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Résumé

De nos jours, les ordinateurs sont omniprésents. Tous ces ordina-
teurs stockent et manipulent de l’information, parfois sensible, d’où
l’intérêt de protéger et de confiner la dissémination de cette informa-
tion. Les mécanismes de contrôle de flux d’information permettent
justement d’analyser des programmes manipulant de l’information
sensible, afin de prévenir les fuites d’information.

Les contributions de cette thèse incluent des techniques d’analyse
de programmes pour le contrôle de flux d’information tant qualitatif
que quantitatif. Les techniques d’analyse qualitatives permettent la
détection et la prévention des fuites d’information. Les techniques
quantitatives vont au-delà de la simple détection des fuites d’infor-
mation, puisqu’elles permettent d’estimer ces fuites afin de décider si
elles sont négligeables.

Nous formalisons un moniteur hybride de flux d’information,
combinant analyse statique et dynamique, pour un langage supportant
des pointeurs et de l’aliasing. Ce moniteur permet de mettre en œuvre
une propriété de non-interférence, garantissant l’absence de fuites
d’information sensible. Nous proposons aussi une transformation de
programmes, qui permet de tisser la spécification du moniteur au sein
du programme cible. Cette transformation de programme permet de
mettre on œuvre la propriété de non-interférence soit par analyse
dynamique en exécutant le programme transformé, ou par analyse
statique en analysant le programme transformé grâce à des analyseurs
statiques existants, sans avoir à les modifier.

Certains programmes, de par leur fonctionnement intrinsèque,
font fuiter une quantité – jugée négligeable – d’information sensible.
Ces programme ne peuvent donc se conformer à des propriétés telles
que la non-interférence. Nous proposons une propriété de sécurité
quantitative qui permet de relaxer la propriété de non-interférence,
tout en assurant les même garanties de sécurité. Cette propriété de
secret relatif est basée sur une mesure existante de quantification
des flux d’information : la min-capacité. Cette mesure permet de
quantifier les fuites d’information vis-à-vis de la probabilité qu’un
attaquant puisse deviner le secret.

Nous proposons aussi des techniques d’analyse statique permet-
tant de prouver qu’un programme respecte la propriété de secret

relatif. L’abstraction des cardinaux, une technique d’analyse par in-
terprétation abstraite, permet de sur-approximer la mesure de min-
capacité pour des programmes acceptant des entrées publiques et
confidentielles, mais n’affichant le résultat de leurs calculs qu’à la
fin de leur exécution. L’abstraction des arbres d’observation, quant à
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elle, supporte des programmes pouvant afficher le résultat de leurs
calculs au fur et à mesure de leur exécution. Cette dernière analyse est
paramétrée par l’abstraction des cardinaux. Elle s’appuie sur la com-
binatoire analytique afin de décrire les observations d’un attaquant
et quantifier les fuites d’information pour prouver qu’un programme
respecte la propriété de secret relatif.
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Abstract

Computers have become widespread nowadays. All these comput-
ers store and process information. Often, some of this information
is sensitive; hence the need to confine and control its dissemination.
An important field in computer science, that is concerned about
analysing programs in order to confine and control the release of
sensitive information, is the information flow control field.

The contributions of this thesis include program analysis tech-
niques for qualitative and quantitative information flow control. Qual-
itative techniques aim at detecting and preventing information leaks.
Quantitative techniques go beyong the detection of information leaks,
by estimating the leakage in order to decide whether it is negligeable.

We formalize a hybrid information flow monitor, combining both
a static and a dynamic analysis, for a language supporting pointers
and aliasing. This monitor prevents information leaks by enforcing
a non-interference security property. We also propose a program
transformation in order to inline the specification of our monitor
into the target program. This program transformation enables the
verification of non-interference either dynamically by executing the
transformed program, or statically by analysing the transformed
program using off-the-shelf static analysis tools.

Some programs inherently leak a negligible amount of sensitive
information because of their functionality. Such programs cannot
comply with security properties such as non-interference. Therefore,
we also propose a quantitative security property in order to relax
non-interference, while still providing the same security guarantees.
This relative secrecy property is based on min-capacity, an existing
measure of information leaks. This measure quantifies information
leaks wrt. the probability of attackers guessing the secret.

We also propose static analysis techniques in order to prove that
programs comply with relative secrecy. The cardinal abstraction,
based on abstract interpretation, enables the over-approximation of
min-capacity for programs that accepts both public and confiden-
tial inputs, but output the results of their computation only at the
end of their execution. The tree abstraction builds on the cardinal
abstraction in order to support programs that may output interme-
diate results of computation as well. This latter analysis relies on
analytic combinatorics in order to describe attackers’ observations
and quantify information leaks. It also aims to prove the compliance
of a program wrt. relative secrecy.
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Résumé étendu en français

De nos jours, les ordinateurs sont devenus très répandus. Ordinateurs per-
sonnels, téléphones intelligents, voitures connectées, cartes bancaires ainsi
que les objets connectés sont omniprésents.

Tous ces ordinateurs stockent et traitent de l’information, parfois sensible.
La dissémination de cette information sensible a donc besoin d’être contrôlée.
Un domaine important des sciences informatiques, dont le but est de confiner
ainsi que de contrôler la dissémination de cette information, est le domaine
du contrôle de flux d’information.

Contrôle de flux d’information

La sécurité de l’information s’intéresse généralement à 3 différentes pro-
priétés :

1. la confidentialité s’assure que les données sensibles ne sont divulguées
qu’aux personnes autorisées,

2. l’intégrité s’assure que les données de confiance ne sont pas altérées,
voire falsifiées,

3. la disponibilité assure le fonctionnement d’un système et garantit
l’accès à l’information, sans interruptions.

Les propriétés de confidentialité et d’intégrité sont en général gérées
grâce à des mécanismes de contrôles d’accès. Ces mécanismes vérifient que
les utilisateurs, ou les programmes, demandant un accès à l’information
ont les autorisations et permissions nécessaires pour y accéder. Cependant,
ces mécanismes sont insuffisants car ils mettent en œuvre des politiques de
sécurité à un niveau gros grain.

Supposez par exemple qu’une application demande les permissions
nécessaires pour accéder à votre liste de contacts et à internet. Suppo-
sez aussi que ces permissions semblent être légitimes. Par exemple, cette

ix
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application a besoin d’accéder à la liste de contacts, puisque sa principale
fonctionnalité est de fusionner automatiquement les entrées dupliquées. Cette
application a aussi besoin d’accéder à internet, pour ses mises à jour. Si vous
décidez de fournir à cette application les permissions qu’elle demande, pour
pouvoir l’utiliser, vous ne pouvez garantir que l’application ne divulguera
pas votre liste de contacts sur internet.

Dans un tel contexte, les mécanismes de contrôle de flux d’information
interviennent afin de mettre en œuvre des politiques de sécurité à un niveau
de granularité fin. Ces mécanismes permettent d’analyser et de suivre la
manière dont l’information se propage au sein d’une application, afin de
s’assurer que la propagation de l’information respecte une certaine politique
de sécurité. Dans le cas de l’application mentionnée plus haut, la politique
de sécurité qui nous intéresse est de s’assurer que les données confidentielles
– le carnet d’adresses – ne sont pas divulguées sur des canaux publics –
internet. Le contrôle de flux d’information permet de fournir à l’application
les autorisations nécessaires à son fonctionnement, tout en garantissant que
les flux d’information, c’est-à-dire la propagation de l’information, respectent
cette politique de sécurité.

En général, les approches de contrôle de flux d’information sont qualita-
tives ou quantitatives.

Les techniques qualitatives d’analyse de programmes pour le contrôle
de flux d’information s’intéressent à la détection ainsi qu’à la prévention
des fuites d’information. Ces approches mettent en œuvre une propriété de
non-interférence. La non-interférence [Coh77, GM82] est une propriété de
sécurité qui formalise la non-dépendance des sorties publiques vis-à-vis des
entrées confidentielles.

Au-delà de la détection des fuites d’information, les techniques quan-
titatives d’analyse de programmes pour le contrôle de flux d’information
permettent d’estimer les fuites d’information, afin de décider si ces fuites
sont négligeables ou pas. En effet, certains programmes tels les systèmes de
vote ou les vérificateurs de mot de passe, font fuiter de l’information sensible
de par leur fonctionnement intrinsèque. Ces programmes ne peuvent donc
se conformer à une propriété de sécurité telle que la non-interférence.

Plan et Contributions

Cette thèse développe des techniques d’analyse de programmes pour le
contrôle de flux d’information qualitatif et quantitatif. Le Chapitre 2 présente
brièvement une revue de l’état de l’art du domaine du contrôle de flux
d’information. Nous introduisons des propriétés de sécurité, tant qualitatives
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que quantitatives, ainsi que des techniques d’analyse permettant de vérifier
la conformité des programmes vis-à-vis de ces propriétés.

Les chapitres suivants décrivent les contributions principales de cette
thèse. Ces contributions sont :

1. la formalisation d’un moniteur hybride de flux d’information pour
un langage supportant des pointeurs et de l’aliasing. Ce moniteur,
dénommé moniteur PWhile, combine analyse statique et analyse
dynamique pour le suivi de flux d’information. Le moniteur PWhile
se base sur les moniteurs sensibles aux flux d’information proposés
par Le Guernic et al. [LGBJS06] ainsi que Russo et Sabelfeld [RS10],
afin d’étendre le langage qu’ils supportent avec des pointeurs et de
l’aliasing. Le moniteur PWhile est aussi prouvé correct. Il permet
la mise en œuvre d’une propriété de non-interférence insensible à la
terminaison (TINI). Le Chapitre 3 présente ce résultat.

2. une transformation de programmes qui permet de tisser le moniteur
PWhile au sein du programme analysé. Cette transformation de pro-
grammes, décrite dans le Chapitre 4, préserve le comportement initial
du programme analysé. Elle reproduit aussi exactement la sémantique
du moniteur PWhile. Cette transformation de programme est aussi
prouvée correcte. Elle permet la mise en œuvre de la non-interference
(TINI) soit par analyse dynamique en exécutant le programme trans-
formé, ou par analyse statique en analysant le programme transformé
grâce à des analyseurs statiques existants, sans avoir à les modifier.

3. une propriété de sécurité quantitative qui permet de relaxer la propriété
de non-interference (TINI), tout en assurant les mêmes garanties de
sécurité. Cette propriété de sécurité, introduite dans le Chapitre 5, est
une propriété de secret relatif [VS00]. Elle permet de garantir que la
probabilité qu’un attaquant puisse deviner le secret, en un seul essai, est
négligeable en la taille du secret, lorsque cet attaquant n’observe qu’une
quantité polynomiale d’instructions de sortie. Nous étendons aussi cette
propriété de sécurité au cas où l’attaquant a droit à plusieurs essais pour
deviner le secret. Les travaux présentés dans ce chapitre s’appuient sur
la min-capacité, une mesure de quantification des fuites d’information
proposée par Smith [Smi09, Smi11]. Ces travaux s’appuient aussi
sur les résultats proposés par Askarov et al. [AHSS08] concernant la
quantification des fuites d’information dues aux programmes conformes
vis-à-vis de TINI.
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4. une analyse statique, prouvée correcte, calculant le nombre cardinal de
valeurs que les variables peuvent prendre. Cette analyse statique permet
de quantifier les fuites d’information, grâce à une sur-approximation de
la min-capacité [Smi09, Smi11] pour des programmes déterministes qui
peuvent accepter des entrées publiques et confidentielles. Cependant,
cette analyse statique ne supporte que des programmes qui n’affichent
le résultat de leurs calculs qu’à la fin de leur exécution. Cette analyse
statique, dénommée l’abstraction des cardinaux, est décrite dans le
Chapitre 6.

5. une analyse statique paramétrée par l’abstraction des cardinaux, qui
permet de quantifier les fuites d’information pour des programmes
déterministes pouvant afficher les résultats de leur calculs au fur et à
mesure de leur execution. Cette analyse statique, dénommée l’abstrac-
tion des arbres d’observation, calcule une spécification régulière qui
décrit les valeurs qu’un attaquant peut observer. En s’appuyant sur
la combinatoire analytique [FS09], la spécification régulière calculée
est traduite en une fonction génératrice. Nous dérivons ensuite des
conditions suffisantes sur la fonction génératrice afin de prouver qu’un
programme est conforme à la propriété de secret relatif, introduite
dans le Chapitre 5. Ce résultat est décrit dans le Chapitre 7.

Finalement, le Chapitre 8 conclut et présente les travaux futurs.
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Chapter 1

Introduction

Computers have become widespread nowadays. Personal computers, smart
phones, connected cars, credit cards as well as wearable gadgets are om-
nipresent.

All these computers store and process information. Some of this infor-
mation is sensitive. Therefore, its dissemination needs to be controlled. An
important field in computer science, that is concerned about confining and
controlling the dissemination of information, is the information flow control
field.

1.1 Information Flow Control

Information security can be characterized by 3 different properties:

1. confidentiality: ensuring sensitive data does not leak to unauthorized
users

2. integrity: preventing unauthorized users from tampering with trusted
data

3. availability: guaranteeing access to data or services, without disrup-
tions.

The two first properties, namely confidentiality and integrity, are in
general managed through access control mechanisms. For instance, prior to
accessing any piece of data, such mechanisms ensure that the user or appli-
cation querying information does indeed have the required authorizations or
permissions. However, such mechanisms are insufficient since they enforce
security properties at a coarse-grained level.

1
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Assume for instance that an application requires permissions to access
both the user’s contact list and the internet. Assume also that both permis-
sion requests seem legitimate. For instance, the application needs access to
the contact list since its principal functionality is merging duplicate entries
automatically. Additionally, this application needs access to the internet as
well, in order to check for updates. If the user grants the application both
required authorizations in order to be able to use it, then all bets are off.
Indeed, access control mechanisms cannot guarantee that the application,
once granted both authorizations, will not leak the user’s contact list over
the internet for instance.

In such a scenario, information flow control mechanisms step in, in order
to enforce fine-grained security policies by analysing the way information
propagates in an application. In the aforementioned example, the security
policy of interest requires preventing confidential data – the address book –
from leaking into public data – the internet. In a nutshell, such mechanisms
allow the application to access both the contact list and the internet. Yet,
they also guarantee that information flows, namely the propagation of
information, are legal wrt. the user’s security policy.

In general, information flow control approaches can be classified as either
qualitative or quantitative.

On the one hand, program analysis techniques for qualitative information
flow aim at detecting and preventing information leaks. These approaches
usually enforce a non-interference property. Non-interference [Coh77, GM82]
is a baseline security property formalizing the non-dependence of public
outputs on confidential inputs.

On the other hand, quantitative information flow techniques go beyond
the detection of information leaks, by estimating the leakage in order to
decide whether it is negligible. Intuitively, some applications such as pass-
word checkers or voting systems, inherently leak a small amount of sensitive
information because of their functionality. Therefore, such applications
cannot comply with non-interference.

1.2 Contributions and Outline

This thesis develops program analysis techniques for qualitative and quanti-
tative information flow. Due to the large body of research in both qualitative
and quantitative information flow control, we present a brief overview of
the literature in Chapter 2. We introduce both qualitative and quantitative
security properties, as well as program analysis techniques aimed at proving
these security properties.
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The subsequent chapters describe the main contributions of this thesis.
These contributions are:

1. a formalization of a hybrid information flow monitor for an im-
perative language supporting pointers and aliasing. This monitor,
dubbed the PWhile monitor, builds on the flow-sensitive hybrid
monitors proposed by Le Guernic et al. [LGBJS06] and Russo and
Sabelfeld [RS10], in order to extend the supported language with
pointers and aliasing. We also prove the soundness of the PWhile
monitor wrt. TINI. Chapter 3 introduces this result. The material
presented in this chapter draws on two previously published conference
papers [ASTT13b, ASTT13a].

2. a program transformation that inlines the PWhile monitor. This
inlining approach, described in Chapter 4, preserves the initial be-
haviour of target programs, and reproduces exactly the semantics of
the PWhile monitor. To the best of our knowledge, this program
transformation is the first proven sound inlining approach for dynamic
monitors handling pointers. The material presented in this chapter
draws on a previously published conference paper [ASTT13b].

3. a quantitative security property aimed at relaxing TINI, while still
providing the same security guarantees. This security property, in-
troduced in Chapter 5, is a relative secrecy (RS) property [VS00].
It ensures that the probability of attackers guessing the secret in
one try is negligible in the size of the secret, when attackers observe
only a polynomial amount of outputs. We also extend this security
property to account for the probability of polynomial time attackers
guessing the secret in the case of k-try attacks. This chapter builds
on min-capacity, a quantitative information flow metrics introduced
by Smith [Smi09, Smi11], as well as Askarov et al.’s [AHSS08] results
on the amount of leakage allowed by TINI.

4. a sound static analysis computing the cardinal number of values
variables may take. This static analysis enables the over-approximation
of min-capacity [Smi09, Smi11] for deterministic programs that accept
both confidential and public inputs, but only output the result of their
computation at the end of their execution. This static analysis, called
the cardinal abstraction, is based on abstract interpretation [CC77].
It is presented in Chapter 6.

5. a static analysis built on top of the cardinal abstraction, in order to
quantify information flow for deterministic programs that may output
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intermediate steps of computation. This static analysis, called the
tree abstraction, computes a regular specification describing attack-
ers’ observations. By relying on the framework of analytic combi-
natorics [FS09], the computed regular specification translates into a
generating function. We then derive sufficient conditions on the gener-
ating function in order to prove that a program is secure wrt. RS, the
quantitative security property introduced in Chapter 5. These results
are described in Chapter 7. To the best of our knowledge, this is the
first analysis aimed at quantifying information flow wrt. min-capacity,
for programs that may output intermediate steps of computation.

Finally, Chapter 8 concludes and discusses future work.



Chapter 2

Information Flow

Denning’s seminal work [Den76, DD77] in information flow control proposes
a static analysis taking place during a program compilation. This analy-
sis certifies that a program cannot leak confidential data. Denning also
distinguishes different kinds of information flows that arise in a program:

1. explicit information flows are due to assignments. For instance, List-
ing 2.1 illustrates a program assigning variable secret to variable
public. Therefore, this assignment generates an explicit information
flow from variable secret to variable public.

1 // explicit flow from variable secret to public

2 public := secret ;

Listing 2.1: Explicit information flows

2. implicit information flows are due to branching instructions whose
guard depends on confidential data. For instance, consider the ex-
ample program in Listing 2.2. If attackers have access to variable
public after the execution of this program, they may deduce infor-
mation about variable secret. In general, we assume attackers know
the source code of analysed programs, and have perfect deduction
capabilities. Therefore, the assignment to variable public inside a
conditional whose guard depends on variable secret generates an
implicit information flow from variable secret to variable public.

3. covert information flows are due to covert channels leaking informa-
tion. For instance, attackers may leverage timing information, power
consumption or electromagnetic leaks to learn sensitive information.

5



6 CHAPTER 2. INFORMATION FLOW

1 // implicit flow from variable secret to public

2 if (secret > 0) {

3 public := 1;

4 }

5 else {

6 public := 0;

7 }

Listing 2.2: Explicit information flows

These covert information flows are the most difficult to mitigate, since
addressing them often requires a refined knowledge of the underlying
system and hardware. These covert channels fall beyond the scope of
this thesis.

Denning’s seminal work provides the bases for the qualitative information
flow field, aimed at the detection of information leaks. The prolific literature
in this field eventually lead to noteworthy tools, among which are Jif [Mye99,
MNZZ01] and Flow Caml [PS02, Sim03].

Denning [Den82] also pioneers the quantative information flow field,
aimed at estimating the amount of information leaks rather than just
detecting them. Indeed, Denning defines the existence of an information flow
by the existence of a reduction in uncertainty. Intuitively, if knowledge of a
variable y reduces the initial uncertainty about variable x, then there exists
an information flow from variable x to variable y. Measured by Shannon
entropy [Sha48], this reduction of uncertainty also provides an estimation of
information leaks.

The next sections provide a brief overview of the secure information
flow literature. We introduce both qualitative and quantitative security
properties, as well as program analysis techniques aimed at proving these
security properties.

2.1 Qualitative Information Flow

2.1.1 Non-interference

Goguen and Meseguer [GM82] propose a general automaton approach to
model secure systems. They propose a non-interference security policy in
order to confine information flows at the system level. The non-interference
property Goguen and Meseguer propose ensures that “one group of users,
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using a certain set of commands, has no effect on what a second group of users
can see”. This concept of non-interference also goes back to Cohen’s [Coh77]
work on strong dependency. Intuitively, a variable y strongly depends on
variable x if changing the values of variable x is mirrored by changes in the
values of y.

Volpano et al. [VIS96] introduce a variant of non-interference suited for
reasoning at the language level, for deterministic programs. Under their
definition of security, a program is secure if any two terminating executions,
differing only on confidential inputs, yield the same public outputs. Intu-
itively, this property ensures that while the public inputs are fixed, changing
the confidential inputs does not affect the observations attackers make,
provided that the program terminates. Thus, this definition guarantees
that the public outputs are indeed non-interferent with – independent of
– the confidential inputs. This definition of non-interference is also known
as termination-insensitive non-interference (TINI) [SM03], since it ignores
informations leaks due to the observation of termination or divergence of a
program run.

Volpano and Smith [VS97] also introduce a second variant of non-
interference, accounting for covert informations leaks due to non-termination
in deterministic programs. A program is secure if any two executions, dif-
fering only on confidential inputs, either both diverge or both terminate
and yield the same public outputs. This variant of non-interference is also
known as termination-sensitive non-interference (TSNI) [SM03].

2.1.2 Static Analyses

Volpano et al. [VIS96] also propose a type system enforcing TINI, for a
deterministic imperative language. They prove the soundness of their type
system, proving that a well-typed program is secure wrt. TINI. Their type
system prevents explicit information flows from leaking sensitive information
by ensuring that no confidential expression gets assigned to a public variable.
Additionally, it also prevents implicit information flows from leaking sensitive
information by ensuring that no assignment to a public variable occurs inside
a branching instruction depending on a confidential guard.

Volpano and Smith [VS97] also improve their type system in order
to prevent information leaks due to termination. They propose a sound
type system enforcing TSNI rather than TINI, by improving their previous
type system [VIS96] and enforcing additional requirements. Specifically, in
addition to preventing both explicit and implicit information leaks, their
type system also ensures that guards of loop instructions do not depend
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on confidential data, and loop instructions do not occur inside conditionals
whose guard depend on confidential data.

Hunt and Sands [HS06] improve Volpano and Smith’s type system [VIS96]
with flow-sensitivity, in order to enforce TINI. Flow-sensitive type systems
allow the security level mapped to each variable to change between different
points of the program. Hunt and Sands’ flow-sensitive type system is more
permissive than Volpano and Smith’s type system, in the sense that a larger
set of non-interferent programs are well-typed, thus proven secure wrt. TINI.

Non-interference is not a safety property [McL94, Sch00], since it defines
a relation over two program executions. However, Barthe et al. [BDR04,
BDR11] propose self-composition as a mechanism to reduce non-interference
of a program P to a safety property over a program P ′, derived from P . This
technique encodes variants of non-interference in program logics, in order to
leverage tools and theories traditionally aimed at safety properties, such as
model checking, as well as automatic and interactive theorem proving.

While most of the initial work in qualitative information flow focuses on
static analysis techniques to prove non-interference, recent approaches also
investigate dynamic approaches enforcing non-interference. These dynamic
approaches have the advantage of reasoning on single execution paths, rather
than the whole program paths. Therefore, untrusted programs can still
execute while monitored, without any change affecting their behaviour as
long as they do not attempt to leak sensitive information.

2.1.3 Dynamic analyses

Le Guernic et al. [LGBJS06] propose a hybrid information flow monitor,
combining both a static and dynamic analysis, to track information flows
for a deterministic While language. Their approach, based on edit au-
tomata [LBW05], modifies program outputs to default values or suppresses
them whenever such outputs may leak sensitive information. Le Guernic
et al. also prove the soundness of their monitor wrt. TINI. Moreover, they
prove that their monitor also preserves executions of well-typed programs
wrt. Volpano and Smith’s [VIS96]. Le Guernic [LG07] also improves the
precision of the initial monitor by relying on a context-sensitive static anal-
ysis, and propose an extension [LG08] of the initial monitor to concurrent
programs.

Russo and Sabelfeld [RS10] formalize a hybrid information flow monitor
for a deterministic While language with outputs. They also prove the
soundness of their monitor wrt. TINI, as well as its permissiveness wrt. Hunt
and Sands’s [HS06] flow-sensitive type system. Russo and Sabelfeld also
prove that a purely dynamic monitor – a monitor that has neither knowledge
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of commands in non-executed alternative paths, nor knowledge of commands
ahead of their execution –, cannot guarantee soundness wrt. non-interference
while being at least as permissive as Hunt and Sands flow-sensitive type
system.

Austin and Flanagan [AF09] propose a purely dynamic monitor for
a λ-calculus language with references. Their monitor supports a limited
flow-sensitivity since it implements a conservative no-sensitive upgrade
policy [Zda02, Section 3.2]; their monitor stops the execution when the
monitored programs tries to assign a public reference in a context depending
on confidential data. Thus, their monitor is proven sound wrt. TINI without
having to rely on prior static analyses.

Austin and Flanagan [AF10] also enhance their monitor by a permissive-
upgrade approach; their monitor labels public data that is assigned in
a confidential security context as partially leaked, then forbids sensitive
operations on these data – such as branching and dereferencing – by stopping
the monitored program. They also propose to dynamically infer the program
points where sensitive operations on partially leaked data occur, in order
to label such data as private. Interestingly, this “privatization inference”
approach eventually enforces TINI without halting the monitored program,
provided that all program points, where sensitive operations on partially
leaked data occur, are already inferred.

Devriese and Piessens [DP10] propose “secure multi-execution” in order
to monitor information leaks in a program. This technique is also known
as “shadow executions” [CLVS08]. They propose to run multiple copies of
the same program in parallel, once for each security level. Intuitively, each
copy of the target program have a security clearance and can only access
the inputs having a lower security clearance. Otherwise, inputs with higher
security level are replaced with default values. Additionally, each copy of
the target program can only output to channels having the same security
clearance. Devriese and Piessens prove the soundness of their approach
wrt. TSNI for a While language with inputs and outputs. They also prove
that their approach eliminates covert timing channels, provided that (1) the
scheduling strategy ensures high security copies of the program wait for low
security ones whenever they access low inputs, and (2) each running copy of
the target program never waits for executions having a higher security level.
They also implement their approach for the Spidermonkey javascript engine.
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2.2 Quantitative Information Flow

2.2.1 Information Flow Metrics

Clark, Hunt and Malacaria [Cla05] build on Denning’s [Den82] work in
order to propose a measure of information leakage, based on Shannon
entropy [Sha48] and mutual information. In particular, they prove in the
deterministic setting that the leakage of a program can be measured by the
conditional Shannon entropy of the observable outputs, knowing the public
inputs. They also prove that this latter quantity equals zero in the case of a
deterministic program iff. the program is non-interferent.

Clarkson et al. [CMS09, CS10] propose a new information flow measure,
coined as information belief. This measure reasons on attackers’ belief,
namely the probability distribution of the confidential input that attackers
may assume. Clarkson et al. also model how attackers revise their belief after
observing outputs of a program. The revised attackers’ belief as well as the
initial belief provide a way to measure the improvement in the accuracy of
attackers’ belief. Clarkson et al. also propose to measure this improvement
in accuracy by relying on relative entropy [CT06], a pseudo-metric defined
over probability distributions.

Smith [Smi09] notes that Shannon entropy and mutual information are
unsuitable metrics for estimating information flow leakage. Indeed, Shannon
entropy of a random variable can be arbitrarily high despite being highly
vulnerable to being guessed in one try [ES13]. Smith then proposes the use
of min-entropy as a measure for quantifying information flow. This measure
estimates the probability that attackers guess the confidential inputs in one
try, after observing a program run. Additionally, Smith proves that the
maximum leakage measured either with min-entropy (namely, min-capacity)
or Shannon entropy (namely, capacity) coincide for deterministic programs,
and conjecture that min-capacity upper-bounds capacity for probabilistic
programs [Smi11].

Braun, Chatzikokolakis and Palamidessi [BCP09] propose an additive no-
tion of information leakage based on the probability that attackers guess the
wrong confidential inputs. They also investigate how to compute supremums
for their additive notion as well as for min-entropy [Smi09]. Particularly, they
prove that the supremum for min-entropy is reached when the confidential
inputs are uniformly distributed [BCP09, Smi11].

Alvim et al. [ACPS12] propose a generalization of min-entropy using
gain functions. Gain functions model a variety of scenarios for attackers,
such as the advantage attackers gain from guessing part of the secret or
making a set of guesses. They also prove in the probabilistic setting that
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min-capacity is an upper bound on both Shannon capacity and capacity
defined using gain functions. Hence, min-capacity offers a way to abstract
from a priori distributions of the confidential inputs and to bound various
entropy-based information flow metrics.

2.2.2 Static Analyses

Clark et al. [CHM07] propose the first type system to quantify information
flow for a deterministic imperative language. Their definition of information
leakage [Cla05] relies on mutual information and Shannon entropy. They
also model an attacker that controls public inputs, but is not allowed to
observe intermediate steps of computation.

Backes, Köpf and Rybalchenko [BKR09] propose an analysis that iter-
atively synthesizes equivalence relations over the confidential inputs of a
program. Their approach computes approximations of various quantitative
information flow measures, such as min-entropy. They also compute approx-
imations of Shannon entropy by enumerating each equivalence class over
the confidential inputs. These metrics enable modelling different scenarios
depending on the appropriate one.

Köpf and Rybalchenko [KR10] propose an analysis based on both static
and dynamic techniques to compute over-approximations as well as under-
approximations of information flow leakage. Their approach computes over-
approximations (resp. under-approximations) of the set of reachable states
by abstract interpretation (resp. by model checking). This enables them
to derive upper and lower bounds on the remaining uncertainty measured
by min-entropy. Additionally, they also propose a randomization technique
based on sampling in order to compute tight bounds on Shannon remaining
uncertainty, without the requirement of enumerating the set of reachable
states and estimating the size of their pre-images.

Meng and Smith [MS11] propose to quantify information flow for straight-
line deterministic programs by synthesizing bit patterns over the final
values. Their approach is similar to Backes, Köpf and Rybalchenko [BKR09],
although they adopt a low level approach. By counting the number of
solutions satisfying the computed patterns, they are able to provide bounds
on capacity. Their approach derives precise bounds of the leakage for low
level computations over variables. They leave for future work the calculation
of precise bounds over capacity for programs accepting public inputs.

Köpf and Rybalchenko [KR13] propose to rely on self-compositions [BDR04,
BDR11] of a program to take into account public inputs. This promising
approach simulates through self-composition the leakage under an actual
k-try scenario. Attackers can supply k public inputs, then observe k runs of
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a program on the supplied inputs. They can hence refine their knowledge
accordingly.

2.2.3 Dynamic Analyses

Mardziel et al. [MMHS11] propose an analysis to dynamically enforce
knowledge-based policies. This approach maintains a model of attackers’
knowledge by tracking and updating attackers’ information beliefs [CMS09].
Their monitor actually performs a static analysis on-the-fly, relying on the
framework of abstract interpretation and probabilistic abstract polyhedra.
Their monitor then decides to answer a query over sensitive data only
provided that attackers’ knowledge does not exceed a certain threshold.

Besson, Bielova and Jensen [BBJ13] propose a hybrid monitor aimed at
protecting users against web tracking. Their approach computes a symbolic
representation of attackers’ knowledge in order to quantify information
leaks wrt. self-information [Eck10]. Their monitor is also a generic one
that enables modelling different hybrid monitors parametrized by static
analyses and aimed at enforcing non-interference. They also prove that
the derived monitors are more permissive than the state-of-the-art flow-
sensitive monitors [LGBJS06, RS10], thanks to the combination of a constant
propagation and a more precise analysis of implicit information flows.



Part I

Qualitative Information Flow
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Chapter 3

Information Flow Monitor

In this chapter, we formalize the PWhile monitor, an information flow
monitor for an imperative language supporting pointers.

We introduce the semantics of PWhile, an imperative language support-
ing pointers and aliasing. We also formalize the PWhile information flow
monitor. The PWhile monitor is flow-sensitive. It relies on a prior static
analysis in order to soundly track information flows. We also prove that the
PWhile monitor prevents information leaks, by proving its soundness wrt.
non-interference.

3.1 PWhile language

This section introduces the syntax and the semantics of the PWhile language.
PWhile extends an imperative While language [Win93] with pointers and
aliasing support. Its semantics is inspired by the Clight language [BL09]
that formalizes a large subset of the C language.

3.1.1 Syntax of PWhile

Figure 3.1 describes the abstract syntax of our language PWhile. It is an
imperative language handling pointers (ptr(τ)) and basic types (κ) such as
integers. Expressions have no side effects. PWhile supports aliasing, but
no pointer arithmetic: binary operators do not take pointers as arguments.

3.1.2 Operational Semantics

The semantics of PWhile draws on the semantics of Clight [BL09], a
language formalized in the context of the CompCert verified compiler for C

15
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Types: τ ::= κ (integers)

| ptr(τ) (pointers)

Expressions: a ::= n (constants)

| id (variables)

| uop a (unary operators)

| a1 bop a2 (binary operators)

| ∗a (pointer dereferencing)

| &a (address of)

Instructions: c ::= skip (empty instruction)

| a1 := a2 (assignment)

| c1; c2 (sequence)

| if (a) c1 else c2 (conditional)

| while (a) c (loop)

Declarations: dcl ::= (τ id; )∗

Programs: P ::= dcl; c

Figure 3.1: Abstract syntax of PWhile

programs [Ler09]. The semantics of PWhile is a big-step semantics [Kah87],
also known as natural semantics. This semantics considers an environment
E ∈ V ar ⇀ Loc that maps variables to statically allocated locations as well
as a memory M ∈ Loc ⇀ V mapping locations to values of type τ .

l ∈ Loc (a memory location)

v ∈ V (a value of type τ)

E ∈ V ar ⇀ Loc (bijection from variables to static locations)

M ∈ Loc ⇀ V (map from locations to values)

E ⊢ c, M ⇒M ′ (evaluation of an instruction c)

E ⊢ a, M ⇐ l (left-value evaluation of expression a)

E ⊢ a, M ⇒ v (right-value evaluation of expression a)

Figure 3.2: Environments, memories and judgement rules

Figure 3.2 introduces the judgement rules of PWhile semantics. The
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evaluation of an instruction c in an environment E and a memory M yields
a new memory M ′ representing the effect of instruction c on the memory M .
Additionally, the evaluation of an expression is either a left-value evaluation
(denoted by ⇐) or a right-value evaluation (denoted by ⇒):

1. left-value evaluations yield the location (address) where an expression
is stored, whereas

2. right-value evaluations provide the content of an expression.

Both left-value and right-value evaluations of expressions modify neither
environments nor memories since expressions are side-effect-free.

3.1.3 Semantics of Expressions

Figure 3.3 defines the semantics of expressions. All expressions can occur
as right-values, but only variables id and dereferenced expressions *a can
occur as left-values.

(LVID)
E(id) = l

E ⊢ id, M ⇐ l
(LVMEM )

E ⊢ a, M ⇒ ptr(l)

E ⊢ ∗a, M ⇐ l

(a) Left-value evaluation rules

(RVCONST ) E ⊢ n, M ⇒ n
(RV )

E ⊢ a, M ⇐ l M(l) = v

E ⊢ a, M ⇒ v

(RVREF )
E ⊢ a, M ⇐ l

E ⊢ &a, M ⇒ ptr(l)
(RVUOP )

E ⊢ a, M ⇒ v uop v = v′

E ⊢ uop a, M ⇒ v′

(RVBOP )

E ⊢ a1, M ⇒ v1 E ⊢ a2, M ⇒ v2

v1 bop v2 = v

E ⊢ a1 bop a2, M ⇒ v

(b) Right-value evaluation rules

Figure 3.3: Semantics of PWhile expressions

The left-value evaluation of an expression determines the location where
the expression is stored. The left-value evaluation of a variable id yields the
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statically allocated location that environment E maps to id (rule LVID).
The left-value evaluation of a dereferenced expression *a evaluates expression
a as a right-value in order to determine the content of a. If the right-value
of a –its content– is a pointer value ptr(l), then the left-value evaluation of

*a results in the location l (rule LVMEM).

The right-value evaluation of an expression provides the content of that
expression. The right-value evaluation of a constant results in its value
(rule RVCONST ). In order to determine the right-value of expression a, the
semantics first determines the location l of expression a through a left-value
evaluation, then yields the value M(l) that the memory M maps to the
location l (rule RV ). If the left-value evaluation of an expression a yields a
location l, the semantics defines the right-value of the referenced expression
&a as the pointer value ptr(l) (rule RVREF ). The right-value evaluation
of expression uop a is the result of the unary operator uop applied to
the right-value of expression a (rule RVUOP ). Similarly, the right-value
evaluation of expression a1 bop a2 is the binary operator bop applied to
both right-values of a1 and a2 (rule RVBOP ).

3.1.4 Semantics of Instructions

Instructions evaluate in an environment E and a memory M , in order
to result in a new memory M ′. Figure 3.4 introduces the semantics of
instructions.

Instruction skip does not modify the input memory M (rule Skip).
The evaluation of a sequence c1; c2 of two instructions starts with the
evaluation of the first instruction c1. When this first evaluation terminates,
its outcome memory M1 determines the input memory in which the second
instruction c2 evaluates in order to yield the output memory M2 (rule
Comp). Assignment instructions evaluate the left-hand side expression a1
as a left-value to determine the location l1 to update. They also determine
the value v2 written to that location by evaluating the right-hand side
expression a2 as a right-value (rule Assign). The semantics then stores
the value v2 at location l1, producing the output memory M ′. Conditional
instructions evaluate the conditional guard as a right-value to determine
which branch should be executed through the predicates istrue or isfalse.
The semantics then defines the resulting memory as the evaluation outcome
of the executed branch (rules Iftt and Ifff). Similarly, loop instructions
evaluate the guard as a right-value to determine if the loop body should
execute. If the guard evaluates to false, the execution results in the same
input memory (rule Whileff ). Otherwise, when the guard evaluates to true,
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(Skip) E ⊢ skip, M ⇒M

(Comp)
E ⊢ c1, M ⇒M1 E ⊢ c2, M1 ⇒M2

E ⊢ c1; c2, M ⇒M2

(Assign)

E ⊢ a1, M ⇐ l1 E ⊢ a2, M ⇒ v2

M ′ = M [l1 7→ v2]

E ⊢ a1 := a2, M ⇒M ′

(Iftt)
E ⊢ a, M ⇒ v istrue(v) E ⊢ c1, M ⇒M1

E ⊢ if (a) c1 else c2, M ⇒M1

(Ifff )
E ⊢ a, M ⇒ v isfalse(v) E ⊢ c2, M ⇒M2

E ⊢ if (a) c1 else c2, M ⇒M2

(Whilett)

E ⊢ a, M ⇒ v istrue(v) E ⊢ c, M ⇒M ′

E ⊢ while (a) do c, M ′ ⇒M ′′

E ⊢ while (a) do c, M ⇒M ′′

(Whileff )
E ⊢ a, M ⇒ v isfalse(v)

E ⊢ while (a) do c, M ⇒M

Figure 3.4: Semantics of PWhile instructions

the evaluation of the loop body results in a new memory M ′ in which the
loop instruction is re-evaluated (rule Whilett).

3.2 PWhile Monitor

This section formalizes an information flow monitor for the PWhile language.
This monitor tracks the security level of data manipulated by programs.
As defined in Section 3.1, the PWhile semantics describes operations on
value memories M . In order to define our monitor semantics, we introduce
additional security memories mapping each location to a security level. We
then extend the PWhile semantics to track information flows by describing
the additional operations on security memories.
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3.2.1 Information Flow Lattice

Information flow control mechanisms enforce security policies such as “confi-
dential data must not leak into public data”. A lattice is a simple yet general
structure that describes such an information flow policy. For instance, the
two-point lattice in Figure 3.5 describes the above policy, where High (resp.
Low) is a security level representing confidential data (resp. public data).

High

Low

Figure 3.5: A simple information flow lattice

Indeed, this lattice defines a partial order relation ⊑ over security levels
Low and High such that Low ⊑ High. Hence, it explicitly allows only :

1. Low data to flow to High data since Low ⊑ High, and

2. Low data to flow to Low data by reflexivity of the partial order relation
⊑, and finally

3. High data to flow to High data by reflexivity of the partial order
relation ⊑.

In general, a lattice (S;⊑,⊔,⊓) of information flow authorizes data
having a security level s1 ∈ S to flow into data having a security level s2 ∈ S

if and only if s1 ⊑ s2. Similarly, a merge of two pieces of data d1 and d2

having respective security levels s1 and s2 can flow into data d having a
security level s ∈ S if and only if :

1. d1 can flow into d (s1 ⊑ s), and

2. d2 can flow into d (s2 ⊑ s).

Thus, a merge of data d1 and data d2 can flow into data d if and only if
s1 ⊔ s2 ⊑ s. Stated otherwise, if data d is the result of merging both data
d1 and d2 having respective security levels s1 and s2, then data d should be
considered as having at least a security level equal to s1 ⊔ s2.

Information flow lattices simplify greatly the mechanisms enforcing flow
policies. Indeed, the join operator offers a straightforward way of computing
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the security level of data that results from the combination of multiple other
data. Additionally, lattices are general enough to offer a great power of
expressiveness, since every flow policy can be represented as an information
flow lattice if the flow policy satisfies 2 conditions [Den76, DDG76]:

• its set of security levels is finite, and

• the authorized flow relation is transitive and reflexive.

3.2.2 Operational Semantics

Let us assume a lattice (S;⊑,⊔,⊓) of security levels describing an information
flow policy. We denote by public the bottom element of the lattice S. Let us
also introduce additional security memories Γ ∈ Loc ⇀ S mapping locations
to security levels. Intuitively, just as M(l) represents the value of data
stored at location l, Γ(l) represents the security level of that data.

The judgement rules of PWhile extend to three new rules involving
security memories and security levels, as summarized by Figure 3.6. Both
judgement rules for expressions take as input an additional security memory
Γ. They also result in an additional security level s. Judgement rules for
instructions take as input an additional security memory Γ as well as an
initial security context pc, but they only yield an additional security memory
Γ′. Since the monitor semantics is a big-step semantics, there is no need to
output a new security context pc; this security context remains unchanged
after the evaluation of each instruction.

(S;⊑,⊔,⊓), (a lattice describing a flow policy)

s ∈ S (a security level)

pc ∈ S (a security context)

Γ ∈ Loc ⇀ S (a mapping from locations to security levels)

E ⊢ a, M, Γ⇐ l, s (left-value evaluation of an expression)

E ⊢ a, M, Γ⇒ v, s (right-value evaluation of an expression)

E ⊢ c, M, Γ, pc⇒M ′, Γ′ (evaluation of instructions)

Figure 3.6: Monitor semantics judgement rules
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3.2.3 Non-Interference

The PWhile monitor must ensure that programs are secure with respect to
an information flow policy described by a lattice S. Technically, it prevents
programs from leaking sensitive information by enforcing a termination-
insensitive non-interference (TINI) security property.

In the case of the two-point lattice of Figure 3.5, a program is secure
with respect to TINI if two arbitrary terminating executions differing only
on High inputs deliver the same Low outputs. Assuming that attackers
observe only inputs and outputs that are tagged with the security level Low,
TINI ensures that attackers learn no information on confidential inputs
tagged as High. Indeed, since this property ensures that changing the High
inputs does not influence the observations attackers make, it guarantees
that these observations do not depend on High inputs.

In order to formalize TINI for the PWhile monitor, Definition 1 intro-
duces an equivalence relation over memories M up to a security level s: two
memories are s-equivalent if they are equal for the set of locations l whose
security label Γ(l) is at most s.

Definition 1 (Equivalence relation ∼s
Γ). For all security memories Γ, for

all security labels s ∈ S, for all memories M1 and M2:

M1 and M2 are s-equivalent (M1 ∼
s
Γ M2) if and only if

∀l ∈ Loc, Γ(l) ⊑ s =⇒ M1(l) = M2(l).

TINI, in the general case of a lattice S, states that attackers only having
access to data up to a security level s cannot gain any knowledge of inputs
whose security levels are higher than s. Definition 2 formalizes the above
intuition.

Definition 2 (Termination-insensitive non-interference).
For all commands c, environments E, security memories Γ, memories M1,
M ′

1, M2, M ′
2, and security levels s, pc ∈ S, such that

E ⊢ c, M1, Γ, pc⇒M ′
1, Γ′

1 and E ⊢ c, M2, Γ, pc⇒M ′
2, Γ′

2

then:

M1 ∼
s
Γ M2 =⇒ Γ′

2 = Γ′
1 = Γ′ and M ′

1 ∼
s
Γ′ M ′

2.

This definition assumes two arbitrary terminating runs of a command c
on input memories M1 and M2, that yield respective output memories M ′

1

and M ′
2. If both input memories are s-equivalent, Definition 2 states that:
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1. the output memories M ′
1 and M ′

2 are also s-equivalent, thus guarantee-
ing that command c does not leak data having a security level above
s, and

2. the output security memories Γ′
1 and Γ′

2 are equal, thus guaranteeing
that the behaviour of the monitor itself does not leak information.

3.2.4 Semantics of Expressions

Expressions in PWhile are side-effect-free. Hence, expressions evaluation
do not modify initial security contexts described by security memories Γ.
Thus, both left-value and right-value evaluation of expressions only yield an
additional security level.

The monitor semantics of expressions take into account all information
flows that are produced during the evaluation of an expression as either a
left-value or a right-value. Intuitively, the PWhile semantics read values
from a memory M in order to evaluate an expression. Hence, the resulting
security level computed by the monitor semantics for expressions is a merge
of all the security levels corresponding to the values that are read from
memory M . Consider for example an environment E and two variables x and
y whose statically allocated locations are respectively denoted by lx , E(x)
and ly , E(y). Assume also a memory M , {lx 7→ ptr(ly), ly 7→ vy} where
variable x points to variable y. What values do the semantics read from
memory M in order to compute the right-value – the content – of expression

*x?

RV

LVMEM

RV

LVID

E(x) = lx

E ⊢ x, M ⇐ lx M(lx) = ptr(ly)

E ⊢ x, M ⇒ ptr(ly)

E ⊢ ∗x, M ⇐ ly M(ly) = vy

E ⊢ ∗x, M ⇒ vy

Figure 3.7: The initial computation of the right-value of expression *x by
the PWhile semantics

Figure 3.7 illustrates the computations involved in the right-value evalu-
ation of expression *x. As these computations show, the semantics reads
two values from memory M :

• the value M(lx) in order to determine the location where x points to,
and finally
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• the value M(ly) in order to determine the right-value of expression

*x.

Assuming a security memory Γ , {lx 7→ sx, ly 7→ sy} describing the security
levels associated to the content of memory M , the monitor semantics should
account for both these information flows by computing a security level equal
to sx⊔sy. Figure 3.8 illustrates the monitor semantics computations involved
in the right-value evaluation of expression *x. Note that the computed
security level s is in fact equal to sx⊔sy, which accounts for both information
flows that are produced by reading both values M(lx) and M(ly). Indeed,

RV

LVMEM

RV

LVID

E(x) = lx

E ⊢ x, M ⇐ lx, public M(lx) = ptr(ly)
Γ(lx) = sx s′ = public ⊔ sx

E ⊢ x, M ⇒ ptr(ly), s′

E ⊢ ∗x, M ⇐ ly, s′

M(ly) = vy

Γ(ly) = sy s = s′ ⊔ sy

E ⊢ ∗x, M, Γ⇒ vy, s

Figure 3.8: The computation of the right-value of expression *x by the
monitor semantics

the left-value evaluation of expression *x yield a security level taking into
account pointer-induced information flows due to dereferencing variable x.
Additionally, the right-value evaluation of expression *x yields a security
level taking into account both pointer-induced information flow and explicit
information flow due to reading the value M(ly). Moreover, the left-value
evaluation of x yields the bottom element of the lattice S – denoted by
public –, since it involves no dereferences.

Figure 3.9 introduces the monitor semantics for expressions. Left-value
evaluations of variables id involve no dereferences. Therefore, they result
in the least security level of lattice S, denoted by public (rule LVID). The
right-value of expression a determines the location of expression *a. Hence,
the security level of the right-value of expression a defines the security level
of the left-value of expression *a (rule LVMEM).

The right-value of constants n has the least security level of lattice S,
since attackers are assumed to know the source code of analysed programs
(rule RVCONST ). The location l of an expression a as well as the value
M(l) stored in that location determine the right-value of a. Hence, the
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LVID

E(id) = l

E ⊢ id, M, Γ⇐ l, public
LVMEM

E ⊢ a, M, Γ⇒ ptr(l), s

E ⊢ ∗a, M, Γ⇐ l, s

(a) Left-value evaluation rules

RVCONST E ⊢ n, M, Γ⇒ n, public

RV
E ⊢ a, M, Γ⇐ l, sl M(l) = v sr = Γ(l) s = sl ⊔ sr

E ⊢ a, M, Γ⇒ v, s

RVREF

E ⊢ a, M, Γ⇐ l, s

E ⊢ &a, M, Γ⇒ ptr(l), s

RVUOP

E ⊢ a, M, Γ⇒ v, s uop v = v′

E ⊢ uop a, M, Γ⇒ v′, s

RVBOP

E ⊢ a1, M, Γ⇒ v1, s1 E ⊢ a2, M, Γ⇒ v2, s2

v1 bop v2 = v s1 ⊔ s2 = s

E ⊢ a1 bop a2, M, Γ⇒ v, s

(b) Right-value evaluation rules

Figure 3.9: Information flow monitor big-step semantics of expressions

right-value evaluation of a merges both a’s left-value security level and a’s
content security level Γ(l), in order to take into account both pointer-induced
information flow and explicit information flow (rule RV ). The left-value
of expression a determines the right-value of expression &a. Hence, the
security level of the right-value of &a is the same as the security level of the
left-value of a (rule RVREF ). As for unary operators, the security level of the
right-value of a defines the security level of uop a (rule RVUOP ). Similarly,
for binary operators the merge of both security levels of the right-values of
a1 and a2 defines the security level of the right-value of a1 bop a2 (rule
RVBOP ).

In order to prove the soundness of the semantics rules for expressions,
we prove a result that is similar to Definition 2 of TINI: the evaluation of
an expression in two s-equivalent memories yield the same value provided
that its security level is less than or equal to s. In fact, we do prove a
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slightly more general property by taking advantage of the symmetry of both
evaluations and introducing a partial order relation over security memories
Γ in Definition 3. According to the definition of this partial order relation
⊑s, if attackers who have a security clearance lesser than s are allowed to
read the content of location l in the first run (Γ1(l) ⊑ s), then they are also
allowed to read the content of location l in the second run (Γ2(l) ⊑ Γ1(l)).
Stated otherwise, the security memory Γ2 of the second run is less restrictive
than the security memory Γ1 of the first run, up to security label s.

Definition 3 (Less restrictive up to label s (⊑s)).
For all s ∈ S, for all Γ1, Γ2,

Γ2 is less restrictive than Γ1 up to security label s (Γ2 ⊑s Γ1) iff :

for all l ∈ Loc, Γ1(l) ⊑ s =⇒ Γ2(l) ⊑ Γ1(l).

Lemma 1 and Corollary 1 state that the semantics of expressions, pre-
sented in Figure 3.9, is sound. This proof, presented in Appendix A.1, is by
induction on the evaluation rules of expressions.

Lemma 1 (L-value evaluation in s-equivalent memories).
For all environments E, for all memories M1, M2, for all security memories
Γ1, Γ2, for all security levels s ∈ S, such that Γ2 ⊑s Γ1 and M1 ∼

s
Γ1

M2,
for all a ∈ Exp such that E ⊢ a, M1, Γ1 ⇐ l1, s1 and E ⊢ a, M2, Γ2 ⇐ l2, s2

then
s1 ⊑ s =⇒ l1 = l2 and s2 ⊑ s1.

Lemma 1 proves that the left-value evaluation of expressions in two
s-equivalent memories yields equal values if the output security label of
the first run is lesser than s. Additionally, note that if both input security
memories Γ1 and Γ2 are equal, then the left-value evaluation of expressions
in two s-equivalent memories also yield two equal security labels provided
that one of the output security labels is lesser than s. The proof of this
lemma is by induction on the left-value evaluation of expressions. All proofs
of this paper can be found in the accompanying appendix. Corollary 1
formalizes the same results for the right-value evaluation of expressions: the
right-value evaluation in two s-equivalent memories yield the same value if
the resulting security label is lesser than s.

Corollary 1 (R-value evaluation in s-equivalent memories).
For all environments E, for all memories M1, M2, for all security memories
Γ1, Γ2, for all security levels s ∈ S, such that Γ2 ⊑s Γ1 and M1 ∼

s
Γ1

M2,
for all a ∈ Exp such that E ⊢ a, M1, Γ1 ⇒ v1, s1 and E ⊢ a, M2, Γ2 ⇒ v2, s2

then
s1 ⊑ s =⇒ v1 = v2 and s2 ⊑ s1.
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3.2.5 Semantics of Instructions

The evaluation of instructions takes as input a security memory Γ as well
as a security context pc. The security memory Γ describes security levels
corresponding to the values stored in memory M , whereas the security
context pc describes the context of execution for instructions.

1 if (user_input == secret){

2 y := 1;

3 }

4 else {

5 z :=1;

6 }

7 x := 1;

Listing 3.1: Implicit information flows

Implicit flows. The label pc represents a security label that is attached
to the program counter. Consider the example program in Listing 3.1 where
the security label of variable secret is High. If attackers have access
to either variables y or z at the end of this program, they may deduce
information about variable secret. Hence, there are two information flows;
a first one from secret to y and a second one from variable secret to
z. Both these implicit information flows are due to assignments that occur
inside a conditional depending on High variables. Therefore, the monitor
maintains a security label – denoted by pc – that accounts for these implicit
dependencies.

Listing 3.2 is an annotated version of Listing 3.1 illustrating how the
PWhile monitor handles the security context pc. When a conditional
instruction is about to be executed, the monitor evaluates the security
level of the conditional guard, then propagates this security label to the
current security context pc. Consequently, the monitor evaluates either the
then-branch or the else-branch in the newly computed security context pc′ in
order to account for implicit information flows occurring inside conditional
branches. The annotations in Listing 3.2 assume that the conditional
guard evaluates to true. Hence, since the assignment at Line 2 occurs in
a high security context pc′, the monitor labels variable y as High in order
to account for the implicit flow from secret to y. Note that after the
conditional instruction – at Line 7 –, the monitor lowers the security context
to the old label pc, since execution of these instructions does not depend
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on the conditional guard anymore. This operation is transparent in the
monitor semantics thanks to a big-step semantics that simplifies greatly the
evaluation rules.

0 // initialised to pc = Low
1 if (user_input == secret){ // pc′ = pc ⊔High
2 y := 1; // evaluated in pc′

3 }

4 else {

5 z := 1; // not executed

6 }

7 x := 1; // evaluated in pc

Listing 3.2: The monitor handling of the security context for Listing 3.1

Hybrid information flow monitor. The PWhile monitor is a hybrid
monitor combining both dynamic and static analyses techniques in order
to soundly track information flows. Consider for instance the previous
example program in Listing 3.1 where variable secret is High. Assuming
that the conditional guard evaluates to true, a purely dynamic monitor is
unaware of information flows due to the else-branch since the control flow
goes only through the then-branch. Therefore, a dynamic monitor misses
the implicit flow involving variable z; an attacker may learn information
on variable secret by having access to variable z. This program would
leak information unless the monitor can rely on a static analysis of the
non-executed branches in order to label z as High and prevent attackers
from reading its value.

The PWhile monitor relies on the result of a static analysis denoted
by SP . This static analysis provides the set of locations possibly written
by instructions of the analysed program, in order to guarantee the monitor
soundness. Listing 3.3 illustrates how the monitor accounts for implicit flows
that are due to non-executed branches. Assuming that the conditional guard
evaluates to true, the monitor evaluates the then-branch in a High security
context pc′. Before leaving the then-branch, the monitor also propagates
the security context pc′ to the set of locations that may be written in the
else-branch. Hence, the monitor tags the location lz of variable z with a
High security label in order to account for the implicit information flow
from secret to z.
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1 if (user_input == secret){

2 y := 1; // evaluated in pc′

3 } // propagating pc′ to the set SP (z := 1) of locations

4 else {

5 z := 1; // not executed

6 }

7 x := 1; // evaluated in pc

Listing 3.3: The monitor handling of implicit flows for Listing 3.1

Pointer-induced information flows. The static analysis SP also proves
useful to account for information flows in the presence of pointers. Consider
for example the program in Listing 3.4. This program is semantically
equivalent to the previous example in Listing 3.1. Therefore, the PWhile
monitor should label at least variables y and z as High in order to prevent
attackers from learning sensitive information about variable secret. Let
us first validate this intuition; may attackers learn sensitive information if
they have access to either variable y or z?

0 // Initialised to pc = Low
1 if (user_input == secret){ // pc′ = High
2 p := &y;

3 }

4 else {

5 p := &z;

6 }

7 x := 1;

8 *p := 1;

Listing 3.4: Pointer-induced information flows

If attackers know the value of variable y, they may learn that the
conditional guard evaluates to true (resp. false) when y is equal to 1 (resp.
different from 1). Hence, attackers may learn that the sensitive variable
secret is either equal to or different from the user-supplied input. This
proves that there is indeed an information flow from variable secret to
variable y. Similarly, there is also an information flow from variable secret
to variable z. Consequently, two questions come to mind. How can we
explain both these information flows? And how can the PWhile monitor
account for these information flows?
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First of all, both assignments to variable p at Lines 2 and 5 occur in
a High context since the conditional guard depends on variable secret.
Hence, there is an implicit information flow from variable secret to variable
p. Additionally, the assignment at Line 8 reads the value of variable p in
order to dereference it and determine which location need to be updated.
Hence, there is also an information flow from variable p to expression *p.
Finally, since *p can point to both variables y and z, this explains by
transitivity the information flow from variable secret to both variables y
and z.

Note that the assignment to expression *p actually generates a pointer-
induced information flow from p to all variables that expression *p may
point to. Even when the conditional evaluates to true – thus, p points to y
–, the fact that the assignment at Line 8 does not modify variable z can itself
leak information. This behaviour is indeed similar to implicit information
flows due to non-executed branches. Therefore, similarly to the treatment of
implicit flows, the PWhile monitor relies on the static analysis SP in order
to soundly account for these pointer-induced information flows.

0 // Initialised to pc = Low
1 if (user_input == secret){ // pc′ = High
2 p := &y; // p gets labelled as High
3 } // propagating pc′ to the set SP (p := &z) of locations

4 else {

5 p := &z; // not executed

6 }

7 x := 1; // evaluated in pc
8 *p := 1; // propagating the label of p to the set

9 // SP (∗p := 1) of locations.

Listing 3.5: The monitor handling of pointer-induced flows for Listing 3.4

Listing 3.5 illustrates how the monitor handles these pointer-induced
information flows for the example program in Listing 3.4. Assuming the
conditional guard evaluates to true, the PWhile monitor labels p as High
at Line 2 since this assignment occurs in a High security context. Then,
before leaving the then-branch, the monitor propagates the security context
pc′ to the locations that are modified in the else-branch by relying on the
static analysis SP ; the security label of p does not change since the monitor
already tagged it as High. At Line 7, the monitor lowers the security context
to the old label pc since the control flow does not depend on the conditional
instruction anymore. At Line 8, the monitor propagates the label of variable
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p to variable y since the write to y involves first reading the value of p
in order to dereference it; hence, the monitor labels variable y as High.
Additionally, the PWhile monitor also propagates the label of p to the set
SP (∗p := 1) of locations that may be written by the assignment in order to
account for all pointer-induced information flows. Consequently, the monitor
labels variables y and z as High in order to prevent information leaks due
to pointer-induced information flows.

Propagating only the security label of p to the set SP (∗p := 1) of
locations at Line 8 is sufficient to track information flows soundly. Yet, it
does not guarantee the monitor correctness [LG08] : the behaviour of the
monitor itself can leak information. In fact, at Line 8, the PWhile monitor
also propagates the security context pc to the set SP (∗p := 1) of locations
that may be written by the assignment *p := 1. The following example
in Listing 3.6 illustrates the problem by assuming that the monitor only
propagates the security level of p to the set SP (∗p := 1) of locations.

Monitor correctness. Consider the example program in Listing 3.6,
where only variable secret is High. Let us suppose that the results of
the static analysis SP are imprecise, by assuming that the computed set
of written locations at Line 8 is {ly, lz}, where ly (resp. lz) stands for the
location of variable y (resp. the location of variable z). This assumption
is likely, since the conditional guard at Line 1 is an opaque predicate that
always evaluates to true and the static analysis SP might not find out that
the else-branch of the conditional at Line 1 is unreachable.

1 if ((x2 + x) mod 2 == 0) {

2 p := &y;

3 }

4 else {

5 p := &z;

6 }

7 if (user_input == secret) {

8 *p := 1; // assumption: SP (∗p := 1) = {ly, lz}
9 }

10 else {

11 skip;

12 }

Listing 3.6: The monitor handling of pointer-induced flows for Listing 3.4
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Listings 3.7 and 3.8 illustrate how the PWhile monitor handles the
program in Listing 3.6, depending on the evaluation result of the conditional
guard at Line 7. Since the conditional at Line 1 manipulates only Low
variables, all variables but variable secret are still Low before entering
the conditional at Line 7. Thus, let us compare the results of the PWhile
monitor in both cases past this program point.

Listing 3.7 assumes the conditional guard at Line 7 evaluates to true.
Since this conditional guard depends on variable secret, the monitor
creates a new security context pc′′ that is High. At the assignment of Line 8
in the then-branch, the monitor labels variable y as High since *p points
to y, and the assignment to y occurs in a High security context pc′′. Then,
the monitor propagates the security level Low of the right-value of p to the
set SP (∗p := 1) of locations; the security level of variable y is still High
whereas the security level of variable z is Low. Then, before leaving the
then-branch, the PWhile monitor propagates pc′′ to the set of locations
that may be written in the else-branch. Since this set is empty, no security
levels change. Hence, both variables secret and y end up being labelled
as High, whereas the other variables are Low.

0 // Initialised to pc = Low
1 if ((x2 + x) mod 2 == 0) { // pc′ = Low
2 p := &y;

3 }

4 else {

5 p := &z; // not executed

6 } // secret is High, whereas p,y, and z are Low
7 if (user_input == secret) { // pc′′ = High
8 *p := 1; // y gets labelled as High
9 }

10 else {

11 skip; // not executed

12 }

13 // secret and y are High, whereas p, x and z are Low

Listing 3.7: The monitor handling for Listing 3.6 (case 1)

Listing 3.8 assumes the conditional at Line 7 evaluates to false. The
monitor evaluates the security level of the conditional guard, then creates a
new security context pc′′ that is High. At the skip instruction of Line 11,
the monitor modifies no security levels. Then, before leaving the else-branch,
the PWhile monitor propagates pc′′ to the set SP (∗p := 1) of locations
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0 // Initialised to pc = Low
1 if ((x2 + x) mod 2 == 0) {

2 p := &y; // p gets labelled as low

3 }

4 else {

5 p := &z; // not executed

6 } // secret is High, whereas p,y, and z are Low
7 if (user_input == secret) { // pc′′ = High
8 *p := 1; // not executed

9 }

10 else {

11 skip;

12 }

13 // secret, y and z are High, whereas p, x are Low

Listing 3.8: The monitor handling for Listing 3.6 (case 0)

that may be written in the then-branch. Therefore, the monitor labels both
variables y and z as High. Hence, variables secret, y and z end up being
labelled as High, whereas the other variables are Low.

Note that in both cases illustrated by Listings 3.7 and 3.8, the resulting
security level for variable z is different. Hence, the behaviour of the monitor
itself can leak information since attackers can deduce which branch is
executed by looking up the security level of variable z. In order to mitigate
this, the PWhile monitor ensures that variable z is also labelled as High
in the case of Listing 3.7, when the conditional guard at Line 7 evaluates to
true. The monitor achieves this by propagating the security context pc′′ –
in addition to the security level of p – to the set SP (∗p := 1) of locations
that may be written by the assignment at Line 8.

Formal semantics. Figure 3.10 introduces the information flow monitor
semantics for instructions. This semantics is a big-step one as it is more
convenient to reason about information flow properties. Indeed, since a big-
step semantics describes the behaviour of a term in terms of the behaviour of
its subterms, the control flow is explicit. Therefore, it is easier to formalize
implicit information flows by relying on a big-step semantics. In particular,
there is no need to pinpoint immediate post-dominators of conditional
branches in order to formalize the semantics of implicit information flows.

Instructions skip modify neither the input value memory nor the input
security memory (rule Skip). Assignment instructions a1 := a2 read the
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(Skip) E ⊢ skip, M, Γ, pc⇒M, Γ

(Assign)

E ⊢ a1, M, Γ⇐ l1, s1 E ⊢ a2, M, Γ⇒ v2, s2

s = s1 ⊔ s2 ⊔ pc s′ = s1 ⊔ pc M ′ = M [l1 7→ v2]
Γ′′ = Γ[l1 7→ s] Γ′ = update(a1 = a2, s′, Γ′′)

E ⊢ a1 := a2, M, Γ, pc⇒M ′, Γ′

(Comp)
E ⊢ c1, M, Γ, pc⇒M1, Γ1 E ⊢ c2, M1, Γ1, pc⇒M2, Γ2

E ⊢ c1; c2, M, Γ, pc⇒M2, Γ2

(Iftt)

E ⊢ a, M, Γ⇒ v, s istrue(v) pc′ = s ⊔ pc
E ⊢ c1, M, Γ, pc′ ⇒M1, Γ1 Γ′

1 = update(c2, pc′, Γ1)

E ⊢ if (a) c1 else c2, M, Γ, pc⇒M1, Γ′
1

(Ifff )

E ⊢ a, M, Γ⇒ v, s isfalse(v) pc′ = s ⊔ pc
E ⊢ c2, M, Γ, pc′ ⇒M2, Γ2 Γ′

2 = update(c1, pc′, Γ2)

E ⊢ if (a) c1 else c2, M, Γ, pc⇒M2, Γ′
2

(Whilett)

E ⊢ a, M, Γ⇒ v, s istrue(v)
pc′ = s ⊔ pc E ⊢ c, M, Γ, pc′ ⇒M ′, Γ′

E ⊢ while (a) c, M ′, Γ′, pc⇒M ′′, Γ′′

E ⊢ while (a) c, M, Γ, pc⇒M ′′, Γ′′

(Whileff )

E ⊢ a, M, Γ⇒ v, s isfalse(v)
pc′ = s ⊔ pc Γ′ = update(c, pc′, Γ)

E ⊢ while (a) c, M, Γ, pc⇒M, Γ′

update(c, s, Γ) ,







Γ(l) ∀l 6∈ SP (c)

Γ(l) ⊔ s ∀l ∈ SP (c)

Figure 3.10: Information flow monitor big-step semantics of instructions
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left-value of a1 in order to determine the location to update. They also read
the right-value of a2 in order to determine the value to write. Hence, assign-
ments generate an information flow from both the left-value of a1 and the
right-value of a2 toward the value that is stored. Additionally, assignments
occur in an execution context pc capturing implicit flows. Consequently, the
monitor accounts for these three information flow by merging the security
levels s1, s2 and pc that corresponds respectively to the left-value of a1, the
right-value of a2 and the program counter. The monitor semantics then
maps the computed security label to the written location l1. Additionally,
the monitor relies on the update operator in order to propagate the security
context pc and the security level s1 to the set SP (a1 := a2) of locations
that may be written by the assignment a1 := a2, in order to account for
pointer-induced information flows (rule Assign).

The operator update(c, s, Γ) updates the security memory Γ by modifying
only the values mapped to the set SP (c) of locations that may be written
by instruction c. It propagates the security level s to these values.

For a sequence c1; c2 of two instructions, the monitor evaluates the first
instruction c1, then uses both output memories M1 and Γ1 as an input to
evaluate the second instruction c2. The monitor evaluates both instructions
in the same security context pc since execution of c2 does not depend on
conditionals occurring in c1 – recall the monitor semantics is a big-step
semantics – (rule Comp).

Conditional instructions generate implicit information flows from the
conditional guard to the locations that are modified in either the then-
branch or the else-branch. Hence, the monitor semantics create a new
security context pc′ by merging the old security context pc and the security
level s of the conditional guard. If the conditional guard evaluates to true,
the monitor executes the then-branch in the new security context pc′ in
order to account for implicit information flows in this branch. Additionally,
the monitor also propagates the security context pc′ to the set SP (c2) of
locations that may be written by the else-branch. Thus, the monitor also
accounts for implicit flows due to the non-executed branch (rules Iftt and
Ifff ).

Loop instructions generate implicit information flows from the loop guard
to the locations that may be written in the loop body. Hence, the monitor
creates a new security context pc′ by merging the old security context pc
and the security level s of the loop guard. If the loop guard evaluates to
true, the monitor evaluates the loop body in the new security context pc′

(rule Whilett). Otherwise, if the loop guard evaluates to false, the monitor
propagates the new security context pc′ to the location that may be written
by the loop body (rule Whileff ).
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Soundness. Theorem 1 proves that the PWhile monitor is sound with
respect to TINI. It ensures the monitor semantics soundly tracks information
flows produced by the monitored program. Moreover, it also guarantees
that the behaviour of the monitor itself does not leak information.

Theorem 1 (Soundness).
The PWhile monitor semantics is sound with respect to TINI as introduced
in Definition 2.

The proof of Theorem 1 can be found in Appendix A.2. This proof is
by induction on the evaluation judgement of instructions. It relies on both
Lemma 1 and Corollary 1.

3.3 Related Work

Our PWhile information flow monitor is inspired by the monitor proposed
by Le Guernic et al. [LGBJS06] as well as Russo and Sabelfeld [RS10]. It is
a flow-sensitive hybrid monitor relying on a prior static analysis computing
the set of locations that may be modified by an instruction. Thus, it enjoys
the same permissive properties as Le Guernic et al.’s monitor as well as Russo
and Sabelfeld’s monitor. Our monitor also extends the language supported
by both previous monitors to include pointers. Although the presented
PWhile monitor does not support output instructions, this extension is
straightforward as we illustrate in [ASTT13a]. We also make the same
choice as Le Guernic et al., by formalizing the semantics of our monitor as
a big-step semantics. This choice simplifies greatly the handling of implicit
information flows.

Moore and Chong [MC11] also extend Russo and Sabelfeld’s monitor
with dynamically allocated references, allowing different sound memory
abstractions. In our semantics, we use the most precise instantiation of their
memory abstraction where each concrete location correspond to one abstract
location. While Moore and Chong argue that it is undecidable in the general
case to determine which locations might be updated by an instruction, we
believe that, for the sake of permissiveness, it is necessary to be as precise
as possible at least for the set of finite statically allocated locations. Moore
and Chong also propose a static analysis determining when their monitor
can stop tracking the security level of some variables that pose no security
threats. This static analysis offers the opportunity to reduce the runtime
overhead, while still guaranteeing the soundness of their monitor.
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3.4 Summary

We have formalized in this chapter a flow-sensitive information flow monitor
for the PWhile language, an imperative language supporting both pointers
and aliasing. Our hybrid monitor relies on a prior static analysis computing
the set of locations that may be written by instructions of the analysed
program. Indeed, Russo and Sabelfeld [RS10] prove that a flow-sensitive
dynamic monitor must rely on a prior static analysis in order to guarantee
its soundness. We also prove the soundness of our monitor with respect
to TINI, as introduced in Definition 2. Our monitor semantics ignores
diverging runs since it is inspired by a simple version of the Clight big-step
semantics stripped of coinduction [BL09]. As pointed by Le Guernic et
al. [LGBJS06], this is not problematic when dealing with TINI because we
ignore non-termination covert channels.

We investigate in the next chapter how such an information flow monitor
can be implemented.





Chapter 4

Inlining Approach

Formalizing the PWhile monitor semantics and proving its soundness is
a first step toward provable secure information flow. Implementing such a
monitor is a second step.

One approach to implement such a security monitor consists in modifying
the target runtime environment. Such a modification can be achieved by
enhancing virtual machines with security checks in the case of interpreted
languages such as the Java bytecode or JavaScript. Additionally, in the case
of compiled languages such as the C language or OCaml, this approach may
involve redesigning the underlying hardware in order to enhance it with
monitoring capabilities.

A second approach consists in modifying the target application in order
to instrument its source code with security checks. This inlining approach
is how we choose to tackle this problem, since it has the benefits of being
agnostic related to the underlying runtime environment; the instrumented
application can be compiled ahead of time, interpreted or even “simulated”
by a static analyser.

4.1 Security Labels

Inlining an information flow monitor consists in defining a program trans-
formation that instruments the target program in order to insert security
checks. This program transformation maps initial variables of the target
program to shadow variables that account for security levels. It also gener-
ates instructions involving shadow variables in order to track information
flows according to the PWhile monitor semantics.

39
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1 label secret label :=1;

2 int secret; // variable secret is tagged as High

3 label user input label := 0 ;

4 int user_input;

5 label x label := 0 ;

6 int x;

7 label y label := 0 ;

8 int y;

9 label z label := 0 ;

10 int z;

11 label pc0 := 0 ;

12 label pc1 := pc0 or user input label or secret label

13 if (user_input == secret){

14 y label := 0 or pc1 ;

15 y := 1;

16 z label:=z label or pc1;//Else-branch’s implic. flows

17 }

18 else {

19 z label := 0 or pc1 ;

20 z :=1;

21 y label:=y label or pc1;//Then-branch’s implic. flows

22 }

23 x label := 0 or pc0;

24 x := 1;

Listing 4.1: Inlining the program in Listing 3.1

Integer variables. Listing 4.1 illustrates the inlining approach for the
example program in Listing 3.1. This program transformation introduces
a shadow variable for each integer variable of the initial program. It also
initialises each shadow variable according to the security level of the initial
variable it represents. For instance, the example program in Listing 4.1
assumes initially that only variable secret is High, whereas the other vari-
ables are Low. As an implementation choice, this example implements the
type label as an integer type; the integer 1 (resp. the integer 0) represents
the security level High (resp. the security level Low). It also implements the
union operator ⊔ as the logical operator or. This representation is indeed a
sound implementation of the two-point lattice presented in Figure 3.5 since
it preserves its lattice structure. Indeed, merging any security label with
itself yields the same label. Additionally, merging Low and High yields



4.1. SECURITY LABELS 41

High (0 or 1 yields 1).
This program transformation also introduces a variable pc0 – at Line 11

– representing the initial security context in order to account for implicit
flows. Since the program runs initially in a Low security context, pc0
is initialised to Low. At Line 12, the program transformation creates a
new security context variable pc1 for the conditional at Line 13. pc1’s
value is the merge of both the initial context pc0 and the security level
user input label or secret label of the conditional guard. Then,
according to the PWhile monitor semantics, the program transformation
assigns to the security label of variable y the value of 0 or pc1 since y
is assigned a constant (having a security level Low) in a security context
depending on pc1. Furthermore, at Line 16, the program transformation
relies on the static analysis SP to account for implicit flows due to the
else-branch; it propagates the security context variable pc1 to the security
label z label of variable z. Finally, at Line 23, the security label x label

gets assigned the value of 0 or pc0 since variable x is assigned a constant
in a security context that only depends on pc.

Pointers. In the case of programs handling pointers, the program trans-
formation needs to handle aliasing in a correct way. Consider for example
the programs in Listings 4.2 and 4.4. At the end of both programs, the value
of variable x is read and assigned to variable z. Thus, the inlining approach
should manage to read the security label of variable x at the end of both
programs, whether accessed directly through x or through dereferencing the
pointer p.

The program transformation handles such aliasing relations between
variables by assigning multiple shadow variables to variables of type pointer.
For instance, since p is a pointer to an integer, the program transformation
maps it to two shadow variables:

1. a variable p label of type label that represents the security level of
p itself, and

2. a pointer variable *p label d1 of type pointer to a type label, that
represents the security level of *p.

Hence, when the program in Listing 4.4 creates an aliasing relation by
assigning &x to p at Line 4, the program transformation also reproduces the
same aliasing relation for the corresponding security labels: it assigns the
address &x label of x’s label to the label p label d1 of *p, as illustrated
by Line 9 of the inlined program at Listing 4.5. This way, the program
transformation can access the security label of x simply by dereferencing
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1 int x;

2 int z;

3 z := x;

Listing 4.2: Direct access to
variable x

1 label x label ;

2 int x;

3 label z label := 0 ;

4 int z;

5 z label := x label ;

6 z := x;

Listing 4.3: Inlining of List-
ing 4.2

1 int x;

2 int z;

3 int *p;

4 p := &x;

5 z := *p;

Listing 4.4: Accessing variable
x through dereferencing

1 label x label ;

2 int x;

3 label z label ;

4 int z;

5 label p label ;

6 label *p label d1 ;

7 int *p;

8 p label := 0;

9 p label d1 := &x label ;

10 p := &x;

11 z label := p label or

*p label d1;

12 z := *p;

Listing 4.5: Inlining of List-
ing 4.4

p label d1 at Line 11. Note that both inlined versions presented at List-
ings 4.3 and 4.5 do compute the same security level for variable z, whether
the program accesses it directly or through dereferencing the pointer p. A
constant propagation can make this fact even more explicit by optimizing
the term p label or *p label d1 to *p label d1 at Line 11 of List-
ing 4.5, since the value of p label is constant and equal to 0. In general,
the program transformation does not attempt to do such optimizations in
the resulting programs in order to stick to the PWhile monitor semantics
and keep the proof of soundness less cumbersome. Such optimizations can
still be performed afterwards by the compiler or a dedicated optimizing
program transformation.
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Shadow variables. Henceforth, we extend the PWhile language in order
to formalize the monitor inlining approach. We denote by τs a new type
representing security labels. We also extend the range of memories M to
V ∪ S to include security levels of a lattice S. Moreover, we extend binary
operators bop to include the union operator ⊔ of the lattice S.

The approach that consists in mapping pointer variables to multiple
shadow variables generalizes to any pointer. The number of shadow variables
mapped to a variable x depends on how many times such variable x can
be dereferenced. Definition 4 introduces such a quantity as the depth of a
variable x. For instance, an integer variable has a depth of 0 since it cannot
be dereferenced, whereas a pointer to an integer has a depth of 1.

Definition 4 (Depth D(x) of variable x).
Let τx be the type of variable x. The depth of x is defined as:

D(x) = D(τx) =







0 if τ = κ

1 + D(τ ′) if τx = ptr(τ ′).

Definition 5 introduces a bijection Λ that maps initial variables of the
target program to their shadow variables. We denote by V ar(P ) the set of
initial variables of the target program P . The range V ar′ of the mapping
Λ and the set V ar(P ) of initial variables must be disjoint in order for
the program transformation to preserve the behaviour of target programs.
Furthermore, the mapping Λ must be injective to soundly reproduce the
semantics of the PWhile monitor.

Definition 5 (Bijection Λ).
Let V ar(P ) be the set of initial variables of the target program, and V ar′ ⊂
V ar \ V ar(P ) be a set of shadow variables.

Λ : {(x, k) : x ∈ V ar(P ) and k ∈ [0, D(x)]} → V ar′ is a bijection
mapping each initial variable x to exactly D(x)+1 shadow variables, denoted
Λ(x,k), such that Λ(x,k) has a type ptr(k)(τs) for all k ∈ [0, D(x)].

The bijection Λ maps an initial variable x of the target program to
exactly D(x) + 1 shadow variables. By convention, we let ptr(0)(τ) denote
the type τ . For instance, assuming that variable x has a type ptr(ptr(κ)),
then x has a depth of 2. Consequently, the bijection Λ maps x to 3 shadow
variables:

1. Λ(x,0) which has a type τs of a security label, and

2. Λ(x,1) which has a type ptr(τs) of a pointer to security label, and
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Table 4.1: The mapping Λ used in Listing 4.5

Λ(x,0) x label

Λ(z,0) z label

Λ(p,0) p label

Λ(p,1) p label d1

3. Λ(x,2) which has a type ptr(ptr(τs)) of a pointer to pointer to
security label.

Intuitively, Λ(x,0) yields the security level of x, whereas *Λ(x,1)
yields the security level of *x, and finally, **Λ(x,2) yields the security
level of **x.

If you recall the example program in Listing 4.4 and its inlined version
in Listing 4.5 for instance, Table 4.1 illustrates the mapping Λ that is used.

4.2 Expressions

This section introduces operators that compute the security label of expres-
sions in terms of shadow variables. These operators reproduce exactly the
PWhile monitor semantics for expressions.

The monitor semantics presented in Figure 3.9 include inductive rules
for left-value evaluations and right-value evaluations of expressions. Thus,
we inductively define two operators denoted by LL and LR that respectively
compute the security label resulting from a left-value and a right-value
evaluation. Additionally, the right-value evaluation rule RV in Figure 3.9(a)
accesses the security memory Γ. Since inlining a monitor consists in encap-
sulating the security memory Γ in the value memory M of values – in broad
outline –, accesses to the security memory Γ in the semantics are replaced
by accesses to memory M in the inlined program. Hence, we also introduce
a third operator denoted by L that represents the accesses to memory M
through shadow variables.

In order to facilitate the notations, we introduce a syntactic sugar that
extends the bijection Λ to all expressions that may occur in a left-value
position. For instance, the syntactic sugar Λ(*x,0) denotes the shadow
security label of expression *x. Thus, desugaring Λ(*x,0) results in the
expression *Λ(x,1) which has a type τs. Likewise, the syntactic sugar
Λ(*x,1) denotes a pointer to the shadow security label of the expression
resulting from dereferencing one more time expression *x. Thus, desugaring
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Λ(*x,1) results in the expression *Λ(x,2) which has a type ptr(τs).
Definition 6 introduces this extension of the mapping Λ. As a special case,
we also denote by *

-1x the referencing expression &x, such that Λ(&x,1)
also denotes a pointer to the shadow security label of the expression resulting
from dereferencing one more time the right-value expression &x. Thus,
desugaring Λ(&x,1) results in &Λ(x,0).

Definition 6 (Extension of the bijection Λ).
For all x ∈ V ar(P ), for all r ∈ [−1, D(x)], for all k ∈ [0, D(∗rx)], then
the bijection Λ extends to left-value expressions as well as the referencing
expression as follows:

Λ(∗rx, k) , ∗rΛ(x, k + r).

LL(id) , public LL(∗a) , LR(a)

(a) Inlining left-value evaluation rules

LR(n) , public LR(uop a) , LR(a) LR(&a) , LL(a)

LR(a1 bop a2) , LR(a1) ⊔ LR(a2) L(a) , Λ(a, 0)

LR(a) , LL(a) ⊔ L(a) (if a is a left-value)

(b) Inlining right-value evaluation rules

Figure 4.1: Operators LL, LR and L

Figure 4.1 introduces the definition of the three operators LL, LR and
L. The operator LL – introduced in Figure 4.1(a) – defines the security
label of left-values in terms of shadow variables, whereas the operator LR –
introduced in Figure 4.1(b) – defines the security label of right-values. In
the PWhile monitor semantics presented in Figure 3.9(a), the left-value
evaluation of variables id yields the security level public (rule LVID), so
does LL(id). Similarly, LL(∗a) accounts for the security level of expression

*a evaluated as a left-value. Hence, LL(∗a) yields LR(a) which accounts for
the security level of expression a evaluated as a right-value, according to
the monitor semantics (rule LVMEM ). Likewise, the operator LR reproduces
the PWhile monitor semantics of the right-value evaluation rules presented
in Figure 3.9(b). For instance, let us assume a variable x of type pointer to
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an integer (ptr(κ)). Figure 4.2 illustrates the computation of the security
label resulting from the right-value evaluation of expression *x.

LR(∗x) = LL(∗x) ⊔ L(∗x) By definition of LR(a)

= LR(x) ⊔ L(∗x) By definition of LL(∗a)

= LL(x) ⊔ L(x) ⊔ L(∗x) By definition of LR(a)

= public ⊔ Λ(x, 0) ⊔ Λ(∗x, 0) By definition of LL(id) and L(a)

= Λ(x, 0) ⊔ ∗Λ(x, 1) By definition of the extension Λ

Figure 4.2: The security label resulting from the right-value evaluation of
expression *x

4.3 Aliasing Invariant

The inlining approach maintains an aliasing invariant in order to correctly
handle pointers. Essentially, if a pointer p points to an integer variable
x, the program transformation ensures that the shadow variable Λ(p,1)
points to the shadow variable Λ(x,0). This way, whenever the inlined
program reads an integer through *p or x, it also reads the same security
label through either *Λ(p,1) or Λ(x,0).

Definition 7 introduces the aliasing relation stating that two expressions
are aliased in a memory M if and only if they both evaluate to the same left-
value in memory M . For instance, if a pointer p points to an integer variable
x in a memory M , then *p and x are aliased in memory M (∗p ∼M

lval x).

Definition 7 (Aliasing equivalence relation ∼M
lval).

a1 ∼
M
lval a2 iff. for every environment E, and all locations l1, l2 such that

E ⊢ a1, M ⇐ l1 and E ⊢ a2, M ⇐ l2, then l1 = l2.

Definition 8 introduces the aliasing invariant that the inlining approach
must satisfy. Intuitively, it states that initial variables of the target program
are aliased if and only if their shadow variables are also aliased. It also
states that one pair of shadow variables is aliased if and only if all shadow
variables are aliased.

Definition 8 (Aliasing invariant Ω(M)).
For all environments E, for all memories M , the aliasing invariant is

defined as the predicate Ω(M) such that:
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Ω(M) , ∀x, y ∈ V ar(P ),∀r ∈ [0, D(y)] , then

x ∼M
lval ∗

ry

⇐⇒ ∀k ∈ [0, D(x)] , Λ(x, k) ∼M
lval Λ(∗ry, k)

⇐⇒ ∃k ∈ [0, D(x)] , Λ(x, k) ∼M
lval Λ(∗ry, k).

4.4 Instructions

This section formalizes the inlining approach as a program transformation,
denoted by T . This program transformation relies on Definition 4.1 of the
operators LL, LR and L which express security labels of expressions in terms
of shadow variables.

The program transformation T is parametrized by a security context
variable denoted by pc. This variable represents the security context denoted
by pc in the PWhile monitor semantics. The program transformation rules
(T [c, pc] 7→ c′), introduced in Figure 4.3, take as input a target instruction
c as well as a security context variable pc, then yield a new command c’

that corresponds to the inlined version.
The program transformation does not modify instructions skip accord-

ing to the PWhile monitor semantics. As for a sequence c1; c2 of two
instructions, the program transformation parametrizes the inlining of both
instructions with the same security context variable, since the PWhile

semantics evaluates both instructions in the same security context.
For assignments a1 := a2, the program transformation updates the

security label mapped to a1. This security label, determined by Λ(a1,0),
gets assigned the union of three security labels according to the PWhile
monitor semantics: the security label LL(a1) of the left-value of a1, the
security label LR(a2) of the right-value of a2, and the security context
variable pc. Additionally, Assignment instructions may create new aliasing
relations when a1 and a2 are of type pointer (D(a1) = D(a2) ≥ 1). In that
case, the program transformation also reproduces these aliasing relations for
the corresponding shadow variables. Thus, Λ(a1,k) gets assigned Λ(a2,k)
for all strictly positive k such that these shadow variables Λ(a1,k) and
Λ(a1,k) are well-defined (k ≤ D(a1)). Moreover, the program transforma-
tion also reproduces the semantics of the update operator by propagating
to the set of locations that may be modified by the assignment two security
labels: the security label LL(a1) and the security context variable pc. Note
that the program transformation relies on the inverse of environment E,
denoted by E−1, in order to find the set of variables that correspond to the
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T [skip, pc] 7→ skip T [c1; c2, pc] 7→ T [c1, pc]; T [c2, pc]

T [a1 := a2, pc] 7→







Λ(a1, 0) := LL(a1) ⊔ LR(a2) ⊔ pc;

Λ(a1, k) := Λ(a2, k);∀k ∈ [1, D(a1)]

Λ(E−1(l), 0) := Λ(E−1(l), 0) ⊔ LL(a1) ⊔ pc;∀l ∈ SP (a1 := a2)

a1 := a2;

T [if (a) c1 else c2, pc] 7→







pc′ = LR(a) ⊔ pc;

if (a) {

T [c1, pc′]

Λ(E−1(l), 0) = Λ(E−1(l), 0) ⊔ pc′;∀l ∈ SP (c2)

} else {

T [c2, pc′];

Λ(E−1(l), 0) = Λ(E−1(l), 0) ⊔ pc′;∀l ∈ SP (c1)

}

T [while (a) c, pc] 7→







while (a) {

pc′ = LR(a) ⊔ pc;

T [c, pc′];

}

pc′ = LR(a) ⊔ pc;

Λ(E−1(l), 0) = Λ(E−1(l), 0) ⊔ pc′;∀l ∈ SP (c)

Figure 4.3: Program transformation rules.
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set SP (a1 := a2) of locations that may be modified by the assignment. This
inverse E−1 is well defined since all statically allocated locations have only
one corresponding declared variable.

For conditional instructions, the program transformation creates a new se-
curity context variable pc’. Then the program transformation parametrizes
both the then-branch and the else-branch’s inlining by the new security
context pc’. Additionally, the program transformation also inlines the
update operator for both branches to account for implicit information flows
occurring in non-executed branches.

For loop instructions, the program transformation creates a new security
context variable pc’. This security context variable has to be updated each
time the loop guard is evaluated since the loop guard’s security level can
be modified in the loop body. Therefore, the security context variable is
updated twice; right after entering the loop body and right after exiting the
loop instruction. The new security context variable pc’ also parametrizes
the inlining of the loop body. Moreover, the program transformation inlines
the update operator at the loop exit.

4.5 Soundness

The inlining approach preserves the behaviour of initial target programs.
Moreover, it soundly monitors information flows with respect to the PWhile
monitor semantics, thus with respect to Non-interference as introduced
in Definition 2.

The inlining approach ensures that transformed programs are behaviourally
equivalent to the initial target programs. Let E|V ar(P ) be the restriction of
environment E to the set V ar(P ) of the target program’s initial variables.
Let M |Loc(P ) (resp. Γ|Loc(P )) also be the restriction of memory M (resp. of
the security memory Γ) to the set Loc(P ) of the target program’s initial
locations. Then, Theorem 2 states that two terminating runs of a target
program P and its inlined version T (P ) in input memories that are equal for
the initial locations Loc(P ), must result in equal memories for those same
locations. The proof of this theorem is by induction on the evaluation of
instructions. It relies on the fact that the program transformation T intro-
duces only assignments handling shadow variables. Thus, these additional
assignments modify neither values nor security levels that are mapped to
the set Loc(P ) of initial locations.

Theorem 2 (Initial semantics preservation).
For all instructions c, for all environments E, for all memories M , for all
security memories Γ, for all security contexts pc and variables pc such that:
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E|V ar(P ) ⊢ c, M |Loc(P ), Γ|Loc(P ), pc⇒M1, Γ1 and

E ⊢ T [c, pc], M, Γ, pc⇒M2, Γ2

Then, M2|Loc(P ) = M1 and Γ2|Loc(P ) = Γ1.

In order to prove the main soundness theorem, we first introduce Lemma 2
that states the program transformation maintains the aliasing invariant of
Definition 8. The proof is by induction on the evaluation of instructions.

Lemma 2 (Maintaining the aliasing invariant).
For all environments E, for all instructions c, for all memories M , for all

security memories Γ, for all security context pc, and variable pc such that:

E ⊢ T [c, pc], M, Γ, pc⇒M ′, Γ′

then, the program transformation maintains the aliasing invariant of Defini-
tion 8:

Ω(M) =⇒ Ω(M ′).

The main theorem affirms that the inlining approach reproduces exactly
the semantics of the PWhile monitor. Theorem 3 proves that the program
transformation maintains an invariant Υ(E, M, Γ) stating that the right-
value evaluation of shadow variables in environment E and memory M
yield exactly the security levels in the security memory Γ. The proof of
this theorem, by induction on the evaluation of instructions, relies on the
aliasing invariant in Lemma 2.

Theorem 3 (Sound monitoring of information flows).
For all environments E, for all memories M , for all security memories Γ,
the invariant Υ(E, M, Γ) is defined as the following predicate:

Υ(E, M, Γ) , ∀x ∈ V ar(P ),∀k ∈ [0, D(x)] , then

E ⊢ ∗kx, M ⇐ lxk and Γ(lxk) = sxk

=⇒ E ⊢ ∗kΛ(x, k), M ⇒ sxk.

Hence, for all instructions c, for all memories M , for all security
memories Γ, for all security context pc and variable pc such that E ⊢
T [c, pc], M, Γ, pc⇒M ′, Γ′ and E ⊢ pc, M ⇒ pc, the following result holds :

Υ(E, M, Γ) =⇒ Υ(E, M ′, Γ′).
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Figure 4.4: Non-interference verification using the program transformation
T

TINI verification. Figure 4.4 illustrates how the inlining approach can
be used to verify termination-insensitive non-interference (TINI). Once the
PWhile monitor is inlined into a target program P , the inlined version
T (P ) can be used to verify TINI either dynamically or statically.

Assuming the implementation of security labels and their join operator,
running the self-monitoring program T (P ) enforces TINI dynamically –
actually, this is a hybrid approach since the monitor relies on a prior static
analysis SP – for single execution paths. This dynamic approach has the
advantage of being permissive since it ignores possible unsecure paths that are
not executed. It also enables dynamic loading of security policies [LGBJS06],
taking into account eventual updates.

Additionally, the transformation T also enables the verification of TINI
by static analysis: for instance, off-the-shelf abstract interpretation tools
can compute an over-approximation of T (P ) semantics for all execution
paths, without implementing new abstract domains. While still being more
permissive than traditional type systems, such an approach freezes the
enforced security policy. Yet, it enhances our confidence in the analysed
program since it ensures that all execution paths are secure with respect to
TINI. It also completely lifts the burden of runtime overhead.
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4.6 Related Work

Chudnov and Naumann [CN10] design a sound inlining approach for a
monitor based on Russo and Sabelfeld’s monitor. As they aim at monitoring
information flows for JavaScript, they argue that VM monitors are imprac-
tical because of just-in-time compilation. Their language supports output
instructions but no references. We also believe that inlining is necessary
when the language may be compiled rather than interpreted.

Magazinius et al. [MRS12, MRS10] investigate sound inlining of security
monitors for an imperative language supporting dynamic code evaluation
but no references. Their monitor is purely dynamic since it uses a no-
sensitive upgrade policy as in Austin and Flanagan [AF09]. Our program
transformation approach can also be applied for such a policy in order to
soundly monitor information flows for richer languages, including pointers.

4.7 Summary

This chapter proposes an inlining approach for the PWhile monitor, pre-
sented in Chapter 3, through a program transformation. This inlining
approach is sound with respect to the PWhile monitor semantics. Hence,
it is also sound with respect to TINI. Our program transformation enables
permissive yet sound enforcement of TINI by relying on both dynamic and
static analyses.

As we are aiming at supporting a large subset of the C language, we
implemented our inlining approach as a plug-in of the Frama-C frame-
work [CKK+12, KKP+15]. In addition to pointers and aliasing, our plug-in
validates the scalability of our inlining approach for more complex construc-
tions of the C language, such as arrays, function calls, as well as recursive
structures. However, since our inlining approach relies on the knowledge of
the underlying type of a variable, our implementation does not yet support
type casts. For instance, a target program can cast and use a variable x of
type void ∗ either as a pointer to an integer (type ptr(κ)) or as a pointer to
pointer to an integer (type ptr(ptr(κ))). In both cases, the number of shadow
variables the program transformation must map to variable x is actually
different. Additionally, the program transformation must also handle the
aliasing invariant proved in Lemma 2 differently in both cases. Future work
will tackle this challenge by relying on static analysis to try to uncover the
underlying type of a variable in order to guide the inlining approach.

The inlining approach presented in Chapter 4 relies heavily on the aliasing
invariant proved in Lemma 2. While our work relies on such an invariant
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to soundly inline an information flow monitor, we believe it also sets the
ground for a generic approach of inlining security monitors. In future work,
we will investigate sound inlining of security monitors aimed at a wide set
of enforceable security policies [Sch00, LBW02].
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Chapter 5

Quantifying Information Leaks

This chapter introduces a new quantitative security policy aimed at relaxing
termination-insensitive non-interference (TINI), while still providing the
same security guarantees.

We introduce a generic deterministic operational semantics, enabling
attackers to observe intermediate steps of computation, divergence as well
as termination of program runs. We then quantify information leaks wrt.
the probability that attackers guess the secret in one try, according to
Smith’s [Smi09, Smi11] definition of min-entropy. Finally, we propose relative
secrecy (RS) as a quantitative security property. This security property
ensures that the probability of polynomial time attackers guessing the secret
in one try is negligible. We also extend RS to account for a scenario where
attackers are able to observe multiple runs a program on the same secret
inputs.

5.1 Introduction

Non-interference semantically characterizes the absence of information leaks.
It is a baseline policy aimed at detecting and preventing information leaks.
Yet, enforcing non-interference can be too much conservative.

On the one hand, information flow analyses actually enforce approxima-
tions of non-interference. Consider for instance a sound security type system
such as the one proposed by Volpano et al. [VIS96] or Hunt and Sands [HS06].
If a program is typed, then it is non-interferent. However, when a program
is not typed, it could be either because:

1. the program indeed leaks information, thus is interferent, or

57
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2. the security analysis is imprecise, thus fails to type a non-interferent
program.

The latter problem is characteristic of the usual trade-off between soundness
and completeness. One can only strive for more precise analyses in order
to type a larger set of non-interferent programs, while still guaranteeing
soundness.

On the other hand, non-interference as a security policy is also conserva-
tive. Non-interference prevents High inputs from leaking to Low outputs.
Yet, many programs cannot comply with such a strict policy. A password
checker for instance, leaks information about the secret password by accept-
ing or rejecting a user-supplied input. A banking application also leaks infor-
mation about a client’s invoice, by accepting or rejecting a debit instruction,
depending on available funds. However, these information leaks are deemed
negligible, under the assumption that brute-force attacks are thwarted, thus
impractical. While declassification policies [ZM01, SM04, MSZ06, SS09] can
handle these deliberate release of sensitive information, the programmer or
auditor responsible for such a release must still ensure that these information
leaks are negligible. Therefore, we need tools and techniques that go beyond
the detection of information leaks, by quantifying information leaks in order
to decide whether they are negligible. These tools and techniques may
enable the release sensitive information, while still providing strong security
guarantees.

Notice that while we argue that non-interference is a baseline security
policy that is often not the most suitable, some applications may require a
conservative policy such as TINI or termination-sensitive non-interference
(TSNI). Indeed, non-interference has been successfully applied to many cases
requiring a strict control of information leaks. Such cases include prevent-
ing information leaks due to timing channels in the case of cryptographic
software [BRW06, BBC+14], as well as preventing ghost code – code added
to a program to aid program verification – from interfering with regular
code [FGP14].

5.2 Relaxing Non-interference

Non-interference [GM82] as a policy is conservative since it prevents all
information leaks. However, most information flow analyses in the litera-
ture [MRS12, MC11, BPR13, dACD+14] enforce a slightly more permissive
flavour of non-interference, introduced previously in Definition 2 as TINI.
Recall that TINI guarantees that two terminating execution, differing only
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on High inputs, deliver the same Low outputs. Hence, this property ensures
that a program does not leak sensitive information to attackers, unless the
information leak is due to non-termination. For instance, let us compare
both programs in Listings 5.1 and 5.2, where only variable secret is High.

1 if (input == secret){

2 skip;

3 }

4 else {

5 while (true){

6 skip;

7 }

8 }

9 output 1;

Listing 5.1: A non-interferent program wrt. TINI

1 if (input == secret){

2 output 1;

3 }

4 else {

5 output 0;

6 }

Listing 5.2: An interferent program wrt. TINI

The first program in Listing 5.1 leaks sensitive information about variable
secret. Indeed, if attackers observe the output 1, they can deduce that
the supplied input is equal to the sensitive variable secret. Otherwise,
if attackers wait enough time without observing any outputs, they may
conclude that the program diverges. Consequently, attackers can deduce
that the supplied input is different from the sensitive variable secret.

The second program in Listing 5.2 also leaks sensitive information about
variable secret. Indeed, attackers may observe the output 1 (resp. the
output 0), thus deduce that the supplied input is equal to (resp. different
from) the sensitive variable secret.

Figure 5.1 summarizes the observations attackers make for both pro-
grams in Listings 5.1 and 5.2, as well as the knowledge they deduce for each
observation they make. Both programs are equivalent wrt. the observations
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attackers make and the knowledge they deduce for each observation. How-
ever, the program in Listing 5.1 is considered secure since it satisfies TINI,
whereas the program in Listing 5.2 is considered insecure since it does not
satisfy TINI.

input

⇑{secret 6=input}1{secret=input}

(a) Listing 5.1

input

0{secret6=input}1{secret=input}

(b) Listing 5.2

Figure 5.1: Attackers’ observations for both programs in Listings 5.1 and 5.2

Historically, the literature in information flow control argues that non-
termination channels leak at most 1 bit of security. However, when attackers
are able to observe intermediate steps of computation through output instruc-
tions for instance, the leakage may be much greater [AHSS08]. Consider for
instance the following program in Listing 5.3 where only variable secret
is High. This program outputs the value of the counter variable i, until
it is equal to the sensitive variable secret, then diverges. Although this
example program leaks the value of variable secret, it is non-interferent
wrt. TINI, hence considered secure.

1 while (i < max){

2 while (i == secret){

3 skip;

4 }

5 output i;

6 i := i + 1;

7 }

Listing 5.3: A non-interferent program wrt. TINI

In fact, Askarov et al. [AHSS08] prove that for the program in Listing 5.3
– as well as all programs satisfying TINI –, the probability of attackers
guessing the secret, after observing a polynomial amount of outputs in the
size of secrets, is negligible assuming the secret is uniformly distributed.
Consequently, TINI is a valid characterization of security only for big secrets
and against polynomial time attackers. Therefore, we propose to characterize
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security of programs against this exact assumption: a program is secure if
the probability of polynomial time attackers guessing the secret is negligible.

This latter characterization of security has the advantage of being more
permissive than TINI, while providing the same security guarantees wrt. the
probability of attackers guessing the secret. For instance, all three programs
in Listings 5.1 to 5.3 are secure wrt. this property, assuming that the size
of variable secret is large enough and sufficiently random. Additionally,
this characterization also enables us to treat equally information leaks due
to explicit information flows, implicit ones and divergence, according to
the knowledge attackers gain. For instance, both programs in Listings 5.1
and 5.2 can be deemed as equivalent wrt. the advantage attackers gain,
when reasoning on the probability of attackers guessing the secret.

Volpano and Smith [VS00] already propose a type system that weakens
traditional type systems enforcing TINI. By allowing programs to test
whether a secret is equal to a particular value, their type system accepts
as secure the program in Listing 5.2 for instance. They also prove that
well-typed deterministic programs can only leak the secret with a negligible
probability, assuming the program runs in polynomial time in the size of
the secret. Volpano and Smith coin this property as RS. Therefore, they
stress out that their type system is well-suited when the secret is sufficiently
large and randomly chosen.

Interestingly, recent work in quantitative information flow also proposes
to quantify information leaks wrt. the probability of attackers guessing the
secret. Indeed, Smith [Smi09, Smi11] coins this quantitative measure as
min-entropy. Therefore, the following sections introduce the notion of min-
entropy in order to provide a formal characterization of a relative secrecy
security property.

5.3 Information Leakage

In this section, we introduce a quantitative information flow measure pro-
posed by Smith [Smi09, Smi11]. For simplicity, we consider the simple
information flow lattice introduced in Figure 3.5, consisting of two security
levels: Low and High.

5.3.1 Operational Semantics

We consider a deterministic small-step operational semantics [Plo81, Plo04]
with labelled transitions. Configurations have the form 〈c, ̺〉, where c
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denotes an instruction and ̺ denotes a memory mapping variables to values.
We also denote by t an output observable by attackers.

Evaluation rules have the form 〈c, ̺〉 → 〈c′, ̺′〉, which corresponds to a
small-step transition of a configuration 〈c, ̺〉 to an intermediate configuration
〈c′, ̺′〉. When a small-step transition produces an observable output t,
we write 〈c, ̺〉 →t 〈c

′, ̺′〉 to mean that the configuration 〈c, ̺〉 takes one
computation step to a configuration 〈c′, ̺′〉 and yields an output t. Note that
we only model outputs to Low channels observable by attackers. Additionally,
we let ǫ denote the empty trace.

We also write 〈c, ̺〉 →∗
t 〈cn, ̺n〉 in the usual way for the transitive

closure relation →∗ of the small step transition relation →, to denote the
existence of a sequence of transitions 〈c, ̺〉 →t1

〈c1, ̺1〉 →t2
. . .→tn 〈cn, ̺n〉,

where t is the sequence t1 · t2 . . . · tn of observable outputs. Similarly, we
write 〈c, ̺〉 →∗

t to denote the existence of a configuration 〈cn, ̺n〉 such that
〈c, ̺〉 →∗

t 〈cn, ̺n〉.

Modelling termination. We explicitly model termination by considering
an instruction occurring at the end of a program and denoted by stop. This
instruction signals the end of a program’s evaluation. Therefore, we write
〈stop, ̺〉 →⇓ ̺ to mean that the intermediate configuration 〈stop, ̺〉 takes
a computation step to a final configuration ̺ and produces an observable
output ⇓, denoting termination.

Modelling divergence. Following the work of Askarov et al. [AHSS08],
we write 〈c, ̺〉⇑ to mean that the configuration 〈c, ̺〉 does not produce any
observable outputs. Note that we do not distinguish stuck configurations and
divergence. Additionally, this model only considers silent divergence: when
a program execution enters a loop that does not terminate, and eventually
stops outputting new observations. Therefore, we also write 〈c, ̺〉 →∗

t·⇑

to denote the existence of an intermediate configuration 〈c′, ̺′〉 such that
〈c, ̺〉 →∗

t 〈c
′, ̺′〉 and 〈c′, ̺′〉⇑.

5.3.2 Attackers’ Knowledge

As illustrated by Figure 5.1, attackers can make a set of observations when
a program runs. Each one of these observations allows attackers to deduce
information about sensitive variables. Therefore, we set up to define the
observations attackers can make as well as the knowledge they gain, in order
to reason about the probability of attackers guessing the secret.
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We denote by ΣL0
× ΣH0

the partition of initial environments into Low
(ΣL0

) and High (ΣH0
) variables. We also assume that attackers:

1. control the initial Low input memory ̺L0
∈ ΣL0

, and

2. can observe output traces t, as well as

3. known the programs’ source code and have perfect deduction capabili-
ties about their semantics, and finally

4. cannot observe the programs’ timing behaviour.

Definition 9 introduces the set Obs(̺L0
) of observations attackers can

make for a choice of a Low input memory ̺L0
∈ ΣL0

. Moreover, since
attackers are assumed to have perfect deduction capabilities about the
program’s semantics, whenever they observe a trace t ∈ Obs(̺L0

), they
can deduce a set of High input memories ̺H0

∈ ΣH0
that can lead to this

observation. Definition 10 introduces this set of High input memories as
the knowledge attackers gain when observing a trace t.

Notice that the more attackers observe, the smallest their knowledge
about the secret becomes, since attackers may be able to rule out High input
memories that cannot lead to the same additional observations. Attackers’
knowledge, in a sense, captures the uncertainty of attackers about the secret.
The more they observe, the smaller their uncertainty becomes.

Definition 9 (Attackers’ observations Obs(̺L0
)).

For a program c, and a choice of a Low input memory ̺L0
∈ ΣL0

, the set
of observations attackers can make is given by:

Obs(̺L0
) , {t | ∃̺H0

∈ ΣH0
, ̺0 , (̺L0

, ̺H0
) and 〈c, ̺0〉 →

∗
t}.

Definition 10 (Attackers’ knowledge k(̺L0
, t)).

For a program c, and a choice of a Low input memory ̺L0
∈ ΣL0

, the
knowledge k(̺L0

, t) attackers gain when observing a trace t ∈ Obs(̺L0
) is

defined by:

k(̺L0
, t) , {̺H0

∈ ΣH0
| ̺0 , (̺L0

, ̺H0
) and 〈c, ̺0〉 →

∗
t}.

Bounded attackers. So far, Definitions 9 and 10 introduce the observa-
tions and the knowledge of unbounded attackers: no matter how long a
trace t can be, attackers are able to wait enough time to observe this trace t.
In the following, we refine our model by bounding the observational power
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of attackers. As a consequence, we also restrict the knowledge attackers gain
when observing a program run by limiting the observations they can make.

Our refined attacker model includes a notion of time, that we represent
by a bound on the length of output sequences attackers can observe. Let us
denote by |t| the length of the sequence t of outputs. Let us also denote by
b, the bound on attackers’ observations. Then, Definition 11 introduces the
bounded observations attackers can make. The bounded version of attackers’
observations Obsb(̺L0

) restricts the running time of attackers observing
a program run. Notice that this hypothesis bounds the running time of
attackers, rather than the running time of the program itself.

Definition 11 (Bounded attackers’ observations Obsb(̺L0
)).

For a program c, and a choice of a Low input memory ̺L0
∈ ΣL0

, the set
of bounded observations attackers can make is given by:

Obsb(̺L0
) , {t | ∃̺H0

∈ ΣH0
, ̺0 , (̺L0

, ̺H0
), 〈c, ̺0〉 →

∗
t and |t| ≤ b}.

Definition 12 also introduces the bounded knowledge kb(̺L0
, t) attackers

gain after observing a bounded trace t ∈ Obsb(̺L0
) – such that |t| ≤ b.

Definition 12 (Bounded attackers’ knowledge kb(̺L0
, t)).

For a program c, and a choice of a Low input memory ̺L0
∈ ΣL0

, the
bounded knowledge kb(̺L0

, t) attackers gain when observing a bounded trace
t ∈ Obsb(̺L0

) is defined by:

kb(̺L0
, t) , {̺H0

∈ ΣH0
| ̺0 , (̺L0

, ̺H0
) and 〈c, ̺0〉 →

∗
t}.

Notice that the bounded knowledge kb(̺L0
, t) is the restriction of the

knowledge k(̺L0
, t) – previously introduced in Definition 10 – to bounded

traces t ∈ Obsb(̺L0
).

Attackers’ observation trees. Notice that when a set Obsb(̺L0
) of

attackers’ bounded observations contains a sequence t1 · t2 of outputs, then
the set Obsb(̺L0

) is also guaranteed to contain the output t1. Indeed, this
is guaranteed by definition of attackers observations and the transitive
closure →∗

t . Therefore, if the set Obsb(̺L0
) contains a trace t, then it also

contains all the prefixes of the trace t. Said otherwise, the set Obsb(̺L0
) is

a prefix-closed set.
The prefix relation is related to the lexicographic partial order that

is usually used in a dictionary. For instance, the prefixes of the word
supertramp are all contained in the following set:

{ǫ, s, su, sup, supe, super, supert,

supertr, supertra, supertram, supertramp}
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As noted by Perrin and Pin [PP04, Chapter 1], “one can associate
naturally a tree with each non-empty prefix-closed set S, using the elements
of S as nodes and the empty word as a root”. Note that we did previously
introduce such attackers’ observation trees rather informally in Figure 5.1,
in order to illustrate the observations attackers can make for the programs
in Listings 5.1 and 5.2, as well as the knowledge they gain. However, we
have used the Low input variable input as a root of the observation tree,
in order to stress out that the observations attackers make are parametrized
by the Low input memory.

Henceforth, we denote by T
̺L0

b the attackers’ observation tree that is
defined by the set Obsb(̺L0

) of attackers observations. Additionally, we also
denote by Leaves(T

̺L0

b ) the set of leaves of the observation tree T
̺L0

b . This
will shortly prove useful since when reasoning on probabilities, it is often
practical to consider a set of disjoint events. One way of achieving a set of
disjoint events is by assuming that attackers wait for the longest observable
traces t ∈ T

̺L0

b , which corresponds exactly to the set Leaves(T
̺L0

b ) of
disjoint observations. This assumption is safe, since the more attackers
observe, the smallest the knowledge they gain. Therefore, attackers have
every incentive to maximize the information they can deduce about the
secret by waiting for the longest trace they can observe, which corresponds
to observing only the set Leaves(T

̺L0

b ) of maximal traces.

5.3.3 Min-entropy Leakage

Traditionally, the quantitative information flow literature defines the leakage
of a program as the difference between an initial uncertainty about the secret
prior to any program run, and the remaining uncertainty after attackers
observe the outputs of a program run [Den82]:

leakage = initial uncertainty− remaining uncertainty

Denning [Den82] proposes the first quantitative measure of a program’s
leakage in terms of Shannon entropy. Denning characterizes both the
initial uncertainty and the remaining one in terms of Shannon entropy and
conditional entropy, then defines the information leakage as the reduction of
uncertainty about the secret. In a different approach, Smith [Smi09, Smi11]
recently proposes to quantify information leaks wrt. the probability that
attackers could guess the secret in one try. Smith then defines both the
initial uncertainty and the remaining uncertainty in terms of the probability
of attackers guessing the secret.
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Initial uncertainty. Let us assume that attackers know the probability
distribution of the High input memories ̺H0

∈ ΣH0
. Let us also denote by

H a random variable representing the High input memories. Then, prior
to any program run, rational attackers will assume that the High input
memory is the one having the maximum probability wrt. the High inputs
distribution. Therefore, the probability that attackers guess the secret in
one try is the maximum probability in the distribution of the high input
memories. Following Smith’s work [Smi09, Smi11], Definition 13 introduces
this quantity as the vulnerability V (H) of the High input memories:

Definition 13 (Vulnerability V (H)).
The vulnerability of the high input memories is given by

V (H) , max
̺H0

∈ΣH0

P (H = ̺H0
).

The vulnerability V (H) characterizes the initial uncertainty about the
secret in terms of probabilities. Usually, quantitative information flow – and
more generally information theory – measure information in bits. Therefore,
we can map the vulnerability V (H) to the logarithm of its inverse in order to
obtain a measure of the initial uncertainty in bits. By doing so, we obtain a
classical entropy measure termed as Rényi’s min-entropy [Rén61]. Therefore,
Definition 14 introduces min-entropy H∞ (H) as a measure for the initial
uncertainty about the secret.

Definition 14 (Min-entropy H∞ (H)).
The min-entropy of the High input memories is given by

H∞ (H) , − log2 V (H).

For instance, let us denote by HU a random variable representing High
input memories that are uniformly distributed. Let us also denote by N
the size in bits of the High input memories. Then, all the values of the
secret have equal probabilities given by P (HU = ̺H0

) = 1
2N . Therefore, the

vulnerability and min-entropy of a uniformly distributed secret are given by:

V (HU) =
1

2N

H∞ (HU) = N bits

This means that the initial uncertainty of attackers about a uniformly
distributed secret is N bits, exactly the size of the secret. Notice that a
uniform distribution of the secret corresponds to the case where the initial
uncertainty of attackers is the highest. Indeed, any other distribution than
a uniform one yields a higher vulnerability, which translates to a lower
min-entropy.
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Remaining uncertainty. Let us assume that attackers provide a Low
input memory ̺L0

∈ ΣL0
, then observe a trace t ∈ Obsb(̺L0

) after a program
run. Then, attackers are able to deduce the set kb(̺L0

, t) of High input
memories that can lead to an observation of the trace t, since we assume
attackers have perfect deduction capabilities. Additionally, rational attackers
will assume that the High input memory is the most probable input memory
̺H0
∈ ΣH0

. Let O denote a random variable representing the observations
attackers can make. Therefore, we can define the a posteriori vulnerability
of the High input memories, when attackers provide a Low input memory
̺L0

and observe a trace t, as the maximum conditional probability of the
High input memories, given an observation t ∈ Obsb(̺L0

):

V ̺L0 (H | O = t) , max
̺H0

∈kb(̺L0
,t)

P (H = ̺H0
| O = t) (5.1)

Given Equation (5.1), we further introduce in Definition 15 the a posteri-
ori vulnerability of the High input memory, when attackers provide a Low
input memory, as the expected probability of attackers guessing the secret.

Definition 15 (Conditional vulnerability for a Low input ̺L0
).

For a choice of a Low input memory ̺L0
∈ ΣL0

, the conditional vulnerability
of the High input memories is given by:

V ̺L0 (H | O) ,
∑

t∈Leaves(T
̺L0

b
)

P (O = t)V ̺L0 (H | O = t)

=
∑

t∈Leaves(T
̺L0

b
)

P (O = t) max
̺H0

∈kb(̺L0
,t)

P (H = ̺H0
| O = t).

Definition 15 introduces the conditional vulnerability V ̺L0 (H | O) when
attackers provide a Low input memory and observe the outputs of a pro-
gram run. Rational attackers will maximize their probability of guessing
the secret in one try, by providing a Low input memory that maximizes
the conditional vulnerability V ̺L0 (H | O). Therefore, we introduce the
conditional vulnerability in Definition 16 as the maximum conditional vul-
nerability V ̺L0 (H | O) over all Low input memories ̺L0

∈ ΣL0
. Similarly

to Definition 14 of min-entropy, Definition 16 also introduces conditional
min-entropy as the logarithm of the conditional vulnerability’s inverse, in
order to measure the remaining uncertainty in bits.

Definition 16 (Conditional vulnerability V (H | O) and conditional min-en-
tropy H∞ (H | O)).
The conditional vulnerability of the High input memories is given by:

V (H | O) , max
̺L0

∈ΣL0

V ̺L0 (H | O)
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The conditional min-entropy is defined as:

H∞ (H | O) , − log2 V (H | O).

Measuring information leakage. So far, we introduced min-entropy
in Definition 14 as an information measure for the initial uncertainty of
attackers about the secret. Additionally, we also introduced conditional
min-entropy in Definition 16 as a measure for the remaining uncertainty of
attackers about the secret. Therefore, we can finally introduce a measure
for information leakage as the difference between the initial uncertainty and
the remaining uncertainty about the secret.

Since this measure depends on the probability distribution of the initial
High input memories, we let ~π denote that distribution. Then, Definition 17
introduce the information leakage L~π of a program as the difference between
the initial uncertainty and the remaining uncertainty about the secret.

Definition 17 (Min-entropy leakage L~π).
The leakage is defined as follows:

L~π , H∞ (H)−H∞ (H | O)

= log2

V (H | O)

V (H)
.

Remaining uncertainty for deterministic programs. Equation (5.1)
and Definition 15 of the conditional vulnerability V ̺L0 (H | O) for a Low
input ̺L0

simplify further by for deterministic programs. Indeed, by the
conditional probability law, V ̺L0 (H | O = t) as defined in Equation (5.1) is
equal to:

V ̺L0 (H | O = t) = max
̺H0

∈kb(̺L0
,t)

P (H = ̺H0
∧O = t)

P (O = t)

= max
̺H0

∈kb(̺L0
,t)

P (O = t | H = ̺H0
)P (H = ̺H0

)

P (O = t)
(5.2)

Moreover, for deterministic programs, the observed trace t is completely
determined by the Low and High input memories. Therefore, we have:

P (O = t | H = ̺H0
) =







1 if ̺H0
∈ kb(̺L0

, t)

0 otherwise
(5.3)

Injecting both Equations (5.2) and (5.3) into Definitions 15 and 16 yields
a simpler characterization of the conditional vulnerability V ̺L0 (H | O) for
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a Low input memory, as well as the conditional vulnerability V (H | O),
introduced as Lemma 3.

Lemma 3 (Conditional vulnerability for deterministic programs).
For deterministic programs, the conditional vulnerabilities are given by:

V ̺L0 (H | O) =
∑

t∈Leaves(T
̺L0

b
)

max
̺H0

∈kb(̺L0
,t)

P (H = ̺H0
)

V (H | O) = max
̺L0

∈ΣL0

V ̺L0 (H | O).

Additionally, assuming that the High input memories follow a uniform
distribution denoted by ~πU , Lemma 3 simplifies even further. Let us denote
by N the size in bits of the set ΣH0

of High input memories. Then, all the
High input memories have equal probabilities given by P (HU = ̺H0

) = 1
2N .

Therefore, the conditional vulnerabilities as well as the information leakage
have a much simpler formulation, introduced in Corollary 2.

Corollary 2 (Conditional vulnerabilities and leakage for deterministic
programs, under uniformly distributed secrets).
For deterministic programs, assuming the High input memories follow a
uniform distribution ~πU , the conditional vulnerabilities and the leakage are
given by:

V (HU) =
1

2N

V ̺L0 (HU | O) =

∣
∣
∣Leaves(T

̺L0

b )
∣
∣
∣

2N

V (HU | O) = max
̺L0

∈ΣL0

V ̺L0 (HU | O)

L~πU
= max

̺L0
∈ΣL0

log2

∣
∣
∣Leaves(T

̺L0

b )
∣
∣
∣.

5.4 Min-capacity leakage

The information leakage L~π of a program, as introduced in Definition 17,
depends on the assumed distribution of the High input memories. In order
to abstract away from the initial probabilities of the secret, we introduce the
notion of min-capacity [Smi09, Smi11]. We also establish upper bounds on
min-capacity, following Braun et al.’s [BCP09] and Smith’s [Smi09, Smi11]
work. This upper-bound will allow us to focus on a single quantity that is
prone to static analysis.
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Since the probability distribution of the High input memories is unknown
in the general case, we usually want to abstract away from the initial
probabilities of the secret in order to measure the leakage of a program. A
suitable measure can be achieved by considering the maximum leakage L~π,
over all the High input distributions ~π. Definition 18 introduces this measure
as min-capacity since it is defined in terms of min-entropy, as opposed to
capacity that is usually defined in terms of Shannon entropy [Sha48].

Definition 18 (Min-capacity ML).
Min-capacity ML is defined as the maximum leakage L~π over all the High
input distributions ~π :

ML , max
~π
L~π.

When considering only deterministic programs, min-capacity ML has
a simple characterization. Indeed, as Braun et al. [BCP09] prove, the
supremum of the leakage L~π is reached when ~π is a uniform distribution:

2L~π =
V (H | O)

V (H)

= (by Lemma 3 and Definition 13)

max
̺L0

∈ΣL0




∑

t∈Leaves(T
̺L0

b
)

max
̺H0

∈kb(̺L0
,t)

P (H = ̺H0
)





max
̺H0

∈ΣH0

P (H = ̺H0
)

= max
̺L0

∈ΣL0






∑

t∈Leaves(T
̺L0

b
)

max
̺H0

∈kb(̺L0
,t)

P (H = ̺H0
)

max
̺H0

∈ΣH0

P (H = ̺H0
)






≤ max
̺L0

∈ΣL0

∑

t∈Leaves(T
̺L0

b
)

1

= max
̺L0

∈ΣL0

∣
∣
∣Leaves(T

̺L0

b )
∣
∣
∣

= (By Corollary 2)

2L~πU

The latter proof yields Theorem 4, that characterizes the maximum
leakageML for deterministic programs as the leakage when the High input
memories are uniformly distributed.
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Theorem 4 (Characterization of min-capacity ML).
For deterministic programs, the maximum leakage ML is reached for uni-
formly distributed High input memories. Moreover, ML is given by:

ML = max
̺L0

∈ΣL0

log2

∣
∣
∣Leaves(T

̺L0

b )
∣
∣
∣.

Intuitively, a deterministic program always leaks the same bits of the
secret, when the Low inputs are fixed. If the leaked bits are initially known
to attackers, then the measured leakage is actually small. On the contrary,
if the leaked bits are not known to attackers initially, then the measured
leakage will be greater. Therefore, in order to maximize the leakage, one
has to measure it when attackers know almost nothing beforehand, meaning
that the initial uncertainty is the highest. This corresponds precisely to the
case where the secret is uniformly distributed.

Additionally, for a fixed Low input, the more output sequences a program
produces, the more partitions kb(̺L0

, t) of the High input memory ΣH0
there

are. Plus, the more partitions kb(̺L0
, t) there are, the smaller these partitions

get, and the more vulnerable the secret gets.
Let us consider again both programs introduced earlier in Listings 5.1

and 5.2. Assuming that attackers can observe at least one output (b ≥ 1),
Figure 5.1 illustrates the attackers’ observation trees of both programs. Since
these observation trees have 2 leaves, we can deduce that the maximum
leakage for both programs is given by :

ML = log2(2) = 1 bit

Therefore, both programs are equivalent wrt. attackers guessing the secret
in one try, since they both leak only 1 bit of sensitive information. Yet,
should we consider both programs as secure? The maximum leakageML is
rather small, but this fact alone is not sufficient to decide if these programs
are secure. Indeed, in the case where variable secret is a boolean variable,
both programs do actually leak all the sensitive information although they
only leak 1 bit of the secret. Therefore, in order to deem both programs
as secure, we need to assume that the size of the variable secret is large
enough, and randomly chosen so that the initial uncertainty is large. Only
then, we can consider both programs to be secure wrt. attackers guessing
the secret in one try.

Min-capacity for deterministic non-interferent programs. For de-
terministic programs, each time an attackers’ observation tree T

̺L0

b branches,
attackers are able to learn additional information about the secret and refine



72 CHAPTER 5. QUANTIFYING INFORMATION LEAKS

their knowledge. Indeed, a new branch in the observation tree corresponds
to the program outputting at least two sequences t · t1 and t · t2, where t1 and
t2 are different. Therefore, the knowledge sets kb(̺L0

, t · t1) and kb(̺L0
, t · t2)

– the High inputs that may lead to these observations – that attackers gain
when observing both traces t · t1 and t · t2 are also different, by determinism.

Since TINI forbids all information leaks, unless the information leak is
due to the observation of divergence ⇑, Askarov et al. [AHSS08] proves that
attackers’ observation trees of programs satisfying TINI have a particular
shape depicted in Figure 5.2. Intuitively, the observation tree T

̺L0

b of
a program satisfying TINI cannot branch in order not to leak sensitive
information, unless the branching is due to the observation of divergence ⇑.

̺L0

⇑

⇑

⇑

⇑

Figure 5.2: The shape of attackers’ observation trees T
̺L0

b for deterministic
non-interferent (wrt. TINI) programs

The attackers’ observation tree illustrated by Figure 5.2 represents for
instance the worst-case scenario of the non-interferent program in Listing 5.3,
where each new observations attackers make is either an output value, or
divergence ⇑.

The latter remark leads to Lemma 4 that Askarov et al. [AHSS08] prove.
Intuitively, when a program satisfies TINI, then each node in its attackers’
observation tree has at most two children. Moreover, one of these two
children corresponds to the observation of divergence ⇑. Therefore, since
the depth of an observation tree T

̺L0

b is bounded by b, the number of its
leaves is hence bounded by b + 1.

Lemma 4 (Attackers’ observation trees of non-interferent programs).
For all deterministic programs satisfying TINI, for all Low input memories
̺L0
∈ ΣL0

, the attackers’ observation tree T
̺L0

b has a cardinal of leaves
bounded by: ∣

∣
∣Leaves(T

̺L0

b )
∣
∣
∣ ≤ b + 1.
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As a consequence of Lemma 4, Askarov et al. [AHSS08] then prove
that for deterministic non-interferent programs and a uniformly distributed
secret, the probability that polynomial time attackers guess the secret after
observing a program run is negligible in the size of the secret. This result
directly translates into our quantitative framework by stating that the
conditional vulnerability V (HU | O) – the remaining uncertainty – in the
case of a uniformly distributed High input memories, is negligible when
attackers observe only a polynomial amount of outputs in the size of the
secret:

V (HU | O) = max
̺L0

∈ΣL0

∣
∣
∣Leaves(T

̺L0

b )
∣
∣
∣

2N

≤
b + 1

2N

= o(1) assuming log(b) = o(N)

As a result, Askarov et al. deduce that TINI is a suitable security property,
even when polynomial time attackers are allowed to observe intermediate
steps of computation, provided that the secret is large enough and uniformly
distributed.

A quantitative security property. TINI is a valid security property
only when the secret is sufficiently large and sufficiently random [AHSS08,
DS09, HS12]. This latter remark is the primary motivation behind our
work; TINI allows an amount of information leakage that is negligible for
a uniformly distributed secret since the probability of polynomial time
attackers guessing the secret is negligible. Therefore, we propose to prove
security of programs against this exact security guarantee, that we introduce
in Definition 19 as relative secrecy (RS).

Definition 19 (Relative secrecy).
Let N denote the size of the High input memories in bits. Then a program
is secure wrt. relative secrecy (RS) if the maximum leakage ML against
polynomial time attackers grows strictly slower than the size of the secret:

ML = o(N) assuming log(b) = o(N).

For deterministic programs, this condition translates into a simpler form:

max
̺L0

∈ΣL0

log2

∣
∣
∣Leaves(T

̺L0

b )
∣
∣
∣ = o(N) assuming log(b) = o(N).
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The quantitative security property introduced in Definition 19 is more
permissive than TINI, since all deterministic programs satisfying TINI
also satisfy the security property introduced in Definition 19, as a direct
consequence of Lemma 4. Indeed, the cardinal number of leaves of attackers’
observation trees for deterministic programs satisfying TINI is bounded by
b+1. Thus, the maximum leakageML is bounded by log2(b+1). Therefore,
if the bound b on attackers’ observations is assumed to be polynomial in the
size N of the secret, then the maximum leakage ML grows strictly slower
than the size N of the secret. This result leads to Corollary 3, stating that
all deterministic programs satisfying TINI are also secure wrt. RS.

Corollary 3 (Permissiveness).
All deterministic programs satisfying TINI also satisfy RS.

For instance, both programs presented in Listings 5.1 and 5.3 are secure
wrt. RS since they both satisfy TINI. In addition to that, the program in
Listing 5.2 is also secure wrt. RS although it does not satisfy TINI.

RS also ensures the same security guarantees as TINI provides. RS
guarantees that the probability of polynomial time attackers guessing the
secret is negligible in the size of the secret. Indeed, assuming that the
initial uncertainty about the secret is large enough, RS guarantees that the
remaining uncertainty of attackers after observing a program run stays large
enough, so that their probability of guessing the secret after observing a
program run is still negligible. Let us assume that the initial uncertainty
is large enough by supposing that min-entropy H∞ (H) of the secret is
equivalent to the size N of the secret (H∞ (H) ∼ N) – for instance, this
assumption is verified in the case of a uniformly distributed secret since
H∞ (HU) = N bits. Consequently, if a program satisfies RS, then the
remaining uncertainty is also large enough since it stays equivalent to N :

H∞ (H | O) = H∞ (H)− L~π

∼ N + o(N)

∼ N

Consequently, if a program satisfies RS, then the probability of polynomial
time attackers guessing the secret is negligible, provided that their initial
uncertainty about the secret is sufficiently large.



5.5. MIN-CAPACITY LEAKAGE AGAINST K-TRY ATTACKS 75

1 if (input ≤ secret){

2 output 1;

3 }

4 else {

5 output 0;

6 }

Listing 5.4: A program prone to linear time leakage across multiple runs

1 if (input ≤ secret){

2 skip;

3 }

4 else {

5 while (true){

6 skip;

7 }

8 }

9 output 1;

Listing 5.5: An equivalent program to the one in Listing 5.5, satisfying TINI

5.5 Min-capacity leakage against k-try

attacks

Min-capacity is a crude measure of information leakage as Smith [Smi09]
already notes. Indeed, min-capacity quantifies information leaks in terms
of the probability that attackers could guess the secret in only one try.
It does not account for scenarios where a program uses the same secret
across multiple runs, allowing attackers to further refine their knowledge
about the secret. As a consequence, adopting min-capacity as a measure for
information leaks enables us to term both programs in Listings 5.1 and 5.2
as equivalent, since they both have a maximum leakage of 1 bit. Yet, min-
capacity also deems the program in Listing 5.4 as equivalent to both the
ones in Listings 5.1 and 5.2, although it is more dangerous when attackers
are able to observe multiple runs of a program on the same secret.

Figure 5.3(a) illustrates the attackers’ observation tree of the program
in Listing 5.4. Therefore, we can deduce that the maximum leakage is
ML = 1 bit since the observation trees have at most 2 leaves, which means
that it is indeed equivalent to the programs in Listings 5.1 and 5.2 when
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̺L0

0secret<input1secret≥input

(a) Listing 5.4

̺L0

⇑secret<input1secret≥input

(b) Listing 5.5

Figure 5.3: Attackers’ observation trees for the program in Listings 5.4
and 5.5

quantifying information flow for the one-try attacks scenario. Yet, if the
secret remains the same across multiple executions, attackers can leverage
this program to learn the secret in linear time in the size of the secret, through
a dichotomous algorithm – a binary search algorithm for instance. Note
that TINI also suffers from this flaw. Indeed, the program in Listing 5.5 is
equivalent to the one in Listing 5.4, wrt. the observations and the knowledge
attackers gain, as illustrated by Figure 5.3(b). Although this latter program
in Listing 5.5 satisfies TINI, attackers can also leverage it to leak the secret
across multiple executions in linear time in the size of the secret.

Note that, unlike the programs in Listings 5.4 and 5.5, both programs
in Listings 5.1 and 5.2 only allow attackers to perform a brute-force attack
across multiple executions. Indeed, the best strategy for attackers to learn
the secret across multiple executions is exponential in the size of the secret.
Therefore, we would like to improve the security property proposed in
Definition 19 to account for the vulnerability of the secret in the case
where attackers can observe multiple runs of a program on the same secret.
Eventually, this new security property will enable us to accept the programs
in Listings 5.1 and 5.2 as secure, while denying the programs in Listings 5.4
and 5.5.

Simulating k-try attacks. In the case where attackers can observe mul-
tiple runs of the program on the same secret, attackers are able to provide
multiple Low inputs and observe the outputs of multiple runs. Therefore,
they are also able to refine their knowledge about the secret. We can model
such a scenario through self-composition [BDR04, BDR11]. Let us for in-
stance illustrate this technique when attackers are able to observe 3 program
runs.
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1 Pk (inputk, secretk)

2 {

3 if (inputk == secretk){

4 output 1;

5 }

6 else {

7 output 0;

8 }

9 }

Listing 5.6: Independent copies Pk

of the program in Listing 5.2

1 Pk (inputk, secretk)

2 {

3 if (inputk ≤ secretk
){

4 output 1;

5 }

6 else {

7 output 0;

8 }

9 }

Listing 5.7: Independent
copies Pk of the program in
Listing 5.4

In order to simulate a 3-try attack scenario for a program P , we consider
3 independent copies P1, P2 and P3 of the program P , where every variable
in P is renamed by, for instance, adding a subscript k in each copy Pk.
Listings 5.6 and 5.7 illustrate for instance the independent copies of both
programs in Listings 5.2 and 5.4. Therefore, we can simulate a scenario where
attackers are able to observe 3 different runs of a program P on the same
secret by considering the program P (3) that results from the composition
of the independent copies P1, P2 and P3. Listing 5.8 illustrates this latter
program P (3). Note that P (3) accepts 3 Low input memories that represents
the Low input memories attackers would provide if they run the program P
3 times, as well as one High input memory since P (3) simulates 3 different
runs of the program P on the same secret.

1 secret1 := secret;

2 secret2 := secret;

3 secret3 := secret;

4 P1(input1, secret1)

5 P2(input2, secret2)

6 P3(input3, secret3)

Listing 5.8: The program P (3) simulating a 3-attack scenario for a program
P through self-composition

Computing the maximum leakage of the program P (3) in Listing 5.8
enables us to quantify the leakage wrt. the probability of attackers guessing
the secret after observing 3 different runs of a program P on the same secret.
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input1, input2, input3

0

0

0secret6=inputk
1secret=input3

1

0secret=input2

1

0

0secret=input1

Figure 5.4: Attackers’ observations of P (3) in the case of the program in
Listing 5.2

Let us for instance compute the maximum leakage in the case of a 3-try
attack scenario for both programs in Listings 5.2 and 5.4. By Theorem 4,
min-capacity ML for the deterministic program P (3) that accepts 3 Low
input memories is given by:

ML = max
̺L0

∈Σ3

L0

log2

∣
∣
∣Leaves(T

̺L0

b )
∣
∣
∣

Therefore, we need to compute the cardinal of leaves for attackers’ obser-
vation trees of P (3) in order to compute the maximum leakage ML in the
case of a 3-try attack scenario.

Let us assume that attackers provide 3 different Low input memories
across the 3 different executions. Indeed, for deterministic programs rational
attackers would not provide the second run of a program with the same Low
input memory as the first run for instance, since they would make the same
observations and would not be able to further refine their knowledge about
the secret. Therefore, Figure 5.4 illustrates the attackers’ observation trees
for the program P (3) simulating a 3-try attack in the case of the program in
Listing 5.2. Hence, we deduce that the maximum leakage isML = log2(4) =
2 bits. Additionally, Figure 5.5 illustrates the attackers’ observation trees
for the program P (3) in the case of the program in Listing 5.4.

Hence, we also deduce that the maximum leakage is ML = log2(8) =
3 bits. As a consequence, we can deduce that the program in Listing 5.4
is indeed more dangerous than the program in Listing 5.2, in the case of a
3-try attack scenario.

In general, we can consider a program P (k) simulating a k-try attack
scenario for a program P . In the case of the attackers’ observation tree
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input1, input2, input3

1

1

1≥1,≥2,≥3
0≥1,≥2,<3

0

1≥1,<2,≥3
0≥1,<2,<3

0

1

1<1,≥2,≥3
0<1,≥2,<3

0

1<1,<2,≥3
0<1,<2,<3

<k denotes the inequality secret < inputk

≥k denotes the inequality secret ≥ inputk

Figure 5.5: Attackers’ observations of P (3) in the case of the program in
Listing 5.4

in Figure 5.4 for instance, only the leftmost leaf will continue to branch –
leading to 2 children nodes – as k grows. Therefore, we can deduce that
the maximum leakage for the program in Listing 5.2 in the case of a k-try
attack scenario is given by ML = log2(k + 1), since the number of leaves is
an arithmetic sequence with a common difference of 1. In contrast, in the
case of the observation tree in Figure 5.5, all the leaves continue to branch –
leading to 2 children nodes – as k grows. Therefore, the maximum leakage
for the program in Listing 5.4 is given by ML = log2(2

k) = k, since the
number of leaves is a geometric sequence with a common ratio of 2. As
a consequence, assuming that polynomial time attackers can only run a
polynomial number of times – in the size of the secret – a program on the
same secret, the program in Listing 5.2 can be considered as secure since
min-capacity ML(k) grows strictly slower than the size of the secret. On
the contrary, the program in Listing 5.4 is insecure in the case of a k-try
attack scenario since min-capacityML(k) does not grow strictly slower than
the size N of the secret, assuming k is polynomial in N . Therefore, we
propose in Definition 20 a security property that accounts for multiple try
attack scenarios as well. This security property ensures that polynomial
time attackers, if allowed to run a program on the same secret a polynomial
number of times, only have a negligible probability of guessing the secret.

Definition 20 (Relative secrecy for k-try attacks).
Let N denote the size of the High input memories in bits. Then a program
P is secure against polynomial time attackers, in the case of a multiple
try attack scenario, if the maximum leakage ML(k) of the program P (k)
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simulating a k-try attack is negligible when k is assumed polynomial in the
size of the secret:

ML(k) = o(N) assuming log(b) = o(N) and log(k) = o(N).

Both programs in Listings 5.1 and 5.2 are secure wrt. RS for k-try attacks,
as introduced in Definition 20. Indeed, Listing 5.1 illustrates for instance
the shape of the attackers’ observation trees in the case of the program in
Listing 5.1. As k grows, only the leftmost branch continues to branch leading
to 2 new children nodes. Therefore, the cardinal of leaves for the attackers’
observation trees is also equal to k + 1, which means that min-capacity
for the program simulating a k-try attack is given by ML(k) = log2(k + 1)
and thus grows stricly slower than the size of the secret N – assuming k is
polynomial in N .

input1, input2, . . . inputk

⇑1

⇑1

⇑1

⇑. . .

Figure 5.6: Attackers’ observations of P (k) in the case of the programs in
Listings 5.1 and 5.5

Note that Figure 5.6 also represents the attackers’ observation trees for
the program in Listing 5.5. Thus, this latter program is also accepted as
secure since it satisfies RS for k-try attacks. This is due to the fact that the
program P (k) simulates a k-try attack by sequential composition rather than
parallel composition [BDR04, BDR11]. Indeed, the program P (k) implicitly
allows attackers to observe the outputs of a new run of the program P only
when the previous run does not diverge.

To sum up, the security property introduced in Definition 20 does indeed
deem as secure both programs in Listings 5.1 and 5.2. Additionally, it also
succeeds in denying the program in Listing 5.4 since this program is more
dangerous when attackers are able to run it multiple times on the same
secret. Yet, RS for k-try attacks fails to deny the program in Listing 5.5 since
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it invalidates our intuition that both programs in Listings 5.4 and 5.5 are
equivalent wrt. the observations attackers make and the knowledge they gain.
Indeed, in a scenario where attackers are allowed to observe the outputs of
a new run only when the previous run terminates, both programs are not
equivalent: the program in Listing 5.4 remains more dangerous than the one
in Listing 5.5. However, if attackers can observe multiple runs of a program
on the same secret irrespective of the results of previous computations, RS
for k-try attacks, as introduced in Definition 20, needs to be further tweaked
to account for this particular scenario. We leave investigating RS in such a
scenario for future work.

5.6 Related Work

Our formalization of RS is inspired by the work of Volpano and Smith [VS00],
Smith [Smi09, Smi11] as well as Askarov et al. [AHSS08]. The common
denominator of these approaches is quantifying information flow wrt. the
probability of attackers guessing the secret after observing a program run.

Volpano and Smith [VS00] relaxes an existing type system [VIS96] en-
forcing TINI, by ignoring implicit information flows due to programs testing
if the value of a High variable is equal to a Low variable. They prove
that their type system enforces a relative secrecy property: a well typed
progam running in polynomial time can only leak the secret with negligible
probability. Their type system is designed for a deterministic language with
no intermediate outputs. The relative secrecy property we propose bounds
the running time of attackers rather than the running time of the programs
themselves. Indeed, there is no need to put the strain on the running time
of a program as long as it produces no outputs observable by attackers.

Askarov et al. [AHSS08] prove that although TINI programs may leak
more than one bit of information, when attackers can observe intermediate
steps of computation, polynomial time attackers can only guess the secret
with a negligible probability. We propose to prove security of programs
by relying on the exact property they prove for programs satisfying TINI:
the probability of polynomial attackers guessing the secret is negligible in
the size of the secret. To this end, we build on Smith’s [Smi09, Smi11]
framework in order to quantify information flow wrt. the probability of
attackers guessing the secret. We extend Smith’s work for programs that
accept both Low and High inputs, and may output intermediate steps of
computation. We also introduce RS as a security property ensuring that
the probability of polynomial time attackers guessing the secret in one try
is negligible. Finally, we extend RS for a k-try attack scenario, by relying
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on sequential self-composition [BDR04, BDR11].

5.7 Summary

In this chapter, we propose RS as a new quantitative security property. This
property quantifies the leakage in terms of the probability of polynomial
time attackers guessing the secret in one try. RS is based on min-entropy,
a quantitative measure of information proposed by Smith [Smi09, Smi11],
that we adapt to a model where attackers can observe intermediate steps
of computation. RS also sets the threshold beneath which programs are
deemed secure such that it is more permissive than TINI, while providing
the same security guarantees wrt. the probability of attackers guessing the
secret.

We extend RS to quantify the leakage of programs when attackers
can observe multiple runs of a program on the same secret, by relying
on a self-composition technique [BDR04, BDR11]. Thus, we propose to
deem a program as secure if the min-capacity of its self-composed version –
simulating a k-try attack scenario – grows strictly slower than the size of
the secret, assuming that attackers can only observe a polynomial number
of runs.

We also characterize RS, for deterministic programs, as the maximum
cardinal of leaves for attackers’ observation trees over all Low input memo-
ries. Therefore, in the remaining chapters we develop novel static analyses
techniques in order to over-approximate the cardinal of leaves for such
attackers’ observation trees. We stage our developments into two steps:

1. we restrict our target programs to batch-job ones – programs that only
output the result of their computation at the end of their execution –
and propose the cardinal abstraction to quantify information leaks for
such programs, then

2. we build on the cardinal abstraction in order to propose the tree
abstraction, which quantifies information leaks for programs that may
also output intermediate steps of computation.

Our proposal of a new quantitative security property is driven by the
need to relax the non-interference security property. Therefore, our next
developments will also try to focus on proposing static analyses techniques
that are at least as permissive as static enforcement techniques enforcing
TINI. Ideally, both the cardinal abstraction and the tree abstraction should
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deem as secure programs that are typed by state-of-the-art type systems
enforcing TINI.





Chapter 6

Cardinal Abstraction

In the previous chapter, we characterize min-capacity for deterministic pro-
grams and propose relative secrecy (RS) as a quantitative security property.
Our goal is therefore to propose a static analysis technique that approximates
min-capacity in order to decide whether a program is secure wrt. RS.

In this chapter, we restrict ourselves to quantify information leaks for
deterministic batch-job programs. Such programs do not output any inter-
mediate steps of computation: attackers are able to observe a set of Low
variables only at the end of the program’s computation.

6.1 Min-capacity for Batch-job Programs

This section characterizes min-capacity ML for deterministic batch-job
programs. Let us consider a command c that outputs no intermediate steps
of computation. Let us also assume a set of Low variables v1,v2,...vf
attackers can observe at the end of command c’s execution. Then, the
program in Listing 6.1 illustrates the observations attackers make after
running command c.

1 c;

2 output v1;

3 output v2;

4 ...

5 output vf;

Listing 6.1: Illustrating attackers’ observations for batch-job programs

As a consequence, we can simply characterize min-capacity for batch-job

85
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programs by relying on the previous framework introduced in Chapter 5.
Indeed, by Theorem 4 we know that the maximum leakageML is given by:

ML = max
̺L0

∈ΣL0

log2

∣
∣
∣Leaves(T

̺L0

b )
∣
∣
∣.

Additionally, the leaves of attackers’ observation trees for the program in
Listing 6.1 are solely determined by the final environments ̺ resulting from
the executions of command c. Therefore, these leaves are given by:

Leaves(T
̺L0

b ) =

{̺(v1) · ̺(v2) . . . · ̺(vf ) | ∃̺H0
∈ ΣH0

, ̺0 , (̺L0
, ̺H0

) and 〈c, ̺0〉 →
∗
⇓ ̺}

(6.1)

Note that for batch-job programs, we ignore the bound b on attackers’
observations, since we assume attackers can observe all Low output variables
v1,v2,...vf.

Computing min-capacity for deterministic batch-job programs requires
maximizing the cardinality of the set introduced in Equation (6.1), over
all Low input memories ̺L0

∈ ΣL0
. As a consequence, the problem of

bounding min-capacity can be reduced to the problem of finding the set of
reachable states at the end of a program for each Low input memory, then
counting the set of observations attackers can make. This is an interesting
remark even if finding the exact set of reachable program states is not
computable in general. Indeed, there is a large body of the literature in
program analysis that aims at approximating the set of reachable states,
both in model checking [CGP99] and static analysis [NNH99]. However,
we argue in the following that in the presence of Low inputs, reducing
the problem of bounding min-capacity to a problem of approximating the
reachable program states is inefficient.

Programs with no Low inputs. For deterministic batch-job programs
that accept only High inputs, the problem of bounding min-capacity ML
can be efficiently reduced to a problem of approximating the set of reachable
states at the end of a program.

Consider for instance the program in Listing 6.2 where variable s is a
High input and variable x is a Low observable output. Table 6.1 illustrates
the reachable states for this program. Note that we let ppk denote the
program point at Line k. Since attackers can only observe the values variable
x may take, they may therefore observe either the value 1 or 2. Thus, the
maximum leakage for this program is given byML = log2(2) = 1 bit, which
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1 x := s mod 2;

2 x := x + 1;

Listing 6.2: A program accepting only High inputs

Table 6.1: The reachable states for the program in Listing 6.2

pp1 {s 7→ 0, x 7→ 0}, {s 7→ 1, x 7→ 1}, {s 7→ 2, x 7→ 0} . . . {s 7→ 2N − 1, x 7→ 1}

pp2 {s 7→ 0, x 7→ 1}, {s 7→ 1, x 7→ 2}, {s 7→ 2, x 7→ 1} . . . {s 7→ 2N − 1, x 7→ 2}

accounts for the intuition that this program only leaks the parity bit of the
secret variable s.

Since finding the set of reachable states of a program is not computable in
general, we can rely on existing program analysis techniques to approximate
such a set. Köpf and Rybalchenko [KR10, KR13] for instance propose a
generic framework to bound various quantitative measures, among which
the maximum leakage ML – min-entropy under a uniformly distributed
secret by Theorem 4. They approximate min-capacity by computing lower
bounds through model checking approaches, as well as upper bounds through
abstract interpretation [CC77] techniques.

Since we are interested in over-approximating min-capacity, we will focus
on the framework of abstract interpretation which provides a theory of sound
semantics approximations. For instance, instead of finding the concrete
values variables may take, we can choose to approximate these values by an
interval analysis [CC77]. Table 6.2 illustrates this analysis for the program
in Listing 6.2. Thus, by computing an over-approximation of the reachable
states, we can deduce an over-approximation of the observations attackers
can make and at the same time an over-approximation of the maximum
leakage ML.

Table 6.2: Approximating the reachable states for the program in Listing 6.2
by an interval analysis

pp1 {s 7→ [0, 2N − 1], x 7→ [0, 1]}

pp2 {s 7→ [0, 2N − 1], x 7→ [1, 2]}

In this example, the interval analysis in Table 6.2 is precise: it computes
a precise range [1, 2] for the integer variable x, which yields a precise over-
approximation of min-capacity ML = 1 bit. Yet, abstract interpretation
in general may incur a loss of precision, depending on the underlying
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approximate representations. There is indeed a fairly large body of the
literature in abstract interpretation that introduces various approximate
representations, formally called abstract domains. These abstract domains
cover a broad spectrum of trade-off between the precision of the analysis and
its cost: polyhedra [CH78] and octagons [Min06b] lie at the most precise
and costly end of the spectrum, whereas congruence relations [Gra89] and
intervals [CC76, CC77] are on the lower end of the spectrum.

Köpf and Rybalchenko’s approach is a generic one since one can plug
in any existing abstract domain aimed at over-approximating the set of
reachable states, in order to compute upper-bounds over min-capacity. Yet,
for programs that also accept Low inputs, relying on traditional abstract
domains aimed at approximating the set of reachable states is inefficient in
general.

Programs with Low inputs. Consider for instance the program in List-
ing 6.3, where variable s is a High input, whereas variable input is a Low
input. Similarly to the previous program in Listing 6.2, let us assume that
only variable x is a Low observable output.

1 x := s mod 2;

2 x := x + input;

Listing 6.3: A program accepting both Low and High inputs

Notice first that relying on traditional abstract domains to compute an
over-approximation of the set of reachable states – irrespective of the Low
inputs – for the program in Listing 6.3 yields a valid, yet quiet imprecise,
upper-bound over min-capacityML. Indeed, assuming that variable input
ranges through the interval [0, 2N − 1] of integers, variable x will range
through the interval [0, 2N ]. Therefore, the resulting upper-bound over
min-capacity will be equal to log2(2N +1) ≈ N bits. Yet, this bound is quiet
imprecise since the program in Listing 6.3 only leaks one bit of sensitive
information: the parity bit of variable s.

In fact, according to Equation (6.1), we can compute an approximation
of the set of reachable states for each Low input memory in order to over-
approximate the sets of observations attackers can make. Then, we can
deduce a more precise upper-bound over min-capacity ML by maximizing
the cardinality of the computed sets of attackers’ observations.

Intuitively, we can reduce a program accepting Low inputs to a set
of sub-programs that accept no Low inputs, then rely on traditional ab-
stract domains to over-approximate the set of reachable states for each
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sub-program. For instance, Figure 6.1 illustrates the family of sub-programs
induced by the program in Listing 6.3, assuming that variable input ranges
over the interval [0, 2N − 1] of integers. Note that the maximum min-
capacity over all sub-programs in Figure 6.1 is by definition equal to the
min-capacity of the program in Listing 6.3. As a consequence, we can over-
approximate min-capacity for all the sub-programs represented in Figure 6.1,
by relying on traditional abstract domains. Finally, the maximum over all
over-approximated min-capacities yields an upper bound for min-capacity
of our target program in Listing 6.3.

1 x := s mod 2;

2 x := x + 0;

Listing 6.4: sub-
program 0

x := s mod 2;

x := x + 1;

Listing 6.5: sub-
program 1

x := s mod 2;

x := x + 2;

Listing 6.6: sub-
program 2

1 x := s mod 2;

2 x := x + 3;

Listing 6.7: sub-
program 3

. . .

x := s mod 2;

x := x + 2N −1;

Listing 6.8: sub-
program 2N − 1

Figure 6.1: The sub-programs induced by the program in Listing 6.3

Table 6.3 illustrates for instance the over-approximated reachable states
for all the sub-programs in Figure 6.1, by relying on an interval analysis. As
a result, we deduce that min-capacity for all these sub-programs is equal
to log2(2) = 1 bit, since attackers are only allowed to observe variable x.
Finally, we also deduce 1 bit as an upper-bound for min-capacity of our
target program in Listing 6.3.

In general, any target program that accepts Low inputs can be reduced
to a set of sub-programs that accept no Low inputs. Thus, we can upper-
bound min-capacity of the target program by relying on traditional abstract
domains that over-approximate the set of reachable states for the induced
sub-programs. However, this would require running as many analyses as the
size of the Low input memories. Therefore, relying on traditional abstract
domains to get a precise upper-bound over min-capacity for programs
accepting Low inputs is computationally inefficient in general.

Towards the cardinal abstraction. We propose to abstract even more
the results of the interval analyses obtained in Table 6.3. Indeed, let us
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Table 6.3: Approximating the reachable states for the sub-programs in
Figure 6.1 by an interval analysis

sub-program 0

pp1 {s 7→ [0, 2N − 1], input 7→ [0, 0], x 7→ [0, 1]}

pp2 {s 7→ [0, 2N − 1], input 7→ [0, 0], x 7→ [0, 1]}

sub-program 1

pp1 {s 7→ [0, 2N − 1], input 7→ [1, 1], x 7→ [0, 1]}

pp2 {s 7→ [0, 2N − 1], input 7→ [1, 1], x 7→ [1, 2]}

. . .

sub-program 2N − 1

pp1 {s 7→ [0, 2N − 1], input 7→ [2N − 1, 2N − 1], x 7→ [0, 1]}

pp2 {s 7→ [0, 2N − 1], input 7→ [2N − 1, 2N − 1], x 7→ [2N − 1, 2N ]}

focus only on the cardinal number of values variables may take, instead
of keeping track of their range of values. Interestingly, this abstraction
enables the computation of an over-approximation of min-capacity directly,
without having to first approximate the set of reachable states for all the
sub-programs induced by Low inputs. For instance, Table 6.4 abstracts the
interval analyses’ results presented in Table 6.3, in order to track only the
cardinal number of values variables may take. Therefore, assuming that
attackers only observe variable x, we can deduce that they make at most 2
different observations. Thus, we can also deduce that min-capacity of the
program in Listing 6.3 is at most 1 bit.

Table 6.4: An abstraction of the interval analyses in Table 6.3

pp1 {s 7→ 2N , input 7→ 1, x 7→ 2}

pp2 {s 7→ 2N , input 7→ 1, x 7→ 2}

In fact, an analysis that only keeps track of the cardinal of values variables
may take will lose precision whenever it encounters a conditional instruction.
Consider for instance the program in Listing 6.9 that is annotated with an
analysis that only tracks the cardinal of values variables may take. Let us
assume that variable secret is a High input, whereas variable input is



6.2. ABSTRACT SEMANTICS 91

a Low input. At both Lines 2 and 5, the analysis determines that variable
x has only one possible value since it is assigned a constant. Then, since
variable x has only 1 possible value in each branch of the conditional, the
analysis soundly deduces that variable x has at most 2 different values at
the merge point of the conditional at Line 6. Similarly, variable input

also has 1 possible value in each branch of the conditional. Therefore, the
analysis deduces that variable input has at most 2 different values at the
merge point of the conditional at Line 6, although it is not modified inside
the conditional branches. In order to retain some precision for variable
input, the analysis must know that variable input is not modified inside
the conditional branches. We achieve this by letting the cardinal abstraction
track both the cardinal number of values variables may take, as well as the
program points where variables may have been last assigned.

0 // {secret 7→ 2N , input 7→ 1, x 7→ 1}
1 if (secret > input){

2 x := 0; // {secret 7→ 2N , input 7→ 1, x 7→ 1}
3 }

4 else {

5 x := 1; // {secret 7→ 2N , input 7→ 1, x 7→ 1}
6 } // {secret 7→ 2N , input 7→ 2, x 7→ 2}

Listing 6.9: An analysis only keeping track of the cardinal of values

Listing 6.10 annotates the program in Listing 6.9 with the results of the
cardinal abstraction. Unlike the previous analysis in Listing 6.9, the cardinal
abstraction retains some precision for variables that are not modified inside
conditional branches for instance. As a result, the cardinal abstraction is
able to determine that, at Line 6, variable input does indeed have only 1
possible value.

6.2 Abstract Semantics

This section formalizes the cardinal abstraction. We consider a deterministic
While language [Win93] introduced in Figure 6.2. Expressions include
unsigned integers n of finite size κ, variables id, binary arithmetic operations
(bop), comparison operations (cmp) as well as the modulo operation (mod).
Commands are instructions identified by a unique program point pp ∈ P.
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0 // {secret 7→ ({pp0}, 2N), input 7→ ({pp0}, 1), x 7→ ({pp0}, 1)}
1 if (secret > input){

2 x := 0;// {secret 7→ ({pp0}, 2N), input 7→ ({pp0}, 1), x 7→ ({pp2}, 1)}
3 }

4 else {

5 x := 1;// {secret 7→ ({pp0}, 2N), input 7→ ({pp0}, 1), x 7→ ({pp5}, 1)}
6 } // {secret 7→ ({pp0}, 2N), input 7→ ({pp0}, 1), x 7→ ({pp2, pp5}, 2)}

Listing 6.10: The results of the cardinal abstraction on the program in
Listing 6.9

Expressions: a ::= n (constants)

| id (variables)

| a1 bop a2 (binary operators)

| a mod n (modulo operator)

| a1 cmp a2 (comparison operators)

bop ::= + | − | × | ÷

cmp ::= ≤ | ≥ | < | > | ==

Commands: c ::= ppskip (empty instruction)

| ppid := a (assignment)

| c1; c2 (sequence)

| ppif (a) c1 else c2 (conditional)

| ppwhile (a) c (loop)

Figure 6.2: Abstract syntax of While

6.2.1 Abstract Domain

The cardinal abstract domain computes an over-approximation of the cardi-
nal number of values variables can take, when attackers provide an arbitrary
Low input memory.

We assume that the set of variables of analysed programs are partitioned
into Low and High input variables. We also assume that all input variables
can range from 0 to 2κ − 1. Therefore, initially at program point pp0, Low
input variables have only 1 possible value, whereas High input variables
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have 2κ possible values as illustrated by Listing 6.10 for the program point
pp0.

Definition 21 introduces the cardinal abstract domain. Abstract values
are pairs of a set spp of program points and a cardinal number n ∈ [0, 2κ].
The resulting lattice is actually the cartesian product of 2 lattices:

1. the set P (P) of all subsets of P, ordered via set inclusion ⊆, with set
union ∪ as a join operator and set intersection ∩ as a meet operator,
as well as

2. the set of natural numbers [0, 2κ], ordered via the natural order ≤ over
integers, with max as a join operator and min as a meet operator.

Definition 21 (Cardinal abstract domain).
The cardinal abstract domain is defined as the lattice

(D♯
C ,⊆⊗, (∅, 0), (P, 2κ),∪⊗,∩⊗

)

where:

D♯
C , P (P)× [0, 2κ] ⊆⊗ , ⊆ × ≤

∪⊗ , ∪ ×max ∩⊗ , ∩ ×min

Our analysis maps each variable id to a pair of a set spp of program
points and a cardinal number n. The set spp represents the program points
where variable id may have been last assigned, whereas n represents the
cardinal number of values variable id may take.

6.2.2 Semantics of Expressions

We denote by ̺♯ ∈ V ar ⇀ D♯
C an abstract environment that maps each

variable id to an abstract value (spp, n) ∈ D♯
C . We also denote by proji()

the projection onto the ith component of a tuple. Figure 6.3 introduces the
abstract semantics of expressions A

♯ ∈ Exp× (V ar ⇀ D♯
C)→ [0, 2κ].

The abstract semantics of expressions A♯ evaluates an expression a in an
abstract environment ̺♯, in order to yield a cardinal n ∈ [0, 2κ] representing
the cardinal number of values expression a may evaluate to. Constant
expressions always evaluate to a single value. Binary arithmetic operations
a1 bop a2 yield at most the product of the cardinal of a1 and the cardinal
of a2, or 2κ when this product overflows. Comparison operations a1 cmp

a2 evaluate to at most 2 different values (true or false), unless both a1 and
a2 evaluates to only one possible value. The modulo operation a1 mod n
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A
♯JnK̺♯ = 1 A

♯JidK̺♯ = proj2(̺
♯(id))

A
♯Ja1 bop a2K̺

♯ = min
(

A
♯Ja1K̺

♯ × A
♯Ja2K̺

♯, 2κ
)

A
♯Ja1 mod nK̺♯ = min

(

A
♯Ja1K̺

♯, n
)

A
♯Ja1 cmp a2K̺

♯ = min
(

A
♯Ja1K̺

♯ × A
♯Ja2K̺

♯, 2
)

Figure 6.3: Abstract semantics of expressions

produces at most n different values or A
♯Ja1K̺

♯ different values when a1
may take less than n values.

Note that for simplicity of presentation, the second argument of the
modulo operation accepts only a literal rather than an expression since the
cardinal abstract domain needs to rely on numerical abstractions otherwise.
For instance, if a numerical abstraction determines that an expression a2
has a maximum value of 10 for instance, then the cardinal expression can
soundly conclude that expression a1 mod a2 may evaluate to at most 10
different values or A

♯Ja1K̺
♯ different values when a1 may take less than 10

values. The process of combining different abstract domains in order to
refine the precision of the analysis is called a reduced product [CC79b].

In general, relying on reduced products using traditional abstract domains
can refine most of the cardinal abstract domain definitions. For instance, if
an interval-based abstraction [CC76, CC77] determines that a1 equals zero,
then a simple refinement would yield only one possible value for expression
a1 × a2.

6.2.3 Semantics of Instructions

Figure 6.4 introduces the abstract semantics of instructions. This abstract
semantics JcK♯ ∈ (V ar ⇀ D♯

C) → (V ar ⇀ D♯
C) evaluates a command c in

an abstract environment ̺♯, then yields a new abstract environment.
Commands ppskip do not modify input abstract environments. Assign-

ments ppid := a map the abstract value (pp,A♯JaK̺♯) to variable id since
id can take as many values as expression a, and is assigned at program
point pp. A sequence of commands c1; c2 composes the abstract semantics
of the second command c2 with the abstract semantics of the first one c1.

Recall that the cardinal abstract domain computes the cardinal number
of values variables may take, when attackers provide a fixed Low input
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JppskipK♯̺♯ , ̺♯

Jppid := aK♯̺♯ , ̺♯[id 7→ (pp,A♯JaK̺♯)]

Jc1; c2K
♯̺♯ , Jc2K

♯(Jc1K
♯̺♯)

Jppif (a) c1 else c2K
♯̺♯ , let n = A

♯JaK̺♯ in

let ̺♯
1 = Jc1K

♯̺♯ in

let ̺♯
2 = Jc2K

♯̺♯ in

λid.







̺♯
1(id) ∪⊗ ̺♯

2(id) if n = 1

̺♯
1(id) ∪add(c1,c2) ̺♯

2(id) otherwise

Jppwhile (a) cK♯̺♯ , let ̺♯
2 = lfp

⊆̇⊗

̺♯ JcK♯ in

let n = A
♯JaK̺♯

2 in






̺♯
2 if n = 1

λid. top(c)(̺
♯
2(id)) otherwise

(spp, n) ∪add(c1,c2) (s′
pp, n′) ,







(spp, n) ∪⊗ (s′
pp, n′) if PP (c1; c2) ∩ (spp ∪ s′

pp) = ∅
(

spp ∪ s′
pp, min(n + n′, 2κ)

)

otherwise

top(c)

(

(spp, n)
)

,







(spp, n) if PP (c) ∩ spp = ∅

(spp, 2κ) otherwise

PP (ppskip) , {pp} PP (ppid := a) , {pp}

PP (c1; c2) , PP (c1) ∪ PP (c2) PP (ppwhile (a) c) , {pp} ∪ PP (c)

PP (ppif (a) c1 else c2) , {pp} ∪ PP (c1) ∪ PP (c2)

Figure 6.4: Abstract semantics of instructions
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memory. Recall also that we assume a partition of the set of variables into
Low and High input variables, so that all variables are initialized at the
initial program point pp0. Therefore, initially at the entry program point
pp0, Low input variables have only 1 possible value since they are fixed by
attackers. On the opposite, High input variables range over the interval
[0, 2κ − 1] of integers. Therefore, High input variables have 2κ possible
values at the entry program point pp0.

When the cardinal abstraction determines that a variable id has at most
1 possible value, it also implicitly determines that variable id may only
depend on Low input memories. Indeed, if variable id depended on High
input memories, then there would exist two High input memories that yield
two different values for variable id. Therefore, the cardinal abstraction
would determine that variable id has a cardinal number of values greater
than 2, since it over-approximates the cardinal number of values variables
may take. This remark will shortly prove useful when defining the abstract
semantics of conditionals and loops.

Conditional instructions. The abstract semantics of conditional instruc-
tions considers two different cases depending on the abstract value of the
conditional guard.

First, if the conditional guard has only one possible value, then it may
only depend on Low inputs. Hence, the evaluation of the conditional always
executes the same conditional branch for each fixed Low input. Therefore,
the join operator ∪⊗ lifted over environments soundly over-approximates
the semantics of conditionals, by computing the set union over the set of
program points where each variable may be last assigned, as well as the
maximum cardinal over both branches for each variable. Indeed, if a variable
id can take at most n1 values (resp. n2 values) in the then branch (resp. the
else branch) assuming Low inputs are fixed, the cardinal abstract domain
soundly concludes that variable id can take at most max(n1, n2) values
after the conditional when Low inputs are fixed.

Second, if the conditional guard has more than one value, then it may
depend on High inputs. Hence, the evaluation of the conditional may
execute both conditional branches for each fixed Low inputs. Assuming that
variable id can have at most n1 values (resp. n2 values) in the then branch
(resp. the else branch), the cardinal abstract domain soundly concludes that
variable id can take at most n1 + n2 values after the conditional, or 2k

values if the latter sum overflows.

However, the operator ∪add(c1,c2) still retains precision for the variables
that are written neither in c1 nor in c2, by computing the join ∪⊗ over
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their abstract values. Therefore, for variables that are written neither in c1
nor c2, the cardinal abstract domain simply computes the set union over
the program points where these variables may be defined and the maximum
over both their cardinals. As for variables that may be written in either
c1 or c2, the cardinal abstract domain computes the set union over the
program points where they may be defined and sums both their cardinals.

In order to determine which variables may be modified within an instruc-
tion c, the cardinal abstract domain relies on the set of program points where
variables may be defined as well as the operator PP (c), that we define as the
set of program points appearing in command c. Hence, instruction c does
not modify variable id if PP (c)∩ spp = ∅, supposing spp over-approximates
the set of program points where id may be last assigned. Note that this
condition is only a sufficient one since spp is an over-approximation of the
set of program points where variable id may be last assigned.

In general, abstract domains retain precision in conditional branches
by relying on the conditional guard to reduce the abstract environments
entering both the then-branch and the else-branch. For instance, let us
assume that an interval analysis determines that variable x ranges over the
interval [0, 9], whereas variable y ranges over the interval [2, 5]. Then, in the
case of a conditional guard (x == y) testing the equality of variables x and
y, the interval analysis can soundly reduce both abstract values mapped to
x and y in the then-branch to the intersection [2, 5] of both intervals. For
simplicity of presentation, the cardinal abstract semantics of conditionals
presented in Figure 6.4 does not attempt to leverage on such reductions.
We leave this improvement as future work.

Loop instructions. Let us denote by ⊆̇⊗ (resp. by ∪̇⊗) the pointwise
lifting of the partial order relation ⊆⊗ (resp. of the join operator ∪⊗) over
environments:

Partial order: ̺♯
1 ⊆̇⊗ ̺♯

2 ⇐⇒ ∀id, ̺♯
1(id) ⊆⊗ ̺♯

2(id)

Join operator: ̺♯
1 ∪̇⊗ ̺♯

2 = λid.̺♯
1(id) ∪⊗ ̺♯

2(id)

The abstract semantics of loops requires computing an abstract envi-
ronment ̺♯ that is a loop invariant ⊆̇⊗-greater than the initial abstract
environment ̺♯

0. This loop invariant ̺♯ satisfies the following fixpoint equa-
tion:

̺♯ = ̺♯
0 ∪̇⊗

(

Jppif (a) c else ppskipK♯̺♯
)

Therefore, we can define the abstract semantics of loops as the least fixpoint
of F ♯:
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F ♯ , λ̺♯.̺♯
0 ∪̇⊗

(

Jppif (a) c else ppskipK♯̺♯
)

Jppwhile(a) cK♯̺♯
0 , lfp⊆̇⊗ F ♯ (6.2)

In practice, the least fixpoint of F ♯ can be computed iteratively [Tar55,
CC79a] by defining a sequence (xn)n≥0 as follows:

x0 = ̺♯
0

xn+1 = ̺♯
0 ∪̇⊗

(

Jppif (a) c else ppskipK♯xn

)

Tarski’s theorem [Tar55] guarantees the existence of the least fixpoint of F ♯

since F ♯ is monotonic and the lattice of abstract environments is complete.
Additionally, the least fixpoint of F ♯ is also equal to the limit x∞ of the
sequence (xn)n≥0.

A modified semantics for loop instructions. Our definition of the
abstract semantics of loop instructions in Figure 6.4 is slightly different from
the one in Equation (6.2), although both resulting abstract environments are
equal. This modification will shortly prove useful to quantify information
leaks for programs with intermediate outputs in Chapter 7.

The definition we retain for the abstract semantics of loop instructions
is presented in Equation (6.3).

Jppwhile (a) cK♯̺♯
0 , let ̺♯

2 = lfp
⊆̇⊗

̺
♯
0

JcK♯ in

let n = A
♯JaK̺♯

2 in (6.3)






̺♯
2 if n = 1

λid. top(c)(̺
♯
2(id)) otherwise

Note that this definition computes the least fixpoint of JcK♯ that is ⊆̇⊗-greater
than the initial abstract environment ̺♯

0, instead of the least fixpoint of F ♯

as introduced in Equation (6.2). This is the main difference between both
definitions:

1. the least fixpoint of F ♯ in Equation (6.2) over-approximates the cardinal
number of values variables may take at the loop entry, whereas

2. the least fixpoint of JcK♯ in Equation (6.3) over-approximates the
cardinal number of values variables may take at the loop entry for each
iteration.
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Note that for the particular case where the loop guard depends only on
Low inputs, the least fixpoint of both F ♯ and JcK♯ coincide, since in this
case we know that:

Jppif (a) c else ppskipK♯̺♯ = ̺♯ ∪̇⊗ JcK♯̺♯

Intuitively, if the loop guard depends only on Low inputs – the loop guard
has only one possible value at each iteration –, then the loop terminates after
a fixed number of iterations that depends only on Low inputs. Therefore,
the maximum cardinal number of values variables may take at each iteration
of the loop is equal to the maximum cardinal number of values variables may
take at the exit of the loop.This remark justifies the soundness of the first
case in Equation (6.3) where the loop guard depends only on Low inputs
(n = 1).

In the case where the loop guard may depend on High inputs, the loop
may exit after a number of iterations that may depend on High inputs.
Therefore, the cardinal number of values variables may take at each iteration
as computed by the least fixpoint of JcK♯ under-approximates the cardinal
number of values variables may take at the exit of the loop. Therefore,
the modified abstract semantics of loops in Equation (6.3) concludes that
all variables that may be modified in the loop body may have 2κ possible
values – the maximum number of values variables may take –, in order to
guarantee soundness. Interestingly, the least fixpoint of F ♯ also concludes
that all variables that may be modified in the loop body have at most 2κ

values in the case where the loop guard may depend on High inputs.

As a consequence, the resulting abstract environment computed in Equa-
tion (6.2) is equal to the one computed in Equation (6.3). However, the
intermediate abstract environments computed for instructions of the loop
body are different. For now, since we are interested in over-approximating
min-capacity for batch-job programs, our modification of the abstract seman-
tics for loops is irrelevant since we are only interested in the final abstract
environment that is computed at the end of the program. Yet, our modi-
fication will shorty prove useful in order to retain precision in the case of
programs that may output intermediate steps of computation.

Consider for instance the program in both Listings 6.11 and 6.12 where
only variable secret is a High input. Let us also assume that attackers
may observe variable i at the end of execution. Listing 6.11 is annotated
with the results of the cardinal abstraction using the standard definition
of the abstract semantics for loops in Equation (6.2), whereas Listing 6.12
illustrates the results of the cardinal abstraction using the modified definition
in Equation (6.3). These annotations omit the abstract value of variable
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secret past the initial program point pp0 since the program does not
modify it.

0 // [i 7→ ({pp0}, 1); secret 7→ ({pp0}, 2κ)]
1 while (i ≤ secret){ // [i 7→ ({pp0, pp2}, 2κ); . . .]
2 i := i+1; // [i 7→ ({pp0, pp2}, 2κ); . . .]
3 }

4 // [i 7→ ({pp0, pp2}, 2κ); . . .]

Listing 6.11: An example analysis using the abstract semantics for loops in
Equation (6.2)

0 // [i 7→ ({pp0}, 1); secret 7→ ({pp0}, 2κ)]
1 while (i ≤ secret){ // [i 7→ ({pp0, pp2}, 1); . . .]
2 i := i+1; [i 7→ ({pp0, pp2}, 1); . . .]
3 }

4 // [i 7→ ({pp0, pp2}, 2κ); . . .]

Listing 6.12: An example analysis using the modified abstract semantics for
loops in Equation (6.3)

In the case of the standard definition in Listing 6.11, at each iteration of
the least fixpoint computation, the cardinal abstraction will always use the
operator ∪add in order to add the current cardinal of variable i to the one
computed at the previous iteration, since the loop guard evaluates to 2 – it
depends on variable secret. Therefore, the least fixpoint is reached when
the cardinal number of variable i reaches the value 2κ.

However, in the case of the modified definition in Listing 6.12, at each
iteration of the least fixpoint computation, the cardinal abstraction will
always use the join operator ∪⊗ to compute the maximum of the current
cardinal number of variable i and the one computed at the previous iteration,
irrespective of the evaluation result of the loop guard. Therefore, the cardinal
number of variable i will always be 1, which corresponds to the maximum
number of values at each iteration. Yet, the cardinal abstraction still
guarantees soundness, by concluding that the cardinal number of values
variable i may take after the loop is 2κ, through the operator top, since the
loop guard evaluates to 2 in the computed least fixpoint.
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6.2.4 Over-approximating Min-capacity

The cardinal abstract domain computes an over-approximation of the number
of values variables may take, when attackers provide a Low input memory.
Hence, we can upper-bound the cardinal number of outputs attackers may
observe when providing a Low input memory, in order to obtain an over-
approximation of capacity.

Equation (6.1) characterizes the observations attackers make for batch-
job programs c after providing a Low input memory as follows :

Leaves(T
̺L0

b ) =

{̺(v1) · ̺(v2) . . . · ̺(vf ) | ̺H0
∈ ΣH0

, ̺0 , (̺L0
, ̺H0

) and 〈c, ̺0〉 →
∗
⇓ ̺}

Let us denote by R the set of sets of reachable states for each fixed Low
input memory, at the end of a batch-job program c:

R ,
{

{̺ | ∃̺H0
∈ ΣH0

, ̺0 , (̺L0
, ̺H0

) and 〈c, ̺0〉 →
∗
⇓ ̺} | ̺L0

∈ ΣL0

}

Then, we can prove that the maximum cardinal number of outputs attackers
may observe, when providing a Low input memory, can be over-approximated
by relying on the cardinal abstraction. Indeed, assuming that ̺♯

⇓ is the
abstract environment computed at the end of the batch-job program c, the
cardinal number of outputs attackers may observe is given by the product of
cardinals computed by ̺♯

⇓, over all Low observable variables v1,v2,...vf:

max
̺L0

∈ΣL0

∣
∣
∣Leaves(T

̺L0

b )
∣
∣
∣ = max

r∈R
|{̺(v1) · ̺(v2) . . . · ̺(vf ) | ̺ ∈ r}|

≤ (by loosing relations in r)

max
r∈R

∏

1≤i≤f

|{̺(vi) | ̺ ∈ r}|

≤ (by loosing relations in R)
∏

1≤i≤f

max
r∈R
|{̺(vi) | ̺ ∈ r}|

≤ (by soundness of the cardinal abstraction)
∏

1≤i≤f

proj2(̺
♯
⇓(vi))

The latter proof yields Theorem 5 which provides an over-approximation
of min-capacity for batch-job programs by relying on the cardinal abstract
domain.
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Theorem 5 (Over-approximation of min-capacity ML for batch-job pro-
grams).
For deterministic batch-job programs, min-capacity ML is upper-bounded
by:

ML ≤ log2




∏

1≤i≤f

proj2(̺
♯
⇓(vi))





where ̺♯
⇓ denotes the abstract environment computed at the end of the

program, and v1,v2,...vf denote the Low variables attackers are allowed
to observe.

Note that the proof of Theorem 5 relies on the assumption that the
cardinal abstract domain is sound. Interestingly, this same proof sets the
stage for the proof of soundness of the cardinal abstraction:

1. define a semantics over a set R of sets of reachable states for each
fixed Low input memory, then

2. define an abstraction that looses relations between variables in the
sets r ∈ R

3. define an abstraction computing the cardinal number of values.

Therefore, the next section will sketch a soundness proof of the cardinal
abstract domain.

6.3 Soundness

Abstract interpretation generally requires defining a standard semantics
for the considered language. This standard semantics describes a set of
transition rules over environments. Then, abstract interpretation focuses
on defining a collecting semantics [CC77] describing the details that are
relevant to the properties of interest. These properties are in general not
computable. Therefore, abstract interpretation frameworks introduce ap-
proximate representations aimed at approximating the properties of interest.
Finally, by linking the properties of interest to the approximate represen-
tations through a Galois connection, a sound abstract semantics can be
systematically [Cou99] derived in order to tractably compute approximations
of the properties of interest.
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6.3.1 Standard Semantics

Let us provide a semantics for the While language introduced in Figure 6.2.
Figure 6.5 introduces a small step operational semantics for this language.

(skip) 〈ppskip, ̺〉 → ̺
(ass)

̺′ = ̺[id 7→ (pp,AJaK̺)]

〈ppid := a, ̺〉 → ̺′

(seq)
〈c1, ̺〉 → 〈c′

1, ̺′〉

〈c1; c2, ̺〉 → 〈c′
1; c2, ̺′〉

(seq’)
〈c1, ̺〉 → ̺′

〈c1; c2, ̺〉 → 〈c2, ̺′〉

(ift)
AJaK̺ = v istrue(v)

〈ppif (a) c1 else c2, ̺〉 → 〈c1, ̺〉

(iff)
AJaK̺ = v isfalse(v)

〈ppif (a) c1 else c2, ̺〉 → 〈c2, ̺〉

(w) 〈ppwhile (a) c, ̺〉 → 〈ppif (a) (c; ppwhile (a) c) else ppskip, ̺〉

Figure 6.5: The operational small step semantics of the language in Figure 6.2

Since the cardinal abstract domain tracks the set of program points where
variables may have been last assigned, we also instrument the semantics
rule for assignments (ass) in order to track these program points as well.
Therefore, environments ̺ ∈ V ar ⇀ P × V map variables id to a pair of
a program point pp ∈ P and an unsigned integer v ∈ V. A configuration
〈c, ̺〉 transitions to either an intermediate configuration 〈c′, ̺′〉 or a final
configuration ̺′. Additionally, we also denote by AJaK̺ the evaluation of an
expression a in an environment ̺, that yields a value v ∈ V.

6.3.2 Collecting Semantics

The choice of a collecting semantics depends on the problem of interest.
Indeed, a collecting semantics must at least describe program behaviours
that are relevant to the studied problem. Ideally, the collecting semantics
should also abstract away from the details that are not relevant to the
studied problem. Therefore, how should we define the collecting semantics
to prove the soundness of the cardinal abstraction?

To answer the latter question intuitively, let us assume an abstract
memory m♯ , {x 7→ 2} determining that a variable x may take at most 2
different values. What would be the concrete memories m ∈ V ar ⇀ V that
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are represented by m♯? Since variable x may take at most 2 different values,
the possible values x may take are given by a set of sets of values v ∈ V:

{V ∈ P (V) : |V | ≤ 2} ∈ P (P (V))

Therefore, the concrete memories represented by m♯ are also given by a set
of sets of memories m ∈ V ar ⇀ V:

{

r ∈ P (V ar ⇀ V) : |{m(x) : m ∈ r}| ≤ 2
}

∈ P (P (V ar ⇀ V))

Intuitively, in each set r of environments, the memories m ∈ r map at most
2 different values to variable x. Thus, we are going to define the collecting
semantics over a set of sets of environments. Interestingly, if we consider
a program c that accepts both Low and High inputs, such a collecting
semantics also enables us to describe the reachable final states of all the
sub-programs that are induced by a Low input, such as those illustrated by
Figure 6.1.

Such structures implying an additional level of sets over environments nat-
urally arise when dealing with security policies such as qualitative and quan-
titative information flow. Indeed, Clarkson and Schneider [CS08, CS10] note
that important classes of security policies are best described by hyperproper-
ties which they define as sets of legal sets of states – legal wrt. a security policy
–, in contrast to properties that are defined as sets of legal states. Additionally,
unlike qualitative information flow policies such as non-interference that can
be reduced to a safety property through self-composition [BDR04, BDR11],
Yasuoka and Terauchi [YT10a, YT10b, YT11] prove that quantitative in-
formation flow policies cannot be reduced to a safety property.

Forward collecting semantics of commands. Let us denote by →∗

the transitive closure of the small step transition relation →. Therefore,
we write 〈c, ̺〉 →∗ ̺′ to denote the existence of a sequence of intermediate
configurations 〈c, ̺〉 → 〈c1, ̺1〉 → . . . → 〈cn, ̺n〉 that eventually yields a
final configuration 〈cn, ̺n〉 → ̺′.

Equation (6.4) defines the forward collecting semantics for commands.
This collecting semantics computes the set R′ of sets of final reachable
environments when a command c is executed over a set R of sets of initial
environments.

JcKc ∈ P (P (V ar ⇀ P× V))→ P (P (V ar ⇀ P× V))

JcKcR , {{̺′ | ∃̺ ∈ r, 〈c, ̺〉 →∗ ̺′} | r ∈ R} (6.4)
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Forward collecting semantics of expressions. Similarly, Equation (6.5)
defines the forward collecting semantics for expressions over a set of sets of
environments. This semantics then yields a set of sets of values v ∈ V.

AcJaK ∈ P (P (V ar ⇀ P× V))→ P (P (V))

AcJaKR , {{v ∈ V | ∃̺ ∈ r,AJaK̺ = v} | r ∈ R} (6.5)

Outline. Once we define a collecting semantics for commands, we need
to construct a Galois connection that relates the lattice of concrete objects
R ∈ P (P (V ar 7→ P× V)) to the lattice of abstract ones ̺♯ ∈ V ar 7→ D♯

C .
With such a Galois connection, we can derive [Cou99] a sound abstract
semantics JcK♯ for commands as well as a sound abstract semantics for
expressions A

♯JaK.
Let us assume the existence of such a Galois connection (α̇, γ̇):

〈P (P (V ar ⇀ P× V)) ;⊆,∅,P (V ar ⇀ P× V) ,∪,∩〉

−−→←−−
α̇

γ̇

〈V ar ⇀ P (P)× [0, 2κ] ; ⊆̇⊗, λx.(∅, 0), λx.(P, 2κ), ∪̇⊗, ∩̇⊗〉 (6.6)

Then, in order to derive a sound abstract semantics for commands, we can
consider the functional abstraction α⊲

com defined in Equation (6.7), in order
to transpose functions JcKc of the concrete collecting semantics to functions
JcK♯ of the abstract semantics. Note that Equation (6.7) denotes by Env the
set V ar ⇀ P×V of concrete environments, and by Env♯ the set V ar ⇀ D♯

C

of abstract environments.

α⊲
com ∈

(

P (P (Env))→ P (P (Env))
)

→
(

Env♯ → Env♯
)

α⊲
com(JcKc) , α̇ ◦ JcKc ◦ γ̇ (6.7)

Finally, note that α⊲
com(JcKc) provides the best abstraction of the col-

lecting semantics of commands. However, this abstraction might not be
computable in general. Therefore, soundness only requires that the abstract
semantics JcK♯ of commands over-approximates the functional abstraction
α⊲

com(JcKc) of the collecting semantics:

α⊲
com(JcKc)̺

♯ ⊆̇⊗ JcK♯̺♯

Similarly, we will also construct a functional abstraction α⊲
exp in order to

derive a sound abstract semantics for expressions. The functional abstraction
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α⊲
exp transposes functions AcJaK of the concrete collecting semantics of

expressions to functions A
♯JaK of the abstract semantics of expressions:

α⊲
exp ∈

(

P (P (Env))→ P (P (V))
)

→
(

Env♯ → [0, 2κ]
)

Therefore, the abstract semantics of expressions A
♯JaK is sound if it verifies

the following condition:

α⊲
exp(AcJaK)̺♯ ≤ A

♯JaK̺♯

In the next subsections, we will therefore build the Galois connection
(α̇, γ̇) assumed in Equation (6.6). Figure 6.6 summarizes the steps towards
building such an abstraction.

6.3.3 Non-relational Abstraction of Environments

The cardinal abstraction is a non-relational abstraction. Thus, we start
by defining a first Galois connection that ignores the relationships among
variables.

In the case of environment properties, the following abstraction func-
tion [Cou99] ignores relations between variables:

@ ∈ P (V ar ⇀ P× V)→ (V ar ⇀ P (P× V))

@(r) , λx.{̺(x) | ̺ ∈ r}

Since our collecting semantics is defined over hyperproperties – sets of
environment properties –, we lift the previous abstraction @ over sets of
properties through an element-wise abstraction [MJ08] denoted by α@:

α@(R) , {@(r) | r ∈ R}

= {λx.{̺(x) | ̺ ∈ r} | r ∈ R}

γ@(Q) , {r | @(r) ∈ Q}

Therefore, we obtain a Galois connection:

〈P (P (V ar ⇀ P× V)) ;⊆,∅,P (V ar ⇀ P× V) ,∪,∩〉

−−−→←−−−
α@

γ@

〈P (V ar ⇀ P (P× V)) ;⊆,∅, V ar ⇀ P (P× V) ,∪,∩〉

The abstraction α@ only forgets relationships among variable in each
set r ∈ R of environments. For instance, let us assume a set R0 of sets of
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P (P (V ar ⇀ P× V))

P (V ar ⇀ P (P× V))

V ar ⇀ P (P (P× V))

α@ γ@

α̟ γ̟

Non-relational element-wise abstraction

Non-relational abstraction

〈P (P (V ar ⇀ P× V)) ;⊆〉 −−−−−−−−→←−−−−−−−−
αr,α̟◦α@

γr,γ@◦γ̟

〈V ar ⇀ P (P (P× V)) ; ⊆̇〉

(a) Non-relational abstraction of environments

P (P (P× V))

P (P (P))× P (P (V))

P (P)× [0, 2κ]

α× ◦ α@×
γ@×

◦ γ×

α⊗ γ⊗

Attribute independent abstraction

Component-wise abstraction

〈P (P (P× V)) ;⊆〉 −−−−−−−−−−−→←−−−−−−−−−−−
α,α⊗◦α×◦α@×

γ,γ@×
◦γ×◦γ⊗

〈P (P)× [0, 2κ] ;⊆⊗〉

(b) Abstraction of values

V ar ⇀ P (P (P× V))

V ar ⇀ P (P)× [0, 2κ]

αc γc Pointwise abstraction

(αc, γc) ,
(

λf.λx.α(f(x)), λf ♯.λx.γ(f ♯(x))
)

〈P (P (V ar ⇀ P× V)) ;⊆〉 −−−−−−−→←−−−−−−−
α̇,αc◦αr

γ̇,γr◦γc

〈V ar ⇀ P (P)× [0, 2κ] ; ⊆̇⊗〉

(c) Abstraction of environments

Figure 6.6: Building the Galois connection (α̇, γ̇)
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environments defined as:

R0 ,
{

{[x 7→ (pp0, 0); y 7→ (pp0, 2)], [x 7→ (pp0, 0); y 7→ (pp0, 3)]}, (6.8)

{[x 7→ (pp0, 1); y 7→ (pp0, 4)], [x 7→ (pp0, 1); y 7→ (pp0, 5)]}
}

Then, the abstraction α@(R0) yields:

α@(R0) =
{

[x 7→ {(pp0, 0)}; y 7→ {(pp0, 2), (pp0, 3)}],

[x 7→ {(pp0, 1)}; y 7→ {(pp0, 4), (pp0, 5)}]
}

In this latter set, we can further ignore relationships among variables
through an additional non-relational abstraction:

α̟(P ) , λx.{p(x) | p ∈ P}

γ̟(Q) , {p | α̟(p) ∈ Q}

Therefore, (α̟, γ̟) yields a Galois connection [CC94]:

〈P (V ar ⇀ P (P× V)) ;⊆,∅, V ar ⇀ P (P× V) ,∪,∩〉

−−−−→←−−−−
α̟

γ̟

〈V ar ⇀ P (P (P× V)) ; ⊆̇, λx.∅, λx.P (P× V) , ∪̇, ∩̇〉

Since composing Galois connections yields a Galois connection, we define
(αr, γr) , (α̟ ◦ α@, γ̟ ◦ γ@) to obtain a non-relational abstraction over
hyperproperties:

〈P (P (V ar ⇀ P× V)) ;⊆,∅,P (V ar ⇀ P× V) ,∪,∩〉

−−−−−−−−→←−−−−−−−−
αr,α̟◦α@

γr,γ@◦γ̟

〈V ar ⇀ P (P (P× V)) ; ⊆̇, λx.∅, λx.P (P× V) , ∪̇, ∩̇〉 (6.9)

If we recall the example set R0 of sets of environments defined in Equa-
tion (6.8), then αr(R0) ignores all relationships among variables:

αr(R0) =
[

x 7→
{

{(pp0, 0)}, {(pp0, 1)}
}

;

y 7→
{

{(pp0, 2), (pp0, 3)}, {(pp0, 4), (pp0, 5)}
}]

As we have defined a non-relational abstraction (αr, γr) over hyperprop-
erties, we can now focus on defining an abstraction over sets of sets of values
as shown in Figure 6.6(b). This latter abstraction can then be lifted over
environments as illustrated by Figure 6.6(c).
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6.3.4 Abstraction of Values

Similarly to the previous section, where we lift a non-relational abstraction
to a set of sets of environments, we can also lift an attribute independent
abstraction [Cou99], that forgets about relationships between components
of pairs, to a set of sets of pairs through an element-wise abstraction.

Attribute independent abstraction. The attribute independent ab-
straction function @× is given by:

@× ∈ P (P× V)→ P (P)× P (V)

@×(p) , (Π1(p), Π2(p))

Πi(p) , {proji(x) | x ∈ p}

Therefore, we define an element-wise abstraction α@×
over a set of sets

of pairs as follows:

α@×
(P ) , {@×(p) | p ∈ P}

= {(Π1(p), Π2(p)) | p ∈ P}

γ@×
(Q) , {p | @×(p) ∈ Q}

Therefore, (α@×
, γ@×

) defines a Galois connection:

〈P (P (P× V)) ;⊆,∅,P (P× V) ,∪,∩〉

−−−−→←−−−−
α@×

γ@×

〈P (P (P)× P (V)) ;⊆,∅,P (P)× P (V) ,∪,∩〉 (6.10)

Let us assume that P0 is a set of sets of pairs defined as follows:

P0 ,
{

{(pp0, 2), (pp0, 3)}, {(pp0, 4), (pp0, 5)}
}

(6.11)

Then α@×
(P0) is given by:

α@×
(P0) =

{

({pp0}, {2, 3}), ({pp0}, {4, 5})
}

In this latter set, we can further ignore relationships among values
through an additional attribute independent abstraction:

α×(Q) , (Π1(Q), Π2(Q))

γ×((X, Y )) , X × Y
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Therefore, we obtain a Galois connection [Cou99]:

〈P (P (P)× P (V)) ;⊆,∅,P (P)× P (V) ,∪,∩〉

−−−→←−−−
α×

γ×

〈P (P (P))× P (P (V)) ;⊆×, (∅,∅),P (P)× P (V) ,∪×,∩×〉 (6.12)

with the component-wise ordering, join and meet:

⊆× , ⊆ × ⊆

∪× , ∪ × ∪

∩× , ∩ × ∩

For instance, if we recall the example set P0 defined in Equation (6.11),
then α× ◦ α@×

(P0) is given by:

α× ◦ α@×
(P0) = α×

({

({pp0}, {2, 3}), ({pp0}, {4, 5})
})

=
({

{pp0}
}

,
{

{2, 3}, {4, 5}
})

Component-wise abstraction. Finally, let us assume two Galois con-
nections (αv, γv) and (αpp, γpp) such that:

〈P (P (V)) ;⊆,∅,P (V) ,∪,∩〉 −−−→←−−−αv

γv

〈[0, 2κ];≤, 0, 2κ, max, min〉

〈P (P (P)) ;⊆,∅,P (P) ,∪,∩〉 −−−−→←−−−−
αpp

γpp

〈P (P) ;⊆,∅,P,∪,∩〉

Then, a component-wise abstraction [MJ08] (α⊗, γ⊗) defined as follows:

α⊗

(

(Spp, Sv)
)

,
(

αpp(Spp), αv(Sv)
)

γ⊗

(

(spp, n)
)

,
(

γpp(spp), γv(n)
)

yields a Galois connection:

〈P (P (P))× P (P (V)) ;⊆×, (∅,∅),P (P)× P (V) ,∪×,∩×〉

−−−→←−−−
α⊗

γ⊗

〈P (P)× [0, 2κ] ;⊆⊗, (∅× 0), (P× 2κ),∪⊗,∩⊗〉 (6.13)

Consequently, the abstraction of values (α, γ) can be defined as the com-
position of the 3 Galois connections defined previously in Equations (6.10),
(6.12) and (6.13):
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〈P (P (P× V)) ;⊆,∅,P (P× V) ,∪,∩〉

−−−−−−−−−−−→←−−−−−−−−−−−
α,α⊗◦α×◦α@×

γ,γ@×
◦γ×◦γ⊗

〈P (P)× [0, 2κ] ;⊆⊗, (∅, 0), (P, 2κ),∪⊗,∩⊗〉 (6.14)

Let us focus now on defining both Galois connections (αv, γv) and
(αpp, γpp).

Abstraction of program points. The abstraction αpp merges all the
sets of program points:

αpp(Spp) ,
⋃

s∈Spp

s

γpp(spp) , P (spp)

Therefore, we obtain a Galois connection:

(P (P (P)) ;⊆,∅,P (P) ,∪,∩) −−−−→←−−−−
αpp

γpp

(P (P) ;⊆,∅,P,∪,∩)

Indeed, let us prove that (αpp, γpp) is a Galois connection:

αpp(S) ⊆ spp ⇐⇒
⋃

s∈S

s ⊆ spp

⇐⇒ ∀s ∈ S, s ∈ P (spp)

⇐⇒ S ⊆ P (spp)

⇐⇒ S ⊆ γpp(spp)

Abstraction of concrete values. The abstraction αv computes the max-
imum cardinal of values over the sets sv ∈ Sv:

αv(Sv) , max
sv∈Sv

|sv|

γv(n) = {V ∈ P (V) | |V | ≤ n}

Therefore, (αv, γv) is a Galois connection:

〈P (P (V)) ;⊆,∅,P (V) ,∪,∩〉 −−−→←−−−αv

γv

〈[0, 2κ];≤, 0, 2κ, max, min〉

Indeed, let us prove that (αv, γv) is a Galois connection:

αv(Sv) ≤ n ⇐⇒ max
sv∈Sv

|sv| ≤ n

⇐⇒ ∀sv ∈ Sv, sv ∈ Pn(V)

⇐⇒ Sv ⊆ γv(n)
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6.3.5 Abstraction of Environments

As illustrated by Figure 6.6(c), the abstraction (α, γ) of values – defined in
Equation (6.14) – can be lifted through a pointwise abstraction [CC94], in
order to abstract a set valued environment ̺ ∈ V ar ⇀ P (P (P× V)).

Indeed, let us define a pointwise abstraction (αc, γc) as follows:

αc , λf.λx.α
(

f(x)
)

γc , λf ♯.λx.γ
(

f ♯(x)
)

Then, (αc, γc) yields a Galois connection:

〈V ar ⇀ P (P (P× V)) ; ⊆̇, λx.∅, λx.P (P× V) , ∪̇, ∩̇〉

−−−→←−−−αc

γc

〈V ar ⇀ P (P)× [0, 2κ] ; ⊆̇⊗, λx.(∅, 0), λx.(P, 2κ), ∪̇⊗, ∩̇⊗〉

Therefore, by composing both the non-relational abstraction over envi-
ronments and the pointwise abstraction of values defined in Equations (6.9)
and (6.14), we can build the abstraction (α̇, γ̇):

α̇ , αc ◦ αr

γ̇ , γr ◦ γc

Thus, the pair (α̇, γ̇) yields a Galois connection:

〈P (P (V ar ⇀ P× V)) ;⊆,∅,P (V ar ⇀ P× V) ,∪,∩〉

−−→←−−
α̇

γ̇

〈V ar ⇀ P (P)× [0, 2κ] ; ⊆̇⊗, λx.(∅, 0), λx.(P, 2κ), ∪̇⊗, ∩̇⊗〉 (6.15)

6.3.6 Deriving an Abstract Semantics of Expressions

As mentioned in Section 6.3.2, once we construct a Galois connection relating
concrete objects to abstract one, we can define functional abstractions in
order to soundly approximate functions over concrete objects by functions
over abstract ones.

In order to approximate the collecting semantics AcJaK of expressions,
we can define the following functional abstraction [Cou99]:

α⊲
exp ∈

(

P (P (Env))→ P (P (V))
)

7→
(

Env♯ → [0, 2κ]
)

α⊲
exp(φ) , αv ◦ φ ◦ γ̇
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Therefore, the abstract semantics A
♯JaK of expressions is sound wrt. the

collecting semantics AcJaK of expressions if:

α⊲
exp(AcJaK)̺♯ ≤ A

♯JaK̺♯ (6.16)

Let us derive an abstract semantics for binary arithmetic operators for
instance:

α⊲
exp(AcJa1 bop a2K)̺

♯ , αv ({{v1 bop v2 | ∃̺ ∈ r,AJa1K̺ = v1

∧ AJa2K̺ = v2} | r ∈ γ̇(̺♯)
})

≤ (by loosing relationships among variables in r)

αv

({

{v1 bop v2 | ∃̺1 ∈ r1,∃̺2 ∈ r2,AJa1K̺1 = v1

∧ AJa2K̺2 = v2} | r1, r2 ∈ γ̇(̺♯)
})

= (by definition of αv)

max
r1,r2∈γ̇(̺♯)

∣
∣
∣

{

v1 bop v2 | ∃̺1 ∈ r1,AJa1K̺1 = v

∧ ̺2 ∈ r2,AJa2K̺2 = v2

}∣
∣
∣

≤ (values v ∈ V are finite, of size 2κ)

min

(

2κ, max
r1,r2∈γ̇(̺♯)

∣
∣
∣

{

v1 | ∃̺1 ∈ r1,AJa1K̺1 = v1

}∣
∣
∣

×
∣
∣
∣

{

v2 | ∃̺2 ∈ r2,AJa2K̺2 = v2

}∣
∣
∣

)

= min

(

2κ, max
r1∈γ̇(̺♯)

∣
∣
∣

{

v1 | ∃̺1 ∈ r1,AJa1K̺1 = v1

}∣
∣
∣

× max
r2∈γ̇(̺♯)

∣
∣
∣

{

v2 | ∃̺2 ∈ r2,AJa2K̺2 = v2

}∣
∣
∣

)

≤ (By induction hypothesis in Equation (6.16))

min
(

2κ,A♯Ja1K̺
♯ × A

♯Ja2K̺
♯
)

, A
♯Ja1 bop a2K̺

♯

Theorem 6 states that the abstract semantics of expressions is sound. A
proof for the remaining cases can be found in Appendix C.1.

Theorem 6 (Soundness of the abstract semantics A
♯JaK).

The abstract semantics of expressions is sound:

α⊲
exp(AcJaK)̺♯ ≤ A

♯JaK̺♯
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6.3.7 Deriving an Abstract Semantics of Instructions

Similarly to expressions, we define the functional abstraction α⊲
com in order

to soundly approximate the collecting semantics JcKc of commands.

α⊲
com ∈

(

P (P (Env))→ P (P (Env))
)

→
(

Env♯ → Env♯
)

α⊲
com(JcKc) , α̇ ◦ JcKc ◦ γ̇

Therefore, the abstract semantics of commands JcK♯ is sound wrt. the
collecting semantics JcKc of commands if:

α⊲
com(JcKc)̺

♯ ⊆̇⊗ JcK♯̺♯ (6.17)

Let us derive an abstract semantics for conditionals for instance. Let c
denote a conditional instruction ppif (a) c1 else c0. Then:

α⊲
com(JcKc)̺

♯ = α̇
({

{̺′ | ∃̺ ∈ r, 〈c, ̺〉 →∗ ̺′} | r ∈ γ̇(̺♯)
})

= α̇
({

{̺′ : ∃̺ ∈ r,∃v ∈ {0, 1},AJaK̺ = v

∧ 〈cv, ̺〉 → ̺′} | r ∈ γ̇(̺♯)
})

First, if A♯JaK̺♯ = 1, then expression a evaluates to at most one value in
each set r ∈ γ̇(̺♯):

∀r ∈ γ̇(̺♯),∃v ∈ {0, 1},∀̺ ∈ r,AJaK̺ = v

Therefore, the sets r ∈ γ̇(̺♯) can be partitioned into sets r1 (resp. r0) where
expression a evaluates to 1 (resp. evaluates to 0):

α⊲
com(JcKc)̺

♯ = α̇
({

{̺′ | ∃̺ ∈ r1, 〈c1, ̺〉 →∗ ̺′} | r1 ∈ γ̇(̺♯)
}

∪
{

{̺′ | ∃̺ ∈ r0, 〈c0, ̺〉 →∗ ̺′} | r0 ∈ γ̇(̺♯)
})

⊆̇⊗ (α̇ preserves joins)

α̇
({

{̺′ | ∃̺ ∈ r1, 〈c1, ̺〉 →∗ ̺′} | r1 ∈ γ̇(̺♯)
})

∪̇⊗ α̇
({

{̺′ | ∃̺ ∈ r1, 〈c1, ̺〉 →∗ ̺′} | r1 ∈ γ̇(̺♯)
})

=
(

α̇ ◦ Jc1Kc ◦ γ̇(̺♯)
)

∪̇⊗

(

α̇ ◦ Jc0Kc ◦ γ̇(̺♯)
)

⊆̇⊗ (by induction hypothesis Equation (6.17))

Jc1K
♯̺♯ ∪̇⊗ Jc0K

♯̺♯



6.3. SOUNDNESS 115

Second, if A♯JaK̺♯ > 1, then for variables x that are modified in neither
c1 nor c0, we have:

(α⊲
com(JcKc)̺

♯)(x) =
(

Jc1K
♯̺♯ ∪̇⊗ Jc0K

♯̺♯
)

(x)

Finally, for variables that are modified in either c1 or c0:

(α⊲
com(JcKc)̺

♯)(x) = α̇
({

{̺′ | ∃̺ ∈ r,∃v ∈ {0, 1},AJaK̺ = v

∧ 〈cv, ̺〉 → ̺′} | r ∈ γ̇(̺♯)
})

(x)

= α̇
({

{̺′ | ∃̺ ∈ r,AJaK̺ = 1 ∧ 〈c1, ̺〉 →∗ ̺′}

∪ {̺′ | ∃̺ ∈ r,AJaK̺ = 0 ∧ 〈c0, ̺〉 →∗ ̺′}
})

(x)

⊆⊗ α̇
({

{̺′ | ∃̺ ∈ r2,AJaK̺ = 1 ∧ 〈c1, ̺〉 →∗ ̺′}

∪ {̺′ | ∃̺ ∈ r1,AJaK̺ = 0 ∧ 〈c0, ̺〉 →∗ ̺′}

| r1, r2 ∈ γ̇(̺♯)
})

(x)

⊆⊗ α̇
({

{̺′ | ̺′ ∈ r′
1} ∪ {̺

′ | ̺′ ∈ r′
2} | r

′
1 ∈ Jc1Kc ◦ γ̇(̺♯),

r′
2 ∈ Jc0Kc ◦ γ̇(̺♯)

})

(x)

⊆⊗ (γ̇ ◦ α̇ is extensive, and α̇ is monotone)

α̇
({

{̺′ | ̺′ ∈ r′
1} ∪ {̺

′ | ̺′ ∈ r′
2} |

r′
1 ∈ γ̇ ◦ α̇ ◦ Jc1Kc ◦ γ̇(̺♯),

r′
2 ∈ γ̇ ◦ α̇ ◦ Jc0Kc ◦ γ̇(̺♯)

})

(x)

⊆⊗ (By hypothesis in Equation (6.17) and monotony of α̇)

α̇
({

{̺′ | ̺′ ∈ r′
1} ∪ {̺

′ | ̺′ ∈ r′
2} |

r′
1 ∈ γ̇(Jc1K

♯̺♯), r′
2 ∈ γ̇(Jc0K

♯̺♯)
})

(x)

⊆⊗ (By definition of (α̇, γ̇))
(

proj1(Jc1K
♯̺♯(x)) ∪ proj1(Jc0K

♯̺♯(x)),

proj2(Jc1K
♯̺♯(x)) + proj2(Jc0K

♯̺♯(x))
)

Hence, the abstract semantics of conditionals is sound:

Jppif (a) c1 else c2K
♯̺♯ , let n = A

♯JaK̺♯ in

let ̺♯
1 = Jc1K

♯̺♯ in

let ̺♯
2 = Jc2K

♯̺♯ in

λid.







̺♯
1(id) ∪⊗ ̺♯

2(id) if n = 1

̺♯
1(id) ∪add(c1,c2) ̺♯

2(id) otherwise
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Theorem 7 states that the abstract semantics of instructions is sound. A
proof for the remaining cases can be found in Appendix C.2.

Theorem 7 (Soundness of the abstract semantics JcK♯).
The abstract semantics of commands is sound:

α⊲
com(JcKc)̺

♯ ⊆̇⊗ JcK♯̺♯

6.4 Related Work

The cardinal abstraction quantifies information flow for deterministic pro-
grams wrt. min-capacity. It does not rely on an approximation of the set
of reachable states. Thus, it computes upper-bounds over min-capacity for
programs that accept both Low and High inputs. Similarly to Clark et al.’s
type system [CHM07] which also supports programs with Low and High
inputs, but is aimed at quantifying information leaks wrt. Shannon entropy,
the cardinal abstraction is also conservative for information leaks due to
loops depending on High inputs. Indeed, the cardinal abstraction assumes
that variables modified inside a loop, whose guard may depend on High
inputs, may leak all the secret.

Most existing approaches [KR10, MS11] for quantitative information
flow apply for batch-job programs accepting only High inputs, since they
rely on approximating the set of reachable states in order to approximate
min-capacity. As we argue in Section 6.1, approximating min-capacity by
relying on an approximation of the set of reachable states is inefficient in the
case of programs that accepts Low inputs as well. Indeed, to deal with such
programs, such an approach requires analysing as many programs as the
size of the Low inputs. Note that Backes, Köpf and Rybalchenko [BKR09]
overcome this limitation by treating both Low and High inputs symbolically
through a model checking approach.

Köpf and Rybalchenko [KR13] propose to rely on self-composition [BDR04,
BDR11] in order to analyse the leakage of batch-job programs in a k-try at-
tack scenario, where attackers can provide k different Low inputs. However,
their approach applies for arbitrary Low inputs only if k is as big as the size
of the Low input space. Our cardinal abstraction overcomes this limitation
since it over-approximates the leakage when attackers provide an arbitrary
Low inputs. We plan on building on the cardinal abstraction in order to
propose a relational abstract domain, suited for quantifying information
leaks for k-try attacks. Interestingly, such a relational abstract domain will
also enhance the precision of the cardinal abstract domain.
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Throughout our developments of the cardinal abstract domain, we con-
sider some optimizations in order to enhance the precision of our analysis,
while we leave out some others for future work. For instance, the cardinal
abstract domain tracks the program points where variables may have been
last assigned to, in order to improve its precision in the case of conditional
instructions. However, we leave off optimizations such as reducing abstract
environments by relying on conditional guards, or combining the cardinal
abstraction with numerical abstract domains [Gra89, CC77]. These choices
are motivated by making the precision of the cardinal abstraction reach
a first checkpoint; indeed, we believe that the cardinal abstraction refines
Hunt and Sands flow-sensitive type-system [HS06]. In fact, we believe that
abstracting further the cardinal abstract domain, by mapping variables
having a cardinal of 1 to Low and mapping variables having a cardinal
greater than 1 to High, yields an analysis that is equivalent to Hunt and
Sands’ type system. We leave the proof of this conjecture as future work.

6.5 Summary

In this chapter, we propose a static analysis to quantify information flow
for batch-job programs. Following the abstract interpretation framework,
we develop the cardinal abstraction, an abstract domain aimed at over-
approximating the cardinal number of values variables may take. We also
prove the soundness of our abstract domain.

Unlike previous quantitative approaches aimed at quantifying information
leaks, our approach does not rely on traditional safety analyses relying on
approximating the set of reachable states. Therefore, the cardinal abstract
domain enables an efficient over-approximation of min-capacity, for programs
accepting both Low and High inputs.

Future work involves improving the cardinal abstraction, by taking
advantage of the powerful framework of abstract interpretation. Indeed, the
precision of our abstract domain can be improved by relying on conditional
guards to reduce abstract environments in conditional branches. Additionally,
the cardinal abstract domain can also be improved by combining it with
different abstract domains [CCF+07] such as numerical domains [Gra89,
CC77] as well as relational ones [CH78, Min06b, Min06a].

We also implemented the cardinal abstraction by modifying an existing
abstract interpreter1 for a While language. This implementation enhances
the precision of the cardinal abstraction by relying on a reduced prod-

1http://www.irisa.fr/celtique/teaching/PAS/while_analyser.tgz

http://www.irisa.fr/celtique/teaching/PAS/while_analyser.tgz
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uct [CC79b] of both the cardinal abstract domain and an interval abstract
domain [CC76].

The next chapter builds on the cardinal abstraction in order to quantify
information leaks for a larger class of programs: those that may also output
intermediate steps of computation.



Chapter 7

Tree Abstraction

The cardinal abstraction enables the over-approximation of min-capacity
for a restricted class of deterministic programs: batch-job ones that only
output the result of their computations at the end of their execution. In
this chapter, we propose a novel static analysis technique in order to over-
approximate min-capacity for programs that may output intermediate results
of computation.

Our analysis, the tree abstraction, builds on the results of the cardinal
abstraction, defined in Chapter 6, in order to construct a regular specification
of attackers’ observations. Finally, we rely on the framework of analytic
combinatorics [FS09] in order to quantify the leakage for polynomial time
attackers. We also derive sufficient conditions on the regular specification
describing attackers’ observations, guaranteeing that analysed programs are
secure wrt. relative secrecy (RS).

7.1 Overview

Our static analysis builds a regular specification of attackers’ observation trees
by relying on the results of the cardinal abstraction, defined in Chapter 6.
Using this specification, we can estimate the cardinal of leaves for attackers’
observations trees, in the case of programs that may output intermediate
steps of computation. Therefore, we can also estimate min-capacity by
Theorem 4.

Let us for instance consider the program in Listing 7.1, where only
variable secret is a High input. We annotate this program by the results
of the cardinal abstraction. Since this example program modifies neither
variable input nor variable secret, the annotations omit their abstract
values past the initial program point pp0.

119
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0 // ̺♯
0 = [x 7→ ({pp0}, 1); public 7→ ({pp0}, 1); secret 7→ ({pp0}, 2κ)]

1 if (public == secret){

2 x := 1; // ̺♯
2 = [x 7→ ({pp2}, 1); . . .]

3 }

4 else {

5 x := 0; // ̺♯
5 = [x 7→ ({pp5}, 1); . . .]

6 }

7 output x; // ̺♯
7 = [x 7→ ({pp2, pp5}, 2); . . .]

8 while (public > secret){

9 skip;

10 }

11 stop;

Listing 7.1: An example program with intermediate outputs

The first output instruction, at Line 5, enables attackers to observe
the value of variable x. Thus, attackers may observe at most 2 different
values since the cardinal abstraction determines that variable x may take at
most 2 different values when attackers provide a Low input memory. The
loop body at Line 9 outputs nothing. Therefore, if the loop instruction
at Line 8 terminates, attackers only observe an empty trace denoted by ǫ.
Otherwise, if the loop does not terminate, attackers may deduce that the
loop silently diverges, which corresponds to the observation of divergence
⇑. Finally, at Line 11, the instruction stop signals the end of execution,
which corresponds to the observation of termination ⇓.

To sum up, attackers may observe at most 2 different values, followed
by the observation of either divergence ⇑, or an empty trace ǫ followed by
the observation of termination ⇓ if the loop at Line 8 terminates. Note
that in general, attackers cannot distinguish a loop that terminates without
outputting any value from a loop that silently diverges, until they make
the next observation. Indeed, in this case, as soon as attackers observe
termination ⇓ of the program, they deduce that the loop terminates. Other-
wise, if attackers wait enough time without making any new observations,
they may deduce that the loop indeed diverges. In practice, attackers may
also deduce that a program terminates or silently diverges by leveraging
knowledge about the usage of system resources for instance.

If we want to write a specification for the attackers’ observations we
determined earlier for the program in Listing 7.1, we may represent this
specification as follows:

2 ·
(

(ǫ · ⇓)⊕ ⇑
)
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Indeed, “followed by” is represented by the concatenation ·, whereas “or” is
represented by the union operator ⊕. Since the empty trace ǫ corresponds to
attackers making no observations, this specification can be further simplified
to:

2 · (⇓ ⊕ ⇑) (7.1)

This regular specification closely resembles a grammar describing a regular
language. The empty trace ǫ is the neutral element wrt. concatenation.
Additionally, instead of describing how to construct words of a regular
language, this rational specification describes how to construct the leaves
of an attackers’ observation tree. Indeed, according to Equation (7.1), in
order to build the leaves of attackers’ observation trees, start by taking 2
undefined observable values, then concatenate them to both a divergence
observation ⇑ and a termination observation ⇓. Intuitively, this specification
describes an abstract observation tree illustrated by Figure 7.1(a).

?

⇑⇓

?

⇑⇓

(a) An abstract observation tree de-
scribed by Equation (7.1)

public, x

0

⇑⇓

1

⇓

(b) Concrete observation trees

Figure 7.1: Concrete and abstract attackers’ observation trees of the program
in Listing 7.1

As a consequence, we can deduce that the leaves Leaves(T
̺L0

b ) of at-
tackers’ observation trees of the program in Listing 7.1 have a cardinal
number lesser than or equal to 4 – assuming that the bound b on attack-
ers’ observations is large enough. Moreover, we can also deduce that the
maximum leakage ML is upper-bounded by: ML ≤ log2(4) = 2 bits. Note
that as illustrated by Figure 7.1(b), concrete attackers’ observation trees of
the program in Listing 7.1 have at most 3 leaves, which corresponds to a
maximum leakage ML = log2(3) ≈ 1.59 bits.

For the simple specification in Equation (7.1), we can easily enumerate the
leaves of attackers’ observation trees in order to upper-bound min-capacity
ML. However, enumerating the cardinal number of leaves described by a
regular specification might not be as straightforward in general. Therefore,
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we rely on the framework of analytic combinatorics [FS09] in order to solve
this enumeration problem. The next section attempts to provide a gentle
introduction to the analytic combinatorics framework.

7.2 Analytic Combinatorics

Analytic combinatorics [FS09] is a framework aimed at studying properties
of objects built according to a finite set of rules. In a nutshell, analytic
combinatorics provides a calculational approach to quantify properties of
discrete objects.

Essentially, enumeration problems such as “how many objects of size n
are there?” boils down to defining a specification describing how to build
such objects. Indeed, analytic combinatorics then relies on mechanized
methods to translate this specification into a generating function. Analytic
combinatorics also defines mechanized methods to study generating functions
through mathematical analysis, in order to extract asymptotic counting
information and estimate the growth of, say, the sequence (an)n≥0 where an

represents the number of objects of size n.

7.2.1 Combinatorial Classes

Combinatorics concerns the study of finite or countable objects. Usually, one
wants to count the objects of a certain class according to some characteristic
parameter. Definition 22 introduces combinatorial classes as a countable set
of objects, provided with a size function.

Definition 22 (Combinatorial classes C).
A combinatorial class C is a finite or denumerable set on which a size
function is defined, satisfying the following conditions:

1. the size of an element is a non-negative integer, and

2. the number of elements of any given size is finite.

Consider for instance the following set W of words, provided with a size
function |·| ∈ W 7→ Z≥0 that represents the length of a word:

W , {a, b, aa, ab, bb, ba, aaa, aab, abb, aba, bba, bbb, bab, baa} (7.2)

The set W provided with a size function then defines a combinatorial class.
Since we explicitly enumerated all the words of the set W, we can also
count elements of W wrt. their size. Indeed, let us denote by Wn the set of
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elements in W that have a size n. Let us also denote by Wn the cardinal
number of the set Wn of elements in W that have a size n. Then, the
sequence Wn = |Wn| is given by:

W0 = 0 W1 = 2 W2 = 4 W3 = 8 Wn = 0 (∀n ≥ 4) (7.3)

The sequence (Wn)n≥0 is the counting sequence of the class W. Defini-
tion 23 introduces the counting sequence (Cn)n≥0 of a combinatorial class C
as the cardinal number of elements in C that have a size n.

Definition 23 (Counting sequence (Cn)n≥0).
Let us denote by Cn the objects in a combinatorial class C that have a size n.

The counting sequence of a combinatorial class C is the sequence (Cn)n≥0

where Cn , |Cn| is the number of objects in class C that have a size n.

In general, we want to avoid enumerating all the elements of a combina-
torial class in order to count elements of a certain size n. To this end, we
introduce ordinary generating function (OGF) in Definition 24. OGFs are a
keystone to the analytic combinatorics framework.

Definition 24 (Ordinary generating functions C(z)).
The OGF of a combinatorial class C is the formal power series:

C(z) ,
∑

c∈C

z|c|

,
∞∑

n=0

Cnzn

where (Cn)n≥0 is the counting sequence of the combinatorial class C.

For instance, the OGF W (z) of the combinatorial class W is given by
Equation (7.4). Note that by collecting the terms in zn, we obtain exactly
the counting sequence found earlier in Equation (7.3).

W (z) = z + z + z2 + z2 + z2 + z2 + z3 + z3 + z3 + z3 + z3 + z3 + z3 + z3

= 2z + 4z2 + 8z3 (7.4)

Intuitively, instead of enumerating all the elements of a combinatorial
class C in order to determine its counting sequence (Cn)n≥0, we can simply
provide a specification for C in terms of simpler constructions. Then, ordinary
generating functions come into play in order to systematically derive the
counting sequence (Cn)n≥0 of the combinatorial class C by leveraging its
specification.
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In the next subsection, we illustrate this mechanized process for the
combinatorial class W. We also introduce the specification rules the tree
abstraction relies upon.

Henceforth, we adopt the same naming conventions as Flajolet and
Sedgewick [FS09]: combinatorial classes, the set of elements that have size
n, counting sequences and OGFs are denoted by the same groups of letters:

Combinatorial classes : C

Set of objects of size n : Cn

Counting sequences : Cn = |Cn|

OGF : C(z) =
∞∑

n≥0

Cnzn

7.2.2 Regular Specifications

Let us consider for instance the combinatorial class W introduced earlier in
Equation (7.2). Can we define a specification describing how to construct
words in W?

We can in fact draw on an analogy from the field of formal languages in
order to intuitively define a regular specification for the combinatorial class
W . Indeed, let us denote by A , {a} (resp. by B , {b}) the combinatorial
class consisting of one word a (resp. one word b). Then, the classW admits
the regular specification introduced in Equation (7.5).

W = (A⊕ B)
︸ ︷︷ ︸

U

⊕ (A⊕ B)2

︸ ︷︷ ︸

V

⊕ (A⊕ B)3

︸ ︷︷ ︸

Y

(7.5)

= U ⊕ V ⊕ Y

In this equation, we denote by C2 the concatenation C · C of words in C.
Similarly, C3 denotes the concatenation C · C · C of words in C 3 times.
One major difference exists though, between the regular specification in
Equation (7.5) and regular expressions used in the field of formal languages.
Indeed, instead of denoting a set union over combinatorial classes, the
operator ⊕ is actually a combinatorial sum.

Combinatorial sum. The combinatorial sum ⊕ captures the idea of
a disjoint union of two combinatorial classes, yet without requiring both
combinatorial classes to be actually disjoint. For instance, A ⊕ B can be
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formalized in a set theoretic sense as the set union of two disjoint copies AN

and B▽ of A and B:

A⊕ B , ({N} × A) ∪ ({▽} × B)

This is exactly the same definition given in Flajolet and Sedgewick [FS09].
Intuitively, objects in both combinatorial classes A and B are marked with
distinct markers in order to guarantee them to be disjoint.

This is the main difference between a regular specification in combi-
natorics and a regular expression as used in formal languages. In fact,
given a regular expression re, we can rely on OGFs to count the number of
different ways we can build words of size n. Yet, this is actually different
from counting the words of size n in the formal language defined by re.
Indeed, using OGFs, we would be counting the words of size n along with
their multiplicities. For instance, using OGFs to count the words generated
by a regular expression a + a, we find that there are 2 words of size 1,
since the union + is interpreted as a combinatorial sum ⊕. Interestingly,
the combinatorial sum fits quiet well our problem of counting attackers’
observation trees.

As a consequence of the definition of the combinatorial sum ⊕, we can
deduce that the counting sequence Cn of a class C , T ⊕ S is equal to the
sum of both counting sequences Tn + Sn. More importantly, this also means
that the OGF of the class C is equal to the sum of both OGFs T (z) and
S(z):

C , T ⊕ S =⇒ C(z) = T (z) + S(z)

Therefore, recalling the specification of W in Equation (7.5), we can
deduce that the OGF of the class W is given by:

W (z) = U(z) + V (z) + Y (z)

U(z) = A(z) + B(z) = 2z

Concatenation. Let us consider 2 combinatorial classes T and S, and
denote by C , T · S the combinatorial class resulting from concatenating
objects in T with objects in S. How can we build objects in the class C that
have size n?

Intuitively, in order to construct objects in C of size n we can:

1. iterate over k ∈ [0, n], then

2. choose any object in T of size k, then concatenate it with
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3. any object in S of size n− k.

Therefore, the counting sequence Cn of C is equal to:

Cn =
n∑

k=0

TkSn−k

Interestingly, Cn is actually the coefficient resulting from the multiplication
of both formal power series T (z) and S(z). This means that the OGF of
the class C is equal to the product of both OGFs T (z) and S(z):

C , T · S =⇒ C(z) = T (z)× S(z)

As a consequence, recalling the specification of W in Equation (7.5), we
can now derive systematically the OGF of the class W by relying only on
the specification of W :

V (z) = U2(z) = 4z2

Y (z) = U3(z) = 8z3

W (z) = U(z) + V (z) + Y (z) = 2z + 4z2 + 8z3

So far, we introduced 2 regular specification rules: the combinatorial
sum ⊕, as well as the concatenation ·. The last regular specification we
need to introduce is the sequence construction.

Sequence construction. Assuming a combinatorial class A, then the
sequence class, denoted by A⋆, is the infinite combinatorial sum given by:

A⋆ = {ǫ} ⊕ A⊕A2 ⊕A3 ⊕ . . .

where ǫ denotes the neutral element wrt. concatenation – therefore has a
size of 0.

Note that A⋆ is a well-defined combinatorial class iff. A contains no
objects of size 0. This is necessary and sufficient to guarantee that the
number of elements of any given size is finite. Intuitively, if the class A
contains the neutral ǫ, then for all objects a ∈ A, there would be an infinite
number of objects in A⋆ having the same size as object a. Indeed, this stems
from the fact that all concatenations of A will contain at least the object a:
∀k ≥ 1, a ∈ Ak.

Let us denote by C the sequence class A⋆. Then by definition, the OGF
of C is equal to:

C(z) = 1 + A(z) + A2(z) + A3(z) + . . .
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This latter equation can be further simplified by noting that A0 = |A0| = 0
since A is assumed to not contain any objects of size 0, and finally that C(z)
is a geometric sequence. Therefore, the OGF of a sequence class is given by:

C , A⋆ =⇒ C(z) =
1

1− A(z)

Translating regular specifications into OGFs. Theorem 8 summa-
rizes the results of this subsection. The OGF of a combinatorial class
described by a regular specification can be systematically computed. In-
deed, regular specifications translate directly into equations over generating
functions.

Theorem 8 (Regular specifications as equations over OGFs).
Any regular specification of a combinatorial class translates directly into
equations over generating functions.

Combinatorial sum: C = A⊕ B =⇒ C(z) = A(z) + B(z)

Concatenation: C = A · B =⇒ C(z) = A(z)×B(z)

Sequence: C = A⋆ =⇒ C(z) =
1

1− A(z)
(A0 = ∅)

Note that we restrict ourselves to regular specifications only, namely
construction rules involving combinatorial sums, concatenations, as well as
sequences. Flajolet and Sedgewick [FS09] actually prove that even more
complex specification rules also translate directly into equations over OGFs.

7.2.3 Asymptotic Estimates

Once we describe a combinatorial class C through a regular specification,
Theorem 8 enables us to systematically translate this specification into an
OGF C(z). Yet, how can we use this OGF in order to find the number of
objects in C that have a size n?

Recall that Definition 24 of an OGF already embodies the counting
information we seek. The counting sequence Cn is the coefficient of zn in the
formal power series C(z). As a consequence, for a fixed n, a straightforward
method consists in seeking the coefficient of zn in C(z). This coefficient can
be extracted by expanding the formal power series until the order n, or by
using Taylor’s expansion formula to directly compute the coefficient of zn –
the coefficient of zn is equal to the nth derivative of C(z) evaluated at z = 0
and divided by n! .
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In fact, sometimes we can compute an explicit formula for the counting
sequence Cn. For instance, when the nth derivative of C(z) can be deter-
mined symbolically, we can rely on Taylor’s formula [Wil05] to explicitly
determine Cn, as a function of n. An alternative method consists in seeking
recurrences for Cn and solving them. Nevertheless, the most general method
relies on complex analysis – studying C(z) as a function of the complex
space C – in order to approximate the growth of the sequence Cn, by means
of asymptotic estimates. We will expose in the following the most important
results [FS09] in complex analysis of OGFs obtained by translating a regular
specification.

Rational functions. The first result, introduced in Corollary 4, is a
direct consequence of Theorem 8. A combinatorial class described by a
regular specification has an OGF that is a rational function. Intuitively,
regular specifications involve combinatorial sums, concatenations as well as
sequences. These specifications translate into sums, products and inverses,
which yield an OGF that is a rational function.

Corollary 4 (Regular specifications as rational OGFs).
Any combinatorial class C described by a regular specification has an OGF
that is a rational function:

C(z) =
N(z)

D(z)
= Q(z) +

∑

α,rα

cα,rα

(z − α)rα

where both N(z) and D(z) are polynomials, Q(z) is a polynomial of degree
n0 = deg(Q) = max(0, deg(N) − deg(D)), the complex α ranges over the
poles of C(z), cα,rα is a constant, and rα is upper-bounded by the multiplicity
of α as a pole of C(z).

Corollary 4 also proposes a partial fraction decomposition for OGFs
obtained through a regular specification. Interestingly, this decomposition
sets up the stage for the next important result we introduce, aimed at
asymptotically approximating the counting sequence (Cn)n≥0 of a regular
combinatorial class C.

Asymptotic approximation. Flajolet and Sedgewick [FS09] prove that
the singularities of an OGF C(z) determine the asymptotic behaviour of its
counting sequence (Cn)n≥0. This is an important result since it provides a
systematic method to translate an OGF into an asymptotic approximation
of its counting sequence. While this result applies to any OGF, we are going
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to restrict ourselves to the simpler case of rational OGFs, namely those we
obtain by translating a regular specification.

Using the partial fraction decomposition of a rational OGF, we can
determine an explicit formula for its counting sequence. Let us denote by
[zn]f(z) the coefficient of zn in a generating function f(z). Let us also assume
a rational OGF C(z). Then C(z) admits a partial fraction decomposition:

C(z) =
N(z)

D(z)
= Q(z) +

∑

α,rα

cα,rα

(z − α)rα

where Q(z) is a polynomial of degree n0 = max(0, deg(N) − deg(D)), α
ranges over the poles of C(z), rα is upper-bounded by the multiplicity of
α as a pole and cα,rα is a constant. Therefore, for n larger than n0, the
counting sequence Cn depends only on the poles of the rational OGF C(z):

Cn = [zn]C(z) =
∑

α,rα

[zn]
cα,rα

(z − α)rα
(n ≥ n0) (7.6)

Moreover, using Newton’s generalised binomial theorem, we have:

[zn]
1

(z − α)rα
=

(−1)rα

αrα
[zn]

1

(1− z
α
)rα

=
(−1)rα

αrα
[zn]

∞∑

k=0

(

k + rα − 1

rα − 1

)

(
z

α
)k

=
(−1)rα

αrα
[zn]

∞∑

k=0

(

k + rα − 1

rα − 1

)

α−kzk

=
(−1)rα

αrα

(

n + rα − 1

rα − 1

)

α−n (7.7)

Finally, we can simplify Equation (7.6) by using Equation (7.7) in order
to obtain an explicit formula for the counting sequence Cn, assuming n is
larger than the degree n0 of Q(z):

Cn =
∑

α,rα

cα,rα

(−1)rα

αrα

(

n + rα − 1

rα − 1

)

α−n (7.8)

This last equation yields Theorem 9 by collecting the terms associated to
each pole α. This theorem states that the counting sequence Cn of a rational
OGF C(z) is a sum of exponential polynomials determined by the poles of

C(z). Note that the binomial coefficient
(

n+rα−1
rα−1

)

yields a polynomial in n
of degree rα − 1, and rα is upper-bounded by the multiplicity of the pole rα.



130 CHAPTER 7. TREE ABSTRACTION

Theorem 9 (Expansion of rational OGFs).
If a rational OGF has its poles at points α1, α2, . . . , αm, then its coefficients
Cn are a sum of exponential-polynomials: there exists m polynomials {Fj}

m
j=1

such that, for n larger than some fixed n0:

Cn = [zn]C(z) =
m∑

j=1

Fj(n)α−n
j

Furthermore, the order of the polynomial Fj(n) is equal to the multiplicity
order of the pole αj minus one.

Theorem 9 actually provides a direct method for asymptotic estimation
of the counting sequence Cn. Indeed, if we order the exponential-polynomial
terms according to the α’s of increasing modulus, each group is exponentially
smaller than the other. Let us assume for instance that a rational OGF
have a unique dominant pole |α1| < |α2| ≤ |α3| ≤ . . . ≤ |αm|. Then, the
counting sequence Cn’s asymptotic behaviour is given by :

Cn ∼ F1(n)α−n
1 ∼

(−1)rc

(r − 1)!
nr−1α−n−r

1 (7.9)

where r is the multiplicity of the pole α1, and c is a constant equal to
c = lim

z→α1

C(z)(z − α)r.

To sum up, extracting asymptotic counting information from a rational
OGF boils down to finding its poles and comparing their modulus. According
to Theorem 9, the asymptotic behaviour of the counting sequence is defined
by the poles having the smallest modulus. Recall that we only presented the
simpler case of rational OGFs. In general, Flajolet and Sedgewick [FS09]
also prove that the asymptotic behaviour of the counting sequence of an
OGF is determined by its singularities.

7.3 Regular Specifications of Attackers’

Observations

By relying on Theorem 8, a regular specification of attackers’ observations
translates directly into a generating function. The obtained generating
function embodies counting information about the leaves of attackers’ obser-
vation trees. Therefore, we can leverage the tools from the field of analytic
combinatorics in order to estimate min-capacity by Theorem 4. In this sec-
tion, we introduce atomic combinatorial classes for attackers’ observations,
as well as a normal form in order to accommodate the framework of regular
specifications.
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Atomic abstract observations. For programs that output intermediate
results of computation, attackers may either observe the value of an expres-
sion a through a command ppoutput a, silent divergence ⇑ or termination
⇓. Therefore, we introduce atomic combinatorial classes representing these
observations.

The tree abstraction is parametrized by the cardinal abstraction. For
each command ppoutput a, the tree abstraction concludes that attackers
may observe at most k different values, assuming the cardinal abstraction
evaluates expression a to k. Since command ppoutput a produces an
output that have length 1, we can therefore represent the observations
attackers make in this case by a combinatorial class Ok, containing k
undefined values of size 1:

Ok , ⊕k
i=1?

As a consequence, the OGF of the combinatorial class Ok is given by:

Ok(z) = kz

Similarly, we can introduce an atomic combinatorial class O⇑ containing
only one observation of size 1, representing divergence ⇑ as well as an atomic
class O⇓ containing one observation of size 1, representing termination ⇓.
However, both combinatorial classes are isomorphic since they have the
same generating function z. Therefore, we only define O⇑ as a combinatorial
class containing only one object of size 1, representing either divergence
or termination. Definition 25 summarizes these definitions of the atomic
abstract observations attackers can make.

Definition 25 (Atomic abstract observations).
For all k ∈ [1, 2κ], the atomic combinatorial class Ok contains k undefined
values of size 1, representing the values attackers may observe through output
instructions.

The atomic combinatorial class Oǫ contains one object of size 0, repre-
senting an empty observation trace ǫ.

Additionally, the atomic combinatorial class O⇑ contains one observation
of size 1, representing either divergence ⇑ or termination ⇓.

Their generating functions are given by:

Ok(z) , kz Oǫ(z) , 1 O⇑(z) , z.

In fact, the combinatorial class O1 is also isomorphic to O⇑. Yet, the
class O⇑ enjoys a property that O1 does not. Indeed, since O⇑ represents
either the observation of divergence or termination, it represents a terminal
observation: attackers cannot make further observations whenever a program
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terminates or diverges silently. Therefore, we need to separatly define both
combinatorial classes O1 and O⇑. Additionally, despite the expressive power
of regular specifications, there is no straightforward way to ensure that the
combinatorial class O⇑ is terminal. To accommodate abstract attackers’
observations to regular specifications, we opt to simplify them during the
analysis by relying on a normal form.

Normal form. We opt to simplify the regular specifications of attackers’
observations as the analysis proceeds, in order to make sure that the obser-
vation of either divergence or termination is terminal. Therefore, we rely on
a normal form and simplification operators for regular specifications rules.

The normal form we consider is defined as the combinatorial sum of 3
regular specifications r1, r2 and r3 · O

⇑, such that:

1. r1 is either the combinatorial class Oǫ representing an empty observa-
tion ǫ, or the empty regular specification ∅,

2. r2 is either a regular specification involving only the combinatorial
classes Ok for k ∈ [1, 2κ] and not containing any empty observation of
size 0, or the empty regular specification ∅, and

3. r3 is either a regular specification involving only the combinatorial
classes Ok and Oǫ, or the empty regular specification ∅.

The normal form for regular specifications of attackers’ observations are
written as follows:

r1 ⊕ r2 ⊕ r3 · O
⇑

The main idea behind this normal form is to make sure that neither the
regular specification r1, nor r2, nor r3 contains a terminal combinatorial
class O⇑. Moreover, the normal form also ascertains that neither r2, nor
r3 · O

⇑ contains the atomic combinatorial class Oǫ, representing an empty
observation ǫ of size 0. This latter requirement proves useful in order for
the sequence construction to be well-defined, wrt. Theorem 8.

We also define 3 operators ssum, scon and sseq for the 3 regular specifica-
tion rules – combinatorial sum, concatenation and sequence construction
–, in order to simplify the regular specifications of attackers’ observations.
Figure 7.2 summarizes the definitions of these 3 operators. These definitions
rely on the associativity of both the combinatorial sum and the concate-
nation rules, in addition to the distributivity of the concatenation over
the combinatorial sum. Note that these operators also keep the simplified
regular specifications into a normal form r1 ⊕ r2 ⊕ r3 · O

⇑.
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ssum

[

r1 ⊕ r2 ⊕ r3 · O
⇑, s1 ⊕ s2 ⊕ s3 · O

⇑
]

,






∅⊕ (r2 ⊕ s2)⊕ (r3 ⊕ s3) · O
⇑ if r1 = s1 = ∅

Oǫ ⊕ (r2 ⊕ s2)⊕ (r3 ⊕ s3) · O
⇑ otherwise

scon

[

r1 ⊕ r2 ⊕ r3 · O
⇑, s1 ⊕ s2 ⊕ s3 · O

⇑
]

,

(r1 · s1)⊕ (r1 · s2 ⊕ r2 · s1 ⊕ r2 · s2)⊕ (r1 · s3 ⊕ r2 · s3 ⊕ r3) · O
⇑

sseq

[

r2 ⊕ r3 · O
⇑
]

, Oǫ ⊕ r2 · r
⋆
2 ⊕ r⋆

2 · r3 · O
⇑

Figure 7.2: Simplification operators ssum, scon and sseq

The operator ssum simplifies the combinatorial sum Oǫ ⊕Oǫ to only Oǫ,
since from an attackers’ perspective, observing an empty trace ǫ or another
empty trace ǫ amounts to observing nothing. Note that such a simplification
cannot not be performed for the combinatorial classes Ok⊕Ok. For instance,
the regular specification O1⊕O1 states that attackers may observe 1 output
value or 1 output value. Since both values are undefined, they may as well
be different, meaning that attackers may observe at most 2 different values.
The combinatorial sum is therefore well suited to describe such observations
since it suitably captures the fact that attackers may observe 2 different
output values.

The operator scon distributes the concatenation over combinatorial sums,
then simplifies the term r3 ·O

⇑ ·(s1⊕s2⊕s3 ·O
⇑) to r3 ·O

⇑. Indeed, whenever
attackers observe a trace r3 · O

⇑ that silently diverges or terminates, they
cannot make any additional observations.

The operator sseq is only defined for regular specifications having a
normal form r2 ⊕ r3 · ⇑ in order to ensure the combinatorial classes they
describe do not contain the empty observation ǫ. Additionally, it draws on
an intuition from the theory of formal languages in order to simplify the
regular specification (r2 ⊕ r3 · O

⇑)⋆. Indeed, assuming that S and T are
two combinatorial classes containing no objects of size 0, then the denesting
rule [KP00] applies:

(S ⊕ T )⋆ = (S⋆T )⋆S⋆

We can easily prove a slightly weaker version of this equality over regular
specifications, by proving that both the right-hand side and the left-hand
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side combinatorial classes are isomorphic since their OGFs are equal:

1

1− S(z)− T (z)
=

1

1− T (z)
1−S(z)

1

1− S(z)

Therefore, we have:

(r2 ⊕ r3 · O
⇑)⋆ = (By the denesting rule)

(r⋆
2 · r3 · O

⇑)⋆ · r⋆
2

= (Since C⋆ = Oǫ ⊕ C · C⋆, with C = r⋆
2 · r3 · O

⇑)
(

Oǫ ⊕ (r⋆
2 · r3 · O

⇑) · (r⋆
2 · r3 · O

⇑)⋆
)

· r⋆
2

= (By distributivity)

r⋆
2 ⊕ r⋆

2 · r3 · O
⇑ · (r⋆

2 · r3 · O
⇑)⋆ · r⋆

2

= (Since C⋆ = Oǫ ⊕ C · C⋆, with C = r⋆
2)

Oǫ ⊕ r2 · r
⋆
2 ⊕ r⋆

2 · r3 · O
⇑ · (r⋆

2 · r3 · O
⇑)⋆ · r⋆

2

Finally, the operator sseq simplifies the term r⋆
2 · r3 · O

⇑ · (r⋆
2 · r3 · O

⇑)⋆ · r⋆
2

to r⋆
2 · r3 · O

⇑ to ascertain that O⇑ is terminal in the resulting regular
specification of attackers’ observations.

7.4 Abstract Semantics

Our static analysis computing the regular specification for attackers’ obser-
vations is parametrized by the cardinal abstraction. Figure 7.3 introduces
the abstract semantics JcK♯ of instructions. This abstract semantics is de-
fined over a pair (e♯, ̺♯) of a regular specification e♯ in normal form and an
abstract environment ̺♯ representing the results of the cardinal abstraction.
The abstract semantics also yields a new pair (e♯

2, ̺♯
2), where e♯

2 is a regular
specification describing attackers’ observations after the execution of com-
mand c. Note that all the regular specifications are constructed using the
simplification operators ssum, scon and sseq, so that the computed regular
specification remains under a normal form r1 ⊕ r2 ⊕ r3 · O

⇑.
Command ppskip and assignments do not modify the input regular

specification. Command ppstop enables attackers to observe termination.
Thus, the output regular specification is the concatenation of the combina-
torial class O⇑, representing both the observation of either termination ⇓
or divergence ⇑, to the input regular specification. The abstract semantics
for the sequence command c1; c2 is the composition of both the abstract
semantics Jc1K

♯ and Jc2K
♯.
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JppskipK♯
(

e♯, ̺♯
)

,
(

e♯, ̺♯
)

Jppid := aK♯
(

e♯, ̺♯
)

,
(

e♯, ̺♯
[

id 7→ (pp,A♯JaK̺♯)
])

Jc1; c2K
♯
(

e♯, ̺♯
)

, Jc2K
♯
(

Jc1K
♯
(

e♯, ̺♯
) )

JppstopK♯
(

e♯, ̺♯
)

,
(

scon

[

e♯,O⇑
]

, ̺♯
)

Jppoutput aK♯
(

e♯, ̺♯
)

, let k = AJaK̺♯ in
(

scon

[

e♯,Ok
]

, ̺♯
)

Jppif (a) c1 else c2K
♯
(

e♯, ̺♯
)

, let
(

e♯
1, ̺♯

1

)

= Jc1K
♯
(

Oǫ, ̺♯
)

in

let
(

e♯
2, ̺♯

2

)

= Jc2K
♯
(

Oǫ, ̺♯
)

in

let ̺♯
3 =

λid.







̺♯
1(id) ∪⊗ ̺♯

2(id) if A♯JaK̺♯ = 1

̺♯
1(id) ∪add(c1,c2) ̺♯

2(id) otherwise

in

let e♯
3 = ssum

[

e♯
1, e♯

2

]

in
(

scon

[

e♯, e♯
3

]

, ̺♯
3

)

Jppwhile (a) cK♯
(

e♯, ̺♯
)

, let ̺♯
2 = lfp

⊆̇⊗

̺♯ JcK♯ in

let ̺♯
3 =







̺♯
2 if A♯JaK̺♯

2 = 1

λid. top(c)(̺
♯
2(id)) otherwise

in

let
(

e♯
2,
)

= JcK♯
(

Oǫ, ̺♯
2

)

in

let e♯
3 = swhile

[

e♯
2

]

in

if (e♯
3 6= ⊤) then

(

scon

[

e♯, e♯
3

]

, ̺♯
3

)

swhile [Oǫ] , Oǫ ⊕O⇑ swhile

[

Oǫ ⊕O⇑
]

, Oǫ ⊕O⇑

swhile

[

r2 ⊕ r3 · O
⇑
]

, sseq

[

r2 ⊕ r3 · O
⇑
]

= Oǫ ⊕ r2 · r
⋆
2 ⊕ r⋆

2 · r3 · O
⇑

swhile

[

Oǫ ⊕ r2 ⊕ r3 · O
⇑
]

, ⊤ if (r2 6= ∅ or (r3 6= ∅ and r3 6= O
ǫ))

Figure 7.3: The tree abstract semantics of instructions
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Output commands ppoutput a enables attackers to observe k different
values, where k is the evaluation result of the cardinal abstract semantics for
expression a. Therefore, the output regular specification is the concatenation
of the combinatorial class Ok to the input regular specification.

The abstract semantics of conditionals computes both the output regular
specification e♯

1 of the then-branch and the output regular specification e♯
2 of

the else-branch. Therefore, the regular specification of attackers’ observation
due to both conditional branches is the combinatorial sum e♯

3 of both e♯
1 and

e♯
2. Finally, the output regular specification is the concatenation of e♯

3 to the
input regular specification e♯. Note that unlike the cardinal abstraction, the
tree abstraction does not attempt to gain precision when the conditional
guard depends only on Low inputs.

In fact, whenever the conditional guard depends only on Low inputs,
the tree abstraction can keep both specifications that result from both
conditional branches separate. This can be achieved by letting the tree
abstraction compute a set of regular specifications describing attackers’
observations rather than a single regular specification, which amounts to
a form of selective trace partitioning [MR05, RM07]. Since the precision
of the cardinal abstraction can also benefit from such an improvement, we
leave off building a selective trace partitioning abstract domain on top of
both the cardinal abstraction and the tree abstraction as future work.

Loop instructions. The abstract semantics of loops computes a regular
specification e♯

2 of attackers’ observation for the loop body c. Note that the
regular specification e♯

2 of attackers’ observations is computed by relying on

the abstract environment ̺♯
2 = lfp

⊆̇⊗

̺♯ JcK♯ which determines the maximum
cardinal number of values variables may take, for each iteration of the
loop body. Therefore, e♯

2 represents the observations attackers make for
each iteration of the loop body c. Therefore, after the execution of the
loop, attackers may either observe Oǫ if the loop body never executes,
or e♯

2 if the loop body executes once, or e♯
2 · e

♯
2 if the loop body executes

twice. . . Consequently, attackers observations after the execution of the loop
can be described by the regular specification (e♯

2)
⋆. However, this sequence

construction is not defined when e♯
2 contains an observation of size 0. The

normal form for regular specifications enables us to decide when such a
construction is well-defined, and also bypasses the use of the sequence rule
when it is possible.

The most general case where the regular specification (e♯
2)⋆ is well defined

corresponds to the case where e♯
2 = r2⊕r3 ·O

⇑, meaning that r1 is the empty
regular specification ∅ rather than the combinatorial class Oǫ representing
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an empty observation. Indeed, our normal form guarantees that neither r2

nor r3 ·O
⇑ contains an observation of size 0. Therefore, in this case the output

regular specification of the loop concatenates the input regular specification
to sseq

[

e♯
2

]

, which is a simplification of the sequence construction (e♯
2)

⋆ in
order to keep the regular specification under normal form.

In all other cases, the sequence construction is not defined. However, we
can consider 2 more cases where we can actually define a regular specification
for attackers’ observations. Indeed, if the loop body outputs nothing (e♯

2 =
Oǫ), then the execution of the loop might terminate, leading attackers to
observe nothing, or never terminate which leads attackers to observe a silent
divergence. Therefore, in this case we can conclude that the loop enables
attackers to observe either an empty trace (Oǫ) or divergence (O⇑).

Similarly, if the loop body outputs either nothing or silently diverges
(e♯

2 = Oǫ ⊕O⇑), then the loop may also exit without any outputs (Oǫ), or
diverge silently (O⇑).

In the remaining case, when the loop body might allow attackers to
observe an empty trace, in addition to other observations different from a
silent divergence, the analysis halts since it cannot conclusively describe
attackers’ observations at this level of abstraction.

1 i := 0;

2 while (i ≤ 2κ − 1){
3 if (secret == i){

4 skip;

5 }

6 else {

7 output 2;

8 }

9 i := i+1;

10 }

11 stop;

Listing 7.2: An example program causing the analysis to halt

For instance, let us consider the example program in Listing 7.2, where
the only input is variable secret, which is High. This program leaks
completely the value of variable secret. Indeed, the leaves of attackers’
observation tree are given by:

{2 · ⇓, 2 · 2 · ⇓, . . . , 2 · 2 · . . . · 2
︸ ︷︷ ︸

2κ times

· ⇓}
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Therefore, min-capacity is given by ML = log2(2κ) = κ, meaning that this
program leaks all bits of variable secret.

The regular specification computed for the loop body is given by Oǫ⊕O1,
which describes the fact that the loop body allows attackers to observe
either an empty trace, or 1 undefined value. However, without additional
knowledge about the loop semantics, the tree abstraction can only conclude
that attackers may make infinitely many observations of size n, for each
n ≥ 1. Indeed, in the case where attackers may only make an observation of
size 1 for instance, then the loop might execute i times without outputting
anything, then output 1 undefined value at iteration i + 1, then output
nothing during all subsequent iterations, for all i ∈ N.

Analysing the leakage for looping constructs is complex and tedious,
as illustrated by Malacaria’s risk assessment [Mal07, Mal10] for looping
constructs in batch-job programs. We also share Malacaria’s enthusiasm
for future static analyses that would require combining different techniques
from theorem proving, model checking as well as quantitative static analyses
in order to precisely estimate the leakage of loops.

Example programs. Let us illustrate the results of the tree abstraction
on the example programs introduced so far, in both Chapters 5 and 7.

Considering the first example program in Listing 7.1, presented in Sec-
tion 7.1, Listing 7.3 illustrates the results of the tree abstraction. Therefore,
the computed regular specification for attackers’ observations is given by:

(O2 ⊕O2) · O⇑

Additionally, recalling both example programs introduced in Section 5.2,
Listings 7.4 and 7.5 illustrate the results of the tree abstraction on both
programs introduced in Listings 5.1 and 5.2.

Both example programs in Listings 5.1 and 5.2 introduce the motivations
behind our investigations, in Chapter 5, of a quantitative security property
that relaxes termination-insensitive non-interference (TINI), while providing
the same security guarantees wrt. attackers guessing the secret in one try.
These investigations led us to introduce Definition 19 of RS, in order to
quantify information leaks wrt. attackers guessing the secret. Unlike TINI,
the quantitative security property RS does indeed deem both programs as
equivalent wrt. a one-try attack scenario, since they both have the same min-
capacity ML. The tree abstraction also enables us to computes the same
upper-bound on min-capacity for both programs. Indeed, the computed
regular specifications enable us to represent for instance an abstract attackers’
observation tree for both programs, as illustrated by Figure 7.4. Thus,
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0 //
(

Oǫ,
[

x 7→ ({pp0}, 1); public 7→ ({pp0}, 1); secret 7→ ({pp0}, 2κ)
])

1 if (public == secret){

2 x := 1; //
(

Oǫ,
[

x 7→ ({pp2}, 1); . . .
])

3 }

4 else {

5 x := 0; //
(

Oǫ,
[

x 7→ ({pp5}, 1); . . .
])

6 }

7 output x; //
(

O2,
[

x 7→ ({pp2, pp5}, 2); . . .
])

8 while (public > secret){

9 skip;

10 } //
(

O2 ⊕O2 · O⇑,
[

x 7→ ({pp2, pp5}, 2); . . .
])

11 stop; //
(

(O2 ⊕O2) · O⇑,
[

x 7→ ({pp2, pp5}, 2); . . .
])

Listing 7.3: The program in Listing 7.1, annotated by the results of the tree

abstraction

0 //
(

Oǫ,
[

input 7→ ({pp0}, 1); secret 7→ ({pp0}, 2κ)
])

1 if (input == secret){

2 skip; // (Oǫ, . . .)
3 }

4 else {

5 while (true){

6 skip;

7 } //
(

Oǫ ⊕O⇑, . . .
)

8 } //
(

Oǫ ⊕O⇑, . . .
)

9 output 1; //
(

O1 ⊕O⇑, . . .
)

10 stop; //
(

(O1 ⊕ ǫ) · O⇑, . . .
)

Listing 7.4: The program in Listing 5.1, annotated with the results of the
tree abstraction
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0 //
(

Oǫ,
[

input 7→ ({pp0}, 1); secret 7→ ({pp0}, 2κ)
])

1 if (input == secret){

2 output 1; // (O1, . . .)

3 }

4 else {

5 output 0; (O1, . . .)

6 } (O1 ⊕O1, . . .)

7 stop;
(

(O1 ⊕O1) · O⇑, . . .
)

Listing 7.5: The program in Listing 5.2, annotated with the results of the

tree abstraction

we can deduce that min-capacity for both programs is upper-bounded by
ML ≤ 1 bit, which corresponds in this case to a tight bound.

input

o ∈ O⇑?

o ∈ O⇑

(a) Listing 5.1

input

?

o ∈ O⇑

?

o ∈ O⇑

(b) Listing 5.2

Figure 7.4: Abstract attackers’ observation trees for both programs in
Listings 7.4 and 7.5

Additionally, Listing 7.6 illustrates the results of the tree abstraction on
the example program in Listing 5.3.

The tree abstraction computes the following regular specification of
attackers’ observation trees:

(

Oǫ ⊕O1 · (O1)⋆ ⊕ (O1)⋆
)

· O⇑

Intuitively, the regular specification Oǫ ·O⇑ accounts for observations attack-
ers make if execution of the program never enters the loop body. Moreover,
the regular specification O1 · (O1)⋆ · O⇑ accounts for observations attackers
make when the loop iterates many times, outputting during each iteration
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0 //
(

Oǫ,
[

i 7→ ({pp0}, 1); max 7→ ({pp0}, 1); secret 7→ ({pp0}, 2κ)
])

1 while (i < max){ //
(

Oǫ,
[

i 7→ ({pp0, pp6}, 1); . . .
])

2 while (i == secret){

3 skip; //
(

Oǫ,
[

i 7→ ({pp0, pp6}, 1); . . .
])

4 } //
(

Oǫ ⊕O⇑,
[

i 7→ ({pp0, pp6}, 1); . . .
])

5 output i; //
(

O1 ⊕O⇑,
[

i 7→ ({pp0, pp6}, 1); . . .
])

6 i := i + 1; //
(

O1 ⊕O⇑,
[

i 7→ ({pp0, pp6}, 1); . . .
])

7 } //
(

Oǫ ⊕O1 · (O1)⋆ ⊕ (O1)⋆ · O⇑,
[

i 7→ ({pp0, pp6}, 1); . . .
])

8 stop; //
(

(Oǫ ⊕O1 · (O1)⋆ ⊕ (O1)⋆) · O⇑,
[

i 7→ ({pp0, pp6}, 1); . . .
])

Listing 7.6: The program in Listing 5.3, annotated with the results of the

tree abstraction

only 1 undefined value, then terminates. Finally, the regular specification
(O1)⋆ · O⇑ accounts for observations attackers make when the loop iterates
many times, outputting during each iteration only 1 undefined value, then
silently diverges.

In the next section, we leverage the regular specification of attackers’
observations in order to over-approximate min-capacity for programs with
intermediate outputs, as well as derive sufficient conditions to prove that
programs satisfy the RS security property.

7.5 Over-approximating Min-capacity

The regular specification computed by the tree abstraction describes the
observations attackers can make. Therefore, it also enables us to upper-
bound min-capacity.

By relying on both Theorem 8 and Definition 25, the computed regular
specification C systematically translates into a generating function C(z),
whose coefficients Cn are equal to the cardinal number of attackers’ observa-
tions that have size n. Finally, by Theorem 4 that characterizes min-capacity
for deterministic programs, assuming a sufficiently large bound b on the
length of output sequences attackers observe, we can upper-bound min-
capacity by the logarithm of the cardinal number of attackers’ observations
whose size is less or equal to the bound b on attackers’ observations:
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ML = max
̺L0

∈ΣL0

log2

∣
∣
∣Leaves(T

̺L0

b )
∣
∣
∣

= log2

(

max
̺L0

∈ΣL0

b∑

n=0

∣
∣
∣{t ∈ Leaves(T

̺L0

b ) : |t| = n}
∣
∣
∣

)

≤ log2

(
b∑

n=0

max
̺L0

∈ΣL0

∣
∣
∣{t ∈ Leaves(T

̺L0

b ) : |t| = n}
∣
∣
∣

)

≤ (Assuming the specification of attackers’ observations is sound)

log2

(
b∑

n=0

Cn

)

(7.10)

Example programs. Let us consider for instance the regular specification
(O2⊕O2) ·O⇑, computed in Listing 7.3. This regular specification translates
into the following OGF:

C = (O2 ⊕O2) · O⇑ =⇒ C(z) = 4z2

Therefore, assuming the bound b is greater than 2, we can upper-bound
min-capacity by: ML ≤ log2(4) = 2 bits.

In general, recall that the OGF of a regular specification is a rational
function. Therefore, there exists two relatively prime polynomials N(z) and
D(z) such that:

C(z) =
N(z)

D(z)

Therefore, we are going to assume that the bound b on attackers’ observations
is greater than the degree n0 = max(0, deg(N) − deg(Q)). Otherwise, we
would have to truncate the computed regular specification before computing
its generating function. This assumption is without loss of generality since,
eventually, we want to quantify the leakage with respect to polynomial time
attackers: the bound b is assumed to be large enough, yet polynomial in the
size of the secret.

Table 7.1 summarizes the results of the tree abstraction, as well as
the resulting upper-bounds over min-capacity for the example programs in
Listings 7.3 to 7.5. In all these programs, no output instruction occurs inside
a loop. As a consequence, the regular specification of attackers’ observations
does not involve the sequence construction ⋆, and the attackers’ observations
each regular specification describes are finite. Therefore, the growth of
min-capacity does not depend on the bound b of attackers’ observations,
and these programs can be deemed secure wrt. RS as long as the computed
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upper-bound over min-capacity grows strictly slower than the size of the
secret.

Table 7.1: Computing upper-bounds over min-capacityML for the programs
in Listings 7.3 to 7.5

Listing Regular specification OGF Upper-bound

ML ≤ log2 (
b∑

n=0
Cn)

7.3 (O2 ⊕O2) · O⇑ 4z2 log2(4) = 2 bits

7.4 (O1 ⊕ ǫ) · O⇑ z + z2 log2(2) = 1 bit

7.5 (O1 ⊕O1) · O⇑ 2z2 log2(2) = 1 bit

Quantifying the leakage for polynomial time attackers. For pro-
grams where output instructions occur inside loops, the attackers’ obser-
vations that the computed regular specification describes may be infinite.
Therefore, in this case, we want to asymptotically estimate min-capacity in
order to prove security wrt. the quantitative security property RS.

Let us for instance consider the regular specification that is computed in
Listing 7.6 for the program in Listing 5.3:

(

Oǫ ⊕O1 · (O1)⋆ ⊕ (O1)⋆
)

· O⇑

This regular specification translates into the following generating function:

C(z) = (1 +
z

1− z
+

1

1− z
)z

= (By a partial fraction expansion)

− 2 +
2

1− z

=
∞∑

k=1

2zk

Therefore, assuming that the bound b is large enough, by Equation (7.10),
an upper-bound over min-capacity is given by:

ML ≤ log2

(
b∑

k=1

2

)

= log2(2b)
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As a consequence, assuming that the bound b is polynomial in the size κ of
the variable secret, we can deduce that min-capacity for polynomial time
attackers grows strictly slower than the size of the secret since log2(2b) = o(κ).
Thus, we can also deduce that the program in Listing 7.6 is secure wrt. the
quantitative property RS.

Note that the upper-bound log2(2b) over min-capacity that we compute
through the tree abstraction is in the same order of magnitude as the actual
min-capacity. Indeed, as we note in Chapter 5, the program in Listing 5.3 is
secure wrt. TINI, and its min-capacity is bounded by log2(b + 1).

Necessary conditions to prove security wrt. Relative Secrecy. Let
us assume a regular specification C of attackers’ observations that is computed
through the tree abstraction. Then, this regular specification translates into
a rational function:

C(z) =
N(z)

D(z)
= Q(z) +

∑

α,rα

cα,rα

(z − α)rα

By Theorem 9, we know that the poles of a generating function define
the asymptotic behaviour of its counting sequence. However, instead of the
asymptotic behaviour of the counting sequence (Cn)n≥0, we are actually
interested in finding the asymptotic behaviour of the sum

∑b
n=0 Cn, in order

to upper-bound min-capacity by Equation (7.10).
Interestingly, the sum

∑b
k=0 Ck is actually the counting sequence of the

intermediate generating function A(z) defined as follows:

A(z) , C(z)×
1

1− z

Indeed, with such a definition of the generating function A(z), the counting
sequence Ab is equal to the sum

∑b
k=0 Ck:

A(z) = C(z)×
1

1− z

=

(
∞∑

k=0

Ckzk

)

×

(
∞∑

n=0

zn

)

=
∞∑

n=0

(
n∑

k=0

Ck

)

zn

Therefore, studying the singularities of the intermediate generating function
A(z) enables us to estimate the counting sequence Ab, thus the growth of
min-capacity.
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Since the poles of the generating function A(z) are the poles of C(z) and
the pole at z = 1, we can derive a first condition that is necessary to prove
that min-capacity grows strictly slower than the size of the secret using the
computed regular specification C.

We introduce this necessary condition on the computed regular specifica-
tion of attackers’ observations in Corollary 5. Essentially, if the poles of C(z)
with the smallest modulus – the ones that contribute the most to the growth
of the counting sequence Ab – have a modulus µ in the open interval ]0, 1[ of
real numbers, then the upper-bound over min-capacity cannot enable us to
prove that the program is secure wrt. RS. Indeed, in such a case, assuming
that αj ranges through the poles of A(z) and assuming a sufficiently large
bound b, there exist polynomials {Fj}j by Theorem 9 such that the counting
sequence Ab is given by:

Ab =
m∑

j=1

Fj(b)α
−b
j

Therefore, if the poles with the smallest modulus have a modulus in the
open interval ]0, 1[, then the upper-bound over min-capacity log2(Ab) does
not grow strictly slower than the size of the secret when the bound b on
attackers’ observations is polynomial in the size of the secret. In such a
case, the program either does not comply with RS, or the tree abstraction is
not precise enough to enable the computation of a tight bound that proves
compliance with RS.

Corollary 5 (Necessary condition to prove RS).
Let C be a regular specification describing attackers’ observations for a
program P . If the computed bound over min-capacity proves that the program
P complies with RS, then neither of the generating function C(z)’s poles
has a modulus in the open interval ]0, 1[ of real numbers.

Sufficient conditions to prove security wrt. Relative Secrecy. The
necessary condition stated in Corollary 5 is not a sufficient condition to prove
security wrt. RS. Indeed, consider for instance the program in Listing 7.7,
that is a variant of the program in Listing 7.6.

Listing 7.7 is annotated with the results of the tree abstraction. For
this example program, the tree abstraction computes the following regular
specification:

C = (Oǫ ⊕O2κ

⊕O1 · (O1)⋆ ⊕ (O1)⋆) · O⇑
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0 //
(

Oǫ,
[

i 7→ ({pp0}, 1); max 7→ ({pp0}, 1); secret 7→ ({pp0}, 2κ)
])

1 if (max > secret) {

2 output secret; //
(

O2κ

, . . .
)

3 }

4 else {

5 while (i < max){

6 while (i == secret){

7 skip;

8 }

9 output i;

10 i := i + 1;

11 } //
(

Oǫ ⊕O1 · (O1)⋆ ⊕ (O1)⋆ · O⇑, . . .
)

12 } //
(

Oǫ ⊕ (O2κ

⊕O1 · (O1)⋆)⊕ (O1)⋆ · O⇑, . . .
)

13 stop; //
(

(Oǫ ⊕O2κ

⊕O1 · (O1)⋆ ⊕ (O1)⋆) · O⇑, . . .
)

Listing 7.7: An example program whose OGF’s asymptotic behaviour does

not account for the leakage of all the secret

Therefore, the corresponding OGF C(z) is given by:

C(z) =
(

1 + 2κz +
z

1− z
+

1

1− z

)

z

= −2 + 2κz2 +
2

1− z

Moreover, the intermediate generating function A(z) , C(z)/(1−z) is given
by:

A(z) =
(

−2 + 2κz2 +
2

1− z

)

×
1

1− z

= (By a partial fraction expansion)

− 2κ − 2κz +
2

(z − 1)2
+

2− 2κ

z − 1

Since the intermediate generating function A(z) has only one pole at z = 1
with multiplicity r = 2, then by Theorem 9 and Equation (7.9), the counting
sequence (An)n≥0’s asymptotic behaviour is given by:

Ab ∼ 2b (7.11)
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This last asymptotic expansion might lead us to deduce that the growth of
min-capacity is at most logarithmic in the size of the secret, assuming that
the bound b on attackers’ observations is polynomial in the size of the secret.
Yet, let us find an explicit formula for the counting sequence An in order to
illustrate why this deduction is false. Indeed, the counting sequence An is
given by:

An = [zn]A(z)

= [zn](−2κ − 2κz) + [zn]
2

(1− z)2
+ [zn]

2− 2κ

z − 1

= (Assuming n ≥ 2)

[zn]
2

(1− z)2
+ [zn]

2− 2κ

z − 1

= (By Equation (7.7))

2

(

n + 1

1

)

− (2− 2κ)

(

n

0

)

= 2n + 2κ

Therefore, an explicit formula for an upper-bound over min-capacity
ML is given by:

Ab = 2b + 2κ (7.12)

Note that the main difference between both Equations (7.11) and (7.12)
is the term 2κ. In fact, the asymptotic expansion in Equation (7.11) fails to
capture the implicit relation between the bound b on attackers’ observations
and the size of the secret κ. Indeed, while Equation (7.11) simplifies the
asymptotic expansion by considering the term 2κ as a constant, the bound
b actually depends on κ, since we assume that b is polynomial in the size of
the secret κ. This is exactly why we cannot rely on the necessary condition
stated in Corollary 5, in order to prove that a program is secure wrt. RS.
Instead, we must find an explicit formula for the counting sequence An, as
illustrated by Equation (7.12), then try to prove that min-capacity grows
strictly slower than the size of the secret. For this example program in
Listing 7.7, the explicit bound that we find for min-capacity is given by:

ML ≤ log2(Ab)

= log2(2b + 2κ)

Thus, we can deduce that the computed bound over min-capacity does not
prove that min-capacity grows strictly slower than the size of the secret κ; a
fitting result since the program in Listing 7.7 does indeed leak all the secret.
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Therefore, while the necessary condition in Corollary 5 might help us
to quickly disprove the compliance of the computed regular specification
for attackers’ observations wrt. RS, we need to rely on an explicit formula
of the upper-bound over min-capacity in order to prove that a program
complies with RS. Interestingly, along the way of proving Theorem 9, we also
exhibited an explicit formula for the counting sequence Cn in Equation (7.8).

Consequently, assuming that the regular specification C of attackers’
observations translates into a rational OGF decomposed as follows:

C(z) = Q(z) +
∑

α

rα∑

r=1

cα,rα

(z − α)rα

where α ranges over the poles of C(z), and rα denotes the multiplicity of α,
then an upper-bound over min-capacity is given by:

Ab =
b∑

n=0

Cn

= (By using the rational fraction decomposition in Section 7.5)
b∑

n=0

[zn]Q(z) +
b∑

n=0

[zn]

(
∑

α

rα∑

r=1

cα,rα

(z − α)rα

)

=
b∑

n=0

[zn]Q(z) +
b∑

n=0

∑

α

rα∑

r=1

[zn]
cα,rα

(z − α)rα

= (By Equation (7.8))
b∑

n=0

[zn]Q(z) +
b∑

n=0

∑

α

rα∑

r=1

cα,r

(−1)r

αr

(

n + r − 1

r − 1

)

α−n

=
b∑

n=0

[zn]Q(z) +
∑

α

rα∑

r=1

(−1)rcα,r

b∑

n=0

(

n + r − 1

r − 1

)

α−n−r

= (By assuming b ≥ deg(Q))

Q(1) +
∑

α

rα∑

r=1

(−1)rcα,r

b∑

n=0

(

n + r − 1

r − 1

)

α−n−r (7.13)

Therefore, the explicit formula in Equation (7.13) enables us to derive
sufficient conditions to prove that min-capacity grows strictly slower than
the size of the secret, by proving that the computed bound log2(Ab) grows
strictly slower than the size of the secret. Indeed, the counting sequence Ab

is guaranteed to be polynomial in the size of the secret, if no pole α has
a modulus in the open interval ]0, 1[, and Q(1) as well as the coefficients
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cα,r are all negligible in the size of the secret. In this case, the upper-bound
log2(Ab) over min-capacity is guaranteed to be logarithmic in the size of
the secret, and therefore grows strictly slower than the size of the secret.
Corollary 6 introduces these sufficient conditions in order to prove that a
program satisfies RS, by relying on the computed regular specification of
attackers’ observations.

Corollary 6 (Sufficient conditions to prove RS).
Let C be a regular specification describing attackers’ observations for a
program P , and C(z) be its rational generating function decomposed as
follows:

C(z) = Q(z) +
∑

α

rα∑

r=1

cα,rα

(z − α)rα

The program P satisfies RS if:

1. no pole α has a modulus in the open interval ]0, 1[ of real numbers,
and

2. Q(1) as well as the coefficients cα,r are all negligible in the size of the
secret.

7.6 Summary

In this chapter, we build on the results of the cardinal abstraction, introduced
in Chapter 6, in order to quantify the leakage for programs with intermediate
outputs. We propose the tree abstraction, a static analysis approach aimed
at computing a regular specification of attackers’ observations.

Once the tree abstraction computes a regular specification of attackers’
observations, we rely on the framework of analytic combinatorics [FS09] in
order to translate it systematically into a generating function. This generat-
ing function embodies counting information about the cardinal number of
observations attackers may make. Thus, it enables us to derive an upper-
bound over min-capacity when attackers are allowed to observe intermediate
steps of computation, by Theorem 4.

Finally, we derive a necessary condition on the computed generating
function in order for min-capacity to grow strictly slower than the size of the
secret. This necessary condition may quickly disprove the compliance of the
regular specification of attackers’ observations with the quantitative security
property RS, introduced in Chapter 5. Additionally, we also derive sufficient
conditions on the computed generating function in order to guarantee that
min-capacity grows strictly slower than the size of the secret, assuming
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polynomial time attackers. These sufficient conditions enable us to prove
that the analysed programs comply with RS, by relying on a rational
expansion of the generating function and a study of its singularities.

Future work involves improving the precision of both the cardinal ab-
straction and the tree abstraction through the combination of multiple static
analysis techniques. Indeed, as the tree abstraction is parametrized by
the cardinal abstraction, improving the latter also enhances the precision
of the first. Additionally, the tree abstraction can also be improved by
taking advantage of additional semantics information, provided through
loop bounds worst-case analysis as well as deductive verification techniques
for instance.



Chapter 8

Conclusions and Perspectives

This chapter summarizes the contributions of this thesis and discusses future
work.

8.1 Summary

This thesis develops program analysis techniques for qualitative and quanti-
tative information flow.

The first part on qualitative information flow formalizes the PWhile
monitor, a hybrid information flow monitor. The PWhile monitor extends
existing flow-sensitive monitors [LGBJS06, RS10] in order to support a
language with pointers and aliasing. It soundly enforces a termination-
insensitive non-interference (TINI) property, preventing the leakage of sensi-
tive information.

We also inline the PWhile monitor through a program transforma-
tion. This program transformation soundly preserves the initial behaviour
of programs and reproduces the exact semantics of the PWhile monitor.
The transformed program allows the enforcement of TINI by relying on
either static or dynamic analysis. Indeed, running the transformed program
prevents illegal information flows since the program self-monitors its infor-
mation flows. Additionally, off-the-shelf abstract interpretation tools can
also enable the verification of TINI, without implementing new abstract
domains. We implemented the inlining approach as a plug-in of the Frama-
C framework [CKK+12, KKP+15]. This implementation supports a large
subset of the C language including arrays, pointer arithmetic, function calls,
as well as complex structures. Support for type casts is missing, however.

Non-interference is a baseline security policy that is often not the desired
security policy in practice. Some programs, that inherently leak a small
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amount of sensitive information, cannot comply with non-interference. There-
fore, we propose relative secrecy (RS) as a quantitative security property. RS
is more permissive than TINI, while still providing the same guarantees wrt.
polynomial time attackers guessing the secret. RS builds on min-capacity, a
quantitative information metric proposed by Smith [Smi09, Smi11]. RS is
also inspired by the work for Volpano and Smith [VS00], as well as Askarov
et al. [AHSS08].

The cardinal abstraction is the first step toward the verification of RS.
This abstract domain computes the cardinal number of values variables
may take. The cardinal abstract domain enables quantifying information
flow wrt. min-capacity for batch-job programs. Since it does not rely on
traditional safety abstract domains approximating the set of reachable states,
it efficiently computes an over-approximation of min-capacity for programs
that accept both Low and High inputs.

The tree abstraction builds on the cardinal abstraction in order to
quantify information flow for programs that may also output intermediate
steps of computation. It draws on analytic combinatorics [FS09] in order
to construct a regular specification describing attackers’ observations. This
regular specification directly translates into a generating function. We also
derive sufficient conditions on the generating function in order to prove that
a program satisfies the quantitative security property RS.

8.2 Future Work

The inlining approach of the PWhile monitor we propose relies on the type
of variables in order to assign them shadow variables. While this approach
scales to complex constructions of the C language, type casts are challenging.
Future work will address this problem by designing static analysis techniques
in order to guide the inlining approach in presence of type casts, and support
as much as possible such constructs.

While our inlining approach targets an information flow monitor, we
also believe it sets the ground for a more generic approach of inlining
security monitors. Such a framework, provided with a user defined micro-
policy [dAGH+15], may automatically inline the corresponding monitor in
order to support a wider set of enforceable security policies [Sch00, LBW02].

Beyond proving the soundness of the cardinal abstract domain, one
advantage of formalizing this static analysis as an abstract domain resides
in the potential to improve its precision, by relying on a large body of re-
search dedicated to abstract interpretation. Future work involves enhancing
both the cardinal abstract domain and the tree abstraction by relying on
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traditional abstract domains. Additionally, some abstract domains initially
designed to reason on safety properties, may also need tweaking in order to
fit the larger class of hyperproperties [CS08, CS10].
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Mauborgne, Antoine Miné, David Monniaux, and Xavier Ri-
val. Combination of Abstractions in the ASTRÉE Static Ana-
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Appendix A

Monitor Semantics

We prove that our monitor is sound with respect to TINI. The proofs in
Appendices A and B are structured using Lamport’s style [Lam95].

We first take advantage of the symmetry of both runs by introducing a
partial order relation 3 on security memories Γ. Definition 26 is equivalent to
Definition 2 when both input security memories and both execution contexts
are equal in both runs.

Definition 3 (Less restrictive up to label s (⊑s)).
For all s ∈ S, for all Γ1, Γ2,

Γ2 is less restrictive than Γ1 up to security label s (Γ2 ⊑s Γ1) iff :

for all l ∈ Loc, Γ1(l) ⊑ s =⇒ Γ2(l) ⊑ Γ1(l).

Definition 26 (Termination-insensitive non-interference).
For all c, E, Γ1, Γ2, M1, M ′

1, M2, M ′
2, for all s, pc

1
, pc

2
∈ S, such that

E ⊢ c, M1, Γ1, pc
1
⇒M ′

1, Γ′
1 and E ⊢ c, M2, Γ2, pc

2
⇒M ′

2, Γ′
2, then

pc
2
⊑ pc

1
and Γ2 ⊑s Γ1 and M1 ∼

s
Γ1

M2 implies Γ′
2 ⊑s Γ′

1 and M ′
1 ∼

s
Γ′

1

M ′
2

A.1 Semantics of Expressions

We introduce Lemma 1, which proves that for two s-equivalent memories,
if the l-value evaluation of an expression yields a label below s, then it is
evaluated to the same location in the second run, and to a label that is less
restrictive than the label of the first run.

Lemma 1 (L-value evaluation in s-equivalent memories).
For all environments E, for all memories M1, M2, for all security memories

171
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Γ1, Γ2, for all security levels s ∈ S, such that Γ2 ⊑s Γ1 and M1 ∼
s
Γ1

M2,
for all a ∈ Exp such that E ⊢ a, M1, Γ1 ⇐ l1, s1 and E ⊢ a, M2, Γ2 ⇐ l2, s2

then

s1 ⊑ s =⇒ l1 = l2 and s2 ⊑ s1.

Proof:
Let: E, M1, M2, Γ1, Γ2 and s ∈ S.
Let: a ∈ Exp such that E ⊢ a, M1, Γ1 ⇐ l1, s1 and E ⊢ a, M2, Γ2 ⇐ l2, s2.
Assume: 1. Γ2 ⊑s Γ1

2. M1 ∼
s
Γ1

M2

3. s1 ⊑ s
Prove: 1. l1 = l2

2. s2 ⊑ s1

Proof sketch: By induction on l-value evaluations of expressions.
〈1〉1. Case: LVid

〈2〉1. s2 = s1 = public
〈3〉1. Q.E.D.
Proof: By rule LVid, labels associated to l-values of variables are
defined as the bottom of S
〈2〉2. E(a) = l1 = l2
〈3〉1. Q.E.D.
Proof: By rule LVid. Environment E is the same for both runs.
〈2〉3. Q.E.D.
Proof: By 〈2〉1 and 〈2〉2.
〈1〉2. Case: LVMEM

Let: la, sl, l, sr and l′
a, s′

l, l′, s′
r such that

LVMEM

RV

(1)E ⊢ a, M1, Γ1 ⇐ la, sl M1(la) = ptr(l1)
Γ1(la) = sr s1 = sl ⊔ sr

E ⊢ a, M1, Γ1 ⇒ ptr(l1), s1

E ⊢ ∗a, M1, Γ1 ⇐ l1, s1

LVMEM

RV

E ⊢ a, M2, Γ2 ⇐ l′
a, s′

l M2(l
′
a) = ptr(l2)

Γ2(l
′
a) = s′

r s2 = s′
l ⊔ s′

r

E ⊢ a, M2, Γ2 ⇒ ptr(l2), s2

E ⊢ ∗a, M2, Γ2 ⇐ l2, s2

Suffices Assume: s1 ⊑ s
Prove: 1. s2 ⊑ s1

2. l2 = l1
〈2〉1. sl ⊑ s and sr ⊑ s
〈3〉1. Q.E.D.
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Proof: By assumption of 〈1〉2 s1 = sl ⊔ sr ⊑ s
〈2〉2. l′

a = la and s′
l ⊑ sl

〈3〉1. Q.E.D.
Proof: By induction on derivation depth of ∗a, using 〈2〉1 and assump-
tions 1 and 2
〈2〉3. s′

r ⊑ sr

〈3〉1. Q.E.D.
Proof: By 〈2〉1 and assumption 1: Γ2(la) ⊑ Γ1(la) ⊑ s
〈2〉4. Q.E.D.
Proof: By 〈2〉2 and 〈2〉3, s2 = s′

l ⊔ s′
r ⊑ sl ⊔ sr = s1, and l1 = l2 by

assumption 2 and 〈2〉1.
〈1〉3. Q.E.D.
Proof: By induction on the evaluation of l-values and 〈1〉1 and 〈1〉2.

Corollary 1 generalizes the result of Lemma 1 to include all expressions.

Corollary 1 (R-value evaluation in s-equivalent memories).
For all environments E, for all memories M1, M2, for all security memories
Γ1, Γ2, for all security levels s ∈ S, such that Γ2 ⊑s Γ1 and M1 ∼

s
Γ1

M2,
for all a ∈ Exp such that E ⊢ a, M1, Γ1 ⇒ v1, s1 and E ⊢ a, M2, Γ2 ⇒ v2, s2

then
s1 ⊑ s =⇒ v1 = v2 and s2 ⊑ s1.

Proof:
By induction on r-value evaluations, using lemma 1.

A.2 Semantics of Instructions

Theorem 1 proves the soundness of our semantics with respect to TINI.

Theorem 1 (Soundness).
The PWhile monitor semantics is sound with respect to TINI as introduced
in Definition 2.

Proof:
By induction on the evaluation of instructions.

Let: E, Γ1, Γ2, M1, M ′
1, M2, M ′

2 and pc
1
, pc

2
∈ S such that:

E ⊢ c, M1, Γ1, pc
1
⇒M ′

1, Γ′
1 and E ⊢ c, M2, Γ2, pc

2
⇒M ′

2, Γ′
2.

Let: Let s ∈ S.

Assume: 1. pc
2
⊑ pc

1
2. Γ2 ⊑s Γ1

3. M1 ∼
s
Γ1

M2
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Prove: 1. Γ′
2 ⊑s Γ′

1

2. M ′
1 ∼

s
Γ′

1

M ′
2

〈1〉1. Case: Skip
Proof: By assumptions 2 and 3.
〈1〉2. Case: Assign

Let: l1, s1, v2, s2, l′
1, s′

1, v′
2, s′

2 such that the evaluation of instruction a1 :=
a2 in both M1, Γ1 and M2, Γ2 yield:

(Assign)

E ⊢ a1, M1, Γ1 ⇐ l1, s1 E ⊢ a2, M1, Γ1 ⇒ v2, s2

sl1 = s1 ⊔ s2 ⊔ pc
1

M ′
1 = M1[l1 7→ v2]

Γ′′
1 = Γ1[l1 7→ sl1 ] Γ′

1 = update(a1 := a2, s1, Γ′′
1)

E ⊢ a1 := a2, M1, Γ1, pc
1
⇒M ′

1, Γ′
1

(Assign)

E ⊢ a1, M2, Γ2 ⇐ l′
1, s′

1 E ⊢ a2, M2, Γ2 ⇒ v′
2, s′

2

s′
l1

= s′
1 ⊔ s′

2 ⊔ pc
2

M ′
2 = M2[l

′
1 7→ v′

2]
Γ′′

2 = Γ2[l
′
1 7→ s′

l1
] Γ′

2 = update(a1 := a2, s′
1, Γ′′

2)

E ⊢ a1 := a2, M2, Γ2, pc
2
⇒M ′

2, Γ′
2

Suffices Assume: l ∈ Γ′−1
1 (s)

Prove: 1. l ∈ Γ′−1
2 (s)

2. M ′
1(l) = M ′

2(l)
〈2〉1. Case: l ∈ Sp(a1 := a2)

Proof sketch: In this case, the same location l1 = l′
1 is modified by

the assignment a1 := a2 for both runs. It suffices to consider two cases:

• l = l1: the initial values mapped to l are modified in both runs.
Yet, the same values are mapped to l after the execution of the
assignment since its output security label is below s

• l 6= l1: only the security label of l is modified by the update operator.
Yet, it is still below s for both runs.

〈3〉1. l1 = l′
1 and s′

1 ⊑ s
〈4〉1. s1 ⊑ s
〈5〉1. Γ′

1(l) = Γ′′
1(l) ⊔ s1

〈5〉2. Q.E.D.
Proof: By assumption of 〈1〉2 (Γ′

1(l) ⊑ s)
〈4〉2. Q.E.D.
Proof: by 〈4〉1, and Lemma 1 on the l-value evaluation of a1 in both
M1, Γ1 and M2, Γ2, and assumptions 2 and 3.
〈3〉2. Case: l = l1
〈4〉1. Γ′

1(l1) = s1 ⊔ s2 ⊔ pc
1
⊑ s

〈4〉2. v2 = v′
2 and s′

2 ⊑ s
〈5〉1. s2 ⊑ s
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〈6〉1. Q.E.D.
Proof: By 〈4〉1
〈5〉2. Q.E.D.
Proof: By 〈5〉1, and Corollary 1 on the r-value evaluation of a2

in both M1, Γ1 and M2, Γ2, and assumptions 2 and 3.
〈4〉3. Γ′

2(l1) = s′
1 ⊔ s′

2 ⊔ pc
2
⊑ s

〈5〉1. pc
2
⊑ s

〈6〉1. Q.E.D.
Proof: By 〈4〉1 and assumption 1
〈5〉2. Q.E.D.
Proof: By 〈3〉1 and 〈4〉2 and 〈4〉3
〈4〉4. Q.E.D.
Proof: By 〈4〉3 and 〈4〉2
〈3〉3. Case: l 6= l1
〈4〉1. Γ1(l) ⊑ s
〈5〉1. Γ′

1(l) = Γ′′
1(l) ⊔ s1

〈6〉1. Q.E.D.
Proof: By the semantics rule of the execution on M1, Γ1 and
〈2〉1
〈5〉2. Γ′′

1(l) = Γ1(l)
〈6〉1. Q.E.D.
Proof: By 〈3〉3 and the semantic rule on M1, Γ1

〈5〉3. Q.E.D.
Proof: By assumption of 〈1〉2 and 〈5〉1 and 〈5〉2
〈4〉2. M ′

1(l) = M ′
2(l)

〈5〉1. M ′
1(l) = M1(l)

〈6〉1. Q.E.D.
Proof: By 〈3〉3
〈5〉2. M ′

2(l) = M2(l)
〈6〉1. Q.E.D.
Proof: By 〈3〉3 and 〈3〉1
〈5〉3. M1(l) = M2(l)
〈6〉1. Q.E.D.
Proof: By 〈4〉1 and assumptions 3 and 2
〈5〉4. Q.E.D.
Proof: By 〈5〉1 and 〈5〉2 and 〈5〉3
〈4〉3. Γ′

2(l) ⊑ s
〈5〉1. Γ2(l) ⊑ s
〈6〉1. Q.E.D.
Proof: By 〈4〉1 and assumption 2
〈5〉2. Γ2(l) = Γ′′

2(l)
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〈6〉1. Q.E.D.
Proof: By 〈3〉3 and 〈3〉1
〈5〉3. Γ′

2(l) = Γ′′
2(l) ⊔ s′

1

〈6〉1. Q.E.D.
Proof: By the update operator of the semantic rule on M2, Γ2

and 〈2〉1
〈5〉4. Q.E.D.
Proof: By 〈5〉1, 〈5〉2, 〈5〉3 and 〈3〉1
〈4〉4. Q.E.D.
Proof: By 〈4〉3 and 〈4〉2

〈2〉2. Case: l 6∈ Sp(a1 := a2)
Proof sketch: In this case, neither the value nor the security label
associated to the location l changes.
〈3〉1. Γ1(l) = Γ′

1(l) ⊑ s
〈4〉1. Q.E.D.
Proof: By 〈2〉2 and assumption of 〈1〉2
〈3〉2. M ′

1(l) = M ′
2(l)

〈4〉1. M ′
1(l) = M1(l)

〈5〉1. Q.E.D.
Proof: By 〈2〉2 since l1 6= l
〈4〉2. M ′

2(l) = M2(l)
〈5〉1. Q.E.D.
Proof: By 〈2〉2 since l′

1 6= l
〈4〉3. M1(l) = M2(l)
〈5〉1. Q.E.D.
Proof: By 〈3〉1 and assumptions 2 and 3
〈4〉4. Q.E.D.
Proof: By 〈4〉3, 〈4〉2 and 〈4〉1
〈3〉3. Γ′

2(l) ⊑ s
〈4〉1. Γ′

2(l) = Γ2(l)
〈5〉1. Q.E.D.
Proof: By 〈2〉2
〈4〉2. Γ2(l) ⊑ s
〈5〉1. Q.E.D.
Proof: By 〈3〉1 and assumption 2
〈4〉3. Q.E.D.
Proof: By 〈4〉2 and 〈4〉1
〈3〉4. Q.E.D.
Proof: By 〈3〉3 and 〈3〉2
〈2〉3. Q.E.D.
Proof:By 〈2〉1 and 〈2〉2



A.2. SEMANTICS OF INSTRUCTIONS 177

〈1〉3. Case: Iftt

Let: v1, s1, v2, s2 such that the evaluation of instruction if (a) c1 else c2

in M1, Γ1 yield:

(Iftt)

E ⊢ a, M1, Γ1 ⇒ v1, s1 istrue(v1)
pc′

1
= s1 ⊔ pc

1
E ⊢ c1, M1, Γ1, pc′

1
⇒M ′

1, Γ′′
1

Γ′
1 = update(c2, pc′

1
, Γ′′

1)

E ⊢ if (a) c1 else c2, M1, Γ1, pc
1
⇒M ′

1, Γ′
1

RV E ⊢ a, M2, Γ2 ⇒ v2, s2

Let: l ∈ Loc
Suffices Assume: Γ′

1(l) ⊑ s
Prove: 1. Γ′

2(l) ⊑ Γ′
1(l)

2. M ′
1(l) = M ′

2(l)
〈2〉1. Case: s1 ⊑ s

Proof sketch: In this case, both executions in M1, Γ1 and M2, Γ2

execute instruction c1. Therefore, an induction on c1 is sufficient.
〈3〉1. v2 = v1 and s2 ⊑ s1

〈3〉2. Q.E.D.
Proof: By assumption of 〈2〉1 and Corollary 1.
Execution is M2, Γ2 yield:

Iftt

E ⊢ a, M2, Γ2 ⇒ v2, s2 istrue(v2)
pc′

2 = s2 ⊔ pc
2

E ⊢ c1, M2, Γ2pc′
2
⇒M ′

2, Γ′′
2

Γ′
1 = update(c2, pc′

2
, Γ′′

2)

E ⊢ if (a) c1 else c2, M2, Γ2, pc
2
⇒M ′

2, Γ′
2

〈3〉3. pc′
2 ⊑ pc′

1
〈4〉1. Q.E.D.
Proof: By 〈3〉1 and assumption 1 and rules Iftt of both executions.
〈3〉4. M ′

1 ∼
s
Γ1

M ′
2 and Γ′′

2 ⊑s Γ′′
1

〈4〉1. Q.E.D.
Proof: By 〈3〉3, assumptions 3 and 2 and induction hypothesis on
the evaluation of instruction c1.
〈3〉5. Γ′

2 ⊑s Γ′
1

Let: l ∈ loc
Suffices Assume: Γ′

1(l) ⊑ s
Prove: Γ′

2(l) ⊑ Γ′
1(l)

〈4〉1. Case: l 6∈ Sp(c2)
〈5〉1. Q.E.D.
Proof: By 〈3〉4, assumption of 〈4〉1 and definition of operator
update, Γ′

1(l) = Γ′′
2(l) ⊑ Γ′′

1(l) = Γ′
1(l)
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〈4〉2. Case: l ∈ Sp(c2)
〈5〉1. Q.E.D.
Proof: By Γ′

2(l) = pc′
2
⊑ Γ′′

2(l) and Γ′
1(l) = pc′

1
⊑ Γ′′

1(l) and 〈3〉4
and 〈3〉3.
〈4〉3. Q.E.D.
Proof: By cases 〈4〉1 and 〈4〉2
〈3〉6. Q.E.D.
Proof: By 〈3〉5 and 〈3〉4.
〈2〉2. Case: s1 6⊑ s

Proof sketch: In this case, if the label of location l is below s,
that means that location l could not have been assigned neither by
instructions c1, nor by instruction c2. Otherwise, pc would have been
propagated to the label of l which would be greater than s1.
〈3〉1. l 6∈ Sp(c2)
〈4〉1. Q.E.D.
Proof: By assumption of 〈1〉3 (Γ′

1(l) ⊑ s). In fact, l ∈ Sp(c2) implies
that s1 ⊑ Γ′

1(l) which means Γ′
1(l) 6⊑ s.

〈3〉2. l 6∈ SP (c1)
〈4〉1. Q.E.D.
Proof: If there exists an assignment in c1 that may write to location
l, then the update operator would propagate pc′

1
6⊑ s to Γ′

1(l).
〈3〉3. M1(l) = M ′

1(l) and Γ1(l) = Γ′
1(l)

〈4〉1. Q.E.D.
Proof: By 〈3〉1 and 〈3〉2 since l is neither written by c1 nor operator
update.
〈3〉4. M2(l) = M ′

2(l) and Γ2(l) = Γ′
2(l)

〈4〉1. Q.E.D.
Proof: By 〈3〉1 and 〈3〉2 since l is neither written by c1, nor c2.
〈3〉5. Q.E.D.
Proof: By 〈3〉3 and 〈3〉4 and assumptions 2 and 3.
〈2〉3. Q.E.D.
Proof: By 〈2〉1 and 〈2〉2.
〈1〉4. Case: Ifff

Proof: by symmetry of 〈1〉3.
〈1〉5. Case: Wtt and Wff

〈2〉1. Q.E.D.
Proof: While rule is semantically equivalent to if (a) c; while (a) c; else skip
〈1〉6. Case: Composition
〈2〉1. Q.E.D.
Proof: By induction on c1, then on c2.
〈1〉7. Q.E.D.
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Proof: By 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉4, 〈1〉5, 〈1〉6 and induction on instruction
evaluation ⇒.





Appendix B

Inlining Approach

B.1 Semantics Preservation

Theorem 2 proves that our program transformation preserves the behavior
of the initial program.

Theorem 2 (Initial semantics preservation).
For all instructions c, for all environments E, for all memories M , for all
security memories Γ, for all security contexts pc and variables pc such that:

E|V ar(P ) ⊢ c, M |Loc(P ), Γ|Loc(P ), pc⇒M1, Γ1 and

E ⊢ T [c, pc], M, Γ, pc⇒M2, Γ2

Then, M2|Loc(P ) = M1 and Γ2|Loc(P ) = Γ1.

Proof sketch: By induction on instructions evaluation ⇒, knowing that
the instructions added by transformation T handle only shadow variables.
Let: E, M, Γ, pc, M1, Γ1, M2, Γ2.
Assume: 1. E ⊢ c, M |Loc(P ), Γ|Loc(P ), pc⇒M ′

1, Γ′
1

2. E ⊢ T [c, pc], M, Γ, pc⇒M ′
2, Γ′

2

Prove: 1. M ′
2|Loc(P ) = M ′

1

2. Γ′
2|Loc(P ) = Γ′

1

〈1〉1. Locations pointed by shadow variables are disjoint from initial locations
Loc(P )

Proof:
Let:
LocM(T [P ]) , {l : ∀x ∈ V ar(P ) ∧ ∀k ∈ [0, D(x)] ∧ ∀r ∈ [0, D(k)] , E ⊢
∗rΛ(x, k), M ⇐ l)}. Then LocM(T [P ]) ∩ Loc(P ) = ∅ since for any

181
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x, y ∈ V ar(P ), ∗ny has a type ptr(∗)(κ) whereas ∗rΛ(x, k) has a type
ptr(∗)(τs). Hence ∗ny and ∗rΛ(x, k) cannot point to the same location l.
That stems for the fact that the transformed program is typable if the
initial program is typable.
〈1〉2. Case: Skip
〈2〉1. Q.E.D.
Proof: Holds since output memories are equal to input memories.
〈1〉3. Case: Assign

Evaluation of instruction a1 := a2 in M |Loc(P ), Γ|Loc(P ) yield :

(Assign)

E ⊢ a1, M |Loc(P ), Γ|Loc(P ) ⇐ l1, s1

E ⊢ a2, M |Loc(P ), Γ|Loc(P ) ⇒ v2, s2

s = s1 ⊔ s2 ⊔ pc s′ = s1 ⊔ pc
M ′

1 = M |Loc(P )[l1 7→ v2] Γ′′
1 = Γ|Loc(P )[l1 7→ s]

Γ′
1 = update(a1 := a2, s′, Γ′′

1)

E ⊢ a1 := a2, M |Loc(P ), Γ|Loc(P ), pc⇒M ′
1, Γ′

1

Transformation T maps to a1 = a2 instructions :

T [a1 = a2, pc] 7→







Λ(a1, 0) = LL(a1) ⊔ LR(a2) ⊔ pc;

Λ(a1, k) = Λ(a2, k);∀k ∈ [1, D(a1)]

Λ(E−1(l), 0) = Λ(E−1(l), 0) ⊔ LL(a1) ⊔ pc;∀l ∈ SP (a1 = a2)

a1 = a2;

Let: cT be the instructions added by the transformation T , and MT , ΓT

such that: E ⊢ cT , M, Γ, pc⇒MT , ΓT and E ⊢ a1 = a2, MT , ΓT , pc⇒
M ′

2, Γ′
2.

〈2〉1. MT |Loc(P ) = M |Loc(P ) and ΓT |Loc(P ) = MT |Loc(P )

〈3〉1. Q.E.D.
Proof: By 〈1〉1, cT does not modify neither values nor security labels
mapped by M, Γ for locations l ∈ Loc(P ). Hence, output memories
MT , ΓT are equal to initial memories M, Γ when both pairs are restricted
to the set of initial locations Loc(P ).
〈2〉2. Q.E.D.
Proof: By 〈2〉1, and since instruction a1 := a2 handles only locations in
Loc(P ), output memories are equal when restricted to Loc(P ).
〈1〉4. Case: Iftt

Supposing that the conditional guard is evaluated to true, evaluation of
instruction if (a) c1 else c2 in M |Loc(P ), Γ|Loc(P ) yield:
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(Iftt)

E ⊢ a, M |Loc(P ), Γ|Loc(P ) ⇒ v, s istrue(v)
pc′ = s ⊔ pc E ⊢ c1, M |Loc(P ), Γ|Loc(P ), pc′ ⇒M1, Γ1

Γ′
1 = update(c2, pc′, Γ1)

E ⊢ if (a) c1 else c2, M |Loc(P ), Γ|Loc(P ), pc⇒M ′
1, Γ′

1

Transformation T maps the initial conditional to the following instructions
:

T [if (a) c1 else c2, pc] 7→







pc′ := LR(a) ⊔ pc;

if (a) {

T [c1, pc′]

Λ(E−1(l), 0) := Λ(E−1(l), 0) ⊔ pc′;∀l ∈ SP (c2)

} else {

T [c2, pc′];

Λ(E−1(l), 0) := Λ(E−1(l), 0) ⊔ pc′;∀l ∈ SP (c1)

}

The same branch is executed for both runs since a is evaluated to the
same value (assumed to be true).
Let: MT , ΓT such that E ⊢ T [c1, pc′], M, Γ, pc′ ⇒MT , ΓT .
〈2〉1. M ′

1|Loc(P ) = MT and Γ′
1|Loc(P ) = ΓT

〈3〉1. Q.E.D.
Proof: By induction on the evaluation of both T [c1, pc′] in M, Γ and
also c1 in M |Loc(P ), Γ|Loc(P ).
〈2〉2. M ′

2|Loc(P ) = MT |Loc(P ) and Γ′
2|Loc(P ) = ΓT |Loc(P )

〈3〉1. Q.E.D.
Proof: By 〈1〉1, instructions Λ(E−1(l), 0) = Λ(E−1(l), 0) ⊔ pc′;∀l ∈
SP (c2) and operator update only handle shadow variables. Hence output
memories M ′

2, Γ′
2 are equal to input memories MT , ΓT when restricted

to Loc(P ).
〈2〉3. Q.E.D.
Proof:By transitivity and 〈2〉2 and 〈2〉1.
〈1〉5. Case: ifff

〈2〉1. Q.E.D.
Proof: This case is symmetrical to iftt

〈1〉6. Case: Wtt
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Evaluation of while (a) c yields:

(Wtt)

E ⊢ a, M |Loc(P ), Γ|Loc(P ) ⇒ v, s istrue(v) pc′ = s ⊔ pc
E ⊢ c, M, Γ, pc′ ⇒M ′′

1 , Γ′′
1

E ⊢ while (a) c, M ′′
1 , Γ′′

1, pc⇒M ′
1, Γ1s

′

E ⊢ while (a) c, M |Loc(P ), Γ, pc⇒M ′
1, Γ′

1

Transformation T yields the following instructions :

T [while (a) c, pc] 7→







while (a) {

pc′ := LR(a) ⊔ pc;

T [c, pc′]; }

pc′ := LR(a) ⊔ pc;

Λ(E−1(l), 0) := Λ(E−1(l), 0) ⊔ pc′;∀l ∈ SP (c)

Let: MT , ΓT , M ′
T , Γ′

T such that :
E ⊢ pc′ = LR(a) ⊔ pc; , M, Γ, pc⇒MT , ΓT , and
E ⊢ T [c, pc′]; MT , ΓT , pc′ ⇒M ′

T , Γ′
T , and

E ⊢ T [while (a) c, pc], M ′
T , Γ′

T , pc⇒M ′
2, Γ′

2. Then,

Wtt

E ⊢ a, M, Γ⇒ v, s istrue(v) pc′ = s ⊔ pc
E ⊢ pc′ = LR(a) ⊔ pc; T [c, pc′]; , M, Γ, pc⇒M ′

T , Γ′
T

E ⊢ T [while (a) c, pc], M ′
T , Γ′

T , pc⇒M ′
2, Γ′

2

E ⊢ T [while (a) c, pc], M, Γ, pc⇒M ′
2, Γ′

2

〈2〉1. MT |Loc(P ) = M |Loc(P ) and ΓT |Loc(P ) = Γ|Loc(P )

〈3〉1. Q.E.D.
Proof: By 〈1〉1, knowing that pc′ := LR(a) ⊔ pc handles only shadow
variables.
〈2〉2. M ′

T |Loc(P ) = M ′′
1 and Γ′

T |Loc(P ) = Γ′′
1

〈3〉1. Q.E.D.
Proof: By 〈2〉1 and induction on evaluation of both c and T [c, pc′].
〈2〉3. Q.E.D.
Proof: By 〈2〉2 and induction on both evaluations of T [while (a) c, pc]
in M ′

T , Γ′
T and while (a) c in M ′′

1 , Γ′′
1.

〈1〉7. Case: Wff

Evaluation of while (a) c yields :

(Wff )

E ⊢ a, M |Loc(P ), Γ|Loc(P ) ⇒ v, s
isfalse(v) pc′ = s ⊔ pc Γ′

1 = update(c, pc′, Γ|Loc(P ))

E ⊢ while (a) c, M, Γ, pc⇒M |Loc(P ), Γ′
1

Evaluation of while (a) {E ⊢ pc′ := LR(a) ⊔ pc; T [c, pc′]; } yields :



B.2. ALIASING INVARIANT 185

E ⊢ a, M, Γ⇒ v, s
isfalse(v) pc′ = s ⊔ pc Γ′′

2 = update(c, pc′, Γ)

E ⊢ while (a) {E ⊢ pc′ := LR(a) ⊔ pc; T [c, pc′]; }, M, Γ, pc⇒M, Γ′′
2

Then, evaluation of the remaining instructions yields :
E ⊢ pc′ = LR(a)⊔pc; Λ(E−1(l), 0) = Λ(E−1(l), 0)⊔pc′;∀l ∈ SP (c), M, Γ′′

2, pc⇒
M ′

2, Γ′
2

〈2〉1. Γ′
1 = Γ′′

2|Loc(P )

〈3〉1. Q.E.D.
Proof: Operator update modifies only the values mapped to locations
of SP (c) in Γ and Γ|Loc(P ) by assigning to them the same values Γ(l) ⊔
pc′,∀l ∈ SP (c).
〈2〉2. Q.E.D.
Proof: By 〈1〉1 and 〈2〉1, M ′

2|Loc(P ) = M |Loc(P ) and Γ′
2|Loc(P ) = Γ′

1.
〈1〉8. Case: Composition
〈2〉1. Q.E.D.
Proof: By Induction on both c1 and c2

〈1〉9. Q.E.D.
Proof: By 〈1〉2, 〈1〉3, 〈1〉4, 〈1〉5, 〈1〉6, 〈1〉7, 〈1〉8 and induction on the
evaluation rule ⇒.

B.2 Aliasing Invariant

Lemma 2 proves that our program transformation maintains the aliasing
invariant introduced in Definition 7.

Lemma 2 (Maintaining the aliasing invariant).
For all environments E, for all instructions c, for all memories M , for all
security memories Γ, for all security context pc, and variable pc such that:

E ⊢ T [c, pc], M, Γ, pc⇒M ′, Γ′

then, the program transformation maintains the aliasing invariant of Defini-
tion 8:

Ω(M) =⇒ Ω(M ′).

Proof sketch: By induction on instructions evaluation ⇒.
Let: c, E, M, Γ, pc, M ′, Γ′, pc such that E ⊢ T [c, pc], M, Γ, pc⇒M ′, Γ′.

Let: Ω(M) , ∀x, y ∈ V ar(P ), for all r ∈ [0, D(y)],
x ∼M

lval ∗
ry (1)

⇐⇒ ∀k ∈ [0, D(x)] , Λ(x, k) ∼M
lval Λ(∗ry, k) (2)

⇐⇒ ∃k ≥ 0, Λ(x, k) ∼M
lval Λ(∗ry, k) (3)
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Assume: Ω(M).
Prove: Ω(M ′).
〈1〉1. Case: Skip
〈2〉1. Q.E.D.
Proof: M = M ′.
〈1〉2. Case: Composition
〈2〉1. Q.E.D.
Proof: By induction, M ′ holds after evaluation of T [c1, pc]. Hence, by
induction on T [c2, pc] Ω(M ′) holds after execution of T [c1; c2, pc].
〈1〉3. Case: Iftt

Transformation T maps the following instructions to conditionals :

T [if (a) c1 else c2, pc] 7→







pc′ := LR(a) ⊔ pc;

if (a) {

T [c1, pc′]

Λ(E−1(l), 0) := Λ(E−1(l), 0) ⊔ pc′;∀l ∈ SP (c2)

} else {

T [c2, pc′];

Λ(E−1(l), 0) := Λ(E−1(l), 0) ⊔ pc′;∀l ∈ SP (c1)

}

Let: MT , ΓT such that : E ⊢ pc′ := LR(a) ⊔ pc, M, Γ, pc⇒MT , ΓT .
Let: M1, Γ1 such that E ⊢ T [c1, pc′], MT , ΓT , pc′ ⇒M1, Γ1.
Let: M ′

1, Γ′
1 such that E ⊢ Λ(E−1(l), 0) := Λ(E−1(l), 0) ⊔ pc′;∀l ∈

SP (c2), M1, Γ1, pc′ ⇒M ′
1, Γ′

1.
Let: M ′, Γ′ such that E ⊢ if(a){T [c1, pc′]; . . . ; } else {. . .}, MT , ΓT , pc′ ⇒

M ′, Γ′.
〈2〉1. Ω(MT ) holds
〈3〉1. Q.E.D.
Proof: pc′ := LR(a) ⊔ pc; only modifies pc′, which is of type τs. No
l-values are modified, hence Ω(MT ) holds since Ω(M) holds.
〈2〉2. Ω(M1) holds
〈3〉1. Q.E.D.
Proof: By induction on T [c1, pc′] knowing Ω(MT ).
〈2〉3. Ω(M ′

1) holds
〈3〉1. Q.E.D.
Proof: Modified variables are of type τs, therefore no l-values are
modified. Hence Ω(M ′

1) holds from Ω(M1).
〈2〉4. Q.E.D.
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Proof: M ′ is equal to M ′
1 by the evaluation rule iftt. Hence Ω(M ′) holds

by 〈2〉3.
〈1〉4. Case: ifff

〈2〉1. Q.E.D.
Proof: This case is symmetrical to the iftt rule.
〈1〉5. Case: Wtt and Wff

〈2〉1. Q.E.D.
Proof: Derives from the cases iftt and ifff .
〈1〉6. Case: Assign

Proof sketch: This is the most interesting case. We are going to prove
that new aliasing relations for initial variables are reproduced for shadow
variables, without breaking old aliasing relations. Transformation T maps
the following instructions to assignment a1 := a2:

T [a1 := a2, pc] 7→







Λ(a1, 0) := LL(a1) ⊔ LR(a2) ⊔ pc; (instruction c0
T )

Λ(a1, k) := Λ(a2, k);∀k ∈ [1, D(a1)] (instruction c1
T )

Λ(E−1(l), 0) := Λ(E−1(l), 0) ⊔ LL(a1) ⊔ pc;∀l ∈ SP (a1 := a2) (instruction c2
T )

a1 := a2;

Let: instructions c0
T , c1

T and c2
T be as shown above, and cT = c0

T ; c1
T ; c2

T ;.
Let: M1, Γ1, M2, Γ2 and M3, Γ3 such that: E ⊢ c0

T , M, Γ, pc ⇒ M1, Γ1,
and
E ⊢ c1

T , M, Γ, pc⇒M2, Γ2, and E ⊢ c2
T , M, Γ, pc⇒M3, Γ3.

Then (only relevant semantics operations are shown below) :

(Assign)

E ⊢ Λ(a1, 0), M, Γ⇐ lΛ(a1,0), sΛ(a1,0)

E ⊢ LL(a1) ⊔ LR(a2) ⊔ pc, M, Γ⇒ vΛ(a1,0), s′
Λ(a1,0)

M1 = M [l1 7→ v2] . . .

E ⊢ c0
T , M, Γ, pc⇒M1, Γ1

E ⊢ c1
T , M1, Γ1, pc⇒M2, Γ2 E ⊢ c2

T , M2, Γ2, pc⇒M3, Γ3

(Assign)

E ⊢ a1, M3, Γ3 ⇐ la1
, sa1

E ⊢ a2, M3, Γ3 ⇒ sa2
, va2

M ′ = M3[la1
7→ va2

] . . .

E ⊢ a1 := a2, M3, Γ3, pc⇒M ′, Γ′

E ⊢ T [a1 := a2, pc], M, Γ, pc⇒M ′, Γ′

〈2〉1. M3|Loc(P ) = M2|Loc(P ) = M1|Loc(P ) = M |Loc(P )

〈3〉1. Q.E.D.
Proof: Since locations pointed by initial variables are disjoint from
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locations pointed by shadow variables, and cT only handles shadow
variables (this have been proven in previous lemma).
〈2〉2. Case: Ω(M ′).(1) =⇒ Ω(M ′).(2)
Assume: Ω(M) and ∀x, y ∈ V ar(P ), for all r ∈ [0, D(y)],

x ∼M ′

lval ∗
ry (1)

=⇒ ∀k ∈ [0, D(x)] , Λ(x, k) ∼M ′

lval Λ(∗ry, k) (2)
Proof sketch: By induction on r ∈ N. The special case when r = 1
is also proven in order to be used later during the proof.
〈3〉1. Case: r = 0
〈4〉1. Q.E.D.
Proof: x ∼M ′

lval y implies x and y are the same variable since envi-
ronment E is a bijection.
〈3〉2. Case: r = 1

Assume: x ∼M ′

lval ∗y
Prove: ∀k ∈ [0, D(x)] , Λ(x, k) ∼M ′

lval Λ(∗y, k)
Let: ly ∈ Loc(P ) such that E ⊢ y, M ′ ⇐ ly and M ′[ly] = lx (We

will explicit neither Γ nor security labels as they are useless for
this). Notice that E ⊢ y, M ⇐ ly since E(y) = ly.

Proof sketch: Either a1 is an alias for y (in both M or M ′), then
a1 modifies the r-value of y, and T create new aliasing relations for
shadow variables of x and ∗y. Or a1 is not an alias for y, then the
aliasing relations already exist in M and are not modified in M ′.
〈4〉1. Case: a1 ∼

M ′

lval y
〈5〉1. a1 ∼

M
lval y

〈6〉1. Q.E.D.
Proof: M3|Loc(P ) = M |Loc(P ) (〈2〉1) and a1 = a2 modifies only
the r-value of a1, not its l-value.
〈5〉2. ∗a2 ∼

M
lval x

〈6〉1. Q.E.D.
Proof: a1 := a2 maps v2 to la1

in M ′. As ∗a1 end up being
aliased to &x in M ′ (assumption of 〈3〉2), v2 must be equal to
ptr(lx) in M3. Hence ∗a2 is an alias for x in M3, and also in M
by 〈2〉1.
〈5〉3. ∀k ∈ [0, D(x)] , Λ(∗a2, k) ∼M

lval Λ(x, k)
〈6〉1. Q.E.D.
Proof: By 〈5〉2 and Ω(M).
〈5〉4. ∀k ∈ [0, D(x)] , Λ(∗a2, k) ∼M ′

lval Λ(x, k)
〈6〉1. Q.E.D.
Proof: The l-values of Λ(∗a2, k) = ∗Λ(a2, k + 1) in M are
equal to those in M ′. If the r-value of Λ(a2, k + 1) were to
change, it would definitely be because of c1

T (the only instructions
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manipulations pointer shadow variables). That would mean that
there exists k1 such that Λ(a1, k1) ∼M

lval Λ(a2, k + 1). That would
imply that k1 = k+1 by typing. Hence, Ω(M) implies that a1 and
a2 are aliased, and so Λ(a2, k) ∼M

lval Λ(a1, k) for all k ∈ [0, D(a1)],
meaning that cT overrides the r-values of Λ(a2, k + 1) in M by
writing the same r-value in M ′.
〈5〉5. ∀k ∈ [0, D(y)] , Λ(a1, k) ∼M

lval Λ(y, k)
〈6〉1. Q.E.D.
Proof: By 〈5〉1 and Ω(M).
〈5〉6. ∀k ∈ [0, D(y)] , Λ(a1, k) ∼M ′

lval Λ(y, k)
〈6〉1. Q.E.D.
Proof: Only r-values of Λ(a1, k) are modified by cT , and the
l-value of Λ(y, k) = E(Λ(y, k)) is constant.
〈5〉7. ∀k ∈ [0, D(x)] , Λ(∗a1, k) ∼M ′

lval Λ(∗a2, k)
〈6〉1. Q.E.D.
Proof: After the assignments cT , for all k ∈ [1, D(a2)], the
r-values of Λ(a1, k) are equal to Λ(a2, k). Dereferencing both
means that ∀k ∈ [1, D(a2)], we have ∗Λ(a1, k) ∼M ′

lval ∗Λ(a2, k).
Hence ∀k ∈ [1, D(a2)], Λ(∗a1, k − 1) ∼M ′

lval Λ(∗a2, k − 1). A
change of variable k 7→ k − 1 gives the desired result, knowing
that D(a2) = D(x) + 1 by 〈5〉2 and typing.
〈5〉8. ∀k ∈ [0, D(∗y)] , Λ(∗a1, k) ∼M ′

lval Λ(∗y, k)
〈6〉1. Q.E.D.
Proof: By dereferencing 〈5〉6 for k ∈ [1, D(y)] and a variable
change k 7→ k − 1.
〈5〉9. Q.E.D.
Proof: By transitivity and 〈5〉8, 〈5〉7 and 〈5〉4, ∀k ∈ [0, D(x)] , Λ(x, k) ∼M ′

lval

Λ(∗y, k).
〈4〉2. Case: ¬(a1 ∼

M ′

lval y)
〈5〉1. x ∼M

lval y
〈6〉1. Q.E.D.
Proof: The r-value of y is not changed by assignment a1 := a2

since 〈4〉2. It is neither changed by cT since 〈2〉1.
〈5〉2. ∀k ∈ [0, D(x)] , Λ(x, k) ∼M

lval Λ(∗y, k)
〈6〉1. Q.E.D.
Proof: By Ω(M).
〈5〉3. ∀k ∈ [0, D(x)] , Λ(x, k) ∼M ′

lval Λ(∗y, k)
〈6〉1. Q.E.D.
Proof: If exists k such that the l-value of Λ(∗y, k) = ∗Λ(y, k+1)
is changed by cT , then the r-value of Λ(y, k + 1) is overridden
by cT . That means that there exists k1 such that Λ(a1, k1) ∼M

lval
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Λ(y, k + 1). Hence, by typing k1 = k + 1 and Λ(a1, k1) ∼
M
lval

Λ(y, k1). Then Ω(M) implies that a1 ∼
M
lval y which was supposed

to not hold in this case 〈4〉2.
〈5〉4. Q.E.D.
Proof: By 〈5〉3.
〈4〉3. Q.E.D.
Proof: By 〈4〉1 and 〈4〉2.
〈3〉3. Case: r ≥ 1

Assume: x ∼M ′

lval ∗
r+1y

Prove: ∀k ∈ [0, D(x)] , Λ(x, k) ∼M ′

lval Λ(∗r+1y, k)
〈4〉1. ∃z ∈ V ar(P ), such that ∗ry ∼M ′

lval z and ∀k ∈ [0, D(z)] , Λ(z, k) ∼M ′

lval

Λ(∗ry, k)
〈5〉1. Q.E.D.
Proof: Since the only way to create locations is through variable
declaration, there exists a variable z which is pointed by ∗ry. By
induction on r, we have ∀k ∈ [0, D(x)] , Λ(x, k) ∼M ′

lval Λ(∗ry, k).
〈4〉2. ∀k ∈ [0, D(∗z)] , Λ(∗z, k) ∼M ′

lval Λ(∗r+1y, k)
〈5〉1. Q.E.D.
Proof: By dereferencing one time both sides of the aliasing relation
in 〈4〉1 for k ∈ [1, D(z)] and a variable change k 7→ k − 1.
〈4〉3. x ∼M ′

lval ∗z and ∀k ∈ [0, D(x)] , Λ(x, k) ∼M ′

lval Λ(∗z, k)
〈5〉1. Q.E.D.
Proof: By 〈4〉1 , we have x ∼M ′

lval ∗z. Then by the case r = 1
(〈3〉2), we have the aliasing relation for shadow variables.
〈4〉4. Q.E.D.
Proof: By 〈4〉3 and 〈4〉2 and transitivity, ∀k ∈ [0, D(x)] , Λ(x, k) ∼M ′

lval

Λ(∗r+1y, k).
〈3〉4. Q.E.D.
Proof: By induction on r, 〈3〉3 and 〈3〉1.
〈2〉3. Case: Ω(M ′).(3) ⇐⇒ Ω(M ′).(2) =⇒ Ω(M ′).(1)
Assume: Ω(M) and ∀x, y ∈ V ar(P ), for all r ∈ [0, D(y)],

∀k ∈ [0, D(x)] , Λ(x, k) ∼M
lval Λ(∗ry, k) (2)

⇐⇒ ∃k ≥ 0, Λ(x, k) ∼M
lval Λ(∗ry, k) (3)

=⇒ x ∼M
lval ∗

ry (1)
Proof sketch: (2) =⇒ (3) holds. We prove (3) =⇒ (2) by
induction on r as in 〈2〉2. We focus on the most interesting case, r = 1.
〈3〉1. Case: r = 1

Assume: x, y ∈ V ar(P ), such that ∃k1, Λ(x, k1) ∼
M ′

lval Λ(∗y, k1).
〈4〉1. Case: ∃k′ such that the l-value of Λ(∗y, k′) changed between

M and M ′

〈5〉1. a1 ∼
M
lval y
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〈6〉1. Q.E.D.
Proof: The l-value of Λ(∗y, k′) = ∗Λ(y, k′+1) changed, meaning
that the r-value of Λ(y, k′ + 1) has been overridden by cT . That
means that there exists k1 such that Λ(a1, k1) ∼

M
lval Λ(y, k′ + 1)

and k′ + 1 = k1. Then by Ω(M), a1 ∼
M
lval y.

〈5〉2. x ∼M
lval ∗a2

〈6〉1. Q.E.D.
Proof: Since a2 has been assigned to a1, and a1 ∼

M
lval y (〈5〉1),

the r-value of Λ(a2, k1 +1) in M has been assigned to Λ(y, k1)+1)
in M ′. Knowing Λ(y, k1+1) in M ′ points to Λ(x, k1), we conclude
that Λ(a2, k1 + 1) in M ′ points to Λ(x, k1). Hence ∗Λ(a2, k1 +
1) ∼M

lval Λ(x, k1). Then by Ω(M) and Λ(∗a2, k1) ∼
M
lval Λ(x, k1),

we conclude that x ∼M
lval ∗a2.

〈5〉3. Q.E.D.
Proof: For all 0 ≤ k ≤ D(a1)−1, the r-value of Λ(a1, k+1) in M ′ is
equal to that of Λ(a2, k+1) in M after evaluation of assignments cT .
By 〈5〉2, Λ(a2, k + 1) points to Λ(x, k). Therefore, 〈5〉1, Λ(y, k + 1)
also points to Λ(x, k), meaning that Λ(∗y, k) ∼M ′

lval Λ(x, k), for
all k ∈ [0, D(x)]. Also, by 〈5〉1 and 〈5〉2, x ∼M ′

lval ∗y holds after
evaluation of a1 = a2.
〈4〉2. Case: ¬(∃k′ such that the l-value of Λ(∗y, k′) changed between

M and M ′)
〈5〉1. Q.E.D.
Proof: ∀k ∈ [0, D(∗y)], the l-value of Λ(∗y, k′) in M is equal
to that in M ′. Particularly, Λ(∗y, k1) ∼

M
lval Λ(x, k1). By Ω(M),

∀k ∈ [0, D(x)] , Λ(∗y, k1) ∼
M
lval Λ(x, k). Which means that ∀k ∈

[0, D(x)] , Λ(∗y, k1) ∼
M ′

lval Λ(x, k) since neither l-value of Λ(∗y, k1)
changed. Also, By Ω(M), we have x ∼M

lval ∗y. Hence, x ∼M ′

lval ∗y
since if the r-value of y changes, that would mean that a1 is an
alias for y, causing the r-value of Λ(∗y, k) to be overridden which
is not the case since 〈4〉2.
〈4〉3. Q.E.D.
Proof: By 〈4〉2 and 〈4〉1.
〈3〉2. Q.E.D.
Proof: Using the case r = 1 (〈3〉1), we conclude by introducing a
variable z such that ∗z ∼M ′

lval x and then by induction on r as done in
〈2〉2.
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B.3 Monitoring Information Flows

Theorem 3 proves that our program transformation is sound with respect to
our monitor semantics.

Theorem 3 (Sound monitoring of information flows).
For all environments E, for all memories M , for all security memories Γ,
the invariant Υ(E, M, Γ) is defined as the following predicate:

Υ(E, M, Γ) , ∀x ∈ V ar(P ),∀k ∈ [0, D(x)] , then

E ⊢ ∗kx, M ⇐ lxk and Γ(lxk) = sxk

=⇒ E ⊢ ∗kΛ(x, k), M ⇒ sxk.

Hence, for all instructions c, for all memories M , for all security
memories Γ, for all security context pc and variable pc such that E ⊢
T [c, pc], M, Γ, pc⇒M ′, Γ′ and E ⊢ pc, M ⇒ pc, the following result holds :

Υ(E, M, Γ) =⇒ Υ(E, M ′, Γ′).

First, we prove that operators LL and LR captures resp. the labels of
l-value evaluation and r-value evaluation. We introduce hence Lemma 5 and
Corollary 7.

Lemma 5 (Sound operator LL). Let E, M, Γ, such that Υ(E, M, Γ) holds.
for all a ∈ Exp,

E ⊢ a, M, Γ⇐ l, s =⇒ E ⊢ LL(a), M ⇒ s

Proof sketch:By induction on l-value evaluations.
Let: E, M, Γ, such that Υ(E, M, Γ) holds.
Let: a ∈ Exp, l ∈ Loc, s ∈ S, such that E ⊢ a, M, Γ⇐ l, s.
Prove: E ⊢ LL(a), M ⇒ s
〈1〉1. Case: LVID

〈2〉1. Q.E.D.
Proof: By definition of LL(id) and rule LVID, both are equal to public
〈1〉2. Case: LVMEM

Evaluation of ∗kx in l-value position yields:

LVMEM

RV

E ⊢ a, M, Γ⇐ la, sl M(la) = ptr(l)
Γ(la) = sr s = sl ⊔ sr

E ⊢ a, M, Γ⇒ ptr(l), s

E ⊢ ∗a, M, Γ⇐ l, s
Also, by definition we have: LL(∗a) = LR(a) = LL(a) ⊔ L(a).
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〈1〉3. Q.E.D.
Proof: By induction, we have E ⊢ LL(a), M ⇒ sl. Also, Υ(E, M, Γ)
implies that E ⊢ L(a), M ⇒ sr. Hence, E ⊢ LL(∗a), M ⇒ s.

Corollary 7 (Sound operator LR). Let E, M, Γ, such that Υ(E, M, Γ) holds.
for all a ∈ Exp,

E ⊢ a, M, Γ⇒ v, s =⇒ E ⊢ LR(a), M ⇒ s

〈1〉1. Q.E.D.
Proof: By induction on r-value evaluations of expressions, using Lemma 5.

Theorem 3 proves that our program transformation is sound with respect
to our monitor semantics.

Theorem 3 (Sound monitoring of information flows).
For all environments E, for all memories M , for all security memories Γ,
the invariant Υ(E, M, Γ) is defined as the following predicate:

Υ(E, M, Γ) , ∀x ∈ V ar(P ),∀k ∈ [0, D(x)] , then

E ⊢ ∗kx, M ⇐ lxk and Γ(lxk) = sxk

=⇒ E ⊢ ∗kΛ(x, k), M ⇒ sxk.

Hence, for all instructions c, for all memories M , for all security
memories Γ, for all security context pc and variable pc such that E ⊢
T [c, pc], M, Γ, pc⇒M ′, Γ′ and E ⊢ pc, M ⇒ pc, the following result holds :

Υ(E, M, Γ) =⇒ Υ(E, M ′, Γ′).

Proof sketch: By induction on instructions evaluation ⇒. The most
interesting case is the assignment.
Let: c, E, M, Γ, pc, M ′, Γ′, pc such that E ⊢ T [c, pc], M, Γ, pc⇒M ′, Γ′.

Let: Υ(E, M, Γ) , for all x ∈ V ar(P ), for all k ∈ [0, D(x)],
E ⊢ ∗kx, M ⇐ lxk and Γ(lxk) = sxk =⇒ E ⊢ ∗kΛ(x, k), M ⇒ sxk.

Assume: Υ(E, M, Γ) and E ⊢ pc, M ⇒ pc.
Prove: Υ(E, M ′, Γ′).
〈1〉1. Case: Skip
〈2〉1. Q.E.D.
Proof: By assumption.
〈1〉2. Case: Assign
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Proof sketch: We prove Υ(E, M ′, Γ′) for any x ∈ V ar(P ). Then we
generalize this result by Lemma 2 to every l-value ∗kx. Transformation T
maps the following instructions to assignment a1 := a2:

T [a1 := a2, pc] 7→







Λ(a1, 0) := LL(a1) ⊔ LR(a2) ⊔ pc; (instruction c0
T )

Λ(a1, k) := Λ(a2, k);∀k ∈ [1, D(a1)] (instruction c1
T )

Λ(E−1(l), 0) := Λ(E−1(l), 0) ⊔ LL(a1) ⊔ pc;∀l ∈ SP (a1 := a2) (instruction c2
T )

a1 := a2;

Let: instructions c0
T , c1

T and c2
T be as shown above, and cT = c0

T ; c1
T ; c2

T ;.
Let: M1, Γ1, M2, Γ2 and M3, Γ3 such that: E ⊢ c0

T , M, Γ, pc ⇒ M1, Γ1,
and
E ⊢ c1

T , M, Γ, pc⇒M2, Γ2, and E ⊢ c2
T , M, Γ, pc⇒M3, Γ3.

Then (only relevant semantics operations are shown below) :

(Assign)

E ⊢ Λ(a1, 0), M, Γ⇐ lΛ(a1,0), sΛ(a1,0)

E ⊢ LL(a1) ⊔ LR(a2) ⊔ pc, M, Γ⇒ vΛ(a1,0), s′
Λ(a1,0)

M1 = M [lΛ(a1,0) 7→ vΛ(a1,0)] . . .

E ⊢ c0
T , M, Γ, pc⇒M1, Γ1

E ⊢ c1
T , M1, Γ1, pc⇒M2, Γ2 E ⊢ c2

T , M2, Γ2, pc⇒M3, Γ3

(Assign)

E ⊢ a1, M3, Γ3 ⇐ la1
, sa1

E ⊢ a2, M3, Γ3 ⇒ sa2
, va2

M ′ = M3[la1
7→ va2

]
s = sa1

⊔ sa2
⊔ pc Γ′′ = Γ3[la1

7→ s]
Γ′ = update(a1 := a2, sa1

⊔ pc, Γ′′) . . .

E ⊢ a1 = a2, M3, Γ3, pc⇒M ′, Γ′

E ⊢ T [a1 := a2, pc], M, Γ, pc⇒M ′, Γ′

〈2〉1. ∀x ∈ V ar(P ), Γ′(E(x)) = s =⇒ E ⊢ Λ(x, 0), M ′ ⇒ s
Let: x ∈ V ar(P ) such that Γ′(E(x)) = s.
〈3〉1. Case: a1 ∼

M ′

lval x
Proof sketch: In this case, T [c, pc] updates both x and Λ(x, 0)
such that Υ still holds.
〈4〉1. s = Γ′(E(x)) = sa1

⊔ s2 ⊔ pc
〈5〉1. Q.E.D.
Proof: By assignment rule of a1 := a2 since only instruction
a1 := a2 modifies values mapped to la1

= E(x) ∈ Loc(P ).
〈4〉2. s = vΛ(a1,0)

〈5〉1. Q.E.D.
Proof: By Lemma 2, we have Λ(a1, 0) ∼M ′

lval Λ(x, 0). Then we
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conclude by knowing that Λ(a1, 0) is assigned by instruction c0
T .

That means that E ⊢ Λ(a1, 0), M ′ ⇒ vΛ(a1,0). (notice that c2
T also

assigns Λ(a1, 0). But since it just propagates r-values of LL(a1)⊔pc
which are already propagated by c0

T , the value of Λ(a1, 0) keeps
being equal to vΛ(a1,0))
〈4〉3. Q.E.D.
Proof: By 〈4〉1, 〈4〉2 and assumption Υ(E, M, Γ), vΛ(a1,0) = sa1

⊔
s2 ⊔ pc (Lemma 5 and Corollary 7).

〈3〉2. Case: ¬(a1 ∼
M ′

lval x) and E(x) /∈ SP (a1 = a2)
Let: x ∈ V ar(P ) such that Γ′(E(x)) = s.
Let: vΛ(x,0) such that E ⊢ Λ(x, 0), M ′ ⇒ vΛ(x,0)

Proof sketch: In this case, neither x nor Λ(x, 0) are updated.
Hence the invariant holds from Υ(E, M, Γ).
〈4〉1. E ⊢ Λ(x, 0), M ⇒ vΛ(x,0)

〈5〉1. Q.E.D.
Proof: Since Λ(x, 0) in not modified by T [a1 = a2, pc]. a1 = a2

modifies only locations in Loc(P ). c2
T do not modify Λ(x, 0) since

E(x) /∈ SP (a1 = a2). c1
T modifies only pointers and Λ(x, 0) is not.

c0
T does not assign Λ(x, 0) since ¬(a1 ∼

M ′

lval x).
〈4〉2. Γ(E(x)) = s
〈5〉1. Q.E.D.
Proof: By the semantics of assignments, knowing that E(x) /∈
SP (a1 := a2).
〈4〉3. Q.E.D.
Proof:By 〈3〉2 and 〈4〉2 and Υ(E, M, Γ), s = vΛ(x,0)

〈3〉3. Case: ¬(a1 ∼
M ′

lval x) and E(x)inSP (a1 = a2)
Proof sketch: In this case, sa1

⊔ pc and LL(a1) are respectively
propagated to respectively Γ(E(x)) and Λ(x, 0). We show that r-value
evaluation of Λ(x, 0) in M ′ is equal to the value of Γ(la1

).
Let: x ∈ V ar(P ) such that Γ′(E(x)) = s.
Let: v′

Λ(x,0) such that E ⊢ Λ(x, 0), M ′ ⇒ vΛ(x,0).
Let: vΛ(x,0) such that E ⊢ Λ(x, 0), M ⇒ vΛ(x,0).
〈4〉1. Q.E.D.
Proof: By Γ′(E(x)) = sa1

⊔ pc ⊔ Γ(E(x)) and v′
Λ(x,0) = LL(a1) ⊔

pc ⊔ vΛ(x,0). Also, by Υ(E, M, Γ) we have sa1
= LL(a1) and vΛ(x,0) =

Γ(E(x)).
〈3〉4. Q.E.D.
Proof: By 〈3〉3 and 〈3〉2 and 〈3〉1.
〈2〉2. Q.E.D.
Proof:By 〈2〉1 we can conclude. For all y ∈ V ar(P ), k ∈ [0, D(y)], there
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exists x ∈ V ar(P ) such that x ∼M ′

lval ∗
ky. Then E(x) is the l-value of ∗ky

in memory M ′.
Let s = Γ′(E(x)) . That implies that E ⊢ Λ(x, 0), M ′ ⇒ s (〈2〉1), and
also E ⊢ ∗kΛ(y, k), M ′ ⇒ s since Λ(∗ky, 0) ∼M ′

lval Λ(x, 0) (Lemma 2).
〈1〉3. Case: Composition
〈2〉1. Q.E.D.
By induction on c1 and then on c2.
〈1〉4. Case: Iftt

Transformation T maps the following instructions to conditionals :

T [if (a) c1 else c2, pc] 7→







pc′ = LR(a) ⊔ pc;

if (a) {

T [c1, pc′]

Λ(E−1(l), 0) = Λ(E−1(l), 0) ⊔ pc′;∀l ∈ SP (c2)

} else {

T [c2, pc′];

Λ(E−1(l), 0) = Λ(E−1(l), 0) ⊔ pc′;∀l ∈ SP (c1)

}

Let: MT , ΓT such that : E ⊢ pc′ = LR(a) ⊔ pc, M, Γ, pc⇒MT , ΓT .
Let: M1, Γ1 such that E ⊢ T [c1, pc′], MT , ΓT , pc′ ⇒M1, Γ1.
Let: M ′

1, Γ′
1 such that E ⊢ Λ(E−1(l), 0) = Λ(E−1(l), 0) ⊔ pc′;∀l ∈

SP (c2), M1, Γ1, pc′ ⇒M ′
1, Γ′

1.
Let: M ′, Γ′ such that E ⊢ if(a){T [c1, pc′]; . . . ; } else {. . .}, MT , ΓT , pc′ ⇒

M ′, Γ′.
〈2〉1. Υ(E, MT , ΓT ) holds and E ⊢ pc′, MT ⇒ pc′

〈3〉1. Q.E.D.
Proof: Since assignment pc′ does not modify neither locations in
Loc(P ) nor locations associated to shadow variables defined by Λ,
Υ(E, MT , ΓT ) holds. Additionally, pc′ = sa ⊔ pc where sa is the result
of r-value evaluation of a in M and E ⊢ LR(a), M ⇒ sa. Hence
E ⊢ pc′, M ⇒ pc′.
〈2〉2. Υ(E, M1, Γ1) holds
〈3〉1. Q.E.D.
By induction on the execution of T [c1, pc′], knowing 〈2〉1.
〈2〉3. Υ(E, M ′, Γ′)
〈3〉1. Q.E.D.
Proof: pc′ is propagated to all shadow variables corresponding to
locations in SP (c2). So does the update operator on Γ′

1 before yielding
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Γ′. The result for other locations (not in SP (c2)) shadow variables
stems from 〈2〉2.
〈2〉4. Q.E.D.
Proof: By 〈2〉3.
〈1〉5. Case: Ifff

〈2〉1. Q.E.D.
Symmetrical case to Iftt.
〈1〉6. Case: Wtt and Wff

〈2〉1. Q.E.D.
Same as conditionals.
〈1〉7. Q.E.D.
Proof: By induction on instructions evaluation and 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉4,
〈1〉5, 〈1〉6.





Appendix C

Cardinal Abstraction

C.1 Abstract Semantics of Expressions

Theorem 6 (Soundness of the abstract semantics A
♯JaK).

The abstract semantics of expressions is sound:

α⊲
exp(AcJaK)̺♯ ≤ A

♯JaK̺♯

Let us derive an abstract semantics A
♯JaKR for expressions:

— Case a = n:

α⊲
exp(AcJnK)̺♯ , αv ◦ AcJnK ◦ γ̇(̺♯)

= αv

({

{v ∈ V | ∃̺ ∈ r,AJnK̺ = v} | r ∈ γ̇(̺♯)
})

= αv({{n}})

= 1

, A
♯JnK̺♯

— Case a = id:

α⊲
exp(AcJidK)̺♯ , αv ◦ JidK♯ ◦ γ̇(̺♯)

= αv

({

{v | ∃̺ ∈ r,AJidK̺ = v} | r ∈ γ̇(̺♯)
})

= αv

({

{proj2(̺(id)) | ∃̺ ∈ r} | r ∈ γ̇(̺♯)
})

= (By definition of γ̇)

αv ◦ γv(̺♯(id))

≤ (αv ◦ γv is reductive)

̺♯(id)

, A
♯JidK̺♯

199
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— Case a = a1 mod n :

α⊲
exp(AcJaK)̺♯ , αv

({

{v1 mod n | ∃̺ ∈ r,AJa1K̺ = v1} |

r ∈ γ̇(̺♯)
})

= min
(

αv

({

{v1 | ∃̺ ∈ r,AJa1K̺ = v1} |

r ∈ γ̇(̺♯)
})

, n
)

= min(αv ◦ AcJa1K ◦ γ̇(̺♯), n)

≤ (By induction hypothesis)

min(A♯Ja1K̺
♯, n)

, A
♯Ja1 mod nK̺♯

— Case a = a1 bop a2:

α⊲
exp(AcJa1 bop a2K)̺

♯ , αv ({{v1 bop v2 | ∃̺ ∈ r,AJa1K̺ = v1

∧ AJa2K̺ = v2} | r ∈ γ̇(̺♯)
})

≤ (by loosing relationships among variables in r)

αv

({

{v1 bop v2 | ∃̺1 ∈ r1,∃̺2 ∈ r2,AJa1K̺1 = v1

∧ AJa2K̺2 = v2} | r1, r2 ∈ γ̇(̺♯)
})

= (by definition of αv)

max
r1,r2∈γ̇(̺♯)

∣
∣
∣

{

v1 bop v2 | ∃̺1 ∈ r1,AJa1K̺1 = v

∧ ̺2 ∈ r2,AJa2K̺2 = v2

}∣
∣
∣

≤ (values v ∈ V are finite, of size 2κ)

min

(

2κ, max
r1,r2∈γ̇(̺♯)

∣
∣
∣

{

v1 | ∃̺1 ∈ r1,AJa1K̺1 = v1

}∣
∣
∣

×
∣
∣
∣

{

v2 | ∃̺2 ∈ r2,AJa2K̺2 = v2

}∣
∣
∣

)

= min

(

2κ, max
r1∈γ̇(̺♯)

∣
∣
∣

{

v1 | ∃̺1 ∈ r1,AJa1K̺1 = v1

}∣
∣
∣

× max
r2∈γ̇(̺♯)

∣
∣
∣

{

v2 | ∃̺2 ∈ r2,AJa2K̺2 = v2

}∣
∣
∣

)

≤ (By induction hypothesis in Equation (6.16))

min
(

2κ,A♯Ja1K̺
♯ × A

♯Ja2K̺
♯
)

, A
♯Ja1 bop a2K̺

♯
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— Case a = a1 cmp a2: this case is similar to the previous case, apart
that expression a1 cmp a2 may evaluate to only 2 different boolean values.

α⊲
exp(AcJaK)̺♯ ≤̇min

(

2,A♯Ja1K̺
♯ × A

♯Ja2K̺
♯
)

, A
♯Ja1 cmp a2K

C.2 Abstract Semantics of Instructions

Theorem 7 (Soundness of the abstract semantics JcK♯).
The abstract semantics of commands is sound:

α⊲
com(JcKc)̺

♯ ⊆̇⊗ JcK♯̺♯

Let us derive an abstract semantics for instructions:
— Case c = ppskip:

α⊲
com(JppskipKc)̺

♯ = α̇ ◦ JppskipKc ◦ γ̇(̺♯)

= α̇ ◦ γ̇(̺♯)

⊆⊗ (α̇ ◦ γ̇ is reductive)

̺♯

, JppskipK♯̺♯

— For instruction c = ppid := a:

α⊲
com(c)̺♯ = α̇ ◦ Jppid := aKc ◦ γ̇(̺♯)

= α̇
({

{̺′ | ∃̺ ∈ r, 〈id := a, ̺〉 → ̺′} | r ∈ γ̇(̺♯)
})

= α̇
({

{̺[id 7→ (pp, v)] | ∃̺ ∈ r,AJaK̺ = v} | r ∈ γ̇(̺♯)
})

Hence, for all x ∈ V ar such that x 6= id:

(α⊲
com(Jppid := aKc)̺

♯)(x)⊆⊗ ̺♯(x)

Additionnally, for x = id:

(α⊲
com(c)̺♯)(id) =

( ⋃

r′∈JcKc◦γ̇(̺♯)

Π1(@(r′)(id)), max
r′∈JcKc◦γ̇(̺♯)

|Π2(@(r′)(id))|
)

=
(

{pp}, max
r′∈JcKc◦γ̇(̺♯)

|Π2({̺(id) : ̺ ∈ r′})|
)

=
(

{pp, max
r∈γ̇(̺♯)

|{AJaK̺ : ̺ ∈ r}|}
)

=
(

{pp}, αv ◦ AcJaK̺♯ ◦ γ̇(̺♯)
)

⊆⊗

(

{pp},A♯JaK̺♯
)
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Hence,

α⊲
com(ppid := a)̺♯ ⊆⊗ ̺♯[id 7→ (pp,A♯JaK̺♯)]

, Jppid := aK♯̺♯

– For conditional instructions c = ppif (a) c1 else c2:

α⊲
com(JcKc)̺

♯ = α̇
({

{̺′ | ∃̺ ∈ r, 〈c, ̺〉 →∗ ̺′} | r ∈ γ̇(̺♯)
})

= α̇
({

{̺′ : ∃̺ ∈ r,∃v ∈ {0, 1},AJaK̺ = v

∧ 〈cv, ̺〉 → ̺′} | r ∈ γ̇(̺♯)
})

First, if A♯JaK̺♯ = 1, then expression a evaluates to at most one value in
each set r ∈ γ̇(̺♯):

∀r ∈ γ̇(̺♯),∃v ∈ {0, 1},∀̺ ∈ r,AJaK̺ = v

Therefore, the sets r ∈ γ̇(̺♯) can be partitioned into sets r1 (resp. r0) where
expression a evaluates to 1 (resp. evaluates to 0):

α⊲
com(JcKc)̺

♯ = α̇
({

{̺′ | ∃̺ ∈ r1, 〈c1, ̺〉 →∗ ̺′} | r1 ∈ γ̇(̺♯)
}

∪
{

{̺′ | ∃̺ ∈ r0, 〈c0, ̺〉 →∗ ̺′} | r0 ∈ γ̇(̺♯)
})

⊆̇⊗ (α̇ preserves joins)

α̇
({

{̺′ | ∃̺ ∈ r1, 〈c1, ̺〉 →∗ ̺′} | r1 ∈ γ̇(̺♯)
})

∪̇⊗ α̇
({

{̺′ | ∃̺ ∈ r1, 〈c1, ̺〉 →∗ ̺′} | r1 ∈ γ̇(̺♯)
})

=
(

α̇ ◦ Jc1Kc ◦ γ̇(̺♯)
)

∪̇⊗

(

α̇ ◦ Jc0Kc ◦ γ̇(̺♯)
)

⊆̇⊗ (by induction hypothesis Equation (6.17))

Jc1K
♯̺♯ ∪̇⊗ Jc0K

♯̺♯

Second, if A♯JaK̺♯ > 1, then for variables x that are modified in neither
c1 nor c0, we have:

(α⊲
com(JcKc)̺

♯)(x) =
(

Jc1K
♯̺♯ ∪̇⊗ Jc0K

♯̺♯
)

(x)
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Finally, for variables that are modified in either c1 or c0:

(α⊲
com(JcKc)̺

♯)(x) = α̇
({

{̺′ | ∃̺ ∈ r,∃v ∈ {0, 1},AJaK̺ = v

∧ 〈cv, ̺〉 → ̺′} | r ∈ γ̇(̺♯)
})

(x)

= α̇
({

{̺′ | ∃̺ ∈ r,AJaK̺ = 1 ∧ 〈c1, ̺〉 →∗ ̺′}

∪ {̺′ | ∃̺ ∈ r,AJaK̺ = 0 ∧ 〈c0, ̺〉 →∗ ̺′}
})

(x)

⊆⊗ α̇
({

{̺′ | ∃̺ ∈ r2,AJaK̺ = 1 ∧ 〈c1, ̺〉 →∗ ̺′}

∪ {̺′ | ∃̺ ∈ r1,AJaK̺ = 0 ∧ 〈c0, ̺〉 →∗ ̺′}

| r1, r2 ∈ γ̇(̺♯)
})

(x)

⊆⊗ α̇
({

{̺′ | ̺′ ∈ r′
1} ∪ {̺

′ | ̺′ ∈ r′
2} | r

′
1 ∈ Jc1Kc ◦ γ̇(̺♯),

r′
2 ∈ Jc0Kc ◦ γ̇(̺♯)

})

(x)

⊆⊗ (γ̇ ◦ α̇ is extensive, and α̇ is monotone)

α̇
({

{̺′ | ̺′ ∈ r′
1} ∪ {̺

′ | ̺′ ∈ r′
2} |

r′
1 ∈ γ̇ ◦ α̇ ◦ Jc1Kc ◦ γ̇(̺♯),

r′
2 ∈ γ̇ ◦ α̇ ◦ Jc0Kc ◦ γ̇(̺♯)

})

(x)

⊆⊗ (By hypothesis in Equation (6.17) and monotony of α̇)

α̇
({

{̺′ | ̺′ ∈ r′
1} ∪ {̺

′ | ̺′ ∈ r′
2} |

r′
1 ∈ γ̇(Jc1K

♯̺♯), r′
2 ∈ γ̇(Jc0K

♯̺♯)
})

(x)

⊆⊗ (By definition of (α̇, γ̇))
(

proj1(Jc1K
♯̺♯(x)) ∪ proj1(Jc0K

♯̺♯(x)),

proj2(Jc1K
♯̺♯(x)) + proj2(Jc0K

♯̺♯(x))
)

Hence, the abstract semantics of conditionals is sound:

Jppif (a) c1 else c2K
♯̺♯ , let n = A

♯JaK̺♯ in

let ̺♯
1 = Jc1K

♯̺♯ in

let ̺♯
2 = Jc2K

♯̺♯ in

λid.







̺♯
1(id) ∪⊗ ̺♯

2(id) if n = 1

̺♯
1(id) ∪add(c1,c2) ̺♯

2(id) otherwise

— For sequences c1; c2:

α⊲
com(c1; c2)̺

♯ = α̇
(

{{̺2 : ∃̺ ∈ r, ̺→c1; c2
̺2} : r ∈ γ̇(̺♯)}

)
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= α̇
(

{{̺2 : ∃̺1 ∈ r1, ̺1 →c2
̺2} : r1 ∈ Jc1Kcγ̇(̺♯)}

)

⊆̇⊗α̇
(

{{̺2 : ∃̺1 ∈ r1, ̺1 →c2
̺2} : r1 ∈ γ̇ ◦ α̇

(

Jc1Kcγ̇(̺♯)
)

}
)

⊆̇⊗α̇
(

{{̺2 : ∃̺1 ∈ r1, ̺1 →c2
̺2} : r1 ∈ γ̇

(

Jc1K
♯̺♯
)

}
)

⊆̇⊗Jc2K
♯
(

Jc1K
♯̺♯
)

— For while loops ppwhile (a) c:

α⊲
com(ppwhile (a) c)̺♯ = α̇ ◦ Jppwhile (a) cKc ◦ γ̇(̺♯)

= (By characterizing the collecting semantics for loops

as a least fixpoint, as in [CP10, Section 4],

with FX0
= λX.X0 ∪ Jppif (a) c else ppskipKc )

α̇
(

lfp⊆
γ̇(̺♯) F

)

⊆̇⊗ (By the fixpoint transfer theorem)

lfp
⊆̇⊗

̺♯ Jppif (a) c else ppskipK♯
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