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Résumé Résumé

La description et l'estimation des modèles aussi bien univariés que multivariés impliquant des distributions à queue lourde est un enjeu applicatif majeur. Les L-moments sont devenus des outils classiques alternatifs aux moments centraux pour décrire les comportements en dispersion, asymétrie, kurtosis d'une distribution univariée à queue lourde. En effet, contrairement aux moments centraux correspondants, ils sont bien définis dès que l'espérance de la distribution d'intérêt est finie. Les L-moments peuvent être vus comme la projection de la fonction quantile sur une famille orthogonale de polynômes, récupérant la linéarité inhérente aux quantiles. Nous estimerons dans un premier temps les paramètres de modèles semi paramétriques définis par des contraintes sur ces L-moments par des méthodes de minimisation de divergences. Nous proposons dans un second temps une généralisation des L-moments aux distributions multivariées qui passe par la définition d'un quantile multivarié défini comme un transport entre la distribution uniforme sur [0; 1] d et la distribution d'intérêt. Cela nous permet de proposer des descripteurs pour des distributions multivariées adaptés à l'étude des queues lourdes. Nous détaillons leurs expressions dans le cadre de modèles possédant des paramètres de rotation. Enfin, nous proposons des M-estimateurs de la matrice de dispersion des distributions complexes elliptiques. Ces dernières forment un modèle multivarié semi-paramétrique contenant notamment des distributions à queue lourde. Des M-estimateurs spécifiques adaptés aux distributions elliptiques avec une hypothèse supplémentaire de stationnarité sont également proposés. Les performances et la robustesse des estimateurs sont étudiées. Les signaux radar provenant de fouillis tels les fouillis de mer ou les fouillis de sol sont souvent modélisés par des distributions elliptiques. Nous illustrerons les performances de détecteurs construits à partir de l'estimation de la matrice de dispersion par les méthodes proposées pour différents scénarios radar pour lesquels la robustesse de la procédure d'estimation est cruciale.
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Introduction 0.1 Considérations générales

Notre guide dans cette thèse a été l'étude et l'estimation des distributions univariées et multivariées dites à queue lourde. La queue d'une loi de probabilité est le comportement de cette loi dans les zones éloignées de sa valeur centrale. Pour les lois univariées sur R + , le classement des types de queues se fait par rapport à la loi exponentielle de fonction de distribution paramétrée par λ > 0

F E (x) = (1 -e -λx )1 x>0
En effet, une loi sur R + est dite à queue lourde si sa fonction de distribution

F vérifie R e λx dF (x) = ∞ (1) 
pour tout λ > 0.

Les données simulées sous une distribution appartenant à cette classe ont donc tendance à s'étaler et non à se concentrer autour d'un centre de masse. Autrement dit, les valeurs extrêmes (c'est à dire les valeurs éloignées du centre de masse) ont tendance à être nombreuses pour des lois à queue lourde. C'est pour cela que cela rend leur étude plus complexe que l'étude des lois dites à queue légère dont fait partie la Gaussienne standard notamment.

Ces lois apparaissent naturellement dans plusieurs contextes d'applications, notamment en analyse du risque financier [START_REF] Jurczenko | Hedge fund portfolio selection with higherorder moments : a nonparametric mean-variance-skewness-kurtosis efficient frontier[END_REF], en sciences environnementales [START_REF] Hosking | Regional Frequency Analysis : An approach based on L-moments[END_REF] et en traitement du signal radar. Nous reviendrons sur cette dernière application qui nous intéresse particulièrement.

Au delà du caractère queue lourde des lois considérées, la robustesse des méthodes employées est un objectif industriel important. En effet, la diversité des scénarios réels est bien souvent difficile à modéliser, les modèles eux-mêmes comme l'estimation des paramètres d'intérêt doivent donc en tenir compte. Nous prendrons comme illustration un échantillon x 1 , ..., x n de variables d'intérêt en faisant l'hypothèse classique que ces échantillons suivent la même loi F 0 . Nous citerons deux types de robustesse par rapport à ces hypothèses :

• la robustesse par rapport à une mauvaise spécification du modèle F 0 , c'est-à-dire que les données réelles ne vérifient pas les hypothèses du modèle d'étude. Ce genre de considération pousse bien souvent le statisticien à considérer des modèles les plus larges possibles, c'est à dire, à spécifier le modèle avec des a priori non superflus mais suffisants pour décrire le phénomène observé. • la robustesse par rapport aux valeurs aberrantes pour le modèle. Cette robustesse est différente de la précédente dans le sens où l'hypothèse d'homogénéité des échantillons Introduction Figure 1 -Cube de données radar : l'axe Doppler correspond à l'axe des d impulsions n'est plus assurée. Les cas extrêmes de contamination par des valeurs aberrantes peuvent aller jusqu'à considérer que n/2 -1 échantillons ne suivent pas la même loi que les n/2 + 1 autres échantillons. Nous nous proposons d'étudier des L-statistiques et des M-statistiques robustes dans le cadre des distributions à queue lourde ainsi que l'application de ces dernières pour la détection de cibles radar.

Contexte d'application : détection de cibles lentes sur fouillis inhomogène

Le contexte applicatif concerne les radars de surfaces (radars de défense aérienne, radars côtiers,...). Les concepts opérationnels d'emploi des radars évoluent pour adapter les nouvelles capacités de détection face à des cibles :

• plus furtives (furtivité passive/active)

• plus lentes ou plus agiles (plus véloces, plus manoeuvrantes, à plus basse altitude,...)

• plus intelligentes (antibrouillage, réactivité)

• plus asymétriques (ULM, avions légers...). Ce type de cibles évoluent dans des environnements fortement perturbés comme les fouillis de sol inhomogènes (cibles à basses altitudes) ou des fouillis de mer très fluctuants et non stationnaires (petites cibles en côtier, missiles sea-skimmer,...). Les radars que nous considérons envoient des rafales composées de d impulsions dans chaque direction d'espace. Le signal reçu dans chaque direction (azimut) et pour chaque impulsion est découpé en L cases distances (correspondant alors à la portée du radar ; cf Figure 1). Nous nous intéressons plus particulièrement aux angles d'élévation basse (c'est-à-dire aux altitudes basses) où le fouillis est le plus souvent problématique.

Nous traitons chaque azimut de manière indépendante. Pour chaque case d'espace, nous regroupons les d impulsions sous la forme d'un vecteur x ∈ C d . Afin d'effectuer un test de détection pour savoir si une cible est présente dans la case d'espace considéré, nous allons prendre en compte les cases environnantes sur l'axe "distance". De telles méthodes adaptatives sont souvent de type CFAR (Constant False Alarm Rate en anglais), c'est à dire que le taux de faux-positifs (la détection à tort d'une cible) doit être maitrisée. Tout l'enjeu des algorithmes de détection est donc de modéliser la loi sous-jacente des cases environnantes et de construire un test performant à partir de cette estimation. Nous considérerons :

• la probabilité de détection : la probabilité de détecter une cible si elle est présente dans la case d'intérêt • la probabilité de fausse alarme : la probabilité de détecter une cible si elle n'est pas présente dans la case d'intérêt L'objectif principal est de maîtriser la fausse alarme à un taux donné tout en maximisant la probabilité de détection. La modélisation classique des données environnantes x 1 , ..., x N ∈ C d par une loi Gaussienne complexe n'est pas valable pour les fouillis de sol et de mer qui nous intéressent. Il est bien connu dans la littérature radar que ces lois possèdent une queue de distribution lourde [START_REF] Ward | Sea Clutter : Scattering, the K Distribution and Radar Performance[END_REF] [START_REF] Carretero-Moya | Small-target detection in high-resolution heterogeneous sea-clutter : An empirical analysis[END_REF] (cf Figure 3).

Un modèle semi-paramétrique classiquement considéré pour modéliser les x i de manière non Gaussienne est le modèle complexe symétrique elliptique. Les distributions elliptiques symétriques complexes centrées sont paramétrées par une matrice de dispersion Σ et une variable aléatoire positive R ∈ R + (nous oublions le paramètre de localisation pour nos applications). En effet, X ∈ C d suit une loi elliptique si et seulement si

X d = RΣ 1/2 U
où U suit une loi uniforme sur la sphère unité de C d . La famille des distributions SIRV (Spherically Invariant Random Variable) est également populaire dans la littérature radar [START_REF] Barnard | Non-gaussian clutter modeling with generalized spherically invariant random vectors[END_REF] [START_REF] Conte | Characterization of radar clutter as a spherically invariant random process[END_REF]. X suit une loi SIRV si et seulement si

X d = RΣ 1/2 Y
où Y suit une loi complexe Gaussienne standard sur C d . Cette seconde famille de lois est en fait comprise dans la famille de lois complexes elliptiques. La difficulté de l'analyse de ces lois réside dans le fait que la composante non-paramétrique R suit une loi qui dépend de la nature du phénomène observé et possède une distribution à queue lourde. De plus, nous sommes souvent amené à faire face à une inhomogénéité des fouillis qui implique un besoin en robustesse par rapport aux valeurs aberrantes des algorithmes d'estimation du fouillis. Les deux robustesses évoquées plus haut peuvent être résumées ainsi pour ce modèle elliptique • une robustesse par rapport à une mauvaise spécification du modèle de R. Il est en effet délicat d'estimer les paramètres d'une loi paramétrique au risque de ne modéliser qu'une partie des cas réels possibles • une robustesse par rapport à l'inhomogénéité des échantillons. En effet, il est courant que des cibles parasites soient présentes dans les cases environnantes ou qu'un fouillis de type différent (et donc de matrice de dispersion Σ différente) "pollue" les échantillons. Une hypothèse supplémentaire de stationnarité de second ordre des signaux est souvent faite, notamment pour des rafales courtes (d est faible). Cela implique que la matrice de forme Σ est de type Toeplitz, c'est à dire que ses diagonales sont constantes.

Nous proposerons dans un premier temps des modèles univariés semi-paramétriques définis par des contraintes sur des L-statistiques particulières adaptées à l'étude des distributions à queue lourde : les L-moments. L'idée est de considérer des modèles ne spécifiant que quelques contraintes sans donner de forme particulière à la distribution. Les L-statistiques sont étroitement liées à la fonction quantile et donc spécifiques aux distributions univariées. Nous proposerons dans une deuxième partie une généralisation des L-moments dans le cas multivarié en les définissant comme des projections d'une fonction quantile multivariée sur une base orthogonale de polynômes. Enfin, nous proposerons des M-estimateurs de la matrice de dispersion dans le cadre des modèles elliptiques définis ci-dessus. Notre adapterons les méthodes classiques du cas Gaussien pour l'étude des signaux stationnaires au cas elliptique. Dans le cas général non stationnaire, nous définissons deux familles d'estimateurs robustes au sens donné ci-dessus. La performance de ces M-estimateurs sera illustrée dans des cas d'étude liés à la détection 0.3. Chapitre 1 : estimation pour des modèles définis par des conditions de L-moments 15 radar.

Chapitre 1 : estimation pour des modèles définis par des conditions de L-moments

Notons X 1 , ..., X n n variables aléatoires indépendantes et identiquement distribuées (iid) avec une même fonction de distribution F . Alors X 1:n ≤ ... ≤ X n:n les n statistiques d'ordre associées à X 1 , ..., X n . L'existence de ces dernières à partir du moment où l'espérance de la distribution sousjacente des X i est finie en fait de bons candidats pour l'étude des distributions à queue lourde. Comme nous le verrons plus loin, l'espérance des statistiques d'ordre peut être vue comme le produit scalaire entre la fonction quantile et un polynôme défniir sur [0; 1]. Nous avons donc cherché dans un premier temps à coupler la robustesse inhérente à la fonction quantile avec la robustesse face aux mauvaises spécifications de modèle. En effet, nous cherchons dans le chapitre 1 à étudier les modèles semi-paramétriques constitués par les distributions déterminées par des conditions linéaire sur la fonction quantile (notés modèles SPLQ pour Semi-Parametric Linear Quantile model). Ces modèles sont assez larges pour éviter de trop grandes mauvaises spécifications et il contiennent assez d'information pour réaliser une inférence adaptée au phénomène observé.

La description d'une loi univariée passe souvent par l'utilisation des moments centraux : l'espérance, la covariance, l'asymétrie, la kurtosis. Cependant, ces outils font l'hypothèse de l'existence de ces moments, ce qui ne va pas de soi, notamment à cause du caractère queue lourde des distributions que nous considérons. Les L-moments sont une alternative intéressante pour décrire d'une façon similaire les lois univariées en ne faisant l'hypothèse que de l'existence de l'espérance de la loi. Ces outils de description sont donc devenus populaires pour l'étude des lois à queue lourde. Ils sont définis de manière équivalente comme l'espérance de certaines combinaisons linéaires de statistiques d'ordre ou comme produit scalaire de la fonction quantile contre une famille de polynômes orthogonaux dans l'espace des fonction de carré intégrables dans [0; 1]. Soit r ∈ N * := N \ {0}. Pour des échantillons identiquement distribués X 1 , ..., X r , nous notons X 1:r ≤ ... ≤ X r:r ses statistiques d'ordre. Remarquons que X 1:r , ..., X r:r sont des variables aléatoires. Si E[|X|] < ∞, le r-ième L-moment est défini par [START_REF] Hosking | L-moments : analysis and estimation of distributions using linear combinations of order statistics[END_REF] :

λ r (X) = 1 r r-1 k=0 (-1) k r -1 k E[X r-k:r ] (2) 
Si nous notons F la fonction de répartition de X et que nous définissons la fonction quantile en t ∈ [0; 1] comme l'inverse généralisée de F i.e.

Q(t) = inf{x ∈ R tel que F (x) > t},
les L-moments peuvent être réécrit :

λ r = 1 0 Q(t)L r (t)dt (3) 
où L r sont les polynômes de Legendre (translatés sur [0 ;1]). La famille de ces polynômes forment une base orthogonale pour le Hilbert L 2 ([0; 1], R) équipé du produit scalaire usuel

Introduction (pour f, g ∈ L 2 ([0; 1], R), f, g = 1 0 f (t)g(t)dt) : L r (t) = r-1 k=0 (-1) k r -1 k 2 t r-1-k (1 -t) k = r-1 k=0 (-1) r-k r -1 k r -1 + k k t k (4)
Les modèles définis par des conditions sur les statistiques d'ordre sont donc composés par l'ensemble des distributions vérifiant ces conditions. Citons deux exemples éclairants.

Example 0.1. Nous pouvons considérer dans un premier temps l'ensemble des distributions des variables aléatoires X dont les deuxième, troisième et quatrième L-moments vérifient :

       λ 2 (X) = σ(1 -2 -1/ν )Γ(1 + 1/ν) λ 3 (X) = λ 2 (X)[3 -2 1-3 -1/ν 1-2 -1/ν )] λ 4 (X) = λ 2 (X)[6 + 5(1-4 -1/ν )-10(1-3 -1/ν ) 1-2 -1/ν )]
(5) avec σ > 0, ν > 0. Les L-moments des distributions de ce modèle correspondent aux Lmoments d'ordre 2,3,4 d'une loi de Weibull de paramètre σ and ν.

Example 0.2. Deuxièmement, nous pouvons considérer l'ensemble des distributions des variables aléatoires X vérifiant

     E[X 1:3 ] = θ -ν E[X 2:3 ] = θ E[X 3:3 ] = θ + ν (6)
pour θ ∈ R, ν > 0. Ce modèle traduit une certaine symétrie des distributions.

Les modèles SPLQ dont les deux exemples précédents font partie sont donc définis par

θ L θ = θ F tel que 1 0 F -1 (u)k(u, θ)du = f (θ) (7) avec Θ ⊂ R d , k : (u, θ) ∈ [0; 1] × Θ → R l et f : Θ → R l .
Dans le cadre des contraintes de L-moments, ce modèle se réécrit

θ L θ = θ F s.t. 1 0 L(u)F -1 du = f (θ) (8) 
avec L la concaténation des L-moments considérés

k(u, θ) = L(u) :=    L 1 (u) . . . L l (u)    .
Par analogie avec les modèles définis par des équations de moment, nous définirons des procédures d'estimation basées sur un critère de minimisation de divergences entre la distribution empirique et l'ensemble des distributions du modèle. Cependant, ces modèles ne jouissent pas d'une linéarité par rapport à la fonction de distribution mais par rapport à la fonction quantile. Or, la linéarité des contraintes par rapport au critère à minimiser est un argument essentiel pour la simplicité de la mise en oeuvre de ces méthodes d'estimation. Ainsi, nous proposons de considérer les divergences entre mesures quantiles et 0.3. Chapitre 1 : estimation pour des modèles définis par des conditions de L-moments 17 non entre mesures de probabilités.

Pour ce faire, nous introduisons donc les ϕ-divergences indépendamment introduites par Csiszar [START_REF] Csiszár | Eine informationstheoretische ungleichung und ihre anwendung auf den beweis der ergodizitat von markoffschen ketten[END_REF] et Ali and Silvey [START_REF] Ali | A general class of coefficients of divergence of one distribution from another[END_REF] dans le contexte des mesures de probabilités. Ces divergences sont également valables pour définir une notion de "distance" entre mesures σ-finies. Soit ϕ : R → [0, +∞] une fonction strictement convexe avec ϕ(1) = 0 de domaine dom(ϕ) := (a ϕ , b ϕ ). Si dF et dG sont deux mesures σ-finies de (R, B(R)) telles que dG est absolument continue par rapport à dF , nous définissons la ϕ-divergence entre dF et dG par :

D ϕ (G, F ) = R ϕ dG dF (x) dF (x) (9) 
où dG dF désigne la dérivée de Radon-Nikodym entre dF et dG. Une propriété importante est que D ϕ (G, F ) = 0 si et seulement si F = G.

Notons que cette divergence n'est pas une distance dans le sens où la propriété classique de symétrie des distances n'est pas respectée. Soit x 1 , ..., x n un échantillon iid issue d'une distribution F . L'estimateur que nous proposons est alors naturellement défini comme la minimisation de la ϕ-divergence entre le modèle et le quantile empirique. Comme l'hypothèse d'absolue continuité de dG par rapport à dF est indispensable pour que les ϕ-divergences, il est inévitable de réduire le modèle aux distributions dont le quantile est absolument continu par rapport à la mesure associée au quantile empirique.

θn = arg inf θ∈Θ inf G -1 F -1 n ; 1 0 L(u)G -1 (u)du=-f (θ) 1 0 ϕ dG -1 dF -1 n (u) dF -1 n (u) (10) 
= arg inf θ∈Θ inf y:=(y 1 ,...,yn);

n-1 i=1 K(i/n)(y i+1 -y i )=f (θ) n-1 i=1 ϕ y i+1 -y i x i+1 -x i (x i+1 -x i ) (11)
En effet, nous pouvons caractériser les L-moments d'ordre supérieur à 2 grâce à l'égalité suivante

-E 1 r r-1 k=0 (-1) k r -1 k X k:n = 1 0 K r (t)dF -1 (t) = f r (θ). (12) 
Un peu de travail supplémentaire nous offre une réécriture de l'estimateur θn ci-dessus comme une minimisation d'une "énergie de déformation" de la distribution empirique sans condition d'absolue continuité θn = arg inf

θ∈Θ inf T ∈L θ (Fn) R ϕ dT dλ dλ, ( 13 
) avec L θ (F ) = T : R → R tel que R K(F (x))dT (x) = f (θ) . ( 14 
)
Le modèle s'écrit alors

F • T -1 ∈ M tel qu'il existe θ tel que R K(F • T -1 (x))dx = f (θ) = F • T -1 ∈ M, T ∈ ∪ θ∈Θ L θ (F ) .
Introduction où M est l'ensemble des mesures de mesure totale 1.

Notons que ∪ θ L θ (F ) représente le modèle défini par des contraintes de L-moment vu à travers une mesure de référence F . Il peut être vu comme l'espace des mesures G satisfaisant les conditions de L-moments telle que G est la déformation de la mesure de référence par T .

Notons λ la mesure de Lebesgue définie sur R. Sous des hypothèses générales, nous obtenons une formule de dualité pour l'estimateur ci-dessus Theorem 0.1. Supposons qu'il existe T ∈ L θ (F ) tel que a ϕ < dT dλ < b ϕ λ-p.s. alors inf

T ∈L θ (F ) R ϕ dT dλ dλ = sup ξ∈R l ξ, f (θ) - R ψ( ξ, K(F (x)) )dλ (15) 
Ce résultat nous permet de transformer un problème d'optimisation défini sur un espace de dimension infinie et sous contraintes en un problème d'optimisation non contraint en dimension finie. Ceci nous permettra également prouver des résultats de consistance et de normalité asymptotique de l'estimateur θn définie par l'équation 13 ci-dessus sous des hypothèses classiques.

Chapitre 2 : L-moments multivariés

Nous nous attacherons dans un deuxième temps à proposer une généralisation des Lmoments pour la description des lois multivariées dans R d . Les L-moments définis plus haut possèdent des propriétés intéressantes que nous voudrions préserver pour définir leurs versions multivariées. Serfling et Xiao [START_REF] Serfling | A contribution to multivariate l-moments : L-comoment matrices[END_REF] ont listé les caractéristiques des L-moments univariés

• Leur existence à tous les ordres à partir du moment où l'espérance est finie • Une distribution est caractérisée par ses L-moments • Une représentation en tant que produit scalaire contre une famille de fonctions orthogonales • Une représentation en tant qu'espérance d'une L-statistique (i.e. une fonction linéaire par rapport aux échantillons) • Les L-moments empiriques peuvent être vus comme des U-statistiques ce qui permet l'obtention de résultats asymptotiques • Les L-moments empiriques sont également des L-statistiques ce qui permet une estimation rapide • L'existence d'une version empirique des L-moments non biaisée vue soit comme une U-statistique ou une L-statistique • Les L-moments empiriques sont plus stables que les moments centraux, cette stabilité croissant avec l'ordre des moments : l'impact de chaque grande valeur x est linéaire pour les L-moments alors qu'elle est de l'ordre de (x-x) k pour les moments classiques d'ordre k. Nous ajoutons à cette liste deux propriétés supplémentaires

• L'équivariance des L-moments par rapport aux homothéties et leur invariance par rapport aux translations si l'ordre est supérieur à deux • La maniabilité des L-moments pour la plupart des familles paramétriques classiques ce qui rend la méthode des L-moments intéressante dans le cadre de l'estimation paramétrique, notamment pour l'estimation des paramètres de queue d'une loi à
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queue lourde.

Soit X = (X 1 , ..., X d ) T ∈ R d un vecteur aléatoire. Serfing et Xiao ont proposé une extension multivariée des L-moments de X en définissant ce qu'ils appellent des L-comoments construits à partir des distributions conditionnelles de chaque couple (X i , X j ) T ∈ R 2 pour i, j ∈ {1, ..., d}. Les L-comoments conservent la majorité des propriétés des L-moments univariés listées ci-dessus à l'exception notable de la caractérisation d'une distribution multivariée par ses L-moments. Nous proposons de généraliser leur approche par un léger changement de point de vue. Afin de conserver la caractérisation d'une distribution par ses L-moments, il semble inévitable d'abandonner l'existence d'une représentation en tant que U-statistiques (et donc l'accès simple à une version non biaisée des L-moments).

Notre point de départ pour définir des L-moments multivariés consiste en leur caractérisation 3 en tant que projections orthogonales d'une fonction quantile sur une base orthogonale de polynômes définis sur [0; 1]. En effet, il est facile de définir des polynômes orthogonaux sur le cube unité [0; 1] d qui apparaît alors comme la généralisation naturelle de l'espace [0; 1]. Nous allons donc proposer une définition d'un quantile multivarié comme fonction de [0; 1] d dans R d .

Comme il n'y a pas d'ordre total dans R d , il n'y a pas une unique manière de définir des quantiles multivariés. Nous choisissons une approche qui utilise la notion de transport de mesures. Cela est naturel car, en dimension un, la fonction quantile est un transport de la mesure uniforme sur [0; 1] vers la mesure d'intérêt. Par exemple, Galichon et Henry [START_REF] Galichon | Trimmed l-moments[END_REF] ont proposé de définir les quantiles multivariés comme les transport optimaux quadratiques (voir par exemple [START_REF] Villani | Topics in Optimal Transportation[END_REF] pour la définition d'un transport optimal) de la mesure uniforme sur [0; 1] d vers la mesure multivariée qui nous intéresse. Nous 

λ α = [0;1] d Q(t 1 , ..., t d )L α (t 1 , ..., t d )dt 1 ...dt d ∈ R d ( 17 
)
où la famille des L α est la famille orthogonale complète des polynômes de Legendre multivariés

L α (t 1 , ..., t d ) = d k=1 L i k (t k ).

Introduction

Les polynômes L i k sont les polynômes de Legendre univariés définies par 4.

Il existe plusieurs manières de transporter une mesure sur une autre. Nous considérerons deux familles de transport

• le transport de Rosenblatt • les transports optimaux Si nous considérons comme quantile associé à un vecteur aléatoire X le transport de Rosenblatt de la mesure uniforme sur [0; 1] d vers la mesure associée à X (qui est un transport basé sur les distributions conditionnelles successives des composantes de X), une sous-famille des L-moments qui en découlent correspond aux L-comoments de Serfling et Xiao [START_REF] Serfling | A contribution to multivariate l-moments : L-comoment matrices[END_REF].

Nous considérerons une deuxième construction des quantiles basés sur les transports optimaux quadratiques que nous appellerons transport monotones.

Soit [0; 1] d le cube unité de R d et soit N d la mesure Gaussienne canonique définie sur R d . La fonction Q 0 : [0; 1] d → R d définie par Q 0 (t 1 , ..., t d ) =     N -1 1 (t 1 ) . . . N -1 1 (t d )     (18) 
transporte la mesure uniforme sur [0; 1] d vers N d . Ceci définit une mesure de référence N d .

Notons µ = N d et ν une mesure d'intérêt sur R d . Avec T un transport optimal de µ vers ν, nous définissons un quantile de X, vecteur aléatoire de mesure ν, par

Q := T • Q 0 ( 19 
)
La mesure de référence Gaussienne n'est pas nécessaire et nous pouvons définir un quantile multivarié comme un transport optimal entre la mesure uniforme sur [0; 1] d et la mesure d'intérêt ν sur R d . L'intérêt de cette mesure de référence µ réside dans le fait que le transport T de µ vers ν est plus facile à définir si ν appartient à une certaine classe de distributions contenant des paramètres de rotation, telles la famille des distributions elliptiques, sur lesquelles nous allons porter notre attention. Même si, à notre connaissance, il n'y a pas de formes closes d'un transport monotone de la distribution uniforme sur [0; 1] d (ou même de la Gaussienne standard multivariée) vers une distribution elliptique, nous pouvons définir des alternatives permettant de prendre en compte des paramètres de même type.

Le prix à payer pour utiliser les transports monotones est souvent d'abandonner les modèles classiques et de considérer des modèles construits à partir du transport. En effet, une façon naturelle d'utiliser ces quantiles est de définir les modèles non plus à partir d'une fonction densité mais à partir de leur quantile. Nous avons brièvement présenté différentes façons de définir un quantile multivarié comme transport de la distribution uniforme sur [0; 1] d vers ν. Ainsi, à chaque définition d'un quantile multivariée correspond une définition des L-moments associés à ce quantile. Dans ce chapitre, nous analyserons les qualités d'invariance/équivariance des L-moments introduits ainsi que les propriétés de consistence des estimateurs plug-in associés à chaque version des L-moments multivariés.

Chapitre 3 : M-estimateur pour des modèles elliptiques

Dans un premier temps, nous nous pencherons sur l'estimation de la matrice de dispersion Σ d'une distribution elliptique dans le cas stationnaire. Sa forme Toeplitz nous permet de décomposer l'estimation de Σ (de taille d × d) en d estimations de matrices Toeplitz de taille 2 × 2. Ce découpage correspond à une application de la "technique de Burg" [START_REF] Burg | Maximum entropy spectral analysis[END_REF]. Dans le cas Gaussien, au lieu d'estimer directement la matrice de covariance d'un vecteur aléatoire Y ∈ C d , nous définissons itérativement des vecteurs aléatoires intermédiaires à partir de Y , éléments de C 2 , dont la matrice de covariance théorique peut être exprimée en fonction de Σ. La méthode itérative d'estimation des matrices covariances de taille 2 × 2 a été originellement proposée pour l'estimation des paramètres d'une série temporelle Gaussienne autorégressive stationnaire. Or, Y peut être vu comme la trace d'une série temporelle de taille d. L'analogie entre le processus autorégressif et sa trace permet donc d'adapter les outils des processus autorégressifs pour l'estimation de Σ. De plus, considérer Y comme la trace d'une processus Gaussien autorégressif d'ordre M < d -1 permet de considérer une structure supplémentaire pour la matrice Σ (plus contraignante que la structure Toeplitz). Nous proposons dans un premier temps d'adapter les méthodes de Burg d'estimation de la covariance d'un vecteur Gaussien à des mélanges multiplicatifs de vecteurs autorégressifs définis par

X = RY ∈ C d ( 20 
)
où R > 0 représente la composante scalaire à queue lourde. La famille des vecteurs Y est donc une sous-famille de modèles SIRV.

Si nous notons a

(M ) 1 , ..., a (M )
M les paramètres du modèle autorégressif sous-jacent à Y , nous avons

Y n + M i=1 a (M ) i Y n-i = b n ( 21 
)
pour n ≤ d. Alors X suit lui aussi le même type d'autorégression avec des innovations non-Gaussiennes

X n + M i=1 a (M ) i X n-i = Rb n ( 22 
)
Nous adaptons alors, pour les échantillons du vecteur X, les méthodes de Burg classiques afin de les rendre indépendantes de la loi de la variable aléatoire R. L'inconvénient de telles méthodes est leur non-robustesse face aux valeurs aberrantes. Nous proposons alors des variantes de ces estimateurs par des méthodes de type médian. En effet, notre idée est de calculer le médian d'estimation de la matrice de dispersion sur des sous-échantillons de y 1 , ..., y N de taille S donnée.

Dans le cas général de l'estimation de la matrice de dispersion pour des échantillons tirés selon une loi elliptique, Maronna [START_REF] Maronna | Robust m-estimators of multivariate location and scatter[END_REF] a proposé des M-estimateurs robustes de Σ de type Huber satisfaisant l'équation :

Σ = 1 N N i=1 u(x + i Σ -1 x i )x i x + i . ( 23 
)
La fonction u doit satisfaire certaines conditions pour que l'estimateur ainsi défini soit bien défini et consistant. Le défaut principal de ces estimateurs est leur non-invariance Introduction par rapport à la distribution de l'amplitude R. Ainsi, Tyler [START_REF] Tyler | A distribution-free m-estimator of multivariate scatter[END_REF] a proposé l'estimateur suivant dans le cas réel

Σ = 1 N N i=1 x i x + i x + i Σ -1 x i . ( 24 
)
La fonction u(x) = 1 x ne satisfait pas les conditions de Maronna mais Tyler a montré que cet estimateur satisfait des propriétés de consistance. Il a montré également que c'est le maximum de vraisemblance des échantillons normalisés x 1

x 1 , .., x N x N (appelés signes ou angles multivariés). Comme la plupart des estimateurs de maximum de vraisemblance, l'estimateur de Tyler ne présente que peu de robustesse face aux valeurs aberrantes. Nous proposons d'adapter l'approche de Huber par M-estimateurs (cf Huber and Ronchetti [START_REF] Huber | Robust Statistics[END_REF]) aux échantillons normalisés x 1

x 1 , .., x N x N . Le vecteur aléatoire X X suit une distribution ACG (pour Angular Central Gaussian en anglais) [START_REF] Tyler | Statistical analysis for the angular central gaussian distribution on the sphere[END_REF]. Sa densité est donnée par

f Σ (x) = Γ(d) 2π d |Σ| (x + Σ -1 x) -d 1 x =1 (25) 
Nous combinons ainsi la robustesse aux valeurs aberrantes avec une invariance de notre processus d'estimation de Σ par rapport à la distribution de l'amplitude R. Les Mestimateurs que nous considérons sont liées à deux types de divergences différents des ϕ-divergences définies au premier chapitre. Premièrement, nous considérons des M-estimateurs tirés d'une ψ-divergence définies entre deux densités f et g :

d ψ (f, g) = ψ(log g(z))g(z)dz-ψ(log f (z))g(z)dz+ Ψ * (log f (z))dz-Ψ * (log g(z))dz.
(26) Cela implique un estimateur donné par

Σ = arg min Σ - 1 N N i=1 ψ(log f Σ (z i )) + Ψ * (log f Σ (z))dz. ( 27 
)
Nous comparerons ces dernières avec des γ-divergences

d γ (f, g) = log g(x) 1+γ dx 1/γ(1+γ) f (x) 1+γ dx 1/(1+γ) ( g(x)f (x) γ dx) 1/γ (28) 
qui nous donnent l'estimateur suivant

Σ = arg min Σ - 1 γ log 1 N N i=1 f Σ (x i ) γ + 1 γ + 1 log f Σ (x) 1+γ dx ( 29 
)
Nous donnerons des résultats de consistance de ces M-estimateurs et illustrerons leur robustesse ainsi que celles des estimateurs de type Burg définis dans le cas stationnaire face à plusieurs scénarios radar.

Chapitre 1

Estimation under L-moment condition models

Motivation and notation

For univariate distributions, L-moments are expressed as the expectation of a particular linear combination of order statistics. Let us consider r independent copies X 1 , ..., X r of a random variable X with E (|X|) a finite number. The r-th L-moment is defined by

λ r = 1 r r-1 k=0 (-1) k r -1 k E[X r-k:r ] (1.1)
where X 1:r ≤ ... ≤ X r:r denotes the order statistics. The four first L-moment can be considered as a measure of location, dispersion, skewness and kurtosis. Indeed λ 1 = E(X), λ 2 is expressed as

λ 2 = (1/2) E (|X -Y |)
with Y an independent copy of X, λ 3 indicates the expected distance between the mean of the extreme terms and the median one in a sample of three i.i.d. replications of X, and λ 4 is an indicator of the expected distance between the extreme terms of a sample of four replicates of X with respect to a multiple of the distance between the two central terms. L-moments constitute a robust alternative to traditional moments as descriptors of a distribution since only the existence of E (|X|) is needed in order to insure their existence. Since their introduction in Hosking's paper in 1990 ( [START_REF] Hosking | L-moments : analysis and estimation of distributions using linear combinations of order statistics[END_REF]), methods based on L-moments have become popular especially in applications dealing with heavy-tailed distributions. As mentioned in [START_REF] Hosking | L-moments : analysis and estimation of distributions using linear combinations of order statistics[END_REF] and [?] :"The main advantage of L-moments over conventional moments is that L-moments, being linear functions of the data, suffer less from the effect of sampling variability : L-moments are more robust than conventional moments to outliers in the data and enable more secure inferences to be made from small samples about an underlying probability distribution. Also as seen through (1.1) the L-moments are determined by the expectation of extreme order statistics, and vice versa". This motivates their success for the inference in models pertaining to the tail behavior of random phenomenons.

In this chapter, we will consider semi-parametric models conditioned by constraints on a finite number of L-moments. Let us mention three examples of such models ; the two first examples describe neighborhoods of the Weibull and the Pareto models, which are classical benchmarks for the description of tail properties, and the third one describes a family of distributions which express some loose symmetry property.

Chapitre 1. Estimation under L-moment condition models

Example 1.3. We first consider the model which is the family of all the distributions of a r.v. X whose second, third and fourth L-moments verify :

       λ 2 = σ(1 -2 -1/ν )Γ(1 + 1/ν) λ 3 = λ 2 [3 -2 1-3 -1/ν 1-2 -1/ν )] λ 4 = λ 2 [6 + 5(1-4 -1/ν )-10(1-3 -1/ν ) 1-2 -1/ν )] (1.2)
for any σ > 0, ν > 0. These distributions share their first L-moments of order 2, 3 and 4 with those of a Weibull distribution with scale and shape parameter σ and ν. When X is substituted by Y := X + a for some real number a then the distribution of Y is Weibull with a shifted support, hence with the same parameters σ and ν as X ; the r.v. Y shares the same L-moments λ r with those of X but for r = 1 and the model (1.2) describes a neighborhood of the continuum of all Weibull distributions on [a, ∞) or on (-∞, a] when a belongs to R. Hence this model aims at describing a shape constraint on the tail of the distribution of the data, independently of its location.

Example 1.4. Secondly, we consider the model which is the space of the distributions whose second, third and fourth L-moments verify :

       λ 2 = σ (1-ν)(2-ν) λ 3 = λ 2 1+ν 3-ν λ 4 = λ 2 (1+ν)(2+ν) (3-ν)(4-ν) (1.3)
for any σ > 0, ν ∈ R. These distributions share their first L-moments with those of a generalized Pareto distribution with scale and shape parameter σ and ν. The same remark as in the above example holds ; model (1.3) describes a neighborhood of the whole continuum of Pareto distributions on [a, ∞) or on (-∞, a] when a belongs to R.

Example 1.5. Let finally be given an appealing example based on order statistics, namely

     E[X 1:3 ] = θ -ν E[X 2:3 ] = θ E[X 3:3 ] = θ + ν for any θ ∈ R, ν > 0.
Before any further discussion on the scope of the present paper, a few notation seems useful. For a non decreasing function F with bounded variation on any interval of R we denote F the corresponding positive σ-finite measure on (R, B (R)) . For example when F is the distribution function of a probability measure, then this measure is denoted F or dF. Denote in this case

F -1 (u) := inf {x ∈ R s.t. F (x) ≥ u} for u ∈ (0, 1)
the generalized inverse of F , a left continuous non decreasing function which is the quantile function of the probability measure F. Denote accordingly F -1 or dF -1 , indifferently, the quantile measure with distribution function F -1 . If x 1 , . ., x n are n realizations of a random variable X with absolutely continuous probability measure F then the gaps in the empirical distribution function

F n (x) := 1 n n i=1 1 (-∞,x] (x i )
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1.1. Motivation and notation 25 are of size 1/n and are located on the X i 's ; the empirical quantile function satisfies

F -1 n (u) = x i:n when i -1 n < u ≤ i n
and its gaps are given by

F -1 n (i/n) + -F -1 n ((i/n)) = F -1 n (i/n) = x i+1:n -x i:n
where x 1:n ≤ ... ≤ x n:n denotes the ordered sample ; those gaps will be denoted F -1 n (i/n) or dF -1 n (i/n) indifferently ; the empirical quantile measure has as its support the uniformely sparsed points {1/n, 2/n, .., 1} and attributes masses equal to sampled spacings at those points ; it follows that the empirical quantile measure is a positive finite measure with finite support. The quantile measure associated with the distribution function F -1 is also a positive σ-finite measure, defined on (0, 1) . The above construction defined the quantile measure from the probability measure, but the reciprocal construction will be used, starting from a quantile measure, defining its distribution function, turning to its inverse to define a distribution of a probability measure, and then to the probability measure itself.

We now turn back to our topics. Models defined as in the above examples extend the classical parametric ones, and are defined through some constraints on the form of the distributions. They can be paralleled with models defined through moments conditions defined as follows.

Let θ in Θ , an open subset of R d and let g :

(x, θ) ∈ R×Θ → R l be a l-valued function, each component of which is parametrized by θ ∈ Θ ⊂ R d . Define M θ := F s.t. R g(x, θ)F(dx) = 0
and the semi parametric model defined by moment conditions is the collection of probability measures in

M := θ∈Θ M θ . (1.4)
These semiparametric models are defined by l conditions pertaining to l moments of the distributions and are widely used in applied statistics. When the dimension d of the parameter space exceeds l, no plug-in method can achieve any inference on θ ; however, various techniques have been proposed in this case ; see for example Hansen [START_REF] Hansen | Finite-sample properties of some alternative gmm estimators[END_REF], who defined the Generalized Method of Moments (GMM) and Owen, who defined the so-called empirical likelihood approach [START_REF] Owen | Empirical likelihood ratio confidence regions[END_REF]. Later, Newey and Smith [START_REF] Newey | Higher order properties of gmm and generalized empiracal likelihood estimators[END_REF] or Broniatowski and Keziou [START_REF] Broniatowski | Divergences and duality for estimation and test under moment condition models[END_REF] proposed a refinement of the GMM approach minimizing a divergence criterion over the model. A major feature of models defined by (1.4) lies in their linearity with respect to the cumulative distribution function (cdf) which brings a dual formulation of the minimization problem. Duality results easily lead to the consistency and the asymptotic normality of the estimators of θ ; see [29][82].

Similarly as for models defined by (1.4), we can introduce semiparametric linear quantile (SPLQ) models through

θ∈Θ L θ := θ∈Θ F s.t. 1 0 F -1 (u)k(u, θ)du = f (θ) (1.5) where Θ ⊂ R d , k : (u, θ) ∈ [0; 1] × Θ → R l and f : Θ → R l .
In the above display, in accordance with the above notation, F -1 denotes the generalized inverse function of F , the distribution function of the measure F. Examples 1.3,1.4 and 1.5 can be written through (1.5) ; see Section 1.3.2. We will consider the case when k is a function of u only ; this class contains many examples, typically models defined by a finite number of constraints on functions of the moments of the order statistics.

It is natural to propose similar estimation procedures for SPLQ models based on a minimization of a divergence. Models (1.5) do not enjoy linearity with respect to the cdf but with respect to the quantile function. Thus, as developed for models defined by (1.4), we propose to minimize a divergence criterion built on quantiles. We will reformulate this criterion into a minimization of the energy of a deformation of the empirical distribution. In Section 1.6, a parallel with physical elasticity theory will be made as well as a comparison with an optimal transportation approach. We will prove a duality result and the subsequent consistency and asymptotic normality for the corresponding family of estimators. This will be done in Sections 1.5 and 1.7.

In the following, the transpose of a vector A will be expressed by A T and if F and G are two cdf's, F G means that F is absolutely continuous with respect to G. The Lebesgue measure on R is denoted dλ or dx, according to the common use in the context.

L-moments 1.2.1 Definition and characterizations

Let us consider data consisting in X = (x 1 , ..., x r ), which are r realizations of realvalued independent and identically distributed (iid) copies X 1 , .., X r of a random variable (r.v.) X with distribution function F . The r-th L-moment λ r is defined as a particular L-statistics

λ r = 1 r r-1 k=0 (-1) k r -1 k E[X r-k:r ] (1.6)
where X 1:r ≤ X 2:r ≤ ... ≤ X r:r denotes the order statistics of X 1 , .., X r .

From the above definition all L-moments λ r but λ 1 are shift invariant, hence independent upon λ 1 . If F is continuous, the expectation of the j-th order statistics X j:r is (see David p.33 [START_REF] David | Order Statistics[END_REF])

E[X j:r ] = r! (j -1)!(r -j)! R xF (x) j-1 (1 -F (x)) r-j F(dx). (1.7) 
The first four L-moments are

λ 1 = E[X] λ 2 = 1 2 E[X 2:2 -X 1:2 ] λ 3 = 1 3 E[X 3:3 -2X 2:3 + X 1:3 ] λ 4 = 1 4 E[X 4:4 -3X 3:4 + 3X 2:4 -X 1:4 ].
Remark 1.1. The second L-moment is equal to the half of the absolute mean difference

λ 2 = 1 2 E[|X -Y |]
where X and Y are independently sampled from the same distribution F . The ratio λ 2 λ 1 is known as the Gini coefficient.

The expectations of the extreme order statistics characterize a distribution : if E (|X|) is finite, either of the sets {E (X 1:n ) , n = 1, ..} or {E (X n:n ) , n = 1, ..} characterize the Ce document et les informations qu'il contient sont la propriété de Thales Air Systems SAS. Ils ne peuvent être reproduits, communiqués ou utilisés sans son autorisation écrite préalable. This document and any data included are the property of Thales Air Systems SAS. They cannot be reproduced, disclosed or used without the company's prior written approval. distribution of X; see [START_REF] Chan | On a characterization of distributions by expected values of extreme order statistics[END_REF] and [START_REF] Konheim | A note on order statistics[END_REF]. Since the moments of order statistics are defined by the family of L-moments, those also characterize the distribution of X.

The r-th L-moment ratio is defined for r ≥ 2 by

τ r = λ r λ 2 .
The interpretation of λ 1 , λ 2 , τ 3 , τ 4 as measures of location, scale, skewness and kurtosis respectively and the existence of all L-moments whenever |x|F(dx) < ∞ makes them good alternatives to moments.

Remark 1.2. We can define from the quantile function

F -1 : [0; 1] → R an associated measure on B([0; 1]) F -1 (B) = 1 0 1 x∈B dF -1 (x) ∈ R ∪ {-∞, +∞}
The above integral is a Riemann-Stieltjes integral. It defines a σ-finite measure since F -1 has bounded variations on every interval of the form [a, b] with 0 < a ≤ b < 1. For any

F -1 -measurable function a : R → R , it holds 1 0 a(x)dF -1 (x) = 1 0 a(x)F -1 (dx)
Writing the L-moments of a distribution F as an inner product of the corresponding quantile function with a specific complete orthonormal system of polynomials in L 2 (0, 1) is a cornerstone in the derivation of statistical inference in SPLQ models. The shifted Legendre polynomials define such a system of functions. Definition 1.3. The shifted Legendre polynomial of order r is

L r (t) = r k=0 (-1) k r k 2 t r-k (1 -t) k = r k=0 (-1) r-k r k r + k k t k . (1.8)
Let us define for r ≥ 1, K r as the integrated shifted Legendre polynomials

K r (t) = t 0 L r-1 (u)du = -t(1 -t) J (1,1) r-2 (2t -1) r -1 (1.9) with J (1,1)
r-2 the corresponding Jacobi polynomial (see [START_REF] Hosking | Some theoretical results concerning l-moments[END_REF])

J (1,1) r-2 (2t -1) = Γ(r) (r -2)!Γ(r + 1) r-2 k=0 k r -2 Γ(r + 1 + k) Γ(2 + k) (t -1) k .
We can state the following result.

Proposition 1.1. Let F be any cdf and assume that |x| dF (x) is finite. Then for any r ≥ 1, it holds

λ r = 1 0 F -1 (t)L r-1 (t)dt = 1 0 F -1 (t)dK r (t) (1.10)
where the last integral is the Stieltjes integral of F -1 with respect to the function t → K r (t).

Proof. The proof is based on the following fundamental Lemma, whose proof is deferred to the Appendix.

Chapitre 1. Estimation under L-moment condition models Lemma 1.1. Let U be a uniform random variable on [0 ;1] and X the random variable associated to the cdf F . Then F -1 (U ) = d X.

Let U 1 , ..., U r be r independent random variable uniformly distributed on [0; 1] and denote by U 1:r ≤ ... ≤ U r:r r the ordered statistics. Then (X 1:r , ..., X r:r

) d = (F -1 (U 1:r ), ..., F -1 (U r:r )); hence for 1 ≤ j ≤ r E[X j:r ] = E[F -1 (U j:r )] = r! (j -1)!(r -j)! 1 0 F -1 (t)t j-1 (1 -t) r-j dt,
which ends the proof.

Before going any further, we present an useful Lemma, the proof of which is also deferred to the Appendix.

Lemma 1.2. Let a be a real-valued function such that

R a(x)dF (x) < ∞. Then R a(x)dF(x) = 1 0 a(F -1 (t))dt.
(1.11) 

Similarly if t → b(t) is a real-valued function such that 1 0 b(t)F -1 (dt) < ∞. Then 1 0 b(t)F -1 (dt) = 1 0 b(F (x))dx. ( 1 
λ r = n i=1 w (r) i x i = n i=1 K r i a=1 π a -K r i-1 a=1 π a x i = 1 0 L r-1 (t)Q π (t)dt with Q π (t) = x 1 if 0 ≤ t ≤ π 1 x i if i-1 a=1 π a < t ≤ i a=1 π a .
This example illustrates Remark 1.3. Figure 1.1 provides the first weight w (r) i when the x i 's are equally sparsed on [0, 1] with equal weights π 1 = .. = π n = 1/n.

The following characterization for the L-moments with order larger or equal to 2 is used in Section 1.3.2.

Proposition 1.2. If r ≥ 2 and R |x| dF (x) < +∞, then λ r = 1 0 F -1 (t)dK r (t) = - 1 0 K r (t)F -1 (dt).
(1.13)
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λ r = 1 0 F -1 (t)dK r (t) = 1 0 t 0 F -1 (du)dK r (t) = 1 0 1 0 1 0≤u≤t F -1 (du)dK r (t).
This last equality holds since (u, t) → 1 0≤u≤t is measurable with respect to the measure

F -1 × dK r since E[X] < ∞. Applying Fubini-Tonelli Theorem, it holds λ r = 1 0 1 0 1 0≤u≤t dK r (t)F -1 (du) = 1 0 1 0 [K r (1) -K r (u)] F -1 (du) = - 1 0 K r (u)F -1 (du) since K r (1) = 0 for r > 1.
Remark 1.5. That (1.13) does not hold for r = 1 follows from the fact that if G = F (.+a) for some a ∈ R, then G -1 = F -1 . Hence, SPLQ models are shift-invariant. This can also be seen setting r = 1 in the right-hand side of (1.13) ; in this case, the integral is infinite (but if supp(F) is bounded) whereas λ 1 is supposed to be finite.

Estimation of L-moments

Let x 1 , ..., x n be iid realizations of a random variable X with distribution F and Lmoments λ r . Define F n the empirical cdf of the sample and l r the corresponding plug-in estimator of λ r ,

l r = 1 0 F -1 n (t)L r-1 (t)dt. (1.14)
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This estimator of λ r is biased as quoted in [START_REF] Hosking | L-moments : analysis and estimation of distributions using linear combinations of order statistics[END_REF] and [START_REF] Serfling | A contribution to multivariate l-moments : L-comoment matrices[END_REF]. l r is usually termed as a Vstatistic. As noted upon in [START_REF] Hosking | L-moments : analysis and estimation of distributions using linear combinations of order statistics[END_REF] and [START_REF] Serfling | A contribution to multivariate l-moments : L-comoment matrices[END_REF], the unbiased estimators of L-moments are the following U-statistics

l (u) r = 1 n r 1≤i 1 <•••<ir≤n 1 r r-1 k=0 (-1) k r -1 k x i r-k :n .
Remark 1.6. An alternative definition for l r as in (1.14) can be stated as follows. Conditionally on the realizations x = (x 1 , ..., x n ), define the uniform distribution on x. Then l r is the discrete L-moment of order r of this conditional distribution. It can therefore be defined through

l r = 1 r + n -1 n -1 1≤i 1 ≤•••≤ir≤n 1 r r-1 k=0 (-1) k r -1 k x i r-k :n .
Let us now extend Definition 1.6 of the L-moments as follows. Let (i 1 , ..., i r ) be drawn without replacement from {1, ..., r}. We then define x (i 1 ) ≤ ... ≤ x (ir) the corresponding ordered observations and

λ (u) r = 1 r r-1 k=0 (-1) k r -1 k E[x (i r-k ) ]
where the expectation is taken under the extraction process. Then λ (u) r and l

(u) r coincide. Although l (u) r
is unbiased, for sake of simplicity only l r which is asymptotically unbiased, will be used in the sequel.

These two estimators l r and l (u) r of the L-moment λ r have the same asymptotic properties.

Proposition 1.3. Let us suppose that F has finite variance. Then, for any

m ≥ 1 √ n       l 1 . . . l m    -    λ 1 . . . λ m       → d N m (0, Λ)
where N m denotes the multivariate normal distribution and the elements of Λ are given by

Λ rs = x<y [L r-1 (F (x))L s-1 (F (y)) + L r-1 (F (y))L s-1 (F (x))] F (x)(1 -F (y))dxdy
Furthermore, the same property holds for l 1 , .., l r substituted by l

(u) 1 , ..., l (u) m .
Proof. This is a plain consequence of Theorem 6 in [START_REF] Stigler | Linear functions of order statistics with smooth weight functions[END_REF]. See also [START_REF] Hosking | L-moments : analysis and estimation of distributions using linear combinations of order statistics[END_REF] for an evaluation of the bias of l r .
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Models defined by moment and L-moment equations 1.3.1 Models defined by moment conditions

Let us consider n iid random variables X 1 ,...,X n drawn from the same distribution function F . Semi-parametric models are often defined through equations : R g(x, θ)F(dx) = E[g(X, θ)] = 0 where g : R × Θ → R l and Θ ⊂ R d is a space of parameters, as quoted in Section 1.1.

Example 1.6. We can sometimes face distributions with constraints pertaining to the two first moments. For example, Godambe and Thompson [START_REF] Godambe | An extension of quasi-likelihood estimation[END_REF] considered the distributions verifying E[X] = θ and E[X 2 ] = h(θ) with a known function h. Then, with our notations l = 2 and g(x, θ) = (x -θ, x 2 -h(θ))

Example 1.7. Consider the distributions F such that for some θ it holds F (y) = 1 -F (-y) = θ [START_REF] Broniatowski | Divergences and duality for estimation and test under moment condition models[END_REF]. This corresponds to a moment condition model with l = 2 and g(x, θ) =

(1 ]-∞;y] (x) -θ, 1 [y;+∞[ (x) -θ).
The condition on the model is the existence of some θ such that the left and right quantiles of order θ are -y and +y for some given y.

Models defined by L-moments conditions

In the present paper we consider models defined by l constraints on their first Lmoments, namely satisfying

-E 1 r r-1 k=0 (-1) k r -1 k X k:r = f r (θ) 1 ≤ r ≤ l (1.15)
where Θ is some open set in R d and f j : Θ → R are some given functions defined on Θ.

Those models are SPLQ, with (u, θ) → k(u, θ) independent on θ, defined by

k(u, θ) = -L(u) := -    L 1 (u) . . . L l (u)    (1.16)
where the shifted Legendre polynomials L j have been defined in Definition 1.3. The SPLQ model (1.5) may be written as

L := θ∈Θ L θ = θ∈Θ F s.t. 1 0 L(u)F -1 (u)du = -f (θ) .
(1.17)

Due to Proposition 1.2 we may write equation (1.15) for r ≥ 2 as follows, making use of the integrated shifted Legendre polynomials K r in lieu of L r . 

-E 1 r r-1 k=0 (-1) k r -1 k X k:n = 1 0 K r (u)F -1 (du) = f r (θ). ( 1 
(u, θ) = -    L 2 (u) L 3 (u) L 4 (u)    and f (θ) =    f 2 (θ) f 3 (θ) f 4 (θ)    =     σ(1 -2 -1/ν )Γ(1 + 1/ν) f 2 (θ)[3 -2 1-3 -1/ν 1-2 -1/ν )] f 2 (θ)[6 + 5(1-4 -1/ν )-10(1-3 -1/ν ) 1-2 -1/ν )]     where θ = (σ, ν) ∈ R * + × R * + and u ∈ [0; 1].
Example 1.9. Similarly, in case we consider Example 1.4, we define k and f by

k(u, θ) = -    L 2 (u) L 3 (u) L 4 (u)    and f (θ) =    f 2 (θ) f 3 (θ) f 4 (θ)    =     σ (1+ν)(2+ν) f 2 (θ) 1-ν 3+ν f 2 (θ) (1-ν)(2-ν) (3+ν)(4+ν)     where θ = (σ, ν) ∈ R * + × R and u ∈ [0; 1].

Extension to models defined by order statistics conditions

The order statistics given by equation (1.7) can be written as

E[X j:r ] = 1 0 P j:r (u)F -1 (u)du
where the polynomials P j:r are given by

P j:r (u) = r! (j -1)!(r -j)! u j-1 (1 -u) r-j .
Any L-statistics can therefore be written

- r i=1 a j E[X j:r ] = 1 0 P a (u)F -1 (u)du
with coefficients a j 's belonging to R and

P a (u) = - r i=1
a j P j:r (u).

These models are SPLQ (see 1.5) with

L := θ L θ = θ F s.t. 1 0 P (u)F -1 (u)du = -f (θ) (1.19)
where P : u ∈ [0; 1] → P (u) ∈ R l is an array of l polynomials. and

f (θ) =    θ -ν θ θ + ν   
where θ ∈ R, ν > 0 and u ∈ [0; 1].

Minimum of ϕ-divergence estimators

Estimation, confidence regions and tests based on moment conditions models have evolved over thirty years. Hansen and Owen respectively proposed the generalized method of moments (GMM) [START_REF] Hansen | Large sample properties of generalized method of moments estimators[END_REF] and the empirical likelihood (EL) estimators [START_REF] Owen | Empirical likelihood ratio confidence regions[END_REF]. Newey and Smith [START_REF] Newey | Higher order properties of gmm and generalized empiracal likelihood estimators[END_REF] introduced the generalized empirical likelihood (GEL) family of estimators encompassing the previous estimators. They also proposed the dual versions of the GEL estimators, the minimum discrepancy estimators (MD). These estimators are the solution of the minimization of a divergence with constraints corresponding to the model ; see also Broniatowski and Keziou [29] for an approach through duality and properties of the inference under misspecification. In the quantiles framework, Gourieroux proposed an adaptation of GMM estimators in [START_REF] Gourieroux | Dynamic quantile models[END_REF] for a parametric model seen through its quantile function F -1 (t, θ). In the following, we will consider inference based on divergences in order to present estimators for models defined by L-moments conditions.

ϕ-divergences

Let ϕ : R → [0, +∞] be a strictly convex function with ϕ(1) = 0 such that dom(ϕ) = {x ∈ R|ϕ(x) < ∞} := (a ϕ , b ϕ ) with a ϕ < 1 < b ϕ . If F and G are two σ-finite measures of (R, B(R)) such that G is absolutely continuous with respect to F , we define the divergence between F and G by :

D ϕ (G, F ) = R ϕ dG dF (x) dF (x) (1.20)
where dG dF is the Radon-Nikodym derivative. It is clear that when F = G, D ϕ (F, G) = 0. Furthermore, as ϕ is supposed to be strictly convex,

D ϕ (G, F ) = 0 if and only if F = G.
These divergences were independently introduced by Csiszar [START_REF] Csiszár | Eine informationstheoretische ungleichung und ihre anwendung auf den beweis der ergodizitat von markoffschen ketten[END_REF] or Ali and Silvey [START_REF] Ali | A general class of coefficients of divergence of one distribution from another[END_REF] in the context of probability measures. Note that we gave Definition 1.20 for any σ-finite measures even if our notations refer to probability measures. Indeed, we will consider in the sequel divergence between quantile measure which are σ-finite but may be not finite. See Liese [START_REF] Liese | Estimates of hellinger integrals of infinitely divisible distributions[END_REF] who also considered divergences between σ-finite measures.

Example 1.11. The class of power divergences parametrized by γ ≥ 0 is defined through the functions

x → ϕ γ (x) = x γ -γx + γ -1 γ(γ -1)
.
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The domain of ϕ γ depends on γ. The Kullback-Leibler divergence is associated to

x > 0 → ϕ 1 (x) = x log(x) -x + 1, the modified Kullback-Leibler (KL m ) divergence to x > 0 → ϕ 0 (x) = -log(x) + x -1, the χ 2 -divergence to x ∈ R → ϕ 2 (x) = 1/2(x -1) 2 , etc.

M-estimates with L-moments constraints

Minimum of ϕ-divergences for probability measures

A plain approach to inference on θ consists in mimicking the empirical minimum divergence one, substituting the linear constraints with respect to the distribution by the corresponding linear constraints with respect to the quantile measure, and minimizing the divergence between all probability measures satisfying the constraint and the empirical measure F n pertaining to the data set. More formally this yields to the following program.

Denote by M the set of all probability measures defined on R. For a given p.m. F in M we consider the submodel which consists in all p.m's G in M , absolutely continuous with respect to F , and which satisfy the constraints on their first L-moments for a given θ ∈ Θ. Identifying a measure G with its distribution function G we define

L (0) θ (F) = {G ∈ M s.t. G F, 1 0 L(t)G -1 (t)dt = -f (θ)}.
Probability measures G satisfying the constraints and bearing their mass on the sample points belong to L (0) θ (F n ). For any parameter θ ∈ Θ, the distance between F and the submodel L

(0) θ (F) is defined by D ϕ (L (0) θ (F), F) = inf G∈L (0) θ (F) D ϕ (G, F),
and its plug-in estimator is

D ϕ (L (0) θ (F n ), F n ) = inf G∈L (0) θ (Fn) D ϕ (G, F n ).
which measures the distance between the empirical measure F n and the class of all the probability measures supported by the sample and which satisfy the L-moment conditions for a given θ.

A natural estimator for θ may be defined by :

θ(0) n = arg inf θ∈Θ D ϕ (L (0) θ (F n ), F n ) = arg inf θ∈Θ inf G∈L (0) θ (Fn) 1 n n i=1 ϕ(nG(x i )). (1.21)
Unfortunately, existence of this estimator may not hold. Indeed, we cannot assess that L (0) θ (F n ) is not empty : its elements are solutions of a polynomial algebraic equation of degree l. To our knowledge, general conditions of existence for the solutions of such problems do not exist. Bertail in [START_REF] Bertail | Empirical likelihood in some semiparametric models[END_REF] proposes a linearization of the constraint in (1.21). We here prefer to switch to a different approach. If we consider the L-moment equation (1.18), we see that the quantile function plays a similar role as the distribution function in the classical moment equations. We will then change the functional to be minimized in order to be able to use duality for the optimization step.
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Minimum of ϕ-divergences for quantile measures

We have seen that the characterization of the L-moments given by the equation (1.18) uses the quantile measure F -1 , which is defined by the generalized inverse function of F . If F -1 is absolutely continuous, we can define the quantile-density q(u) = (F -1 ) (u). This density was called "sparsity" function by Tukey [START_REF] Tukey | Which part of the sample contains the information[END_REF] as it represents the sparsity of the distribution at the cumulating weight u ∈ [0; 1]. This is clear when we look at the empirical version of this measure which is composed by nothing but the increments of the sample. Some other approach, handling properties of the inverse function of (F -1 ) , have been proposed by Parzen [START_REF] Parzen | Nonparametric statistical modelling[END_REF]. He claims that the inference procedures based on (F -1 ) possesses inherent robustness properties.

Define

K(u) =    K 2 (u) . . . K l (u)   
and

f (2:l-1) (u) =    f 2 (u) . . . f l (u)    .
For any θ in Θ the submodel which consists of all p.m's G with mass on the sample points is substituted by the set of all quantile measures denoted G -1 which have masses on subsets of {1/n, 2/n, .., 1} and whose distribution functions coincide with the generalized inverse functions of elements in

L (0) θ (F n ).
Let N be the class of all σ-finite positive measures on R. Making use of equation (1.18) define

L n θ := G -1 ∈ N s.t. G -1 F -1 n and 1 0 L(u)G -1 (u)du = -f (θ) = G -1 ∈ N s.t. G -1 F -1 n and 1 0 K(u)G -1 (du) = f (2:l-1) (θ)
the family of all measures G -1 with support included in {1/n, 2/n, .., 1} which satisfy the l -1 constraints pertaining to the L-moments ; see (1.17). Note that when F bears an atom then for large enough n then G -1 in L n θ has a support strictly included in {1/n, 2/n, .., 1} . A natural proposal for an estimation procedure in the SPLQ model is then to consider the minimum of a ϕ-divergence between quantile measures through θn = arg inf

θ∈Θ inf G -1 ∈L n θ 1 0 ϕ dG -1 dF -1 n (u) F -1 n (du) (1.22) = arg inf θ∈Θ inf y:=(y 1 ≤...≤yn); n-1 i=1 K(i/n)(y i+1 -y i )=f (θ) n-1 i=1 ϕ y i+1 -y i x i+1:n -x i:n (x i+1:n -x i:n ).
(1.23)

Remark 1.7. The estimation defined by (1.22) produces estimators θn which do not depend on the location of the sample, since a change the sample (x i → x i + a) i=1...n produces, independently on the value of a, the same measure F -1 n whose mass on point i/n is the gap x i+1:n -x i:n . The minimum discrepancy estimators defined by (1.23) are invariant with respect to the location of the underlying distribution of the data. Due to this fact, we Chapitre 1. Estimation under L-moment condition models consider the model defined by L-moments conditions only through equations of the form (1.18).

Both the constraint and the divergence criterion are expressed in function of G -1 and the constraint is linear with respect to this measure. This allows to use classical duality results in order to efficiently compute the estimator θn . Before that, we reformulate this criterion as a minimization of an "energy" of transformation of the sample.

Dual representations of the divergence under L-moment constraints

The minimization of ϕ-divergences under linear equality constraint is performed using Fenchel-Legendre duality. It transforms the constrained problems into an unconstrained one in the space of Lagrangian parameters. Let ψ denote the Fenchel-Legendre transform of ϕ, namely, for any t ∈ R ψ(t) := sup

x∈R {tx -ϕ(x)} .
Let us recall that dom(ϕ) = (a ϕ , b ϕ ). We can now present a general duality result for the two optimization problems that transform a constrained problem (possibly in an infinite dimensional space) into an unconstrained one in R l . Let C : Ω → R l and a ∈ R l . Denote

L C,a = g : Ω → R s.t. Ω g(t)C(t)µ(dt) = a . Proposition 1.4. Let µ be a σ-finite measure on Ω ⊂ R. Let C : Ω → R l be an array of functions such that Ω C(t) µ(dt) < ∞.
If there exists some g in L C,a such that a ϕ < g < b ϕ µ-a.s. then the duality gap is zero i.e.

inf g∈L C,a Ω ϕ (g) dµ = sup ξ∈R l ξ, a - Ω ψ( ξ, C(x) )µ(dx). (1.24)
Moreover, if ψ is differentiable, if µ is positive and if there exists a solution ξ * of the dual problem which is an interior point of

ξ ∈ R l s.t. Ω ψ( ξ, C(x) )µ(dx) < ∞ ,
then ξ * is the unique maximum in (1.24) and

ψ ( ξ * , C(x) )C(x)µ(dx) = a.
Furthermore the mapping a → ξ * (a) is continuous.

Proof. The proof is delayed to the Appendix.

Remark 1.8. When G -1 F -1 , denoting g * = dG -1 /dF -1 and assuming g * ∈ L K,f (θ) , and when µ = F -1 it holds

ϕ(g * )dµ = D ϕ G -1 , F -1 .
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1.5. Dual representations of the divergence under L-moment constraints 37 Remark 1.9. Here, the classical assumption of finiteness of µ is replaced by

Ω C(x) µ(dx) < ∞
which is needed for the application of the dominated convergence Theorem ; also we refer to the illuminating paper by Csiszár and Matúš [START_REF] Csiszár | Generalized minimizers of convex functionals, bregman distance, pythagorean identities[END_REF] for the description of the geometric tools used in the proof of Proposition 1.4.

We now apply the above Proposition 1.4 to the case when the array of functions C is equal to K, the measure µ is the quantile measure F -1 pertaining to the distribution function F of a probability measure and when the class of functions L C,a is substituted by the class of functions dG -1 /dF -1 when defined. Let θ ∈ Θ and F be fixed. Let us recall that for any reference cdf

F L θ (F -1 ) := G -1 F -1 s.t. R K(u)G -1 (du) = f (θ) . (1.25) Corollary 1.1. If there exists some G -1 in L θ (F -1 ) such that a ϕ < dG -1 /dF -1 < b ϕ F -1 -a.s. then inf G -1 ∈L θ (F -1 ) 1 0 ϕ dG -1 dF -1 dF -1 = sup ξ∈R l ξ, f (θ) - 1 0 ψ( ξ, K(u) )F -1 (du). (1.26)
Moreover, if ψ is differentiable and if there exists a solution ξ * of the dual problem which is an interior point of

ξ ∈ R l s.t. R ψ( ξ, K(u) )F -1 (du) < ∞ ,
then ξ * is the unique maximum in (1.26) and

ψ * ( ξ, K(u) )K(u)F -1 (du) = f (θ).
Remark 1.10. The above Corollary 1.1 is the cornerstone for the plug-in estimator of D ϕ (G, F) .

Remark 1.11. The model defined for the empirical quantile measure L θ (F -1 ) is equal to L n θ defned by equation 1. [START_REF] Blanc | From molecular models to continuum mechanics[END_REF].

Let us present an other application of the above Proposition 1.4 leading to the same dual problem. Denote by λ the Lebesgue measure on R and L θ (F ) be the set of all functions g defined by 

L θ (F ) = g : R → R s.t. R K(F (x))g(x)λ(dx) = f (θ) , whenever non void. Corollary 1.2. If there exists some g in L θ (F ) such that a ϕ < g < b ϕ λ-a.s. then inf g∈L θ (F ) R ϕ (g) dλ = sup ξ∈R l ξ, f (θ) - R ψ( ξ, K(F (x)) )dx. ( 1 
ξ ∈ R l s.t. R ψ( ξ, K(F (x)) )dx < ∞ ,
then ξ * is the unique maximizer in (1.27). It satisfies

ψ ( ξ * , K(F (x)) )dx = f (θ) (1.28)
Proof. We will detail the proof of Corollary 1.2. Corollary 1.1 is proved similarly. We apply the above Proposition 1.4 for Ω = R, µ = λ, the array of functions C substituted by the array of functions x → K(F (x)) and a = f (θ). Consequently, the class of functions g, namely L C,a , depends upon F . Following the notation of the Corollary

L θ (F ) = g : R → R; R K(F (x))g(x)λ(dx) = f (θ) .
We need then to show that

R K(F (x)) dx < ∞.
Let us note K = (K i 1 , ..., K i l ) with i j ≥ 2 for all j. Let then recall that from equation (1.9)

K i j (t) = -t(1 -t) J (1,1) i j -2 (2t -1) i j -1
It is clear that there exists C > 0 such that

J (1,1) i j -2 (2t-1) i j -1 < C. Hence R K(F (x)) dx < lC R F (x)(1 -F (x))dx < +∞
since F is the cdf of a random variable with finite expectation. By applying Proposition 1.4, it then holds inf

g∈L θ (F ) R ϕ (g) dλ = sup ξ∈R l ξ, f (θ) - R ψ( ξ, K(F (x)) )dx.
Remark 1.12. If we consider the class of functions

T := x → x -∞ g(y)λ(dy), which is equal to L θ (F ) = T : R → R s.t. T derivable λ-a.e. and R K(F (x)) dT dλ (x)λ(dx) = f (θ) ,
rather than the class of functions g, it holds that T ∈ L θ (F ) if and only if dT /dλ ∈ L θ (F ). Therefore,

inf T ∈L θ (F ) R ϕ dT dλ dλ = inf g∈L θ (F ) R ϕ (g) dλ,
This seemingly formal definition of the function T makes sense since we can view T as a deformation function, as detailed in the following Section 1.6.

Reformulation of divergence projections and extensions 1.6.1 Minimum of an energy of deformation

The case of models defined by moments constraints

Let us suppose for a while that F and G are both absolutely continuous with respect to the Lebesgue measure defined on R. Define the function T = G • F -1 . Then T is derivable a.e. and T = dT dλ . It holds

D ϕ (G, F) = R ϕ dG dF (x) F(dx) = 1 0 ϕ T (u) du
even if G is not a positive measure, as far as the integrand in the central term of the above display is defined.

The function T can be viewed as a measure of the deformation of F into G and

E 1 (T ) = ϕ dT dλ dλ
as an energy of this deformation.

It can be seen that the absolute continuity assumption above can be relaxed.

Proposition 1.5. Let F and G be two arbitrary cdf's and λ be the Lebesgue measure. Let us define (1.29) Then inf

M θ (F) = G F s.t.
G∈M θ (F) R ϕ dG dF (x) F(dx) = inf T ∈M θ (F) E 1 (T ).
Proof. This results from Proposition 1.4 applied twice. First, if C = g(., θ), a = 0, µ = F and g = dG/dF, it holds inf

G∈M θ (F) R ϕ dG dF (x) F(dx) = sup ξ∈R l - R ψ ( ξ, g(x, θ) ) F(dx).
Secondly, if C = g(F -1 (.), θ), a = 0, µ = λ and g = dT /dλ, it holds inf

T ∈M θ (F) 1 0 ϕ dT dλ dλ = sup ξ∈R l - 1 0 ψ ξ, g(F -1 (u), θ) λ(du).
Lemma 1.2 concludes the proof.

The estimators of minimum divergence used in [START_REF] Newey | Higher order properties of gmm and generalized empiracal likelihood estimators[END_REF] and [START_REF] Broniatowski | Divergences and duality for estimation and test under moment condition models[END_REF] can be expressed in terms of T , introducing the empirical distribution of the sample in place of the true unknown distribution F θ 0 . For each θ in Θ it holds inf 

G∈M θ (Fn) R ϕ dG dF n F n (dx) = inf T ∈M θ (Fn) E 1 (T )
, θ) T i + 1 n -T i n = 0.
The plug-in estimator that realizes the minimum of the divergence between a given distribution and the model constrained by moment equations results from the minimum of an energy of deformation when the deformation is constrained on the weights of the empirical distribution but is defined on almost all the cumulated weights on [0; 1]. We will now see that the approach of Section 1.4.2 consists in minimizing a deformation of the points of the distribution of interest instead of the weights.

The case of models defined by L-moment constraints

Similarly as for the case of models defined by moment constraints we now see that the solution of the minimum divergence problem (primal problem) holds without assuming F -1 absolutely continuous with respect to the Lebesgue measure. Proposition 1.6. Let F and G be two arbitrary cdf's. Let L θ (F -1 ) denote the class of all functions T which are a.e derivable on R defined through

L θ (F -1 ) = T : R → R s.t. a ϕ < dT dλ < b ϕ λ -a.e. and R K(F (x)) dT dλ (x)λ(dx) = f (θ) .
(1.30) Then, with L θ (F -1 ) defined in (1.25) inf

G -1 ∈L θ (F -1 ) 1 0 ϕ dG -1 dF -1 (u) F -1 (du) = inf T ∈L θ (F -1 ) R ϕ dT dλ dλ.
Proof. This results from a combination of Corollaries 1.1 and 1.2. (1.30) is well defined.

In the following, we consider the estimator of θ

θn = arg inf θ∈Θ inf T ∈L θ (F -1 n ) R ϕ dT dλ dλ. (1.31)
The estimator θn defined in (1.31) coincides with (1.22) thanks to the above Proposition 1.6.

Remark 1.14. ∪ θ L θ (F -1 ) and ∪ θ L θ (F -1 ) both represent the same model with L-moments constraints, seen through a reference measure F -1 . This model is either expressed as the space of quantile measures absolutely continuous with respect to F -1 satisfying the Lmoment constraints or as the space of all deformations F -1 → T • F -1 of the reference measure F -1 such that the deformed measure satisfies the L-moment constraints. In the second point of view T is derivable λ-a.e. even if the reference measure is F -1 n .

Remark 1.15. For the set of deformations L θ (F -1 n ) (whenever non void), the duality for finite distributions is expressed through the following equality :

inf T ∈L θ (F -1 n ) ϕ dT dλ dλ = sup ξ∈R l ξ T f (θ) - n-1 i=1 ψ ξ T K i n (x i+1:n -x i:n ).
Remark that we incorporate the property of any T 1 in the model

L θ (F -1 n ) to verify a ϕ < dT 1 dλ < b ϕ λ-a.s.
Example 1.12. If we take the χ 2 -divergence ϕ(x) = (x-1) 2

2

, then ψ(t) = 1 2 t 2 + t and the solution ξ * 1 of the equation (1.28) is

ξ * 1 = Ω -1 f (θ) -K(F (x))dλ with Ω = K(F (x))K(F (x)) T dλ.
If we set Ω n = K(F n (x))K(F n (x))dλ, the estimator shares similarities with the GMM estimator

θn = arg inf θ∈Θ f (θ) -K(F n (x))dλ Ω -1 n f (θ) -K(F n (x))dλ .
This divergence should thus be favored for its fast implementation.

Remark 1.16. We did not consider the constraints of positivity classically assumed in moment estimating equations for the sake of simplicity of dual representations. We could suppose that the transformation T is an increasing mapping. It would be the case if, for example, the divergence chosen is the Kullback-Leibler one. Indeed, in this case, problem (1.31) is well defined since ϕ(x) = +∞ for all x ≤ 0.

Transportation functionals and multivariate generalization

The notion of a deformation which was introduced in the above section is close to the notion of a transportation. The reformulation presented in Proposition 1.6 calls for a natural extension in this respect. Let us recall the definition of a transportation in R. We write L θ (equation (1.17)) as a space of positive measures

L θ = G ∈ M s.t. 1 0 L(u)G -1 (u)du = -f (θ) .
It follows that an alternative to the estimator (1.31) may be defined by θ(tr)

n = arg inf θ∈Θ inf T :T #Fn∈L θ E 1 (T ) (1.32)
where F n is the empirical measure on the observed sample x 1 , ..., x n and where E 1 (T ) := R ϕ dT dλ dλ stands for the energy which transports F n onto some G.
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Remark 1.17. The study of estimators (1.32) is beyond the scope of this work. The advantage of θ(tr) n over θn given by equation (1.32) is the absence of absolute continuity assumption in the model L θ . The estimation process may gain in generality.

In transportation theory, it is customary to define a cost function instead of an energy function. Given a convex cost function c : R × R → R, a second alternative version to (1.31) 

is θn = arg inf θ∈Θ inf T :T #Fn∈L θ R c(x, T (x))F n (dx). (1.33)
Remark 1.18. Whereas the estimator given by Equation (1.31) minimizes an energy expressed in function of T (the estimation process then penalizes big values of T ), the optimal transportation estimations depends on the function T itself and penalizes the distance between each x i and T (x i ) i.e. the "initial" state and the deformed state.

Example 1.13. Let us present an example of an estimator stemming from the optimal transportation problem (1.33) in the context of models constrained by L-moments equations.

Consider the cost function c(x, y) = (x -y) 2 . Then the transportation problem reduces to inf

T :T #dFn∈L θ R (x -T (x)) 2 F n (dx) = inf G∈L θ W 2 (F n , G) 2 := inf G∈L θ 1 0 |F -1 n (t) -G -1 (t)| 2 dt,
and W 2 is called the Wasserstein distance (see e.g. [START_REF] Villani | Topics in Optimal Transportation[END_REF]). The estimator (1.33) will then be defined by

θn := arg inf θ∈Θ min G∈L θ W 2 (F n , G) = arg inf θ∈Θ min y∈E n 1 n n i=1 |x i:n -y i | 2 = arg inf θ∈Θ l r=2 (f r (θ) -l r ) 2
with l r given by equation (1.14).

This estimation results as a quadratic projection of the l first L-moments of the empirical distribution onto the space formed by the constraints induced by the model.

As transportation is well defined for measure in R d in contrast with quantile measures, this may appear as a way to generalize L-moments constrained models and associated estimators of the form (1.32) ; we could also consider estimators of the form (1.33), importing henceforth optimal transportation concepts in the field of multivariate quantile models ; see Chapter 2.

Relation to elasticity theory

It may be of interest for the statistician to observe that, besides the probabilistic context of semiparametrics, the minimization of a ϕ divergence over a class of functions defined by L-moments (see (1.31)) is in the same vein as finding the deformation of a solid under a given force L and given boundary constraints. Let us consider a solid defining a domain Ω ⊂ R 3 . This solid can be deformed under the action of volumetric or surface forces. This deformation can be described by a function T : Ω → R 3 . The deformed solid will be defined on the volume T (Ω). The gradient of deformation is then ∇T . The general equations describing the equilibrium of the solid under volumetric forces L defined on Ω read (we omit boundary forces)

-divS = L
where S is a tensor describing the configuration of the solid [START_REF] Blanc | Atomistic to continuum limits for computational materials science[END_REF]. Hyper-elasticity is often assumed i.e. the solid is supposed to dissipate no energy during the deformation. In mathematical terms, this means the existence of a function W such that

S(T ) = ∂W ∂T (T ).
From these above relations, the energy of deformation is expressed on the form [START_REF] Bris | Systèmes multi-échelles : modélisation et simulation[END_REF][24]

E(T ) = Ω W (∇T (x))dx - Ω L(x).T (x)dx.
W is usually convex and represents physical properties of the solid. It is then customary in mechanical physics to assume the principle of least action and to study the T minimizing the variational problem inf

T admissible E(T ).
The space of admissible T describes the constraints, such as boundary conditions. If we could write the volumetric force term (namely the right hand side of E(T )) as fixed constraints, we remark similarities with the estimation given by equation 1.31

θn = arg inf θ∈Θ inf Ω L(x).T (x)dx=f (θ) Ω ϕ (∇T (x)) dx.
Moreover, microscopic and macroscopic scales can be related through convergence results. Let us present the microscopic models of the same solid represented by N particles x 1 , ..., x N , corresponding for example to the intersection of Ω with a lattice of scale . If V denotes an interaction potential, the energy of the solid subjected to a deformation T would be

E N (T ) = 3 2 N i=1 j =i V T (x i ) -T (x j ) - N i=1 L(x i ).T (x i )
Under some assumptions (see [START_REF] Blanc | From molecular models to continuum mechanics[END_REF]), it can be proved that if → 0 (i.e. N → ∞), then

E N (T ) → N →∞ E(T ).
This short account may give us some intuition about the present estimation procedure.

Asymptotic properties of the L-moment estimators

In this section, we study the convergence of the estimator given by the equation (1.31). The proof of the two asymptotic theorems are postponed to the Appendix. Theorem 1.2. Let x 1 , ..., x n be an observed sample drawn iid from a distribution F 0 with finite variance. Let us suppose that

• there exists θ 0 such that

F 0 ∈ L θ 0 , θ 0 is the unique solution of the equation f (θ) = f (θ 0 ) Chapitre 1. Estimation under L-moment condition models • f is continuous and Θ ⊂ R d is compact • the matrix Ω 0 = K(F 0 (x))K(F 0 (x)) T dx is non singular. Then, θn → θ 0 in probability as n → ∞.
We may now turn to the limit distribution of the estimator. Let

• J 0 = J f (θ 0 ) be the Jacobian of f with respect to θ in θ 0 • M = (J T 0 Ω -1 J 0 ) -1 • H = M J T 0 Ω -1 • P = Ω -1 -Ω -1 J 0 M J T 0 Ω -1
Theorem 1.3. Let x 1 , ..., x n be an observed sample drawn iid from a distribution F 0 with finite variance. We assume that the hypotheses of Theorem 1.2 holds. Moreover, we assume that

• θ 0 ∈ int(Θ) • J 0 has full rank • f is continuously differentiable in a neighborhood of θ 0 Then, √ n θn -θ 0 ξn → d N d+l 0, HΣH T 0 0 P ΣP T
The estimator of the minimum of the divergence from F onto the model, namely 2n ξT n f ( θn ) -ψ( ξT n K(F n (x))dx , does not converge to a χ 2 -distribution as in the case of moment condition models [START_REF] Newey | Higher order properties of gmm and generalized empiracal likelihood estimators[END_REF]. However, we can state an alternative result.

Corollary 1.3. Let us assume that the hypotheses of Theorem 1.3 hold. Let us consider S

n = n ξT n (P n Σ n P T n ) -1
ξn with P n and Σ n the respective empirical versions of P and Σ.

If P ΣP is non singular then S n → d χ 2 (l)
where χ 2 (l) denotes a chi-square distribution with l degrees of freedom.

Proof. From Theorem 1.3, we have that

n 1/2 ξn → d X = N l (0, P ΣP )
where X denotes such a multivariate Gaussian random vector. Furthermore

P n Σ n P n → p P ΣP.
Hence, for n large enough, P n Σ n P n is invertible and by Slutsky Theorem

n ξT n (P n Σ n P n ) -1 ξn → p X T X = d χ 2 (l).
Since the weak convergence of S n to a chi-square is independent of the value of θ 0 , this result may be used in order to build confidence regions related to the semi-parametric model. 

Presentation

The Generalized Pareto Distributions (GPD) are known to be heavy-tailed distributions. They are classically parametrized by a location parameter m, which we assume to be 0, a scale parameter σ and a shape parameter ν. They can be defined through their density :

f σ,ν (x) =      1 σ 1 + ν x σ -1-1/ν 1 x>0 if ν > 0 1 σ exp x σ 1 x>0 if ν = 0 1 σ 1 + ν x σ -1-1/ν 1 -σ/ν>x>0 if ν < 0
Let us remark that if ν ≥ 1, the GPD does not have a finite expectation. We perform different estimations of the scale and the shape parameter of a GPD from samples with size n = 100.

We will estimate the parameters in the model composed by the distributions of all r.v's X whose second, third and fourth L-moments verify

       λ 2 = σ (1-ν)(2-ν) λ 3 λ 2 = 1+ν 3-ν λ 4 λ 2 = (1+ν)(2+ν) (3-ν)(4-ν) (1.34)
for any σ > 0, ν ∈ R. These distributions share their first L-moments with those of a GPD with scale and shape parameter σ and ν (see [START_REF] Hosking | L-moments : analysis and estimation of distributions using linear combinations of order statistics[END_REF]). This estimation will be compared with classical parametric estimators detailed hereafter.

Moments and L-moments calculus

The variance and the skewness of the GPD are given by

   var = E[(X -E[X]) 2 ] = σ 2 (1-ν) 2 (1-2ν) t 3 = E[ X-E[X] E[(X-E[X]) 2 ] 3 ] = 2(1+ν) √ 1-2ν 1-3ν
Let us remark that var and t 3 respectively exist since ν < 1/2 and ν < 1/3. On the other hand, the first L-moments are given by equation 1.34. Assuming ν < 1 entails existence of the L-moments.

Simulations

We perform N = 500 runs of the following estimators • the proposed estimation (equation (1.31)) for the χ 2 -divergence and the modified Kullback (KL m ) divergence with the constraints estimated on the L-moments of order 2, 3, 4 • the estimate defined through the L-moment method, based on the empirical second L-moment λ2 and the fourth L-moment ratio τ4 = λ 4 1.1 -Estimates of GPD scale and shape parameters for ν = 0.7 and σ = 3 (the moment method has little sense since ν > 0.5) for the first scenario without outliers

λ 2 ν = 7 τ4 + 3 -( τ4 2 + 98 τ4 + 1 2( τ4 -1) σ = λ2 (1 -ν)(2 -ν)
• the estimate defined through the moment method estimated from the empirical variance v ar and skewness t3

ν = 2(1 + t3 ) 1 -2 t3 1 -3 t3 σ = v ar(1 -t3 ) 2 (1 - 2 t3 ) 
• the MLE defined in the GPD family We present the following different features for any of the above estimators • the mean of the N estimates based on the N runs • the median of the N estimates based on the N runs • the standard deviation of the N estimates • the L 1 distance between the estimated generalized Pareto density and the true density, namely

x≥0 |f σ,ν (x) -f σ,ν (x)|dx
which, by Scheffé Lemma, equals twice the maximum error committed substituting

f σ,ν by f σ,ν x≥0 |f σ,ν (x) -f σ,ν (x)|dx = 2 sup A∈B(R) A f σ,ν (x) - A f σ,ν (x)|dx .
Finally, we present four different scenarios which illustrate robusness properties of any of the above estimators, as well as their behavior under misspecification :

• a first scenario without outliers : samples of size 30 or 100 are drawn from a GPD • two more scenarios with 10% outliers : samples of size 27 or 90 are drawn from a GPD. The remaining points are drawn from a Dirac the value of which depends on the shape parameter • a fourth scenario without outliers but with misspecification : samples of size 30 or 100 are drawn from a Weibull distribution. Unsurprisingly, the MLE performs well under the model and the L-moment method has an overall better behavior than the classical moment method for the considered heavytailed distributions (see Table 1.1). Furthermore, we observe that the χ 2 -divergence is Ce document et les informations qu'il contient sont la propriété de Thales Air Systems SAS. Ils ne peuvent être reproduits, communiqués ou utilisés sans son autorisation écrite préalable. This document and any data included are the property of Thales Air Systems SAS. They cannot be reproduced, disclosed or used without the company's prior written approval. -4 ) between GPD densities for different scenarios ; Scenario (Sc) 1 corresponds to a simulated GPD with ν = 0.7 and σ = 3 ; Scenario 2 corresponds to a simulated GPD with ν = 0.7, σ = 3 and 10% outliers of value 300 ; Scenario 3 corresponds to a simulated GPD with ν = 0.1, σ = 3 and 10% outliers of value 30 ; Scenario 4 corresponds to a simulated Weibull distribution with ν = 0.4 and σ = 3 The interesting result lies in their behavior with outliers and misspecification. Indeed, we can see that L-moment-based estimators perform well on the shape parameter whereas the MLE provides a good estimation of the scale parameter but overestimates the shape parameter. In that sense, the L-moments method can be used for the robust estimation of the shape parameter of a GPD in case of contamination by outliers. However, even with outliers, the MLE performs well in term of L 1 -distance computed on the estimated densities. It is under misspecification that the performance of the MLE drops as measured 1.9. Appendix 49 by the L 1 criterion. This confirms the flexibility of models defined only through moment or L-moment equations that are less dependent on the GPD model. Moreover, the L 1 -distance between the model and its estimation has an order between 10 -3 and 10 -4 . The error committed by the estimation under models defined through L-moments conditions is the most stable over the proposed scenarios. We can then affirm that we can estimate the probability of events if the true value of this probability is of order 10 -3 (the error of estimation for the estimator based on L-moments method would approximately be of 30% depending on the size of the sample and the scenario).

1.9 Appendix 1.9.1 Proof of Lemma 1.1

Let x ∈ R. We denote by F the cdf of X and by A t the event

A t = {x ∈ R s.t. F (x) ≥ t}
We then have Q(t) = inf A t . We wish to prove :

{t ∈ [0; 1] s.t. Q(t) ≤ x} = {t ∈ [0; 1] s.t. t ≤ F (x)} (1.35)
We temporarily admit this assertion. Then

P[Q(U ) ≤ x] = P[U ≤ F (x)] = F (x)
which ends the proof. It remains to prove (2.17). First, the definition of Q yields

{t ≤ F (x)} ⇒ {x ∈ A t } ⇒ {Q(t) ≤ x} .
Secondly, let t be such that Q(t) ≤ x. Then by monotonicity of F , F (Q(t)) ≤ F (x). We then claim that

Q(t) ∈ A t .
Indeed, let us suppose the contrary and consider a strictly decreasing sequence

x n ∈ A t such that lim n→∞ x n = inf A t = Q(t). By right continuity of F lim n→∞ F (x n ) = F (Q(t))
and, on the other hand, by definition of A t ,

lim n→∞ F (x n ) ≥ t i.e. Q(t) ∈ A t which contradicts the hypothesis. Then Q(t) ∈ A t i.e. t ≤ F (Q(t)) thus t ≤ F (x).
We have proved that

{Q(t) ≤ x} ⇒ {t ≤ F (x)} .

Proof of Lemma 1.2

Let us recall that the support of a measure µ defined on

X ⊂ R is the largest closed set C ⊂ X such that U ∈ B(X) and U ∩ C = ∅ ⇒ µ(U ∩ C) > 0
where B(X) denotes the Borel sets in X. Let S be the support of

F -1 . Then [0; 1]\S is an open set in [0; 1] i.e. a countable union of intervals ∪ i≥1 ]t 2i , t 2i+1 [ and 1 0 a(F -1 (t))dt = S a(F -1 (t))dt + i≥1 ]t 2i ;t 2i+1 [ a(F -1 (t))dt = F -1 (S) a(x)dF (x) + i≥1 a(F -1 (t 2i ))(t 2i+1 -t 2i ) = F -1 (S) a(x)dF (x) + i≥1 {F -1 (t 2i )} a(x)dF (x) = F -1 (S)∪(∪ i≥1 {F -1 (t 2i )}) a(x)dF (x).
The second equality stems from the definition of the quantile as left-continuous function and from the fact that F -1 is strictly monotone on S.

As F -1 is constant on the open interval [t 2i ; t 2i+1 [, {F -1 (t 2i )} = F -1 ([t 2i ; t 2i+1 [). Hence F -1 (S) ∪ ∪ i≥1 {F -1 (t 2i )} = F -1 ([0; 1]) = {x ∈ R s.t. there exists t with F -1 (t) = x} = supp(F ).
We conclude the first part of the proof since

supp(F ) a(x)dF (x) = R a(x)dF (x).
The second part of the proof can be proved similarly since the above arguments are not particular to a specific measure.

Proof of Proposition 1.4

The proof is directly adapted from the proof of Theorem II.2 of Csiszár et al. [START_REF] Csiszár | Mem pixel correlated solutions for generalized moment and interpolation problems[END_REF]. Let us begin with the fundamental lemma inspired from Theorem 2.9 of Borwein and Lewis [START_REF] Borwein | Duality relationships for entropy-like minimization problems[END_REF].

Lemma 1.3. Let C : Ω → R l be an array of bounded functions such that Ω C(x) dµ(x) < ∞. We denote L C,a = g s.t. Ω g(t)C(t)dµ(t) = a .
If there exists some

g in L C,a such that a ϕ < g < b ϕ µ-a.s and Ω g(t)C(t) dµ(t) < ∞, then there exists a ϕ > a ϕ , b ϕ < b ϕ and g b ∈ L C,a such that a ϕ ≤ g b (x) ≤ b ϕ for all x ∈ Ω.
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Proof. Let L denotes the subspace of R l composed by the vectors representable as Ω gCdµ for some g : Ω → R l . Let us denote by a n a decreasing sequence a n → a ϕ , by b n a increasing one b n → b ϕ and let T n be the set

T n = {x ∈ Ω s.t. a n ≤ g(x) ≤ b n } .
We first claim that, for n large enough

L = L n = Ω hCdµ with h(x) = 0 if x ∈ T n and h bounded . Indeed, if not, we can build a sequence of vectors v n such that v n = 1, v n ∈ L ⊥ and v n → v ∈ L. Furthermore, v n ∈ L ⊥ means v n , Ω hCdµ = Ω h v n , C dµ = 0 then v n , C = 0 for all x ∈ T n µ-a.s. Hence v, C = 0 µ-a.s. and v ∈ L ⊥ which contradicts v ∈ L with v = 1.
Let us then fix some n 0 such that L n 0 = L. We denote by

L n (δ) = Ω hCdµ with h(x) = 0 if x ∈ T n and |h(x)| < δ for x ∈ Ω .
Then, the affine hull of L n (δ) is the vector space L and 0 ∈ L n (δ). We can consider the function g n

g n (x) =      a n if g(x) < a n g(x) if b n ≤ g(x) ≤ a n b n if g(x) > b n
Then Ω (g n -g)Cdµ → n→∞ 0. Indeed we can apply the dominated convergence theorem since, for any x ∈ Ω, g n (x) → g and

(g n (x) -g(x))C(x) = 1 g(x)<an (a n -g(x))C(x) + 1 g(x)>bn (g(x) -b n )C(x) ≤ ( a 0 -g(x) + b 0 -g(x) ) C(x) ≤ ( a 0 + b 0 ) C(x) + 2 g(x) C(x)
which is µ-measurable by hypothesis. We conclude that Ω (g n -g)Cdµ ∈ L n 0 (δ) for n large enough because 0 ∈ L n 0 (δ). Hence there exists h such that

Ω (g n -g)Cdµ = Ω hCdµ, |h(x)| = 0 for x ∈ T n 0 and |h(x)| < δ for x in T n 0 . Therefore for x ∈ Ω, min(a n , a n 0 -δ) ≤ g n (x)+h(x) ≤ min(b n , b n 0 +δ) and Ω (g n +h)Cdµ = Ω gCdµ.
As δ is arbitrarily small, h is the null function.

We can now prove the duality equality. Let note for c ∈ R l I(c) = inf gCdµ=c Ω ϕ(g)dµ and

J(c) = 0 if c = a +∞ otherwise . Then inf g∈L C,a ϕ(g)dµ = inf c∈R l I(c) + J(c).
Recall that the Fenchel duality theorem ([91] p327) states that if ri(dom(I))∩ri(dom(J)) = ∅ then inf

c∈R l I(c) + J(c) = max ξ∈R l -I * (ξ) -J * (-ξ).
We prove that ri(dom(I)) ∩ ri(dom(J)) = ∅. Note that ri(dom(J)) = {a}. It suffices then to prove that a belongs to int(dom(I)) for the topology induced by L. By the above Lemma 1.3 there exists g b such that

a ϕ < a ϕ ≤ g b (x) ≤ b ϕ < b ϕ for all x ∈ Ω. Since a + L n (δ) is a neighborhood of a included in dom(I) for δ sufficiently small, it holds that a ∈ int(L n (δ)) ⊂ int(dom(I)).
It remains now to compute the conjugates of I and J .

I * (ξ) = sup c∈R l ξ, c - inf g, gCdµ=c ϕ(g)dµ = sup c∈R l sup g, gCdµ=c ξ, c -ϕ(g)dµ = sup g ξ, gCdµ -ϕ(g)dµ = sup g ξ, C g -ϕ(g)dµ = ψ( ξ, C )dµ
This equality is referred to as the integral representation of I * . The last equality can be rigorously justified (see for example [START_REF] Csiszár | Generalized minimizers of convex functionals, bregman distance, pythagorean identities[END_REF]). Furthermore, J * (-ξ) = -ξ, a which closes the first part of the proof, namely

inf g∈L C,a Ω ϕ (g) dµ = sup ξ∈R l ξ, a - Ω ψ( ξ, C(x) )dµ.
As we assume ψ differentiable, then ξ → ξ, a -Ω ψ( ξ, C(x) )dµ is differentiable as well.

It follows that any critical point is the solution of

Ω ψ ( ξ, C(x) )C(x)dµ = a.
Furthermore, as ϕ is strictly convex, ψ is strictly concave and for ξ, ξ ∈ R l and t ∈ [0; 1] it holds

(1 -t)ξ + tξ , a - Ω ψ( (1 -t)ξ + tξ , C(x) )dµ = (1 -t)ξ + tξ , a - Ω ψ((1 -t) ξ, C(x) + t ξ , C(x) )dµ < (1 -t) ξ, a - Ω ψ(ξ, C(x) )dµ + t ξ , a - Ω ψ(ξ , C(x) )dµ i.e. the functional ξ → ξ, a -Ω ψ(ξ, C(x) )dµ is strictly convex which proves the uni- queness of ξ * .
The continuity of a → ξ * (a) comes from the implicit function theorem. If we note D(ξ) = ψ ( ξ, C(x) )C(x)dµ then D is continuously differentiable with a Jacobian given by

J D (ξ) = ψ ( ξ, C(x) )C(x)C(x) T dµ
which is positive definite thanks to the strict convexity of ψ.
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Proof of Theorem 1.2

The arguments of this proof and of the following one are similar to the ones given by Newey and Smith in [START_REF] Newey | Higher order properties of gmm and generalized empiracal likelihood estimators[END_REF] for their Theorem 3.1 ; the essential argument is a Taylor expansion of the functionals in equation (1.27). Let begin with a lemma adapted from Theorem 6 due to Stigler [START_REF] Stigler | Linear functions of order statistics with smooth weight functions[END_REF] : Lemma 1.4. Let x 1 , ..., x n be an observed sample drawn iid from a distribution F with finite variance. We note F n the empirical distribution of the sample.

Let A : [0; 1] → R l be a continuously derivable function such that A is bounded F -1 -a.e. Then n 1/2 xdA(F n (x)) -xdA(F (x)) → d N (0, Σ A ) with Σ A = [F (min(x, y)) -F (x)F (y)] A (F (x))A (F (y)) T dxdy.
In the following, we will note dT dλ (x) = T (x) for all x ∈ R .

First step : maximization step

Clearly, it holds inf

T ∈∪ θ L θ (Fn) R ϕ(T (x))dx ≤ inf T ∈L θ 0 (Fn) R ϕ(T (x))dx. (1.36) 
By Taylor-Lagrange expansion, there exists some D > 0 such that for n large enough and for any

t in [1 -n -1/4 ; 1 + n 1/4 ] ϕ(t) ≤ D 2 (t -1) 2
holds.

We may then majorize the RHS in (1.36) by the solution of the quadratic case. Let

T 0,n (x) := 1 + (f (θ 0 ) -m n ) T Ω -1 n K(F n (x))
where

m n := K(F n (x))dx and Ω n := R K(F n (x))K(F n (x)) T dx. As T 0,n ∈ L θ (F n ), it holds inf T ∈L θ 0 (Fn) R ϕ(T (x))dx ≤ R ϕ(T 0,n (x))dx.
From Lemma 1.4, we deduce that Ω n → Ω in probability. As Ω is non singular, for n large enough, Ω n is non singular and T 0,n is well defined.

As f (θ 0 ) -m n = O P (n -1/2 ) from Lemma 1.4 and Ω -1 n = O P (1), for almost all x ∈ R, T 0,n (x) = 1 + O P (n -1/2 )
and we can apply a Taylor-Lagrange maximization

ϕ(T 0,n (x)) ≤ D 2 (f (θ 0 ) -m n ) T Ω -1 n K(F n (x))K(F n (x)) T Ω -1 n (f (θ 0 ) -m n ).
By integration in the above display

R ϕ(T 0,n (x))dx ≤ D 2 (f (θ 0 ) -m n )Ω -1 n R K(F n (x))K(F n (x)) T dx Ω -1 n (f (θ 0 ) -m n ) ≤ f (θ 0 ) -m n 2 Ω -1 n = O P (n -1 ).
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Second step : minimization step

Since Θ is compact, and ϕ is strictly convex, and θ → inf T ∈L θ (Fn) R ϕ(T (x))dx is continuous (see Proposition 1.4), it follows that θ is well defined and the duality equality states inf

T ∈L θn (Fn) R ϕ(T (x))dx = sup ξ∈R l ξ T f ( θn ) -ψ(ξ T K(F n (x)))dx ≥ ξ T n f ( θn ) -ψ(ξ T n K(F n (x)))dx with ξ n = n -1/2 f ( θn ) -m n f ( θn ) -m n . . Therefore ξ T n K(F n (x)) = O P (n -1/2
) for a.e x ∈ R. By Taylor-Lagrange expansion, there exists a constant C > 0 such that |ψ(x) -x| < Cx 2 in a neighborhood of 0. Thus, for n large enough

ψ(ξ T n K(F n (x)))dx -ξ T n m n < C ξ T n K(F n (x))K(F n (x)) T ξ n dx = Cξ T n Ω n ξ n and inf T ∈L θn (Fn) R ϕ(T (x))dx > ξ T n (f ( θn ) -m n ) -Cξ T n Ω n ξ n .

Conclusion

Combining the two inequalities, we have

n -1/2 f ( θn ) -m n < C Ω n n -1 + f (θ 0 ) -m n 2 Ω -1 n = O P (n -1 ) i.e. f ( θn ) -m n = O P (n -1/2 ). By Lemma 1.4, m n -f (θ 0 ) = O P (n -1/2 ). Hence, f ( θn ) -f (θ 0 ) = O P (n -1/2 ). Since f (θ) = f (θ 0 ) has a unique solution at θ 0 , f (θ) -f (θ 0
) is bounded away from zero outside some neighborhood of θ 0 . Therefore θn is inside any neighborhood of θ 0 with probability approaching 1 i.e θn → θ 0 in probability.

Proof of Theorem 1.3

First we prove that ξn = arg max

ξ ξ T f ( θn ) -ψ(ξ T K(F n (x))dx = O P (n -1/2 ). Consider ξ n = arg max ξ∈R l s.t. ξ <n -1/4 ξ T f ( θn ) -ψ(ξ T K(F n (x))dx,
where the maximum is taken on a ball of radius n -1/4 . The maximum is attained because of the concavity of the functional

U : ξ → ξ T f ( θn ) -ψ(ξ T K(F n (x))dx.
1.9. Appendix

55

For all x in a neighborhood of 0, the inequality y -ψ(y) < -Cy 2 for some C > 0 holds.

For n large enough, as ξ n < n -1/4 we can claim (as

ψ(0) = 0) 0 ≤ ξ T n f ( θn ) -ψ(ξ T n K(F n (x))dx ≤ ξ T n (f ( θn ) -m n ) -Cξ T n Ω n ξ n ≤ ξ n . f ( θn ) -m n -Cξ n Ω n ξ n , with m n := K(F n (x))dx.
Furthermore, there exists D > 0 such that Ω n ≥ D > 0 for n large enough and

CD ≤ C ξ T n ξ n Ω n ξ n ξ n ≤ f ( θn ) -m n ξ n .
It follows that ξ n = O P (n -1/2 ) and that ξ n is an interior point of {ξ ∈ R l s.t. ξ < n -1/4 } ; by concavity of the functional U , ξ n is the unique maximizer, hence ξ n = ξn . We write the first order conditions of optimality of ( θn -θ 0 , ξn ) :

(f ( θn ) -f (θ 0 )) + (f (θ 0 ) -m n ) -ψ ( ξn K(F n (x)) -1 K(F n (x))dx = 0 J f ( θn ) ξn = 0 A mean value expansion (since θ 0 ∈ int(Θ))
gives the existence of ξ and θ such that ξ < ξn and θ -θ 0 < θn -θ 0 such that

J f ( θ)(θ -θ 0 ) + (f (θ 0 ) -m n ) -ψ ( ξK(F n (x))K(F n (x))K(F n (x))dx ξn = 0 J f ( θn ) ξn = 0 .
It holds

A n := J f ( θ) -ψ ( ξK(F n (x))K(F n (x))K(F n (x))dx 0 J f ( θn ) → p A := J 0 -Ω 0 J 0 .
By the very definition of A n ,

A n θn -θ 0 ξn = m n -f (θ 0 ) 0 .
As Ω is non singular and J 0 has full rank, A is non singular and its inverse is given by

A -1 = H M P H -H T .
Hence by Lemma 1.4

√ n θn -θ 0 ξn = A -1 n √ n(m n -f (θ 0 )) 0 → d A -1 N l (0, Σ) 0 ,
which ends the proof.
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Chapitre 2

Multivariate quantiles and multivariate L-moments

Motivations and notations

Univariate L-moments are either expressed as sums of order statistics or as projections of the quantile function onto an orthogonal basis of polynomials in L 2 ([0; 1], R). Both concepts of order statistics and of quantile are specific to dimension one which makes non immediate a generalization to multivariate data. Let r ∈ N * := N \ {0}. For an identically distributed sample X 1 , ..., X r on R, we note X 1:r ≤ ... ≤ X r:r its order statistics. It should be noted that X 1:r , ..., X r:r are still random variables. Then, if E[|X|] < ∞, the r-th L-moment is defined by :

λ r = 1 r r-1 k=0 (-1) k r -1 k E[X r-k:r ]. (2.1)
If we use F to denote the cumulative distribution function (cdf) and define the quantile function for t ∈ [0; 1] as the generalized inverse of F i.e.

Q(t) = inf{x ∈ R s.t. F (x) > t},
this definition can be written :

λ r = 1 0 Q(t)L r (t)dt (2.2)
where the L r 's are the shifted Legendre polynomials which are a Hilbert orthogonal basis for L 2 ([0; 1], R) equipped with the usual scalar product (for f, g

∈ L 2 ([0; 1], R), f, g = 1 0 f (t)g(t)dt) : L r (t) = r-1 k=0 (-1) k r -1 k 2 t r-1-k (1 -t) k = r-1 k=0 (-1) r-k r -1 k r -1 + k k t k . (2.3)
L-moments were introduced by Hosking [START_REF] Hosking | L-moments : analysis and estimation of distributions using linear combinations of order statistics[END_REF] in 1990 as alternative descriptors to central moments for a univariate distribution. They have some properties that we wish to keep for the analysis of multivariate data. Serfling and Xiao [START_REF] Serfling | A contribution to multivariate l-moments : L-comoment matrices[END_REF] listed the following key features of univariate L-moments which are desirable for a multivariate generalization :

• The existence of the r-th L-moment for all r if the expectation of the underlying random variable is finite • A distribution is characterized by its infinite series of L-moments (if the expectation is finite)

• A scalar product representation with mutually orthogonal weight functions (equation 2.2) • A representation as expected value of an L-statistic (linear function of order statistics) • The U-statistic structure of sample versions should give asymptotic results • The L-statistic structure of sample versions should give a quick computation • Tractable unbiased sample version coming from the U-statistic and L-statistic structure should exist • Sample L-moments are more stable than classical moments, increasingly with higher order : the impact of each outlier is linear in the L-moment case whereas it is in the order of (xx) k for classical moments of k order We will add two more properties related to the previous list :

• the equivariance of the L-moments with respect to the dilatation and their invariance with respect to translation for L-moments of an order larger than two • the tractability of the L-moments in some parametric families which makes them useful for estimation in these families, especially for the shape parameter of heavy tailed distributions. Heavy-tailed distributions naturally appear in many different fields which then need description features for dispersion or kurtosis usually assuming moments with order larger than two ; for example in applications in climatology based on annual data such as annual maximum rainfall. In [START_REF] Hosking | Regional Frequency Analysis : An approach based on L-moments[END_REF], Hosking and Wallis successfully applied univariate Lmoments for the inference in the so-called regional frequency analysis that have to deal with heavy-tailed distributions. We can mention furthermore financial risk analysis [START_REF] Jurczenko | Hedge fund portfolio selection with higherorder moments : a nonparametric mean-variance-skewness-kurtosis efficient frontier[END_REF] or target detection in radar [START_REF] Ward | Sea Clutter : Scattering, the K Distribution and Radar Performance[END_REF] that are fields in which multivariate heavy-tailed distributions appear.

Serfling and Xiao proposed a multivariate extension of L-moments for a vector (X 1 , ..., X d ) T , based on the conditional distribution of X i given X j for all (i, j) ∈ {1, ..., d} 2 . Their definition satisfies most of the properties of the univariate L-moments, but for the characterization of the multivariate distributions by the family of its L-moments. We generalize their approach by a slightly shift in perspective that will allow us to maintain the characterization property in the multivariate case. Our starting point for a definition of multivariate L-moments is the characterization as orthogonal projection of the quantile onto an orthogonal basis of polynomials defined on [0; 1]. It is not difficult to define orthogonal multi-indice polynomials on [0; 1] d (see Lemma 2.5). It subsequently remains to define a multivariate quantile. As there is no total order in R d , there are many different ways to define a multivariate quantile. Serfling made a survey of the existing approaches [START_REF] Serfling | Quantile functions for multivariate analysis : approaches and applications[END_REF]. Amongst them, we can cite Chaudhuri's spatial quantiles [START_REF] Chaudhuri | On a geometric notion of quantiles for multivariate data[END_REF], Zuo and Serfling's depth-based quantiles [START_REF] Zuo | General notions of statistical depth function[END_REF] or the generalized quantile process of Einmahl and Mason [START_REF] Einmahl | Generalized quantile process[END_REF]. In the DOQR (for Depth-Outlyingness-Quantile-Rank) paradigm given by Serfling [START_REF] Serfling | Equivariance and invariance properties of multivariate quantile and related functions, and the role of standardization[END_REF], multivariate quantiles map the ball of center zero and radius 1 B d (0, 1) into R d without specifying the norm underlying the ball. The definition of an orthogonal basis of polynomials is natural only in [0; 1] d , so we consider only the shifted unit ball for the infinite norm in our proposition of multivariate quantile. The approach of multivariate quantile that has been chosen uses the notion of transport of measure. Indeed, in the univariate case, the quantile maps the uniform measure on [0; 1] onto the distribution of interest. Galichon and Henry [START_REF] Galichon | Trimmed l-moments[END_REF] for example proposed to keep this basic property in order to define a multivariate quantile as the optimal transport 2.1. Motivations and notations 59 between the uniform measure on [0; 1] d and the multivariate distribution. We will adopt this definition by relaxing the optimality of the transport. Furthermore, if we consider the Rosenblatt transport [START_REF] Rosenblatt | Remarks on a multivariate transformation[END_REF] in our definition of multivariate L-moments for bivariate random vectors, we match Serfling and Xiao's proposition [START_REF] Serfling | A contribution to multivariate l-moments : L-comoment matrices[END_REF].

We may define a transport T : R d → R d between two measures µ and ν defined on R d . Definition 2.5. The pushforward measure of µ through T is the measure denoted by

T #µ satisfying T #µ(B) = µ(T -1 (B)) for every Borel subset B of R d (2.4)
T is said to be a transport map between µ and ν if T #µ = ν. In the following, we will call µ the source measure and ν the target measure.

There exist many ways of transporting a measure onto another one. Let us mention for example the transport of Rosenblatt we just mentioned or the transport of Moser [START_REF] Villani | Optimal transport, old and new[END_REF]. The transport that has received the most attention is undoubtedly optimal transport. Its first formulation goes back to 1781 by Monge. More recently, it was in particular studied by Gangbo, McCann, Villani [START_REF] Villani | Topics in Optimal Transportation[END_REF] [109] [START_REF] Mccann | Existence and uniqueness of monotone measure-preserving maps[END_REF]. In its modern formulation, an optimal transport minimizes a cost function amongst any possible transports. These transports were used by Easton and McCulloch [47] in order to generalize the Q-Q plots for multivariate data, a graphical tool close to L-moments that especially shows how far two random samples are apart. However, it is often difficult to have closed forms of the solution of the minimization problem issued from the optimal transport for two arbitrary measures. This is the reason of the following construction of a multivariate quantile. Let N d be the canonical Gaussian measure on R d . The mapping

Q 0 : [0; 1] d → R d defined through Q 0 (t 1 , ..., t d ) =     N -1 1 (t 1 ) . . . N -1 1 (t d )     (2.5)
transports the uniform measure unif on [0; 1] d onto N d (it is actually an optimal transport for a quadratic cost). This quantile (or transport) provides the reference measure N d .

Turning back to the extension of the univariate case, consider µ = N d and ν any measure on R d . With T defined as in 2.4, we may define a transport from the uniform measure on [0; 1] d onto the measure ν on R d by

Q := T • Q 0 . (2.6)
Q (which is a transport from unif to ν) is a natural extension of the quantile function defined from [0; 1] equipped with the uniform measure onto R equipped with a given measure.

Clearly, the intermediate Gaussian measure can be skipped and a quantile may be defined directly from [0; 1] d onto R d with the respective measures unif and ν.Indeed, we will define transports from [0; 1] d equipped with unif onto [0; 1] d equipped with a given copula ; see Section 2.4.2.

The interest in the intermediate (or reference) Gaussian measure µ lies in the fact that a transport T from µ onto a measure ν will be easy to define when ν belongs to specific Chapitre 2. Multivariate quantiles and multivariate L-moments classes of multivariate distributions with rotational parameters. Note that the transport T need not be optimal for some cost.

We will concentrate our attention on models close to elliptical distributions. Let us recall that elliptical distributions are parametrized by the existence of a scatter matrix Σ, a location vector m and a radial scalar random variable R ∈ R + . In fact, X ∈ R d follows an elliptical distribution if and only if

X d = m + RΣ 1/2 U
with U uniform over S d-1 (0, 1), the sphere of center zero and radius 1 and R independent of U . Even if, to our knowledge, there are no tractable closed forms for the optimal transport of the uniform on [0; 1] d (or even of the standard Gaussian) onto an elliptical distribution, we can define a family of models close to the elliptical ones that contains spherical distributions with an explicit quantile. This allows to build estimators based on a multivariate method of L-moments for the scatter matrix and the mean parameters of this family. The price to pay for using optimal transports is to consider models adapted to this approach. A natural way to work with such quantiles is then to define models through their quantile function, instead of the classical density function. Sei proposed [START_REF] Sei | Gradient modeling for multivariate quantitative data[END_REF] to define models through their transport onto a standard multivariate Gaussian. Such models have desirable properties, in particular the ease to describe the independence of marginals and the concavity of their log-likelihood. In a similar desire to define non-Gaussian distributions easy to manipulate in the context of linear models, Box and Cox used a particular form of this transport as well [START_REF] Box | An analysis of transformations[END_REF].

Let us now introduce some notation. In the following, we will consider a random variable or vector X with measure ν and d = means the equality in distribution. The scalar product between x and y in R d will be noted x.y or x, y .

Definition of multivariate L-moments and examples

General definition of multivariate L-moments

Let X be a random vector in R d . We wish to exploit the representation given by the equation (2.2) in order to define multivariate L-moments. Recall that we chose quantiles as mappings between [0; 1] d and R d .

We explicit a polynomial orthogonal basis on [0 

; 1] d . Let α = (i 1 , ..., i d ) ∈ N d be a multi-index and L α (t 1 , ..., t d ) = d k=1 L i k (t k ) (
X k j j = d j=1   k j i=1 c ji L i (X)   .
We deduce that (L α ) is an orthogonal basis of the space of polynomial with

d indices R[X 1 , ..., X d ]. It remains to prove that R[X 1 , ..., X d ] is dense in L 2 ([0; 1] d , R). For this purpose, let f ∈ L 2 ([0; 1] d , R). We define a test function ϕ ∈ C 0 ([0; 1] d , R) defined for x ∈ [0; 1] d ϕ(x) = e - 1 1-x 2 if x < 1 0 if x = 1 with x = d i=1 x 2 i .
Let n be an integer greater than zero and

f n (x) = 1 R d ϕ(x)dx [R d 1 n d f (x -y)ϕ( y n )1 x-y∈[0;1] d dy
Then for all n > 0,

f n ∈ C 0 ([0; 1] d , R d ) and f n → f in L 2 ([0; 1] d , R). Indeed, by noting a = R d ϕ(x)dx for x ∈ [0; 1] d f n (x) -f (x) = 1 a [R d (f (x -y) -f (x)) 1 n d ϕ( y n )1 x-y∈[0;1] d dy = 1 a [R d (f (x -ny) -f (x))ϕ(y)1 x-ny∈[0;1] d dy Furthermore f (x -ny) -f (x) 2 1 x-ny∈[0;1] d ϕ(y) 2 ≤ 2ϕ(y) 2 [0;1] d f (y) 2 dy = f 2 L 2 ϕ(y) 2 ,
Then as for any

y ∈ R d , f (x -ny) -f (x) 2 1 x-ny∈[0;1] d → 0 when n → ∞ ; we apply the dominated convergence theorem to show that f n (x) -f (x) 2 → 0 for any x ∈ [0; 1] d .
In the same way, as

f n (x) -f (x) 2 ≤ 2 [0;1] d f (y) 2 dy
We prove by a second application of the dominated convergence theorem that

f n → f in L 2 ([0; 1] d , R).
Let > 0. We can thus find N > 0 such that 

f -f N L 2 < Ce document
f N -g ∞ < . Then f -g L 2 < f -f N L 2 + f N -g L 2 < + f N -g ∞ < 2 . We conclude that R[X 1 , ..., X d ] is dense in L 2 ([0; 1] d , R) which proves that (L α ) α∈N d * is complete.
We can finally define the multivariate L-moments. 

λ α := [0;1] d Q(t 1 , ..., t d )L α (t 1 , ..., t d )dt 1 ...dt d ∈ R d . (2.9)
With this definition, there are as many L-moments as ways to transport unif onto ν. The hypothesis of finite expectation guarantees the existence of all L-moments :

[0;1] d Q(t 1 , ..., t d )L α (t 1 , ..., t d )dt 1 ...dt d ≤ sup t∈[0;1] d |L α (t)| [0;1] d Q(t 1 , ..., t d ) dt 1 ...dt d ≤ [0;1] d x dF (x) < ∞.
Remark 2.19. Given the degree δ of α = (i 1 , ..., i d ) that we define by δ = d k=1 (i k -1)+1, we may define all L-moments with degree δ, each one associated with a given corresponding α leading to the same δ. For example, the L-moment of degree 1 is

λ 1 (= λ 1,1,...,1 ) = [0;1] d Q(t 1 , ..., t d )dt 1 ...dt d = E[X].
(2.10)

The L-moments of degree 2 can be grouped in a matrix :

Λ 2 = [0;1] d Q i (t 1 , ..., t d )(2t j -1)dt 1 ...dt d 1≤i,j≤d . 
(2.11)

In equation 2.10 we noted Q(t 1 , ..., t d ) =    Q 1 (t 1 , ..., t d ) . . . Q d (t 1 , ..., t d )   .
Proposition 2.7. Let ν and ν be two Borel probability measures. We suppose that Q and Q respectively transport unif onto ν and ν . Assume that Q and Q have same multivariate L-moments (λ α ) α∈N d * given by the equation (2.9). Then ν = ν . Moreover :

Q(t 1 , ..., t d ) = (i 1 ,...,i d )∈N d * d k=1 (2i k + 1) L (i 1 ,...,i d ) (t 1 , ..., t d )λ (i 1 ,...,i d ) ∈ R d (2.12)
Proof. We have to prove that if Q and Q are two transports coming from ν and ν such that all their L-moments coincide, ν = ν . We denote by λ α and λ α their respective L-moments of multi-index α.

As the Legendre family is orthogonal and complete in L 2 ([0; 1] d , R), we can decompose each component of Q :

Q(t 1 , ..., t d ) = α∈N d Q, L α L 2 L α , L α L 2 L α (t 1 , ..., t d ) = α∈N d * d k=1 (2i k + 1) λ α L α (t 1 , ..., t d ) because for α = (i 1 , ..., i d ) ∈ N d * [0;1] d L α (t 1 , ..., t d ) 2 dt 1 ...dt d = d k=1 ||L i k || 2 L 2 ([0;1]) = d k=1 1 2i k + 1
.

By the same reasoning, we get

Q (t 1 , ..., t d ) = α∈N d * d k=1 (2i k + 1) λ α L α (t 1 , ..., t d ).
We conclude that Q = Q and ν = ν by hypothesis.

L-moments ratios

Let us note λ r (X) the r-th univariate L-moment of the random variable X and (b 1 , ..., b d ) the canonical basis of R d . Let us decompose the vector λ α into

λ α =    λ α , b 1 . . . λ α , b d    ∈ R d .
Definition 2.7. As for univariate L-moments, we can define normalized ratios of Lmoments for any multi-index α ∈ N d different from (1,. . .,1) by : 

τ α =    τ α , b 1 . . . τ α , b d    =      λα,b 1 λ 2 (X 1 ) . . . λα,b d λ 2 (X d )      . ( 2 
Moreover, if α = (i 1 , ..., i d ) with i j = 2 and i k = 1 for all k = j, let U = (U 1 , ..., U d ) T be a uniform random vector on [0; 1] d and U -j = (U 1 , ..., U j-1 , U j+1 , ..., U d ) T and V = E U -j [Q i (U )]. Then | τ α , b i | ≤ λ 2 (V ) λ 2 (X i ) (2.
λ α , b i = [0;1] d Q i (t 1 , ..., t d )L α (t)dt 1 ...dt d = [0;1] d (Q i (t 1 , ..., t d ) -y)L α (t)dt 1 ...dt d .
As |L α (t)| ≤ 1 for all t ∈ [0; 1] d , by definition of the transport, it holds

| λ α , b i | ≤ [0;1] d |Q i (t 1 , ..., t d ) -y| dt 1 ...dt d ≤ 1 0 1 0 |x i -y| dF i (x i )dF i (y) ≤ E X i d =Y i [|X i -Y i |] = 2λ 2 (X i ).
This proves the first assertion. The second is inspired from the proposition 4 of [START_REF] Serfling | A contribution to multivariate l-moments : L-comoment matrices[END_REF].

As the degree of α is 2, there exists 1 ≤ j ≤ d such that

λ α , b i = Q i (t 1 , ..., t d )L 2 (t j )dt j dt 1 ...dt j-1 dt j+1 ...dt d .
We note

U -i = (U 1 , ..., U j-1 , U j+1 , ..., U d ) , V = E U -j [Q i (U )] and W = U j . Then by noting λ α , b i = E[V L 2 (W )] = 2E[V W ] -E[V ] = 2Cov(V, W )
where V and W are two random variables of finite expectation and covariance. Then, Hoeffding lemma quoted in [START_REF] Lehmann | Some concepts of dependence[END_REF] gives us :

Cov(V, W ) = [F V,W (v, w) -F V (v)F W (w)] dvdw
Moreover, the well-known Fréchet bounds assert that for any v, w

max(F W (w) + F V (v) -1, 0) ≤ F v,W (v, w) ≤ min(F V (v), F W (w)).
Since W is uniform on [0; 1]

Cov(V, W ) ≤ [min(F V (v), w) -F V (v)w] dvdw. Furthermore Cov(V, F V (V )) = [min(F V (v), w) -F V (v)w] dvdw. We conclude that Cov(V, W ) ≤ Cov(V, F V (V )). Now, using max(a + b -1, 0) -ab = -(min(1 -a, b) -(1 -a)b)
along with the Fréchet bound, a similar reasoning leads to

Cov(V, W ) ≥ -Cov(V, F V (V )). Remarking that 2Cov(V, F V (V )) = λ 2 (V ), we obtain | λ α , b i | ≤ λ 2 (V ).
Remark 2.20. The inequality in the previous Proposition is probably not optimal but has the advantage of some generality. As we will see later, if we choose the particular bivariate Rosenblatt transport, it holds

| τ α , b i | ≤ 1 for α = (1, 2) or α = (2, 1).

Compatibility with univariate L-moments

The definition which we adopted for the definition of general L-moments is compatible with the similar one in dimension 1 since the univariate quantile is a transport. Definition 2.8. Let ν be a real probability measure. The quantile is the generalized inverse of the distribution function :

Q(t) = inf{x ∈ R s.t. ν((-∞; x]) ≥ t}.
(2.16) Proposition 2.9. If we denote by µ the uniform measure on

[0; 1], then Q#µ = ν i.e. Q(U ) d = X if U denotes the uniform law on [0; 1]
, and X denotes the random variable associated to ν.

Proof. Let x ∈ R. We denote by F the cdf of X and by A t the event

A t = {x ∈ R s.t. F (x) ≥ t}
We then have Q(t) = inf A t . We wish to prove :

{t ∈ [0; 1] s.t. Q(t) ≤ x} = {t ∈ [0; 1] s.t. t ≤ F (x)} (2.17)
We temporarily admit this assertion. Then

P[Q(U ) ≤ x] = P[U ≤ F (x)] = F (x)
which ends the proof. It remains to prove 2.17. First, the definition of Q gives us

{t ≤ F (x)} ⇒ {x ∈ A t } ⇒ {Q(t) ≤ x} Secondly, let t be such that Q(t) ≤ x. Then by monotony of F , F (Q(t)) ≤ F (x). We then claim that Q(t) ∈ A t
Indeed, let us suppose the contrary and consider a strictly decreasing sequence x n ∈ A t such that lim

n→∞ x n = inf A t = Q(t).

By right continuity of F lim

n→∞ F (x n ) = F (Q(t))
and, on the other hand, by definition of A t ,

lim n→∞ F (x n ) ≥ t i.e. Q(t) ∈ A t wihch contradicts the hypothesis. Then Q(t) ∈ A t i.e. t ≤ F (Q(t)) thus t ≤ F (x).
We have proved that

{Q(t) ≤ x} ⇒ {t ≤ F (x)}
Subsequently, if we consider the particular transport defined by the univariate quantile, the L-moments are defined by

λ r = 1 0 Q(t)L r (t)dt (2.18)
which is the quantile characterization of univariate L-moments.

Remark 2.21. This transport corresponds to a Rosenblatt transport and an optimal transport with respect to a large family of costs (see Proposition 2.11).

Relation with depth-based quantiles

With the DOQR paradigm, Sefling related the four following notions :

• the centered quantile function : a centered multivariate quantile function Q indexed by u ∈ B d , the unit ball in R d such that x := Q(u) is a centered quantile representation of x. Q(0) represents the center of mass or median. This quantile function generates nested contours {Q(u) : u = c} grouping points of the distribution by "distance" to the center of mass. ordering of x, higher depth corresponding to higher centrality. With this paradigm, all the depth functions introduced for example in [START_REF] Zuo | General notions of statistical depth function[END_REF] can induce a quantile function (see [START_REF] Serfling | Equivariance and invariance properties of multivariate quantile and related functions, and the role of standardization[END_REF]). Even if the quantile deduced from a depth function is not uniquely defined, the contours associated to the depth are unique.

If we note Q the quantile as a transport between the uniform distribution in [0; 1] d and the distribution of interest, then the function

Q := u ∈ [-1; 1] d → Q( u 2 -(1/2, ..., 1/2) T )
correspond to the Serfling's notion of centered quantile for the infinite norm. If Q is invertible, we can therefore introduce a related depth function as

D(x) = 1 -2 Q -1 (x) -(1/2, ..., 1/2) T .
This allows us to compare this depth function with respect to the desirable criteria for a depth function enounced in [START_REF] Zuo | General notions of statistical depth function[END_REF] satisfied by classical depth functions such as Tukey's half-space depth function.

• Affine invariance : the depth of a point x ∈ R d should not depend on the underlying coordinate system. This property is not verified by the depth issued from transport and should be a stake for future works. • Maximality at center : the obvious center Q(1/2, ..., 1/2) is the point of maximal depth • Monotonicity relative to deepest point : as the point x ∈ R d moves away from the center of mass, the depth function evaluated on x decreases monotonically. This intuitive property should restrict the transports acceptable for Q to be a quantile.

For monotone and Rosenblatt transports introduced in the sequel, this property holds. • Vanishing at infinity : the depth of a point x should approach zero as x approaches infinity. The quantile function issued from a transport brings moreover indications on the location of the mass of the multivariate distribution of measure ν. Indeed, all intuitive information of a "piece" of the unit cube (centrality, extremality, volume,...) can be transposable to the transported piece of points in R d . In mathematical terms, if A is Borelian of [0; 1] d , it holds :

ν(Q(A)) = µ(A) = vol(A)
We will now consider in the following two different kinds of transport among many others :

• the optimal transport • the Rosenblatt transport

Optimal transport

Formulation of the problem and main results

Let us consider two measures µ and ν respectively defined on Ω ⊂ R d and R d . If we define a cost function c : Ω × Ω → R, then the problem is to find an application T that transports µ into ν and minimizes :

Ω c(x, T (x))dµ(x).
(2.19)

The quadratic case c : (x, y) → (x -y) 2 was first studied by Brenier [START_REF] Brenier | Polar factorization and monotone rearrangement of vector valued functions[END_REF], the generalization to generic costs has been considered, among others, by McCann, Gangbo, Villani [START_REF] Mccann | Existence and uniqueness of monotone measure-preserving maps[END_REF] [START_REF] Villani | Topics in Optimal Transportation[END_REF]. Let us give the following theorem for specific convex costs (x, y) → c(x, y) = h(x -y) :

Theorem 2.4. (McCann, Gangbo)

Let h : R d → R be a convex function, µ and ν be two probability measures on R d . Let us suppose that there exists a transport T such that R d h(x-T (x))dµ(x) < ∞. Let us assume that µ is absolutely continuous with respect to the Lebesgue measure. Then, there exists a unique transport T from µ to ν that minimizes the cost Ω h(x -T (x))dµ(x) determined dµ-almost everywhere and characterized by a function φ :

T (x) = x -∇h * (∇φ(x)) (2.

20)

where h * is the Legendre transform of h.

h * (y) = sup x∈R d x, y -h(x).
The function φ is dµ-a.s. unique up to an arbitrary additive constant.

Proof. We apply Theorem 2.44 of [START_REF] Villani | Topics in Optimal Transportation[END_REF].

Remark 2.22. If we consider the quadratic case h(x -y) = (x -y) 2 , the above existence theorem is equivalent to the existence of another function (that will be called potential function)

ϕ := x → x 2 -φ(x)
which is convex such that the optimal transport is T = ∇ϕ.

We can observe a refinement of this case in the following Proposition 2.10.

For the definition of a multivariate quantile, µ is the uniform measure on Ω = [0; 1] d and ν is the measure of a random vector X of interest. The corresponding transport will be denoted by Q. As µ is absolutely continuous with respect to the Lebesgue measure, the remaining assumption in Theorem 2.4 is the existence of a transport Q such that Q#µ = ν and 68 Chapitre 2. Multivariate quantiles and multivariate L-moments Definition 2.9. Let E be a metric space. If S ⊂ E and p ≥ 0, the p-dimensional Hausdorff content of S is defined by :

C d (S) = inf i r p
i such that there is a cover of S by balls with radii r i > 0 .

Then, the Hausdorff dimension of E is given by : The gradient of convex potentials are called monotone by analogy with the univariate case. We can see this gradient as the solution of a potential differential equation. By abuse of language, we will refer at this transport as monotone transport in the sequel.

dim(E) := inf {d ≥ 0 such that C d (E) = 0} (2.
Remark 2.24. Let us suppose µ and ν admit densities with respect to the Lebesgue measure respectively denoted by p and q. Proposition 2.10 provides a mapping ∇ϕ such that for all test functions a in C ∞ with a compact support :

a(y)q(y)dy = a(∇ϕ(x))p(x)dx.
Let us assume furthermore that ∇ϕ is C 1 and bijective. We can then perform the change of variables y = ∇ϕ(x) on the left-hand side of the previous equality : a(y)q(y)dy = a(∇ϕ(x))q(∇ϕ(x)) det(∇ 2 ϕ(x))dx.

Since the function a is arbitrary, we get :

p(x) = q(∇φ(x))) det(∇ 2 φ(x)). (2.22)
This is a particular case of the general Monge-Ampère equation

det(∇ 2 ϕ(x)) = F (x, ϕ(x), ∇ϕ(x)).

Optimal transport in dimension 1

The natural order of the real line implies that the quantile is a solution of several transport problems : Proposition 2.11. (Optimal transport in dimension d = 1) Let µ and ν be two arbitrary measures respectively defined on [0; 1] and R such that µ gives no mass to atoms. Let T : [0; 1] → R be a transport of µ onto ν. Then for any real convex function h :

1 0 h(Q(F (u)) -u)du ≤ 1 0 h(T (u) -u))du (2.23)
where Q is the generalized quantile of ν and F the cdf of µ i.e. Q • F is the solution of the univariate transport problem.

Proof. We refer to Theorem 6.0 [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF].

This result is particular to the dimension 1. If we plug this result in the definition we gave for multivariate L-moments applied with d = 1, we obtain the univariate definition of L-moments :

λ r = 1 0 Q(t)L r (t)dt.
(2.24)

The multivariate L-moments defined with the optimal transport are then compatible with the definition in dimension d = 1. 

Examples of monotone transports

for t ∈ [0; 1], φ m,σ (t) = t 1/2 m + σN -1 (u) du (2.25)
where N is the cumulative distribution function of the standard Gaussian. Let us note that the potential is minimum at the cumulative weight t such that N -1 m,σ (t) = 0 and is equal to 0 at the median. The gradient is simply the quantile

∇φ m,σ (t) = m + σN -1 (t) = Q N (t).
If we build the Legendre transform of the potential, we find a dual potential :

ψ m,σ (x) = sup t∈[0;1] {xt -φ m,σ (t)} = xN x -m σ - 1 σ x m xN x -m σ dy,
and Finally the Hessian of the dual potential is the density of the Gaussian as expected by the Monge-Ampère equation

∇ψ m,σ (x) = N x -m σ .
∇ 2 ψ m,σ (x) = 1 σ N x -m σ = 1 σ √ 2π exp - (x -m) 2 2σ 2 .
Example 2.15. (Independent coordinates) For a vector of independent marginals (X 1 , ..., X d ), the optimal transport is easily obtained since it is the concatenation of each marginal univariate quantile : 

Q(t 1 , ..., t d ) =    Q 1 (t 1 ) . . . Q d (t d )    (2.26) if Q 1 , ...,
φ(t 1 , ..., t d ) = φ 1 (t 1 ) + • • • + φ d (t d ), (2.27 
)

we remark that ∇φ = Q and φ is convex because each φ i is convex. Example 2.16. (Max-Copula) Let us define a 2-dimensional potential for u, v ∈ [0; 1] 2 : φ(u, v) = 1 4 (u + v) 2 .
(2.28)

φ is convex (but not strictly convex) and derivable almost everywhere ; the associated transport is

T (u, v) = ∇φ(u, v) = u+v 2 u+v 2
T then transports the uniform distribution on [0; 1] 2 into the distribution defined by the cdf F (u, v) = min(u, v). The distribution considered in the previous example corresponds to the max-copula. A copula induces a distribution defined on [0; 1] 2 with uniform margins and is a measure of the dependence for a bivariate random vector.

L-moments issued from the monotone transport

From now on, the notion of optimal transport will uniquely refer to the monotone case.

Monotone transport from the uniform distribution on [0; 1] d

Let X ∈ R d be a random vector. According to Brenier's Theorem, there exists a potential ϕ :

[0; 1] d → R d such that ∇ϕ(U ) d = X.
The α-th multivariate L-moment associated to this potential is

λ α = [0;1] d ∇ϕ(t)L α (t)dt.
(2.29)

We keep the property of invariance with respect to translation and equivariance with respect to dilatation coming from the univariate L-moments Proposition 2.12. Let X be a random vector in R d and λ α (X) its associated L-moments such that λ α (X) = Proof. Let ψ : x → σϕ(x) + x, m . Then ψ is convex and ∇ψ(X) = σX + m. ∇ψ is then the monotone transport from the uniform distribution on [0; 1] d onto the distribution of σX + m.

We do not have a general property dealing with rotation with this transport. This is strongly due to the bad behavior of the unit square through this transformation. We will present later Hermite L-moments that partially fill this deficiency.

Monotone transport for copulas

Let X be a bivariate vector of cdf denoted by H. We can build a transport of the bivariate uniform distribution on [0; 1] 2 into X through the composition of the transport of the copula of X with the transport of the marginals. The reason of this construction is that the copula function is well adapted to the unit square [0; 1] d .

Let us first present the definition of a copula and Sklar's Theorem. Definition 2.10. A copula is a function C : [0; 1] 2 → [0; 1] with the following properties :

• C is 2-increasing i.e. for all

u 1 ≤ u 2 ∈ [0; 1] and v 1 ≤ v 2 ∈ [0; 1] : C(u 2 , v 2 ) -C(u 2 , v 1 ) -C(u 1 , v 2 ) + C(u 1 , v 1 ) ≥ 0 • for u, v ∈ [0; 1] : C(u, 1) = u , C(u, 0) = 0 and C(1, v) = v , C(0, v) = 0 Theorem 2.

(Sklar's theorem)

Let H be a joint distribution with margins F and G. Then there exists a copula C such that for all x, y ∈ R = R ∪ {-∞, +∞} :

H(x, y) = C(F (x), G(y)) (2.32) C is uniquely defined on F ( R) × G( R).
Conversely, if C is a copula and F and G are distribution functions, then H defined by the above equation is a joint distribution function with margins F and G.

Proof. see Theorem 2.3.3 of Nelsen [START_REF] Nelsen | An Introduction to Copulas[END_REF].

Let now C be a copula associated to the bivariate vector X. Then, using the previous Theorem 2.5, C is the joint distribution function of a bivariate vector W with uniform margins on [0; 1]. Let Q C be the optimal transport of U with uniform distribution on [0; 1]

2 into W = W 1 W 2 .
As W and X share the same copula, it is sufficient to transport the margins of X : if Q 1 and Q 2 transport W 1 into X 1 and W 2 into X 2 respectively (we recall that W 1 and W 2 are uniform such that we naturally choose Q 1 and Q 2 as the univariate quantiles of X 1 and X 2 ) then the function defined for u, v ∈ [0; 1] by

Q(u, v) = Q 1 Q 2 • Q C (u, v) (2.33)
transports U into X. To sum up, if we manage to transport a copula, we can easily transport all distributions sharing this copula. We can link the copula function to the potential of Proposition 2.10 :

Lemma 2.6. Let C be a copula and Q C = ∇φ C the monotone transport between the uniform distribution function and the distribution whose cdf is C. Then for all u, v ∈ [0; 1] :

C(u, v) = vol (∇φ C ) -1 ([0; u] × [0; v]) .
(2.34)

Proof. Let W = W 1 W 2 be the distribution of cdf C. By definition, we have W d = ∇φ C (U ) (U is uniform on [0; 1] 2 ). Then, if u, v ∈ [0; 1] C(u, v) = P[W 1 ≤ u, W 2 ≤ v] = P[∂ 1 φ C (U ) ≤ u, ∂ 2 φ C (U ) ≤ v] = vol (∇φ C ) -1 ([0; u] × [0; v]) .
Example 2.17. (Independent Copula)

The case of the independent copula Π(u, v) = uv is straightforward. In that case, the potential is

φ Π (u, v) = u 2 2 + v 2
2 which gives :

Q Π (u, v) = ∇φ Π (u, v) = u v . ( 2 

.35)

As (U,V) are uniform independent, Q Π (u, v) have independent margins and its copula is Π. φ Π is then the associated potential for the independent copula. The L-moments of the copula's distribution are then for j, k > 0 :

λ jk = [0;1] 2 u v L j (u)L k (v)dudv = 1 k=1 λ j (U ) 1 j=1 λ k (U )
where U represents a uniform distribution on [0 ;1] i.e.

λ 11 = 1 2 1 2
, λ 12 = 0 

Q M (u, v) = 1 2 u + v u + v . ( 2 

.36)

The L-moments of the copula's distribution are then for j, k > 0 :

λ jk = 1 2 [0;1] 2 u + v u + v L j (u)L k (v)dudv = 1 2 
1 k=1 λ j (U ) + 1 j=1 λ k (U ) 1 k=1 λ j (U ) + 1 j=1 λ k (U )
where U represents a uniform distribution on [0; 1] i.e.

λ 11 = 1 2 1 2 , λ 12 = 1 12 1 12
, λ 21 =

1 12 1 12
, λ jk = 0 otherwise.
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Example 2.19. (Min-Copula)

The case of the copula-min W (u, v) = max(u + v -1, 0) can similarly be solved.

Let us define the potential φ

W (u, v) = 1 4 (u + 1 -v) 2 , then for u, v ∈ [0; 1] : Q W (u, v) = ∇φ W (u, v) = 1 2 u + 1 -v v + 1 -u (2.37)
If U and V are uniform and independent Q W (U, V ) has uniform margins that are anticomonotone i.e. the copula of Q W (U, V ) is W . The L-moments of the copula are then for j, k > 0 :

λ jk = 1 2 [0;1] 2 u + 1 -v v + 1 -u L j (u)L k (v)dudv = 1 2 
1 k=1 λ j (U ) + 1 j=1 (-1) k λ k (U ) -1 k=1 (-1) j λ j (U ) -1 j=1 λ k (U )
where U represents a uniform distribution on [0 ;1] i.e.

λ 11 = 1 2 1 2 , λ 12 = 1 12 -1 12 , λ 21 = -1 12 1 12
, λ jk = 0 otherwise.

For the sake of simplicity, we have presented copulas in the bivariate setting but multivariate generalizations of copulas and of Sklar's theorem exist. It is then straightforward to adapt the above transport for multivariate random vectors.

Remark 2.25. Even if it is difficult to find the explicit formulation of the monotone transport for classical parametric family of copulas (such as Gumbel or Clayton copula),

we can define a copula from its potential.

Monotone transport from the standard Gaussian distribution

The major drawback of the uniform law on [0; 1] d is its non-invariance by rotation which is a desirable property in order to more easily compute the monotone transports. For example, the multivariate standard Gaussian distribution appears as a better source measure but any other distribution could also be considered. We propose an alternative transport leading to the following L-moments :

λ α = [0;1] d T 0 • Q N (t 1 , ..., t d )L α (t 1 , ..., t d )dt 1 ...dt d (2.38)
where Q N is the transport of the multivariate standard distribution N (0, I d ) into the uniform one defined by

Q N (t 1 , .., t d ) =    N -1 (t 1 ) . . . N -1 (t d )   
and T 0 the transport of the considered distribution into the multivariate standard distribution :

([0; 1], du) Q N → (R d , dN ) T 0 → (R d , dν) (2.39)
In [START_REF] Sei | Gradient modeling for multivariate quantitative data[END_REF], Sei used the transport from the standard Gaussian in order to define distributions through a convex potential ϕ (actually, he proposed to take the dual potential in the sense of Legendre duality). A useful property of this transport is given by the following lemma In the same way, if ψ a (x) = aφ(x) and ψ m (x) = φ(x) + m, we have

∇ψ a (N ) = a∇φ(N ) d = aX ∇ψ m (N ) = ∇φ(N ) + m d = X + m.
Unfortunately, the generalization to all affine transformations is not easy. This is why it is often more convenient to define distributions through their potential function as in Sei's article.

Example 2.20. (L-moments of multivariate Gaussian)

Let us consider m ∈ R d , a positive matrix A and the quadratic potential :

ϕ(x) = m.x + 1 2 x T Ax for x ∈ R d . (2.

40)

The transport associated to this potential is :

T 0 (x) = ∇ϕ(x) = m + Ax for x ∈ R d . (2.41) Furthermore, T 0 (N d (0, I d )) d = N d (m, A T A).
The L-moments of a multivariate Gaussian of mean m and covariance A T A are :

λ α = [0;1] d [m + AN d (t 1 , ..., t d )] L α (t 1 , ..., t d )dt 1 ...dt d = 1 α=(1,...,1) m + 1 α =(1,...,1) Aλ α (N d (0, I d ))
with the notation λ α (N d (0, I d )) denoting the α-th L-moments of the standard multivariate Gaussian, which is easy to compute since it is a random vector with independent components (see example 2.15). In particular, the L-moment matrix of degree 2 :

Λ 2 = (λ 2,1...,1 . . . λ 1,...,1,2 ) = A     1 √ π 0 . . . 0 . . . 0 . . . 0 1 √ π     .
(2.42)

The matrix of L-moments ratio of degree 2 is then

τ 2 = (τ 2,1,...,1 . . . τ 1,...,1,2 ) =         a 11 d i=1 a 2 i1 1/2
. . . . . .

a dd d i=1 a 2 id 1/2         (2.

43)
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ϕ(x) = m.x + 1 2 u(x T Ax) for x ∈ R d . ( 2 

.44)

The associated transport is given by :

T 0 (x) = m + u (x T Ax)Ax. (2.45)
If the integral is well defined, the L-moments of this distribution are then

λ α = 1 α=(1,...,1) m + A R d u (x T Ax)xL α (N (x))dN (x).
(2.46)

If we take A = I d and write u (x) = v(x) x 1/2 , then T 0 (X) = m + v(X T X) X (X T X) 1/2
where X is a standard Gaussian random variable which is the characterization of a spherical distribution according to [START_REF] Cambanis | On the theory of elliptically contoured distributions[END_REF].

Example 2.22. (Linear combinations of independent variables)

Let (e 1 , ..., e d ) be an orthonormal basis of R d and (b 1 , ..., b d ) the canonical basis. We consider the potential defined by :

ϕ(x) = d i=1 σ i ϕ i (x T e i ) (2.

47)
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∇ϕ(x) = d i=1 σ i ϕ i (x T e i )e i (2.48)
Then, if we denote by

P = d i=1 e i b T i and D = d i=1 σ i b i b T i ,

this potential generates the random vector

Y d = P T D    ϕ 1 (X T e 1 )
. . .

ϕ d (X T e d )    .
(2.49)

Let us note that P is orthogonal i.e. P P T = P T P = I d and D is diagonal. As e 1 ,...,e d is an orthonormal family, X T e 1 , ..., X T e d are independent Gaussian random variables. Then if we write the increasing functions

ϕ i (x) = Q i (N 1 (x)) with Q i the quantile of a random variable Z i , then Y d = P T    σ 1 Z 1 . . . σ d Z d    (2.50)
with Z 1 ,...,Z d independent. The parameters σ i are meant to represent a scale parameter for each Z i but can be absorbed in the function ϕ i . Figure 2.6 illustrates this model with for each i, Z i = Z i where is a Rademacher random variable (i.e. discrete with probability 1 2 on -1 and 1) and Z i is a Weibull random variable.

The L-moments of Y are then for α ∈ N d * :

λ α = P T D    R d ϕ 1 ( x, e 1 )L α (N d (x))dN d (x) . . . R d ϕ d ( x, e d )L α (N d (x))dN d (x))   
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General multivariate case

In a paper dated of 1952 [START_REF] Rosenblatt | Remarks on a multivariate transformation[END_REF], Rosenblatt defined a transformation for the random variable X = (X 1 , ..., X d ) with an absolutely continuous distribution. This transformation denoted by T is now known as Rosenblatt transport (sometimes named Knothe's transport) and is explicitly given by the successive conditional distributions of

X k |X 1 = x 1 , ..., X k-1 = x k-1 : T (x 1 , ..., x d ) =       F X 1 (x 1 ) F X 2 |X 1 (x 2 |x 1 ), . . . F X d |X 1 ,...,X d-1 (x d |x 1 , ..., x d-1 )       (2.51)
Rosenblatt showed that T transports the random variable X into the uniform law on [0; 1] d . However, T is not uniquely defined because there are d! transports T corresponding to the d! ways in which one can number the coordinates X 1 , ..., X d .

In the following, we soften the absolute continuity assumption in order to transport the uniform measure on [0; 1] d µ onto an arbitrary measure ν. In that version, the Rosenblatt transport is based on the disintegration theorem (given without proof) which is a consequence of the Radon-Nikodym theorem (see for example [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]) :

Theorem 2.6. Let E 1 and E 2 be two separable metric spaces equipped with their Borel σ-algebras, B E 1 and B E 2 . Let γ be a Borel probability measure on E 1 × E 2 and γ 1 = π E 1 γ be its first marginal ; then there exists a family of probability measures on E 2 , (γ

x 1 2 ) x 1 ∈E 1 measurable in the sense that x 1 → γ x 1 2 (A 2 ) is µ-measurable for every A 2 ∈ B E 2 and such that γ = γ 1 ⊗ γ x 1 2 i.e. : γ(A 1 × A 2 ) = A 1 γ x 1 2 (A 2 )dγ 1 (x 1 ) (2.

52)

for every

A 1 ∈ B E 1 and A 2 ∈ B E 2 .
We can sum up the previous theorem by stating the existence of measures

γ x 1 2 such that γ = γ 1 ⊗ γ x 1 2 .
(2.53)

γ x 1
2 correspond to the notion of conditional distribution of the second marginal of γ knowing the first marginal is equal to x 1 . The disintegration can be a way to define conditioning according to Chang and Pollard [START_REF] Chang | Conditioning as disintegration[END_REF]. If γ is absolutely continuous and we have denoted its density by p, the disintegrated measures γ 1 and γ x 1 2 have respective densities :

p 1 (x 1 ) := p(x 1 , x 2 )dx 2 and p x 1 2 (x 2 ) := p(x 1 , x 2 ) p 1 (x 1
) .

The Rosenblatt transport refer to the concatenation of univariate transports of disintegrated measures from ν. More precisely in the case of the quantile, we recall that ν is a probability measure defined on the Borelian of R d . Let denote ν 1 , ν x 1 2 , ..., ν

x 1 ,...,x d-1 d the disintegration of ν and F 1 , F x 1 2 ,..., F x 1 ,...,x d-1 d
the corresponding cdf. Then the Rosenblatt quantile is defined by

Q(t 1 , t 2 , ..., t d ) :=       Q 1 (t 1 ) Q 2 (t 1 , t 2 )
. . .

Q d (t 1 , ..., t d )       =        F -1 1 (t 1 ) (F Q 1 (t 1 ) 2 ) -1 (t 2 ) . . . (F Q 1 (t 1 ),...,Q d-1 (t 1 ,...,t d-1 ) d ) -1 (t d )        .
(2.54)
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This construction transports the uniform distribution on [0; 1] d into the distribution of the random vector X and can be defined even if the distribution of X is not absolutely continuous.

Proposition 2.13. If U is the uniform distribution on

[0; 1] d and Q is a Rosenblatt quantile, then Q(U ) d = X.
Proof. We will prove the statement in the bivariate case for Q = Q 12 with

Q 12 (t 1 , t 2 ) = Q 1 (t 1 ) Q 2 (t 1 , t 2 )
The generalization to the multivariate case is very similar.

Let a be a function dF -measurable, then :

[0;1] 2 a(Q 12 (u))du = [0;1] 2 a(Q 1 (u), (F Q 1 (u) 2 ) -1 (v))dudv = 1 0 R a(Q 1 (u), y)dF Q 1 (u) 2 (y)du = R R a(x, y)dF x 2 (y)dF 1 (x) = R 2 a(x, y)dF (x, y).
The second and third equalities hold because the successive quantiles are one-dimensional transports.

Remark 2.26. Carlier et al. [START_REF] Carlier | From knothe's transport to brenier's map and a continuation method for optimal transport[END_REF] showed that the Rosenblatt transport can be viewed as a limit of optimal transports. Indeed, they showed that if we consider the cost depending on a parameter θ :

c θ (x, y) = 1 2 d k=1 θ k-1 |x k -y k | 2
then the mapping T θ solving the optimal transport with such a cost converges in L 2 to the Rosenblatt transport given by equation (2.51) as θ goes to 0. We see once again that the Rosenblatt transport depends on the numbering order of the coordinates x 1 , .., x d because c θ is not symmetric with respect to the coordinates of x and y.

The case of bivariate L-moments of the form λ 1r and λ r1

We now consider a bivariate vector X = (X 1 , X 2 ). The two possible Rosenblatt quantiles are given by the successive conditional quantiles

Q 12 (t 1 , t 2 ) = Q X 1 (t 1 ) Q X 2 |X 1 =Q X 1 (t 1 ) (t 2 ) or Q 21 (t 1 , t 2 ) = Q X 1 |X 2 =Q X 2 (t 2 ) (t 1 ) Q X 2 (t 2 )
where Q X 1 , Q X 2 are the marginal quantiles of X 1 and X 2 and

Q X 2 |X 1 , Q X 1 |X 2 are the conditional quantiles.
The associated L-moments are then :

λ (12) α = [0;1] 2 Q 12 (t 1 , t 2 )L α (t 1 , t 2 )dt 1 dt 2 or λ (21) α = [0;1] 2 Q 21 (t 1 , t 2 )L α (t 1 , t 2 )dt 1 dt 2
Here, the multi-indices α are couples (r, s) for r, s ≥ 1.

If we consider the pairs (r, 1) and (1, s) and denote by λ r (X i ) the r-th univariate L-moment of X i , we can express the corresponding L-moments :

λ (12) r1 = [0;1] 2 Q 12 (t 1 , t 2 )L r (t 1 )dt 1 dt 2 = λ r (X 1 ) E[L r • F 1 (X 1 )E[X 2 |X 1 ]] (2.55)
and

λ (21) 1s = [0;1] 2 Q 21 (t 1 , t 2 )L s (t 2 )dt 1 dt 2 = E[L s • F 2 (X 2 )E[X 1 |X 2 ]] λ s (X 2 ) . (2.56)
Serfling and Xiao [START_REF] Serfling | A contribution to multivariate l-moments : L-comoment matrices[END_REF] implicitly used this transformation for a bivariate vector to define multivariate L-moments. For a multivariate vector X = (X 1 , ..., X d ), they considered each pair (X i , X j ) 1≤i,j≤d which avoids considering the d! ways to build the Rosenblatt transport and allows a straightforward estimation through the concomitants of the samples as we will see in the next section. They named r-th multivariate L-moments as the 

d × d matrix Λ r Λ r =        Λ r,
(u, v) = uv + θK a (u)K b (v) for u, v ∈ [0; 1] with a, b ≥ 3. C is a copula because : • C(1, v) = v for all v ∈ [0; 1], C(u, 1) = u for all u ∈ [0; 1] and C(u, 0) = C(0, v) = 0 for all u, v ∈ [0; 1] • if u 1 ≤ u 2 and v 1 ≤ v 2 : C(u 2 , v 2 ) -C(u 1 , v 2 ) -C(u 2 , v 1 ) + C(u 1 , v 1 ) =(u 2 -u 1 )(v 2 -v 1 ) + θ(K a (u 2 ) -K a (u 1 ))(K b (v 2 ) -K b (v 1 )) ≥(1 -θ)(u 2 -u 1 )(v 2 -v 1 ) ≥ 0 because for all a ≥ 1, K a is 1-Lipschitzian.
Furthermore, if we consider the matrices defined by Serfling and Xiao :

Λ r,11 = Λ r,11 = λ r (U ([0; 1]))
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and Λ r,12 = E[L r • F 1 (X 1 )E[X 2 |X 1 ]] = [0;1] 2 vL r (u)dC θ (u, v) = 1 r=1 1 2 .
Similarly,

Λ r,21 = [0;1] 2 uL r (v)dC θ (u, v) = 1 r=1 1 2 .
Hence, the whole family of cdf's (C θ ) θ∈[-1;1] admits the same matrices Λ r .

Property of λ [START_REF] Barbaresco | Information geometry of covariance matrix : Cartan-siegel homogeneous bounded domains, mostow/berger fibration and frechet median[END_REF] r1 and λ We will present properties for λ [START_REF] Bhatia | Positive Definite Matrices[END_REF] 1r

that can be easily extended to λ [START_REF] Barbaresco | Information geometry of covariance matrix : Cartan-siegel homogeneous bounded domains, mostow/berger fibration and frechet median[END_REF] r1 . Although these specific L-moments do not completely characterize any bivariate distribution, they share some desirable properties. Proposition 2.14. Let us recall that the L-moments ratios are defined by (see Definition 2.7)

τ (21) 1r := λ (21) 1r λ(X 2 ) ∈ R 2
Then, we have for

k = 1, 2 | τ (21) 12 , b k | ≤ 1 (2.58) where (b 1 , b 2 ) is the canonical basis of R 2 .
Proof. We apply Proposition 2.8 with

V d = X 2 .
Let us suppose X 1 , X 2 , ..., X r r bivariate random samples. If we order the samples along the second coordinate i.e. X 2,(1:r) ≤ X 2,(2:r) ≤ ... ≤ X 2,(r:r) , the remaining first coordinate X 1,(i:r) , paired with each X 2,(i:r) , is named the concomitant of X 2,(i:r) (see Yang [START_REF] Yang | General distribution theory of the concomitants of order statistics[END_REF] for a general study of concomitants). Furthermore, note X [START_REF] Bhatia | Positive Definite Matrices[END_REF] (i:r) = X 1,(i:r) X 2,(i:r) .

The superscript [START_REF] Bhatia | Positive Definite Matrices[END_REF] refers to the choice of X 2 as sorting coordinate. We can then have an analogue characterization of the multivariate L-moment as a linear combination of expectations of concomitants.

Proposition 2.15. The r-th L-moment may be represented as

λ (21) 1r = 1 r r-1 j=0 (-1) j j r -1 E[X (21) 
(r-j:r) ] (2.59)

Proof. Let i ≤ r. We have E[X (21) 
1,(i:r) ] = rE[X 1 |X 2 = X 2,(i:r) ] i.e. by analogy with standard order statistics

E[X (21) 1,(i:r) ] = r i -1 r -1 +∞ -∞ +∞ -∞ x 1 (F 2 (x 2 )) i-1 (1 -F 2 (x 2 )) r-i dF (x 1 , x 2 )
We continue the analogy with the dimension 1 to reorganize the coefficients and conclude.

This characterization allows us to use L-statistics and U-statistics representation especially in order to build unbiased estimators (see [START_REF] Serfling | A contribution to multivariate l-moments : L-comoment matrices[END_REF]).

Estimation of L-moments

Let x 1 , ..., x n be independently drawn from a common random variable X ∈ R d of measure ν. We will note ν n = n i=1 δ x (i) the empirical measure. The estimation of multivariate L-moments is built from an estimation of the quantile function, say Q n . This section considers the estimation of Q, leading to explicit formulas for Q n . The L-moments are estimated by plug-in, through λα =

[0;1] d Q n (t)L α (t)dt (2.60)
The simplest idea for the estimation of Q is to build the transport between the continuous uniform distribution on Ω = [0; 1] d and the discrete measure ν n which is possible for the considered transports.

Estimation of the Rosenblatt transport

The estimation of this transport is attractive due to its simplicity and its similarity with the univariate case. We suppose that the sampling distribution is absolutely continuous with respect to the Lebesgue measure. Then for two random samples X i and X j , P[X i = X j ] = 0. If we denote by Q n the empirical quantile built from the construction of the equation 2.54 for ν = ν n , then Q n : [0; 1] d → {x 1 , ..., x n } is defined with probability 1 for all 1 ≤ i ≤ n by :

Q n (u 1 , ..., u d ) = x (1) (i:n) for any u 1 ∈ i -1 n ; i n , u 2 , ..., u d ∈ [0; 1]
where x

(1)

(1:n) , x (1) 
(2:n) , . . . , x

(n:n) denote the samples sorted by their first coordinate. Recall that we call the (d -1) last components of x (1) (i:n) the concomitants of its first component [START_REF] Yang | General distribution theory of the concomitants of order statistics[END_REF].

Remark 2.27. If the sampling distribution is discrete for example, the expression of the quantile will be more complicated since the law of X 2 |X 1 = x 1 is not reduced to a single point.

Therefore, a natural version for the estimated L-moments associated to the Rosenblatt quantile could be :

λ(i 1 ,...,i d ) = [0;1] d Q n (u)L (i 1 ,...,i d ) (u)du = n i=1 w (i 1 ) i x (1) (i:n) (2.61) where (i 1 , ..., i d ) ∈ N d * and w (i 1 ) i = i/n (i-1)/n L i 1 (u 1 )du 1 1 i 2 =1 ...1 i d =1
are the weights of the estimators of the i 1 -th univariate L-moments. Therefore, this estimator has an interest only for L-moments of the form λ i 1 ,1,...,1 . We will restrict ourselves to this case for L-moments associated to Rosenblatt quantiles. Serfling and Xiao [START_REF] Serfling | A contribution to multivariate l-moments : L-comoment matrices[END_REF] proposed a slightly different estimator which is the unbiased version of the above estimator :

λ(u) (i 1 ,1,...,1) = n i=1 v (i 1 ) i x (1) (i:n) (2.

62)
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with

v (i 1 ) i = min(i-1,i 1 -1) j=0 (-1) i 1 -1-j j i 1 -1 j i 1 -1 + j j n -1 -1 j i -1 .
Moreover, the consistency of both estimators holds for bivariate random vectors but in general fails to hold for vectors of dimension d > 2 :

Theorem 2.7. If we define for all u ∈ [0; 1] d :

Q (1) (u) =       Q X 1 (u 1 ) Q X 2 |X 1 =Q X 1 (u 1 ) (u 2 )
. . .

Q X d |X 1 =Q X 1 (u 1 ) (u d )       (2.63) then λ(i 1 ,1,...,1) a.s. → [0;1] d Q (1) (u)L (i 1 ,1,...,1) (u)du = λ (i 1 1,...,1) (2.64)
and λ(u)

(i 1 ,1,...,1) a.s. → [0;1] d Q (1) (u)L (i 1 ,1,...,1) (u)du = λ (i 1 1,...,1) . (2.65)
Proof. The convergence of the first coordinate of λ(i 1 ,...,i d ) or λ(u) (i 1 ,...,i d ) directly comes from the univariate L-moments convergence results [START_REF] Hosking | L-moments : analysis and estimation of distributions using linear combinations of order statistics[END_REF]. The (d -1) remaining coordinate converge as an application of the theorem of convergence for the linear combinations of concomitants [START_REF] Yang | General distribution theory of the concomitants of order statistics[END_REF].

Remark 2.28. An other idea for the estimation of the Rosenblatt L-moments is to consider the Rosenblatt construction of the quantile with a smoothed version of the empirical distribution. If this smoothed version (for example a kernel version) is absolutely conti-

nuous with respect to the Lebesgue measure, then consistency would hold.

Estimation of a monotone transport

We will show here that the monotone transport from any absolutely continuous distribution onto a discrete one is the gradient of a piecewise linear function. We present the construction of the monotone transport of an absolutely continuous measure µ defined on R d onto ν n = n i=1 δ x i . Here, µ will typically be either the standard Gaussian measure on R d or the uniform measure on [0; 1] d . We will denote by Ω the support of µ.

Power diagrams

Here, we briefly present power diagrams, a tool generalizing Voronoi diagrams and coming from computational geometry, which is useful for the representation of the discrete optimal transport. Definition 2.11. Let x 1 , ..., x n ∈ R d and their associated weights w 1 , ..., w n ∈ R. The power diagram of (x 1 , w 1 ), ..., (x n , w n ) is the subdivision of Ω into n polyhedra given by : Convex piecewise linear functions are strongly related to power diagrams through their gradient. Indeed, let φ h : Ω → R be a piecewise linear function. Assume that φ h is

Ω = 1≤i≤n P D i = 1≤i≤n u ∈ Ω s.t. u -x i 2 + w i ≤ u -x j 2 + w j ∀j = i (2.
parametrized by h =    h 1 . . . h n    ∈ R n . Define then φ h explicitly through : for any u ∈ Ω, φ h (u) = max 1≤i≤n {u.x i + h i } . (2.67)
Let (W i (h)) 1≤i≤n be the polyhedron partition of Ω defined by

W i (h) = {u ∈ Ω s.t. ∇φ h (u) = x i }.
This subdivision is often called the natural subdivision associated to the piecewise linear function φ h . Then, we have the following lemma :

Lemma 2.8. The power diagram associated to (x 1 , w 1 ), ..., (x n , w n ) is the polyhedron partition

∪ 1≤i≤n W i (h) if h i = -x i 2 +w i 2 .
Proof. The proof is straightforward since ∇φ h (u) = x i iff u.x i + h i ≥ u.x j + h j for all j which is equivalent to u -

x i 2 + 2h i -x i 2 ≥ u -x j 2 + 2h j -x j 2 .

Discrete monotone transport

We will present a variational approach initially proposed by Aurenhammer [START_REF] Aurenhammer | Power diagrams : properties, algorithms and applications[END_REF] for the quadratic optimal transportation problem between a probability measure µ defined on Ω and the empirical distribution of a sample x 1 , ..., x n which is denoted by ν n . Let φ h : Ω → R be the piecewise linear function defined by Equation (2.67).

Theorem 2.8. Let us suppose that x 1 , ..., x n are distinct points of R d . Let Ω be a convex domain of R d such that vol(Ω) > 0 and µ an absolutely continuous probability measure with finite expectation. Then ∇φ h is piecewise constant and is a monotone transport of µ into ν n with a particular h = h * , unique up to a constant (b, ..

., b), which is the minimizer of an energy function

E h * = arg min h∈R n E(h) = arg min h∈R n Ω φ h (u)dµ - 1 n n i=1 h i . (2.68)
Furthermore, E is strictly convex on

H (n) 0 = h ∈ R n s.t. for any 1 ≤ i ≤ n , W i (h) = ∅ and n i=1 h i = 0 .
Proof. The proof of Theorem 1.2 of Gu et al. can be extended to the case of a measure µ defined on an arbitrary convex set Ω ⊂ R d . However, we do not prove that ∇E is a local diffeomorphism.

The proof is delayed to the Appendix.

Remark 2.30. The convexity of the domain Ω is needed in order to ensure that H

(n) 0 is non void.

As exposed in the Appendix, the gradient is simply given by :

∇E(h) =     W 1 (h) dµ(x) -1 n . . . Wn(h) dµ(x) -1 n     .
(2.69) Moreover, for the expression of the Hessian of E, let us define the intersection faces for 1 ≤ i, j ≤ n :

F ij = W i (h) ∩ W j (h) ∩ Ω if the codimension of F ij is 1 F ij = ∅ otherwise
Then, if dA denote the area form on F ij , the Hessian of E is given by

   ∂ 2 E ∂h i ∂h j = -1 x i -x j F ij dA if i = j ∂ 2 E ∂h i ∂h i = 1≤j≤n,j =i 1 x i -x k F ij dA .
We can perform the computation of the solution h * of the minimization problem by Newton's method.

If Ω = [0; 1] d , in order to initialize this algorithm with h (0) (x 1 , ..., x n ) ∈ H (n) 0 , we consider the vector corresponding to the translation/scaling of the classical Voronoi cells into [0; 1] d i.e. :

h (0) (x 1 , ..., x n ) = 1 4m n    1 n n i=1 |x i | 2 -|x 1 | 2 . . . 1 n n i=1 |x i | 2 -|x n | 2   
with m n the largest coordinate absolute value among the sample x 1 , .., x n .

Proposition 2.16. If Ω = [0; 1] d and the x i 's are distinct :

h (0) (x 1 , ..., x n ) ∈ H (n) 0 .
Proof. Let us define the hypercube englobing all the samples

X n = [-m n ; m n ] × • • • × [-m n ; m n ]. Let V 1 , .
.., V n the Voronoi cells intersected with X n . So with probability 1 :

V i = {x ∈ X n s.t. |x -x i | ≤ |x -x j | ∀j = i} = ∅ It is clear that if h V =    -1 2 |x 1 | 2 . . . -1 2 |x n | 2   , we have V i = {y ∈ X n s.t. ∇φ h V (y) = x i } Let us note u c =    1/2 . . . 1/2   . Then, if h Ω = 1 2mn h V -    x 1 , u c . . . x n , u c    and u ∈ Ω = [0; 1] d : φ h Ω (u) = max 1≤i≤n { u, x i + h Ω,i } = 1 2m n max 1≤i≤n {2m n (u -u c ) , x i + 2m n (h Ω,i + x i , u c )} = 1 2m n φ h V (2m n (u -u c )) So for any 1 ≤ i ≤ N, W i (h Ω ) = 2m n (V i -u c ) = ∅.
We end this proof by taking as initialization vector

h (0) (x 1 , ..., x n ) = h Ω -1 n n i=1 h Ω,i .
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Remark 2.31.

If Ω = R d , this initialization is not an issue since it suffices to take the vector h corresponding to the Voronoi cells.

Algorithm 1 Computation of the discrete optimal transport via Newton's method Aim : To compute the discrete subdivision of Ω designing the optimal transport between ν n and µ Input :

h 0 ∈ H (n) 0 , a descent step γ, a tolerance η while |∇E(h t )| > η h t+1 = h t -γ(∇ 2 E(h t )) -1 ∇E(h t ) t ← t + 1 end
In practice, the Hessian ∇ 2 E is often hard to compute since it requires the calculation of the area of the facets of a power diagram. In our implementation, we prefer to use the simpler gradient descent in Algorithm 1 :

h t+1 = h t -γ∇E(h t ).
Moreover, in order to compute the gradient of E for an arbitrary measure µ, we use a Monte-Carlo method. However, since E is strictly convex only in H (n) 0 , Algorithm 1 may not converge to h * especially when n is large. An improvement of this algorithm that would perform a gradient descent on the set H (n) 0 is left as perspective.

Explicit expression for 2 samples

As an illustration, we can explicitly compute the monotone transport and some associated L-moments for 2 samples with a source distribution equal to the uniform on [0; 1] d or to the standard normal N d (0, I d ). Let x 1 , x 2 ∈ R d two samples coming from the same distribution. Let us first begin with the standard normal distribution as source measure. As the potential φ h of the previous section is defined up to an additive constant, we consider for

h ∈ R d : φ h (u) = max(u.x 1 , u.x 2 + h)
∇φ h is the discrete optimal transport if W i = {y ∈ R s.t. ∇φ h (y) = x i } for i = 1, 2 have a measure equal to 1/2 for the normal measure. By symmetry, we can assert that this property is attained for h = 0. The transport is then for y ∈ R :

T N (y) = ∇φ 0 (y) = x 1 if y.(x 1 -x 2 ) ≥ 0 x 2 if y.(x 1 -x 2 ) ≤ 0 (2.70)
The L-moments of degree 2 associated with this transport are then (for the sake of simplicity, we compute only the L-moments related to the first coordinate) :

λ 2,1,...,1 (x 1 , x 2 ) = R d ∇φ 0 (y)L 2 (N (y 1 ))dN d (y) = (x 1 -x 2 ) y.(x 1 -x 2 )≥0
L 2 (N (y 1 ))dN d (y).

Ce document et les informations qu'il contient sont la propriété de Thales Air Systems SAS. Ils ne peuvent être reproduits, communiqués ou utilisés sans son autorisation écrite préalable. This document and any data included are the property of Thales Air Systems SAS. They cannot be reproduced, disclosed or used without the company's prior written approval. Let us denote by (e 1 , .., e d ) the canonical basis of R d . Then, if e 1 and x 1 -x 2 are collinear, then

y.(x 1 -x 2 )≥0 L 2 (N (y 1 ))dN d (y) = ±1/4
depending on the sign of y.(x 1 -x 2 ). If it is not the case, we can build an orthonormal basis (f 1 = e 1 , f 2 , ..., f d ) by completing the basis of the plan formed by e 1 and x 1 -x 2 . Let us denote by U the rotation matrix transforming the canonical basis into the second one. We also define a 1 = (x 1 -x 2 ).f 1 = (x 1 -x 2 ).e 1 and a 2 = (x 1 -x 2 ).f 2 . Then, the integral becomes

λ 2,1,...,1 (x 1 , x 2 ) = (x 1 -x 2 ) a 1 z 1 +a 2 z 2 ≥0 L 2 (N (z 1 ))dN d (z) = (x 1 -x 2 ) R L 2 (N (z 1 ))N (- a 1 |a 2 | z 1 )dN (z 1 ) = x 1 -x 2 π arctan a 1 /|a 2 | (a 1 /|a 2 |) 2 + 2
This last equality is obtained by deriving the function t → L 2 (N (z 1 ))N (tz 1 )dN (z 1 ) and is still valid for a 2 = 0 which corresponds to the case of collinearity of e 1 and x 1 -x 2 .

In the following, we will note the central point of the unit square

u c =    1/2 . . . 1/2   .
The same calculus can be performed when the source measure is uniform on the unit square. The transport is then by the same argument of symmetry for u ∈ [0; 1] d :

T unif (u) = x 1 if (u -u c ) .(x 1 -x 2 ) ≥ 0 x 2 if (u -u c ) .(x 1 -x 2 ) ≤ 0 .
Performing the same kind of change of coordinate with a translation of u c , the L-moments of order (r, 1, ..., 1) with r ≥ 2 are :

λ r,1,...,1 (x 1 , x 2 ) = (x 1 -x 2 ) (u-uc).(x 1 -x 2 )≥0 L r (u 1 )du = (x 1 -x 2 ) a 1 v 1 +a 2 v 2 ≥0;|v 1 |,|v 2 |≤1/2 L r (v 1 + 1/2)dv 1 dv 2 =              sgn(a 1 )K r ( 1 2 ) if a 2 = 0 a 1 6|a 2 | if |a 2 | |a 1 | ≥ 1 a 2 2|a 2 | (1 + a 1 |a 1 | ) K r ( 1 2 (1 + a 2 a 1 )) -K r ( 1 2 (1 -a 2 a 1 )) -a 1 |a 2 | J r ( 1 2 (1 + a 2 a 1 )) -J r ( 1 2 (1 -a 2 a 1 )) otherwise
where K r and J r are successive primitive functions of L r .

Consistency of the optimal transport estimator

Let X 1 , ..., X n be n independent copies of a vector X in R d with distribution ν. Let µ denote a reference measure on a convex set Ω ⊂ R d so that µ gives no mass to small sets. Let ν n be the empirical measure pertaining to the sample. We define two transports, say T and T n expressed as the gradient of two convex functions, say ϕ and ϕ n , so that T = ∇ϕ and T n = ∇ϕ n .

T and T n respectively transport µ onto ν and ν n . We do not assume that the hypothesis in Theorem 2.4 holds for µ. Hence neither T nor T n can be defined as an optimal transport for a quadratic cost ; T and T n are merely monotone transports. This section is devoted to the statement of the convergence of T n to T . Definition 2.12. A set S ⊂ R d × R d is said to be cyclically monotone if for any finite number of points (x i , y i ) ∈ S, i=1...n

y 1 , x 2 -x 1 + y 2 , x 3 -x 2 + . . . y n , x 1 -x n ≤ 0 (2.71)
By extension, we say that a function f is cyclically monotone if all subsets of the form

S = {(x 1 , f (x 1 )), ..., (x n , f (x n ))}
are cyclically monotone.

Before stating consistency results, let us first begin with a lemma.

Lemma 2.9. Let K be the space defined by

K = {∇ϕ ∈ L 1 (Ω, R d , µ) , ϕ convex µ-a.e.} (2.72)
Then K is a Hilbert space for the norm :

∇ϕ 1 = Ω ∇ϕ(x) dµ(x) (2.73) Proof. As L 1 (Ω, R d , µ) is a Hilbert space, it is sufficient to prove that K is closed in L 1 (Ω, R d , µ). Let ∇ϕ n be a sequence in K convergent to T ∈ L 1 (Ω, R d , µ
). ∇ϕ n is cyclically monotone i.e. for all m ∈ N and x 0 , x 1 , ..., x m ∈ Ω :

(x 1 -x 0 ).∇ϕ n (x 0 ) + (x 2 -x 1 ).∇ϕ n (x 1 ) + • • • + (x 0 -x m ).∇ϕ n (x m ) ≤ 0
Let n → ∞ then :

(x 1 -x 0 ).T (x 0 ) + (x 2 -x 1 ).T (x 1 ) + • • • + (x 0 -x m ).T (x m ) ≤ 0 i.e.
T is cyclically monotone. Furthermore, Theorem 24.8 of Rockafellar asserts that there exists a convex potential ϕ whose subgradient is cyclically monotone [START_REF] Rockafellar | Convex Analysis[END_REF]. As µ gives no mass to small sets, ϕ is µ-almost everywhere differentiable (see [START_REF] Anderson | Convex functions and upper semicontinuous collections[END_REF]) and ∇ϕ = T ∈ K.

Lemma 2.10. (Lemma 9 McCann [79])

Let a sequence of probability measure on R d × R d , denoted by γ n , converge to γ in the sense that for any test function

h ∈ C ∞ (R d × R d ) with compact support h(x, y)dγ n (x, y) → h(x, y)dγ ( x, y).
Let us call the marginals of γ the respective measures µ and ν defined on R d such that for any Borel set 

M of R d µ(M ) = γ(M × R d ) ν(M ) = γ(R d × M )
T -T n 1 = Ω T (x) -T n (x) dµ(x) a.s. → 0.
(2.74)

Proof. T is a gradient of a convex potential. We will consider the space

K = {∇ϕ ∈ L 1 (Ω, R d , µ) , ϕ convex µ-a.e.}.
T n and T respectively transport µ into ν n and ν. By the strong law of large numbers :

Ω T n (x) dµ(x) = R d y dν n (y) a.s. → R d y dν(y).
Let ω be a realization such that :

Ω T n (ω, x) dµ(x) = R d y dν n (ω, y) → R d y dν(ω, y).
In the following, we will omit ω for the sake of simplicity of the notations. We deduce from the convergence result of T n 1 that T n is bounded for n large enough. Hence, there exists ∇ψ ∈ K such that T m = ∇ϕ m → ∇ψ in K for a subsequence {m}.

If we set dγ m (x, y) = δ(y -∇ϕ m (x))dµ(x) and dγ(x, y) = δ(y -∇ψ(x))dµ(x). Then for any function f with compact support, f (x, y)dγ m (x, y)(x) → f (x, y)dγ(x, y)(x).

By the above Lemma 2.10, we have that γ have µ and ν as marginals, i.e. ∇ψ maps µ into ν. By the uniqueness of the gradient of the convex transport, ∇ψ = ∇ϕ = T is the unique limit point of the sequence T n in the Hilbert K.

Let T and T n be the transport of a reference measure µ 0 onto ν and ν n and Q 0 the transport of the uniform measure on [0; 1] d onto this reference measure. Let us recall that we defined the quantiles of ν and ν n by

Q = T • Q 0 and Q n = T n • Q 0 .
Theorem 2.10. Let ν satisfy

x dν(x) < +∞. Then, we have for

α ∈ N d * . λα = Ω Q n (u)L α (u)du a.s. → λ α = Ω Q(u)L α (u)du (2.75)
Proof. By using Theorem 2.9, we have :

λα -λ α = [0;1] d T n (Q 0 (t))L α (t)dt - [0;1] d T (Q 0 (t))L α (t)dt ≤ [0;1] d T n (Q 0 (t)) -T (Q 0 (t)) dt sup t∈[0;1] d L α (t) ≤ R d T n (x) -T (x) dµ 0 (x) a.s.
→ 0.

Remark 2.32. The L-moment estimator presented above has a L-statistic representation.

For

α ∈ N d * λα = [0;1] d T n (Q 0 (t))L α (t)dt = n i=1 Q -1 0 (W i (Tn)) L α(t) dt x (i)
where

W i (T n ) = x ∈ R d s.t. T n (x) = x i 2.
7 Some extensions

Trimming

Semi-robust univariate trimmed L-moments

Elamir and Seheult [START_REF] Elamir | Trimmed l-moments[END_REF] proposed a trimmed version of univariate L-moments. Let us recall some notations. If X 1 , ..., X r are real-valued iid random variables, we note X 1:r ≤ X 2:r ≤ • • • ≤ X r:r the order statistics. The TL-moments of order r are defined for two trimming parameters t 1 and t 2 :

λ (t 1 ,t 2 ) r = 1 r r-1 k=0 (-1) k k r -1 E[X r-k+t 1 :r+t 1 +t 2 ] (2.76)
If t 1 = t 2 = 0, the trimmed L-moments reduce to standard L-moments. Intuitively, we do not consider the t 1 first lower samples and the t 2 higher.

Example 2.24. Let us present some trimmed L-moments of low order :

λ (1,1) 1 = E[X 2:3 ] λ (1,0) 1 = E[X 1:2 ] λ (1,1) 2 = 1 2 E[X 3:4 -X 2:3 ] λ (1,1) 3 = 1 3 E[X 4:5 -2X 3:5 + X 2:5 ] λ (1,1) 4 = 1 4 E[X 5:6 -3X 4:6 + 3X 3:6 -X 2:6 ]
The expectations of the order statistics are written in function of the quantile of the common distribution of the X i 's through

E[X i:r ] = r! (i -1)!(r -i)! 1 0 Q(u)u i-1 (1 -u) r-i du
We may also give the alternative definition of the TL-moments as scalar product in L 2 ([0; 1]) : may exist even if the common distribution of X i does not have a finite expectation. For example, the existence holds for Cauchy distribution of parameter x 0 ∈ R, σ > 0 and t 1 , t 2 > 1. Also, some robustness of the sampled trimmed L-moments to outliers holds. Let x 1 , ..., x n an iid sample, then the empirical TL-moments are defined by the U-statistics corresponding to Definition 2.76 taking into account all subsamples of size r, similarly to the empirical L-moments. Hence, we remark that the t 1 lower and the t 2 larger x i 's are not considered for the empirical TL-moments. Although this estimator is robust to these extreme points, the breakdown point of this sample version is 0 because it eliminates a fixed number of extreme values, and so the proportion of eliminated samples will be asymptotically zero. It can be interesting to suppress a fixed proportion of high value in order to reinforce the robustness of the tool.

λ (t 1 ,t 2 ) r = 1 0 Q(u)P (t 1 ,t 2 ) r (u)du with P (t 1 ,t 2 ) r (u) = 1 r r-1 k=0 (-1) k k r -1 (r + t 1 + t 2 )! (r -k + t 1 -1)!(t 2 + k)! u r-k+t 1 -1 (1 -u)

An other approach for robust multivariate trimmed L-moments

We cannot directly adapt the univariate trimmed version of L-moments to the multivariate case. Indeed, the multivariate L-moments are not expressed as linear combinations of expectations of order statistics. We then propose the following definition for trimmed L-moments :

λ (D) α = D Q(t)L α (t)dt (2.77)
with Q a transport of the uniform distribution in [0; 1] d into the distribution of interest, L α the multivariate Legendre polynomial of index α and D a domain included in [0; 1] d . For example, the most intuitive choice would be to consider

D = [t 1 , 1 -t 1 ] × • • • × [t d , 1 -t d ]
with t 1 , . . . , t d ∈ [0; 1 2 ] representing the proportion of extremal deleted samples. Proposition 2.17. Let the empirical trimmed version of the L-moments issued from the optimal transport be defined by

λ(D) α = D Q n (t)L α (t)dt (2.78)
where

Q n = T n • Q 0 is defined in Theorem 2.10. Then λ(D) α a.s. → λ (D) α (2.

79)
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Proof. We simply perform the same inequality as in Theorem 2.10

λ(D) α -λ (D) α ≤ D T n (Q 0 (t)) -T (Q 0 (t)) dt ≤ Ω T n (Q 0 (t)) -T (Q 0 (t)) dt ≤ T n -T 1 a.s.
→ 0

Hermite L-moments

Motivation

Until now, L-moments have been defined through an inner product between a transport from the uniform measure on [0; 1] d onto the measure of interest and the elements of an orthogonal basis of polynomials. This definition was motivated by the analogy with the univariate case. In the present multivariate setting, L-moments are not defined as expectations, but namely through Definition 2.6. This allows to consider other source distributions than the uniform one on [0; 1] d . It appears that a convenient choice is the standard Gaussian distribution on R d , which enjoys rotational invariance. In the present context, in contrast with the construction in Section 2.4.3, we do not consider the Gaussian distribution as a reference measure, but directly as the source measure. As the Legendre polynomials are no longer orthogonal for this distribution, we change the basis as well. Once this basis (P α ) for α ∈ N d * is chosen, the alternate L-moments are defined by

λ α = R d T (x)P α (x)dN d (x)
where T is the monotone transport from dN d (the standard multivariate Gaussian measure) onto the target measure. Definition 2.13. The univariate orthogonal polynomial basis H n on the space of functions measurable with respect to dN 1 , denoted by L 2 (R, R, dN 1 ) and such that 

H n , H m = R H m (x)H n (x)dN 1 (x) = √ 2πn!δ nm for n, m ∈ N (2.
H α (x) = H i 1 (x 1 )...H i d (x d ) for x = (x 1 , ..., x d ) ∈ R d (2.81)
The first univariate Hermite polynomials are 

H 0 (x) = 1 H 1 (x) = x H 2 (x) = x 2 -1 H 3 (x) = x 3 -3x H 4 (x) = x 4 -6x 2 + 3
f, g = R d f (x)g(x)dN d (x) (2.82)
Moreover, for α = (i 1 , ..., i d )

H α , H α = (2π) d/2 i 1 !...i d ! (2.83)
Proof. The proof is very similar to the one presented in Lemma 2.5.

The Hermite L-moments are then defined by 

λ α = R d T (x)H α (x)dN d (x). ( 2 
= r ≥ 1 λ r = 1 0 Q(u)H r (Q N 1 (u))du
where Q N and Q respectively are the quantiles of the univariate standard Gaussian and the measure of interest.

Property of invariance/equivariance

The main reason of defining such objects lies in the following property of invariance/equivariance. Proposition 2.19. Let X be a random vector in R d and ∇ϕ be the optimal transport from N d onto the measure associated to X such that ϕ is convex. Let denote by λ α (X) the Hermite L-moments of X. First, let σ > 0, m ∈ R d . Then

λ α (σX + m) = σλ α (X) + m1 α=(1...1) . ( 2 

.85)

Let us note the L-moment matrix of order two

Λ 2 (X) = R d (∇ϕ) i (x)H 1 (x j )dN d (x) i,j=1...d = R d (∇ϕ) i (x)x j dN d (x) i,j=1...d .
(2.86) Then, if P is an orthogonal matrix (i.e. P P T = P T P = I d ), Λ 2 (P X) = P T Λ 2 (X)P.

(2.87)

Remark 2.34. This second property seems to be particular to the L-moments of degree two.

Proof. The first part is similar to the proof of Proposition 2.12.

For the second part, let us define the potential ψ : x → ϕ(P x). since N d is invariant by rotation. Then, ∇ψ is the monotone transport associated to P T X. Thus,

Λ 2 (P X) = R d ∇ψ(x)x T dN d (x) = P T R d ∇ϕ(P x)x T dN d (x) = P T R d ∇ϕ(y)(P -1 y) T dN d (y) = P T Λ 2 (X)P

Applications for linear combinations of independent variables

The previous property is well adapted for the study of linear combinations of independent variables Z 1 , ..., Z d . We suppose that each variable Z i is normalized by its second L-moment i.e. λ 2 (Z i ) = 1. Let us recall from Example 2.22 that if (e 1 , ..., e d ) is an orthonormal basis of R d , (b 1 , ..., b d ) the canonical basis, then the following potential

ϕ(x) = d i=1 σ i ϕ i (x T e i ) (2.88)
is convex, with each function ϕ i convex and a i > 0. If we denote P := d i=1 e i b T i and

D := d i=1 σ i b i b T i , then ∇ϕ(x) = P T D    ϕ 1 (x T e 1 )
. . .

ϕ d (x T e d )    .
(2.89)

If, for each i, we note 

ϕ i := Q i • N d with Q i the quantile of Z i Y d = P T DZ = P T D    Z 1 . . . Z d    . ( 2 
Cov(Y ) = P T D        Cov(Z 1 ) 0 . . . 0 0 . . . . . . . . . . . . . . . . . . 0 0 . . . 0 Cov(Z d )       
DP.

(2.92)

The covariance and the Hermite L-moment matrix of degree 2 share the same rotation structure for this family of distributions. A principal component analysis can then be done on either matrix for example. Likewise, we can perform a straightforward estimation of P and D thanks to a method based on the L-moments.

T r(Λ 2 ) and det(Λ 2 ) are clearly invariant with respect to the rotation matrix P . Furthermore, we compute some Hermite L-moments of degree 3 in order to identify more invariants of the distribution of Y ; this would lead to specific plug-iin estimators for either P or D.

Let λ (H) r (Z i ) be the r-th univariate Hermite L-moment of Z i i.e.

λ (H) r (Z i ) = R Q i • N 1 (x)H r (x)dN 1 (x) with Q i the quantile of Z i Lemma 2.
11. If we denote by Λ 3 the matrix

Λ 3 (Y ) = R d (∇ϕ) i (x)(x 2 j -1)dN d (x) i,j=1...d
and if Y is a linear combination of independent variables

Λ 3 (Y ) = P D P 2 ji (λ (H) 3 (Z i ) -λ (H) 1 (Z i )) i,j=1...d
where P = (P ij ) i,j=1...d .

Proof. Let us recall that the optimal transport associated to Y is

∇ϕ(x) = P D    T 1 (x T e 1 )
. . .

T d (x T e d )    with T i = Q i • N 1 .
Then Λ 3 = P DM with the (i,j)-th element of M equal to

M ij = R d T i (b T i P T x)x 2 j dN d (x) -λ 1 (Z i ) = R d T i (y i )(b T j P y) 2 dN d (y) -λ 1 (Z i )
Now let e j = P T b j . If e j and b i are collinear, b T i P T b j = 1 then

M ij = R T i (y)(b T i P T b j y) 2 dN 1 (y) -λ 1 (Z i ) = λ (H) 3 (Z i ) -λ 1 (Z i ).
Otherwise, let note a 1 = b T i e j = b T i P T b j and a 2 = 1 -a 2 1 . If we complete e j and b i with d -2 orthonormal vector, we can produce the change of variable corresponding to his new basis i.e.

M ij = R 2 T i (y 1 )(a 1 y 1 + a 2 y 2 ) 2 dN 1 (y 1 )dN 1 (y 2 ) -λ 1 (Z i ) = a 2 1 R T i (y 1 )y 2 1 dN 1 (y 1 ) + a 2 2 R T i (y 1 )dN 1 (y 1 ) -λ 1 (Z i ) = (b T i P T b j ) 2 λ (H) 3 (Z i ) -(b T i P T b j ) 2 λ (H) 1 (Z i )
which concludes the proof.

Consider the case d = 2. Then, let L := diag(λ

(H) 3 (Z 1 )-λ (H) 1 (Z 2 )) and D = diag(σ 1 , σ 2 ). By Lemma 2.11, it holds      Λ 3 = P DL(P.P ) Λ 2 Λ 3 = P D 2 L(P.P ) Λ -1
2 Λ 3 = P L(P.P )

where P.P denotes the Hadamard product between P and P . We remark that Λ -1 2 Λ 3 is invariant with respect to D. Furthermore, if σ 1 = σ 2 , we can define a, b such that

a b = - σ 1 1 σ 2 1 -1 σ 2 1 σ 2 2 Then Λ 2 Λ 3 + aΛ 3 + bΛ -1 2 Λ 3 = 0.

Estimation of Hermite L-moments

Let x 1 , ..., x n ∈ R d be n iid realizations of a random vector X (with measure ν). The estimation of Hermite L-moments uses the estimation of a monotone transport presented in Section 2.6.2. If T n is such a transport from dN d onto ν n = n i=1 δ x i , the estimation of the α-th Hermite L-moment is λα =

R d T n (x)H α (x)dN d (x) = n i=1 W i (Tn) H α (x)dN d (x) x i (2.93)
with the notations of Section 2.6.2 i.e.

W i (T n ) = x ∈ R d s.t. T n (x) = x i Theorem 2.11. Let ν satisfy x dν(x) < +∞. Then, we have for α ∈ N d * . λα = R d T n (x)H α (x)dN d (x) a.s. → λ α = R d T (x)H α (x)dN d (x) (2.94)
Proof. The proof is very similar to the proof of Theorem 2.10

Numerical applications

We will present some numerical results for the estimation of L-moments and Hermite L-moments issued from the monotone transport. For that purpose, we simulate a linear combination of independent vectors in R 2

Y = P σ 1 Z 1 σ 2 Z 2 with P = 1 √ 2 -1 1 1 1
and Z 1 , Z 2 are drawn from a symmetrical Weibull distribution W ν where is a Rademacher random variable ( = 2B -1 with B is a Bernoulli a parameter 1/2) and W ν is a Weibull of shape parameter ν and scale parameter 1. The density of W ν is given by

f θ (x) = 8ν(8x) ν-1 e -(8x) ν .
We perform N = 100 estimations of the second L-moment matrix Λ 2 , the second Hermite L-moment matrix Λ (H) 2 and the covariance matrix Σ for a sample of size n = 30 or 100. We present the results in Table 2 

CV = N i=1 θ i -1 N N i=1 θ i 2 1/2 1 N N i=1 θ i
Table 2.1 illustrates the fact that the L-moment estimator are more stable than classical covariance estimates but more biased for heavy-tailed distributions. The effects should be even more visible for moments of higher order. However, our sampled L-moments introduces a bias for small n contrary to classical empirical covariance.

Appendix

Proof of Theorem 2.6.2

We adapt the proof of Gu et al. [START_REF] Gu | Variational principles for minkowski type problems, discrete optimal transport, and discrete monge-ampere equations[END_REF] to the case of an absolutely continuous probability measure µ defined on Ω ⊂ R d . We do not assume the compactness of Ω. The proof is divided into four steps

• First, we show that the set

H = {h ∈ R n s.t. vol(W i (h) ∩ Ω) > 0 for all i} is a non- void open convex set • Secondly, we show that E 0 (h) = Ω φ h (x)dµ(x) is a C 1 -smooth convex function on H so that ∂E 0 (h) ∂h i = W i (h)∩Ω dµ(x) • In the third step, we show that E 0 (h) is strictly convex on H (n) 0 = H ∩ {h ∈ R n s.t. n i=1 h i = 0}
• Finally, we will prove that ∇φ h is a monotone transport Gu et al. [58]). It follows that

Convexity of H

Let denote by

H i = {h ∈ R n s.t. vol(W i (h) ∩ Ω) > 0}. We can remark that the condi- tion vol(W i (h) ∩ Ω) > 0 is the same as assuming that W i (h) ∩ Ω contains a non-empty open set in R d . Furthermore, as x 1 , ..., x n are distinct, if int(W i (h)) = ∅, then int(W i (h)) = {u ∈ R d s.t. u.x i + h i > max j =i u.x j + h j } (Prop 2.2(a) of
H i = h ∈ R n s.t. there exists u ∈ Ω so that u.x i + h i > max j =i u.x j + h j .
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Appendix 101

We prove now that, for any i, H i is convex which implies that

H = ∩ n i=1 H i is convex. Let α, β ∈ H i and 0 ≤ t ≤ 1. Then there exists v 1 , v 2 ∈ Ω such that v 1 .x i + α i > v 1 .x j + α j and v 2 .x i + β i > v 2 .x j + β j for j = i. Then (tv 1 + (1 -t)v 2 ).x i + (tα i + (1 -t)β i ) > (tv 1 + (1 -t)v 2 ).x j + (tα j + (1 -t)β j ) for all j = i i.e. tv 1 + (1 -t)v 2 ∈ H i i.e. H i is convex.
As H i is non empty since we can take an h ∈ R n such that h i is as large as needed, we thus have proved that H is an open convex set. Furthermore, as vol(Ω) > 0, there exists a cube included in Ω. We can then translate and rescale the Voronoi cells by the method given in Proposition 2.16 in order to prove that H = ∅.

Convexity of h → E 0 (h) and the expression of its gradient

Let us recall that E 0 (h) = Ω φ h (u)dµ(u) with

φ h (u) = max 1≤i≤n {u.x i + h i } for u ∈ Ω Since functions (u, h) → u.x i + h i are linear, it follows that (u, h) → max i u.x i + h i is convex in Ω × R n . Furthermore dµ is a positive measure. We then have that E 0 is convex in R n . Now let h, d ∈ R n and t > 0. We consider the Gateaux derivative of E 0 E 0 (h + td) -E 0 (h) t = Ω φ h+td (u) -φ h (u) t dµ(u).
Since φ h is piecewise linear, for almost every u ∈ Ω, there exists i such that u ∈ int(W i (h)).

Let us choose such a u. Then, clearly, for t small enough φ h+td (u) = u.x i + h i + td i i.e.

φ h+td (u) -φ h (u) t → t→0 d i .
Furthermore, if we take an arbitrary t > 0, there exists j such that φ h+td (u) = u.x j + h j + td j . Then

|φ h+td (u) -φ h (u)| t = |u.(x i -x j ) + h i -h j -td j | t ≤ u x i -x j + |h i -h j -td j || t .
As dµ is a probability measure of finite expectation, u →

u x i -x j +|h i -h j -td j || t
is dµmeasurable. Thus, by the dominated convergence theorem,

E 0 (h + td) -E 0 (h) t → t→0 n i=1 d i W i (h)∩Ω dµ(u)
i.e. E 0 is Gateaux differentiable and ∂E 0 ∂h i = W i (h)∩Ω dµ(u). This show furthermore that for some a ∈ R n , E 0 could be written

E 0 (h) = h a n i=1 W i (h)∩Ω dµ(u)dh i . 102 Chapitre 2.

Multivariate quantiles and multivariate L-moments

Strict convexity on H

(n) 0 Let w i (h) = ∂E 0 ∂h i = W i (h)∩Ω dµ(u). Then n i=1 w i (h) = Ω dµ(u) = 1. Lemma 2.12. h → w i (h) is a differentiable function and if W i (h) ∩ Ω and W j (h) ∩ Ω share a face F with codimension 1. Then ∂w i (h) ∂h j = - 1 x i -x j F dµ F (u) for j = i (2.95) Otherwise ∂w i (h) ∂h j = 0 for j = i. (2.96)
Proof. It is the adaptation of the proof of Gu et al. [START_REF] Gu | Variational principles for minkowski type problems, discrete optimal transport, and discrete monge-ampere equations[END_REF] by replacing the compactness assumption by the hypothesis that dµ is a probability measure. The use of dominated convergence theorem remains unchanged.

We have proved that E 0 is twice differentiable and we note the Hessian matrix of E 0

Hess(E 0 ) = [a ij ] i,j=1...n = ∂ 2 E 0 ∂h i ∂h j i,j=1...n = ∂w i (h) ∂h j i,j=1...n .
Then

n i=1 ∂ 2 E 0 ∂h i ∂h j = ∂ ∂h j 1 = 0 i.e. ( 1 
, ..., 1) ∈ Ker(Hess(E 0 )). Furthermore, this equality combined with Lemma 2.12 shows that Hess(E 0 ) is diagonally dominant with positive diagonal entries i.e.

a ii = Hess(E 0 ) ii = - j =i a ij ≥ 0.
As As a 1j ≤ 0 and y j ≤ y 1 , either a 1j = 0 either y j = y 1 .

Since Ω is a convex domain and each W k (h) as well, there exists a rearrangement of (1, ..., n), denoted by i 1 , ..., i n , such that W i j ∩ Ω and W i j+1 ∩ Ω share a codimension-1 face for each j. We can again assume without loss of generality that i 1 = 1. Then by iteration, we find that y i j+1 = y 1 since a i j i j+1 < 0 for any j.

It follows that y = y 1 (1....1) i.e. dim(Ker(Hess(E 0 )) = 0.

∇φ h * is

an optimal transport map

We produce here the proof of Aurenhammer et al. [START_REF] Aurenhammer | Minkowski-type theorems and leastsquares clustering[END_REF] in order to prove that ∇φ h * minimizes the quadratic transport cost. Let first remark that the quadratic transport of ∇φ h * is

n i=1 W i (h * ) x i -u 2 dµ(u). From Lemma 2.8, ∪ n i=1 W i (h * ) is the power diagram associated to (x 1 , w 1 = -x 1 2 - 2h * 1 ), ..., (x n , w n = -x n 2 -2h * n ). Suppose that (V 1 , ..., V n ) is any partition of R d such that V i dµ(u) = W i (h * ) dµ(u) = 1 n for any i = 1...n
By definition of the power diagram, we get

n i=1 W i (h * ) ( x i -u 2 + w i )dµ(u) ≤ n i=1 V i ( x i -u 2 + w i )dµ(u) i.e. n i=1 W i (h * ) x i -u 2 dµ(u) ≤ n i=1 V i x i -u 2 dµ(u).
This shows that ∇φ h * minimized the quadratic cost. Alternatively, we could mention that as ∇φ h * is a gradient of a convex function which transports µ onto ν n , we get the result above by Proposition 2.10. However, the proof given above makes this result explicit.

Chapitre 3. M-estimators of the scatter matrix for stationary and non-stationary elliptical distributions sive time series. The sample x 1 , ..., x N can be viewed as the collection of N traces of such a time series. The parallel between a time series and its trace is often implicit in the signal processing literature. For this reason, we will refer at this trace as autoregressive vector. Moreover, if we consider X as the trace of an autoregressive process of order M < d-1, we add more structure on the matrix Σ than the Toeplitz one. Actually, given the autocovariance E[X 1 X k ] for k = 1...M with M ≤ d -1, it is well known that the maximum entropy model pertaining to the vector X = (X 1 , ..., X d ) T in C d results as the complex Gaussian distribution in C d , whose covariance coincides with the autoregressive autocovariance of size d × d (see [31][89]).

We propose here to adapt these techniques for non-Gaussian scale mixtures of autoregressive vectors, a big subfamily of the class of elliptical distribution with the autoregressive intrinsic structure.

In the general case of elliptical distributions with a known center (that we will suppose to be zero), Maronna proposed Huber-type robust M-estimators of the scatter matrix Σ satisfying the equation :

Σ = 1 N N i=1 u(x + i Σ -1 x i )x i x + i , (3.1)
see [START_REF] Maronna | Robust m-estimators of multivariate location and scatter[END_REF].

The function u has to satisfy some conditions for the estimator to be defined and consistent.

A major drawback of these estimators is their non-invariance with respect to the distribution of the amplitude. For this sake, Tyler [START_REF] Tyler | A distribution-free m-estimator of multivariate scatter[END_REF] (and extended by Pascal et al. [START_REF] Pascal | Performance analysis of covariance matrix estimates in impulsive noise[END_REF] in the complex case) proposed another estimator satisfying

Σ = 1 N N i=1 x i x + i x + i Σ -1 x i . ( 3.2) 
The function u(x) = 1 x does not satisfy the conditions of Maronna but Tyler has shown that this last estimator is well defined and consistent. It was furthermore shown to be a maximum likelihood estimator for normalized samples x 1

x 1 , .., x N x N (often called multivariate signs). It is obvious that Tyler's estimator satisfies the first robustness (R1). Unfortunately, the robustness with respect to inhomogeneous distribution (R2) may not hold. Hallin et al. [START_REF] Hallin | Semiparametrically efficient rank-based inference for shape ii. r-estimation of shape[END_REF] refine Tyler's estimator by adding the information provided by the rank r i of

d i = x + i Σ -1 x i among d 1 , ..., d N .
The ranks r 1 , ..., r N are also invariant with respect to the amplitude. Hallin et al. showed that their estimator is optimal in a semi-parametric sense that will not be developed here. On empirical basis, this estimator performs greater improvements for elliptical distributions with light tails than heavy tails. We propose here to adapt Huber M-estimators used by Maronna (see for example Huber and Ronchetti [START_REF] Huber | Robust Statistics[END_REF]) for the distribution of the normalized samples x 1

x 1 , .., x N x N . The random vector X X is known to have a so-called Angular Central Gaussian (ACG) [START_REF] Tyler | Statistical analysis for the angular central gaussian distribution on the sphere[END_REF]. We combine the robustness of the Huber approach with the invariance with respect to the distribution of the amplitude. We will give herein some new consistence results and the expression of the influence functions of the scatter matrix.

We may consider a Burg type technique for the estimation of the scatter matrix ; this is achieved through an iterative procedure. Unfortunately, this method cannot be combined with a robust procedure at each step ; see section 3.7.1. We then propose a geometrical method consisting in computing the median of autoregressive models estimated for [START_REF] Barbaresco | Information geometry of covariance matrix : Cartan-siegel homogeneous bounded domains, mostow/berger fibration and frechet median[END_REF]. The known robustness of the median with respect to outliers will be illustrated.

Most of the estimators proposed are M-estimators that is to say that they are the solution to a minimization (or maximization) problem. Euclidean steepest descent fails to converge quickly. We shall propose some Riemannian descent algorithms for a natural metric defined on the parameter space.

The conjugate transpose of a vector or a matrix x would be denoted by x + and the real part of a complex z is (z).

Models

Elliptical distributions

We consider N samples x 1 , ..., x N coming from a complex elliptical distribution CE(µ, Σ, φ) ; hence each of the x i 's is a vector in C d . The distribution CE(µ, Σ, φ) is semi parametric and can be defined as follows.

Definition 3.14. A complex elliptical random vector X ∈ C d is defined by its characteristic function, which satisfies :

Φ X (t) = E e i (t + X) = exp i (t + µ) φ(t + Σt) (3.3) for t ∈ C d , where • φ : R + → R is called the characteristic generator • Σ is a d × d complex

positive semi-definite Hermitian matrix representing the covariance of the distribution up to a multiplicative constant • µ ∈ C d is the expectation (whenever it exists) .

For the identifiability of the model, we will specify :

T r(Σ) = d (3.4)
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This family is closely related to the real symmetric elliptical parametric family proposed by Cambanis et al. [START_REF] Cambanis | On the theory of elliptically contoured distributions[END_REF].

An important reformulation of the above definition is given by the following characterization Proposition 3.20. A random vector X ∈ C d follows a complex elliptical distribution CE(µ, Σ, φ) with rank(Σ) = k if and only if it admits the stochastic representation

X d = µ + QAU (3.5)
where the random scalar R = √ Q > 0 is independent of the uniform random vector U on the sphere

S k = x ∈ C k s.t. x 2 = 1 and A is a d × k complex positive semi-definite Hermitian matrix with rank(A) = k and AA + = Σ.
Proof. The proof of this characterization can be built similarly as done in the real case (see Cambanis et al. [START_REF] Cambanis | On the theory of elliptically contoured distributions[END_REF]). We begin with the result of Schoenberg [START_REF] Schoenberg | Metric spaces and completely monotone functions[END_REF] Lemma 3.13.

If for k ≥ 1, Φ k = φ : [0; +∞) → R such that t ∈ R k → φ( t 2 ) is a characteristic function then φ ∈ Φ k if and only if φ : u ∈ R k → φ(u) = +∞ 0 Ω k (r 2 u)dF (r) for some distribution function F on [0; +∞) and t ∈ R k → Ω k ( t 2 ) is the characteristic function of a k-dimensional random vector U (k)
R which is uniformly distributed on the unit sphere in R k .

We remark also that if U = U x + iU y is a random variable uniformly distributed on the unit sphere in C k , (U x , U y ) is uniformly distributed on the unit sphere in R 2k .

Let us first suppose that

X d = µ + RAU . Then, if t ∈ C k φ X (t) = E e i (t + X) = e i (t + µ) E e iR (t + AU ) = e i (t + µ) ∞ 0 E U e ir ((A + t) + U ) dF (r) Furthermore Ψ(v) = E e i (v + U ) = E e i(vxUx-vyUy) = Ω 2k ( v x 2 + v y 2 ) = Ω 2k ( v 2 )
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i.e.

φ X (t) = e i (t + µ) ∞ 0 Ω 2k (r 2 t + AA + t)dF (r) = e i (t + µ) φ(t + Σt)
Secondly, we will suppose that the characteristic function of X is φ X (t) = e i (t + µ) φ(t + Σt). As rank(A) = k, we can denote by A -its left inverse. We have txZx-tyZy) ] is a real characteristic function, we can apply Schoenberg Lemma :

A -A = I k . If Z = A -(X -µ), its characteristic function is given for t ∈ C k φ Z (t) = E e i (t + Z) = φ X ((A -) + t) = φ(t + A -AA + (A -) + t) = φ( t 2 ) = φ( t x 2 + t y 2 ) As (t x , t y ) → φ Z (t x + it y ) = E[e i(
φ Z (t) = ∞ 0 Ω 2k (r 2 t 2 )dF (r)
i.e. there exists a positive random variable R such that (Z x , Z y )

d = RU (2k) R
where U (2k) R is uniformly distributed on the real unit sphere. We conclude by noting that Z = Z x + iZ y d = RU with U uniformly distributed on the complex unit sphere of C k .

Example 3.25. (Multivariate Gaussian distribution)

Let R σ be a random variable with generalized Gamma distribution with density

f σ (x) = x 2d-1 Γ(d)σ 2d e -x 2 2σ 2
Let U d be uniformly distributed over the unit sphere of C d and let X be defined by

X d = R σ Σ 1/2 U d where Σ is a d × d invertible matrix such that T r(Σ) = d.
Then, X is a centered multivariate Gaussian of covariance matrix σΣ and X is an elliptically-distributed random vector thanks to the characterization given by Proposition 3.20.

Example 3.26. (Multivariate Weibull distribution)

Let W θ,σ be a random variable with Weibull distribution with density

f θ,σ (x) = θ σ x σ θ-1 e -(x/σ) θ
Let U d be uniformly distributed over the unit sphere of C d and let X be defined by

X d = W θ,σ Σ 1/2 U d
Then X is an elliptically-distributed random vector. 

f θ,σ (x) = 2 x θx σ θ+1 2 1 Γ(θ) K θ-1   2 θx σ  
where K is a modified Bessel function of the second kind

K θ-1 = +∞ 0 exp(-x cosh t) cosh((θ -1)t)dt
Let U d be uniformly distributed over the unit sphere of C d and let X be defined by

X d = K θ,σ Σ 1/2 U d A K-distributed random variable can be represented by a compound Gaussian variable K θ,σ d = G θ,σ R
where R follows the generalized Gamma distribution of scale parameter 1 and G θ,σ is Gamma-distributed with a shape parameter θ and scale parameter σ.

This distribution is often used for the modelization of sea clutter [START_REF] Gini | Sub-optimum coherent radar detection in a mixture of k-distributed and gaussian clutter[END_REF] [START_REF] Jakeman | On the statistics of k-distributed noise[END_REF].

For more details on complex elliptical distributions, see Ollila et al. [START_REF] Ollila | Complex elliptically symmetric distributions : Survey, new results and applications[END_REF]. 

Complex Angular Gaussian (ACG) distributions

In the following we will only consider the case µ = 0. Moreover, in order to ensure the invariance of the inference with respect to the amplitude R, we will only consider in the following the distribution of the normalized samples x 1

x 1 , .., x N x N . If rank(Σ) = d, their common parametric distribution is called angular central Gaussian ACG(Σ) whose density is given by

f Σ (x) = Γ(d) 2π d |Σ| (x + Σ -1 x) -d 1 x =1 (3.6) 
The parameter Σ is defined up to a multiplicative constant since f aΣ does not depend on a > 0. For the identifiability of the model, we specify the same constraint than for elliptical models i.e. T r(Σ) = d. (

Any estimation of this parameter should assume this constraint. For a sample

z 1 = x 1 x 1 , ..., z N = x N
x N following this distribution, the maximum likelihood estimate of the scatter matrix Σ corresponds to the Tyler estimator defined by

ΣT = N i=1 z i z + i z + i Σ-1 T z i = N i=1 x i x + i x + i Σ-1 T x i . ( 3.8) 
The maximum likelihood is known to be efficient but not robust to outliers or contamination which is a common situation in radar.

Remark 3.35. The statistic x x is not sufficient for the scatter matrix in the elliptical model 3.3. We lack some information by considering the observed normalized vectors (z 1 , ..., z N ).

The definition of an outlier is clearly depending upon the distribution under consideration. When considering ACG, an outlier is defined through an angle far away from the principal directions of the scatter matrix Σ as illustrated in Figure 3.4b. Indeed, the norm of the vector x does not matter for the ACG distribution. For elliptical models 3.3, an outlier is some point x far away from the ellipsoids in the sense that xΣ -1 x takes exceedingly large values ; see figure 3.4a. 

Considered contamination

We have to face the situation of a heavy contamination while estimating the scatter matrix. In practice, this means that X 1 , ..., X N 0 are drawn from an elliptical distribution CE(0, Σ 0 , φ) and X N 0 +1 , ..., X N are outliers. We clearly assume that N 0 > N 2 . In the context of clutter transition for example, the outliers are drawn from an elliptical distribution with a different scatter matrix Σ 1 . However, the context can be more complicated : presence of targets in the sample, etc. Let P Σ 0 := CE(0, Σ 0 , φ) and Q be the law of the outliers. The samples are then drawn from the gross error model

P = (1 -)P Σ 0 + Q with 0 ≤ < 1.
The robust estimation aims to estimate Σ 0 regardless of the form of Q.

In our applications, we will turn our attention to outliers laws of the form Q = P Σ 1 with Σ 1 = Σ 0 . For example, Σ 1 can represent the Doppler covariance matrix of a rainy cloud whereas Σ 0 represents the ambient ground clutter.

Stationary elliptical models : scale mixture of autoregressive vectors

Let X ∈ C d be a random variable sampled from a scale mixture of stationary Gaussian autoregressive random vectors. Then X is characterized by the existence of a scalar random variable τ ∈ R + and a scatter matrix Σ such that :

X d = τ Y (3.9)
where Y ∼ N d (0, Σ) is the trace of a stationary Gaussian autoregressive process (i.e. a Gaussian vector, called speckle, of Toeplitz covariance Σ) independent of τ (called texture).
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The structure of Σ is related to the underlying autoregressive process. Note thatΣ is then defined up to a multiplicative constant due to the presence of τ (we can multiply Σ and divide τ by the same positive constant without changing the vector X). We will normalize Σ by assuming tr(Σ) = d.

As Y is the trace of a stationary Gaussian autoregressive process of order M ≤ d -1, if we note

Y =    Y 1 . . . Y d    there exist a (M ) 1 , ..., a (M ) M ∈ C such that for 1 ≤ n ≤ d : Y n + M i=1 a (M ) i Y n-i = b n (3.10)
where b n is a complex standard Gaussian random variable independent of Y n-1 , ..., Y n-M with the convention Y -i = 0 for all i ≥ 0. Equation 3.10 may be seen as a definition for b n . We note that X is also the trace of an autoregressive process with dependent non-Gaussian innovations :

X n + M i=1 a (M ) i X n-i = τ b n (3.11)

Burg method applied to Gaussian autoregressive vectors

We first present the Burg method for Gaussian autoregressive vectors. All the definitions which we introduce for the process where Y is the trace remain valid for the process associated to X. Let us define the autocovariance function γ of the underlying Gaussian autoregressive process. For t ≥ 0, we have

γ(t) = E[Y n+t Y n ] for any n. The covariance Σ of Y is then equal to the autocovariance γ of size d × d Σ =        γ(0) γ(1) . . . γ(d -1) γ(1) γ(0) . . . . . . . . . . . . . . . γ(1) γ(d -1) . . . γ(1) γ(0)       
The autocovariance γ is independent of n because of the stationarity of Y . Moreover, the stationarity condition is captured by the Yule-Walker equation :

      γ(0) . . . γ(M -1) γ(1) . . . γ(M -2) . . . . . . . . . γ(M -1) . . . γ(0)           a (M ) M . . . a (M ) 1     = -    γ(M ) . . . γ(1)   
The Levinson algorithm inverts this equation by introducing the successive autoregressive parameters (a

(m) k ) 1≤k≤m of order 1 ≤ m ≤ M : • Initialization : let us define P 0 = γ(0) and µ 1 := a (1) 1 = -γ(1) P 0 P 1 := P 0 (1 -|µ 1 | 2 ) (3.

12)
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• for 1 ≤ m ≤ M -1                    µ m+1 := a (m+1) m+1 = - γ(m+1)+ m k=1 a (m) k γ(m+1-k) Pm P m+1 := P m (1 -|µ m | 2 )     a (m+1) 1 . . . a (m+1) m     =     a (m) 1 . . . a (m) m     + µ m+1     a (m) m . . . a (m) 1     (3.13)
This algorithm improves the Gauss-Jordan matrix inversion algorithm which runs in O(d 3 ) by taking into account the Toeplitz structure. The Levinson algorithm, computed in O(d 2 ) operations, enhances the role of the parameters (µ m ) 1≤m≤M , called reflection (or Verblunsky) parameters, that are sufficient, together with P 0 , in order to describe the autoregressive vector in C d . The introduction of the parametrization of a Toeplitz matrix Σ through its reflection parameters came back from 1933 by Verblunsky [START_REF] Verblunsky | On positive harmonic functions : a contribution to the algebra of fourier series[END_REF]. It was slightly improved few years after Levinson by Trench [START_REF] Trench | An algorithm for the inversion of finite toeplitz matrices[END_REF], relaxing the Hermitian constraint implicitly considered by Levinson and Verblunsky. Instead of estimating the covariance matrix directly from the samples which does not guarantee the Toeplitz constraint, we estimate these reflection parameters satisfying the Toeplitz structure (we will then use the bijection between (P 0 , µ 1 , ..., µ M ) and Σ given by equations (3.12) and (3.13) to recover an estimated covariance). For this purpose, Burg proposes in the Gaussian framework to minimize an error at each step 1 ≤ m ≤ M :

U (m) = d n=m+1 |f m (n)| 2 + |b m (n)| 2 (3.14) 
with f m and b m respectively the "forward" and "backward" errors defined for m+1 ≤ n ≤ d :

f m (n) := Y n + m k=1 a (m) k Y n-k b m (n) := Y n-m + m k=1 a (m) k Y n-m+k . ( 3.15) 
Note that the definition of the errors is still valid for m = 0.

f 0 (n) = Y n b 0 (n) = Y n for 1 ≤ n ≤ d . ( 3.16) 
Moreover, thanks to the equation (3.13), we can state for m + 2 ≤ n ≤ d :

f m+1 (n) = f m (n) + µ m+1 b m (n -1) b m+1 (n) = b m (n -1) + µ m+1 f m (n) . ( 3.17) 
Note that the errors are random variables and that f m (n) and b m (n), both depending on (a

(m) 1 , ..., a (m) 
m ), are not directly observable from Y for m > 0. Although Burg introduces the criterion 3.14 as an iterative least square method for autoregressive process of order m (for m going from 1 to M ), it can be justified as an approximation of the likelihood of the errors e m (n

) := f m (n) b m (n -1)
for n ∈ {m + 1, ..., d}. Let us first give the moments of e m by the following Lemma

Lemma 3.14. If m ≥ 0 and m + 1 ≤ n ≤ d E[|f m (n)| 2 ] = E[|b m (n -1)| 2 ] = P m E[f m (n)b m (n -1)|] = -P m µ m+1 (3.18)
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Proof. It is an application of the Proposition 1 of [START_REF] Brockwell | Generalized durbin-levinson and burg algorithms[END_REF] applied for {k 1 , .., k m } = {1, ..., m + 1}.

Hence, the vectors e m (n) are dependent Gaussian vectors of covariance matrix

Σ e = P m 1 -µ m+1 -µ m+1 1
Let us fix m. The Burg criterion 3.14 would correspond to the maximum likelihood of the vectors (e m (n)) n=m+1...d over all possible P m if the sequence (e m (m + 1), ..., e m (d)) were composed by independent random vectors. Burg's technique lies in the iterative estimation of the correlation -µ m+1 of the coordinates f m (n) and b m (n -1).

The estimation of the reflection parameters (µ m ) 1≤m≤M consists then in the solution of the minimization of the empirical error, which is, for a sample x 1 , .., x N :

Û (m+1) = 1 N N i=1 d n=m+2 |f i,m+1 (n)| 2 + |b i,m+1 (n)| 2
where, for each i, f i,m and b i,m are the observed forward and backward errors for the sample Y i . Knowing µ 1 , ..., µ m , we estimate µ m+1 by : μ(gauss)

m+1 = arg min µ m+1 Û (m+1) 
= arg min

µ m+1 1 N N i=1 d n=m+2 |f im (n) + µ m+1 b im (n -1)| 2 + |b im (n -1) + µ m+1 f im (n)| 2
The solution is given by : μ(gauss

) m+1 = -2 N i=1 d n=m+2 f im (n)b im (n -1) N i=1 d n=m+2 |f im (n)| 2 + |b im (n -1)| 2 (3.19) 

Burg method for non-Gaussian vectors

We now consider the autoregressive vector X. The forward and backward errors are defined in analogy with equation (3.15). We see that the estimator defined by equation (3.19) applied on the sample (x 1 , ..., x N ) will suffer from the disparity of the realizations of the scalar part (τ 1 , ..., τ N ). This lead us to adapt the method by considering a different criterion from 3.14 for the error. It is customary to define the error criterion to be minimized by the term "energy". We propose three different choices for the energy.

Normalized Energy

The first idea could be to consider an error which is normalized with respect to τ :

U (m+1) = d n=m+2 |f m+1 (n)| 2 + |b m+1 (n)| 2 |f m (n)| 2 + |b m (n -1)| 2 .
(3.20) non-stationary elliptical distributions The minimum of the empirical version of the previous error is then :

μm+1 = - 2 N (d -m -1) N i=1 d n=m+2 b i,m (n -1)f i,m (n) |f i,m (n)| 2 + |b i,m (n -1)| 2 . (3.21)
The drawback is that μm+1 is not consistent. Lemma 3.18 gives us the expression of the moments of e m (n). It follows that the asymptotic multiplicative bias is tractable :

Proposition 3.21. For 1 ≤ m ≤ M μm a.e. → B 1 (|µ m |) µ m |µ m |
with B 1 defined for x > 0 by :

B 1 (x) = 1 -x 2 x log(1 -x) -log(1 + x) 2x + 1 1 -x 2 . (3.22)
Proof. This is an application of Theorem 1 of [START_REF] Bausson | First-and secondorder moments of the normalized sample covariance matrix of spherically invariant random vectors[END_REF] applied to the vector

f m (n) b m (n -1)
.

We apply the law of large numbers for the empirical sum μm .

The consistent version of (3.21) is then obtained through :

μ(u) m = B -1 1 (|μ m |) μm |μ m | , ( 3.23) 
where B -1 1 is not explicit but can be pre-computed for a gain of time. Remark 3.36. Another intuitive normalized error could have been :

U (m+1) = d n=m+2 |f m+1 (n)| 2 + |b m+1 (n)| 2 d n=m+2 |f m (n)| 2 + |b m (n -1)| 2 (3.24)
which leads to the following estimator

μalt,m+1 = - 2 N (d -m -1) N i=1 d n=m+2 b i,m (n -1)f i,m (n) d n=m+2 |f i,m (n)| 2 + |b i,m (n -1)| 2 .
The drawback of this estimator is the non-consistency if m is fixed and N → ∞. Despite its theoretical disadvantage, it has good behavior in practice especially for high values of m because it is an average of the Gaussian estimators of µ m+1 for each 1 ≤ i ≤ N . 

Logarithmic Energy

We now introduce a logarithmic type of energy. It shares with the previous one the property of independence with respect to the amplitude τ . Let us define :

U (m) = d n=m+1 -log |f m (n)| 2 + |b m (n)| 2 . (3.25)
This modification is not as simple as it first seems since the error is no longer convex with respect to µ m+1 and the minimization problem must be restricted. In our case, it empirically seems that imposing |µ m+1 | < 1 is sufficient for the following estimator to be unique. We will suppose this. The estimator is then :

μm+1 = arg min |µm+1|<1 1 N N i=1 d n=m+1 -log |f i,m+1 (n)| 2 + |b i,m+1 (n)| 2 . (3.26)
Unfortunately, this estimator is not consistent and its asymptotic multiplicative bias should be corrected.

Proposition 3.22. Let us define B

2 : a → 2a log(a)
(1-a) 2 + 1+a 1-a and for y < 1 :

g(y) = (1 + y) 2 B -1 2 (y) -(1 -y) 2 (1 + y) 2 B -1 2 (y) + (1 -y) 2
Then μm a.s.

→ g -1 (|µ m |) µ m |µ m | Proof. See Appendix.
The consistent version of (3.26

) is then μ(u) m = g(μ m ) μm |μm| .

Elliptical Energy

Let us finally introduce natural estimators for a specific dependent sample in the context of the elliptical distribution. We also prove that this estimator solves a minimum energy problem for an energy functional which we call elliptic energy.

As the forward and backward errors defined by equation 3.15 e m (n

) := f m (n) b m (n -1)
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E e m (n)e m (n) + = E[τ 2 ]P m 1 -µ m+1 -µ m+1 1 , (3.27) 
we can apply the elliptical approach given in [START_REF] Tyler | A distribution-free m-estimator of multivariate scatter[END_REF] in order to estimate the covariance of this vector. Let y 1 , ..., y N be an iid sample following a centered elliptical distribution with scatter matrix given by equation (3.27). The likelihood of z 1 =

y 1 y 1 , ..., y N y N
(whose distribution is complex ACG with scatter matrix proportional to 3.27) is written [START_REF] Tyler | Statistical analysis for the angular central gaussian distribution on the sphere[END_REF] :

l(z 1 , ..., z N ) = N i=1 1 -|µ m+1 | 2 2π 2 z + i 1 µ m+1 µ m+1 1 z i -2 (3.28) 
We remark that the likelihood is independent of τ and that e m (n) and e m (n ) are dependent for n = n . Define 

μ(ell) m+1 = arg min µ m+1 ∈C,|µ m+1 |<1 d n=m+2 N i=1 2 log e im (n) + 1 µ m+1 µ m+1 1 e im (n) -N (d -m -1) log(1 -|µ m+1 | 2 ) (3.

→ µ m

Proof. Let note the 2 × 2 Hermitian Toeplitz matrix Σ(µ)

Σ(µ) = 1 -µ -µ 1 . Then Σ(µ) -1 = 1 1 -|µ| 2 1 µ µ 1 . Moreover, we note e in = f i,m (n) b i,m (n -1) for n = m + 2...d and i = 1...N . μ(ell) m is then the argument of the maximum of l N (µ) = 1 N (d -m -1) d n=m+2 N i=1 log e + in Σ(µ) -1 e in |Σ -1 (µ)| 1/2 e +
in e in with respect to µ ∈ D = {z ∈ C s.t. |z| < 1}. We will moreover note

l(µ) = E Z log Z + Σ(µ) -1 Z |Σ(µ) -1 | 1/2
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where Z is an ACG-distributed random variable of scatter matrix Σ(µ). We will prove that there exists a constant C < 1 such that for n large enough

|μ N | < C a.s.
Let us suppose the contrary. Then, there exists a subdivision ϕ and a collection of events Ω of non-zero measure such that ∀ω ∈ Ω

|μ ϕ(N ) (ω)| → 1.
In the following, we will omit the references to ω and ϕ. Furthermore, the two eigenvalues of the matrix Σ(μ N ) -1 are

1 1-|μ N | and 1 1+|μ N | .
Let us denote the projections of the respective eigenvectors on e in by v in and w in . Then

l N (μ N ) = 1 N (d -m -1) d n=m+2 N i=1 log (1 -|μ N | 2 ) 1/2 |v in | 2 1 -|μ N | + |w in | 2 1 + |μ N | (3.30) ≥ 1 N (d -m -1) d n=m+2 N i=1 -log (1 -|μ N | 1 -|μ N | 2 ) 1/2 ≥ 1 N (d -m -1) d n=m+2 N i=1 -log (1 -|μ N |) 1/2 (1 + |μ N |) 1/2 → +∞.
As l N (0) = 0, this shows the contradiction. We can therefore restrict the minimization to the compact

M = {z ∈ C s.t. |z| < C} .
Furthermore, we can note ξ(x, µ) = log

x + Σ(µ) -1 x |Σ -1 (µ)| 1/2 x + x . Then • µ → ξ(x, µ) is continuous for all x ∈ S 2 = {x ∈ C 2 s.t. x = 1}
• ξ(x, µ) < log((2/C) 1/2 + 1) from the equation 3.30. We can therefore apply the uniform law of large numbers to ξ on each subsamples e 1n , ..., e N n for a fixed n since M is compact. This shows that

sup µ∈M |l N (µ) -l(µ)| = sup µ∈M 1 N (d -m -1) i,n ξ(µ, e in ) -E Z [(µ, Z)] ≤ 1 d -m -1 d n=m+2 sup µ∈M 1 N N i=1 ξ(µ, e in ) -E Z [(µ, Z)] → a.s. 0
Finally, as l is the expression of a likelihood, it is clear that for any > 0

inf µ∈M s.t. |µ-µ m+1 |> l(µ) = min µ∈M s.t. |µ-µ m+1 |> l(µ) > l(µ 0 )
We can then apply Theorem 5. (m) the empirical version of the following energy

U (m) = (m + 1 -d) log(1 -|µ m+1 | 2 ) +2 d n=m+1 log   f m (n) b m (n -1) + 1 µ m+1 µ m+1 1 f m (n) b m (n -1)   . (3.31)
This criterion is the adaptation of the Burg criterion 3.14 for non-Gaussian vectors since we perform the same approximation for the maximum likelihood but for normalized version of the error vectors e m (n).

Optimization on Riemannian manifolds

The estimators of the scatter matrix proposed in the sequel are solutions to an optimization problem of the form :

Σ = arg min Σ∈S ++ d (C) C(Σ)
for a cost function C supposed to be continuously differentiable where S ++ d (C) denotes the space of the Hermitian positive definite matrices. We propose an algorithm in order to compute efficiently this minimum, or at least, a local minimum without convex assumption on C. A first idea can be to search the roots of the gradient equation :

∇C( Σ) = 0
For example, if C is the cost function of the likelihood of the ACG sample (x 1 , .., x N ), this equation is

Σ = d N N i=1 x i x + i x + i Σ -1
x i The form of this equation leads to the Fixed Point algorithm proposed by Tyler [START_REF] Tyler | A distribution-free m-estimator of multivariate scatter[END_REF] 

Σt+1 = d N N i=1 x i x + i x + i Σ-1 t x i
The proof of convergence of this algorithm is specific to the above formulation and can not be easily adapted for the computation of the minimum of any cost C. We propose here to perform a gradient descent on the manifold of Hermitian positive definite matrices S ++ d (C). As the manifold is not a vector space, simple constrained Euclidean gradient descents are generally avoided because of their slow convergence properties. It is actually natural to perform a gradient descent in a Riemannian (Hermitian for the complex analogue) framework built for the manifold (S ++ d (C) for example).

We will first introduce some notions of Riemannian manifolds necessary to perform optimization algorithms and present the steepest descent algorithm in a general Riemannian framework proposed by Absil et al. [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]. We will then specify the metrics used for the computation of the estimated scatter matrix Σ in S ++ d (C) for the non stationary case and then in the manifold of reflection coefficients R * + × D M -1 for the stationary case (where D = {z ∈ C s.t. |z| < 1} is the Poincaré disk). Let us recall that the reflection parameters are defined by the Levinson algorithm 3.13 as a re-parametrization of a Toeplitz matrix Σ. Remark 3.38. Actually, the scatter matrix Σ of a CES distribution is Hermitian positive definite with a trace condition T r(Σ) = d (see 3.7). However, we will define optimization procedures in the unconstrained space S ++ d (C). Indeed, we will see that the cost functions we introduce are independent with respect to a multiplication of the parameter Σ by a positive scalar. We can therefore choose a posteriori this multiplicative constant.

Riemannian metrics, geodesics and exponential map

We will give a quick intuitive overview of some tools in Riemannian manifolds. For the sake of brievity, the precise definition of all introduced objects are not detailed here ; see [START_REF] Carmo | Riemannian geometry. 1st Edition[END_REF] for details.

Metrics and tangent space

A Riemannian (respectively Hermitian) manifold V is a real (resp. complex) manifold equipped with a local inner product g x on the tangent space T x V defined at each point x ∈ V . We will assume for simplicity that V is an open submanifold of a vector space E of dimension d. The tangent space is a vector space that contains the possible "directions" at which one can tangentially pass through x. Definition 3.15. Let x ∈ V . Then a vector v ∈ E is a tangent vector to V if there exists a C 1 curve γ :] -; [→ V such that γ(0) = x and γ (0) = v. The tangent space T x V is the space of all tangent vectors v. For the open subset we will consider, this definition of a differentiate is sufficient. A general definition in a general context is available in [START_REF] Carmo | Riemannian geometry. 1st Edition[END_REF]. The inner product is called a Riemannian metric. Definition 3.16. A Riemannian metric g is the collection of g x for all x ∈ V such that g x is a positive definite quadratic form on T x V depending smoothly on x. Hence, g x is an application g x : T x V × T x V → R which satisfies : Chapitre 3. M-estimators of the scatter matrix for stationary and non-stationary elliptical distributions

Remark 3.39. Let x ∈ V , v ∈ E. As V is open in E, there exists such that x + tv ∈ V for all t ∈] -; [. Then if we define γ(t) = x + tv, γ(0) = x and γ (0) = v i.e. v ∈ T x V . Thus, if V is open in E, T x V = E. If C : V → R is a diffeomorphism, its differential in x d x C is mapping from T x V into R with for v ∈ T x V d x C(v) = lim
• g x is symmetric i.e. for any v, w ∈ T x V g x (v, w) = g x (w, v)
• g x is bilinear i.e. for any a, b ∈ R and u, v, w ∈ T x V g x (av + bw, u) = ag x (v, u) + bg x (w, u)

• g x is positive definite i.e. for any v ∈ T x V \{0}, g x (v, v) > 0 

g x : T x U × T x U → R, d i=1 a i e i , d i=1 b i e i → d i=1 a i b i g x is a Riemannian metric. If U = R d , it is the canonical Euclidean metric. Example 3.29. Let V = R × R * + and T x V = R 2 for all x ∈ V . we can define the metric in x = (µ, σ) ∈ V g x : T x V × T x V → R, ((h µ , h σ ), (k µ , k σ )) → h µ k µ σ + h σ k σ 2σ 2 g
x is a Riemannian metric. As we will see later, it corresponds to the Fisher metric associated to the univariate Gaussian model parametrized by a mean µ and a variance σ.

The metric induces a norm on the tangent space at

x ∈ V , T x V v x = g x (v, v) for all v ∈ T x V Remark that v 2
x is often denoted by ds 2 in the Riemannian literature.

Exponential map and geodesics

Definition 3.17. With a metric g x , we define the length of a continuously differentiable path γ : [0; 1] → V by

L(γ) = 1 0 g γ(t) ( γ(t), γ(t))dt with γ(t) = lim →0 γ(t+ )-γ(t) ∈ T γ(t) V .
The distance between x and y ∈ V is defined as the infimum of the length of all paths such that γ(0) = x and γ(1) = y. The minimizing paths are called geodesics.

If we are given an initial point x ∈ V and a speed vector v ∈ T x V , we suppose that there exists a unique geodesic γ v satisfying

γ(0) = x γ(0) = v .
Definition 3.18. The final point of this "geodesic shooting" is referenced by the exponential map

exp x (v) = γ(1)
The exponential map in x ∈ V is then an application exp x : T x V → V Remark 3.40. The uniqueness of the geodesic allows us to define the inverse of an exponential map exp -1 also denoted by a log operator. x (y) Distance between x and y

log x = exp -1 x : V → T x V
x -y exp -1 x (y) x Table 3.2 -Link between notions in Riemannian and Euclidean geometry

Complex analogue of Riemannian tools

Hermitian metric

Until now, we have considered real Riemannian manifolds. However, for signal processing applications, the considered manifolds are complex ones. The complex analogue of Riemannian manifolds are called Hermitian manifolds. Let V be a Hermitian submanifold of a complex vector space E. We can introduce in the same way a Hermitian metric that is a symmetrical sesquilinear positive definite form i.e. the symmetry of a metric g x :

T x V × T x V → C in x ∈ V is replaced by : g x (v, w) = g x (v, v)
and g x is positive definite if and only if g x (v, v) > 0 for all v ∈ T x V .

Complex derivation

We have to introduce a natural notion of complex gradient. We give the method for a general cost function C : µ ∈ C → C(µ) ∈ R. We have no reason to consider C as an holomorphic function i.e. for z, z 0 ∈ C

C(z) -C(z 0 )
z -z 0 does not necessarily have a limit when z → z 0 . The idea is then naturally to exploit the bijection between R 2 and C. If we note z = x + iy, the hypothesis that C is differentiable almost everywhere in (x, y) is acceptable. The derivation of C with respect to x and y is called the R-derivation in contrast to the C-derivation that corresponds to the holomorphic derivation.

In order to carry tractable expression for the Taylor development of C, we introduce some notations. We can consider the cost function as a function of the couple (z, z).
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This consideration underlies the CR-calculus, also named Wirtinger calculus [START_REF] Kreutz-Delgado | The complex gradient operator and the CR calculus[END_REF]. The R-derivative and the conjugate R-derivative of C are respectively given by :

∂ z C = ∂C ∂z z=const and ∂ z C = ∂C ∂ z z=const
These can be equivalently defined by

∂ z C = 1 2 ∂C ∂x -i ∂C ∂y and ∂ z C = 1 2 ∂C ∂x + i ∂C ∂y
Moreover, we will exploit the fact that the costs expressed by C are real. This implies

∂ z C = ∂ z C = ∂ z C ∂ z C = ∂ z C = ∂ z C
We can now produce the Taylor expansion in terms of R-derivative. Let z = x + iy ∈ C and dz = dx + idy ∈ C be a small increment. Then

C(z + dz) = C(z) + ∂C ∂x d x + ∂C ∂y d y + o( dz ) = C(z) + ∂C ∂x -i ∂C ∂y (d x + id y ) + o( dz ) = C(z) + 2 [(∂ z C)dz] + o( dz ) = C(z) + 2 ∂ z Cdz + o( dz )
This scalar product suggests to define as complex gradient of C ∇C = 2∂ z C.

In the following, we will omit the factor 2 that can be absorbed by the descent step. For Taylor expansions of higher order, we refer to Kreutz-Delgado [START_REF] Kreutz-Delgado | The complex gradient operator and the CR calculus[END_REF]. Let us present nevertheless the gradient descent of order 2 for an Euclidean metric.

Euclidean complex gradient descent

If we consider an Euclidean metric, the first order gradient descent is then given by the "linear" approximation of the function C around the minimum μ. We initialize the algorithm with µ 0 and update µ t (for t > 0) into :

µ t+1 = µ t -α∂ z C(µ t ) (3.32)
with α ∈ R the step of descent. Furthermore, we give the second order gradient descent :

µ t+1 = µ t + α |∂ zz C| 2 -|∂ zz C| 2 -1 (∂ z z l∂ z C -∂ zz C∂ z C) (3.33)
with partial derivatives evaluated in µ t :

∂ zz C = ∂ ∂ z ∂C ∂z (µ t ) ; ∂ zz C = ∂ ∂z ∂C ∂z (µ t ) ; ∂ z z C = ∂ ∂ z ∂C ∂ z (µ t )

Minimization of a function on a Riemannian manifold : Riemannian steepest descent

Choice of the minimization algorithm

The minimization of a cost function on a Riemannian manifold was studied especially for the computation of geometric means. Indeed, if θ 1 , ..., θ N are points of a Riemannian manifold Θ (for example Hermitian definite positive matrices), it is a natural question to search the mean of these points. A classical answer is the computation of the minimum of the L 2 distance [START_REF] Karcher | Riemannian center of mass and so called karcher mean[END_REF] 

θ mean = arg min θ∈Θ N i=1 d(θ i , θ) 2 (3.34)
where d is the Riemannian distance associated to Θ. If we replace the above minimization by

θ median = arg min θ∈Θ N i=1 d(θ i , θ),
the solution is the geometric median introduced by Fréchet in his famous article [START_REF] Fréchet | Les éléments aléatoires de natures quelconque dans un espace distancié[END_REF]. The discrete mean 3.34 is a particular case of the definition of a general mean barycenter over a mass distribution µ defined on the parameter space Θ

θ mean = arg min θ∈Θ θ ∈Θ d(θ, θ ) 2 dµ(θ ).
The existence and uniqueness of such a minimum was proved by Cartan [START_REF] Cartan | Groupes simples clos et ouverts et géométrie riemannienne[END_REF] if Θ is a complete, simply connected Riemannian manifold with non-positive curvature (so-called Cartan-Hadamard manifolds). The computation of this minimum can be done through a so-called Karcher flow [START_REF] Karcher | Riemannian center of mass and mollifier smoothing[END_REF]. The computation of the median equivalent of 3.3.2 by an adaptation of the Karcher flow was proposed in [START_REF] Yang | Médianes de mesures de probabilité dans les variétés riemanniennes et applications à la détection de cibles radar[END_REF] ; see also [START_REF] Arnaudon | Riemannian medians and means with applications to radar signal processing[END_REF] for an application in S ++ d (C). Mention furthermore stochastic versions of the Karcher flow proposed in [START_REF] Arnaudon | A stochastic algorithm finding p-means on the circle[END_REF] which was shown to converge on the circle (i.e. a Riemannian manifold with positive curvature).

The proof of convergence of the Karcher flow has not been achieved for an arbitrary cost function C. We then consider Riemannian line-search methods proposed by Absil et al. [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]. Furthermore, for constrained Hermitian definite positive matrices (for example if we add the Toeplitz structure), this allows us to perform a steepest descent preserving the structure [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF] [22] [START_REF] Meyer | Regression on fixed-rank positive semidefinite matrices : A riemannian approach[END_REF].

Remark 3.41. The steepest descent proposed by Absil et al. has been chosen for the simplicity of its implementation. However, let us mention the so-called Information Geometric Optimization (IGO) and the Geodesic Information Geometric Optimization (GIGO) proposed by Ollivier et al. [START_REF] Ollivier | Information-geometric optimization algorithms : a unifying picture via invariance principles[END_REF] and Bensadon [START_REF] Bensadon | Black-box optimization using geodesics in statistical manifolds[END_REF]. These promising optimization algorithms propose a general framework for stochastic optimization problems generalizing many existing stochastic optimization approaches. In particular, these algorithms aim to search the global optimum and not only a local optimum as it is the case for line-search algorithms.

Presentation of the steepest descent

Let us consider a general cost function C defined on a Riemannian manifold V . We suppose that C is differentiable almost everywhere. Our aim is to find a critical point of C. Classical optimization algorithm often have their equivalent in a Riemannian framework. We propose to use a steepest descent. This allows us to compute a critical point of the function C ie a point x such that ∇C(x) = 0. Note that we do not suppose that C is convex. The algorithm then computes local minima.

The algorithm performs an iterative geodesic shooting :

Σ t+1 = exp Σt (-α t ∇C(Σ t )) (3.35)
with α t the step of the descent computed for each t > 0, namely α t should satisfy : We can in particular propose an alternative algorithm for the Fixed Point algorithm if we take the opposite of log-likelihood as function f to minimize :

C(exp Σt (-α t ∇C(Σ t ))) ≤ C(Σ t ) -
   C(Σ) = d N i=1 log(x + i Σ -1 x i ) + N log det(Σ) ∇C(Σ) = Σ -d N N i=1 x i x + i x + i Σ -1 x i
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Steepest descent for the manifold of Hermitian positive definite matrices

Once we consider a manifold, the question of the choice of the metric arises. We present two considerations leading to the same metric in the space of Hermitian positive definite matrices and compute the explicit formulation of the exponential map and the geodesics associated to this metric.

A metric invariant by group action

Our metric can satisfy a natural property, namely the invariance by affine change : if

z = Az with A ∈ GL d (C) then E[z z T ] = AE[zz T ]A T = E[zz T ].
This invariance corresponds to the invariance by the action of the group GL d (C) on S ++ d (C) defined by A Σ = AΣA T for A ∈ GL d (C) and Σ ∈ S ++ d (C). We then search a distance such that :

dist(Σ 1 , Σ 2 ) = dist(Σ 1 A, Σ 2 A) for all A ∈ GL d (C)
According to Pennec et al. [START_REF] Pennec | A riemannian framework for tensor computing[END_REF], this naturally leads to a unique metric. By taking

A = Σ -1/2 1
, we obtain a first simplification :

dist(Σ 1 , Σ 2 ) = dist(Id, Σ -1/2 1 Σ 2 Σ -1/2 1 ) := N (Σ -1/2 1 Σ 2 Σ -1/2 1 )
Secondly, as unitary matrices verify U U + = Id, it holds N (U RU + ) = N (R) for all U ∈ U d (manifold of unitary matrices) by invariance of the distance by action of the group GL d (C). By using the spectral decomposition, we get :

dist(Σ 1 , Σ 2 ) = N (σ 1 , ..., σ d ) with σ 1 , ...σ d the eigenvalues of Σ -1/2 1 Σ 2 Σ -1/2 1 .
As N (σ 1 , ..., σ d ) = N (1/σ 1 , ..., 1/σ d ), we naturally take :

dist(Σ 1 , Σ 2 ) = ( n i=1 log(σ i ) 2 ) 1/2 = log(Σ -1/2 1 Σ 2 Σ -1/2 1
) F (3.37) with . F the classical Frobenius norm.

Remark 3.42. This distance is also proposed in the book of Bhatia [21]. This is a particular case of a distance introduced by Siegel in the framework of symplectic geometry ; see [START_REF] Barbaresco | New foundation of radar doppler signal processing based on advanced differential geometry of symmetric spaces : Doppler matrix cfar and radar application[END_REF] for details on this generalization.

A metric coming from the information geometry Amari [START_REF] Amari | Information geometry of divergence functions[END_REF] proposes to define a Riemannian metric from the Taylor expansion of a divergence function for a parametric family of distributions. Let us consider a general differentiable divergence D and a family of distributions parametrized by θ ∈ Θ where Θ is included in a vector space of finite dimension. Then the Taylor expansion

D(P θ , P θ+dθ ) = dθ T G(θ)dθ is a positive definite quadratic form with G(θ) = (g ij ) i,j =   ∂ 2 ∂θ i ∂θ j D(θ, η) η=θ   i,j (3.38) 
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If D is the Kullback-Leibler divergence :

D(P, Q) = log dP dQ dP
Then, the resulting metric is called the Fisher metric because the matrix G is the Fisher information matrix associated to the family (P θ ) θ∈Θ

I(θ) = ∂ log p θ ∂θ i (x) ∂ log p θ ∂θ j (x)p θ (x) i,j
The resulting geometry is called the information geometry. If we compute the Fisher information matrix for multivariate centered Gaussian parametrized by their covariance Σ, the resulting norm on the tangent space is

dΣ 2 Σ = T r((Σ -1 dΣ) 2 ) (3.39)
This norm induces the distance given above (see for example [START_REF] Barbaresco | Information geometry of covariance matrix : Cartan-siegel homogeneous bounded domains, mostow/berger fibration and frechet median[END_REF]). This metric can be associated to its dual metric when the Fisher matrix is replaced by the Hessian of the entropy [START_REF] Barbaresco | Koszul information geometry and souriau geometric temperature/capacity of lie group thermodynamics[END_REF]. Indeed, if we consider the Legendre dual of the entropy of a centered multivariate Gaussian distribution, its Hessian matrix is the Fisher information matrix. We could argue that the Gaussian metric is not adapted for elliptical distributions. The advantage of Gaussian distributions is the simplicity of their metric. Let us nevertheless cite the existence of an explicit form of the information metric for elliptical distributions [START_REF] Berkane | Geodesic estimation in elliptical distributions[END_REF] of the form

dΣ 2 Σ = 1 |H| 2d 3b h - 1 4 d k=1 (dλ k ) 2 λ 2 k + 2 b h - 1 4 k<l dλ k λ l λ k λ l
where the λ k 's are the eigenvalues of Σ and H be such that H + ΣH = Λ, the diagonal matrix composed by the λ k 's ; see also [START_REF] Besson | On the fisher information matrix for multivariate elliptically contoured distributions[END_REF] who proposed another approach for the computation of the information matrix of these distributions.

Geodesics and exponential map in S ++ d (C) With the distance defined above, the geodesics and also the exponential map are explicitly known.

For any point of the manifold, the tangent space to S ++ d (C) is the space of Hermitian matrices S d (C). Let Σ be a path with values in S ++ d (C). We get the following geodesics equations :

d dt (Σ -1 Σ) = 0 T r((Σ -1 Σ) 2 ) = 0
These equations are explicitly resolved, and if Σ(0) = Σ 1 and Σ(1) = Σ 2 :

Σ(t) = Σ 1/2 1 (Σ -1/2 1 Σ 2 Σ -1/2 1 ) t Σ 1/2 1 for t ∈ [0, 1]
It is interesting to note that the "middle" of this geodesic is (Σ

1/2 1 (Σ -1/2 1 Σ 2 Σ -1/2 1 ) 1/2 Σ 1/2 1 )
and corresponds to a geometric symmetrized mean. If Σ 1 and Σ 2 could commute, we would get (Σ 1 Σ 2 ) 1/2 .

By deriving this path in t = 0, we get :

Σ(0) = W = Σ 1/2 1 log((Σ -1/2 1 ) + Σ 2 Σ -1/2 1 )R 1/2 1
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We deduce that if we shoot from Σ with the speed Σ(0) = W which is a matrix in the tangent space, we get the exponential map (see Definition 3.18) :

exp Σ (W ) = Σ(1) = Σ 1/2 exp(Σ -1/2 W Σ -1/2 )Σ 1/2 .
The inverse exponential map is given by :

exp -1 Σ (S) = log Σ (S) = Σ 1/2 log(Σ -1/2 SΣ -1/2 )Σ 1/2 . (3.40)
This exponential map gives a correspondence between the tangent space and S ++ d (C). This allows us to perform geodesic shooting. This is the main tool of the Hermitian gradient descent. 

(Σ t ) > α t = α max while C(Σ 1/2 t e -αtΣ -1/2 t ∇C(Σt))Σ -1/2 t Σ 1/2 t ) > C(Σ t ) -cα t T r Σ -1 t ∇C(Σ t ) 2 α t = α t /2 end Σ t+1 = Σ 1/2 t e -αtΣ -1/2 t ∇C(Σt))Σ -1/2 t Σ 1/2 t t = t + 1 end

Steepest descent in the Poincaré disk

In practice, performing an Euclidean steepest descent in the unit disk

D = {µ ∈ C s.t. |µ| < 1}
does not guarantee a quick convergence, especially if the solution has a modulus close to one. We will take into account the natural geometry of the parameters of the autoregressive model. Indeed, a natural information geometry can be associated to any parametric model by defining a Riemannian metric through the Hessian of the entropy function (see [6] [12]).Note that this geometry is different to the Fisher information geometry even if closely related. Fortunately, the geometry associated to the autoregressive model reparametrized by reflection parameters is simple in the sense that the geodesics does not have cross products and, for each reflection parameter µ k , the resultant metric is the Poincaré metric in the unit disc D :

dµ 2 = |dµ| 2 (1 -|µ| 2 ) 2 (3.41)
Yang [START_REF] Yang | Médianes de mesures de probabilité dans les variétés riemanniennes et applications à la détection de cibles radar[END_REF] gives an explicit formula of the geodesics associated to this metric : 

exp µ (v) = (µ + e iθ )e

Summary of the Burg algorithms

We will sum up the computation of the three proposed algorithms M ) and, equivalently, of (P 0 , µ 1 , ..., µ M ) Input : a sample of N vectors (x 1 , .., x N ) in C d , the order of the underlying autoregressive process

• Normalized Burg • Log Burg • Elliptical Burg Each
M P 0 = 1 N d N i=1 d k=1 |x ik | 2 For 1 ≤ i ≤ N and 1 ≤ n ≤ d , f i,0 (n) = x in b i,0 (n) = x in for m = 1...M
Estimation of μm from f m-1 and b m-1 (through Normalized, Log or Elliptic Burg estimator)

P m = (1 -|μ m | 2 )P m-1     a (m) 1 . . . a (m) m-1     =     a (m-1) 1 . . . a (m-1) m-1     + μm     a (m-1) m-1 . . . a (m-1) 1     a (m) m = μm Forward and backward errors for 1 ≤ i ≤ N and m + 1 ≤ n ≤ d , f i,m (n) = f i,m-1 (n) + μm b i,m-1 (n -1) b i,m (n) = b i,m-1 (n -1) + μm f i,m-1 (n) end
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i,m (n) z = - 2 N (d-m-1) N i=1 d n=m+2 b i,m (n-1)f i,m (n) |f i,m (n)| 2 +|b i,m (n-1)| 2 B 1 = x → 1-x 2 x log(1-x)-log(1+x) 2x + 1 1-x 2 μm+1 = B -1 1 (|z|)
| > η c i (n) = f i,m (n)b i,m (n -1) for m + 2 ≤ n ≤ d d i (n) = |f i,m (n)| 2 + |b i,m (n -1)| 2 for m + 2 ≤ n ≤ d δ t = 2 N (d-m-1) d n=m+2 N i=1 c i (n) d i (n)+2 (ztc i (n)) + zt 1-|zt| 2 z t+1 = exp zt (-αδ t ) end μm+1 = z t

Algorithm 8 Log Burg estimation

Aim : Estimation of the m-th coefficient of reflection μm+1 Input : forward and backward errors f i,m (n) and b i,m (n), an initial state z 0 , a descent step α, a tolerance η

while |δ t | > η c i (n) = f i,m (n)b i,m (n -1) for m + 2 ≤ n ≤ d d i (n) = |f i,m (n)| 2 + |b i,m (n -1)| 2 for m + 2 ≤ n ≤ d δ t = 1 N (d-m-1) d n=m+2 N i=1 2c i (n)+ztd i (n) d i (n)+4 (ztc i (n))+|zt| 2 d i z t+1 = exp zt (-αδ t ) end B 2 : a → 2a log(a) 1-a) 2 + 1+a 1-a g : y → (1+y) 2 B -1 2 (y)-(1-y) 2 (1+y) 2 B -1 2 (y)+(1-y) 2 μm+1 = g -1 (|z t |) zt |zt| Remark 3.43. The step P 0 = 1 N d N i=1 d k=1 |x ik | 2
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Chapitre 3. M-estimators of the scatter matrix for stationary and non-stationary elliptical distributions of the Generalized Burg-Levinson algorithm should be replaced by

P 0 = median 1 d d k=1 |x ik | 2
for a gain of robustness.

Regularization for Burg estimators

The Burg iteration procedure has a major drawback. It cumulates the errors especially when the order of the autoregressive model is false and the number of samples, namely N , is small. In practice, we often overestimate this order and the estimated reflection parameters of higher order have large modulus even if they are not relevant for the signal. A classical method for limiting the impact of the reflection parameters of higher order is to impose a regularity constraint (or smoothness prior) on the spectrum. We will consider the following smoothing measure of the autoregressive model spectrum parametrized by a (m) 1 , . . . , a (m) m (see for example [START_REF] Barbaresco | Super resolution spectrum analysis regularization : Burg, capon and ago antagonistic algorithms[END_REF]) : 

C m = 1/2 -1/2 |A m (f )| 2 df = m k=0 |a (m) k | 2 with A m (f ) = m k=0 a (m) k e -2iπkf .
C m (µ m ) = |µ m | 2 + 1 + m-1 k=1 a (m-1) k + µ m a (m-1) m-k 2
We will apply the regularization process to the Normalized Burg estimator and the Elliptical Burg estimator.

Regularized Gaussian Burg estimator

For the classical Burg error, the regularized estimator can be explicitly expressed by resolving the minimization process :

μm = arg min µm 1 N N i=1 d n=m+1 |f i,m (n)| 2 + |b i,m (n)| 2 + γ m k=0 |a (m) k | 2
Proposition 3.25. The Regularized Burg estimator is given by :

μm = - 2 N N i=1 d n=m+1 b i,m-1 (n -1)f i,m-1 (n) + γ m-1 k=1 a (m-1) k a (m-1) m-k 1 N N i=1 d n=m+1 |b i,m-1 (n -1)| 2 + |f i,m-1 (n)| 2 + γ m-1 k=0 |a (m-1) k | 2 (3.43)
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Proof. The solution of the minimization problem is the solution of the gradient equation :

∇ µm U (m) (μ m ) + γ∇ µm C m (μ m ) = 0 Furthermore        ∇ µm Û (m) (μ m ) = 1 N N i=1 d n=m+1 |b i,m-1 (n -1)| 2 + |f i,m-1 (n)| 2 μm + 2 N N i=1 d n=m+1 b i,m-1 (n -1)f i,m-1 (n) ∇ µm C m (μ m ) = μm m-1 k=0 |a (m-1) k | 2 + m-1 k=1 a (m-1) k a (m-1) m-k
Therefore there is a unique solution to the gradient equation.

Remark 3.44. We remark that the estimator given by the equation 3.43 has a regularization parameter γ combined with a quadratic term. In practice, we choose γ = γ 0

1 N N i=1 x i 2
with γ 0 a free parameter. This allows the regularization to be independent of the power of the signal which is often a requirement for applications in radar since it allows to preserve the Constant False Alarm Rate (CFAR) property of the estimator.

Regularized Normalized Burg estimator

The Regularized Normalized Burg estimator is the solution of :

μm = arg min µm 1 N N i=1 d n=m+1 |f i,m (n)| 2 + |b i,m (n)| 2 |f i,m-1 (n)| 2 + |b i,m-1 (n -1)| 2 + γ m k=0 |a (m) k | 2 (3.44) 
Proposition 3.26. The biased Regularized Normalized Burg estimator is given by :

μm = - 2 N N i=1 d n=m+1 b i,m-1 (n-1)f i,m-1 (n) |f i,m-1 (n)| 2 +|b i,m-1 (n-1)| 2 + γ m-1 k=1 a (m-1) k a (m-1) m-k (d -m) + γ m-1 k=0 |a (m-1) k | 2 (3.45)
If γ = 0, the following estimator is unbiased :

μ(u) m = B -1 1 (|μ m |) μm |μ m | (3.46)
with B 1 given by equation 3.22.

Proof. The solution of the minimization problem is the solution of the gradient equation :

∇ µm U (m) (μ m ) + γ∇ µm C m (μ m ) = 0 Furthermore    ∇ µm Û (m) (μ m ) = (d -m)μ m + 2 N N i=1 d n=m+1 b i,m-1 (n-1)f i,m-1 (n) |f i,m-1 (n)| 2 +|b i,m-1 (n-1)| 2 ∇ µm C m (μ m ) = μm m-1 k=0 |a (m-1) k | 2 + m-1 k=1 a (m-1) k a (m-1) m-k
This concludes the first part of the proposition. The unbiasedness comes from the non regularized Normalized Burg estimator.

Regularized Elliptical Burg estimator

With the same reasoning, we give the regularized version of the Elliptical Burg estimator. 

(n) = f i,m-1 (n)b i,m-1 (n -1) for m + 1 ≤ n ≤ d d i (n) = |f i,m-1 (n)| 2 + |b i,m-1 (n -1)| 2 for m + 1 ≤ n ≤ d δ (U ) t = 2 N (d-m) d n=m+1 N i=1 c i (n) d i (n)+2 (ztc i (n)) + zt 1-|zt| 2 δ (C) t = z t m-1 k=0 |a (m-1) k | 2 + m-1 k=1 a (m-1) k a (m-1) m-k δ t = δ (U ) t + γδ (C) t z t+1 = exp zt (-αδ t ) end μm = z t

Illustration

In order to illustrate the effect of the regularization, we simulate an autoregressive vector of order 3 with d = 15, P 0 = 1, µ 1 = -0.6 -0.5i, µ 2 = 0.3 + 0.8i, µ 3 = 0.5 + 0.8i. We perform the estimation with N = 4 for 25 samples. As the order is unknown, we estimate an autoregressive vector of maximal order 14 which corresponds to estimate the covariance of a stationary vector.

In Figure 3.10, the regularization highlights the three simulated frequencies in the signal. However, the global level of the spectra is increased. The same drawback exists for the regularized version of the classical Burg algorithm. This is explained by the bias of the estimated reflection parameters in the regularized framework. The low standard deviations, especially for high order coefficients, compensate this bias effect (see Table 3.3). We observe a compromise bias/variance modulated by the regularization parameter γ. 

Elliptical models and robustness to heavy contamination

Two classes of robust M-estimators

In order to deal with the gross error model, we need a robust estimator. In the literature, the general class of M-estimators obtained as the minima of sums of the functions of the data is often considered (see for example Huber and Ronchetti [START_REF] Huber | Robust Statistics[END_REF]). More specifi-Ce document et les informations qu'il contient sont la propriété de Thales Air Systems SAS. Ils ne peuvent être reproduits, communiqués ou utilisés sans son autorisation écrite préalable. This document and any data included are the property of Thales Air Systems SAS. They cannot be reproduced, disclosed or used without the company's prior written approval.

Chapitre 3. M-estimators of the scatter matrix for stationary and non-stationary elliptical distributions Estimator μ1 /σ μ1 μ2 /σ μ2 μ3 /σ μ3 μ14 /σ μ14 RBE with γ = 0 -0.60-0.51i/0.17 0.29+0.79i/0.10 0.49+0.77i/0.07 0.04+0.01i/0.45 RBE with γ = 1 -0.36-0.29i/0.13 0.05+0.05i/0.10 -0.03+0.47i/0.09 -0.01-0.01i/0.15 RBN with γ = 0 -0.58-0.52i/0.21 0.29+0.80i/0.11 0.49+0.73i/ 0.11 -0.11-0.02i/0.54 RBN with γ = 5 -0.48-0.38i / 0.25 0.15+0.35i/0.14 0.02+0.61i/0.09 -0.06+0.06i/0.10 Table 3.3 -Estimated mean and standard deviation of the reflection parameters for the Regularized Burg Elliptical estimator (RBE) and the Regularized Burg Normalized estimator (RBN) cally, we are interested in M-estimators expressed as minima of the empirical version of a divergence between two measures. The reason for the popularity of these methods is the expression of the maximum likelihood as the minimization of the empirical version of the Kullback-Leibler divergence. It is then natural to generalize this approach by introducing other divergences. Broniatowski and Vajda [START_REF] Broniatowski | Several applications of divergence criteria in continuous families[END_REF] listed four different kind of divergence criteria. We will detail and use two of them for their simplicity and their flexibility for the choice of the compromise between robustness and efficiency :

• a ψ-divergence inducing a non-normalized estimator for the scatter matrix Σ • a γ-divergence inducing a normalized estimator for Σ

Non normalized M-estimator

Basu et al. [START_REF] Basu | Robust and efficient estimation by minimising a density power divergence[END_REF] proposed to consider the minimization of a power divergence :

d α (f, g) = f (z) 1+α -1 + 1 α g(z)f (z) α + 1 α g(z) 1+α dz
Eguchi and Kano [START_REF] Eguchi | Robusting maximum likelihood estimation by psidivergence[END_REF] proposed to consider a generalization of power divergences based on the log-likelihood Definition 3.20. Let ψ be a differentiable, strictly increasing and convex function, Ψ * : z → z 0 exp(s)ψ (s)ds and f and g two density functions with respect to the Lebesgue measure. We define a ψ-divergence by

d ψ (f, g) = ψ(log g(z))g(z)dz-ψ(log f (z))g(z)dz+ Ψ * (log f (z))dz-Ψ * (log g(z))dz (3.47)
The formulation of this divergence (in particular the role of Ψ * ) is explained by the following proposition. Proposition 3.27. d ψ is a divergence in the sense that for the two densities f and g

• d ψ (f, g) ≥ 0 • d ψ (f, g) = 0 if and only if f = g
Proof. This is clear if we write the divergence : 

d ψ (f, g) = δ ψ (f (z), g(z))dz with for t, u > 0 δ ψ (t, u) = u t u -v v ψ (log(v))dv
Σ0 = arg min Σ e -βµ - 1 N β N i=1 f Σ (z i ) β + 1 β + 1 f Σ (z) β+1 dz
We add the parameter µ for a relocation of the score. The more µ is high, the easier it will be to estimate the term Ψ * (log f Σ (z))dz by Monte Carlo.

Example 3.33. (Trimmed estimator)

We can theoretically build a trimmed estimator in the above framework. Let η ∈ R and ψ(x) = 1 x≥η x+η1 x<η x. As ψ is only derivable almost everywhere, it is cautious to suppose that f is absolutely continuous. Then, the estimator is given by the estimating equation :

Σ0 = arg min Σ - 1 N N i=1 s Σ (z i )1 f Σ (z i )>η + s Σ (z)1 f Σ (z)>η dz
In practice, the gradient descent which we will present in the next section is unable to find the global minimum. We prefer to resolve the problem for ψ

(x) = 1 x≥η x+η exp(x-η)1 x<η x
The M-estimator is Fisher-consistent :

Proposition 3.28. Let us consider the non-normalized estimator defined by equation 3.48 Proof. The result comes from a simple rewriting of the estimator as a minimum of divergence :

Σ0 (P n ) = arg min Σ -ψ(log f Σ (z))dP n (z) + Ψ * (log f Σ (z))dz (3.49)
Σ0 (P 0 ) = arg min Σ -ψ(log f Σ (z))dP 0 (z) + Ψ * (log f Σ (z))dz = arg min Σ ψ(log f Σ 0 (z))dP 0 (z) -ψ(log f Σ (z))dP 0 (z) + Ψ * (log f Σ 0 (z))dz -Ψ * (log f Σ (z))dz = arg min Σ d ψ (f Σ 0 , f Σ ) = Σ 0

Normalized M-estimator

Fujisawa and Kano [START_REF] Fujisawa | Robust parameter estimation with a small bias against heavy contamination[END_REF] considered a different divergence, close to the Rényi divergence, which is invariant by multiplication by a scalar. Definition 3.21. We consider a γ-divergence parametrized by γ > 0 and defined by 

d γ (f, g) = log g(x) 1+γ dx 1/γ(1+γ) f (x) 1+γ dx 1/(1+γ) ( g(x)f (x) γ dx)
• d γ (f, g) ≥ 0 • d γ (f, g) = 0 if and only if f = g Furthermore, for any λ 1 , λ 2 > 0, d γ (λ 1 f, λ 2 g) = d γ (f, g) Proof.
The two first properties are a result of the Holder inequality with equality if f and g are proportional that happens if and only if f = g for two densities. The third property is straightforward from the definition of the divergence. 

- 1 γ log 1 N N i=1 f Σ (x i ) γ + 1 γ + 1 log f Σ (x) 1+γ dx (3.51)
This leads to consider the following estimating equation

N i=1 f Σ0 (z i ) γ s(z i , Σ0 ) N i=1 f Σ0 (z i ) γ = E f Σ0 (z) γ s(z, Σ0 ) E f Σ0 (z) γ If we define w i (z 1 , ..., z N , Σ) = f Σ0 (z i ) γ N i=1 f Σ0 (z i ) γ and w(z, Σ) = f Σ0 (z i ) γ E f Σ0 (z) γ
, this can be rewritten

N i=1 w i (z 1 , ..., z N , Σ0 )s(z i , Σ0 ) = E w(z, Σ0 )s(z, Σ0 )
with the property N i=1 w i (z 1 , ..., z N , Σ) = 1 and E[w(z, Σ)] = 1 which justifies its name of normalized estimator.

As for the non-normalized estimator, we have a Fisher-consistency result Proposition 3.30. Let us consider the normalized estimator defined by equation 3.48

Σ0 (P n ) = arg min Σ - 1 γ log f Σ (x) γ dP n (x) + 1 γ + 1 log f Σ (x) 1+γ dx
where P n is the empirical distribution function for a sample x 1 , ..., x n drawn from the distribution P 0 of density f Σ 0 (z).Then Σ0 (P 0 ) = Σ 0

Proof. The result comes again from a rewriting of the estimator as a minimum of divergence :

Σ0 (P 0 ) = arg min Σ - 1 γ log f Σ (x) γ dP n (x) + 1 γ + 1 log f Σ (x) 1+γ dx = arg min Σ d γ (f Σ 0 , f Σ ) = Σ 0 Remark 3.46.
We defined the normalized and the non-normalized estimators through the minimization formulation because the roots of the estimating equations are not necessarily unique.

The parameter γ tuned the robustness of the estimator. The estimation will be more efficient if γ is close to 0. The limit case γ → 0 leads to the minimization of the Kullback-Leibler divergence and the maximum likelihood estimator which is the most efficient estimator.

Pythagorean relation

We consider the gross error model g = (1 -)f 0 + f out where f 0 and f out respectively represent the true and the outliers density. The interest of the normalized estimation in term of robustness even if the parameter is not small can be based on the underlying Pythagorean relation expressed by Fujisawa [START_REF] Fujisawa | Normalized estimating equation for robust parameter estimation[END_REF]. Let us begin with the following Lemma Lemma 3.15. Suppose that for a density function h verifies

I(h) = f out (x)h(x) γ 0 dx 1/γ 0
is sufficiently small for an appropriately large γ 0 Then,

d γ (g, h) = d γ (f, h) - 1 γ log(1 -) + O(I(h) γ )
Proof. We produce the proof proposed by [START_REF] Fujisawa | Normalized estimating equation for robust parameter estimation[END_REF].

d γ (g, h) = - 1 γ log g(x)h(x) γ dx + 1 1 + γ log h(x) 1+γ dx + A(h) = - 1 γ log ((1 -)f 0 (x) + f out (x))h(x) γ dx + 1 1 + γ log h(x) 1+γ dx + A(h) = - 1 γ (1 -)f 0 (x)h(x) γ dx + 1 1 + γ h(x) 1+γ dx + O(I(h) γ ) + A(h) = d γ ((1 -)f, h) + O(I(h) γ ) = d γ (f, h) - 1 γ log(1 -) + O(I(h) γ )
The third and last equality comes from the Lyapunov inequality stated for γ ≤ γ 0 (which is sufficiently large)

f out (x)f 0 (x) γ dx ≤ f out (x)f 0 (x) γ 0 dx γ/γ 0 = I(h) γ
We are now ready to state the Pythagorean relation Proposition 3.31. Suppose that the density h verifies

I(h) = f out (x)h(x) γ 0 dx 1/γ 0
is sufficiently small for an appropriately large γ 0

(3.52) Then d γ (g, h) -d γ (g, f ) -d γ (f, h) = O(max(I(h), I(f )) γ )
Proof. We deduce from the previous Lemma 3.15

d γ (g, h) -d γ (g, f ) -d γ (f, h) = O(max(I(h), I(f )) γ ) = d γ (f, h) - 1 γ log(1 -) + O(I(h) γ ) + 1 γ log(1 -) + O(I(f ) γ ) -d γ (f, h) = O(max(I(h), I(f )) γ )
This relation implies a projection structure. If h represents any distribution of the parametrized model (f Σ ), f 0 = f Σ 0 will be the "orthogonal' projection of g onto the space described by h.

arg min Σ d γ (g, f Σ ) ≈ arg min Σ d γ (f 0 , f Σ ) + d γ (g, f 0 ) = Σ 0
For an outlier distribution sufficiently far from the model in the sense of equation 3.52, the normalized estimator will then asymptotically focus on true parameter Σ 0 even under the gross error model.

Chapitre 3. M-estimators of the scatter matrix for stationary and non-stationary elliptical distributions

Application to Angular Complex Gaussian distribution

Non-Normalized M-estimator

If we apply the non-normalized approach to the elliptical distribution, we find the estimating equation proposed by Maronna [78] as robust M-estimators for the inference of the scatter matrix. Indeed, we can write the minimization problem :

Σ = arg inf Σ - 1 N N i=1 ψ • log Γ(d) 2π d |Σ| (x + Σ -1 x) -d -Ψ * • log Γ(d) 2π d |Σ| (x + Σ -1 x) -d dx (3.
53) which implies the following estimating equation :

- 1 N N i=1 ψ • log Γ(d) 2π d |Σ| (z + i Σ -1 z i ) -d d z i z + i z + i Σ -1 z i -Σ = E ψ • log Γ(d) 2π d |Σ| (z + Σ -1 z) -d d zz + z + Σ -1 z -Σ Proposition 3.32.
Let ψ be a convex increasing and differentiable function and x 1 , ..., x N a sample coming from an ACG distribution of scatter matrix Σ 0 . Then the estimator 3.48 defined by

Σ0 = arg min Σ - 1 N N i=1 ψ(log f Σ (z i )) + Ψ * (log f Σ (z))dz (3.54) is consistent i.e. Σ0 p →Σ 0 
Proof. We will note in the following :

D n (Σ) = - 1 N N i=1 ψ(log f Σ (z i )) + S d Ψ * (log f Σ (z))dz and D(Σ) = - S d ψ(log f Σ (x))f Σ 0 (x)dx + S d Ψ * (log f Σ (z))dz
The crucial part for the consistency of the estimator is the uniform convergence of the minimizer functional that is not true for all Σ ∈ S ++ d (C) with fixed trace. Then, we will first prove the following lemma Proof. Let us suppose the contrary. Then, there exists a subdivision ϕ and a collection of events Ω of non-zero measure such that T r( Σ-1 0,ϕ(n) (ω)) → ∞ for all ω ∈ Ω Ce document et les informations qu'il contient sont la propriété de Thales Air Systems SAS. Ils ne peuvent être reproduits, communiqués ou utilisés sans son autorisation écrite préalable. This document and any data included are the property of Thales Air Systems SAS. They cannot be reproduced, disclosed or used without the company's prior written approval.

We will omit the reference to n and ω in the following for the sake of clarity. Yet for x ∈ S d , it holds for any Σ log

x, e max T r(Σ -1 )

ds d (det Σ -1 ) 1/d ≤ log f Σ (x) ≤ log x + xT r(Σ -1 ) s d (det Σ -1 ) 1/d
where e max is the eigenvector associated to the maximum eigenvalue of Σ -1 . As ψ ans Ψ * are increasing, we deduce from this inequality

D n (Σ) ≥ S d Ψ * log x, e max T r(Σ -1 ) ds d (det Σ -1 ) 1/d dx -ψ log T r(Σ -1 ) s d (det Σ -1 ) 1/d
We can now state a property of the function Ψ * Lemma 3.17. For x > 0,

Ψ * (x) ≥ (ψ(x) -ψ(0)) e x x (3.55) Proof. As ψ is convex, let x > 0 and 0 ≤ t ≤ x. Then Ψ * (x) = x 0 ψ (t)e t dt = ψ(x)e x -ψ(0) - x 0 ψ(t)e t dt ≥ ψ(x)e x -ψ(0) - x 0 (ψ(x) -ψ(0)) t x + ψ(0) e t dt by convexity of ψ ≥ ψ(x)e x -ψ(0) -(ψ(x) -ψ(0)) xe x -e x x -ψ(0)(e x -1) ≥ (ψ(x) -ψ(0)) e x x
Furthermore, if T r(Σ) = d and if we note λ 1 ≤ λ 2 ≤ ... ≤ λ d the eigenvalues of Σ -1 , we have

d = T r(Σ) = d i=1 1 λ i ≥ d λ 1 i.e. λ 1 ≥ 1 thus (det Σ -1 ) 1/d ≤ λ (d-1)/d d ≤ T r(Σ -1 ) d (d-1)/d and T r(Σ -1 )/(det Σ -1 ) 1/d ≥ d (d-1)/d T r(Σ -1 ) 1/d i.e. as T r( Σ-1 0 ) → ∞ T r( Σ-1 0 ) (det Σ-1 0 ) 1/d → ∞.
Then for n large enough, there exists a constant C such that We can now refine the space of parameters

S d Ψ * log x, e max T r(Σ -1 ) ds d (det Σ -1 ) 1/d dx ≥ C x∈S d , x,emax ≥1/2 Ψ * log x, e max T r(Σ -1 ) ds d (det Σ -1 ) 1/d dx Hence, D ϕ(n) ( Σ0 ) ≥ CΨ * log T r( Σ-1 0 ) 2ds d (det Σ-1 0 ) 1/d -ψ log T r( Σ-1 0 ) s d (det Σ-1 0 )
M = Σ ∈ S ++ d (C) such that T r(Σ) = d and T r(Σ -1 ) ≤ 1 m
For this space, we prove that Lemma 3.18. sup

Σ∈M |D N (Σ) -D(Σ)| a.s. → 0 Proof. Let note ξ(x, Σ) = ψ(log f Σ (x)) for x ∈ S d . Then |D n (Σ) -D(Σ)| = 1 N N i=1 ξ(x i , Σ) - S d ξ(x, Σ)f Σ 0 (x)dx .
The result is an application of the uniform law of large numbers since

• M is compact because T r(Σ 2 ) ≤ d 2 for Σ ∈ M • Σ → ξ(x, Σ) is continuous on M for all x ∈ S d • ξ(x, Σ) ≤ ψ log d d+1 T r(Σ -1 ) s d ≤ C where C is a constant.
Finally, it remains to prove a coercive condition of the optimum of D(Σ). For that purpose, it suffices to remark that M is compact and

D(Σ) = d ψ (Σ, Σ 0 ) + D(Σ 0 ) (3.57)
where d ψ is a ψ-divergence. Then, for any > 0,

inf Σ∈M s.t. T r(Σ-Σ 0 ) 2 > D(Σ) = min Σ∈M s.t. T r(Σ-Σ 0 ) 2 > D(Σ) > D(Σ 0 )
We can apply Theorem 5.7 on M-estimators proposed by Van der Vaart [START_REF] Van Der | Asymptotic Statistics[END_REF].

Normalized M-estimator

The same process can be applied for normalized M-estimator :

Σ = arg inf Σ - 1 γ log 1 N N i=1 (z + i Σ -1 z i ) -dγ + 1 γ + 1 log (x + Σ -1 x) -d(1+γ) dx (3.58)
which implies the following estimating equation :

- 1 N N i=1 w i (z 1 , ..., z N , Σ) z i z + i z + i Σ -1 z i = E w(z) zz + z + Σ -1 z with w i (z 1 , ..., z N , Σ) = (z + i Σ -1 z i ) -dγ N i=1 (z + i Σ -1 z i ) -dγ w(z, Σ) = (z + Σ -1 z) -dγ E [(z + Σ -1 z) -dγ ]
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Proposition 3.33. Let γ > 0, x 1 , ..., x N an iid sample coming from an ACG distribution of scatter matrix Σ 0 . Then the estimator defined by

Σ0 = arg min Σ - 1 γ log 1 N N i=1 f Σ (x i ) γ + 1 γ + 1 log f Σ (x) 1+γ dx (3.59) is consistent i.e. Σ0 p →Σ 0 
Proof. We follow the same sketch of proof as in the previous consistency Proposition 3.32. We first note that there exists m > 0 such that

T r( Σ-1 0 ) ≤ 1 m
by the same lower bound argument. We can then define the same parameter space :

M = Σ ∈ S ++ d (C) such that T r(Σ) = d and T r(Σ -1 ) ≤ 1 m
We note We end the proof with Theorem 5.7 of van der Vaart [START_REF] Van Der | Asymptotic Statistics[END_REF].

D N (Σ) = - 1 γ log 1 N N i=1 f Σ (x i ) γ + 1 γ + 1 log f Σ (x) 1+γ dx and D(Σ) = - 1 γ log S d f Σ (x) γ f Σ 0 (x)dx + 1 γ + 1 log f Σ (x)
Ce document et les informations qu'il contient sont la propriété de Thales Air Systems SAS. Ils ne peuvent être reproduits, communiqués ou utilisés sans son autorisation écrite préalable. This document and any data included are the property of Thales Air Systems SAS. They cannot be reproduced, disclosed or used without the company's prior written approval.
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Influence functions

The influence function is a classical tool used to evaluate the robustness of an estimator. It measures the impact of an outlier in the estimation process. An estimator is said to be robust if the influence function is bounded whenever the value of the outlier.

Non-normalized M-estimator Let θ be the vectorization of Σ (θ := vec(Σ)). If we denote for a cumulative distribution function P by θψ (P ) the minimizer of the cross entropy : 

s(z, Σ) = Σ -1 dzz+ z + Σ -1 z Σ -1 -Σ -1
Proof. If we differentiate the estimating equation with respect to and we take → 0, we obtain 

Normalized M-estimator

We note w(z, θ) = (z + Σ -1 z) -dγ and V (z, θ) = d(z + Σ -1 z) -dγ vec( Σ -1 zz + Σ -1 z + Σ -1 z ). By performing the same operations on the normalized estimating equation, we find : The influence of the normalized estimator illustrated by Figure 3.17 is similar to the corresponding non-normalized estimator even if thinner. β and γ have the same signification. These parameters control the robustness of the estimators as illustrated by these figures. For µ = 0, the influence function is always constant because in that case, the likelihood itself is constant. A single outlier has then no incidence on the estimation. An other measure of robustness is the robustness to the mixture of Angular Complex Gaussian distributions. We will illustrate this robustness through the stationary case in the next sections.
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Autoregressive modelization and robustness with respect to heavy contamination

We introduce some methods in order to face heavy contamination in the case of an elliptical modelization. We could adapt the approach which we took in Section 3.6 to Burg methods. Indeed, we saw that we express the estimation of each reflection parameter as the minimization of a functional error depending on the error vectors b m and f m . As the vectors (b m (n -1), f m (n)) T have an elliptical distribution, we could estimate their correlation parameter through the minimization of a divergence defined in Section 3.6. We present in Section 3.7.2 an other approach that can attain the same objective i.e. robustify the estimation of the reflection parameters.

Burg M-estimator

The estimators of a reflection parameter could have been defined by : μm = arg inf Unfortunately, this method is not well adapted because the Burg technique implies an iterative procedure. Indeed, the ACG distribution has difficulties to estimate the scatter matrix Σ for a contaminated sample if the true matrix is Σ = I d . This is due to the definition of an outlier for an ACG distribution illustrated by the figure 3.4b. In case of a true distribution of scatter matrix equal to I d , every sample has the same weight. Furthermore, as the Burg technique iteratively estimate a 2 × 2 correlation parameter, we often face the case where µ m = 0 i.e. the covariance of the error vectors f i,m (n) b i,m (n -1) is proportional to I 2 , especially in radar applications.

Geodesic Burg estimators

The idea of Geodesic Burg estimators is to cut the samples x 1 , ..., x N into S subsamples and to perform on each subsample an estimation process such as a classical Burg estimator or Normalized Burg estimators (preferably fast but not necessarily robust). Then, we will compute a "representative" for the S estimates μ1 , ..., μS . Recall that it corresponds to the geometry related to the entropy of an autoregressive vector, whose distance is given by

d(µ 1 , µ 2 ) = 1 2 log 1 + µ 1 -µ 2 1-µ 1 µ 2 1 -µ 1 -µ 2 1-µ 1 µ 2
These mean and median computations for this metric were discussed by Arnaudon et al. [START_REF] Arnaudon | Riemannian medians and means with applications to radar signal processing[END_REF] and especially the median computation in its generality in Riemannian spaces was studied by Yang [START_REF] Yang | Médianes de mesures de probabilité dans les variétés riemanniennes et applications à la détection de cibles radar[END_REF]. z t+1 = exp zt (-αδ t ) end of autoregressive processes. If the order of the underlying autoregressive M is small with respect to d, then the regularization process we presented can be interpreted as an implicit estimation of the true order of the autoregressive process [START_REF] Barbaresco | Super resolution spectrum analysis regularization : Burg, capon and ago antagonistic algorithms[END_REF]. The regularization is then essential in this context. 

Radar detection for non-Gaussian noise

GLRT detector

In that context, the detector S θ (z) = |p(θ) + Σ -1 z| 2 (z + Σ -1 z)(p(θ) + Σ -1 p(θ)) has desirable properties and has been independently derived by several authors [START_REF] Kraut | Adaptative subspace detectors[END_REF] [55] [START_REF] Conte | Recursive estimation of the covariance matrix of a compound-gaussian process and its application to adaptative cfar detection[END_REF]. We will refer to it as GLRT (Generalized Likelihood Ratio Test) but it has many names such NMF (Normalized Match Filter) or MSD (Matched Subspace Detector). We remark that the detector is independent by multiplication of p, Σ or z by a scalar. The test against a composite hypothesis H 1 where θ is unknown will be

S(z) = max -1/2≤θ≤1/2 S θ (z) (3.64)
The adaptative version of the detector for an estimator Σ (drawn from surrounding space cases z 1 , ..., z N ) replacing Σ will be used in the following simulations.

Capon detector

The Capon detector is closer to the traditional FFT detector than the GLRT. For a discretized signal z 1 , ..., z d and a filter of size M < d, h = (h 1 , ..., h M ), the filter response power is given by

M k=1 h k z n+k 2 .
If we consider a filter where h k = e -2iπkθ for 1 ≤ k ≤ d and θ a normalized frequency, we consider the empirical response to the pure frequency θ independently of the signal z. The idea of the Capon method [START_REF] Capon | High resolution frequency-wavenumber spectral analysis[END_REF] is to design an adaptive filter h for each frequency θ "as selective as possible" for the random input z.

Capon spectrum in the general case

If we denote the response of a filter h by

R h (z) = d k=1 h k z n+k 2 ,
The expectation of this output is

E[R h (z)] = E   d k=1 h k z k 2   = h + Σ M h
where Σ M is the covariance of the random vector z ∈ C M . The output of the filter h for a pure frequency θ input signal is h + p(θ) for p(θ) = We want to make the filter as selective as possible for the frequency θ. Capon's idea is to maximize the expected output E[R h ] while the response to the frequency θ remains normalized to 1.

h Capon (θ) = arg min

h∈C d ,h + p(θ)=1 h + Σ M h = Σ -1 M p(θ) p(θ) * Σ -1 M p(θ)
h Capon (θ) corresponds to a passband filter around θ. We can then approximate the power spectral density of the input signal S(θ) by a rectangle centered on θ with a bandwidth equal to β.

Then, the value of the power spectral density at θ is approximated by

P = E[R h (z)] β .
We will choose the simple choice for β = 1 M +1 . Thus the Capon spectrum at the frequency θ is given by

S Capon (θ) = M + 1 p(θ) + Σ -1 M p(θ) (3.65)

Capon spectrum for an autoregressive model

Let us recall that an autoregressive model of order M is parametrized by a Ce document et les informations qu'il contient sont la propriété de Thales Air Systems SAS. Ils ne peuvent être reproduits, communiqués ou utilisés sans son autorisation écrite préalable. This document and any data included are the property of Thales Air Systems SAS. They cannot be reproduced, disclosed or used without the company's prior written approval. This can be equivalently written

S Capon (θ) -1 = 1 M + 1 M m=0 S AR (θ) -1

Capon detector

Let us suppose that we have the estimation of the Capon spectrum of the vector under test θ → S z (θ) and of the ambiance samples θ → S amb (θ). Then, the detector is S = max These roots represent the natural frequencies of the autoregressive model.

Applications for radar detection

As an illustration of the performances of the algorithms, we present a simulation of the model with a Weibull texture for the clutter. We recall the expression of the density for a Weibull distribution :

for x ≥ 0, f τ (x) = ν σ x σ ν-1 e -(x/σ) ν
The scale parameter σ of the texture represents the clutter power level (set to 20 dB) whereas ν is the shape parameter representing the disparity of the distribution. We will take N = 64 samples and a speckle built from an autoregressive vector of order 1 or 3 and of dimension d = 8. An AR( 1) is a good approximation for a radar ground clutter or a wind clutter with a single Doppler frequency whereas the AR(3) models a mixture of frequencies.
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Quality of the estimation

The measure of the error of estimation for the covariance matrix has to be normalized because the scatter matrices are defined up to a multiplicative constant. The Riemannian mean error for N estimations is the Riemannian normalized distance which is a natural distance in the space of positive definite matrices : 

x i x + i x + i Σ-1 N x i
The first comparisons will be performed with non robust (Burg type) algorithms :

• Normalized Burg : estimator given by equation (3.23)

• Log Burg : estimator given by equation (3.26) computed through a Riemannian steepest descent with a step α = 0.5 • Elliptical Burg : estimator given by equation (3.29) computed through a Riemannian steepest descent with a step α = 0.5

Secondly, we will make the comparison with the following robust algorithms

• Geodesic Median Burg : the covariance of the median of each estimated autoregressive model of each x i (see for example [START_REF] Barbaresco | Information geometry of covariance matrix : Cartan-siegel homogeneous bounded domains, mostow/berger fibration and frechet median[END_REF] and Remark 3. The Burg estimators of the scatter matrix are used for a maximal order M = d -1. Figure 3.20 illustrates the robustness of the different estimators with respect to the shape parameter of the Weibull texture. This robustness holds except for the empirical covariance as expected. We will now present the performances of detection of the different detectors for three scenarios with the OS-CFAR (for Order Statistics-Constant False Alarm Rate) detector, classically presented in the radar literature as robust with respect to contaminating targets. Figure 3.21 presents the principle of this detector ; see [START_REF] Rohling | Radar cfar thresholding in clutter and multiple target situations[END_REF] for details. For more realism, we simulate a target as an autoregressive vector of order 1 with reflection parameter µ 1 = 0.9e 2iπf (where f is its normalized frequency) and P 0 that represents its power.

Scenario 0 : no outlier

First, we present the performances of the different detectors for a clutter without outliers. Figures 3.22 and 3.25 represent the COR curves for a target of power respectively equal to 20dB and 40dB. When the power of the target is low, only GLRT detector can be used in order to insure low probability of false alarm with sufficient probability of detection. Figures 3.23, 3.24 and 3.26 represent the probability of detection with respect to the normalized frequency of the simulated target for a Probability of False Alarm (or PFA), i.e. the probability to wrongly detect a target, fixed to 10 -2 . Robust estimators are competitive with respect to the non robust estimators (which have better performance since there is no outliers or misspecification). Only ACG normalized estimator show huge weaknesses. 
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 2132 Figure 2 -Algorithme générique CFAR
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 3 Figure 3 -Fonctions de survie (x → 1 -F (x) où F est la fonction de distribution) empirique estimées sur des données réelles d'amplitude de fouillis (i.e. x i ) comparées à des fonctions de survie de familles classiques (distributions Weibull de paramètre de forme θ, distributions Pareto de paramètre de forme α et distribution Rayleigh)

  reprenons cette définition en relaxant l'hypothèse d'optimalité du transport et ainsi pouvons définir les L-moments multivariés comme projections de ce transport sur une famille de polynômes définis sur [0; 1] d . Il est donc temps de définir un transport T : R d → R d entre deux mesures µ et ν définies sur R d . Definition 0.1. La mesure image µ par T est la mesure notée T #µ satisfaisant T #µ(B) = µ(T -1 (B)) pour tout Borélien B de R d (16) T est un transport de µ vers ν si T #µ = ν. On dit que µ est la mesure source et ν la mesure cible. De plus, si X et Y sont deux vecteurs aléatoires de mesure respective µ et ν, alors T (X) d = Y Ainsi, nous définissons les L-moments multivariés comme suit Definition 0.2. Soit Q : [0; 1] d → R d un transport de la mesure uniforme sur [0; 1] d vers ν. Alors, si E[ X ] < ∞, le L-moment de multi-indice α ∈ N d * associé au transport Q est :
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 22911 Figure 1.1 -Weights w (r) i for the uniform law with a support containing 10 points

R 1 0

 1 g(x, θ)G(dx) = 0 and let M θ (F) denote the class of all functions T which are a.e derivable on [0; 1] defined through M θ (F) = T : [0; 1] → R s.t. a ϕ < dT dλ < b ϕ λ -a.e. and g(F -1 (u), θ) dT dλ (u)λ(du) = 0 .
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 14 The pushforward measure of F through T is the measure denoted by T #F satisfying T #F(B) = F(T -1 (B)) for every Borel subset B of R T is said to be a transportation map between F and G if T #F = G. If X and Y are associated with respective cdf F and G then T (X) = d Y.
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 845 Numerical applications : Inference for Generalized Pareto family

  (a) Simulated GPD with ν = 0.7 and σ = 3 (b) Simulated GPD with ν = 0.7, σ = 3 and 10% outliers of value 300 (c) Simulated GPD with ν = 0.1, σ = 3 and 10% outliers of value 30 (d) Simulated Weibull distribution with ν = 0.4 and σ = 3
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 12 Figure 1.2 -Estimated GPD densities with estimated parameters for simulated scenarios (with a logarithmic scale)
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 26 Let Q : [0; 1] d → R d be a transport between the uniform distribution on [0; 1] d and ν. Then, if E[ X ] < ∞, the L-moment λ α of multi-index α associated to the transport Q are defined by :

  • the centered rank function : if the quantile Q : B d → R d has an inverse, noted R : R d → B d , it corresponds to the centered rank function. For each point x, R(x) corresponds to the directional rank of x. • The outlyingness function : the magnitude O(x) := R(x) defines a measure of the outlyingness of x. • The depth function : the magnitude D(x) := 1 -O(x) provides a center-outward
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 214 (Univariate Gaussian) Let us consider the univariate Gaussian N m,σ with m ∈ R and σ > 0. The potential is then defined up to a constant by :
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 21 Figure 2.1 -Potential function φ m,σ for m = 1 σ = 2
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 22 Figure 2.2 -Quantile function ∇φ m,σ for m = 1 σ = 2
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 23 Figure 2.3 -Color levels of the potential function φ
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 166 , λ jk = 0 otherwise.Example 2.18. (Max-Copula, continued)The copula-max M (u, v) = min(u, v) was treated in Example 2.[START_REF] Bausson | First-and secondorder moments of the normalized sample covariance matrix of spherically invariant random vectors[END_REF]. The associated transport is :
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 27 Let A ∈ O d (R) be the space of orthogonal matrices (i.e. AA T = A T A = I d ), m ∈ R d , a ∈ R * . Let us denote by φ the potential linked to the random variable such that ∇φ(N ) d = X with N ∈ R d a standard Gaussian random vector. Then the respective potentials related to the vectors AX, aX and X + m are φ(Ax), aφ(x) and φ(x) + m.x. Proof. Let ψ A (x) = φ(Ax), then ψ is convex and ∇ψ A (x) = Aφ(Ax). Furthermore, as A is an orthogonal matrix, AN d = N which implies ∇ψ A (N ) d = AX.

Figure 2 . 4 -Example 2 . 21 .

 24221 Figure 2.4 -Samples from the distribution induced by T 0 (X) = u (x T Ax)Ax with u(x) = -log(x) and A = I d (left) or A = 1 0.8 0.8 1 (right)
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 25 Figure 2.5 -Samples from the distribution induced by T 0 (X) = u (x T Ax)Ax with u(x) = 1 3 x 3 and A = I d (left) or A =

  (a) Symmetrized Weibull density for Z1 and Z2 (shape parameter 0.5 and scale parameter 1) (b) Corresponding samples (c) Symmetrized Weibull density for Z1 and Z2 (shape parameter 2 and scale parameter 1) (d) Corresponding samples

Figure 2 . 6 - 1 , σ 1

 2611 Figure 2.6 -Samples from the distribution given by equation (2.50) with P = 1 √ 2
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 66229 Remark If the weights are all zero and x 1 , ..., x n ∈ Ω, then the power diagram is the Voronoi diagram.
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 22728 Figure 2.7 -Optimal transport of the discrete empirical distribution of a sample of size 10 into the uniform distribution on [0; 1] 2
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 29 Figure 2.9 -Area D = [0.1; 0.9] × [0.1; 0.9] ⊂ [0; 1] 2

a

  Hess(E 0 ) is Hermitian, Hess(E 0 ) is positive semidefinite. It remains to show that (1...1) is the only member of its kernel. Let y ∈ Ker(Hess(E 0 )). Let us assume without loss of generality that y 1 = max i=1...n |y i | > 0. Then if we combine the two equalities a 11 y 1 = -1j (y j -y 1 ) = 0
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 3 Figure 3.1 -A sample of size 100 of a real multivariate Gaussian distribution with Σ = 1 0.9 0.9 1 and σ = 10
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 3210327 Figure 3.2 -A sample of size 100 of a real multivariate Weibull distribution with Σ = 1 0.9 0.9 1 , θ = 1 and σ = 10
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 33 Figure 3.3 -A sample of size 100 of a real multivariate K-distribution with Σ = 1 0.9 0.9 1 , θ = 1 and σ = 10
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 334 Figure 3.4 -Comparison between the isodensity curves (of respective mass 0.5, 0.75 and 0.95) for the elliptical distribution and the angular complex Gaussian (ACG) distribution for the same 100 realizations of a real elliptical distribution
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 35 Figure 3.5 -Bias function B 1
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 236 Figure 3.6 -Bias function g of the Log Burg estimator
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 29323 This formula matches the maximum of the likelihood 3.28, would the (e im (n)) i=1...N,n=m+2...d be independent. Consistency of μ(ell) m+1 holds due to the independence of e im (n) and e i m (n) for any n, m and i = i . The above estimator is consistent :

→0C

  (x + v) -C(x) = ∇C(x), vwith ., . the canonical scalar product of E.
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 37 Figure 3.7 -Tangent space for a given point on a sphere
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 328 Let U be an open subset of R d and T x U = R d for all x ∈ U . If e 1 , .., e d denotes the canonical basis of R d , we can define :
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 38 Figure 3.8 -Illustration of an exponential map defined on the tangent space of a manifold V
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 3 M-estimators of the scatter matrix for stationary and non-stationary elliptical distributions Definition 3.19. A point x is called critical if ∇C(x) = 0.
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 324 Let (Σ t ) t≥0 a sequence generated by Algorithm 2. Then every accumulation point of (Σ t ) is a critical point of f . If furthermore the level sets {x s.t. C(x) ≤ C(x 0 )} are compact then ∇C(Σ t ) -→ t→+∞ 0 Proof. see Theorem 4.3.1 and Corollary 4.3.2 of [1]

Algorithm 3

 3 Steepest descent for the metric defined by the equation 3.39 Aim : Find a local minimum of C : S ++ d (C) → R with a precision Input : Σ 0 Initial state for t = 0, α max maximum step size while ∇C

Algorithm 5

 5 Burg algorithm is related to a recursive estimation of the reflection parameters appearing naturally in the Levinson algorithm : Generalized Burg-Levinson algorithm Aim : Estimation of the autoregressive parameters (P M , a

3. 4 . 1 -|µ| 2 . 6

 4126 Summary of the Burg algorithms 131 The remaining point is then the estimation of the reflection parameters for each 1 ≤ m ≤ M . Let us recall the exponential map given in equation 3.42 exp µ (v) = (µ + e iθ )e 2|v| D + (µ -e iθ ) (1 + µe iθ )e 2|v| D + (1 -µe iθ ) where θ = arg(v) and |v| D = |v| Algorithm Normalized Burg estimation Aim : Estimation of the m-th coefficient of reflection μm+1 Input : forward and backward errors f i,m (n) and b

  In the estimation process, instead of minimizing μm = arg min µm∈D Û (m) (µ m ) we add a regularity term controlled by a parameter γ μm = arg min µm∈D Û (m) (µ m ) + γC m (µ m ) Let recall that C m depends on µ m in the following manner :
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 39 Figure 3.9 -Simulated autoregressive process spectra
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 5310 Figure 3.10 -Autoregressive spectra of Regularized Burg Elliptical estimator and Regularized Burg Normalized estimator
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 33123132332 Figure 3.12 -Weighting function of the L 2 divergence
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 314 Figure 3.14 -Weighting function of the pseudo trimmed divergence
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 3 M-estimators of the scatter matrix for stationary and non-stationary elliptical distributions This divergence leads to the following estimator Σ0 = arg min Σ
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 316 There exists a constant m > 0 such that T r(

  For x ∈ S d and Σ ∈ M , we havex + xλ min s d (det Σ -1 ) 1/d ≤ f Σ (x) ≤ x + xT r(Σ -1 ) s d (det Σ -1 ) 1/dwhere λ min is the minimum eigenvalue of Σ -1 i.e.0 < dm s d ≤ d 2 s d T r(Σ)T r(Σ -1 ) ≤ f Σ (x) ≤ T r(Σ -1 )T r(Σ) s d ≤ d s d m i.e. f Σ (x) is almost surely bounded. Then almost surely sup Σ∈M |D N (Σ) -D(Σ)| ≤ x i ) γ -S d f Σ (x) γ f Σ 0 (x)dx → ∞by applying the uniform law of large numbers.
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 334 θψ (P ) = arg min θ -ψ(log f θ (z))dP (z) + Ψ * (log f θ (z))dz(3.60) the influence function is defined for the "outlier" y ∈ C d byIF (y, θ) = ∂ θψ (P ) ∂ =0We recall that P = (1 -)P θ + δ y corresponds to the distribution function of the gross error model. δ y designates the Dirac distribution at y ∈ S d .If we write θ = θψ (P ) , the estimating equation becomes :ψ (log f θ (z))s(z, θ )dP (z) = ψ (log f θ (z))s(z, θ )dP θ (z).As the definition of the influence function implies a differentiating, the multiplication constant of the estimator θ = vec( Σ ) is crucial and leads to different expressions. In the following, we will assume that T r( Σ ) = dThen, we have the following proposition The influence function of the non-normalized estimator θ = vec( Σ) under the constraint T r( Σ) = d is given byIF (y, θ) = (Π(J(θ) + I d 2 )Π -I d 2 ) -1 Π ψ (log f (y, θ))s(y, θ) -ψ (log f θ (z))s(z, θ)dP θ (z) , θ) = vec Σ -1 dzz+ z + Σ -1 z Σ -1 -Σ -1 J(θ) = ψ (log f θ (z))s(z, θ)s(z, θ) + dP θ (z) Π = I d 2 -1 d vec(I d )vec(I d ) + Remark 3.47. s(z, θ) is the score function with respect to θ. It is the vectorization of the score function with respect to Σ :

JFigures 3 .

 3 Figures 3.15 and 3.16 present the Frobenius norm of influence functions for Σ = 1 -µ -µ 1 and different ψ. We consider outliers as pure frequencies
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 335 The influence function of the normalized estimator θ = vec( Σ) under the constraint T r( Σ) = d is given byIF (y, θ) = (Π(J(θ) + I d 2 )Π -I d 2 ) -1 w(y, θ) V (z, θ)dP θ (z) -V (y, θ) w(z, θ)dP θ (z) (3.62) with J(θ) = 1 w(z, θ) V (z, θ)V (z, θ) + dP θ (z) w(z, θ)dP θ (z) -V (z, θ)dP θ (z) V (z, θ)dP θ (z) + We recall that Π is the projector Π = I d 2 -1 d vec(I d )vec(I d ) + .
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 13161317 Figure 3.16 -Influence functions norm of non-normalized estimator for ψ (x) = exp(βx)

2 f

 2 f µ f i,m (n) b i,m (n -1) -Ψ * •log (f µ (x)) dx (3.63) with for x ∈ C
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 7318 Figure 3.18 -Splitting of the sample x 1 , ..., x N into S subsamples
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 810 Test of hypothesesWe address the problem of detecting a target p ∈ C d in a non-Gaussian noise c ∈ C d that represents the clutter. The target vector is considered deterministic. It will be parametrized by a frequency θ : p(θ) = P 0 e iα represents the power and α the initial phase of the target. Let z ∈ C d be the signal received on a space case. The problem of detection is to decide between the two hypotheses In a non-Gaussian context, c is modelized by a centered elliptical distribution parametrized by a scatter matrix Σ and an amplitude distribution τ . We suppose that T r(Σ) = d and that the signal power is represented by |τ | 2 . In the following, we will propose test detectors classical in the radar literature.
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 319 Figure 3.19 -Power spectral density of the filter h Capon (θ) of total power E[R h (z)] and bandwidth β

  σ M of the noise. The autoregressive vector z 1 , ..., z d satisfiesk z n-k + σ M e nwith e n a noise of variance 1 and the convention z n = 0 is n ≤ 0.

3. 9 . 2 Mk e -2iπkθ 2 1 M m=0 1 S

 92211 Applications for radar detection 155The associated power spectral density of an autoregressive model is[START_REF] Stoica | Spectral Analysis of Signals[END_REF] S AR (θ) = σ Some calculus leads to the expression of the Capon spectrum of the autoregressive of order M in function of the autoregressive spectrum of all order inferior to M S Capon (θ) = M + AR (θ)

- 1 /2≤θ≤1/ 2 10 log 10 (. 66 ) 3 . 50 .

 121066350 S z (θ)) -10 log 10 (S amb (θ)) (3Remark To gain time, we can reduce the interval for the maximum defined above. In practice, for an autoregressive modelization, we take the maximum over the roots of the autoregressive polynomial A M (z) = 1 +

•

  where M F = T r(M M + ). We will consider as reference the estimators of the scatter matrix classically used in the literature • Empirical covariance : given by ΣN = N i=1 x i x + i Fixed Point (FP) : the M-estimator proposed by Tyler [104] solution of ΣN = d N N i=1

49 )•

 49 Median of Normalized Burg : the covariance of the median of each estimated autoregressive model for S = 8 subsamples (equation 3.7.2) • ACG Non-Normalized estimator : the scatter matrix is estimated by the elliptical non-normalized estimator (equation 3.53) for x → ψ (x) = e βx . We choose β = 0.5. • ACG Normalized estimator : the scatter matrix is estimated by the elliptical normalized estimator (equation 3.58) with γ = 1.
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 3 Figure 3.20 -Riemannian Mean Error for an AR(1) (µ 1 = 0.9) with respect to the shape parameter of the Weibull texture
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Table des matières

 des 3.6 Elliptical models and robustness to heavy contamination . . . . . . . . . . . 3.6.1 Two classes of robust M-estimators . . . . . . . . . . . . . . . . . . . 3.6.2 Application to Angular Complex Gaussian distribution . . . . . . . 3.7 Autoregressive modelization and robustness with respect to heavy contamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.1 Burg M-estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.2 Geodesic Burg estimators . . . . . . . . . . . . . . . . . . . . . . . . 3.8 Radar detection for non-Gaussian noise . . . . . . . . . . . . . . . . . . . . 3.8.1 Test of hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8.2 GLRT detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8.3 Capon detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9 Applications for radar detection . . . . . . . . . . . . . . . . . . . . . . . . . 3.9.1 Quality of the estimation . . . . . . . . . . . . . . . . . . . . . . . . 3.9.2 Scenario 0 : no outlier . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9.3 Scenario 1 : multiple targets . . . . . . . . . . . . . . . . . . . . . . . 3.9.4 Scenario 2 : clutter transition . . . . . . . . . . . . . . . . . . . . . . 3.9.5 Computation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9.6 Simulations analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.10 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.10.1 Proof of the asymptotic bias of Log-Burg estimator . . . . . . . . . .

  Ce document et les informations qu'il contient sont la propriété de Thales Air Systems SAS. Ils ne peuvent être reproduits, communiqués ou utilisés sans son autorisation écrite préalable. This document and any data included are the property of Thales Air Systems SAS. They cannot be reproduced, disclosed or used without the company's prior written approval.

	Example 1.10. Turning back to Example 1.5, we define k and f by
			P 1:3 (u)	
	k(u, θ) =	 	P 2:3 (u) P 3:3 (u)	 
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	Chapitre 1. Estimation under L-moment condition models
	and		
	θ n := arg inf θ∈Θ	inf T ∈M θ (Fn)	E 1 (T ).
	Remark 1.13. Note that if T ∈ M θ (F n ), T : [0; 1] → [0; 1] is λ-a.e. derivable and verifies
	n-1		
	g(x i:n		
	i=1		

Table 1 .

 1 1.8. Numerical applications : Inference for Generalized Pareto family 47 2 -Estimates of GPD scale and shape parameters for ν = 0.7 and σ = 3 for a sample with 10% outliers of value 300 (the moment method has little meaning since ν > 0.5)

	n = 30	n = 100

Table 1 .

 1 

		n = 30	n = 100
	Estimation method Sc 1 Sc 2 Sc 3 Sc 4	Sc 1 Sc 2 Sc 3 Sc 4
	χ 2 -divergence	2.53 7.20 3.16 2.63	1.55 7.32 3.28 1.80
	L-moment method	3.10 10.07 4.09 4.31	1.70 9.93 4.07 3.51
	Moment method	6.79 14.47 7.07 8.69	6.91 14.42 6.98 9.98
	MLE	1.78 2.83 2.68 11.69 0.97 2.42 2.33 9.25

3 -Estimates of GPD scale and shape parameters for ν = 0.1 and σ = 3 for a sample with 10% outliers of value 30

Table 1 .

 1 

[START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] 

-L 1 -distances (to be multiplied by 10

  where the L i k 's are univariate Legendre polynomials defined by equation 2.3) the natural multivariate extension of the Legendre polynomials. Indeed, it holds Lemma 2.5. The L α family is orthogonal and complete in the Hilbert space L 2 ([0; 1] d , R) equipped with the usual scalar product : The orthogonality is straightforward since ifα = (i 1 , ..., i d ) = α = (i 1 , ..., i d ), there exists a subindex 1 ≤ k ≤ d such that i k = i k and [0;1] d L α (t 1 , ..., t d )L α (t 1 , ..., t d )dt 1 ...dt d = L i j (t j )L i j (t j )dt j = 0 (2.8)thanks to the orthogonality ofL i k and L i k in L 2 ([0; 1], R).The univariate Legendre polynomials define an orthogonal basis for the space of polynomials denoted by R[X]. Hence, for all k, there exists c 1 , ..., c k ∈ R such that X k =

	d	1
	j=1	0

∀f, g ∈ L 2 ([0; 1] d ), f, g = [0;1] d f (u).g(u)du (2.7) Ce document et les informations qu'il contient sont la propriété de Thales Air Systems SAS. Ils ne peuvent être reproduits, communiqués ou utilisés sans son autorisation écrite préalable. This document and any data included are the property of Thales Air Systems SAS. They cannot be reproduced, disclosed or used without the company's prior written approval. 2.2. Definition of multivariate L-moments and examples 61 Proof. k i=1 c i L i (X). Thus for all k 1 , ..., k d , there exists c 11 , ..., c 1k , ..., c d1 , ..., c dk ∈ R such that d j=1

  Chapitre 2. Multivariate quantiles and multivariate L-moments Hence, as f N ∈ C 0 ([0; 1] d , R d ), by Stone-Weierstrass Theorem (see for example Rudin Theorem 5.8[START_REF] Rudin | Functional Analysis[END_REF]), there exists g ∈ R[X 1 , ..., X d ] such that :

et les informations qu'il contient sont la propriété de Thales Air Systems SAS. Ils ne peuvent être reproduits, communiqués ou utilisés sans son autorisation écrite préalable. This document and any data included are the property of Thales Air Systems SAS. They cannot be reproduced, disclosed or used without the company's prior written approval.

  [START_REF] Bhatia | Positive Definite Matrices[END_REF] be two probability measures on R d , such that µ does not give mass to sets of Hausdorff dimension at most d -1. Then, there is exactly one measurable map T such that T #µ = ν and T = ∇ϕ for some convex function ϕ, in the sense that any two such maps coincide dµ-almost everywhere. When µ is the uniform measure on [0; 1] d , Proposition 2.10 holds for any ν.

	Proposition 2.10. (McCann/Brenier's Theorem)
	Let µ, ν Proof. Theorem 2.32 of [108]
	Remark 2.23.

  11 Λ r,12 . . . Λ r,1d

						
	Λ r,21 Λ r,22 . . . . . . Λ r,d1 . . . . . . Λ r,dd . . . . . . . . . . . .	     
	defined so that each 2 × 2 submatrix is the concatenation of the above 2 × 1 vectors :
	Λ r,ii Λ r,ij Λ r,ji Λ r,jj	= λ	(ij) 1r	λ	(ji) r1	(2.57)

Example 2.23. Unfortunately, these matrices are not sufficient for a total determination of a multivariate distribution. Let us present a copula that is an example of this assertion. Let θ ∈ [-1; 1] and C θ

  Chapitre 2. Multivariate quantiles and multivariate L-moments • γ has a cyclically monotone support if γ n does for each n • if the marginals of γ n , denoted by µ n and ν n converge in the sense given above to µ and ν, then µ and ν are the respective marginals of γ Proof. It is an application of McCann's Lemma 9 [79] +∞, let T and T n be the monotone transports (i.e. gradients of convex function) of µ into ν and ν n . Then :

	Theorem 2.9. If ν satisfies	x dν(x) <

Then
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  t 2 +k

	Chapitre 2. Multivariate quantiles and multivariate L-moments
	It is worth noting that λ

(t 1 ,t 2 ) r

  The family of multivariate Hermite polynomials (H α ) α∈N d is orthogonal and complete in the Hilbert space L 2 (R d , R, dN d ) provided with the scalar product :
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  .[START_REF] Ollivier | Information-geometric optimization algorithms : a unifying picture via invariance principles[END_REF] Let us note that this definition is not compatible with the L-moments defined by Hosking in the univariate case and for T the monotone transport from dN d onto the target measure. Indeed, in that case, Equation2.84 is written for α

	Remark 2.33.

Table 2 .

 2 1 -Second L-moments and covariance numerical results for ν = 0.5• The median of the different estimates • The coefficient of variation of the estimates θ1 , ..., θN (for an arbitrary parameter θ)

		Chapitre 2. Multivariate quantiles and multivariate L-moments
					n = 30		n = 100	
	Parameter True Value Mean Median CV Mean Median CV
	Λ 2,11	0.38	0.28	0.27	0.30 0.38	0.37	0.18
	Λ 2,12	0.19	0.14	0.13	0.65 0.20	0.20	0.33
	Λ	(H) 2,11	0.66	0.5	0.48	0.31 0.70	0.68	0.19
	Λ	(H) 2,12	0.33	0.25	0.24	0.67 0.38	0.37	0.34
	Σ 11	0.69	0.70	0.48	1.23 0.69	0.59	0.55
	Σ 12	0.55	0.55	0.29	1.62 0.54	0.47	0.67

.1 through the following features • The mean of the different estimates Ce document et les informations qu'il contient sont la propriété de Thales Air Systems SAS. Ils ne peuvent être reproduits, communiqués ou utilisés sans son autorisation écrite préalable. This document and any data included are the property of Thales Air Systems SAS. They cannot be reproduced, disclosed or used without the company's prior written approval.

Table 3 .

 3 1 -Different features proposed by the estimators of the scatter matrix Σ (the new estimators proposed in this chapter are underlined) subsamples of x 1 , ..., x N[6][10]

				Model	
			Elliptical	Stationary elliptical	Autoregressive ellip-tical
				Stationary	Fixed
		Independence		Point [86]		Normalized Burg(3.23)
	Asked Feature	with respect to the amplitude (R1) Robustness to contamination (R2)	Tyler's Fixed Point (3.2) Maronna estimator [78]	Normalized Burg(3.23) Log Burg (3.26) Elliptical Burg (3.29)	Log Burg (3.26) Elliptical Burg (3.29)
		Robustness and independence (R1)+(R2)	ACG non-normalized (3.58) (3.53) ACG normalized	Geodesic Burg estimators (3.7.2)
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	Chapitre 3. M-estimators of the scatter matrix for stationary and
			non-stationary elliptical distributions
	with Û		
	Remark 3.37. The estimator	μ(ell) m+1 defined by equation 3.29 can be written
	μ(ell) m+1 = arg	µ m+1 ∈C,|µ m+1 |<1 min	Û (m)

  cα t ∇C(Σ t ) Σt (3.36) with 0 < c < 1. This step size α t is called Armijo step size. It allows to ensure that α t suits in order to sufficiently decrease the cost function C. A classical way to search an Armijo step size is to successively divide α t by 2 until the condition 3.36 is attained. This condition will be sufficient in order to have the convergence of the steepest descent algorithm. Steepest descent for an arbitrary metric Aim : Find a local minimum of C with a precision Input : Σ 0 Initial state for t = 0, α max maximum step size while ∇C(Σ t ) > α t = α max while C(exp Σt (-α t ∇C(Σ t ))) > C(Σ t ) -cα t ∇C(Σ t ) Σt α t = α t /2 end Σ t+1 = exp Σt (-α t ∇C(Σ t )) t = t + 1 end

	Algorithm 2

  2|v| D + (µ -e iθ ) (1 + µe iθ )e 2|v| D + (1 -µe iθ ) (3.42) where θ = arg(v) and |v| D = |v| 1-|µ| 2 . Let C : D → R be a cost function to minimize. With the above exponential map, the Ce document et les informations qu'il contient sont la propriété de Thales Air Systems SAS. Ils ne peuvent être reproduits, communiqués ou utilisés sans son autorisation écrite préalable. This document and any data included are the property of Thales Air Systems SAS. They cannot be reproduced, disclosed or used without the company's prior written approval. non-stationary elliptical distributions complex Riemannian steepest descent is then performed by Algorithm 4. The specifications of this algorithm for different cost functions C are done in the next Section 3.4. Steepest descent in the Poincare disk for the metric defined by equation 3.41 Aim : Find a local minimum of C : D → R with a precision Input : µ 0 Initial state for t = 0, α max maximum step size, the exponential map is given by equation 3.42 while ∇C(µ t ) > α t = α max while C(exp µt (-α t ∇C(µ t ))) > C(µ t ) -cα t ∇C(µ t ) µt α t = α t /2 end µ t+1 = exp µt (-α t ∇C(µ t )) t = t + 1 end

	Algorithm 4

  Chapitre 3. M-estimators of the scatter matrix for stationary and non-stationary elliptical distributions Algorithm 9 Minimum of Regularized Elliptical Burg Error Aim : Compute the minimum of Regularized Elliptical Burg Error μm Input : an initial state z 0 , a descent step α, a tolerance η while |δ t | > η c i

  Chapitre 3. M-estimators of the scatter matrix for stationary and non-stationary elliptical distributions By combining Equations 3.55 and 3.56, we get D ϕ(n) ( Σ0 ) → ∞ which proves the contradiction.

	1/d	(3.56)

Ce document et les informations qu'il contient sont la propriété de Thales Air Systems SAS. Ils ne peuvent être reproduits, communiqués ou utilisés sans son autorisation écrite préalable. This document and any data included are the property of Thales Air Systems SAS. They cannot be reproduced, disclosed or used without the company's prior written approval.

  They gave two algorithms slightly simpler than steepest descent algorithms proposed previously. Let us recall that the exponential map associated with the distance d in the Poincaré disk is given by exp µ (v) = (µ + e iθ )e 2|v| D + (µ -e iθ ) (1 + µe iθ )e 2|v| D + (1 -µe iθ ) where θ = arg(v) and |v| D = |v| 1-|µ| 2 . Chapitre 3. M-estimators of the scatter matrix for stationary and non-stationary elliptical distributions Algorithm 10 Mean in the Poincaré disk Aim : To compute the mean of µ 1 , ..., µ S in the Poincare disk Input : z 0 Initial state for t = 0, a descent step α, a tolerance η while |δ t | > η δ t = 1 zt (µ i ) z t+1 = exp zt (-αδ t ) end Algorithm 11 Median in the Poincaré disk Aim : To compute the median of µ 1 , ..., µ S in the Poincaré disk Input : z 0 Initial state for t = 0, a descent step α, a tolerance η while |δ t | > η

	S	S i=1 exp -1
	δ t = 1 S	S i=1,µ i =zt	exp -1 z t (µ i ) d(zt,µ i )

Remark 3.49. The limit case S = N is intuitively the most robust estimator of this geodesic class. However, it corresponds to an estimation of the scatter matrix of the autoregressive vector with a single sample. It can however otherwise be explained in the framework
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Remerciements

Chapitre 3

M-estimators of the scatter matrix for stationary and non-stationary elliptical distributions

Introduction

Motivation and notations

Non-Gaussian models of strong clutters such as ground or sea clutters are used in the field of radar processing. The family of complex elliptically symmetric distributions [START_REF] Ollila | Complex elliptically symmetric distributions : Survey, new results and applications[END_REF] (which contains a lot of classical distributions such as multivariate Gaussian, multivariate Cauchy distributions and multivariate K-distributions) is a useful generalization of Gaussian random vectors, inheriting of similar shape and location parameters. We consider the case when the location parameter is zero.Denote X = (X 1 , ..., X d ) T ∈ C d a random vector with complex elliptical symmetric (CE) distribution (to be defined hereafter). A CE models the "angle" of X with X X distributed on the unit sphere on C d and the amplitude of X, namely Σ -1/2 X where Σ is the scatter matrix. Assuming that x 1 , .., x N is an iid sample with CE distribution on C d , the main focus of our study lies in the estimation of the scatter matrix Σ of the underlying distribution. Observe (x 11 , ..., x 1d ) T , ..., (x N 1 , ..., x N d ) T N iid realizations of the vector (X 1 , ..., X d ) T . Within this framework, we consider two kinds of robustness concepts for the estimation of the scatter matrix :

• (R1) a robustness with respect to the distribution of the amplitude which is often heavy-tailed • (R2) a robustness with respect to contamination in the observed sample First of all, we consider stationary samples where stationarity is defined as the second order one. This assumption adds a Toeplitz structure constraint for the scatter matrix Σ. Taking into account the Toeplitz intrinsic structure of the scatter matrix can be performed by solving the equation 3.2 hereafter in the space of Toeplitz matrices (see [START_REF] Pailloux | Estimation structurée de la covariance du bruit en détection adaptative[END_REF]). Our approach is slightly different with respect to the above one. The Toeplitz structure allows us to split the estimation of the matrix Σ of size d × d into d estimations of Toeplitz matrices of size 2 × 2. This splitting corresponds to the so-called "Burg technique" [START_REF] Burg | Maximum entropy spectral analysis[END_REF]. Indeed, instead of estimating the covariance of the raw sample x 1 , ..., x N ∈ C d , we iteratively define second-order samples in C 2 whose theoretical covariance can be expressed in function of Σ. This technique was originally proposed in the context of stationary Gaussian autoregres- The empirical version of 3.47 is easy to formulate. In the case of an elliptical distribution, the estimation of the parameter Σ 0 through the minimization of the divergence will be :

Eguchi and Kano showed that this estimator is Fisher-consistent [START_REF] Eguchi | Robusting maximum likelihood estimation by psidivergence[END_REF], i.e. if we note for any distribution P

Σ0 also satisfies an estimating equation based on the score function s(z, Σ) = ∂ Σ [log(f Σ )](z) :

1

Remark 3.45. This approach is considered as a M-estimation [START_REF] Huber | Robust Statistics[END_REF]. ψ can be considered as a weighting function of the log-likelihood of the sample.

Example 3.30. (Kullback-Leibler divergence)

If we choose ψ(x) = x, the estimation corresponds to the minimization of the Kullback-Leibler divergence i.e. the maximum likelihood estimator :

The L 2 -divergence corresponds to the case ψ = exp. The estimator satisfies then :

which is known to be robust but not efficient (see Hampel et al. [60])
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The expression is different from the one proposed by Mahot [START_REF] Mahot | Estimation robuste de la matrice de covariance en traitement du signal[END_REF] for the constraint T r(Σ -1 Σ) =
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Chapitre 3. M-estimators of the scatter matrix for stationary and non-stationary elliptical distributions

Scenario 1 : multiple targets

Scenario 1 illustrates the robustness of algorithms with respect to a light contamination. We pollute the ambiance samples z 1 , ..., z N of clutter noise by 10 target samples of power set to 40dB or 20dB and of normalized frequency set to 0.3 (see Figure 3.27). This allow us to simulate the influence of an other target such as an airplane in the ambiance cases. Figures 3.28, 3.29 and 3.30 illustrate the probability of detection with respect to the normalized frequency of the introduced target for a PFA set to 10 -2 . The principal difference with the scenario 0 is the behavior of each estimator for a target of frequency 0.3, i.e. close to the frequency of contaminating targets. We see that the so-called "Geodesic Median Burg", "ACG Normalized Burg" and "Median of Normalized Burg" estimators are not disturbed by the contamination, contrary to all other estimators. Chapitre 3. M-estimators of the scatter matrix for stationary and non-stationary elliptical distributions

Scenario 2 : clutter transition

Finally, we present a Scenario of a clutter transition between a clutter of frequency 0 (that could represent a ground clutter) and a clutter of frequency 0.3 (that could represent a sea clutter). The power of the clutters is set to 20dB (Figure 3.31). Figure 3.33 shows the estimated spectra for the 64 ambient cells around each cell under test. The result is then to compare with the true spectra in Figure 3.31. We see that only "Geodesic Median Burg", "ACG Normalized Burg" and "Median of Normalized Burg" correctly estimate the transition. These estimators are said to be robust to a large contamination of the data. The same information is illustrated by Figure 3.32. Indeed, we show the value of the GLRT detector for the cell under test where a target of power 20dB has been introduced at the frequency of the second clutter (i.e. 0.3). We see that most estimators could not detect the target anymore in the zone close to the transition. This situation could correspond to the case of a pop-up target which would "hide" in the clutter. 

Computation time

For illustrative purposes, Table 3.34 gives the mean run time for one estimation of a covariance for each algorithm with a QuadriCore processor on a Matlab implementation.
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Algorithm

Mean 

Simulations analysis

The presented simulations show a difference of behavior of the introduced estimators with respect to their robustness. First, we clearly observe the difference between the GLRT and the Capon detector. The higher the SCR (Signal to Clutter Ratio) is, the more efficient the Capon detector with respect to GLRT is. Indeed, contrary to GLRT detector, Capon's detector takes into account the difference of power between the cell under test and the ambiance. A thresholding of the SCR seems to be inevitable before choosing one detector. Secondly, the introduced ACG Non-Normalized and ACG Normalized estimators lack efficiency. It can be seen on performances of those estimators illustrated by Figure 3.20 but also on figures representing the probability of detection with respect to normalized frequency. However, the robustness of these procedures is clearly illustrated by Figures 3.33 and 3.32. Especially, ACG Normalized estimator perfectly estimate the change of clutter on Figure 3.33. Among non robust estimators, the so-called Normalized Burg and Elliptic Burg seem to have similar behavior. We often encounter numerical problems of convergence of Log Burg estimator. This could explain the degradation of its performances with respect to the latter Burg estimators. The good news is that the robust versions of Burg estimators, namely "Geodesic Median Burg" and "Median of Normalized Burg" estimators, show almost no lack of efficiency as ACG robust estimators. They furthermore show robustness properties as expected in the two scenarios (illustrated by . Under targets contamination (Scenario 1), they have comparable performances as the reference estimator -namely the FP (or Tyler's) estimator. Under heavy contamination (Scenario 2), they both show a robustness with respect to the clutter transition (Figures 3. 33-3.30) contrary to the FP estimator. Among the two geodesic Burg estimators, good performances of the Median of Normalized Burg estimators should be tempered by the following remark : the estimation on 8 sub-Ce document et les informations qu'il contient sont la propriété de Thales Air Systems SAS. Ils ne peuvent être reproduits, communiqués ou utilisés sans son autorisation écrite préalable. This document and any data included are the property of Thales Air Systems SAS. They cannot be reproduced, disclosed or used without the company's prior written approval.

Chapitre 3. M-estimators of the scatter matrix for stationary and non-stationary elliptical distributions samples is well adapted to our simulation scenarios since each subsample will mostly be homogeneously distributed. This would not be the case if the sample were been drawn randomly from one of the two clutter distribution. In other words, the Median of Normalized is particularly well adapted to clutter transitions.

Appendix

Proof of the asymptotic bias of Log-Burg estimator

Let us define the function for z

We will denote by µ T the true parameter of the law of each couple By assumption, this minimizer is unique and is then determined by the equation :

As for all µ such that |µ| < 1 and z

, the uniform law of large numbers allows to assert :

Then, if we note ψ(µ) = E[∇ µ u(Z, µ)], we have :

It remains for us to study the function ψ and find its unique zero in order to conclude. Let us recall that if Z = (Z 1 , Z 2 ) is a Gaussian vector of mean zero and covariance Σ = 1 -µ T -μ T 1 :

Let us define the matrices : We can conclude that the solution of ψ(µ) = 0 is unique and as ψ is defined on a compact {µ ∈ C, |µ| ≤ 1} and ψ(μ m ) → 0 a.s., we have :
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