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INTRODUCTION 

 
 

This research focuses on the study of a specific category of non-neoplasic lung 
pathologies including emphysema and interstitial lung diseases (ILDs), and especially on 

idiopathic interstitial pneumonias (IIPs) [1] – a variety of ILDs, and aims at developing a 
computer-aided diagnosis system of these pathologies exploiting the computed tomography 
imaging technology. 

The motivation of such a research comes from the increasing healthcare burden 
associated with this category of chronic diseases (most of them being considered until few 
years ago as “orphan” diseases, i.e. with a prevalence less than 0.2% over population, and 
thus receiving small research funding1) and from an unmet clinical need of efficient diagnosis 
and follow-up tools. In United States, 3.7 million people have been diagnosed with 
emphysema, of which 16700 deaths registered, whereas other studies reported that 80.9 per 
100000 men and 67.2 per 100000 women suffer from ILDs with 31.5 and 26.1 new cases 
diagnosed per 100000 persons per year, respectively.  

It is important to note that emphysema and IIPs are irreversible diseases that can be 
slowed but not stopped, and to date, no efficient treatment is available for most of IIPs. Such 
diseases affect the tissue and space within and around the alveoli (air sacs) and sometimes 
also the airways, the blood vessels and the pleura, leading to profound impairment in lung 
physiology. Unfortunately, if the initiated injury or abnormal repair from injury is not halted, 
progressive tissue damage can lead to worsening physiologic impairment and even death. In 
this context, early diagnosis and follow-up of these pathologies are the key issues for 
increasing the quality of life and the survival chances of the patient. If the suspicion of lung 
disease can be clinically confirmed or rejected by performing pulmonary function tests and 
chest radiography, to date only the computed tomography (CT) investigation allows an 
accurate diagnosis of the type of pathology (IIPs including more than 200 different disease 
entities). In addition, the visual feed-back provided by CT is very valuable due to the high 
spatial resolution of this imaging technique which allows accurately depiction and spatial 
localization of the disease patterns. 

However, if CT allows diagnosing these pathologies, a quantitative analysis is needed 
in order to monitor the disease progression over time (longitudinal follow-up) or the response 
to a therapy. Such a quantitative investigation can only be ensured by computer-aided 
diagnosis (CAD) systems [2-10] exploiting the CT image data. It is well known [11-14] that 
the CAD systems not only avoid diagnosis failure due to human factors such as fatigue or 
oversight because of hundreds of images to screen, but they offer the radiologist a reference 
                                                 
1 According to European Lung Foundation, http://www.european-lung-foundation.org/ 
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opinion in the initial diagnosis stage or as a second reader to increase the accuracy and the 
confidence in the diagnostic. But the major advantage of the CAD systems over the 
radiologists is their quantification ability mandatory in follow-up studies, which cannot be 
provided by the clinicians using interactive delineation tools because of the task complexity 
related to the type of the pathology and the unavoidable inter- and intra-user variability of the 
measurement result.  

Although several teams in the medical research and image processing (CAD developers) 
have studied the problem and proposed several solutions, the issue of an accurate and robust 
CAD system targeting IIPs and emphysema remains open. Our research is placed in this 
context and the solution we proposed is presented in the next chapters of this manuscript. In 
order to thoroughly capture the characteristics of the diseases we studied and their translation 
in terms of image analysis, Chapter I introduces the main aspects of the physiology of 
emphysema and targeted IIPs from both anatomical point of view and the investigation 
techniques used. Then, Chapter II analyses the state-of-the-art in the field of the CAD system 
development for lung pathology assessment with CT, and orients the research towards the 
proposed solution. Chapter III presents in detail the developed innovative 3D automated 
approach for emphysema and IIPs detection and quantification, based on 3D morphological 
segmentation and graph-description fuzzy reasoning. The performances of the proposed 
solution according to the parameter selection are discussed in Chapter IV and the results 
presented for a clinical cohort. The manuscript ends with a global conclusion and opens 
several perspectives of this work. 
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Chapter I  

Emphysema and Infiltrative Lung Diseases: anatomical 
description and investigation techniques 
 
 
 

This chapter introduces the anatomical characteristics of the lung pathologies we are 
interested in throughout this work and the clinical investigation techniques currently 
employed for their detection and analysis. Among them, CT imaging technique became the 
reference modality in lung investigation, due to its ability to depict the anatomo-pathological 
regions of the lung parenchyma. The chapter starts with a description of emphysema and the 
infiltrative diseases (Section I.1) followed by a presentation of the clinical investigation 
techniques (Section I.2), the pulmonary function tests (Section I.2.1) and the multi-slice 
computed tomography (MSCT) imaging technique (Section I.2.2) where image appearance of 
the normal and pathological tissues is discussed with respect to the parameters of the 
acquisition protocol. 

 
I.1 Emphysema and Idiopathic Interstitial Pneumonias  
 

Emphysema and interstitial lung diseases (IIPs) are both the lung diseases caused by 
destruction of the alveoli in the lungs. In people with such diseases, the lung tissue involved 
in exchange of gases is impaired. In this section, emphysema and targeted IIPs are described 
in detail, with discussion on their causes, symptoms, and types. 
 
I.2.1 Emphysema 

 
Emphysema is a type of chronic obstructive pulmonary disease (COPD) [15-18] linked 

to cigarette smoking, that causes a permanent enlargement of the airways in lungs, 
accompanied by destruction of the walls of the alveoli, the tiny air sacs in the lungs, where 
performs the crucial task of replenishing the blood with oxygen via inhalation and ridding the 
body of carbon dioxide (CO2) via exhalation [19]. 

The first sign of a person with emphysema is shortness of breath, even taking a rest. As 
emphysema progresses, the following symptoms occur: 
－ Difficulty of breathing, 
－ Coughing with or without sputum, 
－ Wheezing, 
－ Excess mucus production, 
－ A bluish tint to the skin. 
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Moreover, emphysema may affect the brain. Low oxygen levels in the blood may mean that 
the brain is not getting enough oxygen. The end result can be grumpiness, irritability, and 
impaired mental ability. Also, high CO2 levels in the blood leads to headaches and 
sleeplessness. All the symptoms of emphysema are caused by decrease of the lung elasticity. 
This prevents the alveoli from deflating completely, and the person has difficulty in exhaling. 
Hence, the next breath is started with a smaller capacity of the lungs while the trapped “old” 
air take up space of the lungs. So, the alveoli are unable to fill with enough fresh air to supply 
the body with needed oxygen. 

The underlying cause of emphysema is believed to be an unbalance in the activities of 
proteolytic and antiproteolytic enzymes in lung tissue [20, 21]. Emphysema is produced as a 
result of the enzymatic destruction of lung elastin and collagen by neutrophil and microphage 
elastases. The primary cause of this imbalance of proteolytic and antiproteolytic enzymes is 
cigarette smoking. Cigarette smoking has been shown to produce an increase in the number of 
neutrophils in lung tissue and to stimulate the release of neutrophil elastase. It inhibits 
α1-antitrypsin (A1A) and interferes with the repair of damaged elastin and collagen. Note that 
only 10% to 15% of smokers develop emphysema. Exposure to the polluted and 
industrialized environments is also a recognized cause of emphysema, even in nonsmoker. It 
is believed that cigarette smoking has a longer clearance time from the upper lobes of the 
lungs, and this accounts for the increased incidence of emphysema in the upper lobes in 
smokers [22]. 

Alpha-1 antitrypsin deficiency (A1AD) was first discovered as another cause of 
emphysema in 1963 [20]. A1AD is actually a primary liver disease where the A1A enzyme 
can not get out of the hepatocyte because of a point mutation that induces polymerization of 
the enzyme within the hepatocyte. This leads to a deficiency of the enzyme in plasma and it is 
unavailable in sufficient quantities to inactivate the neutrophil elastase in the lungs. The 
abundance of activated neutrophil elastase leads to destruction of alveolar walls and a typical 
lower lobe panacinar emphysema in patients with A1AD. Cigarette smoking increases the risk 
of developing emphysema in patients with reduced serum levels of A1A enzyme. The lower 
lobe distribution of emphysema is thought to be caused by the increased amount of blood 
flow and resultant increase in neutrophil activity in the lower lobes. The macrophages are 
concentrated in the centriacinar portion of the lung, in the area of the respiratory bronchiole, 
which is the area where cigarette smoking-induced emphysema begins. The macrophage and 
neutrophil are likely both important in the development of emphysema. 

Generally, emphysema can be classified as three anatomic types, namely centriacinar, 
panacinar, and distal acinar, based on the portion of the pulmonary acinus that is involved, 
and the three types are briefly described in the following. 
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－ The Centriacinar emphysema involves the proximal portion of the acinus in the area of 

the respiratory bronchiole [18]. It affects the upper lobes of the lungs. These get enlarged and 
dilated, and thereby causing an obstruction for the air to pass while entering and leaving the 
lungs, and causing a discomfort while breathing. Centriacinar emphysema is more commonly 
found among cigarette smoker and coal miners. 

Fig. 1 is a diagram of the lungs with centriacinar emphysema. The appearance of 
centriacinar emphysema is low attenuation holes like “moth-eaten” regions, and without 
obvious walls with centriacinar artery identified in holes. 
 

 Spine 
Centrilobular
emphysema

Normal lung Heart

 

Fig. 1 A diagram of centriacinar emphysema. 
 
－ The Panacinar emphysema involves the pulmonary acinus in a diffuse and uniform way 

[18]. It mainly affects the lower lobes of the lungs, and may accompany the centriacinar 
emphysema in cigarette smokers. This type of emphysema is the most widespread 
destructive type with the greatest physiologic progressive destruction because the entire 
acini are affected, and it is caused primarily by the A1AD. Panacinar emphysema is less 
common, and may be found in people who never smoked in their lives.  

Fig. 2 is a diagram of the lungs with panacinar emphysema. The appearance of 
panacinar emphysema is a large area of low attenuation associated with deranged tissue 
surrounding blood vessels, and obvious walls are around the area. 
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Normal lung Heart

Spine 
Panacinar 

emphysema  

Fig. 2 A diagram of panacinar emphysema. 
 
－ The Distal acinar emphysema involves primarily the alveolar ducts and sacs, and does 

not affect the area of the respiratory bronchiole as does centriacinar emphysema [18]. It is 
often associated with extensive bulla formation with only mild decreases in airflow and 
also is associated with spontaneous pneumothorax in young adults. 

Fig. 3 is a diagram of the lungs with distal acinar emphysema. The appearance of 
distal acinar emphysema is low attenuation holes with obvious walls like “saw-toothed” 
regions. 

 

Normal lung Heart

Spine 
Distal acinar 
emphysema  

Fig. 3 A diagram of distal acinar emphysema. 
 

The major physiological effect in emphysema is an increase in lung volumes and a 
decrease in elastic recoil of parenchyma. These result in decreased maximum expiratory 
airflow, hyperinflation, and air-trapping, which can be evaluated by pulmonary function tests 
(PFTs). 
 

I.1.2 Idiopathic interstitial pneumonias 
 
The IIPs (also called interstitial lung diseases) [1] are a group of diffuse parenchymal 
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lung diseases (DPLDs) refering to the inflammation of the interstitium of the lungs. The 
interstitium is the tissue that surrounds and separates the tiny air sacs (alveoli) of the lung 
parenchyma. Note that IIPs involves the inflammation of the tissue between air sacs rather 
than inflammation in the air sacs. The IIPs gradually develop and cause two conditions, 
interstitial inflammation and accretion. Interstitial inflammation is typically a diffuse process 
that occurs all over the lungs and is not confined locally, and results in edema and fibrosis 
formation. Accretion is organization of exudate within the alveolar space, which is converted 
to fibrous connective tissue and is incorporated into the interstitium. Three pathologies of the 
IIPs, namely idiopathic pulmonary fibrosis, honeycombing, and ground-glass opacity, are 
resulted by such conditions, and are briefly described as follows, respectively. 
 
－ Idiopathic pulmonary fibrosis (IPF) [23] is a chronic disease resulting in swelling and 

scarring of the interstitium of the lungs. The most frequent causes of pulmonary fibrosis 
are related to occupational diseases. People working with asbestos, ground stone or metal 
dust, inhale the small particles of these materials. Such materials damage the alveoli in 
the lung and cause fibrosis. Also, certain strong medicines, such as nitiofurantoin, 
amiodarone, and bleomycin, may have the undesirable side effect of causing pulmonary 
fibrosis. In some people, however, the pulmonary fibrosis develops without identifiable 
cause. The fibrosis with this situation is called idiopathic pulmonary fibrosis. Generally, 
the pulmonary fibrosis usually affects people between the ages of 40 and 70, and men and 
women are equally affected. The prognosis for patients with this disease is poor, and the 
survival time usually expected to an average of only 4 to 6 years after diagnosis. 

 
－ Honeycombing is one of the characteristic appearances of pulmonary fibrosis in the 

end-stage, and is extensive pulmonary fibrosis with alveolar destruction resulting in a loss 
of alveolar walls. Bronchiolectasis in patients with honeycombing results at least partially 
from traction on the bronchiolar walls by surrounding fibrosis tissue. As the pulmonary 
fibrosis progresses, honeycombing becomes more prominent. Honeycombing is most 
commonly caused by the IPF, the collagen vascular disease, hypersensitivity pneumonitis 
in the end-stage, or asbestosis. In the cases of drug-related fibrosis and hypersensitivity 
pneumonitis, the appearance of honeycombing have an atypical distribution, and the focal 
area is similar to cicatrizing emphysema. 

 
－ Ground-glass opacity is a nonspecific term referring to the appearance of hazy lung 

opacity, and is obvious in vision because of the presence of the thickening alveolar 
interstitium, or the presence of the fluid partially filling the alveolar spaces. In histology, 
ground-glass opacity has been seen in patients with the findings of mild or early 
interstitial inflammation or infiltration, and should be considered as consistent with active 
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inflammation only when there are no superimposed findings of fibrosis such as 
reticulation, architectural distortion, or traction bronchiectasis. The causes of 
ground-glass opacity include honeycombing cysts filled with secretions, superimposed 
diffuse alveolar damage, and a superimposed complication such as an infection and drug 
reaction.   

 
Each pathological target mentioned above results in a lung tissue becoming stiff and 

thick, and then breathing efficiency would be reduced, leading to the reduction of oxygen 
levels in the blood. Therefore, the most common symptoms of the IIP are shortness of breath, 
persistent dry cough, fatigue, loss of weight, and discomfort in chest. 

According to the classification of [24], the appearance of the pulmonary disease is 
categorized into three types. In the peripheral type, as shown in Fig. 4 (a), parenchyma 
opacification appears in the inner peripheral zone adjacent to pre-existing honeycombing. In 
the multifocal type, as shown in Fig. 4 (b), parenchyma opacification appears in central and 
peripheral regions. Sometimes, it is not adjacent to honeycombing if it appears around 
bronchial or vascular branches. The diffuse type has generalized pulmonary involvement but 
regional inhomogeneity, in Fig. 4 (c). 
 

 Spine Honeycombing 

Normal lung Interstitial opacity 

 Spine Honeycombing

Normal lung Interstitial opacity 

(a) (b) 

 Spine Honeycombing 

Normal lung Interstitial opacity 

 

(c)  

Fig. 4 A diagram of the pulmonary fibrosis with (a) peripheral, (b) multifocal, and (c) diffuse 
parenchyma opacification. 
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I.2 Clinical investigation techniques of lung pathologies 
 

In clinical routine, lung dysfunction or the presence of pulmonary diseases is generally 
assessed by means of two major approaches. The first one consists of acquiring global 
measurements of the lung function by monitoring the airflow during inspiration and 
expiration – the pulmonary function tests. The second one is based on an imaging technique 
providing visual local information of the lung morphology – the computed tomography (CT). 
These approaches are briefly discussed in the next sections with a focus on the CT which is 
the investigation modality exploited by the computer-aided diagnosis systems in general. 
 

I.2.1 Pulmonary Function Tests 
 
The pulmonary function test (PFT) is a major step for assessing the functional status of 

the lungs. The measurement of PFT is based on several conditions stated as follows: 
－ The inspiration and expiration capacities of the lungs, 
－ The velocity of the air moving in and out of the lungs, 
－ The elasticity of the lungs and chest wall, 
－ The diffusion characteristics of the membrane through which the gas moves, 
－ The evaluation for the lungs responding to chest physical therapy procedures. 

PTFs is a generic term used to indicate a series of maneuvers that are performed using 
standardized equipment to measure lung function. Generally, PFTs includes spirometry, lung 
volume measurement, and diffusion capacity for carbon monoxide. During spirometry, the 
examinate takes a deep breath in and then blow out as hard and as fast as he/she can into a 
tube connected to a machine called spirometer. The spirometer and lung volume assessment 
measure how fast and how much air the examinate can blow out from his/her lungs by several 
function tests defined in the following: 
－ Forced vital capacity (FVC) is the volume of air which can be forcibly and maximally 

expired out of the lungs until no more can be expired after the examinate has taken in the 
deepest possible breath. 

－ Forced expiratory volume in 1 second (FEV1) is the volume of air which can be 
forcibly expired from the lungs in the first second of a forced expiration. 

－ FEV1 percent (FEV1/FVC) is the ratio of FEV1 to FVC. It indicates what percentage of 
the total FVC is expelled from the lungs during the first second of a forced expiration. 

－ Peak expiratory flow rate (PEFR) is maximum flow rate achieved by the patient during 
the FVC beginning after full deep inspiration and starting and ending with maximal 
expiration. 

－ Forced expiratory flow (FEF) is a flow rate to measure how much air can be expired 
from the lungs. The FVC expiratory curve is divided into quartiles and therefore there is a 
FEF that exists for each quartile. The quartiles are expressed as FEF25%, FEF50%, and 
FEF75% of FVC. 
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－ Tidal volume (TV) is the specific volume of air inspired into the lungs, and then expired 
out during normal tidal breathing. 

－ Total lung capacity (TLC) is the maximum volume that the lung can be expanded with 
the greatest possible inspiration effort. 

－ Diffusion capacity (DLCO) is the rate of carbon monoxide uptake from a single 
inspiration in a standard time. In principle, the total diffusing capacity of the whole lung 
is the sum of the diffusing capacity of the pulmonary membrane component and the 
capacity of the pulmonary capillary blood volume [25]. 

－ Maximal voluntary ventilation (MVV) is determined by having the patient breath in and 
out as rapidly and fully as possible for 12 - 15 seconds. This test parameter reflects the 
status of the respiratory muscles, compliance of the thorax-lung complex, and airway 
resistance. A poor performance on this test suggests that the patient may have pulmonary 
problems postoperatively due to muscle weakness. MVV can therefore be viewed as a 
measure of respiratory muscle strength. 

 
Sometimes, additional pulmonary function test is performed. Arterial blood gases test is 

used to measure amounts of oxygenation and CO2 by analyzing blood from an artery. This 
test is often used in more advanced stages of emphysema to help determine if a person needs 
supplemental oxygen. 
 

I.2.2 Multi-slice computed tomography (MSCT) 
 

Among the medical imaging techniques today available, computed tomography (CT) 
has imposed itself as the reference imaging modality for the lung morpho-pathological 
assessment due to its high spatial resolution and the ability to depict air-filled regions for 
which other imaging modalities such as magnetic resonance imaging or echography fail. In 
the sequel, we shall briefly present the principle of the CT without insisting on the theoretical 
aspects, but instead focusing on the acquisition parameters and their influence on the image 
appearance and quality. 

The CT imaging was invented and introduced into clinical practice by Godfrey 
Hounsfield (British engineer at the Central Research Laboratories of EMI, England) and Allan 
Mc Cormack (South Africa-born physicist at Tufts University, Massachusetts) in 1972. The 
CT imaging produces high quality data of the inside of the body in cross sectional views by 
exploiting the principle of image reconstruction from projections [26] . The projections are 
obtained as the attenuation profiles of an X-ray beam traversing the body and recorded by a 
detector for a multitude of directions (theoretically an infinite number of projections), 
generally along a cross-section plane, in Fig. 5. The reconstructed radiographic image thus 
produces a cross-sectional view of the body which depicts the local X-ray attenuation 
coefficients of the tissue. These attenuation coefficients, proportional with the physical 
density of the tissue, are expressed as a relative variation with respect to the water attenuation 
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coefficient, leading to a measure unit in CT called the Hounsfield unit, HU: 

                      10001 ×
−

=
w

wHU
μ
μμ

 (1.1) 

where μ denotes the X-ray attenuation coefficient of a tissue and μw the water attenuation 
coefficient. 
 

 

Attenuation profile 

  

X-rays source

Reconstruction from 
projections 

Reconstructed image 
 

Fig. 5 Principle of the CT imaging technique and an example of a lung cross-section 
reconstructed image (emphysema case). 

 
Major advances were obtained in 1998 with the introduction of the multi-slice CT 

acquisition technique and half-second rotation times of the couple X-ray source – detector. 
Continuing technical developments have resulted in a reduction of the rotation time to 0.4 
seconds and the increase in the number of simultaneously acquired slices to 16 in 2003 and up 
to 64 and 128 nowadays. MSCT [27-34] with sub-second rotation times allows for shorter 
scan times, a reduction in motion artifacts, and the scanning of longer body ranges. A series of 
adjacent cross sections in MSCT is easily obtained during so-called volumetric acquisitions, 
and provide real 3-D information for medical analysis. 

According to the type of the X-ray beam and the arrangement of the detectors, the CT 
scanners are divided into four generations. In the first generation scanner, as shown in Fig. 6 
(a), a pencil X-ray beam is produced from a source, and a detector is used to receive the 
signal. In each projection, the X-ray source and the detector move along a straight line and 
change the directions with 1° angle. In the second generation scanner, as shown in Fig. 6 (b), 
a fan beam is produced instead of the pencil beam, and the total scanning time is reduced due 
to the multiple detectors. In Fig. 6 (c), the third generation scanner uses a sharply increased 
number of detectors arranged in a curve. The X-ray source and detectors rotate through 360°. 
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The fourth generation scanner, Fig. 6 (d), uses a complete ring of detectors to surround the 
patient.  

In the MSCT scanner system, the X-ray source also produces a fan beam. The MSCT 
scanner uses multiple detector arrays instead of a single detector array (third generation 
scanner) to record the X-rays through the section of the examined body at one angular 
position of the source. The X-ray attenuation profiles from many different angles of the 
source are collected to reconstruct several cross sectional slices during one complete rotation. 
The MSCT scanner principle is illustrated in Fig. 7. 
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Beam 
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1° 

Moving direction 

Moving direction 
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1° 
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(a) (b) 
 

Body 

X-ray Source 

Detectors 

Beam 

Rotation 

 

Detectors

Beam 

Body 

X-ray Source 

 
(c) (d) 

Fig. 6 The four generation scanners: (a) the first generation, (b) the second generation, (c) the 
third generation, and (d) the fourth generation. 
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Fig. 7 Principle of the multi-slice CT canner. 

 
Several parameters of the acquisition protocol in MSCT influence the image quality and 

the spatial resolution, and thus need to be discussed and taken into account in our study. 
 
－ The X-ray beam collimation is responsible of the partial volume effect. An increase in 

beam collimation has as consequence a decrease in spatial resolution and also in the noise 
level, Fig. 8. 

 

  

(a) (b) 
Fig. 8 Effect of the X-ray beam collimation on the reconstructed image: (a) 2 mm collimation, 

(b) 0.6 mm collimation. 
 
－ The image reconstruction kernel or the frequency filter used in the filter backprojection 

approaches influences the level of details captured by the image and the noise level, 
irrespective to the X-ray beam collimation. The kernel setting can be changed offline at 
will, and do not require additional patient exposure. Fig. 9 shows a reconstruction 
example using a “SOFT” (low frequency) and a “HARD” (high frequency) kernel. 
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(a) (b) 
Fig. 9 Influence of the reconstruction kernel on the CT image: (a) “SOFT” kernel, (b) 

“HARD” kernel. 
 
－ The image reconstruction matrix (image size) and the selected field of view impact on 

the image axial resolution. Typical matrix size is 512x512 pixels but larger matrices are 
also available on current CT scanners – 768x768 pixels and 1024x1024 pixels. For a 
given matrix size, a reduced field of view can focus on a region of the body and provides 
a higher axial resolution (smaller pixel size), Fig. 10. However, in our study, the field of 
view has to capture both lungs for the whole body volume, Fig. 11 , which prevents us 
from exploiting this parameter for increasing the axial resolution. 

 

 
(a) (b) 

Fig. 10 Axial resolution with respect to the field of view (FOV) for the same reconstruction 
matrix: (a) FOV capturing both lungs – 0.77 mm/pixel resolution, (b) FOV focused on 
the right lung – 0.35 mm/pixel resolution. 
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Fig. 11 Sixteen MSCT axial images equally spaced in the longitudinal direction throughout 
the lung and showing the variability in the lung cross-section size, imposing a large 
FOV for the CT acquisition. Note that this subject is with emphysema and pulmonary 
fibrosis. 

 
－ The longitudinal sampling interval for axial image reconstruction impacts on the image 

resolution in the z-direction (cranio-caudal direction). It should be set-up with respect to 
the beam collimation by fulfilling the Nyquist criterion, namely providing at least two 
axial images per collimation width (note that generally, overlapped reconstructions are 
accepted in clinical routine). Moreover, ideally, the sampling step should be set-up 
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according to the axial pixel dimension in order to obtain isotropic volume data. 
Unfortunately, in clinical practice there is a large variability concerning this setting. 

 
－ The radiation dose affects the signal-to-noise ratio in the image. It is measured as the 

product between the X-ray tube current and the exposure time and expressed in mAs units. 
Higher doses ensure better image quality (Fig. 12) but they are generally in conflict with 
clinical recommendations which stipulate low doses, especially for the patients having a 
longitudinal follow-up (repeated CT examinations over time). Such parameter setting is a 
compromise between image quality and accepted patient dose, and depends on the patient 
body weight. Consequently, a CAD analysis software should be able to overcome the 
variability imposed by such parameter. 

 

(a) (b) 
Fig. 12 Influence of the radiation dose on the image quality: (a) normal dose, 287 mAS, (b) 

low dose, 57 mAs. Courtesy of Dr. Catherine Beigelman-Aubry, Pitié-Salpêtrière 
Hospital, Paris. 

 
－ The display window setting provides the tissue density range that is visualized on the 

computer display with a compressed dynamics of 256 gray level values out of 2000 HU 
values, as illustrated in Fig. 13. Such display window setting can also be used by the 
CAD system in processing the CT data, due to the memory size reduction. 

 
To summarize, the appearance of the lung tissues on the MSCT images depends on their 

intrinsic physical density and the CT acquisition protocol settings. Such image properties will 
be discussed in detail later on, in Chapter III, where the proposed CAD system will be 
presented. 
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(a) 

 

(b) (c) (d) 
Fig. 13 Display window setting for CT images: (a) Transfer function, (b) “LUNG” window, C 

= -600 HU, L = 1600 HU, (c) “LIVER” window, C = 100 HU, L = 200 HU, (d) 
“BONE” window, C = 400 HU, L = 2000 HU. 

 
In conclusion, the CAD system targeting lung parenchyma pathologies in MSCT 

images has to take into account the variability induced by the CT image protocol used in order 
to provide a robust detection (or to recommend the CT protocol adapted to the lung 
investigation). Also, it is important to ensure detection accuracy and discriminative power 
with respect to the type of pathology itself, independent of the variability in image appearance 
of these pathologies. The following chapter analyses the state of the art in this field and sets 
up the direction considered in this work for the developed approach presented in Chapter III. 
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Chapter II           

Detection of lung disease with MDCT: State of the Art 
 
 
 

The purpose of this research is the automated detection and classification of different 
lung parenchyma patterns as normal tissue and pathological regions, where these latter focus 
on emphysema, fibrosis, and ground glass. For this objective, two challenges, lung 
segmentation and classification of lung tissues, need to be achieved. 

Lung segmentation addresses two main aspects, namely lung region segmentation and 
partition of the lung region. The purpose of lung region segmentation is to accurately extract 
the lung parenchyma regions, where the analysis focuses on, from thorax CT images. The 
entire lung region provides full photometric information of lung parenchyma for the 
following analysis, even at the periphery of lungs. In general, pathological changes occur 
locally in the lung so that the appearances of regions with normal tissue and pathological 
changes are different in CT images. Hence, lung region partitioning aims at splitting an entire 
lung region into regions of interest (ROIs) according to the photometric properties of each 
point within the lung region, such as intensity and spatial neighborhood texture. While the 
points within a given ROI are associated with similar photometric properties, the 
differentiability among ROIs is increased. Such differentiability can be extracted as texture 
features to enhance the accuracy of ROI classification. 

Further on, the purpose of the lung tissue classification is to recognize that lung tissue 
inside a ROI is normal or pathological. The analysis can be divided into two steps, feature 
extraction and ROI classification. Feature extraction is to obtain gray-level and texture 
information from ROIs. Such features should provide specificities for ROIs with normal 
tissue and pathologies for their efficient discrimination. The more the distinguishability of a 
feature is higher, the more the confidence is higher and the accuracy of classification is higher. 
Therefore, we need to define various features and select the useful and confident ones. In 
classification, a potential classifier is used for discrimination of ROIs based on the extracted 
features. While there are several well-known classifiers, we need to select an appropriate one 
for our CAD system. 

In this chapter, we present and discuss existing techniques related to the detection and 
classification of lung diseases. Following the procedure of a classification system, we first 
introduce lung region segmentation (Section II.1), which is a step to extract an entire lung 
from a CT volumetric acquisition. In this section, three methods including optimal 
thresholding (Section II.1.1), region growing (Section II.1.2), and edge tracking (Section 
II.1.3), are briefly described. Then, in Section II.2, we introduce the concepts of related 
techniques for lung parenchyma analysis, which are divided into two categories, lung 
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partitioning and classification approaches. The section on lung region partitioning (Section 
II.2.1) addresses the detection of regions of interest (ROIs) in the lung parenchyma related 
with textural properties. The classification approaches (Section II.2.2) introduce the methods 
for feature extraction and the potential classifiers used to categorize the previously defined 
ROIs. 

For a CAD system, the evaluation of overall performance is indeed important, both in 
terms of accuracy and robustness. Therefore, in Section II.3, several validation approaches are 
briefly introduced. Finally, the strengths and the weaknesses of each related technique are 
discussed and summarized in Section II.4. 
 

II.1 Lung Region Segmentation 
 
In a CAD system, lung region segmentation is a necessary first step. Armato et al. [35] 

explained the importance of an accurate lung segmentation in a CAD system. The pathologies 
that CAD systems focus on usually locate within specific lung regions or exist at the 
periphery of lungs. If the segmentation is inaccurate, the regions with pathologies or 
abnormalities may be excluded so that the analysis result is incorrect. Second, based on this 
segmentation, only the lung parenchyma region will be processed, which will greatly reduce 
the computation time, since lung regions occupy only a reduced part of the total volume data 
of a CT scan. 

In this section, we introduce several relevant approaches related to the lung region 
segmentation. These approaches include semi- and automated techniques, where the first 
category requires user interaction, such as seed-point initialization.  
 

II.1.1 Optimal thresholding 
 
Optimal thresholding [36] uses discriminant analysis to divide foreground and 

background by maximizing the discriminant measure function. In an image with L gray levels, 
the number of pixels at level i is denoted as ni, and the total number of pixels is denoted as N 
= n1+n2+…+nL. Hence, the probability distribution of level i can be computed by 

Pi = ni / N                  (2.1) 
The pixels of the image are divided into two classes, C1 and C2, which include pixels 

with gray-level [1, k] and [k +1, L], respectively. The sum of the probabilities of classes C1 
and C2 are calculated by 
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where w1+ w2 = 1. Let μi be the gray-level mean of the class Ci, and μT be the gray-level mean 
of the original image. Then, the optimum threshold k* is obtained by the following formulas, 
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When σ2(k) reaches the maximum, k is the optimal thresholding value, k*. 
Optimal thresholding is usually employed to roughly dividing the CT image into two 

categories: the foreground and the background. Then, other (spatial discrimination) criteria 
are exploited to detect the right and left lungs. In [5], the authors applied optimal thresholding 
to automatically select a threshold value to separate the voxels of the CT image volume into 
two categories: (1) voxels within the dense body and chest wall structures (foreground), and 
(2) low-density voxels in the lungs or in the air surrounding the body (background). After 
applying the optimal thresholding, a spatial connectivity algorithm was exploited to exclude 
the background air which is the region connecting to the border of the image and retain the 
two largest components. Finally, topological analysis [37] was used to fill in the lung regions 
and eliminate the interior cavities. Leader et al. [38] proposed a similar lung segmentation 
scheme which was performed in three steps. First, image preprocessing was used to remove 
background pixels, and second, computation and application of a defined threshold was 
exploited to identify lung tissue. Third, according to the rules of size, circularity, and location, 
the preliminary segmented regions were refined by pruning incorrectly detected airways and 
separating fused right and left lungs. 
 

II.1.2 Region growing 
 
Region growing is a general class of segmentation approaches which performs points 

aggregation in the discrete space based on local spatial connectivity. Basically, the procedure 
starts from a seed point, and is continuously examining neighboring locations in order to 
determine whether they should be added to the seed class. The growing process is stopped 
when no more locations can be added to the expanding subset. 

The seed point/subset is chosen depending on the nature of the problem, for example, if 
the target is the largest object in the image, the seed can be chosen as the point set for which 
the gray value corresponds to the strongest peak of image histogram. Alternatively, the seed 
point can be chosen manually by an operator. The aggregation criteria are usually based on 
the photometric characteristics of the region (the current point and its neighbors) such as 
mean intensity value and variance. 

Several studies exploited the two-dimensional (2-D)/three-dimensional (3-D) 
region-growing approach for segmenting lung regions. Denison et al.[39] have proposed a 
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2-D region-growing approach for extracting lung regions using an operator-given seed point 
in each axial CT image. Then, the 3-D lung volume was recovered by composing the 2-D 
region-growing results, and was offered for estimating the total lung capacity. The result 
showed that the mean tissue volume of a lung was 431±64 ml and the residual volume was 
427±63 ml. Hedlund et al. [40] presented a 3-D region-growing approach that automatically 
isolates the lung region of a CT scan. The method selected all lung voxels connected with a 
seed point. They first excluded the points within the heart and diaphragm areas using the 
criteria of the range [-550, 1000] HU and average difference less than 50 HU. Then, the 
criteria were adjusted in the range [-1000, 15] HU and average difference less than 55 HU.  
 

II.1.3 Edge tracking 
 
The edge tracking method is based on finding the path along the steepest gradients 

corresponding to an interface between tissues of different X-ray attenuation. The gradients are 
obtained by calculating the discrete approximation of the derivative in the local neighborhood. 
Then, the tracking starts from a seed point and proceeds by finding the edge points in the 
neighborhood, whose gradient values are within a specific range. Such methods aim to 
produce a closed contour around an anatomic structure. For example, Sandor et al. [41] 
proposed an automated computer analysis to measure bone mass and thickness around the 
calvaria. They exploited an edge-based algorithm to separate and characterize differences 
between trabecular and cortical bone, and then compared these quantities for the left and right 
sides of the skull. Hedlund et al. [40] applied edge tracking on lung region segmentation. 
Their approach is based on the steep density gradient between the lung (low) and the chest 
wall (high). Three general ranges are respectively defined for the lung parenchyma (less than 
20 HU), the cardiac and diaphragm regions [25, 45] HU, and the chest wall (greater than 50 
HU). Then, tracking was to find the continuous edge path along image points with the density 
gradient greater than 55 HU and the intensity greater than -550 HU. 
 

II.2 Lung Parenchyma Analysis 
 
The objective of lung parenchyma analysis is to partition and class the lung region into 

normal and pathological regions. With respect to implementation, the analysis can be separate 
into two steps: lung partitioning and classification. In this section, several lung partitioning 
methods and classification schemes are described. The partitioning methods include ROI 
setting (Section II.2.1.1), watershed (Section II.2.1.2), and region-merging (Section II.2.1.3). 
In the classification scheme, texture features definition (Section II.2.2.1) is addressed, and 
several classifiers are presented, such as the Bayesian classifier (Section II.2.2.2), the artificial 
neural network (Section II.2.2.3), the support vector machine (Section II.2.2.4), the logistical 
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regression (Section II.2.2.5), and the fuzzy logic system (Section II.2.2.6). 
 

II.2.1 Lung partitioning 
 
In general, pathological changes occur locally inside the lung in the initial stage but 

may extend to a lung region or even spread throughout the entire lung. Hence, lung 
partitioning is exploited to separate the lung region, either directly (ROI setting, Section 
II.2.1.1) or according to photometric properties (watershed transform, Section II.2.1.2, and 
region merging, Section II.2.1.3). The points in a partitioning region have similar properties 
as the normal tissue or one of pathological targets. Thus, the differentiability between regions 
associated with normal or pathological tissues would be enhanced. 
 

II.2.1.1 ROI setting 
 
In image processing, a ROI is a subset of an image identified for a particular purpose. 

ROI setting is selected by a given boundary on a 2-D dataset or by a given surface defining an 
object on a 3-D dataset. In medical imaging, the concept of ROI definition is commonly 
associated with automatic or manual selection of target anatomical or pathological territories 
(e.g. tumor margin delineation). 

For an automatic region analysis, the simplest ROIs are generally set up as rectangular 
grids with a fixed size and overlapped to ensure the texture information would not be missed 
during the analysis of the whole organ. In [42], in order to automatically detect and quantify 
ground-glass opacities on high-resolution CT images, the author partitioned the lung region 
into 9×9 pixels ROIs and calculated texture features in each ROI for classification. Xu et al. 
[43] separated the lung region into 31×31 pixels ROIs. The ROIs are overlapped by half and, 
thus, a whole lung slice is classified on 15×15 pixels ROIs. Then, 24 texture features were 
calculated for analyzing and classifying each ROI in emphysema and normal tissue. 
 

II.2.1.2 Watershed transform 
 
Watershed transform, introduced by Vincent and Soille [44], is one of region-based 

segmentation methods. The main idea of watershed is to find the boundary between regions 
associated with catchment basins in an image relief. If mi(I) denotes the regional minima of 
the image I, and CB(mi) denotes the catchments basin associated with these minima, the 
watershed transform is defined as:  

WS(I) = (CB(mi))C,  (2.6) 
where C denotes the complement operator. 

Fig. 14 illustrates the concept of watershed. A simple topographic relief includes two 
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catchment basins associated with two local minima, A and B. When water falls on the relief 
and flows along a path to reach one of two local minima, the relief is slowly flooded by water 
rising. Eventually, the flooding will reach a top zone which is the boundary between two 
catchment basins on the relief, and such top zone is called a watershed line. 
 

 

Catchment basin Catchment basin 

Watershed line 

A B 

Water 

 
Fig. 14 The concept of watershed segmentation. 

 
Generally, watershed segmentation would be roughly separated into two categories, 

immersion-based watershed and drainage rainfall watershed. In immersion watershed 
algorithms, water floods on the digital relief from lowlands (pixels of low gray level) to 
highlands (pixels of high gray level). When the water floods up to a pixel p with altitude h, 
there are three possible situations, as shown in Fig. 15: (a) p is a minimum in a new 
catchment basin if gray levels of all neighbors of p are larger or equal to h, Fig. 15 (a); (b) if 
there is only one catchment basin beside p, p would join to this catchment basin, Fig. 15 (b) ; 
(c) if p is between two catchment basins, a dam would be built on p, Fig. 15 (c). 
 

 
p 

 

 
p  Dam p 

(a) (b) (c) 
Fig. 15 Three situations of a pixel p during flooding: (a) p is a minimum; (b) p is on the 

hillside of a catchment basin; and (c) p is between two catchment basins. 
 

The concept of drainage rainfall watershed is to simulate water flow. When water is on 
a rugged topography, it would flow down on the steepest downhill direction associated in the 
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area until a local minimum is reached. After all local minima are found, the drainage direction 
of each pixel is set according to gradient. As shown in Fig. 16, each pixel chooses the steepest 
downhill direction among its eight neighbors as its drainage direction. According to drainage 
directions, all pixels belong to two different catchment basins, and a boundary, watershed, 
between two basins could be obtained. 
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Fig. 16 An example of the drainage rainfall algorithm. 
 
In order to enhance performance, several papers presented novel watershed 

segmentation methods by incorporating textural properties [45], and the framework of 
normalized cuts [46]. In [45], the authors used several channels to compute texture features 
for each pixel on the image. Then, gradient computation was exploited to select local minima 
pixels as starting points for the watershed segmentation. In [46], the authors exploited the 
generalized eigenvector to formulate the minimization of the graph-theoretic criterion which 
is defined for measuring the goodness of an image partition. Recently, watershed 
segmentation is applied to the lung CT image [47, 48]. Ukil et al. [47] developed an 
automated method for the segmentation and analysis of the pulmonary fissures. They applied 
a watershed transform on a vessel distance map combined with the original image to obtain an 
approximate segmentation of the lobar fissures. Then, the contrast information in the 
approximate fissure region was used to accurately detect the fissures. 
 

II.2.1.3 Region Merging 
 
The region-merging approach is based on a clustering concept. First, merging criteria 

are defined based on the priori knowledge for measuring the “fitness” degree between two 
clusters. Then, in a specific region, each point starts out as an individual cluster, and clusters 
are progressively merged into lager clusters if they satisfy the merging criteria. Based on this 
concept, Sluimer et al. [49] presented a region-merging approach to divide lung areas. Three 
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objectives were considered as the merging criteria: (1) the regions should be homogeneous in 
texture, (2) the sizes of regions should fall within a certain range, and (3) the shape of the 
regions should be constrained to a more compact form. Hence, the fitness degree was 
measured by three features, textural similarity, size, and compactness. Moreover, the total 
fitness is a weighted sum of the fitnesses associated with each of the three criteria. According 
to these criteria, the clusters showing the similar characteristics are merged into a larger 
cluster. 

Alternatively, region-merging also can start with an over-segmented image and then 
merge regions into objects according to the pre-defined merging criteria (the priori 
knowledge). Tadikonda et al. [50] proposed a region-merging method for the semantic genetic 
image segmentation. Their method was based on the “hypothesize and verify” principle and 
was composed of the following steps organized in a feedback loop: (1) an image was 
over-segmented into primary regions, (2) the regions were represented in a primary region 
adjacency graph, and (3) primary regions were iterative merged according to image 
interpretation hypotheses generated by the genetic algorithm until the optimal segmentation 
was achieved.  
 

II.2.2 Classification Approaches 
 
In this section, several classification approaches are introduced. For classification 

implementation, two main challenges need to be addressed. The first is feature extraction, and 
the second is classifier selection. 

In Section II.2.2.1, we present several methods generally employed in the literature for 
extracting features from the given image, which include gray-level statistics, co-occurrence 
matrices, run-length coding, and fractal measures. Then, from Section II.2.2.2 to Section 
II.2.2.6, we discuss several classifiers including Bayesian classifier, artificial neural network, 
support vector machine, logistic regression, and fuzzy logic systems, respectively. 

 
II.2.2.1 Feature extraction 

 
In image processing, feature extraction is an important step before classification and 

recognition. The main aim of feature extraction is to compute quantifiable characteristics of 
an image using one or several measure functions. By such extracted features, the dimension to 
represent an image is significantly reduced for understanding the content of the image so that 
it is easier to compare differences between images and to analyze objects in the image. 

Various categories of features were proposed to represent images. These features are 
briefly described as follows: 
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－ the gray level distribution provides a set of useful features derived from the grayscale 

image histogram. These features such as mean, variance, skewness, and kurtosis describe 
the shape of the first-order gray-level distribution regardless of spatial interdependencies 
[51]. Several approaches [52-56] exploited first-order features to analyze the distribution 
of gray levels in CT images. Sometimes, the authors used additional gray-level features to 
increase the accuracy. Malone et al. [54] added 6 first-order features, namely maximum, 
minimum, range, lower percentile, upper percentile, mean deviation. Also, Uppaluri et al. 
[55] defined four new features to calculate the number of voxels within given grayscale 
ranges and the ratios of the number of voxels in different categories. 

 
－ the gray level co-occurrence matrix is a second-order statistics for characterizing the 

occurrence of gray-level combinations in pairs of spatially related pixels [51]. An element 
at location (i, j) in the co-occurrence matrix specifies the frequency of occurrence of two 
gray-levels i and j separated by a given distance and a given direction from each other. 
Then, 13 features are calculated from a sub-matrix of the co-occurrence matrix: entropy, 
variance, contrast, correlation, sum average, sum variance, sum entropy, difference 
variance, difference entropy, angular second moment, inverse different moment, 
information measure of correlation 1, information measure of correlation 2 [57]. In 2-D 
analysis [58], the number of occurrences of pairs of gray-levels i and j are respectively 
accumulated in 4 directions, 0°, 45°, 90°, and 135°. Recently, in 3-D analysis [59], there 
are 13 directions for co-occurrence matrix computation, corresponding to the 
26-connectivity. 

 
－ the run-length statistics is a second-order statistics to capture the coarseness of a texture 

in specified directions. A run is a set of consecutive pixels displaying the same gray-level 
intensity along a specified linear direction [60]. For 2-D analysis [61-63], an element at 
location (i, j) in a run-length matrix represents the number of runs associated with 
gray-level intensity i and length of run j along a specific direction. Note that there are 4 
directions, 0°, 45°, 90°, and 135°. Generally, 11 features are extracted from the run-length 
matrices: short run emphasis, long run emphasis, low gray-level run emphasis, high 
gray-level run emphasis, short run low gray-level emphasis, short run high gray-level 
emphasis, long run low gray-level emphasis, long run high gray-level emphasis, 
gray-level non-uniformity, run length non-uniformity, and run percentage. Furthermore, 
for 3-D analysis, in the statistics, fine textures with similar gray-level intensities contain 
more short runs, while coarse textures with significantly different gray-level intensities 
produce more long runs [64].  

 
－  the concept of the fractal dimension developed by Mandelbrot [65] provides a 
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self-similarity measure of an object and allows to describe the surface of an object as fine, 
coarse, gained, or smooth. Roughly, fractal dimension is measured by the ratio of the log 
change in the object size and the log change in measurement scale. Five fractal image 
models have been presented for estimating the fractal dimension of an image: (1) box 
counting dimension [66], (2) blanket dimension [67], (3) fractal Brownian motion [68-70], 
(4) the fractal interpolation function system [71], and (5) affine transforms [72, 73]. For a 
region or an image, a small value of the fractal dimension indicates a “compact” object, 
and a large value indicates a “porous” object. Additionally, the fractal dimension can 
derive fractal features [74] such as mean, variance, skewness, kurtosis, and entropy from 
a constructed stochastic fractal dimension (SFD) image [75, 76]. The value of each point 
in the SFD image is calculated by the function of linear least-squares regression in log-log 
scale [77]. 

 

II.2.2.2 Bayesian Classifier 
 
Bayesian decision theory is a fundamental statistical approach based on quantifying the 

tradeoffs between various classification decisions using probability and the costs that 
accompany such decisions and is usually applied to the classification problem [78]. In 
Bayesian formula, a posterior probability P(ωi|x) represents the occurrence probability of the 
category ωi when the feature vector x has been measured, and it can be calculated by 

( ) ( ) ( )
( )xP

PxPxP ii
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where P(x|ωi) is the probability of assigning the category ωi given x, P(ωi) is the probability 
that the category ωi appears in all data, and P(x) is the probability that the feature vector x 
appears in all data. Fig. 17 shows an example representing different x values and the 
corresponding posterior probabilities P(ωi|x) of a two-class problem. The feature vector x 
would be assigned to the category ωi, if P(ωi|x) is maximum over all others; that is 
                           P(ωi|x) > P(ωj|x)  for all j ≠ i.     (2.8) 

The classifiers based on Bayesian decision theory provide competitive performance to 
deal with uncertainties. The naive Bayesian classifier is a simplified probabilistic classifier 
based on Bayesian theory which makes the assumption that attributes are all independent [79]. 
Thus, under the naive assumption, the classifying function is defined as eq. (2.7), but P(x|ωi) 
should be replaced by 

P(x|ωi) = ( )∏
=

d

j
ijxP

1

|ω ,    (2.9) 

where xj is the feature vector x in the j-th dimension, and d is the number of the features. 

Farag et al. [80] used deformable 2-D and 3-D templates of typical geometry and 
gray-level distribution to detect lung nodules. Then, in order to enhance the accuracy, a 
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Bayesian supervised classifier was exploited as post classification to train and test nodules. 
Uppaluri et al. [81] proposed a texture-based adaptive multiple feature method (AMFM) for 
evaluating pulmonary parenchyma from CT images. The AMFM divides a lung into 6 equal 
regions and employs a naïve Bayesian classifier to categorize each region as one of normal 
tissue and emphysema using extracted 2-D features. The 2-D features incorporate first-order 
and second-order 2-D statistical texture features and the geometric fractal dimension.  
Recently, Xu et al. [82] enhanced the ability of the AMFM to differentiate normal lung from 
pathologies including emphysema, honeycombing, and ground-glass, by extending 2-D 
texture features to 3-D. 
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Fig. 17 An example of a two-class partitioning problem based on the corresponding posterior 

probability P(ωi|x) according to a feature vector x. 
 

II.2.2.3 Artificial Neural Network 
 
The artificial neural network (ANN) was introduced by Warren McCulloch and Walter 

Pitts in 1943 [83]. It is a powerful data modeling tool inspired from the parallel architecture of 
the brain and is used to extract and represent the relationship between a set of inputs and a set 
of desired outputs in order to assist us in making predictions and decisions [84]. The basic 
architecture of the ANN includes three components: the input layer, the hidden layer and the 
output layer, as shown in Fig. 18. Note that The ANN can include several hidden layers but 
only one input layer and one output layer. The input units are linear and merely distribute 
feature values through multiplicative weights to the hidden units. The activities of units in the 
hidden layer are determined by the input information and the weights on the connections 
between the input and the hidden units. In the output layer, a prediction would be produced by 
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associating the values from the hidden units and the weights on the connections between the 
hidden and the output units. 

Like the human brain, a neural network acquires knowledge through learning. There are 
two approaches to learn, supervised and unsupervised. In supervised learning, the neural 
network runs the inputs and compares the resulting outputs against the desired output. Then, 
learning errors are estimated and propagated back to the network to adjust the weights by an 
operator. The learning process occurs continually until the weights represent the passes 
without errors. In unsupervised learning, the neural network is only provided with the inputs, 
but without the desired outputs. The system adjusts the weights through minimizing a cost 
function composed of the inputs and the resulting outputs. 

ANN is a statistical computer program which can categorize similar testing cases 
together based on the optimizing properties obtained from the previous training. Kauczor et al. 
[42] used three neural networks to recognize ground-glass opacities on CT images. The first 
neural network was employed to divide the given image into ground-glass pixels and 
non-ground-glass pixels by the defined density range. The second and third neural networks 
were used to detect contrast-rich opaque areas close to high-attenuation structures using 
contrast as an explicit textural parameter. Their approach achieved sensitivity of 99%, 
specificity of 83%, positive predictive value of 78%, negative predictive value of 99%, and 
accuracy of 89%. Uchiyama et al. [55] employed the ANN for distinguishing seven different 
patterns including normal tissue, ground glass opacities, reticular and linear opacities, nodular 
opacities, honeycombing, emphysema, and consolidation. In their approach, six physical 
measures including the mean, the standard deviation, air density components, nodular 
components, line components and multilocular components, were exploited to evaluate each 
ROI with a 32x32 pixels size. The sensitivity of the approach on their database for six 
abnormal patterns was 99.2% for ground glass opacities, 100% for reticular and linear 
opacities, 88.0% for nodular opacities, 100% for honeycombing, 95.8 for emphysema, and 
100% for consolidation. 
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Fig. 18 A basic three-layer neural network. 
 

II.2.2.4 Support Vector Machine 
 
The support vector machine (SVM) invented by Vapnik [85] is a concept in computer 

science for a set of related supervised learning methods used for classification and regression 
analysis in data analysis and pattern recognition. Generally, there are many hyper-planes that 
might separate a set of points into two categories. The SVM selects the best one which is with 
the maximum margin. Note that the maximum-margin means the distance from the 
hyper-plane to the nearest point on each side is maximized. Fig. 19 illustrates such concept of 
the SVM. A set of points is separated into two categories, V1 and V2, by the maximum-margin 
hyper-plane. However, most classification tasks require a non-linear hyper-plane (curve) for a 
full separation, as shown in the left side of Fig. 20. The SVM maps points into a higher 
dimension space through an appropriate non-linear mapping function (the kernel function) 
which is produced from training data. In this space, the points are rearranged and thus the 
maximum-margin hyper-plane can be found instead of the curve for a full separation, as 
shown in the right side of Fig. 20. 

The SVM provides a non-linear mapping to model non-linear relationship of the testing 
data in a high dimensional feature space and then performs classification by constructing a 
hyper-plane that optimally categorize the data into two groups. Kakar et al. [86] exploited 
fuzzy C-means clustering [87, 88] and the Gabor filter [89] to segment the lung volume and 
extract texture features, and then subjected the results to a SVM classifier for recognition of 
lesions and lung fields in training and testing. For segmentation, the accuracy of delineation 
was 94.06%, 94.32% and 89.04% for left lung, right lung, and lesions respectively, by 
comparing with the delineation results of the expert radiologist. Korfiatis et al. [90] used 
wavelet decomposition for lung field segmentation and performed a discrimination of 
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interstitial lung disease patterns as honeycombing, reticulation and ground glass by SVM 
classification associating 3-D co-occurrence features. The accuracy of their classification 
system for normal tissue, reticular, honeycombing, and ground glass was 89%±2%, 72%±5%, 
71%±3% and 70%±4%, respectively. In [91], a CAD system was proposed to detect both 
solid nodules and ground-glass opacity nodules. In the system, the combination of local shape 
information and local intensity dispersion information was used to express the initial nodule 
candidates. After segmenting potential nodule objects, rule-based filtering and a weighted 
SVM classification were respectively employed to remove easily dismissible non-nodule 
objects and reduce the number of false positive (FP) objects. Overall, the average detection 
rate is 90.2% with approximate 8.2 FPs/scan. 
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Fig. 19 The concept of support vector machines. 
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Fig. 20 A non-linear classification (left side) can be transformed as a linear classification 

(right side) by mapping the points into a higher dimension space. 
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II.2.2.5 Logistic Regression 
 
The goal of the logistic regression model is to find a best fitting and most parsimonious 

function to describe the relationship between an outcome (dependent or response variable),  
and a set of independent (predictor or explanatory) variables [92]. The outcome variable in 
logistic regression is binary (“1” and “0”) or dichotomous (“yes” and “no”), that is, the 
dependent variable can be the value 1 with a positive probability p, or the value 0 with a 
negative probability (1－p). The logistic regression model is defined by 
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where α is an “intercept” and βi is a regression coefficient of an independent variable Xi. Note 
that significance and contribution of each independent variable Xi is reflected on the 
magnitude of the corresponding coefficient βi. Hence, the probability p derived from z is 
given by  
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The relationship between the function f(z) and the value z is expressed in an S-shape 
curve, as shown in Fig. 21. 

The likelihood ratio test is a statistical measurement used to evaluate the significance of 
the difference between the likelihoods of two models, one of which (the full model) is a 
special case of the other (the restricted model). Note that, the full model is composed of all 
coefficients (βi), and the restricted model is obtained when one or more coefficients in the full 
model are restricted to be zero. In logistic regression, the likelihood ratio test is employed to 
exclude those variables having no predictive ability or high correlation with other variables 
from a logistic regression model. It can be roughly divided into two approaches, forward and 
backward. The forward regression model starts with no independent variable at the beginning, 
and adds one significant variable at a time until variables outside the regression model are 
insignificant in statistical contribution. Inversely, in the backward approach, all independent 
variables are put into the regression model at the beginning, and then the variables with the 
least contribution would be removed at a time. This process is stopped while the remained 
variables are all significant in statistical contribution. 

The logistic regression model is widely applied in computer science. In Data mining, 
Arshadi et al. [93] combined a case-based reasoning classifier with spectral clustering and 
logistic regression in order to enhance accuracy for class discovery in molecular biology. 
Spectral clustering was applied to cluster the dataset into several groups and logistic 
regression model was used to exclude redundant and irrelevant features of each cluster. In 
their experiment, the prediction accuracies of two ovarian mass spectrometry data sets were 
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improved from 80% to 93% and from 90% to 98.4%. In medical image analysis, Schluchter et 
al. [94] used logistic regression to estimate the ability of the approaches to discriminate 
between patients with cystic fibrosis at the extremes of phenotype in order to evaluate 
quantification approaches of pulmonary disease severity. Recently, Washko et al. [95] 
employed regression analysis to evaluate the relationship between interstitial lung 
abnormalities and measurements of total lung capacity and emphysema. In their approach, the 
linear and logistic regression models were respectively used for continuous and binary 
analyses which included the variables for age, sex, body-mass index, pack-years of smoking, 
smoking status. The experiment result showed that interstitial lung abnormalities were 
associated with the average reduced total lung capacity of -0.444 liters, and the average lower 
percentage of emphysema defined by lung-attenuation thresholds of -950 HU (-3%) and -910 
HU (-10%). 
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Fig. 21 The logistic function with the probability p on the vertical axis and the variable z on 

horizontal axis. 
 

II.2.2.6 Fuzzy System 
 
Fuzzy set theory [96-98] was introduced by L. A. Zadeh, Professor of computer science 

at the University of California in Berkeley. It provides the membership function operating 
over the range of real numbers [0, 1] instead of the conventional elements of binary logic, 
such as 0/1, yes/no, and true/false. Hence, the fuzzy set theory is considered as a major tool in 
the information engineering applied to bridge the gap between human-originated formalized 
knowledge and numerical data. 

The fuzzy system is a knowledge-based system and consists of the fuzzy IF-THEN 
rules. The fuzzy IF-THEN rules induced from human experts or based on domain knowledge 
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are IF-THEN statements in which some words are used to characterize a continuous 
membership function. According to different rule principles, fuzzy systems are divided into 
three types, the pure fuzzy system, the Takagi-Sugeno-Kang (TSK) fuzzy system [99, 100], 
and the fuzzy system with fuzzification and defuzzification [101]. 

A pure fuzzy system is composed of a fuzzy inference unit combined with a fuzzy rule 
base, which is the collection of fuzzy IF-THEN rules. The basic architecture of the pure fuzzy 
system is shown in Fig. 22. Suppose the death rate has sharp increase in people with 65-75 
years old. In the pure fuzzy system, fuzzy IF-THEN rules are represented in the following 
form: 

IF       the age of a person is within 65-75 years old 
               THEN    with high death rate                   

With the fuzzy rule, the fuzzy inference unit maps the fuzzy set from the input space U 
to the output space V. The main problem of the pure fuzzy system is that its inputs and 
outputs are fuzzy sets, which are represented by words in natural languages, rather than 
real-valued variables used in engineering systems. 
 

 

Fuzzy inference 

Fuzzy rule base 

Fuzzy set 
in U 

Fuzzy set 
in V 

 
Fig. 22 The architecture of a pure fuzzy system. 

 
A TSK fuzzy system is proposed to solve the problem of the pure fuzzy system. The 

basic architecture of the TSK fuzzy system is shown in Fig. 23. In the TSK system, the form 
of fuzzy rules is represented in a mathematical formulation as 

IF      a person is x years old, and x is within 65-75 
THEN  the death rate of the person is y = cx 

where c is a constant. This change makes inputs and outputs to be real-valued variables 
and the fuzzy inference unit in the TSK system is a weighted average of the values in the 
THEN parts of fuzzy rules. However, the TSK system has two problems; that is, the lack of 
representing human knowledge and the difficulty of applying different principles in fuzzy 
logic. 
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Fig. 23 The architecture of a Takagi-Sugeno-Kang fuzzy system. 

 
A fuzzy system with fuzzifier and defuzzifier transforms input real-valued variables 

into a fuzzy set by using a fuzzifier, and the output of this system is transformed from a fuzzy 
set into real-valued variables by using a defuzzifier. The basic architecture of the fuzzy 
system with fuzzifier and defuzzifier is shown in Fig. 24. Under this architecture, inputs and 
outputs are represented by real-valued variables so that it is easier to perform analysis in 
mathematical functions; on the other hand, the human knowledge can be constructed in 
engineering applications. 
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Fig. 24 The architecture of a fuzzy system with fuzzifier and defuzzifier. 

 
In medical image analysis, the fuzzy logic systems were applied in several applications. 

In order to automatically segment the lobar fissures, Zhang et al. [101] employed a fuzzy 
reasoning system to analyze information from three sources: the image intensity, an anatomic 
smoothness constraint, and the atlas-based search initialization. Their approach was tested on 
22 volumetric thin-slice CT scans from 12 subjects, and the root mean square error between 
the automatically and manually segmented results achieved 1.96 ± 0.71 mm. Ahmed et al. 
[102] presented a novel algorithm for segmentation of magnetic resonance imaging (MRI) 
data and estimation of intensity heterogeneities using fuzzy logic analysis. Their algorithm is 
formulated by modifying the objective function of the standard fuzzy C-means algorithm [87, 
88] to compensate for such heterogeneities and to allow the labeling of a pixel to be 
influenced by the labels in its immediate neighborhood. The segmentation accuracies of their 
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approach applied respectively on simulated MRI images with three signal-to-noise ratios, 13 
db, 10 db, and 8 db, were 99.25%, 97.3%, and 93.7%. In [103], two types of fuzzy rules, 
Mamdani and TSK, were used for lung nodule classification. By using fuzzy rules, the CAD 
system can deal with uncertainty in input data, which is inherent problem in an image-based 
practice of medicine. The performance of two fuzzy logic systems without training was 
evaluated by accuracy (Mamdani: 67.2%, TSK: 77.4%), sensitivity (Mamdani: 67.9%, TSK: 
75.6%) and specificity (Mamdani: 65.9%, TSK: 66.1%). Moreover, after training, the 
performance of the TSK system achieved 98.7% (accuracy), 96.7% (sensitivity) and 93.3% 
(specificity). 
 

II.3 Validation Approaches 
 
Sometimes, although accuracy of a CAD system is quite high, reliability and sensitivity 

of the system is weak due to a small or specific testing dataset. Hence, validation is necessary 
to evaluate the classification performance. In this section, we briefly describe three validation 
methods including experts, kappa statistic, and receiver operating characteristic curve. 

 
－ The validation performed by radiologist expert is the primary and simplest way to 

evaluate the testing results. The expert manually performs the segmentation and 
classification (labeling) of the testing data. Then, comparison is performed to evaluate 
difference between the diagnosis result and the result of the CAD system. Even now, the 
radiologist expert has still an important role to offer the preliminary training result and the 
evaluation of a CAD system. However, lung disease analysis is generally based on 
subjective evaluation of CT images, leading to high inter-observer but also intra-observer 
variability. Therefore, the development of reliable and reproducible validation methods is 
necessary. 

 

－ Kappa statistic [104] is a common method in assessing the agreement of two or more 
observers evaluating the same data for assignation to categories. For example, in medical 
study, kappa statistic is used to assess the agreement of radiologist analysis (rater 1) and 
computer analysis (rater 2) using the same X-ray data to label a growth malignancy (M) 
or benignancy (B). The probabilities (Pr) of the agreement of two raters are as follows: 

 
 Rater 2 (M) Rater 2 (B) Total 

Rater 1 (M) Pr11 Pr12 Pr3 

Rater 1 (B) Pr21 Pr22 Pr4 

Total Pr1 Pr2  
Then, the value of kappa statistic, k, is defined as 
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where Po = Pr11 + Pr22, and Pe = Pr1 × Pr3 + Pr2 × Pr4. The value k represents difference 
between the observed probability of malignancy (Po) and the probability of malignancy 
associated with the assumption of an extremely bad case (Pe). Note that the maximum 
value for kappa statistic is 1. In kappa statistic, the benchmarks to interpreting k values 
are listed in Table 1. 

 
Table 1 The interpretations of k values in Kappa statistic. 

k value Interpretation 

0.00-0.20 slight 

0.21-0.40 Fair 

0.41-0.60 Moderate 

0.61-0.80 Substantial 

0.81-1.00 Almost perfect 

 
－ The performance of the CAD system is evaluated by five performance indices: accuracy, 

sensitivity, specificity, positive predictive value (PPV), and negative predictive value 
(NPV). These performance indices are defined by 

Accuracy = (TP + TN) / (TP + TN + FP + FN)   (2.13) 
                 Sensitivity = TP / (TP + FN)   (2.14) 
                 Specificity = TN / (TN + FP)   (2.15) 
                 PPV = TP / (TP + FP), and   (2.16) 

            NPV = TN / (TN + FN)   (2.17) 
where the true positive rate (TP) represents percentage of correctly classified positive 
cases, the true negative rate (TN) represents percentage of correctly classified negative 
cases, the false positive rate (FP) represents percentage of incorrectly classified positive 
cases, and the false negative rate (FN) represents percentage of incorrectly classified 
negative cases. 
 

The receiver operating characteristic (ROC) curve [105] is a graphical plot of 
sensitivity against (1 － specificity), i.e. a plot of the proportion of TP versus the 
proportion of FP. From the computer science point of view, ROC analysis can be used as 
an evaluation tool for discrimination of effects among different methods. The overall 
performance of diagnostic results can be measured by the total area (Az) under the ROC 
curve. Intuitively, the area is in the interval [0.5, 1], and a large area indicates a better 
performance.  

Sometimes, ROC analysis is also used to compare the performance of two methods 
applied on the same dataset. Note that it is important to consider the correlation between 
areas of ROC curves of two methods. In such case, the z-test is used to evaluate 
differences between the areas for which the correlation is counted, and is defined as 
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where Az1 and Az2 are the two areas, SE1 and SE2 are the corresponding standard errors, 
and r is the quantity representing the correlation between the two areas. 

 

II.4 Summary 
 
In the state of the art, the techniques for lung disease classification are introduced in 

three stages: lung region segmentation, lung partitioning, and classification. Several 
conclusions can be resumed and addressed as follows. 

In the case of lung region segmentation, optimal thresholding, region-growing, and 
edge-tracking are exploited to identify the points within the lung parenchyma based on the 
gray-level contrast between lung parenchyma and the surrounding tissues. Each of them 
extracts the lung regions in a CT image in very short time. However, these methods easily fail 
on the scans with pathological lungs which include dense regions. Such scans occur 
frequently in clinical practice and are the aim of the lung CAD system. Furthermore, the 
region-growing and edge-tracking approaches are not fully automatic methods due to the 
user-interactive seed point. 

In the case of lung partitioning, ROI setting is a basic method to provide a simple 
way to partition the lung region by a grid of square regions. In this approach, the use of 
regions is with a fixed size so that the shape is insensible to the boundary between different 
tissues inside the lung region. This may cause serious consequences for performance of the 
following analysis. Such problem can be overcome by using the watershed transform or 
region-merging algorithms which partition the lung region based on photometric properties, 
gray-level and texture. However, oversegmentation is a well-known drawback in watershed 
segmentation. Thus, watershed transform should be combined with other approaches, such as 
thresholding markers [106] and gradient map construction [107], for reducing the 
oversegmentation. High computation time is one of the disadvantages of region-merging. The 
other one is the parameterization problem because there is no functional relationship with the 
number of output regions and with their sizes. Users need to find the appropriate 
segmentation level by a trial, and require priori knowledge for constraining the size and shape 
of the region. 

Table 2 is a summarized comparison of classifiers that are mentioned in Section 
II.2.2 with respect to four criteria: time, training data requirement, accuracy, and n-class 
classification. The Bayesian classifier is easy to implement and requires a small amount of 
training data to estimate the parameters for classification based on the independent variable 
assumption. However, the Bayesian classifier is limited with dependent variables which 
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usually exist in practical cases. The ANN is used as a function approximation mechanism 
with a simple architecture. The weights of the hidden layer are adjusted through 
supervised/unsupervised learning from the observed data so that training data requirement is 
not too high. Although its accuracy is high, it only deals with the linearly separable problem 
of two classes. The SVM can avoid the difficulty of the non-linear separation by mapping the 
two-class variables in the higher feature space, and is with low training data requirement. 
However, the computation complexity is high, the selection of the kernel function parameters 
is difficult, and it lacks of multi-classification possibility. Like SVM, logistic regression also 
can solve the non-linear separation problem. Additionally, it has easier clinical inferences 
than ANN and SVM duo to the log odds interpreted as the relative increase or decrease in the 
probability of an outcome. Unfortunately, logistic regression requires much data to achieve a 
stable and meaningful result (high accuracy) so that the computation complexity is quite high. 
The main advantage of fuzzy logic analysis is the use of vague linguistic terms in the rules. 
Such rules allow the analysis to offer the mixed classification which is closer to the human 
thinking mode. The difficulty is to establish the fuzzy rule base and to combine the outputs of 
the rules. 
 

Table 2 Summarized comparison of the different classifiers. 

Criteria 
Classifiers Time 

complexity 
Training data 
Requirement 

Accuracy 
n-class 
Classification 

Baysian Low Low Medium Yes 

ANN High Medium High No 

SVM High Medium Medium No 

Logistic 
Regression 

High High Low No 

Fuzzy Logic Medium Medium High Yes 

 
There are many CAD systems proposed for the lung disease analysis. We summarized 

them into four categories and the comparison between them is listed in Table 3. The 
point-based analysis was used to estimate the severity of the diseased lung by the ratio of the 
lung volume selected by a defined threshold value to the total lung volume. The analysis is 
very simple with low time complexity, but it cannot discriminate between several pathologies 
of lung parenchyma occurring at the same time. The approaches including lung segmentation 
and classification can overcome this drawback by applying classification on each point in the 
lung region. However, such methods are weak in accuracy and robustness. When pathological 
targets appear locally in the lung, the methods might fail due to insufficient gray-level and 
texture information extracted from the given point and its neighborhood. In order to obtain the 
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locally gray-level and texture information, lung region partitioning is added to the CAD 
system for separation of lung region. Overall, the 2-D/3-D CAD system can classify the 
partitioning regions into normal or one of several pathologies, and has higher accuracy and 
robustness. Nevertheless, the 2-D system is weak in specificity because the system analyzing 
the lung region slice by slice is insufficient in the spatial information and volumetric statistics. 
The 3-D system has high performance both in sensitivity and specificity using the completely 
3-D local and spatial information, but its time complexity is usually much higher than other 
categories of approaches. Furthermore, both of 2-D and 3-D analysis are usually 
semi-automatic because an initial seed point is required in the beginning of lung segmentation, 
and ROIs setting. 
 

Table 3 Summarized comparison of the different kinds of the analysis systems. 

 Criteria 

Approach 
Pathology 
discrimination 

Sensitivity Specificity Robustness 
Time 
complexity

Pointwise 
(pixel/voxel-based) 
analysis 

No Medium Low Low Low 

Lung segmentation 
+ Classification 

Yes Medium Low Low Low 

2-D 
+ Lung segmentation 
+ Lung partitioning 
+ Classification 

Yes High Medium High Medium 

3-D 
+ Lung segmentation 
+ Lung partitioning 
+ Classification 

Yes High High High High 

 
In conclusion, based on the identified drawbacks in the state of the art, two key points 

have to be specifically addressed in the development of new lung CAD systems: the 
automation of the solution and the acquisition of more complete photometric information. 
Hence, in order to overcome the limitations of each discussed category of methods, a new 
approach is proposed in Chapter III. Considering the reliability and robustness criteria, we 
situate the proposed approach in the 3-D case, according to the system architecture including 
lung segmentation, lung region partitioning, and classification. In our approach, a 
multi-resolution decomposition scheme is proposed to segment and partition lung regions 
automatically. The resulting decomposition pyramid is investigated based on a hierarchic tree 
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structure relating the lung regions at different resolution levels. Several features including the 
gray-level information and the spatial connectivity information are computed for each region 
and associated with the tree structure. Then, because of its flexibility, the fuzzy logic analysis 
is used to implement the mixed classification. Finally, a spatial partitioning approach is 
presented for upgrading the multi-resolution decomposition scheme, and the classification 
result is represented according to the radiologist’s investigation criteria. 
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Chapter III 

Multi-resolution Approach for Characterization of Lung 
Diseases 
 
 
 

As concluded in Chapter II, the development of a new CAD system for lung pathology 
detection should focus on two aspects: 

－ first, the automation of the approach allowing the analysis of large amount of 
patient image data and thus releasing the interaction burden for the clinician and, 

－ second, the ability to provide new discriminative features computed from the CT 
image data, exploitable by a classification system. We recall that the parenchyma 
patterns targeted by the objective CAD system concern normal pulmonary tissue 
(N), emphysema (EM), fibrosis/honeycombing (FHC), and ground glass (GDG).  

The detection of such patterns closely relies on the analysis of their tissue density as 
captured in the CT data. For emphysema and fibrosis, the common characteristics refers to the 
presence of low-attenuated regions [-1000, -950] HU / [0, 10] GL2 due to the tissue 
destruction, while ground glass is distinguished by medium-high intensity [-650, -500] HU / 
[75, 105] GL, superior to the normal tissue [-920, -850] HU / [16, 35] GL. The idea exploited 
by the proposed approach is to detect EM and FHC by performing an analysis of the 
low-attenuated regions and to tackle the GDG on the remaining zones. Such analysis will rely 
on a set of image features specific to each class of pathology which will be identified in the 
CT data. They refer to size, clustering and gray-level distribution, both inside and around the 
patterns. The considered features are summarized below: 

－ the low-intensity patterns in normal tissue have very small sizes and are normally 
distributed, Fig. 25 (a). 

－ in EM, the size of the low-intensity patterns is large and their border generally 
shows intensities similar with normal tissue, Fig. 25 (b). Moreover, the border 
intensity depends on the EM spatial location in the lung and may increase when the 
pattern is adjacent to lung fissure or thorax cage, Fig. 25 (c). Note that an 
inflammatory condition can also induce an increase of EM border intensity, Fig. 25 
(d). 

－  the FHC low-intensity patterns are smaller in size than those of EM, with 
high-intensity borders [-780, -680] HU / [46, 68] GL known as reticulations, and 
usually cluster together, Fig. 25 (e). 

－ GDG is defined as hazy increased attenuation within the normal region, Fig. 25 (f). 
 

                                                 
2 GL refers to the gray-level value in the grayscale range [0, 255] considered for a CT “lung” window, 

[-1000, 200] HU 
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(a) N (b) EM 

  
(c) EM (d) EM + F 

  
(e) FHC (f) GDG 

Fig. 25 Image features of different physio-pathological lung patterns: (a) normal lung, (b) 
centrilobular emphysema, (c) panacinar emphysema, (d) distal acinar emphysema 
coupled with fibrosis, (e) fibrosis-honeycombing, (f) ground glass. 
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The analysis of the size property is addressed via a multi-resolution decomposition 
approach of the lung volume relief. It allows the identification (segmentation) of low-density 
patterns according to their sizes and also involves a local gray-scale analysis of each such 
pattern and its environment. Note that the patterns extracted at different resolution levels may 
not be disjoint and this property will be exploited to detect pattern clustering. In this respect, 
the resulting multi-resolution decomposition of the low-density patterns will be further on 
described and analyzed by means of a hierarchic tree graph structure, where a node is 
associated to a given pattern at the given resolution level and the tree vertices correspond to 
the spatial connectivity between patterns at different resolution levels. The analysis of the 
neighborhood of each node in such a tree structure (parent - child - sibling) will automatically 
provide the clustering information. The decision step in the final classification will exploit the 
multi-valued features of the multi-resolution lung patterns (size, gray-level distribution, 
clustering, …) and will be implemented by means of a fuzzy logic reasoning.  

The developed method can be classed in the third category of methods described in the 
state of the art, Chapter II, which perform a fully 3-D analysis and successively segment the 
lung field, partition the lungs into regions and class them as normal or pathologic. In order to 
ensure a higher robustness with respect to the CT acquisition parameters, an image 
pre-processing/enhancement step can be applied, as discussed in Section III.1. The lung 
segmentation (Section III.2) has in our case two objectives: first, limiting the volume of the 
processed data and second, proving information on the high-density regions such as fibrosis 
reticulations occurring at the lung periphery and which may be disregarded by the 
multi-resolution analysis focusing on the low-attenuated patterns. Section III.3 presents the 
principle of lung region partitioning based on the multi-resolution decomposition scheme, 
while the attribute description and the fuzzy logic-based classification are respectively 
discussed in Sections III.4 and III.5. The detection scheme is improved by introducing an 
additional spatial partitioning of the multi-resolution decomposition of the lung relief, the 
results being discussed in the Section III.6. The global flowchart of the proposed approach is 
illustrated in Fig. 26. 
 



 54

 

Classification 

Pre-processing 

Testing scans Training scans 

Lung ROI partitioning 
Multi-resolution decomposition scheme 

& 
Hierarchic description 

3-D feature extraction 

Fuzzy logic analysis 

Reassignment & 
region fusion 

Quantification 

Lung field segmentation 

 
Fig. 26 The global flowchart of the proposed approach. 
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III.1 Pre-processing 
 

Generally, the first problem for a CAD system is how to enhance image quality in terms 
of contrast and boundary delineation between different patterns. According to the MSCT 
acquisition protocol used, several filters may be considered here. We shall briefly discuss in 
the following only the anisotropic diffusion filter and the stick operator as potential 
pre-processing approaches to respectively remove noise and strengthen the gradient on the 
patterns boundary. Other pre-processing techniques remain nevertheless conceivable, such as 
the classic Gaussian smoothing filter. 
 

III.1.1 Anisotropic Diffusion Operator 
 
Traditionally, the medical image always has strong speckle noise because of the wave 

interference occurrence inherent in any coherent imaging process. The anisotropic diffusion 
filter offers a good compromise in reducing speckle noise while preserving boundary 
information.  

Perona et al. [108] used the local image gradient to control anisotropic diffusion and 
modified the classical isotropic diffusion equation into an anisotropic diffusion equation, 
given by 

( ) ( ), ,I x y t
div g I I

t
∂

⎡ ⎤= ∇ ⋅∇⎣ ⎦∂
   (3.1) 

where I∇  is the gradient magnitude, div is the divergence operator, ∥∥ denotes the 
magnitude, and ( )Ig ∇  is an edge-stopping function. This function is chosen to satisfy 

( ) 0→xg  when ∞→x  and should be monotonically decreasing so that the diffusion 

decreases as the gradient strength increases, and it stops across edges. Fig. 27 shows results 
produced by applying the anisotropic filter to CT images with emphysema and fibrosis, 
respectively. 
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(a) (b) 

(c) (d) 
Fig. 27 The results (c) and (d), showing only the lung field, were produced by applying the 

anisotropic diffusion filter to original CT images with (a) emphysema and (b) fibrosis, 
respectively. 

 
III.1.2 Stick Operator 

 
The stick method is used to enhance the boundary of the reticulation patterns which 

have different spatial directions. Although the conventional stick algorithm is often applied to 
2-D images, the extension of the stick from 2-D to 3-D could be employed to enhance the 
boundary information which is between image slices. Table 4 shows 3 different symmetric 
templates of the stick mask with size = 7. Note that, in coordinate (i, j, k), the middle portion 
“3” means that 3 successive points form a straight path in axis i, j, or k. Based on such 

templates, 3 types of stick masks can be represented by (1-1-1-1-1-1-1), (1-1-3-1-1), and 
(1-5-1), and the number of forms for each type of mask is 7, 12, and 12, as listed in 
Table 5. Therefore, a given point on a line (size = 7) in an image would match with one of 31 
stick masks with size = 7. Fig. 28 shows two samples of 3 types of the stick mask with size = 
7. The stick operator is defined as 

)
7

)),,(((max
31

1

kjiIms n

n=
=    (3.2) 
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where I(i, j, k) is the intensity of central voxel in the 7×7×7 reference region, mn(.) is the 
result intensity after applying n-th stick mask, Bn(.) is the n-th stick mask, the value of black 
voxels is 1 and the value of other voxels are 0 in the masks, and max(.) is the maximum 
intensity among the results after performing the 31 stick masks. Fig. 29 (a) and (b) 
respectively show the results produced by applying the stick detection to the CT images with 
emphysema and fibrosis, which had been processed by the anisotropic diffusion filter. 
 

Table 4 The three symmetric templates of the stick mask with size = 7. 

mask size Left portion Middle portion Right portion 

1, 1, 1 1 1, 1, 1 
1, 1 3 1, 1 7 
1 5 1 

 

Table 5 Three types of the stick mask with size = 7 and the number of forms. 

mask size types of the stick mask The number of forms 

a(1-1-1-1-1-1-1) 7 
b(1-1-3-1-1) 12 7 

c(1-5-1) 12 
 

 

 

 

 
(a) (b) (c) 

Fig. 28 Sample forms of the stick mask with size = 7 for (a) the category a, (b) the category b, 
and (c) the category c in Table 5. 
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(a) (b) 
Fig. 29 The results produced by applying the stick detection to CT images of Fig. 27 with (a) 

emphysema and (b) fibrosis. 
 

III.2 Lung field segmentation 
 

The purpose of this step is to provide a mask of the lung field including the high 
intensity regions, such as pulmonary vessels and fibrosis reticulations, but also the large 
airways connecting the lungs. The lung segmentation procedure here developed relies on a set 
of standard and geodesic 3-D mathematical morphology operators which are first reminded in 
Section III.2.1 for the sake of completeness, the segmentation algorithm being detailed in 
Section III.2.2. 
 

III.2.1 Definitions 
 
Consider f: Rn → R a discrete function of compact support and D⊂Rn a structuring 

element (SE) and DS its symmetric with respect to its origin, DS(x) = D(-x). The following 
morphological operators are defined [126]: 
 
－ Erosion 

The erosion of the function f by the SE D is defined as 

          ∈∀x supp(f), [εD( f )](x) = ( f Ө DS )( x ) = )( ξξ +∧ ∈ xfD , (3.4) 

where ∧  denotes the infimum operator and Ө the Minkowski subtraction [127]. Fig. 
30 illustrates the morphological erosion in the one-dimensional (1-D) case. 
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Fig. 30 Illustration of the morphological erosion operation of a 1-D function f by a structuring 

element D. 

 
From an intuitive point of view, the erosion operator “shrinks” the “relief” of the 

function so that “hills” shapes become thinner and valleys are enlarged by plateaus 
creation. 

 
－ Dilation 

The dilation of the function f by a SE D is defined as 

  ∈∀x supp(f),  [δD( f )](x) = ( f ♁DS )( x ) = )( ξξ −∨ ∈ xfD = )( ξξ +∨ ∈ xf
SD ,    (3.5) 

where ∨  denotes the supremum operation and ♁ the Minkowski addition [127]. Fig. 

31 illustrates the morphological dilation operator in a 1-D example. 
 

 
Fig. 31 Illustration of the morphological dilation operation of a 1-D function f by a structuring 

element D. 
 
From an intuitive point of view, the effect of the dilation operator is to enlarge 

boundaries of “hills” in the “relief” by plateau creation and “shrink” or “fill in” the 
“basins”. 

D

f Ө DS 

f

o

o DS

D

f ⊕ DS 

fo 

o DS
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－ Opening 

The translation-invariant opening of the function f by a structuring element D is 
defined as the successive erosion-dilation of f by D (Fig. 32): 

                  ∈∀x supp(f), ( f o D )( x ) = ( f Ө DS ) ♁ D.     (3.6) 

 
Fig. 32 Illustration of the morphological opening operation of the 1-D relief f by a structuring 

element D. 

 
From an intuitive point of view, the opening operator “grinds” the “hills” and 

“protrusions” in the “relief” of the function so that the tops of “hills” become flatter, 
and the surface of the “relief” becomes smoother. 

 
－ Closing 

The translation-invariant closing of the function f by a SE D is defined as the 
successive dilation-erosion of f by D (Fig. 33) 

                  ∈∀x supp(f), ( f • D )( x ) = ( f ♁ DS ) Ө D. (3.7) 

 

 
Fig. 33 Illustration of the morphological closing operation of the 1-D relief f by a structuring 

element D. 
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From an intuitive point of view, the closing operator “fills in” the “basins” and 
the narrow “gulfs” in the “relief” f so that the bottoms of the “basins” become flatter 
and the surface of the “relief” becomes smoother. 
 

－ Grayscale reconstruction by dilation/erosion 
Let f, g: Rn → R and gf ≥ . The geodesic reconstruction by dilation of f by g is 

defined as [128]: 

)()( )( gg ff
∞= δρ δ ,          (3.8) 

with 

                           
))(()(

)()(
)1()1()(

)1(

gg

fHgg
n

ff
n

f

f

−=

∧⊕=

δδδ

δ
,                    (3.9) 

where H is a unit SE and )()1( gfδ  is the geodesic elementary dilation of g in f. Fig. 34 

(a) illustrates the reconstruction by dilation of f by g on a 1-D example. Note that the 
reconstruction by dilation of f by g reconstructs only the “hills” of f marked by the 
regional maxima of g and imposes plateaus at the level of g maxima. 

Let f, g: Rn → R and gf ≤ . The geodesic reconstruction by erosion of f by g is 

defined as [128]: 

)()( )( gg ff
∞= ερ ε ,     (3.10) 

with 

                           
))(()(

)()(
)1()1()(

)1(

gg

fHgg
n

ff
n

f

f

−=

∨Θ=

εεε

ε
,     (3.11) 

where )()1( gfε  is the geodesic elementary erosion of g in f. Fig. 34 (b) illustrates the 

reconstruction by erosion of f by g on a 1-D example. Note that the reconstruction by 
erosion of f by g fills in the “basins” of the relief f by creating plateaus at most at the 
level of the local minima of g. 
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(a) (b) 

Fig. 34 Illustration of the morphological reconstruction by (a) dilation and (b) erosion of f by 
g on a 1-D example. 

 
－ Connection cost 

Let f: Rn → R a function of connected support and upper-bounded, and R∈λ  a 
value of f. The threshold λ,fX of at level λ is defined as 

                      (3.12) 

 The connection cost Cf (x, y) [109] of two points nRyx ∈, on f can be defined 
as  

                 
{ }

⎩
⎨
⎧

=∞−
≠+∞<∈∧

=
yxif
yxifyxR

yxC f
f

),(/
),( , λδλ

,   (3.13) 

where λδ ,f  is the geodesic distance relative to the threshold of f at level λ. Fig. 35 (a) 

illustrates concept of the connection cost of two points, x and y. If ⊂Y  supp(f) 

denotes a non-empty subset, the connection cost of a point x with respect to Y can be 
defined as  

               
{ }

⎩
⎨
⎧

∞−
∉+∞<∈∧

=
otherwise

YxifYxR
YxC f

f

),(/
),( , λδλ

.  (3.14) 

Note that Cf (x, Y) fills in all basins associated with the regional minima of f, except 
those located on the support of Y. The illustration of the connection cost with respect to 
Y is shown in Fig. 35 (b). 

 

}.)(),({),( , λλ λ ≤∈=→ xffsuppxXf f
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(a) (b) 
Fig. 35 Illustration of the connection cost in a 1-D case. (a) Connection cost of two points x 

and y, and (b) connection cost with respect to a non-empty subset Y. 
 

In medical imaging applications, setting up the Cf ( x, Y ) at －∞ for all Yx∈ is 

constraining as the original f-intensities are removed. A slightly modified version of Cf 

( x, Y ) which is used in our approach processes the f values for Yx∈ and is defined as  

                
{ }

⎩
⎨
⎧ ∉+∞<∈∧

=
otherwisexf

YxifYxR
YxC f

f )(
),(/

),( , λδλ
.   (3.15) 

The implementation of the modified version of the Cf ( x, Y ) can thus be achieved 
by using the grayscale reconstruction by erosion:  

)()(., Yff gYC ερ= ,  (3.16) 

with  

                           gY ( x ) = 
⎩
⎨
⎧ ∉∞+

otherwisexf
Yxif

)(
.    (3.17) 

 
III.2.2 Segmentation of the lung mask with discrimination of large airways and 

high density structures 
 

Basically, we can roughly use three threshold values to divide the lung parenchyma 
tissue grayscale range in low-density [0, LD], medium-density (LD, HD] and high-density 
(HD, 255] values, where LD = 10, MD = 65, HD = 100. As the lung parenchyma is a mixture 
of airspaces and dense structures (vessels, bronchi, reticular patterns), the lung texture shows 
a large point-value variation, which increases in the presence of pathology or at smaller 
inflation volume (expiration).  

Therefore, a lung segmentation procedure based on a low-value thresholding is not 
robust in the general case. Here, we exploit instead the fact that the lung field is enclosed by 
the thorax cage, of high and homogeneous intensity values, which allows an easy 
segmentation of the lung low-density regions by using the grayscale reconstruction by erosion 
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operator.  

If f: N3 → Z denotes the original 3-D image, a reference function gHD is defined as: 

⎩
⎨
⎧ ∂∉∨

=
otherwisexf

fxifHDxf
xg HD )(

)),((
)( , (3.18) 

where HD denotes the previous grayscale (or the Hounsfield unit) value assigned to high 

density regions in the lung and ∂f the border of the original volume data, the support of f, 
supp(f). 

By applying the operator of grayscale reconstruction by erosion of f with respect to gHD, 

)( HDf gερ , the lung field is “filled in” up to the HD level and can be segmented by 

subtracting the original relief f (and binarizing the result). Note that other patterns outside the 
lungs can also be extracted by this procedure; however, the lung field connected by the large 
airways represents the largest 3-D connected component and can be easily isolated by means 
of a 3-D labeling operator, leading to the lung field subset, further denoted by fL. Fig. 36 
illustrates these steps on an axial cross-section image, while the 3-D segmentation result is 
shown in the coronal projection in Fig. 38 (a). Trachea and the main bronchi are furthermore 
assigned a different label from the lungs, Law , Fig. 38. In order to avoid affecting the shape of 
the lungs, the relabeling procedure should act locally, starting from a seed selected inside (at 
the top of) the trachea. While 2-D approaches dedicated to trachea and main bronchi detection 
have already been proposed in the literature [107], the success of a slice-by-slice detection 
may be subject to the anatomic variability concerning the airway morphology at the level of 
the hilum.  

We have thus developed a robust 3-D procedure to detect the trachea and the main 
bronchi by directly ”filling-in” these regions with the same value as the new assigned label 
(constrained region growing approach). Note that in fL, the grayscale value corresponding to 
the lungs and airways is 255, whereas the other regions have a 0 value. The large airways 
labeling procedure on fL performs as follows and is schematically illustrated in Fig. 37.  

 

1. The trachea section is automatically detected on the first axial original image in the 3-D 
MSCT data [110], a seed s defined at its center and the radius rt of the maximal 
inscribed disk computed. 
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(a) Original CT data, f (b) gHD ; HD value is shown 

as the most spread gray 
level 

(c) )( HDf gερ  

 

(d) )( HDf gερ - f (e) Binarization of (d) 
(f) fL obtained by selection of 

the largest 3-D component 
of (e) 

Fig. 36 Lung field segmentation algorithm illustrated on an axial image (case of 
emphysema-fibrosis). Note that the fL subset in (f) comes from a single 3-D 
connected component. 

 

2. The 3-D geodesic distance function with respect to the seed s and inside the 255-value 
subset fL is computed, and further on denoted by )(sd

Lf .  

3. A spherical structuring element SE(rs) of radius rs is defined, Fig. 37 (a), and a 
constrained region growing procedure inside fL is performed starting from the seed s. 
The region growing acts in fL and builds up a subset T, Fig. 37 (b), by aggregating 

points x which respect the following conditions: 
－ the structuring element centered at x, SE(rs)(x), should be inscribed in the 255-value 

subset of fL, SE(rs)(x) ⊂ fL , 
－ the radius of the structuring element, rs, increases with the distance to s: 

rs(x) = min(rt/2, rt/4 + 0.01 )(sd
Lf (x)),   (3.19) 

in order to limit the propagation inside the main airways, 
－ the region growing stops if )(sd

Lf (x) > dmax = 200 rt to guarantee a limited 
penetration inside the lungs in the case of pathological airways (which do not taper 
in distality). The dmax value is here established based on heuristic tests performed on 
a large database (96 cases) of MSCT images from a COPD study [129]. 
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4. Finally, for each point x of the T subset, and for all its neighbors y ∈ SE(rt)(x), we set fL 

(y) = Law if )(sd
Lf (y) < dmax, Fig. 37 (c). In this way, the airways are relabeled 

irrespective to their shape irregularities, while the surface of the lungs (even closer than 
rt to the airways) is not affected, Fig. 37 (d). The result, denoted by fLaw, is illustrated in 
Fig. 38. 

 

 
(a) (b) 

 
(c) (d) 

Fig. 37 Principle of airway relabeling: (a) definition of the structuring elements according to 
the size of the trachea cross-section (at s) and the geodesic distance with respect to s, 

)(sd
Lf ; (b) constrained region growing resulting in the T subset; (c) local relabeling 

of each region in the T neighborhood, constrained by the geodesic distance value – 
which avoids affecting lung regions; (d) relabeled airways. 
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(a) fL (b) fLaw (c) fLaw , axial image 
Fig. 38 Large airways relabeling result, fLaw . Coronal projection and axial views. 

 
Note that, the lung mask as extracted in fLaw contains holes corresponding to high 

opacities in the lung parenchyma (blood vessels, bronchus walls, fibrosis reticulations). In 
order to include these high intensities into the lung mask with a specific label LHD,a lung 
shape filtering is performed as follows. A morphological closing with a SE(rs) is applied 
separately to each lung (ignoring the airway label), followed by a 3-D hole-filling operator 
performing in 6-connectivity, Fig. 39. The final lung mask, denoted by fLawHD, is used to select 
the region from the original 3-D MSCT data which is further on taken into account for the 
lung partitioning into ROIs via a multi-resolution decomposition scheme. 
 

 
(a) (b) (c) 

Fig. 39 Inclusion of high-density regions into the lung mask (illustration on an axial image): 
(a) lung mask without the airway label, (b) lung field obtained by morphological 
closing and hole-filling, (c) final lung mask including the large airways (yellow) and 
high density regions (red). 

 

III.3 Multi-resolution Decomposition Scheme 
 
The multi-resolution analysis aims to provide the characteristics of the parenchyma 

texture at different scales. While several multi-resolution pyramids can be used, such as 
Gaussian, Laplacian, granulometry, etc., our objective was to preserve the shape of the 
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structures across the scales. The analysis is focused on the detection and extraction of the 
low-intensity regions at several resolutions based on a controlled flooding scheme. In this way, 
the lung region is decomposed in patterns corresponding to catchment basins of increasing 
width among which the EM and FHC low-intensity regions are selected. 

A structured and simplified relief (pyramid) of the lung parenchyma is thus obtained, 
which can be analyzed by means of graph inference. The multi-resolution description scheme 
relies on a 3-D morphological filter－the flood size-drain leveling (FSD)3 [111]－which is 

sequentially used in conjunction with other morphological operators and is described in detail 
in the following. 

 

III.3.1 Flood size-drain leveling 
 
The flood size-drain leveling (FSD) is a morphological filter derived from the previous 

operators which has the property to “flood” the relief basins according to a size criterion. Let 
FSD be denoted as m

fFD , where f represents the grayscale function f: X⊂Rn → R, and m is 

the filter size.  
The FSD principle consists of flooding a relief f up to a draining level imposed by a 

constraint related to the size of the basins of f. This procedure can be defined by means of the 
grayscale reconstruction by the erosion operator as: 

                             )()( mfmf
m
f hhFD ∞== ερ ε   (3.20) 

where )(hf
ερ represents the grayscale reconstruction by erosion of f by h, and hm denotes the 

draining constraint function.  
If a specific draining constraint is desired on a given subset ⊂Y supp(f), the h function 

becomes 

                               YmYm gDfh ∧•= )(,                 (3.21) 

where Dm denotes the disk SE of radius m (defined in the axial plane) and gY is given by eq. 
(3.17). The general formulation of the FSD filter becomes: 

)()(., , Ymf
m
f hYFD ερ= .    (3.22) 

From an intuitive point of view, the FSD “fills in” a given region of f if the region satisfies 
two conditions: it should be basin-like on the relief f and its size has to be smaller than the 
current size of the FSD filter. Namely, if a draining pipe can be put into a basin and stopped 
by the wall of the basin, or if the size of the pipe is larger than the basin size, the basin is 
flooded until water touches the bottom of the pipe; otherwise, if the size of the pipe is smaller 
than the basin one, the basin is not flooded. Fig. 40 illustrates the flooding concept of the FSD 
                                                 
3 this filter was previously introduced under the name of sup-constraint connection cost 
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filter. In Fig. 40 (a), a pipe with size m = m1 checks basins with different sizes. The size of the 
basin A is large, so that the pipe penetrates until the bottom of the basin A. For basins B, C, 
and D, the size of the pipe is large enough to be locked by the walls of the basins. So, the 
basins B, C, and D were flooded, as shown at the right of Fig. 40 (a). Note that the heights of 
water in the basins are according to where the pipe was stopped. In Fig. 40 (b), the size of the 
pipe is m2, where m2 ＞ m1. For the basin A, the pipe is locked at the middle of the wall of 

the basin, and for the basins B, C, and D, the size of the pipe is larger than the sizes of the 
basins. Hence, the basin A was flooded until the bottom of the pipe, and the basins B, C, and 
D were filled in, as shown at the right of Fig. 40 (b). 
 

 

Flooding × 

A 

B C D 

A 

B C D 

 

(a) the filter size m = m1 

 

Flooding 

A 

B C D 

A 

B C D 

 

(b) the filter size m = m2 
Fig. 40 The flooding concept of the FSD filter. The flooded basins are drained by a pipe with 

(a) the size m = m1, and (b) the size m = m2, where m1 ＜ m2. When the size m = m2, 
basin A was partially flooded, and basins B, C, and D were completely filled in, as 
their sizes were smaller than m2. 
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Note that the FSD is a strong morphological filter as it verifies the following conditions. 
Using the notation ψ = )(., YFDm

f , for a given ∅≠Y , *
+∈Rm : 

                  (3.23) 

and 
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In addition, the FSD shows two important properties which are exploited in the 
developed multi-resolution analysis scheme: 

*
21, +∈∀ Rmm , m1 < m2, f: Rn →R, ⊂Y supp(f), and ∅≠Y  

－ increasing with respect to SE size: 

                         )(.,)(., 21 YFDYFD m
f

m
f ≤ , and   (3.25) 

－ stacking: 

                if )(.,1 YFDg m
f= , then )(.,)(., 22 YFDYFD m

g
m
f = .    (3.26) 

The impact of the size of the SE on the relief “flooding” reaches two extrema as 
follows: 
     － no “flooding”: 
                       fYFDm m

f =⇒= )(.,0    (3.27) 

－ full “flooding”: 
                  )(.,)(., YCYFDm f

m
f =⇒∞=     (3.28) 

Note that, throughout the “flooding” process, the FSD operator preserves the contours 
of the basins in the relief f, unless they are completely flooded in a larger basin. This property 
is illustrated in Fig. 41, where the FSD operator is compared with the morphological closing 
with the same SE. 
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(a) (b) (c) 
Fig. 41 Illustration of the structure contour preservation by the FSD. (a) Image interpretation 

in terms of topographic relief f, (b) mDf • (top) and m
fFD (bottom) with the size m = 

m1, and (c) same as (b) for the size m = m2, where m1 ＜ m2. 
 

III.3.2 The Multi-resolution Decomposition Approach 
 

The multi-resolution approach proposed for the analysis of the parenchyma tissue 
exploits the FSD filter in the following manner. By progressively increasing the size of the 
FSD structuring element which defines the resolution level of the analysis, an incremental 
flooding of the image relief is achieved, according to the size of the basins in the relief. 

The relief information extracted at each level is related to the regions affected by the 
flooding with respect to the previous level. The stacking property of the FSD, as defined in eq. 
(3.26), is here exploited for the analysis at a given level of resolution. 
In order to illustrate the developed approach, let us consider a representation of the lung tissue 
intensity in a CT image as a topographic “relief”, f, which is composed of thorax cage, vessels, 
airways, normal tissue, emphysema, fibrosis and ground glass. Fig. 42 shows such a 1-D 
representation, where the ordinate denotes the gray-level intensity. Here, a “hill” stands for a 
blood vessel or an airway wall, a “basin” represents the different low-density patterns, such as 
alveolar, bronchial or destroyed patterns within emphysema and fibrosis, and clustered 
“holes” on a plateau represents destroyed patterns with ground glass. Gray-levels of voxels 
within a blood vessel, an airway wall, and a ground glass pattern, are larger than in voxels 
within emphysema and fibrosis, and the gray-level range of normal tissue is comprised 
between emphysema and ground glass patterns. 
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Fig. 42 Representation of normal and pathological tissues in 1-D domain (solid line) as a 

topographical “relief” f. 
 

By applying the FSD filter m
fFD  with an increasing size m, all local basins of f are 

progressively flooded, as shown in Fig. 43 (a)-(d), where m takes successively the values m0 
＜ m1 ＜ m2 ＜ m3. 
 

 

Normal 

Airway wall 
Blood Vessel 

Fibrosis 

Thorax cage Thorax cage 

Normal 

f 

m0 

Emphysema Ground glass 

m0 

 
(a) 

Fig. 43 On a topographical “relief” f, the effect of the m
fFD  filtering with (a) m = m0, (b) m = 

m1, (c) m = m2, and (d) m = m3, where m0 ＜ m1 ＜ m2 ＜ m3. 
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(b) 

 

 m2 

Thorax cage Thorax cage 

Normal Fibrosis Normal Emphysema Ground glass 

Blood Vessel 
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 m2 

 
(c) 

 

 m3 
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Blood Vessel 
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(d) 

Fig. 43 (Continued). On a topographical “relief” f, the effect of the m
fFD  filtering with (a) m 

= m0, (b) m = m1, (c) m = m2, and (d) m = m3, where m0 ＜ m1 ＜ m2 ＜ m3. 
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During the relief flooding, the multi-resolution analysis consists of detecting the lung 
patterns affected at each resolution level. If l denotes a resolution level and ml denotes the 
associated size of the FSD filter, the lung pattern Pl detected at level l is given by: 

                      }0)()(|{ 1

)(
>−∪= −

∈
xFDxFDxP ll m

f
m
ffsuppxl   (3.29) 

The union of these patterns Pl, l = lm,0 , forms a lung parenchyma decomposition into 

low-density regions. Fig. 44 illustrates the decomposition of the lung relief of Fig. 43 for 4 
levels of resolutions. 
 

 Thorax cage Thorax cage 

Level 
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size 

0 m0 

1 
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3 

m1 

m2 

m3  
Fig. 44 Multi-resolution decomposition (bottom) of the schematic lung “relief” f by 

successive m
fFD  filtering with increasing size m (top). 

 
Another decomposition example of a 2-D lung relief is shown in Fig. 46 for 7 levels of 

resolution. Note that the stacking property of the FSD filter guarantees that: 
                          ll PP ⊆−1 , if ∅≠∩− ll PP 1  (3.30) 

where ml - 1 < ml, cf. eq. (3.29). Based on the property of eq. (3.30), a decomposition pyramid 
Df of the relief f can be built-up by associating to each pattern Pl a decreasing gray-level Gl 
with respect to the increasing resolution level l: 
                           lLxGPx ll −=∈∀ )(,     (3.31) 

where L denotes the maximum gray-level of the f intensity range. The decomposition pyramid 
is defined as: 

                           )()(
],0[ max

xGxD lllf ∈
∨= . (3.32) 

Note that, according to the choice of the number of decomposition levels lmax, the “flooding” 
effect of the m

fFD  filter 
maxlmm =  might not be total for the lung field. In order to guarantee 
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a level of flooding at least as high as the medium density (MD), an additional flooding step is 
considered such as applied in the lung segmentation approach (Section III.2.2), Fig. 45 (a). 
This final step called MD-leveling will provide the largest pattern Pb , b = lmax+1, in the 
decomposition pyramid as: 

                   }0)())((|{ 1

)(
>−∪= −

∈
xFDxgxP ll m

fMDffsuppxb
ερ   (3.33) 

where )(gf
ερ  denotes the grayscale reconstruction by erosion and gMD is given by eq. (3.18) 

by replacing HD with MD. The decomposition pyramid is thus updated according to eq. (3.31) 

and (3.32) for l ∈ [0, lmax +1]. 
As the multi-resolution procedure targets mostly low-density regions, ground glass 

patterns may not be present in the decomposition pyramid. In order to include also this kind 
of tissue in the analysis, the potential GDG regions will be associated with the flooded relief 
zones of the lung field, Fig. 45 (a), having the intensity between MD and HD values. GDG 
regions will be added at the "base" level in the decomposition pyramid, as shown in Fig. 45 
(b). The resulting decomposition pyramid for the example of Fig. 45 is illustrated in Fig. 47. 
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(b) 
Fig. 45 (a) The MD-leveling result for Fig. 42, and (b) the resulting decomposition updated 

from Fig. 44 and including the GDG level. 
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(a) level 1 

 

  

(b) level 2 

 

  

(c) level 3 
Fig. 46 The result of multi-resolution decomposition for 2-D lung relief by using 7 levels of 

resolutions. Note that the left side images show the flooded relief at each level and 
the right side ones show the corresponding patterns extracted at each level. The final 
levels corresponding to the MD leveling and GDG are not shown. 
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(d) level 4 

 

  

(e) level 5 

 

  

(f) level 6 
Fig. 46 (Continued). The result of multi-resolution decomposition for 2-D lung relief by using 

7 levels of resolutions. Note that the left side images show the flooded relief at each 
level and the right side ones show the corresponding patterns extracted at each level. 
The final levels corresponding to the MD leveling and GDG are not shown. 
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(g) level 7 
Fig. 46 (Continued). The result of multi-resolution decomposition for 2-D lung relief by using 

7 levels of resolutions. Note that the left side images show the flooded relief at each 
level and the right side ones show the corresponding patterns extracted at each level. 
The final levels corresponding to the MD leveling and GDG are not shown. 
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Fig. 47 The result of decomposition pyramid for the example of Fig. 45. 

 
 
 

III.4 Hierarchic Description 
 
In the multi-resolution decomposition scheme, a lung volume is decomposed into 

patterns with an increasing size m at successive levels. For each pattern, properties of the size 
and gray-level distribution are analyzed and extracted as criteria for classification. In addition, 
in order to check the existence of clustering of low-density patterns, we have to cross-analyze 
patterns of different resolution levels. Such cross-analysis relies on the spatial connectivity 
existing between patterns of different resolution levels, which can be described by a graph 
structure built up from the lung decomposition pyramid. In this section, we present the 
construction of such a description graph structure which has a tree topology due to the 
stacking property of the FSD-based lung relief decomposition. 
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III.4.1 Definition 
 
In graph theory, a tree is an undirected simple graph that should satisfy the following 

conditions: 
－ A tree is connected and acyclic. 
－ If any edge is added to a tree, a cycle is form. 
－ If an edge is removed from a tree, the tree is separated into two partitions. 
－ Any two vertices in a tree are connected by a unique simple path. 

If a vertex is designated as a “root”, the vertex has no superior and the edges have a natural 
orientation away from the root in the tree. In such rooted tree structure, a hierarchy can be 
inferred and represented in a graphical form. The components and the relationships 
introduced by a hierarchic tree structure T are briefly described in the following. 
 
－ Node and branch 

In T, the components representing vertices are called “nodes”, and the “links” 
between nodes are called “branches”. Two nodes are called “adjacent” if the graph does 
not admit the insertion of an intermediary node between them. 

 
－ Depth and level 

In T, the “depth” of a node Vi is the “length” of the path from the root to Vi with the 
convention that the length of a branch between adjacent nodes is 1. Also, the set of nodes 
with the same depth is called a “level” of the tree; that is all the nodes have associated a 
given level. Note that, by convention, the root has a zero depth. 

 
－ Parent, child, and sibling 

In T, if there is a branch between the node Vi at level m - l, l > 0, and the node Vj at level 
m, the node Vi is the “parent” of the node Vj; that is the node Vj is the “child” of the node Vi. 
Note that a node that has no child is called a “leaf”. The “siblings” (“brothers”) are nodes that 
share the same parent node. 

Fig. 48 shows an example of a tree structure. Here, node A is a root at level 0, and the 
depth of node E is 2. Also, node B is the parent of node E, and node D is a sibling of node E 
because they are children of node B. Also (A, B), (B, D), (A, C), (B, E), (E, G), (E, H), and (C, 
F) are adjacent nodes while (C, I) are not adjacent. 
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Fig. 48 An example of a tree structure. 
 

III.4.2 Hierarchic Tree Structure 
 
As discussed in Section III.3.2, the lung relief was decomposed into a pyramid of 

low-density patterns by using the FSD based multi-resolution decomposition scheme (Fig. 47). 
According to the stacking property of the FSD filter, the decomposition patterns of the 
pyramid can be represented as nodes of a hierarchic multiple tree structure where branches 
denote a connectivity relationship between patterns at different resolution levels. Let patterns 
pi and pj respectively denote basins Ai and Aj, as shown in Fig. 49, where the basin Ai is 
enclosed by the basin Aj in the f relief. In the decomposition pyramid, the pattern pi is stacked 
on the pattern pj, as the basin Ai is flooded by the FSD filter im

fFD , and the basin Aj is flooded 

by jm
fFD , where mi ＜ mj. In addition, patterns on the same resolution level may come from 

basins of various “altitude”, but in all cases they characterize basins disconnected at that 
resolution level. In the example of Fig. 49, the patterns circled by a red dotted ellipse and the 
patterns circled by a blue dotted ellipse are extracted by the filter size m0 at level 0 and they 
are close to each other, but they are stacked on different patterns decomposed by the filter size 
m1 at level 1. That is because the two pattern (basin) groups are respectively enclosed by 
different larger basins. Another consequence of the stacking property is that if a pattern pi at 
level i is spatially connected with a pattern pj at level j where i ＜ j, then pi ⊂  pj. The 

intersection between patterns pi and pj corresponds to the same 3-D spatial location in the 
lung, which means that such decomposition provides a characterization of the same regions in 
the lung at different resolution levels. Fig. 50 illustrates the stacking property on the 2-D 
example of Fig. 46. 
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Fig. 49 The decomposition pyramid of low-density regions (basins) in the relief. 
 

 
(a) (b) 

Fig. 50 The decomposition results at (a) level 4 and (b) level 5 in Fig. 46. Note that, in (a), a 
pattern indicated by a red dotted ellipse is included in a larger pattern indicated by a 
blue dotted ellipse, as shown in (b). 

 
The hierarchic tree graph structure associates a node ti with each pattern pi of the 

decomposition pyramid Pf. A branch Bij between node ti and tj is setup iff the patterns pi and pj 
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associated with ti and tj verify ji pp ⊆ or ij pp ⊆ . Bij is a directional branch in the sense 

parent-child, where the parent node corresponds to the largest pattern among pi and pj, that is 
the one on the higher decomposition level according to the FSD stacking property. The tree 
structure may be disconnected, consisting of disconnected sub-trees, and thus may have 
several root nodes. Fig. 51 illustrates the descriptive graph associated with the decomposition 
pyramid of Fig. 45 (b). Note that tree branches may exist only between nodes at different 
pyramid levels. Indeed, a graph branch Bij means a spatial connectivity between patterns pi 
and pj, and if pi and pj would be at the same decomposition level, they would form a single 
pattern. Also, the reader should not mix up decomposition level and graph level as defined in 
Section III.4.1. In our case, these notions are complementary since the 0-decomposition level 
corresponds to the “leaves” of the descriptive tree graph. In the following, whenever we use 
the notion of level, it refers to the decomposition level unless specifically mentioned 
otherwise.  
 

 

Level 
0 
1 
2 
3 

Decomposition 
pyramid 

MD 
GDG  

Fig. 51 The hierarchic description of multi-resolution decomposition result in terms of tree 
structure. 

 
The descriptive tree structure of a decomposition pyramid allows an easy manipulation 

and analysis of the connectivity properties across different scales and may stress out pattern 
clustering. Moreover, additional properties related with the represented patterns are included 
at each node in order to increase the efficacy of the pattern classification over the scales. Such 
properties are related to the density of the pattern and of its surroundings, but also to its shape 
and size. They are described in detail in the next section for the classification stage. The 
implementation of the tree descriptive structure is performed as a binary tree along the 
relationship parent-child-brother. Namely, a node only “sees” its first “child“ and the “child” 
points out to its next “brother”, thus establishing a bifurcation of a binary tree. Fig. 52 shows 
an example of the implementation of a simple tree descriptive structure. 
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Fig. 52 The implementation of the tree descriptive structure: equivalence with a binary tree. 
 

In order to speed up the navigation inside the tree, the binary structure is enriched at the 
level of each node with pointers towards the parent and the previous brother. The inclusion of 
pattern properties at each node requires that the descriptive graph is built at the same time as 
the decomposition pyramid, as follows. 

In the implementation, we suppose that the tree structure T was updated for the levels i 
< j. For each pattern pj, k extracted at level j from the pyramid:  
(1) a new node tj, k is created with a spatial coordinate inside pj, k. 
(2) the properties associated to pj, k.are computed from the native CT data,  
(3) the node tj, k is included in T as a root node and the link with the existing nodes, if j ≥  1, 

is created as follows: 
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－ a list of root nodes ti, k at levels i < j is obtained from T. 
－ for each pj, m pattern, if the spatial position of ti, k is inside pj, m, the stacking property 

implies a spatial connectivity between pi, k and pj, m, and also ti, k is linked as a child 
of tj, m. 

Fig. 53 shows the geometry of a tree descriptive structure at 7 phases of construction 
(pyramid levels) for a 3-D decomposition of a MSCT thorax data. 
 

 
(a) (b) (c) (d) 

  
(e) (f) (g) 

Fig. 53 The geometry of a tree descriptive structure at 7 phases of construction for 
decomposition of a 3-D MSCT thorax data. 

 
 

III.5 Fuzzy Classification 
 
Classification [112-119] is widely used to recognize a given object according to 

analysis of texture features extracted from the region of interest. However, in a lung volume, 
sometimes, it is difficult to absolutely determine an area associated with a specific pathology. 
For example, some parts of the area are normal tissue, some parts are emphysema tissue, and 
the regions between two tissues vary progressively from the normal stage to the emphysema 
stage. Thus, in this study, fuzzy logic analysis [96, 97] is exploited to strengthen the flexibility 
and the robustness of the classification. By using fuzzy logic analysis, probabilities for a 
pattern to be assigned one of the categories normal (N), emphysema (EM), 
fibrosis/honeycombing (FHC), and ground glass (GDG), can be computed. The developed 
classification approach based on fuzzy logic analysis is described in the following. 
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III.5.1 Definition 
 
Generally, fuzzy logic is a form of multi-valued logic derived from fuzzy set theory 

[96], as mentioned in Section II.2.2.6, and used to handle with the concept of partial truth 
values between “completely true” and “completely false”; that is, the logic modes are 
approximate rather than exact. Thus, fuzzy logic has a truth value that ranges between 0 and 
1. 

Fuzzy logic analysis can be divided into three stages: feature extraction, fuzzy 
reasoning [120] and relaxation [121, 122]. First, several components of a fuzzy logic system, 
as shown in Fig. 55, are briefly described in the following. 
 
－ Feature extraction 

For sequential, spatial, or other structured data, feature extraction is to use specific 
techniques like convolution methods using hand-crafted kernels or syntactic and 
structural method to encode problem-specific knowledge into the features. For example, 
in medical imaging, the brightness degree of a region is extracted from a symptom to 
express the health status of a patient. 

 
－ Fuzzy reasoning 

Fuzzy reasoning [120] is an approximate method to determine an object according 
to possible imprecise membership functions from a set of possibly imprecise rules of 
inferences [123, 124]. Here, membership functions and rules of inferences are described 
respectively as follows. 
 
－ A membership function is a transfer function that defines how each element in the 

input set is mapped to a membership value between 0 and 1. Generally, the 
membership function can be described in a graphical representation, using straight 
line segments or the Gaussian distribution curve. Two types of the straight line 
functions are triangular and trapezoidal, and the advantage of the function is 
simplicity. The Gaussian membership functions also include two types: a simple 
Gaussian curve and a two-sided composite of two different Gaussian curves. Both of 
these curves have the advantage of being smooth and nonzero at all elements.  

 
－ The rule of inference is a scheme establishing syntactic relations between a set of 

formulas (membership functions) and a result. It is usually concluded from human 
experiences and knowledge, and used by means of IF-THEN rules. By rules of 
inference, the probabilities of possible classes, which are analyzed by membership 
functions are summarized as an assertion. 
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If two fuzzy sets A and B denote two categories, the membership function ω for the 

two sets can respectively be denoted as ωA and ωB. For an element x of a set X, the 
probability ωA(x) is called the membership degree of x in the fuzzy set A. An example of 
graphical representation of the membership function for the two sets A and B is shown in 
Fig. 54, where probability measures of ωA and ωB at each point x are represented as a 
trapezoid distribution along x associated with three thresholds, Th1, Th2, and Th3, 
indicating the turning points of the function. Thus, the trapezoid distribution for ωA has 
monotonic increase from 0 to Th1, a plateau level between Th1 and Th2, and monotonic 
decrease from Th2 to Th3. While x = x0, the probability for ωA is ωA(x0), and that for ωB is 
ωB(x0); it means that by this membership function (the feature), the probability for the 
object to be the category A is ωA(x0), and that to be category B is ωB(x0). 

 

 
ωA ωB 

Th2 

1 

0 Th1 Th3 x0 X 

ω(x) 

ωA(x0) 

ωB(x0) 

 

Fig. 54 The illustration of the membership function ω. 
 

Then, an example of rules of inference is defined by: 

               R:  If    ωA(x0) ≥  ωB(x0) 
                    Then the object is category A. 

                R:  If     ωA(x0) < ωB(x0) 
                    Then the object is category B.                        (3.34) 

 

－ Relaxation 

A relaxation technique [121, 122] is required for determining the attribute of each 
voxel from the membership function output. In general, a relaxation technique based on 
an iterative defuzzifier unit is applied to adjust the attribute of a voxel by its neighbors 
attributes to maintain the similarity among neighboring voxels. 
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Fig. 55 The flowchart of a fuzzy logic system. 
 

III.5.2 Lung Disease Classification 
 
In the classification stage, the fuzzy logic analysis is exploited to discriminate between 

the lung patterns enclosed by each ROI for each resolution level in the decomposition 
pyramid. The analysis is divided into four parts, feature extraction, membership function 
analysis, rules of inference, and relaxation which are described in the following. 
 

III.5.2.1 Feature extraction  
 

Feature extraction is used to quantify the characteristics of the descriptive tree structure. 
In this study, 6 features are defined based on the properties mentioned at the beginning of this 
chapter. Such properties can be separated into two categories: the gray-level information and 
the spatial connectivity information. 

In the gray-level information, we focus on the representation of the voxels on the CT 
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data which is related to the physical tissue density of the pattern and of its surroundings. Such 
representation can be characterized by the value and distribution of gray-levels of voxels 
within the pattern and its neighborhood. Hence, three features, gray-level mean, standard 
deviation, and external mean, are defined. 

The spatial connectivity information is used to express the correlation of patterns across 
different resolution levels. Such information is related to the pattern clustering, but also to the 
volume variation and the shape of the pattern from one resolution level to another. Thus, three 
features, sibling degree, relative volume increase, and spread index are defined.  

If pi denotes the decomposition pattern associated with the node ti of the descriptive 
graph and v denotes a voxel within the lung volume, the 6 features for analyzing the pattern 
are described and defined in the following. 

 
－ Gray-level mean, μ(ti) 

The gray-level mean is used to represent brightness of a pattern. As mentioned in 
Chapter I, the pattern with EM or FHC is very dark (low intensity) on the CT image, that 
is the gray-level of voxels within such pattern are quite low. The GDG pattern is 
associated with medium-high intensity, and the intensity of the N pattern is between the 
EM pattern and the GDG pattern. The gray-level mean is computed according to: 

∑
=

=
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k
ki vf

Nv
t

1

)(1)(μ ,  (3.35) 

where Nv denotes the number of the voxels within the pattern pi, vk denotes a voxel within 
the pattern pi, and f(vk) is the gray value of the voxel vk. 
 

－ Standard deviation, σ(ti) 

The standard deviation is used to represent distribution of gray-levels of the voxels 
within a pattern. In Chapter I, we have discussed about the causes of EM and FHC. Due 
to tissue destruction, the representation of the pattern in the CT image is like an air sac. 
Thus, almost all voxels within the pattern are with low intensity so that the gray-level 
distribution is concentrated around the mean value. The gray level distribution inside the 
N pattern is rather uniform in a larger range than EM/FHC. The GDG pattern has a 
similar situation as the N pattern but with a mean value translated to high gray levels and 
a larger standard deviation. Thus, the standard deviation can be a discriminative feature 
for these patterns and is computed as:  

                         ∑
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where μi denotes the gray-level mean of the pattern pi. 
 



 90

－ External mean, μext(ti) 

The external mean is used to measure brightness of the pattern neighborhood in a 
given distance (surrounding band). Generally, the FHC pattern is surrounded by high 
intensity tissue, such as reticulation, so that its surrounding band is brighter than the 
surrounding band of the EM, N, and GDG pattern. The surrounding band of the EM 
pattern differs according to the type of emphysema and is distinguished by medium-high 
intensity, equal or superior to that of the N pattern.  

In this study, the range of the surrounding band of the pattern pi is limited by a 
sphere. While the center of a sphere moves along the voxels on the boundary of the 
pattern pi, a voxel, which is outside the pattern pi and inside the sphere, is included into 
the surrounding band of the pattern pi and denoted as vs. The surrounding band of the 
pattern inside the lung region is illustrated in Fig. 56 (a). If the given pattern is near by the 
boundary of the lung region, as shown in Fig. 56 (b), the surrounding band may include 
voxels inside thorax cage. Such voxels are usually of high intensity and will bias the 
analysis for the external mean. In order to avoid such situation, the surrounding band will 
be considered only inside the lung field mask fLawDH extracted as discussed in Section 
III.2.2. Thus, the external mean is defined as 

                       ∑
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where Nvs denotes the number of voxels in the surrounding band of the pattern pi. 
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(a) (b) 
Fig. 56 The surrounding band (the red region) of the pattern (a) inside the lung region, and (b) 

near by the boundary of the lung region. 
 
－ Sibling degree, sd(ti) 

On the CT image, in FHC, lots of small low-intensity patterns are cluster together 
so that in the descriptive tree structure the cluster patterns are siblings (brothers) at the 
same level. In EM, N, and GDG, the number of the low-intensity patterns is less than in 
FHC. So, the sibling degree is defined as the number of “brothers” of ti, i.e. the number of 
nodes at the same level, which have the same “parent” ti.  
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                               sd(ti) = Nums(tj) － 1,     (3.38) 

where Nums(tj) is the number of children of the node tj, where tj is the father of the node ti. 
 

－ Relative volume increase, rv(ti) 

The volume of the pattern associated with the clustering property may show a sharp 
increase by comparing to the total volume of its children. So, while the FHC pattern has 
noticeable increase in volume, the EM pattern has less increase than the FHC pattern, but 
superior to the N pattern and the GDG pattern. 

Based on such concept, the relative volume increase is defined to calculate the ratio 
of the pi volume increase with respect to the total volume of its children as  
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where vol(pi) is the volume of the pattern pi, svol(pi) is the total volume of pi’s children pik, 
and Ns denotes the number of children of the pattern pi. 
 

－ Spread index, rvs(ti) 

The spread index is to calculate the ratio of the pi volume increase to the volume of 
the sphere of diameter equal to the given level size ml. It provides information on the 
space spreading of pattern pi with respect to a reference volume. If the flooding of the 
valley corresponding to pi in the lung relief does not expand outside this valley, the spread 
index is low (indicating a good separation between the pattern and its environment) 
otherwise, higher values denote cluster formation. The spread index is defined as: 
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with 
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where vol(pi) and svol(pi) are given in eq. (3.40), and the radius r depends on the pi level, 
r = ml / 2. 

These features will provide the probabilities of associating a given pattern pi with a lung 
tissue category based on the membership functions defined in the following. 
 

II.5.2.2 Membership function 
 

The membership functions, associated with the six features are chosen as trapezoid 
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distributions due to lower complexity. The trapezoid distribution is set up according to the 
expected characteristics of each pathological tissue with respect to the selected feature. Each 
trapezoid distribution can be divided into three zones, such as monotonic increase, a plateau 
level, and monotonic decrease, controlled by two threshold values. In order to acquire these 
threshold values, several cases are selected from testing cases for training purposes.  

In the training procedure, volumes of interest (VOIs) focusing on different 
physiopathological tissues of N, EM, FHC, and GDG, were manually selected by an 
experienced radiologist. The multi-resolution decomposition scheme was applied to each 
training case, the decomposition pyramid and the hierarchic tree generated, and the 6 features 
computed and analyzed for each node in each VOI. According to the features analysis of each 
interesting pathology pattern, the preliminary threshold values for the associated membership 
function were obtained and further on confirmed by the radiologist expert. 

The fuzzy membership functions associated with the six features μ(ti), σ(ti), μext(ti), sd(ti), 
rv(ti), and rvs(ti) are shown in Fig. 57 (a)-(f), respectively, where M

CP denotes the probability 

value of the C class (namely N, EM, FHC and GDG) with respect to the M membership 
function. In Fig. 57, the probability M

CP (x) of EM, FHC, N, and GDG is 1 at the plateau of 

each trapezoid distribution; otherwise, 1)(0 <≤ xP M
C , and for any x  

1)( =∑
C

M
C xP .  (3.43) 
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Fig. 57 The fuzzy membership functions with respect to 6 features, (a) the gray-level mean, (b) 

the standard deviation, (c) the external mean, (d) the sibling degree, (e) the pattern 
relative volume increase and (f) the spread index. Note that the x-axis represents the 
computed feature value, and the y-axis represents the corresponding fuzzy analysis 
probability. 

 

II.5.2.3 Rules of inference 
 

The rules of inference will combine the output of the membership functions to decide 
the class probability for each of the N, EM, FHC, and GDG possible assignments, and will 
select the most pertinent assignment. Such classification inference can be divided into two 
stages. First, the probabilities derived from the 6 features are linearly combined with 
corresponding weights to obtain the probability of a pathology assignment to each node. The 
weights are pre-defined according to the confidence associated with the feature. Note that, 

each node ti is assigned 4 values ProbC(ti), C ∈ {N, EM, FHC, GDG}, which express the 
probability of ti to be defined as the category C:  

 
 



 94

ProbC(ti) = αM Me
CP (μ(ti)) +αS S

CP (σ(ti)) +αExt Ext
CP (μext(ti)) +αSD SD

CP ( sd(ti)) 
                  +αRV RV

CP (rv(ti))+ αRVS RVS
CP (rvs(ti))     (3.44) 

where αM + αS + αEM + αSD + αRV + αRVS = 1.  
Then, in the second stage, two classification thresholds, Tcategory and Tdecision, where    

0 < Tcategory < Tdecision< 1, are exploited to allow taking into account only the most 
representative membership probabilities. Let ProbMax(ti) denotes the maximum probability 
among the 4 combined probabilities,  

                    ProbMax(ti) = max{ProbC(ti), C ∈ {N, EM, FHC, GDG}}.     (3.45) 
A node ti is assigned the category C, denoted as AssignC(ti) = 1, if ProbC(ti) is satisfying 

two conditions: 
ProbC(ti) > Tcategory,          (3.46) 

and 
                        ProbC(ti) / ProbMax(ti) > Tdecision ;    (3.47) 
otherwise, AssignC(ti) = 0. Note that these conditions are used to select the highest 
representative probabilities of association with a given category, and that the selected 
probabilities are close to each other. Thus, mixed classification of a lung pattern is possible 
while more than one disease category is satisfying eq. (3.46) and (3.47). Such mixed 
classification may include N and one of EM or FHC, which is denoted as mild emphysema 
(MEM) and mild fibrosis/honeycombing (MF), and in addition, mixtures of EM and FHC 
may occur which is denoted EF. Table 6 presents the 16 mixtures, MC(k), k=1..16, of N, EM, 
FHC, and GDG. The parameters of the scheme including the weights and classification 
thresholds were chosen as follows: 
               αM = 0.3, αS = 0.2, αEM = 0.2, αSD = 0.1, αRV = 0.1, αRVS = 0.1,  

Tcategory = 0.5 and Tdecision = 0.8. 
 

III.5.2.4 Relaxation 
 
The relaxation step is performed in order to assign the final class to each voxel of the 

lung parenchyma. Note that a voxel in the 3-D dataset will correspond to (at most) one pattern 
at each level of the decomposition pyramid and then, also to several nodes along a hierarchy 
path in the description tree. As each node along the hierarchy path has a class assigned (cf. 
Table 6), a final decision should be taken by integrating the information across the levels. 
Such integration is performed via the "collapse" of the decomposition pyramid, that is, the 
class assigned to a given voxel at the spatial location x is the class corresponding to the node 
of highest depth associated with the pattern including x, as illustrated in Fig. 58. 

The final classification result is represented as a labeled (color) image, where each label 
is defined as follows. Let In(C) denotes the category index for the 7 classification possibilities 
considered, which is assigned as In(N) = 0, In(EM) = 1, In(FHC) = 2, In(MEM) = 3, In(EF) = 4, 
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In(MF) = 5, and In(GDG) = 6. Then, a category look-up table C_Table corresponding to the 16 
mixtures MC(k) in Table 6 can be defined as 

C_Table(k) = { In(MC(k))| k = 1, 2, 3, …, 16}  
= {0, 0, 1, 3, 2, 5, 4, 2, 6, 6, 2, 5, 2, 5, 2, 2}.  (3.48) 

Thus, a node ti classed as the kth mixture result is assigned a gray-level CL_Gray by the 
following equation 
                         CL_Gray(k) = 45 + 30 * C_Table(k). (3.49) 

This leads to the following labels for the parenchyma patterns: N = 45, EM = 75, FHC 
= 105, MEM = 135, EF = 165, MF = 195, and GDG = 225, which can be color-coded for a 
more convenient visual investigation. Fig. 59 illustrates the classification results of CT images 
in the case of emphysema and fibrosis, respectively. 
 

Table 6 16 mixtures of N, EM, FHC, and GDG. 

k AssignN(ti) AssignEM(ti) AssignFHC(ti) AssignGDG(ti) Mixt class, MC(k) 

1 0 0 0 0 N 

2 1 0 0 0 N 

3 0 1 0 0 EM 

4 1 1 0 0 MEM 

5 0 0 1 0 FHC 

6 1 0 1 0 MF 

7 0 1 1 0 EF 

8 1 1 1 0 FHC 

9 0 0 0 1 GDG 

10 1 0 0 1 GDG 

11 0 1 0 1 FHC 

12 1 1 0 1 MF 

13 0 0 1 1 FHC 

14 1 0 1 1 MF 

15 0 1 1 1 FHC 

16 1 1 1 1 FHC 
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Fig. 58 Example of relaxation process via pyramid collapse. Final classification at spatial 
locations xi is given by: C(x1) = N, C(x2) = EM, C(x3) = EF, C(x4) = MEM, C(x5) = 
FHC. 

 

(a) (b) 
Fig. 59 The classification results (bottom) for CT images (top) with (a) emphysema, and (b) 

fibrosis. Color code assignment: . 
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By visually inspecting the classification result for the examples in Fig. 59, we note that 
most of the diseased patterns were identified and correctly classed in the right category. 
However, some regions were missed (N instead of pathologic, Fig. 59 (a) – red circle) or 
overestimated (pathologic instead normal, Fig. 59 (b) – red circle). Such misclassification is 
due to the inaccurate separation of the pathologic and normal regions at the same level of 
resolution in the decomposition pyramid. Namely, during the relief flooding process at a 
given level, if the "valley" associated with a pathology (EM, FHC) has either locally 
attenuated walls or is enclosed in a larger valley and immersed during the flooding (Fig. 60), 
the extracted pathological pattern will be connected to a larger (normal) one. There will be 
thus a single connected component extracted and the computed features will be biased, 
leading to misclassification. 
 

 
(a) (b) (c) 

Fig. 60 Example of pattern "overflow" during flooding: (a) simulated lung image including 
two EM patterns in the right lung, one of continuous high-intensity wall, the other of 
attenuated intensity wall, and one EM pattern in the left lung of locally attenuated 
wall (looking like an interruption); (b) the flooding result for a given resolution level; 
(c) the pattern extracted show that only the first EM region (red) was correctly 
separated from the normal lung region. 

 
In order to avoid this problem, the region separating pathological and normal tissue 

should be completely closed and prevent a pattern "overflow" during the flooding. The first 
requirement may be impaired by the MSCT acquisition protocol (noise, partial volume effect) 
while the second by the choice of the FSD filter size (or by the number of the decomposition 
levels). Pre-processing the MSCT data (anisotropic filter, stick operator - Section III.1) may 
improve some conditions, however, the dependence on the image acquisition protocol 
remains high, and a robust solution is difficult to find.  

To overcome this drawback, we propose combining the multi-resolution decomposition 
with a spatial partitioning of the lung in ROIs of fixed size and shape over all scales. This will 
produce smaller patterns at each resolution level and could thus capture local textural 
properties for a more accurate feature computation. The principle of such combination is 
described in the following and its benefit investigated with respect to the basic approach. 
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III.6 Spatial lung partitioning 
 
The objective of spatial lung partitioning is to overcome the “overflow” situation of the 

multi-resolution decomposition scheme by partitioning the result patterns without interfering 
with the decomposition process itself. The idea is to define a set of ROIs of fixed shape and 
size over all scales which will partition the decomposition pyramid in smaller patterns able to 
capture local textural properties. The partitioning is implemented by two methods, the box 
partitioning (Section III.6.1), which serves as "proof of concept", and the texture-based 
partitioning (Section III.6.2), which is case-specific and is adapted to the textural particularity 
of the lung parenchyma. 
 

III.6.1 Box partitioning 
 
The concept of the box partitioning method is similar to the ROI/VOI setting mentioned 

in Section II.2.1.1. The box partitioning sets-up a 3-D “grid” in the lung region which will 
subdivide the patterns extracted at each resolution level in the decomposition pyramid. Since 
the partitioning is the same for all scales, the stacking property (eq. (3.26) and (3.30)) is 
preserved and the construction of the hierarchic descriptive tree is not affected. Conversely, 
the initial tree will be divided in several sub-trees, one per partition box. The selected box size 
is thus an important parameter, which will be discussed later on. Fig. 61 and Fig. 62 illustrate 
the concept of the box partitioning in the 1-D relief and the resulting hierarchic tree, 
respectively. The red dotted lines represent the box ROIs separating the patterns. 

Note that the classification process exploiting the decomposition-partitioning procedure 
performs in the same way as discussed in Section III.5. Fig. 63 and Fig. 64 show few 
examples of classification with and without box partitioning. The comparison of the two 
classification results shows that the misclassification pattern, indicated by a circle, has been 
partitioned into several sub-patterns, and the classification result can be upgraded locally in 
each sub-pattern. This concludes that the spatial partitioning can overcome the “overflow” 
problem of the multi-resolution decomposition scheme. 
 



 99

 Thorax cage Thorax cage 

Level 
Filter 
size 

0 m0 

1 

2 

3 

m1 

m2 

m3 

4 MD
GDG 

 
 

0 m0 

1 

2 

3 

m1 

m2 

m3 

4 MD
GDG 

Partitioning 

 

Fig. 61 The box partitioning applied on the decomposition result at each resolution level in 
the 1-D relief and the modified descriptive tree structure. 
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Fig. 62 The hierarchic descriptive tree of the decomposition pyramid ROIs obtained with the 
box partitioning. 
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(a) 

(b) 

 
(c) 

Fig. 63 Example of a classification result illustrated on an axial image of (a) two cases of EM 
(b) without, and (c) with box partitioning. Color code assignment: 

. 
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(a) 

(b) 

(c) 
Fig. 64 Example of a classification result illustrated on an axial image of (a) two cases of EM 

(left) and FHC (right) (b) without, and (c) with box partitioning. Color code 

assignment: . 
 

For several regions of the “grid”, however, the classification results are incorrect. This 
problem is due to the shape of the “grid”. While the box partitioning separates the patterns of 
the decomposition result at each resolution level using a cube grid of fixed size, the section of 
each sub-pattern may be not close to the boundary between two tissues. The shape 
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information and the spatial connectivity information would be distorted. Moreover, the 
gray-level information is distorted due to the fixed size. For example, a whole pattern such as 
a fibrosis “hole” might be partitioned into two sub-patterns if crossed by a partitioning line. 
The important characteristics of the fibrosis, such as external mean, would be computed from 
the fragmented external region. Therefore, the fuzzy logic analysis is performed based on 
incorrect feature extraction, which affects the discriminative power of the classification. 

The box size used will thus play an important role and the influence of this parameter 
on the classification result was tested for several values. Fig. 65 shows a comparison between 
the classification results obtained for cases in Fig. 64 with box partitioning, for five box sizes, 
namely 8, 15, 30, 45 and 60 units. We notice that the several box sizes perform differently in 
terms of detection sensitivity and specificity (no obvious box size providing the highest rates 
in both criteria), which suggests the idea that the partitioning should be adapted to the context 
(pattern size, density, clustering,…). 
 

(a) box size = 8 

(b) box size = 15 
Fig. 65 Comparison of the classification result obtained using box partitioning for different 

box size = (a) 8, (b) 15, (c) 30, (d) 45, and (e) 60 units, respectively. Color code 

assignment: . 
 



 103

(c) box size = 30 

(d) box size = 45 

(e) box size = 60 
Fig. 65 (Continued). Comparison of the classification result obtained using box partitioning 

for different box size = (a) 8, (b) 15, (c) 30, (d) 45, and (e) 60 units, respectively. 

Color code assignment: . 
 

In order to improve the efficiency of the spatial lung partitioning, a texture-based 
method is introduced to separate the patterns along the boundary between normal and 
pathological tissue. 
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III.6.2 Texture-based partitioning 
 

The shape of a normal/pathological pattern is irregular, and its volume is variable. Thus, 
the spatial lung partitioning should be non-linear to be close to the border of the pattern. 
Hence, the idea of texture-based partitioning is to find the boundary between normal tissue 
and the pathological patterns. Conversely, note that the partitioning does not focus on the 
boundary between two different pathological patterns. The approach is described in three 
steps: pathological candidates selection, pathological region extraction, and partitioning line 
detection. 

 

－ The pathological candidates selection is exploited to detect the voxels inside the 
pathological pattern. At the beginning of this chapter, the intensity properties of normal 
tissue and the pathological pattern in the CT image have been described. The appearance 
of the pathologies is either in low intensity [0, LD] = [0, 10] GL4 (emphysema and 
fibrosis), or in medium-high intensity range [MD, HD] = [65, 100] GL (ground-glass). 
Moreover, the voxels along the border of emphysema and fibrosis are with higher 
intensity [46, 68] GL than those in normal tissue [16, 35] GL. Therefore, the pathological 
candidates are obtained by means of a double-thresholding selecting the [0, LD] and [MD, 
HD] intervals, Fig. 66 (b). 

 
－ The objective of pathological region extraction is to find a space containing the 

pathological patterns. If the pathological candidates are the individual voxels or small 
patterns, they might be considered as “noise”. Thus, first, a morphological erosion 
operation (of unit size) removes the small patterns. Then, the result is dilated (SE size = 4) 
in order to create a space which completely contains the corresponding pathological 
patterns. 

 
－ Finally, the partitioning line between the presumed pathological and normal tissue is 

extracted using an edge detection operator. This boundary would be used as the 
partitioning line to separate the decomposition pyramid. Fig. 66 (c) and (d) show the 
extracted partitioning lines for the CT image in Fig. 66 (a). 

 
Fig. 67 and Fig. 68 illustrate the result of lung parenchyma classification for the 

examples in Fig. 63 and Fig. 64, respectively, using the texture-based partitioning. Note that 
the false positive and the missed patterns either without partitioning or using a 
box-partitioning are now correctly classed. An additional post-processing step can be applied 
here to remove small-size pathological patterns which can be considered as noise (Fig. 68 
(b)). 

                                                 
4 GL refers to the gray level value in the grayscale range [0, 255] considered for a CT “lung” window, 

[-1000, 200] HU 
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(a) (b) 

(c) (d) 
Fig. 66 An example of texture-based partitioning: (a) an original image with fibrosis, (b) the 

selected pathological candidates (black = [0, LD], white = [MD, HD], gray = normal), 
and the detected partition boundary (red color) shown on the binary lung mask (c), 
and superimposed on the original image (d). 

 

Fig. 67 Classification result using texture-based partitioning for the examples in Fig. 63. 

Color code assignment: . 
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(a) (b) 

(c) (d) 
Fig. 68 Classification result using texture-based partitioning for the examples in Fig. 64. 

Bottom row: removal of small-size pathological patterns. Color code assignment: 

. 
 

We note that a better sensitivity is achieved for the pathological targets with respect to 
the previous methods, both in terms of low-density pattern detection and ground-glass like 
regions. Higher specificity seems also to be reached, especially when very small disease 
patterns are ignored (reassigned as normal tissue).  

This result comforts us in choosing the multi-resolution decomposition and 
texture-based partitioning as the final approach for lung parenchyma investigation. The global 
flowchart of the proposed approach is now summarized in Fig. 69, where the lung 
segmentation step is performed before the pre-processing in order to decrease the 
computational load. 
 

III.7 Conclusion 
 

This chapter presented an original method developed for lung disease detection and 
classification based on a relief decomposition-partitioning procedure involving a hierarchic 
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tree description on which a fuzzy logic reasoning is built up. 
The method performances in terms of sensitivity/specificity are analyzed in Chapter IV 

according to the selected parameters and the CT acquisition protocol. A comparison with an 
interactive pathology delineation performed by a radiologist expert validates our approach 
from a subjective point of view. Several investigations on clinical cases are also discussed and 
illustrated both in axial cross-section and in 3-D volume rendering. 
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Lung ROI partitioning 
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Fig. 69 The final flowchart of the developed approach. 



 108



 109

Chapter IV 

Clinical assessment 

 
 

The performance evaluation of the developed approach is here presented in terms of 
sensitivity and specificity analysis with respect to the method parameter setup, CT acquisition 
protocol and a comparison with manual pathology selection performed by an independent 
radiologist expert. The difficulty of such analysis is related to the absence of a (quantitative) 
ground truth, a large variability among radiologists having been noticed. For this reason, our 
study with respect to the parameter setup and CT protocol will rely on a visual comparison of 
the results, either at the same axial level in the thorax, when the same dataset or the same 
patient is involved, or at the level where the pathology is present, if several cases are 
cross-analyzed for the same type of pathology. 

The evaluation database covered a large variability in terms of pathology type and 
distribution, and CT acquisition protocol employed in clinical routine. In the following, we 
shall illustrate the analysis results on representative cases selected from our database. 
 

IV.1 Influence of the method parameter setup 
 
The only user-tunable parameter with potentially high impact on the result is the number 

of resolution levels, NRL, used in the multi-resolution decomposition analysis. This parameter 
will condition the size of the low-density structures that can be captured at a given resolution 
level. The larger NRL, the smaller the size increase of the selected structures between successive 
levels of decomposition. Low NRL values will increase the risk of pattern clustering (and then of 
misclassification), while high NRL will introduce more redundancy in the associated hierarchic 
tree structure leading to a smoother transition over scales of the rv and rvs features (see Section 
III.5.2). Note also that the computation time increases linearly with NRL, so smaller NRL values 
will be preferred. 

Fig. 70 and Fig. 71 show a sample of axial images taken at two locations from the 
classification of three CT scans with emphysema, fibrosis and ground-glass, using 5, 8, 12, 15 
and 20 resolution levels in the decomposition, corresponding to an increase in the FSD filter 
size between successive levels of 27, 16, 10, 8 and 6 points, respectively. 

We note that small NRL values tend to overestimate the pathology distribution for EM and 
MEM cases and miss GDG patterns, while larger NRL values might miss small-size disease 
patterns. Interestingly, for the FHC case with NRL = 15, we note the presence of a FHC region in 
the middle part of the left lung (circle) which is not present for NRL = 12 and NRL = 20, and which 
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is classed as MEM for NRL = 5 and NRL = 8. This could suggest a potentially unstable behavior 
for large NRL. 

Base on these considerations, we choose as parameter value NRL = 12 which seems to 
offer the best comparison between sensitivity and specificity, with a moderate computational 
cost. 
 

 
(a) (b) (c) 

  
(d) NRL = 5 

  
(e) NRL = 8 

  
(f) NRL = 12 

Fig. 70 The original CT images with (a) emphysema, (b) fibrosis, and (c) ground-glass were 
analyzed with (d) 5, (e) 8, (f) 12, (g) 15, and (h) 20 resolution levels. First selected 

axial level. Color code assignment: . 
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(g) NRL = 15 

 
(h) NRL = 20 

Fig. 70 (Continued). The original CT images with (a) emphysema, (b) fibrosis, and (c) 
ground-glass were analyzed with (d) 5, (e) 8, (f) 12, (g) 15, and (h) 20 resolution 
levels. First selected axial level. Color code assignment:  

   . 
 

 
(a) (b) (c) 

  
(d) NRL = 5 

Fig. 71 The original CT images with (a) emphysema, (b) fibrosis, and (c) ground-glass were 
analyzed with (d) 5, (e) 8, (f) 12, (g) 15, and (h) 20 resolution levels. Second selected 

axial level. Color code assignment: . 
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(e) NRL = 8 

 
(f) NRL = 12 

 
(g) NRL = 15 

 
(h) NRL = 20 

Fig. 71 (Continued). The original CT images with (a) emphysema, (b) fibrosis, and (c) 
ground-glass were analyzed with (d) 5, (e) 8, (f) 12, (g) 15, and (h) 20 resolution 
levels. Second selected axial level. Color code assignment: 

 . 
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IV.2 Influence of the CT acquisition protocol 
 

The patient cohort collected for this study consisted of 30 patients suspected of 
infiltrative lung diseases, including 13 emphysema, 14 fibrosis/honeycombing and 3 
ground-glass cases. The CT acquisition was performed at full inspiration using the General 
Electric Light Speed scanner, with 16 or 64 detector rows. The X-ray beam collimation was of 
1.25 mm in most of cases, with few exceptions of larger collimation (up to 3 mm) which will be 
discussed later on. The radiation dose was normal, varying from 278 to 433 mAs, so no 
assessment with respect to this parameter was possible. The reconstruction matrix was the usual 
512x512 pixels, leading to an axial image resolution between 0.543 and 0.846 mm/pixel. The 
longitudinal sampling interval varies with the X-ray beam collimation between 1 mm and 1.5 
mm. 

Three reconstruction kernels were used for evaluation: “STANDARD” (low frequency), 
“LUNG” (medium-high frequency) and “BONEPLUS” (high frequency). All the scans were 
acquired in DICOM standard and converted into gray-scale according to the "lung" display 
window settings: window center = -600 HU, window width = 1600 HU. The influence of the 
CT acquisition protocol will be further on assessed with respect to the reconstruction kernel and 
collimation. 
 

IV.2.1 Impact of the reconstruction kernel 
 
Fig. 72-Fig. 74 illustrate a comparative analysis of the classification results for cases of 

emphysema, fibrosis and ground-glass, respectively, acquired with the three mentioned 
reconstruction kernels, for the same X-ray beam collimation (1.25 mm). Note that, when CT 
reconstructions with all these kernels were not available for the same patient, another subject 
having the same pathology was included in the comparison. 

As a general trend, we note that CT protocols using the “STANDARD” kernel induce 
an overestimation of the pathology in the lung with the appearance in most cases of EM or 
MEM patterns (but also GDG, Fig. 72 (d) - left lung) which do not occur for the same (or 
similar) cases reconstructed using the “LUNG” or “BONEPLUS” kernels. This effect is due 
to the blurring induced by the low-pass frequency filtering which will bias the features related 
with gray-scale information. Consequently, the reconstruction kernel in the CT protocol 
should avoid the “STANDARD” filter (or other low-pass frequency kernel). 
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(a) (b) 

(c) (d) 

 

(e) (f) 
Fig. 72 Emphysema cases acquired with the (a) “LUNG”, (c) “STANDARD”, and (e) 

“BONEPLUS” filters, and (b), (d), (f) the corresponding classification results, 

respectively. Color code assignment: . 
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(a) (b) 

 
(c) (d) 

Fig. 73 The fibrosis cases acquired with the (a) “LUNG” and (c) “STANDARD” filters, and 
(b), (d), the corresponding classification results, respectively. Color code assignment: 

. 
 

(a) (b) 
Fig. 74 The ground-glass cases acquired with the (a) “LUNG”, (c) “STANDARD”, and (e) 

“BONEPLUS” filters, and (b), (d), (f) the corresponding classification results, 

respectively. Color code assignment: . 
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(c) (d) 

(e) (f) 
Fig. 74 (Continued). The ground-glass cases acquired with the (a) “LUNG”, (c) 

“STANDARD”, and (e) “BONEPLUS” filters, and (b), (d), (f) the corresponding 
classification results, respectively. Color code assignment: 

. 
 

IV.2.2 Impact of the X-ray beam collimation 
 

The collimation of the X-ray beam will affect the longitudinal resolution of the 3-D 
image data and will also produce a visual blurring via the partial volume effect. A similar 
behaviour for large collimations is thus expected as in the case of the “STANDARD” kernel 
previously discussed. Fig. 75 shows a comparison between lung texture classifications 
obtained in the same patient for two acquisitions (longitudinal follow-up) with 0.625 mm and 
1.25 mm collimation, respectively, and the “LUNG” kernel. When cross-checking similar 
axial locations, we note a slightly higher sensitivity in pathological pattern detection for 
thinner collimations, which is also due to the image resolution itself (allowing also a better 
visual detection too). However, both collimation values are acceptable for such texture 
analysis, the most currently used in clinical routine being the 1.25 mm. 
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Fig. 75 Original CT images (same patient from a follow-up study) and the corresponding 
classification results, for acquisitions with 0.625 mm (left column) and 1.25 mm 
(right column) collimation. Note that the "LUNG" filter was used in both cases. Color 

code assignment:  
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Fig. 75 (Continued). Original CT images and the corresponding classification results, for 
acquisitions with 0.625 mm (left column) and 1.25 mm (right column) collimation. 
Note that the "LUNG" filter was used in both cases. Color code assignment:  
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Fig. 76 illustrates the effect of large (3 mm) versus thin (1.25 mm) collimation 

acquisitions (using the “BONEPLUS” kernel). The partial volume effect is much more 
important in this case and the pathology overestimation is extended to the whole lung. Such 
result was however expected since the classification features tune-up was not performed on 
large collimations, which are of reduced clinical interest for an accurate quantification. The 
recommended CT collimation for the developed CAD system is thus 1.25 mm or less. 
 

Fig. 76 Original CT images (same patient) and the corresponding classification results, for 
acquisitions with 1.25 mm (left column) and 3 mm (right column) collimation. Note 
that the "BONEPLUS" filter was used in both cases. Color code assignment:  

. 
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Fig. 76 (Continued). Original CT images and the corresponding classification results, for 
acquisitions with 1.25 mm (left column) and 3 mm (right column) collimation. Note 
that the "BONEPLUS" filter was used in both cases. Color code assignment:  

. 
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Fig. 76 (Continued). Original CT images and the corresponding classification results, for 
acquisitions with 1.25 mm (left column) and 3 mm (right column) collimation. Note 
that the "BONEPLUS" filter was used in both cases. Color code assignment:  

. 
 
IV.3 Radiologist expert versus the CAD system 
 

The one of the validation methods for reliability evaluation is to compare the CAD 
experiment result with the ground truth. In our study, the ground truth was performed by 
manually margin drawing (by the radiologist expert) and regional coloring (by the computer) 
of 9 scans from 27/01/2010 to 05/05/2010. Because the development of the ground truth 
database revealed to be a tedious and time consuming task, the expert selected only a subset 
of CT images (one for 3-4 images). Therefore, the CAD assessment was performed in 2-D, 
over the selected images, not for the whole 3-D volume. Additionally, if two pathological 
targets were adjacent in an image, the expert drew a larger margin of the region involving 
these two targets, which may also include “normal” tissue. Conversely, the CAD system 
focuses on individual lung patterns detection and classification, so that different pathological 
targets are not merged together. Hence, the comparison with the ground truth was here based 
on the visual aspects only, and did not consider further quantitative evaluation. 

Fig. 77 shows a case with emphysema and fibrosis included in the ground truth 
validation, which is acquired using the “LUNG” filter and 1.25 mm X-ray beam collimation. 
In this example, the apical regions of the lungs are with a large amount of emphysema, and 
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the basal regions show few fibrosis patterns. In the first two rows, the comparison shows a 
high accuracy of our CAD system in pathological region detection comparing to the ground 
truth, but the target was classed as fibrosis, not emphysema as in the ground truth. This is due 
to the high-intensity border of the emphysema pattern in this subject, which is one of the 
texture characteristics of fibrosis. In the forth row, each fibrosis pattern of the ground truth 
was detected in the classification result. The patterns marked by red circles were not drawn in 
the ground truth, but detected and classed as HD and GDG patterns in the CAD system. In 
visual aspect, these patterns look like pathological targets with high intensity. Hence, these 
“misclassifications” might be due to the oversights of the expert. 

Fig. 78 shows another case with fibrosis included in the validation, which was acquired 
using the “LUNG” filter with 0.625 mm collimation. In this example, the appearance of 
fibrosis is in terms of a large amount of reticulations and hazy opacities (similar to GDG) so 
that such patterns were classified as GDG and HD in the CAD classification result. In the 
third and fourth rows, most of the pathological regions drawn in the ground truth were 
detected in the classification results. The areas of these regions in the classification results are 
smaller than the corresponding areas in the ground truth. Such situation is more obvious in the 
comparison of the fifth row. Its explanation is that the reasoning modes of the radiologist 
expert and of the CAD system are different. From the radiologist viewpoint, the selected 
region should include all the pathological zones which are adjacent so that larger margins of 
the pathological regions would be drawn, which might include “normal” zones. In 
classification, however, the CAD system focuses on each texture type. During the analysis, 
different tissues would be separated (by the multi-resolution decomposition scheme) based on 
the gray value and texture information, and then, would be classed as normal tissue and 
pathologies, respectively. Therefore, the “normal”-looking zones would be discriminated from 
the pathology margin, even though they were surrounded by the pathologies.  

In Fig. 79, we show a different case with the same pathological condition, which was 
acquired using the "BONPLUS" filter and 1.25 mm collimation. In the classification result of 
the second and fifth rows, regions in the left lung were classed as normal tissue, but were 
included in the pathology region by the radiologist expert. Note however that the visual aspect 
of such regions looks “normal” in terms of lung texture. 

 
 



 123

 

 

 

 

Fig. 77 The comparison between original CT images (left column), the corresponding ground 
truth (middle column), and classification results (right column). Note that the 
"LUNG" filter and 1.25 mm collimation was used in this case. Color code 

assignment: . 
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Fig. 77 (Continued). The comparison between original CT images (left column), the 
corresponding ground truth (middle column), and classification results (right 
column). Note that the "LUNG" filter and 1.25 mm collimation was used in this case. 

Color code assignment: . 
 

  

  

  

Fig. 78 The comparison between original CT images (left column), the corresponding ground 
truth (middle column), and classification results (right column). Note that the 
"LUNG" filter and 0.625 mm collimation was used in this case. Color code 

assignment: . 
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Fig. 78 (Continued). The comparison between original CT images (left column), the 
corresponding ground truth (middle column), and classification results (right 
column). Note that the "LUNG" filter and 0.625 mm collimation was used in this 

case. Color code assignment: . 
 

 

 

Fig. 79 The comparison between original CT images (left column), the corresponding ground 
truth (middle column), and classification results (right column). Note that the 
"BONEPLUS" filter and 1.25 mm collimation was used in this case. Color code 

assignment: . 



 126

 

 

 

 

Fig. 79 (Continued). The comparison between original CT images (left column), the 
corresponding ground truth (middle column), and classification results (right 
column). Note that the "BONEPLUS" filter and 1.25 mm collimation was used in 

this case. Color code assignment: . 
 

We also investigated few normal cases, such as in Fig. 80 and Fig. 81. Since these cases 
were acquired using a different CT scanner (SIEMENS), they were not included into the 
testing dataset (30 patients), being used instead for comparison with pathological cases in 
order to evaluate the specificity of the CAD system. In Fig. 80 and Fig. 81, although most 
lung regions were classed as normal tissue in the right columns (the classification results of 
the CAD system), there were still some overestimations. This is due to the different 
representation of lung tissues on the CT images acquired using other CT protocols. The CAD 
system result was slightly biased by the scanner type “SIEMENS” with the associated 
protocol ("B30f" and “B46f” reconstruction kernel, 0.75 mm collimation). For example, in 
comparison with the representation of the normal tissue on the original CT images in Fig. 79, 
the representation of normal tissue in Fig. 81 is darker. So, some normal regions were classed 
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as MEM (overestimation) in the first and second rows in Fig. 81. Note that, in the third row of 
Fig. 80, the region with slight fibrosis was missed by radiologist, but detected and classed as 
HD in the CAD classification result. 

 

Fig. 80 The comparison between original CT images with normal tissue (left column), and 
classification results (right column). Note that the data was acquired using a 
“SIEMENS” machine with the "B30f" reconstruction kernel and 0.75 mm collimation. 

Color code assignment:  
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Fig. 81 The comparison between original CT images with normal tissue (left column), and 
classification results (right column). Note that the data was acquired using a 
“SIEMENS” machine with the "B46f" reconstruction kernel and 0.75 mm collimation. 

Color code assignment:  
 
IV.4 Longitudinal follow-up studies 
 

The interest of a CAD system for lung disease quantification is also expressed in terms 
of patient follow-up ability that it offers. We have tested the developed approach on some 
follow-up cases available in our database which will be discussed and illustrated in the 
following.  

The key requirement in longitudinal follow-up is the use of the same CT acquisition 
and clinical protocols over time. In addition, axial slice-by-slice comparisons are also 
conditioned by the same patient tilt with respect to the longitudinal scanner axis, which is 
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almost impossible to guarantee. Thus, the follow-up investigation should be performed in the 
3-D space and be based on volumetric quantifications.  

The examples that we shall discuss below do not fulfill all these requirements, however 
they underline the possibility of a 3-D quantitative follow-up of the patient, based on the 
proposed approach. 

Fig. 82 depicts a follow-up analysis at 13 months interval for a subject with fibrosis. In 
this example, the fibrosis patterns show a large amount of reticulations and hazy opacities 
similar with ground-glass, while airspaces are practically absent. Consequently, in this type of 
fibrosis, the classification result shows HD and GDG patterns. Note that the protocol 
requirements are not respected here, the second acquisition being performed at different lung 
capacity and using contrast agent injection for complementary investigations. Consequently, 
the vascular structures are accentuated and we notice more HD/GDG patterns together with a 
global contrast increase in the image. The impact of the contrast agent on the HD/GDG 
opacities is not known and is difficult to state if the increase in HD/GDG pattern distribution 
in the second acquisition is due to the contrast agent or to the pathology itself. Note also that 
medium-small airways (which can not be extracted by the approach described in Section III.2) 
are logically classed as FHC since they show the same features. This misclassification can be 
solved by using a dedicated approach for airways segmentation [125] which is out of the 
scope of this research. 

Another difficulty in the pathology assessment is introduced by the (small size) 
high-density regions which are detected during the lung mask segmentation (Section III.2). 
Such patterns may correspond both to fibrosis reticulations and lung vessels which are often 
locally connected. According to the radiologist definition, the classification of the fibrosis 
regions should include both low-density patterns and the surrounding reticulations, while 
avoiding the lung vessels at the periphery of the pathological patterns. To date, the separation 
of lung vessels from fibrosis reticulations was tackled via morphologic operations but is not 
completely solved for small-size HD structures (recall that the large vessels are removed from 
the lung mask). 
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Fig. 82 Example of a follow-up investigation of a GDG case: left column - first examination, 
right column - 13 months later (exam using contrast agent injection for vascular 
structures). Both exams use 1.25 mm collimation and the “LUNG” kernel. Color code 

assignment: . 
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Fig. 82 (Continued). Example of a follow-up investigation of a GDG case: left column - first 
examination, right column - 13 months later (exam using contrast agent injection for 
vascular structures). Both exams use 1.25 mm collimation and the “LUNG” kernel. 

Color code assignment: . 
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In addition, if high opacities are present at the lung periphery covering a large region 
(this phenomenon is accentuated for contrast agent injection CT scans) as shown in Fig. 82 
right bottom rows, the lung region in this area is not segmented and the pathologic patterns 
are missed in the classification. Such problem could be solved by adapting the lung mask 
detection and the classification approach to contrast agent-based acquisitions (for example 
working on different window settings for lung region detection and the classification). 

The developed CAD system should enable a volumetric analysis for patient follow-up, 
based on 3-D volume rendering representations as illustrated in Fig. 83. Such visualization 
better underlines the mix-up between lung vessels and fibrosis reticulations which limit the 
quantification capability of the approach for FHC and GDG patterns. Further developments 
are needed in order to separate the vascular and non-vascular HD structures in the pathologic 
lungs. 
 

 

 
(a) Illustration of all textural patterns. 

Fig. 83 Follow-up analysis for the case in Fig. 82 illustrated using three views obtained with 
3-D volume rendering. Top: baseline, bottom: second acquisition. Color code 

assignment: . 
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(b) Illustration of the FHC, GDG and HD patterns only. 

Fig. 83 (Continued). Follow-up analysis for the case in Fig. 82 illustrated using three views 
obtained with 3-D volume rendering. Top: baseline, bottom: second acquisition. 

Color code assignment: . 
 

Fig. 84 shows another follow-up investigation of a subject with fibrosis, performed at 8 
months and 5 months intervals, respectively, using 1.25 mm collimation, the “BONEPLUS” 
(baseline) and the “LUNG” (2nd and 3rd checkup) kernels. The lung capacity is not controlled 
in this study, neither, but the second and third acquisitions show similar lung volumes. The 
same remarks as for example in Fig. 83 are also valid here, however the confidence of the 
findings is increased since the CT protocols are similar and no contrast agent is used. The 
follow-up analysis shows in this case an alteration of the pathologic status. Fig. 85 illustrates 
such comparative analysis based on 3-D volume rendering which reinforce the diagnosis 
confidence. 
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Fig. 84 Example of a follow-up investigation of a fibrosis case at 8 months (middle row) and 
5 months (bottom row) interval, respectively. The baseline acquisition (top row) is 
performed with the “BONEPLUS” kernel, while the following ones use the “LUNG” 
kernel. All exams use 1.25 mm collimation. Color code assignment: 
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Fig. 84 (Continued). Example of a follow-up investigation of a fibrosis case at 8 months 
(middle row) and 5 months (bottom row) interval, respectively. The baseline 
acquisition (top row) is performed with the “BONEPLUS” kernel, while the 
following ones use the “LUNG” kernel. All exams use 1.25 mm collimation. Color 

code assignment:  
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(a) Illustration of all textural patterns. 

Fig. 85 Follow-up analysis for the case in Fig. 84 illustrated using three views obtained with 
3-D volume rendering. Top: baseline, middle: second acquisition, bottom: third 

acquisition. Color code assignment: . 
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(b) Illustration of the FHC, GDG and HD patterns only. 

Fig. 85 (Continued). Follow-up analysis for the case in Fig. 84 illustrated using three views 
obtained with 3-D volume rendering. Top: baseline, middle: second acquisition, 
bottom: third acquisition. Color code assignment: 

. 
 

IV.5 Concluding remarks 
 

The preliminary evaluation of the developed CAD system allows defining some 
specifications related with the recommendation values for the number of the resolution levels 
NRL = 12, and the CT acquisition protocol with the “LUNG”/”BONPLUS” reconstruction 
kernel and thin collimations (1.25 mm or less), in Table 7. It also stresses out the difficulty to 
quantitatively assess the performance of the proposed approach in the absence of a ground 
truth. The comparison with reference segmentations performed by experienced radiologists 
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encounters several difficulties related to different factors. First, the segmentation of the whole 
lung using manual contouring and labeling is tedious and prevents from building up a large 
reference database or pathologic atlases. Even for a specific case, our experience shows that 
the radiologist will generally concentrate only on one pathologic region and perform sparse 
segmentations on a subset of the axial CT images, which makes impossible a volumetric 
assessment. Second, the margins defined by the radiologist are relatively large and may 
include regions of textural properties similar with the normal lung which cannot be detected 
as pathological by the CAD system. Third, the CAD system operates according to a different 
logic than the human expert: it will detect the textural patterns different of the normal tissue, 
without making any association between the simultaneous presence of different patterns in a 
spatial neighborhood and the classification of the whole region as another class (as the 
radiologist will do). For example, fibrosis is a conglomerate of airspaces, HD reticulations, 
normal tissue and GDG, not all of these being simultaneously present. Also, for the same 
reasons, the class assigned to pathologic airspaces is different of what a radiologist would 
decide (e.g. EM instead of FHC, among a FHC cluster, or FHC zone inside a large 
emphysema region, because of the presence of noise). In this respect, further developments 
should be considered in order to include such type of association in the classification process. 

Considering the follow-up analysis, a current major drawback is the impossibility to 
distinguish between pulmonary vessels and HD reticulations when they are connected to each 
other, namely in subjects with fibrosis.  

However, despite the fact that a quantitative assessment of the sensitivity and 
specificity of the developed approach could not be performed, visual investigations show a 
high detection rate of the lung pathologic patterns focused by this research. To conclude on 
these positive aspects, Fig. 86-Fig. 97 present 12 classification results obtained with the 
presented CAD system for different pathological subjects, illustrated using 3-D volume 
rendering. In each case, we show an original axial CT image, and the 3-D volume rendering 
including all normal/disease patterns, only EM+MEM, only FHC+GDG+HD, only GDG+HD, 
and only pathological patterns, respectively. 
 

Table 7 The summarized recommendation values for the study 

 Recommendation value 

The number of resolution level (NRL) 12 

The reconstruction kernel “LUNG”/”BONEPLUS” 

The X-ray beam collimation ≦1.25 mm 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 86 The classification result obtained with the developed CAD system and illustrated 
using volume rendering: (a) original axial CT image, (b) all detected patterns, (c) 
only EM + MEM, (d) only FHC + HD + GDG, (e) only GDG + HD, and (f) only 
pathological patterns. Color code assignment:     

        . 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 87 The classification result obtained with the developed CAD system and illustrated 
using volume rendering: (a) original axial CT image, (b) all detected patterns, (c) 
only EM + MEM, (d) only FHC + HD + GDG, (e) only GDG + HD, and (f) only 
pathological patterns. Color code assignment:     

        . 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Fig. 88 The classification result obtained with the developed CAD system and illustrated 
using volume rendering: (a) original axial CT image, (b) all detected patterns, (c) 
only EM + MEM, (d) only FHC + HD + GDG, (e) only GDG + HD, and (f) only 
pathological patterns. Color code assignment:     

        . 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 89 The classification result obtained with the developed CAD system and illustrated 
using volume rendering: (a) original axial CT image, (b) all detected patterns, (c) 
only EM + MEM, (d) only FHC + HD + GDG, (e) only GDG + HD, and (f) only 
pathological patterns. Color code assignment:     

        . 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Fig. 90 The classification result obtained with the developed CAD system and illustrated 
using volume rendering: (a) original axial CT image, (b) all detected patterns, (c) 
only EM + MEM, (d) only FHC + HD + GDG, (e) only GDG + HD, and (f) only 
pathological patterns. Color code assignment:     

        . 
 



 144

(a) (b) 

 
(c) (d) 

 
(e) (f) 

Fig. 91 The classification result obtained with the developed CAD system and illustrated 
using volume rendering: (a) original axial CT image, (b) all detected patterns, (c) 
only EM + MEM, (d) only FHC + HD + GDG, (e) only GDG + HD, and (f) only 
pathological patterns. Color code assignment:     

        . 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Fig. 92 The classification result obtained with the developed CAD system and illustrated 
using volume rendering: (a) original axial CT image, (b) all detected patterns, (c) 
only EM + MEM, (d) only FHC + HD + GDG, (e) only GDG + HD, and (f) only 
pathological patterns. Color code assignment:     

        . 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Fig. 93 The classification result obtained with the developed CAD system and illustrated 
using volume rendering: (a) original axial CT image, (b) all detected patterns, (c) 
only EM + MEM, (d) only FHC + HD + GDG, (e) only GDG + HD, and (f) only 
pathological patterns. Color code assignment:     

        . 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Fig. 94 The classification result obtained with the developed CAD system and illustrated 
using volume rendering: (a) original axial CT image, (b) all detected patterns, (c) 
only EM + MEM, (d) only FHC + HD + GDG, (e) only GDG + HD, and (f) only 
pathological patterns. Color code assignment:     

        . 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Fig. 95 The classification result obtained with the developed CAD system and illustrated 
using volume rendering: (a) original axial CT image, (b) all detected patterns, (c) 
only EM + MEM, (d) only FHC + HD + GDG, (e) only GDG + HD, and (f) only 
pathological patterns. Color code assignment:     

        . 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Fig. 96 The classification result obtained with the developed CAD system and illustrated 
using volume rendering: (a) original axial CT image, (b) all detected patterns, (c) 
only EM + MEM, (d) only FHC + HD + GDG, (e) only GDG + HD, and (f) only 
pathological patterns. Color code assignment:     

        . 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Fig. 97 The classification result obtained with the developed CAD system and illustrated 
using volume rendering: (a) original axial CT image, (b) all detected patterns, (c) 
only EM + MEM, (d) only FHC + HD + GDG, (e) only GDG + HD, and (f) only 
pathological patterns. Color code assignment:     

        . 
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Conclusion and Perspectives 

 
 

This research was performed in the clinical investigation framework of idiopathic 
interstitial pneumonias (IIPs) and emphysema in MSCT imaging. The objective was to 
develop a fully-automated computer-aided diagnosis (CAD) system targeting lung 
pathologies such as emphysema (EM), fibrosis/honeycombing (FHC) and ground glass (GDG) 
and providing quantitative information on the spatial distribution and volume of these 
pathological patterns. The ultimate clinical benefit aimed was the possibility to conduct 
quantitative follow-up studies which are critical for the therapeutic assays nowadays, when no 
efficient treatment is available for most IIPs.  

The ability to perform follow-up studies thus requires that the quantitative information 
provided by CAD measurements should be three-dimensional and reported to the patient lung 
volume. Consequently, the detection and quantification approach involved by a target CAD 
system should necessarily be able to process the whole lung field of the patient. Such 
volumetric information is available from the MSCT imaging technology, which oriented our 
research towards fully 3-D image analysis methods. 

The CAD system developed during this PhD research follows an original framework 
exploiting the textural properties of the disease patterns as they appear on MSCT images. For 
emphysema and fibrosis, the common characteristics refer to the presence of low-attenuated 
regions due to the tissue destruction, while ground glass is distinguished by medium-high 
intensity superior to the normal tissue. The idea exploited by the proposed approach is to 
detect EM and FHC by performing an analysis of the low-attenuated regions and to tackle the 
GDG on the remaining zones. Such analysis relied on a set of image features specific to each 
class of pathology which were identified in the CT data. They refer to size, clustering and 
gray-level distribution, both inside and around the patterns.  

The analysis of the size property is addressed via a multi-resolution decomposition 
scheme of the lung volume relief based on a 3-D morphological filtering. It allows the 
identification (segmentation) of low-density patterns according to their sizes and also involves 
a local gray-scale analysis of each such pattern and its environment. Such a multi-resolution 
analysis results in a decomposition pyramid where textural patterns are identified at different 
scales. Note that the patterns extracted at different resolution levels may not be spatially 
disjoint and this property will be exploited to detect pattern clustering. Conversely, due to 
sometime locally low signal-to-noise ratio (mostly in the longitudinal axis of the MSCT 
scans), normal and pathological regions may be joint in the same pattern at a given resolution 
level. To overcome this potential drawback, we proposed combining the multi-resolution 
decomposition scheme with a texture-based spatial partitioning of the lung in ROIs of fixed 



 152

size and shape over all scales. This will produce smaller patterns at each resolution level and 
can thus capture local textural properties for a more accurate feature computation.  

The resulting multi-resolution decomposition pyramid is further on described and 
analyzed by means of a hierarchic tree graph structure, where a node is associated with a 
given pattern at the given resolution level and the tree vertices correspond to the spatial 
connectivity between patterns at different resolution levels. Each node is assigned several 
spatial and textural features corresponding to the associated pattern. The analysis of the 
neighborhood of each node in the graph tree structure (parent - child - sibling) automatically 
provides the clustering information. The node (pattern) classification will exploit the 
multi-valued descriptive graph tree and is implemented by means of fuzzy-logic reasoning. 
For each pattern, six fuzzy membership functions were established for assigning a probability 
of association with a normal tissue or a pathological target. Finally, a decision step exploiting 
the fuzzy-logic assignments performs regions fusion and selects the target class of each lung 
pattern among the following categories: normal (N), emphysema (EM), 
fibrosis/honeycombing (FHC), and ground glass (GDG).  

Note that a lung mask is built-up prior to the multi-resolution analysis by segmenting 
the lung fields. This is required for two reasons: first, obtaining the total lung volume (also 
allowing to restrain the processed data ROI) and second, proving information on the large 
airways (AW) and on high-density (HD) regions such as fibrosis reticulations occurring at the 
lung periphery and which may be disregarded by the multi-resolution analysis focusing on the 
low-attenuated patterns. The final volumetric classification results include all mentioned 
patterns (N, AW, EM, FHC, GDG, HD) and provides quantitative measurements. 

The developed CAD system was tested on clinical routine studies including different 
types of emphysema and IIPs by visual inspection performed by experienced radiologists. The 
results obtained showed high accuracy in pathology detection with moderate discrimination 
between some small EM and FHC patterns, with EM being classed as FHC. This is due to 
high similarity of the computed features, mainly when the EM patters are closely surrounded 
by HD regions or even by lung vessels, the differentiation between small vascular and HD 
structures not being trivial and currently not implemented in the lung mask detection 
procedure. Such class mix-up is also influenced by the presence of noise and, more generally, 
by the CT acquisition protocol which is not normalized between cases, even in follow-up 
examinations where this should be a major requirement. This induces grayscale differences of 
the same type of pathological patterns in different CT examinations, which may lead to 

erroneous assignments EM ↔FHC, because the grayscale features in the fuzzy logic decision 
have an important weight.  

We also noted the difficulty to quantitatively assess our CAD system because of the 
absence of an evaluation ground truth. When trying to define a pseudo ground truth by 
involving an expert radiologist to manually delineate pathologic regions, several difficulties 
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were encountered: the manual classification is restricted to a subset of the MSCT images thus 
preventing from a volumetric evaluation; the margins selected by the radiologist are larger, 
the drawn regions are generally convex and may include normal lung texture regions which 
will not be selected in the pathological patterns detected by the CAD system; finally, the 
human operator performs an additional (visual) clustering of the textural patterns observed 
and infer a pathological class for a larger region (e.g. an area including low-density patterns, 
HD reticulations and GDG can be assigned as FHC by the radiologist, while the CAD system 
may distinguish between some of these patterns). 

The perspectives of this research are declined both in terms of methodological 
advancements and validation issues. In the developed analysis framework, the lung mask 
segmentation module would require a better discrimination between vascular structures and 
the other (fibrosis reticulations) high-density regions, which is a challenging problem for 
MSCT scans without use of contrast agent injection. A dedicated procedure for lung vessels 
segmentation should be thus developed and included in the CAD system. Also, the integration 
of a more accurate procedure for pulmonary airways segmentation, such as [125], would 
avoid the classification of intrapulmonary airways as EM or FHC patterns.  

Concerning the fuzzy-based classification procedure, the introduction of new features less 
dependent on grayscale information would make the CAD system more robust to the CT 
acquisition protocol. Alternatively, the definition of a space transform where these new 
features could be inferred from should be considered. Finally, the decision step in the region 
fusion module may include a regularization approach with the objective to cluster different 
adjacent patterns into a defined pathology, similar with the radiologist’s operating mode. 
However, this is an open discussion issue and depends on future clinical findings whether the 
quantification of different textural components inside a pathological region (such as HD 
reticulations or air sacs inside the fibrosis) presents a specific interest or not. 

From the validation point of view, the quantitative assessment of the CAD systems 
targeting IIPs and emphysema requires the development of a specific ground truth like 
anatomo-pathologic atlases associated with representative MSCT datasets collected over 
several clinical centers, also involving data from follow-up studies. The building of such 
atlases is the most tedious task, as it involves interactive delineation of all pathological 
patterns, basically in 2-D, image by image for about 300-400 images per case. Additionally, 
such database should be constituted by at least two radiologist experts in order to minimize 
the intra-observer variability. 

To conclude, the validated CAD system(s) targeting IIPs and emphysema have a great 
clinical potential in patient longitudinal follow-up and therapy design and evaluation, with a 
high impact expected on the socio-economical issues related to these pathologies. 
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Abstract  This research focuses on the study of a specific category of non-neoplasic lung pathologies including 
emphysema and interstitial lung diseases (ILDs), and especially on idiopathic interstitial pneumonias (IIPs) – a variety of 
ILDs, and aims at developing a computer-aided diagnosis system of these pathologies exploiting the computed tomography 
imaging technology. The motivation of such a research comes from the increasing healthcare burden associated with this 
category of chronic diseases and from an unmet clinical need of efficient diagnosis and follow-up tools.  

The fully automatic computer-aided diagnosis (CAD) solution developed in this thesis is based on 3-D mathematical 
morphology, texture and fuzzy logic analysis, and can be divided into four stages: (1) a multi-resolution decomposition 
scheme based on a 3-D morphological filter was exploited to discriminate the lung region patterns at different analysis scales. 
(2) An additional spatial lung partitioning based on the lung tissue texture was introduced to reinforce the spatial separation 
between patterns extracted at the same resolution level in the decomposition pyramid. Then, (3) a hierarchic tree structure 
was exploited to describe the relationship between patterns at different resolution levels, and for each pattern, six fuzzy 
membership functions were established for assigning a probability of association with a normal tissue or a pathological target. 
Finally, (4) a decision step exploiting the fuzzy-logic assignments selects the target class of each lung pattern among the 
following categories: normal (N), emphysema (EM), fibrosis/honeycombing (FHC), and ground glass (GDG).  

The developed CAD system was tested on clinical routine studies including different types of emphysema and IIPs by 
visual inspection performed by experienced radiologists. The results obtained showed high accuracy in pathology detection 
with moderate discrimination between some small EM and FHC patterns. The developed solution has thus a great clinical 
potential in patient longitudinal follow-up and therapy design and evaluation, from which a high impact is expected on the 
socio-economical issues related to these pathologies. 

 

  
  

  
Example of classification results obtained with the developed CAD system and illustrated 
using volume rendering: left - original axial CT image, right - corresponding lung patterns 

shown with 3-D volume rendering. Color code assignment:  

 . 
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