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Ángel Cuevas Co-Advisor Assoc. Professor, Universidad Carlos III de Madrid - Spain
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Abstract

Popular Internet services are fundamentally shaping and reshaping the traditional ways of
people communication, thus having a major impact on their social life. Two of the very
popular Internet services with this characteristic are Online Social Networks (OSNs) and
Peer-to-Peer (P2P) systems. OSNs provide a virtual environment where people can share
their information and interests as well as being in contact with other people. On the other
hand, P2P systems, which are still one of the popular services with a large proportion of the
whole Internet traffic, provide a golden opportunity for their customers to share different
type of content including copyrighted content.

Apart from the huge popularity of OSNs and P2P systems among regular users, they are
being intensively used by professional players (big companies, politician, athletes, celebrities
in case of OSNs and professional content publishers in case of P2P) in order to interact with
people for different purposes (marketing campaigns, customer feedback, public reputation
improvement, etc.).

In this thesis, we characterize the behavior of regular and professional users in the two
mentioned popular services (OSNs and P2P systems) in terms of publishing strategies,
content consumption and behavioral analysis. To this end, five of our conducted studies
are presented in this manuscript as follows:

• “The evolution of multimedia contents”, which presents a thorough analysis on the
evolution of multimedia content available in BitTorrent by focusing on four relevant
metrics across different content categories: content availability, content popularity,
content size and user’s feedback.

• “The reaction of professional users to antipiracy actions”, by examining the impact
of two major antipiracy actions, the closure of Megaupload and the implementation
of the French antipiracy law (HADOPI), on professional publishers behavior in the
largest BitTorrent portal who are major providers of online copyrighted content.

• “The amount of disclosed information on Facebook”, by investigating the public
exposure of Facebook users’ profile attributes in a large dataset including half million
regular users.

• “Professional users Cross Posting Activity”, by analyzing the publishing pattern of
professional users which includes same information over three major OSNs namely
Facebook, Google+ and Twitter.

11
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• “Professional Users’ Strategies in OSNs”, where we investigate the global strategy
of professional users by sector (e.g., Cars companies, Clothing companies, Politician,
etc.) over Facebook, Google+ and Twitter.

The outcomes of this thesis provide an overall vision to understand some important
behavioral aspects of different types of users on popular Internet services and these contri-
butions can be used in various domains (e.g. marketing analysis and advertising campaign,
etc.) and different parties can benefit from the results and the implemented methodologies
such as ISPs and owners of the Services for their future planning or expansion of the current
services as well as professional players to increase their success on social media.

Keywords

Online Social Networks, User Behavior Analysis, Content Consumption, Publishing Strate-
gies, Facebook, Google+, Twitter, Peer-to-Peer (P2P), BitTorrent, Privacy.
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22 1.1. MOTIVATION

1.1 Motivation

The rapid expansion of Online Social Networks (OSN) has made a profound influence on

our global community’s communication patterns especially on the Internet which tends to

reshape its utility and even the future design of it. This exponentially increasing number

of users of social network services such as Facebook, Google+ and Twitter is creating a

potentially dramatic change in people behavior and is bringing a huge change on traditional

industries of content, media, and communications.

On the other hand, Peer-to-Peer services (P2P) are still getting a significant part of

the whole Internet traffic and with the huge growth of end-users accessibility in terms of

bandwidth, new type of services based on P2P technologies attract their customers by

providing updated services such as online TV and games based on P2P phenomena.

In this era, different group of users are utilizing those services both from regular and

normal users to very professional users with clear business strategies behind their activities.

Regular users are getting the basic services from BitTorrent such as download the available

contents and rarely share contents with others as well as doing normal activities in social

networks such as building personal profiles, share posts in the profile and follow their

friends and interests. On the other hand, professional users are benefiting from these

popular internet services with other strategic goals. In term of BitTorrent, there are many

professional users that actively publish contents (mostly copyrighted contents) and try to

attract regular users to their activities. In social networks, the presence of professional

users from different sectors is noticeable and there are provided services for those type of

users, such as “Fan Page” in Facebook.

Analysing the behavior of users in each of these two systems is an important track of

research in different communities from ISPs’ Internet architecture designers to business and

management sectors. Having the knowledge from end-users interests and predicting their

behavior provide the opportunity to target right communities of users for different aspects

such as advertising and recommendation systems.

The main goal of this thesis is to analyze the professional and regular user’s behavior

in these two main arena of Internet, online social networks and Peer-to-Peer systems. To

this end, we study some aspects of professional and regular users behavior such as their

content consumption, publishing strategies.
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1.2 Thesis Contributions

The contributions and innovations of this thesis can be categorized in four parts: i) Main

Outcomes, ii) Measurement Methodologies, iii) Implemented Measurement Tools, and iv)

Available Datasets. Next, a summary of each mentioned categories will be presented.

1.2.1 Summary of the main outcomes

This part presents a summary of different studies that is presented in this manuscript as

the main outcomes of this thesis. In P2P domain, the main focus is on “ThePirateBay”

which is one the most popular bit-torrent portals and we study two group of users; i.

Regular users who use this system to download contents and ii. Professional users who are

content publishers with business strategies behind their activities. Next we present a short

abstraction of the two studies in this domain:

• Multimedia Evolution on P2P: Today’s Internet traffic is mostly dominated by

multimedia content and the prediction is that this trend will intensify in the fu-

ture. Therefore, main Internet players, such as ISPs, content delivery platforms

(e.g. Youtube, BitTorrent, Netflix, etc.) or CDN operators, need to understand the

evolution of multimedia content availability and popularity in order to adapt their

infrastructures and resources to satisfy clients requirements while they minimize their

costs. This study presents a thorough analysis on the evolution of multimedia content

available in BitTorrent. Specifically, we analyze the evolution of four relevant metrics

across different content categories: content availability, content popularity, content

size and user’s feedback. To this end we leverage a large-scale dataset formed by four

snapshots collected from the most popular BitTorrent portal, namely The Pirate Bay,

between Nov. 2009 and Feb. 2012. Overall our dataset is formed by more than 160k

content that attracted more than 185M of download sessions.

• Reaction to Antipiracy actions: Based on the economic and social impact of

copyrighted content infringement in recent years, few countries have put in place

online antipiracy laws and there have been some major enforcement actions against

violators. This raises the question to what extent antipiracy actions have been effective

in deterring online piracy? This is a challenging issue to explore because it is difficult

to capture user behavior, and to identify the subtle effect of various underlying (and

potentially opposing) causes. In this study, we tackle this question by examining the

impact of two major antipiracy actions, the closure of Megaupload and the imple-

mentation of the French antipiracy law, on publishers in the largest BitTorrent portal

who are major providers of copyrighted content online. We capture snapshots of Bit-
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Torrent publishers at proper times relative to the targeted antipiracy event and use

the trends in the number and the level of activity of these publishers to assess their

reaction to these events. Our investigation illustrates the importance of examining

the impact of antipiracy events on different groups of publishers and provides valuable

insights on the effect of selected major antipiracy actions on publishers’ behavior.

In the OSN part of my thesis, the focus is on three major OSNs (Facebook, Twitter

and Google+) and we analyze two types of users: i. Regular profiles who are normal users

that use social networks for their everyday social activities. ii. Professional users who are

interested in social networks for some business aspects and behind these users are usually

companies or individual figures and celebrities with huge number of fans. In this thesis,

three of our studies in this domain are presented.

• Disclosed Information on Facebook: Facebook, as the most popular online social

network which according to Alexa [1], is the 2nd most popular website in the world

at the time of writing this thesis. There is a large amount of personal and sensitive

information publicly available that is accessible to external entities/users. In this

study we look at the public exposure of Facebook profile attributes to understand

what type of attributes are considered more sensitive by Facebook users in terms

of privacy, and thus are rarely disclosed, and which attributes are available in most

Facebook profiles. Furthermore, we also analyze the public exposure of Facebook

users by analyzing the number of attributes that users make publicly available in

average. To complete our analysis we have crawled the profile information of 479K

randomly selected Facebook users. Finally, in order to demonstrate the utility of the

publicly available information in Facebook profiles we show in this study three case

studies. The first one carries out a gender-based analysis to understand whether men

or women share more or less information. The second case study depicts the age

distribution of Facebook users. The last case study uses data inferred from Facebook

profiles to map the distribution of worldwide population across cities according to its

size.

• Cross Posting Activity: On-line Social Networks (OSNs) are being intensively

used by professional players (e.g., big companies, politician, athletes, celebrities,

etc.) in order to interact with a huge number of regular OSN users with different

purposes (marketing campaigns, customer feedback, public reputation improvement,

etc.). Hence, due to the large catalog of existing OSNs, professional players are usu-

ally involved in different OSNs. In this context an interesting question is whether

professional users publish the same information across their OSN accounts, or actu-

ally they use different OSNs in a different manner. We define as cross-posting activity
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the action of publishing the same information in two or more OSNs. In this study

we aim at characterizing the cross-posting activity of professional OSN users across

three major OSNs, Facebook, Twitter and G+. To achieve this goal we perform a

large-scale measurement-based analysis across more than 2M posts collected from 616

professional users with active accounts in the three referred OSNs.

• Professional Users’ Strategies in OSNs: The intensive use of professional players

led to an increasing research interest that aims at understanding what are the strate-

gies of professional users in OSNs. In this study we investigate the global strategy

of professional users by sector (e.g., Cars companies, Clothing companies, Politician,

etc.). To perform that analysis we have to first validate that users belonging to

the same sector/category present a similar strategy in their use of OSNs. To find

whether there are some sectors fulfilling that requirement, we use a dataset of 616

professional users with active accounts in the three most popular OSNs: Facebook

(FB), Twitter (TW) and Google+ (G+). We find 8 categories in which users present

similar behavioural elements: Athletes, Cars, Media News, Movie, Musician-Band,

News Website, Politician, and Sports Teams. We describe the behaviour for these

categories across FB, TW and G+ highlighting those elements that differentiate each

strategy. Finally, we present a simple methodology that allows us to estimate the

success of each strategy based on the number of reactions per post that a category is

able to attract.

1.2.2 Measurement Methodologies

Apart from the mentioned outcomes of this thesis, there are some measurement method-

ologies that were implemented during this thesis as follows:

• Methodology to evaluate the effect of an antipiracy action on the publishers and

consumers of P2P contents in a country.

• Methodology to find cross posting activity of professional users across multi social

networks.

• Methodology to find and classify different strategies that professional users are fol-

lowing in different sectors and evaluate the success of their strategies.

• Methodology to evaluate the architecture of a large CDN to understand how different

services are serving to its customers from different locations.
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1.2.3 Implemented Large Scale Measurement Tools

This part of thesis includes a list of implemented data collection tools during this thesis.

The implemented tools are available for further research collaboration.

• “Facebook Fan Page crawler” This tool is able to collect popularity, activity and

attracted reactions for a list of Facebook professional users (Fan pages).

• “Facebook Fan Page Popularity monitoring” This tool is able to monitor pe-

riodically a list of Fan Pages and collect the popularity and its’ relevant parameters.

• “Facebook regular users’ profile crawler” This tool is able to collect Facebook

regular users’ profile including the general information of the users public profile and

the activity of a users that contains published/shared posts in the wall pages.1

• “Facebook physical network discovery tool” This tool is able to monitor reach-

ability to a list of Facebook servers by using planetlab infrastructure distributed in

the world. This tool can be modified and utilized for other large scale networks such

as Google or YouTube network.

• “Facebook Traffic analyzer” Main function of this tool is to monitor the network

packet level traffic and collect the packets of Facebook sessions. By running this tool

in the gateway of a network, we are able to collect all users packets for their Facebook

activities and sessions to see what is the amount of each individual FB users’ traffic

and generally what type of activity have been performed by users.

• “BitTorrent Trackers Crawler” This tool is able to connect to the BitTorrent

trackers and collect downloads’ detail information as well as many other useful data

per torrent.

• “Movie industry data collector” This tool collects movies’ general and business

related information from three online resources including IMDB portal.

1.2.4 Available Datasets

• “Facebook Fan pages dataset” includes popularity, activity and reactions of

around 300K very popular Facebook Fan pages.

• “Facebook regular profiles” includes around 500K users profile information as

well as their social connections and their public activity.

1This tool has been implemented in collaboration with my colleague Xiao HAN
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• “Facebook services’ server reachability” includes more than one year ping and

trace route data (6 times per day) for 47 facebook services (servers from Akamai and

FB) from 473 planet lab nodes across the world.

• “Facebook Fan pages popularity evolution” includes evolution of #Fans for

10K of top Fan Pages more than 18 months (snapshots captured 6 times per day).

1.2.4.1 Ethics Considerations

Although we only collected publicly available data from both regular and professional users,

we enforced a few steps to protect user privacy specially for social network data. During

our analysis, all data were encrypted and not re-distributed, and no personal and sensitive

information was extracted, and we only analyzed aggregated statistics.
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1.4 Structure of the Thesis

This contributions of this thesis can be divided in two parts: i) Social networks and ii)

P2P systems. To follow the contributions, this manuscripts is also organized in two main

sections to overview separately the works that has been done in each domain.

First of all an overall overview of the related work and state of the art is presented in

section 2. Section 3 presents two of the studies regarding to the user behavior analysis in

P2P systems. The first one explores evolution of Internet multimedia content in the past

few years presented in subsection 3.2 and the second study, which is presented in subsection

3.3, is an investigation about the effects of two major antipiracy actions on the P2P content

publishers.

The second part of the thesis, section 4, presents three studies related to social net-

works. It starts with a study presented in subsection 4.2, in which the publicly disclosed

information of Facebook profile users has been analyzed. Second and third studies are re-

lated to professional users’ behavior characterization over Cross OSNs which are presented

in subsections 4.3 and 4.4 respectively. Those studies includes characterizing cross-posting

activity of professional users across Facebook, Twitter and Google+ which is presented in

4.3 and characterization of Professional Users’ Strategies in those major OSNs at subsection

4.4.

Finally section 5 concludes this report by describing some of the ongoing and future

works.



CHAPTER 1. INTRODUCTION 31



32 1.4. STRUCTURE OF THE THESIS



Chapter 2
State of the Art

Contents

2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Internet applications Characterizations . . . . . . . . . . . . . . 34

2.2.1 Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 Peer-to-Peer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Large scale measurement tools implementation . . . . . . . . . 37

2.3.1 Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.2 Peer-to-Peer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

33



34 2.1. SUMMARY

2.1 Summary

Related work and state of the art to this thesis can be divided in two groups. Studies that

characterize some of the large Internet applications and works that implemented large scale

measurement tools to collect datasets from popular Internet applications. In this chapter we

overview major studies on the two mentioned groups, specifically in those ones measuring

Online Social Networks and Peer to Peer systems. The literature review presented in this

chapter overview the general studies relevant to the two mentioned topic and later for each

presented study in this thesis, a separate and detail overview of the related work will be

presented.

2.2 Internet applications Characterizations

Characterization of the popular and large scale Internet applications have attracted the

attention of the research communities in the last decade. One of the main reason is that

this type of studies are crucial and useful for different players: i) Internet service providers

with the goal of evaluating their popular applications that is implemented, ii) for the

network expansion plan to the companies that are running this type of application such as

Facebook or Akamai iii) or companies that aim to create a successful large scale application.

To this end, next we overview the recent studies which aim to characterise different aspect

of Social networks and P2P systems.

2.2.1 Social Networks

The research community has dedicated a fair amount of work to characterize OSNs in the

last years. The conducted studies can be classified into three broad classes:

Connectivity properties & social graph: The connectivity properties of the social

graph for Facebook [2–4], Twitter [5, 6], Google+ [7–9] and other less popular OSNs [10]

have been carefully analyzed by the referred works. The results presented in those studies

along with the results in our studies depict a complete comparison study of the activity

and connectivity of these OSNs.

In addition, we can find works analyzing the graph of other social players different

than the main OSNs like [10] that analyze the graph properties for static snapshots of

four social systems Orkut, Flickr, LiveJournal, and YouTube. In particular, Magno et. al

in [7] perform an early analysis on G+ and identify the main similarities and differences

with other OSNs like FB and TW. However, their comparison only focuses on the social

graph level, and does not cover user activities or reactions, which is the actual scope of our
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conducted studies. Finally in [9], authors compare the connectivity properties of the social

graph of FB, TW and G+.

Temporal Evolution of OSN properties: Previous works have studied the evolution

of the relative size of the network elements for G+ [9] or Flickr and Yahoo [11]. Further-

more, other works have analyzed the evolution of the social graph properties [9,12–17], the

evolution of the interactions between users [18] and the evolution of users’ availability over

time [19]. In addition in [17] the authors have analyzed the evolution of users’ activity in

MySpace and Twitter.

Information Disclosure in Social Networks. There are several studies that investigate

the level of information disclosure in social networks focusing a group of users from a specific

country [20,21] or city [22] or users from a university [23] but just few studies are available

that look on a random sample of users [24]. Conceptually similar to our efforts, Quercia

et al. (2012) [20] found a correlation between the degree of openness and gender, using a

dataset of 1323 profiles from the United States. Gross et al. in [23] studied the patterns of

information revelation in Facebook. They analyzed around 4K Carnegie Mellon University

students’ profiles, specifically those that joined a popular social networking site catering

to college students. In other work, Chang et al. [21] studied the privacy attitudes of U.S.

Facebook users of different ethnicities. Another U.S.-based study [25] used a questionnaire

and with considering 1,710 students’ profiles shows that women are more likely to maintain a

higher degree of profile privacy than men; and that having a private profile is associated with

a higher level of online activity. Authors in [26] examined disclosure in Facebook profiles

looking at only 400 Facebook profiles. In a similar work to the previous one, authors in [27]

employed surveys and interviews to study the factors that influence university students to

disclose personal information on Facebook. In addition, we also study the amount of

disclosed information on Facebook profiles on a dataset including half million users [24].

Some other studies provide methodologies which use available Facebook users’ profile

attributes to do different type of estimation or prediction such as estimating the birth

year [22], predicting the friendship [28,29] or predicting the attributes of another user [30].

Users’ Behavior in Online Social Networks: Users’ behavior needs to be characterized

from real data collected from OSNs. In particular, previous works have used two different

strategies: Passive measurements [31, 32] vs. Active measurements [9, 33, 34]. The former

captures traces of traffic or click streams that allow the reconstruction of the behavior of

users whereas the latter uses crawling techniques similar to those described in our studies.

Many studies has been conducted to characterize the behavior of users based on the
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real data collections. Gyarmati et al. [34], in accordance to our studies, used active mea-

surements to characterize users’ activity in few different OSNs. Gyarmati et al. analyzed

less popular OSNs such as Bebo, MySpace, Netlog, and Tagged and they defined activity

as the time a user stays on the system but they do not characterize users’ reactions which,

as we have demonstrated, are key features. Authors in [35] investigate emotional contagion

of facebook users which occurs outside of in-person interaction between individuals. In

another work, author conducted a large scale experiment over 61-million facebook users

and study the social influence and political mobilization [36].

2.2.2 Peer-to-Peer

Popularity Evolution of P2P Applications: P2P networks are already widely used

around the Internet, mainly for file sharing. The massive sizes of some P2P networks

contain huge numbers of all kinds of content. There are several papers that look at the

evolution of P2P traffic along the time e.g., [37, 38]. The most recent one [38] studies the

Inter-AS traffic associated to several ISPs across the Internet. The authors suggest that

P2P traffic is becoming less representative and mention the migration process discussed

in this paper as a possible cause. Furthermore, [39] studies the impact of BitTorrent in

the Internet traffic over a period of two years between Nov 2008 and Nov 2010. The

authors briefly mention a reduction of 10% in the number of peers that partially validates

our observations. They argue that this reduction may be due to a drop in the system

popularity and at the same time acknowledge the difficulty of validating this hypothesis

so that they do not explore it. Our study which is presented in section 3.2, is different

in nature than the previous works in the literature since we do not analyze the network

footprint of BitTorrent, instead we perform a comprehensive analysis of the evolution of

BitTorrent popularity at aggregate and local level across both publishers and consumers.

In addition, we face the difficult task of finding the root causes for the discovered trends

that to the best of our knowledge has not been addressed before.

Socio-economic Studies in BitTorrent: The popularity of BitTorrent attracted the

attention of the research community to examine various aspects of swarming mechanism

in BitTorrent [40–43] and propose different techniques to improve its performance [44,45].

Furthermore, other aspects of BitTorrent such as demographics of its ecosystem [46–48]

along with security [49] and privacy issues [50,51] have also been studied. However (to the

best of the author’s knowledge) despite of its importance, little work has been conducted on

the understanding of socio-economic aspects of P2P applications in general and BitTorrent

ecosystem in particular [47, 50, 52]. Authors in [52] studied the incentives that drive users

to publish content in BitTorrent.
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2.3 Large scale measurement tools implementation

2.3.1 Social Networks

Considering the ongoing researches that aim to understands the phenomena of social media,

a necessary first step is to collect good enough data from various available OSNs and other

types of social media. To this end, proper data collection tools and crawlers are being

developed to gather data from different sources. Large-scale data collection from OSN

services mainly depends on the functionality provided by the analysed system. Possible

solutions to collect data include the use of a systems available APIs, as in Google+ and

Twitter [9, 53], and the integration of their own applications to attract people and to

provide access to their profile information, as in Facebook [54]. Alternatively, web crawling

techniques have been used to analyse Facebook [4,55,56] and other platforms, e.g., Myspace

[57], Flickr [12, 58], and YouTube [59]. Usually, web crawling is applied in cases where

the required data cannot be accessed via an available API, or when the revealed data is

insufficient for subsequent analysis. The research community uses the collected data to

analyse social media from different perspective [7, 22,24,60–62].

2.3.2 Peer-to-Peer

In recent years, several studies measure the P2P ecosystem from various perspective and

different measurement methodologies for implementing large scale measurement tools. Au-

thors in [63] conduct a complete survey on different methods of measurement and simulation

in BitTorrent. In summary two popular way to collect data from P2P systems is observing

the trackers log [64] or using mirror script such as HTML script [65]. Authors in [66] sur-

veys the existing measurement studies and also collected BitTorrent traffic at four major

European ISPs and investigate how is the BitTorrent traffic pattern from ISPs perspective.

There are several other studies such as [67, 68] which investigate different aspects of P2P

system by implementing large scale data collection tools.

2.4 Conclusion

This section provided a general overview over the major previous efforts relevant to this

thesis. In summary it provided some key studies on two research lines “characterizing

a large Internet application” and “Implementation of large scale measurement tools” for

OSNs and P2P systems. In addition to this section, for each of the presented studies in

this thesis, a separate related work will be provided which focuses on the main relevant

studies to that specific study.
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3.1 Summary

The main focus of this chapter is to characterize professional and regular users behavior

on P2P systems. To this end, two studies are presented that look to some aspects of the

users characterizations such as their content consumptions trend on a major BitTorrent

portal namely “ThePirateBay” as well as how the professional and regular users react to

antipiracy actions in terms of their activity and publishing behavior.

More specifically, subsection 3.2 presents a measurement study which show us how the

evolution of multimedia contents in BitTorrent has been changed over 3 years and follow-

ing to that, subsection 3.3 includes a study about the reaction of professional BitTorrent

Content Publishers to two major Antipiracy Actions (shutdown of Megaupload and Hadopi

law).

Keywords

Multimedia Content, P2P, BitTorrent, Content Availability, Content Popularity, Content

Size, Piracy, law, Cyberlocker, Megaupload, P2P, BitTorrent, Hadopi.
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3.2 Evolution of multimedia content in the Internet through
BitTorrent glasses

3.2.1 Introduction

In the last years Internet traffic has been mostly dominated by multimedia content [69].

This has led to the development of new technologies to distribute this content: (i) P2P

technologies that allow end-users to share content without the necessity of a dedicated

infrastructure, (ii) Cyberlockers that are web-based portals that allow users to both upload

and download content, (iii) multimedia content distribution platforms such as YouTube

(video), Netflix (TV shows and Movies) or Spotify (music). In addition, in order to reduce

the cost and improve the efficiency of the content distribution a new network infrastructure

namely Content Delivery Network (CDN) was proposed [70]. A CDN uses caching and

prefetching strategies in order to store the content close to those users that are likely to

consume it so that the amount of data crossing long paths in the Internet is reduced and

the user’s experience is enhanced. Some of the main players in the business of CDNs are

Akamai and Limelight that provide their service worldwide to a large number of customers.

Furthermore, some Content Providers such as Google have also deployed their own CDNs.

Finally, network operators have to continuously adapt their network infrastructures in order

to efficiently serve the large demand of multimedia content. For instance, some of the major

operators have recently started to develop their own CDN.

The described scenario, along with the expected steady growth of the traffic associated

to multimedia content in the near future [71], makes it interesting to study the evolution of

such content. Understanding this evolution will help the aforementioned players to adapt

their algorithms, infrastructures and resources to meet the needs of their clients and, at

the same time, increment their revenues.

In this study, we present a first step to study the evolution of different types of content

in the Internet using BitTorrent as reference system. We believe that BitTorrent is the most

appropriate platform to conduct our study due to the following reasons: (i) BitTorrent is

the application that aggregately contributed more Internet traffic in the last decade [72] [73]

and it is still among the three that generate more traffic [69]; (ii) The most popular (and

recent) content (e.g. last Hollywood movies) are typically available in BitTorrent; (iii)

Other successful platforms such as Neftflix, YouTube or Spotify are specialized in a single

type of content. Instead, BitTorrent offers a broader catalogue of content types (e.g, video,

audio, games, etc). Therefore, it allows to perform a comparative study across different

types of multimedia content.

Our study is based on a large scale dataset collected from the most popular BiTorrent

portal, namely The Pirate Bay (TPB), over a period longer than two years between Nov.
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2009 and Feb. 2012. Note that TPB received more than twice daily visits compared to the

second most popular BitTorrent portal, according to Alexa ranking [1]. We have collected

4 different snapshots over this time window that collectively account for more than 160K

content that attracted more than 185M download sessions. This dataset constitutes a solid

ground to provide meaningful insights regarding the content evolution in BitTorrent and by

extension in the Internet. In particular, our study address three concrete but very relevant

issues: (i) We analyze the evolution of the content availability and popularity associated

to different content types over the considered period; (ii) We study the evolution of the

content size for all aggregate content and its division into the different categories; and, (iii)

We quantify the end-users’ feedback activity by means of the number of comments that

each content receives.

Our main insights are:

• Video of different types (Movies, TV Shows, Porn) represents 40-50% of the overall

content and attracts 80% of the download sessions.

• The median size of the available content has doubled in a two years period.

• High-resolution content has multiplied by 5 its availability and popularity to represent

10% of the multimedia content and downloads in Feb. 2012.

• Finally, we have observed that end-users’ feedback is typically very reduced.

3.2.2 Background

There are two separated processes in BitTorrent functionality. On the one hand, we find

the process in which a user (publisher) makes a content available, or publishing phase. On

the other hand, once the content is available end-users (consumers) download it in the

downloading phase.

In the publishing phase, the publisher generates a .torrent file associated to that content

and uploads it in a BitTorrent portal such as The Pirate Bay (TPB). In addition, the

publisher registers the content in one (or more) Tracker(s), which is a server that manages

and monitors the swarm (the set of peers sharing a content) associated with a given content.

As part of its services, the Tracker keeps track of all the peers (i.e. IP addresses) that share

the content and classifies them either as seeders (which have the full content) or leechers

(which have only some pieces of the content). The .torrent file includes (among other

information): the IP address of the Tracker (and optionally a list of other backup trackers)

that manages the swarm associated to the content, the content size and its name. In

addition, major torrent portals like TPB provide a web page for every uploaded content
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that includes information such as size, category, number of leechers and seeders, content

description, users’ comments, etc.

In the downloading phase, a BitTorrent client gets the .torrent file associated to the

desired content from a BitTorrent Portal (e.g. TPB). That client subsequently sends a

request to the Tracker included in the .torrent file. The Tracker replies with: (i) the

number of seeders and leechers that are currently connected to the swarm, and (ii) N

(typically 50 with a limit of 200) random IP addresses of peers participating in the swarm.

Next, the BitTorrent client connects to those peers in order to start receiving pieces of the

content (and after getting some pieces serves them to other peers). From time to time,

during the downloading process, the BitTorrent client may contact the Tracker to obtain

more peers.

3.2.3 Related Work

The demonstrated weight of BitTorrent in the Internet has attracted the attention of many

computer scientists, who have made in depth studies of the functionality of the BitTorrent

ecosystem [47] [48], have generated models that capture its behaviour [40], have provided

new algorithms to improve its performance [45] [44], have analyzed and proposed mech-

anisms regarding its security [49] [51], and have evaluated socio-economic reasons that

motivate users to upload and consume BitTorrent content [52]. Therefore, the technical

and socio-economical aspects of BitTorrent have been thoroughly studied. However, to

the best of our knowledge, except [72] [73] which are technical reports that provide some

general insights to the evolution of P2P protocols in different countries, there is no study

that analyzes the evolution of the BitTorrent content in a long term.

3.2.4 Measurement Methodology

The goal of our measurement process is to collect a large number of contents and the

following information for each one of them: (i) the content Category/Subcategory as defined

by TPB, (ii) the number of download sessions, (iii) the content size, (iv) the number of

comments provided by end-users.

Towards this end, we leverage the RSS feed of TPB to detect the availability of any

new .torrent file. When a new torrent is detected, in addition to gather its size (from the

.torrent file) and Category/Subcategory from TPB, our crawler tool periodically queries

the tracker in order to obtain the IP addresses of the participants in the content swarm

and always solicits the maximum number of IP addresses (i.e. 200) from the Tracker. To

avoid being blacklisted by the Tracker, we issue our queries at the maximum rate that

is allowed by the tracker (i.e. 1 query every 10 to 15 minutes depending on the tracker

load). Given this constraint, we query the tracker from several geographically-distributed
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Table 3.1: Datasets Description

pb09 pb10 pb11 pb12

Crawling Period 11/28/09 - 12/18/09 04/09/10 - 05/05/10 10/21/11 - 12/13/11 01/28/12 - 02/12/12
Duration (days) 21 27 54 16

Torrents 15.8K 38.2K 72.0K 21.0K
Downloads - 95.6M 79.0M 11.1M

machines so that the aggregated information by all these machines provides an adequate

high resolution view of the participating peers (i.e. number of download sessions). We

continue to monitor a target swarm until we receive 10 consecutive empty replies from the

Tracker. This allows us to capture for each new content its size, Category/Subcategory

and the number of associated download sessions.

Finally, in order to gather the number of comments for a given content, we crawled

TPB page of all collected content in June 2012. It must be noted that at that time some

of the contents collected by our crawling tool had been removed from TPB, and thus we

could not gather their number of comments.

Using the described methodology we have collected four snapshots of TPB content

between Nov. 2009 and Feb. 2012. We refer to them as pb09, pb10, pb11 and pb12

based on the year in which each dataset was collected. Table 3.5 summarizes the main

characteristics of these datasets (as it is shown in the table we do not have the number

of download sessions for pb09). All the snapshots together contribute more than 160K

torrents (i.e. contents) and 185M download sessions. These numbers allow us to perform a

comprehensive analysis on how the content (and its division into different categories) has

evolved over the two years period that separates the four datasets.

3.2.5 Content Evolution Analysis

In this subsection we investigate how the relative weight (in %) of the different content

categories evolves in the period under study. For that, we first classify all the collected

contents following the Category/Subcategory schema defined by TPB. Next, we analyze

each of them from an availability (portion of content available in each category) and a

popularity (portion of downloads for each category) perspective.

3.2.5.1 Content Availability Evolution

Table 3.2 shows the portion of content available in each Category/Subcategory for pb09,

pb10, pb11 and pb12 snapshots.

VIDEO is the dominant category and doubles, in all the snapshots, the number of

contents available in any other category. The VIDEO category shows a very slight increment
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Table 3.2: Distribution of content availability (proportion of available content) by cate-
gories/subcategories and datasets (pb09, pb10, pb11 and pb12)

Category pb09 (%) pb10 (%) pb11 (%) pb12 (%)

AUDIO 15.958 15.208 12.535 13.884
Music 10.118 10.796 7.984 8.414
Audio Books 0.376 0.728 0.579 0.608
Sound Clips 0.162 0.076 0.095 0.120
FLAC 1.757 1.218 1.894 1.910
Other 3.546 2.390 1.984 2.833
VIDEO 39.234 41.266 52.260 46.272
Movies 23.004 20.084 20.623 19.924
Movies DVDR - 1.625 1.448 2.029
Music Videos 1.646 2.340 1.151 1.608
Movie Clips - 0.433 0.237 0.493
TV shows 11.913 14.216 21.996 15.435
Handhled 0.207 0.258 0.353 0.110
Highres - Movies 1.348 0.644 1.842 1.728
Highres - TV shows - 0.603 3.690 4.039
3D - - 0.072 0.014
Other 1.115 1.062 0.849 0.890
APPLICATIONS 16.788 9.922 3.986 5.006
Windows 13.514 9.283 3.371 3.647
Mac 0.726 0.258 0.238 0.345
UNIX 0.071 0.089 0.136 0.235
Handheld 0.292 0.133 0.031 0.014
IOS(Ipad/Iphone) - - 0.051 0.302
Android - - 0.097 0.349
Other OS 2.184 0.159 0.061 0.115
GAMES 4.997 3.253 3.084 4.236
PC 3.636 2.599 2.642 3.039
Mac 0.039 0.037 0.043 0.072
PSx 0.181 0.063 0.088 0.254
XBOX360 0.201 0.099 0.070 0.148
Wii 0.389 0.198 0.141 0.168
Handheld 0.551 0.258 0.102 0.053
IOS(Ipad/Iphone) - - 0.026 0.211
Android - - 0.232 0.177
Other 0.402 0.279 0.092 0.115
PORN 8.264 21.553 21.140 23.007
Movies 5.950 10.767 9.097 10.386
Movies DVDR - 0.532 0.014 0.057
Pictures 1.232 1.688 0.971 1.206
Games 0.091 0.026 0.015 0.077
Highres - Movies 0.201 0.511 1.878 2.422
Movie Clips - 7.308 8.670 8.313
Other 0.791 0.720 0.494 0.546
OTHER 14.759 8.798 6.994 7.595
E-books 5.185 4.352 3.865 5.068
Comics 0.421 1.059 1.316 1.278
Pictures 2.930 2.173 1.227 1.163
Covers 0.058 0.016 0.021 0.005
Physibles - - - 0.005
Other 6.164 1.198 0.565 0.077

in its presence between pb09 and pb10 from 39% to 41%. It keeps a stable growth to reach

52% (i.e. at this point there was more video content than the sum of all other categories)

of the overall content in pb11, and then it surprisingly shows a considerable drop of 6

percentage points (to 46%) in the two months separating pb11 and pb12.

We now turn our attention to the PORN category that shows an important increment

in its representativeness during the five months between pb09 and pb10. This increase

allows PORN to scale from the 5th category in terms of availability in pb09 (8%) up to

the 2nd position in pb10 accounting for 21% of the total content. From this moment on, it

remained in the 2nd position and maintained its weight, 21% in pb11 and 23% in pb12.

The remaining categories (AUDIO, APPLICATIONS, GAMES and OTHER) follow a
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similar trend over time. They steadily reduce their weight between pb09 and pb11 and

change this slope in pb12. Although the trend is similar we can find a much more marked

representativeness loss in the APPLICATIONS and OTHER categories. The APPLICA-

TIONS category almost halves its presence between pb09 (16.8%) and pb10 (10%), and

maintains that descendent line to only accounts for 4% of the contents in pb11, followed by

a small increase up to 5% in pb12. The OTHER category shows a strong decrement of its

weight between pb09 (15%) and pb10 (8.7%) to later slows down the slope of this loss to

end up in 7% of the total content in pb11 and slightly increases this value (7.5%) in pb12.

Contrary to these cases, GAMES and AUDIO categories present a smoother contribution

reduction between pb09 and pb11 of 3 percentage points for AUDIO and 2 percentage

points for GAMES, to later increase 1 percentage point in pb12.

After analyzing the evolution of each category we can present three interest insights:

• Movies and TV Shows (in the VIDEO category) are the most available contents. Both

subcategories together always sum up more than 34% of the total content, and they

reach a peak of presence in pb11 when both together surpassed 40%. Furthermore,

if we add the PORN-Movies subcategory, we end up with a range between 40%-50%

for Movies and TV Shows.

• There is a relevant increment of the High Resolution content. While that type of

content only represented about 1.5% in pb09 and pb10 (summing up Highres-Movies

from PORN and VIDEO and Highres-TV Shows from VIDEO), it grew to 7.4% and

8.2% in pb11 and pb12, respectively.

• The presence of Windows related content has dramatically decreased. It represented

13% of the total available content in pb09, while in the most recent snapshots its

presence is reduced to a mere 3%.

3.2.5.2 Content Popularity Evolution

The previous subsection has analyzed the content availability in TPB. We now study the

popularity of the different Categories/Subcategories over time based on the number of

download sessions associated with each content in our snapshots.

Table 3.3 shows the portion of download sessions in each Category/Subcategory for

pb10, pb11 and pb12 snapshots. As we mentioned earlier, we did not collect download

information for pb09.

VIDEO is the most popular category by attracting more than 3/5 of the downloads

in all the snapshots. However, it shows a relevant drop in its popularity over the time.

VIDEO represented 71% of the downloads in pb10 and steadily decreased after that, to

64% and 59% in pb11 and pb12 respectively.
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Table 3.3: Distribution of content popularity (proportion of download sessions) by cate-
gories/subcategories and datasets (pb09, pb10, pb11 and pb12)

Categories pb10 (%) pb11 (%) pb12 (%)

AUDIO 4.671 5.574 4.972
Music 3.814 3.977 1.036
Audio Books 0.119 0.213 0.093
Sound Clips 0.011 0.065 0.053
FLAC 0.208 0.297 0.292
Other 0.518 1.021 3.498
VIDEO 71.299 64.080 58.925
Movies 41.394 29.874 22.667
Movies DVDR 0.937 1.027 0.943
Music Videos 0.443 0.245 0.284
Movie Clips 0.066 0.037 0.097
TV shows 26.448 27.010 28.349
Handhled 0.127 0.040 0.014
Highres - Movies 0.766 3.533 3.702
Highres - TV shows 0.723 2.205 2.826
3D - 0.025 0.000
Other 0.396 0.086 0.043
APPLICATIONS 2.117 0.996 0.810
Windows 2.041 0.934 0.725
Mac 0.050 0.041 0.027
UNIX 0.002 0.002 0.000
Handheld 0.018 0.001 0.000
IOS(Ipad/Iphone) - 0.003 0.002
Android - 0.012 0.054
Other OS 0.006 0.001 0.001
GAMES 1.274 2.182 1.013
PC 0.790 1.747 0.756
Mac 0.003 0.003 0.000
PSx 0.018 0.023 0.006
XBOX360 0.027 0.119 0.165
Wii 0.144 0.102 0.019
Handheld 0.216 0.022 0.001
IOS(Ipad/Iphone) - 0.005 0.006
Android - 0.154 0.056
Other 0.075 0.007 0.004
PORN 17.256 24.300 31.012
Movies 11.259 13.209 17.685
Movies DVDR 0.034 0.014 0.025
Pictures 0.740 0.255 0.598
Games 0.007 0.004 0.009
Highres - Movies 0.385 1.727 3.089
Movie Clips 4.559 8.827 8.388
Other 0.272 0.264 1.218
OTHER 3.383 2.868 3.268
E-books 1.337 2.099 2.604
Comics 0.326 0.225 0.115
Pictures 1.307 0.266 0.258
Covers 0.003 0.000 0.000
Physibles - - 0.000
Other 0.410 0.278 0.291

PORN appears as the second most popular category among BitTorrent users. Contrary

to VIDEO, PORN presents a steady increase in its weight since it accounts for 17% of the

download sessions in pb10, 24% in pb11 and 31% in pb12. The growth in the PORN’s share

(14 percentage points) almost matches the VIDEO category drop (12 percentage points).

Finally, it is very important to notice that the sum of these two categories represents about

90% of the total downloads for the three snapshots. More interestingly, by zooming in our

analysis into the subcategories, we realize that out of that 90%, 80% belongs to the subcate-

gories: VIDEO/Movies, VIDEO/TV Shows, VIDEO/Highres-Movie, VIDEO/Highres-TV

Shows, PORN/Movies, PORN/Highres-Movies.

The popularity of High-resolution PORN and VIDEO content follows the increasing
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availability of this type of content. While it only attracted 1.87% of the downloads in

pb10, it has increased its popularity 5 times by receiving 9.62% of the downloads in pb12.

If we analyze the remaining categories: (i) we find that AUDIO contributes 5% of the

downloads (with variations smaller than 1 percentage point over the trhee snapshots). (ii)

APPLICATIONS goes from 2% in pb10 to less than 1% in pb11 and pb12. It is worth

noting that APPLICATIONS category contribution is mainly due to Windows applications.

(iii) GAMES starts at 1.2% in pb10, gains 1 percentage point in pb11, and loses it again

in pb12. (iv) Finally, the OTHER category remains stable around a 3% with variations

smaller than 0.5 percentage points.

In a nutshell, PORN is compensating for loss in VIDEO, which in the worst case

attracts 3/5 of the downloads. Both categories together account for 90% of the downloads.

Furthermore, we observe a significant increase in the High-resolution content. Finally, the

rest of the categories remains steady over the time with very small variations showing a

small but stable interest from BitTorrent consumers in each one of them.

3.2.5.3 Content Availability Vs Content Popularity Discussion

The most relevant content in BitTorrent (according to its major portal, TPB) in terms

of availability and popularity are Movies (including porn ones) and TV Shows. Although

this type of content represents only 1/2 of the available content, it accounts for 4/5 of the

downloads.

In the case of PORN content we perceive a stable presence in the available content (a

bit higher than 20%), but an increment of its popularity based in the portion of downloads,

from 17% to 31%. In particular, PORN is taking up the popularity reduction suffered by

the VIDEO category. Similarly to VIDEO, the proportion of available content for PORN

is lower than its weight in number of downloads (except in pb10).

For the rest of the categories the portion of available content exceeds the portion of

downloads. The AUDIO category represents between 12%-15% of the available content

but only attracts 5% of the downloads. In the case of the GAMES category, it contributes

between 3%-5% of the content to get 1%-2% of the downloads. The OTHER category feeds

7%-9% of the content (without considering pb09) and only captures 3% of the downloads.

Finally, the APPLICATIONS category contributes 10%, 4% and 5% of the content in pb10,

pb11 and pb12, to attract 2%, 1% and 0.8% of the downloads, respectively.

Therefore, we can conclude that if TPB removes all the categories except VIDEO and

PORN, although it would lose half of its available content, it would not suffer a significant

reduction in the downloading activity. In addition, the results suggests that High-resolution

content is rapidly increasing its availability and popularity.
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Figure 3.1: Torrents Size CDF

3.2.6 BitTorrent’s Content Size Analysis

In this subsection we characterize the evolution of the content size across the four snapshots.

This allows us to understand whether the size of BitTorrent content is increasing linked to

the presence of everyday larger content in the multimedia arena (e.g increment of High-

resolution content presence). To perform this discussion, we will first look at the aggregate

content size distribution across all the snapshots to later narrow down our analysis to

individual categories.

3.2.6.1 Aggregate Content Size Distribution

Figure 3.1 depicts the CDF of content size for our four snapshots. For a better understand-

ing, the graph only shows the CDF for content up to 5 GB (that includes the DVD standard

size of 4.7GB), which accounts for more than 96% of the content within our dataset. The

graph shows a steady increase of the content size over the 2-years period under study. The

median value of the content size in pb09 was 223MB and increased by 53% (to 341MB)

in the next five months (pb10), and it kept growing up to 370MB and 458MB in pb11

and pb12 respectively. The conclusion is that BitTorrent content has doubled its size (in

median) in a period of 2 years.

We also want to highlight that the content larger than a standard DVD of 4.7GB (not

included in the graph) increases its representativeness by almost 2 percentage points from

2.06% in pb09 to 3.85% in pb12. In addition, it is interesting to notice that all snapshots

contain some content of huge size. In all the cases (except pb10 in which the largest content
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Figure 3.2: Box plot of content size per category for pb09, pb10, pb11 and pb12 datasets.
For each category we show the 25th, 50th (median) and 75th percentiles represented by
the bottom horizontal blue line, the middle horizontal red line and the top horizontal blue
line, respectively.

is 66GB) we can find contents above 150GB. By manual inspection we have discovered that

they are actually collections of files (e.g. several seasons of a TV series) that all together

reach that size.

3.2.6.2 Content Size per Category

Having depicted the overall picture for the content size, we devote our efforts on dissecting

our analysis for the different categories. Figure 3.2 shows the box plot (which includes

25th-percentile, 50th-percentile or median, and 75th-percentile) of the content size for every

category in each one of the four snapshots. The obtained results allow us to divide the

categories into two groups: (i) low-size categories composed by AUDIO, APPLICATIONS

and OTHER, and (ii) large-size categories formed by VIDEO, GAMES and PORN.

Among the low-size categories, AUDIO is the one presenting a larger size and a very sta-

ble distribution over the 2-years period under study. The median size for AUDIO is around

120MB with a small variance. Its 75th-percentile doubles the median and stays close to
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250MB, except in pb11 that goes above 300MB. The APPLICATIONS and OTHER cate-

gories show very low median values below 25MB in all the datasets. The only remarkable

issue for these two categories happens for APPLICATIONS in pb10, which shows a much

higher 75th-percentile (285MB) than in the other cases.

In the large-size categories, VIDEO is the one with the largest median content size

over time. It is interesting to observe that it presents a quite stable median value with

only a slight variation between 650MB and 700MB. While the 25th-percentile is also stable

(∼340MB) in the four snapshots, the 75th-percentile presents a moderate increment of

31% from its lowest value of 1.1GB in pb10 to the highest one of 1.44GB in pb12. PORN

ranks as the category with the second largest median content size. In the case of PORN

all percentiles grow over time. For instance, the median size evolves as follows: 280MB

(pb09), 405MB (pb10), 434MB (pb11) and 558MB (pb12). This demonstrates that PORN

content has doubled its median size in a period of only two years. Finally, GAMES is

the category that presents a major variance between the different percentiles. The 25th-

percentile and the median are always lower than the same parameter in the VIDEO and

PORN categories. However, the 75th-percentile becomes the largest one in pb11 and pb12.

These large variability between the different percentile thresholds occurs because we can

find a large set of games with a very small size (e.g for smartphones, portable videoconsoles,

etc), and at the same time a large set of games of very big size (e.g. DVD, Blue-ray, etc).

In particular, the extreme variability shown in pb11 and pb12 responds to the recent

appearance of video-game consoles and PCs that are Blue-ray capable and the increasing

presence of Blue-ray games in the market.

3.2.6.3 Content Size Increment Discussion and Implications

First of all, it must be noted that those categories that massively contribute to BitTorrent

(i.e. VIDEO and PORN) happen to be the ones presenting a larger size, while those

categories with a minor presence contain content of small size. The only exception is

the GAMES category that shows an extreme variability in the size of its content, especially

in pb11 and pb12 snapshots.

The increment of the content size can be explained by 3 main factors: (i) The important

evolution in the availability of High-resolution content (large size) which in pb12 already

represents 8.2% of the content. (ii) PORN that represents more than 20% of the content

is doubling its size (in median); and, (iii) 75th-percentile for VIDEO content size (which

represents 40%-50% of the available content) has increased a 31%, probably due to the

major presence of High-resolution Movies and TV Shows.

The fact that BitTorrent content (and by extension multimedia content in the Internet)

has doubled its size in the last two years is something that major Internet players (ISPs,
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Table 3.4: Percentage of contents with comments in different categories (contents with at
least 1 comment — contents with three or more comments)

Category pb09 (%) pb10 (%) pb11 (%) pb12 (%)
≥1 | ≥3 ≥1 | ≥3 ≥1 | ≥3 ≥1 | ≥3

AUDIO 39.21 | 10.79 37.29 | 11.43 34.99 | 9.46 26.91 | 5.75
VIDEO 41.42 | 15.06 46.32 | 15.56 33.00 | 9.74 32.83 | 10.12
APP. 47.93 | 19.28 72.03 | 31.36 61.75 | 25.28 53.44 | 20.84

GAMES 63.83 | 34.89 66.06 | 30.30 67.33 | 29.45 54.11 | 23.19
PORN 33.50 | 6.32 31.62 | 6.53 15.41 | 2.56 12.36 | 2.08
OTHER 37.24 | 11.99 33.28 | 7.89 44.98 | 13.76 31.41 | 9.29

Aggregate 41.25 | 14.01 42.66 | 13.74 31.80 | 9.30 28.35 | 8.29

multimedia content providers, CDN operators, etc) need to take into account in order

to update their infrastructures and resources. For instance, if the content growth speed

depicted by our results remains stable over time, CDN operators will need to provision

their servers with larger caches, content service providers (e.g. Cyberlockers) will need to

double its storage capacity every two years, etc.

3.2.7 User Comments on BitTorrent Contents

An interesting aspect related to the BitTorrent content analysis is to study the users’

interaction and feedback. In order to measure such activity we have crawled the TPB page

of each content in our dataset (unless they had been removed from TPB) to capture the

number of comments that BitTorrent users wrote. With this data we are able to study how

the number of comments have evolved over the period under study.

Table 3.4 shows the percentage of content aggregated and per category that received at

least one comment on their TPB page as well as the portion of content that collected 3 or

more comments.

First of all, if we look at the aggregate content results we conclude that the social

activity around BitTorrent content is quite reduced and the users are just focused on

accessing the content without sharing much about its experience. The portion of content

receiving three or more contents is in the best case 14% (pb09) . In addition, we did not

find any content with more than nine comments. Furthermore, the number of comments

per content decreases over the time. For instance the portion of content that presents at

least one comment goes down from more than 40% in pb09 and pb10 to 32% and 29%

for pb11 and pb12, respectively. This happens because the time is an important variable

that increases the likelihood that a content receives one or more comments, the longer the

content is exposed the more likely is that a user comments on it.

The GAMES and APPLICATIONS categories are the ones containing a larger portion

of content with comments. Although in pb09 GAMES is largely leading this ranking, in the

other snapshots both categories present similar results alternating in the first position. We
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could roughly account between 55%-65% of the content with at least one comment and 20%-

30% with three or more comments. GAMES and APPLICATIONS content usually requires

some particular knowledge to manage them (e.g. what movement each button generates in

a video game, how to find different options in an application, etc). In addition, in the case

of applications the installation process could be challenging for non-skilled users. These two

factors increase the need for BitTorrent consumers to interact with the content publisher

(or with other consumers of the same content) in order to solve some issue and manage the

downloaded game or application.

After the two leading categories, we can find a second group that includes AUDIO,

VIDEO and OTHER categories. We can establish rough intervals of 30%-40% and 5%-

15% for the portion of content in those categories presenting at least one comment and 3

or more comments in their TPB page, respectively. This makes a relevant difference of 15

percentage points from the two previous categories.

Finally, the PORN category attracts the fewest comments from end-users. Roughly

15%-30% of the PORN content shows at least one comment, and only 2%-6% has three

or more comments. PORN is not only the category with the smallest portion of content

attracting comments, but it is also the one experiencing the largest reduction of this pa-

rameter over the time. It loses 20 percentage points from 33% (in pb09) to 12% (in pb12)

during the time period under study. It is obvious that PORN is a very controversial content

that is still considered immoral in much of the world, and even forbidden in many coun-

tries. Therefore, although it is massively consumed (2nd category in content availability

and popularity), consumers prefer not to comment on it.

In a nutshell, this subsection demonstrates the low interest of BitTorrent users in com-

menting on their downloaded content.

3.2.8 Conclusion

This study has presented a thorough analysis on the evolution of multimedia content avail-

able in the Internet based on the content available in the most popular BitTorrent portal

in a two years period between Nov. 2009 and Feb. 2012. Our results predict a steady and

important increment of the multimedia content traffic, which already represents the major

part of the Internet traffic, sustained in three main findings: (i) Multimedia content has

doubled its size in a period of only 2 years, (ii) the major part (80%) of the consumed

multimedia content corresponds to TV Shows and Movies (including porn) that belong

to those categories with a largest size , and (iii) High-resolution content, which has very

large size, is increasing its presence and it already represented 8% of the available content

and 10% of the downloads in our most recent snapshot dated at the beginning of 2012.

These findings are useful to those Internet players (i.e. ISPs, CDN operators) involved in



54
3.2. EVOLUTION OF MULTIMEDIA CONTENT IN THE INTERNET THROUGH

BITTORRENT GLASSES

the content distribution business in order to update their infrastructures, resources and al-

gorithms to efficiently distribute and serve multimedia content. Furthermore, if the size of

the multimedia content keep growing as in the last two years CDNs and content providers

(e.g. Cyberlockers, multimedia content distribution platforms, etc) should properly dimen-

sion the storage capacity of their caches and servers to cope with the distribution of larger

content.
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3.3 Reaction of BitTorrent Content Publishers to Antipiracy
Actions

3.3.1 Introduction

During the past decade, the Internet has witnessed an increasing level of online piracy

of copyrighted content. In particular, Peer-to-Peer content distribution applications (e.g.,

BitTorrent, Gnutella) and Cyberlocker services (e.g., Megaupload) have facilitated illegal

sharing of copyrighted content. At the same time, the availability of copyrighted content by

these systems at no cost, has led to an explosion in their popularity and therefore to their

contribution in overall Internet traffic. While legal actions were taken against few major

and many minor violators who illegally published, consumed or facilitated the distribution

of copyrighted content, online piracy appears to become even more widespread in different

countries. In recent years, these trends have prompted copyright holders to demand the

legislation and implementation of more effective online antipiracy laws in several countries.

However, such an effort has faced strong opposition by various stake holders in several

countries. In fact, we are only aware of a small number of countries that have legislated

and implemented an online antipiracy law. Given the difficulty to put in place an online

antipiracy law, an interesting question is “whether or not and to what extent an antipiracy

law and its associated enforcement actions can affect the behavior of violating users?”

This intriguing question is very difficult to answer for at least three reasons as follows:

First, the effect of an antipiracy event (e.g., publicizing relevant laws or enforcement ac-

tions) can be assessed on different groups of users including those who publish or consume

copyrighted content, users with different levels of involvement (as publisher or consumer),

or users for a specific system or in a particular country. Clearly, the impact of an antipiracy

event could vary significantly across different groups. Second, there could be other (po-

tentially some unknown) co-existing social, economical, and technical factors that have a

dominant and possibly opposing effect on piracy behavior among users. More importantly,

it is very challenging to identify and capture all the relevant major factors, and assess their

level of impact on piracy behavior among users. For example, the drop in the number

of online pirating for movies in the the US could be due to a combination of antipiracy

actions against a few users and/or due to user access to cheap and legal content via Netflix.

Furthermore, the effect of an antipiracy action could be short- or long-lived. Third, there is

no ground-truth to reliably validate any finding about user reactions to antipiracy events.

A survey of users can be conducted to obtain a more accurate view of the behavior for

a relatively small group of users (e.g., few thousands). However, only a small fraction

of surveyed users may be involved in antipiracy and those users may not indicate their

intention because of any concern for legal action against them.
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Despite these challenges, a few recent studies have examined the effect of specific an-

tipiracy actions on the behavior of a particular group of users (i.e. consumers) in a single

country using measurement [74], or survey of users [75] or businesses [76]. All these studies

presented a collection of evidences to illustrate that the enforcement of local antipiracy

laws succeeded in reducing the downloading activity of copyrighted content among their

target group of consumers. To our knowledge, the effect of antipiracy actions on content

publishers have not been examined, and it is essential because they feed the ecosystem of

online piracy and in some cases gain substantial profit [52].

In this study, we investigate the effect of antipiracy actions on the publishers of copy-

righted content. To cope with the challenges in tackling such a broad question, we limit the

scope of our study in two ways as follows: First, we only examine the effect of two major

antipiracy actions: (i) the closure of Megaupload was a sudden event that was publicized

worldwide, and (ii) the French antipiracy law (Hadopi law) that was debated, legislated

and fully implemented over a two year period. We intuitively expect these antipiracy ac-

tions to have a dominating impact on the behavior of their corresponding group of users.

Therefore, any potential error in our analysis due to potentially unknown factors should

be relatively small. Second, we only consider the effect of these two antipiracy actions on

the content publishers in the largest BitTorrent portal, namely the The Pirate Bay (TPB).

Since a significant majority of BitTorrent publishers upload copyrighted material [77] [78],

they provide a large population of publishers that are actively engaged in online piracy and

therefore their reactions offer relevant and meaningful insights for this study.

One key contribution of this study is our methodology to leverage the reaction of BitTor-

rent publishers for assessing the effect of selected antipiracy actions. Toward this end, we

capture snapshots of all BitTorrent publishers along with their uploaded (and downloaded)

files through TPB. The timing of our snapshots are properly aligned to the target antipiracy

actions to increase the likelihood of detecting any measurable effect even if its impact is

short-lived. We use the changes in the daily number of relevant BitTorrent publishers and

their contribution over the proper time frame as our basic metrics to assess the effect of

each antipiracy action. We show that this basic metric does no always paint a clear picture

of publisher behavior. Therefore, we deepen our analysis by grouping publishers based on

different criteria to identify the most likely cause of the observed changes in publishers’

behaviour. These criteria include: (i) level of activity (e.g., active vs casual publishers),

(ii) publishers’ business profile (e.g., profit-driven vs altruistic) or (iii) monitoring policies

of their hosting facilities (soft vs strict). Finally, we corroborate our findings with a few

independent sources including Google trends and other reports to gain more confidence.

While there is not ground truth to validate our findings, we believe that the number of

discovered evidences and their temporal alignment offer a very convincing explanation for
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how these selected antipiracy actions have influenced the behavior of BitTorrent publishers.

The second key contribution of this study is to demonstrate some of the subtleties in

identifying the potential effect of an antipiracy action, and properly relating them to their

cause. These findings of our “detective work” are summarized as follows:

The closure of Megaupload: Many publishers joined BitTorrent most likely from

Megaupload (and other Cyberlockers) right after its closure. This resulted in an increase

in the overall number of TPB publishers but, surprisingly, had no impact on their overall

publishing rate. This is due to the fact that major BitTorrent publishers that maintain a

private BitTorrent portal (i.e. a similar business to a Cyberlocker) reduced their publishing

rate in reaction to this event.

French antipiracy Law: The French population have followed the legislation and imple-

mentation of the 3 strike law that targets both consumers and publishers on any copyrighted

content through P2P applications. We show that the first two steps of the Hadopi law have

been very effective in decreasing the number of casual publishers that as we demonstrate,

are indeed active consumers. However, the number of active publishers (i.e. uploading more

than one content per day on average) remained stable and they considerably increased their

publishing rate. This reaction is surprising given the reduction of French consumers for

copyrighted content through P2P applications as reported in [75], [79]. Our closer exami-

nation revealed that most of top French publishers do not publish any French content. In

fact, the concentration of these publishers in a particular hosting facility in France appears

to be motivated by the absence of a strict policy for avoiding the use of BitTorrent on its

servers. These professional publishers are legally savvy and realize that the opportunity

to freely operate simply outweighs any unlikely antipiracy action as a result of the Hadopi

law.

3.3.2 Related Work

There has been several studies by behavioral scientists on the motivation of users to engage

in online piracy [80–83]. These studies typically rely on the collected data from a small-

scale survey (a couple of hundreds user). We are only aware of two prior measurement

studies on the effect of antipiracy events on illegal file sharing among Internet users.

First, Alcock et al. [74] recently analyzed the impact of the New Zealand antipiracy

law on different applications. They monitored the traffic of DSL connections for 4000

users at three different time periods in 2011 and 2012. Their study demonstrates that the

consumption of copyrighted material has decreased among users and concludes that this is

the effect of the local antipiracy law. Similar to this study, our work relies on a collection

of evidences to draw a conclusion about user behavior. However, we focus on the behavior

of publishers (rather than consumers) who are clearly engaged in online piracy.
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pb10 pb11 pb12

Crawling Period 04/09/10 - 05/05/10 10/21/11 - 12/13/11 01/28/12 - 02/12/12
Duration (days) 27 54 16

Pubishers (username) 7.1K 6.9K 3.3K
Torrents 38.2K 72.0K 21.0K

Consumers 27.3M 25.6M 5.1M
Downloads 95.6M 79.0M 11.1M

Table 3.5: Dataset Description

Second, Lauinger et al. [84] examined the contents of a large number of uploaded files

in eight Cyberlockers to measure the impact of Megaupload closure on the availability and

lifetime of copyrighted files in other Cyberlockers. They demonstrate that after Megaupload

closure, other Cyberlockers proactively increased the filtering of copyrighted material from

their servers, as had been reported in the press [85]. In addition, in the same study

the authors present a qualitative discussion of the potential impact that the SOPA (US)

law [86] could had achieved if it had been implemented. While this work is in spirit similar

to ours, we examine the behavior of thousands of BitTorrent publishers (uploading tens of

thousands of files).

We are also aware of two prior reports on the effect of the Hadopi law on French

Internet consumers. Preliminary results of a longitudinal survey of 2K users carried out by

the Hadopi commission indicated a decrease in the download of copyrighted material [75].

In particular, 72% of the respondents to this survey who had received a warning, declared

that they had decreased or stopped their activity, and 50% of the respondent indicated that

they have increased the consumption of legal copyrighted content. The second study [76]

analyized the data from iTunes record sales by four major labels and reported 25% increase

in the purchase of iTunes music among French users after the enforcement of the Hadopi

law while the increase in a neighbor country such as Spain was negligible. Based on these

two pieces of evidence, they concluded that the Hadopi law has been successful in deterring

P2P downloads of copyrighted material.

To the best of our knowledge, our study is the first investigation of the effect of an-

tipiracy actions on the behavior of publishers of copyrighted content that is based on

measuring a large number of such publishers. More importantly, our investigation goes

beyond obvious metrics and reveals the impact of other social, economical, and technical

factors through data-driven analysis.

3.3.3 Data Collection and Datasets

Our objective is to capture multiple snapshots of the BitTorrent ecosystem over time in

order to characterize longitudinal trends in the population and activity of publishers. We

use these trends to assess the impact of antipiracy events on content publishers. Towards
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this end, we leverage active measurement over The Pirate Bay (TPB) portal using the

methodology and tools that were developed in a previous study [52]. We focus on TPB in

this study since it is the most popular BitTorrent portal as reported by scientific studies [47]

and Alexa ranking [1]. In particular, TPB is one of the top-100 most popular websites in the

Internet and receives at least twice (and in most cases significantly larger) daily visit than

any other BitTorrent portal based on Alexa information. Furthermore, all the indexed

content on TPB portal are explicitly uploaded by a publisher in contrast to the other

major portals (e.g., Torrentz or IsoHunt) that use crawling techniques to identify their

indexed content. These features make TPB a suitable venue to capture snapshots of the

BitTorrent ecosystem and conduct our analysis. This subsection describes a brief overview

on BitTorrent and our measurement methodology as well as the main characteristics of our

collected datasets.

3.3.3.1 Background on The Pirate Bay

TPB is simply a rendezvous point between content publishers and consumers. When a

publisher wishes to make a content available within the BitTorrent ecosystem, its first step

is to generate a unique id known as the infohash and register the content with one (or

multiple) tracker(s). A tracker keeps track of the IP addresses for a group of peers that

concurrently participate in the delivery of a content (i.e. form a swarm). A participating

peer can be of two types: peers with a complete copy of a content are known as seeders

while other peers are leechers. Therefore the content publisher is the first seeder in a

swarm. The second step is to advertise the content by generating a torrent file that provides

meta-information for consumers including the IP address of the associated tracker(s). The

publisher uploads the .torrent file to TPB and possibly other BitTorrent portals. In the

case of TPB, the publisher needs to be registered with the portal and uses her account

(with a specific username) to advertise a content. TPB creates a separate webpage for

each registered user in which all its published content along with publishing times are

listed. Finally, TPB offers an RSS (“Really Simple Syndication”) service where consumers

can subscribe and receive a notification as soon as a new content becomes available. To

download a content, a consumer typically retrieves the .torrent file from a portal, extracts

the IP address of the tracker and connects to it. The tracker provides a list of IP addresses

for a random subset of participating peers in the swarm to the new peer so that the new

peer can connect to them and join the swarm.

3.3.3.2 An Overview of the Measurement Methodology

Our measurement tool can capture a rather complete snapshot of all active publishers,

their published files and associated consumers within a window of time. To achieve this
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goal, our tool subscribes to TPB’s RSS service to get a notification for any new content

that is published on the portal1. The RSS feed provides the .torrent file along with the

username of the content publisher. Our tool retrieves the IP address of the tracker from

the .torrent file (or the magnet link) and immediately connects to it. By connecting to the

tracker immediately after the content is published, we are able to identify the IP address

of the initial seeder (i.e. the publisher’s location) in many torrents. Our tool periodically

connects to the tracker to retrieve the IP addresses for (typically) 200 randomly-selected

participating peers (i.e. consumers) while respecting the reconnection time imposed by the

tracker in order to avoid being banned. To cope with this limitation, our tool probes a

tracker from eight geographically-distributed nodes in parallel and captures the IP address

of a majority of consumers. We use MaxMind [87], an IP-to-geo mapping database, to

determine the location of discovered publishers and consumers. In summary, our captured

snapshots contain the following information for each published torrent on TPB portal: (i)

publisher’s username and IP address, (ii) list of IP addresses for associated consumers.

Further details for a similar measurement methodology can be found at [52].

3.3.3.3 Datasets

Using our measurement tool, we have collected three snapshots of TPB system in April

2010, Nov 2011 and Jan 2012. Table 3.5 summarizes the main characteristics of each

snapshot including: crawling period, the number of unique publishers, consumers, torrents

(i.e. published files) and downloads for the three datasets labeled as pb10, pb11 and pb12.

Each dataset was collected over a sufficiently long time such that any daily or even weekly

variations among users and their activities are captured. The pb11 and pb12 snapshots are

captured shortly before and after the closure of Megaupload site [88]. Therefore, we use

these two snapshots to examine the impact of Megaupload closure. Moreover, our pb10

and pb11 snapshots were collected 18 months apart and are used to investigate the effect

of French antipiracy law on French users.

3.3.4 Effect of a Global Antipiracy Event

In this subsection, we investigate how BitTorrent publishers reacted to a major antipiracy

action, the closure of Megaupload [89]. We focus on this antipiracy action against Megau-

pload because it was a major player in illegal sharing of copyrighted content. Megaupload

was the most popular Cyberlocker website. Cyberlockers provide storage service to end

users that enables them to share their online stored content with other users through a

1Note that since Feb. 2012, TPB only indexes magnet links instead of .torrent files. We have accordingly
updated our tool to properly operate with this new indexing strategy.
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Figure 3.3: Evolution of Alexa ranking for five popular Cyberlockers over the last two years
(source Alexa).

URL. They have quickly become very popular among users for sharing copyrighted ma-

terial (e.g., movies, TV shows, music, etc) through their websites [90]. These websites

became very profitable through posting from ads and selling premium subscriptions that

provide end users with a better experience (e.g., higher download rate). Moreover, they

even encouraged users to publish interesting content by offering some income to publishers

whose content became popular [91]. To illustarte the popularity of Megaupload, we note

that Megaupload had 180M registered users and 50M daily visitors, and stored 12 billions

unique files with the aggregate size of 25 petabytes [89]. We first provide some info about

Megaupload closure and then examine its impact on BitTorrent publishers.

3.3.4.1 The Closure of Megaupload

On January 19th 2012, the FBI (in coordination with other agencies across multiple coun-

tries) shut down Megaupload website and arrested their owners on charges of worldwide on-

line piracy that produced $175M unlawful income and caused $500M loss for the copyright

owners [92]. This antipiracy event had a worldwide coverage. To demonstrate the overall

effect of this well publicized event on the Cyberlockers’ ecosystem, Figure 3.3 presents the

evolution of the Alexa ranking [1] for five popular Cyberlockers over the past two years.

This figure shows two points: (i) Before Megaupload closure, all of these cyberlockers were

either already among the top-200 websites in Alexa ranking or their ranking was rapidly

improving until the closure of Megaupload. (ii) After the closure of Megaupload, the rank-

ing of all Cyberlockers (and thus their popularity) were rapidly and consistently dropping.
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pb11 pb12

Avg. daily publishers 367 420 (+14.4%)
Avg. daily contribution 1334 1314 (-1.5%)

Table 3.6: Aggregate results for publishing activity in BitTorrent. The table shows the
average daily publishers and the average daily uploaded content in pb11 and pb12. The
value in parenthesis indicates the relative difference between pb11 and pb12.
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Figure 3.4: CDF for the number of daily publishers and daily contribution in pb11 and
pb12 datasets.

This effect could be due to the adoption of new strategies by Cyberlockers to actively

remove all copyrighted content as reported by a recent study [84] and in press [85]. In

summary, these evidences confirm that the closure of Megaupload had a significant impact

on all Cyberlockers and possibly all systems that facilitated illegal sharing of copyrighted

content.

3.3.4.2 Effect on BitTorrent Publishers Activity

We rely on our pb11 and pb12 BitTorrent snapshots that were collected shortly before

and after the closure of Megaupload. Given the short time between both snapshots and

our target event, and the fact that (to the best of our knowledge) no other major relevant

event occurred during this period, we are confident that any change in the behavior of

BitTorrent publishers is most likely triggered by the closure of Megaupload. We use two

metrics to measure the effect of Megaupload closure on BitTorrent publishers as follows:

(i) the average daily number of active BitTorrent publishers, and (ii) the average daily

number of discovered uploaded content. Using these daily average values enables us to

compare these characteristics of publishers across different datasets despite the differences
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n=Avg. content/day Active (n≥10) Regular (1≤n<10) Casual (n<1)

Avg. daily publishers pb11 13.6 92.4 261
Avg. daily publishers pb12 14.7 113.8 291.5

Avg. daily publishers difference +1.1 (+8.1%) +21.4 (+23.1%) +30.5 (+11.3%)
% new publishers in pb12 after Megauplaod 6.25% 15.23% 42%

Avg. daily contribution pb11 471 423 440
Avg. daily contribution pb12 374 510 431

Avg. daily contribution difference -97 (-21%) +87 (+17%) -9 (-2%)

Table 3.7: Number of publishers and daily contribution for next groups of publishers clas-
sified based on their contribution to the system. Active publishers (n≥10 content/day,
Regular publishers (1≤n<10 content/day), and Casual publishers (n<1 content/day)

in dataset durations2.

Table 3.6 presents the average daily number of publishers and uploaded files for snap-

shots pb11 and pb12. A more detailed view of these characteristics is provided in Figures

3.4(a) and 3.4(b) that depict the distribution of daily number of publishers and uploaded

files for both snapshots, respectively. These statistics reveal that the average number of

publishers increased by 14% over 1.5 months whereas their activity remained roughly un-

changed. The observed increase in the number of publisher (over such a short time) is

surprising and is very likely caused by the migration of publishers from Megaupload (and

other Cyberlockers) to BitTorrent after the closure since we are not aware of any other

event during this period that can explain such increment. To validate this observation,

we take a closer look at the timing of published files by individual publishers in the pb12

dataset. To obtain this information, we have crawled the TPB page of all publishers in

our pb12 dataset and captured the number of files they uploaded in each day during the

75 day window between two snapshots (12/01/2011 to 02/12/2012). We observe that 42%

of the publishers in pb12 snapshot published their first file after the closure of Megaupload

which suggests that they most likely joined BitTorrent after this event. Using this infor-

mation, we have also determined the aggregate number of active pb12 publishers in each

day during this period as shown in Figure 3.5. This figure demonstrates that the number

of daily publishers is relatively stable around 200 until the date of Megaupload closure and

then it rapidly doubles in a few days once the implications of the event becomes clear to

publishers. These evidences collectively suggest that our observed changes in the publishers’

demographics and activity between pb11 and pb12 must be due to the closure of Megaupload.

Active vs Casual Publishers The lack of increase in the daily number of uploads

despite the clear growth in the daily number of publishers after the Megaupload closure is

2We evaluated both metrics for different time windows in pb11 (54 days) and they remain the same
independently of the used window.
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Figure 3.5: Daily number of publishers among those ones collected in our pb12 snapshot
during the period 12/01/2012 to 02/12/2012.

username pb11 day cont. pb11 rank pb12 day cont. pb12 rank Business URL

scenebalance 107.17 1 31.06 (-71%) 4 BT Private Portal www.scenetime.com
TvTeam 80.9 2 65.94 (-18%) 1 BT Private Portal www.torrentday.com
exmnova 58.38 3 35.38 (-39%) 3 BT Private Portal www.69bits.com
sceneline 53 4 29.93 (-43%) 5 BT Private Portal www.speed.cd
chkm8te 33.96 5 59.5 (+75%) 2 Promoting Website www.4ufrom.me

UltraTorrents 24 6 6.12 (-74%) 26 BT Private Portal www.ultratorrents.com
FluxXxu 16.46 7 19.6 (+19%) 7 Promoting Website www.starpix.us
RockSaltS 15.13 8 6.68 (-55%) 24 Promoting Website http://jolypic.com/

adultvideotorrents 13.06 9 2.375 (-82%) 92 BT Private Portal www.adultvideotorrents.com
.BONE. 12.11 10 5.25 (-56%) 35 Altruistic

Black1000 11.98 11 OUT OUT Altruistic
MirrorRu 11,65 12 OUT OUT Fake
bigbluesea 11.63 13 OUT OUT Altruistic

eztv 11.39 14 8 (-29%) 18 BT Private Portal http://eztv.it/
scene4all 10.29 15 10.56 (+2.56%) 13 Altruistic

Table 3.8: A summary of main characteristics (daily contribution rate and business profile)
of the 15 active BitTorrent publishers in pb11 and the changes in their level of publishing
between pb11 and pb12.

counter-intuitive. To explain this finding, we divide the publishers in both datasets based

on their average daily contribution into the following three classes: Active publishers that

upload more than 10 contents per day on average, Regular publishers that upload between

one and 10 contents per day, and Casual publishers that contribute less than one content

per day. Table 3.7 shows the average number of publishers per day from each class and their

aggregate daily contributions in snapshots pb11 and pb12. We first analyze the results for

pb11 snapshot as the starting point and later discuss the evolution of each class between

pb11 and pb12.

It is interesting to notice that while the number of casual publishers in pb11 is roughly

three and 20 times larger than the number of regular and active publishers, respectively,

the overall daily contribution of all three groups is roughly the same (between 420 to 470
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files a day) before the Megaupload closure. Between pb11 and pb12, the number of casual

publishers has increased by 11%, while their contributions remain unchanged (less than

2%) during this period. The number of regular publishers has increased by 23% and this

has led to a roughly proportional increase (17%) in their daily contribution. Finally, the

number of active publishers grew by roughly 8% but their contribution dropped by 21%. In

addition, 42% of casual, 15% of regular and 6% of active publishers in pb12 are newcomers

who joined BitTorrent during this period.

In summary, most of the newly arriving BitTorrent publishers after Megaupload clo-

sure are casual or regular publishers. The overall contribution of three groups were rather

balanced before the Megaupload closure. However, after the closure, the increase in the

contribution of regular publishers is roughly the same as the decrease in the contribution of

active publishers which led to the unchanged overall rate between two snapshots. This raises

the question that “why the relatively small number of very active publishers have dropped

their publishing rate after the Megaupload closure?” We tackle this question in the next

subsection.

Business Profile of Active Publishers The active publishers that upload more than

10 files a day are in most of the cases professional publishers behind profitable websites

as it is demonstrated in [52]. Therefore, their wide spread reaction to (measurably) lower

their contributions right after the Megaupload closure must be related to this event. To

explore this issue, we employ a similar methodology to the one used in [52] to determine

the business profile of all 15 active publishers in pb11. The basic idea in this methodology

is to download a few published files by a publisher and manually inspect whether, where

and how a consumer might be redirected to another web site associated with the publisher.

This methodology broadly divides publisher profiles into the following categories: (i) Bit-

Torrent Private Portals are associated with private trackers that offer a better experience

to BitTorrent users for a seeding ratio or a fee. (ii) Promoting Websites basically publish

content for the sole purpose of attracting users to their web sites that are often hosting

image services. (iii) Fake Publishers are either antipiracy agencies or malicious users that

inject fake (non-existent) content in order to warn users of downloading copyrighted mate-

rial or infect their computers, respectively. Altruistic Publishers simply publish content to

share with others without any expectation of direct gain.

Table 3.8 shows the following information for the 15 Active publishers in pb11 in differ-

ent columns: their usernames, daily publishing rate, rank in pb11 and pb12, their business

profile and the URL to their web site3 (if applicable). Note that the Top five publishers

3Our goal in providing the identity of these publisher is to demonstrate the fact that many of these
publishers are indeed real companies.
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Figure 3.6: Volume search in France of the keyword Hadopi during the period Jan. 2009
to Feb. 2012 according to Google Trends. In addition, we describe the events associated
with major searching peaks.

in pb11 and pb12 are the same. Among Active publishers, seven of them are private Bit-

Torrent portals, three of them are promoting web sites, four are altruistic publishers, and

1 is fake. The fake accounts are quickly removed by TPB and two of the altruistic users

have also removed their accounts from TPB. Interestingly, all seven private portals have

significantly reduced their publishing rate (i.e. their aggregate publishing rate dropped to

half from 347 to 178 files per day) whereas other groups of publishers show mixed reactions.

A plausible explanation for the consistent reaction among publishers who manage a Bit-

Torrent private portal is as follows: since the main business model of private portals is very

similar to Megaupload (i.e. facilitating access to copyrighted material), they decreased their

visibility (i.e. footprint) in the BitTorrent ecosystem to not be viewed as a major player

in order to reduce the likelihood of any antipiracy action against them. This reaction is

actually similar to the one observed in several Cyberlockers that tried to reduce the avail-

ability of copyrighted content in their portals [85]. Such a behavior seems to be aligned with

the theory in Economics that punishing a player who performs a non-legitimate activity

generates negative incentive for other players involved in similar activities [93,94]. Finally,

it is interesting to note that provided disclaimers in some of the active publishers’ website

confirm that they are clearly aware of copyright infringement and use the disclaimers to
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protect themselves against any potential legal action 4.

3.3.5 Effect of a Local Antipiracy Law

In this subsection, we investigate the effect of a local antipiracy law in a single country,

namely France, on content publishers that illegally share copyrighted material through

BitTorrent. Toward this end, first we briefly justify our focus on France and provide the

required background on the French antipiracy law, called the Hadopi law [95]. Afterwards,

we examine the longitudinal trend among publishers as the law was legislated, approved

and implemented.

To limit the number of unknown variables on our investigation, we focus on a country

that has a publicized and properly enforced an antipiracy law. We note that several western

countries have had unsuccessful legislative efforts to pass a major antipiracy law. For

example, the SOPA law in the US triggered the largest Internet “strike” and was tabled

[86,96]. The Digital Economy Act in the UK [97] has also been delayed till 2014 after the

appeal by major ISPs such as British Telecom [98]. The Sinde law in Spain [99] is going to

be ineffective even if it is implemented due to its bureaucratic process for suing a potential

copyright infringing website [100]. In contrast, there are few countries such as France, New

Zealand [101] [74], Korea [102] or Japan [103] that have passed and implemented antipiracy

laws that have been reported to be (at least partially) successful. Any of these countries

offer a good example for investigating the effect of such a law. However, we focus on France

primarily because French publishers have a large contribution in pb10, namely 10% of the

uploaded content, in the BitTorrent ecosystem while the contribution of publishers from

New Zealand, Japan or Korea is significantly smaller (<1%). Finally, we are neither aware

of any popular competing technology for legal and cheap delivery of copyrighted material

to users in France (such as Netflix [104] in the US), nor other antipiracy event happening

in France that could affect the outcome of our analysis.

Operation of the Hadopi Law: The Hadopi law targets users that share copyrighted

content (i.e. both consumers and publishers) in Peer-to-Peer (P2P) applications among

which BitTorrent is the most popular one. It is a 3-strikes law that is implemented as

follows: (i) P2P users sharing copyrighted material are identified by their ISPs and receive

a warning email to stop their illegal activity. (ii) The ISP of the notified users continues

to monitor their activity and if they repeat their violation during the next 6 months, they

will receive a 2nd warning email together with a certified letter. (iii) The ISPs continue to

4An example of such disclaimers is the following: “None of the files shown here are actually hosted on
this server. The links are provided solely by this site’s users. The administrator of this site (www.69bits.net)
cannot be held responsible for what its users post, or any other actions of its users. You may not use this
site to distribute or download any material when you do not have the legal rights to do so. It is your own
responsibility to adhere to these terms”.
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Figure 3.7: Ratio download/upload (RDU) for casual publishers in France.

monitor the notified users for one more year and if they repeat their violation, the Hadopi

commission may send the violating users to the court. At this stage, a judge will determine

the proper sanction that can be a fine up to 1500 euros and/or the shutdown of their

Internet connection for a period no longer than one month. Further details of the law can

be found in [75] [76].

History of the Hadopi Law: The Hadopi bill was first presented to the French Senate

on June 18th 2008. After a long discussion in the French Assembly and Senate, the law was

amended and passed on June 2009. The last legal step took place on October 22nd 2009

when the Constitutional Council finally approved the law. At the end of December 2009, a

committee of experts was nominated to implement the law. This process took a long time

till October 2010 when the first set of warning emails were sent out. The second round

of notifications occurred at the end of February 2011 (six months after the first warning).

Finally in February 2012, some expedients were sent to the court as the third strike. It

has been reported that since October of 2010 the number of users that have received the

first and second warning have been 1.15M and 100K while only 340 expedients have been

identified in the third phase, and 14 have been sent to the court. In September 2012, the

first condemnatory sentence condemned a user to pay a fine of 150 euros [79]. Figure 3.6

depicts a temporal diagram of the volume of web searches (originated in France) provided

by Google Trends for the keyword “Hadopi” over which we have specified the time of the

above major events as well as the collection time of pb10 and pb11 snapshots. The temporal

alignment of the pronounced peaks in the search volume for Hadopi with the time of major

events is a clear indicator that the French population follows this antipiracy law.

The exponential reduction in the number of warnings sent in the consecutive rounds

indicates that the first two rounds were the most important since only 340 out of the
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pb10 pb11

Avg. daily publishers-All 487 367 (-25%)
Avg. daily publishers-FR 93 51 (-46%)

Avg. daily contribution-All 1.4K 1.3K (-6%)
Avg. daily contribution-FR 156 184 (+18%)

Table 3.9: Comparison of the number of daily publishers and uploaded content for the
entire BitTorrent (BT) ecosystem and in France between pb10 and pb11. The value in
parenthesis indicates the normalized difference for each metric.

1.15M identified violating users in the 1st round reached the 3rd strike. The first two

rounds took place in October 2010 and February 2011, respectively. Our pb10 snapshot

was collected around April 2010 when the law was passed but still not implemented and

no warning had been sent out whereas the pb11 snapshot was collected around November

2011, a few months after the 2nd strike. Therefore the pb10 and pb11 datasets are suitable

to examine the effects of the main two rounds of the Hadopi on publishers’ behavior.

Finally, it is important to notice that ≥ 99% of BitTorrent users are consumers (see Table

3.5 for number of consumers vs. publishers). This suggests that a vast majority of the

1M warnings were actually received by BitTorrent consumers who must have reacted by

stopping their downloading activity (as demonstrated by the exponential reduction in the

number of warnings sent out in the subsequent rounds). However, it is uncertain how

French BitTorrent publishers5, and in particular professional publishers, reacted to the

“Hadopi” law.

3.3.5.1 Effect on Publishers Activity

In this subsection, we investigate whether the Hadopi antipiracy law has prompted French

BitTorrent (i.e. P2P) publishers to reduce or stop their activity. To tackle this issue, we

examine the average daily number of publishers and uploaded files among French publishers

and compare them with all BitTorrent publishers (as a reference) in snapshots pb10 and

pb11. The results are summarized in Table 3.9. The drop in the number of French publish-

ers is roughly twice the drop among all BitTorrent publishers. However, the daily average

number of uploads for the entire system dropped by 6% while that measure has increased

by 18% among French publishers. This significant increase in the activity (i.e. uploads) by

French publishers despite the large drop in their number is indeed surprising.

To further explore this issue, we divide the publishers into three classes of casual,

regular and active publisher based on their daily average number of uploaded content as

we defined in the previous subsection. Table 3.10 summarizes the average daily number of

French publishers from each class as well as their average daily number of uploads in pb10

5Those BitTorrent publishers whose location of IP address is in France.
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n= Avg. content/day Active (n≥10) Regular (1≤n<10) Casual (n<1)

Avg. daily publishers pb10 1.96 19.3 72.6
Avg. daily publishers pb11 1.96 17.8 31.2

Avg. daily publishers difference 0 (0%) -1.5 (-8%) -41.4 (-57%)
Avg. daily contribution pb10 34 66 56
Avg. daily contribution pb11 83 77 24

Avg. daily contribution difference +49 (+144%) +11 (+17%) -32 (-57%)

Table 3.10: Number of publishers and daily contribution for next groups of publishers
classified based on their contribution to the system in France for pb10 and pb11 snap-
shots. Active publishers (n≥10 content/day, Regular publishers (1≤n<10 content/day),
and Casual publishers (n<1 content/day)

and pb11. Table 3.10 shows that (i) the average daily number of casual publishers and

their contributions have both dropped by 57%, (ii) the average number of regular publishers

has dropped by 8% but their contributions have increased by 17%, (iii) finally, there are

roughly two daily active publishers in both snapshots but their contribution increased by

144%.

We take a closer look at each one of these trends to identify their underlying causes.

First, our hypothesis is that those casual publishers (57%) leaving the system are indeed

active consumers who altruistically publish very few content. Therefore, the Hadopi law

has motivated them to stop their downloading activity which in turn has led to the drop

in their publishing rate as well. We verify this hypothesis by examining the distribution of

the ratio of the number of downloads to uploads (RDU) for casual publishers in pb10 and

pb11 that is shown in Figure 3.7. This figure illustrates that the RDU ratio among casual

publishers in pb11 is roughly an order of magnitude lower than in pb10. This confirms our

observation that most of the departing publishers between our two snapshots are indeed

active consumers with a significant drop in their publishing activity. Note, that these active

consumers are likely to be regular Internet users for whom the sanctions associated with

the Hadopi law is considered too costly (e.g., a fine up to 1500 euros).

Second, to uncover the factors that led to the significant increase in the publishing rate

of active users, we take a closer look at top French publishers. We noticed that one of these

publishers is scenebalance that is the most active one among all BitTorrent publishers

worldwide in pb11 (as shown in Table 3.8). Scenebalance is a professional worldwide

publisher injecting more than 100 contents per day into the BitTorrent ecosystem, most of

them from France6. This raises a couple of interesting issues as follows:

(i) Since the number of French consumers has rapidly dropped, these active publishers

must be targeting consumers that are outside France. To explore this issue, we have checked

6In [52], authors demonstrate that usually active publishers upload their content from different IP ad-
dresses that in many cases are located in different countries.
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the published content by top five French publishers in both pb10 and pb11 snapshots. For

pb10 snapshot, we found that two of the top publishers upload porn content in English,

another one publishes TV series and shows in English, and the two remaining ones upload

only Spanish content. In the case of pb11, we discovered a similar situation where three

of the top five publishers upload only content in English, and the remaining two publish

Spanish content. We extended this probe to top 20 French publishers in pb10 and pb11 and

could identify only one publisher who is clearly uploading content for French consumers

(e.g., French content or content with French subtitles). This investigation confirmed that

major French publishers primarily target worldwide consumers.

(ii) It is then intriguing why these professional publishers operate from France while

their consumers must be mostly outside France, and there is an enforced antipiracy law

that could affect them. Closer examination of the top 20 French publishers revealed that

more than 80% of them in both pb10 and pb11 snapshots are located at a particular

hosting facility. In fact, 29 of worldwide top 100 BitTorrent publishers from pb10 and 25

of them from pb11 were hosted at that particular hosting facility. This hosting facility

provides professional publishers with powerful servers to perform their intensive activity

of uploading and serving (i.e. seeding) the large amount of content they make available

through BitTorrent. We contacted that hosting facility to gain some insight into its pop-

ularity among the professional BitTorrent publishers and learned that the hosting facility

does not proactively monitor the activities of its customers unless a violation is reported

by a third party and the customer does not cease its “improper” activity. Such a pas-

sive monitoring strategy is unusual as most of the hosting providers in recent years (e.g.,

Server Intellects [105]) have adopted strict monitoring policies to prevent the distribution

of copyrighted material from their servers through P2P applications. These evidences col-

lectively suggest that the “BitTorrent-friendly” policy that hosting facility is much more

valuable for publishers than the cost of any potential antipiracy action against publishers

in France. It is important to note that professional publishers have major financial interest

in publishing copyrighted material [52]. Therefore, they carefully examine any law that

might affect them, take advantage of existing loopholes, and weigh the likelihood as well

as the implications of any legal action against them. This suggests that even if the Hadopi

law intends to targets publishers, it is much more difficult to deter at least professional

publishers compare to consumers. In a nutshell, many professional publishers operate from

France simply because of a major hosting facility passive monitoring policy accommodates

their illegal activities.

In summary our results reveal that French antipiracy law has been quite effective on

reducing the number of casual publishers in BitTorrent who were primarily consumers and

the potential of receiving a fine or temporal loss of Internet connection as a result of the
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Hadopi law is considered costly and thus has a deterrent effect. However, the law has not

succeeded in reducing the publishing rate of copyrighted material by professional publishers.

These publishers seem to have most of their servers in a particular hosting provider in

France primarily due to the “BitTorrent-friendly” policy of this provider. The benefits of

having access to a facility that does not monitor the sharing of copyrighted material allows

these businesses to comfortably operate which is clearly more valuable than the potential

risk of any fine that is negligible compare to their profits.

3.3.6 Conclusions

This study presents a detailed study on how two major antipiracy actions affect the be-

havior of publishers in the largest BitTorrent portal who primarily publish copyrighted

content. In our first case study, we focused on the impact of the Megaupload closure as

a worldwide antipiracy event on BitTorrent publishers. We showed that the Megaupload

closure triggered an immediate drop in the activity of professional BitTorrent publishers

that are running their own private BitTorrent portals. Furthermore, a group of casual pub-

lishers also migrated to BitTorrent most likely from Megaupload and other Cyberlockers.

Our second case study revealed that the French Hadopi law was effective in reducing the

number of casual BitTorrent publishers that are actually consumers. However, it did not

have any impact on the activity of professional publishers from France. The concentration

of very active publishers in a particular hosting facility in France suggests the popularity of

this facility among BitTorrent publishers that appears to be due to its passive monitoring

for copyright infringement activity. Therefore, legally savvy publishers are willing to take

the chance and operate from France and are not concerned about a potentially small fine.

Our findings provide a valuable insight about the effect of antipiracy actions on publishers

who are engaged in online piracy and also reveal the complexity of identifying the affected

group of publishers. While it is impossible to validate our findings, the collection of all sup-

porting evidences, their temporal alignment and the dominance of target events suggest

that the observed behavior among publishers are most likely driven by the corresponding

antipiracy events.
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4.1 Summary

This chapter focus is on characterizing professional and regular users behavior on Social

networks. It is worth mentioning that in contrast to other OSNs (e.g., Twitter) there are

different type of accounts for regular and professional users. On the one hand, regular

users are connected to other users in the network by means of bidirectional connections

and this is if a User A is connected to a user B, then the user B automatically has a

link with user A. We refer to A and B as friends. A regular FB user account is limited

to only 5000 friends. On the other hand, we can find Facebook Pages that are usually

created by popular users (e.g., politician, musician, celebrities, sportsmen, etc.) or a large

variety of commercial brands (e.g., coke, BMW, BBC, Zara, etc.). FB Pages do not create

bidirectional relationship, but instead unidirectional links in which regular users, referred

as fans, subscribe to the page. Different to the regular profiles, FB pages are not limited in

the number of fans that can subscribe to them. Therefore, FB presents two clear different

types of users from very early registration process, regular users and Pages, that require

a different treatment and analysis. Finally, it is important to notice that our approaches

for crawling information for regular users and Pages is totally different, and it required

designing and implementing two different crawling tools.

In this chapter three relevant studies are presented that start with a study on regular

users and shows what amount of information is publicly disclosed on users Facebook profile

(sebsection 4.2). The two other studies which are presented in this section evaluate the

professional users behavior across three major OSNs namely Facebook, Google+ and Twit-

ter. The second study present a novel methodology to identify Cross-posting activity of a

professional users across different accounts of her in three mentioned OSNs and quantify

the volume of this type of activity (Section 4.3). And finally the third study provides an

innovative model to find the strategies of professional users per sector in OSNs in term

of their publishing activities and involvement and also evaluate the success level of their

followed strategies (Section 4.4).

Keywords

Online Social Networks, Facebook, Privacy, Information Disclosure, Professional Users,

Strategies, Cross Activity.
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4.2 Analysis of publicly disclosed information in Facebook
profiles

4.2.1 Introduction

Facebook is the most popular On-line Social Network (OSNs) with more than one bil-

lion subscribers. Users mainly utilize Facebook to share their opinions, interests, personal

content like pictures with users who are connected to them. An important element that

Facebook incorporates is the possibility of defining a detailed profile where users provide

information about themselves. In Facebook we find more than 20 different attributes that

can be utilized in a user profile. Those attributes include potentially sensitive information

such as contact info, birth date, current city, home town, employers, college, high school,

etc. Furthermore, together with that personal details, Facebook users can complete their

profiles by expressing their interests in different categories such as music, movies, books,

television series, games, teams, sports, athletes, activities and inspirational figures, which

in many cases facilitates deriving sensitive information from a user (e.g. personality char-

acteristics, political leanings). Depending on the person, their status and this information’s

social context, publicly disclosing this sort of information could lead to some serious pri-

vacy issues. To avoid or at least mitigate these problems, Facebook allows each user to

define a degree of privacy for different attributes in the profile. That is, for each attribute,

a Facebook user can decide among several privacy options: (i) leaving an attribute blank

so that no one will get access to that information; (ii) filling out an attribute and defining

its privacy level as “only me” meaning only the user has access to that information; (iii)

defining the attribute privacy level as “friends” which allows a user’s Facebook contacts to

access the information; (iv) defining the attribute privacy level as “friends of friends” that

makes the information available not only to the user’s contacts but also to the Facebook

friends of those contacts; (v) defining the attribute privacy level as “custom” in which the

user can define one by one which users can access the attribute information (e.g. just some

part of her friends); and, (vi) defining the privacy level as “public” so that any user can

access that information. Based on the Facebook strategies by default most of the attributes

are publicly available except the birthday, Political views, Religion and Contact Info that

are in the level of “only Friends”. For these attributes users can change the privacy level

to public or more private.

The information included in the profile of Facebook users is precious for external

users/entities and these have very divergent objectives, from non-lucrative activities such as

research to lucrative ones, including marketing campaigns. Given the privacy management

provided by Facebook, external entities can only access attributes that has been defined

as “public” by users. Therefore, an important question to answer is what is the amount
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of public information that an external user/entity can find in Facebook profiles. In other

words, what is the portion of Facebook users that publicly disclose (i.e. indicate privacy

level “public”) each of the profile attributes. By answering this question for each attributes

we will be able to understand which type of information is considered more sensitive by

Facebook users, and to the contrary, what are the attributes experiencing major public

exposure.

Toward this end we have collected the public profiles of 479K randomly-selected Face-

book users, and analyze 19 of the profile’s attributes by computing the portion of the col-

lected users that publicly disclose each attribute in their profiles. We divide the analyzed

attributes into two groups: personal and interest-based attributes. The former category

refers to attributes that contain personal life information about the user (e.g. location, ed-

ucation, work history, etc). Interest-based attributes, on the other hand reflect the tastes

of Facebook users, revealed by their preferences (e.g. in music, television, sport teams,

etc). The results will let us determine the attributes that users consider more sensitive.

Furthermore, we explore the correlation degree among the different personal attributes.

That is, determining if a user disclosing a personal attribute A has some relation to that

user also publicly sharing a different attribute B. In order to get a meaningful answer, in

this study we correlate 9 personal attributes pairwise.

Our attribute-based analysis tells us how much information can be retrieved for a par-

ticular attribute, but it does not contribute anything regarding the expected amount of

information that we can extract from a typical Facebook user. Therefore, we seek to un-

derstand the public exposure habits of Facebook users themselves. To that end we have

defined a very simple yet meaningful metric that accounts for the number of attributes

that are publicly disclosed in a Facebook profile, and refer to it as the Degree of Public

Exposure (DPE). The DPE ranges from 0 for user profiles that do not have any attribute

publicly available, to 19 when a user has made all the analyzed attributes available, includ-

ing personal and interest-based attributes. Hence, we can assign each of the 479K users in

our dataset a DPE value. Using this metric and our dataset we are able to identify what

type(s) of users present a higher degree of public exposure.

Finally, in the last part of this study, we define three simple use cases to illustrate

how some external entities can utilize the information that is publicly accessible in Face-

book. First, we perform a gender-based division of different personal attributes to discover

whether men or women show a significant predisposition to publicly disclose particular type

of information. Second, we depict the distribution of the ages of our 479K Facebook users

based on those users that publicly share their ages. Third, we check the accuracy that

could be achieved by using Facebook users as an estimator for the distribution of the world

wide population in cities, e.g. to estimate the portion of human-beings living in cities with
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a population 5 million or more.

The main observations extracted from the study are:

(i) Friend-list is the attribute with the largest public exposure with almost 63% of users

publicly sharing their contacts, whereas a users’ age (i.e. Birth date attribute) rate as

having the highest privacy value for from Facebook users, since only 3% disclose this infor-

mation.

(ii) There are strong correlations between Current City and Home Town attributes. This

may be because both attributes provide a type of “location” information, and users re-

vealing one tend to also share the other. In addition, we found a second high correlation

between education (i.e. College and HighSchool) and professional experience (i.e. Employ-

ers) attributes. Typically, education and professional experience complement each other

and are closely related. A clear example of this is the case of CVs where we always include

both, education and professional information.

(iii) The average Facebook user makes more than four attributes publicly available in their

profiles.

(iv) Men show a larger public exposure then women for all personal attributes except birth

date. This exception is very surprising given the widespread assumption that women tend

to hide their real age more than men, which is not the case in Facebook.

(v) The age range most-represented, based on the publicly available information, is 18-25.

That age range accounts for 1/2 of the users among those making their birth date publicly

available.

(vi) We show that Facebook data very accurately estimates the portion of people that live

in cities of more than 5 million (according to a recent United Nation report [106]). It also

provides an accurate estimation for the proportion of people living in cities ranging between

500K-1M inhabitants, whereas it has a 10% deviation for cities of less than 500K and for

cities with between 1M and 5M citizens.

4.2.2 Related work

We explore the prior efforts regarding to user privacy in online social networks that establish

the basis for our work. In a concept similar to our study, Quercia et al. (2012) [20] found a

correlation with the degree of openness and gender, using a dataset of 1323 profiles from the

United States. Our work has many distinctions from this study. Firstly, our dataset is much

larger and broader (479K profiles widely distributed throughout the world compared to a

little more than 1K profiles exclusively from U.S.). Secondly, our data was gathered directly

from Facebook profiles, while Quercia et al. used a form of questionnaire administered by

a specific Facebook application. Lastly, we study most of the available attributes in the FB

profiles, and for some of them we deeply investigated the correlation between the attribute
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type and profile characteristics. They also concluded that men tend to make their profile

information more publicly available. In another work by these authors [107], they study

the personality characteristics of popular Facebook users.

Gross et al. in [23] studied the patterns of information revelation in Facebook. They

analyzed just around 4K Carnegie Mellon University students’ profiles, specifically those

that joined a popular social networking site catering to college students. Gross et al.

evaluate the amount of information students disclose and their usage of the site’s privacy

settings. Also these authors in [108] study the evolution of the profiles privacy of around

5k of their collected profiles in past years.

In other work, Chang et al. [21] studied the privacy attitudes of U.S. Facebook users

of different ethnicities. Another U.S.-based study [25] used a questionnaire and with con-

sidering 1,710 students’ profiles shows that women are more likely to maintain a higher

degree of profile privacy than men; and that having a private profile is associated with a

higher level of online activity. The authors in [26] examined disclosure in Facebook profiles

looking at only 400 Facebook profiles. In a similar work to the previous one, authors in [27]

employed surveys and interviews to study the factors that influence university students to

disclose personal information on Facebook.

In a study of the Facebook users’ profile attributes, authors in [22] present a method to

estimate the birth year of 1M Facebook users in New York City, based on the information

available on their profiles, such as their friends. Authors in [30] examined the possibility

of using the attributes of users, in combination with their social network graph, to predict

the attributes of another user in the network. Other similar work [28] presents a study

of Facebook profile attributes by analyzing a dataset of 30,773 Facebook profiles. They

were able to determine which profile attributes are most likely to predict friendship links

and discuss the theoretical and design implications of their findings. They explore how

profile attributes relate to the #Friends of a user’s profile. An investigation of Facebook

users’ privacy evolution in a dataset of a large sample of New York City (NYC) Facebook

users, was presented in [109]. That study shows how the close/disclose status of profiles

attributes changed over time.

Apart of the above-mentioned works as well as many other similar studies, some surveys

on the literature of security and privacy in online social networks has been done to formulate

related concerns, such as those in [110] and [111]. Authors in [112] discuss the design issues

involved in the security and privacy of OSNs. Another work [113] investigated the privacy

and security of users in online social networking sites such as: Facebook, Google+, and

Twitter. Authors in [114] explored the negative impacts of social networking sites on its

users.

By considering the previous work, the study presented here is a new effort in the arena



82
4.2. ANALYSIS OF PUBLICLY DISCLOSED INFORMATION IN FACEBOOK

PROFILES

of social networks; one that by uses a large dataset of Facebook profiles to analyze the

profile information disclosure patterns.

4.2.3 Data Collection and Attributes Definition

In contrast to other OSNs (e.g., Twitter) Facebook subscribers are able to create different

type of account. Regular users are connected to other users in the network by means of

bidirectional connections but a regular FB user account is limited to only 5000 friends. The

account for professional users, Facebook Pages, do not create bidirectional relationship, but

instead unidirectional links in which regular users, referred as fans, subscribe to the page.

FB pages are not limited in the number of fans that can subscribe to them.

We have implemented an HTML crawler that is able to collect publicly-available in-

formation from a Facebook user’s profile. The crawler collects up to 19 attributes from

each profile. It must be noted that our tool respects the privacy of users since we only

collect information that users themselves decide to share publicly. Base on this we can not

differentiate that one attribute is blank or it is closed to public.

Our goal was to capture the publicly available information from a random sample of

Facebook profiles. We run our crawler between March to June 2012 and captured the pro-

file of 479k Facebook users randomly selected throughout the world. For each user we store

up to 19 different attributes (only those publicly available). We classify those attributes

into two categories: personal and interest-based. The first category refers to information

related to an individual’s life, while the second includes information regarding user’s “lik-

ings”. The 19 attributes are listed below in their respective category.

Personal attributes: Friend-list, Current City, Hometown, Gender, Birthday, Employ-

ers, College and HighSchool.

Interest-based attributes: Music, Movie, Book, Television, Games, Team, Sports, Ath-

letes, Activities, Interests and Inspired people.

The meaning of the personal attributes present are obvious and self-contained. It worth

mentioning that some of them such as Employers, College, or HighSchool could include

more than one item. For instance, a user can include their current employer as well as

previous ones or, in the case of college, a user could list several names if she obtained

degrees in different universities or other post-secondary schools. In the case of Interest-

based attributes, all of them can contain more than one item. Facebook users use these

attributes express their likings for the categories referred to by the attribute. For instance,

in the music category we can find singers, music bands, music styles (e.g. jazz, rock, etc.),

music albums, etc. We need to note that in our analysis we insert an “artificial” interest-

based attribute, called Aggregate-Interests which is a binary attribute, i.e. it is 1 if the user

publicly shares at least one item among all the interest-based attributes, and 0 otherwise.
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The Aggregate-Interests attribute lets us know if a user shares any interests without taking

into account the separate categories.

Finally, in order to perform personal attribute correlations, and to gain further insights

into some of them, we have divided our main dataset into several attribute-based groups.

Basically, a given group A includes all the users in our main dataset that publicly disclose

attribute A. For instance, from this point onwards in the study, when we mention the

Gender group we are referring to the group that includes all the users in our dataset that

make their gender available in their Facebook profile.

4.2.4 Public exposure of Facebook profile attributes

In this subsection we define the degree of publicly disclosed information in Facebook1.

We first perform an attribute-based analysis to study the portion of Facebook users that

disclose each attribute. Next, we study the correlation among pairs of personal attributes.

That is, of those users that make an attribute A public, what is the portion of users that

also disclose attribute B. Towards this end, we create one group of users for each personal

attribute, so that the group for attribute A includes all the users in our dataset that make

that attribute available, and later correlates those users with the remaining attributes.

This analysis will provide useful insights on whether some attributes are correlated and we

will discuss some potential reasons for such correlation.

4.2.4.1 Degree of attributes disclosure

We provide some global numbers that paint a global picture of the amount of information

(i.e. attributes) that Facebook users make publicly available. To this end first of all we

study the default status of the attributes in Facebook. The study shows that out of the

479k analyzed users, only 11.62% do not share any attribute, 19.26% disclose a single

attribute, while the remaining users, 69.12%, have two or more attributes in their profile

that are publicly accessible. These values give a first reference point to help understand

that external users/entities can retrieve an enormous amount of information from Facebook

profiles.

Our goal is to determine the level of privacy awareness that Facebook users present

with respect to the different attributes. Table 4.1 shows the portion of users in our main

dataset that publicly disclose each of the studied attributes. We first focus on personal

attributes and then discuss interest-based attributes.

1We clarify that, for better readability, in the rest of the study when we mention that a user discloses,
shares or makes available an attribute we are explicitly saying that this attribute was assigned a private
level of “public” and so any other user has access to it.
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Table 4.1: Portion of users with publicly disclosed personal and interest-based attributes
in Facebook profiles.

Attribute % Profiles accessible

Personal Friend-list 62.7
attributes CurrentCity 36.1

Hometown 34.6
Gender 53.5
Birthday 2.9
Employers 22.5
College 16.8
HighSchool 13.2

Interest-based Aggregate-Interest 48.4
attributes Music 41.0

Movie 28.3
Book 16.7
Television 31.8
Games 9.4
Team 8.5
Sports 2.3
Athletes 10.7
Activities 20.5
Interests 10.9
Inspire 1.9

Table 4.2: Attributes correlation. Each value in the table refers to the portion of users
belonging to the group indicated in the column that disclose the attribute indicated by the
row.

Attribute All Friend-list CurrentCity Hometown Gender Age (Birthday) Job (Employers) College HighSchool

Friend-list 62.7 100 79.6 79.3 64.8 72.5 82.8 83 87
CurrentCity 36.1 45.9 100 74 42 56.2 55.4 59.4 57
Hometown 34.6 43.7 71 100 35.7 58.2 55.3 54.2 50.8
Gender 53.5 55.3 61.7 55.2 100 58.8 55.7 79.9 86
Birthday 2.9 3.4 4.6 4.9 3.2 100 5 4.9 4.2
Employers 22.5 29.7 34.5 35.9 23.4 38 100 59 53
College 16.8 22.2 27.6 26.3 25 28 43.8 100 64.6
HighSchool 13.2 18.3 20.8 19.3 21.2 18.7 31.1 50.7 100

Personal attributes The friend-list appears as the attribute with the greatest public

exposure. Table 4.1 shows that almost 63% of the users make their friend-list available.

This clearly indicates that FB users do not consider that exposing their connections could

lead to any privacy issue. At the other extreme, the attribute with the lowest exposure is

Birthday. Less than 3% of the users reveal their age, which means that users regard this

attribute as highly private. Here it worth to mention again that Birthday attribute is in the

privacy level of “only Friends” by default in Facebook and this 3 % of users they changed

this level to publicly available. Also, 1/2 of the users share their gender. A bit less, around

35% of users, make their current city and their home town available publicly. This implies

that users consider personal location information to be more sensitive than the information

related to their contacts, but much less sensitive than their age. In addition, users seem to
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be more concerned about privacy issues linked to disclosing their job information since a

little less than 1/4 of them publicly list their employers. We close the analysis of personal

attributes by evaluating those related to education, where 17% and 13% of users publicly

share their college and High School. Education-related attributes are thus the next-most

private attributes after age. In summary, we can list the attributes in terms of public

exposure (from more to less exposure) as follows: friend-list, gender, job, education, and

age.

Interest-based attributes Table 4.1 shows that almost 1/2 the users share at least

one interest within the interests-based attributes, which means that Facebook users are

not very concerned about the potential privacy implications that could be derived from

sharing their interests. These attributes are initially less sensitive than personal attributes

in terms of privacy. However, in some cases a particular interest of a user regarding some

controversial issue could potentially lead to privacy issues. Looking at the results in the

table we observe that the more popular categories are music (41%), Television (32%) and

Movies (28.3%). It is interesting that almost all users that share an interest (48%) are

actually sharing Music (41%). In contrast very few users share information in relation to

their sports interest and as to what inspires them, just 2.3% and 1.9% respectively. The

remaining interest-based attributes are made available by 10%-20% users. Finally, it is

worth to mention that personal attributes such as Friendlist, CurrentCity, Hometown or

Gender are more accessible than users’ interests.

4.2.4.2 Correlation of Facebook Attributes

We now turn our attention to the different groups that include all the users that disclosed a

particular attribute (e.g. CurrentCity), and how they correlate with the remaining personal

attributes. Table 4.2 shows the portion of users from a given group (columns) that share

one of the remaining attributes (rows). For instance, the value crossing Current City

column with Friend-list row means that 79.6% of the users in the CurrentCity group (i.e.

those users from our dataset with their CurrentCity attribute available) also disclose their

Friend-list. In addition, table 4.2 includes the results obtained from our main dataset,

referred to as All group (the first column in the table), for comparison purposes.

First of all we observe that all the analyzed groups present a larger percentage for their

available attributes than in All group, which implies that users that share one personal

attribute will likely share some other attributes. This assumption is supported by the

observation that 2/3 of Facebook users disclose more than one attribute, as previously re-

ported in this subsection. It is especially noteworthy that most of the users (71%) disclosing

their CurrentCity also make public their Hometown, and close to 74% of users that share
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their Hometown attribute also disclose their CurrentCity. This indicate that Facebook

users relate these two attributes together, and in case they share the place where they cur-

rently live, they also disclose the place where they were born. In fact, these two parameters

are the only ones that directly provides a physical location (i.e. College or employers can

provide location information but in an indirect manner), and it is clear that most Facebook

users providing location information tend to share both of these indicators. Therefore, we

can conclude that CurrentCity and Hometown attributes are highly correlated since 3/4 of

users disclosing one of these attributes will also share the other one.

We also find a significant correlation when we relate the employment and the education

attributes. The users composing the Employment group tend to also share some educational

information. In particular, 44% of the users that make their job information available also

show their College, and 31% identify their High School. This is also validated in the other

direction as 59% and 53% of users in the College and HighSchool groups, respectively, made

their employer available. In addition, as we would expect, the two education attributes

are highly correlated with each other. In contrast, user groups that are not related to

education or employment information show a much lower correlation to these attributes,

always below 38%, 28% and 21% for Employment, College and HighSchool, respectively.

This observation reveals that a large portion of Facebook users understand that employment

and education attributes complement each other, which is certainly obvious to anyone who

prepares their CV where professional experience and education are always included, and

often complement each other. Furthermore, the high number of users (44%) disclosing

their College within the Employers is significant even though 44% reflects less than half of

all, that figure is quite high given that a large number of users in Facebook that cannot

share their college because they simply never attended (or did not graduate). Then, that

44% is actually a very relevant number that roughly demonstrates that whoever indicates

their employer (or employment status) in Facebook and has obtained a University degree

wants to make it public. This hypothesis is validated by the fact that only 31% users

in the Employers group share its HighSchool, and obviously there are more users in the

Employers group who went to the High School than the ones who went to the University.

Previous statement is validated by the fact that 65% of users in HighSchool group also

report their College, whereas this portion is reduced to 50% for those users in College

group that also report their HighSchool information. Therefore, we can extract two main

conclusions from the correlation analysis between education and employment: (i) These

two attributes are clearly correlated in Facebook, and (ii) an important fraction of users

in Facebook understand that disclosing the University they attended does not imply any

privacy issue, instead they seem to believe it provides them with a good reputation.

In the Gender group we do not find any strong correlations, only very weak correlations
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with CurrentCity (42%), Hometown (36%) and Employers (23%) compared to the correla-

tions of the rest of the groups with these attributes. This would suggest that users sharing

their gender have strong privacy concerns with respect to their location and employment

information. Although we do not yet have any supportive argument to present with these

results, we think it is worth mentioning.

Finally, we cannot find any relevant correlation between the Friend-list and Birthday

groups and the other attributes. In a nutshell, we have found strong correlations between:

(i) the CurrentCity and Hometown attributes, and (ii) the education attributes, College

and HighSchool, between each other and with the Employment attribute. We believe that

the first correlation is because that users roughly perceive both parameters as location

information, so if they do not have privacy concerns with one, they also do not have an

issue with the other. Our hypothesis for the second correlation is that users, with anyone

preparing a resume, find that education and employment attributes complement each other.

4.2.5 Public Exposure of Facebook Users

To this point, we have performed an attribute-based analysis that has allowed us to under-

stand which attributes are more privacy-sensitive for Facebook users, and to identify the

correlation that exists (or not) among the different attributes. However, this analysis did

not account for the public exposure of Facebook users. Towards this end we need to perform

a user-based analysis. Instead of taking one attribute and counting how many users share

it, we now need to look at individual users and determine how many attributes (among

all those possible ones) she is disclosing. For that we take into account all 19 attributes

collected with our tool from a Facebook profile (Personal + Interest-based attributes). We

define a simple but functional metric named as Degree of Public Exposure (DPE), which

ranges from 0 to 19. Basically, we go through the 19 parameters and whenever one can be

accessed we sum +1 to the DPE value for that user. By defining this metric we are able

to easily compare the level of profile’s attribute openness without considering any kind of

difference between the attributes.

Table 4.3 shows the median and average value of the DPE metric for our main dataset,

as well as each of the previous attribute-based groups, while Figure 4.1 provides further

details of the DPE distribution for the different groups by means of a box plot graph that

shows the 25th, 50th (median) and 75th percentiles. If we first consider the results for

All group, we extract that a typical Facebook user presents an average DPE of 4.27. The

remaining groups (except for Friend-list and Gender) show an average DPE higher than

7. This means that users in these groups publicly disclose more than seven attributes. It

is worth noting that the users with a higher public exposure are those ones that share

their education information, i.e users in College and HighSchool groups, which present an
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Table 4.3: Median and Mean of DPE metric
Attribute Median Mean

All 3 4.27
Friend-list 5 5.61
Likes-list 7 7.11
CurrentCity 7 7.18
Hometown 7 7.35
Gender 4 5.26
Birthday 7 7.60
Employers 7 7.26
College 8 7.95
HighSchool 8 8.02

All Friendlist Currentcity Hometown Gender Age Job College HighSchool
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Figure 4.1: Box plot of DPE for categories

average DPE of 7.95 and 8.02, respectively. If we analyze the results shown in Figure 4.1,

we can observe that all the groups except All, Friend-list and Gender present a DPE 75th

percentile ≥10. This means that there are a relevant portion of users that disclose more

than 10 attributes. Therefore, those users may be very attractive for external entities since

they have a quite complete information regarding them.

In a nutshell, our results demonstrate that anyone can find substantial personal informa-

tion from Facebook profiles since it is publicly available. In particular, our results suggest

that if an entity wants to maximize the amount of information (i.e. attributes) retrieved

from Facebook profiles, she should target users disclosing their education information.

4.2.6 Examples of Public Facebook Information Usage

In this subsection we show three examples of how the information available in Facebook can

be used for different purposes. First we present a gender analysis to understand whether

men or women show a major predisposition to disclose personal attributes. Next, we use
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Table 4.4: Gender analysis per categories of attributes

attributes’ categories %Male %Female

All 51.33 48.67
Friend-list 53.99 46.01
CurrentCity 52.81 47.19
Hometown 54.05 45.95
Gender 51.33 48.67
Birthday 49.23 50.77
Employers 55.23 44.77
College 53.30 46.70
HighSchool 55.89 44.11

Table 4.5: Age of users with disclosed birthday

Age category % of users inside Birthday group

Teenagers (≤ 18) 0.85
Post-Teenagers (19 - 25) 48.29

Young (26 - 30) 27.22
Mature (31 - 50) 19.71
Senior (> 50) 3.93

the age information available in our dataset to depict the distribution of the users’ ages in

among Facebook. Finally, we use CurrentCity information to estimate the distribution of

worldwide population across cities according to their size, and crosscheck the result with

the data provided by the United Nations.

4.2.6.1 Gender attribute: Men vs. Women public exposure

In each attribute-based group we found users that provide their gender information and

study which portion of them are males and which portion females. Table 4.4 shows the

percentage of users for each gender and group. Male is the dominant gender for all the

attributes except Birthday. This seems to indicate that generally men are less concerned

about privacy issues than women, however the difference for most of the parameters is small,

and never goes above 11 percentage points. The higher differences occur for Employers

and HighSchool attributes. Finally, it is somewhat surprising that women share their age

information slightly more frequently than men, which contradicts the “cultural” assumption

that women tend to hide their age more often than men.

We can find many reports that explore gender differences in different disciplines like

sociology and psychology such as [115], etc, which in many cases has a large diffusion even

reaching general media. This example demonstrates that the publicly available information

in Facebook is a potential source of information for these types of studies.
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Figure 4.2: %Profiles in different age range

Table 4.6: Gender distribution in different categories of age

Age category % Female % Male

Teenagers (≤ 18) 62.67 37.33
Post-Teenagers (19 - 25) 54.83 45.17

Young (26 - 30) 48.10 51.90
Mature (31 - 50) 45.37 54.63
Senior (> 50) 37.54 62.46

4.2.6.2 Age distribution analysis

Analyzing the distribution of ages among those few users (i.e. 2.9% of the 479K) that

publicly share their birth date reveals some unexpected results. Figure 4.2 shows the

portion of users in our dataset belonging to each age from 13 to 107 (Facebook does not

allow accounts to be opened for users younger than 13). Surprisingly, we found very few

users ≤18 years old, and we did not find any Facebook rule that penalizes the disclosure

of birthdays for users less than 18 years old. The ages in the interval of 19-28 contain

more than 50% of the users revealing their age, with 21 and 22 the most represented

ages containing more than 8% of the users each one. From 28 years upwards we found an

exponential decrement, in some few cases reaching ages above 100. Particularly, we observe

that almost 0.5% users report an age of 107 (indicating1905 as their birthday year, which

at the time we collected the data was the oldest year allowed by Facebook). It is very likely

that these are fake ages introduced by users who do not want to provide their real age.

In order to provide aggregate numbers we have classified users into 5 different ages

groups : Teenagers (≤18), Post-Teenagers (18−25), Young (26−30), Mature (31−50) and

Senior (>50). Table 4.5 reports the portion of users included in each of these categories.

The results reveal that Teenagers very rarely (0.85%) disclose publicly their age, which

was totally unexpected statistic. In contrast, as the results confirmed our expectation that



CHAPTER 4. PROFILING REGULAR AND PROFESSIONAL IN MAJOR ONLINE
SOCIAL NETWORKS 91

Senior users, which are the ones less representative in OSNs like Facebook, would present

a low weight in the Birthday group. Therefore, the big majority of users sharing their age

belongs to he interval 18-50. In particular, Post-Teenagers between 18 and 25 years old

represent 1/2 of the users sharing their birthday, followed by Young that accounts 1/4 of

the users, and Mature group comprising 1/5 of the users from Birthday group.

The results in the previous subsection revealed that women share their age a bit more

often than men, and we want to check whether this is constant across different age cate-

gories. Table 4.6 shows for each age category the portion of users whose gender is male or

female. In the case of Teenage women expose their age much more than men. In the case

of post-teenagers we find 10% more women than men among the users disclosing their age.

The observed tendency changes for young people between 26-30 years old where we find

slightly more men sharing their age. This change of tendency is confirmed in the Mature

and Senior categories where there are 10% and 25% more men with open ages as com-

pared to women, respectively. In summary, we can conclude that there is a clear trend, the

younger the age group the larger the portion of women disclosing their age is as compared

to men, and the other way around, the older the age group the more the portion of men

disclosing their age.

As it happened for the gender analysis, there are other disciplines that use age groups to

perform different types of analysis. We have demonstrated that Facebook allows researchers

to easily identify users of particular ages who also have other personal and interest-based

attributes accessible.

4.2.6.3 CurrentCity population analysis

In this subsection we aim to validate the accuracy of a small sample of Facebook to compute

the distribution of worldwide population across cities according to their size. For this use

case we need to perform a more complex analysis than in the previous use cases where the

results were directly derived from our database.

We found 8.473 different cities in the CurrentCity attribute inside our dataset. We used

debepedia [116] (a crowdsourcing effort to extract structured information for Wikipedia)

in order to retrieve the population associated to those cities. We were able to identify

population for 1.840 cities that aggregately include 173,026 profile out of the users with open

CurrentCity attribute our database. We classify these cities into six categories according

to their population: <1K, 1K-10K, 10K-100K, 100K-500K, 500K-1M, 1M-5M, and >5M.

For each category we have extracted the portion of FB profiles (corresponding to those

cities) belonging to each class. Furthermore, we’ve used official statistics reported by the

United Nations (UN) in its 2011 World Urbanization Prospects report [106] (see page 25).

Unfortunately, this report only includes granularity for cities with more than 500k citizens.
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Table 4.7: Population distribution of Facebook (#Profiles) and world (#Inhabitants) in
different city size class

City Size Class (#Inhabitants) %Profiles (FB) %Inhabitants (UN) [106]

< 1K 0.14
1K - 10K 3.60

10K - 100K 18.50
100K - 500K 18.39 50.9 (<500k)
500K - 1M 8.78 10.10
1M -5M 33.04 21.30
> 5M 17.55 17.07

Table 4.7 collects the results for the FB and the UN report.

Facebook results reveal that less than 0.2% of users live in small villages with less than

1K inhabitants. Our hypothesis for this result is that people living in such small villages

is usually senior people (>50), which, as demonstrated in subsection 4.2.6.2, is very low

population in Facebook. Therefore, we believe this data may not reflect the reality. Larger

villages up to 10K citizens are reported by 3.6% of users. Again we think this data is biased

by the same reason explained before. Small towns going from 10K to 100K citizens and

big towns between 100k-500K inhabitants show the same portion of profiles, roughly 18.5%

each of them, so 37% both categories together. We found almost 9% of Facebook users

in cities from 0.5M to 1M citizens. Finally, cities above 1M users include more than 1/2

users, which are divided as follows. One-third of Facebook users report that they live in

cities with a population between 1M and 5M, and 17.5% of the users live in very big cities

with more than 5M.

Here we compare the Facebook results to the UN data in order to check the accuracy of

a small Facebook sample (i.e. users in our dataset belonging to those 1,840 cities for which

we were able to identify their population) to estimate the worldwide population distribution

across cities according to their size. First of all, our data is able to very accurately estimate

the portion of worldwide population in cities with more than 5M citizens. Furthermore, we

also found a quite accurate estimation of the population in cities whose population ranges

between 500k and 1M, since there is a discrepancy a bit higher than 1%. In contrast, we

found an important discrepancy for the case of cities between 1M-5M citizens and towns

whose population is less than 500k. In the former case our data assign 33% of Facebook

users to those cities, while UN data only reports 21%, a 12 percentage point difference.

This is aligned to the 11 percentage point difference for cities with less than 500k citizens,

since our data predicts 40% and UN data 51%. We believe that part of this deviation is

due to the small amount of users our data reports for villages below 10K users (less than

4%), since probably this portion is considerably larger in reality, but we believe people on

those villages shows a much lower penetration in the use of technology (including OSNs)
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and thus Facebook results are biased.

4.2.7 Conclusion

In this study with the goal of understanding the degree of Facebook profile’s informartion

disclosure, we study the privacy status of Facebook profiles by analyzing the profile’s at-

tributes disclosure degree in a dataset including 479K Facebook profiles publicly available

information that we have crawled from March to June 2012. The analysis of this data

reveals the following main insights about the disclosed information in Facebook profiles.

(i) Friend-list is the attribute with the largest public exposure, whereas Birthday attribute

is the one showing major privacy concerns from Facebook users. (ii) We find strong cor-

relations between Current City and Home Town attributes as well as (i.e. College and

HighSchool) and professional (i.e. Employers) attributes. (iii) In average Facebook users

make more than 4 attributes publicly available in their profiles. (iv) Men show a larger

public exposure as compared to women for all personal attributes except birthday. (v)

The more representative age range based on the public available information is 18-25 that

accounts for 1/2 of the users among those ones making its Birthday publicly available. (vi)

We show that Facebook accurately estimates the portion of people living in different class

of cities.
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4.3 Cross-posting activity of professional users across Face-
book, Twitter and Google+

4.3.1 Introduction

Online Social Networks (OSNs) have become one of the most popular services in the Inter-

net attracting billions of subscribers and millions of daily active users. This tremendous

success has created a very profitable market in which major OSN players have acquired

an important role on the current Internet. We can find three dominant OSNs according

to their number of subscribers: Facebook (FB), Twitter (TW) and Google+ (G+). While

these systems have been demonstrated to be very attractive to regular users that perform a

wide variety of social interactions on them, they also present a golden opportunity to pro-

fessional players (i.e. brands, politicians, celebrities, etc.) to interact with a huge amount

of potential customers/voters/fans to increase their reputation and popularity, to run mar-

keting campaigns, to attract voters, etc. In a nutshell, we can find a number of professional

players that are using OSNs with a similarly professional goal.

Most professional users do not limit their activity to a single OSN, but usually they

have accounts in multiple OSNs, including the most popular ones such as FB, TW and G+.

Then an interesting question is whether professional players use all OSNs in the same way,

or actually they use each OSN for different purposes. In other words, when a professional

user wants to advertise or notify some update, does she publish that information in several

OSNs?, or contrary, she publishes it in a single OSN depending on the type of information

(e.g., if it is a personal update she publishes a post in one OSN, but in case it is a com-

mercial update she selects another OSN). We refer to the information that a professional

player publishes in multiple OSNs as cross-posting activity. Therefore, if a professional user

publishes a post in FB and a post TW that contain the same information we consider them

as a cross-post.

To the best of our knowledge, although there are other works that have analyzed the

behaviour of regular users across two OSNs [117, 118], this study presents the first large

scale study on cross-posting activity of professional users across the three major OSNs,

i.e., FB, TW and G+. We analyze the activity of 616 (popular) professional users with

active accounts in the three referred OSNs. Among these users we can find big companies,

politicians, athletes, artists, celebrities, public institutions, etc. To perform the study we

have analyzed more than 2M posts distributed across the 616 users in TW, FB and G+.

The first contribution of this study is a simple yet efficient methodology that is able

to precisely determine whether two posts contain the same information, and thus classify

them as a cross-post. This methodology relies in a hierarchical algorithm implemented in

two steps. The first step applies NTLK Fuzzy logic [119] to compare a pair of posts, and
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provides a binary decision on whether they actually represent a cross-post. Those pairs of

posts obtaining a positive comparison are already classified as cross-post at this stage, while

the pairs failing in this comparison go to the second step of the algorithm. The second step

of the algorithm uses two metrics, cosine similarity [120] and string similarity [121], which

provides a similarity value ranging between 0 and 1 for each pair of posts under comparison.

Then the closer the similarity value is to 1 the more similar the posts are. We classify as

cross-post any pair of posts obtaining a similarity value ≥ 0.5 for both metrics, cosine

similarity and string similarity. The validation of our methodology shows an accuracy of

99% for the classification of cross-posts.

Based on this methodology, the first goal of the study is to characterize the cross-

posting activity of professional OSN users across FB, TW and G+. In order to achieve

this objective we perform a data analysis that allows us to shed light to three key aspects

of the cross-posting activity. (i) The first immediate question is whether the cross-posting

phenomenon actually exists, and if it exists what fraction of the activity from a professional

user is associated to cross-posting. (ii) In case the cross-posting activity is relevant, we

aim at understanding between which OSNs it is more frequent. This means, can we find

more cross-posts between FB-TW, FB-G+, or TW-G+? (iii) Finally, we measure what is

the benefit, if any, that professional users obtain from the cross posting activity in terms

of engagement.

Once we have characterized the cross-posting behaviour, we study which is the preferred

OSN of professional users as initial source to inject information. Indeed, when a professional

user decides to publish her updates first in an OSN than other, she is privileging the first

OSN that somehow is showing the “breaking news” for that user.

Finally, our last effort defines cross-posting behavioural patterns for users with some

representative characteristic that determines their profile. First, we characterize the be-

haviour of professional users with a strong preference for initiating their cross-posts in a

particular OSN using three metrics: (i) similarity of their cross-posts, (ii) type of content

associated to the cross-post they publish, and (iii) sites more frequently linked by the urls

contained in their cross-posts. In addition, we repeat the analysis but classifying the users

based on their median inter-posting interval, which refers to the time gap between the

moment they publish the cross-post in the first OSN and the instant it is uploaded in the

second OSN.

Following, we list the main findings of our research:

(1) Cross-posting is a frequent practice across professional users. In median a professional

user share in other OSN 25% of the posts published in FB and G+, and only 3% of the

tweets. However, we must note that professional users are much more active in TW than

FB and G+, hence, in absolute terms, the TW account of professional users generate a
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larger volume of cross-posts than G+ accounts and similar volume to FB accounts.

(2) The cross-posting phenomenon mainly happens between FB and TW, but it is also

relevant between FB and G+. However, it is surprising that is more likely to find a cross-

post published in FB, TW and G+, than only in TW and G+. Therefore, professional

users do not find any benefit on sharing information between their TW and G+ accounts.

(3) Professional users obtain a substantial benefit in FB and TW when they publish cross

posts since they attract 30% and 100% more engagement as compared to non-cross-post.

However, in the case of G+ non-cross-posts attract 2× more engagement than cross-posts.

(4) Among the 616 analyzed users 50% prefer FB as most frequent option to initially upload

their cross-posts, 45% prefer TW, and only 5% give priority to G+.

(5) Professional users with a strong preference for TW publish cross-posts that: (i) are very

similar across the different OSNs, (ii) mostly includes textual content, and (iii) mostly

include links to websites different than OSNs sites.

(6) Professional users with a strong preference for FB publish cross-posts that: (i) mostly

includes audiovisual content, and (ii) mostly include links to content stored in major OSNs

sites.

(7) As the inter-posting interval decreases: (i) the similarity of cross-posts increases, (ii) the

portion of audiovisual content attached to cross-posts decreases, (iii) and a larger portion

of urls included in cross-posts refers to major OSNs sites.

4.3.2 Related Work

There exist several works that have studied the graph and connectivity properties of Face-

book, [2–4], Twitter [5, 6], and Google+ [7, 8]. In addition, there are other works in the

literature that compare two or more OSNs based on their graph properties [10, 17]. How-

ever, these works do not consider the same users in the different OSNs for their analysis

since their goal is to characterize OSNs at a macroscopic level.

There are only few works that try to characterize the behaviour of the same user or

group of users across different OSNs. The main reason is that it is not an easy task

to identify and collect the information of the same users across different system and, in

addition, it requires to have one data collection tool for each system. There are some few

tools and platforms available in the market [122, 123] that provide some few information

(for free) of a given user across different OSN. However, that information is usually limited

to the number of followers, the number of published posts, aggregated engagement and/or

popularity trends. Therefore, these tools do not provide enough detail on the activity of a

user to perform a comprehensive analysis of its behaviour in different OSNs.

Nevertheless, some few studies in the literature have analyzed the behaviour of the

same users across different OSNs. Authors in [118] compare 195 users from the archival
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community and study their activity pattern in TW and FB. This is a small-scale study

based on 2,926 links to external documents. In [124], we find again a comparative analysis

for users having accounts in FB and TW. This work studies the behaviour of 300 users

from a psychological perspective and the results reveal a correlation between end-users

personality and their use of FB and TW. Finally, the most similar work to our study is

a very recent study [117] that compares the behaviour of 30,000 regular users across TW

and Pinterest. Although this study similar in spirit to our work, we differ from [117] since

we are focusing in professional OSN players instead of regular users, and we are comparing

TW, FB and G+ instead of TW and Pinterest.

4.3.3 Data Collection Methodology

This section briefly explains our data collection methodology to construct the required

dataset to achieve the objectives addressed in this study.

Our first challenge was to identify a numerous group of relevant professional users

having active and popular accounts across FB, TW and G+. To this end, we rely on a

large dataset that includes thousands of professional and regular users with an account in

the three OSNs collected for a previous work [125]. From these users we were interested in

those ones that meet two requirements: (i) have an active account in FB, TW and G+; (ii)

present a high popularity in at least two of the systems. We found 616 professional users

that satisfy the popularity requirement. We validated that the selected users were actually

relevant in all the three OSNs by means of an external source [122] ranks professional

users in each system in terms of popularity. Subsequently we briefly introduce the crawlers

developed to retrieve the activity of the professional users from each OSN. For more details

on these crawlers we refer the reader to [9, 125]:

FB crawler We have implemented a Crawler Facebook fan pages based on the FB API2

which is able to collect different information for a user including its popularity, activities

and reactions. The crawler receives a user ID (or username) as input and uses the FB API

to collect the posts published by the user in her FB account. The API provides quite a lot

information from a post from which the most relevant for our study is: (i) the description

of the post that refers to the text included by the user in that post, (ii) the timestamp

associated to the exact publication time of the post, and (iii) the type of content associated

to the post, which could be photo, video, link (when the post includes an url) and status

(that refers to the post that only include text). It must be noted that FB API imposes

a maximum threshold of 600 queries every 10 minutes. Hence, in order to speed up our

data collection process, we used multiple instances of the crawler working in parallel. In

2https://developers.facebook.com/tools/explorer/
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summary our developed crawler is able to gather two category of information: i) user level

information as shown in table 4.8 and ii) post level information as shows in table 4.9.

Table 4.8: FB Users attributes collected by the crawler
Category Information
Page Information Crawler Page Name
(per Page) Page ID

Page #fans
Page #people talking about
Page Category

Table 4.9: FB Posts’ Attributes collected by the crawler
Category Information
Post information Post ID
(all this information is per Post) Post type

Post Description
Post Created Time
Post Updated Time
Post total #Likes
Post total #Comments
Post total #Shares

User’s Like Info. user id who put Like in the post
(per Post) user name who put Like in the post
User’s Comment Info. user id who put comment
(per Post) user name

comment ID (one unique ID per comment)
user comment’s text (the context of the comment)
User comment’s Created Time
User comment’s Like Count (#likes that other users put for the comment)

It should be noted that the Facebook API has several limitations in terms of number of

queries and the amount of information that can be retrieved from it. Firstly, for gathering

posts information, the crawler needs to access the API using an access token that has

its own limitations. The API queries are limited to 600 queries per 600 seconds for each

access token that we use to connect to API. As all our crawlers are based on the API,

this limitation applies to all of them. This is mitigated by using different machines (with

different IP addresses) to make it in parallel. Secondly, FB API only provides the identity

of the last 5K users that clicked on the button like for a post, and the last 1K users

commenting on the posts. This means that for posts that are very popular and attract

more than 5K likes and/or 1K comments we are just able to gather the identity of the last

users that reacted to the posts.

TW crawler In collaboration with ONRG team3 in University of Oregon, we had access

to their Twitter crawler and collected required datasets for this research. The crawler

receives as input a user identifier that can be either the user’s id or the user’s screen name

and queries the Twitter API to obtain the user’s profile attributes, the total number of

3Oregon Network Research Group, http://mirage.cs.uoregon.edu/index.html

http://mirage.cs.uoregon.edu/index.html
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Table 4.10: Dataset description
OSN total posts avg. posts per user
FB 422 K 685
G+ 173 K 280
TW 1.64 M 2664

published tweets, and the last 3,200 tweets posted by the user along with the number of

reactions associated with each one of the user’s tweets, except the responses (i.e., comments)

for a tweet. Consequentially if a user has published more than 3,200 tweets we can only

retrieve the last 3,200. Twitter imposes a limit of 150 requests per hour per IP address.

To overcome this limitation, we use PlanetLab [126] infrastructure to parallelize our data

collection process. Specifically, our crawler sends requests to TW API using approximately

450 PlanetLab machines as proxies, so that we can multiply the speed of our data collection

in proportion to the number of used proxies.

G+ Crawler In collaboration with people from NETCOM group4 in Universidad Carlos

III de Madrid, we had access to their G+ crawler and we have collected required datasets

for this research. This crawler is composed by two modules. The first one collects the

public profile information as well as the connectivity information of all the users in the

largest connected component (LCC) of G+. This module is a web-crawler that parses the

web page of G+ users to collect the previous information. The second module uses the G+

API to collect all the public posts as well as their associated reactions. Google limits the

number of queries to the G+ API to 10K per hour per access token. In order to overcome

this limitation we have created several hundred accounts with their correspondent access

tokens and leverage the proxies infrastructure in PlanetLab explained above to speed up

our crawling data collection.

Table 4.18 summarizes the datasets used in this study. In total, we analyze more than

2M posts published across 616 professional publishers in FB, TW and G+. Finally, it must

be noted that the collection campaign finished on May 2013, thus our dataset may not

include novel features released by any of the analyzed OSNs after that period.

4.3.3.1 Methodology to Identify Cross-posts

In order to being able to compare cross-posting activity of professional users we need

to have an accurate mechanism that detects when two posts are actually containing the

same information. For instance, a given user could upload a post in FB and TW which

refers exactly to a recent event, but in the case of FB she uploads a picture and in TW

she adds a link to the picture. In other words, a tool that only detects as cross-posts

4NETCOM Research Group, http://netcom.it.uc3m.es/

http://netcom.it.uc3m.es/
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those posts that are exactly the same in two OSNs is inaccurate for our research. Hence,

we have implemented a hierarchical classification algorithm that determines whether two

posts can be considered as cross-posts in two steps. Then, given the description (i.e. the

text associated to a post) of two posts, P1 retrieved from the account of user U in OSNA

and P2 published by U in her account of OSNB, our algorithm proceeds as follows:

(1) We compare P1 and P2 using NTLK Fuzzy Match [119] that provides a binary

decision based on the similarity of the compared texts. NTLK Fuzzy Match generates a

positive answer (i.e., same text) when both texts are very similar and only differ in some

few characters. Therefore, in the context of cross-posting analysis if NTLK Fuzzy Match

determines that P1 and P2 are similar, we can safely classify them as cross-post. However,

in the case that the output is negative we cannot guarantee that P1 and P2 are not referring

to the same information, thus we cannot classify them as non-cross-post. In summary, all

the pairs of posts receiving a positive classification are labelled as cross-posts while the

remaining pairs need to go through the second step of our algorithm.

(2) We compare P1 and P2 using two similarity metrics: cosine similarity [120] and

string similarity [121]. These two metrics provide as output a value ranging between 0

and 1, so that the closer is the output to 1 the more similar P1 and P2 are. Based on

the obtained results, we classify P1 and P2 as cross-post if both metrics, cosine similarity

and string similarity, are ≥ 0.5. Later in this section we validate our methodology and

demonstrate why we have selected the 0.5 threshold.

The previous algorithm serves to classify any pair of posts as cross or non-cross based

on their description. In addition, we must note that our algorithm is not bound to any

particular alphabet, so it can be applied in multiple languages. However, the use of the

hierarchical algorithm is not enough for the purpose of this research. Following we describe

two more elements we had to integrate in our methodology to ensure the accuracy of the

results obtained in the study.

First, we had to define which pairs of posts should be compared together. A straight-

forward solution had been to compare, for a given user, each post in FB to all posts in TW

and all posts in G+. However, that option would be inaccurate because we have observed

that some users utilize repetitive patterns over time. For instance, we found a user that

publishes frequently posts with the content “love you my fans”, thus following an all to all

comparison approach would lead to a wrong classification for quite a lot cross-posts. In

order to be accurate and efficient we applied the following methodology. Given a post PFB

published by a user U in her FB account at the timestamp tFB, we compare PFB with all

the posts that user U published in her TW and G+ accounts in a time window starting

one week before and finishing one week after tFB. In other words, we compare each post

in a time window of two weeks around the date that post was published.
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Table 4.11: Methodology validation, false positive (FP) and false negative (FN) rates of
different similarity threshold (ST) in our cross-posting identification methodology.

ST>0.3 similarity ST>0.5 similarity ST>0.7 similarity
FP FN FP FN FP FN

15.006 0.194 0.140 1.117 0.016 4.593

Second, TW API limits the number of retrieved posts for any user to the last 3,200

posts she published, while FB and G+ do not have that limitation and provide all the posts

published by the user since she registered in the system. Hence, it may happen that for

a given user we only have 6 months of posts for TW, but several years for FB and G+.

Therefore, in this case it only makes sense to analyze that user for the last 6 months because

we would not be able to determine if the information associated to a post published in FB

or G+ one year ago was also available in TW at that time. Hence, in order to perform an

accurate study, we have restricted our cross-post analysis to the time window imposed by

the limitation of TW API for each user in our dataset. It must be noted that the number

of posts depicted in table 4.18 already consider this limitation.

We applied the described methodology to the selected 616 OSN professional users and

we found 176K cross-posts across their OSNs accounts.

Methodology Validation In order to ensure the accuracy of the proposed methodology

3 persons manually classified 12.8K random posts as cross-posts or non-cross-posts. In order

to have a meaningful validation set we ensured that half of the posts had been labelled as

cross-post and half as non-cross-posts by our classification tool. Then, given two posts

published by a user in two different OSNs we classify them as a cross-post if at least 2

out of the 3 persons performing the manual inspection indicate that both posts contain

the same information. This allows us to obtain a ground truth set to determine the false

positive and false negative rate of our methodology. A false positive occurs when our tool

classifies as cross-post two posts (published by the same user in two different OSNs) that

are actually referring to a different piece of information. A false negative happens when

our tool classifies as non-cross-post two posts that actually contains the same information.

Based on the ground truth set we compute the false negative and false positive rate for

our methodology using three different thresholds for the second step of the algorithm: 0.3,

0.5 and 0.7. Basically, a lower threshold requires less similarity between the compared posts

to classify them as cross-post. Table 4.11 shows the false positive and false negative rate for

our algorithm when it uses each of the evaluated thresholds. The results clearly determine

that 0.5 is a very good threshold since it presents a very low rate for false positives (0.14%)

and false negatives (1.11%). However, on the one hand, a threshold of 0.3 imposes a very

low similarity to classify two posts as cross-post and thus it presents an unacceptable false
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Figure 4.3: (a) CDF for the portion of cross-posts per user in FB, G+ and TW. (b) CDF
for the portion of cross-posts and in each possible cross-posting pattern (FB-TW, FB-G+,
TW-G+ or FB-TW-G+).

Table 4.12: median and average values for absolute number (and percentage) of Cross posts
across users in FB, G+ and TW

#Cross Posts Portion of cross posts (%)
OSNs Median Average Median Average
FB 114 231 26.42 32.14
G+ 20 83 24.50 29.31
TW 85 196 3.34 7.36

positive rate (15%). On the other hand, a threshold of 0.7 is too strict and it skips some

pairs that actually contains the same information and classify them as non-cross-posts,

thus presenting a poor false negative rate (4.5%). Therefore, based on this experimental

validation of our methodology, we decided to establish a threshold of 0.5 in our algorithm.

4.3.4 Cross-Posting Characterization

The first question we aim to answer in this section is whether the cross-posting phenomenon

exists in the activity of professional users, and what is its weight in FB, TW and G+. Sub-

sequently, we look at how this cross-posting occurs among the three OSNs under analysis.

To this end, we quantify what is the volume of cross-posting happening between FB-G+,

FB-TW, TW-G+ and FB-TW-G+, in order to determine what pair of OSNs is actu-

ally sharing more common information. Finally, we also want to characterize the impact

of cross-posting in the attracted engagement measured in terms of likes comments, and

shares.
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4.3.4.1 Quantification of cross-posting activity

The goal is to quantify the cross-posting phenomenon for professional users in FB, TW

and G+. Towards this end, we compute for each user and each OSN the portion of cross

posts with respect to all the posts each user has published. For instance, given a user U

and her FB account we compute how many posts published in that account also appear in

TW, G+ or both. We quantify the same parameter for the TW and G+ accounts of user

U5.

Figure 4.3(a) shows the CDF for the portion of cross posts across the 616 users analyzed

in the three OSNs. The x axis refers to the portion of posts and the y axis to the portion

of users. For instance, the point {x=0.2, y=0.4} in the line associated to FB indicates that

40% of the users have ≤ 20% of cross-posts in their FB accounts.

The first immediate conclusion extracted from the graph is that most of the professional

users have published some cross-post. In particular, when we consider FB accounts we find

that only 6% of the users do not have any cross-post, which means for those users the

information published in FB cannot be found neither in TW nor in G+. This number

grows up to 15% and 28% for G+ and TW, respectively. Therefore, a vast majority of

professional users published some cross-post at some point. Hence, the first conclusion is

that in general professional users find some value on the cross-posting activity.

If we compare the results obtained for the three OSNs, we clearly observe that, in

relative terms, the cross-posting activity is more frequent for those posts published in FB

and G+ than in TW. The results for TW show that most of the tweets are not replicated

neither in FB nor in G+. The median value, which shows the typical portion of cross-posts

for a user in each OSN, shows that for a typical professional user around 1/4 of the posts

that appear in FB and 1/4 of the posts that appear in G+ are also available in at least one

more OSN. However, in the case of TW, out of 100 tweets only 3 of them are replicated

in other OSNs. Finally, we can find quite a lot professional users with an intensive cross

posting activity. In particular, 25%, 23% and 1.5% of the analyzed users, in FB, G+

and TW, respectively, have published more cross posts (i.e., ≥ 50%) than posts appearing

exclusively in a single OSN. We refer to these posts as non-cross-posts.

The previous analysis refers to the cross-posting activity in relative terms. However, it

is important to notice that, according to the overall activity of the professional users in our

dataset, the publishing rate of professional users in TW is 4× higher than in FB and G+.

Table 4.12 presents the median and average values for the absolute number and portion of

cross-posts per user in each OSN. The results reveal that although TW presents a much

lower cross-posting activity in relative terms, it actually has a larger number of cross-posts

5 It must be noted that for this analysis we do not take into account where the post appears first, but
only consider whether it is unique in an OSN or it appears in 2 or 3 of them.
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than G+, and it is much closer to FB in absolute cross-posts number.

4.3.4.2 Inter-OSN Cross-Posting

Once we have demonstrated that cross-posting is a common practice among professional

users in FB, TW and G+, we analyze how cross-posting happens among them. Then,

our goal is to find whether professional users prefer to share things in FB and TW, or

rather it is more frequent finding common posts in FB and G+, or actually there are lots

of cross-posts published in TW and G+.

In order to perform this analysis we proceed as follows. For a given user U we get all

her cross-posts in FB (independently whether the first appearance happened in that OSN

or another one) and compute which portion of them also appears in TW, which portion in

G+ and which portion in both TW and G+. We repeat the same process for the TW and

G+ accounts of user U . Therefore, for each user we know what is the cross-posting level

for the following relations: FB − TW , FB −G+, TW −G+ and FB − TW −G+.

Figure 4.3(b) shows the CDF for the portion of cross-posts that occurs for the four

referred relations across the users in our dataset. Again in this figure the x axis refers to

portion of posts and the y axis shows the portion of users. Then for instance the point

x=0.4, y=0.3 in the FB − TW line indicates that 30% of the users publish ≤40% of their

cross posts in FB and TW.

The results in the figure demonstrate that professional users perform much more cross-

posting between FB and TW than in any other combination of OSNs. This claim is

supported by the fact that in median a professional user publishes 70% of their cross-posts

in FB and TW. In addition, we can only find 8% of the users that never shared a post

between their FB and TW accounts, while this value grows to 30% between FB and G+,

to 40% for the case in which the three OSNs are involved, and to 55% when we consider

TW and G+. Therefore, this last result surprisingly states that is more likely that a user

publishes the same posts in the three OSNs than only in TW and G+.

In a nutshell, we can find more cross-posting between FB and TW (in either direction)

than with G+, while the specific cross-posting between TW and G+ (in either direction)

appears as the least preferred option, since users prefer to publish the information in all

the 3 OSNs than only in TW and G+.

4.3.4.3 Engagement Analysis

A plausible reason of why professional OSN users publish the same information across

different OSNs is to try to increase the coverage in order to engage as many end-user as

possible within their accounts. Therefore, in this subsection we want to conclude whether

cross-posts achieve more engagement than non-cross-posts in FB, TW and G+. In order
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Figure 4.4: Users’ average attracted engagement per post, for cross posts initiated in each
OSNs vs. non-cross posts.

to measure the engagement we use standard reaction mechanisms available for end users in

OSNs: likes, comments and shares6. As we acknowledge in Section 4.4.3, our TW collection

tool could not retrieve comments. These reaction mechanisms allow professional users to

interact with end-users through its OSN account and obtain a very valuable first-hand

feedback from them. Therefore, engaging as many end-users as possible is an important

goal for professional OSNs users.

In order to measure the efficiency of cross-posts to attract engagement in one OSN

we measure, for a given user U , the average engagement for U ′s non-cross-posts and U ′s

cross-posts initiated in that OSN in terms of likes, comments and shares. We apply this

methodology to all the users for their FB, G+ and TW accounts.Figure 4.4 shows a scatter

plot for FB, G+ and TW for each of the engagement type: likes (Figure 4.4(a)), comments

(Figure 4.4(b)) and shares (Figure 4.4(c)). Each point in the graphs represents a user with

an x coordinate referring to the average engagement for non-cross-posts and y coordinate

referring to the average engagement for cross-posts initiated by that user in that OSN. In

addition, all the figures include three lines (one per OSN) showing the linear regression for

the cloud of points represented by an equation7 of type y = ax. When the slope of the linear

regression, represented by the value of a, is greater than 1, it means that for that OSN

cross-posting is worthy since cross-posts attract more engagement than non-cross-posts in

average.

The results demonstrate that cross-posts in FB and TW allows professional users to

attract more engagement than non-cross-posts. However in the case of G+ cross-posts

6This is the nomenclature employed in FB. A like is associated to a +1 in G+ and to a favourite in TW.
A share is associated to reshare in G+ and a retweet in TW.

7Usually a linear regression is represented as y=ax+b, but in the figure we just use y=ax, since we are
interested in the slope, but not in the offset
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Table 4.13: Cross-Posts initiated in FB, TW and G+.
OSN #Posts %Posts
FB 74355 42.17
G+ 12002 6.81
TW 80497 45.66
other 9451 5.36

receive considerably less attention than non-cross-posts. In more detail, a FB user attracts

39% more likes, 32% more comments and 21% more shares in FB when she uses cross-posts

instead of non-cross-posts. In the case of TW cross-posting provides even more benefit.

This is, a cross-post initiated in the TW account of a professional user attracts 2.47× and

2.1× more likes (i.e., favourites) and shares (i.e., retweets) than a non-cross-posts. Finally,

in the case of G+ a cross-post roughly achieves 1/2 of the likes (i.e, +1’s), 1/3 of the

comments and 1/3 of the shares compared to non-cross-posts. Therefore, cross-posting

seems to be a bad strategy if the goal of a professional user is to attract as many reactions

as possible in G+.

In summary, cross-posting exists and it is a frequent practice across professional users in

FB, TW and G+. It mostly happens between the FB and TW accounts of professional users,

and it very rarely occurs between TW and G+. Finally, in terms of attracted engagement,

cross-posting is beneficial in FB and TW, but not in G+.

4.3.5 Preference of Professional Publishers

Professional users utilize OSNs to interact with their followers and share with them more or

less relevant information. In previous section we have demonstrated that quite frequently

an end-user can find the same information in two (or more) OSNs. Based on this finding,

in this section we tackle two interesting questions. First, we want to know in overall which

OSN is used more frequently as first option to publish fresh information that later will

be republished in other OSNs. Second, we want to understand what is the OSN that

professional users prefer to publish first the information. Answering the first question will

determine which OSN is used more times as source of cross-OSN information, while the

response to the second question will roughly determine what is the OSN that professional

users value more to publish first their fresh updates.

4.3.5.1 OSN-based Analysis

Table 4.13 shows the number and portion of cross-posts in our dataset that were initiated in

FB, TW and G+. The results demonstrate that TW appears as initial source of information

for 45% of the cross-posts closely followed by FB with 42%, while G+ is rarely chosen as

first option. Finally, we find a very interesting result associated to the category “other”

that represents those cross-posts that could not be assigned to a particular OSN since they
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Table 4.14: Portion of cross-posts published for first time in FB, TW or G+ for different
cross-posting patterns: FB − TW − G+, FB − TW . FB − G+, TW − G+. The table
also includes the portion of posts that are published in at least two OSNs at the same time
(i.e., exact timestamps)
cross-posting pattern #Posts %Posts %FB (1st) %G+ (1st) %TW (1st) %posts with same publishing time

FB - G+ - TW 18619 10.56 34.93 12.32 49.80 2.95
FB - G+ 34337 19.48 73.68 24.07 - 2.26
FB - TW 117276 66.52 36.28 - 56.80 6.92
G+ - TW 6073 3.44 - 23.79 75.96 0.25

Table 4.15: Preferred OSN per user
OSN #Users %Users
FB 307 50
G+ 30 5
TW 275 45

were published exactly at the same time (i.e., same timestamp) in at least two OSNs. It is

surprising that almost 10K cross-posts, which represent 5.3% of all the cross-posts in our

dataset, experienced this parallel publication. This reflects the use of automatic publishing

tools that upload in parallel some information to two or more OSNs.

As we determined in the previous section, most of the posts are not published in all the

three OSNs, but just two of them. Therefore, it is interesting to analyze for each particular

publishing pattern which OSN appears more frequently as initial source of information.

Table 4.14 shows the results for all the possible cross-post patterns: FB − TW − G+,

FB − TW , FB − G+ and TW − G+. First of all, the results confirm the conclusion

obtained in the previous section since 2/3 of the cross-posts appear exclusively in FB and

TW, 1/5 belong to the category FB−G+, and as we already stated it is more likely finding

cross-posts across the three OSNs (10%) than only across G+ and TW (3.4%). In the most

popular category, i.e., FB−TW , TW appears as first option for 57% of the posts while FB

is chosen in first place only 36% of the times. When G+ competes individually either with

FB or TW, it is source of information only 1/4 of the times. For those posts published in

the three OSNs, 1/2 of them appear first in TW, 1/3 in FB and 1/10 in G+.

Finally, we want to highlight that all the categories include some portion of posts that

where published in parallel at the same exact time in two OSNs. This phenomenon is

especially relevant for cross-posts between FB − TW .

In summary, the OSN-based analysis demonstrates that Twitter is the OSN selected

as initial source of information more frequently. FB appears as the second option close to

Twitter. Finally, G+ is the least preferred option.
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Table 4.16: Users classification based on different OSN preference criteria: (i) users
initiating 100% of their cross-posts from one OSN; (ii) users initiating ≥80% of their cross
posts from one OSN; (iii) users starting <50% of their posts from all three OSNs.

Criteria #User #FB %FB #G+ %G+ #TW %TW
100% 32 11 1.79 2 0.32 19 3.08
≥80% 182 75 12.18 5 0.81 102 16.56
<50% 95 - - - - - -

4.3.5.2 User-based Analysis

The OSN-based analysis revealed that Twitter is chosen as first option for a larger number

of cross-posts. However, we cannot extract from that analysis that TW is the preferred

OSN for most of the users, since it may happen that very active users contributing a large

number of posts prefer TW but less active users prefer FB or G+. Therefore, in this section

we analyze which is the preferred OSN for professional users. For a given user its preferred

OSN is the one she selected in first place for a major number of posts. For instance, if a

user has generated 20 cross-posts from which 10 were first published in FB, 6 in G+ and

4 in TW, we define FB as the preferred OSN for that user. Table 4.15 shows the number

and portion of users in our dataset that prefer each OSN. The results reveal that half

of the professional users prefer FB, closely followed by 45% of the users that prefer TW,

while only 5% of the users chooses G+ as initial OSN for publishing their post. Therefore,

FB and TW has exchanged their positions as compared to the OSN-based results. As we

indicated above, the difference between the post-based and user-based results comes from

the fact that users tend to be more active in TW.

Once we have classified professional users’ preference, a subsequent question is, can we

find users that shows a strong preference for a particular OSN? In other words, are there

users that utilize as source of information one single OSN for most of their cross-posts?

Table 4.16 shows the number and portion of professional users in our dataset that choose

either FB, TW or G+ to initiate 100% or 80% of their cross-posts showing a clear strong

preference. In addition, we also quantify the number and portion of users that publish in

first place less than 50% of their posts in all three OSNs and thus do not show any strong

preference. We can find 19, 11 and 2 users that always choose TW, FB and G+ as initial

source for their cross-posting activity, respectively. If we move down the threshold to 80%

the number of users showing a clear evidence of which OSN they prefer grows a lot for FB

and TW, but not for G+ that only accounts for 5 users. There are 75 (12.18%) users with

a preference for FB and 102 (16.56%) with a noticeable preference for TW. In contrast

to these users showing a clear OSN preference, we can find 95 (15.4%) users that are not

biased towards any OSN, even though they make use of cross-posts.

In summary, professional users are (more or less) equally divided into those that prefer
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Figure 4.5: Cross-posting behaviour characterization based on professional users preference.

TW and those that prefer FB, and very few cases that show a preference for G+.

4.3.6 Cross-posting Behavioural Patterns

We have fully characterized the cross-posting phenomenon as well as what is the preferred

OSN for professional users in the context of cross-posting. To finalize this study we want

to explore the presence of explicit differences in the cross-posting activity for groups of

users presenting different but well defined profiles according to a given characteristic. We

will focus on two characteristics: (i) OSN preference and (ii) inter-posting interval. First,

the goal is to determine whether there are significant behavioural differences in the cross-

posting pattern for professional users showing a strong preference for TW, professional

users showing a strong preference for FB and agnostic users. Second, we separately analyze

whether professional users publishing their cross-posts in two OSNs in a short time window

show some behavioural differences compared to users that delay a lot the publication of

the cross-posts in the second OSN. We refer to the time window between the publication

in the first OSN and the second OSN as inter-posting interval.

We characterize the cross-posting behaviour using three parameters that will help to

determine the difference among the profiles we are comparing. These parameters are: (i)

the cross-post similarity value obtained from the methodology described in Section 4.3.3.1,

(ii) the type of content associated to the cross-posts according to the category assigned

by the FB API to the posts, (iii) the website associated to the urls contained within TW

version of the cross-posts (i.e., tweets).

Due to lack of space we will perform this analysis for the cross-posts shared between FB

and TW that, as Table 4.14 depicts, represent 66% of the total cross-posts, which increases

to more than 75% if we also consider the cross-posts that appear in the 3 OSNs (thus also

in FB and TW).
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4.3.6.1 Cross-Posting behaviour based on Preference

We create three groups of users according to the results obtained in the previous section

(see Table 4.16). The first group, referred to as TW-favourite, is formed by the 102 users

that show a strong preference for TW. The second group, referred to as FB-favourite is

formed by the 75 users showing a clear preference for FB. Finally, the last group is formed

by the 95 “agnostic” users that do not show any strong preference, and we refer to it as

Agnostic. Next we characterize the cross-posting pattern for these four groups based on

the three characteristics introduced at the beginning of this section.

Figure 4.5(a) shows the CDF for the cross-post similarity across the users in the three

groups. The results show that the users with a strong preference for TW publish more simi-

lar cross-posts between FB and TW than the users that prefer FB. In median TW-favourite

group achieves an average similarity close to 80%, while FB-favourite and Agnostic groups

reach a median similarity a bit higher than 70%.

In order to classify the type of content embedded in the posts we rely on the content

type assigned by the Facebook API to each post that can be: text, link, video or photo. It

must be noted that posts classified as photo or video by FB API may not include the video

or photo in TW, but a link to them. Figure 4.5(b) shows a bar plot presenting the average

portion of each type of content published within each group. We observe a substantial

difference between FB-favourite and TW-favourite groups. Users that prefer FB attach

photos to half of the cross-posts. Even more, users in this group are the ones that publish

a larger portion of videos. In contrast, TW-favourite group includes users that publish

much less photos and videos (36% and 7% in average, respectively), but much more posts

including only text (35% in average). The agnostic users ranges in between FB-favourite

and TW-favourite.

Finally, we want to find what are the sites more frequently linked from the cross-posts.

For this we rely on the urls included in the TW version of the cross-posts (i.e., tweets)8

We have found that the most popular websites linked from cross-posts are actually

OSNs. In particular, the most linked sites are Facebook, Twitter, Youtube and Instagram.

It must be noted that a link to those websites refers in most of the cases to some content

(e.g. photo, video, etc) stored in that OSN. Based on these results we analyze the portion

of urls linking to those four sites and we group together the remaining urls in a category

referred to as Other.

Figure 4.5(c) shows a bar plot depicting the average portion of posts including a url

linking to Facebook, Twitter, Youtube, Instagram, and Other. Again the results show

8TW usually employs short urls. Hence, to obtain the website behind the short urls we had
to reverse the process and obtain the original urls from the short urls using “Expand url portal”
(http://expandurl.appspot.com/expand?url=http)
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Figure 4.6: Cross-posting behaviour characterization based on inter-posting interval.

different patterns for users preferring FB and users preferring TW. For users in the former

group 60% of their urls point to one of the four OSNs, with a clear preference for FB

(26%) and TW (22%) and a negligible presence of Instagram. In contrast, for users in

TW-favourite group more than 60% of the urls link to websites different than the four

main OSNs. However, among the OSNs, Instagram is the most popular one (22% of the

urls) while the number of urls for FB is negligible. Agnostic users are the users including

a larger portion of urls to “Other” websites (almost 70%).

In a nutshell, the cross-posting profile of a TW-favourite user is as follows: (i) she

has a higher similarity for the cross-posts, (ii) she publishes more textual content than

audiovisual content, and (iii) she links more frequently websites different than OSNs, but

across OSNs it mostly link content in Instagram. In contrast, the profile of a FB-favourite

user is as follows: (i) she mostly publishes audio-visual content, and (ii) she mostly con-

tains ursl linking content stored on major OSNs, especially stored in FB and TW. Finally

agnostic users show an intermediate behaviour between the TW-favourite profile and the

FB-favourite profile.

4.3.6.2 Cross-Posting behaviour based on Inter-Posting Interval

We have shown that professional users present different cross-posting pattern depending

on the preferred OSN. Similarly, in this section we explore whether the inter-posting in-

terval time reveals different cross-posting profiles as well. Towards this end we group the

professional users in our dataset based on the inter-posting interval between FB and TW

(independently of the direction). In order to create the groups we apply the K-means clus-

tering algorithm [127] using as parameter the median inter-posting interval of each user.

We use this mechanism to discover all the groups, except one that we form manually.

The reason for creating a manual group responds to the fact that more than 5% of the
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Table 4.17: Average and maximum cross-posting interval within Automatic, Quick,
Moderate and Slow groups.

Groups #Users Avg(inter-posting interval) Max.
Automatic 69 2.3 Minutes 68 Minutes
Quick 159 8.3 Minutes 87 Minutes
Moderate 109 2.35 Hours 5.1 Hours
Slow 59 13.5 Hours 6.4 days

posts in our data set are published at the same time in two OSNs, and this portion grows

to 7% if we only consider the cross-posts between FB and TW. Even more, 30% of the

cross-posts between FB and TW are posted in both OSNs in a timer interval lower than

10 seconds. Therefore, we thought that there might be a relevant number of users that

publish most of their FB − TW cross-posts (in either direction) in less than 10 seconds.

We make the assumption that for a human-being is unlikely to manually publish a post

both in FB and TW in so short gap. Therefore, we consider that if a post is published

in both OSNs in a time interval lower than 10 seconds, it means that the user (e.g., the

community manager managing the OSNs accounts of the user) is utilizing some automatic

tool to upload the cross-post. Actually, there is quite a few tools that provide this feature

[Argyle Social9, dlvr.it10, bufferapp11]. Based on this discussion, we have manually formed

a group that includes those users that have published more than 1/2 of their cross-posts in

less than 10 seconds both in FB and TW. The group is formed by 69 professional users from

our dataset. We refer to this group as Automatic since the users forming it are making an

intensive use of automatic tools to perform its cross-posting activity.

After creating this group, we run the K-means algorithm [127] to classify the remaining

users according to their median inter-posting interval time. We have found 3 clusters whose

characteristics (number of users, average and maximum inter-posting interval) along with

the characteristics of the Automatic group are depicted in Table 4.17. We refer to these

groups as Quick, Moderate and Slow. In a nutshell: (i) users in the Quick group publish

their cross-posts in both OSNs in the order of minutes, (ii) users in the Moderate group

take more than 2 hours, and (iii) users in the Slow group takes a gap of more than 13

hours between the publication in the first OSN and the time they republish the post in the

second OSN.

Following, we analyze the behaviour of the users in terms of similarity, type of content,

and links to websites.

Figure 4.6(a) shows the CDF for the cross-post similarity across the users in the different

groups for FB − TW . We find a very interesting pattern that correlates the similarity to

the inter-posting interval. Basically, the shorter the inter-posting interval the higher the

9http://www.argylesocial.com/
10https://www.dlvr.it/
11https://www.bufferapp.com/

http://www.argylesocial.com/
https://www.dlvr.it/
https://www.bufferapp.com/
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similarity across the cross-posts. This actually is reasonable since if you publish the same

information in two OSNs within a very short of time (e.g. < 10s) the posts are going to

look very similar. However, if you post something in TW (FB) and you republish the same

information in FB (TW) after some few hours it is more likely that you introduce some

change. Finally, we do not observe any relevant difference between the Moderate and the

Slow since the capacity of modifying the post is the same for the associated intervals to

these groups.

Figure 4.6(b) show the portion of posts belonging to each content category accord-

ing to the type assigned by FB API. Again we observe an interesting correlation between

inter-posting time and type of published content. As the inter-posting interval increases

the portion of cross-posts associated to audiovisual content (i.e., photos and videos) also

increases, while the combination of more textual content (i.e., pure text + links) decreases.

In particular, the quickest category, i.e., Automatic group, publishes around 45% of audio-

visual posts, which increases to 50% for Quick group and to 60% for Moderate and Slow

groups. Therefore, it seems that automatic tools are employed less frequently to upload

videos and photos.

Figure 4.6(c) shows a bar plot depicting the average portion of posts including a cross-

post linking to Facebook, Twitter, Youtube, Instagram, and Other. We observe a large

divergence for the results across the different groups. First, almost 70% of the urls included

in cross-posts of users belonging to Automatic group are linking to one of the four main

OSNs, with a strong presence for FB (25%) and Instagram (27%). All the remaining

groups contains more urls linking “Other” websites than urls linking the four OSNs. It is

particularly interesting the very marked pattern of the users in the Slow group for which

only 15% of the links go to OSNs.

In a nutshell, as the inter-posting interval decreases: (i) the similarity of cross-posts

increases, (ii) the portion of audiovisual content attached to cross-posts decreases, (iii) and

a larger portion of urls included in cross-posts refers to major OSNs sites.

4.3.7 Conclusions

This study presents the first large-scale measurement-based characterization of the cross-

posting activity for OSN professional users across FB, TW and G+. We have used a simple

yet efficient methodology that is able to determine with an accuracy of 99% whether two

posts, even from different OSNs, contains the same information, and if so classify them

as cross-post. We have used that methodology to classify more than 2M posts published

for 616 professional publishers with active accounts in FB, TW and G+. Following we

list the main outcomes of the study. First, we have demonstrated that professional users

frequently publish the same information in at least two OSNs, especially in the case of FB
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and G+. Although professional users in TW present a low portion of cross-posts, the fact

that they are very active implies that in absolute terms we can find quite a lot cross-posts in

their TW accounts. Second, a professional user publishes (in median) 70% of her cross-posts

exclusively in FB and TW, and around 15% in FB and G+. Furthermore, we demonstrated

that the cross-posting activity between TW and G+ is negligible. Third, professional users

benefit of cross-posting in their TW and FB accounts since they attract 2× and 30% more

engagement with cross-posts than non-cross-posts, respectively. However, cross-posts in

G+ leads to halve the engagement as compared to non-cross-posts. Fourth, professional

users equally prefer FB and TW as initial source of information, but they rarely choose G+.

Fifth, users with a strong preference for TW present cross-post with a higher similarity

(across different OSNs), publish more textual content than photos and videos, and use

to include links to websites different than major OSNs. In contrast, users preferring FB

publish mainly audiovisual content and a major portion of urls in their cross-posts refer to

OSN content. Finally, as the user inter-posting interval time decreases: (i) the similarity of

her cross-posts increases, (ii) the portion of audiovisual content attached to her cross-posts

decreases as wall, (iii) and a larger portion of urls included in her cross-posts refers to

major OSNs sites.
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4.4 Characterization of Professional Users’ Strategies in ma-
jor OSNs

4.4.1 Introduction

The tremendous success of Online Social Networks (OSNs) has created a golden opportunity

to professional players (i.e. big industry brands, politicians, celebrities, etc.) in order to:

interact with a huge amount of potential customers/voters/fans, improve their reputation

and popularity, run marketing campaigns, etc. The presence and interest of professional

users in OSNs as well as their concern to engage more people [128] with their OSNs accounts

is becoming so relevant that we can even find an award ceremony to best professionals users

in social media [129].

In this context there is an increasing research interest, especially in the area of man-

agement and marketing, to study what are the strategies12 that professional users apply in

their use of OSNs [130–132]. It seems that understanding the factors that allow professional

users to engage more people with their OSN activity will have a tremendous value in the

future for marketing purposes. To the best of our knowledge most of the studies available

in the literature only focus on a limited number of users and extract very particular con-

clusions for those users that cannot be generalized. Furthermore, all previous studies are

either based on manual inspection of OSNs accounts [133] or interviews [134] that cover

very few aspects that again lead to not generalizable conclusions. Therefore, we believe

that a large-scale data-driven approach based on the actual activity of a large number of

professional users across major OSNs will help to shed light into the challenging problem

of devising the way professional users utilize OSNs. Towards this end in this study we rely

on a dataset formed by 616 very popular users with active accounts in FB, TW and G+.

For each user we capture her activity (i.e., published posts) in the three systems over a

long-term time window (almost all their activities in OSNs from the time they initiated

their accounts) that overall generates a corpus of 2M posts.

In contrast to previous studies we do not aim at studying the strategy of individual

users. Instead, our main goal is to make a global analysis to characterize the strategy of

a particular sector/category (e.g., Cars Industry, Politician, Athletes, News Media, etc) in

OSNs. This analysis can be only conducted for those sectors that fulfil the following hy-

pothesis: professional users that belong to a particular sector present a similar strategy in

OSNs. Therefore, the first objective of this study is to determine whether this hypothesis

is true for some sector. For this we classify the 616 users in our dataset into 62 categories

according to the sector reflected by their FB account. Out of these 62 groups only 16

12In this study, we will use indistinguishably the terms strategy and behaviour to refer the way a profes-
sional utilizes an OSN.
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had enough users to perform a meaningful validation of the hypothesis. We apply the

methodology proposed in [135] that determines whether the behaviour of the users within

a category is significantly similar and, in addition, differs from the behaviour of the users

outside that category. The results reveal 8 categories whose users present a common be-

haviour. These categories are: Athletes, Cars, Media News, Movie, Musician-Band, News

Website, Politician, and Sports Teams. After discovering 8 sector fulfilling the baseline

hypothesis, we devote our effort to derive the behavioural elements that characterize their

use of OSNs.

We base our analysis in a set of meaningful behavioural elements that allow us to

discriminate the strategy of each sector. These elements include: activity rate, preference

among FB, TW and G+, popularity and type of content published. Using these behavioural

elements we are able to describe the strategy and highlight the differential characteristics

of each category. There is a last element that, to the best of our knowledge, has never been

used to analyze the strategy of professional users across multiple OSNs, which is referred to

as cross-posting activity and was already discussed in section 4.3. This element captures the

volume of common information that a user publishes in more than one OSN. This means,

when a professional user wants to post some information she can decide to publish it in a

single OSN, or in multiple OSNs. Even more, when she decides to post it in multiple OSNs,

there are several combinations of OSNs she could use (e.g., FB-TW or FB-G+ or TW-G+,

or the three OSN in our work). Hence, we believe that the cross-posting activity of a user

is an important behavioural element that for instance reveals whether a user utilizes each

OSN for different purposes or not. In a previous study [136] which is presented in section

4.3, we characterize the cross-posting phenomenon across professional users.

Finally, to conclude this research we address the very challenging question of whether

the strategies implemented by each category are successful or not. To the best of our

knowledge there is no standard mechanism in the literature that allows measuring the

success of a strategy in OSNs. Therefore, in this study we propose a simple methodology

to quantitatively measure such success. The rationale of this methodology is to estimate

the number of reactions per post a category should attract based on its popularity, and

compare that estimation to the actual number of reactions received by the category. We

provide an estimation of the success of each category for eight types of reaction: FB Likes,

FB comments, FB shares, G+ +1s, G+ reshares, TW favourite and TW retweets.

The key insights of this study can be summarized as follows:

(1) We demonstrated that for some sectors professional users present a common behaviour.

The sectors we found in the study that fulfil this statement are: Athletes, Cars, Media

News, Movie, Musician-Band, News Website, Politician, and Sports Teams.

(2) Each of the categories listed above present differential elements in their use of OSNs.
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For instance, Athletes activity and preference is biased to TW; categories related to news

are extremely active in the three OSNs; Cars is the category with major interest in G+,

and Movie shows a low activity and a clear preference for FB.

(3) The categories listed above can be further clustered into three significant groups based

on the similarities in their strategies: individual users (Athletes, Musician-Band, and Politi-

cian), commercial brands (Cars and Sport Teams) and news (Media News and News Web-

site).

(4) We demonstrate that the level of engagement of a professional user is linearly correlated

to her popularity, which allows us to define a model that estimates the number of reactions

per post a category should obtain according to its popularity.

(5) The only categories with a successful strategy in FB are Movie (which is successful

in all OSNs) and Politician, which is the only category that do not cover the engagement

expectation in G+. Similarly, the only two categories that fail in attracting the expected

number of reactions in TW are Media News and News Website.

4.4.2 Related Work

There are a number of books [131,132] and reports [137] that propose general guidelines to

companies to enhance their marketing strategies in social media. However, most of these

guidelines are based on qualitative elements rather than quantitative metrics. Following

this line, authors in [138] manually look to the publishing activity of 11 brands from 6

different categories, and provide some general guidelines for the manager of those brands

on how to enhance the engagement of their followers in social media. Another study [139]

aims at studying the importance of brands’ Fans and the Fans’ friend as a key factor in

the strategy of three Facebook accounts. However, their study is limited to just three

brands and they only considered one metric, the number of fans for each brand. Therefore,

the last two references only derive ad-hoc conclusion for very few users that cannot be

generalized. We found some larger scale works like [133] where authors manually look to

the type of activity of 275 non-profit organization profiles in FB. However, they just look

at two elements: how the users disseminate their messages and what type of posts they

are considering in their strategies. This work differentiates from our study in three main

aspects: they only look at FB, they do not look into professional users, and they only use

type of content to evaluate the behaviour of the FB users. In addition, authors in [130]

explore the strategic use of social media for 250 of U.S. based companies on Facebook,

Twitter, and YouTube. Although this work is more similar to our study due to the analysis

of multiple OSNs it presents considerable differences in the methodology and the analyzed

behavioural elements. First of all the authors in this study rely on manual inspection of the

accounts that is a much more subjective method than a data-driven approach. In addition,
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Table 4.18: Dataset description
OSN #posts avg(posts) %cross posts #like #comments #shares
FB 423K 695 33.63 2.9B 98M 235M
G+ 175K 304 29.36 27M 5M 3M
TW 1.7M 2648 7.17 274M - 491M

Table 4.19: Categories in the Dataset with more than 10 users.
# category #user # category #user

1 Musician band 134 9 Food beverages 18
2 Tv show 40 10 Website 16
3 Public figure 32 11 Cars 15
4 Media news publishing 29 12 Clothing 13
5 Actor director 28 13 Movie 12
6 Athlete 24 14 News media website 12
7 Sports team 23 15 Tv network 12
8 Product service 20 16 Politician 6

they use a number of social metrics (adoption, integration, code of conduct, human voice,

dialogic loop, activity and stakeholder willingness) that are not linked to the actual activity

of a user in OSN, and again are subjective. In contrast to these previous works relying

on manual inspection, we have found a number of works that uses surveys or interview

community managers to analyze the strategy of some few brands. The most relevant work

is [134] in which the authors interview nine community managers of NBA teams. This study

just focus in a single sector and perform a qualitative analysis based on the replies of the

community managers. Finally, we also find a couple of studies that attach the success of a

social media brand to the popularity [139] and to the number of reactions [138]. However,

none of them take into account that both parameters are related and that considering

success using them isolated may lead to wrong conclusions.

In summary, the main novelties of our work compared to the previous studies are:

(i) it is the first data-driven approach over a large number of professional users. (ii) It

aims at understanding the strategies from a global point of view per sectors. (iii) It is

a longitudinal study across the three major OSNs: FB, TW and G+. (iv) It proposes a

quantitative estimation of the success of OSNs strategies.

4.4.3 Dataset

This part briefly describes the dataset of this study, and introduce the way we classify the

users into categories. The detail of the data collection methodology and selected users has

been presented in section of this manuscript.

Table 4.18 summarizes the datasets used in this study. In total, we analyze more than

2M posts published by 616 professional publishers in FB, TW and G+.
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In order to address the main goal of the study we need to assign the 616 users to

the categories they are representing. Towards this end, we have used a straightforward

approach based on the category each professional user selects when they register their FB

page. Therefore we assign each user to the category they have selected in FB. Overall,

the 616 users are classified into 62 different categories. The goal of this study is to find

whether users in some category present a common behaviour on their utilization of OSNs,

describe the strategy in that category and determine its degree of success in FB, TW and

G+. We can only perform that analysis for those categories in our dataset that includes

enough users. Then, we have decided to study categories represented by at least 10 users

in our dataset. Table 4.19 shows the number of users associated to the 15 categories13 that

meet that requirement14. We have made an exception for the category Politician, which

is formed by only 6 users. Although we acknowledge that 6 users must not be enough to

generalize the strategy of politicians, we believe it is worthy to study such an interesting

category. We believe the 16 categories we are going to analyze present a quite interesting

heterogeneity of sectors (e.g., popular individuals, big industrial companies, news agencies,

TV or the Internet) that address different audiences.

4.4.4 Detection of Common Strategies by Sectors

The goal of this section is to verify the baseline hypothesis of whether the users of a par-

ticular sector present a similar behaviour in their use of OSNs. Then we first introduce the

behavioural metrics used to describe the strategy of a user, and later apply the methodology

proposed in [135] to discriminate which categories follows our hypothesis.

4.4.4.1 Metrics to Capture the Behaviour

The strategy of a user is defined by the decisions that she takes when posting information

across several OSNs. Therefore, the elements we use to define the activity are behavioural

metrics directly related to those decisions. Each behavioural metric is captured with one

(or more) values in each OSN as it is detailed below. Overall each user is represented

with a behavioural vector of 33 values that defines her strategy across FB, TW and G+.

We wanted to provide the same weight to all the parameters, hence all the values range

between 0 and 1 in the vector. This has led us to normalize one of the metrics, the

activity rate. We have performed the normalization using the 90th-percentile15 of that

parameter considering all the users in our dataset. All the users with a value above the

13We use News Website instead of News media website and Media News instead of Media news publishing
from now on in the study.

14The reader can find the name of the users in each category in [140].
15We did not use the maximum since we have checked that usually for the parameters we had to normalize

the maximum value was actually an outlier.



120
4.4. CHARACTERIZATION OF PROFESSIONAL USERS’ STRATEGIES IN MAJOR

OSNS

90th-percentile was assigned a value equal to 1 in the normalization. Note that we perform

the normalization individually for each OSN.

Activity rate: We measure the average posts/day published by the user. As it is reported

in [125], OSN users are intrinsically much more active in TW than in FB and G+. There-

fore, we are interested on knowing how active is a user in a particular OSN with respect to

the activity of other users in that OSN. With the proposed normalization for this metric

we achieve that goal. This metric generates 3 values in the behavioural vector, one per

OSN.

Fraction of Cross-Posting: We use as metric the portion of cross-posts in each OSN per

user (3 values in the vector).

Cross-Posting pattern: This metric captures the volume of common information that a

user publishes in more than one OSN. We defined and characterized this phenomenon in a

previous study. For more information please check [136]. We use as metric the portion of

cross-posts happening in each possible OSN combination, i.e., FB-TW, FB-G+, TW-G+

or FB-TW-G+ (4 values in the vector).

Preference: This element is measured using the portion of cross-posts initiated in each

OSN. This metric allows us to establish what is the preference of a user among the evaluated

OSNs (3 values in the vector).

Type of content in regular-posts: This metric measures the portion of posts assigned

to different type of content from the regular posts published by the user. In the case of FB

and G+ the options are: photos, videos, links and text. In the case of TW only text or

link. This metric generates 4 values in the vector for FB, one per type of content, 4 values

in G+ and 2 Values in TW (10 values in total in the vector).

Type of content in cross-posts: This metric is similar to the previous one but in this

case it only considers cross-posts (10 values in the vector).

4.4.4.2 Identifying Categories Whose Users Present a Similar Strategy

We compare the similarity in the strategy of two different users by computing the Euclidean

distance between their vectors. Hence, the lower the Euclidean distance the closer the

strategies of the two users are. We can apply this process to compute what we refer to as

intra-category and inter-category similarity. The former refers to the Euclidean distance

between each pair of users within the category, while the latter is represented by the

Euclidean distance of each user in the category to all the user outside that category.

We now apply the methodology proposed in [135] to find what are the categories whose

users present a similar strategy across FB, TW and G+. First, we measure the intra-

category and inter-category cohesion of each category using a Kernel Density Estimation
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Figure 4.7: Kernel Density Estimation of the intra-category and inter-category Euclidean
distance for those categories whose users do not present a common strategy.

(KDE) [141] method which is computed as follows:

f̂h(x) =
1

n

n∑
i=1

K

(
x− xi

h

)
where K is the gaussian kernel and h ¿ 0 is a smoothing parameter called the bandwidth.

The cohesion is measured based on the Euclidean distance which is computed for two series

of p and q as follows.

d(p, q) =

√√√√ n∑
i=1

(qi − pi)2

In addition, for each category, we run the Wilcoxon rank-sum test [142] on the distribu-

tions of the intra-category and inter-category Euclidean distance. This is a non-parametric

test of the null hypothesis that two populations are the same. The Wilcoxon test also

provides the parameter W that measures the distance between the median of both distri-

butions. In our analysis W = Median inter − Median intra, thus the larger W is the

stronger is the intra-category cohesion. We note that we compute the parameter W as the

difference of the medians in percentage (instead of absolute term) that provides more clear

insights.

Figure 4.7 shows the KDE results for those categories in which the Euclidean distance

among the users inside the category is very similar to the Euclidean distance with external
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Figure 4.8: Kernel Density Estimation of the intra-category and inter-category Euclidean
distance for those categories whose users present a common strategy.

users. This can be easily observed since the distributions are overlapped. Aligned to this

result, the Wilcoxon test validates the null-hypothesis in all the cases (i.e., the distributions

are the same), and W is below 2.5% in all the cases. Therefore, we conclude that the users

in those eight categories do not present a common behaviour.

Contrary, Figure 4.8 depicts the KDE for those categories with a major intra-category

cohesion. In this case, the Wilcoxon test rejects the null-hypothesis in all cases. This

means that the intra-category and inter-category distributions are statistically different

(p-value<0.001) for these eight categories. This statement is supported by the fact that

for these categories W ranges between 15% and 30%. Therefore, these results uncover

eight categories whose members present common behavioural elements (i.e., strategy) that

globally differs from the strategy of the users outside that category. These eight categories

are: Athletes, Cars, Media News, Movie, Musician-Band, News Website, Politician and

Sport Team.

We note that from now on in the study the strategy of each category will be represented

by the centroid16 of the category.

16Each of the 33 values characterizing the centroid corresponds to the median of each metric across the
users in the category.
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Figure 4.9: Colormap that represents the Euclidean distance between the behaviour of the
eight categories with a similar strategy. The closer the strategy of two categories is the
darker the cell representing their Euclidean distance. We find three relevant clusters among
the analyzed users that are highlighted using a yellow dotted line.

4.4.4.3 Similarity Between Categories’ Behaviour

We have demonstrated that there are 8 categories whose users present a similar use of

OSNs. However, the previous analysis neither says how close are the strategies of these

categories nor defines the main elements of each strategy. In this subsection we address

the first point, while the second question is covered in the next section.

To compare the strategies between two categories we calculate the Euclidean distance

between their centroid. Figure 4.917 shows a colormap in which each cell unveils the

Euclidean distance between the centroid of two categories. Visually, the closer the strategy

of two categories is the darker the cell is18.

The results reveals three interesting clusters. First, Media News and News Website

have very different strategies to any other category, while they present some commonalties

in their use of OSNs. Second, the categories that represent individual users, i.e., Athletes,

Music-Band and Politician, present a more similar strategy among them than to other cate-

gories. Third, Cars and Sport Teams, the two categories representing companies, present a

major similarity to each other than to any other category. Finally, Movie present a strategy

that is neither far away nor close to any other category except the two categories referring

17We advise the reader to visualize all the figures from this point in the computer to get a better color
resolution.

18Note that in Figure 4.9 the black diagonal act as a mirror. The results are the same in the upper and
lower part of the diagonal since the Euclidean distance between two categories is a bidirectional parameter.
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Figure 4.10: Bar plot that shows the value of the following metric for each category and
OSN: popularity, activity rate, preference and fraction of cross-posts.

to news.

It is important to highlight that the fact that two categories present a higher similarity

in their strategy does not mean they present exactly the same behaviour (i.e., the same

values in the metrics). Instead, the correct interpretation is that those two categories will

present some commonalities in some behavioural elements that make their strategies closer

with respect to other categories.

4.4.5 Unveiling Strategies

In this Section we reveal and discuss what are the most significant elements in the strategy

of the 8 categories under analysis. Towards this end we use all the behavioural elements

introduced in Section 4.4.4.1 except Cross-Posting pattern because it is only relevant in the

strategy of Cars. The other categories closely follow the general results reported in Section

4.3.4.2 for this metric. In addition to the behavioural parameters, we use the popularity

(i.e., number of followers) of each category in each OSN in the analysis. The reason is that

although the popularity is not a behavioural element itself, it can influence the decisions

of a user. As we did for the activity rate, we have normalized the popularity using the

90th-percentile in each OSN.

Figure 4.10 shows one bar plot per category in which each bar shows the value of
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Figure 4.11: Bar plot that shows the type of content published in each category per OSN.

popularity, activity rate, preference and fraction of cross-posts in each OSN, respectively.

We have highlighted in full color the bars that represent the most significant elements of the

behaviour of each category. In addition, Figure 4.11 shows type of content in regular-posts

and type of content in cross-posts for each category and OSN, respectively. Following, we

describe the strategy of each category:

Athlete: It is the category with the strongest preference for TW and with the most

intense cross-posting activity in the three OSNs. It presents a low activity in all OSNs

compared to other categories. Regular posts are mostly photos and links in FB and G+,

however cross-posts are dominated by text in these two OSNs. This is explained because

most of the cross-posts are initiated by TW (as shown by the strong TW preference) and

replicated in FB and G+ as text. Finally, it is the most popular category in TW, which

may explain its strong preference for this OSN.
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Musician-Band: This category presents a clear preference for TW and an important

level of cross-posting in this OSN (only surpassed by Athletes). The posts published in FB

and G+ are mostly audiovisual content, both in cross-posts and regular-posts. The activity

rate is low in the three OSNs. Finally, in terms of popularity, Musician-Band is the second

most popular category in FB and TW behind Movie and Athlete, respectively.

Politician: Similar to Athlete and Musician-Band this category presents a preference

for TW as well as a low activity in all 3 OSNs. The most interesting behavioural element

of Politician is that it uses different content in FB and G+. Politician publishes more links

in FB than in G+, where it mostly publishes audiovisual content. They also opt for using

links in most of the tweets.

Media News: The differential strategy of this category is clearly a very high activity

rate in the three OSNs. Actually, this seems reasonable since the users in this category

are news agencies, portals, etc that are continuously publishing recent news. In addition,

a second particularity of Media News is that the most common type of content in FB and

G+ is link. However, it very rarely uses links in TW. In addition, together with News

Website, is the category with a more balanced preference between FB and TW.

News Website: As the previous category, the differential behavioural element of News

Website is its extraordinary high activity rate in all OSNs. In addition, News Media Website

also shows a quite balanced preference between FB and TW. Contrary to Media News, in

this case posts in FB are mostly photos, while in G+ they are balanced between photos

and links.

Cars: Cars is the category with a major interest in G+, which may be due to its high

popularity in that OSN. The behavioural elements that shows that interest are: (i) it is

the only category in which the selection of G+ as initial source of information is relevant

(it happens in almost 10% of the cross-posts), (ii) Cars is the only category in which its

(relative) activity rate is higher in G+ than in TW and FB, and (iii) Cars is the only

category in which the cross-posting activity between TW and G+ is not negligible since

this pattern appears in 15% of the cross-posts. Apart from its interest in G+, Cars is clearly

biased to FB in terms of preference and mostly uses audiovisual content in its posts. This

seems reasonable since the business of Cars companies has a lot to do with presenting an

attractive view of their cars and this requires the use of audiovisual material.

Sports Team: There are three elements that denote the behaviour of Sport Teams.

First, a clear preference for FB. Second, an intense use of photos in its posts. Three, a

considerably high activity in the three OSNs compared to the other categories (with the

exception of the two categories related to news).

Movie: The behaviour of this category is defined by a strong preference of FB, the use

of photos in most of its FB and G+ posts, and the lowest activity rate in the three OSN
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among the categories under analysis. This happens because the OSN accounts associated

to movies are only active in a short period of time around their release and later they just

keep a residual activity. Finally, there is a big contrast in its popularity since it is the most

popular category in FB, but the least popular in TW and G+.

We conclude our analysis by enumerating the common behavioural aspects for the three

clusters identified in Section 4.4.4.3. (1) All the individual users present a preference for

TW and a relatively low activity in all OSNs compared to other categories. (2) Cars and

Sports Teams, which represent commercial companies, shows a clear preference for FB

and mostly post audiovisual content in FB and G+. (3) The categories related to news

reporting coincides in having a very high activity rate.

4.4.5.1 Evaluation of Strategies Success

To conclude this study we want to assess the success of the strategies adopted by the

analyzed categories. To the best of our knowledge it does not exist any standard metric

or methodology to evaluate the success of an strategy in OSNs. Our approach is based on

the conviction that the number of reactions that a user attracts in her posts is the only

objective available metric to capture the interest/engagement of end-users in the activity

of a professional user. Therefore, in this study we propose to measure the success of the

strategy of a category as a function of the average number of reactions that the category

attracts per post. We believe that the proposed methodology is a useful tool to estimate

the success of a particular strategy in the context of this study. However, we do not pretend

to present it as a reference methodology to globally evaluate success in OSNs. Following,

we first introduce our methodology and later we discuss the results extracted from applying

it.

Table 4.20: Pearson coefficient, p-value, and Regression Coefficient of the correlation be-
tween popularity and reactions.

Reaction PPMC p-value Regression Coefficient
FB likes 0.97 6e-5 1.78e-3

FB comments 0.94 4e-4 4.92e-5
FB shares 0.94 4e-4 1.14e-4
G+ +1s 0.76 0.03 7.02e-5

G+ comments 0.14 0.73 -
G+ reshares 0.94 5e-4 8.11e-6
TW favourite 0.78 0.02 2.07e-5
TW retweet 0.71 0.049 5.04e-5

4.4.5.2 Methodology to Measure the Success Degree of Strategies

Our methodology proposes to compute the success of the strategy of a category as the

difference between the expected number of reactions per post that category should receive
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and the actual number of reactions it receives. Therefore, our goal is to propose a model

that estimates the expected volume of reactions per post for the eight categories under

discussion.

Our intuition is that the number of reactions that a user attracts in a post in an OSN

is strongly correlated to her popularity in that OSN. Therefore, our first step is to validate

this hypothesis that would allow us to formulate the expected number of reactions as a

function of the popularity.

We calculate the Pearson Product-Moment Correlation Coefficient (PPMCC) between

the popularity and all the reaction types separately. The PPMCC measures the degree of

linear dependence between two variables and calculates as follows

ρX,Y =
cov(X,Y )

σXσY

which becomes higher as the PPMCC moves to 1.

Table 4.20 shows the PPMCC and p-value for the correlation associated to each reaction

type. The results reveal a very strong linear positive correlation between popularity and

volume of reactions per post for all type of reaction in all OSNs (PPMCC>0.7 and p-

value<0.05). There is only one exception, G+ comments (p-value>0.05), which are omitted

from our analysis in the rest of the section.

Based on these results, we propose a simple linear model that estimates the number

of reactions a category should receive based on its popularity. Hence, we perform a linear

regression to obtain the regression coefficient, listed in Table 4.20, associated to each type

of reaction. In a nutshell, we estimate the number of reactions per post for a particular

type of reaction in a category multiplying the popularity of that category by the regression

coefficient for that reaction type.

Once we have the model to estimate the expected number of reactions we are able

to evaluate the success of the different strategies. Figure 4.12 shows a colormap that

represents the level of success of each category for each type of reaction. The colormap

shows a positive (associated to green color) and negative (associated to red color) scale.

For instance, a value of +2 implies that the category under analysis is obtaining 2× more

reaction per post than what our model suggests. In contrast, a value of -2 indicates that the

category is attracting 1/2 of the expected reactions per post. Note that the darker is the

green color in a cell the higher is the success. Similarly, the darker is the red color in a cell

the less efficient the strategy is. Each row corresponds to one category and presents a visual

overview of the success of its strategy across the different OSNs and types of reactions.
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Figure 4.12: Colormap that represents the success of the strategy of each category across
different types of reaction. The green color represents success and the red color represents
failure.

4.4.5.3 Discussion of Strategies’ Success

Movies is the only category with a successful strategy in all OSNs according to the volume

of reactions it receives per post. This is an indicator that the adopted strategy is well

adapted to the requirements of its audience in each OSN.

Athletes and Musician-Band are successful in TW and G+, but they fail in FB. Based on

their clear preference for TW, it seems its strategy is adequate to cover their main objective,

however they should modify their behaviour in FB in order to increase the engagement of

end-users.

Politician has a successful strategy in FB, especially on attracting comments, but it

fails in G+. In the case of TW it manages to get more retweets than expected, but does

not cover the expectation in number of favourites. Its strategy is fair enough in FB to

cover the expected reactions. In the case of TW, if its major interest focuses on spreading

tweets its strategy is also adequate.

It seems that the interest of Cars in G+ is obtaining its reward since it manages to

attract more reactions than the estimation of our model. In contrast, it seems Cars should

revise their behaviour in FB since it only succeeds on the number of shares, even though

it has a strong preference for this OSN.

Sports Team fails in FB, but is successful in TW and G+. Therefore, it should change

some behavioural aspects to increase their engagement in FB.
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Finally, Media News and News Website categories present a quite similar success pattern

with the exception of G+ likes. We believe the most important type of reaction for news

agencies and portals is share, reshare and retweet, since their goal is to spread the reported

news as much as possible. For these reactions they present an almost identical result that

reflects a success in FB and G+, but a failure in TW. This is a quite negative outcome since

TW is considered a very relevant communication channel to disseminate news nowadays.

4.4.6 Conclusions

This study advances the state of the regarding the strategy used by professional users in

OSNs in three main elements: (i) To the best of our knowledge this is the first study that

follows a data-driven approach to analyze the strategy of professional users in OSNs. (ii) We

evaluate the global strategy of some professional sectors in the three major OSNs, namely

FB, TW and G+. In contrast, most previous work focuses in the analysis of individual

users and obtain adhoc conclusions. (iii) To the best of our knowledge, this study is the

first study that proposes a quantitative estimation of the success of a strategy. In order to

be able to make an analysis per sector, our first step has been to demonstrate that there

are sectors whose users present similar behavioural elements that define a common strategy

in OSNs. In particular, we have found eight sectors with a common strategy: Athletes,

Cars, Media News, Movie, Musician-Band, News Website, Politician, and Sports Teams.

The more interesting findings for the analyzed sectors are: (i) the two categories related

to news show an extremely intense activity in the three OSNs; (ii) Athlete shows a strong

preference for TW that directly impacts the information published in FB and G+; (iii)

Cars gives a high value to G+ where they have a much stronger presence than any other

category, and, (iv) Movie is very active around the release of the film but later the activity

becomes residual. Finally, we estimate the success of each strategy. The success is measured

as the difference between the actual volume of engagement (i.e., reactions per post) and

the expected volume of engagement based on the popularity of the category. Movie is the

only category that overpasses the engagement expectation in all OSNs. Politician is the

only category, in addition to Movie, with a clear success in FB, but it is the only category

that does not reach the expectation in G+. Finally, the news-related categories are the

only ones that do not reach the expected engagement in TW, neither in retweets nor in

favourites. In addition to all the previous findings, this work presents an aside contribution

that characterizes the cross-posting phenomenon for professional users across FB, TW and

G+. We have demonstrated that this phenomenon exists and is relevant. The dominant

cross-posting pattern is FB-TW, while it is very rare finding information shared between

TW and G+.
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5.1 Conclusion

5.1.1 Summary of Contributions

Appearance of new and very popular Internet services had a huge impact of people life

specially the way that they communicate with each other. Online Social Networks (OSNs)

and Peer-to-Peer (P2P) systems are two examples of this type of services which have

engaged a huge number of different type of customers both regular and professional users.

In this thesis we have characterized different aspects of regular and professional users in

term of their publishing strategies and content consumptions in 5 different studies.

• Disclosed Information on Facebook: The main results of this study answer

the question that how much information is available on facebook users profile. The

main insights from this study are as follow: (i) Friend-list is the attribute with

the largest public exposure, whereas Birthday attribute is the one showing major

privacy concerns from Facebook users. (ii) There is a strong correlations between

Current City and Home Town attributes as well as (i.e. College and HighSchool)

and professional (i.e. Employers) attributes. (iii) In average we found that Facebook

users has more than 4 attributes publicly available in their profiles. (iv) In general

Men has larger public exposure as compared to women for all personal attributes

except birthday in their profiles. (v) The age range of 18-25 (half of the dataset) is

the group of users with the most public available information in their profile. (vi)

Our study shows that, Facebook data can be utilized for estimating the portion of

people living in different class of cities.

• Cross Posting Activity: The main outcomes of the study are as follow: (i) we have

demonstrated that professional users frequently publish the same information in at

least two OSNs, especially in the case of FB and G+. Although professional users in

TW present a low portion of cross-posts, the fact that they are very active implies that

in absolute terms we can find quite a lot cross-posts in their TW accounts. (ii) We

saw that a professional user publishes (in median) 70% of her cross-posts exclusively

in FB and TW, and around 15% in FB and G+. Furthermore, we demonstrated that

the cross-posting activity between TW and G+ is negligible. (iii) Cross-posting in

TW and FB accounts has benefit for professional users in term of attracting people

engagement. They attract 2× and 30% more engagement with cross-posts than non-

cross-posts, respectively. However, cross-posts in G+ leads to halve the engagement

as compared to non-cross-posts. (iv) As initial source of information, professional

users equally prefer FB and TW, but they rarely choose G+. (v) Users with a strong

preference for TW present cross-post with a higher similarity (across different OSNs),
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publish more textual content than photos and videos, and use to include links to

websites different than major OSNs. In contrast, users preferring FB publish mainly

audiovisual content and a major portion of urls in their cross-posts refer to OSN

content. (vi) As the user inter-posting interval time decreases: (i) the similarity of

her cross-posts increases, (ii) the portion of audiovisual content attached to her cross-

posts decreases as wall, (iii) and a larger portion of urls included in her cross-posts

refers to major OSNs sites.

• Professional Users’ Strategies in OSNs: The main findings of this study on

different categories of professional users is: (i) The two categories related to news

show an extremely intense activity in the three OSNs; (ii) Athlete category shows a

strong preference for TW that directly impacts the information published in FB and

G+; (iii) Cars category gives a high value to G+ where they have a much stronger

presence than any other category, and, (iv) Movie category is very active around the

release of the film but later the activity becomes residual.

• Multimedia Evolution on P2P: The main outcome of this study on the evolution

of multimedia content can be summarized in three main findings: (i) Multimedia

content has doubled its size in a period of only 2 years. (ii) The major part (80%) of

the consumed multimedia content corresponds to TV Shows and Movies (including

porn) that belong to those categories with a largest size. (iii) High-resolution content,

which has very large size, is increasing its presence and it already represented 8% of

the available content and 10% of the downloads in our most recent snapshot dated

at the beginning of 2012.

• Reaction to Antipiracy Actions: Two main finding on this study on the reaction

of professional publishers on two major antipiracy actions is as follow: (i) the Megau-

pload closure triggered an immediate drop in the activity of professional BitTorrent

publishers that are running their own private BitTorrent portals. Furthermore, a

group of casual publishers also migrated to BitTorrent most likely from Megaupload

and other Cyberlockers. (ii) The French Hadopi law had an effect on the number of

casual BitTorrent publishers and reduces it. However, it did not have any impact on

the activity of professional publishers from France due to a particular hosting facility

with passive monitoring policy for copyright infringement activity.

In summary the main contributions of this thesis can be summarized in four parts as

follow:

• outcomes of the studies, Five studies has been presented in this thesis which
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characterize some behavioral aspects of regular and professional users over major

OSNs and P2P systems.

• Measurement Methodologies, We proposed four measurement methodologies to

evaluate the behavior of regular and professional users in OSNs and BitTorrent.

• Implemented Measurement Tools, Seven advanced data collection tools have

been implemented during this thesis to collect users information from Facebook and

BitTorrent.

• Available Datasets, Four of the collected datasets are available for further research

collaborations which include Facebook professional and regular users information.

More details about the contributions of this thesis is available in Section 1.2.

5.1.2 Impact on the Community

Some of our conducted researches had media impacts and several news articles were pub-

lished about our results in some major online news agencies. Table 5.1 summarize some of

the published articles.

5.2 Ongoing and future work

This section summarize some of the ongoing and future research directions on this research.

5.2.1 Ongoing and future work on Social Network

5.2.1.1 Characterizing Group-Level User Behavior in Major Online Social
Networks

In this study, we conduct a detailed measurement study to characterize and compare the

group-level behavior of users in Facebook, Twitter and Google+. We focus on Popular,

Cross (with account in three OSNs) and Random group of users in each OSN since they

oer complementary views. We capture user behavior with the following metrics: user

connectivity, user activity and user reactions. Our group level methodology enables us to

capture major trends in the behavior of small but important groups of users, and to conduct

inter- and intra-OSN comparison of user behavior. Furthermore, we conduct temporal

analysis on different aspects of user behavior for all groups over a two-year period. Our

analysis leads to a set of useful insights including: (i) The more likely reaction by Facebook

and Google+ users is to express their opinion whereas TW users tend to relay a received

post to other users and thus facilitate its propagation. Despite the culture of reshare among
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Table 5.1: Published articles about our studies
Source Article name/link

Original press

actu-des-tic.telecom-sudparis.eu/2014/01/les-editeurs-professionnels-alimentent-les-systemes-p2p-mondiaux-depuis-la-
france/
www.mines-telecom.fr/es/estudio-demuestra-que-editores-profesionales-alimentan-los-sistemas-p2p-mundiales-desde-
francia/
www.mines-telecom.fr/wp-content/uploads/2014/01/20141301 CPPubliIEEE P2P ES.pdf
www.mines-telecom.fr/une-etude-montre-que-des-editeurs-professionnels-alimentent-les-systemes-p2p-mondiaux-depuis-la-
france/
www.mines-telecom.fr/en/a-study-has-revealed-that-professional-publishers-feed-global-p2p-systems-from-within-france/
www.mines-telecom.fr/wp-content/uploads/2014/01/20141301 CPPubliIEEE P2P janv2014.pdf

PC INpact
www.pcinpact.com/news/85319-selon-etude-hadopi-a-fait-diminuer-nombre-d-uploadeurs-en-france.htm
?utm source=PCi RSS Feed&utm medium=news&utm campaign=pcinpact

ZDNet www.zdnet.fr/actualites/p2p-la-france-telecharge-moins-mais-alimente-le-monde-39797025.htm
Info Utiles www.info-utiles.fr/modules/news/article.php?storyid=9754

Tropgeek
www.tropgeek.com/news/Un+bilan+de+l%E2%80%99Hadopi,+le+nombre+de+contenus+ill
%C3%A9gaux+mis+en+ligne+depuis+la+France+a+augment%C3%A9+de+18+%25

Numerama www.numerama.com/magazine/28045-une-etude-sur-hadopi-pointe-du-doigt-ovh-et-son-laxisme.html

Ginjfo
www.ginjfo.com/actualites/politique-et-economie/un-bilan-de-lhadopi-le-nombre-de-contenus- illegaux-mis-en-ligne-depuis-
la-france-augmente-de-18-20140110

Forumdupirate forum.journaldupirate.com/viewtopic.php?f=55&t=8053
Softonic actualites.softonic.fr/2014-01-14-p2p-la-loi-hadopi-est-elle-efficace
Wingwit fr.wingwit.com/?p=760
IT Channel www.itchannel.info/index.php/articles/145867/hadopi-riposte-graduee-mais-incomplete.html
ITR Mobiles www.itrmobiles.com/index.php/articles/145867/hadopi-riposte-graduee-mais-incomplete.html

ITR Manager www.itrmanager.com/articles/145867/hadopi-riposte-graduee-mais-incomplete.html
ITR News www.itrnews.com/articles/145867/hadopi-riposte-graduee-mais-incomplete.html
La Vie Nu-
merique

www.lavienumerique.com/articles/145867/hadopi-riposte-graduee-mais-incomplete.html

Actualite24h www.actualite24h.com/actualites/p2p-la-france-telecharge-moins-alimente-le-monde

Scoop.it!
www.scoop.it/t/free-mobile-orange-sfr-et-bouygues-telecom/p/4014115874/2014/01/13/p2p-la-france-telecharge-moins-
mais-alimente-le-monde

Le Journal du
Geek

www.journaldugeek.com/2014/01/19/une-etude-montre-que-des-editeurs-professionnels-alimentent-les-systemes-p2p-
mondiaux-depuis-la-france/

WebRadar webradar.me/68827862
Direct Matin -
Lille plus

www.directlille.com/pdf/lil lilleplus 04 02 14.pdf

OVH www.ovh.com/fr/a1326.reponse-ovh-etude-hadopi
Themediashaker www.themediashaker.com/en/list-of-articles/more-pirated-files-but-fewer-pirates/
UC3M netcom.it.uc3m.es/news/20140128-News-Publishers Feed P2P Systems-EN

Madrimasd www.madrimasd.org/blogs/sociedadinformacion/2014/01/28/132210

IMDEA
www.networks.imdea.org/whats-new/news/2014/study-has-revealed-professional-publishers-feed-global-p2p-systems-
within-france

Twitter users, a post by a Popular Facebook user receives more Reshares than a post by

a Popular Twitter user. (ii) Added features in an OSN can significantly boost the rate of

action and reaction among its users.

5.2.1.2 Facebook Network Architecture Analysis, How Far is Facebook from
Me!

In this work we are going to investigate the architecture of Facebook in term of its physical

server location around the world including Akamai servers (is a CDN network that serve

most of Facebook services). To this end we study the accessibility of around 50 service

(server url) from 500 Planetlab node distributed around the world by sending ping and

tracerout commands six times per day. By this results we can see how is the reachability

to the Facebook services from different location across the world. Here we are going to

do study in the country and continent level to see what category of countries have better

access to what type of the services.
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5.2.1.3 Community Similarity Degree: Community Selection for Community
Recommendation

In this study we present the Community Similarity Degree (CSD) that is a metric to

compute the degree of similarity among the users within a community. To evaluate the

utility of our metric we rely on a dataset that includes more than 200K Facebook users.

Using this dataset we define four different types of community: Friend-based (group of

friends of a user), Interest-based (group of users sharing a common interest), Location-based

(group of users from a city) and Random-based (group of users selected at random). We use

the CSD to quantify users’ similarity based on the interests they share within a community

for five well-defined Facebook profile attributes: television, books, music, movies and games.

Surprisingly, our results reveal that Interest-based communities are the ones showing a

larger similarity degree, with a CSD between 1.5× and 4.5× larger than Friend-based

communities. We use this outcome to demonstrate that communities with a larger similarity

degree increase the efficiency of recommendation systems. We have emulated an OSN

recommendation system in which an Interest-based recommendation strategy outperforms

in 52% the efficiency shown by a Friend-based recommendation approach. This result

demonstrates the practical usefulness of the proposed CSD metric.

5.2.1.4 Real life Change effect on the Facebook Profile Attributes information

In this work we aim at studying the effect of major changes in real life of Facebook users

on their profile attributes information. For example if a user changes her residence city

or job in her real life what is the change effect in the profile attributes such as number

of friends, number of interests or even the privacy policy of attributes. for this work we

have collected around 73K users profile information in two time window with 8 month

duration. By this data we can compare the changes in the profile of each user to see how

the attributes evolute in different aspects.

5.2.1.5 Popularity Trend Analysis of Professional Users in Facebook

In this study, we are analysing the popularity evolution of professional users in Facebook.

To this end we collected the popularity metrics (#Fans and #Talking) of 10k top Facebook

Fan pages 6 times per day for a duration of 18 months. The goal is to understand how the

popularity is changing over time in overall, category based and user based. The expected

results will show us different cluster of users that has a similar pattern in term of their

popularity trends. As an example, we already found a group of professional users that have

a clear jump in their popularity due to some impact of their OSN involvement strategies.

In the other hand we found users that have a substantial decrease in their popularity which
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shows they are loosing their followers in time. We are trying to come up with a model to

predict the popularity trend of a user based on her historical pattern and activities. This

model also can provide users some hints to improve their strategies on attracting new fans.

5.2.2 Ongoing and future work on P2P networks

5.2.2.1 Film Factory Losses: Is BitTorrent a Major Responsible?

This work is actually a subset of a bigger work that targets the activity monitoring of

around 1 million torrents in 18 main trackers. Here for each tracker we collect 4 times per

day its torrents information in scrape mode. Later by using TorrentZ portal we identifies

the categories of torrent as shown in table 5.2. Later just for movie category that includes

241K torrents we study deeply and identified the movies by using IMDB portal. Here we

study movies’ losses by investigating the number of download and businesses information of

movies like their budget and incomes to see what is the effect of bittorrent on this industry.

Table 5.2: Torrents Category (based on torrentZ portal categories)

Category # Torrents %

Audio 92 321 9,97
Ebooks 27 747 3
Games 30 238 3,26
Movie 241 129 26,03
None 240 652 25,98
Pictures 8 931 0,96
Porn 1 078 0,12
Software 43 369 4,68
Video 240 956 26,01

Total 926 421 -
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