Nd:YAG laser. The
RIN spectra for the two modes, denoted by the red-squared-line and blue-circled-line in
Figs. 4.7(a),(b) are not exactly identical due to the difference in losses and/or gains for the
them. Figures 4.7(c),(d) respectively represent the experimental and theoretical correla-
tion amplitude spectra. In the experimental correlation amplitude spectrum (Fig. 4.7(c)),
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Figure 4.7: Results for α = 52◦, which corresponds to C = 0.75. RIN spectra: (a)
experimental, and (b) theoretical; correlation amplitude spectra: (c) experimental and

(d) theoretical; correlation phase spectra: (e) experimental and (f) theoretical.
Parameter values used for simulations: β = 0.025, r1 = 1.38, r2 = 1.4, τx ' 5 ns, τy '

5.1 ns, τ = 200 µs,RINpump = −110 dB/Hz, η = 0.75, ψ = 0.
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one can now observe only one dip located at about 70 kHz. The correlation amplitude
spectrum as predicted by our theoretical model (Fig. 4.7(d)) reproduces the fact that there
exists only one dip, even though its frequency is different (40 kHz) from the experiment.
Moreover, experiment shows that (Fig. 4.7(c)), starting from ∼ - 10 dB at about 0 kHz,
the correlation amplitude gradually reaches its maximum value (0 dB) at about 60 kHz,
and maintains this maximum value (∼ 0 dB) for all frequencies higher than 90 kHz. The-
ory also qualitatively reproduces the same kind of behavior of the correlation amplitude
spectrum (Fig. 4.7(d)), except from the fact that theoretically the correlation amplitude
attains 0 dB at frequencies 30 kHz and 60 kHz, rather than at frequencies 60 kHz and
90 kHz as shown by the experiment (Fig. 4.7(c)). The experimental and theoretical cor-
relation phase spectra are shown in Figs. 4.7(e),(f), respectively. As obtained from the
experiment (Fig. 4.7(e)), the correlation phase is π for all the frequencies lower than 70
kHz, then it jumps from π to zero at about 70 kHz and remains at zero for all the higher
frequencies. The theoretical prediction as presented in Fig. 4.7(f) also exhibits only one
phase jump, but the phase jump from π to zero occurs at about 40 kHz instead of 70 kHz,
as shown by the experiment (Fig. 4.7(e)).

All the theoretical spectra of Figs. 4.5-4.7 are obtained considering a white pump noise
for the frequency range of 0−120 kHz with a RIN equal to −110 dB/Hz. To verify this, we
measure the pump intensity noise spectrum for frequencies between 0 and 120 kHz. The
simple measurement scheme is depicted in Fig. 4.8(a). The pump laser beam is detected
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Figure 4.8: (a) Noise measrement setup for the pump laser diode (LD) operating at 808
nm. ND: neutral density filter, D: photodiode, RFA: radio frequency amplifier, ESA:
electrical spectrum analyzer. (b) Relative intensity noise (RIN) spectrum of the pump

laser measured by an ESA with a resolution and video bandwidth of 500 Hz.
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using a photodiode (D), then the detected signal is amplified by a radio frequency amplifier
(RFA), and finally it is sent to an electrical spectrum analyzer (ESA). The neutral density
filter (ND) after the pump laser reduces the pump power below the maximum power rating
of the photodiode. The power spectral density (PSD) of the pump noise is recorded by
the ESA with a resolution bandwidth (RBW) and a video bandwidth (VBW) equal to 500
Hz. Then from this PSD, we calculate the pump RIN, which is plotted in Fig. 4.8(b). The
pump noise measurement is performed after introducing a polarizer in front of the detector
(D), and it is found that the pump RIN is white and independent of the orientation of
the polarizer (Fig. 4.8(b)). This proves the assumption of Eq. (4.37) i.e., the pump noises
for the two dipole families aligned along the two crystallographic axes of the Nd:YAG
active medium are identical white noises. Moreover, we obtain a pump RIN equal to
−110 dB/Hz, which is exactly the value we have taken for all the theoretical simulations
of Figs. 4.5-4.7. Additionally, for all the theoretical simulations we have used a pump
noise correlation factor η = 0.75, and a phase ψ = 0. It is important to mention that the
pump noise correlation spectrum is not experimentally verified; the value of η is adjusted
to fit the experimental results. However, the presence of the anti-phase peak in the RIN
spectra of the two laser modes for all three coupling situations indeed confirms that the
pump noises for the two dipole families are partially correlated. For all the theoretical
simulations of Figs. 4.5-4.7, the values of r1 and r2 are estimated from the experiment by
measuring the ratios of the pump power to the threshold pump power. The values of τx
and τy are estimated knowing the cavity length (9 cm) and the transmission loss of the
output mirror of the cavity (∼ 2 %). The value of τ (200 µs) is taken from the preceding
experiment performed with this active medium [El Amili et al., 2012].

4.4.3 Physical interpretation of the results

In the preceding section, we have explored the impact of the nonlinear coupling strength
between the two cross-polarized modes of our dual-frequency Nd:YAG laser on the inten-
sity noise correlation amplitude and phase spectra. In the following, we give a physical
interpretation of these noise correlation spectra in the framework of the linear response
of a two-coupled oscillator system as already performed in Chapter 2. To this aim, we
recall the notion of the in-phase and the anti-phase relaxation mechanisms for the dual-
frequency Nd:YAG laser in analogy with a two-coupled mechanical oscillator system [Ot-
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suka et al., 1992]. It is important to emphasize here that the eigenrelaxation mechanisms
of the dual-frequency Nd:YAG laser are significantly different from the dual-frequency
VECSEL. The eigenrelaxation mechanisms are damped oscillatory for the dual-frequency
Nd:YAG laser linked with its class-B dynamics, whereas theses eigenmechanisms are expo-
nentially damped in the dual-frequency VECSEL due to its class-A dynamical behavior.
In the general case, the transfer functions of the in-phase and anti-phase response can
be calculated by diagonalizing the 2 × 2 matrix of Eq. (4.31). However, the derivation
becomes fairly simple in the symmetrical-mode approximation i.e. if the two laser modes
behave symmetrically (identical losses, gains, etc.) and the detailed derivation is given in
AppendixC. The in-phase and anti-phase transfer functions, as obtained from Eqs. (C.25-
C.26) of AppendixC, are shown in Fig. 4.9 for the three different coupling situations. It
is important to remind here that the noise response of each laser mode can actually be
obtained by the superposition of the in-phase and the anti-phase responses. As a re-
sults, the relative degree of dominance between the in-phase and anti-phase responses
plays a pivotal role to determine the spectral properties of the intensity noises and their
correlation in the dual-frequency Nd:YAG laser.

We start with the weak coupling case (C = 0.09), corresponding to α = 20◦. In
this coupling situation, the in-phase response (pink line) and the anti-phase response
(black line) are reproduced in Fig. 4.9(a). One can find that both in-phase and anti-phase
responses exhibit a peak originating from the damped-oscillatory behavior of the two
eigenrelaxation mechanisms linked with the class-B dynamical behavior of the Nd:YAG
laser. Moreover, Fig. 4.9(a) shows that the eigenfrequency of the anti-phase relaxation os-
cillation is nearly equal to 70 kHz, whereas the eigenfrequency of the in-phase one is higher
(100 kHz). These different eigenfrequencies of the in-phase and anti-phase relaxation os-
cillations lead to the two peaks in the RIN spectrum of each laser mode (Fig. 4.5(a),(b)),
obtained by superposing the in-phase and anti-phase responses. One can also notice in
Fig. 4.9(a) that the in-phase response dominates over the anti-phase one for frequencies
lower than 50 kHz, then the anti-phase response becomes dominant within frequencies 50
kHz to 70 kHz, and finally the in-phase response prevails again for all frequencies higher
than 70 kHz. This explains why the correlation phase jumps from zero at low frequencies
to π at intermediate frequencies, and then back to zero again at high frequencies as shown
in Figs. 4.5(e),(f). These phase jumps correspond to the crossings between the in-phase
and anti-phase responses as shown in Fig. 4.9(a). The two crossings between the in-phase
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Figure 4.9: Normalized transfer functions for the in-phase (red line) and anti-phase
(black line) relaxation oscillation mechanisms for three different values of α,

corresponding to three different coupling situations; (a) α = 20◦, (b) α = 30◦ and (c)
α = 52◦. The values of the other parameters used for the simulations are: β = 0.025

r1 = r2 = r = 1.4, τx = τy = τcav = 5 ns, τ = 200µs, η = 0.75, ψ = 0
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and anti-phase responses also lead to the two dips in the correlation amplitude spectrum
(Figs. 4.5(c),(d)). These dips in the correlation amplitude spectrum can be described as
the outcome of the destructive interference between the identical noises of the two modes
due to the two π−phase jumps. Moreover, the correlation strength is weak (≤ - 5 dB)
for frequencies lower than 20 kHz (Fig. 4.5(c),(d)) as the pump noises for the two dipole
families are partially correlated (η = 0.75 < 1), and the transfer functions of the two
relaxation mechanisms differ by only one order of magnitude within these frequencies
(Fig. 4.9(a)). On the contrary, for frequencies higher than 80 kHz, the difference between
the strengths of the in-phase and anti-phase mechanisms is of several orders of magnitude,
leading to an almost perfect correlation (0 dB).

The interpretation of the results for the intermediate coupling case C = 0.40, corre-
sponding to α = 30◦ (Fig. 4.6), is quite similar to the preceding coupling situation. The oc-
currence of the resonant peaks at different frequencies for the in-phase (pink line) and anti-
phase (black line) response (Fig. 4.9(b)), linked with the class-B dynamics of the laser, give
rise to the two peaks in the RIN spectrum of each laser mode (Fig. 4.6(a),(b)). In this cou-
pling condition, the two phase jumps in the correlation phase spectrum (Figs. 4.6(e),(f)),
and consequently the two dips in the correlation amplitude spectrum (Figs. 4.6(c),(d))
are again coming from the two crossings between the in-phase and anti-phase response
(Fig. 4.9(b)). The dips in the correlation amplitude spectrum again originates from the
destructive interference between the nearly identical fluctuations of the two modes due to
the π−phase jumps. However, in the present case the main differences with respect to the
weak coupling case are that i) the anti-phase relaxation oscillation frequency is smaller,
leading to the fact that the two transfer functions of Fig. 4.9(b) cross at lower frequencies,
which is consistent with the fact that the phase jumps for the correlation occur at lower
frequencies in Figs. 4.6(e),(f) compared with Figs. 4.5(e),(f); ii) the difference between the
transfer functions of the two mechanisms becomes really small in the low frequency region
(lower than 20 kHz), explaining why the correlation amplitude becomes even smaller in
the low frequency region (Figs. 4.6(c),(d)).

Finally, for the moderately strong coupling case C = 0.75 corresponding to α = 52◦,
the in-phase and anti-phase response are shown in Fig. 4.9(c). In Figs. 4.7(a),(b), the two
resonant peaks in the RIN spectrum of each laser mode, obtained by superposing the
in-phase (pink line) and anti-phase responses (black line), are coming from the different
eigenfrequencies of the in-phase and anti-phase relaxation oscillations. Moreover, one can

145



Chapter 4. Intensity noise correlations in dual-frequency Nd:YAG lasers

observe in Fig. 4.9(c) that the anti-phase relaxation oscillation frequency has decreased
so much that the first crossing of the two transfer functions has disappeared unlike the
previous two coupling cases. As a result, the anti-phase mechanism always dominates
for low frequencies (less than 40 kHz), whereas the in-phase mechanism is dominating at
high frequencies. This explains why there is only one phase jump in the correlation phase
spectrum of Figs. 4.7(e),(f), and consequently only one dip in the correlation amplitude
spectrum of Figs. 4.7(c),(d).

It is worth noticing that the possible existence of two phase jumps, associated with the
two intersections of the transfer functions of the eigenrelaxation mechanisms, is coming
from the resonant behaviors of these transfer functions due to the class-B dynamics of
the Nd:YAG laser. This strongly contrasts with the case of class-A lasers that we have
discussed in the case of a dual-frequency VECSEL in Chapter 2. Indeed, for a class-A
laser, the transfer functions of the relaxation mechanisms look like the transfer functions
of a first-order filter or of an overdamped oscillator and decrease monotonically with
frequency. This implies that they can exhibit only one or no intersection, leading to the
fact that a maximum of one phase jump (and sometimes no phase jump) can be observed
in the correlation spectrum [De et al., 2013b].

However, one can notice by comparing the theoretical and experimental spectra in
Figs. 4.5-4.7 that the shift of the anti-phase relaxation oscillation frequency with the
change of α is not as large in the experiment as expected from the theoretical model. This
may be due to fact that the coupling strength might not exactly vary with α as predicted
by our model [Eq. (4.20)]. One possible explanation of this discrepancy may lie in the fact
that our model assumes the existence of only three families of dipoles oriented along the
crystallographic axes of the gain medium Schwartz et al. [2009], although several other
studies suggest more complex descriptions for the spectroscopy of Nd3+ ions embedded in
YAG matrix [Sing et al., 1974; Burdick et al., 1994; Dalgliesh et al., 1998; McKay et al.,
2007]. In addition to that, the present model does not take into account the effect of the
spatial hole burning [Tang et al., 1963; Kimura et al., 1971], which can lead to a reduction
of C. This could partially explain why C does not evolve in such a large range. The effect
of the spatial hole burning on coupling constant C is further discussed in AppendixF.
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4.5 Conclusion

In this chapter, we have explored the intensity noise properties of a dual-frequency
Nd:YAG laser, which sustains simultaneous oscillation of two cross-polarized modes with
a tunable frequency difference lying in the RF range. Specifically, we have analyzed,
both experimentally and theoretically, the spectral behaviors of the intensity noises and
their correlation for different nonlinear coupling strengths between the two laser modes
for frequencies between 0 and 120 kHz. There the intensity noise of the pump diode
laser acts as the dominant source of noise. The measurements have shown that the pump
noises for the two relevant dipole families are white noises of identical amplitudes. We
remind here that such a noise correlation analysis has already been carried out in Chap-
ter 2 for dual-frequency VECSEL, which exhibits class-A dynamics. However, since the
dual-frequency Nd:YAG laser obeys class-B dynamical behavior, the noise correlation in-
vestigation of the present chapter generalizes the analysis of Chapter 2. It has been found
that the class-B dynamical behavior of the dual-frequency Nd:YAG laser, in addition to
the nonlinear coupling between the two modes, greatly modifies the RIN spectra as well
as the noise correlation spectra compared to the class-A dual-frequency VECSEL. For
example, the RIN spectra of the two laser modes in dual-frequency Nd:YAG laser ex-
hibit resonant noise peaks at in-phase and anti-phase relaxation oscillation frequencies,
whereas for dual-frequency VECSELs the RIN spectra look like a first-order filter transfer
functions without any resonant peak. It is even more interesting to compare the intensity
noise correlation spectra for these two types of lasers. On the one hand, for the dual-
frequency Nd:YAG laser, the correlation phase spectrum exhibits either two phase jumps
or at least one phase jump, consequently the correlation amplitude spectrum shows two
dips or only one dip. On the other hand, there is the possibility to have a maximum of
only one phase jump or sometimes no phase jump in the correlation phase spectrum, and
consequently a maximum of one or even no dip in the correlation amplitude spectrum
of the dual-frequency VECSEL. Moreover, the intensity noises of the two laser modes in
the dual-frequency Nd:YAG laser become fully correlated (0 dB, exactly) for frequencies
around the relaxation oscillation frequencies, even though the noise sources (pump noises)
for the dipole families are only partially correlated. On the contrary, in the dual-frequency
VECSEL, the noise correlation amplitude never attains 0 dB value as long as the noise
sources for the two modes are partially correlated. Our physical interpretation in terms
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of the linear response of a two-coupled oscillator system has also achieved great success
in explaining this difference between the noise correlation spectra of the dual-frequency
Nd:YAG laser and the dual-frequency VECSEL. The dual-frequency VECSELs exhibit
similarities with the over-damped situation, whereas the dual-frequency Nd:YAG laser
resembles the weak damping case of a two-coupled oscillator system. Additionally, we
have introduced a theoretical model, based on the assumption that the dipoles inside the
gain medium are aligned along the crystallographic axes of the medium [Schwartz et al.,
2009], which has led to a fairly good agreement with the experiment. This also proves
the validity of the assumption of [Schwartz et al., 2009] that the emitting dipoles indeed
behave as if they were aligned along the crystallographic axes of the Nd:YAG crystal.
This indicates that the noise correlation analysis can even be a good probe to find the
dipole orientations in laser materials. Moreover, the remaining little discrepancy concern-
ing the shift of the anti-phase peak with the change of α gives the opportunity for further
developments of the model to take into account other effects (for example, the spatial hole
burning), which could modify the coupling strength. Of course, it would be even more
interesting, if this model could be extended to other laser materials, such as YAG doped
with other ions, or other crystal matrices, or even doped glasses. However, this implies a
careful study of the spectroscopy of these materials, which is not always available in the
literature, in order to understand the orientation of the absorbing and emitting dipoles.
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In the following table, we recapitulate the main results of this chapter:

• Exploration of the spectral properties of intensity noises and their correlation
in a dual-frequency Nd:YAG laser.

• Investigation of the impact of nonlinear coupling strengths between the two
modes in the dual-frequency Nd:YAG laser on the intensity noise correlation
spectra.

• Comparison between the intensity noise correlation spectra of class-B dual-
frequency Nd:YAG lasers and class-A dual-frequency VECSELs.

• Interpretation of the results in the framework of the linear response of two-
coupled weakly damped oscillators.

• Successful introduction of a theoretical model, based on the assumption that
the emitting dipoles in the Nd:YAG active medium were aligned along the
crystal grown axes.

• Prediction for the possible existence of other mechanisms, for example, spatial-
hole burning.
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Chapter 5. Reduction of anti-phase noise in a dual-frequency Nd:YAG laser

5.1 Introduction

The Nd:YAG lasers suffer from resonant intensity noise at low frequencies (from few
kilohertz to few megahertz) due to the relaxation oscillation inherent to their class-B
dynamical behavior as the population inversion lifetime inside the active medium prevails
over the photon lifetime inside the cavity. For a dual-frequency Nd:YAG laser, sustaining
simultaneous oscillation of two linear-orthogonal polarizations, the noise performance is
even worse. In this case, the intensity noise spectrum of each laser mode exhibits two
peaks lying at the in-phase and anti-phase eigenfrequencies as we have seen in the previous
chapter. These resonant intensity noises at low frequencies, typically within few kHz to
few MHz, limit the use of dual-frequency Nd:YAG lasers for a large number of applications
such as microwave photonics [Alouini et al., 2001; Brunel et al., 2005; Pillet et al., 2008],
spectroscopy [Brunel et al., 1997], and metrology [Nerin et al., 1997; Du et al., 2005]. The
in-phase noise peak, which corresponds to the standard relaxation oscillation of the laser,
can be reduced electronically or optically using feedback loops [Taccheo et al., 1996; Kane,
1990; Rowan et al., 1994], and also by laser injection locking [Harb et al., 1996; Freitag
and Welling, 1994]. However, the anti-phase peak, associated with a resonant exchange
of energy between the two laser modes, is very difficult to circumvent [Pillet et al., 2008].
This is because the reduction of the anti-phase peak would require an additional servo-
loop acting on the difference of the intensities of the two modes or two servo-loops acting
independently on the intensity of each mode. The existence of the anti-phase noise being
by essence due to the fact that the two laser modes share totally or partially the same
population inversion, another approach is to separate spatially the two lasers modes in
the active medium [Alouini et al., 1998; Yifei et al., 2001; Czarny et al., 2004]. However,
such a two axis approach increases the complexity of the laser. Additionally, it reduces
the correlation between the frequency jitter of the two modes as compared to a single
axis, thus reducing the efficiency of the common mode noise rejection. Besides, another
solution consists in using relaxation oscillation free class-A lasers such as VECSELs as has
been illustrated previously. However, achieving class-A dynamical behavior in a Nd:YAG
laser is not obvious as it would require a kilometer-long external cavity. Consequently,
an optimal dual-frequency laser in terms of intensity noise and beat frequency stability
would be a single axis laser in which the population inversions related to each mode are
independent. In this chapter, we experimentally demonstrate how the proper design of
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a two polarization dual-frequency Nd:YAG laser allows to get rid of the anti-phase noise
in the simplest possible architecture and without using any electronic or optical feedback
loop [El Amili et al., 2012]. This design is based on an appropriate choice of the active
medium cut and orientation in order to assign two almost independent families of active
atoms to the two laser modes.

5.2 Experimental results

The architecture of the two-frequency Nd:YAG laser is identical to the one in Fig. 4.2(a)
of Chapter 4. We repeat that our aim here is to to minimize the anti-phase relaxation
mechanism by completely decoupling the two eigenpolarizations of the dual-frequency
Nd:YAG laser. One possible way to decouple the two laser modes is to assign two in-
dependent population reservoirs for the two modes. In order to achieve that one should
properly choose the active medium cut and should also have the freedom to vary the orien-
tations of the two eigenpolarizations. In the laser architecture that we choose (Fig. 4.2(a)
of Chapter 4), the intra-cavity quarter-wave plate (QWP) defines the orientations of the
two eigenpolarizations of the laser. In this case, these two eigenpolarizations are linear
and aligned along the neutral axes of the QWP. The frequency difference between the
two polarizations is equal to one half of the free spectral range of the cavity. It is worth
mentioning that in usual two-frequency lasers [Brunel et al., 1997], one uses a variable
intra-cavity retardance in order to be able to tune the frequency difference between the
two modes. Here, we restrict to the simple case of an intra-cavity QWP because rotat-
ing this QWP permits to simply rotate the orientation of the eigenpolarizations. Now,
the remaining question is how should we choose our active medium in order to uncouple
the two polarization modes, i.e., to minimize the cross-saturation effect between the two
modes? To this aim, we choose a (100)-cut Nd:YAG crystal instead of the more common
(111)-cut, keeping in mind that the emitting dipoles behave as if they were aligned along
the crystallographic axes of the YAG matrix [Schwartz et al., 2009]. This leads to the fact
that one among the three dipole families, aligned along the 〈100〉 crystallographic axis,
does not contribute to the lasing action i.e., the contribution from the population inver-
sion N3 can be discarded. Therefore, we are left with only two dipole families, associated
with population inversions N1, N2, and aligned along the two transverse crystallographic
axes (〈010〉, 〈001〉, respectively) as shown in Fig. 4.3 of Chapter 4. In this configuration,
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the nonlinear coupling (C) between the two eigenpolarizations only depends on the an-
gle (α) between the eigenpolarization directions and the crystallographic axes as given
in Eq. 4.20 of Chapter 4. In principle, it indicates that almost complete decoupling of
the two cross-polarized modes could be obtained by making α = 0, i.e., aligning the two
eigenpolarizations along the 〈010〉 and 〈001〉 crystallographic axes. This explains why we
have chosen such a crystal-cut. We remind that the QWP is mounted on a precise rotation
mount in order to control the angle α between the Nd:YAG crystallographic axes and the
polarization states. Both laser modes are continuously analyzed with a Fabry-Pérot cavity
to check that the laser remains monomode without any mode hop during data acquisi-
tion. All the measurements are performed for a pump power equal to 300 mW, leading
to a laser output power of about 20 mW. The noise measurement setup is schematized in
Fig. 5.1. In order to measure the actual noise spectrum of each of the two laser modes, it
is important to separately detect the two modes without mixing them. The combination
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Dual-Frequency 
Nd:YAG Laser 

y 

x 

e 
o 

Isolator Detector 

Electrical 
Spectrum Analyzer 

x 
RF- 
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Figure 5.1: Measurement scheme for the intensity noise spectrum of each laser mode
separately in a dual-frequency Nd:YAG laser.

of a half-wave plate followed by an isolator acts as a polarization analyzer, which permits
to select any one of the two polarizations (say x−polarized mode) on the detector with
a bandwidth of 3.7 MHz. Then, the detected signal is amplified by an homemade RF
amplifier. Finally, the amplifier output is sent to an electrical spectrum analyzer, which
records the noise spectrum.

The main goal here is to illustrate the fact that the proper choice of α leads to complete
reduction of the anti-phase peak in the intensity noise spectra of both laser modes of the
dual-frequency Nd:YAG laser. To this aim, we vary α by rotating the intra-cavity QWP
and observe the evolution of the anti-phase peak in the RIN spectrum of any one of the
laser modes (say, x−polarized mode). The measurement results are reproduced in Fig. 5.2.
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This figure shows the RIN spectra of the x−polarized mode for only two cases: (i) when
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Figure 1. a) Experimental setup. QWP: quarter-wave
plate; HWP: half-wave plate; BS: beam splitter. b) α is
the angle between the x eigen-polarization direction and
the (001) crystallographic axis of the Nd:YAG crystal. c)
Optical spectrum observed with a Fabry-Perot interfer-
ometer and showing single longitudinal mode operation
for each polarization state.

decoupling of two perpendicularly polarized modes could
be obtained by aligning them with the (010) and (001)
crystallographic axes. We have thus chosen to use such
a crystal here and to observe the evolution of the laser
intensity noise spectrum when we rotate the QWP with
respect to the crystal axes. As depicted in Fig. 1(a), the
laser is based on a 7-cm-long planar-concave cavity. The
gain medium is a 2-cm-long (100)-cut Nd:YAG crystal
(FEE GmbH). The crystallographic axes were precisely
determined by X-ray diffraction. In order to limit ther-
mally induced birefringence, the crystal is placed inside
a copper mount. It is pumped by a cw multimode fiber-
coupled low power laser diode from Opto-power oper-
ating at 808 nm and delivering 300 mW.We have checked
that the pump beam is thus depolarized, avoiding any
pump induced gain anisotropy [16]. The QWP which
defines the two eigen-polarization directions x and y is
mounted on a precise rotation mount in order to control
the angle α between the Nd:YAG crystallographic axes
and the polarization states (Fig. 1(b)). A 100-µm-thick
intra-cavity uncoated silica étalon forces the laser to os-
cillate in a single longitudinal mode for each polarization
state. The laser is 1.5 times above threshold and the total
output power is 20 mW. Both modes are continuously
analyzed with a Fabry-Perot cavity to check that the
laser remains longitudinally monomode for each polar-
ization without any mode hop during data acquisition.
The laser intensity is measured using an InGaAs photo-
diode (Epitaxx Inc, 3.7 MHz bandwidth) and a home-
made low noise amplification setup. A half-wave plate
(HWP) followed by an isolator after the laser permit to
project the laser output on any linear polarization state
before detection by rotating the half-wave plate. The
noise spectrum is recorded with a Rohde &Schwarz elec-

trical spectrum analyzer (ESA) whose frequency range
is 10 Hz-3.6 GHz.
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Figure 2. a) RIN spectra for the x-polarized mode only
for different values of α (ESA resolution bandwidth: 200
Hz; video bandwidth: 200 Hz). Note that the anti-phase
peak has disappeared for α = −2◦. b) Evolution of the
amplitude of the anti-phase peak versus α. Dashed line:
noise floor level below which the anti-phase peak is no
longer measurable. The inset shows the evolution of the
intensity ratio of two orthogonal modes versus α.

Fig. 2(a) reproduces the relative intensity noise (RIN)
spectra recorded when only the x-polarized mode is de-
tected for two values of α corresponding to the two sit-
uations where the eigen-polarizations of the laser are
(1) aligned with the crystallographic axes of the ac-
tive medium (α = −2 ◦) or (2) at 45 ◦ (α = 43 ◦). For
α = −2 ◦ and α = 43 ◦, we observe the existence of
the usual in-phase relaxation oscillations peak at about
115 kHz and 120 kHz. It must be noted that the 5-kHz
frequency shift of the two peaks in Fig. 2(a) is due to
the unavoidable slight change of the intracavity losses
when the QWP is rotated. It corresponds to a variation
of the pumping rate of 1% only. Now, let us focus on the
anti-phase peak lying at around 50 kHz. When α is set
at 43 ◦, that is the angle for which the coupling is maxi-
mum, the amplitude of the anti-phase peak is found to be
maximum. Obviously, similarly to a (111)-cut Nd:YAG
crystal, while the in-phase peak is always there, the anti-
phase peak can be hidden when one balances the inten-
sities of the two modes on the detector. By contrast, if
we now rotate α while detecting only the x-polarization
and look for the position in which the amplitude of the
anti-phase peak is minimized, we find α = −2 ◦ as shown
by the red spectrum of Fig. 2(a). As expected, this orien-
tation corresponds to the situation where the coupling is

2

Figure 5.2: RIN spectra of only x−polarized mode for different values of α. We show
only two spectra for α = 43◦ (green line), α = −2◦ (red line) measured with an electrical

spectrum analyzer by choosing a resolution and video bandwidth of 200 Hz.

the anti-phase peak amplitude is maximum, corresponding to α = 43◦, and (ii) when the
anti-phase peak amplitude is minimum, which corresponds to α = −2◦. For α = 43◦, the
RIN spectrum of the x−polarized mode is represented by the green line in Fig. 5.2. In this
RIN spectrum, one can see the presence of the standard in-phase relaxation oscillation
peak at about 120 kHz, and also the anti-phase peak at about 50 kHz. Moreover, we
observe that the anti-phase peak attains maximum height for α = 43◦. This indicates
that α = 43◦ corresponds to the maximum nonlinear coupling between the two laser
modes. This is consistent with the picture we have adopted for the dipole orientations
inside the Nd:YAG crystal i.e., the dipoles are aligned along the crystallographic axes.
Thus for α close to 45◦, each mode equally shares the two dipole families, leading to a
maximum coupling between them. On the other hand, the experiment has shown that
the amplitude of the anti-phase peak in the RIN spectrum of of the x−polarized mode
has its minimum value for α = −2◦. This is reproduced as the red line in Fig. 5.2. In this
case, the anti-phase peak becomes so small that it disappears below the noise floor. This
infers that α = −2◦ is not far from being the condition for minimum coupling between the
two cross-polarized modes of our dual-frequency Nd:YAG laser. This is exactly what we
expected as α close to zero corresponds to the situation when the two eigenpolarizations
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are aligned along the two crystallographic axes, and hence they encounter two independent
dipole families. Nevertheless, the RIN spectrum illustrates the presence of the in-phase
relaxation oscillation peak at about 115 kHz. It must be noted that for α = −2◦ (red
line) the in-phase peak is shifted in frequency by 5 kHz compared to α = 43◦ (green-
line). This is linked with the unavoidable little change of the losses due to the rotation
of the QWP. It corresponds to a variation of the pumping rate of 1% only. Additionally,
the experiment shows that the the anti-phase (resp. in-phase) peak is minimized (resp.
maximized) for α equal to −2◦ (resp. 43◦ ) instead of 0◦ (resp. 45◦), as was expected
from the model. This little discrepancy is within the experimental orientation uncertainty
(±3◦) of the active medium in its mount when positioned inside the laser cavity. It is
worth mentioning that the noise peak in the red line of Fig. 5.2, corresponding to the
minimum coupling situation, should not be termed as "in-phase peak" to be technically
correct. This is because for the zero coupling there is no meaning of the in-phase and
the anti-phase eigenmechanisms of the global two-coupled oscillator system. However,
one should remember that the standard relaxation oscillation frequency of a single mode
is identical to the in-phase relaxation oscillation frequency when such two modes are
coupled as in-phase eigenmechanism is independent of coupling. This is true for any two
identical coupled oscillator system in which the in-phase eigenfrequency is always equal
to the natural frequency of the oscillators. Of course, the term "in-phase" is applicable
for all other nonzero coupling situations (−2◦ < α < 88◦). The RIN spectra of the
x−polarized mode for other α values are also measured, although they are not shown in
Fig. 5.2. Moreover, we check that the RIN spectra of the y−polarized mode for different
α values are qualitatively identical to the ones of the x−polarized mode.

We investigate how the anti-phase peak amplitude evolves with the change of α and
the results are plotted in Fig. 5.3. One can see in Fig. 5.3 that the anti-phase peak attains
maximum value for α close to ±π/4. This indicates that for α = ±π/4 the nonlinear
coupling is maximum, i.e. the two modes equally share the two dipole families. On the
other hand, the anti-phase peak amplitude becomes minimum once for α = 0 and again
for α = π/2 as shown in Fig. 5.3. This suggests that for α equals to 0 or π/2 the nonlinear
coupling is minimum indicating that the two modes are subjected to two different dipole
families. This again proves that the emitting dipoles indeed behave as if they were oriented
along the crystallographic axes [Schwartz et al., 2009].

It is important to mention that if one of the two laser modes becomes much weaker
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Figure 1. a) Experimental setup. QWP: quarter-wave
plate; HWP: half-wave plate; BS: beam splitter. b) α is
the angle between the x eigen-polarization direction and
the (001) crystallographic axis of the Nd:YAG crystal. c)
Optical spectrum observed with a Fabry-Perot interfer-
ometer and showing single longitudinal mode operation
for each polarization state.

decoupling of two perpendicularly polarized modes could
be obtained by aligning them with the (010) and (001)
crystallographic axes. We have thus chosen to use such
a crystal here and to observe the evolution of the laser
intensity noise spectrum when we rotate the QWP with
respect to the crystal axes. As depicted in Fig. 1(a), the
laser is based on a 7-cm-long planar-concave cavity. The
gain medium is a 2-cm-long (100)-cut Nd:YAG crystal
(FEE GmbH). The crystallographic axes were precisely
determined by X-ray diffraction. In order to limit ther-
mally induced birefringence, the crystal is placed inside
a copper mount. It is pumped by a cw multimode fiber-
coupled low power laser diode from Opto-power oper-
ating at 808 nm and delivering 300 mW.We have checked
that the pump beam is thus depolarized, avoiding any
pump induced gain anisotropy [16]. The QWP which
defines the two eigen-polarization directions x and y is
mounted on a precise rotation mount in order to control
the angle α between the Nd:YAG crystallographic axes
and the polarization states (Fig. 1(b)). A 100-µm-thick
intra-cavity uncoated silica étalon forces the laser to os-
cillate in a single longitudinal mode for each polarization
state. The laser is 1.5 times above threshold and the total
output power is 20 mW. Both modes are continuously
analyzed with a Fabry-Perot cavity to check that the
laser remains longitudinally monomode for each polar-
ization without any mode hop during data acquisition.
The laser intensity is measured using an InGaAs photo-
diode (Epitaxx Inc, 3.7 MHz bandwidth) and a home-
made low noise amplification setup. A half-wave plate
(HWP) followed by an isolator after the laser permit to
project the laser output on any linear polarization state
before detection by rotating the half-wave plate. The
noise spectrum is recorded with a Rohde &Schwarz elec-

trical spectrum analyzer (ESA) whose frequency range
is 10 Hz-3.6 GHz.
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Figure 2. a) RIN spectra for the x-polarized mode only
for different values of α (ESA resolution bandwidth: 200
Hz; video bandwidth: 200 Hz). Note that the anti-phase
peak has disappeared for α = −2◦. b) Evolution of the
amplitude of the anti-phase peak versus α. Dashed line:
noise floor level below which the anti-phase peak is no
longer measurable. The inset shows the evolution of the
intensity ratio of two orthogonal modes versus α.

Fig. 2(a) reproduces the relative intensity noise (RIN)
spectra recorded when only the x-polarized mode is de-
tected for two values of α corresponding to the two sit-
uations where the eigen-polarizations of the laser are
(1) aligned with the crystallographic axes of the ac-
tive medium (α = −2 ◦) or (2) at 45 ◦ (α = 43 ◦). For
α = −2 ◦ and α = 43 ◦, we observe the existence of
the usual in-phase relaxation oscillations peak at about
115 kHz and 120 kHz. It must be noted that the 5-kHz
frequency shift of the two peaks in Fig. 2(a) is due to
the unavoidable slight change of the intracavity losses
when the QWP is rotated. It corresponds to a variation
of the pumping rate of 1% only. Now, let us focus on the
anti-phase peak lying at around 50 kHz. When α is set
at 43 ◦, that is the angle for which the coupling is maxi-
mum, the amplitude of the anti-phase peak is found to be
maximum. Obviously, similarly to a (111)-cut Nd:YAG
crystal, while the in-phase peak is always there, the anti-
phase peak can be hidden when one balances the inten-
sities of the two modes on the detector. By contrast, if
we now rotate α while detecting only the x-polarization
and look for the position in which the amplitude of the
anti-phase peak is minimized, we find α = −2 ◦ as shown
by the red spectrum of Fig. 2(a). As expected, this orien-
tation corresponds to the situation where the coupling is

2

Figure 5.3: Evolution of the amplitude of the anti-phase peak versus α. Dashed line:
noise floor level below which the anti-phase peak is no longer measurable.

than the other, then also the anti-phase noise vanishes. To avoid this artifact the powers
of the two cross-polarized modes are carefully balanced for each orientation of the QWP
by fine adjustment of the intra-cavity etalon. This is proved in Fig. 5.4, which shows that
the power ratio of the two modes for all α values remains close to 1. This confirms that

cross-saturation effects among our two modes? It has re-
cently been shown that, in Nd:YAG, the emitting dipoles
behave as if they were aligned along the crystallographic
axes of the matrix [12], although more elaborate models
suggest more complex descriptions for the spectroscopy
of Nd3� ions embedded in YAG matrix [13,14]. In parti-
cular, by choosing a (100)-cut Nd:YAG crystal instead of
the more common (111)-cut, it was shown that almost
complete decoupling of two perpendicularly polarized
modes could be obtained by aligning them with the
(010) and (001) crystallographic axes. We have thus
chosen to use such a crystal here and to observe the
evolution of the laser intensity noise spectrum when
we rotate the QWP with respect to the crystal axes. As
depicted in Fig. 1(a), the laser is based on a 7 cm long
planar–concave cavity. The gain medium is a 2 cm long
(100)-cut Nd:YAG crystal (FEE GmbH). The crystallo-
graphic axes were precisely determined by x-ray diffrac-
tion. In order to limit thermally induced birefringence,
the crystal is placed inside a copper mount. It is pumped
by a cw multimode fiber-coupled low-power laser diode
from Opto Power operating at 808 nm and delivering
300 mW. We have checked that the pump beam is thus
depolarized, avoiding any pump-induced gain anisotropy.
The QWP, which defines the two eigenpolarization direc-
tions x and y, is mounted on a precise rotation mount in
order to control the angle α between the Nd:YAG crystal-
lographic axes and the polarization states [Fig. 1(b)]. A
100 μm thick intracavity uncoated silica etalon forces
the laser to oscillate in a single longitudinal mode for
each polarization state. The laser is 1.5 times above
threshold, and the total output power is 20 mW. Both
modes are continuously analyzed with a Fabry–Perot
cavity to check that the laser remains longitudinally
monomode for each polarization without any mode
hop during data acquisition. The laser intensity is mea-
sured using an InGaAs photodiode (Epitaxx Inc,
3.7 MHz bandwidth) and a homemade low-noise amplifi-
cation setup. A half-wave plate (HWP) followed by an iso-
lator after the laser permits us to project the laser output
on any linear polarization state before detection by rotat-
ing the HWP. The noise spectrum is recorded with a
Rohde & Schwarz electrical spectrum analyzer (ESA)
whose frequency range is 10 Hz–3.6 GHz.
Figure 2(a) reproduces the relative intensity noise

(RIN) spectra recorded when only the x-polarized mode
is detected for two values of α corresponding to the two
situations where the eigenpolarizations of the laser are
(1) aligned with the crystallographic axes of the active
medium (α � −2°) or (2) at 45° (α � 43°). For α � −2°
and α � 43°, we observe the existence of the usual in-
phase relaxation oscillations peak at about 115 and
120 kHz. It must be noted that the 5 kHz frequency shift
of the two peaks in Fig. 2(a) is due to the unavoidable
slight change of the intracavity losses when the QWP
is rotated. It corresponds to a variation of the pumping
rate of 1% only. Now let us focus on the antiphase peak
lying at around 50 kHz. When α is set at 43°, that is the
angle for which the coupling is maximum, the amplitude
of the antiphase peak is found to be maximum. Ob-
viously, similar to a (111)-cut Nd:YAG crystal, while
the in-phase peak is always there, the antiphase peak
can be hidden when one balances the intensities of

the two modes on the detector. By contrast, if we now
rotate α while detecting only the x polarization and look
for the position in which the amplitude of the antiphase
peak is minimized, we find α � −2° as shown by the red
spectrum of Fig. 2(a). As expected, this orientation cor-
responds to the situation where the coupling is expected
to be minimum [12]. When α � −2°, the antiphase peak
becomes so small that it disappears below the noise
floor. It must be noted that the value α � −2°, very close
to zero, is within the experimental orientation uncer-
tainty of the active medium in its mount when positioned
into the laser cavity. Moreover, it is worthwhile to notice
that, in this peculiar case where the two modes are no
longer coupled, the term “in-phase’’ that we use to qualify
the peak at the relaxation oscillation frequency is no
longer valid. Obviously, this term still applies for all
the intermediate situations, namely −2° < α < 88°. The
evolution of the antiphase peak amplitude versus α is
plotted in Fig. 2(b). One can see that this amplitude is
maximum (respectively minimum) for α close to �π∕4
(respectively 0 or π∕2), i.e., when the coupling is ex-
pected to be maximum (respectively minimum). This
is consistent with the fact that the laser behaves as if
the emitting dipoles were aligned along the crystallo-
graphic axes, like in [12]. As shown in the inset of
Fig. 2(b), the cross-polarized intensities have been care-
fully equalized for each orientation of the QWP by fine
adjustment of the intracavity etalon.

The principle proposed here of reducing the mode cou-
pling in order to reduce the antiphase noise can be com-
pared from a conceptual point of view to that of [15] in
which the stabilization of the output power of a Nd:YAG
doubled laser is obtained when the second harmonic gen-
eration losses that couple the two polarization modes
are reduced. In our case, the coupling mechanism that

Fig. 2. (Color online) (a) RIN spectra for the x-polarized mode
only for different values of α (ESA resolution bandwidth,
200 Hz; video bandwidth, 200 Hz). (b) Evolution of the ampli-
tude of the antiphase peak versus α. Dashed line, noise floor
level below which the antiphase peak is no longer measurable.
The inset shows the evolution of the intensity ratio of two
orthogonal modes versus α.
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Figure 5.4: Evolution of the power ratio of the two cross-polarized modes versus α.

the evolution of the anti-phase peak versus α in Fig. 5.3 is indeed due to the variation of
the nonlinear coupling between the modes.

Additionally, the anti-phase noise can be minimized irrespective of the α value when
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one balances the intensities of the two modes on the detector by adjusting the polarization
analyzer (Fig. 5.1), even though the noise spectrum of each mode exhibits an anti-phase
peak. This is completely different from the situations for α = −2◦ or α = 88 ◦, when the
anti-phase noise is minimized for each of the polarization mode. Of course, the in-phase
peak always remains there. Therefore, if the anti-phase noise is indeed minimized in each
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Figure 5.5: RIN spectra for different half-wave plate orientations β when the

eigenpolarizations are oriented along the crystallographic axes of the Nd:YAG crystal
(α = −2◦ or α = 88 ◦). electrical spectrum analyzer resolution bandwidth, 200 Hz; video

bandwidth, 200 Hz.

laser mode for α = −2 ◦ and α = 88 ◦, we expect this peak to be absent for all orientations
of the polarization analyzer located after the dual-frequency Nd:YAG laser (Fig. 5.1). This
is what we check in Fig. 5.5, which shows the RIN spectra obtained for several orientations
β between x and the fast axis of the half-wave plate (HWP). If the HWP is rotated by
β, the analyzed polarization rotates by 2β. In the experiment, we rotate the HWP by
steps of 10◦. On the one hand, the experimental spectra in Fig. 5.5 reveal that the RIN
behavior remains almost the same for all orientations of the polarization analyzer. More
importantly, these spectra prove that the anti-phase peak is indeed drastically reduced for
both polarization modes of the laser. It is worth mentioning that the principle proposed
here to reduce the anti-phase noise by reducing the nonlinear coupling between the modes
is conceptually analogous to that of [Oka and Kubota, 1988]. In [Oka and Kubota, 1988],
the stabilization of the output power of a Nd:YAG frequency-doubled laser is obtained
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when the second harmonic generation losses that couple the two polarization modes are
reduced. However, in our case the coupling mechanism between the two polarization is
associated with the cross-saturation in the active medium. We reduce this gain cross-
saturation or effectively the coupling by fixing the orientation of the two polarization
modes along two dipole families, oriented along two crystallographic axes. The intra-
cavity QWP that we use is only intended to fix the orientation of the laser polarizations,
the active medium being isotropic. Therefore, the amount of retardance introduced by
this wave plate does not play any significant role unlike in [Oka and Kubota, 1988].

5.3 Conclusions

To conclude this chapter, we have demonstrated a new technique for the minimization
of the noise induced by the anti-phase relaxation oscillation in a dual-frequency Nd:YAG
laser. The technique is based on two main ingredients: (i) a proper choice of the orien-
tation of the laser eigenpolarizations, and (ii) a proper choice of the active medium cut.
We have succeeded to reduce the anti-phase peak by more than 20 dB by choosing a
〈100〉-cut Nd:YAG crystal and aligning the eigenpolarizations along the crystallographic
axes. This is in perfect agreement with the dipole alignment model suggested in [Schwartz
et al., 2009], which states that the laser behaves as if the emitting dipoles were oriented
along the crystallographic axes. In this context, it is important to remind that there
exist more elaborate models suggesting more complex descriptions for the spectroscopy
of Nd3+ ions embedded in a YAG matrix [Dalgliesh et al., 1998; McKay et al., 2007].
Moreover, the anti-phase noise reduction technique proposed here opens several interest-
ing perspectives. Firstly, it shows that a properly designed active medium with a careful
control of the orientation of the emitting dipoles would permit to solve the same problem
for lasers operating at other wavelengths such as 1.5 µm erbium laser, which is useful
for LIDAR-RADAR applications [Morvan et al., 2002] and for optical distribution of RF
local oscillators through optical fibers [Pillet et al., 2008]. Secondly, it opens new horizons
of applications for dual-frequency solid-state lasers, in domains in which the noises in the
intensities of the two polarization modes play a central role such as the probing of cesium
clocks based on coherent population trapping phenomena [Zanon et al., 2005]. Finally,
this analysis illustrates the fact that the anti-phase relaxation oscillation can be a good
probe to find the orientations of the emitting dipoles in different solid-state laser media.
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The following table summarizes the key takeaways of the present chapter:

• Reduction of the anti-phase noise peak in a dual-frequency Nd:YAG laser by
more than 20 dB.

• The noise minimization technique is based on complete decoupling of the two
cross-polarized laser modes by aligning them along the crystallographic axes
of the 〈100〉-cut Nd:YAG active medium.

• Confirmation of the model according to which the emitting dipoles in a
Nd:YAG laser medium behave as if they were aligned along the crystallo-
graphic axes as proposed in [Schwartz et al., 2009].
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The research work presented in this thesis aimed at understanding the different noise
mechanisms occurring in some dual-frequency lasers. We have investigated the spectral
properties of different noises and their correlations in two types of dual-frequency lasers
based on semiconductor (VECSEL) and solid-state (Nd:YAG) active media. Apart from
the obvious difference between the gain mechanisms in semiconductor and solid-state laser
media, the dual-frequency VECSEL and the dual-frequency Nd:YAG laser exhibit differ-
ent dynamical behaviors. The dual-frequency VECSELs exhibit relaxation oscillation free
class-A dynamics as the photon lifetime inside the cavity is longer than the population
inversion lifetime. On the contrary, the dual-frequency Nd:YAG lasers obey class-B dy-
namics linked with the fact that the photon lifetime inside the cavity is shorter than the
population inversion lifetime, leading to the existence of relaxation oscillations. In this
thesis, we have figured out how the laser dynamics, in addition to the nonlinear coupling
between the two laser modes, governs different noise phenomena in dual-frequency lasers.
This thorough inspection of different noise mechanisms in dual-frequency lasers has led
to find the origin of RF beatnote noises, which degrade the beatnote spectral purity.

The ability of a dual-frequency VECSEL operating at 1µm to generate a high-purity
optically-carried microwave signal has been first demonstrated by Ghaya Baili et al. [Baili
et al., 2009]. In that study, it has been shown that the relaxation oscillation free class-A
dynamics of the dual-frequency VECSEL enables one to get rid of the excess electrical
noise in the vicinity of the RF beatnote, generated by optically mixing the two laser modes.
At the very beginning of this work, following [Baili et al., 2009], we have reinvestigated the
spectral behaviors of the RF beatnote and its phase noise in a dual-frequency VECSEL at
1µm using our own experimental setup. Later, we have exploited the operation principle
of the 1µm DF-VECSEL for the first realization of a dual-frequency VECESL operating
at the desired telecom wavelength, which is most suitable for fiber-optic links. Moreover,

161



General Conclusion

measurements have shown that the class-A dynamical behavior of our telecom VECSEL
provides a much improved noise performance of the RF beatnote due to the absence of the
excess noise induced by relaxation oscillations, commonly observed in solid-state lasers
[Pillet et al., 2008]. However, it has been found that the RF beatnote is associated with
a few megahertz wide pedestal coming from the remaining phase noise. Understanding
the origin of this phase noise is not at all straightforward as (i) the phase fluctuations
are coupled with the intensity fluctuations due to the large α-factor of the semiconductor
active medium and (ii) in the RF beatnote the phase noises of the two laser modes appear
with an opposite sign, thus making the correlation between the noises of the two laser
modes important. Firstly, we have studied the spectral behavior of the correlation between
the intensity noises of the two laser modes. It has been found that the intensity noise
correlation spectra strongly depend on the amount of spatial separation (d) between the
modes on the gain structure. For example, correlation phase spectra exhibit one or no
phase jump, and consequently correlation amplitude spectra show one or no dip depending
on d values. Additionally, the degree of correlation, excluding the dip, increases with the
decrease of d. We have proved that this dependence of the intensity noise correlation
spectra on d is linked with two things, nonlinear coupling strength (C) and the degree of
correlation (η) between the pump noises for the two laser modes, both of which increase
with the decrease of d. Secondly, we have explored the propagation mechanism of the
pump noise to the RF beatnote phase noise. We have isolated two dominant mechanisms:
(i) the phase-intensity coupling effect due to the large α-factor of semiconductor active
medium that prevails for high offset frequencies (typically above 100 kHz), (ii) thermal
fluctuations of the refractive index of the semiconductor active medium dominating for
lower offset frequencies. Finally, to check the validity of the above mentioned pump noise
propagation scheme, we have analyzed the correlations between the RF beatnote phase
noise and the intensity noises of the two modes, which generate the RF beatnote. The
correlation phase corresponding to x-polarized (or y-polarized) mode exhibits a value of
π/2 (or −π/2) for low frequencies, then a phase change of π/2 around an offset frequency
of about 100 kHz, and finally a zero (or ±π) value for higher frequencies. This is indeed
consistent with the considered pump noise propagation scheme. For example, the π/2-
phase change around 100 kHz confirms the low-pass filter behavior of the thermal noise.
Moreover, in the beatnote two optical phase noises appear with an opposite sign leading to
the π-phase difference between the correlation spectra of x- and y-polarized mode. To fully
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describe different noises and their correlation spectra in the dual-frequency VECSEL, we
have introduced a simple model based on modified rate equations, in which the gain cross-
saturation is included heuristically. The model considers pump noise as the dominant
source of noise in the targeted frequency range (10 kHz to 35 MHz) and that the pump
noises entering into the two spatially separated laser modes are identical in amplitude,
but partially correlated with a zero correlation phase. These pump noise properties have
been experimentally verified by a dedicated setup. This simple model has shown great
success to reproduce all the noise correlation spectra. To further prove the consistency
of the results, we have developed a more general model taking spin-dependent carrier
dynamics into account. This more rigorous model has successfully reproduced different
steady-state and dynamical properties of the dual-frequency VECSEL, the behavior of
the nonlinear coupling between the modes, and also the spectra of the intensity noises
and their correlations. The spin-dependent modeling of the dual-frequency VECSEL,
on the one hand, has generalized the previous simple heuristic model and, on the other
hand, has predicted few interesting phenomena for the dual-frequency VECSEL such as
unequal values of the coupling coefficients, the possible existence of bistability, etc., which
the simple model came short to explain. Finally, we have investigated the influence of
the nonlinear coupling strengths between the two laser modes of the DF-VECSEL on the
spectral behaviors of different noises and their correlation. To describe this dependence
on the nonlinear coupling, we have provided a physical interpretation of the spectral
behaviors of different noises and their correlations in the framework of the linear response
of a two-coupled over-damped oscillator system.

In the second part of this work, we have scrutinized the spectral behaviors of the inten-
sity noises and their correlations in a dual-frequency Nd:YAG laser for different nonlinear
coupling strengths between the two cross-polarized modes. It is worth reminding that
in the case of a dual-frequency Nd:YAG laser the phase-intensity coupling is negligible.
Consequently, the intensity noises and their correlations hardly have any impact on the
spectral purity of the RF beatnote, generated by optically mixing the two laser modes of
the dual-frequency Nd:YAG laser. Nevertheless, the study of intensity noise correlations
in a dual-frequency Nd:YAG laser is interesting for the following reasons: (i) applica-
tions requiring the use of the two laser modes (atomic clock, pump-probe experiments,
metrology, etc.), the degree of intensity noise correlation between the two modes must
be known precisely, and (ii) the dual-frequency Nd:YAG laser obeys class-B dynamics,
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thus analyzing the intensity noise correlation spectra in this laser generalizes the same
study performed in the class-A dual-frequency VECSEL. The presence of the relaxation
oscillations in the dual-frequency Nd:YAG laser inherent to its class-B dynamics greatly
modifies the spectra of the intensity noises and their correlations compared to the class-
A dual-frequency VECSEL. For example, the correlation phase spectrum can exhibit a
maximum of two phase jumps, and consequently there can exist up to two dips in the
correlation amplitude spectrum. On the contrary, for DF-VECSEL, one can observe a
maximum of one or even no phase jump in the correlation phase spectrum and as a result
one or no dip in the correlation amplitude spectrum. Moreover, the presence of relaxation
oscillations leads to a perfect correlation (0 dB exactly) between the intensity noises of the
two modes at these oscillation frequencies, even though the noise sources (pump noises)
are only partially correlated. By contrast, the intensity noise correlation amplitude never
attains 0 dB value in dual-frequency VECSEL. For the physical interpretation of the noise
correlation spectra we have again introduced the notion of the relaxation mechanisms of
a two-coupled oscillator system. However, damped oscillatory relaxation mechanisms in
dual-frequency Nd:YAG lasers are analogous to the ones in weakly damped two-coupled
oscillator system. This is different from dual-frequency VECSELs, in which the exponen-
tially damped relaxation mechanisms are rather comparable to the ones of over-damped
two-coupled oscillators. To describe the experimental results a rate equation based theo-
retical model has been developed. In the model, it has been assumed that the emitting
dipoles in active medium behave as if they were aligned along the crystallographic axes
of the Nd:YAG [Schwartz et al., 2009]. Finally, this dipole orientation picture has been
exploited for the minimization of the noise induced by the anti-phase relaxation oscilla-
tion in the dual-frequency Nd:YAG laser. We have succeeded to reduce the anti-phase
peak in the RIN spectrum of each laser mode in excess of 20 dB by aligning the two
eigenpolarizations along the crystallographic axes of a 〈100〉-cut Nd:YAG active medium.

The results and the concepts presented in this thesis have opened several interesting
perspectives. In the following we mention only a few of them.

In the dual-frequency VECSEL, we have observed that the degree of correlation be-
tween the different noises never reaches its maximum value (0 dB). This is mainly linked
with the fact that the pump noises entering into the two spatially separated modes of the
dual-frequency VECSEL are only partially correlated. This partial correlation between
the pump noises originates from the nonuniform intensity distribution of the pump beam
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on the gain structure due to the formation of speckle at the output of the multimode
fiber carrying the pump beam. This suggests that pumping the dual-frequency VECSEL
with a single-mode fiber coupled diode laser may be interesting. In particular, since the
intensity fluctuations of the pump coming from a single-mode fiber are expected to be
uniform within the pump spot on the gain structure, one can expect a stronger correla-
tion between the noises of the two laser modes as long as the pump noise is the dominant
source of noise. In this context, electrical pumping is of course another interesting option
[Kurdi et al., 2004; Keeler et al., 2005; Bousseksou et al., 2006; Frougier et al., 2013].
However, with electrical pumping it is difficult to achieve a uniform distribution of the
carriers over a zone of diameter of the order of 100µm [Tropper et al., 2004; Tropper and
Hoogland, 2006], which is required for stable operation of the dual-frequency VECSEL.

It has been found that for offset frequencies higher than 10 kHz, the dominant source
of noise for the RF beatnote generated by optically mixing the two laser modes of the dual-
frequency VECSEL is the intensity noise of the pump diode laser. Therefore, it should be
possible to improve the spectral purity of the RF beatnote by reducing the pump intensity
fluctuations. This can be achieved by using an opto-electronic feedback loop. The use of
opto-electronic feedback can be easily implemented for the dual-frequency VECSEL as it
reacts like a low pass first order filter for low frequencies. Of course, the spectral purity
of the RF beatnote can be improved by using a low noise pump source. In this context,
electrical pumping or the optical pumping using a single-mode fiber coupled diode laser
can again be fruitful. Moreover, the results presented in this thesis have been obtained
for a DF-VECSEL under free running conditions. Therefore, the noise performance of
the RF beatnote can be further improved by stabilizing it with an external RF reference
using an optical phase lock loop [Pillet et al., 2008; Dumont et al., 2014].

Recently, D. Mogilevtsev et al. have proposed a microscopic model aiming at de-
scribing different noise properties of a dual-frequency VECSEL beyond classical limit
[Mogilevtsev et al., 2014]. In this theoretical study, starting from quantum Langevin
equations, the semiclassical rate equations for the intensities of the two cross-polarized
modes of a class-A dual-frequency VECSEL have been derived. Moreover, the model
includes spin-dependent carrier dynamics analogous to the model developed in Chapter 3.
This model predicts several interesting non-classical features for the intensity noises of
the two cross-polarized modes of a dual-frequency VECSEL such as (i) the possibility of
having intensity noises below the standard quantum limit for sub-Poissonian and, even
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more surprisingly for Poissonian pump fluctuations, (ii) a strong anti-correlation between
the intensity fluctuations of the two laser modes for relatively strong nonlinear coupling.
Notably, the model describes that the non-classical behaviors of the intensity fluctuations
and their correlations originate from the correlated losses for the two laser modes. This
loss correlation is established by the fact that the two modes are simultaneously coupled
to a single emitter, in which the populations and the dipole polarization decay much faster
than the cavity photon lifetimes for the two modes, consistent with the class-A dynamics
of a DF-VECSEL. Here, the anti-correlation is linked with the coupling between the two
laser modes as expected. However, the coupling between the modes originates from their
common loss channel mediated by the common emitter. It is important to mention that
this anti-correlation is somewhat analogous to what we have found experimentally and
also verified theoretically using our two models, but remaining in purely classical picture.
In our DF-VECSEL, the coupling between the two modes originates from the cross-gain
saturation due to their partially common gain region. Nevertheless, it would be really
interesting to experimentally verify the non-classical noise properties of a dual-frequency
VECSEL as predicted by this quantum model [Mogilevtsev et al., 2014].

There is a recent study [Schmeissner et al., 2014], in which the correlations between
noises (both amplitude and phase noise) corresponding to the different spectral bands of
a broadband ultrafast frequency comb have been explored. It has been shown that from
this spectral noise correlations one can recover the noise spectra corresponding to the
global properties of the comb such as pulse energy, carrier envelope offset, temporal jitter
of the pulse train. This work is based on a Ti:Sapphire mode-locked laser as the comb
source. Besides, mode-locked VECSELs have shown great success for the generation of
ultrafast frequency combs [Hoogland et al., 2000; Keller, 2003; Quarterman et al., 2009].
Therefore, performing such a noise correlation analysis in a mode-locked VECSEL could
provide important insight about the noise dynamics of this laser. This is interesting in
particular because of the fact that in a VECSEL intensity and phase noises are coupled
due to the large α- factor of the semiconductor active medium [Henry, 1982].

The theoretical modeling of the dual-frequency Nd:YAG laser, based on the assump-
tion that the dipoles are aligned along the crystallographic axes of the active medium, has
shown excellent agreement with the experiments concerning the correlations between the
intensity noises of the two laser modes. However, the little mismatch between the exper-
imental results and the theoretical predictions, in particular for relative strong coupling
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situations, may indicate a possible influence of spatial-hole burning. We have calculated
a modified expression of the nonlinear coupling constant taking spatial-hole burning into
account. Nevertheless, it would be more interesting to introduce the spatial-hole burning
effect directly in the laser rate equations and then to calculate the spectra of noises and
their correlation. However, the difficulty then arises from the fact that the two modes of
the dual-frequency Nd:YAG laser being two polarization modes, normal mode expansion
is not straightforward [Siegman, 1986].

Finally, we have shown that in a dual-frequency Nd:YAG laser the anti-phase noise
can be suppressed by completely decoupling the two laser modes by aligning them along
the crystallographic axes of the 〈100〉-cut active medium [Schwartz et al., 2009]. However,
this technique cannot minimize the in-phase noise, which requires separate methods such
as electronic or optical feedback loop for its minimization. It has recently been realized
in a single mode Er,Yb laser that the relaxation oscillation noise can be suppressed by
introducing a nonlinear saturable absorber inside the laser cavity [El Amili et al., 2014].
This technique is based on the two-photon absorption mechanism inside the saturable
absorber. Therefore, once the saturable absorber is introduced inside the cavity the
two-photon absorption mechanism breaks the resonant exchange of energy between the
population inversion reservoir and the photon reservoir. In future, this technique can be
applied in a dual-frequency Nd:YAG laser hoping to be able to reduce both the anti-phase
and in-phase noises together.
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Appendix A

Characterization of amplitude and
phase noises

In this appendix, we present the basic mathematical tools necessary to characterize phase
and amplitude noises.

A.1 Power spectral density

Suppose X(t) is a real random variable containing small fluctuations δX(t) around the
average value 〈X〉 as

X(t) = 〈X〉+ δX(t) , (A.1)

where 〈X〉 can be expressed as

〈X〉 = lim
T→∞

1
T

∫ t0+T

t0
X(t)dt . (A.2)

For a stationary random process, which is the only one we are interested in, 〈X〉 is
independent of the measuring instant t0. Moreover, we suppose that X(t) is ergodic i.e.,
the ensemble average is equal to the time average over a large enough interval of time.
Another important quantity to characterize a random process apart from the mean is the
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autocorrelation ΓδX(τ), given by

ΓδX(τ) = 〈δX(t)δX(t+ τ)〉 , (A.3)

At τ = 0, ΓδX is maximum and equal to the variance 〈δX2(t)〉, whereas for τ tending
to infinity ΓδX becomes zero implying that there is no more correlation between δX(t)
and δX(t+ τ). Finally, one can calculate the power spectral density (PSD) following the
Wiener-Khintchine theorem as

WδX(f) =
∫ +∞

−∞
ΓδX(τ)e2iπfτdτ . (A.4)

Therefore, as its name suggests, the PSD describes how the noise power is distributed
over the different frequencies. In practice, WδX(f) is usually calculated as

WδX(f) = 〈δ̃X(f)δ̃X(f)∗〉 , (A.5)

where tilde ∼ denotes Fourier transformed quantity, and ∗ indicates the complex conjugate.
The Fourier transformation is defined by

δ̃X(f) =
∫ +∞

−∞
δX(t)e2iπftdt , (A.6)

or reciprocally,

δX(t) =
∫ +∞

−∞
δ̃X(f)e−2iπftdf . (A.7)

It is important to note that, in general, δX(t) is not square-integrable, and hence its
simple Fourier transform does not exist. This constraint leads to the following expression
of the PSD

WδX(f) = lim
T→∞

1
T

∣∣∣∣∫ +∞

−∞
ΠT (t)δX(t)e2iπftdt

∣∣∣∣2 . (A.8)
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Here, ΠT (t) is an window function, defined as

ΠT (t) = 1 if −T
2 ≤ t ≤ T

2 ,

= 0 if t ≥ |T2 | . (A.9)

Therefore, the PSD can be expressed by

WδX(f) = lim
T→∞

1
T

∣∣∣∣∣
∫ T

2

−T2
δX(t)e2iπftdt

∣∣∣∣∣
2

. (A.10)

The variance of δX(t) can be obtained from the following expression,

〈δX2(t)〉 =
∫ +∞

−∞
WδX(f)df . (A.11)

As WδX(f) is an even function, we can write

SX(f) = 2WδX(f) , (A.12)

where SX(f) denotes the PSD for positive frequencies, or single sideband (SSB) PSD. In
practice, the variance of noise is analyzed around an offset frequency f , and over a fre-
quency band ∆f limited by the bandwidth (BW) of the measurement system. Therefore,
the noise power over the bandwidth ∆f around the offset frequency f can be expressed
as

〈δX2(t)〉∆f = SX(f)∆f . (A.13)

Or,

SX(f) = 〈δX2(t)〉∆f ×
1

∆f . (A.14)

In the following, we will use the definition of PSD as in Eq. (A.14) to quantify the different
noises.
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A.2 Amplitude and phase noises

Consider a signal S(t) with a frequency centered at f0, and having an amplitude A(t) and
a phase φ(t) as

S(t) = A(t) cos(2πf0t+ φ(t)) . (A.15)

We suppose that the signal contains both amplitude and phase fluctuations, which we
define as follows

A(t) = A0 + δA(t) , (A.16)
φ(t) = φ0 + δφ(t) , (A.17)

where A0 and φ0 are respectively the time independent part of the amplitude and phase,
and δA(t) and δφ(t) denote their fluctuations. Without any loss of generality, we can
consider φ0 = 0. We assume that the fluctuations are small i.e., δφ(t) � 2π and
δA(t)/A0 � 1. Then, standard linearization of Eq. (A.15) leads to

S(t) ' A0

[
cos(2πf0t) + δA(t)

A0
cos(2πf0t)− δφ(t) sin(2πf0t)

]
. (A.18)

In practice, the amplitude and phase fluctuations are usually quantified by their respective
PSDs. From Eq. (A.14), the PSD of the relative amplitude fluctuations δa(t) = δA(t)

A0
can

be written as

Sa(f) = 〈δa2(t)〉 × 1
∆f . (A.19)

The units of Sa(f) are 1/Hz. Usually, the PSDs are expressed in logarithmic scale, leading
to

[Sa]dB = 10 log(Sa) . (A.20)

The units of [Sa]dB are dBc/Hz. In this thesis, the PSD of amplitude noise has always been
calculated using the definition of Eq. (A.20). Similarly, the PSD of the phase fluctuations,
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Sφ(f), is given by

Sφ(f) = 〈δφ2(t)〉 × 1
∆f . (A.21)

The units of Sφ(f) are rad2/Hz. The PSD of phase noise in logarithmic scale is written
as

[Sφ]dB = 10 log(Sφ) , (A.22)

where the units are dBrad2/Hz. It is worth mentioning here that there exists another
popular representation for the phase noise PSD denoted as L(f), and its units are dBc/Hz
or dB/Hz with respect to the power of the carrier. Originally, L(f) was defined as the
ratio of the power in one sideband for a 1 Hz bandwidth around offset frequency f due to
phase modulation by noise to the total signal power (carrier plus sidebands). However,
for small sideband power compared to the carrier power, L(f) can be simply described
as the ratio of SSB phase noise density at offset frequency f to the carrier power. In
the following, we have reestablished the relation between L(f) and Sφ(f) using simple
modulation theory [Scott et al., 2001]. Let us consider a carrier with a frequency f0, a
constant amplitude A0, and a modulating phase φ(t) as

S(t) = A0 cos [2πf0t+ φ(t)] , (A.23)

If φ(t) is modeled as a narrow-band noise process as

φ(t) = m sin(2πfmt) , (A.24)

we obtain

S(t) = A0 cos [2πf0t+m sin(2πfmt)]
= A0Re

[
ei2πf0teim sin(2πfmt)

]
= A0Re

ei2πf0t
∞∑

l=−∞
Jl(m)eil2πfmt

 , (A.25)

175



Appendix A. Characterization of amplitude and phase noises

where m and fm respectively denote the depth and the frequency of modulation, and
the Jls are Bessel functions of the first kind. Equation (A.25) can be simplified using the
approximation of small modulation depth (m� 1)

Jl(m) ≈ 1 if l = 0
≈ ±m/2 if l = ±1
≈ 0 if |l| > 1 , (A.26)

and the symmetry property of the Bessel functions J−1(m) = −J1(m), leading to

S(t) ≈ A0Re
[
ei2πf0t

{
1 + m

2
(
ei2πfmt − e−i2πfmt

)}]
. (A.27)

From Eq. (A.27), the ratio of the SSB noise to the carrier power can be written as

L(fm) ≈ m2

4 . (A.28)

On the other hand, using the definition of Eq (A.21), we obtain

Sφ(fm) = m2

2 . (A.29)

. Thus

L(f) ≈ Sφ(f)
2 . (A.30)

Therefore, one simply needs to subtract 3 dB from Sφ(f) to arrive at L(f). However, its
important to note that the above relation is valid only for small phase fluctuations so that
the linear approximation to the Bessel functions holds [Eq. (A.26)]. The above definition
breaks down for the mean-squared phase deviation exceeding 0.1 rad2, or even if there
exists some correlation between the powers in the upper and lower sidebands. Neverthe-
less, L(f) is a popular choice to quantify phase noise, in particular, when amplitude noise
becomes also important as then both amplitude and phase noise can be represented using
the same scale, and hence can be compared. To facilitate the use of L(f) even when the
small angle approximation is not valid or the correlation between the upper and lower
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sidebands is not known, L(f) has been simply defined as [Allan et al., 1988]

L(f) = Sφ(f)
2 . (A.31)

In this thesis, to quantify phase noise we have always used the units of dBc/Hz, which
simply differ by 3 dB from the units of dBrad2/Hz.
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Appendix B

Noise in a 1µm DF-VECSEL

In this appendix, we report the results for DF-VECSEL operating at 1µm. In particular,
we analyze, both experimentally and theoretically, the spectral behaviors of intensity
noises of the two laser modes and their correlation, and the RF beatnote and its phase
noise spectra for different coupling situations for frequencies between 10 kHz to 50 MHz
[De et al., 2013b, 2014b]. It is important to mention here that the noise analysis in
the 1µm DF-VECSEL has been performed before than in the 1.5µm DF-VECSEL as
initially we had only the 1µm laser. For the 1µm DF-VECSEL also, the theoretical
spectra are obtained using the model, reported in Chapter 2. All the noise measurements
are performed for three different coupling situations obtained by using BCs of thicknesses
1 mm, 0.5 mm and 0.2 mm, which respectively correspond to spatial separations d of
100 µm, 50 µm and 20 µm between the two modes inside the gain structure. These
respectively lead to C = 0.1, C = 0.35, and C = 0.65 for the radii (w) of two modes
on the gain structure equal to 62µm. The coupling constant C here is calculated using
Eq. (2.50) of Chapter 2 [Pal et al., 2010]. The configuration of the laser cavity is identical
to the one, displayed in Fig. 1.3 of Chapter 1.

B.1 Intensity noise correlation

In this section, we deal with the spectral behaviors of the intensity noises of the two
cross-polarized modes and the correlation between these two intensity noises both ex-
perimentally and theoretically [De et al., 2013b]. We start by showing in Fig. B.1, the
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measured pump RIN in the targeted frequency range from 10 kHz to 50 MHz. The pump
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- 1 1 0

RIN
 (d

B/H
z)

F r e q u e n c y  ( H z )

Figure B.1: RIN spectrum of the pump laser.

noise is white within the considered frequency range. Moreover, we find that the level
of pump noises entering into the two laser modes are almost identical. In the following,
we will utilize this pump RIN spectrum to calculate the intensity noise properties of the
DF-VECSEL. However, in this case we have not carried out the pump noise correlation
measurement. We consider that the pump noises entering into the two laser modes are
partially correlated (η < 1), and the correlated part of the noises are in phase (ψ = 0) as
obtained in the case of 1.55µm−DF-VECSEL. Then, we adjust the value of η to match
the experimental results for different coupling situations.

FigureB.2 shows the experimental and theoretical results for C = 0.1. The first
order filter like behavior of the measured RIN spectra of the two modes as depicted
in Fig. B.2(a) confirms the class-A dynamical behavior of the laser. The RIN spectra of
the two modes (blue-circled, and red-squared lines of Fig. B.2(a)) are not exactly identical
because of the slight difference between the losses and/or gains for them. The experimental
noise correlation amplitude and phase spectra are shown in Figs. B.2(c),(e), respectively.
FigureB.2(c) shows that the intensity noises of the two modes are partially correlated (-7
dB, 0 dB corresponds to full correlation), whereas Fig. B.2(e) shows that the correlation
phase is zero in the considered frequency range (10 kHz to 50 MHz). The theoretical
RIN, correlation amplitude, and correlation phase spectra are respectively reproduced in
Figs. B.2(b),(d),(f). A good agreement is observed with the corresponding experimental
spectra (Figs. B.2(a),(c),(e), respectively). The staircase like black curve in Fig. B.2(c) is
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Figure B.2: Results for C = 0.34. RIN spectra (a) experimental and (b) theoretical;
correlation amplitude spectra (c) experimental and (d) theoretical; correlation phase
spectra (e) experimental and (f) theoretical. Parameter values: rx = 1.42, ry = 1.3,
1/γx ≈ 5 ns, 1/γy ≈ 5.4 ns, 1/Γ = 3 ns, η = 0.4, ψ = 0, RINPump = −138 dB/Hz.

showing the level of the minimum measurable correlation.
The experimental and theoretical results for C = 0.35 are reproduced in Fig. B.3.

As one can see in Fig. B.3(c), the degree of correlation is close to the level of minimum
correlation for frequencies lower than 2 MHz, and for higher frequencies the correlation
gradually increases and reaches −3 dB at about 20 MHz. Moreover, the correlation phase
spectrum of Fig. B.3(e) reveals that the correlation phase is zero for frequencies higher than
2 MHz, whereas for low frequencies it can not be measured as the correlation amplitude
equals the minimum level. The theoretical spectra of RIN, correlation amplitude and
phase as shown in Figs. B.3(b),(d),(f), respectively, are nicely matching the corresponding
experimental one (Figs. B.3(a),(c),(e), respectively).

Finally, the experimental as well as the theoretical results for C = 0.65 are reproduced
in Fig. B.4. In this coupling case, one can observe a change of slope around 2 MHz in
the experimental RIN spectra of both the laser modes (Fig. B.4(a)). Additionally, there is
a dip at about 2 MHz in the experimental correlation amplitude spectrum (Fig. B.4(c)),
and apart from this dip the level of correlation is high ( −2 dB) for both low and high fre-
quencies. Furthermore, the experimental correlation phase spectrum (Fig. B.4(e)) shows
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Figure B.3: Results for C = 0.34. RIN spectra (a) experimental and (b) theoretical;
correlation amplitude spectra (c) experimental and (d) theoretical; correlation phase
spectra (e) experimental and (f) theoretical. Parameter values: rx = 1.4, ry = 1.32,
1/γx ≈ 5 ns, 1/γy ≈ 5.5 ns, 1/Γ = 3 ns, η = 0.65, ψ = 0, RINPump = −138 dB/Hz.

that the phase of correlation is π for frequencies lower than 2 MHz, whereas it is zero for
frequencies higher than this cut-off frequency. In this coupling situation also the theoret-
ical model exhibits very good agreement with the experimental results regarding the RIN
(Figs. B.4(a,b)), the correlation amplitude (Figs. B.4(c,d)) and correlation phase spectra
(Figs. B.4(e,f)).

B.2 Phase noise of the RF beatnote

After having discussed the intensity noises and their correlation in the previous section,
we present here the spectral behavior of the RF beatnote and its phase noise for fre-
quencies between 10 kHz and 50 MHz. FigureB.5 shows the experimental and theo-
retical phase noise PSDs along with the spectra of the corresponding RF beatnotes for
the same three different coupling strengths (C = 0.1, 0.35, 0.65, respectively) as previ-
ously. In Figs. B.5(a),(c),(e) the pink-filled circles and the violet line respectively rep-
resent the experimental and theoretical PSDs of the RF phase noise. The theoretical
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Figure B.4: Results for C = 0.65. RIN spectra (a) experimental and (b) theoretical;
correlation amplitude spectra (c) experimental and (d) theoretical; correlation phase
spectra (e) experimental and (f) theoretical. Parameter values: rx = 1.45, ry = 1.5,
1/γx ≈ 5.2 ns, 1/γy ≈ 5 ns, 1/Γ = 3 ns, η = 0.8, ψ = 0, RINPump = −138 dB/Hz.

RF phase noise PSDs are obtained by considering two different physical mechanisms
induced by pump noise as described in Chapter 2: (i) phase-intensity coupling due to
the large α−factor of the semiconductor gain medium, and (ii) fluctuations of the re-
fractive index of the semiconductor gain structure due to its temperature fluctuations.
The contributions from the phase-intensity coupling and the thermal effect to the RF
phase noise are respectively represented by the dash-dotted blue and dashed-green lines
in Figs. B.5(a),(c),(e). For C = 0.1, the phase noise and the corresponding RF beatnote
spectra are shown in Figs. B.5(a),(b), respectively. In this case, the dominant contribu-
tion to the RF phase noise for offset frequencies higher than 700 kHz originates from
phase-intensity coupling, whereas thermal noise is dominant for lower frequencies (10 kHz
− 700 kHz). FigureB.5(c),(d) respectively displays the phase noise PSD and correspond-
ing RF beatnote for C = 0.35. In this coupling situation, thermal effect is dominant
for lower offset frequencies (10 kHz - 500 kHz), whereas the contribution from phase-
intensity coupling mechanism prevails for frequencies higher than 500 kHz (Fig. B.5(c)).
The phase noise PSD and the corresponding beatnote spectra for C = 0.65 are depicted in
Figs. B.5(e),(f), respectively. Here, the thermal effect dominates for frequencies between
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Figure B.5: Results for RF beatnote phase noise. C = 0.1: (a) phase noise, (b)beatnote;
C = 0.35: (c) phase noise, (d )beatnote; C = 0.65: (e) phase noise, (f) beatnote.

Beatnote spectrum is measured by ESA with resolution bandwidth (RBW) = 30 kHz
and video bandwidth (VBW) = 30 kHz. Parameter values: α = 12, τ = 3 ns,

RINPump = −138 dB/Hz, η = 0.85, DT = 0.22 cm2.s−1, dn/dt = 2.7× 10−4 K−1,
LSC = 2.3 µm, Lcav = 1.5 cm, wPump = 50 µm, RT = 6 K.W−1, PPump = 1.5 W. The
other parameter values used for the simulation in (a), (c), and (e) are identical as in

Figs. B.2, B.3, B.4.

10 kHz and 200 kHz, while the high frequency contribution predominantly comes from
phase-intensity coupling effect. The RF beatnotes for all three coupling situations as
shown in Figs. B.5(b),(d),(f) are around 4-5 GHz and sitting on a noise pedestal mainly
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due to the phase noises as given in Figs. B.5(a),(c),(e), respectively. The little discrep-
ancy between theory (violet line) and experiment (pink squares) around 500 kHz in the
phase noise PSD for low and moderate couplings (FigsB.5(a),(c), respectively) probably
comes from the crude approximation of the thermal response of the structure by a simple
first order filter, and also from the approximate expression we choose for the thermal
response time of the structure as discussed in Chapter 2 [Davis et al., 1998]. For strong
coupling, the little discrepancy for frequencies higher than 20 MHz comes from the fact
that the phase noise approaches the measurement floor (∼ −130 dBc/Hz), and it should
not be taken into account. Apart from this, theory shows excellent agreement with the
experiment for all coupling situations.

B.3 Physical explanation

To explain the spectral behaviors of the intensity noises and their correlations as well as the
phase noise of the RF beatnote we can again draw the analogy between our two-mode laser
and a two-coupled meachanical oscillator system as discussed in Chapter 2. Analogous
to any symmetric two-coupled oscillator system, the DF-VECSEL exhibits two eigen-
relaxation mechanisms: (i) in-phase relaxation mechanism and (ii) anti-phase relaxation
mechanism [Otsuka et al., 1992]. These two relaxation mechanisms are associated with two
different eigenfrequencies and/or damping rates. Moreover, since the 1µm DF-VECSEL
exhibit class-A dynamics, the relaxation mechanisms are exponentially damped (without
any relaxation oscillation). The transfer functions of the in-phase and the anti-phase
response, as obtained from Eqs. (C.14-C.15) in AppendixC, are shown in Fig. B.6 for
three different coupling situations in the frequency range from 10 kHz to 50 MHz. As one
can see in Fig. B.6, the cut-off frequency of the anti-phase response (black line) is lower
than the cut-off frequency of the in-phase response (pink line). Moreover, the anti-phase
response strongly depends on the coupling strength, whereas the in-phase one does not.
Therefore, the noise response of each laser mode, obtained by superposing the anti-phase
and the in-phase responses, must depend on the relative dominance between these two
eigenrelaxation mechanisms. In the case of C = 0.1, the intensity noise spectra of the
two modes are governed mainly by the in-phase relaxation mechanism for all frequencies
as shown in Fig. B.6(a). This leads to the zero correlation phase for all frequencies as
depicted in Figs. B.2(e),(f). Moreover, the two modes are pumped by the same pump and
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Figure B.6: The theoretical normalized transfer function for both in-phase and
anti-phase relaxation mechanism for three different values of coupling (a) C = 0.1, (b)

C = 0.65 and (c) C = 0.35. Parameter values used for simulation: (a) r = 1.4,
1/γcav = 5.2 ns, η = 0.4; (b) r = 1.35, 1/γcav = 5.2 ns, η = 0.65; (c) r = 1.42,

1/γcav = 5.1 ns, η = 0.8. The other parameter values: 1/Γ = 3 ns, ψ = 0.

the pump intensity fluctuations entering into the two laser modes are identical white noises
with partial positive correlation (η = 0.4, ψ = 0). Therefore, the intensity fluctuations
of the two-modes are also partially correlated (Figs. B.2(c),(d)). For C = 0.35, the in-
phase and the anti-phase responses are comparable for frequencies lower than 2 MHz,
whereas above this cut-off frequency the in-phase mechanism strongly dominates over the
anti-phase one (Fig. B.6(b)). This explains why the correlation amplitude is very low
for frequencies lower than 2 MHz, but increases to a high value above this cut-frequency
as shown in Figs. B.3(c),(d). In addition to that, for frequencies lower than 2 MHz, the
correlation phase has no significant meaning as the correlation amplitude is very low,
whereas for higher frequencies the correlation phase is zero due to dominating in-phase
mechanism. This is what we have seen in Figs. B.3(e),(f). In the case of C = 0.65, the
low frequency behavior (below 2 MHz) of the noise spectrum of each mode is mainly
governed by the anti-phase relaxation mechanism, whereas above this cut-frequency the
dominant contribution comes from the in-phase response (Fig. B.6(c)). This transition
from dominant anti-phase to dominant in-phase behavior of the noise response at about 2
MHz frequency leads to a change of slope in the RIN spectra around this cut-off frequency
as shown in Fig. B.4(a),(b). This crossing between the in-phase and anti-phase responses
is also responsible for the π-phase jump at about 2 MHz. Additionally, the correlation
phase is zero or π for frequencies higher or lower than 2 MHz as the in-phase or the
anti-phase response dominates over the other, respectively. This has been reproduced
in Figs. B.4(e),(f). Moreover, destructive interference between the two nearly identical
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intensity noises of the two modes due to the π-phase jump around 2 MHz accounts for the
dip in the correlation amplitude. Apart from the dip the degree of correlation is higher
(∼ −2 dB) than the weaker coupling situations because of the stronger coupling between
the modes and the higher pump noise correlation factor. FiguresB.4(c),(d) reproduce this
spectral behavior of the correlation amplitude.

The beatnote phase noise spectra for different coupling cases as shown in Fig. B.5 can
also be explained from the view point of the in-phase and anti-phase eigenrelaxation mech-
anisms. FigureB.5 illustrates that the thermally induced phase noise (dashed-green line)
is almost independent of C, whereas the phase noise coming from the phase-intensity cou-
pling (dash-dotted blue line) via the large α−factor of the semiconductor active medium
strongly depends on C. Specifically, one can notice that the RF phase noise induced by
the phase-intensity coupling mechanism increases with the increase of the nonlinear cou-
pling strength, in particular, for low frequencies. This can be explained as follows: in case
of C = 0.65, for the low frequencies (below 2 MHz), the correlation between the intensity
noises is high (- 2 dB) but with opposite phases as for these frequencies anti-phase mech-
anism dominates. Therefore, the optical phase noises coming from the intensity noises of
the two laser modes due to the phase-intensity coupling mechanism add up, leading to a
high RF phase noise for low frequencies. However, for C = 0.1 or C = 0.35, the anti-phase
response is lower than or comparable to the in-phase response for frequencies lower than
2 MHz (Figs. B.6(a),(c) respectively). As a result for these frequencies, the phase noise of
the RF beatnote coming from the intensity noises, which are either positively correlated
(C = 0.1) or almost uncorrelated (C = 0.35), is relatively low for these weaker coupling
situations. This also explains why the matching between the experiment (pink circles)
and theory (violet line) is so perfect for strongest coupling (Fig. B.5(e)) compared to the
relatively weaker couplings (Fig. B.6(a),(c)).

B.4 Conclusion

In this appendix, we have presented the experimental results regarding the intensity noises
and their correlations, the RF beatnote and its phase noise for different coupling strengths
between the two cross-polarized modes of a DF-VECSEL operating at 1µm. We have
compared the experimental results with the predictions of the theoretical model intro-
duced in Chapter 2 to explain the different noise properties of a 1.55µm-DF-VECSEL.
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We evidenced that the very same model could well explain different noise properties of the
1µm-DF-VECSEL. This proves the generality of our simple rate equation based model to
explain the different noise properties of DF-VECSELs operating at different wavelengths.
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Appendix C

In-Phase and anti-phase relaxation
mechanism

Let us consider a laser driven out of its steady-state intensity by a small distance. Then
the laser will relax back to its steady-state solution, following either an exponential or
a damped oscillation, depending on whether the laser belongs the class-A or class-B dy-
namical regime [Arecchi et al., 1986; Otsuka et al., 1992]. This is somewhat analogous
to a single mechanical or electrical oscillator, in which the relaxation mechanism can also
be either exponential or damped oscillatory depending on the damping factor. Similarly,
for a dual-frequency laser we can draw an analogy with a two-coupled mechanical oscil-
lator system. Henceforth, the relaxation mechanism of the dual-frequency laser can be
analyzed like any two-coupled mechanical oscillator system by introducing the eigenre-
laxation mechanism of the global system [Otsuka et al., 1992]. In this appendix, we aim
at deriving the transfer functions associated with the in-phase and anti-phase relaxation
mechanisms in the case of a class-A dual-frequency VECSEL and a class-B dual-frequency
Nd:YAG laser.

C.1 Class-A dual-frequency VECSEL

The class-A dynamics of the dual-frequency VECSEL due to a photon lifetime inside
the cavity longer than the carriers’ lifetime leads to the exponentially damped relaxation
mechanisms. In general, deriving the analytical expressions of the relaxation modes is
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quite cumbersome. However, this becomes fairly simple if someone considers that the two
modes of the dual-frequency laser play symmetrical role, i.e., they have identical losses,
gains, etc,. In that case, the relaxation mechanisms become the symmetric (in-phase)
and asymmetric (anti-phase) mechanisms. In the case of a dual-frequency VECSEL as
described in Chapter 2, this leads to

γx = γy ≡ γcav , (C.1)
N0x = N0y ≡ N0 , (C.2)
ξxy = ξyx ≡ ξ . (C.3)

Then, the steady solution corresponding to the simultaneous oscillation of the two modes
for the DF-VECSEL, as given in Eqs. (2.25-2.28) of Chapter 2, simplifies as

rx = ry ≡ r , (C.4)
Nxth = Nyth = γcav

κ
≡ Nth , (C.5)

Fx0 = Fy0 = Γ/κ(r − 1)
(1 + ξ) ≡ F0 . (C.6)

This leads to the following expressions for the coefficients of the linear response transfer
matrix relating the photon number fluctuations [δ̃F x(f), δ̃F y(f)] to the pump fluctuations
[δ̃N0x(f), δ̃N0y(f)] as mentioned in Eqs. (2.41-2.44) of Chapter 2:

Mxx(f) = Myy(f) =
Γ
[
γcav − 2iπf

κF0
(rΓ− 2iπf)

]
∆(f) , (C.7)

Mxy(f) = Myx(f) = −Γγcavξ

∆(f) , (C.8)

where

∆(f) =
[
γcav −

2iπf
κF0

(rΓ− 2iπf)
]2

− Cγ2
cav . (C.9)

190



Appendix C. In-Phase and anti-phase relaxation mechanism

We define the in-phase and anti-phase fluctuations as follows,

δ̃F In(f) = δ̃F x(f) + δ̃F y(f) , (C.10)
δ̃FAnti(f) = δ̃F x(f)− δ̃F y(f) . (C.11)

Then, using Eqs. (C.7-C.11), we obtain

δ̃F In(f) = Γ2(r − 1)(δ̃N0x + δ̃N0y)
(1 + ξ) [{Γγcav(r − 1)− 4π2f 2} − 2iπfrΓ] , (C.12)

δ̃FAnti(f) = Γ2(r − 1)(δ̃N0y − δ̃N0y)
(1 + ξ)

[
{Γγcav(r − 1) (1−ξ)

(1+ξ) − 4π2f 2} − 2iπfrΓ
] . (C.13)

Now, we recall the properties of the pump noise fluctuations as described in Chapter 2.
The pump noises for the two modes are taken as identical white noises [Eq. (2.31)], and
these pump fluctuations are partially correlated (η < 1) with the phase (ψ) of the corre-
lation equal to zero [Eq. (2.32)]. Using these pump noise properties in Eqs. (C.12-C.13),
we obtain the following transfer functions for the in-phase and anti-phase responses

TIn(f) = |δ̃F In(f)|2

|δ̃N0|2

= 2Γ4(r − 1)2(1 + η cosψ)
(1 + ξ)2

[
{Γγcav(r − 1)− 4π2f 2}2 + (2πfrΓ)2

] , (C.14)

TAnti(f) = |δ̃FAnti(f)|2

|δ̃N0|2

= 2Γ4(r − 1)2(1− η cosψ)
(1 + ξ)2

[
{Γγcav(r − 1) (1−ξ)

(1+ξ) − 4π2f 2}2 + (2πfrΓ)2
] . (C.15)

Then, we introduce the following normalized spectra for the in-phase and anti-phase noises

SIn(f) = |δ̃F In(f)|2
F 2

0

= 2Γ2γ2
cavr

2(1 + η cosψ)× RINpump

[Γγcav(r − 1)− 4π2f 2]2 + (2πfrΓ)2 , (C.16)
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SAnti(f) = |δ̃FAnti(f)|2
F 2

0

= 2Γ2γ2
cavr

2(1− η cosψ)× RINpump[
Γγcav(r − 1) (1−ξ)

(1+ξ) − 4π2f 2
]2

+ (2πfrΓ)2
. (C.17)

The in-phase and anti-phase noise spectra as given by Eqs. (C.16-C.17) exhibit first-order
transfer functions, provided the photon lifetimes (γ−1

cav) inside the cavity of the two modes
are longer than the carriers’ lifetime (Γ−1). This is exactly what happens for dual-
frequency VECSELs as the photon lifetimes (γ−1

x , γ−1
y ∼ 10 ns) inside the cavity are

longer than the carriers’ lifetime (Γ−1 ∼ 1 ns). Moreover, the in-phase and anti-phase
responses exhibit different cut-off frequencies. This leads to different types of spectral
behaviors for the noise spectrum of the laser modes obtained by superposing the in-phase
and anti-phase responses. Additionally, Eqs. (C.16-C.17) show that the anti-phase re-
sponse depends on the nonlinear coupling, whereas the in-phase one does not. This is
translated to the coupling dependent spectral properties of the intensity noises for the
two modes of the DF-VECSEL (Chapter 2).

C.2 Class-B dual-frequency Nd:YAG laser

In this section, we derive the transfer functions of the in-phase and the anti-phase re-
laxation mechanisms for a dual-frequency Nd:YAG lasers. These lasers exhibit class-B
dynamics as the photon lifetimes (γ−1

x , γ−1
y ∼ 10 ns ) for the two cross-polarized modes

inside the cavity are shorter than the population inversion lifetime (Γ−1 ∼ 200µs). This
leads to the damped oscillatory behaviors of the in-phase and anti-phase eigenrelaxation
mechanisms. Here also, we choose the simple case of symmetrical modes i.e., the two
laser modes have identical losses, gains, etc. This gives the following steady-state solution
for the simultaneous oscillation of the two cross-polarized modes in the dual-frequency
Nd:YAG laser as obtained from Eqs. (4.21-4.24) of Chapter 4

N1th = N2th = γcav
κ(A+B) ≡ Nth , (C.18)

Fx0 = Fy0 = Γ/κ(r − 1)
(A+B) ≡ F0 . (C.19)
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We can then simplify the linear response transfer matrix coefficients in Eqs. (4.32-4.35) of
Chapter 4 as follows

Mxx(f) = Myy(f) =
ΓA(A2 −B2)

[
γcav(A−B)− 2iπf

κF0
(rΓ− 2iπf)

]
∆(f) , (C.20)

Mxy(f) = Myx(f) =
ΓB(A2 −B2)

[
γcav(A−B) + 2iπf

κF0
(rΓ− 2iπf)

]
∆(f) , (C.21)

where

∆(f) = A2
[
γcav(A−B)− 2iπf

κF0
(rΓ− 2iπf)

]2
−B2

[
γcav(A−B) + 2iπf

κF0
(rΓ− 2iπf)

]2
. (C.22)

As previously, we use the definitions of Eqs. (C.10-C.11) for the in-phase and anti-phase
fluctuations to obtain

δ̃F In(f) = Γ2(r − 1)(δ̃N01 + δ̃N02)
[{Γγcav(r − 1)− 4π2f 2} − 2iπfrΓ] , (C.23)

δ̃FAnti(f) =
Γ2(r − 1) (A−B)

(A+B)(δ̃N01 − δ̃N02)[
{Γγcav(r − 1) (A−B)2

(A+B)2 − 4π2f 2} − 2iπfrΓ
] . (C.24)

Then, using the properties of the pump fluctuations (δ̃N01, δ̃N02) as shown in Chapter 4,
i.e., the pump noises for the two dipole families in the Nd:YAG active medium are identical
white noises [Eq. (4.37)], and they are partially positively correlated [Eq. (4.39)], we obtain

TIn(f) = |δ̃F In(f)|2

|δ̃N0|2

= 2Γ4(r − 1)2(1 + η cosψ)
[Γγcav(r − 1)− 4π2f 2]2 + (2πfrΓ)2 , (C.25)

TAnti(f) = |δ̃FAnti(f)|2

|δ̃N0|2

=
2Γ4(r − 1)2 (A−B)2

(A+B)2 (1− η cosψ)[
Γγcav(r − 1) (A−B)2

(A+B)2 − 4π2f 2
]2

+ (2πfrΓ)2
. (C.26)
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The transfer functions of the in-phase and anti-phase relaxation mechanisms as given
in Eqs. (C.25-C.26) exhibit resonant peak like a second-order filter illustrating class-B
dynamical behavior of the dual-frequency Nd:YAG laser. In addition to that, the eigen-
frequencies of the in-phase and anti-phase relaxation oscillations are different, and they
can be easily obtained from Eqs. (C.25-C.26) as

fIn = 1
2π
√

Γγcav(r − 1) , (C.27)

fAnti = 1
2π

√√√√Γγcav(r − 1)(A−B)2

(A+B)2 . (C.28)

These different eigenfrequencies lead to the two peaks in the RIN spectrum of each laser
mode of the dual-frequency Nd-YAG laser as shown in Chapter 4. Moreover, Eqs. (C.25-
C.26) infer that the in-phase response is independent of the nonlinear coupling between the
modes, whereas the anti-phase response strongly depends on the nonlinear coupling. This
explains why the intensity noises and their correlation spectra exhibit strong dependence
on the nonlinear coupling between the two modes in the dual-frequency Nd:YAG laser as
reported in Chapter 4. Moreover, one can notice from Eq. (C.26) that the anti-phase peak
should disappear for η = 1, i.e., for perfect correlation of the pump noises seen by the two
dipole families. The presence of the anti-phase peak in the experimental RIN spectra for
all three coupling situations (Figs. 4.5-4.7) proves that the pump fluctuations intercepted
by the two dipole families are indeed not perfectly correlated, i.e., η < 1. This validates
our assumption in Eq. (4.39) for the theoretical modeling of Chapter 4.

194



Appendix D

Spontaneous emission noise

In this appendix, our goal is to analyze the effect of spontaneous emission on the phase
noise of the RF beatnote generated by optical mixing of the two cross-polarized modes
in a DF-VECSEL. We start from the rate equations of the single mode laser as given in
Eqs. (2.15-2.17) of Chapter 2. In these equations, we then introduce spontaneous emission
terms heuristically as Langevin noise sources. This leads to the following Langevin rate
equations [Agrawal and Dutta, 1993; Baili et al., 2008]

dF

dt
= −γcavF + κFN + ζF (t) , (D.1)

dN

dt
= −Γ(N −N0)− κFN + ζN(t) , (D.2)

dφ

dt
= α

2 κN + ζφ(t) . (D.3)

The Langevin forces ζF (t), ζφ(t) come from the spontaneous emission falling in the lasing
mode, whereas the Langevin force ζN(t), driving the carrier number fluctuations, arises
from both spontaneous emission and the probabilistic nature of the carrier recombination
process. In the absence of Langevin noise forces, the steady-state above-threshold solution
can be expressed as

F ≡ F0 = Γ
κ

(r − 1) , (D.4)

N ≡ Nth = γcav

κ
, (D.5)
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where r = N0/Nth. The Langevin noise sources drive the laser out of its steady-state.
The laser then exhibits random fluctuations governed by the stochastic rate equations
(D.1-D.3). We consider Markovian assumptions for the random Langevin processes i.e.,
the correlation time of the noise sources is much shorter than all characteristic time scales
of the system. This leads to the following relations for the Langevin forces

〈ζi(t)〉 = 0 , (D.6)
〈ζi(t)ζj(t+ τ)〉 = 2Dijδ(τ) , (D.7)

where 〈.〉 means ensemble average and Dij is the diffusion coefficient related with the
corresponding noise source. The explicit expressions of the diffusion coefficients Dij read
[Agrawal and Dutta, 1993; Baili et al., 2008]

DFF = γcavF0, DNN = γcavF0 + ΓNth, Dφφ = γcav

F0
,

DFN = −γcavF0, DNφ = 0, DFφ = 0 . (D.8)

The power spectral density (PSD) of the Langevin forces can be obtained by Fourier
transforming the corresponding correlation functions (Wiener-Khintchine theorem). This
provides the following expressions of the PSDs associated with the different Langevin
forces

SζF (ω) = 1
2π

∫ ∞
−∞
〈ζF (t)ζF (t+ τ)〉eiωτdτ = γcavF0

π
, (D.9)

SζN (ω) = 1
2π

∫ ∞
−∞
〈ζN(t)ζN(t+ τ)〉eiωτdτ = γcavF0 + ΓNth

π
, (D.10)

SζFN (ω) = 1
2π

∫ ∞
−∞
〈ζF (t)ζN(t+ τ)〉eiωτdτ = − γcavF0

π
, (D.11)

Sζφ(ω) = 1
2π

∫ ∞
−∞
〈ζφ(t)ζφ(t+ τ)〉eiωτdτ = γcav

4πF0
. (D.12)

Now considering that the Langevin noise sources perturb the laser from its steady-state
by a small margin, we linearize the equations around the steady-state solutions. To this
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aim, we introduce the fluctuations as follows

F (t) = F0 + δF (t) , (D.13)
N(t) = Nth + δN(t) , (D.14)
φ(t) = φ0 + δφ(t) . (D.15)

Inserting Eqs. (D.13-D.15) into the rate equations (D.1-D.3), we obtain the Langevin
equations for the fluctuations in time domain as

d

dt
δF (t)− Γ(r − 1)δN(t) = ζF (t) , (D.16)

γcavδF (t) + rΓδN(t) + d

dt
δN(t) = ζN(t) , (D.17)

d

dt
δφ(t)− α

2 κδN(t) = ζφ(t) . (D.18)

Performing Fourier transformation on Eqs. (D.16-D.18) leads to the following Langevin
equations of the fluctuations in the frequency domain

iωδ̃F + Γ(r − 1)δ̃N = −ζ̃F , (D.19)
γcavδ̃F + (rΓ− iω)δ̃N = ζ̃N , (D.20)

iωδ̃φ+ α

2 κδ̃N = ζ̃φ , (D.21)

where tilde ∼ denotes Fourier transformed quantities. Solving Eqs. (D.19-D.20), we obtain
the following expressions for the fluctuations of the photon number and the population
inversion number

δ̃F (ω) = (rΓ− iω)ζ̃F + Γ(r − 1)ζ̃N
Γγcav(r − 1)− ω2 − iωrΓ , (D.22)

δ̃N(ω) = − iωζ̃N + γcavζ̃F
Γγcav(r − 1)− ω2 − iωrΓ . (D.23)
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From Eq. (D.22), the PSD of the photon number fluctuation can be obtained as

SF (ω) = |δ̃F (ω)|2

=
(r2Γ2 + ω2)|ζ̃F |2 + Γ2(r − 1)2|ζ̃N |2 + 2Re

[
(rΓ− iω)Γ(r − 1)ζ̃∗N ζ̃F

]
[Γγcav(r − 1)− ω2]2 + ω2r2Γ2

= (r2Γ2 + ω2)SζF + Γ2(r − 1)2SζN + 2Γ2r(r − 1)SζF ζN
[Γγcav(r − 1)− ω2]2 + ω2r2Γ2

. (D.24)

Using Eqs. (D.9-D.11) in Eq. (D.24), and simplifying, we find

SF (ω) = γcavF0

π
× ω2 + rΓ2

[Γγcav(r − 1)− ω2]2 + ω2r2Γ2
. (D.25)

Therefore, the relative intensity noise (RIN) due to the spontaneous emission can be
expressed as

RIN(f) = 2SF (f)
F 2

0

= γcav

πF0
× 4π2f 2 + rΓ2

[Γγcav(r − 1)− 4π2f 2]2 + 4π2r2Γ2f 2
. (D.26)

The RIN spectrum given in Eq.D.26 is plotted in Fig.D.1. The parameter values used for

1 0 k 1 0 0 k 1 M 1 0 M
- 2 0 0

- 1 9 0

- 1 8 0

- 1 7 0

RIN
 (d

B/H
z)

F r e q u e n c y  ( H z )
Figure D.1: RIN spectrum associated with spontaneous emission noise. Parameter
values used for simulation: 1/γcav = 15 ns, 1/Γ = 1 ns, r = 1.35, F0 ' 9.45× 109.

simulation are close to our experimental conditions as discussed in Chapter 2. The RIN
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spectrum of Fig.D.1 confirms the fact that the spontaneous emission is indeed negligible
compared to the pump noise (-145 dB/Hz) in the frequency range of interest (10 kHz to
50 MHz) for the DF-VECSEL (Chapter 2).

After discussing the effect of spontaneous emission on the intensity noise, we will
describe the effect of spontaneous emission on the phase noise. In particular, our aim
is to calculate the power spectral density of the phase noise of the RF beatnote coming
from spontaneous emission in our DF-VECSEL. Now, substituting Eq.D.23 in Eq.D.21,
we obtain

δ̃φ(ω) = ακ

2iω ×
iωζ̃N + γcavζ̃F

Γγcav(r − 1)− ω2 − iωrΓ + ζ̃φ . (D.27)

Therefore, the PSD of the optical phase noise can be written as

Sφ(ω) = |δ̃φ(ω)|2

= α2κ2

4ω2 ×
ω2|ζ̃N |2 + γ2

cav|ζ̃F |2

[Γγcav(r − 1)− ω2]2 + ω2r2Γ2
+ |ζ̃φ|2

= α2κ2

4ω2 ×
ω2SζN + γ2

cavSζF
[Γγcav(r − 1)− ω2]2 + ω2r2Γ2

+ Sζφ . (D.28)

Using Eqs. (D.9-D.12) in Eq. (D.28) and doing some simplifications, we find the following
expression

Sφ(f) = γcav

4πF0

[
1 + α2Γ2(r − 1) [r(4π2f 2 + γ2

cav)− γ2
cav]

[Γγcav(r − 1)− 4π2f 2]2 + 4π2r2Γ2f 2

]
. (D.29)

The optical phase noise PSD of a single-mode laser given by Eq (D.29) can be easily
extended to calculate the optical phase noises of the two modes of our DF-VECSEL.
Finally, the contribution of the spontaneous emission to the phase noise of the RF beatnote
in the dual-frequency VECSEL can simply be written as

SBeat(f) = |δ̃φx(f)− δ̃φx(f)|2 = Sφx(f) + Sφy(f)

= γx
2πF0x

[
1 + α2Γ2(rx − 1) [rx(4π2f 2 + γ2

x)− γ2
x]

[Γγx(rx − 1)− 4π2f 2]2 + 4π2r2
xΓ2f 2

]

+ γy
2πF0y

1 +
α2Γ2(ry − 1)

[
ry(4π2f 2 + γ2

y)− γ2
y

]
[Γγy(ry − 1)− 4π2f 2]2 + 4π2r2

yΓ2f 2

 . (D.30)
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In Eq. (D.30) the symbols have identical meanings as in Chapter 2. Now, the spontaneous
emission falling in the two modes are expected to be uncorrelated, and hence the optical
phase fluctuations of the two cross-polarized modes due to spontaneous emission should
be uncorrelated. Therefore, the RF beatnote phase noise coming from the spontaneous
emission can be obtained by adding the PSDs of the two optical phase noises associated
with spontaneous emission as shown in Eq. (D.30). We simulate Eq. (D.30) and the result
is shown in Fig.D.2. The values of the parameters used for simulation are taken from the
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F r e q u e n c y  ( H z )
Figure D.2: Phase noise PSD of the RF beatnote due to spontaneous emission.
Parameter values used for simulation: rx = 1.32, ry = 1.35, 1/γx = 13.9 ns,

1/γy = 16.7 ns, 1/Γ = 1 ns, F0x ' 2.42× 109, F0y ' 4.12× 109.

experiment described in Chapter 2. Comparing the theoretically expected noise spectrum
(Fig.D.2) with the measured spectrum (Fig. 2.11 of Chapter 2) for the RF beatnote phase
noise, we find that spontaneous emission hardly contributes to the phase noise of the RF
beatnote in our DF-VECSEL.
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Description of the coupling constant
in a dual-frequency Nd:YAG laser

In this appendix, we rederive, following [Schwartz et al., 2009], the analytic expression of
the nonlinear coupling constant in a dual-frequency laser based on a 〈100〉−cut Nd:YAG
crystal, as mentioned in Eq. 4.20 of chapter 4. To this aim, Lamb’s model is extended to
fit the case of our dual-frequency Nd:YAG laser. As described by Lamb’s model for a
two-mode laser [Sargent III et al., 1974], the equations of evolution governing the photon
numbers (intensities) in the eigenstates of a laser read

dFx
dt

= 2Fx [αx − βxFx − θxyFy] , (E.1)
dFy
dt

= 2Fy [αy − βyFy − θyxFx] , (E.2)

where Fx, Fy denote the number of photons in the two modes. αx, αy stand for the net gain
of the two modes. βx, βy are the self-saturation coefficients, whereas the coefficients θxy
and θyx take into account cross-gain saturation. Then according to Lamb, the nonlinear
coupling constant C is defined as

C = θxyθyx
βxβy

. (E.3)
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The steady-state solution corresponding to simultaneous oscillation of the two modes is

[αx − βxFx0 − θxyFy0] = 0 , (E.4)
[αy − βyFy0 − θyxFx0] = 0 . (E.5)

Stable simultaneous oscillation of the two modes requires that C be less than unity. In
this case, the solutions of Eqs. (E.4-E.5) can be written as

Fx0 = αxβy − αyθxy
βxβy(1− C) , (E.6)

Fy0 = αyβx − αxθyx
βxβy(1− C) . (E.7)

Therefore, to define the coupling constant C of a dual-frequency Nd:YAG laser in the
framework of the Lamb’s model, one needs to find steady-state solutions analogous to
Eqs. (E.4-E.5). To this aim, we start from the rate equations (4.14-4.17) governing the
dynamics of the dual-frequency Nd:YAG laser as shown in Chapter 4. The steady-state
solutions for the population inversions can be written as

N1 ≡ N1th = N0

1 + 1
Fsat

(Fx0A+ Fy0B) , (E.8)

N2 ≡ N2th = N0

1 + 1
Fsat

(Fy0A+ Fx0B) , (E.9)

where Fsat is equal to Γ/κ. In the weak-saturation limit (Fx, Fy � Fsat), Eqs. (E.8-E.9)
can be simplified as

N1th = N0

[
1− Fx0A

Fsat
− Fy0B

Fsat

]
, (E.10)

N2th = N0

[
1− Fx0B

Fsat
− Fy0A

Fsat

]
. (E.11)

Now, to obtain the steady-state solutions for the photon numbers we set dFx/dt = 0,
dFy/dt = 0 in Eqs. (4.14-4.15) of Chapter 4, leading to

0 = −γxFx0 + κFx0(N1thA+N2thB) , (E.12)
0 = −γyFy0 + κFy0(N2thA+N1thB) . (E.13)
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Using Eqs. (E.8-E.9) in Eqs. (E.12-E.13) and doing some simplification, we find

−γx + κN0(A+B)− κN0

Fsat
(A2 +B2)Fx0 −

κN0

Fsat
(2AB)Fy0 = 0 , (E.14)

−γy + κN0(A+B)− κN0

Fsat
(A2 +B2)Fy0 −

κN0

Fsat
(2AB)Fx0 = 0 . (E.15)

Comparing Eqs. (E.4-E.5) with Eqs. (E.14-E.15), one can obtain the following expressions
for the net gains:

αx = −γx + κN0(A+B) , (E.16)
αy = −γy + κN0(A+B) . (E.17)

The self-saturation coefficients are:

βx = βy = κN0

Fsat
(A2 +B2) , (E.18)

and the cross-saturation coefficients read:

θx = θy = κN0

Fsat
(2AB) . (E.19)

Therefore, using the definition in Eq. E.3, we find the expression of the coupling constant
C as mentioned in in Eq. 4.20 of chapter 4.

It is important to mention here that the Lamb’s model only considers class-A laser.
However, our dual-frequency Nd:YAG laser exhibits class-B dynamical behavior. To over-
come this limitation, Lamb’s model can be reformulated in the following manner [Brunel
et al., 1997]. Let’s suppose now that a small change of αx, denoted as ∆αx ( � αx),
induces variations ∆Fx and ∆Fy for the two modes. Then, from Eqs. (E.6-E.7) we obtain

∆Fx
∆αx

= βy
βxβy(1− C) , (E.20)

∆Fy
∆αx

= − θyx
βxβy(1− C) . (E.21)
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Similarly, for a small change ∆αy of αy (∆αy � αy), we get

∆Fx
∆αy

= − θxy
βxβy(1− C) , (E.22)

∆Fy
∆αy

= βx
βxβy(1− C) . (E.23)

Using Eqs. (E.20-E.23), one can find the following useful expression of C:

C =
∆Fx
∆αy ×

∆Fy
∆αx

∆Fx
∆αx ×

∆Fy
∆αy

. (E.24)

The advantage of using the definition in Eq. E.24 is that, the coupling constant can be
obtained for both class-A and class-B lasers.
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Appendix F

Effect of spatial-hole burning

Spatial-hole burning plays an important role in the strength of the coupling between the
modes of a multimode Nd:YAG laser [Tang et al., 1963; Kimura et al., 1971]. In this
appendix, we aim at exploring the effect of spatial-hole burning on the nonlinear cou-
pling constant for our dual-frequency Nd:YAG laser, sustaining simultaneous oscillation
of two linear cross-polarized modes. We start by the case of a laser with two longitudinal
oscillating modes, and then extend this to our dual-frequency Nd:YAG laser.

F.1 Coupling between two longitudinal modes

In this section, we investigate the effect of spatial hole burning on the coupling between
the two longitudinal modes of a laser, in which the gain medium does not fill the whole
cavity. The schematic of the laser cavity is shown in Fig. F.1. The linear cavity of length
l is closed by two mirrors: one is at z = 0, and the output coupler is at z = l. The active
medium of thickness e and refractive index n is placed at z = d. The longitudinal modes
of the cavity must satisfy the following relation

d+ ne+ l − (d+ e) = p
λp
2 , (F.1)

where p is an integer defining the mode of wavelength λp. EquationF.1 can be simplified
as

λp = 2[l + (n− 1)e]
p

. (F.2)
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Therefore, the corresponding propagation constant in vacuum reads

k(0)
p ≡ 2π

λp
= p

π

l + (n− 1)e . (F.3)

Now we suppose that the cavity is sustaining stable simultaneous oscillation of only two

z 
0 d l 

e 

n 

Figure F.1: Schematic of the laser cavity aligned along z−direction with the end mirrors
at z = 0, and z = l. Cavity length: l; thickness and refractive index of active medium: e,

n, respectively; position of the active medium: z = d.

longitudinal modes, labeled p and q. Each mode field forms a standing wave pattern due
to the interference of the forward and backward waves in the linear cavity. Therefore, the
amount of overlap between the pth and qth longitudinal mode inside the gain medium
can be expressed by the following integral

F (p, q) =
∫ d+e

d
dzFp(z)Fq(z) , (F.4)

where

Fp(z) = Fp0 sin2(k(0)
p z), 0 ≤ z ≤ d, (F.5)

Fp(z) = Fp0 sin2(kpz + ψp), d ≤ z ≤ (d+ e), (F.6)

and

kp = 2nπ
λp

= p
nπ

l + (n− 1)e . (F.7)

Here, Fp(z) denotes the photon number distribution inside the cavity along the z−axis for
the pth mode. The qth mode also satisfies equations (F.4-F.7) (the subscript p must be
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replaced by q). The continuity of the mode field at z = d leads to the following relation

sin(k(0)
p d) = sin(kpd+ ψp) . (F.8)

Using Eqs. (F.3),(F.7) in Eq. (F.8), we obtain

ψp = (1− n)k(0)
p d . (F.9)

Similarly, for qth mode, we can write

ψq = (1− n)k(0)
q d . (F.10)

When both pth and qth modes are oscillating, the saturated population inversion density
at position z can be expressed as

n(z) = n0

1 + Fp(z) + Fq(z)
Fsat

, (F.11)

where n0 defines the unsaturated population inversion density and Fsat stands for the
saturation photon number. Therefore, the gain terms in the rate equations of the photon
numbers for pth and qth mode read as follows:[

dFp
dt

]
gain

= κS
∫ d+e

d
dz

n0

1 + Fp(z)+Fq(z)
Fsat

Fp(z) , (F.12)
[
dFq
dt

]
gain

= κS
∫ d+e

d
dz

n0

1 + Fp(z)+Fq(z)
Fsat

Fq(z) , (F.13)

and κS = σc
Lcav

with Lcav = 2[l + (n− 1)d] where S is mode section area, σ is stimulated
emission cross-section, and c is the speed of light. In the weak-saturation limit (Fp, Fq �
Fsat), Eqs. (F.12-F.13) reduce to

[
dFp
dt

]
gain

= κSn0

∫ d+e

d
dzFp(z)

[
1− Fp(z)

Fsat
− Fq(z)

Fsat

]
, (F.14)[

dFq
dt

]
gain

= κSn0

∫ d+e

d
dzFq(z)

[
1− Fq(z)

Fsat
− Fp(z)

Fsat

]
. (F.15)
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Therefore, considering Lamb’s formalism as described in the AppendixE and using
Eqs. (F.14-F.15), we can express the coupling constant (C) as follows:

C ≡ θpqθqp
βpβq

=

[∫ d+e
d dzFp(z)Fq(z)

]2[∫ d+e
d dzF 2

p (z)
] [∫ d+e

d dzF 2
q (z)

] . (F.16)

where θpq, θqp denote the cross-saturation coefficients, and βp, βq stand for the self-
saturation coefficients. Taking into account the intra-cavity photon number distribution
of Eq. F.6, and substituting it in Eq. F.16, we find the following expressions for the cross-
and self-saturation coefficients

θpq = θqp = θ =
∫ d+e

d
dz sin2(kpz + ψp) sin2(kqz + ψq) , (F.17)

βp =
∫ d+e

d
dz sin4(kpz + ψp) , (F.18)

βq =
∫ d+e

d
dz sin4(kqz + ψq) . (F.19)

where kp, kq, ψp, and ψq are given by Eqs. (F.7-F.10). Equation (F.17) can be simplified
as follows

θ = 1
4[e+ 1

4(kp − kq)
(sin 2[(kp − kq)(d+ e)− (ψp − ψq)]− sin 2[(kp − kq)d− (ψp − ψq)])

+ 1
4(kp + kq)

(sin 2[(kp + kq)(d+ e)− (ψp + ψq)]− sin 2[(kp + kq)d− (ψp + ψq)])

− 1
2kp

(sin 2[kp(d+ e) + ψp]− sin 2[kpd+ ψp])

− 1
2kq

(sin 2[kq(d+ e) + ψq]− sin 2[kqd+ ψq])] . (F.20)

The self-saturation coefficients of Eqs. (F.18-F.19) can be simply expressed as

βp = θpp = 1
4[3e2 + 1

8kp
(sin 4[kp(d+ e) + ψp]− sin 4[kpd+ ψp])

− 1
kp

(sin 2[kp(d+ e) + ψp]− sin 2[kpd+ ψp])] , (F.21)
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βq = θqq = 1
4[3e2 + 1

8kq
(sin 4[kq(d+ e) + ψq]− sin 4[kqd+ ψq])

− 1
kp

(sin 2[kq(d+ e) + ψq]− sin 2[kqd+ ψq])] . (F.22)

Therefore, considering the expressions of θpq, θqp, βp, βq as mentioned in Eqs. (F.20-
F.22), we can calculate coupling constant C from Eqs. F.16.

F.2 Coupling constant in dual-frequency Nd:YAG

In this section, we extend the derivation of the coupling constant (C) between the two
longitudinal modes of the previous section to the dual-frequency Nd:YAG laser, which sus-
tains oscillation of two linear cross-polarized modes. The schematic of the dual-frequency
Nd:YAG laser cavity of length l is shown in Fig. F.2. The cavity is closed by two mirrors
placed at z = 0, and z = l. The mirror at z = l serves as the output coupler. The gain
is provided by 〈100〉−cut Nd:YAG crystal, which is placed at z = d and has a thick-
ness e. The Nd:YAG crystal is assumed to be isotropic and having refractive index n.
The quarter-wave plate (λ/4-plate ) of thickness t determines the directions of the two
linear orthogonal polarization modes (o(x): ordinary, e(y): extraordinary). no and ne

respectively denote the refractive indices along the ordinary and extraordinary directions
inside the quarter-wave plate. Following Eqs. (E.8-E.9) in AppendixE, the saturated pop-

z 
0 d l 

e 

n 

o 

e 
𝑛0 𝑛𝑒 

t 

Nd:YAG 

λ/4 

Figure F.2: Schematic of the dual-frequency Nd:YAG laser cavity with the end mirrors
at z = 0, and z = l. Cavity length: l; thickness and refractive index of active medium: e,

n, respectively; position of the active medium: d; thickness of λ/4-plate: t, o(x):
ordinary polarization; e(y): extraordinary polarization; no, ne: ordinary and

extraordinary refractive indices of λ/4-plate.

ulation inversions in the weak-saturation limit and considering the z-dependence of the
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intra-cavity photon numbers of the two modes can be written as

N1(z) = N0[1− Fx(z)A
Fsat

− Fy(z)B
Fsat

] , (F.23)

N2(z) = N0[1− Fy(z)A
Fsat

− Fx(z)B
Fsat

] . (F.24)

where

Fx(z) = Fx0 sin2(k(0)
x z), 0 ≤ z ≤ d , (F.25)

Fx(z) = Fx0 sin2(kxz + ψx), d ≤ z ≤ d+ e , (F.26)

and

Fy(z) = Fy0 sin2(k(0)
y z), 0 ≤ z ≤ d , (F.27)

Fy(z) = Fy0 sin2(kyz + ψy), d ≤ z ≤ d+ e . (F.28)

Now, the continuity of the field at z = d leads to

kx = p
nπ

l + (n− 1)e+ (no − 1)t , (F.29)

k(0)
x = p

π

l + (n− 1)e+ (no − 1)t , (F.30)

ky = p
nπ

l + (n− 1)e+ (ne − 1)t , (F.31)

k(0)
y = p

π

l + (n− 1)e+ (ne − 1)t , (F.32)

ψx = (1− n)k(0)
x d , (F.33)

ψy = (1− n)k(0)
y d . (F.34)

Here, we assume that the two cross-polarized modes belong to same longitudinal mode (p).
Now, following the derivation of AppendixE and taking into account the z-dependence of
the photon numbers as shown in the previous section, we obtain the following expression
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for the nonlinear coupling constant (C):

C = 4A2B2

(A2 +B2)2

[∫ d+e
d dzFx(z)Fy(z)

]2[∫ d+e
d dzF 2

x (z)][
∫ d+e
d dzF 2

y (z)
] . (F.35)

Thereafter, substituting Eqs. (F.25-F.28) into Eq. F.35, we find

C = 4A2B2

(A2 +B2)2

[∫ d+e
d dz sin2(kxz + ψx) sin2(kyz + ψy)

]2[∫ d+e
d dz sin4(kxz + ψx)

] [∫ d+e
d dz sin4(kyz + ψy)

] . (F.36)

EquationF.36 can be expressed as

C = 4A2B2

(A2 +B2)2
θxyθyx
βxxβyy

, (F.37)

where

θxy = θyx = 1
4e+ 1

16(kx − ky)
sin 2 [(kx − ky)(d+ e)− (ψx − ψy)]

− 1
16(kx − ky)

sin 2 [(kx − ky)d− (ψx − ψy)]

+ 1
16(kx + ky)

sin 2 [(kx + ky)(d+ e)− (ψx + ψy)]

− 1
16(kx + ky)

sin 2 [(kx + ky)d− (ψp + ψq)]

− 1
8kx

(sin 2[kx(d+ e) + ψx]− sin 2[kxd+ ψx])

− 1
8ky

(sin 2[ky(d+ e) + ψy]− sin 2[kyd+ ψy]) , (F.38)

βx = 3e
8 + 1

32kx
(sin 4[kx(d+ e) + ψx]− sin 4[kxd+ ψx])

− 1
4kx

(sin 2[kx(d+ e) + ψx]− sin 2[kxd+ ψx]) , (F.39)
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βy = 3e
8 + 1

32ky
(sin 4[ky(d+ e) + ψy]− sin 4[kyd+ ψy])

− 1
4ky

(sin 2[ky(d+ e) + ψx]− sin 2[kyd+ ψy]) . (F.40)

EquationF.37 illustrates how the spatial-hole burning modifies the expression of the
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Figure F.3: Variation of the coupling constant (C) with the position (d) of the active

medium inside the laser cavity. Parameter values used for simulation: l = 9 cm,
e = 2 cm, t = 7.8× 10−2 cm, n = 1.8197, no = 1.534, ne = 1.543, λ = 1µm, β = 0.025,

α = π/4.

coupling constant of Eq. 4.20. For better understanding, the coupling constant C is plotted
as a function of the active medium position d inside the cavity, and the result is shown in
Fig. F.3. The important point to note here is that the coupling constant is always much
less than unity, even though α is equal to π/4. The other parameter values are taken from
our experimental condition as described in Chapter 4. This explains why the anti-phase
peak in the experimental RIN spectra of the two modes of the dual-frequency Nd:YAG
laser does not shift as much with the change of α as expected from the theoretical model
of Chapter 4, which did not include spatial-hole burning effect.
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Noise in dual-frequency semiconductor and solid-state lasers

Coherent sources emitting two optical frequencies with a widely tunable frequency difference lying in the radio-frequency
range and having a high degree of correlation between their fluctuations can be useful for numerous applications such as
microwave photonics, ultra-stable atomic clocks, atom manipulation and probing, metrology, etc. Dual-frequency lasers,
which emit two orthogonal linearly polarized modes with a frequency difference lying in the radio-frequency range, have huge
potentials for the above mentioned applications. We compare the characteristics of such dual-frequency oscillation in lasers
based on either semiconductor (VECSEL: vertical-external-cavity surface-emitting laser) or solid-state active media (mainly
Nd3+, or Er3+ doped crystalline host). Apart from the obvious difference between the gain mechanisms in semiconductor
and solid-state laser media, the dual-frequency VECSEL and the dual-frequency Nd:YAG laser exhibit different dynamical
behaviors. The dual-frequency VECSELs exhibit relaxation oscillation free class-A dynamics as the photon lifetime inside
the cavity is longer than the population inversion lifetime. On the contrary, the dual-frequency Nd:YAG lasers obey class-B
dynamics linked with the fact that the photon lifetime inside the cavity is shorter than the population inversion lifetime,
leading to the existence of relaxation oscillations. In this thesis, we figure out how the laser dynamics, in addition to the
nonlinear coupling between the two laser modes, governs different noise phenomena in dual-frequency lasers. In particular,
we demonstrate, both experimentally and theoretically, the influence of the laser dynamics and the nonlinear coupling
between the two modes on the laser noise, by analyzing the spectral properties of the different noises (intensity, phase)
and their correlation in a class-A dual-frequency VECSEL (vertical-external-cavity surface emitting laser) and a class-B
dual-frequency Nd:YAG laser. Moreover, the noise correlation results are interpreted in terms of the linear response of two
coupled damped oscillators.

Keywords

dual-frequency laser VECSEL Nd:YAG laser
laser dynamics nonlinear coupling noise

Bruit dans les lasers à semiconducteurs et les lasers à solide en régime d?émission bifréquence

Les sources cohérentes de lumière émettant deux fréquences optiques avec une différence largement accordable dans le
domaine radiofréquence et un fort degré de corrélation entre leurs fluctuations respectives peuvent être d?un grand intérêt
pour de nombreuses applications telles que la photonique micro-onde, les horloges atomiques ultra stables, la physique
atomique, la métrologie, etc. C?est le cas des lasers bifréquences émettant deux modes de polarisations linéaires croisées
avec une différence de fréquence dans le domaine radiofréquence. Nous comparons les caractéristiques de telles sources
bifréquences basées sur des lasers à semiconducteurs (VECSEL: vertical-external-cavity surface-emitting laser) ou des lasers
à solide (notamment les solides dopés Nd3+ ou Er3+). Au-delà de la différence évidente entre les mécanismes de gain
dans les lasers à semiconducteurs et dans les lasers à solide, le VECSEL bifréquence et le laser Nd:YAG bifréquence ne
présentent pas la même dynamique. Le VECSEL bifréquence, comme pour un laser de classe A, a une dynamique dénuée
d?oscillations de relaxation puisque la durée de vie des photons dans la cavité est beaucoup plus longue que celle de
l?inversion de population. A l?opposé, le laser Nd:YAG bifréquence possède une dynamique présentant des oscillations de
relaxation comme pour un laser de classe B, en vertu du fait que la durée de vie des photons dans la cavité est plus courte
que celle de l?inversion de population. Dans cette thèse, nous explorons les mécanismes par lesquels cette dynamique, en
plus du couplage non linéaire entre les deux modes, gouverne le bruit dans les lasers bifréquences. En particulier, nous
analysons à la fois expérimentalement et théoriquement les propriétés spectrales des différents bruits (intensité, phase) ainsi
que leurs corrélations dans le cas d?un VECSEL bifréquence de classe A et d?un laser Nd:YAG bifréquence de classe B.
Enfin, un modèle de réponse linéaire de deux oscillateurs amortis couplés permet d?interpréter les résultats obtenus sur la
corrélation entre ces différents bruits.

Mots-Clefs

laser bifréquences VECSEL Nd:YAG laser
dynamique de laser couplage non linéaire bruit
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