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Résumé

La cryptographie à base de codes correcteurs, introduite par Robert McEliece en 1978,
est un candidat potentiel au remplacement des primitives asymétriques vulnérables
à l’émergence d’un ordinateur quantique. Elle possède de plus une sécurité classique
éprouvée depuis plus de trente ans, et permet des fonctions de chiffrement très rapides.
Son défaut majeur réside dans la taille des clefs publiques. Pour cette raison, plusieurs
variantes du schéma de McEliece pour lesquelles les clefs sont plus aisées à stocker ont
été proposées ces dernières années.
Dans cette thèse, nous nous intéressons aux variantes utilisant soit des codes alternants
avec symétrie, soit des codes de Goppa sauvages. Nous étudions leur résistance aux
attaques algébriques et exhibons des faiblesses parfois fatales. Dans chaque cas, nous
révélons l’existence de structures algébriques cachées qui nous permettent de décrire
la clef secrète par un système non-linéaire d’équations en un nombre de variables très
inférieur aux modélisations antérieures. Sa résolution par base de Gröbner nous permet
de trouver la clef secrète pour de nombreuses instances hors de portée jusqu’à présent et
proposés pour un usage à des fins cryptographiques. Dans le cas des codes alternants
avec symétrie, nous montrons une vulnérabilité plus fondamentale du processus de
réduction de taille de la clef.
Pour un déploiement à l’échelle industrielle de la cryptographie à base de codes cor-
recteurs, il est nécessaire d’en évaluer la résistance aux attaques physiques, qui visent
le matériel éxécutant les primitives. Nous décrivons dans cette optique un algorithme
de déchiffrement McEliece plus résistant que l’état de l’art.

Abstract

Code-based cryptography, introduced by Robert McEliece in 1978, is a potential candi-
date to replace the asymetric primitives which are threatened by quantum computers.
More generral, it has been considered secure for more than thirty years, and allow
very vast encryption primitives. Its major drawback lies in the size of the public keys.
For this reason, several variants of the original McEliece scheme with keys easier to
store were proposed in the last years.
In this thesis, we are interested in variants using alternant codes with symmetries
and wild Goppa codes. We study their resistance to algebraic attacks, and reveal so-
metimes fatal weaknesses. In each case, we show the existence of hidden algebraic
structures allowing to describe the secret key with non-linear systems of multivariate
equations containing fewer variables then in the previous modellings. Their resolu-
tions with Gröbner bases allow to find the secret keys for numerous instances out
of reach until now and proposed for cryptographic purposes. For the alternant codes
with symmetries, we show a more fondamental vulnerability of the key size reduction
process.
Prior to an industrial deployment, it is necessary to evaluate the resistance to physical
attacks, which target device executing a primitive. To this purpose, we describe a
decryption algorithm of McEliece more resistant than the state-of-the-art.
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General Introduction

Context

Cryptology studies the methods to protect secret information. Historically, cryptology was
a major concern for governments during wars, as the information exchanged between the com-
mand center and the mission theater is critical for the success of the operation. Throughout
history, militarians have used cryptology to protect their communication. A famous and old
example is the method used by Julius Caesar to protect his private correspondence. A more
recent example is provided by the Enigma machine used by the German militaries from 1920
until the end of World War II. It is a common belief that the discovery by Polish and British
scientists of a method to circumvent the protection applied to messages by Enigma shortened
the war by two years.

Nowadays, the use of cryptology is not confined to military communication anymore. The
need for secure communication concerns every one, as the electronic mail and transactions
are sent through public networks. We also need to protect our identities when we identify on
remote services. Willingly or not, smartphone owners store a considerable amount of data
on their private lives on a device which is constantly connected to networks whose security is
unclear. Dealing with these problems, amongst others, is in the scope of modern cryptology.

A milestone was reached in cryptology in 1976 with the advent of public-key cryptography.
Before this date, for Alice and Bob to communicate secretly, they had to share a common
secret prior to their message exchange. For instance, Caesar had to transmit securely a secret
shift to the chosen recipient. This secret exchange becomes highly unconvenient when a
growing number of entities wish to communicate. The breakthrough described in 1976 by
Diffie and Hellman consisted in describing how Alice and Bob can publicly agree on a value
which will be known by only the two of them (a secret), so that even someone able to intercept
all their exchanges cannot deduce information.

Cryptanalysis is the field of cryptology dedicated to bypassing the methods used to protect
information and recover data that were intended to remain secret for unauthorized users. The
process of recovering a specific hidden information is often referred to as an attack. Evaluating
the feasability of an attack is of crucial importance to guarantee the security of protected data.
Indeed, when selling or using a device implementing cryptographic functions, it is mandatory
to estimate the resistance of the device to all the known attacks. This is what we strive to do
in this thesis, in a specific domain of cryptography that we will describe.

Error-Correcting Codes

Error-correcting codes are mathematical tools originally aiming at protecting data from
transmission errors. The general idea is, when sending a message, to add some redundancy
to this message so that, if some bits are alterated during the transmission the receiver can
correct the errors and recover the original message. The function adding redundancy is called

3
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the encoding, the one correcting the errors in the received message is the decoding. In practice,
the decoding is successful if the number of bits alterated is lower than a threshold called the
correction capacity of the encoding.

Error-correcting codes are present everywhere in digital transmissions: payloads on inter-
net and messages sent by satellites through space are protected against transmission errors,
music stored on compact discs is protected from scratches... A large variety of encoding
functions was developped according to the industrial needs: for instance, encoding with high
correction capacity for satellites, very fast decoding functions for real-time use (e.g. when
reading a CD). Many eamples can be found in [MS86, PBH98].

A wildspread family of codes is the family of linear codes, thus called because the set
of all the possible encoded messages form a linear vector space over a finite field (i.e., they
form a subspace of Fnq for some prime power q and integer n, which is called the length of
the code). They can be conveniently represented by giving a basis of the vector space (for
instance under the form of a matrix). Let us assume that the messages are strings of k bits, we
write them as row vectors m = (m0, . . . ,mk−1) ∈ Fk2. A linear error-correcting code admits
a simple encoding function represented by a k × n matrix G, that can be picked of the form
G = (Ik|A), with Ik the identity matrix of size k × k, and A a k × (n − k) matrix. The
encoding function is :

m ∈ Fk2 7→mG = m(Ik|A) = (m,b) ∈ Fn2

where b is the redundancy. Encoding simply consists in making a linear combination of
elements of the basis. On the contrary, decoding is more complex in general. Suppose that an
encoded message is received with some errors, we write the received message as m′ = mG+e,
where e is a vector of Fn2 whose entries are all zero except in the positions where tranmission
errors occured. Decoding reduces to solving the system

m′ = mG + e

where m′,G are known and m, e are unkown. This is referred to as solving a linear system
with errors, which was proved to be NP-hard (in [BMvT78, LDW94]). One of the goals of the
theory of linear error-correcting codes is to find special linear spaces for which the decoding
can be solved efficiently in some cases (e.g. when the number of alterated bits is bounded).
Chapter 1 of this thesis gives the example of alternant codes and (binary) Goppa codes, which
are the linear codes that we focus on in our work.

Code-based Cryptography

A first link between error-correcting codes and cryptography was made in 1978 by McEliece
in [McE78]. The idea is that, for certain families of error-correcting codes endowed with an
efficient decoding, applying the decoding procedure requires to know a specific mathematical
element used to build the linear space, but which is hard to recover when only a basis is
known. Therefore, an encoded message in which errors are introduced becomes unreadable
to anyone ignoring the hidden element. In cryptographic terms, the encoding function is a
trapdoor one-way function, that is, a function difficult to invert without knowing the private
trapdoor. We describe a public-key encryption scheme as follows: the encoding function
(described by a basis of the linear space, e.g. a matrix Gpub) is the public-key, the encryption
function consists in encoding a message m and deliberately introducing errors. The secret key
is the hidden element used to decode efficiently, and decryption consists precisely in applying
the decoding procedure.
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plaintext m∈Fkq(
0,. . . ,1

) public key Gpub∈Fk×nq Gpub

+

error e∈Fnq(
1,0,. . . ,0,1

)
=

ciphertext c∈Fnq(
1,0,. . . ,1,1

)

Principle of code-based encryption

A central question in code-based cryptography consists in finding error-correcting codes
with such a hidden element required for decoding. The security of the encryption relies both
on the hardness of decoding without the required element and the difficulty of recovering the
trapdoor knowing only the encoding function. The family of codes proposed by McEliece,
namely the binary Goppa codes, are still considered to satisfy those criteria today. They belong
to the family of alternant codes, which are also considered as secure. In Chapter 2, we present
known methods to recover the trapdoor for those codes, and detail their computational cost.

After this proposition of trapdoor one-way function, which is known as McEliece encryp-
tion scheme, other cryptographic primitives using linear codes were introduced. They share
the property that their security relies on the hardness of decoding a linear code, and we gather
in code-based cryptography all the primitives with this feature. Some of the most famous
ones are Niederreiter encryption scheme [Nie86], Stern’s authentication scheme [Ste93] and
the CFS signature scheme (for Courtois, Finiasz and Sendrier) [CFS01]. Relying on other
assumptions than number-theory problems such as the Discrete Logarithm Problem and inte-
ger factorization is a very positive characteristic of code-based primitives. Indeed, thoses are
only assumptions, and algorithmic progresses are always possible, so that it is preferable to
have cryptographic primitives whose security is backed up by as many different assumptions
as possible.

Moreover, no quantum algorithm is known to decode a random linear code in polynomial
time, contrary to the Discrete Logarithm Problem and the integer factorization problem which
Shor’s algorithm [Sho94a, Sho94b] solves in (probabilistic) time O(log(n)3) with a quantum
computer (where log(n) is the size of the input). Actually, should a quantum computer arise,
there exists a long list of public-key cryptosystems that would not be usable anymore in a
post-quantum era (Diffie-Hellman key exchange, RSA encryption, ECDSA signatures, elliptic
and hyper-elliptic curves cryptography...). The possibility of the emergence of a quantum
computer has grown sufficiently for standard organizations to start preparing the standard-
ization of some post-quantum primitives including code-based cryptosystems 1.

Recent Trends in Code-based Cryptography

As the reflect of a growing interest for code-based cryptography, several axes of research
aiming at designing code-based cryptographic primitives suitable and practical for applications
were explored in the last years.

Reduction of the public-key storage cost

Since 1978, code-based cryptography has not been widely deployed in practice. The main
reason is that it does not compare favorably to the other public-key primitives (e.g. RSA) in
terms of key size. For instance, for a security level of 2128, the public key used by the McEliece

1. http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/Quantum_Safe_Whitepaper_1_0_0.pdf

http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/Quantum_Safe_Whitepaper_1_0_0.pdf
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cryptosystem is 60 times bigger than RSA key. Many proposals have been made in order to
reduce the key size since 1985, e.g. [Gab85, Nie86, Sid94, JM96, MRS00, Gab05, BL05,
BCGO09, MB09, BLM11, BLP11b, BLP11c, Per12a, MTSB13]. Determining the security of
new propositions is crucial, and many (but not all) of the previously mentionned ones were
broken [SS92, Wie06b, Ove08, FOPT10a, CMCP14].

In this thesis, we focus on two different families of codes with reduced key sizes. They are
both special cases of a large family of codes called the alternant codes, which also encompass
the binary Goppa codes proposed by McEliece. Namely, we will adress the security of alternant
(and Goppa) codes with symmetries proposed in [BCGO09, MB09, BCMN10, BLM11], and
on the Wild Goppa codes, introduced in [BLP11b, BLP11c]. To define all these codes, we
introduce the following Vandermonde-like matrices:

Vt(x,y) =


y0 · · · yn−1

y0x0 · · · yn−1xn−1
...

...
y0x

t−1
0 · · · yn−1x

t−1
n−1

 , (1)

for
(
x = (x0, . . . , xn−1),y = (y0, . . . , yn−1)

)
∈ Fnqm × Fnqm . We sum up in the following figure

the sub-families of the alternant codes of particular interest for this thesis.

Secret: x = (x0, . . . , xn−1) ∈ Fnqm ,Γ(z) ∈ Fqm [z] with deg(Γ) = t,
Linear code G (x,Γ) = At(x,y) with y = (Γ(x0)−1, . . . ,Γ(xn−1)−1).

Secret: x ∈ Fnqm ,y ∈ (F∗qm)n

Linear code At(x,y) =
{
m ∈ Fnq

∣∣Vt(x,y)mT = 0
}

Goppa codes over F2 [McE78]
Key size 1,590 kB

Goppa codes with symmetries
[BCGO09, MB09, BCMN10, BLM11]
10 kB 6 Key size 6 20 kB

Wild Goppa codes
[BLP11b, BLP11c]
90 kB 6 Key size 6 200 kB

Alternant codes

Goppa codes

Sub-families of alternant codes considered in this thesis. Key sizes are indicated for encryption
schemes with security 2128.

Algebraic Cryptanalysis in Alternant Code-Based Cryptography

For long, the cryptanalysis of code-based scheme has reduced to generic message-recovery
attacks, which consist in decoding a random linear code. These methods are referred to as ISD
(standing for Information Set Decoding). Very few methods were known for key-recovery, and,
to our knowledge, none execpt [Sen00, LS01]. New methods of emerged recently. They belong
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to the category of algebraic cryptanalyses. Algebraic cryptanalysis is a method of attack that
links the secret targeted by the attacker with the resolution of a system of multivariate
algebraic equations. To do so, the first step of an algebraic cryptanalysis consists in finding
an algebraic modelling, that is, a way of representing the secret elements as unknowns of a
polynomial system. The second step consists, if possible to solve the system, or at least to
estimate its complexity of resolution. Solving efficiently a non-linear system of multivariate
equations is a fundamental problem, referred to as PoSSo, that appears in a large variety of
scientific fields (cryptology, mechanics, biology... ). It was proved to be NP-hard over a finite
field ([GJ90]). However, in cryptology, the systems considered are rarely random, as they
are derived from applications, so that they have a (sometimes hidden) structure. In many
examples, the algebraic systems turned out to be solvable in practice (e.g. [FJ03, CM03,
FLdVP08, FS10, FOPT10a, BFP11]).

To solve polynomial systems over finite fields, several methods exist (exhaustive search,
SAT solvers ...). In this thesis, we use Gröbner bases ([Buc65]), which are introduced in
Chapter 3. It has the advantage of providing tools to analyze the complexity of the associated
resolution algorithms, which is useful to deduce security levels in cryptography. Also, the
analysis of Gröbner bases computation algorithms can be a fruitful source of information on
a potential hidden structure of the modelled object.

Regarding alternant codes, an algebraic modelling was introduced in [FOPT10a]. Let
X = (X0, . . . , Xn−1) and Y = (Y0, . . . , Yn−1) be variables in Fqm corresponding to the unkown
secret key, and the gi,j ’s be the entries of a k × n generator public matrix. Then, X and Y
satisfy:

{
gi,0Y0X

`
0 + · · ·+ gi,n−1Yn−1X

`
n−1 = 0 | i ∈ {0, . . . , k − 1}, ` ∈ {0, . . . , t− 1}

}
. (2)

In practice, for cryptographic parameters, this modelling does not allow the recover the
secret elements of a plain McEliece cryptosystem because the cost of the resolution of the
system (2) is too high with the current computation capacity. However, it yielded in [FGO+13]
an algorithm to determine in polynomial time if a given matrix is the generator matrix of an
alternant code (of high dimension). It was conjectured that such efficient tool, called a code
distinguisher, did not exist [Sen02]. Also, thanks to this modelling, a key-recovery attack was
designed against a sub-family of alternant codes with symmetries, but the codes defined over
a prime field were not threatened at all. This was therefore used as a protection to propose
codes with symmetries immune to this algebraic attack [BCMN10, BLM11].

Finding Secure and Efficient Practical Implementations

An important step towards the use of code-based cryptography in the real world consists
in designing secure implementations. Indeed, when implementing cryptographic functions, it
is necessary to avoid introducing vulnerabilities against so-called side-channel attacks.

Side-channel attacks are methods of recovering secret information introduced by Kocher
in [Koc96]. In this article, it was showed that an attacker measuring the execution time of
an RSA decryption could recover the secret key. The idea is that, with a standard imple-
mentation, the number of operations to perform, and thus the execution time, depend on the
bits of the secret key. The attack consists in guessing possible secret keys and check if the
targeted device has the expected behaviour. Since, other physical emanations have been used
to practically attack devices (e.g. power consumption [KJJ99, ÖOP03], electro-magnetic field
[GMO01] and acoustic waves [GST14]). Side-channel analysis has become a field of research
in itself, and it has become mandatory to implement the algorithms using a secret element in
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a way to avoid those attacks. The purpose is that the physical emanations of the device be
completely independant of the secret information. If it is not the case, we say that there is a
leakage, and the purpose of a physical attack is to measure and exploit it. The modifications
brought to the implementation in order to eliminate this leakage are called counter-measures.

This work is specific to each mathematical operation (e.g. exponentiation of a cyclic
group element or an elliptic curve point, vector addition, matrix-vector product...). There
exists a rich literature on this topic for the widely used primitives such as RSA, but for code-
based cryptography it is only recently that researchers began to investigate the weaknesses
of too naive implementations (for instance in [SSMS09, AHPT11, Str10b, Str13]), and make
propositions of hopefully more resistant ones [Hey11, Str10a, SWM+10, BCS13].

Some articles made propositions towards secure and efficient implementations of code-
based primitives, for instance [CGP08, Str10a, Bis10, SWM+10, Hey11, LS12, BCS13]. Some
of them take into account various potentially exploitable physical leakages, some of them
do not and focus on the efficiency. In parallel, several works on attacking implementations
of McEliece decryption emerged [SSMS09, AHPT11, Str10b, Str13]. Those articles identify
leakages and propose most of the time counter-measures against them. However, no clear
counter-measure is proposed to protect from the timing attack of [Str13].

Guarantee the Conformity with Security Models

Security models are abstractions of cryptographic primitives which allow to measure and
bound the quantity of information that an attacker can hope to retrieve. They are abstractions
in the sense that they do not consider the mathematical properties of the function but only
its cryptographic features: for instance, for an encryption primitive, security models try
evaluate the capacity of an attacker to link a ciphertext and a corresponding plaintext. On
the contrary, to prove that a cryptographic primitive satisfies a security model, it is necessary
to consider its mathematical properties. Regarding code-based cryptography, a series of work
aimed at evaluating which security requirements are satisfied by code-based primitives and
how to modify them so that they fit into security models, e.g. in [Ber97, KI01, NIKM08,
NC11, Per12b, DDMQN12].

Contributions

For those recent proposals (alternant codes with symmetries and Wild McEliece), we
revealed unkown properties of the schemes which turned to be weaknesses. Indeed, thanks to
these properties, we introduced new key-recovery attacks allowing practical breaks of many
parameters that had been proposed for cryptographic use. Those new attacks will have to be
taken into account in the future to propose secure parameters for related schemes.

Algebraic Cryptanalysis in Alternant Code-Based Cryptography.

In Chapter 4 of this thesis, we study an algebraic attack against generic alternant codes
provided by the modelling (2). We improve this algebraic modelling to describe more precisely
famous subfamilies of alternant codes. We also introduce new modellings, where the blocks
X and Y of (2), containing n variables each, are replaced by blocks with n− k variables. We
provide complexity bounds for the resolution of the associated algebraic systems. To do so,
we assume that we found by exhaustive search the correct values of enough variables to be
able to recover the other ones by solving a linear system. By this method, we show that the
number of operations necessary to recover the secret elements of an alternant code is bounded
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above by qm
2t · poly(n). We provide a comparison of those complexity bounds with the other

key-recovery attack on Goppa codes (namely the Support Splitting Attack). It shows that,
asymptotically, the algebraic attack that we describe is the best one for codes whose support
contains significantly fewer elements than the finite field from which they are picked (that is,
n� qm).

McEliece Schemes Using Alternant Codes with Symmetries.

Alternant codes with symmetries refer to alternant codes admitting a generator matrix
made of symmetric blocks. Such matrices can be fully described by storing only a reduced
number of entries. On the Figure on page 9, storing only 16 elements ai is sufficient to
fully know a matrix with 64 entries. Those codes were introduced by different authors
[BCGO09, MB09, BCMN10, BLM11] in order to design encryption schemes whose public
key has a reduced storage cost. Indeed, the cryptosystems proposed in [MB09] allowed a
reduction factor between 22 and 117 compared to a binary Goppa code with same security
level. Faugère, Otmani, Perret and Tillich (FOPT) showed in [FOPT10a] that the generic
alternant modelling (2) could be adapted to those codes with symmetries. However, solving
the resulting algebraic modelling was not feasible for all the codes. Consequently, practical
key-recoveries were possible for all the parameters from [BCGO09] and some from [MB09],
but not for the parameters from [BCMN10, BLM11].

In Chapter 5, we gather all the alternant codes with symmetries proposed so far under
a common feature (namely, they have a non-trivial automorphism group). Thanks to this
property, we give a framework to build, from an alternant code without symmetry, an alternant
code with symmetry. For istance, we show that all the codes proposed in [BCGO09, MB09,
BCMN10, BLM11] can be obtained by sampling supports x ∈ Fnqm globally stable by an
affine-map φ : z 7→ az + b (with (a, b) ∈ F∗qm × Fqm). Then, we show that, for those codes, it
is possible to somehow reverse it. To do so, we build, from the public matrix with symmetric
blocks, a code where each block of entries is replaced by the sum of the entries of the block.
We call this construction the folding, and the resulting code the folded code.

a0 a1 a2 a3 a4 a5 a6 a7

a1 a0 a3 a2 a5 a4 a7 a6

a2 a3 a0 a1 a6 a7 a4 a5

a3 a2 a1 a0 a7 a6 a5 a4

a8 a9 a10 a11 a12 a13 a14 a15

a9 a8 a11 a10 a13 a12 a15 a14

a10 a11 a8 a9 a14 a15 a12 a13

a11 a10 a9 a8 a15 a14 a13 a12


Folding−→


a0 + a1 a4 + a5

+a2 + a3 +a6 + a7

a8 + a9 a12 + a13

+a10 + a11 +a14 + a15



Folding of an 8×8 matrix with symmetries, made of four 4×4 symmetric blocks, into a 2×2
matrix.

The weakness lies in the fact that this folded code is also an alternant code, and has almost
same private elements as the original code. We proved this by showing that, for φ the affine
map used to build the secret support and α ∈ F∗qm , there exist polynomials Aφ,α, Bφ,α ∈ Fqm [z]
such that any polynomial P ∈ Fqm [z] satisfying P (φ(z)) = αP (z) can be written under the
form P (z) = Aφ,α(z)Q(Bφ,α(z)), where Q ∈ Fqm [z] is of degree lower than P . This leads us
to our central contribution on alternant codes with symmetries, summed up below.

Theorem (informal, see Theorem 5.21 on page 98). Let C be an alternant code of length n,
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with secret (x,y) ∈ Fnqm × Fnqm, whose generator matrix is made of symmetric blocks of size
t× t as in [BCGO09, MB09, BCMN10, BLM11]. Then, the folded code of C is an alternant

code C ′ of length n/t, with secret (x′,y′) ∈ Fn/tqm × Fn/tqm . There is an explicit relation between
(x′,y′) and (x,y), that is the secret (x,y) defining C can be recovered from the knowledge of
(x′,y′).

Therefore, the secret key can be recovered from the folded code, which has no more symme-
tries. We prove that those McEliece schemes with compact representations have intrinsically
same key-security as a McEliece scheme without symmetry but with same small key size.

In Chapter 6, we combine the weakness of alternant codes with symmetries that we exhib-
ited with our refined algebraic modellings. We obtain an algebraic attack against McEliece
using alternant and Goppa codes whose support x is stable by maps of the form φ : z 7→ z+ b
with b ∈ F∗qm , which are those used from all [MB09, BCMN10, BLM11]. We restricted to this
case because the other possible affine maps (namely φ : z 7→ az + b with a 6= 1), considered
in [BCGO09], were fully broken in [FOPT10a]. On the contrary, this attack was structurally
inefficient for the parameters of [BCMN10, BLM11]. Practical results show that the attack is
a fatal threat for codes with high dimensions k (that is, close to n), which is always the case
for the parameters in signature schemes. For encryption schemes, the attack is less efficient for
codes with small dimensions, but those codes are more vulnerable to generic message-recovery
attacks. Therefore, it is not sure that secure encryption parameters can be found.

Code Parameters This Previous Security Ref
(q,m, t, n) thesis attack level

(24, 4, 128, 4096) 0.010 s. 7.1 s 128 [MB09]
(22, 8, 64, 3584) 0.040 s. 1,776.3 s 128 [MB09]
(2, 16, 32, 4864) 18 s. N.A. 128 [MB09]

(2, 14, 13, 16368) 3.0 s N.A 81 [BCMN10]
(2, 14, 14, 16368) 3.0s N.A. 84 [BCMN10]
(2, 15, 12, 32752) 5.4s N.A 82 [BCMN10]

(3, 11, 9, 177048) 3.4 s N.A. 80 [BLM11]
(5, 8, 15, 390495) 82 s N.A. 128 [BLM11]
(241, 3, 241, 964) 0.020 s N.A. 112 [BLM11]

Key-recovery timings for alternant codes with symmetries (N. A. means Not Applicable).

Cryptanalysis of Wild McEliece

Chapter 7 of this thesis is dedicated to Wild McEliece and Wild McEliece Incognito, which
are code-based encryption schemes described by Bernstein, Lange and Peters in [BLP11b] and
[BLP11c]. The encryption function is the same as for McEliece, but the linear codes which
are used have smaller bases than those used for McEliece encryption, so that the public key
can be up to 16 times smaller. Those codes, which belong to the category of alternant codes,
can be seen as a generalization of the Goppa codes over F2 proposed by McEliece to other
fields Fq with q > 2. They were called wild Goppa codes by the designers of the schemes. Our
results show that, thanks to the specificities of those Wild Goppa codes, the secret key can
be modelled by an algebraic system containing fewer variables compared to the modelling of
generic alternant codes (2). If the gi,j ’s are the entries of a k × n generator matrix of the
public Wild Goppa code, and Z = (Z0, . . . , Zn−1) are unkowns, we prove that an attacker
able to solve the following system:
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{
gi,0Z

`
0 + · · ·+ gi,n−1Z

`
n−1 = 0 | i ∈ {0, . . . , k − 1}, ` ∈ {1, . . . , q − 1}

}
, (3)

can recover the private key.
This was done by proving that the solutions of system (3) form a union of vector spaces,

which is a unusual situation for a non-linear algebraic system. We exploit this in the resolution
phase: since we are not looking for a specific linear combination but just a basis of the
solutions, we can fix arbitrarily coordinates of the desired vector. Once the system solving
phase is over, we designed a method to recover the secret from the solutions of the algebraic
system in (heuristic) polynomial time. In essence, we proved the following result.

Theorem (informal, see Theorem 7.6 on page 122 and Theorem 7.15 on page 129). Let C
be a Wild Goppa code over Fq and gi,j be the entries of a k × n generator matrix. Then,

1. the solutions of (3) form a union of vector spaces.

2. Given a basis of one of those vector spaces, the secret elements of C can be recovered
in heuristic polynomial time.

We deduce the following strategy of cryptanalysis.

System (3)
{
gi,0Z

`
0 + · · ·+ gi,n−1Z

`
n−1 = 0 | i ∈ {0, . . . , k − 1}, ` ∈ {1, . . . , q − 1}

}
Theorem: Solutions form a vector space of dimension d

System (3) with
(Z0, . . . , Zd−1) = (1, 0, . . . , 0)

System (3) with
(Z0, . . . , Zd−1) = (0, . . . , 0, 1)

...

Gröbner bases Gröbner bases

Basis of the solutions of (3)

Recovery in
polynomial complexity

Secret

Key-recovery strategy for Wild McEliece

More broadly, our compact algebraic modelling can be applied in a more general context
than Wild McEliece, namely as soon as the secret polynomial Γ(z) has a multiple factor. This
should encourage designers to pick irreducible polynomial for Goppa codes.

We mounted a practical attack using this framework against wild Goppa codes over non-
prime fields by revealing and exploiting extra-weaknesses of those codes. We show that, for
a wild Goppa code defined over Fps with p prime and s > 1, we can replace the system
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(3) (containing (ps − 1)mt − t variables) by a variant which contains fewer than (p − 1)mst
variables, and apply the same-key recovery strategy. This impacts the security of many
parameters proposed for cryptographic use with a security level of 2128 by the designers in
the articles [BLP11b, BLP11c]. They also proposed on a website a series of challenges with
growing difficulty. For several field sizes, we can solve the hardest challenges proposed online.

Code parameters Key Size
(kB)

Claimed
Security

Generic modelling Our modelling
(q,m, t, u, n) Unk. Res. Time Unk. Res. Time

(32, 2, 3, 24, 852) 90 2130 462 ∞ 18 0.6s
(27, 3, 2, 42, 1500) 204 2128 564 ∞ 26 0.9s
(27, 3, 5, 0, 1700) 304 2158 780 ∞ 65 1h 59min
(25, 3, 3, 25, 1206) 55 2117 582 ∞ 57 1h 2min
(16, 3, 6, 16, 1328) 160 2125 636 ∞ 54 36h 35min
(9, 3, 6, 14, 728) 40 281 372 ∞ 54 25h 13min

Number of variables and resolution time (with Magma’s F4 implementation [BCP97a] of
our algebraic modelling of some wild Goppa codes defined over Fq with secret polynomial
Γ(z) = f(z)g(z)q−1 ∈ Fqm [z] with t = deg(g) and u = deg(f).

Conclusion on the Algebraic Cryptanalyses against Goppa Codes

Throughout this thesis, we design our cryptanalyses by exploiting features of alternant
and Goppa codes which are not generic. It is important to emphasize that none of those codes
were random alternant or random Goppa codes. To sum up, we took part of the following
additional properties:

— the existence of algebraic relations on the secret support and multipliers of alternant
codes,

— the non-irreducibility of the Goppa polynomial of a Goppa code, because of multiple
or different irreducible factors (except in the binary case),

— the fact that the public code is defined over a non-prime field.
Binary Goppa codes with irreducible Goppa polynomial meet none of those properties.

The fact that each modification could be turned into a weakness should encourage designers
to stick to them.

Our results also illustrates how studying the behaviour of algebraic modellings can be
enlightening on the modelled mathematical object.

Let us take the example of alternant codes with symmetries. [FOPT10a] gave an algebraic
modelling for the symmetric alternant codes obtained thanks to maps of the form φ : z 7→ z+b
(with b ∈ F∗qm). It consists in a non-linear algebraic system which is very overdetermined, i.e.
it contains more equations than unknowns. For a random overdetermined algebraic system,
the probability that it admits solutions is very low. As the system here describes a secret
key corresponding to the public Goppa code, it necessarily has solutions (but few). However,
we observed the following property: after fixing a specific small subset of variables to the
value 0, the obtained system still has solutions. Yet stranger, for another subset of variables,
the solutions are the same whether the specific set of variables is fixed to zero or not. This
property, unexpected and puzzling, is explained by understanding that fixing those values to
0 transforms the algebraic modelling of the public code into the algebraic modelling of its
folded code.
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Our work on Wild McEliece provides another example of code structure revealed by the
study of the algebraic modellings. One can show that, for the gi,j ’s,and Y defined as in System
(2), we can write an overdetermined system of linear equations because of the specificities of
Wild Goppa codes. Indeed, when the entries gi,j of the public matrix G belong to Fq with
q = ps, it holds that:

{
gp

u

i,0Y0 + · · ·+ gp
u

i,n−1Yn−1 = 0 | i ∈ {0, . . . , k − 1}, 0 6 u 6 s− 1
}
. (4)

If the system (4) is full-rank, this is a very favorable situation for an attacker. The secret
can then be recovered in polynomial time. However, we observed that these linear equations
always has a rank defect with very specific form (namely n − (p − 1)mst for q = ps). This
rank defect could actually be linked with the dimension of a Wild Goppa code related to the
public code, and we ended up with an unexpected result on the structure of the public code
(Theorem 7.16).

Contribution Towards a Secure Implementation of McEliece Cryptosystem

Our contribution in the securization of the implementation of code-based primitives con-
sisted in proposing a way of implementing the decryption in McEliece in a way which resists
the so-called side-channel attacks better than the previous propositions. In Chapter 8 of this
thesis, we show that the attack of [Str13] can be improved, so that a reliable counter-measure
is required. We describe such counter-measure. It consists in an implementation of the ex-
tended Euclidean Algorithm that, once the public parameters are fixed, uses a fixed number
of loops, each one containing a fixed number of operations. Doing so, all timing leakages
are avoided. Therefore, we bring an important element towards a secure implementation of
McEliece encryption scheme, and more generally in any primitive requiring the decoding of
an alternant code.

Perspectives

Analysis of the Algebraic Modellings

In this thesis, we were able to solve in practice many of the algebraic modellings that
we derived from public-key schemes proposed for cryptographic use. This clearly shows that
the security level is very low. However, for the systems that we could not solve with our
computation capacity, estimating the security is not as simple. The reason is that, for our
systems, there exists no efficient way of knowing when the resolution by Gröbner bases is going
to terminate before the end of the computation. Ideally, we would like to know the complexity
(or simply a bound on the complexity) of the Gröbner bases computation to perform. Such
bounds exist for generic systems, but the systems that we have to solve in cryptanalysis
are precisely not random because they describe a specific mathematical object. For this
reason, it would be an important task to study the behavior of the Gröbner bases algorithms
with the systems (2) and (3) to determine their complexities. An idea to do this would be
to extend the study of the systems of bi-linear polynomials (of the form

∑
i,j αi,jXiYj ∈

K[X1, . . . , XvX , Y1, . . . , YvY ]) performed in [FSS11] to the polynomials
∑

i,j αi,jX
pu

i Y pv

j which
are quasi -bilinear in characteristic p and appear in the algebraic modellings. Other methods
exploiting the fact that the resolution is performed in a finite field could be explored. A first
idea is to study the behaviour of the algebraic systems obtained by decomposing each unkown
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of a polynomial over Fqm into m unknown coordinates over Fq. Tighter bounds would allow
to give, only with the code parameters, the level of security against algebraic cryptanalysis.
Moreover, we explained that the study of algebraic system was a proficient source of ideas to
understand the structure of the modeled object. Thus, there is good hope that studying these
systems may reveal unexpected properties of the codes, or the existence of a more efficient
Gröbner bases computation algorithm dedicated to those algebraic systems.

Alternant Codes with Symmetries for McEliece

Knowing if there exist alternant codes with symmetries suitable for cryptography is a
natural question. After this thesis, we can split the alternant codes with symmetries into
three categories (summed up in the figure on page 15):

1. For the constructions proposed in cryptography so far, which consider alternant codes
whose secret element x = (x0, . . . , xn−1) ∈ Fnqm is globally stable by affine maps φ :
z 7→ az+ b, we have proved the effectiveness of the folding method. It reduces the key
security to that of an alternant code with same key size and without symmetry.

2. The construction of alternant codes with symmetries introduced in [Dür87] and [Ber99,
Ber00b] and recalled in Chapter 5 is more general. It considers secret elements x
stable by affine maps combined with an action of the Fröbenius endomorphism φ :
z 7→ (az + b)q

j
(for 0 6 j 6 m − 1), and in the most general case maps of the form

φ : z 7→
(
az+b
cz+d

)qj
. The similarities with the proposed constructions (algebraic relations

on the support) may lead to think that the folding method extends to those cases. This
question should receive attention.

3. Symmetric alternant codes out of the scope of Chapter 5 and [Dür87] exist. This means
that no map linking the support elements is known. In this case, the folding method
is very unlikely to preserve structure. The problem for those codes is that we do not
know of any way of generating them efficiently for now.

On the Security of the Original McEliece Cryptosystem

Nowadays, the big key sizes of McEliece encryption are not as crippling as they used to be
and the post-quantum feature of code-based cryptography is of growing importance. Amongst
code-based primitives, McEliece scheme is the oldest one and it must be emphasized that such
longevity has been rarely seen for a public-key cryptosystem and is, for some people, very
confidence-inspiring. However, we think that this longevity should not be considered as a
security guaranty. Globally, the McEliece cryptosystem itself received little attention for a
long time. The attacks put forward between 1980 and 2000 ([LB88, Leo88, Ste88, CC98])
focused on the problem of decoding, that is, solving a linear system with error, which is a
very general algorithmic problem. It is only recently, with the SSA algorithm by Sendrier
[Sen00], that cryptanalysts started to tackle the question of recovering the secret elements of
a Goppa code. The cryptanalytic works that we introduced in this thesis do not threaten its
security in practice, but they revealed some unknown properties of Goppa codes, for instance
Theorem 7.16 on Goppa codes defined over Fps with a polynomial of multiplicity ps (with p
a prime and s > 1). Such properties are interesting because they reveal different behaviours
for Goppa codes and random codes and allow to distinguish them. Recent improvements
of attacks (based on a code distinguisher [CGG+14]) represent an exciting axis of research.
Thanks to those methods, several schemes using a specific case of alternant code (namely
the GRS codes) were broken. GRS codes are alternant codes with one fixed parameter: the
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Alternant codes with symmetries

Proposals for cryptography
Secret x = (x0, . . . , xn−1) ∈ Fnqm

{φ(x0), . . . , φ(xn−1)} = {x0, . . . , xn−1}
with φ : z 7→ az + b, a, b ∈ Fqm

Constructions of [Dür87, Ber99].
{φ(x0), . . . , φ(xn−1)} = {x0, . . . , xn−1}

with φ : z 7→
(
az+b
cz+d

)qj
Most general alternant code with symmetries

(no algorithmic construction known)

extension degree m is set to 1. It has been thought for long that picking alternant codes with
m > 1 completely discarded the attacks against GRS codes so that those would not threaten
the alternant codes. This belief was proved to be wrong in [COT14], where the authors
use a code distinguisher to design a polynomial time attack against Wild Goppa codes with
parameter m set to 2 (that is, a sub-family of a sub-family of alternant codes). Extending this
work to less specific Goppa and alternant codes is therefore a desirable goal for cryptanalysts.
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Résumé

Contexte

La cryptologie étudie les méthodes permettant de protéger des informations secrètes. His-
toriquement, la cryptologie a été d’une importance majeure pendant les guerres, car la con-
fidentialité des informations échangées entre le centre de commandement et le théâtre des
opérations est cruciale pour le succès d’une mission. Un exemple célèbre est celui de Jules
César qui utilisait la cryptologie pour protéger sa correspondance. Un autre exemple, plus
récent, est fourni par la machine Enigma utilisée par les militaires allemands pendant la Sec-
onde Guerre Mondiale. Il est communément admis que la découverte, par des scientifiques
polonais et britanniques, d’un moyen de contourner la protection introduite par Enigma dans
les messages échangés aurait raccourci la guerre de deux ans.

De nos jours, l’utilisation de la cryptologie n’est plus cantonnée aux seules communica-
tions militaires. Le besoin de transmissions sécurisées concerne chacun d’entre nous, lorsque
nous envoyons des courriers électroniques ou lorsque nous payons sur internet. Nous devons
également protéger notre identité lorsque nous échangeons avec un serveur à distance. Con-
sciemment ou non, les utilisateurs d’ordiphones 2 enregistrent une quantité importante de
données concernant leur vie privée sur un appareil connecté en permanence à des réseaux
dont la sécurité est peu claire. Traiter, entre autres, ces différents problèmes, fait partie des
objectifs de la cryptologie moderne.

Une étape essentielle pour la cryptologie fut atteinte en 1976 avec l’avènement de la cryp-
tographie à clef publique. Avant cette date, lorsque Alice et Bob voulait communiquer de
manière sécurisée, il leur était nécessaire d’échanger au préalable un secret. Par exemple,
César devait transmettre à son interlocuteur un nombre secret pour que celui-ci puisse lire
le message protégé. Cet échange secret préalable rend les communications extrêmement coû-
teuses lorsqu’un grand nombre d’entités souhaite communiquer. La percée réalisée par Diffie
et Hellman consista à expliquer comment Alice et Bob peuvent se mettre d’accord sur une
valeur secrète et connue d’eux seuls tout en échangeant uniquement des messages lisibles par
tous, de telle sorte que l’échange secret préalable n’est plus nécessaire.

La cryptanalyse est le domaine de la cryptologie dédié à l’analyse des méthodes permet-
tant de contourner les protections introduites pour protéger de l’information et retrouver des
données vouées à rester secrètes pour une entité non-autorisée. La méthode pour retrouver
une information protégée est souvent appelé une attaque. Évaluer finement la faisabilité
d’une attaque est d’une importance cruciale pour déterminer le niveau de protection apportée
à une information. En effet, lorsqu’un appareil utilisant des procédés cryptographiques est
vendu, il est nécessaire (et obligatoire) de déterminer son niveau de résistance aux différentes
attaques connues. C’est ce que nous faisons dans cette thèse, dans un domaine spécifique de
la cryptologie, que nous présentons maintenant.

2. communément appelé smartphone
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Les codes correcteurs d’erreurs

Les codes correcteurs d’erreurs sont un outil mathématique dont le but historique est de
protéger des données contre les erreurs de transmission. L’idée générale consiste à ajouter de
la redondance à un message de sorte que, si quelques caractères (ou bits d’information) sont
altérés lors de la transmission, il soit possible de corriger ces erreurs et retrouver le message
intial. La fonction ajoutant la redondance est appelée l’encodage, celle corrigeant les erreurs
le décodage. En pratique, le décodage est possible si le nombre de bits altérés est inférieur à
un certain seuil appelé capacité de correction de l’encodage.

Les codes correcteurs d’erreurs sont omniprésents dans les communications digitales: les
paquets IP sur internet, les messages envoyés par les satellites à travers l’espace sont protégés
contre les erreurs de transmission, les données stockées sur un CD sont protégées contre les
rayures ... Un grand nombre de fonctions d’encodage a été développé selon les besoins indus-
triels. Par exemple, pour les satellites il est nécessaire d’utiliser un encodage avec une grande
capacité de correction. Pour garantir la bonne lecture d’un CD, l’encodage doit permettre un
décodage très rapide. De nombreux exemples peuvent être trouvés dans [MS86, PBH98].

Une famille très répandue de codes est la famille des codes linéaires, appelés ainsi car
l’ensemble des messages encodés forme un espace vectoriel (i.e ils forment un sous-espace
vectoriel de Fnq , pour q puissance d’un nombre premier et n un entier appelé longueur du
code). Ils peuvent être représentés aisément en donnant une base de cet espace vectoriel, par
exemple sous la forme d’une matrice. Considérons un message de k bits, nous l’écrirons sous
la forme d’un vecteur-ligne m = (m0, . . . ,mk−1) ∈ Fk2. Un code linéaire admet un encodage
simple représenté par G une matrice k × n, qui peut être choisie de la forme G = (Ik|A), où
Ik est la matrice identité de taille k×k, et A une matrice k× (n−k). La fonction d’encodage
est :

m ∈ Fk2 7→mG = m(Ik|A) = (m,b) ∈ Fn2 ,

où b est la redondance.
En somme, encoder consiste à faire une combinaison linéaire des éléments d’une base du

code. Décoder est, en général, plus compliqué. Considérons un message encodé reçu avec des
erreurs, nous l’écrivons m′ = mG+e, où e est un vecteur de Fn2 dont toutes les entrées valent
0 sauf aux positions où ont eu lieu des erreurs. Décoder revient à résoudre le système

m′ = mG + e

où m′,G sont connus et m, e inconnus. Ce problème est communément appelé résoudre un
système linéaire avec erreurs, et fut prouvé NP-difficile (dans [BMvT78, LDW94]).

L’un des buts de la théorie des codes correcteurs linéaires est de trouver des familles spé-
cifiques d’espaces vectoriels pour lesquelles le décodage peut être résolu rapidement (lorsque
le nombre d’erreurs est borné).

Le Chapitre 1 de cette thèse donne l’exemple des codes alternants et des codes de Goppa
(binaires ou non), qui sont les codes auxquels nous nous sommes intéressé dans ce travail.

Cryptographie à base de codes correcteurs

Le lien entre codes correcteurs et cryptographie fut établie en 1978 par McEliece dans
[McE78]. L’idée est la suivante: pour certaines familles de codes correcteurs pour lesquelles
il existe un décodage efficace, il est nécessaire de connâıtre certains éléments utilisés lors
de la construction du code pour appliquer le décodage. Ainsi, un message encodé et altéré
devient illisible à toute personne ignorant ces éléments. En termes cryptographiques, la
fonction d’encodage est alors une fonction à sens unique avec trappe, c’est-à-dire une fonction
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difficile à inverser sans la connaissance d’un élément secret. On définit alors un schéma de
chiffrement à clef publique de la manière suivante: l’encodage (décrit par une base du code
linéaire utilisé, c’est-à-dire une matrice Gpub) sert de clef publique, le chiffrement consiste à
encoder le message et y introduire des erreurs. La clef privée est l’élement mathématique
permettant de décoder efficacement, le déchiffrement se fait précisément en appliquant la
procédure de décodage.

plaintext m∈Fkq(
0,. . . ,1

) public key Gpub∈Fk×nq Gpub

+

error e∈Fnq(
1,0,. . . ,0,1

)
=

ciphertext c∈Fnq(
1,0,. . . ,1,1

)

Principe général d’un chiffrement à base de codes correcteurs

Trouver des codes avec un élément secret permettant le décodage est une question centrale
en cryptographie à base de codes correcteurs. La sécurité du chiffrement repose à la fois sur
la difficulté à décoder sans cet élément et sur la difficulté à retrouver cet élément quand la
seule fonction d’encodage (publique) est connue. La famille de codes proposée par McEliece
(les codes de Goppa binaires), est toujours considérée aujourd’hui comme sûre selon ces deux
critères. Dans le Chapitre 2, nous présentons les meilleures méthodes connues pour traiter
ces deux problèmes et détaillons leur coût algorithmique.

Après cette première proposition de fonction à sens unique avec trappe, appelée chiffre-
ment de McEliece, d’autres primitives cryptographiques utilisant des codes correcteurs ont été
introduites. Pour chacune d’entre elle, la sécurité est garantie par la difficulté du problème du
décodage d’un code linéaire, et la cryptographie à base de codes correcteurs regroupe toutes
les primitives partageant cette propriété. Les plus connues sont le chiffrement de Niederreiter
[Nie86], le schéma d’authentification de Stern [Ste93] et le schéma de signature CFS (pour
Courtois, Finiasz et Sendrier) [CFS01]. Le fait que la sécurité repose sur un problème différent
des problèmes de théorie des nombres tels que la factorisation des entiers ou le logarithme
discret dans un groupe cyclique est un atout de la cryptographie à base de codes correcteurs.
En effet, ces problèmes sont supposés durs pour le moment, mais des progrès algorithmiques
ne sont pas à exclure et il est préférable de disposer de primitives cryptographiques dont la
sécurité dépende de problèmes aussi variés que possible.

De plus, aucun algorithme quantique n’est connu pour résoudre le problème du décodage
d’un code linéaire en temps polynomial, contrairement aux problèmes du logarithme dis-
cret et de la factorisation, qui peuvent être résolus en temps O(log(n)3) (où log(n) est la
taille de l’entrée) par l’algorithme de Shor [Sho94a, Sho94b] utilisant un ordinateur quan-
tique. De fait, l’émergence d’un ordinateur quantique menacerait la sécurité d’une longue
liste de cryptosystèmes à clef publique (l’échange de clef Diffie-Hellman, le chiffrement RSA,
la signature ECDSA, la cryptographie utilisant des courbes elliptiques ou hyper-elliptiques
...). Récemment, une telle possibilité a été jugée suffisamment plausible par les organisations
de standards cryptographiques pour commencer à préparer la standardisation de primitives
post-quantiques, en particuler des cryptosystèmes utilisant des codes correcteurs 3.

3. http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/Quantum_Safe_Whitepaper_1_0_0.pdf

http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/Quantum_Safe_Whitepaper_1_0_0.pdf
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Axes de recherche récents en Cryptographie à base de codes
correcteurs

Reflétant un intérêt croissant pour la cryptographie à base de codes correcteurs, plusieurs
axes de recherche cherchant à rendre les primitives utilisant des codes utilisables en pratique
ont été explorés dans les dernières années.

Réduction des coûts de stockage des clefs

Depuis 1978, la cryptographie à base de codes correcteurs n’a pas été déployée à une large
échelle. Ceci vient principalement du fait que les clefs à stocker ont une taille importante
en comparaison aux autres primitives à clefs publiques (telle que RSA). Par exemple, pour
atteindre un niveau de sécurité de 280, la clef publique requise par le chiffrement de McEliece
a une taille soixante fois plus importante qu’une clef RSA. De nombreuses propositions ont
été faites pour résoudre ce problème depuis 1985 [Gab85, Nie86, Sid94, JM96, MRS00, Gab05,
BL05, BCGO09, MB09, BLM11, BLP11b, BLP11c, Per12a, MTSB13]. Déterminer la sécurité
de ces nouvelles primitives est une question cruciale, et de fait beaucoup d’entre elles ont été
cassées [SS92, Wie06b, Ove08, FOPT10a, CMCP14].

Dans cette thèse, nous avons étudié deux familles différentes de codes qui remplissent cet
objectif de réduction du coût de stockage des clefs. Elles font toutes les deux partie de la
grande famille des codes alternants, qui contient aussi les codes de Goppa binaires utilisés
par McEliece. Plus précisément, nous nous intéressons à la sécurité des codes de Goppa
symétriques proposés dans [BCGO09, MB09, BCMN10, BLM11], et des codes de Goppa
sauvages, introduits dans [BLP11b, BLP11c].

Pour définir ces codes, nous introduisons les matrices de type Vandermonde suivantes:

Vt(x,y) =


y0 · · · yn−1

y0x0 · · · yn−1xn−1
...

...
y0x

t−1
0 · · · yn−1x

t−1
n−1

 , (5)

où
(
x = (x0, . . . , xn−1),y = (y0, . . . , yn−1)

)
∈ Fnqm × Fnqm . Nous résumons dans la figure page

21 les sous-familles des codes alternants que nous étudions dans cette thèse.

Cryptanalyse algébrique en cryptographie à base de codes alternants

La cryptanalyse des primitives utilisant des codes correcteurs a consisté pendant longtemps
uniquement en des attaques génériques de recouvrement de message, ce qui revient à résoudre
le problème du décodage pour un code linéaire aléatoire. Les meilleures méthodes connues sont
dites du type ISD (pour Information Set Decoding, ou Décodage par ensemble d’information).
Peu de méthodes étaient connues pour retrouver la clef secrète, (à notre connaissance, unique-
ment [Sen00, LS01]). Récemment, de nouvelles techniques ont été proposées. Elles appar-
tiennent à la catégorie d’attaques appelée attaques algébriques. La cryptanalyse algébrique
est une méthode d’attaque consistant à lier le secret recherché aux solutions d’un système
d’équations algébriques. Pour ce faire, la première étape consiste à trouver une modélisa-
tion algébrique du secret, c’est-à-dire exprimer le secret comme les inconnues d’un système
d’équations algébriques. La seconde étape consiste si possible à résoudre le système, ou à
défaut évaluer la complexité de sa résolution. Résoudre un système d’équations non-linéaires
est un problème fondamental, communément appelé PoSSo, qui intervient dans de nombreux



CONTENTS 21

Secret: x = (x0, . . . , xn−1) ∈ Fnqm ,Γ(z) ∈ Fqm [z]
Code linéaire G (x,Γ) = At(x,y) où y = (Γ(x0)−1, . . . ,Γ(xn−1)−1).

Secret: x ∈ Fnqm ,y ∈ (F∗qm)n

Code linéaire At(x,y) =
{
m ∈ Fnq

∣∣Vt(x,y)mT = 0
}

Codes de Goppa sur F2 [McE78]
Taille de clef 1,590 kB

Codes de Goppa avec symétries
[BCGO09, MB09, BCMN10, BLM11]
10 kB 6 Taille de clef 6 20 kB

Codes de Goppa sauvages
[BLP11b, BLP11c]
90 kB 6 Taille de clef 6 200
kB

Codes alternants

Codes de Goppa

Sous-familles des codes alternants considérées dans cette thèse. Les tailles de clefs sont don-
nées pour un schéma de chiffrement avec niveau de sécurité 2128.

domaines scientifiques (cryptologie, mécanique, biologie ...). Il fut prouvé NP-difficile lorsque
les coefficients des équations et les solutions recherchées appartiennent à un corps fini ([GJ90]).
Cependant, en cryptologie, les systèmes que l’on cherche à résoudre sont rarement aléatoires,
car ils sont déduits d’objets très structurés provenant d’applications concrètes. Ils ont donc
souvent une structure particulière (parfois cachée). Dans de nombreux exemples, les systèmes
algrébriques décrivant la clef secrète d’un cryptosystème à clef publique se sont avérés faciles à
résoudre en pratique (par exemple dans [FJ03, CM03, FLdVP08, FS10, FOPT10a, BFP11]).

Pour résoudre des systèmes algébriques sur des corps finis, il existe plusieurs méthodes
(recherche exhaustive, algorithmes de SAT, ... ). Nous utilisons dans cette thèse des méthodes
de bases de Gröbner, que nous décrivons dans le Chapitre 3. Ces méthodes ont l’avantage
de fournir des outils pour analyser la complexité des algorithmes de résolution associés, ce
qui est utile pour donner des niveaux de sécurité en cryptographie. De plus, l’analyse du
comportement des algorithmes de bases de Gröbner peut se révéler riche en information sur
la structure de l’objet modélisé.

Concernant les codes alternants, une modélisation algébrique de la clef secrète a été in-
troduite dans [FOPT10a]. Soit X = (X0, . . . , Xn−1) et Y = (Y0, . . . , Yn−1) des variables dans
Fqm , qui correspondent à la clef secrète, et gi,j les entrés de la matrice génératrice k× n d’un
code alternant. Alors, X et Y doivent satisfaire:

{
gi,0Y0X

`
0 + · · ·+ gi,n−1Yn−1X

`
n−1 = 0 | i ∈ {0, . . . , k − 1}, ` ∈ {0, . . . , t− 1}

}
. (6)

En pratique, pour des paramètres cryptographiques, cette modélisation ne permet pas
de retrouver la clef secrète d’un schéma McEliece car le coût de résolution du système (6)
est trop élevé pour les capacités actuelles de calcul. Cependant, cette modélisation a été
utilisée dans [FGO+13] pour construire un algorithme de complexité polynomiale capable de
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déterminer si une matrice donnée est la matrice génératrice d’un code alternant (lorsque celui-
ci a une grande dimension). Il était conjecturé jusqu’alors (dans [Sen02]) qu’il n’existait pas
d’algorithme efficace pour répondre à ce problème (appelé problème du distingueur). De plus,
grâce à cette modélisation, une attaque en recouvrement de clef a été mise au point sur une
famille particulière de codes alternants avec symétries. Cependant, cette attaque n’était pas
applicable pour les codes définis sur un corps premier. Ceci a donc été utilisé pour proposer
des codes avec symétries résistants aux attaques algébriques [BCMN10, BLM11].

Conception d’implémentations sûres et efficaces

Une étape importante pour utiliser des cryptosystèmes utilisant des codes dans des ap-
plications pratiques consiste à trouver des implémentations sûres. En effet, l’implémentation
d’une primitive cryptographique peut introduire des vulnérabilités face aux attaques dites
par canaux auxiliaires.

Les attaques par canaux auxiliaires reposent sur une méthode permettant de retrouver de
l’information secrète introduite par Kocher dans [Koc96]. Dans cet article, Kocher montre
qu’il est possible de retrouver une clef secrète RSA en mesurant le temps d’éxecution du
déchiffrement. L’idée centrale est d’exploiter le fait que le nombre d’opérations (et donc le
temps d’exécution) du déchiffrement dépend de la valeur des bits de la clef secrète. L’attaque
consiste à faire une hypothèse sur la valeur des bits de clef secrète et vérifier la conformité
du temps d’exécution avec la prédiction. Depuis, d’autres mesures physiques ont été utilisées
pour monter des attaques (par exemple, la consommation électrique [KJJ99, ÖOP03], le
rayonnement électro-magnétique [GMO01] et les ondes acoustiques [GST14]). L’analyse des
attaques par canaux auxiliaires est devenue un domaine de recherche à part entière, et il est
devenu impératif d’implémenter les algorithmes manipulant des données secrètes de manière à
rendre ces attaques impossibles. Pour ce faire, les émanations physiques doivent être rendues
indépendantes des secrets manipulés. Si ce n’est pas le cas, on dit qu’il y a une fuite, et le
but des attaques physiques est de mesurer et exploiter ces fuites. Les modifications apportées
à une implémentation pour éliminer ces fuites sont appelées des contre-mesures.

Trouver des contre-mesures est un travail spécifiques à chaque opération mathématique
(par exemple, l’exponentiation d’un élément dans un groupe cyclique ou sur une courbe
elliptique, l’addition de deux vecteurs, le produit matrice-vecteur ...). Il existe une littérature
riche sur ce sujet pour les opérations intervenant dans les primitives les plus répandues telles
que RSA, mais pour les primitives utilisant des codes correcteurs ce n’est que récemment que
les chercheurs ont commencé à étudier les fuites présentes dans une implémentation trop näıve
(par exemple dans [SSMS09, AHPT11, Str10b, Str13]) et à proposer des implémentations
espérées plus résistantes [Hey11, Str10a, SWM+10, BCS13].

Certains articles ont proposé des implémentations complètes de cryptosystèmes à base
de codes, par exemple [CGP08, Str10a, Bis10, SWM+10, Hey11, LS12, BCS13]. Certains
prennent en compte les attaques par canaux auxiliaires, d’autres se concentrent sur l’efficacité.
En parallèle, d’autres travaux d’attaque sur des implémentations du chiffrement McEliece ont
été menés [SSMS09, AHPT11, Str10b, Str13]. Ces articles identifient des fuites et proposent
la plupart du temps des contre-mesures pour les éliminer. Cependant, l’efficacité de ces
contre-mesures n’est pas totale et l’attaque proposée dans [Str13] est toujours possible.

Garantir la conformité avec des modèles de sécurité

Les modèles de sécurité sont des abstractions des primitives cryptographiques qui perme-
ttent de mesurer et borner la quantité d’information qu’un attaquant peut espérer retrou-
ver. Ce sont des abstractions car elles ne considèrent par les propriétés mathématiques des
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primitives considérées mais seulement des aspects cryptographique. Par exemple, pour une
fonction de chiffrement, les modèles de sécurité mesurent la capacité d’un attaquant à lier
un message chiffré avec le message clair correspondant. Au contraire, pour prouver qu’une
fonction cryptographique satisfait un modèle de sécurité, il est nécessaire d’examiner ses pro-
priétés mathématiques. En cryptographie à base de codes correcteurs, plusieurs travaux se
sont attachés à évaluer les exigences de sécurité satisfaites par les primitives courantes, et
comment les modifier pour qu’elles satisfassent des modèles de sécurité, par exemple dans
[Ber97, KI01, NIKM08, NC11, Per12b, DDMQN12].

Contributions

Pour les propositions récentes de codes linéaires avec clef compacts (codes alternants avec
symétrie et codes de Goppa sauvages), nous révélons des propriétés inconnues qui se sont
avérées être des faiblesses. En effet, grâce à ces dernières, nous introduisons de nouvelles
attaques de recouvrement de clef qui permettent de retrouver en pratique la clef privée pour
de nombreux paramètres proposés pour un usage cryptographique. Ces nouvelles attaques de-
vront être prises en compte à l’avenir pour proposer des paramètres sûrs. Elles appartiennent
à la catégorie des attaques algébriques.

Cryptanalyse algébrique dans cryptographie à base de codes alternants

Dans le Chapitre 4, nous étudions une attaque algébrique contre tous les codes alternants
déduite de la modélisation (6). Nous améliorons cette modélisation en décrivant plus finement
certaines sous-familles des codes alternants. Nous introduisons de nouvelles modélisations,
où les blocs de variables X et Y du système (6), qui contiennent n variables chacun, sont
remplacés par deux blocs contenant chacun n − k variables. Nous donnons des bornes de
complexité pour la résolution des systèmes algébriques associés. Pour ce faire, nous supposons
que, par recherche exhaustive, suffisamment de variables ont été retrouvées pour pouvoir
déduire toutes les autres variables en résolvant un système linéaire. Grâce à cette méthode,
nous montrons que le nombre d’opérations nécessaires pour retrouver la description secrète
d’un code alternant est borné supérieurement par qm

2t · poly(n). Nous comparons ce résultat
avec la complexité de l’autre attaque sur la clef connue pour les codes de Goppa (l’attaque
par séparation du support). Nous montrons que, asymptotiquement, l’attaque algébrique est
plus efficace pour attaquer les codes dont la longueur est significativement plus petite que la
taille du corps où les éléments secrets sont choisis (i.e. n� qm).

Schéma McEliece utilisant des codes alternants avec symétries

Les codes alternants avec symétries sont des codes alternants dont une matrice génératrice
est faite de blocs symétriques. Une telle matrice peut être décrite entièrement en ne stockant
qu’un nombre réduit de ses entrées. Sur la figure page 24, stocker 16 éléments ai est suffisant
pour connâıtre entièrement une matrice contenant 64 entrées. Des codes de ce type ont
été introduits par différents auteurs [BCGO09, MB09, BCMN10, BLM11]. Leur but est de
concevoir un schéma de chiffrement dont la clef publique a un coût de stockage réduit. Par
exemple, les cryptosystèmes proposés dans [MB09] ont des tailles de clef réduite d’un facteur
entre 22 et 117 en comparaison à un code de Goppa binaire de même sécurité. Faugère,
Otmani, Perret et Tillich (FOPT) ont montré que la modélisation des codes alternants (6)
peut être adaptée à ces codes avec symétries, mais le système obtenu ne pouvait pas être
résolu dans tous les cas. Des attaques, des attaques pratiques étaient rendues possibles pour
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tous les paramètres proposés dans [BCGO09] et pour certains provenant de [MB09], mais
pour aucun de ceux de [BCMN10, BLM11].

Dans le Chapitre 5, nous rassemblons tous les codes alternants avec symétries autour d’une
même propriété (précisément, ils ont tous un groupe d’automorphismes non-trivial). Grâce
à cette propriété, nous unifions leur construction et expliquons comment, à partir d’un code
alternant usuel, construire un code alternant avec symétrie. Par exemple, nous montrons que
tous les codes proposés dans [BCGO09, MB09, BCMN10, BLM11] peuvent être obtenus en
choississant des supports x ∈ Fnqm globalement stables par une fonction affine φ : z 7→ az + b
(où (a, b) ∈ F∗qm × Fqm). Puis, nous montrons que, pour ces codes, il est possible d’ inverser
cette construction. Pour ce faire, nous contruisons, à partir d’une matrice génératrice avec des
blocs symétriques, une matrice où chaque bloc a été remplacé par la somme des coordonnées
du bloc. Nous appelons cette construction le pliage (ou folding).

a0 a1 a2 a3 a4 a5 a6 a7

a1 a0 a3 a2 a5 a4 a7 a6

a2 a3 a0 a1 a6 a7 a4 a5

a3 a2 a1 a0 a7 a6 a5 a4

a8 a9 a10 a11 a12 a13 a14 a15

a9 a8 a11 a10 a13 a12 a15 a14

a10 a11 a8 a9 a14 a15 a12 a13

a11 a10 a9 a8 a15 a14 a13 a12


Pliage−→


a0 + a1 a4 + a5

+a2 + a3 +a6 + a7

a8 + a9 a12 + a13

+a10 + a11 +a14 + a15



Pliage d’une matrice 8 × 8 avec symétries, faite de blocs symétriques 4 × 4, en une matrice
2× 2.

La faiblesse des codes alternants avec symétries vient du fait que ce code plié est un code
alternant dont les éléments privés sont très proches de ceux du code de départ. Nous prouvons
ceci en montrant que, si φ est la fonction affine utilisée pour construire le support du code
de départ et α ∈ F∗qm , il existe des polynômes Aφ,α, Bφ,α ∈ Fqm [z] tels que tout polynôme
P ∈ Fqm [z] vérifiant P (φ(z)) = αP (z) peut être écrit sous la forme P (z) = Aφ,α(z)Q(Bφ,α(z)),
où Q ∈ Fqm [z] est de degré strictement inférieur à celui de P . Ceci mène à notre contribution
centrale sur les codes alternants avec symétries, résumée ci-dessous.

Theorem (informel, voir Théorème 5.21 page 98). Soit C un code alternant de longueur n,
avec pour secret (x,y) ∈ Fnqm×Fnqm, dont une matrice génératrice est faite de blocs symétriques
de taille t × t comme dans [BCGO09, MB09, BCMN10, BLM11]. Alors, le code plié de C

est un code alternant C ′ de longueur n/t et de secret (x′,y′) ∈ Fn/tqm × Fn/tqm . De plus, il existe
une relation explicite entre (x′,y′) et (x,y) telle que le secret (x,y) définissant C peut être
retrouvé efficacement en connaissant (x′,y′).

La clef secrète d’un code alternant avec symétrie peut donc être retrouvée à partir de celle
du code plié, qui lui n’admet plus de symétrie. Ceci prouve que les schémas McEliece utilisant
ces clefs compactes ont la même sécurité (pour la clef) qu’un schéma McEliece avec une clef
beaucoup plus petite.

Dans le Chapitre 6, nous combinons cette faiblesse des codes alternants avec symétrie avec
les nouvelles modélisations algébriques introduites au Chapitre 4. Nous obtenons une attaque
algébrique contre les schémas McEliece utilisant des codes alternants (ou de Goppa) dont les
supports sont stables sous l’action de fonctions de la forme φ : z 7→ z + b (avec b ∈ F∗qm), qui
sont ceux utilisés dans [MB09, BCMN10, BLM11]. Nous nous sommes restreints à ce cas, car
les autres fonctions affines possibles (φ : z 7→ az + b avec a 6= 1), utilisées dans [BCGO09],
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avaient déjà été prouvées très faibles dans [FOPT10a]. Au contraire, cette dernière attaque
était structurellement inefficace pour les paramères de [BCMN10, BLM11]. Les résultats
pratique que nous obtenons montrent que l’attaque est fatale aux schémas utilisant des codes
de grande dimension k (i.e. proche de la longueur n), qui sont toujours ceux utilisés pour des
applications de signature. Concernant les schémas de chiffrement, l’attaque est de moins en
moins efficace à mesure que la dimension du code utilisé diminue. Cependant, les codes de
petite dimension sont plus vulnérables aux attaques sur les messages de type ISD. Pour cette
raison, il est improbable que des paramètres de chiffrement sûrs puissent être trouvés.

Paramètres Cette Attaque Niveau de Ref
(q,m, t, n) thèse précédente sécurité

(24, 4, 128, 4096) 0.010 s. 7.1 s 128 [MB09]
(22, 8, 64, 3584) 0.040 s. 1,776.3 s 128 [MB09]
(2, 16, 32, 4864) 18 s. N.A. 128 [MB09]

(2, 14, 13, 16368) 3.0 s N.A 81 [BCMN10]
(2, 14, 14, 16368) 3.0s N.A. 84 [BCMN10]
(2, 15, 12, 32752) 5.4s N.A 82 [BCMN10]

(3, 11, 9, 177048) 3.4 s N.A. 80 [BLM11]
(5, 8, 15, 390495) 82 s N.A. 128 [BLM11]
(241, 3, 241, 964) 0.020 s N.A. 112 [BLM11]

Temps de recouvrement de la clef privée pour des codes alternants avec symétrie (N. A. signifie
Non-Applicable).

Cryptanalyse du schéma McEliece utilisant des codes de Goppa sauvages (Wild
McEliece)

Le Chapitre 7 est consacré aux schémas Wild McEliece et Wild McEliece Incognito. Ce
sont des schémas de chiffrement à base de codes décrits par Bernstein, Lange et Peters dans
[BLP11b] et [BLP11c]. La fonction de chiffrement est la même, mais les codes linéaires utilisés
sont décrits par des matrices plus petites que pour McEliece, ce qui confère une taille moindre
à la clef publique et un coût de stockage réduit d’un facteur allant jusqu’à 16. Ces codes, qui
appartiennent à la famille des codes alternants, peuvent être vus comme une généralisation
des codes de Goppa sur F2 (proposés par McEliece) à d’autres corps finis Fq avec q >. Ils
ont été appelés codes de Goppa sauvages (ou wild Goppa codes) par les concepteurs de ces
schémas.

Nos résultats montrent que, grâce à des propriétés spécifiques aux codes de Goppa sauvages,
la clef secrète peut être modélisée par un système d’équations contenant un nombre de vari-
ables très faible comparé aux systèmes de type (6) décrivant des codes alternants génériques.
Soit gi,j les entrées d’une matrice génératrice k × n d’un code de Goppa sauvage, et Z =
(Z0, . . . , Zn−1) des variables dans Fqm , nous montrons qu’un attaquant capable de résoudre
le système

{
gi,0Z

`
0 + · · ·+ gi,n−1Z

`
n−1 = 0 | i ∈ {0, . . . , k − 1}, ` ∈ {1, . . . , q − 1}

}
, (7)

est capable de retrouver la clef secrète.
Nous montrons ceci en prouvant que les solutions du système (7) forment un espace vec-

toriel, ce qui est inhabituel pour un système algébrique non-linéaire. Nous exploitons cette
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propriété dans la phase de résolution : comme nous ne cherchons pas un vecteur en partic-
ulier mais simplement une base de l’espace des solutions, nous pouvons fixer arbitrairement
des coordonnées du vecteur recherché. Une fois une base de l’espace des solutions trouvée,
nous concevons une méthode pour retrouver la clef secrète à partir de cette base en temps
(heuristiquement) polynomial. Nous résumons dans le théorème suivant l’essentiel de notre
résultat.

Theorem (informel, voir les Théorèmes 7.6 (page 122) et 7.15 ( page 129)). Soit C un code
Goppa sauvage sur Fq et gi,j les entrées d’une matrice génératrice k × n. Alors,

1. les solutions du système (7) forment une union d’espaces vectoriels.

2. Étant donnée une base de l’un de ces espaces vectoriels, une description secrète de C
peut être retrouvée en temps (heuristiquement) polynomial.

Nous en déduisons la stratégie (simplifiée) de cryptanalyse suivante.

Système (3)
{
gi,0Z

`
0 + · · ·+ gi,n−1Z

`
n−1 = 0 | i ∈ {0, . . . , k − 1}, ` ∈ {1, . . . , q − 1}

}
Théorème : les solutions forment un espace vectoriel de dimension d.

Système (3) avec
(Z0, . . . , Zd−1) = (1, 0, . . . , 0)

Système (3) avec
(Z0, . . . , Zd−1) = (0, . . . , 0, 1)

...

Calcul de base de Gröbner Calcul de base de Gröbner

Base des solutions de (3)

Récupération en
temps polynomial

Secret

Stratégie de recouvrement de clef pour Wild McEliece

Dans un contexte plus large, notre modélisation algébrique avec faible nombre de variables
peut être appliqué dès que le polynôme secret Γ(z) admet un facteur avec multiplicité. Ceci
devrait encourager les concepteurs à choisir des polynômes de Goppa irréductibles.

Nous montons une attaque pratique utilisant cette stratégie contre les codes de Goppa
sauvages définis sur des corps non-premiers, sur lesquels nous exhibons des faiblesses supplé-
mentaires. En effet, nous montrons que, pour un code de Goppa sauvage défini sur Fps avec p
premier et s > 1, il est possible de remplacer le système (7) (contenant (ps−1)mt−t variables)
par une variante contenant moins de (p−1)mst variables, puis appliquer la même stratégie de
recouvrement de clef. Ceci affecte gravement la sécurité de nombreuses instances proposées
pour un usage cryptographique avec un niveau de sécurité de 2128 par les auteurs des articles
[BLP11b, BLP11c]. D’autres instances ont été proposées sur un site internet comme défis
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pour la communauté. Pour plusieurs tailles de corps, nous pouvons retrouver la clef privée
pour les instances mises en ligne les plus difficiles.

Paramètres Taille de clef
(kB)

Sécurité
annoncée

Modélisation générique Notre modélisation
(q,m, t, u, n) Var. Temps de rés. Var. Temps de rés.

(32, 2, 3, 24, 852) 90 2130 462 ∞ 18 0.6s
(27, 3, 2, 42, 1500) 204 2128 564 ∞ 26 0.9s
(27, 3, 5, 0, 1700) 304 2158 780 ∞ 65 1h 59min
(25, 3, 3, 25, 1206) 55 2117 582 ∞ 57 1h 2min
(16, 3, 6, 16, 1328) 160 2125 636 ∞ 54 36h 35min
(9, 3, 6, 14, 728) 40 281 372 ∞ 54 25h 13min

Nombre de variables et temps de résolution (avec l’implémentation Magma [BCP97a] de F4) de
notre modélisation algébrique pour des codes de Goppa sauvages définis sur Fq avec polynôme
secret Γ(z) = f(z)g(z)q−1 ∈ Fqm [z] où t = deg(g) et u = deg(f).

Conclusion sur la cryptanalyse algébrique des codes de Goppa

Tout au long de cette thèse, nous avons conçu des cryptanalyses exploitant des carac-
téristiques de codes alternant (ou de Goppa) non-génériques. Il est important de souligner
qu’aucune de ces attaques ne s’appliquent à des alternant aléatoires. Pour résumer, nous
avons exploité les propriétés non-générique suivantes :

— l’existence de relations algébriques vérifiées par les élements du support et les multi-
plieurs d’un code alternant,

— la non-irréductibilité du polynôme d’un code de Goppa liée à la présence d’un facteur
multiple (sauf pour les codes binaires)

— l’appartenance des entrées de la matrice publique à un code non-premier (à l’exception
là encore de F2).

Les codes de Goppa binaires dont le polynôme secret est irréductible n’ont aucune de
ces propriétés. Il est intéressant de noter que chaque modification apportée à ces codes s’est
avérée être une faiblesse, ce qui devrait encourager les concepteurs à se limiter à ces codes
(au sein de la famille des codes de Goppa ou alternants).

Nos résultats illustrent également comment l’étude du comportement des modélisations
algébriques peut révéler des propriétés inattendues des objets modélisés.

Prenons l’exemple des codes alternants avec symétries. [FOPT10a] fournit une modélisa-
tion algébrique adaptés aux codes alternants symétriques obtenus en considérant les fonctions
affines de la forme φ : z 7→ z+b (avec b ∈ F∗qm). Le système obtenu est très sur-déterminé, i.e.
il contient bien plus qu’équations que d’inconnues. Pour un système sur-déterminé aléatoire,
la probabilité d’avoir des solutions est très faible. Comme le système considéré ici décrit une
clef secrète correspondant au code public, le système a nécessairement des solutions (mais très
peu). Cependant, nous avons observé le fait suivant : une fois fixé un petit sous-ensemble de
variables à la valeur 0, le système obtenu a encore des solutions. Plus étrange encore, pour
un autre sous-ensemble de variable, les solutions sont les mêmes que le premier sous-ensemble
ait été fixé à 0 ou non. Cette propriété, inattendue et intrigante, s’explique par la structure
du code plié : fixer certaines variables à 0 transforme la modélisation algébrique du code de
départ en celle de son code plié, qui a donc nécessairement des solutions.

Notre travail sur Wild McEliece fournit un autre exemple de structure révélée par l’étude
des systèmes algébriques. En effet, il est possible de prouver que, si les gi,j sont les entrées
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d’un code de Goppa sauvage, et Y est défini comme dans le système (6), on peut écrire
un système très surdéterminé d’équations linéaires. En effet, lorsque les entrée gi,j du code
sont choises dans Fq avec q = ps, alors les multiplieurs du code sont solutions du système
d’inconnues Y:

{
gp

u

i,0Y0 + · · ·+ gp
u

i,n−1Yn−1 = 0 | i ∈ {0, . . . , k − 1}, 0 6 u 6 s− 1
}
. (8)

Si le système (8) est de rang plein, alors la situation est très favorable pour un attaquant.
Le secret peut être retrouvé en temps polynomial. Cependant, nous avons observé au contraire
que ces équations linéaires avaient toujours au défaut de rang d’une valeur très spécifique (
précisément n−(p−1)mst avec q = ps). Cette chute de rang a pu être reliée avec la dimension
d’un code de Goppa sauvage en lien avec le code public, et nous avons déduit une résultat
surprenant sur la structure du code public (Théorème 7.16).

Contributions dans la sécurisation des implémentations du cryptosystème
McEliece

Notre contribution pour la sécurisation des implémentations des primitives cryptographiques
à base de codes correcteurs consiste à proposer une manière d’implémenter le déchiffrement
du cryptosystème de McEliece plus résistante aux attaques par canaux auxiliaires que les ver-
sions précédentes. Dans le Chapitre 8, nous montrons que l’attaque décrite dans [Str13] peut
être améliorée, de sorte qu’il est impératif d’en proposer une contre-mesure fiable. Puis, nous
décrivons une telle contre-mesure. Pour ce faire, nous détaillons une version de l’algorithme
d’Euclide étendu qui, une fois les paramètres publics fixés, requiert un nombre fixe de boucles,
chaque boucle contenant un nombre fixe d’opérations. Ainsi, les attaques par mesure du temps
d’exécution sont écartées. Nous apportons donc une brique important dans la construction
d’une implémentation sûre du chiffrement McEliece, et plus généralement de toute primitive
nécessitant d’implémenter le décodage d’un code alternant.

Perspectives

Analyse des modélisations algébriques

Dans cette thèse, nous avons pu résoudre en pratique beaucoup des modélisations al-
gébriques introduites pour décrire la clef privée de schémas cryptographiques, ce qui met en
évidence un faible niveau de sécurité. Pour les systèmes que nous n’avons pas pu résoudre
avec notre capacité de calcul, estimer la sécurité n’est pas aussi simple. Ceci vient du fait que,
pour les systèmes considérés, il n’existe pas de moyen efficace de savoir quand la résolution
par bases de Gröbner se terminera avant la fin du calcul. Idéalement, nous voudrions pouvoir
donner la complexité (ou simplement une borne sur la complexité) du calcul de base de Gröb-
ner à résoudre. De telles bornes existent pour des systèmes tirés au hasard, mais ceux que
nous avons à résoudre en cryptanalyse ne sont précisément pas tirés au hasard car ils décrivent
des objets mathématiques structurés. Pour cette raison, il serait souhaitable d’étudier spéci-
fiquement le comportement des algorithmes de base de Gröbner avec les systèles (6) et (7) afin
d’en déterminer la complexité. Une idée pour faire ceci serait d’étendre l’étude des systèmes
bilinéaires (c’est-à-dire de la forme

∑
i,j αi,jXiYj ∈ K[X1, . . . , XvX , Y1, . . . , YvY ]) réalisée dans

[FSS11] aux polynômes
∑

i,j αi,jX
pu

i Y pv

j qui sont quasi -bilinéaires en caractéristique p et qui
apparaissent dans les modélisations algébriques. Une autre méthode serait d’exploiter le fait



CONTENTS 29

que la résolution est opérée dans un corps fini. Par exemple, il serait intéressant d’étudier le
comportement des systèmes obtenus en décomposant chaque inconnue sur Fqm en un vecteur
de m coordonnées sur Fq. Des bornes plus fines permettraient de donner, à partir des seuls
paramètres d’un code, le niveau de sécurité contre les cryptanalyses algébriques connues. De
plus, comme nous l’avons expliqué, l’étude des systèmes algébriques peut révéler des pro-
priétés inattendues sur le code, ou l’existence d’algorithmes de calculs de bases de Gröbner
dédiés à ces systèmes.

Codes alternants symétriques pour McEliece

Il est naturel de se demander si il existe des codes alternants symétriques garantissant un
bon niveau de sécurité pour le schéma McEliece correspondant. Après cette thèse, on peut
séparer les codes alternants avec symétries en trois catégories (résumées sur la figure page
30):

1. Pour les constructions proposées jusqu’à présent pour utilisation cryptographique, qui
utilisent des codes alternants dont le support secret x = (x0, . . . , xn−1) ∈ Fnqm est
globalement stable par une fonction affine φ : z 7→ az+b, nous avons prouvé l’efficacité
de la méthode du pliage. Elle réduit la sécurité de la clef à celle d’un code sans symétrie
et beaucoup plus petit.

2. Les constructions de codes alternants avec symétries introduites par Dür et Berger
dans [Dür87] et [Ber99, Ber00b], rappelées au Chapitre 5, sont plus générales. Elles
utilisent des codes dont l’élement secret x est stable par une fonction affine composée
avec l’action d’un morphisme de Fröbenius φ : z 7→ (az + b)q

j
(pour 0 6 j 6 m − 1),

et même dans le cas le plus général par des fonctions de la forme φ : z 7→
(
az+b
cz+d

)qj
.

La similarité avec les constructions précédentes (i.e les relations algébriques imposées
sur le support) laisse à penser que la méthode du pliage peut être étendue à ces codes.
Cette question mérite beaucoup d’attention.

3. Des codes alternants symétriques hors de la portée du Chapitre 5 existent. Ceci signifie
qu’il n’existe pas de relations algébriques spécifiques sur les éléments secrets (mais qu’il
existe malgré tout des automorphismes non-triviaux). Dans ce cas, la méthode du
pliage ne semble pas pouvoir s’étendre. Cependant, nous ne connaissons aucun moyen
de générer efficacement de tels codes.

Conclusion sur la sécurité du cryptosystème McEliece

Aujourd’hui, les tailles de clef importants sur chiffrement McElice ne sont plus aussi
handicapantes qu’elles ne l’étaient dans les années 80. De plus, le caractère post-quantique de
la cryptographie à base de codes correcteurs est un atout de plus en plus important. Parmi
les primitives utilisant des codes correcteurs, le schéma de McEliece est le plus ancien et une
telle longévité est rare pour un cryptosystème à clef publique. Ceci est, pour certains, garant
de sa sécurité. Cependant, nous pensons que sa longévité ne devrait pas être considérée ainsi.
De manière générale, le chiffrement McEliece en lui-même a été assez peu étudié en lui-même
pendant de nombreuses années. Les attaques introduites entre 1980 et 2000 ([LB88, Leo88,
Ste88, CC98]) traitent essentiellement du problème du décodage d’un code linéaire alétoire,
c’est-à-dire résoudre un système liénaire avec erreurs, qui est un problème algorithmique
très général. Ce n’est que récemment, avec l’algorithme SSA de Sendrier [Sen00], que le
cryptanalystes ont étudié la difficulté de retrouver la description secrète d’un code de Goppa.
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Codes alternants avec symétries

Propositions pour la cryptographie
Secret x = (x0, . . . , xn−1) ∈ Fnqm

{φ(x0), . . . , φ(xn−1)} = {x0, . . . , xn−1}
avec φ : z 7→ az + b, a, b ∈ Fqm

Constructions de [Dür87, Ber99].
{φ(x0), . . . , φ(xn−1)} = {x0, . . . , xn−1}

où φ : z 7→
(
az+b
cz+d

)qj
Codes alternants avec symétries génériques
(pas de construction algorithmique connue)

Le travail de cryptanalyse que nous avons mené dans cette thèse ne menace sa sécurité en
pratique, mais révèle des propriétés inconnues des codes de Goppa inconnues jusqu’alors (par
exemple le Théorème 7.16 traitant des codes de Goppa définis sur Fps avec un polynôme
secret de multiplicité ps, où p est premier et s > 1). De telles propriétés sont particulièrement
intéressantes car elles révèlent des différences de comportement entre les codes de Goppa et
les codes aléatoires, et permettent donc de les distinguer. Des améliorations récentes sur
des attaques utilisant un distingueur de code ([CGG+14]) représentent un axe de recherche
prometteur. Grâce à ces méthodes, plusieurs schémas utilisant une famille particulière de
codes alternants (les codes GRS) ont été cassées. Les codes GRS sont des codes alternants
où un paramètre a été fixé : le degré d’extension m est fixé à 1. Pendant longtemps, il
était considéré que les codes alternants pour lesquels m est choisi strictement supérieur à 1
étaient complètement hors de portée des attaques utilisant un distingueur de code. Ceci s’est
avéré faux, comme il a été montré très récemment dans [COT14]. Les auteurs utilisent un
distingueur de code pour monter une attaque à la complexité polynomiale contre des codes de
Goppa sauvages dont le degré d’extension m vaut 2 (c’est-à-dire contre une sous-famille d’une

sous-famille des codes alternants). Étendre ce travail à des codes de Goppa ou alternants
moins spécifiques pourrait sérieusement affecter la confiance dans ces codes.
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Chapter 1

Coding Theory

1.1 Code basics

We introduce the definitions and basic tools that will be of constant use in this thesis. We
focus only on the aspects of coding theory useful for code-based cryptography. In particular,
we insist on the fact that we will use only linear codes even though we will sometimes omit
the linear.

1.1.1 First definitions

Firstly, we give the classical ways to describe a linear error-correcting code. The following
definitions are extracted from [MS86][Ch. 1].

Definition 1.1 (Linear Code). Let Fq be a finite field of q = ps elements (p prime, and
s > 0), n and k be non-negative integers with k 6 n. A linear code C of length n and
dimension k over Fq is a subspace of dimension k of the full space Fnq . It can be specified by
a full-rank matrix called a generator matrix which is a k × n matrix G over Fq whose rows
form a basis of the code, namely

C =
{

mG | m ∈ Fkq
}
.

It can also be defined as the right kernel of an (n− k)× n matrix H over Fq, called a parity-
check matrix, that is

C =
{
x ∈ Fnq | HxT = 0n−k

}
,

where xT is the transpose of the row vector x. Therefore, it holds that

HGT = 0(n−k)×k.

A vector of a linear code C is called a codeword of C . We refer to the quotient R = k/n as
the information rate of the code.

To describe linear codes, we will use alternatively generator matrices or parity-check ma-
trices. It is not hard to switch from one description to the other one, thanks to the following
classical lemma, that we will use extensively :

Lemma 1.2. Let C be linear code of length n and dimension k over Fq. Suppose that C

admits a generator matrix G of the form
(

Ik A
)

with A ∈ Fk×(n−k)
q . G is said to be in

standard form. Then, H =
(
−AT In−k

)
is a parity-check matrix of C .

33
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Remark 1.3. We will assume on many occasions that a linear code admits a generator matrix
in standard form. It may be found by performing Gaussian elimination over any matrix whose
rows generate the code. Such codes are said systematic in their k first positions. This will
not be restrictive for the statements that we have to prove, as all codes of dimension k are
equivalent to a systematic code (see below Definition 1.12 for code equivalence). By this,
we mean that the encoding function m ∈ Fkq 7→ mG can be twisted by an invertible matrix

U ∈ Fk×kq so that the code spanned by UG is systematic in its k first positions.

As we already stated, the purpose of a linear code is to transmit messages through a chan-
nel that may alter messages. More formally, if the original message is m = (m0, . . . ,mn−1) ∈
Fnq , we describe the received message as a vector y ∈ Fnq of the form

y = m + e,

where e ∈ Fnq is a vector representing the errors made over each information symbol transmit-
ted. For instance, ei = 0 means that the i-th bit was transmitted correctly. This brings the
following definition, that aims at quantifying the number of errors introduced by the channel.

Definition 1.4 (Hamming distance, Hamming weight). Let v,x,y ∈ Fnq . The Hamming
weight wH(v) of v is the number of indices i with vi 6= 0:

wH(v) = # {i ∈ {0, . . . , n− 1} | vi 6= 0} .

The Hamming distance dH(x,y) between x and y is the Hamming weight of their differ-
ence, that is the number of indices i with xi 6= yi,

dH(x,y) = wH(x− y) = # {i ∈ {0, . . . , n− 1} | xi 6= yi} .

In terms of errors, the Hamming distance between two vectors represents the Hamming
weight of the error transforming one vector into the other one.

When considering a real-world transmission channel and specific code C , a crucial question
is to know how hard it is to recover the original message from the noisy message y when
knowing that x is a codeword of the subspace C . A first question to ask is the following: how
many elements of C are close (in Hamming distance) to y ? If, for a low-error rate channel, a
sphere centered in y contains only one codeword x, then the original message is x with very
high probability. A tool to ensure that all the spheres of a given radius centered in codewords
do not contain other codewords is the minimum distance.

Definition 1.5 (Minimum distance of a code). Let C be a linear code over Fnq . The minimum
distance d(C ) of C (or simply the distance of C ) is the minimum Hamming distance between
its codewords. It is also the minimum Hamming weight of its non-zero codewords.

d(C ) = min
x,y∈C
x 6=y

{wH(x− y)} = min
v 6=0
{wH(v)}.

The minimum distance of a code is a very important parameter because of the following
theorem.

Theorem 1.6 ([MS86][Ch. 1, p. 10] ). A code C with minimum distance d can correct bd−1
2 c

errors. bd−1
2 c is called the capacity correction of C .
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We now have the main parameters describing a code: length, dimension and minimum
distance. In the following, a code of length n > 0, dimension k, distance d, and defined over
Fnq is be called a [n, k, d]q-code (or simply a [n, k, d]-code). Finding the minimum distance of
a code is a fundamental question in coding theory (for instance in [Var97b, Var97a, DMS03]).
In particular, Vardy proved in [Var97a] that it is an NP-hard problem. In many cases we
only have lower bounds, which will be enough for our purpose. We may note only [n, k,> d]
or [n, k].

1.1.2 Operations on Linear Codes

Let C be a [n, k, t]q-linear code. We give here the definitions of classical codes associated
to C : the dual code, the subfield subcode, the extended code and the trace code. All of them
can be easily described once a description of C is known.

Definition 1.7 (Dual Code [MS86][Ch. 1 p. 28] ). The dual code C⊥ is the subspace of Fnq
which is orthogonal to C , that is

C⊥ =
{
x ∈ Fnq | ∀y ∈ C ,xyT = x0y0 + · · ·+ xn−1yn−1 = 0

}
.

If C has generator matrix G and parity-check matrix H, then C⊥ has generator matrix H
and parity-check matrix G. For this reason, C⊥ has dimension n− k.

Definition 1.8 (Subfield Subcode [MS86][Ch. 7 p. 207]). Let q = ps with p prime and s > 0,
and C be a linear code over an extension Fqm of Fq (with m > 0). The subfield subcode of
C over Fq, denoted C|Fq , is the set of all the codewords of C whose all coordinates lie in Fq.

C|Fq =
{
m ∈ Fnq |m ∈ C

}
= C ∩ Fnq .

Suppose C has parity-check matrix an r × n full-rank matrix H = (hi,j)06i6r−1
06j6n−1

with

entries hi,j in Fqm. Write each hi,j as a column vector of m coordinates over Fq: hi,j =
(hi,j,0, . . . , hi,j,m−1)T . Then C|Fq admits as parity-check matrix the (mr) × n matrix H′ with
entries in Fq obtained by replacing each entry of H by a column-vector of its m coordinates
over Fq:

H′ =



h0,0,0 h0,1,0 . . . h0,n−1,0
...

h0,0,m−1

h1,0,0
... hi,j,`
...
...

hr,0,m−1 hr,n−1,m−1


Thus, C|Fq has dimension greater or equal to n− rm (assuming rm 6 n).

Definition 1.9 (Extended Code [MS86][Ch. 1 p. 27]). The extended code of C , denoted by

C̃ , is a code of length n + 1 obtained by adding to each codeword m = (m0, . . . ,mn−1) the

coordinate −
∑n−1

j=0 mj. If C has generator matrix G and parity-check matrix H, C̃ admits

respectively as generator matrix G̃ and parity-check matrix and H̃ given by:
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G̃ =

 G

...

−
n−1∑
j=0

gi,j

...

 ,
H̃ =


1 · · · 1 1

H
0
...
0


If the distance d of C is odd, then C̃ is a [n+ 1, k, d+ 1]q-code.

Definition 1.10 (Trace Code [MS86][Ch. 7 p. 208]). Let C be an [n, k]-code defined over a
finite field Fqm with q a prime power and m > 0. The trace over Fq of an element x of Fqm
is defined by

Trq(x) = x+ xq + · · ·+ xq
m−1 ∈ Fq.

The trace code of C is the code over Fq defined by

Trq(C ) =
{

(Trq(m0), . . . ,Trq(mn−1)) ∈ Fnq |m = (m0, . . . ,mn−1) ∈ C
}
.

When the context is clear, we will use only Tr instead of Trq.

Finally, we give the following result due to Delsarte linking on the dual of a subfield
subcode and the dual of the original code over Fqm .

Proposition 1.11 ([MS86, Del75]). Let C be a linear code over Fqm. Then, it holds that(
C|Fq

)⊥
= Trq(C

⊥).

1.1.3 Code Permutation and Automorphism Group

As for many mathematical structures, codes can be endowed with a natural action of the
symmetric group in the following way.

Definition 1.12 (Permutation acting on a code [MS86][Ch. 8 §5], Permutation equivalance
of codes). Let C be a code of length n and σ be a permutation of the code positions (i.e. a
permutation on the indices {0, . . . , n− 1}). The permutation σ acts on a codeword as follows

mσ = (mσ(i))06i6n−1.

It holds that σ(C ) = {mσ |m ∈ C } is a code of same length, dimension, and minimal distance
as C . Also, we shall say that σ(C ) is permutation-equivalent to C .

We introduce a fundamental object associated to a code: the permutation group. By
considering all the linear inversible applications of Fnq we could define a more general structure
(the automorphism group), but we will only need permutations in the Part II of this thesis.

Definition 1.13 (Automorphism group of a code restricted to permutations [MS86][Ch. 8
§5]). Let m ∈ C and σ be a permutation of the code positions. We shall say that σ is an
automorphism of C if and only if mσ ∈ C , for all m ∈ C . The set of automorphisms
(restricted to permutations on the code positions) of C is a group, denoted by Aut(C )

We give the following useful result on the automorphism group of a code.

Proposition 1.14 (Automorphism group of the dual code). Let C be a linear code. Then,
it holds that

Aut(C ) = Aut
(
C⊥
)
.
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Example 1.15. Let C be the code of length 5 over F2 generated by the rows of the matrix:

M =


0 1 1 0 0
1 1 0 0 0
1 0 0 0 1
0 0 0 1 1
0 0 1 1 0

 .

The permutation of the code positions i 7→ i⊕5 1 (with the convention i⊕5 1 = (i+1) mod 5)
is clearly a permutation of C . Note that, in this example, M is not a generator matrix of
C as it is not full-rank. Indeed, Gaussian elimination of M yields the following generator
matrix:

G =


1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

 .

Interestingly, in the previous example, we can see from M that C is invariant under
i 7→ i ⊕5 1, but it is not obvious from G. More generally, given a generator matrix of a
linear code, determining its automorphism group can be done by using a method proposed by
Leon [Leo82] in a time exponential in the code dimension, or an adaptation of Leon’s method
using the support splitting algorithm by Sendrier [Sen00], in which case the complexity is
polynomial in the code length and exponential in the dimension of the intersection of the
code with its dual (see for example [SS99, SS01b]).

Conversely, coding theorists studied the construction of linear codes with known permuta-
tion group. The specific case of alternant codes (see Definition 1.17 below) will be the center
of Chapter 5.

1.2 Generalized Reed-Solomon and Associated Codes

We expose the definitions of the codes that will be useful for this thesis. Those codes are
related to the Reed-Solomon codes, whose codewords are the evaluation of a polynomial of a
bounded degree in points of a finite field.

Definition 1.16 (Reed-Solomon codes [MS86][Ch. 10 §2]). Let x ∈ Fnqm with xi 6= xj for
i 6= j, and set an integer k > 0. The Reed-Solomon code of support x, denoted by RSk(x) is
the code

RSk(x) = {(P (x0), . . . , P (xn−1)) |P ∈ Fqm [z]<k} .

Here, we will not use Reed-Solomon codes but codes with the same kind of representation:
Generalized Reed-Solomon codes, alternant codes, and Goppa codes. They all share a common
framework to decode efficiently (a bounded number) of errors.

Let Fq be a finite field of q = ps elements (p prime, and s > 0). We introduce the following
Vandermonde-like matrices:

Vt(x,y) =


y0 · · · yn−1

y0x0 · · · yn−1xn−1
...

...
y0x

t−1
0 · · · yn−1x

t−1
n−1

 , (1.1)
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where
(
x = (x0, . . . , xn−1),y = (y0, . . . , yn−1)

)
∈ Fnqm × Fnqm .

With suitable x and y, the rows of such Vandermonde-like matrix define Generalized
Reed-Solomon (GRS) codes (Definition 1.17).

Definition 1.17 (Generalized Reed-Solomon codes [RS60, MS86][Ch. 10 §8]). Let x =
(x0, . . . , xn−1) ∈ (Fqm)n where all xi’s are distinct, y = (y0, . . . , yn−1) ∈

(
F∗qm

)n
and t a non-

negative integer. The Generalized Reed-Solomon code of dimension t, denoted by GRSt(x,y),
is defined as follows:

GRSt(x,y) =
{

(y0Q(x0), . . . , yn−1Q(xn−1)) | Q ∈ Fqm [z],deg(Q) 6 t− 1
}
.

We shall call x the support of the code, and y the multipliers.

We will need in the following to consider the dual of a GRS code. It turns out to be also
a GRS code, with description given by the next proposition.

Proposition 1.18 (Dual of a Generalized Reed-Solomon code [MS86][Ch.10 §8] ). Let x, y
and t be as in Definition 1.17. The dual of the code GRSt(x,y) is given by

(
GRSt(x,y)

)⊥
= GRSn−t(x,y

′), with y′i =
1

yi

1∏
06j<n
j 6=i

(xj − xi)
.

Alternant and Goppa codes can be viewed as subfield subcodes of duals of GRS codes
over Fq.

Definition 1.19 (Alternant Codes). Let x = (x0, . . . , xn−1) ∈ (Fqm)n where all xi’s are
distinct and y ∈ (F∗qm)n. As for GRS codes, x is the support and y the multipliers. The

code At(x,y) =
{
c ∈ Fnq | Vt(x,y)cT = 0

}
is called an alternant code of order t. In other

words, At(x,y) is the subfield subcode over Fq of the dual of GRSt(x,y). Let y′ be defined as
in Proposition 1.18. The codewords of At(x,y) have the following form:

At(x,y) =
{

(y′iQ(xi))06i<n | Q ∈ Fqm [z]6n−t−1 and ∀0 6 i 6 n− 1, y′iQ(xi) ∈ Fq
}
.

The code At(x,y) has length n, dimension > n−mt, and minimal distances > t+1. Moreover,
knowing x and y, up to bt/2c errors can be decoded efficiently.

There exists a large family of supports and multipliers describing the same GRS and
alternant codes. We give here a first family of such supports and multipliers. This property
is proved by a stronger Theorem from [Dür87] that we state in Chapter 5.

Proposition 1.20. Let x = (x0, . . . , xn−1) ∈ (Fqm)n where all xi’s are distinct, y ∈ (F∗qm)n,
and t > 0. Let a, b, c, d ∈ F∗qm with ad − bc 6= 0 such that cxi + d 6= 0 for all 0 6 i 6 n − 1,
and λ ∈ F∗qm. Let x′ and y′ be defined for all 0 6 i 6 n− 1 by:

x′i = axi+b
cxi+d

,

y′i = λyi(cxi + d)t−1.

Then, it holds that GRSt(x,y) = GRSt(x
′,y′).

Finally, ỹ defined for all 0 6 i 6 n − 1 by ỹi = λyi(cxi + d)n−t−1, it holds that At(x,y) =
At(x′, ỹ).
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Thanks to Proposition 1.11, we have the following characterization of the dual of an
alternant code.

Lemma 1.21. The dual At(x,y)⊥ of the alternant code At(x,y) of degree t and extension
m over Fq is given by:

At(x,y)⊥ = Trq

(
GRSt(x,y)

)
=
{(

Trq(c0), . . . ,Trq(cn−1)
)
| (c0, . . . , cn−1) ∈ GRSt(x,y)

}
.

Goppa codes form a subclass of alternant codes of particular interest for code-based cryp-
tography (as we will explain in Chapter 2).

Definition 1.22 (Goppa Codes [MS86][Ch.12 §3). ] Let x be as in Definition 1.19, and
g(z) ∈ Fqm [z] be of degree t satisfying g(xi) 6= 0 for all i, 0 6 i 6 n− 1. We define the Goppa
code over Fq associated to g(z) as the code

G (x, g(z)) = At(x,y), with y = g(x)−1.

The dimension k of G (x, g(z)) satisfies k > n− tm. The polynomial g(z) is called the Goppa
polynomial, and m is the extension degree. Equivalently, G (x, g(z)) can be defined as:

G (x, g(z)) =

{
c = (c0, . . . , cn−1) ∈ Fnq |

n−1∑
i=0

ci
z − xi

≡ 0 mod g(z)

}
.

Goppa codes and alternant codes naturally inherit an efficient decoding algorithm that
corrects up to t/2 errors that we will expose in Section 1.3. The interest for Goppa codes
comes from the fact that a Goppa code defined over F2 allows to decode efficiently t errors
instead of t/2. This comes from the following well-known result.

Theorem 1.23 ([MS86][p. 341], [Pat75]). Let Γ(z) ∈ F2m [z] be a polynomial of degree t with-
out multiple roots. The binary Goppa code G (x,Γ) is equal to the alternant code A2t(x,y

2),
with y2 = (Γ(xi)

−2)06i6n−1. As a consequence, there exists a polynomial time algorithm
decoding all errors of Hamming weight at most t in G (x,Γ) as soon as x and Γ(z) are known.

We also provide a useful property on the extended code of a Goppa code (proved for
instance in [Ber00a, Proposition 2])

Proposition 1.24. Let C = G (x, g(z)) be a [n, k]q-Goppa code with t = deg(g). Let x and y

be such that C = At(x,y). The extended code C̃ of C has parity-check matrix

Ṽt+1 (x,y) =


y0 · · · yn−1 0
y0x0 · · · yn−1xn−1 0
...

...
...

y0x
t−1
0 · · · yn−1x

t−1
n−1 0

y0x
t
0 · · · yn−1x

t
n−1

1
LC(g)


where LC(g) denotes the leading coefficient of g.

1.3 Decoding Tools for Alternant codes

To motivate the use of alternant codes in cryptography, we give a high-level description
of the classical methods to decode errors in polynomial time for alternant codes (Alternant
decoder) and binary Goppa codes (Patterson decoder). More detailed or more optimized
descriptions can be found in [MS86][Ch.12 §9],[Ber, SKHN75]. These methods have in com-
mon the resolution of a key equation, which is an equation whose unkowns are univariate
polynomials, and implies an extended Euclidean algorithm.
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1.3.1 Alternant Decoder

Let C = At(x,y) be an alternant code over Fq with x,y ∈ Fnqm (Definitions 1.19, 1.22).
Let G be a k × n be a generator matrix, and H be an (n− k)× n parity-check matrix.

Proposition 1.25 (Decoding tools). Suppose one wants to decode c = mG + e, where
wH(e) = w 6 bt/2c. We write e = (0, . . . , 0, ei1 , 0, . . . , 0, eiw , 0, . . . , 0), with eij 6= 0. The
alternant decoder processes the following quantities:

1. The value s = HcT is called the syndrome. Once H is fixed, s depends only on the
error e and not on m.

2. The polynomial syndrome, defined as follows (equalities proved below):

SAlt,e(z) =

t−1∑
`=1

(
n−1∑
i=0

ciyix
`
i

)
z` =

t−1∑
`=1

 w∑
j=1

eijyijx
`
ij

 z` =

w∑
j=1

eijyij
1− zxij

mod zt.

(1.2)
Moreover, if H is in systematic form, SAlt,e(z) can be deduced from the syndrome s
thanks to

SAlt,e(z) =
t−1∑
`=1

(
n−k−1∑
i=0

siyix
`
i

)
z`. (1.3)

Proof. Let Vt(x,y) be defined as in (1.1). Equation (1.2) comes from the equality:

Vt(x,y)cT = Vt(x,y)GT︸ ︷︷ ︸
=0

mT + Vt(x,y)eT = Vt(x,y)eT .

By identifying the coefficients, we obtain
∑n−1

i=0 ciyix
`
i =

∑n−1
i=0 eiyix

`
i for all 0 6 ` 6 t − 1.

We prove Equation (1.3), showing that the polynomial syndrome SAlt,e(z) can be directly
deduced from the received syndrome s when the parity-check matrix H is in systematic form.
We write s = Hs̃T , with s̃ = (s; 0, . . . , 0). We have Hs̃T = HeT , so that s̃− e ∈ At(x,y) and

Vt(x,y)(s̃T − eT ) = 0. Therefore, for all 0 6 ` 6 t− 1, it holds that
∑n−1

i=0 (s̃i − ei)yix`i = 0.
We deduce that

n−k−1∑
i=0

siyix
`
i =

n−1∑
i=0

eiyix
`
i .

The last equality of (1.2) is a classical series expansion.

The purpose of the decoding algorithms for alternant codes is to recover, from the syn-
drome polynomial, polynomials whose roots are related to the support elements xij in the
error positions. More precisely, we look for the following polynomials.

Definition 1.26 (Error-locator polynomial, error-evaluator polynomial). Let e = (0, . . . , 0, ei1 , 0, . . . , 0, eiw , 0, . . . , 0)
with eij 6= 0. We define σe(z) the error locator polynomial, σinv,e(z) = zdeg(σe)σe(z−1) its
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reciprocal polynomial, and ωe(z) the error evaluator polynomial by:

σe(z) =
w∏
j=1

(z − xij )

σinv,e(z) =
w∏
j=1

(1− zxij )

ωe(z) =
w∑
j=1

w∏
s=1
s 6=j

(z − xis)

ωinv,e(z) =
w∑
j=1

eijyij
w∏
s=1
s 6=j

(1− zxis)

When there is no ambiguity on the error vector, we will denote the error locator polynomial
by σ(z), its reciprocal polynomial σinv and the error evaluator polynomial ω(z).

Once the polynomial syndrome is known, the purpose is to find the error locator poly-
nomial and error evaluator polynomial. Indeed, the roots of the error locator polynomials
indicate the positions where eij 6= 0. The value eij of the error is then given by

eij = −
xijωinv,e(x−1

ij
)

yijσ
′
inv,e(x−1

ij
)
, (1.4)

where σ′e is the derivative of σe. In practice, the most costly part of the decoding consists in
finding σ(z) and ω(z). They are given by the next theorem.

Theorem 1.27 (Key equation for alternant decoder). Let SAlt,e(z), σinv(z) and ωe(z) be
defined as in Definition 1.25. Then, the following relation, called the key equation, holds:

σinv(z)SAlt,e(z) = ωinv(z) mod zt. (1.5)

Given a polynomial syndrome SAlt,e(z), then σinv(z) and ωinv(z) are the unique solution to
(1.5) with σinv(0) = 1, deg(σinv) 6 bt/2c, deg(ωinv) 6 bt/2c − 1, and deg(σinv) as small as
possible.

To solve the key equation, one needs to find polynomials f(z), σinv(z) and ωinv(z) with
deg(σinv) 6 bt/2c, deg(ωinv) 6 bt/2c − 1 and

ztf(z) + σinv(z)SAlt,e(z) = ωinv(z).

This is done thanks to the Extended Euclidean algorithm. This algorithm is well-known
for computing the greatest common divisor of two polynomials (or integers) a(z) and b(z)
and recovering the Bezout coefficients, that is two polynomials u(z), v(z) such that

a(z)u(z) + b(z)v(z) = gcd (a(z), b(z))

More precisely, by Extended Euclidean Algorithm (or EEA in short), we refer to Algorithm
1, where we also give as input a degree d and the algorithm stops as soon as we find u(z), v(z)
such that a(z)u(z) + b(z)v(z) has degree lower or equal to d.

The purpose of starting the sequence (r(z)) by r−1(z) is to align the sequence (q(z)) with
the iterations of the while loop: qi(z) is computed in the i-th iteration.

Therefore, the Key equation (1.5) can be solved by performing EEA(zt, SAlt,e(z)), bt/2c−
1), whose output is σinv(z), some f(z), and ωe(z). Note that, for decoding, the polynomial
f(z) is of no interest and Line 10 is removed from Algorithm 1 to gain efficiency.
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Algorithm 1 Extended Euclidean Algorithm (EEA)

Input: a(z), b(z),deg(a) > deg(b), d
Output: u(z), v(z), r(z) with a(z)u(z) + b(z)v(z) = r(z) and deg(r) 6 d

1: r−1(z)← a(z), r0(z)← b(z)
2: u−1(z)← 1, u0(z)← 0
3: v−1(z)← 0, v0(z)← 1
4: i← 0
5: while deg(ri(z)) > d do
6: i← i+ 1
7: qi ← ri−2(z)/ri−1(z) (quotient of the Euclidean division of ri−2(z) by ri−1(z))
8: ri ← ri−2(z)− qi(z)ri−1(z) (rest of the Euclidean division of ri−2(z) by ri−1(z))
9: ui ← ui−2(z)− qi(z)ui−1(z)

10: vi ← vi−2(z)− qi(z)vi−1(z)
11: end while
12: N ← i
13: return u(z)N , vN (z), rN (z)

Theorem 1.28 (Resolution of the key equation, [MS86][Ch. 12 §9]). Set r−1(z) = zt and
r0(z) = SAlt,e(z) and proceed Algorithm 1 until reaching an rN (z) such that deg(rN−1(z)) >
bt/2c and deg(rN (z)) 6 bt/2c−1. Then the error locator and evaluator polynomials satisfying
Equation (1.5) are given by

σinv,e(z) = δuN (z),
ωinv,e(z) = (−1)N δrN ,

where δ ∈ F∗qm is a constant such that σinv,e(0) = 1.

Remark 1.29. The error locator polynomial is deduced from σinv(z) when the weight of the
error vector is known. Indeed, when 0 is a possible error position, one cannot determine with
certainty the degree of σe(z) from the degree of its reciprocal polynomial σinv(z). The reason
is that for any polynomial p(z) ∈ Fqm [z], p(z) and zp(z) have same reciprocal polynomial.
Therefore, after computing a polynomial σinv(z) of degree d, there are two possibilities :

1. the index α such that xα = 0 is not an error position, σe is not divisible by z, then
deg(σe) = deg(σinv) and σe(z) is equal to zdeg(σinv)σinv(z

−1),

2. α is an error position, and σe(z) = zdeg(σinv)+1σinv(z
−1).

In a noisy channel context, the number of error has no reason to be controlled and the only
way we know for solving this ambiguity is to forbid the support x to contain 0. We will see
another solution adapted to the cryptographic context. In [LS12], the authors assume that the
error weight is fixed to a known value w so that the decoder can perform σe(z) = zwσinv(z

−1)
in any case. We will discuss the security issues raised by this assumption in Chapter 8.

The successive steps of the decoding are summed up in Algorithm 2.
For a code defined over F2, Step 5 is not necessary, since e` = 1 as soon as ` ∈ {i1, . . . , iw}.
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Algorithm 2 Decoding Phases (Alternant decoder)

Input: A vector c ∈ Fnq with c = mG + e and wH(e) 6 bt/2c,
A full description of At(x,y): (x,y) with support x ∈ (Fq)n,y ∈ (F∗q)n, and t > 0.

Output: The error vector e.

Polynomial Syndrome Determination:
1: Determine the syndrome polynomial: SAlt,e(z) =

∑t−1
`=1

(∑n−1
j=1 ciyix

`
i

)
z`.

Error Locator Polynomial Determination:
2: Find two polynomials σinv(z) and ωe(z) such as σinv(z)SAlt,e(z) = ωe(z) mod g(z) and

deg(σinv) 6 t,deg(ωe) < t by

σinv(z), ωinv(z) = EEA(zt, SAlt,e(z), bt/2c − 1)

3: Compute: σe(z) = zwσinv(z
−1) (swap the coefficients of σinv(z)).

Error Vector Determination:
4: Find the ij ’s with σe(xij ) = 0.
5: Deduce the error vector e: for ` ∈ {0, . . . , n − 1}, if ` ∈ {i1, . . . , iw} e` is given by Eq.

(1.4) , else e` = 0.
6: Return e.

1.3.2 Patterson Method for Decoding Binary Goppa Codes

Of notable importance for code-based cryptography, there exists a polynomial-time algo-
rithm solving t errors (instead of bt/2c as previously) on a codeword of an alternant code
At(x,y) when the code is actually a binary Goppa code G (x, g(z)) with g(z) a square-free
polynomial of degree t. Thanks to Theorem 1.23, we know that a codeword of At(x,y) is
a codeword of A2t(x,y

2), so that the Algorithm 2 with inputs (x,y2) and 2t can be used
to decode t errors. However, a more efficient method was proposed by Patterson in [Pat75].
It manipulates a different polynomial syndrom of degree t (instead of 2t with the alternant
decoder), so we expect the complexity to be better.

Definition 1.30. Let C = G (x, g(z)) be a Goppa code with g(z) ∈ F2m [z] being a square-
free polynomial of degree t. Let G be a k × n generator matrix, and H be an (n − k) × n
parity-check matrix in systematic form. For a received word c = mG + e and a syndrome
s = HcT = HeT , we define the polynomial syndrome as

SGop,e(z) =

n−k−1∑
i=0

si
z − xi

=

n−1∑
i=0

ei
z − xi

mod g(z).

Equality holds for the same reason as with the alternant polynomial syndrome.
The Key equation is also different:

Proposition 1.31 (Key equation for Patterson decoding). With σe(z) defined as in Definition
1.26, the key equation writes as follows:

SGop,e(z)σe(z) = ωe(z) mod g(z). (1.6)

To solve Equation (1.6), Patterson’s method consists in decomposing σe(z) into even and
odd parts, which are squares of polynomials of degree at most bt/2c (since the polynomials’
coefficients belong to a binary field F2m):
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σe(z) = σ1(z)2 + zσ2(z)2.

Then, we rewrite (1.6) :

σ2
1(z) =

(
SGop,e(z)−1 + z

)
σ2

2(z) mod g(z).

We deduce that σ1(z) and σ2(z) satisfy

τ(z)σ2(z) = σ1(z) mod g(z)

with τ(z) =
√
SGop,e(z)−1 + z (such a square root always exists because we work in a

binary field). Therefore, σ1(z), σ2(z) are exactly the output of EEA(g(z), τ(z), bt/2c). A
notable difference with the alternant decoder is that the computation of τ(z) requires an
inversion modulo g(z), i.e. to find a polynomial f(z) such that

f(z)SGop,e(z) = 1 mod g(z)

so this requires to perform the Extended Euclidean Algorithm EEA(g(z), SGop,e(z), 1).
Once σe(z) has been recovered, it is sufficient to determine the error positions (that is,

the roots of σe(z)), since the errors’ value is necessarily 1 for a binary code.

Algorithm 3 Decoding Phases (Patterson decoder)

Input: n− k-bit syndrome s = HeT with wH(e) 6 btc, private key (x, g(z))
Output: The error vector e.

Polynomial Syndrome Determination:
1: Determine the syndrome polynomial: SGop,e(z) =

∑n−1
i=0

ci
z−xi mod g(z)

Computation of τ(z):
2: Find f(z) such that f(z)SGop,e(z) = 1 mod g(z) by

f(z) = EEA(g(z), SGop,e(z), 0)

3: Set τ(z) =
√
f(z) + z.

Error Locator Polynomial Determination:
4: Find two polynomials σ1(z) and σ2(z) such as τ(z)σ2(z) = σ1(z) mod g(z) and

deg(σ1(z)) 6 bt/2c,deg(σ2(z))bt/2c by

σ1(z), σ2(z) = EEA(g(z), τ(z), bt/2c)

5: Deduce σe(z) = σ1(z)2 + zσ2(z)2

Error Vector Determination:
6: ELP evaluation: e = (σe(x0), . . . , σe′(xn−1))⊕ (1, . . . , 1).

Theorem 1.32 (Resolution of the Goppa key equation,[SKHN75]). Set r−1(z) = g(z) and
r0(z) = SGop,e(z) and proceed and Euclidean algorithm until reaching an rN (z) such that
deg(rN−1(z)) > bt/2c and deg(rN (z)) 6 bt/2c − 1. Then the error locator and evaluator
polynomials satisfying Equation (1.6) are given by

σe(z) = δuN (z),
ωe(z) = (−1)N δrN .
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where δ ∈ F∗qm is a constant which makes σe monic.

First Comparison of the Alternant and Goppa Decoders To assess accurately the
complexity of decoding, we would have to give a detailed implementation of each part of the
alternant and Patterson decoders. To give a common framework for both methods, we can
split them as follows:

— polynomial syndrom computation
— resolution of the key equation (Patterson method or Alternant decoder)
— root-finding of the error-locator polynomial
— (for non-binary codes), computation of the error values
There are several choices to make when implementing each step, and the purpose of this

paragraph is not to describe them. For details, we refer to implementation works, such as
[Bis10, LS12, BCS13]. We will discuss specifically possible implementations of the resolution
of the key equation in Chapter 8. To give a first comparison between the alternant decoder
and Patterson decoder, we compare the EEA steps of both methods. We report the following
result from [SKHN75].

Proposition 1.33. Let N be the number of field multiplication performed during the execution
of EEA(a(z), b(z), d) where (a(z), b(z), d) are set either as in Step 2 of Algorithm 2 or Step 4
of Algorithm 3. For an input error vector e of weight w, it holds that

N 6 4 deg(a)w − w2/2 + 13w/2

so that N is approximately bounded by 4 deg(a)wH(e).

Remark that this proposition on the cost of the EEA executions holds only in the context
of the resolution of a key equation. Indeed, in this case, the degree of the output polynomial
σ(z) (or σinv(z)) is controlled by the weight of the error introduced and this greatly helps
when counting the number of operations. We will see in Chapter 8 that it can even be
determined in advance with a suitable implementation. On the contrary, the EEA execution
for polynomial inversion in the Patterson decoding cannot be as precisely controlled. A quick
analysis shows that, for deg(a) 6 t, the number of field multiplication is bounded by 2t2, so
that we can give the following approximate comparison:

Key eq Syndrome Inversion Total
Alternant Decoder 8t2 8t2

Patterson Decoder 4t2 2t2 6t2

Figure 1.1 – Number of field multiplications required by the decoding steps.
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Chapter 2

Code-Based Cryptography

The purpose of error-correcting codes was originally not to hide information but to protect
it from transmission errors, following the works of Shannon on the noisy channel. It was only
in 1978 that Robert McEliece described a trapdoor one-way function, that is, a function
difficult to invert without knowing the private trapdoor, mainly consisting in an encoding
procedure [McE78]. He exploited the fact that, as we saw in Section 1.3, a Goppa code can be
efficiently decoded provided that some elements used to build the code are known, whereas
encoding only requires the knowledge of a generator matrix. This principle can be applied
with any code having such hidden trapdoor.

In this Chapter, we introduce formally McEliece encryption scheme, and we expose the
difficult problems used in code-based cryptography to guarantee security. Namely, those are
the hardness of decoding a random linear code (presented in Section 2.2), and the hardness
of understanding the hidden structure of the public code (Sections 2.3 and 2.4). For each, we
give some details about their current estimated complexities of resolution, which are necessary
to scale secure parameters for real-word cryptosystems.

47
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2.1 McEliece Encryption Scheme

The McEliece cryptosystem was proposed by Robert McEliece in 1978 [McE78]. It was the
first public-key cryptosystem whose security relies on the hardness of the syndrom decoding
(Problem 2.1). The trapdoor consists in a secret function able to decode in polynomial time
a bounded number of errors. For such a trapdoor to exist, the public error-correcting code
needs to have a specific structure, as the examples given in Chapter 1.

An instance of the McEliece cryptosystem is mainly defined by the choice of the public
code. We will denote it C , its length n and its dimension k. We give here a high-level
description where C is not specified. In [McE78], McEliece suggested to instantiate C with a
binary Goppa code G (x, g(z)) (with x ∈ Fnqm and g ∈ Fqm [x] of degree t, see Definition 1.22).
The trapdoor Tt can be evaluated as soon as x and g(z) are known.

Algorithm 4 McEliece Cryptosystem (1978)

Parameters : Field size q, code length n, dimension k, and decoding capacity t
Message space: Fkq . Encrypted message space: Fnq .

KeyGen : Choose a [n, k]q code C for which there exists a function Tt correcting t errors in
polynomial time. G is a generator matrix of C .

Private key : Tt a t-decoder for C , S a random full rank k× k matrix , P a random n×n
permutation matrix.
Public key : Gpub = SGP, t the correction capacity of the decoder Tt.

Encrypt :

1: Input m ∈ Fkq .
2: Generate random e ∈ Fnq with Hamming weight t.
3: Output c = mGpub + e.

Decrypt :

1: Input c ∈ Fnq .

2: Compute m̄ = Tt(cP−1)
3: If decoding succeeds, output S−1m̄, else output ⊥.

Remark about the private matrices P and S. The matrices P and S were proposed
by McEliece to hide the structure of the private code and hopefully make the code generated
by Gpub look random. An attacker willing to decrypt then has to tackle the problem of
decoding a linear code. However, those matrices do not hide more structure than, for example,
outputting a row reduced generator matrix of G (x, g). Indeed, only knowing such a matrix,
the decoding problem is as hard as for a random linear code. Moreover, the code generated
by Gpub is only a permuted code of G (x, g) and thus has the same Goppa polynomial and a
permuted support. Therefore, they are considered to bring no additive security and are often
dropped (or implicitly introduced, e.g. by considering a public matrix in systematic form).
As for the matrix P, it can be represented by a permutation of the support of the Goppa
code: if Pei = eσ(i) (with (e0, . . . , en−1) a basis of Fn2 and σ a permutation of {0, . . . , n− 1})
and G is a generator matrix of G (x, g), then SGP is a generator matrix of G (xσ, g), with
xσ = (xσ(i))06i6n−1.
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2.2 Syndrom Decoding Problem and Information Set Decod-
ing

The hard problem underlying most code-based cryptosystems is the Syndrom Decoding
Problem.

Problem 2.1 (Syndrom Decoding Problem). Let H be a (n−k)×n matrix over Fq, s ∈ Fn−kq ,

and w be an integer. The problem is to find e ∈ Fnq of weight wH(e) 6 w such that s = HeT .

Problem 2.1 is directly related to the general decoding problem for the following reason:
pick an [n, k] linear code C with generator matrix G and parity-check matrix H. For a vector
m ∈ Fkq and an error e ∈ Fnq with weight wH(e) 6 w, decoding consists in recovering m from
the encoded message with errors c = mG + e. Knowing H one can compute the syndrom
s = HcT , which depends only on e (as in Definition 1.25).

s = HcT = HGT︸ ︷︷ ︸
=0

mT + HeT = HeT .

If one can solve the Syndrome Decoding Problem instance s = HeT , then m is recovered
by solving the linear system with unknown u ∈ Fnq : uG = c + e. Therefore, concerning
the encryption primitives, the hardness of the Syndrom Decoding Problem prevents against
message-recovery attacks.

The Syndrom Decoding Problem was proved to be NP-complete for binary linear codes
in [BMvT78] and for q-ary codes by Barg (see for instance in [PBH98][Vol.1 Ch. 7 §4]). This
NP-completeness is true when no information is known about the code spanned by H except
H. As we will see, code-based cryptosystems are often based on a trapdoor introduced in the
code so that this decoding becomes easy (ie polynomial time) when a secret information is
known. In those cases, it is crucial that the public description of the code ( for instance, a
generator or parity-check matrix) reveals no information about the secret trapdoor so that
the Syndrome Decoding Problem is as hard as for a random linear code.

Though NP-complete, solving the Syndrome Decoding Problem has been an extensively
studied problem. The most efficient algorithms are based on a framework called the Informa-
tion Set Decoding. The general idea is the following: knowing a syndrome s ∈ Fn−kq and an
(n − k) × n matrix H, pick H′ and (n − k) × (n − k) submatrix of H and compute e′ such
that s = H′e′. If e′ has weight lower or equal to w then Problem 2.1 is solved (complete e′

with zeros to find a solution for H). The overall complexity is

O

(
(n− k)3

(
n
w

)(
n

n−k
)) = O

(
(n− k)3

(
n

n− k

)w)
Many refinements of this method exist, e.g [LB88, Leo88, Ste88, CC98, BLP08, BLP11a,

MMT11, BJMM12]. They have, as expected, exponential time complexity. The latest opti-
mization was proposed in [MO15] and decodes in time complexity 20.0473n in the worst case
(which occurs for an [n, k]2 code with k/n = 0.45). All the quoted algorithms work for bi-
nary fields. An extension to Fq for all q’s was designed by C. Peters in [Pet10]. Software
implementations of this extension are publicly available on Peters’ webpage 1 and are often
used in recent articles. An up-to-date survey of the most recent evolutions can be found in
[Meu12]. Finally, we point out that, as explained in [Ber10], a practicable quantum computer
would bring new optimizations in Information Set Decoding methods. Thanks to the Grover

1. http://christianepeters.wordpress.com/publications/tools/

http://christianepeters.wordpress.com/publications/tools/
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algorithm, a quantum computer would halve the exponent in the complexity (so 2n/40 for
the quoted codes). Therefore, the key sizes would have to be quadrupled to keep the same
security level.

2.3 The Decoder Recovery Problem

We already described the specific linear codes used to define the cryptographic primitives
on which we will focus: alternant and Goppa codes (Definitions 1.19 and 1.22 in Chapter 1).
As we mentioned in the previous Chapter, those codes are very structured. As a consequence,
an additional assumption has to be made, jointly with the hardness of the Syndrome Decoding
Problem, to ensure that the trapdoor is correctly hidden to a public user. In the encryption
setting, this corresponds to the key-security. We state it as follows:

Problem 2.2 (Decoder Recovery Problem). Let C be an [n, k,> 2t+ 1]q code endowed with
a function Td decoding up to d errors in polynomial time. The Decoder Recovery Problem
consists in finding any decoder T ′d (also decoding up to d errors in polynomial time) knowing
only a public generator matrix of C .

This problem comes in a different flavor for each code family. Since 1978, various families
of codes with polynomial decoder have been proposed for cryptographic use. The global
purpose was to reduce the size of the public key compared to the binary Goppa codes of
McEliece. For many of those proposals, the Decoder Recovery Problem turned out not to
be hard. The first example is the Generalized Reed-Solomon codes, which were proved to
be insecure by Sidelnikov and Shestakov in [SS92]. Then, large subcodes of GRS codes were
suggested by Berger and Loidreau [BL05] and also broken (by Wieschebrink in [Wie06b,
Wie10]). Sidelnikov proposed to use Reed-Muller codes [Sid94], which were shown to be
insecure by Minder et al in [MS07]. Gabidulin codes (introduced in [Gab85]) were broken by
Overbeck in [Ove05, Ove08]. Recently, algebraic-geometry codes with genus g > 1 were also
broken very recently [CMCP14].

This illustrates that the choice of the public key is crucial for the security of the trapdoor.
The second part of this thesis (Chapters 6 and 7) will present more recent examples of code
families proposed for cryptographic use, but which turned out to be weak.

We detail below the method used to recover the trapdoor of a Generalized Reed-Solomon
code, as it will be of interest for the second part of this thesis.

2.3.1 The Sidelnikov-Shestakov Attack

The Sidelnikov-Shestakov attack [SS92] is a classical attack against McEliece-like scheme
instantiated with GRS codes [Nie86]. What follows is inspired by [Wie10]. Let GGRS be the
generator matrix of GRSt(x,y) (Definition 1.17) in systematic form. The goal of the attack
is to recover the vectors (x,y) ∈ (Fqm)n × (F∗qm)n from GGRS, which is of the form:

GGRS =

 1 . . . 0 ytQ0(xt) . . . yn−1Q0(xn−1)

0
. . . 0

...
...

0 . . . 1 ytQt−1(xt) . . . yn−1Qt−1(xn−1)

 = (gi,j) 06i6t−1
06j6n−1

(2.1)

Proposition 2.3. Let GGRS =
(

It U
)
∈ Ft×nqm be as in (2.1). Then the polynomials

{Qi}06i6t−1 are of the form:

Qi(z) = LC(Qi)
∏

06j6t−1
j 6=i

(z − xj), where LC(Qi) 6= 0 denotes the leading coefficient of Qi.
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Also, no coefficient in the U block can be zero.

Proof. By definition, each row of GGRS is a codeword of GRSt(x,y). Thus, each Qi is a
polynomial of degree t − 1. Observe that t − 1 distinct roots of the Qi are already known,
since Qi(xj) = 0 for 0 6 j 6 t − 1, j 6= i. No coefficient in the U block can be zero, as it
would provide another root for a Qi.

We can safely evaluate the quotients for t 6 j 6 n− 1 and 0 6 i, i′ 6 t− 1 as follows:

gi,j
gi′,j

=
LC(Qi)(xj − xi′)
LC(Qi′)(xj − xi)

. (2.2)

The idea in [Wie10] is then to write equations of type (2.2) and to solve them to find the
support. We apply the same idea, but in a more direct way here, as we give explicit formula
linking the entries of G and the support elements.

Proposition 2.4. Let C = GRSt(x,y) with G = (gi,j) 06i6t−1
06j6n−1

being a generator matrix in

systematic form. Let L1 =
{
g0,i
g1,i

}
t6i6n−1

and

L2 =

{(
gi,t+1

g1,t+1
− gi,t
g1,t

)(
gi,t+1

g0,t+1
− gi,t
g0,t

)−1
}

26i6t−1

.

Then, a correct support for C is given for any α ∈ F∗qm \ (L1 ∪ L2) by x̃0 = 0, x̃1 = 1, and

x̃j = 1

1− 1
α

g0,j
g1,j

for t 6 j 6 n− 1,

x̃j = 1

1− 1
α

(
gj,t+1
gj,t+1

−
gj,t
g1,t

)(
gj,t+1
g0,t+1

−
gj,t
g0,t

)−1 for 2 6 j 6 t− 1.

Proof. First, we show by a change of support that we can fix arbitrarily several values. Indeed,
as for alternant codes in Proposition 1.20, for all a, b, c, d with ad−bc 6= 0 such that cxi+d 6= 0
for all 0 6 i 6 n− 1, we rewrite gi,j = yiPj(xi) as

yiPj(xi) = yi(cxi + d)t−1Qj

(
axi + b

cxi + d

)
= yiHj(x̃i),

with Pj , Hj polynomials of degree 6 t− 1. We want to fix arbitrarily two support elements,

say xi0 = u0, xi1 = u1, and one quotient
LC(Hi2
LC(Hi3 ) = k, for u0 6= u1 in Fqm and k ∈ F∗qm . When

c 6= 0, we observe that LC(Hj) = cQj(a/c), so that
LC(Hi2 )

LC(Hi3 ) =
LC(Qi2
LC(Qi3 )

a/c−xi3
a/c−xi2

. That is, we

impose on a, b, c, d the conditions:

axi0 + b = u0(cxi0 + d),
axi1 + b = u1(cxi1 + d),

LC(Qi2)(a− cxi3) = kLC(Qi3)(a− cxi2).

This linear system yields solutions with c 6= 0 when
LC(Qi2 )

LC(Qi3 ) 6= k. If c = 0,
LC(Hi2 )

LC(Hi3 ) =
LC(Qi2 )

LC(Qi3 )

so it already has the desired value. In practice, the desired a, b, c, d must be such that for all
0 6 i 6 n− 1, cxi + d 6= 0. This is why, as we will see, some values k are not possible. Those
will appear naturally as necessary conditions.
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Thanks to this change of support, we fix in the following x0 = 0, x1 = 1 and note α =
LC(Q0)
LC(Q1) . In (2.2), we set i = 0, i′ = 1, and obtain for t 6 j 6 n− 1 :

xj =
1

1− 1
α
g0,j
g1,j

. (2.3)

Then, we set i′ = 0, pick 2 6 i 6 t− 1 and j = t to obtain:

gi,t
g0,t

(xt − xi) =
LC(Qi)

LC(Q0)
xt.

Now, let j = t+ 1:
gi,t+1

g0,t+1
(xt+1 − xi) =

LC(Qi)

LC(Q0)
xt+1.

We obtain by quotienting (as the xi’s are all different and x0 = 0),

xi =
xt+1xt

(
gi,t+1

g0,t+1
− gi,t

g0,t

)
gi,t+1

g0,t+1
xt − gi,t

g0,t
xt+1

.

By using (2.3), we have for 2 6 i 6 t− 1:

xi =
1

1− 1
α

(
gi,t+1

g1,t+1
− gi,t

g1,t

)(
gi,t+1

g0,t+1
− gi,t

g0,t

)−1 . (2.4)

α is unkown, but to avoid zero denominators in (2.3) and (2.4), it is necessary that

α 6= g0,i

g1,i
for t 6 i 6 n− 1,

and for 2 6 i 6 t− 1,

α 6=
(
gi,t+1

g1,t+1
− gi,t
g1,t

)(
gi,t+1

g0,t+1
− gi,t
g0,t

)−1

.

Therefore, if we avoid the forbidden values for α, we can reconstruct the support thanks to
explicit expressions of the generator matrix’s entries.

Once a correct support is found, corresponding multipliers are found by solving a linear
system as in Fact 4.1. This method comes from the algebraic attack that we introduce in
Chapter 4. The complexity of recovering the secret structure is thus dominated by the linear
system solving phase, so it is O(k3).

2.3.2 The Goppa Decoder Recovery Problem

The case of Goppa codes is of particular interest for us. They are amongst the few classes
of codes which are still resistant to all the known attacks. We recall that they belong to the
more general class of alternant codes which are all still considered secure. In other words, it
is commonly assumed that no polynomial algorithm can solve the two following problems.

Problem 2.5 (Goppa Code Recovery Problem). Let C = G (x, g(z)) be a Goppa code as
defined in Definition 1.22. The Goppa Recovery Problem consists in finding x′ and g1(z) ∈
Fqm [z] such that C = G (x′, g1(z)) with the only knowledge of a generator matrix of C .
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Problem 2.6 (Alternant Code Recovery Problem). Let C = At(x,y) be an alternant code
as defined in Definition 1.19. The Alternant Code Recovery Problem consists in finding x′

and y′ such that C = At(x′,y′) with the only knowledge of a generator matrix of C .

To explain why Goppa codes are still considered secure, we detail the current state-of-the-
art of the attacks against the Goppa and Alternant Decoder Recovery Problem. The first one
hinges on an exhaustive search of a secret element combined with a polynomial algorithm to
restore the second secret. The second one is an algebraic attack, which will be the starting
point of the second part of this thesis.

Support Splitting Algorithm.
The Support Splitting Algorithm (SSA), introduced by Sendrier, allows to recover in poly-

nomial time a permutation (see Definition 1.12) sending a code on an other code of same
length. More formally, the following theorem answers the problem of permutation-equivalence
for codes over F2.

Theorem 2.7 (Support Splitting Algorithm, [Sen00]). Let C and C ′ be two [n, k] codes over
F2. Then, there exists an algorithm which outputs a permutation σ ∈ Sn such that σ(C ) = C ′

(if it exists) in O(n3 + 2hn`(n)) with h = dim(C ∩ C⊥) and `(n) being a parameter of the
algorithm.

In [Sen00], `(n) is conjectured to be equal to ln(n). For Goppa codes (and for almost all
linear codes) h is very small [Sen97]. This yields an algorithm with polynomial complexity
in practice. Using the SSA algorithm, Sendrier and Loidreau designed an attack in [LS01] to
recover the secret description of a binary Goppa code C = G (x, g(z)). It assumes that the
length of the Goppa code is the longest possible one for a given field Fqm , that is n = qm. Such
codes will be said to full-support. As the elements of the secret support x are all distinct, we
know that x contains all the elements of Fqm . Therefore, if we set x0 = (0, α, α2, . . . , αq

m−1)
(with α a generator of Fqm), then there exists σ ∈ Sn such that (x0)σ = x, and G (x0, g(z)) is
permutation-equivalent to G (x, g(z)). The attacks consists in trying all the possible Goppa
polynomials. One needs to exhaust at most qmt monic polynomials of degree t in Fqm [z] (or
in practice a bit less if the Goppa polynomial is supposed to be square-free or irreducible).
We sum up the attack in Algorithm 5.

Algorithm 5 Loidreau-Sendrier Attack using SSA algorithm [LS01]

Input : A generator matrix G of a Goppa code C = G (x, g(z)).
Output : A polynomial g1(z) ∈ Fqm [z] and a support x′ such that C =
G (x′, g1(z)).

1: Set x0 = (0, α, α2, . . . , αq
m−1).

2: repeat
3: Pick g1 ∈ Fqm [z] of degree t \\Restrictions on g1(z) are possible [LS01]
4: Set C1 = G (x0, g1(z))
5: Apply the SSA algorithm with C1 and C
6: until C1 and C are permutation-equivalent and σ(C1) = C
7: Output x′ = (x0)σ and g1(z)

Detailed analysis provided in [LS01] shows that only 2m(t−3)/mt polynomials have to be
tested. This brings down the complexity of Algorithm 5 to n32m(t−3)/mt for a full-support
code (that is, with n = qm). When the code is not full support, then the possible support
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sets also have to exhausted, introducing a
(
qm

n

)
factor in the complexity. This attack is

thus essentially theoretical. Still, when designing cryptographic primitives using variants or
subclasses of Goppa codes, it is important that the number of possible secret polynomials
remain high. We will consider the case of non full-support codes in Chapter 4.

Remark that [Sen00] deals with codes over F2. Recent works ([SS13a, SS13b]) aimed at
generalizing it to codes over Fq for any prime power q > 2. The problem becomes more
complex because the notion of permutation-equivalence can be generalized in different ways.
One can choose to keep the same action of σ ∈ Sn on a codeword m ∈ Fnq , that is mσ =
(mσ(i))06i6n−1. In this case, Theorem 2.7 extends without change. But this action of σ can
be combined with a scaling of the coordinates. To do so, pick a vector v ∈ (F∗q)n, and define

m(v,σ) = (vimσ(i))06i6n−1. In this case, the known algorithms to determine the existence of
a couple (v, σ) linking two given codes C and C ′ have almost polynomial complexities for
q ∈ {3, 4} and exponential complexities for q > 5.

Regarding cryptographic cases, the schemes using codes defined over Fq with q > 2 all
used the former action with only σ, so that the SSA algorithm applies.

An Algebraic Attack for the Alternant Recovery Problem. Faugère, Otmani, Perret
and Tillich (FOPT) designed in [FOPT10a] the first algebraic modelling of the private support
and multipliers of an alternant code, leading naturally to an algebraic attack. This work is
the starting point of our algebraic attacks of Chapters 4, 6 and 7. In particular, we discuss it
extensively in Chapter 4.

For now, we give in short the modelling: (FOPT) shows that the secret decoder of an
alternant code can be recovered by solving the following system:{

gi,0Y0X
`
0 + · · ·+ gi,n−1Yn−1X

`
n−1 = 0 | i ∈ {0, . . . , k − 1}, ` ∈ {0, . . . , t− 1}

}
(2.5)

where the unknowns X = (X0, . . . , Xn−1), Y = (Y0, . . . , Yn−1) correspond to the secret sup-
port and multiplier respectively (see Definition 1.19). The gi,j ’s are the entries of the generator
matrix.

2.4 The Goppa Distinguishing Problem

To build a complete security proof of cryptographic primitives using Goppa codes, design-
ers rely not only on the hardness of the Syndrom Decoding Problem, but also on an other
assumption, referred to as the Goppa code indistinguishability. This assumption was intro-
duced in [Sen02][Ch. 9]. The global idea is to prove that if an attacker can efficiently decode a
Goppa code without knowing the trapdoor and that Goppa codes behaves like random codes,
then the attacker can efficiently decode a random code, thus violating the hardness of the
Syndrom Decoding Problem.

Problem 2.8 (Goppa Distinguishing Problem). Let H be a r × n matrix with entries in Fq.
Decide whether there exists a Goppa code C = G (x, g(z)) over Fq such as H is a parity-check
matrix of C .

The Goppa indistinguishability assumption states that no polynomial-time algorithm
solves the Goppa Distinguishing Problem.

[DMR11] shows that the Quantum Fourier Sampling, which is the quantum algorithm
solving the integer factorization, cannot help solving the Goppa Distinguishing Problem for
[n, k]q codes when k/n > 1− m√

5qm/2
.
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However, this does not rule out the existence of another quantum technique or classic
algorithm. The Goppa indistinguishability assumption was proved to be wrong for codes
with high dimensions in [FGO+13], where the following result is proved.

Theorem 2.9. Let n = qm. When q is fixed and m tends to infinity, there exists a polynomial-
time algorithm solving the Goppa (and alternant) Distinguishing Problem for a [n, k]q-code
when

k

n
> 1−

√
2m log2 q

qm log2m

(
1 + o(1)

)
.

In particular, the security proof of the CFS signature scheme instantiated with Goppa
codes that can be found in [Dal07] is rendered useless, as the codes used in this scheme all
have high rates. On a more general point of view, this questions the trust we can have in the
security proofs using Goppa indistinguishability.

Attacks using Code Distinguishers
In a more general context than the Goppa codes, distinguishing a specific family of codes

from random codes is an important question in code based cryptograhy. The idea is to find
a behaviour which is different for the studied family and for random codes. This different
behaviour has to be testable efficiently. Once such distinguisher is found, it potentially leads
to an attack (but not always, as the result previously mentionned). A striking example is
that of the (already broken) GRS codes.

In [Wie10], Wieschebrink uses a very strong property of GRS codes to mount an attack
on subcodes of GRS codes. This property focuses on the square code of a GRS code, defined
by the coordinate-wise product of the codewords of a GRS code C :

C ? C =
{

(m0m
′
0, . . . ,mn−1m

′
n−1)

∣∣m,m′ ∈ C
}
.

Namely, if C is a subcode of GRSk(x,y) and 2k− 1 6 n− 2, then it is proved that C ?C
is a subcode of GRS2k−1(x,y ? y). When equality holds the attacker has recovered a full
GRS code and can apply the Sidelnikov-Shestakov attack. If 2k− 1 > n− 2, the square code
C ?C is the full space Fnq and this method fails. The trick is then to compute the square of a
shortened code of C , that is a subspace of C where some coordinates are required to be zero.

In any case, C ? C has dimension 6 2k − 1. For a random code, the dimension of the

square code is expected to be equal to the number of pairs of basis elements, that it k(k+1)
2

(or n if n < k(k+1)
2 ). Thus, this is a distinguishing property.

This distinguisher, along with the shortening method, was then used in a more powerful
way and gave a lot of attacks. First, in [CGG+14], the authors break instances of GRS codes
and their subcodes, and also the variants of [Wie06a, BL11, BBC+14]. Then, they extended
it to algebraic geometry codes in[CMCP14]. Very recently ([COTGU15]), they broke with
same ideas the latest proposition of GRS related codes [BBC+14].

Very recently, a polynomial-time algorithm using, among other, this distinguisher was
proposed in a very specific case of the Goppa Recovery Problem in [COT14], namely Goppa
codes of the form G (x, g(z)q) with x ∈ Fnq2 and g(z) ∈ Fq2 [z] (that will be referred to in

Chapter 7 as wild Goppa codes over a quadratic extension).
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Chapter 3

Gröbner Bases

The purpose of this chapter is to explain the tools that we used in this thesis to solve
non-linear multivariate systems: Gröbner bases.

Gröbner bases are a very important object in commutative algebra, introduced by Bruno
Buchberger in 1965 [Buc65]. Starting from a system of non-linear multivariate polynomials,
Gröbner bases algorithms allow to re-write the system so as to obtain an equivalent system
from which it is easy to deduce information about the solution set. They are a very active
area of research in symbolic computation, with applications in many engineer sciences. Our
purpose is not to explain the core of those algorithms. We rather give elements on the way
they operate and their complexities in order to understand how to improve the algebraic
modellings that we use for cryptanalytic purposes. The presentation that follows is mainly
extracted from the Chapter 2 of [CLO07].

57
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3.1 Basic Definitions

Let K be a field. In this thesis K will always be a finite field, but the results presented
here are also true if K is a field of characteristic 0. We work in the ring K[X1, . . . , Xv] of
polynomials in v variables. We recall that, for a finite set f1, . . . , fs of K[X1, . . . , Xv], the
ideal generated by f1, . . . , fs, denoted 〈f1, . . . , fs〉, is the set

〈f1, . . . , fs〉 =

{
s∑
i=1

hifi, | h1, . . . , hs ∈ K[X1, . . . , Xv]

}
.

Reciprocally, any ideal of K[X1, . . . , Xv] has a finite generating set. This is the Hilbert basis
theorem.

Theorem 3.1 (Hilbert basis theorem). Let I be an ideal of K[X1, . . . , Xv]. There exists a
finite set of polynomials f1, . . . , fs ∈ K[X1, . . . , Xv] such that I = 〈f1, . . . , fs〉.

Definition 3.2 (Algebraic variety). Let f1, . . . , fs be polynomials in K[X1, . . . , Xv]. We define
V (f1, . . . , fs) the variety associated to f1, . . . , fs as the set of elemens (a1, . . . , av) of K̄v such
that

f1(a1, . . . , av) = 0
...

fs(a1, . . . , av) = 0

We will say that the elements of V (f1, . . . , fs) are the solutions of the algebraic system
{f1, . . . , fs}. We denote the set elements (a1, . . . , av) ∈ Kv which are solutions of {f1, . . . , fs}
by VK(f1, . . . , fs). For I = 〈f1, . . . , fs〉 and (a1, . . . , av) ∈ Kv, the following equivalence holds:

(a1, . . . , av) ∈ VK(f1, . . . , fs) ⇐⇒ ∀f ∈ I, f(a1, . . . , av) = 0,

so that we also write V (I) for V (f1, . . . , fs).

The central question for us will be, for given input polynomials f1, . . . , fs, to solve the
algebraic system {f1, . . . , fs}, that is to give all its solutions. When the number of those
solutions in K̄ is finite, an important value associated to an ideal of VK(f1, . . . , fs) is its
degree, which counts the number of solutions with multiplicities. It is defined as follows.

Definition 3.3 (Degree of a 0-dimensional ideal). Let I be an ideal of K[X1, . . . , Xv] such
that V (I) is finite. Then, I is said to be 0-dimensional. The quotient K[X1, . . . , Xv]/I is a
vector space over K of finite dimension, and we set

deg(I) = dimK (K[X1, . . . , Xv]/I) .

In this thesis, we will always look for solutions in a finite field Fq (with q a prime power).
This can be expressed by including in the ideal the field equations Xq

1 −X1, . . . , X
q
v −Xv. A

consequence is that the associated ideals are always 0-dimensional.
Let’s introduce some definitions.

Definition 3.4 (Monomial, term). A monomial is an element of K[X1, . . . , Xv] of the form

Xα1
1 · · ·X

αv
v ,

where α1, . . . , αv are non-negative integers. For shortness, we note xα = Xα1
1 . . . Xαv

v with
α = (α1, . . . , αv). The degree of Xα1

1 . . . Xαv
v , denoted by |α|, is equal to |α| = α1 + · · ·+ αv.
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Any polynomial f of K[X1, . . . , Xv] can be written as finite linear combination (with coeffi-
cients aα in K) of monomials

f =
∑
α∈Nv

aαx
α,

aα is called the coefficient of the monomial xα is f . When aα 6= 0, then aαx
α is a term of f .

Definition 3.5 (Monomial ordering). A monomial ordering >mon on K[X1, . . . , Xv] is a
relation on Nv satisfying:

1. >mon is a total ordering on Nv, that is, for any α, β ∈ Nv, exactly one of the three
statements α >mon β, α = β, β >mon α is true,

2. if α >mon β and γ ∈ Nv, then α+ γ >mon β + γ,

3. >mon is well-ordering on Nv (that is, every non-empty subset of Nv has a smallest
element under >mon.

For two monomials xα and xβ of K[X1, . . . , Xv], we say that xα >mon xβ if and only if
α >mon β.

Condition 2 guarantees the compatibility of >mon with multiplication by a monomial. For
two monomials of K[X1, . . . , Xv] with xα >mon x

β, then xαxγ >mon x
βxγ for any monomial

xγ .
Once a monomial ordering is chosen, we can define the leading monomial, coefficient and

term a polynomial f =
∑

α aαx
α.

Definition 3.6 (Leading Monomial, Leading Coefficient, Leading Term). Let f =
∑

α aαx
α

be a polynomial of K[X1, . . . , Xv], and >mon a monomial ordering. Then,

1. the leading monomial of f , denoted LM>mon(f) is the maximal (for >mon) monomial
of f with non-zero coefficient,

2. the leading coefficient of f , denoted LC>mon(f) is the coefficient associated to the
leading monomial of f ,

3. the leading term of f , denoted LT>mon(f), is the term LC>mon(f)LM>mon(f).

We give the definitions of the monomials orderings the most useful for us.

Definition 3.7 (Lexicographical ordering, Graded reverse lexicographical ordering). Let
K[X1, . . . , Xv] be a polynomial ring. We define:

1. Lexicographical order. For α, β ∈ Nv, we say that α >lex β (and xα >lex x
β) if

and only if, in the vector difference α−β ∈ Zv, the leftmost non-zero entry is positive.

2. Graded reverse lexicographical order. For α, β ∈ Nv, we say that α >grevlex β
(and xα >grevlex x

β) if and only if |α| > |β| or |α| = |β| and the rightmost non-zero
entry is negative.

Example 3.8. Let f = 4xy2x+ 4z2 − 5x3 + 7x2y2 ∈ K[x, y, z]. If we write the terms of f in
decreasing order, we obtain:

— with respect to the lexicographical order,

f = −5x3 + 7x2z2 + 4xy2z + 4z2,

and LM>lex(f) = x3,LC>lex(f) = −5,LT>lex(f) = −5x3.
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— With respect to the graded reverse lexicographical order,

f = 4xy2z + 7x2z2 − 5x3 + 4z2,

and LM>grevlex(f) = xy2,LC>grevlex(f) = 4,LT>grevlex(f) = 4xy2.

Thanks to the notion of monomial ordering, we can define the Gröbner basis associated
to an ideal.

Definition 3.9 (Gröbner Bases). Let I be an ideal of K[X1, . . . , Xv] and >mon be a monomial
ordering. A finite subset G>mon = {g1, . . . , gt} of I is said to be a Gröbner basis of I for the
ordering >mon if

〈LT>mon(g1), . . . ,LT>mon(gt)〉 = 〈LT>mon(I)〉

where LT>mon(I) denotes the set of all the leading terms of elements of I.

It is proved in [Buc65] that any ideal admits a Gröbner basis for any monomial ordering.
To obtain unicity, extra conditions on the family G are necessary.

Theorem 3.10. Let I be an ideal of K[X1, . . . , Xv] and >mon be a monomial ordering. Then,

1. Any Gröbner basis G>mon = {g1, . . . , gt} of I is a basis of I, that is, any f ∈ I can be
written as a sum

f =
t∑
i=1

higi, with h1, . . . , ht ∈ K[X1, . . . , Xv],

in other words, it holds that I = 〈G>mon〉.
2. I admits a unique reduced Gröbner basis, that is a finite subset G>mon = {g1, . . . , gt}

of I such that

(a) G>mon is a Gröbner basis of I,

(b) for all p ∈ G>mon, LC(p) = 1,

(c) for all p ∈ G>mon, no monomial of p belongs to 〈LT(G>mon \ {p})〉.

Replacing the entries of an algebraic system {f1, . . . , fs} by a Gröbner basis of the ideal
generated by those entries can be advantageous for the resolution, in particular with Gröbner
bases for the lexicographical ordering.

Proposition 3.11 (Lex Gröbner Bases). Let I be a zero-dimensional ideal of K[X1, . . . , Xv].
Then, a lexicographical Gröbner basis G>lexof I has the following shape

G>lex =



g1,1(X1, X2, . . . , Xv)
...

g1,`1(X1, X2, . . . , Xv)
g2,1(X2, . . . , Xv)

...
g2,`2(X2, . . . , Xv)

...

...
gv−1,`v−1(Xv−1, Xv)

gv(Xv)
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That is, for 1 6 i 6 v−1, 1 6 j 6 `i, gi,j is a polynomial in Xi, . . . , Xv, and gv is a univariate
poolynomial in Xv. We say that the lexicographical order is useful for variable elimination
purposes. For instance, in the last polynomial of the basis, the variables X1, . . . , Xv−1 do not
appear. More generally, it holds that for any 1 6 u 6 v, a lexicographical Gröbner basis of
the ideal I ∩K[Xu, . . . , Xv] is the restricted bases {gu,1, gu,2, . . . , gv}.

In this thesis, the base field is always a finite field, and solving the algebraic equation
associated to the last polynomial giv of a lexicographical Gröbner basis is exactly finding the
roots of a univariate polynomial with coefficients in a finite field. This can be done efficiently
(in complexity polynomial in v) and yields all the possible values of Xv for the elements of
VK(I). Once these values have been found, they can be substituted in the polynomials in
(Xv−1, Xv), which becomes univariate polynomial equation, thus efficiently solved. Step-by-
step, the solution of the system {g1, . . . , gin} (which are also the solutions of {f1, . . . , fs}) can
be found in time polynomial in v.

This illustrates the avantage of knowing the lexicographical Gröbner basis of an ideal
generated by algebraic equations which is the most important for us. The crucial point now
is to look at the algorithms computing the Gröbner basis of a given ideal.

3.2 General Strategy for solving polynomial system

The first algorithm computing Gröbner bases was proposed by Buchberger in [Buc65].
Although it is proved to terminate, nothing can be said a priori about the complexity.

In [Laz83], Lazard’s theorem showed that the computation of a Gröbner basis of a system
of equations can be done by performing linear algebra on a matrix representing the system.
Before stating this theorem, we give an overview of the ideas behind it.

The first idea is to see Gröbner bases computation as a generalization of the resolution
of linear systems by Gaussian elimination in the non-linear setting. Indeed, to solve a linear
system

b1,1X1 + · · ·+ b1,vXv = 0
...

bm,1X1 + · · ·+ bm,vXv = 0

,

we represent it matricially under the form

B

X1
...
Xv

 =

0
...
0

 .

We perform a Gaussian elimination on B to obtain an equivalent system in triangular
form

b1,1X1 + · · ·+ bd+1Xd+1 + . . . + . . . b1,vXv = 0
.. .

bd+1Xd+1 + . . . + . . . bm,vXv = 0

.

In other words, we replace a generating set of polynomials by another one where variables
have been eliminated, so the triangular form of a linear system can be seen as the analogous
of the lexicographical Gröbner basis of an ideal.

To transpose Gaussian elimination on non-linear system, we represent them with matrices.
To describe all the polynomials belonging to an ideal I and with degree lower or equal to
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a certain integer d > 0, we use the so-called Macaulay Matrix in degree d (Definition 3.12
below). All those polynomials are linear combinations of the rows of this matrix. Lazard’s
theorem states that there exists a degree D such that performing a special Gaussian elimi-
nation algorithm (i.e. with row and column swapping forbidden) on the Macaulay matrix in
degree D yields a Gröbner basis of the ideal I. Now let’s give formal definitions.

Definition 3.12 (Macaulay Matrix). Let f1, . . . , fs be polynomials of K[X1, . . . , Xv] with de-
gree respectively d1, . . . , ds, and >mon a monomial ordering. For d a positive integer, M(d, v)

is the set of all the monomials m6d
1 , . . . ,m6d

`d
of K[X1, . . . , Xv] of degree lower or equal to d

and sorted in decreasing order. There are `d =
(
v+d
v

)
such monomials.

The Macaulay matrix in degree d for >mon, denoted Macd,>mon(f1, . . . , fs) is a matrix with
entries in K with `d−d1 + · · · + `d−ds rows and `d columns. Its rows are indexed by the poly-

nomials m
6(d−di)
k fi for all the input polynomials fi and all the monomials m

6(d−di)
k in degree

6 d − di, and its columns are indexed by all the monomials m6d
j in degree 6 d, sorted in

decreasing order. The entry corresponding to m
6(d−di)
k fi and m6d

j is the coefficient of the

monomial m6d
j in the polynomial m

6(d−di)
k fi.

More precisely, if fi =
∑

α aαx
α, m

(d−di)
k = xβ, then Macd,>mon(f1, . . . , fs) contains aα in

the column corresponding to m6d
j = xα+β.

>mon m
6d
j >mon

m
6(d−di)
k fi


...

. . . aα . . .
...


Example 3.13. Consider the polynomials of K[x, y] f1 = xy2 − x2 − 4y2 + 4x, f2 = x2y +
2x2 + 2y + 4, f3 = −y3 + xy − 4y2 + 4x. The matrix of 〈f1, f2, f3〉 in degree 3 for the grevlex
ordering is

x3 x2y xy2 y3 x2 xy y2 x y 1
f1

 0 0 1 0 −1 0 −4 4 0 0
f2 0 1 0 0 2 0 0 0 2 4

f3 0 0 0 −1 0 1 −4 4 0 0

Linear combinations of the rows of Macd,>mon(f1, . . . , fs) correspond to the same linear
combinations on the corresponding polynomials. Thus, after performing a Gaussian elimina-
tion (without swapping the columns), the rows of the matrix obtained describe a new family
of polynomials, which Lazard’s theorem shows to have good properties (provided that the
degree d is high enough).

Theorem 3.14 (Lazard’s theorem [Laz83]). Let f1, . . . , fs be polynomials of K[X1, . . . , Xv],
there exists a degree D such that the rows of the row echelon form of MacD,>mon(f1, . . . , fs)
form a Gröbner basis of the ideal generated by f1, . . . , fs.

This suggests an algorithm for computing a Gröbner basis of an ideal I generated by
{f1, . . . , fs}: computing successively the row echelon form of the Macaulay matrices of {f1, . . . , fs}
successively in degree max(di),max(di)+1, . . . and test at each step if we obtained a Gröbner
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basis (this can be done efficiently). The computation ends as soon as we have reached the
degree provided by Lazard’s theorem, which is formally defined in Defintion 3.15.

Several algorithms using this idea were proposed. In this thesis, we use essentially the
algorithm F4 (described in [Fau99]) implemented in the Magma software. A problem of this
algorithm is that, when performing the Gaussian elimination on Macaulay matrices, a lot
of linear combinations of the rows become zero rows and the computation was useless as it
does not help finding a Gröbner basis. In [Fau02], a criterion is given to detect when those
zero linear combination will appear and avoid to spend time computing them. Under some
assumptions that are detailed in Section 3.2.1, it is proved that all the useless computations
are avoided. An implementation of this algorithm can be found in the FGb software ([Fau10]),
it was used to solve some systems in Chapter 6.

The complexity can be bounded by the cost of the Gaussian elimination on the biggest
Macaulay matrix to consider, that is the Macaulay matrix in the maximal degree D reached
during the computation. A crucial tool to bound this maximal degree is the so-called degree
of regularity.

Definition 3.15. Let f1, . . . , fs ∈ K[X1, . . . , Xv] be homogeneous polynomials. We define
the degree of regularity of I, denoted dreg(I), as the smallest integer d > 0 such that the
polynomials of degree d of I generate all the monomials of degree d in v variables. In other
words,

dreg(I) = min

{
d ∈ N

∣∣∣∣ dimK({f ∈ I with deg(f) = d}) =

(
v + d− 1

d

)}
,

where dimK is the dimension as a K-vector space.
If f1, . . . , fs ∈ K[X1, . . . , Xv] are not-homogeneous polynomials, then, for each 1 6 i 6 s,

let f̂i be the homogeneous part of highest degree of fi. Then, we define dreg(〈f1, . . . , fs〉) as

dreg(〈f̂1, . . . , f̂s〉)

The degree of regularity bounds the maximal degree reached in the successive computation
of the echelon form of the Macaulay matrices for a degree order. The cost of this echelon
form uses the so-called linear algebra constant, which is known to satisfy 2 6 ω < 2.3727
([Wil12]). More precisely, when computing a Gröbner basis for the grevlex ordering, the
following proposition holds.

Proposition 3.16 (Complexity bound for F5 [BFS15]). Let I = 〈f1, . . . , fs〉 ⊂ K[X1, . . . , Xv]
be a homogeneous zero-dimensional ideal. Let dreg be its regularity degree. The complexity of
computing a Gröbner basis for the grevlex ordering with the F5 algorithm is in field operations
asymptotically bounded when v grows to infinity by

O

(
sdreg

(
v + dreg − 1

v

)ω)
.

Thus, evaluating the degree of regularity is an important task to predict the complexity
of Gröbner bases computation. We give more tools to do this in Paragraph 3.2.1. For now,
we focus on solving polynomial systems.

In practice, grevlex Gröbner basis are often the easiest to compute, but are not the most
convenient to find variety associated to an ideal. To do so, a lexicographical basis is required.
To transform a Gröbner basis with to a given order into a basis for another order, so-called
changing order algorithms are used. The most efficient one was introduced in [FGLM93] and
is referred to as FGLM. It applies to zero-dimensional ideals.
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Theorem 3.17 (FGLM algorithm [FGLM93, FGHR14]). Let I = 〈f1, . . . , fs〉 be 0-dimensional
ideal of K[X1, . . . , Xv] (Definition 3.3), and G>1 be a Gröbner basis of I for a monomial or-
dering >1. Then, a Gröbner basis G>2 for an other monomial ordering can be computed in
O(v deg(I)ω) operations in K.

We can now describe a complete a strategy of resolution of zero-dimensional polynomial
systems.

Strategy of resolution
Thanks to Theorems 3.14 and 3.17 and Proposition 3.11, we explain in Algorithm 6 the

strategy of resolution that we use in this thesis to solve algebraic systems over finite fields.

Algorithm 6 Strategy of resolution of a zero-dimensional ideal over a finite field

Input : An algebraic system {f1, . . . , fs} of K[X1, . . . , Xv] with K a finite field, L an
extension of K
Output : The algebraic variety VL(f1, . . . , fs).

1: Use F4 or F5 to obtain Ggrevlex a Gröbner basis of 〈f1, . . . , fs〉 for the grevlex ordering
(Definition 3.7)

2: Use the FGLM Algorithm with input Ggrevlex to compute

Glex = {g1,1, . . . , g1,`1 , g2,1, . . . , gv−1,`v−1 , gv}

a Gröbner basis of 〈f1, . . . , fs〉 for the lexicographical ordering (as in Proposition 3.11).
3: Solve the algebraic equation gv(Xv) = 0 over L to find the possible values for av and set

Av = {av ∈ L |gv(av) = 0} .

4: for i = v − 1, . . . , 1 do
5: Set Ai = ∅,j = 0
6: for (ai+1, . . . , av) ∈ Ai+1. do
7: repeat
8: j = j + 1.
9: until gi,j(X, ai+1, . . . , av) 6≡ 0.

10: Solve the non-trivial univariate equation gi,j(Xi, ai+1, . . . , av) over L and set

Ai+1 = Ai+1 ∪
⋃{

(ai, . . . , av) ∈ Lv−i+1 |gi,j(Xi, ai+1, . . . , av) = 0
}
.

11: end for
12: end for
13: Output A1 the list of possible v-uples (a1, . . . , av) ∈ Lv.

We apply Algorithm 6 on an example.

Example 3.18. We use the same ring and polynomials as in Example 3.13. F4 with inputs
f1, f2, f3 yields a Gröbner basis for the grevlex ording

Ggrevlex =

 x3 − 4x2 + 2x− 8,
x2y + 2x2 + 2y + 4,
y2 − x.
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Then, a changing order algorithm gives a Gröbner basis for the lexicographical ordering

Glex =

{
x− y2,
y5 + 2y4 + 2y + 4.

So, to solve the system f1 = 0, f2 = 0, f3 = 0, we solve the equation y5 + 2y4 + 2y + 4 = 0 in
the desired field, and deduce x for each value of y.

We sum up the complexities of the steps of resolution in 3.1.

Algebraic system
I = 〈f1, . . . , fs〉

O
(
sdreg

(
v+dreg−1

v

)ω)
Grevlex

Basis Lex Basis VK(I)

O(v deg(I)ω) O(v3)

Figure 3.1 – Strategy of resolution of a zero-dimensional algebraic system

3.2.1 Complexity Asymptotics

In the previous strategy of reolution, the crucial element to predict the complexity is
the degree of regularity. Understanding the degree of regularity requires to understand the
structure of an ideal.

First, we need to determine if a system has a generic behaviour. To do this, Macaulay
introduced in [Mac16] the notion of regular sequence, which applies to square systems of
equations, i.e. systems with as many equations as unkowns. This notion was extended to
overdefined systems (i.e. with more equations than unkowns) in [Bar04] by the notion of semi-
regularity. Informally, it means that no useless computation are performed when computing
a Gröbner basis with the F5 algorithm.

Definition 3.19 (Semi-regular sequence [Bar04]). Let f1, . . . , fs ∈ K[x1, . . . , xv] and di =

deg(fi). For 1 6 i 6 s, we define f̂i the homogeneous part of highest degree of fi. We say
that f1, . . . , fs is a semi-regular if

— 〈f̂1, . . . , f̂s〉 6= K[x1, . . . , xv],

— for all h ∈ K[x1, . . . , xv] and 1 6 i 6 s, if hf̂i ∈ 〈f̂1, . . . , f̂i−1〉 and deg(hf̂i) 6
dreg(〈f̂1, . . . , f̂s〉), then h ∈ 〈f̂1, . . . , f̂i−1〉.

For semi-regular sequences, the degree of regularity can be nicely characterized.

Proposition 3.20. Let f1, . . . , fs ∈ K[x1, . . . , xv] a semi-regular sequence and di = deg(fi)
for 1 6 i 6 s. The degree regularity of 〈f1, . . . , fs〉 is the index i of the first negative coefficient
ci of the series ∏s

i=1(1− zdi)
(1− z)v

=
∑
i>0

ciz
i.

Thanks to this result, the degree of regularity can be computed explicitly for a given
system, and it is possible to give asymptotic values for various categories of semi-regular
systems. For example, for systems of v + k polynomials in v variables, we have the following
theorem.



66 CHAPTER 3. GRÖBNER BASES

Theorem 3.21 ([Bar04]). The degree of regularity of a semi-regular sequence of v + k poly-
nomials of degree d1, . . . , dv+k in v variables behaves asymptotically when v −→∞ as

dreg =

v+k∑
i=1

di − 1

2
− αk

√√√√v+k∑
i=1

d2
i − 1

6
+O(1)

where αk is the biggest root of the k-th Hermite polynomial.

Now we give the example of systems of αv polynomials in v variables.

Theorem 3.22 ([Bar04]). let α > 1 be a constant. The degree of regularity of a semi-regular
sequence of αv polynomials of degree d in v variables behaves asymptotically when v −→ ∞
as

dreg = φ(z0)v +O(v1/3)

where

φ(z) =
z

1− z
− αdzd

1− zd
z0 is the root of φ′(z) which minimizes φ(z0) > 0.

3.2.2 Degree of regularity in the algebraic modelling of alternant codes

The polynomial systems that we encounter in this thesis are not semi-regular in general,
because they inherit from the object that they model a certain strucutre. An example of
such structured system is provided by the algebraic modellings of alternant codes described
in Chapter 4 (and used for cryptanalysis in Chapters 6 and 7).

Definition 3.23. Let f ∈ Fq[X1, . . . , XvX , Y1, . . . , YvY ]. We shall say that f is bi-homogeneous
of bi-degree (d1, d2) if:

f(αX1, . . . , αXvX , βY1, . . . , βYvY ) = αd1βd2f(X1, . . . , XvX , Y1, . . . , YvY ), ∀(α, β) ∈ Fq × Fq.

Thus, f is bi-linear if is is of bi-degree (1, 1). Also, if p = char(Fq), then we shall say that
f is quasi bilinear [FOPT10b] if it is of bi-degree (pu, pv) for u, v > 0

To illustrate the improvements that such structure can bring to the resolution, we take
the example of bilinear systems in X = (X1, . . . , XvX ) and Y = (Y1, . . . , YvY ). A bilinear
system of vX + vY variables and with as many equations is in particular a quadratic system.
For quadratic systems, we have the following bound.

Proposition 3.24 (Macaulay bound [Laz83]). The degree of regularity of a square regular
quadratic system in v variables is bounded by

1 + v.

Thus, a square quadratic system has a degree of regularity bounded by vX + vY + 1.
However, recent advances in Gröbner bases computation (such as [FSS11]) show that better
complexities can be obtained for bi-linear systems.

Proposition 3.25. The degree of regularity of a square generic affine bi-linear system in
Fq[X1, . . . , XvX , Y1, . . . , YvY ] (as in Definition 3.23) is bounded by:

2 + min(vX , vY ).

This bound is sharp for a generic square affine bi-linear system and is much better than
Macaulay’s bound which bounds the degree of regularity by 1 + vX + vY .
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3.3 Gröbner Bases and Modelling Strategy

In the rest of this manuscript, the strategy of Algorithm 6 will always be used. However,
it is important to keep in mind some elements that influence the way we write the equations
in our algebraic modellings:

1. In order to have an efficient changing-order step, it is highly preferable that the final
system to solve be zero-dimensional. Generally, finding an infinite amount of solutions
for a modelling to model a private key means that the key can be described more
precisely.

2. The number of variables must be as low as possible, since all complexities rely on it.

3. As for semir-regular sequences, the more equations, the simpler the grevlex Gröbner
basis computation is. Therefore, we try to write as many equations as possible.

The last two remarks raise a question: suppose that, to write some new equations satisfied
by private elements, one needs to introduce additional variables, what will be the consequence
on the solving complexity ? Today, no generic answer exists to this question. If the new
equations reduce notably the degree of the associated ideal, then adding new equations can be
of use. For the systems that we consider, we do not necessarily know the degrees of regularity,
and in practice, it is important to make practical experiments to compare which approach
is the most favorable one. Moreover, the systems are drawn from structured problems, and
trying different modellings can reveal unexpected structure.
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Chapter 4

Algebraic attacks against
McEliece-like schemes

The security of code-based cryptographic primitives relies, among other, on the difficulty
for an attacker to recover the secret elements that allow to decode efficiently the errors, that is
to solve the Decoder Recovery Problem (introduced in Section 2.3). We recalled in Paragraph
2.3.2 the two known attacks against alternant codes: the algebraic attack by Faugère, Otmani,
Perret and Tillich ([FOPT10a], or FOPT in short) and, for the sub-family of Goppa codes,
the SSA attack.

In this chapter, we first complete (in Section 4.1) the FOPT attack by introducing new
equations describing more precisely the specificities of Goppa codes and binary Goppa codes
(Table 4.1). In Section 4.2, we propose yet new systems which are more adapted to key-
recovery for codes with high information rate (that is, with dimension very close to length).
These new systems are crucial for the efficiency of the algebraic cryptanalysis of Chapter 6.
Finally, in Section 4.4, we bound the complexity of resolution of the algebraic modellings to
compare it with the complexity of the SSA attack. We show that the length of the code is
the determinant factor in the choice of the most efficient attack: for full-support codes (with
length n ≈ qm), the SSA attack is more efficient. On the contrary, to attack non full-support
codes (n� qm), algebraic methods are more efficient than the SSA attack.

71
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4.1 Algebraic Descriptions of Alternant Codes and some sub-
families

Let’s explain more in details how the algebraic system of FOPT was built. The public code
is a q-ary alternant code At(x,y) defined by the public generator matrix G = (gi,j) ∈ Fk×nq

(Definition 1.19). The couple of vectors (x,y) ∈ Fnqm × Fnqm permits to decode efficiently the
public code (see Paragraph 1.3.1). Thus, (x,y) is a key which is equivalent to the secret-key.

Let X = (X0, . . . , Xn−1) and Y = (Y0, . . . , Yn−1) be two sets of variables corresponding to
the unknown support x and multiplier y respectively. FOPT used the fact that Vt(X,Y) is
a parity-check matrix (Definition 1.19) of the public-code. This means that Vt(X,Y)GT =
(0)t×k holds and yields the following system:

AX,Y =

t−1⋃
`=0


n−1∑
j=0

gi,jYjX
`
j | 0 6 i 6 k − 1

 .

It is clear that (x,y) is a solution of this system. Observe that AX,Y is very structured:
the only monomials occurring are of the form YjX

`
j with 0 6 ` 6 t − 1. Furthermore, AX,Y

becomes linear as soon as the variables of the block X are fixed. We hence obtain kt linear
equations with n unknowns Y. The equations obtained by fixing the variables of Y in AX,Y

are not directly linear. They are of the form
∑n−1

j=0 g
′
i,jX

`
j with 0 6 i 6 k − 1. However, we

can extract a linear system by only considering the equations with exponents ` = pu, with
0 6 u 6 blogp(t− 1)c. We then apply the map z 7→ zq

m/pu , which is additive in characteristic

p, to this subset of equations. In other words, from the equation
∑n−1

j=0 g
′
i,jXj

pu we deduce

that
∑n−1

j=0

(
g′i,j

)qm/pu
Xqm

j , which yields the linear equation
∑n−1

j=0

(
g′i,j

)qm/pu
Xj = 0. This

allows to obtain a linear system with k
(
blogp(t− 1)c+ 1

)
equations.

Fact 4.1. If the secret support x (resp. secret multiplier y) is known then solving AX,Y

reduces to solve a linear system of kt (resp. k(blogp(t− 1)c+ 1)) equations in n variables.

As explained in [FOPT10b], the k linear equations involving only the set of variables Y
can be used to eliminate some variables in the block Y. By assumption, the public-code
defined by G is of dimension k. Up to Gaussian elimination (and possibly reordering the
positions), we can assume that G is in systematic form

(
A Ik

)
where Ik is the k × k

identity matrix and A = (ai,j) ∈ Fk×n−kq . Thus, for all `, 0 6 ` 6 t− 1:

Yn−k+iX
`
n−k+i = −

n−k−1∑
j=0

ai,jYjX
`
j , ∀i, 0 6 i 6 k − 1. (4.1)

By focusing on equations with ` = 0, we construct a new polynomial system AX,Y′ – where
Y′ = (Y0, . . . , Yn−k−1) – in which the variables (Yk, . . . , Yn−1) have been eliminated:

AX,Y′ =

t−1⋃
`=1


n−k−1∑
j=0

ai,jYj

(
X`
j −X`

n−k+i

)
| 0 6 i 6 k − 1

 .
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4.1.1 Algebraic Description of Goppa Codes

The system AX,Y′ only describes the fact the public key is the generator matrix of an
alternant code. As mentionned in [BCMN10, BB11], when the public code is a Goppa
code, the equivalent key (x,y) vanishes AX,Y′ but also extra algebraic equations. Precisely,

Definition 1.22 implies that there exists Γ(z) =
∑t

`=0 γ`z
` ∈ Fqm [z] of degree t such that

YjΓ(Xj) =
∑t

`=0 γ`YjX
`
j = 1. The coefficients γ0, . . . , γt ∈ Fmq of Γ(z) are unknown.

We know thanks to Proposition 1.24 of Chapter 1 that the extended code of At(x,y) with
y = g(x)−1 has parity-check

Ṽt+1 (x,y) =


y0 · · · yn−1 0
y0x0 · · · yn−1xn−1 0
...

...
...

y0x
t−1
0 · · · yn−1x

t−1
n−1 0

y0x
t
0 · · · yn−1x

t
n−1

1
γt

 .

Let G̃ be the generator matrix of the extended code of G, so G̃ is equal to G =
(

A Ik
)

concatenated with the column 
...

−

(
1 +

n−k−1∑
j=0

ai,j

)
...

 .

We know that
Ṽt+1 (x,y) G̃T

pub = (0)(t+1)×(n+1) .

In this matrix-matrix product, the relations obtained from the first t rows of Ṽt+1 are the
same as in AX,Y′ , but the t+ 1−th row yields for all 0 6 i 6 k − 1 the relation:Yn−k+iX

t
n−k+i +

n−k−1∑
j=0

ai,jYjX
t
j

 =
1

γt

1 +
n−k−1∑
j=0

ai,j

 . (4.2)

So we introduce one variable Z for 1
γt

and we obtain (after performing the same elimination

as in AX,Y′) a new polynomial system GX,Y′ dedicated to q-ary Goppa codes: GX,Y′ =

AX,Y′ ∪


n−k−1∑
j=0

ai,jYj
(
Xt
j −Xt

n−k+i

)
= Z

1 +
n−k−1∑
j=0

ai,j

 | 0 6 i 6 k − 1

 . (4.3)

4.1.2 Algebraic Description of Binary Goppa Codes

The case of binary Goppa codes (q = 2) is even more specific. Such codes can be viewed
as an alternant codes At(x,y) with yj = Γ(xj)

−1 for all j, 0 6 j 6 n − 1 but also described
as a binary alternant codes A2t(x,y

2) (Theorem 1.23). This brings equations to the system
GX,Y′ which are defined by

Y 2
n−k+iX

`
n−k+i = −

n−k−1∑
j=0

ai,jY
2
j X

`
j
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where 0 6 i 6 k − 1 and 0 6 ` 6 2t − 1. The equations obtained with ` = 2`′ (with
0 6 `′ 6 t − 1) are the squares of equations of AX,Y′ (as in this case a2

i,j = ai,j), so they

bring no information. However, the equations in bi-degree (2, 2`′ + 1) are new. This enables
to define a specific algebraic system McEX,Y′ dedicated to McEliece’s cryptosystem:

McEX,Y′ = GX,Y′ ∪
t−1⋃
`=0


n−k−1∑
j=0

ai,jY
2
j

(
X2`+1
j −X2`+1

n−k+i

)
= 0 | 0 6 i 6 k − 1

 . (4.4)

4.2 Structural Elimination

We present a new method to eliminate some variables from the block X in our algebraic
systems. The purpose is to avoid introducing too many variables. For instances, to model
codes with long lengths n, dealing with systems containing 2n − k unkowns can be quite
crippling for the resolution. In such situation, we explained in Paragraph 3.3 of Chapter 3
that reducing the number of variables can be helpful to ease the system solving phase.

Structural Elimination for the Alternant Modelling. The idea is to consider a suitable
subset of the equations occurring in the system AX,Y′ . More precisely the equations of bi-
degree (pu, 1) (Definition 3.23 of Chapter 3) where 0 6 u 6 blogp(t−1)c. The only restriction
is that the characteristic p has to be smaller than t.

This technique is inspired from ideas proposed to construct a distinguisher for alter-
nant and Goppa codes [FGO+11, FGO+13]. The principle is to suitably combine monomials

Yn−k+iX
pu

n−k+i, with 0 6 u 6 blogp(t−1)c and 0 6 i 6 k−1. Thanks to (4.1), the trivial identi-

ties
(
Yn−k+iX

pu

n−k+i

)p
= Y p−1

n−k+iYn−k+iX
pu+1

n−k+i can be rewritten with 0 6 u 6 blogp(t−1)c−1

and 0 6 i 6 k − 1 as:− n−k−1∑
j=0

ai,jYjX
pu

j

p

=

− n−k−1∑
j=0

ai,jYj

p−1− n−k−1∑
j=0

ai,jYjX
pu+1

j

 . (4.5)

Equation (4.5) only contains X0, . . . , Xn−k−1. We then set X′ = (X0, . . . , Xn−k−1). Thus, by
cleaning-up relations (4.5), we define the system

elimAX′,Y′ =

blogp(t−1)c−1⋃
u=0

k−1⋃
i=0


n−k−1∑
j=0

Xpu+1

j

api,jY p
j − ai,jYj

− n−k−1∑
j′=0

ai,j′Yj′

p−1 .

We replaced equations of bi-degree (pu, 1) by ones of higher bi-degree (pu+1, p). On the other
hand, we reduced the number of variables from 2n− k to 2(n− k). In Section 6.2.3, we will
see that for many practical parameters, and in particular parameters used in the signature
schemes, the structural elimination allows to get significant practical improvements despite
the degree increase.

We can also perform the elimination for Goppa codes (Equations (4.3)) and binary Goppa
codes (Equations (4.4)).
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Structural Elimination for Goppa Codes.
We can perform the elimination on Equations (4.3) when the Goppa polynomial has degree

t = pλ, which will be the case in Chapter 6 . To do so, develop(
Yn−k+iX

p(λ−1)

n−k+i

)p
= Y p−1

n−k+i

(
Yn−k+iX

t
n−k+i

)
thanks to (4.1) and (4.2). We obtain for 0 6 i 6 k − 1,

1 +

n−k−1∑
j=0

ai,j

Z −
n−k−1∑
j=0

ai,jYjX
pλ

j

n−k−1∑
j=0

ai,jYj

p−1

+(−1)p

n−k−1∑
j=0

api,jY
p
j X

pλ

j

 = 0

(4.6)
So, we define the system elimGX′,Y′ as the union of elimAX′,Y′ and Equations (4.6). It
describes Goppa codes and contains 2(n− k) + 1 variables.

Structural Elimination for Binary Goppa Codes.
In this paragraph, q = 2. To eliminate Xn−k, . . . , Xn−1 in (4.4), we consider the equations

in bi-degree (2, 2u+ 1) for 0 6 u 6 t− 1

Y 2
n−k+iX

2u+1
n−k+i = (Yn−k+iXn−k+i)(Yn−k+iX

2u
n−k+i)

with Equation (4.4). We obtain for 0 6 i 6 k − 1,n−k−1∑
j=0

ai,jY
2
j X

2u+1
j

−
n−k−1∑

j=0

ai,jYjXj

n−k−1∑
j=0

ai,jYjX
2u
j

 = 0 (4.7)

So, we define the system elimMcEX′,Y′ as the union of elimAX′,Y′ and Equations (4.7). If

t = 2λ, Equations (4.6) can also be included. It describes binary Goppa codes and contains
2(n− k) + 1 variables.

4.3 Summary of the proposed Algebraic modellings

Table 4.1 summarizes the number of equations, number of variables in each block, and
the structure of the different algebraic systems introduced in this part.

In practice, we exploit Proposition 1.20 to fix arbitrarily some values. We point out a
difference with the exploitation of this property that we do in Sidelnikov-Shestakov attack
(Paragraph 2.3.1). Indeed, in our Sidelnikov-Shestakov attack we fix four unkown values
arbitrarily. Here, with our algebraic modelling, it is not possible to exploit all the degrees
of freedom because using rational functions may lead to zero denominators which cannot be
predicted. Therefore, we fix in AX,Y′ one of the Y ′i ’s and two Xi’s to arbitrary values, which
amounts to a simpler change of support x′ = ax + b and multipliers y′ = cy (for a, c ∈ F∗qm
and b ∈ Fqm).

Also, some variables have to be added to be sure that the variety associated to AX,Y′

has few solutions. Indeed, the definition of a correct support implies that all the support
elements are distinct and that all multipliers are non-zero, so we have to remove parasite
solutions corresponding to Xi = Xj and Yj = 0. A classical way to do so that is to introduce
new variables uij and vi and add to AX,Y′ equations of the form uij · (Xi − Xj) + 1 =
0 and vi · Yi + 1 = 0. In practice, to avoid adding too many new variables, one can add only
a few of them.
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#X #Y′ Equations

AX,Y′ n− 2 n− k − 1
k · (t− 1) eq. of bi-degree (u, 1),
with 1 6 u 6 t− 1.

GX,Y′ n− 2 n− k #AX,Y′ eq. + k eq. of bi-degree (t, 1).

McEX,Y′ n− 2 n− k #GX,Y′ eq . + k · t eq. of bi-degree (2u+ 1, 2)
with 0 6 u 6 t− 1.

elimAX′,Y′ n− k − 2 n− k − 1
k · blogp(t− 1)c eq. of bi-degree (pu, p),
with 1 6 u 6 blogp(t− 1)c.

elimGX′,Y′ n− k − 2 n− k #elimAX′,Y′ eq. + k eq. of bi-degree (t, p)
with t = pλ.

elimMcEX′,Y′ n− k − 2 n− k
k eq. of bi-degree (t, p) with t = 2λ

+ k · btc eq. of bi-degree (2u+ 1, 2),
with 0 6 u 6 btc.

Table 4.1 – Algebraic key-recovery systems for McEliece-like cryptosystems. The notation
# denotes the size of the set considered. For GX,Y′ ,McEX,Y′ , elimGX′,Y′ , elimMcEX′,Y′ , the
extra-variable Z is counted in the Y block. For elimGX′,Y′ and elimMcEX′,Y′ , we assume that

t = pλ.

4.4 Complexity Bounds & Asymptotics

We provide complexity estimates of the algebraic attacks by using Fact 4.1: suppose all
the multipliers have been guessed correctly (by exhaustive search), then the support is found
by solving a linear system, and the secret key is known. Using Equations 4.1 with ` = 0,
the number of multipliers to guess correctly is not n but n − k = mt. We obtain for this
guess-and-solve strategy a complexity GuessAlg(n, t,m, q) given by

GuessAlg(n, t,m, q) = (qm)mt · poly(n) = qm
2t · poly(n).

This has to be compared with the complexity of the SSA-based attack (mentionned in

Chapter 2): first one has to enumerate all the possible support sets (
(
qm

n

)
possibilities) and

the irreducible Goppa polynomials (qmt/t choices), then apply the SSA algorithm:

SSA(n, t,m, q) =

(
qm

n

)
(qmt/t) · poly(n).

To compare asymptotically the complexities, we compute the ratio:

R(n, t,m, q) =
SSA(n, t,m, q)

GuessAlg(n, t,m, q)
=

(
qm

n

)
qmt−m

2t

t
,

and its logarithm

log(R(n, t,m, q)) = log

(
qm

n

)
+ (mt−m2t) log(q)− log(t).

In what follows, we evaluate its asymptotic behaviour in different scenarios. The idea is
to determine whether log

(
qm

n

)
grows faster than m2t.
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When making parameters grow, we have to respect some constraints. First, we must keep
n 6 qm, otherwise Fqm does not contain enough elements to build a Goppa code of length n.
We also need to have n−mt > 0 otherwise the code considered is the zero code (containing
only 0).

4.4.1 Full-Support Codes

Full-support codes are typically those used to instantiate CFS signature schemes [FS11].
In this case, the support set contains all the elements of the finite field Fqm , so that n = qm.
For full-support codes, the enumeration factor is equal to 1. The SSA attack has a complexity
exponential in mt, whereas the naive guess-and-solve strategy has complexity exponential in
m2t. So, it is clear that the SSA attack is better.

To have an idea of the best attack for almost full-support codes, we propose to link m
and n by n = qm − c, with c a constant. In this case we obtain

(
qm

n

)
=
(
qm

c

)
∼ qmc/c! and

R(n, t,m, q) ∼
n→∞

qm(c+t−mt)

c!t
−→

n,m→∞
m∼logq(n)

0.

The SSA attack is asymptotically better than the guess-and-solve strategy when n = qm−c
and m grows.

4.4.2 Non Full-Support codes

Non full-support codes are of particular interest for us, as all the codes that we consider in
Chapters 6 and 7 fall into this category. In the following we look at three different situations
where the code is not full-support. First, we fix n and m and make q tend to infinity. Then,
we fix q and make n grow. When n grows to infinity, we have to assume that m also grows
since we must keep n 6 qm (otherwise Fqm does not contain enough elements to build a
Goppa code of length n). We propose then two families of parameters: n = αqm with α and
q constant, which corresponds to codes with high rates (tending to 1), and n = cmt with c
and t constant, describing codes with constant rates.

4.4.2.1 Growing Base Field Size.

We suppose that n,m and t are fixed. The code dimension k is also constant. We consider
codes over Fq where q grows to infinity. This hypothesis has the benefit of raising moderately
the public key size, equal to mt(n−mt) log2(q). This has to be compared with the key size of
a full-support code (mt(qm−mt) log2(q)), which grows polynomially when q tends to infinity.

Also, growing q makes ISD harder. This led Peters to propose Goppa codes over F31 with
2128 security and smaller keys than binary Goppa codes [Pet10].

When q grows to infinity, we estimate the binomial
(
qm

n

)
to qmn/n! and we obtain

R(n, t,m, q) ∼
q→∞

qm(n+t−mt)

n!t
=
qm(k+t)

n!t
−→
q→∞

∞.

The guess-and-solve strategy is asymptotically better than the SSA attack when q grows.
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4.4.2.2 Codes with High Rates.

If m and n are related by n = αqm, with α and q constant, and m grows to infinity,
the codes considered have high information rates k

n = αqm−mt
αqm . In this case, we evaluate the

logarithm of the ratio of the complexities:

log(R(n, t,m, q)) = log

(
qm

αqm

)
+ (mt−m2t) log(q)− log(t).

We perform an asymptotic development of log
(
qm

αqm

)
by using log(u!) = u log(u)−u+o(u).

We obtain log(
(
qm

αqm

)
) = H(α)qm+ o(qm), with H(α) = −(α log(α) + (1−α) log(1−α)) being

a positive function for 0 < α < 1, so that

log(R(n, t,m, q)) ∼
n,m→∞
n=αqm

H(α)qm −→ +∞.

The guess-and-solve attack is asymptotically better than the SSA attack. We illustrate
this in Figure 4.1.
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Figure 4.1 – Complexities of the key-recovery attacks against alternant codes over Fq with
n = αqm and m = 2. ISD complexity (message-recovery) is indicated for completeness.

4.4.2.3 Codes With Constant Rates.

We propose another asymptotical evaluation of the complexity with parameters n = cmt
with c, t and base field size q constant (c > 1). This has the benefit of keeping a constant
information rate n−mt

n = 1− 1
c when m grows to infinity. With such parameters, we have

log(R(n, t,m, q)) = log

(
qm

cmt

)
+ (mt−m2t) log(q)− log(t).

We perform the asymptotical development of log
(
qm

cmt

)
, we obtain

log

(
qm

cmt

)
= cm2t log(q) + o(m2).
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Finally,
log(R(n, t,m, q)) ∼

n,m→+∞
n=cmt

(c− 1)m2t log(q) −→
m→+∞

+∞.

Since c > 1, the FOPT attack is asymptotically better than the SSA attack. We illustrate
this in Figure 4.2.
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Figure 4.2 – Complexities of the key-recovery attacks (algebraic attacks & SSA attack) against
alternant codes over Fq with n = cmt. ISD complexity (message-recovery) is indicated for
completeness.

Conclusion
We gave new algebraic modellings for very famous sub-families of alternant codes. Though

they do not represent a direct threat to the corresponding McEliece scheme, their resolution
gives an attack which is, for certain parameters, more efficient than the SSA attack. We insist
on the fact that the bounds should be improvable by a deeper analysis of their structure.
They will be a central tool for the practical attacks against alternant codes with symmetries
in Chapter 6.
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Chapter 5

Alternant Codes with Non-trivial
Permutation Groups

This chapter is inspired by the article Folding Alternant and Goppa Codes with Non-Trivial
Automorphism Groups, submitted to IEEE Transactions of Information Theory, ([FOP+14a]),
written with Jean-Charles Faugère, Ayoub Otmani, Jean-Pierre Tillich and Ludovic Perret.
A short version of this article was published at ISIT 2014 in [FOP+14b].

The purpose of this chapter is to detail the construction of families of codes having compact
representations proposed for cryptographic use between 2005 and 2013 ([BCGO09, MB09,
BCMN10, BLM11, Per12a]). Those codes all belong to the family of alternant codes (Defini-
tion 1.19) and, thanks to their compact representations, allow to design code-based encryp-
tion and signature schemes with smaller public keys. Such compact variants are the center of
Chapter 6.

Section 5.1 details the advantages of alternant codes with compact representations in
cryptography. We review the past proposals and explain that they share the common feature
of admitting a non-trivial automorphism groups (Definition 1.13). This is why we often
refer to those codes as alternant codes with symmetries. We give in Section 5.2 an implicit
construction of GRS and alternant code with symmetries: those codes can be constructed
by imposing specific relations on the support and multipliers of the alternant code (Theorem
5.4 from Dür’s work [Dür87] and Theorem 5.9 from [Ber99]). We explain that there are four
families of those specific relations leading to symmetric alternant codes (Theorem 5.6). In
Section 5.3, we detail how to build all the past proposals directly from Theorem 5.6. We
obtain in Theorem 5.10 a new description of the codes used in [MB09, BCMN10, BLM11]
that are useful for the security analysis given in Chapter 6.

In Section 5.4, we show a structural weakness of all the schemes proposed for cryptography:
there is in fact a smaller hidden Goppa (or alternant) code behind the public generator or
parity-check matrix of all alternant code with symmetries. We informally summarize this
below:

Fact 5.1 (informal). Let C = At(x,y) be an alternant (resp. Goppa) code of degree t, length
n, with support x ∈ Fnqm and multiplier y ∈ Fnqm with non-trivial automorphism group as
in [BCGO09, MB09, BCMN10, BLM11, Per12a]. We can construct in polynomial-time an
alternant (resp. Goppa) code C ′ = At′(x′,y′) of degree t′ < t, length n′ < n, with support
x′ ∈ Fn′qm and multiplier y′ ∈ Fn′qm. There is an explicit relation between (x′,y′) ∈ Fn′qm × Fn′qm
and (x,y) ∈ Fnqm ×Fnqm, that is the support/multiplier (x,y) defining C can be recovered from
the knowledge of (x′,y′).

81
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Typically, the length n is divided by the order of the permutation group. Roughly speak-
ing, the new code C ′ – that we shall call folded code – is obtained by summing the coordinates
which belong to the same orbit of the automorphism group.

This implies that the key-recovery on the McEliece variants considered in [BCGO09,
MB09, BLM11, BCMN10, Per12a] is not harder than a key-recovery on a traditional McEliece
cryptosystem with parameters reduced by the size of the automorphism group.

Alternant/Goppa code

Params [n0, k0, t0]q
Key size k0(n0 − k0)

Aut. group {Id} (in general)

Alternant/Goppa code
with symmetries C

Params [n0t, k0t, t0t]q
Key size k0(n0 − k0)t

Aut. group size t > 1

QC case
Aut(C ) ' Z/`Z
` ∧ p` − 1 = 1

(p is the characteristic)

QM case
Aut(C ) ' Z/pλZ, λ > 0

Folded Alternant/Goppa code

Params [n0, k0, t0]q
Key size k0(n0 − k0)

Aut. group {Id} (in general)

Theorem 5.9

Theorem 5.10

Theorem 5.21

Same key-security

Figure 5.1 – Constructions and security of QM alternant codes.
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5.1 Alternant Codes with Symmetries in Cryptography.

The motivation for using alternant codes with symmetries comes from the fact that code-
based encryption and signature primitives are still not widely deployed in practice because
of the sizes of public keys. Indeed, for a given security level and compared to other existing
cryptosystems (RSA, elliptic curves), the sizes of the keys is at least one order of magnitude
higher. For instance, to guarantee a level of security of 2128, an optimized choice of the
parameters for McEliece yields a key of 181, 000 bits. This figure has to be balanced with one of
the most wildspread asymmetric encryption scheme, RSA, which currently provides a security
factor of roughly 2128 with 3200-bit keys (more comparisons can be found in [NMBB12]).

The benefit of using a code with a non-trivial automorphism group is to have a more
compact public key. Pick for example the code spanned by the matrix of Example 1.15,

M =


0 1 1 0 0
1 1 0 0 0
1 0 0 0 1
0 0 0 1 1
0 0 1 1 0

 .

The i-th row of M can be deduced from the first row by shifting i times on the left the
coordinates, so that to know all the matrix M it is enough to store only the first row. More
precisely, for all 0 6 i, j 6 4, it holds

Mi,j = M0,j−i mod 5.

This property has to be combined with the existence of a trapdoor. This was the purpose of
the proposals made in [BCGO09, MB09, BCMN10, BLM11], that we present now.

Quasi-Cyclic Alternant Codes
In [BCGO09], the authors build a first family of alternant codes with symmetries. They

obtain a public code whose parity-check matrix H has a block structure:

H =

 · · · Mi · · ·

 with Mi =


a0 a1 · · · a`−1

a`−1 a0 · · · a`−2
...

. . .
. . .

...
a1 a`−1 · · · a0

 .

Figure 5.2 – Cyclic matrices used for the blocks of the public matrix in [BCGO09].

The public keys only contain some of the entries of G, and have sizes as low as 6, 510 bits
for an ISD complexity of 280.

Quasi-Dyadic/Monoidic Alternant Codes
Some years later, it was proposed in [MB09, BCMN10, BLM11] to build Goppa codes

whose generator matrix is also made of symmetric blocks, but with a form that we will refer
to as dyadic (when the characteristic if 2, as in the example below) or monoidic (for other
characteristics).
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For a Goppa code, the authors used the fact that, if the Goppa polynomial is separable
and has single roots then the code admits a parity-check matrix in Cauchy form

C(x, z) =

[
1

zi − xj

]
06i6t−1
06j6n−1

where x is the support of the code and z contains the roots of the Goppa polynomial (See
[MS86][Ch. 12, §3, p.345]). Their idea is to find x and z such as C(x, z) is dyadic/monoidic.

Definition 5.2 (Quasi-monoidic and quasi-dyadic codes [BLM11, MB09]). Let q = ps (p

prime, and s > 0). Let λ be an integer such that pλ 6 q. A matrix H = (hi,j) ∈ Fp
λ×pλ
q is

monoidic if ∀i, j, 0 6 i, j < pλ:
hi,j = h0,j	pi,

where for any integers a > 0 and b > 0 the operations a⊕p b and a	p b stand for component-
wise addition and subtraction modulo p of their p-ary decomposition (we may use only ⊕ and
	 when p is equal to the ambient characteristic). When p = 2, a monoidic matrix is called
a dyadic matrix. A quasi-monoidic (resp. quasi-dyadic) matrix is a block-matrix such that
each block is monoidic (resp. dyadic).

H =

 · · · Mi · · ·

 with Mi =


a0 a1 a2 a3

a1 a0 a3 a2

a2 a3 a0 a1

a3 a2 a1 a0

 .

Figure 5.3 – Dyadic matrices used for the blocks of the public matrix in [MB09].

In [BLM11, Theorem 1] and [MB09, Theorem 2], the authors provide a precise char-
acterisation of the constraints that x and z should satisfy for the matrix C(x, z) to be
dyadic/monoidic. This leads to an algorithm [BLM11, Algo. 3] generating dyadic/monoidic
parity-check matrices.

The common feature to all the alternant quasi-cyclic/dyadic/monoidic codes is to have a
non-trivial automorphism group (Definition 1.13). Indeed, in all cases, the code C is defined
by a parity-check matrix H and a permutation of the code position σ 6= Id such that for all the
rows h of H, hσ is also a row of H. As the rows of H generate the dual of C , it is clear that
σ is an automorphism of C⊥. Thanks to Proposition 1.14, we know that Aut(C ) = Aut(C⊥),
so that C has a non-trivial automorphism group (that is, not reduced to the identity).

More formally, we will deal with the following cases:

Definition 5.3. Let C be an alternant or Goppa code defined over a field Fqm (q = ps with
p prime and s > 0) of length n. We say that C is:

— Quasi-Cyclic (QC) if Aut(C ) is of the form (Z/`Z) and ` 6= p,
— Quasi-Dyadic (QD) if p = 2 and Aut(C ) is of the form (Z/2Z)λ,
— Quasi-Monoidic (QM) if Aut(C ) is of the form (Z/pZ)λ with p = char(Fqm) > 2.

A natural question emerging after these separate works is : are there other possible symme-
tries for an alternant code ? It was actually answered by Berger in [Ber99, Ber00a, Ber00b] at
its most general level, building up on a work by Dür [Dür87] about the automorphism group
of (generalized) Reed-Solomon codes. This is what we detail now.
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5.2 Classification of Alternant Codes with Non-Trivial Per-
mutation Groups

As alternant codes are subfield subcodes of GRS codes, we first look for GRS codes with
non-trivial automorphism group (Definition 1.13).

5.2.1 GRS Codes with Non-Trivial Permutation Groups

A GRS code with non-trivial automorphism group has to satisfy for some non-trivial
permutation σ ∈ Sn the property

GRSt(x,y)σ = GRSt(x,y).

Let m ∈ GRSt(x,y), there exists Q ∈ Fqm [z] of degree lower than t such that m =
(y0Q(x0), . . . , yn−1Q(xn−1)). We have

mσ = (y0Q(x0), . . . , yn−1Q(xn−1))σ = (yσ(0)Q(xσ(0)), . . . , yσ(n−1)Q(xσ(n−1))) ∈ GRSt(x
σ,yσ).

We see that GRS codes with non-trivial automorphism can be found by looking for permu-
tations σ such that GRSt(x

σ,yσ) = GRSt(x,y). This question was actually studied by Dür
in [Dür87], which states necessary and sufficient relations on two couples (x,y) and (x′,y′)
of support and multipliers in Fqm such that the codes GRSt(x,y) and GRSt(x

′,y′) over Fqm
are the same. Examples of such supports were provided by Proposition 1.20, but [Dür87] has
the benefit of giving us all the possibilities of (x′,y′) for a given (x,y).

Thanks to Dür’s theorem (recalled here in Theorem 5.4), GRS codes with symmetries
can easily be constructed by looking at the action on the support and the multipliers of the

applications defined by a matrix

(
a b
c d

)
∈ GL(2,Fqm) by:

Fqm ∪ {∞} → Fqm ∪ {∞}

z 7→ az + b

cz + d
.

However, this action on the support may transform a coordinate of the support into ∞
and a slightly more general definition of generalized Reed-Solomon codes and of alternant
codes is required to cope with this issue. This construction allows to have ∞ in the support.
So, in order to apply Dür ’s central theorem, only in this paragraph, we pick the support and
multipliers of the alternant codes in the projective line P1(Fqm) = Fqm ∪ {∞}.

The coordinates over P1(Fqm) are defined by φ : P1(Fqm) → F2
qm \ {0}: φ(λ) = (λ, 1) for

λ ∈ Fqm and φ(∞) = (1, 0).
The action of GL(2,Fqm) over P1(Fqm) is defined through several applications. First, we

define Ψ : F2
qm \ {0} −→ F∗qm × P1(Fqm), by

Ψ(u, v) = (v, u/v) if v 6= 0, and
Ψ(u, 0) = (u,∞).

Its inverse Φ is defined by

Φ(λ, z) = (λz, λ) if λ ∈ Fqm , and
Φ(λ,∞) = (λ, 0).
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GL(2,Fqm) acts on F2
qm \{0} by f(u, v) = (au+bv, cu+dv) for f =

(
a b
c d

)
∈ GL(2,Fqm).

Denoting Ψ1 and Ψ2 the two components of Ψ, we obtain from f :
— an operation of GL(2,Fqm) on P1(Fqm) defined by f(z) = Ψ2(f(Φ(1, z))). Explicitly,

f acts on P1(Fqm) by

f(z) =


az+b
cz+d if z 6=∞ and cz + d 6= 0

∞ if z =∞ and c = 0 or cz + d = 0
a
c if z =∞ and c 6= 0

.

A classical result on homographies shows that, for f, g ∈ GL(2,Fqm) and z ∈ P1(Fqm),

fg(z) = f ◦ g(z).

— A function θ : GL(2,Fqm) × P1(Fqm) −→ F∗qm , θ(f, z) = Ψ1(f(Φ(1, z))). θ is given
explicitly by:

θ(f, z)


cz + d if z 6=∞ and cz + d 6= 0

az + b if z 6=∞ and cz + d = 0

c if z =∞ and c 6= 0

a if z =∞ and c = 0

.

θ satisfies, for f, g ∈ GL(2,Fqm):

θ(fg, z) = θ(f, g(z))θ(g, z) (5.1)

We can now state Dür’s theorem in its original context:

Theorem 5.4 ([Dür87], Theorem 4). Let (x,y), (x′,y′) ∈ (Fqm)n×(F∗qm)n and 2 6 k 6 n−2.
Then, GRSk(x,y) = GRSk(x

′,y′) if and only if there exist f ∈ GL(2,Fqm) and λ ∈ F∗qm such
that for all 0 6 i 6 n− 1,

x′i = f (xi) ,

y′i = λθ (f, xi)
k−1 yi.

As a consequence, σ ∈ Aut (GRSk(x,y)) if and only if there exists f ∈ GL(2,Fqm),
0 6 j 6 m− 1, and λ ∈ F∗qm such that

xσ(i) = f (xi) , (5.2)

yσ(i) = λθ (f, xi)
k−1 yi. (5.3)

This theorem gives all the possible permutations for GRS codes. When such a permutation
exists, we show that there exists a new support and set of multipliers defining the same
alternant code, but satisfying simpler relations. The idea is to diagonalize the matrix f . First
we show that we can replace f by any matrix similar to f :

Lemma 5.5. Let C = GRSk(x,y) be a code with non trivial permutation σ ∈ Sn. Let
f ∈ GL(2,Fqm), 0 6 j 6 m − 1, and λ ∈ F∗qm be such that x and y satisfy (5.2) and (5.3).

Let’s suppose that f is similar to a matrix M ∈ GL(2,Fqm), i.e. we can write f = P−1MP ,
for some P ∈ GL(2,Fqm). Then there exists a support u ∈

(
P1(Fqm)

)n
and a set of multipliers

v ∈
(
P1(Fqm)

)n
such that C = GRSk(u,v) and

uσ(i) = M(ui),

vσ(i) = λ
(
θ(M,ui)

k−1vi
)
.
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Proof. We know that xσ(i) =
(
P−1MP (xi)

)
=
(
P−1 ◦M ◦ P (xi)

)
so P (xσ(i)) = M ◦ P (xi).

We choose the support u defined by ui = P (xi), and v by vi = θ(P, xi)
k−1yi. We have

C = GRSk(u,v) thanks to Theorem 5.4.
Indeed, it is clear that uσ(i) = M(ui). For the multipliers, we obtain thanks to (5.1):

vσ(i) = θ(P, xσ(i))
k−1yσ(i)

= θ(P, P−1MP (xi))
k−1λθ(P−1MP,xi)

k−1︸ ︷︷ ︸
θ(P.P−1MP,xi)k−1

yi

= λθ(MP,xi)
k−1yi

= λθ(M,P (xi)︸ ︷︷ ︸
ui

) θ(P, xi)yi︸ ︷︷ ︸
vi

= λθ(M,ui)
k−1vi

With these u,v we can classify simply the action of σ and the possible supports and
multipliers for alternant codes with symmetries.

Theorem 5.6. Let C be a GRS code with a non-trivial permutation σ ∈ Sn. Let x,y ∈ Fnqm
be such that C = GRSk(x,y), there exist f ∈ GL2(Fqm), and λ ∈ F∗qm such that one of the
four following cases is satisfied:

1. f =

(
λ1 0
0 λ2

)
(with λ1 6= λ2), and for all 0 6 i 6 n − 1, xσ(i) = λ1

λ2
xi and yσ(i) =

λ(λ2)k−1yi.

2. f =

(
λ1 0
0 λ1

)
, and for all 0 6 i 6 n− 1, xσ(i) = xi and yσ(i) = λ(λ1)k−1yi.

3. f =

(
λ1 1
0 λ1

)
(with λ1 6= 0), and for all 0 6 i 6 n − 1, xσ(i) = xi + 1

λ1
and

yσ(i) = λ(λ1)k−1yi

4. f =

(
0 −(ad− bc)
1 a+ d

)
(with λ1 6= 0), and for all 0 6 i 6 n − 1, xσ(i) = −(ad−bc)

xi+(a+d) and

yσ(i) = λyi(xi + (a+ d))k−1 (and yσ(i) = −(ad− bc)λyi if xi = −(a+ d).

Proof. It suffices to observe that f ∈ GL(2,Fqm) belongs to one of the four different groups

of classes of conjugacy in GL2(Fqm):

(
λ1 0
0 λ2

)
(with λ1 6= λ2),

(
λ1 0
0 λ1

)
,

(
λ1 1
0 λ1

)
, and(

0 −(ad− bc)
1 a+ d

)
. Lemma 5.5 finishes the proof.

5.2.2 Alternant Codes with Non-Trivial Permutation Groups

The construction of GRS codes with symmetries provided by Theorem 5.4 on GRS codes
naturally yields alternant codes with same symmetries. We define them as affine-induced
automorphisms.

Definition 5.7. Let 2 6 t 6 n−2 and C be an alternant code over Fq with (x,y) ∈ (Fqm)n×
(F∗qm)n. A permutation σ ∈ Sn is said to be affine-induced if there exists f ∈ GL(2,Fqm),
0 6 j 6 m − 1, λ ∈ F∗qm and (u,v) ∈ (Fqm)n × (F∗qm)n such that Equations (5.2) and (5.3)
are satisfied and C = At(u,v).
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With the same notations, the following proposition holds.

Proposition 5.8. Any affine-induced permutation lies in the automorphism group of C .

Proof. Let CGRS = GRSt(u,v) and σ ∈ Sn such that u and v satisfy (5.2) and (5.3). Thanks
to Theorem 5.4, we know that σ is a permutation of CGRS . Therefore, σ is clearly a permu-
tation of the dual code of C⊥GRS (Proposition 1.14). Thanks to Definition 1.19, we know that
At(u,v) can be characterized as follows:

At(u,v) =
{

m ∈ C⊥GRS | ∀0 6 i 6 n− 1,mi ∈ Fq
}
.

For m = (m0, . . . ,mn−1) ∈ At(u,v), mσ ∈ C⊥GRS as σ is a permutation of C⊥GRS . For all
0 6 i 6 n− 1, mσ

i = mσ(i) ∈ Fq, so that mσ ∈ At(u,v) and σ ∈ Aut(At(u,v)).

Theorem 5.4 provides an equivalence between the existence of non-trivial automorphism
and the aformentionned relations on the support and multipliers. This means that for a
GRS code, no permutation σ is possible without the existence of a support and multipliers
falling into one of the four cases of Theorem 5.6. This is not the case for alternant codes, as
Proposition 5.7 only gives a sufficient condition. The reason is that, as an alternant codes is
a subfield subcode of a GRS code, it naturally inherits the automorphisms that stabilize the
corresponding GRS code, but it can be stable by other automorphisms.

In particular, it was proved by Berger that the action of homographies on the support
can be combined with Fröbenius endomorphisms. This gives more families of alternant codes
with non-trivial automorphism group. We will not consider them in the rest of this thesis,
but we mention the following theorem for completeness.

Theorem 5.9 (Theorem 2.2,[Ber99] ). Let 2 6 t 6 n − 2 and At(x,y) be an alternant code
over Fq with (x,y) ∈ (Fqm)n × (F∗qm)n, and σ ∈ Sn. Suppose there exists f ∈ GL(2,Fqm),
0 6 j 6 m− 1, and λ ∈ F∗qm such that:

xσ(i) = f (xi)
qj , (5.4)

yσ(i) = λ
(
θ (f, xi)

n−t−1 yi

)qj
. (5.5)

then σ is a permutation of At(x,y).

This leads Berger to adopt a larger definition of affine-induced permutations than we do
here, that is, the permutations induced by relations (5.4) and (5.5). He also gives an analogous
of Theorem 5.6 to alternant codes. Details can be found in from [Ber99] and [Ber00b].

Now we explain how Theorem 5.6 encompasses all the previous propositions of alternant
codes with symmetries.

5.3 Link with the known constructions of alternant codes with
symmetries

All the alternant codes built in [BCGO09, MB09, BCMN10, BLM11] are particular cases
of Theorems 5.6 and 5.9 (with no Fröbenius action, e.g. j = 0). We detail the permutation
groups obtained.
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5.3.1 Quasi-Cyclic Alternant Codes ([BCGO09])

The construction proposed in [BCGO09] is exactly the case 1 of Theorem 5.6. The relations
imposed on x and y by [BCGO09], are, for a, λ ∈ F∗qm and 0 6 i 6 n− 1:

xσ(i) = axi, (5.6)

yσ(i) = λyi. (5.7)

Let ` be the order of σ (necessarily finite). We must have a of order ` otherwise xσk(i) = xi
for some k < `, and we have λ` = 1. Then, we write λ = ae. The automorphism group is of
the form Z/`Z (as in [BCGO09]), and there exists a parity-check matrix as in Figure 5.2.

5.3.2 Quasi-Dyadic/Monoidic Alternant Codes ([MB09, BCMN10, BLM11])

In [MB09, BCMN10, BLM11], the relations imposed on x,y are, for some b ∈ F∗qm and
for 0 6 i 6 n− 1:

xσ(i) = xi + b, (5.8)

yσ(i) = yi. (5.9)

In case 3 of Theorem 5.6, the relations imposed on x are the same. For y, we have
yσ(i) = λyi but we show that necessarily λ = 1. As σ has a finite order `, we know that
xσ`(i) = xi = xi + `b. This implies that the characteristic p divides `, so we write ` = `′p

with `′ > 1. We prove that `′ = 1: suppose that `′ > 1, then p is not the order of σ, so
there exists i0 ∈ {0, . . . , n− 1} such that σp(i0) 6= i0. But it this case xσp(i0) = xi0 + pb = xi0
with σp(i0) 6= i0: x cannot be a correct support (as all the elements have to be pairwise
distinct). We conclude that ` = p. Then for y, the relation yσ`(i) = yi = λ`yi yields

λ` = λp = 1. So it holds that λ = 1. The consequence is that for all the dyadic and monoidic
cases from [MB09, BCMN10, BLM11], the yi’s are necessarily equal on each orbit of σ. The
automorphism group is of the form Z/pZ.

To build the codes that we study in Chapter 6, the authors use variations of this case
leading to an automorphism group of the form (Z/pZ)λ. In the next paragraph, we explain
in details why those codes belong to the same framework as presented here.

5.3.3 Generalization of Quasi-Monoidic Alternant Codes.

In [MB09, Algorithm 1] and [BLM11, Algorithm 3] the authors describe methods to sam-
ple efficiently QM Goppa codes. Compared to [Ber99] and Case 3 of Theorem 5.6, the codes
designed in [MB09, BLM11] have the interesting property of being invariant by several permu-
tations simultaneously, thus leading to larger permutation groups. Our Theorem 5.10 shows
that those codes can be built directly by induction of Case 3 of Theorem 5.6. We complete
this description by detailing the requirements on the polynomial Γ(z) for the code At(x,y)
with y = Γ(x)−1 to be a QM Goppa code. Our construction is more convenient for Chapter
6, and allows to build the same codes as [MB09, BLM11] (actually a bit more, see Remark
5.11).

Theorem 5.10. Let char(Fqm) = p, and let γ(z) ∈ Fqm [z] be of degree t0. Let α0, . . . , αλ−1 ∈
Fqm be a set of λ elements which are Fp-independent over Fqm. We denote by G ⊂ Fqm the
additive group of the Fp-linear combinations of the αi’s. Let x̃0, x̃1, . . . , x̃(n0−1) be elements of
Fqm which are in different cosets of Fqm/G, and ỹ0, ỹ1, . . . , ỹ(n0−1) be non-zero elements of Fqm.
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Let (i0, . . . , iλ−1) ∈ Fλp be the representation of i mod pλ in base p, i.e. i ≡
∑λ−1

j=0 ijp
j mod pλ.

Let n = n0p
λ. We define x = (xi)06i<n and y = (yi)06i<n as follows:

xi = x̃bi/pλc +

λ−1∑
j=0

ijαj , (5.10)

yi = ỹbi/pλc. (5.11)

Then, At(x,y) is a Goppa code of length n with t = t0p
λ which admits an automorphism

group of size pλ.
Moreover, we define

Γ(z) = γ
(
P (z)

)
where P (z) =

∏
g∈G(z − g). (5.12)

Then, G (x,Γ(z)) is a Goppa code of length n, degree t = t0p
λ which admits an automorphism

group of size pλ. In both case, the automorphism group is given by:

Aut(At(x,y)) = Aut(G (x,Γ(z))) ⊇
{
σ`

∣∣∣i ∈ {0, . . . , n− 1} 7→ i	p `, 0 6 ` 6 pλ − 1
}
,

where ⊕p is as in Definition 5.2.

Proof. Let us show that all the permutations σ`(i) = i 	 `, for `, 0 6 ` 6 pλ − 1 are code
permutations. We start by proving it for ` = pu, with u, 0 6 u 6 λ−1. For i, 0 6 i 6 t0p

λ−1,
let (i0, . . . , iλ−1) ∈ Fλp be such that i ≡

∑λ−1
j=0 ijp

j mod pλ. The representation (i′0, . . . , i
′
λ−1)

of (i	 pu) mod pλ in base p is deduced from the previous representation by

i′j = ij , if j 6= u,

i′u ≡ iu − 1 mod p , otherwise.

Hence, i	 pu and i only differ in their u-th digit. Since u is smaller than λ, we get:

b(i	 pu)/pλc = bi/pλc .

This yields immediatly
yσpu (i) = ỹbi/pλc = yi.

Moreover, thanks to Equation (5.10) we can write:

xi	pu = x̃b(i	pu)/pλc +

λ−1∑
j=0

i′jαj = x̃bi/pλc + αu +

λ−1∑
j=0

ijαj

= xi + αu. (5.13)

Now pick any ` in [0, . . . , pλ−1] and decompose it in base p: ` =
∑λ−1

j=0 `jp
j . A quick induction

on Equation (5.13) shows that for all i, 0 6 i 6 t0p
λ − 1:

xi	` = xi +
∑λ−1

j=0 `jαj
= xi + g`

where g` =
∑λ−1

j=0 `jαj ∈ G. Recall that G is the group of all the Fp linear combinations of
the αi’s.
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This proves that xσ` ,x,yσ` and y satisfy the relations of Case 3 of Theorem 5.6 (with
1/λ1 = g`) which are particular case of Dür’s Theorem 5.4. Therefore σ` ∈ GRSt(x,y) and a
fortiori σ` ∈ At(x,y) for all 0 6 ` 6 pλ − 1. Hence, At(x,y) admits an automorphism group
of cardinality at least pλ.

Concerning the Goppa polynomial of (5.12), for all ` ∈ [0, . . . , pλ−1], and g` ∈ G we have

Γ(z + g`) = γ

∏
g∈G

(z + g` − g)

 = γ

∏
g∈G

(z − g)

 = Γ(z).

This is due to the fact that G is a group. As a consequence, the multipliers associated to
G (x,Γ(z)) satisfy for all 0 6 ` 6 pλ − 1:

yσ`(i) =
1

Γ(xσ`(i))
=

1

Γ(xi + g`)
=

1

Γ(xi)
= yi.

The conditions of Case 3 of Theorem 5.6 are satisfied for all σ` with 0 6 ` 6 pλ − 1.

Remark 5.11. An example of resolution of (5.10) is in [MB09, Algorithm 1] and [BLM11,
Algorithm 3] (by setting αi = h−1

ai + ω with the notations of [BLM11]). However, those
consider only polynomials γ(z) of degree t0 = 1. Thus, we can obtain from Theorem 5.10
more codes than with the constructions provided in [MB09, BLM11].

An Example of QM Goppa code. We present a detailed example of how to use Theorem
5.10 to build a Goppa code with automorphism group (Z/2Z)2.

Example 5.12. We work in F25 = F2[ω]
(ω5+ω2+1)

. Let us start by considering a very simple

Goppa code of length n0 = 7 and order t0 = 1. The code is defined by its Goppa polynomial
Γ0(z) = z + ω10 and its support x̃(0), from which its multipliers ỹ(0) are deduced:

x̃(0) = (0, ω26, ω8, ω14, ω16, ω11, ω27)

ỹ(0) = (ω21, ω12, ω18, ω11, ω25, ω3, ω22).

We construct the code C0 = At0(x̃(0), ỹ(0)). Its generator matrix G(0) is

G(0) =

(
1 1 0 1 1 1 0
0 0 1 1 1 1 1

)
.

First symmetry. To introduce a first symmetry, we build from x̃(0) a support x̃(1) satisfy-

ing (5.10) (with λ = 1). To do so, we pick x̃
(1)
2i = x̃

(0)
i and apply x̃

(1)
i	1 = x̃

(1)
i +α1 with α1 = 1.

This gives x̃(1) = (0, 1, ω26, ω28, ω8, ω20, ω14, ω13, ω16, ω9, ω11,
ω19, ω27, ω6). We pick a Goppa polynomial such that the multipliers are constant over each
block of size t1 = 2: Γ1(z) = z(z + α1) + ω3 = z2 + z + ω3. The corresponding multipli-
ers are: ỹ(1) = (ω28, ω28, ω20, ω20, ω7, ω7, ω13, ω13, ω21, ω21, ω22, ω22, ω11, ω11). Then, the code
C1 = At1(x̃(1), ỹ(1)) = G (x̃(1),Γ1(z)) admits as generator matrix:

G(1) =


1 0 0 0 0 0 0 1 0 1 0 1 1 0
0 1 0 0 0 0 1 0 1 0 1 0 0 1
0 0 1 0 1 0 0 0 0 1 1 1 1 1
0 0 0 1 0 1 0 0 1 0 1 1 1 1

 .

In each square block, the second row deduces from the first one by the relation g1,j = g0,j	1.
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Second symmetry. We build a support x̃(2) satisfying x̃
(2)
i	1 = x̃

(2)
i + α0 with α0 = ω17.

From the first symmetry it inherits the relation x̃
(2)
i	2 = x̃

(2)
i + α1. This yields

x̃(2) = (0, ω17, 1, ω30, ω26, ω2, ω28, ω5, ω8, ω24, ω20, ω15, ω14, ω12, ω13, ω23, ω16, ω3, ω9, ω29, ω11, ω7,
ω19, ω22, ω27, ω21, ω6, ω25)
We pick a Goppa polynomial such that the multipliers are constant over each block of size
t2 = 4: Γ2(z) = z(z + α1)(z + α0)(z + α0 + α1) + ω2 = z4 + ω9z2 + ω16z + ω2. The corre-
sponding multipliers are: ỹ(2) = (ω29, ω29, ω29, ω29, ω3, ω3, ω3, ω3, 1, 1, 1, 1, ω26, ω26, ω26, ω26,
ω14, ω14, ω14, ω14, ω, ω, ω, ω, ω5, ω5, ω5, ω5).
Then, the code C2 = At2(x̃(2), ỹ(2)) = G (x̃,(2) ,Γ2(z)) admits as generator matrix G(2):

G(2) =

1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1

0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 1

0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 1 1

0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1

0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 1 0 1 0 1

0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1 0 1 0

0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1

0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 0 1 0




Note that each square block deduces from its first row thanks to the relation g4i0+i,j =

g4i0,i	j for 0 6 i0 6 1, 0 6 i 6 t2 − 1, 0 6 j 6 n2 − 1.

5.4 The Folded Code

Alternant codes and Goppa codes in particular with a certain non-trivial automorphism
group (as considered in Section 5.3) meet a very peculiar property. Namely it is possible to
derive a new alternant (or a Goppa code) with smaller parameters by simply summing up the
coordinates. To define this new code more precisely, we introduce the following operator.

Definition 5.13 (Folded code). Let C be a code and σ ∈ Aut(C ) of order `. For each orbit
of σ we choose one representative (for instance the smallest one). Let i0, i1, . . . , is−1 be the
set of these representatives. The folded code of C with respect to σ, denoted by C σ, is a code
of length s which is given by the set of words cσ =

(∑`−1
u=0 cσu(ij)

)
06j6s−1

, where c ranges

over C .

Remark 5.14. This folded code is related to constructions which were considered in the
framework of decoding codes with non-trivial automorphism group [Leg11, Leg12]. We use it
for a different purpose here.

Under mild assumptions, it can be shown that the dimension of the folded code gets
reduced by the order of σ. More precisely:

Proposition 5.15. Let C be a [n, k] code of and σ ∈ Aut(C ) of order `. Let G be a generator
matrix with rows {g0, . . . ,gk−1}. Assume that {g0, . . . ,gk−1} is the union of orbits of size `
under the action of σ defined by gi 7→ gσi .

Then, the dimension of C σ is equal to k
` .

Proof. This follows from the fact that C σ is generated by the set of g̃ij =
∑`−1

u=0 gσ
u

ij
where

the gi’s are k/` representatives of each orbit of σ acting on {g0, . . . ,gk−1}. The g̃ij ’s are
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independent. Indeed, since for λi0 , . . . , λik/`−1
∈ Fq,∑

06j6k/`−1

λij g̃ij =
∑

06j6k/`−1
06u6`−1

λijg
σu

ij ,

any non-trivial vanishing linear combination of the g̃ij immediately yields a non-trivial van-
ishing linear combination of the gi’s.

Remark 5.16. A generator matrix of this form is precisely what is achieved by all the
constructions of monoidic alternant/Goppa/Srivastava codes proposed in [BCGO09, MB09,
BCMN10, BLM11, Per12a].

5.5 Folding QC and QM GRS Codes

If we consider the monoidic alternant or Goppa codes constructed in [BCGO09, MB09,
BLM11, BCMN10] they have typically length of the form n = n0`, degree of the form r = r0`
and dimension of the form k = n − rm = `(n0 − r0m) where m is the extension degree of
the alternant/Goppa code and ` is the order of the affine-induced automorphism of the code.
The automorphism group of these codes satisfies the assumptions of Proposition 5.15 and
therefore the folded code has length n0 and dimension n0− r0m. We introduce and study the
so-called affine-invariant polynomials that appear when folding QC and QM alternant codes
with symmetries.

5.5.1 Affine-Invariant Polynomials

Let At(x,y) be an alternant code with a non-trivial affine-induced permutation σ (Propo-
sition 5.7). As in Definition 1.19, we set for 0 6 i 6 n− 1

y′i =
1

yi

1∏
06j<n
j 6=i

(xj − xi)
,

so that At(x,y) is the subfield subcode of GRSn−t(x,y
′). As σ is affine-induced, it is also an

automorphism of GRSn−t−1(x,y′), and we know that there exist a support u and multipliers
v satisfying relations of type (5.4) and (5.5) and such that GRSn−t(x,y

′) = GRSn−t(u,v).
The explicit form of the coordinates of m = (m0, . . . ,mn−1) ∈ At(x,y) = GRSn−t(u,v)|Fq

is given by
m = (v0Q(u0), . . . , vn−1Q(un−1))

with Q ∈ Fqm [z]6n−t−1 such that ∀0 6 i 6 n− 1, viQ(ui) ∈ Fq.
Let ` be the order of σ. A codeword m′ = (m′i0 , . . . ,m

′
in/`−1

) ∈ At(x,y)σ is as follows

m′ij = vijQ(uij ) + vσ(ij)Q(uσ(ij)) · · ·+ vσ`−1(ij)Q(uσ`−1(ij)).

For instance in the QC case, there exist a, λ ∈ F∗qm such that u and v satisfy relations
(5.6) and (5.7). We have then

m′ij = vijQ(uij ) + vσ(ij)Q(uσ(ij)) · · ·+ vσ`−1(ij)Q(uσ`−1(ij))

= vijQ(uij ) + λvijQ(auij ) + · · ·+ λ`−1vijQ(a`−1uij )
= vij (Q(uij ) + λQ(auij ) + · · ·+ λ`−1Q(a`−1uij ))
= vijP (uij ),
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with P (z) = Q(z) + λQ(az) + · · ·+ λ`−1Q(a`−1z).
For a quasi-monoidic alternant code, the support and multipliers satisfy relations (5.8)

and (5.9). The folded code’s coordinates are

m′ij = viQ(uij ) + vσ(ij)Q(uσ(ij)) · · ·+ vσ`−1(ij)Q(uσ`−1(ij))

= vij (Q(uij ) +Q(uij + b) + · · ·+Q(uij + (p− 1)b))
= vijP (uij ),

with P (z) = Q(z) +Q(z + b) + · · ·+Q(z + (p− 1)b).
In both case, the form vijP (uij ) of the folded code’s coordinates shows that these words

are elements of an alternant code. To understand more in details their structure and show
that they are indeed alternant codes, we need to study those sums of polynomials (P in the
examples above). We gather them under the following form:

P (z) =
`−1∑
i=0

λiQ(φi(z)) (5.14)

where Q is a polynomial, φ an affine map of order ` and λ an `-th root of unity.
We show here a fundamental result on the form taken by those polynomials. First, such

polynomial are said to be affine-invariant, that is:

P (φ(z)) =

`−1∑
i=0

λiQ(φi+1(z)) =
1

λ

`−1∑
i=0

λi+1Q(φi+1(z))

=
1

λ

(
`−1∑
i=1

λiQ(φi(z)) + λ`Q(φ`(z))

)
=

1

λ

`−1∑
i=0

λiQ(φi(z))

=
1

λ
P (z).

So, there exists an `-th root of unity α in Fqm which is such that P satisfies the central
equation:

P (az + b) = αP (z). (5.15)

Satisfying Equation (5.15) is not an insignificant property. For instance, it is well known
that, working in a field F of characteristic different from 2, a polynomial P satisfies for any
z, P (z) = P (−z), if and only if there exist polynomials Q and R such that

P (z) = R(z2) = Q(z) +Q(−z).

This means that, for any Q ∈ F[z] the sum Q(z) +Q(φ(z)) with φ(z) = −z can be expressed
as the composition of a polynomial R in smaller degree (as deg(R) 6 bdeg(Q)/2c) and the
polynomial z 7→ z2.

Propositions 5.17 and 5.18 generalize this result to the polynomials satisfying Equation
(5.15) for any affine map φ : z 7→ az + b. First, Proposition 5.17 characterizes all solutions of
the polynomial Equation (5.15). The proof of this proposition is technical and is reported to
the end of this chapter (Paragraph 5.7.1).

Proposition 5.17. Let Fqm be a field of finite characteristic p and let a, b, α be elements of
Fqm such that (i) a 6= 0 and (ii) b 6= 0 when a = 1. Let φ be the affine map φ : z → az + b of
order `. All the polynomials P (z) ∈ Fqm [z] satisfying P (az+ b) = αP (z) with α and `-root of
unity have the following form
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— If a = 1 then necessarily α = 1, ` = p and there exists R ∈ Fqm [z] such that

P (z) = R(zp − bp−1z),

and P (z) is of degree a multiple of p.
— If a 6= 1, let z0 be the unique fixed point of φ. Then, there exists d a unique integer in

the range [0, . . . , `− 1] such that α = ad and there exists R ∈ Fqm [z] such that

P (z) = (z − z0)dR
(

(z − z0)`
)
,

and P (z) is of degree equal to d modulo `.

Conversely, and this is crucial in our context, it turns out that all these solutions are sums
of polynomials as in (5.14).

Proposition 5.18. Let Fqm be a finite field of characteristic p. Let a and b be as in Propo-
sition 5.17, φ be the affine map z 7→ az + b, λ an element of Fqm with λ = 1 if a = 1, and
λ = ad for some d in [0, . . . , `− 1] if a 6= 1 of order `. We define S by

S : Fqm [z] → Fqm [z]

Q(z) 7→
`−1∑
i=0

λiQ(φi(z)).

Then, it holds that:
— If a = 1, we have for every nonnegative integer t:

S (Fqm [z]6t) =

{
R(zp − bp−1z) | degR 6

⌊
t− p+ 1

p

⌋}
. (5.16)

— If a 6= 1, let z0 be the unique fixed point of φ, and we have:

S (Fqm [z]6t) =

{
(z − z0)`−dR((z − z0)`) | degR 6

⌊
t− `+ d

`

⌋}
. (5.17)

The proof can be found in Section 5.7, Paragraph 5.7.2. Let’s use these results to study
the structure of the folded codes of QC and QM alternant codes.

5.5.2 Folding QC and QM GRS Codes

We start by using Propositions 5.17 and 5.18 to describe precisely the structure of the
folded of a GRS code with non-trivial automorphism. Consider a QC or QM GRS code C
over Fq of length n. Let σ ∈ Aut(C ) be induced by the affine map φ : z → az + b where
a, b ∈ Fqm are such that a 6= 0 and b 6= 0 when a = 1. There exist a support x ∈ Fnqm ,
multiplier y ∈ Fnqm and λ ∈ Fqm an `-th root of unity such that, for all i ∈ {0, 1, . . . , n − 1},
xσ(i) = φ(xi), yσ(i) = λyi and C = GRSk(x,y). We show that the folded code of C is a GRS
code and give an explicit link between its support and multipliers and x,y.

Theorem 5.19. We use the notations just introduced. Let ` be the order of σ. We denote
by d the integer in {0, 1, . . . , ` − 1} verifying λ = ad. We assume that the support does not
contain the fixed point of φ, then the action of σ on {0, 1, . . . , n − 1} has n

` orbits, each of
them being of size `. Choose a representative i0, i1, . . . , in/`−1 in each of these orbits.
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Then, there exists x′,y′ ∈ Fn/`qm and a integer r such that

C σ = (GRSk(x,y))σ = GRSr(x
′,y′)

with:
— when a = 1, then r =

⌊
k−`
`

⌋
+ 1 and for all j ∈ {0, . . . , n/`− 1}:

x′j = x`ij − b
`−1xij and y′j = yij ,

— when a 6= 1, let us denote by z0 the unique fixed point in Fqm of φ. Then r =⌊
k−`+d−1

`

⌋
+ 1 and for all j ∈ {0, . . . , n/`− 1}:

x′j = (xij − z0)` and y′j = yij (xij − z0)`−d.

Proof. We divide the proof in two parts.

The case a = 1. We recall that, from Paragraph 5.3.2, ` = p and that is constant over each
orbit {i, σ(i), . . . , σ`−1(i)}. From Definition 1.17,

C =
{(
yiQ(xi)

)
06i<n | Q ∈ Fqm [z], degQ 6 k − 1

}
.

The folded code of C can now be described as in the examples of Paragraph 5.5.1:

C σ =


(
yij

`−1∑
s=0

Q
(
φs(xij )

))n/`−1

j=0

| Q ∈ Fqm [z], degQ 6 k − 1


where xi0 , xi1 , . . . , xn/`−1 are representatives of each of the n/` orbits {u, σ(u), . . . , σ`−1(u)}
(they have all the same size `).

By using Proposition 5.18, we obtain:

C σ =

{(
yijR

(
xpij − b

p−1xij )
))n/`−1

j=0
| R ∈ Fqm [z],degR 6

⌊
k − 1− p

p

⌋}
.

In other words, from Definition 1.17, it holds that

C σ = GRSr(x
′,y′)

with r =
⌊
k−1−p
p

⌋
+ 1 and for any j ∈ {0, 1, . . . , n/`− 1}, x′j = xpij − b

p−1xij and y′j = yij .

The case a 6= 1. The difference with the previous situation lies in the fact that now the
yj ’s are not necessarily constant over an orbit. As previously, we consider representatives
xi0 , xi1 , . . . , xn/`−1 of the n/` orbits {u, σ(u), . . . , σ`−1(u)} (they have all the same size `
because the support x does not contain the fixed point of φ). We obtain that the folded code
of C can now be described as follows.

C σ =


(
`−1∑
s=0

yijλ
sP
(
φs(xij )

))n/`−1

j=0

| P ∈ Fqm [z], degP 6 k − 1

 .
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We necessarily have λ` = 1. Since a is a primitive `-root of unity, there exists an integer
d in {0, . . . , `− 1} such that λ = ad. We introduce the fixed point z0 of φ, and we can apply
Proposition 5.18, we deduce that:

C σ =

{(
yij (xij − z0)`−dR((xij − z0)`)

)n/`−1

j=0
| R ∈ Fqm [z],degR 6

⌊
k − 1− `+ d

`

⌋}
.

Finally, by Lemma 1.21 again we see that

C σ = GRSr(x
′,y′)

where r =
⌊
k−1−`+d

`

⌋
+1, x′j = (xij−z0)` and y′j = yij (xij−z0)`−d for any j ∈ {0, 1, . . . , n/`−

1}.

5.6 Folding QC and QM Alternant and Goppa codes

Thanks to Theorem 5.19, we prove easily that the folded code of an alternant code is
included in an alternant code. Indeed, consider an alternant code C = At(x,y) defined over
Fq with affine-induced automorphism σ of order ` associated to the affine map φ acting on
the support. It is the subfield subcode of GRSn−t(x, z) with z as in Definition 1.19, that is

At(x,y) = GRSn−t(x, z) ∩ (Fq)n.

The codewords of C can be folded as codewords of GRSn−t(x, z), since z satisfies for all
0 6 i 6 n− 1:

zσ(i) =
1

yσ(i)

1∏
06j<n
j 6=σ(i)

(xj − xσ(i))
=

1

yσ(i)

1∏
06j<n
σ(j)6=σ(i)

(xσ(j) − xσ(i))

=
1

λyi

1∏
06j<n
j 6=i

(φ(xj)− φ(xi))

=
1

λan−1yi

1∏
06j<n
j 6=i

(xj − xi)

= λ′zi.

and λ′d = 1. The coordinates of the folded code remain in Fq, and we obtain:

At(x,y)σ ⊂ GRSr(x̃, ỹ) ∩ (Fq)n/`.

with r, x̃, ỹ as in Theorem 5.19.
In general, equality does not hold. We give an example of alternant code whose folded

code is not the whole alternant code GRSr(x̃, ỹ) ∩ (Fq)n/`.

Example 5.20. We pick q = 3 and m = 2. F32 is built as F3[ω]/(ω2− (ω+ 1)). We pick the
support and multipliers

x = (1, 2, ω7, ω3, ω5, ω, ω6, ω2),
y = (ω5, ω5, ω5, ω5, ω7, ω7, ω7, ω7),
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At(x,y)

Galt =

(
1 2 0 0 0 0 2 1
0 0 1 2 2 1 0 0

) GRSn−t(x,y
′) with

y′ = (ω7, ω3, ω6, ω2, ω2, ω6, ω3, ω7).

subfield
subcode of

GRSr(x̃, ỹ) with

x̃ = (1, ω6, ω2, 2),
ỹ = (ω7, ω5, ω7, ω).

GRSr(x̃, ỹ) ∩ (Fq)n/2(
1 2 0 0
0 0 1 2

)
.

Zero code(
0 0 0 0

)

Folding

Subfield subcode

Folding

strictly included in

Figure 5.4 – Folded code and dual code of an alternant code.

so that x satisfies xi⊕21 = φ(xi) for 0 6 i 6 7 with φ : z 7→ −z and yi⊕21 = yi. So the codes
At(x,y),GRSt(x,y) (and its dual GRSn−t(x,y

′)) admit the permutation i 7→ i⊕2 1 in their
automorphism groups. With t = 3, we have when the following different folded codes.

Clearly, the folded code of A3(x,y) is the zero code and it is strictly included in GRSr(x̃, ỹ)∩
(Fq)n/2.

However, we give in Theorem 5.21 an equality on the folded code of the dual code of an
alternant code.

Theorem 5.21. Consider a QC or QM alternant code C over Fq of length n. Let σ,`,φ,a,b,λ,d,x,y
be as in Theorem 5.19. In such a case, the action of σ on {0, 1, . . . , n− 1} has n

` orbits, each
of them being of size `. Choose a representative i0, i1, . . . , in/`−1 in each of these orbits.

There exists x′,y′ ∈ Fn/`qm and a integer r such that

(At(x,y)⊥)
σ

=
(
Ar(x′,y′)

)⊥
with:

— when a = 1 then r =
⌊
t−`
`

⌋
+ 1 and for all j ∈ {0, . . . , n/`− 1}:

x′j = x`ij − b
`−1xij and y′j = yij ,

— and when a 6= 1 then r =
⌊
t−`+d−1

`

⌋
+ 1 and for all j ∈ {0, . . . , n/`− 1}:

x′j = (xij − z0)` and y′j = yij (xij − z0)`−d.

Proof. The proof relies on Lemma 1.21, which gives the following convenient description of
the dual of an alternant code:

At(x,y)⊥ = Trq

(
GRSt(x,y)

)
.
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The advantage of the trace operator is that is commutes with the folding. For any code-
word m of a linear code C ⊂ (Fqm)n with automorphism σ and orbits of size `, the codes

Trq
(
C σ
)

and Trq (C )σ are the set of codewords of coordinates.∑
06v6m−1

∑
06u6`−1

mqv

σu(ij)
=

∑
06u6`−1

∑
06v6m−1

mqv

σu(ij)
.

Therefore, folding At(x,y)⊥ yields

At(x,y)⊥
σ

= Trq

(
GRSt(x,y)

)σ
= Trq

(
(GRSt(x,y))σ

)
= Trq (GRSr(x

′,y′)) (Theorem 5.19)
= Ar(x′,y′)⊥ (Lemma 1.21 again),

with r,x′,y′ deduced thanks to Theorem 5.19 and as stated Theorem 5.21.

Finally, and of particular interest for our cryptanalytic purpose, which are detailed in
Chapter 6, we prove that the folding preserves also the Goppa structure of a code. More
precisely, folding the dual of a Goppa code with an affine-induced automorphism group yields
the dual of a Goppa code.

Theorem 5.22. Consider a Goppa code C = G (x,Γ(z)) of length n associated to the support
x = (xi)06i<n ∈ Fnqm which has an affine induced automorphism group. C is in particular an
alternant code. There exist a support x ∈ Fnqm, multiplier y ∈ Fnqm and λ ∈ Fqm an `-th root
of unity such that, for all i ∈ {0, 1, . . . , n− 1}, xσ(i) = φ(xi), yσ(i) = λyi.

We assume that a 6= 0, and b 6= 0 if a = 1, and that the fixed point z0 of φ does not belong
to {x0, . . . , xn−1}. Let ` be the order of the permutation on x induced by φ. We have:

1. ` divides n and we set s = n/`. There are exactly s orbits for the action of σ on the
code positions. We denote by i0, i1, . . . , in/`−1 a set of representatives for each orbit;

2. (C⊥)
σ

is the dual of the Goppa code G (x′, γ(z)) for γ(z) ∈ Fqm [z] with:

x′j =

{
x`ij − b

`−1xij when a = 1,

(xij − z0)` otherwise,

Γ(z) =

{
γ(z` − b`−1z) when a = 1,
(z − z0)`−dγ

(
(z − z0)`

)
otherwise

where d, in the last case, is the unique integer in {0, . . . , `− 1} such that λ = ad.

Proof. We distinguish between a = 1 and a 6= 1. In both cases, notice that we can apply
Theorem 5.21 to C which is an alternant codeAt(x,y) where t is the degree of Γ and yi = 1

Γ(xi)
.

In all cases, folding the dual of C gives the dual of an alternant code of the form At′(x′,y′) for
some integer t′ and some x′,y′ in Fsqm . Now we have to prove that there exists a polynomial

γ(z) ∈ Fqm such that y′i = 1
γ(x′i)

. First, we show that the Goppa polynomial Γ(z) satisfies the

identity Γ(az + b) = λ−1Γ(z). This is due to the fact that, for all 0 6 i 6 n− 1, yσ(i) = λyi,
that is

Γ(axi + b) = λ−1Γ(xi)

and Γ(z) has degree t < n. Therefore, we apply Proposition 5.17. To do so, we separate the
cases a = 1 and a 6= 1.



100CHAPTER 5. ALTERNANT CODESWITH NON-TRIVIAL PERMUTATIONGROUPS

Case a = 1. ` is equal to the characteristic p of the field Fqm , α is necessarily equal to
1, Γ(z) is of degree a multiple of p and is of the form Γ(z) = γ(zp − bp−1z). Notice thanks to
Proposition 5.17 that y satisfies:

yσ(i) =
1

Γ(xi + b)
=

1

Γ(xi)
= yi.

Theorem 5.21 gives that y′j = yij and therefore:

y′j = yij =
1

Γ(xij )
=

1

γ(xpij − b
p−1xij )

=
1

γ(x′j)
.

This implies that At′(x′,y′) is nothing but the Goppa code G (x′, γ(z)).

Case a 6= 1. Γ(z) satisfies Γ(az + b) = αΓ(z) with α = a`−d, so Γ(z) is of the form
Γ(z) = (z − z0)dγ

(
(z − z0)`−d

)
. We use Theorem 5.21 and obtain:

y′j = yij (xij − z0)`−d =
(xij − z0)`−d

Γ(xij )
=

(xij − z0)`−d

(xij − z0)`−dγ
(
(xij − z0)`

) =
1

γ(x′j)
.

This implies again that At′(x′,y′) is nothing but the Goppa code G (x′, γ(z)).



5.7. TECHNICAL RESULTS 101

5.7 Technical Results

We prove the results of Subsection 5.5.1 on affine-invariant polynomials. In the rest of

this section, we denote by Iφ,α6t [z] ⊆ Fqm [z]6t be the set of polynomials of degree 6 t which

satisfy (5.15), i.e. such that P
(
φ(z)

)
= αP (z). When α = 1 we simply write Iφ6t[z]. Finally,

when t < 0 we adopt the convention that I6t[z] = Iφ,α6t [z] = {0}.

5.7.1 Proof of Proposition 5.17

We first characterize the solutions to Equation (5.15) in the case where α = 1.

Lemma 5.23. Let φ(z) = az + b be an affine map of finite order ` (with ` > 1) defined over
a field Fqm. We have

— if a = 1 and Fqm is of characteristic ` then Iφ6t[z] =
{
R(z` − b`−1z) | R ∈ Fqm [z],degR 6 t/`

}
.

— if a 6= 1 then Iφ6t[z] =
{
R((z − z0)`) | R ∈ Fqm [z],degR 6 t/`

}
with z0 being the unique

fixed point of φ.

In other words, the ring of polynomials invariant by an affine map is generated (as a
ring) by a single element and the lemma provides this generator explicitly. This result follows
from classical results in invariant theory and we derive it from scratch here for completeness.
Also, we treat the case where the order ` of the group generated by φ is divisible by the
characteristic of Fqm . This is precisely what happens when a = 1, and that is commonly
avoided in invariant theory (see for instance [Sha94, Appendix,§4,Prop.1]).

Proof of Lemma 5.23. For a = 1, let us first prove
{
R(z` − b`−1z) | degR 6 t/`

}
⊆ Iφ6t[z].

We consider a polynomial P (z) = R(z` − b`−1z) for R ∈ Fqm [z] of degree 6 t/`, we have:

P (z + b) = R
(

(z + b)` − b`−1(z + b)
)

= R
(
z` + b` − b`−1z − b`

)
= R

(
z` − b`−1z

)
= P (z).

We just used the fact that ` is the characteristic of Fqm and therefore (z + b)` = z` + b`.
In the case a 6= 1, remark that ` is also the order of a. The reason is that, for all u > 0,

φu(z) = au(z − z0) + z0, where z0 ∈ Fqm is such that φ(z0) = z0. Then, we consider a
polynomial P (z) = R

(
(z − z0)`

)
for R ∈ Fqm [z] of degree 6 t/` we have:

P (az + b) = R
(

(az + b− z0)`
)

= R
(

(az + b− az0 − b)`
)

= R
(
a`(z − z0)`

)
= R

(
(z − z0)`

)
= P (z).

Let us prove now the reverse inclusion. Let P be a polynomial which is invariant by φ.
Consider now a non constant polynomial A of smallest degree which is invariant by φ. Such a
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polynomial necessarily exists since the set of polynomials which are non constant and which
are invariant by φ is non empty. In contains z` − b`−1z in the case a = 1 and (z − z0)` in the
case a 6= 1. Perform the division of P by A. We can write

P (z) = A(z)P1(z) + P2(z) (5.18)

with degP2 < degA. Observe now that

P (az + b) = A(az + b)P1(az + b) + P2(az + b). (5.19)

It holds that P (az + b) = P (z) and A(az + b) = A(z). We deduce by subtracting the second
equation to the first one, that we have

A(z) (P1(az + b)− P1(z)) = P2(z)− P2(az + b).

Since the degree of S(z) = P2(z)−P2(az+b) is less than the degree of A, this can only happen
if P1(az+ b)−P1(z) = 0, e.g. P1 is invariant under φ and therefore also P2. Since A is a non
constant polynomial of smallest degree which is invariant under φ and since degP2 < degA,
this implies that P2 is constant. By carrying on this process (i.e. dividing P1 by A) we
eventually obtain that P is a polynomial in A.

We finish the proof by proving that A can be chosen to be A(z) = z` − b`−1z in the case
a = 1 and A(z) = (z − z0)` otherwise. Let us first prove this for a = 1. We can add any
constant to A, it is still invariant under φ. We may therefore assume that A(0) = 0. We can
also assume that A is monic. Let us observe now that 0 = A(0) = A(b) = A(2b) = . . . =
A
(
(` − 1)b

)
by the invariance of A under z 7→ z + b. This implies that A is a multiple of

z(z− b) · · · (z− b(`− 1)). A is therefore of degree greater than or equal to `. The polynomial
z` − b`−1z is of degree `, is invariant under φ and is a multiple of z(z − b) . . . (z − b(` − 1)).
Therefore A(z) = z` − b`−1z.

Consider now the case a 6= 1. Without loss of generality (by adding a suitable constant
as in the case a = 0) we may assume that A(c) = 0, where c is some element of Fqm such
that the orbit of c under φ is of size `. By the invariance of A under φ this implies that
0 = A(c) = A(φ(c)) = · · · = A

(
φ`−1(c)

)
. This implies that A(z) is divisible by (z − c)(z −

φ(c)) · · ·
(
z − φ`−1(c)

)
. Therefore A is of degree ` at least. Since (z − z0)` is of degree ` and

is invariant by φ we can choose A(z) = (z − z0)`.

This proves Proposition 5.17 when α = 1. Let us prove now this proposition in general.

Proof of Proposition 5.17. Denote by φ the affine map z 7→ az + b. First of all, let us notice
that if there exists some polynomial P (z) satisfying the equation P (φ(z)) = αP (z) for some
α, then necessarily such an α satisfies α` = 1. This follows at once from the fact that we have
P (z) = P

(
φ`(z)

)
= α`P (z). This also implies that the order of α divides `. There are now

two cases to consider.
Case a = 1: then the order ` of φ is necessarily equal to the characteristic of Fqm and

there is no element, apart from 1, whose order divides `. In this case, Lemma 5.23 implies
Proposition 5.17.

Case a 6= 1: in such a case the order of a is equal to ` and a is a primitive `-th root
of unity. Since α is an `-th root of unity, there exists in this case an integer d in the range
[0, . . . , `− 1] such that α = ad. Consider now a polynomial which is such that

P (φ(z)) = αP (z). (5.20)
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If α = 1, then we can use directly Lemma 5.23 and we are done. Otherwise, observe that
from the fact that φ(z0) = z0 we deduce that

P (z0) = P (φ(z0)) = αP (z0).

This implies that P (z0) = 0. Define now a polynomial P1 by P (z) = (z − z0)P1(z). Observe
now that on the one hand

P (az + b) = (az + b− z0)P1(az + b) = a(z − z0)P1(az + b)

and that on the other hand

P (az + b) = αP (z) = ad(z − z0)P1(z).

Putting both equations together, we obtain

P1(az + b) = ad−1P1(z)

If d 6= 1 we can carry on this process on P1, deduce from the previous equation that P1(z0) = 0
and deduce by induction on d that P (z) has a zero of order at least d at z0 and that the

polynomial Pd(z) defined by Pd(z) = P (z)
(z−z0)d

satisfies the equation

Pd(az + b) = Pd(z).

We apply Lemma 5.23 to Pd and derive from it that P should be of the form

P (z) = (z − z0)dQ
(

(z − z0)`
)
,

where Q is any polynomial of degree degP−d
` . Conversely, any polynomial P of this form is

readily seen to verify (5.20).

5.7.2 Proof of Proposition 5.18

To prove Proposition 5.18, we need the following lemma.

Lemma 5.24. 1k+2k+ · · ·+(p−1)k ≡ 0 (mod p) for every integer k which is not a multiple
of p− 1 whereas 1k + 2k + · · ·+ (p− 1)k ≡ −1 (mod p) otherwise.

Proof. Recall that the multiplicative group F×p is generated by a single element α which is of
order p− 1. The mapping

φk : F×p → F×p
x 7→ xk

maps therefore F×p to a subgroup of F×p different from the trivial subgroup consisting only of
1 if and only if k is not a multiple of p− 1. In other words, if k is a multiple of p− 1, we have
sk ≡ 1 (mod p) for any s ∈ {1, . . . , p−1}. This implies that 1k+2k+· · ·+(p−1)k ≡ p−1 ≡ −1
(mod p). Assume now that k is not a multiple of p− 1. Thus φk(F×p ) is a subgroup of F×p of

size a divisor ` > 1 of p− 1. Since F×p is generated by α, φk(F×p ) is generated by β = αk and
we have

1k + 2k + · · ·+ (p− 1)k ≡ p− 1

`

(
1 + β + · · ·+ β`−1

)
(mod p)

≡ (p− 1)(β` − 1)

`(β − 1)
(mod p)

≡ 0 (mod p)
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Let us prove now Proposition 5.18 when a = 1.

Proof. Let us first compute S(zt), where t is some nonnegative integer.

S(zt) =

p−1∑
s=0

(z + sb)t = zt +

p−1∑
s=1

t∑
i=0

(
t

i

)
zt−i(sb)i =

p−1∑
s=1

t∑
i=1

(
t

i

)
zt−i(sb)i

=
t∑
i=1

bi
(
t

i

)(p−1∑
s=1

si

)
zt−i =

t∑
i=p−1

bi
(
t

i

)(p−1∑
s=1

si

)
zt−i (5.21)

where the last equation follows by using Lemma 5.24 which allows us to write
∑p−1

s=1 s
i = 0

when i is in the range [1..p− 2] and when the sum is performed over a field of characteristic
p. This implies immediately that S(Fqm [z]6t) ⊆ Fqm [z]6t−p+1. Since S(Q(z)) is obviously
invariant by φ for any polynomial Q(z) ∈ Fqm [z], we know from Lemma 5.23 that it is of the
form S(Q(z)) = R(zp − bp−1z) for some polynomial R in Fqm [z]. Its degree is therefore a
multiple of p. This implies that we actually obtain the refined inclusion

S(Fqm [z]6t) ⊆ I6
⌊
t−p+1
p

⌋
p
[z]. (5.22)

Equality is proven by dimension considerations. It follows from Lemma 5.23 that I6t[z] is a
vector space which is of dimension bt/pc + 1. The calculation (5.21) performed above also
shows that S(z(k+1)p−1) is a polynomial of degree kp (since the coefficient of zkp which is

equal to bp−1
(

(k+1)p−1
p−1

)∑p−1
s=1 s

p−1 by (5.21) can be shown to be different from 0 by using the

fact proven in Lemma 5.24 which says that 1p−1 + 2p−1 + · · · + (p − 1)p−1 ≡ −1 (mod p)).
This can be used to obtain that

dimS(Fqm [z]6t) >

⌊
t− p+ 1

p

⌋
+ 1 = dim I

6
⌊
t−p+1
p

⌋
p
[z].

This together with (5.22) implies that

S(Fqm [z]6t) = I
6
⌊
t−p+1
p

⌋
p
[z],

which concludes the proof.

Now, we deal with the case a 6= 1. Let us calculate

S(zt) =
`−1∑
i=0

adi
(
ai(z − z0)

)t
,

= (z − z0)t
`−1∑
i=0

a(d+t)i.

This sum is equal to 0 as long as d+ t 6≡ 0 (mod `) and is equal to (` mod p) (z − z0)t when
d + t ≡ 0 (mod `). The polynomial S

(
P (z)

)
is therefore a polynomial of degree ` − d +⌊

degP−`+d
`

⌋
` of the form

S(P (z)) = (z − z0)`−d
bdegP−`+d` c∑

i=0

ai(z − z0)i` (5.23)

when degP > `− d and is equal to zero otherwise. We conclude the proof by noting that the

term
∑bdegP−`+d` c

i=0 ai(z − z0)i` is a polynomial which is invariant by φ by Lemma 5.23.



Chapter 6

Algebraic cryptanalysis of McEliece
schemes using QM Alternant codes

This chapter presents results from an article written with Jean-Charles Faugère, Ay-
oub Otmani, Ludovic Perret and Jean-Pierre Tillich : Structural Cryptanalysis of McEliece
Schemes with Compact Keys, accepted for publication at Designs, Codes and Cryptography,
([FOP+15]).

We present an algebraic cryptanalysis of code-based encryption and signature schemes
proposed recently in [MB09, BCMN10, BLM11]. The public codes used in those schemes all
belong to the class of alternant codes with symmetries described in Chapter 5. Compared to
standard alternant codes, those codes admit compact representations, so that the associated
public-key scheme has a reduced key size. With the notations of Definition 5.3, we say that
[MB09, BCMN10] quasi-dyadic (QD) codes, and [BLM11] quasi-monoidic (QM) codes.

The central idea of our cryptanalysis is to use iteratively the folding construction of Chap-
ter 5. Thanks to Theorem 5.21, we know that the folding reduces the code parameters but
preserves the secret elements, so that we can recover the secret key on the smallest possible
code obtained by successive foldings. For instance, we can reduce the key-recovery of a QD
Goppa code of length 8192 and dimension 4096 (parameters suggested in [MB09]) to the key-
recovery on a QD Goppa code of length 64 and dimension 32. This is formalized in Theorem
6.1 (Section 6.1).

In Section 6.2, we exploit this result to mount an attack on QD and QM codes. The
strategy is to perform the key-recovery on the folded code. We use for this the algebraic
attacks of Chapter 4, which profits a lot from the folding method, since it reduces the amount
of unknowns to introduce. In [FOPT10a], the idea is to write the system AX,Y′ (as described
in Chapter 4) and simplify it (with Equations (5.10) and (5.11) of Theorem 5.10). With
our method, modelling the folded code requires fewer variables than the simplified system
AX,Y′ . For example, pick a code defined over F2 with m = 13, n = n0t with n0 = 511 and
t = 24 (these are good signature parameters). The simplified AX,Y′ of [FOPT10a] contains
525 variables, the system AX,Y′ obtained from the folded code contains 521 variables. This is
better, but we can do much better thanks to Chapter 4, where we described refined algebraic
modellings AX,Y′ , elimAX′,Y′ ,McEX,Y′ . . . according to the structure of the code (Table 4.1).
With those parameters, our system elimAX′,Y′ obtained from the folded code contains only 25
variables (the system elimAX′,Y′ describing the original code would contain 29). In Figure 6.1,
we summarize both methods. In practice, our method allows to break far more parameters.
Details on our experimental results can be found in Paragraph 6.2.3.

As final remark, we point out that the sizes of the systems that we obtain with our method,

105
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G =

(
· · · Mi · · ·

...

)
G a k × n matrix,

Mi a t× t matrix with t = pλ

Simplified AX,Y′

X n/t+ λ
Y (n− k)/t

Algebraic modelling
of [FOPT10a]

(
· · · mi · · ·

...

)
k/t× n/t matrix

Folding
(Theorem 6.1)

AX,Y′ elimAX′,Y′

X n/t (n− k)/t
Y (n− k)/t (n− k)/t

Algebraic modelling
of Chapter 4

Figure 6.1 – Comparison of the algebraic systems for a key-recovery of a [n, k, t]q QC/QM
code.

and the complexity of our attack, depend only on the reduced parameters n/t, k/t of the code
(where t = pλ is the block size in the public matrix). Consequently, the key-security is reduced
to that of a small alternant code with same key size and without symmetries. Therefore, the
folding construction questions the very use of QD and QM alternant codes for cryptography.
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6.1 Iterated Folded Code

Building a generator matrix of the folded code simply consists in summing the coordinates
of each row of a generator matrix of C over the orbits of σ. This can be done efficiently. We
point out that Theorem 5.21 applies on duals of alternant codes. In practice, folding the dual of
a code simply means that we fold a parity-check matrix of the code. We now apply Theorems
5.21 and 6.1 several times to prove that folding successively the dual of QM alternant or Goppa
codes according to all the generators σ1, σp . . . , σpλ−1 of the permutation group introduced in
Theorem 5.10 yields the dual of a QM Goppa codes with smaller parameters. The final
reduction factor is equal to the size of the automorphism group of the initial code.

Theorem 6.1. Let n = n0p
λ,x = (xi)06i<n, α0, . . . , αλ−1 ∈ Fqm, and Γ(z) of degree t0p

λ be as
in Theorem 5.10. The Goppa code G (x,Γ(z)) has a quasi-monoidic parity-check matrix H =
(hij)06i<t0pλ

06j<n

with monoidic blocks of size pλ. For u ∈ {0, . . . , λ}, let Hu = (huij) 06i<t0pλ−u

06j<n0pλ−u
be

the matrix defined by hui,j =
∑pu−1

`=0 hipu,jpu+`. It holds that Hu is a parity-check matrix of a

Goppa code G (xu,Γu(z)) for some xu ∈ Fn0pλ−u

qm , and Γu(z) a polynomial of degree t0p
λ−u.

Also, xu and Γu(z) satisfy the hypotheses of Theorem 5.10: xu satifies Equations (5.10) with
αu0 , . . . , α

u
λ−u−1 ∈ Fqm, and Γu(z) satisfies (5.12).

More explicitly, they are defined inductively by x0 = x, α0
j = αj for 0 6 j 6 λ − 1,

Γ0(z) = Γ(z), and

αu+1
j =

(
αuj
)p − (αu0)p−1 αuj , for 0 6 j 6 λ− u− 1,

xu+1
i =

(
xuip
)p − (αu0)p−1 xuip for 0 6 i 6 t0p

λ−u−1 − 1,

Γu(z) = Γu+1

(
zp − (αu0)p−1 z

)
.

So, if we view these Goppa codes as alternant codes, that is G (x,Γ(z)) = At0pλ(x,y) and
G (xu,Γu(z)) = At0pλ−u(xu,yu), then the multipliers yu are given by

yui = ypui for 0 6 i 6 t0p
λ−u − 1.

and yi is equal to ybi/pλcpλ for all i ∈ {0, . . . , n− 1}.

Proof. Let us prove by induction on u the following statements:
(i) the code with parity-check matrix Hu is a Goppa code G (xu,Γu(z)) where Γu(z) is a
polynomial which satisfies (5.12):

Γu(z) = Γu(z + αu0) = · · · = Γu(z + αuλ−u−1) (6.1)

for some αu0 , . . . , α
u
λ−u−1 in Fqm which are independent over Fp,

(ii) xu is obtained thanks to (5.10)

xui = xubi/pλ−ucpλ−u +

λ−1−u∑
j=0

ijα
u
j for 0 6 i 6 t0p

λ−u − 1, (6.2)

with (i0, . . . , iλ−u−1) ∈ Fλp being the representation of i mod pλ−u in base p, i.e. i ≡
∑λ−u−1

j=0 ijp
j mod

pλ−u.
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For u = 0 this holds by assumption on H and by using the way x was constructed, that
is from independent (over Fp) elements α0, . . . αλ−1 in Fp for which we have

xi = xbi/pλcpλ +
λ−1∑
j=0

ijαj ,

where (i0, . . . , iλ−1) ∈ Fλp is the representation of i mod pλ in base p.
Suppose now that u is an integer in the range [0..λ] and that Hu is a parity-check matrix

of a Goppa code G (xu,Γu(z)) for some xu ∈ Fn0pλ−u

qm where there exist αu0 , . . . , α
u
λ−u−1 in Fqm

which are independent over Fp and for which (6.1) and (6.2) hold.
It can also be viewed as the alternant code At0pλ−u(xu,yu) with yui = 1

Γu(xui ) . Thanks

to (6.2) of part (ii) of the induction hypothesis, we know by Theorem 5.21 that Hu+1 is a
parity-check matrix of the alternant code At0pλ−u−1(xu+1,yu+1) with

xu+1
i =

(
xuip
)p − (αu0)p−1 xuip, (6.3)

yu+1
i = yuip. (6.4)

Notice that the induction assumption and (6.3) imply that

xu+1
i =

(
xuip
)p − (αu0)p−1 xuip

=

xubi/pλ−u−1cpλ−u +
λ−1−u∑
j=1

ijα
u
j

p

− (αu0)p−1

xubi/pλ−u−1cpλ−u +
λ−1−u∑
j=1

ijα
u
j


=

(
xubi/pλ−u−1cpλ−u

)p
− (αu0)p−1 xubi/pλ−u−1cpλ−u −

λ−1−u∑
j=1

ij

((
αuj
)p − (αu0)p−1 αuj

)

= xu+1
bi/pλ−u−1cpλ−u−1 −

λ−2−u∑
j=0

i′jα
u+1
j

where (i′0, . . . , i
′
λ−u−2) ∈ Fλ−u−1

p is the representation of i mod pλ−u−1 in base p and αu+1
j =(

αuj

)p
− (αu0)p−1 αuj . By (6.4), we deduce that

yu+1
i =

1

Γu(xuip)
(6.5)

Since the polynomial Γu(z) is invariant by the shift x 7→ x + αu0 we can write Γu(z)

in the form Γu(z) = Γu+1

(
zp − (αu0)p−1 z

)
for some polynomial Γu+1 of degree t0p

λ−u−1

(Proposition 5.17). This implies that

yu+1
i =

1

Γu+1

((
xuip

)p
− (αu0)p−1 xuip

) =
1

Γu+1(xu+1
i )

and therefore At0pλ−u−1(xu+1,yu+1) is also the Goppa code G (xu+1,Γu+1(z))

We show on a very small example how the succesive steps of Theorem 6.1 work.
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Example 6.2 (Iterated Folded code). We fold the quasi-monoidic C2 = At2(x̃(2), ỹ(2)) =
G (x̃(2),Γ2(z)) of Example 5.12 in Chapter 5.C2 admits as generator matrix G(2):

G(2) =

1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1

0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 1

0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 1 1

0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1

0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 1 0 1 0 1

0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1 0 1 0

0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1

0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 0 1 0




To construct the folded matrix, one only needs to sum up the coefficients of the generator

matrix G(2) corresponding to each orbit of i 7→ i	2 1 (that is, the subsets of the code positions
of the form {2i, 2i+ 1}) :

G
(1)
fold =


1 0 0 0 1 0 0 1 1 0 0 1 0 0
0 1 0 0 0 1 1 0 0 1 1 0 0 0
0 0 1 0 1 1 0 1 1 0 1 0 1 1
0 0 0 1 1 1 1 0 0 1 0 1 1 1

 .

Thanks to Theorems 6.1, we known that G
(1)
fold generates an alternant code defined by the

following vectors:

x(1) = (0, ω30, ω28, ω2, ω, ω4, ω26, ω5, ω19, ω7, ω18, ω10, ω17, 1),

y(1) = (ω29, ω29, ω3, ω3, 1, 1, ω26, ω26, ω14, ω14, ω, ω, ω5, ω5).

and with Goppa polynomial Γ1(z) = z2 + ω30z + ω2.

In our example, the order of symmetry introduced in C2 was 22, as x̃(2) satisfies both

relations x̃
(2)
i	21 = x̃

(2)
i + α0 and x̃

(2)
i	22 = x̃

(2)
i + α1. In this case, it is not hard to see that

x(1) satisfies x
(1)
i	1 = x

(1)
i + α2

1 − α0α1. This shows that the code spanned by G
(1)
fold can still

be folded. This double-folded code can be obtained either by summing the coefficients of G
(1)
fold

over the orbits {2i, 2i+ 1}, or directly on the matrix G(2), by considering the orbits {4i, 4i+
1, 4i+ 2, 4i+ 3}:

G
(0)
fold =

(
1 0 1 1 1 1 0
0 1 0 1 1 1 0

)
.

Then, thanks to Theorems 6.1, we know that G
(0)
fold is an alternant code, with private elements:

x(0) = (0, ω30, ω5, 1, ω26, ω28, ω17),

y(0) = (ω29, ω3, 1, ω26, ω14, ω, ω5).

and Γ0(z) = z + ω2.

When considering a cryptographic scheme with public key the C2 of the previous example,

it is clear that a public user has easy access to the matrices G
(1)
fold and G

(0)
fold, but the private

vectors x(1),y(1),x(0),y(0), along with the Goppa polynomials, remain unkown. However, any
attack which permits to find y(0) (or y(1)) gives immediate access to y thanks to Relation
(6.4), and then x by solving a linear system (Fact 4.1).
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6.2 Application to the Cryptanalysis of QM alternant codes

We use Theorem 6.1 to recover the secret key of QM alternant codes. We explained that
it is sufficient to recover the secret key of a folded code of the original code. To perform
this key-recovery in practice, we discard the SSA attack (Paragraph 2.3.2) for the codes that
we target. Indeed, as those are folded codes of longer codes, folded codes are always non
full-support codes, for which the complexity analysis in Section 4.4 of Chapter 4 revealed
that algebraic attacks are more efficient.

6.2.1 Full Cryptanalysis Strategy

We suppose that the public code was built with Theorem 5.10, so that t = pλ for λ > 1.
The first part of the attack is to successively fold the public code. We obtain codes with
same structure (alternant or Goppa) and same multipliers (Theorem 6.1). After s iterations
(0 6 s 6 λ−1) of the folding process, the resulting code is of order ts = t/p(λ−s), length ns =
n/p(λ−s) and dimension ks = k/p(λ−s). Then we choose in Table 4.1 a system corresponding
to the structure of the code. One can see that, compared to the original algebraic modelling,
the algebraic modelling of the folded code will have fewer variables and equations, same over-
determination ratio, and equations of much smaller degrees containing much fewer monomials.
For Gröbner bases algorithms [Fau99, Fau02], this is a very good deal (see Paragraph 3.3 of
Chapter 3). For instance, compared to FOPT’s experimental results [FOPT10a, FOPT10b],
we obtained with this new strategy (Table 6.2) a speed-up wich can be as big as 45000 using
on-the-shelf computer algebra system Magma [BCP97b], while the results of [FOPT10a,
FOPT10b] were obtained with the Fgb software[Fau10]; an optimized C implementation of
the F5 algorithm [Fau02].

Once private support and multipliers are known for the folded code, we also know the
multipliers of the public code (Theorem 6.1). Then, Fact 4.1 ensures that one can efficiently
recover an equivalent decoder for the public code. We sum-up the strategy as follows (Steps
0) and 6) are exposed in 6.2.2).

Choice of the final t̃ and of the algebraic system. Regardless of the key recovery
strategy, it is natural to consider alternant folded code of degree t̃ as small as possible.
However, there are lower bounds on t̃. According to Table 4.1, AX,Y′ is empty (i.e contains

no equation) for an alternant code of degree t̃ = 1, and elimAX′,Y′ is empty for a code of

degree t̃ = p (i.e. λ = 1). Thus, we need to take t̃ not smaller than p for AX,Y′ or t̃ not

smaller than p2 for elimAX′,Y′ . Thus, the final t̃ is determined by the choice to perform or not

the structural elimination. We reported for each of our experiments the chosen t̃. This is the
major choice that an attacker has to make. It is actually not always straightforward to predict
a priori which system between AX,Y′ and elimAX′,Y′ is easier to solve. Equations in elimAX′,Y′

are of higher degrees than in AX,Y′ but contain fewer variables. The relevant parameters to
take into account are the characteristic (as the structural elimination increases the bi-degree
by a factor of p), and the length of the code (the amount of variables in AX,Y′ decreases when
the length grows). For various parameters (notably for encryption parameters), we tried both
and selected the most efficient.

6.2.2 Extension to all signature parameters

Most of the results presented until now assume that t = pλ. Whilst this a very natural
requirement, it turns that some parameters proposed for signature in [BCMN10, BLM11] use
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Algorithm 7 Cryptanalysis strategy of QM codes

Input : A generator matrix of the public code C .
Output : A polynomial time decoder for the public code (that is x′, Γ′(z) such that C =
G (x′,Γ′))

0) (If t is not a pure power of p, expand the public QM code into a QM code whose order
is a pure power of t. This expanded code has the same support as the public code
(Theorem 6.3). We use then this expanded code as a public-key in the next steps.)

1) Fold iteratively the matrix of the public code to obtain a code with the same structure
(alternant, or Goppa) but with smaller order of symmetry t̃ < t (Theorem 6.1).

2) Construct the algebraic system AX,Y′ ,GX,Y′ , or McEX,Y′ (Chapter 4) from the folded
code with or without structural elimination (Section 4.2).

3) Use Gröbner bases to recover the multiplier vector of the folded code (results in 6.2.3).

4) Expand the multiplier of the folded code to the multiplier of the public code (Theorem
6.1).

5) Solve the linear system (Fact 4.1) to find a support x′ which allows to construct a
decoder for the public code.

6) (If t is not a pure power of p, generate the system AX,Y′ from the original (i.e. non
expanded) public-key matrix, and solve the linear system obtained by plugging the
support found at the previous step in AX,Y′ . This yields the multipliers of the initial
public code, and then construct a decoder for the public-key).

“degenerated” QM codes, where t is not a pure power of p. However, a parity-check matrix

of the public code of the form H =

[
1

gi − xj

]
06i6t−1
06j6n−1

= (hi,j) still satisfies hi,j = h0,j	i

for 0 6 i 6 t − 1 and 0 6 j 6 n − 1. Then, it turns out that the automorphism group
is not of cardinality t but gcd(t, pλ) where λ is such that pλ−1 < t < pλ. We recall that
a central tool in the construction of QM codes is the sequence of Fp-independent elements
α0, . . . , αλ−1 ∈ Fqm (Theorem 6.1). They generate a group G of size pλ whose elements are

defined for ` ∈ [0, . . . , pλ − 1] by g` =
∑λ−1

j=0 `jαj , when ` =
∑λ−1

j=0 `jp
j is the decomposition

in base p of `. The support x is chosen so as to satisfy Equation (5.10). Then, the Goppa
polynomial is derived from its roots A that are picked in G. The case t = pλ corresponds to
a Goppa polynomial Γ(z) whose roots A are all the elements of G. The fact that its roots
form a group is the crucial point for proving Equation (5.11), and to exhibit the structure of
the automorphism group. The cases where t 6= pλ are those when A is a sub-set of G (and
not a sub-group). The associated Goppa code G (x,

∏
06`6t−1(z − g`)) is not stable by the

expected permutations σ`, so folding the code is not possible any more. So, the idea is to
select a subspace of the codewords that is stable by more permutations.

As a consequence, we cannot fold the public code as many times as previously. To overcome
this technical problem, we can however exploit the specific features of the QM codes used in
[BCMN10, BLM11]. We can retrieve an alternant code with the same support as the public
code, but with a Goppa polynomial of degree pλ, where we define λ > 0 as the smallest integer

such that t < pλ. We shall call C
(t)
pub the public code, and C (pλ) the code that we are trying

to recover.

Theorem 6.3. Let x and G = {g0, . . . , gpλ−1} be as previously. Let H = (hi,j) be any
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(n−k)×n parity-check matrix of C
(t)
pub = G (x,

∏
06`6t−1(z−g`)). We define the (n−k)pλ×n

matrix ∆pλ(H) = (h′i′,j′) by, for all 0 6 i 6 n− k − 1, 0 6 j 6 n− 1 and 0 6 ` 6 pλ − 1:

h′ipλ+`,j = hi,j	`.

Let C (pλ) be the code over Fq with parity-check matrix ∆pλ(H). Then, C (pλ) is the QM

alternant code G (x,
∏
g∈G(z − g)), with automorphism group of the form (Z/pZ)λ.

Remark 6.4. C (pλ) can also be seen as the largest QM subcode of C
(t)
pub stable by σ1, . . . , σpλ−1

(defined by σ`(i) = i	p ` for 0 6 i 6 n− 1, 1 6 ` 6 pλ − 1).

Proof. The proof relies on the following Lemma.

Lemma 6.5. Let α0, . . . , αλ−1 ∈ Fqm as in Theorem 5.10, generating G = {g0, . . . , gpλ−1}.
Let A = {g0, . . . , gt−1} be a subset of G generating G Let x be built thanks to the αi’s according
to (5.10). As a consequence, each g ∈ G corresponds to an offset 0 6 jg < pλ of the indices
on the support such that xi⊕jg = xi + g for all i, 0 6 i 6 n− 1. The public code is defined by

C
(t)
pub = G

(
x,
∏
g∈A

(z − g)
)
, and we define C (pλ) = G

(
x,
∏
g∈G

(z − g)
)
. It holds that:

c ∈ C (pλ) ⇐⇒ ∀g ∈ G, cσjg ∈ C
(t)
pub.

Proof. Let g ∈ G and c ∈ G (x,Γ). We introduce the polynomial syndrome associated to c,

Pc,x =
∑n−1

i=0
ci

z−xi (from Definition 1.22). The syndrome polynomial Pcσ` ,x associated to cσ`

verifies

Pcσ` ,x(z) =

n−1∑
i=0

cσ`(i)

z − xi
=

n−1∑
i=0

ci	`
z − xi

=

n−1∑
i=0

ci
z − xi⊕`

=

n−1∑
i=0

ci
z − g` − xi

= Pc,x(z − g`).

According to Definition 1.22, we have

cσjg ∈ C
(t)
pub ⇐⇒

∏
a∈A

(z − a)|Pc
σjg ,x(z)

⇐⇒
∏
a∈A

(z − a)|Pc,x(z − g)

⇐⇒
∏
a∈A

(z + g − a)|Pc,x(z)

⇐⇒
∏

a∈A−g
(z − a)|Pc,x(z)

As all the elements of G are pairwise distinct, the polynomials (z− a) are coprime. The least
common multiple of all the polynomials

∏
a∈A−g

(z − a) is P =
∏
g∈G(z − g). So, we conclude,

∀g ∈ G, cσjg ∈ C
(t)
pub ⇐⇒ ∀g ∈ G

∏
A∈A−g

(z − g)|Pc,x(z)

⇐⇒
∏
g∈G(z − g)|Pc,x(z)

⇐⇒ c ∈ C (pλ).
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Lemma 6.5 permits to deduce a parity-check matrix of C (pλ) from any parity-check matrix

H of C
(t)
pub. Indeed, observe that for any row h of H and any permutation σ of the indices:

cσ ∈ C
(t)
pub ⇐⇒

∑n−1
i=0 cσ(i)hi = 0

⇐⇒
∑n−1

i=0 cihσ−1(i) = 0

To ensure that a word c and all its permuted words cσjg for g ∈ G belong to C
(t)
pub, it suffices

to permute the rows of H according to all the σg’s with g ∈ G and concatenate the obtained
matrices. This is precisely what the function ∆pλ does for a group G of size pλ.

Thanks to Theorem 6.3, we can explain the general strategy previously presented. Using

∆pλ , we can write a new public-matrix for C (pλ) (Step 0)). Then, we can recover the multiplier

vector and the support of C (pλ) (Steps 1-2-3-4-5)). Since both codes share the same support,

Fact 4.1 allows to recover the multipliers of C
(t)
pub by solving a linear system (Step 6)).

6.2.3 Practical experiments

We considered the parameters quoted in [BCMN10, MB09, BLM11]. Remark that the
public codes considered in these papers are alternant codes for q > 2, but (binary) Goppa
codes for q = 2. So, we use in our experiments the systems AX,Y′ ,McEX,Y′ and their reduced
versions. We also generated new parameters to see how our attack scales. To compute the
security levels of these new parameters with respect to ISD (Chapter 2), we used the isdfq
software of C. Peters. 1

Simplifying the Algebraic Systems for QM Codes. As we explained in Paragraph 6.2.1,
the final folded codes have order t̃ equal to p or p2. The algebraic system AX,Y′ generated
from the folded code can still be simplified by using Theorem 5.10. The folded code has a
smaller but non-trivial automorphism groups. Consequently, we can use the linear relations
(5.10) and (6.1) to decrease the number of variables. From now on, we will always assume
that such linear relations are used in our systems.

Signature Schemes – Experimental Results. The QM codes used in signature schemes
always have the maximal possible lengths, namely n = qm−t. This leads to codes of relatively
big lengths. The total numbers of variables in the systems AX,Y′ can be also huge, typically
up to > 500. However, elimAX′,Y′ contains very few variables compared to the number of
equations. For example, elimAX′,Y′ contains 19671 equations and 21 variables for (q = 3,m =
11). To compare both approaches on a tiny example, we picked a code with parameters
(q = 16,m = 3), length n = 360 and block size t = 8. Solving AX,Y′ (containing 126
equations in 49 variables) took 311 seconds, whereas elimAX′,Y′ contains 84 equations in only 8
variables and was solved in 0.01 second. Thus, we choose to perform the structural elimination
in all possible cases. This permitted to mount a key-recovery for almost all the signature
parameters proposed in [BCMN10, BLM11]. In Table 6.1, we detail our experimental results.
We have used Magma [BCP97b] (V2.17-1) to implement our attack. All the timings have been
obtained on a 2.93 GHz Intel R©. The Gröbner bases computation in Magma are performed
with an optimized version of F4 [Fau99]. We have been able to break all the parameters
proposed in [BCMN10, BLM11]. For most parameters proposed in [BLM11], we have been

1. http://christianepeters.wordpress.com/publications/tools/

http://christianepeters.wordpress.com/publications/tools/
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able to recover the secret in few seconds (the last row took less than 2 hours). As a conclusion,
the use of QM codes introduces a fatal weakness in the signature context. In view of our new
attack, it seems impossible to find secure parameters for QM (resp. QD) signature schemes.

Solving elimMcEX′,Y′ (with t̃ = p).

p = 2 m n t t̃ n0 (2m− 2) unk. 2(n0 −m) eq. Bi-degree Magma Sec. level

2 13 8176 16 2 511 25 996
(2, 1), (2, 2)

1.9 s. 84
2 13 8176 15 2 511 25 996 1.9 s. 81
2 14 16368 14 2 1023 27 2018 3.0 s. 84
2 14 16368 13 2 1023 27 2018 3.0 s. 81
2 15 32752 12 2 2047 29 4064 5.4 s. 82

Solving elimAX′,Y′ (with t̃ = p2).

p > 2 m n t t̃ n0 (2m− 1) unk. (n0 −m) eq. Bi-degree (p, p) Magma Sec. level
3 11 177048 9 9 19682 21 19671 (3, 3) 3.4 s. 80
5 8 390495 15 25 15624 15 15616 (5, 5) 82 s. 128

Solving AX,Y′ when t = t̃ = p (so, without folding).

p > 2 m n t t̃ n0 # unk. 6 (p− 1)t eq. Bi-degree Magma Sec. level
13 4 28509 13 13 2196 12 8 (1, i), 1 6 i 6 7 0.05 s 80
13 5 371228 13 13 28560 12 10 (1, i), 1 6 i 6 7 5873 s. 112

Table 6.1 – Practical attacks against signature schemes with parameters from [BCMN10,
BLM11].

For a public alternant code with t = p, neither the folding nor the structural elimination
are possible (as explained in 4.2). For those cases, we pick equations from the first block of
rows. That is:

n−k−1∑
j=0

ai,jYj

(
X`
j −X`

n−k+i

)
= 0,

with i ∈ {0, . . . , t − 1} (instead of 0 6 i 6 k − 1). This system only involves X0, X1, and
Xt, X2t, . . . , X(n0−m)t, contains up to t(p − 1) equations and 2m − 1 variables. The strategy
was very successful for small m’s (m 6 6).

Encryption – Experimental Results. The algebraic systems are harder to solve for en-
cryption parameters. In addition of Magma, we also use Fgb to compute the Gröbner bases.
For Fgb, we reported the basic number of expected operations. To estimate this number, we
have mixed exhaustive search and Gröbner bases. This explains that we reported number of
operations > 280. To see how the attack behaves, we also generated ourselves cryptographic
secure parameters with isdfq (marked with a ? in the table below). Our practical results
are somewhat orthogonal with ISD. In most cases, the complexity of ISD grows whilst the
efficiency of our attack increases. This is due to the fact that the folding process makes the
value of t irrelevant for our attack; which is not the case for ISD. For encryption param-
eters, the choice between AX,Y′ and elimAX′,Y′ is less clear than in the signature context.
Both systems have a reduced number of equations compared to the signature case. Thus, the
higher degree induced by the structural elimination may be an obstacle to the resolution of
elimAX′,Y′ . Solving this system proved to be very efficient for codes over Fq with q = 2s and
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s > 1, as we found multipliers and support up to 45000 times faster than FOPT’s attack in
[FOPT10a], but is less efficient for p > 3. We mention that some parameters proposed could
not be solved in practice. It is not unlikely that better results could be obtained in the future
by using a specific Gröbner strategy for solving the systems (which are still structured). In
any case, we see the experimental results as a practical validation of the structural weakness
of compact codes coming from the folding process.

Solving elimMcEX′,Y′ with t̃ = p.

q = 2 m n t t̃ n0 2m− 1 unk. 2(n0 −m) eq. Magma F5/FGb FOPT Sec. level

2 16 4864 25 2 152 31 272 18 s. N.A. 128
2 12 3200 27 2 25 23 22 6 283.5 op. N.A. 128
2 14 5376 27 2 42 27 36 6 296.1 op. N.A. 226
2 15 11264 29 2 22 29 14 6 2146 op. N.A. 256
2 16 6912 28 2 27 31 33 6 2168 op. N.A. 218
2 16 8192 28 2 32 31 32 6 2157 op. N.A. 256

Solving elimAX′,Y′ with t̃ = p2.

q > 2 m n t t̃ n0 2m− 1 unk. (n0 −m) eq. Magma F5/FGb FOPT Sec. level

24 4 2048 26 4 32 8 28 0.01 s. 0.50 s 128
24 4 4096 27 4 32 8 28 0.01 s. 7.1 s 128
22 8 3584 26 4 56 15 48 0.04 s. 1,776 s 128
3 8 3645 34 9 45 15 37 6 244.5 op. N.A. 224 ?
3 11 4860 34 9 60 21 49 3 d. 17h. N.A. 192 ?
3 11 6885 34 9 85 21 64 181 s. N.A. 261 ?
5 8 2500 52 52 100 15 92 2.9s N.A. 107 ?
5 8 1375 52 52 55 15 47 160s N.A. 85 ?
5 9 1750 52 52 70 17 61 728.4s N.A. 89.8 ?
5 10 2000 52 52 80 19 70 5941.9s N.A. 91.3 ?

Solving AX,Y′ with t = t̃ = p.

q m n t t̃ n0 # unk. 6 t(p− 1) eq. Magma FOPT Sec. level

167 3 668 167 167 4 5 7 0.020 s. N.A. 80
241 3 964 241 241 4 5 7 0.020 s. N.A. 112
41 3 451 41 41 11 14 24 0.030 s. N.A. 80
5 5 1000 53 5 8 11 12 140 s. N.A. 80
11 5 1089 112 11 9 12 20 225 s. N.A. 112
7 5 735 72 7 15 18 60 900 s. N.A. 80
7 6 1813 72 7 37 41 186 60 s. N.A. 128

Table 6.2 – Practical attacks against the encryption parameters proposed in [MB09, BLM11].
N.A. means that the parameters could not be addressed in [FOPT10a].

6.3 Conclusion about the symmetric Alternant Codes

Our attack proved to be a fatal weakness for the signature schemes using symmetric
alternant codes. In those cases, the considerable amount of equations allowed a very fast
resolution. This is linked with the fact that the codes required to perform a CFS signature
have a very high rate. For the encryption parameters, the rates of the code are lower. This
entails lower amounts of equations and systems more difficult to solve. This could suggest to
instantiate McEliece schemes with symmetric alternant codes of low rates. The problem with
such codes is that, regarding message-recovery, the ISD-based attacks become easier when the
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rate is low. We provide in Figure 6.2 a comparison of the complexities of our key-recovery
method and message-recovery for QM codes defined over F5, with extension degree m = 5,
block size t = 52, and rates 1 − m

n0
. We observe that no value of n0 guarantees a security

above 280 against both message and key-recovery.
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80
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lo
g
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ISD(C.Peters)

Algebraic (FGb/F5)

Figure 6.2 – Comparison of the complexities of ISD (message-recovery) and algebraic attacks
(key-recovery) against QM codes over F5 with m = 5, t = 25, n = n0t.

More generally, the folding construction has to be taken into account as soon as the public
code is an alternant code with QC or QM structure. We saw already several examples that
motivated these chapters, but we can also mention the proposal of Persichetti [Per12a]. In this
case, the public code belongs to a specific family of alternant codes (the Srivastava codes).
The folding construction and the alternant modelling both apply. An open question is then to
use this to design an attack against McEliece schemes using QD Srivastava codes (as proposed
in [Per12a]).



Chapter 7

Algebraic cryptanalysis of Wild
McEliece

This chapter presents results from the article Algebraic Cryptanalysis of McEliece with
Goppa polynomials of a special form published at Asiacrypt 2014 with Jean-Charles Faugère
and Ludovic Perret [FPdP14].

It is dedicated to a recently proposed variant of McEliece schemes using, as in Chapter 6,
a particular subclass of Goppa codes (Definition 1.22 of Chapter 1). This variant, proposed
by Bernstein, Lange and Peters in [BLP11b, BLP11c], uses Wild Goppa codes, that is Goppa
codes over Fq, q > 2, with a Goppa polynomial of the form f(z)g(z)q−1.

Definition 7.1 (Wild Goppa/Masked Wild Goppa). Let x be an n-tuple (x0, . . . , xn−1) of
distinct elements of Fqm. Let g(z) ∈ Fqm [z] (resp. f(z) ∈ Fqm [z]) be a squarefree polynomial
of degree t (resp. u) satisfying g(xi) 6= 0 (resp. f(xi) 6= 0) for all i, 0 6 i 6 n − 1. A
Wild Goppa code is a Goppa code whose Goppa polynomial is of the form Γ(z) = g(z)q−1.
A Incognito Wild Goppa code is a Wild Goppa code whose Goppa polynomial is such that
Γ(z) = f(z)g(z)q−1.

The reason for using those Goppa polynomials lies in the following result.

Theorem 7.2 ([SKHN76]). Let the notations be as in Definition 7.1. It holds that

G (x, f(z)gq−1(z)) = G (x, f(z)gq(z)). (7.1)

Thus, the code G (x, f(z)gq(z)) has dimension > n−m ((q − 1)t+ u) and minimum distance
> qt+ u.

This is a generalization of a well-known property for q = 2. The advantage of Wild Goppa
codes compared to standard Goppa codes is that b(qt+u)/2c errors can be decoded efficiently
(instead of b((q − 1)t+ u)/2c as in Paragraph 1.3 of Chapter 1) for the same code dimension
(n − ((q − 1)t + u)m in most cases). This increases the difficulty of the syndrome decoding
problem (Chapter 2). Hence, to design a McEliece-like scheme of a given level of security,
Wild Goppa codes induce smaller keys than binary Goppa codes (for details, see [BLP11b,
Section 7] and [BLP11c, Section 5]).

In this chapter, we present a new algebraic modelling dedicated to Wild Goppa codes and
more generally to Goppa codes whose Goppa polynomials have multiple factors. In Section
7.1, we reduce the key-security of a Wild McEliece scheme to the difficulty of solving an
algebraic system which contains contains fewer variables than the FOPT modelling. We show
that to break a Wild McEliece scheme it suffices to solve (roughly)

117
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W(Z) =
⋃

16u6q

{
gi,0Z

u
0 + · · ·+ gi,n−1Z

u
n−1 = 0 | i ∈ {0, . . . , k − 1}

}
, (7.2)

with unknowns Z0, . . . , Zn−1 and G = (gi,j)06i6k−1
06j6n−1

a generator matrix of the public code.

First, we prove a very unexpected property on the solutions of (7.2): they form a vector space.
This helps us in the resolution, because it means that many Zj ’s can be fixed arbitrarily.
Second, this solution vector space is nothing but a GRS code with same private elements as
the public code, so that the famous Sidelnikov-Shestakov attack ([SS92], recalled in Paragraph
2.3.1) yields the private elements from a basis of the solutions of W(Z).

We improve this method in Section 7.2. We describe how to solveW(Z), which implies to
compute a Gröbner basis (Chapter 3), and how to deduce the private key, which requires an
essentially polynomial-time treatment. Figure 7.1 (on page 119) sums up all the steps of the
key recovery algorithm. It can be applied as soon as the Goppa polynomial has a multiple
factor.

We applied this strategy to the cryptanalysis of Wild McEliece in Section 7.3. We used
specific features of some Wild Goppa codes (defined over Fq with q = ps with s > 1), to
fix more variables. We ended up with a polynomial system containing, on some examples,
as few as 10 variables. We review the practical attacks that we carried out, which included
challenges generated by the designers of Wild McEliece with security level up to 2128.
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Wq,a(Z) =
⋃
u∈Pa

{∑n−1
j=0 gi,jZ

u
j = 0 | 0 6 i 6 k − 1

}
We solve the system several times by fixing many variables.

Solve(Wq,a(Z)
⋃
{Z = (1, . . . , 0, Zda , . . . , Zn−1)}) → v(0)

...
...

Solve (Wq,a(Z)
⋃
{Z = (0, . . . , 1, Zda , . . . , Zn−1)}) → v(da−1)

We perform the Fröbenius alignement to have a cleaner
vector space (i.e. same Fröbenius power on all the solutions).

CΣ = Span
(
v(0), . . . ,v(da−1)

)
=
∑
`∈La

GRSt(x
`,y`)

We perform a suitable intersection CΣ ∩ (CΣ)p
s−a

to recover a single GRS.

GRSt(x,y)p
s−a

We adapt Sidelnikov-Shestakov attack to recover the secret key.

Secret x,y, g(z)

Secret f(z) for incognito

For Incognito, a extra linear algebra step allows
to recover the last part of the secret key.

Figure 7.1 – Overview of our attack against Wild McEliece.
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7.1 New Algebraic Modelling with a Vector Space Structure
on the Zero Set

As Wild Goppa codes are in particular Goppa codes, the same algebraic modelling as in
[FOPT10a] holds. However, we show that the multiplicity in the Goppa polynomial of a Wild
code allows to write an algebraic system whose solution set S has a very surprising structure
(Definition 7.5). Indeed, it appears that S includes the union of several vector spaces. The
vector spaces correspond in fact to sums of GRS codes (Definition 1.17) which have almost
the same support x and multiplier vector y as the public-key of the attacked Wild McEliece
Incognito scheme (Theorem 7.6).

7.1.1 First Simplification of the System (FOPT)

We give in this paragraph the intuition leading to the central Definition 7.5 and Theorem
7.6. This can be seen as a first version of the attack, with some details to be given only
in the sequel. Let C = G (x, gq−1(z)) be an [n, k]q Wild Goppa code with generator matrix
G = (gi,j)06i6k−1

06j6n−1
. The multipliers associated to C (seen as an alternant code) are defined

by v = 1/g(x)q−1. The modelling from [FOPT10a] would introduce unknowns Xi and Vi for
the support and multipliers respectively, and write the equations

{
gi,0V0X

`
0 + · · ·+ gi,n−1Vn−1X

`
n−1 = 0 | i ∈ {0, . . . , k − 1}, ` ∈ {0, . . . , qt− 1}

}
.

The first crucial remark is that many more equations can be written, thanks to the easy
inclusion C ⊆ G (x, gu(z)) for any 1 6 u 6 q − 1. This comes from the fact that, for a
codeword m ∈ C , it holds thanks Definition 1.22 that

gq−1(z)|
n−1∑
i=0

mi

z − xi
=⇒ gu(z)|

n−1∑
i=0

mi

z − xi
.

Therefore, Vut(x,v
(u))×GT = (0)ut×k for any 1 6 u 6 q−1 , with v(u) = (g(x))−u. Here,

we remark that we can write simultaneously all these equations and introduce only one vector
of unknowns y = g(x)−1 = v(1) instead of q − 1 vectors v(1), . . . ,v(q−1), since v(u) =

(
v(1)

)u
(by this we mean the exponentiation component-wise). Therefore, we obtain the system

⋃
16u6q

{
gi,0Y

u
0 X

`u
0 + · · ·+ gi,n−1Y

u
n−1X

`u
n−1 = 0 | i ∈ {0, . . . , k − 1}, `u ∈ {0, . . . , ut− 1}

}
.(7.3)

In essence, this proves the following lemma (in which we included equations related to the
incognito polynomial)

Lemma 7.3. Let Gpub be a generator matrix of Cpub = G (x, f(z)gq−1(z)) a Wild Incognito
Goppa code, y = g(x)−1, w = f(x)−1 and t = deg(g(z)). We have:

q⋃
uy=0

{ n−1∑
j=0

gi,j
(
wjx

u
j

)b
y
uy
j xuxj = 0 | 0 6 i 6 k − 1, 0 6 ux 6 uyt− 1,

0 6 u 6 deg(f)− 1, b ∈ {0, 1}, (b, uy) 6= (0, 0)

}
.
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Proof. The only difference with system (7.3) is the factor f(z) in the Goppa polynomial. For
all 0 6 uy 6 q and 0 6 b 6 1 (and (uy, b) 6= (0, 0)), it holds that

Cpub ⊆ G (x, f b(z)guy(z)).

As G (x, f b(z)guy(z)) has parity check matrix Vdtot(x,w
byuy) (with dtot = bdeg(f) + uyt),

the matrix products Vdtot(x,w
byuy)×GT

pub = 0dtot×k yield all the relations of the lemma.

System (7.3) contains q times more equations than in [FOPT10a], but still as many vari-
ables. However, by setting `u = 0 in all the equations, we obtain a much simpler subset of
equations where the Xi’s have disappeared, so that one could hope to find efficiently the yi’s
(and the xi’s would then be easy to recover thanks to Lemma 4.1):

⋃
16u6q

{
gi,0Y

u
0 + · · ·+ gi,n−1Y

u
n−1 = 0 | i ∈ {0, . . . , k − 1}

}
. (7.4)

Unfortunately, except for very specific cases (Wild Goppa codes with t = 1), it is hopeless
to find directly the yi’s with System (7.4). The reason is that System (7.4) has infinitely many
solutions (as soon as t > 1). Indeed, notice that when substituting a vector of the form

yx` = (y0x
`
0, . . . , yn−1x

`
n−1)

in (7.4), we obtain exactly equations of Lemma 7.3 (with uy = u, ux = `u, b = 0), so that we
know that all the yx` for 0 6 ` 6 t − 1 are solutions. Moreover, by applying a Frobenius
endomorphism x 7→ xq

e
we see that all the yq

e
x`q

e
are also solutions. This proves that the

vector y is not the only solution, but provides actually a finite number of solutions. We obtain
an infinity of solutions when we remark that the solutions yx` can be linearly combined. In
other words, the solutions contain a vector space. This will be proved along with our central
Theorem 7.6.

For now, we explain the consequences of this fact. In order to have efficient polynomial
system solving algorithms, it is necessary to transform the system (7.4) so that it has a finite
number of solutions. To do so, thanks to the vector space structure, we know that we can
fix arbitrarily a number of coordinates of the solution vector equal to the dimension of the
solution vector space. Note that this is very favorable for the polynomial system resolution,
since it eliminates variables. Once, we have obtained a finite number of solutions, the central
question is : how can we recover any secret element of C from those solutions ?

When having a closer look at the solutions, we realize that what we obtain is an unknown
linear combination of the solutions yx` with 0 6 ` 6 t− 1 (or their Frobenius yq

e
x`q

e
), that

is a vector with coordinates of the form

(
α0y0 + α1y0x0 + · · ·+ αt−1y0x

t−1
0 , . . . , α0yn−1 + α1yn−1xn−1 + · · ·+ αt−1yn−1x

t−1
n−1

)qe
.

For now, we suppose e = 0 to simplify, and we set Q = αt−1z
t−1 + · · ·+ α0, we see that a

solution can be written
(y0Q(x0), . . . , yn−1Q(xn−1)).

In other words, the solutions are codewords of the code GRSt(x,y). The strategy (detailed in
Section 7.2) will consist in finding a generator matrix of GRSt(x,y), and perform a Sidelnikov-
Shestakov attack (recalled in Paragraph 2.3.1) to recover x and y. We sum up the central
tool of this first cryptanalysis:
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Theorem 7.4. Let q = ps (p prime and s > 0). Let Gpub = (gi,j)06i6k−1
06j6n−1

be a generator

matrix of a Wild Goppa code Cpub = G (x, gq−1(z)). Let y = g(x)−1. Then, the solutions S
of the system ⋃

16u6q

{
gi,0Z

u
0 + · · ·+ gi,n−1Z

u
n−1 = 0 | i ∈ {0, . . . , k − 1}

}
contain the union of m GRS codes:⋃

06e6m−1

(
GRSt(x

qe ,yq
e
)
)
⊆ S.

This theorem will be proven along with its refinement (Theorem 7.6). Note that we only
need the multiplicity in the polynomial g(z)q−1 to establish the GRS structure of the solutions.
As a consequence, if System (7.4) can be solved efficiently, the key recovery on a McEliece
scheme with multiplicity in the Goppa polynomial boils down to that of GRS code, which is
known to be weak.

7.1.2 The Algebraic Modelling Wq,a(Z)

We explained that, when solving System (7.4), unknowns could be fixed arbitrarily thanks
to the vector space structure of the solution set. Following this idea, we introduce an algebraic
system which is a subset of the System (7.4). By removing equations from (7.4), we naturally
introduce more solutions. However, the subset is chosen so as to:

— keep the vector space structure of the solutions,
— raise its dimension.

The purpose is to fix more coordinates (that is, more variables) of the unknowns’ vector.

Definition 7.5. Let q = ps (p prime and s > 0). Let Gpub = (gi,j)06i6k−1
06j6n−1

be a generator

matrix of a masked Wild Goppa code Cpub = G (x, f(z)gq−1(z)). For an integer a, 0 < a 6 s,
we define the system Wq,a(Z) as follows :

Wq,a(Z) =
⋃
u∈Pa


n−1∑
j=0

gi,jZ
u
j = 0 | 0 6 i 6 k − 1

 (7.5)

with Pa = {1, 2, . . . , pa − 1} ∪ {pa, pa+1, . . . , q}.
The parameter a in Pa determines the exponents considered for the Zj ’s in the system

(7.5). For a = s, we consider all the powers Zuj where u ranges in {1, . . . , q} and we recover
System (7.4). Removing some exponents leads to a system with fewer equations and may seem
counter-intuitive at first sight (the more equations, the better it is for solving a polynomial
system). However, as we explained, the situation is different here due to the specific structure
of the solutions of Wq,a(Z), since we will be able to fix more variables. The counterpart is
that the solutions do no longer yield a GRS code but a sum of GRS codes.

Theorem 7.6. Let the notations be as in Definition 7.5. Let y = g(x)−1, and t = deg(g).
The solutions S of Wq,a(Z) contain the union of m vector spaces which are sums of GRS
codes, that is:

⋃
06e6m−1

∑
`∈La

GRSt(x
`qe ,y`q

e
)

 ⊆ S where La =
⋃

06r6s−1−a
{pr, 2pr, . . . , (p− 1)pr}∪

{
ps−a

}
.
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In Theorem 7.6, we prove an inclusion. In practice, as the system is highly overdefined,
we always observed that this subset was all the solutions.

Proof. First, we give the global idea of the proof. The goal is to show that the elements of∑
`∈La GRSt(x

`qe ,y`q
e
) are solutions of Wq,a(Z). We can assume that e = 0 w.lo.g.

Let z = (z1, . . . , zn) ∈
∑

`∈La GRSt(x
`,y`). We write the coordinates of z as zj =∑

`∈La y
`
jQ`(x

`
j), where the Q`’s are polynomials of degree 6 t − 1 in Fqm [z]. We have to

prove that

n−1∑
j=0

gi,jz
u
j = 0 for u ∈ P1 ∪ P2,where P1 = {1, 2, . . . , pa − 1} and P2 = {pa, . . . , ps}.

The idea is to develop zuj =
(∑

`∈La y
`
jQ`(x

`
j)
)u

with Newton multinomial. The development

is performed slightly differently whether u ∈ P1 or u ∈ P2 (see details below). In both cases,
we end up with a result of the form zuj =

∑
ux,uy

αux,uyy
uy
j xuxj , so that our sum writes:

n−1∑
j=0

gi,jz
u
j =

∑
ux,uy

αux,uy

n−1∑
j=0

gi,jy
uy
j xuxj .

We set b = 0 in the system of Lemma 7.3. We obtain
∑n−1

j=0 gi,jy
uy
j xuxj = 0 for (uy, ux) such

that 1 6 uy 6 t and 0 6 ux 6 uyt− 1. Thus to conclude that
∑n−1

j=0 gi,jz
u
j = 0, we check that

all the couples (ux, uy) appearing in the sum satisfy those conditions.

Detailed Multinomial Development. We give the multinomial development of the zuj =(∑
`∈La y

`
jQ`(x

`
j)
)u

and conclude the proof separately for u ∈ P1 and u ∈ P2.

Case u ∈ P1. We pick u ∈ {1, 2, . . . , pa − 1} and use the multinomial formula to expand(∑
`∈La y

`
jQ`(x

`
j)
)u

. Namely, with La = #La, we have:

( ∑
`∈La

y`jQ`(x
`
j)

)u
=

∑
06u1,...,uL6u
u1+···+uL=u

( u
u1,...,uL

)
y

( ∑
`∈La

`u`

)
j

∏
`∈La

Q`(x
`
j)
u`

 .

Let’s look at each term y
uy
j xuxj in the sum. For u1, . . . , uL non-negative integers with u1 +

· · · + uL = u, it holds that uy =
∑
`∈La

`u` 6 max(La)
∑
`∈La

u` 6 ps−au 6 ps. For each y
uy
j ,

several terms y
uy
j xuxj appear after expanding

∏
`∈La

Q`(x
`
j)
u` . In Q`(x

`
j)
u` the maximal power

ux appearing is `u`(t−1) (as Q` has degree t−1). Thus, in
∏
`∈La

Q`(x
`
j)
u` , the maximal power

is (t− 1)
∑
`∈La

`u` = (t− 1)uy 6 tuy − 1.

Case u ∈ P2. We pick b ∈ {a, . . . , s}. Then, thanks to Lemma 7.7 (proved below),

zp
b

j =

∑
`∈La

y`jQ`(x
`
j)

pb

=
∑
`∈La

y`p
b

j Q
(b)
` (x`p

b

j ).
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Pick ` ∈ La, it writes ` = αpc with 1 6 α < p and 0 6 c 6 s−a. Thus we have `pb = αpc+b.
The euclidian division of c+b by s gives c+b = ds+e with 0 6 e < s. The exponent `pb then

writes `pb = αpepds = αpeqd. As gqi,j = gi,j it holds that
(∑n−1

j=0 gi,jy
αpeqd

j Q
(b)
` (xαp

eqd

j )
)qm/qd

=∑n−1
j=0 gi,jy

αpe

j Q
(b−ds)
` (xαp

e

j ). As the R
(b−ds)
` ’s have degree lower than t, all the terms of the

sum are of the form y
uy
j xuxj with uy 6 q (since αpe < ps) and ux 6 uyt− 1. This terminates

the proof.

For completeness, we state (and prove) the technical Lemma 7.7.

Lemma 7.7. Let q = ps (p prime and s > 0), and Q = γtz
t+· · ·+γ0 ∈ Fqm [z] be a polynomial

of degree t. For all j, it holds that:

Q(z)p
j

= γp
j

t (zt)p
j

+ · · ·+ γp
j

0

= γp
j

t (zp
j
)t + · · ·+ γp

j

0

= Q(j)(zp
j
).

where Q(j) = γp
j

t z
t + · · · + γp

j

0 is the polynomial of same degree as Q obtained by raising all
the coefficients to the pj-power.

7.2 Solving the Goppa Decoder Recovery Problem for codes
with multiplicities

We explain now how to recover a private decoder from the equations Wq,a(Z). That is,
we want to find a secret support x′, a correct g′(z) and a correct f ′(z) in the incognito case.

The first step consists in exploiting the structure of the solutions of Wq,a(Z) to speed-up
its resolution (Paragraph 7.2.1). We have to solve it several times. Then, we extract the basis
of a GRS code from the solutions obtained at the previous steps. This is done in Paragraph
7.2.2. Then, we show in Paragraph 7.2.3 how to recover a private support x and Goppa
polynomial g(z) of the masked Wild Goppa code. This is the full description of a plain Wild
Goppa code. In the Incognito case (deg(f) > 0), we explain in Paragraph 7.2.4 that an extra
linear step enables to find f .

Figure 7.1 provides a diagram which recapitulates all the steps performed to recover the
secret key.

7.2.1 Boosting the Resolution of Wq,a(Z)

First, we use the particular structure of the solution set of the non-linear system Wq,a(Z)
to solve it. When looking for a vector in a subspace of Fnqm of dimension d, then you can
safely fix d coordinates arbitrarily and complete the n − d so as to obtain a vector of this
subspace. This corresponds to computing intersections of the subspace with d hyperplanes.
With this idea, we deduce the following corollary of Theorem 7.6.

Corollary 7.8. Let Cpub = G (x, f(z)gq−1(z)) be a masked Wild Goppa code. Let t = deg(g),
Wq,a(Z), and La be as defined in Theorem 7.6. We set La = #La. Then, we can fix t × La
variables Zi to arbitrary values in Wq,a(Z). The system obtained has m solutions (counted
without multiplicities), one for each sum

∑
`∈La GRSt(x

`qe ,y`q
e
) with 0 6 e 6 m− 1.
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Our purpose is to find a basis of one of the vector spaces
∑

`∈La GRSt(x
`qe ,y`q

e
). To do

so, we pick Lat independent solutions of Wq,a(Z) by fixing the variables Z0, Z1, . . . , ZLat−1 in

Wq,a,t(Z) accordingly. Namely, for 0 6 i 6 Lat − 1, we pick one solution v(i) among the m
solutions of the system

Wq,a(Z)
⋃
{Zi = 1, Zj = 0 | 0 6 j 6= i 6 Lat− 1}.

According to Definition 1.17, we know those solutions can be written as follows,

v(i) =

0, . . . , 1, . . . , 0,
∑
`∈La

yqiLatQi,`(x
qi
Lat

), . . . ,
∑
`∈La

yqin−1Qi,`(x
qi
n−1)

 ∈ ∑
`∈La

GRSt(x
`qei ,y`q

ei ),

(7.6)
for some power of the characteristic qi = qei , 0 6 ei 6 m − 1 and Qi,` ∈ Fqm [z] of degree

lower than t. After Lat resolutions of Wq,a(Z), the solutions v(i) are not necessarily a basis
of one of the vector spaces

∑
`∈La GRSt(x

`qe ,y`q
e
) because the Fröbenius exponents need not

be identical for all v(i)’s. In practice, this is not an issue, as explained below.

Simplication: Fröbenius Alignment. Let {v(i)}06i6Lat−1 be as defined in (7.6). We can
suppose without loss of generality that q0 = q1 = . . . = qLat−1. This simplification requires less
than m(Lat−1) Fröbenius evaluations on the solutions. Indeed, v ∈

∑
`∈La GRSt(x

`qe ,y`q
e
),

implies that vq ∈
∑

`∈La GRSt(x
`qe+1

,y`q
e+1

). For the parameters considered in [BLP11b,
BLP11c], m and t are rather small, making the cost of the Fröbenius alignment negligible. In
the rest of this article, we assume that q0 = . . . = qLat−1 = 1.

Example 7.9. Pick for instance q = 8 and solve the system Wq,a with a = 2. Thanks to
Theorem 7.6, after re-alignment of the Fröbenius exponents, we have a basis of the vector
space GRSt(x,y) + GRSt(x

2,y2), that is:{
(yiQ(xi) + y2

iR(x2
i ))06i6n−1|Q,R ∈ Fqm [z], deg(Q),deg(R) 6 t− 1

}
.

Once we know a basis (v(i))06i6Lat−1 of
∑

`∈La GRSt(x
`,y`), we aim at recovering the

basis of a single GRS code. This is what we call the disentanglement.

7.2.2 Disentanglement of the System Solutions

The Sidelnikov-Shestakov [SS92] attack – that we briefly recalled in Paragraph 2.3.1 –
is a well known attack against McEliece schemes instantiated with GRS codes [Nie86]. In
our case, we can have a sum of GRS codes. In this situation, it seems not possible to
apply directly [SS92], as the vectors of

∑
`∈La GRSt(x

`,y`) do not have the desired form,
that is (y0Q(x0), . . . , yn−1Q(xn−1)). To overcome this issue, we propose to use well-chosen
intersections to recover a basis suitable for Sidelnikov-Shestakov. To gain intuition, we provide
a small example.

Example 7.10. We continue with the example 7.9. By squaring all the elements of GRSt(x,y)+
GRSt(x

2,y2), we have a basis of GRSt(x
2,y2) + GRSt(x

4,y4):{
(y2
iQ(x2

i ) + y4
iR(x4

i ))06i6n−1|Q,R ∈ Fqm [z],deg(Q),deg(R) 6 t− 1
}
.

We prove in Proposition 7.12 that, in charac. 2,(
GRSt(x,y) + GRSt(x

2,y2)
)
∩
(
GRSt(x

2,y2) + GRSt(x
4,y4)

)
= GRSt(x

2,y2).

Hence, we have a basis of GRSt(x
2,y2).



126 CHAPTER 7. ALGEBRAIC CRYPTANALYSIS OF WILD MCELIECE

Our general method to disentangle the solutions is proved in characteristic 2, but for other
characteristics we need the following assumption:

Assumption 7.11. Let q = ps with p prime. Let x ∈ Fnqm be a support and y ∈ Fnqm be

defined by y = g(x)−1 for some polynomial g(z) ∈ Fqm [z] of degree t. Let L1 and L2 be two
subsets of {1, . . . , q} with (#L1 + #L2)t < n. Then, we have that:∑

`∈L1

GRSt(x
`,y`)

⋂∑
`∈L2

GRSt(x
`,y`)

 =
∑

`∈L1∩L2

GRSt(x
`,y`).

For the specific sets L ⊂ {1, . . . , q} that we encountered, this assumption is rigorously
proved in characteristic 2 (see Proposition 7.12). For bigger characteristics, though we could
not find a formal proof, we launched more than 100, 000 experiments with parameters taken
from the challenges and found out that equality held in all cases.

Now we generalize the method of intersection of codes proposed in Example 7.10.

Proposition 7.12. Let q = ps (p prime and s > 0), and x,y ∈ Fnqm with y−1 = g(x) where
g(z) ∈ Fqm [z] of degree t > 0. Let also a, 0 < a < s, and

La =
⋃

06r6s−1−a
{pr, 2pr, . . . , (p− 1)pr} ∪

{
ps−a

}
.

Then, under the following hypotheses:
— if p = 2, we suppose that g(z) is irreducible and (t− 1)p2(s−a) < n,
— if p > 2, we suppose that Assumption 7.11 is verified,

it holds that:

∑
`∈La

GRSt(x
`,y`) ∩

∑
`∈La

GRSt(x
`,y`)

p(s−a)

= GRSt(x
ps−a ,yp

s−a
).

We separate the proof according to p = 2 or p > 2.

Proof relying on Assumption 7.11 for p > 2.

Proof. Let Φ : (m0, . . . ,mn−1) ∈ Fnqm 7→ (mps−a

0 , . . . ,mps−a

n−1 ). First, remark that, as ps−a is a

power of the characteristic, it holds that Φ
(
GRSt(x

`,y`)
)

= GRSt(x
ps−a`,yp

s−a`) for all `, and

Φ
(∑

`∈La GRSt(x
`,y`)

)
=
∑

`∈L′a GRSt(x
`,y`) with L′a =

⋃
s−a6r62(s−a)−1 {pr, 2pr, . . . , (p− 1)pr}∪{

p2(s−a)
}

. When p = 2, we fully prove the proposition just below. Otherwise (when p > 2),
we rely on Assumption 7.11 with the sets La and L′a. Then, we have La ∩ L′a = {ps−a}, and
the desired equality.

Complete proof when p = 2.

Proof. When p = 2, we prove Proposition 7.12 without resorting to Assumption 7.11. We
use the fact that the polynomial g(z) linking x and y−1 is irreducible. This is the case in the
construction proposed in [BLP11b, BLP11c]. For p = 2, La is reduced to powers of 2, namely
La = {2u}06u6s−a. In such case, it holds that

∑
`∈La

GRSt(x
`,y`)

⋂
Φ

∑
`∈La

GRSt(x
`,y`)

 =

(
s−a∑
u=0

GRSt(x
2u ,y2u)

)
∩

2(s−a)∑
u=s−a

GRSt(x
2u ,y2u)

 .
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So the proof consists in showing that this intersection is reduced to GRSt(x
2s−a ,y2s−a).

We pick v ∈
(∑s−a

u=0 GRSt(x
2u ,y2u)

)
∩
(∑2(s−a)

u=s−a GRSt(x
2u ,y2u)

)
. There exist polynomials

R2u , Q2s−a+u ∈ Fqm [z] (with 0 6 u 6 s− a) of degree lower than t such that

vi =

s−a∑
u=0

y2u

i R2u(x2u

i ) =

s−a∑
u=0

y2s−a+u`
i Q2s−a+u(x2s−a+u`

i ), for all 0 6 i 6 n− 1,

As yi = g(xi)
−1, we obtain polynomial relations in the xi’s by multiplying by g(xi)

22(s−a) .
This yields n relations:

s−a∑
u=0

g(xi)
(22(s−a)−u)R2u(x2u

i ) =
s−a∑
u=0

g(xi)
22(s−a)−(s−a+u)

Q2s−a+u(x2s−a+u
i ).

We suppose here that the degree of this polynomial relation is lower than n, that is
(t− 1)22(s−a) < n, so that we can deduce the polynomial equality:

s−a∑
u=0

g(z)(22(s−a)−u)R2u(z2u) =

s−a∑
u=0

g(z)22(s−a)−(s−a+u)
Q2s−a+u(z2s−a+u). (7.7)

Modulo g(z) all polynomials vanish but one, this yields Q22(s−a)(z
22(s−a)) ≡ 0 mod g(z).

Thanks to Lemma 7.7, we have g(z) divides Q22(s−a)(z
22(s−a)) =

(
Q

(u)

22(s−a)
(z)
)22(s−a)

(for

u = ms − 2(s − a)). As g(z) is irreducible, this entails that g(z) divides Q
(u)

22(s−a)
(z), but

Q
(u)

22(s−a)
(z) has same degree as Q22(s−a)(z), which has degree lower than t (notations as in the

proof of Theorem 7.6). Hence we deduce that Q
(u)

22(s−a)
(z) = 0 and also its Fröbenius Q22(s−a) =

0. Then, we look at the new relation of type (7.7) and start over with the polynomial

Q22(s−a)−1(z22(s−a)−1
). The proof that Q22(s−a)−1 = 0 is identical. One after the other, we

prove that all the polynomials R2u , Q2s−a+u are zero except the matching polynomials R2s−a

and Q2s−a which are equal, so that z ∈ GRSt(x
2s−a ,y2s−a). The problem when p 6= 2 is that

the set La contains exponents which are not a pure power of p.

7.2.3 Sidelnikov-Shestakov Adapted To Recover the Goppa Polynomial

Once a basis of GRSt(x
ps−a ,yp

s−a
) is known, we recover x,y and g(z) thanks to a variant

of Sidelnikov-Shestakov. The specificity of the GRS codes that we attack lies in the fact that
there exists a polynomial relation between the support and the multipliers.

Proposition 7.13. Let x be an n-tuple (x0, . . . , xn−1) of distinct elements of Fqm and g(z) ∈
Fqm [z] be a squarefree polynomial of degree t such that g(xi) 6= 0, for all i, 0 6 i 6 n− 1 Let
GGRS be the generator matrix of a GRS code GRSt

(
x,Γ(x)−1

)
. There is a polynomial-time

algorithm which allows to recover a n-tuple x′ = (x′0, . . . , x
′
n−1) of distinct elements of Fqm and

a squarefree polynomial Γ′(z) ∈ Fqm [z] of degree t such that g′(x′i) 6= 0, for all i, 0 6 i 6 n− 1
and GRSt

(
x,Γ(x)−1

)
= GRSt

(
x′,Γ′(x′)−1

)
.

This problem is very close to the one addressed in [SS92]. The only issue is that the
homographic transformation on the support used in the original attack (see Paragraph 2.3.1)
indeed preserves the GRS structure but not the polynomial link. Thus, polynomial interpo-
lation over x and y−1 is not possible. We propose to avoid this homographic transformation
by considering a well chosen extended code (Definition 1.9).

Our algorithm, proved below, is the following.
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Algorithm 8 Extended Version of Sidelnikov-Shestakov algorithm

Input : GGRS a generator matrix of CGRS = GRSt(x,y), with y = Γ(x)−1 (deg(Γ) = t)
Output : Secret x, y, and Γ(z)

1: Build P = (pi,j)06i6n−t−1
06j6n−1

a generator matrix of the dual of CGRS .

2: Deduce P̃ a matrix of the extended code ( Definition 1.9) of the code spanned by P.
3: Build

(
It|U

)
, with U = (ui,j) 06i6t

t+16j6n
a parity-check matrix of the code spanned by P̃ in

systematic form.
4: Solve the linear system with unknowns Xi’s to find x{

ui,j
ui′,j

(Xi′ −Xj) =
ui,n
ui′,n

(Xi −Xj) | 0 6 i, i′ 6 t, t+ 1 6 j 6 n− 1

}
.

5: Solve the linear system with unknowns Yi’s to find y (the xi’s were found at previous
step) {

n−1∑
i=0

pj,ix
`
iYi = 0 | 0 6 j 6 n− t− 1, 0 6 ` 6 t− 1

}
.

6: Interpolate Γ(z) from x and y−1.

Proposition 7.14. With input G the generator matrix of a [n, t]q GRS code C , Algorithm 8
outputs vectors x,y ∈ Fnqm and a polynomial Γ ∈ Fqm [z] of degree t such that C = GRSt(x,y)

and y = Γ(x)−1.

Proof. From a generator matrix of GRSt(x,y), we deduce easily (by linear algebra) a parity-

check matrix P̃ of C̃⊥ in sytematic form. As the dual of CGRS is the Goppa code G (x, g) over

Fqm , we know thanks to Proposition 1.24 that Ṽt+1 (x,y) is parity check matrix of C̃⊥GRS ,
with

Ṽt+1 (x,y) =


y0 · · · yn−1 0
y0x0 · · · yn−1xn−1 0
...

...
...

y0x
t−1
0 · · · yn−1x

t−1
n−1 0

y0x
t
0 · · · yn−1x

t
n−1

1
LC(g)


So, the rows of P̃ are linear combinations of the rows of Ṽt(x,y), so we write it:

P̃ =


1 0 . . . 0 yt+1R0(xt+1) . . . yn−1R0(xn−1) LC(R0)

LC(g)

0 0
. . . 0

...

0 0 . . . 1 yt+1Rt(xt+1) . . . yn−1Rt(xn−1) LC(Rt)
LC(g)


=

 It

u0,t+1 . . . ut+1,n
...

ut,t+1 . . . ut+1,n


where R0, . . . , Rt are polynomials of Fqm [z] of degree t+ 1.
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Now, we perform the Sidelnikov-Shestakov like method P̃. Since we know t roots of each
Rj (of degree t), we have that

Rj(z) = LC(Rj)
∏

06i6t,i 6=j
(z − xi).

This allows to write for 0 6 i, i′ 6 t and t+ 1 6 j 6 n− 1,

ui,j
ui′,j

=
LC(Ri)(xi − xj)
LC(Ri′)(xi′ − xj)

, and for j = n,
ui,n
ui′,n

=
LC(Ri)

LC(Ri′)
.

Note that none of the coefficients ui,j ’s can be zero, as it would provide a t+ 1-th root for
a Qi. Finally, the support elements are solutions of the linear system:{

ui,j
ui′,j

(xi′ − xj) =
ui,n
ui′,n

(xi − xj) | 0 6 i, i′ 6 t, t+ 1 6 j 6 n− 1

}
.

7.2.4 Recovery of the Incognito Polynomial by Solving a Linear System

Until now, we recovered a secret support and the polynomial g(z). We saw that the full
Goppa polynomial can contain other factors, for instance the factor f(z) in Wild McEliece
Incognito.

To recover this factor, we find the multipliers associated to f , that is the vector w =
f(x)−1. Then, we perform polynomial interpolation. We note that once x and y = g(x)−1

are known, then many of the equations of Lemma 7.3 become linear in w. Namely,

q⋃
uy=1

{ n−1∑
j=0

gi,jwj

(
y
uy
j xuxj

)
= 0 | 0 6 i 6 k − 1, 0 6 ux 6 uyt+ deg(f)− 1

}
.

In practice, we observed that the linear system obtained has a rank defect and is not
sufficient to find w. However, we can also use the fact that Cpub ⊂ G (x, f(z)) and Proposition
1.24 to prove that

n−1∑
j=0

gi,jwix
deg(f)
i =

1

LC(f)

n−1∑
j=0

gi,j

 .

Since x is known and setting LC(f) = 1, we obtain new linear equations in the components
of w. Putting all the linear equations together, experiments show then that we obtain a unique
solution w, and f by polynomial interpolation.

To sum up, the results of this section prove the following theorem.

Theorem 7.15. Let q = ps (p prime and s > 0). Let Gpub = (gi,j)06i6k−1
06j6n−1

be a generator

matrix of a masked Wild Goppa code Cpub = G (x, f(z)gq−1(z)). Let y = g(x)−1, t = deg(g),
and

V =

∑
`∈La

GRSt(x
`,y`)

 where La =
⋃

06r6s−1−a
{pr, 2pr, . . . , (p− 1)pr} ∪

{
ps−a

}
.

Once V is given, we can recover in polynomial-time a support x′ and polynomials f ′(z), g′(z) ∈
Fqm [z] such that Cpub = G (x′, f ′g′q−1). Stated differently, we can recover in polynomial-time
a key (x′, g′, f ′) equivalent to the secret-key as soon as the system (7.5) has been solved.
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7.3 Application to Wild McEliece & Incognito

We applied the framework of our attack to Wild McEliece & Incognito keys proposed
by the authors of [BLP11b, BLP11c]. While the attack method we presented so far can be
applied as soon as the Goppa polynomials contains a factor with multiplicity greater than 1
(it does not have to be equal to q), we found out that a multiplicity equal to the the size
of the base field entailed a very specific property when the base field is not a prime field.
Namely, from the public matrix, we can construct a new code with same private elements.
We explain this in Paragraph 7.3.1. Then, we apply all the previous results in Paragraph
7.3.2 to evaluate the security of the keys proposed in [BLP11b, BLP11c].

7.3.1 A property of Wild Goppa codes over non-prime base fields

The most (computationally) difficult part of our attack against Wild McEliece & Incognito
is to solve the algebraic system defined in Theorem 7.6. In this part, we aim at giving a better
idea of the complexity of resolution by determining the exact number of “free variables” in the
system. Namely, we show that we can eliminate many variables thanks to linear equations.

The systemWq,a(Z) =
⋃
u∈Pa

{∑n−1
j=0 gi,jZ

u
j = 0 | 0 6 i 6 k − 1

}
of Theorem 7.6 obviously

contains k linear equations by picking u = 1 (1 ∈ Pa by definition). We can easily derive other
linear equations by applying the additive map z 7→ z(qm/pu) to all the equations in degree pu.
As the solutions lie in Fqm , it holds that (Zp

u

j )q
m/pu = Zj , and for 0 6 i 6 k − 1n−1∑

j=0

gi,jZ
pu

j

qm/pu

=
n−1∑
j=0

g
qm/pu

i,j Zj = 0.

However, we observed that those linear equations were very redundant. To explain those
linear dependencies, we found out a property of the masked Wild Goppa codes G (x, f(z)g(z)q)
(Theorem 7.16). We prove that, by simple operations on their generator matrices, we can
build a generator matrix of the code G (x, g(z)p) over Fp . This latter matrix allows to write
many independent linear equations implying the private elements of Cpub.

Namely, we consider the scalar restriction of m ∈ Cpub ⊆ Fnq into Fsp. This yields s

components m(0), . . . ,m(s−1) ∈ Fnp (we write each m ∈ Fnq over a Fp-basis, i.e. m =

m(0)θ0 + · · · + m(s−1)θs−1). Let C Fp ⊆ Fnp be the code generated by the coordinate vec-

tors m(0), . . . ,m(s−1) for all the codewords m ∈ Cpub. We explain how to build a generator
matrix of C Fp .

For a vector m ∈ (Fq)n, the associated coordinate vectors are obtained by linear com-

binations of m and its Fröbenius mp, . . . ,mps−1
. In details, for an element m ∈ Fq, we

write over an Fp-basis m = m0θ0 + · · · + ms−1θs−1. As mi ∈ Fp, we have the relations

mpj = m0θ
pj

0 + · · ·+ms−1θ
pj

s−1 that we write matricially:
m
mp

...

mps−1

 =


θ0 . . . θs−1

θp0 . . . θps−1
...

θp
s−1

0 . . . θp
s−1

s−1


︸ ︷︷ ︸

C


m0

m1
...

ms−1

 .

C is invertible since the θi’s are a basis [LN97, p.62 Corollary 28]. C−1 allows to embed a
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packet of rows


m
mp

...

mps−1

 into (Fp)n. The product C−1


m
mp

...

mps−1

 gives exactly the s rows of

the coordinates of m over Fp. To write a matrix of C (Fp) , expand a generator matrix Gpub

of Cpub as follows: suppose Gpub has rows L0, . . . , Lk−1, build G(F ) the matrix with rows

L0, L
p
0, . . . , L

ps−1

0 , L1, L
p
1, . . . . The matrix

C̃−1 =

 C−1 . . . 0s
. . .

0s . . . C−1

 ,

is such that C̃−1G(F ) has coefficients in Fp and is a generator matrix of C Fp .

Theorem 7.16. Let q = ps (p prime, and s > 0). Let Gpub = (gi,j)06i6k−1
06j6n−1

be a generator

matrix of a masked Wild Goppa code Cpub = G (x, f(z)g(z)q−1). Then, the code C Fp over Fp
spanned by C̃−1G(F ) (as introduced previously) satisfies:

C Fp ⊆ G (x, g(z)p)|Fp .

Proof. Recall that q = ps (p prime, and s > 0 here). We find a code common to the vectors

m, . . . ,mps−1
for m ∈ G (x, gq(z)).

Proposition 7.17. Let C (F ) be the code generated by the rows of Cpub and their Frobenius.
Then it holds that

C (F ) =
{

m,mp, . . . ,mps−1 |m ∈ Cpub
}
⊂ Apt(xp

s−1
,yp

s
).

Proof. First, we show that mpj ∈ Aps−j (xp
j
,yp

s
). As we know that m ∈ G (x, g(z)q), it holds

that

g(z)q

∣∣∣∣∣
n−1∑
i=0

mi

z − xi
.

We apply the j-th power of the Fröbenius, to all the coefficients of the fractions appearing in
the previous relation:

(g(j)(z))q

∣∣∣∣∣
n−1∑
i=0

mpj

i

z − xp
j

i

which means exactly that mpj ∈ G (xp
j
, (gq)(j))(z)). Remark that

(
g(j)
)q

= (gq)(j). We know

from the proof of Proposition 7.3 that for any P ∈ Fqm [z], G (xp
j
, P q(z)) is included in any

G (xp
j
, P `(z)) with 1 6 ` 6 q = ps. In particular, with ` = ps−j and P = g(j), it holds that

mpj ∈ G (xp
j
, (g(j)(z))p

s−j
) = Aps−jt(xp

j
,yp

s
).

The latter equality can be detailed as follows. According to Lemma 7.7, (g(j)(z))p
s−j

=

g(s)(zp
s−j

), so the multipliers associated to G (xp
j
, (g(j)(z))p

s−j
) are(

g(s)(xp
jps−j

i )
)−1

=
(
g(xi)

ps
)−1

= yp
s

i .
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Looking at the parity-check matrices of the codes Aps−jt(xp
j
,yp

s
), we see that:

Cpub = Apst(x,yp
s
) ⊂ Aps−1t(x

p,yp
s
) ⊂ · · · ⊂ At(xp

s
,yp

s
).

Thus, for m ∈ Cpub, we have m,mp, . . . ,mps−1 ∈ Apt(xp
s−1
,yp

s
).

So far, we know that

C (Fp) ⊂ Apt(xp
s−1
,yp

s
).

This implies that G(F )Vpt(x
ps−1

,yp
s
) = 0. Thanks to C̃−1, we have:

C̃−1G(F )︸ ︷︷ ︸
∈M(Fp)

×Vpt(x
ps−1

,yp
s
) = 0.

We can apply the Fröbenius to all the equations in the matrix product, or rather extract

a ps−1 root, it does not change any coefficient in C̃−1G(F ), and it yields:

C̃−1G(F ) ×Vpt(x,y
p) = 0.

This means exactly that the rows of C̃−1G(F ) generate a subcode of G (x, g(z)p), which is a
Wild Goppa code over Fp.

In practice, we observed equality in the inclusion provided s dim(Cpub) > dim(G (x, g(z)p)).
Note that G (x, g(z)p) is a Wild Goppa code with the same private elements x and y = g(x)−1

as Cpub. This provides extra equations on the variables Z of Wq,a(Z).

Proposition 7.18. Let Cpub = G (x, f(z)gq−1(z)) and Wq,a(Z) the associated system for

1 6 a 6 s. Let G̃Fp = (g̃i,j)06i6kp−1
06j6n−1

be a generator matrix of G (x, g(z)p) (with kp =

dim (G (x, g(z)p))). Then, the solutions of Wq,a(Z) satisfy:

p−1⋃
`=0


n−1∑
j=0

g̃i,jZj = 0 | 0 6 u 6 t− 1, 0 6 i 6 kp − 1

 .

Proof. Pick a solution z with coordinates zj =
∑

`∈La y
`
jQ`(x

`
j), where the Q`’s are polyno-

mials of degree 6 t − 1 of Fqm [z]. We decompose La = P1 ∪ P2 with P1 = {1, 2, . . . , pa − 1}
and P2 = {pa, . . . , ps}. As G (x, g(z)p) is a Wild Goppa code with the same private elements
x and y = g(x)−1 as Cpub, Lemma 7.3 holds for ` ∈ {1, . . . , p− 1}:

n−1∑
j=0

g̃i,jy
`
jx
`u
j = 0 | 0 6 u 6 t− 1, 0 6 i 6 kp − 1

Other `’s in La can be written ` = `0p
r with `0 ∈ {1, . . . , p − 1} and for some r 6 1. Apply

the additive map x 7→ xp
r

to the relations
∑n−1

j=0 g̃i,jy
`0
j x

`0u
j = 0. Since g̃p

r

i,j = g̃i,j , we obtain∑n−1
j=0 g̃i,jy

`
jx
`u
j = 0. Thus, all the terms y

uy
j xuxj in zj satisfy

∑n−1
j=0 g̃i,jy

uy
j xuxj = 0, so that∑n−1

j=0 g̃i,jzj = 0.

From Proposition 7.18, we deduce the following corollary.



7.3. APPLICATION TO WILD MCELIECE & INCOGNITO 133

Corollary 7.19. As kp > n−(p−1)mst (and in practice kp = n−(p−1)mst), the knowledge
of Gpub gives access to (at least) n− (p−1)mst independent linear relations between the Zi’s.
The system Wq,a(Z) contains (at most) (p− 1)mst free variables.

Remark 7.20. The number of “free” variables given in Corollary 7.19 is given without taking
into account the vector space structure of the solutions. Thanks to Corollary 7.8, we know
that La · t extra variables can be fixed to arbitrary values in Wq,a(Z).

For a Goppa polynomial of same degree, but without multiplicities, the number of free
variables in the system would be n− k > (ps − 1)mt instead of (p− 1)mst. In particular, for
a masked code, the number of variables describing it does not depend on the degree of the
incognito polynomial f and the attack is not harder for masked codes. This explains why the
codes defined over non-prime fields are the weakest ones.

7.3.2 Practical experiments & Broken Challenges

We report below various experimental results performed with our attack on various pa-
rameters for which [BLP11b] said that strength is ”unclear” and that an attack would not
be a ”surprise” but for which no actual attack was known. We also generated our own
keys/parameters to see how the attack scales. We performed our experiments with off-the-
shelf tools (Magma [BCP97b] V2.19-1) and using a 2.93 GHz Intel PC with 128 Gb. of
RAM. As the polynomial system solving is by far the most costly step, we give timings only
for this one. We performed it using the F4 algorithm ([Fau99]) of Magma. As explained in
Section 7.2, it is necessary to solve the systems Wq,a(Z) a number of times equal to the di-
mension of the vector space of the solutions (Theorem 7.6). These resolutions are completely
independent and can be executed in parallel. This is why we give the timings under the form
(number of separate resolutions) × (time for one resolution). By #Z, we denote the number
of free variables remaining in the system after cleaning up the linear equations (Corollary
7.19) and fixing coordinates thanks to the vector space structure of the solutions (Corollary
7.8). The general formula is #Z = ((p− 1)ms−#La) t for q = ps and s > 1.

In the experiments, we tried various parameters a for the systems Wq,a(Z). We give a
comparison on some examples in Table 7.1 (the system Wq,a(Z) with a = s can be solved in
a reasonable amount of time in actually few cases).

q m t n k deg(f) Solving Wq,a(Z) with a = s Solving Wq,a(Z), optimal a

32 2 2 678 554 0 2× 12s (#Z = 18) 8× 0.08 s (a = 2,#Z = 9)
32 2 1 532 406 32 2× 49s (#Z = 9) 4× 0.02 s (a = 2,#Z = 6)
32 2 3 852 621 24 3× (30 min 46s) (#Z = 37) 12× 0.6 s (a = 2,#Z = 18)
27 3 3 1312 1078 0 3× (3h 10 min) (#Z = 51) 15× 3.0 s (a = 1,#Z = 39)

Table 7.1 – Comparison of the resolution times of Wq,a(Z) for various possible a’s. The
smallest possible a gives the best timings.

It appeared that a should be chosen so as to maximize the dimension of the solution set
(Theorem 7.6). This choice minimizes the number of variables. Namely, the best choice is
to set a = 1 when p > 2. When p = 2, setting a = 1 would yield only “linear” equations (of
degree 2u, u 6 s). So, we set a = 2 and the systems W2u,2(Z) contain only cubic equations.
We recall that for a = s, Assumption 7.11 is not necessary, whereas we rely on it when a < s
and p 6= 2. In the rest of the experiments, we always pick the best choice for a.
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In Table 7.2, we present experimental results performed with Wild McEliece (when deg(f) =
0) and Incognito (deg(f) > 0) parameters. For Wild McEliece, all the parameters in the scope
of our attack were quoted in [BLP11b, Table 7.1] with the international biohazard symbol h.
The reason is that, for those parameters, enumerating all the possible Goppa polynomials is
computationaly feasible. In the current state of the art, to apply the SSA attack ([LS01]),
one would not only have to enumerate the irreducible polynomials of Fqm [z], but also all the
possible support sets, as the support-splitting algorithm uses the support set as input (as
explained in Paragraph 2.3.2 of Chapter 2).

We indicate, for each set of parameters, the ISD complexity (obtained thanks to Peters’
software 1), as it remains the reference to evaluate the security of a McEliece scheme. We also

give the complexity of an SSA attack, which is in the current state-of-the-art
(
qm

n

)
· qmt/t.

Regarding Wild McEliece Incognito, we broke the parameters indicated with a security
of 2128 in [BLP11c, Table 5.1] for q ∈ {32, 27, 16}. For some other non-prime base fields, we
give the hardest parameters in the scope of our attack in roughly one day of computation.

For the sake of completeness, we also include in Tables 7.2 Wild McEliece schemes with
a quadratic extension. In [COT14], the authors already presented a poly-time attack in this
particular case: it applies for the parameters with m = 2, but not for the other ones. We
want to stress that our attack also works for m = 2 and any t ([COT14] does not work in
the extreme case t = 1). Also, we emphasize that, whilst solving a non-linear system, our
attack is actually faster than [COT14] in some cases. For q = 32 and t = 4, the attack of
[COT14] requires 49.5 minutes (using a non-optimized Magma implementation according to
the authors). We can mount our attack in several seconds with our techniques.

In practice, we could not solve (in less than two days) the algebraic systems involved when
the number of free variables #Z exceeds 65. We recall the relation #Z = ((p− 1)ms−#La) t
(for q = ps and s > 1), which should help the designers to scale their parameters. An
important remaining open question is to give a precise complexity estimates for the polynomial
system solving phase in those cases.

1. available at http://christianepeters.wordpress.com/publications/tools/
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q m t n k deg(f) Key (kB) ISD SSA Solving Wq,a(Z), optimal a

32? 2 2 678 554 0 43 293 2939 · 219 8× 0.08 s (#Z = 9)
32 2 4 841 601 0 92 2128 2688 · 238 16× 10 s (#Z = 36)
32 2 5 800 505 0 93 2136 2771 · 248 20× (2 min 45s) (#Z = 40)

27 3 3 1312 1078 0 45 2113 26947 · 241 15× 3.0 s (#Z = 39)
27 3 4 1407 1095 0 203 2128 27304 · 255 20× (6 min 34 s) (#Z = 52)
27? 3 4 1312 1000 0 184 2128 26947 · 255 20× (10 min) (#Z = 52)
27 3 5 1700 1310 0 304 2158 28343 · 269 25× (1h 59 min) (#Z = 65)
27 3 5 1800 1410 0 327 2160 28679 · 269 25× (1h 37 min) (#Z = 65)

16? 3 4 883 703 0 79 286 23074 · 246 12× (6 min 40s) (#Z = 36)
16? 3 5 1011 786 0 88 2100 23296 · 258 15× (2h 15 min) (#Z = 45)
16 3 6 1316 1046 0 141 2129 23703 · 269 18× (36h 26 min) (#Z = 54)

9? 3 6 714 570 0 325 275 2102 · 254 18× (24h 52 min) (#Z = 54)

q m t n k deg(f) Key (kB) ISD SSA Solving Wq,a(Z), optimal a

32? 2 1 532 406 32 32 282 21017 · 2335 4× 0.02 s (#Z = 6)
32? 2 2 864 668 36 82 2124 2635 · 2384 8× 0.09 s (#Z = 9)
32 2 3 852 621 24 90 2130 2663 · 2273 12× 0.6 s (#Z = 18)

27? 3 2 1504 1240 36 195 2127 26121 · 2393 10× 0.8 s (#Z = 26)
27 3 2 1500 1218 42 204 2128 25253 · 2225 10× 0.9 s (#Z = 26)

25? 3 3 974 719 13 106 299 27658 · 2546 15× (1h 25 min) (#Z = 57)
25 3 3 1206 915 25 155 2117 27643 · 2632 15× (1h 2 min) (#Z = 57)

16? 3 4 908 680 16 78 293 23120 · 2242 12× (3 min 20s) (#Z = 36)
16? 3 5 1120 853 14 114 2125 23460 · 2230 15× (2h 17 min) (#Z = 45)
16 3 6 1328 1010 16 160 2125 23716 · 2265 18× (36h 35 min) (#Z = 54)

9 3 6 728 542 14 40 281 22759 · 2191 18× (25h 13 min) (#Z = 54)

Table 7.2 – Practical experiments with Wild McEliece & Incognito parameters. ISD com-
plexities are obtained thanks to Peters’ software1. SSA attack complexity is given under the
form (support enumeration)·(Goppa polynomial enumeration). The ? indicates parameters
extracted from the website.
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7.4 Conclusion

We proposed an algebraic modelling which allows to exploit the additive structure intro-
duced into the Wild Goppa codes compared to usual Goppa codes. We emphasize that the
well-known property G (x, g) = G (x, g2) when g ∈ F2m [z] has no square factors shows that
binary Goppa codes are almost always wild Goppa codes. Unfortunately, in this special case,
the quadratic equations are trivial, the systemsWq,s(Z) contain only linear equations and are
strongly underdefined. So, this modelling does not impact at all the security of binary Goppa
codes with irreducible Goppa polynomial.

This work focused on Goppa polynomials with at least one factor with multiplicity equal
to q − 1, but we can deduce a warning for McEliece schemes with any multiplicity. Pick
G (x,Γ) a Goppa code with Γ(z) ∈ Fqm [z]. Write Γ as a product of irreducible polynomials
fi ∈ Fqm [z]: f = fm1

1 . . . fmrs , where we suppose that the multiplicities have been sorted in
decreasing order: m1 > · · · > mr. We gather together the factors with same multiplicities,
that is we write

Γ = gm1
1 . . . gmrr , with gi =

∏
mult(fj)=mi

fj .

Let t = deg(g1) the support can be recovered by applying our adapted Sidelnikov-
Shestakov on the solutions of the system⋃

16u6m1

{
gi,0Z

u
0 + · · ·+ gi,n−1Z

u
n−1 = 0 | i ∈ {0, . . . , k − 1}

}
.

Those solutions form a union of vector spaces of dimension deg(f), so that the systems to
solve contain n − k − deg(g1) = m

(∑
16i6rmi deg(gi)

)
− deg(g1) variables. The number of

equations is given by m1k = m1

(
n−m

(∑
16i6rmi deg(gi)

))
. A good choice of parameters

should, in any case, give an underdefined system.



Chapter 8

Toward a Secure Implementation of
McEliece Decryption

This chapter presents results from an article written with Mariya Georgieva: Toward a
Secure Implementation of McEliece Decryption, accepted for publication at COSADE 2015
([GdP15]).

The purpose of this chapter is to analyze the security regarding timing attacks of the
decryption in McEliece scheme (Algorithm 4) instantiated with a binary Goppa code.

This decryption mainly consists in a decoding, that is, for m ∈ Fkq ,G ∈ Fk×nq and e ∈ Fnq ,
to recover m and e from c = mG + e. We explained in Section 1.3 of Chapter 1 how
to perform such decoding when G is the generator matrix of a binary Goppa code and e
has weight less than or equal to the degree of the Goppa polynomial (Algorithms 2 and 3).
When implementing Algorithms 2 and 3, a problem arises in most of the past proposals
(e.g. in [Bis10, Hey11, Str10a, SWM+10]) because the operation flow of the decryption is
strongly influenced by the error vector e, but no information is known about the error vector
when starting decryption. From an attacker’s point of view, this is a favorable situation. It
means that the observed or manipulated device may leak information before any detection of
the attack. These security aspects were addressed by various authors, who explained that a
device implementing an unprotected decryption is prone to attacks on the messages [SSMS09,
AHPT11] and on the key [Str10b, Str13]. Although counter-measures were proposed against
some of the leakages, the situation is still unsatisfactory, as it is noticed in the conclusion
of [Str13]. In particular, to the best of our knowledge, no decryption algorithm requiring a
number of steps independent of the error weight was described.

The work that we present here gathers the different weaknesses revealed in [SSMS09,
AHPT11, Str10b, Str13]. We detail in Section 8.1 the existing message and key-recovery
attacks exploiting timing leakages. In particular, we explain the attacks of Strenzke and
show that they can be extended to bypass the counter-measure of [Str10b]. All these attacks
targeted only one of the two known methods for decoding a binary Goppa code (namely
Patterson algorithm, Algorithm 3). Along with our presentation, we evaluate how/if those
threats transpose to the other decoding method (i.e. the alternant decoder, Algorithm 2 ).
Then, we describe in Section 8.2 an Extended Euclidean Algorithm (EEA) tailored for the
alternant decoder which has a flow of operations independent of the error vectors (Algorithm
16). The new algorithm was inspired by a work of Berlekamp [BSP94]. We explain step-by-
step the construction of the algorithm, and provide completeness proofs in Section 8.3 (which
we could not find in the literature).

137
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To ease the reading of this chapter, we recall here the Algorithms allowing to perform the
decoding on binary Goppa codes. G generates a binary Goppa code G (x, g) (Defintion 1.22)
with deg(g) = t and w 6 t with x ∈ Fnqm and g(z) ∈ Fqm [z] of degree t.

Input: c = mG + e,x and g(z).
Output: e = (0, . . . , ei1 , . . . , 0, eiw , 0, . . . ).

Polynomial syndrome:

SAlt,e(z) =
2t−1∑
`=0

(
n−1∑
i=0

cig(xi)
−2x`i

)
z`.

Polynomials to be recovered:

σinv,e(z) =
w∏
j=1

(1− zxij ),

ωinv,e(z) =
w∑
j=1

eijg(xij )
−1

w∏
s=1
s 6=j

(1− zxis).

Key equation:
(σinv,e, ωinv,e) unique solution of{
ωinv,e(z) = σinv(z)SAlt,e(z) mod z2t,

deg(σinv) 6 bt/2c, deg(ωinv) 6 bt/2c − 1.

Resolution
EEA(z2t, SAlt,e, t) = (µσinv, (−1)Nµωinv),
for some µ ∈ F∗qm , N > 0.

Error recovery
σe(z) = zwσinv(1/z).
Find the roots of σe.

Figure 8.1 – Alternant Decoder

Input: c = mG + e,x and g(z).
Output: e = (0, . . . , ei1 , . . . , 0, eiw , 0, . . . ).

Polynomial syndrome:

SGop,e(z) =
n−1∑
i=0

ci
z − xi

mod g(z).

Polynomials to be recovered:

σe(z) =
w∏
j=1

(z − xij ),

ωe(z) =
w∑
j=1

w∏
s=1
s 6=j

(z − xis).

Key equation:
(σ1, σ2) unique solution of{

τ(z)σ2(z) = σ1(z) mod g(z),

deg(σ1) 6 bt/2c,deg(σ2) 6 bt/2c − 1,

with τ(z) =
√
SGop,e(z)−1 + z mod g(z).

Resolution
1.EEA(g(z), SGop,e(z), 0) = (., SGop,e(z)−1),
2.EEA(g(z), τ, bt/2c) = (σ1, σ2),

Error recovery
σe(z) = σ1(z)2 + zσ2(z)2,ωe = σeSe mod g.
Find the roots of σe.

Figure 8.2 – Patterson Algorithm
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8.1 Timing Attacks against McEliece Decryption

The attacks that we review aim at recovering information on an encrypted message or on
the secret key by observing the influence of the error weight on the behaviour of the decryption
algorithm as implemented in Patterson decoding (Algorithm 8.2). Of particular interest,
it contains an extended Euclidean algorithm (EEA) which performs successive Euclidean
divisions as in Algorithm 1. As the Alternant decoder also contains an EEA, we apply the
different attacks proposed to both decoding algorithms in order to determine which one is the
most resistant.

8.1.1 Plaintext-Recovery Attacks

The authors of [SSMS09, AHPT11, Str10b] described attacks using a common framework.
They exploit a decryption oracle to recover the plaintext from an encrypted message c: the
attacker can request decryption of any message c′ 6= c and observe the execution of the
decryption.

Generic Attack Scenario
The common framework is summed up in Algorithm 9.

Algorithm 9 Framework for message-recovery attacks on a decryption device.

Input: A valid ciphertext c = mGpub + e, a decryption device D.
Output: The error vector e and plaintext m.

1: for i = 0, . . . , n− 1 do
2: Modify c into c?i = c + (0, . . . , 0, 1︸︷︷︸

i−th bit

, 0, . . . ).

3: Request decryption D(c?i).
4: Deduce by timing analysis or power consumption of D whether ei = 0 or ei = 1.
5: end for
6: Solve the linear system with unknown m: mGpub = c + e.
7: return Plaintext m.

We describe in Algorithm 9 an attack against a McEliece encryption scheme. The same
framework is applicable against Niederreiter encryption when a public encryption key Hpub

is known. It suffices to replace Step 2 by

2: Modify c into c?i = c + H
(i)
pub, where H

(i)
pub denotes the i-th row of Hpub.

Remark 8.1. In some variants of McEliece encryption, called CCA2 conversions [KI01,
Per12b, DDMQN12], a link is imposed between the message and the error. Ciphertext ma-
nipulation is detected thanks to a test on the validity of the error and the algorithm outputs
a failure: the attacker only checking the output does not recover information except that the
ciphertext was not valid. However, an attacker observing the behaviour of the computation
can deduce the error bits anyway. As the test on the error is performed after the decoding, it
is mandatory to eliminate the leakages in the decoding even for CCA2 conversions.

The first method to detect variations of the error weight was explained in [STM+08] and
refined in [AHPT11]. It dates back to 2008 and focuses on the determination of the roots
of the error locator polynomial σe(z) (Figure 8.2). The authors of [AHPT11] and [STM+08]
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propose convincing counter-measures against this weakness (see [AHPT11][Algorithm 4]).
Indeed, when starting the root-finding step, errors of weight lower than t can be detected
thanks to the low degree of the error locator polynomial. This makes this step rather simple
to protect. Unfortunately, this is not sufficient to discard attacks following the framework of
Algorithm 9. The reason is that, as first noticed in [SSMS09], the EEA determining σe also
has an execution time depending on the error weight. Now we focus on the EEA step which
is still problematic.

8.1.1.1 Timing attacks on the root-finding step.

The method used in [STM+08, AHPT11] dates back to 2008 and focuses on the deter-
mination of the roots of the error locator polynomial σe(z) (Algorithm 8.2). The idea is the
following. Let’s apply the framework of Algorithm 9 and look at the i-th iteration of the for
loop. We consider binary codes, so that the secret bit ei is equal to 0 or 1.

1. If ei = 1. The twisted ciphertext c?i satisfies c?i = mGpub + e?i with wH(e?i) =
wH(e)− 1. After solving the key equation, the error-locator polynomial obtained has
degree wH(e)− 1. Determining its roots may be done either by evaluating it at all the
support points (often F2m) or computing its greatest common divisor with the field
equation z2m − z. These operations take a time which depends on the degree of the
error locator polynomial. On an unprotected implementation, a shorter root-finding
step implies a lower degree error locator polynomial, so it implies that ei = 1.

2. If ei = 0. The twisted ciphertext c?i satisfies c?i = mGpub + e?i with wH(e?i) =
wH(e) + 1. For a correct ciphertext, the number of errors is set as high as possible,
so c?i is not a decodable message anymore. Decoding processes and EEA computes a
polynomial σ(z) which is still of degree t but σ(z) does not split over F2m any more.
Root-finding by polynomial evaluation or gcd computation both allow to detect this
case in the same time as with a correct error locator polynomial.

These two different behaviors can be distinguished by measuring time execution, so that an
attacker can know whether ei = 1 or ei = 0 and recover e.

Counter-Measure for the root-finding step.
The authors of [AHPT11] and [STM+08] propose a counter-measure against this vulnera-

bility. The idea in both case is to make the root-finding step’s execution time independant of
the weight of the error vector. To do so, they propose an extra-step to transform the output
of the EEA algorithm into a degree t polynomial. It is crucial that this step’s execution
time be independant of the weight of the error vector. A convincing proposition is made in
[AHPT11][Algorithm 4].

We note that, when starting the root-finding step, the leaking case (ei = 1) has already
been detected thanks to the low degree of the error locator polynomial. This makes this
step rather simple to protect. Unfortunately, this is not sufficient to discard attacks following
the framework of Algorithm 9. The reason is that, as first noticed in [SSMS09], theEEA
determining the error locator polynomial also has an execution time depending on the error
weight. This is the object of the next paragraph.

8.1.1.2 Exploitation of EEA leakages.

The authors of [SSMS09] focused on the second EEA of Patterson algorithm (Fig. 8.2
and Paragraph 1.3.2 of Chapter 1). Implemented as in Algorithm 1, the number of iterations
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in the while loop depends on the weight of the error. To do so, they show that the output
σ1(z), σ2(z) satisfy the relations:

deg(σ2(z)) =
N∑
i=1

deg(qi) (8.1)

deg(σ1(z)2 + zσ2(z)2) = wH(e) (8.2)

Thanks to relations (8.1) and (8.2), they deduce that, assuming that all the Euclidean
divisions in the second EEA have a quotient of degree one (which happens with probability
(1 − 2−m)N ), the number N of iterations in the while loop varies as in Table 8.1. These
variations of N can be detected either by measuring time execution or counting the number
of patterns on a power consumption trace. Thus, they provide a successful tool to perform
Algorithm 9 and recover a plaintext.

Counter-Measure for the Second EEA leakage.
To protect against the previous attack, the authors of [SSMS09] propose to check the degrees

of the polynomials processed by the EEA during its execution instead of checking only the
output. We recall that, in Patterson’s decoding, the error locator polynomial is split into even
and odd part: σe(z) = σ1(z)2 + zσ2(z)2. [SSMS09] gives a precise description of the degrees
to be expected for σ1(z) and σ2(z) according to the weight of the error, recalled in Table 8.1.

t = 2t′ t = 2t′ + 1

N deg(σ1) deg(σ2) N deg(σ1) deg(σ2)

wH(e) = t+ 1 6 t′ − 1 = t′ 6 t′ − 1 6 t′ 6 t′ = t′

wH(e) = t 6 t′ − 1 = t′ 6 t′ − 1 = t′ 6 t′ − 1 = t′

wH(e) = t− 1 = t′ − 1 6 t′ − 1 = t′ − 1 6 t′ − 1 = t′ − 1 6 t′ − 1

wH(e) = t− 2 6 t′ − 2 = t′ − 1 6 t′ − 2 = t′ − 1 6 t′ − 2 6 t′ − 1

Table 8.1 – Degrees of the output polynomials of EEA(g(z), τ(z), bt/2c).

They deduce Algorithm 10, a modified EEA which detects the ciphertext manipulation
and completes the computation to take same execution time both on the ciphertext c and
on the twisted c?i. With this version, the authors claim to obtain a decryption time taking
a constant number of clock cycles. This would discard a timing attack. However, no power
consumption trace is analyzed. It remains unclear whether the extra manipulation in Step
9 of Algorithm 10, whose execution implies that ei = 1, is undetectable. In particular, each
while iteration will not have the same execution time. Fakely executing those steps at each
iteration would have a serious impact on the performances.

EEA leakages in the Alternant Decoder.
We adapt the framework of Algorithm 9 to the alternant decoder. The alternant de-

coder(Algorithm 8.1 and Paragraph 1.3.1 of Chapter 1), as Patterson one, resorts to an EEA
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Algorithm 10 Protected EEA for Patterson decoding

Beginning as is Algorithm 1.

7: ui ← ui−2(z)− qi(z)ui−1(z)

Case t = 2t′.

8: if deg(ri) < t′ then
9: Manipulate ri so that

deg(ri) = deg(ri−1)− 1.
10: end if

Case t = 2t′ + 1.

8: if deg(ri) 6 t′ and deg(vi) < t′ then
9: Manipulate ri so that

deg(ri) = deg(ri−1)− 1.
10: end if

End as is Algorithm 1.

prone to leak information when the error weight varies. The equivalent of Relations (8.1) and
(8.2) in this context is

deg(σinv(z)) =
N∑
i=1

deg(qi) =

{
wH(e) if 0 6∈ x

wH(e)− 1 if 0 ∈ x.
(8.3)

We sum in Table 8.2 the link of the degree of the output polynomial of the EEA in
Algorithm 8.1 with the weight of the error vector (α denotes the position of the support such
that xα = 0).

deg(σinv) if eα = 0 deg(σinv) if eα = 1

wH(e) = t t t− 1

wH(e) = t+ 1(ei = 0) t t− 1

wH(e) = t− 1(ei = 1) t− 1 t− 2

Table 8.2 – Degrees of the output polynomials of EEA(zt, Se(z), bt/2c).

We recall that the error locator polynomial is deduced from σinv(z) when the weight of
the error vector is known (see Remark 1.29 of Chapter 1). Therefore, in this case, looking at
the degree of σinv does not distinguish manipulated ciphertexts from correct ones, and the
EEA cannot be correctly protected by this method.

First Counter-Measure for the EEA in the Alternant Decoder
Building up on the counter-measure for Patterson decoding described in [SSMS09], we

propose the following adaptation (Algorithm 11) to the alternant decoder. It always detects
ciphertext manipulation provided that 0 is not an element of the support, and somehow
restores a usual behavior of the EEA (that is, that of a valid ciphertext). The final output
will not be the correct plaintext, but this is not a problem as long as the attacker cannot
extract information from this result. However, we note that this protection has the same
drawbacks as its Patterson equivalent: each while execution does not have same execution
time.
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Algorithm 11 Protected EEA for Alternant decoder

Beginning as is Algorithm 1.

7: vi ← vi−2(z)− qi(z)vi−1(z)
8: if deg(ri) < t then
9: Manipulate ri so that deg(ri) = deg(ri−1)− 1

10: end if

End as is Algorithm 1.

8.1.2 Secret decryption key recovery attacks

We address a different kind of physical attack initiated by Strenzke in [Str10b, Str13]
against McEliece encryption using Patterson decoding. It aims at recovering the secret key.

Generic attack scenario.
The attack scenario is the following. The attacker has access to a decryption device D

on which he can perform physical measurements. He also knows a public encryption key, so
that he can generate codewords with errors of his choice. By observing the decryption phase
(more precisely, the EEA execution), Strenzke shows that one can deduce information on the
support elements corresponding to the error positions. Roughly, the reason is that when a
polynomial condition on those elements is satisfied, the number of iterations of the while
loop in Algorithm 1 is reduced compared to the average number of iterations necessary to
perform the EEA for error vectors of same weight. The attack consists in scanning a lot of
error positions and collect sufficiently many polynomial relations so that the algebraic system
obtained can be solved.

We sum up in Algorithm 12 (on page 143) the global attack framework arising from [Str13].

Algorithm 12 Framework for key-recovery attacks on a decryption device.

Input: A decryption device D, public encryption key Gpub.
Output: The secret support x.

1: for w well-chosen error weights do
2: for (i1, . . . , iw) subset of {0, . . . , n− 1} do
3: Pick a low-weight error vector e = (0, . . . , ei1 , . . . , eiw , . . . , 0) with wH(e) = w.
4: Request decryption D(e).
5: Perform timing or power consumption analysis of D(e).
6: if EEA execution is faster than average (more precise conditions in the rest of this

Section) then
7: Deduce a polynomial condition on xi1 , . . . , xiw (Pw is a polynomial depending only

on w):
Pw(xi1 , . . . , xiw) = 0 (8.4)

8: end if
9: end for

10: end for
11: Solve the non-linear system of all the collected equations (8.4).
12: return Secret support x = (x0, . . . , xn−1).

In practice, the polynomials Pw will be elementary symmetric polynomials of the form,
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for an error e = (0, . . . , ei1 , . . . , eiw , . . . , 0) with wH(e) = w and j > 0:

ωj(e) =
∑

16`1<···<`j6w

xi`1 . . . xi`j .

That is, ωj(e) is the evaluation of the jth elementary symmetric polynomial in w variables in
(xi1 , . . . , xiw).

State-of-the-art
More precisely, Strenzke uses errors of weights w = 1, w = 4 and w = 6. For w = 6, errors

such that Equation (8.4) is satisfied are harder to find than for w = 4. For this reason, his
strategy consists in collecting as many Equations (8.4) with w = 1 and w = 4 as possible.
He obtains a linear system of rank n − m (in some cases n − m − 1) in the n elements of
the support. Then, he selects subsets of errors of weight w = 6 to look for Equations (8.4).
These subsets are chosen so as help the polynomial system solving. According to Strenzke,
for an encryption scheme with parameters m = 10, n = 2m, t = 40, it takes about 15,000,000
decryption queries to collect enough equations and 28 hours to solve the algebraic system.
Eventually, the full secret support x is recovered by the attacker, and then the secret y thanks
to Lemma 4.1 and the Goppa polynomial by interpolation.

8.1.2.1 First example of leakage exploitable by Framework 12.

The first attack resorting to the method of Algorithm 12 was proposed by Strenzke in
[Str10b]. It focuses on the second EEA of Patterson decoder with errors of weight w = 4. In

this case, Se(z) =
∑4

j=1
1

z−xij
= ωe(z)

σe(z) , and

ωe(z) = (xi1 + xi2 + xi3 + xi4)︸ ︷︷ ︸
ω1(e)

z2 + xi1xi2xi3 + xi1xi2xi4 + xi1xi3xi4 + xi2xi3xi4︸ ︷︷ ︸
ω3(e)

.

If ω1(e) = 0, then Se(z) = ω3(e)
σe(z) , and S−1

e mod g = ω3(e)−1σe(z) therefore τ(z) =
√
S−1
e (z) + z

mod g(z) =
√
ω3(e)−1σe(z) + z and τ(z) has degree lower than bt/2c (for w = 4 we have

deg(τ(z)) = 2). As a consequence, the while test in EEA(g(z), τ(z), bt/2c) is never fulfilled
and the number of iterations N is equal to 0. When ω1(e) 6= 0, deg(τ(z)) > bt/2c with over-
whelming probability (τ(z) is a reduction modulo a polynomial of degree t), so that N > 0.
This allows to collect many equations of the form

xi1 + xi2 + xi3 + xi4 = 0.

As Strenzke explains, the final system’s rank never exceeds n−m. So it is not sufficient
in practice to recover the private key and one has to assume that some other parts of private
elements are required. Still, he proposes a counter-measure to avoid this information leakage.

Counter-Measure to protect Second EEA by Strenzke.
Strenzke proposes to detect the polynomials τ(z) leading to this leakage by checking if

deg(τ(z)) < bt/2c. This can be done just after the determination of τ(z). If so, manipulate
τ(z) so that is has degree t− 1.

This counter-measure avoids leaking information only in the second EEA, only when
decoding errors of weight 4. Exploitable leakages remain, as shown in the next paragraph.
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Algorithm 13 Patterson decoding with Strenzke’s counter-measure against weight 4 errors
leakages

Input: n− k-bit syndrome s = HeT with wH(e) 6 btc, private key (x, g(z))
Output: The error vector e.

1: Polynomial Syndrome Determination: Idem Fig. 8.2.
Computation of τ(z):

2: Find f(z) such that f(z)Se(z) = 1 mod g(z) by · , f(z) = EEA(g(z), Se(z), 0)

3: Set τ(z) =
√
f(z) + z.

4: if deg(τ(z)) < bt/2c then
5: Manipulate τ(z) so that deg(τ(z)) = t− 1.
6: end if
7: Error Locator Polynomial Determination & Error Vector Determination

Idem Fig. 8.2.

8.1.2.2 Leakage in the first EEA of Patterson Decoding.

In order to complete the attack initiated in [Str10b], Strenzke proposed in [Str13] to
apply Algorithm 12 by focusing on time leakages in both EEA’s of Patterson decoding. In
[Str13][Corollary 1], he gives the number of iterations of the while loop in the first EEA. We
recall it here, and complete it with the analogous result for the second EEA (which we could
not find in [Str13]).

Lemma 8.2. Let C = G (x, g(z)) be a binary Goppa code and Se(z) the polynomial syndrome

associated to an error e with wH(e) 6 deg(g)/2− 1. Write Se(z) = ωe(z)
σe(z) mod g(z). Let NI

and NK be the number of iterations of the while loop respectively in EEA(g(z), Se(z), 0) and
EEA(g(z), τ(z), bt/2c). Then

NI 6 deg(ωe(z)) + deg(σe(z)) and NK 6 deg(ωe(z))/2. (8.5)

Proof. The result on NI is proved in [Str13][Corollary 1]. Regarding NK , observe that v0 has
degree 0 and vNK = σ2(z) has degree deg(ωe)/2 (since by derivating the relation σ = σ2

1 +zσ2
2

we obtain ωe = σ2
2). As the degrees are raised at least by one at each iteration, we obtain

NK 6 deg(ωe)/2.

Let’s apply this small weight error vectors. Note that, for any error e, deg(σe) = wH(e).

Exploiting Leakages of errors with weight w = 4.
Pick e = (0, . . . , ei1 , . . . , ei4 , . . . , 0). We know that ωe(z) = ω1(e)z2 + ω3(e). Lemma 8.2

gives the number NI of iterations in EEA(g(z), Se(z), 0) satisfies

xi1 + xi2 + xi3 + xi4 6= 0 =⇒ NI = 6,
xi1 + xi2 + xi3 + xi4 = 0 =⇒ NI = 4.

Therefore, even if the second EEA has been protected with Strenzke’s counter-measure, errors
of weight w = 4 leak the same information in the first EEA. This does not give enough
equations. To complete the algebraic system, the idea is to use error weights w = 6.
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Exploiting Leakages of errors with weight w = 6.
For e = (0, . . . , ei1 , . . . , ei6 , . . . , 0), we develop SGop,e(z) :

SGop,e(z) =
ω1(e)z4 + ω3(e)z2 + ω5(e)

σe(z)
.

Strenzke’s purpose is to detect for which e is holds that ω3(e) = ω1(e) = 0. These cases
are exactly those with Se(z)−1 = ω5(e)−1σe(z) and hence deg(τ(z)) < bt/2c, so that the
number of iterations in the second EEA is 0 provided that Strenzke’s counter-measure
is not applied. This is a somehow surprising proposition, since this criterion can be rendered
useless by a counter-measure already proposed by the same author.

EEA(g, Se, 0) EEA(g, τ, bt/2c)

wH(e) = 4
ω1(e) 6= 0 NI 6 6 NK 6 1

ω1(e) = 0 NI 6 4* NK = 0+ CM deg(τ) < bt/2c+

wH(e) = 6

ω1(e) 6= 0, ω3(e) 6= 0 NI 6 10 NK 6 2

ω1(e) = 0, ω3(e) 6= 0 NI 6 8 NK 6 1

ω1(e) = 0, ω3(e) = 0 NI 6 6 NK = 0* CM deg(τ) < bt/2c

wH(e) = 2w′

ω1(e) 6= 0, ω3(e) 6= 0 NI 6 4w′ − 2 NK 6 w′ − 1

ω1(e) = 0, ω3(e) 6= 0 NI 6 4w′ − 4 NK 6 w′ − 2

ω1(e) = 0, ω3(e) = 0 NI 6 4w′ − 6 NK 6 w′ − 3

Table 8.3 – Overview of small- error-weight message attacks. Cases marked with a * or a +

are proposed resp. in [Str10b] and [Str13].

8.1.2.3 Combination of first and second EEA.

When using error weights w > 6, the attacker will encounter problems due to the fact
that all the values given in 8.3 are only bounds (except in the cases N 6 0). Indeed, it may
happen that one of the Euclidean divisions entails a degree fall greater than 1 independently
of the degree of ωe.

For example, with w = 6, the attacker may observe NK = 1 whereas ω1(e) is not zero.
This remark leads Strenzke to discard those cases for an attack as long as no way of dis-
tinguishing thoses cases is found. We propose such distinguisher, by using NI to determine
if ω1(e) is zero, as ω1(e) = 0 implies NI 6 8. Indeed, an attacker observing the errors
e with (NI , NK) = (10, 1) can conclude that ω1(e) 6= 0 (cf. Table 8.3). We may have
(NI , NK) = (8, 1) when ω1(e) 6= 0 if three cancellations occur in the 12 intermediate polyno-
mials, which has probability p3 =

(
12
3

)
2−3m(1 − 2−m)9 ≈ 2.10−7 for m = 10 (we model the

leading coefficients as random elements of F2m). When sampling x error vectors, we expect
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to find p3x such misleading cases. With the numbers of samples from [Str13][Table 2], the
probability to find one is not negligible. If at least one wrong equation is deduced, the system
to solve has no solution and the attack fails. We propose to avoid this problem by using errors
with w > 8.

Example of leakage exploitation of an error of weight w = 8.
We sampled randomly 10,000,000 errors e of weight 8 and collected the couples (NI , NK)

in Table 8.4. When wH(e) = 8, there are more possibilities than with w = 6. Samples
with (NI 6 12, NK 6 2) do not necessarily have ω1(e) = 0: this happens with probability
p′3 =

(
17
3

)
2−3m(1− 2−m)14 ≈ 6.10−7 for m = 10 (we found 3). In particular, the case marked

with a ∗ in Table 8.4 would make the attacker to think erroneously that the corresponding
error vector satisfies ω1(e) = 0.

However, the number of parasitic cancellations necessary to provide values (NI , NK) com-
patible with (ω1(e), ω3(e)) = (0, 0) is 6, which happens with probability p′3 =

(
17
6

)
2−6m(1 −

2−m)11 ≈ 10−14 for m = 10. If ω1(e) = 0 but ω3(e) 6= 0, then a couple (10, 1) is found
if 3 cancellations occur. This has probability 2−mp′3 ≈ 6.10−10 (as ω1 takes all the val-
ues of F2m with same probability). Therefore, we are able to say without ambiguity when
(ω1(e), ω3(e)) = (0, 0) on a considerable amount of samples. We deduce from our samples 10
equations ω1(e) = 0 which are correct with probability (1−10−7) and 10 equations ω3(e) = 0
correct with probability (1− 10−3).

No parasitic 1 parasitic 2 parasitic 3 parasitic
cancellation cancellation cancellations cancellations

ω1(e) 6= 0
ω3(e) 6= 0

(14,3): 9855087
(13,3): 115439
(14,2): 18916

(12,3): 614
(12,2): 1 ∗

(11,3): 2
(13,2): 248
(14,1): 8

ω1(e) = 0
(12,2): 9570

(11,2): 96 (10,2): 0
ω3(e) 6= 0 (12,1): 8 (11,1): 0
ω1(e) = 0

(10,1): 10 (9,1): 0 (8,1): 0
ω3(e) = 0

Table 8.4 – Number of samples for each (NI , NK) for 10,000,000 samples error vectors of
weight w = 8. Code parameters: m = 10, n = 2m, t = 40. See text for explanation on the
case with ∗.

To conclude, although our method requires more samples than the previous one (around 109

to collect some thousands of equations with ω1, and dozens with ω3), we showed that it is
possible to recover information on the support even if the counter-measure deg(τ) < bt/2c is
implemented.

8.1.2.4 Small weight error messages in Alternant decoder.

We determine if an attacker can retrieve any information by applying Algorithm 12 if the
Alternant decoder is implemented. Lemma 8.3, which is analogous to Lemma 8.2, analyses
the impact of small weight error messages on the EEA.

Lemma 8.3. Let e be an error with wH(e) 6 t. Then SAlt,e(z) =
ωinv,e(z)
σinv,e(z) mod z2t and the
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number of iterations N of the while loop of the Alternant decoder in the EEA satisfies

N 6 Nmax = min(deg(σinv,e), deg(SAlt,e)− deg(ωinv)) (8.6)

Proof. We observe in the execution of EEA(z2t, SAlt,e, t). We have u0(z) = 0 and uN (z) =
σinv,e(z). Since deg(ui+1) > deg(ui) + 1, it holds that N 6 deg(σinv,e). Regarding (r(z)), we
have r0(z) = SAlt,e(z) and rN (z) = ωinv(z) so N 6 deg(SAlt,e)− deg(ωinv).

Specific case of weight 1 errors.
If w = 1, we always have deg(ωinv) = 0 and deg(σinv) = 1 except if the error is positioned in

the zero element of the support. Indeed, in this case, the polynomial syndrome is a constant:
Se(z) = 1

g(0)2
and the while loop is never executed.

Exploiting error weights w > 1.
We suppose that no error occurred in the zero element of the support so that deg(σinv) =

wH(e) always holds (the coefficient of zw in σinv is xi1 . . . xiw). Therefore, faster decryptions
indicate the cancellation of a leading coefficient in the intermediate values, but in the alternant
decoder we found no way of determining which intermediate value was concerned. If by any
chance a power analysis can ensure that it is the first intermediate polynomial (that is, the
syndrome polynomial SAlt,e(z)) that has a degree smaller than expected, then the information
recovered would be:

w∑
j=1

g(xij )
−2

w∑
j=1

x2t−1
ij

= 0. (8.7)

We observe that the equations written thanks to this method are more complex than with
Patterson algorithm, at least for two reasons. First, they are not directly polynomial, and
the degrees implied are much higher. Second, as both x and g have to be unknown ([OS09][p.
125]), additive unknowns are necessary: either t + 1 to describe the secret polynomial’s co-
efficients, or n if we introduce new equations yi = g(xi)

−2. We conclude that the alternant
decoder is intrinsically more resistant to Strenzke’s attacks. However, the overall security
is still not clear due to the uncertainty on the counter-measure (described in Algorithm 11)
against Algorithm 9.

8.2 Extended euclidean Algorithm with constant flow

We expose a way of implementing the EEA algorithm unused so far for McEliece de-
cryption. It has the very interesting property of requiring a number of operations depending
only on the Goppa polynomial degree t and not on the weight of the error introduced in the
ciphertext. Therefore, the attacks of 8.1.1 and 8.1.2 are not possible.

It is inspired by Berlekamp’s work in [BSP94] (which as followed by other works of op-
timization in the VLSI community, amongst many others [SS01a, SY09]). We could find no
reference to it in any paper related to McEliece. On the contrary, designing such an algorithm
is desirable goal according to the conclusion of [Str13]. The reason may be that [BSP94] has
a very limited access, and we could find no completeness proofs of the algorithm proposed.
Here, we transform smoothly the original EEA (Algorithm 1) into successive versions gaining
in regularity (Algorithms 14 and 15). We end up with Algorithm 16, which is simpler and
more regular than all the previous ones. At each step, we give and prove in Section 8.3 the
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form of the outputs and intermediate values. Finally, each execution of Algorithm 16 costs,
in field multiplications, exactly 16t2 (2t times a loop costing 4× 2t).

In the rest of this article we will set N be the number of Euclidean divisions performed
during EEA(z2t, SAlt(z), t) in Algorithm 1, di = deg(ri(z)), and δi = deg(qi(z)) = deg(ri−2)−
deg(ri−1).

For any polynomial P (z) ∈ Fqm [z], we denote its coefficients by Pj even for j > deg(P )
(in which case Pj = 0), so that

P (z) =
+∞∑
j=0

Pjz
j = Pdeg(P )z

deg(P ) + · · ·+ P0.

Regarding the δi’s, we prove the following result which will be very useful to design an
algorithm with regular pattern:

Lemma 8.4. Let the δi’s be defined as previously during the execution of EEA(z2t, Se(z), t),
then it holds that

N∑
i=1

δi = deg(uN (z)) = deg(ωinv,e) = wH(e)− 1.

We propose several intermediate versions of algorithms computing σinv,e(z).

8.2.1 Unrolling Euclidean divisions.

In Algorithm 14 (on page 152), we decompose each Euclidean division into a number of
polynomial subtractions depending only on δi the degrees of the quotients. We give explicit
forms of the intermediate values of the Euclidean division of Ri−2(z) by Ri−1(z), that we

denote by R
(0)
i (z), . . . , R

(δi+1)
i (z). To do so, we eliminate in each R

(j)
i (z) (for 0 6 j 6 δi + 1)

the term zdi−2−j , whether the associated coefficient is zero or not. This is why we perform the
Euclidean divisions so as to avoid the divisions by a field elements (Steps 7 to 11 of Algorithm
14). Consequently, the outputs are multiple of the outputs of Algorithm 1 with the same
inputs.

Proposition 8.5 (Comparison of Algorithms 1 and 14). Let a(z) and b(z) be two polynomials
with deg(a(z)) > deg(b(z)), and d a non-negative integer. ui(z), vi(z), ri(z), qi(z) are the
intermediate values in Algorithm 1, and Ui(z), Vi(z), Ri(z) are the intermediate values in
Algorithm 14. It holds that, for all i = −1, . . . , N , there exists λi ∈ F∗qm such that:

Ri(z) = λiri(z),
Ui(z) = λiui(z).

As a consequence, ∆i = deg(Ri−2)− deg(Ri−1) = deg(ri−2)− deg(ri−1) = δi for all i.

There are two problems with Algorithm 14: the first one is that the inner for loop ((Steps 7
to 11) has a variable length, and contains a multiplication zδi−(j−1)Ri(z) which depends on
the iteration, which will produce a recognizable pattern. The second problem is that the
while loop leads to a variable number of operations according to the input. Algorithm 15 is
a first step towards the resolution of the second problem. It is not realistic (it requires that
Algorithm 14 has already been executed and observed), but it eases the proofs of completeness
of Algorithm 16, which solves both issues.
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8.2.2 Regular polynomial shift pattern.

In Algorithm 15 (on page 153), we perform the Euclidean division in such a way that
we only multiply the operand by z at each for iteration. This can be done by splitting in
two phases each Euclidean divisions. The first phase (Steps 4 to 7) “re-aligns” the operands
R̃i−2 and R̃i−1 so that they both have same degree d = deg(R−1(z))(= 2t). Doing so, the
second phase (Steps 8 to 12) compute the polynomial subtractions (corresponding to Steps
9-10 of Algorithm 14) and perform a shift ”re-aligning” the operands. A consequence is that
the polynomials R̃i(z) are of the form zkiRi(z) and the degrees di are lost. This problem will
be solved in Algorithm 16.

Proposition 8.6 (Comparison of Algorithms 14 and 15). For each i = 1, . . . , N , after Step
13 of Algorithm 15, it holds that

(R̃i−1(z), R̃i(z)) = (zd−di−1Ri−1(z), zd−di−1+1Ri(z)),

(Ũi−1(z), Ũi(z)) = (zd−di−1Ui−1(z), zd−di−1+1Ui(z)).

8.2.3 Complete Regular Flow EEA.

To design a real constant flow algorithm, we merge the loops L1 and L2 in a common
pattern so as to be indistinguishable (Steps 5 to 7 of Algorithm 16). They differenciate by
the assignements which are performed in Steps 14-15 and 18-19. To know when polynomial
substractions have to be stopped, we collect in a counter δ the number of shifts necessary to
re-align the operands. Finally, when the polynomials σinv and ωinv have been computed, the
extra executions of the main loop (Steps 4 to 22) consist in shifting the operands. Therefore,
the number of iterations can be safely set to the maximum value (i.e. 2t to decode the errors
with wH(e) = t)), and the while loop is replaced by for.

Proposition 8.7 (Comparison of Algorithms 14 and 16.). For each i = 1, . . . , N , after
Step 21, it holds that:

R̂2(δ1+···+δi)(z) = zd−di−1+1Ri(z),

Û2(δ1+···+δi)(z) = zd−di−1+1Ui(z).

The outputs of Algorithm 16 are, for some µ ∈ F∗qm:

R̂d(z) = zd−wH(e)+1RN (z) = µzd−wH(e)+1ωinv(z),

Ûd(z) = zd−wH(e)+1UN (z) = µzd−wH(e)+1σinv(z).

Therefore, provided 0 is not an element of x, Ûd(z) allows to recover the error positions
without ambiguity. Transposing this result to Patterson decoding requires to adapt both
EEA’s. The adaptation of the second one is straightforward. For the first one (syndrome in-

version), a problem arises: the analogous of Proposition 8.7 would yield ÛNI (z) = µzki(S−1
Gop,e

mod g) for some ki > 0, and we found no way of determining when z is a factor of S−1
Gop,e

mod g. However, we can protect the second EEA to avoid the attack of Paragraph 8.1.2.

Conclusion.
We proposed an algorithm determining the error-locator polynomial costing always 16t2

field multiplications on any input. It contains a test depending on secret data, followed by
two balanced branches. The indistinguishability of those branches by an attacker is crucial for
the security of the decryption, and depends on the architecture of the implementation. This is
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Algorithm 16 EEA with regular flow

Input: a(z) = z2t, b(z) = Se(z), d = 2t

Output: Ûd(z) = µzd−wH(e)+1σinv(z),R̂d(z) = µzd−wH(e)+1ωe(z) for some µ ∈ F∗qm .

1: R̂−1(z)← a(z), R̂0(z)← zb(z),

2: Û−1(z)← 1, Û0(z)← 0,
3: δ ← −1.
4: for j = 1, . . . , d do
5: αj ← R̂j−1,d, βj ← R̂j−2,d.

6: tempR(z)← z
(
αjR̂j−2(z)− βjR̂j−1(z)

)
.

7: tempU (z)← z
(
αjÛj−2(z)− βjÛj−1(z)

)
.

8: if αj = 0 (ie deg(R̂j−1) < deg(R̂j−2)) then
9: δ ← δ + 1.

10: else
11: δ ← δ − 1.
12: end if



L
13: if δ < 0 then
14: (R̂j(z), R̂j−1(z))← (R̂j−1(z), tempR)

15: (Ûj(z), Ûj−1(z))← (Ûj−1(z), tempU )
16: δ ← 0.
17: else
18: (R̂j(z), R̂j−1(z))← (tempR, R̂j−2(z))

19: (Ûj(z), Ûj−1(z))← (tempU , Ûj−2(z))
20: δ ← δ.
21: end if
22: end for
23: return Ûd(z), R̂d(z)

only a part of the decryption, but the other parts (matrix-vector products, root-finding) had
received more attention. The next step is to give a complete implementation, and evaluate
its resistance to other leakages than timing. Moreover, the resistance to fault injection has
not been treated here.
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Algorithm 14 EEA (unrolled Euclidean Division)

Input: a(z) = z2t, b(z) = Se(z).
Output: U(z) = λNσe(z), R(z) = λNωe(z) (for some λN ∈ F∗qm).

1: (R−1(z), R0(z))← (a(z), b(z)),(U−1(z), U0(z))← (1, 0), i← 0.
2: while deg(Ri(z)) > t do
3: i← i+ 1
4: R

(0)
i−2(z)← Ri−2(z),U

(0)
i−2(z)← Ui−2(z)

5: ∆i ← deg(Ri−2)− deg(Ri−1)
6: βi ← LC(Ri−1(z)).
7: for j = 0, . . . ,∆i do

8: αi,j ← R
(j)
i,di−2−j ,

9: R
(j+1)
i−2 (z)← βiR

(j)
i−2(z)− αi,jz∆i−jRi−1(z)

10: U
(j+1)
i−2 (z)← βiU

(j)
i−2(z)− αi,jz∆i−jUi−1(z)

11: end for
12: Ri(z)← R

(∆i+1)
i−2 (z),Ui(z)← U

(∆i+1)
i−2 (z)

13: end while
14: N ← i.
15: return UN (z), RN (z)

Ri−2 = R
(0)
i−2

	 z∆iRi−1 Ri−1

R
(1)
i−2 = βiR

(0)
i−2 −αi,0z∆iRi−1

	 z∆i−1Ri−1 Ri−1

R
(2)
i−2 = βiR

(1)
i−2 − αi,1z∆i−1 Ri−1

	 z∆i−2Ri−1 Ri−1

R
(3)
i−2 = βiR

(2)
i−2 − αi,2z∆i−1 Ri−1

(= βiR
(2)
i−2 here)

...

Ri

Figure 8.3 – Euclidean division of Ri−2 by Ri−1 in exactly ∆i + 1 polynomial subtractions
(with ∆i = deg(Ri−2)− deg(Ri−1)). In this example, αi,2 = 0.
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Algorithm 15 Toy EEA with regular shift pattern

Input: a(z) = z2t, b(z) = Se(z), d = 2t
Output: ŨN (z) = zd−dN−1+1σe(z), R̃N (z) = zd−dN−1+1ωe(z).

1: R̃−1(z)← a(z), R̃0(z)← zb(z),Ũ−1(z)← 1, Ũ0(z)← 0.
2: for i = 1, . . . , N do

3: R̃
(0)
i−2(z)← R̃i−2(z),Ũ

(0)
i−2(z)← Ũi−2(z)

4: for j = 1, . . . ,∆i − 1 do
5: R̃i−1(z)← zR̃i−1(z)

 L1

6: Ũi−1(z)← zŨi−1(z)
7: end for
8: for j = 0, . . . ,∆i do

9: α̃i,j ← R̃
(j)
i,d , β̃i ← R̃i−1,d.

10: R̃
(j+1)
i−2 (z)← z

(
β̃iR̃

(j)
i−2(z)− α̃i,jR̃i−1(z)

)


L2

11: Ũ
(j+1)
i−2 (z)← z

(
β̃iŨ

(j)
i−2(z)− α̃i,jŨi−1(z)

)
12: end for
13: R̃i(z)← R̃

(∆i+1)
i−2 (z),Ũi(z)← Ũ

(∆i+1)
i−2 (z)

14: end for
15: return ŨN (z), R̃N (z)

zd−di−2Ri−2

zd−di−1Ri−1

R̃
(1)
i−2 = z(βiz

d−di−2Ri−2 −αi,0zd−di−1Ri−1)

zd−di−1Ri−1

R̃
(2)
i−2 = z(βiR̃

(1)
i−2− αi,1z

d−di−1Ri−1)

zd−di−1Ri−1

R̃
(3)
i−2 = z(βiR̃

(2)
i−2 −αi,2zd−di−1Ri−1)

(= zβiR̃
(2)
i−2 here)

...

zd−diRi zd−di−1+1RiL1

L2

Figure 8.4 –“Re-aligned”Euclidean division of Ri−2 by Ri−1: inputs and outputs are degree−d
polynomials zd−di−2Ri−2 , zd−di−1Ri−1 , and zd−diRi.
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8.3 Proofs of completeness

We give the proofs of the results of Section 8.2. It consists in comparing the outputs and
intermediate results of Algorithms 14, 15, and 16.

8.3.1 Proof of Proposition 8.5.

We recall of the Ri(z)’s are computed: set R−1(z) = r−1(z) = a(z) and R0(z) = r0(z) =

b(z). Then, for 1 6 i 6 N , set R
(0)
i−2(z) = Ri−2(z) and recursively

R
(j+1)
i−2 (z) = βiR

(j)
i−2(z)− αi,jzδi−jRi−1(z) (8.8)

with αi,j = R
(j)
i,di−2−j , βi = LC(Ri−1(z)). Ri(z) is defined by Ri(z) = R

(δi+1)
i−2 (z).

Remark 8.8. The notation R(j)(z) should not be mistaken with the Fröbenius action defined
in Chapter 7.

In essence we have to prove that R
(δi+1)
i−2 (z) is the rest of the Euclidian division of Ri−2(z)

by Ri−1(z). First, we prove by induction on j that, for all 1 6 i 6 N and 0 6 j 6 δi + 1,
there exists a polynomial fi,j(z) ∈ Fqm [z] and a non-zero scalar µi,j such that

R
(j)
i−2(z) = µi,jR

(0)
i−2(z)− fi,j(z)Ri−1(z) and deg(R

(j)
i−2(z)) 6 di−2 − j. (8.9)

For j = 0, pick fi,0(z) = 0, µi,0 = 1 and notice that deg(R
(0)
i−2) = di−2 . Now at step j > 0,

suppose R
(j)
i−2(z) = µi,jR

(0)
i−2(z)− fi,j(z)Ri−1(z), then

R
(j+1)
i−2 (z) = βiR

(j)
i−2(z)− αi,jzδi−jRi−1(z) = µi,jβi︸ ︷︷ ︸

µi,j+1

R
(0)
i−2(z)− (fi,j(z) + αi,jz

δi−j)︸ ︷︷ ︸
fi,j+1(z)

Ri−1(z).

Regarding the degree, if deg(R
(j)
i−2) < di−2 − j, then R

(j)
i−2,di−2−j = 0, so αi,j = 0 and

deg(R
(j+1)
i−2 ) = deg(R

(j)
i−2) 6 di−2 − (j + 1). If deg(R

(j)
i−2) = di−2 − j, then observe that

LC(βiR
(j)
i−2) = LC(Ri−1(z))Ri,di−2−j and LC(αi,jz

δi−jRi−1(z)) = Ri,di−2−jLC(Ri−1(z)), so

that the leading monomials cancel, and therefore deg(R
(j+1)
i−2 ) 6 di−2 − (j + 1). Thanks to

Eq. (8.9), we know that at step j = δi + 1 :

Ri−2(z) = fi,δi+1(z)Ri−1(z) + µi,δi+1R
(δi+1)
i−2 (z) and deg(R

(δi+1)
i−2 ) 6 di−1 − 1.

Thanks to the induction hypothesis Ri−2(z) = λi−2ri−2(z) and Ri−1(z) = λi−1ri−1(z), so we
have

ri−2(z) = λi−1λ
−1
i−2fi,δi+1(z)ri−1(z) + λ−1

i−2µi,δi+1R
(δi+1)
i−2 (z).

By unicity in the Euclidean division, we set λi = λi−2µ
−1
i,δi+1 it follows that:

R
(δi+1)
i−2 (z) = λiri(z), λi−1λ

−1
i−2fi,di−2−di+1(z) = qi(z). (8.10)
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For (U
(j)
i−2(z)), we would prove the same way that U

(j)
i−2(z) = µi,jU

(0)
i−2(z) − fi,j(z)Ui−1(z)

with the same µi,j and fi,j(z). Therefore, thanks to the induction hypothesis (Ui−2(z) =
λi−2ui−2(z) and Ui−1(z) = λi−1ui−1(z)),

ui−2(z) = λi−1λ
−1
i−2fi,δi+1(z)︸ ︷︷ ︸
qi(z)(8.10)

ui−1(z) + λ−1
i−2µi,δi+1︸ ︷︷ ︸
λ−1
i (8.10)

U
(δi+1)
i−2 (z).

With Eq. (8.10), we see that U
(δi+1)
i−2 (z) = λiui−2(z)− λiqi(z)ui−1(z) = λiui(z).

8.3.2 Proof of Proposition 8.6.

The operands at entering the main for loop (Steps 2-14 of Alg. 15) are by induc-
tion hypothesis (R̃i−2, R̃i−1) = zd−di−2Ri−2(z), zd−di−2+1Ri−1(z))(for i = 1, we have indeed
(R̃−1, R̃0) = (R−1(z), zR0(z))).

The main loop is decomposed into two phases: L1 (Steps 4-7) and L2 (Steps 8-12). L1

consists in shifting zd−di−2+1Ri(z) up-wise until it has a non-zero d-th coefficient (ie it has
degree d), that is exactly ∆i − 1 = di−2 − di−1 − 1 times, so that after Step 7 R̃i−1(z) =
zd−di−1Ri−1(z).

L2 (Steps 8-12) performs a twisted Euclidean division of Ri−2(z) by Ri−1(z) on the shifted
values R̃i−2(z)zd−di−2Ri−2(z) and R̃i−1(z) = zd−di−1Ri−1(z). We prove that, after Step 12,

R̃
(δi+1)
i−2 (z) = zd−di−1+1Ri(z). To do so, we show the following link between the intermediate

results of Algorithms 14 (R
(j)
i−2(z)) and 15 (R̃

(j)
i−2(z)): for 0 6 j 6 ∆i + 1,

R̃
(j)
i−2(z) = zd−di−2+jR

(j)
i−2(z). (8.11)

This is done by induction on j. For j = 0, we have R̃
(0)
i−2(z) = zd−di−2Ri−2(z) = zd−di−2R

(0)
i−2(z).

Then, suppose R̃
(j)
i−2(z) = zd−di+jR

(j)
i−2(z). So, it holds that R̃

(j)
i−2,d = R

(j)
i−2,d−di−2+j , and

LC(R̃i−1(z)) = LC(Ri−1(z)), so that α̃i,j = αi,j and β̃i = βi. Now R̃
(j+1)
i−2 (z) is given by:

R̃
(j+1)
i−2 (z) = z

(
β̃iR̃

(j)
i−2(z)− α̃i,jR̃i−1(z)

)
= z

(
zd−di−2+jβiR

(j)
i−2(z)− αi,jzd−di−1Ri−1(z)

)
= zd−di−2+j

(
βiR

(j)
i−2(z)− αi,jzδi−(j)R̃i−1(z)

)
=

Eq (8.8)
zd−di−2+jR

(j)
i−2(z).

So (8.11) is proved by induction. With j = δi+1, we obtain R̃
(δi+1)
i−2 (z) = zd−di−1+1R

(δi+1)
i−2 (z) =

zd−di−1+1Ri(z) (thanks to Eq. (8.10)): the announced result holds for R̃i(z). The proof is
exactly the same for Ũi by substituting R by U in the previous proof.

8.3.3 Proof of Proposition 8.7.

By induction, we suppose that R̂2(δ1+···+δi−1)(z) = zd−di−2+1Ri−1(z). As in the proof of
Proposition 8.6, we distinguish several phases when iterating the main for loop L (Steps 4-22).

First, for j = 0, . . . , δi−1, R̂2(δ1+···+δi−1)+j = zd−di−2+1Ri−1(z) has degree lower than d and L

consists in shifting R̂ up-wise (up to a multiplicative constant) as L1 in Alg 15. In addition,
we update the counter δ to record the degree difference between Ri−2 and Ri−1. Indeed, this
phase stops when zd−di−2+1+jRi−1(z) reaches degree d, that is when j = di−2−di−1−1 = δi−1.
Second, for j = δi, . . . , 2δi − 1, L processes the Euclidean division of Ri−2(z) by Ri−1(z) as
L2 in Alg 15. The intermediate results are exactly those detailed in Proposition 8.6. The
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difference here is that, prior to computing the last step of the division, δ is equal to −1, so
that the intermediate values are swapped, and the announced result for R̂2(δ1+···+δi)(z) holds.

We deduce that R̂2(δ1+···+δN )(z) = zd−dN−1+1RN (z) = λNz
d−dN−1+1σinv(z) and the same

proof shows that Û2(δ1+···+δN )(z) = zd−dN−1+1UN (z) = λNz
d−dN−1+1ωinv(z). The following

iterations (j > 2wH(e)) consists only in shifts. Indeed, as deg(zd−dN−1+1RN (z)) = wH(e) +
1 + deg(ωe(z)) 6 2wH(e), and after 2t − 2wH(e) up-wise shifts the output still has degree
6 d = 2t.
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65, 66

[BB11] Morgan Barbier and Paulo S. L. M. Barreto. Key reduction of McEliece’s cryp-
tosystem using list decoding. In Alexander Kuleshov, Vladimir Blinovsky, and
Anthony Ephremides, editors, 2011 IEEE International Symposium on Infor-
mation Theory Proceedings, ISIT 2011, St. Petersburg, Russia, July 31 - August
5, 2011, pages 2681–2685. IEEE, 2011. 73

[BBC+14] Marco Baldi, Marco Bianchi, Franco Chiaraluce, Joachim Rosenthal, and Da-
vide Schipani. Enhanced Public Key Security for the McEliece Cryptosystem.
Journal of Cryptology, pages 1–27, 2014. 55

[BCGO09] T. P. Berger, P.L. Cayrel, P. Gaborit, and A. Otmani. Reducing Key Length
of the McEliece Cryptosystem. In Bart Preneel, editor, Progress in Cryptology
- Second International Conference on Cryptology in Africa (AFRICACRYPT
2009), volume 5580 of Lecture Notes in Computer Science, pages 77–97, Gam-
marth, Tunisia, June 21-25 2009. iv, 6, 9, 10, 20, 21, 23, 24, 81, 82, 83, 88, 89,
93

[BCMN10] Paulo S. L. M. Barreto, Pierre-Louis Cayrel, Rafael Misoczki, and Robert
Niebuhr. Quasi-Dyadic CFS Signatures. In Xuejia Lai, Moti Yung, and Dong-
dai Lin, editors, Inscrypt, volume 6584 of Lecture Notes in Computer Science,
pages 336–349. Springer, 2010. iv, 6, 7, 9, 10, 20, 21, 22, 23, 24, 25, 73, 81, 82,
83, 88, 89, 93, 105, 110, 111, 113, 114

[BCP97a] W. Bosma, J. J. Cannon, and Catherine Playoust. The Magma Algebra System
I: The User Language. J. Symb. Comput., 24(3/4):235–265, 1997. 12, 27

[BCP97b] Wieb Bosma, John J. Cannon, and Catherine Playoust. The Magma algebra
system I: The user language. Journal of Symbolic Computation, 24(3-4):235–
265, 1997. 110, 113, 133

[BCS13] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: Fast Constant-
Time Code-Based Cryptography. In Guido Bertoni and Jean-Sébastien Coron,
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itor, Advances in Cryptology - CRYPTO 2003, volume 2729 of LNCS, pages
44–60. Springer, 2003. 7, 21

[FLdVP08] J.-C. Faugère, F. Levy-dit Vehel, , and L. Perret. Cryptanalysis of Minrank.
In David Wagner, editor, Advances in Cryptology - CRYPTO’08, volume 5157,
pages 280–296, 2008. 7, 21

[FOP+14a] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, Frédéric de Portzam-
parc, and Jean-Pierre Tillich. Folding Alternant and Goppa Codes with Non-
Trivial Automorphism Groups. IACR Cryptology ePrint Archive, 2014:353,
2014. 81

[FOP+14b] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, Frédéric de Portzam-
parc, and Jean-Pierre Tillich. Structural weakness of compact variants of the
mceliece cryptosystem. In 2014 IEEE International Symposium on Information
Theory, Honolulu, HI, USA, June 29 - July 4, 2014 [DBL14], pages 1717–1721.
81

[FOP+15] J. C. Faugère, A. Otmani, L. Perret, F. de Portzamparc, and J. P. Tillich.
Structural Cryptanalysis of McEliece-Like Schemes with Symmetric Keys, oc-
tober 2015. Designs, Codes and Cryptography. 105

[FOPT10a] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich.
Algebraic Cryptanalysis of McEliece Variants with Compact Keys. In Henri
Gilbert, editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer Sci-
ence, pages 279–298. Springer, 2010. 6, 7, 9, 10, 12, 20, 21, 25, 27, 54, 71, 105,
106, 110, 115, 120, 121

[FOPT10b] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich.
Algebraic Cryptanalysis of McEliece Variants with Compact Keys – Toward a
Complexity Analysis. In SCC ’10: Proceedings of the 2nd International Con-
ference on Symbolic Computation and Cryptography, pages 45–55, RHUL, June
2010. 66, 72, 110

[FPdP14] Jean-Charles Faugère, Ludovic Perret, and Frédéric de Portzamparc. Alge-
braic Attack against Variants of McEliece with Goppa Polynomial of a Special
Form. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology - ASI-
ACRYPT 2014 - 20th International Conference on the Theory and Application



162 BIBLIOGRAPHY

of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., Decem-
ber 7-11, 2014. Proceedings, Part I, volume 8873 of Lecture Notes in Computer
Science, pages 21–41. Springer, 2014. 117

[FS10] Jean-Charles Faugère and Pierre-Jean Spaenlehauer. Algebraic Cryptanalysis of
the PKC’2009 Algebraic Surface Cryptosystem. In Phong Q. Nguyen and David
Pointcheval, editors, Public Key Cryptography - PKC 2010, 13th International
Conference on Practice and Theory in Public Key Cryptography, Paris, France,
May 26-28, 2010. Proceedings, volume 6056 of Lecture Notes in Computer Sci-
ence, pages 35–52. Springer, 2010. 7, 21

[FS11] Matthieu Finiasz and Nicolas Sendrier. Digital Signature Scheme Based on
McEliece. In Henk C. A. van Tilborg and Sushil Jajodia, editors, Encyclopedia
of Cryptography and Security (2nd Ed.), pages 342–343. Springer, 2011. 77

[FSS11] Jean-Charles Faugère, Mohab Safey El Din, and Pierre-Jean Spaenlehauer.
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