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A B S T R A C T

Since several years the virtualization of infrastructures became one of the major re-
search challenges. These new virtual machines consume less energy while delivering
new services: live migration, consolidation and isolation between tenants. However,
many attacks hinder the global adoption of Cloud computing.

VESPA
Self-protection has recently raised growing interest as possible element of answer to

the cloud computing infrastructure protection challenge. Faced with multiple threats
and heterogeneous defense mechanisms, the autonomic approach proposes simpler,
stronger, and more efficient cloud security management. Yet, previous solutions fall
at the last hurdle as they overlook key features of the cloud, by lack of flexible secu-
rity policies, cross-layered defense, multiple control granularities, and open security
architectures.

This thesis presents VESPA, a self-protection architecture for cloud infrastructures
overcoming such limitations. VESPA is policy-based, and enforces security at two
levels, both within and across infrastructure layers. Flexible coordination between
self-protection loops allows enforcing a rich spectrum of security strategies such as
cross-layer detection and reaction. A multi-plane extensible architecture also enables
simple integration of commodity detection and reaction components. Evaluation of a
VESPA implementation shows that the design is applicable for effective and flexible
self-protection of cloud infrastructures.

KungFuVisor
Recently, some of the most powerful attacks against cloud computing infrastruc-

tures target their very foundation: the hypervisor or Virtual Machine Monitor (VMM).
In many cases, the main attack vector is a poorly confined device driver in the vir-
tualization layer, enabling to bypass resource isolation and take complete infrastruc-
ture control. Current architectures offer no protection against such attacks. At best,
they attempt to contain but do not eradicate the detected threat, usually with static,
hard-to-manage defense strategies. This thesis proposes an altogether different ap-
proach by presenting KungFuVisor, derived from VESPA. It is a framework to build
self-defending hypervisors. The framework regulates hypervisor protection through
several coordinated autonomic security loops which supervise different VMM layers
through well-defined hooks. Thus, interactions between a device driver and its VMM
environment may be strictly monitored and controlled automatically. The result is a
very flexible self-protection architecture, enabling to enforce dynamically a rich spec-
trum of remediation actions over different parts of the VMM, also facilitating defense
strategy administration.

Conclusion
VESPA is a generic, flexible and open architecture enhancing virtualized systems se-

curity. We showed the application to three different protection scheme: virus infection,
mobile clouds and hypervisor drivers. Through the analysis and the evaluation of the
architecture, we showed that cloud infrastructure security can be enhanced.
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R É S U M É

Depuis plusieurs années la virtualisation des infrastructures est devenue un des en-
jeux majeurs dans la recherche. Ces nouveaux types de machines fournissent des con-
sommations d’énergie moindres, ainsi que de nouvelles opportunités. La migration
à chaud, la consolidation et l’isolation sont les principaux atouts de la virtualisation.
Cependant plusieurs attaques les ont mis à mal et freinent l’adoption de ce nouveau
paradigme.

VESPA : Architecture de sécurité pour les environnements virtualisés
L’auto protection est récemment devenue un des centres d’intérêt permettant de

répondre aux enjeux de protection des infrastructures cloud computing. Face à de mul-
tiples menaces et des mécanismes de défense hétérogènes, l’approche autonomique
propose une gestion simplifiée, robuste et plus efficace de la sécurité du cloud. Au-
jourd’hui, les solutions existantes ne s’adaptent pas complètement car elles ne pren-
nent pas en compte les fonctionnalités clefs du cloud. Le manque de politiques de
sécurité flexibles, une défense multi-niveaux, des contrôles à granularité variable, ou
encore une architecture de sécurité ouverte.

Cette thèse présente VESPA, une architecture d’autoprotection pour les infrastruc-
tures cloud répondant aux limitations précédentes. VESPA est construit autour de poli-
tiques, et peut réguler la sécurité à deux niveaux, directement au sein d’une couche ou
bien à l’aide d’une approche inter couche. La coordination flexible entre les boucles
d’autoprotection permet de mettre en place un large spectre de stratégies de sécurité
comme des détections et des réactions impliquant plusieurs niveaux. Une architec-
ture extensible multi plans permet d’intégrer simplement des éléments de sécurité
déjà présents. L’évaluation de plusieurs implémentations de VESPA montre que cette
architecture délivre une autoprotection efficace et flexible des infrastructures cloud.

KungFuVisor : Protection autonomique des hyperviseurs
Depuis peu, les attaques les plus critiques contre les infrastructures cloud visent les

briques les plus sensibles: l’hyperviseur ou moniteur de machine virtuelle (VMM). A
chaque fois, le vecteur d’attaque principal est un pilote de périphérique mal confiné
dans la couche de virtualisation. Cela permet d’outrepasser l’isolation des ressources
et de prendre le contrôle complet de l’infrastructure. Les architectures actuelles n’offrent
que peu de protections face à ces attaques. Au mieux, les hyperviseurs tentent de con-
finer la menace détectée mais sans l’éradiquer. Les mécanismes de défense mis en jeu
sont statiques et difficile à gérer.

Cette thèse propose une approche différente en présentant KungFuVisor, un canevas
logiciel pour créer des hyperviseurs autoprotégés spécialisant l’architecture VESPA. Le
canevas logiciel régule la protection de l’hyperviseur au travers de plusieurs boucles
d’auto-protection synchronisées. Ces boucles autonomiques supervisent plusieurs cou-
ches de l’hyperviseur grâce à plusieurs mécanismes interception. Les interactions en-
tre les drivers et le VMM peuvent alors être finement surveillées et contrôlées de façon
automatique. Le résultat est une architecture d’autoprotection flexible permettant de
mettre en place une large panoplie de réactions. Le contrôle des différentes parties du
VMM permet d’administrer des stratégies de défense simplement.

Conclusion
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VESPA est une architecture générique, flexible et ouverte permettant d’améliorer
la sécurité des systèmes basés sur la virtualisation. Nous avons montré son applica-
tion à trois types de protection différents : les attaques virales, la gestion hétérogène
multi-domaines et l’hyperviseur. À travers l’étude et la validation des architectures
proposées, nous avons montré que la sécurité des infrastructures cloud peut être
améliorée grâce à VESPA.
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1
INTRODUCT ION AND BACKGROUND

1.1 new challenges for distributed systems

Computers have evolved from complex and massive mainframes to light and handy
workstations. Thus, we are experiencing new ways to operate and use machines. Phys-
ical server virtualization enables on-demand allocation of memory, computer or disk
space to meet needs overtime. New services lighten IT management, migrating vir-
tual machines between countries to concentrate workloads and cutting costs. This is
the Cloud computing era.

This disruptive distributed computing model for large-scale networks contracts out
corporate IT to third parties. This shared pool of computing, storage, networking and
services become accessible rapidly and on demand. Fore casted benefits include flexi-
ble and dynamic provisioning, simpler and automated administration of data centers,
and sharing of nearly unlimited CPU, bandwidth, or disk space.

Unfortunately, security is viewed as one of the main adoption stoppers to cloud com-
puting. The complexity of infrastructures leaves the door open to various threats com-
ing from the outside and from the inside [3]. Intrusions, malware or security policy-
violations of curious or malicious users are just but a few. This is particularly true at
the foundation: the infrastructure-level cloud model, also known as Infrastructure-as-
a-Service (IaaS).

If traditional security techniques such as encryption remain relevant for cloud in-
frastructures, those new threats need specific protection. However, few solutions are
available to tackle those challenges. The tools are heterogeneous and fragmented,
with lack of an overall vision to compose them into an integrated security architecture
for cloud environments.

However, several problematics define the areas for further research. The threats
depend on the cloud service delivery and deployment models. Also, the defenses acti-
vation needs short response times and the manual security maintenance is impossible.
Thus, a flexible, dynamic, and automated security management of cloud data centers
is clearly lacking today. This thesis provides elements of answer to those unsolved is-
sues.

1.1.1 Information security principles

This manuscript focuses on computer security applied to large-scale distributed sys-
tems. Thus, we define security building blocks and how to fulfil them, with an appli-
cation to cloud environments.

Ensuring security means prevention of illicit access and alteration of the informa-
tion while delivering legitimate access and modification of the information [146]. Illicit
modifications are the results of security properties bypass. The security properties de-
fine who have access to system information, how to access them and what operations
are allowed. These security properties are part of the security policies.

1



2 introduction and background

Figure 1: Compromising confidentiality: benchmarking

Figure 2: Compromising confidentiality: extracting data

1.1.1.1 Confidentiality

Confidentiality is the system capacity to prevent information disclosure, in other
words to make information unreachable to users not allowed to access it. This def-
inition covers not only information as data and programs, but also their existence
and flows. Hence, all possible information paths have to be analyzed and secured.
This work is exponential with the number of elements, not to say impossible with the
diversity of cloud infrastructures.

Attacks against confidentiality aims at recovering information despite security poli-
cies. The example of covert channels [236] through greedy behavior, and differential
analysis between processor response times allows an attacker to extract other tenant
private certificates.

Let user A being mainly idle, and user B consuming all resources. User B bench-
marks and profile interrupts (Figure 1) while he is the only CPU user. When user
A sends an interrupt, user B detects a different access time as the processor cannot
handle more interrupts (Figure 2). User B builds the activity of user A and breaks
confidentiality. Section 2.2.3 details these attacks.

1.1.1.2 Integrity

Integrity is the system ability to prevent information corruption. Intentional corrup-
tion aims at benefiting from the service through information rewriting and erasure.
Thus, an attacker may intercept traffic and perform a man-in-the-middle attack [18].
The traffic is filtered, modified and sent to the user with only small changes to be
stealth and mimic original behavior.

Cloud infrastructures introduce new vectors for attackers to tamper with informa-
tion. The example of hypervisor compromise [70] by isolation breakout shows that an
attacker can threaten its integrity.

Unintentional corruption also appears on hardware [61] and corrupt information.
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1.1.1.3 Availability

Availability is the system ability to warrant operational service. Attacks against the
availability are closely related to integrity, where Denial of Service (DoS) is the destruc-
tion of information.

Attacks against availability in the context of virtualization are greedy behaviors,
such as migrating a machine back and forth infinitely [190]. The virtualization layer
wastes resources, and the service is down most of the time. Accidents occur through
inattentive administrators, which shutdown the cooling system while working on
physical servers, or unplugging a cable and disabling server access.

1.1.2 Our approach

Although most of the roadblocks defined in Appendix A are critical, in this thesis, we
tackle the problem of IaaS resource isolation, both from the computing and network-
ing perspectives. Thus we address the hypervisor security, network isolation, and elastic
security roadblocks in the first two areas of the Appendix. We also address the openness
and end-to-end security roadblocks, by defining building blocks for a reference cloud
security framework. The following paragraphs give an overview of each roadblock.

The hypervisor is the building block of the system virtualization. Thus hypervisor
security only addresses one layer, but involve multiple organizations while distributed.
The virtualization ecosystem is under development and involves easy-to-deploy com-
ponents, but is very specific to the hypervisor architecture.

Multiple virtualization layers can perform network isolation in different ways. VM
layer is able to isolate programs network flows with firewalls. Hypervisor layer may
restrict virtual interfaces to Virtual Local Area Network (VLAN) or specific switches,
and physical equipments perform network isolation through legacy mechanisms. Also
multiple organizations share out the same isolation rules to adopt a global behavior.
Vendors and developers opt in delivering seamless solution easily deployable.

Elastic security involves resources allocation at different level and over multiple
organization, being able to integrate new security resources dynamically.

End-to-end security requires confidentiality, integrity and availability at every layer
crossed, regardless of the number or organization.

1.1.3 Security properties

IaaS infrastructure has to integrate three main features of cloud environments to ad-
dress the problems selected in our approach (see the mapping between roadblocks
and security properties in Table 1):

Multi-layering. A Cloud infrastructure is composed of many independent layers
with their specific security mechanisms, while attacks may involve multiple lay-
ers. Also, reactions effectiveness against attacks can be more relevant. A specific
layer can get a better global picture with information coming from other layers.

Multi-laterality. A Cloud may involve multiple organizations, with their own objec-
tives, calling for flexible policies. Such policies require high-level expressiveness
to abstract relations with specific equipment.
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��������������
Roadblocks

Properties Multi-Layering Multi-Laterality Extensibility

Hypervisor security � � �

Network isolation � � �
Elastic security � � �
End-to-end security � � �

Table 1: Mapping Roadblocks to Properties

Extensibility. Clouds are increasingly evolving towards interoperability with other
clouds. Thus, closed-world vision of security is inadequate. The integration of
new security components have to be easy, straightforward and transparent.

1.2 research objectives

The objectives of this thesis are twofold: (1) propose and implement an end-to-end se-
curity architectural blueprint for cloud environments providing an integrated view of
protection mechanisms; and (2) define within that architecture mechanisms enabling
self-protection of the cloud infrastructure.

1.2.1 A reference security architecture for cloud environments

This thesis explores component-based designs to orchestrate and dynamically com-
pose different security building blocks like hypervisors, hardware security elements
(e.g., Trusted Platform Modules (TPMs)), network protections (firewalls, Intrusion De-
tection System (IDS)/Intrusion Prevention System (IPS), Virtual Private Networks (VPNs)),
and secure storage, privacy-enhancing, or trust management mechanisms. Each com-
ponent declares its guaranteed security properties using contracts, which are com-
posed to derive the overall cloud security objectives. This end-to-end security archi-
tecture is validated through the realization of a prototype of secure cloud and several
use case.

To reach the first objective, Bruneton et al. [41] demonstrated the viability of compo-
nent-based design to build complex systems from heterogeneous building blocks and
reach flexible security. We explore that approach to orchestrate and adapt security ser-
vices in a cloud (e.g., as Web Services) to compose individual security services flexibly
inside a unified security architecture. Security properties provided by individual secu-
rity services are expressed as flexible contracts, e.g., Service-Level Agreements (SLAs),
to derive overall security objectives guaranteed by the cloud infrastructure.

1.2.2 Self-protected clouds

Specify and implement self-protection mechanisms within the cloud is the second
objective. We identify the components needed to realize one or more self-protection
loops to make cloud security self-managed. This thesis also defines self-protection
architecture. The identified security components are then implemented and integrated
into the secure cloud prototype.
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��������������
Design Principles

Properties Multi-Layering Multi-Laterality Extensibility

P1 � � �
P2 � � �

P3 � � �
P4 � � �

Table 2: Mapping Properties to Design Principles

To reach the second objective, IBM’s autonomic computing approach [47] for self-
managed security also proved its interest to build security infrastructures with mini-
mal security administration overheads. It satisfies multiple security requirements, and
react rapidly to detected threats: security parameters are autonomously negotiated
with the environment to match the ambient estimated risks and achieve an optimal
level of protection. A first generic component-based framework for self-protection has
been defined [93]. The first part of this dissertation work study whether this frame-
work is sufficient for self-management of cloud security, and define the necessary
extensions for that purpose.

1.3 design principles

With the security properties and the objectives, we expose a set of design principles,
referred as PX or principle, for a self-protection cloud architecture (see Table 2):

[P1] Policy-based self-protection. The policy-driven paradigm has successfully demon-
strated its power and generality to increase adaptability in self-management [193].
Therefore, a richer choice of security strategies can be supported in each phase of
the control loop [111]. For instance, this thesis defines and enforces a wider range
of detection and reaction policies. Model-based designs also generally result in
cleaner, more extensible software architectures. More generally, policy automa-
tion contributes to a more unified management of security, with consistent en-
forcement across security silos. P1 thus addresses heterogeneity, multi-layering,
and multi-laterality.

[P2] Cross-layer defense. Events detected in one layer trigger reactions in other layers.
Conversely, a reaction may be launched based on events aggregated from several
layers. This coordinated approach helps to bridge the semantic gap between
layers who often are not aware of one another, each with their own monitoring
mechanisms and representation for the monitored information of different levels
of abstraction. The cross-layer approach also improves security by helping to
capture the overall extent of an attack, often not limited to a single layer, and to
better respond to it. P2 thus addresses notably the multi-layering challenge.

[P3] Multiple self-protection loops. A simple decision can generate several reactions,
extending monitoring granularity. Multiple stages of decision are also possible.
Different scope levels for security supervision may thus be defined and coordi-
nated. Several degrees of optimality are chosen for the response: either local and
fast, but of variable accuracy, or broader, with a higher-level of relevance due
to more knowledge available, but slower [140]. Trade-offs with other properties
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than security are also possible. P3 addresses the multi-laterality challenge by
considering self-protection over multi-decisional and reaction paths.

[P4] Open architecture. The security architecture have to integrate easily and com-
pose flexibly several types of detection and reaction strategies and mechanisms.
The architecture should notably allow integrating simply heterogeneous off-the-
shelf security components, to support the widest array possible of defense mech-
anisms to mitigate both known and unknown threats. This principle also enables
to achieve better interoperability between security components across clouds. P4
essentially addresses the openness and heterogeneity challenges, along with the
necessity to defend the system against multiple threats.

1.3.1 Research environment

Substantial prior work has attempted to build systems fulfilling one or several of those
principles, in terms of policy management frameworks, self-protecting distributed sys-
tems, protection mechanisms for virtual machines and for the virtualization layer, or
traditional Intrusion Detection and Prevention Systems (IDPSs) and anti-malware tools.
Yet those solutions always seem to fall short of addressing one principle or more.
For instance, despite quite extensive models, generic policy frameworks usually little
address security or cloud environments. Most of the time, policies are not granular,
and does not address multi-layered defense. Existing cloud protection mechanisms
are either detection- or reaction-oriented, but rarely both. Similarly, they tackle cross-
layering or have flexible policies, but not both. Integration with outside systems also
remains difficult. Legacy IDPSs are more open, but often without a well-formalized
adaptation model. Overall, the multiple self-protection loops addressed in P3 are al-
most always ignored.

1.3.2 Our contributions

To overcome those limits, this thesis presents an architecture and framework based on
the previous design principles to build a self-defending IaaS infrastructures. Our solu-
tion called Virtual Environment Self-Protection Architecture (VESPA) regulates protec-
tion of IaaS resources through several coordinated autonomic computing security loops
which monitor the different infrastructure layers. The result is a flexible approach for
self-protection of IaaS resources.

This thesis details how we built:

VESPA a self-protection architecture for cloud infrastructures overcoming previous limi-
tations. VESPA is policy-based, and regulates security at two levels, both within
and across infrastructure layers. Flexible coordination between self-protection
loops allows enforcing a rich spectrum of security strategies such as cross-layer
detection and reaction. A multi-plane extensible architecture also enables simple
integration of commodity detection and reaction components. Evaluation of a
VESPA implementation shows that the design is applicable for effective and flex-
ible self-protection of cloud infrastructures. However, some legacy components
do not offer enough functionalities to build a secure cloud. Even the core virtual-
ization component does not provide remediation facilities, that leads to our next
contribution.
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KungFuVisor a framework to build self-defending hypervisors using VESPA. Commodity hy-
pervisors are able to detect attacks against their integrity, but lack the ability
to repair themself. To answer this issue, the framework regulates hypervisor
protection through several coordinated autonomic security loops which super-
vise different Virtual Machine Monitor (VMM) layers through well-defined hooks.
Thus, interactions between a device driver and its VMM environment may be
strictly monitored and controlled automatically. The result is a very flexible self-
protection architecture, enabling to enforce dynamically a rich spectrum of reme-
diation actions over different parts of the VMM, also facilitating defense strategy
administration.

1.4 organization of the thesis

This thesis is structured as follows:

Chapter 2 reviews cloud computing security state-of-the-art to compare academic and
industrial solutions, to extract key points to match the thesis objectives. We de-
scribe Cloud Computing and the fundamentals of such architectures. Then, the
thesis analyzes and compares the different hypervisors - that are the essence of
virtualization - and cloud components. This chapter evaluate and classify their
security. This chapter also gives an outline of Application Programming Inter-
faces (APIs) and protocols used by previous components to communicate, and
their associated tools.

Chapter 3 describes the VESPA autonomic framework model that is the core of this thesis.
This chapter describes the fundamental entities of the model, the policies and
how they interact. This thesis analyzes then the threats to such architectures and
give alternatives to prevent them. Finally this chapter details the prototype with
a first implementation and its evaluation.

Chapter 4 analyzes framework object composition through three use cases. The first sce-
nario describes the dynamic confinement of a virtual machine during a typical
viral infection. The second scenario explains how to deploy policies over multi-
ple IaaS stacks and the MobiCloud using VESPA. Finally, we adapt the solution
to perform fuzzing and thus benchmark the performance of the VESPA frame-
work.

Chapter 5 explores an extension of the self-protecting architecture to specific part of cloud
components, the hypervisor. This chapter maps the VESPA architecture to hy-
pervisor internals, to reuse previous work and highlight the potential of the
framework. The new architecture brings self-protection to hypervisors, named
KungFuVisor. We also depict attacks that threaten hypervisors, and classify
them to analyze particular weak points. Then, this chapter concludes by describ-
ing and evaluating the implementation of the extension.

Chapter 6 concludes this thesis, with a final analysis of the objectives. The chapter details
the limits of this study, and the future work describes some perspectives to ex-
tend this work.





2
CLOUD COMPUT ING SECUR ITY: STATE -OF -THE -ART

Mais ne lisez pas, comme les enfants lisent, pour vous
amuser, ni comme les ambitieux lisent, pour vous
instruire. Non. Lisez pour vivre.

This chapter details the cloud computing concepts and the different approaches to
enhance security. Section 2.1 presents the cloud computing paradigm and the differ-
ent components. Section 2.2 details the core components of cloud infrastructures, the
hypervisors. Section 2.3 discusses different approaches to secure the cloud and their
limits. Finally, Section 2.4 summarizes remarks and analyzes.

2.1 cloud computing foundations

This section introduces fundamental IT definitions (Section 2.1.1) and abstractions
(Section 2.1.2). Then this section describes cloud computing background (Section 2.1.3),
and the variety of components to provide strong isolation (Section 2.1.4).

2.1.1 Definitions

Before entering cloud computing model and virtualization, we introduce essential
definitions to describe a system. Those definitions are based on [124, 204, 75].

resource A program use software or hardware objects named resources. A re-
source can be a device or a logical controller, such as a hard drive, a memory or
information.

interface Access primitives that query and modify resources, and respect sets of
rules representing the interface definition. This is a language for users to interact with
the resource. The set of rules defines limits related to the use of the resource.

program The set of instructions changing machine state compose a program, and
the associated activity is a task. In concrete terms, a program is a suit of instructions
calling resources interfaces of the system.

2.1.2 Resource abstraction

The operating system (OS) abstracts a physical computer and its resources. The OS
builds an overlay to separate the logical view from the hardware. This abstraction
hides resources heterogeneity and provides a new view with unified interfaces. For
example, Linux offers a file abstraction to access all system resources. A read on a file
returns the data stored on the hard drive while a read on the network card receive
packets.

9
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An extension of the abstraction is virtualization. It is the simulation of a resource
that does not physically exist. One or several lower level resources build this virtual
resource. The virtualization is applied to low level resource as the CPU or the memory.
The main goal is to provide seamless access to the physical resource with fine-grained
control. We define a Virtual Machine (VM), by extension, when all physical resources
are virtualized. As virtual resources, a VM does not exist but provide the same behav-
ior as a physical machine, either on a physical machine or into an OS process.

This section details how the OS manage resources. First we review computer re-
sources and their dependencies.

2.1.2.1 Physical resources

A computer contains several processors, a main memory unit, hard drives as second
memory, network cards, controllers and Input/Output (IO) devices.

processor The Central Processing Unit (CPU) fetches, decodes and executes as-
sembly instructions of a program. It is the hearth of computing that coordinates all
other components. Each constructor has its specific architecture but we find at least
four components.

• The Arithmetic Logic Unit (ALU) handles arithmetic and logic integer operations.
The addition is an arithmetic operation, while a comparison is a logic one.

• The Control Unit (CU) fetches, decodes and executes program instructions using
the ALU if needed.

• The address and data buses link the components.

• The clock rhythms the CPU, and at every clock cycle the processor performs one
or more operations.

The processor comes with a programmatic model to interact with and that is the
base of commodity Operating Systems (OSs). This model usually contains four parts.

• The Instruction Set Architecture (ISA) is the list of instruction supported by the
processor and associated behaviors. This is processor interface.

• The context of the processor details the state of the processor with general regis-
ters and special registers.

• Interruptions deliver synchronous and asynchronous events to the CPU. Launch-
ing an interruption suspend the actual CPU execution, trigger a specific pro-
cessing and restore the execution. Contexts are saved and restored to fulfill the
process seamlessly. This event-driven model enables asynchronous event deliv-
ery for devices (network cards, keyboard), and a generic interface for exceptions
(divide by zero, segmentation faults). The CPU owns an Interrupt Descriptor
Table (IDT) describing functions to execute on interrupt reception.

• Privileged modes. For security purposes, the processor can execute instructions
in user mode with restricted instruction set or in supervisor mode with full
access. User mode programs can use privileged services through system calls.
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main memory The main memory is the internal Random Access Memory (RAM).
This memory stores programs data and instructions temporarily. The CPU and the
controllers interact with the RAM. The system bus interconnects the processor and
the main memory. The cache memory is a small and fast memory component provid-
ing fast access to the latest data accessed. This mechanism causes coherency problems
between cached information and the real one. The size varies and multiple cache
layers exist providing granular memory cache. The L1 cache is extremely fast but con-
tains hundreds lines at best, while L2 is slower and bigger, and now we see a large
L3 cache to cache up to 12MB of information. The caches are varied, separating data
and addresses. The Memory Management Unit (MMU) is a physical component traduc-
ing access to logical addresses toward physical address. The Translation Look-aside
Buffer (TLB) table translates the addresses from the processor view to the memory
view. The TLB delivers virtual memory through small units named pages. The page
table describes the virtual memory, and the TLB is the cache of this table.

io peripherals The IO peripherals enable communications with the outside, such
as the user: keyboard, mouse, image scanners, graphic cards, or webcams. Each pe-
ripheral is under the control of a controller, linked through a bus (Universal Serial
Bus (USB), Peripheral Component Interconnect (PCI) or system). The controller helps
the processor and holds a series of commands to drive the peripheral autonomously.
Then, an asynchronous interruption is triggered to inform the CPU that the action is
done.

2.1.2.2 System resources

System resources are abstraction found on commodity OSs, from physical resources or
built on abstract resources.

thread of execution The CPU executes one instruction at a time, when an OS
need multiple executions path at the same time. Thus, instructions and contexts are
handled by a scheduler to multiplex tasks. This is a first virtualization of the CPU to
provide simultaneous executions.

virtual memory The virtual memory divides the logical memory used by pro-
grams from the physical memory. The MMU handles this virtualization. The logic
addresses space is valid and accessible for a program from the address space. This
address space is isolated and prevents modifications of colocated OS processes. The
virtual memory segmentation enables memory policies to control program parts. For
example, the code segment contains the instructions to execute, the data segment
contains initialized data and stack segment contains the stack. Virtual addresses are
represented by a segment number and an offset into this segment. The pagination
provides a second abstraction to give a larger virtual memory. Thus, process can use
more memory than the RAM size with a second memory unit as a backup, usually a
hard drive. The last accessed data are stored into the RAM for fast access.

files The hard drive stores data permanently as files, which is a unified view of
the second memory unit. Each file has a name, and the folder groups files.



12 cloud computing security : state-of-the-art

device drivers Device drivers are software in charge of managing controllers.
The driver is aware of the controller interface and delivers a higher-level interface.
Each controller needs a specific driver, which is why the Linux kernel code base
contains 80% of drivers. However drivers deal with subtle sequences of commands,
resulting in an error-prone environment. Section 5 details driver protection.

process A process abstracts a running program for user applications and system
services. All resources needed to run the program are accessible in the process.

2.1.2.3 Conclusion

We defined the foundation of traditional IT systems, and we now introduce how these
components are used in the cloud computing paradigm. Thus, the next section ex-
plains the terms related to cloud computing environments, based on the standard
definition of the NIST institute.

2.1.3 NIST definition of Cloud Computing

Cloud computing is a novel paradigm characterizing the dynamic use of shared com-
puting resources through virtualization. This cloud model is composed of five essen-
tial characteristics, three service models, and four deployment models [138] explained
further.

2.1.3.1 Essential characteristics

on-demand self-service . A consumer can unilaterally provision computing ca-
pabilities, such as server time and network storage, as needed automatically without
requiring human interaction with each service provider.

broad network access . Capabilities are available over the network and ac-
cessed through standard mechanisms that promote use by heterogeneous thin or thick
client platforms (e.g., mobile phones, tablets, laptops, and workstations).

resource pooling . The provider’s computing resources are pooled to serve mul-
tiple consumers using a multi-tenant model, with different physical and virtual re-
sources dynamically assigned and reassigned according to consumer demand. There
is a sense of location independence in that the customer generally has no control or
knowledge over the exact location of the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country, state, or data center). Examples
of resources include storage, processing, memory, and network bandwidth.

rapid elasticity. Capabilities can be elastically provisioned and released, in
some cases automatically, to scale rapidly outward and inward commensurate with
demand. To the consumer, the capabilities available for provisioning often appear to
be unlimited and can be appropriated in any quantity at any time.

measured service . Cloud systems automatically control and optimize resource
use by leveraging a metering capability at some level of abstraction appropriate to
the type of service (e.g., storage, processing, bandwidth, and active user accounts).
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Resource usage can be monitored, controlled, and reported, providing transparency
for both the provider and consumer of the utilized service.

2.1.3.2 Service models

Figure 3: Cloud Service Models.

[saas] software-as-a-service . The capability provided to the consumer is to
use the provider’s applications running on a cloud infrastructure. The applications
are accessible from various client devices through either a thin client interface, such as
a web browser (e.g., web-based email), or a program interface. The consumer does not
manage or control the underlying cloud infrastructure including network, servers, op-
erating systems, storage, or even individual application capabilities, with the possible
exception of limited user-specific application configuration settings.

[paas] platform-as-a-service . The capability provided to the consumer is to
deploy onto the cloud infrastructure consumer-created or acquired applications cre-
ated using programming languages, libraries, services, and tools supported by the
provider. The consumer does not manage or control the underlying cloud infrastruc-
ture including network, servers, operating systems, or storage, but has control over the
deployed applications and possibly configuration settings for the application-hosting
environment.

[iaas] infrastructure-as-a-service . The capability provided to the consumer
is to provision processing, storage, networks, and other fundamental computing re-
sources where the consumer is able to deploy and run arbitrary software, which can
include operating systems and applications. The consumer does not manage or control
the underlying cloud infrastructure but has control over operating systems, storage,
and deployed applications; and possibly limited control of select networking compo-
nents (e.g., host firewalls).
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service model main examples

SaaS Amazon Web Services, Google Apps, HP Cloud Services,

IBM SmartCloud, Microsoft Office 365, Salesforce

PaaS Cloud Foundry, Heroku, Google App Engine, AppScale,

Windows Azure Cloud Services

IaaS Amazon EC2, Google Compute Engine, HP Cloud, Joyent, Rackspace,

Windows Azure Virtual Machines

Table 3: Notable Cloud Service Examples.

Figure 3 summarizes stacks used by vendors at the SaaS-, PaaS- and IaaS-level.
Table 3 shows several examples of service providers. Our research aimed the IaaS
layer, where virtualization of hardware resources is the key element.

2.1.3.3 Deployment models

private cloud. The cloud infrastructure is provisioned for exclusive use by a
single organization comprising multiple consumers (e.g., business units). It may be
owned, managed, and operated by the organization, a third party, or some combina-
tion of them, and it may exist on or off premises.

community cloud. The cloud infrastructure is provisioned for exclusive use by
a specific community of consumers from organizations that have shared concerns
(e.g., mission, security requirements, policy, and compliance considerations). It may be
owned, managed, and operated by one or more of the organizations in the community,
a third party, or some combination of them, and it may exist on or off premises.

public cloud. The cloud infrastructure is provisioned for open use by the gen-
eral public. It may be owned, managed, and operated by a business, academic, or
government organization, or some combination of them. It exists on the premises of
the cloud provider.

hybrid cloud. The cloud infrastructure is a composition of two or more distinct
cloud infrastructures (private, community, or public) that remain unique entities, but
are bound together by standardized or proprietary technology that enables data and
application portability (e.g., cloud bursting for load balancing between clouds).

2.1.3.4 Conclusion

This section introduced the terms used in cloud computing environments. Now we
map the cloud components previously defined with security components used to pro-
tect traditional infrastructure.

2.1.4 Virtualization components

In the cloud, pooled networking and computing resources may be seen from two dif-
ferent but complementary views. The networking view abstracts the network resources,
i.e., the successive protocol layers that encapsulate the data to be transmitted in the
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Figure 4: Cloud components.

cloud. Orthogonally, the computing view captures the computational and storage re-
sources of each machine at different abstraction levels (software and hardware), e.g.,
processor, memory, devices. Ensuring end-to-end isolation requires a fine-grained con-
trol of information manipulated in each layer crossed along the data path.

To simplify, we consider three main layers in a IaaS infrastructure: physical, OS (hy-
pervisor), and application and/or middleware (VM-level) (see Figure 4).

• Virtual machine. A VM, domU or guest, is the workload on top of the hypervi-
sor. This machine believe that it is its own unit with dedicated resources. Thus,
multiple VMs are consolidated on one single physical machine. The workload
handles user application, administrator domains and virtual appliances.

• Hypervisor. The Virtual Machine Monitor [186] (VMM) is a component han-
dling physical resource sharing amongst multiple concurrent virtual machines.
To make an analogy with operating systems architecture, the hypervisor has
similar role for VMs as the kernel for user spaces.

• Host Machine. The physical host manages physical resources and divide them
between VMs. The CPUs, memory and devices are shared dynamically, meaning
that a memory peak of one VM result in extended RAM allocation.

Multiple users sharing the same resources (multi-tenant) raise the question of isola-
tion: How to deliver dedicated environment without impacting others ?

2.1.5 Resources isolation

Virtualization opens new attack vectors, as shown recently by many loopholes ex-
ploited in each layer. The main goal of these attacks is to bypass VM separation, or
isolation, and gain access to private information. Compromising the hypervisor by a
side-channel attack may leak information between VMs sharing resources [169]. Spoof-
ing the virtualization layer is also possible as in the BluePill rootkit [174] to stealthily
put a backdoor in place of the hypervisor. Another possibility is to fully bypass inter-
mediate layer controls: the guest OS might directly access virtualized devices to im-
prove performances and lower virtualization overhead. Similarly, the applicative layer
could attempt to spoof Address Resolution Protocol (ARP) requests to break physical
isolation (e.g., MAC filtering).

Thus, confidentiality requires in-depth defense at each level. Next, we provide a
brief overview of some existing isolation mechanisms in each layer, summarized in
Table 4.
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Layer Networking View Computing View

Application (VM)
Application-level firewall: WAF. . .

Virtual firewall: VShield App. . .

SSL/TLS VPN

Antivirus: VShield EndPoint

VM introspection [49]

Hypervisor

Virtual switch [50, 149, 136]

System-level firewall: iptables, ebtables

L2/L3 VPN

IP overlay network [106]

Security API: [141]

Security modules: [35, 176]

Physical

Dedicated network equipment: firewall
(VShield Edge), physical switch, router

VLAN

L1 VPN

Link overlay network [195]

MMU/IOMMU

Hardware-assisted virtualization: Intel-
VT [211], AMD-V [22], Nested pag-
ing [216], SR-IOV [67]

VNICs [209]

Table 4: Some Solutions for Cloud Resource Isolation.

2.1.5.1 Physical Layer

networking view At this level, network isolation relies on dedicated network
equipment like switches, routers, and firewalls. Besides evident physical separation,
IEEE 802.1Q-compliant VLANs enables to segregate virtual networks on the same phys-
ical infrastructure. It is also possible to create network overlays at the link layer [195] or
above [106]. Firewalls can filter packets in a fine-grained manner using Access Control
Lists (ACLs). They can be configured from a console via a serial port, or by accessing a
tiny Web server directly integrated into the equipment.

computing view The computing view is far more complex with hardware re-
source virtualization, a technology that allows a single physical equipment to offer
seamlessly several resources abstractions to the OS, such as Network Interface Con-
trollers (VNICs) [209], Input/Output Memory Management Units (IOMMUs) that map
device-visible virtual addresses to physical ones, and special instruction sets to deliver
virtualization in processors (Intel-VT [211], AMD-V [22]).

2.1.5.2 Hypervisor Layer

networking view One level up, the hypervisor provides control through virtu-
alized network interfaces and firewalls. The networking view is richer with kernel
modules that extend physical switches into virtual ones. The two main competing so-
lutions are Open vSwitch [149] and Cisco Nexus 1000v [50]. Both are similar, but Open
vSwitch implements OpenFlow [136] to offer precise control of forwarding tables go-
ing well beyond ACL-based administration. Further control on communications is
possible thanks to system-level firewalling solutions, e.g., iptables filtering rules for IP
packets, ebtables rules for the link layer, or solutions like VMware VShield App.

computing view In the computing view, resource isolation can be performed
through hardware-assisted instructions or emulation. Type 1 hypervisors seem most
suitable for fine-grained control over resources. Generic hypervisors are actively main-
tained, with both open source and commercial solutions. VMware ESX is a mostly
closed platform, control remaining limited to a fixed set of APIs, and thus difficult to
extend. The Kernel-based Virtual Machine (KVM) and Xen use Intel-VT or AMD-V
for instruction processing, IOMMU to separate resources, and deliver a device driver
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to manage virtualization hardware. KVM implements VMs as Linux processes, and
therefore benefits from a wide variety of standard tools for process isolation and man-
agement (details in section 2.2.1). Security modules [35, 176] for isolation are available
for Xen based on SELinux – thus directly supported by KVM with the advantage
of built-in isolation of Linux kernel back end drivers. The libvirt library is also in-
creasingly used to administer a wide range of hypervisors and modules. It provides
a higher-level hypervisor-independent interface to control the virtualization environ-
ment. Security modules for this library are available, e.g., sVirt [141] providing Manda-
tory Access Control security to isolate guest OSes and specify access permissions.

2.1.5.3 VM Layer

The VM essentially relies on the hypervisor capabilities for computing and network-
ing isolation. However, a growing number of virtual appliances are already available
to filter network data (virtual firewalls such as VShield Zone/App from VMware),
to monitor the VM security status (VM introspection [49]), or to isolate a group of
compromised VMs by defining a quarantine zone (anti-virus suites). These solutions
run into conventional user/group administration problems such as permission man-
agement to determine the domains in which users, applications, and devices can be
added. Some of those solutions provide little or no explicit interface to manage re-
motely the other VMs. Moreover, in the guest OS, security control usually remains
limited to user-land, while kernel modules provide richer and stronger isolation.

2.1.5.4 Conclusion

Overall, those solutions suffer from three main limitations:

1. Heterogeneity. Available mechanisms are highly heterogeneous, lacking of an
overall architectural vision regarding their orchestration into an integrated secu-
rity infrastructure.

2. Scalability/Maintainability. The different security configurations of previously
underlined mechanisms (e.g., VM-level firewall rules and physical-level ones)
induce scalability and maintainability challenges: even if a cloud environment
may be tuned to meet specific needs, nested dependencies between views and
layers can become appalling and virtually impossible to solve, excluding the “by
hand” approach to security management.

3. Dynamicity. The extremely dynamic character of the cloud (e.g., with VM live
migration between physical machines), and the short response times required to
activate system defenses efficiently, make the problem even more complex.

A flexible, dynamic, and automated security management of cloud isolation mech-
anisms is thus clearly lacking today. Furthermore, an in-depth description of the new
hypervisor mechanisms follows to identify new challenges raised by the virtualization
layer.

2.2 hypervisors

This section describes hypervisors and their security. First we present the architecture
of widely used hypervisors, with a comparison of their specificities. Second we skim
solutions that leverage hypervisor security through a variety of approaches.
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2.2.1 Virtualization architectures

Virtualization is a technology to abstract physical resources to users. Even if this layer
was introduced to compensate problems inherent to heterogeneous physical architec-
ture, such as privileged mode, it is now an essential component of computer archi-
tecture. Virtualization solutions provide benefits in costs, efficiency and security [97].
Achieving such benefits is a difficult task, and one has to carefully consider reliability
towards virtualization layer. The design and the placement of the layer are crucial,
to select the more appropriate semantic view. Indeed, control is finer while closer to
the bare-metal, but is highly error-prone. Conversely, reusing building blocks such as
memory components for convenience results in coarse-grained control. Thus, virtu-
alization is available at different level depending of the needs, as detailed into Sec-
tion 2.2.2. Figure 5 gives an overview of physical machine consolidation.

(a)

(b)

Figure 5: (a) Without VM; (b) With VM .

Type I The hypervisor, or virtual machine monitor, is the main component of the
virtualization layer. The Type I virtualization, also named native virtualization, let the
VMM runs directly on the physical resources. Virtual machines are two levels above
physical resources.

This kind of virtualization provides very low overhead as the hypervisor is cling to
the bare metal. However, this low-level access requires access control to resources and
pretty much every security measure usually performed by commodity kernels. The
most deployed Type I hypervisors are Xen, VMWare ESX and Hyper-V.
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Type II The Guest OS/Host OS virtualization is the most used solution on average
computers, also named Type II or hosted virtualization. The existing operating sys-
tem (Host OS) runs a third-party virtualization software, and share existing resources
among several guest operating systems. Each guest (Guest OS) consist of a virtual stor-
age image file and a virtual hardware description file. The separate VMM application
handles VM execution and distribution of shared resources, e.g. the network card. The
VMs are not aware of the network virtualization, and the hypervisor provide strong
isolation to deliver different network to VMs. Virtual machines are three levels above
physical resources.

This kind of virtualization benefits from the operating system facilities: device
drivers, processes isolation and privileges separation. Nevertheless, it inherits oper-
ating systems flaws and lower security in an error-prone environment. Notwithstand-
ing, disk I/O are strongly impacted and provide uncomfortable experiences. Other
operations are close to native speed. Two softwares lead this technology for desktops.
VMware Player is a free closed source solution from VMware, and VirtualBox from
Oracle. Servers running under Linux inherit the KVM hypervisor as a kernel module
to load.

2.2.2 Virtualization mechanisms

2.2.2.1 Emulation

The emulation was the first virtualization mechanism to handle and interpret assem-
bly code. The software mimic a specific set of physical resources, and the guest is
thus able to run seamlessly on the system. This technique is often used to play con-
sole video games on personal computers. Guest assembly code is interpreted and
transformed into host instructions. Figure 6 details the emulation process for an ARM
instruction on Intel x86 architecture.

Figure 6: ARM on Intel instruction emulation example .

The process, named binary translation, is heavy and slows guest execution by a fac-
tor 100 to 1000. The obvious concept of static binary translation consists of translating
all of the guest code into host code without running it. Some peculiarities imply that
some basic blocks are referenced by indirect branches, thus only known at run-time.
Dynamic binary translation solves the caveat with on-the-fly emulation. Conventional
emulators fetch, decode and execute instructions in a loop, thus implying major over-
head. Process optimization relies on the basic block (BB) granularity and that the vast
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feature bochs qemu vmware player

Guest architecture x86 x86, ARM, SPARC, Pow-
erPC

x86

Emulation Interpretation Dynamic binary Dynamic binary

translation translation

Disk Image Format All Raw, QCOW2 Raw, VMDK

Table 5: Main emulators comparison.

majority of execution is limited to few BB. The memoization process then keep the
translated representation to speed up further call to this code sequence. Intel Pentium
4 processors, with the NetBurst microarchitecture [123], has an execution cache to
store up to 12K of previously translated operations.

security The main security bottleneck is the respect of architecture manuals into
the emulation tables. Several instructions have side effects, complicating the emulation
process. However all actions for a specific instruction are gathered at a fixed place into
the emulation table, simplifying tests and security analysis.

technologies Bochs [129] is an open source emulator oriented towards x86 and
x86_64 platforms. Instructions are interpreted to stay as close as possible to the ex-
pected behavior, with no side effect. Despite low performances, it is a common tool
to analyze malwares in a transparent environment [187]. QEMU [32] is a free, open
source emulator which support a large number of guest architectures (x86, x86_64,
MIPS, PowerPC, ARM, SPARC, m68k). Dynamic binary translation offers significant
performance improvements over Bochs interpretation, and is thus the most common
emulation software nowadays. Our tests depict Bochs as more efficient for OS debug-
ging purposes, while QEMU performs better in pure execution speed.

2.2.2.2 Partial virtualization

The partial virtualization approach simulates several classes of physical devices. For
example, memory management, where OS uses partial virtualization to segment phys-
ical memory into several isolated address spaces. Processes can use the same virtual
memory addresses, as the OS traduce them into different physical addresses. Thus,
it enables resources sharing above a common OS and provides some kind of process
isolation. However, it is not enough to deliver isolated instances of OSes. Windows
NT4 and Linux are both using this virtual addressing mechanism to partition applica-
tions and enhance global system security. The amount of virtualization mechanisms is
flexible: one can offload some tasks toward hardware. Thereby a hard drive can be ded-
icated to a VM, and all further accesses will be handled by the VM. This pass-through
approach is applicable to the vast majority of host devices.

security The hypervisor cannot perform isolation checks anymore and the VM is
responsible of resource management and security. Performances are usually better as
the VM will use dedicated drivers to access the device and not the generic hypervisor
device driver.
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technologies While some hardware deliver partial virtualization on-demand,
such as the address space virtualization enabled on all current computers, it is hard
to detail partial virtualization technologies. We argue that all components building up
computers represent potential partial virtualization technologies.

2.2.2.3 Operating system-level virtualization

The OS also performs virtualization at the system call interface to leverage perfor-
mances, with isolated environments sharing the kernel. This approach is often re-
ferred as lightweight virtualization. As seen before, processes memories are isolated
by the close collaboration of the MMU and the kernel. Each process memory space is
abstracted to give the illusion of a large contiguous address space, while the kernel
ensures that no other process can be altered. This feature translates the RAM address
space, or physical addresses, to logical address space. It is also applicable at the file-
system level with reduced access to the current one (chroot). An HTTP server delivers
static pages from a single directory, thus giving an abstract view of the file-system is
sufficient for service and prevent further exploitation. Containers are the instances of
flexible user-space isolated environments. All containers share the same kernel, thus
offering little to no performance overhead. However, flexibility and security are di-
rectly impacted. The kernel delivers the same OS as the host, and a single security
failure into the kernel compromise all guests. The attack surface to perform privilege
escalation is large, ranging from subtle partition mounting [134] to unsafe capabilities
[132], including legacy kernel one.

security While chroot is not a security mechanism, several other software (see Ta-
ble 7) offer fine-grained isolation of file-system, network, memory and root access. The
cgroups, user name spaces and capabilities Linux mechanisms manage resource allocation,
isolation and root privileges reduction respectively. To provide a secure execution en-
vironment among users, secure computing mode (seccomp [15]) leverages system calls
interface and deliver reduced kernel interface. The seccomp mechanism is a one-way
isolation mechanism restricting system calls to read(), write(), sigreturn() and exit()
with opened file descriptors. Every other system calls result in a process termination
with a SIGKILL. The restriction performs control on computing resources, but handles
neither memory issues nor file-system access control. The setuid sandbox mechanism
switch uid and gid enforce restrictions on debugging other processes, sending signals
and file-system access control. Both seccomp and setuid sandbox are common to iso-
late browsers threads, especially chrome. The SELinux sandbox enforces MAC policies
to process thus controlling available system calls, inheritance and temporary space ac-
cess. The underlying technology use Multiple Category System (MCS) or Multi-Level
Security (MLS) to label files and delegate control to the SELinux MAC [2].

Mandatory Access Control is available both inside the kernel [185, 178, 92, 31] with
Linux Security Module (LSM), and outside the kernel [189, 105] to leverage vanilla
kernel Trusted Computing Base (TCB). They are compared on Table 6

Security Enhanced Linux (SELinux [185]) inherits the Flask security architecture
to provide a flexible non-discretionary access control. The clean separation between
policy enforcement, inside the kernel through Linux Security Module (LSM), and pol-
icy decision-making, encapsulated in another component, allows a low overhead and
leverage modularity. Processes and system objects (e.g. sockets, files) are assigned a
context with a role, a user and a domain. Administrator-defined policies describe the
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��������������
Technology

Properties LSM Complexity Cohabitation

SELinux � � �
SMACK � � �
TOMOYO � � �
AppArmor � � �
Grsec � � �
RSBAC � � �

Table 6: OS-level security

possible transitions of the user, and how processes can interact with system objects.
Nevertheless, this fine-grained mechanism require complex administration to enforce
conform behavior.

Simplified Mandatory Access Control Kernel (Smack [178]) tackles the complexity
problem by leaving out the role based access control and type enforcement. Thus, tasks
and kernel objects are labelled and controlled upon access to allow execution while
matching. It is a more permissive mechanism that cannot fulfill SELinux complete-
ness, but simpler to setup and to administrate through extended file-system attribute.
Several commands mimic conventional UNIX program to access files with facilities to
set and modify labels.

TOMOYO [92] is a LSM to perform MAC on Linux, and was integrated into the
mainline version 2.6.30. Programs are profiled automatically to establish isolation
boundaries, unlike previous label-based security mechanisms. It is able to provide
SELinux security level with a lighter administration, and support AppArmor [31] co-
habitation for multi-layered isolation.

technologies OpenVZ [116] is a patched Linux kernel providing subsystem cre-
ation, isolation and resource management. Containers have their own set of files, users,
groups, process tree, network, devices and Inter-Process Communications (IPCs). Un-
derlying resources are shared according to administrator-defined limits for the sched-
uler and hard drives. Furthermore, virtualization facilities such as memory snapshots
and live migration among physical servers are natively supported. The overhead is
minimal with near-native speed. Virtuozzo [198] is the commercial counterpart of
OpenVZ, with Windows support.

LXC [115] combine previous mechanisms to provide containers close to OpenVZ.
Virtual file-systems are handled by chroot, resource management by cgroups [162] and
a modified kernel interface to intercept system calls. Checkpointing and conventional
administration tasks (excepted live migration) are supported to provide a lightweight
virtualization solution. The LXC architecture allows developers to create even lighter
containers by using only some namespaces. The shared subtree namespace [56] provides
on demand isolated copies of the current file system, with several files shared among
users for performance reasons. The pid namespace [117] allows multiple processes with
the same Process IDentifier (PID) in different environment. It is an essential feature for
live migration where isolated environments have their own process PIDs that cannot
be modified. The pid structure is thus modified to integrate a pointer towards a upid, a
new structure to represent the PID into a namespace. To some extent, the network has
to do the same kind of isolation to provide seamless network port usage (e.g. multiple
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solution os fs root network

isolation isolation isolation

chroot Linux X -

LXC Linux X - X

Linux VServer Linux X X X

OpenVZ Linux X X X

Parallels Virtuozzo Linux, Windows X X X

Jail FreeBSD X X

Sandboxie Windows X X

Returnil Windows -

iCore Virtual Accounts Windows XP X X X

Bufferzone Windows

Table 7: Kernel level isolation mechanisms .

HTTP servers). The network isolation is handled by the net namespace [57], introduced
by adding a new net_ns field into the net_device kernel structure. Such implementations
involve control of the L2 OSI stack level for low-level network granularity, extended
to L3 to prevent user from creating new interfaces and grab L2 information. Thus
each net namespace brings its own network interfaces, IP addresses, routing tables and
iptables rules. The ipc namespace leverages System V IPC mechanism with on-demand
private IPC namespace that is not shared with any other process. It is required to
perform IPC isolation on legacy softwares using IPC variables derived from inodes.
The uts namespace controls the get/sethostname syscalls to adapt domain information
and provide compatibility with tools relying on those information (e.g. sudo). The user
namespace leverages the pid namespace to users, with a new root user created for each
namespace.

2.2.2.4 Full and paravirtualization

A level below, system-wide virtualization delivers a complete VM with dedicated vir-
tual devices, virtual processors and virtual memory. The full-virtualization challenge
was formalized [164] to define a VMM capable of virtualizing a full set of hardware
resources: (1) Equivalence/Fidelity, (2) Resource control/Safety and (3) Efficiency/Per-
formances. From those principles may in turn be derived virtualization theorems, ex-
plaining that “an effective VMM may be constructed if the set of sensitive instructions
for that computer is a subset of the set of privileged instructions”. Unfortunately some
architectures do not conform [19], e.g. with Intel x86 providing 17 sensitive instruc-
tions (e.g. popf ) accessible from unprivileged state. Two counter measures [28, 217]
enabled full virtualization on the Intel x86 architecture.

xen Xen [28] has been the software to perform a breakthrough into virtualiza-
tion architecture and performance, with a strong cooperation between the hypervisor
and guests, also called paravirtualization. Initially developed by Citrix, a strong com-
munity (e.g. Google, IBM) continually improves the hypervisor. The Xen segmented
model delivers components with specific roles to apply the least privilege principle.
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An administrative VM (dom0) manages network, I/O and memory interactions of
guest VMs (domU). To illustrate, the dom0 and the underlying hypervisor are close
to the third-party application in the hosted virtualization (VM Player and VirtualBox).
The dom0 is a custom Linux kernel aware of the underlying virtualization, while
domUs run in full virtualization mode. The latter provides an entire system (Hard
drive, NIC, CPUs) and thus run unmodified guest OSes. Sensitive system calls are
trapped and modified to be compatible with the Xen hypervisor, and thus respect
[164]. Nowadays, the Intel x86_64 provides hardware facilities to leverage virtualiza-
tion, supported since Xen 3.0. While orchestrating resources among virtual machines,
Xen does not provide access control facilities. The Xen Security Module (XSM), de-
rived from LSM, handle third-party security components, e.g. to restrict access to
resources with MAC or DAC. The Flux Advanced Security Kernel (Flask) XSM reuses
the SELinux rule syntax to describe policies to apply. The sHype XSM from IBM,
adapted from the original rHype hypervisor, is oriented toward large adoption rather
than critical systems. The code is not intrusive (about 2600 lines of code) and is built
with scalability and performances (1 percent overhead) in mind. The Xen adaptation
handles Chinese Wall and Simple Type Enforcement to provide a fine-grained control.

The VM security inherits physical facilities to outsource cryptographic functions [159],
enhance the non-executable pages protection [175], control hypercalls [224] or even
protect critical structures (IDT, hypercall tables and exception tables). However those
protections are neither available in the main development branch, nor in the public
domain. VM introspection [63, 156, 155] provides low-level access to analyze VM state
from the hypervisor, detect VM intrusions [85], forensic memory analysis [191, 64],
real-time file protection [238] or malware analysis [62, 107]. Equally important, the
network security is twofold. First, the dom0 firewalls network streams with facilities
integrated in Linux: ebtables, iptables/netfilter or pf. Even more complete firewalling
solutions, such as Shorewall or L7-filter, can be deployed seamlessly into the dom0
and enhance networking security. Second, the modular architecture allows easy appli-
cation of the least privilege principle.

The Xen attack surface, with an attacker controlling one VM with network access,
is depicted in [68]. For the network path, a bug into the hardware driver, the bridging
component or in the back-end of the split driver leads to the control of dom0 and
thus the whole system. The Driver Domain is an unprivileged VM to move those
sensitive components, without interactions with the dom0. Nevertheless, the attacker
is still able to access the network adapter and the front part of domain sharing the
split driver. The tool stack to build VM on-demand parses file system and menu, and
can be corrupted with subtle format specification [233]. Alike Driver Domains, pvgrub
acts as a small OS to delegate the parsing towards domU, making parsing exploitation
meaningless. Underlying device emulation is marred by the same defect. Stub domains
are small services VM running one application, ideal to isolate the Qemu emulation
program and thus confine the exploitation. To a further extent, several solutions aimed
at reducing the TCB [142, 172, 54] through the disaggregation of the dom0.

vmware esx/esxi VMware ESX and ESXi are the Type I virtualization softwares
of VMware. ESXi is free closed source software which has very special hardware
requirements beyond those of ESX. They share the same vmkernel, but ESXi uses a
smaller footprint, thus with a faster boot time at the expense of the Service Console.
Anyhow, ESX is end-of-life software and have to be upgraded to ESXi. There is an
Embedded Edition which supports booting from SAN, scriptable installations and Ac-
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tive Directory (AD). The VMkernel micro kernel implements a remote command line
interface (CLI) and a common information model (CIM) to manage the configuration
and the hardware. Newmodules can be loaded to the kernel, assuming they have been
signed by VMware. The kernel scans the memory to detect integrity violations such as
buffer overflows. The ESXi attack surface is hard to estimate as there is no source code.
Virtualized I/O are handled by the VMkernel, while passthrough I/O can be selected
on a per-VM basis. The VWware hypercalls increase the surface. However, security facil-
ities to monitor and control CPU, memory and network are isolated into VMsafe VM.
The VMkernel allocates resources and manage memory, with a systematic wipe of
reallocated pages to prevent information leaks. Likewise, the IOMMU enhance mem-
ory isolation and address Direct Memory Access (DMA) attacks. Optimized memory
operations, such as transparent page sharing, ballooning or compression, require close
attention to respect the isolation. Memory pages are shared to avoid multiple allo-
cation of the same object, which is particularly effective while running the same OS
multiple times. However, missing a single write operation, e.g. under heavy load, re-
sult in information leaks. ESXi combines emulation, paravirtualization and hardware
assisted virtualization to reap benefits from each technology. Efficiency and security
of binary translation compared to the first generation of hardware virtualization, par-
avirtualization with VMWare Tools for a better experience and support of the 64b guest
architecture. Recent versions also support VT-x and AMD-v for both the 32b and 64b
guest architectures, and nested paging (Rapid Virtualization Indexing (RVI) and Ex-
tended Page Table (EPT)). The memory virtualization has hardware assistance through
Intel EPTs and AMD RVI. This extra indirection layer replaces software MMU, thus
improving translation time by 42% [218]. Likewise IOMMU is available to enhance
resolution for I/O communication at the hardware level.

microsoft hyper-v Microsoft Hyper-V [214] appeared with the Windows 2008
OS, and is the first hypervisor based on the Windows OS. While ESX and Xen are
Linux oriented, users have to be at ease with UNIX or Linux environments and com-
mands. Hyper-V administration is done through conventional Windows GUI.

The Microsoft Hyper-V solution is a bare-metal hypervisor with a microkernel ar-
chitecture [139]. Drivers are not implemented into the hypervisor, but offloaded into a
less privileged ring. The hypervisor is divided in two blocks. Essentials virtualization
functions such as virtualization service clients (VSC) and OS kernel are in ring 0. The
root partition gather portions of traditional hypervisors offloaded to build a micro
hypervisor. Virtualization stack containing VM worker processes is in ring 3 (root par-
tition), the same level as guest applications. The TCB is composed of: root partition
excluding VM worker processes, and the windows hypervisor.

The current Hyper-V hypervisor focuses on strong isolation between partitions and
the protection of both integrity and confidentiality of guest data. Separation is per-
formed through unique resource pool per guest, separate worker processes and guest-
to-parent communications over unique channels. The non-interference is guaranteed
by protected computations, no communications between guests through VM inter-
faces are allowed. However some attacks are still possible (inference attacks, covert
channels) and availability is not guaranteed.

kvm The Kernel-based Virtual Machine [119] (KVM) is an open source project
started in 2008 which was quickly adopted by the Linux kernel 2.6.20 branch. Thus,
it is the main virtualization solution of Linux-based distributions (e.g. Arch Linux,
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Ubuntu, Fedora). The hypervisor is built up by two components in the host OS: a
driver and an emulator. The hypervisor module transforms the usual linux kernel into
a real hypervisor by inserting a kernel driver. VMs are considered as host processes
and inherit isolation mechanisms and scheduling optimization of the host kernel. The
QEMU program delivers virtual devices to VM, but the CPU and the memory can
be handled by hardware through virtualization facilities (Intel Virtual-Machine Exten-
sions (VMX) and AMD Secure Virtual Machine (SVM)). Software-only virtualization is
always available as a fall back with QEMU handling all the emulation.

KVM is secured by conventional Linux protection mechanisms. The MMU protects
physical memory by controlling a virtual address space for each VM. The kernel-level
security mechanisms detailed in Section 2.2.2.3 also apply to enhance OS security.

microkernel approach Eventually, monolithic hypervisor is a virtualization so-
lution simpler than a conventional kernel but still complex. The driver model is im-
plemented to enhance hypervisor capabilities to deliver alternative devices to virtual
machines. The microkernel hypervisor uses simple partitioning functionality to lever-
age reliability and minimize TCB, and are explained in details into 2.2.7.1.

2.2.3 Security testing

2.2.3.1 Statistical distribution of hypervisors vulnerabilities over time

Figure 7 depicts vulnerabilities found on the NIST National Vulnerability Database
(NVD) for KVM, Xen, ESX and Hyper-V over time. The score represents vulnerability
criticality, 10 being the most. The area underlines the number of hypervisor versions
impacted, a small point designing one specific version, while a larger one means that
tens of versions are vulnerable. Finally, the color reflects attack complexity: green for
easy, brown for medium and blue for hard. We can see that more vulnerabilities are
found as the time goes by for all hypervisors. The impact and complexity of attacks
become more important.

vulnerability classes The hypervisor attack vectors [161] are grouped in 4
categories. The first category gathers vectors related to virtualized hardware with Vir-
tual CPUs [13], Symmetric MultiProcessing (SMP) [11], MMU [9], Interrupt and Timer
Mechanisms [10], I/O and Networking [14], and Paravirtualized I/O [5]. The second
category groups hypervisor-VM operations, such as VM Exits [12] and Hypercalls [8].
The third category contains interfaces needed to manage VM [4] and their associated
management softwares [6]. And the fourth category handles hypervisor modularity
and the variety of extension to leverage the inner security [7].

Table 8 depicts Common Vulnerabilities and Exposures (CVE) repartition for the
KVM hypervisor among the categories. The majority of attacks affect the first category,
with 15 related to device emulation (~40% of all the attacks). Therefore hypervisors
have to secure the device drivers for enhanced security.

2.2.4 Hypervisor code analysis

The hypervisor evaluation, similar to application testing, is done through the static
analysis of the code or by dynamic debugging.
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attack vector kvm

Virtual CPUs 8

SMP 3

Soft MMU 2

Interrupt and Timer Mechanisms 4

I/O and Networking 10

Paravirtualized I/O 5

VM Exits 2

Hypercalls 1

VM Management 2

Remote Management Software 1

Hypervisor add-ons 0

Total 38

Table 8: KVM CVE repartition (from [161])

static Static analysis of open-source hypervisors underlines potential flaws in the
code [38].

dynamic Black box testing performs fuzzing on specific attack surfaces to extract
unexpected outputs. Instructions fetched and executed by the CPU are straightfor-
ward to test: sending random instructions and comparing results between bare-metal
and virtualized environments. While the differences usually characterize an environ-
ment and thus provide virtualization detection [152], some lead to privilege escalation
in a generic way [231]. The communication with components linked with northbridge
and southbridge is an inexhaustible source of experimentation. Timing attacks related
to TLB resolution among VMEXITS discriminate memory accesses, ranging from sim-
ple flush detection for virtualization detection [173] to confidential information extrac-
tion [169, 236] – keystrokes and private certificates. Random inputs against virtual
devices and their drivers therefore uncover a number of vulnerabilities in multiple
hypervisor solutions [150].

2.2.4.1 Conclusion

We will use fuzzing to test our solution applied to hypervisors, showing the extensi-
bility and measuring maximum throughput (Section 4.3).

2.2.5 Virtualization peculiarities

Another research track aims at detecting discrepancies specific to virtualized environ-
ments to evaluate virtualization transparency.

2.2.5.1 Virtualization detection

categories Virtual machine detection can be formalized in three categories:
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Logical discrepancies such as bad emulation and devices specific to hypervisors.

Resources discrepancies such as TLB misses.

Timing discrepancies with attacks based on local timers and remote timers.

logical differences J. Rutkowska initialized the virtual environment detection
playground in 2004with Redpill [173]. This detection is based on the address of the IDT.
The idea is that each physical processor have one and only one IDT. Thus hypervisors
have to create the IDT of virtual processors to different locations. Physical IDT is
located near the address 0x80000000, when virtual ones are above 0xc0000000. While
it was true at this very moment, this technique is obsolete and we were not able to
detect virtual environments based on the address of the IDT.

P. Ferrie identifies several techniques to detect virtual machine emulators [80, 79].
He is able to detect emulation discrepancies, such as wrong emulation of instructions.
Specific hypercalls related to VMTools (accelerated graphics, drag and drop) are also
tested, as they are very specific and does not respect usual behaviors. A typical attack
is to use an instruction over the authorized size (say 15B on Intel), which raises a fault
on bare metal while completely ignored on Qemu. D. Quist created a tool to detect
virtualization, vm-detect [166].

The conclusion underlines that no virtual system is completely hidden, nevertheless
malware will have to infect virtual environment infections as more and more system
are virtualized [87]. T. Raffetserder also describes discrepancies, but from bad emula-
tion instructions marked as "won’t fix" [167] from intel documentations and update
specifications. CPU caches are modified to leverage timing attacks, with more preci-
sion and accuracy.

resources differences X. Chen creates a taxonomy of different detection tech-
niques, and introduces network based detection [46]. The analysis of TCP Round Trip
Time (RTT) showed specific behavior for both bare metal and virtualized environments.
There is also a proposition to fake a virtual environment and thus evade malware in-
fection.

differential analysis R. Palaeri automates the creation of detection techniques
by fuzzing CPU and compares registers [153], finding more than 20 000 differences in
few hours. B. Lau automatically compares the behavior of malwares through differ-
ential analysis [128]. The result highlights that less than 1 percent of malwares try to
detect virtual environments.

M. Lindorfer extends the malware and detection taxonomy [131] by providing new
detection techniques. G. Pek exposes how to detect virtual environment specifically
created to be stealthy with an implementation called nether [158]. This paper presents
new techniques to detect VT instructions, with a classification of analyzers and the
conclusion that transparency is not achievable.

2.2.5.2 Seamless virtualization

On the other side, A. Dynaburg formalizes anti-detection mechanisms and how to
use available technologies (i.e. VT-*) to create a transparent virtual environment [62].
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Ether, the name of the tool, is able to dynamically unpack malwares. Some architec-
tural defects are analyzed, such as the Intel 0xf00f bug, which represents unexpected
behavior from the processor specification but that is present on all processors. Counter
measures to escape detection are analyzed and explained.

protecting resources A. Nguyen provides an architecture to virtualize only
vital components and use passthrough for the rest [145]. Instructions consuming CPU
cycles, such as VMExits, are no more caught and decrease hypervisor footprint. The
main drawback is that this system is only able to virtualize one VM, losing one of the
main benefit of this technology. E. Keller follows the same idea, creating a hypervisor
with a very low attack surface and hard to detect [201]. D. Kirat introduces physical
virtualization [114]. Many virtualization concepts are applied to bare-metal, such as
snapshots with volatile memory based on RAID mirroring. Registers and interrupts
are saved when OS boots, and are restored when requested. Each restore is taking
about 4 seconds. C. Thompson analyzes MAVMM and tries to patch defects [207].
TLB flushing can be avoided with new VT instructions, while timing attacks are still
a major issue. The major contribution is the code base freely available. D. Perez exam-
ines hypervisors entry points to measure the attack surface [160]. Timing attacks using
instruction handled by the hypervisor (RDTSC and CPUID) are given as examples.

2.2.5.3 Conclusion

From those analyzes of virtualization peculiarities, we extract rules to feed our deci-
sion engine and detect when a malware tries to adopt a different behavior than bare
metal.

2.2.6 Protections

Multiple approaches have been studied to solve previous problems through execution
flow, memory management and network.

2.2.6.1 Control flow isolation

The attack surface varies as a function of the virtualization mechanism, and implies
different protection mechanisms.

The emulation (Section 2.2.2.1) resides on an instruction analysis engine which
fetches and executes callback function registered to handle them. Here the attack
surface gathers the engine and callbacks. These, essential for non-hardware assisted
hypervisors, are error-prone but provide fine-grained control of edge effects. How-
ever, no actions inside the VM can affect physical devices as all parts are emulated.
The engine is isolated by Host OS protection mechanisms (MMU) to prevent privilege
escalation when breaking out of the hypervisor.

The system-level virtualization (Section 2.2.2.3) shares the Host OS kernel between
all guests, and thus inherits a wider attack surface. This is the compromise chosen by
this solution, where component pooling results in higher performances. Unfortunately,
Linux security is bypassed several times a year [17, 66].

Hardware-assisted virtualization offload instruction analyzes to the CPU, like the
system-level virtualization. Isolation is enforced by design, with Virtual Machine Con-
trol Structure (VMCS) internal verifications. Thus, hypervisor defines only contexts,



2.2 hypervisors 31

registers and bit-masks to regain control. The hypervisor TCB is lighter, reducing
greatly chances of vulnerable code. However, closed-source microprocessor code can
hide side-effects as explained into 2.2.5. Furthermore, the attack surfaces depend on
hardware-assisted mechanisms completeness. For example, virtual memory and de-
vices may be offloaded to the processor, or completely emulated. Once again, there is
a trade-off between control and performances. New CPU architectures, such as Intel
Haswell [104], tend to lower hardware assistance cost and become reference compo-
nents of virtualization.

Paravirtualization can emulate instructions or use hardware facilities, and inherits
the previous problems highlighted. Moreover, the hypercalls specific to this technol-
ogy provides direct access to hypervisor internals. Components partitioning is essen-
tial to avoid full access to the administration VM (named dom0) during an attack.

2.2.6.2 Hypervisor disaggregation

Today, every hypervisor has an architecture where components are more or less iso-
lated. The original monolithic structure is now disaggregated in tight building blocks.
The components privileges have to be limited to normal behaviors and vital func-
tionalities. We have seen how Xen build stub domain micro VMs to offload services
and reduce TCB 2.2.2.4. The same techniques can be applied to other hypervisors, the
difficulty depending on the underlying architecture.

2.2.6.3 Memory management

To prevent DoSs attacks and optimize system performances, hypervisors attempt to
manage memory in several ways [219].

sharing pages A physical machine hosts the same OSes, with the same kernel,
and more generally the same data. It then uses sharing pages techniques to enhance
performances. The VMs memories are analyzed randomly to aggregate identical data
without creating load on the host. The main algorithm calculates the hash of pages,
then compares them. When two memory pages are the same, the hypervisor create
a read-only page and copy data on it. A standard copy-on-write mechanism will du-
plicate the page seamlessly when a VM modifies it. The access launches an excep-
tion caught by the hypervisor. This technology is name Transparent Page Sharing for
VMware and Kernel same-page merging for KVM.

ballooning The hypervisor allocates parts of host memory to the VM. At execu-
tion, the hypervisor gives this memory to the VM without any possibility of further
safe modification, as there is no semantic view of the “inside”. A solution is to inte-
grate an agent inside the VM to guarantee the communication with the hypervisor.
The agent gathers free pages of the VM to give them back to the hypervisor when out
of memory.

memory compression The compression mechanism happens when VMmemory
is filled. The traditional swapping mechanism pours memory pages to the hard drive
and thus extends RAM but with a huge performance cost. Accesses are up to 100
times slower. As an alternative, memory is packed into a compression cache. Access
times are decreased with only a decompression of the page into the RAM.
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hypervisor swapping As traditional OSes, the hypervisor has a swap zone to
migrate VM and free space. This approach is simpler than ballooning but has a strong
impact on access times. Moreover, new problems appear such as page swaps and the
double-swap when the whole system is out of memory.

stopping virtual machines Finally, the hypervisor has a stop feature to kill
VM when memory usage is critical. This is more a fall-back solution.

2.2.6.4 Network technologies

Hypervisors offer network features at different OSI layers. At the second level, the
hypervisor handle VM frames to make them believe that they are alone. At the third
level, the hypervisor is a gateway and translates addresses. VMs are on the same
subnet, and cannot be seen on the physical network. There are also distributed virtual
switches offering a wide range of features close to real ones, such as VLAN, spanning
tree or network diagnostic.

network flows isolation Equipment available into the VM always appear as
a dummy network interface. However, the latter hides efficient mechanisms to isolate
network flows. The simplest is to recreate a new network stack and to entrust it to the
hypervisor. The hypervisor then translates data and transfers it to the physical device,
or send data to the virtual switch. There is also the possibility to assign a physical
network card to a VM, and pass-through the hypervisor. Thus, the hypervisor loses
all control of the device, but the VM has a network card with all functionalities. Finally,
the VM can help the hypervisor with a specific driver, allowing better interpretation
and delivering high speed.

2.2.6.5 Conclusion

We classify those memory management mechanisms as available reactions to apply
when dealing with a VM. We also have points to watch and finer control of the security
vs performance cursor.

2.2.7 Architectures

The inherent code base needed to perform virtualization is tremendous. Thus, aside
from well-known hypervisors, new security architectures explored different leads to
reduce intrinsic complexity, handle embedded constraints and virtualize them.

2.2.7.1 Micro hypervisors

The hypervisor is considered trustworthy and is the key of a secure virtual infrastruc-
ture. With arbitrary privileges on VM (inspect/modify states, creation/destruction...),
the hypervisor can endanger their confidentiality, integrity and availability. New at-
tacks aiming at the hypervisor represent a technological breakthrough and open a
new research era. As seen into 2.2.3.1, attack vectors come from device drivers: net-
work card, power management, graphic acceleration... These are named bounce at-
tacks. A buggy hypervisor driver code is exploited inside a VM, a malicious code is
injected to break VMs isolation and backdoor other components.
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To prevent these attacks, two approaches have been designed to reduce the size and
the complexity of the TCB. Two components are particularly sensitive and have to be
protected, the hypervisor core and the administration VM (dom0). The first approach
hardens the TCB, while the second minimize it.

tcb hardening Trusted computing architectures [25] deliver strong integrity of
the hypervisor and components through TPM attestation. Otherwise, language tech-
niques [203] protect hypervisor control flow to guarantee executed code authenticity.
Thus, one can detect buggy code and malicious code. Finally, sandboxing confines
malicious code by hooking device drivers at multiple levels: hardware [181], hypervi-
sor [133], user space [83].

Driver protection domains, such as Nooks [197], decrease buggy code impact on
the hypervisor for less that 100 Line Of Codes (LoC). However, it does not protect
against malicious code and does not provide remediation. Thus, some approaches of-
fload drivers to user space and constrain their possibilities. The micro driver approach
showed a high performance cost.

Another field is to provide memory integrity of the hypervisor, i.e., the fact that the
hypervisor can not be modified by the software running at a lower privilege level.

tcb minimization Another research axis create new architectures rather than
patching weaker ones. The approach is to adapt operating system research evolution
(micro kernels, exo-kernels) to hypervisors. The code is divided in two parts, criti-
cal and non-critical. The objective is to minimize critical code size by dropping non-
essential services. Device drivers can be virtualized, e.g. Hyperwall [199], to enhance
isolation without code modification.

A more intrusive approach, DeHype [232], even divide the critical code in two parts.
A lightweight KVM is offloaded into the user space, and a minimal hypervisor, Hy-
peLet, replace the original KVM with only critical components. We can see a division
of functionalities which is eligible to formal proof. These are named micro hypervi-
sors, or microvisors, and the extreme ones are NoHype or BareBox [200, 114], where
all communications are pass-through and the virtualization layer almost disappears.

An interesting architecture, the Nova [192] microvisor divides the hypervisor: the
micro hypervisor (with less than 9000 LoC), and virtualized components in user space
(named VMM here). The microvisor handles some essential functionalities (MMU,
IPC). VMMs handle hypercalls interface or address spaces, and can be recovered dy-
namically if compromised. Device drivers and applications run out of the hypervisor.
However the Nova micro-hypervisor verification project [205] aims only at low-level
properties of the code, such as memory and hardware safety and termination, and
does not consider virtualization correctness at all [206]. Deploying such architectures
implies a lot of new components and offers only few services compared to commod-
ity hypervisors. Also, new versions require new patches, and infrastructure is highly
dependent on developers. These new architectures still have small communities.

A second approach, as seen into section 2.2.2.4, disaggregates the dom0. For exam-
ple, Min-V [144] strips down the Hyper-V hypervisor with least used device drivers.
The attack surface is then decreased, and tests highlighted that several attack classes
are prevented. To a further extent, hypervisor verification tools show isolation prop-
erties for a minimalistic model of a hypervisor running on a simplified hardware
without MMU and TLBs [30]. Alkassar outline a virtualization correctness proof of a
simple hypervisor for a single-core RISC machine with a single level address transla-



34 cloud computing security : state-of-the-art

technology policies disagregation vmi

Xen Flask, sHype Qubes, XOAR, HyperSafe Virtuoso, XenAccess, LibVMI,

VMIFMA, VMWall, VRFPS,

Ether, VMWatcher

KVM SELinux sVirt, DeHype, HyperLock libvmi

Hyper-V Min-V CXPInspector

Table 9: Hypervisor isolation mechanisms.

tion but without a TLB. The result of the verification is a simulation proof, carried out
in Microsoft’s VCC verifier [53]. It was the preamble of the complete verification of
the Hyper-V hypervisor including virtualization correctness [130].

2.2.7.2 Nested virtualization

The effective protection may be impossible if the complexity or the infection is too
high. Other approaches try to protect the infrastructures even if the hypervisor is com-
promised. Referred as Hypervisor-secure virtualization (HSV), the hypervisor is not
in the TCB. An underlying layer, software or hardware, is in charge of the security.
Resource management and security are divided unlike commodity VMM: the hyper-
visor can launch, stop and schedule VMs, but cannot influence pagination, secured by
the security layer.

Nested virtualization performs software HSV. The hypervisor to protect (L1), is vir-
tualized by a minimal secure hypervisor (L0), protected by the hardware. The different
virtualization layers can coexist on the same computer by relying on hardware-assisted
extensions Intel VT-x: L0 is running as the host, while VMs and L1 are guests. Memory
virtualization also depends on hardware capabilities. Emulating paging or using EPT,
page tables are merged to avoid an extra indirection level. The CloudVisor [235] ar-
chitecture enhances security through this paradigm. The compromised L1 hypervisor
manage resources, but an extra verification is performed at L0 layer to prevent unau-
thorized page modification. As Overshadow [45] for OS, pages are also encrypted to
prevent L1 modifications. This approach is a promising next step, as L0 abstracts hard-
ware, and is a first solution to homogenize multiple IaaS infrastructures. The VMs are
able to run independently of the IaaS provider [230].

2.2.7.3 Conclusion

The virtualization layer architecture differs for each hypervisor software. Implementa-
tion choices of components that deliver internal functionalities, such as virtual devices
mapping or virtual MMU, impact hypervisor behavior. While there is no ideal archi-
tecture [98], the hypervisor has to be selected wisely to be in tune with the above
virtual machine.

2.2.8 Layer security mechanisms

Section 2.1.4 presented several approaches to secure each layer, which are detailed
here.
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layer methodology

Secure virtual machine Harden guest machine as secure hardware

Control allocation of physical resources

Integrity validation, signature checking, virtual encryption

Monitor change management procedures

Secure time synchronization

Secure management interfaces Minimize attack surface

Strong authentication, encrypted communications

Least privilege user access

Log and audit event

Secure local and remote hypervisor management interfaces

Secure hypervisor Use attestation and integrity checks

Patch and update attestation records

Use care with resource allocation to VMs

Monitor hypervisor for sign of compromise

Secure host operating system Use attestation for verification

OS hardening

Implement standard network security measures

Secure Hardware Use attestation for verification

Control physical access

Use BIOS passwords

Remove unnecessary hardware

Table 10: Platform hardening methodology. (from [157])

VM introspection (VMI [85]) leverages hypervisor capabilities and context to super-
vise VM behaviors. Whether inside the VM with an agent, into a third party appliance,
into the hypervisor or even a mix, every introspection solution has its very own fea-
tures. In-VM monitoring [180] benefits from the VM context, thus allowing a straight-
forward analysis of behaviors. However, the monitoring component has an in-VM
footprint and has to be protected from malicious programs. Security appliances [101]
are isolated in another VM to enhance isolation, and cooperate with the hypervisor
to analyze the target VM. Those extra detours decrease the reactivity time with twice
more VMEXITs.

Several challenges slow-down the adoption of these systems. A legitimate user in-
serts a USB key into the computer, modifying the IDT and thus the kernel. The hy-
pervisor analyzes root cause and has the daunting task of deciding if this action is
legitimate. Furthermore, hypervisor is able to hook specific functions, such as the in-
terface with I/O devices to analyze a data block, but is not aware of the context. Data
structures associated to those blocks have to be rebuilt from the virtual memory.

2.2.8.1 Hardening recommendations

Recommendations to harden virtual systems are detailed in [208] and summarized
in [157] (see Table 10). It is a minimal checklist to respect to ensure a secure cloud
computing environment.

The security mechanisms previously seen are mapped to the methodology in Ta-
ble 11. They are enablers to setup the checklist and enhance the current security level.
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Layer
Approaches/Mechanisms

Min TCB Harden TCB Access control Attestation

Disaggregation New architec-

ture

Secure virtual
machine

MicroDrivers [83],
Over-
shadow [45]

Full virtualiza-
tion, Emulation

GrSecurity [189],
OpenWall, WX̂,
ASCII Armor,
PAX, Exec
shield, ASLR,
PIE

Terra [86],
Proxos [202],
SELinux [185],
Smack [178],
TOMOYO [92],
AppArmor [31]

vTPM [159]

Secure manage-
ment interfaces

cgroups Entropy PolicyKit,
sVirt [141]

SSH TLS

Secure hypervi-
sor

Hyperwall [199],
DeHype [232],
SSC [42],
Min-V [144],
XOAR [54],
Qubes [172],
Hyper-
Lock [228],
HyperSafe [227]

NoHype [200],
Barebox [114],
MAVMM [145],
TrustVisor [135],
XMHF [213],
Lock-
down [212],
SecVisor [179],
BitVisor [182],
sHype [177]

HyperSentry [25],
LXFI [133], Hy-
perGuard [175],
Hyper-
Check [225],
RandHyp [224]

CloudSec [101] Nova [205, 206],
L4 [120], iKer-
nel [203]

Secure host op-
erating system

Type I hyper-
visors, CloudVi-
sor [235], Tur-
tles [33]

Micro hypervi-
sors

GrSecurity [189],
OpenWall, WX̂,
ASCII Armor,
PAX, Exec
shield, ASLR,
PIE

SELinux [185],
Smack [178],
TOMOYO [92],
AppArmor [31],
Gradm

Secure Hard-
ware

MPX [103],
SGX [102], NX,
SMEP, SMAP

SMM, Multi-
Hype [181],
SICE [26]

SMM, TPM,
TXT

Table 11: Mapping hypervisor security mechanisms to methodology.

The classification is based on the different features highlighted throughout this chap-
ter.

The new architecture approach to minimize TCB for secure host operating system
is empty. This is because the hypervisor and the OS are mixed up by design. New ar-
chitectures tries to outperform by designing a virtualization-aware OS, and the Secure
hypervisor cell is applicable to protect the host OS layer.

2.2.9 Conclusion

While providing compromise detection at several levels, there is still low remediation
to rollback kernel to a clean state. An promising approach to set up these mechanisms
is the autonomic computing paradigm.

2.3 autonomic computing

We describe the autonomic approach and define specific terms [113]. Systems follow-
ing this approach can manage themselves using high-level objectives defined by their
administrators.
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2.3.1 Definition

An autonomic computing system is identified through 8 key elements defined into [112]:

1. To be autonomic, a computing system needs to "know itself" – and comprise
components that also possess a system identity.

2. An autonomic computing system must configure itself under varying and un-
predictable conditions.

3. An autonomic computing system never settles for the status quo – it always
looks for ways to optimize its workings.

4. An autonomic computing system must perform something akin to healing – it
must be able to recover from routine and extraordinary events that might cause
some of its parts to malfunction.

5. A virtual world is no less dangerous than the physical one, so an autonomic
computing system must be an expert in self-protection.

6. An autonomic computing system knows its environments and the context sur-
rounding its activity, and acts accordingly.

7. An autonomic computing system cannot exist in a hermetic environment.

8. Perhaps most critical for the user, an autonomic computing system will antici-
pate the optimized resources needed while keeping its complexity.

An autonomic computing system features 4 main properties detailed further:

Self-configuring For automatic configuration of infrastructure components.

Self-healing For automatic recovery when system is in a faulty state.

Self-optimizing For automatic adaptation of resources toward better efficiency.

Self-protecting For automatic protection against attacks.

2.3.2 Self-configuration

Autonomic systems will configure themselves automatically in accordance with high-
level policies – representing business-level objectives, for example – that specify what
is desired, not how it is to be accomplished. When a component is introduced, it will
incorporate itself seamlessly, and the rest of the system will adapt to its presence –
much like a new cell in the body or a new person in a population.

2.3.3 Self-optimization

Autonomic systems continually seek ways to improve their operations, identifying
and seizing opportunities to make themselves more efficient in performance or cost.
Just as muscles become stronger through exercise, and the brain modifies its circuitry
during learning, autonomic systems will monitor, experiment with, tune their own
parameters and will learn to make appropriate choices about keeping functions or
outsourcing them. They will proactively seek to upgrade their function by finding,
verifying, and applying the latest updates.
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2.3.4 Self-healing

Autonomic computing systems will detect, diagnose, and repair localized problems
resulting from bugs or failures in software and hardware. Using knowledge about
system configuration, a problem-diagnosis component (based on a Bayesian network,
for example) analyzes information from log files, possibly supplemented with data
from additional monitors that it has requested. The system then matches the diagnosis
against known software patches (or alert a human programmer if there are none),
installs the appropriate patch, and retests.

2.3.5 Self-protection

Autonomic systems will be self-protecting in two senses. They will defend the system
as a whole against large-scale, correlated problems arising from malicious attacks or
cascading failures that remain uncorrected by self-healing measures. They also antici-
pate problems based on early reports from sensors and take steps to avoid or mitigate
them.

We provide further analyze of self-protection to argument design principles fulfill-
ing. Note that the following sub sections can be related to other aspects of autonomic
computing, such as self-configuration with policies, but the self-protection is our main
target in this thesis.

2.3.5.1 Policy frameworks

Several generic policy management frameworks [58, 210, 72, 93] have been proposed
to automate system and network adaptations to respond to context changes. They
are generally built around well-documented, extensible information models. A few
of them [58] address security for large organizations with traditional IT systems.
However, policy-driven security automation remains at a very early stage for the
cloud [147, 94] – for instance, by applying ideas from Model-Driven software devel-
opment for the PaaS layer [147]. Few frameworks address multi-layered defense or
multiple loops. A notable exception is the FOCALE autonomic architecture [72, 194],
which shares many similarities with our work. FOCALE features a mediation layer
with agents which operate by model translation to normalize formats of monitored
data or reaction commands. FOCALE also allows multiple loop patterns, but with a
more elaborate adaptation model: an outer management loop enables context-aware
adaptation of each component of a main control loop. Although FOCALE seemed
suitable for Beyond 3G network deployment, it appears nonetheless quite complex to
implement, and does not seem to have been applied to the cloud.

2.3.5.2 Self-protection frameworks

A number of self-protecting systems [121, 20, 60, 184] have also been investigated,
mainly to mitigate network threats[44]. These systems contain both detection and re-
action mechanisms. The overall assessment is broadly similar to policy frameworks,
although some projects investigated cross-layer security [121], support multiple detec-
tion and reaction algorithms [121, 20, 60], or have an explicit policy orientation [184].
Our work complements RootSense which defines layered security architecture. How-
ever, while the RootSense design is very much oriented towards detection, reaction
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being only the last stage, our solution design is more balanced between detection
and reaction, context aggregation and reaction policy refinement being performed
symmetrically by dedicated agents. Moreover, RootSense targets single hosts rather
than clustered architectures. The self-protection architecture defined in the Selfware
project [60] is another closely related work. It targets PaaS rather than IaaS environ-
ments, and defines a 2-level architecture – a component-based system representation
being used to detect and react over managed resources. While introspection and con-
trol interfaces directly derive from the use of a component-based model, the security
mechanisms for detection and reaction remain implicit. In our solution, they appear as
an explicit security management plane, offering increased flexibility to include third-
party security components.

2.3.5.3 Protecting VMs

Virtual machine introspection [85] sparked a whole steam of research [143, 107, 170,
100] to use the capabilities of the hypervisor (Virtual Machine Monitor or VMM) to
monitor VM behaviors. Different alternatives where proposed to place the monitoring
component: embedded in the VM, in the VMM, or in an "out-of-VM" appliance. A few
systems attempted to tackle the well-known "semantic" gap issue by comparing mon-
itoring information gathered from different layers [107, 170, 100]. These efforts were
mostly focused on detection with almost none, or very simple remediation policies
(restart, kill a VM) [100]. Some systems [86] based on a trusted VMM also allowed
verification of flexible integrity policies. Overall, the corresponding architectures gen-
erally proved difficult to be compatible with legacy anti-malware software. A number
of reaction mechanisms were also proposed, mainly in terms of firewalls [177, 171] or
self-recovery mechanisms after an intrusion [89]. But few of them have self-protecting
features or flexible security policies.

2.3.5.4 Hypervisor defense

One layer below, a variety of techniques were proposed to protect the VMM from
subversion, with special attention to buggy or malicious device drivers which enable
kernel exploitation due to poor confinement. One can mention trusted computing
architectures [25] providing strong VMM code integrity guarantees, sandboxing by
controlling communications between driver and device [197], kernel [133], or user
space [83], virtualization [203, 33] and new component-based VMM security architec-
tures [192, 54] to strengthen isolation, or language-based techniques [227] to detect
safety violations. However, solutions remain limited either to pure integrity detec-
tion [25, 227] or simple containment [133, 83, 203], proposing no actions to sanitize
the kernel. Security policies are also often not well separated from the interception
mechanisms themselves, making them hard-to-manage. Security mechanisms usually
require extensive code rewriting, making them hard to apply to legacy hypervisors.
Overall, VMM self-protection is still a widely unchartered area [222].

2.3.5.5 Detecting intrusions and malware

Finally, generic IDPS and anti-malware tools [27, 226] may also be viewed as a form of
self-protecting system, with an extensive number of techniques to detect both known
and unknown attacks [154]. Those systems are usually based on a single control loop,
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Systems
Principle fulfilled?

P1 P2 P3 P4

Policy frameworks yes no no yes

Self-protection systems no no no some

Protecting VMs some yes no no

Hypervisor defense no a few no no

IDPS/anti-malware techniques no no a few yes

Table 12: Principle coverage by some existing classes of systems .

with a few attempts at cross-layering[226] to detect elusive malwares. Their architec-
ture is usually more open to allow selection and composition of several detection
algorithms to improve accuracy. However, in most cases, they have been little applied
to the cloud.

2.3.6 Policy models

Access Control (AC) models are very widespread, declined in several categories and
often referred in terms of subjects and objects. A subject is "a computer system entity
that can initiate requests to perform an operation or series of operations on objects".
An object is "an abstract concept that is useful for purposes of generically modelling
AC approaches and their mechanisms" [78]. Discretionary Access Control (DAC) man-
age rights of an object for given subjects. The Lampson model defines a generic access
matrix [126] to express security policies, with one row per subject and one column per
object. Although the matrix illustrates all possible interactions, only few intersections
are populated, and thus inefficient in terms of memory. Actual UNIX AC implements
access control lists, capabilities and protection bits to optimize the DAC. These have
drawbacks, such as it does not handle data access for particular subjects. The Bell -
La Paluda model [127] implements hierarchical access control to meet military classi-
fication model with security levels, to bring mandatory access control (MAC). While
classic laws are No Read Up, No Write Down, the Biba integrity model [36] perform the
opposite to ensure no compromise of lower level integrity. These models are simplistic
and hard to use effectively on conventional OSes.

Newer AC models are more suitable for OSes. Domain-Type Enforcement (DTE) en-
hance the TE model with the association of subjects to domains, and objects to types. A
domain-domain access control table (DDAT) specifies how domain can interact, while
a domain-type access control table (DTAT) defines the allowed interactions between
domains and types. They are equivalent with the Lampson generic access matrix, but
with a reduced amount of entries by grouping entities. It is used by firewalls [148]
and OS [118]. The DTEL high-level language is available to specify DTE security poli-
cies. Also, the Role-Based Access Control (RBAC) [77] explores roles and privileges to
fit OSes environments. Users are tied to roles, and how which operations are avail-
able to the users. Extensions have been proposed to extend RBAC with organisational
features [109]. Organization-Based Access Control (OrBAC) is a generic access control
model that abstracts subject, action and object with a role, an activity and a view. The
role (resp. activity, view) groups subjects (resp. actions, objects) obeying the same se-
curity rule. The latter is defined by an organization, which bound policies. The OrBAC
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API [16] exposes clean interfaces to create and edit the underlying engine. The MotOr-
BAC [24] security policy editor 2 is a GUI that allows integrated OrBAC management
and specification. Extensions of the OrBAC model address privacy [151], collaborative
systems [69] or even critical infrastructures [108].

Our solution have to be policy-driven to simplify administration and leverage man-
agement. Thus, we consider the policy component as an adaptable module to plug
seamlessly into the security architecture. Our goal is an OrBAC module with the asso-
ciated API to empower the administration with abstract policies. The separation with
the implementation suits our needs to handle mushrooming technologies. Into the
cloud context, organisations can be multiple IaaS providers and be the foundation for
a multi-provider solution, with a security architecture supporting Amazon, Google
and Microsoft.

2.4 conclusion

We have seen cloud computing concepts and approaches related to security enhance-
ment in such environments, through legacy mechanisms and novel approaches, such
as the autonomic computing introduced by J. Kephart [113].





3
V IRTUAL ENV IRONMENT SELF - PROTECT ION ARCHITECTURE

Learn the rules like a pro, so you can break them like an
artist.

- Pablo Picasso

This chapter presents our main contribution, theVirtual Environment Self-Protection

Architecture (VESPA).
First, we explain the concept of autonomic computing adapted to cloud security and

how a self-protection framework can handle issues detailed in Section 2.1. Then we
review the different classes of attacks against the cloud in Section 3.2. After what we
detail our model through design principles, respecting our objectives defined in Sec-
tion 1.2, and define a model in Section 3.3. The framework concept refines the model
in Section 3.4 and shows how to perform self-protection. Section 3.5 exposes two dif-
ferent implementations of the framework, followed by a straightforward evaluation in
Section 3.6.

3.1 concept

VESPA is an autonomic framework with respect to key elements presented in Sec-
tion 2.3. With virtualization in mind, we designed an architecture to benefit from
the inherent layered virtualization model. From this architecture we built a flexible
framework with a hierarchy of components, enabling policy derivation for easy ad-
ministration. The result is a toolkit empowering IaaS infrastructure supervision to link
available security components.

3.2 threat model

The IaaS infrastructure attacks are classified in 3 categories detailed further: (1) com-
pute, related to resources such as CPU, RAM or devices; (2) network, related to re-
sources such as virtual switches and network devices; and (3) storage, related to re-
sources such as virtual hard drives and dedicated equipments to gather files.

3.2.1 Compute threats

Cloud resources are not spared by virus infection, such as Zeus and other trendy mal-
wares. However, we want to preserve tenant isolation regardless of colocated work-
loads. Then the VM hardware allocation have to be preserved. A single VM is assigned
to a specific number of CPU, RAM and devices. Attacks showed how to overstep those
limits and compromise colocated VM confidentiality, integrity and availability.

Furthermore, we have seen how virtualization interferes with conventional memory
management to consolidate physical machine workload. Those mechanisms have to
be under close surveillance as they add potential traps to the underlying hypervisor.

43
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Indeed some agents inside the VM inform the hypervisor of the memory usage, and
create another attack vector for illegitimate access.

3.2.2 Network threats

Networking resources allocated in the cloud support a large number of virtual ma-
chines with low impact. Thus attackers are using the huge bandwidth to attack other
services and threaten availability. Denial of Service is often distributed for even more
impact. The control can be intentional, for Crimeware-as-a-Service, or under unex-
pected control, such as botnets.

3.2.3 Storage threats

A central storage usually gather VM virtual hard drives as files on the same physical
machine. This is an opportunity for an attacker to gain access to data and perform
cold-boot attacks (see Bastion [43]).

3.3 model

We now present our self-protection model. After discussing the VESPA design prin-
ciples, we describe its layered architecture that features: a security plane containing
off-the-shelf components for fine-grained security supervision (monitoring and con-
trol) over IaaS resources; an agent-based mediation plane abstracting away security
component heterogeneity, and enabling granular levels of security supervision; and
an autonomic management plane realizing two levels of self-protection, both within
layers and across layers. After a broad architecture overview, we describe the structure
of each plane in detail. We then explain how their components can be put together to
realize the different self-protection loops.

3.3.1 Design Principles

The VESPA design is built on four guiding principles already presented in the intro-
duction 1.3:

Policy-based self-protection. Our solution have to provide effortless administration
facilities to be effectively adopted and deployed.

Cross-layer defense. Our solution integrate each of them to leverage defense gran-
ularity. Thus, we have communications both inside a layer, and between layers.
Such interactions are non trivial as layer semantic usually diverge (i.e. the hy-
pervisor only see CPU instructions, and not processes). Detections and reactions
should not be performed within a single software layer, but may also span sev-
eral layers.

Multiple self-protection loops. Events collected from one layer can trigger reactions
on other layers, improving infrastructure security. Thus, intra layer events can
create inter layer events. It leverage the flexibility of supervision perimeter. Our
solution creates and handles such events to provide a new level of flexibility for
administrators.
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Open architecture. Multiple detection and reaction strategies and mechanisms - no-
table heterogeneous off-the-shelf security components - should be easily inte-
grated in the architecture, to mitigate both known and unknown threats.

3.3.2 VESPA System Architecture

Figure 8: VESPA Self-Protection Architecture.

A IaaS infrastructure groups resources into layers according to the virtualization
level. VESPA considers security management orthogonally to layers, self-protection
being achieved through a set of autonomic loops operating over a number of compo-
nents organized into four distinct planes, as shown in Figure 8.

At the bottom, a Resource Plane contains the IaaS resources to be monitored and
protected, i.e., managed elements. Over it, a Security plane contains commodity detec-
tion and reaction components that deliver security services such as resource behavior
and/or state monitoring (e.g., an IDS component), or reaction and/or resource state
and behavior (e.g., a firewall component). These components are the sensors and ac-
tuators of traditional autonomic security architectures [47]. Their APIs are typically
vendor-specific.

The next plane, the Agent Plane, abstracts away security component heterogeneity
by defining a mediation layer between the security services and decision-making el-
ements. This plane is built from two hierarchies of agents, one for detection, and an-
other for reaction. Agents have two main roles. First, leaf agents are adapters between
the VESPA framework and the security components, used to translate vendor-specific
APIs into a normalized format both for detection and reaction. Thus, they enable to
plug-in third party security components within the framework. Higher-level agents
are in charge either of alert correlation or of reaction policy refinement. Thus agents
enable a granular level of security supervision over underlying resources.

The topmost plane, the Orchestration Plane contains the decision-making logic. It is
composed of two types of autonomic managers (called orchestrators in VESPA): Hor-
izontal Orchestrators (HOs) that perform layer-level security adaptation; and Vertical
Orchestrator (VOs) in charge of cross-layer security management.
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3.3.3 VESPA Model

In this section, we now present the design of each VESPA plane in terms of Unified
Modeling Language (UML). With such definitions and abstractions, developers are able
to derive the model to many languages fitting their needs.

3.3.3.1 Resource Model

Figure 9: Resource Model.

IaaS resources are categorized according to two orthogonal criteria (see Figure 9). A
layer defines the location of the resource in a cloud stack. Current IaaS stacks are built
as a physical machine running an hypervisor, in turn executing virtual machines (VMs).
Three separate layers are thus clearly identified. The view abstraction captures a broad
class of resources: computing, networking or storage.

In a typical IaaS stack, the interplay between layers and views may be summarized
as follows. The physical layer provides raw computing, communication, or storage
facilities to other infrastructure components. Typical members of each view are re-
spectively: CPU, memory, and graphic cards; commodity network equipments and
interconnects; and storage devices connected to the network or to a PCI slot. Above,
the hypervisor multiplexes and isolates physical resources providing them as a virtu-
alized device abstraction to VMs. View members then become respectively: hypervisor
virtual CPU, memories and devices; virtualized network equipments such as routers,
switches and firewalls; and virtualized storage accessible as dedicated devices. At the
top, VMs have their own resources just like any operating system (guest OS), relying
on the hypervisor for device emulation or access.

3.3.3.2 Security Model

Figure 10: Security Model.
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VESPA protects the critical assets of the infrastructure against attacks, called Pro-
tected Resources (PR) (see Figure 10). Attacks may corrupt a PR, or disrupt the subject
which is using it.

In VESPA, some of the main considered threats target the VM layer: a malicious
VM fools the IaaS VM placement strategy to become co-located on the same physical
server as the target VM. A side-channel attack breaking VMM isolation may then be
used to steal / corrupt information from the infiltrated VM. Another variant may
be to contaminate the VM guest OS, e.g., with a virus spreading through network,
IPCs, or file system. Results can range from unexpected network traffic, arbitrary code
execution in user or kernel mode, to privilege escalation. Traditional network security
threats are also to be considered between VMs, e.g., traffic snooping, VM MAC/IP
address spoofing, or VLAN hopping.

However, more potents attacks on the hypervisor layer are also relevant. A VM
escapes from hypervisor isolation enforcement to take full control of the virtualization
layer. Possible attack vectors include misconfigurations, or malicious/poorly confined
device drivers in the hypervisor. Possible next steps include compromising hypervisor
integrity, installing rootkits, or launching an attack against another VM.

Attacks against the physical layer such as DMA attacks on device, compromise
of the SMM CPU mode, or traditional threats on the physical network are also con-
sidered for protection. In VESPA, PRs are under the supervision of a Security Manager
(SM). This means: (1) monitoring resource behavior through a Detection Manager (DM),
e.g., an Intrusion Detection System (IDS); (2) modifying resource behavior through a
Reaction Manager (RM), e.g., a firewall; or (3) monitoring and modifying the resource
internal state with a Protection Manager (PM), e.g., a file system integrity and intrusion
recovery manager [89]. Those security components are typically off-the shelf, accessi-
ble only via vendor-specific security APIs. The behaviors of all SMs are governed by
security policies.

3.3.3.3 Agent Model

Figure 11: Agent Model.

The agent plane plays the role of a mediation layer between off-the-shelf security
components (SMs) in the security plane and decision-making in the orchestration
plane, both for detection and reaction phases (see Figure 11). Agents perform secu-
rity context aggregation from low-level security events gathered from detection mech-
anisms located in the security plane to a high-level risk assessment able to guide the
decision process. Conversely, they also realize reaction policy refinement from the
high-level response chosen after the decision to low-level policies which can be en-
forced by the reaction mechanisms of the security plane. Agents are thus naturally
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organized in a hierarchical structure, root agents (resp. leaf agents) capturing high-
level (resp. low-level) analysis and response. Two separate agent hierarchies are de-
fined, one for detection, and another for reaction. Agent behaviors are governed by
transformation policies, both for alert correlation and reaction policy refinement.

In line with the open architecture principle (P4), the agent plane also aims to enable
to plug-in third-party detection or reaction components within the VESPA framework.
Leaf agents may be viewed as resource API adapters between VESPA and such compo-
nents: they perform the translation between vendor-specific interfaces of external se-
curity components and a normalized representation for detected events and response
actions.

Detection is performed as follows: a DM or PM notifies its associated Detection
Agent (DA) of security-sensitive events. Each DA then applies an Alert Aggregation
Policy to correlate collected information from sub-agents before sending them to its
parent agent. When reaching the root detection agent, security context information is
transmitted to the orchestration plane through the Horizontal Orchestrator (HO).

The reaction process is symmetric: after choosing to enforce a layer-specific reaction
policy, the HO, sends that policy to the root Reaction Agent (RA). Each RA will apply
a Policy Refinement Policy to fine-tune the chosen adapted response, before sending it
to chosen sub-agents for enforcement. When reaching a leaf reaction agent, reaction
and/or protection policies are pushed towards the corresponding managers in the
security plane.

3.3.3.4 Orchestration Model

Figure 12: Orchestration Model.

The decision-making logic is contained in the orchestration plane, and is split be-
tween two types of orchestrators, as shown in Figure 12. Each IaaS layer contains a
Horizontal Orchestrator (HO) providing a layer view of security management. The HO
is a simple autonomic security manager performing a reflex, local response to threats
targeted at layer resources. The HO gathers the overall layer security context informa-
tion from the root DA. The HO Security Management Strategy allows it to choose the
best layer-level reaction policy, which is then dispatched to the root RA for enforce-
ment.

The HO may also apply decisions coming from a Vertical Orchestrator (VO), an over-
all autonomic manager that realizes higher-level, wider spectrum security reactions.
The VO coordinates layer-level decisions to provide a consistent, cross-layer response
to detected threats. Based upon layer-level information collected from the relevant
HOs, the VO builds a high-level knowledge base of overall infrastructure resource
states and alerts. The VO Security Management Strategy contains administrator-defined
policies on alert feedbacks to trigger or not a cross-layer response. It also allows the
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(a)

(b)

Figure 13: (a) Intra-Layer Loop; (b) Cross-Layer Loop .

VO to chooses the overall reaction policy, which is then pushed down to the relevant
layers for enforcement by the corresponding HOs.

3.3.3.5 Policy Model

Several types of policies are used in VESPA. Monitoring policies define how to col-
lect, filter, and correlate alerts from sensors. Refinement policies express how to narrow
a generic wide-scope response down to a small set of actions understandable by a
specific reaction mechanism. Security management strategies govern decision-making,
defining which reaction policy to apply or generate in a given security context. Finally,
reaction policies specify how to modify the behavior or state of the resource accordingly.

Our framework considers policies as a strong asset. However, a wide range of pol-
icy models and languages have been proposed as for instance for decision [111] or
reaction [59]. Choosing a policy model which is too specific could prove too restric-
tive, severely limiting framework applicability and extensibility, especially for cloud
environments, highly heterogeneous by definition. Therefore, instead of developing a
new policy model, we chose to base VESPA policies on an existing model such as [72]
handling a large panel of policies, notably ECA rules.



50 virtual environment self-protection architecture

3.3.4 A Two-Level Self-Protection Approach

The VESPA design offers the possibility of composing multiple self-protection loops.
The previous sections described separately the necessary building blocks and inter-
faces. We now describe how to put them together to realize two levels of self-protection
for a IaaS infrastructure: (1) at layer-level; and (2) cross-layer.

3.3.4.1 Intra-Layer Self-Protection

The layer-level loop works as shown in Figure 13a. The behavior and state of each
PR can be monitored and modified. When a threat is detected by a DM and/or PM,
the associated agent is directly informed. Collected monitoring information is then
aggregated and correlated according to defined detection policies and transmitted
to super-agents. The process is repeated until reaching the root agent. The overall
security context information is then transmitted to the orchestration plane, where the
HO takes a security adaptation decision, and selects a reaction policy sent back to
the agent plane for enforcement. Reaction policies are refined going down the agent
hierarchy until reaching the leaf agents, which push policies to RMs and/or PMs,
modifying behavior and resource internal state. Note that this type of loop realizes a
reflex response, decision remaining lightweight to cut down the overall reaction time.

Figure 14: Web Server Flooding Self-Protection.

example To illustrate, we consider as PR, a VM-hosted Web server to be protected
against flooding attacks. Some relevant security mechanisms might be an IDS (DM)
for traffic monitoring, a firewall (RM) such as iptables for malicious packet blocking,
and the guest OS task manager (PM) for restarting the Web server. Figure 14 shows the
corresponding VESPA architecture with relevant agents (DA and RAs). Upon attack
detection by the IDS, the DA forwards the alert to the HO that chooses a two-level
compound response: (1) block attacker packets; and (2) restart the Web server. The
reaction policy is then refined by the RA stack into simple reactions enforced by the
relevant RM/PM: (1) ban the attacker IP address by adding a new iptable rule (for the
RM); and (2) restart the httpd process (for the PM).

3.3.4.2 Cross-Layer Self-Protection

The real potential of the framework comes from cross-layer response (Figure 13b):
layer-specific security context is sent by HOs to the VO. That orchestrator consolidates
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system knowledge, and applies the cross-layer Security Management Strategy to gener-
ate an overall response, then refined into reaction policies for each concerned layer,
subsequently enforced by the corresponding HOs, as for the intra-layer case.

In the previous example, all packets are routed to the whole physical infrastructure
and hypervisor, squandering bandwidth. If a physical firewall is added upstream, an-
other policy may be sent to the reaction agents chain of physical layer. Therefore, all
packets coming from the banned IP addressed are dropped earlier in the network, sav-
ing precious bandwidth. Moreover, the Web server VM is doubly protected (defense-
in-depth approach): if physical firewall is evaded, the iptables can take over.

Overall, VESPA defines an architecture where the number of layers multiply pos-
sibilities in terms of remediation actions, either locally or at infrastructure-level. Its
agent-based architecture also enables to combine network and system infrastructure
views both in detection and reactions phases.

3.4 framework

We now describe the framework refining the previous model to implement the solu-
tion. This section discusses important implementation points to consider while instan-
tiating the VESPA model.

3.4.1 Core Framework

VESPA relies on a core framework built on a distributed object model. The basic el-
ements of the core framework are objects, that capture functionalities needed by all
framework entities. Objects are named using unique object identifiers (OIDs), and
have the ability to spawn new objects. This feature is used to build the agent and
orchestrator hierarchies defined in the VESPA model. Spawned objects are tagged as
slave in the spawning object. Upon object creation, an initialization method is called
specifying: the identifiers of the object and of its parent, and a list of slaves to create.
Finally, the object listens for incoming communications.

Objects interact through an Object Request Broker (ORB) enabling distributed com-
munications. Messages are formatted as:

function|argument1#...#argumentN

Message sending is based on the send(OID, message) interface. Identification of in-
teracting parties and communication channel establishment is completely handled in-
ternally. Message reception is based on the receive(message) interface. The message
arguments are then passed to the relevant available object functions.

The core object framework only provides basic primitives. To implement the VESPA
model, the core framework must be extended, objects being specialized with their
own specific functions. This may be realized by defining new callbacks to create new
framework entities refining the concepts of the model. Our approach is based on agent-
oriented programming [183] to specify interfaces and messaging capabilities.

This approach notably enables the flexibility needed to specify the various types of
policies found in the self-protection model, as shown next.
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3.4.2 Architecture definition

Our VESPA solution needs the infrastructure components to deploy the security layer,
agent layer and orchestration layer. First the administrator defines execution environ-
ments available at the VM-layer, hypervisor-layer and physical layer, as illustrated into
the configuration file below 3.4.2.

[Livebox3]

Type= Machine

Interfaces= 192.168.1.1

[pc-isaiah]

Type= Machine

Interfaces= 192.168.1.10

[perso-isaiah]

Type= VM

Interfaces= 192.168.1.21

[pro-isaiah]

Type= VM

Interfaces= 192.168.1.20
�

We have 4 execution environments contained into the physical and VM layers, with
a unique name and bound to a unique interface. This text-style definition allows the
architecture file to be portable: it can be parsed by the most programming languages.

3.4.3 Implementation considerations

3.4.3.1 Resource and Security Planes

Resources are viewed as black-box entities by the framework. Similarly, security plane
components are off-the-shelf, and thus considered "as is". They can only be accessed
through vendor-specific APIs to send alerts from PRs to SMs, and to apply commands
to modify PR behavior or internal state. SMs are directly connected to framework
agents to translate their own APIs to VESPA APIs.

3.4.3.2 Agent Plane

In the agent layer, the core object framework is extended differently according to
whether agents talk to a HO, to other agents, or to a specific SM. The detection and
reaction agent hierarchy is built from root agents that recursively create slave objects.
Specific functions are defined to implement several agent-related functionalities de-
fined in the model: (1) applying the AlertAggregationPolicy to received alerts; (2)
refining reaction policies according to the PolicyRefinementPolicy.

The AlertAggregationPolicy of the model is enforced in the agent function
alert_handling(alert). This callback is called whenever a slave object sends a mes-
sage containing an alert. Several behaviors are possible such as raw forwarding of the
alert to the parent object, or correlating alerts before notifying the parent.

Whenever an agent receives a reaction policy from its parent, the PolicyRefinement-
Policy described in the policy_refinement_policy agent function is applied. Two
situations are then possible for enforcement. The agent can interact with a SM or with
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another agent. Interactions with the security plane are completely dependent on the
commodity API of its components. Therefore, there is a one-to-one mapping between
SM APIs and leaf agent function callbacks. Interactions with other agents grant the
ability of callbacks with extended scope. The policy is then refined into sub-policies
to be enforced by slave objects.

3.4.3.3 Orchestration Plane

HOs create root detection and reaction agents in each layer. Similarly, the VO creates
HOs for each layer defined in the VESPA model. Alert handling is similar to the
agent case, aggregating and correlating received alerts and forwarding them to the
VO. Similarly, a HO may refine the reaction policy chosen by a VO. For both types
of orchestrators, decision-making is another function callback registered as a handler,
where the HO/VO Security Management Strategy will be enforced.

3.5 implementation

We highlight the VESPA benefits through 2 different implementations. The first in
Python provides an easy-to-use framework with a very specific usage of dynamic
code introspection of the language, to deliver obvious code development for agents
and policies. The second in C with Fractal provides a faster implementation aimed
towards embedded devices. Development is more error-prone, but come with a fine-
grained control.

3.5.1 VESPA in Python

A first version of the framework, to demonstrate usability and viability, was imple-
mented in Python. This object oriented language allows fast development at the price
of a slower execution time.

3.5.1.1 Code architecture

The global architecture for a VESPA instance is detailed in Figure 15. We see the Model
View Controller (MVC) components playing together with lightweight interfaces. The
model class is a node and is a reference toward the VO for further interactions. The
HO abstract class generalizes HOs specific to layers. An agent is displayed to highlight
how it is connected with other classes.

3.5.1.2 Core class

All VESPA components extend common Node object for communications, node man-
agement and threading capabilities. Figure 16 details the core class diagram.

The Node class implements the PThread interface which extends the Thread class.
Indeed, each node is independent and is not impacted by exception and other errors
of colocated nodes.

The PThread interface identifies the component with the desc() method, and returns
a tuple (name, ip, port) aimed to be unique among the framework instance. When a
PThread is started, the thread register itself with its master by calling remotely the
register() function (communications are described in the next paragraph). The master
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Figure 15: Python Object Hierarchy.
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Figure 16: Node core UML diagram.

node then enlist the node as a slave, the list being available with the list_slaves()
function.

communications Every node listens on the port defined into the configuration
file. When another node communicate with our node, the listen_interface create a
worker in another thread to handle the request. The socket is then saved and asso-
ciated to this worker in order to speed up next communication. A pipe now exist
between the nodes.

The node communicates through the sendRemote interface. This function ensures
acknowledgements, forwarding to the correct next node and result serialization. When
the message specifies a function node to call with arguments, the node perform in-
trospection on the current agent and compare the expected function with available
functions. If there is a match, the worker converts the message string to function call
with arguments, and sends the result to the callee. Otherwise, the refinement policy
defines how to forward the message.

Alerts are special messages with specific behavior. They are only sent to their master
without acknowledgement for fast processing. In their simplest form, alerts contains
the source of the alert and the message. Intermediate nodes, such as HOs and Agents,
may aggregates alerts to lighten network load. A special alert handler is defined into
the class specifying the node, notably the VO. The alert handlers are fired on the alert
message reception, and can be registered through the register_alert_handler function.
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Every node is able to query the underlying slaves with the findNode() function.
It returns the identification tuple if present and None otherwise. This mechanism
enables deployment checking and correct order delivery.

The communication protocol carry out coherent message delivery with a flag termi-
nating transmission. It is needed to concatenate multiple transmissions in the same
socket.send(). Unfortunately, the Python socket class is not thread-safe and we had
to overload the lowest-level Python socket function and manually schedule messages.
Thus, a small overhead enables correct message delivery.

Communications are encrypted and signed with various algorithm (even the NULL
algorithm for debugging purposes). It protect the framework against Man-In-The-
Middle (MITM) attacks and users trying to send remote orders. The key is distributed
during framework deployment, but the framework can handle Public-Key Infrastruc-
ture (PKI) or Cryptographically Generated Addresses (CGA) [55].

node management A node obeys to a master, and is the master of slaves. At
node initialization, a register message is sent to the master which append the node to
its slaves for further reference. The master also forwards the registration to its master
for overall knowledge.

The nodes are split in two groups: (1) passive and (2) active. (1) Passive nodes only
listen for incoming communication as seen in the previous paragraph. This behavior is
intended for reaction agents without detection, as they are only calling functions and
not autonomous. (2) Active nodes have the same features plus another thread started
at the node creation for autonomous detection. Thus they are able to send alerts on
events. For example, an agent watching logs wait for bytes to be written on the file
descriptor. When the buffer is full it sends the whole strings as an alert to the master.
The agent group is selected during node specialization into the agent class with the
run variable.

The destroy message cleans the framework node by flooding all neighbors, the mas-
ter and slaves. Hence, all nodes join their threads, close sockets and die.

multi-threading A node is divided into multiple threads for more reactivity. A
global thread for VESPA initialization, a communication thread with several workers,
and a thread for background detection. However the Python multi-threading is under
the control of a Global Interpreter Lock (GIL) and restrict true threading to a safer
alternative. It is hard to achieve multi-threading without external libraries, but enable
easier variables sharing. Semaphores are somehow hidden. Thus users may benefits
from this behavior to integrate new threads for further computation by adding the
thread to the object thread list.

3.5.2 VESPA in C

To enhance the Python version, we adapted the first version to components and thus
enable a more flexible architecture. The Fractal derivative in C, Cecilia, was our choice
to implement the second version (see Figure 17). The embedded aspect is also our aim
to integrate new devices in the VESPA architecture, such as mobile phones, with an
optimized assembly and near native speed.
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Figure 17: C Object Hierarchy.

3.5.2.1 Code architecture

3.6 evaluation

This section gives preliminary results regarding the principles detailed in the Chap-
ter 1.3 for VESPA. We introduce several agents to underline the functions included into
the framework (P4), then we illustrate the potential of multiple loops for enhanced an-
tivirus detection (P1, P3).

3.6.1 Available agents

3.6.1.1 Log agent

The log agent wraps logging facilities for a system. The attributes define how logs are
gathered: written into specific files or gathered by a more efficient software (such as
SystemTap or lttng). This is a generic agent that provides a READ access to files in the
current execution environment.

3.6.1.2 Libvirt agent

The libvirt agent orchestrates virtual machines for an hypervisor. It can start, stop, kill
and migrate VMs with a one-to-one abstraction of the original APIs. This is a generic
agent compatible with commonly-deployed hypervisor, and should be the first choice
when dealing with VM management.
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3.6.1.3 Shared object agent

The shared object agent is able to call native libraries in a C-like format. For instance,
to reuse libraries available by default on the OS, to offload critical code to C/ASM and
call it from an higher-level language (Python) or to aim at embedded deployment.

3.6.1.4 Run agent

The generic run agent allows code execution on the execution environment. For ex-
ample, the agent can wrap bash to run shell scripts for usual administration or the
default loader to read executables. The agent provides the EXEC access to the current
execution environment.

3.6.1.5 ClamAV agent

This agent is an example to wrap the ClamAV antivirus service. Mixing kernel mode
driver and user land engine, it covers numerous use cases from least privilege princi-
ple to secure I/O communications.

3.6.1.6 Web agent

The web agent is specific to Apache for our purpose but can be easily extended thanks
to the modular architecture. Only the lower level components have to be replaced. It
delivers a wrapper to control the service: start, stop, kill, and reconfigure.

3.6.1.7 Meeting agent

The meeting agent is even more specific with a wrapper around the OpenMeeting
software. The service can be started, stopped or killed. It is a nice example to see
how to wrap the run agent described above and provide simple, clear and effective
functions.

3.6.1.8 iPad agent

The iPad agent control the iPad display through a VNC interface. This example show
how to manage third-party devices with very restrictive access and almost unmanage-
able.

3.6.1.9 Proc agent

This agent supersedes the run log agent with a specific interface wrapping the /proc
filesystem on Linux. It enables easy access to the filesystem tree and leafs, and comes
handy when dealing with various OSes as a common base. For example the ioports,
cpu and memory information give information about how VMs are using their allo-
cated resources.

3.6.1.10 SDN agents

The OpenFlow, Floodlight and POX agents interconnect VESPA with the respective
SDN controllers. Several alternative are available to fit with current needs: REST, HTTP
or TCP levels.
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agent role lines of code

agent_log Generic 50

agent_libvirt Hypervisor / Generic 200

agent_gen_fuzz Generic shared object wrapper 100

agent_run Generic 50

agent_clamav Specific / ClamAV 500

agent_web Specific / Apache 60

agent_reunion Specific / OpenMeeting 40

agent_ipad Specific / IPad 50

agent_proc Specific / Linux /proc 150

agent_openflow Specific / OpenFlow 300

agent_floodlight Specific / Floodlight 80

agent_pox Specific / POX 120

Table 13: Available VESPA agents.

3.6.1.11 Conclusion

We developed multiple kind of agents at the different layers of VESPA to fulfill use
cases and shows the flexibility of the framework. Some classes of agents are generic,
such as following logs and executing commands through SSH. The available agents in
VESPA are listed in Table 13.

We believe that those agents handles the majority of usual requirements. More spe-
cific agents provide generic programing, such as the libvirt agent taking advantage of
the integrated Python interface to abstract interactions with common hypervisors.

Finally, leaf agents are specific to technologies with Apache web server manage-
ment and log, Software-Defined Networking (SDN) controller with OpenFlow, or the
ClamAV antivirus.

3.6.2 Correlation

This section evaluates how commodity systems may benefit from the autonomic ap-
proach perform.

3.6.2.1 Detection

To benchmark improvements of the detection phase, we measured detection incremen-
tally. We start with one detection agent, then two, three and so on. Here we test with
anti-viruses to improve virus file detection with a low false positive (FP) rate.

list of anti viruses We used the trial version of anti viruses shown in Table 14
to perform our evaluation. The antivirus with 0 infection mean that we were not able
to connect it to VESPA. Those anti-viruses represent the majority of protection tools
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antivirus infections found fp

Avast Antivirus 7 22398 2%

Avira Free 2013 12731 1%

AVG Antivirus 2013 20310 2%

BitDefender Antivirus Plus 2013 24519 6%

ESET NOD32 Antivirus 6 17933 2%

F-Secure Antivirus 2013 0 0%

GDATA Antivirus 2013 0 0%

Kaspersky Antivirus 2013 23158 8%

McAfee Antivirus Plus 2013 19002 3%

Norton Antivirus 2013 16328 2%

Panda Cloud Antivirus 2.1 0 0%

Windows Defender (MSE 4) 13711 1%

Table 14: Antiviruses detection.

deployed on average computers. The methodology followed to gather detection rate
and false positive is detailed in the following paragraphs.

list of viruses We took the contagio virus samples1 with separate malicious and
clean files to facilitate false-positive and false-negative detection. Our archive contains
16,800 clean files and 11,960 malicious files. Each file may contains multiple objects,
usually the PDF with embedded fonts, images and metadata, resulting in infection
rate higher than the number of files.

results Each anti-virus is tested at a time to compare they very own detection
performance. The experiment is done on a fresh Windows VM. The virus database is
transferred on the machine and decompressed, then we install the latest version of the
anti-virus. We finally scan the entire directory containing malicious files and grab the
final report. We consider that a single file may contain multiple objects, however some
anti-viruses only flagged the file once. We filtered the reports to extract all information
for a given file. Indeed, some AVs emit numerous alerts for a single file, while others
keep the information more hidden. Thus, we tried to evaluate AVs in equal terms.

While detecting a large portion of viruses, none of them was able to detect all
malicious file with no false-positive (Figure 18). BitDefender showed the best results in
terms of detection rate, while ESET and AVG have the lowest FP for a given detection
rate.

We then interconnect AVs through VESPA. Each AV sends the report back to our
VO, which decides if a thorough analysis is needed. In this example we force the

1 Available on http://contagiodump.blogspot.fr/2013/03/16800-clean-and-11960-malicious-files.

html

http://contagiodump.blogspot.fr/2013/03/16800-clean-and-11960-malicious-files.html
http://contagiodump.blogspot.fr/2013/03/16800-clean-and-11960-malicious-files.html
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Figure 18: Comparison of antiviruses detection and FP.

VO to perform two and three passes using the AVs with the best results in terms of
detection rate and FP. The results are displayed as a Venn diagram on Figure 19.

Figure 19: Multi-Antiviruses detection: (A) BitDefender, (B) ESET and (C) AVG Antivirus 2013.

We combine the most effective tools to improve their reliability, as shown on Table 15.
The number of detected files is better than all AVs, while giving low FP. Those results
highlight how to combine detection agent and enhance system security through a
straightforward example. The question of time analysis is voluntary left unanswered,
and is more detailed in the next chapter with more complex examples. For now we
can say that VESPA is able to perform analysis simultaneously and infer if a file is
malicious or not in a given time.
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antivirus infections found fp

BitDefender (A) 24519 6%

+ ESET (B) 25911 2%

+ AVG Antivirus 2013 (C) 25917 2%

Table 15: Collaborative antiviruses detection.

3.7 conclusion

We presented our VESPA framework to build autonomic framework on IaaS infras-
tructure.

The VESPA model is independent from the systems, the programmatic language or
the deployment. The node hierarchy abstracts numerous components and dissociates
programmers duties. In an ideal world, the software developers provides the VESPA
agent wrapping the original API. However we simplified the interface to the maximum
for faster development and easier debugging. With a clear model and implementation
in multiple languages, we expect that future cloud administrators and developers will
adopt VESPA.

The following chapters use the VESPA architecture as the building block to derive
specialized use cases on heterogeneous platforms.



4
USE CASES

This chapter presents the instantiation of our VESPA framework through 3 different
use cases. First, we use VESPA to detect and react dynamically to a virus infection with
available cloud resources in Section 4.1. The use case presented in the previous chapter
is extended to a real scenario. Second, Section 4.2 details how to use VESPA to achieve
multiple IaaS security level negotiation and reaction in a mobile cloud setting. Finally,
we used the framework to benchmark messaging capabilities and performance over-
head into Section 4.3. The use case twists normal usage to perform offensive testing,
also named fuzzing, against the hypervisor.

4.1 dynamic confinement

This section presents the dynamic confinement of a virus spreading through the net-
work, particularly with video streaming. This scenario reflects an everyday situation
and provides a real usage.

4.1.1 Threat Model

In this scenario, we consider an attacker sending a virus to the user of a VM. The user
is not administrator and cannot gain access to the kernel, or the anti-virus. The user
is free to install and run programs. VM kernel, hypervisor and physical server are
trusted without direct access from the outside. This is a practical scenario where the
administrative interfaces of the infrastructure are never open for external communica-
tions.

4.1.2 Scenario and attack

A typical example that underlines the framework interest is shown in Figure 20:

1. A User VM (UVM) detects the presence of a virus that can compromise nearby
VMs.

2. An alert message is sent to the VM-layer HO.

3. The HO sends back to the UVM an “about to disconnect” event.

4. The HO chooses to isolate the compromised VM in both networking and com-
puting views, by cutting the network link br0 in the underlying hypervisor.

5. The HO also decides to migrate VM ressources on a physically separated com-
puter specially designed for this purpose.

6. Then, once isolation is completely achieved, the VM-layer HO sends an order to
trigger the cleaning of the user VM.

63
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Figure 20: A Simple Use Case.

7. The sanitization status of the UVM is sent back to the HO upon cleaning com-
pletion.

8. This allows the hypervisor-layer HO to reassign original VM resources, and mi-
grate the VM back outside the quarantine zone.

This simple example shows how to perform active defense on such an architecture.

4.1.3 VESPA Framework Instantiation for IaaS

Figure 21 represents a simple implementation of the isolation framework on a typical
IaaS infrastructure. Dedicated network equipments provide the physical architecture.
Network traffic is segregated by a firewall using ACLs, by a switch through VLAN
tables, and by routing tables. All of these security policies are modifiable by the phys-
ical autonomic loop. For our implementation, two VLANs are plugged between the
firewall and the physical machine.

The hypervisor (KVM) contains Linux-specific policies, such as internal routing ta-
bles, or memory associations between physical and virtual devices. In the figure, peth0
represents the physical Ethernet interface, eth0 and eth1 are physically virtualized in-
terfaces, while br0 and br1 are the bridge abstractions needed by the hypervisor to
switch on/off an interface. Bridge br0 memory is simply associated with eth0, as
br1 with eth1. Each bridge will be the endpoint of an emulated interface for VMs.
The libvirt API handles the remote access to establish the hypervisor-layer autonomic
loop.

At the VM layer, we consider two types of VM: the administrative VM (AVM) and
the user VM (UVM). A UVM contains at least two components: a firewall, to isolate
network flows, and an antivirus that take cares of data execution prevention, program
isolation and kernel signals. In the antivirus kernel component, probes monitor the
loaded images in the guest OS. UVMs communicate with the hypervisor through the
conn1 connection endpoint, connected to br0 – a second VM would be connected
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(a) (b)

Figure 21: IaaS Framework Instantiation: (a) Computing View; (b) Networking View.

through br1 and so on. The UVM virtual memory is mapped to the physical machine
memory. They run on the virtual CPU (vCPU) abstraction provided by the hypervisor.

The AVM collects probes from every layer and organizes framework decisions with
orchestrators (vertical and horizontal). The AVM behaves as a security management
interface, collecting threat information, and deploying counter-measures. In each layer,
the autonomic managers (HO_X) negotiate with both a centralized VO, and with the
layer management APIs.

4.1.4 Framework Implementation

At the hypervisor layer, the libvirt API uses a library named netcf to enforce new
network rules via XML. Although the frontend is clearly defined, the backend is OS-
dependent: we thus have to fully translate netcf’s XML configuration files and to im-
plement commands for interface creation, modification and deletion. Actually, bridge
modifications are fully implemented in order to have a first concrete example (use
case described in Section 4.1.2).

In the VM layer, we are using ClamAV as a flexible antivirus with Python sup-
port for remote control as we can modify the source code and create VESPA-ready
interfaces. Real-time protection is missing, so we implemented a kernel module to
scan files when they are loaded in memory thanks to PsSetLoadImageNotifyRoutine

and control their execution by defining a PsSetCreateProcessNotifyRoutine that can
collect ClamAV results with I/O request packet (IRP) and act accordingly. This imple-
mentation underlines what can be achieved in the VM layer: specific functions such
as filtering socket creation to ban a range of compromised VMs can also be hooked.

Communications in heterogeneous environments require clearly-specified interfaces,
e.g., using an IDL. Due to its good results (see the benchmarks of [1]), we chose the
Google IDL implementation named protobuf[90] to implement communications be-
tween the HOs and the different layer components, and with the VO. To implement the
VM-layer components, the C language was naturally used, as low-level programming
is needed for the UVM. However, the HOs and VO were chosen to be implemented in
Python, as those components only need to take decisions on a high-level.
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This particular implementation was deloyed as security infrastructure for the French
government-funded SelfXL project, aiming at self-management of large scale systems
such as cloud computing infrastructures. It allows the realization of dynamic quaran-
tine zones to isolate and clean potentially compromised VMs.

4.1.5 Use Case Implementation

The implementation of the use case defined in Section4.1.2 required two main features:
(1) to easily control bridges created by KVM for VMs; and (2) to migrate VMs through
physical equipments with libvirt. Bridge control can be achieved in many ways, but
we will focus on the following methods:

• Each newly created VM is directly connected to a vnet sub-interface, all of them
being bridged together to a single bridge. This is the classic way to perform
such a task, but it resides on the capacity of KVM to handle the network. Unfor-
tunately, during our tests we were unable to recover connectivity after deleting
a vnet interface from the bridge.

• For each VM created, a virtual interface is created at the hypervisor layer. A
bridge is also linked to this sub-interface and will be one end of the VM con-
nection. Sub-interfaces can be Ethernet abstractions provided by IP aliasing, or
KVM vnetX interfaces. This approach, although more complex during the cre-
ation process, does not suffer from any major problems. Creation and deletion
are totally independent, and are based on classic Linux networking operations.

To properly migrate VMs, all hypervisor interface names are synchronized. This
task is handled by orchestrators that manage an association table between VM and
network names.

Communication between AVM and UVMs while the network is down can be solved
in many ways, around one common idea: establish a shared zone.

• Just as VMware and VirtualBox install their add-ons, communication can be
achieved by emulating the insertion of a CD-ROM. If mounted as read and write,
it provides an easy buffer to transfer data back to the hypervisor.

• Instead of cutting the wire directly, the action can be to isolate the VM in a
specific VLAN. This VLAN contains a network storage (or equivalent) that only
handles and delivers simple messages.

• Virtual Machine Introspection [163] (VMI) techniques also provide VM monitor-
ing directly through the hypervisor.

With such techniques, the antivirus can find and send patches to the VM for a virus
that was not clearly identified before the network isolation operation.

4.1.6 Benchmarks

The VESPA self-protection capabilities are evaluated in terms of network performance
impact, overall response time, and resilience to attacks.

Our testbed is composed of three physical machines connected by a Gigabit switch.
Each machine has 4 2.2 GHz Intel Core i7-2720QM CPUs with 8 GB of RAM, and
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is running an Archlinux distribution with a 3.2.7 kernel. Each machine runs a KVM
hypervisor, with Intel-VT instructions enabled. Hosted VMs are running Windows
XP with 256 MB memory and a single virtual CPU. A RTSP video server delivers
MPEG2 videos with almost constant bitrates (12 Mbps). A first physical machine is
reserved to run the video server. The two others host clients. One of those machines
is dedicated to quarantine infected VMs. A storage pool of VM disk images is located
on the quarantine machine and accessible through an NFS server. Bandwidth sensors
are based on Linux /proc and /sys facilities. All tests were run above 100 times, only
the 30 best results being kept.

4.1.6.1 Self-Protection Intrusivity

This experience evaluates the impact of the VESPA self-protection features on the
overall video streaming application performance. We use one physical machine to host
virtualized clients and the video server, and another machine to quarantine infected
VMs. We measured bandwidth consumption over time of 6 client VMs streaming
videos while protected by VESPA, under different infection rate : a virus is launched
periodically in one of the VMs. We evaluate the framework impact by comparing the
measured bandwidth with that without any virus launched: a virus detection implies
VM isolation, thus not consuming bandwidth, as no data is received from the video
server. Results are shown in Figure 22. The α parameter represents the number of
virus instances per minute, ranging from 2 to 7 minutes (α = 0.417 and α = 0.128
respectively).

We notice that the measured bandwidth with (8.38MB/s for α = 0.214) and without
(8.98MB/s for α = 0) VESPA are very close, the difference being about 7%. The VESPA
impact thus appears perfectly reasonable in practice.

4.1.6.2 Overall Response Time

This experience evaluates the overall latencies (in seconds) to complete a full self-
protection loop for different types of security adaptations already presented in the
case study, both intra-layer and cross-layer. Evaluation results for each step of the loop
are shown in Table 16.

The overall response time for a cross-layer loop is about 37 s. This is a rapid reaction
time, acceptable to contain infections that are not acute, which is most often the case.
Note that the major part of this latency comes from phases of migration to and from
the quarantine machine. Reaction (step 2 on Figure 20) seems a good trade-off between
strong security and low latency, making the reaction time fall to only 6 s.

In more detail, intra-layer loop (1) results show that walking through the hierarchy
of framework entities during detection is fast (0.15s) compared to the effective cleaning
operation (5.67s), which involves scanning memory and files for virus eradication.
Adding layer interaction with network isolation (2) shows that adding extra security by
cutting and reconnecting the network only costs 13% of the total response time of (1).
Finally, as expected, results (3) emphasize that migration is expensive and represents
90% of the overall latency.

4.1.6.3 Resilience

To assess the self-protection abilities brought by VESPA, we use the methodology
coming from dependability bechmarking proposed in [40]. The idea is to inject in the
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Figure 22: VESPA Intrusivity for Various VM Infection Rates.

Phase
(1) Intra-Layer (2) Cross-Layer (3) Cross-Layer

Reaction Reaction Reaction

(w/o Migration) (with Migration)

Detection 0.15 0.16 0.17

Decision 0.14 0.32 0.37

Disconnect - 0.20 0.20

Migration - - 14.91

Cleaning 5.53 5.72 5.98

Migration - - 15.23

Reconnect - 0.20 0.20

Total 5.82 6.60 37.06

Table 16: End-to-End Self-Protection Latencies.
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Figure 23: Self-Healing Capabilities with VESPA.

System Under Test (SUT) a disturbance in the form of an attack, and see how the
system may recover to a steady state, notably focusing on the speed of recovery, and
on the impact on the performance workload.

In this experience, we measure the impact on video server bandwidth of injecting a
virus in the client VM protected with VESPA. We compare two scenarios: delivering
the video to the client with or without the protection framework. The virus is started
at t = 40s for both scenarios. Results are given in Figure 23.

In the scenario without protection, virus infection results in a drop in bandwidth.
The user looses completely the video, streaming is never resumed, and the virus re-
mains present. In the other scenario, after a few seconds, the virus is detected and
handled by the framework. As already seen in the previous benchmark, the overall
reaction time is about 40 seconds. However, bandwidth is not immediately restored,
as the video player has to re-negotiate some streaming protocols, causing an extra
delay (around 20 seconds). The video resumes seamlessly on the client, the user exper-
imenting a limited freeze of the video player. Moreover, the virus has been eradicated.
Recovery time is thus about 60s, with a drop in bandwidth of about 16%. These results
show that with VESPA, a cloud infrastructure is able to protect itself effectively with
a reasonable performance overhead.

4.2 mobile cloud e2e security sla management

Will mobile cloud computing bring the full power of the cloud to limited devices? For
instance to reap business benefits of simultaneous secure usage of multiple environ-
ments on a single smartphone, as virtualization becomes embedded [95]? In any case,
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the mobile cloud has torn a security veil between two heterogeneous worlds. As a new
universe of malevolence is hurled from the cloud to the embedded domain, new pro-
tection challenges are raised like security de-perimeterisation, multi-tenancy, or trust
management. These new threats also join forces with an increasingly flourishing set
of mobile malwares [37, 76]. End-to-end security is thus no more [52].

Current solutions are ill-prepared to face the security heterogeneity challenge. They
have tackled it either from the device or from the cloud perspectives. On the device
side, several container-based solutions for device management [39] or embedded hy-
pervisors [96, 99, 91] for strong isolation have been proposed to segregate personal
and professional environments on the same mobile phone. However, those solutions
usually consider homogeneous sets of devices, and hardly extend into the cloud. Con-
versely, a number of proposals have been made to set up secure, dynamic Virtual
Organizations (VOrgs) to manage and isolate resources of grids [215, 81], clouds [34],
or multi-clouds [110, 230, 188]. However, they usually completely ignore the device
aspects.

To link the two worlds, and restore end-to-end security, three main features seem to
be missing:

device-to-cloud vorgs In the mobile cloud, diverse execution environments (EE)
may run on devices, connectivity gateways, and cloud infrastructures, e.g., Virtual
Machines (VMs), lightweight processes, or threads. EEs may be trusted according to
different levels. To guarantee end-to-end security SLAs on a subset of the infrastruc-
ture, dynamic EE federation within a VOrg spanning both different devices and clouds
should be possible [168]. The SLA is then established by defining, distributing, and
enforcing a security policy [82] throughout the VOrg.

end-to-end vorg isolation EEs share the same infrastructure. They may be
isolated according to different system [29, 34], hardware [23], or network [48] mecha-
nisms throughout the mobile cloud. To enforce different classes of security SLAs, VOrg
isolation should be performed transparently to the underlying technology. Isolation
should also take into account the multi-layer (VM, hypervisor, hardware) dimension
of the infrastructure.

automated security supervision Given infrastructure complexity, automated
capabilities of detection and reaction to threats are needed, within a VOrg and be-
tween VOrgs, to lighten administration and lower security incident response times.
Supervision is required both horizontally (between security domains) and vertically (be-
tween infrastructure layers).

This section presents Orange OC2, a new mobile cloud security management archi-
tecture and implementation overcoming the previous limitations. Orange OC2 views
the mobile cloud as a superposition of multiple, well-isolated security planes, referred
to as Orange Community Clouds (OC2s).

Orange OC2 looks highly promising for end-to-end mobile cloud security. First,
each OC2 sets up dynamically a device-to-cloud VOrg connecting EEs wishing to
share a common security SLA throughout the infrastructure (devices, gateways, clouds).
A well-defined security policy is distributed and enforced within the OC2, resulting
in a homogeneous security level among member EEs. Second, strict OC2 isolation
is achieved independently from underlying isolation mechanisms thanks to a policy-
based security management framework to distribute and enforce security policies. Iso-
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lation is both horizontal – OC2s are overlays over cloud and device physical security
domains – and vertical – EEs in different infrastructure layers (e.g., hypervisor, VM)
may belong to multiple OC2s. Third, security may be autonomically regulated at sev-
eral granularity levels: in a physical security domain, either in an infrastructure layer,
or cross-layer; or spanning security domains in an OC2 scope. SLAs are thus dynami-
cally enforced through consistent threat supervision in and across planes.

The section also illustrates the viability of deploying the architecture in practice.
It reports on a proof-of-concept implementation of Orange OC2, in terms of lessons
learned and perspectives. We present a case study of a cloud-based secure multi-point
conferencing service accessible from mobile devices in several home networks. Several
choices of security SLAs may be enforced end-to-end in multiple concurrent OC2s to
address different security expectations.

The section makes thus two contributions: (1) the Orange OC2 architecture and its
implementation; (2) an experience report on its deployment in a home network-to-
cloud setting.

The section is organized as follows. We describe mobile cloud security requirements
(Section 4.2.1). We present our architecture, in terms of system model and security
supervision (Section 4.2.2). We finally describe the case study, present experimental
results and lessons learned (Section 4.2.3), and conclude (Section 4.2.4).

4.2.1 Security Requirements

4.2.1.1 Mobile Device Security Challenges

Exploding complexity in mobile computing induces many threats. Mobile devices
today are a complex layering of technologies, both hardware (e.g., baseband, applica-
tion processors, sensors, storage units, security chips) and software (e.g., bootloader,
hypervisor, OS, mobile applications). Such diversity added to single component vul-
nerabilities results in a large attack surface. Devices are also connected simultaneously
to several cloud infrastructures and services. Each device then becomes a potential
source of compromise propagation to such services. For instance, the Bring Your Own
Device business concept may create dangerous shortcuts destroying company local
security policies, such as network segregation.

Three key device security challenges should be addressed:

end-to-end security sla Devices are used simultaneously for very different
purposes (e.g., personal e-mail browsing, mobile banking, corporate private data read-
ing). The user is thus connected to multiple service providers with variable service
security levels. Unfortunately, current device virtualization solutions are unable to
manage simultaneously heterogeneous third-party security policies. Different classes
of security SLAs should thus be provided and enforced end-to-end, from device to
service provider.

isolation Usage patterns and accessed services should strongly be separated us-
ing device capabilities.

supervision Device security mechanisms remain difficult to coordinate, vertically
and horizontally. Automated security management is thus needed to react efficiently
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to threats, and guarantee continuously a Quality of Protection (QoP). Fast, robust
security policy updates are notably required.

4.2.2 Architecture

Figure 24: System Model.

4.2.2.1 System Model

As shown in Figure 24, our mobile cloud security architecture is composed of a physical
space, and of a virtual space containing a set of security overlays.

physical space We view the mobile cloud infrastructure as a federation of physi-
cal domains, device- or cloud-based. For instance, a domain is the perimeter of devices
connected to a same physical network, such as a Local Area Network. More generally,
the concept of Execution Environment (EE) captures domain member entities. Horizon-
tally, EEs may run on devices (e.g., threads, containers), connectivity gateways (e.g.,
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lightweight processes), and cloud infrastructures (e.g., VMs). Vertically, EEs may be
found in different infrastructure layers: VMs, hypervisor, or hardware.

A Domain Controller (DC) is in charge of EE management, with overall knowledge of
EEs and of their capabilities. It defines the EE communication model, notably available
interactions between EEs. It is also an event orchestrator for dynamic control inside
the domain, such as automated EE configuration, or fault and security monitoring.

Domain security is under DC control: for each EE previously declared in the domain,
authorized actions and interactions are captured in a Domain Security Policy (DSP).
EEs share the same infrastructure, and may be endowed with varying levels of trust.
The DSP federates EE isolation requirements, enforced by Domain Security Mechanisms
(DSMs) spread throughout the domain. Sample DSMs are an hypervisor embedded on
the device, a cloud hypervisor, or hardware mechanisms [? ]. Inter-domain isolation
is managed at the network level through Mobile Cloud Security Policies (MCSPs) and
Mechanisms (MCSMs).

For device domains, the system model may include the concept of device as a par-
ticular type of domain, at an intermediate hierarchical level between EEs and device
domains, with DCs, DSPs, and DSMs. To simplify, we consider a two-level model
featuring only domains and EEs.

virtual space Above the physical space, the virtual space abstracts and separates
the mobile cloud infrastructure complexity according to levels of security SLA. Several
overlays named OC2s (Orange Community Clouds) are introduced to capture definition
and enforcement of a security SLA on EEs, spanning physical domains. OC2s are
device-to-cloud VOrgs: OC2 EE membership aggregates that of EEs to the contributing
physical domains, but sharing a homogeneous security level within the OC2 scope.

As for the physical space, OC2 security is governed by Domain Controllers (OC2DC),
Security Policies (OC2SP), and Security Mechanisms (OC2SM). Such virtual space ab-
stractions are mapped to their physical space counterparts abstracting away domain
boundaries.

4.2.2.2 OC2 Lifecycle

An OC2 has a 3 phase-lifecycle: (1) initialization; (2) isolation enforcement; and (3)
supervision (see Figures 25, 26, and 27).

initialization A distributed protocol defines how EEs may subscribe to an OC2.
To join the gold-level SLA OC2, an EE sends a join〈level = gold〉 to the Domain
Controller DC1 of its local domain D1. The OC2DC may be the DC receiving the
first join request for this OC2. Election among DCs contributing to the OC2 is also
possible. After checking for SLA eligibility, the OC2DC registers the EE 〈EE,D1,gold〉,
then translated into a 〈EE,gold〉 mapping in DC1.

To leave an OC2, an EE sends a leave request to the OC2DC, that removes the
corresponding entry, and propagates the change to DC1.

isolation enforcement The OC2SP πOC2 defines rules for isolating resources
in the OC2. It aggregates the DSPs πDi

of each physical domain Di contributing to
the OC2, restricting the scope to OC2 resources. To enforce such rules, OC2 isolation
is built on the DSMis, which are the isolation capabilities in each Di.
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Figure 25: OC2 Creation.

Materializing the OC2 with a homogeneous security level among member EEs is
performed as follows: (1) distribute πOC2 throughout the OC2; and (2) enforce it in
EEs, relying on the DSMis.

Step (1) contains two sub-steps: (1a) propagate πOC2 from the OC2DC to the DCis;
(1b) in each DCi, translate the relevant received part into a DSP πDi

, for enforcement
in step (2). Implementing that protocol relies on the VESPA framework, described
further [223].

Figure 26: OC2 Isolation.

supervision Automated security supervision allows to simply respond to de-
tected threats in an OC2. A typical cross-domain security response is: (1) detect sus-
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picious activity at EE level, and notify the DC and the OC2DC; (2) select a reaction
policy in the OC2DC; (3) enforce the reaction in EEs of other domains through their
DCs. Response may also be intra-domain only, for instance to guarantee that inter-
OC2 isolation is preserved over time. Decision is then directly taken at DC level. As
EEs may be located in different infrastructure layers, cross-layer security supervision
is also possible, with also finer-grained security adaptations at layer level [223].

Figure 27: OC2 Supervision.

4.2.2.3 Implementing Intra-Domain Security

Figure 28: VESPA Architecture.
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To reach an implementable architecture, we refine the system model using the
VESPA framework [223]. VESPA provides policy-based security administration of
cloud components through multiple coordinated autonomic loops (see Figure 28).

With this framework, security supervision of a physical domain may be delegated to
the control of a single VO, to implement a DC. The resources to protect and control are
simply member EEs, of which the VO has overall knowledge. Through HOs, the VO is
also aware of all layer information in the domain. This design allows both intra-layer
and cross-layer automated security supervision of the domain.

4.2.2.4 Implementing Inter-Domain Security

For inter-domain security, an OC2DC must be implemented, focusing on isolation
and cross-domain security supervision, as described previously. This is achieved by
deploying several VOs, working in close cooperation, with several possible VO-to-VO
communication patterns, e.g., master-slave, or fully peer-to-peer. The VO interprets
and enforces security policies on resources in its domain, and propagates to neigh-
boring domains changes in isolation/reaction policies and in security context. This
realizes and supervises effectively the OC2.

Isolation works by selection, distribution, and distributed enforcement of the iso-
lation policy from source to remote VOs. Supervision works by: (1) propagating to
remote VOs security-relevant changes in the local domain; (2) defining and propa-
gating domain-specific responses based on local and remote security information; (3)
enforcing received remote reaction policies, also based on the local security context.
How such operations may be realized in practice, focusing on isolation, is illustrated
next.

4.2.3 A Scenario for Mobile Cloud

4.2.3.1 Scenario and Implementation Overview

To validate our architecture, we consider a case study featuring multiple home net-
works connected to the cloud. In each home, viewed as a device domain, several users,
with tablets, smartphones, laptops, or TVs, subscribe to multiple Service Providers
(SP) through the home gateway. For each SP, its hosts form a cloud domain. We focus
on a SP providing secure meetings on-demand. Several levels of security are available
for the service, captured by the SLAs shown in Table 17.

SLA Standard Gold Premium

Dedicated professional VM available � � �

Secure communications (VPN) � � �

Trusted device usage only � � �

Web filtering � � �

Professional VM exclusive execution � � �

Table 17: Classes of Security SLAs.

On each equipment, VESPA agents monitor and enforce the SP security policy πSP.
To manage device-to-cloud SLAs, OC2s are established as follows (see Figure 29): (1)
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Figure 29: Establishing the OC2: Principle.

Figure 30: Establishing the OC2: Typical VESPA Deployment.
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the SP defines πSP; (2) πSP is activated in SP cloud hosts; (3) πSP is propagated into
gateways, extending the OC2 from cloud to home domains; (4) πSP is sent to agents
in user devices, and enforced using their underlying security mechanisms.

We consider 3 users working from home subscribing to the service. The associated
infrastructure contains one SP (cloud) domain connected over Internet to three device
domains. Gateways are manageable home routers handling all network traffic. Each
device domain is composed of a gateway and of a user laptop. One domain also
contains an additional tablet (iPad) considered untrusted, from which the user may
follow the meeting. Each laptop contains three EEs: two VMs and their hypervisor.
One VM is dedicated to professional use. The other VM is for personal use, and is
untrusted. The SP domain contains two types of EEs: on-demand meetings VMs and
the cloud hypervisor. A web portal VM also offers a management interface for the
service.

In our scenario, the organizer sets up a meeting with the Standard security SLA: a
professional VM becomes available on laptops of participants with secure VPN inter-
connection; untrusted devices are also authorized in the meeting. To create the OC2
and enforce the SLA, the Standard πSP is installed on cloud hosts, and propagated to
gateways and user devices. Agents set up the VMs, VPN, and allow the iPad to join
the meeting. The organizer then upgrades the SLA to Gold for more confidentiality:
untrusted devices are no longer allowed in the meeting, and web filtering is enforced.
The meeting session is thus closed on the iPad. Finally, the Premium SLA is chosen: the
professional VM has exclusive access to laptop resources. Execution of the personal
VM on the laptop is therefore frozen.

Figure 30 shows the instantiation of our architecture for this scenario. One VO and
two HOs, handling VM- and hypervisor-layer tasks are deployed in each gateway.
Deployment is similar on the cloud side. VESPA agents are present in all layers and
hosts to manage the EEs previously described.

Collaborating VOs form a distributed OC2DC implementation. VOs regularly mon-
itor and exchange DSPs to build inter-domain OC2SP knowledge. Each DSP is stored
in a policy file attached to the related VO. Upon a DSP modification event, a VO ap-
plies administrator-defined reactions to the domain, and propagates updated policy
files to other domains. For instance, when the meeting is initialized with the Standard
SLA, an agent updates the SP VO policy file with the corresponding OC2SP. The policy
is interpreted by the VO, and propagated to VOs of device domains for enforcement
through domain isolation mechanisms.

Detection starts when the administrator selects a new security SLA on the confer-
ence web portal (1). A VESPA DA checks the validity of the request, and notifies
the cloud orchestration plane (2). The Cloud VO selects a reaction policy based on
administrator-defined strategies (3). The reaction policy is then sent to the HO of the
cloud domain (4), where it is sanity checked (5). Cloud isolation mechanisms (e.g.,
OpenVPN, DNS filtering) are then applied to enforce the required security locally (6).

In parallel, the security policy is propagated to other domains in the OC2 scope.
The Cloud VO selects neighboring domains (7). It then sends them the policy (8), ver-
ified by the device domain VOs upon reception (9), before enforcement. The Device
hypervisor-level HO launches an OpenVPN RA to establish a secure network connec-
tion with the meeting server, and a libvirt RA to control VMs, e.g., initialize, authorize,
block (10). The Device VM-level HO orders a dedicated meeting RA to start a confer-
ence call in the professional VM (11). It also manages iPad authorization to participate
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Phase

Intra-Domain

Security Loop

Cross-Domain

Security Loop

Latency (ms) % Latency (ms) %

Detection 0.539 0.05 0.539 0.006

1 - Select SLA 0.003 0.003

2 - Check SLA request 0.536 0.536

Decision (cloud-side) 2.746 0.25 2.720 0.033

3 - Select reaction policy 2.720 2.720

4 - Notify HO 0.026

Reaction (cloud-side) 1076 99.65

5 - Check reaction policy 0.025

6 - Enforce isolation 1076

Distribution 3.252 0.040

7 - Select remote domains 0.421

8 - Send policy to domains 2.831

Decision (device-side) 0.061 0.001

9 - Verify received policy 0.061

Reaction (device-side) 8181 99.796

10a - Establish VPN 118.8

10b - Authorize/block VMs 7034

11 - Start conference call 1028

Post-processing 0.494 0.05 10.17 0.124

12 - Check OC2 establishment 0.483 10.16

13 - Notify user 0.011 0.011

Total 1079.8 100 8197.7 100

Table 18: End-to-End Latencies.

to the conference. Finally, the Cloud VO checks that OC2 enforcement is effective (12),
and notifies the user of the achieved isolation level (13).

4.2.3.2 Experimental Results

We performed the following evaluations of our proof-of-concept. We verify that secu-
rity adaptations can be achieved in near real-time, also measuring the contribution of
each phase to the response time. We evaluate the ability of the framework to control
multiple domains with negligible overhead. We illustrate end-to-end security guaran-
tees, showing how OC2s are resilient to network attacks with fast recovery time.

response time Table 18 shows latencies for different phases of intra-domain and
cross-domain policy selection, distribution, and enforcement in the use case. Overall
performance is acceptable, with a total time of about 1s to set up the OC2 on the
cloud-side, and 8s end-to-end.

For intra-domain security, isolation enforcement is expensive, covering 99.6% of
the response time. A possible explanation is that some isolation services need to be
restarted to deploy new security configurations. The remaining 0.4% is the overhead
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of the VESPA framework. Detection and reaction are lightweight, due to fast inter-
agent communications and minimal policy refinement processing from the Cloud HO
to MCSMs. The higher decision cost reflects mapping the security SLA/SLOs for each
security metric to a high-level security policy configuration to be enforced. This in-
cludes matching security state with administrator-defined strategies.

For inter-domain security, policy distribution is fast due to an efficient flooding-
based network protocol. The main overheads for reaction come from I/O slowdowns
in device enforcement mechanisms, in the hypervisor and VMs. Other overheads such
as Device VO decision-making, or VESPA reaction agents are negligible, similarly to
the cloud case. Yet, overall response time remains relatively acceptable.

scalability We also measured how the security adaptation latencies depend on
system scale, captured by the number of physical domains. Results are shown in Fig-
ure 31. Detection time is slightly increasing with the number of domains. Administrator-
defined OC2 policies become larger with more domains. Thus, more time is needed
to match such policies with incoming agent alerts. Policy distribution time is propor-
tional to system scale: in our proof-of-concept, the propagation protocol has to be
repeated for each device domain. Performance may be improved with a broadcast
protocol, instead of the current multi-unicast protocol to distribute security policies.
Reaction time is not really impacted: only light distributed verifications are performed
after all reactions to ensure successful cross-domain SLA enforcement. We found la-
tency results for combined detection, distribution, and reaction to scale well in terms
of domains. However, enforcement times crushed results of all other phases. Thus,
further work is required to assess overall architecture scalability. Our current proof-of-
concept currently supports 4 domains. Nevertheless, we guess our approach should
support far more domains before the framework overhead reaches enforcement costs.

Figure 31: Latency vs. Number of Domains.
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end-to-end security We evaluate end-to-end security guarantees by showing
how the mobile cloud recovers from a security SLA violation, taking as example a
network attack. We consider three isolation levels: High (SLA fully enforced), Middle
(SLA partially enforced), and Low (SLA violated). An OpenVPN connection is attacked
while the meeting is in the High level. Figure 32 shows how our self-protection frame-
work handles the attack. We notably measured the time required to recover the best
isolation level.

The OC2 starts at High level: its boundaries are established, and security of its re-
sources is supervised (t ∈ [0− 8.47s]). The attack is launched by killing one OpenVPN
client on a random OC2 device (t = 14.33s). The OpenVPN client is not monitored by
the framework, but connection errors are watched on the cloud side: the VESPA agent
parsing OpenVPN logs detects the error, sends an alert to the Cloud HO, forwarded
to the Cloud VO. The Cloud VO notifies the OC2 of the SLA violation by propagating
(t = 14.49s) a new Low level security policy for enforcement (t = 24.69s) in the OC2.
As a first step to restore High isolation conditions, the Cloud VO then sends the Middle
level policy to OC2 Device VOs (t = 24.79s). This policy is received (t = 25.26s) and
enforced (t = 26.34s). The Cloud VO finally decides to apply the High level, enforced
on the cloud side (t = 30.2s) and device side (t = 38.8s), restoring full isolation.

Results show that the attack is detected in δ = 0.16s. The security SLA may be
restored to High in Δ = 24.47s, which appears quite reasonable to recover end-to-end
mobile cloud security. Some high latencies in SLA level propagation are caused by
slow BeagleBoard SD card I/O speeds. Such issues are under investigation to improve
the response time.

Figure 32: Security Evaluation.

4.2.3.3 Limits and Perspectives

Our current implementation suffers from a number of limitations. When an EE does
not respond, for instance, because of a Denial of Service, the associated VO cannot
decide if the EE is corrupted, buggy, or shutdown. A default choice may be defined
when such situation occurs, but more in-depth study is needed. Actual communica-
tions between framework components are currently neither encrypted, nor integrity-
checked. Thus, a man-in-the-middle attacker can bypass enforced isolation by faking
EE alerts and forcing the VO to extend the OC2 and loosen isolation. However this
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attack requires knowledge of the framework architecture and of the underlying poli-
cies. Notwithstanding, we see two solutions to overcome this limitation: using VPN
between components, or defining a new communication component into agents to use
SSL. The latter is currently under development.

Case study results tends to show that the proposed architecture is promising for
flexible mobile cloud end-to-end security. Orange OC2 also opens a number of busi-
ness opportunities for telco operators. At least three key segments of the architecture
and associated stakeholders should be considered: (1) end-user mobile devices (OS
developers, mobile network operators); (2) residential gateway and broadband access
(fixed network operators); (3) cloud services (cloud service providers). A fixed and
mobile network operator is involved in the distribution, development, and operation
of all components and is thus a legitimate and efficient actor to provide a seamless
operation of the whole architecture in a unified manner. Convergent operators could
leverage this framework to greatly simplify the digital life of their customers by pro-
viding them working and adaptable end-to-end security.

A key pending question is: which component should be responsible for operating
security policy enforcement and providing enablers to other actors? This decision
and control point has to be strongly secured, as the security of the whole architecture
assumes trust in this entity. As this entity will have strong control over devices, it could
be convenient to have it located into end-user premises to avoid exposing the devices
to Internet. The gateway could easily act as this trust anchor for the whole architecture,
the control logic being either hosted in the gateway or in a cloud service under the
control of the gateway. Fixed network operators have control over the software and
hardware of the residential gateways they provide to their customers. Locating the
trust anchor in this gateway would also allow such operators to offer cloud service
providers secure access and control to mobile devices of their customers.

4.2.4 Conclusion

This section addresses the gap between cloud and mobile device security with the
Orange OC2 architecture. Different classes of security SLAs may be defined and uni-
formly enforced for execution environments in device or cloud domains with the OC2

abstraction. Strict OC2 isolation is achieved independently from underlying mecha-
nisms with the VESPA framework for security policy distribution and enforcement.
Security may be autonomically regulated at several levels of granularity within and
across OC2s, across domains and within infrastructure layers. Evaluation results show
that the architecture may be deployed effectively in practice. End-to-end mobile cloud
security comes with a reasonably small price in performance, such as fast recovery of
SLA violations. Orange OC2 opens interesting perspectives such as Ã la carte security
abstraction layers to interconnect isolated environments with diverse security needs
between different service providers or pooled on single devices.

VOs currently push security policies without taking into account the peer security
state. We are evaluating alternatives regarding policy negotiation to deal with conflicts.
Another issue is secure policy transmission. We are working on a lighter protocol
with built-in security, such as communication integrity and replay attack prevention.
We also plan to extend our framework to support TrustZone technology, e.g., to pro-
tect VESPA agent integrity. Finally, current framework deployment requires manual
intervention. We are thus striving for fully automatic security agent distribution, for
instance using [74].
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4.3 fuzzing interrupts

So far we have seen how to build a security solution using the VESPA framework, and
how it brings autonomic security. To benchmark VESPA communications and internal
mechanisms, we decided to stress the framework by fuzzing the interrupts of the KVM
hypervisor. It is an attacker-oriented use case with a strong collaboration between the
VM and the hypervisor.

4.3.1 Frameworks

Several fuzzing frameworks [196] provides facilities to instrument and test implemen-
tation limits. From network protocol [237] to cloud entrypoints [125, 234], softwares
are tested against unusual inputs and under a strong load. The output consist of soft-
ware behavior, especially segmentation faults, which are the preferred way to gain
privileges through exploitation.

Thus, to evaluate performances of the VESPA framework, we use it to instrument
the hypervisor and generate inputs at the maximum speed.

4.3.2 Architecture

Our architecture (see Figure 33) is made of two hosts: (1) a supervision hosts con-
taining the orchestration part of the VESPA framework, and (2) a virtualization ready
server with a KVM hypervisor and a virtual machine.

The scenario is the following: The virtual machine sends an interrupt, that is han-
dled by the hypervisor and forwarded to the Qemu component. The latter executes a
function if the I/O port is correct, and gives control back to the hypervisor.

The initialisation step contacts the hypervisor and parses the Qemu log to record
valid I/O port. Then the VO policy generates an interrupt request toward the HO_VM,
forwarding it to the fuzzing agent. This agent gather root privileges and send a outl
operation corresponding to the VO request. The interrupt goes through the hyper-
visor, where we log every interrupts and send a summary back to the VO. Finally,
the VO analyzes the summary, and continue if the interrupt was correctly handled,
otherwise the VO enters into the recovery process. First the stack trace is saved for
further analyzes, second the VM is restarted as the device emulator crashed. If the
problem caused the hypervisor to completely crash and hang the server, we are able
to reproduce it after a reboot and proceed to manual analysis.

The send and wait mechanism of this simple loop is not efficient, and we will see
how to offload calculations and leverage performances.

Another problem is to deal with interrupts rebooting the machine without writing
into logs. Indeed, the VO is waiting for I/O result either by the agent controlling the
fuzzing tool or with the qemu log. Here the machine reboots without giving a chance
to get some information and freeze the framework. Our solution is to launch the agent
generating fuzzing with initscripts to connect back to the framework, and be able to
resume the fuzzing.
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Figure 33: Hypervisor Fuzzing Architecture.

4.3.3 Policies

The policies used into the use case are represented on the Figure 34. It is the represen-
tation of the steps described previously. We can move from a state to another when
conditions are met. Regardless of the language, it can be implemented as a switch-case
scenario.

Figure 34: Fuzzing I/O Finite State Machine.

4.3.4 Performance evaluation

We evaluate the fuzzing scenario in terms of difficulty of adaptation and time saved
compared to empiric implementation.
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optimizations The first results showed a slow 300KB/s as the maximum band-
width handled by the framework on a 100mbps link. Indeed, the synchronous aspect
of the framework slows down message propagation. Thus, we modified the VESPA
communication component to integrate asynchronous events. We also extended the
policy model to handle fuzzing without message acknowledgement.

This improvement comes without impact on previous policies definition, as message
are sent synchronously by default. With the new policy, we are able to reach the maxi-
mum link bandwidth at 100MB. However, we need to offload some processing to save
some bandwidth. Thus we use the aggregation policies to optimize I/O information,
for example a vector is transmitted with the first and the last values. The agent buffers
0xffff log lines and transform the vector < [0, 1][0, 2][0, 3]...[0, 0xfa][0, 0xfb][0, 0xfc] >
to < [0, 1][0, 0xfc] >, meaning that all values between are present.

trade-offs We underline the trade-off to choose between network usage and CPU
usage to adapt the framework. Whenever a bottleneck appears, we can split it among
the other layers, e.g. if the CPU is above 80% usage. We can use another compression
algorithm with less CPU usage, and thus less compression, moving the load from CPU
to network bandwidth.

The time needed to assess all possible values is also high. Figure 45 (Appendix B.1)
details the I/O ports available on an average machine under Qemu. We have 0xffff

ports with 0xffffffff possible values, meaning 281470681677825 tests. However we
measured that our framework is able to perform 58374.570763 I/O/s on a single VM,
and obvious linear fuzzing requires 55807.9 days.

0xffff ∗ 0xffffffff
58374.570763

∗ 1

60 ∗ 60 ∗ 24 = 55807.9I/O/s (1)

Restricting the I/O ports to only registered interrupts handlers divide the possible
ports to around 600, and our linear fuzzing need 465.8 days to be fulfilled.

547 ∗ 0xffffffff
58374.570763

∗ 1

60 ∗ 60 ∗ 24 = 465.8days (2)

Now the VESPA framework come in action and empowers the fuzzing by distribut-
ing the computation over multiple cloud IaaS. A reasonable tradeoff between the num-
ber of machines and the fuzzing time is with 1000 VMs. A single server may support
up to 50 light VMs, thus we need 20 servers. Distributed computing is straightforward
with the framework in our scenario and the only problem is the deployment. We did
not integrate the VAMP [73] framework, and components are pushed on the VM tem-
plate. If there is a programmatic error, all components are then pushed through scp.
The complete fuzzing now takes around 11 hours to be fulfilled in theory, and 15h
according to our experiments. The difference is explained by the timeout while loos-
ing the agent_gen_fuzz agent and the time taken by a VM to reboot while the CPU is
stressed.

547 ∗ 0xffffffff
58374.570763 ∗ 1000 ∗ 1

60 ∗ 60 = 11.18hours (3)



86 use cases

4.3.5 Conclusion

This fuzzing use case showed how to build virtualization aware application with cross-
layer and cross-domain interactions. We explored VESPA benefits to adapt an expen-
sive problem taking many years of computation, to only eleven hours.

discussion Testing the hypervisor is necessary to discover weaknesses. However
our tests focused on the benchmark of the VESPA framework, and several ways have
to be explored. Our fuzzing is quite brutal and can be optimized for more efficient
vulnerability assessment.

First, the code coverage. A good practice when it comes to fuzzing is to use the
smallest input that will go through the maximum of code. Figure 35 details the time
needed to send 0xffff values on each valid ports. Each bar represent the mean for the
number of interrupts tested on a port during 10 tests, and the standard deviation is at
the top of bars in black. The speed varies from one to three, meaning that the associ-
ated code is more complex to handle. While it is not a direct implication, it is handy
to detect the largest portion of code. The outlier above 300000 IO/s is performing a
no operation, while the two bars below 10000 represents CPU consuming routines.

Figure 35: Input per second for valid I/O ports.

Second, the indirect impact on the hypervisor. Some bugs are triggered a long time
after the effective sequence of interrupts. For example when a malicious memory write
target a function only called by a timer, the bug will only appear when the timer finish.
The current implementation does not address these types of bugs directly, and have
to be explored if we consider the number of this class.
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results The fuzzing sessions unveiled numerous emulation failures that hinder
the isolation between VMs and the system stability. Those flaws are gathered in a
database as a list of interrupts to avoid, used to feed the tool presented in the next
Chapter, KungFuVisor.
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KUNGFUV I SOR

Showing off is the fool’s idea of glory

- Bruce Lee

This chapter applies the VESPA self-protection framework (Chapter 3) to the very
specific context of hypervisors. It is an opportunity to address the delicate subject of
faulty third-party drivers integrated in the core of the hypervisor. The driver code size
represents 80% of the hypervisor with some specific drivers that are not tested to their
limits. Hence we adapted VESPA to add an interposition layer around KVM drivers
and enhance their security.

The organization of the chapter is the following. First we introduce the concept of
autonomic hypervisor protection (Section 5.1). Then we define an attacker model who
can threaten the hypervisor security in Section 5.2. The adopted model to enhance the
security is detailed in Section 5.3. We describe the implementation in Section 5.4, and
evaluate the viability of our KungFuVisor solution in Section 5.5.

5.1 concept

This section describes the idea of an autonomously protected hypervisor integrating
our VESPA solution.

5.1.1 Protecting The Hypervisor

We highlight the problem posed by current hypervisors and why existing solutions
do not fulfil autonomic properties as defined in Section 2.3.1.

5.1.1.1 The Problem

The virtualization layer, foundation of a cloud infrastructure, is particularly vulner-
able to powerful attacks based on shared resources. Subverting a hosted VM or the
hypervisor may lead to breaking VM isolation, giving the attacker complete system
control. So far, most of the attention has focused on protecting VMs. Unfortunately, the
corresponding solutions become ineffective in case of hypervisor compromise, as they
assume a trusted VMM. The true challenge lies therefore in protecting the hypervisor
layer.

Several recent attacks [70, 122] show that the main threat to hypervisor isolation
breakout comes from buggy or malicious device drivers inside the hypervisor: kernel
exploitation is enabled by poor driver confinement. We have also seen how to gather
knowledge on hypervisor interrupts handling and greedy behaviors in Section 4.3.

89
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5.1.1.2 Limitations of Existing Solutions

To attempt to solve the problem, a variety of techniques were proposed. For instance,
driver virtualization achieves strong isolation, but does not address protection of the
virtualization layer underneath [203].

Trusted computing architectures provide strong guarantees regarding hypervisor
code integrity [25]. Unfortunately, they usually only detect integrity violations, and
do not include remediation operations. Integrity checking is also generally static –
dynamic monitoring throughout the system life-time being much harder to achieve.

Driver sandboxing has also been heavily explored: a reference monitor mediates
access between driver and device, kernel, or userland [83]. However, solutions remain
limited to simple confinement, proposing no actions to sanitize the kernel. Security
policies are also often hardcoded in the interception mechanisms themselves. Dy-
namic, reactive protection strategies are thus difficult to set up, as policies must be
configured and updated manually.

To reduce the attack surface further, new designs towards componentized hypervi-
sor security architectures also aim to strengthen driver isolation. However, they often
require extensive code rewriting, making them hard to apply to most legacy hypervi-
sors [192, 54].

Overall, current hypervisor architectures offer no – or at best rudimentary – pro-
tection for the VMM layer. Previous attempts suffer from: (1) static, hard-to-manage
security policies, not well separated from enforcement mechanisms; and (2) no re-
mediation against threats.

5.1.2 KungFuVisor Overview

To overcome the previous limitations, we introduce KungFuVisor, an autonomic secu-
rity management framework for building self-defending hypervisors. This framework
allows to set up several control loops to regulate hypervisor protection, with detection,
decision, and reaction steps.

5.2 attacks

5.2.1 Threat Model

The attacker may have arbitrary control over VMs. We assume tamper-resistant hard-
ware and associated firmwares (CPU, BIOS), and boot-time hypervisor integrity. How-
ever, VMM device drivers may be flawed, and thus tampered with to exploit a VMM
vulnerability. A typical bounce attack scenario sourced from a VM might be: (1) per-
form VM isolation breakout through a buggy VMM driver; (2) alter and subvert the
driver; (3) from there, compromise other parts of the VMM and co-located VMs. Such
exploitation may for instance result into: rootkit injection with inter-VM traffic sniffing
over the hypervisor vSwitch.

5.2.2 Flawed device drivers

We detail 2 exploits aimed at escaping the isolation provided by the hypervisor. The
first exploit, CloudBurst [122], breaks out of the VMware ESX hypervisor. The second
one, Virtunoid [70], breaks out of the KVM/Qemu hypervisor.



5.2 attacks 91

5.2.2.1 CloudBurst exploit

This exploit relies on the ability to read and write memory out of the allocated Memory
Mapped I/O (MMIO) ranges for video emulation. A first MMIO address space carries
the frame buffer pixels. A second one is a FIFO storing commands to be interpreted by
the host. These two address spaces are shared between the host and the guest. How-
ever, parsing the FIFO includes a signed operation, causing an out-of-bound reference
to the frame buffer pixels.

Using a wrong source to move to a legitimate destination enables arbitrary write
(mov hackersrc => dest), while using a wrong destination enables arbitrary write
(mov src => hackerdest).

5.2.2.2 Virtunoid exploit

The bug used to escape KVM isolation is that the later does not ignore guest requests
to unplug components. Indeed, some components, such as the motherboard, cannot
be hot plugged. Doing so leaves an inconsistent state and dangling pointers. N. El-
hage chose to unplug the Intel PIIX4 chip because it also unplugs all emulated ISA
components. However, the callback registered by the Real Time Clock (RTC) device
are fired timely into the Qemu internal loop and provide an exploitable use-after-free
condition.

Furthermore, the attack is based on Qemu timer callbacks to make a reliable ex-
ploitation instead of more traditional Return-Oriented Programming (ROP) exploita-
tions.

5.2.3 BluePill attack

The first piece of software to ask for hardware virtualization is called the virtualization
root (VMX-root). Thus, if an attack targets the virtualization root and virtualize the
running OS on-the-fly, it benefits from the usual hypervisor isolation protection to
remain stealth and resident. This attack is considered as hypervisor-layer spoofing.

We have reviewed the state-of-the-art on detection of virtualized environments.
From those results we allow our protection framework to protect against layer spoof-
ing and provide an extra sanity check. Section 2.2.5 details numerous techniques to
threaten the hypervisor isolation.

5.2.4 Cold virtual drives attack

Another common attack is to modify the virtual hard drive of the VM using the com-
mon network share for disks. Current network file systems suffer from a variety of
drawbacks which go against security. The shares are usually on a dedicated (V)LAN.
All hypervisors are using it as a common, fast, resilient hard drive to store VM virtual
hard drives. However, this shared network drive has to be readable and writable to all
hypervisors. If one of them is vulnerable the whole infrastructure is endangered.
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5.3 model

5.3.1 Design

Our protection framework operates through well-defined interception points (hooks)
in the different hypervisor layers. KungFuVisor hooks mediate interactions between
device drivers, devices, VMs, and other hypervisor data structures. Thus, dynamic
monitoring (detection) and access control enforcement (reaction) over communications
between the driver and its environment may be achieved. It also enables easy inte-
gration into most hypervisors, provided that defined hooks are available. Note that
containment is not limited to memory-based isolation (e.g., using processor-related
mechanisms such as the IOMMU [192]): enforced reaction policies may apply to other
communication channels between the driver and its environment to cover a large spec-
trum of known exploitation techniques (I/O, bad CPU emulation, and other presented
in Section 2.2).

A security management plane provides a unified view of the decision logic. This
plane contains orchestration facilities to realize elaborate detection and reaction pat-
terns – both in each layer, and across layers, and between computing and networking
views of resources [220].

This design brings two main benefits: (1) self-managed hypervisor security auto-
mates policy administration, allowing dynamic enforcement of flexible driver isolation
policies; and (2) coordination of multiple autonomic security loops enables to trigger
a rich set of remediation actions over different parts of the hypervisor.

5.3.2 Hypervisor Model

5.3.2.1 A 3-Layered Model

Figure 36: A 3-Layer Hypervisor Model.

We consider the generic 3-layered model shown in Figure 36 for the hypervisor
architecture.

Layer 1 (L1) contains the state of hardware computing and networking resources:
CPU, physical memory, and devices (storage, network card). Layer 2 (L2) contains the
hypervisor-level view of L1 resources, known in KungFuVisor as hRSCs (hypervisor
ReSourCes): virtual CPU, host OS virtual memory, and above all device drivers. hRSCs
are the weak point of hypervisor security, and should therefore be sandboxed and san-
itized carefully. Layer 3 (L3) contains a number of services delivered by the hypervisor
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to VMs in the form of hypercalls, such as exposing or modifying the state of a given
hRSC (e.g, a vNIC security configuration).

5.3.2.2 Interfaces

Each hRSC communicates with adjacent layers through 3 interfaces. The L1 interface
is used for instance to handle hardware interrupts. The L2 interface allows the hRSC
to interact with other hRSCs through an abstract Communication Bus capturing inter-
nal hypervisor (e.g., IPCs such as signals, shared memory, or sockets) or vSwitch-
level communications. Finally, the L3 interface connects the hRSC with VM resources
through specific stubs in the hypervisor.

5.3.3 Protection Framework

Figure 37: KungFuVisor Self-Protection Architecture.

5.3.3.1 Multiple Loops

Hypervisor self-defense is achieved through a set of autonomic loops operating over
a number of components organized into 3 planes (see Figure 37). At the bottom, a
resource plane contains the hRSCs to protect. Over it, an agent plane containing a set
of agents is defined for performing detection and reaction over hRSCs. At the top, an
orchestration plane coordinates decision-making between self-protection loops.

5.3.3.2 Monitoring and Reaction

Agents are wrappers around hRSCs which mediate communications over specific
hRSC interfaces through the framework hooks, to monitor activity (e.g., detect ma-
licious invocations), or to perform reactions (e.g., forbid access to an interface). The
framework is agnostic with respect to detection and reaction components: such dedi-
cated components can be plugged-in to mitigate specific attacks. For instance for detec-
tion, any type of lightweight IDS (signature-, anomaly-, or classifier-based) monitoring
the Lx interface functions and parameters. And for reaction, firewalling outgoing Lx
calls, or cleansing the driver by internal state modification.

Our approach is similar to system call interposition (SCI) but for interrupts. The
benefits were studied in [84, 165, 229]. We profile a running system supposed non-
infected by gathering interrupts patterns. For example during boot, patterns appear
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with tens of different I/O ports and values that are added to an interrupt white list. On
the other side, we maintain a blacklist of patterns derived from the fuzzing framework
knowledge. When such interrupts are detected, KungFuVisor modifies the interrupt
vector on-the-fly. Either by sanitizing values with legitimate one, i.e. known to have
no impact, or discarding the request silently if no other option is available.

The overall knowledge is always updated during system runtime to register more
patterns. KungFuVisor meticulously replays patterns on a sandbox VM to extract the
problematic interrupts, and can either go through manual analysis to approve the final
list selection or add them automatically.

5.3.3.3 Decision-Making

The self-protection decision logic is split between two types of orchestrators. Each hy-
pervisor layer Lx contains a Horizontal Orchestrator (HO) providing a layer-view of
security management. The HO is a simple autonomic security manager performing
a reflex, local response to threats targetted at a specific set of hRSCs incoming and
propagating through the Lx layer interface. The HO supervises agents attached to the
Lx interface of monitored hRSCs, aggregating collected information, and dispatching
chosen reactions.

A Vertical Orchestrator (VO) realizes higher-level, wider spectrum security reactions.
By evaluating information provided by HOs in each layer, the VO coordinates layer-
level decisions in order to provide a consistent, cross-layer response to detected threats.

Orchestrator interplay results in a very flexible self-protection model allowing to
enforce a rich continuum of remediation strategies, both within and across layers,
and between computing and networking views of resources. For instance, suspicious
behavior (e.g., memory tampering) detected in a computing hRSC monitoring the
hardware layer may trigger reactions over networking hRSCs in another layer (e.g.,
disable a vNIC).

5.4 implementation

5.4.1 Mapping

The protection framework is mapped to the hypervisor model by setting all entities of
management and orchestration planes directly into the hypervisor. Specific hooks then
connect agents to the relevant hRSC interfaces. This design limits the attack surface,
as all framework entities are in the hypervisor itself, without interfaces presented to
the outside (i.e., no backdoors). Moreover, it reduces the impact on legacy hypervisor
code, as agents have the same external interfaces as hRSCs. The performance overhead
is also expected to be minimal, as the framework code is interfaced to hRSCs using
simple function calls.

Furthermore, we enhance the protection of the KVM hypervisor security by apply-
ing well-known protections of Windows exception handlers. Static list of timers shield
them and prevent the new exploitation class introduced by Nelson Elhage [70].

We also verify if the Qemu program is PIE-compiled with a strong ASLR setting.
This provides another effective protection layer against state-of-the-art exploitation.
ROP attacks requires some position knowledge to locate the gadgets, unavailable here
as all addresses are randomized.
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Figure 38: KungFuVisor hook for outb on Qemu.

Figure 39: KungFuVisor hook for memory_write on KVM/Qemu.

5.4.2 Qemu hooks

Close to the VM introspection, we wrap the Qemu function closest to the IN and OUT
instruction processing interrupts: cpu_in* and cpu_out*.

The processing flow for an outb instruction through Qemu is detailed on Figure 38.
The libc and libpthread libraries create a thread (in blue) for parallel processing on SMP.
Then the Tiny Code Generator (TCG) parses the instruction to emulate, say outb. The
instruction architecture defines the execution handler to convert the instruction into
the Qemu Intermediate Language (IR). Our example is for the Intel x86 instruction
set, so the cpu_x86_exec is called. The instructions are transformed into a Translation
Block (TB) caching further translation of the current Basic Block. The code_gen_buffer
function feeds the TB structure with the result of the helper_outb function. The latter
build the IR representation of the outb instruction. Thus, we hook the helper functions
and redirect the control flow toward KFV agents.

Hardware assisted virtualization hides many critical interactions as the real CPU
handles the processing. However, we are still able to hook critical functions (Figure 39).

It allows semantic learning of instructions executed by a VM. We can compare re-
quested I/O with the list gathered through fuzzing and public attacks. If one of them
is called, we send an alert to the VO and apply a wide variety of reaction (described
in Section 2.2.6) such as ignore, pause or reboot the VM.
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void helper_check_iob(CPUX86State *env, uint32_t t0)

void helper_check_iow(CPUX86State *env, uint32_t t0)

void helper_check_iol(CPUX86State *env, uint32_t t0)

void helper_outb(uint32_t port, uint32_t data)

target_ulong helper_inb(uint32_t port)

void helper_outw(uint32_t port, uint32_t data)

target_ulong helper_inw(uint32_t port)

void helper_outl(uint32_t port, uint32_t data)

target_ulong helper_inl(uint32_t port)

void helper_into(CPUX86State *env, int next_eip_addend)

void helper_single_step(CPUX86State *env)

void helper_cpuid(CPUX86State *env)

target_ulong helper_read_crN(CPUX86State *env, int reg)

void helper_write_crN(CPUX86State *env, int reg, target_ulong t0)

void helper_movl_drN_T0(CPUX86State *env, int reg, target_ulong t0)

target_ulong helper_read_crN(CPUX86State *env, int reg)

void helper_write_crN(CPUX86State *env, int reg, target_ulong t0)

void helper_movl_drN_T0(CPUX86State *env, int reg, target_ulong t0)

void helper_lmsw(CPUX86State *env, target_ulong t0)

void helper_invlpg(CPUX86State *env, target_ulong addr)

void helper_rdtsc(CPUX86State *env)

void helper_rdtscp(CPUX86State *env)

void helper_rdpmc(CPUX86State *env)

void helper_wrmsr(CPUX86State *env)

void helper_rdmsr(CPUX86State *env)

void helper_wrmsr(CPUX86State *env)

void helper_rdmsr(CPUX86State *env)

void helper_hlt(CPUX86State *env, int next_eip_addend)
�

Figure 40: KungFuVisor hooks in Qemu.

Figure 40 gives the KungFuVisor hooks into Qemu, functions that can be redirected
to control communications with the hypervisor.

5.5 evaluation

We evaluate the KungFuVisor solution in terms of performance overhead to boot a VM
(Section 5.5.1), and the added attack surface with a security analysis (Section 5.5.2).

5.5.1 Performance overhead

Several problems appeared using the Python implementation of VESPA seen in Sec-
tion 5.4.

5.5.1.1 VESPA components placement

Putting the VESPA framework in user space requires context switching for every in-
terrupt. Our first tests showed 10000% overhead and required 6 days to boot the VM!
However, this solution is not intrusive with only 20 SLoC added to the hypervisor
TCB.
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Offloading aggregation of interrupts to the hypervisor multiplies by 5 the impact
on the TCB size compared with the previous solution. However the performance over-
head goes down to 800% and the VM boot in 8 hours. Integrating the agent of the
VESPA framework directly into the TCB is far more heavy. Converting the core Node
class of VESPA, with about 3000 LoC in Python with introspection would result in at
least 10 000 LoC in C and is not realistic. But once the conversion is done, a lightweight
version of the framework may be done with agents and security components in ap-
proximatively 5000 C LoC given our C code base. Reusing the C version of VESPA
suppose the integration of the Cecilia framework directly into the hypervisor. This
approach was abandonned. This would result in an even bigger code base.

We fostered the small TCB size as it is simpler to accept a small patch for a low level
access if we submit it to the KVM developers.

5.5.1.2 Lighter interposition

The overhead with VESPA orchestration plane in user-space is unacceptable as-is.
Thus, we considered detection and reaction to be asynchronous and not waiting for
the VO response. This means the alert is sent as before but the interrupt is always for-
warded to the associated Qemu handler. VESPA is able to perform the alert gathering
and the decision in parallel. The major asset of this solution is that the overhead drops
to 12%, and the TCB is still minimal. However it come with a major security drawback:
if the attack is faster than the VESPA autonomic loop, the hypervisor can be exploited
and not recoverable. It is therefore impossible to stick to the asynchronous approach
to catch fast attacks. Slower attack can be detected using this approach.

5.5.1.3 Dynamic interposition

We chose to adopt a two-level granularity mixing synchronous and asynchronous
approaches. The original loop waited for the VESPA response and was not able to
handle the I/Os fast enough. We investigated further and analyzed the number of
I/O performed by the VM life-cycle (Figure 41). The most consuming part is the boot
with the load of many files (disks I/Os) and peripheral setup. Indeed, once the VM is
idle and does not perform much I/Os, the system responds in a natural way and the
user only experiences some short delays. The I/Os perfomed at t = 1800s is a Web
browser session, and at t = 2600s we performed a search with the grep tool on the
whole disk followed by a poweroff.

The idea is to make the synchronization adaptable during the VM life-cycle. The
VM boot is unadapted to perform the attack, as the system is not fully loaded and
there is no network available. It is possible to lock-in the boot with fixed kernels and
modules by the provider for more security. This phase is then considered safe and
VESPA let the I/O/s be forwarded to the Qemu handler during the analysis in the
VO. When the number of interrupts is below the defined threshold, VESPA switches
the driver agent to the synchronous mode: all interrupts are filtered. The agent will
become asynchronous when the system is under heavy I/O load.

micro benchmarks We used the standard benchmark suites to evaluate the im-
pact of VESPA on the system. The LMBench [137] benchmarks system bandwidth
and latencies at various levels. Figure 42 compares the times given by LMBench on
a vanilla Qemu and on KFV in microseconds. The first eight figures measure context
switching for 2, 8 and 16 processes and with a work size ranging from 0 to 64KB. For
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Figure 41: Number of I/Os during a VM life cycle.

example, 2p/0K indicates two processes with no workload that only pass the token to
the next process. Then we measured interprocess communication latencies through Pipe,
AFUNIX, RPC with UDP and TCP. Two processes are created and exchange data. File-
Create and FileDelete indicate the file system latencies for the creation and deletion of
0KB and 10KB files. Finally, the ProtFault and PageFault tests illustrate how fast a pro-
cess and a page of a file can be faulted in. The file is flushed from (local) memory by
using the msync() interface with the invalidate flag set. The real overhead percentage
is displayed on Figure 43 with the vanilla Qemu as the base.

The results showed that KungFuVisor is able to enhance hypervisor security with
a 12% overhead on an average VM life-cycle. This mean supposes that all tests are
equally distributed during a VM life-cycle. However the protection fault signal latency
is rare compared to others. We were not able to reduce the signal latency and thus
it has to be present on the overhead graph, but the global overhead is less than 12%.
Finding the exact repartition of categories require an extensive semantic reconstruction
that was not performed here.

5.5.1.4 Optimizations

The list of faulty I/Os given by the fuzzing use case is cached into the driver agent as
a radix tree with a depth of 8. It enables fast lookup directly into the kernel with an
added 30 SLoC. The interrupts are compared, matched and forwarded.

The communication with VESPA was also optimized to reduce the overhead. The
communication protocol is UDP with a thin layer of error correction code. Data are
neither compressed nor encrypted as it increases the number of CPU cycles per I/O.
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Figure 42: Comparison of LMBench results with and without KungFuVisor.

5.5.1.5 Discussion

Our current implementation is adapted for critical systems with an acceptable over-
head and an enhanced security. The threshold to switch between synchronous and
asynchronous has to be carefully chosen. If too high the system will hang and provide
bad user experience, if too low security is lowered. The administrator has to define
VM security levels and associate a predefined threshold. Trusted VMs will remain
mostly asynchronous while untrusted VMs will be monitored synchronously.

5.5.2 Security analysis

5.5.2.1 Mitigation of public threats

The CloudBurst attack was successfully prevented by extracting the I/Os of the public
exploit. However the memory corruption targets the VMWare 3D driver that is obvi-
ously not present on KVM. A fake Qemu driver emulates the original driver for our
tests and give an overview of the behavior. The real impact requires to modify the
I/O handling routine of VMWare hypervisors, which is not open source. Thus, the
sequence of interrupts may need to be polished in the exploitation environment.

The Virtunoid attack was prevented on the latest version of KVM vulnerable to this
attack. The sequence of interrupts was extracted and filtered, protecting the hypervisor
without patching. Such feature is important as it is a way to protect old hypervisors
from public attacks that do not have fixes. The administrator analyzes the exploit,
runs it on a VM and adds the signature to the VESPA database. With further tests, it is
possible to adopt KungFuVisor as a long term hypervisor that can be externally fixed.
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Figure 43: Normalized overhead of KungFuVisor.

A public exploit does not hinder cloud security and can be fixed without restarting
the physical servers.

Three other attacks generating I/Os were prevented, but vulnerabilities regarding
hypercalls remain exploitable.

5.5.2.2 Unexpected behaviors

In the previous chapter, we accessed the interrupts attack vector to stress drivers and
extract unexpected behaviors. Our framework can be easily adapted to handle new
attack vectors. The "stress" module, agent_gen_fuzz, is a wrapper around the C library
for interrupts. For example, moving to syscalls to stress the kernel can be achieved
by replacing the outl with the syscall assembly, while fuzzing the CPU instructions
may require more work with assembly parsing libraries. With the fuzzing sessions,
KungFuVisor is able to prevent bad emulation from Qemu. Loops, invalid writes and
segmentation faults are added dynamically in the VESPA database.

The new components integrated by KungFuVisor are disaggregated to diminish
the impact of compromise. The VESPA framework, which is the core of KFV, gathers
knowledge and orchestrates decisions against interrupts. Thus an attacker may hijack
the knowledge by detecting VESPA. Taking advantage of VESPA to setup an attack
requires access to administrator policies, and to find a logic hole inside. Although,
VESPA and KFV do not guarantee the formal security of policies.

5.6 conclusion

This chapter described how we instantiated the VESPA framework to the hypervisor
context, and showed that the adaptation require subtle trade-offs. While our evalua-
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tion showed mitigated results for a straightforward integration, we believe that it is an
acceptable solution with some tuning. The current public exploits were successfully
prevented and the parallel fuzzing of drivers unveil unknown flaws dynamically. Mix-
ing both defense and attack provide a new approach for third-party code that is not
well-tested.

Integrating VESPA functionalities into the hypervisor is costly and increases the
TCB but will also increase performance. A lighter version of the framework with-
out the unused functionalities (policy frameworks, dynamic reconfiguration, multi-
domain) is a good candidate for further research into this layer.





6
CONCLUS ION

Don’t cry because it’s over, smile because it happened.

Dr. Seuss

This chapter summarizes contributions, and analyzes how they fulfill the objectives
defined at the beginning of the thesis (Section 6.1). Then we detail limitations and
foresee the future work to enhance our architectures (Section 6.3).

6.1 main results

In this thesis, we showed that it is possible to model the cloud security in terms of
framework components. Four design principles were defined to overcome the limits
of current cloud platform: policy-based self-protection, cross-layer defense, multiple
self-protection loops and open security architecture. This approach enables the setup
of flexible cloud infrastructure security, from static local security to dynamic multi
domain isolation.

The VESPA model was validated using two implementations in Python and C.
Those frameworks expose components available at several levels of granularity: the
developer can interact with the API of a complete solution, or create a link with a pre-
cise part of a system component. The composition of heterogeneous building blocks
gives the opportunity to empower the IaaS infrastructure à la carte. Numerous use
cases were implemented to underline the potential of VESPA, showing simple and
fast adaptation in various environments. Also, the performances are not outdone with
a small overhead.

The extension of VESPA to the hypervisor allowed the quantitative evaluation of the
components. KungFuVisor required several adjustments to become a viable solution
with enhanced security. The hypervisor is more robust against publicly disclosed at-
tacks and malicious sequences of interrupts. The challenge was successfully answered,
highlighting how VESPA is adaptable. It required architecture design and tests to de-
liver good performances, but the basic components, communication and policies does
not need to be changed. We argue that this is a promising security framework with a
modular design that answers multiple security problems of today clouds.

Table 19 summarizes principles and objectives fulfillment as defined in Section 1.2.
The analysis of each design principles follows.

6.1.1 Policy-based self-protection

Our VESPA architecture displays a clean policy interface. However, the integration of
policy models involve specific development. The example of RBAC [77] shows that we
have to assign objects to roles, and the OrBAC model stick resources to organization.
These concepts are not fully handled by VESPA, and policies are expressed as Finite
State Machines. The OrBAC support is partial, user assigning resources to domains,
which are close to the organizations defined into OrBAC.
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��������������
Design Principles Solutions VESPA KungFuVisor

Policy-based self-protection � �

Cross-layer defense � �

Multiple self-protection loops � �

Open architecture � �

Multi-Cloud � �

Table 19: Extended Properties Fulfillment

It is not enough to fulfill our policy-based self-protection requirement, even if the
policy interface is defined.

6.1.2 Cross-layer defense

The design of VESPA integrate the cross-layer defense into the architecture, validating
our requirement. The VMs, hypervisors and physical devices are able to communica-
tion securely through strict interface definition.

However, KungFuVisor is specific to the hypervisor layer. It does not support col-
laborative defense with other hypervisors. The KFV architecture adapts the VESPA
layers to the hypervisor code context, and remove cross-layer defense as defined into
the requirements.

6.1.3 Multiple self-protection loops

VESPA provides multiple self-protection loops if the associated implementation fol-
lows the architecture design. Use cases and KFV inherits this requirement. The admin-
istrator is able to interconnect the security element of the infrastructure in multiple
ways. Each loop is usually assigned a specific security function, e.g. to prevent net-
work intrusions, isolation breakout or denial of service.

We expect loop mushrooming with new developers coming into the project. New
components will be created and new loop patterns will enhance the current imple-
mentation.

6.1.4 Open architecture

The open architecture requirement is fulfilled in multiple ways.
The interface for communication is explained into this thesis and in further details

into the code documentation. It is flexible and adaptable for new needs and tests. The
internal interface for Remote Procedure Call (RPC) is also provided to integrate new
languages seamlessly. The dynamic configuration with code introspection is divided
into independent functions. This feature is hard to port, and developers can adopt
other ways to find available attributes into a node.

All components of the VESPA architecture and use cases are available under LGPL
on github and orangeforge. Developers can modify, extend and correct the available
nodes to match their needs.
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6.1.5 Multi-Cloud

The OC2 use case allows the VESPA framework to communicate with other instances.
The Vertical Orchestrators (VOs) can alert each other though a peer-to-peer communi-
cation, and react accordingly. This is the extension of multiple self-protection loops to
heterogeneous domains.

As previously stated, KFV is not able to perform negotiation with other hypervisors.
We argue that it can be considered as a backdoor into a critical component.

6.1.6 Conclusion

The VESPA (Chapter 3) self-protection architecture proved cross-layer defense to be
viable through the different use cases described in Chapter 4. Multiple agents have
been developed at the VM layer and hypervisor layer and are able to feed the VO
knowledge.

The KungFuVisor (Chapter 5) adaptation of VESPA to the hypervisor underlined
the adaptability of our self-protection architecture to a very specific context.

6.2 limits

Obviously, the work realised in this thesis is not complete. Several research have to be
conducted to build the completely secure cloud infrastructure.

First, the policies used in the framework are twofold: (1) machine state in Python
for the simplicity and adoption; (2) OrBAC to fit to domains. These are pragmatic,
generic and straightforward policies for distributed contexts. However finer policies
can handle subtle cloud-related oddities, such as isolation policies on different hard-
ware. When a user wants to migrate its VM, how to abstract a single policy and
provide the same isolation level on the destination ? The VESPA framework provides
elements of answer with the agent hierarchy and the associated refinement policies,
the two of them not being fully exploited.

Second, the physical layer was not studied in-depth. The VESPA framework may
thus be missing some properties specific to this layer. Yet, physical security equip-
ments are always present on the provider infrastructure. It is therefore a layer to inte-
grate to reuse available security equipments.

6.3 future work

6.3.1 Physical layer

Although the physical layer was not exploited in this thesis, we still need to handle
physical agents to reach the maximum potential of our framework. While not really a
limitation, there is some work needed to gather physical management interfaces, such
as the libvirt for hypervisors. There is no common base to manage physical equipment
and it usually results in a specific agent for a single equipment.

Also, physical attestation components can be used to measure the VESPA frame-
work integrity and protect it against memory corruptions. As a quick answer, it can
be done using the TPM or the Trusted Execution Environment (TEE) modules that ship
with current computers and phones. However those components already exposed sev-
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eral weaknesses and the question of the trust given to the chip makers remain. If a
solution emerges, VESPA will have to adopt it to ensure that components are deployed
on the right execution environment.

6.3.2 Framework protection

VESPA components are not designed to be tamper-resistant. The implementation of
the architecture does not provide protection against code modifications.

The self-protection framework aims at protecting existing heterogeneous resources,
but the framework components protection was not addressed directly. Communica-
tions between security layer, agent layer and orchestration layer are encrypted to guar-
antee confidentiality, and signed to guarantee integrity, but availability remains the
weakness. The framework does not support the lack of the VO, while HOs should try
to protect at least the underlying agents. This issue was not addressed either.

However, each instantiation can define self-protecting nodes. The KFV hypervisor
performs checksums on both the program during the startup and live when running.
Some approaches offloaded the Qemu component as non-privileged to limit the im-
pact while being exploited (DeHype, Nooks). DeHype splits the KVM TCB down to
2.3K LoC, which is a reduction of about 94%. However, the remaining code is copied
into each virtual address space and consumes memory. In terms of security, the VM
running on the unprivileged hypervisor will crash if it is exploited. The physical ma-
chine is still able to reboot the compromised part as a remediation. With KungFuVisor,
we protect the hypervisor with a new mechanism generating bad interrupts and fil-
tering them before they compromise the system. The memory is not duplicated and
the original KVM code does not need to be redesigned. The IPC problem encountered
during KungFuVisor design was addressed using hardware facilities. The VMCS traps
I/Os by filling the correct structure, but given the results showed in Section 2.2.5, hit-
ting the VMCS is costly and is not adapted to intense I/O loads.

The self-stabilization [65] can provide better protection to our VESPA architecture.
Models used by this approach consider several correct states for an execution. If the
actual state derives from a stable point, remediations are applied to move toward the
closest correct state. VESPA execution can be secured by giving correct states to the
self-stabilization layer and run under its control.

6.3.3 Multi-Cloud

Cloud administrators are looking for an abstraction to interact with the variety of
cloud providers. The interconnection of heterogeneous clouds is not ready yet, but is
under active research. This issue is likely to become a tough question in a near future.

It raises multiple question regarding the VESPA framework. New policy attributes,
more complex negotiations among VOs, the associated decisions and trust manage-
ment are just but a few questions to answer.

6.3.3.1 Nested virtualization

With the trending nested virtualization, new challenges raised and were not heavily
studied in this dissertation. The generic VESPA framework is not limited by the num-
ber of layers, but more work is needed to tackle down new implications. Some work
has been done [21] to provide a first security architecture compatible with VESPA.
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6.3.3.2 KungFuVisor

We addressed the vulnerabilities related to the hypervisor interrupts. However there
are other attack vectors to weaken the hypervisor isolation. For example the compo-
nent loading VM configuration files may be vulnerable to malicious strings attacks.
The user is able to define the machine name and information that will be parsed by
the hypervisor. If the latter does not properly escape the strings, it can provide a mali-
cious root access. A composed approach between VESPA and the architecture design
of Xen disaggregation is thus needed to limit the attack vectors.
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APPENDIX





A
NINE CLOUD COMPUT ING SECUR ITY ROADBLOCKS

We identify nine major roadblocks of cloud computing security to capture the security
barriers to adoption of cloud infrastructures [221]. Those roadblocks are classified into
the 4 main areas shown in Figure 44: local security (protection of computing resources),
network security (protection of communications), data protection (protection of storage),
and other trust enablers. Their criticality may be qualified using the following scale:

• Critical: lifting the roadblock is essential for adoption, resulting in a breakthrough
if successful.

• Important: lifting the roadblock will be a major step forward.

• Incremental: lifting the roadblock is possible by natural enhancement of already
existing technologies.

In what follows, we discuss for each area the corresponding security roadblocks.

a.1 local security

This area deals with the protection of servers which compose a data center. The main
issue is how to guarantee security when computing resources are virtualized, i.e., as
VMs running above a hypervisor on each host. The key roadblock is thus naturally the
security of the hypervisor.

a.1.1 Hypervisor Security

Virtualization introduces many security vulnerabilities. Clouds are by essence multi-
tenant environments: the crux is thus strict isolation between VMs, which may fail
if the hypervisor is compromised. In theory, the most widespread hypervisors have
a relatively low attack surface. In practice, new variety of attacks [169, 174] such as
installing rootkits inside the hypervisor (hyperjacking) or using covert channels call
for higher degrees of assurance [172]. The main weaknesses are misconfigurations,
malicious device drivers, and backdoors between the VM and the hardware, issues
for which there are today no real answers. Hypervisor security is only part of the
problem since VMs may also bring their own set of vulnerabilities: these may be
mitigated using hardened VM images, or strict VM security life-cycle management. In
all cases, “security by default” configurations should be applied, with clear delineation
of responsibilities between customer and cloud vendor.

a.2 network security

This area deals with the protection of communication channels to access or inside a
data center. The key issue is how to guarantee security when networking resources are
virtualized, i.e., firewalls, IDS, routers run as virtual appliances. The main roadblocks
here are network isolation and elastic security.
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Figure 44: Major Security Roadblocks of Cloud Computing.

a.2.1 Network Isolation

In a data center where some of the communication links may be fully virtualized,
are traditional network security architectures still effective? Where security controls
should be placed? The risks are broadly comparable to those of traditional networks
(confidentiality/integrity of network connections to/in clouds, Authentication, Autho-
rization and Accounting (AAA), availability). The corresponding counter-measures
(encryption, digital signatures, Network Access Control (NAC), VPN, Network IDS
(NIDS), Network IPS (NIPS), ...) are thus still applicable. The main change is that net-
work isolation is no longer physical but logical: network zones where traffic could
be segregated physically (e.g., to separate production from supervision hosts) are re-
placed with logical security domains, where traffic between VMs is filtered by “virtual”
firewalls. As a result, isolation is less precise, and the security guarantees weaker.
Overall, the technical security components are available today to lift this roadblock.
However, the main difficulty is to map them to cloud architectures.

a.2.2 Elastic Security

Flexible allocation and rapid provisioning of security resources able to respond to
dynamic evolutions in the cloud is still a challenge due to the high rate of change
in virtual servers. First solutions are emerging for flexible and dynamic management
of VPNs, with the notion of virtual private clouds. However, fully automated security
supervision of cloud infrastructures is still lacking due to the complexity and short
response times needed to manage vulnerabilities, detect intrusions, and activate de-
fenses. Research initiated by IBM on autonomic, self-protecting security architectures
should enable to build infrastructures where security is self-managed, security pa-
rameters autonomously being negotiated with the environment to match the ambient
estimated risks and provide an optimal level of protection [94].
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a.3 data protection

This area deals with the security and privacy of data (at rest and in transit). The main
issue is how to guarantee such security in a shared, multi-tenant environment. Key
roadblocks are both technical such as identity management, but also non-technical, such
as privacy/secure storage or data traceability.

a.3.1 Identity Management

The number and diversity of principals using cloud services internally and externally,
and the volume of resources accessed call for end-to-end solutions for managing iden-
tities. Unfortunately, cloud infrastructures are still lacking consistent identity infor-
mation architectures: multiple administrators, credential repositories, and processes
which are neither automated nor orchestrated may induce new vulnerabilities. Bar-
riers are thus scalability, heterogeneity and interoperability. An unsolved problem is
how to achieve federation of identities across data centers, organizations, or cloud
providers to avoid duplications of identities, or privileges between information sys-
tems.

While the basic mechanisms already exist to exchange identity claims, how to inte-
grate them in the cloud context is still unknown. If authentication challenges might
be overcome in the near future, uniform management of authorizations is still in its
infancy despite standards like XACML. Nonetheless, identity management is one of
the main opportunities for Security-as-a-Service in cloud infrastructures, to outsource
authentication and authorization components from IT systems.

a.3.2 Privacy and Secure Storage

Today’s privacy concerns will be magnified in cloud environments due to technol-
ogy sharing in a multi-tenant context. The main challenge is thus strong data iso-
lation throughout the life-cycle of personal information. Difficult problems include
data access enforcement on a need-to-know basis, secure data storage and informa-
tion flow control, and data retention and destruction. While standard cryptography
is still applicable to protect data at rest and in motion, today’s privacy best practices
are not enough to fully address this roadblock. Possible technical answers include
self-destructing data [88], “sticky” (i.e., directly attached to the data) privacy policies,
and more generally promoting “privacy by design”. In any case, responsible data
stewardship in the cloud requires both in depths understanding of possibilities of
Privacy-Enhancing Technologies (PETs), and of legal implications in contractual agree-
ments.

a.3.3 Data Traceability

Adding further to the loss of control of user over their data, locating the data itself is
a major concern in a shared and virtualized infrastructure: at a given time, a cloud
provider might not know exactly where (i.e., in which country) data is stored, pro-
cessed, or accessed from. Without special care, data could move freely around between
organizations, or even between international borders. This raises legal and political
issues, since several jurisdictions (EU Data Protection Directive, US Safe Harbor Pro-
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gram) specifically require the provider to have such knowledge. Data hosted abroad
might also be exposed to foreign governments (USA Patriot Act). Data traceability
is also needed to prove to users that data comes from a trusted source. Overall, this
domain is still a widely unchartered area.

a.4 trust enablers

This last area is perhaps the most important one, since the main issue is how to prove
to customers that their cloud infrastructure is trustworthy. The main roadblocks are
transparency and compliance, openness, and how to guarantee end-to-end security.

a.4.1 Transparency and Compliance

Unlike traditional environments, in the cloud, the nebula of stakeholders, logical in-
stead of physical isolation, and transfer of resources outside the control of organiza-
tions, all make customers uneasy as where trust boundaries have moved to. A maxi-
mum level of transparency is thus required from the vendor to dispel this confusion.
Customers need tangible evidence of the security hygiene of a provider infrastructure,
to verify security claims of contractual agreements, or compare with other providers
practices. Elements of assurance are required by authorities to check compliance with
established standards and regulations. Unfortunately, providers remain so far opaque
on these aspects.

Auditability of infrastructures have thus to be enhanced, to convince third parties
that the necessary detective and preventive security controls are in place. Setting up a
certification process helps the provider move forward. Unfortunately, there is no real
agreement today on the right assurance framework (SAS 70, ISO 27001,...). Documents
published by ENISA [71] or the Cloud Security Alliance [51] facilitate a risk analysis.
Yet this analysis remains difficult due to increased complexity and openness compared
with traditional computing. Trusted computing technologies [35] also foster trust by
providing users cryptographic evidence of infrastructure integrity, but a lot of work
remains to be done in this area. In any case, responsibilities between providers and
customers have to be established using clear-cut SLAs.

a.4.2 Openness

This issue is necessary to overcome vendor lock-in, viewed by the Cloud Security Al-
liance (CSA) as a top threat. Proprietary, closed, and non-standard-compliant cloud
technologies will make it very complex for the customer to change cloud provider,
verify the vendor security promises, or react in case of incident. Interoperability with
other cloud infrastructures will also be difficult, each vendor having its own APIs. De-
ployment of applications distributed across several infrastructures will thus be ham-
pered, limiting scalability. Recommendations are to stick to best practices [51, 71] and
standards, and push standardization efforts on open APIs. Open source cloud architec-
tures will also bring additional benefits in terms of flexibility (modular architectures)
and security (careful code scrutiny by the security community).
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a.4.3 End-to-End Security

To foster trust, data isolation has to be guaranteed both at rest and in transit in all lay-
ers of the cloud infrastructure (processing, network, storage). Unfortunately, the few
security building blocks available are highly heterogeneous and fragmented. How to
orchestrate them seamlessly into an end-to-end security infrastructure for cloud envi-
ronments is still undefined. This issue which crosscuts all the previous technological
barriers could be overcome by standardizing reference security architectures for cloud
environments which describe the organization of the different security components,
to provide an overall view of cloud security.





B
Q E M U I / O

b.1 example of i/o ports available on a qemu vm
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[root@p-stt-cloud-sharednode1 vespa]# cat /proc/ioports

0000-0cf7 : PCI Bus 0000:00

0000-001f : dma1

0020-0021 : pic1

0040-0043 : timer0

0050-0053 : timer1

0060-0060 : keyboard

0064-0064 : keyboard

0070-0071 : rtc0

0080-008f : dma page reg

00a0-00a1 : pic2

00c0-00df : dma2

00f0-00ff : fpu

0170-0177 : 0000:00:01.1

0170-0177 : ata_piix

01f0-01f7 : 0000:00:01.1

01f0-01f7 : ata_piix

0376-0376 : 0000:00:01.1

0376-0376 : ata_piix

03c0-03df : vga+

03f2-03f2 : floppy

03f4-03f5 : floppy

03f6-03f6 : 0000:00:01.1

03f6-03f6 : ata_piix

03f7-03f7 : floppy

0cf8-0cff : PCI conf1

0d00-ffff : PCI Bus 0000:00

afe0-afe3 : ACPI GPE0_BLK

b000-b03f : 0000:00:01.3

b000-b003 : ACPI PM1a_EVT_BLK

b004-b005 : ACPI PM1a_CNT_BLK

b008-b00b : ACPI PM_TMR

b010-b015 : ACPI CPU throttle

b100-b10f : 0000:00:01.3

b100-b107 : piix4_smbus

c000-c0ff : 0000:00:03.0

c000-c0ff : 8139cp

c100-c11f : 0000:00:01.2

c100-c11f : uhci_hcd

c120-c13f : 0000:00:04.0

c120-c13f : virtio-pci

c140-c14f : 0000:00:01.1

c140-c14f : ata_piix
�

Figure 45: I/O ports on Qemu VM.
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RÉSUMÉ DE LA THÈSE EN FRANÇAIS

c.1 introduction

Les ordinateurs ont évolué depuis les unités centrales complexes et massives vers des
stations de travail légères et pratiques. Nous découvrons de nouvelles utilisations des
machines, pouvant s’adapter dynamiquement aux demandes les plus contraignantes
en terme d’espace disque, de processeur ou de mémoire. Nous sommes entrés dans
l’aire du Cloud computing.

Ce modèle introduit de nouvelles fonctionnalités dans les infrastructures comme un
approvisionnement flexible et dynamique des ressources. Cependant cette approche
du tout-partagé rend perplexe les futurs utilisateurs. De nouvelles menaces venant de
l’intérieur comme de l’extérieur apparaissent. Les mécanismes traditionnels comme le
chiffrement ne suffisent plus, et les outils disponibles sont hétérogènes et fragmentés.
Ils leur manquent une vision d’ensemble qui leur permettrait d’orchestrer la sécurité
de façon intégrée.

Cette thèse fournie des réponses pour protéger les architectures virtualisées avec
une solution de gestion de la sécurité flexible, dynamique et automatique.

c.1.1 Notre approche

La plupart des obstacles à l’adoption du Cloud computing sont définis dans l’Appendix A.
Bien que tous ces derniers soient critiques, notre approche se focalise sur l’isolation
des ressources dans les infrastructures IaaS. Nous adressons les obstacles liés à la sécu-
rité de l’hyperviseur, à l’isolation réseau et à l’élasticité. L’ouverture et la sécurité de
bout-en-bout sont eux aussi pris en compte pour définir les briques de référence d’un
cloud sécurisé.

c.1.2 Propriétés de sécurité

Les infrastructures doivent intégrer trois fonctionnalités pour adresser les problèmes
définis dans l’approche.

Multi-couches. Une infrastructure Cloud est composée d’un ensemble de couches
indépendantes ayant chacune leur propre mécanisme de sécurité, alors qu’une
attaque peut en cibler plusieurs. Aussi, l’efficacité d’une défense est accrue. Par
exemple, une couche spécifique peut avoir une vue globale avec des informations
venant des autres couches.

Multi-latéralité. Un Cloud peut être composé de plusieurs organisations. Chaque
organisation peut avoir ses propres objectifs de sécurité. Des politiques flexi-
bles de haut niveau sont donc nécessaires pour abstraire les relations avec des
équipements spécifiques.
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Extensibilité. Les Clouds évoluent constamment pour devenir interopérables. La vi-
sion habituelle des sources fermées n’est donc pas adéquate. L’intégration de
nouveaux équipements de sécurité doit être simple, rapide et transparente.

c.1.3 Objectifs de recherche

Les objectifs sont divisés en deux parties: (1) proposer et implémenter une architecture
de sécurité de bout-en-bout pour les environnements virtualisés fournissant une vue
intégrée des mécanismes de protection; et (2) définir dans cette dernière des mécan-
ismes d’autoprotection pour l’infrastructure sous-jacente.

c.1.3.1 Une architecture de sécurité pour les environnements virtualisés

Cette thèse explore les projets à base de composants pour orchestrer et composer dy-
namiquement les différentes briques de sécurité comme les hyperviseurs, les éléments
de sécurité physiques (TPM), les protections réseau (IDS/IPS, VPN), les stockages
sécurisés ou encore les mécanismes de gestion de la confiance. Chaque composant
déclare des propriétés garanties en utilisant des contrats, qui sont composés pour
dériver les objectifs de sécurité globaux du cloud. Cette architecture de sécurité de
bout-en-bout est validée au travers d’un prototype et de plusieurs cas d’usage.

Pour atteindre ce premier objectif, des recherches ont démontré la viabilité des
projets à base de composants pour construire des systèmes complexes depuis des
briques hétérogènes et atteindre une sécurité flexible. Nous explorons cette approche
pour orchestrer et adapter les services de sécurité dans un cloud et pour composer
des services de sécurité flexibles dans une architecture de sécurité unifiée. Les pro-
priétés de sécurité fournies par les services de sécurité sont exprimées comme des
contrats flexibles, comme des SLAs, pour dériver des objectifs de sécurité garantis par
l’infrastructure cloud.

c.1.3.2 Clouds auto-protégés

Le deuxième objectif consiste à spécifier et implémenter des mécanismes d’autoprotection
au sein du cloud. Nous identifions les composants nécessaires pour réaliser une ou
plusieurs boucles d’autoprotection qui rendront le cloud autogéré. Cette thèse définit
aussi une architecture d’autoprotection. Les composants de sécurité sont ensuite im-
plémentés et intégrés dans le prototype du cloud sécurisé.

Pour atteindre le second objectif, l’approche autonomique d’IBM pour une sécurité
autogérée a prouvé son efficacité pour construire des infrastructures sécurisées avec
des surcoûts minimaux. Un canevas logiciel générique à base de composants a été
défini. La première partie de cette dissertation étudie si ce canevas logiciel est suffisant
pour la gestion automatique de la sécurité du cloud, et les extensions nécessaires.

c.1.4 Principes de conception

Connaissant les propriétés de sécurité et les objectifs, nous exposons un ensemble de
principes de conception pour une architecture cloud auto protégée:

Auto-protection à base de politiques. Le paradigme à base de politiques a réussi à
démontrer sa capacité à améliorer l’adaptabilité des systèmes autogérés. En effet,
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un large choix de stratégies est supporté dans chaque partie de la boucle de con-
trôle. Ce principe adresse l’hétérogénéité, le multi-couche et la multi-latéralité.

Défense multi-couches. Les évènements détectés dans une couche déclenchent des
réactions dans d’autres couches. Cette approche coordonnée réconcilie les dif-
férentes sémantiques des couches. L’approche multi-couche améliore la sécurité
en évaluant l’étendue d’une attaque, souvent plus large qu’une seule couche, et
peut donc mieux y répondre. Ce principe aborde principalement le multi-couche.

Boucles d’autoprotection multiples. Une seule décision peut générer plusieurs réac-
tions et ainsi étendre la granularité de la surveillance. Plusieurs niveaux de déci-
sion sont alors possibles. Plusieurs degrés d’optimalité peuvent être choisis pour
la réponse: rapide et locale, mais avec une précision moyenne, ou plus large et
avec un haut niveau de pertinence. Ce principe aborde la multi-latéralité.

Architecture ouverte. L’architecture doit intégrer simplement des composants de
sécurité hétérogènes. Ce principe permet une meilleure interopérabilité, et aborde
donc l’extensibilité.

c.1.5 Nos contributions

Cette thèse présente une architecture et un canevas logiciel basés sur les principes cités
précédemment pour construire une infrastructure cloud auto protégée. Notre solution
appelée VESPA régule la protection des ressources au travers de plusieurs boucles de
sécurité cordonnées qui surveillent les différentes couches de l’infrastructure.

VESPA est une architecture auto protégée pour les environnements virtualisés qui out-
repassent les limitations que nous venons de voir. A base de politique, il régule
la sécurité dans les couches et au travers des couches. La coordination flexible
entre les boucles d’autoprotection permet de mettre en place un riche panel
de stratégies de sécurité. L’évaluation d’une implémentation de VESPA démon-
tre que son architecture est applicable pour sécuriser une infrastructure cloud.
Cependant certains composants n’offrent pas assez de fonctionnalités de sécu-
rité, comme les hyperviseurs.

KungFuVisor est un canevas logiciel pour construire des hyperviseurs auto protégeables en
utilisant VESPA. Les hyperviseurs les plus courants sont capables de détecter les
attaques contre leur intégrité, mais ne peuvent pas se réparer. Pour répondre à ce
problème, le canevas régule la protection de l’hyperviseur au travers de plusieurs
boucles de sécurité autonomiques coordonnées. Les interactions entre un pilote
de périphérique et l’environnement du VMM peuvent être strictement surveillés
et contrôlés. Le résultat est une architecture d’autoprotection très flexible qui
applique des actions de réparations à plusieurs niveaux du VMM.

c.2 vespa : architecture autoprotégée d’environements virtualisés

c.2.1 Modèle de menace

Les attaques d’une infrastructure IaaS peuvent être regroupées en 3 catégories détail-
lées en suite: les ressources de calcul (comme le CPU, la RAM ou les périphériques); le
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réseau (comme les switch virtuels ou les périphériques réseau); et le stockage (comme
les disques dur virtuels).

Les ressources du cloud ne sont pas épargnées par les infections virales. Cependant
il faut garantir l’isolation des clients quel que soit les composants partagés, l’allocation
physique aux machines virtuelles doit donc être garantie. Une VM se voit assignée un
nombre spécifique de CPU, RAM et périphériques. Plusieurs attaques ont démontré
qu’il était possible d’outrepasser ces limites et de compromettre la confidentialité des
VMs.

Les ressources allouées au réseau cloud sont phénoménales, afin de supporter un
très grand nombre de VMs. Les attaquants utilisent cette bande passante pour menacer
et neutraliser la disponibilité des services.

Un stockage central sert généralement à regrouper les disques durs virtuels. Ceci
est une opportunité pour un attaquant qui aurait accès à ce stockage et qui pourrait
compromettre les données des disques durs à froid.

c.2.2 Architecture

Figure 46: Architecture VESPA autoprotégée.

Une infrastructure IaaS regroupe les ressources en couches propres à la virtualisa-
tion. VESPA considère la gestion de la sécurité comme orthogonale aux couches, et
met en place l’autoprotection au travers d’un ensemble de boucles autonomiques. Ces
boucles sont opérées par des composants organisés en quatre plans distincts comme
le montre la figure 46.

Tout en bas, le Plan de Ressources contient des ressources IaaS à surveiller et protéger.
Au-dessus, un Plan de Sécurité contient les équipements de détection et de réaction qui
assurent la sécurité des services comme la surveillance comportementale (via un IDS),
ou une réaction avec un pare-feu. Ces composants sont les sondes et les déclencheurs
des architectures de sécurité traditionnelles. Leurs APIs sont souvent spécifiques au
vendeur.

Le plan suivant, le Plan d’Agents, abstrait l’hétérogénéité des composants de sécurité
en définissant une couche de médiation entre les services de sécurité et les éléments dé-
cisionnaires. Ce plan est construit sur deux hiérarchies d’agents, une pour la détection,
et une autre pour la réaction. Les agents ont deux rôles principaux. Premièrement, les
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agents feuilles sont des adaptateurs entre le canevas logiciel VESPA et les composants
de sécurité, utilisé pour traduire les APIs spécifique des vendeurs en un format nor-
malisé. Cela permet d’introduire des composants tiers au sein de VESPA. Des agents
de plus hauts niveau sont en charge soit de la corrélation d’alerte ou de l’affinage des
politiques de réaction. Les agents permettent donc de définir des niveaux de sécurité
granulaires des ressources pour la supervision de la sécurité.

Le plan de plus haut niveau, le Plan d’Orchestration, contient la logique de décision.
Il est composé de deux types de gestionnaires autonomiques (appelés orchestrateurs
dans VESPA): les orchestrateurs horizontaux qui définissent les adaptations de sécu-
rité d’un niveau spécifique; et l’orchestrateur vertical qui se charge de superviser la
sécurité entre les couches.

c.2.3 Le modèle VESPA

c.2.3.1 Modèle de ressource

Figure 47: Modèle de ressource.

Les ressources IaaS sont classés suivant deux critères orthogonaux (voir la Figure 47).
Une couche définie la localisation d’une ressource dans un pile IaaS. Les piles actuelles
sont construites sur une machine physique qui fait tourner un hyperviseur, qui à son
tour exécute des machines virtuelles (VM). Trois couches séparées sont alors identifiées.
L’abstraction vue capture la classe de la ressource: calcul, réseau ou stockage.

Nous définissons les interactions entre les couches et les vues dans une infrastruc-
ture IaaS typique comme suit : La couche physique fournie les composants bruts
de calcul, réseau et stockage aux autres composants de l’infrastructure. Des exemples
pour chaque vues sont respectivement: le CPU, la mémoire et les cartes graphiques; les
équipements d’interconnexion; et les périphériques de stockage connectés au réseau
ou au PCI. Au-dessus, l’hyperviseur multiplexe et isole les ressources physiques pour
fournir des versions virtualisées aux VMs. Les exemples pour chaque vues sont ici: le
processeur virtuel et la mémoire virtuelle; les équipements réseau virtualisés comme
les routeurs et pare-feu; et les espaces de stockage accessibles comme des périphériques
dédiés. Au-dessus, les VMs ont leurs propres ressources comme tout système d’exploitation
(OS), en se basant sur l’hyperviseur pour l’accès aux périphériques émulés.

c.2.3.2 Modèle de sécurité

VESPA protège les biens les plus critiques de l’infrastructure contre les attaques ap-
pelés Ressources protégées (PR) (voir Figure 48). Les attaques peuvent corrompre une
PR, ou déconnecter le sujet qui l’utilise.

Dans VESPA, nous considérons plusieurs menaces qui peuvent cibler la couche VM:
une VM malicieuse berne la stratégie de placement du IaaS pour se localiser sur le
même serveur physique que la VM ciblée. Une attaque par canal caché peut ensuite
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Figure 48: Modèle de sécurité.

exfiltrer des données. Une variante de cette attaque peut contaminer les OS invités des
VMs, avec, par exemple, un virus se propageant sur le réseau ou le système de fichier.
Les conséquences vont du trafic réseau inconnu à l’exécution de code arbitraire, en
passant par l’escalade de privilèges. Les menaces de sécurité réseau traditionnelles
sont aussi considérées entre les VMs, comme la récupération de trafic, l’usurpation
d’adresse MAC/IP, ou le saut de VLAN.

Cependant il existe aussi des attaques plus puissantes contre l’hyperviseur. Une VM
perce l’isolation de l’hyperviseur et prend le contrôle de la couche de virtualisation.
Les possibles vecteurs d’attaques sont des mauvaises configurations ou des pilotes de
périphériques mal confinés dans l’hyperviseur. L’attaquant peut ensuite compromettre
l’intégrité de l’hyperviseur, installer des rootkits, et rebondir pour attaquer une autre
machine virtuelle.

Les attaques contre la couche physique comme les attaques DMA, la compromis-
sion du mode SMM du CPU, ou les attaques traditionnelles sur le réseau physique
sont aussi protégeables. Dans VESPA, les PR sont sous la supervision d’un gestion-
naire de sécurité (SM). Ce dernier: (1) surveille le comportement d’une ressource au
travers d’un gestionnaire de détection (DM), comme un IDS; (2) modifie le comporte-
ment de la ressource grâce à un gestionnaire de réaction (RM), comme un firewall; ou
(3) surveille et modifie l’état interne de la ressource avec un gestionnaire de protec-
tion (PM), comme un gestionnaire d’intégrité des systèmes de fichier. Ces composants
de sécurité sont souvent sur étagère et accessible uniquement au travers d’APIs spé-
cifiques. Les comportements de tous les SM sont gouvernés par des politiques de
sécurité.

c.2.3.3 Modèle d’agent

Le plan d’agent joue un rôle de médiation des couches entre les composants de sécu-
rité sur étagère (SM) dans le plan de sécurité et la prise de décision dans le plan
d’orchestration, pour la phase de détection et de réaction (voir Figure 49). Les agents
agrègent les contextes de sécurité depuis des évènements du plan de sécurité pour
une évaluation du risque haut niveau capable de diriger le processus de décision.
Dans l’autre sens, ils réalisent aussi l’affinage des politiques de réaction choisies après
la décision vers des politiques plus bas niveaux qui seront mises en place par les
mécanismes de réaction du plan de sécurité. Les agents sont donc naturellement or-
ganisés en structure hiérarchique, avec des agents racines qui capturent les analyses et
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Figure 49: Agent Model.

réponses hauts niveaux. Deux hiérarchies d’agents sont définies, une pour la détection,
une pour la réaction. Le comportement des agents est gouverné par des politiques de
transformations, pour la corrélation d’alerte et l’affinage des politiques.

En accord avec le principe d’architecture ouverte, le plan d’agent doit être capa-
ble de prendre en compte des composants tiers. Les agents feuilles peuvent être vus
comme des adaptateurs d’API.

La détection est mise en place de la façon suivante : Un DM ou PM notifie sont
Agent de Détection (DA) d’un évènement de sécurité. Chaque DA applique ensuite une
Politique d’agrégation d’alerte pour corréler les informations collectée depuis les agents
sous-jacents avant de les envoyer aux agents parent. Quand l’information arrive à
l’agent de détection racine, le contexte de sécurité est transmis au plan d’orchestration
au travers de l’Orchestrateur Horizontal (HO).

Le processus de réaction est symétrique: après avoir choisi d’appliquer une politique
de réaction spécifique à une couche, le HO envoie cette politique à l’agent de réaction
racine (RA). Chaque RA va appliquer une Politique d’affinage de politique pour adapter
au mieux la réponse, avant de l’envoyer aux agents sous-jacents les plus pertinents.
Lorsqu’un agent feuille est atteint, les politiques de réaction ou de protection sont
poussées vers les gestionnaires correspondants dans le plan de sécurité.

c.2.3.4 Modèle d’orchestration

Figure 50: Orchestration Model.

La logique de décision est contenue dans le plan d’orchestration et divisée en-
tre deux types d’orchestrateurs, comme le montre la Figure 50. Chaque couche de
l’infrastructure IaaS contient un HO qui fournit une vue par couche de la gestion de
la sécurité. Le HO est un gestionnaire de sécurité autonomique simple qui délivre une
réponse rapide et locale. Il récupère le contexte de sécurité haut niveau du DA racine.
La Stratégie de gestion de la sécurité permet de choisir la politique la plus adaptée pour
une couche, qui est ensuite envoyée au RA racine pour application.
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Le HO applique aussi les décisions venant de l’Orchestrateur vertical (VO), un ges-
tionnaire autonomique global qui réalise des réactions de sécurité à spectre large et
de haut niveau. Le VO coordonne les décisions propres aux couches pour fournir une
réponse multi niveau consistante face aux menaces détectées. En se basant sur les in-
formations collectées de chaque HO, le VO construit un savoir haut niveau global de
toutes les ressources de l’infrastructure. La stratégie de gestion de la sécurité du VO
contient les politiques définies par l’administrateur en cas d’alerte. Cela permet au
VO de choisir la politique de réaction globale, qui sera poussée et mise en application
par le HO.

c.2.3.5 Modèle de politique

Plusieurs types de politiques sont utilisés dans VESPA. Les politiques de surveillance
définissent comment collecter, filtrer et corréler les alertes depuis les détecteurs. Les
politiques d’affinage expriment comment dériver une réponse large et générique vers
un sous ensemble d’actions compréhensibles par un mécanisme de réaction. Les straté-
gies de gestion de la sécurité gouvernent la prise de décision, définissant quelle réac-
tion il faut appliquer ou générer dans un contexte de sécurité donné. Finalement, les
politiques de réaction spécifient comment modifier le comportement ou l’état d’une
ressource.

Notre canevas logiciel considère les politiques comme un élément précieux. Cepen-
dant, un vaste choix de modèle de politique et de langage a été proposé pour la détec-
tion ou la réaction. Choisir un modèle de politique trop spécifique limiterait fortement
l’application de VESPA au Cloud, avec peu d’extensibilité. Par conséquent, plutôt que
de développer un nouveau modèle de politique, nous avons basé VESPA sur un mod-
èle à base d’évènement-condition-action générique qui peut prendre en compte un
grand nombre de politiques.

c.2.4 Une approche à deux niveaux

c.2.4.1 Gestion autonomique intra-couche

La boucle intra-couche fonctionne comme illustré sur la Figure 51a. Le comportement
et l’état de chaque PR peuvent être surveillés et modifiés. Lorsqu’une menace est
détectée par un DM et/ou un PM, l’agent associé est directement informé. Les in-
formations de surveillance collectées sont ensuite agrégées et corrélées en suivant les
politiques vue précédemment et transmises aux agents de niveau supérieur. Le proces-
sus est répété jusqu’à atteindre l’agent racine. L’information de contexte de sécurité
globale est ensuite transmise au plan d’orchestration, où le HO prend des décisions
d’adaptation de la sécurité, puis sélectionne une politique de réaction à appliquer. Les
politiques de réactions affinées descendent vers les agents feuilles, qui poussent des
politiques vers les RMs et/ou les PMs pour modifier leur comportement et leur état
interne.

c.2.4.2 Gestion autonomique multi couches

Le vrai potentiel du canevas logiciel réside dans les réponses multi niveaux (voir
Figure 51b): les contextes de sécurité propres aux couches sont envoyés par les HOs
vers le VO. Cet orchestrateur consolide la connaissance du système, et applique la
stratégie de gestion de la sécurité multi niveaux pour générer une réponse globale.
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(a)

(b)

Figure 51: (a) Boucle intra couche; (b) Boucle multi niveaux .
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agent role lines of code

agent_log Generic 50

agent_libvirt Hypervisor / Generic 200

agent_gen_fuzz Generic shared object wrapper 100

agent_run Generic 50

agent_clamav Specific / ClamAV 500

agent_web Specific / Apache 60

agent_reunion Specific / OpenMeeting 40

agent_ipad Specific / IPad 50

agent_proc Specific / Linux /proc 150

agent_openflow Specific / OpenFlow 300

agent_floodlight Specific / Floodlight 80

agent_pox Specific / POX 120

Table 20: Agents VESPA disponibles.

Dans l’ensemble, VESPA définit une architecture où le nombre de couches mul-
tiplie les possibilités en terme d’actions de remédiation, locales ou au niveau de
l’infrastructure. Son architecture à base d’agents permet aussi de combiner les vues
en phase de détection et de réaction.

c.2.4.3 Implémentation

Deux versions de VESPA ont été implémentées en Python et en C. La première délivre
un canevas logiciel simple d’utilisation grâce à l’introspection dynamique du code. Le
second, combiné avec Fractal, délivre une implémentation plus rapide orienté embar-
qué. Cependant le développement se prête plus aux erreurs.

Chaque composant de VESPA hérite d’une classe centrale qui fournit notamment le
multi tâches et les communications sécurisées.

c.2.5 Evaluation

c.2.5.1 Extensibilité

Plusieurs agents VESPA ont été créés au cours du développement (voir Tableau 20). Ils
démontrent la flexibilité du canevas logiciel. Certaines classes d’agents sont génériques,
comme le suivi des journaux systèmes ou l’exécution de commandes SSH.

Nous pensons que ces agents couvrent la majorité des cas d’usage habituels. Des
agents plus spécifiques permettent de fournir des niveaux d’abstraction, comme l’agent
libvirt qui profite de l’interface python intégrée pour contrôler les hyperviseurs.

Finalement, les agents feuilles sont liés aux technologies sous-jacentes comme le
serveur web apache et la gestion de ses journaux, les contrôleurs réseaux définis par
logiciel (SDN) ou l’antivirus ClamAV.
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c.2.5.2 Corrélation

Pour illustrer les améliorations liées à la phase de détection, nous mesurons le taux
de détection d’un ensemble de virus de façon incrémentale. D’abord avec un seul
agent, puis deux, puis trois, pour augmenter le taux de détection tout en diminuant
le nombre de faux positifs.

Chaque anti-virus est testé séparément pour comparer les performances propres à
chacun. L’expérimentation est faite sur une VM Windows venant d’être installée. La
base de données des virus est transférée sur la machine et décompressée, pour en-
suite installer la dernière version de l’antivirus à tester. Finalement le répertoire des
fichiers malicieux est scanné pour générer le rapport final. Nous prenons en compte
le fait qu’un fichier peut contenir plusieurs menaces, et qu’un antivirus peut le sig-
naler qu’une seule fois. Les rapports ont donc été filtrés pour extraire le maximum
d’informations, et donc d’évaluer les antivirus de façon égale. Bien qu’ils détectent
tous une grande partie des virus, aucun ne détecte tous les virus sans faux positifs
(voir la Figure 52).

Figure 52: Comparaison des taux de détection et des faux positifs.

Nous interconnectons ensuite les antivirus avec VESPA. Chacun envoie le rapport
vers le VO, qui décide si une analyse supplémentaire est nécessaire. Ici nous forçons
le VO à faire deux puis trois passes en utilisant les antivirus ayant les meilleurs taux
de détection. Les résultats sont représentés sur le diagramme de Venn Figure 53.

La combinaison des antivirus permet donc d’améliorer significativement le taux de
détection en un temps donné. L’évaluation du temps est donnée sur les exemples plus
complexes qui suivent.
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Figure 53: Détection Multi-Antivirus: (A) BitDefender, (B) ESET et (C) AVG Antivirus 2013.

c.2.5.3 Conclusion

Nous avons présenté notre canevas logiciel VESPA pour construire des infrastructures
IaaS auto protégées.

Le modèle de VESPA est indépendant des systèmes, du langage de programma-
tion ou du déploiement. La hiérarchie à base de noeud, abstrait de nombreux com-
posants et facilite la tâche du développeur. Dans un monde idéal, les fournisseurs de
composants délivrent un agent VESPA qui s’attache aux APIs d’origine. Cependant
nous avons simplifié l’interface au maximum pour un développement très rapide et
un débogage assisté. Avec un modèle clair et des implémentations dans plusieurs
langages, nous anticipons une adoption de VESPA par les développeurs et les admin-
istrateurs de cloud.

c.3 kungfuvisor

Cette section pousse VESPA dans le contexte des hyperviseurs. C’est une opportunité
qui aborde le sujet des pilotes de périphériques tiers défectueux directement intégrés
dans le coeur des hyperviseurs. Le code des pilotes représente en moyenne 80% de la
taille d’un hyperviseur avec plusieurs pilotes qui n’ont pas été complètement testés.
Nous avons donc adapté VESPA pour ajouter une couche d’interposition autour des
pilotes de l’hyperviseur KVM et améliorer son niveau de sécurité.

c.3.1 Le problème

La couche de virtualisation, qui est la base des infrastructures cloud, est particulière-
ment vulnérable aux attaques basées sur les ressources partagées. Le sabotage d’une
VM hébergée ou de l’hyperviseur peut conduire à rompre l’isolation des VM, offrant
ainsi un contrôle complet du système. Jusqu’à présent, nous nous sommes attardés
sur la protection des VMs, malheureusement les solutions correspondantes devien-
nent inefficaces lors de la compromission d’un hyperviseur vu qu’elles font confiance
au VMM. Le vrai défi réside donc dans la protection de l’hyperviseur.

Des attaques récentes ont montré que la principale menace face à l’isolation des
hyperviseurs provient des pilotes de périphériques défectueux ou malicieux.
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c.3.2 Limites des solutions existantes

Pour tenter de résoudre ce problème, plusieurs techniques ont été proposées. Par
exemple, la virtualisation des drivers permet une isolation forte, mais ne prend pas
en compte la protection de la couche de virtualisation sous-jacente.

Les architectures de type "trusted computing" délivrent de fortes garanties vis à
vis de l’intégrité du code. Malheureusement, elles ne détectent que les violations
d’intégrité, et ne peuvent pas remettre le système dans un état sain. La vérification
d’intégrité est généralement statique vu qu’une surveillance dynamique du système
tout entier durant son fonctionnement deviendrait difficile à mettre en oeuvre.

Le sandboxing de pilotes a lui aussi été exploré: un moniteur de référence arbitre les
accès entre pilote et périphérique, noyau ou espace utilisateur. Cependant les solutions
demeurent limitées à du simple confinement, sans proposition d’action pour réparer
le noyau. Les politiques de sécurité sont souvent définies en dur dans le mécanisme
d’interception. Il est donc difficile de mettre en place des stratégies de protection
dynamique, vu qu’elles doivent être configurées et mise à jour manuellement.

Pour réduire encore plus la surface d’attaque, de nouvelles architectures d’hyperviseurs
à base de composants sont apparues. Mais elles nécessitent une réécriture de code
poussée, les rendant difficile à appliquer sur les hyperviseurs les plus répandus.

Dans l’ensemble, les architectures d’hyperviseurs actuelles n’offre pas - ou peu -
de protection pour la couche de virtualisation. Les tentatives précédentes souffrent:
(1) de politiques statiques, difficiles à gérer et implémentée dans les mécanismes de
protection, et (2) de peu de mécanismes de réparations face aux menaces.

c.4 attaques

c.4.1 Modèle de menace

L’attaquant a un contrôle arbitraire des machines virtuelles. Nous supposons que les
périphériques physiques sont inaltérables, et que l’intégrité de la séquence de démar-
rage de l’hyperviseur est vérifiée. Cependant, un pilote de périphérique peut être
défectueux, et peut donc être trafiqué pour exploiter une vulnérabilité dans le VMM.
Une attaque par rebond depuis une VM serait: (1) rompre l’isolation de la VM grâce
à un bug de pilote; (2) altérer et saboter le driver; (3) compromettre d’autres par-
ties du VMMs ainsi que les VMs co-localisées. Une telle exploitation peut conduire à
l’injection d’un rootkit et la récupération des communications inter VMs.

c.5 modèle

Le canevas logiciel opère au travers de points d’interception répartis à plusieurs niveaux
de l’hyperviseur. KungFuVisor arbitre les interactions entre les pilotes, les périphériques,
les VMs et les autres structures critiques de l’hyperviseur. Il est alors possible de
surveiller dynamiquement et de contrôler l’accès aux communications entre un pilote
et son environnement. Cela permet de s’intégrer simplement dans les hyperviseurs
dès lors que les points d’interception existent. Il faut noter que le confinement n’est
pas limité à l’isolation mémoire (par exemple en utilisant des mécanismes processeur
comme l’IOMMU): les politiques de réaction misent en place peuvent s’appliquer à
d’autres canaux de communication.
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Un plan de gestion de la sécurité fourni une vue unifiée de la logique de décision.
Ce plan contient les briques d’orchestration réalisant de la détection et de la réac-
tion à base de motifs complexes - au sein des couches, entre les couches et entre les
différentes vues.

Ce modèle apporte deux bénéfices: (1) une sécurité autonomique de l’hyperviseur
qui automatise l’administration des politiques, permettant une mise en place dy-
namique des politiques d’isolation des pilotes; et (2) une coordination des boucles
autonomiques de sécurité qui peuvent déclencher un riche ensemble d’actions de ré-
paration sur plusieurs parties de l’hyperviseur.

c.5.1 Modèle d’hyperviseur

Figure 54: Modèle d’hyperviseur à 3 couches.

Nous considérons un modèle d’hyperviseur générique à trois couches (voir Fig-
ure 54).

La couche 1 (L1) contient l’état des ressources de calcul et de réseau physiques:
le CPU, la mémoire physique, et les périphériques. La couche 2 (L2) contient la vue
de l’hyperviseur des ressource de L1, que nous nommerons hRSC (ReSsourCes Hy-
perviseur): CPU virtuel, mémoire virtuelle du système d’exploitation hôte, et surtout
les pilotes de périphériques. Les hRSCs sont les points critiques de la sécurité de
l’hyperviseur, et doivent donc être sandboxés et analysés en détail. La couche 3 (L3)
contient des services délivrés par l’hyperviseur au VMs sous forme d’appels à l’hyperviseur
(hypercalls) qui peuvent exposer et modifier l’état d’un hRSC donné.

Chaque hRSC communique avec les couches adjacentes au travers de 3 interfaces.
L’interface de L1 est utilisée par les interruptions physiques. L’interface L2 autorise les
hRSC à communiquer avec les autres hRSCs au travers d’un bus de communication
comme les IPCs. Finalement, l’interface L3 connecte un hRSC avec les ressources d’une
VM grâce à des routines spécifiques de l’hyperviseur.

c.5.2 Canevas logiciel de protection

c.5.2.1 Boucles multiples

La défense automatique de l’hyperviseur est assurée au travers d’un ensemble de
boucles autonomiques qui gère un ensemble de composants organisés en 3 plans (voir
Figure 55). Tout en bas, un plan de ressources contient les hRSC à protéger. Au dessus,
un plan de gestion contenant un ensemble d’agents est défini pour piloter les hRSCs.
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Figure 55: Architecture autoprotégée KungFuVisor.

Tout en haut, un plan d’orchestration coordonne la prise de décision entre les boucles
d’autoprotection.

c.5.3 Evaluation

c.5.3.1 Composants de VESPA

Figure 56: Comparaison des résultats de LMBench avec et sans KungFuVisor.

Nous avons utilisé les suites standard d’évaluation des performances pour évaluer
l’impact de VESPA sur le système. La suite LMBench mesure la bande passante et les
latences à plusieurs niveaux. La Figure 56 compare les temps donnés par LMBench
sur une version non modifiée de Qemu et sur KungFuVisor en microsecondes.
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`````````````̀
Design Principles Solutions VESPA KungFuVisor

Protection avec politiques 7 7

Défense multi niveaux X 7

Boucles multi niveaux X X

Architecture ouverte X X

Multi-Cloud X 7

Table 21: Satisfaction des propriétés étendues

Notre implémentation est donc adaptée pour les systèmes critiques avec un surcoût
acceptable et une sécurité accrue.

c.6 conclusion

c.6.1 Résultats principaux

Dans cette thèse, nous avons montré qu’il est possible de modéliser la sécurité du
cloud comme des composants d’un canevas logiciel. Quatre principes de conception
ont été définis pour dépasser les limites des plateformes cloud actuelles: une protec-
tion automatique à base de politiques, une défense multi niveaux, plusieurs boucles
d’auto protection et une architecture de sécurité ouverte. Cette approche permet de
mettre en place des infrastructures cloud sécurisées et d’évoluer d’une sécurité locale
statique vers une isolation dynamique sur plusieurs domaines.

Le modèle VESPA a été validé en utilisant deux implémentations en Python et en
C. Ces canevas logiciels exposent des composants disponibles à plusieurs niveaux de
granularité: un développeur peut interagir avec l’API d’une solution complète, ou
créer un lien avec une partie précise d’un composant système. La composition de
briques de bases hétérogènes valorise la sécurité des infrastructures IaaS à la carte.
Plusieurs cas d’usages ont été implémentés pour démontrer le potentiel de VESPA,
démontrant ainsi une adaptation simple et rapide dans plusieurs environnements.
Aussi, les performances ne sont pas en reste avec un surcoût minimal.

L’extension de VESPA aux hyperviseurs a permis une évaluation quantitative des
composants. KungFuVisor a nécessité plusieurs astuces pour devenir une solution vi-
able de sécurité améliorée. L’hyperviseur est plus robuste contre les attaques publiques
connues et les séquences d’interruptions malicieuses. L’adaptabilité de VESPA a été
démontrée. Cela a nécessité la mise en place d’une architecture spécifique et des tests
pour atteindre de bonnes performances, mais les composants de bases, de commu-
nication et de politiques n’ont pas été modifiés. Nous soutenons donc que VESPA
est une architecture de sécurité prometteuse avec une conception modulaire qui peut
répondre à plusieurs problématiques cloud actuelles.

c.6.1.1 Protection automatique à base de politiques

Notre architecture VESPA affiche une interface de politique épurée. Cependant, l’intégration
de modèles de politiques nécessite des développements spécifiques. L’exemple de
RBAC montre que nous devons assignés des objets à des rôles, et le modèle OrBAC
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assigne les ressources à des organisations. Ces concepts ne sont pas complètement
pris en charge par VESPA, et les politiques sont exprimés comme des machines à états
finis. Le support d’OrBAC est partiel, les utilisateurs assignent des ressources à des
domaines, qui sont proches des organisations d’OrBAC.

Cela ne suffit pas à remplir notre besoin de protection automatisée à base de poli-
tique, même si l’interface est définie.

c.6.1.2 Défense multi niveaux

La conception de VESPA intègre la défense multi niveaux dans l’architecture, ce qui
valide notre besoin. Les VMs, les hyperviseurs et les périphériques physiques sont
capables de communiquer de façon sécurisée via une interface stricte.

Cependant, KungFuVisor est spécifique à la couche de virtualisation. Il ne supporte
pas la défense collaborative multi hyperviseurs. L’architecture de KungFuVisor adapte
celle de VESPA au contexte des hyperviseurs et supprime la défense multi niveaux
telle que définie dans nos principes de conception.

c.6.1.3 Boucles d’auto protection multiples

VESPA fournit plusieurs boucles d’autoprotection si les implémentations suivent l’architecture
que nous avons définie. Les cas d’usages et KFV héritent de ce besoin. L’administrateur
est capable d’interconnecter des éléments de sécurité de l’infrastructure de plusieurs
façons. Chaque boucle revête en général une fonction de sécurité particulière, par
exemple de prévenir les intrusions réseau ou les dénis de service.

c.6.1.4 Architecture ouverte

Le principe d’architecture ouverte a été rempli de plusieurs façons.
L’interface de communication est expliquée dans cette thèse et est abordée d’une

manière plus détaillée dans la documentation du code. Elle est flexible et adapt-
able aux nouveaux besoins. L’interface interne de RPC fournie peut être adaptée
à de nouveaux langages de façon transparente. La configuration dynamique avec
l’introspection de code est divisée en fonctions indépendantes. Cette fonctionnalité
est difficile à porter, et les développeurs peuvent adopter une autre approche pour
récupérer les attributs d’un noeud.

Tous les composants de l’architecture VESPA et les cas d’usage sont disponibles sous
licence LGPL sur github et l’orangeforge. Les développeurs peuvent donc modifier,
étendre et corriger les noeuds disponibles pour leurs besoins spécifiques.

c.6.1.5 Multi-Cloud

Le cas d’usage OC2 a permis à VESPA de communiquer avec d’autres instances de
VESPA. Les VOs s’envoient des alertes de pair à pair et réagir avec une meilleure vi-
sion. C’est une extension des boucles autonomiques de sécurité aux domaines hétérogènes.

c.6.2 Limites

Evidemment, le travail réalisé dans cette thèse n’est pas complet. Plusieurs axes de
recherche doivent être creusés pour construire une infrastructure cloud sécurisée.
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Premièrement, deux types de politiques sont utilisées dans le canevas logiciel: (1)
des machines à états pour leurs simplicité et leurs capacités à favoriser l’adoption;
(2) OrBAC pour s’associer aux domaines. Elles sont pragmatiques, génériques et év-
identes dans des contextes distribués. Cependant des politiques plus fines peuvent
mieux capturer les problématiques liées au cloud, comme des politiques d’isolation
communes à différents matériaux informatiques. Lorsqu’un utilisateur veut migrer
sa VM, comment abstraire une seule politique et assurer le même niveau d’isolation
sur la destination? Le canevas logiciel VESPA fournit des éléments de réponse avec
la hiérarchie d’agents et les politiques d’affinage associée, mais elles n’ont pas été
complètement exploitées.

Secondement, la couche physique n’a pas été étudiée en profondeur. Le canevas
logiciel VESPA peut donc louper des propriétés propres à cette couche. Pourtant, les
équipements de sécurité physiques se trouvent partout dans les infrastructures des
fournisseurs. Il faut donc intégrer cette couche et réutiliser les équipements de sécurité
existants.

c.6.3 Travaux futurs

c.6.3.1 Physique

Bien que le niveau physique n’ai pas été exploité dans cette thèse, il faut prendre en
compte les agents physiques pour atteindre le potentiel maximum de VESPA. Même
si ce n’est pas une réelle limitation, il y a quelques adaptations à faire pour parler
aux interfaces de gestion, comme la libvirt pour les hyperviseurs. Il n’y a aucune base
permettant de gérer les équipements physique et il faut souvent un agent spécifique à
chaque équipement.

Aussi, l’attestation physique des composants peut être utilisée pour garantir l’intégrité
du canevas logiciel VESPA et le protéger des corruptions mémoire. Un exemple rapide
serait basé sur les modules TPM ou la TEE qui vient avec les ordinateurs et téléphones
actuels. Cependant ces composants ont déjà montrés des faiblesses, et la question
de la confiance accordée aux fondeurs reste entière. Si une solution émerge, VESPA
doit l’adopter pour s’assurer que les composants sont déployés sur les bons environ-
nements d’exécution.

c.6.3.2 Protection du canevas logiciel

Les composants de VESPA n’ont pas été conçus pour être résistants aux attaques
physiques. L’implémentation de l’architecture ne fournit pas de protection contre la
modification du code.

Le canevas logiciel de protection automatisé vise à protéger les ressources hétérogènes
existantes, mais les composants du canevas ne le sont pas directement. Les communi-
cations entre les couches sont chiffrées pour garantir la confidentialité et signées pour
garantir l’intégrité, mais la disponibilité reste la grande faiblesse. Le canevas logiciel
ne supporte pas une instance sans VO, alors que les HOs devraient protéger les agents
sous-jacents.

L’autostabilisation peut fournir une meilleure protection de l’architecture VESPA.
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c.6.3.3 Virtualisation imbriquée

Avec la mode de la virtualisation imbriquée, plusieurs défis sont apparus et n’ont pas
étaient traités dans cette thèse. Le canevas logiciel VESPA générique n’est pas limité
en nombre de couches mais il faut plus de travail pour appréhender les nouveaux
enjeux. Une ébauche d’architecture de sécurité compatible avec VESPA a été élaborée.

c.6.3.4 Hyperviseur autoprotégé

Nous avons adressé les vulnérabilités liées aux interruptions de l’hyperviseur. Cepen-
dant il y a plusieurs autres vecteurs d’attaque qui peuvent affaiblir l’isolation de
l’hyperviseur. Par exemple le composant qui charge la configuration d’une VM peut
être vulnérable aux attaques par chaînes de caractères mal formées. L’utilisateur est
capable de définir le nom de la machine et des informations qui doivent être analysée
par l’hyperviseur. Si ce dernier n’échappe pas correctement la chaîne de caractère,
c’est potentiellement un accès root arbitraire sur la machine. Une approche combinée
entre VESPA et la désaggrégation de Xen est donc nécessaire pour limiter ces vecteurs
d’attaque.
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