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Chargé de recherche à l’INRIA Rennes-Bretagne Atlan-
tique / Co-directeur de thèse
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1.1 Contexte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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Chapter 1

Résumé en Français

Les techniques de vérification formelle comme le model-checking [CE82, QS82,
BK08] sont bien adaptées pour la vérification de systèmes complexes critiques. Toute-
fois, même si plusieurs modèles formels, techniques d’analyse et outils ont été développés
ces dernières années, le passage à l’échelle de ces techniques constitue un goulet d’étrangl-
ement qui empêche leur utilisation à grande échelle dans l’industrie. Ce dernier point
motive l’utilisation de techniques et d’outils qui permettent à un logiciel ou à un système
de continuer à fonctionner même en présence de fautes ou de pannes. On peut dans ce
contexte citer l’enforcement de propriétés à l’exécution [Sch00, Fal10] (runtime enforce-
ment), qui suit l’exécution d’un système et qui contrôle le respect d’exigences définies
formellement sur le système.

L’enforcement à l’exécution étend la vérification à l’exécution [BLS11] et peut se
définir comme l’ensemble des théories, techniques et outils dont le but est d’assurer la
conformité des exécutions d’un système vis à vis d’un ensemble de propriétés. L’utilisation
d’un moniteur d’enforcement permet de transformer l’exécution du système (vue comme
un séquence d’événements) pour satisfaire une propriété (p. ex. une propriété de
sûreté). Ce moniteur d’enforcement est habituellement construit de manière à respecter
deux contraintes :

– la séquence fournie en sortie par le moniteur d’enforcement doit satisfaire la
propriété (correction), et

– si la séquence lue par le moniteur satisfait déjà la propriété, la sortie doit rester
inchangée (transparence).

L’enforcement à l’exécution a été largement étudié ces dernières années pour des
propriétés non-temporisées [Sch00, LBW09, FMFR11]. La notion de temps a déjà été
prise en compte dans des approches d’enforcement à l’exécution dans [Mat07] pour des
propriétés à temps discret, et dans [BJKZ13] où l’écoulement du temps est modélisé
par une séquence d’événements incontrôlables (“ticks”).

Dans cette thèse, nous nous intéressons aux mécanismes d’enforcement pour des pro-
priétés temporisées à temps dense. Pour de telles propriétés (sur des séquences finies),
non seulement l’ordre des événements est important (comme dans le cas non tempo-
risé), mais le temps écoulé entre l’occurrence de deux événements influence également
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6 Résumé en Français

Enforcement
Mechanism

operations

property ϕ

o σEvent
Receiver

Event
Emitter

Figure 1.1: Mécanisme d’enforcement (enforcement mechanism).

l’évaluation de la propriété. Les propriétés temporisées permettent donc de décrire plus
précisément les comportements désirés des systèmes dans la mesure où elles spécifient
l’écoulement du temps attendu entre les événements. Ceci les rend particulièrement
utiles pour certains domaines d’application [PFJM14a]. Par exemple, dans un contexte
de sécurité, les moniteurs d’enforcement peuvent être utilisés comme des ”firewalls”
permettant d’éviter des attaques par déni de service en assurant un délai minimal en-
tre des événements. Sur un réseau, les moniteurs d’enforcement peuvent être utilisés
pour synchroniser des flux d’événements, ou pour assurer que les événements respectent
les pré-conditions de services.

1.1 Contexte

Dans cette thèse, nous nous focalisons sur l’enforcement à la volée de propriétés
temporisées. Le contexte général est décrit par la Figure 2.1. Plus spécifiquement,
étant donnée une propriété temporisée ϕ, nous cherchons à synthétiser un mécanisme
d’enforcement fonctionnant à l’exécution. Afin d’ être le plus général possible, ce
mécanisme d’enforcement est supposé être placé entre un émetteur et un récepteur
d’événments qui s’exécutent de manière asynchrone. Cette architecture abstraite est
suffisamment générique pour être instanciée à un grand nombre de cas concrets où
l’émetteur et le récepteur peuvent être vus soit comme un programme soit comme
l’environnement.

Le but d’un moniteur d’enforcement est de lire une séquence d’événements σ (po-
tentiellement incorrecte) produite par l’émetteur et de la transformer en une séquence
de sortie o correcte vis à vis d’une propriété ϕ, o étant alors l’entrée du récepteur.
Nous supposons que le médium de communication entre l’émetteur et le récepteur,
via le mécanisme d’enforcement, est sûr et que ce dernier n’induit pas de délai de
communication. Dans notre cadre temporisé, les événements sont modélisés par des
actions auxquelles sont associées leurs dates d’occurrence. Les séquences d’événements
en entrée et sortie du mécanisme d’enforcement sont donc modélisées comme des mots
temporisés et le mécanisme d’enforcement est modélisé par une fonction de transfor-
mation de mots temporisés.

– Expressivité du formalisme des spécifications/propriétés. Un concept
central en vérification et enforcement à l’exécution est la génération de moniteurs
à partir d’un langage de spécification de haut niveau permettant de décrire les
propriétés. Nous avons choisi de nous baser sur le modèle des automates tem-
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porisés qui est traditionnellement utilisé pour la modélisation et la vérification
de systèmes temps-réels. Un automate temporisé (TA) [AD94] est un automate
d’états finis étendu avec un ensemble fini de variables réelles appelées horloges ser-
vant à modéliser le temps (continu). Dans cette thèse, nous considérons 3 grandes
classes de propriétés: Les propriétés de sûreté (safety) qui modélisent le fait que
aucun comportement mauvais ne se produit; les co-safety qui modélisent le fait
qu’un comportement désiré va inévitablement se produire après un temps fini et
les propriétés régulières qui contiennent ces deux classes et regroupent toutes les
propriétés modélisables par des TA. De plus, afin de considérer des spécifications
encore plus expressives, nous avons également étendu les TA avec des variables
entières et des paramètres.

– Capacité du mécanisme d’enforcement. Le mécanisme d’enforcement
que nous considérons retarde le temps, c’est à dire que sa principale primitive
d’enforcement permet d’augmenter la date d’occurrence des actions. Outre cet
aspect, le moniteur peut également supprimer des actions quand il n’est plus
possible de satisfaire une propriété en retardant les actions.
En résumé, étant donnés un propriété régulière ϕ et un mot temporisé σ en entrée,
le mécanisme d’enforcement reçoit un mot temporisé σ et produit en sortie un
mot temporisé o qui satisfait ϕ. Le mot temporisé o est obtenu en retardant les
dates d’occurrence des actions d’une sous-séquence de σ.

actions

time

a1 a2 a3 a4

1

2

3

4

5
output

input

Figure 1.2: Comportement possible d’un mécanisme d’enforcement

La Figure 1.2 illustre le paradigme d’enforcement à l’exécution que nous con-
sidérons, c’est à dire comment un mécanisme d’enforcement se comporte afin
de corriger une séquence d’entrée. La courbe rouge (resp. bleue) représente
la séquence d’entrée (resp. de sortie) avec les actions en abscisse et les dates
d’occurrence de celles-ci en ordonnée. En plus de la satisfaction de la propriété
(non représentée sur la figure), le mécanisme d’enforcement ne doit pas changer
l’ordre des actions, mais peut soit augmenter les dates d’occurrences de celles-ci,



8 Résumé en Français

soit supprimer les actions (p. ex. l’action a2). À noter qu’il peut réduire le délai
entre 2 actions (p. ex. a3 et a4). De plus, de manière à avoir un impact minimal
sur la séquence d’entrée, le mécanisme d’enforcement doit fournir les actions en
sortie le plus tôt possible.

Pour continuer notre illustration du paradigme d’enforcement, considérons le cas
de 2 processus accédant à une ressource partagée et réalisant une action sur celle-ci.
Chaque processus i (avec i ∈ {1, 2}) interagit avec cette ressource via 3 actions: acqui-
sition (acq i), release (rel i), et une opération spécifique (opi). De plus les 2 processus
peuvent réaliser une action commune op. Le système démarre sur l’occurrence de
l’action init . Dans la suite, la variable t permet de coder le passage du temps.

Considérons la spécification suivante: “Les opérations op1 et op2 doivent s’exécuter
de manière transactionnelle. Les 2 opérations doivent être exécutées sans ordre a priori
et toute transaction doit contenir à la fois l’opération op1 et op2. Toute transaction
doit se finir en moins de 10 unités de temps. Plusieurs occurrences de l’opération op
peuvent se produire entre op1 et op2. Enfin chaque opération doit être espacée de la
précédente d’au moins 2 unités de temps.

actions

time

op1 op1 op op2

input

output

Figure 1.3: Exemple illustrant le mécanisme d’enforcement

Considérons la séquence d’entrée σ = (2, op1) · (3, op1) · (3.5, op) · (6, op2). À t = 2,
le moniteur d’enforcement ne peut produite op1 en sortie car cette action ne satisfait
pas la propriété (et le moniteur ne connâıt pas encore les dates et occurrences des
événements suivants). À t = 3, Le moniteur reçoit une nouvelle fois l’action op1.
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Clairement, il n’y a aucune manière de calculer de nouvelles dates pour ces 2 actions
op1 de manière à satisfaire la spécification. Le moniteur choisit donc de supprimer la
deuxième occurrence de l’action op1. À t = 3.5, quand le moniteur reçoit l’action op,
la séquence d’entrée ne satisfait toujours pas la spécification, mais il existe encore des
continuations possibles permettant la satisfiabilité de celle-ci. À t = 6, sur réception de
l’action op2, le moniteur peut calculer des délais appropriés entre les actions op1 suivi
de op et op2 de manière à satisfaire la spécification. Ainsi, la date associée à op1 est
fixée à 6 (c’est à dire la plus petite date possible au moment de la décision), 8 pour
l’action op (le délai minimal entre deux actions est fixé à 2), et 10 pour l’action op2.
Finalement, comme décrit par la Figure 1.3, la sortie du moniteur d’enforcement pour
σ est (6, op1) · (8, op) · (10, op2).

1.2 Résumé de l’approche

Ce paragraphe présente un résumé de l’approche utilisée pour la synthèse d’un
moniteur d’enforcement pour une propriété temporisée.

À un niveau abstrait, un mécanisme d’enforcement d’une propriété ϕ peut être vu
comme une fonction prenant en entrée un mot temporisé et fournissant en sortie un
mot temporisé satisfiant ϕ (c.f. Figure 5.5).

Enforcement
function

ϕ

Eϕ(σ) σ

Figure 1.4: Fonction d’enforcement

Les contraintes que doivent satisfaire un mécanisme d’enforcement sont les suiv-
antes:

– Contraintes physiques: toute événement produit en sortie par le moniteur
d’enforcement ne peut être remis en cause par celui-ci.

– Correction: le moniteur doit produire uniquement des séquences qui satisfont
la propriété ϕ

– Transparence: le moniteur peut seulement i) retarder les actions sans en changer
l’ordre d’occurrence ou ii) supprimer des événements.

Afin de simplifier la conception et l’implémentation d’un mécanisme d’enforcement dans
un contexte temporisé, nous avons choisi de le décrire à trois niveaux d’abstraction: la
fonction d’enforcement, le moniteur d’enforcement , et les algorithmes d’enforcement.

Définition fonctionnelle. Une fonction d’enforcement décrit une transformation
fonctionnelle d’un mot temporisé (en entrée) en un autre mot temporisé (en sortie).
Son but est de décrire, à un niveau abstrait, pour chaque mot temporisé σ, le mot
de sortie Eϕ(σ) attendu de manière à ce que cette fonction satisfasse les contraintes
précédemment décrites.
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Moniteur d’enforcement. Cette description fonctionnelle est par la suite raffinée
en une vue plus concrète qui définit le comportement opérationnel d’un mécanisme
d’enforcememnt en fonction du temps. Il est défini via un système de transitions
étiquetées infini.

Implémentation et évaluation. Les algorithmes décrivent comment implémenter
de manière concrète ces mécanismes d’enforcement pour toute propriété temporisée
régulière spécifiée par un automate temporisé. L’implémentation est réalisée en Python
et utilise des librairies UPPAAL [BY03]. Nos résultats expérimentaux nous ont permis
d’avoir un premier retour sur expérience concernant la validité de notre approche et de
montrer le caractère effectif des mécanismes d’enforcement dans un cadre temps-réel.

1.3 Résultats

Nous avons développé des mécanismes d’enforcement à l’exécution pour des spécifica-
tions avec contraintes temporelles fortes. Dans cette thèse, nous avons décrit com-
ment synthétiser des moniteurs d’enforcements à partir d’une description formelle
des propriétés en termes d’automates temporisés. Toutes les propriétés temporisées
modélisables par des automates temporisés finis sont supportées dans ce cadre. Les
mécanismes d’enforcement permettent de retarder les actions (tout en permettant de
réduire l’intervalle de temps entre celles-ci) et de supprimer des actions dès lors qu’il
n’est plus possible de satisfaire la propriété en retardant les actions, et ceci quelque
soit le futur possible. Des algorithmes basés sur ce mécanisme ont également été
implémentés et leur correction est prouvée formellement.

Ce travail a donné lieu à plusieurs publications dans des conférences internationales
et journaux. Nous rappelons ici les résultats pour chacune d’entre elles. Ceci montre
l’évolution de notre démarche et la manière dont nous avons généralisé (et simplifié)
l’approche au fil du temps.

– Runtime Enforcement of Timed Properties [PFJ+12]. 1

Dans [PFJ+12], nous avons introduit le concept d’enforcement à l’exécution pour
des propriétés temporisées de safety et co-safety modélisées par des automates
temporisées. Pour ce premier résultat la puissance des mécanismes d’enforcement
se résumait à augmenter les délais entre chaque action. Nous avons proposé une
notion d’optimalité du mécanisme d’enforcement qui devait, en fonction de la sit-
uation, calculer les plus petits délais entre chaque action afin de satisfaire la pro-
priété (sous la contrainte que ceux-ci devaient être supérieurs aux délais initiaux).
Ce travail a donné lieu à une première implémentation et à des expérimentations
démontrant la validité de notre approche.

– Runtime Enforcement of Regular Timed Properties [PFJM14b].
L’approche présentée dans [PFJ+12] se focalise sur l’enforcement de propriétés
de safety et co-safety. Nous avons par la suite étendu cette approche en con-
sidérant la classe des propriétés régulières, ces dernières permettant d’exprimer

1. Les titres correspondent à ceux des articles.
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notamment une certaine forme de comportement transactionnel. Une des diffi-
cultés à considérer est que ce type de propriétés n’est close ni par préfixe ni par
suffixe. Pour un mot temporisé en entrée, le mot en sortie calculé par le moniteur
d’enforcement alterne donc entre des préfixes qui satisfont la propriété et d’autres
qui ne la satisfont pas, mais dont on est sur que son extension la satisfera. Le
moniteur d’enforcement doit donc prendre en compte cet aspect lors du calcul
des dates d’occurrence des actions et des éventuelles suppressions. Ce travail a
également donné lieu à une nouvelle implémentation.

– Runtime Enforcement of Regular Timed Properties [PFJ+14].
Dans [PFJ+14], nous avons généralisé et simplifié les résultats de [PFJ+12, PFJM14b]
et démontré formellement tous les résultats.

– Runtime Enforcement of Regular Timed Properties by Suppressing
and Delaying Events.
Dans [PFJ+12, PFJM14b, PFJ+14] le moniteur ne pouvait qu’augmenter les
délais entre les actions. Nous avons généralisé ce résultat dans un article soumis au
journal Science of Computer Programming (SCP) en permettant au moniteur de
supprimer des événements (seulement quand cela était nécessaire) et en lui perme-
ttant d’augmenter les dates d’occurrence d’événements (quitte à éventuellement
réduire les délais entre événements).

– Runtime Enforcement of Parametric Timed Properties with Practical
Applications [PFJM14a].
Pour divers domaines d’applications (sécurité des réseaux, protocoles de commu-
nications, etc), beaucoup de propriétés attendues du système comportent à la fois
des contraintes sur le temps et sur les données. Dans [PFJM14a], nous avons donc
étendu les résultats de [PFJ+12] en considérant un modèle de propriétés tempo-
risées paramétrées avec variables (ces dernières pouvant être internes ou externes,
c’est à dire portées par les événements). Un des paramètre permet d’instancier
la propriété en fonction par exemple d’un numéro de session. Les événements
reçus sont alors dispatchés sur des moniteurs en fonction de ce paramètre et
ré-assemblés en sortie. Pour [PFJM14a], nous nous sommes focalisés sur des
propriétés de safety et des moniteurs qui ne pouvaient qu’augmenter les délais
entre les actions. Cette limitation a été levée dans le manuscrit de thèse: nous
considérons maintenant tout type de propriétés et les possibilités du moniteur
correspondent à celles décrites dans le papier soumis au journal SCP.
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Chapter 2

Introduction

2.1 Motivations for Runtime Enforcement

Embedded and cyber-physical systems (CPS) are usually composed of multiple
subsystems that are distributed and possibly developed using several programming
languages. The behavior of such systems is affected by several external factors since
they generally interact with many systems and users, and are integrated in networked
environments. As the complexity of a system and its environment increase, ensuring
that the system is error-free becomes a challenge. Failure of a system may result in
severe financial losses, and in case of a safety-critical system, it may be even worse since
it may also result in loss of human lives [LT93].

Using formal methods and model driven development approaches for designing and
developing systems is a major area of research. Expressing requirements using a formal
specification will make requirements clearer and remove ambiguities and inconsisten-
cies. Formal languages are more easily amenable to automatic processing, by means
of tools [Jan02]. Various formal verification techniques such as model checking [BK08]
involve the formal modeling of computing systems and the verification of properties
on the models, including safety and timing properties. These model-based techniques
are well suited for verifying complex safety-critical systems, because they guarantee
absence of errors.

Although several formal modeling and analysis techniques and tools based on them
have been developed over the years, scalability of the techniques is a central issue that
has prevented their widespread adoption. This motivates the necessity for techniques
and tools that enable the system to tolerate failures and to continue operating in
case of failures. An example is runtime enforcement techniques [Sch00, Fal10] that
monitor the execution of system (at runtime) and control its compliance against the
requirements of the system that are formally defined. Runtime enforcement extends
runtime verification [BLS11] and refers to the theories, techniques, and tools aiming
at ensuring the conformance of the executions of systems under scrutiny with respect
to some desired property. Using an enforcement monitor, an (untrustworthy) input
execution (in the form of a sequence of events) is modified into an output sequence

13
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Figure 2.1: Enforcement mechanism.

that complies with a property (e.g., formalizing a safety requirement). It is based on
two properties: the output sequence complies with the property (soundness) and if the
input already complies with the property, it should be left unchanged (transparency).

Runtime enforcement has been extensively studied over the last decade in the con-
text of untimed properties. According to how a monitor is allowed to correct the
input sequence, several models of enforcement monitors have been proposed. Security
automata [Sch00] focused on safety properties, and blocked the execution as soon as
an illegal sequence of actions (not compliant with the property) is recognized. Later,
several refinements have been proposed such as suppression automata [LBW09] that
allowed to suppress events from the input sequence, insertion automata [LBW09] that
allowed to insert events to the input sequence, and edit-automata [LBW09] or so-called
generalized enforcement monitors [FMFR11] allowed to perform any of these primitives.
The notion of time has been considered in previous runtime enforcement approaches
such as in [Mat07] for discrete-time properties, and in [BJKZ13] which considers elaps-
ing of time as a series of uncontrollable events (“ticks”).

2.2 Problem Statement

Motivations for extending runtime enforcement to timed properties abound. First,
timed properties are more precise to specify desired behaviors of systems since they
allow to explicitly state how time should elapse between events. Thus, timed proper-
ties/specifications can be particularly useful in some application domains [PFJM14a].
For instance, in the context of security monitoring, enforcement monitors can be used
as firewalls to prevent denial of service attacks by ensuring a minimal delay between
input events (carrying some request for a protected server). On a network, enforce-
ment monitors can be used to synchronize streams of events together, or ensuring that
a stream of events conforms to the pre-conditions of some service.

Context and objectives. The general context is depicted in Fig. 2.1. We focus on
online enforcement of timed properties. More specifically, given a timed property ϕ,
we want to synthesize an enforcement mechanism that operates at runtime. To be as
general as possible, an enforcement mechanism is supposed to be placed between an
event emitter and an event receiver. The emitter and receiver execute asynchronously.
This abstract architecture is generic and can be instantiated to many concrete ones
where the emitter and receiver are considered to be e.g., a program or the environment.
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An enforcement mechanism receives a sequence of timed events σ as input and
transforms it into a sequence of timed events o. No constraint is required on σ, whereas
the enforcement mechanism must ensure that o is correct with respect to property ϕ.
Satisfaction of property ϕ by the output sequence is considered at the output of the
enforcement mechanism and not at the input of the event receiver: we assume a reliable,
without delay, and safe communication between the emitter and receiver. We do not
consider any security, communication, nor reliability issue with events. The considered
enforcement mechanisms are time retardants, i.e., their main enforcement primitive
consists in delaying the received events.

To sum up, given some timed property ϕ and an input timed word σ, we aim to
study mechanisms that input σ and output a sequence o that satisfies ϕ (soundness of
the mechanism).

Various directions that we want to explore are:

– Expressiveness of the supported specification formalism A central con-
cept in runtime verification and enforcement, is to generate monitors from some
high-level specification of the property (which the monitor should verify or en-
force). In our enforcement framework, we wanted to handle (formalize and syn-
thesize enforcement monitors) all the specifications that we commonly encounter
in real-life in various domains.

– Power of the enforcement mechanism Another interesting aspect is regard-
ing the power of the enforcement mechanism. What can the enforcement mecha-
nism do to the input sequence in order to correct it with respect to the property?
How the notion of transparency can be adapted in our framework also depends on
the power of the enforcement mechanism. Enforcement operations that require
expensive computations may not be desirable in a timed context.

– Implementability We also wanted to investigate the feasibility of realizing the
enforcement monitoring mechanism that we propose. We want to see whether
it is feasible to synthesize enforcement monitors based on the proposed formal
framework, and also to have a first assessment of performance.

2.3 Contributions

This work resulted in publications in international conferences and journals (See
Appendix B for the list of publications). We now summarize key contributions and
how our work evolved.

– Runtime Enforcement of Timed Properties.
We initially started with limited properties, and considered runtime enforcement
of timed safety and co-safety properties. Safety properties express that “some-
thing bad should never happen” and co-safety properties express that “something
good should happen within a finite amount of time”. The results related to en-
forcement of safety and co-safety properties were published in RV 2012 [PFJ+12],
introducing runtime enforcement framework for timed properties. We showed how
runtime enforcers can be synthesized for any safety or co-safety timed property
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Figure 2.2: Supported properties and operations in [PFJ+12].

defined as timed automaton. Proposed runtime enforcers are time retardant: to
correct an input sequence the enforcement mechanism has the power to intro-
duce additional delays between the events of the input sequence. Output of the
enforcement mechanism o satisfies ϕ (soundness of the mechanism), and has the
same order of events as σ with possibly increased delays (transparency of the
mechanism). Experiments have been performed on prototype monitors to show
their effectiveness and the feasibility of our approach.

– Runtime Enforcement of Regular Timed Properties.

Enforcement
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delay

property ϕ
(regular)

o σEvent
Receiver

Event
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Figure 2.3: Supported properties and operations in [PFJM14b].

We later focused on supporting more properties in our enforcement framework
introduced in [PFJ+12]. In the space of regular properties, some interesting
properties of systems are neither safety nor co-safety properties. Indeed, some
regular properties may express interesting properties of systems belonging to
a larger class that allows to specify some form of transactional behavior. For
example, the two following properties could specify the behavior of a server, and
are neither safety nor co-safety properties.
– “Resource grants and releases alternate, starting with a grant, and every grant

should be released within 15 to 20 time units (t.u.)”.
– “Every 10 t.u., there should be a request for a resource followed by a grant.

The request should occur within 5 t.u.”.
The difficulty that arises when considering such properties is that the enforcement
mechanisms should then consider the alternation between currently satisfying and
not satisfying the property. The results in [PFJ+12] have further been extended
to the enforcement of any regular timed property [PFJM14b]. We proposed
enforcement monitor synthesis mechanisms for all regular timed properties. Also,
for the enforcement of co-safety properties, the approach in [PFJ+12] assumes
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that time elapses differently for input and output sequences (the sequences are de-
synchronized). More precisely, the delay of the first event of the output sequence
is computed from the moment an enforcement mechanism detects that its input
sequence can be corrected (that is, the mechanism has read a sequence that
can be delayed into a correct sequence). Compared to [PFJ+12], the approach
in [PFJM14b] is more realistic as it does not suffer from this “shift” problem.

– Runtime Enforcement of Timed Properties revisited.
We later revisited, combined the results in [PFJ+12] and [PFJM14b], simplified
the formalizations, provided more explanations, examples and detailed formal
proofs of these results which has been published in the Formal Methods in System
Design (FMSD) journal [PFJ+14].
More specifically, this paper provides the following additional contributions:
– proposes a more complete and revised theoretical framework for runtime en-

forcement of timed properties: we have re-visited the notations, unified and
simplified the main definitions;

– proposes a completely new implementation of our EMs that offers better per-
formance (compared to the ones in [PFJ+12]);

– synthesizes and evaluates EMs for more properties on longer executions;
– includes correctness proofs of the proposed mechanisms.

– Runtime Enforcement of Regular Timed Properties by Suppressing
and Delaying Events.

Enforcement
Mechanism

delay suppr.

property ϕ
(regular)

o σEvent
Receiver

Event
Emitter

Figure 2.4: Supported properties and operations in [FJMP14].

In [PFJ+12, PFJM14b] the enforcement mechanism can only increase the de-
lay between events. When it is no more possible to correct the input sequence
anymore by introducing additional delay, the enforcement mechanism halts and
cannot correct any more input events. So, later the focus was on increasing
the power of the enforcement mechanism which can both delay events to match
timing constraints, and suppress events when no delaying is appropriate, thus
allowing the enforcement mechanisms and systems to continue executing. Also,
in all our earlier works [PFJ+12, PFJM14b, PFJ+14], enforcement mechanisms
receive sequences of events composed of actions and delays between them, and
can only increase those delays to satisfy the desired timed property. Here, we
consider events composed of actions with absolute occurrence dates, and we al-
low to increase the dates (while allowing to reduce delays between events) and
to suppress events. This work has been submitted to the Science of Computer
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Programming (SCP) journal [FJMP14].
– Runtime Enforcement of Parametric Timed Properties with Practical

Applications.
When we considered requirements from some application domains such as net-
work security, we noticed that some requirements have constraints both on time
and data. Events also carry some data. To be able to formalize these require-
ments, that have constraints both on data and time, we felt the necessity to
enrich Timed Automata (TA), the model we use to formally define requirements,
with some additional features. We make one step towards practical runtime en-
forcement by considering event-based specifications where i) time between events
matters and ii) events carry data values from the monitored system. We refer to
this problem as enforcement monitoring for parametric timed specifications. To
handle expressive specifications in our framework, we introduce the model of Pa-
rameterized Timed Automata with Variables (PTAVs). To guide us in the choice
of expressiveness features we considered requirements in several application do-
mains. With more expressive specifications (with parameterized events, internal
variables, and session parameters), we improve the practicality and illustrate the
usefulness of runtime enforcement on application scenarios. These results were
published in WODES 2014 [PFJM14a].

– Prototype Implementations.
To show the practical feasibility of our theoretical results, the proposed algorithms
were also implemented in Python using some UPPAAL [BY03] libraries. The
tool set developed is described in Chapter 6. In addition to enforcement monitor
synthesis, the tool also provides other functionalities such as combining timed
automata using Boolean operations, and determining the class of a given timed
automaton.

2.4 Outline

This thesis is organized as follows:

Chapter 3 provides overview of various formal techniques related to checking the
correctness of a system. It also describes and surveys related work on runtime enforce-
ment techniques.

Chapter 4 provides the required background information. We describe all the pre-
liminaries for formalizing timed properties and executions of a system. Timed automata
are the formal model used to define properties. An enforcement monitor for a timed
property is synthesized from a timed automaton defining the property. We describe the
syntax and semantics of timed automata model, how timed automata can be combined
using Boolean operations, and reachability analysis techniques for timed automata.

Chapter 5 presents runtime enforcement mechanisms for timed properties. We de-
scribe enforcement monitoring for systems where the physical time elapsing between
actions matters. Executions are modeled as sequences of events composed of actions
with dates (or timed words) and we consider runtime enforcement for timed specifi-
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cations modeled as timed automata, in the general case of regular timed properties.
The enforcement mechanisms have the power of both delaying events to match timing
constraints, and suppressing events when no delaying is appropriate, thus allowing the
enforcement mechanisms and systems to continue executing. To ease their design and
their correctness-proof, enforcement mechanisms are described at several levels: en-
forcement functions that specify the input-output behavior in terms of transformations
of timed words, constraints that should be satisfied by such functions, and enforcement
monitors that describe the operational behavior of enforcement functions.

Chapter 6 presents enforcement algorithms describing the implementation of en-
forcement monitors described in Chapter 5. We validated the feasibility of enforcement
monitoring for timed properties by prototyping the synthesis of enforcement monitors
from timed automata. We describe the developed tool-chain, and discuss the experi-
mental results in detail.

Chapter 7 presents runtime enforcement of parametric timed properties. We de-
scribe an extended model of timed automata, that can be used to formalize richer
requirements (which have constraints both on time and data). We also extend our
enforcement monitoring framework described in Chapter 5 to take in to account prop-
erties defined using the proposed extended model. Chapter 8 provides conclusions and
outlines the future work.
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Chapter 3

State of the Art

In this chapter, we first provide a short overview of various techniques, related to
checking the correctness of a system (that is checking whether the system satisfies the
requirements). Later, we describe runtime enforcement techniques, which is related to
correcting the execution of a system (at runtime) according to the requirements.

3.1 Checking Correctness of a System

Generally, requirements are informal description of what we want a system to do.
Requirements are the basis for the design, development and testing of a system.

The process of checking the correctness of a system (that is, whether the system
conforms to the specification) is called as verification. The specification of the system,
which is a set of requirements, is a description of the system (about what it should do/
how it should behave). Generally, verification is done using techniques such as testing.

The process of executing a program or a system with the objective of finding er-
rors in the system is called as testing. Testing a system involves experimentally and
systematically checking the correctness of the system. Generally, testing is performed
by executing the system in a controlled environment, by providing some specific test
data as input to the system, and making observations during the execution of the tests.
From the observations made during the execution, verdicts about the correctness of the
system (whether it satisfies the specification) is assigned.

For the testing activities, the specification of the system acts as the correctness
criterion against which the system is to be tested. A common practice is to write the
specification informally, in natural language. Such informal specification is the basis
for any testing activity.

Drawbacks of the traditional testing process and using informal specifica-
tion. Although informal specifications (written in some natural language such as
English and French) are easy to read, they may be ambiguous. Informal description of
requirements are often incomplete and liable to different and possibly inconsistent in-
terpretations. Relying on unclear, imprecise, incomplete and ambiguous specifications
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cause several problems in the testing process. Basing testing and verification activities
on such informal specifications (which may have some inconsistencies) is not appropri-
ate. Also, most of the testing activities are often incomplete, and they are used as a
process to find errors, but cannot assure that the system is correct.

Formal specification and formal methods. A specification is said to be formal if
it is expressed in a formal specification language which is a language having a precise
syntax and semantics, and for which every statement in the language has a unique
meaning mathematically. Such formal specification languages are often based on math-
ematical concepts such as mathematical logic. Advantage of such formal specifications
and models is that they have a precise, unambiguous semantics, which enables the
analysis of systems and the reasoning about them with mathematical precision.

Thus, using formal languages for specifying requirements will remove ambiguities
and inconsistencies. Specifications described using formal languages, just as informal
specifications, can be used in various development phases, and as contracts between
developers and customers. Moreover, formal languages are more easily amenable to
automatic processing, by means of tools. In contrast to informal specifications, formal
specifications can be mathematically analysed since they are mathematically based.
For example, methods (and tools) exist to automatically verify the absence of deadlock
in the formal description of the design of the system. Formal specifications can also be
used for generating test cases automatically.

3.2 Formal Verification Techniques

Verification is the act of checking whether a system/product satisfies (conforms
to) its specification. When formal languages and techniques (based on mathematics)
are used in the verification process it is called as formal verification. Formal verifi-
cation techniques can be divided into two sub-categories called as static and dynamic
verification techniques.

3.2.1 Static verification techniques

The static verification techniques are performed without actually executing the
system being verified. Some of the static formal verification techniques are the following:

3.2.1.1 Model checking

Model checking [CE82, QS82, BK08] is an automated approach to verify that a
formal model of the system (usually described as a state transition system), satisfies
the formal specification, defining the requirements of the system. Model of the system
is an abstraction of the system (omitting details irrelevant for checking the desired
properties) that describes how the state of the system may evolve over time. Models
are typically described as automata (or its extensions with time, probability, cost,
data etc), describing the possible states, initial states, and the possible transitions
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between states. Properties are usually expressed in some form of temporal logic [HR04]
such as Linear Temporal Logic (LTL) [Pnu77, HR04], and Computational Tree Logic
(CTL) [CE82, HR04], having constructs to express constraints on how the state of a
system may evolve. Model checkers such as Spin [Hol97] and UPPAAL [LPY97], are
some of the available tools that perform model checking.

Requirements

Formalization

Specification

System

Abstraction

Model

Model Checking

Satisfied Violated

Figure 3.1: Model checking.

Figure 3.1 shows the process of applying model checking. To perform model checking
on a system, a model of the system should be created, and the requirements (describing
the desired properties of the system informally) should be formalized. The formalized
requirements are called as properties (or property specification). The model checking
algorithms (and tools), take the model and properties as input, and answer whether
the model satisfies the properties (or not). The model checker explores all the possible
states to decide whether the properties hold in all the (reachable) states. Incase if a
property does not hold, then the model checker returns a counter example (which is a
run of the model of the system, leading to a state in which the property does not hold).

3.2.1.2 Static analysis

Static analysis is a powerful technique that enables automatic verification of pro-
grams. Using static analysis approach, various properties such as type safety and
resource consumption can be checked [HBB+11]. Abstract static analysis [DKW08]
techniques which are mostly used for compiler optimization, are also used for program
verification. These techniques focus on computing approximate sound guarantees ef-
ficiently. However, the information provided is not always precise since it is usually
based on an approximation.

Generally, static analysis tools such as [EL02, HBB+11] parse the source code and
build an abstraction (model) of the system such as a directed graph. By traversing the
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model, it is checked whether certain properties hold in the model. In case a violation
is found in the model, it can also be expected in the source code.

3.2.1.3 Theorem proving

In theorem proving approaches, for a mathematical statement to be true, a conven-
ing mathematical proof is constructed. If a proof cannot be found for a mathematical
statement, then it cannot be concluded that the statement is true. In case a correct
proof is found, the the statement is called a theorem. Several tools exist to help in the
process of constructing formal proofs. For example interactive theorem provers such as
COQ [BC04] are tools that can be use to construct a proof interactively. Proof checkers
such as MetaMath [Met] can be used to check whether a proof is correct or not.

3.2.2 Dynamic verification techniques

Dynamic verification techniques are performed by executing the system in a particu-
lar environment, providing specific input data to the system and observing its behavior
(or output).

3.2.2.1 Testing using formal methods

Several problems occur in the testing process since the specifications (which are
written informally) are often incomplete or ambiguous. Basing testing activities on
a formal specification is an advantage since formal specification is precise, complete,
consistent and unambiguous. This is a first big advantage in contrast with traditional
testing processes where such a basis for testing is often lacking.
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Figure 3.2: Conformance testing with formal methods.

Checking functional correctness of a black-box system under test by means of testing
is known as conformance testing [Jan02, JJ05]. Formal specifications are also amenable
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to automatic processing by tools, which is another advantage of formal specifications
for testing. For conformance testing with formal methods, a formal specification is the
starting point for the generation of test cases [Jan02]. Figure 3.2 gives an overview of
the process. Algorithms (which have sound formal basis) have been developed for auto-
matically generating test cases from a formal specification. This opens the way towards
completely automating testing, where the system under test and its formal specifica-
tion are the only required prerequisites. Moreover, they have been implemented in tools
such as TGV [JJ05], STG [CJRZ02], and TorX [BB05], leading to automatic, faster
and less error-prone generation of test cases. STG avoids enumerating the specifica-
tion’s state space, and uses symbolic generation techniques. Regarding conformance
testing of real-time systems, there are tools such as TTG [KT09] based on the model
of partially-observable, non-deterministic timed automata.

3.2.2.2 Runtime verification

Runtime verification [BLS11, FZ12] refers to the theories, techniques, and tools that
allow checking whether a run of a system under scrutiny satisfies (or violates) a given
correctness property. It is a formal verification technique, complementing the other
formal verification techniques discussed so far such as model checking.

Runtime verification techniques do not influence the program execution, and deals
only with detection of violation (or satisfaction) of properties. In runtime verification,
checking whether a run of a system satisfies a property is performed using a monitor.

Verification
Monitor

ϕ

verdicts events
System
(Sequence

Generator)

Figure 3.3: Verification monitor.

The first step of monitoring approaches consists in instrumenting the underlying
system so as to partially observe the events or the parts of its global state that may
influence the property under scrutiny. A verification monitor as shown in Figure 3.3 is
a decision procedure emitting verdicts stating the correctness of the (partial) observed
trace generated from the system execution. The system being monitored is regarded
as a sequence generator. The set of verdicts may contain more than two different
truth values such as {true, false, inconclusive}. The verdict provided by the monitor
is true if the current input fulfills the property (irrespective of how the current input
is extended), false if a misbehavior is detected, and inconclusive otherwise. Formally,
if ϕ denotes the property (the set of valid runs), then runtime verification is about
checking whether a run of a system belongs to the property ϕ. The monitor can
operate either online by receiving events in a lock-step manner with the execution of the
system or offline by reading a log/sequence of system events/actions. A central concept
in runtime verification, is to generate monitors from some high-level specification of
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the property which the monitor should check/verify. Monitors are generated from
specifications such as Linear Temporal Logic (LTL) [BLS11].

Relation with other formal verification techniques In model checking, all exe-
cutions of a given model of a system are examined, to answer whether the model satisfies
the property, and in runtime verification, we check whether a particular execution of a
system satisfies the property. Runtime verification deals only with observed executions
of systems (generated by the real system), and does not require a model of the sys-
tem. Runtime verification can be applied to black box system (that is, with knowledge
only about the interfaces of the system, without the details of its internals). But, to
perform model checking, we need to know all the internal details of a system in order
to build an abstract model of the system. The model checking approach also suffers
from the state explosion problem [BK08], since the whole state space of the model of
the system (all possible executions) is generated. Runtime verification techniques are
lightweight, avoiding problems such as state explosion, since only a single execution of
the system is considered. Runtime verification can be considered as a form of passive
testing, since it does not require to create any special test data, and require only to
observe the results/behavior of a running system. Thus, runtime verification can be
used in complement to other verification techniques when the system model is too big
to handle with model checking, or when the system model is not available, or if the
internal details of the system are unknown (that is, when the system is a black-box
where only the outputs are observable).

In runtime verification, the complexity of generating the monitor from the speci-
fication is generally negligible (since the monitor is generated once, and offline). The
complexity of the monitor (the memory it requires and the time it takes), for checking
an execution is of interest, since runtime monitors are typically a part of an executing
system, and should influence the system minimally.

A brief overview of some runtime verification frameworks Three categories of
runtime verification frameworks can be distinguished according to the formalism used
to express the input property. In propositional approaches, properties refer to events
taken from a finite set of propositional names. For instance, a propositional property
may rule the ordering of function calls in a program. Monitoring such kind of properties
has received a lot of attention [BLS11].

Parametric approaches have received a growing interest in the last five years. In
this case, events in the property are augmented with formal parameters, instantiated
at runtime [CR09, BFH+12].

In timed approaches, the observed time between events may influence the truth-
value of the property. It turns out that monitoring of timed properties (where time
is continuous) is a much harder problem because of (at least) two reasons. First,
modeling timed requirements requires a more complex formalism involving time as a
continuous parameter. Second, when monitoring a timed property, the problem that
arises is that the overhead induced by the monitor (i.e., the time spent executing the
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monitoring code) influences the truth-value of the monitored property. Consequently,
without assumptions and limitations on the computation performed by monitors, not
much information can be gained from the verdicts produced by the monitor.

Few attempts have been made on monitoring systems with respect to timed prop-
erties. Bauer et al. propose an approach to runtime verify timed-bounded properties
expressed in a variant of Timed Linear Temporal Logic (TLTL) [BLS11]. Contrarily to
TLTL, the considered logic, TLTL3, processes finite timed words and the truth-values
of this logic are suitable for monitoring. After reading some timed word u, the monitor
synthesized for a TLTL3 formula ϕ states verdict > (resp. ⊥) when there is no infinite
timed continuation w such that u·w satisfies (resp. does not satisfy) ϕ. Another variant
of LTL in a timed context is Metric Temporal Logic (MTL), a dense extension of LTL.
Nickovic et al. [MNP06, NP10] propose a translation of MTL to timed automata. The
translation is defined under the bounded variability assumption stating that, in a finite
interval, a bounded number of events can arrive to the monitor. Still for MTL, Thati et
al. propose an online monitoring algorithm which works by rewriting of the monitored
formula and study its complexity [TR05]. Basin et al. propose an improvement of
the aforementioned approach with a better complexity but considering only the past
fragment of MTL [BKZ11]. Most of the other works related to runtime verification of
timed properties are tools such as AMT [NM07] and LARVA [CPS09a].

One of the important features of runtime verification, compared to the other ver-
ification techniques is that it is performed at runtime (analysing a system during its
execution). Thus, in addition to detecting errors, runtime verification techniques can be
used/extended to act whenever an error/incorrect behavior of a system is detected. The
techniques developed for runtime verification are the basis for other techniques dealing
with correcting the execution of system at runtime (discussed in the later section).

3.3 Correcting Execution of a System at Runtime

Runtime enforcement [Sch00, LBW09, Fal10, FMFR11] extends runtime verification
and refers to the theories, techniques, and tools aiming at ensuring the conformance
of the executions of systems under scrutiny with respect to some desired property.
Runtime enforcement is a powerful technique to ensure that a running system satisfies
some desired properties. Using an enforcement monitor, an (untrustworthy) input
execution (in the form of a sequence of events) is modified into an output sequence
that complies with a property.

In runtime enforcement (as shown in Figure 3.4), an enforcement monitor (EM)
transforms some (possibly) incorrect execution sequence into a correct sequence with
respect to the property of interest. An enforcement monitor acts as a filter on some
observable behavior of the system. The transformation performed by an EM should
be sound and transparent. Soundness means that the resulting sequence obeys the
property. Transparency (in an untimed setting) means that, the monitor should modify
the input sequence in a minimal way (meaning that the input sequence should not be
modified if it already conforms to the property).
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Figure 3.4: Enforcement mechanism.

Both verification and enforcement monitors (as shown in Figures 3.4, and 3.3) take
the same data as input such as the property, and the input events from the system
being monitored. They are plugged at the exit (or entrance) of the system, and they
do not modify the behavior of the system. However, the goals of these techniques
differ, where the aim of runtime verification techniques is to detect misbehaviors (or
acknowledge desired behaviour), and thus a verification monitor outputs a verdicts
providing this information. The main aim of runtime enforcement techniques is to
prevent misbehaviors at runtime, and thus an enforcement monitor outputs a stream
of events (eventually) satisfying the property.

3.3.1 Runtime enforcement of untimed properties

Over the last decade, runtime enforcement has been mainly studied in the context
of untimed properties. Most of the work in runtime enforcement was dedicated to
untimed properties (see [Fal10] for a short overview).

According to how a monitor is allowed to modify the input sequence (i.e., the
primitives afforded to the monitor), several models of enforcement monitors have been
proposed [Sch00, LBW09, Fal10, FMFR11].

An enforcement monitor that can definitely block the input sequence (as done by
security automata [Sch00] introduced by Schneider), is the first runtime mechanism for
enforcing safety properties. Then the set of enforceable properties was later refined
by Schneider, Hamlen, and Morrisett by showing that security automata were actually
restrained by the computational limits exhibited by Viswanathan and Kim [VK04]: the
set of co-recursively enumerable safety properties is a strict upper limit of the power of
(execution) enforcement monitors defined as security automata.

Enforcement mechanisms were proposed which can suppress events from the input
sequence (as done by suppression automata [LBW09]), insert an event to the input
sequence (as done by insertion automata [LBW09]).

Ligatti et al. [LBW09] later introduced edit-automata as enforcement monitors
which can either insert a new action by replacing the current input, or suppress it.
The set of properties enforced by edit-automata is called the set of infinite renewal
properties: it is a super-set of safety properties and contains some liveness properties
(but not all). Similar to edit-automata are generic enforcement monitors [FMFR11]
which are able to enforce the set of (untimed) response regular properties in the safety-
progress classification.
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3.3.2 Runtime enforcement of timed properties

The notion of time has been considered in previous runtime enforcement approaches
such as in [Mat07] for discrete-time properties, and in [BJKZ13] which considers elaps-
ing of time as a series of uncontrollable events (“ticks”).

Matteucci inspires from partial-model checking techniques to synthesize controller
operations to enforce safety and information-flow properties using process-algebra [Mat07].
Monitors are close to Schneider’s security automata [Sch00]. The approach targets
discrete-time properties and systems are modeled as timed processes expressed in CCS.
Compared to our approach, the description of enforcement mechanisms remains ab-
stract, directly restricts the monitored system, and no description of monitor imple-
mentation is proposed.

Besides, in a general study, Rinard discusses monitoring and enforcement strategies
for real-time systems [Rin03], and mentions the fact that enforcement mechanisms could
delay individual input events in an input stream when they arrive too early w.r.t. the
constraints of the system. In the same way, we consider in our work that an enforcer
is time retardant. However, the work in [Rin03] remains at a high-level of abstraction
and does not propose any detailed description of enforcement mechanisms.

More recently, Basin et al. [BJKZ13] proposed a general approach related to en-
forcement of security policies with controllable and uncontrollable events, investigating
enforceability (with complexity results), and how to synthesize enforcement mecha-
nisms for several specification formalisms (automata-based or logic-based). A monitor
observes the system and terminates it to prevent violations. Timed properties de-
scribed in MLTL logic are handled in this work. Discrete time is considered, clock
ticks are used to determine the enforceability of an MLTL formula. In our approach,
we consider dense time, using the expressiveness of timed automata and efficiency of
UPPAAL. Moreover, our enforcement mechanisms may modify the execution of the
observed system.

Most of the other works related to timed properties are either related to verification
of timed properties (by synthesizing verification monitors from high level specifications),
or tools for runtime monitoring of timed properties.

Tools for runtime monitoring of timed properties. The Analog Monitoring
Tool [NM07] is a tool for monitoring specifications over continuous signals. The input
logic of AMT is STL/PSL where continuous signals are abstracted into propositions and
operations are defined over signals. Input signal traces can be monitored in an offline
or incremental fashion (i.e., online monitoring with periodic trace accumulation).

RT-MaC [SLS05] is a tool for verifying timed properties at runtime. RT-MaC
allows to verify timeliness and reliability correctness. Using the time-bound temporal
operators provided by the tool, one can specify a deadline after which a property must
hold.

LARVA [CPS09a] takes as input properties expressed in several notations, e.g., Lus-
tre, duration calculus. Properties are translated to DATE (Dynamic Automata with
Timers and Events) which basically resemble timed automata with stop watches but
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also feature resets, pauses, and can be composed into networks. Transitions are aug-
mented with code that modify the internal system state. DATE target only safety prop-
erties. In addition, LARVA is able to compute an upper-bound on the overhead induced
on the target system. The authors also identify a subset of the duration calculus, called
counter-examples traces, where properties are insensitive to monitoring [CPS09b].

Our monitors not only differ by their objectives but also by how they are inter-
faced with the system. We propose a less restrictive framework where monitors asyn-
chronously read the outputs of the target system. We do not assume our monitors to be
able to modify the internal state of the target program. The objective of our monitors
is rather to correct the timed sequence of output events before this sequence is released
to the environment (i.e., outside the system augmented with a monitor).

3.3.3 Handling parametric specifications in runtime monitoring

Most of the frameworks handling parametric specifications deal only with their
verification. Note however that the Monitoring Oriented Programming (MOP) frame-
work [CR09], through the so-called notion of handler, allows some form of runtime
enforcement by executing an arbitrary piece of code on property deviation. More gen-
erally, the usual questions addressed in verification of parametric specifications include
defining a suitable semantics (that differs from the usual ones of model-checking), and
providing monitor-synthesis algorithms that generate runtime-efficient mechanisms.

The idea of using a non-parametric specification formalism along with an index-
ing mechanism according to the values of parameters (aka the “plugin” approach) was
first proposed by the MOP team in [CR09]. Distinguishing parameters from external
variables (parameters yield new instances of monitors while external variables get re-
bound) was first introduced in [BFH+12] with Quantified Event Automata (QEAs).
QEAs feature a general use of quantifiers over parameters but do not consider time.

3.4 Summary

So far, we have briefly seen various formal verification techniques. We also saw
what runtime enforcement means, and briefly the work done so far in this area. The
rest of this thesis will focus only on runtime enforcement for timed properties. We
present how enforcement monitors can be synthesized from properties defined as timed
automata. In the next chapter we will see all the required background information
about the formal model we use to express properties (timed automata), and summary
of verification techniques for timed automata.



Chapter 4

Notations and Background

In this chapter, we first provide a brief description about requirements having time
constraints (timed requirements) via some examples. Later, we present the preliminar-
ies required to formally define timed requirements and executions (traces) of a system.
Timed automata are the formal model used to define properties. An enforcement mon-
itor for a timed property is synthesized from a timed automaton defining the property.
We describe the syntax and semantics of timed automata model. Moreover, we also ex-
plain how timed automata can be combined using Boolean operations, and reachability
analysis techniques for timed automata.

4.1 Timed Systems, and Requirements with Time Con-
straints

For real-time systems, the time at which the output is produced is significant.
The correctness of a real-time systems depends not only on the logical result of the
computation but also on the time at which the results are produced. If the correctness
of a system is based both on the correctness of the outputs and the time at which the
outputs are produced, then the system is called as a real-time system.

Real-time systems are categorized as soft real-time or hard real-time systems. In
hard real-time systems, deadlines cannot be missed. In soft real-time systems, missing
a deadline does not cause any harm, but may degrade quality or performance of the
system. To specify the behavior of a real-time system, we need to take time into
account.

Explicit timing constraints are present in several systems in real-life. Such systems
have requirements with constraints over time (where we need to be precise about how
time elapses between events). Considering time when specifying the behavior of systems
brings some expressiveness that can be particularly useful in some application domains
when, for instance, specifying usage of resources.

Examples of requirements with time constraints Let us consider the situation
where two processes access to and operate on a common resource. Each process i
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(with i ∈ {1, 2}) has three interactions with the resource: acquisition (acq i), release
(rel i), and a specific operation (opi). Both processes can also execute a common action
op. System initialization is denoted by action init . The following requirements could
specify the expected behavior of a server. 1

S1 “Each process should acquire first and then release the resource when performing
operations on it. Each process should keep the resource for at least 10 time units
(t.u). There should be at least 1 t.u. between any two operations.”

S2 “After system initialization, both processes should perform an operation (actions
opi) before 10 t.u. The operations of the different processes should be separated
by 3 t.u.”

S3 “Operations op1 and op2 should execute in a transactional manner. Both ac-
tions should be executed, in any order, and any transaction should contain one
occurrence of op1 and op2. Each transaction should complete within 10 t.u. Be-
tween operations op1 and op2, occurrences of operation op can occur. There is
at least 2 t.u. between any two occurrences of any operation.”

S4 “Processes should behave in a transactional manner, where each transaction
consists of an acquisition of the resource, at least one operation on it, and then a
release of it. After the acquisition of the resource, the operations on the resource
should be done within 10 t.u. The resource should not be released less than 10
t.u. after acquisition. There should be no more than 10 t.u. without any ongoing
transaction.”

Formalization of a requirement with time constraints is called as a timed property.
A timed automaton [AD94] is a finite automaton extended with a finite set of real
valued clocks. It is one of the most studied models for modeling verification of real-
time systems. Timed properties can be defined as timed automata. Various algorithms
and tools exist related to verification of timed automata, which is the main advantage
of defining timed properties as timed automata.

Outline The rest of this chapter is organized as follows: Firstly, in Section 4.2.1
notations and preliminaries are introduced related to formalizing requirements in the
untimed case, and later in Section 4.2.2 these notations are lifted to the timed case for
defined timed traces and timed languages. In Section 4.3, timed automata model is ex-
plained describing its syntax and semantics, how timed properties can be defined using
timed automata is explained via some examples, a classification of timed properties is
described, and how timed automata can be combined using union and intersection op-
erations is also presented. Finally, techniques and algorithms related to the verification
of timed automata are discussed briefly.

4.2 Preliminaries and Notations

Firstly, basic preliminaries and notations related to formalizing requirements with-
out timing constraints are presented in Section 4.2.1. Later in Section 4.2.2, the nota-

1. We shall see in Section 4.2.2 how to formalize and define these specifications by timed automata.
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tions in the untimed case are lifted to the timed setting.

4.2.1 Untimed languages

A (finite) word over a finite alphabet A is a finite sequence w = a1 · a2 · · · an of
elements of A. The length of w is n and is noted |w|. The empty word over A is
denoted by εA, or ε when clear from the context. The set of all (respectively non-
empty) words over A is denoted by A∗ (respectively A+). A language over A is any
subset L of A∗.

The concatenation of two words w and w′ is noted w · w′. A word w′ is a prefix of
a word w, noted w′ 4 w, whenever there exists a word w′′ such that w = w′ · w′′, and
w′ ≺ w if additionally w′ 6= w; conversely w is said to be an extension of w′.

The set pref(w) denotes the set of prefixes of w and subsequently, pref(L)
def
=⋃

w∈L pref(w) is the set of prefixes of words in L. A language L is prefix-closed if
pref(L) = L and extension-closed if L ·A∗ = L.

Given two words u and v, v−1 · u is the residual of u by v and denotes the word w,
such that v · w = u, if this word exists, i.e., if v is a prefix of u. Intuitively, v−1 · u is
the suffix of u after reading prefix v. By extension, for a language L ⊆ A∗ and a word

v ∈ A∗, the residual of L by u is the language v−1 · L def
= {w ∈ A∗ | v · w ∈ L}. It is the

set of suffixes of words that, concatenated to v, belong to L. In other words, v−1 · L is
the set of suffixes of words in L after reading prefix v.

For a word w and i ∈ [1, |w|], the i-th letter of w is noted w[i]. Given a word w and
two integers i, j, s.t. 1 ≤ i ≤ j ≤ |w|, the subword from index i to j is noted w[i···j].

Given two words w and w′, we say that w′ is a subsequence of w, noted w′ / w, if
there exists an increasing mapping k : [1, |w′|]→ [1, |w|] (i.e., ∀i, j ∈ [1, |w′|] : i < j =⇒
k(i) < k(j)) such that ∀i ∈ [1, |w′|] : w′[i] = w[k(i)]. Notice that, k being increasing
entails that |w′| ≤ |w|. Intuitively, the image of [1, |w′|] by function k is the set of
indexes of letters of w that are “kept” in w′.

Given an n-tuple of symbols e = (e1, . . . , en), for i ∈ [1, n], Πi(e) is the projection

of e on its i-th element (Πi(e)
def
= ei).

Example 4.1 Let us illustrate these definitions via an example. Let A = {a, b, c} be a
set of actions. w1 = a · c · a is a finite word over A. The set of all words over elements
of A which start with action b is a language over A. w1[2] = c is the second letter in
w1, and w1[2···3] = c · a . Consider another finite word w2 = a · c. Concatenation of w1

and w2 is w1 ·w2 = a · c · a · a · c, w2 is a prefix of word w1, w−1
2 ·w1 = a, and word a · a

is a subsequence of w1.

4.2.2 Timed words and languages

In a timed setting, the occurrence time of actions is also important. For an enforce-
ment monitor in a timed setting, input and output streams are seen as sequences of
events composed of a date and an action, where the date is interpreted as the absolute
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time when the action is received by the enforcement mechanism 2. In what follows,
input and output streams are formalized with timed words, and some related notions
are defined.

Let R≥0 denote the set of non-negative real numbers, and Σ a finite alphabet of

actions. An event is a pair (t, a), where date((t, a))
def
= t ∈ R≥0 is the absolute time at

which the action act((t, a))
def
= a ∈ Σ occurs.

A timed word over the finite alphabet Σ is a finite sequence of events σ = (t1, a1)·
(t2, a2) · · · (tn, an), where (ti)i∈[1,n] is a non-decreasing sequence in R≥0. We denote

by start(σ)
def
= t1 the starting date of σ and end(σ)

def
= tn its ending date (with the

convention that the starting and ending dates are null for the empty timed word ε).

The set of timed words over Σ is denoted by tw(Σ). A timed language is any set
L ⊆ tw(Σ). Note that even though the alphabet (R≥0 × Σ) is infinite in this case,
previous notions and notations defined in the untimed case (related to length, prefix,
subword, subsequence etc) naturally extend to timed words.

Concatenation of timed words however requires more attention, as when concate-
nating two timed words, one should ensure that the result is a timed word, i.e., dates
should be non-decreasing. This is ensured if the ending date of the first timed word does
not exceed the starting date of the second one. Formally, let σ = (t1, a1) · · · (tn, an) and
σ′ = (t′1, a

′
1) · · · (t′m, a′m) be two timed words with end(σ) ≤ start(σ′), their concatena-

tion is σ · σ′ def
= (t1, a1) · · · (tn, an) · (t′1, a′1) · · · (t′m, a′m). By convention σ · ε def

= ε · σ def
= σ.

Concatenation is undefined otherwise.

The untimed projection of σ is ΠΣ(σ)
def
= a1 · a2 · · · an in Σ∗ (i.e., dates are ignored).

Example 4.2 Let us understand these definitions further via an example. Consider
a set of actions Σ = {a, b, c}. σ1 = (1, a) · (2.3, b) · (3, a) · (4, c) is a timed word over
Σ. Note that the occurrence dates of events in σ are increasing. Starting date of
σ1, start(σ1) = 1 and, the ending date end(σ1) = 4. The untimed projection of σ1,
ΠΣ(σ1) = a · b ·a · c. Consider two more timed words over Σ, σ2 = (2, b) · (2.3, b) · (3, a),
and σ3 = (10, b) · (12, a). The concatenation σ1 ·σ2 is undefined since start(σ2) is lesser
than end(σ1). The concatenation σ1 · σ3 = (1, a) · (2.3, b) · (3, a) · (4, c) · (10, b) · (12, a).

4.3 Timed Automata

A timed automaton [AD94] is a finite automaton extended with a finite set of real-
valued clocks. Let X = {x1, . . . , xk} be a finite set of clocks. A clock valuation for X
is an element of RX≥0, that is a function from X to R≥0. For χ ∈ RX≥0 and δ ∈ R≥0,
χ + δ is the valuation assigning χ(x) + δ to each clock x of X. Given a set of clocks
X ′ ⊆ X, χ[X ′ ← 0] is the clock valuation χ where all clocks in X ′ are assigned to 0.
G(X) denotes the set of guards, i.e., clock constraints defined as Boolean combinations

2. Alternatively, input and output streams can be seen as sequence of events composed of a delay
and an action, where the delay associated with each event indicates the time elapsed after the previous
event or the system initialization for the first event.
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of simple constraints of the form x ./ c with x ∈ X, c ∈ N and ./ ∈ {<,≤,=,≥, >}.
Given g ∈ G(X) and χ ∈ RX≥0, we write χ |= g when g holds according to χ.

4.3.1 Syntax and semantics

Before going into the formal definitions, we introduce timed automata on an ex-
ample. The timed automaton in Figure 4.1 defines the requirement “In every 10 time

l0 l1 l2

Σ \ {alloc}
alloc,
x := 0

Σ \ {alloc}

alloc, x ≥ 10,
x := 0

alloc,
x<10

Σ

Figure 4.1: Timed automaton: Example

units, there cannot be more than 1 alloc action”. The set of locations is L = {l0, l1, l2},
and l0 is the initial location. The set of actions is Σ = {alloc, rel}. There are transitions
between locations upon actions. A finite set of real-valued clocks is used to model real-
time behavior, the set X = {x} in the example. On the transitions, there are i) guards
with constraints on clock values (such as x < 10 on the transition between l1 and l2
in the considered example), and ii) assignment to clocks. Upon the first occurrence of
action alloc, the automaton moves from l0 to l1, and the clock x is assigned to 0. In
location l1, if action alloc is received, and if x ≥ 10, then the automaton remains in l1,
resetting the value of clock x to 0. It moves to location l2 otherwise.

Definition 4.1 (Timed automata) A timed automaton (TA) is a tuple A = (L, l0, X,Σ,
∆, F ), such that L is a finite set of locations with l0 ∈ L the initial location, X is a
finite set of clocks, Σ is a finite set of actions, ∆ ⊆ L × G(X) × Σ × 2X × L is the
transition relation. F ⊆ L is a set of accepting locations.

The semantics of a timed automaton is defined as a transition system where each state
consists of the current location and the current values of clocks. Since the possible
values for a clock are infinite, a timed automaton has infinite states. The semantics of
a TA is defined as follows.

Definition 4.2 (Semantics of timed automata) The semantics of a TA is a timed
transition system [[A]] = (Q, q0,Γ,→, QF ) where Q = L × RX≥0 is the (infinite) set of
states, q0 = (l0, χ0) is the initial state where χ0 is the valuation that maps every clock
in X to 0, QF = F × RX≥0 is the set of accepting states, Γ = R≥0 × Σ is the set of
transition labels, i.e., pairs composed of a delay and an action. The transition relation

→⊆ Q×Γ×Q is a set of transitions of the form (l, χ)
(δ,a)−−−→(l′, χ′) with χ′ = (χ+δ)[Y ← 0]

whenever there exists (l, g, a, Y, l′) ∈ ∆ such that χ+ δ |= g for δ ∈ R≥0.
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l0 l1

reli

acqi
y := 0
x := 0

y ≥ 1
opi

y := 0

acqi

x ≥ 10
reli

(a) A safety automaton for S1.

l0 l1

l2

l3

l4

Σ2 \ {init}
init

x := 0

op1
y := 0

op2
y := 0

op1

y ≥ 3 ∧ x ≤ 10
op2

op2

y ≥ 3 ∧ x ≤ 10
op1

Σ2

(b) A co-safety automaton for S2.

l0 l1l2

op1
x := 0
y := 0

op2
x := 0
y := 0

2 ≤ x ≤ 10 ∧ 2 ≤ y
op2

2 ≤ y
op

y := 0

2 ≤ x ≤ 10 ∧ 2 ≤ y
op1

2 ≤ y
op

y := 0

(c) A regular automaton for S3.

l0

l1

l2

y ≤ 10
acqi
x := 0

x ≤ 10
opi

x ≤ 10
opi

x ≥ 10
reli

y := 0

(d) A regular automaton for S4.

Figure 4.2: Some examples of timed automata.

In the following, we consider a timed automaton A = (L, l0, X,Σ,∆, F ) with its se-
mantics [[A]]. A is said to be deterministic whenever for any location l and any two
distinct transitions (l, g1, a, Y1, l

′
1) and (l, g2, a, Y2, l

′
2) with source l in ∆, the conjunc-

tion of guards g1 ∧ g2 is unsatisfiable 3. A is said complete whenever for any location
l ∈ L and any action a ∈ Σ, the disjunction of the guards of the transitions leav-
ing l and labeled by a evaluates to true (i.e., it holds according to any valuation):
∀l ∈ L,∀a ∈ Σ :

∨
(l,g,a,Y,l′) g = true. In the remainder of this thesis, we shall con-

sider only deterministic and complete timed automata, and automata refer to timed
automata.

Example 4.3 (Timed automata) Let us formalize the specifications introduced in

Section 4.1 as TAs. The global alphabet of events is Σ
def
= {init , acq1, rel1, op1, acq2, rel2, op2, op}.

The specifications on the behavior of the processes introduced in Section 4.1 are defined
with the TAs in Figure 4.2. Accepting locations are denoted by squares.

S1 The specification is defined by the automaton depicted in Figure 4.2a with al-

3. There is no valuation of clock variables that evaluate g1 ∧ g2 = true.
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phabet Σi
1

def
= {rel i, acq i, opi} for process i, i ∈ {1, 2}. The automaton has two

clocks x and y, where clock x serves to keep track of the duration of the resource
acquisition whereas clock y keeps track of the time elapsing between two opera-
tions. Both locations of the automaton are accepting and there are two implicit
transitions from location l1 to a trap state: i) upon action rel i when the value of
clock x is strictly lower than 10, and ii) upon action opi when the value of clock
y is strictly lower than 1.

S2 The specification is defined by the automaton depicted in Figure 4.2b with al-

phabet Σ2
def
= {init , op1, op2}. The automaton has two clocks, where clock x keeps

track of the time elapsed since initialization, whereas clock y keeps track of the
time elapsing between the operations of the two different processes.

S3 The specification is defined by the automaton depicted in Figure 4.2c with al-

phabet Σ3
def
= {op, op1, op2}. Clock x keeps track of the time elapsing since the

beginning of the transaction, whereas clock y keeps track of the time elapsing
between any two operations.

S4 The specification is defined by the automaton depicted in Figure 4.2d with al-

phabet Σi
4

def
= {acq i, opi, rel i}. Clock x keeps track of the duration of a currently

executing transaction, whereas clock y keeps track of the time elapsing between
two transactions.

Remark 4.1 (Completeness and determinism) Although we restrict the presen-
tation to deterministic TAs, results also hold for non-deterministic TAs, with slight
adaptations required to the vocabulary and when synthesizing an enforcement monitor.
Regarding completeness, for readability of TA examples, if no transition can be trig-
gered upon the reception of an event, a TA implicitly moves to a non-accepting trap
state (i.e., where all actions are looping with no timing constraint).

A run ρ of A from a state q ∈ Q triggered at time t ∈ R≥0 over a timed trace

wt = (t1, a1) · (t2, a2) · · · (tn, an) is a sequence of moves in [[A]] denoted as ρt = q
(δ1,a1)−−−−→

q1 · · · qn−1
(δn,an)−−−−→ qn, for some n ∈ N, satisfying condition t1 = t + δ1 and ∀i ∈

[2, n], ti = ti−1 + δi. To simplify notations, we note q
wt−→ qn in this case, and gen-

eralize it to q
wt−→ P when qn ∈ P for a subset P of Q. The set of runs from the initial

state q0 ∈ Q, starting at t = 0 is denoted Run(A) and RunQF (A) denotes the subset
of those runs accepted by A, i.e., ending in an accepting state qn ∈ QF . We note L(A)
the set of traces of Run(A). We extend this notation to LQF (A) as the traces of runs
in RunQF (A). We thus say that a timed word is accepted by A if it is the trace of an
accepted run.

Example 4.4 Consider the automaton in Figure 4.2a. A run of this automaton trig-
gered at t = 0 starting from the initial state (l0, 0, 0) over a timed trace wt = (1, acq1) ·
(3, op1)·(4, op1)·(4.5, acq1)·(5, op1) is a sequence of moves (l0, 0, 0)

(1,acq1)−−−−−→ (l1, 0, 0)
(2,op1)−−−−→

(l0, 2, 0)
(1,op1)−−−−→ (l1, 3, 0)

(0.5,acq1)−−−−−−→ (l1, 3.5, 0.5)
(0.5,op1)−−−−−→ (l1, 4, 0) which is also concisely

denoted as (l0, 0, 0)
wt−→ (l1, 4, 0).
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4.3.2 Partition of states of timed automata

Given a TA A = (L, l0, X,Σ, ∆, F ), with semantics [[A]] = (Q, q0,Γ,→, QF ), we
can partition the set of states Q of [[A]] into four subsets good (G), currently good (Gc),
currently bad (Bc) and bad (B), based on whether a state is accepting or not, and
whether accepting or non accepting states are reachable or not.

This partitioning is useful for enforcement monitoring. An enforcement monitor
makes decisions by checking the reachable subsets. For example, if all the reachable
states belong to the subset B, then there is no possibility to correct the input sequence
anymore (in the future). If the current state belongs to the subset G, then any sequence
will lead to a state belonging to the same subset and thus the monitor can be turned
off.

Formally, Q is partitioned into Q = GC ∪ G ∪ BC ∪ B where QF = Gc ∪ G and
Q \QF = BC ∪B and

– GC = QF ∩ pre∗(Q \ QF ) i.e., the set of currently good states is the subset of
accepting states from which non-accepting states are reachable,

– G = QF \ Gc = QF \ pre∗(Q \ QF ) i.e., the set of good states is the subset of
accepting states from which only accepting states are reachable,

– BC = (Q \ QF ) ∩ pre∗(QF ) i.e., the set of currently bad states is the subset of
non-accepting states from which accepting states are reachable,

– B = (Q \QF ) \ pre∗(QF ) i.e., the set of bad states is the subset of non-accepting
states from which only non-accepting states are reachable.

where, for a subset P of Q, pre∗(P ) denotes the set of states from which the set P is
reachable.

It is well known that reachability of a set of locations is decidable using the classical
zone (or region) symbolic representation (see [BY03]). As QF corresponds to all states
with location F , the partition can then be symbolically computed on the zone graph.
This partition will be useful to classify timed properties and for monitor synthesis.

Remark 4.2 By definition, from good (resp. bad) states, one can only reach good (resp.
bad) states. Consequently, a run of a TA traverses currently good and/or currently bad
states, and may eventually reach a good state and remain in good states, or a bad state
and remain in bad states.

4.3.3 Classification of timed properties

Regular, safety, and co-safety timed properties In the sequel, a timed property
is defined by a timed language ϕ ⊆ tw(Σ) that can be recognized by a timed automaton.
That is, the set of regular timed properties are considered. Given a timed word σ ∈
tw(Σ), we say that σ satisfies ϕ (noted σ |= ϕ) if σ ∈ ϕ.

Safety (resp. co-safety) timed properties are sub-classes of regular timed properties.
Informally, safety (resp. co-safety) properties state that “nothing bad should ever
happen” (resp. “something good should happen within a finite amount of time”). In
this thesis, the classes are characterized as follows:

Definition 4.3 (Regular, safety, and co-safety properties)
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– Regular properties are the properties that can be defined by languages accepted by
a TA.

– Safety properties (a subset of regular properties) are the non-empty prefix-closed
timed languages that can be accepted by a TA.

– Co-safety properties (a subset of regular properties) are the non-universal 4 extension-
closed timed languages that can be accepted by a TA.

Remark 4.3 Usually, safety properties are defined as prefix-closed languages, and co-
safety properties as extension-closed languages. With the usual definitions, properties ∅
and tw(Σ) (the empty and universal properties, respectively vacuously and universally
satisfied) are both safety and co-safety properties, and are the only ones in the inter-
section. To simplify the presentation, and to avoid pathological cases, the two classes
are separated, by considering that tw(Σ) is a safety (but not a co-safety) property, and
∅ is a co-safety (but not a safety) property.

4.3.4 Defining timed properties as timed automata

In this subsection, details related to defining timed properties as timed automata
are presented. Moreover, examples of some timed automata defining timed properties of
different classes are presented. In the sequel, we shall only consider the properties that
can be defined by a deterministic timed automaton. Note that some of these properties
can be defined using a timed temporal logic such as a subclass of MTL, which can be
transformed into timed automata using the technique described in [MNP06, NP10].

Safety and co-safety timed automata. We now define syntactic restrictions on
TAs that guarantee that a regular property defined by a TA defines a safety or a
co-safety property.

Definition 4.4 (Safety and co-safety TA) Let A = (L, l0, X,Σ,∆, F ) be a com-
plete and deterministic TA, where F ⊆ L is the set of accepting locations. A is said to
be:

– a safety TA if l0 ∈ F ∧ @(l, g, a, Y, l′) ∈ ∆ : l ∈ L \ F ∧ l′ ∈ F ;
– a co-safety TA if l0 /∈ F ∧ @(l, g, a, Y, l′) ∈ ∆ : l ∈ F ∧ l′ ∈ L \ F .

It is then easy to check that safety (respectively co-safety) TAs define safety (respec-
tively co-safety) properties. Intuitively, in a safety TA, runs start in an accepting
location, but if they leave the set of accepting locations, it is definitive; thus a safety
TA defines a prefix-closed language. Conversely, in a co-safety TA, a run starts in a
non-accepting location, and once it reaches an accepting location, it is definitive; thus
a co-safety TA defines an extension-closed language. 5

4. The universal property over R≥0 × Σ is tw(Σ).
5. As one can observe, these definitions of safety and co-safety TAs slightly differ from the usual

ones by expressing constraints on the initial state. As a consequence of these constraints, consistently
with Definition 4.3, the empty and universal properties are ruled out from the set of safety and co-safety
properties, respectively.
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Example 4.5 (Classes of timed automata) Let us consider again the specifications
introduced in Example 4.2. We formalize specification Si as property ϕi, i = 1, . . . , 4.
Property ϕ1 is a safety property specified by the safety TA in Figure 4.2a (leaving accept-
ing locations is definitive). Property ϕ2 is a co-safety property specified by the co-safety
TA in Figure 4.2b (leaving non-accepting locations is definitive). Property ϕ3 is speci-
fied by the TA in Figure 4.2c. Property ϕ4 is specified by the TA in Figure 4.2d. Both
properties ϕ3 and ϕ4 are regular, but neither safety nor co-safety properties. In the un-
derlying automata, runs may alternate between accepting and non-accepting locations,
thus the languages that they define are neither prefix nor extension-closed.

Remark 4.4 Alternatively, safety and co-safety timed automata could also be defined
based on the semantics, using the partitioning of states defined in Section 4.3.2.

4.3.5 Combining properties using boolean operations.

The next definition, as described in [AD94], allows to combine (complete and deter-
ministic) timed automata and will be used in the sequel to define properties expressed
as a Boolean combination of other properties.

Definition 4.5 (Operations on timed automata) Given two properties ϕ1 and ϕ2

defined by TAs Aϕ1 = (L1, `
0
1, X1,Σ,∆1, G1) and Aϕ2 = (L2, `

0
2, X2,Σ,∆2, G2), respec-

tively. The ×op-product of Aϕ1 and Aϕ2, where op ∈ {∪,∩}, is the timed automa-

ton defined as Aϕ1 ×op Aϕ2

def
= (L, l0, X,Σ, ∆, G) where L = L1 × L2, l0 = (l10, l

2
0),

X = X1∪X2 (disjoint union), ∆ ⊆ L×G(X)×Σ×2X×L is the transition relation, where
((l1, l2), g1∧g2, a, Y1∪Y2, (l

′
1, l
′
2)) ∈ ∆ iff (l1, g1, a, Y1, l

′
1) ∈ ∆1 and (l2, g2, a, Y2, l

′
2) ∈ ∆2.

Gop is a set of accepting locations with:

– G∩ = G1 ×G2,
– G∪ = (L1 ×G2) ∪ (G1 × L2).

Definition 4.6 (Negation of a timed automaton) Given a property ϕ defined by
a TA Aϕ = (L, `0, X,Σ,∆, G) its negation is defined as

¬Aϕ
def
= (L, `0, X,Σ,∆, L \G).

The proposition below states that when performing the ∩-product (resp. ∪-product)
between two TAs, it amounts to perform the intersection (resp. union) of the recognized
languages.

Proposition 4.1 Consider two properties ϕ1 and ϕ2 defined by TAs Aϕ1 = (L1, `
0
1, X1,Σ,

∆1, G1) and Aϕ2 = (L2, `
0
2, X2,Σ,∆2, G2), respectively. The following facts hold:

– L(Aϕ1×∩Aϕ2 )(G∩) = ϕ1 ∩ ϕ2,
– L(Aϕ1×∪Aϕ2 )(G∪) = ϕ1 ∪ ϕ2,
– L¬Aϕ1 = tw(Σ1) \ L(Aϕ1 ),
– L¬Aϕ2 = tw(Σ2) \ L(Aϕ2 ).
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The above proposition entails that the classes of safety and co-safety properties are
closed under union and intersection. However, the properties resulting of any other
operation between safety, co-safety, and regular properties is a regular property. Finally,
note that the negation of a safety (resp. co-safety) property is a co-safety (resp. safety)
property. From the results shown in [AD94], the following proposition holds.

Proposition 4.2

– Safety and co-safety properties are closed under (finite) union and intersection.
– The negation of a safety property is a co-safety property, and vice-versa.
– Regular properties are closed under Boolean operations.

Example 4.6 (Intersection of two safety TAs) Let us see an example of a result-
ing safety TA, obtained from combining two safety TA’s using intersection operation.
Figure 4.3 presents the two input TA’s defining specifications S1 expressing that “There
should be a delay of at least 5 time units between two ’a’ actions”, and S2 expressing
that “There should be a delay of at least 6 time units between two ’b’ actions”. The set
of actions of the two TA’s is Σ = {a, b, c}.

ls1
0

ls1
1

ls1
2

Σ \ {a}

a,
x := 0

Σ \ {a}

a, x ≥ 5,
x := 0

a, x < 5

Σ

∩ ls2
0

ls2
1

ls2
2

Σ \ {b}

b,
y := 0

Σ \ {b}

b, y ≥ 6,
y := 0

b, y < 6

Σ

Figure 4.3: Example safety TAs

The resulting TA is shown in Figure 4.4 and defines the specification “There should
be a delay of at least 5 time units between two ’a’ actions and a delay of at least 6 time
units between two ’b’ actions”. We can easily observe that this is a safety TA.

Example 4.7 (Union of two co-safety TAs) An example of a co-safety TA obtained
by performing union operation on two co-safety TA’s is shown in Figure 4.6. Figure 4.5
presents the two input TA’s defining specifications CS1 expressing that “A request r
should be followed by a grant g within 10 time units” and CS2 expressing that “After
an request r, if any other event other than g is observed, then the system should go into
safe mode (perform an s action) within 10 time units”. The set of actions of both TA’s
is Σ = {r, g, a, s}.

The resulting TA is shown in Figure 4.6 expresses that “A request r should be
followed by a grant g, otherwise the system should go into safe mode (perform an s
action)”. We can easily observe that the obtained TA is a co-safety TA.
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Figure 4.4: Intersection of two safety TAs
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Figure 4.5: Example co-safety TAs

4.3.6 Verification of timed automata

For verification purposes, one should be able to verify reachability properties. That
is, for timed automaton A, we should be able to check “Is state q (or a set of states)
reachable? For the class of finite-location automata, reachability is decidable [Bou,
HMU03]. If we consider the semantics of a TA, a state of a TA q is a tuple containing the
information about location and valuation of all the clocks. Thus, for a timed automaton,
the number of states is infinite, which is problematic for reachability analysis.

Region abstraction and region automaton construction [AD94] is a way to abstract
behaviours of timed automata, so that checking a reachability property in a timed au-
tomaton reduces to checking a reachability property in a finite automaton. The key idea
is to partition the state-space into a finite number of equivalent classes, and to perform
reachability analysis on finite abstract state-space. Though timed automata have an
infinite number of states, using region automaton construction, checking reachability
is decidable [AD94].
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Figure 4.6: Resulting co-safety TA after performing union operation

Construction of region automaton, and proof that reachability is decidable for a
timed automaton are well known results described in detail in [AD94]. The number
of regions depends on the number of clocks and the maximal constant appearing in a
guard or a invariant.

Algorithms and Implementation For reachability analysis of timed automata, re-
gion automaton construction is not used in practice. In tools such as UPPAAL [BY03]
and Kronos [BDM+98], on-the-fly techniques are used for reachability analysis. Most
of the tools use zone abstraction [BY03]. A zone is a convex union of regions and can
be efficiently represented using difference bounded matrices (DBMs) [BY03]. Opera-
tions such as intersection of guards, reset of clocks and elapsing of time are all easily
implementable in DBMs. More details about zones, and representing zones as DBMs
are in [BY03].

Most of the algorithms for reachability analysis are based on either forward or
backward analysis approaches [Bou09]. In forward analysis approaches, configurations
that are reachable from the initial state in 1 step, 2 steps and so on are computed
either until the desired (final) state is reached or until the computation terminates.
The idea of backward analysis is to start from a final configuration, then compute the
configurations which allow to reach an initial configuration in 1 step, 2 steps and so on
until initial configurations are reached or until the computation terminates. These are
generic approaches used not only for verification of timed automata, but also for many
other models. Let us now see an example how reachability analysis can be performed
on-the-fly using forward analysis, zone abstraction and operation on zones such as
resetting clocks and intersection of guards.

l0 l1 l2

a,
x := 0

a, x > 1
y ≤ 1

Figure 4.7: Example TA to demonstrate forward reachability analysis
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(l0, x = 0 ∧ y = 0)

(l0, x = y)

Time elapse

(l1, x = 0 ∧ y ≥ x)

Transition to l1

(l1, y ≥ x)

Time elapse

x > 1 ∧ y ≤ 1 ∧ y ≥ x UNSAT

Transition to l2

Figure 4.8: Forward reachability analysis

Example 4.8 (Forward reachability analysis) Consider the TA shown in Figure 4.7.
Using forward reachability analysis (see Figure 4.8), we can check that location l2 is
not reachable. The TA has two clocks x and y, which are initialized to 0. Initially, the
TA is in location l0. As time elapses, the location will remain unchanged, and the value
of both the clocks change but will be equal (i.e., x = y). There is only one outgoing
transition from location l0 (to location l1), and upon this transition, the clock x is reset
to 0, and thus we have x = 0∧y ≥ x upon this transition. As time elapses, we continue
to remain in location l1, value of clock x will no more be 0 and the condition y ≥ x still
holds. There is a transition from l1 to l2, and the constraints on this transition when
intersected with condition y ≥ x can not be satisfied. Thus, location l2 is unreachable.

4.4 Summary

In this chapter, we saw the required preliminaries to formally define requirements
with time constraints, and an execution (trace) of a system. We also saw the syntax and
semantics of timed automata, how timed properties can be defined as timed automata,
how to combine timed automata, and techniques for reachability analysis for timed
automata. In the next chapter, enforcement mechanism for timed properties will be
explained in detail. We will see how to synthesize enforcement monitors from timed
properties defined as timed automata.



Chapter 5

Runtime Enforcement of Timed
Properties

In this chapter, we describe enforcement monitoring mechanisms for systems where
the physical time elapsing between actions matters. Executions are thus modeled as
sequences of events composed of actions with dates (or timed words). We consider run-
time enforcement for timed specifications modeled as timed automata, in the general
case of regular timed properties. The proposed enforcement mechanism has the power
of both delaying events to match timing constraints, and suppressing events when no
delaying is appropriate, thus allowing the enforcement mechanisms and systems to con-
tinue executing. To ease their design and correctness-proof, enforcement mechanisms
are described at several levels: enforcement functions that specify the input-output be-
havior in terms of transformations of timed words, constraints that should be satisfied
by such functions, enforcement monitors that describe the operational behavior of en-
forcement functions, and enforcement algorithms that describe the implementation of
enforcement monitors. The feasibility of enforcement monitoring for timed properties is
validated by prototyping the synthesis of enforcement monitors from timed automata.

5.1 General Principles and Motivating Examples

In this section, the context, capabilities of an enforcement monitor, and the expected
behavior of an enforcement monitor are described informally to understand the concepts
before proceeding into the formalizations and details in the later sections.

5.1.1 General principles of enforcement monitoring in a timed context

As illustrated in Figure 5.1, the purpose of enforcement monitoring is to read some
(possibly incorrect) input sequence of events σ produced by a system, referred to as the
event emitter, and to transform it into an output sequence of events o that is correct
w.r.t. a specification formalized by a property ϕ. This output sequence o is then
provided as input to an event receiver. In our timed setting, events are actions with

45
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Enforcement
Mechanism

delay suppr.

ϕ

o σEvent
Receiver

Event
Emitter

Figure 5.1: Illustration of the principle of enforcement monitoring.

their occurrence dates. Input and output sequences of events are formalized by timed
words and enforcement mechanisms can be seen as transformers of timed words.

actions

time

a1 a2 a3 a4

1

2

3

4

5
output

input

Figure 5.2: Behavior of enforcement monitors.

Figure 5.2 illustrates how an enforcement mechanism behaves, and what it can do
to correct an input sequence. The red and blue curves respectively represent input
and output sequences of events (actions in abscissa and occurrence dates in ordinate).
In addition to the satisfaction of the property (not represented in the figure), the
enforcement mechanism cannot change the order of actions, but can increase their
dates or suppress some actions. For example, action a2 is suppressed. Notice that
the enforcement mechanism is allowed to reduce delays between events. For example,
action a4 occurs 0.9 time units after action a3, but, both of these actions are released
as output at the same time. Moreover, the actions should be released as output as
soon as possible. Several application domains have requirements, where the required
timing constraints can be satisfied by increasing dates of some actions [PFJM14a]. For
instance, in the context of security monitoring, enforcement monitors can be used as
firewalls to prevent denial of service attacks by ensuring a minimal delay between input
events (carrying some request for a protected server). On a network, enforcement
monitors can be used to synchronize streams of events together, or, ensuring that a
stream of events conforms to the pre-conditions of some service.
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5.1.2 Some motivating examples

In this subsection, some intuition on the expected behavior of enforcement mecha-
nisms is presented, considering again the requirements related to the usage of resources
by some processes introduced in Section 4.1. Moreover, some issues arising in the
timed context are also pointed out, and their relation to the expected constraints on
enforcement mechanisms are discussed.

Let us consider the situation where two processes access to and operate on a common
resource. Each process i (with i ∈ {1, 2}) has three interactions with the resource:
acquisition (acq i), release (rel i), and a specific operation (opi). Both processes can also
execute a common action op. System initialization is denoted by action init . In the
following, variable t keeps track of evolution of time. Figure 5.4 illustrates the behavior
of enforcement mechanisms for some specifications on the behavior of the processes and
for particular input sequences. 1

Specification S1 The specification states that “Each process should acquire first and
then release the resource when performing operations on it. Each process should keep
the resource for at least 10 time units (t.u). There should be at least 1 t.u. between any
two operations.”

actions

time

acq1 op1 op1 acq1 op1 rel1

input

output

Figure 5.3: Specification S1, input σ1.

Let us consider the input sequence σ1 = (1, acq1) · (3, op1) · (3.5, op1) · (4.5, acq1) ·
(5, op1) · (10, rel1) (where each event is composed of an action associated with a date,
indicating the absolute time at which the action is received as input). The monitor
receives the first action acq1 at t = 1, followed by op1 at t = 3, etc. At t = 1 (resp.

1. In Section 4.2.2 we have seen how to formalize these specifications by timed automata.
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t = 3), the monitor can output action acq1 (resp. op1) because this event (resp. the
sequence (1, acq1) · (3, op1)) satisfies specification S1. At t = 3.5, when the second
action op1 is input, the enforcer determines that this action should be delayed by 0.5
t.u. to ensure the constraint that 1 t.u. should elapse between occurrences of op1

actions. Hence, the second action op1 is released at t = 4. At t = 4.5, when action
acq1 is received, the enforcer releases it immediately since this action is allowed by the
specification with no time constraint. Similarly, at t = 5, an op1 action is received and
is released immediately because at least 1 t.u. elapsed since the previous op1 action
was released as output. At t = 10, when action rel1 is received, it is delayed by 1
t.u. to ensure that the resource is kept for at least 10 t.u. (the first acq1 action was
released at t = 1). Henceforth, as shown in Figure 5.3, the output of the enforcement
mechanism for σ1 is (1, acq1) · (3, op1) · (4, op1) · (4.5, acq1) · (5, op1) · (11, rel1).

actions

time

init1 op1 op1 op2 op2

input

output

(a) Specification S2, input σ2.

actions

time

op1 op1 op op2

input

output

(b) Specification S3, input σ3.

Figure 5.4: Some examples illustrating behavior of enforcement mechanism.

Specification S2 The specification states that “After system initialization, both pro-
cesses should perform an operation (actions opi) before 10 t.u. The operations of the
different processes should be separated by 3 t.u.”

Let us consider the input sequence σ2 = (1, init1) · (3, op1) · (4, op1) · (5, op2) ·
(6, op2). At t = 1, 3, 4, when the enforcement mechanism receives the actions, it cannot
release them as output but memorizes them since, upon each reception, the sequence
of actions it received so far cannot be delayed so that a known continuation may satisfy
specification S2. At t = 5, upon the reception of action op2, the sequence received so
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far can be delayed to satisfy specification S2. Action init1 is released at t = 5 because
it is the earliest possible date: a smaller date would be already elapsed. The two op1

actions are also released at t = 5, because there are no timing constraints on them.
The first op2 action is released at t = 8 to ensure a delay of at least 3 t.u. with the
first op1 action. The second op2 action is also released at t = 8, since it does not need
to be delayed. Henceforth, as shown in Figure 5.4a, the output of the enforcement
mechanism for σ2 is (5, init1) · (5, op1) · (5, op1) · (8, op2) · (8, op2).

Specification S3 The specification states that “Operations op1 and op2 should ex-
ecute in a transactional manner. Both actions should be executed, in any order, and
any transaction should contain one occurrence of op1 and op2. Each transaction should
complete within 10 t.u. Between operations op1 and op2, occurrences of operation op
can occur. There is at least 2 t.u. between any two occurrences of any operation.”

Let us consider the input sequence σ3 = (2, op1) · (3, op1) · (3.5, op) · (6, op2). At
t = 2, the monitor can not output action op1 because this action alone does not satisfy
the specification (and the monitor does not yet know the next events i.e., actions and
dates). If the next action was op2, then, at the date of its reception, the monitor could
output action op1 followed by op2, as it could choose dates for both actions in order
to satisfy the timing constraints. At t = 3 the monitor receives a second op1 action.
Clearly, there is no possible date for these two op1 actions to satisfy specification S3,
and no continuation could solve the situation. The monitor thus suppresses the second
op1 action, since this action is the one that prevents satisfiability in the future. At
t = 3.5, when the monitor receives action op, the input sequence still does not satisfy
the specification, but there exists an appropriate delaying of such action so that with
future events, the specification can be satisfied. At t = 6, the monitor receives action
op2, it can decide that action op1 followed by op and op2 can be released as output
with appropriate delaying. Thus, the date associated with the first op1 action is set to
6 (the earliest possible date, since this decision is taken at t = 6), 8 for action op (since
2 is the minimal delay between those actions satisfying the timing constraint), and 10
for action op2. Henceforth, as shown in Figure 5.4b, the output of the enforcer for σ3

is (6, op1) · (8, op) · (10, op2).

Specification S4 The specification states that “Processes should behave in a trans-
actional manner, where each transaction consists of an acquisition of the resource, at
least one operation on it, and then a release of it. After the acquisition of the resource,
the operations on the resource should be done within 10 t.u. The resource should not
be released less than 10 t.u. after acquisition. There should be no more than 10 t.u.
without any ongoing transaction.”

Let us consider the input sequence σ4 = (1, acq i) · (2, opi) · (3, rel i). At t = 3, when
the monitor receives rel i, it can decide that the three events acq i, opi, and rel i can be
released as output with appropriate delaying. Thus, the date associated with the first
action acq i is set to 3 . The output of the enforcer for σ4 is (3, acq i) · (3, opi) · (13, rel i).
To satisfy the timing constraint on release actions after acquisitions, the date associated
to the last event rel i is set to 13.
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Let us consider the input sequence σ′4 = (3, acq i) · (7, opi) · (13, rel i). The monitor
will observe action acq i followed by a opi and a rel i actions only at date t = 13. Hence,
the date associated with the first action in the output should be at least 13 which is
the minimal decision date, but if the monitor chooses a date for acq i which is strictly
greater than 10, the timing constraint cannot be satisfied. Consequently, the output
of the monitor will be empty forever. However, notice here that the input sequence
provided to the monitor satisfies the specification. Nevertheless, the monitor cannot
release any event as output as it cannot take a decision until it receives a rel i, which
affects the date (the absolute time when it can be released as output) of the first action
acq i, thus falsifying the constraints.

Discussion Specification S4 illustrates an important issue of enforcement in the timed
setting: because input timed words are seen as streams of events with dates, for some
properties, there exist some input timed words that cannot be enforced, even though
they either already satisfy the specification, or could be delayed to satisfy the specifi-
cation (if they were known in advance). For instance, we will see that specifications
S1, S2, S3 do not suffer from this issue, while S4 does. Actually, it turns out that en-
forcement monitors face some constraints due to streaming: they need to memorize
input timed events before taking decision, but meanwhile, time elapses and this influ-
ences the possibility to satisfy the considered specification. Nevertheless, the proposed
enforcement synthesis mechanisms works for all regular timed properties, which means
that the synthesized enforcement mechanisms still satisfy their requirements (sound-
ness, transparency, optimality, and physical constraint), even though the output may
be empty for some input timed words.

5.2 Preliminaries to Runtime Enforcement

In this section, some notations and partial orders on timed words which will be
useful for enforcement are defined.

Definition 5.1 (Observation of a timed word at time t) Given t ∈ R≥0, and a
timed word σ ∈ tw(Σ), the observation of σ at time t is the prefix of σ that can be
observed at date t. It is defined as the maximal prefix of σ whose ending date is lower
than t:

obs(σ, t)
def
= max4

{
σ′ ∈ pref(σ) | end(σ′) ≤ t

}
.

For example, let σ = (2, a) · (3.6, b) · (10, a). We get obs(σ, 5) = (2, a) · (3.6, b).

Definition 5.2 (Delaying order <d) For σ, σ′ ∈ tw(Σ), σ′ delays σ (noted σ′ <d σ)
iff they have the same untimed projections, and the date of each event in σ′ is greater
than or equal to the date of the corresponding event in σ. Formally:

σ′ <d σ
def
= ΠΣ(σ′) = ΠΣ(σ) ∧ ∀i ∈ [1, |σ|] : date(σ′[i]) ≥ date(σ[i]).
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Sequence σ′ is obtained from σ by keeping all actions, but with a potential increase in
dates.

For example, let σ = (3, a) · (5, b) · (8, c) and σ′ = (3, a) · (7, b) · (9, c). σ′ <d σ. Note
that, absolute dates can be increased (but cannot be decreased), but duration between
events may be decreased, e.g., the delay between b and c in σ is 3 time units and in σ′

it is 2 time units).

Definition 5.3 (Delaying subsequence order /d) For σ, σ′ ∈ tw(Σ), σ′ is a de-
layed subsequence of σ (noted σ′ /d σ) iff there exists a subsequence σ” of σ such that
σ′ delays σ”. Formally:

σ′ /d σ
def
= ∃σ′′ ∈ tw(Σ) : σ” / σ ∧ σ′ <d σ”

Sequence σ′ is obtained from σ by first suppressing some actions, and then increasing the
dates of the actions that are kept. This order will be used to characterize output timed
words with respect to input timed words in enforcement monitoring when suppressing
and delaying events.

For example, (4, a) ·(9, c)/d (3, a) ·(5, b) ·(8, c) (event (5, b) has been suppressed while
a and c are shifted in time).

Definition 5.4 (Lexical order �lex) This order is useful to choose a unique timed
word among some with same untimed projection. For two timed words σ, σ′ with
same untimed projection (i.e., ΠΣ(σ) = ΠΣ(σ′)), the order �lex is defined induc-
tively as follows: ε �lex ε, and for two events with identical actions (t, a) and (t′, a),
(t, a) · σ �lex (t′, a) · σ′ if t ≤ t′ ∨ (t = t′ ∧ σ �lex σ

′).

For example (3, a) · (5, b) · (8, c) · (11, d) �lex (3, a) · (5, b) · (9, c) · (10, d).

Definition 5.5 (Choosing a unique timed word with minimal duration) Given
a set of timed words with same untimed projection, min�lex,end selects the minimal timed
word w.r.t the lexical order among timed words with minimal ending date: first the set
of timed words with minimal ending date are considered, and then, from these timed
words, the (unique) minimal one is selected w.r.t the lexical order. Formally, for a
set E ⊆ tw(Σ) such that ∃w ∈ Σ∗,∀σ ∈ E : ΠΣ(σ) = w, we have min�lex,end(E) =
min�lex

(min�end
(E)) where σ �end σ

′ if end(σ) ≤ end(σ′), for σ, σ′ ∈ tw(Σ).

5.3 Enforcement Monitoring in a Timed Context

This section first introduces the enforcement monitoring framework (Section 5.3.1),
and the constraints that should be satisfied by enforcement mechanisms (Section 5.3.2)
are specified.
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5.3.1 General principles

To ease the design and implementation of enforcement monitoring mechanisms in
a timed context, enforcement mechanisms are described at three levels of abstraction:
enforcement functions, enforcement monitors, and enforcement algorithms. An enforce-
ment function describes the transformation of an input timed word into an output timed
word. In this section the constraints required on enforcement functions are formalized.
In Section 5.4 such enforcement functions are defined, and it is proved that the en-
forcement functions satisfy the constraints. An enforcement monitor is a more concrete
view and defines the operational behavior of the enforcement mechanism over time. In
Section 5.5 it is defined as an extended transition system and it is also proved that, for
a given property ϕ, the associated enforcement monitor implements the corresponding
enforcement function. In other words, an enforcement function serves as an abstract
description (black-box view) of an enforcement monitor, and an enforcement monitor
is the operational description of an enforcement function.

5.3.2 Constraints on an enforcement mechanism

At an abstract level, an enforcement mechanism for a given property ϕ can be seen
as a function which takes as input a timed word and outputs a timed word. This is
schematized in Figure 5.5 and defined in Definition 5.6.

Definition 5.6 (Enforcement function) For a timed property ϕ, an enforcement
mechanism behaves as a function, called enforcement function Eϕ : tw(Σ)→ tw(Σ).

Enforcement
function

ϕ

Eϕ(σ) σ

Figure 5.5: Enforcement function

An enforcement function Eϕ models a mechanism that reads some input timed word
σ from an event emitter, which is possibly incorrect w.r.t. ϕ, and transforms it into a
timed word that satisfies ϕ, which is given as input to the event receiver.

Before providing the actual definition of enforcement function in Section 5.4, the
constraints that should be satisfied by an enforcement mechanism dedicated to some
property ϕ, are defined. The following constraints can serve as a specification of the
expected behavior of enforcement mechanisms for timed properties, that can delay and
suppress events.

An enforcement mechanism should first satisfy some physical constraint reflecting
the streaming of events: the output stream can only be modified by appending new
events to its tail. Second, it should be sound, which means that it should correct input
words according to ϕ if possible, and otherwise produce an empty output. Third, it
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should be transparent, which means that it is only allowed to shift events in time while
keeping their order (such behavior is referred to as time retardants) and to suppress
some events. These constraints are formalized in the following definition:

Definition 5.7 (Constraints on an enforcement mechanism) Given a timed prop-
erty ϕ, an enforcement function Eϕ : tw(Σ) → tw(Σ), should satisfy the following
constraints:

- Physical constraint:

∀σ, σ′ ∈ tw(Σ) : σ 4 σ′ =⇒ Eϕ(σ) 4 Eϕ(σ′) (Phy).

- Soundness:

∀σ ∈ tw(Σ) : Eϕ(σ) |= ϕ ∨ Eϕ(σ) = ε (Snd).

- Transparency:

∀σ ∈ tw(Σ) : Eϕ(σ) /d σ (Tr).

The physical constraint (Phy) means that the output produced for an extension σ′ of
an input word σ extends the output produced for σ. This stems from the fact that,
over time the enforcement function outputs a continuously growing sequence of events.
The output for a given input can only be modified by appending new events (with
greater dates). Soundness (Snd) means that the output either satisfies property ϕ,
or is empty. This allows to output nothing if there is no way to satisfy ϕ. Note that,
together with the physical constraint, this implies that no event can be appended to the
output before being sure that the property will be eventually satisfied with subsequent
output events. Transparency (Tr) expresses that the output is a delayed subsequence
of the input σ, thus is allowed to either suppress input events, or increase their dates
while preserving their order.

Remark 5.1 Other constraints. Notice that for any input σ, releasing ε as output
would satisfy the soundness, transparency and physical constraint. We want to suppress
an event or to introduce additional delay only when necessary. In addition to the
soundness, transparency and physical constraint, our enforcement mechanisms in a
timed context also satisfies the following optimality constraints:

Op1 Streaming behavior and deciding to output as soon as possible. An
enforcement function does not have the entire input sequence, and also the length
of the input is unknown. For efficiency reasons, the output should be built incre-
mentally in a streaming fashion. Enforcement mechanisms should take decision
to release input events as soon as possible. Only when there is no possibility to
correct the input, the enforcement mechanism should wait to receive more events.
For example, in case if the property ϕ is a safety property 2, soon after an event
is received as input, the date at which it should be released as output should be
decided.

2. Safety properties are prefix closed.
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Op2 Optimal suppression. The transparency constraint allows to suppress some
events. Suppression should occur only when necessary, i.e., when, upon the re-
ception of a new event, there is no possibility to satisfy the property, whatever is
the continuation of the input.

Op3 Optimal dates. The transparency constraint also allows to increase the dates
of events. The enforcement mechanism should also choose dates that are optimal
with respect to the current situation, releasing events as output as soon as possible.

It can be easily checked on the examples in Section 5.1 that the output sequences satisfy
the constraints of enforcement mechanisms.

5.4 Enforcement Functions: Input/Output Description of
Enforcement Mechanisms

In this section, an enforcement function dedicated to a desired property ϕ is defined.
Its purpose is to define, at an abstract level, for any input word σ, the output word
Eϕ(σ) expected from an enforcement mechanism.

Firstly, some preliminaries are discussed (Section 5.4.1). Then, the enforcement
function itself is defined, and in Section 5.4.2 we prove that this functional definition
satisfies the physical, soundness, and transparency constraints. Finally, in Section 5.4.3,
we explain how the enforcement function behaves over time (how a given input sequence
is consumed over time, and how the output is released in an incremental fashion).

5.4.1 Preliminaries to the definition of the enforcement function

An enforcement mechanism needs to memorize events since, for some properties
(typically co-safety properties), upon the reception of some input timed word, the
property might not be yet satisfiable by delaying, but a continuation of the input may
allow satisfaction. For more general properties (which are neither safety nor co-safety
properties), there may exist some prefix for which the property is satisfiable by delaying
the input, thus dates can be chosen for these events. Enforcement mechanisms take
decisions on dates as soon as possible, and the output is built in a fashion that is as
incremental as possible. Suppression occurs only when necessary, i.e., when, upon the
reception of a new event, there is no possibility to satisfy the property, whatever is the
continuation of the input.

The definition of the enforcement function shall use the set CanD(σ) of candidate
delayed sequences of σ, independently of the property ϕ.

CanD(σ) = {w ∈ tw(Σ) | w <d σ ∧ start(w) ≥ end(σ)} .

CanD(σ) is the set of timed words w that delay σ, and start at or after the ending
date of σ (which is the date of the last event of σ). As we shall see, the first conjunct
stems from the fact that we consider enforcement mechanisms as time retardants, while
the second one means that the eligible timed words should not start before the date
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end(σ) (i.e., the date of its last event), as illustrated informally with specification S3

in Section 5.1 and further discussed in Section 5.4.3.

5.4.2 Definition of the enforcement function

The enforcement function Eϕ for a property ϕ defines how an input stream σ is
transformed. For a property ϕ, the enforcement function Eϕ : tw(Σ) → tw(Σ) is
defined as Eϕ(σ) = Π1 (store (σ)) where store (σ) = (σs, σc) describes how the input
stream is transformed. Sequence σs is a delayed subsequence of the input that is to
be released as output. σc is a suffix of the input stream for which the dates at which
these events can be released as output cannot be computed. For example, in case if
the property is a safety property, the date at which an event should be released as
output can be computed immediately and thus σc will be always ε. For co-safety and
other regular properties (since they are not prefix closed), for some events, decision
to output them also depends on the subsequent input events. Let us consider again
the examples in Section 5.1. Consider specification S2, and the input sequence σ2 =
(1, init1) · (3, op1) · (4, op1) · (5, op2) · (6, op2). Only upon receiving op2 at t = 5, the
sequence received so far can be delayed to satisfy specification S2. So, the enforcement
function stores the first 3 events in σc until it processes op2.

Let us now see the definition of the enforcement function Eϕ in detail.

Definition 5.8 (Enforcement function) The enforcement function for a property ϕ
is the function Eϕ : tw(Σ)→ tw(Σ) defined as:

Eϕ(σ) = Π1 (store (σ)) ,

where store : tw(Σ)→ tw(Σ)× tw(Σ) is defined as

store(ε) = (ε, ε)

store(σ · (t, a)) =


(σs ·min�lex,end κϕ(σs, σ

′
c), ε) if κϕ(σs, σ

′
c) 6= ∅,

(σs, σc) if κpref(ϕ)(σs, σ
′
c) = ∅,

(σs, σ
′
c) otherwise,

with σ ∈ tw(Σ), t ∈ R≥0, a ∈ Σ,

(σs, σc) = store(σ), and σ′c = σc · (t, a),

where

κϕ(σs, σ
′
c)

def
= CanD(σ′c) ∩ σ−1

s · ϕ

For a given input σ, the store function computes a pair (σs, σc) of timed words: σs,
which is extracted by the projection function Π1 to produce the output Eϕ(σ); σc is
used as a temporary memory. The pair (σs, σc) should be understood as follows:

– σs is a delayed subsequence of the input σ, in fact of its prefix of maximal length
for which the absolute dates have been computed to satisfy property ϕ;
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– σc is a subsequence of the remaining suffix of σ for which the releasing dates of
events, still have to be computed. It is a subsequence (and not the complete
suffix) since some events may have been suppressed when no delaying allowed to
satisfy ϕ, whatever is the continuation of σ, if any.

Function Eϕ incrementally computes a timed word according to the input timed word,
and is defined inductively as follows. When the empty word ε is given as input, it
produces (ε, ε). Otherwise, suppose that for input σ the result of store(σ) is (σs, σc)
and consider reading another event (t, a) as input. Now, the new timed word to correct
is σ′c = σc · (t, a). There are three possible cases, according to the vacuity of sets
κϕ(σs, σ

′
c) and κpref(ϕ)(σs, σ

′
c). These sets are obtained respectively as the intersection

of the set CanD(σ′c) with σ−1
s .ϕ and σ−1

s · pref(ϕ). Let us recall that:

– CanD(σ′c) is the set of timed words that delay σ′c, and start at or after the ending
date of σ′c (i.e., the date of its last event (t, a)), since choosing an earlier date
would cause the date to be already elapsed before the event could be released as
output;

– σ−1
s · ϕ = {w ∈ tw(Σ) | σs · w |= ϕ} is the set of timed words w such that,
σs · w |= ϕ; similarly, since pref(ϕ) = {v ∈ tw(Σ) | ∃w′ ∈ tw(Σ) : v · w′ |= ϕ}
we get that σ−1

s ·pref(ϕ) = {w ∈ tw(Σ) | ∃w′ ∈ tw(Σ) : σs · w · w′ |= ϕ}, and thus
is the set of timed words w such that there exists a continuation w′ such that
σs · w · w′ |= ϕ.

Thus κϕ(σs, σ
′
c) is the set of timed words w that belong to the candidate delayed

sequences of σ′c and such that σs · w satisfies ϕ; and κpref(ϕ)(σs, σ
′
c) is the set of timed

words w that belong to the candidate delayed sequences of σ′c, and such that some
additional continuation w′ may satisfy ϕ, i.e., σs · w · w′ |= ϕ. Note that κϕ(σs, σ

′
c) ⊆

κpref(ϕ)(σs, σ
′
c).

- If κϕ(σs, σ
′
c) 6= ∅ (and thus κpref(ϕ)(σs, σ

′
c) 6= ∅), it is possible to choose appropriate

dates for the timed word σ′c = σc ·(t, a) to satisfy ϕ. Adding any timed word belonging
to κϕ to σs soon after κϕ(σs, σ

′
c) 6= ∅ satisfies the optimality constraint related to

deciding to output events as soon as possible (Op1). The minimal timed word in
κϕ(σs, σ

′
c) w.r.t the lexicographic order is chosen among those with minimal ending

date, and appended to σs; the second element of the pair is set to ε since all events
memorized in σc · (t, a) are corrected and appended to σs. Notice also that choosing
a timed word from κϕ with minimal ending date satisfies the optimality constraint
related to outputting events as soon as possible (Op3).

- If κpref(ϕ)(σs, σ
′
c) = ∅ (and thus κϕ(σs, σ

′
c) = ∅), it means that, whatever is the

continuation of the current input σ ·(t, a), there is no chance to find a correct delaying
for (t, a). Thus, event (t, a) should be suppressed, leaving σc and σs unmodified. Only
in this case, when we know that there is no possibility to correct the input anymore,
the last read event (t, a) is suppressed, satisfying the optimality constraint related to
minimal suppression (Op2).

- Otherwise, i.e., when κpref(ϕ)(σs, σ
′
c) 6= ∅ but κϕ(σs, σ

′
c) = ∅, it means that it is not

yet possible to choose appropriate dates for σ′c = σc · (t, a) to satisfy ϕ, but there is
still a chance to do it in the future, depending on the continuation of the input, if
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any. Thus σc is modified into σ′c = σc · (t, a) in memory, but σs is left unmodified.

Remark 5.2 (Alternative strategies to suppress events) When there is no pos-
sibility to continue correcting the input sequence (i.e., κpref(ϕ) = ∅), we choose to erase
only the last received event (t, a), since it is the last one that causes this impossibility.
However, other policies to suppress events could be chosen. In fact, one could choose
to suppress any events in σc · (t, a), since dates of these events have not yet been cho-
sen. This would then require to choose among all subsequences of σc · (t, a), and thus
to define an appropriate order on those subsequences, which may be rather complex to
define, and, more importantly, computationally expensive.

Proposition 5.1 Given some property ϕ, its enforcement function Eϕ as per Defini-
tion 5.8 satisfies the physical (Phy), soundness (Snd), and transparency (Tr) con-
straints as per Definition 5.6.

Proof 5.1 (of Proposition 5.1 - sketch only) The proof of the physical constraint
is a direct consequence of the definition of store. The proofs of soundness and trans-
parency follow the same pattern: they rely on an induction on the length of the input
word σ. The induction steps use a case analysis, depending on whether the last input
subsequence (i.e, the events in σc ·(t, a)) can be corrected or not. The two possible cases
are:

Case κϕ(σs, σc · (t, a)) = ∅ In this case, using the induction hypothesis, we can de-
duce that Eϕ(σ) = Eϕ(σ·(t, a)), and conclude that Eϕ(σ·(t, a)) satisfies soundness
and transparency.

Case κϕ(σs, σc · (t, a)) 6= ∅ In this case, the argument is based on the induction hy-
pothesis and how κϕ is defined.

The complete proofs are given in Appendix A.1.

In addition to the physical, soundness, and transparency constraints, as we already
saw, the functional definition also satisfies optimality constraints. The optimality con-
straint (Op3) that each subsequence is released as output as soon as possible, is ex-
pressed by the following proposition.

Proposition 5.2 (Optimality of the enforcement function) Given some property
ϕ, its enforcement function Eϕ as per Definition 5.8 satisfies the following optimality
constraint:

∀σ ∈ tw(Σ) : Eϕ(σ) = ε ∨ ∃m,w ∈ tw(Σ) : Eϕ(σ) = m · w(|= ϕ), with

m = maxϕ≺,ε(Eϕ(σ)), and

w = min�lex,end{w′ ∈ m−1 · ϕ | ΠΣ(w′) = ΠΣ(m−1 · Eϕ(σ))

∧ m · w′ /d σ ∧ start(w′) ≥ end(σ)}

where maxϕ≺,ε(σ) is the maximal strict prefix of σ w.r.t ϕ, formally:

maxϕ≺,ε(σ)
def
= max�

({
σ′ ∈ ϕ | σ′ ≺ σ

}
∪ {ε}

)
.
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For any input σ, if the output Eϕ(σ, t) is not empty, then (it satisfies ϕ by soundness
and) the output can be separated into a prefix m which is the maximal strict prefix of
Eϕ(σ) satisfying property ϕ, and a suffix w. The optimality condition focuses on this
last part, which is the suffix that allows to satisfy (again) the property. However, since
the property considers any input σ, the same holds for every prefix of the input that
allows to satisfy ϕ by enforcement, thus for any such (temporary) last subsequence.

The optimality constraint expresses that, among those sequences w′ that could
have been chosen (see below), w is the minimal one in terms of ending date, and lexical
order (this second minimality ensures uniqueness). The “sequences that could have
been chosen” are those such that m · w′ satisfies the property, have the same events
(thus can be produced by suppressing the same events), are delayed subsequences of
the input σ, and have a starting date greater than or equal to time(σ), since time(σ)
is the date at which w′ is appended to the output, and thus a smaller date would be in
the past of the output event.

Example 5.1 Consider Specification S3 introduced in Section 5.1. Let the input se-
quence be σ = (2, op1) · (3, op1) · (3.5, op) · (4, op2). This input sequence can be cor-
rected only after the last event (4, op2) is observed. Some possible output sequences
are: o1 = (6, op1) · (8, op) · (10, op2), o2 = (4, op1) · (7, op) · (9, op2), and o3 =
(4, op1) · (6, op) · (8, op2). All these three sequences are valid outputs (they satisfy phys-
ical, soundness and transparency constraints), but only o3 satisfies optimality.

Proof 5.2 (of Proposition 5.2 - sketch only) The proofs rely on an induction on
the length of the input word σ. The induction step uses a case analysis, depending on
whether the last input subsequence (i.e, the events in σc · (t, a)) can be corrected or not.
The two possible cases are:

Case κϕ(σs, σc · (t, a)) = ∅ In this case, using the induction hypothesis, we can de-
duce that Eϕ(σ) = Eϕ(σ · (t, a)), and conclude that Eϕ(σ · (t, a)) satisfies optimal-
ity.

Case κϕ(σs, σc · (t, a)) 6= ∅ In this case, we show that what is computed for w in the
definition of optimality is equal to the corrected subsequence appended to σs by
the enforcement function.

The complete proof is given in Appendix A.2 (p. 126).

Remark 5.3 (Fixing the events suppressed in the optimality condition) Note
that the condition ΠΣ(w′) = ΠΣ(m−1 ·Eϕ(σ)) in Proposition 5.2 stems from the strat-
egy chosen to suppress events (see Remark 5.2). If an enforcement function is de-
fined, such that it is allowed to suppress any event in σc · (t, a), then the condition
ΠΣ(w′) = ΠΣ(m−1 · Eϕ(σ)) in optimality should be removed.

Remark 5.4 (Simplified enforcement function for safety properties)
Because of the characteristics of safety properties, the enforcement function for such a
property ϕ can be simplified. We denote it as storesa

ϕ . The output of function storesa
ϕ

is a timed word instead of a pair of timed words (storesa
ϕ : tw(Σ) → tw(Σ)). One can

notice that, by a simple induction using the definition of function store in Section 5.4.2,
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the second component in the output (σc) remains always empty. Indeed, σc is initially
empty. Now, suppose that store(σ) = (σs, ε) for some σ, σs ∈ tw(Σ). Since ϕ is a safety
property, pref(ϕ) = ϕ, thus, κpref(ϕ) = κϕ, and thus the third case in the definition
of function store never happens. Moreover, in the two remaining cases, the second
argument remains ε. Thus, the internal memory can be removed from the definition.
Additionally, in the first case, the first argument of the output can be simplified as it is
always called with the last read event (t, a) (see below).

Function storesa
ϕ can be defined as follows:

storesa
ϕ (ε) = ε

storesa
ϕ (σ · (t, a)) =

{
storesa

ϕ (σ) · (min (K (σ, (t, a))) , a) if K (σ, (t, a)) 6= ∅,
storesa

ϕ (σ) otherwise,

where K (σ, (t, a))
def
= {t′ ∈ R≥0 | t′ ≥ t∧storesa

ϕ (σ) ·(t′, a)/dσ ·(t, a)∧storesa
ϕ (σ) ·(t′, a) ∈

ϕ} is the set of dates t′ ≥ t that can be associated to action “a”, such that the extension
storesa

ϕ (σ) · (t′, a) of storesa
ϕ (σ) is a delayed subsequence of σ · (t, a) and still satisfies

property ϕ. It can then be proved that, for safety properties, store can be replaced by
storesa

ϕ , resulting in the same enforcement function Eϕ.

5.4.3 Behavior of the enforcement function over time

ϕ

obs(Eϕ(obs(σ, t), t) σ

Streaming behavior

Output

Fct

Enf

Fct Eϕ

Input

Fct

Eϕ(obs(σ, t)) obs(σ, t)

Figure 5.6: Behavior of the enforcement function over time.

The functional definition in Section 5.4.2, presents an abstract view, describing
how to transform an input timed word σ according to a property ϕ. We abstract away
from time, and show how a given complete input sequence σ is transformed. However,
we want an enforcement mechanism to work in an online fashion, correcting partially
known input, and releasing those events as output as soon as possible. So, now we
present how the functional definition in Section 5.4.2 can compute output in an online
fashion from partially observed input. Figure 5.6 provides an overview of how the
enforcement function computes output incrementally over time using the input and
output functions. The input and output functions as depicted in Figure 5.6 build the
partial input and output of the enforcement function at any time instant. Both the
input and output functions are realized using the obs function (see Definition 5.1).

At time t, the input and output functions compute the following:
– The input function computes what can be effectively observed from σ, which is

obs(σ, t) provided as input to the enforcement function;
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obs(σ3, t) = ε
storeϕ3

(obs(σ3, t)) = (ε, ε)
obs (Eϕ3

(obs (σ3, t))) = obs(ε, t) = ε

obs(σ3, t) = (2, op1 )
storeϕ3

(obs(σ3, t)) = (ε, (2, op1 ))
obs (Eϕ3

(obs (σ3, t))) = obs(ε, t) = ε

obs(σ3, t) = (2, op1 ) · (3, op1 )
storeϕ3(obs(σ3, t)) = (ε, (2, op1 ))
obs (Eϕ3

(obs (σ3, t))) = obs(ε, t) = ε

obs(σ3, t) = (2, op1 ) · (3, op1 ) · (3.5, op)
storeϕ3(obs(σ3, t)) = (ε, (2, op1 ) · (3.5, op))
obs (Eϕ3 (obs (σ3, t))) = obs (ε, t) = ε

obs(σ3, t) = (2, op1 ) · (3, op1 ) · (3.5, op) · (6, op2 )
storeϕ3

(obs(σ3, t)) = ((6, op1 ) · (8, op) · (10, op2 ), ε)
obs (Eϕ3 (obs (σ3, t))) = obs ((6, op1 ) · (8, op) · (10, op2 ) , t)

t ∈ [0, 2[

t ∈ [2, 3[

t ∈ [3, 3.5[

t ∈ [3.5, 6[

t ∈ [6,∞[

Figure 5.7: Evolution of the enforcement function for property ϕ3.

– The enforcement function computes the output corresponding to the input obs(σ, t)
which is Eϕ(obs(σ, t)).

– Now, Eϕ(obs(σ, t)) is a timed word where dates attached to events model the date
when they should be released as output. Thus, only its prefix obs(Eϕ(obs(σ, t)), t)
can be effectively released as output at date t, computed by the output function.

According to the physical constraint (Phy), it is legal to build output incrementally
since, obs(σ, t) is the prefix of σ observed at time t, (obs(σ, t) 4 σ), thus Eϕ(obs(σ, t)) is
a prefix of the complete output Eϕ(σ). Also, notice that, Eϕ behaves as a time retardant
(dates attached to output events exceed dates of corresponding input events). So, we
also get obs(Eϕ(obs(σ, t)), t) = obs(Eϕ(σ), t).

Thus, we can conclude that at date t, the released output is obs(Eϕ(σ), t), and what
is ready to be released (but not released) is the residual of Eϕ(obs(σ, t)) after releasing
obs(Eϕ(σ), t) which is obs(Eϕ(σ), t)−1 · Eϕ(obs(σ, t)).

The enforcement monitor described in the next section, which concretizes the en-
forcement function, and will explicitly take care of this temporal behavior of our en-
forcement mechanism.

Example 5.2 (Enforcement function) We illustrate how Definition 5.8 is applied
to enforce specification S3 (see Section 5.1), formalized by property ϕ3, recognized by the
automaton depicted in Figure 4.2c with Σ3 (= {op1, op2, op}), and the input timed word
σ3 = (2, op1) ·(3, op1) ·(3.5, op) ·(6, op2). Figure 5.7 shows the evolution of the observed
input timed word obs(σ3, t), the output of the store function when the input timed word
is obs(σ3, t), and Eϕ3. Variable t keeps track of physical time. When t < 6, the
observed output is empty (since Eϕ3(obs(σ3, t)) = ε). When t ≥ 6, the observed output,
is obs((6, op1) · (8, op) · (10, op2), t) (since Eϕ3(obs(σ3, t)) = (6, op1) · (8, op) · (10, op2)).
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obs(σ4, t) = ε
storeϕ4

(obs(σ4, t)) = (ε, ε)
obs(Eϕ4

(obs(σ4, t))) = obs(ε, t)

obs(σ4, t) = (3, acqi)
storeϕ4

(obs(σ4, t)) = (ε, (3, acqi))
obs (Eϕ4

(obs (σ4, t))) = obs(ε, t)

obs(σ4, t) = (3, acqi) · (7, opi)
storeϕ4 (obs (σ4, t)) = (ε, (3, acqi) · (7, opi))
obs(Eϕ4

(obs(σ4, t))) = obs(ε, t)

obs(σ4, t) = (3, acqi) · (7, opi) · (12, reli)
storeϕ4 (obs (σ4, t)) = (ε, (3, acqi) · (7, opi))
obs (Eϕ4 (obs (σ4, t))) = obs(ε, t)

t ∈ [0, 3[

t ∈ [3, 7[

t ∈ [7, 12[

t ∈ [12,∞[

Figure 5.8: Evolution of the enforcement function for property ϕ4 (a non-enforceable
property).

Example 5.3 (Enforcement function: A non-enforceable property)
Consider specification S4 formalized by property ϕ4, recognized by the automaton de-

picted in Figure 4.2d with Σi
4

def
= {acq i, opi, rel i}, and the input timed word σ4 =

(3, acq i) · (7, opi) · (12, rel i). Figure 5.8 shows the evolution of the observed input timed
word obs(σ4, t), the output of the store function when the input timed word is obs(σ4, t),
and Eϕ4. The output of the enforcement function is ε at any time instant.

5.5 Enforcement Monitors: Operational Description of
Enforcement Mechanisms

The enforcement function definition in Section 5.4 is a functional view of our en-
forcement mechanism. The enforcement function is defined recursively which trans-
forms an input stream of events according to property ϕ. The functional definition can
be implemented using functional programming constructs such as recursion, and lazy
evaluation.

However, a concern is that the computation of dates of new events are also depen-
dent on the events that are already processed (and corrected). The functions κϕ and
κpref(ϕ) also take σs as input. This requires to store all the corrected events in the
memory of the enforcer. The memory σs grows over time and is never emptied.

An enforcement monitor is an alternative view which is based on the functional
definition. It makes use of semantics of TA defining the property ϕ, is defined as a
transition system E which provides a more operational view of the enforcement mech-
anism.

An enforcement function Eϕ for a property ϕ specified by a TA Aϕ, is implemented
by an enforcement monitor (EM), which provides a more operational view of the en-
forcement mechanism. An EM is defined as a transition system E and has explicit
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state information. It keeps track of information such as time elapsed, and state of the
underlying TA. Using the semantics of the TA defining the property ϕ, and keeping
track of its current state (encoding the state reached upon σs), we no more require σs
to compute the dates of the following input events in σc. The dates for the new events
(that are in σc) can be computed by exploring all the paths from the current state of
the underlying TA. An EM also releases all the corrected events over time (events in
memory σs are removed and released as output at appropriate time instants).

5.5.1 Preliminaries to the definition of enforcement monitors

In contrast with an enforcement function which, at an abstract level, takes as input
a timed word and produces a timed word as output, an enforcement monitor E also
needs to take into account physical time (which is kept track of by clock t), the current
observation obs(σ, t) of the input stream σ at time t, the dumping of events to the
environment which is characterized by obs(Eϕ(σ), t), and the residual of Eϕ(obs(σ, t))
after releasing obs(Eϕ(σ), t).

An EM E is thus equipped with:

– a clock which tracks the current date t;
– it also uses two memories and a set of enforcement operations used to store and

dump some timed events to and from the memories, respectively. The memories
of an EM are basically queues, each of them containing a timed word:
– σms is the output queue which manages Eϕ(σ), but at time t, since only the

prefix obs(σ, t) has been observed, and obs(Eϕ(σ), t) has already been released,
σms contains the residual obs(Eϕ(σ), t)−1 · Eϕ(obs(σ, t)), i.e., the timed word
that is ready to be released but not yet released;

– the other queue σmc manages the input, more precisely the subsequence of the
input obs(σ, t) composed of non-suppressed events for which dates could not
yet be chosen to satisfy the property. This exactly corresponds to the timed
word σc in the store function (see Definition 5.8).

– An EM also keeps track of the current state of the underlying LTS of the TA
Aϕ that encodes property ϕ. The current state is the one reached at time t after
reading the timed word Eϕ(obs(σ, t)) (that also corresponds to σs in the definition
of Eϕ) which is the output that can be computed from the current observation
obs(σ, t).

5.5.2 Update function

Before presenting the definition of enforcement monitor, we introduce function
update that updates the current state in the underlying LTS of the TA, and mim-
ics the computation of the sets CanD, κϕ, and κpref(ϕ) in function store. It also outputs
a marker used by E to take decisions. Function update takes as input the current state
(q ∈ Q) of [[Aϕ]] reached after reading sequence Eϕ(obs(σ, t)) (it thus encodes the term
σ−1
s · ϕ in the definition of set κϕ(σs, σ

′
c)), sequence of events σmc ∈ tw(Σ) (same as σc

in the definition of store), and the last received event (t, a).
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- If the new input event (t, a), appended to σmc, allows to satisfy the property by
delaying, it outputs a state q′ 3, a timed word w, and the marker ok where w is the
sequence with minimal ending date delaying σmc · (t, a), and q′ is the state reached
from q by reading w.

- If for any delaying sequence, the state that is reached from q is in B (bad state), it
returns the same state q, the sequence σmc (thus (t, a) is suppressed) and a marker
bad (indicating that no further input event can allow to satisfy the property).

- Otherwise, if for some delaying sequence, some currently bad state BC is reachable
from q, and no delaying sequence from q leads to an accepting state QF , it does not
modify q, and returns σmc · (t, a) and a marker c bad (indicating that some further
event from the input can allow to satisfy the property).

Definition 5.9 (Update function) update is a function from Q×tw(Σ)×(R≥0×Σ)
to Q× tw(Σ)× {ok, c bad, bad}. defined as follows:

update(q, σmc, (t, a))
def
=



(
q′, w, ok

)
if ∆(q, σmc · (t, a)) 6= ∅ ∧ q w→ q′,

(q, σmc, bad) if ∀w′ ∈ tw(Σ) : w′ <d σmc · (t, a)

∧ start(w′) ≥ t =⇒ q
w′→ B,

(q, σmc · (t, a), c bad) otherwise,

where w = min�lex,end ∆(q, σmc · (t, a)) with ∆ : Q× tw(Σ)→ 2tw(Σ) defined as:

∆(q, σ) =
{
w′ ∈ tw(Σ) | w′ <d σ ∧ start(w′) ≥ end(σ) ∧ q w′→ QF

}
.

∆(q, σmc · (t, a)) is the set of timed words w′ delaying σmc · (t, a), starting at a date
greater than or equal to the (current) date t, and reaching an accepting state q′ ∈ QF .
Since q encodes σ−1

s · ϕ, ∆(q, σmc · (t, a)) exactly encodes set κϕ(σs, σc · (t, a)).
The three cases in the definition of update encode the three cases in the definition

of function store, in the same order:

- In the first case, ∆(q, σmc · (t, a)) is not empty, i.e., appropriate delaying dates can be
chosen for the events in σmc · (t, a) such that an accepting state q′ ∈ QF is reached
from q. 4 In this case, function update returns the minimal word w w.r.t the lexical
order among those timed words of minimal ending date in ∆(q, σmc · (t, a)), the state
q′ ∈ QF reached from q by w, and marker ok indicating that QF is reached.

- In the second case, it is impossible to correct σmc · (t, a) in the future since all
the candidate sequences delaying σmc · (t, a) lead to states in B, i.e., non-accepting
states from which no path leads to an accepting state. This reflects the fact that
κpref(ϕ)(σs, σc · (t, a)) is empty. In this case, function update lets state q and timed
word σmc unmodified, indicating that event (t, a) is suppressed, and marker bad

3. Note that q’ is necessarily an accepting state (q′ ∈ QF ).
4. This case could be further split in two cases depending on whether q′ ∈ G or q′ ∈ Gc. In the first

case, one could then simplify enforcement since now all reachable states from q′ are in G, thus only the
condition start(w′) ≥ end(σ) of ∆ has to be checked in subsequent calls to update.
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indicates that no accepting state could be reached in the future if (t, a) was retained
in memory.

- In the third case, function update lets state q unmodified, but returns the timed word
σmc · (t, a), and a marker c bad. This indicates that σmc · (t, a) can not be delayed
to reach an accepting state, but there is still a chance to reach a new accepting state
after observing more events in the future.

5.5.3 Definition of enforcement monitors

We define the notion of enforcement monitor.

Definition 5.10 (Enforcement Monitor) Let us consider a TA Aϕ, with semantics
(Q, q0, Γ,→, QF ), recognizing some property ϕ. The enforcement monitor E for ϕ is
the transition system (CE , cE0 ,Γ

E , ↪→E) s.t.:

- CE = tw(Σ)×tw(Σ)×R≥0×Q is the set of configurations of the form (σms, σmc, t, q),
where σms, σmc are timed words to memorize events, t is a positive real number to
keep track of time, and q is a state in the semantics of the TA,

- cE0 = (ε, ε, 0, q0) ∈ CE is the initial configuration,

- ΓE = ((R≥0 × Σ) ∪ {ε}) × Op × ((R≥0 × Σ) ∪ {ε}) is the alphabet, i.e., the set of
triples comprised of an optional input event, an operation, and an optional output
event, where the set of possible operations is Op = {store-ϕ(·), storesup-ϕ(·), store-
ϕ(·),dump(·), idle(·)};

- ↪→E⊆ C × ΓE × C is the transition relation defined as the smallest relation obtained
by the following rules applied with the priority order below:

- 1. store-ϕ:

(σms, σmc, t, q)
(t,a)/store−ϕ(t,a)/ε

↪→E (σms · w, ε, t, q′)
if update(q, σmc, (t, a))) = (q′, w, ok)

- 2. storesup-ϕ:

(σms, σmc, t, q)
(t,a)/storesup−ϕ(t,a)/ε

↪→E (σms, σmc, t, q)
if update(q, σmc, (t, a)) = (q, σmc, bad)

- 3. store-ϕ:

(σms, σmc, t, q)
(t,a)/store−ϕ(t,a)/ε

↪→E (σms, σmc · (t, a), t, q)
if update(q, σmc, (t, a)) = (q, σmc · (t, a), c bad)

- 4. dump:

((t, a) · σ′ms, σmc, t, q)
ε/ dump(t,a)/(t,a)

↪→E (σ′ms, σmc, t, q)

- 5. idle:

(σms, σmc, t, q)
ε/ idle(δ)/ε
↪→E (σms, σmc, t+ δ, q).

A configuration (σms, σmc, t, q) of the EM consists of the current stored sequences (i.e.,
the content of the two memories) σms and σmc. The sequence which is corrected and
can be released as output is denoted by σms. Sequence σmc is a sort of internal memory:
this is the input sequence read by the EM, but yet to be corrected, except for events
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that are suppressed. The configuration also contains a clock t that indicates the current
time instant. The last element q is the current state of [[Aϕ]] reached after processing the
sequence already released followed by the timed word in memory σms, i.e., Eϕ(obs(σ, t)).

Semantic rules can be understood as follows:

- Upon the reception of an event (t, a) (i.e., when t is the date in the configuration and
(t, a) is read), one of the following store rules is executed. Notice that their conditions
are exclusive of each others.

- The store-ϕ rule is executed if function update returns marker ok, indicating that
ϕ can be satisfied by the sequence already released as output, followed by σms,
and followed by w which minimally delays σmc · (t, a). When executing the rule,
sequence w is appended to the content of output memory σs.

- The storesup-ϕ rule is executed if the update function returns marker bad (indi-
cating that σmc · (t, a) followed by any sequence cannot be corrected). Event (t, a)
is then suppressed, and the configuration remains unchanged.

- The store-ϕ rule is executed if the update function returns marker c bad (indicat-
ing that σmc · (t, a) cannot be corrected yet). The event (t, a) is then appended to
the internal memory σmc.

- The dump rule is executed if the current time t is equal to the date corresponding
to the first event of the timed word σms = (t, a) · σ′ms in the memory. The event is
released as output and removed from σms in the resulting configuration.

- The idle rule adds the time elapsed δ (where δ ∈ R>0) to the current value of t when
no store nor dump operation is possible.

Note, all rules except the idle rule execute in zero time 5.

Example 5.4 (Execution of an enforcement monitor) We illustrate how the rules
of Definition 5.10 are applied to enforce property ϕ3 (see Section 5.1), recognized by the
automaton depicted in Figure 4.2c with Σ3 = {op1, op2, op}, and the input timed word
σ3 = (2, op1) · (3, op1) · (3.5, op) · (6, op2). Figure 5.9 shows how semantic rules are
applied according to the current date t, and the evolution of the configurations of the
enforcement monitor, together with input and output. More precisely, each line follows
the syntax O/c/I, where O is the sequence of released events, c is a configuration, and
I is the residual of the input σ after its observation at time t.

The resulting (final) output is (6, op1) · (8, op) · (10, op2), which satisfies property
ϕ3. After t = 10, only the idle rule can be applied.

Remark 5.5 (Simplified EM definition for safety properties)
Because of the characteristics of safety properties, following the simplifications in the
functional definition (see Remark 5.4), enforcement monitor definition can be also sim-
plified. Only one timed word is needed in the configuration, and the internal memory

5. Processing input and output actions is assumed to be done in zero time. Some delay (either fixed
or depending on additional parameters) can be considered for the other operations, and the semantic
rules of these operations can be modified accordingly (incrementing the value of clock “t” with some
delay in the resulting configuration).
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ε/(ε, ε, 0, (l0, 0, 0))/(2, op1) · (3, op1) · (3.5, op) · (6, op2)

ε/(ε, ε, 2, (l0, 0, 0))/(2, op1) · (3, op1) · (3.5, op) · (6, op2)
idle(2)

ε/(ε, (2, op1), 2, (l0, 0, 0))/(3, op1) · (3.5, op) · (6, op2)
store-ϕ(2, op1)

ε/(ε, (2, op1), 3, (l0, 0, 0))/(3, op1) · (3.5, op) · (6, op2)
idle(1)

ε/(ε, (2, op1), 3, (l0, 0, 0))/(3.5, op) · (6, op2)
storesup-ϕ(3, op1)

ε/(ε, (2, op1), 3.5, (l0, 0, 0))/(3.5, op) · (6, op2)
idle(0.5)

ε/(ε, (2, op1) · (3.5, op), 3.5, (l0, 0, 0))/(6, op2)
store-ϕ(3.5, op)

ε/(ε, (2, op1) · (3.5, op), 6, (l0, 0, 0))/(6, op2)
idle(2.5)

ε/((6, op1) · (8, op) · (10, op2), ε, 6, (l0, 4, 2))/ε
store-ϕ(6, op2)

(6, op1)/((8, op) · (10, op2), ε, 6, (l0, 4, 2))/ε
dump(6, op1)

(6, op1)/((8, op) · (10, op2), ε, 8, (l0, 4, 2))/ε
idle(2)

(6, op1) · (8, op)/((10, op2), ε, 8, (l0, 4, 2))/ε
dump(8, op)

(6, op1) · (8, op)/((10, op2), ε, 10, (l0, 4, 2))/ε
idle(2)

(6, op1) · (8, op) · (10, op2)/(ε, ε, 10, (l0, 4, 2))/ε
dump(10, op2)

t = 0

t = 2

t = 2

t = 3

t = 3

t = 3.5

t = 3.5

t = 6

t = 6

t = 6

t = 8

t = 8

t = 10

t = 10

Figure 5.9: Execution of an enforcement monitor for ϕ3.

σmc is not necessary. Also, one of the store rules store-ϕ will never be applicable since
the set of currently bad states Bc for a safety TA will be always empty, and the third
case of the update function (Definition 5.9) can never occur.

The simplified update function for safety properties updates is a function from
Q× (R≥0 × Σ) to Q× (R≥0 × Σ)× {ok, bad}. defined as follows:

updates(q, (t, a))
def
=


(
q′, (t′, a), ok

)
if ∆(q, (t, a)) 6= ∅ ∧ q (t′,a)→ q′,

(q, (t, a), bad) if ∆(q, (t, a)) = ∅,

where w = min∆(q, (t, a)) with ∆ : Q× (R≥0 × Σ)→ 2R≥0 defined as:

∆(q, (t, a)) =

{
t′ ∈ R≥0 | t′ ≥ t ∧ q

(t′,a)→ QF

}
.
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∆(q, (t, a)) is the set of dates t′ greater than or equal to t, and an accepting state q′ ∈ QF
is reachable from q upon (t′, a).

In the first case, ∆(q, (t, a)) is not empty, appropriate date t′ can be chosen for the
event (t, a). The updates function returns a state q′, (t′, a) and a marker ok indicating
that the event can be released as output at time t′. In the second case, ∆(q, (t, a)) is
empty, meaning that there is no appropriate date, and the event (t, a) cannot be released
as output. In this case, the updates function returns back the same state q, same event
(t, a) and a marker bad indicating that the event (t, a) should be suppressed.

5.5.4 Relating enforcement functions and enforcement monitors

An enforcement function (see Section 5.4) describes at an abstract level, for any
input word σ, the output word Eϕ(σ) expected from an enforcement mechanism. An
enforcement monitor E (see Section 5.5) is defined as a transition system, providing a
more concrete view and describes the operational behavior of the enforcement mecha-
nism over time. We present how the definitions of enforcement function and enforce-
ment monitor can be related: given a property ϕ, any input sequence σ, at any time
instant t, the output of the associated enforcement function and the output-behavior of
the associated enforcement monitor are equal. In Section 5.4, we already proved that
the enforcement functions satisfy the constraints.

By relating enforcement functions and enforcement monitors, and showing that for
any property and for any input, they compute the same output, we can also conclude
that the enforcement monitor also satisfies the constraints.

Preliminaries We first describe how an enforcement monitor reacts to an input
sequence. In the remainder of this section, we consider an enforcement monitor E =
(CE , cE0 ,Γ

E , ↪→E). According to Definition 5.10, the store rules which read an input
event have priority over the dump rule which reads ε as input but produces an event
as output. The idle operation neither reads an input event, nor produces an output
event, and will always be the transition with least priority.

Enforcement monitors, described in Section 5.5, are deterministic. By determinism,
we mean that, given an input sequence, the observable output sequence is unique.
Moreover, given σ ∈ tw(Σ) and t ∈ R≥0, how an enforcement monitor reads σ until
time t is unique if consecutive idle operations are merged: it goes through a unique
sequence of configurations However, given an input sequence σ and a time instant
t, because of the idle rule which does not read any input event nor produce any
output event there is possibly an infinite set of corresponding sequences over the input-
operation-output alphabet (as in Definition 5.10). All these sequences are equivalent:
they involve the same configurations if consecutive idle operations are merged into
a single idle operation for the enforcement monitor and produce the same output
sequence.

More formally, let us define Eioo(σ, t) ∈ (ΓE)∗ to be the unique sequence of tran-
sitions (triples comprised of an optional input event, an operation, and an optional
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output event) that is “triggered” from the initial configuration, when the enforcement
monitor reads σ until time t:

Definition 5.11 (Input-Operation-Output sequence) Given an input sequence σ ∈
tw(Σ) and some time instant t ∈ R≥0, we define the input-operation-output sequence,
denoted as Eioo(σ, t), as the unique sequence of (ΓE)∗ such that:

∃c ∈ CE : cE0

Eioo(σ,t)

↪→∗E c

∧ Π1(Eioo(σ, t)) = obs(σ, t)

∧ timeop(Π2(Eioo(σ, t))) = t

∧ ¬
(
∃c′ ∈ CE , e ∈ (R≥0 × Σ) : c

(ε,dump(e),e)
↪→E c′

)
,

where the timeop function indicates the duration of a sequence of enforcement opera-
tions and says that only the idle enforcement operation consumes time. Formally:

timeop(ε) = 0;

timeop(op · ops) =

{
d+ timeop(ops) if ∃d ∈ R>0 : op = idle(d),

timeop(ops) otherwise.

The observation of the input timed word σ at any time t, corresponding to obs(σ, t), is
the concatenation of all the input events read/consumed by the enforcement monitor
over various steps. Observe that, because of the assumptions on ΓE , only the idle rule
applies to configuration c: the dump rule does not apply by definition of Eioo(σ, t) and
none of the store rules applies because Π1(Eioo(σ, t)) = obs(σ, t).

Relating enforcement functions and enforcement monitors We now relate the
enforcement function and the enforcement monitor, for a property ϕ. Seen from the
outside, an enforcement monitor E behaves as a device reading and producing timed
words. Overloading notations, this input/output behavior can be characterized as a
function E : tw(Σ)× R≥0 → tw(Σ) defined as:

∀σ ∈ tw(Σ), ∀t ∈ R≥0 : E(σ, t) = Π3

(
Eioo(σ, t)

)
.

The corresponding output timed word E(σ, t), at any time t, is the concatenation of
all the output events produced by the enforcement monitor over various steps of the
enforcement monitor (erasing ε’s). In the following, we do not make the distinction
between an enforcement monitor and the function that characterizes its behavior.

Finally, we define an implementation relation between enforcement monitors and
enforcement functions as follows.

Definition 5.12 (Implementation relation) Given an enforcement function Eϕ (as
per Definition 5.8) and an enforcement monitor (as per Definition 5.10) whose behavior
is characterized by a function E, we say that E implements Eϕ iff:

∀σ ∈ tw(Σ), ∀t ∈ R≥0 : obs(Eϕ(σ), t) = E(σ, t).
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Proposition 5.3 (Relation between Eϕ and E) Given a property ϕ, its enforce-
ment function Eϕ (as per Definition 5.8), and its enforcement monitor E (as per Defi-
nition 5.10), E implements Eϕ in the sense of Definition 5.12.

Proof 5.3 (of Proposition 5.3 - sketch only) A complete proof of this proposition
is given in Appendix A.3.4, p. 133. The proof relies on an induction on the length of
the input word σ. The induction step uses a case analysis, depending on whether the
input is completely observed or not at time t, whether the input can be delayed into a
correct output or not, and whether the memory content (σms) is completely dumped or
not at time t. The proof also uses several intermediate lemmas that characterize some
special configurations (e.g., value of the clock variable, content of the memory σms) of
an enforcement monitor.

5.6 Summary

This chapter presented a general enforcement monitoring framework for systems
with timing requirements. We showed how to synthesize enforcement mechanisms for
any regular timed property (modeled by a timed automaton). The proposed enforce-
ment mechanisms are more powerful than the ones in our previous research endeav-
ors [PFJ+12, PFJM14b]. In particular, proposed enforcement mechanisms allow to
delay the events of the observed input (while being allowed to shorten the delay be-
tween some events), and also to suppress events. An event is suppressed if it is not
possible to satisfy the property by delaying, whatever are the future continuations of
the input sequence (i.e., the underlying TA can only reach non-accepting states from
which no accepting state can be reached). Enforcement mechanisms are described at
different levels of abstraction (enforcement function, and monitor), thus facilitating the
design and implementation of such mechanisms.

An enforcement monitor is still an abstract view of a real enforcement mechanism
and needs to be further concretized. In Chapter 6, algorithms are described showing
how enforcement monitors can be implemented. Furthermore, a prototype is imple-
mented based on the proposed algorithms. In Chapter 6, the prototype implemen-
tation, experimental framework, and the experiments demonstrating the feasibility of
enforcement monitoring for timed properties are described in detail.

In some application domains, we also encounter requirements with constraints both
on time and data. Also, in the context of a client-server scenario, we may have to
treat messages sent to the server from different clients independently. In Chapter 7,
we introduce a model called as Parametrized Timed Automata with Variables (PTAV)
which is an extension of timed automata, allowing to express much richer requirements.
We also present how the enforcement mechanism presented in this chapter can be
extended to enforce properties expressed as PTAVs.
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Chapter 6

Implementation and Evaluation

In this chapter, we show how the abstract view of enforcement functions and en-
forcement monitors described in chapter 5 can be further concretized into an imple-
mentation. Firstly, we present the enforcement algorithms, describing how to realize
enforcement monitors. Enforcement algorithms are also implemented in Python. We
describe the experimental framework developed to evaluate the performance of enforce-
ment monitors, and finally discuss the evaluation results.

6.1 Enforcement Algorithms

Enforcement Monitor

Process
Dump

Process
Store

Memory (σms)

σmcE(σ, t) σ, t

Figure 6.1: Realizing an EM.

The implementation of an enforcement monitor consists of two processes running
concurrently (Store and Dump), and a shared memory, as shown in Figure 6.1. Process
Store implements the store rules of the enforcement monitor. The memory contains the
timed word σms: the corrected sequence that can be released as output. The memory
σms is realized as a queue, shared by the Store and Dump processes, where the Store
process adds events, that are processed and corrected, to this queue. Process Dump
reads the events stored in the memory σms and releases the action corresponding to
each event as output, when time reaches the date associated to the event. Process Store
also makes use of another internal buffer σmc (not shared with any other process), to
store the events which are read, but can not be corrected yet, to satisfy the property. In
the algorithms, primitive await is used to wait for a trigger event from another process
or to wait until some condition becomes true. Primitive wait is used by a process to
wait for some amount of time, which is determined by the process itself.
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Algorithm 1 StoreProcess

(t, q)← (0, q0)
σms ← ε
σmc ← ε
while tt do

(t, a)← await (event)
(q′, σ′mc, isPath)← update(q, σmc, (t, a))
if isPath = ok then
σms ← σms · σ′mc

σmc ← ε
q ← q′

else
σmc ← σ′mc

end if
end while

Algorithm StoreProcess Algorithm StoreProcess (see Algorithm 3) is an infinite loop
that scrutinizes the system for input events. In the algorithm, q memorizes the state of
the property automaton, initialized to q0. Function update implements the function of
Definition 5.9. It takes the current state, the events stored in the internal memory σmc

of the process Store, and the new event (t, a), and returns a new state q′, a timed word
σ′mc, and a marker isPath from the set {ok, c bad, bad}, indicating whether σmc · (t, a)
can be delayed to satisfy ϕ.

The algorithm proceeds as follows. Process Store initially sets its clock t to 0,
initializes q to q0 and the two memories σms and σmc to ε. It then enters an infinite
loop where it waits for an input event. When receiving an action a at date t, it stores
the event (t, a). It then invokes function update with the current state q, the events
stored in σmc and the new event (t, a). The function returns a new state q′, a timed
word σ′mc and the marker isPath. If the marker indicates isPath = ok, it means that
σmc · (t, a) can be corrected into the timed word σ′mc computed by update and this
word leads from state q to state q′ in the underlying semantics of the timed automaton.
Then, the timed word σ′mc is appended to shared memory σms (since it is now correct
with respect to the property, and can be released as output), the internal memory σmc

is cleared, and state q is updated to q′. In all other cases, σmc is set to σ′mc, the result
of update, which is either σmc if isPath = bad (it is impossible to correct the input
sequence σmc whatever are the future events) or σmc · (t, a) if isPath = c bad. In both
cases, state q and σms are unmodified.

Algorithm DumpProcess Algorithm DumpProcess (see Algorithm 2) is an infinite
loop that scrutinizes memory σms and proceeds as follows: Initially, clock d, which
keeps track of the time elapsed is set to 0. Process Dump waits until the memory is
not empty (σms 6= ε). Using operation dequeue, the first element stored in the memory
is removed, and is stored as (t, a). Since d time units elapsed, process DumpProcess
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Algorithm 2 DumpProcess

d← 0
while tt do

await (σms 6= ε)
(t, a) ← dequeue (σms)
wait (t− d)
dump (a)

end while

waits for (t− d) time units before performing operation dump(a), releasing action a as
output at date t (which amounts to appending (t, a) to the output of the enforcement
monitor).

Remark 6.1 (Using non-deterministic TAs to define properties) In this thesis,
the presentation considers only deterministic TAs. The same mechanisms and algo-
rithms remain valid to also enforce properties defined with non-deterministic TAs. The
update function first computes all accepting paths from the current state, for the given
input subsequence. And from this set of all accepting paths, a unique solution with
minimal duration is chosen using the lexical order. Even if the underlying TA is non-
deterministic, the policy used to choose a unique solution to define the update function
(which computes optimal dates) will work. Only in situations when there is more than
one accepting path, where the dates computed in each of these paths are exactly the
same, but they end in different locations, some additional policy (such as picking one
solution randomly) is necessary to choose a unique path among them. Note that the
dates computed from all such paths are equal.

Remark 6.2 (Simplified algorithms) For safety properties, following the simplified
functional and enforcement monitor definitions (see Remarks 5.4 and 5.5), the algo-
rithm for the StoreProcess can also be simplified. In particular, in the algorithm for
safety properties, the content of the memory can be maintained by a single sequence of
events. Note that σmc will always be ε, and thus it is not necessary. Also, in case of
safety properties, the update function is always invoked with a single event as input,
instead of a sequence of events. The StoreProcess algorithm for safety properties can be
simplified as follows:

Note that this simplified algorithm uses the updates function (see Remark 5.5) to
compute optimal date for each event. For each event (t, a), if the updates function re-
turns ok, then the event with optimal date returned by the updates function is appended
to the memory σms, and the state information is updated to q′. Otherwise, we proceed
with the next event, meaning that the event is suppressed (this corresponds to the case
when updates returns bad).

Remark 6.3 (Enforcing several properties) So far, we described how any single
regular properties can be enforced. When a boolean combination of properties has to be
enforced on a system, we can combine the properties into a single one and synthesize one
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Algorithm 3 StoreProcesssaf

(t, q)← (0, q0)
σms ← ε
while tt do

(t, a)← await (event)
(q′, (t′, a), isPath)← updates(q, (t, a))
if isPath = ok then
σms ← σms · (t′, a)
q ← q′

end if
end while

enforcement monitor for the resulting property. Definition 4.5 in Section 4.3.5 describes
how two properties defined by complete and deterministic TAs can be combined using
Boolean operations (e.g., union, intersection and negation).

6.2 Overview and Architecture of TIPEX

In this section, we present TIPEX, a tool chain for Timed Property Enforcement
during eXecution. Some of the modules of the TIPEX also have interest irrespective of
enforcement.

The TIPEX tool consists of two modules (see Figure 6.2). The Timed Automata
Generator (GTA) module consists of features that are not specific to enforcement mon-
itors, and provides functionalities such as generating timed automata, and combining
timed automata. The Enforcement Monitor Evaluation (EME) module consists of
functionalities to synthesize enforcement monitors from a TA (implementation of the
enforcement algorithms presented earlier in this chapter), and other functionalities such
as a trace generator required to evaluate the performance of enforcement monitors. The
EME module uses the GTA module to get an input timed automaton (defining the re-
quirement), and other information such as the class to which the timed automaton
belongs. Let us now see the features of both these modules in detail.

6.2.1 GTA module

There are a lot of ongoing research efforts related to the verification of timed systems
by means of e.g., model-checking, testing, and runtime verification of timed systems.
Central to these verification techniques is the use of timed automata (TA) [AD94] as a
formalism to model requirements or systems. UPPAAL [BY03, LPY97] is a successful
tool for the verification of realtime systems. UPPAAL is based on the theory of TA
and has defined a somewhat standard syntax format for the definition of TA. Enforce-
ment monitoring algorithms (EME module) are also implemented using some UPPAAL
libraries and the input TA (defining the property) is a UPPAAL model.
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Figure 6.2: Overview of TIPEX tool.

To write formal specifications, specification patterns [DAC99] are particularly useful
to guide non-experts as they provide a coverage of the various types of specifications
that one may want to specify on a system [CMP93]. In [GL06], a set of specification
patterns, that can be used to specify realtime requirements, is proposed.

GTA allows to:

- generate timed automata based on some user-inputs such as a pattern,

- to combine TA using Boolean operations, and

- to check the class to which a given TA belongs.

GTA generates timed automata in UPPAAL syntax, stored as an .xml file.

Motivations The main motivation behind GTA is to allow non-experts (such as
engineers and developers who may not have the required experience and knowledge
with formal specifications) to translate informal requirements into formal models eas-
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ily. Moreover, when considering some complex requirements, automating the process
and generating the model may be less erroneous compared to modeling such require-
ments manually (either in a graphical or a textual editor). Algorithms proposed in
research papers need to be tested rigourously, considering several (and large) input
test models. Using GTA, one can generate several (meaningful) timed automata, with
varying complexity and belonging to different patterns, which can be used as input
models for testing the proposed algorithms.

Let us consider the requirement “There cannot be more than 100 requests in every
10 seconds”. One can imagine that the timed automaton defining this requirement
will have more than 100 locations and several transitions, and manually modeling it
(for example using a graphical editor) is tedious and time consuming. Using GTA, the
timed automaton defining this requirement can be obtained almost instantly, just by
providing some required input data such as pattern, time constraint, and actions.

Definition 4.3.5 in Chapter 4 describes how two timed automata can be combined
using Boolean operations. GTA also implements this, allowing to combine simple prop-
erties and to obtain one TA for which an enforcement monitor can be synthesized.

Figure 6.2 presents the architecture of GTA, with its modules, and their inputs
and outputs. Note that the modules inside GTA are loosely coupled: each module
can be used independently, and can be easily extended. GTA consists of the following
sub-modules:

– TA Generator: This module constructs TAs by taking data such as a pattern,
a time constraint constant, and complexity constant as input from the user.

– Boolean Operations: This module combines two TAs using Boolean operations
such as Union, Intersection, and Negation.

– Class Checker: This module checks whether a TA belongs to a subclass (safety
or co-safety) of regular properties.

GTA is implemented in Python. Further details about these modules, their features,
required inputs, and their outputs are described in the following subsections.

6.2.1.1 Generating basic timed automata

pattern

complexity constants

action set 1

action set 2

time constraint
constant

timed
automaton

TA
Generator

Figure 6.3: TA generator.

The TA Generator module generates timed automata. Generation of TA is based
on some input data, shown in Figure 6.3.

The input parameter pattern indicates the desired pattern of the generated time
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automaton. The parameter complexity constant is a natural number. The number
of transitions and locations in the generated automaton will vary based on the value
of this parameter. Two sets of input actions (action set 1 and action set 2 ) should
be provided as input: these are the actions used in the generated automaton. The
parameter time constraint constant is a natural number that will be used in some
guards in the generated TA to impose the required time constraints.

The tool generates a timed automaton as output in UPPAAL modeling language
syntax stored as an .xml file. The generated automaton can be directly used as input
TA for enforcement monitor synthesis in the EME module. Moreover, it can also be
directly used in the UPPAAL tool.

Supported patterns. Currently, the tool supports generation of automata for the
requirements of the following forms:

– In every consecutive time interval of “time constraint constant” time units, there
are no more than “complexity constant” actions belonging to “action set 1 ”. The
properties modeling requirements of such form belong to the “absence” pattern.

– A sequence of “complexity constant” actions from action set 1 enable actions
belonging to action set 2 after a delay of at least “time constraint constant”
time units. The properties modeling requirements of such form belong to the
“precedence” (more specifically called as precedence with a delay) pattern.

– There should be “complexity constant” consecutive actions belonging to Action
set 1 which should be immediately followed by an action from action set 2 within
“time constraint constant” time units. The properties modeling requirements of
such form belong to the “existence” (more specifically called as timed bounded
existence) pattern.

NAcc

L1 L2L0

x<5

x>=5

L3

b?

a?

b?

b?

a?

b?

b? a?

a?a?

b?

Figure 6.4: Automaton belonging to the precedence pattern.

Examples We now present some TAs generated using the TA Generator functionality
of the GTA tool.

Figures 6.4 and 6.5 show how the TAs look when viewed in the UPPAAL tool.
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– The TA in Figure 6.5 defines the requirement “In any time interval of “10” t.u.,
there are no more than “3” “a” actions”. The values of the input parameters
provided to the tool, to generate the TA are the following: pattern= absence,
complexity constant=3, time constraint constant=10, action set 1 = {a} and ac-
tion set 2 = { b}.

– The TA in Figure 6.4 defines the requirement “A sequence of “3” “a” actions
enables action “b” after a delay of at least “5” time units ”. The values of the
input parameters provided to the tool, to generate the TA are the following:
pattern= precedence, complexity constant=3, time constraint constant=5, action
set 1 = {a} and action set 2 ={b}.
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Figure 6.5: Automaton belonging to the absence pattern.

6.2.1.2 Combining timed automata

The Boolean Operations module builds a timed automaton by combining two timed
automata provided as input, using Boolean operations. The required inputs and the

timed
automaton 1

timed
automaton 2

operation

timed
automaton

Boolean
Operations

Figure 6.6: Boolean operations.

output of the Boolean Operations module is shown in Figure 6.7. Timed automaton
1 and Timed automaton 2 are the two (complete and deterministic) timed automata
which we want to combine, and operation is the operation we want to perform on the
input timed automata. The input and output timed automata are UPPAAL models
stored as .xml.

The Union and Intersection operations are supported. The Union and Intersection
operations are performed by building the synchronous product of the two input timed
automata, where each location in the resulting automata is a pair (with one location
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Figure 6.7: Example: Combining TAs using Boolean operations.

from each input automaton), and the guards in the resulting automaton are obtained
by intersection of the guards in the input automata.

For Union operation, accepting locations are the pairs where at least one location
is accepting in the input automata, and for Intersection operation, both the locations
in the corresponding input automata are accepting.

For formal definitions and more details on performing Union and Intersection op-
erations on complete and deterministic TA, see Chapter 4, Definition 4.3.5.

Example Let us now see an example of the resulting TA obtained after combining
two TAs using the Boolean Operations functionality.

The two input TAs are shown in Figure 6.7a and Figure 6.7b. Figure 6.7c shows
the resulting TA after combining the two input TAs using Union operation.

6.2.2 Identifying the class of a timed automaton

As described in Chapter 4 (see Definition 4.3), a safety property informally means
that nothing bad will ever happen, and a co-safety (or guarantee) property means
that something good will eventually happen within a finite amount of time. For safety
properties, whenever a sequence satisfies a property, all its prefixes should satisfy the
property. If a sequence satisfies a co-safety property, then any possible extension of
this sequence should satisfy the property. A TA defining a safety (co-safety )property
is said to be a safety (co-safety) TA.
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Figure 6.8: Class checker.

In a safety TA, transitions are not allowed from non-accepting to accepting loca-
tions. In a co-safety TA, transitions are not allowed from accepting to non-accepting
locations. For more explanation and formal definitions of safety and co-safety properties
(TAs), see Definition 4.4.

The Class Checker takes as input a timed automaton (described using UPPAAL
syntax) and checks the class of the property defined by the TA. It answers safety (if
the constraints of a safety TA are satisfied), co-safety (if the constraints of a co-safety
TA are satisfied) and ”Other” if neither safety TA nor co-safety TA constraints are
satisfied.

6.2.3 EME module

The EME module consists of the implementation of the enforcement algorithms
described in Section 6.1 and an experimentation framework in order to:

1. validate through experiments the architecture and feasibility of enforcement mon-
itoring, and

2. measure and analyze the performance of the update function of the
StoreProcess.

The EME module supports all regular properties defined by deterministic timed
automata. Suppression of events is not taken into account in the tool, since the imple-
mentation of the update function follows the update function proposed in [PFJM14b].
To handle suppression, the update function should be adapted following the defini-
tion in Section 5.5.2. When an accepting state is not reachable from the current state
upon the given input subsequence, the update function should check whether all the
reachable state are bad or not.

The architecture of the EME module is depicted in Figure 6.2. Module Main Test
Method uses module Trace Generator that provides a set of input traces to test the
module Store. It sends each sequence to module Store, and keeps track of the result
returned by the Store module for each trace. Module Trace Generator takes as input the
alphabet of actions, the range of possible delays between actions, the desired number
of traces, and the increment in length per trace. For example, if the number of traces
is 5 and the increment in length per trace is 100, then 5 traces will be generated, where
the first trace is of length 100 and the second trace of length 200 and so on. For each
event, module Trace Generator picks an action (from the set of possible actions), and a
random delay (from the set of possible delays) using methods from the Python random
module.
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Module Store takes as input a property (defined as a TA) and one trace, and returns
the total execution time of the update function to process the given input trace. The TA
defining the property is a UPPAAL [LPY97] model written in XML. Module Store uses
the pyuppaal library to parse the UPPAAL model (input property), and the UPPAAL
DBM library to implement the update function. 1

6.3 Performance Evaluation of Function update

Examining the algorithms, one can observe that the steps in the algorithm of the
DumpProcess of monitors are algorithmically simple and lightweight from a computa-
tional point of view. Regarding the StoreProcess function, their most computationally
intensive step is the call to function update. We thus focus on this function in the
evaluation.

Experiments were conducted on an Intel Core i7-2720QM at 2.20GHz CPU, with 4
GB RAM, and running on Ubuntu 12.04 LTS. The reported numbers are mean values
over 10 runs and are represented in seconds.

Now, the properties used in our experiments are described and the results of the
performance analysis are discussed. The properties follow different patterns [GL06],
and belong to different classes. They are inspired from the properties introduced in
Example 4.3. They are recognized by one-clock timed automata since this is a limitation
of our current implementation. We however expect the trends exposed in the following
to be similar when the complexity of automata grows.

– Property ϕs is a safety property expressing that “There should be a delay of at
least 5 time units between any two request actions”.

– Property ϕcs is a co-safety property expressing that “A request should be imme-
diately followed by a grant, and there should be a delay of at least 6 t.u between
them”.

– Property ϕre is a regular property, but neither a safety nor a co-safety property,
and expresses that “Resource grant and release should alternate. After a grant,
a request should occur between 15 to 20 t.u”.

Results and analysis Results of the performance analysis for our example properties
are reported in Table 6.1. The entry t update indicates the total execution time of
function update.

From the results presented in Table 6.1, as expected for the safety property (ϕs),
we can observe that t update increases linearly with the length of the input trace. This
behavior is also clearly shown by the curve in Figure 6.9a showing the total time taken
by the update function versus the length of the input trace. Moreover, the time taken
per call to update (which is t update/|tr|) does not depend on the length of the trace.
This behavior is as expected for a safety property: function update is always called
with only one event which is read as input (the internal buffer σmc remains empty).

1. The pyuppaal and DBM libraries are provided by Aalborg University and can be downloaded
at http://people.cs.aau.dk/~adavid/python/.

http://people.cs.aau.dk/~adavid/python/
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Table 6.1: Performance analysis of enforcement monitors

ϕs ϕre ϕcs

|tr| t update |tr| t update |tr| t update

10, 000 9.895 10,000 16.354 100 3.402

20, 000 20.323 20,000 32.323 200 13.583

30, 000 29.722 30,000 48.902 300 29.846

40, 000 40.007 40,000 65.908 400 53.192

50, 000 49.869 50,000 83.545 500 82.342

60, 000 59.713 60,000 99.088 600 120.931

70, 000 72.494 70,000 117.852 700 169.233
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Figure 6.9: Length of the input trace (Vs) total execution time of update.

Consequently, the state of the TA is updated after each event, and after receiving a
new event, the possible transitions leading to a good state from the current state are
explored.

For the co-safety property (ϕcs), the considered input traces are generated in such
a way that they can be corrected only upon the last event. From the results presented
in Table 6.1, also clearly shown by the curve in Figure 6.10, notice that t update is now
not linear. Moreover, the average time-per-call to function update (which is t update/|tr|)
increases with |tr|. For the considered input traces, this behavior is as expected for
a co-safety property because the length of the internal buffer σmc increases after each
event, and thus function update is invoked with a growing sequence.

For the regular property (ϕre), the considered input traces are generated in such
a way that it can be corrected every two events. Consequently, function update is
invoked with either one or two events. For the considered input traces, the time taken
per call to update (which is t update/|tr|) does not depend on the length of the trace. For
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Figure 6.10: Length of the input trace (Vs) total execution time of update for ϕcs.

input traces of same length, the value of t update is higher for ϕre than the value of
t update for ϕs, which can be noticed from Figures 6.9aand 6.11b. This stems from
the fact that, for a safety property, function update is invoked only with one event.

6.4 Implementation of Simplified Algorithms for Safety
Properties

The algorithms presented in this chapter are general algorithms for all regular prop-
erties. In Section 5.4, we saw that when only safety properties are considered, the
functional definition can be simplified, and consequently the enforcement monitor and
algorithms (see Remark 6.2) can be also simplified. By exploring the structure of a
given TA, it is possible to determine whether property defined by the TA belongs to a
subclass of regular properties (either safety or co-safety) properties. It has been also
implemented in the GTA module, discussed earlier in this chapter in Section 6.2.3. In
addition to the input TA, as shown in Figure 6.2, class information can also be pro-
vided as input to the EME module, and using this information, we can invoke either
the simplified implementation (in case if the input TA is safety) or the general one.

The simplified enforcement algorithm for safety properties is also implemented,
and experiments were conduced using several safety properties. We again focus on
benchmarking the update function of the StoreProcess using the same experimental
setup described in Sections 6.2.3 and 6.3. We have chosen to compute the average
values over 10 runs because, for all metrics, with 95% confidence, the measurement
error was less than 1%. For example, referring to Table 6.2, for safety property ϕ1.1

s ,
the mean value of the total execution time of the update function is 8.6306 seconds, and
the error is 0.018 seconds. Thus with 95% confidence, the execution time of update for
input trace of length 10000 lies within the interval [8.6126, 8.6486] (seconds). For the
average time per call, as shown in Table 6.2, ϕ1.1

s , the mean value is 0.863 milliseconds,
and the error is 0.005 milliseconds. Thus, with 95% confidence, the average time per
call to update, for input trace of length 10000 lies within the interval [0.858, 0.868]
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Figure 6.11: Length of the input trace (Vs) total execution time of update.

(milliseconds).

Performance evaluation of the update function for safety properties. We de-
scribe the properties used in our experiments and discuss the results of the performance
analysis. The considered safety properties follow different patterns [GL06].

Property ϕ1
s belongs to the absence pattern. It expresses that “There cannot be n or

more a-actions in every k time units”, where n is a parameter of the pattern. Following
this pattern, the considered properties are ϕ1.1

s , ϕ1.2
s and ϕ1.3

s , each varying in the value
of n: n = 2 for ϕ1.1

s , n = 10 for ϕ1.2
s , n = 20 for ϕ1.3

s . Property ϕ2
s belongs to the

precedence pattern. It expresses that “A sequence of n a-actions enables action b after
a delay of k time units”. Following this pattern, the considered properties are ϕ2.1

s ,
ϕ2.2

s and ϕ2.3
s , each varying in the value of n: n = 1 for ϕ2.1

s , n = 5 for ϕ2.2
s , and n = 10

for ϕ2.3
s .

Results and analysis. Results of the performance analysis of our running example
properties are reported in Table 6.2. The entry t update indicates the total execution
time of the update function, and the entry t avg is the average time per call. From
the results presented in Table 6.2, as expected for safety properties, we can observe
that the time taken per call to update is independent on the length of the trace. This
behavior is as expected: since we update the state of the TA after each event, and after
receiving a new event, we explore the possible transitions leading to a good state from
the current state. Moreover, from the curves shown in Figure 6.11, notice that, for a
given trace length, the execution time of update is similar for the two patterns and
their variants in size.

From the results presented in Tables 6.1 and 6.2 we can notice that for enforc-
ing safety properties, using the simplified algorithm gives better performance. The
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Table 6.2: Performance analysis of enforcement monitors for safety properties

ϕ1.1
s ϕ1.2

s ϕ1.3
s

|tr| t update t avg t update t avg t update t avg

10, 000 8.6306 0.000863 8.008 0.00080 8.106 0.000810

20, 000 16.157 0.000807 16.538 0.000828 16.887 0.000844

30, 000 25.251 0.000841 24.855 0.000828 24.3794 0.00812

40, 000 32.199 0.000804 33.947 0.000848 33.619 0.000840

50, 000 39.982 0.000799 44.704 0.000854 43.314 0.000866

60, 000 50.785 0.000846 49.616 0.000826 53.521 0.000892

70, 000 55.821 0.000797 58.317 0.000833 60.928 0.000870

80, 000 66.080 0.000826 66.876 0.000835 66.461 0.000830

90, 000 74.082 0.000823 76.327 0.000848 76.807 0.000853

ϕ2.1
s ϕ2.2

s ϕ2.3
s

|tr| t update t avg t update t avg t update t avg

10, 000 8.589 0.000858 8.019 0.000801 8.050 0.000805

20, 000 17.435 0.000871 16.603 0.000830 17.472 0.000873

30, 000 26.760 0.000892 25.507 0.000850 24.353 0.000811

40, 000 36.956 0.000923 33.576 0.000839 32.811 0.000820

50, 000 43.806 0.000876 42.955 0.000859 41.141 0.000822

60, 000 55.410 0.000923 51.417 0.000856 51.550 0.000859

70, 000 62.816 0.000897 59.677 0.000852 59.572 0.000851

80, 000 70.282 0.000878 66.800 0.000835 67.450 0.000843

90, 000 80.659 0.000896 73.423 0.000815 76.137 0.000845

time taken per call to update reduces by around 0.2 milliseconds using the simplified
algorithm.

6.5 Discussion and Summary

On precision. In theory, the delays between actions and the optimal delay computed
by the update function are real numbers. In the implementation, in order to compute
optimal delay, we need to set precision.

We use UPPAAL [LPY97] to model the input TA, and some UPPAAL libraries
to realize the algorithms. In UPPAAL, only integers can be used to compare the
values of clocks in the guards. But, in practice, we may have to use real-numbers to
express requirements and timing constraints. This issue can be handled by setting the
precision of real-numbers, and representing values on guards with equivalent integers.
For example, if we set the precision with four digits after the decimal point, 0.0024
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can be represented as 24, and 5.0012 can be represented as 50012. Note that having
a large integer value on a guard such as in x > 50000 is not an issue with region and
zone computations, as computation is done on-the-fly. After each event, we check for
possible paths from the current state.

Summary. In this chapter, algorithms illustrating how enforcement mechanisms de-
scribed in Chapter 5 can be implemented, are explained. The proposed algorithms are
also implemented, demonstrating the practical feasibility of our theoretical results.

A tool-chain called as TIPEX developed in order to evaluate the performance of
enforcement monitors is described. The Enforcement Monitor Evaluation (EME) mod-
ule consists of functionalities to synthesize enforcement monitors from a TA, and other
functionalities such as a trace generator required to evaluate the performance of en-
forcement monitors.

As far as we know, there is no available tool, which helps in formalizing real-time
requirements. The Timed Automata Generator (GTA) module consists of features to
automatically generate timed automata from some input data such as the actions, pat-
tern, and time constraint constant. As shown in some examples, the input data which
GTA requires to generate the property can be easily noticed from the informal textual
description of the requirement we want to formalize. Moreover, GTA support other
additional features such as combining TAs using Boolean operations (which facilitates
to construct complex requirements from basic ones), and identifying the class of a given
TA.

Assessing the performance of runtime enforcement monitors is crucial in a timed
context as the time when a action happens influences satisfaction of the property. We
also evaluated the performance of enforcement monitors for several properties, and
considering very long input executions. As our experiments in Sections 6.3 and 6.4
show, the computation time of the monitor upon the reception of an event is relatively
low. Moreover, given some average computation time per event and a property, one can
determine easily whether the computation time is negligible or not. For example, for
safety properties, one can see that, on the used experimental setup, the computation
time of the update function is below 1ms. By taking guards with constraints using
integers above 0.1s, one can see that the computation time can be negligible in some
sense as the impact on the guard is below 1%, and makes the overhead of enforcement
monitoring acceptable.

In Chapter 7, we introduce a model called as Parametrized Timed Automata with
Variables (PTAV) which is an extension of timed automata, allowing to express much
richer requirements. We also present how the enforcement mechanism presented in
Chapter 5 can be extended to enforce properties expressed as PTAVs. Moreover, we
also discuss how the algorithms and the implementation discussed in the chapter can
be extended to PTAVs.



Chapter 7

Runtime Enforcement of
Parametric Timed Properties

7.1 Overview

Many theoretical frameworks have been proposed for the runtime enforcement of
high-level specifications on systems (see [FMFR11] or [Fal10] for an overview). In these
enforcement frameworks, a specification is formalized as a propositional property (i.e.,
a set of words over a propositional alphabet) and an execution is a word over the consid-
ered alphabet. In Chapter 5, we also saw an enforcement framework for propositional
timed properties. A limitation to the applicability of theoretical approaches to runtime
enforcement is the expressiveness of the considered specification formalisms. In most
modern application domains, propositional specification formalisms are not expressive
enough to meet and formalize complex requirements. Time and data are two partic-
ularly desirable features. In network security, Runtime Enforcement (RE) monitors
can detect and prevent Denial-of-Service (DoS) attacks. In resource allocation, RE
monitors can ensure fairness. In addition to timing constraints, specifications in these
domains also express data-constraints over the received events.

In timed specifications, the absolute time of occurrence of events matters, i.e., it in-
fluences satisfiability of the specifications by the system (or an execution of the system).
In Chapter 5, we saw how enforcement monitors can be synthesized for requirements
with timing constraints. But, requirements with both time and data constraints cannot
be specified using timed automata. Handling parameters in (the verification approaches
of) monitoring is receiving a growing attention. Parametric specifications feature events
that carry data from the execution of the monitored system. Few approaches tackle
parametric specifications (cf. [CR09, BFH+12]). These approaches are concerned only
with verification and do not consider time.

The two following (simplified) properties of mail servers cannot be specified using
propositional specification formalisms.

R1 If the number of request messages from a client is greater than max req , then
there should be a delay of at least del t.u. before responding positively to the

87
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client.
R2 After processing a request message from a client, if the server response mes-
sage is an error (user unknown or not found), then there should be a delay of at
least 10 t.u. before sending this reply message back to the client.

In parametric case, actions also carry some data. For example, let the set of actions
Σ = {req, error, ok}, and (2, req(1)) · (5.3, req(3)) · (6.7, req(1)) is a sequence of events
over Σ where each event is a tuple containing an action and its occurrence date. In
this example, req action carries client identifier information. So, the first and third req
actions are from client 1, and the second req action is from client 3.

To express these properties, we need features to express constraints over time and
data. Moreover, the enforcement monitor running on the server has to differentiate
the messages from each client and treat them separately. Features to keep track of
some information internally, such as the number of request messages received, are also
necessary.

In this chapter, we make one step towards practical runtime enforcement by consid-
ering event-based specifications where i) absolute time of events matters and ii) events
carry data values from the monitored system. We refer to this problem as enforcement
monitoring for parametric timed specifications.

Similar to the enforcement of timed properties described in Chapter 5, because of
the timing feature, we consider enforcement monitors as time retardants which have the
power of both delaying events to match timing constraints, and suppressing events when
no delaying is appropriate. Following the compositional approach (the so-called “plugin
approach”) introduced in [CR09], for a parametric timed specification, the input trace
is sliced according to the parameter value of events, and redirected to the appropriate
monitor instance. Contrary to the plugin approach which focuses on verification in the
untimed case, events cannot be duplicated. Thus, slicing should be performed in such
a way that each event is sent to only one enforcement monitor.

This chapter extends runtime enforcement for non-parametric (i.e., propositional)
timed properties, presented in Chapter 5. To formalize richer requirements (with both
time and data constraints), we introduce Parameterized Timed Automata with Vari-
ables (PTAVs), an extension of Timed Automata (TAs) with internal and external
variables. Internal variables are used for internal computation, such as to keep track of
the number of actions received. External variables are used to model transfer of data
along with events from the monitored system. The expressiveness features of PTAVs
have been chosen as a balance between expressiveness and efficiency of the synthesized
enforcement monitors and ensure that the previously mentioned requirement on slicing
holds. To guide us in the choice of expressiveness features we considered requirements
in several application domains. We then extend enforcement for TAs to enforcement
for PTAVs. Furthermore, we show how these application domains can benefit from us-
ing runtime enforcement monitors synthesized from requirements formalized as PTAVs
(Section 7.5). The enforcement monitors synthesized from PTAVs are able to ensure
several requirements in the considered application domains. Our experiments validate
our choice on the expressiveness of PTAVs and assess the efficiency of obtained enforce-
ment monitors.
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The results that we present in this chapter summarizes results in [PFJM14a], but
we adapt the presentation with elements from [FJMP14]. For example, timed words
are formalized with delays instead of dates in [PFJM14a], but here we use dates similar
to the presentation in [FJMP14], and in our previous chapters.

7.2 Preliminaries to Runtime Enforcement of Parametric
Timed Properties

Let R≥0 denote the set of non-negative real numbers, and Σ a finite alphabet of

actions. An event is a pair (t, a), where date((t, a))
def
= t ∈ R≥0 is the absolute time

at which the action act((t, a))
def
= a ∈ Σ occurs. As in Chapter 5, monitors input and

output timed words.

Until Chapter 5, a timed word over a finite alphabet Σ is a finite sequence of events
σ = e1 · e2 · · · en, where (ti)i∈[1,n] is a non-decreasing sequence in R≥0. Similarly, in the
parametric case, an event is still a tuple with an action and a date where dates in a
timed word are non-decreasing, but actions carry data, that is ei = (ti, ai(πi, ηi)) where
action ai ∈ Σ is an action in an alphabet Σ, and πi ∈ Dp is the value of parameter p
ranging over a countable set Dp, identifying the monitor instance to which the action
should be fed as input, and ηi ∈ DV is a vector of values of a tuple of variables V . We

denote by date ((t, a (π, η)))
def
= t the projection on date, by act ((t, a (π, η)))

def
= a the

projection on action, by σ[i], the ith event, and by time(σ) the total duration of σ, i.e.,
the date of the last event in σ. |σ| is used to denote the length of σ. The projection of
σ on actions is denoted by ΠΣ(σ).

For a given parameter value π, we denote by σ↓π the projection of σ on the ac-
tions carrying parameter value π. For example, if σ = (0.5, a(1, η1)) · (1.2, a(2, η2)) ·
(2, a(1, η3))·(2.4, a(2, η4)), then σ ↓1= (0.5, a(1, η1))·(2, a(1, η3)) and σ ↓2= (1.2, a(2, η2))·
(2.4, a(2, η4)).

Conversely, we (inductively) define the merge of several sequences related to differ-
ent parameter values (where we omit vectors of external variables for readability) as
follows:

•merge{ε} = ε;

•merge{σ1, . . . , σn} = merge{σ1, . . . , σi−1, σi+1, . . . , σn} if σi = ε;

•merge
{

(t1, a1(1)) · σ1, . . . , (tn, an(n)) · σn
}

=

let i s.t. ti = min{tj | j ∈ [1, n]} in

(ti, ai(i)) ·merge
{

(t1, a1(1)) · σ1, . . . , σi, . . . , (tn, an(n)) · σn
}
.

The merge of a set containing only the empty sequence ε is the empty sequence. The
merge of a set of sequences that contains an empty sequence is equal to the merge of
this set where the empty sequence has been removed. The merge of a set of non-empty
sequences is the sequence s.t. the first event is the one of the merged sequences with
the least date (say the i-th sequence), and, the remainder of the sequence is the merge
of the remainder of the i-th sequence with the previous sequences.
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For example, if σ1 = (0.5, a(1, η1.1)) · (1.5, a(1, η1.2)) and σ2 = (0.8, a(2, η2.1)) ·
(1.2, a(2, η2.2)) then merge{σ1, σ2} = (0.5, a(1, η1.1)) · (0.8, a(2, η2.1)) · (1.2, a(2, η2.2)) ·
(1.5, a(1, η1.2)).

The domain of a trace σ, denoted by Dom(σ), is the set of monitor instances (set
of values appearing as the first parameter of events in σ).

The definitions of observation of a timed word σ at time t, delaying order <d, and
delaying subsequence order /d defined in Section 5.2 are adapted in a straightforward
manner.

7.3 Parametric Timed Automata with Variables

To handle requirements with constraints on data, events with associated values, and
separate input flows according to parameter values, we define an extension of timed
automata called Parametrized Timed Automata with Variables (PTAV). PTAVs are
partly inspired from Input-Output Symbolic Transition Systems (IOSTS) of [RBJ00],
Timed Input-Output Symbolic Transition Systems (TIOSTS) of [AMJM11], paramet-
ric trace slicing of [CR09] and Quantified Event Automata of [BFH+12]. The features
of PTAVs have been chosen to fit a balance between expressiveness (to express require-
ments from some application domains - see Section 7.5) and runtime efficiency.

7.3.1 Syntax and semantics of a PTAV

A PTAV can be seen as a timed automaton with finite set of locations, and a finite
set of clocks used to represent time evolution, extended with internal and external
variables used for representing system data. A transition comprises of an action carrying
values of external variables, a guard on internal variables, external variables and clocks,
and an assignment of internal variables, and reset of clocks. External variables model
the data carried by the actions from the monitored system, and internal variables are
used for internal computation. For a variable v, Dv denotes its domain, and for a
tuple of variables V = (v1, . . . , vn), DV is the product domain Dv1 × · · · × Dvn . A
predicate P (V ) on a tuple of variables V is a logical formula whose semantics is a
function DV → {tt, ff}, and can also be seen as the subset of DV which maps to tt.
A valuation of the variables in V is a mapping ν which maps every variable v ∈ V to
a value ν(v) in Dv.

Given X a set of clocks, and R≥0 the set of non-negative real numbers, a clock
valuation is a mapping χ : X → R≥0. If χ is a valuation over X and t ∈ R≥0, then
χ+ t denotes the valuation that assigns χ(x) + t to every x ∈ X. For X ′ ⊆ X, χ[X′←0]

denotes the valuation equal to χ on X \X ′ and assigning 0 to all clocks in X ′.

Definition 7.1 (Syntax of PTAVs) A PTAV is a tuple
A(p) = (p, V, C,Θ, L, l0, F,X,Σp,∆) where:

- p is a parameter ranging over a countable set Dp ;

- V is a tuple of typed internal variables and C is a tuple of external variables;

- Θ ⊆ D{p}∪V the initial condition, is a computable predicate over V and p;
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- L is a finite non-empty set of locations, with l0 ∈ L the initial location, and F ⊆ L
the set of accepting locations;

- Σ is a non-empty finite set of actions, and an action a ∈ Σ has a signature sig(a) =
(t0, t1, . . . , tk) which is a tuple of types of the external variables, where t0 = Dp is the
type of the parameter p;

- X is a finite set of clocks;

- ∆ is a finite set of transitions, and each transition t ∈ ∆ is a tuple (l, a, p, c,G,A, l′)
also written

l
a(p,c),G(V,p,c),V ′:=A(V,p,c)−−−−−−−−−−−−−−−−−→ l′ such that,

� l, l′ ∈ L are respectively the origin and target locations of the transition;

� a ∈ Σ is the action, p is the parameter and c = (c1, . . . ck) is a tuple of external
variables local to the transition;

� G = GD ∧GX is the guard where

- GD ⊆ DV ×Dsig(a) is a computable predicate over internal variables, the param-
eter and external variables in V ∪ {p} ∪ c;

- GX is a clock constraint over X defined as a conjunction of constraints of the
form x]f(V ∪{p}∪ c), where x ∈ X and f(V ∪{p}∪ c) is a computable function,
and ] ∈ {<,≤,=,≥, >};

� A=(AD, AX) is the assignment of the transition where

- AD : DV ×Dsig(a) → DV defines the evolution of internal variables.

- AX ⊆ X is the set of clocks to be reset.

A PTAV A(p) should be understood as a pattern, where parameter p is a constant
defined at runtime. For a value π of p, the instance of A(p) is denoted as A(π).
PTAVs allow to describe a set of identical timed automata extended with internal
and external variables that only differ by the value of p. In Section 5.3 we explain
how a parametric enforcement monitor generated from a PTAV is instantiated into
a set of monitors (generated on-the-fly), one for each value of p, each observing the
corresponding projection σ↓π of the input timed word σ. This thus allows for example
to tackle timed words corresponding to several sessions of a web service where each
session is treated independently.

Remark 7.1 (Multiple parameters) For the sake of simpler notations, PTAVs are
presented with only one parameter p. PTAVs can handle a tuple of parameters. Using
some indexing mechanism, each combination of values of the parameters can be mapped
to a unique value.

Let A(p) = (p, V, C,Θ, L, l0, F,X,Σ,∆) be a PTAV. For a value π of parameter p,
the semantics of instance A(π) is a timed transition system, where a state consists of a
location, and valuations of internal variables V and clocks X, and transitions explore
pairs of delays in R≥0 and actions associated with values of the parameter and external
variables in C. 1

1. Considering a tuple of parameters instead of a single parameter does not have any effect on the
semantics of a PTAV.
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Definition 7.2 (Semantics of PTAVs) For a value π of p, the semantics of A(π)
is a timed transition system [[A(π)]] = (Q, q0, QF ,Γ,→), defined as follows:
- Q = L × DV × (X → R≥0), is the set of states of the form q = (l, ν, χ) where l ∈ L

is a location, ν ∈ DV is a valuation of internal variables, χ is a valuation of clocks;

- Q0 = {(l0, ν, χ[X←0]) | Θ(π, ν) = tt} is the set of initial states;

- QF = F ×DV × (X → R≥0) is the set of accepting states;

- Γ = R≥0 × Λ where Λ = {a(π, η) | a ∈ Σ ∧ (π, η) ∈ Dsig(a)} is the set of transition
labels;

- →⊆ Q × Γ × Q the transition relation is the smallest set of transitions of the

form (l, ν, χ〉 (δ,a(π,η))−−−−−−→〈l′, ν ′, χ′) such that ∃(l, a, p, c,G,A, l′) ∈ ∆, with GX(χ + δ) ∧
GD(ν, π, η) evaluating to tt, ν ′ = AD(ν, π, η) and χ′ = (χ+ δ)[AX ← 0].

The set of timed words over Σ where the actions carry parameter value and other
data is denoted by tw(Λ). A run ρ of [[A(π)]] from a state q ∈ Q triggered at time
t ∈ R≥0 over a timed trace wt = (t1, a1(π, η1)) · (t2, a2(π, η2)) · · · (tn, an(π, ηn)) is a

sequence of moves in [[A(π)]]: ρ = q
(δ1,a1(π,η1))−−−−−−−−→ q1 · · · qn−1

(δn,an(π,ηn))−−−−−−−−→ qn, for some
n ∈ N, satisfying the condition t1 = t+ δ1 and ∀i ∈ [2, n], ti = ti−1 + δi. The set of runs
from the initial state q0 ∈ Q, starting at t = 0 is denoted Run(A(π)) and RunQF (A(π))
denotes the subset of those runs accepted by A[[π]], i.e., ending in an accepting state
qn ∈ QF . We note q

wt−→ qn in this case, and generalize to q
wt−→ P when qn ∈ P for

a subset P of Q. We note L(A(π)) the set of traces of Run(A(π)). We extend this
notation to LQF (A(π)) as the traces of runs in RunQF (A(π)). We thus say that a timed
word is accepted by A(π) if it is the trace of an accepted run.

Safety PTAVs. Safety properties state that “nothing bad should ever happen”. Simi-
larly to timed safety properties (See Definition 4.3), a parametric timed safety property
is defined as a set of prefix-closed languages which are parameterized by p. In this chap-
ter, example properties considered are parametric timed safety properties that can be
represented by PTAVs. 2

Definition 7.3 (Safety PTAV) A PTAV A(p) = (p, V, C,Θ, L, l0, F,X,Σ,∆) is said
to be a safety PTAV if l0 ∈ F ∧ @(l, a, p, c,G,A, l′) ∈ ∆ : l ∈ L \ F ∧ l′ ∈ F .

Then, for any instance A(π), its associated property is ϕA(π) = LQF (A(π)) and
σ |= ϕA(π) stands for σ ∈ LQF (A(π)) The parametric timed safety property associated
to A(p) is the set of sets of traces ϕA(p) = {ϕA(π) | π ∈ Dp}.

7.3.2 Defining properties using PTAVs: A motivating example

Concurrent accesses to shared resources by various services can lead to a Denial of
Service (DoS) because of e.g., starvation or deadlock. We can formalize requirements for
resource allocation and DoS prevention using PTAVs. The PTAV shown in Figure 7.1a
models the property “There should be a dynamic delay between two allocation requests

2. Note that the results also apply to any regular parametric timed property which can be specified
using PTAV.
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l0 l1

ΣP1

sId \ {R1 .alloc(sId)}

R1 .setMA(sId ,ma)

R1 .alloc(sId),
counter := 1, x := 0, y := 0 ΣP1

sId \ {R1 .alloc(sId)}

R1 .setMA(sId ,ma)

R1 .alloc(sId),
x < reset ∧ y ≥ delay ,
counter + +, y := 0

R1 .alloc(sId),
x ≥ reset ,

counter := 1, x := 0, y := 0

(a) Increase delay according to the accesses to a service.

l0 l1

ΣP2

sId \ {R1 .rel(sId)}

R1 .rel(sId),
x := 0

ΣP2

sId \ {R1 .alloc(sId),R2 .alloc(sId)}

R2 .alloc(sId),
x ≥ 2

R1 .alloc(sId)

(b) At least 2 t.u. before allocating
R2 after releasing R1.

l0 l1
R1 .alloc(sId),

x := 0

ΣP3

sId \ {R1 .alloc(sId)},
x ≥ T

(c) At least T t.u. before
operating on a resource.

Figure 7.1: PTAVs for resource allocation.

to the same resource by a service. This delay increases as the number of allocations
increases and also depends on the service id”. Squares denote accepting locations.
Non-accepting locations can be omitted in (the representation of) safety PTAVs.

We now explain the different notions of the PTAV model through this example. The
PTAV in Figure 7.1a keeps track of the number of allocations of a resource to a service,
and increases the delay between allocations as the number of allocations increases. It
has the set of actions ΣsId = {R1 .alloc(sId), R1 .setMA(sId ,maxAlloc)}. The tuple
of internal variables is (counter , reset , delay), and the tuple of external variables is
the singleton (maxAlloc). The variable counter is an integer incremented after each
R1 .alloc(sId) event, and maxAlloc (ma) is an integer that defines the allowed number
of R1 .alloc(sId) messages per each increment of the delay. Note that variable ma is an
external variable since it is used to receive data via the action R1 .setMA(sId ,ma). The
variable reset defines the time period for resetting the counter. The delay to be intro-
duced between allocation requests (kept track by variable delay) is computed dynami-
cally based on the number of allocation requests. delay is defined as 0 if counter < ma
and int

(
counter∗sId

ma

)
otherwise.

7.4 Enforcement of Parametric Timed Properties

In Chapter 5, enforcement mechanisms are described at several levels for propo-
sitional timed properties. An enforcement function (see Section 5.4.2) dedicated to a
desired property ϕ defines at an abstract level, for any input word σ, the output word
Eϕ(σ) expected from an enforcement mechanism. An enforcement function Eϕ for a
property ϕ, specified by a TA Aϕ, is implemented by an enforcement monitor (EM),
which provides a more operational view of the enforcement mechanism. An EM is
defined as a transition system E (see Section 5.5.3). Algorithms in Section 6.1 describe
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how an enforcement monitor can be realized using two processes running concurrently.

The techniques of the propositional case can be adapted to generate a parametric
enforcement function (and monitor) for a parametric timed property ϕp with parameter
p.

For a parametric timed property ϕp specified by a PTAV A(p), and a particular
value π of p, ϕπ is defined by the language LQF (A(π)). It is straightforward to see
that, for a given instance A(π), the constraints, functional definition and enforcement
monitor remain the same as in the propositional case, except that now we consider
semantics of PTAV. The input and output timed words belong to tw(Λ), and all the
input and output events will carry the same parameter value π.

Taking (instantiated) variables into account. Actually, the main adaptation lies
in the definition of the update function used by the enforcement monitor to compute
optimal delays, taking into account the semantics of PTAVs instead of the semantics
of TAs. Notice that the update function is computable as the parameter value π
is a constant known at runtime (each action carries this information), the state q
contains values of internal variables ν and location information, and the values of
external variables η are known (data sent along with actions in addition to the value
of the parameter).

It is then not hard to adapt the proofs of the propositional case in Chapter 5 to the
following propositions:

Proposition 7.1 Given a PTAV A(p) specifying a parametric timed property ϕA(p),
for all π ∈ Dp, the enforcement function EϕA(π)

, obtained by following the definition in
the propositional case, satisfies the physical (Phy), soundness (Snd), and transparency
(Tr) constraints w.r.t. A(π), as per Definition 5.7.

Proof 7.1 The proof of Proposition 7.1 is a straightforward adaptation of the proof of
Proposition 5.1.

ϕA(p)

EϕA(p)
(σ) σ

Parametric Enforcement

EϕA(1)

. . .

. . .

σ ↓1

EϕA(2)

σ ↓2
EϕA(2)

(σ↓2)

EϕA(1)
(σ↓1)

Figure 7.2: Global scenario.
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Indexed enforcement monitors and slicing. The proposed strategy uses indexed
enforcement monitors and slicing of [CR09] that is simplified in a way slicing is mean-
ingful for runtime enforcement. 3

As illustrated in Figure 7.2, for each value π of parameter p, we have an instance
of the corresponding enforcement function and enforcement monitor. For example,
EϕA(1)

is an instance of the enforcement function for ϕA(1). The input to the monitor
σ consists of events with different values of parameter p. However, each enforcement
function EϕA(π)

takes as input only the projection σ↓π of σ on actions with parameter
value π. The global output is obtained by merging the outputs of all enforcement
functions.

Monitor instance for each parameter value. The monitor instance for each pa-
rameter value is exactly the same as the enforcement monitor in the propositional case
that we saw in Chapter 5. All the constraints, functional definition, enforcement mon-
itor definition and algorithms remain the same. What we additionally provide here
is a mechanism to be able to create multiple monitor instances, and actions to carry
some data. The value of the parameter in the event allows to decide to which monitor
instance the event should be fed as input. This allows us to consider much richer spec-
ifications in our framework. Each monitor instance satisfies the physical, soundness,
transparency and optimality constraints.

Now, let us see the global view, about how our enforcement mechanism transforms
an input sequence (with events carrying different parameter values), using multiple
enforcers each transforming a subsequence of the global input sequence, where the
output of each enforcer is sound, transparent, optimal and satisfies physical constraint.

Definition 7.4 (Parametric Enforcement Function) The enforcement function Eϕp(σ) :
tw(Λ)→ tw(Λ) for PTAV A(p) is defined as:

Eϕp(σ) = let n = |Dom(σ)| in

let oπ = EϕA(π)
(σ↓π), for π ∈ [1, n], in(

merge({o1, . . . , on})
)
.

The global output of the enforcement function is defined as the merge of the local
outputs (o1, . . . , on) produced by the enforcement functions synthesized for PTAV in-
stances that read local projections (σ↓π, π ∈ [1, n]) of the global trace σ. However,
as each projection of the input stream corresponding to a value π of p is treated in-
dependently, with respect to the product of EϕA(π)

, π ∈ Dp, the global output Eϕp(σ)
remains sound (in the sense that the output satisfies ϕA(p)), but is neither transparent
nor optimal. In particular, the architecture allows to reorder independent output flows,
even though each flow is not reordered.

3. Moreover, we do not discuss the dynamic creation of monitors when new values are observed in
the trace. At runtime, upon a new event, a new instance of enforcement function/monitor is simply
created if the parameter value has not been seen in previous events.
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Let Phy(Eϕ, σ), Snd(Eϕ, σ) and Tr(Eϕ, σ) denote the physical, soundness and
transparency constraints in the propositional case (See Definition 5.7). Consequently,
the following definitions of parametric physical constraint, soundness, and transparency
stem from the fact that, using an indexed strategy, enforcement monitors act and output
events independently.

Definition 7.5 (Constraints on an parametric enforcement mechanism) A para-
metric enforcement function Eϕp : tw(Λ)→ tw(Λ) for a PTAV A(p) with parameter p
satisfies the following constraints:

- physical constraint means that if for any input timed word σ, for any possible value
π of p, the output stream can only be modified by appending new events to its tail:
∀π ∈ Dom(p), ∀σ ∈ tw(Λ) : Phyπ(EϕA(π)

, σ↓π);

- soundness means that for any input timed word σ, for any possible value π of p,
the output obtained from the projection of the input timed word on π, satisfies the
property: ∀π ∈ Dom(p), ∀σ ∈ tw(Λ) : Sndπ(EϕA(π)

, σ↓π);

- transparency means that for any input timed word σ, for any possible value π of
p, the output obtained from the projection of the input timed word on π is a delayed
subsequence of the projection of the input timed word on π: ∀π ∈ Dom(p), ∀σ ∈
tw(Λ) : Trπ(EϕA(π)

, σ↓π);

where predicates Phy Snd, and Tr are lifted to parametric traces.

Using the results from Chapter 5, and how parametric enforcers are built, we im-
mediately get the following proposition:

Proposition 7.2 Given a PTAV A(p) specifying a parametric timed safety property
ϕA(p), the enforcement function Eϕp as per Definition 7.4 satisfies physical, soundness,
and transparency constraints with respect to A(π), as per Definition 7.5.

Proposition 7.2 can be proved using Proposition 7.1, Definitions 7.4 and 7.5 and
the results from Chapter 5.

Example 7.1 (Parametric soundness and transparency) Consider the property
shown in Figure 7.1a. Let the initial values of variables delay and reset be 5 and
100, respectively. Consider the input sequence σ = (2,R1 .alloc(1)) · (3,R1 .alloc(2)) ·
(4,R1 .alloc(1)). Dom(σ) = {1, 2}, and thus we have two monitor instances and both
are sound, and transparent. The projection of the input sequence on the actions carrying
parameter value 1 is σ ↓1= (2,R1 .alloc(1)) · (4,R1 .alloc(1)), which is input to EϕA(1)

,
and the output of EϕA(1)

is (2,R1 .alloc(1)) · (7,R1 .alloc(1)), satisfying soundness and
transparency. The projection of the input sequence on the actions carrying parameter
value 2 is σ ↓2= (3,R1 .alloc(2)), which is input to EϕA(2)

, and the output of EϕA(2)
is

(3,R1 .alloc(2)), satisfying soundness and transparency.

7.5 Application Domains

Let us illustrate how we can leverage runtime enforcement of parametric timed
properties in some application domains. For each application domain, we provide re-
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quirements modeled as PTAVs from which we synthesize enforcement monitors that
try to maintain the PTAV in accepting locations by increasing dates or suppressing
events when necessary and possible.

Using PTAVs we obtain abstract and concise representations of the requirements.
Enforcement monitors are a lightweight, modular, and flexible implementation of these
requirements.

7.5.1 Resource allocation

Let us consider a common client-server model used in distributed applications and
web servers (described in [FHTH10]). A system consists of three layers (see Figure 7.3):
clients, services and shared resources. Clients send their requests to services and wait
for their response.

C1

C2

C3

S1

S2

R1

R2

R3

Clients Services Resources

Figure 7.3: 3-layer model.

Requests to a service are stored in a FIFO queue, and a service processes them
sequentially. In order to process a request, a service has to do some computation using
some resources such as processors, files, and network connection managers. Concurrent
accesses to shared resources by various services can lead to a DoS because of problems
such as starvation when a service cannot allocate a shared resource, or deadlock when
two services wait for a resource allocated to the other service. Runtime enforcement
improves resource management and prevents such problems.

Leveraging runtime enforcement for fair resource allocation. In [FHTH10],
a domain-specific aspect language to prevent DoS caused by improper resource man-
agement is presented. Inspiring from this work, we formalize (richer) requirements for
resource allocation and DoS prevention using PTAVs. The event R1 .alloc(sId) (resp.
R2 .alloc(sId)) corresponds to the allocation of R1 (resp. R2), and R1 .rel(sId) (resp.
R2 .rel(sId)) corresponds to the release of R1 (resp. R2) in the session sId . One monitor
instance is associated to each service instance. The requirements are listed below.

P1 There should be a dynamic delay between two allocation requests to the same
resource by a service. This delay increases as the number of allocations increases.
The requirement is formalized with the PTAV in Figure 7.1a. The PTAV keeps
track of the number of allocations of a resource to a service, and increases the delay
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between allocations as the number of allocations increases. It has the set of events
ΣP1
sId = {R1 .alloc(sId)}. The tuple of internal variables is (counter , reset , delay),

and the tuple of external variables is the singleton (maxAlloc), where counter is
an integer incremented after each R1 .alloc(sId) event, and maxAlloc is an integer
that defines the allowed number of R1 .alloc(sId) messages per each increment of
the delay; incr is a constant value that defines the delay’s increment; reset defines
the time period for resetting the counter and is reset after certain time period.
The delay to be introduced between allocation requests (kept track by variable
delay) is computed dynamically based on the number of allocation requests.

delay =

{
0 if counter < maxAlloc

int
(

counter
maxAlloc

)
otherwise

The delay is 0 if the number of R1 .alloc(sId) events received is less (when
counter < maxAlloc). Otherwise, it is defined as int

(
counter
maxAlloc

)
, where counter

indicates the number of R1 .alloc(sId) events received. The clock x is used to
reset the variable counter . In location l0, upon receiving an R1 .alloc(sId) event,
if x ≤ reset , then a transition is made to location l1, counter is incremented (and
reset to 1 otherwise), and y is reset. In location l1, upon receiving R1 .alloc(sId),
if x ≤ reset and y ≥ delay , then counter is incremented, and y is reset.

P2 After releasing R1, there should be a delay of at least 2 t.u. before allocating
R2.
The requirement is formalized by the PTAV in Figure 7.1b. The set of events is
ΣP2
sId = {R1 .alloc(sId),R1 .rel(sId),R2 .alloc(sId),R2 .rel(sId)}.

P3 After a resource is acquired by a service, the service has to wait at least for T
t.u. before performing operations on the resource.
The set of events is
ΣP3
sId ={R1 .alloc(sId),R1 .op1 (sId),R1 .op2 (sId),R1 .op3 (sId)} where op1 , op2 ,

and op3 are possible operations on a resource. The requirement is formalized by
the PTAV in Figure 7.1c.

Using the indexed approach described in Section 7.4, for each requirement a para-
metric enforcement monitor can be derived from the requirement modeled as a PTAV
formalizing the requirement. One monitor instance is associated to each service in-
stance.

7.5.2 Robust mail servers

Context. Many protocols (e.g., Simple Mail Transfer Protocol, SMTP) are used by
email clients and servers to send and relay messages. After connecting to a server,
a client should provide the sender and receiver email addresses with a MAIL FROM
message with sender’s address as argument, and an RCPT TO message with receiver’s
address as argument [HTJ03]. The server responds with an OK 250 message if the
addresses are valid. The client should wait for the response from the server to transmit
data [HTJ03].
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l0 l1l2

ΣP1

id \ {rcpt to(id)}

rcpt to(id),
counter < max req ,

counter + +

rcpt to(id),
counter ≥ max req ,
counter + +, x := 0

setMR(id ,max req)

ok 250 (id)
setMR(id ,max req)

ok 250 (id)),
x ≥ del

setMR(id ,max req)

(a) Compute delay dynamically

l0 l1

ΣP2

id \ {rcpt to(id)} rcpt to(id),
x := 0

550(id),
x ≥ 10, x := 0

(b) At least 10 t.u. before “550”
error response

Figure 7.4: Robust mail servers

Client3
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SMTP Server

EMClient3

EMClient2

EMClient1

Server

Figure 7.5: Architectural setting

The spam issue. A high volume of spam messages can cause a Denial of Service
(DoS). Slowing down SMTP conversations can refrain automated spam. Intentionally
introducing delays between messages in a network is known as tarpitting [HTJ03].
Tarpitting reduces the spam sending rate and prevents servers from processing a large
number of spams.

Leveraging runtime enforcement to protect mail servers. Runtime enforce-
ment mechanisms can be used as tarpits on mail servers to protect them. In [HTJ03],
an implementation of tarpits is described, where the delay introduced depends on the
number of request messages from a client. The expressivity of PTAVs also allows to
model dynamic tarpits, where the delay introduced between messages can be increased
(or decreased) based on the observed pattern of messages sent by a client over time.
When a client establishes a connection, an instance of enforcement monitor can be
created on-the-fly, to monitor all the incoming/outgoing messages of that particular
session.
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l0 l1l2

ΣP3

id \ {rcpt to(id)} rcpt to(id),
counter < max req ,

counter + +

rcpt to(id),
counter ≥ max req ,
counter + +, x := 0

ΣP3

id \ {rcpt to(id)}ok 250 (id), error 550 (id)
x ≥ 5 x ≥ 10

Figure 7.6: Robust mail servers: Different delays based on the response message

As shown in Figure 7.5, we consider an architectural setting where enforcement
monitors run on a server. An instance of monitor is created for each new client. The
input events to the monitors are both from the client and the server. Monitors delay
the response from the server according to the client’s behavior.

Let us see some requirements and PTAVs parameterized by a client identifier (id).

R1 If the number of RCPT TO messages from a client is greater than max req, then
there should be a delay of at least del t.u. before responding an OK 250 to the client.

Requirement R1is formalized by the PTAV in Fig. 7.4a with alphabet ΣR1
id = {rcpt to(id), ok,

setMR(id ,max req)}. The set of variables is {counter ,
max req , del}: counter is incremented after each rcpt to(id) from the client, and
max req is a constant that defines the number of rcpt to(id) messages per each incre-
ment of the delay. The delay is computed dynamically and depends on the number of
received rcpt to(id) messages. The delay del is defined as 0 if counter < max req and
int( counter

max req ) otherwise. Upon receiving an rcpt to(id) message, if counter ≤ max req ,
the PTAV moves from l0 to l1. Otherwise, the PTAV goes to l2, resetting the clock
x. Upon receiving an ok, the PTAV moves from l1 to l0, or from l2 to l0 if x ≥ del .

R2 After processing an RCPT TO message from a client, if the server response message
is ERROR 550 (user unknown or not found), then there should be a delay of at least
10 t.u. before sending this reply message back to the client.

Requirement R2 is formalized by the PTAV in Fig. 7.4b with alphabet ΣR2
id =

{rcpt to(id), 550(id)}.
R3 If the number of RCPT TO messages is greater than max req and the response of

the server is OK 250 (resp. ERROR 550) then there should be a delay of at least 5
(resp. 10) t.u. before sending the response.

R3 is formalized by the PTAV in Fig. 7.6 with alphabet ΣR3
id = {rcpt to(id), ok}.

The set of used variables is {counter , max req}: counter is an integer incremented
after each rcpt to(id) message from the client, and max req is an integer constant
that defines the number of rcpt to(id) messages allowed before introducing delays.

R4 This requirement is formalized by the PTAV in Fig. 7.7. Compared to the PTAV
for R1, an additional feature is handled: counter is reset according to the computed
delay, if there is sufficient time between two rcpt to(id) messages from the client. To
handle this feature, we also need an integer variable min D , defining the sufficient
delay between RCPT TO messages to reset the counter.

The enforcement monitors synthesized from these requirements (modeled as PTAVs),
when integrated with the server can prevent the server from processing a large number
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l0 l1l2
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setMR(id ,max req)

rcpt to(id),
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y := 0
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Figure 7.7: Robust mail servers: Decrease or Increase delay dynamically

of spam messages.

7.6 Implementation and Evaluation of Parametric Enforce-
ment Monitors

A prototype tool in Python based on the algorithms proposed in Chapter 6 was
implemented. Regarding performance, note that the tool is a prototype, implemented
using open-source libraries and tools provided for quickly prototyping algorithms based
on timed automata. The purpose of the prototype is first to show feasibility and then to
have a first assessment of performance. An enforcement monitor for a PTAV instance
is implemented with two concurrently running processes (Store and Dump). The Store
process takes care of receiving input events, computing optimal delays of actions, and
storing them in memory, and the Dump process deals with reading events stored in the
memory and outputting them.

The tool inputs a property modeled with UPPAAL ([LPY97]) and stored in XML.
We use UPPAAL as a library to implement the update and post functions (see [PFJ+12]),
and the PyUPPAAL library to parse the properties. 4

7.6.1 The experimental setup

Experiments were conducted on an Intel Core i7-2720QM (4 cores) at 2.20 GHz
CPU, with 4 GB RAM, and running on Ubuntu 10.10. To illustrate our experiments,
we use the PTAV in Figure 7.1b. In an indexed setting, we have an enforcement monitor
per session, we need a front-end mechanism to slice the input trace, i.e., identify the
monitor related to an input event, based on the value of the parameter.

Enforcement monitors can be created and deleted on-the-fly. As explained in Sec-
tion 5.3, some mechanism is needed to split the input trace based on parameter values.
For slicing as in [CR09] but based on a single parameter, the simple procedure is de-
scribed in Algorithm 4.

4. Given an input state and event, the post function computes the state reached in the underlying
timed transition system of a PTAV.
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Algorithm 4 FrontEndProcess

Enforcers← {}
while tt do

(t, a(π, ν))← await(event)
e← Enforcers.get(π)
if (e 6= NONE) then
e.addEvent((t, a(π, ν)))

else
e = new Enforcer()
Enforcers.add(π, e)
e.addEvent((t, a(π, ν)))

end if
end while

We use an initially-empty hash-map (En-
forcers) to keep track of active enforcers. The
“get” method takes the key as input, and
returns the associated enforcer, if present,
and “NONE” otherwise. The “addEvent”
method adds an input event to the input
queue of the enforcer e. The “add” method
adds the given key-value pair to the hash-
map. Algorithm 4 was implemented in
Python. The most expensive statement is
the call to the “get” method, used to search
and retrieve the enforcer associated to a key
value. We measured the average execution
time of the “get” method: with 100 en-
forcers, and an input trace with equal num-
ber of events per enforcer, we obtained 3.5

ms over 10,000 calls.

7.6.2 Performance analysis

Results of performance analysis are presented in Table 7.1. We have performed
benchmarks for several runs until the variation in the obtained values was negligible.

We performed experiments, varying the number of instances of PTAVs (entry N).
For example, N = 10 means that there are 10 instances, each differing only in the value
of the parameter ranging from 1 to 10.

The entry |tr | denotes the length of the input timed trace, generated using a trace-
generator. The entry t EM denotes the total time (in seconds) required to process a
given input trace (and to compute optimal delays). The entry t post denotes the time
(in seconds) taken for one call to the post function, upon receiving the last event of
the input trace. The trace-generator balances the number of events sent to each PTAV
instance.

Analysis. From Table 7.1, for a fixed value of N , t post increases as the length
of the input trace increases. However, these values should be almost equal. This
known undesirable behavior is due to the invocation of UPPAAL for realizing the
“post” function in the current implementation. The input trace is represented as an
automaton. After each event, the input trace grows (the underlying automaton is
updated), and the computation by UPPAAL restarts from the initial state. From
Table 7.1, we can also observe that, given a fixed length for the input traces, the total
simulation time t EM decreases when N increases because the number of enforcers
(more concurrent processes) increases, and thus more events are treated concurrently.
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N |tr| t EM t post

1 100 4.9 0.040

1 500 71 0.18

1 1000 305 0.38

10 100 1 0.0095

10 500 4.5 0.026

10 1000 19.3 0.043

20 100 0.8 0.0083

20 500 3.8 0.015

20 1000 10 0.023

30 100 0.7 0.079

30 500 3.1 0.012

30 1000 4.2 0.019

Table 7.1: Performance evaluation

7.7 Discussion and Summary

Discussion. Our approach is by no means the first to consider parametric specifi-
cations in runtime monitoring and is inspired from some previous endeavors proposed
in the runtime verification community. PTAVs are inspired from existing parametric
formalisms for untimed properties [CR09]. In term of indexing, our framework uses a
subset of the possibilities described in [CR09] in that we use a totally-ordered set to in-
dex monitors instead of a partially-ordered set on bindings (i.e., partial functions from
parameter names to their domains). Note however that our approach can be extended
to multiple parameters using indexing mechanisms. Parameters should get bound on
the first events and all events should carry values for all parameters (to ease the retrieval
of the associated monitors). Monitoring algorithms could remain equivalent in terms
of efficiency as monitor instances will be accessible with one index. The restriction
we considered allows to simplify the issue of indexing and determining the compati-
ble monitors, given an input event. The acceptable expressiveness features related to
parameters, their slicing mechanisms, and their overhead, are certainly application-
dependent. Note also that MOP [CR09] is restricted to propositional formalisms to
specify (indexed) plugin monitors while PTAV instances handle variables, guards, and
assignments.

Summary. In this chapter, we introduced Parametrized Timed Automata with Vari-
ables (PTAV), which is an extension of timed automaton with a parameter, internal
and external variables. PTAVs allow to formally define much richer requirements. In
scenarios where we have multiple clients and a server, monitor instances for each client
on the server can be created on-the-fly. Moreover, the formalism also allows messages
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to carry data, and allows to express constraints both on time and data. We also saw
that it is straightforward to extend the enforcement mechanism for timed automata
described in Chapter 5 to PTAV. The features of PTAVs allow to specify requirements
that we commonly encounter in several domains. In Section 7.5, we also saw how
requirements for some applications domains can be defined as PTAVs.



Chapter 8

Conclusion and Future Work

8.1 Conclusion

Although several formal modeling and analysis techniques, and tools based on them
have been developed over the years, scalability of the techniques is a central issue that
has prevented their widespread adoption. On the one hand research efforts continue
to handle issues such as state space explosion, light weight formal techniques such as
runtime verification for validation of critical systems are also actively under research
on the other hand.

Runtime verification is a formal verification technique, complementing the other
formal verification techniques such as model checking. Runtime verification techniques
allow to check whether a run of a system under scrutiny satisfies (or violates) a given
correctness property. A verification monitor does not influence the system execution.
Runtime verification techniques are lightweight and also do not require a formal model
of the system, avoiding problems such as state explosion, since only a single execution
of the system is considered.

Runtime enforcement extends runtime verification and refers to the theories, tech-
niques, and tools aiming at ensuring the conformance of the executions of systems
under scrutiny with respect to some desired property. Using an enforcement monitor,
an (untrustworthy) input execution (in the form of a sequence of events) is modified
into an output sequence that complies with a property (e.g., formalizing a safety re-
quirement). A central concept in runtime verification and enforcement, is to generate
monitors from some high-level specification of the property (which the monitor should
verify (or enforce)).

Contributions. We developed formally based runtime enforcement mechanisms for
requirements with real-time constraints. In this thesis, we described how to synthesize
enforcement monitors from a formal description of the property. Timed automaton is
the model we use to formally define a property from which an enforcement monitor is
synthesized. In addition to defining and proving the enforcement mechanisms formally,
prototypes based on the proposed mechanisms were implemented, to demonstrate prac-
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tical feasibility of the proposed approach.

We also proposed a model called as PTAV, an extension of timed automata model
with variables and parameters. The PTAV model allows to formalize richer specifi-
cations with both time and data constraints, and also allows actions to carry data.
Enforcement mechanisms proposed for TA’s have been extended to PTAV’s. We also
showed how enforcement monitors can be synthesized from PTAV’s. Moreover, how
enforcement monitoring is suitable in domains such as monitoring networks and pre-
venting denial-of-service attacks is shown.

This work resulted in publications in international conferences and journals. Let us
now briefly recall results of each of them.

– Runtime Enforcement of Timed Properties [PFJ+12].
In [PFJ+12] we introduced the first steps to runtime enforcement of (continuous)
timed properties. Initially we did not consider all regular timed properties, and
focused on safety and co-safety properties described by timed automata. Also
the power of enforcement monitors is limited to delaying events, and suppressing
events is not allowed. Moreover, here timed words are formalized using delays
instead of dates, and we only allow to increase delays.
We propose adapted notions of enforcement monitors with the possibility to delay
some input actions in order to satisfy the required property. For this purpose,
the enforcement monitor can store some actions for a certain time period. We
propose a set of enforcement rules ensuring that outputs not only satisfy the
required property (if possible), but also with the “best” delay according to the
current situation. We describe how to realize the enforcement monitor using
concurrent processes, how it has been prototyped and experimented.

– Runtime Enforcement of Regular Timed Properties [PFJM14b].
The approach in [PFJ+12] targets explicitly safety and co-safety properties. We
later investigated whether more expressive properties can be enforced. We gen-
eralized the results of [PFJ+12], showed how to synthesize enforcement mecha-
nisms for any regular timed property (modeled with a timed automaton). Indeed,
some regular properties may express interesting properties of systems belong-
ing to a larger class that allows to specify some form of transactional behavior.
The difficulty that arises is that the enforcement mechanisms should then con-
sider the alternation between currently satisfying and not satisfying the property.
In [PFJM14b] we presented a general enforcement monitoring framework for sys-
tems with timing requirements. Enforcement mechanisms are described at several
levels of abstraction (enforcement function, monitor, and algorithm), thus facil-
itating the design and implementation of such mechanisms. The focus was on
considering more properties, and the power of enforcement mechanism is still
limited to delaying events, and suppressing events is not possible as in [PFJ+12].

– Runtime Enforcement of Timed Properties Revisited [PFJ+14].
In a journal paper [PFJ+14] the results of the two papers [PFJ+12, PFJM14b] are
combined, and elaborated. More specifically, this paper provided the following
additional contributions:
– a more complete and revised theoretical framework for runtime enforcement of
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timed properties has been proposed: we have re-visited the notations, unified
and simplified the main definitions;

– a completely new implementation of our enforcement monitors has been pro-
posed that
i) offers better performance (compared to the ones in [PFJ+12]), ii) is loosely-
coupled to UPPAAL;

– enforcement monitors for more properties on longer executions have been syn-
thesized and evaluated;

– correctness proofs of the proposed mechanisms were provided.
– Runtime Enforcement of Regular Timed Properties by Suppressing

and Delaying Events.
In [PFJ+12, PFJM14b, PFJ+14] enforcement mechanisms receive sequences of
events composed of actions and delays between them, and can only increase those
delays to satisfy the desired timed property. In a journal paper which has been
recently submitted to SCP journal [FJMP14], we consider events composed of
actions with absolute occurrence dates, and we allow to increase the dates (while
allowing to reduce delays between events). Moreover, suppressing events is also
introduced. An event is suppressed if it is not possible to satisfy the property by
delaying, whatever are the future continuations of the input sequence (i.e., the
underlying TA can only reach non-accepting states from which no accepting state
can be reached). Formalizing suppression required us to revisit the formalization
of all enforcement mechanisms. The enforcement mechanisms proposed in this
paper have the power of both delaying events to match timing constraints, and
suppressing events when no delaying is appropriate, thus allowing the enforcement
mechanisms and systems to continue executing.

– Runtime Enforcement of Parametric Timed Properties with Practical
Applications [PFJM14a].
When we considered requirements from some real application domains such as
network security, we noticed that some requirements have constraints both on
time and data. Events also carry some data. In [PFJM14a], we make one step
towards practical runtime enforcement by considering event-based specifications
where i) time between events matters and ii) events carry data values from the
monitored system. We refer to this problem as enforcement monitoring for para-
metric timed specifications. To handle expressive specifications in our frame-
work, we introduce the model of Parametrized Timed Automata with Variables
(PTAVs). To guide us in the choice of expressiveness features we considered re-
quirements in several application domains. With more expressive specifications
(with parameterized events, internal variables, and session parameters), we im-
prove the practicality and illustrate the usefulness of runtime enforcement on
application scenarios.
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8.2 Future Work

Based on the results presented, there are several other topics related to the area of
runtime enforcement of timed properties for further investigation. Few topics are:

– Enforcement monitoring for systems with limited memory. An enforce-
ment monitor basically acts as a filter storing the input events in its memory,
until it is certain that those events will satisfy the underlying property when re-
leased as output. It is certainly interesting to investigate, and to be able to define
bounds on memory usage, and to show that the mechanism will effectively work
with limited resources. It is also interesting to see whether all or only a subclass
of regular timed properties are enforceable with limited resources.

– Combining enforcement monitors. For enforcing multiple properties, one
possibility is to combine the properties, and to synthesize one enforcement mon-
itor for the resulting property. However, as the number of properties grows, the
complexity of the resulting automaton grows. So the time required to traverse the
automaton also increases with increase in complexity of the automaton, which is
not desirable for runtime enforcement. Thus, it is desirable to investigate whether
enforcement monitors can be combined in series, which classes of properties can
be combined etc.

– Predictive runtime enforcement. We are also investigating on possibilities of
some improvements in our framework, when we for example have some knowledge
about all the possible input sequences. In case if the monitor has some knowledge
about the event emitter, and knows the set of input sequences that it may receive,
then the monitor can do even better with respect to deciding when to release
events as output. For some events, the monitor can take decision to release them
as output earlier without requiring to store them in the memory and waiting to
see the future events, when it knows that all the possible continuations of the
input it has observed will not violate the property (will only lead to accepting
states). Solving the problem will also provide us with a framework to combine
enforcement monitors in series.

– Monitor synthesis Vs Controller synthesis. Runtime verification (enforce-
ment) monitoring techniques focus on synthesizing monitors from high level spec-
ifications. Monitors generally do not influence the execution of the system being
monitored, and generally monitors have the power to observe and also control
(in case of enforcement) all the events. On the other side, controller synthesis
techniques focus on synthesizing a controller from a model of the system and both
the system and controller work in a closed loop (the controller influences the sys-
tem). Moreover, a controller can observe and control only a subset of actions
of the system. It is interesting to see how techniques in one area can be useful
in the other area and vice versa. For example, also in the domain of runtime
monitoring, it is more realistic to consider that the monitor cannot observe and
control all the events.

– Enforcement monitor synthesis mechanism to realize some require-
ments automatically. Currently, (verification and enforcement) monitors are
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seen as modules outside the system, which take as input a stream of events (out-
put of the system being monitored) and verify or correct this stream according to
the property. It will be very interesting to investigate whether these techniques
can be used to realize some requirements (such as some requirement related to
security). One can imagine enforcement monitors (realizing some requirements)
integrated as another layer on top of the core functionality.

– Enforcement monitoring techniques to guarantee behavior of external
components. If we consider any complex embedded system, the entire system
is often not designed and developed from scratch in general. Often parts of
the system are bought from another partner company and part of development
activities may be outsourced. Thus for some modules, the internal details may
be unknown and only the interfaces are known. Enforcement monitors may be
used to guarantee that this module communicates well with the other modules.
It is interesting to study further about formal theory of interfaces and component
based design to show how enforcement mechanisms help to guarantee the behavior
of an external component in the system.

– Applying enforcement monitoring techniques in a particular domain.
It is also very important to work on showing the practical feasibility of applying
these techniques in some particular application domains. We already showed how
we can formalize requirements related to preventing denial-of-service and auto-
matically synthesize monitors which can be integrated to a system to guarantee
such properties. This work can be further continued, focusing on some particular
domain such as monitoring network traffic, integrating monitors to a real system
to demonstrate practical applicability of these formal based techniques.

All the above proposed research tracks aims to contribute towards runtime monitor-
ing (specifically runtime enforcement) techniques, applying these techniques to develop
fault resilient systems, using such mechanisms to enforce requirements related to secu-
rity and quality-of-service.
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2009.

[BY03] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms
and tools. In Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, edi-
tors, Proceedings of the 4th Advanced Course on Petri Nets - Lecture Notes
on Concurrency and Petri Nets, volume 3098 of LNCS, pages 87–124.
Springer, 2003.

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Logic of Pro-
grams, Workshop, pages 52–71, London, UK, UK, 1982. Springer-Verlag.
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Résumé

L’enforcement à l’exécution est une technique efficace de vérification et de validation
dont le but est de corriger les exécutions incorrectes d’un système, par rapport à un
ensemble de propriétés désirées. En utilisant un moniteur d’enforcement, une exécution
(possiblement incorrecte), vue comme une séquence d’événements, est passée en entrée
du moniteur, puis corrigée en sortie par rapport à la propriété. Durant les dix dernières
années, l’enforcement à l’exécution a été étudiée pour des propriétés non temporisées.

Dans cette thèse, nous considérons l’enforcement à l’exécution pour des systèmes où
le temps entre les actions du système influence les propriétés à valider. Les exécutions
sont donc modélisées par des séquences d’événements composées d’actions avec leurs
dates d’occurence (des mots temporisés). Nous considérons l’enforcement à l’exécution
pour des spécifications régulières modélisées par des automates temporisés. Les mo-
niteurs d’enforcement peuvent, soit retarder les actions, soit les supprimer lorsque
retarder les actions ne permet pas de satisfaire la spécification, permettant ainsi à
l’exécution de continuer. Pour faciliter leur conception et la preuve de leur correction,
les mécanismes d’enforcement sont modélisés à différents niveaux d’abstraction : les
fonctions d’enforcement qui spécifient le comportement attendu des mécanismes en
termes d’entrées-sorties, les contraintes qui doivent être satisfaites par ces fonctions,
les moniteurs d’enforcement qui décrivent les mécanismes de manière opérationnelle, et
les algorithmes d’enforcement qui fournissent une implémentation des moniteurs d’en-
forcement. La faisabilité de l’enforcement à l’exécution pour des propriétés temporisées
est validée en prototypant la synthèse des moniteurs d’enforcement à partir d’auto-
mates temporisés. Nous montrons également l’utilité de l’enforcement à l’exécution de
spécifications temporisées pour plusieurs domaines d’application.

Mots clés : vérification et enforcement à l’exécution, propriétés temporisées, auto-
mates temporisés, génie logiciel formel.





Abstract

Runtime enforcement is a verification/validation technique aiming at correcting
possibly incorrect executions of a system of interest. It is a powerful technique to
ensure that a running system satisfies some desired properties. Using an enforcement
monitor, an (untrustworthy) input execution (in the form of a sequence of events) is
modified into an output sequence that complies with a property. Over the last decade,
runtime enforcement has been mainly studied in the context of untimed properties.

In this thesis, we consider enforcement monitoring for systems where the physical
time elapsing between actions matters. Executions are thus modeled as sequences of
events composed of actions with dates (called timed words). We consider runtime en-
forcement for timed specifications modeled as timed automata, in the general case of
regular timed properties. The proposed enforcement mechanism has the power of both
delaying events to match timing constraints, and suppressing events when no delay-
ing is appropriate, thus allowing the enforcement mechanisms and systems to continue
executing. To ease their design and correctness-proof, enforcement mechanisms are de-
scribed at several levels: enforcement functions that specify the input-output behavior
in terms of transformations of timed words, constraints that should be satisfied by such
functions, enforcement monitors that describe the operational behavior of enforcement
functions, and enforcement algorithms that describe the implementation of enforcement
monitors. The feasibility of enforcement monitoring for timed properties is validated by
prototyping the synthesis of enforcement monitors from timed automata. We also show
the usefulness of enforcement monitoring of timed specifications for several application-
domains.

Keywords: runtime verification, runtime enforcement, timed properties, timed au-
tomata, software engineering.





Appendix A

Proofs

Recall that Eϕ : tw(Σ)→ tw(Σ) is defined as:

Eϕ(σ) = Π1

(
store(σ)

)
.

where store : tw(Σ)→ tw(Σ)× tw(Σ) is defined as

store(ε) = (ε, ε)

store(σ · (t, a)) =


(σs ·min�lex,end κϕ(σs, σ

′
c), ε), if κϕ(σs, σ

′
c) 6= ∅,

(σs, σc) if κpref(ϕ)(σs, σ
′
c) = ∅

(σs, σ
′
c) otherwise,

with σ ∈ tw(Σ), t ∈ R≥0, a ∈ Σ,

(σs, σc) = store(σ), and σ′c = σc · (t, a)

where operators CanD() and κϕ() are defined in Section 5.4.1 and Section 5.4.2, re-
spectively.

A.1 Proof of Proposition 5.1 (p. 57)

We shall prove that, given a property ϕ ⊆ tw(Σ), the associated enforcement func-
tion Eϕ : tw(Σ) → tw(Σ), defined as per Definition 5.8 (p. 55), satisfies the physical
constraint, is sound and transparent. These constraints are recalled below:

– Physical constraint:

∀σ, σ′ ∈ tw(Σ) : σ 4 σ′ =⇒ Eϕ(σ) 4 Eϕ(σ′) (Phy).

– Soundness:

∀σ ∈ tw(Σ) : Eϕ(σ) |= ϕ ∨ Eϕ(σ) = ε (Snd).

– Transparency:
∀σ ∈ tw(Σ) : Eϕ(σ) /d σ (Tr).
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The proof of (Phy) is straightforward by noticing that function store is monotonic
on its first output (∀σ, σ′ ∈ tw(Σ) : σ 4 σ′ =⇒ Π1(store(σ)) 4 Π1(store(σ′))).

We now prove together (Snd) and (Tr) by an induction on the length of the input
timed word σ.

We actually prove a slightly stronger property of Eϕ: for any σ ∈ tw(Σ) with

|σ| ≤ n, (i) Eϕ satisfies (Snd)σ
def
= Eϕ(σ) |= ϕ ∨ Eϕ(σ) = ε and (Tr)σ

def
= Eϕ(σ) /d σ,

and (ii) ΠΣ(σs) · ΠΣ(σc) / ΠΣ(σ), where σs and σc are as in the definition of store(),
recalled above.

Induction Basis (σ = ε) The proof of the induction basis is immediate from the
definitions of Eϕ, store(ε), /, and /d.

Induction Step Let us consider σ′ = σ · (t, a) for some σ ∈ tw(Σ) of length n,
t ∈ R≥0, t ≥ end(σ), and a ∈ Σ. Suppose that store(σ) = (σs, σc) and σ′c = σc · (t, a),
where end(σc) ≤ t. We distinguish two cases:

– Case κϕ(σs, σ
′
c) 6= ∅. In this case, we have Eϕ(σ · (t, a)) = Π1 (store (σ · (t, a))) =

σs ·min�lex,end κϕ(σs, σ
′
c). From the definition of function κϕ, we have κϕ(σs, σ

′
c) ⊆

σ−1
s · ϕ and thus Eϕ(σ · (t, a)) ∈ ϕ. Thus Eϕ satisfies (Snd)σ′ .

From the induction hypothesis, we know that ΠΣ(σs)·ΠΣ(σc)/ΠΣ(σ). We deduce
ΠΣ(σs) ·ΠΣ(σc · (t, a)) /ΠΣ(σ · (t, a)) which shows that (ii) holds again for σ′.
Let w ∈ κϕ(σs, σ

′
c). Since w ∈ σ−1

s ·ϕ, we have start(w) ≥ end(σs), which implies
that σs · w ∈ tw(Σ). Since w ∈ CanD(σ′c), we have start(w) ≥ t and w <d σ

′
c,

which entails that ΠΣ(w) = ΠΣ(σ′c). Moreover, from start(w) ≥ t, we know that
all dates of the events in w have dates greater than or equal to those of the events
in σ · (t, a). From ΠΣ(w) = ΠΣ(σ′c) and ΠΣ(σs) ·ΠΣ(σ′c)/ΠΣ(σ · (t, a)), we deduce
ΠΣ(σs) · ΠΣ(w) / ΠΣ(σ · (t, a)). Thus, from this and using σs /d σ, we obtain
σs · w /d σ · (t, a), i.e., Eϕ satisfies (Tr)σ′ .

– Case κϕ(σs, σ
′
c) = ∅. Note, this case encompasses the two last cases in func-

tion store and from the definition of Eϕ, in both cases we have Eϕ(σ · (t, a)) =
Π1

(
store(σ·(t, a))

)
= σs. Since Eϕ(σ) = Π1

(
store(σ)

)
= σs, and by the induction

hypothesis Eϕ(σ) |= ϕ, we deduce that Eϕ satisfies (Snd)σ′ .
Moreover Eϕ(σ · (t, a)) /d σ and thus Eϕ(σ · (t, a)) /d σ · (t, a). We deduce (Tr)σ′ .
Finally, from the induction hypothesis ΠΣ(σs) · ΠΣ(σc) / ΠΣ(σ) we can conclude
that ΠΣ(σs) ·ΠΣ(σc · (t, a)) /ΠΣ(σ · (t, a)), proving (ii) for σ′.

A.2 Proof of Proposition 5.2 (p. 57)

The proof of Proposition 5.2 requires the following lemma related to store which
says that, when store(σ) = (σs, σc) and σc is not the empty timed word, there is no
sequences delaying a prefix of σc, starting after the ending date of σ, and allowing to
correct σ.



Lemma A.1 Let us consider σ ∈ tw(Σ), if store(σ) = (σs, σc) and σc 6= ε, then

∀w ∈ tw(Σ) : (start(w) ≥ end(σ) ∧ ∃v ∈ pref(σc) : w <d v) =⇒ σs · w /∈ ϕ.

Proof A.1 The proof is done by induction on the length of σ ∈ tw(Σ).

Induction basis For σ = ε we have σc = ε by definition of store, and the induction
basis holds.

Induction step Let us consider σ·(t, a) ∈ tw(Σ) of length n+1, and let store (σ · (t, a)) =
(σ′s, σ

′
c). Following the definition of function store, we distinguish three cases:

– If κϕ(σs, σc · (t, a)) 6= ∅, then σ′c = ε, and the result holds.
– If κpref(ϕ)(σs, σc · (t, a)) = ∅, we have σ′c = σc. Using the induction hypothesis, if
σ′c = σc 6= ε we have: ∀w ∈ tw(Σ) : start(w) ≥ end(σ) ∧ ∃v ∈ pref(σc) : w <d

v =⇒ σs · w /∈ ϕ, which implies ∀w ∈ tw(Σ) : start(w) ≥ end(σ · (t, a)) ∧ ∃v ∈
pref(σc) : w <d v =⇒ σs · w /∈ ϕ, which shows that the property holds again for
σ · (t, a) since σ′c = σc.

– Otherwise (κϕ(σs, σc · (t, a)) = ∅ and κpref(ϕ)(σs, σc · (t, a)) 6= ∅), we have σ′c =
σc · (t, a). Using the induction hypothesis, we have: ∀w ∈ tw(Σ) : start(w) ≥
end(σ) ∧ ∃v ∈ pref(σc) : w <d v =⇒ σs · w /∈ ϕ, which implies ∀w ∈ tw(Σ) :
start(w) ≥ end(σ · (t, a)) ∧ ∃v ∈ pref(σc) : w <d v =⇒ σs · w /∈ ϕ. Since
κϕ(σs, σ

′
c) = ∅, by definition we have ∀w ∈ tw(Σ) : start(w) ≥ end(σ·(t, a))∧w <d

σc · (t, a) =⇒ σs · w /∈ ϕ. Combining both predicates, we obtain ∀w ∈ tw(Σ) :
start(w) ≥ end(σ · (t, a)) ∧ ∃v ∈ pref(σc · (t, a)) : w <d v =⇒ σs · w /∈ ϕ.

Let us now return to the proof of Proposition 5.2. We shall prove that, given a
property ϕ, the associated enforcement function Eϕ : tw(Σ) → tw(Σ) as per Defini-
tion 5.8 (p. 55) satisfies the optimality constraint (Op) (from Proposition 5.2, p. 57).
That is, we shall prove that ∀σ ∈ tw(Σ) : (Op)σ, where:

(Op)σ
def
= Eϕ(σ) = ε ∨ ∃m,w ∈ tw(Σ) : Eϕ(σ) = m · w(|= ϕ), with

mσ = maxϕ≺,ε(Eϕ(σ)), and

wσ = min�lex,end{w′ ∈ m−1
σ · ϕ | ΠΣ(w′) = ΠΣ(m−1

σ · Eϕ(σ))

∧mσ · w′ /d σ ∧ start(w′) ≥ end(σ)}

We perform an induction on the length of σ ∈ tw(Σ).

Induction basis Since store(ε) = (ε, ε) we get Eϕ(ε) = ε.

Induction step Let us consider σ′ = σ·(t, a) for some σ ∈ tw(Σ) of length n, t ∈ R≥0,
t ≥ end(σ), and a ∈ Σ. Let us prove that (Op)σ′ holds. Suppose store(σ) = (σs, σc)
and σ′c = σc · (t, a). We distinguish two cases:



– Case κϕ(σs, σ
′
c) 6= ∅. In this case, we have Eϕ(σ · (t, a)) = Π1

(
store(σ · (t, a))

)
=

σs ·min�lex,end κϕ(σs, σ
′
c).

By definition of κϕ(σs, σ
′
c) we know that σs ·min�lex,end κϕ(σs, σ

′
c) ∈ ϕ. From the

definition of store and the induction hypothesis, we know that σs corresponds
to mσ′ in the definition of (Op)σ′ : it is the maximal strict prefix of Eϕ(σ′) =
σs ·min�lex,end κϕ(σs, σ

′
c) that satisfies ϕ. Indeed, store(σ) = (σs, σc) and, either

σc = ε, then Eϕ(σ′) = σs.(t
′, a) for some t′ and σs is the maximal strict prefix

of Eϕ(σ′) satisfying ϕ; or σc 6= ε and using Lemma A.1, we know that none of
the prefixes of σc can be delayed in such a way that, when appended to σs, the
concatenation forms a correct sequence.
It follows that Eϕ(σ · (t, a)) = mσ′ · wσ′ with mσ′ = σs and

wσ′ = σ−1
s · Eϕ(σ · (t, a)),

= min�lex,end κϕ(σs, σ
′
c)

= min�lex,end

{
w′ ∈ m−1

σ′ · ϕ | w
′ <d σc · (t, a) ∧ start(w′) ≥ end(σ′c)

}
Since end(σ′c) = t, then

wσ′ = min�lex,end

{
w′ ∈ m−1

σ′ · ϕ | w
′ <d σc · (t, a) ∧ start(w′) ≥ t

}
.

We shall prove that{
w′ ∈ m−1

σ′ · ϕ | w
′ <d σc · (t, a) ∧ start(w′) ≥ t

}
=
{
w′ ∈ m−1

σ′ · ϕ | ΠΣ(w′) = ΠΣ(m−1
σ′ · Eϕ(σ · (t, a)) ∧mσ′ · w′ /d σ · (t, a)

∧ start(w′) ≥ end(σ · (t, a))
}
,

that is (since end(σ · (t, a)) = t):{
w′ ∈ m−1

σ′ · ϕ | w
′ <d σc · (t, a) ∧ start(w′) ≥ t

}
=
{
w′ ∈ m−1

σ′ · ϕ | ΠΣ(w′) = ΠΣ(m−1
σ′ · Eϕ(σ · (t, a)) ∧mσ′ · w′ /d σ · (t, a)

∧ start(w′) ≥ t
}
.

This amounts to prove that:

∀w′ ∈ m−1
σ′ · ϕ : start(w′) ≥ t

=⇒
(
w′ <d σc · (t, a)

⇔ (ΠΣ(w′) = ΠΣ(m−1
σ′ · Eϕ(σ · (t, a))) ∧mσ′ · w′ /d σ · (t, a)

)
.

(⇒) Since ΠΣ(m−1
σ′ · Eϕ(σ · (t, a)) = ΠΣ(σc · (t, a)), by definition of <d, we have

ΠΣ(w′) = ΠΣ(m−1
σ′ · Eϕ(σ · (t, a))). From transparency, we know that σs /d σ

and ΠΣ(σs) ·ΠΣ(σc · (t, a)) /ΠΣ(σ · (t, a)). Then, from start(w′) ≥ t, we deduce
mσ′ · w′ /d σ · (t, a).

(⇐) From ΠΣ(w′) = ΠΣ(m−1
σ′ ·Eϕ(σ · (t, a)), w′ and m−1

σ′ ·Eϕ(σ · (t, a) = m−1
σ′ ·σc ·

(t, a) have the same events. Moreover, since start(w′) ≥ t, all events in w′ have
greater dates than t (and hence, greater than those of all events in σc · (t, a)).
Thus w′ <d σc · (t, a).



Thus, we conclude that Eϕ satisfies (Op)σ′ .
– Case κϕ(σs, σ

′
c) = ∅. We have Eϕ(σ·(t, a)) = Π1 (store(σ · (t, a))) = Π1

(
store(σ)

)
=

σs = Eϕ(σ). Thus, from the induction hypothesis, we deduce that (Op)σ′ holds.

A.3 Preliminaries to the Proof of Proposition 5.3 (p. 69):
Characterizing the Configurations of Enforcement Mon-
itors

We first convey some remarks, define some notions and lemmas related to the con-
figurations of enforcement monitors.

A.3.1 Some remarks

Remark A.1 In the following proofs, without loss of generality, we assume that at any
time, in addition to the idle rule only one of the rules among the store and dump
rules of the enforcement monitor applies. This simplification does not come at the price
of reducing the generality nor the validity of the proofs because i) the store and dump
rules of the enforcement monitor do not rely on the same conditions, and ii) the store
and dump operations of enforcement monitors are assumed to be executed in zero time.
The considered simplification however reduces the number of (equivalent) cases in the
following proofs.

Remark A.2 Between the occurrences of two (input or output) events, the configura-
tion of the enforcement monitor evolves according to the idle rule (since it is the rule
with lowest priority). Moreover, from any configuration, applying idle twice consecu-
tively each delaying for δ1 and δ2, or applying idle once from the same configuration,
with delay δ1+δ2 will result in the same configuration. To simplify notations we will use
a rule to simplify the representation of Eioo ∈

(
(R≥0×Σ)∪{ε}

)
×Op×

(
(R≥0×Σ)∪{ε}

)
stating that

σ · (ε, idle(δ1), ε) · (ε, idle(δ2), ε) · σ′ is equivalent to σ · (ε, idle(δ1 + δ2), ε) · σ′,

for any σ, σ′ ∈
(
(R≥0 × Σ) ∪ {ε}

)
× Op ×

(
(R≥0 × Σ) ∪ {ε}

)
and δ1, δ2 ∈ R≥0. Thus

for Eioo we will only consider sequences of
(
(R≥0×Σ)∪ {ε}

)
×Op×

(
(R≥0×Σ)∪ {ε}

)
where delays appearing in the idle operation are maximal (i.e., there is no sequence of
two consecutive events with an idle operation).

A.3.2 Some notations

From Remark A.1, for each time instant, in addition to the idle rule, only one
rule among the store and dump rules can be applied. Thus, we have at most two
configurations for each time instant. Let us define the functions configin, configout :
tw(Σ)×R≥0 → CE that give respectively the first and last configurations of an enforce-
ment monitor at some time instant, reading an input sequence. More formally, given
some σ ∈ tw(Σ), t ∈ R≥0:



- configin(σ, t) = ctσ such that cE0

w(σ,t)

↪→∗E ctσ where w(σ, t)
def
= min�{w � Eioo(σ, t) |

timeop(w) = t};

- configout(σ, t) = ctσ such that cE0

Eioo(σ,t)

↪→∗E ctσ.

Observe that, when at some time instant, only the idle rule applies, configin(σ, t) =
configout(σ, t) holds, because there is only one configuration at this time instant. More-
over, when at some time instant, other rules apply (dump or store rules), configin(σ, t)
and configout(σ, t) differ. Note, in all cases, from configout(σ, t) only the the idle rule
applies (which increases time).

Moreover, for any two t, t′ ∈ R≥0 such that t′ ≥ t, we note E(σ, t, t′) for E(σ, t)−1 ·
E(σ, t′), i.e., the output sequence of an enforcement monitor between t and t′.

Remark A.3 Value of the third component of configurations. Only the idle rule mod-
ifies the value of the third component of configurations: it increments the third compo-
nent as time elapses.So, ∀σ ∈ tw(Σ), ∀t ∈ R≥0 : Π3(configin(σ, t)) = Π3(configout(σ, t)) =
t.

A.3.3 Some intermediate lemmas

Before tackling the proof of Proposition 5.3, we give a list of lemmas that describe
the behavior of an enforcement monitor, describing the configurations or the output at
some particular time instant for some input and memory content.

Similarly to the first physical constraint, the following lemma states that the enforce-
ment monitor cannot change what it has output. More precisely, when the enforcement
monitor is seen as function E , the output is monotonic w.r.t. �.

Lemma A.2 (Monotonicity of enforcement monitors) Function E : tw(Σ)×R≥0 →
tw(Σ) is monotonic in its second parameter:

∀σ ∈ tw(Σ), ∀t, t′ ∈ R≥0 : t ≤ t′ =⇒ E(σ, t) � E(σ, t′).

The lemma states that for any input sequence σ, if we consider two time instants t, t′

such that t ≤ t′, then the output of the enforcement monitor at time t is a prefix of the
output at time t′.

Proof A.2 (of Lemma A.2) The proof directly follows from the definitions of the
function E associated to an enforcement monitor (see Section 5.5.4, p. 67) which di-
rectly depends on Eioo, which is itself monotonic over time (because of the definition of
enforcement monitors).

As a consequence, one can naturally split the output of the enforcement monitor over
time, as it is stated by the following corollary.

Lemma A.3 (Separation of the output of the EM over time)

∀σ ∈ tw(Σ), ∀t1, t2, t3 ∈ R≥0 : t1 ≤ t2 ≤ t3 =⇒ E(σ, t1, t3) = E(σ, t1, t2) · E(σ, t2, t3).



The lemma states that for any sequence σ input to E , if we consider three time instants
t1, t2, t3 ∈ R≥0 such that t1 ≤ t2 ≤ t3, the output of E between t1 and t3 is the
concatenation of the output between t1 and t2 and the output between t2 and t3.

Proof A.3 (of Lemma A.3) Recall that for any two t, t′ ∈ R≥0 such that t′ ≥ t,
E(σ, t, t′) is the output sequence of an enforcement monitor between t and t′. The
lemma directly follows from the definition of E(σ, t, t′) = E(σ, t)−1 · E(σ, t′).

The following lemma states that, at some time instant t, the output of the enforcement
monitor only depends on what has been observed until time t. In other words, the
enforcement monitor works in an online fashion.

Lemma A.4 (Dependency of the output on the observation only)

∀σ ∈ tw(Σ), ∀t ∈ R≥0 : E(σ, t) = E(obs(σ, t), t).

Proof A.4 (of Lemma A.4) The proof of the lemma directly follows from the defini-
tions of Eioo (Definition 5.11, p. 68) and obs (in Section 7.2). Indeed, using obs(σ, t) =
obs(obs(σ, t), t), we deduce that Eioo(σ, t) = Eioo(obs(σ, t), t), for any σ ∈ tw(Σ) and
t ∈ R≥0. Using E(σ, t) = Π3(Eioo(σ, t)), we can deduce the expected result.

The following lemma states that after reading some input sequence σ entirely, only the
memory content σms and the value of the clock t influence the output of the enforcement
monitor. More specifically, after completely reading some sequence, if an enforcement
monitor reaches some configuration containing σms in its memory, its future output is
fully determined by the memory content σms (containing the corrected sequence) and
the value of the clock variable t, during the total time needed to output it.

Lemma A.5 (Values of configout when releasing events)

∀σ, σms, σmc ∈ tw(Σ), ∀t ∈ R≥0,∀q ∈ Q :

t ≥ end(σ) ∧ configout(σ, t) = (σms, σmc, t, q)

=⇒ ∀σ′ms � σms, configout(σ, end(σ′ms)) = (σ′−1
ms · σms, σmc, end(σ′ms), q).

The lemma states that, whatever is the output configuration (σms, σmc, t, q) reached by
reading some input sequence σ at some time instant t ≥ end(σ), then for any prefix
σ′ms of σms, the output configuration reached at time end(σ′ms) (output time of the last
event in σ′ms) is such that σ′ms has been released from the memory (the memory is thus
σ′−1

ms · σms) and the clock value in this configuration is end(σ′ms).

Proof A.5 (of Lemma A.5) The proof is a straightforward induction on the length
of σ′ms. It uses the fact that the considered configurations occur at time instants greater
than end(σ), hence implying that no input event can be read any more. Consequently,
following the definition of the enforcement monitor (Definition 5.10, p. 64), on the
configurations of the enforcement monitor, only the idle and dump rules apply. Be-
tween end(σ′ms) and end(σ′ms · (t, a)) where σ′ms � σ′ms · (t, a) � σms, the configuration of



the enforcement monitor evolves only using the idle rule (no other rule applies) until
configin(σ, end(σ′ms ·(t, a))) = (σ′−1

ms ·σms, σmc, end(σ′ms ·(t, a)), q). The dump rule is then

applied to get the following derivation (σ′−1
ms · σms, σmc, end(σ′ms · (t, a)), q)

ε/dump(t,a)/ε
↪→

((σ′ms · (t, a))−1 · σms, σmc, end(σ′ms · (t, a)), q).

The following lemma states that when an enforcement monitor has nothing to read
in input anymore, what it releases as output is the observation of its memory content
over time.

Lemma A.6 (Output of the EM according to memory content)

∀σ, σms, σmc ∈ tw(Σ), ∀t ∈ R≥0,∀q ∈ Q :

t ≥ end(σ) ∧ configout(σ, t) = (σms, σmc, t, q)

=⇒ ∀t′ ∈ R≥0 :

t ≤ t′ ≤ end(σms) =⇒ E(σ, t, t′) = obs(σms, t
′).

The lemma states that, if after some time t, after reading an input sequence σ,
the enforcement monitor is in an output configuration that contains σms as a memory
content, whatever is the time instant t′ between t and end(σms), the output of the
enforcement monitor between t and t′ is the observation of σms with t′ time units.

Proof A.6 (of Lemma A.6) The proof is performed by induction on the length of
σms and uses Lemma A.5.

– Case |σms| = 0. In this case, σms = ε and, since end(ε) = 0, t ≤ t′ does not hold,
and thus the lemma vacuously holds.

– Induction case. Let us suppose that the lemma holds for all prefixes of σms of some
maximum length n ∈ [0, |σms|−1]. Let us consider σms = σ′ ·(tl, a) where σ′ is the
prefix of σms of length n, and (tl, a) ∈ R≥0×Σ. On the one hand, at time end(σ′),
according to Lemma A.5, we have configout(σ, end(σ′)) = ((tl, a), σmc, end(σ′), q)
for some σmc ∈ tw(Σ) and q ∈ Q. For any t′ ≤ end(σ′), the lemma vacuously
holds. On the other hand, let us consider some t′ ∈ [end(σ′), tl], we have:

E(σ, t, t′) = E(σ, t, end(σ′)) · E(σ, end(σ′), t′).

Using the induction hypothesis, we find E(σ, t, end(σ′)) = obs(σ′, end(σ′)) = σ′.
Using the semantics of the enforcement monitor (only the dump and idle rules
apply, no new event is received), we obtain E(σ, end(σ′), t′) = obs((tl, a), t′).
Thus, E(σ, t, t′) = σ′ · obs((tl, a), t′) = obs(σ′ · (tl, a), t′).

The following lemma states that, for any input σ, after observing the entire input
(that is, at any time greater than or equal to end(σ)), the content of the internal
memory (σc) of the enforcement function and the enforcement monitor are the same.

Lemma A.7 (Content of the internal memory)

∀σ ∈ tw(Σ), ∀t ∈ R≥0 : t ≥ end(σ) =⇒ Π2(store(σ)) = Π2(configout(σ, t)).



Proof A.7 (of Lemma A.7) The proof is performed by induction on the length of σ.

– Case |σ| = 0. In this case, from the definition of the enforcement monitor (Defi-
nition 5.10, p. 64), none of the store rules can be applied. Consequently, we have
Π2(configout(σ, t)) = ε. Regarding the enforcement function, as per Definition 5.8,
we have Π2(store(ε)) = ε.

– Induction case. Let us suppose that the lemma holds for any timed word σ of some
length n, for some n ∈ N. Let us consider σ′ = σ · (tl, a) where (tl, a) ∈ R≥0 ×Σ.
From the induction hypothesis, for any t ≥ tl, we have Π2(store(σ)) = Π2(configout(σ, t)).
Let σc = Π2(store(σ)). Consequently, we also have configin(σ, tl) = ( , σc, tl, ) =
configin(σ · (tl, a), tl).
From the definition of store, we have Π2(store(σ · (tl, a))) = σ′c, where σ′c is either
ε, σc · (tl, a), or σc depending on which case of the store function applies.
Regarding the enforcement monitor, from the update function (since each case
in store has a corresponding case in update), we also have configout(σ · (tl, a), tl)
= ( , σ′c, tl, ) (which is obtained by applying one of the store rules based on the
value returned by function update). For t > tl, since none of the store rules can
be applied, we can conclude that configout(σ · (tl, a), t) = ( , σ′c, t, ).
Thus, we have Π2(store(σ · (tl, a))) = Π2(configout(σ · (tl, a), t)).

A.3.4 Proof of Proposition 5.3: Relation between Enforcement Func-
tion and Enforcement Monitor

We shall prove that, given a property ϕ, the associated enforcement monitor as per
Definition 5.10 (p. 64) implements the associated enforcement function Eϕ : tw(Σ) →
tw(Σ) as per Definition 5.8 (p. 55). That is:

∀σ ∈ tw(Σ), ∀t ∈ R≥0 : obs(Eϕ(σ), t) = E(σ, t).

The proof is done by induction on the length of the input timed word σ.

Induction Basis Let us suppose that |σ| = 0, thus σ = ε in tw(Σ). On the one
hand, we have Eϕ(σ) = ε, and thus ∀t ∈ R≥0 : obs(Eϕ(σ), t) = ε. On the other hand,
the word Eioo(ε, t) over the input-operation-output alphabet is such that ∀t ∈ R≥0 :
Π1(Eioo(ε, t)) = ε. Thus, according to the definition of the enforcement monitor, the
rules store-ϕ, storesup-ϕ, and store-ϕ cannot be applied. Consequently, the memory
of the enforcement monitor σms remains empty as in the initial configuration. It follows

that the dump rule also cannot be applied. We have then ∀t ∈ R≥0 : cE0
ε/ idle(t)/ε
↪→E

(ε, ε, t, q0), and thus E(ε, t) = ε. Thus, ∀t ∈ R≥0 : obs(Eϕ(σ), t) = E(ε, t).

Induction Step Let us suppose that obs(Eϕ(σ), t) = E(σ, t) for any timed word
σ ∈ tw(Σ) of some length n ∈ N, at any time t ∈ R≥0. Let us now consider some input
timed word σ · (tn+1, a) for some σ ∈ tw(Σ) with |σ| = n, tn+1 ∈ R≥0, and a ∈ Σ. We
want to prove that obs(Eϕ(σ · (tn+1, a)), t) = E(σ · (tn+1, a), t), at any time t ∈ R≥0.



Let us consider some time instant t ∈ R≥0. Note that end(σ · (tn+1, a)) = tn+1. We
distinguish two cases according to whether tn+1 > t or not, that is whether σ · (tn+1, a)
is completely observed or not at time t.

– Case tn+1 > t. In this case, obs (σ · (tn+1, a), t) = obs(σ, t), i.e., at time t, the
observations of σ and σ · (tn+1, a) are identical.
On the one hand, from the definition of Eϕ (since the store and delayed subse-
quence are defined such that the date of each event in the output is greater than
or equal to the date of the corresponding event in the input), we have:

obs (Eϕ (σ · (tn+1, a)) , t) = obs (Π1 (store(σ · (tn+1, a))) , t)

= obs
(
Π1

(
store(σ)

)
, t
)

= obs (Eϕ (σ) , t) .

On the other hand, regarding the enforcement monitor, since obs (σ · (tn+1, a) , t) =
obs(σ, t), using Lemma A.4 (p. 131), we obtain E(σ · (tn+1, a), t) = E(σ, t). Us-
ing the induction hypothesis, we can conclude that obs (Eϕ (σ · (tn+1, a)) , t) =
E (σ · (tn+1, a) , t).

– Case tn+1 ≤ t. In this case, we have obs(σ · (tn+1, a), t) = σ · (tn+1, a) (i.e.,
σ · (tn+1, a) is observed entirely at time t). Using Remark A.3 (p. 130), we
know that the configuration of the enforcement monitor at time time(σ ·(tn+1, a))
is configin (σ · (tn+1, a) , tn+1) = (σms, σmc, tn+1, qσ) for some σms, σmc ∈ tw(Σ),
qσ ∈ Q. Using Lemma A.7, we also have

Π2(store(σ)) = σc = Π2(configin (σ · (tn+1, a) , tn+1)) = σmc.

Observe that configin

(
σ, tn+1

)
= configin

(
σ · (tn+1, a), tn+1

)
because of i) the

definition of configin using the definition of Eioo and ii) the event (tn+1, a) has not
been yet consumed through none of the store rules by the enforcement monitor
at time tn+1.
We distinguish two cases according to whether σc · (tn+1, a) can be delayed into
a word satisfying ϕ or not, i.e., whether κϕ(σs, σc · (tn+1, a)) = ∅, or not.
– Case κϕ(σs, σc · (tn+1, a)) = ∅. From the definition of function store, we have

store(σ · (tn+1, a)) = (σs, σ
′
c), and Π1

(
store(σ · (tn+1, a))

)
= σs. We also have

Π1

(
store(σ)

)
= σs. From the definition of Eϕ and obs, we have obs(Eϕ(σ ·

(tn+1, a)), t) = obs(Eϕ(σ), t).
Now, regarding E , according to the definition of update, we have update(qσ,
σmc, (tn+1, a)) = (qσ, σmc, bad) or (qσ, σmc · (tn+1, a), c bad). According to the
definition of the transition relation, we have:

(σms, σmc, tn+1, qσ)
(tn+1,a)/store−ϕ(tn+1,a)/ε

↪→E (σms, σ
′
mc, tn+1, qσ).

where, σ′mc = σmc if update(qσ, σmc, (tn+1, a)) = (qσ, σmc, bad), and σ′mc =
σmc·(tn+1, a) otherwise. Thus configout(σ·(tn+1, a), tn+1) = (σms, σ

′
mc, tn+1, qσ).

Let us consider tε ∈ R≥0 such that between tn+1− tε and tn+1, the enforcement
monitor does not read any input nor produce any output, i.e., for all t ∈
[tn+1 − tε, tn+1], config(t) is such that only the idle rule applies.



Let us examine E(σ · (tn+1, a), t). We have:

E(σ · (tn+1, a), t) = E(σ · (tn+1, a), tn+1 − tε)
·E(σ · (tn+1, a), tn+1 − tε, tn+1)

·E(σ · (tn+1, a), tn+1, t).

Let us examine E(σ, t). We have:

E(σ, t) = E(σ, tn+1 − tε)
·E(σ, tn+1 − tε, tn+1)

·E(σ, tn+1, t).

Observe that E(σ·(tn+1, a), tn+1−tε) = E(σ, tn+1−tε) because obs(σ·(tn+1, a), tn+1−
tε) = σ according to the definition of obs. Moreover, E(σ · (tn+1, a), tn+1 −
tε, tn+1) = ε since only the idle rule applies during the considered time inter-
val. Furthermore, according to Lemma A.6, since configout(σ ·(tn+1, a), tn+1) =
(σms, σ

′
mc, tn+1, qσ), we get E(σ · (tn+1, a), tn+1, t) = obs(σms, t). Moreover,

we know that configin(σ, tn+1) = (σms, σmc, tn+1, qσ). Since the enforcement
monitor is deterministic, and from Remark A.1 (p. 129), we also get that
configout(σ, tn+1) = (σms, σmc, tn+1, qσ). Using Lemma A.6 (p. 132) again, we
get E(σ, tn+1, t) = obs(σms, t).
Consequently we can deduce that E(σ · (tn+1, a), t) = E(σ, t) = obs(Eϕ(σ),
t) = obs(Eϕ(σ · (tn+1, a)), t).

– Case κϕ(σs, σc · (tn+1, a)) 6= ∅. Regarding Eϕ, from the definition of function
store, we have store(σ · (tn+1, a)) = (σs · min�lex,end κϕ(σs, σc · (tn+1, a)), ε),
and Π1

(
store(σ · (tn+1, a))

)
= σs · min�lex,end κϕ(σs, σc · (tn+1, a)). Regard-

ing the enforcement monitor, according to the definition of update, we have
update(qσ, σmc, (tn+1, a)) = (q′, w, ok) with w = min�lex,end κϕ(σs, σc·(tn+1, a)),
since, σc = σmc and from the definition of κϕ and update, the dates computed
for σc · (tn+1, a) by both these functions are equal. From the definition of the
transition relation, we have:

(σms, σmc, tn+1, qσ)
(tn+1,a)/store−ϕ(tn+1,a)/ε

↪→E (σms · w, ε, tn+1, q
′),

Thus configout(σ · (tn+1, a), tn+1) = (σms · w, ε, tn+1, q
′).

Let us consider tε ∈ R≥0 such that between tn+1− tε and tn+1, the enforcement
monitor does not read any input nor produce any output, i.e., for all t ∈
[tn+1 − tε, tn+1], config(t) is such that only the idle rule applies.
Let us examine E(σ · (tn+1, a), t). We have:

E(σ · (tn+1, a), t) = E(σ · (tn+1, a), tn+1 − tε)
·E(σ · (tn+1, a), tn+1 − tε, tn+1)

·E(σ · (tn+1, a), tn+1, t).



Let us examine E(σ, t). We have:

E(σ, t) = E(σ, tn+1 − tε)
·E(σ, tn+1 − tε, tn+1)

·E(σ, tn+1, t).

Observe that E(σ·(tn+1, a), tn+1−tε) = E(σ, tn+1−tε) because obs(σ·(tn+1, a), tn+1−
tε) = σ according to the definition of obs. Moreover, E(σ · (tn+1, a), tn+1 −
tε, tn+1) = ε since only the idle rule applies during the considered time inter-
val.
Furthermore, according to Lemma A.6, since configout(σ · (tn+1, a), tn+1) =
(σms · w, ε, tn+1, q

′), we get E(σ · (tn+1, a), tn+1, t) = obs(σms · w, t).
Now we further distinguish two more sub-cases, based on whether end(σms·w) >
t or not (whether all the elements in the memory can be released as output by
time t or not).
– Case end(σms · w) > t.

We further distinguish two more sub-cases based on whether end(σms) > t,
or not.
– Case end(σms) > t. In this case, we know that obs(σms ·w, t) = obs(σms, t).

Hence, we can derive that E(σ · (tn+1, a), t) = E(σ, t). Also, from the
induction hypothesis, we know that E(σ, t) = obs(Eϕ(σ), t).
Regarding Eϕ, we have

store(σ · (tn+1, a)) = Π1

(
store(σ)

)
·min�lex,end κϕ(σs, σc · (tn+1, a)).

And

obs(Eϕ(σ · (tn+1, a)), t)

= obs
(

Π1

(
store(σ · (tn+1, a))

)
, t
)

= obs(Π1

(
store(σ)

)
·min�lex,end κϕ(σs, σc · (tn+1, a)), t).

One can have obs(Eϕ(σ · (tn+1, a)), t) = Π1

(
store(σ)

)
· o, where o 4

min�lex,end κϕ(σs, σc · (tn+1, a)), which is equal to obs(Eϕ(σ), t) · o, only
if the dates computed by the update function are different from the dates
computed by Eϕ. This would violate the induction hypothesis stating
that E(σ, t) = obs(Eϕ(σ), t). Hence, we have obs(Eϕ(σ · (tn+1, a)), t)
= obs (Π1 (store (σ)) , t) = obs(Eϕ(σ), t). Thus, obs(Eϕ(σ · (tn+1, a)), t) =
E(σ · (tn+1, a), t).

– Case end(σms) ≤ t. In this case, we can follow the same reasoning as in
the previous case to obtain the expected result.

– Case end(σms · w) ≤ t.
In this case, similarly following Lemma A.6 (p. 132), we have E(σ·(tn+1, a), tn+1, t) =
obs(σms ·w, t) = σms ·w. We can also derive that E(σ, tn+1, t) = σms. Conse-
quently, we have E(σ · (tn+1, a), t) = E(σ, t) ·w. From the induction hypoth-
esis, we know that obs(Eϕ(σ), t) = E(σ, t), and we have E(σ · (tn+1, a), t) =
obs(Eϕ(σ), t) · w.



Moreover, we have

store(σ · (tn+1, a)) = Π1

(
store(σ)

)
·min�lex,end κϕ(σs, σc · (tn+1, a)),

and thus

obs(Eϕ(σ · (tn+1, a), t)

= obs (Π1 (store (σ)) ·min�lex,end κϕ(σs, σc · (tn+1, a)), t) .

Henceforth, we have obs(Eϕ(σ ·(tn+1, a)), t) = store(σ) ·min�lex,end κϕ(σs, σc ·
(tn+1, a)) = Eϕ(σ) · min�lex,end κϕ(σs, σc · (tn+1, a)), since, σc = σmc and
from the definition of κϕ and update, we know the dates computed for the
subsequence σc · (tn+1, a) by Eϕ and E are equal. Finally, we have obs(Eϕ(σ ·
(tn+1, a)), t) = E(σ · (tn+1, a), t).
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