
HAL Id: tel-01183913
https://theses.hal.science/tel-01183913

Submitted on 12 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complex systems and health systems, computational
challenges

Zifan Liu

To cite this version:
Zifan Liu. Complex systems and health systems, computational challenges. Data Structures and
Algorithms [cs.DS]. Université de Versailles-Saint Quentin en Yvelines, 2015. English. �NNT :
2015VERS001V�. �tel-01183913�

https://theses.hal.science/tel-01183913
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le titre de

Docteur en Informatique
présenté par

Zifan LIU

à l’Université de Versailles Saint-Quentin-en-Yvelines

Complex Systems and Health
Systems, Computational

Challenges

présentée et soutenue publiquement le 11 février 2015

Commission d’examen
Rapporteurs : Joel SALTZ Stony Brook University, USA

Michel DAYDÉ Université de Toulouse, France

Examinateurs : Didier GUILLEMOT Institut Pasteur, France

Alain BUI Université de Versailles, France

Christophe CALVIN CEA, France

Michel KERN INRIA, France

Directrice de thèse : Nahid EMAD Université de Versailles, France

Co-directeur de thèse : Michel LAMURE Université de Lyon 1, France

Soufian BEN AMOR Université de Versailles, France

Acknowledgments

Without the influence and support of all people around me, I would

not be able to achieve the doctorate degree in compute science.

I would like to first thank the members of my dissertation committee -

not only for their time and patience, but for their insightful comments and

questions during my defense. I am indebted to Prof. Michel Daydé and Prof.

Joel Saltz, who spent their time to review my thesis to help me improve and

finalize it.

I would like to thank all my teachers and professors, whose truly altruis-

tic effort to promote a solid understanding of numerical linear algebra and

pretopology. My special gratitude goes to my advisor Prof. Nahid Emad,

for the support, guidance and help all along my three years’ Ph.D, to Prof.

Sofian Ben Amor and Prof. Michel Lamure for their helpful and insightful

discussion on computational epidemiology and pretopology.

Intellectually stimulating discussions and long hours of party with Flo-

rian, Makarem, Feng, Langshi, Cihui, Fan and France made my life in Paris

extremely enjoyable. Also, I am thankful to my friends from my church,

including Ming, Zhiren and many, for a great time sharing and praying to-

gether.

Special thanks goes to my wife Xue, for taking a moment of her time

to proofread and edit my dissertation. I am truly thankful to my parents

(Yi and Yaxian), who managed to make my childhood as carefree as it was

possible. Words cannot express my infinite gratitude to my wife Xue for

being a great support and for sharing the moments of joy and happiness

during all time we are together. Thank you !

2

Table des matières

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 3

1.2.1 Modelling of epidemic spread 3

1.2.2 Review of epidemiological models 5

1.2.3 PageRank computation 9

1.3 Contribution . 10

2 Classical approaches for modelling epidemic spread 12

2.1 Ordinary differential equation (ODE) systems 12

2.2 Cellular Automata . 13

2.3 Multi-agent systems . 14

2.3.1 Agent . 14

2.3.2 Environment . 16

2.3.3 Interactions . 17

2.3.4 Organization . 17

2.4 Conclusion . 18

3 Propositions of modelling epidemic spread 19

3.1 Time evolution . 19

3.1.1 simulation based on matrix vector multiplications . . . 19

3.1.2 Comparison with agent based stochastic simulations . 22

3.2 Containment and mitigation . 23

3.2.1 PageRank-like model : vaccines and antiviral drugs . . 23

3.2.2 Non-pharmaceutical interventions 31

3

3.3 Combination of the two previous approaches : modelling ba-

sed on numerical algebraic operations 33

3.4 Conclusions . 35

4 Multiple implicitly restarted Arnoldi method 37

4.1 Krylov subspace methods . 37

4.1.1 Arnoldi method and its implicit restarting variant . . . 42

4.2 Multiple implicitly restarted method 45

4.3 Numerical experiments . 48

4.3.1 MIRAMns versus IRAM 49

4.3.2 Conclusion . 65

5 A parallel MIRAM algorithm for PageRank computation 66

5.1 Introduction . 66

5.2 High performance systems evolution 68

5.2.1 Classification of high performance systems 70

5.2.2 Shared memory systems 71

5.2.3 Distributed memory systems 72

5.2.4 Hybrid systems . 73

5.3 Programming models . 74

5.3.1 Data parallelism . 74

5.3.2 Task parallelism . 75

5.3.3 Multi-level parallelism using notion of graph 76

5.4 Parallel MIRAM algorithm . 76

5.5 Scalable sparse MVP for scale-free networks using hyper-

graph partitioning . 79

5.6 Parallel implementation . 83

5.6.1 Network loader . 84

5.6.2 Hypergraph partitioner 85

5.6.3 Parallel MIRAM . 85

6 Parallel Social Graph Generator for PageRank Computation 87

6.1 Introduction . 87

6.2 Sequential algorithm for Barabàsi-Albert model 89

6.3 Parallel algorithm for graph generator 89

4

6.4 In-memory matrix representation for PageRank computation . 92

6.5 Conclusion . 92

7 Numerical results 93

7.1 Introduction . 93

7.2 Data of experiments . 93

7.3 Architecture and machines . 94

7.4 Metrics of performance used . 94

7.5 Results . 95

7.5.1 Comparison with other methods 95

7.5.2 Experiments on damping factor α 97

7.5.3 Thick restart for the choice of parameter k 97

7.5.4 Strong scalability tests 98

7.5.5 MIRAM vesus IRAM 100

7.5.6 Vaccination strategies based on PageRank 102

7.6 Conclusion . 103

8 Conclusion and future work 105

8.1 Pretopology as a tool for modelling social networks 105

8.1.1 Basics on pretopoloy . 106

8.1.2 Basics on random correspondences 108

8.1.3 Basics on stochastic networks 110

8.2 Asynchronous MIRAM . 114

5

Table des figures

1.1 Illustration of A/H1N1 influenza en Europe, 12 may 2009,

ECDC . 4

3.1 Small social network of 5 individuals 21

3.2 Weighted version of a small social network of 5 individuals . . 23

3.3 Small social network of 5 individuals with individual 4 vac-

cinated . 25

3.4 Small social network of 5 individuals with quarantine on in-

dividual 4 . 32

3.5 Small social network of 5 individuals with school closing for

kids 0 and 1 . 32

3.6 Social network of 3 relationships for 5 individuals 33

3.7 Stochastic network, random event ω1 34

3.8 Stochastic network, random event ω2 35

3.9 Stochastic network, random event ω3 36

4.1 MIRAMns(5, 7, 10) versus IRAM(10) with a f 23560 matrix 53

4.2 MIRAMns(5, 7, 10) versus IRAM(22) with a f 23560 matrix 53

4.3 MIRAMns(16, 19, 22) versus IRAM(22) with a f 23560 matrix 54

4.4 MIRAMns(10, 13, 16, 19, 22) versus IRAM(22) with a f 23560 matrix 54

4.5 MIRAMns(5, 10, 25) versus IRAM(25) with a f 23560 matrix 55

4.6 MIRAMns(20, 30, 40) versus IRAM(40) with a f 23560 matrix, k=10

with a buffer of 2 extra vectors . 55

4.7 MIRAMns(5, 8, 10) versus IRAM(10) with b f w782a matrix 56

4.8 MIRAMns(5, 10, 20) versus IRAM(20) with b f w782a matrix 56

4.9 MIRAMns(8, 18, 20) versus IRAM(20) with b f w782a matrix 57

4.10 MIRAMns(8, 11, 14, 17, 20) versus IRAM(20) with b f w782a matrix . 57

6

4.11 MIRAMns(20, 25, 30) versus IRAM(30) with b f w782a matrix, k=10

with a buffer of 5 vectors . 58

4.12 matrix MIRAMns(10, 15, 20) versus IRAM(20) with A9_1000 matrix 58

4.13 MIRAMns(5, 8, 10) versus IRAM(10) with west0989 matrix 59

4.14 MIRAMns(13, 17, 20) versus IRAM(20) with AM_1000 matrix . . . 59

4.15 MIRAMns(5, 8, 10) versus IRAM(10) with sherman3 matrix 60

4.16 MIRAMns(5, 8, 11, 14, 17, 20) versus IRAM(20) with roadNet-PA

matrix . 60

4.17 MIRAMns(5, 8, 11, 14, 17, 20) versus IRAM(20) with com-Youtube

matrix (k = 4) . 61

4.18 MIRAMns(4, 7, 10, 13, 16, 20) versus IRAM(20) with WikiTalk ma-

trix (k = 2) . 61

4.19 MIRAMns(5, 8, 11, 14, 17, 20) versus IRAM(20) with WikiTalk ma-

trix (k = 4), tol = 10−10 . 62

4.20 Evolution of mbest in MIRAMns(8, 17, 20) among iterations with

b f w782a matrix . 62

4.21 Evolution of mbest in MIRAMns(5, 8, 11, 14, 17, 20) among iterations

with com-Youtube matrix . 63

4.22 Evolution of mbest in MIRAMns(4, 7, 10, 13, 16, 20) among iterations

with roadNet-PA matrix . 63

4.23 Execution time of MIRAMns(13,17,20) versus IRAM(20) for

AM_1000 matrix, tol=10−8 . 64

4.24 Execution time of MIRAMns(5,8,10) versus IRAM(10) for west0989

matrix . 64

5.1 A shared memory architecture 72

5.2 A distributed memory architecture 73

5.3 A distributed memory architecture 74

5.4 The overview of MIRAM . 78

5.5 An 1-D column-wise partitioning on 3 processors and its ma-

trix vector multiplication. 81

5.6 Small social network of 5 individuals 84

7.1 Convergence behavior for the 281, 903× 281, 903 stanford ma-

trix, α = 0.85 . 96

7

7.2 Convergence experiments for different number of shifts on twitter

network, where α = 0.85 and tol = 1E − 7. 97

7.3 Convergence experiments for different number of shifts on yahoo

network, where α = 0.85 and tol = 1E − 8. 98

7.4 Scalability experiment of sparse MVP for com-Youtube net-

work, where α = 0.85, on “Griffon cluster” 99

7.5 Scalability experiment of MIRAM, where α = 0.85, k = 2 and tol =

1E − 12. 99

7.6 MIRAM versus IRAM for com-Youtube, where α = 0.99, k = 1 and

tol = 1E − 6. 100

7.7 MIRAM versus IRAM for com-Youtube, where α = 0.85, k = 1 and

tol = 1E − 8. 100

7.8 Evolution of mbest in MIRAM along restarting cycles for com-

Youtube, where k = 1. 101

7.9 Time series of infection in an 7010-node power-law social net-

work ba, with α = 0.85, ν = 0.2 and δ = 0.24 102

8.1 Pseudoclusure ratio and interior ratio relationships 113

8

Liste des tableaux

3.1 Table of symboles . 19

4.1 General information about the test matrices 48

4.2 IRAM performances . 51

4.3 Comparison of IRAM(m) and MIRAMns(m1, · · · , m�) 52

5.1 Example of network coordinate format and matlab coordi-

nate format for Fig.5.6 . 84

6.1 An example of graph construction on processor p0. 91

7.1 Statistics for datasets . 94

7.2 Hardware details of Clusters 95

7.3 Number of matrix vector products for the 281, 903 × 281, 903

stanford network . 96

9

Résumé

Le calcul des valeurs propres intervient dans des modèles de maladies

d’épidémiques et pourrait être utilisé comme un allié des campagnes de vac-

cination dans les actions menées par les organisations de soins de santé. La

modélisation épidémique peut être considérée, par analogie, comme celle

des virus d’ordinateur qui dépendent de l’état de graphe sous-jacent à un

moment donné. Nous utilisons PageRank comme méthode pour étudier la

propagation de l’épidémie et d’envisager son calcul dans le cadre de phé-

nomène petit-monde.

Une méthode multiple de "implicitly restarted Arnoldi iterations" a été

proposé par Shahzadeh Fazeli et al. (MIRAM). Dans cette thèse, Une mise

en œuvre parallèle de cette méthode est proposé pour calculer le vecteur

propre dominant de matrices stochastiques issus de très grands réseaux

réels. La grande valeur de "damping factor" pour ce problème fait de nom-

breux algorithmes existants moins efficace, tandis que MIRAM pourrait être

prometteuse. Nous proposons également dans cette thèse un générateur de

graphe parallèle qui peut être utilisé pour générer des réseaux synthétisés

distribués qui présentent des structures "scale-free" et petit-monde. Ce gé-

nérateur pourrait servir de donnée pour d’autres algorithmes de graphes

également.

MIRAM est mis en œuvre dans le cadre de trilinos, en ciblant les grandes

données et matrices creuses représentant des réseaux sans échelle, aussi

connu comme les réseaux de loi de puissance. Hypergraphe approche de

partitionnement est utilisé pour minimiser le temps de communication. L’al-

gorithme est testé sur une grille nationale Grid5000. Les expériences sur les

très grands réseaux tels que Twitter et Yahoo avec plus de 1 milliard de

nœuds sont exécutées. Avec notre mise en œuvre parallèle, une accélération

de 27× est réalisé par rapport au solveur séquentiel.

Mots clés : épidémie, PageRank, Théorie de graphe, Loi de puissance,

IRAM, Grande donnée, Hypergraphe partitionnement.

Abstract

The eigenvalue equation intervenes in models of infectious disease prop-

agation and could be used as an ally of vaccination campaigns in the ac-

tions carried out by health care organizations. The epidemiological model-

ing techniques can be considered by analogy, as computer viral propagation

which depends on the underlying graph status at a given time. We point out

PageRank as method to study the epidemic spread and consider its calcula-

tion in the context of small-world phenomenon.

A multiple method of implicitly restarted Arnoldi iterations has been

proposed by Shahzadeh Fazeli et al. (MIRAM). In this thesis, a parallel im-

plementation of this method is proposed for calculating dominant eigenpair

of stochastic matrices derived from very large real networks. Their high

damping factor makes many existing algorithms less efficient, while MI-

RAM could be promising. We also propose in this thesis a parallel graph

generator that can be used to generate distributed synthesized networks

that display scale-free and small-world structures. This generator could

serve as a testbed for graph related algorithms.

MIRAM is implemented within the framework of Trilinos, targeting big

data and sparse matrices representing scale-free networks, also known as

power law networks. Hypergraph partitioning approach is employed to

minimize the communication overhead. The algorithm is tested on a nation

wide cluster of clusters Grid5000. Experiments on very large networks

such as twitter and yahoo with over 1 billion nodes are conducted. With

our parallel implementation, a speedup of 27× is met compared to the

sequential solver.

Keywords: Epidemic, PageRank, Scale free networks, Power law, IRAM,

Big data, Hypergraph partitioning.

Chapitre 1

Introduction

1.1 Motivation

Dynamic complex systems appear in many areas such as physics, bio-

logy, and computer networks etc. In the domain of health research, quick

response and effective control of widely spreading health crises stay a big

challenge for public health officials as well as scientists. The 1918 flu pande-

mic in the U.S. has caused more lives than those due to World War I. Accor-

ding to the World Health Organisation (WHO), infectious diseases account

for more than 13 million deaths a year. Spurred by the rapid development

in big data techniques, it has now become possible to deal with this pro-

blem more efficiently. While different models have been proposed to simu-

late epidemic spread, efficient computational methods to handle large-scale

epidemic outbreak have not received adequate attention.

In order to simulate the epidemic spread, such as A/H1N1 outbreak in

France, computational epidemiology plays an important role. It is an in-

terdisciplinary area which is based on developing large scalable models

over computers. For example, Network Dynamics and Simulation Science

Laboratory (NDSSL) has proposed a parallel simulation model Simdemics

[15][16], designed to scale to the entire United States (300 Million people).

This solver generates roughly 300 GB of data and is expected to increase as

more details are added. One run takes 3000 cpu hours on a 1.5TF machine of

448 cores and one experiment takes 100 to 300 runs. As a result, one to four

experiments per year could be expected. In fact, the traditional method uses

1

multi-agent system (MAS) and requires hundreds of experiments and com-

putes the expected outcome by averaging. The simulations based on MAS

model become increasingly heavy especially when facing with a large po-

pulation because more details about the population should be used. MAS

simulation is communication-bound so that it is not very well adapted for

modern parallel machines. Can we find a model that avoids these repea-

ted runs as in MAS approach ? And can we transform its simulation into

a computationally intensive problem ? How to solve it on modern super-

computers ? How to establish efficient interventions based on this model ?

In this study, we address these problems by proposing a computational mo-

del using sparse matrix operations. Based on this model, the intervention as

vaccination can be further formulated as a very large sparse eigenvalue pro-

blem. From a computational perspective, solving the underlying numerical

problems is difficult due to the size and the structure of social networks in

question.

On the other hand, most of the existing work in this area now has focu-

sed on considering the effect of underlying social network structure on epi-

demic dynamics by using tools from statistical physics [11]. The new trend

of complex network-based models recognize the individual-level random-

ness and network topology as significant factors on the dynamic of epide-

mics, which introduces stochastic aspects in the modeling [19][78]. Adap-

tive network models can be seen as an offspring of this tendency, the idea

of which is that individuals usually attempt to reduce their risk of infec-

tion by eliminating contact with contagious individuals [18][48][53]. The

objective of this approach is to model infection spreading in a population

with evolving contacts. We propose in this study a mathematical model of

dynamic-network epidemic spread based on stochastic pretopology, which

is an extension of the theory of random graphs.

2

1.2 Related Work

1.2.1 Modelling of epidemic spread

An epidemic is said to arise when new cases of a certain disease occur

in excess of normal expectancy, the result of which is a very high mortality

in a population during a short period of time. There are several severe

epidemic outbreaks in the human history, where we could cite :

• The plague of Justinian during the age of the Eastern Roman Em-

pire, which killed as many as 25 million people across the world.

• The black death in Europe in the years 1382-50 CE, which resulted

in the deaths of an estimated 75 to 200 million people.

And more recently,

• The 1918 flu pandemic, occurred during January 1918 - December

1920, killed 50 to 100 million people in the world.

• The HIV/AIDS pandemic, from the year of 1981, has caused over

30 million deaths until now in global.

In the first place, it is necessary to distinguish the following three terms :

endemic, epidemic and pandemic. The major defference between these

terms is the the proportion of infected people in the population.

• Endemic : in epidemiology, an infection is said to be endemic in po-

pulation when that infection enters a steady state without the need of

external inputs. Central America is an endemic zone of dengue fever.

Chickenpox is endemic in the UK. The Thailand is an endemic zone for

yellow fever. In general, within a geographical zone, an endemic develops

according to geographical and climatical conditions, social-economical

factors as well as alimentation of individuals.

3

• Epidemic : an epidemic occurs when new cases of a certain disease,

in a given population, and during a given period, substantially exceed

what is expected based on recent experiences. Many examples could be

cited : the epidemic of spain flu, the epidemic of SIDA, of obesity and of

lung cancer.

• Pandemic : a pandemic is an epidemic of infectious disease that has

spread through human populations across a large region ; for instance

multiple continents, or even worldwide. We have as example the case of

A/H1N1 influenza, which caused a lot of deaths worldwide. As shown in

Figure 1.1, zones in yellow show the cases of infection. In red, the indication

of the number of observed cases, with 5 thresholds, 1, 5, 10 50 100.

FIGURE 1.1: Illustration of A/H1N1 influenza en Europe, 12 may 2009,

ECDC

The diffusion or the propagation of epidemic is defined as the evolu-

tion of infection with respect to temporal and spatial aspects. In [22], a first

study on pertussis in developing countries is carried out at spatial scale. In

this work, Broutin et al. determine the impact of local heterogeneity of the

spread of the epidemic of pertussis and its persistence in a spatio-temporal

4

environment. Then they highlight the impact of the population density on

the dissemination and persistence of pertussis by performing a time series

analysis.

There are two basic deterministic processes being used in the analysis of

epidemic spreading, the susceptible-infective-recovered (SIR) process and

the susceptible-infective-susceptible (SIS) process, where the difference is

whether or not the disease confers lifelong immunity.

1.2.2 Review of epidemiological models

One common used measure of infectivity is the epidemic threshold λc,

which is the minimum infectiousness that a disease has to reach in order

to invade a network. Each susceptible node is infected with rate ν if it is

connected to one or more infected nodes. At the same time, infected nodes

are cured with rate δ, defining an effective spreading rate λ = ν/δ. If the

value of λ is above the threshold, λ ≥ λc, the infection spreads and becomes

persistent. Below it, λ < λc, the infection dies out exponentially fast [89][3].

The homogeneous models (SIR or SIS) assume that the population mixed

at random, so that each individual has an equal chance of coming into

contact with any other individual [37]. However in real world, it is not rare

to find the different mixing rates between the population subgroups [10]. So

a direct improvement is to avoid the random-mixing assumption. Models

that include underlying network structure achieve this goal by assigning to

each individual a finite set of contacts [79][76].

Network-based epidemic models

The difference between various network models depends on how

individuals are distributed in space and how connections are formed. The

Paul Erdös and Alfréd Rényi model (E-R model) consists of n nodes, joined

by edges which are placed between pairs of nodes chosen with equal

probability p. By using ideas drawn from percolation theory [77], it is found

that there is a non-zero epidemic threshold,

λc =
1

< k >
(1.1)

5

where < k > is the average connectivity. The degree distribution of this mo-

del is Poisson and the epidemic growth rate in such a network is reduced in

comparison with the random mixing model [57]. Despite being one of the

oldest and best studied models of a network, E-R model differs from real

networks in two crucial ways : it lacks network clustering and it has an un-

realistic Poissonian degree distribution [80]. By the following, we introduce

two other network models to remedy these two inconvenients.

Models based on Small-world networks got into our sight by the work

of Watts and Strogatz [103][102]. Small worlds can be formed by adding a

small number of random connections to a lattice 1. And Newman’s work

[81] gives another effective way of constructing this kind of networks.

Random networks display low clustering but short path lengths since

there are many long-range links, whereas small-world networks have high

clustering and short path lengths. These characteristics have important

implications in the context of epidemics : the high level of clustering

means that most infection occurs locally, but short path lengths means that

epidemic spreading through the network is rapid [103]. By applying the

percolation theory to small-world networks to calculate the threshold, it is

found that [72] :

λc =

√
1 + 12φ + 4φ2 − 1 − 2φ

4φ
= 1 − 4φ + O(φ2) (1.2)

where, it is assumed that each individual is linked to its two nearest neigh-

bors and on average to φ randomly chosen other individuals.

In 1998, a project to map the World Wide Web has revealed a surprising

fact that a few highly connected pages are essentially holding the World

Wide Web together. Counting how many Web pages have exactly k links

showed that the degree distribution followed a power-law. Following re-

searches observed many real world networks that display this phenome-

non, while small worlds, random networks have a power-law degree distri-

bution. Scale-free networks can be constructed dynamically by adding new

1. Lattices display high clustering but long path lengths because connections are esta-

blished between adjacent individuals in a 2-D grid.

6

individuals to a network one by one with preferential mechanism. The ma-

jor contribution of this model is the heterogeneity in numbers of contacts

and the existence of hubs (the most highly connected nodes in the network)

[28]. Hubs in a network play a pivotal role in the spread and maintenance of

infection. Research suggests that the simultaneous elimination of as few as 5

to 15 percent of all hubs can crash a system. Despite some practical difficul-

ties, immunizations targeting hubs could be interesting [67][5][29]. Further

research indicated the absence of epidemic threshold in scale-free networks

[89]. That is, even weakly contagious viruses will spread and persist in the

system.

To summarize this subsection, we focus on the assumptions used for

each network-based epidemic model and on the existence of epidemic thre-

shold. Recently, an interesting study has proved the close relationship bet-

ween the epidemic threshold of a network and the largest eigenvalue of net-

work’s adjacency matrix, which can subsume many previous known thre-

shold for special case graphs (E-R, BA power-law, homogeneous) [101].

Dynamics on/of networks

In the previous section, we review SIS and SIR models that study the

dynamics on networks. And we review models like E-R networks, small-

world networks, and BA scale-free networks that study the dynamics of

networks, whose topological structure can have strong impact on the dy-

namics of nodes. In spite of the success of research mentioned above, the

dynamics of networks and the dynamics on networks are still studied se-

perately. The fatal default is that these models do not take into account the

ability to adapt the network topology dynamically in response to the dyna-

mic state of nodes in real world networks [18][53][48].

In the case of the spreading of an infectious disease in a social network,

people tend to avoid contact with infected individuals during the outbreak.

And these decisions may change the global structure of the network. Based

on such intuition, scientists use techniques namely “adaptive networks”

to investigate the complex interplay between a time evolving network

topology and the dynamics of the nodes. The first attempt is by rewiring

process. In traditional SIS models, they use p as the probability that a

7

susceptible becomes infected, r as the rate of recovery from infection. In

addtion to that, rewiring process allows each susceptible, with probability

w, to break the link to the infected and forms a new link to another ran-

domly selected susceptible. By using the “moment closure approximation”

[57], three coupled ordinary differential equations have been developed

[49]. They developed also the epidemic threshold as :

λc =
w

< k > [1 − exp(−w/r)]
(1.3)

By comparing the analytical calculations from ODE with direct numerical

simulation of the full model, they have discovered some interesting results :

the existence of a lower order epidemic threshold. Between these two thre-

sholds, a region of bistability appeared where the healthy and endemic state

are both stable. For the control of real-world diseases, adaptive rewiring can

increase the invasion threshold and the persistence threshold. However, in-

creasing the rewiring rate hardly reduces the size of the epidemic in the

endemic state.

The above strategy of rewiring makes sense given that the individuals

would have knowledge of the disease status of the rest of the population. As

for some asymptomatic disease, however, a random link activation-deletion

seems more reasonable during the outbreak. Inspired from the macro-ODE-

based compartmental model [69][65], M. Taylor et al. used ω as per link

deletion rate and α as per potential link creation rate, to adapt the dyna-

mic network case [98]. They constrained the local activation of links by the

maximum nodal degree M. They further calculated the epidemic threshold

and discovered that the value of M as a local contraint limiting the number

of contacts per individual can be used to control and prevent the outbreak

of an epidemic.

In [99][44], authors assume that the infection probability as well as the

rewiring probability between agents is type-dependent. By introducing fp

as a measure of a disease being intratype or intertype and fw as a measure

of a rewiring choice being intratype or intertype, Bing Wang et al. have eva-

luated the impact of intratype/intertype infecting and rewiring on the epide-

mic threshold [100]. They have discovered that consistency between infec-

8

ting and rewiring modes speeds up the disease spread, while inconsistency

contributes to halting the outbreak.

1.2.3 PageRank computation

PageRank citation ranking was initially introduced in [82] to bring order

to the Web. A page has high rank if the sum of the ranks of its inlinks is

high. In other words, rank is propagated through links. To use mathema-

tical formalism, we look for a PageRank vector x, which is the dominant

eigenvector of the Google matrix,

A = αP + (1 − α)veT , 0 ≤ α < 1 (1.4)

where the matrix P is a column stochastic matrix, called transition matrix,

representing the outlink structure of the Web, e is the vector (1, ..., 1)T, α is

called the damping factor, and the vector v is the teleportation vector, which

ensures the uniqueness of the PageRank vector. A difficulty in PageRank

model is caused by the existence of dangling nodes [23]. These nodes will

result in one or more columns of zeros in transition matrix P. Several ideas

have been proposed to deal with this problem [54][33]. Research by the ini-

tial PageRank paper [82] indicates that the PageRank could be calculated

by removing the links to dangling pages from the web network. However,

theoretically this process might generate new dangling pages and iteratively

remove all pages from the network. We simply add an artificial loop with

probability 1 to these nodes themselves. By this way, diagonal elements cor-

responding to dangling nodes in matrix P are filled with 1. This handling

can be justified by similar arguments as showed in [33].

Many algorithms [47][46][55][21] have been proposed for computing

PageRank, a survey can be found here [14]. A PageRank is the eigenvec-

tor associated to dominant eigenvalue of the Google matrix. However, in

real world applications, the computation of PageRank has two challenging

aspects. First, the matrices involved are very large and relies on a sparse

matrix-vector product (MVP) kernel. Suppose z is a vector of p-norm 1, Az

can be written as αPz + (1− α)v(eTz) where eTz is a scalar. So the MVP of A

is expressed as MVP of a sparse matrix P plus a vector. Otherwise, any direct

computation using A is bottlenecked by memory on large networks. In fact,

9

the Google matrix A becomes a dense matrix due to the part (1 − α)veT.

For above reason, algorithms based on MVP might be advantageous. Se-

condly, the damping factor α is generally very high. For example, in the mo-

del of epidemic spread, the virus has the probability 1− α to jump randomly

from an infected individual to any other individual through some unusual

contact. Intuitively, this event happens rarely and for disease spread α must

be very close to 1. This is in fact an argument in favor of using Arnoldi-type

methods, as opposed to the power method.

In this thesis, we justify the choice of implicitly restarted Arnoldi method

(IRAM) [95] in PageRank computation. We discuss some improvements

over it to address the two difficulties stated in the previous paragraph. The

model of parallelization used is so general that it could be adapted for any

modern (possibly future) parallel architecture. Our numerical results show

that : (i) the strategies proposed could accelerate the convergence of IRAM

for matrices derived from real applications ; (ii) the PageRank-like infection

vector could be used as an ally of vaccination campaigns in the actions car-

ried out by health care organizations.

1.3 Contribution

Modeling of epidemic spread benefits a lot from network research to

understand infection evolution in a population. Most of the existing work

in network based epidemic model tries to answer questions of how a virus

will propagate in a real network and how to establish efficient interventions

to control the disease.

This work contributes in many aspects as :

• understanding the impact of social graph structure on propagation

of virus. Our work addresses the important question about time evolution

of infection through a stochastic model, which depends on matrix opera-

tions targeting modern supercomputers.

• identifying individuals most likely to spread the disease and esta-

blishing interventions accordingly,

10

• providing an efficient and “light” computation solver for widely

spreading epidemics or pandemics while avoiding repeated runs in com-

puter simulation.

• providing a framework that considers the divers relationships among

individuals in a population. We argue that the dynamic of underlying

contact networks is also taken into consideration.

We demonstrate that PageRank can be computed using numerical

methods based on sparse matrix vector product and propose to use im-

plicitly restarted Arnoldi method (IRAM). Our numerical results are quite

encouraging. The proposed algorithm is capable of handling very large

graphs. Additionally, it is found in Experiment 6.5 that the number of shifts

used in IRAM could help to accelerate the convergence of the dominant

eigenpair on these graphs. We are conducting experiments for yahoo graph.

11

Chapitre 2

Classical approaches for modelling

epidemic spread

The first epidemiological considerations reach back to the 19th century

and were conducted by a doctor in London, John Snow. In the course of a

cholera epidemic in London Snow could detect the source of the outbreak ?

a contaminated well in Broad Street ? by analysing the spatial and social

environments of infected people.

2.1 Ordinary differential equation (ODE) systems

The first model for simulating spread of diseases is the SIR model (1927).

In its initial form, SIR model is a compartmental differential-equation mo-

del that structures the infectioned population in terms of age-of-infection,

while using simple compartments for people who are susceptible (S), infec-

ted (I) and recovered (R). Two parameters α and β describe the probability

that in the case of interaction a susceptible individual becomes infected by

a contagious (infected) individual, respectively that an infected individual

recovers during one time unit (this leads to a geometric distribution of the

duration of infection). The population (S, I, R) can thus be described by the

12

following system of ordinary differential equations (ODE).

dS(t)
dt

= −αS(t)I(t),

dI(t)
dt

= αS(t)I(t)− βI(t),

dR(t)
dt

= βI(t)

(2.1)

One major drawback of these approaches is, that they only reflect a perfectly

homogeneous population. If one tries to include different sub-populations

or spatial distributions the complexity of the models is quickly growing

beyond reason.

2.2 Cellular Automata

Cellular automata models consist of cells on a grid that may change co-

lours at discreet times to represent different states. A cell’s state is determi-

ned by a set of rules and the state of its neighbours, and therefore the neigh-

bourhood of a cell must be specified. This thesis studies two-dimensional

cellular automata models, an example of which is Conway’s game of life.

Cellular automata have long been used to study biological systems such

as this project does [104]. The cellular automaton model is based on the

Kermack-McKendrick model. Each cell will have a certain probability of be-

coming infected :

Pin f ect = 1 − (1 − p)R

where p is the probability that a infected cell will transmit the disease to a

healthy cell, and R is the number of cells surrounding the healthy cell. Each

cell will also have a certain probability of recovering from the disease :

Precover = q

and the values of p and q are between 0 and 1. Pin f ect and Precovered are then

compared to random numbers. If the probability is more than the random

number, then the cell will become infected or will recover, otherwise the cell

will stay in the same state. For the common cold, cells that are recovered will

become susceptible again after a set of updates. The neighbourhood used

13

in this project is the Moore Neighbourhood. The number of neighbours, n,

around a cell is given by the following equation :

n = (2r + 1)2

where r is the range. This project uses a Moore Neighbourhood with range

1, giving nine possible neighbours for each cell. The state of each cell will be

updated accordingly and displayed with the following colours : green if the

cell is susceptible, red if the cell is infected, and black if the cell is recovered.

The number of susceptible, infected, and recovered cells is then plotted as a

function of time.

2.3 Multi-agent systems

Multi-agent system (MAS) combines agents, environments, interactions

and organization. Appeared in the 1990s, the multi-agent system follows

the object-oriented programming because it is difficult to handle. Currently

MAS allows to transform objects into autonomous computing entities. The

basic concept of multi-agent simulation is to represent the behavior of indi-

viduals, or to constitute an abstraction of the real world. We can cite various

applications of multi-agent system as is in the field of transport, telecommu-

nications, simulation, game theory, information systems, robotics, coopera-

tive systems, interactive games , modeling of complex networks, etc. To sum

up, MAS = Agents + Environment + Interactions + Organization.

2.3.1 Agent

The term "agent" is preferred to the term "object" since the term agent

involving human abilities. An agent is an entity that thrives in an environ-

ment that has certain features :

- Autonomy : the agent has a behavior that is related to his own ex-

perience. In the literature, the concept of "autonomy" is associated with at

least four concepts :

14

(a) Design in MAS.

(b) Environment in which it operates.

(c) Objectives.

(d) Motivations.

- Communication : agents interact with each other using a protocol.

They can share information or send messages.

- The agents evolve with their environment although they have a par-

tial representation of it.

Thus, the agent will perform actions based on the representation of

their environment.

- Agents have knowledge about themselves and other agents.

- Agents have the ability to learn. They can change their behavior ba-

sed on what they perceive.

- Agents have goals.

- Agents are mobile.

There are various types of agents, such as reactive agents and cogni-

tive agents.

- Reactive agents are defined as agents with no representation of their

environment. They have little intelligence which indicates that the shares

previously carried out by agents of this type are forgotten. They work

by reactions of "stimulus-response". The prime example that can be cited

in this case is the ant. One advantage of using the reactive agents in a

15

simulation is that they can be many in quantity.

- Cognitive agents are smart. They have a very good representation of

their environment, have a memory and a collective or individual goal. The

human being is a good example of cognitive agent. This type of agent is

used to solve more complex problems. We can see that the design of an

agent is more or less complex depending on its nature. The use of a system

composed solely of reactive or cognitive agents does not lead to a specially

balanced state.

- Hybrid agents combine the characteristics of reactive agents and cog-

nitive agents.

We can therefore note that it is crucial to define the behavior of the

agent. In general, MAS are made from three models :

1. Eco-agent defined by Ferber [42], is a reactive agent that aims to

achieve a state of satisfaction. When it is impossible to reach this state due

to another agent, it is attacked by eco-agent.

2. The BDI (Belief Desire Intention) agent [87], is to represent the be-

havior of a cognitive agent. It has beliefs and desires accordingly. It will try

to satisfy them.

3. The POA Agent, Agent Oriented Programming is based on inten-

tional postures according Y. Shoham in [94].

2.3.2 Environment

The environment is defined as the place where agents evolve and inter-

act. It is modeled as a reactive agent. Most often, in the MAS, the environ-

ment is spatial. In case where the environment changes during the simula-

tion, we say that the system is dynamic otherwise static.

16

2.3.3 Interactions

In MAS, interactions play an important role. They include all actions

that may arise between the different agents and the environment. There are

two types of direct interactions in MAS :

- Those generated by the communication from one agent to another.

- Those concerning the action of an agent over the environment. In-

deed, any action of an agent has an impact on the environment and

therefore modifies it.

There are also indirect interactions between agents called "interactions

brought by the environment." Indeed, the perception changes caused by

other agents in the environment constitutes an indirect interaction.

2.3.4 Organization

The organization encompasses all actions of all components. It allows to

structure the behavior of agents and their interactions. An agent has free-

doms according to the definition of all its actions and the entities to which

actions are directed.

Two objectives of MAS are :

- "The creation of distributed artifacts capable of performing complex

tasks by cooperation and interaction."

- "Theoretical and experimental analysis of self-organization mecha-

nisms that occur when several autonomous entities interact."

17

2.4 Conclusion

To summarize this chapter, the classic approach as ODE or cellular au-

tomata is mathematically robust that can be easily used to give global in-

formation on the epidemic spread. However, they don’t take into account

the underlying network structure, which proves to be an important factor

during the propagation process. Recently, multi-agent system has gained a

lot of attention and is widely used in epidemic models. In this work, we

use multi-agent system in the simulation experiment to compare with the

proposed model of epidemic spread.

18

Chapitre 3

Propositions of modelling

epidemic spread

We study the SIS process of an epidemic spreading over an undirected

network. We assume a connected network G = (N, E), where N is the num-

ber of nodes in the network and E is the set of edges. Table 1 lists the para-

meters used.

n Size of the population

β Virus infection rate

δ Virus curring rate

t Time stamp

pi,t Probability that node i is infected at t

p̃i,t Probability that node i receives infections

TABLE 3.1: Table of symboles

3.1 Time evolution

3.1.1 simulation based on matrix vector multiplications

Time is assumed to be discrete. During each time interval, the probability

that a node i is infected at time t is pi,t. The probability that an individual i

19

will receive infections from his contacts at time t is

p̃i,t = 1 − ∏
j: contacts o f i

(1 − βpj,t−1) (3.1)

where (1 − βpj,t−1) represents the probability that the contact j did not pass

the infection to i. where (1 − βpj,t−1) represents the probability that the

contact j didn’t pass the infection to i. Ignoring second order terms, we have

p̃i,t ≈ ∑
j: contacts o f i

(βpj,t−1)

= β ∑
j: contacts o f i

pj,t−1

(3.2)

An individual i will be healthy at time t if

1. i was not infected at time t− 1 and did not receive infections from his

contacts, or

2. i was infected at time t − 1 but was cured at time t while did not

receive infections from his contacts, or

3. i received infections from his contacts but an curring event happened

after infections. Since an curring event might happen before or after

all infections to i, we consider the probability that this event happend

after all infections to be 1
2 .

As a result, the healthy probability of i at time t is

1 − pi,t =(1 − pi,t−1)(1 − p̃i,t)

+ δpi,t−1(1 − p̃i,t)

+
1
2

δ p̃i,t

(3.3)

It follows that

pi,t = pi,t−1 + p̃i,t − pi,t−1 p̃i,t − δpi,t−1 + δpi,t p̃i,t −
1
2

δ p̃i,t (3.4)

Ignoring second order terms, we have

pi,t ≈ pi,t−1 + p̃i,t − δpi,t−1 −
1
2

δ p̃i,t

= (1 − δpi,t−1) + β(1 − 1
2

δ) ∑
j: contacts o f i

pj,t−1
(3.5)

20

Let pt be the column vectors




p1,t

p2,t
...

pn,t




, then

pt = [(1 − δ)I + β(1 − 1
2

δ)Adj]pt−1 (3.6)

where Adj is the adjacency matrix of the underlying network. Write A =

[(1 − δ)I + β(1 − 1
2 δ)Adj], we call it transition matrix, (9) becomes

pt = Apt−1 = At p0 (3.7)

and here p0 is the initial condition vector for the outbreak of epidemics. En-

tries in this vector will depend on various factors for a specific disease, such

as age, sex, vaccination, etc. Moreover, different scenarios of the outbreak as

well as different intervention strategies can be simulated by changing the

values in p0.

An example of 5 individuals has been given in Figure 3.1.

2

0

1 3

4

FIGURE 3.1: Small social network of 5 individuals

The set V = {0, 1, 2, 3, 4} and the set E = {0 → 1, 1 → 0, 1 → 2, 2 →
0, 2 → 1, 2 → 4, 3 → 1, 3 → 2, 3 → 4, 4 → 0}. In matrix formulation, these

links give the transition matrix Adj as :

Adj =




0 1 1 0 1

1 0 1 1 0

0 1 0 1 0

0 0 0 0 0

0 0 1 1 0




(3.8)

21

Assuming that β = 0.2 and δ = 0.24, we have :

A =




0.76 0.176 0.176 0 0.176

0.176 0.76 0.176 0.176 0

0 0.176 0.76 0.176 0

0 0 0 0.76 0

0 0 0.176 0.176 0.76




(3.9)

Suppose that each individual stands equal chance to be infected at the out-

break, we have

p0 =




0.2

0.2

0.2

0.2

0.2




(3.10)

After the first time step, the infection probability for the population becomes

p1 = Ap0 =




0.2576

0.2576

0.2224

0.152

0.2224




(3.11)

The objective here is to simulate the epidemic spread using sparse matrix

vector multiplications.

3.1.2 Comparison with agent based stochastic simulations

Agent based stochastic simulations (ASS) have the advantage that you

can put all kind of detail into the model at individual level. The simulation

proceeds by establishing a set of rules to "guess" all its random parameters.

Because of the almost infinite complexities that can be added into an ASS,

this can be very slow to simulate epidemics in a large population. Even

worse, the result of ASS depends on averaging over repeated runs, which

will take large amount of time to ensure the quality.

As shown in the previous paragraph, using matrix operations, however,

can avoid these repeated runs. In fact, instead of guessing the value of all

22

random parameters each time, we estimate and use the probability associa-

ted with these uncertain elements. Better still, individual level detail could

be handled by using weighted networks. We assume that the weight wij for

a link will depend on the characteristics of individuals i and j (such as sex,

age, etc.) as well as that of the viruses. In Figure 3.2, we show a modified

version of our example of 5 individuals’ network. Concerning the computa-

2

0

1 3

4

w01 w10

w12

w20

w21

w24

w31

w32

w34

w40

FIGURE 3.2: Weighted version of a small social network of 5 individuals

tion, we simply modify the adjacency matrix of the network to be

Adj =




0 w10 w20 0 w40

w01 0 w21 w31 0

0 w12 0 w32 0

0 0 0 0 0

0 0 w24 w34 0




(3.12)

And the rest of the computation stays the same.

3.2 Containment and mitigation

Here we study the simulation of the effect for different interventions

against epidemic spread.

- Pharmaceutical interventions : vaccines and antiviral drugs.

- Non-pharmaceutical interventions : quarantine, school closing and social

distancing.

3.2.1 PageRank-like model : vaccines and antiviral drugs

Computational epidemiology arises recently as an interdisciplinary area

setting its sight on developing and using computer models to understand

23

and control the spatiotemporal diffusion of disease within populations [68].

Here we focus on networked epidemiology, which seeks to understand the

interplay between individual behaviour and dynamical process on social

networks. In other words, this approach investigates the influence of the

network topology on epidemic spread.

Agent based stochastic simulations (ASS) put all kinds of details into

the model at an individual level. The simulation proceeds by establishing a

set of rules to “guess" all its random parameters. This is the most common

approach to simulate epidemics in a large population. Network Dynamics

and Simulation Science Laboratory has proposed a parallel simulation mo-

del “Simdemics" [16][15], designed to scale to the entire United States (300

million people). A similar work can be found in [25], where an individual

based influenza simulation model “FluTe" has been proposed. According to

the numerical results of these studies, ASS are useful to help establish dif-

ferent pharmaceutical interventions as well as social distancing measures.

Furthermore, from a computational point of view, ASS may easily scale up

to simulate millions of people in a very efficient way. Nevertheless, one in-

convenience of ASS approach is that its result depends on averaging over

repeated runs, which could take large amount of time to ensure the quality.

An interesting work [101] has proved the close relationship between epi-

demic threshold of a network and the largest eigenvalue of network’s adja-

cency matrix, which can subsume many known thresholds for special case

graphs (scale-free, homogeneous, etc.). Rather than using ASS, this work

employs matrix analysis to study the epidemic spread. In [71], authors have

presented some empirical results on the potential usefulness of PageRank

for establishing effective vaccination strategies. In [27], authors have proved

that by using PageRank vectors, any infection will die out quickly and this

process is independent of the size of the whole network. Although the idea

to use PageRank vectors in epidemic studies is not new, we have not found

any previous studies on discussing the computational aspects of PageRank-

like epidemic models. Another novelty of the present work lies in the appli-

cation of very large real networks for such models.

For pharmaceutical interventions, only a group of people will be vacci-

nated at the beginning of an outbreak. Our simulations are conducted by

24

cutting all of the outlinks belonging to an individual in this group. Then the

propagation of virus proceeds by time step and these vaccinated individuals

could be considered as the dead ends during the epidemic spread.

2

0

1 3

4

FIGURE 3.3: Small social network of 5 individuals with individual 4 vacci-

nated

As, show in Figure 3.3, if we vaccinate the individual 4 at the out break,

the final transition matrix A becomes

A =




0.76 0.176 0.176 0 0

0.176 0.76 0.176 0.176 0

0 0.176 0.76 0.176 0

0 0 0 0.76 0

0 0 0.176 0.176 0




(3.13)

The column corresponding to this vaccinated individual reduces to a

0−column. And the individual 4 will thus never be infected during the

course of epidemic.

In order to efficiently establish the vaccination strategy, we propose to

make use of Google’s pagerank model [82] by analogy. An individual in

a social graph is analogous to a webpage in a web graph. The common

concept between PageRank model and the proposed epidemic model is the

random walk. In PageRank model, the surfer (or walker) starts from a ran-

dom page, and then selects one of the outlinks from the page in a random

fashion. Each page has two states as being visited by surfer or not. The Pa-

geRank (importance) of a specific page represents the probability that the

surfer is present at this page. In the proposed epidemic model, the virus

could be viewed as a walker and its propagation could be viewed as a path

that consists of a succession of random steps. Each individual has two states

25

as being infected or not. The pagerank (importance) of a specific individual

represents the probability that the virus reaches this individual during the

course of epidemic. To use mathematical formalism, let G = (V, E) be a di-

rected graph with individuals set V and outlinks set E. The graph might be

directed. That means, if there is a link i → j in graph G where i, j ∈ V, j → i

is not necessarily true. For example, blood disease could only happen from

the donators to the acceptors. Suppose that the graph G has n individuals

with degree d = (d1, d2, ..., dn), where dj is the number of links individual

j has to other individuals. At each time step t, the virus has a state st ∈ V,

indicating which individual it is on at time t. If st = i, then at time step t+ 1,

the virus moves to one of his neighbors j chosen uniformly at random from

all of i’s neighbors.

Pj,i = P[st+1 = j|st = i] =




1
di

if i −→ j

0 otherwise
(3.14)

The probability P(st = i) for i ∈ V depends only on st−1 and not on

st−2, st−3, ..., so that {st} is a Markov chain. {st} is characterized by its ini-

tial state and a stochastic matrix P, given by Pj,i = P(st = j|st−1 = i) with

Pj,i ∈ [0, 1] for all i, j ∈ V and ∑j∈V Pj,i = 1. According to Frobenius theo-

rem, λ = 1 is one of the eigenvalue of the stochastic matrix P and is the

biggest eigenvalue. Thus, there is a stationary distribution for the final state

of epidemic spread. Let xi be the probability that individual i is infected du-

ring epidemic and we write the stationary distribution as x = (x1, x2, ..., xn)

for the whole population. This infection vector x is independent of the star-

ting distribution and has the relationship : Px = 1 ∗ x = x. To sum up, the

infection vector x’s implication in social graph is similar to that of PageRank

vector in web graph. The problem consists, as a result, to find the dominant

eigenvector with 1 as eigenvalue for the stochastic matrix P of the social

graph. In our example,

P =




0 1/2 1/3 0 1

1 0 1/3 1/3 0

0 1/2 0 1/3 0

0 0 0 0 0

0 0 1/3 1/3 0




(3.15)

26

The first difficulty with this model is the existence of dangling indivi-

duals [23], which containing no outlinks. These individuals will result in

one or more columns of zeros in transition matrix P. For our example in Fi-

gure 3.1, if we delete the link 0 → 1, then the first column of matrix P will

contain only zeros. Several ideas have been proposed to deal with this pro-

blem [54, 33]. Research by the initial pagerank paper [82] indicates that the

pagerank could be calculated by removing the links to dangling pages from

the web graph. However, theoretically this process might generate new dan-

gling pages and iteratively remove all pages from the graph. In the context

of epidemic spread, dangling individuals could be considered as deadends

for virus’ random walk process. So an idea is to add a loop with probability

1 to these persons themselves. By this way, diagonal elements correspon-

ding to dangling individuals in matrix P are filled with 1. We adopt this

simple solution.

The second difficulty with this model is the problem of non-unique

rankings. The phenomenon of “small-world” reveals the clustering effect in

social networks. Since very few links exist between clusters, some isolated

clusters will break the strong connectivity of graph. It can be shown that

the transition matrix P will not yield a unique ranking vector x with such

isolated clusters [23]. The common solution is to add a jumping vector to

the random walk process :

B = αP + (1 − α)veT (3.16)

where B is disease transition matrix, v is the teleportation vector, e is the

vector [1, ..., 1]T and α, the damping factor, is a positive parameter smaller

than 1. The virus has a small probability (1 − α) to jump from any indi-

vidual to any other individual in a social graph. This would happen, for

example, when an infected person (virus carrier) meets someone outside

his normal contacts. Considering the preferential attachment of social scale-

free networks [10], we choose v to be proportional to individuals’ degree

and normalizes it by “1-norm”. In short, there is a small probability that an

individual establishes a new temporary link with someone who already has

27

many links.

v =




v1
...

vn


 , vi =

di

∑i=n
i=1 di

(3.17)

All column sums of the new transition matrix B are 1, so B is still a stochastic

matrix with dominant eigenvalue equal to 1 : Bx = x. In our example, d =

(1, 2, 3, 3, 1), ∑i=4
i=0 di = 10. By taking α = 0.9, we have :

B = αP + (1 − α)veT

= 0.9 ∗




0 1/2 1/3 0 1

1 0 1/3 1/3 0

0 1/2 0 1/3 0

0 0 0 0 0

0 0 1/3 1/3 0




+ 0.1 ∗




1/10

2/10

3/10

3/10

1/10







1

1

1

1

1




T

=




0.01 0.46 0.31 0.01 0.91

0.92 0.02 0.32 0.32 0.02

0.03 0.48 0.03 0.33 0.03

0.03 0.03 0.03 0.03 0.03

0.01 0.01 0.31 0.31 0.01




(3.18)

If we vaccinate individual number 4 at the out break, the final transition

matrix A becomes

B =




0.01 0.46 0.31 0.01 0

0.92 0.02 0.32 0.32 0

0.03 0.48 0.03 0.33 0

0.03 0.03 0.03 0.03 0

0.01 0.01 0.31 0.31 0




(3.19)

The column corresponding to this vaccinated person reduces to a

0−column. And he will thus never be infected during the course of epi-

demic. Further insight is given by numerical experiments in chapter 8.

28

It must be noticed that the proposed model is based on SIS epidemiolo-

gical process where, at a given time, each individual can be susceptible (S)

or infected (I). So we suppose that individuals recover with no immunity to

the disease, that is, individuals are immediately susceptible once they have

recovered. For example, for flu disease, people may very unfortunately get

ill again once recovered. Furthermore, the characteristic of individuals as

well as that of virus are not taken into account in the example. But they can

be taken into account by using weighted networks. Infection vector x could

help health officials to decide the relative importance of different agents in a

population facing an epidemic. This is especially useful when the resource

of vaccination are limited during the beginning phase of an urgent outbreak.

Priorities should be given to those individuals with bigger ranking in x. In

addition, a fast computation of this vector could be expected thanks to the

efficient implementation of eigenvalue algorithm.

Dangling individuals

In the proposed epidemic model, a decision must be made to deal with

the “dangling individuals". There are several possibilities for their existence.

For example, a person with innate immunity against certain disease, a per-

son in quarantine after getting the disease, or someone who dies, etc. There

is a difference between a dangling individual and a dangling web page. A

dangling page contains no outlinks. However, in most cases, a dangling in-

dividual will still have some social connections. They are called dangling be-

cause they somehow cannot spread epidemic after getting it. In other words,

the outlinks of the dangling individuals will be temporally disabled.

A dangling individual may have high PageRank as normal people. Pa-

geRank model computes the score for a person based on individuals that

link to it, rather than based on features (such as dangling) of the person. So-

meone in contact with these dangling individuals contributes to their scores.

Research by the initial PageRank paper [82] indicates that the PageRank

could be calculated by removing the links to dangling pages from the web

network. However, theoretically this process might generate new dangling

pages and iteratively remove all pages from the network. The work by Lee

et al. lumps the dangling nodes together into one new state [60]. A rigorous

29

justification for this approach can be found in [54]. The solution proposed

in [33] adds artificial links to the dangling nodes. The idea is to force the

transition matrix P to be stochastic.

We simply add an artificial loop with probability 1 to the dangling in-

dividuals. The disease will be “trapped" once reaching them. In this way,

their corresponding diagonal elements in matrix P are filled with 1. This

handling can be justified by similar arguments as shown in [33]. A virtual

(n + 1)th node is added to a n-sized social network. Let C denote the set of

non-dangling nodes and D denote the set of dangling nodes. Suppose the

size of C is |C| = m, we have |D| = n−m. Apart from the artificial loops ad-

ded to dangling nodes, we add new edges (i, n + 1) for i ∈ D and (n + 1, i)

for i ∈ C. We construct a linear system as follows,



x

y

z


 =




αC 0 e(1)/m

αD αI 0

(1 − α)(e(1))T (1 − α)(e(2))T 0







x

y

z


 (3.20)

where, if dj is the out degree of the node j, matrices C(m × m) and D((n −
m)× m) are defined by :

cij =




d−1
j if i, j ∈ C

0 otherwise
dji =




d−1
j if i ∈ C , j ∈ D

0 otherwise

and e(1), e(2) are column vectors of 1’s of conforming dimension.

Theorem 1. The linear system (3.20) computes the PageRank for dangling nodes

as well as non-dangling nodes in the network.

Démonstration. Rewrite the equation (3.20) as

x = αCx +
e(1)

m
z (3.21)

y = αDx + αy (3.22)

z = (1 − α)(e(1))Tx + (1 − α)(e(2))Ty (3.23)

It follows,

z = [(1 − α)(e(1))T + α(e(2))TD]x (3.24)

30

We rewrite the equations (3.21) and (3.24) as

(
x

z

)
=

(
αC e(1)

m

(1 − α)(e(1))T + α(e(2))TD 0

)(
x

z

)
(3.25)

The matrix in the system (3.25) is a stochastic matrix, so that the vector x

corresponds to the PageRank of non-dangling nodes C. The PageRank for

dangling nodes can then be computed by

y =
α

1 − α
Dx (3.26)

Noticing that, by adding a virtual node, the initial PageRank problem

(3.16) can be written as
(

x

z

)
=

(
αP v

(1 − α)eT 0

)(
x

z

)

which takes a similar form as (3.25).

Given the limited supplies of vaccines and antiviral drugs, non-

pharmaceutical interventions are likely to dominate the public health res-

ponse to any pandemic, at least in the near term.

3.2.2 Non-pharmaceutical interventions

Quarantine

We simulate the temporary isolation and restriction of the movement

of an exposed individual by cutting all his inlinks and outlinks for a per-

iod of time. As shown in Figure 3.4, if quarantine is used for individual

4 for 10 time steps, we could simply put the nonzero elements in the last

row/column of A to 0 for the first 10 matrix vector multiplications.

A =




0.76 0.176 0.176 0 0

0.176 0.76 0.176 0.176 0

0 0.176 0.76 0.176 0

0 0 0 0.76 0

0 0 0 0 0




(3.27)

31

2

0

1 3

4

FIGURE 3.4: Small social network of 5 individuals with quarantine on indi-

vidual 4

School closing

Assuming that the school of the kid 0 and 1 is closed due to the epidemic,

then these two children will not be able to get in touch during the epidemic

(see Figure 3.5). As a result, the transition matrix A becomes

2

0

1 3

4

FIGURE 3.5: Small social network of 5 individuals with school closing for

kids 0 and 1

A =




0.76 0 0.176 0 0.176

0 0.76 0.176 0.176 0

0 0.176 0.76 0.176 0

0 0 0 0.76 0

0 0 0.176 0.176 0.76




(3.28)

Social distancing

This intervention can be simulated by reducing the infection rate β. If

we reduce the infection rate β to 0.1 in the example, the transition matrix A

32

becomes

A =




0.76 0.176 0.176 0 0.176

0.176 0.76 0.176 0.176 0

0 0.176 0.76 0.176 0

0 0 0 0.76 0

0 0 0.176 0.176 0.76




(3.29)

3.3 Combination of the two previous approaches :

modelling based on numerical algebraic ope-

rations

As shown in Figure 3.6, a social network is considered to be a family of

different kinds a relationships {Ri}. These different relationships will ge-

a

b

e

c

d

b

a

e

c

d

a

b

e

c

d

R1 R2

R3

FIGURE 3.6: Social network of 3 relationships for 5 individuals

nerate different diffusion betaviours, based on which the global epidemic

dynamics could be inferred. Besides, similar to adaptive networks, a ran-

dom event that a susceptible node avoids infections by breaking its links

33

to its infected neighbours while it enhances the connections with other sus-

ceptible nodes by creating links to them is considered in our framework as a

borelian ωi. By consequence, one diffusion step on a dynamic network can

be viewed as the averaging result of random events on a set of relationships.

Lets take a small example of 3 relationships among 4 individuals, which is

described by Figure 3.7, Figure 3.8 and Figure 3.9.

a

b

c

d b

a

c

d

R1(ω1) R2(ω1)a

b

c

d

R3(ω1)

FIGURE 3.7: Stochastic network, random event ω1

Here, Ω = {ω1, ω2, ω3}, A = P(Ω) and p(ωi) = 1
3 , ∀i = 1, 2, 3. Let us

consider E = {a, b, c, d}, then

Γ1(ω1, a) = {a}, Γ1(ω1, b) = {b, c}, Γ1(ω1, c) = {a, b, c}, Γ1(ω1, d) = {a, d}
Γ2(ω1, a) = {a, c}, Γ2(ω1, b) = {b, d}, Γ2(ω1, c) = {b, c}, Γ2(ω1, d) =

{a, b, d}
Γ3(ω1, a) = {a, b, d}, Γ3(ω1, b) = {b, d}, Γ3(ω1, c) = {a, c, d}, Γ3(ω1, d) =

{a, c, d}
Γ1(ω2, a) = {a}, Γ1(ω2, b) = {b}, Γ1(ω2, c) = {a, b, c}, Γ1(ω2, d) = {a, d}
Γ2(ω2, a) = {a, c}, Γ2(ω2, b) = {b, d}, Γ2(ω2, c) = {c}, Γ2(ω2, d) = {a, c, d}
Γ3(ω2, a) = {a, b}, Γ3(ω2, b) = {b, d}, Γ3(ω2, c) = {a, c}, Γ3(ω2, d) =

34

a

b

c

d b

a

c

d

R1(ω2) R2(ω2)a

b

c

d

R3(ω2)

FIGURE 3.8: Stochastic network, random event ω2

{a, c, d}
Γ1(ω3, a) = {a}, Γ1(ω3, b) = {b}, Γ1(ω3, c) = {a, c, d}, Γ1(ω3, d) = {b, d}
Γ2(ω3, a) = {a, c}, Γ2(ω3, b) = {b, d}, Γ2(ω3, c) = {c}, Γ2(ω3, d) = {c, d}
Γ3(ω3, a) = {a, b}, Γ3(ω3, b) = {b, d}, Γ3(ω3, c) = {c}, Γ3(ω3, d) = {a, c, d}
Within a specific random event, we could define a different set of parame-

ters (see Table 1) for each of this relationship. Furthermore, with each rela-

tionship Ri, we associate a weight parameter wi to signify its relative im-

portance on the final epidemic propagation.

3.4 Conclusions

In this chapter, we present a PageRank-like model in the first place. The

idea is to use a Markov chain to model the spread of disease. With this sim-

plified model, a ranking vector can be derived to help establish efficient

vaccination strategy. The model can be easily calculated by numerical linear

algebra methods. Indeed, computation plays a more and more important

35

a

b

c

d b

a

c

d

R1(ω3) R2(ω3)a

b

c

d

R3(ω3)

FIGURE 3.9: Stochastic network, random event ω3

role in epidemiology simulation. However, PageRank-like approach does

not consider the evolving structure of the network. In addition, there are

various relationships between individuals, which could be either quantita-

tive or qualitative. The complex nature of human contact cannot be modeled

by Markov chain alone.

In the second part of this chapter, we propose a multiple stochastic net-

work, which takes into account various kinds of human relationships. Its

stochastic property can be used to further explore the dynamic of network

structure. This new model is in the same time more realistic and maintains

the computational advantages of PageRank-like model. A topological for-

malism (pretopology) is also presented in the section conclusion of this the-

sis. A list of new topological parameters make this approach very promising

to model some complex social phenomenon. We mention this pretopologi-

cal modeling technique as a direction of future work.

In the following chapters, we focus on the computational aspects of the

proposed models.

36

Chapitre 4

Multiple implicitly restarted

Arnoldi method

4.1 Krylov subspace methods

Arnoldi in 1951 [7] proposed a method which is a variant of the Kry-

lov projection methods. The Arnoldi method is an efficient technique which

permits to compute an approximation of desired eigenpairs of an n-size ma-

trix A by those of an m × m matrix representing A in an m-size Krylov sub-

space (with m ≤ n). The Arnoldi method is best at finding a solution to

an eigenproblem with well-separated eigenvalues. A drawback of this me-

thod is the expense of too much memory space when m is large. This pro-

blem can be remedied by restarting the method as proposed in 1980 by Saad

[90]. This approach, called explicitly restarted Arnoldi method (ERAM), al-

lows to restart the Arnoldi projection with a better subspace. Indeed, this

approach offers to choose a small Krylov subspace (m << n). Then, if the

accuracy of the desired Ritz elements computed by Arnoldi method is not

satisfactory, ERAM restarts the process using a new Krylov subspace. This

new subspace differs from the last one by its initial vector which is formed

by an explicit combination of the computed Ritz elements. Despite the sim-

plicity, the formation of a restarting vector for the next iteration using the

approximated eigenvectors of the current iteration might not be good. The

restarting is difficult because one new starting vector must be defined as an

explicit linear combination of wanted Ritz vectors. If this combination is not

37

carefully chosen, it can lead to a very bad selection for the new starting vec-

tor. Moreover, when the starting vectors are complex the cost will increase.

Saad proposed some special coefficients for the combination of Ritz vectors

such as the weighted linear combination [90]. As he mentioned it, this me-

thod may not well work in practice for many eigenproblems [92]. Moreover,

the problem of the choice of the size of the subspace remains. An approach

based on the Arnoldi projection onto several Krylov subspaces is propo-

sed by Emad et al [35]. The latter are formed with different initial vectors

and have different sizes. This technique is called multiple explicitly restar-

ted Arnoldi method (MERAM). It allows to update the restarting vector of

each ERAM process by taking into account the eigen-information of interest

obtained by all ERAM processes. MERAM improves often the convergence

of ERAM but the restarting issues intrinsic to ERAM remain [35].

In order to improve the Arnoldi method, Sorensen has suggested an effi-

cient technique which makes use of the QR algorithm to restart the Arnoldi

projection [95]. His approach permits to restart the Arnoldi process with an

efficient and numerically stable formulation. This approach which is called

implicitly restarting Arnoldi method (IRAM) was analyzed, implemented

and validated, among others, in [95, 61, 62, 96, 63, 70]. As in ERAM, impli-

city restarted Arnoldi method makes use of Arnoldi projection to approxi-

mate the desired eigenpairs of a large matrix A. If the accuracy of these

Ritz elements is not satisfactory, IRAM applies a QR shifted algorithm on

the m × m matrix which represents A in the projection subspace. As these

are the non desired eigenvalues which are chosen for shifts, the upper-left

block of the matrix issued from QR algorithm concentrates the information

corresponding to the desired eigenvalues. IRAM completes an m−size Ar-

noldi projection starting with the submatrix representing this block whose

size is the number of wanted eigenvalues. This is equivalent to restart the

Arnoldi process with a new initial vector computed implicitly. Morgan sho-

wed that IRAM is much better than the other restarting Arnoldi methods

such as explicitly restarted ones [74]. However, the problem of choosing the

size of subspace remains.

In restarted Arnoldi methods, in order to improve the quality of the sub-

space during the iterations, only the initial vector is taken into account. The

38

idea is to take into account both the initial vector and the size of the sub-

space. Multiple implicitly restarted Arnoldi method (MIRAM) [35, 39], is

based upon the projection of the problem on several Krylov subspaces ins-

tead of a single one. These subspaces differ by their size while the subspaces

in multiple restarted methods such as MERAM can differ by their size and

their initial vectors [35]. MIRAM makes use of Arnoldi method to compute

the Ritz elements of a large matrix A in a set of � nested Krylov subspaces

Kmi ,v (for i = 1, . . . , �) with Kmi ,v ⊂ Kmi+1,v. If the accuracy of the desired

Ritz elements calculated in none of these subspaces is satisfactory, MIRAM

selects the "best" of these subspaces. This subspace is one that contains the

"best" current Ritz elements. Then a QR shifted algorithm will be applied to

the mbest × mbest matrix which represents A in this mbest-size projection sub-

space. As these are the non desired eigenvalues which are chosen for shifts,

the leading submatrix issued from QR algorithm concentrates the informa-

tion corresponding to the desired eigenvalues. MIRAM completes Arnoldi

projections on � nested Krylov subspaces starting with this submatrix whose

size is the number of wanted eigenvalues. An improved version of this me-

thod including the comparison with other methods can be found here [40].

One of the well known problems of the restarted iterative methods is

the sensibility of the convergence in the small perturbation on the subspace

size. Indeed, they could not converge with a subspace and converge with

the same reduced/extended subspace with nearby sizes. MIRAM allows to

remedy to this problem by making choice of the "best" size among these

subspace sizes. Another advantage of this technique is the better property

of convergence with almost the same time complexity relative to IRAM. Our

experiments showed a very good acceleration of convergence with respect

to the implicitly restarted Arnoldi method.

Notations Throughout this chapter, we use the following notations :

39

A n × n matrix,

Hm m × m projected matrix (upper Hessenberg matrix),

Vm n × m matrix, orthogonal basis in the Krylov subspace,

fm residual vector of lenght n,

k number of wanted eigenvalues,

{λ
(m)
i }m

i=1 eigenvalues of Hm (Ritz values of A),

{y(m)
i }m

i=1 eigenvectors of Hm,

{u(m)
i }m

i=1 Ritz vectors of A (u(m)
i = Vmy(m)

i),

ρi,m residual norm ρi,m = ‖(A − λ
(m)
i I)u(m)

i ‖2

{µ
(m)
i }p

i=1 subset of unwanted eigenvalues of Hm,

‖A‖F Frobenius norm

Km,v1 Krylov subspace spanned by v1, Av1, . . . , Am−1v1,

it number of iterations (number of restarts + 1),

zn n × 1 vector (1, 1, · · · , 1)T

sn n × 1 vector (1, 1, 0.1, · · · , 0.1)T

tn n × 1 vector (1, 1, 0, · · · , 0)T

Hm(1 : k, 1 : k) the leading k × k submatrix of Hm.

Dynamic selection of restart parameters in Arnoldi methods have been

considered previously. Duff and Scott in [32] developed a subspace algo-

rithm combined with Chebychev acceleration. They select dynamically the

size of the subspace and the degree of the Chebychev polynomial at each

iteration. Stathopoulos, Saad and Wu proposed in [97] a technique, called

thick restarting, that restarts the Arnoldi algorithm with more eigenvectors

that is actually required. A dynamic thick restarting scheme which adjusts

the number of retained Ritz vectors at each cycle in IRAM is proposed and

the question of which and how many eigenvectors to retain is addressed for

symmetrical eigenproblems.

Some authors suggested more similar approaches to the one proposed

in this paper. Baker et al. proposed in [9] a simple strategy and provide

some heuristic explanation for its effectiveness. The authors define a range

of subspace sizes whose minimum and maximum values are respectivily

mmin and mmax and they choose, according to some criterion the subspace

size mi of the ith restart in this discrete interval. Their strategy checks the

40

convergence rate ‖ ri+1 ‖2 / ‖ ri ‖2 at the end of each restart cycle, where

ri is the residual vector of ith step. The subspace size is initialized by mmax.

When stagnation is detected, they decrease the restart parameter by a small

number d at each cycle until reaching mmin. At that point, they increase mi

up to the maximum value mmax. For the iterative solution of non-symmetric

linear systems by deflated GMRES, Moriya and Nodera proposed in [75]

a similar dynamic switching approach for the Krylov subspace dimension.

Their strategy consists to combine the deflated GMRES algorithm and the

determination of a restart parameter m dynamically. Indeed, in order to de-

crease the computation cost, the authors propose to begin with a small res-

tart parameter ms. If stagnation in encountered then the restart parameter

is switched to a larger value ml. When the restart value is ml and the stag-

nation disappears then the restart parameter is switched again to ms. They

use as a criterion for stagnation the angle between the residual vector and

search vectors which could be easily computed during a run of GMRES.

Dookhitram et al. proposed in [31] a comparable approach to accelerate the

convergence of IRAM which is based on a relationship between the residual

of the current restart cycle of IRAM and the residual in the previous cycle.

Despite the similarity, their technique differs from that proposed by Moriya

and Nodera for linear systems since unlike the latter, they do not initialize

any angle to avoid a problem dependent strategy and also their switching

strategy is based on a different relationship between the residual of the cur-

rent step and the residual of the previous step.

In the approach proposed in this paper, the dynamic determination of

subspace size parameter is monitored and used inside the current restart

cycle while in the methods cited above, this determination is done in current

restart cycle for being used in the next restart cycle. Assuming that E =

{mmin, . . . , mmax} is the set of subspace sizes for all of these methods. It can

be said that in a given restart cycle, MIRAM uses entire values of this set

while other use only a local area of it (usually reduced to a single value).

41

4.1.1 Arnoldi method and its implicit restarting variant

Let A be a complex non-Hermitian matrix of dimension n × n, v an

n−size initial guess and v1 = v/‖v‖2. The well-known Arnoldi process

generates an orthogonal basis v1, · · · , vm of Krylov subspace Km,v1 =

span{v1, Av1, · · · Am−1v1} by using the Gram-Schmidt orthogonalization

process.

Definition : For A ∈ Cn×n, a relation of the form AVm = VmHm + fmeT
m

is called an m-step Arnoldi factorization, where Hm ∈ Cm×m is an upper

Hessenberg matrix with non-negative subdiagonal elements, Vm ∈ Cn×m is

a matrix with orthonormal columns and VH
m fm = 0.

This factorization can be used to reduce the eigenproblem with the large

order matrix A to a problem with a smaller order matrix Hm. If y(m)
i is an

eigenvector of Hm associated with the eigenvalue λ
(m)
i and u(m)

i = Vmy(m)
i

then ‖(Au(m)
i − λ

(m)
i u(m)

i)‖2 = ‖(AVm − VmHm)y
(m)
i ‖2 = |βmeT

my(m)
i | and

(u(m)
i , λ

(m)
i) is an approximate eigenpair for A. The number |βmeT

my(m)
i | is

called Ritz estimate for the Ritz eigenpair (u(m)
i , λ

(m)
i) where βm = ‖ fm‖2.

By using this process, the eigenproblem of size n is replaced by an ei-

genproblem of size m (with m ≤ n). If the desired eigenvalues are well-

separated, this technique could offer good approximation for them. Moreo-

ver, only some basic linear algebra computations are necessary to compute

these approximations.

In this process, the choice of m, the size of the subspace is empirical and

could be done according to the number of desired eigenvalues and/or the

size of the problem to solve [91]. Meanwhile, an m too large generates too

high computation cost. The restarting approach proposed by Saad allows

to choose m small but to improve the quality of the projection subspace by

improving the initial vector v1. The restarting strategy in this approach,

called explicitly restarted Arnoldi method (ERAM), is a critical part. Saad

[91] proposed to restart the Arnoldi method with a preconditioning vector

in order to force it to be in the desired invariant subspace. It concerns

a polynomial preconditioning applied to the starting vector of ERAM.

Nevertheless, even with an optimized preconditioning vector, ERAM may

not well work in practice for many eigenproblem [92]. Moreover, the

42

problem of the choice of the size of the subspace remains.

Implicitly restarted Arnoldi method This variant of the Arnoldi method

based on restarting technique is called implicitly restarted Arnoldi method

(IRAM). That is a technique that combines the implicitly shifted QR mecha-

nism with an Arnoldi factorization and can be viewed as a truncated form

of the implicitly shifted QR-iteration [96]. This method involves an impli-

cit application of a polynomial in A to the starting vector. IRAM allows to

compute a few eigenvalues (k ≤ m) such as those of the largest real part or

the largest magnitude. An m-step Arnoldi factorization

AVm = VmHm + fmeT
m, (4.1)

is compressed to a factorization of length k with the eigen-information of

interest. This is achieved using QR steps to apply p = m− k shifts implicitly.

The results after the shift process and equating the first k columns on both

sides are

AV+
m = V+

m H+
m + fmeT

mQ, (4.2)

where V+
m = VmQ, H+

m = QT HmQ, and Q = Q1Q2 · · · Qp with Qj the ortho-

gonal matrix in QR process associated with the shift µ
(m)
j and

AV+
k = V+

k H+
k + f+k eT

k , (4.3)

with f+k = V+
m ek+1β̂k + fmσk where β̂k = H+

m (k + 1, k) and σk = Q(m, k).

Using this as a starting point one can apply p additional steps of the Arnoldi

process to obtain an m-step Arnoldi factorization. Each shift cycle involves

the implicit application of a polynomial in A of degree p to the starting

vector v : ψ(A)v with ψ(λ) = Πp
j=1(λ − µ

(m)
j). The roots of this polynomial

are the shifts used in the QR algorithm [96]. The resulting algorithm takes

the form of the algorithm 1.

The stopping criterion in above algorithm can be computed by the ex-

pression called Ritz estimate : (a)- |βmeT
my(m)

i |, or by its mathematically equi-

valent explicit formula of the residual norm : (b)- ‖(Au(m)
i −λ

(m)
i u(m)

i)‖2 (for

i = 1, · · · , k). Criterion (a) has a computational cost much lower than that of

43

Algorithm 1: Implicitly restarted Arnoldi method

Input : (A, Vm, Hm, fm) with AVm = VmHm + fmeT
m an m-step Arnoldi

factorization

For it = 1, . . ., until convergence

1. • Compute σ(Hm) the eigenvalue of Hm and their associated

eigenvectors,

• Compute residual norm, if convergence stop,

2. Select set of p = m − k shifts (µ(m)
1 , · · · , µ

(m)
p), based upon σ(Hm) or

other information and set qT ← eT
m,

3. For j = 1, 2, . . . , p

• Factor [Qj, Rj] = qr(Hm − µ
(m)
j I) ;

• Hm ← QH
j HmQj; Vm ← VmQj ;

• qH ← qHQj ;

4. Set fk ← vk+1β̂k + fmσk, Vk ← Vm(1 : n, 1 : k), Hk ← Hm(1 : k, 1 : k)

5. Beginning with the k-step Arnoldi factorization AVk = VkHk + fkeT
k ,

Apply p additional steps of the Arnoldi process to obtain a new

m-step Arnoldi factorization AVm = VmHm + fmeT
m

(b). However, criterion (b) may better represent the residual corresponding

to the Ritz elements and is more reliable when rounding errors are present.

This is because the expression of (b) contains computed Ritz elements and

thus takes into account the rounding errors in their calculation. It should

be noted that, as explained in [96, 83], when A is Hermitian, the relation

((a)=(b)) may be used to provide computable rigorous bounds on the accu-

racy of the eigenvalues of Hm as approximations to eigenvalues of A. When

A is non-Hermitian the possibility of non-normality precludes such bounds

and one can only say that the residual norm ‖(Au(m)
i − λ

(m)
i u(m)

i)‖2 is small

if |βmeT
my(m)

i | is small.

Note that if v = ∑n
j=1 γjuj, the implicit restarting Arnoldi method with

exact shifts provides a specific selection of expansion coefficients γj for a

new starting vector as a linear combination of the current Ritz vectors for

desired eigenvectors. Implicit restarting provides a way to extract eigen-

44

information of interest from large Krylov subspaces while avoiding the sto-

rage and numerical difficulties. This is done by continually compressing

eigen-information of interest into an k-dimensional subspace of fixed size.

This means that IRAM continues an m-step Arnoldi factorization, having

kept all Ritz vectors of interest.

Time and space complexities of IRAM We assume that m << n. There-

fore, in the time complexity expression of IRAM we can disregard terms not

containing n. Let it be the number of iterations excluding the input step in

the above algorithm. The cost of IRAM in terms of matrix-vector products

for it iterations with (a) criterion is [m + (it − 1)× (m − k)]. Indeed, in the

first iteration the number of matrix-vector products is m and for each of the

other restart cycles, the number of matrix-vector products is p = (m − k).

The cost of IRAM will be increased by it × k, if (b) criterion is used. Noted

that the cost of orthogonalization in Arnoldi process is about O(m2n). When

A is sparse and p is large, this cost of orthogonalization may dominant the

computation.

For space complexity, in addition to A, the method keeps m vectors of

length n and an m × m Hessenberg matrix, which gives O(nm + m2/2)

4.2 Multiple implicitly restarted method

The purpose of restarting m-step Arnoldi factorization is to improve the

quality of the initial Krylov subspace Km,v. This objective can be achieved

by improvement of the vector v and/or the subspace size m. Indeed, the

information obtained through the m-step Arnoldi factorization process is

completely determined by the choice of the starting vector v and the sub-

space size m. The current Arnoldi (explicit/implicit) restarting techniques

propose an amelioration of the initial vector v. Regarding the size of the

subspace, it is known that the eigen-information of interest may not appear

when m is too small [96]. Furthermore, if m is too large, the computation

cost of orthogonalization process becomes excessive. The size of the sub-

space has to be chosen as a compromise between these factors and is chosen

empirically according to the number of desired eigen-elements, the size of

45

the original problem, etc. Here, we present a way to increase the quality of

the Krylov subspace by improving the size of the subspace. Indeed, to re-

medy the essential question of the choice of the size of the subspace, this

paper suggests the proliferation of these subspace sizes and to select the

best one. The size of the subspace is chosen dynamically in every restarting

step.

This approach consists to make use of IRAM with a set of Krylov sub-

spaces which differ only by their size which means a set of nested subspaces.

Let v be an initial vector and M = (m1, · · · , m�) be a set of � subspace-sizes

with m1 < · · · < m�. We built � Arnoldi projections on the subspaces Kmi ,v

(for i = 1, . . . , �) where Km1,v ⊂ Km2,v ⊂ . . . ⊂ Km� ,v. We select then the

subspace size mbest corresponding to the Arnoldi factorization which of-

fers the Ritz estimates for k desired eigenpairs. The steps 2 to 4 of IRAM

algorithm (i.e. algorithm 1) are applied then onto this Arnoldi factoriza-

tion : AVmbest = Vmbest Hmbest + fmbest e
T
mbest

. That means only this factorization

among the � ones will be compressed to a factorization of length k with

the eigen-information of interest. This is achieved using QR steps to apply

pbest = mbest − k shifts implicitly. The results after the shift process and equa-

ting the first k columns on both sides are the same as in equation (4.3) with

m = mbest. Beginning with this resulting k-step Arnoldi factorization, we

apply then pi = mi − k additional steps of Arnoldi factorizations to obtain �

new projections onto the updated subspaces (for i = 1, · · · , �). This allows

again the projection onto � nested subspaces with initial guess determined

by the compressed k-step Arnoldi factorization issued from the QR shifted

applied to mbest−step Arnoldi factorization.

We notice that this technique allows to update the restarting vector v by

taking the eigen-information obtained by several subspaces into account.

The interest of the approach is that the additional information obtained by

multiple subspaces allows to take advantage of the appearance of the eigen-

information of interest due to the larger subspace-sizes as well as that one of

the orthogonality due to the smaller subspace-sizes. Moreover, for a given

restart cycle MIRAMns has almost the same time complexity as IRAM with

the largest subspace size. Besides, in MIRAMns as in IRAM, the appearance

of spurious eigenvalues may be avoided through complete reorthogonaliza-

46

tion of the Arnoldi vectors using the DGKS correction [96, 30]. An algorithm

of this method to compute k (k ≤ m1) desired Ritz elements of A is presen-

ted by the algorithm 2.

Algorithm 2: Multiple IRAM with nested subspaces

Input : (A, Vmi , Hmi , fmi) with AVmi = Vmi Hmi + fmi e
T
mi

the mi-steps

Arnoldi factorization (i = 1, 2, . . . , �)

For it = 1, 2, . . . until convergence

1. • Compute σ(Hmi) and their associated eigenvectors (for

i = 1, . . . , �)

• Compute residual norms. If convergence in one of subspaces

then stop.

2. Select the best results in these subspaces and the associated best

subspace size mbest. Set m = mbest, Hm = Hmbest and

Vm = Vmbest , fm = fmbest .

3. Select set of p = m − k shifts (µ(m)
1 , . . . , µ

(m)
p), based upon σ(Hm) or

perhaps other information and set qT ← eT
m.

4. For j = 1, . . . , p

• Factor [Qj, Rj] = qr(Hm − µ
(m)
j I) ;

• Hm ← QH
j HmQj; Vm ← VmQj,

• q ← qHQj

5. Set fk ← vk+1β̂k + fmq(k), Vk ← Vm(1 : n, 1 : k), Hk ← Hm(1 : k, 1 : k)

6. Beginning with the k-step Arnoldi factorization AVk = VkHk + fkeT
k ,

apply pi = mi − k additional steps of the Arnoldi process to obtain �

new mi-step Arnoldi factorization AVmi = Vmi Hmi + fmi e
T
mi

(for

i = 1, . . . , �).

In order to select the best results in the step (2) of the algorithm 2 we sup-

pose that (Vmi , Hmi , fmi) is “better” than (Vmj , Hmj , fmj) if rmi
k < r

mj
k where

rmi
k = max(ρ1,mi , . . . , ρk,mi) is defined by Ritz estimates when (a) stopping

criterion is used. The rmi
k value is defined by the residual norm of Ray-

leigh quotient corresponding to (Vmi , Hmi , fmi) when (b) stopping criterion

is used.

47

4.3 Numerical experiments

We have implemented and tested Algorithm 1 (IRAM) and Algorithm 2

(MIRAMns) using MATLAB to compute k = 2 eigenvalues of greatest

magnitude, except for certain case where convergence is too fast for both

IRAM and MIRAMns. The stopping criterion used in IRAM is rm
k =

max(ρm
1 , . . . , ρm

k) < tol with ρm
i = |βmeT

my(m)
i |/‖A‖F where tol specifies the

accuracy requested. The criterion used to select the best subspace size in

MIRAMns is rmbest
k = min(rm1

k , . . . , rm�
k) where m1 < · · · < m� are subspace

sizes (with m1 ≥ 2 × k). The tolerance value tol is 10−8 for the figures 4.1

to 4.7, 4.12, 4.14, 4.15 ; 10−14 for the figures 4.8 to 4.10, 4.13, 4.16 to 4.17

and 10−12 for the figures 4.18 to 4.19. Every other stopping criterion can

replace the requirement to find k eigenvalues. In all experiments presented

here, initial vector is x = zn/‖zn‖2 except for the figure 4.14 that initial

vector is x = sn/‖sn‖2 and the figures 4.16, 4.18 to 4.19 that initial vector

is x = tn/‖tn‖2. The initial vectors of IRAM and MIRAMns are the same

one. The efficiency of these algorithms can thus be measured in terms of the

number it of restarts (iterations) or the number of matrix-vector products

M.V.P. Our matrices are presented in the table 4.1.

Matrix Size of matrix nonzero elements

a f 23560.mtx 23560 484256

b f w782a.mtx 782 7514

A9_1000.mtx 1000 2998

west0989.mtx 989 3537

AM_1000.mtx 1000 2998

sherman3.mtx 5005 20033

roadNet-PA.mtx 1088092 3083796

com-Youtube.mtx 1134890 2988374

WikiTalk.mtx 2394385 5046614

TABLE 4.1: General information about the test matrices

We have used four matrices a f 23560.mtx, b f w782a.mtx, west0989.mtx

and

sherman3.mtx from Matrix Market [8]. A9_1000 is a tridiagonal matrix of

48

order 1000 defined by ai,i = 3 , ai,i+1 = ai,i−1 = 1. All other entries are zero.

The tridiagonal matrix AM_1000 is of dimension n = 1000. The diagonal

entries are ai,i = i, the codiagonal entries are ai,i+1 = −0.1 and ai,i−1 = 0.1.

All other entries are zero. This example has been taken from [74]. Matrices

roadNet-PA.mtx, com-Youtube.mtx and WikiTalk.mtx are transition matrices

constructed from three social graphs by using Markov chain. These graphs

could be found in [64].

4.3.1 MIRAMns versus IRAM

In all the following figures MIRAMns(m1, · · · , m�) denotes an MI-

RAMns with subspace sizes (m1, · · · , m�), IRAM(m) denotes an IRAM with

subspace size m and M.V.P denotes the number of matrix-vector products.

It is important to note that the main objective of our experiments is to com-

pare the performance of MIRAMns(m1, · · · , m�) and IRAM(m�). However,

some of experiments have the aim of highlighting the influence of certain

parameters on the convergence of these methods. For some typical cases,

we present the best subspaces choosen by MIRAMns throughout the restar-

ting cycles, so as to clarify the necessity of using the whole set of subspaces.

The table 4.2 presents the results obtained with IRAM algorithm and

the table 4.3 presents the results obtained with MIRAMns and a compari-

son between IRAM and MIRAMns in term of number of matrix-vector pro-

ducts (MVP), execution time in seconds (Ex.Time) and number of restarts

(it). Ex.Time represents the total execution time : from the beginning of of

the algorithm (after inputs) upto obtaining the wanted eigenpairs. We can

see that in almost half of the experiments presented in table 4.2, IRAM does

not converge. The results presented in the table 4.3, show that MIRAMns

overcomes these problems of non-convergence.

We show graphically in Figures 4.1 to 4.19 the norm of residual as a func-

tion of iteration number to reach convergence using MIRAMns and IRAM.

We see that there is no convergence for IRAM in figures 4.1 to 4.4, 4.7 to

4.10, 4.16 and 4.18 to 4.19 while MIRAMns reaches convergence. Moreover,

the convergence of MIRAMns in figures 4.5, 4.12 to 4.15 and 4.17 is better

49

than IRAM. Specifically, Figure 4.1 shows that the curves of convergence of

IRAM and MIRAMns undergo oscillations around the residual norm 10−6.

However, the peak to peak amplitude of the oscillations corresponding to

IRAM is very large while the one corresponding to MIRAMns are quite

small. This could become related to a kind of smoothing of the curve of

convergence of IRAM by MIRAMns.

Figure 4.2 shows the influence of the size of the subspace on the conver-

gence of IRAM. Indeed, we note that an augmentation of this size relative

to that of Figure 4.1 smooths the curve of the convergence of IRAM. We can

see also that with the chosen tolerance (tol = 10−8), MIRAMns converges

but IRAM does not converge. However, with a greater tolerance value such

as tol = 10−7, IRAM reaches convergence when MIRAMns does not reach

it. But it must be remembered that in this case, the parameters of IRAM and

MIRAMns no longer meet the criteria for comparison. Indeed, the subspace

size of IRAM (22) is larger than ml = 10.

Figure 4.5 shows the effect of increasing the size of the subspace on the

convergence of IRAM and MIRAMns and highlights the speed of conver-

gence of MIRAMns with respect to that of IRAM. The acceleration of conver-

gence of IRAM by MIRAMns is also shown in Figures 4.7 to 4.19. However,

we can see that in Figure 4.7, before tol = 10−5, IRAM could reach conver-

gence faster than MIRAMns. But this is just an oscillation peak stronger than

the others and the residual norms do not decrease continually while those

of MIRAMns decreases steadily during the iterations. Figures 4.7, 4.8 and

4.10 show further how the convergence curves of IRAM are "smoothed" by

MIRAMns. Furthermore, by comparing figure 4.3 with 4.4 and figure 4.9

with figure 4.10, we notice that an increase in number of subspaces could

improve the speed of convergence for MIRAMns itself as well.

To check the influence of the strategy proposed in [97], we compared the

tick restarted versions of IRAM and MIRAMns. The Figures 4.6 and 4.11

show this comparison with the number of wanted eigenpairs k = 10 et the

thick parameters k + 2 and k + 5 which means in each restart cycle, a buffer

of 2 and 5 extra vectors are kept. We can notice that IRAM could sometimes

perform as good as MIRAMns.

Figures 4.20 to 4.22 show the subspaces selected by MIRAMns throu-

50

ghout iterations. We see that mbest is choosen randomly from interval

[m1, ml] and for some experiments m1 is selected as best subspace size more

often that ml (figure 5.22). This phenomenon of local optimality of small

subspaces was also observed by Embree on GMRES [36].

Figures 4.23 and 4.24 show the execution time of MIRAMns versus

IRAM throughout iterations for AM_1000 and west0989 matrices. We no-

tice that the execution times of each restarting cycle is almost the same for

both methods. Nevertheless, the total execution time of MIRAM is much

smaller than IRAM.

Tables 4.2 and 4.3 and Figures 4.1 to 4.19 indicate that our algorithm

improves performances of IRAM. We notice also that this improvement is

much more significant when the matrices have clustered eigenvalues such

as a f 23560 and b f w782 matrices used in our experiments.

Matrix m x tol it MVP Ex.Time Res.Norm Fig.

a f 23560.mtx 10 zn 10−8 * 500 *4002 10.27 no conv. 4.1

a f 23560.mtx 22 sn 10−8 * 500 *10002 31.44 no conv. 4.2, 4.3, 4.4

a f 23560.mtx 25 zn 10−8 6 140 0.60 2.60e-09 4.5

a f 23560.mtx 32 zn 10−14 6 182 0.13 2.68e-16 4.6

b f w782a.mtx 10 zn 10−8 * 500 *4002 1.00 no conv. 4.7

b f w782a.mtx 20 zn 10−14 * 500 *9002 2.18 no conv. 4.8, 4.9, 4.10

b f w782a.mtx 30 zn 10−14 12 338 0.01 1.98e-15 4.11

A9_1000.mtx 20 zn 10−8 309 5564 1.40 9.57e-09 4.12

west0989.mtx 10 zn 10−8 53 426 0.11 2.75e-09 4.13

AM_1000.mtx 20 sn 10−8 22 398 0.12 8.93e-09 4.14

sherman3.mtx 10 zn 10−8 4 34 0.04 5.40e-13 4.15

roadNet-PA.mtx 20 tn 10−14 * 500 *9002 1680.24 no conv. 4.16

com-Youtube.mtx 20 sn 10−14 30 482 113.20 3.03e-15 4.17

WikiTalk.mtx 20 zn 10−12 * 500 *9002 4487.15 no converge 4.18, 4.19

TABLE 4.2: IRAM performances

51

IRAM MIRAMns

Matrix Fig. � m it MVP m1, · · · , m� it MVP Ex.Time

4.1 3 10 * 500 * 4002 5, 7, 10 272 2178 7.84

4.2 3 22 * 500 * 10002 5, 7, 10 250 2002 7.88

af23560 4.3 3 22 * 500 * 10002 16, 19, 22 31 622 2.68

4.4 5 22 * 500 * 10002 10, 13, 16, 19, 22 8 162 0.82

4.5 3 25 6 140 5, 10, 25 6 140 0.63

4.6 6 32 6 182 16, 20, 24, 28, 32 7 212 0.30

4.7 3 10 * 500 * 4002 5, 8, 10 70 562 0.13

bfw782a 4.8 3 20 * 500 * 9002 5, 10, 20 104 1874 0.32

4.9 3 20 * 500 * 9002 8, 18, 20 92 1658 0.38

4.10 3 20 * 500 * 9002 8, 11, 14, 17, 20 32 578 0.16

4.11 3 30 12 338 20, 25, 30 14 394 0.01

A9_1000 4.12 3 20 309 5564 10, 15, 20 94 1694 0.36

west0989 4.13 3 30 53 426 5, 8, 10 32 258 0.07

AM_1000 4.14 3 20 22 398 13, 17, 20 17 308 0.09

sherman3 4.15 3 10 4 34 5, 8 , 10 2 18 0.02

roadNet-PA 4.16 6 20 * 500 *9002 5, 8, 11, 14, 17, 20 157 2828 599.74

com-Youtube (k = 4) 4.17 6 20 30 482 5, 8, 11, 14, 17, 20 20 332 108.08

WikiTalk (k = 2) 4.18 6 20 * 500 *9002 4, 7, 10, 13, 16, 20 312 5618 3438.66

WikiTalk (k = 4) 4.19 6 20 * 500 *9002 5, 8, 11, 14, 17, 20 15 272 181.48

TABLE 4.3: Comparison of IRAM(m) and MIRAMns(m1, · · · , m�)

52

0 50 100 150 200 250 300 350 400 450 500
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Implicitly Restarted Arnoldi Method

iteration

re
s
id

u
a

l
n

o
rm

/n
o

rm
f

IRAM−MAX

MIRAMns

FIGURE 4.1: MIRAMns(5, 7, 10) versus IRAM(10) with a f 23560 matrix

0 50 100 150 200 250 300 350 400 450 500
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Implicitly Restarted Arnoldi Method

iteration

re
s
id

u
a

l
n

o
rm

/n
o

rm
f

IRAM−MAX

MIRAMns

FIGURE 4.2: MIRAMns(5, 7, 10) versus IRAM(22) with a f 23560 matrix

53

0 50 100 150 200 250 300 350 400 450 500
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Implicitly Restarted Arnoldi Method

iteration

re
s
id

u
a

l
n

o
rm

/n
o

rm
f

IRAM−MAX

MIRAMns

FIGURE 4.3: MIRAMns(16, 19, 22) versus IRAM(22) with a f 23560 matrix

0 50 100 150 200 250 300 350 400 450 500
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Implicitly Restarted Arnoldi Method

iteration

re
s
id

u
a

l
n

o
rm

/n
o

rm
f

IRAM−MAX

MIRAMns

FIGURE 4.4: MIRAMns(10, 13, 16, 19, 22) versus IRAM(22) with a f 23560 matrix

54

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

−9

10
−8

10
−7

10
−6

10
−5

Implicitly Restarted Arnoldi Method

iteration

re
s
id

u
a

l
n

o
rm

/n
o

rm
f

IRAM−MAX

MIRAMns

FIGURE 4.5: MIRAMns(5, 10, 25) versus IRAM(25) with a f 23560 matrix

0 20 40 60 80 100 120 140 160
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Implicitly Restarted Arnoldi Method

iteration

re
s
id

u
a

l
n

o
rm

/n
o

rm
f

IRAM−MAX

MIRAMns

FIGURE 4.6: MIRAMns(20, 30, 40) versus IRAM(40) with a f 23560 matrix, k=10

with a buffer of 2 extra vectors

55

0 50 100 150 200 250 300 350 400 450 500
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Implicitly Restarted Arnoldi Method

iteration

re
s
id

u
a

l
n

o
rm

/n
o

rm
f

IRAM−MAX

MIRAMns

FIGURE 4.7: MIRAMns(5, 8, 10) versus IRAM(10) with b f w782a matrix

0 50 100 150 200 250 300 350 400 450 500
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Implicitly Restarted Arnoldi Method

iteration

re
s
id

u
a

l
n

o
rm

/n
o

rm
f

IRAM−MAX

MIRAMns

FIGURE 4.8: MIRAMns(5, 10, 20) versus IRAM(20) with b f w782a matrix

56

0 50 100 150 200 250 300 350 400 450 500
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Implicitly Restarted Arnoldi Method

iteration

re
s
id

u
a

l
n

o
rm

/n
o

rm
f

IRAM−MAX

MIRAMns

FIGURE 4.9: MIRAMns(8, 18, 20) versus IRAM(20) with b f w782a matrix

0 50 100 150 200 250 300 350 400 450 500
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Implicitly Restarted Arnoldi Method

iteration

re
s
id

u
a

l
n

o
rm

/n
o

rm
f

IRAM−MAX

MIRAMns

FIGURE 4.10: MIRAMns(8, 11, 14, 17, 20) versus IRAM(20) with b f w782a matrix

57

0 2 4 6 8 10 12 14
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Implicitly Restarted Arnoldi Method

iteration

re
s
id

u
a

l
n

o
rm

/n
o

rm
f

IRAM−MAX

MIRAMns

FIGURE 4.11: MIRAMns(20, 25, 30) versus IRAM(30) with b f w782a matrix, k=10

with a buffer of 5 vectors

0 50 100 150 200 250 300 350
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Implicitly Restarted Arnoldi Method

iteration

re
s
id

u
a

l
n

o
rm

/n
o

rm
f

IRAM−MAX

MIRAMns

FIGURE 4.12: matrix MIRAMns(10, 15, 20) versus IRAM(20) with A9_1000 matrix

58

0 10 20 30 40 50 60
10

−9

10
−8

10
−7

10
−6

Implicitly Restarted Arnoldi Method

iteration

re
s
id

u
a

l
n

o
rm

/n
o

rm
f

IRAM−MAX

MIRAMns

FIGURE 4.13: MIRAMns(5, 8, 10) versus IRAM(10) with west0989 matrix

0 5 10 15 20 25
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Implicitly Restarted Arnoldi Method

iteration

re
s
id

u
a

l
n

o
rm

/n
o

rm
f

IRAM−MAX

MIRAMns

FIGURE 4.14: MIRAMns(13, 17, 20) versus IRAM(20) with AM_1000 matrix

59

1 1.5 2 2.5 3 3.5 4
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Implicitly Restarted Arnoldi Method

iteration

re
s
id

u
a

l
n

o
rm

/n
o

rm
f

IRAM−MAX

MIRAMns

FIGURE 4.15: MIRAMns(5, 8, 10) versus IRAM(10) with sherman3 matrix

0 50 100 150 200 250 300 350 400 450 500
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Implicitly Restarted Arnoldi Method

iteration

re
s
id

u
a

l
n

o
rm

/n
o

rm
f

IRAM−MAX

MIRAMns

FIGURE 4.16: MIRAMns(5, 8, 11, 14, 17, 20) versus IRAM(20) with roadNet-PA

matrix

60

0 5 10 15 20 25 30
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Implicitly Restarted Arnoldi Method

iteration

re
s
id

u
a

l
n

o
rm

/n
o

rm
f

IRAM−MAX

MIRAMns

FIGURE 4.17: MIRAMns(5, 8, 11, 14, 17, 20) versus IRAM(20) with com-Youtube

matrix (k = 4)

0 50 100 150 200 250 300 350 400 450 500
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Implicitly Restarted Arnoldi Method

iteration

re
s
id

u
a

l
n

o
rm

/n
o

rm
f

IRAM−MAX

MIRAMns

FIGURE 4.18: MIRAMns(4, 7, 10, 13, 16, 20) versus IRAM(20) with WikiTalk matrix

(k = 2)

61

0 50 100 150 200 250 300 350 400 450 500
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Implicitly Restarted Arnoldi Method

iteration

re
s
id

u
a

l
n

o
rm

/n
o

rm
f

IRAM−MAX

MIRAMns

FIGURE 4.19: MIRAMns(5, 8, 11, 14, 17, 20) versus IRAM(20) with WikiTalk matrix

(k = 4), tol = 10−10

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70

S
e
le

c
te

d
 s

u
b
s
p
a
c
e

Iterations

MIRAMns(8, 17, 20)

FIGURE 4.20: Evolution of mbest in MIRAMns(8, 17, 20) among iterations with

b f w782a matrix

62

 0

 5

 10

 15

 20

 25

 0 5 10 15 20

S
e
le

c
te

d
 s

u
b
s
p
a
c
e

Iterations

MIRAMns(5, 8, 11, 14, 17, 20)

FIGURE 4.21: Evolution of mbest in MIRAMns(5, 8, 11, 14, 17, 20) among iterations

with com-Youtube matrix

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300

S
e
le

c
te

d
 s

u
b
s
p
a
c
e

Iterations

MIRAMns(4, 7, 10 13, 16, 20)

FIGURE 4.22: Evolution of mbest in MIRAMns(4, 7, 10, 13, 16, 20) among iterations

with roadNet-PA matrix

63

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14 16 18

S
e
le

c
te

d
 s

u
b
s
p
a
c
e

Iterations

MIRAMns(13, 17, 20)

 0.01

 0.1

 1

 0 5 10 15 20 25

E
x
e
c
u
ti
o
n
 t
im

e

Iterations

IRAM(20)
MIRAMns(13, 17, 20)

FIGURE 4.23: Execution time of MIRAMns(13,17,20) versus IRAM(20) for

AM_1000 matrix, tol=10−8

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30

S
e
le

c
te

d
 s

u
b
s
p
a
c
e

Iterations

MIRAMns(5, 8, 10)

 0.01

 0.1

 1

 0 10 20 30 40 50 60

E
x
e
c
u
ti
o
n
 t
im

e

Iterations

IRAM(10)
MIRAMns(5, 8, 10)

FIGURE 4.24: Execution time of MIRAMns(5,8,10) versus IRAM(10) for west0989

matrix

64

4.3.2 Conclusion

Due to the empirical choice of subspace size, the implicitly restarted Ar-

noldi method may not be efficient for computing a few selected eigenpairs

of large sparse non-Hermitian matrices. In order to improve this choice, we

have proposed to make use of this method with several Krylov subspaces.

We have seen that the multiple implicitly restarted Arnoldi method with

nested subspaces accelerates the convergence of IRAM with the same num-

ber of matrix-vector products in each iteration. Our numerical experiments

have shown that MIRAM improves the quality of the Krylov subspaces of

IRAM and has consequently better convergence properties. Moreover, the

strategy presented in the paper can be applied to many other restarted pro-

jection methods. In a general context, this is equivalent to coupling some

iterative methods in order to accelerate the convergence of one of them as

is the case of hybrid Arnoldi-Chebyshev method described in [41, 91]. We

mentioned that for MIRAM we can use the same parallel programming mo-

del as the one used in P_ARPACK [70] which implements the parallel impli-

citly restarted Arnoldi method. This is because we define a Krylov subspace

and make use of the eigen-information of some subspaces nested in it. Ano-

ther approach consists to make use of IRAM with several Krylov subspaces

which differ by both their initial vector and subspace size. This approach,

multiple IRAM, has the advantage to update (implicitly) the initial vector

of an IRAM by taking into account the eigen-information obtained by seve-

ral different (non nested) subspaces. The increase cost engendered by these

different subspaces could be compensated by the implementation of the me-

thod in a large-scale distributed environment as for the multiple explicitly

Arnoldi method in [35].

65

Chapitre 5

A parallel MIRAM algorithm for

PageRank computation

5.1 Introduction

In order to simulate the epidemic spread, such as H1N1 outbreak in

France, traditional models need hundreds of experiments and compute the

expected outcome by averaging. In addition, these experiments should be

adjusted on a daily basis during the initial outbreak.

To answer urgent requests during the beginning phase of outbreak, an

eigenvalue model is proposed in [66]. In this model, a PageRank-like Infec-

tion vector is calculated, which could help health officials decide the relative

importance of different agents or groups of agents in a population facing an

epidemic. Concerning the computational aspect, the difficulty for compu-

ting PageRank arises from the size of network and the big damping factor.

Due to similar characteristics, this problem is also encountered in other real

applications. In this chapter, we study the computation of PageRank within

this context.

PageRank citation ranking was initially introduced in [82] to bring order

to the Web. A page has high rank if the sum of the ranks of its inlinks is

high. In other words, rank is propagated through links. To use mathema-

tical formalism, we look for a PageRank vector x, which is the dominant

eigenvector of the Google matrix,

A = αP + (1 − α)veT , 0 ≤ α < 1 (5.1)

66

where the matrix P is a column stochastic matrix, called transition matrix,

representing the outlink structure of the Web, e is the vector (1, ..., 1)T, α is

called the damping factor, and the vector v is the teleportation vector, which

ensures the uniqueness of the PageRank vector. Noticing that the virus has

a small probability (1 − α) to jump from any individual to any other indivi-

dual in a social graph. This would happen, for example, when an infected

person (virus carrier) meets and passes the disease to someone outside his

normal contacts . This event happens rarely so that the damping factor α is

very close to 1 in application on epidemics. A difficulty in PageRank model

is caused by the existence of dangling nodes [23]. These nodes will result

in one or more columns of zeros in transition matrix P. Several ideas have

been proposed to deal with this problem. A good reference can be found in

section 8.4 from the Langville and Meyer book on PageRank [59]. We will

continue our discussion about this issue within epidemic application in Sec-

tion 3.2.1.

Many algorithms have been proposed for computing PageRank [14]. In

this paper, we focus on Arnoldi-type algorithms. The method proposed by

Golub and Greif combines Arnoldi process and singular value decomposi-

tion to compute PageRank [47]. Wu and Wei use an extrapolation procedure

to provide increasingly better initial guess to Arnoldi iteration [105]. Their

idea is to periodically subtract off estimates of the non-principal eigenvec-

tors. Authors of [46] demonstrated the fast convergence of Krylov subspace

methods for the PageRank linear systems. A comparison of the eigenpro-

blem viewpoint and the linear system viewpoint over the PageRank pro-

blem can be found in [106]. The idea to use GMRES method for PageRank

is further explored in [107].

In real applications, computation of PageRank has three challenging as-

pects. First, the matrices involved are very large and rely on a parallel sparse

matrix-vector product (MVP) kernel. Suppose z is a vector of p-norm 1, Az

can be written as αPz + (1 − α)v(eTz) where eTz is a scalar. So the MVP of

A is expressed as MVP of a sparse matrix P plus a vector. Otherwise, any

direct computation using A will be bottlenecked by memory requirement

for large networks. In fact, the Google matrix A becomes a dense matrix

due to the part (1 − α)veT. For the above reason, algorithms based on MVP

67

might be advantageous. Secondly, the damping factor α generally needs to

take values approaching 1. For example, in the model of epidemic spread,

the virus has the probability 1 − α to jump randomly from an infected in-

dividual to any other individual through some unusual contact. Intuitively,

this event rarely happens, and for disease spread, α must be very close to

1. This is an argument in favor of using Arnoldi-type methods, as opposed

to the Power method. In fact, it can be proved that the second largest ei-

genvalue of matrix A is very close to α [50]. For big α, the second largest

eigenvalue will be close to the dominant eigenvalue (that equals to 1) of A,

which will slow down the convergence of the Power method. Last but not

least, the network is very large and of scale-free structure. Vectors used in

the computation should be stored in parallel among p processors, because

they could be larger than any single processor could handle. For example,

take n = 109 for a network, the corresponding PageRank vector contains

109 entries, which could take as much as 16 ∗ 109 bytes ≈ 15 GB of memory

in complex double precision. This issue of storage requirement is worsened

when using Krylov subspace methods. For instance, we can consider the

parameters n = 1011 and m = 103, where n is the size of the problem and

m is the projection subspace size. Then, each iteration requires 10 Peta bytes

memory space to maintain the orthogonal basis.

The model of parallelization used is so general that it could be employed

for modern (possibly future) parallel architecture. According to our nume-

rical results, we inspect that : the strategies proposed could accelerate the

convergence of single IRAM for matrices derived from real applications.

5.2 High performance systems evolution

A parallel computer is a collection of processing elements that commu-

nicate and cooperate to solve large problems fast [6]. This definition can

be applied to most nowadays computers, desktops with multiple cores or

hyper threaded processors, workstations with several processors, and high

performance systems dedicated to scientific problems. The need for compu-

ting resources increases jointly with the order of scientific problems. Results

obtained open new research areas which lead to more complex simulation

68

models. The more accurate the results become the more experiments and si-

mulations are needed. The amount of computation required increases faster

than the computing capacities. To support the demand of computation capa-

city, high performance systems evolve at a fearsome speed. They will reach

the capacity of executing an exa floating point operations per second in the

near future. In a little more than ten years, high performance computers

will have multiplied their capacities a thousand times. This performance is

possible thanks to the evolution of processors, networks, operating systems

and programming environments. In order to study the evolution of parallel

computers, it is not enough to focus on the hardware. A high performance

computer is always associated to multiple software layers involved in the

management of the global architecture. In this chapter, we focus on a presen-

tation of the evolution of the hardware, parallel programming models and

their realization for high performance computers. In the mean time, the net-

working infrastructure supporting Internet evolved too in order to support

massive and numerous data transfers, multimedia applications, games and

more generally interactive contents. The number of computers connected to

Internet has increased significantly too. The amount of potential resources

connected to Internet is large enough to justify research for a new kind

of high performance systems based on computers connected to each other

using wide area networks (WAN). They are known as meta-computing sys-

tems. Several approaches exist in order to aggregate computing resources

distributed in multiple locations. These approaches are known as grid, glo-

bal computing and peer to peer systems. In the mean time, Internet evolved

into a set of services which collaborate to provide more complex treatment

to end users.

Recently, the evolution of processors took a new direction. Indeed, the in-

crease of the frequency is no more a possible solution to gain performance.

However, the Moore law [73], which specifies that the number of transistors

composing a processor doubles every eighteen months, still applies. Proces-

sor architects introduced the concept of cores. A processor is now composed

of several cores following the MIMD model. Processors composed of mul-

tiple cores are already available on high performance systems, workstations,

desktop computers and laptops. The number of threads or control flows

69

which will be executed concurrently on next generation high performance

systems will be of a few millions. The issue related to the handling of large

scale distributed systems are the same in the context of meta computing

systems and future high performance systems. They will need to provide

mechanism to handle heterogeneity, fault tolerance, scheduling, etc. In this

chapter, we present the evolution of high performance systems by means of

architecture changes, parallel programming models and tools to use them.

5.2.1 Classification of high performance systems

According to the taxonomy of Flynn[43], there are four main architec-

tural classes, which is based on the way of manipulating instructions and

data streams :

SISD machines : A sequential computer which exploits no paralle-

lism in either the instruction or data streams. Single control unit (CU)

fetches single Instruction Stream (IS) from memory. The CU then generates

appropriate control signals to direct single processing element (PE) to

operate on single Data Stream (DS) i.e. one operation at a time. Examples

of SISD architecture are the traditional uniprocessor machines like a PC

(currently manufactured PCs have multiple processors).

SIMD machines : A computer which exploits multiple data streams

against a single instruction stream to perform operations which may be

naturally parallelized. For example, an array processor or GPU.

MISD machines : Multiple instructions operate on a single data stream.

Uncommon architecture which is generally used for fault tolerance. Hete-

rogeneous systems operate on the same data stream and must agree on the

result. Examples include the Space Shuttle flight control computer.

MIMD machines : Multiple autonomous processors simultaneously

execute different instructions on different data. Distributed systems are

generally recognized to be MIMD architectures ; either exploiting a single

70

shared memory space or a distributed memory space. A multi-core super-

scalar processor is MIMD processor.

The Flynn taxonomy is not enough to classify architectures for high per-

formance systems. Almost all nowadays HPC systems fall in the MIMD

class of machines. However, the classification of Flynn can be refined for

MIMD systems based on the memory model used.

5.2.2 Shared memory systems

As shown in Figure 5.1, shared memory systems have multiple CPUs all

of which share the same address space. This means that the knowledge of

where data is stored is of no concern to the user as there is only one me-

mory accessed by all CPUs on an equal basis. In shared memory systems,

the communication between processors occurred through memory accesses.

The memory controller is often more complex than in other systems. It is res-

ponsible for retrieving memory area accessed for reading and writing and

to maintain the consistency of local caches. Shared memory systems used

to depend on a single memory area which was accessible from all proces-

sors of the systems. In this kind of architecture, a bus or a network connects

processors to memory. The main problem with the shared-memory system

as described above is that it is not scalable to large numbers of processors.

Most bus-based systems are limited to 32 or fewer processors because of

contention on the bus. If the bus is replaced by a crossbar switch, systems

can scale to as many as 128 processors, although the cost of the switch in-

creases as the square of the number of processors, making this organization

impractical for truly large numbers of processors. Multistage switches can

be made to scale better at the cost of longer latencies to memory. The sca-

lability of high performance systems such as the IBM SP series or the SGI

Origine 2000, uses a different approach to allow scalability. Non uniform

memory access (NUMA) architectures were introduced to bring more scala-

bility to systems providing shared memory. NUMA systems distribute the

memory to each processor. In such systems, the network of interconnexion

71

is still used for all memory operations (read/write). However, the round

trip time to retrieve a memory area is not fixed and varies depending on the

distance between the two processors involved.

FIGURE 5.1: A shared memory architecture

5.2.3 Distributed memory systems

In distributed memory systems (see Figure 5.2) each CPU has its own

associated memory. The CPUs are connected by some network and may ex-

change data between their respective memories when required. In contrast

to shared memory machines the user must be aware of the location of the

data in the local memories and will have to move or distribute these data

explicitly when needed. Distributed-memory MIMD systems exhibit a large

variety in the topology of their connecting network. The details of this to-

pology are largely hidden from the user which is quite helpful with res-

pect to portability of applications. The main difference between a NUMA

shared and a distributed memory systems lies in the integration with the

network of interconnection. In shared memory systems, the network in-

teracts with the memory controller. In distributed systems, the network of

interconnection is connected to processors instead. This approach is often

preferred over the integration with the memory controller. Example of ar-

72

chitectures which are based on this memory model include the CRAY T3E,

Fujistsu AP3000 and networks of workstations. The aspect which evolves

the most in these kind of systems is the network of interconnection. Many

topology have been evaluated. This kind of architecture is really similar to

clusters where nodes are workstations built upon widely available proces-

sors and networking solutions. A cluster is constituted by a collection of

nodes connected to each other by a network of interconnection. In clusters

each node provides persistent storage, one or several CPUs, local memory

and runs its own operating system. In order to improve performance, en-

hanced networking solution can be used instead of Ethernet. The princi-

pal programming problem for distributed-memory systems is management

of communication between processors. Usually this means consolidation of

messages between the same pair of processors and overlapping communi-

cation and computation so that long latencies are hidden. In addition, data

placement is important so that as few data references as possible require

communication.

FIGURE 5.2: A distributed memory architecture

5.2.4 Hybrid systems

This is the architecture where the two previous paradigms are combined

(see Figure 5.3). Some distributed-memory machines allow a processor to

directly access a datum in a remote memory. On these distributed shared-

memory (DSM) systems, the latency associated with a load varies with the

distance to the remote memory. Cache coherency on DSM systems is a com-

73

plex problem that is usually handled by a sophisticated network interface

unit. Given that DSM systems have longer access times to remote memory,

data placement is an important programming consideration. For very large

parallel systems, a hybrid architecture called an SMP cluster is common. An

SMP cluster looks like a distributed-memory system in which each of the

individual components is a symmetric multiprocessor rather than a single

processor node. This design permits high parallel efficiency within a mul-

tiprocessor node, while permitting systems to scale to hundreds or even

thousands of processors. Programming for SMP clusters provides all the

challenges of both shared- and distributed-memory systems. In addition, it

requires careful thought about how to partition the parallelism within and

between computational nodes.

FIGURE 5.3: A distributed memory architecture

5.3 Programming models

An important part in forming a parallel programs is which program-

ming model to use. This decision will affect the choice of programming lan-

guage system and library for implementation of the application.

5.3.1 Data parallelism

Data parallelism consists in defining a single control flow which is com-

mon to multiple data. In this model the programmer is only able to explicit

74

the data distribution. Other aspects of the parallelism are expressed impli-

citly. It corresponds to the SIMD execution model. The same instructions

are executed synchronously by all processing elements. Data parallel lan-

guages allow the definition of a virtual topology of processing elements.

This topology is mapped on the read processing units available on the sys-

tem. Processing elements can communicate only with nearest neighbors.

The underlying topology was most often a two dimensional grid. This topo-

logy is well adapted to operations on regular data sets such as matrices and

images. Connexion Machines, like the CM-5, were especially design to sup-

port data parallel algorithms and applications. Vectorization is a adaptation

of the data parallel model. Nowadays vector instructions are available in

most general purpose processors. A data parallel application first defines a

virtual topology of processors such as a 2D grid. This topology is then map-

ped on real processors during the execution of the program. The program

defines a single flow of execution which is executed by all virtual processors

concurrently. Instruction of the program consists in traditional instructions

and in communication operations with neighbours processors in the virtual

topology. Many linear algebra applications can be efficiently implemented

using this model [34]. A more detailed description of concepts, tools and

languages associated with this model can be found in [85].

5.3.2 Task parallelism

Task parallelism consists in defining an application as a collection of

tasks. Control flow units collaborate using either explicit or implicit commu-

nications/synchronizations. In this model, each control flow unit manages

a private memory area. It collaborates with other control flow units to create

the global action of the program. Many implementations of this model exist.

At the opposite of the data parallel model, the task parallel model allows the

programmer to explicitly control every aspects of the parallelism. She/he is

responsible for explicitly managing the concurrency, synchronisation, distri-

bution and the communications. Using the task parallelism model it is pos-

sible to emulate data parallelism. This approach is named SPMD for Single

Program Multiple Data.

75

5.3.3 Multi-level parallelism using notion of graph

The coming of post-petscale and exascale supercomputers offers the

perspective to accelerate the solution of engineering problems and to tackle

highly complex models. However, these future systems challenge computer

scientists to built such machines. Many issues must be faced such as fault-

tolerance, energy consumption and the programming of these complex sys-

tems composed of hundred of millions of cores. In [86], authors have propo-

sed a multi-level programming paradigm composed of three levels. At the

low level, a data parallel paradigm is used to program many-cores proces-

sors for its focus on data mapping and movements. they have implemented

and evaluated the SpMV with various sparse matrix formats on GPU to

illustrate this point. At the intermediate level, a message passing paradigm

is used in order to optimize inter-sockets and inter-nodes communications.

At the high level, a graph description paradigm is used to program and

manage the parallelism between nodes.

5.4 Parallel MIRAM algorithm

For PageRank computation in real applications, IRAM should not be

used naively. Due to the very large problem scale, the subspace size m must

be small to maintain the orthogonal basis Wm in memory. It is known that

the eigen-information of interest may not appear when m is too small [96].

In addition, high damping factor results in clustered eigenvalues around the

dominant one [50], which will slow down the convergence even further.

In IRAM, only the initial vector is used to improve the quality of the

subspace during iterations. The authors of [40] investigate the influence of

the size of subspace. The idea is to make use of Arnoldi method to com-

pute the Ritz elements of a large matrix A in a set of l nested Krylov sub-

spaces. If the accuracy of the Ritz elements calculated is not satisfactory in

any of these subspaces, the algorithm will select the one that contains the

“best” current Ritz elements. Then a QR shifted algorithm will be applied

to the mbest × mbest matrix which represents A in this mbest−size projection

subspace. The leading k × k submatrix issued from QR algorithm concen-

76

trates the information corresponding to the desired eigenvalues. Arnoldi

projections are then completed on nested Krylov subspaces starting with

this submatrix. This method can be considered as an IRAM with the largest

subspace size, which uses eigen-information of some of its nested subspaces

in order to update its restarting vector. In this paper, we focus on the paral-

lelization of the method and present a parallel “multiple IRAM" algorithm

(MIRAM).

Recall that the MIRAM procedure is described in Algorithm 2 and the

overview of the algorithm is shown in Fig. 5.4.

It is important to notice that the communication of the eigen-information

of interest of each IRAM process to other IRAM processes can be avoided.

The idea is to run a single Arnoldi process proceeding across all processors

and to save the information whenever m reaches l different values. In other

words, the steps 1 to 4 in Algorithm 2 are duplicated across all processors.

Furthermore, since fm and Wm are distributed, the implicit QR iterations in

steps 5 to 9 could be done locally on different processors as well.

Concerning the choice of parameter k, Stathopoulos et al. proposed in

[97] a technique, called thick restart, where k0 eigenpairs are needed, k (k >

k0) pairs are retained after each restart, and r = m − k additional vectors

are built. Some results of using thick restarting approach for the choice of

parameter k are given in section 5.

Concerning the time and space complexities of MIRAM versus that of

IRAM. We assume that m 	 n and let nrc be the number of restarting cycles

excluding the initialization. The cost of IRAM in terms of matrix-vector pro-

ducts for nrc restarting cycles is m + r × (nrc − 1). Indeed, in the first cycle,

the number of matrix-vector products is m and for each of the restarting

cycles, the number of matrix-vector products is r = m − k. Note that the

cost of orthogonalization in a restarting cycle is O(2 × r × n2). When A is

sparse and r is large, this cost of orthogonalization may be dominant in the

computation. The space complexity of IRAM is n2 + O(m × n).

Recall that m� is the maximum of the m1, . . . , m� subspace sizes. The cost

of MIRAM in terms of matrix-vector products is m�+ r�× (nrc− 1). Still the

cost of orthogonalization in Arnoldi process is 2 × r� × n2. As a result, this

cost of orthogonalization may be dominant in the computation when A is

77

Start

Initialization

Arnoldi

QR Solver

Stop ?

Choose

the best

subspace

size

Implicit QR

Restart

Initialization

Arnoldi

QR Solver

Stop ?

Implicit QR

Restart

Initialization

Arnoldi

QR Solver

Stop ?

Implicit QR

Restart

IRAM1(m1, w0, k) IRAM2(m2, w0, k) IRAM3(m3, w0, k)

No

No No

FIGURE 5.4: The overview of MIRAM

sparse and r� is large. The space complexity of MIRAM is n2+O(n × m�).

We denote by CI and CM the time complexities of one restarting

cycle of IRAM(m�) and MIRAM(m1, · · · , m�) respectively. Ignoring terms

not including n and the cost of stopping criterion, these complexities

can be given by CI = α + 2 × n × m2
� and CM = α + 2 × n ×[

k × (m1 + . . . + m�) + m2
best − k × mbest

]
, where α is a common part in both

algorithms. In the worst case for MIRAM, where mbest = m�, CM − CI =

78

2× n× k× (m1 + . . .+m�−1), which is positive. In the best case for MIRAM,

where mbest = m1, CM − CI = 2 × n ×
[
k × (m2 + . . . + m�) + m2

1 − m2
�

]
,

which could be positive or negative. Depending on the values of k and mi,

one restarting cycle of MIRAM could be less expensive than that of IRAM.

To conclude, if MIRAM(m1, · · · , m�) uses mbest most of the time, it will cause

more computations than IRAM(m�). This is confirmed by our experiments

in chapter 8.

5.5 Scalable sparse MVP for scale-free networks

using hypergraph partitioning

The name “scale-free networks” comes from a project to map the stru-

cuture of the World Wide Web in 1998, which has revealed a surprising fact

that a few highly connected pages are essentially holding the World Wide

Web together. Counting how many Web pages have a certain number of

links showed that the degree distribution followed a power-law. Following

researches observed many real networks that display similar phenomenon,

among which are social networks.

When mining information from a network, eigenpairs of the various ma-

trices that represent the network are used. Sparse Matrix vector product is

the bottleneck of many existing eigensolvers for scale-free networks. This

is especially true for any Krylov subspace method. There are a couple of

approaches to improve the sparse MVP performance.

One way consists in balancing the workload : first, each processor should

have at most �n/p� columns ; second, each processor should have roughly

equal number of nonzero elements. We could use a simple heuristic method.

Suppose there are p processors. We begin by sorting the columns according

to their number of nonzero elements. Then from dense to sparse we attribute

the column j to processor i(i = 1, ..., p). After that, the rest sorted columns

should be attributed one by one to the processor with the least number of

nonzero elements each time. Another constraint is when a processor has

�n/p� columns, it should not be considered for attribution any more.

However, there are a couple of issues associated with this approach. First

79

of all, the columns in each processor are usually not contiguous after redis-

tribution, which will generate complex communication pattern while doing

sparse MVP. A possible remedy is by reordering the nodes to make the co-

lumns in the same processor contiguous. The procedure above is equivalent

to symmetrically permuting rows and columns of A. In other words, we

construct a new matrix B = TT AT, where T is the product of successive

permutation matrices : T = (T1 × T2 × ...). Then

Bu = µx ⇒ TT ATx = µx ⇒ A(Tx) = µ(Tx), (5.2)

so that A and B have the same eigenvalues, and if x is an eigenvector of B,

then x′ = Tx is an eigenvector of A. In consequence, the computation by

MIRAM could be applied on the distributed matrix B instead.

Secondly, this workload-centric approach may result in extensive com-

munication volume. Parallel sparse MVP for scale-free networks does not

scale well due to the high communication overhead caused by hubs (the

most connected nodes). While sparse, the nonzero structure of their adja-

cency matrices are quite different from that of a PDE matrix. Rather, the

existence of hubs necessitates an all-to-all communication either before or

after the reduction operation in MVP, which makes the parallel communi-

cation requirements more similar to those of a dense matrix.

To clarify this observation, we use a simple example given in Fig. 5.5

with 3 processors. The columns 0, 3 and 6 of P correspond to three hubs

in the network since they contain the most nonzero elements. From left to

right, the columns 0 to 2 are distributed to processor 0 ; the columns 3 to

5 are distributed to processor 1, and the columns 6 to 8 are distributed to

processor 2. The vector w is also partitioned into three segments (marked

by three colors) and distributed among these processors.

Before the reduction of MVP, the processor that owns the column j needs

only the corresponding element w[j] in the vector w, which is also local to

this processor. After the reduction operation to get its “partial sums" (in

row-wise), each processor sends its partial sums to the processor that owns

the vector segment for the corresponding rows. For example, after local re-

duction, the processor p1 will get 9 partial sums, numbered from 0 to 8.

The partial sums 0 to 2 will be sent to the processor 0 since it owns the

80

red segment (the rows 0 to 2) of the vector w. Due to the existence of hubs,

each processor will have 9 partial sums in the example. As a result, using

1D column-wise partitioning, every processor might be required to send

messages to all other processors. This results in an all-to-all communication

after the local reduction. Similarly, if we use 1D row-wise partitioning, an

all-to-all communication before the reduction will be needed because of the

existence of hubs.

1/3 1/8 1/8

1/8 1/8 1/8

1/8 1/3 1/8 1 1/8

1/8 1/2 1/8

1/8 1/3 1/8 1/8 1/3

1/8 1 1/8 1/8

1/8 1/8 1 1/3

1/8 1/8 1/8 1/3

1/8 1/8 1/2 1/8

transition matrix P
0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

p0 p1 p2

1/3

1/8

1/8 1/3

1/2

1/81/81/81/8

1/81/81/81/8

1 1/3

1/81/81/81/8 1/3

1/81/81/81/81/8

0.2

0.1

0.8

0.9

0.4

0.1

0.5

0.6

0.3

w

p0

p1

p2

0.2

0.1

0.8

0.9

0.4

0.1

0.5

0.6

0.3

FIGURE 5.5: An 1-D column-wise partitioning on 3 processors and its matrix

vector multiplication.

In the second approach, the problem of load distribution and balancing

in parallel MVP is formulated as a graph partitioning one. The idea is to

find the subsets of nodes in the origin graph such that the number of edges

between any two partitions are minimized. The nodes correspond to dif-

ferent rows/columns in the matrix A, and the edges between two partitions

represent the communication requirements between two processors in pa-

rallel MVP. There are some popular graph partitioning packages, such as

Chaco, Metis and Scotch [51][56][84]. They also offer MPI-based libraries

for parallel graph partitioning. These packages are based on row-wise par-

titioning where each processor holds a block of rows of the matrix. From

81

a matrix theoretical view, they simply try to minimize the total number of

off-block-diagonal nonzeros without considering the relative spatial loca-

tions of such nonzeros. In other words, the graph models treat all off-block-

diagonal nonzeros in an identical manner by assuming that each of them

will incur a distinct communication of a single word [24]. However, before

the reduction, the off-block-diagonal nonzeros in the same column gene-

rate only one message to get the corresponding vector component. After the

reduction, the off-block-diagonal nonzeros in the same row reduce to one

partial sum and incur only one message as well.

Recently, hypergraph-based partitioning [24] has drawn much attention

from the PageRank community. We will continue our discussion firstly with

a retrospect of some basic definitions of the hypergraph theory.

Definition 1. A hypergraph H = (V, N) is defined as a set of vertices V and a

set of nets (hyperedges) N among these vertices. Every net nj ∈ N is a subset of

vertices, i.e., nj ⊆ V.

Definition 2. A k-way partition Π (k > 1) of the set V is defined as Π =

{V1, · · · , Vk}, where Vi are subset of V s.t. Vi
⋂

Vj = ∅ for all 1 ≤ i < j ≤ k.

Definition 3. The k − 1 metric is defined as

f (H) =
n∗

∑
i=1

(πi − 1)ωi (5.3)

where n∗ is the number of nets, πi is the number of subsets that the net ni spans

(i.e. has a vertex in) and ωi is the number of constituent vertices of the net ni.

The hypergraph partitioning problem consists in finding a k-way parti-

tion Π = {V1, · · · , Vk} such that the k − 1 metric is optimized, and the num-

ber of vertices in each subset Vi is balanced. For 1D sparse matrix decompo-

sition scheme, a matrix A is represented as a hypergraph HR = (VR, NC).

Vertex and net sets VR and NC correspond to the rows and columns of matrix

A, respectively. The distribution of the rows of matrix A to p processors for

parallel sparse MVP corresponds to a p-way partition of the above hyper-

graph. For 2D sparse matrix decomposition scheme, the objective is to dis-

tribute matrix nonzeros to processors instead. Here, each nonzero is repre-

sented by a vertex. Every column/row is modelled by a net. Its constituent

82

vertices are the nonzeros of the column/row. In consequence, minimizing

communication before and after the reduction of MVP could be accurately

modelled by a hypergraph partitioning problem. Using these two schemes,

Bradley et al. has observed a reduction of communication by a factor of

three compared to conventional graph partitioners [20]. In our implementa-

tion, we use the “Zoltan” package [17] as hypergraph partitioning tool. The

drawback is that it takes longer to run than graph algorithms.

5.6 Parallel implementation

Today, the building block of the high-end computing system consists of

multiple multi-core chips sharing memory in a single node. We use a hy-

brid programming model with message passing and shared memory (MPI

and OpenMP). This model assumes that the system has a number of nodes

with local memories that communicate with each other by means of mes-

sage transfer. In the meantime, each node is composed of a number of pro-

cessors sharing a local memory. There is thus a hierarchical two-level pa-

rallelization in our implementation. The first one applies the 1D row-wise

hypergraph partitioning for minimizing the communication in sparse MVP.

Each MPI process works on one group of rows and exchanges data before

the reduction operation. Parallelism in the first level is limited to the num-

ber of computing nodes available in the system. For the second-level paral-

lelism, MVP kernel uses OpenMP parallel regions for local multiplication

and reduction within a node. Our code is developed based on the Trilinos

framework [52], where about fifty C++ packages are included.

From the developer’s view, parallel MIRAM consists of three compo-

nents. The first is a network loader to store the entire network in memory on

a distributed memory parallel computer, the second is the Zoltan package

that preprocesses the parallel matrix for load balancing and communication

minimization and the third is the eigensolver described in Fig. 5.4.

83

5.6.1 Network loader

The networks are initially stored as edge set in a coordinate format file.

We parse the file and derive the corresponding transition matrix P and store

it in matlab coordinate format. An example of 5 nodes is given in Fig. 5.6.

The two columns on the left of the Table 5.1 are the endpoints of the edges,

while the three columns on the right are the triplet (row_index, col_index,

value).

2

0

1 3

4

FIGURE 5.6: Small social network of 5 individuals

TABLE 5.1: Example of network coordinate format and matlab coordinate

format for Fig.5.6

network coordinate format matlab coordinate format

0 1 2 1 1

1 0 1 2 0.5

1 2 3 2 0.5

2 0 1 3 0.333

2 1 2 3 0.333

2 4 5 3 0.333

3 1 2 4 0.333

3 2 3 4 0.333

3 4 5 4 0.333

4 0 1 5 1

After the conversion, we use MatlabFileToCrsMatrix function (in Trilinos’

EpetraExt package) to load the matrix. Epetra provides construction rou-

tines as well as services function for data objects in distributed memory pa-

rallel machines. A class called Epetra_Map describes the mapping of every

84

vector and matrix over MPI ranks. Vectors have a single 1D map while

sparse matrices may have 1D or 2D maps. 1D row-wise/column-wise dis-

tribution of sparse matrices is specified by row/column map. The 2D dis-

tribution can be specified by giving both row map and column map to the

constructor of matrices. In our implementation, we store the transition ma-

trix P as an Epetra_CrsMatrix using row map.

5.6.2 Hypergraph partitioner

The main focus is to improve the scalability of sparse matrix vector

multiplication over scale-free networks. To do so, we use the Isorropia

package, interface to the Zoltan toolkit. It performs the partitioning mainly

through three steps :

1. Create a Isorropia : :Partitioner instance.

2. Create a Isorropia : :Redistributor object.

3. Use the Isorropia : :Redistributor to redistribute one or more objects to the

new partitioning.

Weights can be defined by Isorropia : :CostDescriber class for graphs and

hypergraphs. Isorropia currently supports partitioning/redistributing of

several Epetra objects, including Epetra_CrsGraph and Epetra_CrsMatrix, etc.

Isorropia has a number of parameters that control the partitioning methods

[?]. These parameters are placed in a Teuchos : :ParameterList object, which

is passed as an argument to the following Isorropia’s function :

Epetra_CrsMatrix* Isorropia : :Epetra : :createBalancedCopy(const Epe-

tra_CrsMatrix & input_matrix, const Teuchos : :ParameterList & paramlist

).

We implement the hypergraph partitioner by calling

paramlist.set("PARTITIONING METHOD", "HYPERGRAPH").

5.6.3 Parallel MIRAM

MIRAM consists of four main tasks. First, the projection phase mani-

pulates the n-sized data sets for sparse MVP. The second phase including

implicitly shifted QR iterations acts on m-sized data sets. The third phase

constructing the r additional steps of Arnoldi factorization manipulates on

85

n-sized data sets as well. At last, the convergence test deals with n-sized

data sets to calculate ‖ fm‖. Because phase one and three constitute the most

expensive part of the algorithm, we propose to distribute them among pro-

cessors and to run phases two and four redundantly on all processors.

To conduct sparse MVP, Epetra uses two additional maps to specify the

distribution of the input (domain map) and the output vectors (range map).

Both the domain and range maps are one-to-one : that is, each global index

in the map is uniquely owned by only one process. There are four steps for

sparse MVP implemented in Epetra :

1. Import : Send wi to the processes that own a nonzero aij for some i.

2. Local reduction : yi := yi + aij ∗ wj.

3. Export : Send partial y values to the owner processes.

4. Reduction : Add up partial y contributions received.

The communication steps 1 and 3 are point-to-point in Epetra and are imple-

mented as the Epetra_Import and Epetra_Export classes respectively. In our

MIRAM code, we use the following function :

int Epetra_CrsMatrix : :Multiply(bool TransA, const Epetra_Vector & x, Epe-

tra_Vector & y)

of Epetra_CrsMatrix class to perform MVP on the matrix P. The Importer and

the Exporter classes will be automatically constructed based on its maps.

86

Chapitre 6

Parallel Social Graph Generator

for PageRank Computation

6.1 Introduction

In social science, real data about individuals’ relationships are generally

hard to collect. This is especially true for large population such as Chinese

(more than 1.3 billion people). Furthermore, this kind of data is often not

accurate since it depends sometimes on individuals’ subjective judgments.

For example, it is hard to decide if one person is friend of another person.

Because they could have different answers to this question. Lack of realistic

data, scientists tend to use synthesized or network-based social graphs to

study various social problems including epidemiology. Moreover, studies in

other complex networks, such as the Internet [38], biological networks [45],

and various infrastructure networks [26], motivate the efficient generator of

massive random networks.

The recent advances in the research of complex networks have signifi-

cantly increased the interest in various random graph models [12]. Among

them, the first and well-studied model is the Erdös-Rényi model [37]. Ho-

wever, this model does not exhibit the characteristics observed in many real-

world complex systems. As a result, many other models emerges, such as

small-world [103], Barabàsi-Albert [10] and exponential random graph [88],

etc.

The scale-free network is a network whose degree distribution follows a

87

power law asymptotically. In mathematical formalism, the fraction P(k) of

nodes in the network that has k edges to other nodes follows

P(k) ≈ k−γ

where γ is a parameter whose value is typically 2 < γ < 3. Preferential

attachment [10] and the fitness model [11] have been proposed as mecha-

nisms to explain conjectured power law degree distributions in real net-

works. A few examples of networks claimed to be scale-free include : So-

cial networks, many kinds of computer networks, some financial networks

such as interbank payment networks, protein-protein interaction networks,

semantic networks and airline networks.

A small-world network is a type of mathematical graph in which most

nodes have a very few neighours, but most nodes can be reached from every

other by a small number of hops or steps. In mathematical formalism, a

small-world network is defined to be a network where the typical distance L

between two randomly chosen nodes (the number of steps required) grows

proportionally to the logarithm of the number of nodes N in the network,

L ∝ logN

Small-world properties are found in many real-world phenomena, inclu-

ding websites with navigation menus, food chains, electric power grids, me-

tabolite processing networks, networks of brain neurons, voter networks,

telephone call graphs, and social influence networks.

Demand for large random networks necessitates efficient algorithms to

generate such networks. Recently, some efficient sequential as well as paral-

lel algorithms have been developed to generate scale-free graphs [12, 4].

However, although efficient algorithms proposed are able to generate

networks with billions of nodes quickly, generating networks with both

scale-free and small world structure has not been well discussed. In this

chapter, we propose an efficient and highly scalable parallel graph genera-

tion algorithms that can produce massive social graphs. The method em-

ployed is so general that can be used to identify and mine certain know-

ledge or data of interest by other algorithms. The synthetic graphs genera-

ted possess the most common properties of real complex networks such as

power-law degree distribution and small-worldness.

88

6.2 Sequential algorithm for Barabàsi-Albert mo-

del

The common way to generate a scale-free network is to use the Barabàsi-

Albert model (BA model). Starting with a small clique of s nodes, in each

step, a new node is added to the network and connected to k (k ≤ s) ran-

domly chosen existing nodes based on the degrees of the nodes in the cur-

rent network. The idea is to connect a new node to an existing node that is

chosen with probability directly proportional to its current degree. In other

words, the probability p that node t is connected to node i (i < t) is given

by pi =
di

∑j dj
, where dj represents the degree of node j. Barabàsi and Albert

showed this preferential attachment method of selecting nodes results in a

power-law degree distribution [10]. The algorithm is described as follows.

Algorithm 3: Sequential BA algorithm
Input : a small clique of s nodes.

For j = 1, . . . , k

1. Calculate the pi for every node i in the current network.

2. Choose an existing node h according to its corresponding ph value.

3. Add an edge (i,h) to the network and update the degree of node h.

6.3 Parallel algorithm for graph generator

Scale-free graphs can be easily generated using preferential attachment.

Starting with a small clique, a scale-free network is constructed by repea-

tedly adding a new node and attach it to one of the existing nodes with

probability proportional to its current degree. We parallelize this method

by distributing the vertices among processors, and all their adjacent edges

are stored on the same processor to which the vertex is assigned. We ad-

ditionally create the small world structure by grouping sets of processors.

Each processor belongs to one or several groups. Each group corresponds

to a community in social networks.

89

The proposed algorithm is based on the work [108] and is described as

follows.

Algorithm 4: Parallel BA algorithm
Input : a small clique of s nodes distributed among all processors.

a set of groups {G(p)
0 , G(p)

1 , · · · , G(p)
n−1} for each processor p.

For each newly created node on processor p, we need to add k edges.

1. For each of these k edges, select randomly a processor from

{G(p)
0 , G(p)

1 , · · · , G(p)
n−1}.

2. Send message <npq> to each selected processor q, where npq is the

number of endpoints needed by processor p in processor q.

3. Receive message<nqp> from processor q, where nqp is the number of

endpoints needed by processor q in processor p.

4. Choose nqp endpoints using sequential BA algorithm (shown in

Algorithm 3) for each selected processor q and send them to

processor q.

5. Receive message containing endpoints from each selected processor

q and add them to edges corresponding to q.

We assume that the processor p is a member of groups

G(p)
0 , G(p)

1 , · · · , G(p)
n−1. An edge is attached in two phases. In the first

phase, k edges are added per newly created local node (a node that resides

on p) as in the conventional Barabàsi-Albert model. However, each edge,

e, associates a local node with some processor q, instead of connecting two

nodes as in the serial model. The particular node that is to be the eventual

endpoint of e is determined remotely by the processor q. The processor q is

selected randomly from groups G(p)
0 , G(p)

1 , · · · , G(p)
n−1. Let A denote a local

edge list maintained by the processor p. First, we initialize A by associating

the first s edges with the processors in groups G(p)
0 , G(p)

1 , · · · , G(p)
n−1. For an

edge ej , where j ≥ s, we select an existing edge from A with a uniform

probability and then assign its associated processor to ej (thus realizing

preferential attachment). This process is repeated until the predetermined

number of local nodes and edges are created on p. At the end of the first

phase, p sends a message to each processor q to notify the number of

90

TABLE 6.1: An example of graph construction on processor p0.

u 0 0 1 1 2 2 3 3 4 4

v p1 p2 p0 p1 p1 p2 p0 p1 p0 p2

u 0 0 1 1 2 2 3 3 4 4

v 8 p2 p0 7 5 p2 p0 8 p0 p2

occurrences of q in A. In the second phase, p determines the endpoints

for the edges on remote processors and connects the endpoints calculated

by remote processors to its local vertices. The processor p first receives

messages from other processors, which contain the numbers of occurrences

of p in their respective local edge list. That is, the message received from

a processor q represents the number of incomplete edges one of whose

endpoints resides on the processor q. These edges are to be connected to

the local nodes on p, selected by using the standard preferential attachment

technique. Once the list of the nodes for the attachment is determined, it is

divided up among the processors. Here, each processor is assigned as many

nodes as requested. The selected nodes are then sent to the corresponding

processors. Having sent the endpoints for the remote edges, then p receives

the lists of endpoints from other processors for its own incomplete edges.

Using the remote nodes received, p completes its local partition of the

graph. This is done by simply substituting each occurrence of processor q

in A with the next endpoint in the list sent by q. The resulting collection of

edges defines the portion of the graph stored on p.

The algorithm is illustrated by an example shown in Table 6.1. In this

example, we generate a graph with 5 nodes per processor and 2 edges per

node. It is assumed that there are three groups, G0 = {p0, p2}, G1 = {p1, p2},

and G2 = {p0, p1} and processor p0 belongs to groups G0 and G2. The nodes

are assumed to be evenly distributed among the processors so that nodes

0-4 are on p0, nodes 5-9 on p1, and so on. In the first phase of the algorithm,

p0 selects processors and associates them with the local nodes as shown in

Table 6.1 where the edge list on p0 is depicted. Note that the first four pro-

cessors in the list are the ones in the factions that p0 belongs to G0 and G2.

The rest of the processors in the list are selected using the standard prefe-

91

rential attachment technique. At the end of phase 1, p0 needs four endpoints

from p1 (and three endpoints from each of p0 and p2). In processor p1, end-

points are determined via preferential attachment and sent to p0 in the se-

cond phase. In this example, we assume that vertices 8, 7, 5, and 8 are sent

to p0. Once receiving the list, p0 simply replaces the entries marked with p1

with the endpoints in the list. This is shown in Table 6.1.

6.4 In-memory matrix representation for Page-

Rank computation

To transform a generated parallel graph into a distributed Google ma-

trix, we predefine a data mapping (partitioning) for the parallel matrix. Par-

titioning (load balancing) is the problem of assigning data and computation

to processes. Its goal is to balance the load (data, computation) while also

reducing interprocess communication during computation. A node corres-

ponds to a row and an edge corresponds to a nonzero element in the parallel

matrix. Two endpoints of an edge correspond to row and column indices of

the nonzero element. Initially, the rows are stored locally in the processor

where the corresponding nodes reside. Then, a 2D hypergraph partitioning

as presented in the previous chapter is performed on the parallel matrix to

obtain a better load balancing scheme.

6.5 Conclusion

A parallel algorithm that can generate scale-free and small world net-

works are discussed in this chapter. The network generated is distributed

among processors and could be further explored to obtain information of

interest.

92

Chapitre 7

Numerical results

7.1 Introduction

7.2 Data of experiments

In social science, lack of realistic data, scientists tend to use synthesized

or network-based social graphs to study various social problems including

epidemiology. Many studies show that web graphs display similar under-

lying structure as social graphs such as power law distribution of degrees

and small-world phenomenon. In the following section, we present our re-

sults on seven networks. Their statistics are presented in Table 7.1. n is the

number of nodes, nnz is the number of links. The number of links in the

table is bigger than that in initial datasets because we add links for dangling

nodes. ba is collected at the Oregon router views [1]. com-Youtube, stanford,

Wiki-Talk and soc-LiveJournal1 are obtained from Stanford Large Network

Dataset Collection [2]. twitter is collected from 467 million Twitter posts from

20 million users covering a 7-month period from June 1, 2009 to December

31, 2009 [58]. This dataset is more realistic to represent a social network.

yahoo contains URLs and hyperlinks for over 1.4 billion public web pages

indexed by the Yahoo ! AltaVista search engine in 2002.

The statistics for the above datasets are presented in Table 7.1. n is the

number of nodes, nnz is the number of links. The number of links in the

table is bigger than that in initial datasets because we add links for dangling

nodes.

93

TABLE 7.1: Statistics for datasets

Name n nnz Storage

ba 7010 13985 117 KB

stanford 281,903 2,321,669 30 MB

com-Youtube 1,134,890 2,988,374 38.7MB

Wiki-Talk 2,394,385 5,21,410 66.5MB

soc-LiveJournal1 4,847,571 68,993,773 1.1GB

twitter 41,652,230 1,469,914,131 25 GB

yahoo 1,413,511,394 8,050,112,173 78 GB

7.3 Architecture and machines

Grid5000 platform.

We run our experiments on the nation wide cluster of clusters Grid5000.

Grid5000 is a scientific instrument for the study of large scale parallel

and distributed systems. It provides a highly reconfigurable, controllable

and monitorable experimental platform to its users. The infrastructure of

Grid’5000 is geographically distributed on different sites hosting the ins-

trument, initially 5 sites in France (since 2005). Porto Alegre, Brazil is now

officially becoming the first site abroad. We conduct our experiments mainly

on five clusters as follows (some hardware details are given in Table 7.2) :

- Cluster “Taurus” : 16 nodes×2 cpus per node×6 cores per cpu=192 cores.

- Cluster “Graphene” : 144 nodes×1 cpus per node×4 cores per cpu=576

cores.

- Cluster “Paradent” : 64 nodes×2 cpus per node×4 cores per cpu=512 cores.

- Cluster “Granduc” : 22 nodes×2 cpus per node×4 cores per cpu=176 cores.

- Cluster “Griffon" : 120 nodes×2 cpus per node×4 cores per cpu=960 cores.

7.4 Metrics of performance used

The following metrics are used : execution time, residual norm, strong

scalability, time evolution of epidemic spread, vaccination strategy based

94

TABLE 7.2: Hardware details of Clusters

Name of Cluster CPU Network Memory

Taurus Intel Xeon Gigabit Ethernet 32 GB

Graphene Intel Xeon X3440 Gigabit Ethernet 16 GB

Paradent Intel Xeon L5420 Gigabit Ethernet 32 GB

Granduc Intel Xeon L5335 Gigabit Ethernet 16 GB

Griffon Intel Xeon L5420 Gigabit Ethernet 16 GB

PageRank.

7.5 Results

7.5.1 Comparison with other methods

In the first place, we compare the behaviour of residual norm ‖ Ax − x ‖
of single IRAM with that of power method. The idea of Power method is to

write the initial vector x0 as a linear combination of ∑n
j=1 αjvj, where vj are

eigenvectors of A. Without loss of generality, suppose λ1 is the dominant

eigenvalue, we have :

xk = Axk−1 = A2xk−2 = ... = Akx0

= Ak
n

∑
j=1

αjvj =
n

∑
j=1

αj Akvj =
n

∑
j=1

λk
j αjvj

= λk
1(α1v1 +

n

∑
j=2

(λj/λ1)
kαjvj)

(7.1)

For j > 1, |λj/λ1| < 1, so that (λj/λ1)
k → 0, leaving only the PageRank

eigenvector v1. We choose the damping factor to be 0.85 and the tolerance

value to be 1E − 7 for both methods. The initial vector is taken as the vector

e = (1, 1, ..., 1)T. Within IRAM, the size of Krylov subspace is 4 and the

number of shifts used is 3. The result is presented in Fig. 7.1. This figure

shows that residual in IRAM decreases solidly even in the first iteration

while power method has big residual norms during the initial iterations.

Noticed that a power iteration is computationally much cheaper than an

IRAM iteration. To avoid confusion, in Table 7.3, we compare the number

95

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120

re
s
id

u
a

l
n

o
rm

iteration

Power
IRAM: m=4 r=3

FIGURE 7.1: Convergence behavior for the 281, 903 × 281, 903 stanford ma-

trix, α = 0.85

TABLE 7.3: Number of matrix vector products for the 281, 903 × 281, 903

stanford network

α Power m=4 m=8 m=16

0.85 122 79 71 61

0.90 184 124 99 91

0.95 367 238 148 136

0.99 1775 394 358 316

of matrix vector products used in both methods, where α is the damping

factor, m is the size of Krylov subspace. We choose the number of shifts to

be m − 1. The tolerance value used is 1E − 8 and the initial vector is taken

as the vector e. This table shows that the number of matrix vector products

used in IRAM are less than that of power method.

From the two tests above, we could conclude that IRAM has a faster

convergence than the power method for the test matrix. Also, some experi-

ments using explicitly restarted Arnoldi method on this network have been

given in [47]. Still, we find a faster convergence than the power method.

96

7.5.2 Experiments on damping factor α

We study the influence of damping factor on convergence rate. For stan-

ford network, this dependency is quantified in Table 7.3. It is found that with

bigger damping factor α, more iterations are needed to reach the accuracy

for both methods. However, IRAM has a much better performance than Po-

wer method for bigger α. As explained in [50], bigger α engenders a closer-

to-1 second largest eigenvalue. This fact also favors Arnoldi-type methods,

as opposed to the power method.

7.5.3 Thick restart for the choice of parameter k

We first check the strategy proposed by Stathopoulos et al. in [97] for the

choice of parameter k. The damping factor α is fixed to 0.85.

In the test on twitter network, we set the m to be 4 and change the value

of k to 1, 2 and 3. We run our experiments on cluster “Taurus” using 16

nodes with 2 MPI processes per node (without OpenMP multithreading).

The results are presented in Fig. 7.2. While (k = 1) uses the fewest restarting

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60

re
si

d
u
al

 n
o
rm

restarting cycles

m=4,k=3
m=4,k=2
m=4,k=1

(a) Number of restarting cycles

 10

 100

 1000

 10000

 0 10 20 30 40 50 60

ti
m

e
(s

ec
o
n
d
s)

restarting cycles

m=4,k=3
m=4,k=2
m=4,k=1

(b) Execution time

FIGURE 7.2: Convergence experiments for different number of shifts on twitter

network, where α = 0.85 and tol = 1E − 7.

cycles, (k = 2) allows the fastest convergence in terms of execution time. In

consequence, keeping a buffer of 1 extra vector accelerates the convergence

rate for the dominant eigenpair.

Similar experiments are conducted for yahoo network using 144 nodes of

“Graphene” cluster with one MPI process per core. The results are presented

97

in Fig. 7.3. Parameter configurations (k = 7) and (k = 6) have almost the

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30 35

re
si

d
u
al

 n
o
rm

restarting cycles

m=8,k=7
m=8,k=6
m=8,k=5

(a) Number of restarting cycles

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30 35

ti
m

e
(s

ec
o
n
d
s)

restarting cycles

m=8,k=7
m=8,k=6
m=8,k=5

(b) Execution time

FIGURE 7.3: Convergence experiments for different number of shifts on yahoo net-

work, where α = 0.85 and tol = 1E − 8.

same convergence rate, while (k = 5) converges much slower.

To sum up, retaining more eigenvectors in IRAM (k > 1) is generally

beneficial to the convergence of dominant eigenpair.

7.5.4 Strong scalability tests

In this experiment, we run each MPI process on one 4-core CPU with 4

OpenMP threads. So each core has only one OpenMP thread running on it.

Firstly, we test the scalability of sparse MVP on com-Youtube network.

Fig. 7.4 shows the computation time as a function of number of processors.

The first curve in the top-down order corresponds to an equal-partitioned

scheme with �n/p� rows per processor. The curve below shows the strong

scalability result of hypergraph partitioning on matrix A. Equal-partitioned

scheme leads to slower computation due to more significant communica-

tions overhead. The result shows that the hypergraph partitioning strategy

is useful to handle matrices of this particular structure. And our implemen-

tation has obtained up to 11× acceleration with many cores.

In the second place, we conduct scalability tests for our parallel MIRAM

implementation. The experiments are conducted for com-Youtube and soc-

LiveJournal1 matrices. Still, we see that the hypergraph-based implemen-

tation outperforms the equal-partitioned version. With 160 processors, we

have obtained an acceleration up to 27×.

98

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140 160

ti
m

e
(s

ec
o
n
d
s)

of cores

hypergraph partitioning
equal partitioning

FIGURE 7.4: Scalability experiment of sparse MVP for com-Youtube network,

where α = 0.85, on “Griffon cluster”

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160

ti
m

e
(s

ec
o

n
d

s)

of cores

hypergraph partitioning
equal partitioning

(a) MIRAM(4,8) for com-Youtube, on

“Griffon cluster”

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160

ti
m

e
(s

ec
o

n
d

s)

of cores

hypergraph partitioning
equal partitioning

(b) MIRAM(4,8,16) for soc-LiveJournal1,

on “Granduc cluster”

FIGURE 7.5: Scalability experiment of MIRAM, where α = 0.85, k = 2 and tol =

1E − 12.

Parallel efficiency has tendency to decrease as the number of nodes in-

crease. This is because the communication overhead is important in grid

systems. As shown in Fig. 7.3(b), with 144 grid nodes, we could expect an

execution time around 8 hours for a very large network such as yahoo, com-

parable to a country/continental wide realistic scenario.

99

7.5.5 MIRAM vesus IRAM

Concerning the use of the parallelism of the system, we use 30 nodes

from “Griffon" cluster. We run one MPI process on each node with 8

OpenMP threads (one OpenMP thread per core). Totally, 240 cores are used

for each test.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0 20 40 60 80 100 120 140

re
si

d
u
al

 n
o
rm

restarting cycles

MIRAM(2,3,4,5,6)
MIRAM(2,6)
MIRAM(4,6)

IRAM(6)

(a) Number of restarting cycles

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140

ti
m

e
(s

ec
o
n
d
s)

restarting cycles

MIRAM(2,3,4,5,6)
MIRAM(2,6)
MIRAM(4,6)

IRAM(6)

(b) Execution time

FIGURE 7.6: MIRAM versus IRAM for com-Youtube, where α = 0.99, k = 1 and

tol = 1E − 6.

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0 50 100 150 200 250 300 350 400

re
si

d
u
al

 n
o
rm

restarting cycles

MIRAM(4,8)
MIRAM(8)

(a) Number of restarting cycles

 1

 10

 100

 1000

 0 50 100 150 200 250 300 350 400

ti
m

e
(s

ec
o
n
d
s)

restarting cycles

MIRAM(4,8)
MIRAM(8)

(b) Execution time

FIGURE 7.7: MIRAM versus IRAM for com-Youtube, where α = 0.85, k = 1 and

tol = 1E − 8.

In Fig. 7.6(a), MIRAM(2,3,4,5,6) and MIRAM(2,6) use fewer restarting

cycles than IRAM(6). The result shows that the convergence of MIRAM can

be better than that of IRAM. Nevertheless, MIRAM(4,6) using the most res-

tarting cycles indicates that an unfortunate parameter setting for MIRAM

could result in slower convergence. Moreover, it is not the number of sub-

100

space spaces who counts. In fact, MIRAM(2,6) uses the fewest restarting

cycles in this test.

Fig. 7.6(b) shows that IRAM(6) has the fastest convergence in terms of

execution time. As analysed in section 3.2, one restarting cycle of MIRAM

(when m� is chosen) is more expensive than that of IRAM. Indeed, from

Fig. 7.8(a), we see that m� is used most of the time for all three MIRAMs.

That is the reason why MIRAM spends less restarting cycles but uses more

execution time.

The good news is that MIRAM can significantly reduce the number of

restarting cycles, which could compensate for its additional computation

cost. This is demonstrated by the result shown in Fig. 7.7 and Fig. 7.8(b).

 1

 10

 0 20 40 60 80 100 120

se
le

ct
ed

 s
u
b
sp

ac
e

restarting cycles

MIRAM(2,3,4,5,6)
MIRAM(2,6)
MIRAM(4,6)

(a) α = 0.99 and tol = 1E − 6

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100

se
le

ct
ed

 s
u
b
sp

ac
e

restarting cycles

MIRAM(4,8)

(b) α = 0.85 and tol = 1E − 8

FIGURE 7.8: Evolution of mbest in MIRAM along restarting cycles for com-Youtube,

where k = 1.

Due to the limitation on subspace size for large scale applications, IRAM

may not be efficient for computing the dominant eigenvector for such large

sparse non-Hermitian matrices. Making use of several nested Krylov sub-

spaces could help to improve the convergence as shown in our experiments.

Furthermore, the number of MVP in MIRAM is decided by the largest sub-

space size because other subspaces are nested within this one. As a re-

sult, MIRAM(m1, · · · , m�) accelerates the convergence of IRAM(m�) with

the same number of MVP in each restarting cycle.

101

7.5.6 Vaccination strategies based on PageRank

In this experiment, we use a small network ba to simulate the real world

epidemic spread with distribution of vaccination. We consider people who

receive vaccination being permanently immunized against viruses. For lar-

ger network, parallelization will be needed due to the memory and compu-

tation requirement but the implementation of such parallel simulator is not

the objective of the test.

We assume a universal infection rate ν, a jumping rate 1 − α (damping

factor) and a curing rate δ for every individual. Before each simulation, we

randomly choose a set of infected individuals. Then the propagation of virus

proceeds by time step. During each time step, an infected individual infects

each of its neighbours with probability ν. And this infected individual also

passes the disease to another random chosen non-neighbour by probability

1 − α. Additionally, every infected individual is cured with probability δ.

The result is the average over 10 runs and it is presented in Fig. 7.9. Here,

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140

N
u

m
b

e
r

o
f
in

fe
c
te

d
 i
n

d
iv

id
u

a
ls

Time

Simulation without vaccination
Random distribution of vaccination

Distribution of vaccination using our model

FIGURE 7.9: Time series of infection in an 7010-node power-law social net-

work ba, with α = 0.85, ν = 0.2 and δ = 0.24

we compare three cases. First of all, without distribution of vaccination, we

try to give the worst case for time evolution of infection. Secondly, with

random distribution of vaccination, we begin the simulation by distributing

vaccination to a random chosen group of individuals. Then, we simulate

time evolution of infection. Thirdly, with distribution of vaccination using

the PageRank-like vector, we calculate the infection vector for the under-

lying social network and then distribute vaccination to individuals with big

ranking in the vector.

102

The figure verifies the absence of epidemic threshold in scale-free net-

works [89]. Without interventions, the epidemic will always enter an ende-

mic state. The second curve, in top-down order from the figure, shows that

random distribution of vaccination could not prevent the virus from en-

tering the endemic state. However, distributing vaccination to individuals

with big ranking in the PageRank-like vector makes the epidemic die out

quickly. This simple experiment confirms the important implication of in-

fection vector for the control of epidemic spread.

7.6 Conclusion

Discuss these results in the context of models and numerical methods

proposed.

Modeling of epidemic spread benefits a lot from network research to un-

derstand infection evolution in a population. PageRank-like model could

give insight for understanding the impact of social network structure on

propagation of virus and could possibly help identifying individuals most

likely to spread the disease. Besides, parallelization makes the model com-

putationally adavantageous over Monte Carlo simulation. Numerical re-

sults obtained are quite promising.

We demonstrate that PageRank can be computed using numerical me-

thods based on sparse MVP and propose to use a multiple implicitly restar-

ted Arnoldi method. The proposed parallel MIRAM implementation takes

into account the scale-free structure of the underlying networks and is sca-

lable to handle memory and computation issues arising from very large net-

works such as twitter and yahoo network. From our tests, we have obtained

a speedup of 27× compared to sequential solver. Additionally, it is found in

Experiment 7.5.3 that the shifts used in a single IRAM process could help

to accelerate the convergence of method even under constraints caused by

storage.

For future work, we intend to expand the proposed epidemic model by

including various indicators of epidemic spread, such as characteristics of

individuals as well as that of viruses, spreading timestamps, etc. Moreo-

ver, we intend to investigate the behaviour of auto-tuning strategy based on

103

IRAM within the context of PageRank.

104

Chapitre 8

Conclusion and future work

The present thesis addresses the computational modelling problem of

complex systems and health systems. The objective is to investigate the com-

putational approach for modelling very large scale complex phenomenon

such as epidemic spread. There are several contributions of this thesis : a

computational epidemic model combining PageRank model and models ba-

sed on pretopology, use of multiple implicitly restarted Arnoldi method and

proposition of its parallel implementation for PageRank computation, and

proposition of a parallel social graph generator allowing to test the above

methods over very large scale synthetic data.

Modeling of epidemic spread benefits a lot from network research to un-

derstand infection evolution in a population. PageRank-like model could

shed light on understanding the impact of social network structure on pro-

pagation of virus and could help identifying individuals most likely to

spread the disease. Besides, parallelism makes the model computationally

adavantageous over traditional approaches.

8.1 Pretopology as a tool for modelling social net-

works

A social network is composed from different types of links between in-

dividuals, which implies that one graph is not sufficient to cover the com-

plexity of the real world. So we propose a new mathematical formalism for

modelling social networks, dealing with families of graphs. This formalism

105

enables to study topological properties of a network by means of a genera-

lization of mathematical topology, called pretopology [13].

8.1.1 Basics on pretopoloy

Let’s consider a non empty set E. We define a function a(.) from the po-

wer set P(E) of E into itself such as :

(P1) a(∅) = ∅

(P2) ∀A, A ⊂ E, A ⊂ a(A)

a(.) is called pseudo-closure on E. Then, the couple (E, a(.)) is called a "pre-

topological space". As in topology, we can define the interior function i(.)

by putting : ∀A ⊂ E, i(A) = (a(Ac))c where Ac denotes the complementary

of A in E. Thus, related to usual concepts of topology, we only keep two first

properties of the topological closure mapping.

Different pretopological spaces

A basic pretopological space (E, a(.)) is such as :

(P1) a(∅) = ∅

(P2) ∀A, A ⊂ E, A ⊂ a(A)

V type space

Let us consider the following axiom :

(P3) ∀A, A ⊂ E, ∀B, B ⊂ E, A ⊂ B ⇒ a(A) ⊂ a(B)

Definition 1. if a(.) fulfils P1, P2 and P3, we say that (E, a(.)) is a V type space.

In this case, the concept of neighbourhood becomes a quite interesting

one. In pretopology, this concept is defined in the same way as in topology.

Definition 2. Let (E, a(.)) be a V type space. Any subset V of E is said a neigh-

bourbood of x, x ∈ E if and only if x ∈ i(V).

However, in pretopology, the family V(x) of neighbourhood of any x

does not fulfils the same properties. In fact, generally speaking, the only

106

thing we can say is that V(x) is a prefilter of subsets of E, i.e. :

∀x ∈ E, ∅ /∈ V(x)

∀x ∈ E, ∀V ∈ V(x), ∀W ⊂ E, V ⊂ W ⇒ W ∈ V(x)

In particular, generally speaking, we cannot say :

∀x ∈ E, ∀V ∈ V(x), ∀W ⊂ E, V ∩ W ∈ V(x)

VD type space

Let us consider the following axiom :

(P4) ∀A, A ⊂ E, ∀B, B ⊂ E, a(A ∪ B) = a(A) ∪ a(B)

Definition 3. if a(.) fulfils P1, P2 and P4, we say that (E, a(.)) is a VD type space.

Obviously, if (E, a(.)) is a VD type space, it also is a V type space. And

the family of neighbourhoods of any x in E is a filter, i.e. V(x) is a prefilter

and satisfies the following property :

∀V ∈ V(x), ∀W ∈ V(x), V ∩ W ∈ V(x).

Vs type space

Let us consider the following axiom :

(P5) ∀A, A ⊂ E, a(A) =
⋃

x∈A a({x})

Definition 4. if a(.) fulfils P1, P2 and P5, we say that (E, a(.)) is a Vs type space.

Clearly, if (E, a(.)) is a Vs type space, it also is a VD type space and then

a V type space. Moreover, the family of neighbourhoods of x satisfies the

following property :
⋂

V∈V(x) ∈ V(x).

This property is interesting from a computational point of view as it im-

plies that it is sufficient to compute pseudoclosure of singletons of E to get

pseudoclosure of any subset of E.

In fact, pretopology can be viewed as a generalization of graph theory

as well as generalization of topology. Let us consider a finite set E, endo-

wed with a family of binary relationships (Ri)i∈{1,··· ,p}. We suppose these

relationships are reflexive ones. Let us define : ∀A, A ∈ P(E), a(A) = {x ∈

107

E|∀i = 1, · · · , p, Γi(x) ∩ A �= ∅} where Γi(x) = {y ∈ E|xRiy}. Then it is ob-

vious that a(.) verifies properties of a V type pretopological space. The pre-

topological space (E, a(.)) can be analyzed regarding to "topological" pro-

perties : closed subset, open subset, properties related to connectivity and

so on.

We thus get a structure on E, via a(.), which enables characterizing some

properties by taking into account the whole family of relationships defined

on E.

Also, it must be noticed that there exists a great variety for defining a

pseudo-closure a(.) on E from the family (R)i∈{1,··· ,p}.

8.1.2 Basics on random correspondences

Up to now, we have given a mathematical model for modeling pheno-

menons accuring in a finite set E endowed with a family (R)i∈{1,··· ,p} of

reflexive binary relationships. However, what if each of these relationships

model relations between agents accuring more or less at random ? In that

case, pretopology must be completed by using concepts on random corres-

pondances to lead what is called stochastic pretopology. In this subsection,

we give basic concepts related to random correspondances in the specific

context of Rn.

Definition I

Let us consider a measurable space (Ω,A) and a correspondence Γ into

Rn. Gamma is assumed a non empty compact valued correspondence. We

also suppose that Ω is locally compact and A is defined as follows :

Starting from B the σ−algebra of borelians of Ω, we complete it to obtain

Bp (p being the probability on B) and we consider :

A = {A, A ⊂ Ω|A ∩ K ∈ Bp, ∀K ∈ K(Rn)}
where K(Rn) is the family of compacts of Ω.

Definition 5. Let us consider (Ω,A) a measurable space, Γ−−↗
↘ Rn. We say that

Γ is measurable in the sense I if and only if for all F, closed subset of Rn,

A = {ω ∈ Ω : Γ(ω) ∩ F �= ∅} ∈ A.

108

This definition can also be rewritten as follows : for any O open subset

of Rn,

B = {ω ∈ Ω : Γ(ω) ⊂ O} ∈ A.

Definition II

In this subsection, G(Γ) denotes the graph of the correspondence Γ, i.e.

G(Γ) = {(ω, x) ∈ Ω ×R(Rn)|x ∈ Γ(ω)} and Bn denotes the σ−algebra of

borelians of Rn.

Definition 6. Let us consider (Ω,A) a measurable space, Γ−−↗
↘ Rn. We say that

Γ is measurable in the sense II if and only if G(Γ) ∈ A⊗ Bn.

Definition III

As correspondences are compact valued, a third proposition can be pro-

posed. Let us consider the following families :

Uw = {K.K ∈ K(Rn)|K ∩ U �= ∅, ∀U ∈ O(Rn)}
U s = {K.K ∈ K(Rn)|K ⊂ U, ∀U ∈ O(Rn)}
where O(Rn) denotes the family of open subsets of Rn.

These two families define a topology T on K(Rn) which is equivalent

to the topology generated by the Hausdorff metric. Thus K(Rn) also is a

separable metric space. Let us consider Σn the σ−algebra of borelians of

K(Rn). Γ can be considered not as a correspondence from Ω into Rn but

as a function from Ω into K(Rn). it is possible to consider for Γ, the usual

definition of measurability for functions.

Definition 7. Let us consider (Ω,A) a measurable space, Γ �→ Rn. We say that

Γ is measurable in the sense III if and only if ∀A ∈ Σn, Γ−1(A) ∈ A, where

Γ−1(A) = {ω ∈ Ω|Γ(ω) ∈ A}.

We get the following result :

Theorem 1. Let us consider (Ω,A) a complete measurable space, Ω being locally

compact, Γ �→ Rn. The three definitions are equivalent ones.

Proof. First, let us prove the equivalence of definition I and II. For that,

we use the following result.

109

Let (Ω,A, p) a complete measurable space, let E a complete metric separable space

and Γ a correspondence defined upon Ω, valued in the family of closed subsets of E,

then

G(Γ) ∈ A⊗ σ(E) ⇔ {ω ∈ Ω|Γ(ω) ∩ F �= ∅} ∈ A
where σ(E) denotes the σ−algiebra of borelians of E. As Rn and Γ verify

properties of this result, definitions I and II are equivalent.

Now, let us suppose Γ measurable according to definition III and let us

consider, for any closed subset F of Rn, the set A = {ω|Γ(ω) ∩ F �= ∅}.

A = {ω ∈ Ω|Γ(ω) ⊂ Fc}c, where Fc denotes the complementary of F in

Rn. Fc is an open subset of Rn and A = Γ−1((Fc)s). As Γ is measurable ac-

cording to definition III, Γ−1((Fc)s) ∈ A and Γ is measurable according to

definition I. To prove that definition I implies definition III, it is sufficient

using the following result :

(Ω,A) is a measurable space, Ω is locally compact, if f is a function from (Ω,A)

in E, E is a separable metric space endowed with its borelians, then f measurable is

equivalent to f p−measurable.

This result is applied to Γ as a function from (Ω,A) into K(Rn). This leads

to result. �

By combining results provided by pretopology and by random corres-

pondance theory, we obtain the model of stochastic pretopology which

leads to a formal definition of stochastic networks as in the following sub-

section.

8.1.3 Basics on stochastic networks

The pretopology does not take into account exogenous random factors.

Since we are in the context of set-approach (adherence is a function defi-

ned by sets), we propose to use the random sets to build a stochastic model,

named stochastic pretopology. The objective is to be able to explore the dy-

namic of complex social networks.

Given a finite population E, with n individuals, given a probability space

(Ω,A, p), we consider the following operator R(.) defined as :

R(.) : (Ω,A, p) �→ R(E)

where R(E) denotes the set of all binary relationships (networks) on E. By

110

definition, R(E) is a family of subsets of E × E. So, we assume that R(E) is

random set, i.e. a measurable correspondence from (Ω,A, p) into E × E.

Definition 8. R(E) is called a stochastic network operator.

Definition 9. We define a network as a family of {R}i=1,··· ,p of binary relation-

ships on E.

Without loss of generality, we can assume that relationships Ri are re-

flexive ones.

Pretopology on a stochastic network

Basic concepts of pretopology and of random correspondences are res-

pectively presented in the precedent paragraph. In this section, we define

a pretopological structure on a stochastic network and list its basic proper-

ties.

Let E be a finite set. Let Ri a stochastic network defined on a probability

space (Ω,A, p). let us consider, for any subset of A of E, the function a(., .)

defined by :

a(., .) : (Ω,A, p),P(E) �→ P(E) such that

a(ω, A) = {x ∈ E|∀i, Γi(ω, x) ∩ A �= ∅}
where Γi(ω, x) = {y ∈ E|xRi(ω)y}. Then :

Theorem 2. (E, a(., .)) with a(., .) as previously defined is a stochastic pretopolo-

gical space.

Proof. Let x ∈ E, we put φi(ω, x) = 1 if Γi(ω, x) ∩ A �= ∅ and φi(ω, x) =

0 otherwise. So, {x ∈ E|Γi(ω, x) ∩ A �= ∅} is a random correspondence for

and A ⊂ E. As for any A ⊂ E, a(ω, A) is a finite union of ai(ω, A), the

correspondence ω → a(ω, A) is a random correspondence. So, (E, a(., .)) is

a stochastic pretopology. �

According to definition of a(., .) we have x ∈ a(ω, A) ⇔ ∀i, Γi(ω, x) ∩
A �= ∅. In other words, x ∈ a(ω, A) ⇔ ∀i, ∃y ∈ A, xRi(ω)y. So x ∈ a(ω, A)

means that, for any kind of relationship, there exists a link between x and at

least one element of A. ‖ a(ω, A) ‖ then is a good indicator of influence of

A in the network in the sense that the greater it is, the greater is the number

111

of elements outside A linked to, at least, one element of A, whatever the na-

ture of the link. By definition (see Appendix A), ∀A ⊂ E, ∀ω ∈ Ω, i(ω, A) =

(a(ω, Ac))c. Then, i(ω, A) is the subset of elements of A for which it is pos-

sible to find out at least one relationship such that all children of x are in A

for which we can find out at least one relationship for which their children

are in A. This leads us to the following definition :

Definition 10. We call pseudoclosure ratio, the quantity

pcr(ω, A) =
‖ a(ω, A) ‖

‖ A ‖ (8.1)

We call interior ratio the quantity

ir(ω, A) =
‖ i(ω, A) ‖

‖ A ‖ (8.2)

Then

Theorem 3. ∀A ⊂ E, ω → pcr(ω, A) is a random variable. ∀A ⊂ E, ω →
ir(ω, A) is a random variable.

Proof. It is sufficient to note that ‖ a(ω, A) ‖= ∑x∈E 1a(ω,A)(x) and that,

a(., A) is a random correspondence, 1a(ω,A)(x) is a random variable.

Obviously, there is a strong link between stochastic networks and ran-

dom graphs. In fact, in cases where there is only one relationship in the net-

work, we are faced to a random graph. The difference between our approach

and usual approaches is that pretopology and stochastic pretopology pro-

vide us with a topological analysis of the network based on concepts fully

adapted to discrete spaces. Another advantage is to be able to compute sta-

tistics, to perform statistical analysis on indicators such as pcr(., .) and ir(., .)

and to use new concepts of connectivity defined in the framework of preto-

pology.

As shown in the Fig.8.1, the four zones correspond to :

1. pcr(ω, A) is close to 1 and ir(ω, A) is close to 1. The set A and its comple-

mentary suffers little from each other. This characterizes a subset of "isola-

ted" network.

2. pcr(ω, A) is close to 1 and ir(ω, A) is close to 0. The set A suffers little

from its complementary while its complementary suffers a lot from A.

112

pcr(ω, A)

ir(ω, A)

0
1

1

‖E‖
‖A‖

1

2 3

4

FIGURE 8.1: Pseudoclusure ratio and interior ratio relationships

3. pcr(ω, A) is close to its maximum and ir(ω, A) is close to 0. The set A

generates a lot of influence and it suffers a lot from its complementary as

well.

4. pcr(ω, A) is close to 1 and ir(ω, A) is close to 1. The set A generates little

influence while it suffers a lot from its complementary.

Noticed that these parameters are among the list of parameters in pre-

topology, which generalize that computed in the theory of random graphs.

In addition, stochastic pretopology can be generalized to apply to hyper-

graphs, whose vertex is a set of nodes. The parameters, which are initially

calculated over the nodes of a graph, are now calculated over these sets of

nodes. This generalization can be, for example, used to study the commu-

nity structure in a society. As a result, its application to the propagation of

infectious disease is obvious.

From a computational point of view, modelling based on stochastic pre-

topology can be implemented by a group of stochastic networks. The propa-

gation of infectious disease on each network can be modelled as a Markov

chain and can be computed within the framework of the actual thesis.

113

8.2 Asynchronous MIRAM

In this section, we focus on the possible improvement of computational

approach to compute the rightmost eigenpairs on stochastic networks. It is

known that PageRank can be computed using numerical methods based on

sparse MVP and we propose to use a parallel “multiple IRAM” algorithm

(MIRAM). From the Experiment 5.4, we see that MIRAM is promising espe-

cially for big damping factors. The parallel MIRAM implementation takes

into account the scale-free structure of underlying networks and is scalable

to handle memory and computation issues arising from very large networks

such as twitter and yahoo network. From our tests, we have obtained a spee-

dup of 27× compared to sequential solver. Additionally, it is found in Expe-

riment 7.5.3 that thick restart could help accelerate the convergence of the

method even under constraints caused by storage.

MIRAM (with nested or non nested subspaces) has a great potential for

large coarse grain parallelism among its Arnoldi factorizations. In fact, the

restarting vector can be made different among processors. In this case, the

whole orthogonal basis of the chosen subspace should also be sent to pro-

cessors. Consequently, the computation in different subspaces of MIRAM

will be asynchronous. This coarse grain parallelism is fault tolerant since

any loss of an IRAM process during MIRAM execution does not interfere

with its termination. All these properties show that MIRAM is well suitable

for large scale distributed computational environments.

Here we present a possible implementation approach of the asynchro-

nous MIRAM. The idea is to add a central server (can be a group of nodes)

that accumulates eigen-information from each MIRAM instance. The sever

will then respond to MIRAM instance for available mbest. This idea is des-

114

cribed in Algorithm 5.

Algorithm 5: Asynchronous MIRAM

Data: (A, Vmi , Hmi , fmi) with AVmi = Vmi Hmi + fmi e
T
mi

the mi-steps

Arnoldi factorization (i = 1, 2, . . . , �). Coarse grain parallelism

is used to distribute different subspace mi. Fine grain

parallelism is used to distribute the origin matrix A and

different orthogonal basis Vmi and fmi . Noticing that every

triplet (Hmi , Vmi , fmi) should be sent to the server at the

beginning.

for each subspace size mi do
1. (server)

• Compute σ(Hmi) and their associated eigenvectors (for

i = 1, . . . , �)

• Compute residual norms. If convergence in one of subspaces

then stop.

• Select the best results in these subspaces and the associated best

subspace size mbest. Set m = mbest, Hm = Hmbest and

Vm = Vmbest , fm = fmbest .

• Select set of p = m − k shifts (µ(m)
1 , . . . , µ

(m)
p), based upon σ(Hm)

or perhaps other information and set qT ← eT
m.

2. (MIRAM instance)

if Available mbest from server then

for j = 1, . . . , p do

• Factor [Qj, Rj] = qr(Hm − µ
(m)
j I) ;

• Hm ← QH
j HmQj; Vm ← VmQj,

• q ← qHQj

else
done

3. Set fk ← vk+1β̂k + fmq(k), Vk ← Vm(1 : n, 1 : k), Hk ← Hm(1 : k, 1 : k)

4. Beginning with the k-step Arnoldi factorization AVk = VkHk + fkeT
k ,

apply pi = mi − k additional steps of the Arnoldi process to obtain �

new mi-step Arnoldi factorization AVmi = Vmi Hmi + fmi e
T
mi

(for

i = 1, . . . , �).

115

The analysis of intra and inter Arnoldi factorizations parallelism in the

asynchronous version of MIRAM can be the subject of a future work. Mo-

reover, we intend to expand the proposed epidemic model by including va-

rious indicators of epidemic spread, such as characteristics of individuals as

well as that of viruses, spreading timestamps, etc.

116

Bibliographie

[1] BA Data Sets. http://topology.eecs.umich.edu/data.html.

[2] SNAP Data Sets. http://snap.stanford.edu/data/index.html.

[3] Modeling Community Containment for Pandemic Influenza : A Letter

Report. Technical report, 2006.

[4] Maksudul Alam, Maleq Khan, and Madhav V. Marathe. Distributed-

memory parallel algorithms for generating massive scale-free net-

works using preferential attachment model. In Proceedings of the Inter-

national Conference on High Performance Computing, Networking, Storage

and Analysis, SC ’13, pages 91 :1–91 :12, New York, NY, USA, 2013.

ACM. ISBN 978-1-4503-2378-9. doi : 10.1145/2503210.2503291. URL

http://doi.acm.org/10.1145/2503210.2503291.

[5] R. Albert, H. Jeong, and A. Barabási. Error and attack tolerance of

complex networks. Nature, 406 :378–382, 2000.

[6] G. S. Almasi and A. Gottlieb. Highly Parallel Computing. Benjamin-

Cummings Publishing Co., Inc., Redwood City, CA, USA, 1989. ISBN

0-8053-0177-1.

[7] W. E. Arnoldi. The principle of minimized iterations in the solution

of the matrix eigenvalue problem. Q. Appl. Math, 9(17) :17–29, 1951.

[8] A. Bai, D. Day, J. Demmel, and J. Dongarra. A Test Matrix Collection

for Non-Hermitian Eigenvalue Problems. Technical report, Knoxville,

TN, USA, 1997.

[9] A. H. Baker, E. R. Jessup, and Tz. V. Kolev. A Simple Strategy for

Varying the Restart Parameter in GMRES(m). J. Comput. Appl. Math.,

117

http://topology.eecs.umich.edu/data.html
http://snap.stanford.edu/data/index.html
http://doi.acm.org/10.1145/2503210.2503291

230(2) :751–761, August 2009. ISSN 0377-0427. doi : 10.1016/j.cam.

2009.01.009. URL http://dx.doi.org/10.1016/j.cam.2009.01.009.

[10] A. Barabási and R. Albert. Emergence of Scaling in Random Net-

works. Science, 286(5439) :509–512, October 1999.

[11] A. Barabási and R. Albert. Statistical mechanics of complex networks.

Rev. Mod. Phys., 74 :47–97, 2002.

[12] Vladimir Batagelj and Ulrik Brandes. Efficient generation of large

random networks. Phys. Rev. E, 71 :036113, Mar 2005. doi :

10.1103/PhysRevE.71.036113. URL http://link.aps.org/doi/10.

1103/PhysRevE.71.036113.

[13] Z. Belmandt. Manuel de prétopologie. Hermès, 1993.

[14] Pavel Berkhin. A survey on pagerank computing. Internet Mathema-

tics, 2 :73–120, 2005.

[15] K. Bisset, J. Chen, X. Feng, VS. Anil Kumar, and M. Marathe. EpiFast :

A fast algorithm for large scale realistic epidemic simulations on dis-

tributed memory systems. In Proceedings of 23rd ACM International

Conference on Supercomputing (ICS’09), pages 430–439, 2009.

[16] Keith Bisset. Urgent computing for interaction based socio-technical

simulations. Invited presentation to Argonne National Laboratory,

April .

[17] Erik G. Boman, Ümit V. Çatalyürek, Cédric Chevalier, and Karen D.

Devine. The Zoltan and Isorropia parallel toolkits for combinatorial

scientific computing : Partitioning, ordering and coloring. Scientific

Programming, 20(2) :129–150, 2012.

[18] Stefan Bornholdt and Thimo Rohlf. Topological evolution of dyna-

mical networks : Global criticality from local dynamics. Phys. Rev.

Lett., 84 :6114–6117, Jun 2000. doi : 10.1103/PhysRevLett.84.6114. URL

http://link.aps.org/doi/10.1103/PhysRevLett.84.6114.

118

http://dx.doi.org/10.1016/j.cam.2009.01.009
http://link.aps.org/doi/10.1103/PhysRevE.71.036113
http://link.aps.org/doi/10.1103/PhysRevE.71.036113
http://link.aps.org/doi/10.1103/PhysRevLett.84.6114

[19] Mic Bowman, Saumya K. Debray, and Larry L. Peterson. Immuniza-

tion of networks with community structure. New Journal of Physics, 11

(123018), 2009.

[20] Jeremy T. Bradley, Douglas de Jager, William J. Knottenbelt, and Alek-

sandar Trifunovic. Hypergraph Partitioning for Faster Parallel Page-

Rank Computation. In EPEW’05, Proceedings of the 2nd European Perfor-

mance Evaluation Workshop, volume 3670 of Lecture Notes in Computer

Science, pages 155–171, September 2005. URL http://pubs.doc.ic.

ac.uk/hypergraph-fast-pagerank/.

[21] Andrei Z. Broder, Ronny Lempel, Farzin Maghoul, and Jan Pedersen.

Efficient pagerank approximation via graph aggregation. In Procee-

dings of the 13th international World Wide Web conference on Alternate

track papers & posters, WWW Alt. ’04, pages 484–485, New York, NY,

USA, 2004. ACM. ISBN 1-58113-912-8. doi : 10.1145/1013367.1013537.

URL http://doi.acm.org/10.1145/1013367.1013537.

[22] Helene Broutin, Eric Elguero, Francois Simondon, and Jean-Francois

Guegan. Spatial dynamics of pertussis in a small region of Senegal.

Proceedings of The Royal Society B : Biological Sciences, 271 :2091–2098,

2004. doi : 10.1098/rspb.2004.2847.

[23] Kurt Bryan and Tanya Leise. The $25,000,000,000 Eigenvector : The

linear Algebra behind Google. SIAM Rev., 48(3) :569–581, March 2006.

ISSN 0036-1445. doi : 10.1137/050623280. URL http://dx.doi.org/

10.1137/050623280.

[24] Umit Catalyurek and Cevdet Aykanat. Hypergraph-Partitioning-

Based Decomposition for Parallel Sparse-Matrix Vector Multiplica-

tion. IEEE Trans. Parallel Distrib. Syst., 10(7) :673–693, July 1999. ISSN

1045-9219. doi : 10.1109/71.780863. URL http://dx.doi.org/10.

1109/71.780863.

[25] Dennis L. Chao, M. Elizabeth Halloran, Valerie J. Obenchain, and

Ira M. Longini, Jr. FluTE, a Publicly Available Stochastic Influenza

Epidemic Simulation Model. PLoS Comput Biol, 6(1) :e1000656, 01

2010. doi : 10.1371/journal.pcbi.1000656.

119

http://pubs.doc.ic.ac.uk/hypergraph-fast-pagerank/
http://pubs.doc.ic.ac.uk/hypergraph-fast-pagerank/
http://doi.acm.org/10.1145/1013367.1013537
http://dx.doi.org/10.1137/050623280
http://dx.doi.org/10.1137/050623280
http://dx.doi.org/10.1109/71.780863
http://dx.doi.org/10.1109/71.780863

[26] D. P. Chassin and C. Posse. Evaluating North American electric grid

reliability using the Barabási Albert network model. Physica A, 355 :

667–677, 2005.

[27] Fan R. K. Chung, Paul Horn, and Alexander Tsiatas. Distributing An-

tidote Using PageRank Vectors. Internet Mathematics, 6(2) :237–254,

2009.

[28] R. Cohen, S. Havlin, and D. Ben-Avraham. Efficient Immunization

Strategies for Computer Networks and Populations. Phys. Rev. Lett.,

91(247901), 2003.

[29] Reuven Cohen, Keren Erez, Daniel ben Avraham, and Shlomo Havlin.

Resilience of the Internet to Random Breakdowns. Phys. Rev. Lett.,

85 :4626–4628, Nov 2000. doi : 10.1103/PhysRevLett.85.4626. URL

http://link.aps.org/doi/10.1103/PhysRevLett.85.4626.

[30] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart. Reortho-

gonalization and Stable Algorithms for Updating the Gram-Schmidt

QR Factorization. Mathematics of Computation, 30(136) :772–795, 1976.

ISSN 00255718. doi : 10.2307/2005398. URL http://dx.doi.org/10.

2307/2005398.

[31] K. Dookhitram, R. Boojhawon, and M. Bhuruth. A New Method

for Accelerating Arnoldi Algorithms for Large Scale Eigenproblems.

Math. Comput. Simul., 80(2) :387–401, October 2009. ISSN 0378-4754.

doi : 10.1016/j.matcom.2009.07.009. URL http://dx.doi.org/10.

1016/j.matcom.2009.07.009.

[32] I. S. Duff and J. A. Scott. Computing Selected Eigenvalues of Sparse

Unsymmetric Matrices Using Subspace Iteration. ACM Trans. Math.

Softw., 19(2) :137–159, June 1993. ISSN 0098-3500. doi : 10.1145/

152613.152614. URL http://doi.acm.org/10.1145/152613.152614.

[33] Nadav Eiron, Kevin S. McCurley, and John A. Tomlin. Ranking the

web frontier. In Proceedings of the 13th international conference on World

Wide Web, WWW ’04, pages 309–318, New York, NY, USA, 2004. ACM.

120

http://link.aps.org/doi/10.1103/PhysRevLett.85.4626
http://dx.doi.org/10.2307/2005398
http://dx.doi.org/10.2307/2005398
http://dx.doi.org/10.1016/j.matcom.2009.07.009
http://dx.doi.org/10.1016/j.matcom.2009.07.009
http://doi.acm.org/10.1145/152613.152614

ISBN 1-58113-844-X. doi : 10.1145/988672.988714. URL http://doi.

acm.org/10.1145/988672.988714.

[34] Nahid Emad. Parallel numerical linear algebra. chapter Mapping

Strategies in Data Parallel Programming Models ; the Projection Me-

thods, pages 57–70. Nova Science Publishers, Inc., Commack, NY,

USA, 2001. ISBN 1-59033-114-1. URL http://dl.acm.org/citation.

cfm?id=644383.644387.

[35] Nahid Emad, Serge Petiton, and Guy Edjlali. Multiple explicitly res-

tarted Arnoldi method for solving large eigenproblems. SIAM Journal

on scientific computing SJSC, Volume 27, Number, 27 :253–277, 2005.

[36] M. Embree. The Tortoise and the Hare Restart GMRES. SIAM Review,

45(2) :259–266, 2003.

[37] P. Erdös and A. Rényi. On the evolution of random graphs. Publ.

Math. Inst. Hung. Acad. Sci., 1960.

[38] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On

Power-law Relationships of the Internet Topology. SIGCOMM Com-

put. Commun. Rev., 29(4) :251–262, August 1999. ISSN 0146-4833. doi :

10.1145/316194.316229. URL http://doi.acm.org/10.1145/316194.

316229.

[39] S.A.S. Fazeli. Stratégies de redémarrage des méthodes itératives d’algèbre

linéaire pour le calcul global. 2005. URL http://books.google.be/

books?id=FH10twAACAAJ.

[40] Seyed Abolfazl Shahzadeh Fazeli, Nahid Emad, and Zifan Liu. A key

to choose subspace size in implicitly restarted Arnoldi method. Sprin-

ger Journal of Numerical Algorithms, accepted.

[41] F.Chatelain. Eigenvalues of matrices. Wiley, 1993.

[42] Jacques Ferber. Multi-Agent Systems : An Introduction to Distributed

Artificial Intelligence. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1st edition, 1999. ISBN 0201360489.

121

http://doi.acm.org/10.1145/988672.988714
http://doi.acm.org/10.1145/988672.988714
http://dl.acm.org/citation.cfm?id=644383.644387
http://dl.acm.org/citation.cfm?id=644383.644387
http://doi.acm.org/10.1145/316194.316229
http://doi.acm.org/10.1145/316194.316229
http://books.google.be/books?id=FH10twAACAAJ
http://books.google.be/books?id=FH10twAACAAJ

[43] Michael J. Flynn. Some computer organizations and their effective-

ness. IEEE Trans. Comput., 21(9) :948–960, September 1972. ISSN 0018-

9340. doi : 10.1109/TC.1972.5009071. URL http://dx.doi.org/10.

1109/TC.1972.5009071.

[44] Sebastian Funk and Vincent A. A. Jansen. Interacting epidemics

on overlay networks. Phys. Rev. E, 81 :036118, Mar 2010. doi :

10.1103/PhysRevE.81.036118. URL http://link.aps.org/doi/10.

1103/PhysRevE.81.036118.

[45] M. Girvan and M. E. J. Newman. Community structure in social and

biological networks. Proceedings of the National Academy of Sciences,

99(12) :7821–7826, June 2002. ISSN 1091-6490. doi : 10.1073/pnas.

122653799. URL http://dx.doi.org/10.1073/pnas.122653799.

[46] David Gleich, Leonid Zhukov, and Pavel Berkhin. Fast parallel Page-

Rank : a linear system approach. Technical Report L-2004-038, Yahoo !

Research Labs, 2004.

[47] G.H. Golub and C. Greif. An Arnoldi-type algorithm for computing

PageRank. BIT Numerical Mathematics, 46(4) :759–771, 2006.

[48] Thilo Gross and Bernd Blasius. Adaptive coevolutionary networks : a

review. J. R. Soc. Interface, 5(20) :259–271, 2008. doi : 10.1098/rsif.2007.

1229.

[49] Thilo Gross, Carlos J. Dommar D’Lima, and Bernd Blasius. Epidemic

dynamics on an adaptive network. Phys. Rev. Lett., 96 :208701, May

2006. doi : 10.1103/PhysRevLett.96.208701. URL http://link.aps.

org/doi/10.1103/PhysRevLett.96.208701.

[50] Taher H. Haveliwala, Sepandar D. Kamvar, and Ar D. Kamvar. The

Second Eigenvalue of the Google Matrix. Technical Report 2003-20,

Stanford InfoLab, 2003.

[51] Bruce Hendrickson and Robert Leland. The Chaco User’s Guide :

Version 2.0. Technical Report SAND94–2692, Sandia National Lab,

1994.

122

http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1109/TC.1972.5009071
http://link.aps.org/doi/10.1103/PhysRevE.81.036118
http://link.aps.org/doi/10.1103/PhysRevE.81.036118
http://dx.doi.org/10.1073/pnas.122653799
http://link.aps.org/doi/10.1103/PhysRevLett.96.208701
http://link.aps.org/doi/10.1103/PhysRevLett.96.208701

[52] Michael Heroux, Roscoe Bartlett, Vicki Howle Robert Hoekstra, Jona-

than Hu, Tamara Kolda, Richard Lehoucq, Kevin Long, Roger Paw-

lowski, Eric Phipps, Andrew Salinger, Heidi Thornquist, Ray Tumi-

naro, James Willenbring, and Alan Williams. An Overview of Trili-

nos. Technical Report SAND2003-2927, Sandia National Laboratories,

2003.

[53] Petter Holme and Gourab Ghoshal. Dynamics of networking agents

competing for high centrality and low degree. Phys. Rev. Lett., 96 :

098701, Mar 2006. doi : 10.1103/PhysRevLett.96.098701. URL http:

//link.aps.org/doi/10.1103/PhysRevLett.96.098701.

[54] Ilse C. F. Ipsen and Teresa M. Selee. PageRank Computation, with Spe-

cial Attention to Dangling Nodes. SIAM J. Matrix Anal. Appl., 29(4) :

1281–1296, December 2007. ISSN 0895-4798. doi : 10.1137/060664331.

URL http://dx.doi.org/10.1137/060664331.

[55] Sepandar Kamvar, Taher Haveliwala, Chris Manning, and Gene Go-

lub. Extrapolation methods for accelerating pagerank computations.

In Twelfth International World Wide Web Conference (WWW 2003), 2003.

URL http://ilpubs.stanford.edu:8090/865/.

[56] George Karypis and Vipin Kumar. A Fast and High Quality Mul-

tilevel Scheme for Partitioning Irregular Graphs. SIAM J. Sci.

Comput., 20(1) :359–392, December 1998. ISSN 1064-8275. doi :

10.1137/S1064827595287997. URL http://dx.doi.org/10.1137/

S1064827595287997.

[57] Matt J Keeling and Ken T.D Eames. Networks and epidemic models.

J. R. Soc. Interface, 2 :295–307, 2005.

[58] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What

is Twitter, a social network or a news media ? In WWW ’10 : Procee-

dings of the 19th international conference on World wide web, pages 591–

600, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-799-8. doi :

http://doi.acm.org/10.1145/1772690.1772751.

123

http://link.aps.org/doi/10.1103/PhysRevLett.96.098701
http://link.aps.org/doi/10.1103/PhysRevLett.96.098701
http://dx.doi.org/10.1137/060664331
http://ilpubs.stanford.edu:8090/865/
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997

[59] Amy N. Langville and Carl D. Meyer. Google’s PageRank and Beyond :

The Science of Search Engine Rankings. Princeton University Press, Prin-

ceton, NJ, USA, 2006. ISBN 0691122024.

[60] Chris P. Lee, Gene H. Golub, and Stefanos A. Zenios. A Fast Two-Stage

Algorithm for Computing PageRank and Its Extensions. Technical

report, Stanford University, 2004. URL http://www-sccm.stanford.

edu/pub/sccm/sccm03-15_2.pdf.

[61] R. B. Lehoucq. Analysis and Implementation of an Implicitly Restar-

ted Iteration. PhD thesis, Rice University, Houston, Texas,, 1995.

[62] R. B. Lehoucq and D. C. Sorensen. Deflation techniques for an impli-

citly restarted arnoldi iteration. SIAM J. Matrix Anal. Appl., 17(4) :789–

821, October 1996. ISSN 0895-4798. doi : 10.1137/S0895479895281484.

URL http://dx.doi.org/10.1137/S0895479895281484.

[63] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users Guide :

Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi

Methods. SIAM, 1997.

[64] Jure Leskovec. Stanford Large Network Dataset Collection. URL

http://snap.stanford.edu/data/.

[65] Jennifer Lindquist, Junling Ma, P. Driessche, and FrederickH. Wille-

boordse. Effective degree network disease models. Journal

of Mathematical Biology, 62(2) :143–164, 2011. ISSN 0303-6812.

doi : 10.1007/s00285-010-0331-2. URL http://dx.doi.org/10.1007/

s00285-010-0331-2.

[66] Zifan Liu, Nahid Emad, Soufian Ben Amor, and Michel Lamure. To-

wards modeling of epidemic spread : eigenvalue computation. Pre-

print for publication. URL http://www.prism.uvsq.fr/rapports/

bin/abstract.php?id=586.

[67] N. Madar, T. Kalisky, R. Cohen, D. Ben-Avraham, and S. Havlin. Im-

munization and epidemic dynamics in complex networks. Eur. Phys.

J. B., 38(2) :269–276, 2004.

124

http://www-sccm.stanford.edu/pub/sccm/sccm03-15_2.pdf
http://www-sccm.stanford.edu/pub/sccm/sccm03-15_2.pdf
http://dx.doi.org/10.1137/S0895479895281484
http://snap.stanford.edu/data/
http://dx.doi.org/10.1007/s00285-010-0331-2
http://dx.doi.org/10.1007/s00285-010-0331-2
http://www.prism.uvsq.fr/rapports/bin/abstract.php?id=586
http://www.prism.uvsq.fr/rapports/bin/abstract.php?id=586

[68] Madhav Marathe and Anil Kumar S. Vullikanti. Computational Epi-

demiology. Commun. ACM, 56(7) :88–96, July 2013. ISSN 0001-0782.

doi : 10.1145/2483852.2483871. URL http://doi.acm.org/10.1145/

2483852.2483871.

[69] Vincent Marceau, Pierre-André Noël, Laurent Hébert-Dufresne, An-

toine Allard, and Louis J. Dubé. Adaptive networks : Coevolution

of disease and topology. Phys. Rev. E, 82 :036116, Sep 2010. doi :

10.1103/PhysRevE.82.036116. URL http://link.aps.org/doi/10.

1103/PhysRevE.82.036116.

[70] K. Maschhoff and D. Sorensen. P_ARPACK : An efficient portable

large scale eigenvalue package for distributed memory parallel archi-

tectures. In Applied Parallel Computing Industrial Computation and Opti-

mization, pages 478–486. 1996. doi : 10.1007/3-540-62095-8_51. URL

http://dx.doi.org/10.1007/3-540-62095-8_51.

[71] Joel C. Miller and James M. Hyman. Effective vaccination strategies

for realistic social networks. Physica A : Statistical Mechanics and its

Applications, 386(2) :780–785, 2007.

[72] C. Moore and M. E. J. Newman. Epidemics and percolation in small-

world networks. Phys. Rev. E., 61 :5678–5682, 2000.

[73] G. E. Moore. Cramming More Components onto Integrated Circuits.

Electronics, 38(8) :114–117, April 1965. ISSN 0018-9219. doi : 10.1109/

jproc.1998.658762. URL http://dx.doi.org/10.1109/jproc.1998.

658762.

[74] Ronald B. Morgan. On restarting the Arnoldi method for large non-

symmetric eigenvalue problems. Mathematics of Computation, 65 :

1213–1230, 1996.

[75] Kentaro Moriya and Takashi Nodera. The DEFLATED-GMRES(m, k)

method with switching the restart frequency dynamically. 7(7–8) :

569–584, October/December 2000. ISSN 1070-5325 (print), 1099-1506

(electronic). URL http://www3.interscience.wiley.com/cgi-bin/

125

http://doi.acm.org/10.1145/2483852.2483871
http://doi.acm.org/10.1145/2483852.2483871
http://link.aps.org/doi/10.1103/PhysRevE.82.036116
http://link.aps.org/doi/10.1103/PhysRevE.82.036116
http://dx.doi.org/10.1007/3-540-62095-8_51
http://dx.doi.org/10.1109/jproc.1998.658762
http://dx.doi.org/10.1109/jproc.1998.658762
http://www3.interscience.wiley.com/cgi-bin/abstract/73505474/START; http://www3.interscience.wiley.com/cgi-bin/fulltext?ID=73505474&PLACEBO=IE.pdf
http://www3.interscience.wiley.com/cgi-bin/abstract/73505474/START; http://www3.interscience.wiley.com/cgi-bin/fulltext?ID=73505474&PLACEBO=IE.pdf

abstract/73505474/START;http://www3.interscience.wiley.com/

cgi-bin/fulltext?ID=73505474&PLACEBO=IE.pdf.

[76] M. E. J. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89

(208701), 2002.

[77] M. E. J. Newman. Spread of epidemic disease on networks. Phys. Rev.

E., 66(016128), 2002.

[78] M. E. J. Newman. The spread of epidemic disease on networks. Phys.

Rev. E, 66(016128), 2002.

[79] M. E. J. Newman. The structure and function of complex networks.

SIAM Rev., 45 :167–256, 2003.

[80] M. E. J. Newman. Random graphs as models of networks, pages 35–68.

Wiley-VCH Verlag GmbH and Co. KGaA, 2005. ISBN 9783527602759.

doi : 10.1002/3527602755.ch2. URL http://dx.doi.org/10.1002/

3527602755.ch2.

[81] M. E. J. Newman and D. J. Watts. Renormalization group analysis of

the small-world network model. Phys. Lett. A., 263 :341–346, 1999.

[82] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.

The Pagerank Citation Ranking : Bringing Order to the Web. Technical

Report 1999-66, Stanford InfoLab, 1999.

[83] Beresford N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1998. ISBN 0-89871-402-8.

[84] François Pellegrini. Scotch and libScotch 5.1 User’s Guide, August

2008. URL http://hal.archives-ouvertes.fr/hal-00410327. 127

pages User’s manual.

[85] Guy-RenÃ© Perrin and Alain Darte, editors. The Data Parallel Pro-

gramming Model : Foundations, HPF Realization, and Scientific Applica-

tions, volume 1132 of Lecture Notes in Computer Science, 1996. Springer.

ISBN 3-540-61736-1. URL http://dblp.uni-trier.de/db/conf/ac/

data1996.html.

126

http://www3.interscience.wiley.com/cgi-bin/abstract/73505474/START; http://www3.interscience.wiley.com/cgi-bin/fulltext?ID=73505474&PLACEBO=IE.pdf
http://www3.interscience.wiley.com/cgi-bin/abstract/73505474/START; http://www3.interscience.wiley.com/cgi-bin/fulltext?ID=73505474&PLACEBO=IE.pdf
http://www3.interscience.wiley.com/cgi-bin/abstract/73505474/START; http://www3.interscience.wiley.com/cgi-bin/fulltext?ID=73505474&PLACEBO=IE.pdf
http://dx.doi.org/10.1002/3527602755.ch2
http://dx.doi.org/10.1002/3527602755.ch2
http://hal.archives-ouvertes.fr/hal-00410327
http://dblp.uni-trier.de/db/conf/ac/data1996.html
http://dblp.uni-trier.de/db/conf/ac/data1996.html

[86] S. Petiton, M. Sato, N. Emad, C. Calvin, M. Tsuji, and M. Dandouna.

Multi level programming Paradigm for Extreme Computing. In Su-

percomputing in Nuclear Applications and Monte Carlo, October 27-31

2013.

[87] Anand S. Rao and Michael P. Georgeff. Bdi agents : From theory

to practice. In IN PROCEEDINGS OF THE FIRST INTERNA-

TIONAL CONFERENCE ON MULTI-AGENT SYSTEMS (ICMAS-95,

pages 312–319, 1995.

[88] Garry Robins, Pip Pattison, Yuval Kalish, and Dean Lusher. An in-

troduction to exponential random graph (p*) models for social net-

works. Social Networks, 29(2) :173–191, May 2007. ISSN 03788733. doi :

10.1016/j.socnet.2006.08.002. URL http://dx.doi.org/10.1016/j.

socnet.2006.08.002.

[89] Pastor-Satorras Romualdo and Vespignani Alessandro. Epidemic

Spreading in Scale-Free Networks. Phys. Rev. Lett., 86 :3200–3203,

Apr 2001. doi : 10.1103/PhysRevLett.86.3200. URL http://link.aps.

org/doi/10.1103/PhysRevLett.86.3200.

[90] Y. Saad. Variations on Arnoldi’s Method for Computing Eigenele-

ments of Large Unsymmetric Matrices. Linear Algebra Applications,

(34) :269–295, 1980.

[91] Youcef Saad. Chebyshev Acceleration Techniques for Solving Non-

symmetric Eigenvalue Problems. 42(166) :567–588, April 1984. ISSN

0025-5718 (print), 1088-6842 (electronic).

[92] Youcef Saad. Numerical solution of large nonsymmetric eigenvalue

problems. COMPUT. PHYS. COMM, 53 :71–90, 1989.

[93] S.A. Shahzadeh Fazeli, Nahid Emad, and Zifan Liu. A key to

choose subspace size in implicitly restarted arnoldi method. Nu-

merical Algorithms, pages 1–20, 2015. ISSN 1017-1398. doi :

10.1007/s11075-014-9954-5. URL http://dx.doi.org/10.1007/

s11075-014-9954-5.

127

http://dx.doi.org/10.1016/j.socnet.2006.08.002
http://dx.doi.org/10.1016/j.socnet.2006.08.002
http://link.aps.org/doi/10.1103/PhysRevLett.86.3200
http://link.aps.org/doi/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1007/s11075-014-9954-5
http://dx.doi.org/10.1007/s11075-014-9954-5

[94] Yoav Shoham. Agent-oriented programming. Artif. Intell., 60(1) :51–

92, March 1993. ISSN 0004-3702. doi : 10.1016/0004-3702(93)90034-9.

URL http://dx.doi.org/10.1016/0004-3702(93)90034-9.

[95] D. C. Sorensen. Implicit application of polynomial filters in a k-step

Arnoldi method. SIAM J. Matrix Anal. Appl., 13(1) :357–385, jan 1992.

ISSN 0895-4798. doi : 10.1137/0613025. URL http://dx.doi.org/10.

1137/0613025.

[96] Danny C. Sorensen. Implicitly restarted Arnoldi/Lanczos methods

for large scale eigenvalue calculations. Technical report, 1996.

[97] Andreas Stathopoulos, Yousef Saad, and Kesheng Wu. Dynamic

Thick Restarting of the Davidson, and the Implicitly Restarted Ar-

noldi Methods. SIAM J. Sci. Comput, 19 :227–245, 1996.

[98] Michael Taylor, Timothy J. Taylor, and Istvan Z. Kiss. Epidemic thre-

shold and control in a dynamic network. Phys. Rev. E, 85 :016103, Jan

2012. doi : 10.1103/PhysRevE.85.016103. URL http://link.aps.org/

doi/10.1103/PhysRevE.85.016103.

[99] Alexei Vazquez. Spreading dynamics on heterogeneous populations :

Multitype network approach. Phys. Rev. E, 74 :066114, Dec 2006.

doi : 10.1103/PhysRevE.74.066114. URL http://link.aps.org/doi/

10.1103/PhysRevE.74.066114.

[100] Bing Wang, Lang Cao, Hideyuki Suzuki, and Kazuyuki Aihara. Epi-

demic spread in adaptive networks with multitype agents. Journal

of Physics A : Mathematical and Theoretical, 44(3) :035101, 2011. URL

http://stacks.iop.org/1751-8121/44/i=3/a=035101.

[101] Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos Fa-

loutsos. Epidemic Spreading in Real Networks : An Eigenvalue View-

point. In In SRDS, pages 25–34, 2003.

[102] D. J. Watts. Small worlds : the dynamics of networks between order and

randomness. Princeton University Press, Princeton, 1999.

128

http://dx.doi.org/10.1016/0004-3702(93)90034-9
http://dx.doi.org/10.1137/0613025
http://dx.doi.org/10.1137/0613025
http://link.aps.org/doi/10.1103/PhysRevE.85.016103
http://link.aps.org/doi/10.1103/PhysRevE.85.016103
http://link.aps.org/doi/10.1103/PhysRevE.74.066114
http://link.aps.org/doi/10.1103/PhysRevE.74.066114
http://stacks.iop.org/1751-8121/44/i=3/a=035101

[103] D. J. Watts and S. H. Strogatz. Collective dynamics of small-world

networks. Nature, 393 :440–442, 1998.

[104] S. Hoya White, A. Martin del Rey, and G. Rodríguez Sánchez. Mode-

ling epidemics using cellular automata. Applied Mathematics and Com-

putation, 186(1) :193 – 202, 2007. ISSN 0096-3003. doi : http://dx.doi.

org/10.1016/j.amc.2006.06.126. URL http://www.sciencedirect.

com/science/article/pii/S0096300306009295.

[105] Gang Wu and Yimin Wei. An Arnoldi-Extrapolation algorithm for

computing PageRank. Journal of Computational and Applied Mathema-

tics, 234(11) :3196 – 3212, 2010. ISSN 0377-0427. doi : http://dx.doi.

org/10.1016/j.cam.2010.02.009. URL http://www.sciencedirect.

com/science/article/pii/S0377042710000804. Numerical Linear

Algebra, Internet and Large Scale Applications.

[106] Gang Wu and Yimin Wei. Arnoldi Versus GMRES for Computing Pa-

geRank : A Theoretical Contribution to Google’s PageRank Problem.

ACM Trans. Inf. Syst., 28(3) :11 :1–11 :28, July 2010. ISSN 1046-8188.

doi : 10.1145/1777432.1777434. URL http://doi.acm.org/10.1145/

1777432.1777434.

[107] Gang Wu, Yan-Chun Wang, and Xiao-Qing Jin. A Preconditioned and

Shifted GMRES Algorithm for the PageRank Problem with Multiple

Damping Factors. SIAM J. Scientific Computing, 34(5), 2012.

[108] Andy Yoo and Keith W. Henderson. Parallel generation of massive

scale-free graphs. CoRR, abs/1003.3684, 2010. URL http://arxiv.

org/abs/1003.3684.

129

http://www.sciencedirect.com/science/article/pii/S0096300306009295
http://www.sciencedirect.com/science/article/pii/S0096300306009295
http://www.sciencedirect.com/science/article/pii/S0377042710000804
http://www.sciencedirect.com/science/article/pii/S0377042710000804
http://doi.acm.org/10.1145/1777432.1777434
http://doi.acm.org/10.1145/1777432.1777434
http://arxiv.org/abs/1003.3684
http://arxiv.org/abs/1003.3684

