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Introduction

The Large Hadron Collider (LHC) and its experiments installed at the CERN laboratory in Geneva
(Switzerland) were built to unravel the missing pieces associated to the comprehension of the theory
of fundamental interactions.
One of the main objectives of the LHC collider is to probe the experimental consistency of the Stan-
dard Model (SM). An essential aspect is the understanding of the electroweak symmetry breaking
mechanism that is exploited in the Standard Model by adding a scalar boson, whose associated
particle is the Higgs field. This particle, whose mass cannot be predicted by the theory, had never
been observed in past experiments until July 4th, 2012 when the ATLAS and CMS collaborations
announced its discovery at around mH ∼ 125 GeV.
Among the Higgs decay channels, the one characterised by lepton final state (electrons and muons)
is extremely relevant despite its low branching ratio, thanks to the reduced background rate and
the excellent mass resolution due to a clean decay state with energetic and isolated leptons. An
additional advantage is that the decay products are fully reconstructed.
The general context of this thesis is therefore the measurement of the Higgs boson properties, its
mass and width as well as the contribution of this resonance in the high mass region. The analysed
data was collected in proton-proton collisions at a center-of-mass energy

√
s=7 TeV and

√
s=8 TeV

recorded with the ATLAS detector comprising a total integrated luminosity of approximately 4.6
fb−1 and 20.5 fb−1 respectively.

In Chapter 1, the Standard Model framework is quickly summarised, with particular focus to the
H → ZZ → 4l decay channel. The signal and background features of this channel will be presented
as well as the various aspects of the Monte Carlo simulations, such as the generators employed and
the theoretical uncertainties affecting each specific calculation. As for Chapter 2 and Chapter 3, the
main characteristics of the LHC and the ATLAS detector are presented in addition to a detailed
dissertation on the reconstruction and identification of the physics objects used in the analysis, i.e.
electrons, muons, jets, neutrinos.
In order to achieve a good mass measurement, an accurate calibration of the energy related to
the final state particles plays a major role in the game. This task represents my technical work
accomplished for the ATLAS authorship during the first year of my doctoral programme within the
ATLAS EGamma Calibration Working Group. Chapter 4 will detail the implemented procedure
to extract the electron calibrated energy starting from the raw cluster inputs. Especially Section
4.5 will illustrate the energy-momentum combination algorithm on electrons I studied to improve
the electron energy resolution. This method has been conceived as the last step of the standard
electron calibration chain; it has been exploited in the H → ZZ → 4l analysis and culminated to
the documentation for the final Run 1 legacy paper.

Chapter 5 is devoted to documenting the analysis to extract the Higgs mass in the H → ZZ → 4l
decay channel. The primary step is the description of the kinematic selection, the reducible, and the
dominant irreducible ZZ background with particular emphasis on the beneficial effects stemming
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from the new electron calibration. Conclusively, the results of the event selection in light of the
expected and observed yields are scrutinised and the Higgs Boson mass is calculated.

Chapter 6 will examine the study developed in the H → ZZ → 4l high-mass region (m4l >220
GeV) to extract indirect limits on the Higgs boson width through the determination of the off-shell
signal strength. This study includes the H → ZZ → 4l, H → ZZ → 2l2ν and the H→WW → lνν
final states, yet the description will be limited to my personal contribution to the final picture in
the H → ZZ → 4l channel. In this regard, a brief study on prospects in the high-luminosity LHC
scenario (HL-LHC) is reported in Chapter 7.
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Chapter 1

The Standard Model and the Higgs
Mechanism
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1.7.2 The background processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.1 The Standard model

The Standard Model is the gauge theory that describes the strong and electroweak interactions.
Elaborated and proposed in the sixties, it has obtained various experimental confirmations and it is
currently the model employed to describe the high energy physics even though it does not explain
satisfactorily a certain number of cosmological aspects, mostly associated with the existence of
Dark Matter and Dark Energy. The inclusion of the Higgs boson in the theoretical framework of
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CHAPTER 1. THE STANDARD MODEL AND THE HIGGS MECHANISM

Family Symbol Name Electric charge Mass
e electron -e 511 keV
νe neutrino e 0 < 1.5 eV

1st

u up quark 2/3e 2.5 MeV
d down quark -1/3e 5 MeV

µ muon -e 105.7 MeV
νµ neutrino µ 0 <1.5 eV

2nd

c charm quark 2/3e 1.3 GeV
s strange quark -1/3e 95 MeV

τ tau lepton -e 1.8 GeV
ντ neutrino τ 0 <1.5 eV

3rd

t top quark 2/3e 173 GeV
b bottom quark -1/3e 4.1 GeV

Table 1.1: Names, symbols associated, electric charges and masses for the three families of particles of the
matter fields in the Standard Model framework.

the Standard Model allows to describe the spontaneous symmetry breaking mechanism thanks to
which the observed particles acquire their mass.
In this first Chapter, the main features of the theoretical apparatus will be exposed, starting from
the quantum electrodynamics up to the electroweak unification all the way through the illustration
of the Higgs mechanism (Sections 1.1.1 and 1.2). Secondly, Section 1.6 will give an overview of the
main production and decay mechanisms of the Higgs boson at the LHC. Finally, Section 1.5 will be
devoted to the analysis of the theoretical limits on the Higgs boson mass as well as the direct and
indirect searches carried out at LEP, TeVatron and LHC.

1.1.1 General features of the model

The need for a theory that comprises the principles of Special Relativity and the QuantumMechanics
has led to the introduction of the so-termed quantum field theory, where the parameters of interest
are fields, linear operators in the Hilbert space of the states (the scalar field, φ, the gauge, vectorial
field, Aµ, the fermionic, Dirac field ψ and so forth) with precise transformation rules. Under certain
conditions, the fields can be written as quantised plane-waves through the linear combination of
creation and annihilation operators [1], [2].
The Standard Model distinguishes the fermionic fields (half-integer spin) and the bosonic (integer
spin) fields, mediators of the interactions. The fields of matter are divided into two distinct families,
quarks and leptons, both with spin 1

2 . These fields are organised in three internal generations
composed by a couple of quarks and leptons whose quantum numbers are well defined. As for the
matter fields, Table 1.1 illustrates the names of the particles, as well as the symbols associated to
these name, the electric charge and their masses.

The quarks and leptons corresponding to the first, second and third families are coupled in
a doublet of isotopic spin. As exposed in Table 1.1, the first element of the doublet has charge
Q
e = +2

3 , while the second element has charge Q
e = −1

3 . As for the leptons, the first element of the
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1.1. THE STANDARD MODEL

Interaction Gauge boson
Electromagnetic photon (γ)
Weak W e Z bosons (W±, Z)
Strong 8 gluons (g)
Gravitational graviton (not observed)

Table 1.2: Fundamental interactions and mediators in the Standard Model framework.

doublet has 0 charge and the second one (electron, muon, τ) has Q
e = −1.

The gauge fields, on the contrary, are subdivided into four classes, corresponding to the four funda-
mental interactions and each field has its gauge boson, mediator of that specific interaction, strong,
electromagnetic, weak and gravitational. The gravitational interaction is not included in the Stan-
dard Model but on the scales of particle physics it is completely negligible, hence it will not be taken
into account in this Chapter. The fundamental interactions in the Standard Model framework as
well as the mediators are detailed in Table 1.2. The complete unification of the four forces is still
an open issue in the world of physics.

The dynamics of the quantised fields is described through the lagrangian density, L(q, q̇), that
is a local function of the fields and their spatial and temporal derivatives. The equation of the
motion can be then derived using the principle of Least Action:

d

dt

∂L

∂q̇
− ∂L

∂q
= 0. (1.1)

The gauge symmetry group the Standard Model lagrangian is built upon is:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y (1.2)

• SU(3)C represents the non-abelian group of the strong interactions among quarks, mediated
by an octet of massless particles, the gluons, that carries the charge of the interaction, the
colour (red, green and blue). Quantum Chromodynamics (QCD) comprises the explanation
of these interactions and will be illustrated in Section 1.1.3.

• SU(2)L ⊗ U(1)Y represents the minimal symmetry group for the electromagnetic and weak
interactions between quarks and leptons and it is described by the unification theory of
Weinberg-Salam. Three massive bosons (W± and Z) and one massless boson, the photon
(γ), are the mediators of this interaction. The quantum electrodynamics will be the main
topic of Section 1.1.2, whereas an overview of the electroweak unification will be given in
Section 1.2.

1.1.2 Quantum Electrodynamics (QED)

The first field theory that has been developed is the Quantum Electrodynamics (QED), formulated
to explain the electromagnetic interactions of sub-atomic particles. QED is an abelian gauge [3]
theory that describes a fermion field Ψ and its electromagnetic field. The fermionic contribution of
the QED lagrangian can be written as follows:

L = iΨ̄γµ∂
µΨ−mΨ̄Ψ (1.3)
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CHAPTER 1. THE STANDARD MODEL AND THE HIGGS MECHANISM

where Ψ̄ = Ψ†γ0 and γµ are the Dirac matrices whose anticommutator is equal to 2gµν , being gµν the
metric tensor, m is the mass of the fermionic particle and Ψ its Dirac field. The lagrangian (1.3) is
required to satisfy the local gauge invariance principle, i.e. its invariance under local gauge transfor-
mations. The equation (1.3) is not locally gauge invariant; in order to restore the gauge invariance,
a covariant derivative, Dµ, replacing the global partial derivative ∂µ, needs to be introduced in the
lagrangian. Its definition is the following:

Dµ = ∂µ − ieAµ (1.4)

where e is identified as the elementary charge and Aµ is a new field, the gauge field. This stems
from the fact that the covariant derivative in equation (1.4) transforms under local U(1) symmetries
in the following way:

DµΨ→ eiα(x)DµΨ. (1.5)

By working out this new definition, we are able to write down the QED lagrangian in a different
manner:

LQED =
[
iΨ̄γµ∂

µΨ−mΨ̄Ψ
]

+ eΨ̄γµA
µΨ. (1.6)

The equation (1.6) presents three terms: the first contribution is the fermionic lagrangian of the
Dirac field Ψ, the second one is the mass term of the fermionic lagrangian (the constant m is
multiplied to the quadratic terms in the field Ψ) and the third term, eΨ̄γµAµΨ, describes the
interaction of the gauge field Aµ with the electromagnetic current Jµ. Adding up the fermionic
term brought by the Dirac field Ψ in equation (1.3) and the bosonic contribution, originated by the
gauge field Aµ, we reach the full expression of the QED lagrangian:

L = −1

4
FµνF

µν + Ψ̄(iγµD
µ −m)Ψ. (1.7)

In conclusion, a vector field Aµ has been introduced in the usual fermionic lagrangian (1.3) in
order to restore the local gauge invariance under the abelian group U(1). This contribution denotes
the photon field. Moreover, this field must be described by a massless particle to keep the gauge
invariance of the lagrangian. Its lagrangian (Maxwell’s lagrangian) is:

LMaxwell = −1

4
FµνF

µν + eΨ̄γµA
µΨ. (1.8)

One important characteristic of the QED is that the coupling constant associated to it, αEM , is very
small (αEM ∼ 1

137); hence, the quantum electrodynamics can be developed through perturbative
calculations.

1.1.3 Quantum Chromodynamics (QCD)

Quantum chromodynamics explains how the strong interactions work through the SU(3)C group.
This theory describes the interactions and the behaviour of quarks (present in three colours, blue,
green and red) as well as the force carriers, namely the gluons.

Gell-Mann [4] and Zweig proposed the quark-model in 1964 as a classification scheme for hadrons
that postulates the existence of three fundamental particles (the quarks u, d and s), bonded in a
triplet of flavour, degenerate in mass, constituting the hadrons. According to the number of quarks
and their antiparticles, antiquarks, the hadrons can be divided in two categories and their pictorial
representation can be exploited in the hypercharge-isospin plane:

• the mesons are formed by a qq̄ couple and their multiplets can be written as 3⊗3̄=1⊕8 (one
octet, plus one singlet). They have integer spin and baryonic number B=0.
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1.1. THE STANDARD MODEL

• the baryons are constituted by three quarks and they are organised as 3⊗3⊗3=1⊕8⊕8⊕10
(one decuplet, plus two representations of octets and one singlet). They have half-integer spin
and baryonic number B=+1.

The discovery of the resonance ∆++, formed by three quarks u, created a problem in the current
scheme (Pauli’s exclusion principle) and was the first hint of something beyond the rudimental quark
model proposed by Gell-Mann. The solution proposed by Han and Nambu was the introduction of
a new quantum number, colour, produced by a gauge symmetry, SU(3)C .

The minimal number of colours was set to Nc =3 by various experiments. One first check was
shown by the calculation of the ratio R of the cross sections of the following processes in a e+e−

accelerator:

• e+e− → µ+µ−;

• e+e− → qq̄.

that exhibit a clear evidence of the presence of the colour. Another strong hypothesis of the theory
is that only particles that are colour singlet can be experimentally observed.

The β function of the QCD theory, dealing with the evolution of the coupling constant αS with the
probing energy, unlike the QED case (Section 1.1.2), diminishes as the probing energy increases. An
important consequence is that in the low energy range quarks are confined inside the hadron, QCD
is non-perturbative and is therefore impossible to compute the internal interactions of a neutron, a
proton or a pion with perturbative techniques [5].

As for the QED case (Section 1.1.2), the introduction of the quarks in the lagrangian goes in
parallel with the bosons associated to the strong interactions. They are 8 massless spin 1, gauge
bosons, the gluons. The direct test of the existence of gluons has been carried out at PETRA
(DESY) in 1979 where events with three jets, e+e− → qq̄g, one of which comes from a gluon radi-
ation from a quark were observed [6]; other experimental evidences followed.

In analogy with Section 1.1.2, quantum chromodynamics is extracted from local gauge invariant
transformations under the quark colour field group SU(3). The free lagrangian density [5] for a
fermionic field, q gets the form of:

L =
∑
j

q̄j (iγµ∂µ −mj) qj (1.9)

where the sum is extended for j = 1, ..., 6, the colour triplet corresponding to the six quark flavours
and qj = (qr, qb, qg)j is the quark triplet whose indices refer to the colour charge of the strong
interactions. As for the previous Section, the lagrangian above must be invariant for SU(3) gauge
transformations. The procedure explained in Section 1.1.2 holds: we need to restore SU(3) local
gauge invariance and the lagrangian (1.9) does not exhibit it. Hence, eight gauge fields Gaµ are
included in the lagrangian computation transforming as:

Gaµ → Gaµ −
1

g
∂µα

a − fabcαbGcµ. (1.10)

The resultant lagrangian is:
L = q̄ (iγµ∂

µ) q − g (q̄γµT
aq)Gµa . (1.11)

7



CHAPTER 1. THE STANDARD MODEL AND THE HIGGS MECHANISM

The partial derivative can be replaced by the covariant derivative in such a way that the newly-
produced lagrangian is now locally invariant under the gauge group SU(3). Including the kinematic
terms for each Gµa gauge field, the final form of the gauge invariant QCD lagrangian is:

LQCD = −1

4
GaµνG

µν
a + q̄ (iγµD

µ −m) q (1.12)

where Gµνa is the gluon field tensor and is defined as follows:

Gµνa = ∂µGνa − ∂νGµa − gfabcG
µ
bG

ν
c . (1.13)

Equation (1.13) displays the non-abelian structure of the QCD in the third term where, unlike the
abelian QED case, the gluon-gluon self-interaction terms (GµbG

ν
c ) are visible leading to vertices with

three or four gluons.

In the QCD framework, perturbation theory [5] is a method to improve the accuracy of theo-
retical cross-section predictions. Processes can be computed at leading-order (LO) if no radiative
corrections are added to the initial or final states but only the |M|2 matrix element computation
is present. Next-to-leading-order (NLO) diagrams arise if real emissions (extra partons) or virtual
corrections are included, each of them carrying a proportionality to αS . The same applies to NNLO
corrections and so forth. In the case that the perturbative series do not converge because of the
presence of large logarithms coming from the phase-space integration of soft (Eg →0) and collinear
(θqg →0) gluon singularities, the so-called logarithmic resummation technique is employed. This
technique involves a definition of another convergent function in which the individual terms of the
original functions are rescaled and summed to the fixed order contribution to restore the conver-
gence. The first term of the series represents the leading-log (LL) contribution, the second one the
next-to-leading-log (NLL) and so on.

1.2 The electroweak interactions

The nuclear β decay is one of the many facets of weak interaction. The basic reactions involving
weak interactions in nuclei may be characterised by the decay of a neutron:

n→ p e ν̄

In the forties, the studies on the β radioactivity led by Fermi [7] were the first attempt to draw
a comprehensive picture of these interactions. These phenomena are described by a four-fermion
coupling, whose intensity is proportional to the Fermi constant, GF ∼ 10−5 GeV−2 in such a way
that the lagrangian of the interaction is written:

LF =
GF√

2
[p̄γµ(1 + αγ5)n] [ēγµ(1− γ5)ν] (1.14)

where p, n, e, ν are the fermionic fields of the proton, neutron, electron and neutrino respectively.
The discovery of the parity violation in the framework of the weak interactions by Wu [8] as well
as the measurement of the neutrino helicity by Goldhaber, Grodzsins and Sunyar [9] improved the
general knowledge of the theory.

It was later observed that under precise working hypothesis and generalisations the electromag-
netic and the weak theories can be unified in a common structure (electroweak unification). The
theory of the electroweak unification, postulated by Glashow, Weinberg and Salam, is based on
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the concept of gauge symmetry under the local symmetry group SU(2)L ⊗ U(1)Y . As illustrated
in Section 1.1.1, the matter fields are identified with three chiral fermionic fields, for quarks and
leptons, so that the two components of different chirality ψL and ψR of the wave function ψ, can
be written as follows:

ψL =
1

2
(1− γ5)ψ; (1.15)

ψR =
1

2
(1 + γ5)ψ; (1.16)

being γ5 a matrix belonging to the Dirac formalism.

The left-handed (L) fermions are represented by a weak isospin doublet: I2=1
2 ; I3 = ±1

2 :

ψL =

(
νL
eL

)
(1.17)

while the right-handed (R) fermions are represented by a weak isospin singlet I3 = 0. The right
component of the fermions is not in a doublet structure:

νR, eR. (1.18)

The lagrangian of the doublet (Dirac lagrangian) of the electronic doublet in terms of the right
and left-handed fields is:1

L = ψ̄Lı6∂ψL + ēRı6∂eR + ν̄Rı6∂νR (1.19)

where the left-handed fields have been included in the isospin doublet ψL and the right-handed
contributions are isospin singlets. Equation (1.19) exhibits an asymmetry in the treatment of the
left and right components of the fields. The transformations below leaves the left component of the
lagrangian invariant (1.19):

ψ
′
L = eıβ

τi
2 ψL. (1.20)

where the τi are the three Pauli matrices, generators of the SU(2) group (Section 1.1.2) and β a
numerical constant. As a consequence, L is proved to be invariant under local SU(2)L transfor-
mation acting only on the left contribution. The application of the Noether theorem implies that
the conserved currents (weak isospin currents), associated to the SU(2)L transformations of the
lagrangian, should be expressed as follows:

Jµ = ψ̄Lγµ
τi
2
ψL. (1.21)

From this formulation, the weak isospin is extracted from the temporal component of the
quadrivector:

I3 =

∫
d3x J0. (1.22)

The electromagnetic current is:
Jµem = −eēγµe (1.23)

where e is the electron charge, e is the fermionic Dirac field of the electron and by explicitly
expressing Q as the integral of the temporal component of the electromagnetic current, we are able
to introduce a new quantity, the weak hypercharge:

Y = 2(Q− I3) (1.24)
1 6∂ = ∂µγ

µ.
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CHAPTER 1. THE STANDARD MODEL AND THE HIGGS MECHANISM

defined in such a way that it is related to the invariance of the lagrangian (1.19) under U(1)Y
transformations, namely phase transformations. The generator of the U(1)Y group is the parameter
α:

ψ
′

= eıαψ. (1.25)

Not only is the left component of the lagrangian (1.19) invariant under this gauge transformation
but also the right contribution even if it carries the singlet-based structure.
Wrapping up, the general scheme achieved is sketched out below:

• invariance of the lagrangian under SU(2)L, explicitly defined by the transformations (1.20)
=⇒Weak isospin I conservation;

• invariance of the lagrangian under U(1)Y , whose transformations are displayed in equation
(1.25) =⇒Weak hypercharge Y conservation.

In conclusion, the minimal symmetry group of the electroweak interaction is SU(2)L ⊗ U(1)Y .

1.2.1 The Glashow theory

The theory proposed by Glashow [3] is the first attempt towards a unification of the electromagnetic
and weak interactions. Defining the following gauge fields of the electroweak sector:

• Bµ - the gauge field that corresponds to the generator of the U(1)Y group;

• the tripletW i
µ fields, where i = 1, 2, 3, associated to the three generators of the SU(2)L group.

In analogy with the formulation illustrated in Sections 1.1.2 and 1.1.3, the lagrangian of the
gauge fields is:

L = −1

4
W i
µνW

µν i − 1

4
BµνB

µν . (1.26)

As it is now, the theory would allow massless Goldstone-like bosons (Section 1.3.1). In order to
remove them, Glashow [10] proposed to add a mass term, Lm, to the above-defined lagrangian
(1.26):

Lm =
1

2
[M2W i

µνW
µν
i +M2

0BµνB
µν + 2M2

03W
3
µB

µ] (1.27)

The resultant gauge invariance of the total lagrangian (Ltot = L + Lm) is spoilt as the mass term
breaks explicitly the symmetry. Let us analyse the mass spectrum of the theory produced by the
insertion of the mass term on the basis (W 3,B), that is the one of the neutral fields of the gauge
boson Z and the γ.

M =

(
M2 M2

03

M2
03 M2

0

)
(1.28)

This matrix must possess a null eigenvalue, correspondent to the photon mass and the other non-
zero eigenvalue refers to the mass of the Z boson. By imposing the condition det(M) = 0, the
following equation is obtained:

M2
03 = M2M2

0 . (1.29)

By including the physical fields Aµ (electromagnetic field) and Zµ (Z boson field) as a linear
combination of W 3 and B through a rotation, the following relations are proposed:

Zµ = cos θWW
µ
3 − sin θWB

µ; (1.30)
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Aµ = sin θWW
µ
3 + cos θWB

µ; (1.31)

where θW is the Weinberg angle that guarantees the mixing between the physical fields, Aµ, Zµ,
and the gauge field Wµ

3 and Bµ with which we have started the calculation.
The mutual equations that govern the masses of the bosons and the coupling constants are:

MW = MZ cos θW ; (1.32)

tan θW =
g′

g
(1.33)

meaning that the electromagnetic field Aµ couples to the electron through the electromagnetic
current, with g sin θW = g′ cos θW = e.

1.3 The Higgs Mechanism

1.3.1 The Goldstone model

The approach introduced by Glashow described in Section 1.2.1 did not satisfactorily treat the
massless Goldstone bosons: his mass term added in the lagrangian (1.27) breaks explicitly the
gauge symmetry. Let us now consider the lagrangian [3] of a complex scalar field, φ, being µ2 the
mass coefficient that multiplies the quadratic terms of the fields and a quartic self-interaction term,
with a positive coefficient λ:

L = ∂µφ∂
µφ† − µ2φφ† − λ(φφ†)2. (1.34)

This lagrangian exhibits an invariance under global phase transformations:

φ(x)→ φ
′
(x) = eıαφ(x); (1.35)

(φ†)(x)→ (φ†)
′
(x) = e−ıαφ†(x). (1.36)

where α is an arbitrary phase term that does not depend on the phase-space where the field is
embedded. The theory can be farther developed by introducing two real scalar fields, φ1,2 where
the following relation holds:

φ(†) =
φ1 ± ıφ2√

2
(1.37)

and φ, φ† are the complex scalar fields. The lagrangian (1.34) becomes:

L =
1

2
(∂µφ1∂

µφ1 + ∂µφ2∂
µφ2)− V (1.38)

and the potential term is:

V =
µ2

2
(φ2

1 + φ2
2) +

λ

4
(φ2

1 + φ2
2)2. (1.39)

The functional form of the potential V depends on the mass term µ2; two possible theories can arise
depending on the sign of µ2, being δ(φ1,2) the complex plane of the scalar fields φ1 and φ2.

• µ2 > 0. The potential is a concave function of the fields φ1 and φ2, with an absolute minimum
in the origin of the axis, i.e. φ1 = φ2 = 0. The state of minimal energy of the field is unique
as well as the vacuum expectation value of the field φ. The symmetry is therefore exact:

< 0|φ(0)|0 >= 0. (1.40)
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CHAPTER 1. THE STANDARD MODEL AND THE HIGGS MECHANISM

Figure 1.1: Functional form of the potential V as defined in equation (1.39) as a function of the real fields
φ1 e φ2 when µ2 < 0.

• µ2 < 0: The functional form of the potential V is shown in Figure 1.1. It is clear that
the configuration φ=0 is still a solution of the equation, but it is not the configuration that
minimises the potential. On the contrary, φ=0 represents a local maximum of the potential,
whereas the local minimum corresponds to the circumference centred in the origin.

In order to solve the degeneracy of the circumference of the minima and choose a unique state, a
small, complex driving term, ε, can be introduced in the lagrangian:

L
′

= ε∗φ+ εφ† (1.41)

The minimum of the energy is extracted by computing the first derivatives of the potential in the
fields φ and φ†:

φ[µ2 + 2λ(φφ†)] = ε. (1.42)

The equation has two solutions: the former coincides with the origin of the axis (local maximum)
and the latter is the one that cancels the term within parenthesis, corresponding to the minima of
the circumference. Consequently, the above-defined driving term enables the quantum system to
have one minimum only on the circumference shown in Figure 1.1. Noting η as the non-zero vacuum
expectation value (VEV), the following equation:

< 0|φ(0)|0 >= η 6= 0 (1.43)

displays that the configuration of minimal energy is no longer symmetric and the symmetry of
the system is spontaneously broken in the fundamental state.

The fluctuations of the minima when µ2 < 0

Let us investigate the fluctuations of the field around the fundamental state. They are described
by quantum oscillations of the scalar field φ around its expectation value in the vacuum:

φ(x) = η +
σ1(x) + ıσ2(x)√

2
(1.44)

12



1.3. THE HIGGS MECHANISM

where the second term, including a real and an imaginary part, represents the fluctuation around
the VEV. Replacing (1.44) into (1.38), and developing the equation in powers of σ, we find the
following identities:

M2
11 = 4λη2; (1.45)

M2
12 = M2

21 = 0; (1.46)

M2
22 = 0. (1.47)

that coincide with the matrix that defines the mass spectrum of the theory. It is noticeable that
the mass spectrum is equal to matrix of the curvature of the potential since it is computed with the
second derivatives of the potential. The two degrees of freedom associated to the complex field φ
are now represented by two particles whose masses are M2

11 = 4λη2 and M2
22=0 respectively. The

massless particle that is produced by the theory is known as the Goldstone boson and it is the result
of the spontaneous symmetry breaking à la Goldstone.

1.3.2 The Higgs model and its coupling to the gauge fields and to the fermions

In analogy with the procedure explained in Section 1.1.2 and 1.1.3, let us replace the global phase
transformation symmetries (1.35) and (1.36) with local phase transformation functions [11] [12].
Consequently, the partial derivative gets replaced by the covariant derivative and a new gauge field,
Aµ, must be added to restore the local gauge invariance. The new lagrangian is:

L = (Dµφ)†(Dµφ)− V (φ, φ†)− 1

4
FµνF

µν (1.48)

where the covariant derivative, Dµ, is defined as follows:

Dµ = ∂µ − ıeAµ (1.49)

and Fµν is the Yang-Mills tensor in analogy with the Maxwell tensor of the electromagnetic field.
If we let the gauge field Aµ coincide with the electromagnetic field, e denotes a coupling constant
describing the electron charge. The lagrangian L in (1.48) is invariant under local gauge transfor-
mations:

φ(x)→ φ
′
(x) = eıα(x)φ(x); (1.50)

φ†(x)→ (φ†)
′
(x) = e−ıα(x)φ†(x). (1.51)

Aµ → Aµ +
1

e
∂µφ(x) (1.52)

where α(x) is an arbitrary local phase.
As stated in Section 1.3.1, the condition µ2 < 0 leads to the spontaneous symmetry breaking of the
system. Developing the equation (1.50) in this operating scheme up to the second order, we obtain:

φ(x)→ φ(x) + ıαφ(x). (1.53)

Replacing (1.53) in (1.44), we verify that σ1,2 transform in the following way:

σ1(x)→ σ
′
1(x) = σ1(x) (1.54)

σ2(x)→ σ
′
2(x) = σ2(x) +

√
2ηα(x). (1.55)
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α(x) is the term associated to the local phase of the symmetry. A specific choice of this parameter
enables us to remove the field σ′2, expression of the massless particle of the Goldstone theory (1.47).
Choosing the so-termed unitary gauge,

α =
−σ2(x)√

2η
=⇒ σ

′
2 = 0. (1.56)

the fields are now expressed as follows:

φ = η +
σ√
2

= ρ(x) real. (1.57)

By substituting the above-extracted functional form of φ in the lagrangian (1.48), we obtain:

L =
1

2
∂µσ∂

µσ + e2ρ(x)2AµA
µ − V (ρ)− 1

4
FµνF

µν . (1.58)

From this equation, the quadratic terms in the fields turn out to be (lagrangian of the Higgs field):

L =
1

2
∂µσ∂

µσ − 1

2
M2
Hσ

2 − 1

4
FµνF

µν +
1

2
M2
AAµA

µ (1.59)

where σ is the scalar field of the Higgs boson, MH = 2λη2 = −2µ2 is the mass term of the Higgs
field, MA = 2e2η2 is the mass contribution of the gauge field Aµ that appears in the game because
of its coupling with the Higgs field.
In presence of a local gauge symmetry, the spontaneous symmetry breaking implies that the corre-
sponding gauge field acquires a mass through the coupling with the Higgs field. The mass spectrum
changes dramatically when moving from an exact symmetry to a broken one but the total number
of degrees of freedom of the theory is conserved:

• No spontaneous symmetry breaking: two degrees of freedom associated to the spin 0
scalar fields σ1 and σ2, plus two degrees of freedom produced by the massless spin 1 gauge
field Aµ. In total, four degrees of freedom.

• Spontaneous symmetry breaking: One degree of freedom coming from the scalar field of
the Higgs boson (spin 0 particle), plus three degrees of freedom of the spin 1 gauge field Aµ

that has now acquired mass. The total number of degrees of freedom of the theory does not
change.

As for the electromagnetic field, the gauge boson, the photon, is massless because the gauge sym-
metry is not spontaneously broken as illustrated in Section 1.1.2.

The masses of the fermions are generated by Yukawa couplings between the fermions themselves
and the Higgs boson. These Yukawa terms appear in the lagrangian in the form:

LYukawa = −(
σ√
2

)λf f̄f (1.60)

for each fermionic field f , where λf represents its coupling with the Higgs field.

1.4 The Weinberg-Salam theory

The development by Weinberg [13] and Salam [14] of the Standard Model is the continuation of
Glashow’s theory without the usage of the mass term in the lagrangian that explicitly breaks the
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gauge symmetry of the theory, and introducing spontaneous symmetry breaking. Let us promote
the global transformation of the fields into local ones. This derivation proceeds in analogy with
what has been already shown in Sections 1.1.2 and 1.1.3 for the QED and QCD cases. In order
to keep the gauge symmetry of the lagrangian, the partial derivative needs to be replaced by the
covariant derivative and the weak lagrangian becomes:

L = ψ̄Lı6DψL + ēRı6DeR + ν̄Rı6DνR (1.61)

where D is the covariant derivative that is defined in the following way:

Dµ = ∂µ + ıg
τi
2
Wµ + ı

g′

2
Bµ. (1.62)

The lagrangian (1.61) is invariant under the set of local transformations SU(2)L ⊗ U(1)Y .

Let us now make use of the Higgs mechanism to generate the masses of bosons and leptons. Firstly,
a scalar doublet, the Higgs doublet Φ, is introduced in the calculation. The Higgs field needs
to be a doublet in order not to spoil the gauge invariance of the lagrangian (1.61) under local
transformations SU(2)L ⊗ U(1)Y : (

φa
φb

)
(1.63)

From here, we obtain the final lagrangian:

L = LB + LF + LH (1.64)

where LB is the gauge bosons lagrangian (1.26), LL is the lagrangian of the lepton contribution
(1.61) and LH is the lagrangian of the Higgs doublet:

LH = (DµΦ)†(DµΦ)− µ2φφ† − λ(φφ†)2. (1.65)

By recalling the gauge choice (unitary gauge), specified in equation (1.56), the doublet Φ is equiv-
alent to: (

0

η + σ(x)√
2

)
(1.66)

In the Higgs doublet there is only one physical field left, σ, hence one neutral, scalar particle,
the Higgs boson. By replacing this term into (1.64), we obtain the mass term of the electroweak
lagrangian:

Lew =
g2η2

4
W i
µW

µ i − gg′

4
η2W 3

µB
µ − gg′

4
η2BµW

µ 3 +
g′2

4
η2BµB

µ. (1.67)

that is the final outcome of the electromagnetic and weak unification. Grouping the quadratical
terms multiplying the fields, we are also able to examine the mass spectrum of the theory:

M =

(
g2 −gg′
−gg′ g′2

)
(1.68)

and Glashow’s final result g′

g = tan θW , exposed in Section 1.2.1 can be derived again.
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1.5 The Higgs Boson in the Standard Model

The electroweak theory has been deeply verified in the last thirty years of the 20th century, proving
that the Standard Model offers a valid explanation of the nature of particle interactions. The
Higgs boson has represented the only missing piece for more than a decade and has been searched
by experiments at LEP, TeVatron and LHC until it was discovered by both ATLAS and CMS
experiments at the LHC in 2012.

1.5.1 Theoretical limits on the Higgs boson mass

The assumptions in [15] based on the current formulation of the quantum field theory place strong
theoretical constraints on the possible mass range of the Higgs boson. They are listed below and
analysed in this Section.

• Unitarity;

• vacuum stability and triviality.

Unitarity

The Fermi theory does not respect the unitarity limit. Indeed, in this model the cross section of the
process νµ e→ νe µ is proportional to G−1/2E2

CM in the high energy range and it is divergent in s
when the available energy of the centre-of-mass increases. The constraint would have been violated
for
√
scut−off = 300 GeV and the theory would not have been unitary.

A similar issue was found in the high energy WW scattering (vector-boson scattering):

W+W− →W+W− (1.69)

where the Higgs boson can be exchanged both in the s and t channel. An upper limit for mH is
found at mH ∼ 870 GeV beyond which the cross section of the WW scattering process diverges and
the unitarity principle would be then violated. By including higher order calculations to the tree
level, the value of the limit reaches ∼ 1 TeV: other mechanisms need to be introduced to prevent
the vector boson scattering amplitudes from being divergent.

Vacuum stability and triviality

The coupling constants depend on the energy scale Q2 of the process. Be v2 the scale of the
electroweak spontaneous symmetry breaking (∼ 246 GeV2) and λ the Higgs self-interaction coupling
constant. Its value is dependent (running) on the energy scale of the process, λ = λ(Q2). There
are essentially two different behaviours of the Q2-dependent coupling constant:

• Q2 � v2. The system cannot reach the energy needed for the symmetry breaking. As a
consequence, the running coupling constant λ is very small. The quartic self-interaction term
in the Higgs lagrangian (1.48) disappears and the theory is trivial.

• As the value of Q2 of the process increases, the energy of the system approaches the scale
of the electroweak symmetry breaking; the coupling constant λ gets larger and larger until it
diverges (Landau pole) and the theory is no longer perturbative.

However, if we include all the virtual contributions to the constant λ(Q2), we obtain the following
relation:

λ(Q2) = λ(v2) +
1

16
[−12

m4
t

v4
+ ...] log

Q2

v2
. (1.70)
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If the tree level term λ(v2) is very small, then λ(Q2) < 0 and the vacuum state is unstable. Given
the Higgs mass dependency on the vacuum expectation value v, equation (1.70) implies a lower
limit on mH , being the physical non-plausibility of the vacuum instability. The combination of the
stability and triviality [15] hypotheses produces an upper and lower limit on the Higgs mass that
constraint an allowed range in the Λ-mH phase-space as illustrated in Figure 1.2. As the cut-off
scale Λ increases, the limits on the allowed Higgs masses get tighter , favouring a low-mass Higgs
boson scenario. The plot in Figure 1.2 illustrates that as the cut-off scale Λ increases, the limits on

Figure 1.2: The scale Λ [16] at which the two-loop corrections to the self-coupling constant drive the quartic
SM Higgs coupling to be non perturbative and the scale up to which the theory creates an instability of the
electroweak vacuum (λ <0). The triviality upper bound is given for λ = π (lower bold line in blue) and
λ = 2π (upper bound line in blue). Their difference indicates the size of the theoretical uncertainty in this
bound. The absolute vacuum stability bound is displayed by the light shaded green band. The theoretical
uncertainties in these bounds have been ignored in the plot. The grey hatched areas indicate the LEP and
TeVatron exclusion domains.

the allowed Higgs masses get tighter, favouring a low-mass Higgs boson scenario.

1.5.2 Experimental limits on the Higgs boson mass before the discovery

Indirect searches of the Higgs boson

The Higgs boson contributes to the radiative corrections of the electroweak theory as it enters
in the perturbative loops, with a correction proportional to lnmH . It is then possible to extract
information on mH from precise measurements of the other particles masses and couplings.

The precision measurements at LEP [17] and TeVatron [18] processed by LEP Electroweak
Working Group with the GFitter collaboration in 2011 [19], are indicated below:

• The observables from the profile of the Z peak at LEP: the total decay width ΓZ , the hadronic
cross section at the peak, σhad, the partial decay widths of the Z boson in leptons and in
hadrons, the backward-forward asymmetries.

• The longitudinal polarisation asymmetries ALR measured at SLC through a polarised beam.

• The W mass mW and its total decay width ΓW , measured at LEP and TeVatron.

17
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(a) (b)

Figure 1.3: (a) Summary of the results on the precision measurements at LEP, TeVatron and SLC. (b)
∆χ2 fit of electroweak data as a function of mH . The solid (dashed) line gives the results when including
(ignoring) theoretical errors.

• The top quark mass measurement performed at TeVatron.

• The measurement of the strong coupling constant αs and its running behaviour as a function
of Q2.

These measurements are summarised in Figure 1.3 (a). Figure 1.3 (b) indicates the ∆χ2 fit for the
electroweak data as a function of mH which gives a favoured Higgs mass at mH = 91 ± 30 GeV if
the results from direct searches at LEP and TeVatron are ignored.

The indirect determination mainly relies on the measurements of mW and mt. The Higgs mass
can be therefore parametrized in the mt,mW phase space: Figure 1.4 shows in the mT -mW plane
the trajectories corresponding to various Higgs masses from 114 GeV to 1000 GeV.

Direct searches of the Higgs boson

The Higgs boson has been seeked at LEP and at TeVatron as well as the LHC until its discovery
by ATLAS and CMS announced in a seminar at CERN on July, 4th 2012.
In 1989 the Large Electron Positron (LEP) collider became operational at CERN and the four
experiments (ALEPH, L3, DELPHI and OPAL) started to collect data at

√
s=89-93 GeV in the

first phase (LEP1) and
√
s=161-209 GeV in the second phase (LEP II). At LEP, the Higgs boson

was expected to be produced mainly in the association with a W or Z boson.
The final state topologies the searches were concentrated on were:

• four jet final state H → bb and Z → qq̄;

• tau lepton production H → ττ and Z → qq̄ or H → bb and Z → ττ ;

• missing energy final states H → bb and Z → νν̄

• leptonic final states H → bb and Z → e+e− or Z → µ+µ−.
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1.5. THE HIGGS BOSON IN THE STANDARD MODEL

Figure 1.4: Compatibility among the W and the top mass measurements with the possible mass of the
Higgs boson. The W and t masses extracted at LEP2 and TeVatron are comprised into a 68% confidence
level contour.
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Figure 1.5: Exclusion limits produced by the combination of the results from the four experiments (ALEPH,
OPAL, L3 and DELPHI) at the LEP. The dashed line indicates the median background expectation whilst
the solid line represents the observation on data and the coloured bands correspond to the 68% (1 standard
deviation) and 95% (2 standard deviations) probability contours.

The combination of the various searches performed at LEP are shown in Figure 1.5 where a 95
% Confidence Level lower limit at 114.4 GeV is extracted. In the exclusion plot, the dashed line
indicates the median background expectation whilst the solid line represents the observation on
data and the coloured bands correspond to the 68% (1 standard deviation) and 95% (2 standard
deviations) probability contours.

The TeVatron experiments at Fermilab, CDF and D0, started the data taking in 1985 until 2011.
The TeVatron was a pp̄ collider operating at

√
s=1.96 TeV. The Higgs searches were conducted in

the following decay channels:

• jet-related final states H → bb̄;

• bosonic final states, H →WW → lνlν or H → ZZ →4l.

As for LHC, the discovery of a new resonance compatible with the long-sought Higgs boson of the
Standard Model at mH ∼125 GeV by both ATLAS and CMS was finally accomplished in July 2012.
Further detailed studies on this particle and its kinematic properties were carried out all through
2012, 2013 and 2014. The final results for what concerns the ATLAS experiment in the so-called
Run 1 period (

√
s=7 TeV and

√
s=8 TeV) are now published.

The measurement of the Higgs boson mass comprises the H → ZZ → 4l and H → γγ chan-
nels with the available integrated luminosity of ∼ 25fb−1 recorded in 2010, 2011 and 2012. The
measured value of the mass is mH=125.36 ± 0.37 (stat) ± 0.18 (syst) GeV [20]. Chapter 5 will
illustrate the analyses that have been employed to derive the Higgs mass in the H→ZZ→4l channel
and Chapter 6 will present the measurement of the same channel for an off-shell Higgs which can
be used to constrain the width under some hypotheses.
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1.6 The Higgs boson phenomenology at the LHC

1.6.1 Parton density functions at the LHC

A proton is not an elementary particle but it consists of three valence quarks (two up-quarks and
one down-quark), sea quarks and gluons. The pp collisions can be therefore described by the mu-
tual interactions between valence, sea quarks and gluons. Depending on the factorisation scale,
µF , of the process, that corresponds to the resolution with which the hadron is being probed, the
scattering between hadrons is written as the sum of hard processes, with high momentum transfer
Q2, computed in perturbative QCD, and soft interactions, domain of the non-perturbative QCD,
characterised by low Q2.

Let p be the modulus of the momentum of each proton, each constituent carries a fraction x of
the momentum of its parent proton. Given two colliding partons, a and b, in two protons, the total
cross section of the hard scattering depends on the cross section of the two partons, a and b (σa+b→c
where c is the final state of the process) and their parton density functions (PDFs) fa(xa, µ2) and
fb(xb, µ

2) corresponding to the probability density function of finding a parton of a fraction x of
the momentum of the proton:

σpp→c =
∑
a,b

∫
dxadxbfa(xa, µ

2)fb(xb, µ
2) · σa+b→c (1.71)

where the sum above is overal all partonic processes. This model also implies that the transverse
momenta of the partons into the nucleons are negligible. In a hard scattering process, initial and
final state quarks and gluons can radiate gluons which further radiate or create new quark anti-
quark pairs, developing a parton shower modelled by splitting functions [21] and Sudakov form
factors [22]. As coloured hadrons cannot exist freely for the theory of the confinement (Section
1.1.3), the resulting partons form colourless hadrons (hadronisation). When a bunch of hadrons are
produced in a narrow cone, they are experimentally reconstructed as jets.

The PDFs determination relies on phenomenological analysis based on data collected mostly from
deep-inelastic scattering experiments and precision measurements exploited in hadron colliders.
Their evolution as a function of the energy scale Q2 of the process can be calculated by the DGLAP
equations [23] [24] [25] (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi). Various PDF sets are avail-
able: their main difference is the number of parameters of the model and the series of data used to
fit the processes. The most common ones are CTEQ [26], MSTW [27] or NNPD [28].

1.6.2 Higgs boson production

From the electroweak lagrangian (1.67), the following coupling constants of the Higgs boson to
bosons and fermions are extracted:

gHff = ı
mf

η
; (1.72)

gHV V = −2ı
M2
V

η
; (1.73)

gHHV V = −2ı
M2
V

η2
. (1.74)

The Standard Model predicts everything except the Higgs boson mass, therefore, by assuming a
mass, production rates and branching ratios can be univocally calculated.
In the Standard Model, the Higgs coupling is preferential to the heaviest particles, namely the
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massive bosons W and Z and to the quark top through virtual loops. The main production mech-
anisms at the LHC [29] [30] will be illustrated in this Section and the relative Feynman diagrams
are displayed in Figure 1.6. The cross sections for the same processes are shown in Figure 1.7 for√
s=7 TeV,

√
s=8 TeV and the total cross section of the process pp→H+X at

√
s=7 TeV,

√
s=8

TeV and
√
s=14 TeV. The coloured bands around the curves represent the theoretical uncertainties

on each production mechanism.

Figure 1.6: Feynman diagrams for the main production mechanisms of the Higgs boson at the LHC: (a)
gluon-gluon fusion, (b) associated production with a W± or Z bosons, (c) vector boson fusion and (d) tt̄
associated production.

Gluon gluon fusion

The gluon gluon fusion (ggF) mechanism:

pp→ gg → H (1.75)

is dominant at the LHC in the whole Higgs mass range. The coupling of the gluons to the Higgs
boson is mediated through a triangular loop of virtual quarks where the t contribution plays the
dominant role because of the large top mass. The theoretical cross section has been computed includ-
ing the QCD corrections up to next-to-next-to-leading-order (NNLO) and next-to-next-leading-log
(NNLL), whereas the electroweak corrections are known to next-to-leading order (NLO).

Vector boson fusion

The vector boson fusion mechanism (VBF):

pp→ qq → V ∗V ∗ → qqH (1.76)

is the second-most important mechanism at the LHC. For example, for a Higgs boson of mH=125
GeV, its contribution to the total cross section is of the order of 8% and its value gets comparable
to ggF for Higgs masses ∼ 1 TeV. The VBF production mode has a distinctive kinematics: two
energetic jets (pjetsT > 20 GeV) in the forward and backward regions of the detector with a large
rapidity gap between them. The Higgs production is therefore lying inside this gap and the analyses
may take advantage of it for identification and reconstruction of VBF-like events. The VBF cross
section has been calculated up to NNLO.
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Figure 1.7: Higgs boson production cross section for pp collision at
√
s= 7 TeV (a), and

√
s= 8 TeV (b) as

a function of the Higgs mass mH . Total cross section for pp→ H+X for
√
s= 7 TeV,

√
s= 8 TeV and

√
s=

14 TeV [29].

23



CHAPTER 1. THE STANDARD MODEL AND THE HIGGS MECHANISM

 [GeV]HM
90 200 300 400 1000

H
ig

g
s
 B

R
 +

 T
o
ta

l 
U

n
c
e
rt

­410

­3
10

­210

­110

1

L
H

C
 H

IG
G

S
 X

S
 W

G
 2

0
1
3

bb

ττ

µµ

cc

gg

γγ γZ

WW

ZZ

(a)

 [GeV]HM
80 100 120 140 160 180 200

H
ig

g
s
 B

R
 +

 T
o
ta

l 
U

n
c
e
rt

­410

­3
10

­210

­110

1

L
H

C
 H

IG
G

S
 X

S
 W

G
 2

0
1
3

bb

ττ

µµ

cc

gg

γγ γZ

WW

ZZ

(b)

Figure 1.8: Standard Model Higgs decay branching ratios at
√
s = 8 TeV in the whole mass range up to 1

TeV (a) and in the low mass region, 80< mH <200 GeV (b) [30].

Associated production

The associated production mechanism, described by the process:

pp→ qq̄ → V H (1.77)

is penalised by the necessity of the presence of an antiquark that, in a pp machine, does not come
from the valence but from the sea. In this case, the selection of an event can be performed by
reconstructing the original boson that radiated the Higgs. This production cross section has been
calculated up to the QCD correction at NNLO and electroweak corrections at NLO.

Associated production to a tt̄ pair

The production mechanism of the Higgs boson associated with a tt̄ couple is the production mech-
anism with the smallest yields:

pp→ qq̄ → tt̄H (1.78)

This process has been computed with a precision NLO.

1.6.3 Higgs boson decay

As previously stated (Section 1.3), the Higgs decay is correlated to the value of its mass and the
final state particles due to the dependency of the coupling constants on the mass of the particles the
Higgs couples to and the available phase-space. The branching ratios are known at NNLO, including
both QCD and electroweak corrections and they are presented in Figure 1.8 as a function of the
Higgs mass. Figure 1.9 displays the product of the production cross section σ and the branching
ratio for the various final states.

We may subdivide the channels according to the Higgs mass:

• High mass Higgs (180 GeV < mH < 1 TeV). This range is characterised by the fact that
mH > 2MZ , 2MW . The Higgs boson decays into two massive bosons, W+, W− or ZZ pairs,
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Figure 1.9: Standard Model Higgs boson production cross section times branching ratio at
√
s= 8 TeV in

the whole mass range up to 1 TeV (a) and in the low mass region, 80< mH <250 GeV (b) [30].

with a branching ratio of ∼ 70 % in the WW and ∼ 30 % in the ZZ final state. In the
WW case (lνlν or lνqq̄ are the final states that are included in the analysis), its σ×BR is
high; however, the presence of neutrinos does not allow reconstruction of the final state: the
measurement of the rate is important but difficult since several backgrounds can mimic the
signals. On the other hand, the ZZ decay channel into 4 leptons, electrons or muons (H→ ZZ
→ 4l) possesses an excellent resolution for what regards the Higgs mass as well as a negligible
background rate. Chapter 5 will develop the main characteristics of this analysis as well as
the various steps that led to the mass extraction in that channel.
For mH > 200 GeV, the decay channels H → ZZ→ llqq and H → ZZ→ llνν are also included
in the ZZ analysis because of their good sensitivity in the high mass region.

• Intermediate Higgs (130 GeV < mH < 180 GeV). The Higgs boson still decays into 4
fermions, through a pair of massive gauge bosons, being one of them virtual. As mH ap-
proaches 130 GeV, the decay channel into bb̄ pairs is present as well, with a branching ratio ∼
50 %. When the WW threshold (mH ∼ 2MW ) is reached, the bb̄ decay channel contribution
gets less important. Until the production threshold of two real Z bosons (mH ∼ 2MZ), the
WW decay completely dominates the branching ratio.

• Low mass Higgs (110 GeV < mH < 130 GeV). In the low mass range, the main decay
channel is bb̄, then τ+τ− and cc̄. In spite of its high value of σ×BR, the bb̄ mode is not
easily accessible because of the overwhelming QCD background. The decay channels that are
characterised by a virtual top or bottom loop, namely H → γγ and H → Zγ, are much rarer
than bb̄ or τ+τ− although they are experimentally precious because of their very distinctive
signature due to two high energetic photons forming a narrow invariant mass peak over a
falling background.
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1.6.4 Higgs boson total width

The functional form (Figure 1.10) of the the total width above the ZZ production threshold as a
function of mH is illustrated in the equation below:

ΓH ∝ m3
H . (1.79)

The detector resolution dominates over the Higgs width contribution below the WW threshold
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Figure 1.10: Total decay width of the Higgs boson as a function of its mass, mH [29].

where the Higgs width is of the order of few MeV and the detector term ∼ 1 GeV. Above this value,
the intrinsic width of the resonance takes over and it reaches ∼ 500 GeV for mH=1 TeV.

1.7 The H → ZZ∗ → 4l channel - Signal and Background simula-
tions

The ZZ decay mode of the Standard Model Higgs boson has a low branching fraction over the range
of the Higgs mass hypotheses inspected; nevertheless the final state with four leptons (electrons
and muons) from the ZZ decay is very clean and almost background-free so it is one of the main
discovery channel at the LHC.
The four leptons are associated in two pairs: when the Higgs mass is below 2mZ ∼ 180 GeV, one
of the two Z bosons is on-shell and the other one is off-shell.
Other final states with two leptons and two jets (H → ZZ∗ → llqq) or two neutrinos (H → ZZ∗ →
llνν) have been also investigated but will not be comprised in this dissertation. They are particularly
relevant for a Higgs-boson mass above the ZZ threshold (m4l > 2mZ ∼ 180 GeV) where the
contributions coming from the background processes can be significantly reduced.
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1.7.1 The H → ZZ∗ signal process

The simulation of the production and the decay of the Higgs boson in the ZZ final state has been
performed by using several Monte Carlo generator programs. The multi-purpose generator program
PYTHIA version 6 [31] [32] and the generator program POWHEG BOX [33] have been used for the
current Higgs simulation covering all the various production mechanisms. PYTHIA is a leading-
order (LO) generator while POWHEG BOX implements calculations at the next-to-leading order
(NLO). PYTHIA is interfaced to PHOTOS [34] for QED radiative corrections in the final state.
PYTHIA is also employed for the production of a Higgs boson in association with a W or a Z boson
(VH) and with a tt̄ pair. As for the last production mechanism, the production of a Higgs boson in
association with a bb̄ pair is included in the signal yield assuming the same mH dependence for the
two processes.

• The cross sections for the gluon-gluon fusion process have been calculated to NLO, and NNLO
in QCD [30]. In addition, QCD soft-gluon resummations calculated in the NNLL approxima-
tion are applied for the ggF process as explained later in this Section. NLO electroweak (EW)
radiative corrections are also computed.

• For the VBF process, full QCD and EW corrections up to NLO [35] and approximate NNLO
QCD [36] corrections are used to calculate the cross section.

• The cross sections for the associated WH/ZH production processes are calculated at NLO [37]
and at NNLO in QCD [38], and NLO EW radiative corrections are applied [39].

• The cross sections for associated Higgs boson production with a tt̄H pair are calculated at
NLO in QCD [40] [41] [42] [43].

• The cross section for the bb̄H process is calculated at NLO [44] [45] and NNLO in QCD [46].

The Higgs boson decay branching ratios [47] to the different four lepton final states are provided by
Prophecy4f [48], which includes the complete NLO QCD+EW corrections and interference effects
between identical final-state fermions.

Theoretical uncertainties

The two main sources of uncertainties affecting the cross section are discussed below.

• QCD radiation corrections. The usual method (used for ggF and VBF Higgs productions)
applied to generate these uncertainties is varying the renormalisation and factorisation scales
around a central value chosen to be the hard scale of the process. These scales are changed by
a factor two up and down from their nominal value. The choice of this nominal parameter is
µ0 = mH or µ0 = mH

2 according to two different calculations [49] [50] leading to very similar
results.

• PDF choice + αS . The MSTW2008 PDF set [27] provides 40 different grids that allow the
evaluation of the experimental uncertainties. These grid variations are then compared to
other PDF set variations, namely NNPDF [28] and CTEQ [26]. Another related source of
theoretical uncertainties comes from the value of the QCD coupling constant αS . This value is
known up to the order of 3-4% in the Higgs mass range mH=100-300 GeV and its uncertainty
is usually incorporated into the PDF-related systematics.

The use of the largemt approximation induces another source of uncertainty, nonetheless the two
calculations [49] and [50] both include the exact NLO corrections with dependence on the masses
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of the top and bottom quarks, thence this uncertainty is not taken into account.
The QCD scale uncertainties for a Higgs boson of mH=125 GeV amount to approximately +7%
and -8% for the gluon fusion process, ∼ ±1% for the VBF and associated WH production processes
and +4% and -9% for the tt̄ production process. The uncertainty on the production cross section
due to uncertainties on the parton distribution functions and the strong coupling constant αS is of
the order of ±8% for gluon-initiated processes and ±3% for quark-initiated processes.

Wrapping up, for a Higgs boson of mH=125 GeV, the cross section values as well as the uncertain-
ties on the QCD and PDF scales calculated for

√
s=8 TeV in the complex pole scheme (CPS) [51]

computed at NNLO QCD + NLO EW are charted in Table 1.3.

σproduction [pb] QCD up/down scales PDF +αS up/down scales
σ(gg → H)=19.27 +7.2%, -7.8% +7.5%, -6.9%

σ(qq′ → Hqq′)=1.578 +0.2%, -0.2% +2.6%, -2.8%

σ(qq̄ →WH)=0.7046 +1.0%, -1.0% +2.3%, -2.3%

σ(qq̄ → ZH)=0.4153 +3.1%, -3.1% +2.5%, -2.5%

σ(qq̄ → tt̄H)=0.1293 +3.8%, -9.3% +8.1%, -8.1%

Table 1.3: Cross section of the Higgs production mechanisms and uncertainties on the QCD and PDF
scales calculated for

√
s=8 TeV in the complex pole scheme (CPS) computed at NNLO QCD + NLO EW.

Higher-order corrections to the Higgs boson transverse momentum spectrum

The total inclusive cross sections for the Higgs-boson production have been computed at NNLO+NNLL
[29] [52] [53] [50]. In this Section we focus on the analysis of the transverse-momentum (pT ) spec-
trum of the Higgs boson. When studying the Higgs pT distribution, it is convenient to distinguish
two regions of transverse momenta.

• In the large pT region, pT > mH , perturbative QCD calculations are available and theoretically
justified. In this region, the spectrum is known up to LO with the correct dependence of the
masses of the top and bottom quarks and up to NLO in the large mT -limit.

• In the low pT region (pT < mH), the bulk of events produced with fixed-order in αS expansion
needs to be parametrized with the presence of large logarithmic terms due to soft gluon radi-
ations. These terms need to be resummed (soft resummation) to the fixed order calculations
up to a given scale (resummation scale, µR).

These two regimes are implemented in the HqT program [175]; the differential distributions with
NNLL accuracy are then compared with those from the NLO generator program POWHEG BOX.
The transverse-momentum distribution of the Higgs boson produced via gluon fusion is illustrated in
Figure 1.11 (a) as obtained by using the POWHEG generator and the HqT tool; the two distributions
are normalised to the gluon-fusion cross section. The pT is significantly affected over the full range
and for low Higgs-boson masses (mH < 150 GeV); HqT gives a larger differential cross section at
low pT with respect to POWHEG, while at large pT the opposite behaviour is observed. The ratio
between the pT distributions for each pT bin can be used as a weight for the POWHEG spectrum
that has been used for the current ZZ analysis (Figure 1.11 (b)).
This difference in the Higgs boson transverse momentum spectrum affects other variables that are
correlated with the pT , hence the number of accepted events passing the kinematic selection after
the cutflow. The impact of the reweighting of POWHEG events on the acceptance of the four
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(a) (b)

Figure 1.11: (a) pT spectrum of the Higgs boson of mass mH=130 GeV produced via gluon-gluon fusion as
obtained by using the POWHEG generator (and PYTHIA for parton shower, hadronisation and underlying
event) and the HqT tool. (b) The ratio HqT vs POWHEG as a function of the Higgs-boson pT generates
the weights that are applied as a function of mH to the POWHEG-based Higgs pT distribution [30].

lepton kinematics has been therefore addressed and displayed in Figure 1.12 when the reweighting
is turned on or off. The ratio between the acceptance values in the four electron, four muons and
mixed channel can be monitored as a function of mH . The impact of such a procedure on the
final acceptance is mass-dependent, it amounts to 1−2% at low Higgs boson mass and it reduces
significantly as the Higgs mass grows.

In 2012, a new Monte Carlo generator was later introduced and finally used for the Run 1
publications: HRES [54] implementing the Higgs boson production by gluon-gluon fusion channel
(at the NNLO+NNLL accuracy). It was meant to replace HqT; in this regard, the HRES spectrum
was cross-checked against that of HqT and found to be identical. The Higgs boson transverse
momentum spectrum in the gluon gluon fusion process is therefore reweighted to HRES to match
the NNLO+NNLL accuracy.

1.7.2 The background processes

ZZ∗ continuum irreducible background

The main background to the Higgs decay in 4 leptons is the Standard Model di-boson non resonant
production. It is mostly an irreducible background because its final state is similar to the one of
the Higgs, with two pair of isolated leptons. Note that the quantum interference between the Z/γ
final state needs to be properly taken into account as well. If the ZZ continuum production is LO,
it is characterised by the diagram qq̄ → ZZ in a t-channel as illustrated in Figure 1.13 (a). The
NLO contribution is generated by a s-channel diagram as shown in Figure 1.13 (b) and 1.14. As
displayed in Figure 1.13 (c), the gg→ ZZ production is LO and it involves diagrams with quark
loops at LO. Such a contribution is negligible in the low mZZ mass region (below the ZZ threshold
at 180 GeV) and it accounts for approximately 8% of the total ZZ→ 4l cross section in the high
mass mZZ region (above the ZZ threshold). The cross section of the non-resonant ZZ → 4l is of
the order of 5.3 fb.
The continuum background is parametrized using POWHEG [55] for qq̄ annihilation (NLO calcula-
tion) and gg2ZZ [56] (LO) for gluon fusion with the CT10 and CT10NNLO for qq̄ and gg-initiated
background respectively. The parton shower is performed through the usage of PYTHIA 8.
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Figure 1.12: Ratio between the acceptance values for POWHEG events with four electrons, four muons,
and two electrons and two muons final state from H → ZZ decay, when turning on-off the reweighting with
HqT [30].

(a) (b) (c) (d)

Figure 1.13: Feynman diagram of the non-resonant ZZ production in the t channel (a), in the s channel (b)
and through the gluon fusion (c). The t channel is a LO process, whereas the s channel is NLO. Feynman
diagram of the Zbb̄ irreducible background production (d).

Another important difference between the Higgs signal and the ZZ irreducible background stems
from the fact that the Higgs is a scalar particle (spin=0), hence the angular distributions of the
ZZ decay (mostly produced by qq̄ → ZZ in the t channel) are different with to respect to those
of the signal. The analysis of the angular distributions in the 4 lepton final state can therefore
improve the ZZ background rejection and notably enrich the signal region through the employment
of multivariate techniques (Chapter 5).

Theoretical uncertainties

The two main sources of theoretical systematic uncertainties for the ZZ∗ non-resonant background,
QCD and PDF + αS scale uncertainties, as well as the different treatments to compute them, are
listed below. Note that this study refers to a centre-of-mass-energy of 7 TeV, even though the results
still hold in the configuration at 8 TeV. QCD scale uncertainties do not strongly depend on centre-
of-mass energy as they account for the estimation of unknown higher-order corrections. Likewise,
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Figure 1.14: Invariant mass of the 4 leptons final state (ZZ∗) with the LO Monte Carlo MCFM if there is
only the leading-order contribution (blue curve) or if the NLO diagram is added (red curve). The effect of
the NLO is the opening of the single Z production illustrated by the peak at ∼ 91 GeV [30].

PDF + αS uncertainties do not change between
√
s=7 TeV and

√
s=8 TeV because processes at

these two energies hit quasi-equivalent Bjorken regimes.

• PDF-related systematic uncertainties. The prescriptions reported in [57] are applied: the up
and down variations taken as the envelope of the distributions are computed with three PDF
sets: CT10 [58], MSTW2008 [27] and NNPDF [28]. These variations can be parametrized as
follows:

K(m4l) = 1 + 0.0035
√
m4l − 30 (qq̄) (1.80)

and
K(m4l) = 1 + 0.0066

√
m4l − 10 (gg). (1.81)

Figure 1.15 (a) and (b) show the difference between the central value of the cross section and
the cross section computed with plus and minus 1σ of the total PDF variations. The red line
is the parametrisation of the equations (1.80) and (1.81).

• QCD scale systematics. In order to compute the QCD scale theoretical uncertainties, the
differential cross section dσ

dm4l
is computed when the renormalisation and factorisation scales

are changed by a factor two up and down from their nominal value, namely µR=µF=mZ . As
for the PDF-related systematics, the dependence on the mass of the QCD systematics can be
extracted as follows:

K(m4l) = 1.00 + 0.01
√

(m4l − 20)/13 (qq̄) (1.82)

and
K(m4l) = 1.04 + 0.10

√
(m4l + 10)/40 (gg). (1.83)

Figure 1.15 (c) and (d) illustrate the cross section for qq̄ → ZZ∗ and gg→ ZZ∗ as a function
of m4l at 7 TeV computed with CT10 PDF and varying the QCD scale up and down by a
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factor two. Figure 1.15 (e) and (f) report the ratio of the cross section as a function of the 4
lepton final state. The red line is the parametrisation defined in (1.82) and (1.83).

Conclusively, the quark-initiated (gluon-initiated) process have a PDF and a QCD scale uncertainty
of approximately ±4% (±8%) and ±5% (±25%).

Z+jets (Z+light jets and Zbb̄) and tt̄ reducible backgrounds

This background generates a final state with 4 leptons, two of them are high-momentum isolated
leptons and the other two are produced by the semileptonic decay of heavy quarks (mostly b quarks)
as illustrated in Figure 1.13 (d) or fake-leptons. The tt̄ background comes from the decay of the
W in leptons. This background is estimated by data-driven methods (Chapter 5). There are two
main experimental quantities that can be measured to reduce the contribution of these background
processes:

• Impact parameter: as the leptons are produced by the decay process of hadrons have a long
lifetime (mostly b-related hadrons), they acquire an impact parameter that can be measured
with respect to the primary vertex. Hence, provided that the resolution on the trajectory
of the leptons is accurate enough, a simple cut on the impact parameter can remove a large
percentage of this background.

• Isolation: A semileptonic decay of a hadron produces leptons, neutrinos and hadrons in the
final state. Hence, there is activity around the leptons and a cut on the transverse activity in
a cone of radius ∆R around the leptons:

∆R =
√

(∆η)2 + (∆φ)2 (1.84)

can remove several background events. The isolation cut can be performed both at the inner
detector (track isolation) and the calorimeter level (calorimetric isolation).

The tt̄ background does not have a resonance at the Z peak for the two isolated leptons - the in-
variant mass distribution of this contribution is therefore relatively flat.
Another background for the Higgs decay channel in 4 leptons final state is the Z+ (light) jets back-
ground, where jets are reconstructed as fake-leptons. As for the Zbb̄ and tt̄, this background plays
a role only in the low mass region, below the ZZ threshold (mZZ <180 GeV). In any event, the
treatment of this background proceeds in parallel with the one relative to the Zbb̄ and tt̄: isolation
and impact parameter cuts are applied both at the inner detector and the calorimeter level.

The Z+jets production is modelled using Alpgen [59] and is divided into two sources: Z+light
jets which includes Zcc̄ in the massless c-quark approximation and with Zbb̄ from parton showers,
and Zbb̄ using matrix element calculations that take into account the b-quark mass. The set of
PDFs used for Alpgen is CT10.

The MLM [60] matching scheme is exploited to remove any double counting due to identical jets
produced via the matrix element calculation and the parton shower: this scheme is applied to gluons
and light quarks but it is not implemented for b-jets. First, a sorting algorithm is based on a cut
on a cone around the lepton ∆Rmin and a minimal energy Emin. Then a matching is performed
between the partons coming from the matrix element and the reconstructed jet. In order not to
include any double counting in the procedure, an event is kept if and only if each parton of the
matrix element is matched to a jet and vice-versa.
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(a) PDF scale for qq̄ → ZZ∗ (b) PDF scale for gg → ZZ∗

(c) QCD scale for qq̄ → ZZ∗ (d) QCD scale for gg → ZZ∗

(e) Ratio of the QCD scales for qq̄ → ZZ∗(f) Ratio of the QCD scales for gg → ZZ∗

Figure 1.15: (a) and (b) - Difference between the central value of the ZZ cross section and the ZZ cross
section computed with 3 different sets of PDF varying them by plus and minus 1σ for qq̄ → ZZ and gg→ ZZ
processes as a function of the 4 lepton final state mass. The red line is the parametrisation of the variation
reported in equations (1.80) and (1.81). Cross section for qq̄ → ZZ∗ (c) and gg→ ZZ∗ (d) as a function of
m4l computed with CT10 PDF and varying the QCD scale up and down by a factor two. Ratio of the cross
section, (e) and (f), as a function of the 4 lepton final state. The red line is the parametrisation defined in
(1.82) and (1.83) [30].
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The tt̄ background is modelled using POWHEG interfaced to Pythia 8.1 for parton shower and
hadronisation; with PHOTOS used for quantum electrodynamics (QED) radiative corrections and
TAUOLA for the simulation of the τ lepton decays [61].
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2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [62] is a hadron collider installed at CERN (Geneva) along
the border between France and Switzerland in the existing 26.7 km tunnel that was previously
constructed between 1984 and 1989 for the LEP (Large Electron Positron collider) machine. The
tunnel has eight straight sections and eight arcs and lies between 45 m and 170 m below the surface
on a plane inclined at 1.4% towards the Leman lake. The construction started right after the end
of LEP-era, early in 2000. The centre-of-mass energy,

√
s, of the accelerator was set to 7 TeV for

the 2010 and 2011 data-taking and subsequently increased to 8 TeV for 2012. By February 2013,
the accelerator ceased to be operative for about two years (Run 1 shut-down) and it will resume
between April (first beam injected in the accelerator) and June 2015 (expected first collisions for
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Figure 2.1: Schematic overview of the structure of the LHC. The various interaction points as well as the
position of the experiments are shown.

physics) with an increased
√
s= 13-14 TeV (Run 2). The broad physics programme expressed by

the LHC has been previously exploited by the proton-anti proton collider at
√
s=1.96 TeV located

at TeVatron (Fermilab) [18] before it shut down on September 29th 2011.
The exploration project of the LHC, as well as for the TeVatron in the past decades, is vast: the
main goal of the analyses is to unravel the still-unknown features of the Standard Model (Chapter
1), especially in line of the Higgs boson quest.

The LHC is constituted by two rings (Figure 2.1) instrumented with superconductive magnets.
The tunnel is sectioned in eight octants and linear sections 528 meters each. The two maximal-
luminosity zones, where the ATLAS (A Toroidal LHC ApparatuS) [63] and CMS (Compact Muon
Solenoid) [64] experiments reside, span along two rectilinear sections, addressed as Point 1 and Point
5. The other two main experiments at the LHC, ALICE (A Large Ion Collider Experiment) [65]
dedicated to heavy ions physics and LHCb (LHC beauty experiment) [66] studying flavour physics,
are hosted respectively at Point 2 and Point 8. In the other four rectilinear sections there are no
further intersections between beams. The injection zones are in the octant 2 and 8 for the clockwise
and anticlockwise bunch filling. In the octants 3 and 7 the apparati for the cleaning and collimation
of the beams are lodged whereas sector 4 has two independent radiofrequency cavities enabling
proton acceleration. The area of Point 6 contains the equipment to extract the dumped beam from
the tunnel. Most notably, two other detectors are installed: they are mostly devoted to diffraction
and forward physics, TOTEM (Total cross-Section, Elastic Scattering and Diffraction Dissociation
at the LHC) [67] and LHCf (LHC forward experiment) [68] housed in the very forward regions of
CMS and ATLAS respectively.

2.1.1 The acceleration chain

The acceleration process [69] of the two proton beams is performed in different phases and LHC is
just the last part of this chain bringing protons to their final center-of-mass energy of 7-8 TeV. The
injection chain is composed of the following systems:

• Linac,
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• Proton Synchrotron Booster (PSB),

• Proton Synchrotron (PS),

• Super Proton Synchrotron (SPS),

• Large Hadron Collider (LHC).

Figure 2.2: Schematic view of the accelerators operated at CERN. The path of protons and ions towards
their injection inside the LHC is marked in blue and green respectively.

Protons are brought to a beam current of approximately 300 mA. At this stage, the protons are
injected in the LINAC that accelerates them up to 50 MeV. The particles are now ready to enter
the PSB that increases their energy to 1.4 GeV before being transferred to the PS that goes up to
25 GeV and creates the typical structure of bunches. Finally, the SPS accelerates the protons to
450 GeV, the bunches are finally injected to the LHC using two different tunnels. Then, when all
bunches are inside the ring, the LHC raises its energy to

√
s=7 TeV (in 2010 and 2011) or

√
s=8

TeV (in 2012).
In the LHC, the two beams circulate in two vacuum chambers whose horizontal distance is 194 mm.
Time-wise, it takes 4 minutes to fill each LHC ring, and 20 minutes for the protons to reach their
maximum beam energy of 4 TeV. Lastly, beams circulate for many hours inside the LHC beam pipes
under normal (stable beam) operating conditions. Additional details on the acceleration chain are
presented in Figure 2.2.

The LHC is also used for research programmes with heavy-ions exploiting lead-lead collisions at a
center-of-mass energy significantly lower than the proton case, namely 2.76 TeV. In 2012, special
LHC runs were performed using proton-lead collisions at

√
s=5.02 TeV.

The acceleration inside the tunnel is provided by eight radiofrequency cavities and the proton tra-
jectory is controlled by 9593 magnets, mostly superconductive. The proton beams are kept on a
given circular trajectory using ∼ 1232 superconductive magnetic dipoles producing a magnetic field
of 8.33 Tesla (for 7 TeV beams). Such an intense field can curve the proton trajectory by ∼ 0.6 mm
for each meter. These dipoles are embedded in superfluid liquid helium at 1.9 K and 0.13 MPa.
The quadrupoles (∼ 390) shape the beam width by modifying its optics [70].
The particle beam is divided into discrete packets called bunches. The instantaneous luminosity of
the run depends on the number of protons in each bunch: for instance, a bunch in a high-luminosity
run contains ∼ 1011 protons with a design timing separation between successive bunches of 25 ns
(50 ns during the Run 1 data-taking period). Each of them is 7.55 cm long and 16.7 µm wide at the
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Parameter 2010-2011 2012
√
s (TeV) 7 8

L (1033cm−2s−1) 3.7 7.7
∆t (ns) between collisions 50 50
Particles per bunch (1010) 15 15
Full crossing angle (µrad) 240 ∼300
Beam radius (10−6m) 26 20
Transverse emittance (10−9π·rad·m) 0.7 0.6
β∗ at the IP (m) 1 0.6

Table 2.1: Parameters of the LHC collider [71] referring to the the data-taking period 2010-2012.

interaction point. Each proton beam at full intensity consists of ∼ 2800 bunches per beam at 25
ns. The superconductive radiofrequency cavities on the LHC are housed in four cryomodules (two
per beam).
Important parameters [71] of the LHC colliders referring to the data taking periods 2010-2011 and
2012 are reported in Table 2.1. The transverse emittance describes the typical beam width while β∗

is the value of the betatron function calculated at the impact parameter. This observable represents
the level of expected focalisation of the colliding beams.

2.1.2 The calculation of the instantaneous luminosity

The number of events of a given process described by a cross section σ and characterised by an
efficiency E (trigger, reconstruction and identification), generated at the LHC per second can be
parametrised as follows:

N = LσE (2.1)

where L is the instantaneous luminosity of the system, and L =
∫
L dt is the integrated luminosity

of the run. The luminosity is a function of the beam parameters; under the hypothesis of gaussian
distributions of protons in the beam, the luminosity factor is modelled as:

L =
N2
b nbfrevγr
4πεnβ

F. (2.2)

Nb is the number of particle for each bunch, nb is the number of bunches per beam, frev is the
rotation frequency, γr the relativistic factor, εn the normalised transverse emittance1 and β∗, the
betratron function, is extracted at the interaction point. F is a luminosity reduction factor intro-
duced to parametrise the non-zero crossing angle θc between the two colliding beams (non head-on
collisions) with respect to the orthogonal axis of the bunches (at the LHC, θc=0.85 µrad). The
luminosity exponentially decreases during a run because of the degradation of intensity and emit-
tance of the circulating beams. Other effects can play a marginal role in the process of luminosity
degradation, namely the beam interaction with the gas left inside the beam pipe and the local scat-
tering inside the beams. Figure 2.3 shows the ATLAS instantaneous luminosity profile as measured
online for a representative LHC fill with

√
s=8 TeV center-of-mass energy in 2012. The green curve

shows the delivered luminosity during stable beam conditions and the yellow distribution gives the
ATLAS recorded luminosity with the entire detector available. The exponential decrease of the

1The emittance, already mentioned in the previous paragraph, is defined as the product of the width in position,
σ, and angle, σ

′
, of the distributions of the particles in the bunch under the assumption that the distribution of the

particles is gaussian.
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Figure 2.3: Exponential decrease of the instantaneous luminosity during a run characterised by stable
beam at

√
s=8 TeV recorded in 2012. The grey area illustrates the delivered luminosity by the LHC whilst

the yellow distribution specifies the LHC luminosity produced in stable beam conditions and the dark grey
area the recorded luminosity by ATLAS in this run.

instantaneous luminosity is therefore visible in the plot.
The luminosity is measured without the knowledge of the cross section by the Van der Meer scan [72].
This scan determines the transverse profiles of the beams: this method requires the knowledge of
the beam currents in order to deduce the absolute luminosity and is employed by LUCID (Section
2.7). Then, these detectors are used during normal fills to extract the luminosity by comparing it
to their measurement during the dedicated Van der Meer scans.

Given the high total inelastic, σpp cross section at the LHC (∼ 70 mb), several proton-proton
interactions take place during the same bunch-crossing. Thence, at the nominal instantaneous lu-
minosity of 1034cm−2s−1, for each interesting hard-scattering event, there are approximately 25
additional inelastic interactions that can perturbate the measurement. This phenomenon is the
pile-up: the in-time pile-up is originated by particles emerging from vertices within the same bunch
crossing; the out-of-time pile-up is due to the superimposition of signals in the detector that come
from different bunch crossings. The number of proton-proton interactions in a bunch crossing at
the LHC resulting in vertices varies according to Poisson statistics with a mean value < N > given
by:

< N >= σpp · Lb, (2.3)

where σpp is the total inelastic cross section and Lb is the instantaneous luminosity per bunch
crossing. Section 3.7 gives a complete overview of the pile-up scheme in 2011 and 2012 data as well
as its treatment in the Monte Carlo simulation.
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Figure 2.4: Cumulative luminosity versus time delivered to (green), and recorded by ATLAS (yellow)
during stable beams and for proton-proton collisions at 7 TeV centre-of-mass energy in 2011 (a) and 8 TeV
centre-of-mass energy in 2012 (b). The delivered luminosity accounts for the luminosity produced from the
start of stable beams until the LHC requests ATLAS to put the detector in a safe standby mode to allow a
beam dump or beam studies.
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Figure 2.5: (a) The peak instantaneous luminosity delivered to ATLAS per day versus time during the
proton-proton runs of 2010, 2011 and 2012. (b) The maximum mean number of events per beam crossing
(pile-up) versus day during the proton-proton runs of 2010, 2011 and 2012. This version shows the average
value for all bunch crossings in a given lumiblock interval.

2.1.3 Data taking conditions in 2011 and 2012 (proton-proton runs)

During 2010 and 2011 [73], the LHC has collided proton beams at
√
s=7 TeV reaching a peak

instantaneous luminosity of 3.65 1033cm−2s−1 and delivering an integrated luminosity of 5.6 fb−1.
In 2012, the LHC has increased its center-of-mass-energy from 7 to 8 TeV and the peak luminosity
grew to 7.73 1033cm−2s−1, the total integrated luminosity is 22.8 fb−1. Figure 2.4 illustrates the
behaviour of the integrated luminosity delivered by the LHC and recorded by the ATLAS experiment
as a function of time in 2011 and 2012.

The recorded luminosity reflects the data quality inefficiencies as well as the inefficiencies of the
warm-start : as soon as the stable beam flag is raised, the tracking detectors (Section 2.4) undergo
a ramp of the high-voltage that may provoke a tiny timing-latency resulting in unavailability of
data recording. The number of pile-up is directly proportional to the instantaneous luminosity and
inversely proportional to frev as in (2.2). Figure 2.5 reports the distribution of the peak luminosity
as a function of the data taking time, both at 7 and 8 TeV and the peak pile-up versus time during
the proton-proton runs in 2010, 2011 and 2012. This distribution shows the average value for all
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Figure 2.6: Schematic layout of the ATLAS experiment.

bunch crossings in a fixed integrated luminosity period (lumiblock interval). The collision data
delivered in 2010, 2011 and 2012 with

√
s = 7 and

√
s = 8 TeV is referred to Run 1.

2.2 The ATLAS detector: general features and its coordinate sys-
tem

The structure of the ATLAS detector [63] (Figure 2.6) is typical of a multi-purpose experiment
situated at a collider. It is composed of the barrel, a cylindrical section around the beam axis whose
length is 21 m and radius ∼ 11 m and two end-caps housed in the detector extremity.
The ATLAS subdetectors are listed below. They will be detailed later in this Chapter.

• an Inner Detector (tracker) which measures the trajectory of a charged particle under the
presence of the magnetic field, as well as the primary and secondary interaction vertices, close
to the interaction point (Section 2.4);

• an Electromagnetic Calorimeter for the detection of electromagnetic showers induced by elec-
trons and photons (Section 2.5.1);

• a Hadronic Calorimeter for the study of hadronic showers and jet kinematical structures
(Section 2.5.2);

• a Muon Spectrometer that provides the tracking of muons (Section 2.6);
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Component Radius [m] Length [m] η-coverage
barrel muon spectrometer 11 26 |η| <1.4
end-cap muon spectrometer 11 2.8 1.1< |η| <2.8
barrel hadronic calorimeter 4.25 12.2 |η| <1.0
end-cap hadronic calorimeter 2.25 2.25 1.5< |η| <3.2
barrel electromagnetic calorimeter 2.25 6.42 |η| <1.4
end-cap electromagnetic calorimeter 2.25 0.63 1.4< |η| <3.2
barrel + end-cap inner detector 1.15 6.8 1.4< |η| <2.4

Table 2.2: Dimensions of the ATLAS sub-detectors and η-coverage.

• a system of solenoid and toroidal magnets (Section 2.3) generating strong magnetic field
allowing charged particles in the ID and muon trajectories in the spectrometer to bend.

The reference frame defines a right-handed coordinate system with the x-axis pointing towards
the centre of the LHC ring, the z-axis along the beam line and the y-axis on the vertical direction.
Cylindrical coordinates are also employed: φ is the azimuthal angle and θ is the polar angle measured
with respect to the positive z axis. Be a particle of energy E and momentum ~p. By defining ~pL
as the longitudinal component of the momentum ~p, the quantity rapidity is: y .

= 1
2 log E+pL

E−pL . In
the ultra-relativistic limit (E�m) the expression above is approximated by another quantity, the
pseudorapidity, η:

η = − log(tan(
θ

2
)). (2.4)

Another useful variable of ATLAS analyses is the angular separation of tracks in the η-φ plane:

∆R =
√

∆η2 + ∆φ2. (2.5)

∆R is relativistically invariant under boost transformations along the z axis.
The dimensions (radius and length) of the various ATLAS sub-detectors (both for barrel and end-
cap) and their coverage in pseudorapidity are summarised in Table 2.2.

2.3 The Magnetic field

In order to measure the momenta and the charges of the particles, the magnetic field permeates
the volume of the inner detector and the muon spectrometer. Figure 2.7 (a) displays the magnetic
system and its spatial geometry [74]: it is constituted of a central superconductive solenoid [75] for
the inner detector and three superconductive air-core toroids [76] [77].

• Central Solenoid. It consists of one coil with 1173 turns fully surrounding the Inner De-
tector. The central solenoid is designed to provide for the Inner Detector an axial magnetic
field of 2 T. Its axis coincides with the beam axis. The axial length of the solenoid is 5.3 m
and the circulating current is 7.73 kA. It has been conceived to minimise the presence of dead
material in front of the calorimeter, therefore its total thickness accounts for ∼ 0.66 X0.

• Toroid magnets. The barrel toroid consists of eight superconductive coils of 35.3 m length
and 5.4 m width, each with 120 (barrel) and 116 (end-cap) turns inside an individual cryo-
stat, located around the calorimeter. The toroid magnets generate a toroidal magnetic field
configuration for the Muon Spectrometer. The advantage of a toroidal magnetic field is that
its direction is almost perpendicular to the direction of flight of the particles and the particle
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(a) (b)

Figure 2.7: (a) Geometry of the coils comprising the solenoid, the barrel and end-caps toroids. (b) Frontal
view of the barrel toroid operating inside the muon system.

trajectory under the presence of the field is deviated in η. Its magnetic field is generated by
a current ∼ 22.3 kA, the peak field is of the order of 3.9 T in the barrel (η <1.4) and 4.1 T in
the end-caps (1.6< η <2.7) where the two toroids are positioned beyond the forward hadronic
calorimeter. In the transition region between barrel and end-caps, the contribution of the
magnetic field is characterised by a complex structure and its magnitude is weaker than the
one in the barrel or in the end-caps. Figure 2.7 (b) shows a frontal view of the barrel toroid
operating inside the muon system.

The field integral over the track length within the tracking volume, I, represents a measurement of
the bending power of the field; its typical value for the toroidal magnets is ∼ 3 T·m in the barrel
and 6 T·m in the end-caps regions, while the solenoidal fields provides a bending power of the order
2.1 T·m.

2.4 The Inner Detector

The ATLAS Inner Detector (ID) covers the region |η| <2.5, being 6.2 m long with a total radius of
2.1 m. Its main objectives are given below:

• precise measurement of the transverse momentum charge and impact parameter of the charged
particle traversing it;

• reconstruction of the primary and secondary vertices;

• discrimination between electrons and photons;

• tagging of the b-jets and the τ leptons.

The design ID momentum resolution is:

σ(pT )

pT
= 0.05% · pT ⊕ 1% (2.6)

for tracks with pT > 500 MeV and |η| <2.5. The first term denotes the intrinsic resolution, dominant
in the high pT regime, while the second term comes from multiple scattering and contributes mostly
at low pT .
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Figure 2.8: Graphic representation of the ATLAS ID and sub-detectors.

The graphic representation of the Inner Detector (ID) [78] is shown in Figure 2.8. Figure 2.9
reports a detailed view of the modules housed in the barrel (a) and in the end-caps (b) when
traversed by a 10 GeV particles at η=0.3, 1.4 and 2.2. The barrel region of the sub-detector layers
is shaped in cylinders around the beam axis, whereas the end-cap region houses concentric disks
parallel to the transverse plane so that the |η| coverage is maximised while minimising the detector
volume.

The Inner Detector combines high-resolution detectors in its internal region with other tracking
systems in its outermost layers. The structure is fully encompassed inside the internal solenoid
(Section 2.3), providing a nominal magnetic field of about 2 Tesla along the beam axis, z. Given
the solenoidal magnetic field, the measurement is performed on the R-φ plane: each track traverses
three pixel layers and four semiconductor tracker layers providing few but high-precision hits and it
crosses a transition radiation tracker (TRT) in the external region of the detector where it produces
a very significant number of hits (∼ 36) with a slightly worse precision.

The close localisation of the Inner Detector with respect to the interaction point also implies that
this sub-detector receives a significant amount of radiation during data-taking. Although this issue
has been fully addressed by providing a cooling system of the pixel and micro-strips at about -7
C to alleviate the radiation effects on the electronics, its intrinsic performance degrades with time
and luminosity. For this reason, a new internal layer is inserted in view of the Run 2 data-taking
(Insertable B-Layer, IBL [79]) aiming at improving b-tagging efficiency and the identification of the
primary and secondary vertices. The specific aspects of the sub-detectors will be illustrated in the
following paragraphs.
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(a) (b)

Figure 2.9: Pictorial sketch and localisation of the different modules comprised in the Inner Detector in
the barrel (a) and in the end-caps (b) when traversed by a 10 GeV charged particles (red lines) for different
pseudorapidity values (|η|=0.3, 1.4, 2.2).

2.4.1 Silicon Pixel Detector

The Silicon Pixel detector [80] is designed to perform very high precision measurements close to the
interaction point. This system contributes to the vertex and the impact parameter determination
and is therefore employed for the search of displaced vertices involving long lived particles such as
B-hadrons. The pixel detector system consists of 80 million sensors placed at a mutual distance of
50 µm in the R-φ plane and 300 µm in z. They are located in three cylindrical structures whose
radius is respectively 4 cm, 11 cm and 14 cm in addition to five disks (radius between 9 and 15 cm)
for each side covering the acceptance in the two end-caps. The innermost layer is called b-layer : its
distance to the beam pipe is ∼ 5 cm and it plays an essential role in the reconstruction of secondary
vertices and in the jet b-tagging.

This detector is made of approximately 1500 distinct modules in the cylinders and 700 modules
in the disks. The typical spatial resolution in the R-φ plane is σ(R − φ) ∼ 12 µm and along the
z axis, σ(z) ∼ 66 µm for the barrel and σ(z) ∼ 77 µm for the external disks (end-cap regions).
The thickness of each layer is expected to be about 2.5% of a radiation length at normal incidence.
Typically three pixel layers are crossed by each track.

In order to guarantee good performance of the pixel system against the radiation damage provoked
by the beam collisions, the whole sub-detector is cooled down to approximately -10 C.

2.4.2 Semi Conductor Tracker

fibres The SCT (Semi Conductor Tracker) [81] system is designed to provide eight precision mea-
surements for each track in the intermediate zone (299 mm < r < 514 mm) contributing to the
calculation of transverse momenta, vertices as well as trajectory recognition of charged particles in
the region |η| <2.5. The technology employed for the SCT sub-detector is quite similar to the one of
the pixels (Section 2.4.1) but the surface is segmented in stripes rather than pixels in order to reduce
the global number of readout channels. As already mentioned, in the cylindrical area, eight layers
of silicium micro-strips are accommodated in the R-φ plane. There are 768 stripes with mutual
distance of 80 µm. Each SCT module is composed of two grouped wafers pairs placed back-to-back,
put together with an opening angle of ± 20 mrad with respect to their geometric centre. Each
detection plane is segmented in 770 strips, 12 cm long and 80 µm large. The spatial resolutions in
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the R-φ plane is ∼ 16 µm and on the z axis ∼ 580 µm and approximately 8 hits are collected in the
SCT modules. The cylindrical modules in the barrel are mounted on four cylinders made of carbon
fibres whilst the modules in the end-caps are assembled on nine external disks. The electronic
signals are amplified and treated with discriminating filters; the ones above a certain threshold are
recorded in a transient buffer. The SCT system contains an overall number of approximately 6.2
million readout channels for a total surface of about 63 m2.

2.4.3 Transition Radiation Tracker

The Transition Radiation Tracker (TRT) [82] is based on cylindrical gas detectors. The main scope
of this sub-detector is to add to the tracking information provided by the innermost silicon detectors
(pixels and SCT) a large number of hits that are inputs to the pattern recognition procedure (Sec-
tion 3.1). Furthermore, the TRT plays a role in the electron identification and the discrimination
between electrons and light hadrons such as pions and kaons. This sub-detector is based on the

Figure 2.10: Histogram of energy entries in a layer of the TRT for 5 GeV particles. The proton spectrum
is shown in black and the positron spectrum in red.

use of straw detectors. Each straw is 4 mm in diameter and equipped with a 30 µm diameter gold-
plated wire. The maximum straw length is 144 cm in the barrel containing approximately 50000
straws located along the z axis. The end-caps contain 320000 radial straws measuring 37 cm with
the readout at the outer radius. The straw tubes are filled with gas alternated with polypropylene
fibres and foils. In the internal surface of the straws, aluminium acts as the cathode and the central
gold-plated tungsten wire of 30 µm diameter is the anode. The gas admixture filling the straw is
70% Xe, 27% CO2 and 3% O2 in a volume of about 3 m2. Charged particles typically cross 35 to
40 straws leaving hits with a resolution of ∼ 130 µm in the R−φ plane, less accurate than the one
of pixel and SCT detailed in Sections 2.4.1 and 2.4.2.

When a relativistic particle traverses the TRT, it emits radiation (transition radiation) when crossing
the interface surface between media with different dielectric constants, namely air and polypropy-
lene. Provided that the transition radiation energy emitted by a particle is proportional to its
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Lorentz factor, γ, the TRT is able to operate with two thresholds that are visible in Figure 2.10:
the low threshold (energy below 0.5 keV) signals the passage of a generic charged particle in the
detector, while the high threshold (above 6 keV) indicates the presence of a particle with a very
large Lorentz factor. Accordingly, the TRT can discriminate between electrons and hadrons: since
the Lorentz factor γ for an electron is 270 larger than the one of a pion for a fixed momentum, the
high threshold regime is more likely to be triggered by electrons.

The choice of Xenon in the admixture filling the straws stems from the fact that radiated pho-
tons are absorbed by the gas (photoelectric effect) proportionally to Z5 where Z is the atomic
number of the admixture. Thus, the Xenon, characterised by a very large atomic number (Z=54)
is adopted to increase the absorption of TR photons.

As reported in Figure 3.2 for the electromagnetic, and analogously for the hadronic interactions
in Figure 2.11, the incoming particles cross several radiation lengths before the Calorimeter. The
distribution of the material is plotted in unity of radiation X0, Figure 3.3, and interaction lengths
λ, Figure 2.11, and is strongly dependent on the |η| of the probing particle. In the central region,
the TRT volume represents the major contribution to the total material as well as the services refer-
ring to the external structures installed inside the tracker volume such as cables and cooling systems.

The main consequences of the particle interaction with matter in front of the calorimeter are the
presence of photon conversions in electron pairs originated inside the inner detector volume and
electron energy loss due to bremsstrahlung instances or multiple scattering.
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Figure 2.11: Material distribution described by the interaction length λ for hadronic interactions at the
exit of the ID envelope including the services. The distribution is shown as a function of η and averaged
over φ. The breakdown indicates the contributions of external services and individual sub-detectors.

2.5 The calorimeters

The ATLAS calorimeters are placed between the Inner Detector and the Muon Spectrometer cover-
ing the pseudorapidity range |η| < 4.9. The main purpose of calorimetry in experiments at hadron
colliders is the accurate measurement of the energy of charged and neutral particles, namely elec-
trons and photons in the electromagnetic calorimeter and hadronic jets in the hadronic calorimeter
as well as the transverse missing energy, ET . More information on the reconstruction and identifi-
cation of these particles will be given in Chapter 3.
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Over the region matched to the Inner Detector, the fine granularity of the electromagnetic calorime-
ter is ideal for precision measurements and pattern recognition whereas the coarser granularity of
the hadronic calorimeter is useful to match identification and reconstruction requirements for jets.

The ATLAS calorimeter is composed of the following parts as shown in Figure 2.12:

• an electromagnetic liquid-argon calorimeter covering the pseudorapidity region |η| <1.475 for
the barrel (EMB) and 1.375< |η| <3.2 for the two end-caps (EMEC);

• an hadronic calorimeter composed of a barrel in the acceptance |η| <1.7 (TILE) and two
end-caps in 1.5< |η| <3.2 (HEC).

• a forward calorimeter - 3.2< |η| <4.9 (FCAL).

The ATLAS electromagnetic and hadronic calorimeters are sampling calorimeters; the total thick-
ness of the electromagnetic and hadronic calorimeter is approximately 24 X0 in the barrel and 26
X0 in the end-caps to achieve a sufficient containment of electromagnetic and hadronic showers
and consequently limit the shower leakage inside the Muon Spectrometer (punch-through). Another
feature of the ATLAS calorimeter is the non-compensating behaviour: the energy response to elec-
tromagnetic particles differs from hadronic inputs. Lastly, the calorimeters play an important role

Figure 2.12: Pictorial representation of the ATLAS electromagnetic and hadronic calorimeters.

in the trigger system as explained in the Sections 2.8 and 3.3.1.

The electromagnetic calorimetry is based on Liquid Argon technology, while hadronic calorime-
try uses scintillating tiles technology and its main aspects will be expanded in Sections 2.5.1 and
2.5.2.
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2.5.1 Electromagnetic calorimeter

Liquid Argon calorimeter

The electromagnetic calorimeter [83] is constituted of lead absorbers, whose high density helps to
develop compact electromagnetic showers inside the calorimeter volume, and Liquid Argon (LAr)
with accordion geometry placed inside a cylindric cryostat surrounding the cavity where the detec-
tor is housed.

As shown in Figure 2.13, there are three longitudinal samplings for |η| <2.5 and two for 2.5<
|η| <3.2. The logic of this particular geometry is that it allows rejection of π0 and jet background

Figure 2.13: Graphic representation of the electromagnetic calorimeter and its modularity.

for physics involving individual photons and measurement of the electromagnetic shower direction
(in combination with the second sampling). This geometry also ensures a complete φ symmetry.
The active depth of the three samplings are about 6 X0, 16 X0 and 3 X0 respectively at η=0. The
modules are equipped with a very high granularity in the ∆η-∆φ phase-space: 0.03×0.1 in the first
sampling, 0.025×0.025 in the second sampling and 0.05×0.025 in the third sampling. In the range
|η| <1.8, the calorimeter is preceded by a presampler employed to recover the energy lost in the
upstream materials (Inner Detector, superconductive coils, cryostat). Its granularity in ∆η-∆φ is
0.025×0.1. The depth of the presampler is 11 mm of Liquid Argon in the barrel and 4 mm in the
end-caps, contributing to 0.08 X0 and 0.03 X0 respectively. The calorimeter barrel is formed by
two φ-segmented cylinders whose length is ∼ 3.2 m, internal radius ∼ 1.4 m and external radius
∼ 2 m. Each end-cap is divided into two coaxial wheels: an outer wheel and an inner wheel - the
internal radius of the inner wheel is ∼ 33 cm and the external radius of the outer wheel measures
∼ 210 cm.

The active medium is Liquid Argon and the current is measured by the electron drift between
anode and cathode. The structure of the detector is displayed in Figure 2.14. Each layer in lead is
1.53 mm thick in the barrel region |η| <0.8 and 1.1 mm for |η| >0.8. In the end-cap, its thickness
reaches 1.7 mm (|η| <2.5) and 2.2 mm (|η| >2.5). The Liquid Argon gap is 2.1 mm thick in the
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barrel and from 0.9 to 3.8 mm in the end-caps. The electrodes are mutually separated by insulating
kapton foils and organised with a honeycomb structure. The distinct accordion geometry of the
LAr calorimeter guarantees a full azimuthal coverage and a fine segmentation in η.

Figure 2.14: Accordion geometry of the electromagnetic calorimeter. Zoom on the internal structure: lead
absorbers and LAr gaps representing the active medium are separated by insulating kapton foils.

The energy resolution of the electromagnetic calorimeter is given by the sum in quadrature of
three independent terms:

σ(E)

E
=

a√
E
⊕ b

E
⊕ c. (2.7)

a is the stochastic term that describes the statistical fluctuations of the fraction of the shower energy
deposited in the sampling medium (Liquid Argon) and the fraction deposited in the absorber (lead).
The value for this contribution at η=0 is 10%√

E
. b is the noise term that is related to the electronic

noise and the out-of-time pile-up. This term is significantly contributing to equation (2.7) only in the
low energy spectrum. c is the constant term accounting for calibration-related effects, mechanical
and electrical inhomogeneities, energy loss due to non-instrumented regions. The goal is to obtain a
factor c ∼ 0.7%. Figure 2.15 shows the distribution of the energy resolution (2.7) and its dependence
on the pseudorapidity region. Additionally, thanks to its longitudinal segmentation, the angular
resolution of the electromagnetic calorimeter is ∼ 40 mrad, good to perform discrimination on the
electromagnetic shower trajectory.

Figure 2.15: Energy resolution (2.7) as a function of the energy E of the incoming particle for different η
regions.
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Electromagnetic Forward calorimeter

In the forward region (3.1< |η| <4.9), the electromagnetic calorimeter is constructed using another
type of LAr calorimeter. The forward calorimeter consists of copper rods parallel to the beam axis
inside an outer tube with 250 mm Liquid Argon gap in between. The matrix in which both the
rods and the tubes are inserted is made of copper too. As for the Forward Hadronic Calorimeter
detailed in Section 2.5.2, this sub-detector has to cope with high radiation levels. The thickness of
the Forward Calorimeter is approximately 28 X0 at η=0. The ∆η-∆φ granularity is 0.1×0.1 for
1024 readout channels per end-cap.

2.5.2 Hadronic calorimeter

The objective of the hadronic calorimeter is the measurement of jet energy and the determination
of transverse missing momentum. A good measurement of jet energy and its properties is achieved
with a lateral segmentation; furthermore the calorimeter must be hermetic, i.e. have as complete
coverage as possible to detect all energy emitted from the interaction point, thereby correctly infer
missing transverse energy deposited by neutrinos (Section 3.6). The hadronic calorimeters covers
the region |η|<3.2 with different techniques according to the operating region. In order to ensure the
containment of the hadronic showers and to reduce the punch-through instances inside the Muon
Spectrometer, the thickness of the system is about 8 λ0. It is composed of four parts:

• a central barrel made of scintillating Tiles in the region |η| <1;

• two scintillating Tile end-caps covering the pseudorapidity region 0.8< |η| <1.7;

• two end-caps with Liquid Argon (1.5< |η| <3.2);

• a forward calorimeter operating in the region 3.1< |η| <4.9.

The overall energy resolution of the barrel/end-cap system for jets is:

σ(E)

E
=

50%√
E
⊕ 3% (2.8)

while for the forward detector:
σ(E)

E
=

100%√
E
⊕ 10%. (2.9)

Hadronic Tile calorimeter

The Hadronic Tile calorimeter [84] is situated behind the electromagnetic calorimeter. It is a sam-
pling calorimeter using steel as absorber material and scintillating tiles as active material. Both
sides of the tiles are analysed by shifting fibres into two separate photomultipliers. The calorimeter
is split in a Barrel (|η| <1.0) with 3 sub-samplings featured by 0.1×0.1 granularity in ∆η ×∆φ for
the first and second sampling and 0.2×0.1 for the third sampling and 5760 readout channels and an
Extended Barrel (0.8< |η| <1.7) with the same number of samplings and granularity scheme of the
Barrel and 1792 electronics channel. The three longitudinal layers are approximately 1.4, 4.0 and
1.8 interaction lengths at η=0. The internal and external radii are 2.28 m and 4.25 m respectively.

A graphic representation of the hadronic Tile calorimeter and a zoom of a single module are reported
in Figure 2.16. The scintillating tiles are placed in planes orthogonal to the beam axis and staggered
in depth simplifying the mechanical construction and the fibre routing. As soon as ionising particles
traverse the detector, the tiles emit scintillation light that is collected by the wavelength-shifting
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Figure 2.16: Graphic representation of the hadronic Tile calorimeter. The full sketch is shown on the left
and the architecture of a single module is on the right.

fibre located on the sides of the modules. It then reaches the photomultipliers where it is amplified
and sent to the readout electronics. Fibres are grouped together in calorimeter cells and analysed
by the same photomultiplier. Light is collected on each side of each tile, hence a calorimeter cell is
read by two different photomultipliers.

End-cap Hadronic calorimeter

In the end-cap region, the calorimeter uses Liquid Argon as active material and cooper plates as
absorber. The geometry is composed by parallel planes, orthogonal to the beam axis. The external
radius is 2.03 m. Both the hadronic end-cap and the forward calorimeters are integrated in the same
cryostat housing also the electromagnetic end-caps. Each hadronic end-cap calorimeter consists of
two independent wheels of equal diameter. The first wheel is built out of 25 mm copper plates,
while the second one uses 50 mm plates; in both wheels the gap between consecutive copper plates
is 8.5 mm, and is equipped with 3 electrodes that split it in 4 drift spaces of ∼ 1.8 mm each. The
thickness of the active part of the end-cap calorimeter is ∼ 12 λ. The typical granularity in ∆η-∆φ
is 0.1×0.1 for 1.5< |η| <2.5 and 0.2×0.2 for 2.5< |η| <3.2 employing 3072 readout channels.

Forward Hadronic calorimeter

The forward calorimeter [85] (3.1< |η| <4.9) is a particularly challenging detector due to the high
level flux of particles resulting in substantial radiation doses to which it is exposed. Its purpose is to
cover the very forward region of the detector by ensuring a better hermeticity of the detector with
clear advantages on the forward jet tagging and the determination of the missing transverse energy
of the event. This detector is very dense since it accommodates 9 λ of material in a rather short
longitudinal space. It incorporates three longitudinal sectors made of copper and tungsten. The
active medium is Liquid Argon. The granularity of the Forward Calorimeter in ∆η-∆φ is 0.2×0.2
with 768 readout channels.

2.6 The Muon Spectrometer

Figure 2.17 shows the general layout with barrel chambers (|η| <1) arranged in three cylindrical
layers and end-cap chambers (extending to |η|=2.7) mounted on wheels that are orthogonal to the

52



2.6. THE MUON SPECTROMETER

detector axis. The detector size is about 22 m in diameter and 44 m in length. The Muon Spec-
trometer is also equipped with an independent trigger system as studied in Section 3.4.1. Figure
2.18 reports a schematic view of the Muon Spectrometer in the x− y (a) and z− y (b) projections.
As the magnetic field is toroidal, unlike the Inner Tracker where the precision coordinate was φ
because of the solenoidal development of the field, here, the most accurate measurement is deployed
along η. Tracks are deflected in the R− z plane: four detection chambers are adopted for different
goals, precision measurements (Section 2.6.1) and trigger (Section 2.6.2). The Muon Spectrometer
sub-detectors are composed by precision and trigger chambers. The precision chambers are organ-
ised in three stations (Figure 2.18 (a)) whose radius is 5, 7.5 and 10 m respectively for the internal
(Inner), median (Middle) and external station (Outer). The end-cap chambers cover the region
1< |η| <2.7 and are organised in concentric disks with respect to the beam axis whose distance to
the interaction point is 7.4, 10.8 and 21.5 m. The Monitored Drift Tubes (MDT) covers the large
majority of the η range. In the forward region and close to the interaction point in the Inner station,
the Cathode Strip Chambers (CSC) guarantee a fine granularity.

The trigger system (Section 3.4.1) sketched in Figure 3.8 selects muons in a large momentum
range and is based on the search of coincident hits in the η − φ plane. In the barrel, Resistive
Plate Chambers (RPC) are employed, while Thin Gap Chambers (TGC) are used in the end-caps.
Moreover, having to identify the reference bunch-crossing, the trigger chambers carry an excellent
timing resolution. The parametrisation of muon momentum resolution will be addressed in Section
3.4.3.

Figure 2.17: Computed-generated image of the ATLAS Muon Spectrometer and its sub-detectors.

2.6.1 The Precision chambers

MDT

The MDT sub-detectors are employed to reconstruct muon tracks. Each module has 3 layers of
aluminium drift tubes on both sides for a total of 400000 tubes of 30 mm diameter each. Tubes are
filled with an admixture of 93% Ar and 7% CO2 gas with a pressure of 3 Bar. The tube acts as
a cathode (Figure 2.19) and a gold-plated tungsten-rhenium wire, operating in a potential of 3080
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(a) (b)

Figure 2.18: Schematic view of the muon spectrometer in the x− y (a) and z − y (b) projections.

V, characterised by a diameter of 50 µm lying in the centre of the tube, works as the anode. The
measurement of the time drift estimates the value of the drift path of the particle. Tubes function in
proportional regime and the typical drift time is ∼ 700 ns. Tubes are also grouped in chambers that
are superimposed one on top of each others: 1194 chambers are lodged in 5500 m2 exploiting 3.7·105

readout channels. The track position in each chamber is calculated with a maximum resolution of
80 µm per tube and 30 µm per chamber.

CSC

The CSC are multiwire proportional chambers instrumented with a symmetric cell in the pseudo-
rapidity range 2< |η| <2.7 where the expected interaction rate is higher than 1150 Hz/cm2. The
selected gas admixture chosen for the chambers is 80% Ar, 20% CO2. In each module (Figure 2.20),
the anodes are rhenium-tungsten wires of 30 µm diameter operating at 1900 V and set parallel to
each other. The cathode planes are segmented into strips. The typical drift time is approximately
30 ns, well within the timing of bunch-crossing occurrences at the LHC, while the spatial resolution
is 60 µm.

2.6.2 The trigger chambers

RPC

The technology employed for the barrel is based on Resistive Plate Chambers (RPC) illustrated in
Figure 2.21 (a). These are gas detectors composed by a pair of parallel layers made of bakelite whose
typical resistivity is ρB=2×1010 Ω·cm, separated by a gap of 2 mm with insulating polycarbonate
foils. The volume between the two layers is filled with a gas admixture of 94.7% tetrafluorethane,
5% isobutane and 0.3% sulfur hexafluorure. The external surfaces of the bakelite layers are covered
by a thin foil of graphite dressed with an insulating film of 200 µm polyethylene (PET) . Both layers
are connected to tension providing an electric field of ∼ 4.9 kV/mm.

The avalanche is generated by the primary ionisation created by the particle acceleration traversing
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(a) (b)

Figure 2.19: (a) Schematic drawing of an MDT chamber where structural components are indicated. (b)
Drift tube operation in a magnetic field with curved drift path.
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(a) (b)

Figure 2.20: (a) Schematic drawing of a CSC chamber where structural components are indicated. (b)
Sketch of a CSC chamber.

55



CHAPTER 2. THE ATLAS DETECTOR AND THE LHC

(a) (b)

Figure 2.21: Sketch of a RPC (a) and a TGC (b) chambers.

the gas under the external electric field. Each strip works as a transmission line allowing the signal
to propagate in two opposite directions with respect to the detection points. The strips segmenta-
tion guarantees an approximate spatial resolution of 10 mm on each coordinate per chamber. The
total number of RPC sub-detector is 1116 for a total surface of about 4000 m2.

TGC

The Muon Spectrometer end-cap is instrumented with Thin Gap Chambers (TGC). These are mul-
tiwire proportional chambers, Figure 2.21 (b), whose structure is similar to the CSC. The main
difference is that the anode-anode distance (2.8 mm) is greater than the cathode-anode one (1.4
mm). The anodes are oriented to measure η: they are 50 µm diameter wires encompassed by two
graphite cathodes placed 1.4 mm far from the anodic plane. The detection volume is filled with a
combination of 55% CO2 and 45% n-pentane. Cathode planes are also divided into strips.
A mandatory requirement of a trigger chamber is an adequate temporal resolution for the identifi-
cation of the bunch-crossing: the small gap between anode and cathode (1.4 mm) associated to a
tension of 2900 V results in a quick drift time for particle traversing the TGCs leading to a good
timing resolution of ∼ 4 ns.

2.7 Forward detectors

In addition to the main ATLAS detector, three instruments are located along the beam line at a
very high distance from the interaction regions:

• LUCID (LUminosity measurement using Cherenkov Detector) [86] is composed of two modules
around the beam pipe at ∼ 17 m far from the interaction point on both forward extremities
of ATLAS. In each module, 16 photomultipliers are housed. The charged particles traversing
the detector produce Cherenkov light detected by the photomultipliers.

• The detector ZDC (Zero Degree Calorimeter) [87] is located 140 m far from the interaction
point, exactly on the proton beam axis and covers the region |η| >8.3. It is composed of 2
quartz-tungsten samplings.
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• ALFA (Absolute Luminosity For ATLAS) [88] is an ultra-small-angle detectors located at 240
m on both sides of ATLAS. It is built to calculate the amplitude of the elastic diffraction
at small angle. It consists of so-called Roman Pots inserted above and below the beam axis,
equipped with scintillating fibre detectors.

2.8 Trigger and Data Acquisition

The trigger system in ATLAS is articulated into the following three levels:

• first level trigger (L1);

• second level trigger (L2);

• event filter (EF).

The first level trigger is entirely based on hardware and electronics and is usually executed in the
online mode while the second level trigger and the event filter step are mainly software-based.

The first level operates very basic cuts and produces an output rate of approximately 75 kHz,
while the second level trigger further reduces the rate to ∼ 1 kHz. The L2 trigger processes events
by focusing on the regions individuated at L1. The selection on each physical object is tightened by
stringent cuts and the use of calculated physical quantities (isolation, impact parameter,...). The
last step of the chain, the event-filter, is tuned for an approximate output rate of 300 Hz. The main
features of the L1, L2 and EF triggers regarding electrons and muons will be presented in Sections
3.3.1 and 3.4.1.
The online L1 and L2 trigger time latencies are ∼ 2.1 µs and 40 ms respectively, the computing
time for the trigger algorithms at the EF level is O(s), on average 4 s.

Depending on the trigger chains the particles are associated to, the events are added to different
streams: the EGamma stream, involving electron and photon-like objects that fulfilled the spe-
cific trigger requirements on electrons and photons, the Muons and JetTauEtMiss streams. Other
channels are employed to generate offline checks on data quality and consistency. A debugging
stream is reserved for events that could not be evaluated in the time allotted to a trigger. Fur-
thermore, streams called express stream and calibration stream contain an assortment of events
which are deemed interesting or useful for calibration of the sub-detectors. Certain trigger items
are also prescaled, meaning that only a given fraction of occurrences fulfilling the trigger criteria
are recorded, to limit the bandwidth. Figure 2.22 sketches a view of the trigger and DAQ system
in ATLAS.

2.9 Computing: the ATLAS Software and the Grid Infrastructure

A single data taking run in stable beam condition can last for hours. These runs are divided into
luminosity blocks that are a few minutes long each. Luminosity blocks are the smallest units of
data for an analysis in ATLAS; each block can be included or excluded in the final analysis using
requirements on data-quality and integrity.

Data are primarily processed at CERN with the Tier0 computing facilities before being distributed.
CERN is responsible for the safe keeping of the raw data (millions of digital readings from across the
detectors), and performs the first step at reconstructing the raw data into meaningful information.
Tier 0 distributes (Large Computing Grid, LCG [89]) the raw data and the reconstructed output to
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Figure 2.22: Trigger and DAQ systems developed in ATLAS

Tier 1 s, and reprocesses data when the LHC is not running. Tier 1 consists of 13 computer centres
large enough to store LHC data. They provide support for the Grid, and are responsible for storing
a proportional share of raw and reconstructed data, as well as performing large-scale reprocessing
and storing the corresponding output as well as distributing data to Tier 2 s. The main role of this
local computing system is to provide computing power and manage to data storage for the analysers.

ATLAS has developed different data treatments [89] to store information collected by the vari-
ous sub-detectors to be re-extracted for the various physics analyses. As mentioned in Section 2.8,
events passing the EF are addressed as raw-data. These data packets can reach a size of 1.6 Mb and
are written in binary. Event Summary Data (ESD) store raw-data in a user-readable framework,
ROOT. The typical size of these events is reduced to 500 kilobytes. From ESD, the data format is
modified to the Analysis Object Data (AOD), directly derived from ESD with all the features of a
C++-like object-oriented representation. The main scope of the ESD - AOD conversion is to limit
the file size (∼ 100 kilobytes). AOD are converted in Derived Physics Data (DPD). This data format
is particularly suitable for final analyses because it can be easily accessed by standard tools (ROOT).

The main goal of the ATLAS offline software is to process data fulfilling trigger requirements, create
simulation events for a given physics process, and produce objects that can be easily accessed by the
analysers. In order to accomplish this, the ATHENA framework [90] was developed. The paradigm
that lies beneath the concept of this framework is the creation of an object-oriented architecture
where C++ is the implemented language for the software and Python for the configuration files
(JobOptions).
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Reconstruction and identification of the
physics objects
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Electrons and muons are employed to reconstruct the Higgs decay final state in the H→ ZZ→
4l channel. Good identification and reconstruction performance is crucial for this search and it
is achieved using the various features of the ATLAS detector systems. In this Chapter, the key
points of the definition, reconstruction and identification of the physics objects used in the electron
calibration procedure as well as in the Higgs mass and width analyses for the H →ZZ→4l channel
developed in Chapters 4, 5, 6 and 7 (electrons, muon, jets and neutrinos) are reviewed.

3.1 Track reconstruction

A particle’s trajectory inside a magnetic field can be defined by 5 parameters that exploit the full
kinematic of the system and are calculated in the ATLAS coordinate system (Chapter 2):
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Figure 3.1: The primary and secondary track reconstruction efficiency as a function of the transverse
momentum of the tracks (a) and (c) and their pseudorapidity (b) and (d) in minimum bias Monte Carlo
samples when testing the inside-out algorithm for primary and secondary particles with three pile-up schemes,
µ=1, 21 or 41. The histograms are provided for tracks surviving the loose-primary menu (default quality
cuts requirements) and the tight-primary configuration (robust track requirements).
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• q
p is the charge over momentum magnitude. It accounts for the track curvature of the particle
inside the magnetic field,

• d0, the transverse impact parameter, is the distance in the transverse plane xy of the closest
approach (perigee) of the helix produced by the particle to the z-axis;

• z0, the longitudinal impact parameter, is the z coordinate situated at the perigee.

• φ0 is the azimuth angle of the momentum at the perigee, measured in the range [−π, π];

• θ is the polar angle of the perigee, measured in the range [0, π],

By travelling under the presence of the magnetic field, charged particles traversing the ID leave
hits that enable to reconstruct their trajectory. In addition, particles will also interact with the
dead material in the detector and this will lead to a deviation from their original trajectory due
to multiple scattering; they can also loose energy via ionisation and bremsstrahlung. The track-
ing reconstruction algorithms extracts the trajectory and the kinematic of the charged particles by
looking at the series of hits that are being produced and such algorithms need to be robust against
the presence of multiple interactions in the same bunch-crossing (pile-up).

The track reconstruction strategy in the ID is different for primary and secondary particles [91] [92].
Primary particles are directly produced in a pp interaction or with the decay of another particle
whose lifetime τ is smaller than τprimary. For these objects, an inside-out algorithm is employed. On
the contrary, a secondary particle is reconstructed through the usage of the outside-in algorithm.

3.1.1 Inside-out algorithm

For primary particles, the inside-out algorithm [93] starts from a seed of 3 hits in the innermost
part of the silicon detectors. Once the seed is defined, a combinatorial Kalman filter is deployed
and successive hits are added while moving away from the interaction point. This filter accounts
for the various interactions of the particles with the detector materials causing energy loss and
multiple scattering so that the position of each track is predicted until the external layers of the ID
is reached. The trajectory is then recursively refitted by minimising a χ2 function that describes
the distance of each hit with respect to the most probable inferred trajectory.

As a large number of tracks in the tracking detectors are fakes, ambiguities in the track candi-
dates found in the silicon detectors need to be resolved in order to complete the procedure and
extend the trajectories to the external layer of the ID, represented by the TRT. The tracks are
therefore ranked using a reward/penalty system based on quality criteria such as cuts on the num-
ber of hits and the goodness of the refitted χ2 with respect to the most probable direction. If missing
hits (holes) are present in the trajectory of a given track, a penalty is assigned and the candidate
is likely not to be chosen. Tracks with a score below a certain threshold are discarded so that each
ambiguity is resolved by choosing the track that obtained the highest score.

In the present analysis, quality criteria on tracks rely on a sufficient (9) number of successive
hits in the silicon detectors (pixel and SCT) and no holes in the b-layer. Once the algorithm has
extracted the best candidates in the internal layer of the ID, the tracks are extended to the TRT.

First, a longer track is computed by adding hits compatible with the extension of the silicon infor-
mation to the TRT. Tracks that do not fulfil the basic quality requirements are deemed as outliers
and are discarded from the fit.
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The inside-out algorithm covers tracks whose transverse momentum pT is greater than 400 MeV.
Figure 3.1 displays the track reconstruction efficiency as a function of pT and η. This parameter is
computed as the fraction of primary particles matched to a well reconstructed track. High pile-up
scenarios may induce a large increase in occupancy leading to nearby hits from other particles that
spoil the pattern recognition algorithm. Nevertheless, as illustrated in Figure 3.1, the efficiency of
the inside-out algorithm in the default configuration (the loose-primary menu) is nearly independent
on pile-up up to a level of approximately 5%. The robust requirements (tight-primary) however
decrease the efficiency by a factor 5% approximately for all pile-up schemes.

3.1.2 Outside-in algorithm

The inside-out algorithm [93] is effective when the number of hits in the silicon layers is sufficient
to trigger and complete the pattern recognition procedure. Nonetheless, secondary particles com-
ing from decay vertices which are displaced along the z axis with respect to the interaction point
or tracks produced by photon conversions cannot be properly selected and reconstructed with the
inside-out method. Moreover, the inside-out approach is not efficient for electrons with high energy
loss as well.

A second recognition procedure is therefore performed after the reconstruction of the primary ver-
tex (outside-in algorithm). The track candidate is built through the exploitation of a back-tracking
pattern recognition starting from the TRT-based information back to the innermost layers silicon
hits. Note that track segments in the TRT that are backported to the internal layers are not already
associated to an extension of a silicon track in order to avoid double-counting and interferences with
the previous procedure (inside-out).

The distributions of the efficiency of the secondary track reconstruction in minimum bias Monte
Carlo samples for different pile-up schemes and quality cuts requirements are displayed in Figure
3.1.

3.2 Vertex reconstruction

A key ingredient of analyses is the correct determination of the primary vertex of the pp interaction
as well as the secondary vertices. Primary vertices are reconstructed employing an iterative vertex
finding algorithm where vertex seeds are calculated from the z position at the beam line of the var-
ious reconstructed tracks. In order to remove fake instances, each track carries a weight measuring
its compatibility with the fitted vertex based on a χ2 fit. When a track is displaced more than 7σ
from its vertex, it is assigned to another vertex and the algorithm continues.

The typical resolution on the vertex position is of about 30 µm in the xy plane and 50 µm in
the z direction.

3.3 Electrons

Electrons are charged particles that experience a bending in the ID due to the presence of its
solenoidal magnetic field, deposit energy in the EM (cluster) and radiate a significant amount of
photons through bremsstrahlung in the material of the Inner Detector. The main point in the
reconstruction and identification of these objects is to locate energy deposits in the EM calorimeter
that are compatible with electrons and match such clusters with a charged particle in the ID

62



3.3. ELECTRONS

(reconstruction) accounting for possible changes in direction and kinks caused by bremsstrahlung
events. In order to achieve a good discrimination against background (mostly light hadrons or
photon conversions) faking genuine electrons, various identification schemes are deployed in the
analysis. Sections 3.3.1, 3.3.2 and 3.3.3 detail the various successive procedures, namely trigger,
reconstruction and identification, adopted to define the particle electron in ATLAS.

3.3.1 Electron trigger

The ATLAS trigger detailed in Section 2.8 is employed to select interesting events containing elec-
trons in the final state [94].

• At the L1 trigger level, the identification of the positions of the Regions of Interest (RoIs)
exploits the usage of trigger towers covering a portion of the phase-space ∆η ×∆φ ∼ 0.1 ×
0.1 lying in the calorimeter surface. The transverse energy of the electromagnetic cluster is
therefore computed inside these RoIs with an accuracy of approximately 1 GeV. The outputs
of neighbouring trigger towers are summed and EM-clusters are built by choosing local ET
maxima inside a sliding window of 4×4 group of trigger towers. The central core of this
agglomerate, located within the region of 2×2 trigger towers, is checked and if it contains a
sufficient amount of energy that passes an ET threshold, the L1 trigger is satisfied and L2
trigger requirements are applied.

• At the L2, the trigger algorithm creates cell clusters in the domain ∆η×∆φ=0.4×0.4 within
the RoIs that have already been identified in the previous trigger step. The L2 analysis is
performed both at the calorimeter and the ID level.

As for the calorimeter clustering, the final position of the RoI, is obtained by calculating
the energy weighted-average cell position on a 3×7 grid inside the already-built cell cluster.
According to its position, two different sizes are deployed: 3×7 (∆η×∆φ=0.075×0.175) when
the cluster lies in the barrel (|η| <1.4) and 5×5 (∆η ×∆φ=0.125×0.125) if the cluster is in
the end-cap (1.4< |η| <2.7).

On the tracking side, specialised fast algorithms process signals from the innermost layers
of the ID (pixel and SCT) and extrapolate them onwards into the outer layer of the TRT
volume. A fast pattern recognition algorithm is also employed comprising a determination
of the z position of the primary vertex along the beam axis and a subsequent combinatorial
analysis to locate the correct tracks associated to that vertex.

• The EF, mostly operating in offline mode, fulfils the same reconstruction and identification
criteria used in the offline selection of electron candidates (Sections 3.3.2 and 3.3.3) although
characterised by looser cuts. These cuts are based on the kinematic features of hadron and
electron-induced showers.

The ET trigger threshold at the EF level for the single electron trigger was initially set to 20 GeV
and was raised to 24 GeV close to the end of Run 1 to cope with the high values of the instantaneous
luminosity delivered by the LHC and to maintain sustainable trigger rates. Similarly, the threshold
was raised to 16 GeV from 14 GeV at the L1 trigger.

3.3.2 Electron reconstruction

Electron reconstruction algorithms in the ATLAS detector [95] start from energy deposits in the
EM calorimeter (cluster energies) that are matched to reconstructed tracks of charged particles in
the inner detector. The reconstruction is achieved along the following three points:

63



CHAPTER 3. RECONSTRUCTION AND IDENTIFICATION OF THE PHYSICS OBJECTS

• electron seed-cluster reconstruction and cluster building;

• electron track-candidate reconstruction and the GSF refitting;

• electron candidate reconstruction.

Within the acceptance of the internal detector (|η| <2.5), the η−φ phase-space of the EM calorime-
ter system is divided into a grid of Nη ×Nφ=200×256 towers whose size is 0.025 ×0.025. In order
to compute the tower energy, the energy of the cells in all longitudinal layers is summed. The
reconstruction of the clustering at the calorimeter level is exploited with sliding-window algorithm:
clusters of longitudinal towers with total energy above 2.5 GeV are searched and then the window
size in 3×5 towers of η-φ is formed - a pre-cluster is therefore defined (cluster-seeding procedure).
As soon as close-by seed clusters are found, duplicate removal algorithms are applied to avoid energy
double-counting.

The final Section of the algorithm (cluster building) assigns to the cluster all cells that are within a
specific window in η and φ around the position of the cluster. The cluster size is Nη ×Nφ=3×7 in
the barrel and Nη ×Nφ=5×5 in the end-cap. The values of the sliding windows in η and φ is more
pronounced in the barrel because of the structure of the magnetic field.
The efficiency in Monte Carlo simulations is of the order of 95% for electrons of ET below 7 GeV
and it reaches 99.9% for electron with ET ∼ 45 GeV.

The second part of the reconstruction chain is done with the electron-track candidate reconstruction
via the GSF refitting [96]. This part of the reconstruction algorithm proceeds in two sub-steps:

i pattern recognition;

ii track fit.

The standard pattern recognition [97] starts from the pion hypothesis: if a track seed is not suc-
cessfully extended to a full track of at least seven hits, then the electron hypothesis is employed
and energy loss is allowed. This procedure is carried out with a global χ2 fit [98]: if a track candi-
date is characterised by a very large value of the χ2 estimator due to non negligible energy losses
throughout its trajectory, the pion hypothesis is rejected and the track is refitted with the electron
hypothesis.

Moreover, as observed in Figure 3.2, the distribution of the amount of material traversed by an elec-
tron before reaching the calorimeter is not uniform, leading to a different impact of bremsstrahlung
energy loss in different detector regions. In order to improve the resolution of the tracking of the
electron candidates, all but TRT-only tracks are re-fitted using an optimised electron track fitter,
namelyGaussian Sum Filter (GSF) [99]. This algorithms accounts for energy loss by bremsstrahlung
in the silicon detectors through the refitting of the ID tracks that have failed the pion hypothesis.

The electron energy loss caused by bremsstrahlung is parametrised by the Bethe-Heitler distri-
bution, f(z), expressing the probability of an electron to retain a fraction z of its initial energy
when traversing a material being t its thickness and X0 its radiation length:

f(z) =
(− log(z))a−1

Γ(a)
(3.1)

where a = t log(2) and Γ is the Euler function. In fact, for electrons above the GeV, additional
effects must be taken into account, namely the corrections due to interference effects to the scatter-
ing processes for ultra-relativistic electrons (Landau-Pomeranchuk-Migdal effect). As a result, the
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Figure 3.2: Distribution of the material in units of radiation lengths X0 traversed by electrons before
reaching the calorimeter. The filled colour areas matches with contributions of different detector elements.

equation (3.1) that generates the probability density function of the process cannot be computed
analytically but numerically and does not exhibit a gaussian behaviour. Consequently, the Kalman
filter [99], a regressive least square estimator employed in the pattern recognition of particles and
based on the gaussian hypothesis for all measurement uncertainties, is no longer valid. The GSF
is a generalisation of the Kalman filter where the PDF uncertainties are approximated as a sum of
gaussian components treated by local Kalman filters.

In the 2011 electron reconstruction chain, the GSF algorithm was not used for technical reasons;
only at a later stage of the data taking period, electron tracks started to exploit the beneficial
features of the GSF fitting. On the contrary, during the 2012 data taking, the GSF was included
from the very beginning leading to an increase in reconstruction efficiency of 2% in the barrel and
5% in the end-cap. As illustrated in Figure 3.3 (a) and (b), this procedure reduces the dependence
of the momentum measurement on the amount of materials in a given pseudorapidity range. It is
to be noted that the GSF is not a real reconstruction algorithm, but rather a track refitter.

The validation on Monte Carlo simulations has been carried out [96] employing an estimator given
by the ratio of q

p reconstructed over truth variable for electrons between 7 and 80 GeV in pT . Be
fBrem a parameter that represents the amount of bremsstrahlung experienced by an electron with
a given p measured in the ID:

fBrem =
(q/p)reco − (q/p)truth

(q/p)truth
. (3.2)

Although the GSF-based algorithm brings an overall improvement in resolution of the fBrem
variable as noted in Figure 3.3 (c), its full distribution is not gaussian because in some cases the
fitting procedure fails and the algorithm is unable to distinguish tracks generated by electrons in
the ID.

The improvement of the GSF refitting algorithm is expected to be for low pT electrons that are
likely to be affected by energy losses due to bremsstrahlung. For this purpose, a full check of the
procedure was accomplished on the J/Ψ→ ee resonance characterised by low transverse momenta
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electrons in the final state (Figure 3.4). The brem-related tails on the left for standard electrons
representing the incorrect treatment of these energy losses is reduced in the case of GSF. These
tails are still present because of the cases where the algorithm is unable to correctly refit the track
when electrons radiate a large amount of energy in the first layers of the Pixel detector. However,
the improvement of the resolution in the peak is manifest when the electrons are treated with the
GSF-based algorithm. In addition, the GSF successfully stabilises the position of the peak, i.e. by
shifting it towards its true value.

The pull distribution, PJ/ΨGSF , defined as:

P
J/Ψ
GSF =

mreco −mtruth

δmreco
(3.3)

is expected to be a Gaussian distribution peaked at 0 with σ=1 for an ideal fitter (Figures 3.4
(c) and (d)). As already stated, the residual non gaussianity of the left tails is traced back to the
treatment of the cases where the GSF fit is not applicable. Even so, the gaussian core is left intact
and its mean value is peaked at 0. Conclusively, the non-gaussian behaviour of Figure 3.4 (c) is
largely recovered by the presence of the GSF fitter.

The usage of the GSF fitting algorithm for electrons also paves the way for an improvement of
the electron reconstruction efficiency with respect to the standard approach. Figure 3.5 illustrates
the distribution of the electron reconstruction efficiency as a function of η with a given electron
identification menu (tight++), detailed in Section 3.3.3. Electrons refitted with the GSF show a
non negligible improvement in the efficiency (∼ 5 %) when particles fall in the forward region of
the detectors.

Finally, calorimeter clusters matched to tracks in the electron fitting hypothesis and refitted with
the GSF algorithm build the electron candidate. The final electron four-momentum is extracted
using the inner detector information for the charge determination and the measurement of d0, z0,
η and φ, while the cluster output is adopted to compute the transverse energy ET of the electron.

3.3.3 Electron identification

The goal of the electron identification is to provide robust set of selection requirements to allow
discrimination power between true electrons (isolated electrons or non-isolated electrons produced
in jets due to the semileptonic decay of heavy flavour quarks), hadronic jets faking electrons or
photon conversions. The electron identification [95] strategy used in this analysis is specific to each
of the two different data samples available and it is optimised in the selection efficiency vs the
rejection against fake electrons phase-space. For the 2011 data sample, a cut-based identification
analysis has been deployed [96], whereas for the 2012 dataset, a dedicated multivariate likelihood
discriminant is used.

Cut-based identification

The cut-based electron identification is optimised to provide good separation between signal and
background. The available menus are tight++, medium++ and loose++ accessing different working
points and cuts on the variables of interest. In the early 2012, the performance of the various menus
was improved by loosening cuts and introducing additional information and variables that carry
extra discriminant power between signal and background. The H →ZZ→ 4l analysis uses the
loose++ identification criteria for what concerns the 2011 data at

√
s=7 TeV and the cut-based

menu for the first part of 2012 dataset at
√
s=8 TeV.

The cut-based electron identification is based on:
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Figure 3.3: Mean value of the ratio of the reconstructed over the true electron inverse momentum times
charge as a function of pseudorapidity for single electrons with transverse momentum between 7 and 80 GeV
that lose less than (open points) and greater than (open triangles) 20% of their energy due to bremsstrahlung
in the silicon detector and surrounding infrastructure without (a) and with (b) GSF refitting applied. Dis-
tribution of the fBrem variable (c) defined in the text for both GSF (open red) and standard (solid black)
Monte Carlo from Z → ee decays. The bottom plot shows the ratio of the entries of the GSF and the
standard electron for each bin.
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Figure 3.4: Invariant mass distributions of simulated J/Ψ → ee decays in various pseudorapidity ranges
for the standard (a) and GSF reconstruction (b). Pull distributions (3.3) of standard (c) and GSF-treated
(d) electrons from simulated J/Ψ→ ee decays in various pseudorapidity regions.
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• requirements on the track quality, i.e. the number of hits in the B-layer to discriminate
against photon conversions, the total number of hits in the pixel, in the SCT and the TRT,
the transverse impact parameters d0 and its significance defined as the ratio of d0 and its
uncertainty;

• track-cluster matching, namely the η, φ matching between cluster and ID tracks as well as
the ratio of the cluster energy and the track momentum, Ep ;

• the hadronic leakage defined as the ratio of ET in the first layer of the hadronic calorimeter
to ET of the EM cluster (true electron candidates are expected to release energy mostly in
the electromagnetic calorimeter);

• the ratio of the energy in the third layer of the calorimeter and the total energy of the object
inside the calorimeter;

• requirements on the geometrical structure of the lateral shower shape created by the electron:
isolated electrons are featured by a narrower cluster than all other components, in particular
hadrons;

• the ratio of the energy in 3×7 cells over the energy in 7×7 cells centred at the electron cluster
position;

• ratio of the energy in the strip layer to the total layer;

• ratio of the energy between the largest and the second largest energy deposit in the cluster
over the total energy of the cluster.
This criterion, explicitly addressed as Eratio, is employed to distinguish jets with one or more
neutral particle (π0) which create significant electromagnetic showers inducing a non-negligible
contribution to the electron background. Rejection is therefore accomplished by using the first
calorimeter layer and its fine granularity: true electrons leave an energy deposit with a single
maximum E1 whilst these jets can produce an adjacent second maximum E2.

Likelihood-based identification

An improved identification scheme aiming at replacing the cut-based approach detailed in Section
3.3.3 for 2012 is also developed. Out of the possible multivariate techniques, the maximum likelihood
procedure is chosen for electron identification. As a starting point, the probability density functions
(PDFs) of signal and background are built. An overall probability is consequently calculated for each
electron to look more signal or background-like based on the structure of those PDFs. Be Ps,i(xi)
the signal PDF for the ith variable evaluated at xi and Pb,i(xi) its correspondent background PDF,
the likelihood discriminant can be parametrised as follows:

dL =
LS

LS + LB
(3.4)

where:

LS(x) =

n∏
i=1

Ps,i(xi) (3.5)

for the signal and analogously for the background:

LB(x) =

n∏
i=1

Pb,i(xi). (3.6)
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In equations (3.5) and (3.6), x is the vector of variable values. Signal and background PDFs
used for the likelihood identification menu are derived from data and consist of a set of 9×6 PDFs
(9 bins in η and 6 bins in ET ). Each cut on the likelihood discriminant is made with a different
set of variables entering into the parametrisation of the signal and background PDFs depending on
the type of likelihood menu. For instance, the loose likelihood selection is characterised by a set of
variables that is essentially in common with the cut-based menu (Section 3.3.3).

The loose likelihood identification menu is used in the H →ZZ→ 4l (Chapter 5) analysis and
it is tuned in such a way that it carries the same identification efficiency as the loose++ ID menu
but better background rejection by improving the light flavour jet exclusion. The identification
efficiency as a function of ET and η is shown in Figure 3.6 both for the cut-based scenario, (a) and
(b), and for the likelihood approach (c) and (d). The plots marked with (e) and (f) illustrate the
ratio of the background efficiency for electrons of Z → ee events treated with the likelihood and
its relative cut-based menu. It can be noticed (Figure 3.6) that the likelihood menus let through
only about 40-60% of the background compared to the cut-based menus, while keeping essentially
the same signal efficiency. The efficiency is measured with the tag-and-probe method from Z → ee
events from data.

3.4 Muons

Muons are charged particles that cross the whole detector: they leave minimum amount of energy
in the electromagnetic and hadronic calorimeter as well as a series of hits in the ID and in the
MS that can be exploited to measure their trajectories and reconstruct their kinematic properties.
Events with muons in the final state involve several physics processes, like H →ZZ→ 4µ, and they
guarantee a very clean signature. As for the previous Section, Section 3.3, the following paragraphs
will cover the main aspects of the muon trigger, reconstruction and identification [100] [101] as well
as a digression on the determination of muon momentum scale and resolution.

3.4.1 Muon triggers

The ATLAS muon trigger system [102], [103] has been designed to select muons in a wide momentum
range with high efficiency. The muon trigger consists of three steps and the the trigger logic is based
on the search of coincident hits in the η-φ plane. The geometrical coverage of the trigger system
is about 99% in the end-cap and 80% in the barrel because of the presence of the crack around
η=0. Figure 3.7 shows the structure of the muon system as well as the location of the main trigger
detectors.

• At L1, the RPCs in the barrel and the TGC in the end-cap are used. In the barrel, the low
pT triggers require a coincidence of three out of four layers of the two RPC planes while the
high-pT triggers start from the output of the low pT trigger and look for hits in the RPC
layers of the third plane. The same trigger match is employed for the TGC in the end-cap.

• At L2, each muon candidate is required to have additional precise hits in the MDTs and CSCs
chambers in a spacial region around the muon candidate. At this stage, muon spectrometer
tracks are combined and matched with ID tracks in a narrow cone so to select precisely
the region where the interesting candidates reside. The first estimation of the transverse
momentum of the particle is computed using the position and the direction of the hits. The
amount of data is partially reduced to 3-7% of the total volume.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Measured identification efficiency as a function of ET (a), (c) and η (b), (d) for the cut-based
loose, medium and tight menus as well as for the closest-efficiency likelihood-based ones, compared to MC
expectation for electrons from Z → ee decay. Ratio of background efficiencies for the likelihoods and the
closest-efficiency cut-based menu as a function of η (e) and η (f). The uncertainties are statistical only. The
lower panel shows the data-to-Monte Carlo efficiency ratios.
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Figure 3.7: Schematic picture showing a quarter-section of the muon system in a plane containing the
beam axis. The position of MDTs, RPCs, TGCs and CSCs is indicated in figure.

• At the EF, the full offline reconstruction on muon candidates is applied when the region of
interest has already been determined by the first two trigger steps. The track is then extrap-
olated back to the beam line to locate the track parameter in the ID (inside-out strategy).
Subsequently, as a complementary approach, the reconstruction starts from an ID track and
tries to extrapolate upwards in the MS (outside-in). The momentum and the track param-
eters are finally re-fitted and improved so that a pT measurement is assigned to the muon
candidate. The pT threshold used for the single muon trigger is 18 GeV for 2011 data and 24
GeV for 2012 data.

3.4.2 Muon reconstruction and identification

Mainly two sub-detectors, the MS and the ID, are involved in muon reconstruction and identifica-
tion. As they provide an independent measurement of the transverse momentum of the particle as
well as its trajectory in the magnetic field, they can be simultaneously used. In some cases, the
energy deposit compatible with the muon hypothesis can be also detected in the EM calorimeter
and therefore combined to the ID tracks.

ATLAS employs various definitions of muons resulting in different kinematic features of the ob-
jects.

i Standalone muons: particles are reconstructed only in the MS without any track left in the ID.
Standalone track reconstruction in MS starts with a search for patterns among hits throughout
the whole detector outside the ID geometrical coverage (|η| >2.5) extending to |η|=2.7, the limit
of the acceptance of the MS. In the selected areas, close hits in the same chambers are fitted
along a line to produce segments. Segments from the three chamber stations are then used
to perform a fit of the tracks whose trajectory is extrapolated back to the interaction point,
through the calorimeters including effects caused by energy loss and multiple scattering.

ii Combined muons: standalone muon tracks extrapolated back to the vertex are matched to ID
tracks, inside its coverage (|η| <2.5), and combined into a single track, in order to benefit from
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Figure 3.8: Muon reconstruction efficiency as a function of η measured in Z → µµ events for muons with
pT >10 GeV and different muon reconstruction types. The error bars on the efficiencies indicate the statistical
uncertainty. The panel at the bottom shows the ratio between the measured and predicted efficiencies with
statistical only uncertainties.

the complementary momentum sensitivities of MS and ID over the whole pT range. The statis-
tical treatment of the combination uses the covariance matrices of the two tracks representing
the uncertainty on the measurements of the parameters. Two different algorithms are available
in ATLAS: STACO [104] performing a statistical combination of track parameters of the MS
and ID using the covariance matrices of both parameters (default) and MUID [105] based on a
global refit of the muon track with hits selected in the ID and the MS.

iii Segment-tagged muons: additional muon candidates are obtained by tagging incomplete ID
track with the MS. This strategy is less sensitive to Coulomb scattering and energy loss; to
maximise the accuracy of this measurement, segment-tagged muons utilise the measured pa-
rameters coming from the associated track in the ID.

iv Calorimeter-tagged muons: since the region of |η| <0.05 is not instrumented with muon cham-
bers, in order to measure very central muons, the trajectory in the ID is identified as a muon if
there is a connected calorimetric deposit compatible with the hypothesis of a minimum ionising
particle.

In order to reject muon background (mostly represented by pions and kaons decays in flight gener-
ating genuine muons or punch-through showers, i.e. showers not fully contained in the calorimeter
leaking outside and developing tracks in the MS) a set of cuts based on ID hit requirements is
carried out. Another possible source of background is associated to muon tracks from cosmic rays
and beam backgrounds. These items show different timing characteristics with respect to muons
produced in pp collision and fail the trigger requirements detailed in Section 3.4.1. After applying
these cuts, the fraction of muon background was found to be negligible, well below the percent level.
A tag-and-probe technique, already detailed in Section 3.3.3, on Z → µµ candidates is employed
to calculate the reconstructed efficiency. As presented in Figure 3.8, the efficiency is practically
uniform within the pseudorapidity range. The main drop in efficiency is located at η=0, the crack-
region for the muon chambers. In the very forward region of the detector (2.5< |η| <2.7) there is
no ID coverage and the reconstructed efficiency may suffer from severe degradation.
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3.4.3 Muon momentum resolution

The physics model of the muon interaction is described by Monte Carlo simulations. However,
detector conditions during data taking and possible misalignment between ID and MS can create
local differences in data distributions reflecting in imperfect accuracy of data-Monte Carlo com-
parison. Therefore, a set of corrections is applied to Monte Carlo-generated events to match data
expectations.
The muon momentum resolution can be parametrised as follows:

σ(pT )

pT
=

a

pT
⊕ b⊕ c · pT , (3.7)

where a refers to the fluctuations of the muon energy loss when the particle is traversing the mate-
rial, b describes the multiple scattering effect and c accounts for the intrinsic resolution of the muon
chambers, depending for instance on the spatial positions of the hits, and residual misalignment
effects between ID and MS. Two corrections are applied to Monte Carlo events to restore data-
simulation agreement. A set of smearing parameters directly acting on the resolution model of the
distribution are derived in 36 η-φ regions by fitting the Z→ µµ data mass spectrum with Monte
Carlo templates. The fitting procedure [106] selects the best value of these parameters in specific
regions of the phase space. Correction factors are derived separately in the transverse momentum
measurement in the ID and in the MS and are consequently combined employing a weighted sum of
their relative contributions. These momentum smearings correct the Monte Carlo spectrum with a
multiplicative gaussian contribution with mean 0 and variance 1 in front of each parameter reported
in equation (3.7).

The dimuon invariant mass resolution, σ(mµµ) which results from the momentum resolution effect
of each single muon is shown in Figure 3.9 separately for ID and MS and the combined contribution
(Z, J/Ψ and Υ → µµ). The importance of the simultaneous usage of the ID and MS measurements
for the extraction of the combined pT is testified by the improvement in resolution of the CB mass
throughout the whole η range with respect to the ID and MS outputs. A second correction that is
applied to Monte Carlo templates is the so-termed scale correction. It is a multiplicative correction
modifying the typical muon momentum scale with the factor ∆s1 as well as the offset ∆s0 modelling
data Monte Carlo differences due to the energy loss:

pMC,corrected
T = ∆s0 + ∆s1 · pMC

T . (3.8)

Figure 3.10 (a) reports the Z → µµ mass distribution in data and Monte Carlo before and after
applying the smearing and scale correction factors on the Monte Carlo sample. Better agreement
is obtained as shown in Figure 3.10 (b) where the dimuon invariant mass resolution in data is
compared with Monte Carlo simulation before (the width of the uncorrected Monte Carlo is 5-10%
smaller than that of the data) and after smearing corrections. Figure 3.10 (c) shows the data/Monte
Carlo ratio of the mean mass < mµµ > obtained from the fits to the Z, J/Ψ and Υ samples, as
a function of the pseudorapidity of the highest-pT muon for a pair of combined muons. For the
uncorrected Monte Carlo, the ratio deviates from unity in the large η region of the J/Ψ and Υ cases
by up to 5%. This is mainly due to imperfections in the simulation of the muon energy loss that
have a larger effect at low pT and in the forward η region where the MS measurement has a larger
weight in the MS-ID combination. The corrected Monte Carlo is in very good agreement with the
data, well within the scale systematics that are ∼ 0.035% in the barrel region and increase with η
to reach ∼ 0.2% in the region |η| > 2 for the Z → µµ case.
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Figure 3.9: Invariant mass resolution σ(mµµ) for ID, MS and combined measurements observed in data at√
s= 8 TeV for J/ψ → µµ (a), Υ→ µµ (b) and Z→ µµ (c) as a function of η of the highest pT muon of the

pair.
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Figure 3.10: Dimuon invariant mass for combined muons reconstructed with STACO algorithm with pT>25
GeV as obtained from data at

√
s=8 TeV. Data are compared to Monte Carlo simulation for Z → µµ events

before and after (a) applying smearing and scale corrections on Monte Carlo. Background estimates are
added to the signal simulation. The lower panels show the Data/MC ratios. The band represents the effect
of the systematic uncertainties on the MC momentum corrections. (b) Dimuon invariant mass resolution for
combined muons of Z → µµ events for data and for uncorrected and corrected Monte Carlo as a function of
the pseudorapidity of the highest-pT muon. The upper plots show the fitted resolution parameter for data,
uncorrected Monte Carlo and corrected Monte Carlo. The lower panels illustrates the data-to-Monte Carlo
ratio, using uncorrected and corrected Monte Carlo. The error bars represent the statistical uncertainty
and the systematic uncertainty on the fit added in quadrature. The bands in the lower panels represent the
systematic uncertainty on the correction. (c) Ratio of the fitted mean mass in data and in simulations for
the dimuon final state produced by Z, J/Ψ and Υ decays as a function of η of the leading muon. The ratio
is shown for corrected Monte Carlo (filled symbols) and uncorrected Monte Carlo (empty symbols). The
yellow band defines the systematic correction uncertainty.
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3.5 Jets

Jets appear [5] in the detector as collimated bunches of hadrons originated from gluons and quarks
after fragmentation and hadronisation.

3.5.1 Jets reconstruction and identification

Topological clusters [107] [108], topoclusters, formed by jet deposits, are extracted in the hadronic
calorimeter using neighbouring cells with significant energy deposit over the noise. The contribu-
tion of noise is measured in each calorimetric cell and is computed as the expected RMS of the
electronic noise for the current gain and conditions in addition to the contribution from pile-up.
Topoclusters formation relies on seed cells where the signal to noise ratio, labelled as S/N , is above
a certain threshold. As a second step, adjacent cells to the seeded ones are added to the topocluster
regardless of their S/N ratio. The energy of the topocluster is therefore the sum of energies of the
various cells belonging to that topocluster.

In order to select the object jet, ATLAS employs an anti-kt algorithm [109]. For the jet con-
stituents, the algorithm computes the following quantity:

di,j = min(
1

kti
· 1

ktj
)
∆R2

ij

R2
. (3.9)

kti is the transverse momentum of the ith constituent, Rij =
√

∆η2 + ∆φ2 between the two con-
stituents i and j, and R is a parameter of the algorithm that models the size of the jet. Typical
values for R are R = 0.4 or 0.6. Intuitively, the algorithm tends to define high energy clusters
and to further combine the other lower energy clusters lying close to the first aggregation. Once
the procedure is completed, the jet four-momenta are computed by the vectorial sum of all the
four-momenta of the topocluster. The anti-kt algorithm has been used in every jet-related physics
analysis in ATLAS. A key advantage is that it is infrared safe, that is to say not affected by soft
QCD radiation emission that can lead to divergences, and collinear safe, i.e. robust against parton
splitting into two collinear partons because soft radiations and splitted partons are clustered into
more energetic objects. Furthermore, the anti-kt algorithm was also tested to be robust against
pile-up.

Pile-up-motivated corrections are then applied to the jet energy: they subtract the contribution
produced by multiple interactions from the same (in-time pile-up) or previous (out-of-time pile-up)
bunch crossing. These corrections depend on the jet pseudorapidity are calculated as a function of
the number of reconstructed vertices in the event and on the average number of interactions per
bunch crossing, µ in data.
Another variable that is employed to gauge the jet performance is the jet vertex fraction (JVF),
namely the fraction of tracks that are associated to the jet which are consistent with being orig-
inated from the primary vertex: the higher the JVF, the more probable the jet-to-vertex match
assignment was correctly accomplished.

3.5.2 Jet energy scale calibration

The raw jet energy resulting from cluster deposits needs to be properly calibrated to account for
the following effects:

• calorimeter non-compensation: the energy response to hadron is lower than that to electrons
of the same energy;
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• dead materials, inactive regions of the detectors where the energy deposit is not properly
recorded;

• electromagnetic leakage due to the punch-through showers developing electromagnetic de-
posits leaking inside the hadronic calorimeter.

For the 2011 and 2012 analyses, a simple and robust approach, named jet energy scale (JES), has
been carried out and applied to the simulation. These calibration factors are derived from Monte
Carlo samples and correct the jet direction through a match in a ∆R cone of calorimetric jets with
Monte Carlo true jets. The correction factors, Rjet, are extrapolated from the ratio of energies of the
reconstructed and true jets, Rjet = Ereco

Etruth
inside the geometrical acceptance of the ∆R cone. These

constant factors are parametrised both in the transverse momentum and the pseudorapidity regions
of the jets. For the 2012 analysis, a more sophisticated calibration procedure, the local calibration
weighting (LCW), is employed on top of the JES calibration. Its main purpose is the classification
of the formed topological cluster as either electromagnetic or hadronic. Based on this difference,
preliminary energy corrections are derived before starting the JES procedure. A final calibration is
applied after the LCW+JES procedure and it corrects Monte Carlo-based results using data.

The jet energy scale uncertainties come from the experimental uncertainty on the detector knowl-
edge, mostly due to the imperfect parametrisation of the dead materials, the effects of pile-up and
its treatment for close-by jets. The theoretical physics models and parameters underneath the con-
cept of QCD jet (treatment of the fragmentation and underlying events) in the Monte Carlo event
generators used to derive the JES corrections are also an important source of uncertainty on the
jet scale corrections. For the 8 TeV analyses, the total JES uncertainty in absence of pile-up varies
between 2.5% for central high-pT jets (0< |η| <0.8 and 60< pT <800 GeV) up to ∼ 14% for forward
low pT jets (3.2< |η| <4.5 and 20< pT <30 GeV). Furthermore, the dependancy of the scale on
multiple interactions in the same bunch crossing introduces an additional systematic uncertainty
that accounts for approximately 0.5% for jets with pT ∼ 50 GeV. Figure 3.11 shows the the relative
systematic uncertainty for inclusive jets as a function of the transverse momentum of the jet. The
various sources comprised in the total uncertainty, explicitly the generation and tuning of the Monte
Carlo, the material description, the jet resolution and the tracking in the jet core, are also reported
in the same pjetT range.

3.6 Missing energy

The missing transverse momentum (MET) [110], generated by the presence of particles escaping
the detector, like neutrinos, is defined as the momentum imbalance in the xy plane, transverse to
the beam axis z. Given the parton model employed to describe the proton interactions, the sum of
the longitudinal momenta is unknown. However, the sum of the transverse momenta of all particles
in the final state must be zero. The momentum conservation should therefore hold in the transverse
plane of the event, the missing transverse energy is defined as:

Emiss
T = −|

∑
i

~pT i|. (3.10)

The computation of the transverse energy for a given event comprises all the collection of par-
ticles that are present in the final state, hence sources of electronic noises, unknown dead regions,
cosmic rays and beam-halo muons crossing the detector can be a source of fake missing ET - the
maximisation of the detector coverage and the reduction of the effects due to finite effect resolution
are key ingredients to reach a good Emiss

T performance.
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Figure 3.11: Relative systematic uncertainty on the jet energy scale for inclusive jets treated with the
anti-kt algorithm (R=0.4) and |η| <1.2. The various contributions to the total uncertainty are reported as
a function of pjetT .

The reconstruction uses energy deposits in the EM and hadronic calorimeters as well as muons
reconstructed in the MS. The contribution of tracks is added to recover the low pT particles that
are bended in the magnetic field and miss the calorimeter. The calculation of the subterms con-
tributing to the definition of the MET is a comprehensive equation as follows:

Emiss
(x,y) = Emiss,e

(x,y) + Emiss,γ(x,y) + Emiss,τ(x,y) + Emiss,jets
(x,y) + Emiss,SoftTerm

(x,y) + Emiss,µ(x,y) (3.11)

where each term is extracted in the xy plane projecting the components of the transverse momentum
onto the x and y axis and is extracted as the negative sum of the calibrated values for the relevant
objects. Precisely, electrons (as detailed in Chapter 4) and photons are calibrated according to [111],
τ -jets are calibrated with the local cluster weighting algorithm and the τ energy scale correction
is also applied [112]. Jets [113] are reconstructed using the kT algorithm [109] with R=0.4 when
pjetT > 20 GeV. Each jet is then corrected for the pile-up contribution as detailed in Section 3.5.1.
In order to suppress the noise contribution at the calorimeter cells level as much as possible, only
the calorimeter energy deposits up to a certain threshold should be included into the computation.
For this reason, the Emiss, SoftTerm

xy is added and it accounts for the small energy deposits that are
not associated to any high pT object. In the formula (3.11) there is also a muonic term, Emiss,µ(x,y)
calculated by taking into account muons that are reconstructed in the MS and matched to tracks in
the ID (combined muons). In the very forward region of the detector (2.5< |η| <2.7) the measure-
ment is entirely extracted by the MS (standalone muons). In the transition region (1.0< |η| <1.3)
tagged muons are considered as well.

Figure 3.12 (a) shows the excellent data - Monte Carlo (minimum bias) agreement of the parametri-
sation of the Emiss

T . As for Figure 3.12 (b) Z → µµ events are well-suited to the study of the
missing energy performance because of its very clean signature. Each contribution is weighted with
its relevant cross section and the integral of the distribution is normalised to the corresponding
luminosity in data. No genuine Emiss

T is expected from these events, thus the MET reconstructed in
these events directly comes from imperfections in the reconstruction process of the energy response.
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Figure 3.12: (a) Data and minimum bias Monte Carlo comparison of Emiss
T using 0.3 nb−1 at

√
s=7 TeV.

The Monte Carlo distribution is normalised to the luminosity in data. (b) Distribution of Emiss
T in Z → µµ

events in data using an integrated luminosity of 20 fb−1 at
√
s=8 TeV. The Monte Carlo expectations of

the signal (Z → µµ) and the various background contributions are superimposed, stacked one on top to the
others and normalised to data. The lower section of the plot shows the data to Monte Carlo ratio.

This fair agreement proves that the instrumental effects are accounted for by the simulation and the
parametrisation of the Emiss

T term is correctly added. The dominant backgrounds of this analysis
are also superimposed in this plot (tt̄, WZ, ZZ, WW).

3.7 Pile-up conditions in the simulation

The various pile-up conditions [114] need to be thoroughly comprised in the simulation samples in
order to have a realistic picture of physics conditions and to match them with data inputs. The
total inelastic cross section is σin= (57.2 ± 6.3) mb [115] at

√
s= 7 TeV.

From the performance point of view, the main effects of the presence of pile-up are listed below:

• potential inefficiency in track reconstruction and identification due to very busy environment
(occupancy) that affects the typical event processing time of the local recognition algorithm;

• degradation of the isolation requirements at the ID and calorimeter levels;

• distortion or mis-measurement of energy in calorimeters, mostly resulting in inefficiencies of
the electromagnetic (electrons and photons) objects or increasing noise terms on the treatment
of the jet energy resolution;

• degradation of the resolution of the missing energy.

It is therefore important that identification and reconstruction performance of the algorithms
should guarantee robustness against the presence of pile-up. Figure 3.13 illustrates the plot of
the luminosity-weighted distribution of the mean number of the interaction per bunch crossing for
2011 and 2012 with a timing bunch crossing difference of 50 ns. The modelling of the effects of
pile-up events inside bunch crossings, both in-time and out-of-time contributions, is included in a
separate process of the reconstruction chain that is applied to the Monte Carlo simulation, namely
the digitalisation. The treatment of this procedure works as follows:

i Monte Carlo samples are simulated with a fixed distribution of additional minimum-bias inter-
actions.

80



3.7. PILE-UP CONDITIONS IN THE SIMULATION

Figure 3.13: Luminosity-weighted distribution of the mean number of the interaction per crossing in data
for 2012 at

√
s=8 TeV using an integrated luminosity of 20.8 fb−1 and 2011 at

√
s=7 TeV for 5.2 fb−1.

ii This distribution is then reweighted to the one observed in data measured in LUCID and ALFA
(Chapter 2) as a function of the lumiblock representing the data-taking periods.

iii This reweighting gives a scaling factor that is applied to the Monte Carlo events to correctly
reproduce the distributions of pile-up measured in data. Hence, these weights vary in each event
according to the actual number of interactions and to the pile-up conditions characterising a
precise run and its instantaneous luminosity (number of bunches and ∆T between bunches)
ensuring full compatibility of simulations with data.
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Chapter 4

Energy calibration of the electrons and
E − p combination

Contents
4.1 General overview of the calibration procedure . . . . . . . . . . . . . . . 83
4.2 Energy calibration of electrons . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3 Energy scale and resolution determination from Z→ee events . . . . . . 89
4.4 Analysis of the systematic uncertainties . . . . . . . . . . . . . . . . . . . 91

4.4.1 Systematic uncertainties on the energy scale . . . . . . . . . . . . . . . . . . 91
4.4.2 Systematic uncertainties on the calorimeter energy resolution . . . . . . . . 93

4.5 Improving the energy resolution using the E-p combination . . . . . . . 93
4.5.1 Motivation of the E-p combination . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.2 The likelihood combination algorithm . . . . . . . . . . . . . . . . . . . . . 94
4.5.3 Results - Validation of the algorithm on Monte Carlo and data samples . . 98
4.5.4 Systematic uncertainties associated to detector geometry and material . . . 112

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A precise calibration of the energy measurement of electrons is a fundamental need of many
physics measurements in ATLAS particularly after the discovery of the Higgs boson by the ATLAS
and CMS experiments [20], for the measurement of the Higgs boson mass.

This Chapter explains the present scheme that derives the calibrated energy of the electrons start-
ing from the energy deposits in the electromagnetic calorimeter as the electron reconstruction and
identification have already been analysed in the previous Chapter.
Finally, a method that combines the calorimeter energy measurement with the momentum measured
in the tracking detectors will be presented. This method has been exploited [20] in the extraction
of the Higgs boson mass in the H → ZZ → 4l channel as illustrated in Chapter 5.

4.1 General overview of the calibration procedure

The different steps in the procedure to calibrate the energy response of electrons are summarised
below, with the items referring to the calibration chains sketched in Figure 4.1. The results presented
in this Chapter are based on 20.3 fb−1 of pp collision data at

√
s = 8 TeV, collected in 2012.

The energy of an electron candidate is built from the cell responses in the electromagnetic calorimeter
as explained in Chapter 3. The calibration then proceeds as follows:
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Figure 4.1: Schematic overview of the procedure used to calibrate the energy response of electron in
ATLAS.

• The energy extracted from the deposits in the calorimeter cells is calibrated to the real energy
of the electron. The procedure is illustrated in Section 4.2.

• A set of corrections is applied to the cluster energy that is reconstructed in data in order to
account for effects that are not present in the simulation, namely non-optimal high voltage
regions and geometrical effects that are associated with the calibration of the LAr calorime-
ter. Furthermore, in order to achieve a consistent measurement in data, the uniformity of the
calorimeter energy response as a function of φ and η and its stability as a function of time
t and different pile-up µ conditions (collectively contributing to the η-φ-t-µ linearity of the
energy response) need to be checked to derive correction factors restoring the linearity of the
measurement.

The sources of non-uniformities of the energy responses that are investigated in the current
round of the analysis and reported in the calibration paper [111] are listed below.

– High-voltage inhomogeneties. In few sectors of the accordion electromagnetic calorime-
ter, the high voltage is set to a non-nominal value due to the presence of short circuits
in the LAr gaps.

– Time dependance of the pre-sampler response. The high voltage in the barrel pre-sampler
is set to 2000 V but it was sometimes limited to lower values because of the occurrences
of electronic noises.

– Energy response in High-Medium gain. To accommodate the wide range of expected
energies in the calorimeter cells and their amplifications, the electronic signals are treated
with different linear gains [116]. Some processes, like Z→ee are recorded by cells in the
high gain, whereas this is not the case for H→ γγ as the events have a photon with at
least one cell in the medium gain.

Figures 4.2 and 4.3 present the residual non uniformity after applying the above-discussed
corrections as well as the residual instabilities of the measurement as a function of time and
pile-up conditions.

• The non-linearities (Figures 4.2 and 4.3) in data can produce responses that do not match
Monte Carlo expectations. Thence, correction scales are extracted from Z → ee events in data.
The Monte Carlo response is also modified to account for the slight difference in resolution
between data and simulation. The calibrated energy and the values of the extracted scale
factors are additionally validated from J/Ψ →ee events so to ensure data - Monte Carlo
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Figure 4.2: Non uniformity of the energy response of an electron candidate as a function of η with and
without corrections.
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Figure 4.3: (a) - Energy response as a function of µ normalised to its average quantity. (b) - Energy
response as a function of time, normalised to its average quantity.

consistency. The procedure of the extraction of the correction factors on Z → ee will be the
main theme of Section 4.3.

As the corrected energy of the electron candidate is returned by the calibration chain, the E−p
combination algorithm is deployed and the cluster-based electron energy is combined with the track
momentum. This method will be detailed in Section 4.5.

4.2 Energy calibration of electrons

The goal of the calibration is to estimate the true energy of the particle from the quantities measured
by the calorimeter. An electron (or a photon) deposits energy in several cells of the calorimeter
due to electromagnetic showers created by the interaction with matter. A cluster of cells is then
defined such that it contains most of the energy deposits, hence, the electron (photon) energy can
be computed.

The calibration chain progresses as follows. The LAr calorimeter calibration converts the elec-
tronic signal readout into an energy inside one cell in the calorimeter [116]. However, several effects
distort this calculation at the cell-level (energy lost by the candidate electron or photon in the
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Figure 4.4: Linearity of the raw energy vs η for 100 GeV electron candidates. The distribution of the
material in front of the calorimeter is shown in the background [117].

matter in front of the calorimeter energy leakage behind the calorimeter and the energy outside the
defined cluster of the calorimeter cells), therefore, the calibration is applied to produce corrections
to the cell-based energy.
Wrapping up, the calibration uses the energy of the cells (the raw -energy) and returns the energy
of the cluster. Figure 4.4 illustrates the linearity of the response of the uncalibrated (raw) energy,
defined as the ratio of the sum of the energies in the four layers to the true energy of the electron,
as a function of the pseudorapidity η for 100 GeV electrons. The distribution of the material in
front of the calorimeter is shown in the background [117]. The returned corrections of the energy
calibration are parametrised as a function of measurable quantities and are obtained from Monte
Carlo simulations.

The present calibration method [111], based on a multivariate approach [118], replaced the pre-
vious one (the calibration hit method) detailed in [119]. The constants determined by the method
are applied separately for electrons, converted and unconverted photons in η and pT regions. For
this study, a sample of single electrons is employed, its ET distribution covering the energy range
from 1 GeV to 3 TeV, maximising the statistics between 7 and 100 GeV.

The new calibration scheme [111] is implemented using the Toolkit for Multivariate Analy-
sis (TMVA) framework [118]. The framework provides a machine learning environment for the
processing and parallel evaluation of multivariate classification and regression techniques. Several
distributions of input variables extracted from the training sample are included in the machine
learning algorithm and one output is produced as a result. The quantities used as input variables
for the training of the multivariate approach are tabled below.

• Total energy in the accordion: Eacc, defined as the sum of the uncalibrated energies of
the accordion layers (strips, middle and back).

• Ratio of the energy in the presampler to the energy in the accordion: E0/Eacc,
used only for clusters within |η| < 1.8.

• Shower depth: X =
∑
XiEi/

∑
Ei, where Xi is the amount of material (in X0) in each

layer i or in front of the presampler.

• Pseudorapidity in the ATLAS frame: ηcluster.

• Cell index: an integer number between 0 an 99 defined as the integer part of the division
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ηcalo/∆η where ηcalo is the pseudorapidity of the cluster in the calorimeter frame and ∆η =
0.025 is the size of one cell in the middle layer.

• η with respect to the cell edge: defined as the pseudorapidity (in the calorimeter frame)
modulus the width of one cell of the middle layer (∆η = 0.025).

• φ with respect to the lead absorbers.

In order to help optimising the energy response in different regions of the phase space, the
sample is divided into bins of |ηcluster|, ET , and according to the particle type (electron, unconverted
photon or converted photon). The binning is chosen to match known detector geometry variations
and significant changes in the energy response:

• |ηcluster|: 0 - 0.05 - 0.65 - 0.8 - 1.0 - 1.2 - 1.37 ; 1.52 - 1.55 - 1.74 - 1.82 - 2.0 - 2.2 - 2.47;

• ET : 0 - 10 - 20 - 40 - 60 - 80 - 120 - 500 - 1000 and 5000 GeV.

An independent optimisation, through a different training procedure of the input variables of the
algorithm, is performed for each bin of |ηcluster|, ET and particle type. Among the various options
the TMVA package offers (likelihood, neural networks,...), the gradient boosted decision tree is the
algorithm with which the analysis is performed [120].

In order to assess the quality and the performance of the algorithm, the linearity and the resolutions
of the distributions E

Etruth
, where E is the electron energy reconstructed after the calibration, are

tested. The mean and the standard deviation cannot be adopted as estimators since the energy
response is usually non-gaussian and those estimators would not correctly account for the presence
of tails in the distributions of E

Etruth
. The linearity is therefore extracted as the peak position of

E
Etruth

in bins of Etruth when fitting a gaussian core to the distribution in the region [-1,2] standard
deviations around the mean value. The resolution is defined as the interquartile range E

Etruth
, namely

the distance between the first and the last quartile in each bin.

The linearity and the resolution of the MVA calibration are illustrated in Figure 4.5. The re-
sulting non-linearity is below 0.3% in the barrel for Etruth above 10 GeV and it reaches ∼ 0.8 %
in the end-cap. The performance of the multivariate calibration and its improvement compared to
the previous calibration scheme [116] has been verified on physical processes involving electrons in
the final state. Figure 4.6 displays the invariant mass of the electron final states on the J/Ψ →ee,
Z →ee and H→ ZZ∗ →4e decay channels with and without the MVA calibration in action. These
distributions clearly reflect the expected improvement in the linearity of the calibrated response by
exhibiting a shift of the mean value of the distributions, displaced towards the PDG-mass of the
resonance.

A second longitudinal layer intercalibration [111] of the first and second layer, containing most
of the energy deposited by the electrons, is also performed because an accurate estimate of this
intercalibration is critical to achieve good linearity in the energy response. Such intercalibration
uses muons as probes. These results are verified by a study of the electron energy response as a
function of the shower depth [111] and extra corrections, around 2% on average, are derived.

The relative calibration of the presampler layer (shown in Figure 4.7) is extracted from electrons,
produced in W and Z decays, by comparing the presampler energy in data and in Monte Carlo
simulations as a function of the longitudinal shower development measured in the calorimeter. The
accuracy of this calibration is at the level of 5%. The measured presampler energy scale defines a
correction factor that is applied to data.
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Figure 4.7: Ratio of average presampler energies for electrons in data and simulation as a function of
pseudorapidity, before and after corrections to the first and second layer intercalibrations as well as the
calibration of the presampler layer. The full lines with shaded bands represent the energy scale and its
uncertainty

4.3 Energy scale and resolution determination from Z→ee events

As shown in Section 4.1, after the various corrections applied to data, the residual non-uniformity
is at the level of approximately 0.8% (Figure 4.2). Moreover, the energy response is stable as a
function of time and pile-up (Figure 4.3) up to 0.05%. The last step of the calibration process [111]
comprises the corrections of the remaining differences between data and simulation (the in-situ cal-
ibration).

As for data, the energy scale correction αi of the already-calibrated energy in a specific pseu-
dorapidity bin i is defined as follows:

Edata = EMC(1 + αi) (4.1)

where Edata and EMC are the electron energy in data and simulation respectively, αi represents the
departure from the optimal calibration of data. For Z→ee events, the effect of electron miscalibration
in data on the electron pair invariant mass can be written as follows:

mdata
ij = mMC

ij (1 + αij),

αij ∼
(αi + αj)

2
, (4.2)

mdata
ij and mMC

ij are the invariant mass in data and simulation for an electron pair reconstructed in
pseudorapidity bins i and j, herein αij is the shift on the mass peak. This derivation works under
the hypothesis that the second order term of the expansion (4.2) is neglected and the angle between
the two electrons is perfectly known.

Secondly, the Monte Carlo simulation is corrected to match the distribution seen in data by ap-
plying electron resolution correction (smearing) factors to the lineshape of the histograms. These
smearing factors are derived under the assumption that the resolution curve is correctly modelled
up to a Gaussian contribution that produces a constant term:(σE

E

)data
=
(σE
E

)MC
⊕ c. (4.3)
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Figure 4.8: (a) - Electron pair invariant mass distribution for Z resonance in data and Monte Carlo,
Energy scale corrections are applied to data. The Monte Carlo contribution is shown before and after
energy resolution corrections and is normalised to the number of events in data. Bottom: ratio of the data
and uncorrected Monte Carlo distributions to the corrected Monte Carlo distributions with the calibration
uncertainty bands. (b) - J/Ψ resonance in data and Monte Carlo after energy corrections on data and
resolution smearing on Monte Carlo. The background is determined from the data and added to the simulated
J/Ψ resonance.

For each η (i, j) category, equation (4.3) gives:

(σm
m

)data

ij
=

(σm
m

)MC

ij
⊕ cij

=
1

2

[(σE
E

)MC

i
⊕ ci ⊕

(σE
E

)MC

j
⊕ cj

]
,

cij =
(ci ⊕ cj)

2
, (4.4)

where cij is the invariant mass resolution correction for (ηi, ηj). To determine the energy scale
corrections to data (α) and the smearing corrections (gaussian term c) to Monte Carlo, template
histograms of the invariant mass of the dielectron final state in the Z →ee channel are created
from the simulation and built separately for the electron configurations in bins of η. They form a
two-dimensional grid along αij and cij . The optimal value of the two parameters are obtained by a
χ2 minimisation [111].

After all corrections, the final state invariant mass distribution agrees in data and Monte Carlo
to a level of 1%. Figure 4.8 (a) presents the dielectron invariant mass distribution of the data
corrected with the energy scale factors α and of the Monte Carlo simulation with and without the
resolution corrections in actions. The small excess located in the low mass region is explained by the
presence of tails in data that are not properly modelled in the simulation. An orthogonal cross-check
on the procedure of the extraction of the scales has been performed on a J/Ψ→ee sample. Figure
4.8 (b) shows the electron pair invariant mass distribution in data and Monte Carlo; the corrected
data and the simulation agree within statistical uncertainties throughout the whole mass range.
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4.4 Analysis of the systematic uncertainties

4.4.1 Systematic uncertainties on the energy scale

The scale for electrons with transverse energy ET close the to that of Z →ee events (ET ∼ 40 GeV)
is determined by the calorimeter energy scale adjustments illustrated in Section 4.3. The main
sources of systematic uncertainties [111] that are accounted for in the analysis are listed below.

• Uncertainty on the Z → ee electron calibration.

• Uncertainty on the non-linearity of the energy measurement at the cell level: it is mostly
produced by the relative calibration of the different gains used in the calorimeter readout
(Section 4.1). The measurement is performed on data by comparing the Z peak position
for electron clusters whose cells are recorded in High Gain to electron with at least one cell
recorded in the Medium Gain. The full size of the effect is taken as a systematic uncertainty.
Another verified effect was the impact of the energy pedestal of electrons comparing pile-up
only events in data and Monte Carlo. The induced energy non-linearity is negligible at high
energies.

• Uncertainty on the relative calibration of the different calorimeter layers.

• Uncertainty on the amount of material in front of the calorimeter (Chapter 2).

• Uncertainty on the reconstruction of photon conversion: converted and unconverted photons
are calibrated in a different way [111] [121] to account for different energy losses before the
calorimeter, hence the misidentification of the particles can lead to an energy shift of approx-
imately 2%.

• Uncertainty on the modelling of the lateral shower shape: differences between data and sim-
ulation for the lateral development of the electromagnetic showers can contribute to the un-
certainty on the energy scale of the particle.

Other sources of systematics are sub-leading and are therefore not explicitly included. All the above-
defined sources are treated as independent and their quadratic sum defines the total uncertainty
at a given ET and η. Table 4.1 shows the summary of the energy scale systematic uncertainties
estimated from electrons with ET=11 GeV and ET=40 GeV. The last two items on the list above
are labelled as other sources.

The total uncertainty on the electron energy scale is strongly η-dependent: at ET of 40 GeV
(electrons from the Z decays) it is on average 0.03% for |η| <1.37, 0.2% for 1.37< |η| <1.82 and
0.05% for |η| >1.82. At a transverse energy of approximately 10 GeV, the electron energy scale
uncertainty spans form 0.4% to 1% for |η| <1.37; it is about 2% for 1.37< |η| <1.82 and 0.4% for
|η| >1.82.

To fully validate the procedure of the energy scale extraction, an independent check is performed
using sample of J/Ψ →ee decays. The results are in very good agreement with the values deter-
mined from the Z →ee sample. Figure 4.9 summarises the verification of the electron energy scale
from Z →ee and J/Ψ →ee samples in bins of pseudorapidity. To check the non-linearity in the
electron energy scale, namely the shift with respect to 0 of the relative scale difference between the
measured electron energy and the nominal energy scale, the plots are also shown in bins of electron
ET . The same analysis has been performed on the 7 TeV dataset and results are found to be fully
consistent.
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Figure 4.9: Energy scale factors ∆α obtained after Z-based calibration from the J/Ψ →ee and Z →ee
analyses, as function of ET and in different pseudorapidity bins (a) to (f). The band represents the calibration
systematic uncertainty. The error bars on data points represent the total statistical uncertainty.
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|η| range - ET=11 GeV 0-0.6 0.6-1 1-1.37 1.37-1.55 1.55-1.82 1.82-2.47
Z →ee calibration 0.03 0.04 0.08 0.22 0.22 0.05
Energy non linearities 0.09 0.09 0.07 0.00 0.09 0.24
Layer calibration 0.15 0.19 0.14 0.16 0.13 0.19
ID Material 0.03 0.03 0.31 0.88 0.33 0.10
Other sources 0.12 0.38 0.58 0.20 1.00 0.15
Total 0.22 0.44 0.69 0.94 1.09 0.36
|η| range - ET=40 GeV 0-0.6 0.6-1 1-1.37 1.37-1.55 1.55-1.82 1.82-2.47
Z →ee calibration 0.03 0.04 0.08 0.22 0.22 0.05
Energy non linearities 0.00 0.00 0.00 0.00 0.02 0.01
Layer calibration 0.01 0.01 0.01 0.00 0.00 0.01
ID Material 0.00 0.00 0.01 0.00 0.00 0.00
Other sources 0.00 0.01 0.02 0.00 0.02 0.00
Total 0.03 0.04 0.08 0.22 0.22 0.05

Table 4.1: Summary of energy scale systematic uncertainties contributions (in %) estimated for electrons
with ET=11 GeV and ET=40 GeV.

4.4.2 Systematic uncertainties on the calorimeter energy resolution

The main sources on the systematic uncertainties of the calorimeter energy resolution are related
to the modelling of the sampling term and to the measurement of the constant term c in Z boson
decays and from the uncertainty in the modelling of the small contribution to the resolution from
fluctuations in the pile-up regime, from other proton-proton interactions in the same or neighbouring
bunch crossing. The value of the uncertainty on the calorimeter energy resolution is typically 5% to
10% for electrons in the ET range from 10 to 45 GeV. The resolution curve is shown for electrons in
Figure 4.10 (a), as a function of energy for |η| = 0.2. The different contributions to the resolution
uncertainty are shown in 4.10 (b) . The relative uncertainty is minimal for electrons at 40 GeV, where
the measurement of the constant term of the electron resolution translates into an uncertainty of
the order of 5%. At higher transverse energy, the sampling term and detector material contributions
are significant; at low energy, the pile-up contribution dominates.

4.5 Improving the energy resolution using the E-p combination

4.5.1 Motivation of the E-p combination

The motivation for performing a combination of the track momentum and cluster energy (E − p
combination) is to improve electron energy resolution, particularly for particles with low transverse
momentum (pT). This motivation stems from the fact that momentum resolution provides the best
energy estimate for low pT particles, whereas the calorimeter energy measurement is superior for
high pT particles, as illustrated in Figure 4.11. The main physics channel that profits from the track
momentum and cluster energy combination is the H → ZZ → 4l (detailed in Chapter 5) decay
mode with electrons in the final state.

Before the inclusion of the E − p combination algorithm [122] in the treatment of the electrons
in the final state [20], the electron four-momentum used to be derived from the calorimeter-based
cluster energy, the track position and direction. However, since the lowest electron transverse
momentum cut of the Higgs candidate quadruplet lies at 7 GeV, the room for energy resolution

93



CHAPTER 4. ENERGY CALIBRATION OF THE ELECTRONS AND E − P COMBINATION

 [GeV]TE
20 40 60 80 100 120 140 160 180 200

 / 
E

σ

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
-1 = 20.3 fbtdL∫=8 TeV, sATLAS

|=0.2ηElectrons, |

(a)

 [GeV]TE
20 40 60 80 100 120 140 160 180 200

σ
 / 
σ

Δ

0
0.05

0.1
0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

Total
 ee)→Cst. term (Z

Sampling term
Material
Pileup

-1 = 20.3 fbtdL∫=8 TeV, sATLAS

|=0.2ηElectrons, |

(b)

Figure 4.10: (a) - Resolution curve and its uncertainty as a function of ET for electrons with |η| <0.2. (b)
-Contributions of the different uncertainties to the relative resolution uncertainty as a function of ET for
electrons with |η| <0.2.

improvements in the low pT range can be exploited by performing the track-cluster combination.
The combination also stands to benefit energy resolution in problematic parts of the electromagnetic
calorimeter, such as the crack region in 1.37 < |η| < 1.52, where the response tends to be poorer
for electrons. Another beneficial point is that the systematic uncertainties on the overall electron
energy scale are reduced due to the excellent energy scale of the track.

The likelihood method uses Monte Carlo modelling to generate profiles of track and cluster pT
relative to truth information, and forms a combined measurement based on the maximisation of a
likelihood function derived from these profiles. The performance of the method is evaluated and
compared using data and Monte Carlo samples of J/Ψ and Z dielectron resonances, as well as
Monte Carlo samples of gluon fusion-mediated H → ZZ → 4l decays. A brief description of the
software developed for the ATLAS reconstruction chain comprising the E−p combination algorithm
is included in Appendix A.

4.5.2 The likelihood combination algorithm

In order to use the E − p combination in an optimal manner, it is necessary to derive criteria that
demarcate a phase space in which the track momentum measurement can potentially improve the
resolution of the cluster energy. In this analysis, these criteria took the form of rectangular cuts on
quantities related to the quality of the track measurement at reconstruction-level, and also relate
to the truth-level behaviour of the electron.
Three quantities are used to define criteria for each of the methods presented here. The first
quantity is the absolute value of the difference in track and cluster measurements, relative to the
track momentum,

diff =
|EClus − PTrack|

PTrack
. (4.5)

The difference in track momentum between the reconstructed perigee, and the last space-point
before entering the ECAL, is defined as fBrem. This quantity is given by,

fBrem =
|pLM − pPerigee|

pPerigee
(4.6)
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Figure 4.11: Inner detector (a) and calorimeter resolution (b) for electrons as a function of pT and ET in
various pseudorapidity regions.

where pPerigee is the momentum measurement at the closest approach to the beam axis, and
pLM is the momentum measurement at the last measurement (LM) point in the tracker. The agree-
ment between the track momentum and cluster energy measurements, relative to their respective
measurement uncertainties, is also calculated as,

σ(E − p) =
|E − p|√
σ2
E + σ2

p

. (4.7)

Description of the method

To begin the likelihood combination approach, single electron transverse momenta (pT), as measured
in the Inner Detector, and cluster energies are both compared with their values using a Monte Carlo
control sample. Electrons are placed in 12 categories according to their transverse momentum and
pseudorapidity (η), as given in Table 4.2.

pT Region Definition
Low 7 < pT < 15GeV

Medium 15 < pT < 30GeV
High pT > 30GeV

|η| Region Definition
Central |η| < 0.8

Medium 0.8 < |η| < 1.37

Crack 1.37 < |η| < 1.52

Forward 1.52 < |η| < 2.5

Table 4.2: Definitions of the pT and |η| regions used in this analysis.

Another categorisation is performed through the usage of the variable fBrem, as defined in Sec-
tion 4.5.2 shown in Figure 4.12. This criterion is implemented to isolate electrons which have lost
relatively little energy due to bremsstrahlung in the Inner Detector (i.e. fBrem ∼ 0), with respect
to those with higher brem losses (fBrem → 1). Based on fBrem distributions in η and pT categories,
additional cuts are employed to select two different low and high bremsstrahlung kinematic regions.
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Figure 4.12: Distribution of fBremin the low, medium and high pT regions as a function of the pseudora-
pidity of the electrons.

For each category in η, pT and fBrem, the ratios pClusterT /pTruthT and pTrackT /pTruthT are calculated.

In specific zones - mostly the one with low pT electrons, in the central pseudorapidity region -
the track-based pT produces a better resolution than that which is calculated through the cluster-
based method. A Crystal Ball fit [123] is then applied for both pClusterT /pTruthT and pTrackT /pTruthT , with
the parameters extracted from the fit, and used in the algorithm. This parametrisation is chosen
because this functional form takes into account the Gaussian core resolution and the radiative tail.
The parameters extracted by the fit are then used as input variables in the combination algorithm.
Figures 4.13 and 4.14 show some examples of Crystal Ball fits for cluster and track in the central,
medium, and high transverse momentum regions for electrons in the central and medium |η| re-
gions, respectively. These probability density functions (PDFs) are computed for each η, pT, and
fBrem categories, and only when electrons pass the σ(E − p) cut (see 4.5.2). In other words, these
functions are computed exclusively for electrons whose energy and momentum will be combined by
the algorithm.

A maximum-likelihood fit of pTrackT and pClusterT is implemented based on these ratios, with two
functions defined,

F1

(
pTrackT
x

)
and F2

(
pClusterT

x

)
, (4.8)

where F1,2 are respectively track and cluster ratio Crystal Ball PDFs. For each electron, charac-
terised by pTrackT and pClusterT , a product is computed,

− log

[
F1

(
pTrackT
x

)
· F2

(
pClusterT
x

)]
. (4.9)

The combined transverse momentum (pComb
T ) for a given electron, as well as its error, are ex-

tracted through the minimisation of this product with respect to the independent variable x.
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Figure 4.13: Crystal Ball fits to pClusterT /pTruthT distributions in various transverse momentum and pseudo-
rapidity regions.
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Figure 4.14: Crystal Ball fits to pTrackT /pTruthT distributions in various transverse momentum and pseudo-
rapidity regions.

The track-cluster parametrisation through PDFs is exploited in fixed bins of pT , η and fBrem cate-
gories hence it is prone to boundary effects for electrons lying in regions that are close to the border
between one category and another. The performance of the algorithm was therefore cross-checked
by exploiting more bins in pT and η. As a preliminary closure test and validation of the method,
the parameters defining the Crystal Ball PDFs have been analysed and they smoothly evolve from
one region to another as expected. For instance, Figure 4.15 illustrates that the standard deviations
of the Crystal Ball distributions regularly decrease proportionally to 1√

pT
. A continuous parametri-

sation of the probability density functions was also worked out so that for each electron, relevant
values of the Crystal Ball parameters (mean value of the distribution, its standard deviation, ...)
are used instead of the binned values. This approach has not yielded significantly better results
than the present procedure (fixed parametrisation of the PDFs in bins of transverse momentum,
pseudorapidity and fBrem) thence the fixed PDF parametrisation has been adopted.

The combination

The first step of the likelihood-based procedure is to decide whether the combination is to be applied
or not for a given electron, based on a rectangular cut on σ(E−p). If σ(E−p) is lower than a certain
threshold, the cluster and track measurements are deemed consistent, and the combination algorithm
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Figure 4.15: Functional form of the σ parameter of the Crystal Ball with which the distributions of ptrackT /
ptruthT and pclusterT / ptruthT are fitted. The different colours stands for different η regions of the electron
candidates: central η (black), medium η (red), crack η (green) and forward η (blue).

can be applied. On the other hand, if σ(E − p) is larger than the threshold, the two measurements
are deemed incompatible, and the cluster energy is returned. This procedure is explained in the
two-dimensional distribution of pClusterT /pTruthT and pTrackT /pTruthT (see Figure 4.16): electrons with
small σ(E − p) populate the bulk of the distribution, while the other, external regions demonstrate
a larger difference in the cluster and track measurements. The threshold value for σ(E−p) has been
optimised with the best cut found to be σ(E−p) < 4. Note the small clustered population along the
equation pTrackT /pTruthT + pClusterT /pTruthT = 1, due to electrons where the track misses completely its
relative cluster. This population is isolated in the track-cluster phase space and for these electrons
the combined pT is taken as the sum of cluster and track measurements. To conclude, the algorithm
can be summarised as follows:

• If σ(E − p) < 4, then the E − p combination is applied (else the cluster is returned);

• If pClusterT /pTruthT < 0.4 for the central pT region (0.16 for the medium pT region):
pComb
T = pClusterT + pTrackT .

4.5.3 Results - Validation of the algorithm on Monte Carlo and data samples

Samples and event selection

The validation of the combination method was performed using both Monte Carlo and data samples.
Parton-level interactions in the Monte Carlo events were produced using the POWHEG [124] [125]
generator, with pp collisions simulated at

√
s = 8TeV. Parton showering is handled by interfacing

the initial hard scattering interactions with the PYTHIA [126] showering Monte Carlo package,
with the truth-level information run through a full detector simulation in GEANT4 [127] [128]. The
detector-level information is then reconstructed using the ATLAS offline reconstruction software.
All data samples used in this analysis were obtained using the full 2012 ATLAS dataset, correspond-
ing to 20.7± 0.7 fb−1 of

√
s = 8TeV proton-proton collisions, with a total data taking efficiency of

93%.

In order to be considered for inclusion in the combination analysis, all electrons were required
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Figure 4.16: Two-dimensional phase space of pTrackT /pTruthT as a function of pClusterT /pTruthT .

to pass loose electron ID requirements and have an uncombined pT > 7GeV1. For dielectron reso-
nances (i.e. J/ψ → ee and Z → ee), the constituent electron pairs were required to have opposite
charge, and for events with more than one candidate pair, the highest pT pair is chosen. All electrons
are subjected to energy corrections in data, while an energy smearing factor is applied to electrons
in Monte Carlo to match the resolution in data [111].

Single electron Monte Carlo

To perform an initial examination of the performance of the combination algorithm, single electron
Monte Carlo samples were produced with nominal detector geometry. Single electrons are generated
with flat ET in the range [7−80]GeV, and passed through the ATLAS offline reconstruction software.
In terms of selection, electrons are required only to have loose ID, and uncombined pT > 7GeV.
Shown in Figure 4.17 are distributions of pT/pTruthT for electrons before and after the likelihood E−p
combinations are applied, respectively. Table 4.3 reports the change in mean of each distribution,
along with the fraction of tails, as quantified by a Gaussian fit to each distribution between [0.9, 1.2].

For single electrons, the likelihood combination method shows the best potential for improvement
in cases of low pT electrons, and electrons in the central region of the detector. Electrons in the
forward region, or those with high pT, do not benefit in a significant way from the combination. The
reason is that the presence of a greater amount of material outside of the medium |η| region leads
to a significant degradation in the track momentum resolution, and the combination is therefore
entirely driven by the cluster energy. As for the pT dependence in the high transverse momentum
category, the cluster resolution is better than the one of the track.

Since there is no benefit in using this procedure for forward electrons and in the high transverse
momentum region, in proceeding studies (J/Ψ → ee, Z → ee and H → ZZ → 4l) , the final state
invariant mass is computed using this algorithm only for electrons lying in the central, medium,
and crack |η| regions, for low and medium pT, where the resolution is significantly improved by
the track-cluster combination. For the forward η, and the high pT categories, the cluster-based
transverse momentum is kept.

1The combination threshold on pT has been defined in such a way to be the same to the one used in theH → ZZ →
4l analysis for electrons.
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Low pT
|η| region σClus % tails (cluster) σComb % tails (combined)
Central 4.4 9.7 2.5 9.8
Medium 6.5 11.5 3.7 11.4
Crack 13.0 9.1 7.0 9.4

Forward 5.6 14.1 5.6 15.0
Medium pT

Central 3.0 6.4 2.4 6.2
Medium 4.6 6.6 4.1 6.7
Crack 8.9 8.7 8.1 9.7

Forward 4.0 9.0 4.0 10.1
High pT

Central 2.0 1.5 2.0 2.0
Medium 2.8 3.0 2.9 3.5
Crack 6.0 6.5 5.7 6.4

Forward 2.7 5.2 2.7 5.3

Table 4.3: Energy resolution width and tails for Monte Carlo single electron events before and after the
combination.

In addition, distributions of pulls for cluster and combined energies were computed:

P(pRecoT ) =
pRecoT − pTruthT
σ(pRecoT )

. (4.10)

The pulls are calculated in the categories where the combination is applied (low and medium pT,
in the central, medium, and crack |η| regions). The results are displayed in Figure 4.18. The widths
of the combined energy pulls are almost always smaller or equal to those of the uncombined energy
pulls. The explanation for this behaviour is that the cluster energy error relies on a purely Gaussian
approximation, which does not account for the non-Gaussian tail from cases where EReco < ETruth.
Consequently, the cluster energy uncertainty is frequently underestimated, whereas the combined
error returned by the combination is given by the uncertainty on the likelihood functional form,
thus it takes into account the real PDF lineshape.

J/Ψ →ee Monte Carlo and data

A generation of J/Ψ Monte Carlo samples is used in this analysis and is composed of prompt
(direct production) and non-prompt (b→ J/Ψ decays) productions, with nominal ATLAS detector
geometry [111]. All J/Ψ → ee candidates are required to pass initial selection criteria on object
quality, electron ID, and transverse momentum prior to combination [111]. Beyond the cuts on
electron pT and quality, it is required that each selected dielectron pair has 1 < mee < 5GeV.
Moreover, if more than one J/Ψ candidates is found, the highest oppositely-charged pT pair is
chosen. Figure 4.19 shows the excellent data - Monte Carlo agreement of the samples.

The prompt and non-prompt J/Ψ Monte Carlo samples used in this study are reweighted to
their expected proportions in data, with different triggers applied, based on the following sample
filters:

• e3e3: Leading pT ∈ [4, 9] GeV → EF_e5_tight1_e4_etcut_Jpsi

• e3e8: Leading pT ∈ [9, 14] GeV → EF_e5_tight1_e9_etcut_Jpsi
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(a) Central, low pT
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(b) Central, medium pT
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(c) Central, high pT
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(d) Medium, low pT
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(e) Medium, medium pT
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(f) Medium, high pT
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(g) Crack, low pT
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(k) Forward, medium pT
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Figure 4.17: Improvement in pT/pTruthT for Monte Carlo single electrons after the E − p combination, as
compared to the standard approach (EClus only) and the track distribution as well.
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(a) Pull: central |η|, low pT
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(b) Pull: central |η|, medium pT

pull ­ LowPtMediumEta

­6 ­4 ­2 0 2 4 6

E
v
e
n
ts

 n
o
rm

a
liz

e
d
 t
o
 u

n
it
y
/0

.1
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

cluster

combined

ATLAS Internal

(c) Pull: medium |η|, low pT
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(d) Pull: medium |η|, medium pT
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(e) Pull: crack |η|, low pT
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Figure 4.18: Pull distributions of the cluster and combined transverse momentum.
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Figure 4.19: Data distributions (in black) compared with the corresponding ones from combined (prompt
and non-prompt samples) Monte Carlo prediction (in blue) for J/Ψ→ee decays. (a) and (b) - both electrons
ET in linear and logarithmic scale. (c) and (d) - ET for leading and sub-leading electron. (e) and (f) - η for
leading and sub-leading electron.
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• e3e13: Leading pT ∈ [14,∞) GeV → EF_e5_tight1_e14_etcut_Jpsi

These triggers are at the Event Filter level and require leading and sub-leading pT electrons of
5, 4, 9 and 14 GeV respectively. The identification criteria for these electron is tight (Chapter 3).

The invariant mass distributions for Monte Carlo J/Ψ → ee events, with and without the com-
bination in effect, are presented in Figure 4.20. The distributions are shown in pseudorapidity
regions, with the requirement that both electrons fall in the designated pseudorapidity bin, e.g. for
a central J/Ψ candidate, both electrons must have |η| < 0.7. The most noticeable improvement in
the invariant mass resolution appears in the central regions; the peak is sharper for the combined dis-
tribution, and the tails of the distribution have narrowed with respect to those of the cluster-based
distribution. Reasonable improvement is also observed in the medium and crack regions. However,
for the forward region, little to no improvement is observed in performing the combination.

The invariant mass distributions for data J/Ψ→ ee candidates are shown in Figure 4.21 for the
same |η| regions noted above. The trends in resolution improvement observed in the Monte Carlo
events hold true of data, as well. The most significant improvement is observed for J/Ψ candidates
with both electrons in the central region (|η| < 0.7), with J/Ψ candidates in the medium |η| region
showing mild improvement, the forward region displaying no improvement due to the combination.

Another way to quantify the improvement in energy resolution is to look at the change in
the tails of the electron energy resolution, considered in this analysis to be the region outside of
±1σ about the peak of the function pT/pTruthT . The width (σ) is taken from a Gaussian fit to the
distribution of pT/pTruthT on [0.9, 1.2]. In performing the E−p combination, one would ideally expect
both a narrower width of the resolution function, and a decrease in the size of the response tails.
The electron energy response, in particular, has a non-Gaussian tail that is primarily the result of
bremsstrahlung in the Inner Detector, as shown in Figure 4.22. Thereby, the E − p combination
would ideally also mitigate cases where the cluster energy is combined with a track measurement
that is affected severely by bremsstrahlung.

To obtain a robust parametrisation of the J/Ψ invariant mass distribution, a detailed study on
this spectrum in data is pursued. The flat, non-resonant, combinatory background is fitted with a
3rd order polynomial and the J/Ψ decay signal with a Crystal Ball function, mean and resolution
values scale as 3.7/3.1 and as

√
3.7/3.1, respectively. This scaling is set in this way to incorporate

the J/Ψ2S resonance, at m2S ∼ 3.7 GeV. Likewise, the other Crystal Ball parameters, namely α
and n, are floating in the fit procedure. An example of the fit is illustrated in Figure 4.23.

Table 4.4 shows the improvement in the tails of pT/pTruthT for Monte Carlo J/Ψ → ee events
using the combination whilst Table 4.5 displays the mean and width for both Monte Carlo and
data events. In both Monte Carlo and data samples, the mean of the invariant mass distribution
shifts closer to mJ/Ψ when the E − p combination is applied.

Since the constituent functions are built with respect to pT/pTruthT , the combination method
shifts the electron pT to its assumed truth value.
The width of the invariant mass distribution also narrows after performing the combination, in-
dicating a more precise reconstruction of the dielectron system. For instance, the width of the
resolution improves by 25% − 27% in the central and medium regions, both for data and Monte
Carlo. Furthermore, the values of µ and σ for each |η| region for both data and Monte Carlo are
in good agreement, indicating that the decision-making criteria used (i.e. |E − p|/p and fBrem) are
valid for both simulated and experimental J/Ψ candidate events.

Z→ee Monte Carlo and data

This analysis employs Z → eeMonte Carlo samples with nominal geometry. Along with the nominal
selection outlined in Section 4.5.3, each electron in the Z candidate is required to have pT > 20GeV.
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Figure 4.20: Monte Carlo J/Ψ → ee mass distributions with and without the combination in effect, for
the likelihood method.

mee[GeV] ­ central eta

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

E
v
e
n
ts

 n
o
rm

a
liz

e
d
 t
o
 u

n
it
y
/0

.0
1

0

0.005

0.01

0.015

0.02

0.025

cluster data

combined data

ATLAS Internal

(a) Central |η|

mee[GeV] ­ medium eta

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

E
v
e
n
ts

 n
o
rm

a
liz

e
d
 t
o
 u

n
it
y
/0

.0
1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

cluster data

combined data

ATLAS Internal

(b) Medium |η|

mee[GeV] ­ crack eta

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

E
v
e
n
ts

 n
o
rm

a
liz

e
d
 t
o
 u

n
it
y
/0

.0
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

cluster data

combined data

ATLAS Internal
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Figure 4.21: Invariant mass distributions of J/Ψ → ee data events, with and without the combination in
effect. The data used corresponds to 21 fb−1 of pp collisions at

√
s = 8TeV, recorded during 2012.
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Figure 4.22: Evolution of the left tail of the energy response distribution for leading electrons in Monte
Carlo J/Ψ→ ee decays.

Figure 4.23: Invariant mass distribution of J/Ψ→ ee resonance, for electrons lying in the central η region,
namely 0 < η < 0.6. The final state histograms for J/Ψ events from data (black points) is compared with
the sum of the signal (red line) and the J/Ψ2S (green line) component (each parametrised with the sum two
Crystal Ball functions), and the combinatorial background (blue line parametrised with a third order degree
polynomial function).
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Low pT
|η| region σClus % tails (cluster) σComb % tails (combined)
Central 5.7 10.1 3.2 8.8
Medium 7.5 9.7 5.3 9.7
Crack 11.9 9.5 7.4 15.0

Forward 6.1 11.0 6.0 10.8
Medium pT

Central 3.9 5.9 3.4 6.1
Medium 5.2 6.3 4.5 5.4
Crack 8.0 9.3 7.0 10.2

Forward 4.3 6.4 4.3 6.1
High pT

Central 2.9 9.3 2.8 8.4
Medium 3.6 7.7 3.6 7.0
Crack 7.5 12.7 7.2 11.7

Forward 3.1 13.0 3.1 13.0

Table 4.4: Energy resolution width and tails for Monte Carlo J/Ψ → ee events before and after the
combination.

Monte Carlo J/Ψ→ ee

|η| region µClus [GeV] σClus [GeV] µComb [GeV] σComb [GeV]
Central 3.087 0.114 3.124 0.093
Medium 3.072 0.141 3.129 0.110
Crack 3.363 0.450 3.221 0.261

Forward 3.062 0.120 3.060 0.114
Data J/Ψ→ ee

Central 3.071 0.127 3.112 0.091
Medium 3.079 0.140 3.115 0.101
Crack 3.435 0.684 3.245 0,454

Forward 3.041 0.113 3.0551 0.101

Table 4.5: Improvement in the mean and width of the invariant mass distribution for J/Ψ → ee Monte
Carlo and data events before and after the combination.
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(b) Sub-leading pT

Figure 4.24: Transverse momentum distributions of the leading and sub-leading pT electron pairs of the
Z boson, as shown for data and Monte Carlo events.

It is further asked that the dielectron pair has an invariant mass mee > 50GeV. Energy scale cor-
rections are applied on data sample as well as smearing correction on Monte Carlo as explained in
Section 4.

Overall, excellent agreement between data and Monte Carlo is found in the leading and sub-leading
electron pT distributions for simulation and data respectively as noted in Figure 4.24.

The final combined and uncombined Z → ee invariant mass distributions for Monte Carlo and
data, respectively, are shown in Figures 4.25 and 4.26. Table 4.6 displays the mean and the σ of
the combined and uncombined Z → ee invariant mass distributions for the combination algorithm.

In these distributions, there is little benefit to performing the E − p combination on high pT
electrons of the Z resonance. One notable exception to this behaviour is the mee distribution of
the crack region where the combination produces a shift in the peak of the combined distribution
towards the true Z mass (taken to be mZ = 91.188GeV). This result is a consequence of the
comparatively poorer energy resolution of the ECAL in the crack region (relative to the momentum
resolution of the Inner Detector), which leads to a greater importance of track measurements in the
combined distribution. The invariant mass distributions from the 2012 data agree with the results
of the Monte Carlo study, with a noticeable improvement in resolution only observed in the crack
region. Overall, these plots demonstrate that the E − p combination for high pT electrons is only
effective in the crack region.

H→ZZ → 4l Monte Carlo

The effect of the E − p combination method was also studied using Monte Carlo samples of gluon
fusion-mediated H → ZZ → 4l with pp collisions simulated at

√
s = 8TeV. The sample was gener-

ated using nominal ATLAS geometry. The standard 4l selection cuts [20] were applied, as detailed
in Chapter 5. Furthermore, all necessary event weights were in place, including pile-up reweight-
ing, z-vertex smearing, gluon fusion and ZZ overlap reweighting as well as muon, electron trigger
and efficiency scale factors. In addition, energy resolution smearing factors are applied to electron
cluster energy. In these samples, the E−p combination is applied exclusively for electrons after the
standard selection (detailed in Chapter 5), with muons reconstructed in the same manner as the
standard 4l analysis. To ensure the consistency of the combination approach, the performance of
the algorithm has also been examined when using the combination before the standard cut-based
selection and the results were found to be similar to the previous case. In any event, by keeping the
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(c) Crack |η|
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(d) Forward |η|

Figure 4.25: Monte Carlo Z → ee mass distributions with and without the combination in effect.
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(c) Crack |η|
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Figure 4.26: Invariant mass distributions of Z → ee data events, with and without the combination in
effect. The data used corresponds to 21 fb−1 of pp collisions at

√
s = 8TeV, recorded during 2012.
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Monte Carlo Z → ee

|η| region µClus [GeV] σClus [GeV] µComb [GeV] σComb [GeV]
Central 90.403 2.839 90.641 2.778
Medium 89.694 3.530 90.811 3.440
Crack 88.845 5.295 89.920 5.105

Forward 89.201 3.305 89.340 3.298
Data Z → ee

Central 90.339 2.820 90.821 2.689
Medium 90.046 3.320 90.501 3.197
Crack 87.852 6.053 91.202 6.011

Forward 89.752 3.501 89.799 3.404

Table 4.6: Improvement in the mean and width of the invariant mass distribution for Z → ee Monte Carlo
and data events.

combination after the standard selection, the re-calculation of efficiencies and acceptances can be
avoided. The percentage of electrons undergoing combination is 42% in the 4e channel, and 63% in
the 2µ2e channel. With regard to the 2e2µ channel, given that the pT spectrum of the on-shell Z is
sensibly harder, and the combination threshold is placed at 30 GeV, the combination is practically
never applied.

Four lepton invariant mass distributions before and after the E − p combination, with the Z mass
constraint applied, are displayed in Figure 4.28. Candidate events are separated out into 4e, 2e2µ,
and 2µ2e categories, with the on-shell pair (i.e. the pair with the mass closest to the PDG-given Z
boson mass) listed first. The set of values that are used to gauge the improvement of the combina-
tion algorithm was calculated by applying a Gaussian fit using iterative fit on [−1σ, 2σ] around the
mean of the distributions. Tables of the resolution, and relative size of the tails, with and without
applying the E − p combination, are shown in Table 4.7. The largest improvement is seen in the
H → 4e and H → 2µ2e channels, showing an approximate reduction of 5% and 4%, respectively,
in the width of the m4l distribution. In addition, the combination produces a reduction of the tails
of the m4l distribution, mostly in the 4e channel.

Before applying the E − p combination on events from data, its outcome is first scrutinised in
the sideband regions, i.e. the signal-free region in data. Figure 4.27 (a) displays a 2D map of
|mComb

4l −mClus
4l | as a function of mClus

4l in the 4e decay channel for what concerns the two sideband
regions (50< m4l <100) GeV and (140< m4l <450) GeV. The σ of the difference |mComb

4l −mClus
4l | is

about 1 GeV, but at an average mass of approximately 200 GeV, 0.5% in relative difference. Figure
4.27 (b) exhibits the same 2D distribution |mComb

4l −mClus
4l | vs mClus

4l for the signal Monte Carlo. In
this specific case, the standard deviation of the difference between the cluster and combined-based
measurements is 0.5 GeV, fully consistent with the typical behaviour shown in the sideband.

Validation of the E − p combination on the 2011 simulation

A validation of the track-cluster combination algorithm has been performed at single electron level
for Monte Carlo samples with

√
s=7 TeV (mc11 in what follows).

In particular, single electrons are produced with the same flat ET range of [7-80] GeV used in the
8 TeV analysis and passed through the ATLAS offline reconstruction software. Additionally, the
pT cut is kept at 7 GeV. As a second step of the analysis, the PDFs for mc11 are computed from
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(a) (b)

Figure 4.27: 2D map of |mComb
4l −mClus

4l | vs mClus
4l for electron candidates in the sidebands (a) and in the

Higgs signal Monte Carlo (b). The standard deviation of the difference cluster-combined is fully compatible
between the two plots.

Channel µClus σClus µComb σComb % tails (Cluster) % tails (Combined)
4e 123.67 2.248 123.98 2.132 16.9% 15.8%

2e2µ 124.20 1.655 124.54 1.609 14.5% 14.4%
2µ2e 123.91 2.223 124.25 2.170 13.5% 13.6%

Table 4.7: Energy resolution and size of tails for Monte Carlo H → ZZ → 4l events before and after the
track-cluster combination.
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Figure 4.28: Monte Carlo H → ZZ → 4l mass distributions with and without the combination in effect.
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|η| Region Definition
Central |η| < 0.6

Semi-central 0.6 < |η| < 1

Medium 1 < |η| < 1.37

Crack 1.37 < |η| < 1.52

Semi-forward 1.52 < |η| < 1.82

Forward 1.82 < |η| < 2.47

Table 4.8: Definitions of the |η| regions used in the computation of material systematic uncertainties.

mc11-based Monte Carlo single electron samples in the usual bins of pT , η and fBrem as illustrated
earlier on in the text. The σ cut, σ(E-p), is re-computed in this new configuration and it is found to
be 3 unlike the previous case, σ (E-p)=4 for mc12. The improvement of the pT /ptruthT distributions
in width and amount of tails found at single electron level for mc11 is found to be compatible with
the one described above for mc12.

4.5.4 Systematic uncertainties associated to detector geometry and material

The track-cluster combination method depends to varying degrees on the energy calibration of the
electrons studied, as well as the accuracy of the simulated ATLAS geometry used to reconstruct the
Monte Carlo events. A difference between the simulated detector and the real detector (mostly due
to the amount of material) would induce a shift in the reconstructed energy. Hence, the uncertainty
on the knowledge of the real detector is the source of a systematics. Such a systematics is applicable
to the cluster-based energy and to the combined one - in what follows the procedure to extract it will
be detailed for the two measurements. Accordingly, the effect of the different simulation, calibration,
and geometry-based systematic uncertainties must be evaluated. The systematic uncertainties in
these Sections, unless otherwise specified, are computed using single electron Monte Carlo samples
described in Section 4.5.3 and the energy is extracted after the MVA-based calibration.

In order to assess the systematic uncertainties due to differences in simulated detector geometry,
various Monte Carlo samples with distorted geometries are used:

• A: ID material scaling by 5%;

• C ′+D′ : SCT and Pixel services scaled by 10%;

• E′+L′ : + 7.5 X0 at SCT/TRT end-cap, + 5 X0 between ID and PS;

• F ′+M ′′
+X

′′ : + 7.5X0 at ID endplate, + 5.0X0 between PS and strips, LAr material increase
in transition region.

• G′ : All above variations applied together.

Linearity

Electrons were placed in six |η|-based categories, as listed in Table 4.8, and nine pTruthT categories
(with bin edges defined by [6, 10, 15, 20, 25, 30, 40, 50, 65, 80] GeV).
As a preliminary step, a detailed study was pursued on the ideal estimator to be employed in evalu-
ating the material uncertainties. The estimators that were considered are the average values of the
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distributions of pT/pTruthT in bins of |η| and pTruthT , or the mean of the Gaussian core of the same ra-
tio. The main drawback of the first approach is that the computation of the calibration is extremely
dependent on the configuration in |η| and pT of the electrons. Some particular zones in the |η|-pT
phase-space, in particular, demonstrate non-negligible tails that may skew the average value of the
distribution far below the peak of the Gaussian core. This problem is not encountered when using
the mean of the Gaussian core as estimator, since the fit is performed in an interval that ignores
the non-Gaussian tail. For the study of non-linearity and its dependence on material distribution,
the material systematic uncertainties are therefore evaluated by fitting a Gaussian function in the
region [−1σ, 2.5σ] of the mean of each pT/pTruthT distribution (both for cluster and combined), and
evaluating the uncertainty in terms of the difference in the means of the nominal and distorted cases.

The material-related uncertainty is defined as the difference in bins of pTruthT between the nom-
inal geometry and the various distorted schemes. This difference is computed for uncombined
(cluster energy-based) and combined pT. The overall shift between the calibration of the nominal
sample with respect to the distorted samples is absorbed in the re-calibration of the peak. Thus, the
constant difference between the distributions of pClusT /pTruthT (and pComb

T /pTruthT , as well) is trivial,
and is removed by shifting the Monte Carlo-derived peak position. On the contrary, it is important
to assess correctly the non-linear behaviour for the distorted profiles, as compared to the nominal
profiles. This non-linearity is driven by the non-constant shape of the difference and it is quoted as
a systematic uncertainty due to material distortions. Figure 4.29 shows the impact of the various
distortions in the uncombined pT distributions, and Figure 4.30 presents the differences in the com-
bined version. The offset for the functional form, which produces the constant term in the difference,
is defined as the value of the difference for electrons whose pTruthT = 40GeV, and it is subtracted to
remove the calibration-driven linear shift, shown in Figures 4.31 and 4.32. The relative change in
linearity for the uncombined and combined pT, in terms of the G′ distorted geometry, is shown in
Figure 4.33. Note that the combination algorithm improves the non-linearity of the response under
each material distortion, evidenced by the reduction in magnitude of ∆µ(pT/p

Truth
T ) for electrons

with the combined pT.

Uniformity

While the electron energy response can be examined as a function of pTruthT to gauge the linearity,
the response can also be studied relative to ηTruth, denoted the energy uniformity. Electrons are
placed in six |η|-based categories, as listed in Table 4.8 and three pTruthT categories (low, medium
and high pT, with bin edges defined by [6, 15, 30, 80] GeV). The uniformity of the distribution
of pT/pTruthT as a function of |η| is estimated as the difference in bins of η between the nominal
geometry and the various distorted schemes. As in the previous Section, the estimator for the
distribution of (Distorted − Nominal) is the mean of a Gaussian fit to the distribution of pT/pTruthT
(both for combined and uncombined energies) on the interval [−1σ, 2.5σ].

The distributions of ∆µ(pT/p
Truth
T ) for the various distortions (in terms of the combined and

uncombined pT), as well as a direct comparison of the uncombined and combined approaches using
the G′ distorted geometry, are shown in Figures 4.34 and 4.36. The E − p combination leads to
an overall improvement in the uniformity of pT/pTruthT for low and medium pT electrons in the
distorted geometries. As expected, electrons in the crack region show the largest deviation in
uniformity, although as displayed in Figures 4.35, the usage of the E − p combination improves the
non-uniformity by more than ∼ 30%.
Hence, in terms of both electron pT linearity and uniformity, the usage of the algorithm leads to a
reduction in the overall systematic uncertainties associated with material distortions in the ATLAS
detector.
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Figure 4.29: Distributions of (pClusterT /pTruthT )Distorted − (pClusterT /pTruthT )Nominal as a function of pTruthT in
the various |η| regions. The nominal geometry response is compared with the other distorted samples.
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Figure 4.30: Distributions of (pComb
T /pTruthT )Distorted − (pComb

T /pTruthT )Nominal as a function of pTruthT in the
various η regions. The nominal geometry response is compared with the other distorted samples.
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Figure 4.31: Distributions of (pClusterT /pTruthT )Distorted − (pClusterT /pTruthT )Nominal as a function of pTruthT in
the various η regions. The nominal geometry response is compared with G

′
distorted sample and with the

linear and quadratic sum of the various other distortions. The value of each offset is defined relative to the
offset at pTruthT = 40 GeV.
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Figure 4.32: Distributions of the mean of (pComb
T /pTruthT )Distorted − (pComb

T /pTruthT )Nominal. The nominal
geometry response is compared with the G

′
distorted sample (that encompasses the various other distortions)

and the various differences are displayed as a function of the region in η where the combination is applied.

Momentum scale uncertainties from E − p combination

As illustrated in Section 4.3, the invariant mass distributions of J/ψ → ee events are parameterised
and used to derive in situ energy scale factors and provide a cross-check for the baseline extraction
in the Z→ee channel. These energy scale factors, α, are defined, similarly to equation (4.1), in the
following way:

Emeas = Etruth(1 + αi) (4.11)

where Emeas is the measured electron energy, Etruth is the true energy and αi represents the de-
parture from a perfect calibration in a range of pseudorapidity, labelled as i. To evaluate the
effect of introducing track momentum information into the cluster energy measurement, the same
parametrisation process is employed, with the exception that J/ψ candidate invariant masses are
built exclusively using track information. It is found that the resultant J/ψ momentum scale factors
are very small when using the the track-based information (typically < 1% as in Figure 4.37), imply-
ing that the uncertainty on the prompt fraction of the signal sample due to the E − p combination
is expected to be negligible.

4.6 Conclusions

The electron energy calibration exploited in ATLAS has been illustrated in this Chapter using LHC
Run 1 proton-proton collisions data corresponding to a total integrated luminosity of approximately
25 fb−1 at the centre of mass energy of 8 TeV. The calorimeter energy measurement is first opti-
mised using a multivariate-based technique. The calorimeter energy response in data is stable at
the level of 0.05 % as a function of time and pile-up. The local non-uniformities are at the level of
0.5% in the barrel and 0.75% in the end-cap. The residual miscalibration on data and Monte Carlo
is then corrected using Z→ee samples and the data-simulation accuracy improves up to the level
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Figure 4.33: Distributions of (pClusterT /pTruthT )Distorted−(pClusterT /pTruthT )Nominal and (pComb
T /pTruthT )Distorted−

(pComb
T /pTruthT )Nominal as a function of pTruthT in the various η regions. The nominal geometry response is

compared with G
′
distorted sample. The value of the offset (relative to the one where pTruthT = 40 GeV) is

subtracted for each bin.
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Figure 4.34: Distributions of (pClusterT /pTruthT )Distorted − (pClusterT /pTruthT )Nominal as a function of |η| in the
low and medium pT regions. The nominal geometry response is compared with the other distorted samples.
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Figure 4.35: Distributions of (pComb
T /pTruthT )Distorted− (pComb

T /pTruthT )Nominal as a function of |η| in the low
and medium pT regions. The nominal geometry response is compared with the other distorted samples.
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Figure 4.36: Distributions of (pClusterT /pTruthT )Distorted−(pClusterT /pTruthT )Nominal and (pComb
T /pTruthT )Distorted−

(pComb
T /pTruthT )Nominal as a function of |η| in the various pT regions when applying the G

′
geometry distortion.
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of 1%. An orthogonal cross-check on the current calibration has been carried out using J/Ψ →ee
resonances leading to consistent results for what concerns the energy scales and the data - Monte
Carlo agreement.

As the final step of the energy calibration procedure, a likelihood-based electron track and cluster
combination has been derived and validated using the improvement in the invariant mass distribu-
tions of J/ψ, Z → ee, and H → ZZ → 4l decays. This method shows significant improvement in
the width while also decreasing the bremsstrahlung-related tails of each distribution.

Studies of the efficacy of this algorithm were performed on electrons from J/ψ → ee and Z → ee
decays, using both data and Monte Carlo samples. For J/ψ → ee decays, the improvement in
the resolution of the dielectron invariant mass spectrum is approximately 18 − 20%. The order
of improvement in resolution is smaller (2-3%) for Z → ee decays, as the E − p combination is
generally less effective for high pT electrons, such as those emerging from Z boson decays. In the
H → ZZ → 4l channel, the largest gains in resolution are found in the 4e channel, with an im-
provement in resolution of approximately 5%. After having checked the geometry-related systematic
uncertainties, both for the cluster-based energy and the combined momentum, it is observed that
the combined momentum is less prone to material uncertainties in te whole η range, as displayed in
the comparison of cluster-combined responses to geometry distortions.
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Measurement of the Higgs mass in the
H → ZZ → 4l channel
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The final Run1 measurement of the Higgs boson mass in the decay channel H → ZZ →
l+l−l′+l′− where l, l′ = e, µ will be presented in this Chapter. The main features of this channel are
detailed in Section 1.6.

Section 5.1 will introduce the data and the Monte Carlo simulations relative to the Higgs sig-
nal and to the various background components. The event selection, starting from the definition of
the physics objects and the trigger requirements up to the kinematic selection applied on the lepton
candidates will be covered in Sections 5.2.1 and 5.2.2.
In order to enhance the sensitivity of the signal against the dominant qq̄ →ZZ background, a BDT-
based kinematic discriminant (Appendix B) has been deployed: Section 5.3 will be devoted to the
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description of this method while the treatment of the reducible background of the analysis, i.e.
Z+jets is detailed in Section 5.4.
Conclusively, Section 5.6 will give an overview on the main results achieved on the Higgs mass and
signal strength in the four lepton decay channel as well as a digression on the beneficial effects of
the improved electron calibration (Chapter 4) on the mass resolution.

5.1 Data and Monte Carlo samples

Data are collected in 2011 and 2012 from proton-proton collisions with center-of-mass energies of√
s=7 TeV and

√
s=8 TeV respectively. In order to check data integrity, the events are subjected to

quality requirements defining the so-termed Good Run List (GRL). Events collected in runs where
detectors are not fully operative are discarded. As already described in Section 2.1.3, the resulting
integrated luminosity comprising the 2011 and 2012 runs is approximately 4.5 fb−1 at

√
s=7 TeV

and 20.3 fb−1 at
√
s=8 TeV. The H → 4l analysis applies the usual GRL delivered by ATLAS at

the end of each data-taking period.
The signal with the various production mechanisms, the dominant qq̄ →ZZ background and the
reducible components Z+jets and tt̄ Monte Carlo simulations as well as a detailed study on the
theoretical uncertainties affecting each sample have been examined in Sections 1.6.1 and 1.6.2.

5.2 Event selection and analysis

5.2.1 Object definition and triggers menus

The electron and muon candidates fulfil the prescriptions detailed in Section 3.3 and 3.4 for the
identification and the reconstruction. The cut-based identification menu is applied on the 2011
dataset while the likelihood algorithm is used on 2012 candidates. The loose likelihood menu has
been chosen to define the electron identification and replaced the cut-based selection used in pre-
vious publications. The electrons are calibrated according to the procedure explained in Chapter
4 and the track-cluster E − p combination is applied to electron candidates passing the standard
cut-based selection.
Jets are used in the classification of events into VBF-like, VH-like and ggF-like categories. Recon-
struction and identification prescriptions of these objects as well as dedicated correction methods
to calibrate their energy are addressed in Section 3.5.

The triggers for the online selection of four leptons are based on single and dilepton menus. Due
to the increased instantaneous luminosity in 2012, the typical trigger thresholds have been raised.
Besides, specific isolation cuts on the leptons are implemented only for single lepton triggers. This
isolation criterion is applied at the Event Filter level and requires the sum of the pT of the tracks
associated to a lepton (pT >1 GeV) in a cone of size ∆R=0.2 around the track to be less than a
certain percentage (∼ 10-15%) of the lepton pT in order to remove lepton candidates surrounded by
hadronic activity. The trigger efficiency calculated for Monte Carlo simulations generated at

√
s=

8 TeV for a Higgs boson of mH=125 GeV is 98% for the 4µ and the mixed channel while it goes
up to ∼ 100% for the 4e channel. The trigger requirements of the analysis, although their impact
on the efficiency of the event selection is found to be marginal, are executed as the logic OR of the
following conditions:

• one of the leptons matches the single lepton trigger;

• two leptons match the dilepton trigger.
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Table 5.1 shows the trigger menus, both single and dilepton triggers, used for the H → ZZ → 4l
decay channel. The efficiency of a given trigger class is measured using a tag-and-probe technique
illustrated in Section 3.3.3 on Z→ee and Z→ µµ Monte Carlo events. Residual differences between
trigger efficiencies determined in data and Monte Carlo are extrapolated in the pT -η phase space
and used to reweight the typical efficiency exhibited in Monte Carlo in order to match it with data.
The trigger-related systematic uncertainties will be explained in Section 5.5.

Trigger type
√
s=7 TeV

√
s=8 TeV

Single muon pT > 18 GeV pT > 24 GeV
Single electron ET > 22 GeV ET > 24 GeV

Dimuon (symmetric) p
(1,2)
T >10 GeV p

(1,2)
T >13 GeV

Dimuon (asymmetric) added for 2012 data-taking p
(1)
T >18 GeV, p(2)

T >8 GeV
Dielectron E

(1,2)
T >12 GeV E

(1,2)
T >12 GeV

Electron - Muon ET >10 GeV, pT > 6 GeV ET >12 or 24, pT >8 GeV

Table 5.1: Trigger menus used for the H → ZZ → 4l decay channel. 1 and 2 label the first and the second
lepton in the dilepton pair.

5.2.2 Kinematic selection

In order to define the candidate lepton quadruplet for each event, a set of sequential cuts on
kinematic variables are defined. The cutflow is designed to be constituted by two main sub-steps,
explicitly the event preselection and the event selection. The first item deals with requirements on
the object quality; its main aspects are summarised below:

1. Electrons.

• Smearing and calibration are applied to all electrons.

• ET >7 GeV and |η| <2.47 (loose likelihood identification menu applied).

2. Muons.

• Smearing functions are applied to all muons.

• combined or segment-tagged muons with pT >6 GeV and |η| <2.7;
• Maximum one calorimeter-tagged (pT >15 GeV and |η| <0.1) or standalone muon (pT >6

GeV, 2.5< |η| <2.7 and ∆R >0.2 from the closest segment-tagged muon).

The event selection is composed of three sub-levels, kinematic selection, isolation and impact
parameter significance requirements.

1. Kinematic selection.

• Two pairs of same flavour opposite charge leptons (SFOS); the analysis is split in four
final states: 4e, 4µ, 2e2µ and 2µ2e.

• pT threshold for the three leading leptons in the quadruplet set at 20, 15, 10 GeV. The
fourth lepton must fulfil the requirements on the transverse momentum or transverse
energy (pT > 7 GeV for muons and ET >6 GeV for electrons) listed in the previous
block.
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• The leading dilepton pair is defined as the one closer to the PDG Z mass; its invariant
mass is labelled m12 or alternatively mZ1;

• the other pair is the subleading dilepton pair, its mass is addressed as m34 or mZ2.

• Leading dilepton mass requirement: (50< m12 <106) GeV.

• Subleading dilepton mass requirement: m34 > mthreshold, where mthreshold varies as a
function of the total four-lepton invariant mass, m4l. Its value is 12 GeV for m4l <140
GeV and rises linearly to 50 GeV as a function ofm4l in the interval 140-190 GeV. Beyond
190 GeV, the cut is kept constant at 50 GeV. In case more than one quadruplet survive
the kinematic selection, the one with m12 closest to the Z mass is kept; additionally, if
multiple quadruplets have the same m12, the one with the highest m34 is selected.

• The standard selection of the primary vertex is also employed in the analysis: since the
four leptons are originated from the primary vertex of the interaction, the lepton tracks
are required to have a distance |∆z0| <10 mm from the primary vertex of the event along
the proton beam axis.

• In order to reduce the muon cosmic background, an additional cut on the transverse
impact parameter is introduced, |∆d0| <1 mm.

• Overlap removal on e-e: when two electrons share the same ID tracks or are too close
to each other in the η − φ phase-space (∆R <0.10 for the same flavour leptons and
∆R <0.20 for different flavour leptons in the final state), the highest ET candidate is
kept.

• Overlap removal on e-µ: electron and muon candidates (combined or standalone) sharing
the same track are removed. Calorimeter-tagged muons sharing the same track with
electrons are removed.

• Overlap removal on e-jets: jets overlapping with electrons in a ∆R=0.2 cone are dis-
carded.

• Quadruplets whose alternative same-flavour opposite charge dilepton invariant mass is
below 5 GeV are removed to eliminate the J/Ψ→ l+l− contribution (J/Ψ veto).

2. Isolation requirements:

• Lepton track isolation (∆R=0.20):
∑
i pT,i
pT

<0.15;

• Electron calorimeter isolation (∆R=0.20):
∑
i ET,i
ET

<0.20;

• Muon calorimeter isolation (∆R=0.20):
∑
i ET,i
ET

<0.30;

• Electron calorimeter isolation for standalone muons (∆R=0.20):
∑
i ET,i
ET

<0.15.

The normalised track isolation is defined as the sum of the transverse momenta of tracks
in a cone excluding the lepton track itself. Furthermore, the tracks considered in the
sum are of good quality, i.e. they have at least four hits in the pixel detector and sil-
icon strips, in addition to pT > 1 GeV for muons and at least nine silicon hits, one of
them in the b-layer and pT >0.4 GeV for electrons. Secondly, for both the track and
the calorimeter-based isolation, spurious contributions from other leptons of the same
quadruplet are subtracted from the final sum.

3. Impact parameter significance:

• d0
σd0

<6.5 for electrons;
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• d0
σd0

<3.5 for muons.

The reason of this asymmetric behaviour between the electrons and muons regarding the
impact parameter cut is related to the fact that electrons are affected by bremsstrahlung
more than muons and their impact parameter is therefore larger.

The analysis is also sensitive to Higgs production enriched categories (ggF, VBF, VH hadronic and
VH leptonic) characterised by specific cuts on the jet multiplicity of the event and on the kinematic
features of the final state jets. The events are treated with different algorithms according to the
categories they belong to, thence no candidates are discarded by the selection.

The final phase of the event selection is represented by the FSR recovery applied to all lepton
candidates and the usage of the Z-mass constraint. These aspects will be investigated in the follow-
ing Sections 5.2.3 and 5.2.4.

5.2.3 FSR recovery

H → ZZ → 4l decays include instances of low ET photons radiated in the final state (Final State
Radiation, FSR). The Monte Carlo tool modelling this QED radiative process in the Z decay is
PHOTOS; some of the FSR photons can be identified in the detector and incorporated back into
the final state measurement. This procedure enables to recover events having their reconstructed
mass away from the signal region because of the energy depletion produced by the FSR photon.
Two different conditions may arise in the FSR photon reconstruction:

• Collinear FSR [129]: the photons are emitted in a narrow cone around the final state muons
or electrons in the Z decay.

• Non-collinear FSR, far FSR: photons are emitted in a wider area around the final states
particles the photons radiated from.

Collinear FSR recovery is accomplished for muon candidates. The γ search starts from 3×5 cluster
seeds in the Electromagnetic Calorimeter; if more than one possible cluster is found, the cluster with
the highest ET is selected to remove the intrinsic ambiguities associated to the correct matching of
the photon candidates.

Non-collinear FSR recovery is applied for both electrons and muons. Photon candidates are sup-
posed to pass tight requirements on the object quality. Collinear photon instances associated to the
decay of the leading Z boson, both in the electron and muon channels, are searched first. The FSR
correction is applied if (66< mµµ <89) GeV and the µµγ total mass, mµµγ , is below 100 GeV. If no
collinear FSR photons are found, the algorithm on the non-collinear FSR is invoked provided that
the following requirements are satisfied:

• mll <81 GeV and mllγ <100 GeV.

FSR recovery: validation on Z → µµ events

The effect of adding a collinear or a non-collinear FSR photon to the Z invariant mass in the µµ
channel is studied in order to gauge the improvement and validate the method.

A specific selection for this particular case is designed: two opposite-sign combined muons whose
pT > 20 GeV without overlap in a cone of ∆R=0.1 are selected. As stated before, events in the mass
range 66-89 GeV such that the overall invariant mass mµµγ is below 100 GeV are evaluated. Figure

127



CHAPTER 5. MEASUREMENT OF THE HIGGS MASS IN THE H → ZZ → 4L CHANNEL

5.1 (a) illustrates the invariant mass distributions of the Z events before and after the inclusion of
both collinear and non-collinear FSR photons in data and Monte Carlo for all Z events. Data to
Monte Carlo agreement is found on the invariant mass of the µµ(γ) final state. On the contrary,
Figure 5.1 (b) and (c) show the same distributions, with an identified FSR photon for events. The
collinear FSR succeeds in recovering 70% of the FSR photons within the fiducial phase-space. Ap-
proximately 85% of the corrected events are characterised by genuine photons in the final state and
the remaining 15% misidentified photons are produced by pile-up instances and muon energy losses.
The total fraction of corrected events associated to collinear FSR photons in the H → 4l analysis
is ∼ 4%; as for the signal-region (110< m4l <140) GeV, 1 event goes through the FSR correction
procedure.

The non-collinear FSR selection works on ∼ 1% of the total H→ 4l events; in the above-defined
signal-region, 2 events are corrected by the non-collinear FSR algorithm. This search has an effi-
ciency of approximately 60% and a purity of 95%.

In order to gauge the improvement of the FSR method on the Z→ µµ invariant mass resolution,
the parameter:

mreco
Z −mtrue

Z

mreco
Z

=
mreco
Z

mtrue
Z

− 1 (5.1)

is plotted before and after the addition of the collinear and the non-collinear FSR photon in the
Monte Carlo simulation. This approach significantly improves the bulk of the mass resolution as
well as reducing the tails of the uncorrected distributions (Figure 5.2).

FSR recovery: validation on Z → ee events

A dedicated selection is applied to dielectron final states as well: two opposite sign electrons with
ET >10 GeV and |η| <2.47 that are not overlapping in a cone ∆R=0.1 are selected. Moreover,
isolation and impact parameter criteria are applied to electron candidates.

Figure 5.3 (a) indicates the invariant mass distributions with and without the non-collinear FSR
corrections in place for events characterised by a radiated photon in the final state; full consistency
between data and the Monte Carlo response of this parametrisation is observed. The figure of merit
mreco
Z

mtrue
Z
−1 introduced for the previous Section is also drawn here for the electron final state: the usage

of the non-collinear FSR correction improves the dielectron mass resolution as well as the amount
of tails (Figure 5.3 (b)).

5.2.4 Z mass constraint

Given the requirements in Section 5.2.2 concerning the Z boson matching, the first lepton pair, Z1

is predominantly associated with the decay of an on-shell Z boson, hence the Z lineshape properties
and the knowledge of the lepton momenta uncertainties can be exploited to improve the Z1 mass
resolution. The ingredients of this parametrisation are listed below.

i A Z boson with a true mass µ12 given its reconstructed mass m12.

ii Two final state leptons whose true momenta and the reconstructed ones are respectively ptrue
1,2

and preco
1,2 .

The following likelihood function L can be used to model this problem:

L(ptrue
1 ,ptrue

2 ,preco
1 ,preco

2 ) = B(ptrue
1 ,ptrue

2 ) · R1(ptrue
1 ,preco

1 ) · R2(ptrue
2 ,preco

2 ). (5.2)
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Figure 5.1: (a) Invariant mass distribution of Z→ µµ events in data and Monte Carlo before FSR correction
(filled triangles) and after FSR correction (filled circles). The Monte Carlo predictions are illustrated before
and after corrections as well. Both collinear and non-collinear corrections are herein included. The bottom
plot describes the data-to-Monte Carlo ratio for the two configurations. Invariant mass distribution of Z→ µµ
events in data and Monte Carlo before and after collinear (b) and non-collinear (c) FSR correction for events
with a collinear or non-collinear FSR photon identified. The bottom plots delineate the data-to-Monte Carlo
ratio for these two configurations.
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Figure 5.2: Distributions of the mreco
Z

mtrue
Z
− 1 variable for simulated Z→ µµ events before and after collinear

(b), non collinear (b) or both (c) FSR correction in each event where there is an FSR photon instance. The
mean value < m > and the σ of the various distributions are produced with a Gaussian core fit around the
peak.
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Figure 5.3: (a) Invariant mass distribution of Z→ee events in data and Monte Carlo before FSR correction
(filled triangles) and after FSR correction (filled circles). The Monte Carlo predictions are reported before
and after corrections as well. (b) Distributions of the mreco

Z

mtrue
Z
− 1 variable for simulated Z→ee events before

and after non-collinear FSR correction. The mean value < m > and the σ of the various distributions are
computed with a Gaussian core fit around the peak

B is the probability density function (PDF) of the Z true lineshape at the generator level, R1,2 are
the PDFs of the energy/momentum response functions for the two leading leptons. The likelihood
L in the formula (5.2) is maximised for a given event characterised by a reconstructed and true
lepton momenta so that the maximisation procedure will return the most likely reconstructed four-
momenta (Z mass constraint) given the true Z lineshape. Referring to equation (5.2),

• B is modelled with a relativistic Breit-Wigner function, B = BBW (µ1,2|mZ ,Γ) with mean and
width set to the Z boson mass mZ and on the natural Z width, ΓZ .

• R1,2, the lepton energy/momentum response functions, are approximated by a Gaussian dis-
tribution, R1,2 = RGauss(µ1,2|E1,2, σ1,2) with mean set to the measured lepton energies, E1,2,
and variance σ2 set to the squared lepton momentum resolution obtained from Monte Carlo
studies which yields to an uncertainty on the reconstructed m12. However, the lepton energy
response distributions are not exactly gaussian because of the enhanced tails due to photon
radiations mostly affecting electrons. For this reason, a modified parametrisation of the lepton
response distributions written as a sum of three Gaussian component is also introduced in the
analysis. Regarding the Z lineshape contribution in equation (5.2), the true lineshape is not
exactly described by a Breit-Wigner. In order to account for this feature of the Z lineshape
observed in Figure 5.4, the true distribution is smoothed and then the functional form is
worked out and used as PDF in the B component of the likelihood fit.

Figure 5.5 illustrate the distribution of the mass response in the 4e channel for the dielectron pair
and for the m4e invariant mass generated for mH =125 GeV. The response for the unconstrained
mass, the default Z mass constraint and the two configurations described above are highlighted; the
improvement is gauged by the usage of the variable mreco−mtrue

mtrue
.

The Z mass constraint application highlights a clear improvement; since the gain brought by the
two modified PDF parametrisations is negligible compared to the one characterising the default
algorithm, it is decided to apply the Z mass constraint in its initial formulation, e.g. a Breit-Wigner
PDF for the B term and a Gaussian response function for the R1,2 components in equation (5.2).
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Figure 5.4: Distribution of the true leading Z boson mass, µ1,2, in inclusive H → ZZ → 4e events generated
at mH= 125 GeV illustrated at generator level and smoothed.

The mZ1 cut is performed before the Z mass constraint as the Z mass constraint does not se-
lect and it is done on the unconstrained mZ1. The Z mass constraint is modeled in such a way that
it does not over-correct towards the true mZ events that are very far from this true value if their
typical momentum resolution is very bad.

Table 5.2 charts the results of the resolution studies on m4l with and without the Z mass constraint
in place, employing a gaussian core fit around the mean of the distributions. The improvement on
the four-lepton invariant mass resolution is of the order of ∼ 15%.

Channel mno
4l [GeV] myes

4l [GeV] σno4l [GeV] σyes4l [GeV] Outside ± 2σ no Z Outside ± 2σ yes Z
4e 123.75 124.53 2.54 2.30 17% 16%
4µ 124.52 124.89 1.98 1.64 17% 17%
2e2µ 124.18 124.86 2.08 1.76 20% 19%
2µ2e 124.30 124.67 2.30 2.08 16% 16%

Table 5.2: Four lepton invariant mass resolutions estimated from a signal Monte Carlo generated at
mH=125 GeV with and without the Z mass constraint in place. The values refer to a gaussian core fit
around the mean of the distributions.

5.3 Treatment of the ZZ background - BDT kinematic discriminant

The Higgs signal H → ZZ → 4l and the dominant ZZ background of the analysis are characterised
by the same final state produced by a pair of Z boson decaying into leptons. A Boosted Decision Tree
(BDT) multivariate approach is therefore developed to discriminate between the Higgs H→ ZZ →
4l signal and the irreducible qq̄ → ZZ background. The training of this multivariate discriminant
is based on 500 decision trees on the events surviving the kinematic selection detailed in Section
5.2.2 in the mass window (115< m4l <130) GeV. This procedure is limited to the dominant signal
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Figure 5.5: Distributions of the mass response,mreco−mtrue
mtrue

of the leading dielectron pair (a) and the 4-lepton
pair (b) in inclusive H → ZZ → 4e events generated at a Higgs mass MH =125 GeV, The mass response is
illustrated without Z mass constraint, with the standard Z mass constraint using a Gaussian approximation
of the electron energy response, with a Z mass constraint using Gaussian sums for the response function,
finally with a Z mass constraint using the Gaussian-sum response functions and the real generator mZ1

distributions.

production contribution, the gluon-gluon fusion, and to the ZZ background.
The input variables of the analysis are the transverse momentum and pseudorapidity of the ZZ
system, pZZT and ηZZ , and a Matrix Element (ME)-based discriminant, named KD with MAD-
GRAPH [130]:

KD =
logME2

sig

logME2
ZZ
. (5.3)

The equation above comprises the kinematical information of the signal and the ZZ background
where the required input variables are the angular distributions of the leptons as well as the masses
of the two reconstructed Z bosons, mZ1 and mZ2. The distributions of these variables for the Higgs
signal and the ZZ background in the training mass window of the BDT (115< m4l <130) GeV are
reported in Figure 5.6 (a) whilst Figure 5.7 testifies that no over-training is found when comparing
the training and test distributions of the output BDT.

The improvement brought by the usage of pT and η in the ZZ mass frame is visible in the ROC curve
of the background rejection vs the signal efficiency in Figure 5.8 (a). The background separation
achieved by the BDT configuration for a given signal efficiency is larger by an approximate factor
10-15% than the one of the KD-only approach.

The BDT output is used in the analysis as input to a 2-dimensional fit with the four-lepton mass,
m4l (Section 5.7.4). However, a set of cut-based studies on the BDT variables are done as a cross-
check of the baseline shape approach illustrated in Section 5.6. For each BDT cut, the number of
expected events for signal (S) and background (B) is provided and the asymptotic significance is
worked out as a function of the BDT cut applied to the samples. The employed asymptotic formula,

133



CHAPTER 5. MEASUREMENT OF THE HIGGS MASS IN THE H → ZZ → 4L CHANNEL

f(S,B) is:

f(S,B) =

√
2 ·
[
(S +B) ·

(
1 +

S

B

)
− S

]
(5.4)

and is plotted in Figure 5.8 (b) as a function of the BDT cut for events in the interval (119.5<m4l <129.5)
GeV. The proof of this formula [131] is sketched in Appendix D. The cut on the BDT discriminant
that maximises the significance of the gluon-initiated Higgs signal generated at mH=124.5 GeV over
the qq̄ → ZZ background in the SM hypothesis (µ=1) is found to be at BDT>0 corresponding to
an expected significance of ∼ 4.2σ.

5.4 Treatment of the reducible background

The reducible backgrounds [132] of the analysis are represented by the Z+jets and the tt̄-related
final states. The treatment of these backgrounds is based on the definition of kinematic regions
where the signal contribution is suppressed (control regions, CR) created by relaxing or inverting
some analysis requirements, such as the impact parameter significance or the lepton identification
and reconstruction criteria. From these regions, the expected background in the signal regions (SR)
is calculated by applying transfer factors that are specifically associated to each control region.
These transfer factors are determined on the efficiency of the relaxed or inverted selection criteria
for a certain control region or by the ratio of the expected yields between control and signal regions.

Two broad categories have been introduced in the analysis: Z + µµ (Z boson candidates and low
pT leptons coming from heavy flavours) and Z + ee (Z bosons accompanied by jets misidentified as
electrons).

5.4.1 Z + µµ category

The three main sub-components of the Z + µµ category are:

• Zbb̄: a Z boson is reconstructed in association with soft pT leptons coming from heavy quark
(heavy flavour) semileptonic decays.

• Z+light jets: a Z boson is reconstructed with π and K in-flight decays within light flavour
jets.

• tt̄: present whenever the final state leptons of the semileptonic decay produce fake Z bosons.

Different control regions are exploited in order to deal with these different background components.
Each of them is designed to enrich a specific background component by minimising the spurious
leakage of the signal contribution. The standard selection is always applied on the leading lepton
pair.

i Same Sign CR. The standard four-lepton analysis selection is applied on the first lepton pair
while the subleading lepton pair does not have impact parameter and isolation selections applied.
Moreover, the leptons are required to have the same charge. This control region is not dominated
by any specific background among the ones mentioned above.

ii eµ + µµ CR. In this control region, mostly dominated by the tt̄ term, the standard selection
is applied on the leading pair with an additional requirement on the first lepton pair to be
of different flavour. As for the subleading pair, neither the impact parameter nor the isolation
requirements are present and both same and opposite charged leptons are kept in the parametri-
sation.

134



5.4. TREATMENT OF THE REDUCIBLE BACKGROUND

 [GeV]l4
T

p
0 50 100 150 200 250 300 350

 / 
10

 G
eV

l4 T
1/

N
 d

N
/d

p

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
ATLAS Simulation

l4ZZ*H
-1Ldt = 4.5 fb = 7 TeV  s

-1Ldt = 20.3 fb = 8 TeV  s

=125 GeV)
H

ggF (m

ZZ*

(a)

l4
-8 -6 -4 -2 0 2 4 6 8

 / 
0.

5
l4

1/
N

 d
N

/d

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14 ATLAS Simulation

l4ZZ*H
-1Ldt = 4.5 fb = 7 TeV  s

-1Ldt = 20.3 fb = 8 TeV  s

=125 GeV)
H

ggF (m

ZZ*

(b)

 outputZZ*D
-6 -4 -2 0 2 4 6 8

 o
ut

pu
t /

 0
.5

ZZ
*

1/
N

 d
N

/d
D

0

0.05

0.1

0.15

0.2

0.25
ATLAS Simulation

l4ZZ*H
-1Ldt = 4.5 fb = 7 TeV  s

-1Ldt = 20.3 fb = 8 TeV  s

=125 GeV)
H

ggF (m

ZZ*

(c)

Figure 5.6: Input variables, ηZZ , pZZT and the KD distributions for the Higgs signal and the dominant
qq̄ → ZZ samples after the standard cutflow in the mass range (115< m4l <130) GeV used for the training
of the BDT discriminant.
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Figure 5.8: (a) Background rejection versus signal efficiency curves (ROC) using KD discriminant and the
BDT-based approach. (b) Figure of merit determined to estimate the significance for different BDT cuts for
the SM hypothesis, µ=1. The best BDT cut that maximises the figure of merit is found at 0.
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iii Inverted d0 CR. This control region is enriched in heavy flavour from Zbb̄ and tt̄ decays. Indeed,
leptons from b-quarks are produced in a displaced vertex, hence the impact parameter d0 is a
good variable to discriminate them. Therefore, the subleading lepton pair is submitted to the
inverted d0 requirement; in addition isolation criteria are not applied.

iv Inverted isolation CR. This control region, designed to be enriched in Z+light jets components
(π and K in-flight decays) over the general Zbb̄ component is exploited by inverting the isolation
requirements for at least one lepton in the subleading pair while the first pair keeps the standard
selection.

Various methods have been tried out to extract the final yields in the signal regions starting from
the above CRs. In the baseline method, the four CRs are simultaneously fit to minimise statistical
uncertainties. The other methods are used as internal consistency checks and developed in parallel
with the simultaneous fit.

In the CRs, the observable is the mass of the leading dilepton, m12, peaking at the Z mass for
the resonant components of the reducible backgrounds (Zbb̄ and tt̄) and with a broad distribution
for the non- resonant tt̄ component.

First, the data-to-Monte Carlo agreement is tested and is found to be fairly good as reported
in Figure 5.9 for two example control regions, i.e. inverted d0 significance CR, and same-sign CR.
Second, a global unbinned maximum likelihood fit is performed on m12 for the four control regions
at the same time: the tt̄-based m12 shape, provided from the tt̄-enriched CR, is modelled by a 2nd

order Chebychev polynomial, whereas the Zbb̄ and Z+light jets mass distributions are fitted with
a convolution of a Crystal Ball and a Breit-Wigner that accounts for the Z lineshape component.
The shape parameters of the fitting functions are determined from the Monte Carlo simulation.
The estimated yields derived in the fit for each CR are extrapolated to the signal region by calcu-
lating the selection efficiency ε = Nall

Nrelaxed
where Nall is the number of muons passing all the analysis

criteria in a control region and Nrelaxed is the number of muons surviving the relaxed selection
specific of that given CR. This term is calculated for each muon, however the total transfer factor
is assessed on a per-event basis by combining the different efficiency terms for the muons in the
subleading pair. This factor is then multiplied by the yields in the CR to estimate the number of
events in the signal region. In this way, the expected Z + µµ background yields are evaluated in
the signal region.

The systematic uncertainties mostly stemming form the statistical size of the simulated samples
are 6% in the Zbb̄ component, 60% for the Z+light jets, and 16% for the tt̄. The results of the
fit are checked with data in the control regions and the good agreement of the parametrisation is
found in Figure 5.10 where all the four control region components are superimposed in plot.

5.4.2 Z + ee category

For the Z + ee final state, the dominant reducible background comes from Z+light jets events. The
electrons in the final state can be originated by jets faking electrons or photons produced by π0

decays. The control regions of this analysis are built by relaxing or inverting the quality parameters
on the electrons, X:

i CR 3l + X. The identification criteria are relaxed only for the low pT electron in the subleading
pair.

ii CR Z+ XX. The identification requirements are relaxed for both electrons composing the sub-
leading Z pair.

137



CHAPTER 5. MEASUREMENT OF THE HIGGS MASS IN THE H → ZZ → 4L CHANNEL

 (GeV)12M
50 60 70 80 90 100

Ev
en

ts
/4

G
eV

0

10

20

30

40

50

60

70

80
ATLAS Internal

 = 8 TeVs, -1 L=20.3fb
Data

tt 
ZZ
Z+LightJets
Zbb
WZ

(a)

 (GeV)12M
50 60 70 80 90 100

Ev
en

ts
/4

G
eV

0

10

20

30

40

50

60

70

80
ATLAS Internal

 = 8 TeVs, -1 L=20.3fb

Data
tt 

ZZ
Z+LightJets
Zbb
WZ

(b)

Figure 5.9: m12 distributions from Monte Carlo simulation normalised to the theoretical cross section for
the inverted d0 CR (a) and the same-sign CR (b). The various background contributions are superimposed
in the plot..

The 3l + X method is the baseline approach for the Z + ee background estimation. It uses data
control regions with one relaxed low pT electron in the subleading pair. Loose requirements on the
probed electron of the subleading pair are used, e.g. the electron identification and isolation cuts
as well as the impact parameter significance requirements are not applied.

The background components in this control region are evaluated using reconstruction-based elec-
tron categories according to which electron candidates are deemed as real electrons or fake. This
approach is associated to the usage of several variables that define the object electron (Chapter 3)
employed to reduce fake contamination. For instance, it is requested that tracks fulfil the b-layer
requirement to reduce the amount of photon conversions. Another requirement is the number of
high-threshold hits in the TRT to suppress hadron fakes. Candidates which do not pass the electron
reconstruction are deemed as fakes.

Templates are created from the distributions of the B layer hits and the number of high-threshold
hits in the TRT (Figure 5.11) and the yields of each component, light flavour jets (f), photon con-
versions (γ) and heavy flavour semileptonic decay (q) are extracted from the fit on data in the
control region. Subsequently, in analogy with the muon case, the efficiency factors are calculated
for each electron and the transverse factors are employed to extrapolate the yields of this reducible
background in the signal region. The systematic uncertainty on the model is dominated by this
efficiency method and it corresponds to 30%, 20% and 25% for the f, γ, q cases respectively.
The contribution of remaining contaminations derived from WZ and ZZ are estimated from Monte
Carlo and found to be negligible.
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Figure 5.10: Simultaneous fit to data at
√
s=8 TeV using the m12 variable in the various control regions

of the Z +µµ analysis, namely inverted d0 significance (a), inverted isolation (b), same-sign (c) and eµ+µµ
CR (d) .
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Figure 5.11: Fit to the number of b-layer hits and the TRT ratio of the number of high threshold to low
threshold TRT hits for the background components in the 3l+X control region. The source of background
electrons are denoted as: light flavour jets faking an electron (f), photon conversion (γ) and electrons from
heavy flavour quark semileptonic decays (q).

5.5 Systematic uncertainties

The systematic uncertainties are determined by comparing the nominal event yield with the one
obtained after having modified relevant quantities by applying weights on Monte Carlo. The sys-
tematic uncertainty on the energy for electrons or momentum for muons (scale or resolution) is
calculating by shifting the energy or momentum by a scale factor prior to selecting data events and
by observing the impact of this shift in the number of events after the selection. The shifting proce-
dure is effective for a nominal scale value, labelled α, and scaling values far from the nominal value
of a factor 1σ, explicitly α+1σ and α-1σ. The same procedure applies to the resolution (smearing).
Systematics are implemented in the fit as nuisance parameters: most of them carry a negligible
effect on the final results and are therefore removed (pruned) from the fit.

The tested systematics comprised in the model are reported below.

• Electron reconstruction and identification. These systematics uncertainties on the signal Monte
Carlo generated at mH=125 GeV modify the m4l yields by factors 4.36% in the 4e channel,
1.67% in the 2e2µ channel and 3.29% in the 2µ2e final state.

• Muon reconstruction and identification. There is a single nuisance parameter for the uncer-
tainty on the muon reconstruction and identification. The yield-related uncertainties for the
Higgs mass at 125 GeV are 1.86%, 0.77%, 1.09% in the 4µ, 2µ2e, 2e2µ final states.

• Trigger efficiency. As already mentioned in Section 5.2.1, the trigger efficiency of this final
state due to the presence of high pT leptons is very high. The systematic uncertainty on this
trigger efficiency is given by the number of events that pass all the selection criteria with and
without trigger requirements. This value is less than 0.7% on the final m4l yields both for the
electron and the muon triggers.
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• Lepton energy scale and resolutions. The m4l mass is extracted with the nominal energy
scale and resolution of the physics objects, electron and muons, in the final state. In order to
compute the energy scale and the resolution systematic uncertainties, the four lepton invariant
mass is produced with the modified energy scale and resolution by +1σ (up) or -1σ (down).
Hence, two other mass templates are created, mup

4l and , mdown
4l . The difference of the mean

between the up/down variations and the nominal sample is extracted to compute the energy
scale and resolution systematic uncertainties. The procedure is carried out for electrons and
muons separately. Furthermore, since the analysis make use of collinear or non-collinear
photons in the FSR recovery (Section 5.2.3) specific nuisance parameters associated to photons
are also introduced.
Total systematic uncertainties induced by electron energy scale and resolution for a Monte
Carlo signal sample at mH=125 GeV account for 0.06% in the 4e channel and 0.03%, 0.04%
in the 2e2µ and 2µ2e final states respectively. As for muons, the impact of the energy scale
and resolution systematics on the difference between the nominal and the modified means of
the distributions is of the order of 0.02%.

• Luminosity. The normalisation uncertainty on the luminosity determination is 1.8% and 2.8%
for data collected at

√
s=7 TeV and

√
s=8 TeV.

• Theory uncertainties on the signal model. The theoretical uncertainties related to the signal
parametrisation are addressed in Section 1.6.1: the QCD scale uncertainties at mH=125 GeV
account for ∼ 7% for the ggF process, 1% for the VBF and VH productions and +4%, -9% for
the tt̄ production mechanism. The uncertainty on the parton density functions and the strong
coupling constant are of the order of 8% for the gluon-initiated and 3% for the quark-based
processes.

• Theory uncertainties on the background model. Theoretical uncertainties on the qq̄ and gg-
related ZZ background model are found in Section 1.6.2. The quark (gluon)-initiated processes
have a PDF and a QCD scale uncertainty of approximately 4% (8%) and 5% (25%).

• pT and η-related systematics. These two variables are used as input observables in the BDT
training, hence it is essential to assess the theoretical uncertainties affecting them in order to
estimate their impact on the BDT shape.

The Higgs transverse momentum is sensitive to QCD scale uncertainties (factorisation, resum-
mation and renormalisation scales) while the Higgs pseudorapidity depends on the PDF un-
certainties. The scales µR, µF and µQ are varied around their central value set at µF=µR=mH

and µQ=mH
2 . This study has been performed using the HRES generator for a Higgs boson

generated with gluon-gluon fusion at mH=125 GeV. The largest up/down deviation to the
scale is reached for µF=2 ·mH and µR = 2 ·mH and µF=0.5 ·mH and µR = 0.5 ·mH .

The scale variations are computed by normalising to unity the up (or down) variations with
respect to the nominal case, so to account for shape-related systematic uncertainties as in
Figure 5.12 (a). The systematic uncertainties on η [58] are extracted by fixing the PDF set of
the analysis to CT10 and by varying its eigenvector error set. The up and down contributions
are illustrated in Figure 5.13 (a).

The impact of the pT on the BDT shape is reported in Figure 5.12 (b); while the shape
variations due to the presence of the PDF uncertainties affecting the Higgs pseudorapidity
lead to negligible shape variations in the BDT, Figure 5.13 (b). In order to gauge the im-
pact of the BDT up/down variations provoked by the pT -related systematics, the nominal 2D
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Figure 5.12: Ratio of the normalised pT distributions with the various up/down variations with respect to
the central value of the relevant scales using HRES at mH=125 GeV. (c) Variation of the signal BDT shape
for ± 1σ associated to the pT -related systematic uncertainties.

fit and the 1-dimensional approach are repeated for three configurations, e.g. BDT nominal,
BDT up and BDT down. The measured effect on the best mH fit for Asimov data at mH=125
GeV is less than 0.01% while the impact on the measured µ fitted on the same dataset is ap-
proximately 0.1%. Due to the small impact of these systematics in the model, it was decided
not to include them in the final nuisance parameter list.

5.6 Results in the H → ZZ → 4l channel

5.6.1 Expected and observed yields in 2011+2012 analyses and control plots

This Section will take into account the data-Monte Carlo comparison of the main variables of the
analysis in the 2011 and 2012 data-taking period. The kinematic selection (Section 5.2.2) is applied
on 4.5 fb−1 events at

√
s=7 TeV and 20.3 fb−1 events at

√
s=8 TeV. The signal region of the analysis

is defined in the interval (110< m4l <140) GeV, whereas the sidebands are associated to events such
that m4l <110 GeV or m4l >140 GeV. The low mass is referred to m4l <160 GeV and m4l >160
GeV defines the high mass region.

Tables 5.3 and 5.4 chart the observed number of events and the final estimate for the expected
background in the low and high mass regions for the

√
s=7 TeV and

√
s=8 TeV analyses. The

expected signal events are also extracted for various Higgs mass hypotheses as well as the corre-
sponding total systematic uncertainties (Section 5.5) for signal and background. Tables 5.5 and 5.6
chart the number of expected signal Higgs with a generated mass of mH=125 GeV and background
events together with the number of events observed in data in the full 2011+2012 statistics when
considering the signal region (110< m4l <140) GeV and a tighter sector around the Higgs peak, i.e.
(120< m4l <130) GeV respectively.
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Figure 5.13: Normalised Higgs η distribution with up and down variations due to PDF uncertainties. (b)
Variation of the signal BDT shape when including ± 1σ up/down variations on the η-related systematic
uncertainties.

As already mentioned in Section 4.5.3, a detailed study on the impact of the E-p combination
algorithm on data candidates was pursued in the signal region as well as in the upper and lower
sidebands. The previous data distribution this investigation is comparing to is detailed in [122]
(Moriond 2013 analysis) where the E-p combination algorithm for electrons was not yet in place.
In the signal region, thanks to the usage of the track-cluster combination that modifies the electron
momenta, one candidate does not pass the selection any longer and four new Higgs-like events are
now accepted. For what regards the investigation on the sidebands, the good behaviour of the
algorithm is testified by the plot reported in Figure 4.27.

The remaining part of this Section will be devoted to providing the distributions of the variables
of interest in the analysis. Figures 5.14 reports the invariant mass of the inclusive four-lepton final
state for the full statistics generated at

√
s=7 TeV and

√
s=8 TeV in the mass region between

80 GeV and 160 GeV and in the full range up to m4l=600 GeV. The background expectation is
compared to the signal at mH=125 GeV with the measured on-shell signal strength (Section 5.7.4),
µ=1.51, and to the reducible background. The systematic uncertainties described in Section 5.5 on
the irreducible ZZ background are drawn as hatched grey lines. The corresponding plots for the
various decay channels can be found in Appendix E.
A clear peak corresponding to the Higgs signal on the continuum background is seen aroundmH=125
GeV; the observed significance of this excess is ∼ 8.2σ as demonstrated by the local p0-value [133]
in Figure 5.15 representing the excess relative to the background-only hypothesis (Appendix C.2).
This statistical evaluation has been obtained under the asymptotic assumption (Appendix C.3) and
the p0 value is scanned as a function of the Higgs mass, mH .

Another observable of the analysis is the BDT output whose distribution is illustrated in Fig-
ure 5.16 in the m4l region 110-140 GeV and 120-130 GeV. The m12 and m34 responses in the signal
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region 110-140 GeV as well as the Higgs transverse momentum and its pseudorapidity in the same
mass window can be found in Figures E.3 and E.4 respectively.

Conclusively, two-dimensional maps of m4l vs m12 and BDT vs m4l before the application of
the Z mass constraint kinematic fit are shown in Figure 5.17 for the full 2011+2012 data sample.
The expected Higgs distribution produced for mH=125 GeV and the total ZZ background are also
superimposed in the plots. Figure 5.17 (a) displays the m12 vs m4l 2-dimensional map. The signal
Monte Carlo in Figure 5.17 (b) clusters in the region where the BDT score is very high by con-
struction of the algorithm. Besides, an excess of events in data with high BDT output is noted for
values of the four-lepton invariant mass close to 125 GeV, consistent with the signal hypothesis at
that mass.

4µ eeµµ 4e
Low mass High mass Low mass High mass Low mass High mass

ZZ 5.27±0.26 16.98±1.26 4.39±0.24 25.71±1.91 2.02±0.13 9.85±0.77
Z, Zbb̄, and tt̄ 0.43±0.19 0.17±0.07 2.32±0.57 1.16±0.28 2.16±0.45 1.13±0.24

Total Background 5.70±0.32 17.15±1.26 6.71±0.64 26.87±1.94 4.18±0.47 10.98±0.81
Data 11.00 23.00 7.00 24.00 4.00 14.00

mH = 125 GeV 1.00±0.10 1.16±0.11 0.46±0.05
mH = 130 GeV 1.55±0.14 1.89±0.18 0.72±0.07
mH = 123 GeV 0.80±0.08 0.93±0.09 0.35±0.04

Table 5.3: Observed number of events and estimate for the expected background, separated into low mass
(m4l <160 GeV) and high mass (m4l >160 GeV) regions presented for the

√
s=7 TeV analysis. The expected

signal events are determined for various Higgs boson mass hypotheses. For signal and background estimates,
the corresponding total systematic uncertainty is specified as well.

4µ eeµµ 4e
Low mass High mass Low mass High mass Low mass High mass

ZZ 27.58±1.37 95.00±7.06 23.43±1.28 145.25±10.85 11.20±0.74 56.42±4.44
Z, Zbb̄, and tt̄ 2.90±0.53 1.14±0.21 4.44±0.87 1.98±0.40 1.89±0.40 0.99±0.21

Total Background 30.49±1.47 96.13±7.07 27.86±1.55 147.23±10.85 13.10±0.84 57.41±4.44
Data 42.00 95.00 38.00 174.00 23.00 56.00

mH = 125 GeV 5.80±0.57 6.99±0.70 2.79±0.29
mH = 130 GeV 8.85±0.85 11.31±1.10 4.43±0.45
mH = 123 GeV 4.61±0.46 5.52±0.55 2.24±0.23

Table 5.4: Observed number of events and estimate of the expected background, separated into low mass
(m4l <160 GeV) and high mass (m4l >160 GeV) regions presented for the

√
s=8 TeV analysis. The expected

signal events are also shown for various Higgs boson mass hypotheses. For signal and background estimates,
the corresponding total systematic uncertainty is provided as well.

5.6.2 Effects of the improved electron calibration

In order to extract the impact of the new electron energy calibration detailed in Chapter 4, the
Higgs boson lineshape has been compared with the results using the Moriond 2013 analysis [122].
The benefits on the muon momentum scales are much smaller than the ones introduced by the new
electron calibration and are not herein discussed.
The three main aspects regarding the electron calibration that have been revisited are:
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signal ZZ Z+jets, tt̄ Expected Observed
4µ 6.65±0.66 7.75±0.38 2.04±0.34 16.45±0.84 22

2µ2e 3.48±0.35 3.78±0.23 2.03±0.33 9.28±0.54 11
2e2µ 4.48±0.44 5.37±0.26 1.79±0.27 11.64±0.58 15
4e 3.17±0.33 3.40±0.22 2.14±0.32 8.71±0.51 12
all 17.78±1.78 20.29±1.10 8.00±0.89 46.07±2.27 60

Table 5.5: Numbers of expected signal (Higgs boson generated at mH=125 GeV) and background events,
together with the numbers of observed events in the data lying in the interval (110< m4l <140) GeV, for
the
√
s = 8 TeV and

√
s = 7 TeV samples.

signal ZZ Z+jets, tt̄ Expected Observed
4µ 6.20±0.61 2.82±0.14 0.79±0.13 9.81±0.64 14

2µ2e 3.15±0.32 1.38±0.08 0.72±0.12 5.24±0.35 6
2e2µ 4.04±0.40 1.99±0.10 0.69±0.11 6.72±0.42 9
4e 2.77±0.29 1.22±0.08 0.76±0.11 4.75±0.32 8
all 16.15±1.62 7.41±0.40 2.95±0.33 26.51±1.70 37

Table 5.6: Numbers of expected signal (mH=125 GeV) and background events, together with the numbers
of observed events in the data in a window of size (120< m4l <130) GeV around the generated mass at
mH=125GeV for the combined

√
s = 7 TeV and

√
s = 8 TeV data.

1. a new MVA calibration for electrons (Section 4.2);

2. a better understanding of the passive material in front of the calorimeter leading to a gener-
ation of Monte Carlo samples characterised by a more appropriate simulation of the detector
response for electrons;

3. a new combined measurement of the cluster energy with the track momentum (E-p combina-
tion) for electron in the barrel below 30 GeV in ET (Section 4.5).

Tables 5.7 and 5.8 summarise the comparison of the mean value, the resolution and the amount of
events outside the gaussian kernel of the mass distributions in the four lepton channels when apply-
ing a gaussian core fit to the mass histograms produced by the Moriond 2013 analysis (labelled as
2 in the Tables) against the current one (referred as 1), without and with the Z mass constraint in
place. As already indicated in Section 4.5, the E-p combination tool is alternatively applied either

Channel m2 −m1 [GeV] σ2/σ1 events outside ± 2σ1,2

4µ 0.01±0.02 0.99±0.01 -2%
2µ2e 0.35±0.05 0.95±0.02 0
2e2µ 0.25±0.04 0.99±0.01 +5%
4e 0.58±0.06 0.93±0.02 +2%

Table 5.7: Comparison between the Moriond 2013 (labelled as 2) and the current analyses (1) for the four
lepton invariant mass mean value, resolution and percentage of events outside the gaussian kernel of the
distributions estimated from a Monte Carlo sample produced at mH=125 GeV. The Z mass constraint is
not applied on the leading Z boson.
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Figure 5.14: m4l distribution of the selected candidates for
√
s= 7 TeV and

√
s= 8 TeV, compared to the

background expectation in the low mass region, (80< m4l <170) GeV (a) and in the whole mass spectrum
(b) of the analysis. The contribution of the reducible background is also separately drawn as well as the
systematic uncertainties drawn as a hatched grey area.

Channel m2 −m1 [GeV] σ2/σ1 events outside ± 2σ1,2

4µ 0.01±0.02 1.01±0.01 -1%
2µ2e 0.41±0.04 0.95±0.02 0
2e2µ 0.36±0.03 1.04±0.02 +3%
4e 0.82±0.04 0.96±0.02 +1%

Table 5.8: Comparison between the Moriond 2013 (labelled as 2) and the current analysis (1) for the four
lepton invariant mass mean value, resolution and percentage of events outside the gaussian kernel of the
distributions estimated from a Monte Carlo sample produced at mH=125 GeV. The Z mass constraint is
applied on the leading Z boson.

before or after the kinematic selection; observed results on the gain with respect to the cluster-only
measurement are insensitive to the position of the algorithm in the analysis workflow.

In the new analysis configuration, the m4l mass is shifted towards the generated Higgs mass at
mH= 125 GeV. This aspect is more pronounced for the channels with electrons in the subleading
pair because the E-p combination has a larger effect on low ET electrons. The MVA calibration
does play a role in this shift as well: out of the ∼ 580 MeV shift of the 4e channel, ∼ 100 MeV
is due to the E-p combination while the remaining contribution comes from the MVA calibration.
When the Z mass constraint is switched on, the shift of the m4l peak is larger. This is due to the
presence of a broader resolution model utilised to parametrise the B term in equation (5.2) which
pulls the mean of the Z distribution to higher values. The same trend is found in the 2µ2e channel:
the E-p-related mass shift is around 100 MeV and the remaining term (∼ 250 MeV) is produced by
the MVA calibration. In any event, these shifts are well accounted for by the Monte Carlo, hence
they do not affect the Higgs mass determination.
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Figure 5.16: BDT distribution of the selected candidates for
√
s= 7 TeV and

√
s= 8 TeV compared to

the background expectations in the m4l region (110-140) GeV (a) and (120-130) GeV (b). The contribution
of the reducible background is also separately displayed as well as the systematic uncertainties drawn as a
hatched grey area.
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Figure 5.17: Distribution of the m4l vs the m12 invariant mass, before the application of the Z mass
constraint, for the selected candidates in them4l range 80â160 GeV. (b) Distribution of the BDT discriminant
against m4l for the selected candidates in the m4l range 110â140 GeV. Both distributions are extracted for√
s = 7 TeV and

√
s= 8 TeV . The expected distributions for a SM Higgs with mH = 125 GeV (the sizes of

the boxes indicate the relative density) and for the total background (the intensity of the shading indicates
the density) are also presented in the plot.
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Likewise, the resolution improvement is significant in the channel characterised by low ET elec-
trons where the E-p combination algorithm is more powerful and its impact is similar with and
without the presence of the Z mass constraint, within uncertainties. Similarly to the previous point,
the gain brought by the track-cluster combination compared to the cluster-only approach is partially
diluted when the MVA calibration is applied on top of the E-p combination. The new Monte Carlo
simulation also helps in the reduction of the mass resolution.

5.7 Mass and signal strength extraction

The following three methods are exploited to measure the Higgs boson mass and its signal strength
in the four lepton channel.

• A template fit from Monte Carlo distributions of m4l. This approach has been published in
the previous analysis [122] and since the fit is based on one parameter of interest, this method
will be addressed as one-dimensional fit.

• The second approach is characterised by a two dimensional fit m4l vs BDT that enhances
the signal discrimination against the main ZZ background (two-dimensional fit). This is the
baseline method with which the Higgs invariant mass is obtained, whereas the one-dimensional
parametrisation is developed as an internal cross-check.

• The last procedure is described by a fit that takes advantage of the event-by-event knowledge
of the detector resolution (per event error fit). This fit method is the default algorithm for
the direct width measurement published in [132] and it will not be covered in this text.

Signal, irreducible and reducible backgrounds are represented by probability density functions used
in the fit; their modelling will be analysed in the following Sections 5.7.1 and 5.7.2. The invariant
mass interval used in the fit is (110< m4l <140) GeV.

5.7.1 Higgs signal modelling

For the 1D fit, the input PDFs coincide with m4l generated from Monte Carlo events, while for the
2D approach PDFs, both from m4l and BDT values are employed. Figure 5.18 illustrates the signal
shape of the 1D PDF for the Higgs boson signal in the ggF production mode at mH=125 GeV. The
PDFs entering the fit are derived from histograms normalised to unity to predict the shape of the
signal. These PDFs are represented by smoothed templates [134] to reduce the dependence of the
likelihood on statistical fluctuations in the unsmoothed distributions. The amount of smoothing
has been tuned to remove statistical fluctuations of the templates without biasing the distributions.
Another advantage of this approach compared to the direct Monte Carlo histograms is that the
PDF shape can be shifted continuously in m4l - Figure 5.18 exhibits a +2 GeV shift for illustration.
This feature enables to provide a continuous parametrisation as a function of mH and interpolate
the signal shape for each Higgs boson mass as in Figure 5.19 (a) (4µ channel) making use of the
B-spline method [135].

For the ggF and VBF production mechanisms, 11 Monte Carlo samples are available in 1 GeV
steps from mH= 120 to mH=130 GeV. It is also important to test the correct parametrisation
modelled by the interpolation on the signal shape at mH=125 GeV: an interpolated template is
produced making use of all Monte Carlo samples except the one generated at mH=125 GeV. Figure
5.19 (b) indicates (4µ channel) the normalised distribution of the Monte Carlo samples produced
at mH=125 GeV and the interpolated shapes. The plots demonstrate a perfect overlay with the
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inferred shape for 125 GeV and the smoothed Monte Carlo sample generated at mH=125 GeV. This
check has been worked out also for the other channels of the analysis.

5.7.2 Background modelling

The 1D ZZ background template shapes used for the one-dimensional fit are not treated with
smoothing; thus, histograms are used directly in the fit. For the m4l vs BDT 2D fit, due to small
statistics in some bins, it was decided to apply a smoothing to the m4l and the BDT contributions.
One dimensional projection plots for m4l and BDT where the smoothed PDFs are compared to the
input Monte Carlo histograms are found in Figure 5.20.

The reducible background shapes are obtained from the Z+jets and tt̄ Monte Carlo in the ll+µµ
and the ll+ee control regions. As for the previous ZZ component, distributions are smoothed and
included in the fit. Internal closure tests determine the good agreement between the smoothed
PDFs and the histogram templates (Figure 5.21).

5.7.3 One dimensional fit using m4l

The first approach used in the analysis is the m4l-based 1D fit that is kept as a sanity check for the
2D parametrisation that will be explained later in the text (Section 5.7.4).

The signal and background models are described with 1D templates detailed in Sections 5.7.1 and
5.7.2. The fit is performed over the four final state categories, 4e, 4µ, 2e2µ and 2µ2e. The full PDF
of the model, constituted by the signal and the background (irreducible and reducible components)
templates is then fitted to pseudo-data (Asimov datasets) generated for a Higgs boson at mH=125
GeV plus background, as presented in Figure 5.22 (a) and 5.22 (b) for the 4µ and 4e cases.

A closure test on the procedure is the calculation of a likelihood fit employing the signal+background
model described above on Asimov pseudo-data generated for a SM (µ=1) Higgs signal at mH=125
GeV including the background. This validation on m4l and µ, shown in Figure 5.22 (c) and 5.22
(d), confirms that there is no bias as the returned minimum of the likelihood coincides with the
injected value of the mass and signal strength in the Asimov dataset. It is also verified that no
bias is produced when injecting different Higgs masses in the Asimov data. The likelihood curves
evaluated at the 2σ level determine the expected uncertainty on the parameter of interest.

5.7.4 Two dimensional fit

A 2-dimensional fit m4l vs BDT is exploited as the baseline method of the analysis. The implemen-
tation of the second dimension in the fit is achieved by parametrising the signal with a conditional
PDF:

P(m4l, BDT ) = P(m4l|BDT ) · P(BDT ) (5.5)

where P(m4l|BDT ) is the conditional 1D PDF and is modelled by splitting the signal template
into four BDT bins (-1-0.5, -0.5-0, 0-0.5, 1) characterised by a different mass shape in each region.
A step function is then added to retrieve the correct m4l shape and combine them into a single
variable. Equation (5.5) is therefore equivalent to:

P(m4l, BDT ) = P(m4l|BDT ) · P(BDT ) =

(
4∑
i=1

Pn(m4l)θn(BDT )

)
· P(BDT ) (5.6)
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Figure 5.18: Invariant mass distribution of the Higgs signal Monte Carlo simulation generated at mH=125
GeV in the gluon-gluon fusion production mode. The histogram response is represented by the black dots
whereas the (smoothed) PDFs are the solid lines. A +2 GeV shift (dotted blue line) is executed on the
smoothed lineshape for illustration.
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Figure 5.19: Example of the signal shapes (continuous parametrisation in mH) in the 4µ channel for
8 TeV Monte Carlo samples produced in 1 GeV steps between 120 and 130 GeV. The functional integral
comes from Monte Carlo generations for 10 Higgs mass points between 120 and 130 GeV. (b) Distribution
of the signal shapes from a signal Monte Carlo sample (4µ channel) generated at mH=125 GeV and the
interpolated shapes created by the B-spline approach using all available Higgs mass points except the tested
one at mH=125 GeV.
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Figure 5.20: 1-dimensional projection of the ZZ background where m4l (a) and the BDT (b) distributions
are determined as histogram templates or with smoothed PDF for the 4µ channel.
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Figure 5.21: Reducible background distributions in the ll+µµ (a) and ll+ee (b) control regions for the
smoothed PDF templates (black dots) and the input histograms.

where θn(BDT ) is the step function for a given region of the BDT that selects the appropriate mass
shape for a certain BDT score. In this way, the mass template in parenthesis is written as a sum
of 4 different one-dimensional PDFs defined in BDT bins. As for the background, both dominant
irreducible ZZ and reducible, a full 2-dimensional parametrisation is used as already mentioned in
Section 5.7.2.
Figures 5.23 (a) to 5.23 (c) exhibit the distribution of the BDT shapes in the signal region for the
Higgs signal, the reducible and irreducible ZZ backgrounds whilst Figures 5.23 (d) displays the mass
shape for a Higgs signal Monte Carlo in BDT bins.

In analogy with the previous scenario in Section 5.7.3, basic checks are done in order to avert
the presence of possible internal bias in the fit. Results do not demonstrate any bias in the procedure.

The usage of the BDT in the fit brings a 7-8% reduction in mass and signal strength error with
respect to the 1-dimensional approach as observed in Figure 5.24. Likewise, the expected signifi-
cance improves by an approximate factor 24% when adding the BDT output in the fit. As for the
contribution of the new electron calibration and the E-p combination, the mass error is decreased
by a factor 8%.

A series of other cross-checks are done on this procedure before unblinding. A selection of them is
listed below.

• This approach assumes minimal variation of the m4l mass shape inside the same BDT bin. It
was therefore checked that this assumption is valid by comparing the mass distributions for
lower and upper halves of each BDT bin. No shape deviation is observed.

• To investigate the choice of binning used in the method, instead of 4 BDT bins per channel,
the binning scheme on the BDT was modified to 3 (-1-0, 0-0.5, 0.5-1): 0.5% increase is seen
on the expected uncertainty on µ and 1% on the expected uncertainty on mH .

153



CHAPTER 5. MEASUREMENT OF THE HIGGS MASS IN THE H → ZZ → 4L CHANNEL

 [GeV]4lm
115 120 125 130 135 1400

0.2

0.4

0.6

0.8

1 Full p.d.f
H->ZZ->4l
(gg/qq)->ZZ->4l
Reducible Bg.
Asimov Data

InternalATLAS 
µ1D Fit Model, 4

-1Ldt = 20.3 fb
 = 8 TeVs

(a) 4µ

 [GeV]4lm
115 120 125 130 135 1400

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Full p.d.f
H->ZZ->4l
(gg/qq)->ZZ->4l
Reducible Bg.
Asimov Data

InternalATLAS 
1D Fit Model, 4e

-1Ldt = 20.3 fb
 = 8 TeVs

(b) 4e

 [GeV]Hm

-2
ln

0

2

4

6

8

10

12

14

121 123 125 127 129

4e
µ4
µ2e2

2eµ2
Combined
Without systematics

1

2

InternalATLAS 
 = 7 TeVs, -1Ldt = 4.5 fb

 = 8 TeVs, -1Ldt = 20.3 fb

(c)

µSignal Strength 
0 0.5 1 1.5 2 2.5 3 3.5

-2
ln

0

2

4

6

8

10

12

14
4e
µ4
µ2e2

2eµ2
Combined
Without systematics

1

2

InternalATLAS 

 = 8 TeVs, -1Ldt = 20.3 fb

(d)

Figure 5.22: 1D fitting of signal + background model to the Asimov dataset generated for a Higgs boson
at mH=125 GeV + background in the 4µ (a) and 4e (b) categories. Likelihood scan of mH (c) and µ (d) for
1D fit of Asimov dataset generated at mH=125 GeV + background (

√
s=7 TeV and

√
s=8 TeV).
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Figure 5.23: Distributions of the BDT shapes in the signal region (120< m4l <130) GeV for the Higgs
signal generated at mH=125 GeV at

√
s=8 TeV Monte Carlo (a) for the ZZ irreducible (b) and reducible

(c) backgrounds. The 4 different bins of the analysis are presented in different colours. (d) Mass shape for
a Higgs signal as a function of the BDT score.
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Figure 5.24: Likelihood scan of mH (a) and µ (b) for 1D and conditional 2D fits for the combination of
7 and 8 TeV analyses using Asimov datasets generated at a Higgs mass at mH=125 GeV and µ=1 plus the
background contribution.

• Other mass inputs are introduced in the fit and the minimum returned by the likelihood curve
is always compatible with the injected mass value.

After performing all the consistency checks explained above, the 1D and 2D methods are both used
to extract the Higgs mass, mH , and the signal strength µ in data at

√
s=7 TeV and

√
s=8 TeV.

The full set of results in the various decay channel as well as for the combined fit are available in
Table 5.9 for the Higgs boson mass measurement and in Table 5.10 for the on-shell signal strength
determination. The final Higgs mass in the four lepton channel and the on-shell signal strength µ
are:

mH = 124.51± 0.52 (stat)± 0.06 (sys); (5.7)

µH = 1.66± 0.41 (stat)± 0.18 (sys). (5.8)

Figure 5.25 reports the likelihood fit on data to extract the Higgs mass mH (a) and the signal
strength µ (b) in the H → ZZ → 4l channel with and without systematic uncertainties whilst
Figure 5.25 (c) represents the contour plot corresponding to the 68% and 95% uncertainties on mH

vs µ as well as the best fit values.

5.8 Conclusions

This Chapter documents the final Run 1 measurement of the Higgs boson mass and signal strength
in the H → ZZ → 4l decay channel using proton-proton collisions data with an integrated lumi-
nosity of 4.5 fb−1 (

√
s=7 TeV) and 20.3 fb−1 (

√
s=8 TeV). The analysis is performed by using a

kinematic selection on the events. Additionally, both the far and the collinear FSR photons pro-
duced by the final state are recovered and added to the mass measurement. Lastly, a constraint
on the on-shell Z mass enables to achieve a better mass resolution and a BDT-based multivariate
discriminant has been designed to cope with the irreducible ZZ background.
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Figure 5.25: Likelihood scan of mH (a) and µ (b) for the 2D baseline fit on data produced at
√
s= 7 TeV

(4.5 fb−1) and
√
s=8 TeV (20.3 fb−1) where all the various channel contributions are separately displayed.

(c) Contour plot representing the 68% and 95% uncertainties on mH vs µ as well as the best fit from the
parameter of interest mH and µ generated for data recorded with

√
s= 7 TeV (4.5 fb−1),

√
s=8 TeV (20.3

fb−1) and for the combination 2011+2012.
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2011+2012 data 1D No Syst. 2D No Syst. 1D with Syst. 2D with Syst.

4µ 123.94 +0.79
−0.79 124.25 +0.81

−0.84 123.94 +0.79
−0.79 124.25 +0.81

−0.84

2e2µ 124.72 +0.83
−0.85 124.62 +0.86

−0.77 124.72 +0.83
−0.85 124.62 +0.86

−0.77

2µ2e 123.73 +1.71
−2.40 122.49 +1.47

−1.89 123.74 +1.71
−2.39 122.50 +1.46

−1.91

4e 126.64 +1.03
−1.14 126.31 +1.20

−1.18 126.65 +1.03
−1.15 126.32 +1.20

−1.19

Combined 124.63 +0.56
−0.51 124.51 +0.53

−0.51 124.63 +0.56
−0.52 124.51 +0.54

−0.51

Table 5.9: Measured Higgs boson masses in the different final states of the H → ZZ → 4l channel with
the two different methods detailed in Sections 5.7.3 and 5.7.4.

2011+2012 data 1D No Syst. 2D No Syst. 1D with Syst. 2D with Syst.

4µ 1.80 +0.71
−0.58 1.47 +0.66

−0.52 1.79 +0.76
−0.60 1.47 +0.69

−0.53

2e2µ 1.73 +0.84
−0.67 1.82 +0.84

−0.66 1.73 +0.88
−0.68 1.83 +0.88

−0.67

2µ2e 1.88 +1.17
−0.87 2.00 +1.63

−0.91 1.88 +1.22
−0.88 1.99 +1.67

−0.92

4e 1.80 +0.94
−0.71 1.72 +0.95

−0.72 1.80 +0.98
−0.72 1.72 +0.99

−0.73

Combined 1.76 +0.41
−0.36 1.67 +0.40

−0.35 1.76 +0.47
−0.40 1.66 +0.45

−0.38

Table 5.10: Measured signal strengths µ on the different final states of the H → ZZ → 4l channel with
two different methods described in Sections 5.7.3 and 5.7.4 and using the 7+8 TeV dataset.

In the mass range (120< m4l <130) GeV, 37 events have been observed in data (26.5±1.7 ex-
pected). This observation corresponds to a local significance of 8.2σ at the combined [20] ATLAS
measurement Higgs mass mH=125.36±0.41 GeV.

The Higgs mass in the four lepton final state is measured with a 2-dimensional conditional fit
BDT vs m4l. The final Run 1 value of the Higgs boson mass in the H → ZZ → 4l decay channel
is mH =124.51±0.52 GeV and the on-shell signal strength at the best-fitted value is µ=1.66±0.42.
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Unlike Chapter 5 where the Higgs is measured as a new on-shell particle showing up as a peak
on the 4 leptons final state invariant mass, it was recently noted [136] [137] [138] [139] that the high
mass regions of the diboson final states, H→ ZZ and H→ WW, have sensitivity to off-shell Higgs
boson production where this particle acts as a virtual propagator. Its properties, namely the off-
shell signal strength and the associated off-shell Higgs boson couplings, can be therefore determined.

This Chapter presents the analysis [140] and [141]: Section 6.1 will give a theoretical overview
of the physics scenario as well as Section 6.8 while Sections 6.2, 6.3 and 6.4 will cover the Monte
Carlo simulations and the various features regarding the higher order corrections applied to the
generated processes. Section 6.5 will be devoted to the explanation of the analysis strategy in the
4l channel. Sections 6.6 and 6.7 will describe the two multivariate approaches employed in the anal-
ysis, namely the matrix element and the BDT. Section 6.9 will report the systematic uncertainties,
both theoretical and experimental, that are included in the extraction of the off-shell measurement.
Section 6.10 will address the procedure to work out the expected off-shell signal strength using a
cut-based approach as well as a ME or a BDT-based configuration. Lastly, Sections 6.11 and 6.13
will show the observed results in data as well as a combination among the 4l, 2l2ν and the WW
channels.
Results are elaborated for the 4 lepton channel only except that in Section 6.12 where the main
ingredients on the analysis in the 2l2ν and WW channels are briefly presented.

6.1 Theory overview

In the 0-width approximation [136] (on-peak-only contribution) the gluon-initiated Higgs signal
integrated cross section is proportional to the Higgs couplings for production (κ2

prod) and decay
(κ2

decay) divided by the Higgs width, ΓH :

σgg→H→V Von-shell =
κ2
prod,on-shell · κ2

decay,on-shell

ΓH
; (6.1)

On the contrary, the cross section in the off-shell region, where the Higgs boson acts as a propagator,
is independent on the total Higgs width:

σgg→H
∗→V V

off-shell = κ2
prod,off-shellκ

2
decay, off-shell. (6.2)

This proportionality can be expressed as:

µoff-shell =
σgg→H

∗→V V
off-shell

σgg→H
∗→V V

off-shell, SM

= κ2
prod,off-shell · κ2

decay,off-shell (6.3)

where µoff-shell is the off-shell signal strength:

µoff-shell =
σoff-shell

σSMoff-shell
(6.4)

and the off-shell couplings
κ2
prod,off-shell, κ

2
decay,off-shell (6.5)

160



6.1. THEORY OVERVIEW

are associated to gg → H∗ production (κ2
prod,off-shell = κ2

g,off-shell) andH
∗ →VV decay (κ2

decay,off-shell =

κ2
V,off-shell). Due to the statistically limited sensitivity of the current analysis, the off-shell signal

strength and coupling scale factors are assumed in the following to be independent of ŝ in the high-
mass region selected by the analysis.
In contrast, the signal strength for the on-shell process gg → H →VV can be expressed as:

µon−shell =
σgg→H→V Von-shell

σgg→H→V Von-shell, SM

=
κ2
g, on-shell · κ2

V, on-shell

ΓH/ΓSM
H

, (6.6)

where the explicit dependence on the total Higgs width, ΓH , appears in the denominator.
The off-shell Higgs boson signal cannot be treated independently from the gg → VV background,
as sizeable same initial-state negative interference effects appear [136]. The interference term is
proportional to √µoff-shell = κg,off-shell · κV,off-shell.
The dominant gg-initiated processes used in the analysis are listed below:

1. gg → H → ZZ, the signal (S) comprising both the on-shell peak at mH =125.5 GeV and the
off-shell region where the Higgs boson is a propagator;

2. gg → ZZ, the continuum background (B);

3. gg → (H∗) → ZZ, the signal, continuum background and interference contribution, often
labelled as SBI in what follows.

The electroweak production modes are also included in the analysis bearing in mind that pp→
V V + 2j configurations include both VBF-like and VH-like events. The processes are found below:

1. off-shell VBF pp→ H∗ → V V + 2j → 4l +2j signal contribution that is independent on the
Higgs width, ΓH but scales with κ4

V ;

2. VBF-like pp → V V + 2j → 4l +2j background production in a t-channel. As for the first
case, this configuration is independent on the Higgs width, ΓH but scales with κ4

V ;

3. pp → (H∗) → V V + 2j → 4l +2j signal + background + interference (SBI), where the
interference is caused by the same qq̄ initial state of the off-shell VBF signal sample, pp →
H∗ → V V + 2j, and the continuum pp→ ZZ +2j diagram.

4. on-shell VH events where the vector boson V decays into two leptons and the Higgs decays in
two leptons and two jets.

The main background of this analysis is represented by the qq̄ → VV contribution (Section 1.6.2).
Figure 6.1 shows the Feynman diagrams relative to the gg → H(∗) → VV signal (a), the continuum
background gg → VV (b) and the dominant qq̄ background. The Monte Carlo simulations of the
three main samples (VV final states via gluons or in the electroweak production modes as well as
the qq̄ contributions) are analysed in Sections 6.2, 6.3 and 6.4.

The workflow of the analysis is articulated along the following steps:

• an upper limit on the off-shell coupling (µoff-shell) will be derived in the high mass region;

• this upper limit will be interpreted as a constraint on the Higgs boson width (the predicted
SM Higgs width at mH =125.5 GeV is 4.2 MeV) when combining the off-shell results with the
on-shell measurement. This indirect measurement is very accurate if compared to the direct
width measurement (Γdir

H < few GeV) performed on the Higgs boson lineshape.
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Figure 6.1: The leading-order Feynman diagrams for gg → H(∗) → VV signal (a), the continuum gg →
VV background (b), the qq̄ → VV background (c).

The analysis core assumptions

The calculation of the off-shell signal strength relies on the assumption that there is no new physics
modifying the off-shell couplings [142] without varying the SM background expectations. Further,
neither are there sizeable kinematic modifications to the off-shell signal nor new, sizeable signals
in the search region of this analysis unrelated to an enhanced off-shell signal strength [143]. In
conclusion, assuming identical on-shell and off-shell Higgs couplings (κon-shell = κoff-shell), the ratio
of µoff-shell to µon-shell provides a measurement of the total width of the Higgs boson. This assumption
is relevant to the running of the effective couplings κg(ŝ) for the loop-induced gg → process as it is
sensitive to new physics that enters at higher mass scales and could be detected in the high mass
mV V signal region of the analysis.
Wrapping up, the scope of this analysis is to provide a limit on the off-shell signal strength; results
will be given both employing a profile likelihood ratio scan on the parameter of interest µoff-shell
and with a CLs-based approach (Appendix C) as a function of the background-to-signal gg-related
k-factor ratio, RBH∗ =

KH∗gg(mZZ)

KH∗(mZZ) as explained in Section 6.2.1. With the current sensitivity of the
analysis, only an upper limit on the total width can be determined.

6.2 Monte Carlo simulation of the gg-initiated processes

The first step of the analysis is the generation of the Monte Carlo samples [144] [145] for the various
processes involving gluons in the initial state reported in the previous Section. Only LO calculations
are available, hence two LO generators are used, gg2VV [146] and MCFM [147] with PYTHIA 8 [31]
showering.
The Monte Carlo production is based on two independent and consecutive processes, the grid
integration and the event generation.

• The Monte Carlo grid production is a technique exploited by the VEGAS algorithm [148]
for a numerical integration using random numbers: the program chooses points at which the
integral of the function defining the phase-space is evaluated. The typical timescale of the
VEGAS grid generation for the gg2VV process is ∼ 1 week, while for MCFM the integration
is completed in approximately one day. We also checked the integrity and consistency of the
grid production: control plots on the variables of interests of the kinematic phase space (m4l,
mZ1, mZ2, leptons transverse momenta and pseudorapidity,...) are produced and inspected.

• As a second step of the algorithm, the event-generation procedure receives in input the VE-
GAS grid. The format of the event generation output is a text file (Les Houches Event
file, LHE [149]) that comprises the four-momenta of the generated particles. The LHE files
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Figure 6.2: (a) Differential cross sections generated with MCFM for the gg-initiated processes in the 2e2µ
channel at the matrix element level. (b) Comparison of the Higgs signal with the interference contribution.

are consequently treated with parton shower using PYTHIA and output files are created
for preliminary checks. Once the validation is accomplished and the simulation is deemed
as appropriate, the LHEs are sent to the central ATLAS production that implements the
GEANT4-based full simulation [127] reconstruction.

The Higgs mass is chosen to be at mH=125.5 GeV and the QCD renormalisation and factorisation
scales (dynamic scale) are set at mZZ

2 . The parton density functions exploited in the matrix element
calculations are CT10nnlo [150] - appropriate for this LO gg →VV process being part of the NNLO
calculation for pp→VV. The following generation cuts are applied at the grid level both for gg2VV
and MCFM:

• m4l >100 GeV;

• plepT >3 GeV;

• |ηlep| <2.8;

• mZ1,Z2 > 4 GeV.

Figure 6.2 illustrates the m4l distribution for the various gg-related processes in the 2e2µ channel
and the contribution of the signal-background interference. However, final state interference effects
from same lepton flavours are negligible in the high mass region.
Figure 6.3 highlights the comparison between the two independent Monte Carlo productions with
gg2VV and MCFM for the key processes entering the analysis at the matrix element level. These
distributions testify full consistency in shape and cross sections between the two generators.

6.2.1 Higher order QCD corrections to the ZZ mass spectrum

The main issue characterising the gg-related processes is that the available Monte Carlo simulations
employed in the analysis, gg2VV and MCFM, currently match LO calculations. For this reason,
mass-dependent k-factors to higher order accuracy are needed to fulfil a better precision.
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Figure 6.3: Comparison of the m4l distributions between gg2VV and MCFM for the signal process (a),
the background (b) and SBI (c) at the matrix element level.
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i For the signal process, namely gg → H∗ → ZZ, higher order QCD corrections are computed
in [151]: NNLO to LO k-factors are calculated as a function of the diboson invariant mass mZZ .
Figure 6.4 (a) describes the structure of this k-factor as a function of the mass: K(mZZ) is
the full k-factor for gg → H∗ →VV which includes at NLO qg initial states and at NNLO qq
initial states. Kgg(mZZ) represents the k-factor for the gg-induced only initial states, at NLO
and NNLO. The reason of these two distinctive k-factors is that the LO interference calculation
can only be related with the interference on gg initial states. Note that the uncertainty on
Kgg(mZZ) is larger than the one on K(mZZ) because this k-factor comprises the full NNLO
calculation, whereas Kgg(mZZ) is a truncated result, hence its uncertainty is NLO-like. In [151],
the MSTW PDF set is used for the matrix element calculation; however in the Monte Carlo
simulation of the gg-related signal process, another set of PDFs, CT10nnlo, is employed to
ensure consistency with the qq̄ → ZZ generation. Thence, a PDF reweighting is implemented
to modify the k-factors and account for this residual difference.

ii For the background process, gg → ZZ, the full k-factor from LO to NNLO accuracy is not
available. Nevertheless, the effect of NLO and NNLO corrections are addressed in [152] in the
soft-collinear approximation that is suitable for the Higgs production at high mass. According
to the predictions extrapolated in this paper for the WW final state (the same conclusions hold
true in the ZZ final state as well), the QCD radiative corrections are similar for gg → WW to
those for the signal process in addition to a 30% uncertainty when the interference plays a role
in the computation. Herewith, the gluon induced part of the Higgs signal k-factor, Kgg(mZZ),
is also applicable on the gg background and the interference.

iii The uncertainty on the background k-factor is larger than the one on the signal component
because of missing NNLO diagrams in the background computation. The following correlation
scheme of uncertainty is therefore applied:

• the uncertainty on the signal k-factor is treated as correlated to the background k-factor;

• the quadratic difference between the uncertainties on the background and signal k-factors
is also added as uncorrelated only to the background k-factor.

In order to account for the unknown background k-factor, results will be given as a function of the
k-factor ratio between background and signal:

RBH∗ =
KH∗gg(mZZ)

KH∗(mZZ)
. (6.7)

In the analysis, results will be provided under the assumption RBH∗=1 (soft collinear approximation)
and by varying this ratio between 0.5 and 2. Furthermore, this ratio is assumed to be mZZ inde-
pendent because the signal k-factor is almost constant as a function of mZZ . As this inference leads
to large cancellations between the interference and the background, a conservative 30% uncertainty
on the interference term is applied.

6.2.2 Impact of QCD variables in the analysis

Although the events are selected without any specific cut or requirement on the jet multiplicity in
the 4 lepton channel, the kinematic observables used for the selection are correlated with the boost
of the ZZ system. Furthermore, as the gg → ZZ Monte Carlo is a leading-order generator, the
simulation of the kinematics of the ZZ system entirely relies on the PYTHIA 8 parton shower.

The impact of the selection on ZZ-related observables is examined by checking the distribution
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of pZZT and jet multiplicity (Figure 6.5 (a) and 6.5 (b)) for the gg continuum background before
and after the standard analysis cuts, in a window in mZZ equal to (600< mZZ <650) GeV. A fixed
window created to remove the mass dependency is used.

Another point to be investigated is the dependence of the matrix-element based discriminant on
the ZZ-frame kinematics, i.e. the transverse momentum and the jet multiplicity gauged in the same
mass window. In Figure 6.5 (c) and 6.5 (d), these distributions are displayed before and after a
cut on the ME discriminant at -1.5 that approximately coincides with the signal-like region of the
analysis. As no change is visible in the shape comparison in Figure 6.5, the ZZ→ 4l analysis is
regarded as inclusive in QCD observables. For what concerns the 2l2ν decay channel, Figure 6.6
shows the pT (ZZ) and jet multiplicity in the same mZZ window, i.e. (600< mZZ <650) GeV before
and after applying the full kinematic selection. A sizeable modification of the pT (ZZ) and the jet
multiplicity spectra is observed: the ZZ→ 2l2ν analysis is not inclusive in QCD observables and
acceptance systematic uncertainties need to be applied.

Section 6.2.3 will be devoted to the explanation of the acceptance systematics extraction in the
2l2ν channel. This method refers to the first release of the analysis [140]. It relies on the compari-
son of different parton showers and hadronisation options using the gg2VV-based LO matrix. This
treatment is replaced [141] by the procedure documented in Section 6.2.4 where the QCD-related
acceptance systematics are computed from LO processes.

6.2.3 Parton shower validation

Given that no higher order matrix element calculations are available for the gg-initiated processes,
the only way to simulate QCD radiation is through the parton shower [153]. However, as the gener-
ation is done at LO in QCD, there is no clear prescription to evaluate the uncertainty systematics
on the QCD scale. According to the maximum jet pT scale emission characterising the parton show-
ers, two different configurations are exploited, the power shower and the wimpy shower. PYTHIA
8 is tuned as default with the power shower option. The comparison is carried out involving the
following parton shower schemes:

• PYTHIA8 power shower including a matrix element correction on the first jet emission;
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Figure 6.5: Distributions of pZZT (a) and the jet multiplicity (b) for the gg continuum background process
before and after the basic lepton selection cuts in the 4l channel. Distributions of pZZT (b) and the jet
multiplicity (c) for the signal process before and after the ME cut at -1.5. The plots are extracted in the
same ZZ mass range, (600< mZZ <650) GeV.
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Figure 6.6: Distributions of pZZT (a) and the jet multiplicity (b) for the gg continuum background process
before and after the basic lepton selection cuts in the 2l2ν channel.

• PYTHIA8 power shower without a matrix element correction;

• PYTHIA8 wimpy shower without a matrix element correction;

• Herwig [154] in combination with Jimmy [155].

The items above are finally compared to high-mass POWHEG NLO gg → H → ZZ event sample
with a Higgs boson mass generated at mH=380 GeV and a SHERPA+OpenLoops gg → ZZ back-
ground sample using merged 0-jet and 1-jet matrix element calculation.
A second validation concerns the explicit presence of the Higgs as intermediate particle in the
gg2VV event record stored in the LHE file input to PYTHIA 8. This occurrence triggers a special
treatment by the PYTHIA parton shower for leading jet emission based on a gg → H + j matrix
element calculation (first point on the list above) in order to ensure a better NLO-like behaviour.
However, this is not the case for MCFM. To check the impact of this treatment, the parton shower
is repeated after removing the Higgs record from the LHE. Figures 6.7 (a) and 6.7 (b) exhibit the
presence of the matrix element correction on the first jet emission. A significant effect on the Higgs
pT spectrum results in a softer NLO-like distribution in the low pT range and a ∼ 30% change
at high pT (ZZ). On the contrary, no visible effect is seen on the diboson mass. As this difference
could affect the extraction of the probability density function for the interference term, the gg2VV
samples used in the analysis have the Higgs record removed from the LHE file.
The normalised pT (ZZ) distributions, detailed in Figure 6.7 (c) for the sample above in the text
are plotted in the same high ZZ mass range (345< m4l <415) GeV in order to ensure a compatible
mass of the hard interaction system. The fair agreement between the gg2VV PYTHIA distribution
(regardless of the power or wimpy shower configurations) and the one of the pure NLO POWHEG
indicates that PYTHIA showering achieves a good result in the simulation of the real emission com-
ponent of the higher order QCD. However, the closest attempt to reproduce a pure NLO generator
corresponds to Herwig+Jimmy and SHERPA where 0 and 1 jet corrections are included to the LO
matrix element computation.

To conclude, the treatment of the QCD-related acceptance systematics on the gg processes are
determined as follows.
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Figure 6.7: Distribution of pT (ZZ) (a) and m4l (b) for the signal process with Higgs mass generated at
mH=125.5 GeV and continuum background. The signal sample has the Higgs record stored in the LHE and
is therefore treated with a matrix element correction on the first jet emission. (c) Distribution of pT (ZZ)
comparing the NLO generator Powheg showered with PYTHIA8, the LO generator gg2VV + PYTHIA8
(power or wimpy shower), the LO generator gg2VV showered with Jimmy+Herwig and a SHERPA sample
with a matched 0j+1j matrix element. All samples are restricted to the range (345< m4l <415) GeV.
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i As detailed in Section 6.2.2, the 4l analysis is inclusive in QCD observables, hence no acceptance
systematic uncertainties are applied.

ii A non-negligible uncertainty is expected for the 2l2ν channel as explained in Section 6.2.2 and
in Figure 6.6.

iii As the NLO Higgs signal and the matched SHERPA 0 and 1-jet matrix element samples are
similar and can be considered as best estimates for the assessment of the uncertainties on the
QCD effects, the following procedure is applied:

• The gg2VV-based central value of the pT (ZZ) distribution in the 2l2ν channel is re-weighted
to the POWHEG sample.

• Referring to Figure 6.7 (c), the difference between the LO gg2VV sample with PYTHIA8
parton shower in the power shower configuration (analysis default) and the full NLO
POWHEG sample is regarded as the acceptance systematics on the POWHEG-reweighted
pT (ZZ) central value. This is the largest difference, accounting for ∼ 5%, and brackets all
the other tests.

6.2.4 Higher order QCD corrections to the pT and y of the ZZ system

This Section documents the treatment employed in the final version of the paper [141] with regard
to the QCD-related corrections. This procedure superseded the method presented in Section 6.2.3.

Higher order QCD corrections for the gg → ZZ background process are studied using the SHERPA
generator that includes NLO corrections at the matrix element level for the first jet emission in
QCD. For the gg → H∗ → ZZ signal contribution, the POWHEG generator reweighted to HRES
prediction at NNLL is also used.
Figure 6.8 includes validation plots of various comparison of the variables of interest, pT (ZZ) and
y(ZZ), in both on-shell and off-shell mass regions using POWHEG, SHERPA and gg2VV generators
at truth level with no kinematic selection applied on the samples.

• Figures 6.8 (a), (b): comparison among the gg → H∗ → ZZ signal processes generated at
mH=125.5 GeV in the mass range [124,126] GeV for POWHEG, SHERPA and gg2VV;

• Figures 6.8 (c), (d): comparison between the gg → H∗ → ZZ signal off-shell processes gener-
ated at mH=125.5 GeV produced by gg2VV and SHERPA and gg → H∗ → ZZ signal process
(mH=380 GeV) with gg2VV (on-shell) in the region [345,415] GeV;

• Figures 6.8 (e), (f): comparison between the gg → H∗ → ZZ signal off-shell processes gener-
ated at mH=125.5 GeV produced by gg2VV and SHERPA and gg → H∗ → ZZ signal process
(mH=380 GeV) with POWHEG (on-shell) in the region [345,415] GeV;

• Figures 6.8 (g), (h): comparison among the gg → H∗ → ZZ at mH=125.5 GeV, the gg → ZZ
background and the total SBI generated with SHERPA in the mass range [345,415] GeV;

• Figures 6.8 (i), (l): comparison of the three gg2VV contributions (signal, background and
SBI) in the mass region [345,415] GeV.

The errors lines in Figure 6.8 are statistical only. The systematic uncertainties, when appli-
cable, are drawn as shaded band, extracted from scale variations on SHERPA and HRES as de-
scribed in Section 6.9.2. The systematic uncertainties from the HRES are directly applicable here
as the POWHEG generator (Section 1.6.1) is directly reweighted to the HRES prediction to reach
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NNLO+NNLL accuracy.

As highlighted in Figures 6.8 (a) and (b) for what concerns the on-shell and Figures 6.8 (c) and
(d) for the off-shell, the lack of higher QCD determination in gg2VV results in different pT and y
spectra compared to the higher order POWHEG and SHERPA Monte Carlo.
In the high mass region, the off-shell (generated at mH=125.5 GeV) and on-shell (produced at
mH=380 GeV) Higgs productions with gg2VV match fairly well. Figure 6.8 (e) shows that the
differences in pT between SHERPA and gg2VV in the off-shell high mass region are not covered by
the uncertainties assigned to SHERPA. Therefore, as the SHERPA generator has a better treatment
of the first hard jet emission, gg2VV is reweighted to the SHERPA prediction in order to recover
NLO-like accuracy on its central value. As for the rapidity distribution reported in Figure 6.8 (f),
no significant difference between gg2VV and SHERPA is present in the high mass region; thence,
the reweighting procedure on y is not necessary.
Figure 6.8 (g) stresses the fact that the ZZ-transverse momentum of the signal process gg → H∗ →
ZZ differs from the gg → ZZ background process and the SBI unlike the gg2VV generator as
noted in Figure 6.8 (i). This is caused by the presence of the additional matrix element correction
to the first jet emission included in SHERPA that generates a different treatment of signal and
background components, as explained in [156]. This statement has been explicitly validated by
removing the 1-jet matrix element computation in SHERPA; as predicted, Figure 6.9 demonstrates
full compatibility between signal and background.

SHERPA pT reweigthing of gg2VV

Given the intrinsic difference between SHERPA signal and background due to the treatment of
the correction on the first jet emission, Figures 6.8 (g) and Figure 6.9, the reweighting functions
are separately derived for the three different processes, e.g. signal, background and interference.
The main ingredient is the calculation of the ratio SHERPA vs gg2VV in bins of pT for signal,
background and SBI as in Figure 6.10. Likewise, the scaling of the interference term under the
reweighting has also been checked.

The reweighting is derived at truth level using stable leptons after radiations. To check for a
residual pT mass dependency, three m4l regions are designed for the procedure: m4l >220 GeV,
(220-400) GeV and (400-1000) GeV.

The most visible impact of the SHERPA pT reweighting on the analysis resides in a small change in
acceptance of the selection cuts. The assessment of this systematic effect is achieved by comparing
the main kinematic distributions, namely pT , m4l and mZ for signal, background and the total
contribution including the interference before and after the SHERPA-based reweighting. Figure
6.11 (a) provides a closure test on the method: the gg2VV reweighted distribution is in agreement
with the SHERPA prediction. As for m4l (Figure 6.11 (b)) and mZ (Figure 6.11 (c)), the level
of agreement is approximately 4-5% and below 2% in the highly-populated bins respectively. The
post-reweighting validation is also carried out at the final analysis level on the ME-based kinematic
discriminant in Figure 6.11 (d). Given that the transverse momentum information on the ZZ system
is not exploited in the ME-based method, the output distributions are essentially unaffected and
no significant distortions are produced.

Wrapping up, the following scheme is adopted for the evaluation of the QCD corrections in the
analysis.

i The ME-based discriminant is practically insensitive to the SHERPA-reweghting and the m4l

distribution is already scaled to higher orders in QCD with the usage of the k-factors (Section
6.2.1), hence the reweighting is not necessary for the central shape of the 4l channel.
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Figure 6.8: Distributions of pT and y exploiting the configurations specified in Section 6.2.4.
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Figure 6.9: pT (ZZ) distributions of signal generated atmH=125.5 GeV and background in the mass window
[345,415] GeV when generating events with SHERPA and disabling the 1-jet production.

ii As for the 2l2ν final state, mT holds a dependency on pT , thus its shape is reweighted to
SHERPA.

iii The impact of the reweighting on the acceptance is well below 1% for the signal, ∼ 4% for the
background in the 4l final state and around 6% in the 2l2ν decay mode.

iv The acceptance systematic uncertainties associated to the SHERPA-based reweighting are as-
sessed by varying the renormalisation, factorisation and resummation scales in SHERPA (Section
6.9.2). The largest value between the QCD scale variations in SHERPA and 50% of the difference
between SHERPA and gg2VV is assigned as the systematic uncertainty on the method.

6.3 Monte Carlo simulation of the pp→ V V + 2j processes

The following simulations for VV final states in electroweak production modes reported in Section 6.1
are performed. MadGraph5-MCatNLO [130] showered with PYTHIA6 is used as a baseline sample
with PHANTOM [157] for validation. The scales in the two generators are set to mW following
the prescriptions of the LHC Higgs Cross Section Working Group [29] and CTEQ [26] PDF set
is used. These generation cuts are applied at the grid stage both for MadGraph5-MCatNLO and
PHANTOM:

• plepT >3 GeV;

• pjetT >20 GeV;

• |ηlep| <2.8;

• |ηjet| <6.5;

• mjj >10 GeV;
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Figure 6.10: Ratio pSHERPAT /pgg2V VT for signal (a), background (b) and SBI (c) in three mass windows,
m4l >220 GeV, (220<m4l <400) GeV and (400<m4l <1000) GeV.
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Figure 6.11: pT (ZZ) (a), m4l (b), mZ (c) and ME (d) distribution before and after the SHERPA-based
reweighting for the signal. The ratio plots with respect to gg2VV are also indicated.
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Figure 6.12: (a) Differential cross sections for the VBF channel qq̄ → ZZ +2j at the matrix element level
produced with MadGraph5-MCatNLO. (b) Comparison of the qq̄ → Hqq → ZZ +2j signal process and its
interference with the continuum qq̄ → ZZ +2j diagram.

• mll >20 GeV.

Figure 6.12 reports the m4l distributions for the various qq̄ → ZZ+ 2j processes and the inter-
ference between signal and background. Figure 6.13 reproduces for validation purposes the m4l

spectrum comparison in shape and cross section between the two independent Monte Carlo samples
MadGraph5-MCatNLO and PHANTOM for both the continuum and the total samples including
Higgs and interference.

6.4 Monte Carlo simulation of the qq̄ → ZZ process

The qq̄ → ZZ background is simulated with POWHEG. Several details on the specific features used
in the simulation can be found in Section 1.6.2. The theoretical uncertainties related to this process
are summarised below:

• QCD scale systematic uncertainties;

• PDF scale uncertainties;

• electroweak NLO uncertainties.

The first two sources of systematic uncertainties have already been described in Section 1.6.2.
A differential k-factor as a function of mZZ is computed [158] which can be directly applied to
POWHEG NLO qq̄ → ZZ to match NNLO accuracy. This k-factor relies on the calculation of the
NNLO qq̄ → ZZ process leading to a 6-8% increase in the qq̄ → ZZ cross section in the high mass
region. The k-factor is produced for discrete mZZ mass points: the fitting function (Figure 6.14)
for the mZZ-dependent k-factor is parametrised as follows:

K(mZZ) = 1.0113 + 0.000310203 ·mZZ − 9.2014 · 10−8(mZZ/GeV )2. (6.8)
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Figure 6.13: Comparison of the m4l distributions between MadGraph5-MCatNLO and PHANTOM for
the SBI (a) and the continuum background (b) processes at the matrix element level.
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CHAPTER 6. OFF-SHELL HIGGS COUPLINGS AND WIDTH MEASUREMENTS USING DIBOSON EVENTS

6.4.1 Electroweak NLO corrections

Higher order NLO electroweak corrections are not taken into account by POWHEG but are calcu-
lated in [159] [160] and found to be sizeable in the high VV mass region. The partonic production
qq̄ → ZZ is at lowest order O(α2). To allow for consistent predictions with full O(α3) accuracy, vir-
tual electroweak corrections as well as real corrections due to photon radiation have to be considered
(Figure 6.15). On the other hand, the complete evaluation of the combined QCD and electroweak
corrections, ααs, is presently unavailable, hence this Section will be devoted to the computation of
the EW term only. Worth remarking is that these contributions are not fully NNLO electroweak
because they only account for virtual corrections. These corrections are added in the analysis by

Figure 6.15: Examples of Feynman diagram for electroweak processes.

reweighting events generated with the POWHEG sample based on the particular kinematic of the
diboson system. The corrections are only applicable above the diboson production threshold with
both the vector bosons being on-shell. Since the analysis does not require a rigorous cut defining
the diboson on-shell allowed kinematic region, corrections are applied to events with their first Z
pair satisfying |mll−mPDG

Z | <25 GeV. Anyhow, the events with off-shell bosons amount to ∼ 0.02%
of the total.
A complication in the domain of the EW corrections applicability is the large theoretical uncertainty
in the calculation in presence of high-QCD activity. In this topology, an additional systematic un-
certainty is considered as the (NLO QCD) × (NLO EW) corrections are still unknown [159]. As for
events with low QCD activity, the weights are applied without the additional uncertainty. In order
to select the two QCD regions, the variable [161] ρ is defined as:

ρ =

(
|
∑

i
~li,T + ~pmissT |

)
(∑

i |~li,T |+ |~pmissT |
) (6.9)

The definition (6.9) is adopted in order to make sure that the gauge-boson pairs or their decay
products, the four leptons in the final state, are not produced with too much transverse momentum
originated from the recoil against a system of strongly interacting particles. The index i in the
sum runs to 2, 3 and 4. An additional assumption is made on the missing transverse momentum
of the event: it solely stems from neutrinos originated from W decays. The numerator of (6.9)
is small whenever the system has a small transverse momentum provided that the leptons recoil
against each other in the transverse plane, thence, no extra QCD activity is detected. The term
in the denominator works as a normalisation factor. A cut on ρ at 0.3 selects the portion of
events characterised by low QCD activity where the corrections can be applied without any farther
systematics. This fraction is approximately 100% in the 0-jet final state, 70% in the 1-jet final state
and 42% in the 2-jet final state. Figure 6.16 illustrates the distributions of the key variables of
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Figure 6.16: Comparison of the m4l (a) and ME (b) distributions with and without the EW corrections
in place. The ratio of the distributions reweighted to account for EW corrections with respect to the
configuration without EW corrections is also displayed.

the analysis, m4l and the ME-based discriminant, for the background process qq̄ → ZZ with and
without EW corrections in place. The correction increases with the mass, at m4l=350 GeV, its
weight is ∼ 10%, at m4l=400 GeV, 20%; however if integrated over the full m4l mass spectrum, its
impact accounts for approximately 6%.

6.5 Analysis strategy in the ZZ→ 4l final state

The analysis in the ZZ→ 4l final state is identical to the one for the Higgs mass extraction detailed in
Chapter 5. The event selection is identical but it is applied in the off-peak region, (220< m4l <1000)
GeV. As there are no explicit kinematic requirements or cuts on the number of jets, the analysis
is inclusive in the jet multiplicity. In this regard, Section 6.2.2, specifically Figure 6.5 for the 4l
channel and Figure 6.6 for the 2l2ν decay mode, have presented an overview on the extended checks
performed on the residual QCD impact on the analysis. The study is split into 4 lepton final states
(4e, 4µ, 2e2µ and 2µ2e) as in Chapter 5.
The final limit on the off-shell coupling, µoff-shell is extracted with a shape-based approach based
on a matrix element kinematic discriminant (Section 6.6) that enhances the sensitivity of the mea-
surement. A BDT discriminant that exploits the full kinematic information in the ZZ decay system
through the usage of pZZT and ηZZ , is also developed in Section 6.7.
As a cross-check of the main analysis, a cut-and-count procedure is executed; details will be dis-
cussed in Section 6.10.1. Table 6.1 charts the expected number of events for signal, background and
SBI corresponding to the distributions in Figure 6.17. The dominant background in the off-peak
region is the irreducible qq̄ → ZZ, whereas the contribution of the reducible background, like Z+jets,
top and the double parton interaction (DPI), is negligible and will not be included in the analysis.
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Figure 6.17: Distributions of the m4l for the four different lepton final states after the baseline off-peak
selections, for all signal and background processes. The last bin comprises the overflow.
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6.6. MATRIX ELEMENT-BASED KINEMATIC DISCRIMINANT

2µ2e 2e2µ 4µ 4e Total
gg → H∗ → ZZ (S) 0.48 ± 0.11 0.60 ± 0.14 0.62 ± 0.14 0.45 ± 0.10 2.2 ± 0.5

gg → ZZ (B) 7.64 ± 1.74 7.57 ± 1.73 9.50 ± 2.17 5.94 ± 1.36 30.7 ± 7.0
gg → (H∗)→ ZZ 7.32 ± 1.67 7.17 ± 1.64 9.05 ± 2.07 5.69 ± 1.30 29.2 ± 6.7

gg → (H∗)→ ZZ (µoff-shell = 10) 9.73 ± 2.22 10.3 ± 2.4 12.2 ± 2.8 7.95 ± 1.81 40.2 ± 9.2
VBF H∗ → ZZ (S) 0.04 ± 0.00 0.05 ± 0.01 0.06 ± 0.01 0.05 ± 0.00 0.2 ± 0.0

VBF ZZ (B) 0.51 ± 0.03 0.56 ± 0.03 0.66 ± 0.03 0.44 ± 0.02 2.2 ± 0.1
VBF ZZ (S+B+I) 0.48 ± 0.03 0.53 ± 0.03 0.60 ± 0.03 0.40 ± 0.02 2.0 ± 0.1

VBF ZZ (S+B+I, µoff-shell = 10) 0.69 ± 0.04 0.79 ± 0.04 0.91 ± 0.05 0.61 ± 0.03 3.0 ± 0.2
qq̄ → ZZ 42.0 ± 3.3 40.7 ± 3.2 53.8 ± 4.2 31.3 ± 2.5 167.9 ± 13.1

Reducible backgrounds 0.38 ± 0.06 0.30 ± 0.06 0.32 ± 0.06 0.38 ± 0.06 1.4 ± 0.1
Total Expected (SM) 50.1 ± 3.7 48.7 ± 3.6 63.8 ± 4.7 37.8 ± 2.8 200.5 ± 14.7

Table 6.1: Expected number of events for the ZZ→ 4l channel for all processes. The gg → ZZ (S+B+I)
process with µoff-shell = 10 is created for illustration. Both statistical and systematic uncertainties are
included.

6.6 Matrix element-based kinematic discriminant

It is important to extend the analysis for the off-shell coupling measurement beyond the simple
cut-and-count approach. In order to enhance the sensitivity of the gg → H→ ZZ production in the

Figure 6.18: Definition of the angles used as input variables of the ME-based discriminant.

off-shell region, a matrix element-based discriminant is exploited [138] by assigning to each event a
probabilistic weight associated with a given hypothesis.
This discriminant accesses the event kinematics at the centre-of-mass reference frame of the ZZ
system and it is constructed on eight observables whose distributions, produced in the SM hypothesis
(µoff-shell = 1) and generated at µoff-shell=10, are reported in Figure 6.19:

• m4l is the invariant mass of the 4 lepton system;

• mZ1, mZ2 represent the invariant mass of the first and second Z pairs respectively. The lepton
association to the first and second Z boson is detailed in Chapter 5.

• cos θ1, cos θ2, the angles between the negative leptons and the direction of flight of their
respective Z bosons in the Z rest frame, cos θ∗, the production angle of the Z boson in the
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CHAPTER 6. OFF-SHELL HIGGS COUPLINGS AND WIDTH MEASUREMENTS USING DIBOSON EVENTS

4l rest frame and φ1, the angle between the decay plane of the first lepton pair and a plane
defined by the vector of the Z1 in the 4l rest frame with respect to the positive direction of
the collision axis, are sketched in Figure 6.18.

The matrix element discriminant is therefore calculated from the above variables and is determined
by the MCFM program [138]. For each event, the following matrix elements are computed:

i Pqq̄: matrix element for the dominant qq̄ → ZZ → 4l process;

ii Pgg: matrix element for the gg → ZZ and gg → H→ 4l processes including both the continuum
background, the signal at mH=125.5 GeV with SM couplings as well as the signal-background
interference;

iii PH : matrix-element for the gluon gluon fusion-mediated Higgs production process, i.e. gg →
H∗ → 4l where mH=125.5 GeV.

The following formula is calculated for each event:

ME = log10

PH
Pgg + c · Pqq̄

(6.10)

where c is a numerical global constant that approximately balances the overall cross sections of
the qq̄ and gg-related processes. Its nominal value is 0.1 and it is found that the sensitivity of
the measurement is independent (less than 1%) on the value of c spanning in the interval 0.05-1.
Figure 6.20 displays the ME distributions in the various channels for the off-shell region (220<
m4l <1000) GeV. The ME is limited to the interval [-4.5,0.5] for fitting reasons and the contribution
of discarded events is less than ∼ 1%. Figure 6.21 illustrates the two-dimensional distribution of
the ME discriminant compared to m4l, the most discriminating variable among the ones comprising
the ME definition (6.10), for signal and qq̄-produced background. This 2D map indicates a strong
correlation between the two variables. Section 6.10.3 will cover the analysis results when exploiting
the matrix element-based discriminant.

6.7 BDT-based kinematic discriminant

In addition to the matrix element approach detailed in Section 6.6, a boosted-decision-tree (BDT) -
based MVA method [118] is also exploited to improve the separation between the signal gg → H∗ →
ZZ and the dominant qq̄ → ZZ background. This algorithm is based on the matrix element dis-
criminant (Section 6.6), together with the ZZ system pT (ZZ), η(ZZ) that depend on the production
modes.

Figure 6.22 illustrates the shape comparison of the ZZ system pT and η for the various contributions
to the analysis, namely signal, qq-background, signal background and interference, gg → (H∗) →
ZZ, computed in the SM scenario (µoff-shell=1) and for a modified off-shell value (µoff-shell=10).

The signal sample used in the BDT training is the gg → H∗ → ZZ (mH=125.5) process and
the background sample is the dominant qq̄ → ZZ contribution. The training of the method is
performed with a cut at m4l >220 GeV and different trainings are computed for the various decay
channels.
Additionally, a closure test is carried out on the BDT response when including the matrix-element
input variable only: the signal vs background separation sensitivity coincides with the matrix-
element-only case.
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6.7. BDT-BASED KINEMATIC DISCRIMINANT
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Figure 6.19: Histograms of the key input variables, m4l (a), cos θ1 (b), cos θ2 (c) and cos θ∗ (d) to the
ME-based discriminant for the H → ZZ → 4l where all the leptons in the final state are combined. The
histograms are normalised to unit area for the off-shell region, i.e. (220< m4l <1000) GeV. The red solid
line coincides with the gg → H∗ → 4l signal with SM couplings, the magenta dashed line the gg → (H∗)→
4l contribution (signal + background + interference) generated with SM µoff-shell, the blue dashed line is
gg → (H∗)→ 4l with µoff-shell=10 and the black dotted line represents the qq̄ → ZZ background.
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Figure 6.20: Distributions of the ME-based kinematic discriminant in the four lepton final states (4e, 4µ,
2e2µ and 2µ2e) normalised to unit area for shape comparison in the off-peak region (220< m4l <1000) GeV.
The red solid line coincides with the gg → H∗ → 4l signal with SM couplings, the magenta dashed line
the gg → (H∗) → 4l contribution (signal + background + interference) generated with SM µoff-shell, the
blue dashed line is gg → (H∗) → 4l with µoff-shell=10 and the black dotted line reproduces the qq̄ → ZZ
background.
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Figure 6.21: Two-dimensional map of the ME discriminant vs m4l in the off-peak region (220< m4l <1000)
GeV for the gg → H∗ → 4l (a) signal and the qq̄ background (b).

Figure 6.23 (a) displays the response of the BDT-based MVA approach for signal and background
and the signal efficiency vs the background rejection of the method (b). The sample is randomly
divided into two halves: one of each is the training sample, the other represents the test sample
and the MVA procedure is applied on both. The number of trees in the training is tuned to 1000 to
avoid over-training, hence, the distributions of training and test samples in Figure 6.23, are com-
patible. This is also testified by the Kolmogorov-Smirnov test [162] performed on the training and
test distributions. Figure 6.24 provides the shape comparison of the BDT-based discriminant for
the key processes in the four final states whilst Figure 6.25 reports the strong correlation between
the matrix element discriminant and the BDT output.
As for Section 6.10.3 for the ME case, Section 6.10.4 will be devoted to the description of the
analysis results when employing the BDT-based discriminant.

6.8 Scaling of the signal strength in the model

A sample MCgg→(H∗)→ZZ for the gg → (H∗)→ ZZ process with an arbitrary value of the off-shell
Higgs signal strength µoff-shell can be constructed from:

i a pure SM Higgs gg → H∗ → ZZ signal Monte Carlo sample (MCSM
gg→H∗→ZZ);

ii a pure gg → ZZ continuum background Monte Carlo sample (MCcont
gg→ZZ);

iii a full SM Higgs signal plus background plus interference (SBI) gg → (H∗)→ ZZ Monte Carlo
sample (MCSM

gg→(H∗)→ZZ);

by applying the following parametrisation:

MCgg→(H∗)→ZZ(µoff-shell) = KH∗(mZZ) · µoff-shell ·MCSM
gg→H∗→ZZ (6.11)

+ KH∗(mZZ) ·
√
RBH∗ · µoff-shell ·MCInterference

gg→ZZ

+ KH∗(mZZ) ·RBH∗ ·MCcont
gg→ZZ

MCInterference
gg→ZZ = MCSM

gg→(H∗)→ZZ −MCSM
gg→H∗→ZZ −MCcont

gg→ZZ , (6.12)
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Figure 6.22: Distributions of the ZZ→ 4l system pT and η, for all lepton final states combined, normalised
to unit area for shape comparisons, for the full off-peak region, (220< m4l <1000) GeV. The thick black
dotted line represents the qq̄ → ZZ background, the red solid line the gg → H∗ → 4l signal with SM
couplings, the magenta long-dashed line the gg → (H∗) → ZZ (signal, background and interference) with
SM µoff-shell, and the blue dashed line is for the same contribution but with µoff-shell=10.

(a) (b)

Figure 6.23: Distribution of the BDT output for signal (gg → H∗ → ZZ) and background (qq̄ → ZZ) for
training and test samples (a). Signal efficiency vs background rejection of the BDT method (b).
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Figure 6.24: Distributions of the BDT-based discriminant in the four lepton final states normalised to
unit area to show the shape comparisons, for the full off-peak region, (220< m4l <1000) GeV. The thick
black dotted line reproduces the qq̄ → ZZ background, the red solid line the gg → H∗ → 4l signal with SM
couplings, the magenta long-dashed line the gg → (H∗) → ZZ (signal, background and interference) with
SM µoff-shell, and the blue dashed line is for the same contribution but with µoff-shell=10.
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Figure 6.25: Distributions of the BDT discriminant against the matrix element-based response for gg →
H → ZZ (a) and qq̄ → ZZ (b).

where MCInterference
gg→ZZ represents a Monte Carlo sample for the interference term between signal and

background; KH∗(mZZ) and RBH∗ coincide respectively with the signal and the background-to-
signal ratio k-factors introduced in Sections 6.1 and 6.2.1. Since a direct simulation of an interfer-
ence Monte Carlo sample is not possible, (6.12) is replaced into the previous equation to obtain a
parametrisation that is not directly dependent on the interference contribution:

MCgg→(H∗)→ZZ(µoff-shell) =

(
KH∗(mZZ) · µoff-shell −KH∗

gg (mZZ) ·
√
RBH∗ · µoff-shell

)
·MCSM

gg→H∗→ZZ(6.13)

+ KH∗
gg (mZZ) ·

√
RBH∗ · µoff-shell ·MCSM

gg→(H∗)→ZZ

+ KH∗
gg (mZZ) ·

(
RBH∗ −

√
RBH∗ · µoff-shell

)
·MCcont

gg→ZZ .

A Monte Carlo event sample for the pp→ ZZ + 2j process with an arbitrary value of the off-shell
Higgs signal strength µoff-shell can be extracted from:

i pp→ ZZ + 2j continuum background Monte Carlo, MCcont
pp→ZZ+2j ;

ii a full SM Higgs signal plus background pp→ ZZ + 2j Monte Carlo, MCSM
pp→(H∗+2j)→ZZ+2j ;

iii a Higgs signal plus background pp → ZZ + 2j Monte Carlo sample with Higgs couplings and
total width set to µoff-shell = κ4

V = ΓH
ΓSM

=10, MCκ
4
V =10

pp→(H∗+2j)→ZZ+2j .

The following function is employed to produce Monte Carlo samples pp → ZZ + 2j for any given
µoff-shell:

MCpp→(H∗+2j)→ZZ+2j(µoff-shell) =
µoff-shell −

√
µoff-shell

10−
√

10
MCκ

4
V =10

pp→(H∗+2j)→ZZ+2j (6.14)

+
10
√
µoff-shell −

√
10µoff-shell

10−
√

10
MCSM

pp→(H∗+2j)→ZZ+2j

+
(
√
µoff-shell − 1) · (√µoff-shell −

√
10)

√
10

MCcont
pp→ZZ+2j .
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6.9. SYSTEMATIC UNCERTAINTIES

6.9 Systematic uncertainties

6.9.1 Inclusive theoretical uncertainty

The dominant theoretical uncertainties in the 4 lepton analysis are expressed below:

• EW correction uncertainty on qq̄ → ZZ;

• QCD and PDF scale uncertainties on qq̄ → ZZ, gg-initiated signal, continuum background
and SBI.

A discussion on the source of these uncertainties is reported in Sections 6.2 and 6.4.

Figures 6.26 and 6.27 shows the up and down variations of the ME outputs in the 4e channel
for the gg → H∗ → ZZ and qq̄ → ZZ processes using the systematic uncertainties above.
The gg-initiated contributions (signal, continuum background and SBI) are dominated by the higher
order QCD systematics (Figure 6.26 (a)) concurring to an approximate difference between the cen-
tral shape and the variations of 23%. In addition, a shape dependency is present. Likewise, Figure
6.26 (b) indicates the impact of the PDF systematic uncertainties on the gg initial states, account-
ing for a ∼ 13% difference in normalisation and with a mild shape dependency as well. These
two uncertainties are applied both as shape and normalisation systematics to the SBI, signal and
continuum samples in full correlation.

The systematic uncertainties on the qq̄ → ZZ background focused in Section 1.6.2 are dominated by
the PDF systematics displayed in Figure 6.26 (c) and the higher order QCD corrections in Figure
6.26 (d). Finally, Figure 6.27 indicates the systematic uncertainties due to the higher order EW
corrections (Section 6.4) on qq̄ → ZZ characterised by a shape dependency in the ME spectrum and
a small normalisation contribution (∼ 1.3%).

6.9.2 Additional theory systematics for the BDT

In order to adopt the BDT-based discriminant detailed in Section 6.7, additional systematic uncer-
tainties have to be included. As the ZZ system-related variables pT and η are used as inputs to the
BDT algorithm, extra uncertainties on the treatment of higher-order QCD effects are included in
the modelling. The uncertainties on the normalisation of the templates for the fit are already added
in Section 6.9.1, hence in this Section only shape-related systematics are studied.
In order to evaluate the systematic effects on the uncertainties on pT and η in the ZZ frame, the
procedure reported in [29] is applied by varying the renormalisation scale (µR), the factorisation
scale (µF ), the resummation scale (µQ) and the resummation scale related to the bottom quark
mass (µB) [163].

The impact of the PDF uncertainties is also indicated in Figure 6.28. The nominal PDF set, CT10
[150], applied on the POWHEG signal sample atmH=125.5 GeV are compared with MSTW2008 [27]
and with NNPDF2.3 [28] in bins of ZZ-transverse momentum and rapidity. As emphasised by the
ratio plot in Figure 6.28, the impact of this uncertainty is found to be negligible and is consequently
not included in the final list of the systematic effects affecting the BDT discriminant.

The points of the procedure are summarised below

• Beyond NLO effects are evaluated with HRES [54] (NNLO+NNLL generator) for the signal
process gg → H → ZZ generated at mH=380 GeV;

189



CHAPTER 6. OFF-SHELL HIGGS COUPLINGS AND WIDTH MEASUREMENTS USING DIBOSON EVENTS

ME Discriminant

­4.5 ­4 ­3.5 ­3 ­2.5 ­2 ­1.5 ­1 ­0.5 0 0.5

N
u
m

b
e
r 

o
f 
E

v
e
n
ts

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Central

Up norm 22.5%

Down norm ­21.7%

ME Discriminant
­4.5 ­4 ­3.5 ­3 ­2.5 ­2 ­1.5 ­1 ­0.5 0 0.5R

a
ti
o

 t
o

 C
e

n
tr

a
l 
S

h
a

p
e

0.6

0.8

1

1.2

1.4

(a)

ME Discriminant

­4.5 ­4 ­3.5 ­3 ­2.5 ­2 ­1.5 ­1 ­0.5 0 0.5

N
u
m

b
e
r 

o
f 
E

v
e
n
ts

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Central

Up norm 13.5%

Down norm ­13.5%

ME Discriminant
­4.5 ­4 ­3.5 ­3 ­2.5 ­2 ­1.5 ­1 ­0.5 0 0.5R

a
ti
o

 t
o

 C
e

n
tr

a
l 
S

h
a

p
e

0.6

0.8

1

1.2

1.4

(b)

ME Discriminant

­4.5 ­4 ­3.5 ­3 ­2.5 ­2 ­1.5 ­1 ­0.5 0 0.5

N
u
m

b
e
r 

o
f 
E

v
e
n
ts

0

1

2

3

4

5

6
Central

Up norm 4.6%

Down norm ­4.6%

ME Discriminant
­4.5 ­4 ­3.5 ­3 ­2.5 ­2 ­1.5 ­1 ­0.5 0 0.5R

a
ti
o

 t
o

 C
e

n
tr

a
l 
S

h
a

p
e

0.6

0.8

1

1.2

1.4

(c)

ME Discriminant

­4.5 ­4 ­3.5 ­3 ­2.5 ­2 ­1.5 ­1 ­0.5 0 0.5

N
u
m

b
e
r 

o
f 
E

v
e
n
ts

0

1

2

3

4

5

6
Central

Up norm 5.7%

Down norm ­5.7%

ME Discriminant
­4.5 ­4 ­3.5 ­3 ­2.5 ­2 ­1.5 ­1 ­0.5 0 0.5R

a
ti
o

 t
o

 C
e

n
tr

a
l 
S

h
a

p
e

0.6

0.8

1

1.2

1.4

(d)

Figure 6.26: QCD scale systematic uncertainties on gg → H∗ → ZZ (a) and on qq̄ → ZZ (c) processes.
PDF systematic uncertainties on gg → H∗ → ZZ (b) and qq̄ → ZZ (d) states. These systematics are
evaluated on the ME discriminant shape. The ratio plots of the scale variations to the central shape are also
plotted.
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Figure 6.27: EW correction systematic uncertainties on the qq̄ → ZZ process evaluated on the ME dis-
criminant shape. The ratio plot of the scale variations to the central shape is placed underneath the figure.

• NLO effects are addressed with SHERPA [164] (LO + 0 and 1 jet merged generator) for the
signal process gg → H → ZZ generated at mH=380 GeV and the continuum background
gg → ZZ;

• NLO effects for the qq̄ → ZZ dominant background are examined using POWHEG (NLO
generator).

It is also assumed that the uncertainty of the gg→ ZZ background is the same as the one of the
interference between signal and gg-initiated background.

The Monte Carlo simulations employed for these studies are summarised below and the full scheme
of scale variations applied to these samples are listed in Table 6.2. Assuming that the resummation
scales (µQ and µB) variations are independent of the normalisation and factorisation scales (µR and
µF ), we fix the vector pair (µR, µF ) while varying µQ or µB. Similarly we fix the resummation
scales, µQ and µB, while varying µR and µF . Following the usual prescriptions [29], the nominal
scale of the process is set to mZZ

2 aside from the nominal value for the resummation scale related
to the bottom mass that is set to mb and the POWHEG nominal values for renormalisation and
factorisation scales that are calculated at mZZ .

Figure 6.29 shows the shape-only variations on pT (ZZ) and Y(ZZ) for a high mass mH=380 GeV
gg → H → ZZ signal process produced by QCD scale variations evaluated with the HRES Monte
Carlo generator. The scale variations on the rapidity in Figure 6.29 (b) are neglected since they
are much smaller than the one of the transverse momentum, Figure 6.29 (a). Figure 6.30 shows
the variation of the signal process (a) and the background processes on pT (ZZ) created with the
SHERPA Monte Carlo sample. The envelope of these independent variations on pT (ZZ), calculated
as the maximal up and down contribution for each pT bin is illustrated in Figure 6.31 for the HRES
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Figure 6.28: Comparisons of the nominal POWHEG generated sample (CT10), the MSTW2008 and the
NNPD 2.1 PDF variations, for a generated Higgs mass, mH=125.5 GeV. The ratio plots are computed with
respect to the nominal scheme (CT10).

Process MC Nominal Scales Scale variations # Variations
gg → H → ZZ HRES µR = µF = mZZ

2 (1
2µR/F , 2µR/F ), 1

2 ≤ µF /µR ≥ 2 6

µQ = mZZ/2, µB = mb (1
2µQ, 2µQ), (1

4µB, 4µB) 8

gg → H → ZZ SHERPA µR = µF = mZZ
2 (1

2µR/F , 2µR/F ), 1
2 ≤ µF /µR ≥ 2 6

µQ = mZZ/2, µB = mb ( 1√
2
µQ,
√

2µQ) 2

qq̄ → ZZ Powheg µR = µF = mZZ (1
2µR/F , 2µR/F ) 6

Table 6.2: Scale variations considered in the evaluation of the theoretical uncertainties related to the
pT (ZZ) and Y(ZZ) for the gg → H → ZZ and qq̄ → ZZ processes. The scale variations on SHERPA signal
detailed in the second row are also applied on the SHERPA gg → ZZ continuum background as stated in
the text.
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Figure 6.29: Relative change of the pT and y spectra due to the QCD scale variations produced with
HRES signal generated at mH=380 GeV: ratio of the up or down variations pT or rapidity with respect to
the nominal distribution. Q labels the resummation scale, B the resummation scale related to the bottom
quark mass, R the renormalisation scale, F the factorisation scale. The numbers coupled with each variation
characterise the nominal value (1), the down variation (0) and the up variation (2).

case (a), for SHERPA signal (b) and for SHERPA background (c). Since the contribution of the
resummation scale is dominant, it was decided to compute a first envelope encompassing renor-
malisation and factorisation scales and sum it in quadrature with the envelope extracted from the
resummation scale.
Worth noting is that the SHERPA variations enclose the variations of HRES as in Figure 6.31 (d)
because SHERPA does not contain the full NLO calculations and its variations are thence larger
than the typical scales of HRES. For this reason, we adopt the variations from SHERPA as system-
atic uncertainties, treated as correlated for all the gg-initiated processes.

The QCD scale uncertainties on pT (ZZ) for the qq̄ → ZZ dominant background process are also
extracted by varying the relevant scales, specifically the factorisation µF and the renormalisation µR
scales. Figure 6.32 exhibits the pT (ZZ) distribution when applying an additional cut at m4l >180
GeV for all the possible independent variations. The differences are at the level of ∼ 5% in the high
mass region, smaller than the dominant contribution carried by QCD and PDF uncertainties on
POWHEG (Section 1.6.2). The scale variations on Y (ZZ) are not generated because their source
is related to the treatment of the PDF model and PDF systematic errors are deemed as negligible.

6.9.3 Experimental systematics

Various sources of experimental systematic uncertainties related to the electron and muon final
states are tested:

• electron reconstruction, identification and identification efficiencies;

• muon reconstruction and identification efficiencies;

• electron and photon energy-momentum scales and resolutions;

• muon momentum scale and resolution.

The implemented uncertainties having a sizeable effect on the expected sensitivity are:
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Figure 6.30: Relative uncertainties on the pT spectrum for the SHERPA signal (a) and background (b)
samples induced by the QCD scale variations: ratio of the up or down variations with respect to the nominal
distribution. Q labels the resummation scale, R the renormalisation scale, F the factorisation scale.
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Figure 6.31: Envelopes of the various scale variations: HRES (a), SHERPA signal (b), SHERPA back-
ground (c) and the two contributions, SHERPA and HRES, superimposed on the same plot (d).
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6.10. EXTRACTION OF THE OFF-SHELL COUPLINGS AND TOTAL WIDTH
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Figure 6.32: (a) Normalised pT distribution of the ZZ system for different variations of QCD scales. R
stands for renormalisation scale, F factorisation scale. (b) Ratio to the central shape.

1. electron reconstruction efficiency for high pT (> 20 GeV) electrons⇒ ∼ 3% in the 4e channel;

2. muon reconstruction efficiency ⇒ ∼ 2% in the 4µ channel.

Figure 6.33 describes the effect of these two dominant systematic uncertainties on the m4l shape for
the gg → H∗ → ZZ signal process. The final impact of the experimental uncertainty on the off-shell
signal strength measurement is very small, of the order of 0.3% for the electron-related components
and less than 0.1% for the muons.

6.10 Extraction of the off-shell couplings and total width

6.10.1 Cut-based analysis

In parallel with the shape-based analysis on the ME and the BDT detailed in Sections 6.10.3 and
6.10.4, a cut-based feasibility study onm4l and the BDT output is executed. To assess the sensitivity
of the measurement, the following figure of merit is defined:

S =
NSBI(r)−NSBI(r = 1)

∆NSBI(r)
. (6.15)

where r = µoff-shell and ∆NSBI(r) comprises both the statistical and systematic errors on the qq̄
(Nqq) and gg (Ngg) yields. In this study, a 10% systematic uncertainty on the main background
qq̄ → ZZ is used to account for the dominant theoretical uncertainty on the QCD and PDF scale
variations. Yields for gg and qq̄-initiated processes are produced when scanning r according to the
formula in Section 6.8. The 2-sided 95 % C.L. upper limit on r is roughly estimated as the value of
r that corresponds to S=3.84 in the formula (6.15).
The optimisation is designed in two successive steps:
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Figure 6.33: Experimental systematics on the muon efficiency in the 4µ channel (a) and on the electron
efficiency in the 4e final state (a) affecting the m4l spectrum. The ratio plots of the scale variations to the
central shape are also present.
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(a) (b)

Figure 6.34: Figure of merit S defined in equation (6.15) as a function of r = µoff-shell for various m4l

(a) and BDT cuts (b), fixing m4l > 220 GeV as in the standard analysis. The colours in (a) label different
mass cuts applied to the template samples: brown m4l > 200 GeV, black m4l >250 GeV, red m4l > 300
GeV, green m4l>350 GeV, blue m4l >400 GeV, purple m4l >450 GeV. In the BDT-optimised figure of merit
plot (b), the colour legend is the following: black BDT>0, red BDT>0.2, green BDT>0.4, blue BDT>0.6,
purple BDT>0.8.

• The cut on m4l is optimised by varying it between 200 and 450 GeV in steps of 50 GeV. Its
best value, e.g. the one that minimises the 95 % C.L. on r, is found at 400 GeV. Results are
reported in Figure 6.34 (a) where various significance curves as a function on r are plotted
according to their mass cut.

• A cut-and-count approach using the BDT discriminant is also exploited. The BDT training
and the samples used in the algorithm are the same as the ones described in Section 6.7.
The figure of merit S is calculated for each BDT cut spanning from 0 to 1 with steps of 0.2
without any modification on the mass cut, i.e. m4l > 220 GeV. The limit is reached when
BDT>0.6 and its value is ∼ 15 as in Figure 6.34 (b). This last result has been validated using
a shape-based analysis built on 1-bin templates.
Since m4l is a constituent of the BDT, an extra mass optimisation on top of the BDT cut does
not lead to any improvement in sensitivity on r compared to the optimisation of the BDT
alone.

In Table 6.3 the number of expected events combining all lepton final states are charted. The
event yields in the signal region are compared to the Higgs on-peak region and to a qq̄ → ZZ back-
ground enriched region.

Given the modest results extracted by the cut-based approach, it is decided to replace it with
a shape-based algorithm that profits from the shape discrimination power of the various template
configurations.
Sections 6.10.3 and 6.10.4 will be devoted to the documentation of this approach for the ME and the
BDT algorithms respectively while Section 6.10.2 will define the main aspects of the fit parametri-
sation, the technical implementation as well as the validations performed.
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sample H on-peak Background region Signal region (optimised cut on m4l)
m4l: 110-140 GeV m4l: 160-220 GeV m4l: 400-1000 GeV

gg → H∗ → ZZ 14.2 0.22 1.1
gg → ZZ (B) 1.2 26.1 2.8

gg → ZZ (S+B+I) 16.1 25.3 2.4
qq̄ → ZZ 17.5 112.2 21.31

Table 6.3: Expected number of events for 8 TeV (4e, 2e2µ, 2µ2e, 4µ channels) in the various m4l regions.

6.10.2 Shape-based analysis - The fit parametrisation

The analysis relies on a simultaneous binned maximum likelihood fit to extract the constraints on
the off-shell Higgs couplings and the total Higgs width. The likelihood fit is constituted by his-
togram templates of signal and background processes (gg → ZZ and qq̄ → ZZ) as well as the SBI
and the VBF contributions for the ME and the BDT distributions. The 4 lepton mass, m4l has
also been fitted: it was found that its sensitivity is 30% worse than the one characterising the ME
or the BDT analyses, hence this approach has been abandoned.

The probability density function (PDF) components are parametrised and scaled as a function
of µoff-shell as explained in Section 6.8. The validation of the method is done using Monte Carlo
samples generated at µoff-shell=10 for the SBI process. As indicated in Figure 6.35 for the 2e2µ chan-
nel, there is no significant deviation between the histogram scaling defined in Section 6.8 starting
from the templates for µoff-shell=1 and the direct Monte Carlo production at µoff-shell=10. The same
investigation has been accomplished for the BDT as well leading to similar results. This closure
test guarantees the correctness of the scaling method, furthermore the fitting procedure is inter-
nally cross-checked by using two distinct frameworks, one of that based on the HistFactory [165]
tool both for the ME-based approach (Section 6.10.3) and the BDT (Section 6.10.4). No smoothing
is applied on the output histograms used in the likelihood fit. Assuming the same on-shell and
off-shell couplings, ΓH

ΓSM
can be calculated with a simultaneous fit on the low mass and high mass

as presented in Section 6.12. A comprehensive look at the statistical tests and tools employed in
the following Sections is given in Appendix C.

The typical off-shell mass scales tested by the analyses are in the range (400 < mV V <1000) GeV,
with a small fraction of the expected H∗ → WW signal extending to substantially higher mass
scales. This is illustrated in Figure 6.36, which shows the generated mV V mass for the gg→ H(∗) →
VV and the VBF signal processes weighted by the expected S/B ratio in each bin of the final
discriminant for the ZZ→ 4l and ZZ→ 2l2ν and for all signal events in the signal region for the
WW→ lνlν analysis.

6.10.3 Shape-based analysis on the ME

The histograms in Figure 6.20 are produced for the 4 final states as input to the fit. The first step
of the fitting validation, before performing the scanning in µoff-shell, consists in executing a fit in
the presence of large µoff-shell (10 or 25). Hence, Asimov datasets are created from Monte Carlo
samples generated at µoff-shell=10 and µoff-shell=25 and PDF scaled with the formula in Section 6.8
from µoff-shell=1 and subsequently fitted without systematics. The results are provided below and
the corresponding likelihood scans are in Figure 6.37 (a):

• Asimov dataset generated from PDF ⇒ µ=10+4.3
−3.8 (µinj=10), µ=25+5.2

−4.8 (µinj=25).
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Figure 6.35: Distributions of the ME discriminants in the 2e2µ final state after the baseline off-peak
selection for the SBI template. Lines are from the PDF parametrisation s using the scaling formula reported
in Section 6.8 from the SM scenario to µoff-shell=10, while the dots are from the Monte Carlo generated at
µoff-shell=10.
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Figure 6.37: (a) Likelihood scan of µoff-shell in the fit to Asimov data generated from Monte Carlo sample
generated at µoff-shell=10 and µoff-shell=25 using the ME discriminant based shape analysis. (b) Likelihood
scan of µoff-shell in the fit to Asimov generated from Monte Carlo sample with µoff-shell=1 and zoomed in the
region close to the minimum of the parabola.

• Asimov dataset built from Monte Carlo templates⇒ µ=10+4.3
−3.8 (µinj=10), µ=25+5.2

−4.8 (µinj=25).

Given that the value of the off-shell coupling injected is returned by the fit, the procedure has no bias.

The expected sensitivity of the 95% C.L. upper limit on µoff-shell is then evaluated assuming SM
Higgs coupling. Figure 6.40 shows the likelihood scan on BDT and ME with and without the sys-
tematic uncertainty contribution whereas Table 6.4 shows the values of the limits on µoff-shell as well
as the breakdown of the systematics.
If we zoom close to the minimum of the likelihood parabola, a double-minimum structure between
0 and 1 is displayed as in Figure 6.37 (b). This is due to the presence of the double solution of the
second order polynomial dependence of gg → ZZ to µoff-shell.

6.10.4 Shape-based analysis on the BDT and comparison with the ME-based
approach

Analogously to the matrix element-based approach, the expected sensitivity of the BDT discrimi-
nant is extracted and the two methods are compared. The systematic uncertainties, both theoretical
and experimental, determined in Section 6.9 are kept in common between the ME and the BDT.
As for Section 6.10.3, the dominant systematic uncertainty is given by the higher order QCD on
the background gg → ZZ contribution (Figure 6.38). Furthermore, as addressed in Section 6.9.2,
additional systematics on the QCD scales raise from the usage of the ZZ system information inside
the BDT training. The envelope of the largest deviations is consequently propagated to the final
BDT templates entering the fit to produce the up and down variations. Figure 6.39 displays the
impact of the up/down variations when varying the relevant scales of the process with the SHERPA
generator. These are shape-only systematics, the overall normalisation of the templates is therefore
not affected.
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The expected 95% C.L. limit on µoff-shell is extracted for the BDT and the ME configurations
(Figure 6.40). To assess the impact of the systematic uncertainty on the two methods, its full
breakdown is presented in Table 6.4. The final results on the fitted mean as well as on the 95% C.L.
upper limit on µoff-shell in parenthesis assuming the SM Higgs couplings and including gluon-gluon
fusion and vector boson fusion production mechanisms are listed below:

• ME: Without systematics: 1.00 (8.85), with systematics: 1.00 (10.28);

• BDT: Without systematics: 1.00 (8.52), with systematics: 1.00 (10.08).

The gain of the BDT discriminant is approximately 4% with respect to the ME-based approach and
∼ 2% including all systematics. As reported in Table 6.4, the influence of the various sources of
uncertainties is similar within the two methods and the extra pT -related uncertainties account for
less than 1%. Provided that the gain of the BDT-based analysis is small compared to the ME, the
ME-based discriminant approach is chosen to be the baseline for the measurement.

Source of systematic uncertainties BDT ME
Luminosity 8.6 (1.2%) 8.9 (1.1%)

electron efficiency 8.5 (<1%) 8.9 (1.1%)
µ efficiency 8.5 (<1%) 8.9 (1.1%)

QCD scale for qq̄ → ZZ 8.6 (1.2%) 9.0 (2.2%)
QCD scale for gg → ZZ 9.5 (10.5% ) 9.7 (9.3%)

QCD scale for the gg → (H∗ →)ZZ interference 9.0 (5.6%) 9.3 (5.4%)
PDF for pp→ ZZ 8.6 (1.2%) 8.9 (1.1%)
EW for qq̄ → ZZ 8.5 (1.2%) 8.9 (1.1%)
ZZ pT systematics 8.5 (<1%) not needed

All systematic 10.0 (18.2%) 10.3 (16%)
No systematic 8.5 8.8

Table 6.4: Expected 95% C.L. upper limit on µoff-shell in BDT and ME discriminant based shape anal-
yses in the 4 lepton channel, including each systematic uncertainty individually compared to including no
systematic uncertainty and all systematic uncertainties. Numbers in parenthesis represent the percentage
change compared to the expected values without any systematic uncertainty.

6.11 Observed results in the 4l final state

6.11.1 Background-enriched regions

As a preliminary cross-check of the background estimation for the qq̄ → ZZ process prior to un-
blinding the signal region of the analysis, two background-enriched control-regions are defined:

• control region A: (160< m4l <220) GeV;

• control region B: (220< m4l <1000) GeV and ME<-1.5;

The background enhancement is guaranteed by the explicit usage of the signal-free m4l region (con-
trol region A) or by a specific cut on the ME in order to select the background-like region. Tables
6.5 and 6.6 report the expected number of events in the control region A and B respectively as well
as the observed events in data. The observed data is in good agreement with the total expected
prediction within 1-2 σ. The corresponding inclusive distributions of m4l and ME are exhibited in
Figure 6.41 for control region A and in Figure 6.42 for control region B. In consideration of the
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Figure 6.38: QCD scale uncertainties for the BDT discriminant shapes in the four different lepton final
states for the gg → H → ZZ process.
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Figure 6.39: pT (ZZ) related systematics for the BDT discriminant shapes in the four different lepton final
states for the gg → H → ZZ process.
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comparing the BDT and ME-based discriminant analyses. The red long dashed (black dashed) line repro-
duces the expected value for the BDT (ME)-based analysis with no systematic uncertainty included, while
the orange long dashed (blue dashed) line is for the expected value including all systematics.

data-to-Monte Carlo match in the background-enriched regions A and B, this study is extended in
the signal region to extract the final values on the µoff-shell upper limit at 95% C.L.

As noted in Section 6.10.1, the cut-based approach does not result in sufficiently competitive upper
limit on the off-shell signal strength, hence it will not be pursued in this Section.

sample 2µ2e 2e2µ 4µ 4e TOTAL
gg → H∗ → ZZ (S) 0.06 ± 0.00 0.05 ± 0.00 0.07 ± 0.00 0.04 ± 0.00 0.2 ± 0.0

gg → ZZ (B) 6.75 ± 0.03 6.01 ± 0.03 8.15 ± 0.03 5.17 ± 0.02 26.1 ± 0.1
gg → (H∗)→ ZZ (SBI) 6.58 ± 0.04 5.79 ± 0.03 7.87 ± 0.03 4.99 ± 0.02 25.2 ± 0.1

gg → (H∗)→ ZZ (SBI µoff-shell = 10) 6.24 ± 0.03 5.53 ± 0.03 7.48 ± 0.03 4.76 ± 0.02 24.0 ± 0.1
VBF H∗ → ZZ (S) 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.0 ± 0.0

VBF ZZ (B) 0.13 ± 0.00 0.11 ± 0.00 0.16 ± 0.00 0.10 ± 0.00 0.5 ± 0.0
VBF (H∗)→ ZZ (SBI) 0.12 ± 0.00 0.11 ± 0.00 0.15 ± 0.00 0.10 ± 0.00 0.5 ± 0.0

VBF (H∗)→ ZZ (SBI, µoff-shell =10) 0.16 ± 0.00 0.15 ± 0.00 0.19 ± 0.01 0.12 ± 0.00 0.6 ± 0.0
qq̄ → ZZ 28.9 ± 0.3 25.3 ± 0.2 36.1 ± 0.2 21.8 ± 0.2 112.2 ± 0.5

Reducible backgrounds 0.59 ± 0.08 0.59 ± 0.07 0.76 ± 0.06 0.58 ± 0.08 2.5 ± 0.1
Total Expected (SM) 36.2 ± 0.3 31.8 ± 0.2 44.9 ± 0.2 27.4 ± 0.2 140 ± 0

Observed 37 43 36 27 143

Table 6.5: Expected and observed number of events for the ZZ→ 4l channel for all processes in the qq̄ →
ZZ-enriched region where (160< m4l <220) GeV (control region A). The uncertainties are statistical only.
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√
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A).
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Figure 6.42: Distributions for the various Monte Carlo components and for data corresponding to an
integrated luminosity of 20.3 fb−1 generated at

√
s= 8 TeV of m4l (a) and ME (b) in the inclusive four

different lepton final states using the qq̄ → ZZ-enriched region where (220< m4l <1000) GeV and ME<-1.5
(control region B).
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sample 2µ2e 2e2µ 4µ 4e TOTAL
gg → H∗ → ZZ (S) 0.23 ± 0.00 0.24 ± 0.00 0.18 ± 0.00 0.11 ± 0.00 0.8 ± 0.0

gg → ZZ (B) 7.47 ± 0.03 7.24 ± 0.03 8.64 ± 0.03 5.28 ± 0.02 28.6 ± 0.1
gg → (H∗)→ ZZ (SBI) 7.20 ± 0.04 6.94 ± 0.04 8.31 ± 0.03 5.12 ± 0.02 27.6 ± 0.1

gg → (H∗)→ ZZ (SBI µoff-shell = 10) 7.88 ± 0.04 7.75 ± 0.04 8.58 ± 0.03 5.24 ± 0.02 29.4 ± 0.1
VBF H∗ → ZZ (S) 0.02 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.1 ± 0.0

VBF ZZ (B) 0.41 ± 0.01 0.43 ± 0.01 0.44 ± 0.01 0.28 ± 0.00 1.6 ± 0.0
VBF (H∗)→ ZZ (SBI) 0.40 ± 0.01 0.43 ± 0.01 0.42 ± 0.01 0.27 ± 0.01 1.5 ± 0.0

VBF (H∗ →) ZZ (SBI, µoff-shell =10) 0.49 ± 0.01 0.51 ± 0.01 0.51 ± 0.01 0.32 ± 0.01 1.8 ± 0.0
qq̄ → ZZ 39.5 ± 0.3 37.8 ± 0.3 46.6 ± 0.3 26.6 ± 0.2 150.6 ± 0.5

Reducible backgrounds 0.38 ± 0.06 0.29 ± 0.06 0.32 ± 0.06 0.38 ± 0.06 1.4 ± 0.1
Total Expected (SM) 47.5 ± 0.3 45.5 ± 0.3 55.6 ± 0.3 32.4 ± 0.2 181 ± 1

Observed 35 56 52 25 168

Table 6.6: Expected number of events for the ZZ→ 4l channel for all processes in the qq → ZZ-enriched
region where (220< m4l <1000) GeV and ME<-1.5 (control region B). The uncertainties are statistical only.

6.11.2 ME discriminant response in the signal region

The signal-region of the analysis in the m4l-ME phase space is:

• (220< m4l <1000) GeV and -4.5< ME <0.5.

The observed and expected number of events for the various physics processes involved in the ME
shape analysis are listed in Table 6.7 for the signal region. The reducible background component,
comprising Z+jets and tt̄, accounts for less than 1% on the total background contribution and is
not added in the final computation of the limit. The expected events for the gg → ZZ and VBF
processes, including the Higgs signal, background and interference (SBI templates) are calculated
for both the SM case and for µoff-shell =10. Figure 6.43 illustrates the observed and the expected
m4l and ME-discriminant distributions combining all lepton final states in the signal region.

Conclusively, the scan of the negative log likelihood, -2ln Λ, extracted by fitting the ME discriminant
as a function of the µoff-shell parameter, for data and for Monte Carlo with and without systematic
uncertainties, is reported in Figure 6.44 (a). Besides, the observed and expected 95% C.L. upper
limit on µoff-shell as a function of the unknown ratio of background and signal k-factors involving
gg-initiated processes, RBH∗, is also present in Figure 6.44 (b) in the region 0.5< RBH∗<2. The nu-
merical values of the expected and observed 95% C.L. limits on µoff-shell expressed for discrete steps
of RBH∗ (0.5-1, 1.5,2) are charted in Table 6.8. The upper 95% C.L. limits are calculated from the
CLs method [166], the null hypothesis being µoff-shell=1 (SM scenario) and the alternative hypoth-
esis the µoff-shell value extracted from the fit. The expected 95% C.L. limits on µoff-shell with and
without systematic uncertainties are 8.8 and 10.3 respectively; the observed limit is µobsoff-shell =6.7
when assuming that the signal-to-background k-factor ratio, RBH∗, is set to 1.

6.12 2l2ν and WW→ lνlν analyses

6.12.1 The analysis in the 2l2ν final state

The analysis of the ZZ → 2l2ν channel follows strategies similar to those used in the invisible
Higgs boson search in the ZH channel [167]. The definitions of the reconstructed objects (electrons,
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Figure 6.43: Distributions for the various Monte Carlo components and for data corresponding to an
integrated luminosity of 20.3 fb−1 generated at

√
s= 8 TeV of m4l (a) and ME (b) in the inclusive four

different lepton final states using the signal region (220< m4l <1000) GeV and -4.5< ME <0.5.
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Figure 6.44: (a) Scan of the negative log-likelihood, -2ln Λ, as a function of µoff-shell in the 4 lepton
final state in the ME-based discriminant analysis. The black solid (dashed) line represents the observed
(expected) value including all systematic uncertainty, while the red dotted line is for the expected value
without systematic uncertainties. (b) Observed and expected 95% C.L. upper limit on µoff-shell in the ME
discriminant based analysis as a function of RBH∗. The upper limits are calculated from the CLs method,
the null hypothesis being µoff-shell=1.
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2µ2e 2e2µ 4µ 4e Total
gg → H∗ → ZZ (S) 0.48 ± 0.11 0.60 ± 0.14 0.62 ± 0.14 0.45 ± 0.10 2.1 ± 0.5

gg → ZZ (B) 7.94 ± 1.81 7.87 ± 1.80 9.88 ± 2.25 6.18 ± 1.41 31.9 ± 7.3
gg → (H∗)→ ZZ (SBI) 7.61 ± 1.74 7.45 ± 1.70 9.41 ± 2.15 5.91 ± 1.35 30.4 ± 6.9

gg → (H∗)→ ZZ (SBI, µoff-shell =10) 9.92 ± 2.27 10.5 ± 2.4 12.4 ± 2.8 8.10 ± 1.85 41.0 ± 9.4
VBF H∗ → ZZ (S) 0.04 ± 0.00 0.05 ± 0.01 0.06 ± 0.01 0.04 ± 0.00 0.2 ± 0.0

VBF ZZ (B) 0.51 ± 0.03 0.56 ± 0.03 0.66 ± 0.03 0.44 ± 0.02 2.2 ± 0.1
VBF (H∗)→ ZZ (SBI) 0.48 ± 0.03 0.53 ± 0.03 0.60 ± 0.03 0.40 ± 0.02 2.0 ± 0.1

VBF (H∗)→ ZZ (S+B+I, µoff-shell = 10) 0.69 ± 0.04 0.79 ± 0.04 0.91 ± 0.05 0.60 ± 0.03 3.0 ± 0.2
qq̄ → ZZ 41.9 ± 3.3 40.7 ± 3.2 53.8 ± 4.2 31.3 ± 2.5 167.7 ± 13.1

Reducible backgrounds 0.36 ± 0.06 0.30 ± 0.06 0.29 ± 0.06 0.35 ± 0.06 1.3 ± 0.1
Total Expected (SM) 50.4 ± 3.7 49.0 ± 3.6 64.1 ± 4.7 37.9 ± 2.8 201 ± 15

Observed 35 59 59 29 182

Table 6.7: Expected and observed number of events in the ZZ→ 4l channel in the ME shape based
analysis signal region, (220 GeV < m4l < 1000) GeV and -4.5 < ME < 0.5. Both statistical and systematic
uncertainties are included.

RBH∗ Observed Median 1 σ band 2 σ band
0.5 5.5 8.8 [6.3, 12.2] [4.7, 18.7]
1.0 6.7 10.2 [7.4, 14.2] [5.5, 21.3]
1.5 8.1 12.2 [8.8, 16.9] [6.5, 24.7]
2.0 9.5 14.3 [10.3, 19.7] [7.7, 28.5]

Table 6.8: Observed and expected 95% C.L. upper limit on µoff-shell in the ME discriminant shape based
analysis as a function of RBH∗. The upper limits are calculated from the CLs method, with the null hypothesis
µoff-shell=1.

muons, jets, and missing transverse momentum) are identical, but some of the kinematic cuts are
optimised for the current analysis. As the neutrinos in the final state do not allow for a kinematic
reconstruction of mZZ , the transverse mass (mZZ

T ) reconstructed from the transverse momentum
of the dilepton system (pllT ) and the magnitude of the missing transverse momentum (Emiss

T ) is
calculated as follows:

mZZ
T ≡

√(√
m2
Z +

∣∣p``T ∣∣2 +

√
m2
Z +

∣∣Emiss
T

∣∣2)2

−
∣∣p``T + Emiss

T

∣∣2 . (6.16)

This variable is chosen as the discriminant parameter to enhance the sensitivity to the gg-initiated
signal.

The kinematic selection has been conceived to maximise the signal significance over the background.

• Events with two oppositely charged electron or muons in the mass window (76< mll < 106)
GeV are selected.

• A series of kinematic requirements are employed to suppress the Drell-Yan background, i.e.
Emiss
T > 180 GeV and (380< mZZ

T <1000) GeV. Furthermore, a cut on the azimuthal angle be-
tween the transverse momentum of the dilepton system and the missing transverse momentum
is exploited, i.e. ∆φ(pllT , E

miss
T ) <2.5.
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• Events with a b-jet whose pT is greater than 20 GeV are rejected to suppress the top-quark
background.

• Finally, another requirement on the azimuthal angle between the two leptons, ∆φll <1.4, is
applied.

The dominant background of the analysis is the qq̄ →ZZ production as well as qq̄ →WZ. Background
contributions from events having an isolated lepton pair originate from WW, tt̄, Wt and Z → ττ
final states. Subdominant background processes are represented by Z →ee or Z → µµ where the
Emiss
T term is poorly reconstructed.

• The qq̄ →ZZ background is estimated, in a similar way as for the 4 lepton final state, with
the POWHEG generator; additional electroweak corrections are applied.

• The WZ background is also estimated with the simulation and validated in data using a
signal-free control region with three leptons in the final state.

• The WW, tt̄, Wt and Z → ττ components are estimated in data in a eµ control region using
a relaxed selection.

• The Z boson background (Z → µµ and Z →ee) is estimated in data using a two-dimensional
sideband created by reversing the ∆φ(pllT , E

miss
T ) and the ∆φll cuts.

The observed event yields agree with the total predicted ones from the SM within the uncertainties.
Figure 6.45 (a) illustrates the distribution of the transverse mass of the ZZ system for the ee and
µµ final states in the signal region compared to the predicted contributions from the SM and to a
Higgs boson generated with µoff-shell=10.

6.12.2 The analysis in the WW → eνµν final state

As in the previous paragraph, the neutrinos in the final states do not allow for a kinematic re-
construction of mV V . Hence, a transverse mass (mT

WW ) is calculated from the dilepton system
transverse energy and the vectorial sum of neutrino transverse momenta:

mWW
T =

√(
E``T + pννT

)2 − ∣∣p``T + pννT
∣∣2. (6.17)

In order to isolate the off-shell Higgs boson production, a new variable, R8, is used:

R8 =
√
m2
ll + (a ·mWW

T )2. (6.18)

The coefficient a is set to 0.8 and the analysis is run for R8 > 450 GeV. These values are optimised
for the off-shell signal sensitivity.

The distribution of the R8 variable is shown in Figure 6.45 (b) in the signal region of the anal-
ysis (380-1000 GeV) for the SM expectation and for a Higgs boson generated at µoff-shell=10.

The two backgrounds with the largest expected event yields are the top and qq̄ →WW productions.

• Control regions are determined to compute the contributions of the top and the qq̄ → WW
backgrounds in the signal region; transfer factors are calculated and applied in the signal
regions.

• The remaining background components are negligible and are estimated from Monte Carlo
simulations.

209



CHAPTER 6. OFF-SHELL HIGGS COUPLINGS AND WIDTH MEASUREMENTS USING DIBOSON EVENTS

 [GeV]ZZ
Tm

400 500 600 700

Ev
en

ts
 / 

30
 G

eV

5

10

15 Internal ATLAS
ν2l 2→ ZZ → H

-1Ldt = 20.3 fb∫ = 8 TeV: s

OtherBGs
=10)

off-shell
µAll contributions (

) ZZ→ (H*→gg+VBF
ZZ→qq

WZ
)+jetsµµee/→Z(

ττ→WW/Top/Z

Stat.+syst.unc.σ

(a)

 [GeV]8R
500 600 700 800 900

Ev
en

ts
 / 

25
 G

eV

5

10

15

20
Data

 sys)⊕SM (stat 
=10)

off-shell
µTotal (

)WW→ (H*→gg+VBF
Top Background

 WW→qq
Other Backgrounds

ATLAS
-1 = 8 TeV, 20.3 fbs

νµνe→WW→H SR

(b)

Figure 6.45: (a) Observed distribution of mT
ZZ in the range of the analysis (380< mT

ZZ <1000) GeV
combining the 2e2ν and the 2µ2ν channels. The hatched area shows the combined statistical and systematic
uncertainties whilst the dashed line corresponds to the total expected event yield including all backgrounds
and the Higgs boson signal generated with µoff-shell=10. (b) Observed distributions of R8 for the signal
region above 450 GeV, compared to the expected contributions from the SM including the Higgs boson. The
dashed line corresponds to the total expected event yield, including all backgrounds and the Higgs boson
with µoff-shell=10.

6.13 Statistical combination of the ZZ→4l, ZZ→2l2ν and WW→ νlν
final states

The present Section will give an overview of the statistical combination of the ZZ and WW analyses
for what concerns the off-shell-only contribution and the off+on-shell combination with the low
mass coupling analysis. These results have been obtained by fixing the Higgs mass to its ATLAS
measured value mH=125.36 GeV [20].

In Section 6.13.1 the off-shell studies in the ZZ→ 4l, ZZ→ 2l2ν and WW→ lνlν (l = e, µ) are
combined. As stated in the theoretical introduction in Section 6.1, the essential assumption is that
the couplings of the Higgs boson to other particles are the same as for the Standard Model. Re-
garding the off-shell-only combination, two different approaches are presented in Section 6.13.1. In
the second part of this paragraph (Section 6.13.2), the off-shell analyses in the ZZ→ 4l, ZZ→ 2l2ν
and WW→ lνlν are combined with the on-shell results of the same channels. The combination is
performed only for the 2012 dataset (

√
s=8 TeV). The various assumptions supporting the different

combination procedures are expressed in Section 6.13.2. The on-shell signal strength for the VH
production is assumed to scale as the VBF one whereas the on-shell signal strength for tt̄H is scaled
as the ggF one. Besides, the tt̄H production is expected to provide negligible contribution to the
off-shell measurement.

The tests statistics, profile likelihood ratio and CLs, employed in this Section to probe the upper
limits on the off-shell signal strength and extract the Higgs total width are described in Appendix
C. The final 95% C.L. limits with the CLs method are generated as a function of the unknown ratio
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of the background-to-signal k-factor (Sections 6.1 and 6.2.1), RBH∗ =
KH∗gg(mZZ)

KH∗(mZZ) , while comparisons
between observed and Monte Carlo expected limits are calculated in the soft collinear approxima-
tion, i.e. RBH∗=1.

The results presented in this Section rely on the asymptotic assumption. This hypothesis has
been corroborated with Monte Carlo tests in the range of parameters where the limits are derived
(Appendix C). In order to reduce the typical CPU-time for each fit instance, the systematic uncer-
tainties (nuisance parameters) entering the fit are removed (pruned) if their impact on the final limit
is negligible. The bias on the extraction of the upper limit introduced by the pruning was extracted
and found to be extremely small. In order to ensure the validity of the results, the outcomes of the
off and off+on-shell fits are internally cross-checked with two independent procedures and results
are found to be fully consistent between the two methods.

6.13.1 Off-shell combination

The first step of the off-shell combination between the ZZ and WW final states is the treatment
of the systematic uncertainties in the two channels. The main systematics for both ZZ and WW
are related to the theory uncertainties on the gg and qq-initiated processes. These systematics are
kept as fully correlated in the various channels. As indicated in Section 6.9.3, the experimental
systematic uncertainties are very small and their impact on the final combined limit is impercepti-
ble. The parameter of interest (µoff-shell) is correlated between the WW and ZZ final states while
RBH∗ =

KH∗gg(mZZ)

KH∗(mZZ) is kept fixed in order to derive the scanning of µoff-shell as a function of this
parameter.

The different fitting options are expressed below:

• fit on µoff-shell - fixing the ratio of the signal strength ggF and VBF to the SM expectation,
namely:

µggFoff-shell

µggFoff-shell

= 1; (6.19)

• fit on µggFoff-shell - fixing the VBF off-shell signal strength to the SM expectation, i.e. µV BFoff-shell=1.

Observed and expected values for µoff-shell and µ
ggF
off-shell for the combined ZZ and WW analyses in

the soft collinear approximation (RBH∗=1) are listed in what follows:

µoff-shell = 0.6+1.8
−0.6, 1.0+3.7

−1.0, (6.20)

µggFoff-shell = 0.4+1.8
−0.4, 1.0+4.0

−1.0. (6.21)

In the two cases the negative uncertainty is given by the lower bound of µoff-shell > 0. These limits
are obtained under the asymptotic assumption (Appendix C) by looking at the value of the param-
eter of interest at which the likelihood function increases by 3.84 (2-sided convention).

Figure 6.46 (a) shows the scan of the negative log-likelihood, -2ln Λ, as a function of the off-shell
signal strength when fixing the same scale factor for the ggF and VBF off-shell couplings for the
WW+ZZ channels. Figure 6.46 (b) displays the scan of the negative log-likelihood when setting the
VBF off-shell signal strength to the SM. The limit on µoff-shell and µ

ggF
off-shell computed with the CLs

method taking as null hypothesis the SM off-shell rates as a function of the unknown background-
to-signal ratio k-factor RBH∗ are reported in Figures 6.47 (a) assuming one single scale factor for
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both ggF and VBF processes and Figure 6.47 (b) fixing the VBF production to the SM expectation.
The values of the observed and expected limits on µoff-shell and µ

ggF
off-shell extracted at 95% C.L. for

the full off-shell combination are illustrated in Table 6.9. Observed and expected 95% C.L. upper
limits on µoff-shell and µ

ggF
off-shell for the ZZ+WW final states within the range 0.5< RBH∗ <2 are also

shown in the same Table.
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Figure 6.46: Scan of the negative log-likelihood as a function of µoff-shell (a) and µggFoff-shell (b) for the
combined ZZ and WW channels. The black (red) dashed line represents the expected value with (and with-
out) systematic uncertainties, solid black (red) line indicates the observed value with (without) systematic
uncertainties.

µoff-shell 95% CL Observed Expected
-2ln Λ with sys 4.92 8.13
-2ln Λ no sys 4.34 6.48
CLs with sys 6.23 8.12
CLs no sys 5.27 6.48

RBH∗ 0.5 1 2
Observed 5.1 6.2 8.6
Expected 6.7 8.1 11.0

µggFoff-shell 95% CL Observed Expected
-2ln Λ with sys 5.08 9.08
-2ln Λ no sys 4.43 6.99
CLs with sys 6.71 9.07
CLs no sys 5.58 6.99

RBH∗ 0.5 1 2
Observed 5.3 6.7 9.8
Expected 7.3 9.1 13.0

Table 6.9: Observed and expected limits on µoff-shell (left) and µggFoff-shell (right) extracted at 95% C.L. for
the off-shell ZZ+WW final states. Observed and expected 95% C.L. upper limits on µoff-shell (bottom left
table) and µggFoff-shell (bottom right table) for the ZZ+WW final states within the range 0.5< RBH∗ <2.

The pull distributions are generated for three different configurations when the parameter of
interest µ is set to the following values:

• observed value in data µ̂ = 0.55;

• observed value at 95% C.L. (µ = 4.92);

• value near the expected limit on (µ = 8).

212



6.13. STATISTICAL COMBINATION OF THE ZZ→4L, ZZ→2L2ν AND WW→ νLν FINAL STATES

VV)→H*→K(gg

VV)→K(gg
 = 

H*
BR

0.6 0.8 1 1.2 1.4 1.6 1.8 2

o
ff
­s

h
e
ll

µ
9
5
%

 C
L
 l
im

it
 o

n
 

0

5

10

15

20

25

30

35

40
σ 1±

σ 2±

Expected limit (CLs)

Observed limit (CLs)

Internal ATLAS
 combinedνlνl+l+4ν2l2

­1Ldt = 20.3 fb∫ = 8 TeV: s

(a)

VV)→H*→K(gg

VV)→K(gg
 = 

H*
BR

0.6 0.8 1 1.2 1.4 1.6 1.8 2

o
ff
­s

h
e
ll

H
*

→
g
g

µ
9
5
%

 C
L
 l
im

it
 o

n
 

0

5

10

15

20

25

30

35

40
σ 1±

σ 2±

Expected limit (CLs)

Observed limit (CLs)

Internal ATLAS
 combinedνlνl+l+4ν2l2

=1
off­shell

VBFµ
­1Ldt = 20.3 fb∫ = 8 TeV: s

(b)

Figure 6.47: Observed and expected combined 95% C.L. upper limit on µoff-shell (a) and on µggFoff-shell (b)
as a function of RBH∗ for the ZZ+WW off-shell final states. The upper limits are calculated from the CLs
method, being the SM the null hypothesis.

Figure 6.48 shows the pull distributions for the nuisance parameters used in the analysis, employing
the first fitting configuration namely µVBFoff-shell = µggFoff-shell. The red points with error bars are the fitted
values of the nuisance parameters (post-fit results) and the error bars are the uncertainties. The
yellow bands show the Hesse correlation with the fitted parameter of interest (µoff-shell). The most
pulled nuisance parameters (second fitting configuration, e.g. pulls generated when the parameter
of interest µ is set to its observed value, µ=4.92 at 95% C.L.) are mainly associated to the most
sensitive systematics entering the model, namely the QCD scales uncertainties for the gg-initiated
signal and its background as well as the one related to the interference term.

6.13.2 Off-shell and on-shell combination

In this Section, the off-shell results are combined with the on-shell H → ZZ and H →WW analyses.
The most relevant theoretical nuisance parameters as well as all the experimental systematics that
are identified as coming from the same source of uncertainty are correlated between the off-shell
and the on-shell analyses. The fit options employed in this analysis are listed below. In parenthesis
the relevant Figures and Tables are indicated.

• Fit on ΓH
ΓSM

- when using the equation (6.19) to profile a common µ (Figure 6.49, Table 6.10
left).

• Fit on ΓH
ΓSM

- when profiling µggF and fixing µV BF to its SM expectation (Figure 6.50, Table
6.10 right).

• Fit on ΓH
ΓSM

- when profiling both µggF and µV BF (Figure 6.51, Table 6.11 left).

• Fit on Rgg defined as:

Rgg =
µggFoff-shell

µggFon-shell

. (6.22)
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Figure 6.48: Pulls for various nuisance parameters using the full off-shell µVBF = µggF combination from
(a) the observed unconditional fit (µ̂ = 0.55), (b) the observed conditional fit with µ fixed at its 95% C.L.
(µ = 4.92), and (c) an unconditional fit to Asimov generated near the expected limit on µ (µ = 8). In each
case, the red points show the fitted value of the nuisance parameters and the error bars are the uncertainties
from the Hessian.
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while profiling µV BF under the assumption that µV BF = µV BFoff-shell = µV BFon-shell and fixing the
ratio ΓH

ΓSM
= 1 (Figure 6.52, Table 6.11 right). The parameter Rgg is introduced because it is

sensitive to possible modifications of the gluon couplings in the high mass range with respect
to the off-shell value.

As for the previous Sections, the limits are computed with the CLs method taking as null hypothesis
the SM rates. The best fit values (observed and expected) from the negative log likelihood scan for
the last two fitting configurations are:

ΓH
ΓSM

= 0.4+1.4
−0.4, 1.0+3.5

−1.0; (6.23)

Rgg = 0.3+1.4
−0.4, 1.0+3.9

−1.0. (6.24)

ΓH
ΓSM

95% C.L. Observed Expected
-2ln Λ with sys 3.78 8.02
-2ln Λ no sys 3.38 6.49
CLs with sys 5.44 7.99
CLs no sys 4.80 6.49

RBH∗ 0.5 1 2
Observed 4.4 5.4 7.5
Expected 6.5 8.0 11.2

ΓH
ΓSM

95% CL Observed Expected
-2ln Λ with sys 3.84 8.03
-2ln Λ no sys 3.42 6.52
CLs with sys 5.49 8.00
CLs no sys 4.85 6.52

RBH∗ 0.5 1 2
Observed 4.5 5.5 7.6
Expected 6.5 8.0 11.1

Table 6.10: Left: Observed and expected limits on ΓH

ΓSM
when profiling a common µ for ggF and VBF

contributions. RBH∗ spans within the range 0.5< RBH∗ <2. Right: Observed and expected limits on ΓH

ΓSM

when profiling µggF and fixing µV BF to its SM expectation.

ΓH
ΓSM

95% CL Observed Expected
-2ln Λ with sys 3.77 8.04
-2ln Λ no sys 3.41 6.52
CLs with sys 5.46 8.01
CLs no sys 4.83 6.52

RBH∗ 0.5 1 2
Observed 4.5 5.5 7.5
Expected 6.5 8.0 11.2

Rgg 95% CL Observed Expected
-2ln Λ with sys 3.97 9.05
-2ln Λ no sys 3.52 7.12
CLs with sys 5.95 9.01
CLs no sys 5.20 7.11

RBH∗ 0.5 1 2
Observed 4.7 6.0 8.6
Expected 7.1 9.0 13.4

Table 6.11: Left: Observed and expected limits on ΓH

ΓSM
when profiling both µggF and µV BF . RBH∗ spans

within the range 0.5< RBH∗ <2. Right: Observed and expected limits on Rgg when profiling µV BF .

The pull distributions are reported in Figure 6.53.

6.14 Conclusions

The measurement in the high mass region of the ZZ and WW final states provides a unique handle
to infer the off-shell signal strength and indirectly constrain the total Higgs width. In this Chapter,
the analysis on the determination of the off-shell signal strength in the ZZ→ 4l channel is performed
with data collected at

√
s=8 TeV using a total integrated luminosity of 20.3 fb−1. The observed

95% confidence level upper limit using the CLs method on the off-shell signal strength is in the
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Figure 6.49: (a) Scan of the negative log likelihood as a function of ΓH

ΓSM
when profiling a common µ

by fixing the ratio of the ggF and VBF signal strengths to the SM expectation. The black (red) dashed
line represents the expected value with (and without) systematic uncertainties, while the solid black line
indicates the observed value. (b) Observed and expected combined 95% CL upper limit on RBH∗ with the
same assumption of (a).
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systematic uncertainties, while the solid black line indicates the observed value. (b) Observed and expected
combined 95% CL upper limit on RBH∗ with the same assumption of (a).
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limit on RBH∗ with the same assumption of (a).
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Figure 6.52: (a) Fit of Rgg when profiling µVBF. The ratio ΓH

ΓSM
is set to 1. (b) Observed and expected

combined 95% CL upper limit on RBH∗ with the same assumption of (a).

217



CHAPTER 6. OFF-SHELL HIGGS COUPLINGS AND WIDTH MEASUREMENTS USING DIBOSON EVENTS

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

TRACKMET_RESOPARASOFT

PM_theta_SR0j_lvlv2012

TOP_ME

EL_EFF_ID_HIGHPT_lvlv2012

QCDscale_ggH_ACCEPT

Matching_ACCEPT

TRACKMET_RESOPERPSOFT

QCDscale_ggH_e1

QCDscale_VV_ACCEPT

pdf_Higgs_ggH

pdf_Higgs_ggH_ACCEPT

pdf_VV_highMass

FakeRate_EL_Uncorrl_OS_HWW_lvlv2012

QCDscale_VV

FakeRate_MU_Uncorrl_OS_HWW_lvlv2012

WW_MTSHAPEMATCHING

LUMI_2012

QCDscale_ggH

ggHVV_Kgg

ggHVV_Interference_scalefactor

20− 15− 10− 5− 0 5 10 15 20(r,P) [%]ρ

θσ)/0θ-θ(

 InternalATLAS -1Ldt = 20.3 fb∫ = 8 TeV s

(a)

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

TRACKMET_RESOPARASOFT

PM_theta_SR0j_lvlv2012

TOP_ME

EL_EFF_ID_HIGHPT_lvlv2012

QCDscale_ggH_ACCEPT

Matching_ACCEPT

TRACKMET_RESOPERPSOFT

QCDscale_ggH_e1

QCDscale_VV_ACCEPT

pdf_Higgs_ggH

pdf_Higgs_ggH_ACCEPT

pdf_VV_highMass

FakeRate_EL_Uncorrl_OS_HWW_lvlv2012

QCDscale_VV

FakeRate_MU_Uncorrl_OS_HWW_lvlv2012

WW_MTSHAPEMATCHING

LUMI_2012

QCDscale_ggH

ggHVV_Kgg

ggHVV_Interference_scalefactor

20− 15− 10− 5− 0 5 10 15 20(r,P) [%]ρ

θσ)/0θ-θ(

 InternalATLAS -1Ldt = 20.3 fb∫ = 8 TeV s

(b)

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

ZTAUTAU_PTZREW

MU_RESCALE_lvlv_2012

WW_MTSHAPEPSUE

pdf_Higgs_ggH

LUMI_2012

QCDscale_Wg_ACCEPT2j_HWW

EL_EFF_ID_HIGHPT_lvlv2012

QCDscale_ggH_ACCEPT

QCDscale_ggH_e1

pdf_Higgs_ggH_ACCEPT

TOP_ME

FakeRate_EL_Uncorrl_OS_HWW_lvlv2012

FakeRate_MU_Uncorrl_OS_HWW_lvlv2012

WW_MTSHAPEMATCHING

QCDscale_VV

ggHVV_Kgg

ABCDsys

pdf_VV_highMass

QCDscale_ggH

ggHVV_Interference_scalefactor

40− 30− 20− 10− 0 10 20 30 40(r,P) [%]ρ

θσ)/0θ-θ(

 InternalATLAS -1Ldt = 20.3 fb∫ = 8 TeV s

(c)

Figure 6.53: Pulls for various nuisance parameters from the on+off-shell combination with µggF and µVBF
floating from (a) the observed unconditional fit (µ̂ = 0.44), (b) the observed conditional fit with µ fixed
at its 95%CL (µ = 3.77), and (c) an unconditional fit to Asimov generated near the expected limit on µ
(µ = 8). In each case, the red points show the fitted value of the nuisance parameters and the error bars are
the uncertainties from the Hessian.
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range 5.5-9.5 when the unknown background-to-signal k-factor ratio RBH∗ is varied between 0.5 and
2 being the median expected range 8.8-14.3. As for the off-shell signal strength, the observed 95%
C.L. upper limit on µoff-shell lies in the range 5.1-8.6 (expected 6.7-11) when varying the unknown k-
factor between half and twice the known signal k-factor. A similar computation has been performed
to determine the gluon-initiated contribution of the off-shell signal strength, namely µggFoff-shell. Its
value encompasses the range 5.3-9.8 (observed) and 7.3-13 (expected). A combination of the off-shell
results with the on-shell measurements of ZZ and WW is exploited. Various assumptions are tested
(Section 6.13.2): the most general result quoted in [141] is based on the fit of ΓH

ΓSM
when profiling

µggF and µV BF . The observed (expected) 95% C.L. upper limits on the total Higgs width ratio to
the SM value span from 4.5 (6.5) to 7.5 (11.2). Adopting the soft collinear approximation, RBH∗=1,
these values translate into an observed (expected) 95% C.L. upper limit on the Higgs boson total
width of 22.7 (33.0) MeV.
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Chapter 7

Off-shell Higgs couplings measurement
using diboson events at HL-LHC
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This Chapter will report on prospects studies on the Higgs off-shell couplings in the High-
Luminosity LHC (HL-LHC) configuration using a simplified version of the main analysis employed
in Chapter 5 (toy model). Section 7.1 will cover the production and validation of MCFM samples
at
√
s=13 TeV and

√
s=14 TeV. Section 7.2 will describe the method to extract the extrapolation

for the HL-LHC scenario starting from the generated samples at
√
s=13 TeV and

√
s=14 TeV while

Section 7.3 will report the results of the off-shell coupling measurement. Similarly to the analysis
previously carried out, this study includes the H → ZZ → 4l final state only.

7.1 Monte Carlo event generation at
√
s=13 TeV and

√
s=14 TeV

Monte Carlo generation with MCFM is performed for
√
s=13 TeV and

√
s=14 TeV on gg → H∗ →

ZZ → 4l signal, gg → ZZ continuum background and gg → (H∗) → ZZ → 4l (comprising sig-
nal, background and interference between signal and background, SBI). As for the previous Monte
Carlo production, the input Higgs mass is set tomH=125.5 GeV whereas the QCD factorisation and
renormalisation scales are taken as mZZ

2 . In order to ensure consistency with the baseline generation
at
√
s=8 TeV, the generation cuts applied at the grid level are the same as the ones detailed in

Section 6.2. In addition, the qq̄ → ZZ POWHEG sample has been generated at
√
s=13 and 14 TeV.

Figure 7.1 illustrates the m4l distribution plotted for the various gg-related processes in the 2e2µ
channel at

√
s=13 TeV as well as the contribution of the signal-to-background negative interference.
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Figure 7.1: (a) Differential cross sections generated with MCFM at
√
s=13 TeV for the gg-initiated pro-

cesses in the 2e2µ channel at the matrix element level. (b) Comparison of the Higgs signal with the inter-
ference contribution.

7.2 Outline of the method

In order to extract the upper limit on the off-shell signal strength for the HL-LHC scenario, the
matrix element-based kinematic discriminant presented in Sections 6.6 and 6.10.3 is adopted. The
various checks on the validity of the PDF extraction are repeated with this new configuration.

The workflow of the analysis is articulated as follows:

• the m4l distributions for the gg-initiated processes, namely signal, background and SBI, and
for the qq̄ → ZZ process are generated with MCFM and POWHEG respectively at

√
s= 8

TeV as well as at
√
s= 14 TeV. The m4l scaling factors are then computed as a function of

the invariant mass for these four contributions (Figure 7.2) and the ME-based discriminant is
reweighted according to the mass of the event.

• The pp → VV +2j (Section 6.3) contribution has been scaled as the gg-related initial state
cross section with respect to the generation performed at

√
s=14 TeV because no Monte Carlo

production at
√
s= 13 and

√
s= 14 TeV is currently available. Anyhow, this term provides a

negligible impact on the final upper limit on the off-shell Higgs couplings.

The generation at
√
s=13 TeV was performed as a validation check of the method; as for the

production at
√
s=14 TeV, two different configurations are explored in the analysis:

i L1 =
∫
Ldt= 300 fb−1;

ii L2 =
∫
Ldt= 3000 fb−1.

The results on the off-shell coupling extraction will be documented in Sections 7.3. The main
assumption underneath this simplified parametrisation [168] is that the signal and background
efficiencies for

√
s=8 TeV are preserved in the high-luminosity-high-energy scenario. Furthermore,

the 4 leptons invariant mass kinematic phase-space of the analysis is identical to that of the main
analysis, e.g. (220< m4l <1000) GeV.
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(a) (b)

(c) (d)

Figure 7.2: m4l-dependent reweighting functions from
√
s=8 TeV to

√
s=14 TeV for the gg → H∗ →

4l signal sample (a), the background gg→ZZ contribution (b), the SBI, comprising signal, background and
interference (c) and the qq̄ →ZZ term (d).

7.2.1 Treatment of the systematic uncertainties

Since the experimental systematics do not play a major role in the off-shell limit determination
(their impact is of the order of 0.3% on the final upper limit on µoff-shell) as observed in Section
6.9.3, these uncertainties are not included in the final computation of the limit.

Recalling equation (6.12), the parametrisation for the gg-scaling of the templates in the fit is:

MCgg→(H∗)→ZZ(µoff-shell) =

(
KH∗(mZZ) · µoff-shell −KH∗

gg (mZZ) ·
√
RBH∗ · µoff-shell

)
·MCSM

gg→H∗→ZZ(7.1)

+ KH∗
gg (mZZ) ·

√
RBH∗ · µoff-shell ·MCSM

gg→(H∗)→ZZ

+ KH∗
gg (mZZ) ·

(
RBH∗ −

√
RBH∗ · µoff-shell

)
·MCcont

gg→ZZ .

The treatment of the systematic uncertainties exploited in this model is expressed below:

• KH∗(mZZ) is the signal LO-to-NNLO k-factor → As in the main analysis (QCD scale uncer-
tainty), 30% fully correlated, among S, SBI and B, systematic uncertainties are assessed.

• RBH∗(mZZ) is the background-to-signal k-factor defined in Section 6.2.2 → 10% systematic
uncertainty is given on this term following the prescriptions in [152].

• An additional 10% normalisation systematics is quoted for the qq̄ → ZZ sample due to QCD
and PDF scale uncertainties as reported in Section 6.9.

223



CHAPTER 7. OFF-SHELL HIGGS COUPLINGS MEASUREMENT USING DIBOSON EVENTS AT HL-LHC

mu
0.2 0.4 0.6 0.8 1 1.2

­l
o

g
 l
ik

e
lih

o
o

d

­0.0004

­0.0002

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

(a)

mu
0.4 0.6 0.8 1 1.2

­l
o

g
 l
ik

e
lih

o
o

d

­0.003

­0.002

­0.001

0

0.001

0.002

0.003

0.004

0.005

(b)

mu
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

­l
o
g

 l
ik

e
lih

o
o

d

0

0.005

0.01

0.015

0.02

(c)

mu
0.4 0.6 0.8 1 1.2 1.4

­l
o
g

 l
ik

e
lih

o
o

d

­0.02

0

0.02

0.04

0.06

0.08

0.1

(d)

Figure 7.3: Likelihood scans on µoff-shell without systematic uncertainties for the configuration L1 (a),
(b) and L2 (c), (d) when using templates with one bin. The left plots indicate the zoom of the likelihood
functions close to the minimum and the colours define the different final states: 4e in green, 4µ in red, 2µ2e
in black and 2e2µ in blue. The right plots show the combined likelihood curves for all the channels together.

The only missing term with respect to the previous approach in Chapter 5 is the systematics on
the interference contribution in the formula (7.1), accounting for a conservative 30% variation on
the templates. The explanation of this addition was demonstrated by the definition of RBH∗(mZZ)
that leads to large cancellations between the interference and the background. This item is now
replaced by an ad hoc systematic uncertainty on RBH∗(mZZ) (second point of the list) for a less
conservative approach. This simple model of uncertainties does not contain shape uncertainties but
only normalisation systematics.

7.3 Results in the 4l channel

The primary step of the process is an internal validation of the results generated at
√
s=8 TeV

against the ones of the main analysis. For this reason, a maximum likelihood fit is performed using
PDFs generated at 8 TeV for 20.3 fb−1 and the statistics-only upper limits on µoff-shell in the 4
lepton channel are found to be fully consistent with the ones reported in Chapter 5.

The 1 bin configuration (no systematic uncertainties are included in the model) has been exploited
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Figure 7.4: Likelihood scans on µoff-shell with (blue) and without (red) systematic uncertainties for the
configuration L1 and L2. The error on µ is computed at the 1σ level.

first: likelihood plots for the configurations L1 and L2 are derived for the four different decay
channels, 4e, 4µ, 2e2µ, 2µ2e and using the four states combination in Figure 7.3. A common min-
imum at µoff-shell=1 is observed for each channel, consistent with the injected value of the signal
strength in the fit. Additionally, the likelihood functions are characterised by a second minimum
for µoff-shell <1. This is due to the presence of the double solution on µoff-shell in equation (7.1). The
position of the second minimum is not coincident for the various channel configurations: given that
the expected total yields in the four channels are different, i.e. the second solution of the equation
(7.1), the second minimum is displaced according to the channel.

Figure 7.4 shows the likelihood curves with and without systematic uncertainties on the config-
urations L1 and L2 respectively for the shape-based analysis. The flex observed for µoff-shell <1,
already present in Figure 6.37 for the main analysis at 20.3 fb−1, gets more and more resolved as
the statistics grows so that the likelihood function becomes parabolic in around ± 1σ around its
minimum, for 3000 fb−1. The value of the fitted µoff-shell at the 1σ level in the two configurations,
labelled with a superscript 1 and 2, are:

µ
(1)
off-shell = 1.00+0.55

−0.94 (no sys), µ(1)
off-shell = 1.00+0.63

−0.97 (with sys). (7.2)

µ
(2)
off-shell = 1.00+0.23

−0.30 (no sys), µ(2)
off-shell = 1.00+0.26

−0.31 (with sys). (7.3)

The values of the likelihood curves at the 2σ level for µoff-shell are: µ
(1)
off-shell = 1.00+0.98

−0.97 (no sys),
µ

(1)
off-shell = 1.00+1.22

−1.00 (with sys) for the configuration at 300 fb−1 and µ(2)
off-shell = 1.00+0.36

−0.85 (no sys),
µ

(2)
off-shell = 1.00+0.50

−0.90 (with sys) for the model generated at 3000 fb−1.

In order to understand the behaviour of the likelihood curves that are characterised by a sec-
ond minimum at µoff-shell ∼ 0.2 and abruptly rise to µoff-shell=0, the m4l distributions are plotted
for different values of the off-shell couplings, e.g. close to the second minimum, µoff-shell ∼ 0.2, the
real minimum, µoff-shell=1, for the configuration where no signal is present (µoff-shell=0) and for the
signal-only component (Figure 7.5 (a)). This study has been performed at 3000 fb−1 generated for√
s=14 TeV. The distributions for µoff-shell=0.2 and µoff-shell=1 are very similar. This results in a

relatively small −2∆ logL between the real minimum of the likelihood curve at 1 and the second
minimum at 0.2 as observed in Figure 7.5 (b). On the contrary, the mass spectrum for µoff-shell=0
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Figure 7.5: Invariant mass distribution generated at
√
s=14 TeV using an integrated luminosity of 3000

fb−1 in the phase space of the analysis (220< m4l <1000) GeV for the signal components and different
SBI contributions (µoff-shell=0, 0.2, 1 and 10). (b) and (c) Different zooms of the likelihood curves without
systematic uncertainties, close to the value µoff-shell=0 and µoff-shell=1, illustrated in Figure 7.4 (b) for 3000
fb−1.

(background-only hypothesis) is different with respect to the other two described before. This leads
to a high value of the −2∆ logL estimator between µoff-shell=0 and µoff-shell=0.2, as in Figure 7.5
(c) causing the enhancement in sensitivity for µoff-shell → 0.

The coupling parametrisation model

Another aspect of this analysis is the opportunity to re-parametrise the fitting model (7.1) by
employing the following transformation on the parameter of interest µ:

µ→ κ2 (7.4)

where κ is the product of the couplings of the Higgs boson to the initial and final states, κ = κg ·κV .
This parametrisation is particularly suitable for the description of beyond SM scenarios because it
is sensitive to possible non-SM positive interference resulting in values of κ below 0. The likelihood
curves for the projections at 300 fb−1 and 3000 fb−1 are illustrated in Figure 7.6. The treatment
of the systematic uncertainties on this measurement follows the prescriptions reported in Section
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Figure 7.6: Likelihood scans on κ with (blue) and without (red) systematic uncertainties for the configu-
ration L1 and L2. The error on the limit on µ is computed at the 1σ level.

7.2.1. As for the previous case, the error on the fitted value is represented by the 1σ band in the
plot:

κ(1) = 1.00+0.24
−0.81 (no sys), κ(2) = 1.00+0.25

−0.85 (with sys). (7.5)

κ(2) = 1.00+0.12
−0.14 (no sys), κ(2) = 1.00+0.13

−0.14 (with sys). (7.6)

The limits from the likelihood curves on the parameter of interest κ at the 2σ level are: κ(1) =
1.00+0.42

−0.97 (no sys), κ(1) = 1.00+0.48
−1.03 (with sys) for the model associated to 300 fb−1 and κ(2) =

1.00+0.17
−0.64 (no sys), κ(2) = 1.00+0.22

−0.72 (with sys) for the configuration generated at 3000 fb−1.

7.4 Conclusions

The measurement of the off-shell signal strength of the Higgs boson using ZZ events in the 4l channel
has been explored in the HL-LHC scenarios, i.e.

√
s=14 TeV for integrated luminosities of 300 fb−1

and 3000 fb−1.

Monte Carlo samples of gg and qq̄-initiated processes are generated with different center-of-mass
energies with MCFM and POWHEG respectively. The measurement of µoff-shell is carried out in
the same way as in the standard analysis (Chapter 5), explicitly by employing a likelihood fit using
matrix-element based templates that have been scaled in order to account for different luminosity
and energy conditions. A simple treatment of the theoretical uncertainties is also introduced in
the model. The best fitted value returned by the likelihood fit on µoff-shell at 3000 fb−1 allows to
determine the parameter of interest in the fit with an accuracy of approximately 25% at the 1σ
level.
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Conclusions

The theme of the analyses presented in this Thesis is the measurement of the Higgs boson prop-
erties in the H → ZZ → 4l decay channel with the ATLAS experiment at the LHC. The main
contributions of my studies throughout the period 2012-2015 are reported in Chapters 4, 5, 6 and
7 and comprised in the ATLAS Run 1 legacy papers.
After the description of the Standard Model framework, the ATLAS detector and the object recon-
structions, Chapter 4 covers a detailed overview on the electron calibration process. In this regard,
the track-cluster combination algorithm is found to improve the energy resolution of low ET elec-
trons by exploiting both track and cluster information into a template-based maximum likelihood
fit. The method has been optimised on a Monte Carlo sample of single electrons and validated
on data and Monte Carlo productions of J/Ψ and the Z dielectron resonances. Conclusively, the
performance is evaluated with Monte Carlo-simulated H → ZZ → 4l gauging the improvement on
the 4-lepton invariant mass resolution. The improvement in resolution is approximately 18-20% for
J/Ψ dielectron decays, and of the order of 3% for Z → ee events. The impact of this algorithm
has been finally tested in the Higgs decay into 4e, 2e2µ and 2µ2e. An approximate gain of ∼ 4%
on the gaussian kernel resolution is found. In light of this result, the algorithm was adopted in
the H → ZZ → 4l analysis. The systematic uncertainties of the method associated to detector
geometry and material were also determined and found to be small.

The main core of this manuscript is however represented by Chapter 5, 6 and 7 where the Higgs
mass and its off-shell signal strength are evaluated.
The Higgs mass is measured in the 4l decay channel with particular interest on the beneficial ef-
fects brought by the improved electron calibration and the track-cluster combination. The mass on
the full 2011 and 2012 sample generated at center-of-mass energies of

√
s=7 TeV and

√
s=8 TeV

respectively is worked out with a 2 dimensional fit on the invariant mass of the 4 lepton final state,
m4l, and on a BDT-based output, explicitly conceived against the main ZZ irreducible background.
The best-fitted value is mH =124.51±0.52 GeV.

The results provided in Chapter 6 are based on a relatively recent approach aimed at indirectly
constraining the Higgs boson width exploiting the m4l high-mass region where the Higgs boson
acts as a propagator. Limits on the Higgs width can be therefore set when merging the off-shell
results with the on-shell ones. Final values are presented as a function of the unknown signal-to-
background gg → (H∗)→ZZ k-factor. The observed 95% confidence level upper limit employing the
CLs method on the off-shell signal strength is in the range 5.5-9.5 when the unknown background-to-
signal k-factor ratio is varied between 0.5 and 2 for a median expected range of 8.8-14.3. Combining
with the on-shell measurement and using all the decay channels in the analysis, i.e. H → ZZ → 4l,
H → ZZ → 2l2ν and H →WW → lνlν, the results lead to an observed (expected) 95% C.L. upper
limit on the Higgs boson total width of 22.7 (33.0) MeV, when the signal-to-background k-factor
ratio is set to 1 (soft collinear approximation).
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Appendix A

E − p combination software

Two versions of the software to perform the E − p combination currently exist at different stages
of the ATLAS offline reconstruction. An offline reconstruction implementation of the combination
code (via Athena) is available in the EMFourMomBuilder class in the egammaTools package on the
ATLAS offline reconstruction SVN. A D3PD-level implementation of the routine has also been de-
veloped, and is available in the egammaFourMomentumError class in the egammaUtils repository,
which is compiled and run using the RootCore software package.
Two C++ classes were developed to implement the likelihood-based combination method. The first
class, CombinedPT_calculator, performs the maximum-likelihood fit of cluster and track distribu-
tions. The second class is CombinedPT_manager, which instantiates each calculator subclass, and
chooses the necessary calculator for a given set of track and cluster measurements. The various
parameters for cluster and track PDFs (mean, σ, α, and n of the fitted Crystal Ball distributions)
are stored in this class, according to the electron transverse momentum, pseudorapidity, and brem
categories. The main function of the class, getCombinedPt, produces the likelihood-based combined
transverse momentum (the CombinedPT_calculator class is therefore called once per electron) and
calculates the fit error on this value, given as,

getCombinedPt(ptTrk, ptCl, etaCl, etaTrk, ECl, dPPin, ptComb, ptErr);

ptTrack, etaCluster, etaTrack, Ecluster and fbrem are user-defined inputs, whereas ptComb and
ptErr are the outputs of the fit.

Both classes are built into a modular subclass of egammaFourMomentumError called FourMomCombiner,
which contains implementations of the likelihood combination method, as well as decision-making
methods based around the respective combination criteria. The motivation for using this modular
subclass is to be able to efficiently modify the methods of one implementation, ensuring consistency
between the two packages. At RootCore level, the combined four momentum is obtained by way of
a TLorentzVector using the following user-facing function,

TLorentzVector buildfourmom(TLorentzVector track,
TLorentzVector cluster,

double qp_LM, double cov_qp,
int charge, double &comb_error);

The values of the PDF’s for track and cluster distributions are extracted both for 2011 and 2012
Monte Carlo single electron samples.
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Appendix B

Boosted decision tree discriminant

A decision tree is a binary tree structured as a classifier similar to the one sketched in Figure
B.1 [118]. The phase space is split in such a way that the repeated binary decisions are exploited
on single variables of interest in order to classify an event as signal or background. The boosting of
a decision tree allows to accomplish this binary choice in a forest-like environment. The trees are
derived in the same training ensemble by reweighting events and then are combined in an output
classifier given by the weighted average of the decision trees.
The algorithm works in two different steps: the training is the process that defines the splitting
criteria aiming at demarcating the phase space of each node. It starts with a single node where
an initial working criteria for the splitting is worked out. Consequently, this procedure is iterated
until the whole structure is constructed. The split is determined by finding the variables among
the discriminant inputs that correspond to the best signal-to-background separation. Hence, the
leaf nodes are classified as being signal or background according to the class the majority of events
belongs to.

Figure B.1: Schematic sketch of a decision tree. Starting from the root node, a sequence of binary splits
using the discriminating variables xi is applied to the input data. Each split uses the variable that, at a
given node, gives the best separation between signal and background when being cut on. The leaf nodes
at the bottom end of the tree are labelled S for signal and B for background depending on the majority of
events that end up in the respective nodes.
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Appendix C

Statistical treatment of the limit
extraction

The main results on the off-shell coupling measurement reported in Chapter 6 are based on the the
profile likelihood ratio and on the CLs method. These statistical concepts will be analysed in this
Appendix.

C.1 Profile likelihood ratio

The likelihood L = L(µ, ~θ) is a function of a parameter of interest µ and nuisance parameters ~θ.
The hypothesis testing performed in the analysis in Chapter 6 are based on the profile likelihood
ratio [131]. The hypothesised values for a parameter of interest µ are tested with the function:

qµ = −2 ln Λ(µ, ~θ) = −2 ln
L(µ,

ˆ̂
~θ)

L(µ̂, ~̂θ)
(C.1)

being µ̂ and ~̂
θ the best values of the parameters obtained by maximising the likelihood function

and
ˆ̂
~θ the values of the nuisance parameters obtained by maximising the likelihood function at a

fixed (injected) value of the parameter of interest µ. Asymptotically, a test statistic −2 ln Λ(µ) of
one parameter of interest µ is distributed as a χ2 distribution with one degree of freedom, for which
the 2-sided 1σ (68% confidence level) uncertainties are given by −2 ln Λ(µ) = 1 and the 2-sided
95% confidence level uncertainties are given by −2 ln Λ(µ) = 3.84.

C.2 Hypothesis testing and the CLs method

The CLs method [166], also called modified frequentist approach, is employed in the analysis and is
defined with the following equation:

CLs(µ) =
CLs+b(µ)

CLb(µ)
=

p0(µalt hyp)

1− p0(µnull hyp)
, (C.2)

where:
pnull hyp0 (µ) =

∫ ∞
m

q(µ)dq (C.3)

and
palt hyp0 (µ) =

∫ m

−∞
q(µ)dq (C.4)
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are the p-values for the null and alternative hypotheses. The null hypothesis coincides with the
PDF for µoff-shell=1 and the alternative hypothesis represents the fitted µoff-shell. q is the employed
test statistic - in our dissertation the profile likelihood ratio defined in (C.1) - that is accomplished
to separate the two hypotheses and m is the median value of the null hypothesis distribution. The
95% C.L. limit is extracted with respect to the unknown variable µoff-shell for CLs=5%. Values of
the parameter of interest µoff-shell fulfilling the condition µoff-shell > µ95%

off-shell are excluded at 95%
confidence level (C.L.).

C.3 Check on the validity of the asymptotic behaviour

The assumption on the validity of the asymptotic hypothesis that holds throughout the whole
analysis in Section 6.12, has been carefully tested. In case of asymptotic behaviour, the test statistic,
q, defined as the profile likelihood ratio formula in (C.1) is distributed as a χ2 with one degree of
freedom. For this test statistics a scan is applied on the Asimov set generated at µoff-shell = 1 and
the value of q as a function of of the parameter of interest µoff-shell is obtained, q1(µoff-shell). The
systematic uncertainties are set to their nominal value to get the distributions of the test statistics
in the statistic-only scenario. The asymptotic behaviour is investigated by throwing 4000 toy Monte
Carlos for different values of injected µoff-shell (µoff-shell=3, 6).
Figures C.1 (a) to (d) show the distributions of the fitted off-shell signal strength as well as the
distributions of the test statistic q for the different injected µoff-shell. The blue lines represent the
q1(µoff-shell) as a function of µoff-shell obtained from the Asimov set generated at µoff-shell= 1. A χ2

distribution with one degree of freedom (red line in the plots) is also superimposed to the histogram
of q. The asymptotic behaviour is checked by comparing the p-values obtained with integral of the
χ2 distribution above q1(µ) (the blue line in the plots) with the p-value obtained as the fraction of
toys with the test statistics above q1(µoff-shell). For a value of µoff-shell =6 (close to the value at which
the corresponding 95% asymptotic limit is derived as in Section 6.12), the asymptotic behaviour
is reached and the p-values derived with the pseudo-experiments and the asymptotic assumption
agree within the statistical accuracy of the samples. As soon as the injected µoff-shell gets smaller,
the integral of the pseudo-experiments for the test statistic above the q1(µoff-shell) value does not
match any longer with the asymptotic one.

C.4 Check on the validity of the limit extracted with the CLs

Another check is performed on the CLs method in light of the hypothesis testing for the ZZ only
combination without systematic uncertainties. Toys are generated for the null hypothesis µoff-shell=1
and for the other alternative hypotheses, µoff-shell=5 and µoff-shell=6. The test statistic q (profile
likelihood ratio) is calculated as a function of the null hypothesis and for the various alternative
hypotheses as in equation (C.1). Figures C.1 (e) and (f) display the distributions of the test statistic
q when using the null hypothesis µoff-shell=1 and the various alternative hypotheses. The CLs value
close 0.05 determining the exclusion of the injected µoff-shell is found at µoff-shell=6, fully compatible
with the result extracted by the fitting procedure in Section 6.12 for the ZZ only configuration.
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Figure C.1: Histograms of the fitted µoff-shell when throwing toys injecting µoff-shell= 3 (a) and 6 (c).
Distributions of the test statistic q (profile likelihood ratio) extracted for different values of the injected
µoff-shell= 3 (b) and 6 (d). The blue lines represent the q1(µoff-shell) as a function of µoff-shell obtained in
the null hypothesis configuration, µoff-shell= 1. A χ2 distribution with one degree of freedom (red line in
the plots) is also superimposed to the histogram of q. Distributions of the test statistic q when injecting
µoff-shell=1 as null hypothesis (blue histograms) and of the other alternative hypotheses on µoff-shell (red
lines) generated at µoff-shell=5 (e) and µoff-shell=6 (f).
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Appendix D

Extraction of the asymptotic formula to
assess the expected significance for the
BDT cut-based approach

The asymptotic formula to estimate the expected significance of the cut-based approach on the
BDT output detailed in Section 5.3 is given below:

f(S,B) =

√
2 ·
[
(S +B) ·

(
1 +

S

B

)
− S

]
. (D.1)

The likelihood function L for the S+B hypothesis is written as follow:

L(S +B) =
e−(S+B)(S +B)N

N !
(D.2)

where S is the number of signal events, B is the number of background events and N is the number
of entries. Likewise, for the background-only hypothesis, equation (D.2) becomes:

L(B) =
e−BBN

N !
(D.3)

Let us define R the likelihood ratio:

R =
L(S +B)

L(B)
=
e−S(S +B)N

BN
= e−S(1 +

S

B
)N (D.4)

Starting from (D.4), the following statement holds:

− 2 logR = 2S − 2N · log(1 +
S

B
). (D.5)

This equation shows the value of the ratio L(S+B)
L(B) , defined in (D.4) when N varies. When the

quantity on the left part of (D.5) is small, the value of the likelihood ratio R is large and vice-versa.
Be N = S + B the number of observed events in data. Should we replace the observed value of N
in (D.5), we could obtain:

2 logR = 2 (S +B) · log

(
1 +

S

B

)
− 2S. (D.6)

It is therefore trivial to demonstrate that the equation above coincides with the asymptotic
formula in (5.4) when extracting the square root:
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APPENDIX D. EXTRACTION OF THE ASYMPTOTIC FORMULA TO ASSESS THE EXPECTED
SIGNIFICANCE FOR THE BDT CUT-BASED APPROACH

√
2 logR(N = S +B) =

√
2 ·
[
(S +B) ·

(
1 +

S

B

)
− S

]
. (D.7)
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Appendix E

Expected and observed distributions in
the H → ZZ → 4l analysis
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Figure E.1: m4l distribution of the selected candidates for
√
s= 7 TeV and

√
s= 8 TeV for 4e and 4µ

sub-channels of the analysis compared to the background expectations when BDT>0 to select the signal-like
region of the BDT phase-space. The contribution of the reducible background is also shown separately as
well as the systematic uncertainties drawn as a hatched grey area.
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Figure E.2: m4l distribution of the selected candidates for
√
s= 7 TeV and

√
s= 8 TeV for the different

sub-channels of the analysis compared to the background expectations. The contribution of the reducible
background is also shown separately as well as the systematic uncertainties drawn as a hatched grey area.
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Figure E.3: m12 (a) and m34 (b) distribution of the selected candidates for
√
s= 7 TeV and

√
s= 8 TeV

compared to the background expectations in the region 110-140 GeV. The contribution of the reducible
background is also shown separately as well as the systematic uncertainties drawn as a hatched grey area.
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