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Résumeé long du manuscrit

En raison de leur compacité atomique relativement faible par rapport aleurs homologues
cristallins, les verres subissent une densification significative (augmentation permanente de la
densité) sous des pressions hydrostatiques é evées.

En effet, la densité de la silice amorphe peut étre augmentée de 20 % et celle du verre a
vitre de 6 %, quand une pression suffisamment élevée est appliquée.

Les modifications permanentes de la densité des verres silicatés ne sont en général pas
accessibles via des essais mécaniques macroscopiques (comme l'essai de compression) en
raison de la fragilité du matériau.Au contraire, |I’essai de compression hydrostatique sur de
petits volumes de matériau entrave considérablement la possibilité de fissuration: des
déformations permanentes peuvent étre observées sans fissuration lorsque les possibles effets
parasites de cisaillement sont absents.Ces essais donnent généralement, apres la décharge (ex
situ), desinformations sur les changements de densité.

La combinaison de ces essais avec des techniques de spectroscopie physique (diffraction
des rayons X, spectroscopie Raman, Brillouin), par exemple dans une cellule a enclume
diamant, permet de suivre in situ les changements dans la structure de la silice (ordre a court
et a moyenne distance).

Cependant, d'un point de vue de la modélisation mécanique, la réponse mécanique in
situde I'essal est partielle car seules les informations de pression sont connues, pas la densité,
pendant |’ essai.

Les progrés récents en expérimentation ont permis d'obtenir la réponse mécanique in
situde I'essal de compression hydrostatique (courbe pression- changements de volume).Les
expériences de Sato et Funamori(Phys. Rev. Lett. 2008) ont été menées jusqu'a 60 GPa avec
une cellule a enclume diamant a température ambiante.La densité de I'échantillon de verre de
silice a éé déterminée in situ a partir des intensités de rayons X transmis mesurés pour
I'échantillon et pourcertains matériaux de référence.lls ont relié leur expérience a I'évolution
de la structure de la silice par des méthodes d'absorption des rayons X et des techniques de
diffraction.lls ont constaté que le verre de silice se comporte comme un seul polymorphe
amorphe ayant une structure de coordinence quatre (pour I’atome de silicium) en dessous de
10 GPa.

Des changements irréversibles dans |'ordre a moyenne distance commencent a environ
10 GPa (dénommé densification), jusgu'a 25 GPa.Cela correspond a une transformation
irréversible et progressive a partir d'une phase amorphe de faible densité a une phase amorphe
a haute densité.Cette derniére phase est caractérisée par une augmentation de la distribution
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statistique des anneaux a 4 et 3 tétraedres de SiOjavec une diminution de |'angle inter-
tétragdrique.

D'un point de vue plusmécanique, les mécanismes de déformation, entre O et 25 GPa,
peuvent étre représentés comme suit.

e Endessous d'un seuil de pression, le comportement est purement élastique.

e Au-dessus dun second seuil de pression, ci-apres dénommé pression de saturation, le
comportement est & nouveau purement éastique.

e Entre ces deux pressions, la densification se développe en augmentant la pression
appliquée (durcissement). Il y a également une augmentation significative des modules
d'élasticité avec le niveau de densification.

Avant cette récente avancée en expé&imentation, la modélisation de la déformation
permanente dans des verres était basée sur des essais mécaniques contraints qui font qu'il est
possible de développer des champs de déformation permanente stables sans rompre ou méme
se fissurer.ll sagit, par exemple, e cas des essais de dureté ou de rayage.

Pour des températures bien en dega de la transition vitreuse, selon la littérature, la
formation de I'empreinte résiduelle résulte de |'apport concomitant de deux meécanismes de
déformation: densification et glissement plastique.

Des modéles de comportement ont été développés afin de clarifier cette question sur la
dureté du verrells peuvent impliquer la plasticité isochore (ci-aprés dénommé plasticité) -
étant donc incapables de prédire ladensification ! -, la densification et la plasticité et méme le
durcissement.

Ces modéles sont souvent basés sur |a description correcte de I'indentation instrumentée,
qui enrichit I'essai de dureté en donnant acceés a la courbe de charge en fonction de la
pénétration.Ces nouvelles données sont utilisées pour suggérer des lois de comportement plus
réalistes d'une maniere simple.

Le test dindentation est hétérogene par nature et par consequent, les simulations
numériques par la méthode des ééments finis sont généralement utilisées pour estimer les
propriétés des matériaux via la courbe de charge en fonction de la pénétration et de
I'empreinte résiduelle.

Ces parametres matériel s sont ensuite estimeés en utilisant une procédure d'identification.
Ces modélisations ont été proposées ces quinze dernieres années, notamment dans les cauvres
clés deLambropoulos (J. Am. Ceram. Soc., 1997) et Kermoucheet al. (Acta Mater., 2008).
Ces deux modeles supposent que la combinaison de la pression et du cisaillement provoquent
une déformation permanente (densification et la plasticité).

Au final, dans toutes les modélisations, I'attention a été portée principalement sur le réle
du cisaillement sur le processus de déformation permanente. |l semble gque différents modeles
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permettent de décrire quantitativement la courbe charge-déplacement en indentation
instrumentée.On remarque également quecertains modéles ne considerent pas le
comportement de durcissement comme celui de densification.Par ailleurs, aucun modele ne
tient compte de la saturation de la densification ainsi que les changements dans les paramétres
d élagticité avec la densification.

Surtout, il faut noter que peu d’ attention a été portée ala modélisation de ce qui se passe
sur I'axe hydrostatique, c'est-a-dire de ne considérer que la seule pression.

Le but de ce mémoire est donc de se concentrer sur le processus de densification seul
sous de tres hautes pressions hydrostatiques, avec un nouveau modéle de comportement
permettant de tenir compte de |'apparition de la densificationau dela d'un seuil de pression, de
I'augmentation de la pression appliquée, de sa saturation au dela d'un second seuil de pression,
et des changements dans |les parametres d’ élasticité couplés avec le processus de densification.
Nous limitons les pressions appliquées a des niveaux inférieurs a 25 GPa pour éviter les
transformations de phase non liées a la seule densification.Le choix est fait de se placer dans
le cadre de la mécanique des milieux continus plutdt que dutiliser des
modélisationsmésoscopiques discrétes, comme la dynamique moléculaire, afin de permettre,
dans un avenir proche, la simulation d’ essais plus compliqués, tels que I'indentation ou rayure,
nécessitant un grand nombre d'atomes et de grandes durées de simulation, encore
inaccessibles a ce jour avec des modél es mésoscopiques.

L e mémoire est organisé comme suit.

Le premier chapitre, une éude bibliographique, est dédié a la description des verres
inorganiques étudiés (verres silicatés, verres au bore, verres de germanates, verres de
chalcogénures, verres métaliques) et a leur comportement sous trés hautes pressions.
L historique des expériences (conditions d’essai, discussion scientifiques voire polémiques)
est tout d abord rappelé dans des conditions quasi-hydrostatiques mais aussi lors d'essais
d’indentation, de rayage ou encore de dynamique (chocs et impacts).

Les conséquences de la densification sont ensuite décrits en termes de propriétés
mécaniques (célérités des ondes acoustiques, parametres d éagticité) et de changement de
comportement physique étudié par des techniques de spectroscopie de diffusion Raman et
Brillouin.

Les techniques de modélisation sont ensuite abordées aux échelles atomiques
(dynamique moléculaire) et macroscopique (milieux continus et simulations éléments finis).
Enfin, les modifications structurelles du réseau vitreux a courte et moyenne distance sont
décrites en lien avec les différentes étapes de la densification.
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L e second chapitre décrit le nouveau modéle de comportement envisagé pour modéliser
la densification sous tres hautes pressions dans le verre de silice.

Pour cela, nous utilisons les données expérimentales ex situ de Rouxelet al. (J. Appl.
Phys. 2010) pour estimer les paramétres matériels figurant dans nos équations de
comportement. Plusieurs types d'écrouissage sont envisagés (linéaire, non-linéaire). Les
différents mécanismes sont clairement décrits étape par étape.

Nous avons implémenté notre modéle de comportement dans le code de calcul par
ééments finis Abagus/Standard via une routine UMAT.Nous décrivons |’ensemble des
égquations en petites transformations du fait de |’ utilisation d’ une configuration corotationnelle
pour les écrire, avant de passer ala configuration déformée.

Nous présentons ensuite une simulation par ééments finis de I'essai de compression
hydrostatique. Enfin, aprés avoir décrit la méthode inverse retenue, nous identifions nos
parameétres matériels inconnus a partir des données expérimentalesin situ de Sato et Funamori
(Phys. Rev. Lett., 2008).

La comparaison entre simulations numeriques et résultats expérimentaux est tres bonne,
ce qui nous permet de valider notre modele, en particulier avec un écrouissage non linéaire.

Une perspective immédiate a ce travail est de Sintéresser maintenant aux couplages
entre pression et cisaillement, densification et plasticité, et ce pour décrire les essais plus
complexes d’indentation et de rayage. Une autre perspective est d' utiliser le modéle proposé
pour le verre de silice pour d autres verres silicatés afin d' éudier |’ effet de modificateurs de
réseau sur les mécanismes de densification et de glissement plastique.

Xvi



| ntroduction

It is well known that the density of glasses, such as silica, silicate glasses, boric
oxide glass, germinate glasses, chalcogenide and chalcohalide glasses, and bulk
metallic glasses can be increased under high pressures [Bridgman 1953, Rouxel 2008].
In particular, amorphous silica (SiO;) densifies permanently under hydrostatic
pressure [Bridgman 1953, Meade 1987, Zha 1994, Sato 2008], indentation [Peter
1970, Yoshida 2005], shock loading [Sugiura 1997] or neutron irradiation [Katayama
2005]. As a matter of fact, the density of amorphous silica can be increased by up to
20% and that of windows glass by 6%, when a sufficiently high hydrostatic pressure
isapplied [J 2006, Rouxel 2008, Sato 2008].

Previous studies showed that densification plays a major role in amorphous silica
whereas volume conservative shear flow predominates in bulk metallic glasses
[Yoshida 2005]. Permanent modification in silica glass density is uneasy to
investigate via unconstrained macroscopical testing (such as the compression test)
because of the material brittleness. As far as we know, high pressure investigations
have mostly focused on the subtle structural changes occurring at the atomic scale and
were limited to very few glass systems among which silica is by far the most
documented one [Rouxel 2008]. Moreover, data on the post-decompression density
change are especiadly scarce, either because specimens fragmented during the
test—which means that the loading was not perfectly hydrostatic—or because the
specimens were too small. Therefore, to clarify of the deformation behavior of glass
under high pressure and from a modeling point to study this case are of paramount
interest to get insight into the mechanism of inelastic deformation observed in glasses
at room temperature.

Tracing back to the pioneering work of Bridgman and Simon [Bridgman 1953],
silica presented a permanent densification behavior by measuring the densities before
and after compression, and reached 6-7 percentage increase in density subjected to a
pressure of 200 kilobars at room temperature. Following this work, Cohen and Roy
[Roy 1961, Cohen 1961] reported a density increase of 7 percent at only 55 kilobars,
and pointed out that from 20 to 160 kilobars, densification of silica glass at room
temperature was a linear function of pressure by using the refractive index as a probe
for densification. Afterwards, Wier and Spinner [Wier 1962], commented on Cohen
and Roy’s results and pointed out that there was no simple direct correspondence
between refractive index and density. Replying to Wier’'s question, Cohen and Roy
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pointed out the fact that shear played an important role in the kinetics of densification
[Cohen 1962]. Mackenzie [Mackenzie 1963a, Mackenzie 1963b], used Diamond anvil
cell loading apparatus with different confining media (alumina or silver chloride) to
study the role of shear, time and temperature. Interestingly, they found ~16 percent
densification, which was much bigger than that obtained by Bridgman and Cohen, for
silica under 80 kilobars pressure at 300°C by using alumina cell. And he concluded
that densification resulting from compression of silica glass in the rigid state depends
on the external shear inherent to the particular apparatus and technique. Meanwhile,
Christiansen et a. [Christiansen 1962], found a force distribution induced
heterogeneous of densification from the samples center to its boundaries.
Furthermore, Arndt [Arndt 1969], studied the effect of impurities on densification of
silica glass and demonstrated that densification of vitreous silica under identical
experimental conditions produces different results, depending on the nature and
relative concentrations of different kinds of impurities.

In the 1980’'s, Mao-Bell type diamond cells were used in combination with
Brillouin- and Raman-scattering physical spectroscopies to measure the static
compression of fused silica [Grimsditch 1984]. Grimsditch used Brillouin scattering
to show that an irreversible change in the longitudinal sound velocity took place
between 10-17 GPa and indicated the existence of a new form of amorphous SiO;,
which is stable at atmospheric pressure. Grimsditch felt that it deserved the label
“amorphous polymorph”. Afterward, Meade and Jeanloz [Meade 1987] measured the
static compression of fused silica above 10 GPa, and they found that the bulk modulus
increased sharply at high hydrostatic pressure (~11 GPa). They inferred that at high
pressure the compression mechanisms were similar at equivalent volumes and thus
the increase in bulk modulus was due to the transition between relaxed and unrelaxed
moduli. Furthermore, Meade et al. used x-ray diffraction to measure the first sharp
diffraction peak of SIO, glass, and found that the coordination of Si. Initially 4
increases between 8 to 28 GPa and reaching six at 42 GPa [Meade 1992]. Later, Zha
et al. measured the acoustic velocities and refractive index of SiO, glass up to 57.5
GPa by Brillouin scattering in diamond cells at room temperature. They found that
both longitudinal and transverse velocities increased sharply between 12 and 23 GPa,
and the bulk velocity followed a trend similar to coesite at higher pressures [Zha
1994].

More recently, Rouxel et al., used octahedral multi-anvil apparatus (OMAA) to
carry out more ideal hydro-static pressure experiments [J 2007, Rouxel 2008]. They
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obtained whole samples that not break after decompression for pressures as high as 25
GPa and measured the densities [Ji 2007]. More recently, Sato and Funamori,
developed synchrotron x-ray absorption and diffraction techniques to measure the
in-situ behavior of Silica under high pressure up to 100 GPa [Sato 2008, Sato 2010].
They succeeded in measuring the densities up to 50 GPa. Wakabayashi et al., studied
the compression behavior of fully densified SO, glass up to 9 GPa at room
temperature and clarified that the glass behaved in an elastic manner by
optical-microscope observation, x-ray diffraction and Raman scattering measurements
[Wakabayashi 2011].

From a more mechanistic point of view, the deformation mechanisms, between 0
to 25 GPa, may be depicted as follows [Bridgman 1953, Cohen 1962, Zha 1994,
Rouxel 2008, Sato 2008, Wakabayashi 2011]. Below a threshold pressure, the
behavior is purely elastic. Above a second threshold pressure, further referred to as
saturation pressure, the behavior is once again purely elastic. In between these two
pressures, densification occurs and develops by increasing the applied pressure and
the elastic moduli increase with the densification level.

At the same time, molecular dynamic simulations and finite element analysis
have been used to explore the densification mechanisms in amorphous silica. For
molecular dynamic simulations, Tse et al. used a two body potential model to study
the structure of amorphous SO, at ambient pressure and found that the Si
coordination number with oxygens in the network increases from 4 to about 5 in the
material taken at 15 GPa and reaches 6 at higher pressures [Tse 1992]. Valle et al.
draw the same conclusion [Valle 1996]. For finite element analysis, constitutive
models were developed to clarify this issue with respect to the hardness of glass
[Yasui 1982, Lambropoulos 1997, Kermouche 2008]. In Yasui and Imaoka's work,
they introduced a densification factor into their Mohr-Coulomb type modeling to
study different alkali content NapO-SIO, glasses [Yasui 1982]. Lambropolous et al.
discussed a constitutive model describing the permanent densification of fused silica
under large applied pressures and shear stresses. Their constitutive law is assumed to
be rate-independent and uses a yield function coupling hydrostatic pressure and shear
siress, a flow rule describing the evolution of permanent strains after initial
densification [Lambropoulos 1997]. Recently, Kermouche et al. developed an €lliptic
yield criterion to establish a new congtitutive law to model the plastic deformation of
amorphous silica [Kermouche 2008]. A set of material properties was determined by
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comparing experimental |load-displacement indentation curves to from their finite
simulations. Their results show good agreement with the indentation-induced
densification maps obtained by Perriot et al. [Perriot 2006].

In al these models, attention has been paid mainly on the role of shear on the
permanent deformation process. It appears, from the survey of these constitutive
equations and the numerical simulations made with them, that different models allow
one to fit the load-displacement curve in instrumented indentation. It is worth pointing
out that, some models do not consider hardening-like behavior of densification
[Imaoka 1976, Lambropoulos 1997]. Moreover, no model takes into account the
saturation in densfication as well as the changes in elastic parameters with
densification. Meanwhile, not much effort has been devoted to what takes place on
the hydrostatic axis during hydrostatic compression.

The purpose of this work is to review the densification behavior of glass under
very high pressure and clarify the deformation process under pressure of silica
Furthermore, recent advances in experimental testing have made it possible to obtain
the in situ mechanical response of hydrostatic compression experiments (curve
pressure-volume changes). A new constitutive equation is established to portray the
deformation process including densification, hardening, saturation of densification,
and changesin elastic moduli below 25 GPa.

Thisthesisis organized asfollows:

® Chapter 1 presents an overview of the physical and mechanical properties of
glasses with a specific focus on the fundamental deformation mechanisms
of densification and shear flow in glasses. Based on the glass compositions
of interest, we give a clear densification research progress from its
foundation and controversial topics, and apparatus technical developments
and their achievements, microscopic evidence with structure transformation
anaysis, molecular-dynamics simulations and numerical finite element
methods study of its deformation and densification mechanisms. Finally, we
summarize the universal densification phenomenon and discuss the intricate
but promising interplay between the elasticity, plasticity, densification,
hardening and saturation mechanisms during the glasses deformation
process.

® Chapter 2 firstly presents the useful experimental information both of ex situ
and in situ experiments, and then extracts the data for our simulations. Then
we establish our constitutive equations step by step from simple to complex
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by means of the yield function and flow rule. Then we implement the
numerical model via the subroutine UMAT into ABAQUS (FE software).
Our numerical results are compared with the ex situ experimental data and
in situ experimental data. Three different hardening rules (one linear
hardening and two non-linear hardening laws) are used in our simulations.
Reverse analysis is employed to identify some parameters of the models. It
is shown that our models have good agreement with both in situ and ex situ
experimental results.
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Chapter 1

Densification Mechanism in

Glasses: A Review

The book which the reader now holds in his hands, from
one end to the other, as a whole and in its details,
whatever gaps, exceptions, or weaknesses it may contain,
treats of the advance from evil to good, from injustice to
justice, from falsity to truth, from darkness to daylight,
from blind appetite to conscience, from decay to life, from
bestiality to duty, from Hell to Heaven, from limbo to God.
Matter itself is the starting-point, and the point of arrival
is the soul. Hydra at the beginning, an angel at the end.

-- Victor Hugo




Chapter 1 Densification Mechanism in Glasses: A review

The glass world which the scientists now study in our life, from one dimension to three
dimensions, as a whole and in its details, whatever compositions, structures, advantages or
weaknesses it may contain, treats of the advance from superficial to profound, from deformation to
mechanisms, from falsity to truth, from assumptions to theories, from blind to clarity. Mechanism
itself is the predominant-point, and the point of arrival is the soul. Review at the beginning, rule at
the end.

Contents
1.1 Introduction.. Y
1.2 Glasscomp05|t|on and structures PN <
1.2 1 SIHCAGIASS. .. cue et ettt et e e e e e e e e 5
1.2.2 SIHHICAE QIASSES... .. vt ettt ettt e e e e 7
1.2.3BOrCOXIAR GIBSS. ... e e et e et e e e e e 7
1.2.4 Germanate glasses... . PPN <
1.2.5 Chal cogenide and chal cohallde glasses ........................................... 8
1.2.6 Bulk metallic glasses..........ooviiieiie i 8
1.3 Densification eXPerimMENTS. .. ..ot e e e e e e 10
1.3.1 Densification under high-pressure...........ooveeeie i e 11
1.3.1.1 Definition of densification.. N I
1.3.1.2 Archimedes methods for meawrlng densty PP &
1.3.1.3 Techniques of high-pressure... 12
1.3.1.4 Densification behavior under hlgh pressure ............................. 16
1.3.2 Indentation and DensifiCalion...........c.ooiiiieiie i i e e 24
1.3.2.1 Indentation and Cracks... e 24
1.3.2.2 Quantitative evaluation of mdentatlon mduced densm catlon ......... 25

1.3.3 Shock Wave Compression and Structure.............c.ccoevvvvenineennn.....26
1.3.3.1 Densification and shock COmMpression............cccceeveevvieneneienenenn . 26
1.3.3.2 First sharp diffraction peak study...........cccooooiiniiiniiininiienn 27

1.4 Densification and materials’ properties...........ccovvviiii i iiiiiiiieeeee, 29
1.4.1 Sound velocities and refractive index.. 24
1.4.2 Bulk modulus, elastic modulus and shear modulus PR ¢
1.4.3 Poisson’s ratio and the high pressure densification................cocoevnee. 33
1.4.4 Densification and Raman SPECIIOSCOPY ... ... cvuuerveeeeaenerie e ieiieeeee 3D

1.5 Modeling of densification.. PP, ¥
1.5.1 Molecular- dynammsmulatlon PP ¥ 4

1.5.2 Finite element method (FEM)37
1.6 DiscussSion and ProSPeCT........coveiieie it e e e e e D2
1.6.1 Effect of time and teEMPErature ...........c.ooouveiie i e 42



Chapter 1

Densification Mechanism in Glasses: A review

1.6.2 Intermediate-range order interpretation

L7 SUMIMAIY .. et e e e e et e e et et e e et e e et e e e et e e
RTINS . .. o e et e e e e e e e e e e e e e e



Chapter 1 Densification Mechanism in Glasses: A review

1.1 Introduction

Plasticity in metals, ceramics, polymers and metalic glasses is of paramount
importance both in engineering and science research from a fundamental point of
view. The inelastic deformation at the macroscopic and microscopic scales of glasses
present a great interest to physicists, material scientists and engineers [Taylor 1949,
Marsh 1964, Primak 1975, Varshneya 1994, Zarzycki 1991]. Shear flow, densification,
and hardening, the most important aspects standing for the inelastic properties of
glasses, areissues, yet to be understood.

In particular, pressure induced changes in the structure and properties of glasses,
such as fused silica, dlicate glasses, boric oxide glass, germinate glasses,
chalcogenide and chalcohalide glasses, and bulk metallic glasses, is an important and
challenging issue in contact mechanics and condensed-matter physics [Bridgman
1953, Rouxel 2007]. Numerous experimental and theoretical studies have revealed
that SIO, glass shows anomalous behavior such as elastic softening with increasing
pressure up to 2-5 GPa [Grimsditch 1984, Zha 1994] and permanent densification by
applying a pressure more than 10 GPa [Bridgman 1953, Grimsditch 1984, Meade
1987, Zha 1994, Rouxel 2008, Sato 2008]. Moreover, indentation [Peter 1970,
Yoshida 2005], shock wave compression [Sugiura 1997], or neutron irradiation
[Katayama 2005] experiments all show the densification behavior in silica. At the
same time, molecular dynamic simulations [Valle 1996, Liang 2007] and finite
element analysis [Xin 2000, Kermouche 2008] are used to explore the densification
mechanism in amorphous silica, which might help us for further understanding. For
the sake of understanding the deformation behavior, it is important to holistically
summarize the accumul ated data over the past decade or so.

In this chapter, our purpose is to present an overview of the physical and
mechanical properties of glasses especially with a specific focus on the fundamental
deformation mechanism of densification and shear flow in glasses. Based on the
interesting glass composition and structures, we give a clear densification research
progress from its foundation and controversia topics, and apparatus technical
developments and their achievements, microscopic evidence with structure
transformation analysis, molecul ar-dynamics simulations and numerical finite element
methods study of its deformation and densification mechanism. Finally, we
summarize the universal densification phenomenon and discuss the intricate but
promising hotspot which involves the elasticity, plasticity, densification, hardening
and saturation during the glasses deformation process.
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1.2 Glass composition and structures

Inorganic glasses are spectacular materials to study from a fundamental point of
view as they pose challenging and as yet unsolved problems in the field of condensed
matter physics and solid mechanics [Greaves 2007]. Silicate glasses, borosilicate
glasses, germanate glasses, chalcogenide and chalcohalide glasses, polymer glasses,
and bulk metallic glasses have been investigated from a densification point of view.
From a historical standpoint silicate glasses are the most ancient materials known to
mankind, have been found predominantly amongst all the used inorganic glasses, and
indeed offer important insight into the physical-mechanical-chemical research in the
last 60 years. Normally, the composition, the static atomic structure and some basic
material properties of inorganic glasses draw attention to researchers. Following, we
select some typical glasses to recommend helping us having a good understanding of
them.

1.2.1 Silica glass

Among all the previous research, pure silica glass (vitreous silica, fused silica) is
the most used glass for its main property of transparency in the visible light, and also
since it has a great refractoriness, a high chemical resistance to corrosion (particularly
to acids), a very low electrical conductivity, a near-zero (~5.5x10/°C) coefficient
of thermal expansion, and good UV transparency. In most cases, (there are around 20
ways for obtaining amorphous silical) silica glass is obtained by melting high-purity
quartz crystals or beneficiated sand at temperatures in excess of 2000°C [Varshneya
1994].

The structure of silica glassis the ssimplest of all the glass structures, yet many of
the details are not yet fully understood [Wright 1989]. As shown in figure 1.1a, glass
consists of dlightly distorted SiO, tetrahedral joined to each other at corners. The basic
unit is shown in figure 1.1b. Each oxygen acting as a bridge between neighboring
tetrahedra, and hence is called bridging oxygen, or simply a BO. Nearly 100% of the
oxygens are bridging except for some defect sites and for those associated with
impuritiesin commercial specimens. The bond details, especially the bond strength of

Figure 1.1 (a) Atomic structures representation of SIO, glass. (b) Basic unit of SiO..
(c) Definition of the bond angle  and the torsion angles a,; and as.
Si-O, are presented in Table 1.1. The angle B between two neighboring tetrahedra
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(=Sig)-Os-Six= angle) is called the bond angle. Torsion angles a; and o, are,
respectively, the azimuth angle between Si(1)-O1 and O4-Siz) when projected on the
0:1-0,-O3 plane, and the rotation angle about the O4-Si o, axis. Mostly, the disorder of
the glass structure is ascribed to the variations in the bond angle f and the torsion
angles a1 and ap, and to some extent to the variation in bond lengths [Varshneya
1994].

Table 1.1 Single Bond Strength for Oxides [Varshneya 1994]
Dissociation energy E,

M inMOx Vaence Coordination number  Single-bond strength (kcals)
per MOx (kcals)

B 3 356 3 119
Si 4 424 4 106
Ge 4 431 4 108
Al 3 402-317 4 101-79
B 3 356 4 89

P 5 442 4 111-88
\% 5 449 4 112-90
As 5 349 4 87-70
Sb 5 339 4 85-68
Zr 4 485 6 81

For vitreous silica or fused silica, their composition is 100% of SIO,, and the
density at room temperature, Poisson’s ratio, Young's modulus (E), bulk modulus (K),
shear modulus (G), glass transition temperature, and refractive index are listed in table
1.2. Even if, there are small changes in their properties by different processing
methods or properties measurements, the basic properties are always convincible.

Table 1.2 Composition and basic properties of inorganic glasses

Densit ; Young's Bulk Shear Glass Refractive
Composition ¥ Poisson’s 9 transition index n
(mol.%) p atio modulus  modulus  modulus temperature References
: (g/cm®) E(GPa) K(GPa) G(GPa) T(K)
g
) . SO, 2.20 0.15 70 333 ~1463 1.458 [Rouxel 2007]
Vitreous silica ] )
SO, 2.20 0.17 74.5 319 1373 1.458 [Ji 2007]
Window Glass 72.6 SO, 2514 0.23 715 29.1 773 [Ji 2007]
Vitreous borates B,0O3 255 0.26 17.1 121 541 [Rouxel 2008a]
Germanates GeO, 3.63 0.19 43.3 23.28 808 1.608 [Rouxel 2007]
) GeSe, 4.2 15 14 658 17 [Antao 2008]
Chalcogenides )
80Se-20Ge (GeSey) 4.337 0.29 14.8 57 435 [Ji 2007]
BMGs 557r-30Cu-10AI-5Ni  6.830 0.38 814 683 [Ji 2007]
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1.2.2 Silicate glasses

Silicate glasses usualy contain up to 60-70 mol% SiO,. Usual additives include
alkaline and alkaline-earth oxides among which Na,O and CaO are the most common
in window glass compositions. The alkaline and akaline-earth oxides are network
modifiers; they enter the glass as singly charged cations and occupy interstitial sites.
Such elements (P, Al, Ge, Zr, Si, and B) give their names to different oxide glass
families with T4 ranging between 600 and 1300 K and Young's modulus between 30
and 100 GPa[Rouxel 2007].

Some silicasoda glass (10mol.%Na0O, 23mol.%NaO or 31mol.%Na,0)
[Bridgman 1953], silica-alkai glass (22mol.%Li,0, and 23mol.%K,0) [Bridgman
1953], Ca-Mg-Na glass (79.6% SO,) [Meade 1987] and Some sodalime glass
(window glass, 72.6Si0; -9.8 Na,O -6.0 CaO -4.3 K0 -2.9 MgO - 2.4 BaO -2.0
Al,O3) [J 2006, Rouxel 2008a] are used to investigate their deformation under
high-pressure and their densification behavior. Properties of one typical silicate glass,
windows glass (WG) used by Ji et al. [ Ji 2007], with a density of 2.514 g/cm® has a
higher Poisson’s of 0.23 compared to vitreous silicaare listed in Table 1.2.

1.2.3 Boric oxide glass

Compared to silicate glasses, in borate glasses the polymerization of the network
former, B,Og, is different from silica and the modification of the borate glass network
does not follow the same rules as silicate glasses. The structure of the simplest borate
glass is B,Os, where the oxygen coordination around each B is only 3, and hence the
basic structure unit is BOs triangle. It is believed that B is dightly above the plane of
the three oxygens. Again, all the oxygens are bridging between neighboring triangles.
It seems that the glass structure consists, to a large extent, of planar B3Og, boroxol
rings made of three corner-shared BO;3 triangles, as shown in figure 1.2 [Greaves
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Figure 1.2 (a) Configuration of the boroxoal ring. (b) Three-dimensional representation of the
random network model of the structure of B,Oj; glass consisting of B;Og boroxol groups and
BO; triangles. B and O atoms are shown as red and turquoise, respectively. [Varshneya 1994]

2007, Bray 1998, Jellison 1977, Warafen 1980, Hannon 1995, Youngman 1994].
These rings are connected one to another by a small non-ring population of BO3
triangles. Studies demonstrate that ~75% of B atoms need to be in boroxol rings in
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order for the structure to be consistent with intermediate-range order (IRO)
[Mackenzie 1963a, Miracle 2004] features and indeed the density of B,Os; glass
[ Takada 2003]. Compared to silicate glass, B,O3 has a much lower Young's' modulus
and bulk modulus about 17 GPa and 12 GPa (seein Table 1.2), respectively.

1.2.4 Germanate glasses

GeO,-based glasses are transparent in the 2-6 um IR wavelength range and exhibit
a good chemical durability. According to Hwa and Chao [Hwa 2005], the thermal
properties of germanates are comparable with those of silicates, which have smaller
cations and anions and thus have a lower IR cutoff. Hence, germanate glasses could
be used in high-energy laser applications for their excellent transmission in visible
and mid-IR regions. A typical glass of germanate glass is GeO,, which has a
tetrahedral structure of GeO, similar to silicaglass.

1.2.5 Chalcogenide and chalcohalide glasses

Chalcogenide and chalcohalide glasses are obtained by melting chalcogen
elements (group VI: S, Se, and Te) with one or more of groups V and IV elements
which poses a good semiconducting behavior, photoconductivity and IR-transmitting
properties. These glasses consist of disordered rings (molecules), chains, sheets, and
three-dimensional networks. The bonding is generally covalent, with weak van der
Waals attraction between the molecules, chains, etc.

Chalcogenide glasses are either sulfides, selenides or tellurides, mainly of B, As,
Sb, P, Si and Ge which play the analogous role of network-formers in oxide glasses.
Their inherent structural flexibility is related to two important and rather unique
characteristics of chalcogenide glasses: (i) besides a covalent network made of corner-
and edge-shared coordination polyhedral, the structure may also contain well-defined
molecular units and (ii) glasses can be made with compositions that deviate
significantly from stoichiometry enabling the average coordination number and
energy gap to be altered in a controlled way. The typical used chalcogenide glassesin
densification research are GeSe, and GeSes.  Thelr properties are given in table 1.2.

1.2.6 Metallic glasses

Metallic glasses, with superior strength and hardness, and excellent corrosion and
wear resistance, have arisen great interesting to many scientists in the past two
decades. Compared to traditional crystalline metals' long-range order (figure 1.3a),
metallic glasses do not have the long-range order and no crystalline boundaries, but
have a topological arrangement of atoms inside which present an intermediate-range
order is present, as shown in figure 1.3b.
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Figure 1.3 Presentation of structure: (a) Normal crystal metals and (b) Bulk metallic glass.

Recently, scientists have found some pressure-densification behavior of
Zrs5CusAlioNis and CezsAls [Rouxel 2008, Zeng 2010]. The low maximum
densification percent may be attributed to its high atomic packing density.
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1.3 Densification experiments

From the1950s to the 2010s, works on densification have made great progress.

Table 1.3 Densification research progress from 1950s-2010s.

Period Experimental Technologies Research Progress References
1950s  Carboloy compression apparatus (CCA) Densification phenomena at high pressure [Bridgman 1953]
Opposed-anvil type apparatus(OAA) Saturation of densification
. ) . [Cohen 1961],
“Belt apparatus’ (BA) Role of time, temperature, pressure and with applied shear )
1960s . . o . . [Mackenziel963al
High temperature compression Local densification under indentation )
) ) ) [Mackenzie1963b]
Vickersindentation Hardness measurement
. Densification hand cracks in indentation [Peter 1970],
1970s  Indentation o . L
Densification linked to the decrease of inter bond ploarizability [Hagan 1979]
. ) _ Irreversible changesin longitudinal sound velocity under high pressure
Diamond anvil cell (Mao-Bell type diamond) . . . o
1980s o . Bulk modulus increases sharply at hydrostatic pressuresin silica glasses [Grimsditch 1984]
Brillouin- and Raman-scattering »
Metastable states of amorphous silica
First shape diffraction peak (FSDP) shows the modification in the intermediate-range
order [Suaman 1991],
e Neutron-diffraction Anomalous changes in slopes between longitudinal and transverse sound velocitiesin ~ [Meade 1987],
S
Shock compression the low-pressure region (around 3 GPa) [Zha1994],
Pressure dependence of sound velocities, refractive index, bulk modulus and [Polian 1993]
Poisson’sratio up to 57.5 GPain silica glass
Intermediate-range order change due to bond rotation and tetrahedral structure
distortion causing densification in GeO, glass )
" . ) - e [Ji 2007],
. . Quantitative estimation of indentation-induced densification in glass
Octahedral multi-anvil apparatus (OMAA) = [Rouxel 2008al,
i i o Pressure dependence of the FSDP position
X-ray diffraction and synchrotron radiation . . . " [Kermouche 2008],
Low density amorphous phase to High density amorphous phase transition .
2000s AFM o . ) [Xin 2000],
) . Network rigidity changesin GeSe; glass at high pressure
Develop synchrotron x-ray and diffraction [Sato 2010],

techniques

A direct correlation between Poisson’s ratio and the maximum post-decomposition
density among 3D-0D glasses

Measuring the density and structure of SiO, glass under high pressure up to 207GPa
An elastic deformation manner for fully densified silicaunder 9 GPa

[Wakabayashi 2011]

The developments in densification research are shown in Table 1.3. We would like to
present a detailed progress in experiments as follows: (i) densification under
high-pressure with experimental achievements and the basic densification behavior;
(if) densfication and indentation, which give us a way to survey the densification
phenomena in inorganic deformation process, as well as to understanding the elastic,
plastic and hardening behaviors; (iii) densification under shock wave compression,
which focus on the instant impact and the hysteresis effect of densification; (iv)
synchrotron x-ray absorption and diffraction techniques which provide a way to
measure the density and structure of SiO; in in-situ experiments.

10
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1.3.1 Densification under high-pressure

1.3.1.1 Definition of densification

Historically, the first and most predominant work on densification at the first
period (1950s) is provided by Bridgman and Simon [Bridgman 1953, Bridgman 1955].
According to their original work, they designed a Carboloy inserted compression
apparatus which could reach as high as 20 GPa for quasi hydro static pressures. After
a series of high pressures experiments, they found that glasses behave in a perfectly
elastic manner at low pressures, while at higher pressure permanent densification
occurred. For vitreous silica, they found that before 8-10GPa the silica glass exhibit
elastic behavior, while after the threshold pressure irreversible density increase
happened up to as high as 20 GPa. Although, their experimental technology could not
provide a pure hydro static state causing a lot of fragments of vitreous glass under
compression, they found an appreciable permanent density increase about 7.5%
compared to the original glass and 17.5% percent of maximum densification in some
fragments.

Therefore, this density permanent increase phenomena of glass under high
pressure is a typical irreversible behavior of inorganic glasses referred to as
densification. Usually, scientists use the changing of density compare to its original
density as the densification factor, which correlate to the change in volume, as shown
in function 1.1.

Densification factor « = AP _P=hy (1.2)
Po Po

Wherep,, p are the origina density and actual density, Apis the permanent

changes in density compression.
1.3.1.2 Archimedes methods for measuring density

The densities of the samples before and after compression were obtained by
means of a density gradient method consisting in learning the samples float in a
mixture of two liquids as shown in figure 1.4. For instance, Bridgman and Simon used
tetrabromoethane, p=2.95 g/cm® and carbon tetrachloride, p=1.45g/cm®, and Ji and
Rouxel et al., see figure 1.4, using iodobenzene, p=3.32 g/cm*and methylene iodide,
p=1.83 g/cm® to determine the densities of samples. Besides, by means of image
anaysis, using high resolution images of the specimens taken prior to- and after-
testing one can reach an accuracy density better than 0.001 g/cm®.

11
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Figure 1.4 Density gradient method slowly miscible liquids with different
densities (Ji 2007).

1.3.1.3 Very high-pressure techniques

® Very high-pressure techniquesin 1950s

When working in the range of pressures above 5 GPa, it becomes difficult to
operate strictly under hydrostatic conditions because of the limitations imposed by the
mechanical properties of the materials used for the pressure transmitting media.
Fortunately, Bridgman and Simon designed a Carboloy insert compression apparatus
(CCA, as shown in Figure 1.58), using a 75-ton hydraulic press to apply loads on
small and thin disks to explore the very high pressure (as high as 20 GPa) effect on
glass. Their initial work discovered the densification behavior of glass by using CCA
apparatus, but some shortage of their experiment were easy to be found as follows. (i)
Although, the dies were made of Carboloy (Young's modulus around 90 GPa), with
very low compressibility, they presented a non-uniform distribution of stress over the
contact area under the load. (ii) The normal stress at the center of the disk was lower
than average (total load divided by the total area of the disk) and the radial tangential
(shearing) stresses have their largest values near the periphery. Therefore, no
homogeneous deformation happened on their samples but left fragments after stress
released.

In summary, in these years, hydro static apparatus turns up. The shortage of the
machine is the unbalance distribution of pressure and the great influence of shear.

® Very high-pressure techniquesin 1960s

Keeping in mind the difference in the stress fields between the center and outside
edge of the anvil surfaces on Bridgman and Simon’s investigation, Christiansen et al.,
designed and constructed a multi-ring apparatus, as shown in figure 1.5b [Ernsberger
1968, Christiansen 1962], to survey the irreversible compressibility of silicaglassas a
means of determining the distribution of force in high-pressure cells. According to
their work, they obtained the approximate force distributions over the cells used in the
radioactive decay studies. Two types of cells were used in their investigation
compared with Bridgman's work, and they showed that it is misleading to use an

12
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average method to calculate the pressure and density from the fragments, but and that
one must consider the pressure distribution from the center to the edge on the
compressed samples to study the high pressure effect. Using pipestone disks coated
with metallic gold-bronze pressure cell, they succeeded in producing a symmetrical
compression of the disks with alow densification (maximum on the edge ~8%), while
using silver chloride- modified or lead-modified pressure cell, they found
unsymmetrical load phenomena and reached a much higher permanent densification
(maximum on the edge ~14.09%). It is worthy to mention that their method provides
us a way to determine the influence of shear as well as to study force distribution on
the disks by using different types of pressure cells.
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Figure 1.5 (a) Schematic diagram of compression apparatus. S- specimen; C- Carboloy
inserts.[Bridgman 1953] (b) Schematic of anvil assembly. [Ernsberger 1968] (c) High
pressure alumina cell “belt” densification apparatus. [Mackenzie 1963a)] (d) High pressure
silver chloride cell “belt” densification apparatus. [Mackenzie 1963a)

Facing the controversy of densification process between Bridgman, Cohen,
Christianse, et a., Mackenzie used a high-pressure “belt” apparatus [Hall 1960] using
two types of cells as shown in figure 1.5c and figure 1.5d. The specimen was placed
in the center of the pyrophyllite cell and separated from the graphite or Nichrome
resistance heater by two different types of materials. As shown in figure 1.5c, the first
type was stainless steel or alumina, hard pressure-transmitting medium, which
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represented the largest departure from ideal hydrostatic condition. The second class of
pressure-transmitting materials used consisted of isopentane, silicone oil and silver
chloride, as shown in figure 1.5d, representing a closer approach to hydrostatic
behavior or a condition or minimum shear. In general, this apparatus helped
Mackenzie to carry out densification experiments on some desired pressures and
temperatures to explain the time, temperature, pressure and shear roles during the
densification process.

In short, these techniques focus on understanding the pressure distribution impact
and trying to decrease the influence of shear. From now, scientist confirmed the
elastic deformation process below the densification threshold between 8-10 GPa, and
pointed out there will be a maximum densification value as high as to 20 GPa.

® Very high-pressure techniquesin 1980s — 1990s

With the technology development, Grimsditch, Meade, Polian, Zha, et al.
[Grimsditch 1984, Polian 1986, Meade 1987, Meade 1992, Polian 1993, Zha 1994],
used Mao-Bell-type diamond cell apparatus (DAC) to carry out very high pressure
experiments. The basic characteristic of the Mao-Bell type DAC is that the ring has a
small opening which can be used for Brillouin-scattering spectroscopy. Especially,
135° scattering geometry in the diamond-anvil cell overcome the very high pressure
(higher than 40 GPa) experiment’s sound velocities transverse problem, used in Zha's
investigation work and gave a clear evidence of the acoustic velocities and refractive
index effect under high pressurein silica glass.

At the same time, x-ray diffraction methods are used to study the structure
changing of silica under very high pressure. Meade et a, measured the x-ray structure
factor Q) for SIO2 glass up to 42 GPa in the diamond-anvil cell. Average pair
correlation functions at high pressure reveal significant changes in the nearest
neighbor geometry of the glass with compression [Meade 1992].

These techniques help scientists to measure the sound velocities and refractive
index of the samples to ultra high pressure up to 57 GPa, and confirm the
densification saturation pressure to be around 25-27 GPa. Furthermore these
techniques helped us to discover the polymorphism in SiO, glass under ultra high
pressure. The unsolved problem is how to get the accurate density of the samples for
in-situ experiments after pressure higher than 10 GPa.

® Very high-pressure techniques in 2000s

Recently, high pressure experiments were performed in an octahedral multi-anvil
apparatus (OMMA) using a Walker module [Ji 2006, Rouxel 2008a, Rouxel 2008b]
and following the procedure described elseawhere [Walker 1990, Hammouda 2003], as
shown in figure 1.6a. According to this work, most specimens came out in one piece
suggesting that the pressure device induced very little shear up to 25 GPa.

14



Chapter 1 Densification Mechanism in Glasses: A review

-\G}- I~ l
N D.01A
‘\i\-\\\r\"*“—‘ i-‘ P ﬁ.cm“c;"" siits
T SRR o e a
“~ &P '«‘"l;ﬁ_"!'_ sV \INOL
"""""" PY-- S5 P
AL — X17B2
/ =
/ ) L
—
YAG and CCD Camera Ultrasonic Interferometer
X-ray Imaging

Figure 1.6 (&) The high pressure testing machine and the multi-stage loading set-up used to
insure pure hydrostatic loading. [Rouxel 2008b] (b) Schematic experimental setup at X17B2,
NSLS, for simultaneous pressure-volume-temperature equation-of-state and sound-vel ocity
measurement. The thick arrows indicate the top and bottom anvils that can be advanced or
retracted to minimize stress.[Antao 2008]

Antao et al. [Antao 2008], used ultrasonic measurements at pressure, performed
using a DIA-type (see figure 1.6b), large volume apparatus (SAM85) in conjunction
with in situ energy-dispersive x-ray techniques, as shown in figure 1.6b. This
apparatus can provide a minimum observing in the shear-wave velocity, associated
anomalous behavior in specify Poisson’s ratio, and changes in elastic moduli.

Furthermore, Sato and Funamori, et a [Sato 2008, Sato 2010], developed
synchrotron x-ray absorption and diffraction techniques for measuring the density and
structure of SiIO, glass at high pressures as high as 100 GPa. Wakabayashi et al.
[Wakabayashi 2011], studied the compression behavior of fully densified SiO, upto 9
GPa at room temperature and found an elastic behavior and the increase in bulk
modulus vis-a-vis non densified on samples.

In general, in 2000s, the techniques can provide entire samples after high pressure
decompression up to 25 GPa. Sato et al., developed such a technique to get the in-situ
experimental density of silica under very high pressure. Therefore, using these
apparatus, it will help usto understand the densification mechanism.
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1.3.1.4 Densification behavior under high-pressure

® Silicate glass family
1) Vitreous glass

In Bridgman and Simon’s work, a threshold pressure near 10~12 GPa was
observed in silica glass: below the threshold no effect of densification took place and
above the threshold densification level increased sharply [Bridgman 1953, Bridgman
1955]. It is worthy to mention that they used the nominal pressure to calculate their
high pressure and used a floating method to obtain the sample or fragments density.
According to their work, densification of vitreous glass will reach a maximum value
about 6-7% for the center fragments when a pressure as high as 20 GPa (nominal).
More importantly, they obtained the density of the vitreous silica at the edge as high
as 2.61g/cm™, as compared with 2.22 g/lem™ of original (17.5% increase, see table
1.4), quite close to the density of quartz (2.65g/cm™). The irreversible increase of
density with pressureis shown in figure 1.7. However, x-ray diffraction measurements
performed indicating that compaction proceeds at the atomic scale leaving the
short-range order of the basic structural units unchanged. Besides, an appreciate
increase in the permanent effect is found at higher temperatures. For example, the
maximum permanent densification pressure drops from 20 GPa at room temperature
to 17 GPa at 150°C [Bridgman 1953].
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Figure 1.7 Relative increase of density of glasses [Bridgman 1953].

Cohen and Roy used their powered samples (40-80um) to carry out high pressure
experiments [Cohen 1961]. Refractive indices were measured by the oil-immersion
technique and densities by the sink-float technique. They found that the 6-7% density
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increase found by Bridgman and Simon at a reported 200 kilo bars was achieved in
their lab at a pressure of 55 kilo bars at room temperature and found the index of SiO,
increase from 1.458 to 1.545 at 200 kilo bars, meaning that silica glass can reach ~18%
of densification. Furthermore, at each pressure and temperature the respective glasses
studied attained an apparent metastable equilibrium volume in a very short time and
they suggested the densification of silica glass may be used as a standard for pressure
calibration.

Christiansen, Kistler and Gogarty [Christiansen 1962], used silver chloride- or
lead-modified type pressure cells to compare with normal high pressure experiments
to study the irreversible compressibility of silica glass as a means for determining the
distribution of force. Their investigation is: i) a symmetrically load from center to
edge of the disks at lower pressure and ii) an unsymmetrical load at higher pressure.
Their work explained the issue why only 6-7% percentage of densification was found
by Bridgman and Simon. Besides, they suggested the shearing action was necessary
for a permanent increase in density with pressure.

Mackenzie studied the densification of silica glass in rigid state under different
conditions of shear [Mackenzie 1963a, Mackenzie 1963b]. In every case of their
investigation, densification was much greater under conditions of larger external shear,
i.e.,, with the alumina cell. For example, at 40 kb and 400 °C for 2 minutes
densification in an alumina cell was 6.0% whereas none was obtained in their silver
chloride cell. At 60 kb and 400 °C, the densification values after 2 minutes in alumina
and in silver chloride cells were 12.8 and 5.0% respectively. They presumed that if
(AV),is the “elastic” decrease of the specific volume of a glass during compression

as given by the measured compressibility and (AV), is the shear-induced volume
change after compression, the ratio (AV),/(AV), should provide a measure for the

variation of the effect of shear with pressure. In general, he considered that
densification increased with time, temperature, pressure, and more important with
applied shear.
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Figure 1.8 Hydrostatic pressure compression below 10 GPa.
[Meade 1987, Zha 1994, Sato 2011]
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Meade et a., calculated density via an elastic behavior and measured the sound
velocity [Meade 1987]. In their experiments, irreversible compaction of fused silicais
precipitated by shear stresses above 10 GPa. The density changes with pressure are
shown in figure 1.8. Zha et al., using Brillouin scattering method in diamond cells,
obtained the ultra sonic sound velocity and refractive index of SIO, up to 57.5 GPa at
room temperature. They presented their accurate measurement of density up to 10
GPa, as shown in figure 1.8.

Recently, Sato et al., developed synchrotron x-ray absorption and diffraction
techniques for measuring the density and structure of non crystalline materials at high
pressures and have applied them to study the behavior of SO, glass [Sato 2008].
Below 10 GPa, the densities as shown in figure 1.8. It seems the same as Meade and
Zha et al., results. Moreover, they measured the densities up to 50 GPa as shown in
figure 1.9. The solid line represents the equation of state for six fold coordinated
amorphous polymorph of SiO, (p=3.88 g/cm®, bulk modulus Ko=190 GPa). They
suggested that SiO, glass behave as a single amorphous polymorph having a six
fold-coordinated structure at pressure above 40-45 GPa up to at least 100 GPa.
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Figure 1.9 Pressure dependence of density of SiO, glass [Sato 2008].

Wakabayashi, et a., studied the compression behavior of fully densified SO,
glass up to 9 GPa [Wakabayashi 2011] as shown in figure 1.10. They observed a
remarkable agreement between the volume data on compression and decompression,
and confirmed that the fully densified glass behave in an elastic manner. Furthermore,
they used x-ray diffraction and Raman scattering measurements to show the first
sharp diffraction peak and the main Raman band of the glass. They suggested that the
compaction of interstitial voids dominates in compression mechanisms of densified
SiO; glass, similar to the case for ordinary of SiO, glass took place between 9 and 13
GPa at room temperature.
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Figure 1.10 Pressure dependence of the density of fully densified SIO, glass at room
temperature [Wakabayashi 2011].

2) Silica-soda glasses

Silica-soda glasses manufactured with a composition of NaO out of silica matrix
are considered here. According to Bridgman's work, three glasses with molar
percentages 10 percent, 23 percent, and 31 percent Na,O (see figure 1.7), al have a
threshold pressure in the vicinity of 4 GPa [Bridgman 1953]. At the same time, a
marked decreasing of the permanent compressibility with increasing content of soda.
Evidently, with the increasing number of metallic cations embedded in the interstices
of the silica network, a permanent change of the structure becomes more difficult.

3) Silica-alkali glasses

The most important characteristic of silica-alkali glasses is that, in the silica
network, there are different kinds of alkali cations, such as M,O (M=Li, Na, K, Rb,
Cs, etc.). The difference of cations with different size involved inside the silica
network presents important effect of their densification behavior. Normaly, the
increasing of cation’s size would make a decreasing effect of densification ability.
Recently, Ji et a., found that the densification threshold of a Windows glass (a kind of
soda-lime glass) was around 8 GPa and its densification saturation value around 6.5%
which may be universal to silica-alkali glass family, aslisted in Table 1.4.
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Table 1.4 Experimental Datafor Glasses

Material _ Dlmen5|'0n Apparatus T(CC) P(GPa) Ap/py (%) references
Diameter  Thickness
Vitreous Silica 5-8 mm 0.15-0.25mm CCA RT 20 175 [8]
Sio2 40-80 um RT 55 7 [76]
Si0o2 0.24in. 0.006 in. DAC, lead ring RT 14 10.97 [14]
Sio2 4 mm 7-13mm USSA-2000 RT 16 20 [84]
Fused SI02 100 um 10-20 pm DAC, Mao-Bell cell  RT 10 24 [57]
Fused SI02 100 um 10-20 um DAC, Mao-Bell cell  RT 12.9 25 [57]
Fused SIO2 100 um 10-20 pm DAC, Mao-Bell cell RT 14.6 24 [57]
Si02 DAC, Mao-Bell cell RT 24 22 [69]
Si02 DAC, Mao-Bell cell  RT 15 20 [69]
Si02 DAC, Mao-Bell cell RT 16 19.6 [110]
S02 2mm OMAA RT 20 20 [43]
Si02 10 mm 0.8 mm Shock loading RT 21 19 [83]
S02 40-80 pm 16 18 [15][16]
Si02 37-4mm  2mm BA 600 10 15 [3]
Sio2 2mm 2mm OAA, AlLO; cell 400 6 14 [52]
Sio2 2mm 2mm OAA, AgCl cell 400 6 [52]
Sio2 40-80 um 300 4 [51]
Si02 40-80 pm 500 4 10 [51]
Sio2 2mm 2mm OAA, AgCl cell 300 4 0 [52]
Sio2 2mm 2mm OAA, AgClI cell 500 4 15 [52]
Fused silica 2mm 2 mm. OAA,AI,O; cell 500 6 12.32 [52]
Fused silica 2mm 2mm OAA Al O3 cell 600 75 17 [52]
Fused silica 2mm 2 mm. OAA, AgCl cell 500 6 10.5 [52]
Fused silica 2mm 2mm. OAA, AgClI cell 600 8 18.1 [52]
Ca-Mg-Naglass(79.6%SiOy) 100 um 10-20 um DAC, Mao-Bell cell RT 115 5 [57]
Viycor glass CCA RT 20 6.8 [8]
Window Glass 1.0mm 2mm OMAA RT 20 6 [74]
Silica-soda glass(10mol.%Na,0) CCA RT 13.6 8.7 [8]
Silica-soda glass(23mol.%Na,0) CCA RT 10.9 35 [8]
Silica-soda glass(31mol.%Na,0) CCA RT 13.8 0.7 [8]
Silica-alkali glass(22mol.% Li,0) CCA RT 11.2 6.9 (8]
Silica-alkali glass(23 mol.% K0) CCA RT 12.8 12 [8]
B,Os CCA RT 8 ~6 [8]
B,0O3 2mm 2 mm. OAA AIlL,O; cell 25-75 11 5 [52]
GeO, 2mm 2mm OAA AIlL,O3 cell 25 75 10 [52]
GeO, 2mm 2 mm. OAA AIL,O; cell 25 7.5 10 [52]
GeO, 2mm 2 mm. OAA AIL,O; cell 250 7.5 13 [52]
GeO, 2mm 2 mm. OAA AIL,O; cell 400 7.5 16 [52]
GeO, MAA RT 10 11 [77]
GeSe, 2mm 1.9mm OMAA RT 3 15 [74]
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GeSe, LVMA RT 9.6 4.8
Fs7BaysEusZrs RT 3 3
Zrs5CugpAl1oNis 2mm 20 mm OMAA RT 20 2
CerAlys 50 um *50 pm *12 pm DAC RT 24.4 8.6

[1]
[61]
[74]

[109]

Note: Carboloy compression apparatus (CCA) ; opposed-anvil type apparatus (OAA); Multi anvil press apparatus (MAA); Belt type
apparatus (BA); Diamond anvil cell (DAC) ;Large volume multi anvil (LVMA) ; Octahedral multi-anvil apparatus (OMAA)

® Boric oxide glass

Bridgman and Simon studied vitreous boric oxide under high pressure and found
that B,O3 exhibited much higher permanent changes in density in the region of low
pressures compared to silica glasses, and there was no observed threshold pressure.
Furthermore, they indicated that B,O; probably had an asymptotic increase of near 6
percent as shown in figure 1.7. Moreover, the reductions in thickness observed with
vitreous B,O; were as much as 58 percent after compression to 200 katm. X-ray
diffraction showed a part of vitreous B,O3; became crystal on the surface of the sample
during exposure in the moist air after compression. They considered that B,O3; had
incompl ete volume elasticity even at comparatively low hydrostatic pressures and the
compacting seemed to reach saturation at pressures of the order of 10 GPa. Cohen and
Roy aso demonstrated that B,O3 glass tend to crystallize when subjected to high
pressure for several days at room temperature and several hours at temperatures above
300 °C [Cohen 1961]. Mackenzie found the specific volume of densified boron
trioxide glasses increased with time at room temperature. Moreover, densification
increased with temperature and pressure. The use of higher pressure or temperature
was unfeasible for its crystallization.

® Germanate glasses

Mackenzie[Mackenzie 1963a, Mackenzie 1963b] carried out a few experiments
on germanium dioxide GeO,, all in alumina cells. The results together with those of
Cohen and Roy, show that similar to silica, densification increased with increasing
temperature at any pressure and their densification values increased from 9~10% at
room temperature to 16% at the temperature of 400K with the high pressure around
75GPa (as shown in Table 1.4).

® Chalcogenide and chalcohalide glasses

Recently, J and Rouxel undertook the densification experiments of a GeSe,
chalcogenide glass by means of an octahedral multi-anvil apparatus using a Walker
cell [Rouxel 2008b]. Interestingly, compared with the previous reported work of
silicate glass, no observed threshold pressures of GeSe, exist during the process with
pressure loading which has a saturation of densification about only 1.5% and a very
lower saturation pressure around 3 GPa [Rouxel 20083].
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Meanwhile, Antao et al., [Antao 2008] using large-volume multi-anvil apparatus,
with simultaneous pressure generation and ultrasonic measurements, observed the
effect on shear and compression wave velocities during the densification process in
amorphous GeSe,. They found that the initial density of the sample was ~4.2 g/cm?
and the density of the recovered sample after high-pressure ultrasonic study was 4.4
g/cm®around 9.5 GPa, which means 4.8% percentage of densification for GeSe,.

® Bulk metallic glasses (BMG)

Bulk metallic glasses have very high atomic packing density (c,>0.7) and high
Poisson’s ratio (v ~0.38), such as ZrssCuzAlioNis. The high pressure effect of
Zrs5CuzAl1oNis has been explored in the work of J and Rouxel in 2008 [J 2007,
Rouxel 2008a]. They found that the saturation value of densification of Zr-based
BMG is about 2%, only 10% of the value of vitreous silica glass at the same condition
(room temperature). More recently, Zeng, Jiang, et al., carried out high pressure
experiments to CezsAls metallic glass, and found an amorphous to amorphous
transition during the densification process between 1.5 GPa and 5 GPa with a large
volume reduction of about 8.6% at ambient pressure [Zeng 2010].

In general, appreciating the work done by Bridgman and Simon, Cohen and Roy,
Christiansen, Kistler and Gogarty, Mackenzie, Grimsditch, Meade, Polian, Zha, J,
Rouxel, etc., we can find two kind of densification phenomenon in inorganic glasses,
one has threshold and the other not. Normally, silicate glasses have five common
features for densification behavior as below.

Threshold Saturation

EIasticityI Densificati

Hardenin

8-10 GPa 20-25 GPa 40-45 GPa

Increase in pressure

v

Figure 1.11 Densification under high pressure.

i) Densification increases with pressure. Permanent densification starts from a
threshold pressure and reaches saturation as high as 20% around 20~25 GPa at
room temperature.

i) Densification kinetics increases with temperature while the saturation is value
normally the same as that at room temperature. Annealing experiments show
that the volume change will be easier and the density turns to be lower.

i) Densification increases with time until reaching the saturation level.
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iv) Impurities (network modifiers) decrease the densification threshold of pressure
and make the silica network permanent deformation more difficult. The
saturation value of densification is around 6%.

V) For silicaglass, if pressure is higher than 27 GPa, an amorphous phase change
will happen [Sato 2008, Sato 2010].

On the other hand, boric oxide glass exhibits a different law of densification
under high-pressure loading studies compared to silica glasses, which has three
important characteristics as below:

)] No observed threshold pressure, the permanent change in density begins at a
low pressure.

i) Asymptotic increase in density up to avalue around 6 percent.

i) Crystallization under the high-pressure |oading.
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1.3.2 Indentation and densification

1.3.2.1 Indentation and cracks

The ability to form crack-free permanent indentations in glasses at fairly low
indenter loads has been attributed to the ‘plasticity’ of glasses which are generally
regarded as ideal brittle solids [Hagan 1978]. Some scientists have attributed *plastic’
deformation in glasses to (i) densification or compaction of ‘porous and open’ glass
structure [Peter 1964, Evers 1967] and (ii) to local and transient heating which
modifies the viscosity to accommodate the deformation even at room temperature
[Bastick 1950], especially at very rapid loading rates. According to Douglas [Douglas
1958], at the very high shear stresses generated at the moment of sample-indenter
contact, the viscosity drops to accommodate the deformation by increasing the contact
area till the pressure has dropped to such level that the viscosity rises again to its
normal value (pressure induced fluidity).

In detailed studies on the deformation behavior of glasses, Peter has shown that
densification beneath the indentation as well as flow of glass is remarkably during
indentations [Peter 1970]. According to Peter’s work, the blunter the indenter, the
more deformation occurs in terms of densification, and the less in terms of plastic
deformation. He observed the deformation of a ‘rosette’ pattern of flow lines during
the last stages of the densification process. These flow lines were similar to the dip
line systems observed under punch indentations of ideally plastic materias
undergoing radial flow [Nadai 1931]. The observation of glass deformation under
indenter has been illustrated clearly recognized as lateral cracks and cone cracks by
Hagan and Swain [Hagan 1978]. Lateral cracks emanate from the bottom of the
deformed zone and are produced during unloading by residual stresses while the cone
cracks turning up and propagating in the saucer-shaped fashion towards the surface
and removing the flange of the cone. Sometimes these lateral cracks start not at the tip
of the cones but at the points on the *skirt’ of the cone which may be caused by the
frictional forces in the deformation process. For both Vickers and spherical
indentations the radial stresses are tensile at or outside the contact circle and at high
enough stress levels these can initiate shallow cracks which reflect the symmetry of
indenter.

From Hagan’s work, it is clear that small changes in material properties can affect
the details of the failure processes beneath an indenter. These, in turn, will have
important effects on the wear, abrasion and erosion of these solids. The nature of flow
lines that occur in the deformed zone in soda-lime glass under pyramidal indentations
has been investigated by Hagan in 1980 [Hagan 1980]. A close examination of the
deformed zone show that spiral flow lines meet as they required by the ided
rigid-plastic behavior. Evidence of void or cracks formation at the intersection points
or along the flow lines is also presented, along with a possible hardening effect from
the suppression of dlip at the intersection points of the flow lines.

In summary, inorganic silicate glasses, once densified, a region tends to shrink,
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straining the interface between it and the original solid as t the network is densified
(compacted) to as near the maximum density as possible. Meanwhile, shear flow at
some local weakness (provided by the network modifiers) and the subsequent flow are
by dilation of the structure in the immediate vicinity of theinitiation site.

1.3.2.2 Quantitative evaluation of indentation-induced densification

Indenter

| 1) Vickers indentation |

— O —
|

’_A/ %\ 2) AFM observation of
indentation
o e |

” '
l ‘ 3) Annealing at Tg x0.9 ‘

A

4) AFM observation of
o indentation

Vs

Figure 1.12 Schematic illustration of the procedure for measuring the indentation volume
before and after annealing [ Yoshida 2005].

Up to now, elasticity, plasticity, hardening and densification may contribution to
the deformation of materials, especially under indentation, but the role of their
contribution is still confused. A quantitative evauation of indentation-induced
densification in glass method has been brought forward in the work of Yoshida, et al.
[Yoshida 2005]. On the assumption that an indentation impression can be partially
recovered by thermal annealing [Neely 1968] and based on the fact that the viscous
flow kinetics is very slow in comparison to the experimental time, they considered
that complete recovery of the densified region under 0.9 Tqand 2 h was feasible.

As shown in figure 1.12, atomic force microscope (AFM) observations can be
used to lead a quantitative evauation of indentation-induced densification. The

volume ratio of annealing recovery V, as the volume ratio calculation is defined as

following

(1.2)

Where indentation volume V.”, and pile up volume V." are measured before
annealing while indentation volume V, , pile up volume V,” are measured after
annealing. Therefore, both the changes of the piling up, (V,”-V."), and of the

a
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indentation volumes, (V,” -V, ), are assumed to be constituents of the densified
volume [Yoshida 2005].

Using this quantitative evaluation method, they found that all glasses but BMG
exhibited densification but to different extents. Densification under a Vickers indenter
is thus a general property for silicate glasses. In their investigation, they consider
densification contribution 79%, 61% and 41% of the indentation volume in the case of
10 MgO glass, soda-lime glass and 20 CaO glass, respectively. Furthermore, they
argue that the compositional variation correlated with the compositional variation of
Poisson’s ratio. It means that there exist a good correlation between the ratio of
densification to the total indentation volume and Poisson’sratio in glass.

Quantitative investigation of densified beneath a Vickers indenter by means of
AFM topometry results in a densified volume representing as much as 68% of the
post-unloading indentation print of window glass which has the saturation of
densification about 6% and that 92% for aSiO, that has a 20% densification under
high pressure [Ji 2006]. More recently, Kato [Kato 2010] used quantitative evaluation
method to study the crack initiation property. According to their work, the crack
resistance has a strong relationship with densification. Glass experiencing larger
densification around the indentation shows higher crack resistance. They suggested
that densification was assumed to reduce residual stress around the indentation,
resulting in an increase in the crack resistance. Anyhow, densification plays a great
role in the deformation and cracking phenomena in glass under sharp contact and this
guantitative evaluation method may help us to understand its contribution during
those processes.

1.3.3 Shock wave compression and structure

1.3.3.1 Densification and shock compression

Early studies documented that the material can be densified under static pressure
at ambient or high temperature conditions. Compaction begins at 8 to 10 GPa at room
temperature, below which the compression remains elastic for some kind of silica
glass. The glass also can be densified under shock loading [Zha 1994, Sugiura 1997].

Silicaglass (fused silica) and quartz have been extensively studied by shock wave
methods. SIO, glass behaves as a nonlinear elastic solid under compression to 9-10
GPa [ Sugiura 1997, Inamura 2004]. Recovered samples from shock compression at
10-16 GPa show evidence for permanent densification. SIO, glass begins to undergo a
high-pressure phase transition to a high-density structure at about 16 GPa and this
transformation is complete at 30 GPa. At pressures near 70 GPa, discontinuities in
shock temperature and sound velocity have been interpreted as shock-induced melting
[Zha 1994].

Using multiple shock reverberation method, Sugiura, et al., found repeat
densification phenomena of silica glass [Sugiura 1997]. The limit of increase in
density was about 2.47 Mg/mm? after the first shock loading, while the limit increased
to 2.55 Mg/mm? after duplicate shock loading. Interestingly, triplicate shock loading
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was not so effective for the increase in density. Using Raman spectrum, they found an
enhanced line D2 to explicate the inside structure modification of the densified silica
glass, as shown in figure 1.13. It means that the history of shock loading is reproduced
by smilar treatment in static compression, although there are large differences in
temperatures between shock compression and static compression followed by heat
treatment.

iniitial sample 220Mg/m?

#2001 10.0, 2.27

#2321 143, 2.35

INTENSITY [arb.]

#181 16.3, 247

K191 170, 247

#231 182, 2.48

#011 193, 2.47

#041 277, 2.35

Figure 1.13 Raman spectra of densified silica glasses after single shock reverberations.
Values next to sample numbers are peak pressuresin GPa during shock loadings and densities
in Mg/m? after loadings [Sugiura 1997].

1.3.3.2 First sharp diffraction peak study

The irreversible densification of vitreous silicon oxide subjected to pressures
above 12 GPa has been well known for several decades. Although Raman
spectroscopy shows that the microscopic arrangement of the atoms is radically
changed in the densified material, almost no clearly structural information is available.
Neutron scattering is one of the most powerful tool to study the structure of
amorphous materials, but the limited ability to cover a grand range of wave vectors
makes it hard to be applied to unravel the structure information directly. In the early
1990s', Susman, et a., combined neutron-diffraction and molecular-dynamics (MD)
together to study the structure changes [Susman 1991]. They found that the static
structure by neutron diffraction was in good agreement with those obtained in the MD
calculations. Both experiment and MD simulation show that there is no appreciable
change in the short-range order (SRO), viz. the Si(Oy)4 tetrahedra, but there is a
significant effect on the first sharp diffraction peak (FSDP)- the fingerprint of the
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mediate-range order. In their results, the densified vitreous silica, compressed to
16GPa and its density increase 20% compared to norma ones, show substantial
changes in the FSDP: an indication of modification in the intermediate-range order.
They argue that the changes in the FSDP are due to increased frustration caused by
the decrease in the Si-O-Si bond angle and a shift in the Si-Si and O-O correlations in
the range of 4-8A toward lower distances.

Recently, Katayama and Inamura used a special method to explore a series
high-temperature and high-pressure experiments which were performed on BL14B1
at Sping-8 using a cubic-type multi-anvil press, with a X-ray diffraction apparatus
inside [Inamura 2004]. Using synchrotron radiation, they measured the first sharp
diffraction peak (FSDP) both in compression with increasing of temperature and
decompression process from high temperature to room temperature. According to
experiments, as the temperature was increased to 700°C a 8.5 GPa, where 20%
densification exhibited, the FSDP became sharp and its position moved to higher
momentum transfer place, as shown in figure 1.14.
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Figure 1.14 Structure factor, S(Q), of silica glass at various pressures measured during
decompression together with those 8.5 GPaand 10.9 GPa.[ Inamura 2004]

The shift of the FSDP indicated that the intermediate structure is thermally
relaxed to denser one. According to their work, during the decompression process, the
position of the FSDP showed a large hysteresis. As the pressure decreased at room
temperature, it moved to a lower momentum transfer but the total shift was smaller
than that observed upon compression. Comparing with room temperature high-press
experiments, they consider the changes of intermediate-range structure were
accumulated during the compression and the heating, and the hysteresis is the main
cause of the permanent densification. Therefore, they first observed the hysteresis
phenomena of densification of silica glass during compression and decompression
process covering a wide range of temperature before it crystallized.
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1.4 Densification and materials’ properties

1.4.1 Sound velocities and refractive index

Using Brillouin scattering, Polian and Grimsditch, et al., have measured the two
independent elastic modulus of aSiO,with increasing and decreasing pressures to 25
GPa [Grimsditch 1984]. They investigated both the longitudinal (V) and transverse-
(V1) sound velocities increase and decrease with pressure. They found that the
longitudina waves and the shear velocity also exhibit irreversible behavior on
densification. As we know, in an isotropic material, the bulk modulus B is related to
the density and the longitudinal and transverse velocities through the equation

B= ,o(VL2 -z 3). Following the procedure outlined in Refs [Shimizu 1981] and

[Polian 1986], one can write the change in density as p=|dP/(V?-4V.?/3), but
L T

only if no irreversibility occurs. Therefore, the bulk modulus changes with pressure
during the densification can be determined but it is not possible to perform an
integration as a function of pressure because of the thermodynamically irreversible
processes which occur during densification. Therefore, they turned to use

Clausius-Mossotti expression, (nz—l)/(n2+2)=constp, to roughly estimate the

degree of densification from the determination of the refractive index which yields a
densification of 22% at the pressure of 25 GPa.

According to Zha et a., [Zha 1994] acoustic velocities and refractive index of
SO, glass have been measured to 57.5 GPa at room temperature by Brillouin
scattering in diamond cells. On compression, both longitudinal and transverse modes
exhibit an anomalous change in slope in the low pressure region. Between 12 and 23
GPa, the sound velocities increase rapidly, as shown in figure 1.15.

At higher pressures, the bulk velocity follows a trend similar to that expected for
coesite. They confirmed previous studies in which the glass was found to exhibit
anomalous minima in the longitudinal and transverse velocities around 3 GPa. On
decompression from 16 GPa to ambient conditions, the data show an irreversible
increase in the acoustic velocities. By compression, there appears to be little
hysteresis in the compression data measured at high pressure (26-57.5 GPa). Besides,
they found an increase in the intensity of the shear wave on decompression from 57.5
GPa. As the densification process mainly occurs between 10 and 25 GPa, the lack of
irreversible changes at pressure higher than 26 GPa is perhaps not unexpected, which
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make them believed that the irreversible change of the refractive index must be the
result of permanent structural densification. Generally, they found the longitudinal
sound velocities were more sensitive to changes in pressure than transverse velocities,
and the largest changes in the sound velocities occur between 12 and 23 GPa arising
from the permanent densification.
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Figure 1.15 Sound velocitiesin SiO, glass as a function of pressure.

1.4.2 Bulk modulus, elastic modulus and shear modulus

Recently, Antao et al., [Antao 2008, Antao 2007] carried out acoustic
measurements using synchrotron radiation on glassy GeSe, up to 9.6 GPa. In their
study, the compressional (V,) and shear (V) velocities were calculated with

measured travel times and sample lengths (1) at different pressure using the genera
relationship Vi, =1/t - At 1 GPa, they found the velocities are V=176 and

V,=252km/s . The V, increases gradually with pressure while the Vg

anomalously decreases up to 4.5 GPa, and then increase to 9.5 GPa, as shown in
figure 1.16a. Comparing to sound velocities investigation on SiO,, we can found that
SiO, glasses exhibit anomalously minima in both longitudinal and transverse wave
velocities (Figure 1.13), however, the minimum was observed only for the transverse
wave velocities (S wave) a 4 GPa for GeSe,. They consider these phenomena
attributed to the rigidity of GeSe,.

Furthermore, Poisson’s ratio, elastic moduli can be obtained directly from the

measured vel ocities by the equations as follows:
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Where vy denotes Poisson’s ratio, G denotes shear modulus, K denotes bulk modulus,

and L denotes longitudinal modulus.
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Figure 1.16 Variations with pressure, closed symbols for loading and open symbols for

unloading for GeSe;. (a) V,, (b) Vs, (c) Poisson’sratio and (d) elastic moduli [Antao 2008].

Antao et a. exhibited the changing tendency of Poisson’s ratio and elastic module
as shown in figures 1.16c and 1.16d, respectively. They suggested that, this
anomalous behavior in Poisson’s ratio and discontinuities (slopes not moduli) in
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elastic moduli at 4 GPaisindicative of agradual structural transition in GeSe,. Thisis
attributed to a network rigidity minimum originating from a competition between two
densification mechanisms. At pressure up to 3 GPa, a conversion from edge- to
corner-sharing tetrahedral results in a more flexible network and this is contrasted by
a gradual increase in coordination number with pressure, which leads to an overall
stiffening of the glass. In general, their work provides important information on
interpreting changes in the macroscopic properties of glasses with pressure when
combined with structural data.

For SiO; glass, Sato and Funamori [Sato 2008], suggested that the estimated bulk
modulus was consistent with the pressure dependence of the density. They determined
bulk modulus at 50 GPa is 390 GPa by fitting the third-order Brich-Murnaghan
equation of state to the density data with constraint from bulk sound velocity data.
They also pointed that the bulk modulus cannot be precisely determined solely from
the density data. Wakabayashi et a, studied the compression behavior of fully
densified SO, glass. The zero-pressure bulk modulus was determined to be Ky=60.2

GPa, with its pressure derivative K, =4 (fixed) by fitting a Brich-Murnaghan

equation of state to the volume data. This value is good agreement with K, = 60— 70

GPa, obtained by elastic-wave-velocity measurements from Zha et a,[Zha 1994] and
Rouxel et al.[Rouxel 2008a]. Moreover, they pointed out that the compression curve
(Loading pressure and density curve) of fully densified SIO, glass can be expressed
by the second-order Birch-Munaghan equation of state. The bulk modulus tends to
increase with increasing the degree of densification.
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1.4.3 Poisson’s ratio and the high pressure densification

As mentioned in equation 1.3, Poisson’s ratio, v, can be directly obtained from
the measured sound velocities. Zha et a. [Zha 1994] measured values start from 0.19
at 0.54 GPa, decrease to ~0.15, then increase to about to 0.30~0.35 for SIO2 glass,
and becoming nearly pressure independent above 23 GPa, as shown in figure 1.17.

Poisson's ratio, v
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Figure 1.17 Poisson’s ratio of SIO2 glass as afunction of pressure. Black square are
increasing pressure and red circles are on decreasing pressure. [Zha 1994]

Poisson’s ratio is a macroscopic elastic parameter which depends much on the
fine details of the atomic packing. Glasses, with different atomic scale networks,
exhibit awide range of Poisson’sratio from 0.1 to 0.4. As arelatively low atomic
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Figure 1.18 The maximum densification and Poisson’s ratio among

different inorganic glasses [Rouxel 20083].
packing density (C, = p>_ fV, /D" ;M,), glasses present significant densification

behavior under high hydrostatic pressure [Rouxel 2007].
According to the work of Rouxel et al., Poisson’sratio is correlated to the glass
network connectivity. Previous experimental data show that v decreases

monotonically with the mean coordination number ((n),n=>" fn , where f, and

n arethe atomic fraction and the coordination number of the ith constituent,

respectively) [Rouxel 2007]. A highly cross linked network, such as amorphous silica
has a small Poisson’sratio (v=0.15), while weakly correlated network, such as
chain-based chal cogenide glasses or cluster-based metallic glass, exhibit much higher
values than 0.3 (up to 0.4). It isworthy to note that the lower the atomic packing
density is and the larger the volume change the glass experiences under high pressure
(1to 25 GPa) as shown in figure 1.18 [Rouxel 2008a).
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1.4.4 Densification and Raman spectroscopy

Raman scattering spectroscopy is used to characterize the structure of materials.
Grimsditch investigated the Raman spectra of amorphous SiO, up to 17 GPa, and
pointed that there exist a new form of amorphous SiO, after high pressure at room
temperature [Grimsditch 1984]. Sugiura et a. studied the densification behavior of
silica glass by shock compression. They found that the Raman spectra of recovered
silica glasses had characteristics of densified silica glass with much higher density
[Sugiura 1997]. Perriot et al. have recently characterized the plastic deformation under
micro-indentation in amorphous silica [Perriot 2006] which provides a new way to
study the changing of densities after indentation. Rouxel et al.[Rouxel 2008a] studied
structure changes of amorphous silica, window glass, and chalcogenide glass in high
pressure experiments by using the Raman scattering spectroscopy. In the case of
amorphous silica, the sharpening of the main band near 500 cm™ and its shift to
higher frequency (427 cm™ in the pristine glass and 511 cm™* after densification under
25 GPa). Deschamps et al. studied the Raman micro-spectroscopy of sodalime
silicate glass under hydrostatic pressure and indentation. The goa of their
experiments is to characterize the window glass elasto-plasticity under high
hydrostatic pressure and to obtain a Raman <> pressure calibration curve with the aim
of indentation analysis. All the Raman spectra show peak located at 450, 560, 600,
800, 950 and 110 cm ™ [Deschamps 2011]. They confirmed that the bands around 450
and 560 cm * are attributed to Si-O-Si symmetric stretching vibration modes which
may directly related to its changing of densities. More recently, Wakabayashi et al.
investigated the main Raman band position of densified SIO2 glass at ambient
conditions as a function of synthesis pressure. The zero pressure Raman spectra is
about 440 cm™ and reach 515 cm™ at 9 GPa [Wakabayashi 2011].
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Figure 1.19 Raman shift and densification under pressure in SiO, glass at room temperature.
Solid symbols are Raman shift data and open symbols are densification data from relevant

published articles.

We collected the information of Raman scattering experiments in SIO, glass
under high pressures as shown in figure 1.19. At zero pressure state the Raman shift is
~ 440 cm™, and then begin to increase since 8-10 GPa and reach a high value around
510-520 cm after ~17 GPa Interestingly, we found that the Raman shift have a
similar tendency as densification under high pressures.
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1.5 Modeling of densification

1.5.1 Molecular-dynamic simulation

In order to obtain some insight in the densification mechanisms, scientists have
performed molecular-dynamic simulations of a sample of glassy silica subjected to a
hydrostatic compression and decompression process. According to severa
calculations, two-body interaction potentials are as effective as the three-body ones in
describing both crystalline and amorphous silica [ Tse 1992, Valle 1996].

As far as we know, the first available direct simulation of a compression
-decompression process at room temperature was simulated and calculated by Tse et
al. using the potential model proposed by van Beest, Kramerm, and van Santen [Tse
1992]. They succeeded in using the two-body potential model to study the structure of
amorphous SiO, at ambient pressure and had a good agreement with experimental
results. They found that the Si coordination number with oxygens in the network
increases from 4 to about 5 in the material taken at 15 GPa and reaches 6 at higher
pressures. Valle et al. draw the same conclusion [Valle 1996]. Besides, a densification
with a volume reduction of about 20% was calculated for samples subjected to
pressures of 15 GPa and the oxygen coordination number was 4.2-4.4 after unloading.
Furthermore, their calculations suggested that a new crystalline phase forms at about
100 GPa.

Following the previous work, Valle and Venuti adopted the potential of Tsuneyuki
et a. [Tsuneyuki 1988] which can reproduce structure, density, compressibility, and
vibration frequencies of both the crystalline and amorphous forms of silica. In the
densification simulation process, they found a slight increase in the average Si-O bond
length accompanied by a decrease in the average angle and Si-O-Si angle and Si-S
separation. The MD results indicate that the increased atomic coordination isthe main
driving force behind most of the transformations encountered which can be
demonstrated by the point where irreversible densfication began (>6 GPa)
accompanied with a coordination number of Si atoms with O greater than four. They
convinced that the high-pressure instability of the tetrahedral network with respect to
an increase in coordination, which triggers the irreversible transition from quartz to
stishovite, is also the cause of the densification of compressed amorphous silica.

1.5.2 Finite element method (FEM)
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Densification phenomenon in glasses caused a great interest to scientists. Using
finite element method to analyze the densification problem can be traced back to the
work of Imaoka and Yasui, but not many studies have been devoted to this issues

[Imaoka 1976, Yasui 1982].

In Yasui and Imaoka’s work, they solved a plane strain problem (two dimensional)
using wedge-shaped indenter to model a series of ideal elastic-plastic Na;O-SIO;
glasses changing the values of Na,O from 0, 10%, 15%, 20%, 25% to 35%. They
assumed the yield criterion to be of Mohr-Coulomb type (called by them as such).
They introduced a densification factor « into their modeling. Judging from their

calculations, the maximum value of || obtained was 0.04 and the values of |a|

were found to decrease as the Na;O content of the glass was increased. Interestingly,
they found |a| approached to zero when the Na,O content exceeded 35%, which

means that there was no densification for such glasses. Furthermore, they found the
value |a| did not change too much when temperature was changed, which indicating

that the || depending only on the structure of the glass.

Based on the classical Drucker-Prager incremental elastoplastic law,
Giannakopoulos, Zeng et a. [Zeng 1995, Giannakopoulos 1997] analyzed the
pyramid indentation (Vickers and Berkovich indenters) of pressure-sensitive of fused
silica and soda-lime glass, which related to the densification process. Although they
did not take account into the densification factor, their work of indentation modeling
presented a numerical calculation way to analyze the force-depth relationship (loading
and unloading P-h curve), the imprint morphology (e.g., sinking-in, pile-up, cracking,
etc.) and the residua stresses, which presenting a good way to interpret the
densification mechanism. Besides, they caused an very important question that a good
constitute model needed to establish, in order to portray the irreversible and hardening

phenomenon of silicaglass.

Following, Lambropolous et al. discussed a constitutive model describing the
permanent densification of fused silica under large applied pressures and shear
stresses. Thelir constitutive law is assumed to be rate-independent and uses a yield
function coupling hydrostatic pressure and shear stress, a flow rule describing the
evolution of permanent strains after initial densification, and a hardening rule
describing the dependence of the incremental densification on the levels of applied
stresses [Lambropoulos 1996]. Their concepts of yield function, flow rule, normality,
and hardening are shown in figure 1.20.
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Figure 1.20 Constitutive model for the densification of fused silica [Lambropoul os 1996].

In figure 1.20, yield function describing the densification and flow (i.e., shear
deformation) of silica in a stress space. The coordinates are the hydrostatic pressure
p=-o, and the equivalent shear stress z,. Lin AB is the initial yield surface.
Subsequent two lines are yield surfaces, the current yield surface CD and a loading
path. If ¢ =¢", then normality is satisfied (the plastic strain increment is normal to
the yield surface) and both permanent densification and shear flow result. If {'=0,
then normality is not satisfied. The hardening modulus h relates increments in
pressure to increments in permanent densification, i.e,, h=do,/dA". They applied
the congtitutive law to determinate the depth of densification layer during polishing or
lapping of silica.

Moreover, Xin and Lambropoulos [Xin 2000] assumed that relation of
compression and shear islinear and deduced a new yield function as follows

f(oy)=-ao,+(1-a)r,-Y=0 (1.4)

Here they defined the material densification parameter a (0<«a <1) to describe
the irreversible phenomenon, where o =0 state for the material yields only by pure
shear and « =1means only under hydrostatic compression. In this function, Y is the
shear stress, o, is the mean stress and 7, is the equivalent shear stress. By

implementing their model to a UMAT module provided by Abaqus, they tested
uniaxial compression, constrained uniaxial compression simulation of fused silica.
Changing the value of « from O to 0.6, they found that for a small «, the material
became “softer”, but for large « the materia became “harder”. Using Berkovich
indentation simulation, they found « ~0.6 and Y ~5.43GPacan fit both loading
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and unloading experimental curves well for fused silica and found no pile-up at the
edge which agreed with the observations in fused silica experiments as shown in
figure 1.21. Furthermore, after introducing the densification parameter, they found
that the residual stresses became smaller and the stressed layer became much
shallower than the material without densification.

Recently, Kermouche et al. [Kermouche 2008] developed an elliptic yield
criterion to establish a new constitutive law to model the plastic deformation of
amorphous silica. For negative pressure, they assume a simple von Mises criterion. In

2 2
compression ( p>0), their proposed yield criterion is f(oij)z[&j +(£j 1
q P
while in tension (p<0), one has f(o;)=q-0, where p, and g, represent the

hydrostatic plastic l[imit in pure hydro-static state and the shear limit in pure deviatoric
state, respectively, as shown in figure 1.22.

C
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g1 ___ Initial yield surface

. -==- After hardening

Figure 1.22 Elliptic yield criterion for amorphous silica. p denotes the pressure, p. denotes the
threshold of densification pressure, g denotes the equivalent shear stressin compression

(\/§Te ), dc denotes the critical threshold of equivalent shear stress [Kermouche 2008].

The model takes into account the densification-induced hardening observed under
purely hydrostatic loading with DAC experiments. Based on the reverse analysis with
the load-penetration curve of a fused silica glass, they compared their numerical
simulations with some indentation results as shown in figure 1.23. They achieved
good agreement with the experimental map obtained by Raman microscopy
measurements underneath a Vickers indentation [Perriot 2006].
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Figure 1.23 Densification map: left, experiment results; right, finite element results
[Kermouche 2008].

More recently, Gaerlrab et al.[Gadelrab 2012] using a linear Drucker-Prager model to
describe fused silica deformation. Real tip geometry obtained from Atomic Force Microscopy
(AFM) is utilized to numerically simulate the area calibration process. Their results indicate a
significant discrepancy between the tip area input into their ssimulation and the one obtained
by the calibration process. Unfortunately, their simulation results can not fit the tip metrology
obtained by AFM. Therefore, more redlistic models are needed to explain the complex

deformation process.
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In general, what the models have done is shown in Table 1.5.

Table 1.5 Summary of modelsin densification.

Models Elasticity  Plagticity Shear  Densification Hardening Densification ~ Changes References
saturation in moduli
Yasui yes yes yes yes yes no no Imaoka 1976,
Imaoka Yasui 1982
Giannakopoulos yes yes yes no yes no no Giannakopoulos
etal. 1997,
Zeng 1995
Lambropoulos, yes yes yes yes yes no no Lambropoulos
Xinetal. 1997, Xin 2000
Kermouche et al. yes yes yes yes yes no no Kermouche
2008
Gaerlrab et al. yes yes yes yes yes no no Gaerlrab 2012

On the other hand, what is lacking in these models as below:
i) Saturation of densification,
i) Changesin elastic moduli,
1) Role of shear on densification,
iv) Volume conservative plasticity.

42



Chapter 1 Densification Mechanism in Glasses: A review

1. 6 Discussions and prospect

1.6.1 Effect of time and temperature

The former research results indicate that densification depends on time to some
extent. Since fluctuations of temperature and pressure could lead to slight variations in
the degree of shear, it is difficult to isolate the effect of time alone. Normally, some
seconds duration time in high pressures experiments would reach the permanent
densification and no change in Room temperature as long as several years. Meanwhile,
annealing the decompression samples several hours would show the densification
contribution on the volume change during its deformation, which has been well
explored by experiments, such as indentation.

Although, former work shows that temperature will make densification easier at a
lower pressure would reach the same percentage as that revealed under room
temperature [Mackenzie 1963a, Mackenzie 1963b]. No quantitative measurement of
the dependence of the densification rate with temperature is possible as yet. It seems
that the activation energies for viscous flow combined with pressure, temperature,
time, relaxation are still unexplored.

1.6.2 Intermediate-range order interpretation

The short-range order (SRO) refers to correlations existing between nearest
neighbors and is a common feature of most amorphous materials, while intermediate
range order (IRO) is defined as the level of structural organization involving distances
significantly longer than nearest-neighbor bonds [Bernal 1960, Gaskell 1978, Kotkata
1994]. For silica glass, neutron scattering and Raman scattering studies show that the
intermediate-range structure appears as a change in the first and second diffraction
peaks which has a linear proportionality to the density [Inamura 1998]. Inamuraet al.,
found that the low-energy dynamics, the Boson peak, had a strong correlation with the
changes in intermediate-range structure. According to Mukherjee et al. [Mukherjee
2001], Raman spectroscopy measurements on their retrieved samples quenched from
high pressure and high temperature experiments do not show any shifts in Raman
peaks indicating a large modification in the IRO in the structure of amorphous silica.
It means that six-fold ring structure or equivaently a void structure could be the key
structure for the intermediate-range structure of vitreous silica. Besides, Wright,
Galeener, et al. [Wright 1992, Galeener 1985], suggested that the shift in Si-O-Si
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angle brought about by densification was due to a decrease in the next-nearest
neighbor oxygen O1)-O(y) distance.

Recently, Sampath et al. [Sampath 2003], studied the intermediate-range order in
permanently densified GeO, glass, and argued that densification causes a reduction in
the length scale of IRO. The difference structure factors obtained by combining the
x-ray and neutron data so as to eliminate one partial structure factor at a time shows
the greatest effect when Ge-Ge correlations are eliminated and least when O-O
correlations are eliminated. Furthermore, they consider that the reduced length scale
results from a decrease in the next-nearest neighbor Ge-O and O-O distance caused by
arotation about the Ge-O-Ge bonds and a distortion of the GeO, tetrahedral, as shown
in figure 1.24.

>

N

gl 9
ﬁ%

Figure 1.24 Schematic of tetrahedral network of GeO, glass with corner shared GeO4

tetrahedral units. The arrows show the bending of the Ge-O-Ge angles and rotation of the
tetrahedral used to produce the densified structure [ Sampath 2003].

44



Chapter 1 Densification Mechanism in Glasses: A review

1.7 Summary

Since the discovery of the irreversible phenomena in silica glass, a remarkable
advances in the densification mechanism of inorganic glasses have been achieved in
the last three decades, with the improvement of experimental methods and the
development of theoretica analyze. Whether there is a universa law for the
densification mechanism to al inorganic glasses and how to interpret the deformation
phenomenology that links to the disordered materials are still a great challenge to
scientists. Furthermore how to use the deformation properties of glasses to their
applications is needed to explore.

In this review, we have retrospected the research work on the densification of
inorganic glasses under high pressure and attempted to discover the universal law of
densification. One general objective of this review has therefore been encouraged an
eclectic and hopefully holistic approach in exploring the physics and mechanics of
inorganic glasses.

We highlight 9 important observational principles that emerge from this review:

(1) Two universal densification phenomena can be summarized as continuous

irreversible densification which come into being at the very low pressure and
non-continuous irreversible densification which has a threshold of pressure
where the irreversible deformation initialized, as shown in figure 1.25,

— 810, Room Temperature

—— B0, Room Temperature

—Si0, 500°C

Densification, Ap/p, (%)

Ulﬁ'IIOlIl:".ZI()Ilﬁ'_%U
Hydrostatic Pressure, P (GPa)
Figure 1.25 Continues and non-continues densification processes.
(2) Silica glasses are representative research materials which cause a lot of focus
on both the experimental and theoretical work. Under very high hydro-static

pressure, vitreous silica has a threshold of densification around 8-10 GPa at
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room temperature, continuously increasing its density until reaching 20-25
GPa where the saturation of densification process occurs.

(3) Shear stress plays a great role on the deformation of glasses which mainly
controls the induced cracks, but the real role of shear stress and pure pressure
separately is still unclear.

(4) The results of various techniques such as neutron and x-ray diffraction,
Brillouin, Raman, and IR spectroscopy, as well as modelling suggest that the
densification after compression can be attributed to microscopic structural
changes and atomic rearrangements, though the mechanism of the process
undergone by amorphous silicais not yet fully understood.

(5) Temperature has a great impact of the densification, which makesit easier for
starting the densification process and lowers the saturation stage pressure, but
the saturation of densification is the same, as shown in figure 1.25.

(6) The investigations demonstrate that both the longitudinal and transverse
sound velocities increase and decrease with pressure. They exhibit irreversible
behavior on densification.

(7) Covering awide interval of values for inorganic glasses, the Poisson’s ratio is
correlated to the maximum density improvement. The smaller v, the larger
densification.

(8) Based on classic continuum mechanics, models for the densification loading
and unloading process have achieved a good agreement with the experimental
results. However, their noticeable drawback is forgot the saturation process
and the changes in elastic moduli.

(9) Densification may be due to the reduced length scale of the intermediate
range order from a decrease in the next-nearest neighbor R-O and O-O
distance caused by a rotation about the R-O-R bonds and a distortion of the
ROA4 tetrahedral for SiO, or GeOs.
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Our passions and desires are unruly, but our character
subdues these elements into a harmonious whole. Does
something similar o this happen in the physical world? Are
the elements rebellious, dynamic with individual impulse?
And is there a principle in the physical world which
dominates them and puts them into an orderly
organization? Rabindranath Tagore
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Silica's structure and properties are unclear, but its densification under high pressure has

excited scientists' minds. Is there any universal rule to control its deformation behavior? Is the

rule rebellious, confused with intricately results? And is there a principle in the physical world

which dominates them and indicates them into an orderly formula?
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Chapter 2 Deformation Model of Silica Glass under Hydrostatic Pressure

2.1 Introduction

The aim of this chapter is to establish a constitutive equation to portray the nature
of densification under high pressure in silica glass, and provide simple and clear
explanations about its deformation mechanisms. It is customary to use the term
‘threshold’ to refer to the density where irreversible begins under the applied pressure,
and to refer to the body undergoing the deformation of interest as ‘ saturate’ where it
reaches the maximum permanent density. Such a hydrostatic loading may involve
purely elastic, plastic, irreversible, hardening and phase changes behavior. The first
part of this chapter deals with the physical achievements on the deformation stages
under hydrostatic pressure. The following part starts from basic principles to establish
our constitutive equation. Finally, we use a reverse analysis method to identify the
parameters of our model and discuss our results.

2.2 High pressure experiments

Amorphous slica (SIO,) densifies permanently under hydrostatic pressure
[Bridgman 1953, Meade 1987, Zha 1994, Sato 2008], indentation [Peter 1970,
Yoshida 2005], shock loading [Sugiura 1997] or neutron irradiation [Katayama 2005].
Tracing back to the pioneering work of Bridgman and Simon [Bridgman 1953], silica
presented a permanent densification behavior by measuring the densities before and
after compression, and reached 6-7 percentage increase in density subjected to a
pressure of 200 kilobars at room temperature. Following this work, Cohen and Roy
[Roy 1961, Cohen 1961] reported a density increase of 7 percent at only 55 kilobars,
and pointed out that from 20 to 160 kilobars, densification of silica glass at room
temperature was a linear function of pressure by using the refractive index as a probe
for densification. Afterwards, Wier and Spinner [Wier 1962], commented on Cohen
and Roy’s results and pointed out that there was no simple direct correspondence
between refractive index and density. Replying to Wier’s question, Cohen and Roy
pointed out the fact that shear played an important role in the kinetics of densification
[Cohen 1962]. Mackenzie [Mackenzie 1963a, Mackenzie 1963b], used Diamond anvil
cell loading apparatus with different confining media (alumina or silver chloride) to
study the role of shear, time and temperature. Interestingly, they found ~16 percent
densification, which was much bigger than that obtained by Bridgman and Cohen, for
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silica under 80 kilobars pressure at 300°C by using alumina cell. And he concluded
that densification resulting from compression of silica glass in the rigid state depends
on the external shear inherent to the particular apparatus and technique. Meanwhile,
Christiansen et al. [Christiansen 1962], found the force distribution induced
discrepancy of densification from the samples' center to its boundaries. Furthermore,
Arndt [Arndt 1969], studied the effect of impurities on densification of silica glass
and demonstrated that densification of vitreous silica under identical experimental
conditions produces different results, depending on the nature and relative
concentrations of different kinds of impurities. Therefore, how to get pure high
hydrostatic pressure conditions, and how to improve the apparatus and techniques to
increase the accuracy of measurements turns out to be the main focus in the following
decades.

In the 1980's, Mao-Bell type diamond cells were used in combination with
Brillouin- and Raman-scattering physical spectroscopies to measure the static
compression of fused silica [Grimsditch 1984]. Grimsditch used Brillouin scattering
to show that an irreversible change in the longitudina sound velocity took place
between 10-17 GPa and indicated the existence of a new form of amorphous SO,
which is stable at atmospheric pressure. Grimsditch felt that it deserved the label
“amorphous polymorph”. Afterward, Meade and Jeanloz [Meade 1987] measured the
static compression of fused silica above 10 GPa, and they found that the bulk modulus
increased sharply at high hydrostatic pressure (~11 GPa). They inferred that at high
pressure the compression mechanisms were similar at equivalent volumes and thus
the increase in bulk modulus was due to the transition between relaxed and unrelaxed
moduli. Furthermore, Meade et al. used x-ray diffraction to measure the first sharp
diffraction peak of SIO, glass, and found that the coordination number of Si, initially
4 increases between 8 to 28 GPa and reaching six at 42 GPa [Meade 1992]. Later, Zha
et al. measured the acoustic velocities and refractive index of SiO; glass up to 57.5
GPa by Brillouin scattering in diamond cells at room temperature. They found that
both longitudinal and transverse velocities increased sharply between 12 and 23 GPa,
and the bulk velocity followed a trend similar to coesite at higher pressures [Zha
1994]. Recently, Rouxel et al., used octahedral multi-anvil apparatus (OMAA) to
carry out more ideal hydro-static pressure experiments [Ji 2007, Rouxel 2008]. They
obtained whole samples that not break after decompression for pressures as high as 25
GPa and measured the densities [Ji 2007]. More recently, Sato and Funamori,
developed synchrotron x-ray absorption and diffraction techniques to measure the

57



Chapter 2 Deformation Model of Silica Glass under Hydrostatic Pressure

in-situ behavior of Silica under high pressure up to 100 GPa [Sato 2008, Sato 2010].
They succeeded in measuring the densities up to 50 GPa. Wakabayashi et al., studied
the compression behavior of fully densified SIO, glass up to 9 GPa a room
temperature and clarified that the glass behaved in an elastic manner by
optical-microscope observation, x-ray diffraction and Raman scattering measurements
[Wakabayashi 2011]. Therefore, the hydrostatic compression apparatus has been
improved to provide reliable hydrostatic compression experiments, and Raman,
Brillouin light and x-ray diffraction scattering techniques have been developed to
obtain accurate density and structure changes under high pressure.

2.2.1 In-situ hydrostatic experiments

First of al, for the in-situ hydro-static experiments, three papers came to our
attention [Meade 1987; Polian 1993; Zha 1994]. Meade and Jeanloz used optical
technique to measure strain in the diamond cell. The samples were compressed in a
gasketted Mao-Bell-type diamond cell apparatus (DCA), with a 4:1 methanol-ethanol
mixture as the pressure-transmitting medium. Linear strains were measured on three
samples at hydrostatic pressures up to 11.6 GPa. They confirmed that at high
pressures (around 10 GPa) the long-range disorder in the glass did not fundamentally
change the elastic properties of SiO, for the tetrahedral structure [Meade 1987].
However, they failed to get information beyond 10 GPa. Afterwards, Polian and
Grimditch used Brillouin scattering to investigate the room-temperature densification
of hydrostatically compressed fused silica a& much higher pressures [Polian 1993].
Irreversible densification was initiated at about 12 GPa and completed at about 20-25
GPa. At very high pressure (up to 40 GPa), they observed no further densification
occurred, which manifested the saturation in permanent densification. They studied
acoustic wave velocities via Brillouin scattering. Let V| and Vr be the longitudinal
and shear wave velocities respectively. They said, there exist a relationship between
pressure p and density p (elastic only):

p p -

Ap=p(p)-p(p)=[ 1/Vgdp=] (V7 -4V /3)"dp (2.1)

However, they found a difference in density between the starting and recovered

material for the irreversible change. Then they attempted to use Clausius-M ossotti
expression, viz.,

(n*-1)/(n” +2) = const p. (2.2

Unfortunately, this equation always predicts an increase in n as pressure is increased,

and there exist contradicts with using equation 2.1. Finally, they gave a rough

estimation of the degree of densification which obtained from a determination of the
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refractive index is ~22%.

Following, Zha et a. used the Mao-Bell-type Brillouin-scattering diamond cell
apparatus (DCA) and measured the longitudina and transverse velocities and
refractive index of SIO, up to 57.5 GPa [Zha 1994]. Their results show the sound
velocities increase rapidly between 12 and 23 GPa. At higher pressures, the bulk
velocity follows a trend similar to that expected for coesite. At 57.5 GPa, the

longitudinal velocity of SIO, glassis 11.85 (+0.51) km/s and the transverse velocity

IS 6.12 (£0.06) km/s. For the decompression from 57.5 GPa, it decrease reversibly to

26 GPa, but displayed an irreversible change when decompressed from 16 GPa to
ambient pressure. Therefore, they calculated that alarge volume collapse beginning at
~10 GPa, where the pressure induced 4-6 Si-atom coordination change, and reach
19.6% of maximum densification level at 23-26 GPa. Furthermore, they suggested an
open question that there were a variety of metastable states available for the
amorphous solid at high pressure. However, density measurements of SiO, glass were
limited to pressure up to about 10 GPa because of experimental difficulties.

The main conclusion from these in-situ experiments may be summarized follows.

i) There is athreshold for densification pressure around 10 GPa.

i) Below this threshold, reversible and elastic changes control the silica
deformation behavior under high pressure.

1) Beyond this threshold we cannot use the bulk modulus related density
function to get the accurate density, but may give some prediction of
density by using Clausius-M ossotti expression.

iv) The maximum densification percent is around 19~22%.

V) They suggested that silica glass will have amorphous state changes above
26 GPa.

Secondly, as Meade, Polian, Zha et al., did not extract the density of SIO, above
10 GPa, Sato and Funamori developed synchrotron x-ray absorption and diffraction
techniques to measure the density and structure of Silica at high pressure up to 50
GPa [Sato 2008]. All experiments were conducted with a diamond-anvil cell at room
temperature without a pressure transmitting medium. Density measurements were
carried out for the sample compressed together with two reference materias
(beryllium and aluminum) with a known density by an x-ray absorption method using
monochromatic x-rays in Japan. Assuming the thickness of the three materials were
the same, densities were determined from the intensities of transmitted x-rays
measured for the sample and the reference materials. Structure measurements were
carried out by using an x-ray diffraction method with white x-rays, and they discussed
the x-ray structure factor S(Q) and pair distribution function g(r) which were
measured at 50 GPa. They concluded that SiO, glass had a six-fold-coordinated
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stishovite-like local structure at 50 GPa.

Meanwhile, Benmore et al. investigated the effect of high pressure on the
structure of silica glass using high-energy x-ray diffraction up to 43.5 GPa. They
pointed that a decrease in the first two peak positions in the rea-space
pair-distribution functions up to 15 GPa, which indicated an initial shrinkage of the
tetrahedral units [Benmore 2010]. Above this threshold pressure the Si-O bond peak
shape became asymmetric and the average Si-O bond length and coordination number
both increase linearly with pressure.

Considering with the discrepancy from the work of Benmore et a., Sato and
Funamori conducted structure measurements of SiO, glass under high pressure up to
100 GPa by their energy-dispersive x-ray diffraction method with synchrotron white x
rays instead of monochromatic x rays [Sato 2011]. They observed six-fold
coordination transform at 27-35 GPa for no significant changes in S(Q) and g(r)
above 35 GPa, which is a little lower than their former suggestion for 40-45 GPa
using monochromatic x rays. They explained that white x rays had relaxed the
structure of the samples which caused this inconsistency. Although the discrepancy of
the critical six-fold coordination pressure with Benmore et al. and Mead et a. is till
unclear, the reason may be due to the hysteresis in the transformation from fourfold-
to six-fold- coordination and the difference in stress state during compression and
decompression. Furthermore, according to the work of Murakami and Bass who using
sound velocity measurements up to 200 GPa, a six-fold-coordination structure may
eventually transform to a higher-coordinated structure at above 140 GPa [Murakami
2010].

As a summary to these in-situ experiments investigations, we can conclude as
follows:

1) There were recently some achievements in obtaining the densities of silica

beyond the threshold densification pressure.

i) The issue on the effect of transformation kinetics under high pressure is

still unsolved, but below 27 GPathere are no phase changesin SiO; glass.

i) Four-fold coordination structure transform to six-fold coordination

structure up to 35-45 GPa.

Interestingly, Wakabayashi et al. studied the compression behavior of fully
densified SIO, glass up to 9 GPa at room temperature by using a diamond-anvil cell
with a mixture of methanol-ethanol as a pressure medium [Wakabayashi 2011]. The
fully densified SiO, glass was obtained by heating up to 873 K for 10 minutes at 10
GPa, and its zero-pressure density was measured to be pe=2.67 g/lcm® by the
Archimedes method (this value corresponds to a 21.3 % increase in density of
ordinary one). They observed that there was some remarkable agreement between the
volume data on compression and decompression and therefore the glass behaved in an
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elastic manner. Furthermore, they determined the zero-pressure bulk modulus to be
K¢=60.2 GPa, with its pressure derivative K, = 4(fixed), by fitting a second order

Birch-Murnaghan equation of state to the volume data. X-ray diffraction and Raman
scattering measurements showed that the first sharp diffraction peak (FSDP) and the
main Raman band of the glass merge with those of ordinary glass at similar pressure
range. Based on these results, they considered that the compaction of interstitial voids
dominates in compression mechanism of densified SIO, glass similar to the case of
ordinary SIO, glass. Therefore, the occurrence of continuous intermediate states and
their elastic behavior may be characteristic of silica before its phase change.

As a summary to the work from Wakabayashi et al. fully densified silica shows
an elastic behavior under high pressure before phase change.

2.2.2 Ex-situ hydrostatic experiments

Recently, Rouxel et a., used an octahedral multi anvil apparatus (OCDA) to carry
out high pressure experiments [Rouxel 2008, Ji 2007]. The high-pressure cell consists
of a Cr-doped MgO octahedron which is squeezed between eight converging
truncated cubic tungsten carbide anvils. In order to prevent contact between the
ceramic parts of the high-pressure assemblies, the starting glass cylinders were raped
in 25 um thick gold fails. It is worthy to point out that unlike previously reported
experiments, most specimens came out in one piece, suggesting that the pressure
device induced very little shear. Furthermore, the treatment proved to be very
homogeneous as illustrated by preliminary micro-Raman scattering investigations
dong the specimen axis. Density was measured with a better than 0.001 g-cm™
accuracy either by means of density gradient method using two partially miscible
liquids (iodobenzene and methylene iodide) or by means of image analysis, using
high resolution images of the specimens taken before and after testing. Their
experiments show some excellent agreement of densities obtained by the two
techniques.

The maximum load pressures for the experiments were 8 GPa, 12 GPa, 20 GPa
and 25 GPa, with a densification about 0.5%, 4.1%, 20.0% and 21.6 %, respectively

(£0.5%). Furthermore, they confirmed that they observed the saturation densification

of silicais about 21% at about 25 GPa. Raman shifts revealed a narrow distribution
and a decrease of the Si-O-Si inter tetrahedral angle and a threshold densification
pressure at about 8 GPa. Moreover, they used surface acoustic velocity measurements
(acoustic microscopy) to obtain the values of elastic properties after decompression,
such as bulk modulus, shear modulus and Y oung’ s modulus as well as Poisson’ sratio.
It is important to point out that the bulk modulus will reach values as high as 73.5
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GPa after decompression from 25 GPa.
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2.2.3 Extracting data from literature sources

® In-situ experiments below 8-10 GPa

Below 8-10 GPa, the compression of SIO2 glassis elastic under hydrostatic stress.
We extract the in-situ experiments data from the literatures published by Meade et
a.[Meade 1987], Zha et a. [Zha 1994], Sato et al. [Sato 2008, Sato 2011],
pressure-density relation as shown in Figure 2.1.

30 T T T T T T T T T T T

29+ |—=—Zhaet al.(1994)

1 |—*— Sato et al.(2011)
| |—— Sato et al.(2008)
s~ 274 | Meade et al.(1987)

Pressure, P(GPa)

Figure 2.1 Comparison of pressure-density measurements for SiO, glass below 10 GPa.

The original density of silicais about 2.20 g/cm?®, and it will reach 2.85-2.95 g/
cm® at 10 GPa during the compression process. From figure 2.1, we can find that all
density data have a linear increase with pressure. The red circle data[Sato 2011] are a
little above the others from 3 GPa. The black square data[Zha 1994] are a little below
at the pressure 10 GPa. This discrepancy may come from their different measurements
techniques. After al, the elastic relation between pressure and density is clear and
credible.

® [n-situ experiments up to 55 GPa

We extract the data form Sato’s work [Sato 2008, Sato 2011], combine all the
data together, as shown in Figure 2.2.
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Figure 2.2 In-situ compression experiments of SiO, glass:
Density changes with hydro-static pressure.

In figure 2.2, the original density of SIO, is 2.20 g/cm3, then it increases greatly
and almost linearly from 10 to 40 GPa, and then relatively slower above 40 GPa.
Finally it will reach 4.69 g/cm® at the pressure of 55 GPa.

In order to get rid of the impact of phase changes, we select the density-pressure
data up to 25 GPa (below 27 GPa) from their original data. The data has been listed in
table 2.1. These data we need to model are path dependent, so we first need to transfer
density-pressure relation to displacement-pressure relation.

In order to derive the deformation-pressure relation from density-pressure relation,
we have to choose as the “ strain” measure because of the large strains at stake.

Strain in one dimension [from “ ABAQUS Theory Manual”, chapter 1.4.2]

In general, strain measures used in general motions are most simple understood
by first considering the concept of strain in one dimension and then generalizing this
to arbitrary motions by using polar decompression theorem just derived. In order to
have a measure of deformation—the stretch ratio 4. Infact, 4 isitself an adequate
measure of “strain” for a number of problems. To see where it is useful and where not,
first notice that the unstrained value of 4 is1.0. The basic ideaisthe strain is zero at
A=1. In one dimension, along some “gauge length” dX, we define strain as a
function of the stretch ratio, A, of that gauge length:

e=1(1) (2.3)
The objective of introducing the concept of strain is that the function f is

chosen for convenience. To see what thisimplies, suppose ¢ isexplained in aTaylor
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series about the unstrained state:

07
a

e=f@)+(1- 1)— —(/1—) (2.4)

We must have f (1) =0, soe =0 atA=1. In addition, we choose df /di=1 at

A =1, so that for small strains we have the usual definition of strain as “change in
length per unit length.” This ensures that, in one dimension, al strain measures
defined in this way will give the same order of approximation when strains are small
(because then the higher-order terms in the Taylor series are al
negligible)}—regardiess of the magnitude of any rigid body rotation. Finaly, we

required that df /dA>0 for al physical reasonable values of 1 (that, is of all
A1>0) so that strain increases monotonically with stretch; therefore, to each value of

stretch corresponds a unique value of strain. The choice of df /dA>0 is arbitrary:

we could equaly well choose df /dA <0, implying that the strain is positive in
compression when A <1.

With these reasonable restrictions ( f =0 and df /di=1 a A=1, and

df /dA>0 for all 2>0 ), many strain measures are possible, and several are
commonly used. For instance:
i) Nominal strain (Biot’s strain): f (1) =4-1.

In a uniformly strained uniaxial specimen, where | iscurrent and |,the origina

gauge length, thisstrainismeasured as | /1,-1.

ii) Logarithmic strain: f (1) =InA.

This strain measure is commonly used in metal plasticity. One motivation for this
choice in this case is that, when “true” stress (force per current areq) is plotted against
log strain, tension, compression and torsion test results coincide closely. The elastic
part of strain can be assumed to be small.

iii) Green’s strain: f =%(/12 -1).

This strain measure is convenient computationally for problems involving large
motions but small strains, because its generalization to a strain tensor in any
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three-dimension motion can be computed directly from the deformation gradient
without requiring for principal and their directions.

Strain in general three-dimensional motions [from “ABAQUS Theory Manual”,
chapter 1.4.2].

Having defined the basic concept of “strain” in one dimension, we now turn to
generalize the idea to three dimensions. It is worth remarking that the familiar
“small-strain” measure used in most elementary elasticity books,

1[/du adu
€= 2(8x [—] ] (2.5)

is useful only for small displacement gradients—that is, both the strain and the
rotations must be small for the strain measure to be appropriate. As we will use
corotational framework to solve large strain deformation later, we can use small strain
framework (see. Figure 2.9).

The hydrostatic compression test has the following kinematics. For

three-dimension deformation case, each point has its Eulerian representation x as

below:

x=X+4|1] X (2.6)
1

B
Where x and X denote the initial and final position vectors. For linear

I_lo—él when Al is the difference between | and |,. Simply

IO I0

Strain: A=

in transformation gradient

ox 1+

Fo——= 1+ 2.7)
- 0X
- 144

B

\Y,

3
Then det|F|:(1+A)3=V—:(II—j =(1+|A—|)3. Where V,and V are the origina
0 0

0

volume of the object and the transformed volume, respectively. We define J = as

<|<
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the ratio of deformed to initial volumes equation, known as the Jacobian. We consider
the mass conservation during the deformation process, pV = p,V,, then we can get:

Al =1, exp(ln?‘]) -1 (2.8)

Thus, we can transfer the density-pressure relation to displacement-pressure relation

InJ In(p, / p)
3

from Al :Ioexp(T)—lzloexp( )—1. The transfer data as show in table

2.1,
Table 2.1 In-situ experiments’ data [Sato 2008, Sato 2011] and its derivative.
Error of density isabout +0.05 g/cm®.
Pressure Density ReIaFive Rela_tive Displace- tSimuIat-
P (GPa) o (g/om?) density J density, ment |o_n
(p/po) InJ () Al () Time (t)
1.0239 2.2720 1.0327 0.9682 0.0322 -0.0106 0.06588
2.0261 2.3561 1.0709 0.9337 0.0685 -0.022 0.13936
3.0283 2.4372 1.1078 0.9026 0.1024 -0.0335 0.207
4.0087 2.5393 1.1542 0.8663 0.1434 -0.0466 0.2879
5.1089 2.5959 1.1799 0.8474 0.165 -0.0536 0.33099
5.0925 2.627 1.1940 0.8374 0.1773 -0.0574 0.35406
5.7216 2.5921 1.1782 0.8487 0.1640 -0.0532 0.32812
6.013 2.6490 1.2041 0.8304 0.1857 -0.0600 0.37025
6.9825 2.7135 12334 0.8107 0.2097 -0.0675 0.41649
8.0010 2.7886 1.2675 0.7889 0.2371 -0.0759 0.46862
9.0032 2.8650 1.3022 0.7678 0.2641 -0.0842 0.51971
9.7809 2.9217 1.3280 0.7529 0.2837 -0.0902 0.55646
11.6559 3.0375 1.3807 0.7242 0.3226 -0.1019 0.62872
14.9226 3.1586 1.4357 0.6965 0.3616 -0.1135 0.70039
18.3827 3.3594 15270 0.6548 0.4233 -0.1316 0.81158
19.5230 3.4186 1.5539 0.6435 0.4408 -0.1366 0.8426
20.4703 3.4869 1.5849 0.6309 0.4605 -0.1423 0.8776
22.5193 3.5693 1.6224 0.6163 0.4839 -0.1489 0.9186
26.3466 3.7200 1.6909 0.5914 0.5252 -0.1606 0.9904
26.6752 3.7406 1.7002 0.5881 0.5307 -0.1621 1.000

Then we can get the loading time-pressure relation by use the pressure

displacement divide its maximum displacement, shown below.
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Almin=0—t 0
InJ > Al |{ ot
Al max — 1

Then we obtain the displacement-pressure and time-pressure data in table 2.1, and we

plot these datain figure 2.3.
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Figure 2.3 Hydrostatic in-situ experiments data: @) pressure vs density [Sato 2008, Sato 2011];
b) pressure vs volume changes; c) pressure vs relative displacement; d) pressure vs loading

time.

In-situ experiment data: fully densified experiment

Wakabayashi et a., studied the compression behavior of densified SO, glass

[Wakabayshi 2011]. The volume changes (V /V,) were determined by measuring the

change in size of the sample with optical-microscope images. X-ray diffraction
measurements carried out by using an angel-dispersive method with 25 keV
monochromatic x rays and an imaging plate detector at BL-18C of Photon Factory
(Tsukuba, Japan). The zero-pressure density of the glass was measured as

0, =2.67 g/lcm® by Archimedes method. Error in their zero-pressure density
measurements may be as +0.05 g/cm®. As the fully densified glass behaves in an
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elastic manner, we extract the compression and decompression data from the literature,
then combine these data together as shown in table 2.2. Then we use equation 2.8 to
derive the relative density of fully densified sample (In J) and then transfer it to
relative density of pristine SiO; glass (In J). Then get J and J as shown in table 2.2.

Table 2.2 In-situ experiments’ data of fully densified silica[Wakabayashi 2011]. Error of

density isabout +0.05 g/cm?. P-- hydrostatic pressure; o --density; InJ (-)—Relative

density to pristine SiO;, glass; InJ (-) Relative density to fully densified SiO,; J—Jacobian
(pristine SIO, sample); J--(fully densified sample).

P (GPa) o (9lem®  -nJ() nJ () Jr J
0.02367 267114 0.19541 0.0000 1.00000 0.8225
0.76547 2.69763 0.20571 0.0103 1.01035 0.81407

1.07323 2.69886 0.20616 0.01075 1.01081 0.8137

1.39678 2.72186 0.21465 0.01924 1.01942 0.80683
1.96496 2.74848 0.22438 0.02897 1.02939 0.79901
2.32008 2.75752 0.22766 0.03225 1.03278 0.79639
2.95139 2.79206 0.24011 0.0447 1.04572 0.78654
3.2197 2.7908 0.23966 0.04425 1.04525 0.78689
4.00095 2.83441 0.25517 0.05976 1.06158 0.77479
4.15878 2.83345 0.25483 0.05942 1.06122 0.77505
4.94792 2.86052 0.26434 0.06893 1.07136 0.76772

5.07418 2.8683 0.26705 0.07164 1.07427 0.76563
5.94223 2.90884 0.28109 0.08568 1.08945 0.75496
6.64457 2.92701 0.28731 0.0919 1.09626 0.75028
6.8971 2.91577 0.28347 0.08806 1.09205 0.75317
7.04703 2.94395 0.29308 0.09767 1.1026 0.74596
7.76515 2.97477 0.3035 0.10809 1.11415 0.73823
8.19129 2.97444 0.30339 0.10798 1.11402 0.73831
8.69634 2.99776 0.3112 0.11579 1.12276 0.73257

In this case, we transfer the relative density from fully densified to pristine
sample ones. Then we can take these data as unloading process data which can be
used to verify our modeling. Combine these data with Sato’s compression data, we
can portray an loading and unloading figure as shown in figure 2.4.
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Figure 2.4 In-situ experiments' data: pressure vs relative density. Green square (Pristine
sample, Sato et a.); Red point (Fully densified sample, Wakabayashi et a.); Blue dot line
(linear fit fully densified data); Pink dash dot line (estimate the start pressure where blue dot
line meets Sato’s data).

In figure 2.4, it is interesting to point out that the in-situ compression data and
decompression data from different experiments turn to be like one continuous loading
and unloading experiment. The blue dot line shows the linear tendency of
decompression data. The cross point of the pink dash dot line and blue dot line is the
pressure when loading and unloading meets. That means the cross point pressure is
the saturation pressure around 20 GPa.
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® EXx-situ experiments data

Ex-situ experiments data are from Ji’s doctorate thesis [Ji, 2007] and Rouxel’s
published literatures [Rouxel 2008, Rouxel 2010]. It isworth to pointing out that most
of their samples are entire bulk after decompression, suggesting that their experiments
pressure device induced little shear. They confirmed that the saturation pressure is
about 25 GPa and maximum density change is 21%. The densification error is
+0.05%. The first black dot vertical line (left) shows where densification begins; the
right black dot line shows where the saturation may begin; blue dash line shows the
tendency of saturation of densification. Moreover, acoustic velocity tests allow us to
extract the elastic properties as shown in table 2.3 and figure 2.6.
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Figure 2.5 Ex-situ experiments: Permanent densification vs hydro-static pressure.
Densification error is +0.05%. The first black dot vertical line (Ieft) shows where
densification begin; the right black dot line shows where the saturation may begin; blue dash
line show the tendency of saturation of densification.

Table 2.3 Ex-situ hydrostatic experiments data [Ji 2007, Rouxel 2008, Rouxel 2010]

Pressure Density Densification E B

P(GPa) (glem’) (%) PP In(plpo)=Ind — opy U (gpy G (GPa))
0 2.20 0 1 0 745 015 3548 32.39
80 2211 05 1005  0.005 - - - -
120 229 41 1041 0040 759 0149 3604 33.03
200 264 20 120 0182 1045 0212 6047 43.11
250 266 21 121 0191 109 0252 7325 4353

In figure 2.6 we plot the change of modulus (M/My, M denotes the elastic
modulus at pressure P, and M denotes the initial elastic modulus.), such as Young's

modulus, bulk modulus and shear modulus. Form figure 2.6, we can see that before
71



Chapter 2

Deformation Model of Silica Glass under Hydrostatic Pressure

the pressure of 12 GPa, the modulus almost no increase or increase very dightly.
However, after 20 GPa, bulk modulus increase sharply which is very different to the

dlight increase in Young’'s modulus and shear modulus.
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Figure 2.6 Elastic properties change with hydro-static pressure. Black square--Young's
modulus; red point--bulk modulus; blue triangle--hear modulus.

In summary, we extracted the in-situ and ex-situ experiments’ data carefully, and

derive some important information, such as relative density vs pressure. Furthermore,

we confirmed the threshold of densification pressure around 8-10 GPa, and the

saturation pressure around 20 to 25 GPa, which may help us to establish our model

and for further discussion.
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Figure 2.7 Deformation behavior of silica under high pressure.

Based on the reports on silica under hydro-static pressure, especialy from the
literature of Murakami et a.[Murakami 2010], and Sato et al.[Sato 2008, Sato 2010],
their comments and results, we can portray the anomalous deformation behavior of
silicaunder high pressure. We can summarize its deformation process as below:

(i)

(i)

(iii)

(iv)

For high pressures lower than the threshold densification pressure (Po, about
8-10sGPa), silica shows an elastic behavior. In this stage, the main structure of
silicais four-fold coordination structure.

For pressures higher than Py, but lower than the saturation densification
pressure (Py, about 20-25 GPa), silica shows a densification process combined
with hardening and plasticity. In this stage, four-fold coordinated silica,
five-fold coordinated silica and six-fold coordinated structures exist together.
For pressures higher than Py, the densification behavior disappeared and phase
changes from four-fold coordination structure to six-fold coordination
structure silica become predominate. And about 40-45 GPa, the polymorphism
phenomenon ends.

According to Murakami’ s investigation, the stability of six-fold-coordinated Si
over a broad pressure interval from ~40-140 GPa. An anomalous increase in
the effect of pressure on acoustic velocities at 140 GPais most likely linked to
the onset of structural densification associated with an increase in coordination
number six to a higher coordination state, but it’s not clear yet.

In order to focus on the role of densification behavior of silica, we select the
maximum pressure levels up to 25 GPa where no phase changes are likely to occur.
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2.3.2 Constitutive equations (small strains assumption)

The traditional plasticity theory, like shear flow theory, cannot describe the plastic
behavior of fused silica because the densification is so large that its effect cannot be
neglected. Lambropoulos et al., suggested a new constitutive law to describe the
evolution of permanent strains after initial densification, and a hardening rule
describing the dependence of the incremental densification on the levels of applied
stresses [Lambropoulos 1996, Xin 2000]. They use their model to estimate the extent
of the densified layer during the mechanical interaction of an abrasive grain and a flat
surface under polishing and grinding conditions. Xin and Lambroupoul os, incorporate
the effects of shear and compression into a new yield function to interpret
nanoindentation tests on fused silica via 3D finite element simulation of indentations
of Berkovich indenter [Xin 2000]. Furthermore, they use a spherical cavity expansion
model to show the densification of silica contributes to lower removal rate and less
subsurface damage upon grinding and nanoindentation [Xin 2003]. Recently,
Kermouche et al., developed an ellipse criterion to interpret the indentation-induced
densification in amorphous silica [Kermouche 2008]. They determined the
densification map under the indent compared with experimental indentation-induced
densification maps obtained by Perriot et a [Perriot 2006]. Recently, Gaderlrab et al.,
using a linear Drucker-Prager model to describe fused deformation especially their
results show a dlight pile up at the face of the tip [Gaderlrab 2012].

However, oddly, there still no constitutive law to interpret the deformation
mechanism of amorphous silica under hydrostatic pressure, i.e. without the influence
of shear. Moreover, the saturation of densification as well as the changes in elastic
modulus has not been considered in the previous models. In order to overcome the
limitations due to incomplete and imprecise knowledge, we develop a new
constitutive law to interpret the densification induced deformation mechanisms of

silicaunder pure hydro-static pressure.

Densification has a strong dependence on pressure which is the main
characteristic of the anomalous deformation behavior [Yasui 1982, Zeng 1995]. In the
present case, under pure hydro-static pressure, we assume there were no shear flow,
no evidence of frictional effects and ignore the negative hydrostatic pressure effect in
tension.

2.3.2.1 Yield function
In the general case, the multi-axial state of stress is described by the stress tensor
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o;; - The mean hydrostatic stress o, and the equivalent shear stress 7, are defined

as
1
On _éo-kk =— (0 + 0y +0g)
(2.9
S;S;
e % S] = Oj; _O-mé‘lj

where the summation convention is used. 5; is Kronecker's donation for the second
order tensor. For pure hydrostatic stress, where o, =0,, =05, =—p, the mean
hydrostatic stress o, =—-p and 7,=0. For pure shear, where o,=0, =7,
0,=0 and z,=|c|. For uniaxid tenson o,=0 ,0,=0/3 ad 7,=0/3

[ Giannakopoul os 1997, Lambropoul os 1996, Xin 2000].

Here, we assume that during the compression process with pressure p, without
shear and hardening, the deformation process can be divided into two stages: i) elastic
stage; and ii) elastic with densification. Then we can deduce the yield function under
pure densification condition is

f(o-ij) =P-P (2.10)
Where o; denotes the Cauchy stress tensor, p, denotes the threshold pressure

where densification occurs.

Following, we consider the hardening but without shear and saturation of
densification, the deformation process can be divided into three stages: i) elastic; ii)
elastic, densification and hardening; and iii) elastic, and no densification saturation.
Then we can deduce the yield function based on densification with hardening as
below (here we use linear hardening assumption):

P— Py pgpo
f(o-ij): P—(P, +&(P— 1)) Po<pPsp,sel0]]
P—P P>P

Let’s combine stage i) and ii), then we can get
f(gij):{p—(pwf(pl— P))  Psp.cel0]
P—B P>p
Here, we introduce two parameters, p, as the saturation densification pressure

(2.11)

and ¢ as the hardening parameter, which will be explained later. Furthermore, we

consider the elastic, densification, hardening, and saturation of densification, we can
divide the deformation of silica under hydro-static pressure into three stages: i) elastic;
i) elastic, densification and hardening; iii) densification saturation, elastic and
hardening. Then we can get the yield function as below
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f(qj)z{p—(pﬁé'(pl—po)) P<p,s'el0Y 2.12)

P P>p
Here, the hardening parameter ¢&'is related to the saturation of densification will be

explained after.

Finally, considering of the elastic properties change during the deformation
process, we introduce some assumption to build the relationship between elastic
modulus, such as bulk modulus B, Young's modulus and shear modulus.

In summary, the deformation model of silica under hydro-static pressure can be
illustrated in figure 2.8. There are three zones in figure 2.8, zone | represents pressure
below p,, only elastic dominate silica’s deformation; zone Il represents the main

densification process in company with hardening, densification; zone Il show the
pressure higher than saturation pressure p,, densification saturation together with

elastic properties changes. The blue line is the yield surface where pressure equal to
P, densification happens. The green line is the yield surface where densification

saturation with pressure p, . In al, this framework portrays the densification
mechanism of amorphous under pure hydro static pressure.

dadic

Figure 2.8 Illustration of pure hydro-static pressure deformation model.

2.3.2.2 Flow rule (associativity)
The yield function describes the yield surface in stress space. The normal to the
yield surface (f=0) can be expressed as
_of _of op +af or
do; Op doy; 0t 0oy
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Where when the inner product ;do; >0, the small change of stress tensor do;
causes further loading. When 4, do;; <0, the material is under unloading conditions.
P evolveas

ij
4P — 0, if xdo; <0
%0, if gdo;>0

The permanent strains ¢

(2.14)

When the pressures below po (p<p,), the yield function isf(c)=p-p,.
Especially when the pressure reach po ( p= p, ).the yield function turns to be zero
( f (o) =0), where densification and hardening occurs (blue line in figure 2.8).

If the pressure between po and p;, p,<p<p,, the yield function is

f(oy)=pP— (P, +&(P,— Py)) - Thisyield function denotes the zone I1 in figure 2.8. In

_ P
this state, we need to introduce two parameter: & and y . We defineé = —tr(e) as
v

the hardening parameter, and y =-tr(g?l ) as the saturation state's plastic

saturation

volume change. y is the maximum value of densification. when there is no
densification, & =0, if the densification saturates & =1, then we can get the variable

zoneof £€[0,]].

of . o _g.00_ 1c. 07

For pure pressure and no shear condition: — = =0;—=--9;;—=0.
op ot oo 3 " oo
Now let's consider the volume change and densification process under
pressure,
%=trs=tr(ee+5p) =tre®+treP (2.15)

Where tre® denotes the reversible volume change, and treP denotes the
densification induced irreversible volume change, which related to the permanent
densification. The superscript eand p are used to denote the elastic and plastic part

respectively in the following text.

. P
)] Aswe know, in zone | only elastic strain, that means & =0, extend it as

. P

¢; =0 and densification «=0.
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For the second stage, zone 11, elasticity, densification and hardening all exist.
The yield function as f(o;)=p-(P,+S(P—P)) P <P=<P,&€[0] . In

associated plasticity the plastic rate of deformation is normal to the yield surface [Hill

. P . .
1950]. ¢ :ﬂai, where A is the plastic multiplier which can be determined

O
from the consistency condition [Lemaitre 1996]. According to classical
phenomenologica visco-plasticity models for small strains, we define the kinematic

viscosity of the material parameter ﬂz(%) . Where f  denotes the load function,

nis afitting parameter based on Norton-Hoff model. Here, n and k are chosen to give
a rate-independent response.
-P of of op of or

Thenwe can get ¢ = =22 - (——+—— ——/'1-— Then we introduce a
oo opodo 0t do 3

. . P .
densification factorer , here & =—tr & = Aetr (%)i -
i) When pressure higher than py, p> p,, inzonelll infigure 2.8, we can
simplify the constitution model to be
f(o)=p-p, p>p1’

In this stage, we consider it as a new multiply state where elastic turn to a second state,
densification saturated, and densification induced hardening finished. Then we can get

A & o, P 1 97 4 andthen get
6p ot doy, 3 Joy
. P . . . P .
oo ap 60‘ ot 0o 3 3

Moreover, in this stage, there were no plastic, so 2=0. Then we can get simply
results as:

a=-1re =-—tr &gauation = V4

In summary, this part we use a linear hardening rule to introduction our
constitutive equation and how to deduce the stress-strain relation which relate to
densification. This method also can be used to other hardening rules, such as atan
function and Avrami function hardening rules, which will be discussed later.
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2.3.3 Implementation

2.3.3.1Numerical model

Since we established the constitutive equation, we need to develop a numerical
model to solve this problem. Newton's iteration method is used for numerical
integration. In general the yield stress is a function of permanent deformation history.
According to Hooke's law, writing in tensor form we have

do; = Dy, de’ (2.16)
Where the fourth-order tensor D,,, is the materid’s elastic stiffness tensor. The

elastic behavior is assumed to be linear and isotropic.
By coding the numerical model to the subroutine UMAT provided by ABAQUS,
we have the ability to study this material by using the finite element method.

2.3.3.2 Co-rotational framework

The experimental data of maximum densification, as well as the molecular
dynamics simulations, are in essential as large as 21%, that means the permanent
volume change(AV ) will as high as ~19.3% compared to its original volume (V,).
The material’s deformation turns to be large in a deformation state. An approach to
the solution of this problem is presented under the assumption that the sampling can
be made prior to the execution of the simulation under co-rotation framework. In
figure 2.9, Q, denotes the initial configuration of a physical body. Q, denotes the

deformed state of a physical body. Q. denotes the corotational frame of a physical
body. The mapping function from Q,to Q, is X= ;(()_() and the deformation

0X
gradient functionis F = ﬁ In arectangular Cartesian coordinate, the components

of the deformation gradient tensor are F, :% . In matrix form,
j
Ry
oX, OX, OX,
[F]= %% % %% | The rotation meatrix Q, between Q and Q_is defined as
oX, DX, OX, )
9 0% 0%

| 3X, OX, OX, |
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Q' =0,

Deformation
gradient (O X
F=—r

0

Deformed
Framework

Corotational Framework

Rotation matri
Constitutive equations

~

Figure 2.9 A sketch of co-rotation frame.

Volume strain: in this section on the deformation gradient, the ratio of deformed

to initia volumes equals the Jacobian J :VX' As we know, the mass of physical
0

body is an conservation value m= p,V, = pV , then we can obtain the Jacobian in a

density form J = Po
P
The use of local objective frames, has proved to be an efficient method to develop

constitutive models at finite strain, which automatically fulfill the material frame
indifference requirement [Forest 1994]. Local objective frames can be used to extend,
in a straightforward manner, constitutive equations that have been developed at small
strains, to be finite strain framework. The choice of the local objective reference
frame in which the constitutive equations are written, then becomes a major issue in
the modeling [Forest 1999]. In our Lab LIMATB, there is a software SiDoLo
developed by Prof. Pilvin et al., can be used to write constitutive equation at small
strain in corotational frame and then evaluate the stress in deformational framework.
Basing on this software with ABAQUS UMAT, we have the ability to ssimulate large
deformation case by using mass infinity small deformation cases. This is summarized
in the following steps: i) coding constitutive law in corotational framework; ii) using
rotation matrix to get original framework data by SiDoLo; (iii) using finite element
software ABAQUS simulate the deformation process; iv) using SiDoLo to get the
corotational data from deformation framework results; v) circulation.
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2.3.4 Verification

The material model was tested extensively before used to solve more complex
problems. In this verification, three simple cases are studied: pure tension, pure shear
and pure compression. The finite element model is a simple 8-node 3D solid element.
The material properties were chosen as: initial bulk modulus B=35.5 GPa, initial
shear modulus G=31.9 GPa. Densification and hardening are considered, and no
amorphous state change in the deformation process.

® Pure tension case
For the first pure tension case, we impose the tension o,, =0 and keep the

transverse surface free of stress, so ¢, =o,, =0.

20 T T T T T . T
Stress vs strain +
18 | 1
16 | ]
~ 14t 1
g
S 12t :
&1t ]
w 6 L _
4 L _
2L ]
0 1 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Strain LE33(-)

Figure 2.10 Simple tension test: stressvs strain.
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1 T T Wl P T . T T T
Densification vs tensile stress +
0.5+ .
=
8
a O - B
9]
=
o
[
05 ¢ 1
— l 1 | | | 1 | 1

0o 2 4 6 8 10 12 14 16 18 20
Stress, 053 (GPa)

Figure 2.11 Simple tension test: densification vs tensile stress.

The finite element results are plotted in figure 2.10 and figure 2.11, the yield
stress almost line increase with strain and densification keep the value of 0. For von
Mises yield theory the densification « =0. Therefore, analytic and numerical results

agree exactly.

® Pure shear case
For the second pure shear case, weimposethe shear o, =0 .

6 T T T T T T T T
Shear stress vs shear strain =~ -
5L _
=
(=0
o 4+ i
5
w 3+ .
]
(]
f
F};
= 2+ .
r.:__)
73]
1k 1
0

0 0.0l 002 0.03 0,04 0.05 0.06 0.07 0.08 0.09 0.1
Shear strain LE;5(-)

Figure 2.12 Simple shear test: stressvs strain.
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1 T T - T T T
Densification vs von Mises shear +
0.5+ .
5
= 0
=
|51
o
-05 J
_]_ 1 1 1 L L
0 1 2 3 4 5 6

von Mises shear stress. T (GPa)

Figure 2.13 Simple shear test: densification vs von Mises shear stress.

The finite element results are plotted in figure 2.12 and figure 2.13, the shear
stress line increase with strain and densification keep the value of 0. Therefore,
analytic and numerical results agree exactly.

® Pure compression case
For the third pure compression case, we impose the compression o.,, =c and

keep the transverse surface free of stress, so o, =o,, =0.

40 T T T n T T N T
Stress vs strain +
35 L |
30 - |
S 25| ]
7;5: 20 - ]
2 15t ]
| =
2
10 - ]
st |
0 | | | I

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Strain —LE33(-)

Figure 2.14 Simple compression test: stress vs strain.
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0.018

0.016
0.014
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0.008
0.006

Densification, « (-)

0.004 +
0.002

Densification vs compressive stress

10

15 20 25
Stress, —o33 (GPa)

30

Figure 2.15 Simple compression test: densification vs compressive stress.

The finite element results are plotted in figure 2.14 and figure 2.15, the shear
stress line increase with strain. Interestingly, it shows that densification increase when
the hydrostatic pressure beyond its densification critical pressure. Therefore, analytic

and numerical results agree exactly.
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2.4 ldentification and numerical results

2.4.1 Numerical tools

Model Parameters
SiDolo

Finite Experimental

Element

Figure 2.16 The sketch of identification process.

An approach to the solution of this problem is using SiDoLo to verify the
numerical results and the experimental data. The sketch of this identification process
as shown in figure 2.16. We program our model by ABAQUS UMAT, submit the job
to execute finite element simulation. After the first circulation we obtained the
numerical results. We extract the data from ABAQUS odb file by using the software
Python. Then we use SiDoL o to compare with the original parameters as given in a
Coefile[material parameters filein SiDoL o] and experimental data. After calculating
the residuals (minimization function) by SiDoLo, it will produce new parameters to
minimize the discrepancy between experimental and simulated curves, which will be
used in the next circulation. Many attempts will be operated until reaching the best
fitting results from finite el ement results and experimental data.

2.4.2 Strategy of identification

First of al, we have to determine the parameters. In our models, we mainly
consider the invariable parameters as the initial bulk modulus By and the initial shear
modulus Gy, these two parameters are given from the experiment data of Ji. The
variable parameters such the densification factor, the threshold of pressure P, the
saturated pressure for densification Py, the maximum of bulk modulus Bnax and the
maximum of shear modulus Gma, these 4 parameter we need to determine with
experimental results. Secondly, we give the parameters a range of its values in order
to make sure of the physical meaning of the parameters. Thirdly, we start from the
simplest model only to consider densification, then consider the saturation of
densification, after that we consider the changing in moduli. Using this way, we can
step by step to fix the data and realize our identification. Finaly, we fix the
parameters of By, Go, Bmax,Gmax, and the maximum of densification y(21.6% in
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deformed framework, and 19.3% in corotational framework) to get the proper data of
Po and P;.

2.4.3 Assumptions and results

2.4.3.1 Linear assumption and results

Here, we assume the densification processto follow alinear change with pressure
as shown asin figure 2.17. That means the densification induced hardening follow the
relationship of a linear way between hydrostatic pressure and densification:

fo))=pP—(P+S(P—P)) Po<P<P.$e[0].

:saturation y

Densification,(a) (%)

P P

0 1

Hydro-static Pressure, P(GPa)

Figure 2.17 Linear assumption of densification.

® In-situ experiments simulation and reverse analysis

In figure 2.4, we extract the data of Sato [Sato 2008, Sato 2011] and Wakabayashi
[Wakabayashi 2011] showing loading and unloading of the in-situ experimental
process. In order to compare with ex-situ experiment results, we set the maximum
load Prmax equal to 25 GPain ABAQUS file and insert a data for Sato’s in-situ loading
to 25 GPa by alinear way from his data. Reverse analysis results as shown in table 2.4
and figure 2.18.

Table 2.4 Simulation results of in-situ experiments.

Known values Unknown values
Bo(GPa.) Go(GPa) Bmax(GPa.) Gmax(GPa) Y Po(GPa) PJ_(GPa)
355 31.9 74.5 437 0.21 9.7 20.6
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From figure 2.18, we find our simulation can fit the experiment data very well.
For the simulation data, there are three main characters:1) below 9.7 GPa, the pressure
has alinear relationship to volumes change; 2) pressure increase more sharply after 10
GPa; 3) after 20.6 GPathe loading and unloading data of became following the same
tendency, and the pressure increase slope is higher than ever before.

30

Simulation
Exp.-Sato

A Exp.-Wakabayashi

Pressure, P(GPa)
2

00 01 02 03 04 05
Volumes changes, In(V/V ) (-)

Figure 2.18 Hydrostatic pressure test: Pressure vs Volumes change. Simulation (loading and
unloading) vs experiments (Sato, pristine sample; Wakabayashi, fully densified sample).
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Figure 2.19 Hydrostatic pressure test: Pressure vs Densification.
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Since the simulation can fit the experiments' data very well, we can read more
information from the simulation results. Figure 2.19 show the densification changes
with pressure in the deformed framework.

From figure 2.19, the densification change in a linear way with pressure. the
threshold pressure is 9.7 GPa in deformed framework. The saturate pressure is about
20.7 GPain Euler framework and 12.9 GPa in corotatina framework. The maximum
densification will reach 21.3%, which is consistent with Wakabayashi’s fully densified
initial data [Wakabayashi 2011].

As we assume the bulk modulus and shear modulus have linear relation to the
densification, our simulation can give us a prediction of the elastic modulus change
with pressure, shown in figure 2.20.

140~ , , , , , —
Bulk modulus, B ' ' '
1204 ° Shear modulus, G

A Yourlg's modulus, E

100+ .

(o]

o
[
1

Elastic moduli, (GPa)
(@)
? .

|

N
o

10 15 20 25
Pressure, P(GPa)

o
()]

Figure 2.20 Hydrostatic pressure test: Predictions of elastic moduli with pressure.

The permanent bulk modulus will increase after Py and reach a maximum value
about 74.5 GPa. Similarly, the permanent shear modulus will reach 43.7 GPa and the
Young's modulus will reach 109.7 GPa.

Moreover, according to the classic relationship of Poisson’s ratio to modulus,
b 3B-2G

6B+ 2G
figure 2.21. From figure 2.21, we can find that the permanent Poisson’s ratio starts to
increase above the threshold pressure P,, then reach a maximum value about 0.255 at
the saturation pressure P, then keeps constant at higher pressure and during the
unloading process.

, We can predict the changes in Poisson’s ratio with pressure, as shown in
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0.26 - m  Poisson's ratio, v
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Figure 2.21 Hydrostatic pressure test: Predictions of Poisson’s ratio with pressure.

Now let’'s check the Jacobian (J :Vl) vs applied pressure, as shown in figure
0

2.22. we can find that with the applied pressure increase the volume decreases fast,
then densification happens, the volume changes slow down. When unloading, the
volume change linearly back to its permanent volume about 82.3% of its original. The
simulation fits the experimental datavery well.

1.0 T T T T T T i T ) T
L ]
e Simulation
0.9 [ e Exp.-Sato .
° § A  Exp.-Wakabayashi
k [ ]
- 0.8 “AAA e .
c Al *e
£ et
8 0.7 ° 7
©
r) [ ] ° o
0.6 Yine A
0.5 T T T T T T i T ) T
0 5 10 15 20 25

Pressure, P(GPa)

Figure 2.22 Hydrostatic pressure test: Jacobian vs Applied pressure.
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® Ex-situ experiments simulation and reverse analysis

We use the maximum pressure to do reverse analysis to compare with Ji’s ex-situ
permanent densification data. For example in figure 2.23a is the loading and
unloading process with the maximum pressure to 20 GPa. Figure 2.23b shows the
densification changes during the loading and unloading process.

N W
SR
P |
L

Pressure vs Time

Loadin Unloading

Pressure, P(GPa)
cmnoad

0.25-
0.20-
0.15-
0.10-
0.05-
0.00 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

0.0 0.5 1.0 15 2.0

Deformation process time

Densification vs Time

Densificatio, a. (-)

Figure 2.23 Reverse analysis: (@) Pressure vstime; (b) Densification vs Time.

As pictured in figure 2.23, we used four different maximum pressures, 8 GPa, 12
GPa, 20 GPa, and 25 GPa, corresponding to Ji's experimental data. The densifications
level changes with different pressures are shown in figure 2.24. In figure 2.24a, use
maximum pressure 8 GPa, and the densification is 0. In figure 2.24b, the maximum
pressure is 12 GPa, and the densification starts to increase after the threshold, and
reach 0.041. Similarly, in figure 2.24c, the maximum pressure is 20 GPa, and the

Table 2.5 Simulation results of ex-situ experiments.

Parameters fixed Parameters free
Bo(GPa) Go(GPa) Bnx(GPa) Gnx(GPa) Y Prax(GPa) o Po(GPa) P1(GPa)
355 31.9 745 437 021 8 0 9.7 20.6
35.5 31.9 745 437 021 12 0.041 9.7 20.6
35.5 31.9 745 437 021 20 0.201 9.7 20.6
355 31.9 745 437 021 25 0.213 9.7 20.6

densification starts to increase after the threshold, and reach 0.20. Finaly, we impose
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the maximum pressure to 25 GPa, densification turns to be saturate after the saturation
pressure (here P;=20.6 GPa) and the saturation densification is 0.213. These data are
shown in table 2.5.

In order to check our ssimulation results, we portray the fina densification with

Ji’s experiments data (error is £0.005) as shown in figure 2.25. Although, there is a

glightly higher of the data at 25 GPa and a little lower at 8 GPa compared to Ji’s
experimental data, it is reasonable when we consider the error from experimental data.
Therefore, we can conclusion that the densification data obtained from simulation fit
Ji’s experimental datavery well.

0.30- 0.30
a) b)

0.25- Max Pressure=8 GPa 0.25- Max Pressure=12 GPa

0.20- 0.20-

0.15- 0.15-

0.10- 0.10-

0.05 0.05-
s 0'Ooo 5 o 20 5 10 15
c  0.30; 0.30-
2 c) d)
(0] i B _
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5 020 00 == e
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Figure 2.24 Densification at different maximum pressure (8 GPa, 12 GPa, 20 GPa, and 25
GPa, corresponding to Ji’s experimental data).
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Figure 2.25 Hydrostatic pressure test: Densification vs Maximum applied pressure (Ji's

experimental data, error is £0.005), Euler framework.

Figure 2.26 and 2.27 show the prediction of elastic moduli and Poisson’s ratio
with applied maximum pressure. In figure 2.26, it is worth pointing that the bulk
modulus can't fit Ji’s experimental data at 12 GPa and 20 GPa, but fit the final bulk
modulus very well. Besides, shear modulus and Young's modulus all show good
agreement with Ji's experimental data
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Figure 2.26 Hydrostatic pressure test: Elastic moduli vs Maximum applied pressure (Ji's
experimental data).
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Figure 2.27 Hydrostatic pressure test: Poisson’s ratio vs Maximum applied pressure (Ji’s
experimental data).

In figure 2.27, the Poisson’s ratios show a great discrepancy at 12 GPa and 20
GPa, but the final Poisson’'s ratio at 25 GPa shows very good agreement. This
discrepancy may come from the physical relationship between modulus and
Poisson’s ratio which has been changed after densification or the uncertainty from
experimental data.

® Summary

In general, based on a linear assumption, and using the in-situ and ex-situ
experimental data, we have succeeded in the reverse analysis. We achieved the
excellent densification value which show a good agreement to the published
densification, especially for the maximum value of 0.20~0.21, as shown in table 2.6.
Moreover, the threshold densification pressure and saturation pressure we obtained
are about 9.7 GPa, and 20.6 GPa, respectively, which show good consistency with
literature data.

Table 2.6 Reverse analysis results basing on linear hardening rule.
Po(GPa) P1(GPa) Y

Simulation 9.7 20.6 0.213

J'sEXP ~8 ~20 0.20~0.21
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Furthermore, we tried to predict the changes of elastic modulus and Poisson’s
ratio with pressure. The changes of moduli vs densification are shown in figure 2.28.
Bulk modulus, shear modulus and Young's modulus all follow a linear relationship
with densification. It seems that, shear modulus and Young's modulus show a good
agreement with Ji’'s experimental data, while the bulk modulus and Poisson’s ratio

show a big discrepancy at the pressure of 12 GPa and 20 GPa.

Elastic moduli, (GPa)

120+ = Bulk modulus, B
e Shear modulus, G LAk
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Densification, o

Figure 2.28 The changes of moduli vs densification.
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2.4.3.2 Atan(P) function assumption and Results

The linear assumption gives good values of Py and Py, but there exist a
discrepancy when we use it to predict the bulk modulus and Poisson’s ratio, therefore
we turn to use an atan(P) assumption to portray the hardening rule, as shown in figure
2.29. This assumption means that the densification versus pressure follows an atan(P)
function « =F(atan(P)). In order to check the assumption we try to fit with Ji's

ex-situ densification data, as shown in figure 2.30. Obviously, atan(P) function can fit

Ji’s experimental datavery well aslong aswe use proper mathematical parameters.

Densification,a (%)

25 -

20 4

15 -

10 4

Densification, (a.)(%)

saturation, (y)

P, P,
Hydro-static pressure, P(GPa)

Figure 2.29 lllustration of Atan (P) assumption.

Ji_EXP_Fused Silica (2007)
--- a=21*(atan(P-14)+atan(14))/(2*atan(14))

25 30

Pressure,P (GPa)

Figure 2.30 Use Atan (P) function to fit Ji’s permanent densification vs pressure.
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® In-situ experiments simulation and reverse analysis
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Figure 2.31 Hydrostatic pressure test: Pressure vs Volumes change. Simulation (loading and
unloading) vs experiments (Sato, pristine sample; Wakabayashi, fully densified sample).

Using the atan(P) function, we program our model and execute reverse analysis.
Figure 2.31 show the in-situ reverse analysis results for hydrostatic pressure case:
pressure versus volumes changes. From figure 2.31, we can find that, our ssmulation
has a good agreement to in-situ experiments. For loading process, our simulation can
fit Sato’s experimental data [Sato 2008, Sato 2011]. It is interesting that around 12
GPa, there exists an unexpected abrupt, then turns to another slope. For unloading
process, our simulation can fit Wakabayashi’s fully densified silica behavior. Figure
2.32 show the densification changes under pressure. As atan(P) function presents a
very slowly increase at the start, the densification occurs at 1.0 GPa, and finish at 25.0
GPa. That means P, and P, is 1.0 GPa and 25.0 GPa, respectively. We take
densification equal 0.001 as the starting threshold where Po* is 9.1 GPa, and the
saturation take the densification to 0.210 where the pressure Pi* is 21.8 GPa in
deformed framework.

Our simulation predicts the elastic modulus changes and Poisson’ ratio changes
with pressure as shown in figure 2.33 and 2.34. The permanent bulk modulus (B) will
reach 74.5 GPa, and the permanent shear modulus and Young's modulus will reach
43.7 GPa and 109.7 GPa, respectively. The Poisson’s ratio will reach 0.255 after
saturation.

95



Chapter 2 Deformation Model of Silica Glass under Hydrostatic Pressure

0.25 ——

0.20 -~ .

0.154 " .

0.10+ " .

Densification, o (-)

0.05 . .

0.00 y # T T T T T T

0 5 10 15 20 25
Pressure, P (GPa)

Figure 2.32 Hydrostatic pressure test: Pressure vs Densification.
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Figure 2.33 Hydrostatic pressure test: Predictions of elastic moduli with pressure.
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Figure 2.34 Hydrostatic pressure test: Predictions of Poisson’s ratio with pressure.
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Figure 2.35 Hydrostatic pressure test: Jocobian vs Applied pressure.

In order to verify our simulation, we plot the Jacobian versus applied pressure, as
shown in figure 2.35. In figure 2.35, it is clear that our simulation can fit experiments
data very well. The permanent value of Jacobian after decompression is 0.822.
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® Ex-situ experiments simulation and reverse analysis

We use atan(P) assume to do reverse analysis of ex-situ experiments data of Ji’'s
thesiswork [Ji 2007]. In order to get the proper parameter of Py and P, we free Py and
P1, fiXx Bo, Go,Gmax, Bmax, 7, the results as shown in the following figures.

We use ABAQUS DLOAD way to carry out our simulation, which means we use
the maximum applied pressure to 25 GPa for loading and unloading. Figure 2.36
shows the results of densification at different applied pressure. Atan(P) function
presents slow increase at first, so it gives a very low of densification below the
pressure 8 GPa, which Ji's experiment get densification of 0.005. the very fast
increase of densification is around 13 GPa, then it reaches saturation state at the high
pressure of 20 GPa.

0.008+
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0.006+
0.034
P =8 GPa P =12 GPa
0.004- 0.024
R 0.0024 0.014
=
§ 0000, 2 4 6 s 9% 2 i 6 & 10 12
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:‘g, 0.201
S 0.20 |
a
0.154
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0.05- 0.05
0.00

—_——————8:0 0 -
0 2 4 6 810121416182022 0 2 4 6 810121416182022242628

Pressure, P (GPa)

Figure 2.36 Densification at different maximum pressure (Atan(P) assumption. 8 GPa, 12 GPa,
20 GPa, and 25 GPa, corresponding to Ji’s experimental data).

Figure 2.37 shows the permanent densification compared with Ji’s data. The error
of Ji’s experiment is 0.005. From figure 2.36, we can find that, our simulation results
fit J’'s data very well. Figure 2.38 presents the predictions of the changes in elastic
moduli with pressure. The bulk modulus, at 20 GPa, presents a discrepancy with
experiments data. It is aimost 13 GPa higher than Ji’s tests. Except this point, the
others seems all fit well, that’'s means our model can predict the changes in elastic
properties under high pressure of silica.
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Figure 2.37 Hydrostatic pressure test: Densification vs Maximum applied pressure (Ji's
experimental data, error is £0.005).
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Figure 2.38 Hydrostatic pressure test: Elastic moduli vs Maximum applied pressure.
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Figure 2.39 Hydrostatic pressure test: Poisson’s ratio vs Maximum applied pressure, Euler
framework.

Figure 2.39 shows our model predictions of Poisson’s ratio at different applied
pressure. there exist a big discrepancy at the pressure of 12 GPa and 20 GPa
compared with Ji’ data. However, it predicts the permanent Poisson’s ratio will reach
0.255 which can fir Ji’s experimental data 0.252.

® Summary

Table 2.7 Reverse analysis results basing on Atan(P) hardening rule.

Po(GPa) Po* (GPa) P1(GPa) Pr* (GPa) v (%) Bmx(GPa) Gmax(GPa)
Simulation 1.0 9.1 250 218 213 744 43.7
J'SEXP ~8 ~20 20~21 73.3 435

i) We have succeeded using Atan(P) assumption to simulate the densification
phenomenon of silica under high pressure.

i1) The threshold pressure of densification is around 8-10 GPa. At 9.1 GPa, the
densification value reaches 0.001 in our simulation. The saturation pressure is
around 21.8 GPa, as shown in table 2.7.

1ii) Our simulation has a good agreement with in-situ experimental data [Sato 2008,
Sato 2011, Wakabayashi 2011].

iv) We predict the permanent changes in elastic modulus and Poisson’s ratio, most of
them can fit ex-situ experimental data [Ji 2007, Rouxel 2008, Rouxel 2010] very
well.

100



Chapter 2 Deformation Model of Silica Glass under Hydrostatic Pressure

2.4.3.3 Avrami equation assumption and Results
a. General

The Avrami equation, also known as Johnson-Mehl-Avrami-Kolmogorov (JMAK)
equation, describes how solids transform from one phase (state of matter) to another
at constant temperature. It can specifically describe the kinetics of crystallization, can
be applied generally to other phase changes in materials, like chemical reaction rates,
and can even be meaningful in analyses of ecological systems. Avrami type plots
show alinear fit over al conversions but have non-integer values of slope as shown in

figure 2.40.[ http://en.wikipedia.org/wiki/Avrami_eguation]
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Figure 2.40 Avrami type plots.[http://en.wikipedia.org/wiki/Avrami_equation]

In general,
tim
x(t) = 1- eXp[-(;) ] (2.17)
-- Johnson-Mehl-Avrami-K olmogorov equation
The parameter ‘m’ depends on shape of -phase particles (the Dimension):

spherical>m=3; disk-shaped->m=2; rod-shaped—>m=1
(3D) (2D) (1D)

If nucleation occurs concurrently with growth, for 3D spherical particle, m can be
4 or 5 under various conditions.

b. Application to densification
The initial slow rate and the transformation of density (% €[0.0001,0.9999]) of

silica under hydro-static pressure seems origin from the inner structure change. Then
we use this mathematical function to our pressure and densification, we can use as
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below function:

In1-2/)
P(%/) = F%+(P1—Po>*(—f/7>m (218)

For the density permanent change in 3D structure of silica, we determine m=4
and 7 =2tofit J’'sdata

® In-situ experiments simulation and reverse analysis

We use IMAK assumption for the hardening rule to ssimulate the densification
behavior of silica under hydrostatic pressure and execute reverse analysis to compare
with experimental data. We present our simulation with the in-situ experimental data
as below.

Figure 2.41 show the result of pressure versus volume changes for in-situ
experiments [Sato 2008, Sato 2011, Wakabayashi 2011]. From figure 2.41, we can
find that our results satisfy the in-situ experimental data very well.
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o
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Figure 2.41 Hydrostatic pressure test: Pressure vs Volumes change. Simulation (loading and
unloading) vs experiments (Sato, pristine sample; Wakabayashi, fully densified sample).

Figure 2.42, shows the densification changes with pressure. It starts very slowly
a first at 3.0 GPa, then increase sharply after 9.25 GPa, where the densification
reaches 0.011. At 20.2 GPa, the densification reach 0.20 and then increase very slowly,
until 25.0 GPa reach the maximum. So we take 3.0 GPa and 25 GPa as the threshold
pressure Py and saturation pressure P;, and 9.25 GPa and 20.2 GPa as the approximate
threshold pressure Py* and approximate saturation pressure P;*.
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Figure 2.42 Hydrostatic pressure test: Pressure vs Densification.

Figure 2.43 and figure 2.44 show the changes inelastic moduli and Poisson’s ratio,
respectively. From figure 2.43 we can find that all the data changes smoothly follow
JMAK assumption. The permanent changes of bulk modulus, shear modulus and
Young's modulus will reach 74.5 GPa, 43.7 GPa and 109.7 GPa. The Poisson’ ratio
will reach 0.255 after saturation.
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Figure 2.43 Hydrostatic pressure test: Elastic moduli vs Pressure.
Figure 2.45 shows the Jacobian changes with pressure both for loading and
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unloading. It is clear that, our simulation can satisfy the in-situ experimental datafrom
Sato and Wakabayashi et al.

0.26 i
0.24 - / .
> | S |
S 0.22- 1
g
'2 0.20 ..0° .
(@] ] °
7 S
2 0.184 s 1
o 1 ]
0.16 1 o .
0.14 T T T T T T T T T T
0 5 10 15 20 25

Pressure, P (GPa)

Figure 2.44 Hydrostatic pressure test: Predictions of Poisson’s ratio with pressure.
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Figure 2.45 Hydrostatic pressure test: Jacobian vs pressure.
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® Ex-situ experiments simulation and reverse analysis

According to Ji’s experimental maximum pressure (Prax), We simulate at different
Prax (8 GPa, 12 GPa, 20 GPa and 25 GPa) the densification behavior and verify it
with Ji’s experimental data.

The densification versus pressure results as shown in figure 2.46. When pressure
reaches 2.85 GPa, densification happens. Then, densification slowly increases until
9.25 GPa to reach 0.011. After that, densification increase sharply, to reach near
saturation. At the pressure of 20.25 GPa densification reach 0.202, where saturation
begins.
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Figure 2.46 Densification at different maximum pressure (8 GPa, 12 GPa, 20 GPa, and 25
GPa, corresponding to Ji’s experimental data).

Figure 2.47 presents the densification of simulation and experimental data at
different applied pressures. Simulation results can fit experimental data very well.
Figure 2.48 shows the elastic moduli at different applied maximum pressure. We need
to point out that shear modulus can fit all experimental data. Interestingly, bulk
modulus presents the biggest discrepancy at 20 GPa, but Young's modulus fit well at
this pressure. Figure 2.49 shows the predictions of Poisson’s ratio at different pressure.
It seems that our ssimulation only can predict the permanent Poisson’s ratio at 25 GPa,
and there exist a difference with Ji’'s data.
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Figure 2.47 Hydrostatic pressure test: Densification vs Maximum applied pressure (Ji’s
experimental data, error is £0.005).
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Figure 2.48 Hydrostatic pressure test: Elastic moduli vs Maximum applied pressure (Ji's
experimental data).
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Figure 2.49 Hydrostatic pressure test: Poisson’s ratio vs Maximum applied pressure.
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Figure 2.50 Elastic moduli vs densification.

Figure 2.50 shows the elastic moduli versus densification. It shows that all the
moduli follow a linear relationship to densification, that means the results follow our
linear assumption used between elastic moduli and densification. However, a not
linear relationship turns out between Poisson’s ratio and densification, as shown in
figure 2.51.
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Figure 2.51 Poisson’s ratio vs densification.
® Summary

Table 2.8 Reverse analysis results basing on IMAK hardening rule.

Py(GPa) PO*(GPa) Py(GPa) Pi*(GPa) vy (%) ?(;“;Xa) ?Gm;xa)
Simulation 30 925 250 20.2 21.3 74.4 437
J'sEXP ~8 ~20 20~21 733 435
Wakabayashi 21 75.4

In general, using Avrami eguation assumption our smulation can fit both ex-situ
and in-situ experiment well. The results are shown in table 2.8 and can be categorized
as below:

1) The starting rate of densification is very dowly, the initia densification pressure
starts from 3.0 to 9.25 GPa.

i) There exist great change rate after the pressure 9 GPa and stop at around 20 GPa.

iii) For densification factor, our model can fit the densification with pressure very
well.

Iv) Furthermore, we succeed in using linear assumption to predict the changes of
elastic moduli. Although there is a little difference at some pressure for bulk
modulus and Young's modulus, most of the results can fit experimental data.

v) Thismodel can predict the saturation Poisson’s ratio.
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2.5 Conclusion and discussion

In order to see the difference among the different assumpations for the hardening
rule, we plot those ssimulation results and experimental data in figure 2.49. It shows
that the volume changes with pressure, linear assumption, atan(P) assumption and
JMAK assumption simultaion results all have good agreement to Sato and
Wakabayashi’s in-situ experimental data. The residual of the simulation are 30.9 for
linear assumption, 50.7 for atan(P) assumption and 5.9 for JMAK assumption,
therefore, IMAK assumption gives us the best fit.
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Figure 2.52 Hydrostatic pressure test: Volume changes vs Pressure.

Figure 2.50 show the densification versus pressure, it is clear that, al simulation
give excellent fit to ex-situ experimental data. For linear hardening rule, the threshold
pressure is 9.7 GPa, and the saturate pressure is around 20.6 GPa. As atan(P) and
assumption and JIMAK have a very slow increase at low pressure, we take the
threshold pressure at densification reach 0.01, then Py is 9.25 GPa. Simarily, we take
the saturation pressure for densification reach 0.201, then P;is 20.25 GPa.

We assume bulk modulus and shear modulus have a linear realtionship with
densification to predict the changes of ealstic modulus. Figure 2.53 shows our
predictions of bulk modulus changes with pressures. It seems that, our simulation can
not predict the whole process. The permanent bulk modulus after decompression from
25 GPais 74.4 GPa, which can fit Ji’'s 73.3 GPa and Wakabyashi’ s 75.4 GPa.
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Figure 2.53 Hydrostatic pressure test:Densication changes vs Pressure.
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Figure 2.54 Hydrostatic pressure test: Bulk modulus changes vs Pressure.
Figure 2.55 shows the changes of shear modulus for the three assumptions with
pressure. From the figure, we found that all the simlation can satify Ji’s ex-situ

experimental results, especially IMAK assumption simulation can fit the Ji’ s data best.
The permanent shear modulus will reach 43.7 GPa after decompression.
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Figure 2.55 Hydrostatic pressure test: Shear modulus changes vs Pressure.

According to the classic relationship E = 39BBGG , we predict the changes of
+

Y oung's modulus with pressure as shown in figure 2.56. It is interesting to point out
that our simulations all give a little bit higher value compared to Ji’s data at the
pressure of 12 GPa and 20 GPa. However, the permanent Y oung's modulus can fit

J’sdatavery well.

3B-2G

According to the classic relationship v = G’ we predict the changes of

Poisson’s ratio with pressure as shown in figure 2.57. Comparing with Ji’s ex-situ
data and Zha's [Zha 1994] in-situ decompression data from 57.5 GPa, we found that
Ji’s Poisson’'s data at the pressure of 20 GPa amost equal Zha's result around 0.21.
The Poisson’s ratios from our simulation higher than Ji’s data at 20 GPa, but fit well
at 25 GPa. The difference may come from the inaccuracy of experiments at slow
change rate state or the hardening rule will be more complex than what we have
assumed. Furthermore, shear flow, as a promotion factor has a great impact during the
densification process, which may impact the hardening rule especialy at higher
pressure.
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Figure 2.56 Hydrostatic pressure test: Y oung' s modulus changes vs Pressure.
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Figure 2.57 Hydrostatic pressure test: Poisson’s ratio changes vs Pressure.

Based on the information we collected for the change of Raman shifts, we found
that it seems has the same tendency as densification as shown in figure 2.58
[Wakabayashi 2011, Sato 2011, Deschamps 2011, Huang 2004, Rouxel 2008, Sugiura
1997, Benmore 2010]. The Raman shift has a direct relation to the inner structure,
which means the densification phenomenon stems from the permanent changes of

112



Chapter 2 Deformation Model of Silica Glass under Hydrostatic Pressure

structure, especialy the changes in coordination rings number of silica.  Figure 2.59
shows the changes of 4™ , 5" and 6™ coordination rings/Liang 2007]. With the
pressure increase, the 4™ rings will decrease and 5", 6" rings will increase. The
increase percent of 6" rings may have a linear relationship to the densification.
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Figure 2.58 Hydrostatic Pressure Case: Densification and Raman shift change with pressure.
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Figure 2.59 Percentages of Si atoms coordinated four (sguares), five (circles), and six
(triangles), to oxygen. The cutoff distance for coordination was set to 2.1 A and error bars

were evaluated by changing the cutoff distance by 0.1 A. [Liang 2007]
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® Summary

All in al, our model can smulate the densification phenomenon under
hydrostatic pressure and predicts the changes of densification, the changes in elastic
properties and Poisson’ s ratio with pressure. The main achievements as below:

)] Establish a new constitutive equation to portray the densification behavior of
silica under hydrostatic pressure. Proposed three linear, atan(P) and IMAK
hardening rule to portray the densification induced permanent hardening.

i) Succeed in executing reverse analysis and get the characteristic parameters,
as shown in table 2.9. Densification versus pressure process for loading and
unloading all show good agreement to the experimental data both in in-situ
and ex-sSitu case.

Table 2.9 Reverse analysis results.

Py(GPa) P1(GPa) Residual v (%) ?g;xa) ?Gm;xa)
Linear Simulation 9.7 20.6 30.9 213 74.4 437
Atan(P) Simultaion 1.0 20.2 50.9 21.3 74.4 437
JMAK Simulation 30 25.0 59 21.3 74.4 437
J'sEXP ~8 ~20 20~21 733 435
Wakabayashi 21 75.4

iii) Assume there is a linear relationship of bulk modulus and shear modulus to
densification. We get the permanent bulk modulus, shear modulus and
Young's modulus after fully densified. Those data all fit experimental data
very well.

iv) The predictions of elastic modulus during the loading and unloading process
present a discrepancy for bulk modulus between simulation and experimental
data.

V) Predict the changes of Poisson’s ratio basing the classic elastic formulation
b 3B-2G

6B+ 2G

fully densified, which fit Ji’ s data but higher than Zha s value.

Vi) Pointing out the permanent densification has a linear relationship with the

, get the permanent value of Poisson’s ratio about 0.255 after

Raman shift in silica under high pressure. Furthermore, we proposed that the
permanent densification may be induced by the permanent increase of
six-fold coordination ringsin silica under high pressure.
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Conclusion

High pressures induce permanent densification in inorganic glasses, such as
amorphous silica, silicate glasses, boric oxide glass, germinate glasses, chalcogenide
and chalcohalide glasses, and bulk metallic glasses. Different kinds of glasses have
different atomic packing densities, different atomic coordination numbers, hence,
present different densification behavior and various maximum values of densification
under high pressure at room temperature. However, there remain unknowns and
controversiesin this special field.

In order to understand the deformation behavior of silica under high pressure, we
have reviewed carefully for the abounded literatures. In general, the densification
behavior of silicamay be depicted as follows:

1) There is a threshold pressure around 8-10 GPa where densification

happens.

i) Density increases with the increase in pressure up to 20~25 GPato reach a

saturation value of densification about 20~21%.

i) During the densification process, the elastic properties, such as bulk

modulus, shear modulus, and Young's modulus, increase.

iv) Si atomic coordination number changes with pressures from 4 to 6 during

the compression process.

Permanent densification in silica is uneasy to investigate via unconstrained
macroscopical testing (such as the compression test) because of the material
brittleness. We have developed a constitutive framework to model the response of
silica glass under hydrostatic compression with pressures up to 25 GPa. This model is
based on relevant series of experimental data and takes into account the progressive
densification process that exists in between two threshold pressures, the onset of
densification and its saturation. In addition, we consider the changes in elastic
parameters with densification. The material parameters involved in this model have
been determined straightforwardly from ex situ experimental from Ji and Rouxel et al.
[Ji 2007, Rouxel 2010].

The model has been implemented in a finite-element software to simulate the
hydrostatic compression. Our results are compared with the ex situ experimental data
and in situ experimental data. (In situ data from Sato and Wakabayashi et al. [Sato
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2008, Sato 2010, Wakabayashi 2011]) Three different hardening rules (one linear
hardening and two non-linear hardening laws) are used in our simulation. Reverse
anaysisis employed to identify some parameters of the models.

All in al, our model succeeds in simulating the densification phenomenon under
hydrostatic pressure and predicting the changes in densification, the changesin elastic
properties and Poisson’s ratio with pressure. Densification increases with high
pressures after a threshold and then reaches a saturation value of 21.3% around 20
GPa Bulk modulus, shear modulus increase with pressure, and reach maximum
values about 74.4 GPa and 43.7 GPa, respectively. As for Young's modulus, it
reaches 108 GPa while Poisson’s ratio reaches level of 0.25. Furthermore, we found
the relationship between Raman shift and densification. It may conclude that the key
to control densification is the inherent Si atom coordination numbers changes with
high pressures.

This congtitutive framework, restricted to the sole pressure, is expected to pave
the way for future developments where pressure plays a maor role but is not the sole
actor. The incidence of an adequate modeling of densification process triggered by
pure pressure, as it proposed in this work, on constrained deformation modes, such as
surface damage, is a next natural step.
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Résumé

Le comportement a haute pression du verre de silice a été largement éudié dansde différents
domaines pour ses propriétés mécanique et physiques, tels que la mécaniquenon-linéaire, laphysiquede
haute pression, laphysiquenon-cristallins, laphysique appliquée, lagéophysique, etc. La densification
permanente est la propriété la plus fondamentale obtenue a partir de la haute pression. Nous discutons un
modéle congtitutif décrivant le mécanisme de déformation permanente par la densification sous haute
pressionde verre de silice. Laloi de comportement proposée dans cette étude considere que la pression est
hydrostatique pure. Elle est composée d'une partieélastique et d autre partie un écoulement décrivant
I'évolution des déformations permanentes apres I’ initiation de ladensification. Dans cette lai, trois critéres
d’ écrouissage sont discutés a I'égard de la dépendance de la densification incrémentale (progressive)aux
niveaux de contraintes appliquées. Les mesuresexpérimentales ex-situ et in-situ sont utilisées pour évaluer
notre modéle. En misant en cauvre de notre modele dans Abaqus et SiDolLo(corotational logiciel),
I"analyse inverse est utilisée pour déterminer le seuil de la pression de densification, la pression a la
saturation et le taux de densification saturée. Les calculs numériques montrent un excellent accord avec les
données expérimentales. |l est a noter que notre modéle non seulement réussit a déterminer les propriétés
de densification, mais aussi pour prédire les changements de propriétés élastiques, telles que le module de
compressibilité, le module de cisaillement, module d' éasticité et le coefficient de Poisson, sous la pression
hydrostatique. Dans les perspectives, notre modéle fournit une nouvelle loi pour analyser le comportement
aladéformation de silice sous |’ éat de contraintes complexes.
Mots clés:
Verre, Déformation, Densification, Haute pression, M écanisme, Méthode des éléments finis

Abstract

High-pressure behavior of SiO, glass has been studied extensively because it has attracted
considerable attention in various fields of mechanical and physical sciences, such as non-linear mechanics,
high-pressure physics, noncrystalline physics, applied physics, geophysics, etc. Permanent densification is
the most fundamental property obtained from very high pressure. We discussed a constitutive model which
describing the permanent densification induced deformation mechanism of silica. The constitutive law is
assumed to be pure hydrostatic pressure, and uses ayield function and a flow rule describing the evolution
of permanent strains after initial densification, and three hardening rules discussing the dependence of the
incremental densification on the levels of applied stresses. Ex-situ and in-situ experiments are both
considered to evauate our model. Implementing our model to a finite software Abaqus and a corotational
framework software SiDoL o, inverse analysisis used to determine the threshold densification pressure, the
saturate densification pressure and the saturate value of densification. Numerical results show an excellent
agreement to experimental data. It should be noted that our model not only succeeding in determine the
densification properties, but also in predicting the changes of elastic properties, such as Bulk modulus,
Shear modulus, Y oung's modulus and Poisson’s ratio, under hydrostatic pressure. Seen in perspective, our
model provides a new rule to analyze the deformation behavior of silica under complex stress states.
Key words:
Glass, Deformation, Densification, High pressure, Mechanism, Finite element method
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