Joaquín Liana 
  
Henri Je 
  
Hiroshi Iritani 
  
Tom Coates 
  
  
  
  
  
  
Keywords: Quantum singularity theory, mirror symmetry and integrable hierarchies Algebraic geometry, mirror symmetry, Gromov-Witten theory, Fan-Jarvis-Ruan-Witten theory, matrix factorization, cohomological field theory, quantum product, virtual cycle, integrable hierarchy, Givental formalism, singularity

Cette thèse est dédiée à mes parents, à mes frères et soeur, ainsi qu'à ma très chère femme.

Qui veut aller loin ménage sa monture !

Je voudrais tout d'abord remercier mon directeur de thèse Alessandro Chiodo pour m'avoir proposé un sujet de recherche passionnant avec de nombreuses perspectives d'évolution, pour m'avoir encadré et conseillé avec énergie depuis quatre années, pour les nombreuses discussions mathématiques, pour toutes les heures passées à relire avec minutie mon article et ma thèse et enfin pour la liberté totale accordée durant cette thèse. Il est selon moi un exemple à suivre pour tout directeur de thèse.

Ensuite, je remercie Samuel Boissière et Alexander Polishchuk pour l'immense travail de rapporteur et pour leurs rapports très détaillés sur cette thèse et, pour ce dernier, d'avoir écrit avec Arkady Vaintrob un article fondateur qui a été pour moi une des portes d'entrée dans ce sujet.

Je remercie bien entendu Laurent Manivel, Claire Voisin et Dimitri Zvonkine pour me faire l'honneur d'être membres du jury. Laurent Manivel a plus particulièrement marqué le début de ma thèse, effectuée à Grenoble, et m'a invité à donner mon premier exposé dans une conférence internationale sur mes résultats. Claire Voisin, sans le savoir, m'accompagne depuis mon entrée à l'École Normale Supérieure. En effet, dès la première semaine, elle a donnée à l'occasion de l'inauguration de la Fondation Mathématiques de Paris un exposé qui m'a beaucoup impressionné et donné un aperçu de la géométrie moderne. Par la suite, j'ai cherché à la bibliothèque un de ses écrits et je suis tombé par hasard sur son livre Symétrie Miroir qui a très largement contribué au choix de ce sujet de recherche. Dimitri Zvonkine est pour moi un exemple, j'apprécie ses discussions mathématiques très riches, ainsi que ses exposés clairs et animés.

Je tiens à remercier tous les

à jamais dans ma mémoire : Roland, Cécile, Gautier, Furcy, Igor, Günther, Matthieu, Simon et les autres du rock, Solène, Karina, Loïc, Pierre, Quentin, Jean-Marie, Thibault, etc. Je remercie aussi mes excellents professeurs qui ont été pour moi sources d'inspirations : Frédéric Paulin, Pierre Pansu, Jean Bertoin, Wendelin Werner, Jean-Michel Raymond, ainsi que mon professeur de MPSI2 Denis Choimet qui sans doute a eu l'influence la plus décisive sur mon choix de faire des mathématiques. Je remercie aussi Edward Frenkel, dont les exposés éclairants ont eu une influence positive sur le choix de mon sujet, et Alain Connes pour m'avoir invité à l'IHES et conseillé sur le choix de ma thèse.

Pour finir, un grand nombre de remerciements vont naturellement à ma famille et à mes amis. Tout d'abord, je dois beaucoup à mes parents, Patrick et Elisabeth, pour avoir créé un climat propice au développement de mon imagination et de ma curiosité, pour la liberté qu'ils m'ont donnée et la stimulation pour aller voir toujours plus loin dans les cours de mathématiques. Je remercie ma soeur Laëtitia pour notre complicité, mon frère Raphaël pour, comme le veut la légende, m'avoir appris les maths, mon frère Manu pour m'avoir tiré vers le haut en suivant son exemple -la soutenance de sa thèse m'a très tôt impressionnée -et mon frère Steph pour les anciennes conversations philosophiques sur les sciences.

Je remercie également tous les amis qui m'ont soutenu depuis plusieurs années, Romain, Florent, Etienne, Quentin, Sylvie, Clément et Anaïs depuis le lycée, Roland et Cécile, Gautier et Magali (et Ewenn), Karina et Manu, Romain et Marie, Dimitri et Anne-Lise, Vincent et Noémie, Mathieu, etc depuis l'ENS, ainsi que toute ma belle-famille au sens large, en particulier Christine et Nicolas. Je remercie aussi tout le groupe de Gospel PicPulse qui m'a apporté de la joie et m'a fait devenir ce que je suis, en particulier Serge Gougbèmon, Perrine, Claire, Quentin, Cyril, Géraldine, Frédéric et bien sûr le pupitre Basse (les vrais) avec Jonathan, Eudes et Philippe.

Enfin, je ne saurais comment remercier suffisamment celle qui a partagé toutes mes joies et mes peines, qui m'a conseillé sur tous mes choix stratégiques d'exposition et de rédaction, qui m'a coaché sans relâche, m'a encouragé et motivé dans les moments de doute. Elle est ma compagne de ce grand voyage dont vous allez lire le carnet et je l'en remercie de tout mon coeur. Merci Solène.

Résumé

Dans cette thèse, nous établissons un résultat de symétrie miroir dans une gamme de cas pour lesquelles les techniques habituelles reposant sur la concavité ou sur la convexité ne fonctionnent pas. Plus précisément, nous travaillons sur la théorie quantique des singularités développée par Fan, Jarvis, Ruan et Witten, et vue comme un analogue de la théorie de Gromov-Witten via la correspondance LG/CY. Notre résultat principal donne une formule explicite pour le cycle virtuel de Polishchuk et Vaintrob en genre zéro. Dans les cas non-concaves des polynômes dits inversibles, elle nous procure un théorème de compatibilité entre le cycle virtuel de Fan-Jarvis-Ruan-Witten et celui de Polishchuk-Vaintrob. Pour les polynômes qui sont de plus de type chaine, nous obtenons une preuve d'un théorème de symétrie miroir pour la théorie FJRW. Enfin, nous généralisons notre résultat principal et calculons le produit d'intersection entre la classe de Chern maximale du fibré de Hodge et le cycle virtuel en genre quelconque. Spécifié au cas de la théorie des courbes 3-spin, ceci mène à la preuve d'une conjecture de Buryak sur l'équivalence entre la hiérarchie DR et la hiérarchie 3-KdV.
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Introduction

Depuis vingt ans, la symétrie miroir est une source d'inspiration très riche et joue un rôle moteur dans le développement de nombreuses théories mathématiques, telle que la théorie de Gromov-Witten. Venant de la physique théorique, la formule de Candelas, de la Ossa, Green et Parkes [START_REF] Candelas | A pair of Calabi-Yau manifolds as an exact soluble superconformal theory[END_REF] est l'un des premiers témoins de ce phénomène, en reliant explicitement une série génératrice d'invariants numériques N d d'une hypersurface quintique X 5 de P 4 (C) à une série hypergéométrique f solution de l'équation de Picard-Fuchs

q d dq 4 f = 5q 5q d dq + 1 5q d dq + 2 5q d dq + 3 5q d dq + 4 f, (1) 
nous renvoyons au théorème 0.5 pour un énoncé plus précis ; nous esquissons ici l'idée de la définition des invariants N d centrée sur l'espace des applications stables de Kontsevich. Les invariants N d , appelés invariants de Gromov-Witten, apportent des informations sur la géométrie énumérative de X 5 . De façon imprécise, il s'agit de dénombrer des courbes complexes de genre zéro et de degré d tracées sur X 5 . De façon rigoureuse et plus généralement, ce sont des nombres d'intersections N g,n,β sur les espaces de modules d'applications stables introduits par Kontsevich [START_REF] Kontsevich | Enumeration of rational curves via torus actions. The moduli space of curves (Texel Island[END_REF]. Pour une variété compacte kählérienne X et β ∈ H 2 (X), l'espace des applications stables M g,n (X; β) est une compactification de l'espace des morphismes de degré β de courbes complexes de genre g avec n points marqués vers X. Cet espace est lisse dans certains cas spéciaux (par-exemple g = 0, X = P N ) et, en utilisant le théorème de Riemann-Roch, de dimension n + (1 -g)(dim(X) -3) + β c 1 (T X) =: vdim. En général, même pour g = 0, l'espace M g,n (X; β) est singulier et possède des composantes irréductibles de différentes dimensions. Le point central de la théorie de Gromov-Witten est de remplacer le cycle fondamental par un cycle de M g,n (X; β) de dimension complexe vdim, appelé cycle fondamental virtuel et noté M g,n (X; β) vir Introduction genre 1 a été calculé par Zinger [START_REF] Zinger | Standard vs. reduced genus-one Gromov-Witten invariants[END_REF] et les physiciens Huang-Klemm-Quackenbush [START_REF] Huang | Topological string theory on compact calabi-yau: Modularity and boundary conditions[END_REF] ont des prédictions jusqu'au genre 52, mais pas au-delà. Quand aux hypersurfaces dans des espaces projectifs à poids P(w 1 , . . . , w N ), même le calcul des invariants de Gromov-Witten de genre zéro n'est pas complètement résolu. Un premier cas qui pose problème est celui des hypersurfaces plongées dans des espaces projectifs à poids qui ne sont pas de type Gorenstein [START_REF] Coates | The quantum Lefschetz hyperplane principle can fail for positive orbifold hypersurfaces[END_REF]. Nous en produisons une large gamme d'exemples, via les polynômes de type chaines. Ce sont les premiers cas rencontrés en genre zéro où les techniques connues à présent (twisted theories au sens de Givental) échouent.

Cette thèse s'inscrit dans ce cadre et répond pour la théorie quantique des singularités à trois problèmes encore ouverts pour la théorie de Gromov-Witten :

1. calcul complet du cycle virtuel dans les cas des singularités de type chaines susmentionnées, en absence des conditions de convexité/concavité et pour un groupe de symétries maximal (voir le théorème 0.2), 2. preuve d'un énoncé de symétrie miroir pour ces même singularités (voir le théorème 0.5), [START_REF] Arbarello | Geometry of Algebraic Curves[END_REF]. calcul en genre arbitraire d'accouplements entre le cycle virtuel et la classe de Chern maximale du fibré de Hodge, et ce pour tous groupes de symétries (voir le théorème 0.6).

Ceci conduit aussi à une preuve d'une conjecture due à Buryak (voir le théorème 0.7).

Remarque 0.1. Très récemment, l'article [START_REF] He | Landau-Ginzburg mirror symmetry conjecture[END_REF] a annoncé une avancée importante qui s'appuie sur notre théorème 0.2 : en effet, celui-ci, combiné avec l'équation dite WDVV (Witten-Dijkgraaf-Verlinde-Verlinde), détermine complètement le degré de la classe virtuelle sur l'espace de modules M 0,n des courbes stables de genre zéro, et ce pour tout polynôme inversible muni d'un groupe de symétries maximal. De ce fait découle un théorème en tout genre grâce à une propriété de reconstruction déjà esquissée par Yongbin Ruan lors de la conférence Geometry and Physics of the Landau-Ginzburg Model IPMU 2012.

Le schéma suivi par les auteurs de [START_REF] He | Landau-Ginzburg mirror symmetry conjecture[END_REF] est le suivant : on vérifie que la théorie avec groupe maximal de symétries est le miroir d'une algèbre de Frobenius génériquement semi-simple [START_REF] Krawitz | FJRW rings and Landau-Ginzburg mirror symmetry[END_REF] puis on applique le théorème de reconstruction de Teleman [START_REF] Teleman | The structure of 2D semi-simple field theories[END_REF] sur les théories cohomologiques des champs semi-simples, ce qui induit un théorème de symétrie miroir en genre supérieur au sens de Costello-Li [START_REF] Costello | Quantum BCOV theory on Calabi-Yau manifolds and the higher genus B-model[END_REF]. Le résultat de cette thèse comme cet article renforce sans équivoque l'espoir initial que la théorie quantique des singularités est plus facile à calculer et peut mener à de nouveaux résultats via la correspondance LG/CY. Le schéma suivi par les auteurs de [START_REF] He | Landau-Ginzburg mirror symmetry conjecture[END_REF] mérite d'être généralisé et exploré davantage, comme par-exemple le lien entre la symétrie miroir au sens de Costello-Li [START_REF] Costello | Quantum BCOV theory on Calabi-Yau manifolds and the higher genus B-model[END_REF] et celle étudiée dans cette thèse.

Problème principal

En théorie de Gromov-Witten, comme dans cette thèse, la problématique est d'origine géométrique : caractériser l'image directe d'un fibré vectoriel et en tirer des invariants numériques.

Version simplifiée

Nous commençons par un exemple simplifié. Soit C → S une famille de courbes complexes lisses, équipée d'un fibré en droites L, avec S connexe, et regardons l'image directe de ce fibré.

C π S L π * π * L
Il se peut que nous soyons dans l'une de ces deux situations idéales :

-L est convexe : pour tout point s ∈ S, on a H 1 (C s , L s ) = 0, -L est concave : pour tout point s ∈ S, on a H 0 (C s , L s ) = 0. Dans le cas convexe, l'image directe R 0 π * L est un fibré vectoriel de fibre H 0 (C s , L s ) en s. Dans le cas concave, c'est l'image directe supérieure R 1 π * L qui est un fibré vectoriel, de fibre H 1 (C s , L s ) en s.

Le calcul des nombres N d pour la quintique X 5 se déroule dans le cas idéal de la convexité. Plus précisément, nous considérons

X CP 4 O(5) f C π S f * O(5) π * π * f * O(5)
où les courbes complexes sont de genre zéro, et nous vérifions que le fibré f * O(5) est convexe, si bien que π * f * O(5) est un fibré vectoriel. Par-ailleurs, l'espace de modules M 0,0 (P 4 ; d) est lisse et sa dimension est égale au rang de ce fibré vectoriel. Nous avons finalement
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Pour la théorie quantique des singularités, que j'expliquerai plus loin, le fibré en droites L sera concave dans certains cas particuliers, et la classe c max interviendra aussi de façon naturelle dans le calcul du cycle virtuel, voir équation [START_REF] Berglund | Landau-Ginzburg orbifolds, mirror symmetry and the elliptic genus[END_REF]. Le véritable problème est de faire les calculs dans les cas non convexes/concaves.

De la classe de Chern maximale au cycle virtuel

En général, la fonction numérique qui à un point géométrique s de S associe la dimension de l'espace vectoriel H i (C s , L s ), i = 0 ou 1, n'est pas constante : elle n'est que semi-continue supérieurement. Les images directes supérieures R i π * L, i = 0 ou 1, ne sont donc pas des fibrés vectoriels.

En revanche, la différence dim H 0 (C s , L s ) -dim H 1 (C s , L s ) est constante lorsque s varie, d'après le théorème de Riemann-Roch, justifiant l'étude de l'élément R • π * L. Celui-ci peut être représenté par un complexe de fibrés vectoriels R • π * L = [A → B], de façon non-unique. Audessus d'un point s, le noyau du morphisme A s → B s vaut H 0 (C s , L s ) et son conoyau vaut H 1 (C s , L s ). Formellement, cet objet appartient à la catégorie dérivée D b (S) de la base S.

Guidés par la propriété de factorisation du cycle virtuel et par l'exemple de X 5 , nous sommes amenés à chercher une classe multiplicative qui, appliquée à l'élément R • π * L, donnera la classe virtuelle, c'est-à-dire le dual de Poincaré du cycle virtuel. La classe de Chern maximale c max ne s'applique qu'à des fibrés vectoriels, parce qu'elle n'est pas inversible ; nous ne pouvons donc pas écrire

c max (R • π * L) " = " c max (B) c max (A) . (2) 
Pourtant, il s'agit de l'idée heuristique que nous nous faisons de la classe virtuelle : elle prolonge la classe c max à certains éléments de la K-théorie. En effet, dans la théorie de Gromov-Witten comme dans cette thèse, l'élément dérivé R • π * L n'est pas quelconque mais vérifie des conditions supplémentaires qui permettent de lui attacher une telle classe. En particulier, le théorème principal 0.2 de cette thèse illustre sous une forme correcte l'idée heuristique [START_REF] Abramovich | Compactifying the space of stable maps[END_REF].

Théorie de Gromov-Witten pour la quintique

Les nombres N d ne sont qu'une partie des invariants de X 5 . Plus généralement, la théorie de Gromov-Witten de l'hypersurface X 5 porte sur l'espace de modules 

M g,n (X 5 ; β) = / ∼ X 5 CP 4 f C π S σ 1 , . . . ,
p * M 0,n (X 5 ; ι * β) vir ∩ ev * 1 (ι * (a 1 )) • • • ev * n (ι * (a n )) = p * M 0,n (P 4 ; β) ∩ ev * 1 (a 1 ) • • • ev * n (a n ) ∪ c max (π * f * O(5) (3) 
où a 1 , . . . , a n ∈ H * (P 4 ; C). Ceci nous permet d'exprimer une partie des invariants de Gromov-Witten de X 5 en fonction de ceux de P 4 [START_REF] Givental | Equivariant Gromov-Witten invariants[END_REF][START_REF] Givental | A mirror theorem for toric complete intersections. Topological field theory, primitive forms and related topics[END_REF], précisément ceux qui correspondent aux nombres d'intersection avec des classes de la cohomologie ambiante, c'est-à-dire dans l'image du morphisme ι * : H * (P 4 ; C) → H * (X 5 ; C). Sous l'hypothèse de convexité, la formule (3) a été généralisée aux hypersurfaces dans les espaces projectifs à poids [START_REF] Coates | Quantum Riemann-Roch, Lefschetz and Serre[END_REF], dont les invariants de Gromov-Witten sont calculés dans [START_REF] Coates | The Quantum Orbifold Cohomology of Weighted Projective Spaces[END_REF].

Mis à part certains cas particuliers comme la théorie en genre zéro pour X 5 , l'hypothèse de convexité n'est pas valide, même en genre g = 0, voir [START_REF] Coates | The quantum Lefschetz hyperplane principle can fail for positive orbifold hypersurfaces[END_REF]. Nous devons donc travailler avec l'élément dérivé R • π * L, comme expliqué à la section précédente, et les calculs des invariants de Gromov-Witten sont alors complètement ouverts. De plus, même sous l'hypothèse de convexité, les techniques actuelles ne permettent généralement de déterminer que les nombres d'intersection avec des classes cohomologiques ambiantes de X, comme dans l'équation [START_REF] Arbarello | Geometry of Algebraic Curves[END_REF].

Les deux problèmes mentionnés ci-dessus touchent au coeur de la théorie de Gromov-Witten et n'ont pour le moment aucune solution connue. Dans cette thèse, nous apportons des réponses à ces questions dans le cadre de la théorie quantique des singularités [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF][START_REF] Fan | The Witten equation and its virtual fundamental cycle[END_REF][START_REF] Witten | Phases of N=2 theories in two dimensions[END_REF], où ces deux difficultés se retrouvent aussi. Introduction d'un couple (W, G) où W est un polynôme quasi-homogène à singularité isolée en zéro et G est un groupe de matrices diagonales qui laissent ce polynôme invariant. Sauf mention contraire, nous considérons dans cette thèse le cas où G est le groupe maximal G max des symétries de W .

La théorie FJRW de (W, G max ) est une théorie de l'intersection sur un espace de modules S g,n (W, G max ) qui paramètre des courbes complexes (champêtres) marquées de genre g munies de fibrés en droites L 1 , . . . , L N satisfaisant les relations

L ⊗m 1 1 ⊗ • • • ⊗ L ⊗m N N ω log (4) 
pour chaque monôme M = λ • x m 1 1 • • • x m N N de W (x 1 , . . . , x N ), où ω log := ω C/S (σ 1 + • • • + σ n ) est le fibré canonique logarithmique (voir la section 1.2 pour plus de précisions).

S g,n (W, G max ) = / ∼ C π S L 1 ⊕ • • • ⊕ L N σ 1 , . .

. , σ n

Dans le cas du genre zéro avec certains polynômes particuliers, comme par-exemple W = x 5 1 + • • • + x 5 5 , les fibrés en droites L 1 , . . . , L N sont concaves. Nous disposons donc de fibrés vectoriels R 1 π * L 1 , . . . , R 1 (

) 5 
En général, l'hypothèse de concavité est fausse, même en genre g = 0. Bien que son calcul reste largement ouvert, la classe virtuelle est bien définie et admet en fait deux constructions. La première construction est due à Fan, Jarvis et Ruan [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF][START_REF] Fan | The Witten equation and its virtual fundamental cycle[END_REF] et est une construction analytique. Par la suite, Polishchuk et Vaintrob [START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF] ont construit la classe virtuelle de façon algébrique et il n'est pas clair que ces deux constructions coïncident en général. Dans cette thèse, nous utilisons la construction algébrique et nous la calculons explicitement pour une famille de polynômes qui ne vérifient pas la concavité en genre g = 0, voir Théorème 0.2. De plus, nous montrons la compatibilité avec la version analytique pour cette famille de polynômes, voir Théorème 2.38. Enfin, nous prouvons un théorème de symétrie miroir, voir Théorème 0.5, dans le même esprit que Givental [START_REF] Givental | Equivariant Gromov-Witten invariants[END_REF] vis-à-vis de la formule de Candelas, de la Ossa, Green et Parkes [START_REF] Candelas | A pair of Calabi-Yau manifolds as an exact soluble superconformal theory[END_REF] de la quintique X 5 de P 4 . Dans le cas précis du polynôme W 5 = x 5 1 + • • • + x 5 5 correspondant à l'hypersurface X 5 , ce théorème a été prouvé par Chiodo et Ruan [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations[END_REF]Thm 1.1.1] et exprime une série génératrice des invariants FJRW de genre zéro pour ce polynôme en fonction d'une série hypergéométrique f solution de l'équation de Picard-Fuchs

t d dt 4 f = 5 5 t -5 5t d dt -1 5t d dt -2 5t d dt -3 5t d dt -4 f. (6) 
L'observation principale est alors que l'équation [START_REF] Berglund | A generalized construction of mirror manifolds[END_REF] coïncide avec l'équation [START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF] en faisant le changement de variables q = t -5 . C'est là l'une des motivations principales pour l'étude de la théorie quantique des singularités : il existe une transformation permettant de passer de la fonction génératrice des invariants FJRW de genre zéro de W 5 à la fonction génératrice pour la théorie de Gromov-Witten de X 5 . Plus généralement, cette correspondance est établie par Chiodo-Iritani-Ruan [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence[END_REF] pour les hypersurfaces Calabi-Yau des espaces projectifs à poids P(w 1 , . . . , w N ) qui sont Gorenstein, c'est à dire tels que le degré de l'hypersurface vaut d = w 1 + • • • + w N et que chacun des poids w j le divise.

Solution proposée dans cette thèse via la K-théorie

La construction de la symétrie miroir pour la théorie de Fan-Jarvis-Ruan-Witten est proposée par Berglund-Hübsch et Krawitz [START_REF] Berglund | A generalized construction of mirror manifolds[END_REF][START_REF] Krawitz | FJRW rings and Landau-Ginzburg mirror symmetry[END_REF] et ne s'applique qu'aux polynômes dits inversibles, c'est-à-dire avec singularité isolée en zéro et avec autant de variables que de monômes. D'après la classification de Kreuzer-Skarke [START_REF] Kreuzer | On the classification of quasihomogeneous functions[END_REF], tout polynôme inversible s'écrit comme une somme de Thom-Sebastiani3 de polynômes élémentaires de type Fermat, chaine ou boucle :

(a) x a+1 (Fermat), (b) x a 1 1 x 2 + • • • + x a c-1 c-1 x c + x ac+1 c avec c ≥ 2 (chaine), (c) x a 1 1 x 2 + • • • + x a l-1 l-1 x l + x a l l x 1 avec l ≥ 2 (boucle).
Dans cette thèse, nous donnons une solution explicite au problème de la non-concavité en genre zéro, dans le cadre de la théorie FJRW, pour tout polynôme de type chaine 4 , voir Théorème 0.2. Précisément, nous exprimons la classe virtuelle comme la limite d'une classe caractéristique inversible c t évaluée en les éléments dérivés R • π * L j . Notons que contrairement aux approches convexes/concaves développées dans [START_REF] Coates | Quantum Riemann-Roch, Lefschetz and Serre[END_REF][START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations[END_REF][START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence[END_REF], cette classe n'est pas la classe d'Euler équivariante. Nous en donnons une description ci-dessous.

Défaut de concavité

Pour deux fibrés vectoriels complexes A et B sur la base S, nous définissons

c t (B -A) := c t (B) c t (A) = Ch λ -t B ∨ λ -t A ∨ • TdB TdA ∈ H * (S)[[t]], (7) 
où λ t est la structure de λ-anneau pour la K-théorie présentée dans [START_REF] Fulton | Riemann-Roch algebra[END_REF] :

λ t (B -A) := p,q≥0 Sym p (A) ⊗ Λ q (B) ∈ K 0 (S)[[t]]. (8) 
Nous obtenons ainsi un morphisme multiplicatif c t : K 0 (S) → H * (S) [[t]], c'est-à-dire qu'il vérifie l'égalité c t (U + V ) = c t (U ) • c t (V ). De plus, on montre que lim t→1 c t (B) = c max (B). ( 9)
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Puisque la classe c max n'est pas inversible, la limite lim t→1 c t (•) ne converge généralement pas 5 , mais dans notre cas, les fibrés vectoriels A et B ne sont pas quelconques. Ils proviennent de fibrés en droites qui vérifient les relations algébriques particulières données en [START_REF] Victor | Conifold transitions and mirror symmetry for complete intersections in Grassmannians[END_REF]. Ces relations algébriques font apparaître naturellement une structure que l'on définira, et que nous appellerons complexe récursif, voir Définition 2.4. Ces complexes de fibrés se distinguent par des propriétés d'annulation en cohomologie très utiles au calcul de la classe virtuelle et sont inspirés de la décomposition de Kreuzer-Skarke des polynômes inversibles, de la construction de Polishchuk-Vaintrob [START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF], ainsi que de l'approche de Chiodo [START_REF] Chiodo | The Witten top Chern class via K-theory[END_REF] à la classe virtuelle. Le résultat principal de cette thèse est le calcul complet et explicite de la classe virtuelle pour les polynômes de type chaine, via le théorème suivant.

Théorème 0.2 (voir le thm 2. [START_REF] Coates | Quantum cohomology and crepant resolutions: A conjecture[END_REF]. 

Soient W = x a 1 1 x 2 + • • • + x a N -1 N -1 x N + x a N N un
L N -2k := L N -2k (-σ 1 -• • • -σ n ) et L N -2k-1 := L N -2k-1
et l'entier degvir est la moitié du degré cohomologique de la classe virtuelle degvir = Ch 0 (-Rπ * (L 1 )) + • • • + Ch 0 (-Rπ * (L N )).

Remarque 0.3. Les modifications L 1 , . . . , L N des fibrés en droites L 1 , . . . , L N apparaissent naturellement dans la construction de Polishchuk-Vaintrob [START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF] via les factorisations matricielles et fournissent une solution au problème de la cohomologie non ambiante présenté autour de l'équation (3) dans le cadre de la théorie de Gromov-Witten. Nous allons maintenant détailler ce point.

Traitement de la cohomologie non ambiante

Cette partie peut être laissée de côté dans un premier temps et le lecteur intéressé par la symétrie miroir peut aller directement à la partie suivante. Néanmoins, nous souhaitons ici faire apprécier au lecteur un aspect de cette thèse tout aussi important que la non-concavité : les premiers résultats sur la cohomologie primitive. C'est également l'occasion de montrer pourquoi Polishchuk et Vaintrob [START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF] introduisent des factorisations matricielles.

Nous avons vu que la cohomologie intervenant dans la théorie de Gromov-Witten de X 5 est H * (X 5 ; C) et que la partie ambiante est l'image du morphisme ι * : H * (P 4 ; C) → H * (X 5 ; C). Nous pouvons réécrire ces groupes de cohomologie comme suit : 

H
est appelé cohomologie primitive de X 5 et est un sous-espace supplémentaire à la cohomologie ambiante.

De façon similaire, la cohomologie à considérer dans la théorie FJRW du couple (W, G), où le polynôme W dépend de N variables, est

H * FJRW (W, G) := H * CR C N /G , W -1 (t); C , t ∈ C * ,
où l'indice CR signifie cohomologie de Chen-Ruan [START_REF] Chen | A New cohomology theory for orbifold[END_REF] et où C N /G est un champ quotient. La cohomologie de Chen-Ruan est adaptée pour ce type de champs et vaut précisément

H * FJRW (W, G) = g∈G H * ((C N ) g , W -1 g (t); C) G , t ∈ C * ,
où (C N ) g et W g désignent les parties invariantes de C N et de W sous l'action de la matrice diagonale g ∈ G. De façon plus explicite, nous pouvons réécrire H * FJRW (W, G) comme dont le noyau est appelé cohomologie large (ou broad en anglais, [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF]) de (W, G) et dont l'image est un sous-espace supplémentaire appelé cohomologie étroite (ou narrow en anglais, [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF]) :

H * FJRW (W, G) = g∈G Jac(W g ) G , ( 12 
H * FJRW (W, G) = H * large (W, G) ⊕ H * étroit (W, G).
De façon explicite, un automorphisme g ∈ G est étroit si (C N ) g = 0 et large sinon et nous avons

H * large (W, G) =
Introduction rappelons que le groupe de Picard d'un point champêtre Bµ r est le groupe Z/rZ des caractères de µ r ), voir (1.14). D'après la relation [START_REF] Victor | Conifold transitions and mirror symmetry for complete intersections in Grassmannians[END_REF], ces monodromies fournissent une matrice diagonale k i ∈ G max pour chaque point marqué σ i et donnent lieu à différentes composantes connexes de l'espace de modules S g,n (W, G max ) =

(k 1 ,...,kn)∈(Gmax) n S g,n;k 1 ,...,kn (W, G max ).

C'est ainsi que les automorphismes k 1 , . . . , k n sont implicites dans l'écriture L j du membre de droite de l'équation [START_REF] Candelas | A pair of Calabi-Yau manifolds as an exact soluble superconformal theory[END_REF] et que le membre de gauche dépend également de ces automorphismes ; on devrait écrire S 0,n;k 1 ,...,kn (W, G max ) vir PV [START_REF] Chiodo | The Witten top Chern class via K-theory[END_REF] pour préciser les monodromies des fibrés en droites L 1 , . . . , L N aux points marqués σ 1 , . . . , σ n . Par-ailleurs, dans sa version algébrique développée par Polishchuk-Vaintrob [START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF], la classe virtuelle provient d'une factorisation matricielle PV, dite fondamentale et décrite à la section 1.3.3, via le diagramme suivant : Ch(•)

K := K 1 ⊗ • • • ⊗ K n e k 1 ⊗ • • • ⊗ e kn Ch(•) N j=1 Td(-R • π * L j ) K ⊗ PV S 0,n;k 1 ,...,kn (W, G max ) vir PV
Les classes de cohomologie e k 1 , . . . , e kn ∈ H * FJRW (W, G max ) sont relevées au niveau des factorisations matricielles, puis nous prenons le produit tensoriel de cette factorisation matricielle K avec la factorisation matricielle fondamentale PV. Le caractère de Chern de ce produit tensoriel ne dépend pas des représentants K 1 , . . . , K n choisis pour les classes k 1 , . . . , k n , voir [71, Lemma 1.2.1].

Remarque 0.4. Lorsque la classe de cohomologie k i est étroite, nous vérifions que la factorisation matricielle K i est triviale. C'est donc la présence d'automorphismes larges qui se traduit par un produit tensoriel non-trivial entre la factorisation matricielle K et la factorisation matricielle fondamentale PV. Ce problème est le pendant de celui discuté autour de l'équation (3) pour la cohomologie primitive de X 5 . Il s'agit d'un problème difficile à résoudre et encore largement ouvert. En partant de la définition analytique du cycle virtuel par Fan-Jarvis-Ruan [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF][START_REF] Fan | The Witten equation and its virtual fundamental cycle[END_REF], nous n'avons vu aucun calcul concret jusqu'à présent. En s'appuyant sur la définition algébrique de Polishchuk-Vaintrob [START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF] que nous venons de décrire, nous sommes parvenus au résultat présenté dans le théorème 0.2. Précisément, nous avons prouvé que ce produit tensoriel revient à tordre par les points marqués certains fibrés en droites parmi L 1 , . . . , L N , ce qui donne les fibrés en droites L 1 , . . . , L N du théorème 0.2. Remarquons au passage que si tous les automorphismes k 1 , . . . , k n sont étroits, alors nous retrouvons L j = L j , pour j = 1, . . . , N , et que si l'hypothèse de concavité est de plus vérifiée, le théorème 0.2 redonne la formule [START_REF] Berglund | Landau-Ginzburg orbifolds, mirror symmetry and the elliptic genus[END_REF].

Symétrie miroir pour la théorie quantique des singularités

Dans le théorème 2.38, nous démontrons la compatibilité entre les constructions algébriques et analytiques de la classe virtuelle pour les polynômes inversibles. En utilisant ce théorème et en appliquant la procédure de Givental [START_REF] Givental | Equivariant Gromov-Witten invariants[END_REF] à notre classe caractéristique c t , le théorème 0.2 conduit au calcul d'une fonction génératrice des invariants FJRW de genre zéro, habituellement notée J. Parallèlement à la formule de Candelas, de la Ossa, Green et Parkes [START_REF] Candelas | A pair of Calabi-Yau manifolds as an exact soluble superconformal theory[END_REF] et au théorème de Givental [START_REF] Givental | Equivariant Gromov-Witten invariants[END_REF], nous exprimons cette fonction à l'aide d'une série hypergéométrique solution d'une équation de Picard-Fuchs.

Dans le théorème suivant, le polynôme W est une somme de Thom-Sebastiani de polynômes chaines et Fermat, de poids w 1 , . 

I(t) = ∞ k=1 t k N j=1 δ j <b<q j k, b = q j k (-b) 0<b<k (-b) e j k , (14) 
où nous écrivons δ j := -δ {L j =L j } et • pour la partie fractionnaire d'un réel. De plus, la série hypergéométrique I est une solution fondamentale de l'équation de Picard-Fuchs

t d N j=1 w j -1 c=0 ( w j d t ∂ ∂t + c) - d c=1 (t ∂ ∂t -c) • I(t) = 0. ( 15 
)
Le plongement local τ est appelée application miroir.

Ce théorème admet une version géométrique, que nous décrivons brièvement. Les propriétés de factorisations de la classe virtuelle permettent de définir, à partir des invariants FJRW de genre zéro, une famille de produits associatifs • u sur l'espace vectoriel H := H * FJRW (W, G max ), avec u ∈ H. Cette famille de produits définit naturellement une connexion plate sur le fibré trivial de fibre H au-dessus de lui-même par la formule

∇ A v α(u) := ∂ v α(u) + v • u α(u),
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Résultats en genre supérieur et hiérarchie intégrable

De façon encore plus spectaculaire, la classe caractéristique c t fournit également des résultats partiels sur la classe virtuelle en genre arbitraire g > 0.

Dans le théorème suivant, le polynôme W est de type chaine ou Fermat et le groupe de symétrie G est arbitraire mais contient la matrice

j := diag e 2iπ w 1 d , . . . , e 2iπ w N d . ( 16 
)
Le fibré vectoriel E est le fibré de Hodge, déterminé par π * ω C/S au-dessus de la base S. Les fibrés en droites L 1 , . . . , L N sont les mêmes qu'au théorème 0.2, c'est-à-dire que

L N -2k := L N -2k (-σ 1 -• • • -σ n ) et L N -2k-1 := L N -2k-1 .
De plus, pour tout automorphisme g ∈ G, nous disposons d'une classe de cohomologie 

e g ∈ H * FJRW (W, G) ∩ H * FJRW (W, G max ),
). Soient W = x a 1 1 x 2 + • • • + x a N -1 N -1 x N + x a N N un polynôme chaine ou Fermat et G un groupe d'automorphismes du polynôme W contenant j. Alors, en tout genre et pour tous les automorphismes k 1 , . . . , k n ∈ G, nous avons c max (E ∨ ) ∪ S g,n;k 1 ,...,kn (W, G) vir PV = lim t→1 N j=1 c t j (-Rπ * (L j )) • c t N +1 (E ∨ ), où les nombres t 1 , . . . , t N +1 vérifient t 1 := t et t a j j t j+1 = 1, pour 1 ≤ j ≤ N .
Ce théorème est d'autant plus important que les résultats sont rares pour le calcul de la théorie de Gromov-Witten ou de Fan-Jarvis-Ruan-Witten en genre quelconque. Un théorème important a été démontré par Teleman [START_REF] Teleman | The structure of 2D semi-simple field theories[END_REF] lorsque ces théories sont dites semi-simples, par-exemple pour (x r , G max ). Dans le théorème 0.6, aucune hypothèse de semi-simplicité n'est requise. Ce théorème permet en outre de calculer explicitement cette classe, via la généralisation (50) de la formule de Mumford [START_REF] Coates | Computing genus-zero twisted Gromov-Witten invariants[END_REF]. De façon très concrète, nous avons écrit un programme informatique pour calculer les nombres d'intersection correspondants, voir l'annexe A.

Pour finir, le dernier chapitre de cette thèse est présenté comme une ouverture. Pour certains choix particuliers de (W, G), on peut associer via la construction [START_REF] Dubrovin | Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants[END_REF] de Dubrovin et Zhang un système infini d'équations différentielles satisfaites par une fonction génératrice des invariants FJRW en tous genres. Par-ailleurs, Buryak [START_REF] Buryak | Double Ramification cycles and integrable hierarchies[END_REF] a récemment construit un autre système infini d'équations différentielles, appelé hiérarchie DR (pour double ramification), qui s'applique à tout choix (W, G) sans restrictions, mais pour lequel on ne sait pas dire si la fonction génératrice des invariants FJRW en est solution ou pas.

Les constructions [START_REF] Dubrovin | Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants[END_REF] et [START_REF] Buryak | Double Ramification cycles and integrable hierarchies[END_REF] sont différentes en générale, mais une conjecture de Buryak prévoit qu'un changement de variables permet de passer de l'une à l'autre, lorsque celle de [START_REF] Dubrovin | Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants[END_REF] est définie. Une telle conjecture s'avère difficile à prouver dans son intégralité, mais nous avons la chance de pouvoir apporter quelques résultats positifs dans cette direction. En effet, pour le couple (x r , G max ), la construction [START_REF] Dubrovin | Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants[END_REF] est reliée à une hiérarchie classique appelée hiérarchie r-KdV. Par-ailleurs, la hiérarchie DR repose justement sur le calcul de produits de la classe virtuelle avec la classe de Chern maximale du fibré de Hodge. A l'aide du théorème 0.6, nous pouvons donc calculer explicitement chaque équation de cette hiérarchie pour la théorie FJRW d'un polynôme chaine ou Fermat, en particulier pour le couple (x r , G max ).

Nous avons traité en détail l'exemple du couple (x 3 , G max ), c'est-à-dire de la théorie 3-spin, ce qui permet de montrer le théorème 0.7 suivant. Cet exemple vient d'être calculé par une autre méthode dans [START_REF] Rossi | Recursion relations for Double Ramification hierarchies[END_REF], mais il n'est pour l'instant pas certain que cette approche suffise en général. Nous espérons obtenir à l'avenir une preuve complète pour la théorie r-spin. Théorème 0.7 ). La hiérarchie DR pour la théorie 3-spin et la hiérarchie 3-KdV coïncident, après application d'un changement de variables.

Plan de la thèse

Dans les préliminaires, nous complétons l'introduction en donnant un aperçu plus précis des thèmes abordés dans cette thèse. Dans le premier chapitre, nous décrivons la théorie quantique des singularités (espace d'états, espace de modules) ainsi que la construction de Polishchuk et Vaintrob pour la classe virtuelle. Le deuxième chapitre est le coeur technique de cette thèse, avec en particulier les preuves des théorèmes 0.2 et 0.6. Le troisième chapitre traite de la symétrie miroir et a pour objectif de démontrer le théorème 0.5. Dans le quatrième chapitre, nous présentons les hiérarchies intégrables r-KdV et Double Ramification et nous vérifions partiellement le théorème 0.7. Nous renvoyons à [START_REF] Guéré | Some FJRW invariants in arbitrary genus[END_REF] pour la preuve complète de ce théorème. Enfin, dans l'annexe se trouve le code en MAPLE d'un programme informatique reposant sur les théorèmes 0.2 et 0.6.

Préliminaires

L'objectif de ce chapitre est de compléter l'introduction en donnant au lecteur un aperçu plus précis des thèmes abordés dans cette thèse. Certaines parties, par-exemple les sections 0.3.2 et 0.4.3, peuvent sembler redondantes avec l'introduction et pourront être survolées, bien qu'elles présentent par endroits un éclairage différent. Les parties 0.1, 0.4 et 0.5 traitent de sujets peu discutés dans l'introduction.

Dans la partie 0.1, nous commençons par la définition des espaces de modules des courbes et par la définition d'une théorie cohomologique des champs, notion centrale qui permet un rapprochement avec la théorie des systèmes intégrables. Le premier résultat spectaculaire qui illustre la relation entre ces deux domaines de recherche est la conjecture de Witten prouvée par Kontsevich [START_REF] Witten | Two-dimensional gravity and intersection theory on moduli space[END_REF][START_REF] Kontsevich | Intersection theory on the moduli space of curves and the matrix Airy function[END_REF].

Dans la partie 0.2, nous abordons la symétrie miroir dans un cas particulier, celui des hypersurfaces dans les espaces projectifs à poids. Ceci permet d'établir un lien entre la théorie de Gromov-Witten et l'objet de cette thèse : la théorie quantique des singularités, également appelée théorie FJRW. En particulier, nous donnons la construction de la variété miroir dans la section 0.2.2, voir la définition 0.20.

Dans la partie 0.3, nous insistons sur les liens entre la théorie de Gromov-Witten et la théorie quantique des singularités, en présentant d'abord la vision de Witten d'un modèle heuristique qui les unifie.

Dans la partie 0.4, nous rentrons dans le coeur de cette thèse et nous présentons les résultats de notre article [START_REF] Guéré | A Landau-Ginzburg mirror theorem without concavity[END_REF] : le calcul explicite des invariants quantiques de genre zéro pour une large gamme de polynômes, dits de type chaine. Ceci demande une étude approfondie de la construction de Plus remarquable encore, les propriétés d'un complexe récursif permettent des calculs en genre arbitrairement grand dans des cas dits non semi-simples, ce qui n'a été fait à notre connaissance ni pour la théorie de Gromov-Witten au-delà du genre 1, ni pour la théorie quantique des singularités au-delà du genre 0. Ce théorème 0.53 permet en outre de calculer explicitement les équations de la hiérarchie DR découverte par Buryak [START_REF] Buryak | Double Ramification cycles and integrable hierarchies[END_REF].

Dans la partie 0.5, nous présentons d'abord une autre hiérarchie appelée hiérarchie r-KdV, qui est une généralisation de la célèbre hiérarchie KdV. Enfin, nous rapprochons la hiérarchie DR pour la théorie r-spin de la hiérarchie r-KdV et nous présentons dans le cas r = 3 un changement de variables permettant de passer de l'une à l'autre, voir aussi [START_REF] Guéré | Some FJRW invariants in arbitrary genus[END_REF].

Notions de base

La théorie de Gromov-Witten et la théorie quantique des singularités partagent les propriétés fondamentales qui définissent une théorie cohomologique des champs. Avant de les énoncer à la section 0.1.2, nous introduisons l'espace de modules des courbes stables de genre g à n points marqués, noté M g,n , ainsi que les morphismes d'oubli et de recollement, voir section 0.1.1. Les théories cohomologiques des champs sont étroitement liées à la théorie des systèmes intégrables. Le théorème de Kontsevich-Witten en est un exemple frappant, voir section 0.1.3.

L'espace de modules des courbes stables

En 1969, Deligne et Mumford [START_REF] Mumford | Towards an enumerative geometry of the moduli space of curves[END_REF] ont défini l'espace de modules des courbes stables, les morphismes d'oubli et de recollement et un sous-anneau de l'anneau de cohomologie appelé anneau tautologique. Nous allons présenter brièvement ces notions et renvoyons au livre [START_REF] Arbarello | Geometry of Algebraic Curves[END_REF] pour plus de détails.

Soit C une courbe complexe projective lisse de genre g, munie de n points marqués σ 1 , . . . , σ n tous distincts entre eux. Nous notons ω C son fibré canonique et rappelons que l'espace de ses sections globales H 0 (C, ω C ) est de dimension complexe g. Un morphisme f entre deux courbes marquées (C;

p 1 , . . . , p n ) et (C ; p 1 , . . . , p n ) est un morphisme f : C → C qui vérifie f (p i ) = p i , ∀i.
L'espace classifiant les courbes lisses de genre 0 avec n points marqués, à isomorphisme près, est noté M 0,n et est naturellement muni d'une structure de variété lisse quasi-projective de dimension complexe n -3. Pour n = 3, c'est un point puisque toutes les courbes rationnelles avec 3 points marqués sont isomorphes. Pour n = 4, c'est une sphère privée de trois points car, en utilisant un isomorphisme, nous pouvons toujours fixer 3 points sur une courbe rationnelle et le quatrième point paramètre l'espace M 0,4 et ne peut coïncider avec l'un des trois autres points marqués.

Plus généralement, l'espace classifiant les classes d'isomorphie des courbes projectives lisses de genre g avec n points marqués n'est pas une variété lisse mais est naturellement muni d'une structure de champ algébrique lisse de dimension complexe 3g -3 + n et noté M g,n . Les points de ce champ peuvent avoir des groupes d'automorphismes non-triviaux. Sous la condition 2g -2 + n > 0, ces groupes sont d'ordres finis, voir [START_REF] Mumford | Towards an enumerative geometry of the moduli space of curves[END_REF]. Ce type de champ est appelé champ de Deligne-Mumford.

Toutes les notions de la géométrie algébrique qui sont nécessaires à la théorie de l'intersection [START_REF] Fulton | Intersection Theory. A Series of Modern Surveys in Mathematics[END_REF] s'étendent aux champs de Deligne-Mumford, comme par-exemple l'existence d'une classe fondamentale pour tout champ de Deligne-Mumford lisse. Nous décrivons maintenant une compactification de cet espace, introduite par Mumford via les courbes stables.

Stabilité

Tout d'abord, une courbe nodale est une courbe lisse en dehors d'un nombre fini de points appelés noeuds. Localement au voisinage d'un noeud, la courbe est définie par l'équation {xy = 0} dans C 2 . Par définition, les points marqués sont distincts des noeuds.

L'espace de modules classifiant les courbes nodales marquées ne possède pas les bonnes propriétés, car certains points de ce champ ont des groupes d'automorphismes d'ordres infinis. Ce n'est donc pas un champ de Deligne-Mumford. La condition de stabilité suivante assure que tous les groupes d'automorphismes soient d'ordres finis :

ω C,log := ω C (σ 1 + • • • + σ n ) est ample. ( 17 
)
Plus simplement, ceci revient à ne considérer que des courbes nodales marquées dont toutes les composantes irréductibles rationnelles ont au moins trois points spéciaux, en comptant les points marqués et les noeuds.

Comme précédemment, l'exemple des courbes de genre 0 est plus simple, puisque l'espace de modules M 0,n classifiant les courbes stables de genre zéro avec n points marqués est un schéma projectif propre et lisse de dimension complexe n -3. Pour n = 4, cet espace est isomorphe à P 1 et, plus généralement, l'espace M 0,n est birationnel à (P 1 ) n-3 .

Pour les courbes stables de genre g > 0, la structure naturelle à considérer est celle de champ de Deligne-Mumford. Nous notons M g,n le champ de Deligne-Mumford propre et lisse de dimension complexe 3g -3 + n dont les S-points sont les familles de courbes stables de genre g avec n points marqués, au-dessus d'une base S. Il s'agit d'une compactification de M g,n .

De même que le fibré tautologique de P N est canoniquement associé à P N , il est naturel de s'intéresser à l'espace classifiant la donnée d'un point de 
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• σ 3 • σ 1 • σ 2 • σ 1 • σ 2 Figure 2 -Exemple de morphisme d'oubli

Morphismes de recollement

Il y a deux façons de recoller des points marqués sur des courbes stables, créant deux types de noeuds. Le morphisme

j tree : M g 1 ,n 1 +1 × M g 2 ,n 2 +1 → M g 1 +g 2 ,n 1 +n 2 (18) 
crée un noeud dit séparant, en identifiant le dernier marquage de la première courbe au dernier marquage de la deuxième courbe. Le morphisme

j loop : M g,n+2 → M g+1,n (19) 
crée un noeud dit non-séparant, en identifiant les deux derniers points marqués ensemble. Ces deux morphismes de recollement sont reliés à la courbe universelle de la façon suivante. Soit ∆ le sous-champ de la courbe universelle correspondant au lieu des noeuds (i.e. l'image de la section s est un noeud) et soit j : ∆ → ∆ le revêtement étale double donné en chaque point par un couple (noeud, choix d'une branche au noeud). Nous avons alors l'identification

∆ = M g-1,n+2 ∪   g 1 +g 2 =g, I⊂Nn M g 1 ,|I|+1 × M g 2 ,n-|I|+1   et le diagramme commutatif M g-1,n+2 ! u ' ' j loop & & ∆ j / / ∆ 1 / / C g,n π / / M g,n M g 1 ,|I|+1 × M g 2 ,n-|I|+1 A Ù 7 7 jtree 8 8 (20) 
Anneau tautologique 

ψ i := c 1 (σ * i (ω g,n )) ∈ H 2 (M g,n ; C). La classe κ m est définie par κ m := π * (ψ m+1 n+1 ) ∈ H 2m (M g,n ). Les classes κ m et ψ i sont tautologiques.

Formule de Mumford

L'espace des sections globales H 0 (C, (ω g,n ) |C ) est de dimension complexe g, quelque soit la fibre de la courbe universelle considérée. Plus généralement, ces espaces se recollent globalement en un fibré vectoriel de rang g sur M g,n défini par R 0 π * (ω g,n ). Ce fibré vectoriel est appelé fibré de Hodge et est noté E. Nous l'avons déjà aperçu dans l'introduction au théorème 0.6 et il jouera un rôle très important dans la section 2.5 et dans le chapitre 4.

Le théorème de Grothendieck-Riemann-Roch, résumé par le diagramme

R • π * (•) K 0 (X) K 0 (Y ) Ch(•) Ch(•) π * (•Td(π)) H * (X; C) H * (Y ; C)
permet de calculer les caractères de Chern du fibré de Hodge : c'est la formule de Mumford 

Ch(R • π * (ω g,n )) = Ch(E) -1 = d≥0 B d+1 (1) (d + 1)! κ d - n i=1 B d+1 (1) (d + 1)! ψ d i + 1 2 B d+1 (1) (d + 1)! j * (γ d-1 ) (21) 

Les théories cohomologiques des champs

Une théorie cohomologique des champs est une notion introduite par Kontsevich et Manin [START_REF] Kontsevich | Gromov-Witten classes, quantum cohomology, and enumerative geometry[END_REF] et réunissant les propriétés fondamentales de la théorie de Gromov-Witten et de la théorie quantique des singularités.

Préliminaires

Définition 0.9. Soient N un anneau commutatif sur C et V un espace vectoriel de dimension finie sur C et muni d'une Z/2Z-graduation, que nous appelons espace d'états. Soient (•, •) une forme bilinéaire symétrique non-dégénérée sur V et un vecteur 1 ∈ V appelé unité. Une théorie cohomologique des champs (abrégée en CohFT en anglais) sur N est la donnée pour tout entier g et n d'applications multilinéaires

c g,n : V ⊗n → k≥0 H 2k (M g,n ; C) ⊗ C N
satisfaisant les propriétés suivantes :

c g,n est pair par-rapport à la Z/2Z-graduation, c g,n est S n -équivariant, où le groupe symétrique agit sur V ⊗n en permutant les facteurs et agit sur l'espace de modules en permutant les points marqués,

-pour tout a, b ∈ V , on a (a, b) = c 0,3 (1 ⊗ a ⊗ b) ∈ H * (M 0,3 ; C) ⊗ C N N , -π * c g,n (a 1 ⊗ • • • ⊗ a n ) = c g,n+1 (a 1 ⊗ • • • ⊗ a n ⊗ 1) où π est le morphisme d'oubli, -si {e k } est une base de V et (η k,l ) k,l est l'inverse de la matrice ((e k , e l )) k,l , alors (j tree ) * c g 1 +g 2 ,n 1 +n 2 (a 1 ⊗ • • • ⊗ a n ) = k,l c g 1 ,n 1 +1 (a 1 ⊗ • • • ⊗ a n 1 ⊗ e k ) • η k,l • c g 2 ,n 2 +1 (a n 1 +1 ⊗ • • • ⊗ a n 1 +n 2 ⊗ e l ) et (j loop ) * c g,n (a 1 ⊗ • • • ⊗ a n ) = k,l c g-1,n+2 (a 1 ⊗ • • • ⊗ a n ⊗ e k ⊗ e l ) • η k,l .
Par-exemple, la théorie de Gromov-Witten de la quintique X 5 est une théorie cohomologique des champs, dont l'espace d'états est V = H * (X 5 ; C) et dont les applications c g,n sont reliées aux cycles virtuels M g,n (X; β) vir . Cet exemple est détaillé à la section 0.2.3, en particulier à l'équation [START_REF] Gährs | Picard-Fuchs equations of special one-parameter families of invertible polynomials[END_REF]. 

c g,n (1 ⊗ • • • ⊗ 1) = 1 ∈ H * (M g,n ;
C) et par 0 lorsque 2g -2 + n ≤ 0. Nous obtenons ainsi une théorie cohomologique des champs dite triviale.

Corrélateurs, potentiel et fonction de partition

Les corrélateurs, ou invariants, d'une théorie cohomologie des champs sont les nombres

τ d 1 (a 1 ), . . . , τ dn (a n ) g,n := Mg,n c g,n (a 1 ⊗ • • • ⊗ a n ) • ψ d 1 1 • • • ψ dn n ∈ C, (22) 
où l'intégrale signifie intersecter avec la classe fondamentale 1 de M g,n puis prendre l'image directe selon M g,n → pt et où nous n'écrivons pas τ d i (•) lorsque d i = 0. Nous définissons une fonction génératrice de ces corrélateurs :

F = g,n 2g-2+n>0 2g-1 n! 1≤α 1 ,...,αn≤N d 1 ,...,dn≥0 τ d 1 (e α 1 ), . . . , τ dn (e αn ) g,n • n i=1 T α i d i , ( 23 
)
où e 1 , . . . , e N est une base de l'espace d'états V . Cette fonction génératrice est appelée potentiel de la théorie cohomologique des champs. C'est une série formelle à coefficient dans l'anneau N et dont les variables sont et

T α d , pour 1 ≤ α ≤ N et d ≥ 0.
Remarque 0.11. Le potentiel se décompose comme F = g≥0 2g-1 F g , où F g est appelé potentiel de genre g. En particulier, le potentiel de genre 0 sera utilisé dans la section 3.3.1 pour construire le cône Lagrangien de Givental, en vue de la symétrie mirroir. Exemple 0.12. Pour la théorie cohomologique des champs dite triviale, les corrélateurs sont des intégrales de classes

ψ i τ d 1 , . . . , τ dn g,n := Mg,n ψ d 1 1 • • • ψ dn n ∈ C (24) 
et le potentiel de la théorie triviale s'écrit

F( ; T 0 , T 1 , T 2 , . . . ) = g,n 2g-2+n>0 2g-1 n! d 1 ,...,dn≥0 Mg,n ψ d 1 1 • • • ψ dn n • T d 1 • • • T dn . ( 25 
)
Définition 0.13. La fonction de partition d'une théorie cohomologique des champs est l'exponentielle du potentiel de la théorie, c'est-à-dire

τ ( ; T α d ) := exp(F( ; T α d ))
. Cette fonction joue un rôle dans le lien avec les systèmes intégrables, voir les sections 0.1.3, 0.5 et le chapitre 4.

Le théorème de Kontsevich-Witten

Dans la section 0.5, nous parlerons des relations entre les théories cohomologiques des champs et les systèmes intégrables. Pour la théorie cohomologique des champs dite triviale, cette relation est déjà très riche et nous la présentons dans ses grandes lignes.

Les idées et intuitions de la théorie des cordes ont joué le rôle de fil conducteur pour établir le lien entre ces différents domaines des mathématiques. En 1991, Witten [START_REF] Witten | Two-dimensional gravity and intersection theory on moduli space[END_REF] a formulé une conjecture sur le comportement de la fonction de partition [START_REF] Coates | Quantum cohomology and crepant resolutions: A conjecture[END_REF], entrainant qu'elle vérifie une dynamique de type Virasoro (voir les équations [START_REF] Dubrovin | Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants[END_REF]) et fournissant ainsi des relations de récurrences entre les intégrales [START_REF] Coates | Quantum Riemann-Roch, Lefschetz and Serre[END_REF], voir Théorème 0.16. Ces relations de récurrence permettent de calculer une à une toutes ces intégrales et sont utilisées dans notre programme informatique, voir l'annexe A.

Cette conjecture a depuis été démontrée par Kontsevich [START_REF] Kontsevich | Intersection theory on the moduli space of curves and the matrix Airy function[END_REF]. Plus précisément, il a exprimé la fonction de partition (25) à l'aide d'une intégrale matricielle, établissant encore un pont avec un autre domaine des mathématiques, celui des matrices aléatoires. Nous allons donc présenter brièvement ces trois aspects de la fonction de partition : système intégrable, intégrale matricielle et dynamique de Virasoro. Pour approfondir ces liens, nous recommandons l'article [START_REF] Dijkgraaf | Intersection theory, integrable hierarchies and topological field theory[END_REF].

Prenons = 1 et faisons le changement de variables suivant :

t 2k+1 := T k (2k + 1)!! , où la double factorielle signifie (2k + 1)!! = (2k + 1) • (2k -1) • (2k -3) • • • 5 • 3 • 1.
Dans ces nouvelles variables, le potentiel de la théorie dite triviale vaut

F(t 0 , t 1 , t 2 , . . . ) = g,n 2g-2+n>0 1 n! d 1 ,...,dn≥0 n i=1 (2d i + 1)!! • Mg,n ψ d 1 1 • • • ψ dn n • n i=1 t 2d i +1 .

Préliminaires

Evidemment, cette fonction ne dépend réellement que des variables t 2k+1 . Rappelons que la fonction de partition est τ (t 0 , t 1 , t 2 , . . . ) := exp(F(t 0 , t 1 , t 2 , . . . )).

Système intégrable

La théorie dite triviale fournit une solution de la hiérarchie KdV, voir le théorème 0.14. Nous renvoyons à la fin de la section 0.5.1 pour savoir comment obtenir une solution à partir d'une τ -fonction.

Théorème 0.14 (Conjecture de Witten prouvée par Kontsevich [START_REF] Witten | Two-dimensional gravity and intersection theory on moduli space[END_REF][START_REF] Kontsevich | Intersection theory on the moduli space of curves and the matrix Airy function[END_REF]). La fonction de partition exp(F(t 0 , t 

∂u ∂t = u • ∂u ∂x + 1 6 • ∂ 3 u ∂x 3 , (26) 
d'une onde unidimensionnelle évoluant en eau peu profonde. Dans le théorème 0.14, nous avons

t 1 = x et t 3 = t.
L'équation (26) n'est en fait que la première équation d'une famille infinie d'équations aux dérivées partielles appelée hiérarchie KdV. Par exemple, la deuxième équation, également vérifiée par la fonction ∂ 2 F (t 0 ,t 1 ,t 2 ,... )

∂t 2 0 , est ∂u ∂t 5 = 1 2 u 2 • ∂u ∂t 1 + 1 3 ∂u ∂t 1 • ∂ 2 u ∂t 2 1 + 1 6 u • ∂ 3 u ∂t 3 1 + 1 60 
∂ 5 u ∂t 5 1 . ( 27 
)

Intégrale matricielle

Kontsevich [START_REF] Kontsevich | Intersection theory on the moduli space of curves and the matrix Airy function[END_REF] donne une représentation de la fonction de partition sous la forme de l'intégrale matricielle

τ (Z) = 1 ρ(Z) • H N dY • exp Tr - 1 2 ZY 2 + i 6 Y 3 , ( 28 
)
où H N est l'espace vectoriel des matrices hermitiennes de taille

N × N , Z ∈ H N et ρ(Z) = H N dY • exp - 1 2 TrZY 2 .
La transformation permettant de passer de la matrice Z aux variables t 0 , t 1 , t 2 , . . . est

t n = - 1 n TrZ -n .

Dynamique de Virasoro

Pour finir, nous donnons les relations de récurrence entre les intégrales de classes ψ i qui permettent un calcul explicite, notamment grâce à un ordinateur, voir l'annexe A. Ces relations proviennent de l'action (de la moitié) d'une algèbre de Virasoro, c'est-à-dire qu'il existe des opérateurs différentiels L n , quadratiques en

t k et en ∂/∂t k vérifiant [L n , L m ] = (n -m)L n+m , L n • τ = 0 for all n ≥ -1. (29) 
Après avoir explicité ces opérateurs différentiels, la relation L k • τ = 0 permet d'exprimer, pour tout k ≥ -1 et multi-indice d, les corrélateurs de la forme τ d τ k+1 g,n+1 en fonction de corrélateurs avec au plus n entrées.

Théorème 0.16 (Kontsevich [56]). Les invariants ne faisant intervenir que des classes ψ i vérifient les relations de récurrence suivantes, pour tout k ≥ -1,

(2k + 3)!! τ k+1 τ d g,n+1 = n j=1 (2k + 2d j + 1)!! (2d j -1)!! τ d 1 . . . τ d j +k . . . τ dn g,n + 1 2 r+s=k-1 (2r + 1)!!(2s + 1)!! τ r τ s τ d g-1,n+2 + 1 2 r+s=k-1 ((2r + 1)!!(2s + 1)!! I⊂Nn τ r τ d I p,a+1 τ s τ d c I q,b+1 . ( 30 
)
Ces relations permettent de calculer de façon récursive tous les nombres τ d 1 . . . τ dn g,n en partant de la donnée initiale τ 3 0 0,3 = 1. Par exemple, nous avons

τ 1 1,1 = 1 24 .
En particulier, l'équation pour k = -1 est appelée équation des cordes

τ d 1 . . . τ dn τ 0 g,n = n i=1 τ d 1 . . . τ d i -1 . . . τ dn g,n
et l'équation pour k = 0 est appelée équation dilaton

τ d 1 . . . τ dn τ 1 g,n = (2g -2 + n) τ d 1 . . . τ dn g,n .

La symétrie miroir

Dans cette section, nous présentons le phénomène de symétrie miroir pour des hypersurfaces dans des espaces projectifs à poids. Un exemple célèbre déjà discuté dans l'introduction est l'hypersurface quintique X 5 de P 4 .

De façon générale, la symétrie miroir est une dualité entre deux théories, l'une d'elle étant une théorie cohomologique des champs. L'exemple principal est de prendre la théorie Préliminaires de Gromov-Witten d'une variété X, voir la section 0.2.3. La théorie duale correspond alors à une déformation de la structure complexe d'une variété miroir X ∨ , voir la section 0.2.4. Parexemple, dans le cas de X 5 , cette seconde théorie revient à étudier l'équation différentielle (1) de l'introduction. L'exemple développé dans cette thèse est celui de la théorie quantique des singularités, voir la section 0.2.5. D'après l'introduction, la théorie duale pour le polynôme W = x 5 1 + • • • + x 5 5 revient à étudier l'équation différentielle [START_REF] Berglund | A generalized construction of mirror manifolds[END_REF]. Un des résultats principaux de cette thèse est de démontrer un énoncé de symétrie miroir pour une certaine famille de polynômes dits de type chaine, voir Théorème 3.8.

Finalement, ces deux énoncés de symétrie miroir semblent être deux incarnations d'une vision plus globale [START_REF] Witten | Phases of N=2 theories in two dimensions[END_REF][START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations[END_REF][START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence[END_REF][START_REF] Chiodo | A global mirror symmetry framework for the Landau-Ginzburg/Calabi-Yau correspondence[END_REF], que nous décrivons dans la section 0.2.1.

Variation de quotient GIT

Nous présentons ici l'idée originale de Witten [START_REF] Witten | Phases of N=2 theories in two dimensions[END_REF] qui a inspiré le développement de la théorie quantique des singularités en proposant les grandes lignes de son rapport à la théorie de Gromov-Witten.

Considérons l'action de C * sur C N +1 donnée par les poids positifs w 1 , . . . , w N et par le poids négatif -d, autrement dit

λ • (x 1 , . . . , x N , p) = (λ w 1 x 1 , . . . , λ w N x N , λ -d p) , λ ∈ C * .
Prenons un polynôme quasi-homogène de poids w 1 , . . . , w N et de degré d, c'est-à-dire

W (λ w 1 x 1 , . . . , λ w N x N ) = λ d • W (x 1 , . . . , x N ) , ∀λ ∈ C * ,
ayant une singularité isolée à l'origine, et considérons la fonction polynomiale W :

C N +1 → C W (x 1 , . . . , x N , p) = p • W (x 1 , . . . , x N ),
invariante sous l'action de C * . Nous supposons l'égalité d = w 1 + • • • + w N satisfaite, de sorte que le lieu d'annulation de W soit une hypersurface Calabi-Yau dans P(w 1 , . . . , w N ), voir la section suivante 0.2.2.

Le quotient de l'espace C N +1 -{0} par l'action C * n'est pas séparé car tous les poids ne sont pas de même signe. En revanche, la théorie géométrique des invariants (GIT) nous apprend qu'il y a deux quotients distincts, l'un donné par

((C N -{0}) × C)/C * O P(w 1 ,...,w N ) (-d) (T1) et l'autre donné par (C N × C * )/C * N j=1 O P(-d) (w j ) C N /µ d . ( T2 
)
Le polynôme W induit une fonction sur chacun de ces quotients.

Witten [START_REF] Witten | Phases of N=2 theories in two dimensions[END_REF] propose d'associer la théorie de Gromov-Witten de l'hypersurface Calabi-Yau {W = 0} ⊂ P(w 1 , . . . , w N ) au quotient (T1). De même, il propose d'associer au quotient (T2) la théorie de Fan-Jarvis-Ruan-Witten de la singularité W : C N /µ d → C. La correspondance entre ces deux théories viendrait alors d'une théorie plus fondamentale définie sur l'espace initial C N +1 /C * .

Les polynômes inversibles et leurs miroirs

Pour des entiers positifs non nuls et premiers entre eux w 1 , . . . , w N , l'espace projectif à poids P(w 1 , . . . , w N ) est le quotient de C N +1 -{0} par l'action de C * suivante

λ • (x 1 , . . . , x N ) = (λ w 1 x 1 , . . . , λ w N x N ), λ ∈ C * .
L'espace projectif est P N -1 = P(1, . . . , 1).

Ce quotient peut être vu comme un schéma, celui-ci ayant généralement des lieux singuliers là où l'action n'est pas libre. Ce quotient possède aussi une structure de champ de Deligne-Mumford propre et lisse, dont certains lieux ont des groupes d'automorphismes non triviaux mais d'ordre finis. Nous adoptons ce second point de vue et appelons abusivement P(w 1 , . . . , w N ) un espace projectif à poids bien qu'il s'agisse d'un champ.

Une hypersurface de degré d dans l'espace projectif à poids P(w) est décrite comme le lieu d'annulation d'un polynôme quasi-homogène W vérifiant

∀λ ∈ C * , W (λ w 1 x 1 , . . . , λ w N x N ) = λ d • W (x 1 , . . . , x N ).
Les entiers w 1 , . . . , w N sont les poids du polynôme et l'entier d en est le degré. Nous notons l'hypersurface associée X W := {W = 0} ⊂ P(w).

Sous l'hypothèse que le polynôme W a une singularité isolée en zéro, c'est-à-dire que 

∂W ∂x j (u 1 , . . . , u N ) = 0, ∀1 ≤ j ≤ N =⇒ (u 1 , . . . , u N ) = 0, l'
(a) x a+1 (Fermat), (b) x a 1 1 x 2 + • • • + x a c-1 c-1 x c + x ac+1 c avec c ≥ 2 (chaine), (c) x a 1 1 x 2 + • • • + x a l-1 l-1 x l + x a l l x 1 avec l ≥ 2 (

La famille miroir

La construction de la symétrie miroir par Berglund-Hübsch et Krawitz [START_REF] Berglund | A generalized construction of mirror manifolds[END_REF][START_REF] Krawitz | FJRW rings and Landau-Ginzburg mirror symmetry[END_REF] consiste à prendre le polynôme inversible défini par la matrice transposée E T W . Explicitement, le polynôme miroir de (31) s'écrit

W ∨ = N k=1 N j=1 y m j,k j .
Les poids w 1 , . . . , w N et le degré d de ce polynôme sont en général différents de ceux du polynôme W . Toutefois, nous remarquons que

d = w 1 + • • • + w N ⇐⇒ d = w 1 + • • • + w N ,
donc le miroir d'un polynôme de type CY est aussi de type CY.

Lorsque le polynôme W est de type CY, le groupe d'automorphismes 

SL(W ) = γ = (γ 1 , . . . , γ N ) ∈ C N | W (γ 1 • x 1 , . . . , γ N • x N ) = W (
H p,q CR (X W ; C) H N -2-p,q CR ([X W ∨ /SL(W ∨ )] ; C), (34) 
voir [START_REF] Chiodo | LG/CY correspondence: the state space isomorphism[END_REF]Theorem 2]. La cohomologie de Chen-Ruan est une extension de la cohomologie ordinaire pour les champs de Deligne-Mumford, voir [START_REF] Chen | A New cohomology theory for orbifold[END_REF]. Par-exemple, pour un variété X et un groupe abélien fini G opérant sur X, la cohomologie de Chen-Ruan du champ quotient 

[X/G] est H p,q CR ([X/G] ; C) := g∈G H p+age(g),q+age(g) (X g ; C) G , ( 35 
e k ∪ e l = h,h X W e k ∪ e l ∪ e h • η h,h • e h . ( 36 
)
Le nombre c 0,3,0 (e k ⊗ e l ⊗ e h ) := X W e k ∪ e l ∪ e h est un premier exemple d'invariant de Gromov-Witten. Introduisons les autres applications multilinéaires c g,n,β pour obtenir une théorie cohomologique des champs.

Théorie de Gromov-Witten 

vir ∈ H 2vdim (M g,n (X W ; β); C) de dimension complexe vdim M g,n (X W ; β) = (3 -dim C X W )(g -1) + c 1 (T X W ) ∩ β + n et qui
-2 + n > 0 c g,n,β (a 1 ⊗ • • • ⊗ a n ) := M g,n (X W ; β) vir ∩ n i=1 ev * i (a i ) ∈ H * (M g,n (X W ; β)). ( 37 
)
Considérons l'anneau de Novikov

N (X W ) :=    β∈Eff c β • q β | c β ∈ C    ,
où Eff désigne le semi-groupe des cycles effectifs dans H 2 (X W ; Z) et q β est l'élément de C [Eff] correspondant à une classe effective β. Remarquons que pour β ∈ Eff, l'équation x + y = β n'a qu'un nombre fini de solutions dans Eff. Finalement, les applications multilinéaires

c g,n (a 1 ⊗ • • • ⊗ a n ) := β∈Eff st * (c g,n,β (a 1 ⊗ • • • ⊗ a n )) • q β ∈ H * (M g,n ) ⊗ C N (X W ) (38) 
définissent une théorie cohomologique des champs sur l'anneau de Novikov, appelée théorie de Gromov-Witten de l'hypersurface X W .

Cohomologie quantique

Revenons finalement à l'équation [START_REF] Fulton | Intersection Theory. A Series of Modern Surveys in Mathematics[END_REF] et définissons pour tout x ∈ H * CR (X W ) l'opération

e k • x e l = n≥0 1 n! h,h e k ⊗ e l ⊗ e h ⊗ x ⊗ • • • ⊗ x 0,n+3 • η h,h • e h , (39) 
où • est défini de façon générale dans l'équation [START_REF] Coates | The Quantum Orbifold Cohomology of Weighted Projective Spaces[END_REF]. Les propriétés d'une théorie cohomologique des champs entrainent l'associativité et la commutativité de cette opération, que l'on appelle produit quantique. 

De l'autre côté du miroir

Supposons que le polynôme W est de type Calabi-Yau et regardons maintenant les déformations de la structure complexe du miroir de l'hypersurface X W , qui est le champ quotient [X W ∨ /SL(W ∨ )]. Plus précisément, prenons la famille à un paramètre 

X ∨ s := X W ∨ s /SL(W ∨ ) , (40) 
H * prim (X W ∨ s ; C) SL(W ∨ ) ,
où prim désigne la cohomologie primitive de l'hypersurface X W ∨ s → P(w 1 , . . . , w N ) et où (•) SL(W ∨ ) désigne la partie invariante par ce groupe, défini en [START_REF] Faber | Tautological relations and the r-spin Witten conjecture[END_REF]. Les sections plates de (E B , ∇ B ) sont alors données par le réseau

H * prim (X W ∨ s ; Z) SL(W ∨ ) ⊂ H * prim (X W ∨ s ; C) SL(W ∨ )
. Finalement, la symétrie miroir conjecture que les systèmes locaux (E A , ∇ A ) et (E B , ∇ B ) sont isomorphes. Cet énoncé a d'abord été démontré dans le cas de l'hypersurface quintique X 5 de P 4 , voir [START_REF] Givental | A mirror theorem for toric complete intersections. Topological field theory, primitive forms and related topics[END_REF][START_REF] Lian | Mirror principle. Surveys in differential geometry: differential geometry inspired by string theory[END_REF]. D'une part, les sections plates du système local (E B , ∇ B ) sont dans ce cas les solutions de l'équation différentielle de Picard-Fuchs (1). D'autre part, les sections plates du système local (E A , ∇ A ) s'expriment en fonction des invariants de Gromov-Witten et l'isomorphisme entre ces deux systèmes locaux correspond à la formule de Candelas, de la Ossa, Green et Parkes [START_REF] Candelas | A pair of Calabi-Yau manifolds as an exact soluble superconformal theory[END_REF].

Plus généralement, cet énoncé de symétrie miroir est démontré pour toutes les hypersurfaces Calabi-Yau vérifiant la condition

w j divise d , pour 1 ≤ j ≤ N (hypothèse Gorenstein).
Géométriquement, cela signifie que l'espace grossier de P(w) est une variété de type Gorenstein.

Sans l'hypothèse que l'espace grossier de P(w) est une variété de type Gorenstein, le calcul des invariants de Gromov-Witten des hypersurfaces reste complètement ouvert, même en genre zéro. La symétrie miroir reste pour le moment une conjecture dans ces situations.

Par-ailleurs, le système local (E B , ∇ B ) peut être étendu au-dessus d'un disque épointé centré en l'infini. Dans l'introduction, nous avons déjà discuté l'exemple de la quintique X 5 et avons vu apparaitre la théorie quantique des singularités du polynôme W 5 . La question est de savoir en général quelle théorie cohomologique des champs associer à ce prolongement du système local (E B , ∇ B ) via la symétrie miroir. Une réponse a été proposée par Witten [START_REF] Witten | Phases of N=2 theories in two dimensions[END_REF] en 1993, en suivant les idées présentées dans la section 0.2.1. La nouvelle théorie a ensuite été formalisée par Fan, Jarvis et Ruan [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF][START_REF] Fan | The Witten equation and its virtual fundamental cycle[END_REF] en 2007. Il s'agit de la théorie quantique des singularités, ou théorie FJRW.

Théorie quantique des singularités

Cette théorie est associée, non pas à une hypersurface, mais à un couple (W, G) où W est un polynôme quasi-homogène à singularité isolée en zéro et G est un groupe d'automorphismes contenant la matrice j définie en [START_REF] Faber | Program to compute intersections on the moduli space of pointed curves[END_REF]. L'espace d'état pour le couple (W, G) est donné par la cohomologie relative

H * FJRW (W, G) := H * CR C N /G , W +∞ ; C ,
où la cohomologie de Chen-Ruan utilisée est une version relative de [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF] et

W +∞ := x ∈ C N | Re(W (x)) 0 .
Une définition équivalente de cet espace d'état est 

H * FJRW (W, G) := g∈G Jac(W g ) G ,
L ⊗m 1 1 ⊗ • • • ⊗ L ⊗m N N ω log (41) 
pour chaque monôme 

M = λ • x m 1 1 • • • x m N N de W (x 1 , . . . , x N ), avec ω log := ω C/S (σ 1 + • • • + σ n ) le
• v = 0} /µ d ] par ζ • (u, v) = (ζ • u, ζ -1 • v).
Cet espace de modules, noté S g,n (W, G max ), est un champ de Deligne-Mumford propre et lisse. De plus, nous avons un morphisme d'oubli des fibrés en droites et de la structure de champ st :

S g,n (W, G max ) → M g,n .
Plus généralement, pour tout groupe G contenant l'élément j, Fan-Jarvis-Ruan [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF][START_REF] Fan | The Witten equation and its virtual fundamental cycle[END_REF] définissent un espace de modules S g,n (W, G) qui est un champ de Deligne-Mumford propre et lisse de dimension complexe 3g -3 + n. La définition précise n'est pas importante pour cette thèse, puisque nous considérons seulement les cas G = G max ou G = j µ d . Dans ce dernier cas, la définition est identique à celle de S g,n (W, G max ), avec la condition supplémentaire que les fibrés en droites L 1 , . . . , L N proviennent d'un seul fibré en droites L via

L j = L ⊗w j , avec L ⊗d ω C/B,log .
Remarque 0.28. Dans l'introduction, nous avons décrit pour le groupe G max une décomposition de l'espace de modules selon les monodromies des fibrés en droites L 1 , . . . , L N aux points marqués σ 1 , . . . , σ n . Plus généralement, nous avons

S g,n (W, G) = (k 1 ,...,kn)∈G n S g,n;k 1 ,...,kn (W, G).

Classe virtuelle

Fan, Jarvis et Ruan [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF][START_REF] Fan | The Witten equation and its virtual fundamental cycle[END_REF] ont construit de façon analytique un cycle homologique qui joue le rôle du cycle virtuel de la théorie de Gromov-Witten. Par la suite, Polishchuk et Vaintrob [START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF] ont donné une construction algébrique, qui coïncide dans de nombreux cas avec le cycle de Fan-Jarvis-Ruan, mais qui pourrait être différent en général. 

:= H * FJRW (W, µ d ) × H * FJRW (W, µ d ), (∇ ) A e k α(u) := ∂ k α(u) + 1 z e k • u α(u), où α : H * FJRW (W, µ d ) → (E ) A est une section, ∂ k est la dérivée par-rapport à la coordonnée de e k et z ∈ C * est un paramètre.

Symétrie miroir

Comme pour la théorie de Gromov-Witten, nous devons réduire la base du système local ((E ) A , (∇ ) A ) de H * FJRW (W, µ d ) à un disque épointé ∆ * , puis comparer cette restriction au système local (E B , ∇ B ). Ce dernier système local doit être considéré au-dessus d'un disque épointé centré en t = 0 avec t = 1/s. Par-exemple, pour le polynôme quintique W 5 = x 5 1 + • • • + x 5 5 , le système local (E B , ∇ B ) au voisinage de t = 0 est déterminé par l'équation [START_REF] Berglund | A generalized construction of mirror manifolds[END_REF]. Dit autrement, l'énoncé de symétrie miroir est l'existence d'un plongement local τ : ∆ * → H * FJRW (W, µ d ) tel que le tiré-en-arrière du système local ((E ) A , (∇ ) A ) par ce plongement est isomorphe au système local (E B , ∇ B ) défini au voisinage de t = 0 avec t = 1/s.

Cette conjecture est démontrée dans [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations[END_REF] pour le polynôme quintique W 5 et dans [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence[END_REF] pour les polynômes de type Calabi-Yau, sous la condition que chaque poid w j divise le degré d. Dans cette thèse, nous nous affranchissons de cette condition et nous démontrons l'énoncé suivant pour tous les polynômes chaines

W = x a 1 1 x 2 + • • • + x a N -1 N -1 x N + x a N N .
Théorème 0.30 (voir les théorèmes 3.8 et 3.12). Soit (W, µ d ) avec W un polynôme chaine de type Calabi-Yau. Alors il existe un plongement explicite τ : ∆ * → H * FJRW (W, µ d ), tels que

(E B , ∇ B ) → τ * ((E ) A , (∇ ) A ).
Le plongement τ est appelé application miroir.

Correspondence Landau-Ginzburg/Calabi-Yau

Pour finir, nous résumons la relation entre la théorie de Gromov-Witten et la théorie quantique des singularités par l'image globale faisant intervenir un énoncé de symétrie miroir pour chacune Théorie GW de {W = 0}

Théorie FJRW de

W : [C N /µ d ] → C côté A côté B t = ∞ [{W ∨ -t • y j = 0}/SL(W ∨ )] t = 0
des deux théories. Cette image est encore largement conjecturale. Elle est prouvée pour le polynôme quintique W 5 [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations[END_REF] et pour les hypersurfaces Calabi-Yau dans les espaces projectifs à poids dont l'espace grossier est une variété de type Gorenstein [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence[END_REF]. Dans cette thèse, nous calculons entièrement la théorie FJRW de genre zéro pour les polynômes de type chaine munis du groupe maximal et nous déduisons le côté droit de l'image précédente. Les invariants de Gromov-Witten correspondants ne sont pas connus.

En résumé, la théorie quantique des singularités est plus abordable que la théorie de Gromov-Witten et constituera peut-être un bon outil pour en calculer des invariants.

Points communs entre théories de Gromov-Witten et de Fan-Jarvis-Ruan-Witten

Dans cette section, nous passons en revue plusieurs aspects que les deux théories partagent.

Comparaison des cohomologies et équivalence d'Orlov

Soit W un polynôme inversible de type Calabi-Yau et G un groupe contenant l'élément j défini en [START_REF] Faber | Program to compute intersections on the moduli space of pointed curves[END_REF]. D'après [START_REF] Coates | Quantum cohomology and crepant resolutions: A conjecture[END_REF], les espaces d'états des théories de Fan-Jarvis-Ruan-Witten et de Gromov-Witten sont isomorphes

H p,q (W, G) H p,q CR ( X W / G ; C), (43) 
où G est le groupe quotient G/ j . En particulier, nous avons

H p,q (W, µ d ) H p,q CR (X W ; C). ( 44 
)
Remarque 0.31. La correspondance entre la théorie de Gromov-Witten et la théorie quantique des singularités a été présentée pour les couples (W, µ d ). Plus généralement, la conjecture propose une relation entre les invariants FJRW de (W, G) et les invariants de Gromov-Witten du champ quotient X W / G . L'isomorphisme (43) représente l'incarnation cohomologique de cette conjecture.

0.3. Points communs entre théories de Gromov-Witten et de Fan-Jarvis-Ruan- Witten 45 Ambient/primitif et étroit/large

Généralisons quelques faits déjà discutés dans l'introduction pour l'hypersurface X 5 et pour le polynôme W 5 . La cohomologie de l'hypersurface ι : X W → P(w) se décompose en somme directe

H * (X W ; C) = H * amb (X W ; C) ⊕ H * prim (X W ; C),
où la cohomologie ambiante vient de l'espace projectif à poids

H * amb (X W ; C) = Im(ι * : H * CR (P(w); C) → H * CR (X W ; C))
et la cohomologie primitive vient uniquement de l'hypersurface

H * prim (X W ; C) = ker(ι * : H * CR (X W ; C) → H * CR (P(w); C)) = ker(ι * : H * CR (O(d) P(w) , W -1 (t); C) → H * CR (O(d) P(w) ; C)).
De même, la cohomologie de la singularité W :

C N /µ d → C se décompose en somme directe H * FJRW (W, G) := H * CR C N /µ d , W -1 (t); C , = H * large (W, µ d ) ⊕ H * étroit (W, µ d ), (45) 
où la cohomologie large est le noyau du morphisme

ι * : H * CR C N /µ d , W -1 (t); C → H * CR C N /µ d , C ,
et la cohomologie étroite est l'image du morphisme ι * . Plus précisément, nous avons une décomposition

H * CR (W, µ d ) = d-1 m=0 H * CR ((C N ) j m , W +∞ ; C) µ d = d-1 m=0 Jac(W j m ) µ d , (46) 
où (C N ) j m désigne la partie invariante de C N sous l'action de l'élément j m et où la seconde égalité est un cas particulier de [START_REF] Chen | A New cohomology theory for orbifold[END_REF]. Les automorphismes j m ∈ µ d pour lesquels la partie invariante (C N ) j m est nulle correspondent à la cohomologie étroite, et ceux pour lesquels la partie invariante est non-nulle correspondent à la cohomologie large.

Théorème 0.32 ). Pour tout polynôme inversible W de type Calabi-Yau et de degré d, nous avons les isomorphismes

H * étroit (W, µ d ) H * amb (X W ; C), H * large (W, µ d ) H * prim (X W ; C).

Equivalence d'Orlov

Nous pouvons aller plus loin dans l'isomorphisme [START_REF] Goulden | The moduli space of curves, double Hurwitz numbers, and Faber's intersection number conjecture[END_REF], en le relevant en une équivalence de Préliminaires catégories, appelée équivalence d'Orlov [START_REF] Orlov | Triangulated categories of singularities and D-branes in Landau-Ginzburg models[END_REF][START_REF] Orlov | Derived categories of coherent sheaves and triangulated categories of singularities. Algebra, Arithmetic, and Geometry: In Honor of Yu[END_REF], que nous décrivons ci-dessous. Nous renvoyons aussi à [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence[END_REF] pour plus de détails. Soit R = C [x 1 , . . . , x N ] l'algèbre graduée sur C, avec la variable x j de degré w j . Le polynôme quasi-homogène W est un élément de R de degré d. Nous notons DMF gr (R, W ) la catégorie dérivée des factorisations matricielles graduées de potentiel W sur l'espace affine Spec (R). Les objets de cette catégorie sont des paires

(E, δ) := E 0 δ 1 δ 0 E 1 avec E 0 et E 1 des
modules gradués libres de type fini sur R, δ 0 un morphisme de degré 0, δ 1 un morphisme de degré d et tels que

δ 0 • δ 1 = W • id E 1 , δ 1 • δ 0 = W • id E 0 .
Un morphisme f : (E, δ) → (F, δ ) entre factorisations matricielles est une paire de morphismes

f 0 : E 0 → F 0 et f 1 : E 1 → F 1 de degré 0 qui commutent avec les différentielles, δ 0 • f 0 = f 1 • δ 0 , δ 1 • f 1 = f 0 • δ 1 .
De plus, nous imposons que ce morphisme soit nul s'il est homotopique au morphisme nul, c'est-à-dire s'il existe un morphisme s :

E 0 → F 1 de degré 0 et un morphisme t : E 1 → F 0 de degré -d vérifiant f 1 = δ 0 • t + s • δ 1 , f 0 = t • δ 0 + δ 1 • s. Proposition 0.33 (Orlov [68, prop. 2.17 et thm. 2.5]). Sous l'hypothèse d = w 1 + • • • + w N dite de Calabi-Yau, il existe une équivalence de catégories triangulées DMF gr (R, W ) D b (X W ),
où D b (X W ) est la catégorie dérivée des faisceaux cohérents sur X W .

L'équivalence de catégorie ci-dessus est à rapprocher de l'isomorphisme (44) en cohomologie, via les morphismes Ch :

D b (X W ) → H * CR (X W ; C), Ch : DMF gr (R, W ) → H * FJRW (W, µ d ),
nous renvoyons à [71, Théorème 3.2.3] pour plus de détails.

Convexité et concavité

Cette section reprend de façon légèrement différente une discussion déjà détaillée dans l'introduction, mais apportent aussi quelques précisions en traitant la possibilité qu'un fibré en droites puisse être non convexe et non concave.

Rappelons que la convexité et la concavité sont deux hypothèses sous lesquelles les calculs des cycles virtuels pour les théories de Gromov-Witten et de Fan-Jarvis-Ruan-Witten sont grandement simplifiés. Dans la section 0.4, nous verrons justement comment traiter les calculs des invariants FJRW dans des cas non concaves. Par-ailleurs, nous ne supposons plus l'hypothèse Calabi-Yau d = w 1 + • • • + w N dans cette section. 0.3. Points communs entre théories de Gromov-Witten et de Fan-Jarvis-Ruan-Witten 47

Convexité

Cette hypothèse apparait dans certains cas particuliers, par-exemple dans la théorie de Gromov-Witten en genre zéro des hypersurfaces projectives.

Définition 0.34 ([21, Exemple B]

). Nous disons que l'hypothèse de convexité est vérifiée en genre g pour les hypersurfaces de degré d dans l'espace projectif à poids P(w) lorsque, pour toute application stable f : C → P(w), où C est une courbe champêtre de genre g, nous avons

H 1 (C, f * O(d)) = 0.
Remarque 0.35. Lorsque chacun des poids w 1 , . . . , w N divise le degré d de l'hypersurface, alors l'hypothèse de convexité est toujours vérifiée en genre 0. C'est le cas notamment pour des hypersurfaces de Calabi-Yau dans des espaces projectifs à poids dont l'espace grossier est une variété de type Gorenstein.

Soit X une hypersurface de degré d dans un espace projectif à poids P(w) et soit β ∈ H 2 (P(w); Z). Nous avons un espace universel C g,n (P(w), β) au-dessus de M g,n (P(w), β) et un morphisme de projection π : C g,n (P(w), β) → M g,n (P(w), β), ainsi qu'une application stable universelle

f : C g,n (P(w), β) → P(w).
Nous disposons aussi d'un fibré en droites f * O(d) sur l'espace universel C g,n (P(w), β). Parailleurs, le plongement ι : X → P(w) induit un morphisme

ι : M g,n (X, ι * (β)) → M g,n (P(w), β).
L'hypothèse de convexité permet de comparer les théories de Gromov-Witten de X et de P(w), comme déjà décrit dans l'introduction autour de l'équation (3).

Théorème 0.36 ). Sous l'hypothèse de convexité en genre 0 pour l'hypersurface X W , le faisceau π * f * O(d) est un fibré vectoriel sur l'espace M 0,n (P(w), β) et, pour toutes classes a 1 , . . . , a n ∈ H * (P(w); C), nous avons

c X 0,n,ι * (β) (ι * (a 1 ) ⊗ • • • ⊗ ι * (a n )) = ι * (c P(w) 0,n,β (a 1 ⊗ • • • ⊗ a n )) ∪ c top (π * f * O(d)),
où c X et c P(w) désignent les applications multilinéaires (37) pour X et P(w) respectivement.

Il est intéressant de remarquer que l'hypothèse de convexité peut être fausse même en genre zéro. Ceci est inattendu puisque, pour une courbe (schématique) stable C de genre 0, nous avons H 1 (C, L) = 0 pour tout fibré en droites de degré positif. Cependant, lorsque nous travaillons avec des courbes champêtres, l'argument du degré ne fonctionne plus, comme nous allons l'expliquer ci-dessous.

Perte de convexité

Soit C une courbe champêtre isomorphe à P 1 en dehors des points marqués σ 1 , . . . , σ n et soit 

M = (deg(f )d -du 1 -• • • -du n ) • p * [pt] ∈ Z • p * [pt] , M = du 1 • [σ 1 ] + • • • + du n • [σ n ] , où pt ∈ P 1 , p : C → P 1 , • est la partie fractionnaire et u 1 , . . . , u n se trouvent dans l'ensemble {0 ≤ u < 1 | ∃ j s.t. w j • u ∈ N} .
En fait, les nombres u 1 , . . . , u n correspondent aux caractères de la restriction du morphisme f aux points marqués, voir [START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF][START_REF] Coates | Computing genus-zero twisted Gromov-Witten invariants[END_REF].

Par-ailleurs, nous avons l'identité cohomologique

H * (C, O C ( M + M )) = H * (P 1 , O P 1 ( M )),
donc l'hypothèse de convexité ne dépend que du signe de M . Si par-exemple, nous avons

deg(f )d -du 1 -• • • -du n ≥ 0, (47) 
alors la dualité de Serre donne

H 1 (C, f * O(d)) ∨ = H 1 (P 1 , O P 1 ( M )) ∨ H 0 (P 1 , ω P 1 ⊗ O P 1 (-M )) → H 0 (P 1 , ω P 1 ) = 0.
Lorsque chaque poids w 1 , . . . , w N divise le degré d de l'hypersurface, nous avons du i = 0 pour chaque u i . Par-conséquent, l'inégalité (47) est vérifiée et l'hypothèse de convexité aussi. Cependant, il est facile de choisir des poids et un degré de sorte que le diviseur M soit négatif et l'obstruction H 1 (C, f * O(d)) au théorème 0.36 peut alors être non nulle. Coates et ses collaborateurs ont discuté cette possibilité dans "The Quantum Lefschetz Hyperplane Principle Can Fail for Positive Orbifold Hypersurfaces" [START_REF] Coates | The quantum Lefschetz hyperplane principle can fail for positive orbifold hypersurfaces[END_REF].

Concavité

Parallèlement à ce que nous venons de dire pour la théorie de Gromov-Witten, les calculs aboutis de la théorie quantique des singularités utilisent souvent l'hypothèse de concavité. Définition 0.37. Nous disons que l'hypothèse de concavité est vérifiée en genre g pour le polynôme W et les automorphismes k 1 , . . . , k n ∈ G lorsque, pour tous les points s de l'espace de modules S g,n;k 1 ,...,kn (W, G) défini à la remarque 0.28, nous avons H 0 (C, L j )) = 0 pour tout j, où les fibrés en droites L 1 , . . . , L N et la courbe C sont représentés par ce point s ∈ S g,n;k 1 ,...,kn (W, G). 0.3. Points communs entre théories de Gromov-Witten et de Fan-Jarvis-Ruan- Witten 49 Remarque 0.38. L'hypothèse de concavité est toujours vérifiée en genre zéro pour les po-

lynômes de Fermat W = x a 1 1 + • • • + x a N N avec des automorphismes k 1 , . . . , k n ∈ G étroits, c'est-à-dire tels que (C N ) k i = 0.
Soit W un polynôme quasi-homogène à singularité isolée et G un groupe contenant l'élément j défini par [START_REF] Faber | Program to compute intersections on the moduli space of pointed curves[END_REF]. Nous avons une courbe universelle C g,n;k 1 ,...,kn (W, G) au-dessus de l'espace de modules S g,n;k 1 ,...,kn (W, G) défini à la remarque 0. 

H * CR (W, G) = g∈G Jac(W g ) G =: g∈G H g . ( 48 
)
Théorème 0. 

c vir (a 1 ⊗ • • • ⊗ a n ) 0,n = N j=1 c top (R 1 π * L j ) (49) 
où c vir est la classe virtuelle 8 associée à la théorie quantique des singularités de (W, G).

Remarque 0.40. Cet énoncé permet de calculer les invariants FJRW lorsque les entrées sont des classes de cohomologies étroites 9 . En effet, les caractères de Chern des fibrés vectoriels R 1 π * L j s'expriment via le théorème de Grothendieck-Riemann-Roch. Précisément, le théorème [14, Théorème 1.

1.1] donne Ch(R • π * L j ) = m≥0 B m+1 (w j /d) (m + 1)! κ m - n i=1 B m+1 (γ j (i)) (m + 1)! ψ m i + 1 2 B m+1 (λ j ) (m + 1)! j λ, * (δ m-1 ) , ( 50 
)
où B d (x) est le polynôme de Bernoulli, le N-uplet γ(i) est la monodromie au point marqué σ i , j λ : ∆ → S g,n (W, G) est un morphisme de recollement en un noeud de monodromie λ similaire à (20

) et la classe δ m vaut δ m = a+a =m ψ a (-ψ) a pour m ≥ 0 (nul sinon).
Dans cette dernière formule, ψ est la classe associée au noeud et à la branche privilégiée de ∆ où la monodromie est λ, alors que ψ est associée au noeud et à l'autre branche, où la monodromie est donc λ -1 . En revanche, le théorème 0.39 ne dit rien sur la partie large 10 de la cohomologie.

7. Nous suivons dans cette thèse la convention de [START_REF] Chiodo | The Witten top Chern class via K-theory[END_REF][START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence[END_REF][START_REF] Guéré | A Landau-Ginzburg mirror theorem without concavity[END_REF] sur le signe de la classe virtuelle. En revanche, dans [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF][START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF], la classe virtuelle diffère d'un facteur -1 lorsque la moitié de son degré cohomologique est impaire. En revanche, nous rajoutons ce signe dans la définition de la théorie cohomologique des champs, voir [START_REF] Givental | Elliptic Gromov-Witten invariants and the generalized mirror conjecture[END_REF].

8. Les constructions de Polishchuk-Vaintrob et de Fan-Jarvis-Ruan coïncident dans ce cas. 9. C'est la notion qui correspond à ambiante d'après le théorème 0.32. 10. C'est la notion qui correspond à primitive d'après le théorème 0.32.

Remarque 0.41. Le théorème 0.49, ou plus précisément le théorème 2.25, généralise la formule [START_REF] Guest | From quantum cohomology to integrable systems[END_REF] et il constitue l'un des principaux résultats de cette thèse.

Perte de concavité

Etudions plus précisément les groupes de cohomologie d'un fibré en droites L j sur une courbe champêtre C isomorphe à P 1 en dehors des points marqués et dont les stabilisateurs aux points marqués sont isomorphes au groupe cyclique µ d . Supposons pour simplifier que le fibré en droites L j provienne d'un fibré en droites L qui vérifie

L j = L ⊗w j et L ⊗d ω C,log . Nous écrivons L = O C (M ) et L j = O C (M j ) avec M = M + M et M j = M j + M j .
Par-ailleurs, le fibré en droites ω C,log est le tiré-en-arrière de celui de l'espace grossier

C = P 1 et vaut donc ω C,log = O C ((n -2) • p * [pt]), où pt ∈ P 1 et p : C → P 1 . Ainsi, nous obtenons M = n -2 d -v 1 -• • • -v n • p * [pt] ∈ Z • p * [pt] , M = v 1 • [σ 1 ] + • • • + v n • [σ n ] , M j = (n -2) w j d -w j v 1 -• • • -w j v n • p * [pt] ∈ Z • p * [pt] , M j = w j v 1 • [σ 1 ] + • • • + w j v n • [σ n ] ,
où les nombres v 1 , . . . , v n correspondent aux caractères de la restriction du fibré L aux points marqués et appartiennent à l'ensemble

{v ∈ [0, 1[ | d • v ∈ N} . ( 51 
)
Ces nombres v 1 , . . . , v n sont précisément les indices qui apparaissent dans la décomposition [START_REF] Griffiths | On the periods of certain rational integrals[END_REF]. Rappelons l'identité cohomologique

H * (C, O C ( M j + M j )) = H * (P 1 , O P 1 ( M j )),
si bien que l'annulation de H 0 (C, L j ) ne dépend que du signe de M j .

Lorsque chaque w j divise le degré d et que w j v i = 0 pour tout i, alors 

w j v i ∈ w j d • N * et donc w j d ≤ w j v i pour tout i et j. Par-conséquent M j est un diviseur négatif et l'annulation de H 0 (C, L j )

Calcul de la classe virtuelle FJRW

A partir de maintenant, nous nous concentrons entièrement sur la théorie quantique des singularités pour les polynômes inversibles. De plus, nous privilégierons le groupe maximal G max des automorphismes diagonaux plutôt que le groupe cyclique µ d et nous préciserons explicitement lorsque G = G max .

L'objectif principal de cette thèse est la compréhension et le calcul de la classe virtuelle et des invariants de cette théorie. Partant de la construction de Polishchuk et Vaintrob, nous utilisons le formalisme des factorisations matricielles, que nous réinterprétons en termes de complexes deux-périodiques, de façon similaire au travail de Chiodo [START_REF] Chiodo | The Witten top Chern class via K-theory[END_REF]. Ensuite, nous introduisons un nouvel objet mathématique : les complexes récursifs. Sous certaines hypothèses, ces complexes récursifs ont des propriétés d'annulation en cohomologie très utiles pour le calcul de la classe virtuelle. Ces propriétés découlent de résultats de Green [45, Théorème 2] sur la cohomologie de Koszul des systèmes linéaires sans points bases. Enfin, nous énonçons le théorème principal 2.25 avec la formule pour la classe virtuelle et expliquons en quoi celle-ci permet dans ce cadre très précis de donner un sens à la classe de Chern maximale c max pour l'image directe d'un fibré vectoriel.

Insistons sur le fait que nous utilisons l'approche de 

Des factorisations matricielles aux complexes deux-périodiques

La construction de Polishchuk et Vaintrob présentée dans [START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF] met en jeu une factorisation matricielle dite fondamentale sur l'espace de modules de la théorie. Celle-ci joue alors le rôle de noyau dans une transformation de type Fourier-Moukaï définissant la classe virtuelle. Ici, nous donnons les grandes lignes de cette construction, qui sera reprise en détail dans la section 1.3. Définition 0.43. Soit w une fonction définie sur un champ X. Une factorisation matricielle

E := (E, δ E ) de potentiel w sur X est un fibré vectoriel Z/2-gradué E = E 0 ⊕ E 1 sur X muni d'un endomorphisme δ E qui fait l'échange E 0 E 1 et qui satisfait δ E • δ E = w • id E . L'endomorphisme δ E est appelé différentielle, bien que son carré ne soit pas nul.
La catégorie des factorisations matricielles de potentiel w sur le champ X est notée MF(X, w). Elle possède une structure de dg-catégorie et sa catégorie dérivée DMF(X, w) a une structure de catégorie triangulée. Nous renvoyons à [START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF] pour la définition des morphismes pour ces catégories.

Factorisation matricielle de Koszul

L'exemple le plus important pour nous est celui d'une factorisation matricielle de Koszul. Les données initiales pour sa construction sont -un fibré vectoriel V sur le champ X, -une section globale α ∈ H 0 (X, V ), -une section du dual β ∈ H 0 (X, V ∨ ), -la fonction w := β(α) sur X.

Définition 0.44. La factorisation matricielle de Koszul {α, β} de potentiel w sur X est la donnée des fibrés vectoriels

{α, β} 0 = pair V = O X ⊕ 2 V ⊕ • • • {α, β} 1 = impair V = V ⊕ 3 V ⊕ • • • , et du morphisme δ α,β := ι(β) + α ∧ •, où la notation ι(β) signifie la contraction par β.
Remarque 0.45. Le produit tensoriel entre deux factorisations matricielles de Koszul définies par les ingrédients (V, α, β, w) et (V , α , β , w ) est défini par (V ⊕ V , α + α , β + β , w + w ).

Soit (π : C → S; σ 1 , . . . , σ n ; L 1 , . . . , L N ) une famille de courbes champêtres munies de fibrés en droites, telle qu'elle est décrite dans la section 0.2.5. Résolvons les images supérieures R • π * (L j ) par des complexes [A j → B j ] de fibrés vectoriels sur S et posons

X := Spec(Sym(A 1 ⊕ • • • ⊕ A N ) ∨ ) p - → S.

Polishchuk et Vaintrob ont d'abord construit une factorisation matricielle de Koszul

PV := {-α, β} ∈ MF(X, -Z * W ). X PV A m S Z p
Les ingrédients pour cette factorisation matricielle de Koszul sont -le fibré vectoriel

V = p * (B 1 ⊕ • • • ⊕ B N ) ∨ ,
-une section α ∈ H 0 (X, V ) induite par les relations algébriques entre les fibrés en droites, voir la section 1.3.3 et en particulier l'équation (1.29), -une section β ∈ H 0 (X, V ∨ ) induite par les différentielles des résolutions [A j → B j ], -un morphisme Z : A m → X provenant de l'évaluation des sections des fibrés L j sur les points marqués. Le polynôme W est la somme

W v 1 ⊕ • • • ⊕ W vn , où l'élément v i ∈ G correspond à
la monodromie du fibré en droites L au voisinage du point marqué σ i , comme expliqué dans (51) pour le groupe G = µ d , et le polynôme W v i est la partie invariante de W sous l'automorphisme v i . Le symbole somme directe signifie ici que les ensembles des variables des différents polynômes sont disjoints (somme de Thom-Sebastiani). La factorisation matricielle fondamentale de Polishchuk-Vaintrob est alors l'image direct de PV par le morphisme de projection p.

Transformation de Fourier-Mukaï

Nous utilisons la factorisation matricielle PV comme noyau dans la transformation de Fourier-

Mukaï Φ : MF(A m , W ) -→ MF(S, 0) U -→ p * (Z * (U ) ⊗ PV)
ce qui donne un complexe deux-périodique. Nous obtenons un diagramme commutatif

MF(A m , W ) Φ / / Ch MF(S, 0) Ch ⊗ n i=1 H v i Φ * / / H * (S) (52) 
où H v i est défini via la décomposition (48) de l'espace d'état H * FJRW (W, G). Définition 0.46. La classe virtuelle de Polishchuk-Vaintrob est l'application multilinéaire

c PV vir : (H * CR (W, G)) ⊗n → H * (S G g,n (W ); C) définie par le produit c PV vir (•) = Φ * (•) • Td(B 1 ) • • • Td(B N ) Td(A 1 ) • • • Td(A N ) au-dessus de la base S.

Complexe deux-périodique

Notons H ⊂ H * FJRW (W, G) le sous-espace des éléments qui sont invariants sous l'action du groupe maximal G max de W . Nous montrons dans la section 1.3.4 comment relever dans le diagramme (52) tout élément de H en une factorisation matricielle de Koszul explicite, via le lemme 1.26. D'après la remarque 0.45, il est facile de voir que le complexe deux-périodique obtenu par le foncteur Φ est alors quasi-isomorphe à un complexe

(T, δ) = • • • → T + δ - → T -δ - → T + → • • •
de faisceaux quasi-cohérents de la forme

T + := Sym (A 1 ⊕ • • • ⊕ A N ) ∨ ⊗ pair ( B 1 ⊕ • • • ⊕ B N ) ∨ T -:= Sym (A 1 ⊕ • • • ⊕ A N ) ∨ ⊗ impair ( B 1 ⊕ • • • ⊕ B N ) ∨ ,
où le fibré vectoriel B j est un facteur direct de B j , pour tout j. En fait, le fibré vectoriel B j intervient dans la résolution

Rπ * (L j ) A j → B j ,
où le fibré en droites L j est obtenu à partir de L j en tordant par certains points marqués, comme nous l'avons déjà vu au théorème 0.2 dans l'introduction. Plus précisément, le fibré en droites L j est défini par la formule (2.40). Il est remarquable que le complexe deux-périodique (T, δ) soit exactement la factorisation matricielle fondamentale de Polishchuk-Vaintrob obtenue en appliquant leur construction aux fibrés en droites L j plutôt qu'aux fibrés en droites L j . Finalement, la classe virtuelle vaut

c PV vir = Ch H + (T ) -H -(T ) Td(B 1 ⊕ • • • ⊕ B N ) Td(A 1 ⊕ • • • ⊕ A N ) ,
il reste donc à calculer la cohomologie du complexe (T, δ).

Complexes récursifs non dégénérés

Sous certaines conditions détaillées dans le théorème 2.25, le complexe deux-périodique (T, δ) fait partie d'une classe de complexes que nous avons appelés complexes récursifs, voir la définition 2.4. Ces complexes possèdent de bonnes propriétés d'annulation en cohomologie qui simplifient le calcul de la classe virtuelle et le rendent explicite. C'est l'objet de la section 2.2.

Pour simplifier, nous supposerons dans cette partie et la suivante que le genre est g = 0 et que le polynôme W est de type chaine, c'est-à-dire

W = x a 1 1 x 2 + • • • + x a N -1 N -1 x N + x a N +1 N .
L'annulation du groupe H 0 (C, L N ) est alors vérifiée, ce qui nous permet de supposer

A N = 0.
Par-conséquent, le complexe (T, δ) est un complexe récursif par-rapport aux entiers a 1 , . . . , a N , c'est à dire qu'il s'écrit sous la forme

T + := Sym A ∨ ⊗ pair B ∨ , T -:= Sym A ∨ ⊗ impair B ∨
avec des fibrés vectoriels A et B sur la base S qui se décomposent en sommes directes de fibrés vectoriels

A := A 1 ⊕ • • • ⊕ A N et B := B 1 ⊕ • • • ⊕ B N
de sorte qu'il existe des morphismes

α j : O S → Sym a j A ∨ j ⊗ B ∨ j+1 ⊕ Sym a j -1 A ∨ j ⊗ A ∨ j+1 ⊗ B ∨ j , β j : B ∨ j → A ∨ j , dont la somme α 1 + • • • + α N + β 1 + • • • + β N induit la différentielle δ. La convention utilisée ci-dessus est A N +1 = A 1 et B N +1 = B 1 .
Notons que les fibrés vectoriels B 1 , . . . , B N sont les fibrés B 1 , . . . , B N de la section précédente et que le morphisme α j se décompose en

α j : O S → Sym a j (A j ) ∨ ⊗ (B j+1 ) ∨ , α j : O S → Sym a j -1 (A j ) ∨ ⊗ (A j+1 ) ∨ ⊗ (B j ) ∨ .
Le morphisme α j induit au-dessus de chaque point s ∈ S un système linéaire 

B j+1,s → Sym a j (A j,s ) ∨ H 0 (P(A j,s ), O(a j )), (53) 
H + (T, δ) -H -(T, δ) = Sym z 1 (A ∨ 1 -B ∨ 1 ) ⊗ • • • ⊗ Sym z N (A ∨ N -B ∨ N ),
où la somme est finie et prise sur les points (z 1 , . . . , z N ) ∈ N N vérifiant, pour tout j,

z j -a j z j+1 + • • • + (-a j ) • • • (-a N -1 )z N ≤ R j , ( 54 
) avec R 1 • • • R N
1 des entiers suffisamment grands. En particulier, le résultat ne dépend pas du représentant K-théorique choisi pour A j -B j .

La classe virtuelle via la K-théorie

Cette section a déjà été détaillée dans l'introduction, il s'agit donc essentiellement de rappels. Sous les hypothèses du théorème 2.25, le complexe deux-périodique (T, δ) décrit dans la section précédente 0.4.2 est un complexe récursif. Notre théorème 0.47 permet alors de calculer explicitement la classe virtuelle c PV vir , en faisant apparaître une nouvelle classe caractéristique notée c. L'objectif de cette section est double : donner la formule permettant de calculer la classe virtuelle et montrer dans quel sens la classe caractéristique c étend la classe c max à certains éléments K-théoriques qui ne sont pas des fibrés vectoriels.

Pour simplifier les notations, nous présentons nos résultats dans le cas des polynômes chaines en genre zéro et renvoyons au théorème 2.25 pour un traitement des polynômes inversibles.

Soient V un fibré vectoriel sur une base S et un paramètre t ∈ C. Définissons la classe caractéristique c en V par

c t (V ) := Ch(λ -t V ∨ ) • Td(V ) ∈ H * (S) [t] ,
où λ -t désigne la λ-structure d'anneau en K-théorie selon [START_REF] Fulton | Riemann-Roch algebra[END_REF], voir la formule [START_REF] Bertram | On the quantum cohomology of a symmetric product of an algebraic curve[END_REF]. De façon explicite, nous avons

λ t V := k≥0 Λ k V • t k ∈ K(S) [t] .
La classe c max s'obtient alors, d'après [37, Proposition 5.3], comme la limite

lim t→1 c t (V ) = c max (V ). ( 55 
)
La classe de Chern maximale n'est pas inversible, mais la λ-structure l'est. En particulier, nous avons

λ t (-V ) := k≥0 Sym k V • t k ∈ K(S)[[t]]
et nous étendons la classe caractéristique c t à la K-théorie par

c t (B -A) := c t (B) c t (A) = Ch λ -t B ∨ λ -t A ∨ • TdB TdA ∈ H * (S)[[t]].
Cette expression est bien définie car elle ne dépend que de la différence A -B et son rayon de convergence est 1. Bien sûr, cette série formelle n'a en général pas de limite lorsque t → 1.

Pour définir la classe caractéristique c t pour tout t = 1, nous renvoyons à la définition 2.22.

Préliminaires

Remarque 0.48. La classe caractéristique c t (V ) n'est pas la classe d'Euler équivariante de V . Si nous l'écrivons en fonction des racines α 1 , . . . , α v du fibré vectoriel V , elle vaut

c t (V ) = v k=1 e α k -t e α k -1 • α k .
Dans le théorème suivant, le polynôme

W est W = x a 1 1 x 2 + • • • + x a N -1 N -1 x N + x a N +1
N et le groupe G est un groupe d'automorphismes de W contenant j défini par [START_REF] Faber | Program to compute intersections on the moduli space of pointed curves[END_REF]. De plus, pour tout γ ∈ G, nous avons un élément e γ de l'espace d'états, défini par (1.8), invariant sous le groupe maximal 11 

⊗ • • • ⊗ e γ(n) ) 0,n = lim t→1 N j=1 (1 -t j ) r j c t j (-Rπ * (L j )) où les nombres t 1 , . . . , t N vérifient t 1 := t et, pour 1 ≤ j ≤ N -1, la relation t a j j • t j+1 = 1 et où les entiers r 1 , . . . , r N comptent les états larges, c'est-à-dire r j := card {i | γ j (i) = 1}.
Remarque 0.50. Les nombres t j sont définis par les monômes du polynôme chaine W et correspondent à des vitesses de convergence différentes pour chaque élément R • π * (L j ). Ces vitesses de convergence sont précisément ajustées et la limite n'existe pas en général si nous les modifions. Par-ailleurs, il existe une expression, écrite dans le théorème 2.25, en fonction des caractères de Chern des éléments R • π * (L j ). Cette formule est très utile en pratique puisque ces caractères de Chern peuvent être calculés par la formule de Grothendieck-Riemann-Roch [START_REF] Hain | Normal Functions and the Geometry of Moduli Spaces of Curves[END_REF]. Le calcul de la classe virtuelle est donc explicite et peut être réalisé numériquement, voir le programme informatique A.

Remarque 0.51. La formule du théorème 0.49 est à rapprocher de la formule du théorème 0.39 et de l'équation [START_REF] Kim | Quantum hyperplane section theorem for homogeneous spaces[END_REF]. Il s'agit bien de l'idée heuristique (2) que nous nous faisons de la classe virtuelle.

Relations entre théories cohomologiques des champs et hiérarchies intégrables

Il existe une relation forte entre les théories cohomologiques des champs et les hiérarchies intégrables, qui sont des systèmes infinis d'équations aux dérivées partielles. Nous en avons déjà aperçu un premier exemple dans la section 0.1.3, où le théorème 0.14 explique comment le potentiel de la théorie de Gromov-Witten d'un point fournit une solution pour la hiérarchie KdV. Nous avons aussi donné une représentation sous la forme d'une intégrale matricielle et écrit l'action d'une algèbre de type Virasoro sur la fonction de partition, ce qui permet en pratique un calcul explicite de la théorie en tous genres.

Un autre exemple, détaillé dans [START_REF] Pandharipande | The toda equations and the gromov-witten theory of the riemann sphere[END_REF], est la relation entre la théorie de Gromov-Witten de la sphère P 1 et la hiérarchie de Toda. Plus généralement, pour chaque variété projective lisse X, 11. La partie du secteur associé à γ invariante sous l'action du groupe maximal est de dimension 0 ou 1. 0.5. Relations entre théories cohomologiques des champs et hiérarchies intégrables 57

il devrait y avoir une hiérarchie intégrable qui lui est associée, ainsi qu'une intégrale matricielle et une dynamique de type Virasoro. Cependant, seule la dynamique de Virasoro a été formulée de façon précise comme une conjecture [START_REF] Eguchi | Quantum cohomology and Virasoro algebra[END_REF].

Théories semi-simples

Du côté de la théorie quantique des singularités, il existe des résultats pour les singularités dites simples. Ces singularités sont classées en trois types A r , D n et E q (avec q = 6, 7 ou 8) et une généralisation de la conjecture 0.14 de Witten prévoit que les théories FJRW pour ces singularités soient associées à des hiérarchies intégrables du même type A r , D n et E q . Le cas des singularités de type A r a été résolu par Faber, Shadrin et Zvonkine [START_REF] Faber | Tautological relations and the r-spin Witten conjecture[END_REF] et les cas des singularités de type D n et E q ont été faits par Fan, Jarvis et Ruan [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF]. Notons que la singularité de type A r-1 est le polynôme de Fermat x r et la hiérarchie associée est appelée r-KdV. Il s'agit d'une généralisation de la hiérarchie KdV que nous présentons dans la section 0.5.1. Par-ailleurs, la théorie de la singularité x r est appelée théorie r-spin.

Les preuves de ces conjectures reposent sur un théorème de reconstruction de la théorie en genre g > 0 à partir du genre g = 0. Ce théorème est dû à Teleman [START_REF] Teleman | The structure of 2D semi-simple field theories[END_REF] et une condition nécessaire est d'avoir une théorie cohomologique des champs conforme et semi-simple, ce qui est bien le cas pour les singularités simples.

Plus généralement, Dubrovin et Zhang ont construit dans [START_REF] Dubrovin | Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants[END_REF] une hiérarchie intégrable pour toute théorie cohomologique des champs conforme et semi-simple. De plus, le potentiel de la théorie fournit une solution de cette hiérarchie.

Hiérarchie DR

Pour finir, Buryak a défini une hiérarchie appelée DR (initiales de double ramification) associée à toute théorie cohomologique des champs, sans aucunes restrictions. En revanche, il n'est pas prouvé que le potentiel de la théorie fournisse une solution de la hiérarchie. La hiérarchie DR pour la théorie quantique des singularités de type chaine est notre motivation principale. En effet, notre théorème 2.40, qui découle des propriétés intéressantes des complexes récursifs dont nous avons parlé précédemment, permet un calcul explicite des équations de cette hiérarchie. Buryak a conjecturé que, lorsque la théorie est conforme et semi-simple, il existe un changement de variables, appelé transformation de Miura, permettant de passer de la hiérarchie DR à la hiérarchie de Dubrovin-Zhang.

Pour la théorie 3-spin, nous comparons à la main les premières équations de la hiérarchie DR avec celles de la hiérarchie 3-KdV. Nous trouvons alors un candidat pour le changement de variables reliant les deux hiérarchies et nous prouvons dans [START_REF] Guéré | Some FJRW invariants in arbitrary genus[END_REF] que ce candidat fonctionne sur toutes les équations.

Il s'agit en fait du même changement de variables pour passer de la hiérarchie de Dubrovin-Zhang pour la théorie 3-spin à la hiérarchie 3-KdV, ce qui prouve la conjecture de Buryak dans ce cas. Nous espérons pouvoir réaliser ce travail de façon plus systématique et démontrer la conjecture de Buryak pour la théorie r-spin.

La hiérarchie r-KdV et la théorie r-spin

La hiérarchie r-KdV est une généralisation de la hiérarchie KdV, qui correspond à r = 2. Partons de l'opérateur différentiel

L = D r + u r-2 • D r-2 + • • • + u 0 , où r ≥ 2 et D est l'opérateur différentiel D := ∂ ∂x .
Les fonctions u 0 , . . . , u r-2 sont des fonctions de x mais dépendent aussi d'une infinité de variables t 1 , t 2 , . . . . L'objectif est de trouver des opérateurs différentiels H 1 , H 2 , . . . vérifiant la relation de commutation

∂H m ∂t n - ∂H n ∂t m = [H n , H m ]
et pour lesquels l'équation différentielle

∂L ∂t n = [H n , L] (56) 
soit d'ordre au plus r -2. Il existe une base de solutions donnée par

H n := (L n/r ) + , (57) 
dont nous expliquons les notations. Un opérateur pseudo-différentiel est une série de Laurent en l'inverse formel D -1 , i.e.

A = d i=-∞ a i (x) • D i , ( 58 
)
avec la relation de commutation

D -1 • f = k≥0 (-1) k f (k) • D -1-k .
Nous traitons plusieurs exemples de calculs dans le chapitre 4, en particulier dans la section 4.2.1. Il est facile de voir qu'il existe un unique opérateur pseudo-différentiel Q vérifiant Q r = L, nous le notons L 1/r . Sa n-ième puissance est l'opérateur pseudo-différentiel L n/r et le symbole (•) + signifie qu'on ne garde que la partie différentielle de cet opérateur, i.e.

A = d i=-∞ a i (x) • D i =⇒ (A) + = d i=0 a i (x) • D i .
Réécrite en termes des fonctions u 0 , . . . , u r-2 , l'équation [START_REF] Kontsevich | Intersection theory on the moduli space of curves and the matrix Airy function[END_REF], avec l'opérateur H n défini par (57), est la n-ième équation de la hiérarchie r-KdV. Par-exemple, pour r = 3 et n = 2, nous avons les deux équations

∂u 0 ∂t 2 = - 2 3 • u 1 • u 1 + u 0 - 2 3 • u (3) 1 , ( 59a 
)
∂u 1 ∂t 2 = 2 • u 0 -u 1 .
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Théorie r-spin et solution de la hiérarchie r-KdV D'après l'équation [START_REF] Griffiths | On the periods of certain rational integrals[END_REF], l'espace d'état de la théorie r-spin, c'est-à-dire la théorie FJRW de la singularité W = x r , se décompose comme 

H * FJRW (W, µ r ) = r-1 m=0 Jac(W j m ) µ d et
(k • r + α) • ((k -1) • r + α) • • • α • t k•r+α = T α k .
Théorème 0.52 (Conjecture de Witten généralisée, prouvée par [START_REF] Faber | Tautological relations and the r-spin Witten conjecture[END_REF]). La fonction de partition exp(F r (t 0 , t 1 , t 2 , . . . )) de la théorie r-spin est une τ -fonction de la hiérarchie r-KdV. En particulier, elle fournit une solution des équations différentielles (56) de la hiérarchie r-KdV.

Plus précisément, pour obtenir une solution de la hiérarchie r-KdV à partir de la fonction τ r := exp(F r ), nous devons procéder comme dans l'exemple 4.8. En effet, nous utilisons les relations décrites dans [START_REF] Dijkgraaf | Intersection theory, integrable hierarchies and topological field theory[END_REF]Sect. 3.2] :

Res(L n/r ) = ∂ 2 ∂t n ∂x ln(τ r ), (60) 
pour tout entier n ≥ 1, et

Res(L i/r ) = i r • u r-i-1 + • • • , ( 61 
)
pour 1 ≤ i ≤ r -1, où les pointillés cachent des polynômes en les variables u j , u j , u j , . . . avec j > r -i -1 et où le résidu d'un opérateur pseudo-différentiel A défini par (58) est la fonction a -1 . Nous voyons facilement que les équations (61) peuvent être inversées, de sorte qu'on obtient une solution (u 0 , . . . , u r-2 ) de la hiérarchie r-KdV à partir de la fonction τ r .

La hiérarchie DR

Les hiérarchies intégrables sont alors des généralisations à la dimension infinie des systèmes intégrables.

Espace formel des lacets

L'espace qui joue le rôle de variété de Poisson de dimension infinie est appelé espace formel des lacets (formal loop space en anglais). L'anneau des fonctions sur cet espace est l'ensemble des polynômes différentiels, c'est-à-dire un polynôme 

f (u 0 , u 1 , u 2 , . . . ) = n≥0 d 1 ,...,dn≥1 f d 1 ,...,dn (u 0 ) • u d 1 • • • u dn où f d 1 ,...,
c top (E) ∪ α , pour α ∈ H * (M g,n ; C).
De plus, ces intégrales sont des polynômes homogènes de degré 2g en les variables a 1 , . . . , a n .

Introduisons les fonctions

g α d := g≥0 n≥2 (-) g n! a 1 ,...,an =0 a 1 +•••+an=0 1≤α 1 ,...

,αn≤N

DRg(0,a 1 ,...,an)

c top (E) ∪ ψ d 1 ∪ c g,n+1 (e α ⊗ e α 1 ⊗ • • • ⊗ e αn ) n i=1 p α i a i . D'après [9, Lemme 2.3], il existe une unique fonctionnelle h α d ∈ Λ N qui vérifie ∂h α d ∂u α 0 | u * * =0 = 0 et h α d | u α k = l =0 (il) k p α l e ilx = m∈Z (P α d ) m • e imx , avec (P α d ) 0 = g α d .
Les fonctionnelles h 

Calcul explicite de la hiérarchie DR

En utilisant les propriétés exceptionnelles des complexes récursifs décrites au théorème 0.47, nous pouvons calculer, en tout genre, le produit c top (E) ∪ c PV vir pour tout modèle de Landau-Ginzburg (W, G) avec W un polynôme chaine. En particulier, lorsque le genre vaut zéro, nous retrouvons le théorème 0.49. 

Dans le théorème suivant, le polynôme

W est W = x a 1 1 x 2 + • • • + x a N -1 N -1 x N + x a N N et
c top (E ∨ ) ∪ c PV vir (e γ(1) ⊗ • • • ⊗ e γ(n) ) g,n = lim t→1 N j=1 (1 -t j ) r j c t j (-Rπ * (L j )) • c t N +1 (E ∨ ) où E
∂u 1 0 ∂τ 2 0 = 1 3 • u 2 0 • (u 2 0 ) + 36 • (u 2 0 ) (3) , ( 62a 
)
∂u 2 0 ∂τ 2 0 = (u 1 0 ) . ( 62b 
)
Pour finir, en comparant l'équation (62a) avec (59a) et l'équation (62b) avec (59b), nous remarquons que ce sont les même équations, après avoir fait les identifications

u 1 0 = 1 2i √ 3 2 3 u 0 - 1 3 u 1 , u 2 0 = u 1 3 , = 1, τ α d = (-3) 3d+α-1 2 -d (α + 3d) • (α + 3(d -1)) • • • (α + 3) • α • t 3d+α .
Cette remarque va dans le sens de la conjecture de Buryak [START_REF] Buryak | Double Ramification cycles and integrable hierarchies[END_REF] : la hiérarchie DR pour la théorie 3-spin coïncide avec la hiérarchie 3-KdV après les changements de variables ci-dessus, voir [START_REF] Guéré | Some FJRW invariants in arbitrary genus[END_REF].

Structure de la thèse

Dans le premier chapitre, nous décrivons la théorie quantique des singularités (espace d'états, espace de modules) ainsi que la construction de Polishchuk et Vaintrob pour la classe virtuelle. En particulier, nous relevons les états de la théorie au niveau des factorisations matricielles, voir le lemme 1.26. Le deuxième chapitre est le coeur technique de cette thèse, avec l'introduction de la notion de complexe récursif. Il contient la preuve du théorème principal 2.25 sur le calcul de la classe virtuelle en genre zéro ainsi que celle de sa généralisation 2.40 en genre supérieur. De plus, nous y démontrons la compatibilité 2.38 entre les constructions de Polishchuk-Vaintrob et de Fan-Jarvis-Ruan pour le cycle virtuel des polynômes inversibles avec groupe maximal de symétrie. Le troisième chapitre traite de la symétrie miroir : nous en présentons une version géométrique à l'aide de D-modules puis nous décrivons le formalisme de Givental. Enfin, nous obtenons la grande fonction-I (3.19) et le théorème de symétrie miroir 3.12. Dans le quatrième chapitre, nous présentons les hiérarchies intégrables r-KdV et Double Ramification, puis nous utilisons nos résultats sur le cycle virtuel en genre arbitraire pour vérifier partiellement une conjecture de Buryak sur la comparaison entre ces hiérarchies. La preuve complète de la conjecture pour la théorie 3-spin se trouve dans [START_REF] Guéré | Some FJRW invariants in arbitrary genus[END_REF]. Enfin, dans l'annexe se trouve le code en MAPLE d'un programme informatique appliquant les théorèmes 2. [START_REF] Coates | Quantum cohomology and crepant resolutions: A conjecture[END_REF] Chapter 1

Quantum singularity theory

As mentioned in the Introduction and in the Preliminaries, we study an analog of Gromov-Witten theory, first introduced by Fan-Jarvis-Ruan [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF][START_REF] Fan | The Witten equation and its virtual fundamental cycle[END_REF] inspired by Witten [START_REF] Witten | Phases of N=2 theories in two dimensions[END_REF] and called the quantum singularity theory or FJRW theory. Any Landau-Ginzburg (LG) orbifold carries this cohomological field theory. Recently in [START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF], Polishchuk and Vaintrob constructed a virtual class for the quantum singularity theory in an algebraic way, which might differ from FJRW analytic definition. In this chapter, we describe the quantum singularity theory and the algebraic construction of its virtual class for invertible polynomials with diagonal automorphisms. We have three motivations to focus on this case : there is a complete description of the state space (see equations (1.8) and (1.9)), a candidate for the (conjectural) mirror LG orbifold (see Definition 3.1) and a compatibility theorem 2.30 between the two constructions of the virtual class.

Conventions and notations

With respect to FJRW theory, two cohomological classes have been recently introduced: the FJRW virtual class by Fan, Jarvis, and Ruan [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF][START_REF] Fan | The Witten equation and its virtual fundamental cycle[END_REF] on one side and an algebraic class by Polishchuk and Vaintrob [START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF] on the other side. Fan, Jarvis, and Ruan view this class analytically and follow Witten's initial sketched idea [START_REF] Witten | Phases of N=2 theories in two dimensions[END_REF] formalized for A-singularities by Mochizuki [START_REF] Mochizuki | The virtual class of the moduli stack of stable r-spin curves[END_REF]. Polishchuk and Vaintrob provide an algebraic construction generalizing their previous construction and that of Chiodo [START_REF] Chiodo | The Witten top Chern class via K-theory[END_REF] in the A-singularity case. So far, little is known on the compatibility between these two approaches: Faber, Shadrin, and Zvonkine's work [START_REF] Faber | Tautological relations and the r-spin Witten conjecture[END_REF] may be regarded as a check of compatibility of all approaches in the A-singularities case, Polishchuk and Vaintrob push forward this check to all simple singularities in [START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF]. Chang, Li, and Li prove the match when only narrow entries occur in [11, ).

Remark 1.1.

There are two different conventions on the sign of the virtual class. In [START_REF] Chiodo | The Witten top Chern class via K-theory[END_REF][START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence[END_REF][START_REF] Guéré | A Landau-Ginzburg mirror theorem without concavity[END_REF] and in this manuscript, the virtual class in the concave situation is given by the top Chern classes of the vector bundles R 1 π * L j (see Theorem 0.39), but in [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF][START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF] they choose the duals of these vector bundles. In general, the two conventions only differ by a sign (-1) degvir , where the integer degvir is half the cohomological degree of the virtual class. Nevertheless, when dealing with the cohomological field theory, we incorporate this sign, as shown in equations ( 42), (1.17), and (1.18).

We work in the algebraic category and over C. All stacks are smooth and proper Deligne-Mumford stacks; we use also the term "orbifold" for this type of stacks. We denote orbifolds by curly letters, e.g. C is an orbifold curve and the scheme C is its coarse space. We recall that vector bundles are coherent locally free sheaves and that the symmetric power of a two-term complex is the complex

Sym k ([A → B]) = [Sym k A → Sym k-1 A ⊗ B → . . . → A ⊗ Λ k-1 B → Λ k B]
with morphisms induced by A → B.

All along the text, the index i varies from 1 to n and refers exclusively to the marked points of a curve whereas the index j varies from 1 to N and corresponds to the variables of the polynomial. We represent tuples by overlined notations, e.g. γ = (γ(1), . . . , γ(n)), or by underlined notations, e.g. p = (p 1 , . . . , p N ).

Landau-Ginzburg orbifolds

In this section, we define Landau-Ginzburg orbifolds and invertible polynomials. These polynomials are classified by Kreuzer-Skarke [START_REF] Kreuzer | On the classification of quasihomogeneous functions[END_REF] (see equation (1.2)). Then we describe how to encode any invertible polynomial into an oriented graph. By means of decorations on this graph, we give an explicit basis (1.9) of the state space of the quantum singularity theory.

Invertible polynomials

Let w 1 , . . . , w N be coprime positive integers and let W be a quasi-homogeneous polynomial of degree d with weights w 1 , . . . , w N . For any λ, x 1 , . . . , x N ∈ C, we have

W (λ w 1 x 1 , . . . , λ w N x N ) = λ d W (x 1 , . . . , x N ).
We call charges of the polynomial W the rational numbers q j := w j /d for all j. The group of diagonal automorphisms of the polynomial W consists of diagonal matrices diag(λ 1 , . . . , λ N ) satisfying

W (λ 1 x 1 , . . . , λ N x N ) = W (x 1 , . . . , x N ) for every (x 1 , . . . , x N ) ∈ C N .
In this paper we write Aut(W ) for this group; it contains the grading element: the matrix j := diag(e 2iπq 1 , . . . , e 2iπq N ) , q j :=

w j d (1.1)
of order d. Any subgroup containing this matrix is called admissible. We say that a quasi-homogeneous polynomial W is non-degenerate if it has an isolated singularity at the origin and if its weights are uniquely defined. Then the dimension of the Jacobian ring 

Q W := C [x 1 , . . . , x N ] / (∂ 1 W, . . . , ∂ N W ) 1.1. Landau-Ginzburg
W (x 1 , . . . , x N ) = c 1 x m 1,1 1 • • • x m 1,N N + • • • + c R x m R,1 1 • • • x m R,N N ,
and write E W := (m k,j ) for the matrix of exponents. For R = N , this matrix is invertible (the weights are uniquely defined), hence we have the following definition.

Definition 1.4 (Berglund-Hübsch, [START_REF] Berglund | A generalized construction of mirror manifolds[END_REF]). An invertible polynomial is a non-degenerate (quasihomogeneous) polynomial with as many variables as monomials.

Up to a change of coordinates of C N , we may assume

c 1 = • • • = c N = 1
, so that an invertible polynomial is determined by the matrix of exponents. According to Kreuzer-Skarke [START_REF] Kreuzer | On the classification of quasihomogeneous functions[END_REF], every invertible polynomial is a Thom-Sebastiani (TS) sum of invertible polynomials, with disjoint sets of variables, of the following three types Fermat:

x a+1 chain of length c :

x

a 1 1 x 2 + • • • + x a c-1 c-1 x c + x ac+1 c (c ≥ 2), loop of length l : x a 1 1 x 2 + • • • + x a l-1 l-1 x l + x a l l x 1 (l ≥ 2).
(1.2)

Let us point out to the reader our non-standard choice for the exponent of Fermat polynomial and for the last exponent of chain polynomials. This choice makes sense once we look at the formula (1.4). Once for all, we assume 1 every diagonal entry of E W is greater or equal to 2.

(1.3) This is a slight restriction, especially for Calabi-Yau polynomials, where only the polynomials xy + y k are excluded. We attach to the invertible polynomial W an oriented graph Γ W (possibly containing loops, i.e. oriented edges starting and ending at the same vertex), whose vertices v 1 , . . . , v N , in oneto-one correspondence with the variables, are decorated by a positive integer via f W : v j → a j as follows. Given an index j, there is a unique index t(j), possibly equal to j, such that x a j j x t(j) is a monomial of W ; we draw an arrow from v j to v t(j) , set f W (v j ) := a j and say that v t(j) follows v j . There is a bijection between connected components and the terms of the TS sum (1.2).

1. For our two major Theorems 2.25 and 2.40, this condition can be relaxed. Indeed, our Theorem 2.8 on the cohomology of recursive complexes applies to compute the virtual class for W unless the size of E W is even and the product of the diagonal entries is 1. Nevertheless, the assumption (1.3) is convenient to define the graph Γ W and is mandatory for mirror symmetry. 

Fermat

As a consequence, it is convenient to write any invertible polynomial as

W = x a 1 1 x t(1) + • • • + x a N N x t(N ) (1.4)
and to define a sort of going-back function

s : {1, . . . , N } → {-∞, 1, . . . , N } k → j if t(j) = k and j = k, -∞
otherwise.

(1.5)

State space

We focus on the LG orbifold (W, Aut(W )) where W is an invertible polynomial, and we give a basis (1.9) of the state space by means of decorations on the graph associated to W . This case embodies the relevant information for the LG mirror symmetry Theorem 3.8 for Calabi-Yau hypersurfaces of chain-type. In genus zero, it also determines the Aut(W )-invariant part of the LG orbifold (W, G) for an arbitrary admissible group G.

Following the established FJRW terminology, for any γ ∈ Aut(W ) there is a dichotomy between broad and narrow variables (or vertices).

Definition 1.5. The set of broad variables is B γ = {x j | γ j = 1}. Remark 1.6. In the graph Γ W , any broad vertex is necessarily followed by a broad vertex:

γ j = 1 and γ a j j γ t(j) = 1 =⇒ γ t(j) = 1.
Let (A N ) γ := Spec(C[x j ] x j ∈Bγ ) be the subspace of A N invariant under the action of the diagonal matrix γ. We denote the restriction of the polynomial W to this subspace by W γ and we write

H γ := (Q Wγ ⊗ dx γ ) Aut(W )
with dx γ :=

x j ∈Bγ dx j .
This is the invariant part of Q Wγ ⊗ dx γ under the induced action of Aut(W ).

With respect to the grading given by x j → q j , the top-degree subspace of Q W is onedimensional and generated by the Hessian hess(W ) = det(∂ k ∂ j W ), whose degree equals the central charge ĉW = j (1 -2q j ) of the polynomial W . Then we define the pairing f, g for any elements f, g ∈ Q W by

f • g = (f, g) hess(W ) µ(W ) + terms with lower degree, (1.6) 
where µ(W ) = j (q -1 j -1) is the dimension of the vector space Q W over C.
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Since the sets B γ and B γ -1 coincide for any automorphism γ, then the space Q Wγ is canonically isomorphic to Q Wγ -1 . Thus we have a pairing

Q Wγ × Q Wγ -1 → C leading to a pairing (•, •) : H γ × H γ -1 → C. (1.7)
Definition 1.7. The A-state space for the LG orbifold (W, Aut(W )) is the vector space

H = γ∈Aut(W )
H γ equipped with the pairing induced by (1.7). We refer to [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence[END_REF]Equation (4)] or [72, Equation (5.12)] for further details, and to (1.12) and (1.11) for expressions with respect to a chosen basis.

Remark 1.8. The state space for the LG orbifold (W, G) for an admissible group G is

H = γ∈G (Q Wγ ⊗ dx γ ) G .
The direct summand when B γ = ∅ is called a narrow sector and a broad sector otherwise.

For G = Aut(W ), we have the biggest number of sectors but each broad sector is as small as possible.

Remark 1.9. As already seen in the Preliminaries, there is another definition for the state space H using Lefschetz thimbles (see equation ( 46)).

We now show how certain decorations of (Γ W , B γ ) can be used as a bookkeeping device classifying vectors of the A-state space. A decoration of the graph Γ W is simply a subset C γ of B γ . On the graph, we represent the variables contained in C γ by a crossed vertex (see the figure below). To fix ideas, a variable (or a vertex) can be We lighten terminology by omitting "broad" and writing "crossed" and "uncrossed". Definition 1.10. A decoration C γ is admissible if every uncrossed vertex is followed by a crossed vertex and every crossed vertex is followed by itself or by an uncrossed vertex (every vertex with a loop is crossed). A decoration C γ is balanced if in each connected component of the graph there are as many uncrossed vertices as crossed vertices.

For an admissible decoration, one alternates between uncrossed and crossed vertices, and if the decoration is balanced, the number of broad vertices in each connected component is even. 

m k=1 x j ∈(Bγ \Cγ )∩L k a j x a j -1 j - x j ∈Cγ ∩L k -x a j -1 j • m k=1 x j ∈(Bγ \Cγ )∩C k a j x a j -1 j • x j ∈Bγ dx j (1.8)
of the space H γ , with a j := f W (v j ). In this formula, the sets of vertices L 1 , . . . , L m correspond to the loop-type (connected) components of the graph Γ W , the sets C 1 , . . . , C m correspond to the chain-type components and the order of the variables in the wedge product is taken in the direction of the arrows of the graph, always starting with an uncrossed vertex. Notice the absence of Fermat components in (1.8), as the vertex of a Fermat component is narrow for every admissible and balanced decorations. A straightforward argument using the antisymmetric property of the wedge product shows that (1.8) is well-defined (it does not matter which uncrossed vertex, nor which connected component, one starts from). (1.9)

By convention, we take e(C γ ) = 0 for every non-balanced and admissible decoration; we never consider non-admissible decorations.

Proof. In [59, Lemma 1.7], the basis is given by the elements

x j ∈Bγ \Cγ x a j -1 j • x j ∈Bγ dx j , ( 1.10) 
with a diagonal automorphism γ and an admissible and balanced decoration C γ . Since the state space for invertible polynomials with maximal group is a tensor product of the state spaces for Fermat, chain, or loop polynomials with maximal groups, then we treat the three cases separately. The statement is clear for Fermat and chain polynomials, because x j ∈Bγ \Cγ a j = 0. For a loop polynomial, we have only two choices C 1 γ and C 2 γ for admissible and balanced decorations of a given B γ and they satisfy

B γ = C 1 γ C 2 γ .
The matrix going from Krawitz's basis (1.10) to e(C 1 γ ), e(C 2 γ ) is

x j ∈Bγ \C 1 γ a j -1 -1
x j ∈Bγ \C 2 γ a j which is invertible since N j=1 a j = 1. Remark 1.12. The reason why we prefer the basis given by (1.8) will become clear in Sect. 1.3.4, where we construct some matrix factorizations with Chern characters equal to (1.8) (see (1.31)). Another reason is that the matrix of the bilinear pairing of H is easy to compute in the basis given by (1.8), as we can see in Example 1.17. Proposition 1.13 (follows from [72, Lemma 6.1.1]). For any admissible and balanced decorations C γ and C γ for γ and γ , the bilinear pairing is given by We end this section with the definition of the grading for the A-state space H.

e(C γ ), e(C γ ) =      x j ∈Bγ \(Cγ ∪C γ ) (-a j ) if γ = γ -1 , 0 otherwise, ( 1 
Definition 1.15. The grading of the state space is given by

deg(e(C γ )) = card(B γ ) + 2 N j=1 (Γ j -q j ), (1.12) 
where Γ j is determined by γ j = exp(2iπΓ j ), Γ j ∈ [0, 1[. Remark 1.16. Let γ = γ -1 and C γ and C γ be two admissible and balanced decorations for γ and γ . Then we have deg(e(C γ )) + deg(e(C γ )) = 2ĉ W , so that the state space behaves like the cohomology space of a complex variety of dimension ĉW . Under the Calabi-Yau condition j q j = 1, we have ĉW = N -2 and the state space H is indeed isomorphic to the (orbifold) cohomology of the hypersurface defined by the vanishing locus {W = 0} in the weighted projective space P(w 1 , . . . , w N ).

Example 1.17. Consider the polynomial W = x 2 1 x 2 + x 4 2 + x 3 3 x 4 + x 3 4 x 3 with weights (3, 2, 2, 2) and degree 8 (we have ĉW = 7/4), and illustrate three cases, where dx

:= dx 1 ∧ • • • ∧ dx 4 . Automorphism γ (e 3iπ/4 , i, i, i) (-1, 1, 1, 1) (1, 1, 1, 1) Broad set B γ ∅ {x 2 , x 3 , x 4 } {x 1 , x 2 , x 3 , x 4 } Decoration C γ ∅ {x 2 , x 4 } {x 2 , x 3 } {x 2 , x 4 } {x 2 , x 3 } State e(C γ ) 1 0 (6x 1 x 2 3 + -(6x 1 x 2 4 + 2x 1 x 2 4 ) dx 2x 1 x 2 3 ) dx Degree 3/2 0 7/4 7/4
Let us compute the pairing P between the two elements on the right (with γ = 1), with two different methods. First, by the definition (1.6), we have

(6x 1 x 2 3 + 2x 1 x 2 4 ) • (-6x 1 x 2 4 -2x 1 x 2 3 ) = P • hess(W) µ(W )
+ terms with lower degree, Chapter 1. Quantum singularity theory with µ(W ) = 45 and hess(W ) = 36 (6x

3 2 -x 2 1 )(4x 2 3 x 2 4 -x 4 3 -x 4 4 -2x 2 3 x 2 4
). Since the relations

x 2 1 = -4x 3 2 , x 3 3 = -3x 3 x 2 4 , x 3 4 = -3x 2 3 x 4 hold in Q W , we obtain (6x 1 x 2 3 + 2x 1 x 2 4 ) • (-6x 1 x 2 4 -2x 1 x 2 3 ) = 32x 2 1 x 2 3 x 2 4 36 (6x 3 2 -x 2 1 )(4x 2 3 x 2 4 -x 4 3 -x 4 4 -2x 2 3 x 2 4 ) = -720 x 2 1 x 2 3 x 2 4
hence the result P = -2.

Second, we use the formula (1.11). We have

C γ ∪ C γ = {x 2 , x 3 , x 4 } hence the result P = -a 1 = -2.

Moduli space

A genus-g orbifold (or twisted) curve C with marked points is a connected, proper, and one-dimensional Deligne-Mumford stack whose coarse space C is a genus-g nodal curve, and such that the morphism ρ : C → C is an isomorphism away from the nodes and the marked points. Any marked point or node can have a non-trivial stabilizer equal to a finite cyclic group. We focus on smoothable orbifold curves: orbifold curves whose local picture at the node is

[{xy = 0} /µ r ] with ζ r • (x, y) = (ζ r x, ζ -1 r y
). Throughout this section we set r to be the smallest integer l such that γ l = 1 for every element γ ∈ Aut(W ), and further restrict to r-stable curves, i.e. smoothable orbifold curves whose stabilizers (at the nodes and at the markings) have fixed order r and whose coarse nodal pointed curve is stable.

Definition 1.18. The moduli space S g,n classifies all W -spin curves (C; σ 1 , . . . , σ n ; L 1 , . . . , L N ; φ 1 , . . . , φ N ), where (C; σ 1 , . . . , σ n ) is an r-stable genus-g curve, L 1 , . . . , L N are line bundles on the curve C and φ j :

L ⊗a j j ⊗ L t(j) -→ ω C,log := ω C (σ 1 + . . . + σ n ) (1.13)
are isomorphisms.

Remarks. The twisted canonical line bundle ω C,log equals the pull-back via ρ : C → C of the line bundle ω C (σ 1 + . . . + σ n ) on the coarse curve. A preliminary less general definition of FJRW moduli objects has been already given in Sect. 0.2.5. It involved the moduli space of the LG orbifold (W, µ d ), where every line bundle L j comes from the same line bundle L satisfying L d ω C,log ; this moduli space is naturally embedded in S g,n . The notion of W -spin curves can be generalized to families over a base scheme S and the moduli space S g,n is therefore a smooth and proper Deligne-Mumford stack. It is finite over the moduli space M g,n of stable curves. Moreover, this definition of S g,n , owing to [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF] and [START_REF] Abramovich | Compactifying the space of stable maps[END_REF], is compatible with the definition via Γ-spin curves of [72, Proposition 3.2.2].
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Locally at the marked point σ i of a W -spin curve, the group of rth-roots of unity acts on the line bundle L j by

ζ r • (x, ξ) = (ζ r x, ζ m j (i) r ξ) , with m j (i) ∈ {0, . . . , r -1} (1.14)
called the multiplicity of the line bundle L j at the marked point σ i . We write γ j (i

) := ζ m j (i) r
and γ(i) := (γ 1 (i), . . . , γ N (i)) ∈ (U(1)) N .

Definition 1.19. The type of a W -spin curve is the diagonal automorphism

γ := (γ(1), . . . , γ(n)) ∈ (Aut(W )) n
determined by the multiplicities of the line bundles at the marked points.

We have a decomposition

S g,n = γ∈(Aut(W )) n S g,n (γ(1), . . . , γ(n)),
where S g,n (γ) is an empty component when the selection rule with the same cohomological degree. The relation between c PV vir and c FJRW vir is explained in the beginning of Sect. 1. For instance, they coincide in the narrow sector. We do not give a definition for the FJRW virtual class; the interested reader is referred to [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF] and [START_REF] Fan | The Witten equation and its virtual fundamental cycle[END_REF]. Nevertheless, Sect. 1.3 is entirely devoted to the construction of c PV vir . As already mentioned in the Introduction and in the Preliminaries, in the narrow sector (where c FJRW vir = c PV vir ) and under the genus-zero concavity property, that is

γ(1) • • • γ(n) = j 2g-2+n ( 
H 0 (C, L j ) = 0
for all j and all genus-zero W -spin curves C, the genus-zero virtual class c FJRW vir is determined by linearity via

c top (R 1 π * (L 1 ⊕ • • • ⊕ L N )) (Euler class of a vector bundle),
where L 1 , . . . , L N are the universal line bundles on the universal space of S 0,n (γ) and where π is the projection to S 0,n (γ). 

τ b 1 (u 1 ) • • • τ bn (u n ) FJRW g,n := Mg,n ψ b 1 1 • • • ψ bn n (-1) degvir r g deg(o) • o * c FJRW vir (u 1 , . . . , u n ) g,n (1.17)
and

τ b 1 (u 1 ) • • • τ bn (u n ) PV g,n := Mg,n ψ b 1 1 • • • ψ bn n (-1) degvir r g deg(o) • o * c PV vir (u 1 , . . . , u n ) g,n (1.18) with ψ 1 , . . . , ψ n the usual psi-classes in H 2 (M g,n ), u 1 , . . . , u n ∈ H and o : S g,n → M g,n
the morphism forgetting W -spin and orbifold structures. We omit τ b i when b i = 0.

Virtual class from matrix factorizations

By focusing on the relevant LG orbifold (W, Aut(W )), we illustrate the algebraic construction of the virtual class from [START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF]. In Sect. 1.3.1, we set-up some material for the treatment of broad marked points. In Sect. 1.3.2, we present matrix factorizations of Koszul type, which are ideally suited to the LG orbifolds. In Sect. 1.3.3, we introduce Polishchuk-Vaintrob's matrix factorization PV, a universal object over the moduli stack. In Sect. 1.3.4, we construct Koszul matrix factorizations K(C γ ) which lift every elements e(C γ ) of the state space. In Sect. 1.3.5, by coupling PV with K(C γ ) we get a two-periodic complex and ultimately a class in cohomology: the virtual class appearing in (1.18). We point out that this two-periodic complex may be regarded as a generalization of Chiodo's complex (see [START_REF] Chiodo | The Witten top Chern class via K-theory[END_REF]) yielding the virtual class in the case of Fermat monomial x r , i.e. r-spin curves.

Combinatorics of W -spin curves

Consider a component S g,n (γ) of type γ = (γ(1), . . . , γ(n)) ∈ (Aut(W )) n . We write

@ @ i j σ 1 . . . σ n L 1 . . . L N γ 1 (1) γ 1 (n) γ N (1) γ N (n) . . . . . . . . . . . .

and keep record of the sets

B γ = {(σ i , x j ) | γ j (i) = 1} , B γ j = {σ i | (σ i , x j ) ∈ B γ } , B γ(i) = {x j | (σ i , x j ) ∈ B γ } .
The set B γ is an analog of (1.5) with marked points and labels the coordinates {x j (i)} (σ i ,x j )∈B γ of the affine space denotes the invariant part under γ(i). We consider the invertible polynomial W γ on A γ given by

A γ := n i=1 A N γ(i) , ( 1 
W γ := W γ(1) (x 1 (1), . . . , x N (1)) + • • • + W γ(n) (x 1 (n), . . . , x N (n)),
where W γ(i) stands for the invariant part of W under the action of γ(i). Observe that we obtain the graph Γ W γ(i) from Γ W by erasing all narrow vertices for γ(i) and all edges starting or ending at a narrow vertex. Then the graph Γ W γ is the disjoint union of Γ W γ(1) , . . . , Γ W γ(n) . For any scheme S, we set

O γ S := (σ i ,x j )∈B γ O = N j=1 O γ j S
with canonical basis {e j (i)} (σ i ,x j )∈B γ .

Category of matrix factorizations

Let w be a function on a stack X. A matrix factorization

E := (E, δ E ) of potential w is a Z/2-graded vector bundle E = E 0 ⊕ E 1 on X together with an endomorphism δ E : E 0 E 1 satisfying δ E • δ E = w • id E .
The category MF(X, w) of matrix factorizations of w on X is a dg-category. For (E, δ E ) and (F, δ F ) two matrix factorizations of w, we have a two-periodic complex of morphisms Hom MF (E, F ) with

Hom MF (E, F ) 0 = Hom(E 0 , F 0 ) ⊕ Hom(E 1 , F 1 ), Hom MF (E, F ) 1 = Hom(E 0 , F 1 ) ⊕ Hom(E 1 , F 0 ),
and with the differential given by df

= δ F • f -(-1) deg(f ) f • δ E .
We have some natural operations on matrix factorizations: the tensor product of a matrix factorization of w with a matrix factorization of w yields a matrix factorization of w + w and the dual of a matrix factorization of w is a matrix factorization of -w. Note that a matrix factorization of w = 0 is a two-periodic complex and it makes sense to look at its cohomology.

Matrix factorizations which are very useful in the study of the virtual class consist of Koszul matrix factorizations. To define them, we need a vector bundle V on a stack X and two global sections α ∈ H 0 (X, V ) and β ∈ H 0 (X, V ∨ ) whose pairing equals β(α) = w. Definition 1.20. The Koszul matrix factorization {α, β} of w on X consists of a Z/2-graded vector bundle {α, β} 0 ⊕ {α, β} 1 ,

{α, β} 0 = even V = O X ⊕ 2 V ⊕ • • • {α, β} 1 = odd V = V ⊕ 3 V ⊕ • • • ,
together with the morphism δ α,β := ι(β) + α ∧ •, where the notation ι(β) stands for the contraction by β.

Remark 1.21. These objects behave well under tensor products. For global sections α, α , β, β of vector bundles V, V , V ∨ , (V ) ∨ , we have

{α, β} ⊗ {α , β } = {α ⊕ α , β ⊕ β } where α ⊕ α ∈ H 0 (X, V ⊕ V ) and β ⊕ β ∈ H 0 (X, (V ⊕ V ) ∨ ).
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In [START_REF] Polishchuk | Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations[END_REF], Polishchuk and Vaintrob provide an explicit description of the Hochschild homology of matrix factorizations for the affine space X = A N with an invertible polynomial W and show

HH * (MF(A N , W )) Q W • dx 1 ∧ • • • ∧ dx N
In particular, for any γ ∈ Aut(W ) n , we have

H γ(1) ⊗ • • • ⊗ H γ(n) ⊂ HH * (MF(A γ , W γ )).
(1.20)

Remark 1.22. In [START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF], Polishchuk and Vaintrob work in the category of equivariant matrix factorizations and define a more general cohomological field theory than we need here. Their state space is

γ∈Aut(W ) HH * (MF Aut(W ) ((A N ) γ , W γ )) γ∈Aut(W ) γ ∈Aut(W ) Q Aut(W ) (Wγ ) γ .
Following Polishchuk and Vaintrob (see [START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF]Equation (5.15)]), we consider in this paper the specialization of PV's theory which consists in keeping only

γ = 1 (1.21)
in the expression of the PV's state space and we observe that this specialization gives the state space H.

For any matrix factorization on A γ given by a matrix U with coefficients in 

C [x j (i)] (σ i ,x j )∈B γ of the form 0 U 1 U 0 0 , U 2 = W γ • Id,
(σ i ,x j )∈B γ ∂U ∂x j (i) • (σ i ,x j )∈B γ dx j (i) ∈ H γ(1) ⊗ • • • ⊗ H γ(n) . (1.22)
We take the same order for the variables of B γ in the multiplication of matrices (from right to left) and in the wedge product (from left to right). The result is well-defined because supertrace and wedge product are both anti-commutative. Moreover we notice that Ch(U ) vanishes whenever the cardinal of B γ is odd.

Example. Take the D6-singularity W = x 2 y + y 5 and consider the following Koszul matrix factorisations on A 2 :

α 1 = 2xye 1 + (x 2 + 5y 4 )e 1 and β 1 = 2x 5 e ∨ 1 + y 5 (e 1 ) ∨ , α 2 = (x 2 y + y 4 )e 2 and β 2 = ye ∨ 2 ,
whose corresponding matrices are

U 1 =       0 2x/5 y/5 -(x 2 + 5y 4 ) 2xy 2xy -y/5 x 2 + 5y 4 2x/5 0      
and U 2 = 0 y x 2 y + y 4 0 .

We check that U 2 1 = U 2 2 = W and we have

∂ x U 2 = 0 0 2xy 0 and ∂ y U 2 = 0 1 x 2 + 4y 3 0 , leading to Ch(U 2 ) = -2xdx ∧ dy.
We compute also Ch(U 1 ) = 0.

Remark 1.23. Any quasi-homogeneous polynomial W with charges q 1 , . . . , q N satisfies

W = N j=1 q j x j ∂ j W.
Thus we have a Koszul matrix factorization of W given by

α = ∂ 1 W e 1 + • • • + ∂ N W e N β = q 1 x 1 e ∨ 1 + • • • + q N x N e ∨ N .
Nevertheless, the Chern character Ch({α, β}) is zero, see [71, Proposition 4.3.4].

Polishchuk-Vaintrob's matrix factorization

Take a family π : C → S of W -spin curves over a base scheme S and consider a resolution of any Rπ * (L j ) by a complex [A j → B j ] of vector bundles. Observe that for any geometric point s ∈ S, we have

ker(A j → B j ) s = H 0 (C s , L j,s ) and coker(A j → B j ) s = H 1 (C s , L j,s ).

Denote by A and B the vector bundles

A := A 1 ⊕ • • • ⊕ A N and B := B 1 ⊕ • • • ⊕ B N
on S and by X the total space of A with projection p to S, X := Spec(SymA ∨ ) and p : X -→ S.

In [72, Sect. 4.2], Polishchuk and Vaintrob construct a morphism Z : X → A γ and two sections α ∈ H 0 (X, p * B ∨ ) and β ∈ H 0 (X, p * B), with α(β) = Z * W γ .

These sections are sums α

:= α 1 + • • • + α N and β := β 1 + • • • + β N ,
where β j is induced by the differential of the complex [A j → B j ]. By a slight abuse of notation, we write

β j : A j → B j . (1.23)
The section α j is a sum of two morphisms, of which we give a rough idea in (1.29),

α j : Sym a j A j → B ∨ t(j) , α j : Sym a j -1 A j ⊗ A t(j) → B ∨ j .
(1.24)

This yields Polishchuk-Vaintrob's matrix factorization {-α, β} on X,

PV := {-α, β} ∈ MF(X, -Z * W γ ). (1.25)
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X PV A γ S Z p
The tensor product of PV with matrix factorizations from the affine space A γ of potential Z * W γ produces a two-periodic complex, whose support is included in the zero section S → X (see [START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF]Sect. For sake of clarity, let us illustrate the construction of the morphisms Z and α over S = Spec(C). Consider a W -spin curve of type γ. In the broad case, i.e. for γ j (i) = 1, we choose an isomorphism

H 0 (σ i , L j | σ i ) O S = C, (1.27) 
while in the narrow case, the space of sections H 0 (σ i , L j | σ i ) vanishes. Then we denote by Z j (i) the evaluation of a section of L j at a marked point σ i , with (σ i , x j ) ∈ B γ ; this is a morphism

Z j (i) : H 0 (C, L j ) → C (1.28)
and we assemble the morphisms Z j (i) for every (σ i , x j ) ∈ B γ to get

Z : H 0 (C, L 1 ) ⊕ • • • ⊕ H 0 (C, L N ) → A γ .
Remark 1.25. The construction of the morphism Z depends on the choice of an isomorphism (1.27), called a rigidification of the W -spin curve. The approach of both Fan-Jarvis-Ruan and Polishchuk-Vaintrob is to work on the moduli space parametrizing W -spin curves alongside with such rigidification; this amounts to work over a finite étale cover of the moduli space considered here. However, the final computation of the virtual class provided in Theorem 2.25 does not depend on this choice.

A crucial and yet elementary ingredient of our explicit realization of the virtual class is the twisting of the line bundles by the marked points, that is

L j := L j (-σ 1 -• • • -σ n ).
2. Here, it is the push-forward functor for matrix factorizations, detailed for instance in [72, Section 1.5].

Since a matrix factorization of potential zero yields a two-periodic complex, then there is another push-forward, in the category of complexes of quasi-coherent sheaves. We refer to [72, Remark 1.5.1] or to equation (1.35) for the relation between the two push-forwards.

Using the isomorphism (1.13), we obtain

L j ⊗a j ⊗ L t(j) → ω C (orbifold canonical bundle of C).
By (orbifold) Serre duality, we get morphisms

Sym a j H 0 (C, L j ) → H 0 (C, L j ⊗a j ) → H 0 (C, ω C ⊗ L t(j) ∨ ) H 1 (C, L t(j) ) ∨ , (1.29)
and similarly Sym a j -1 (H 0 (C,

L j )) ⊗ H 0 (C, L t(j) ) → H 1 (C, L j ) ∨ .
These morphisms are related to α j and α j of (1.24).

In [START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF]Sect. 4.2], Polishchuk and Vaintrob lift all these constructions over a base scheme S, with appropriate vector bundles A and B. In particular, for each monomial we have a commutative diagram

Sym a j A j ⊗ A t(j) / / (Sym a j A j ⊗ B t(j) ) ⊕ (Sym a j -1 A j ⊗ A t(j) ⊗ B j ) O γ j S / / O S ,
the morphisms are defined as follows. The vertical arrow on the left is induced by Z and by the algebra structure on the sheaf O γ j S , the vertical arrow on the right is induced by α j , the first horizontal arrow is induced by β j and by β t(j) and the second horizontal arrow is the trace.

Lifting up the state space

Let γ ∈ Aut(W ) n and fix admissible decorations C γ(1) , . . . , C γ(n) , one for each marked point. We assemble them in an admissible decoration of the graph Γ W γ

C γ := (σ i , x j ) ∈ B γ | x j ∈ C γ(i) ⊂ B γ ,
and take e(C γ ) := e(C γ( 1)

) ⊗ • • • ⊗ e(C γ(n) ) ∈ H γ(1) ⊗ • • • ⊗ H γ(n) .
Consider on A γ the free sheaf

N j=1 O C j =: O C γ ⊂ O γ with basis {e j (i)} (σ i ,x j )∈C γ .
For any (σ i , x j ) ∈ C γ , form the sections

a j (i) := x s(i,j) (i) a s(i,j) + x j (i) a j -1 x t(i,j) (i) • e j (i) ∈ O C j ⊂ O C γ , b j (i) := x j (i) • e j (i) ∨ ∈ O C j ∨ ⊂ O C γ ∨ .
(1.30)

Here, the notations s(i, j) and t(i, j) are applied to the vertices of Γ W γ (see (1.5) for the definition) and we take the convention x -∞ (i) = 0 and a -∞ = 1. Since the decoration C γ is admissible, the Koszul matrix factorization given by

a C γ := (σ i ,x j )∈C γ a j (i) and b C γ := (σ i ,x j )∈C γ b j (i)
is in MF(A γ , W γ ); we denote it by K(C γ ) and compute its Chern character via (1.22).

Chapter 1. Quantum singularity theory Lemma 1.26. For any γ ∈ Aut(W ) n and any admissible decoration C γ of the graph Γ W γ , we have

Ch(K(C γ )) = e(C γ ) ∈ H γ(1) ⊗ • • • ⊗ H γ(n) . (1.31)
In particular, the Chern character vanishes when the decoration is not balanced.

Proof. Equation (1.31) is a direct computation from (1.22), so we only give the main steps. First, we derivate the differential of K(C γ ) along x j (i); and denote it

∂ j (i) := ∂(a C γ ∧ • + b C γ (•)) ∂x j (i) .
There are two cases: if (σ i , x j ) ∈ C γ , we get

∂ j (i) =    (a j -1) x j (i) a j -2 x t(i,j) (i) e j (i) ∧ • + e j (i) ∨ (•) if x t(i,j) (i) = x j (i), a j x j (i) a j -2 x t(i,j) (i) e j (i) ∧ • + e j (i) ∨ (•) otherwise,
and if (σ i , x j ) ∈ B γ -C γ , we get

∂ j (i) = x s(i,j) (i) a s(i,j) -1 e s(i,j) (i) ∧ • + a j x j (i) a j -1 e t(i,j) (i) ∧ •
To get the supertrace of (1.22), we have to compute

e K ∨ • (σ i ,x j )∈B γ ∂ j (i) (e K ), (1.32) 
for every element e K :=

(σ i ,x j )∈K e j (i) , K ⊂ C γ .
Observe that, for any (σ i , x j ) ∈ C γ , the only non-zero contribution from ∂ j (i) to (1.32) is given by the contraction e j (i) ∨ (if we take the wedge product by e j (i), then we cannot contract anymore via e j (i) ∨ and we obtain zero by e K ∨ ). Thus, there are two possibilities. If (σ i , x j ) ∈ K, then we apply ∂ t(i,j) (i) • ∂ j (i) and the only non-zero contribution to (1.32) is x j (i) a j -1 e j (i) ∧ e j (i) ∨ (e K ) = x j (i) a j -1 e K .

If (σ i , x j ) / ∈ K, then we apply ∂ j (i) • ∂ s(i,j) (i) and the non-zero contribution is e j (i) ∨ a s(i,j) x s(i,j) (i) a s(i,j) -1 e j (i) ∧ e K = a s(i,j) x s(i,j) (i) a s(i,j) -1 e K .

Finally, the only non-zero values for (1.32) are given by the elements e K where K is the empty set or the set of all the crossed vertices of some loop-type components of the graph. Then it is straightforward to recover the formula (1.8).

Example. Consider a 3-pointed W -spin curve with

W = x 2 1 x 2 + x 4 2 + x 3 3 x 4 + x 3 4 x 3 , of type γ =    e 3iπ/4 i i i -1 1 1 1 1 1 1 1    ∈ (Aut(W )) 3
Let us choose the decoration C γ = {(σ 2 , x 2 ), (σ 2 , x 4 ), (σ 3 , x 2 ), (σ 3 , x 3 )}; then we obtain

a C γ = x 2 (2) 3 • e 2 (2) + (x 3 (2) 3 + x 4 (2) 2 x 3 (2)) • e 4 (2) + (x 2 1 (3) + x 2 (3) 3 ) • e 2 (3) + (x 4 (3) 3 + x 3 (3) 2 x 4 (3)) • e 3 (3), b C γ = x 2 (2) • e 2 (2) ∨ + x 4 (2) • e 4 (2) ∨ + x 2 (3) • e 2 (3) ∨ + x 3 (3) • e 3 (3) ∨ ,
and Ch(K(C γ )) = e(C γ [START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF] ) ⊗ e(C γ [START_REF] Abramovich | Compactifying the space of stable maps[END_REF] ) ⊗ e(C γ(3) ) = 0 (see the example of Sect. 1.1.2).

Virtual class from matrix factorizations

Two-periodic complex and virtual class

The tensor product of the matrix factorization PV with the pull-back Z * K(C γ ) yields a two-periodic complex on X. More precisely, we write α s(j) + α j : Sym a s(j) A s(j) ⊕ (Sym

a j -1 A j ⊗ A t(j) ) → B ∨ j , β j : A j → B j ,
with the convention A -∞ = 0 and a -∞ = 1, we add these morphisms to

Z * a j : Sym a s(j) A s(j) ⊕ (Sym a j -1 A j ⊗ A t(j) ) → O C j S , Z * b j : A j → (O C j S ) ∨ ,
and we obtain α j : Sym a s(j) A s(j) ⊕ (Sym

a j -1 A j ⊗ A t(j) ) → B ∨ j , β j : A j → B j , (1.33)
where B j is the vector bundle B j ⊕ (O

C j S ) ∨ . Consider the direct sum B := B 1 ⊕ • • • ⊕ B N
and the morphisms

α := α 1 + • • • + α N , β := β 1 + • • • + β N .
We end with the two-periodic complex

{ α, β} = PV ⊗ Z * K(C γ ) ∈ MF(X, 0). (1.34) 
According to (1.26), it is well-defined to push-forward this two-periodic complex via the projection p, then we get p * { α, β} = Φ(K(C γ )).

By [72, Remark 1.5.1], in the case of two-periodic complexes we have a quasi-isomorphism

p * { α, β} p naive * { α, β} (1.35) 
where p naive * is the naive push-forward, i.e. the push-forward for quasi-coherent sheaves instead of matrix factorizations. In particular, the cohomology groups are vector bundles. We denote by T the two-periodic complex

T := p naive * { α, β} (1.36) 
of quasi-coherent sheaves on S, with

T + := Sym(A ∨ ) ⊗ even B ∨ , T -:= Sym(A ∨ ) ⊗ odd B ∨ ,
and the differential δ induced by (1.33 
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Computation of the virtual class

This chapter is the heart of the thesis, with the main theorem 2.25 and its generalization 2.40. Hence, we can do explicit computations for the quantum singularity theory of invertible polynomials, yielding to the big I-function (3.19) and the mirror theorem 3.12, to the computer program presented in the annexe A, and to explicit equations for Buryak's DR integrable hierarchy (see Sect. 4.3).

The main tool for proving Theorems 2.25 and 2.40 is a new type of complex that we introduced: recursive complexes (see Sect. 2.2.1). Taking a close K-theoretic look at a nondegenerate recursive complex, we discover very interesting vanishing properties (see Theorem 2.8). A key point is the theorem of Green [45, Theorem 2] on the Koszul cohomology of basepoint free linear systems. At last, taking the cohomology, we end with the formula appearing in Theorem 2.23 and therefore in Theorems 2.25 and 2.40.

We begin this chapter with the important algebro-geometric question already discussed (in french) in the Introduction of the thesis and with our solution to this problem, provided by Theorem 2.25.

Introduction

The virtual cycle is central to FJRW theory. It is a well-defined cycle whose construction is non-trivial, but, at least when restricted to narrow states, it provides in a very special case the answer to a natural algebro-geometric question which is open in general: what is an Euler class of a push-forward of a vector bundle?

In FJRW theory, we are confronted with the following situation. Consider a chain polynomial W and a family π : C → S of W -spin curves with narrow type over a smooth and proper base S. We set

E := L 1 ⊕ • • • ⊕ L N .
The push-forward π * E is not a vector bundle in general. But, under the concavity assumption, the sheaf R 1 π * E is a vector bundle and R 0 π * E vanishes. Therefore we define the virtual cycle as the Poincaré dual of the Euler class of the vector bundle R 1 π * E, that is

c vir := c top (R 1 π * E).
Without concavity, we have to deal with both R 0 π * E and R1 π * E, and none of them is a vector bundle in general. Remarkably, the conditions L ⊗a j j ⊗ L j+1 ω π,log on the universal line bundle gives us the opportunity to extend the definition of Euler class to the K-theoretic element R • π * E, in a way that respects the multiplicative property 1 of Euler class. Namely, we use Polishchuk-Vaintrob's algebraic class, revisited in the spirit of [START_REF] Chiodo | The Witten top Chern class via K-theory[END_REF] as the cohomology of a recursive complex (see Definition 2.4) and computed as the limit of a specific characteristic class, that we now explain.

For a vector bundle V on S and a parameter t ∈ C, let us define the class

c t (V ) := Ch(λ -t V ∨ ) • Td(V ) ∈ H * (S) [t] , (2.1) 
where λ -t denotes the λ-ring structure of K-theory according to [START_REF] Fulton | Riemann-Roch algebra[END_REF], that is

λ t V := k≥0 Λ k V • t k ∈ K(S) [t] .
The classes λ t V and c t (V ) are invertible in K(S) [[t]] and in H * (S)[[t]] and, by [37, Proposition 5.3], we have lim

t→1 c t (V ) = c top (V ).
For two vector bundles A and B, we define the function c t :

K 0 (S) → H * (S)[[t]] by c t (B -A) := c t (B) c t (A) = Ch λ -t B ∨ λ -t A ∨ • TdB TdA ∈ H * (S)[[t]], (2.2) 
and the limit t → 1 generally diverges, since the class c top is not invertible.

Remark 2.1. The class c t (V ) differs from the equivariant Euler class of V appearing in previous similar approaches to quantum cohomology, as in [START_REF] Coates | Quantum Riemann-Roch, Lefschetz and Serre[END_REF]. In terms of the roots α 1 , . . . , α v of the vector bundle V , the class

c t (V ) is 2 c t (V ) = v k=1 e α k -t e α k -1 • α k , for t = 1.
We state straight away the main technical result of the paper in the case of a chain polynomial with narrow states. We refer to Theorem 2.25 for a complete statement, including broad states and other invertible polynomials.

Theorem 2.2 (See Theorem 2.25). In the narrow sector and for a chain polynomial

W = x a 1 1 x 2 + • • • + x a N -1 N -1 x N + x a N +1

N , the following limit converges and equals the genus-zero virtual class

c vir = lim t→1 N j=1 c t j (-Rπ * (L j )) with t j := t (-a 1 )•••(-a j-1 ) .
When broad entries are involved, Theorem 2.25 still bears information on the computation of Polishchuk and Vaintrob's algebraic class. In general, the compatibility with FJRW virtual class is still an open question, but we proved it for (almost) every invertible polynomials with the maximal group of symmetries.

Theorem 2.3 (See Theorem 2.30).

Let us consider invertible polynomials with no parts of the form x a y+y 2 or x a y+y 2 x. For every such polynomials with maximal group of symmetries and in every genus, Polishchuk and Vaintrob's algebraic class coincides with Fan-Jarvis-Ruan-Witten virtual class, up to a rescaling of the broad sector.

Recursive complexes

This section is the heart of the thesis. We present the new notion of a recursive complex (Sect. 2.2.1) and the main theorem about its cohomology (Sect. 2.2.2, Theorem 2.8). We give a technical proof in Sect. 2.2.3. At last, we deduce the formula (2.36) for the virtual class in terms of characteristic classes, which will be applied in the next section (Sect. 2.5.2) to the quantum singularity theory of invertible polynomials. This section may be read independently from the rest of the thesis, but we can keep in mind the two-periodic complex from Sect. 1.3.5 as the main example of a recursive complex.

Definition and non-degeneracy

Consider two vector bundles A and B on a smooth scheme S, and a two-periodic complex

T = • • • → T + δ - → T -δ - → T + → • • •
of quasi-coherent sheaves on the base space S, with

T + := Sym A ∨ ⊗ even B ∨
and T -replacing "even" by "odd".

Definition 2.4. Let a 1 , . . . , a N be positive integers. We say that (T, δ) is a recursive complex with respect to (a 1 , . . . , a N ) if the sheaves A and B can be decomposed into a direct sum of coherent locally free sheaves

A := A 1 ⊕ • • • ⊕ A N and B := B 1 ⊕ • • • ⊕ B N
such that there are morphisms

α j : O S → Sym a j A ∨ j ⊗ B ∨ j+1 ⊕ Sym a j -1 A ∨ j ⊗ A ∨ j+1 ⊗ B ∨ j , β j : B ∨ j → A ∨ j , whose sum α 1 + • • • + α N + β 1 + • • • + β N induce the differential δ, just as in Section 1.3.5. We use the cyclic convention A N +1 = A 1 and B N +1 = B 1 .
Remark 2.5. The data of a recursive complex embodies a Z N +1 -grading, as we explain later in Sect. 2.2.3. In particular, we recover the two-periodic complex from this Z N +1 -graded complex in the usual way.

Example. Let

W = x a 1 1 x 2 + • • • + x a N N
x 1 be a loop polynomial. For any genus, any type γ ∈ Aut(W ) n and any decoration C γ , the naive push-forward (1.36)

p naive * (PV ⊗ K(C γ ))
over a base scheme S is quasi-isomorphic to a recursive complex.
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Example

. Let W = x a 1 1 x 2 + • • • + x a N -1 N -1 x N + x a N +1
N be a chain polynomial. In genus g = 0, for any type γ ∈ Aut(W ) n and any decoration C γ , the naive push-forward

p naive * (PV ⊗ K(C γ ))
over a base scheme S is quasi-isomorphic to a recursive complex, because the vector bundle A N , the morphism α N , and the morphism β N vanish (see (2.47) and [15, Proposition 3.1] for an explanation of this vanishing condition).

Remark 2.6. For a chain polynomial in higher genus, the two-periodic complex (1.36) is not recursive, but satisfies a similar definition, where we adopt the convention A N +1 = 0 and B N +1 = B N instead of the cyclic convention.

Consider a recursive complex T with integers a 1 , . . . , a N ∈ N * . Remark that each morphism α j is a sum of two morphisms α j and α j with

α j : O S → Sym a j (A j ) ∨ ⊗ (B j+1 ) ∨ , α j : O S → Sym a j -1 (A j ) ∨ ⊗ (A j+1 ) ∨ ⊗ (B j ) ∨ .
(2.3) Definition 2.7. For any j, let us denote by A j,s the kernel of the map β ∨ j,s over a geometric point s in S, and by B j,s its cokernel. Each morphism α j,s over the point s induces a morphism

α j,s : C → Sym a j (A j,s ) ∨ ⊗ (B j+1,s ) ∨
and we say that the morphism α j is non-degenerate if for every geometric point s and every v ∈ A j,s , the condition ∀w ∈ B j+1,s , (α j,s ) ∨ (v a j ⊗ w) = 0 implies v = 0. A recursive complex is non-degenerate if each morphism α j is non-degenerate.

This definition is equivalent to [13, Definition 3.1.5] where one requires the morphism α j to induce a base-point free linear system B j+1,s → Sym a j (A j,s ) ∨ = H 0 (P(A j,s ), O P(A j,s ) (a j )).

Computation of cohomology

A recursive complex is multi-graded; the term of multi-degree (p, q) ∈ N 2N is

T (p,q) := (Sym p 1 (A 1 ) ∨ ⊗ • • • ⊗ Sym p N (A N ) ∨ ) ⊗ (Λ q 1 (B 1 ) ∨ ⊗ • • • ⊗ Λ q N (B N ) ∨ )
and we have

T + := Sym A ∨ ⊗ even B ∨ = (p,q)∈N 2N q 1 +•••+q N even T (p,q) ,
and T -replacing "even" by "odd". To state the following theorem on the cohomology H ± (T, δ), we need to introduce for any positive intergers R 1 , . . . , R N the polytope

P(R 1 , . . . , R N ) := P + ∩ N j=1 P j (R j ), (2.4) 
where P + := (p, q) ∈ N 2N | q j ≤ rank(B j ) ⊂ Z 2N and

P j (R j ) := (p, q) ∈ Z 2N | (p j + q j ) + N k=j+1 (-a j ) • • • (-a k-1 )(p k + q k ) ≤ R j .
Observe that the vector bundle T (p,q) vanishes (when (p, q) is) outside of P + and the polytope

P(R 1 , . . . , R N ) is a finite subset of Z 2N .
Theorem 2.8. Let T be a non-degenerate recursive complex, with a 1 • • • a N = (-1) N and with the vanishing of the vector bundle

A N = 0. (2.5)
Then the cohomology groups H + (T ) and H -(T ) are coherent and, for any sufficiently large integers

R 1 • • • R N
1, the evaluation of the two-periodic complex T in K 0 (S) equals

(p,q)∈P(R 1 ,...,R N ) (-1) q 1 +•••+q N T (p,q) . (2.6)
We emphasize that the result does not depend on the values of the integers R 1 , . . . , R N , provided the integers R 1 -R 2 , . . . , R N -1 -R N , and R N are large enough. We leave the proof to the Sect. 2.2.3. Definition 2.9. For a two-periodic complex (T, δ) with coherent cohomology, we define the virtual class as in (1. 

c vir (T ) = Ch ∨ (Sym z 1 R 1 ) • • • Ch ∨ (Sym z N R N ) N j=1 1 Td(R j )
,

where the sum is taken over all (z 1 , . . . , z N ) ∈ N N such that for each j we have

z j -a j z j+1 + • • • + (-a j ) • • • (-a N -1 )z N ≤ R j (2.8)
and where Ch ∨ l stands for (-1) l Ch l . In particular, the result is independent of the choice of a representative [A j → B j ] for the derived element R j .

Proof. By Theorem 2.8, the virtual class equals

c vir (T ) = (p,q)∈ N j=1 P j (R j ) (-1) q 1 +•••+q N Ch(T (p,q) ) N j=1 1 Td(R j ) ,
where the sum is taken over N j=1 P j (R j ) because the vector bundle T (p,q) vanishes outside of P + . Consider the function f : N 2N → N N which sends (p, q) to (z) with z j = p j + q j , and observe that f (P j (R j )) is exactly the subset delimited by the equation

z j -a j z j+1 + • • • + (-1) N -j a j • • • a N -1 z N ≤ R j .
Thus the virtual class is

c vir (T ) = (z)∈f ( N j=1 P j (R j )) (p,q)∈f -1 (z) (-1) q 1 +•••+q N Ch(T (p,q) ) N j=1 1 Td(R j )
.

The corollary follows from the equality (see Sect. 1)

Ch ∨ (Sym k R j ) = Ch ∨ (Sym k [A j → B j ]) = p+q=k (-1) q Ch(Sym p (A j ) ∨ )Ch(Λ q (B j ) ∨ ).

Corollary 2.11 (Concave case)

. Assume that all the vector bundles A 1 , . . . , A N vanish. Then the virtual class reduces to

c vir (T ) = q≥0 (-1) q Ch(Λ q B ∨ )Td(B) = c top (B).

Proof of Theorem 2.8

Our strategy is to write the quasi-coherent sheaf T as a direct sum (of sheaves and not of two-periodic complexes)

T = T 0 ⊕ T 1 ⊕ • • • ⊕ T N
with T 0 a coherent locally free sheaf. For any j ≥ 1, the subsheaf T j satisfy a stability condition (see Definition 2.16) with respect to the morphisms α j and β, and vanishes in cohomology, that is, H(T j , α j + β) = 0.

We take advantage of this situation to remove each piece T j but T 0 . The remaining evaluation in K-theory is exactly (2.6). The proof is in four steps.

In Step 1, we change the natural Z 2N -grading of the sheaf T into a Z N +1 -grading so that the multi-degrees of the morphisms α 1 , . . . , α N and β form the canonical basis of Z N +1 . Although only the grading is changing and not the sheaf, we prefer to write K instead of T when we deal with the Z N +1 -grading.

In Step 2, we use a result of Green [START_REF] Mark | A new proof of the explicit Noether-Lefschetz theorem[END_REF]Theorem 2] to find for each j some planes in Z N +1 with the following property. The sheaf of elements with multi-degrees in these planes, together with the morphisms β and α j , is a double complex whose cohomology vanishes. We call these planes exact and illustrate this in Example 2.14 for N = 2.

In Step 3, we cut Z N +1 into a puzzle with pieces Q 0 , . . . , Q N where, for j ≥ 1, each Q j is made of some exact planes with respect to the morphisms β and α j . Altogether, the pieces cover Z N +1 and do not overlap. The subsheaf whose element have multi-degree in Q j is K j (or T j if we work with the Z 2N -grading). We illustrate the case N = 3 (see Example 2.15).

In Step 4, we use an argument relying on spectral sequences (see Lemma 2.19) to remove the subsheaf T 1 . Then we remove the subsheaf T 2 and so on, until there remains only T 0 and T N . To conclude, we need the vanishing condition A N = 0 which implies that T N is empty.

Step 1: a change of grading. Let u 1 , . . . , u N , v 1 , . . . , v N be the canonical basis of Z 2N with the coordinates (p, q) and let e 1 , . . . , e N +1 be the canonical basis of Z N +1 with the coordinates (k, l). The quasi-coherent sheaf T is Z 2N -graded and the degrees of the morphisms β j , α j and α j are

deg(β j ) = u j -v j , deg(α j ) = a j u j + v j+1 , deg(α j ) = (a j -1) u j + u j+1 + v j ,
where we use the cyclic convention u N +1 = u 1 and v N +1 = v 1 . The lattice L generated by these 3N vectors is a sub-lattice of Z 2N and we fix a finite subset E of Z 2N such that

Z 2N = e∈E (e + L)
and (p, q) ∈ E =⇒ q is even.

For simplicity, we prefer to work with a Z N +1 -grading on T such that each morphism β j has degree e N +1 and each morphism α j = α j + α j has degree e j . Notice that a grading assigning the same degree to α j and α j should assign the same degree to β j and β j+1 . This happens because deg(α

j ) + deg(β j+1 ) = deg(α j ) + deg(β j ).
For any e ∈ E and (k, l) ∈ Z N +1 , we consider the direct sum

(K e ) k,l := (λ)∈Z N -1
T e+A•(k,l,λ) (2.9)

where A • (k, l, λ) is (with only non-zero entries represented)

a 1 a N 1 1 1 1 1 1 1 1 1 1 1 1 1 k 1 k N l λ 1 λ N -1 p 1 p N q 1 q N • = -e Note that the vector A • (k, l, λ) is in the lattice L, since A • (k, l, λ) = N j=1 k j deg(α j ) + (l -λ 1 ) deg(β 1 ) + N -1 j=2 (λ j-1 -λ j ) deg(β j ) + λ N -1 deg(β N ).
Moreover, observe that the determinant of the matrix A is

det A = (-1) N a 1 • • • a N -1 = 0,
Chapter 2. Computation of the virtual class thanks to the condition a 1 • • • a N = (-1) N . By looking at the columns of A, it is straightforward to check that for each j β j : (K e ) k,l → (K e ) (k,l)+ e N +1 and α j : (K e ) k,l → (K e ) (k,l)+ e j .

Notice that the direct sum (2.9) is finite because the sheaf T (p,q) is nonzero only when 0 ≤ q j ≤ rank B j for each j and because we have

q 1 = k N -l + λ 1 + e N +1 q 2 = k 1 -λ 1 + λ 2 + e N +2 • • • Thus the locally free sheaf (K e ) k,l is coherent. The total complex K tot e is K tot e m := k 1 +•••+k N +l=m (K e ) k 1 ,...,k N ,l , δ : K tot e m → K tot e m+1
(2.10)

and the associated two-periodic complex We define a surjective function

Ψ : Z 2N → Z N +1 × E
which sends (p, q) to the unique (k, l, e) such that there is λ ∈ Z N -1 with A • (k, l, λ) = (p, q) -e.

For any (p, q) ∈ Z 2N and (k, l, e) ∈ Z N +1 × E such that Ψ(p, q) = (k, l, e), we have

k j-1 + a j k j = p e j + q e j for any j, k 1 + • • • + k N -l = q e 1 + • • • + q e N , (2.11) 
where (p e , q e ) := (p, q) -e and with the convention k 0 = k N . We define the subset Q of Z N +1 by

Q := (k, l) | ∀j, 0 ≤ k j-1 + a j k j and 0 ≤ N j=1 k j -l ≤ N j=1
rank(B j ) .

(2.12)

Since the set Ψ(P + ) is included in Q × E by (2.11), the vector bundle (K e ) k,l vanishes outside Q.

Lemma 2.12. For positive integers such that a 1 • • • a N = (-1) N , the direct sum (2.10) is finite.

Proof. Fix the integer m. We show there is a finite number of (k, l) ∈ Q satisfying

k 1 + • • • + k N + l = m. (2.13)
For any (k, l) ∈ Q, we have

0 ≤ k 1 + • • • + k N -l ≤ rank(B 1 ⊕ • • • ⊕ B N ),
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91 so that the number of possible values for l under (2.13) is finite. Let (k, l) ∈ Q satisfying the condition (2.13), so that the possible values for the sum

k 1 + • • • + k N is finite. Define the sets J 0 := {1 ≤ j ≤ N | k j < 0} and J 1 := {j ∈ J -| a j = 1}. Recursively, let J p+1 := {j ∈ J p | j + 2 ∈ J p } for p ≥ 1. For each 1 ≤ j ≤ N , we have k j-1 ≥ -a j k j , (2.14)
with the cyclic convention k 0 := k N . In particular, for every j ∈ J 0 , we have

0 ≤ k j-1 + k j . (2.15)
Thus, for j ∈ J 0 \J 1 , using a j ≥ 2 and equations (2.14) and (2.15), we have

0 ≤ |k j | ≤ (a j -1) |k j | ≤ k j-1 + k j ≤ k 1 + • • • + k N ,
so that the number of possible values for k j is finite. Recursively, let p ∈ N and let us assume that there are only a finite number of possible values for k j when j ∈ J p \J p+1 . Then, for j ∈ J p+1 \J p+2 , we have

0 ≤ |k j | ≤ k j-1 +k j +a j+1 k j+1 ≤ a j+1 (k j-1 +k j +k j+1 ) ≤ a j+1 (k 1 +• • •+k N )-δ j+2∈J -(a j+1 k j+2 ), which is bounded because j + 2 ∈ J p \J p+1 .
Therefore, unless the integer N is even and a 2j = 1 for every j (or a 2j+1 = 1 for every j, which is the same), there is only a finite number of possible values for the integers k j when j ∈ J 0 . Then, for j / ∈ J 0 , we have

0 ≤ k j ≤ (k 1 + • • • + k N ) - j∈J 0 k j ,
which is bounded.

To end the proof of Lemma 2.12, consider the case when N is even and a 2j = 1 for every j. We use equation (2.11) to show

k 1 + • • • + k N = (p e 2 + q e 2 ) + (p e 4 + q e 4 ) + • • • + (p e N + q e N ).
The possible values for p e 2j + q e 2j are bounded below and the sum k 1 + • • • + k N is bounded under the condition (2.13), so that the number of possible values for p e 1 , q e 1 , . . . , p e N , q e N is finite. Since the matrix A is invertible, because a 1 • • • a N = (-1) N , then Lemma 2.12 is proven.

Step 2: exact sequences. When we fix all the coordinates of Z N +1 but k j and l, we get a double complex (K k,l e ; α j , β). Over a geometric point s ∈ S, denote its cohomology along β s and then along α j,s by H(H((K k,l e ) s , β s ), α j,s ).

Lemma 2.13. For each j, there is a constant R j ≥ 0 such that for every geometric point s in S and for every (k, l, e) ∈ Z N +1 × E, we have

H(H((K k,l e ) s , β s ), α j,s ) = 0, (2.16 
)

whenever k j-1 -a j a j+1 k j+1 > R j . Moreover, we take R N ≥ rank(B N ).
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Proof. We omit the index e in (K k,l e ) s to simplify notations. Following the proof of [13, Theorem 3.3.1], we see that

H βs (K k,l s ) = K (k,l) s , (2.17)
where

K (k,l) s
is the subspace of K (k,l) s obtained when we replace the vector space A j,s (resp. B j,s ) by A j,s (resp. B j,s ) in the construction of K (k,l) s , with A j,s the kernel of β ∨ j,s and B j,s its cokernel. Still as in the proof of [START_REF] Chiodo | The Witten top Chern class via K-theory[END_REF]Theorem 3.3.1], we use the non-degeneracy condition, i.e. α j,s : B j+1,s → Sym a j (A j,s ) ∨ = H 0 (P(A j,s ), O P(A j,s ) (a j ) is a base-point free linear system, to deduce from [45, Theorem 2] that the complex

(Sym p j +a j •t (A j,s ) ∨ ⊗ Λ t (B j+1,s ) ∨ ) t with differential α j,s
is exact when p j is larger than R j,s := a j + rank(Sym a j A j,s ).

By (2.11), the complex ((K because otherwise we have p j+1 + q j+1 < 0. For this value of t, we have

(k,l)+t• e j s ) t , α j,
p j + q j = e j + e N +j + k j-1 + a j (k j + e j+1 + e N +j+1 -(k j + a j+1 k j+1 )) = (k j-1 -a j a j+1 k j+1 ) + e j + e N +j + a j (e j+1 + e N +j+1
).

As a consequence, the complex ((K

(k,l)+t• e j s
) t , α j,s ) is exact whenever

k j-1 -a j a j+1 k j+1 > R j,s,e , (2.18) 
with R j,s,e := R j,s,e + rank(B j,s ) -e j -e N +j -a j (e j+1 + e N +j+1 ). Now, we consider the double complex

C u,v := (λ 1 ,..., λj ,...,λ N -1 )∈Z N -2 T e+A•(k,l,λ) s with k j := u + v , λ j := v,
where the horizontal differential is f := α j,s and the vertical differential is g := α j,s . Assume the inequality (2.18). We have just proved that the total cohomology of the double complex (C; f, 0) vanishes,

H • (C tot , f ) = 0 (2.19)
and we want to prove that the total cohomology of (C; f, g) also vanishes,

H • (C tot , f + g) = 0. (2.20) Take an element c = v∈Z c v with c v ∈ C k j -v,v ,
such that f (c) + g(c) = 0. Since the direct sum (2.9) is finite, then there is an integer w such that c v = 0 for v < w. Observe that f (c) + g(c) = 0 reads

f (c v ) + g(c v-1 ) = 0 , for all v.
2.2. Recursive complexes 93 Thus, we obtain f (c w ) = 0, and by (2.19), there is c w such that f (c w ) = c w . Then,

0 = f (c w+1 ) + g(c w ) = f (c w+1 ) + g(f (c w )) = f (c w+1 ) -f (g(c w )) = f (c w+1 -g(c w )),
and by (2.19), there is c w+1 such that f (c w+1 ) = c w+1 -g(c w ). By induction we construct c v for all v ≥ w and we set c

= v≥w c v to get (f + g)(c ) = c.
This proves (2.20) and we conclude with the following value for R j , which is independent from the geometric point s and from e ∈ E, R j := max e∈E {a j + rank(Sym a j A j ) + rank(B j ) -e j -e N +j -a j e j+1 -a j e N +j+1 } , and we eventually increase

R N to have R N ≥ rank(B N ).
Example 2.14. We illustrate Lemma 2.13 when N = 2. Since the vanishing condition (2.5) imposes A 2 = 0, there are three vector bundles A 1 , B 1 , and B 2 together with two morphisms β 1 and α 1 . Here, T decomposes into a direct sum over r ∈ Q of double complexes

p 1 +q 1 -a 1 q 2 =r (T p 1 ,q 1 ,q 2 , α 1 , β 1 ).
given by planes directed by the vectors (a 1 , 0, 1) and (1, -1, 0) (see the next figure). Since the integers p 1 , q 1 and q 2 must be non-negative, the set of rational numbers r contributing to this sum is bounded below.

R 1 α 1 β 1 q 1 q 2 p 1
Lemma 2.13 tells us that for any r > R 1 , the corresponding two-periodic complex is exact on any geometric point s ∈ S. Since this is a two-periodic complex of coherent locally free sheaves, this is exact over the base scheme S. Thus, the cohomology of T is given by

r≤R 1 H p 1 +q 1 -a 1 q 2 =r T p 1 ,q 1 ,q 2 , α 1 + β 1 .
Since the direct sum is finite, the evaluation in K-theory of T equals

r≤R 1 p 1 +q 1 -a 1 q 2 =r (-1) q 1 +q 2 [T p 1 ,q 1 ,q 2 ]
and this coincides with (2.6).
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Step 3: the puzzle. In general, the two-periodic complex T is not a direct sum of two-periodic complexes. To understand how to manage it, we begin with an example.

Example 2.15. When N = 3, the vanishing condition (2.5) implies A 3 = 0 and there remains five vector bundles, A 1 , A 2 , B 1 , B 2 , and B 3 , with four morphisms. Consider the coordinates z j = p j + q j for j = 1, . . . , 3 and assume for simplicity that the morphism α j in (2.3) is zero (this is not the case in general). Thus we have three differentials β := β 1 + β 2 , α 1 , and α 2 . Since the coordinate z j corresponds to

p j +q j =z j Sym p j A ∨ j ⊗ q j B ∨ j ,
we impose the condition z 3 ≤ R 3 := rank(B 3 ). We interpret Lemma 2.13 as follows.

We say that a line directed by the degree of the map α j is exact if the corresponding double complex with differentials β and α j is exact. Then we have two kind of exact lines:

1. for all z 1 > R 1 and for all z 3 , the line (z 1 , 0,

z 3 ) + t • (a 1 , 1, 0) is exact, 2. for all z 2 > R 2 and for all z 1 , the line (z 1 , z 2 , 0) + t • (0, a 2 , 1) is exact
The idea is to get rid of a maximal set of exact and disjoint lines. First, we fix R 1 ≥ R 1 and we consider all the exact lines of the first kind with z 1 > R 1 and z 3 = 0. Then we accept only the exact lines of the second kind with the extra condition z 1 -a 1 z 2 ≤ R 1 , in order to avoid the overlaps. Finally we consider all the lines of the first kind with z 3 > 0 and z 1 + a 1 a 2 z 3 > R 1 , in order to stick with the previous lines. Notice that if R 1 is greater than R 1 + a 1 a 2 R 3 , then the last lines we have drawn are exact. We sum up this construction by defining two sets

Q 1 := (z 1 , 0, z 3 ) + t • (a 1 , 1, 0) ∈ N 3 | z 1 + a 1 a 2 z 3 > R 1 + a 1 a 2 R 3 , z 3 ≤ R 3 and t ∈ N , Q 2 := (z 1 , z 2 , 0) + t • (0, a 2 , 1) ∈ N 3 | z 1 -a 1 z 2 ≤ R 1 + a 1 a 2 R 3 , z 2 > R 2 , z 3 ≤ R 3 and t ∈ N .
The complement of the subsets Q 1 and Q 2 is the finite polytope represented in

R 1 R 2 R 3
and coincides with the subset of Theorem 2.8,

Q 0 := (z 1 , z 2 , z 3 ) ∈ N 3 | z 1 -a 1 z 2 + a 1 a 2 z 3 ≤ R 1 + a 1 a 2 R 3 , z 2 -a 2 z 3 ≤ R 2 and z 3 ≤ R 3 .
We go back to the proof of Theorem 2.8 and we give a formal definition of the subsets Q j in terms of the coordinates (k 1 , . . . , k N , l). Let R 1 , . . . , R N be the integers from Lemma 2.13 and define recursively R 1 , . . . , R N by

R N = R N , R N -1 = R N -1 and R k = R k + a k a k+1 R k+2 .
For any ( ) := ( 1 , . . . , N ) in {-1, 1} N , we define the subset Q ( ) of Q delimited by

k j-1 + (-1) N -j a j • • • a N k N ≤ R j if j = 1 and k j-1 + (-1) N -j a j • • • a N k N > R j if j = -1, (2.21) 
for every j and with the cyclic convention k 0 = k N . These subsets form the pieces of our puzzle

Q = ( )∈{-1,1} N Q ( ) .
Definition 2.16. Let f : T → T be a linear endomorphism and Z ⊂ Z N +1 . We say that f ends in Z if the image of every element with degree in Z has degree in Z or vanishes. On the contrary, we say that f starts from Z if every pre-image of every element with degree in Z has degree in Z. When a morphism f starts from Z and ends in Z, we say that Z is stable under f .

For instance, for any j = N , the morphism α j starts from any Q ( 1 ,..., N ) with j+1 = 1 and ends in any Q ( 1 ,..., N ) with j+1 = -1. The morphism α N plays a special role, because of the asymmetry between k N and the other coordinates in (2.21). Moreover, any subset Q ( 1 ,..., N ) is stable under the morphism β. Proposition 2.17. Fix an integer 1 ≤ j ≤ N and choose

( 1 , . . . , N ) in {-1, 1} N such that if j ≤ N -2, j = -1 j+2 = 1 if j = N -1 or j = N, j = -1.
Then for any geometric point s in S and (k, l) ∈ Q ( 1 ,..., N ) , we have

H(H((K k,l e ) s , β s ), α j,s ) = 0.
Proof. For j = N , since N = -1 implies

p N + q N = k N -1 + a N k N > R N ≥ rank(B N )
and since the vanishing condition in Theorem 2.8 requires A N = 0, then we have directly

K k,l e = 0. For j = N -1, we have N -1 = -1, i.e. k N -2 -a N -1 a N k N > R N -1 ,
and we use Lemma 2.13. Fix an index j ≤ N -2. The conditions j = -1 and j+2 = 1 mean

k j-1 + (-1) N -j a j • • • a N k N > R j and k j+1 + (-1) N -j a j+2 • • • a N k N ≤ R j+2 .
Multiplying the second inequality by -a j a j+1 and adding the first inequality yields

k j-1 -a j a j+1 k j+1 > R j -a j a j+1 R j+2 = R j
and we conclude again with Lemma 2.13.
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Proposition 2.17 guides us to the definition of the subsets ω 1 , . . . , ω N of {-1, 1} N :

ω 1 = ( 1 , . . . , N ) ∈ {-1, 1} N | 1 = -1 and 3 = 1
and for j ≥ 2, the set ω j is the maximal subset of {-1, 1} N \(ω 1 ∪• • •∪ω j-1 ) with the properties 1. j = -1, 2. j+2 = 1 (not required for ω N -1 and ω N ), 3. ( 1 , . . . , j+1 , . . . , N ) ∈ ω j =⇒ ( 1 , . . . , -j+1 , . . . , N ) ∈ ω j (not required for ω N ). The first and the second points are motivated by Proposition 2.17 and the third point by the stability condition for the morphism α j (see Lemma 2.18). We also define the set ω Ω such that we have

{-1, 1} N = ω Ω ω 1 • • • ω N . (2.22) Observe that if ( 1 , . . . , N ) is in ω k ⊂ {-1, 1} N , then in {-1, 1} N +1 we get -( 1 , . . . , N , 1) is in ω k -( 1 , . . . , N , -1) is in ω k when k = N -1 and k = Ω -( 1 , . . . , N , -1) is in ω N +1 when k = N -1 or k = Ω -(1, . . . , 1, -1) is in ω N .
We illustrate the behavior of the sets ω j under the insertion of ±1 as

ω Ω ω Ω ω 1 ω 1 ω N -2 ω N -2 ω N -1 ω N -1 ω N ω N ω N +1 N N + 1 1 1,-1 1,-1 1 1,-1 -1 -1
and it becomes easy to prove ω Ω = {(1, . . . , 1)} .

(2.23)

At last, we define the subsets

Q j := ( )∈ω j Q ( ) ⊂ Z N +1 with 1 ≤ j ≤ N,
and Q Ω stands for the finite subset Q (1,...,1) .

Lemma 2.18. For j ≤ N -1, the subset Q j is stable under the morphisms α j , β and α k with j + 1 < k < N . For j ≤ N -2, the morphism α j+1 starts from Q j .

Proof. The stability condition is clear for the morphisms α j and β. Let us prove it for α k with j + 1 < k < N . Fix ( 1 , . . . , N ) in ω j . By the figure above, we see that ( 1 , . . . , j ) is also in ω j and ( 1 , . . . , j , ±1, 1, ±1, . . . , ±1) ∈ ω j .

Since k = N , the morphism α k can only change the sign of k+1 with k + 1 ≥ j + 3, hence the stability condition holds for α k .

Since the morphism α j+1 can only change the sign of j+2 and since j+2 = 1 for the set Q j , the morphism α j+1 starts from Q j .

Recall that when we fix all the coordinates of Z N +1 but k j and l, we get a double complex (K k,l e ; α j , β). By Lemma 2.18, the subset Q j is stable with respect to these morphisms. Thus those double complexes can be of two kinds:

1. all the multi-degrees of the sheaves are in Q j , 2. all the multi-degrees of the sheaves are in the complement of Q j .

In the first case, Proposition 2.17 implies that the total cohomology over any geometric point vanishes. As the sheaves are coherent and locally free, the total cohomology over the base scheme S vanishes also, which we write

H(K k,l e , α j + β) = 0 on Q j . (2.

24)

Step 4: spectral sequences. For each j, we define the sheaves

(K k,l e ) j = 0 if (k, l) ∈ Q 1 • • • Q j , K k,l e otherwise,
(2.25) yielding the total complexes K 1 , . . . , K N ; the notation K 0 stands for K. By Lemma 2.12, they are complexes of coherent sheaves.

Lemma 2.19. Let (C; f, g) be a double complex and E be a subset of Z 2 . We define a double complex (C 0 ; f 0 , g 0 ) by

C r,s 0 = 0 if (r, s) ∈ E, C r,s otherwise,
with the induced morphisms.

If the morphisms f and g start from the subset E, then the natural injection of sheaves C r,s 0 → C r,s induces an injective morphism (C 0 ; f 0 , g 0 ) → (C; f, g) of double complexes.

If the morphisms f and g end in the subset E, then the natural surjection of sheaves C r,s C r,s 0 induces a surjective morphism (C; f, g) (C 0 ; f 0 , g 0 ) of double complexes. Moreover, in both cases, if, for any n ∈ Z, there is an integer r 0 such that C n-r,r = 0 for any r ≥ r 0 (2.26)

and if we have H r (C •,s , f ) = H r (C •,s 0 , f ) for any (r, s) ∈ Z 2 , (2.27)
then the total complexes are quasi-isomorphic.

Remark 2.20. If the subset E is stable by the morphism f and if

H r (C •,s , f ) = 0 for any (r, s) ∈ E,
then the equation (2.27) follows.

Proof. It is easy to check the injection and the surjection between the double complexes. To prove the quasi-isomorphism, we treat the case of the injection; the other case is similar.

Consider the spectral sequences given by the filtration induced by the rows

F p C n = ⊕ r≥p C n-r,r and F p C n 0 = ⊕ r≥p C n-r,r 0 .
The injection induces a morphism from the spectral sequence E • (C 0 ; f 0 , g 0 ) to the spectral sequence E • (C; f, g), and by (2.27), we have E 1 (C 0 ; f 0 , g 0 ) = E 1 (C; f, g). Then the two spectral sequences coincide, E r (C 0 ; f 0 , g 0 ) = E r (C; f, g) , for any r ≥ 1.

By (2.26), the spectral sequences abut to the total cohomology of the complexes,

H(C tot 0 , f 0 + g 0 ) = H(C tot , f + g).
For any 1 ≤ j ≤ N -1, Lemma 2.18 implies

(K j , α j + β, α j+1 + • • • + α N -1 ) → (K j-1 , α j + β, α j+1 + • • • + α N -1 ),
with the convention K 0 := K. We have H((K k,l e ) j , α j + β) = 0 by construction, for any (k, l) in Q j . By Lemma 2.12, the condition (2.26) is satisfied and we apply Lemma 2.19 to get

H((K k,l e ) j-1 , α j + β) = 0 by (2.24),
H(K j , α j + • • • + α N -1 + β) = H(K j-1 , α j + • • • + α N -1 + β) , for 1 ≤ j ≤ N -1. (2.28)
According to the assumption of Theorem 2.8, the vector bundle A N is zero, thus

(k,l,e)∈Q N ×E K k,l e = 0, α N = 0, K N -1 = K N .
Since the morphisms α 1 , . . . , α N -1 and β start from the subset Q Ω , there is a surjection

(K j , β + α j+1 + • • • + α N , α j ) (K N , β + α j+1 + • • • + α N , α j ),
for any j ≤ N -1. Consequently, following Lemma 2.12, we need

H(K j , α j+1 + • • • + α N + β) = H(K N , α j+1 + • • • + α N + β) (2.29) to show H(K j , α j + • • • + α N + β) = H(K N , α j + • • • + α N + β).
(2.30)

The equality (2.28) for j = N -1 coincides with (2.66) for j = N -2 (because

K N = K N -1
), so that we get (2.30) for j = N -2. The following implications are (2.30) for j (2.28) for j = ((2.66) for j -1) =⇒ ((2.30) for j -1).

By a decreasing induction on the index j, we end with (2.66) for j = 0,

H(K, α 1 + • • • + α N + β) = H(K N , α 1 + • • • + α N + β).
By construction, (K N , δ) is a bounded complex, as it vanishes outside of Q (1,...,1) . Its evaluation in K-theory gives

K tot • , δ = K tot N • , δ = (k,l)∈Q (1,...,1) (-1) k 1 +•••+k N +l K k,l = (k,l)∈Q (1,...,1) (-1) k 1 +•••+k N -l K k,l = (p,q)∈P(R 1 ,...,R N ) (-1) q 1 +•••+q N [T p,q ] ,
by the change of variables

Ψ(P(R 1 , . . . , R N )) = Q (1,...,1) × E and Ψ -1 (Q (1,...,1) ) × E ∩ P + = P(R 1 , . . . , R N ).
This ends the proof of Theorem 2.8.

Explicit formula for the virtual class

Let (T, δ) be a non-degenerate recursive complex with A N = 0. We want to derive from Theorem 2.8 a formula suitable to Givental's theory (see Sect. 3.3). First, we take the formal power series

F form j (x) := z∈N Ch ∨ (Sym z R j ) • x z 1 Td(R j ) F form (x 1 , . . . , x N ) := N j=1 F form j (x j ), (2.31) 
and by Corollary 2.10, we observe that we get the virtual class by the following rules: 1. choose sufficiently large integers

R 1 • • • R N
1 (we could estimate lower bounds for these values), 2. develop the formal power series (2.31) with respect to the variables x 1 , . . . , x N , 3. eliminate every monomial

x h 1 1 • • • x h N N with h j + N k=j+1 (-a j ) • • • (-a k-1 )h k > R j for some index j,
4. evaluate the remaining polynomial at (x 1 , . . . , x N ) = (1, . . . , 1).

Fix once for all sufficiently large integers R 1

• • • R N 1.
We set the polynomial functions with coefficients in H * (S)

G j (x j , . . . , x N ) := N k=j Ch ∨ (Sym z k R k ) • x z k k 1 Td(R k ) , (2.32)
where the sum is taken over all indexes (z j , . . . , z N ) ∈ N N -j+1 such that

z l + N k=l+1 (-a l ) • • • (-a k-1 )z k ≤ R l , for each j ≤ l ≤ N .
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We also define the rational functions with coefficients in H * (S)

F j (x) = exp l≥0 s l (x)Ch l (R j ) (2.33)
with the functions

s l (x) =        -ln(1 -x) if l = 0, B l (0) l + (-1) l l k=1 (k -1)! x 1 -x k γ(l, k) if l ≥ 1. (2.34)
Here, the number γ(l, k) is defined by the generating function

l≥0 γ(l, k) z l l! := (e z -1) k k! .
We notice that γ(l, k) vanishes for k > l and that the sum over l in (2.33) is finite because Ch l vanishes for l > dim(S). Finally, we set F(x 1 , . . . , x N ) := N j=1 F j (x j ). Proof. For a vector bundle E of rank s with roots r 1 , . . . , r s and for |t| < 1, we have

m≥0 (-1) m Ch(Λ m (E)) • t m = s k=1 (1 -t • e r k ) m≥0 Ch(Sym m (E)) • t m = 1 s k=1 (1 -t • e r k )
and in the ring C [x, y] /(y R ), we have

1 -x • e y = (1 -x) exp - l≥1 k≥1 (k -1)! x 1 -x k γ(l, k) y l l! y 1 -e -y = exp - l≥1 B l (0) l y l l! .
We apply these formulas to R j to conclude.

Definition 2.22. We extend the definition (2.2) from |t| < 1 to t = 1 by the formula

c t (B -A) := exp l≥0 s l (x)Ch l (A -B) , (2.35)
with the functions s l defined in (2.34).

For any λ in C -{0, 1}, we consider the rational function with values in H * (S)

F(λ) := F(x 1 , . . . , x N ) | (x 1 ,...,x N )= λ,λ -a 1 ,...,λ (-a 1 )•••(-a N -1 ) .
Theorem 2.23. Under the hypothesis of Theorem 2.8, the rational function F(λ) is a polynomial in λ, λ -1 and we have c vir (T, δ) = F(λ = 1).

In particular, we get

c vir (T, δ) = lim λ→1   N j=1 (1 -λ j ) -Ch 0 (R j )   exp   N j=1 l≥1 s l (λ j )Ch l (R j )   , ( 2.36 
)

with λ j = λ (-a 1 )•••(-a j-1 ) .
Proof. We proceed by a decreasing induction on j to prove

F j (λ j ) • • • F N (λ N ) = G j (λ j , . . . , λ N ), for all λ ∈ C, (2.37) 
with

λ j = λ (-a 1 )•••(-a j-1 )
.

Initialization The vanishing property

A N = 0 implies G N (λ N ) = F form N (λ N ) for all λ N ∈ C, = F N (λ N ) for all |λ N | < 1.
Since the rational function F N coincides with the polynomial function G N in the open unit ball B C (0, 1), then they are equal in C and (2.37) is true for j = N .

Heredity We assume equation (2.37) is true for some index j + 1. For any complex number λ such that |λ j | < 1, we have F j (λ j ) = F form j (λ j ) by Lemma 2.21. Combining it with the equation (2.37) for j + 1, we obtain

F j (λ j ) • • • F N (λ N ) = F form j (λ j )G j+1 (λ j+1 , . . . , λ N ), when |λ j | < 1.
Since the value of G j (1, . . . , 1) does not depend on the choice of sufficiently big integers R j • • • R N (see Theorem 2.8), then we write the difference between equation (2.32) with R j + h and with R j + h -1, for h ∈ N * . Consequently, we get

N k=j Ch ∨ (Sym z k R k ) 1 Td(R k ) = 0, (2.38)
where the sum is taken over all indexes (z j , . . . , z N ) ∈ N N -j+1 such that

z l + N k=l+1 (-a l ) • • • (-a k-1 )z k ≤ R l for j + 1 ≤ l ≤ N , z j + N k=j+1 (-a j ) • • • (-a k-1 )z k = R j + h.
Observe that the left hand side of (2.38) is exactly the coefficient of λ

R j +h j in F form j (λ j )G j+1 (λ j+1 , . . . , λ N )
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F form j (λ j )G j+1 (λ j+1 , . . . , λ N ) = G j (λ j , . . . , λ N ).
At last, the rational function λ → F j (λ j ) • • • F N (λ N ) coincides with the rational function λ → G j (λ j , . . . , λ N ) when |λ j | < 1. Thus, they are equal for all λ ∈ C * and equation (2.37) is true for the index j.

We call virtual degree the integer

degvir := - N j=1
Ch 0 (R j ).

Since the non-degeneracy condition implies rank(A j ) ≤ rank(B j+1 ) for any j, then the virtual degree is always a non-negative integer (possibly zero).

For each l ≥ 1, introduce the polynomial

s l (X) := B l (0) l + (-1) l l k=1 (k -1)!X k γ(l, k)
of degree l and define a polynomial P k with values in H 2k (S) and deg

P k ≤ k by exp   N j=1 l≥1 s l (X j )Ch l (R j )   = k≥0 P k (X 1 , . . . , X N ).
After the change of variables j := λ -1 j -1, the degree-2k part of F(λ) is

N j=1 j 1 + j -Ch 0 R j • P k ( -1 1 , . . . , -1 N ).
(2.39)

The relation λ j = λ (-a 1 )•••(-a j-1 ) with λ → 1 yields

-1 j = →0 -1 (-a 1 ) • • • (-a j-1 ) + O(1) and j 1 + j = →0 (-a 1 ) • • • (-a j-1 ) • + O( 2 ).
Let d k -k be the dominant term in P k ( -1 1 , . . . , -1 N ), with d k ∈ H 2k (S) non-zero, and write the development of (2.39) near = 0

h k • d k • degvir-k + O( degvir-k+1 ), with h k ∈ C * .
We have degvir ≥ k because the development of (2.39) near = 0 must converge (see Theorem 2.23) and h k • d k = 0. Furthermore, we have already noticed that the degree of the polynomial P k (X 1 , . . . , X N ) is less than k, hence we have k ≤ k. Finally, when degvir > k, the degree-2k part of F(λ) tends to 0 when → 0. 

Computing Polishchuk and Vaintrob's virtual class

We return to the quantum singularity theory of LG orbifolds (W, Aut(W ), with an invertible polynomial W , and we will adapt Theorem 2.23 to compute the virtual class of the two-periodic complex (T, δ) := p naive * (PV ⊗ K(C γ )) over S (see Sect. 1.3.5).

Here, we fix an element γ ∈ (Aut(W )) n , a family π : C → S of W -spin curves of genus zero with sections σ 1 , . . . , σ n of type γ over a smooth base scheme S and an admissible decoration C γ of the graph Γ W γ .

As the invertible polynomial W is not just a loop polynomial, the two-periodic complex (T, δ) is not recursive. We have to modify this complex and to assume extra conditions to apply Theorem 2.23; we proceed in three steps. First, we construct another two-periodic complex (T C , δ C ). Then we prove

c PV vir (T C , δ C ) = c PV vir (T, δ).
Finally we assume extra conditions (see Theorem 2.25), so that (T C , δ C ) turns into a nondegenerate and recursive complex with vanishing condition (2.5); we conclude with Theorem 2.23.

Step 1: Recall that the two-periodic complex (T, δ) is built on the vector bundles A 1 , . . . , A N and B 1 , . . . , B N on the scheme S and observe that [

A j → B j ] is quasi-isomorphic to Rπ * (L C j ) with L C j := L j   - (σ i ,x j )∈C γ σ i   . ( 2.40) 
As each marked point σ i is in C γ j C γ t(j) , the isomorphism (1.13) induces

L C j ⊗a j ⊗ L C t(j) → ω C . (2.41)
Thus the construction of Polishchuk-Vaintrob [72, Sect. 4.2] produces vector bundles

A C := A C 1 ⊕ • • • ⊕ A C N and B C := B C 1 ⊕ • • • ⊕ B C N ,
with morphisms

α C := α C 1 + • • • + α C N and β C := β C 1 + . . . + β C N , yielding a Koszul matrix factorization -α C , β C of
potential zero on the total space of A C . The naive push-forward gives a two-periodic complex

p naive * -α C , β C = (T C , δ C ) on S.
Compare the construction of (T C , δ C ) with the construction of (T, δ) (see [72, Section 4.2,

Step 2]) and observe that

B C j = B j and A C j = ker Z C j , (2.42) 
where

Z C j : A j → O C j . Then the morphisms (α ) C j : Sym a j A C j → B ∨ t(j) , (α ) C j : Sym a j -1 A C j ⊗ A C t(j) → B ∨ j , β C j : A C j → B j , (2.43) 
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(α ) C j,s : Sym a j H 0 (C s , L C j,s ) → H 1 (C s , L C t(j),s ) ∨ and (α ) C j,s : Sym a j -1 (H 0 (C s , L C j,s )) ⊗ H 0 (C s , L C t(j),s ) → H 1 (C s , L C j,s ) ∨ (2.44)
induced by (2.41) (and similarly to (1.29)) and the morphism Z C j,s :

H 0 (C, L j,s ) → O C j,s comes from the exact sequence 0 → L C j,s → L j,s → L j,s | (σ i ,x j )∈C γ σ j → 0.
Step 2: We go back to the base scheme S and observe

Rπ * (L C j ) = [A j → B j ] = [A C j → B j ] in D(S). (2.45) 
Denote by X C the total space of A C and by i : X C → X the inclusion in X. The section β induces the regular section Z * b C γ of the sheaf

p * B/p * B Z * (O C γ ) ∨ ,
whose zero locus is X C . The sections α and β induce α C and β C on X C . The zero loci of {α C , β C } and {α, β} coincide with the zero section S in X C ⊂ X, so they are proper. By [72, Proposition

, we obtain {α, β} i * α C , β C , and via the naive push-forward, (T, δ) (T C , δ C ).

(2.46)

Step 3: According to the FJRW terminology, we say that a variable x j is concave for the decoration C γ if H 0 (C, L C j ) = 0, for every W -spin curve C of genus-zero and type γ, with L C j defined by (2.40). By [15, Proposition 3.1], if

w j | d and C γ j = B γ j , (2.47) 
i.e. the weight divides the degree and all the broad marked points are crossed for the line bundle L j , then the variable x j is concave for the decoration C γ .

Example. For each index j satisfying t(j) = j, the variable x j is concave for every admissible decoration. Indeed, the monomial x a j j x t(j) of W gives w j | d, and by definition of an admissible decoration, any vertex followed by itself is crossed. 

C γ(1) , . . . , C γ(n) of the graph Γ W . Assume that each connected component of Γ W contains a concave variable for C γ := C γ(1) • • • C γ(n) . Then this is unambiguous to define λ t(j) = λ -a j j if x j is non-concave for C γ , with a j := f W (v j ), λ j = λ for every remaining index j, ( 2 
c λ j (-Rπ * (L C j )) = lim λ→1 N j=1 (1 -λ j ) r j c λ j (-Rπ * (L j )) = lim λ→1   N j=1 (1 -λ j ) -Ch 0 (Rπ * (L j ))+r j   • exp   N j=1 l≥1 s l (λ j )Ch l (Rπ * (L j ))   ∈ k≥degvir H 2k (S 0,n , Q), (2.49) 
with the characteristic class c defined in (2.35), the function s l (x) by (2.34) and the virtual degree by

degvir = N j=1 -Ch 0 (Rπ * (L j )) + r j ∈ N, with r j := card(C γ j ).
Proof. First, we observe Ch 0 (Rπ * (L j )) -r j = Ch 0 (Rπ * (L C j )). Then we prove that (T C , δ C ) is a non-degenerate recursive complex with vanishing condition. Indeed, let us alter the graph Γ W as follows. For each concave variable x j , erase the arrow from v j to v t(j) . As every connected component contains a concave variable, we get a disjoint union of oriented graphs, which are lines from a tail to a head (in the direction of arrows). Once we draw an arrow from the head to the tail, each oriented graph corresponds to a recursive complex with vanishing condition, as follows. The vertex v j corresponds to the vector bundles A C j and B j , with the morphism β C j ; the arrow from v j to v t(j) corresponds to the morphisms (α ) C j and (α ) C j ; the vector bundle A C k which corresponds to the head is zero. With this representation, this is clear that (T C , δ C ) decomposes as a tensor product of recursive complexes with vanishing condition, corresponding to the connected components of the modified graph. If we prove the non-degeneracy conditions for (T C , δ C ), then we apply Theorem 2.23 for each term of the tensor product, and the product of the resulting formulae gives the virtual class c PV vir (T C , δ C ). Over a geometric point s ∈ S, the morphism (α ) C j,s is given by

Sym a j H 0 (C s , L C j,s ) → H 0 (C s , (L C j,s ) a j ) H 0 (C s , ω Cs ⊗ (L C t(j),s ) ∨ ) H 1 (C s , L C t(j),s ) ∨ ,
and we see that the morphism (α ) C j is non-degenerate (see Definition 2.7).

Remark 2.26. Theorem 2.25, together with the expression of the Chern character of Rπ * L j (see [START_REF] Chiodo | Towards an enumerative geometry of the moduli space of twisted curves and rth roots[END_REF]Theorem 1.1.1] or formula [START_REF] Hain | Normal Functions and the Geometry of Moduli Spaces of Curves[END_REF]) and the algorithm of Carel Faber [START_REF] Faber | Program to compute intersections on the moduli space of pointed curves[END_REF], could lead to a computer program expressing Polishchuk-Vaintrob's virtual class in terms of psi-classes and boundary terms, and giving numerical values for the invariants of the cohomological field theory (1.18). We give in A the details of such a computer program. When at least one of the decorations at the marked points is not balanced, the formula of Theorem 2.25 vanishes.
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The factorization and index zero properties of [START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF]Sect. 5] (see also the axioms of a cohomological field theory in Def. 0.9) constitute easy applications of Theorem 2.25. The former follows from a factorization property of the higher direct images Rπ * (L j ). For the index zero property, since it requires n = 3 and since the dimension of S 0,3 is zero, then Polishchuk-Vaintrob's virtual class equals

c PV vir (e(C γ )) 0,3 = lim λ→1 N j=1
(1 -λ j ) -Ch 0 (Rπ * (L j ))+r j .

A straightforward computation yields

-1 ≤ -Ch 0 (Rπ * (L j )) + r j ≤ 1,
and for any W -spin curve C of genus zero, the equality

rank(H 0 (C, L C j )) ≤ rank(H 1 (C, L C t(j) ))
follows from the non-degeneracy of the morphism (α ) C j . Moreover, for a smooth genus-zero curve C we have

H 0 (C, L C j ) = 0 or H 1 (C, L C j ) = 0. Therefore, every three-point correlator is a product of terms 1 -λ t(j) 1 -λ j -→ λ→1 -a j ( 2.50) 
and possibly of terms 1 -λ j -→ λ→1 0. Observe that the virtual class (c PV vir ) 0,3 vanishes if and only if its degree degvir is non-zero.

Example. By [72, Lemma 6.1.1], the bilinear pairing of the state space satisfies e(C γ ), e(C γ ) = e(C γ ), e(C γ ), e j PV 0, [START_REF] Arbarello | Geometry of Algebraic Curves[END_REF] , where e j is the unit element corresponding to the unique admissible decoration for the grading element j, defined in (1.1) (this decoration is empty). The component S 0,3 (γ, γ , j) is non-empty only if γ = γ -1 , then for any index j we have

-Ch 0 (Rπ * (L j )) = -1 if γ j = 1, 0 otherwise.
Finally, we recover (1.11).

Example. Consider the polynomial W = x 2 1 x 2 + x 3 2 x 3 + x 5 3 x 4 + x 10 4 x 5 + x 11 5 with weights (4, 3, 2, 1, 1) and degree 11. For the type (j 3 , j 3 , j 6 ) at the marked points, where j is the grading element defined in (1.1), the only admissible decorations are empty because B γ is empty, and we simply denote e j 3 , e j 3 , and e j 6 for the state elements. By (1.16), we compute

rank(H 0 (C, L 1 )) =1 + (3 -2) • 4 11 - 3 • 4 11 - 3 • 4 11 - 6 • 4 11 = 1, rank(H 1 (C, L 2 )) = -1 + (2 -3) • 3 11 + 3 • 3 11 + 3 • 3 11 + 6 • 3 11 = 1
and the other vector spaces are zero. Then we get e j 3 , e j 3 , e j 6 = -2.

(2.51)
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Example. Consider again the polynomial W = x 2 1 x 2 + x 3 2 x 3 + x 5 3 x 4 + x 10 4 x 5 + x 11 5 and compute the five-point correlator e 4 j 2 e j 6 . We see easily that Rπ * L 3 , Rπ * L 4 , and Rπ * L 5 are zero, then

ChRπ * L 3 = ChRπ * L 4 = ChRπ * L 5 = 0,
and that Ch 0 Rπ * L 1 = Ch 0 Rπ * L 2 = -1. Develop the formula (2.49) as a series in j := λ -1 j -1 and obtain e 4 j 2 e j 6 = lim

1 →0 2 j=1 j • 1 - 1 2 + 1 j Ch 1 Rπ * L j + 1 8 + 1 2 j + 1 2 2 j (Ch 1 Rπ * L j ) 2 + 1 12 + 1 j + 1 2 j Ch 2 Rπ * L j , with 2 := (-2) • 1 + (-2)(-3) 2! 2 1 + (-2)(-3)(-4) 3! 3 1 + • • • .
Notice that we stop at the second Chern character because dim(S 0,5 ) = 2. Thus, we get

e 4 j 2 e j 6 = -(Ch 1 Rπ * L 1 ) 2 + Ch 1 Rπ * L 1 • Ch 1 Rπ * L 2 -2 • Ch 2 Rπ * L 1 - 1 4 • ((Ch 1 Rπ * L 2 ) 2 + 2 • Ch 2 Rπ * L 2 ).
By [14, Theorem 1.1.1], we compute

(Ch 1 Rπ * L 1 ) 2 = - 7 121 , Ch 2 Rπ * L 1 = 13 2 • 121 , (Ch 1 Rπ * L 2 ) 2 = 12 121 , Ch 2 Rπ * L 2 = - 6 121
and obtain e 4 j 2 e j 6 = -

2 121 . ( 2.52) 
Observe that R 1 π * L 2 is a vector bundle of rank 1, so that we have

(Ch 1 R 1 π * L 2 ) 2 -2 • Ch 2 R 1 π * L 2 = 0.
But the element Rπ * L 1 is not equal to a vector bundle in K-theory, as

Ch 0 Rπ * L 1 = -1 and (Ch 1 Rπ * L 1 ) 2 + 2 • Ch 2 Rπ * L 1 = 0.
Remark 2.27. A virtual class with a broad entry can be non-zero. For instance, consider the D 5 -singularity x 2 1 x 2 + x 4 2 with weights (3, 2) and degree 8; we leave as an exercise the computation c PV vir (e j 0 , e j 2 , e j 3 , e j 3 , e j 3 ) 0,5 = o * ψ 2 ∈ H 2 (S 0,5 ).

Compatibility Theorem for virtual classes

We prove in this section the compatibility 2.38 between Polishchuk-Vaintrob's class and FJRW virtual class for (almost) every invertible polynomials in every genus. We proceed in three steps, according to the Thom-Sebastiani decomposition (1.2). In Sect. 3.3, the special case of compatibility for chain polynomials is used to deduce mirror symmetry for FJRW theory from Theorem 2.25.

Narrow case and Fermat polynomials

Proposition 2.28 ([11, Theorem 1.2]). Let W be any invertible polynomial and G be any admissible group. For every narrow states u 1 , . . . , u n and every genus g, we have an equality

c FJRW vir (u 1 , . . . , u n ) g,n = c PV vir (u 1 , . . . , u n ) g,n
between Polishchuk-Vaintrob's class and FJRW virtual class.

Corollary 2.29. Let W be a sum of Fermat monomials and G = Aut(W ) be the only admissible group. Then Polishchuk-Vaintrob's class and FJRW virtual class are the same.

Proof. This follows from the above proposition 2.28 because there are no broad elements in the state space for Fermat polynomials with the maximal group of symmetry.

One-dimensional broad sectors and chain polynomials

For chain polynomials, we have some broad sectors, each of them having dimension one. We have chosen a basis for these sectors via equation (1.8), but such a choice is not canonical and we are not able to prove the equality between the two virtual classes. It is mainly due to our lack of knowledge on the Fan-Jarvis-Ruan construction of the virtual class for broad states. Nevertheless, we have the following compatibility theorem, which is enough for mirror symmetry Theorem 3.12 and which stands for any cohomological field theory that agrees with c PV vir on narrow states.

Theorem 2.30. Let W be a chain polynomial

W = x a 1 1 x 2 + • • • + x a N -1 N -1 x N + x a N N with 3 a N ≥ 3.
There exists an isomorphism Φ : H → H rescaling the broad sectors which preserves the pairing (and the grading) of the state space such that

c FJRW vir (u 1 , . . . , u n ) g,n = c PV vir (Φ(u 1 ), . . . , Φ(u n )) g,n (2.53) 
for every elements u 1 , . . . , u n of the state space and for every genus g.

Remarks.

When we deal with chain polynomials, we observe that for a given automorphism γ ∈ Aut(W ), there is a unique admissible decoration C γ ; we lighten notation in this section as e γ := e(C γ ). By rescaling the broad sectors, we mean that we multiply every broad state e λ by a constant c λ ∈ C * . This rescaling preserves the pairing when

c λ • c λ -1 = 1.
Remark 2.31. The strategy of the proof will be the same for loop polynomials. First, for any broad state u 0 , we look for two narrow states u 1 and u 2 such that the virtual class c PV vir (u 0 , u 1 , u 2 ) 0,3 is non-zero. Then we use the factorization property (see Def. 0.9) of a cohomological field theory to define a morphism Φ as desired. Finally, we use again the factorization property to prove that Φ respects the pairing.

Proof. Let λ ∈ Aut(W ) be an automorphism such that e λ is a broad state and set m :

= N + 1 -min {1 ≤ j ≤ N | λ j = 1}. Recall that λ j = 1 for j ≥ N + 1 -m.
Thus the integer m is the cardinal of the set B γ and the state e λ vanishes if m is odd.

Consider the diagonal automorphism

u := diag exp (-1) N 2iπ a 1 • • • a N , exp (-1) N -1 2iπ a 2 • • • a N , exp (-1) N -2 2iπ a 3 • • • a N , . . . , exp -2iπ a N .
This element generates the group Aut(W ).

Lemma 2.32. For any broad state e λ = 0, the genus-zero virtual class c PV vir (e λ , e u•λ -1 , e j•u -1 ) 0,3 ∈ H 0 (S 0,3 ) C does not vanish and the states e u•λ -1 and e j•u -1 are narrow.

Proof. We see immediately that the selection rule (1.15)

λ • u • λ -1 • j • u -1 = j
is satisfied and that the two states above are narrow (when a N ≥ 3), because

(u • λ -1 ) N = exp -2iπ a N • 1 = 1 (j • u -1 ) N = exp 2iπ a N • exp 2iπ a N = 1.
Since a genus-zero Polishchuk-Vaintrob's class of degree zero with three insertions never vanishes (see the formula (2.50)), we have to compute the degree of that class. In this proof, we set

u j := 1 (-a j )•••(-a N )
and we write λ = diag exp 2iπl 1 , . . . , exp 2iπl N , with l j ∈ [0, 1[. By (1.16), we get

1 2 deg c PV vir (e λ , e u•λ -1 , e j•u -1 ) 0,3 = deg(e λ ) + deg(e u•λ -1 ) + deg(e j•u -1 ) -ĉW = m 2 + N j=1 l j + q j -u j + u j -l j -3q j -1 + 2q j = m 2 + N j=1 l j + q j -u j + p j + u j -l j + p j -q j -1 = m 2 -N + N j=1 p j + p j ,
where we have

p j := q j -u j -(q j -u j ), p j := u j -l j -(u j -l j ).
We have |u j | < |Γ j | for every automorphism diag exp 2iπΓ 1 , . . . , exp 2iπΓ N ∈ Aut(W ) with Γ j = 0 and distinct from u and u -1 . Thus, we obtain that p j = 0 and p j = 0 if l j = 0 and u j > 0 1 otherwise.

Consequently, we have

N j=1 p j + p j = m 2 + N -m = N -m/2,
since m is even, so that the degree of the virtual class is zero.

Chapter 2. Computation of the virtual class

Let e α 1 , . . . , e αp be narrow states and e λ 1 , . . . , e λq be broad states. Polishchuk and Vaintrob's class, as weel as FJRW virtual class, satisfies the properties of a cohomological field theory (see [START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF]Sect. 5] and [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF]Theorem 4.1.8]). Therefore, by the factorization property (see Def. 0.9), we have c PV vir (e α 1 , . . . , e αp , e λ 1 , . . . , e λq ) g,p+q 

• q k=1 c PV vir (e λ -1 k , e u•λ k , e j•u -1 ) 0,3 = q k=1 e λ k , e λ -1 k • j * c PV vir (
(e λ -1 k , e u•λ k , e j•u -1 ) 0,3 = q k=1 e λ k , e λ -1 k • j * c FJRW vir (e α 1 , . . . , e αp , e u•λ 1 , . . . , e u•λq , (e j•u -1 ) q ) g,p+2q , (2.54) 
where (•, •) is the pairing and j : M g,p+q × (M 0,3 ) ×q → M g,p+2q is the gluing morphism. The right-hand side is the same for the two equalities above because the virtual class involved contains only narrow states. Thus we associate to any state e γ the constant

c γ := c PV vir (e γ , e u•γ -1 , e j•u -1 ) 0,3 c FJRW vir (e γ , e u•γ -1 , e j•u -1 ) 0,3 ∈ C * , ( 2.55) 
where the denominator is non-zero. Indeed, a particular case of (2.54) is

c PV vir (e γ , e u•γ -1 , e j•u -1 ) 0 • c PV vir (e γ -1 , e u•γ , e j•u -1 ) 0 = (e γ , e γ -1 ) j * c PV vir (e u•γ -1 , e j•u -1 , e u•γ , e j•u -1 ) 0 = (e γ , e γ -1 ) j * c FJRW vir (e u•γ -1 , e j•u -1 , e u•γ , e j•u -1 ) 0 = c FJRW vir (e γ , e u•γ -1 , e j•u -1 ) 0 • c FJRW vir (e γ -1 , e u•γ , e j•u -1 ) 0 so that c PV vir (e γ , e u•γ -1 , e j•u -1 ) 0,3 = 0 c PV vir (e γ -1 , e u•γ , e j•u -1 ) 0,3 = 0 =⇒ c FJRW vir (e γ , e u•γ -1 , e j•u -1 ) 0,3 = 0 c FJRW vir (e γ -1 , e u•γ , e j•u -1 ) 0,3 = 0 and c γ • c γ -1 = 1.
Note also that c γ = 1 if e γ is narrow. Consequently, the isomorphism Φ : H → H defined by Φ(e γ ) = c γ • e γ satisfies (2.53).

Two-dimensional broad sectors and loop polynomials

For loop polynomials, we apply the same strategy 2.31, except that broad sectors have dimension two. But for loop polynomials, the only automorphism leading to broad states is the identity, so that e -:= e(C - 1 ) with C -

1 := {x 2j+1 } , e + := e(C + 1 ) with C + 1 := {x 2j }
forms a basis of the broad subspace.

Remark. We consider in that section loop polynomials with an even number of variables. Otherwise, the broad sector would vanish and we are left with Proposition 2.28.

Similarly to 2.31, the strategy is first to look for narrow states u 1 , u 2 , u 3 , and u 4 such that the determinant c PV vir (e -, u 1 , u 2 ) 0,3 c PV vir (e + , u 1 , u 2 ) 0,3 c PV vir (e -, u 3 , u 4 ) 0,3 c PV vir (e + , u 3 , u 4 ) 0,3 using (2.59), the conditions a j ≥ 2 (see (1.3)) and the fact that W = x a 1 1 x 2 +x 2 2 x 1 . Consequently, the state e j•u -1 is narrow. Similarly, we show that the state e j•v -1 is narrow, using that W =

x 2 1 x 2 + x a 2 2 x 1 .
The states e u and e v are obviously narrow. To compute the determinant of the matrix B PV , we use the formula (2.50). Let us begin with the first row of B PV , we compute

-Ch 0 (Rπ * (L C 1 j )) = 1 2 -q j + δ j - 1 2 + u j - 1 2 + q j -u j - 1 2 = -q j + δ j + p j + u j + p j + q j -u j -1, = δ j + p j + p j -1,
where we have ∈ {-, +} and p j := q j -u j -(q j -u j ),

p j := u j -u j , δ j = 1 if x j ∈ C 1 0 if x j / ∈ C 1 .
We see easily that

p j = 1 if u j < 0 0 if u j > 0, p j =      -1 if -1 < u j < q j -1 0 if q j -1 < u j < q j , 1 if q j < u j < 1,
using that -1 < u j < 1 and that u = j. Then we have p 2j+1 = 0 and p 2j = 1. The number p j is harder to get. Let j < N . Using u j+1 = -a j • u j and q j+1 = 1 -a j • q j , we obtain

p j = -1 never happens for 1 ≤ j ≤ N, p j = 0, u j < 0 =⇒ p j+1 = 0 or p j+1 = 1, p j = 0, u j > 0 =⇒ p j+1 = 0 or p j+1 = 1, p j = 1 =⇒ p j+1 = -1.
Therefore, we have p j = 0 for all j. We give the details for the first assertion. For j < N , we have

p j = -1 ⇐⇒ u j ∈ ]-1, q j -1[ =⇒ u j+1 ∈ ]a j -1 + q j+1 , a j [ ∩ ]-1, 1[
and the intersection is empty because a j ≥ 2.
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For j = N , we have

p N = -1 ⇐⇒ -1 < - a 1 • • • a N -1 a 1 • • • a N -1 < -1 + q N ⇐⇒ - a 1 • • • a N a 1 • • • a N -1 + a N < a N • q N = 1 -q 1 ⇐⇒ 2 • a 1 • • • a N -1 a 1 • • • a N -1 -a N > q 1 =⇒ 2 • a 1 • • • a N -1 a 1 • • • a N -1 > a N =⇒ 7 3 > a N =⇒ a N = 2,
because a j ≥ 2 and N ≥ 2. Then, we deduce

p N = -1 ⇐⇒ 2 • a 1 • • • a N -1 a 1 • • • a N -1 -a N > q 1 ⇐⇒ 1 a 1 • • • a N -1 > q 1 ⇐⇒ -1 + a N -a N a N -1 + • • • + a N • • • a 2 < 1 (using (2.59)) ⇐⇒ a N + a N a N -1 • (a N -2 -1) + • • • + a N • • • a 3 • (a 2 -1) < 2 ⇐⇒ a N a N -1 • (a N -2 -1) + • • • + a N • • • a 3 • (a 2 -1) < 0,
which is a contradiction. At last, we obtain

-Ch 0 (Rπ * (L C - 1 j )) = (-1) j , -Ch 0 (Rπ * (L C + 1 j )) = 0.
Using the formula (2.50), we get

c PV vir (e -, e u , e j•u -1 ) 0,3 = (-a 1 )(-a 3 )(-a 5 ) • • • (-a N -1 ), c PV vir (e + , e u , e j•u -1 ) 0,3 = 1.
Re-labeling the variables, we obtain the result for v. The matrix B PV equals

B PV := (-a 1 )(-a 3 )(-a 5 ) • • • (-a N -1 ) 1 1 (-a 2 )(-a 4 )(-a 6 ) • • • (-a N ) , ( 2.60) 
and the determinant is

a 1 • • • a N -1 = 0.

Chapter 2. Computation of the virtual class

Now, we use the factorization property (see Def. 0.9) to determine the isomorphism Φ. Let η denote the inverse matrix of the pairing and define a morphism Ψ by

Ψ(u) := u if u is narrow, η • (B FJRW ) T • ((B PV ) -1 ) T • η -1 (u) if u is broad, (2.61) 
where the matrices B PV and B FJRW are written in the basis (e -, e + ).

Lemma 2.35. The morphism Ψ satisfies the equality

c PV vir (u 1 , . . . , u n ) g,n = c FJRW vir (Ψ(u 1 ), . . . , Ψ(u n )) g,n , (2.62) 
for every elements u 1 , . . . , u n of the state space and for every genus g. 

Proof
= Ψ T • c FJRW vir (e u , e j•u -1 , e -) g,p+1 c FJRW vir (e u , e j•u -1 , e + ) g,p+1
and the same equality holds replacing u by v. Thus we have

(B PV ) T = Ψ T • (B FJRW ) T
and the determinants are non-zero, i.e.

det Ψ • det B FJRW = det B PV = 0. Furthermore, we have Φ = (B PV ) -1 • B FJRW = η • (B PV ) T • ((B FJRW ) -1 ) T • η -1 (by definition of Ψ) = η • (Φ -1 ) T • η -1 , so that Φ • η • Φ T = η,
which concludes because the matrix η is symmetric.

Compatibility for invertible polynomials

Let W be an invertible polynomial and write its Thom-Sebastiani decomposition (1.2)

W = W 1 + • • • + W m ,
where the polynomials W k have disjoint sets of variables and are Fermat, chain, or loop polynomials. We can check that Aut(W ) = Aut(W 1 ) • • • Aut(W m ), so that we can use the property called "sums of singularities" from [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF]Theorem 4.1.8 (8)] and from [72, Theorem 5.8.1] to obtain the following result.

Proposition 2.37. Polishchuk and Vaintrob's class for the polynomial W is the product of the virtual classes for the polynomials W 1 , . . . , W m , for any genus and for any states. The same holds for FJRW virtual class.

In the next theorem, we assume that -if W k is a chain polynomial, then its last exponent is at least 3, -if W k is a loop polynomial, then it is not of the form x a y + y 2 x. This is required to apply Theorems 2.30 and 2.33 for chain and loop polynomials.

Theorem 2.38. Let W be an invertible polynomial. There exists an isomorphism Φ : H → H rescaling the broad sector (i.e. each narrow state is invariant under Φ and each broad sector is stable under

Φ) such that c FJRW vir (u 1 , . . . , u n ) g,n = c PV vir (Φ(u 1 ), . . . , Φ(u n )) g,n (2.64) 
for every elements u 1 , . . . , u n of the state space and for every genus g. This isomorphism preserves the pairing (and the grading), i.e.

Φ T • η • Φ = η, (2.65)
where η is the inverse matrix of the pairing.

Some results in higher genus

In this section, we generalize our main Theorem 2.25 to obtain some informations on the virtual class in genus g > 0. These informations will be useful in Chapter 4 to compute the so-called DR-hierarchy. They also give us tautological relations in A * (M g,n ), that we should compare in a future work with Pixton's relations from [START_REF] Pandharipande | Relations on Mbarg,n via 3-spin structures[END_REF]. Eventually, these informations can help us to understand better how mysterious the virtual class in higher genus is.

Statement

Let us consider an LG orbifold (W, G) with W a chain or a loop polynomial and G an admissible group of symmetries, i.e. containing j. Let C → S be a family of W -spin curves of genus g, whose type (γ(1), . . . , γ(n)) is in G n . Remark 2.39. A (W, G)-spin curve is a W -spin curve whose type is in the group G and which satisfies some extra conditions. We denote by S G g,n the corresponding moduli space. We do not give a precise definition here, because we do not need it explicitly. But we can keep in mind as an example the case where G = µ d is generated by the grading element j, see Sect. 0.2.5. Note that we have embeddings S G g,n ⊂ S G g,n for G a subgroup of G. In genus g = 0, the virtual classes can be related by pull-backs. In genus g > 0, it seems that they are quite different.

We fix some admissible decorations C γ(1) , . . . , C γ(n) and we consider the evaluation of the virtual class 4 at the Aut(W )-invariant state

e(C γ ) := e(C γ(1) ) ⊗ . . . ⊗ e(C γ(n) ).
In the case where W is a loop polynomial, we further assume the elements γ(1), . . . , γ(n) to be in j and the existence of a variable x j 0 such that

w j 0 | d, L C j 0 = L j 0 (-σ 1 -. . . -σ n ).
(2.66)

By a cyclic permutation of the indices, we can assume that j 0 = N . Note also that conditions (2.66) are always true for the last variable x N of a chain polynomial.

Theorem 2.40. Let (W, G) and e(C γ ) be as above. For any genus g, we have

c top (E ∨ ) c PV vir (e(C γ )) g,n = lim λ→1 N j=1 c λ j (-R • π * (L C j )) • c λ N +1 (E ∨ ) = lim λ→1 (1 -λ N +1 ) g •   N j=1 (1 -λ j ) -Ch 0 (Rπ * (L j ))+r j   • exp   l≥1 s l (λ N +1 )Ch l (E ∨ ) + N j=1 s l (λ j )Ch l (Rπ * (L j ))   , (2.67)
where r j := card {i | γ j (i) = 1}, s l (x) is defined by (2.34), and

λ j+1 =        λ if j = 0, λ -a j j if 1 ≤ j ≤ N -1, λ -d/w N N if j = N .
4. Note that for each i the element e(C γ(i) ) is in the state space of FJRW theory of the LG orbifold (W, G).

Above theorem relies on our method developed in Section 2.2 together with two important observations:

-the conditions (2.66) imply the algebraic relation

(L C N ) ⊗ d w N ⊗ O → ω C , (2.68)
which is similar to the relations (2.41), -the sheaf R 0 π * ω is a vector bundle of rank g. It is called the Hodge bundle and we denote it by E. We now proceed to the proof of Theorem 2.40.

Modified two-periodic complex and recursive complex

The two above observations suggest us to introduce the line bundle

L N +1 := O and to choose a resolution Rπ * L N +1 = [O 0 - → E ∨ ] together with a morphism O → Sym d/w N A ∨ N ⊗ E. (2.69)
Now, we consider the two-periodic complex (T, δ) with

T + = Sym(A ∨ 1 ⊕ • • • ⊕ A ∨ N ) ⊗ Λ even ( B ∨ 1 ⊕ • • • ⊕ B ∨ N ⊕ E) = T + ⊗ Λ even E ⊕ T -⊗ Λ odd E
and similarly for T -exchanging odd and even, and with the differential

δ = δ 0 + δ 1 + δ 2 ,
where δ 0 is induced by α 1 + . . .

+ α N -1 + β 1 + . . . + β N , -δ 1 is induced by α N ,
δ 2 is induced by (2.69). Note that the differential of the two-periodic complex (T, δ) is closely related to the differential δ 0 + δ 1 .

By the anticommutation relations among the maps α j , β j and (2.69), we obtain two double complexes (K 1 = T, δ 0 + δ 1 , δ 2 ) and (K 2 = T, δ 0 + δ 2 , δ 1 ).

The double complex K 1 is very explicit and we can write in particular (K 1 ) ±,q = T ± ⊗ Λ q E, whereas the double complex K 2 is more involved. Nevertheless, the cohomology groups of their associated two-periodic complexes agree and equal

H ± (T, δ 0 + δ 1 + δ 2 ).
We can abut to the total cohomology by looking at the spectral sequences given by the filtration by rows of these two double complexes. In fact, the first page of the spectral sequence is even enough to compute the total cohomology in K-theory, as we show below. On one side, we have

(H ± (K 1 , δ 0 + δ 1 ), δ 2 ) • = (H ± (T, δ) ⊗ Λ • E, δ 2 ),
which is a bounded complex of vector bundles by [START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF]Remark 1.5.1]. As a consequence, we have the following equalities in K-theory

H + (T, δ 0 + δ 1 + δ 2 ) = q≥0 (H + (K 1 , δ 0 + δ 1 ), δ 2 ) 2q ⊕ (H -(K 1 , δ 0 + δ 1 ), δ 2 ) 2q+1 = H + (T, δ) ⊗ Λ even E ⊕ H -(T, δ) ⊗ Λ odd E, H -(T, δ 0 + δ 1 + δ 2 ) = H + (T, δ) ⊗ Λ odd E ⊕ H -(T, δ) ⊗ Λ even E.
Therefore, by the definition of the virtual class and by the equality q≥0 (-1) q Ch(Λ q V ∨ )Td(V ) = c top (V ) for any vector bundle V , we obtain

Ch(H + (T, δ) -H -(T, δ)) N j=1 Td( B j ) Td(A j ) Td(E ∨ ) = c PV vir (e(C γ )) g,n c top (E ∨ ). (2.70) 
On the other side, we look at the cohomology groups

H ± (K 2 , δ 0 + δ 2 ).
The main point is that the two-periodic complex associated to (K 2 , δ 0 + δ 2 ) is a non-degenerate recursive complex with the vanishing condition5 , see definitions in Section 2.2. As a consequence, Theorem 2.8 implies that the cohomology groups are vector bundles, so that

H + (K 2 , δ 0 + δ 2 ) -H -(K 2 , δ 0 + δ 2 ) = H + (T, δ) -H -(T, δ).
Furthermore, we have an explicit computation of this difference in K-theory yielding

Ch(H + (T, δ) -H -(T, δ)) N j=1 Td( B j ) Td(A j ) Td(E ∨ ) = lim λ→1 N j=1 c λ j (-R • π * (L C j )) • c λ N +1 (E ∨ ). (2.71)
Comparing equations (2.71) and (2.70) proves the theorem. 

Some remarks

ψ 1 c 2,1 (e j 3 ) λ 2 =          23 2400
for the Landau-Ginzburg orbifold (W = x 2 1 x 2 + x 5 2 , j ), 161 3200 for the Landau-Ginzburg orbifold (W = x 2 1 x 2 + x 5 2 , Aut(W )),

and check that the virtual class depends on the group of symmetries, once the genus is non-zero.

The formula (2.67) gives some information on the virtual class for every Landau-Ginzburg orbifold (W, G) with W of chain type and for every genus, provided that we evaluate the virtual class at Aut(W )-invariant states. In general, there are more broad states but we do not know how to deal with them (just as in genus zero). In the so-called semi-simple case (e.g. simple singularities), it is possible to compute the virtual class of the quantum singularity theory in higher genus using Teleman's result [START_REF] Teleman | The structure of 2D semi-simple field theories[END_REF]. But it may happen that the quantum singularity theory is not semi-simple (e.g. for G = µ d in general) and then this corollary is the very first systematic result for higher-genus virtual classes in those cases.

Hodge integrals appear in the definition of the DR hierarchy in Chapter 4. Theorem 2.40 is then a useful tool to compute the equations of the hierarchy.

At last, Theorem 2.40 yields some tautological relations in the Chow ring of the moduli space of (W, G)-spin curves and therefore of the moduli space of stable curves. Indeed, the right hand side of formula (2.67) is the limit of a power series with coefficients in the Chow ring of the moduli space of the theory. We can develop it and express it as a Laurent series in := λ -1 -1 to find an expression like

C -p • 1 p + C -p+1 • 1 p-1 + • • • + C -1 • 1 + C 0 + C 1 • + • • • , where C m ∈ k≥degvir+g-m A k (S G g,n )
and p = 2g -3 + n -degvir. The fact that the limit exists when → 0 implies that

C m = 0 if m < 0,
which are some relations in k≥degvir+g A k (S G g,n ). In a further work, we should compare these relations with Pixton's relations, see [START_REF] Pandharipande | Relations on Mbarg,n via 3-spin structures[END_REF].

6. We use formula (1.18) when pushing-forward to the moduli space of stables curves.

Chapter 3

Mirror Symmetry

Introduction

Mirror symmetry is one of the most striking motivation for the study of Gromov-Witten theory. As mentioned in the Introduction of the thesis, the very first result of Candelas, de la Ossa, Green, and Parkes [START_REF] Candelas | A pair of Calabi-Yau manifolds as an exact soluble superconformal theory[END_REF][START_REF] Givental | Equivariant Gromov-Witten invariants[END_REF] about a generating series for genus-zero Gromov-Witten invariants of the quintic expressed in terms of a solution of the Picard-Fuchs equation ( 1) started mirror symmetry. Later, ideas from [78, §3.1] gave birth to the quantum singularity theory [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF][START_REF] Fan | The Witten equation and its virtual fundamental cycle[END_REF], as a counterpart of Gromov-Witten theory for singularities via the LG/CY correspondence [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence[END_REF]. Mirror symmetry for the quintic singularity relates a generating series for genus-zero FJRW invariants and a solution of the Picard-Fuchs equation [START_REF] Berglund | A generalized construction of mirror manifolds[END_REF]. The global picture is

GW theory of CY {W = 0} FJRW theory of LG W : [C N /µ d ] → C A-side B-side t = ∞ [{W ∨ -t • y j = 0}/SL(W ∨ )] t = 0 Figure 3.1: Global Mirror Symmetry,
where W ∨ is the mirror polynomial defined by Berglund-Hübsch and Krawitz [START_REF] Berglund | A generalized construction of mirror manifolds[END_REF][START_REF] Krawitz | FJRW rings and Landau-Ginzburg mirror symmetry[END_REF] (see Def. 3.1) and SL(W ∨ ) is the group of automorphisms defined in Remark 1.2. Using our Theorem 2.25 and Givental procedure [START_REF] Givental | Equivariant Gromov-Witten invariants[END_REF], we prove a mirror symmetry statement 3.12 relating the generating series J of genus-zero FJRW invariants with a fundamental solution I of the Picard-Fuchs equation

t d N j=1 w j -1 c=0 ( w j d t∂ ∂t + c) - d c=1 ( t∂ ∂t -c) • f (t) = 0,
where w 1 , . . . , w N and d are the weights and degree of the chain polynomial W . In a geometric way, genus-zero FJRW invariants define a A-local system over the state space and the Picard-Fuchs equation governs a B-local system over a pointed disk ∆ * centered at the origin in C * . The A-local system corresponds to a deformation of the cohomological product into the quantum product and the B-local system comes from the deformation of the complex structure, together with the Gauss-Manin connection. Therefore, the relation J(τ (t)) ∼ I(t) translates geometrically as an embedding via the mirror map τ : ∆ * → H of the B-local system inside the A-local system.

In Sect. 3.2, we give the definitions of the mirror LG orbifold (W ∨ , G ∨ ) following [START_REF] Berglund | A generalized construction of mirror manifolds[END_REF][START_REF] Krawitz | FJRW rings and Landau-Ginzburg mirror symmetry[END_REF], of the quantum product and of the A/B-local systems, in order to state the geometric mirror symmetry theorem 3.8. In Sect. 3.3, we treat Givental theory and apply it to Theorem 2.25 to get a big I-function (3.19) and to prove the mirror symmetry theorem 3.12 on the Picard-Fuchs equation. At the end of the chapter, we give an example of computations and we check the relation (3.28), that we see as an evidence for the accuracy of Theorem 2.25.

D-modules and mirror symmetry

In this section, we aim to explain the geometric content of Theorem 3.12. This section can be read independently of Sect. 3.3.

Mirror symmetry at the level of state spaces

According to [START_REF] Berglund | A generalized construction of mirror manifolds[END_REF] and [START_REF] Krawitz | FJRW rings and Landau-Ginzburg mirror symmetry[END_REF], any LG orbifold (W, G), with W a Calabi-Yau invertible polynomial and G an admissible group, has a (conjectural) mirror LG orbifold (W ∨ , G ∨ ). Definition 3.1 (Berglund-Hübsch, [START_REF] Berglund | A generalized construction of mirror manifolds[END_REF]). Let W be a Calabi-Yau invertible polynomial with each charge less than 1/2 and with the matrix of exponents E W . The mirror of W is the unique invertible polynomial W ∨ defined by Clearly the mirror of a Calabi-Yau polynomial is always Calabi-Yau, with different weights in general. The charges are less than 1/2 to exclude the Calabi-Yau polynomials xy + y k whose mirror is not defined by (3.1).

E W ∨ := (E W ) T , that is, if W (x 1 , . . . , x N ) =
The construction of mirror group is the following (see [START_REF] Krawitz | FJRW rings and Landau-Ginzburg mirror symmetry[END_REF] or [START_REF] Berglund | Landau-Ginzburg orbifolds, mirror symmetry and the elliptic genus[END_REF]): the canonical identification Hom(Aut(W ), C * ) = Aut(W ∨ ) allows us to attach the mirror group

G ∨ := ker(i * : Aut(W ∨ ) → Hom(G, C * )) → Aut(W ∨ )
to any subgroup of (diagonal) automorphisms i : G → Aut(W ). This completely defines the mirror LG orbifold (W ∨ , G ∨ ) of (W, G). By [START_REF] Krawitz | FJRW rings and Landau-Ginzburg mirror symmetry[END_REF], we have the following mirror symmetry in terms of Chen-Ruan (CR) cohomology

H p,q CR ([C N /G], F W ; C) H N -p,q CR ([C N /G ∨ ], F W ∨ ; C), (3.2) 
where F W and F W ∨ are the (Milnor) fibers W -1 (t) and (W ∨ ) -1 (t) over t ∈ C * . An important case in this paper is the mirror group of G = Aut(W ), which by definition is the trivial subgroup of Aut(W ∨ ); then (3.2) reads

H Q W ∨ .
(3.3)

D-modules and mirror symmetry

123 Indeed, H is the relative cohomology H p,q CR ( C N /G , F W ; C) (see [START_REF] Chiodo | LG/CY correspondence: the state space isomorphism[END_REF]Theorem 14] and [START_REF] Steenbrink | Intersection form for quasi-homogeneous singularities[END_REF]) and

Q W ∨ is the ordinary relative cohomology H * (C N , F W ∨ ), which coincides with H * CR ( C N /G ∨ , F W ∨ ; C) since G ∨ is trivial.

D-module structure on the B-side

Introduce the family

W ∨ t (y 1 , . . . , y N ) = W ∨ (y 1 , . . . , y N ) -t • y 1 • • • y N , t ∈ ∆ * .
By the Calabi-Yau condition for W ∨ , the polynomial W ∨ t is quasi-homogeneous and we take ∆ * to be a sufficiently small pointed disk of C around 0 to assume that W ∨ t is non-degenerate. The fibration of weighted projective hypersurfaces 

{W ∨ t = 0} t π - → ∆ * (3.
where h is a formal parameter in (the completion at the origin of) H and e(C γ ) * is the dual element to e(C γ ) with respect to the bilinear pairing on H.

The quantum product defines a family of ring structures on (the completion at the origin of) H. Indeed, it is a formal power series in the parameter h, and by the factorization properties defining a cohomological field theory (see [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF]Theorem 4.1.8]), it is associative and commutative.

Take the trivial bundle

H × C[[t]] → C[[t]],
where t is a system of coordinates on H. The quantum product yields a flat connection on this trivial bundle, explicitly given by

∇ A k α(h) = ∂ k α(h) + 1 z k • h α(h), z ∈ C * , ( 3.6) 
where α ∈ H[[t]] is a section of the trivial bundle, k is in H, ∂ k is the derivative along the vector k and z ∈ C * is an additional parameter.

Chapter 3. Mirror Symmetry

For now on to the end of this section, the Calabi-Yau invertible polynomial W is a chain polynomial. We aim to match the local system on the A-side with the local system defined above on the B-side. Therefore, we have to change the base to the (formal) punctured disk ∆ * . Theorem 3.12 claims the existence of an injective formal power series

τ (t) = ω 1 (t) ω 0 (t) ∈ H 2 [[t]] ⊂ H[[t]] (3.7) 
where H 2 is the part of degree 2 in H and the functions

ω 0 ∈ C[[t]] and ω 1 ∈ H 2 [[t]
] are defined via (3.25). The map τ provides an embedding of the (formal) punctured disk ∆ * into the completion Ĥ of H at the origin.

Definition 3.3. The D-module M A is the module over D associated to the pull-back via τ of the local system given by the trivial bundle H × Ĥ → Ĥ equipped with the connection ∇ A .

Remark 3.4. The domain of convergence of the mirror map is in fact non-empty, so we can work in a small neighborhood of the origin instead of a formal neighborhood. Indeed, the I-function (3.15) is an hypergeometric series dominated by a series of the form

∞ k=0 N j=1 (q j k)! ( N j=1 q j k)! t k+1 e j k+1
which has a radius of convergence at least 1.

Sub-D-modules

On the A-side, consider the constant section e j over ∆ * of the vector bundle H, where e j stands for the unique element e(C j ) (every decoration C j is empty) associated to the grading element (1.1). It turns out that the connection ∇ A is well-defined on the vector bundle ∆ * × H µ d → ∆ * , leading to a sub-module M r A of the D-module M A . Since the section e j and the image of τ are in H µ d , then the D-module M A is a sub-module of M r A .

On the other hand, the group SL(W ∨ ) (see the definition in Remark 1.2) preserves each hypersurface {W ∨ t = 0} and the fibration (3.4) induces a fibration

[{W ∨ t = 0}/SL(W ∨ )] t → ∆ * .
Thus, it induces a sub-module M r B of the D-module M B . Over a point t ∈ ∆ * , the corresponding local system is

H * prim ([{W ∨ t = 0}/SL(W ∨ )] ; Z) ⊂ H * prim ([{W ∨ t = 0}/SL(W ∨ )] ; C) (Q W ∨ ) SL(W ∨ ) ;
the corresponding connection is the Gauss-Manin connection. Since the group SL(W ∨ ) acts trivially on the canonical bundle of each hypersurface {W ∨ t = 0}, the volume form Ω is invariant under this action, that is

Ω ∈ (Q W ∨ ) SL(W ∨ ) .
Therefore, the D-module M B is a sub-module of M r B . Moreover, similarly to (3.3), Krawitz [START_REF] Krawitz | FJRW rings and Landau-Ginzburg mirror symmetry[END_REF] proved the following isomorphism

H µ d (Q W ∨ ) SL(W ∨ ) ,
so that the rank of the two local systems given by M r A and M r B coincides.

Mirror symmetry

The iterate derivatives (3.9) are linearly dependent, i.e. the section Ω satisfies a differential equation with respect to ∇ B . The calculation was first made by Dwork [START_REF] Dwork | On the Zeta function of a hypersurface[END_REF] and is based on Griffiths' method [START_REF] Griffiths | On the periods of certain rational integrals[END_REF]. This method was extended to weighted projective spaces by Steenbrink [START_REF] Steenbrink | Intersection form for quasi-homogeneous singularities[END_REF] and Dolgachev [START_REF] Dolgachev | Weighted projective varieties[END_REF]. Other references are [START_REF] Morrisson | Picard-Fuchs equations and mirror maps for hypersurfaces[END_REF] and [START_REF] Gährs | Picard-Fuchs equations of special one-parameter families of invertible polynomials[END_REF], which we follow. By [38, Equation 3.8 or Theorem 3.6], it is the Picard-Fuchs equation

t d N j=1 w j -1 c=0 (q j t ∂ ∂t + c) - d c=1 (t ∂ ∂t -c) • I(t) = 0, (3.10) 
where w 1 , . . . , w N and d are the weights and degree of the polynomial W of the A-side. The Ifunction (3.23) generates all the solutions of (3.10) and therefore determines the D-module M B . Moreover, the dimension of the space of solutions of (3.10) equals the rank of the local system associated to M B . By [38, Sect. 2.2], we easily obtain that the rank equals the dimension of the narrow sector in H µ d . The iterate derivatives (3.8) are also linearly dependent, i.e. the constant section e j satisfies a differential equation with respect to ∇ A . The space of solutions of this differential equation is generated by the so-called J-function (see [START_REF] Guest | From quantum cohomology to integrable systems[END_REF]Sect. 5.2]), defined on the state space H in Sect. 3.3.1 and computed on the pointed disk ∆ * in (3.26). Therefore, the J-function (restricted to ∆ * ) determines the D-module M A . Theorem 3.12 states that the restriction of the J-function of FJRW theory to the pointed disk ∆ * coincides, up to a rescaling, with the I-function. As a consequence, we deduce the following theorem. Theorem 3.8 (LG-Mirror Symmetry for chain polynomials). Let W be a Calabi-Yau chain polynomial. We have an isomorphism of D-modules

M A M B ,
or equivalently, of the associated local systems

(E A , ∇ A ) (E B , ∇ B )
over the base ∆ * . Moreover, the constant unit section e j ∈ H corresponds to the volume form Ω ∈ (Q W ∨ ) SL(W ∨ ) .

Computing the J-function

In this last section, we focus on genus-zero FJRW theory of chain polynomials with maximal group of symmetries. Thus, we can always apply Theorem 2.25 about Polishchuk-Vaintrob's class, and by Theorem 2.30, we know all FJRW invariants, up to a rescaling of the broad sectors. In Sect. 3.3.1, we present Givental's theory, in particular we define the Lagrangian cone and the J-function. In Sect. 3.3.2, we construct a symplectic operator which connects the so-called untwisted theory to FJRW theory. In Sect. 3.3.3, we apply this operator to a function lying on the untwisted Lagrangian cone and we obtain a big I-function lying on the FJRW Lagrangian cone, see Theorem 3.10. Specializing the argument of the big I-function to a line in the state space and restricting to polynomials of Calabi-Yau type, we get a solution of the Picard-Fuchs equation of the mirror polynomial. Up to a change of variables and a rescaling of this solution, we end with a part of the small J-function of FJRW theory and we prove mirror symmetry Theorem 3.12.

Givental's formalism

What follows is summary of Givental's theory [START_REF] Givental | Symplectic geometry of Frobenius structures. Frobenius manifolds[END_REF], a way to encode genus-zero invariants in a Lagrangian submanifold of a symplectic space. We restrict here on the aspects of the theory which we need, but the formalism is more powerful and involves also higher genus invariants. The progress of the text up to the end is a generalization of [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations[END_REF]Sect. 4] or [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence[END_REF]Sect. 3], following the method used in [START_REF] Coates | Computing genus-zero twisted Gromov-Witten invariants[END_REF] for twisted Gromov-Witten invariants.

From now on to the end, we work on genus-zero FJRW theory with a Calabi-Yau chain polynomial W ,

W = x a 1 1 x 2 + • • • + x a N -1 N -1 x N + x a N +1 N ,
with weights (w 1 , . . . , w N ) and degree

d = w 1 + • • • + w N (Calabi-Yau condition). (3.11)
Observe that for a given automorphism γ, there is a unique admissible decoration C γ ; we lighten notation as e γ := e(C γ ). According to Theorem 2.30, there is a constant c γ ∈ C * defined by (2.55) such that Φ(e γ ) = c γ • e γ . We recall that c γ • c γ -1 = 1 and that for a narrow state e γ , the constant is c γ = 1. We set

e γ := 1 c γ • e γ .
The Givental space H is the symplectic vector space

H := H [z] [[z -1 ]]
3.3. Computing the J-function 127 of Laurent series in z -1 with coefficients in the state space, and we use the bilinear pairing of H to equip this space with the symplectic form Ω(

n a n z n , m b m z m ) = p+q=-1 (-1) p (a p , b q ).
The sum on the right is finite because the number of positive powers of z is finite for an element of H. This symplectic form induces a natural polarization

H H + ⊕ H - where H + := H [z] and H -:= z -1 H[[z -1 ]],
and identifies H with the cotangent bundle of H + . If the decoration C γ is balanced, we denote the dual element of e γ by e γ and we recall that

e γ = j| γ j =1 N -j odd -1 a j • e γ -1 .
If the decoration C γ is not balanced, then e γ = 0 is not a vector of the basis of H. The coordinates {q α k } and {p β l } of the basis {e α z k } α,k≥0 of H + and the basis {e β (-z) -1-l } β,l≥0 of H -are Darboux coordinates, Ω = dp ∧ dq.

The genus-zero invariants (1.17 

(t γ 1 b 1 ) • • • (t γn bn ) n! ,
expressed in coordinates t(z) := q(z) + z (this is called dilaton shift), and the graph L of its differential L := {(p, q) such that p = d q F 0 } ⊂ H is an exact Lagrangian sub-variety of H in which the J-function J : H → L takes its values, J(h, -z) = -ze j + h + n≥0 l≥0 γ 1 ,...,γn, γ e γ 1 , . . . , e γn , τ l (e γ ) FJRW 0,n+1

h γ 1 • • • h γn n!(-z) l+1 e γ ,
with h = h γ e γ and e j the unit element of H corresponding to the grading element defined by (1.1). The FJRW invariants satisfy the string and dilaton equations and the topological recursion relations stated in [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF]. By [41, Theorem 1], these relations mean geometrically that L is a Lagrangian cone in H and that for any point p ∈ L, the tangent space satisfies T p L ∩ L = zT p L. Furthermore, the J-function spans the Lagrangian cone and has the property J(h, -z) = -ze j + h + o(z -1 ). The J-function is determined as the unique function on L with this property.

A symplectic operator

The behavior of the J-function is essential for an understanding of the theory in genuszero. Any cohomological field theory with a state space H equipped with a different pairing is encoded in a Lagrangian cone of H and distinct Lagrangian cones are related by symplectic operators. The operator ∆ of Theorem 3.9 links an untwisted theory, whose Lagrangian cone is well-understood, to a twisted theory, whose evaluation in special values yields the FJRW theory.

Consider γ ∈ Aut(W ) n and set the formal virtual class twisted by variables (s j l ) l≥0,j as

e γ := e γ 1 ⊗ • • • ⊗ e γn → exp N j=1 l≥0 s j l Ch l Rπ * L C j ,
where the line bundle L C j defined by (2.40) takes the form

L C j = L j (-σ 1 -• • • -σ n ) if N -j is even, L j if N -j is odd.
This gives a twisted cohomological field theory with a Lagrangian cone L tw , and the twisted bilinear pairing is given by (e γ , e γ -1 ) tw :=

x j ∈Cγ exp(-s j 0 ) •

x j ∈Bγ \Cγ exp(s j 0 ).

The Lagrangian cone L un ⊂ H of the untwisted theory arises for the specific values s j l = 0. Take the specialization 1 of the twisted theory to s j 0 := -ln(λ j -1), s j l := s l (λ j ) , see (2.34), together with λ 1 := λ and λ j+1 := λ (-a 1 )•••(-a j ) , and let the parameter λ tend to 1. By Theorems 2.25 and 2.30, we get the FJRW theory. Observe that the pairing (e γ , e γ -1 ) λ :=

x j ∈Cγ (λ j -1) •

x j ∈Bγ \Cγ (λ j -1) -1 tends to the pairing (1.11) of the state space H.

Recall that the Bernouilli polynomials B n (x) are defined by

∞ n=0 B n (x) z n n! = ze xz e z -1
and consider the rational number Γ j (i) determined by exp(2iπΓ j (i)) = γ j (i) , Γ j (i) ∈ [0, 1[ ; notice that the multiplicity (see (1.14)) of the line bundle L j at the marked point σ i is r • Γ j (i).

Introduce the notation

Γ C j (i) = 1
if N -j is even and Γ j (i) = 0, Γ j (i) otherwise.

(3.12)

1. We note that the specialization of s j 0 is not given by (2.34) as in [START_REF] Guéré | A Landau-Ginzburg mirror theorem without concavity[END_REF]. It comes from the fact that our definition of the cohomological field theory (1.17) differs from [START_REF] Guéré | A Landau-Ginzburg mirror theorem without concavity[END_REF] by a sign.

First stated in the context of FJRW theory in [START_REF] Chiodo | Twisted r-spin potential and Givental' s quantization[END_REF]Proposition 5.2], the next theorem is a straightforward generalization of [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations[END_REF]Proposition 4.1.5] or [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence[END_REF]Theorem 3.6], and an analog of [START_REF] Coates | Computing genus-zero twisted Gromov-Witten invariants[END_REF]Theorem 4.1]. The operator ∆ relies on the formula for the Chern character Ch(Rπ * L C j ) in terms of psi-classes, which is the formula of Theorem [START_REF] Chiodo | Towards an enumerative geometry of the moduli space of twisted curves and rth roots[END_REF]Theorem 1.1.1] where we substitute Γ C j (i) for m i /r and q j for s/r. Theorem 3.9 (Chiodo-Zvonkine [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations[END_REF]). The transformation ∆ : H → H defined by

∆ = γ∈Aut(W ) N j=1 exp l≥0 s j l B l+1 (Γ C j ) (l + 1)! z l
gives a linear symplectomorphism between (H, Ω un ) and (H, Ω tw ), and

L tw = ∆(L un ).

Big I-function, J-function and mirror map

By Theorem 3.9, the operator ∆ sends any function H → L un to a function H → L tw . Start with the untwisted J-function

J un (h, -z) = -z n≥0 γ∈Aut(W ) n 1 (-z) n • h γ(1) • • • h γ(n) n! • e ω(γ) ,
with h = γ h γ e γ ∈ H. Here, ω j (γ) is the unique diagonal automorphism of the polynomial W such that the component S 0,n+1 (γ(1), . . . , γ(n), (ω(γ)) -1 ) (

of the moduli space is non-empty. By (1.15), it equals

ω j (γ) := γ j (1) • • • γ j (n) exp(2iπq j (1 -n)). (3.14)
As in [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations[END_REF]Lemma 4.1.10], introduce the function

G y (x, z) := m,l≥0 s l+m-1 B m (y) m! x l l! z m-1
(with s -1 := 0), and the untwisted I-function

I un (h, -z) = N j=1 exp -G q j (z∇ j , z) J un (h, -z), (3.15) 
where ∇ j is the differential operator

∇ j := γ (Γ C j -q j )h γ ∂ ∂h γ .
This function takes its values in the untwisted Lagrangian cone L un (see [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations[END_REF]Lemma 4.1.10] or [START_REF] Coates | Computing genus-zero twisted Gromov-Witten invariants[END_REF]Equation (14)]). Apply the operator ∆ and get the function

I tw (h, -z) = -z n≥0 γ∈Aut(W ) n h γ(1) • • • h γ(n) n!(-z) n exp - 1≤j≤N 0≤m<D C j (γ) s j (ω C j (Γ)z + mz) e ω(γ) , (3.16) 
where

D C j (γ) := q j + n i=1 (Γ C j (i) -q j ) -ω C j (Γ) = q j + n i=1 (Γ C j (i) -q j ) -ω C j (Γ) (3.17)
and where we adopt the convention

0≤m<-M u m := - 0<m≤M u -m .
In the expressions (3.16) and (3.17), ω C j (Γ) is the notation (3.12) used for ω j (γ), that is,

exp(2iπω C j (Γ)) = ω j (γ) , ω C j (Γ) = 1 if N -j is even and ω j (γ) = 1, ∈ [0, 1[ otherwise,
and s j (t) is the generating series

s j (t) := l≥0 s j l t l l! .
Besides, we notice the relation 

-Ch 0 (Rπ * (L C j )) = D C j (γ) + (-1) N -j δ ω j (γ)=1 . ( 3 
I big (h, -z) = -z n≥0 γ∈Aut(W ) n h γ(1) • • • h γ(n) n!(-z) n M 1 (γ) • • • M N (γ) e ω(γ) , (3.19) 
where the contribution M j (γ) is

M j (γ) =                      0≤m≤D C j (γ)-1 -(ω C j (Γ) + m)z when D C j (γ) ≥ 1, 1 when D C j (γ) = 0, 1≤m≤-D C j (γ) - 1 (ω C j (Γ) -m)z , when D C j (γ) ≤ -1.
In the case where ω C j (Γ) = 1 and D C j (γ) ≤ -1, we have always ω C j+1 (Γ) = 0 and D C j+1 (γ) ≥ 1 and we then take the convention

ω C j+1 (Γ) ω C j (Γ) -1 = -a j .
Proof. Look at the twisted I-function (3.16) and specialize the parameters s j l to (2.34), except for s j 0 := -ln(λ j -1), observing that exp(-s(t, x))

=      - e t -x e t -1 t if t = 0 x -1 if t = 0 with s(t, x) = l≥0 s l (x) t l l! .
When we take the limit λ → 1 to get exp -

1≤j≤N 0≤m<D C j (γ) s(ω C j (Γ)z + mz, λ j ) -→ M 1 (γ) • • • M N (γ),
we have three cases to face:

1. if ω C j (Γ) = 1, D C j (γ) ≤ -1, and m = -1, then exp s(ω C j (Γ)z -z, λ j ) = 1 λ j -1 , 2. if ω C j (Γ) = 0, D C j (γ) ≥ 1, and m = 0, then exp -s(ω C j (Γ)z, λ j ) = λ j -1, 3. otherwise, we have exp -s(ω C j (Γ)z + mz, λ j ) -→ -(ω C j (Γ) + m)z or exp s(ω C j (Γ)z -mz, λ j ) -→ - 1 (ω C j (Γ) -m)z .
The main observation is that if case (1) appears for an index j, then case (2) appears for the following index j + 1; in particular, case (1) never appears for j = N . As we have the implication ω C j (γ) = 1 =⇒ ω C j+1 (γ) = 1, then we just have to prove

D C j (γ) ≤ -1 =⇒ D C j+1 (γ) ≥ 1 (3.20)
and it is done by the following computation. By the definition (3.17), we have

D C j (γ) = q j + n i=1 (Γ C j (i) -q j ) -ω C j (Γ) so that (3.20) becomes n i=1 (Γ C j (i) -q j ) ≤ -q j =⇒ n i=1 (Γ C j+1 (i) -q j+1 ) ≥ 1 -q j+1 .
For a chain polynomial, we have γ

C j (i) a j γ C j+1 (i) = 1, so that Γ C j+1 (i) = p j (i) -a j Γ C j (i) with p j (i) ∈ N * .
Thus, assuming the left hand side of (3.20), we obtain

n i=1 (Γ C j+1 (i) -q j+1 ) = n i=1 (p j -a j Γ C j (i) -(1 -a j q j )) = n i=1 (p j -1) -a j n i=1 (Γ C j (i) -q j ) ≥ a j q j = 1 -q j+1
and it proves the implication (3.20). As a consequence, when case (1) appears for j, we get

exp s(ω C j (Γ)z -z, λ j ) -s(ω C j (Γ)z, λ j+1 ) = λ j+1 -1 λ j -1 -→ -a j .
At last, we end with the big I-function (3.19). Since the twisted I-function (3.16) takes its values in the twisted Lagrangian cone and the FJRW theory is a limit of the twisted theory, then the big I-function (3.19) takes its values in the Lagrangian cone L.

Proposition 3.11. The powers of z in the big I-function are 

1 -n -N + 2 N j=1 q j + n i=1
Γ j + (1 -Γ j + (-1) N -j ) -2q j = ĉW and from 0 ≤ Γ j ≤ q j =⇒ Γ j+1 = 1 -a j Γ j ,
so that when 0 ≤ Γ j ≤ q j , we get Γ j -q j + Γ j+1 -q j+1 = (a j -1)(q j -Γ j ) ≥ 0.

Moreover, we have equality in this last equation only for Γ j = q j and Γ j+1 = q j+1 . Thus, equation (3.22) is proved and the only degree-zero state is e j . Second, we use equation (3.21) to deduce p z ≤ 1 when deg(e γ(i) ) ≤ 2 for all i. Furthermore, we have equality p z = 1 if and only if deg(e γ(i) ) = 2 for all i and 1 2 deg(e ω(γ) -1 ) = ĉW , that is e ω(γ) = e j . Notice finally that when deg(e γ(i) ) = 2 for all i, then p z is greater than 1 -ĉW . Theorem 3.12. Let W be a chain polynomial of Calabi-Yau type 3 , with weights w 1 , . . . , w N and degree d := w 1 + • • • + w N . The I-function 4 defined for t ∈ ∆ * by

I(t, -z) = z ∞ k=1 t k N j=1 δ j <b<q j k, b = q j k -bz 0<b<k -bz e j k , δ j := -δ {N -j is odd} (3.23)
takes its values in the Lagrangian cone L of the FJRW theory of the Landau-Ginzburg orbifold (W, Aut(W )). This function satisfies the Picard-Fuchs equation

t d N j=1 w j -1 c=0 (q j t ∂ ∂t + c) - d c=1 (t ∂ ∂t -c) • I(t, -z) = 0 (3.24)
of the mirror polynomial W ∨ . Furthermore, there is a function ω 0 (t) : ∆ * → C * and some functions ω 1 (t), . . . , ω N -2 (t) with values in H narrow such that

I(t, -z) = ω 0 (t) • e j • (-z) + ω 1 (t) + ω 2 (t)(-z) -1 + • • • + ω N -2 (t)(-z) 3-N (3.25)
and the J-function is

J(τ (t), -z) = e j • (-z) + τ (t) + ω 2 (t) ω 0 (t) • (-z) -1 + • • • + ω N -2 (t) ω 0 (t) • (-z) 3-N , (3.26)
where the so-called mirror map τ is

τ (t) = ω 1 (t) ω 0 (t) .
Restricted to a sufficiently small pointed disk ∆ * of C around 0, the mirror map τ is an embedding of ∆ * into the degree-2 part of the state space H.

Proof. Restrict the argument of the big I-function (3.19) to

h = t • e j 2 ∈ H
and consider the function I(t, -z) := -t • I big (t • e j 2 , -z), which is equal to

I(t, -z) = z ∞ k=1 t k N j=1 δ j <b<q j k, b = q j k -bz 0<b<k -bz e j k , δ j := -δ {N -j is odd} . (3.27)
By the properties of the Lagrangian cone, this function takes also its values in the cone L.

Observe that (3.27) slightly differs from [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence[END_REF]Equation (40)], but only in appearance. Indeed, first there is a difference of sign due to the convention in (1.17), which is not the same as in [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence[END_REF][START_REF] Guéré | A Landau-Ginzburg mirror theorem without concavity[END_REF]. Second, in [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence[END_REF]Equation (40)], there are no broad states and in equation (3.27) their contributions equal zero, because the product -1<b<q j k, b = q j k -bz 3. We assume Calabi-Yau condition for the formula (3.24) to be the Picard-Fuchs equation of the mirror polynomial W ∨ , see [START_REF] Morrisson | Picard-Fuchs equations and mirror maps for hypersurfaces[END_REF][START_REF] Gährs | Picard-Fuchs equations of special one-parameter families of invertible polynomials[END_REF].

4. As in Theorem 3.10, the function differs from [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence[END_REF][START_REF] Guéré | A Landau-Ginzburg mirror theorem without concavity[END_REF] by some sign, coming from our different convention for the cohomological field theory (1.17). Thus, the mirror map is different, but the Picard-Fuchs equation remains the same.

vanishes when q j k = 0 (it happens when N -j is odd) and because when q N k = 0 and q j k = 0 for j < N , the decoration C j k is not balanced and we have e j k = 0. Moreover, since every narrow state satisfies e j k = e j k , then (3.27) = (3.23).

It is straightforward to check that I(t, -z) satisfies the Picard-Fuchs equation (3.24), as in [START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence[END_REF]Equation (57)]. Equation (3.25) follows from Proposition 3.11. Since the J-function is the unique function on L with the property J(h, -z) = -ze j + h + o(z -1 ), then we obtain (3.26). The mirror map τ satisfies τ (t) = t+o(t), hence it defines an embedding of a sufficiently small pointed disk ∆ * in H. By a simple computation, we check that deg(ω 1 (t)) = 2 for any t ∈ ∆ * . 11 5 with weights (4, 3, 2, 1, 1) and degree 11. By Theorem 3.12, the I-function equals 16 ).

Example. Consider the chain polynomial

W = x 2 1 x 2 + x 3 2 x 3 + x 5 3 x 4 + x 10 4 x 5 + x
I(t, z) = f 1 (t)e j • z + f 2 (t)e j 2 + f 3 (t)e j 3 + f 4 (t)e j 4 + f 6 (t)e j 6 + (f 5 (t)e j 5 + f 7 (t)e j 7 + f 8 (t)e j 8 + f 9 (t)e j 9 ) • z -1 + f 10 (t)e j 10 • z -2 with f 1 (t) = -t + O(t 12 ), f 2 (t) = -t 2 + O(t 13 ), f 3 (t) = - t 3 2 • 3 • 4 11 + O(t 14 ) = - t 3 22 + O(t 14 ), f 4 (t) = - t 4 3! • 4 • 4 11 • 4 • 3 11 + O(t 15 ) = - 5t 4 726 + O(t 15 ), f 5 (t) = - t 5 4! • 5 • 4 11 • 5 • 3 11 + O(t 16 ) = - 3t 5 242 + O(t
Divide the I-function by f 1 to obtain the J-function

J(h 2 e j 2 + h 3 e j 3 + h 4 e j 4 + h 6 e j 6 , z) = I(t, z) f 1 (t) , with h i (t) = f i (t) f 1 (t) .
In particular, look at the coefficient of z -1 e j 5 , which by the definition of the J-function satisfies

h 5 = k 2 +2k 3 +3k 4 +5k 6 =4 mod 11 h k 2 2 h k 3 3 h k 4 4 h k 6 6 k 2 !k 3 !k 4 !k 6 ! e k 2 j 2 e k 3 j 3 e k 4 j 4 e k 6 j 6 e j 6 .
Since the function h i+1 is of the form α i+1 t i + O(t i+11 ), we get The correlator e j 2 e j 4 e j 6 equals 1 (this is a concave case). The last correlator to compute is e 2 j 2 e j 3 e j 6 = 4 11 .

α 5 = k 2 +2k 3 +3k 4 +5k 6 =4 α k 2 2 α k 3 3 α k 4 4 α k 6 6 k 2 !k 3 !k 4 !k 6 ! e k 2 j
Indeed, this is a non-concave correlator with Ch 0 (Rπ * L 1 ) = 0 and Ch 0 (Rπ * L 2 ) = -1,

Ch 1 (Rπ * L 1 ) = - 1 11 • o * ψ 1 and Ch 1 (Rπ * L 2 ) = 2 11 • o * ψ 1 ∈ H 2 (S 0,4 ),
and the virtual class is the limit 

1 → 0, with 2 / 1 → -2, of 2 • 1 - 1 2 + 1 1 • Ch 1 (Rπ * L 1 ) • 1 - 1 2 + 1 2 • Ch 1 (Rπ * L 2 ) → - 4 
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Integrable hierarchies

Introduction

Integrable hierarchies are infinite families of partial differential equations on a function depending on an infinite number of variables p 1 , p 2 , . . . This is a generalization of integrable systems from classical mechanics to infinite dimensions. Recall that a finite system of differential equations is called integrable when there are sufficiently first integrals of motion, i.e. functions which are constant on each solution to the system, to determine the system. For example, the movement of spinning tops is integrable but not the movement of n bodies with n ≥ 3.

The usual description of classical mechanics is through Hamiltonians (or Lagrangians) and uses the concept of a finite Poisson manifold. In sect. 4.3, we present an integrable hierarchy in Hamiltonian form on an infinite-dimensional Poisson manifold. This is an efficient (and perhaps physical) way to describe a hierarchy. Two other descriptions of a hierarchy are given in sect. 4.2; r-KdV (Korteweg-de Vries) hierarchies are presented in the Lax form and KP (Kadamtsev-Petviashvili) hierarchy is described geometrically by infinite Grassmannians. There are still other descriptions of hierarchies, as in [START_REF] Guest | From quantum cohomology to integrable systems[END_REF]Chap. 7] where the D-module structure of KdV hierarchy is highlighted.

Relationship with quantum theories

There is a strong relationship between integrable hierarchies and cohomological field theories (e.g. Gromov-Witten theory or the quantum singularity theory), as already explained in the Preliminaries. We recall briefly the main facts. In 1991, Witten [START_REF] Witten | Two-dimensional gravity and intersection theory on moduli space[END_REF] conjectured that the partition function of the Gromov-Witten theory of a point is a τ -function for the KdV hierarchy, which means that it is the exponential of a solution of the hierarchy. This conjecture was proven by Kontsevich [START_REF] Kontsevich | Intersection theory on the moduli space of curves and the matrix Airy function[END_REF]. In particular, we get recursion formulas to compute any Gromov-Witten invariant of a point in every genus. We extensively use these formulas in any of our computations and in our computer program A. Another example, from [START_REF] Pandharipande | The toda equations and the gromov-witten theory of the riemann sphere[END_REF], is the relationship between Gromov-Witten theory of the projective line and Toda hierarchy. More generally, it is conjectured that any Gromov-Witten theory of a smooth projective variety should correspond to some integrable hierarchy, but we only have a candidate in special cases. We can find detailed conjectures in [START_REF] Eguchi | Quantum cohomology and Virasoro algebra[END_REF].
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Simple singularities and semi-simplicity

To stress the importance of integrable hierarchies, let us recall that the quantum singularity theory was first born to provide an answer to Witten's generalized conjecture [START_REF] Witten | Algebraic geometry associated with matrix models of two dimensional gravity[END_REF]. KdV hierarchy is the r = 2 special case of r-KdV hierarchies and Gromov-Witten theory of a point is closely related to the singularity x 2 . Witten's generalized conjecture, proven by Faber, Shadrin, and Zvonkine [START_REF] Faber | Tautological relations and the r-spin Witten conjecture[END_REF], states that the partition function of the quantum singularity theory of x r is a τ -function for r-KdV hierarchy.

Simple singularities are classified in ADE-type:

W = x r+1 A r -case, W = x 2 y + y r-1 D r -case, W = x 3 + y 4 E 6 -case, W = x 3 y + y 3 E 7 -case, W = x 3 + y 5 E 8 -case.
By [START_REF] Faber | Tautological relations and the r-spin Witten conjecture[END_REF] and [START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF], their quantum theory corresponds to some ADE-hierarchies. To our concern, it is important to notice that, for all these singularities, the quantum product is semi-simple. Thus, Teleman's theorem [START_REF] Teleman | The structure of 2D semi-simple field theories[END_REF] applies to reconstruct the higher genus theory from genus zero.

In [START_REF] Dubrovin | Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants[END_REF], Dubrovin and Zhang go further and construct an integrable hierarchy for every conformal semi-simple cohomological field theory. By Teleman's result, the partition function is a τ -function for the associated hierarchy. In the A r-1 -case, we recover r-KdV hierarchy using a change of variables, but we have no explicit description in general.

Buryak's conjecture

A more recent approach is given by Buryak in [START_REF] Buryak | Double Ramification cycles and integrable hierarchies[END_REF]. He associates an integrable hierarchy to any cohomological field theory, without any restriction. It is called DR hierarchy because it is based on double ramification cycles (see Sect. 4.3.3). It is not proven that the partition function is related to the hierarchy but Buryak conjectures that, in the conformal semi-simple case, we recover Dubrovin-Zhang hierarchy after a change of variables, called a Miura transform.

Interestingly, each equation of DR hierarchy for chain polynomials can be explicitly computed by our Theorem 2.40. So far, we have written by "hand" the first equations for the singularity x 3 and checked that it coincides with the first equations of 3-KdV hierarchy, after some explicit change of variables (see equation (4.36)). In [START_REF] Guéré | Some FJRW invariants in arbitrary genus[END_REF], we prove that this candidate answers Buryak's conjecture and that the DR hierarchy for the 3-spin theory is the same as the 3-KdV hierarchy.

In Sect. 4.2, we give the definition of r-KdV hierarchy and, more generally, of KP hierarchy. We give some examples of computations, for r = 3. In Sect. 4.3, we detail the construction of DR hierarchy and compare the example of the singularity W = x 3 with 3-KdV hierarchy.

r-KdV and KP hierarchies

We give in this section the Lax form of the r-KdV hierarchy, as in Sect. 0.5.1, and we compute the first equations for r = 3. KP hierarchy embodies all those r-KdV hierarchies and give them a geometric interpretation.

r-KdV hierarchy

Let r ≥ 2 and take a differential operator

L = D r + u r-2 • D r-2 + • • • + u 0 , ( 4.1) 
where the functions u 0 , . . . , u r-2 depend on a variable x and D is the differential operator D := ∂ ∂x . We recall that the algebra generated by D over the field of functions is not commutative and we have

[D, u] := D • u -u • D = ∂u ∂x =: u .

Pseudo-differential operators and r-root

A pseudo-differential operator is a Laurent series

A = d i=-∞ a i (x) • D i , ( 4.2) 
where D -1 is the formal inverse of D. The action of D -1 on a function f is defined by

D -1 • f = k≥0 (-1) k f (k) • D -1-k ,
where f (k) is the k-th derivative of the function f with respect to the variable x. We notice that for any m ∈ Z, we have

D m • f = f • D m + O(D m-1 ).
Thus, for the algebra of pseudo-differential operators, there exists a unique r-th root to an operator like (4.1).

Example 4.1. Let us find the first terms of the third root of L = D 3 + u 1 D + u 0 . We take a pseudo-operator

Q = D + q 1 D -1 + q 2 D -2 + O(D -3
) and take the cubic

Q 3 = D 3 + D 2 q 1 D -1 + Dq 1 D -1 D + q 1 D -1 D 2 + D 2 q 2 D -2 + Dq 2 D -2 D + q 2 D -2 D 2 +D 2 q 3 D -3 + Dq 3 D -3 D + q 3 D -3 D 2 + Dq 1 D -1 q 1 D -1 + q 1 D -1 Dq 1 D -1 + q 1 D -1 q 1 D -1 D +O(D -2 ) = D 3 + q 1 D + 2q 1 + q 1 D -1 + q 1 D + q 1 + q 1 D + q 2 + 2q 2 D -1 + q 2 D -2 + q 2 + q 2 D -1 + q 2 +q 3 D -1 + 2q 3 D -2 + q 3 D -3 + q 3 D -1 + q 3 D -2 + q 3 D -1 +q 2 1 D -1 + q 1 D -1 q 1 D -1 + q 2 1 D -1 + q 1 D -1 q 1 + O(D -2 ) = D 3 + 3q 1 D + 3q 1 + 3q 2 + (q 1 + 2q 2 1 + 3q 2 + 3q 3 )D -1 +(q 2 + 3q 3 )D -2 + q 1 D -1 q 1 D -1 + q 1 D -1 q 1 + O(D -2 ) = D 3 + 3q 1 D + 3q 1 + 3q 2 + (q 1 + 2q 2 1 + 3q 2 + 3q 3 )D -1 +(q 2 + 3q 3 )D -2 + q 1 q 1 D -2 -(q 1 ) 2 D -3 + q 1 q 1 D -4 + O(D -5 ) +q 2 1 D -1 -q 1 q 1 D -2 + q 1 q 1 D -3 + O(D -4 ) + O(D -2 ) = D 3 + 3q 1 D + 3q 1 + 3q 2 + (q 1 + 3q 2 1 + 3q 2 + 3q 3 )D -1 + O(D -2 ). 140 
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q 1 = u 1 3 , q 2 = u 0 -u 1 3 , q 3 = - u 2 1 + 3u 0 9 ,
so that we end with

L 1/3 = D + u 1 3 D -1 + u 0 -u 1 3 D -2 + O(D -3 ). ( 4.3) 
The differential part of a pseudo-differential operator is obtained by truncation of the negative part, i.e.

A = d i=-∞ a i (x) • D i =⇒ (A) + = d i=0 a i (x) • D i .
Starting from the differential operator L given by (4.1), we define operators H 1 , H 2 , . . . by 

H m := (L m/r ) + . ( 4 
H 1 = D, H 2 = D 2 + 2u 1 3 , H 3 = D 3 + u 1 D + u 0 .
To compute H m for m > 3, we have to go further in the computation (4.3). Notice that we always have H 1 = D, for every integer r ≥ 2.

Lax form of the r-KdV hierarchy r-KdV hierarchy is the family of partial differential equations on the functions u 0 , . . . , u r-2 , depending on the variable x and on an infinite set of variables t 1 , t 2 , . . . The Lax form of the r-KdV hierarchy is

∂L ∂t n = [H n , L] , with L = D r + u r-2 • D r-2 + • • • + u 0 . (4.5)
The KdV hierarchy is the same as the 2-KdV hierarchy, we have written the third and fifth equations in ( 26) and ( 27).

Remark 4.3. The operators H 1 , H 2 , . . . defined above are such that the commutator [H n , L] is a differential operator with order less than r -2. Furthermore, they satisfy

∂H m ∂t n - ∂H n ∂t m = [H n , H m ] ,
so that the different flows commute. In fact, the set of operators {H m } forms a basis of the space of operators with these two properties. 

(L i/r ) = i r • u r-i-1 + • • • , for 1 ≤ i ≤ r -1
, where the ellipses stand for polynomials in the functions u j and their derivatives u j , u j , . . . , for j > r -i -1. Thus, we can invert the transformation from the functions u p-i-1 to the residues Res(L i/r ) and get the operator L from the function τ . 

Witten's generalized conjecture

Recall that a basis for the state space H of the FJRW theory of W = x r is given by e j , e j 2 , . . . , e j r-1 and that the potential function is defined in ( 23) by

F = g,n 2g-2+n>0 2g-1 n! 1≤α 1 ,...,α N ≤N d 1 ,...,dn≥0 τ d 1 (e j α 1 ), . . . , τ dn (e j αn ) g,n • n i=1 T α i d i .
According to [27, equation 2.41], we take = 1 and make the change of variables

(k • r + α) • ((k -1) • r + α) • • • α • t k•r+α = T α k
to obtain a τ -function of the r-KdV hierarchy.

Theorem 4.7 (Witten's generalized conjecture, proven by [START_REF] Faber | Tautological relations and the r-spin Witten conjecture[END_REF]). The partition function exp(F r (t 0 , t 1 , t 2 , . . . )) of the r-spin theory is a τ -function for the r-KdV hierarchy.

Example 4.8. In the case r = 3, the equation (4.3) leads to

Res(L 1/3 ) = u 1 3 , Res(L 2/3 ) = 2u 0 -u 1 3 .
Denote by F k 1 ,...,km the derivative

F k 1 ,...,km = ∂ m F ∂t k 1 • • • ∂t km
of the potential function of the 3-spin theory. Therefore, by Theorem 4.7, we get a solution

u 0 = 3 2 (F 2,1 + F 1,1,1 ), u 1 = 3 F 1,1
of the 3-KdV hierarchy. In particular, the functions u 0 and u 1 satisfy equations (4.6) and (4.7).

KP hierarchy

For every integer r ≥ 2, the r-KdV hierarchy is contained in the KP hierarchy. More precisely, a solution of the KP hierarchy is also a solution of the r-KdV hierarchy if and only if it does not depend on the variables t rm for every integer m. We can recover r-KdV equations from KP equations by setting t rm := 0.

Lax form for KP equations

Let L = D r + u r-2 D r-2 + • • • + u 0 and Q = D + k≥1 q k D -k
be the r-th root L 1/r . The pseudo-differential operator Q satisfies an equation similar to (4.5)

∂Q ∂t n = [H n , Q] , with H n = (Q n ) + and (Q r ) -= 0.
For the KP hierarchy, we do not constraint the r-th power of the pseudo-differential operator Q to be a differential operator. The Lax form for the KP hierarchy is

∂Q ∂t n = [H n , Q] , with H n = (Q n ) + ,
where Q = D + k≥1 q k D -k is an arbitrary pseudo-differential operator.

Boson-fermion correspondence

The bosonic Fock space is the space C[[p given by Schur polynomials

s λ := 1 n! σ∈Sn ξ λ (σ)p σ , p σ := p l k ,
where λ is a partition of an integer n, the character ξ λ of a permutation σ is the trace of the trace of σ in the irreducible representation of the symmetric group S n associated to the partition λ, and where the product defining p σ is over the cycles inside σ and the numbers l k are the lengths of those cycles. For instance, we have

s ∅ = 1 , s (1) = p 1 , s (1,1) = 1 2 p 2 1 + 1 2 p 2 , s (1,2) = 1 3 p 3 1 - 1 3 p 3 , s (1,1,1) = 1 6 p 3 1 + 1 2 p 1 p 2 + 1 3 p 3 , . . .
The fermionic Fock space is the semi-infinite wedge space Λ ∞ 2 V of the space of formal Laurent series

V := C[z -1 ][[z]].
More precisely, this is the completion of the vector space with basis made of

v λ = z λ 1 -1 ∧ z λ 2 -2 ∧ z λ 3 -3 ∧ • • • ,
where λ is any partition of an integer. One can write each element of the space Λ ∞ 2 V as a linear combination of infinite wedge products φ [START_REF] Kazarian | KP hierarchy for Hodge integrals[END_REF]Prop. 6.4]). The action of the Lie group of the algebra gl(∞) preserves the set of decomposable vectors. Furthermore, this action is transitive, so that we obtain every τ -functions of the KP hierarchy applying elements of this group to the trivial τ -function τ = 1.

1 (z) ∧ φ 2 (z) ∧ • • • with φ k = z -k + l>-k α l z l
Example 4.12. Take the operator A = z ∂ ∂z ∈ gl(∞), such that we have A(z k ) = kz k . The operator A is called the energy operator and we have A(v λ ) = mv λ for every partition λ of the integer m. Under the boson-fermion correspondence, it transforms to the operator 

∞ k=1 kp k ∂ ∂p k . ( 4 
: z k → kz k is the differential operator ∞ k=1 (k + 1 2 )q k ∂ ∂q k , ( 4.11) 
with notations of [START_REF] Coates | Riemann-Roch Theorems in Gromov-Witten Theory[END_REF]Sect. 1.3.3]. We see that equations (4.10) and (4.11) are very close. In particular, the symplectic operator from Theorem 3.9 can be quantized and yields a differential operator sending the trivial τ -function of the KP hierarchy to another τ -function of the KP hierarchy.

DR hierarchy

In [START_REF] Buryak | Double Ramification cycles and integrable hierarchies[END_REF], Buryak constructed an integrable hierarchy for every cohomological field theory, using double ramification cycles. Thanks to our Theorem 2.40, we can compute explicitly any equation of this hierarchy for the quantum singularity theory of a chain (or Fermat) polynomial. At the end, we compare the first equations for the polynomial x 3 with the 3-KdV hierarchy and provide a candidate for a Miura transform going from one set of equations to the other. In [START_REF] Guéré | Some FJRW invariants in arbitrary genus[END_REF], we prove that this Miura transform works for every equation, answering Buryak's conjecture in this case.

Classical mechanics

Hamiltonian and Lagrangian formalisms are well suited for the description of classical mechanics. We review here the famous example of a harmonic oscillator to introduce the main ideas and notations for the study of Hamiltonian systems in infinite dimension and integrable hierarchies.
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The differential equation describing the evolution of a harmonic oscillator is

m d 2 x dt 2 = -kx. (4.12)
For instance, the function x(t) is the position at the time t of a pointed mass m attached to one end of a massless spring with constant k, the other end being fixed and the whole system placed in vacuum. The origin x = 0 is the position at rest.

Lagrangian formalism and variational derivative

In the Lagrangian formulation, the basic object is not the force -kx, but a functional L called Lagrangian The action S between times t 1 and t 2 is the functional

L = 1 2 m ẋ2 - 1 
S := t 2 t 1
Ldt.

Solutions to the equation of motion (4.12) are obtained as critical points of the action S. Let x(t) be a trajectory and ξ(t) be a perturbation with ξ(t 1 ) = ξ(t 2 ) = 0. Since the functional L depends only on the trajectory and its first derivative, then we have the first order equality because its integral between t 1 and t 2 vanishes. In the case of a harmonic oscillator, we find equation (4.12). In general, the functional L may depend on x, ẋ, and its successive derivatives. The variational derivative equals where x (k) is the k-th derivative along t and d/dt is the total derivative of ∂L/∂x (k) as a function of t.

L(x + ξ) = L(x) + ∂L ∂x • ξ + ∂L ∂ ẋ • ξ + o(

Hamiltonian formalism

In the Hamiltonian formulation, we introduce variables q (position) and p (momentum) and a functional H called Hamiltonian

H = p 2 2m + kq 2 2 .
(4.17)

The first term is the kinetic energy, the second term is the potential energy and the sum is the total energy of the system. The Hamiltonian (4.17 Every function F satisfying {F, H} = 0 is constant along a solution of the Hamiltonian system, it is called a first integral of motion. If the Poisson manifold is symplectic of dimension 2m, then the Hamiltonian system is (completely) integrable when there are m independent first integrals of motion. Note that the Hamiltonian function is always conserved along trajectories, its value is called energy. ) specialize to (4.18). A solution (q(t), p(t)) = (x(t), m ẋ(t)) is of the form x(t) = λ cos(ωt) + µ sin(ωt) with ω 2 = k/m, and the quantity

p 2 2m + kq 2 2 = k 2 • (λ 2 + µ 2 )
is conserved along trajectories. This Hamiltonian system is completely integrable.

Hamiltonian systems on the formal loop space

This section is based on [START_REF] Buryak | Double Ramification cycles and integrable hierarchies[END_REF]. Let N ≥ 1 be an integer and consider variables v α d for d ∈ N and 1 ≤ α ≤ N . We simplify notations by v α := v α 0 .

Local functionals

We In the procedure to obtain the Euler-Lagrange equation, we get rid of the total derivative (4.15). Similarly, it is better to work on the quotient space Λ N := A N /Im(∂ t ).

For a differential polynomial h ∈ A N , we denote by h or by hdt the corresponding element in Λ N , called a local functional. Moreover, since the variational derivative commutes with the total derivative, the operator (4.21) is well-defined on the space Λ N . We take on Λ N the graduation induced from A N .

Poisson structure

A Poisson structure on the formal loop space is defined in the same way as in Sect. but here the derivatives do not commute with the matrix K, of the form

K α,β = d≥0 k α,β d ∂ d t ,
where k α,β d is a differential polynomial and the sum is finite. 

DR-cycle

Buryak's hierarchy is called DR hierarchy because it involves DR cycles in the definitions of the Hamiltonian functionals appearing in equation (4.24). Precisely, DR cycles are used in the equation (4.30).

Let a = (a 1 , . . . , a n ) = 0 be a list of integers whose sum vanishes. Denote by ν and by µ the sublists of a and of -a consisting of (strictly) positive integers. They form two partitions of the number d = 1 2 n i=1 |a i |. Denote by n 0 the number of vanishing entries in the list a. We set M g,a := M g,n 0 ;µ,ν (P 1 , 0, ∞)

to be the set of degree d rubber stable maps to P 1 with profiles µ and ν at the ramification points 0 and ∞ (see [START_REF] Goulden | The moduli space of curves, double Hurwitz numbers, and Faber's intersection number conjecture[END_REF] for precisions). Note that the pre-images of 0 and of ∞ are considered as marked points and that there are n 0 additional marked points. We then have a forgetful morphism st : M g,a → M g,n .

As in Gromov-Witten theory, the moduli space M g,a has a virtual cycle M g,a DR cycles on the moduli space of curves with compact type Equation (4.26) defines DR cycles in general but is not very useful for practical computations. When we only need DR cycles on the moduli space M ct g,n of stable curves with compact type (i.e. whose dual graph is a tree), there is a definition involving the universal Jacobian. We denote this class by DR Jac g (a 1 , . . . , a n ). In terms of tautological classes, we have Hain's formulas [START_REF] Hain | Normal Functions and the Geometry of Moduli Spaces of Curves[END_REF] DR 

a 2 J δ J h      g , if g ≥ 2,
where ψ j is the usual ψ-class on the space M ct g,n , the integer a J is the sum j∈J a j and the class δ J h represents the divisor whose generic point is a nodal curve made of one smooth component of genus h with the marked points labeled by the list J and of another smooth component of genus g -h with the remaining marked points, joined at a separating node.

According to [START_REF] Marcus | Stable maps to rational curves and the relative Jacobian[END_REF] 

Buryak's DR hierarchy

Fix a cohomological field theory with a N -dimensional state space V . Take a basis e 1 , . . . , e N of the state space V such that e 1 := 1 is the unit of the theory. We denote by (η α,β ) α,β the inverse of the matrix ((e α , e β )) α,β determining the bilinear form of the theory. Following [START_REF] Buryak | Double Ramification cycles and integrable hierarchies[END_REF], we aim to construct a Hamiltonian system on the space Λ N .

The Poisson bracket on the space Λ N is given by the formula f , g = g f n 1 ,...,n k g;α 1 ,...,α k p α 1 n 1 • • • p α k n k , with f n 1 ,...,n k g;α 1 ,...,α k ∈ C.

To define the subspace B pol N ⊂ B N , we impose the condition that the coefficient f n 1 ,...,n k g;α 1 ,...,α k is a homogeneous polynomial of degree 2g in the variables n 1 , . . . , n k .

We want to define two maps Λ 

Relation with the J-function

We notice some similarities between the equation (4.30) and the J-function defined at the end of Sect. where e α := β η α,β e β . Therefore, the Hamiltonians functionals of the DR hierarchy are generalizations of the J-function. We hope to explore in the future the relationship between DR hierarchy and higher-genus Givental theory.

DR hierarchy for chain polynomials

Let us focus on the quantum singularity theory for a Landau-Ginzburg orbifold (W, G) where W is a chain polynomial

W = x a 1 1 x 2 + • • • + x a N -1
N -1 x N + x a N N and G := Aut(W ) be the maximal group of diagonal automorphisms. Our main Theorem 2.40 computes explicitly the product

c top (E ∨ ) • (c PV vir ) g,n (e α 1 ⊗ • • • ⊗ e αn ),
for any elements e α 1 ⊗ • • • ⊗ e αn of the state space (narrow or broad) and for every genus g. Therefore, using equations (4.27), we are able to compute every equation (4.31) of the DR hierarchy. In the next section, we treat in detail the example of the polynomial W = x 3 .

Buryak's conjecture for the 3-spin theory

In [START_REF] Buryak | Double Ramification cycles and integrable hierarchies[END_REF], Buryak conjectures that for a conformal semi-simple cohomological field theory, the DR hierarchy is related to the Dubrovin-Zhang hierarchy by a change of variables called a Miura transform. Here, we focus on the quantum singularity theory of the polynomial W = x 3 , which is conformal and semi-simple. The Dubrovin-Zhang hierarchy in that case is the 3-KdV hierarchy. We compute explicitly the first equations (4.31) of the DR hierarchy and we compare them to the equations (4.6) and (4.7). Eventually, we provide a candidate for the Miura transform and in [START_REF] Guéré | Some FJRW invariants in arbitrary genus[END_REF], we prove Buryak's conjecture in this case. 

Example of computations for the DR hierarchy

The state space of the 3-spin theory is two-dimensional with basis {e 1 , e 2 } and pairing (e 1 , e 2 ) = 1. To obtain the first equations of the associated DR hierarchy, we need to compute the functions g α,d from equation (4.30). Let us illustrate the method for g 1,1 . Let α ∈ {1, 2} n and denote by n 1 and n 2 the number of 1 and of 2 in the list α. By equation (1.16), the cohomological degree of the virtual class c g,n+1 (e

1 ⊗ e α 1 ⊗ • • • ⊗ e αn ) is 2degvir = 2 • g -1 + n 2 3 .
Therefore, by dimension reasons, the function 

Chapter 4. Integrable hierarchies

For instance, the term with (g, n 1 , n 2 ) = (0, 2, 1) is Using equation (4.27), we obtain

T (0,
T (1,2,0) = 2 a 1 ,a 2 =0 a 1 +a 2 =0 M 1,3
-a 1 a 2 (δ

{2,3} 0 + δ {1,2,3} 0 
)c top (E ∨ ) • ψ 1 • c 1,3 (e ⊗3 1 ) p 1,a 1 p 1,a 2 .
To apply the transformation Q, notice that, for f = (v 1,1 ) 2 , we get 
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The term with (g, n 1 , n 2 ) = (2, 0, 2) is more difficult to obtain: ) +a 2 1 (δ

T (2,
{2} 1 + δ {1,2} 1 
) + a 2 2 (δ

{3} 1 + δ {1,3} 1 
) 2 .
Before expanding this product, notice that δ {2,3} 0

• c 2,3 (e 1 ⊗ e ⊗2 2 ) = 0, using the factorization property of the virtual class and the fact that c 0,3 (e ⊗2

2 ⊗ e k ) = 0 for k = 1, 2 (by the selection rule). In the same way, we have

δ {1,2,3} 0 • c 2,3 (e 1 ⊗ e ⊗2 2 ) = δ {2} 1 • c 2,3 (e 1 ⊗ e ⊗2 2 ) = δ {3} 1 • c 2,3 (e 1 ⊗ e ⊗2 2 ) = δ {1,2} 1 • c 2,3 (e 1 ⊗ e ⊗2 2 ) = δ {1,3} 1 
• c 2,3 (e 1 ⊗ e ⊗2 2 ) = 0. Therefore, we only need to expand 1 32 2(a 2 1 ψ 2 + a 2 2 ψ 3 ) -(a 1 + a 2 ) 2 (δ

{2,3} 1 
+ δ {1,2,3} 1 
) 2 .
Notice that to obtain the self-intersection of a divisor, we need to know the first Chern class of its normal bundle inside M 2,3 . For instance, we have (δ

{2,3} 1 
) 2 = -ψ α • δ {2,3} 1 
-ψ β • δ {2,3} 1 
, where α and β correspond to the choices (node, branch at a node). At last, the integral

DR 2 (0,a 1 ,a 2 ) c top (E ∨ ) • ψ 1 c 2,3 (e 1 ⊗ e ⊗2
2 ) equals a 4 1 + a 

ψ 3 c E ∨ 1,3 (e ⊗3 2 ) • M 1,2 ψ 1 c E ∨ 1,2 (e ⊗2 1 
) As an exercise, the reader could compute the values of the remaining terms. Then he should get the following answer for the Hamiltonian h 1,1 : We have δh 1,1 δv 1,0 = v 1,0 v 2,0 + v 1,2 6 and then ∂v 2,0 ∂τ 1,1 = v 1,1 v 2,0 + v 1,0 v 2,1 + v 

- (a 1 + a 2 ) 4 32 
M 1,3 c E ∨ 1,3 (e ⊗3 2 ) • M 1,2 ψ 1 ψ 2 c E ∨ 1,2 (e ⊗2 
h 1,1 = (v 1,0 ) 2 v 2,0 2 

First equations for the DR hierarchy of 3-spin theory

The function h 2,0 is easier to compute than h 1,1 , so we give directly the result

h 2,0 = (v 1,0 ) 2 2 + (v 2,0 ) 3 18 -72 (v 2,1 ) 2 .
With respect to Remark 4.15, we simply write v α,0 := v α . Recall that it is a function with an infinite set of variables {t, τ 1,k , τ 2,k } k∈N and the function v α,k is the k-th derivative v (k) α of the function v α along the time t = τ 1,0 . At last, the first equations of the DR hierarchy for 3-spin theory are 

∂v

Candidate for the Miura transform

Our thesis ends with hope. In [START_REF] Buryak | Double Ramification cycles and integrable hierarchies[END_REF], Buryak conjectures the existence of a Miura transform, i.e. a change of variables, turning DR hierarchy of a conformal semi-simple cohomological field theory into Dubrovin-Zhang hierarchy of the same theory. We are far from giving a proof of this conjecture in general, but we can do it in the case of 3-spin theory and we hope to prove it for the r-spin theory.

In this thesis, we have computed the first equations of the DR hierarchy of the 3-spin theory and of the 3-KdV hierarchy. Thus, we have a candidate for the Miura transform between these two hierarchies:

3-spin 3-KdV Transformation v 1 u 0 v 1 = 1 2i √ 3 2 3 u 0 -1 3 u 1 v 2 u 1 v 2 = u 1 3 = 1 τ α,d t m τ α d = (-3) 3d+α-1 2 -d d k=0 (α + 3k) • t 3d+α (4.36)
Indeed, we check easily that the change of variables (4.36) exchanges equations (4.32) and (4.33) with equations (4.34) and (4.35). We could also compute the first equations of the Dubrovin-Zhang hierarchy for the 3-spin theory. We do not include these computations here, but we mention that they exactly coincide with the first equations of the DR hierarchy. In fact, the main goal of [START_REF] Guéré | Some FJRW invariants in arbitrary genus[END_REF] is to prove that the knowledge of these first equations determines the whole hierarchy, thus it proves Buryak's conjecture for the 3-spin theory. 
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  π * L N et la classe virtuelle vaut S g,n (W, G max ) vir = N j=1 c max (R 1 π * L j ).

  ) où l'anneau jacobien d'un polynôme P (x 1 , . . . , x r ) estJac(P ) := C [x 1 , . . . , x r ] /(∂ 1 P, . . . , ∂ r P ) • dx 1 ∧ • • • ∧ dx r , et où (•) G désigne la partie G-invariante.De façon similaire au morphisme (11) pour l'hypersurface X 5 , nous avons un morphismeι * : H * CR C N /G , W -1 (t); C → H * CR C N /G , C ,

  Polishchuk et Vaintrob pour la classe virtuelle, à travers les factorisations matricielles, et d'introduire la nouvelle notion de complexe récursif. Ce type d'objet possède des propriétés d'annulation en cohomologie très utiles au calcul de la classe virtuelle et donc des invariants.

  M g,n représentant une courbe marquée et d'un point sur cette courbe. C'est encore un champ de Deligne-Mumford propre et lisse, sa dimension complexe étant 3g -2 + n ; il est appelé courbe universelle et est noté C g,n . De plus, il existe un morphisme de projection canonique π : C g,n → M g,n dont la fibre au-dessus d'un point représentant une courbe stable marquée est précisément cette courbe stable marquée. La courbe universelle C g,n est naturellement isomorphe (comme champs de Deligne-Mumford) à l'espace de modules M g,n+1 , voir Fig. 1. Sous cet isomorphisme, le

Figure 1 -

 1 Figure 1 -Identification de M g,n+1 avec C g,n (dessin emprunté à [80])

  où B d (x) est le polynôme de Bernoulli, j : ∆ → M g,n est le morphisme donnée par[START_REF] Coates | Riemann-Roch Theorems in Gromov-Witten Theory[END_REF] et la classe γ d vaut γ d = a+a =d ψ a (-ψ) a pour d ≥ 0 (pour d < 0, γ d = 0).Dans cette dernière formule, ψ est la classe associée au noeud et à la branche privilégiée de ∆, alors que ψ est associée au noeud et à l'autre branche. La formule (21) a été généralisée par Chiodo [14, Théorème 1.1.1] et sera utilisée pour le calcul de la classe virtuelle, voir la formule (50).

Exemple 0. 10 (

 10 Théorie cohomologique des champs triviale). Prenons N = C, V = C • 1 et (1, 1) = 1. Définissons, pour tout entier 2g -2 + n > 0, les applications multilinéaires c g,n par

  Préliminaires f : C → P(w) une application stable. Le fibré en droites f * O(d) sur la courbe champêtre C s'écrit O C (M ), avec M un diviseur sur la courbe C. Ce diviseur est la somme de deux diviseurs M = M + M , où M est le tiré-en-arrière d'un diviseur sur l'espace grossier C P 1 et M est un diviseur fractionnaire venant des points marqués, c'est la partie champêtre du diviseur M . De façon explicite, nous avons

Exemple 0 . 42 .x 2 + x 3 2 x 3 + x 5 3 x 4 + x 10 4 x 5 + x 11 5

 0425 est vérifiée sur cet exemple. Au contraire, lorque l'un des poids ne divise pas le degré ou lorsque w j v i = 0 pour un certain indice i, nous pouvons toujours obtenir l'inégalité 0 ≤ w j v i < w j d pour un certain choix de v i et de j. Notons que l'égalité w j v i = 0 donne lieu à un état large. Le polynôme W = x 2 1 est de degré 11 et les poids sont (4, 3, 2, 1, 1). Soient une courbe champêtre C de genre 0 avec trois points marqués et un fibré en droites L sur C dont les caractères aux points marqués sont (v 1 , v 2 , v 3 ) = (3/11, 3/11, 6/11). Tous les points marqués sont étroits et nous avons pourtant dim H 0 (C, L 1 ) = 1, avec L 1 := L ⊗4 .

αd

  vérifient les relations de conservation d'après [9, Théorème 4.1]. On utilise donc ces fonctionnelles comme hamiltoniens pour la hiérarchie DR et les équations de cette hiérarchie s'écrivent ∂u α

  (a) narrow (shaded in the following pictures), (b) broad and crossed, or (b') broad and uncrossed.
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 1 Quantum singularity theoryTo any admissible and balanced decoration C γ , we associate the element e(C γ ) :=

Proposition 1 .

 1 11 (follows from [59, Lemma 1.7]). The set of all the elements e(C γ ), with a diagonal automorphism γ and an admissible and balanced decoration C γ , forms a basis of the state space, H = γ∈Aut(W ) Cγ ⊂Bγ admissible, balanced C • e(C γ ).

Chapter 1 .

 1 Quantum singularity theoryEach virtual class forms a cohomological field theory, see[START_REF] Fan | The Witten equation, mirror symmetry and quantum singularity theory[END_REF] Theorem 4.1.8] for c FJRW vir and [72, Sect. 5] for c PV vir , and the cohomological field theory for c FJRW vir is called FJRW theory. The invariants (also called correlators) are respectively

  we can figure out (see for instance [71, Theorem 3.2.3]) the Chern character Ch(U ) = str

4 . 2 ,. 26 ) 1 . 24 .

 4226124 Step 4; Proposition 1.4.2]); we apply the push-forward functor 2 and obtainΦ : MF(A γ , W γ ) -→ MF(S, 0) U -→ p * (Z * (U ) ⊗ PV). (1RemarkThe functor Φ matches the functor obtained from [72, Equation (5.5)] once we forget the equivariance. Indeed, this is a direct application of the projection formula [72, Proposition 1.5.5]. As a consequence, the morphism Φ * induced on the Hochschild homology coincides with the specialization (1.21) of the morphism defined in[START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF] Equation (5.8)]. In Sect. 1.3.5, we will use the Chern character Ch(Φ(U )) of the two-periodic complex Φ(U ) to define the virtual class.

. 7 ) 2 . 10 .

 7210 37) by c vir (T, δ) = Ch H + (T, δ) -H -(T, δ) Td(B) Td(A) ∈ H * (S, C). (2Corollary Let T be a non-degenerate recursive complex, with a 1 • • • a N = (-1) N and with the vanishing condition A N = 0, as in the above theorem. Denote by R j the class of [A j → B j ] in the derived category D(S). Then the virtual class is

Lemma 2 . 21 .

 221 For each j, the formal series F form j is a development of the rational function F j in the open unit ball B C (0, 1).

Corollary 2 . 24 .

 224 Under the hypothesis of Theorem 2.8, the class c vir (T, δ) lies in c vir (T, δ) ∈ k≥degvir H 2k (S, Q).

2. 3 .

 3 Computing Polishchuk and Vaintrob's virtual class 103

Theorem 2 . 25 .

 225 Consider an invertible polynomial W , an element γ ∈ Aut(W ) n and admissible decorations

Theorem 2 .

 2 [START_REF] Givental | Equivariant Gromov-Witten invariants[END_REF], together with the expression (50) of the Chern character of Rπ * L j and Mumford's formula (21), leads to explicit numerical computations of Hodge integrals that we have encoded into a MAPLE program, see the Annexe A. Moreover, since the rank of the Hodge bundle is zero in genus zero, we recover our Theorem 2.25 for chain polynomials.

Example 2 . 41 . 6 M 2 , 1

 241621 We use our computer program to obtain the value of the integral

  j then W ∨ (y 1 , . . . , y N ) =

4 )Definition 3 . 2 .

 432 induces a local system R prim π * (Z) ⊂ R prim π * (C) over ∆ * , whose flat sections are given by the lattice H * prim ({W ∨ t = 0}; Z) ⊂ H * prim ({W ∨ t = 0}; C) inside the primitive cohomology. We set ∇ B to be the corresponding flat connection. Denote by D the ring generated by the differential operator ∂ t , where t is a coordinate of ∆ * , over the holomorphic functions on ∆ * . The D-module M B is the module over D associated to the local system R prim π * (Z) ⊂ R prim π * (C) over ∆ * . D-module structure on the A-side Consider two elements e 1 and e 2 in H and define the quantum product e 1 • h e 2 = n≥0 γ∈Aut(W ) Cγ ⊂Bγ admissible, balanced e 1 , e 2 , e(C γ ), h, . . . , h FJRW 0,n+3 e(C γ ) * n! , (

Definition 3 . 5 .Definition 3 . 6 .. 9 ) 3 . 7 .

 3536937 The D-module M A is the sub-module of M A over D generated by the iterate derivatives e j , ∇ A (e j ), (∇ A ) 2 (e j ), . . . (3.8) On the B-side, consider a volume form Ω(t) of the Calabi-Yau hypersurface {W ∨ t = 0}. It defines a global section of the sheaf R prim π * (C). The D-module M B is the sub-module of M B over D generated by the iterate derivatives Ω, ∇ B (Ω), (∇ B ) 2 (Ω), . . . (3Remark On the one hand, let µ d be the group generated by the grading element j and set H µ d := γ∈µ d H γ .

  ) of FJRW theory generates a function F 0 : H + → C F 0 := n≥0 b 1 ,...,bn≥0 γ 1 ,...,γn τ b 1 (e γ 1 ), . . . , τ bn (e γn ) FJRW 0,n

  is the function Res(A) = a -1 . Let r ≥ 2 and L = D r + u r-2 D r-2

Definition 4 . 6 .

 46 A function τ satisfying the relations (4.8) is called a τ -function for the r-KdV hierarchy if the associated operator L is a solution to this hierarchy.

Proposition 4 .

 4 11 (see for instance

2 kx 2 ,

 2 

  ) is related to the Lagrangian (4.13) by a Legendre transformH = p q -L , with q = x and p = ∂L ∂ ẋ = m ẋ.Euler-Lagrange equations (4.14) becomes Hamilton's equations equations (4.18) are described by a Poisson bracket {•, •} on a manifoldP . It is an anti-symmetric bilinear operator C ∞ (M ) ⊗ C ∞ (M ) → C ∞ (M )on the space of smooth functions on P satisfying {f, g • h} = g • {f, h} + {f, g} • h (Leibniz rule), {f, {g, h}} = -{h, {f, g}} -{g, {h, f }} (Jacobi identity). A Poisson manifold is a manifold P equipped with a Poisson bracket {•, •}. A Hamiltonian system of equations on a Poisson manifold (P, {•, •}) is defined by a set of equations ẋ = {x, H} , (4.19) where x is the unknown trajectory depending on time-variable t and H is the Hamiltonian functional of the system. In local coordinates x 1 , . . . , x m , a Poisson bracket is given by an antisymmetric matrix of functions {f, g} = l (x 1 , . . . , x n ) • ∂H ∂x l (x 1 , . . . , x n ).

Chapter 4 . 4 . 14 .

 4414 Integrable hierarchiesExampleIn the previous example of a harmonic oscillator, the Poisson manifold is the phase space R 2 with coordinates q and p, equipped with {f,

Remark 4 . 15 .Example 4 . 16 .

 415416 denote by A N the ring of polynomials f (u * * ) = m≥0 1≤α 1 ,...,αm≤N d 1 ,...,dm≥1f d 1 ,...,dn α 1 ,...,αm (u * 0 ) • u α 1 d 1 • • • u αm dmwith an infinite number of variables and with coefficients f d 1 ,...,dn α 1 ,...,αm (u * ) being power series in u 1 , . . . , uN . It is graded by deg(u α d ) = d. The formal loop space on C N is defined by its ring of functions A N , whose elements are called differential polynomials. Although v * * are just formal variables, it is useful to keep in mind the following picture: the functions v 1 , . . . , v N are the coordinates of a trajectory in C N depending on a time-variable t and the function v α d is the d-th derivative of v α along t. Thus, we think of differential polynomials as functionals from Sect. 4.3.1. Similarly to equation (4.16) and in the spirit of Remark 4.15, we define the variational derivative of a differential polynomial h ∈ A N by δh δv α := k≥0 (-∂ t ) k ∂h ∂v α k , (4.21)where ∂ t : A N → A N is the total derivative ∂ Let h ∈ A 1 be the differential polynomial 1 2 mv 2 1 -1 2 kv 2 as in the equation (4.13). Then we have ∂ t h = mv 1 v 2 -kvv 1 and δh δv α = -kv -mv 2 . Replacing v by x and v 2 by ẍ, we find the Euler-Lagrange equation (4.14).

  4.3.1, but functions are replaced by local functionals and derivatives by variational derivatives. Thus, a Poisson bracket is an anti-symmetric bilinear operator Λ N ⊗ Λ N → Λ N satisfying Leibniz rule and Jacobi identity. In coordinates v * * , it is given by the same equation (4.20) f , g = N α,β=1 δf δv α K α,β δg δv β dt, (4.23)

Definition 4 . 17 .. 25 ) 4 . 18 ..

 41725418 A Hamiltonian system on the formal loop space is a family of partial differential equations ∂V ∂τ n = {V, H n } , (4.24) where V = (v 1 , . . . , v N ) is the unknown trajectory depending on time-variable t and on an infinite set of times τ 1 , τ 2 , . . . and where H 1 , H 2 , . . . are the Hamiltonian functionals of the system, satisfying the compatibility condition {H m , H n } = 0 , for every integer m and n. (4RemarkThe compatibility condition (4.25) is equivalent to the commutation between the flows along the times τ 1 , τ 2 , . . . If V is a solution of the system (4.24), then we have∂ 2 V ∂τ m ∂τ n = ∂ 2 V ∂τ n ∂τ m ,for every integer m and n.Extended spacesLet be a formal indeterminate of degree -2 and setA N := A N ⊗ C[[ ]].The subspace of Chapter 4. Integrable hierarchies elements of total degree k ≥ 0 is denoted by A [k] N and consists of homogeneous differential polynomials f (v * *; ) = d≥0 d f d (v * * ),with f d ∈ A N of degree 2d + k. In the same way, we have the subspace Λ[k]N ⊂ Λ N := Λ N ⊗ C[[ ]] of elements f = f dt with f ∈ A [k] N . APoisson bracket is of the form (4.23) and goes from Λ The local functionals H 1 , H 2 , . . . of a Hamiltonian system are homogeneous of degree 0, i.e. H n ∈ Λ [0] N .

vir

  of dimension 2g -3 + n. The cycle DR g (a) := st * M g,a vir ∈ H 2(2g-3+n) (M g,n ; C) (4.26)is called double ramification cycle (or DR cycle) and its Poincaré dual cohomology class is a tautological class of degree 2g. We check easily that π * (DR g (a 1 , . . . , a n )) = DR g (a 1 , . . . , a n , 0) and DR 0 (a 1 , . . . , a n ) = M g,n .

with 1

 1 ≤ α ≤ N and d ≥ 0. They are determined by the following construction. The space B N For 1 ≤ α ≤ N and n ∈ Z =0 , we take formal variables p α n and we define the subalgebra B N of C[[p α n ; ]], whose elements are of the formf = g,k≥0 1≤α 1 ,...,α k ≤N n 1 ,...,n k =0 n 1 +•••n k =0

9 ,

 9 pol N . Starting with a differential polynomial f ∈ A[0] , we do the substitutionv α k := n =0 (in) k p α n e inx to obtain f | v α k = n =0 (in) k p α n e inx = m∈Z P m • e imx , with P m ∈ C[[p α n ; ]].It is important to notice that P 0 ∈ B pol N and that it is zero if we choose f ∈ Im(∂ t ). Thus, we have defined the map T 0 : Λ[0] N → B pol N .Thanks to [9, Lemma 2.3], for any element f ∈ B pol N , there is a unique local functionalh ∈ Λ [0]N such that T 0 (h) = f and h = hdt, with ∂h ∂u α | u * * =0 = 0. This defines the other mapQ : B pol N → ΛHamiltonians of the DR hierarchyLet us define, for 1 ≤ α ≤ N and d ≥ 0, some functions 1 ,...,an =0a 1 +•••+an=0 1≤α 1 ,...,αn≤NDRg(0,a 1 ,...,an)c top (E ∨ ) • ψ d 1 • c g,n+1 (e α ⊗ e α 1 ⊗ • • • ⊗ e αn ) Lemma3.2], these functions are in the space B pol N . The Hamiltonian functional h α d is then h α d := Q(g α d ). From [9, Theorem 4.1], these functionals satisfy the compatibility condition (4.25). Therefore, the DR hierarchy is the family of equations ∂v α

3 . 3 . 1 .

 331 Indeed, we have the following formulah α d (v 1 , . . . , v N ) = J(v 1 e 1 + • • • + v N e N , -z) (-z) -(d+1) e α + O( ),

Notation 4 . 19 .

 419 This section involves a lot of computations. For the sake of readability, we write v α,d := v α d , g α,d := g α d , τ α,d := τ α d , . . .

  1 ,...,an =0a 1 +•••+an=0 1≤α 1 ,...,αn≤2DRg(0,a 1 ,...,an)c top (E ∨ ) • ψ 1 • c g,n+1 (e 1 ⊗ e α 1 ⊗ • • • ⊗ e αn ) n i=1 p α i ,a ireduces to a sum of terms with (g, n 1 , n 2 ) ∈ {(0, 2, 1); (0, 0, 4); (1, 2, 0); (1, 0, 3); (2, 0, 2)} .

m∈Z a 1 ,a 2 =0 a 1 1 ⊗ e 2 )M 1 , 2 c+M 0, 4 ψ 1 • 1 ⊗ e 2 )M 1 , 1 c 2 ., 4 ψ 1 • 1 M 1 , 2 c

 1211212411211241112 +a 2 =m (-a 1 a 2 )p 1,a 1 p 1,a 2 • e imx = m∈Z P m • e imx , after the substitution v α,k := m =0 (im) k p α,m e imx . Hence the term above becomesQ(T (1,2,0) ) = 2 M 1top (E ∨ ) • ψ 1 • c 1,3 (e ⊗3 1 ) (v 1,1 ) 2 .Since the class δ {2,3} 0 and δ {1,2,3} 0 are isomorphic to M 0,3 × M 1,2 and to M 0,4 × M 1,1 , we use the factorization properties (see Def. 0.9) for the virtual class to deduceQ(T (1,2,0) ) = 2 M 0,3 c 0,3 (e ⊗2 top (E ∨ ) • ψ 1 • c 1,2 (e ⊗2 1 ) c 0,4 (e ⊗3 top (E ∨ ) • c 1,1 (e 1 ) (v 1,1 )Then we use the computer program presented in the annexe A, based on our Theorem 2.40, to find the invariantsM 0,3 c 0,3 (e ⊗2 1 ⊗ e 2 ) = M 0c 0,4 (e ⊗3 1 ⊗ e 2 ) = top (E ∨ ) • ψ 1 • c 1,2 (e ⊗2 1 ) = M 1,1 c top (E ∨ ) • c 1,1 (e 1 ) = -1 12 .

  

  σ n où a 1 , . . . , a n ∈ H * (X 5 ; C), ev i est le morphisme d'évaluation au point marqué σ i et p est le morphisme de projection :

	M g,n (X 5 ; β)	ev i	X 5
	p			
	Spec(C)		
	Par-ailleurs, nous avons le diagramme suivant :	
	M g,n (X 5 ; ι * β)	ev i	X 5
	p	M g,n (P 4 ; β)	ev i	P 4
	Spec(C)			

p ι De même que précédemment, lorsque les courbes sont de genre 0, nous disposons d'un fibré en droites L := f * O(5) convexe et donc d'un fibré vectoriel π * f * O(5). On obtient :

  polynôme de type chaine ou Fermat et G = G max le groupe maximal des symétries diagonales de W . En genre zéro, la classe virtuelle définie par Polishchuk et Vaintrob vaut S 0,n (W, G max )

	vir PV	= lim t→1	N j=1	c t j (-Rπ

* (L j )) ∈ H * (S, C), (10) avec les notations suivantes. Les nombres t 1 , . . . , t N vérifient t 1 := t et, pour 1 ≤ j ≤ N -1, la relation t a j j • t j+1 = 1. Les fibrés en droites L 1 , . . . , L N sont définis par

  . . , w N et de degré d. Le groupe G est le groupe maximal de symétries G max et l'espace vectoriel H * FJRW (W, G max ) est engendré par une famille {e γ } γ∈Gmax , introduite à la section précédente et précisée par la formule (1.8). (Symétrie miroir, voir le thm 3.12). La fonction génératrice J : H * FJRW (W, G max ) → H

	Théorème 0.5

* FJRW (W, G max ) des invariants FJRW de (W, G max ), vérifie la relation J(τ (t)) = I(t) f (t) , où f est une fonction scalaire, τ est une plongement local de 0 ∈ C dans d k=1 C • e j k et I est la série hypergéométrique

  Soit ω g,n le faisceau cotangent relatif au morphisme de projection π : C g,n → M g,n . Il s'agit d'un fibré en droites sur la courbe universelle, voir [3, Chap. 10, §2]. Au voisinage d'un noeud, une courbe nodale s'écrit {xy = 0} et les sections de ce fibré sont alors engendrées par les formes différentielles dx x et dy y modulo la relation d(xy) xy = dx x + dy y = 0. Pour chaque point marqué σ i , nous définissons la classe ψ i par

	0.1. Notions de base	29

L'étude de l'anneau de cohomologie de M g,n est un problème ouvert. Un anneau plus facile à étudier, et qui contient toutes les classes utiles à la théorie de Gromov-Witten et à la théorie quantique des singularités, est l'anneau tautologique. Définition 0.8 (Anneaux tautologiques). La famille R * g,n , appelée famille des anneaux tautologiques, est la plus petite famille de sous-anneaux de H * (M g,n ; C) qui est stable par images directes et tirés-en-arrière par les morphismes d'oubli π et de recollements j tree et j loop . Elle contient donc la classe fondamentale 1 de M g,n .

  Tout polynôme inversible se décompose en une somme de Thom-Sebastiani 6 de polynômes élémentaires de type Fermat, chaine ou boucle. Plus précisément, le polynôme inversible W s'écrit W = W 1 + • • • + W m où le polynômes W k est de l'un des trois types suivants :

						Préliminaires
	Proposition 0.18 (Kreuzer-Skarke [60]).						
	hypersurface X W est un champ de Deligne-Mumford lisse. De plus, par la formule d'adjonction,
	son fibré canonique est trivial si et seulement si le degré d est égal à la somme des poids,	
	d = w 1 + • • • + w N (CY).	
	Dans ce cas, nous dirons que l'hypersurface et le polynôme sont de type Calabi-Yau (abrégé
	en CY).						
	Définition 0.17. Un polynôme quasi-homogène W à singularité isolée en zéro et dont les poids
	et le degré sont uniques (sous la condition que le pgcd des poids vaut 1) est dit inversible s'il a
	autant de monômes que de variables.						
	Remarque. Un polynôme quasi-homogène à singularité isolée en zéro a toujours au moins
	autant de monômes que de variables.						
	Un polynôme inversible s'écrit sous la forme				
	W =	N	N	x	m k,j j	,	(31)
		k=1	j=1				
	quitte à faire un changement de variables x j → k j • x j , et est donc entièrement encodé par
	la matrice des exposants E W := (m k,j ). Cette matrice est inversible, d'où le nom polynôme
	inversible.						

.3 Théorie de Gromov-Witten et cohomologie quantique

  La théorie de Gromov-Witten fournit la solution à ce problème en introduisant une déformation du produit d'intersection appelée produit quantique.Tout d'abord, prenons une base {e k } de H * CR (X W ) et posons η k,l := X W e k ∪ e l . Puisque l'hypersurface X W est un champ lisse, la matrice (η k,l ) k,l est inversible et nous notons η k,l les coefficients de la matrice inverse dans cette même base. Alors le produit d'intersection se décompose de la façon suivante dans cette base :

	)
	où X g est l'orbite de l'élément g et le nombre age(g) est rationnel, voir la définition 1.15 pour
	un exemple et [12] en général.
	0.2L'isomorphisme (34) est un isomorphisme d'espaces vectoriels et non d'anneaux car le pro-
	duit d'intersection n'est pas préservé.

Remarque 0.21. Comme

  pour les espaces de modules des courbes stables, la condition de stabilité est nécessaire pour obtenir un champ de Deligne-Mumford. Concrètement, elle impose la présence d'au moins trois points spéciaux (noeud ou point marqué) sur toute composante rationnelle de C qui se contracte sur un point dans X W .

	Fixons des entiers g et n et une classe d'homologie β ∈ H 2 (X W ; Z). Une application stable
	f : (C; σ 1 , . . . , σ n ) → X W
	est un morphisme d'une courbe nodale de genre g, marquée de n points lisses distincts σ 1 , . . . , σ n ,
	vers l'hypersurface X W vérifiant :
	-le morphisme f : C → X W n'a pas d'automorphismes infinitésimaux non-triviaux indui-
	sant l'identité sur X W et fixant les points marqués σ 1 , . . . , σ n (condition de stabilité),
	-le morphisme vérifie f * [C] = β.

Remarque 0.22. La

  définition ci-dessus d'une application stable est valable dans le cas où l'hypersurface X W est une variété. Dans le cas où l'hypersurface X W est un champ, nous devons élargir la notion de courbes nodales en admettant des structures de champ que nous détaillons ici (voir aussi[START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF]). Nous appelons courbe champêtre tout champ de Deligne-Mumford de dimension complexe 1 et nous pouvons lui associer canoniquement une courbe schématique appelée espace grossier ; c'est un fait général sur tout champ de Deligne-Mumford.

	Dans la
	définition d'une application stable, la courbe C est une courbe champêtre dont l'espace grossier
	C est une courbe nodale et les noeuds et points marqués ont un groupe d'automorphisme
	d'ordre fini et non nécessairement le même. De plus, nous imposons la condition suivante sur
	les noeuds. Localement au voisinage d'un noeud {xy = 0} de la courbe C, la courbe champêtre
	s'écrit
	[{uv = 0} /µ r ] ,
	où l'action du groupe cyclique µ r := Z/rZ est donnée par
	ζ • (u, v) = (ζ • u, ζ -1 • v).
	Cette action est dite équilibrée et est nécessaire pour lisser le noeud en familles. Par-ailleurs,
	le morphisme C → C s'écrit localement (x, y) = (u r , v r ). Enfin, nous imposons une dernière
	condition : la représentabilité du morphisme f . En particulier, pour tout point x ∈ C, le
	morphisme induit par f entre les groupes d'automorphismes
	Aut(x) → Aut(f (x))
	est injectif, de sorte que l'ordre r du stabilisateur µ r est borné par l'ordre maximal des stabili-
	sateurs de X W .
	Cycle virtuel
	L'espace de modules M g,n (X W ; β) des classes d'isomorphie d'applications stables est un champ
	de Deligne-Mumford propre mais non lisse en général ; il possède même des composantes ir-
	réductibles de dimensions différentes. Cet espace de modules possède toutefois une propriété
	agréable : l'existence d'un cycle algébrique, appelé cycle virtuel,
	M g,n (X W ; β)

Remarque 0.25. Les

  W ) → E est une section, ∂ k est la dérivée par-rapport à la coordonnée de e k et z ∈ N (X W ) × est un paramètre. propriétés d'une théorie cohomologique des champs ont plusieurs conséquences. D'un point de vue algébrique, elles entrainent l'associativité du produit quantique. D'un point de vue géométrique, elles entrainent la platitude de la connexion de Dubrovin.En prenant la restriction de ce système local à la base C * {t • h | t ∈ C * } où h est la classe hyperplane, nous obtenons un nouveau système local (E A , ∇ A ) illustrant géométriquement la petite cohomologie quantique.

			Préliminaires
	D'un point de vue géométrique, cette déformation du produit usuel est encodée par un
	fibré vectoriel à connexion plate (système local). Le fibré vectoriel est le fibré trivial E =
	H * CR (X W ) × H * CR (X W ) et la connexion est la connexion de Dubrovin, donnée par
	∇ e k α(u) = ∂ k α(u) +	1 z	e k • u α(u),
	où α : H * CR (X		
	Définition 0.23. On appelle cohomologie quantique de l'hypersurface X W la famille d'anneaux
	dont le groupe est H * CR (X W ; C) et le produit est • x , pour x ∈ H * CR (X W ; C). Si nous prenons la
	restriction de cette famille à x = t • h, où t ∈ C et h est la classe hyperplane, alors la famille
	d'anneaux (H * CR (X; C), • t ) est appelée petite cohomologie quantique.
	Remarque 0.24. La cohomologie quantique est une famille d'anneaux qui déforme la structure
	usuelle. En particulier, le produit d'intersection (36) coïncide avec le produit quantique • x pour
	x = 0 et q = 0.		

  le polynôme W g est la partie invariante de W sous l'action de g et (•) G désigne la partie invariante sous le groupe G.Nous commençons par le groupe maximal G = G max des symétries du polynôme W . L'espace de modules pour le couple (W, G max ) classifie les familles (π : C → B; σ 1 , . . . , σ n ; L 1 , . . . , L N ) où π : C → B est une famille plate de courbes champêtres stables de genre g, σ 1 , . . . , σ n sont les sections des points marqués et L 1 , . . . , L N sont des fibrés en droites vérifiant les relations[START_REF] Victor | Conifold transitions and mirror symmetry for complete intersections in Grassmannians[END_REF] 

où le jacobien d'un polynôme P (x 1 , . . . , x r ) est

Jac(P ) := C [x 1 , . . . , x r ] /(∂ 1 P, . . . , ∂ r P ) • dx 1 ∧ • • • ∧ dx r ,

fibré canonique logarithmique. Remarque 0.27. De

  même que dans la remarque 0.22, nous élargissons la notion de courbe aux courbes champêtres. Ici, l'espace grossier C est une courbe nodale stable et le morphisme C → C est un isomorphisme en dehors des noeuds et des points marqués. Le stabilisateur aux points marqués et aux noeuds est d'ordre d et l'action de µ d au-dessus d'un noeud doit être équilibrée, c'est-à-dire donnée localement sur [{u

  Nous les notons donc c FJRW

	Remarque 0.29. Le théorème 2.38 de cette thèse établit la compatibilité entre les cycles c FJRW vir
	et c PV vir pour les couples (W, G max ) avec un polynôme W inversible.
	Plus précisément, les cycles c FJRW vir	et c PV vir sont des applications multilinéaires
	(c vir ) g,n : (H * FJRW (W, G)) ⊗n → H * (S g,n (W, G); C).
	Or, nous avons un morphisme d'oubli st : S g,n (W, G) → M g,n , induisant un morphisme st * en
	cohomologie. Les applications multilinéaires
	(-1) degvir card(G) g deg(st)	st * • (c vir ) g,n : (H * FJRW (W, G)) ⊗n → H * (M g,n ; C),	(42)
	où l'entier degvir est la moitié du degré cohomologique de la classe virtuelle, sont des théories
	cohomologiques des champs sur l'anneau N = C.
	Considérons désormais le groupe G = µ d et définissons un produit quantique par l'équation
	(39), ainsi qu'un système local ((E )	
			vir	et
	c PV vir pour les différencier et nous écrivons c vir lorsqu'une assertion est vraie pour les deux.

A , (∇ ) A ) par les formules (E ) A

  [START_REF] Dolgachev | Weighted projective varieties[END_REF]. Nous avons aussi un morphisme de projection

π : C g,n;k 1 ,...,kn (W, G) → S g,n;k 1 ,...,kn (W, G), ainsi que des fibrés en droites universels L 1 , . . . , L N sur la courbe universelle C g,n;k 1 ,...,kn (W, G). Par-ailleurs, l'équation

[START_REF] Griffiths | On the periods of certain rational integrals[END_REF] 

sur l'espace d'états H * CR (W, µ d ) se généralise au groupe G comme

  Polishchuk et Vaintrob et calculons donc la classe virtuelle c PV vir . Toutefois, nous avons démontré le théorème de compatibilité 2.38 entre cette classe et la classe c FJRW

vir

, ce qui permet par-exemple d'appliquer notre calcul à c FJRW vir en vue de la symétrie miroir, voir le chapitre 3.

  Nous disons que le morphisme α j est non-dégénéré lorsqu'il induit un système linéaire sans point base au-dessus de tout point géométrique s ∈ S, voir la définition 2.7. Le complexe récursif est non-dégénéré lorsque tous les morphismes α 1 , . . . , α N le sont.Un complexe récursif admet une Z N +1 -graduation naturelle, que nous définissons dans la section 2.2.3. Lorsqu'il est non-dégénéré, nous montrons que les groupes de cohomologie le long de cette graduation correspondent à la cohomologie de Koszul de systèmes linéaires sans points bases et sont donc presque tous nuls (sauf un nombre fini) d'après le théorème de Green[START_REF] Mark | A new proof of the explicit Noether-Lefschetz theorem[END_REF] Théorème 2]. Nous démontrons dans les sections 2.2.3 et 2.2.4 le théorème principal sur les complexes récursifs. Théorème 0.47 (Voir le théorème 2.8 et le corollaire 2.10). Soit (T, δ) un complexe récursif non-dégénéré avec la condition d'annulation A N = 0. Alors les groupes de cohomologie H ± (T ) sont des fibrés vectoriels sur S et l'évaluation en K-théorie de (T, δ) vaut

où les espaces vectoriels A j,s et B j,s sont le noyau et le conoyau de l'application linéaire β ∨ j,s au-dessus du point s.

  G max . Théorème 0.49 (voir le thm 2.25 pour W inversible et le thm 0.53 pour g > 0). En genre zéro et quelques soient les automorphismes γ(1), . . . , γ(n) ∈ G, la classe virtuelle définie par Polishchuk et Vaintrob vaut

	c PV vir (e γ(1)

  nous vérifions que chaque sous-espace de cette somme est de dimension 1 pour m > 0 et que le sous-espace pour m = 0 est nul. Nous rappelons que la théorie cohomologique des champs associée est donnée par l'équation[START_REF] Givental | Elliptic Gromov-Witten invariants and the generalized mirror conjecture[END_REF] et nous verrons que nous avons une base naturelle e 1 , . . . , e r-1 de l'espace d'état, définie par (1.8). Le potentiel (23) de la théorie r-spin dans cette base dépend de variables T α d , avec d ≥ 0 et 1 ≤ α ≤ r -1. D'après [27, équation 2.41], nous faisons le changement de variables

  dn (u 0 ) est une série entière en u 0 . Il est important de penser à la variable u d comme à une fonction de x et à u d+1 comme à la dérivée de u d par-rapport à x.Notons A 1 cet espace de fonctions et définissons la graduation deg(u k ) = k. Il existe une généralisation A N de cet espace où les variables sont u α d avec d ≥ 0 et 1 ≤ α ≤ N , mais nous restons pour l'instant à N = 1 pour simplifier les notations, voir la section 4.3.2 pour les définitions générales. En pensant aux variables u d comme dépendant de x, nous définissons un endomorphisme ∂ x de A 1 correspondant à la dérivée par-rapport à x, c'est-à-dire Partons d'une théorie cohomologique des champs et montrons comment lui associer un système hamiltonien. L'entier N est la dimension de l'espace d'état V de la théorie et prenons des coordonnées u 1 0 , . . . , u N 0 par-rapport à une base e 1 , . . . , e N fixée. Nous considérons le crochet de Poisson défini par l'inverse η •,• de la matrice de la forme bilinéaire de la théorie dans la base e 1 , . . . , e N , c'est-à-dire N et c'est là que le cycle DR entre en jeu. Pour tout n-uplet d'entiers (a 1 , . . . , a n ) dont la somme est nulle, il existe un cycle de l'espace de modules M g,n noté DR g (a 1 , . . . , a n ) et appelé cycle de ramification double, abrégé en cycle DR. La classe cohomologique obtenue par dualité de Poincaré est dans l'anneau tautologique et est de degré 2g. Nous renvoyons à la section 4.3.3 pour sa construction et ses propriétés. Si nous travaillons avec la restriction des cycles DR à l'espace de modules M ct g,n des courbes stables de type compact, celles pour lesquelles le graphe dual est un arbre, alors nous disposons des formules (4.27) en termes des classes tautologiques standards [50]. En particulier, puisque la classe de Chern maximale du fibré de Hodge c max (E) s'annule sur M g,n \ M ct g,n , nous pouvons calculer des intégrales du type

	0.5. Relations entre théories cohomologiques des champs et hiérarchies
	intégrables						61
	Hiérarchie DR					
	f , g =	α,β	δf δu α 0	• η α,β • ∂ x	δg 0 δu β	.
	Il ne reste plus qu'à définir les hamiltoniens h α d ∈ Λ
	∂ x :=	d≥0	u d+1 •	∂ ∂u d	.
	δh δu 0	:=				
	1 1 , . . . , h N 1 , h 1 2 , . . . ∈ Λ N vérifiant la relation de n = 0 pour tous entiers m, n. Ces fonctionnelles sont appelées hamiltoniens. m , h conservation h α β
	Le système d'équations s'écrit alors					
	∂u α 0 d ∂τ β	= u α 0 , h β d ,
	pour tous d ≥ 1 et 1 ≤ α, β ≤ N . Les inconnues u 1 0 , . . . , u N 0 sont des fonctions dépendant des variables τ β
							α m , h β n = 0 entraine que les flots de ∂ τ α m et
	de ∂ τ β n commutent.					

L'ensemble des fonctionnelles locales est Λ 1 := A 1 /Im

(

∂ x ) et nous notons h → h la projection. La dérivée variationnelle de la fonctionnelle h est définie par d≥0 (-∂ x ) d ∂h ∂u d . Il s'agit bien d'une dérivée variationnelle telle qu'elle apparait par-exemple dans les équations d'Euler-Lagrange, voir la section 4.3.1 pour plus de détails. Système hamiltonien Pour définir un système hamiltonien sur l'espace Λ N (défini ci-dessus pour N = 1 et à la section 4.3.2 pour N quelconque), nous devons choisir un crochet de Poisson {•, •}, c'est-àdire un opérateur bilinéaire anti-symétrique qui vérifie les identités de Leibniz et de Jacobi. Nous devons aussi choisir des fonctionnelles h d et de la variable x, avec u α d+1 = ∂ x u α d , comme nous l'avons expliqué au paragraphe précédent. Notons que la relation de conservation h DRg(a 1 ,...,an)

  le groupe G est un groupe d'automorphismes de W contenant j défini par[START_REF] Faber | Program to compute intersections on the moduli space of pointed curves[END_REF]. De plus, nous rappelons que pour tout γ ∈ G, nous avons un élément e γ de l'espace d'états, défini par (1.8), invariant sous le groupe maximal G max .

	Théorème 0.53 (voir le corollaire 2.40). En tout genre et quelques soient les automorphismes
	γ(1), . . . , γ(n), nous avons

  est le fibré de Hodge, les nombres t 1 , . . . , t N +1 vérifient t 1 := t et les théories quantiques des singularités de type chaines ou Fermat et, dans une certaine mesure, boucle. Nous renvoyons à la section 4.3.5 pour des calculs détaillés et citons simplement quelques équations pour la théorie 3-spin :

	t a j

j • t j+1 = 1, pour 1 ≤ j ≤ N ,

et où les entiers r 1 , . . . , r N comptent les états larges, c'est-à-dire r j := card {i | γ j (i) = 1}. Grâce à ce théorème et en utilisant le programme informatique A, nous pouvons calculer explicitement les fonctions g α d et donc les hamiltoniens h α d , pour

  et 2.[START_REF] Givental | Equivariant Gromov-Witten invariants[END_REF].PréliminairesCi-dessous, nous relions dans un schéma les différentes parties de cette thèse.
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  Theorem 1.2]. Theorem 2.30 establishes the compatibility for (almost) every invertible polynomials with maximal group of symmetries. Both cycles lead to cohomological field theories, see [35, Theorem 4.1.8] for the FJRW virtual cycle and [72, Sect. 5] for Polishchuk and Vaintrob's cycle. Therefore, we also call Polishchuk and Vaintrob's class a virtual class and denote it by c PV vir , while c FJRW

	vir	stands for the
	FJRW virtual class. Quantum invariant with the upper-script PV (resp. FJRW) refers to an
	intersection number against c PV vir (resp. c FJRW vir	

  orbifolds 67 is finite over C and so is the group Aut(W ). The zero locus {W = 0} of a non-degenerate polynomial W is a smooth hypersurface within the weighted projective space P(w 1 , . . . , w N ). By the adjunction formula, its canonical bundle vanishes when d = w 1 + • • • + w n . Under this condition we refer to W as a Calabi-Yau polynomial. A Landau-Ginzburg (LG) orbifold is a pair (W, G) with W a non-degenerate (quasi-homogeneous) polynomial and G an admissible group. We regard (W, G) as a morphism W : C N /G → C where C N /G is a quotient stack.

	Remark 1.2. Under the Calabi-Yau condition, the group SL(W ) of diagonal automorphisms
	with determinant 1 is admissible and we set SL(W ) := SL(W )/ j .
	Definition 1.3. Consider a non-degenerate polynomial

  .11) where we notice that B γ = B γ -1 .Proof. By [72, Lemma 6.1.1], a computation of the three-point Polishchuk and Vaintrob's correlators yields the bilinear pairing, so that we will deduce equation (1.11) from Theorem 2.25. It seems difficult (see 1.17) to obtain this explicit formula directly from the definition via the residue pairing[START_REF] Chiodo | Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence[END_REF] Equation (4)] or via the canonical pairing on matrix factorizations[START_REF] Polishchuk | Matrix factorizations and cohomological field theories[END_REF] Equation (2.24)].

	Remark 1.14.

  ).

	Chapter 1. Quantum singularity theory
	By [71, Lemma 1.2.1], any matrix factorization U in MF(A γ , W γ ) satisfies
	Φ * (Ch(U )) = Ch(Φ(U )),		(1.38)
	so that the following diagram is commutative.			
	MF(A γ , W γ )	MF(S, 0)	
	Ch		Ch	
	⊗ n i=1 H γ(i) Φ *	/ / H * (S)	
	Thus Definition 1.27 is compatible with [72, Equation (5.15)] on any base scheme S, and yields
	a morphism			
	c PV vir : H ⊗n -→ H			
	Definition 1.27. The virtual class evaluated at e(C γ ) is	
	c PV vir (e(C γ )) = Ch H + (T ) -H -(T )	Td( B) Td(A)	∈ H * (S, C)	(1.37)
	and it extends in a linear map			
	c PV			

vir : H ⊗n -→ H * (S; C).

Φ / / * (S g,n ; C).

  .48) 2.3. Computing Polishchuk and Vaintrob's virtual class 105 and the evaluation of Polishchuk-Vaintrob's virtual class (1.37) in genus zero on the state e(C γ ) equals

		N
	c PV vir (e(C γ )) = lim λ→1	j=1

  e α 1 , . . . , e αp , e u•λ 1 , . . . , e u•λq , (e j•u -1 ) q ) g,p+2q , . . . , e αp , e λ 1 , . . . , e λq ) g,p+q • q k=1 c FJRW vir

	and	
	c FJRW vir	(e α 1

  . Let e α 1 , . . . , e αp be narrow states. The factorization property (see Def. 0.9) reads c PV vir (e α 1 , . . . , e αp , e u , e j•u -1 ) g,p+2 PV vir (e -, e u , e j•u -1 ) 0,3 c PV vir (e + , e u , e j•u -1 ) 0,3 and the same holds with FJRW instead of PV. Then we take the transpose of the equality and we use the invertibility of B PV to get c PV vir (e α 1 , . . . , e αp , e -) g,p+1 c PV vir (e α 1 , . . . , e αp , e + ) g,p+1 -, e + ). By linearity of the virtual class, we obtain c PV vir (e α 1 , . . . , e αp , u) g,p+1 = c FJRW vir (e α 1 , . . . , e αp , Ψ(u)) g,p+1 for u = e -and for u = e + , which concludes the lemma when e α 1 , . . . , e αp are narrow states. In general, we proceed by induction on the number of broad states among e α 1 , . . . , e αp . PV vir (e u , e j•u -1 , e -) g,p+1 c PV vir (e u , e j•u -1 , e + ) g,p+1

	2.4. Compatibility Theorem for virtual classes		115
	Proof. A particular case of (2.63) is				
	c				
	= Ψ T •	c FJRW vir c FJRW vir	(e α 1 , . . . , e αp , e -) g,p+1 (e α 1 , . . . , e αp , e + ) g,p+1	,	(2.63)
	where Ψ is written in the basis (e Lemma 2.36. The morphism Ψ is an isomorphism. Let us denote Φ := Ψ -1 . Then we have
	the equality (2.57)				
	Φ T • η • Φ = η			

equals c PV vir (e α 1 , . . . , e αp , e -) g,p+1 c PV vir (e α 1 , . . . , e αp , e + ) g,p+1 T • η • c By Proposition 2.28, we know that c PV vir (e α 1 , . . . , e αp , e u , e j•u -1 ) g,p+2 = c FJRW vir (e α 1 , . . . , e αp , e u , e j•u -1 ) g,p+2 . Replacing u by v in the formulas above, we obtain c PV vir (e α 1 , . . . , e αp , e -) g c PV vir (e α 1 , . . . , e αp , e + ) g T • η • (B PV ) T = c FJRW vir (e α 1 , . . . , e αp , e -) g c FJRW vir (e α 1 , . . . , e αp , e + ) g T • η • (B FJRW ) T .

  If the argument h is a sum of states of degrees less than 2, then the powers of z are less than 1. Furthermore, the coefficient of z is of the form ω 0 (h)e j where ω 0 is a scalar function supported on the subspace of degree-two states.

							1 2	deg(e γ(i) ) +	1 2	deg(e ω(γ) -1 ).	(3.21)
	First, we show that for any state e γ , we have
				0 ≤	1 2	deg(e γ ) ≤ N -2	N j=1	q j =: ĉW .	(3.22)
	It comes from					
	1 2	deg(e γ ) +	1 2	deg(e γ -1 ) =	N j=1

Proof. To prove

(3.21)

, we use

(3.18) 

and we get the powers of z in the big I-function p z := 1 -n + degvir + δ e ω(γ) =0 + card {j s.t. case 2 for j and not case 1 for j -1} .

The last two terms give zero contributions in

(3.19)

, in the second case because M j (γ) is zero. Now we prove p z ≤ 1, providing that the argument h is a sum of states of degrees ≤ 2.

  2 e k 3 j 3 e k 4 j 4 e k 6 j 6 e j 6 , , e j 3 , e j 6 = -2 and e 4 j 2 e j 6 = -

	3.3. Computing the J-function						135
	We have already computed							
		e j 3 2 121	(see (2.51) and (2.52)).
	with (α 2 , α 3 , α 4 , α 5 ) = 1, 1 22 , 5 726 , 3 242 , and the only possibilities for (k 2 , k 3 , k 4 , k 6 ) are (4, 0, 0, 0),
	(2, 1, 0, 0), (1, 0, 1, 0), or (0, 2, 0, 0). Therefore, the following relation between the correlators
	must hold	121 12	e 4 j 2 e j 6 +	11 2	e 2 j 2 e j 3 e j 6 +	5 3	e j 2 e j 4 e j 6 +	1 4	e 2 j 3 e j 6 = 3.	(3.28)

  + • • • + u 0 as before. Let τ be a function of the variables x = t 1 , t 2 , t 3 , . . . satisfying the relation

	Res(L n/r ) =	∂ 2 ∂t n ∂x	ln(τ )	(4.8)
	for any integer n ≥ 1. Furthermore, we can check that	
	Res			

  The Givental space H from Sect. 3.3.1 looks like m copies of the vector space V introduced for the definition of the fermionic Fock space, where m is the dimension of the state space H. Moreover, the quantization procedure from[START_REF] Coates | Riemann-Roch Theorems in Gromov-Witten Theory[END_REF] Sect. 1.3.3] can be reformulated in terms of operators A on the bosonic Fock space. For instance, the quantization of the operator A

									.10)
	Applying this operator exp(t A) to the function τ = 1 + αp 1 + αβ 2 (p 2 1 -p 2 ) from Example 4.10,
	we get another τ -function of the KP hierarchy		
	exp(tp 1	∂ ∂p 1	+ 2tp 2	∂ ∂p 2	)(1 + αp 1 +	αβ 2	(p 2 1 -p 2 )) = 1 + αe t p 1 +	αβ 2	e 2t (p 2 1 -p 2 ).
	Remark 4.13.								

  Jac 1 (a 1 , . . . , a n ) = -

								a i a j δ J 0 ,				(4.27)
			J⊂{1,...,n}	i,j∈J				
			|J|≥2	i<j				
											
	DR Jac g (a 1 , . . . , a n ) =	1 g!	   	n j=1	a 2 j ψ j 2	-	J⊂{1,...,n}	i,j∈J	a i a j δ J 0 -	1 4 J⊂{1,...,n}	g-1 h=1
								|J|≥2	i<j		

  , the relation between the equations (4.27) and (4.26) is DR g (a 1 , . . . , a n ) | M ct g,n = DR Jac g (a 1 , . . . , a n ). In particular, we have DRg(a 1 ,...,an) c top (E) ∪ α = DR Jac g (a 1 ,...,an) c top (E) ∪ α (4.28) for any cohomological class α ∈ H * (M g,n ; C), because the Euler class of the Hodge bundle E on M g,n vanishes outside of M ct g,n . Furthermore, integrals of the form (4.28) are homogeneous polynomials of degree 2g in the variables a 1 , . . . , a n , and we can compute them explicitly using equations (4.27) (see examples in Sect. 4.3.5).

  First equations for the 3-KdV hierarchyIn Example 4.5, we have computed equations (4.6) and (4.7), so that the first equations of the 3-KdV hierarchy are

				∂u 0 ∂t 1	= u 0											∂u 1 ∂t 1	= u 1	(4.32a)
				∂u 0 ∂t 2	= -	2 3	u 1 u 1 + u 0 -	2 3	u 1						∂u 1 ∂t 2	= 2u 0 -u 1	(4.32b)
				∂u 0 ∂t 3	= 0												∂u 1 ∂t 3	= 0	(4.32c)
	and																
	∂u 0 ∂t 4	=	4 3	u 0 u 0 -	u 2 1 u 1 3	+	2 3	(u 0 u 1 + u 0 u 1 ) -	4 3	u 1 u 1 +	u 1 u 1 2	+	1 3	u (4) 0 -	2 9	u (5) 1	(4.33a)
	∂u 1 ∂t 4	=	4 3	(u 0 u 1 + u 0 u 1 ) -	2 3		(u 1 ) 2 + u 1 u 1 +	2 3	u 0 -	1 3	u	(4) 1 .	(4.33b)

  2,1) := 1 3! a 1 ,a 2 ,a 3 =0 a 1 +a 2 +a 3 =0 M 0,4 ψ 1 • c 0,4 (e ⊗3 1 ⊗ e 2 )(p 1,a 1 p 1,a 2 p 2,a 3 + p 1,a 1 p 2,a 2 p 1,a 3 + p 2,a 1 p 1,a 2 p 1,a 3 ),where we use that DR 0 (0, a 1 , a 2 , a 3 ) = M 0,4 and that c top (E ∨ ) = 1 in genus-zero. To applythe transformation Q, notice that, for f = (v 1,0 ) 2 • v 2,0 , we get m∈Z a 1 ,a 2 ,a 3 =0 a 1 +a 2 +a 3 =m p 1,a 1 p 1,a 2 p 2,a 3 • e imx = m∈Z P m • e imx ,after the substitution v α,k := m =0 (im) k p α,m e imx . Hence the term above becomesQ(T (0,2,1) ) = 1 3! M 0,4 ψ 1 • c 0,4 (e ⊗3 1 ⊗ e 2 ) • 3(v 1,0 ) 2 • v 2,0 .The term with (g, n 1 , n 2 ) = (1, 2, 0) isT (1,2,0) := 2 a 1 ,a 2 =0 a 1 +a 2 =0 DR 1 (0,a 1 ,a 2 ) c top (E ∨ ) • ψ 1 • c 1,3 (e ⊗3 1 ) p 1,a 1 p 1,a 2 .

  0,2) := 2 2 a 1 ,a 2 =0 a 1 +a 2 =0 DR 2 (0,a 1 ,a 2 ) c top (E ∨ ) • ψ 1 • c 2,3 (e 1 ⊗ e ⊗22 ) p 2,a 1 p 2,a 2 .

	By equation (4.27), we have						
	DR Jac 2 (0, a 1 , a 2 ) =	1 2	a 2 1 ψ 2 + a 2 2 ψ 3 2	-a 1 a 2 (δ 0 {2,3}	+ δ 0 {1,2,3}	) -	1 4	(a 1 + a 2 ) 2 (δ 1 {2,3}	{1,2,3} 1 + δ

  (e 1 ) where we write c E ∨ g,n for c top (E ∨ )•c g,n to simplify notations. With a lot of helps from our computer program (see Annexe A and Theorem 2.40), we get the value DR 2 (0,a 1 ,a 2 ) ψ 1 c E ∨ 2,3 (e 1 ⊗ e ⊗2 2 ) =

	1 ) c E ∨ 1,1 (e 1 ) ψ 1 c E ∨ M 1,1 M 1,1 2 ) • 1,4 (e 1 ⊗ e ⊗3 ψ 1 ψ 4 c E ∨ ψ 1 c E ∨ 1,4 (e 1 ⊗ e ⊗3 2 ) • 1,1 (e 1 ) c E ∨ 1,3 (e ⊗3 2 ) • M 0,3 ψ 1 c E ∨ 0,3 (e ⊗2 1 ⊗ e 2 ) • ψ 1 c E ∨ 1,2 (e ⊗2 1 ) • M 0,4 c E ∨ 0,4 (e ⊗4 2 ) • M 1,1 1 + a 4 2 8 • 7 1080 + a 2 1 a 2 2 4 • 13 1080 -(a 1 + a 2 ) 2 (a 2 1 + a 2 2 ) 8 -1 36 -1 12 + -1 M 1,1 c E ∨ 12 -1 c E ∨ 1,1 (e 1 ) 12 -(a 1 + a 2 ) 4 32 -1 36 -1 12 + 0 + -1 12 -1 12 + 0 + 0 -2 = -M 1,4 M 1,4 M 1,3 M 1,2 17 34560 (a 4 1 + a 4 2 ) -5 1728 (a 3 1 a 2 + a 1 a 3 2 ) -1 5760 a 2 -1 12 1 a 2 2 . 1 3 After the transformation Q, we get -(a 1 + a 2 ) 4 32 -(a 1 + a 2 ) 4 32 + (a 1 + a 2 ) 4 16 + (a 1 + a 2 ) 4 16 1,1 a 4 Q(T (2,0,2) ) = -2 17 34560 v 2,0 v 2,4 + 5 1728 v 2,1 v 2,3 + 1 11520 (v 2,2 ) 2 .	-1 12

  ) 2 -2v 2,0 v 2,2 -2(v 2,1 ) 2

															1,3 6 . The other variational
	derivative equals											
	δh 1,1 δv 2,0	=	(v 1,0 ) 2 2	+	4(v 2,0 ) 3 36	-	(v 2,1 24		+ 2	17 311040	-	5 15552	+	1 103680	2v 2,4
		=	(v 1,0 ) 2 2	+	(v 2,0 ) 3 9	+	(v 2,1 ) 2 24	+	v 2,0 v 2,2 12	+	2 216	v 2,4 .
	hence the other equation								
			∂v 1,0 ∂τ 1,1	= v 1,0 v 1,1 +	(v 2,0 ) 2 v 2,1 3	+	v 2,1 v 2,2 6	+	v 2,0 v 2,3 12	+	2 216	v 2,5 .
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Une somme de Thom-Sebastiani est une somme de polynômes dont les ensembles de variables sont disjoints entre eux.

Ce théorème est valable pour les sommes de Thom-Sebastiani de polynômes de type Fermat et chaine, et dans une certaine mesure, pour les polynômes de type boucle, voir Théorème 2.25.

Une somme de Thom-Sebastiani est une somme de polynômes dont les ensembles de variables sont disjoints entre eux.

En mécanique classique, les systèmes physiques ont un nombre fini de degrés de liberté et sont donc décrits par un nombre fini d'équations différentielles. Celles-ci sont bien représentées par le formalisme hamiltonien, où l'objet central est un opérateur différentiel sur une variété de Poisson de dimension finie. Un système intégrable est alors un problème physique admettant suffisamment d'intégrales premières du mouvement, c'est-à-dire de quantités conservées tout au long des trajectoires.En mécanique quantique, plus précisément en théorie quantique des champs, les systèmes physiques sont encore décrits par un formalisme hamiltonien, ou bien de façon équivalente par un formalisme lagrangien. Cependant, c'est désormais sur un espace de dimension infini, menant généralement à une infinité d'équations différentielles dépendant d'une infinité de variables.

The multiplicative property c top (V + W ) = c top (V ) • c top (W ) is the starting point of cohomological field theory, namely the factorization property.

Strictly speaking, the class c t (•) is defined for t = 1 in terms of Chern characters, see Definition 2.22. Indeed, the power series (2.2) has only a radius of convergence equal to 1 and the formulas (2.2) and (2.33) coincide for |t| < 1, by Lemma 2.21.

We recall that by (1.3), we have assumed that a j ≥ 2 for every j in the whole paper. For this theorem, the extra condition a N ≥ 3, or equivalently q N < 1 2 , is needed.

Note that the vanishing condition comes from the fact that E is a vector bundle.

We call this function big because it takes its argument in the whole state space. In the opposite, the so-called small I-function takes its argument in the multiples of the class e j 2 , see Theorem

3.12. 

Remerciements

That's all Folks! Bibliography

is non-zero. Then we will use the factorization property (see Def. 0.9) to determine a morphism Φ as in the following theorem and to prove that it respects the pairing. Theorem 2.33. Let W be a loop polynomial W = x a 1 1 x 2 + • • • + x a N N x 1 with N even. We assume that W is distinct from the polynomials x a 1 1 x 2 + x 2 2 x 1 and x 2 1 x 2 + x a 2 2 x 1 . There exists an isomorphism Φ : H → H rescaling the broad sector (i.e. the isomorphism Φ is the identity on each narrow state) such that c FJRW vir (u 1 , . . . , u n ) g,n = c PV vir (Φ(u 1 ), . . . , Φ(u n )) g,n (2.56) for every elements u 1 , . . . , u n of the state space and for every genus g. This isomorphism preserves the pairing (and the grading), i.e.

where η is the inverse matrix of the pairing.

Proof. First, we define two generators of the group Aut(W )

u := diag exp 2iπu 1 , . . . , exp 2iπu N , v := diag exp 2iπv 1 , . . . , exp 2iπv N ,

where we define

Let us consider the matrices B PV := c PV vir (e -, e u , e j•u -1 ) 0,3 c PV vir (e + , e u , e j•u -1 ) 0,3 c PV vir (e -, e v , e j•v -1 ) 0,3 c PV vir (e + , e v , e j•v -1 ) 0,3 (2.58) and B FJRW , where we replace each PV by FJRW.

Lemma 2.34. The states e u , e j•u -1 , e v , and e j•v -1 are narrow. Furthermore, the determinant of the matrix B PV does not vanish.

Proof. We begin with a useful equality for loop polynomials:

(2.59)

Then we have so that we identify the variables x and t 1 .

Example 4.5. From the previous example, we can derive the second equation of the 3-KdV hierarchy:

Explicitly, we have

1 , (4.6a)

With the same method as in the above example, we can compute the fourth equation of the 3-KdV hierarchy and we obtain

1 , (4.7a)

From τ -functions to solutions

There is a correspondence between solutions and τ -functions of an integrable hierarchy. Here, we do not define what a τ -function in general is, but we explain how to construct solutions of the r-KdV hierarchy from the data of a τ -function and we refer to [START_REF] Dijkgraaf | Intersection theory, integrable hierarchies and topological field theory[END_REF]Sect. 3.4] for the other direction. We end with Witten's generalized conjecture for the r-spin theory.

The residue of a pseudo-differential operator

Chapter 4. Integrable hierarchies for sufficiently large k. One can also write it as a possibly infinite linear combination of the elements v λ from the basis. The boson-fermion correspondence is an isomorphism between the bosonic and fermionic Fock spaces with respect to the basis defined above

for every partition λ. The elements corresponding to the empty partition are called vacuum vectors, we have s ∅ = 1 and

Solutions of the KP hierarchy

We say that a vector τ ∈ Λ ∞ 2 V of the fermionic Fock space is decomposable if there are

Theorem 4.9 (see for instance [START_REF] Kazarian | KP hierarchy for Hodge integrals[END_REF]Theorem 6

for the KP hierarchy if and only if its image under boson-fermion correspondence can be represented by a decomposable vector

so that the corresponding bosonic element

is a τ -function for the KP hierarchy.

Linear action on the solutions of the KP hierarchy

Let gl(∞) denote the Lie algebra of differential operator in z with Laurent coefficients. An operator is represented in the basis z k k∈Z by an infinite matrix, i.e. z l → k∈Z a k,l z k .

We associate an operator A acting on the fermionic Fock space to every operator A ∈ gl(∞). The action is defined by

when the operator A is not diagonal and by

when the operator A is given by a diagonal matrix with coefficients (. . . , a -1 , a 0 , a 1 , . . . ). Notice that A → A is not a Lie algebra morphism, because the operators x m commute for different m, but we have x m , x n = nδ m+n . Denote by gl(∞) the one-dimensional central extension of the Lie algebra gl(∞), generated by the operators A and by the scalar operators. The Lie algebra gl(∞) acts on the fermionic Fock space and preserves the set of decomposable vectors.

Appendix A

Computer program

Here, we describe how to compute explicitly any integral

(A.1) for any chain polynomial, any admissible group and any Aut(W )-invariant states u 1 , . . . , u n , thanks to our main result 2.40. We give details about our computer program, written in MAPLE language.

We fix a chain polynomial

N with a group G containing the grading element j. An element γ of this group uniquely defines an Aut(W )-invariant state e γ , via equation (1.8). We denote by w 1 , . . . , w N the weights of W and by d its degree.

We start with small programs which are convenient. To obtain the list a 1 , . . . , a N from the weights and degree, we use and has a generator given by the diagonal matrix u, see section 2.4.2. Here, we prefer to choose u (-1) N as a generator. Hence, any subgroup G m of Aut(W ) is determined by a generator u (-1) N m given by Gru:=proc(m,A,p) local N,j,G; option remember; N:=nops(A):

where broad is a program to modify the matrix according to equation (3.12) broad:=proc(G) local N,j,GG; option remember; N:=nops(G):

The special grading element j is important and its power j m is encoded into Furthermore, the following program determines an integer m such that j = u (-1) N mu m unit:=proc(mu,q,r) local k,ru,grj; option remember; ru:=r/gcd(r,mu): grj:=0: for k to ru-1 while grj=0 do if frac(mu*k/r-q)=0 then grj:=k: fi:od: grj: end:

At last, the program complete:=proc(g,v,ru,grj,n,sM) local m,k; option remember; m:=-1: for k from 0 to ru-1 while m<0 do if frac(v*(sM+k)-v*grj*(2*g-1+n))=0 then m:=k: fi:od: m: end:

gives the unique diagonal matrix u (-1) N m completing a correlator with respect to the selection rule (1.15).

For a chain polynomial of degree deg and weights W , we compute the degree degvir of the virtual class in genus g, with group G mu and type (u (-1) N mu M 1 , . . . , u (-1) N mu Mn ) given by the list M , with the program Finally, we are ready to state the three main programs. The first one computes integrals with ψ-classes according to Theorem 0.16. The second program is an application of Chiodo's formula [START_REF] Hain | Normal Functions and the Geometry of Moduli Spaces of Curves[END_REF]. The third program computes our characteristic class (2.33) and, together with Theorem 2.40, yields intersection numbers with the virtual class. 

and with the Chern characters Ch Remark A.1. To obtain the value of (A.1), we have to take W := [w 1 , . . . , w N , 0], where the last zero stands for the dual of the Hodge bundle. Furthermore, we have to take the constant term in x and to multiply the result by (-1) degvir card(G) 1-g .

Example A.2. We consider the polynomial W = x 2 1 x 2 + x 5 2 with group generated by j = u 4 and we want to compute

For that, we put -5^(1-2)*Big(2,4,5,[2,1,0], [START_REF] Arbarello | Geometry of Algebraic Curves[END_REF], [START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF] For the inverse of the Fourier transform.

Fourier:=proc(P,M,r) local V,i,resultat,A,k,n,coefff,res,sign,o: if P=0 then 0: else n:=nops(M): o:=degree(P): To give a list containing all sub-lists of a list. To put a list in lexicography order.

Rearrange:=proc(M,K::list) local m,k,KK,P,i,j,e; option remember; m:=nops(M): k:=nops(K): if m=0 then P:=[]: for i to k do P:=[op(P),i]: od: for i to k do e:=0: for j from i-1 by -