In this thesis, we investigate the performance and applications of a new method that can accelerate the computation of the PageRank vector. The method, called D-Iteration (DI), has been introduced by Dohy Hong. It is based on the decomposition of the matrix vector that can be seen as a fluid diffusion model and is potentially adapted to asynchronous implementation. We recall the theoretical results about the convergence of the algorithm and we show through numerical analysis on a real Web graph that DI can improve the computation efficiency compared to other classical algorithms like Power Iteration (PI), Gauss-Seidel (GS) or Adaptive On-Line Page Importance Computation (OPIC). Besides, performance comparison between DI and other algorithms is further studied through experiments on real graphs and in various metrics such as iteration and operational cost. In the second part of the thesis, we study one of the main challenges for large networks data mining that deals with high dynamics of huge datasets: not only are these datasets difficult to gather, but they tend to become obsolete very quickly. We are also interested in the evolution at large time scale of any large corpus available online. Our primary focus will be the Web, but our approach, called LiveRank, encompasses any online data with similar linkage enabling crawling, like P2P networks or online social networks. We thus focus on batch crawling, where starting from a completely out-dated snapshot of a large graph like the Web, we want to identify a significant fraction of the nodes that are still alive now.

has been there as my supervisor for almost four years. His supervision, support and guidance are immeasurable during my Master and PhD. I am highly indebted and thoroughly grateful to him for providing me with material and knowledge that I could not possibly have discovered on my own, for his kind words and suggestions, and also for introducing me to Dr. Laurent Viennot and Dr. Dohy Hong.

Particular thanks must also be recorded to Laurent Viennot for his valuable comments, discussions and motivations.

I would like to thank Dohy Hong, from whom I have learned a lot and who put me on the track of D-Iteration. I would also like to say thank to Dr. Chung Shue Chen for his guidance in an interesting topic outside the mainstream of my PhD. I must thank reviewers, Dr. Konstantin Avratchenkov and Professor Jean-Loup Guillaume, for their time revising my thesis. Without them, these chapters below can not be as readable as they are.

Special thanks go to the members of my jury who kindly accepted to judge my work, Dr. Konstantin Avratchenkov, Professor Jean-Loup Guillaume, Dr. Nidhi Hegde, Dr. Fabien Mathieu, Professor Sébastien Tixeuil and Dr. Laurent Viennot.

I would appreciate Maura Covaci and Gérard Burnside for correcting English and French grammatical errors in the thesis. I would also thank Madame Félix-Noël Gudrun for sincerely hosting me in the last three years.

ii iii I would like to express my gratitude to all colleagues of the Department of Mathematics of Complex Dynamic Network of which I am proud to be a part. Here, I have a great leader Philippe, a humorous Gérard, a friendly Dimitrios, an amiable Alonso and many other people that I can not list all, Walid, Ludovic, Nidhi, Amira, Loreta, Lamine, etc. I would also like to thank my friends at LINCS for their supports, specially Yuting and Rim with whom I am always in a good mood after talking.

Most importantly, none of this would have been possible without the love and patience of my family. My parents to whom this dissertation is dedicated to, have been a constant source of love, concern, support and strength all these years. I would like to express my heart-felt gratitude to my family. Also many thanks to my friends who have helped me stay sane through these challenging years.

iii Les moteurs de recherche comme Google, Bing et Yahoo classifient les documents au niveau de chaque page Web. Avec un milliard de sites Web sur Internet, selon [START_REF]The size of world wide web (the internet)[END_REF] Google a environ 50 milliards de pages Web, ce qui revient à dire que chaque site a en moyenne 50 pages web indexées par Google. Toutefois, la taille du WWW pourrait être encore plus considérable en raison du fait que la grande majorité des pages Web n'est obtenue qu'en interrogeant des serveurs Web. D'autre part, l'émergence de réseaux sociaux, tels que Twitter [START_REF]Twitter[END_REF], Facebook [START_REF]Facebook[END_REF] et Google+ [START_REF]Googleplus[END_REF],

1
3

2000

Problème du classement

Le classement des objets est une des questions importantes et typiques dans notre vie quotidienne. De nombreuses applications ont besoin de classifier des objets en fonction de certains critères, parfois simple comme de classifier les étudiants dans une classe en fonction de relevé de notes ou plus compliqué comme le classement des universités. Classifier des objets consiste à les ordonner selon certains critères exigés par une application spécifique.

Avec la popularisation de l'Internet, un problème typique qui a émergé ces deux dernières décennies est le classement des résultats renvoyés par les moteurs de [START_REF]The statistics portal for market data, market research and market studies[END_REF] recherche. Dans les moteurs de recherche classiques (comme Google, Yahoo ou Bing), l'importance d'une page web est la base pour le classement. Cette valeur est calculée sur la base de l'analyse des hyper-liens entre les pages Web. Avec un ensemble de documents V = {v 1 , ..., v n }, quand il y a une requête q d'un utilisateur arrivant, le moteur de recherche cherche des documents dans V correspondant à la requête q, puis trie les documents dans l'ordre décroissant de leur pertinence pour la requête.

Ce processus peut être réalisé grâce à une fonction de classement qui permet de calculer la similarité sim(q, v i) entre la requête q et un document v i ∈ V . La fonction de classement peut être considéré comme le noyau qui détermine essentiellement la qualité du moteur de recherche.

À fin des années 1990, Cohen [START_REF] Cohen | Learning to order things[END_REF] a dit qu'il y aurait de nombreuses applications nécessitant un classement d'objets plutôt qu'un rangement en bonnes catégories. Toutes les applications dont les résultats renvoyés aux utilisateurs comme une liste d'objets triés les aident à trouver rapidement les objets les plus pertinents de ce qu'ils recherchent. C ¸a a été confirmé par beaucoup d'applications que nous avons aujourd'hui. Cela montre que le classement fait partie des problèmes importants et significatifs.

Un nouveau concept de classement a été récemment introduit pour les objets du Web, en particulier les pages web. La valeur d'importance est appelée la valeur de page rank et le PageRank [START_REF] Page | The anatomy of a large-scale hypertextual Web search engine[END_REF][START_REF] Page | The pagerank citation ranking: Bringing order to the web[END_REF] est considéré comme un algorithme de classement du Web le plus connu aujourd'hui. Essentiellement, il calcule la valeur de page rank basé sur une analyse des liens entre les pages Web d'un graphe du web.

Au cours des dernières années, l'extraction de données dans les réseaux sociaux en ligne est devenu un sujet de recherche à la mode [START_REF] Kwak | What is twitter, a social network or a news media?[END_REF][START_REF] Huang | Quality-biased ranking of short texts in microblogging services[END_REF][START_REF] Huang | Tweet ranking based on heterogeneous networks[END_REF]. Les ressources et le contenu des réseaux sociaux générés par les utilisateurs reflètent une vie sociale riche et l'esprit de la société humaine. Par conséquent, le classement des objets dans le réseau social (personnes, contenu, etc.) tend à devenir de plus en plus important.

Réseaux sociaux

La tendance de communication de ce début de 21 e siècle est associé au terme "réseau social" où les gens peuvent trouver et partager des informations rapidement et efficacement. Étant donné un nom ou une adresse mail, les gens sont capable de se trouver. Toutes les informations sur les réseaux sociaux peuvent se propager rapidement grâce à des connexions entre tous les membres (voir Figure 3). Le réseau social est un endroit connectant des gens ayant des intérêts similaires sur l'Internet, indépendamment de l'espace et du temps à travers différents services. Les réseaux sociaux sont devenus de plus en plus populaires et bien évidemment l'émergence de Facebook, Twitter, Youtube, etc., a considérablement changé la façon dont nous nous communiquons.

Figure 3: Les connections simplifiées du réseau social.

Le domaine de Social Network Analysis (SNA) consiste à étudier les relations, les connexions, les communications et les comportements des différents groupes sociaux. SNA est dérivé à la fois de la sociologie, de l'analyse de réseau et de la théorie de graphes. Les scientifiques utilisent l'informatique pour étudier les réseaux sociaux, le trafic de communication sur Internet et également la diffusion de l'information.

Les résultats de SNA aident à expliquer les comportements sociaux.

Avec le SNA vient le problème de détermination des noeuds clés, aussi connu comme les facteurs critiques dans les réseaux sociaux. Ils sont des éléments (utilisateurs, articles, ...) qui sont considérés cruciaux par rapport à certains critères.

On peut dire que dans les graphes sociaux les éléments clés sont des noeuds ayant la capacité de contrôler le flux d'information, les plus importants et les plus influents par rapport à d'autres noeuds dans le réseau.

Pour déterminer les noeuds clés dans les graphes de réseaux sociaux, on pourrait se baser sur la mesure de centralité. "En théorie de graphe et analyse de réseau, la centralité se réfère aux indicateurs qui identifient les sommets les plus importants dans un réseau" [START_REF] Dey | Social network analysis of different parameters derived from realtime profile[END_REF]. Selon les propriétés des graphes et les problèmes à résoudre, les méthodologies pour trouver les noeuds clés sont différents. En général, on distingue quatre types principaux de la mesure de centralité : Nous combinons par ailleurs la méthode 2SM avec la technique multi-sampling pour améliorer la performance de localisation. On peut alors réduire le nombre de points de référence nécessaires et réduire ainsi le coût de construction du système de localisation. En plus, une généralisation de 2SM (appelée G2SM) au contexte de communication "machine à machine" est également décrite qui permet au point de référence unique de se déplacer ou d'être un autre appareil mobile. Nous avons publié les résultats correspondants dans [START_REF] Huynh | Exploiting User Movement for Position Detection[END_REF][START_REF]Localization Method for Device-to-Device through User Movement[END_REF].

Centralité

Système de localisation

Chapter 1 Introduction

Context

The Internet has been growing rapidly over the last decade, particularly the World Wide Web. According to the Netcraft's survey [3], there were more than 1 billion websites by the end of October 2014. Another survey done in [START_REF] Stats | Internet usage & social media statistics[END_REF] shows a slightly different number, about 1.1 billion websites active by the same period. of social networks, such as Twitter [START_REF]Twitter[END_REF], Facebook [START_REF]Facebook[END_REF] and Google+ [START_REF]Googleplus[END_REF], enriches the World Wide Web significantly thanks to its rapid growth. Figure 1.2 shows the evolution of monthly active users of Twitter and Facebook from the first quater 2010 (Q1 '10) to the third quater 2014 (Q3 '14). As we can see, the websites have been increasing exponentially, in contrast to linear growth of the social networks. Intuitive explanation may come from the fact that websites have no limit of growing and more modern (smarter) search engines can index more query-based web pages mentioned above. Meanwhile, social network members are bounded by human population which increases linearly.

Ranking problems

Ranking objects is one of the important and typical issues in our daily life.

Many applications need to rank objects according to certain criteria, as simple as ranking students in a class according to average grades, or more complicated as ranking universities. Ranking objects means to arrange them in accordance with some criteria depending on the specific application.

In the era of the Internet, a typical problem emerging in the last decades is the ranking of results returned by search engines. In conventional search engines (like Google, Yahoo or Bing), the importance of a web page is the basis for ranking. This value is determined based on the analysis of graph links between web pages. With a set of documents V = {v 1 , ..., v n }, when there is a user's query q arriving, the search engine looks for documents in V matching the query q, then sorts the documents according to their relevance to the query in descending order. This process can be done thanks to a ranking function which allows us to compute the similarity s(q, v i) between the query q and a document i ∈ V . Obviously, the ranking function can be seen as the core and significantly determines the quality of the search engine.

In the late 1990s, Cohen [START_REF] Cohen | Learning to order things[END_REF] made the comment that there would be many applications requiring arrangement of objects rather than classifying them. All applications whose results returned to users as a list of sorted objects helps them quickly reach those most relevant to what they look for. This comment has been confirmed by an uncountable number of such applications we meet nowadays. That said, ranking is one of the important and meaningful problems.

A new concept of ranking was recently introduced to orient rating objects on the Web, specifically web pages. The pages need to be arranged in descending importance. Value of importance is called page rank value and the PageRank [START_REF] Page | The anatomy of a large-scale hypertextual Web search engine[END_REF][START_REF] Page | The pagerank citation ranking: Bringing order to the web[END_REF] is considered as the most successful and well-known web ranking algorithm. Essentially, it calculates page rank value based on an analysis of the links between web pages in a web graph.

In recent years, data mining in online social networks has become a trendy research topic [START_REF] Kwak | What is twitter, a social network or a news media?[END_REF][START_REF] Huang | Quality-biased ranking of short texts in microblogging services[END_REF][START_REF] Huang | Tweet ranking based on heterogeneous networks[END_REF]. Resources and content of social networks are generated by users, reflecting an increasingly rich social life and spirit of human society. Therefore, ranking objects in social networks (people, content, etc) has also become important.

Social networks

Communication trends of 21 st century are associated with the phrase "Social network" where people can find and share information rapidly and effectively. Given a name or an email address, people are able to find each other. All information on the social networks can be quickly spread thanks to connections among members (see Figure 1.3). The social network is a place connecting members with similar interests on the Internet irrespective of space and time through different services.

Social networks have become more and more popular and obviously the advent of Facebook, Twitter, Youtube, etc, has significantly changed the way we communicate. Part of the problem of the SNA is determining the key nodes, also known as the critical factors in social networks. They are elements (users, items, ...) which are considered crucial with respect to certain criteria. It can be said that in social graphs the key elements are nodes who have the ability to control the flow of information, they are the most prominent and influential compared to other nodes in the network society.

To determine the key nodes in social network graphs, one could use centrality measurement. "In graph theory and network analysis, centrality refers to indicators which identify the most important vertices within a network" [START_REF] Dey | Social network analysis of different parameters derived from realtime profile[END_REF]. Depending on properties of social graphs and problems to be solved, methodologies of finding the key nodes are different. However in general, there are four main types of centrality measurement:

Degree centrality: is defined as the number of links a node has with other nodes. In social networks, this value of a user is mostly determined by how many other users he has connections with and/or have connections with him.

Closeness centrality: shows how close a node is to other nodes. The more central node has lower distances to others, and the distance between a pair of nodes is defined by the length of their shortest path. In social networks, the least number of steps a user can reach others, the more important he is. In the context of information propagation, this measurement could give a basic view on how to spread content as quickly as possible given only one single or a few information sources. Reversely, they are the nodes that can receive information from other nodes fastest and with least effort.

Betweenness centrality: of a node is defined by how many shortest paths between all pairs of nodes passing through it. This measures the ability of a network element to connect other elements. This measure is crucial to study how well a network is internally connected and how to maintain or strengthen the network structure. If a node having high betweenness centrality is removed from the network, it turns out that many pairs of nodes may not communicate any more.

Eigenvector centrality: measures the importance of nodes in a network, saying that a connection from a higher-score node results in a higher score contribution than an equivalent connection from a lower-score node2 . PageRank algorithm is a variant of the eigenvector centrality and this thesis therefore will be mainly talking about this centrality measure.

There are many ways to build a ranking model for social networks. It consists in answering two questions: what to rank and how to rank. However, constructing a good model is not such an easy task.

Challenges of social network ranking

Ranking objects in social networks is challenging due to various reasons.

Firstly, social network graphs are heterogeneous. Unlike homogeneous web graphs which simply consist of web pages, files and hyperlinks between them, social graphs contain a variety of objects such as people, news, posts... Each social network has its own specific objects and links. For instance Twitter has users, tweets, retweets as objects and following/follower relationship, tweet, retweet, mention, favorite as links. On the other hand, Facebook has users, posts, comments as objects and friendship, comment, like, share as links. Social graphs are heterogeneous in terms of both objects and links (see Figure 1.4). This heterogeneity makes the question of how to rank much more difficult, for instance should we rank a Twitter user based on his followers or on the number of times other users retweet his tweets? Or both? Secondly, social graphs evolve much faster than web graphs. Their dynamics can be observed by the rapid appearances of new objects and disappearances of old relationships or out-dated elements. Assume we want to compute PageRank values of nodes in the graphs, it is not convenient to use classical computation methods because they must take some time to adapt to the graph structure changes, then recompute the PageRank values almost from scratch. That is why we will later introduce D-Iteration, an algorithm that can continuously update the PageRank vector along with the graph evolution.

Thirdly, even when we have already a raking model, it is not obvious how to evaluate its validity. Web ranking has also encountered this issue since the ground truth is hard to define. This challenge more or less relates to the question of what to rank. If one wants to find the most influential users in the graph, then he might get stuck at validity verification. In this case, the human factor may help, i.e., a human will check the validity based on the outcomes of the ranking algorithm, and of course it takes much time and effort. To avoid this problem, we choose to rank objects according to some verifiable criteria like activeness of users in social graphs which can be correctly derived by their accessible activity records.

Roadmap and contributions

This thesis aims at investigating the state of the art of PageRank, then we will present D-Iteration algorithm, firstly introduced by Dohy Hong [START_REF] Hong | Optimized on-line computation of pagerank algorithm[END_REF], that fully supports PageRank vector computation in a distributed way. The scope of this thesis is not limited to the web graph but stretched to other types of graphs, e.g., social network or call-log graphs in which the classical PageRank may not give an appropriate ranking order. Keeping that in mind, we also introduce an extension of PageRank, called LiveRank which can help for example to rank users in Twitter graph with respect to their activeness, or to quickly detect alive pages in a web graph that makes a lot of sense in web crawling applications, or generally in the context of information retrieval.

The thesis is organized as follows. Chapter 2 introduces the PageRank algorithm and how it looks like when applied on a web graph or a call-log graph.

Chapter 3 introduces D-Iteration (DI), a new algorithm for computing PageRank that has been proposed by Dohy Hong [START_REF] Hong | Optimized on-line computation of pagerank algorithm[END_REF]. The chapter is organized as a selfcontained summary of DI's definition and main theoretical results (correctness, convergence bounds, stopping condition. . .). The algorithm shows its potential through experiments on real data in comparison with other classical algorithms.

Chapter 4 shows the performance evaluations between DI and other algorithms, like Power Iteration (PI), Jacobi, Gauss-Seidel (GS), Adaptive On-Line Page Importance Computation (OPIC) and Generalized Minimal Residual (GMRES), on a small web graph. We compare the methods in terms of iterations and operational cost. We also propose a strategy to approximate the PageRank vector of a graph of which all columns (or rows) are not given.

Chapter 5 provides further performance evaluation of DI on different metrics: iteration, operational cost, etc, in comparison with the other algorithms like PI, GS and OPIC. The comparison metrics are iterations, elementary operations and request messages. For each of the later two criteria, we proposed a DI variant that gives better performance compared to the other classical iteration methods.

Additionally, we show the application of PageRank to Twitter user ranking and compare its efficiency with the classical indegree ranking.

Chapter 6 talks about LiveRank, a ranking order of nodes in a graph such that alive nodes should appear first. We propose various LiveRank algorithms based on graph structures. We evaluate them on two Web snapshots and on a Twitter snapshot. We propose several propositions based on the graph structure of the snapshot. A rather simple combination of a small sampling phase and the propagation of the partial activity information are obtained in the remaining graph of the snapshot through a modified PageRank algorithm. We published the results in [START_REF] Huynh | Liverank: How to refresh old crawls[END_REF][START_REF]LiveRank : comment faire du neuf avec du vieux ?[END_REF].

Chapter 7 concludes the thesis and points out future research directions.

The thesis also contains a few appendices, some related to the main subject and others pointing to additional work I made during the last three years.

Appendix A shows through a didactic example how the GMRES algorithm works.

AppendixB gives a detailed proof of a relationship between the Gauss-Seidel algorithm and one of D-Iteration's variant. Unrelated to PageRank issues, I participated to a demonstration of game theoretical results for Alcatel-Lucent Bell Labs' Open Days. In Appendix C, I present two graphical demonstrations I built for that occasion. The first demo is about distributing limited resources over several objects to win most of them. The second demo is an extension of the first one that we consider forty European countries as objects to win in Internet Service Provider (ISP) market, along with the introduction of various game strategies to play with, e.g., Tit-for-Tat, unequal resources. The two demos are available for download.

In Appendix D, we propose a new method called Two-Step Movement (2SM) to estimate the position of a Mobile Terminal (MT). It requires only one reference point (RP) by exploiting useful information given by the position change of the MT or user movement. Also, we combine the 2SM method with multi-sampling technique to improve the positioning performance. One can therefore reduce the number of RPs required and lower the system cost. Furthermore, a Generalization of the Two-

Step Movement (G2SM) to Device-To-Device context is also described as it allows the unique Reference Point to move or to be another mobile device. We published the results in [START_REF] Huynh | Exploiting User Movement for Position Detection[END_REF][START_REF]Localization Method for Device-to-Device through User Movement[END_REF].

Chapter 2 PageRank

Issues concerning systems of linear equations have attracted many research efforts. A system of linear equations can be written under the form of the equation Ax = b where A is a n×n matrix, b is a constant vector of size n and unknown vector

x. Different methods exist for solving this equation, such as Jacobi, Gauss-Seidel, etc. They vary in memory requirement, computation cost and convergence speed.

Further, those algorithms can deal with different problems which spread throughout a large research area. One of their well-known applications is solving the PageRank equation.

PageRank is a link analysis algorithm that has been initially introduced in [START_REF] Page | The anatomy of a large-scale hypertextual Web search engine[END_REF] and used as an important factor among thousands of others by the Google Internet search engine to rank web pages. It assigns a numerical value to each element of a hyper-linked set of nodes, such as the World Wide Web. The algorithm may be applied to any collection of entities (nodes) that are linked through directional relationships. The numerical value assigned to each node is called PageRank and is associated to an eigenvector problem of which we are interested in the computation issue. Although PageRank may today only be a small part of Google's ranking algorithm (the complete algorithm is obviously kept secret, but it seems to take into account hundreds of parameters, most of them have been related to the user's profile), but it stays appealing, especially in the research community, as it balances simplicity of definition, ranking efficiency and computational challenges. These challenges include the growing size of the dataset (Web graphs can have tens of billions of nodes) and the dynamics of the structure that requires frequent updates.

25

In this chapter, our main contributions is conducting a survey on the PageRank algorithm, including an introduction of different techniques solving the PageRank equation like Power Iteration, Gauss-Seidel, etc. Next, we visualized a web graph and a call-log graph in descending PageRank order to better understand the graph structures. The structures will be explained using the diffusion approach which will also be presented in this chapter. We also conducted a survey on some basic web graph compression techniques which exploit locality of the graph structures. This chapter is organized as follows. Section 2.1 presents the PageRank model. Section 2.2 introduces several methods to solve the PageRank equation. Section 2.3 shows the definitions of collection and diffusion approaches in the PageRank context. Section 2.4 and Section 2.5 show how a web graph and a call-log graph look like respectively under canonic and PageRank point of view. Section 2.6 talks about some existing web graph storage methods. Finally, Section 2.7 concludes the chapter.

Model

The informal definition of PageRank is rather simple: it is an importance vector over Web pages such that important pages are referenced by important pages [START_REF] Brin | The anatomy of a large-scale hypertextual web search engine[END_REF].

More formally, let G = (V, E) be a weighted oriented graph. The size of G is n = |V | and w ij > 0 is the weight of edge (i, j) ∈ E. G represents a set of nodes and their (weighted, oriented) relationships. In [START_REF] Brin | The anatomy of a large-scale hypertextual web search engine[END_REF], G was a Web graph, V representing web pages and E hyperlinks, but the principle applies to most structured sets, e.g., social network graphs.

Let P be a n × n diffusion matrix defined by:

P ij =    w ji (j,k)∈E w jk if (j, i) ∈ E, 0 otherwise. (2.1)
P is a left substochastic matrix, column j summing to 1 if node j has an outgoing edge at least, 0 if j is a dangling node. Note that:

For unweighted graphs, the expression of P is simpler: for (j, i) ∈ E, we just have P i,j = 1/out(j), where out(j) is the out-degree of j. Some variants of PageRank require P to be stochastic. For these variants, one usually pads the null columns of P with 1 n (dangling nodes completion).

P represents how importance flows from one node to another. When it is stochastic, it represents the Markov chain over V implied by the edges E. In that case, the PageRank can be defined as a stationary state of the Markov chain, that is a distribution x over V that verifies

x = P x. (2.2)
Thanks to Perron-Frobenius theorem, we know that x is unique if G is strongly connected [START_REF] Surhone | Perron-Frobenius Theorem[END_REF].

In practice, the following variant is used instead of (2.2):

x = dP x + (1 -d)Z, (2.3)
where 0 < d < 1 is called damping (often set to 0.85), and Z a default distribution over V (often set to the uniform distribution).

If P is stochastic, the solution x of (2.3) is a distribution, which corresponds to the Markov chain defined by: with probability d, use the Markov chain induced by P ; otherwise jump to a random node according to distribution Z.

Introducing parameters d and Z has many advantages:

It guarantees the existence and uniqueness of a solution for any substochastic matrix P , without any assumption on G.

It speeds up the PageRank computation (cf below).

Parameter d introduces some locality: influence of a node at distance k is reduced by a factor d k . This strengthens the impact of the local structure and mitigates the possibility of malicious PageRank alterations through techniques like links farm [START_REF] Bianchini | Inside pagerank[END_REF].

Parameter Z allows to customize the PageRank. For instance, one can concentrate the default importance on pages known to talk about some given topic to create a topic-sensitive PageRank [START_REF] Haveliwala | Topic-sensitive pagerank[END_REF]. In the rest of the thesis, unless stated otherwise, we focus on solving (2.3).

A
Writing the solution is straightforward:

x = (1 -d)(I -dP) -1 Z
, where I is the identity matrix.

(2.4)

However, such a direct approach cannot be used due to the size of P that forbids an explicit computation of (I -dP) -1 . Instead, one can use different iterative methods (see [START_REF] Langville | Deeper inside pagerank[END_REF] and Section 2.2). graph with the vector Z uniform on V . That means, if the matrix P is substochastic, L1-norm of the vector x, denoted by x 1 = i x i , is less than one. In this case if one wants a distribution for output, we pad the null columns of P with 1 n (known as dangling node completion) before the computation.

The complexity of computing the PageRank of a graph rapidly increases with the number of nodes, as it is equivalent to computing an eigenvector on some huge, matrix, and efficient and accurately computing eigenvalues and eigenvectors of arbitrary matrices is in general a difficult problem. In the particular case of the PageRank equation, several specific solutions were proposed and analysed [START_REF] Langville | Deeper inside pagerank[END_REF][START_REF] Bianchini | Inside pagerank[END_REF] including the power method [START_REF] Page | The pagerank citation ranking: Bringing order to the web[END_REF] with adaptation [START_REF] Kamvar | Adaptive methods for the computation of pagerank[END_REF] or extrapolation [START_REF] Haveliwala | Computing pagerank using power extrapolation[END_REF][START_REF] Kamvar | Extrapolation methods for accelerating pagerank computations[END_REF], or the adaptive on-line method [START_REF] Abiteboul | Adaptive on-line page importance computation[END_REF], etc.

For performance evaluations in later chapters, we now briefly introduce these methods.

PageRank computation techniques 2.2.1 Power Iteration

The simplest approach is Power Iteration (PI), also called Jacobi: starting from an initial guess vector x 0 , the stationary PageRank vector is iteratively computed using (2.3):

x k+1 = dP x k + (1 -d)Z, (2.5)
until the change between two consecutive vectors is negligible. During an iteration round, entries x k+1 (i) are computed from i = 1 to i = n using:

x k+1 (i) = d j P i,j x k (j) + (1 -d)Z(i). (2.6)
It is straightforward that the error decays by a factor at least d at each iteration (hence one of the interests of introducing a damping factor). PI requires to maintain two vectors x k and x k+1 . The Power Iteration is shown in Algorithm 1.

Gauss-Seidel

The Gauss-Seidel (GS) applied to PageRank consists in using the updated entries of x k as they are computed:

x k+1 (i) = d j<i P i,j x k+1 (j) + j≥i P i,j x k (j) + (1 -d)Z(i). (2.7) Algorithm 1 Power Iteration: x = dP x + (1 -d)Z 1: for i = 1 : n do 2:
x old (i) = 1/n; Initializing uniform vector x 0 3: end for 4: while (true) do for i = 1 : n do 13:

x new (i) = sum + (1 -d) × Z(i);
x old (i) = x new (i); Check the convergence, continue if necessary; 16: end while Thanks to the immediate update, one needs to maintain only one vector and the convergence is faster, typically by a factor 2 asymptotically. The main downside of the update mechanism is the necessity to access the entries in a round-robin fashion, which can cause problems in a distributed scenario. The Gauss-Seidel is presented in Algorithm 2.

Algorithm 2 Gauss-Seidel:

x = dP x + (1 -d)Z 1: for i = 1 : n do 2:
x(i) = 1/n;

Initializing uniform vector x 0 3: end for 4: while (true) do Check the convergence, continue if necessary; 13: end while

x(i) = sum + (1 -d) × Z(i);

Successive Over-Relaxation

The Gauss-Seidel belongs to a larger class of methods called Successive Overrelaxation (SOR), but other SOR variants are seldom used for Web PageRank computations [START_REF] Greif | A note on the convergence of sor for the pagerank problem[END_REF]. However, for performance evaluation purposes we introduce here the SOR algorithm. The PageRank vector x k+1 is computed as follows:

x k+1 (i) = d ω j<i P i,j x k+1 (j) + j≥i P i,j x k (j) + (1 -ω)x k (i) + (1 -d)Z(i).
(2.8) Intuitively, if ω > 1 the algorithm may converge faster thanks to the boost induced by (2.7). However, this convergence is not guaranteed in general, i.e., the algorithm may diverge.

Generalized Minimal Residual

The Generalized Minimal Residual (GMRES) is an algorithm used to find the unknown x in the equation Ax = b on the Krylov subspace K(A, r 0) where r 0 = b -Ax 0 and x 0 is the initial vector. In principle, GMRES finds the vector x by using the Krylov subspace K(A, r 0) = {r 0 , Ar 0 , A 2 r 0 , ...}. One important aspect of GMRES is the restart parameter. In the PageRank context, the number of nodes may go up to billions and the PageRank vector itself takes GBs, not to mention the whole web graph. By adjusting the restart value, one can restrict the Krylov subspace size so that it fits system memory. After some iterations equal to the restart value, the algorithm erases the current Krylov subspace, keeps the last result vector, then uses it as the initial guess vector for the next GMRES repetition. Its disadvantage is again the convergence speed due to the lack of information from previous result vectors in the subspace. To better understand how GMRES works step-by-step, reader can refer to Appendix A where there is a numerical example of the algorithm.

One can use GMRES to compute the

Online Page Importance Computation

The Online Page Importance Computation (OPIC) was proposed in [START_REF] Abiteboul | Adaptive on-line page importance computation[END_REF]. Its core idea: most PageRank algorithms implicitly use a pull approach, where the state of a node is updated according to the states of its incoming neighbors. By contrast, OPIC proposes a push approach, where the state of a node is read and used to update the states of its outgoing neighbors. In details, OPIC focuses on solving (2.2) for a modified graph G = (V ∪ z, E ∪ J), where z is a virtual zap node and J = (V × z) ∪ (z × V) is all possible edges between V and z, plus edge (z, z).

This was introduced to make P stochastic and irreducible, allowing (2.2) to admit a unique solution.

The OPIC algorithm works as follows: initially, each node receives some amount of fluid (a non-negative number) and a null history record. A scheduler, which can be associated to a web crawler, iterates among the nodes. When a node i is selected, its fluid F (i) is, in order, credited to its history:

H(i) = H(i) + F (i);
equally pushed to its neighbors: for all j that are outgoing neighbors of i,

F (j) = F (j) + F (i) out(i) ; cleared: F (i) = F (i) out(i) if i has a loop, F (i) = 0 otherwise.
It has been shown that as long as the scheduler is fair (i.e. any given node is selected infinitely often) then the history vector converges, up to normalization, to the desired solution [START_REF] Abiteboul | Adaptive on-line page importance computation[END_REF]. Algorithm 3 describes how OPIC works. At a given moment, the importance of a node i is proportional to the fluid going through it and is equal to (F (i) + H(i))/(G + 1) where G is the total fluid diffused on the entire graph.

The main advantage of OPIC is its flexibility. In particular, it is easy to adapt and incorporate to a continuous, possibly distributed, Web crawler, allowing to get a dynamic, lightweight, PageRank importance estimation. One drawback is that it is not designed to work with (2.3).

Algorithm 3 OPIC algorithm

1: for i = 1 : n do 2:
H(i) = 0; Initializing history vector 3: Choose some node i;

F (i) =
8:

H(i)+ = F (i); 9:
for all child node j of i do 10: G+= F (i);

F (j)+= F (i)/out(i);

13:

F (i) = 0; 14: end while

Collection and diffusion approach

To solve the PageRank equation, most of the methods (e.g., Jacobi, Gauss-Seidel) exploit the matrix-vector multiplication. It means, the PageRank score of a node is calculated by iteratively collecting (pulling) the scores from its incoming neighbours. Few others compute PageRank by continuously diffusing (pushing) its score to outgoing neighbours (e.g., OPIC).

We take a look of how collection and diffusion approach work. Given a directed three-nodes graph in Figure 2.2, collection methods make use of incoming links of nodes as in Figure 2.3 (or rows of the corresponding transition matrix) whereas diffusion method exploits outgoing links as in Figure 2.4 (or columns of the matrix).

If the iteration is based on vector level update (such as Jacobi or Power iteration), the collection and diffusion approaches become equivalent (full cycle operations on all nodes). Somehow, these two types of operations can be seen as dual operations, but with different consequences.

PageRank of Web graph

In this part of the chapter we describe how web pages are connected and what a web graph looks like under the PageRank point of view. The locality of web graph is well-know [START_REF] Kamvar | Exploiting the block structure of the web for computing pagerank[END_REF][START_REF] Mathieu | Local Aspects of the Global Ranking of Web Pages[END_REF]. It can be intuitively understood by observing the fact that web pages of the same website often point to each other rather than to those of other websites. If nodes in a web graph are numbered in a lexicographic order, i.e., pages of the same website are marked by consecutive series of numbers, the web graph will look like Figure 2.5 where each point represents a hyper-link from a Source page to a Destination page. The dataset uk-20072 , collected by UbiCrawler [START_REF] Boldi | Ubicrawler: A scalable fully distributed web crawler[END_REF] and compressed using techniques in [START_REF] Boldi | The webgraph framework i: Compression techniques[END_REF][START_REF] Boldi | Layered label propagation: A multiresolution coordinate-free ordering for compressing social networks[END_REF], holds 1M nodes of .uk domain. There are two remarks:

The diagonal with a high density of points confirms the locality characteristic.

On the diagonal, there are dense squares nested in other less-dense squares.

All of them may belong to a main website (domain). The dense squares are sub-websites (sub-domains) and the less-dense would be main website, say company.com containing various sub-websites serviceA.company.com, ser-viceB.compagny.com, etc.

PageRank of Call-log graph

To have a broader view of how the PageRank algorithm works, it is worth to test it on different types of graphs. The dataset used in this section comes from phone calls in a prepaid telephon service on April 20, 2012. In its simple version, each line of log represents a call and contains four types of information:

caller: group of user making a call.

callee: group of user receiving a call.

timestamp of a call when it was made.

duration of a call (in seconds).

We are only interested in caller and callee information to visualize the transition graph. In the log file, each caller/callee identification represents a group of user having the same prefix (e.g., company, association, ...) and is anonymized under the form of a string of digits. The entire call log was collected in one single day. Suppose that each node corresponds to a user group in the call log, there is a link between a pair {caller, callee} if the caller has called the callee. Table 2.1 shows some properties of the graph. Note that the degree3 shows the real number of calls a user makes or receives, i.e., the graph is weighted. With the goal of measuring user groups' importance, a corresponding transition matrix P is then constructed, on which we can apply the PageRank algorithm (with damping factor d = 0.85).

In the call-log graph, edges are weighted according to how many calls were made between each corresponding pair of caller and callee. Hence, the transition matrix P is filled as follows: 37

Property
p ij =    calls(j → i)/outdeg(j) if j ever makes a call to i 0 otherwise.
where calls(j → i) is the number of calls from j to i and outdeg(j)

= k calls(j → k)
is the total number of calls j has made.

The PageRank vector of the sub-stochastic matrix P is computed. Callers and callees are sorted in descending PageRank order and their connections are visualized in Figure 2.7a. In the plot, nodes are arranged from the left/lower part (higher PageRank) to the right/upper part (lower PageRank). There are some remarks:

Each identification stands for a group of users and naturally people of the same group often make internal calls. This fact results in the appearance of the diagonal which indicates self-calls (or internal calls), like observed in The color is porportional to density, i.e., less ratio is less visible. Each coordinate (x, y) means callee x only receives calls from a unique caller y but not from others.

. transform the rank of a node x, denoted by R(x), to the PageRank P R(x):

g : R ∈ [1, n] → P R ∈ [0, 1] . (2.9)
and its inverse function g -1 exists as well. If a callee j receives k calls from a unique caller i who has made K calls in total (k ≤ K), the PageRank of user j is

P R(j) = d × k K P R(i) + 1 -d n .
(2.10) and his rank is

R(j) = g -1 d × k K g (R(i)) + (1 -d) n . (2.11)
As a consequence, the curly lines are computed thanks to a function

f (k, K) such that f (k, K) : x → g -1 d × k K g (x) + (1 -d) n . (2.12)
Moreover, the blank lines can be explained by observing the uniform gaps.

The difference in PageRank score of nodes residing in the middle between the two adjacent vertical (or horizontal) lines depends mainly on the outdeg(caller). For example, between the k th and (k + 1) th blank lines (from left to right), the difference

is d × (1 -d)/(nk(k + 1)).
In case of the web graph uk-2007, there are also series of obvious curly lines located at the lower-right part of the Figure 2.8a. They characterize all incoming connections of nodes having single parent, i.e., nodes with only one incoming link.

We apply the same method to the web graph to extract the curly lines from it. The result is shown in Figure 2.8b. As expected, what we obtain confirms the explanation of the curly lines. They characterize all incoming connections of nodes having a single parent, i.e., web pages pointed to by only one other page and the lines appear from left to right according to the out-degree of the single parent.

Web graph storage

Web graphs and social network graphs are gigantic. Suppose we need to compute the PageRank vector of a fraction of the World Wide Web graph which contains one billion nodes, and also assume that each PageRank value associated to a node is 8-bytes double type. The PageRank vector itself takes 7.45 GBs and of course the storage space for such a graph is even much larger. The necessity of having an efficient graph storage scheme becomes very important if one wants to deal with enormous data. Fortunately, graphs containing directed relationship between nodes are sparse, i.e., one node often connects to fewer other nodes. Based on this characteristics, many methods were invented. Paolo et al. [START_REF] Boldi | The webgraph framework i: Compression techniques[END_REF] shows several compression techniques There is always a trade-off between the size of compressed graph and the complexity of compression/decompression process. We show below some basic web graph storage techniques:

Square matrix: the classical web graph storage method uses directly a square matrix of size n × n where n is the number of pages. Each entry value of a web graph matrix P is defined by p ji = w ij such that w ij is the link weight from node i to j. Storing a web graph under square matrix form requires memory

O(n 2) (n 2 bits if it represents an unweighted graph) if n grows large.                                         0 1 1 0 1 1 1 0 0 1 . . . 1 0 1 0 1 0 1 . . . 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1
Adjacency list (see Table 2.2): this method is often preferable over the square matrix thanks to its simplicity and better memory usage for sparse graph. Each node, numbered according to the lexicographic ordering of the URL, would be attached to a list of neighbours that it points to. We also note that the average out-degree k is much smaller than n. Thus the memory required is O(nk).

Compared to the square matrix, memory space gains around (n 2 -nk) if the same value data type is used. Gap-based neighbors [START_REF] Boldi | The webgraph framework i: Compression techniques[END_REF] (see Table 2.3): one can easily observe that the web graph's out-going links are mostly local. Web pages from the same website (or the same domain name) often point to each other. This method is based on a adjacency list and exploits locality characteristic. By keeping only the difference between node identifications, we can keep the neighbor list small. Let out(x) be the list of outgoing neighbours of node x. Then, the list out(x) = (s 1 , s 2 , ..., s k) will be replaced by a list of gaps out

(x) = (s 1 -x, s 2 -s 1 - 1, ..., s k -s k-1 -1) or in general: gap =    s k -x if k = 1 s k -s k-1 -1 if k > 1
Note that the list (s 1 , s 2 , ..., s k) should be sorted in ascending order (to optimize the gaps) so that s k -s k-1 ≥ 1. In that case, the gaps are equal to s k -s k-1 -1 starting from k > 1 (to minimize the value of each gap, i.e., one unit less), but not at the first gap s 1 -x. Otherwise, for the first k. However, negative gap results in the use of, for example, integer (int) instead of unsigned integer (uint), thus less efficient if one prefers to work with uint. In order to deal with this, a transformation function can be defined as follows:

gap =    2 × gap if gap ≥ 0 2 × |gap| -1 if gap < 0
Additionally, if the list (s 1 , s 2 , ..., s k) is sorted in ascending order, only the first gap s 1 -x < 0.

Conclusion

In this chapter, we gave the introduction of the PageRank algorithm and how it is formulated mathematically. Several techniques to find the PageRank vector were introduced. We then visualized the transition matrix under the PageRank point of view which unveils some specific structures of the web graph. We looked at what could be observed by computing PageRank on another type of graph (calllogs). Some strange graph structures were explained using the definition of the diffusion approach. Efficient compression methods were also exposed as a solution to store enormous web graph. The principle goal of this chapter was to give readers a panoramic and preliminary view of PageRank, which will facilitate the reading of the later chapters. The main contribution of this chapter is doing a survey on D-Iteration, based on [START_REF] Hong | Optimized on-line computation of pagerank algorithm[END_REF]. We give the definition of DI and explain how the algorithm can compute the PageRank vector. We also point out the advantages of DI such as convergence speed thanks to implicit completion due to dangling nodes1 , freedom in choosing nodes to iterate and adaptation to the graph evolutions. The results of this chapter are put in [START_REF] Hong | D-iteration: diffusion approach for solving pagerank[END_REF].

This chapter is organized as follows. Section 3.1 presents the definition the D-Iteration, followed by Section 3.2 explaining the convergence of the algorithm.

Section 3.3 shows how to complete the PageRank vector with the presence of dangling nodes. Section 3.4 talks about DI schedulers. Section 3.5 demonstrates the adaptability of DI to the graph evolutions. Finally, Section 3.6 concludes the chapter.

Definition

In the following, we assume that a deterministic or a random diffusion sequence I = {i 1 , i 2 , ..., i k , ...} with i k ∈ {1, .., n} is given. I is not obliged to be fixed in advance but can be adjusted on the fly as long as the fairness2 property stands.

Note that the fairness assumption is sufficient but not necessary and will be discussed in detail later.

Like OPIC, we have to deal with two variable vectors at the same time: a fluid vector F , initially equal to (1 -d)Z and a history vector H, initially null for all nodes. When a node is selected, its current fluid value is added to its history, then a fraction d of its fluid is equally pushed to its neighbors and its fluid value is cleared.

Formally, the fluid vector F associated to the scheduler I is iteratively updated using:

F 0 = (1 -d)Z, (3.1)
F k = F k-1 + dF k-1 (i k)P e i k -F k-1 (i k)e i k , (3.2)
where e i k is the standard basis vector corresponding to i k .

The second term in (3.2) represents the damped diffusion and the third term clears the local fluid (up to loops). Similarly to OPIC, an iteration reads one value, F k-1 (i k) and updates i k and its outgoing neighbors. Note that F is always nonnegative.

We also formally define the history vector H:

H 0 = 0, (3.3) H k = H k-1 + F k-1 (i k)e i k . (3.4)
By construction, H k is non-decreasing with k.

Convergence

The following Theorem states the convergence of the D-Iteration algorithm:

Theorem 1. For any fair sequence I (all nodes are chosen infinitely often) and any positive damping factor d < 1, the history vector H k converges to the unique vector

x such that x = dP x + (1 -d)Z: lim k→∞ H k = (1 -d)(I -dP) -1 Z.
Moreover, we have

|x -H k | ≤ |F k | 1 -d , where | • | is the L 1 norm. (3.5)
Proof. We first prove the equality:

H k + F k = F 0 + dP H k . (3.6)
This is straightforward by induction: (3.6) is true for k = 0; assuming it is true for k -1, we have

H k + F k = H k-1 + F k-1 (i k)e i k + F k-1 + dF k-1 (i k)P e i k -F k-1 (i k)e i k = F 0 + dP (H k-1 + F k-1 (i k)e i k) = F 0 + dP H k .
From the equation 3.6, we have:

H k = (I -dP) -1 (F 0 -F k) = x -∞ i=0 d i P i F k 48
Noticing that P is substochastic, we get

|x -H k | = | ∞ i=0 d i P i F k | ≤ ∞ i=0 d i |F k | = |F k | 1 -d .
All we need is to show that |F k | tends to 0. Notice that the total available fluid is non-increasing. That being said, the fluid of a given node is non-decreasing until it is scheduled, and when it is, a quantity (1 -d) of it is "lost" due to the damping (or more if it is a dangling node). Given these two observations, let us consider a time k and another time k > k such that all nodes have been scheduled at least once between k and k (this is always feasible thanks to the fairness assumption).

For each node i, its fluid F t (i) at the time t of its first scheduling after k is greater

than its fluid F k (i) at time k and |F t+1 | ≤ |F t | -(1 -d)F k (i), so we have |F k | ≤ |F k | -(1 -d)F k = d|F k |.
This concludes the proof.

Implicit completion

|P i F k | = |F k |.
It is more efficient to perform the computation on a non-completed matrix (every time a dangling node is selected, all non-null entries of Z are updated if P is completed). The question is: can we control the convergence to the solution of the completed matrix while running the algorithm on the original one?

To address this problem precisely, we count the total amount of fluid that has left the system when a diffusion was applied on a dangling node. We call this quantity l k (up to step k of the DI). To compensate this loss and emulate completion,

|F 0 | = (1 -d) + dl k + dl k dl k 1 -d + dl k dl k 1 -d 2 + ... = (1 -d) + dl k ∞ n=0 dl k 1 -d n = (1 -d) 2 1 -d -dl k . As |F 0 |/|F 0 | = (1 -d)/(1 -d -dl k), H k needs to be renormalized (multipli- cation) by (1 -d)/(1 -d -dl k) so that the exact L 1 distance between x and the normalized H is equal to: |x - 1 -d 1 -d -dl k H k | = |F k | 1 -d -dl k .
To summarize, we can run the algorithm on the original matrix using

|F k | 1-d-dl k
as a stopping condition that guarantees the precision of the normalized result.

Schedulers

The actual performance of DI is directly related to the scheduler used. A simple scheduler, which we call DI-cyc, is a Round-Robin (RR) one, where a given permutation of nodes is repeated as long as necessary.

Theorem 2. For any Round-Robin scheduler I, we have:

|x -H k | ≤ d k n . (3.7)
The proof is a direct application of the proof of Theorem 1 considering successive sequences of n steps.

Theorem 2 ensures that D-Iteration performs at least as well as the PI method: in both cases, after a round where all nodes have been processed once, the error is reduced by at least d.

While the bound can be tight for specific situations (for instance a clockwise scheduler applied to a counterclockwise-oriented cycle), it is conservative in the sense that it ignores that some of the fluid can be pushed multiple times during a sequence of n steps. For that reason, and keeping in mind that D-Iteration is a push version of the Gauss-Seidel method, we expect that DI-cyc will perform more like Gauss-Seidel in practice.

However, one strength of D-Iteration is the freedom in the choice of a scheduler. As the convergence is controlled by the remaining fluid |F k |, a good scheduler is one that makes the fluid vanish as quickly as possible. This disappearance is caused by two main parameters: the damping factor d and dangling nodes (cf above). Noting that at time k a quantity (1 -d)F k-1 (i k) vanishes through damping, a natural greedy strategy would consist in selecting at each step

i k = argmax i=1,...,n F k-1 (i).
The main drawback of such a strategy is the expensive searching cost. To address that issue, Dohy Hong introduced in [START_REF] Hong | Optimized on-line computation of pagerank algorithm[END_REF] a simple heuristic, calledDI-argmax, which works as follows: we use a RR scheduler, but at each iteration, we run through the scheduler until we find a node that possesses a fluid greater or equal to the average fluid in the whole graph. The advantage of this method is that nodes with relatively low fluids will be skipped, avoiding unprofitable update operations, with a searching cost lower than picking up the best node at each iteration.

Theorem 3. Using DI-argmax, we have:

|x -H k | ≤ 1 - 1 -d n k ≈ e -(1-d) k n . (3.8)
The proof is immediate, as by construction we have

|F k | ≤ (1 -1-d n)|F k-1 |.
Note that the Theorem proves the convergence of DI-argmax, which is not a fair scheduler: for instance, after some time, it will ignore the transient nodes of the graph, which eventually have no fluid left. We conjecture that (3.8) is not tight (tightness would require to always choose an average node) and that the actual convergence should be faster.

Update equation

The existing iterative methods (such as Gauss-Seidel iteration, Power Iteration, ...) can naturally adapt the iteration when G (and thus P) is changed because they are generally independent of the initial condition (for any starting vector, the iterative scheme converges to the unique limit). The simplest way to adjust is to compute the PageRank of the new graph using the previous computation as starting vector.

This technique cannot be used in the case of DI so we need to provide an adapted result.

F 0 = F k 0 + d(P -P)H k 0 , (3.9)
H 0 = H k 0 . (3.10)
A few remarks on Theorem 4:

It implies that one can continue the diffusion process when P is regularly updated: we just need to inject in the system a fluid quantity equal to d(P -P)H k 0 and then change to the new matrix P , keeping the same history.

The precision of the result directly relates to the quantity of fluid left. Here the precision induced by F k 0 + d(P -P)H k 0 seems rather minimal, as the original fluid is only altered by the difference between the two matrices. In particular, if the difference P -P is small, the update should be quickly absorbed.

For the sake of clarity, we assumed that the set of nodes is the same between P and P , but the result can be extended to cope with variations of V .

Proof. Call H ∞ the asymptotic result of the new D-Iteration. We first use (3.6) on the reduced history H k -H k 0 (Equation (3.6) requires that the history is initially empty):

(H k -H k 0) + F k = F 0 + dP (H k -H k 0). Letting k go to ∞ leads to (H ∞ -H k 0) = F 0 + dP (H ∞ -H k 0) = F k 0 + d(P -P)H k 0 + dP (H ∞ -H k 0) = dP H ∞ + F k 0 -dP H k 0 ,
which can be written

H ∞ = dP H ∞ + H k 0 + F k 0 -dP H k 0 . Equation (3.6) (H k 0 + F k 0 = F 0 + dP H k 0 .
) concludes the proof.

Conclusion

In this chapter, we summarized the theoretical results of D-Iteration, an algorithm based on a diffusion approach, to solve the PageRank equation. These results include properties concerning the correctness (convergence), the precision measurement and update equations. This chapter is the basis for chapter 4 and chapter 5

where we will show the potential of DI through experiments on real data in comparison with other classical pull (Power Iteration, Gauss-Seidel, etc) and push (OPIC) methods.

Chapter 4

Preliminary performance evaluations on a small graph

To better understand the convergence of the algorithms exposed in Section 2.2, we test them on a real web graph of 1 million nodes. The evaluation will be based on two main criteria: iterations and elementary operation cost. We will notice that some algorithms perform well on one criterion but not on the other.

In contrast, there is a D-Iteration variant that converges quickly with respect to a certain measurement.

On the other hand, the computation of PageRank vector turns out to be even more challenging if the graph is not fully visible. Therefore, this chapter will also investigate how to approximate the PageRank vector of a matrix of which all columns (or rows) are not given. In other words, the transition matrix is now partially hidden.

This study makes sense in a distributed environment where the graph is not stored on the computation machine but on another. That means, the graph can only be gradually unveiled by exchanging requests between machines.

In this chapter, the main contribution is studying the performances of Jacobi, Gauss-Seidel, SOR, GMRES and OPIC, then compare them with DI. We explain where the difference comes from and in which case an algorithm can be a good choice. Besides, we propose a method to approximate the PageRank vector of a graph partially hidden. Our method consists in combining a random strategy and a maximal one that experimentally achieves a gain factor of ten compared to using only one of them. The results are presented in [START_REF] Huynh | Analyzing methods computing pagerank vector of large matrix[END_REF].

The chapter is organized as follows. Section 4.1 presents the data set we use and the choice of PageRank parameters. Section 4.2 introduces the two measurement criteria. Section 4.3 then shows and explains experiment results. Section 4.4 presents the method to approximate the PageRank vector of a graph partially hidden. Section 4.5 summarizes the chapter.

Dataset and settings

We use the same web graph as in Chapter 2: a small graph available on [START_REF]Webgraph: Laboratory of webgraph algorithmic[END_REF] named uk-2007-05@10000001 in DELIS project2 [START_REF] Bordino | Temporal evolution of the uk web[END_REF]. This is an extraction of the dataset uk-2007-05 (containing 106M nodes) using Breadth-First Search (BFS) starting at a random node. Each node is a web page of .uk domain and edges are hyperlinks between them.

We recall the transition matrix P (see Section 2.1) in the PageRank equation

x = dP x + (1 -d)
x as follows:

P i,j =    1/outdeg(j) if hyperlink j → i exists, 0 otherwise.
where P i,j is the entry at i th row and j th column of matrix P ; outdeg(j) is out-degree of node j. All the algorithms are tuned to solve the equation (2.3) using d = 0.85 and Z ≡ 1 n . Remind that DI does not need to pad null columns of P with 1 n thanks to the implicit completion (see Section 3.3). We use the GMRES function in Matlab library3 to solve the PageRank equation.

In the case of OPIC, remind that the original version does not take into account damping factor. In order be consistent with other algorithms, we emulate (2.3) by running OPIC on the stochastic matrix P defined by:

P i,j =        d outdeg(j) + 1-d n if hyperlink j → i exists, 1 n if j is a dangling node, 1-d n otherwise. (4.1)
Note that even if we do not write P as an explicit full matrix, this emulation makes each diffusion rather costly as all entries need to be updated at each elementary step. It is only introduced to allow comparison with other methods, assuming all diffusions have the same cost, and should not be used in practice.

For DI, we used the two exposed variants, DI-cyc and DI-argmax. The same schedulers were used for OPIC, called OPIC-cyc and OPIC-argmax. Remember that the fluid amount F is constant in OPIC, so the threshold that triggers diffusion in OPIC-argmax is constant (it is the average fluid).

The y-axis in all figures shows either L1-norm or L2-norm 4 of the distance indicating how far the current vector x k is to the PageRank vector x ∞ . The ground truth vector x ∞ is pre-computed using DI with a precision 10 -9 , i.e., until the remaining fluid (residual) F k 1 < 10 -9 . Remind that with DI we can explicitly know the distance to the PageRank vector thanks to F k 1 (see Section 3.2) while we cannot with other algorithms (only an upper bound for the error is provided).

Comparison criteria

The performance of the algorithms is evaluated with respect to the two following criteria:

Iterations: conventionally, performance of iterative methods is measured by the number of iterations required to reach certain precision. One iteration of, for instance, Jacobi method, GS or SOR corresponds to one matrix-vector multiplication.

Elementary operations: among different reasons that can cause bottlenecks like slow memory access or synchronization delay in distributed computation, we consider here the number of elementary operations that the algorithms need to perform the calculation tasks. We define the cost of one addition (T a) and multiplication (T m). To numerically estimate values of T a and T m , we made a small program running several times 10 10 each operation, take the average of its cpu time (CPU clock in a second) and real time (real running time), then normalize it. Not surprisingly we obtain the same value as [START_REF] Lubachevsky | A chaotic asynchronous algorithm for computing the fixed point of a nonnegative matrix of unit spectral radius[END_REF] that T a = T m , and we consider this value as one unit cost.

Experiments

Jacobi, GS, SOR and GMRES

These four algorithms were described in Section 2.2, we recall briefly how they can be used to compute the PageRank vector x iteratively:

Jacobi / Power Iteration:

x k+1 (i) = d j P i,j x k (j) + (1 -d)Z(i).
Gauss-Seidel (GS):

x k+1 (i) = d j<i P i,j x k+1 (j) + j≥i P i,j x k (j) + (1 -d)Z(i).
Successive Over-Relaxation (SOR):

x k+1 (i) = d ω j<i P i,j x k+1 (j) + j≥i P i,j x k (j) + (1 -ω)x k (i) + (1 -d)Z(i).
Generalized Minimal Residual (GMRES): exploits the Krylov subspace to find the PageRank vector thanks to an orthogonalization of all vectors in the subspace.

We begin with the comparison of the two classical iterative methods, Jacobi and GS. Let us consider a graph of size n = 10 4 extracted from the first 10 4 nodes of uk-2007-05@1000000. Figure 4.1 shows that Jacobi takes 72 iterations to reach the residual 10 -6 while GS only requires 39. The main difference between the two methods is that with Jacobi, vector x k+1 (vector x at (k +1) th iteration) is calculated by using only elements of vector x k whereas GS exploits right away all elements

x k+1 (j) (element j of the vector x at (k + 1) th iteration) to compute x k+1 (i) for j < i. Thanks to that, GS has a better performance than Jacobi, not only w.r.t.

convergence speed but also memory usage (at (k +1) th iteration GS keeps only vector

x k+1 whereas Jacobi needs both x k+1 and x k). However, the fact that GS updates "in real time" its working PageRank vector could be perceived as a downside in asynchronous computation because it loses the freedom of choosing nodes to iterate. Next we analyze the SOR algorithm. SOR is a variant of GS, characterized by an additional relaxation parameter ω. In detail, SOR improves the convergence rate by adding (ω < 1) or removing (ω > 1) a fraction of the vector x k . According to [START_REF] Axelsson | Iterative Solution Methods[END_REF], SOR diverges if ω ≤ 0 or ω ≥ 2. It has also been proven converged if the matrix A is symmetric positive definite 5 and 0 < ω < 2. Adjusting the value of ω can be used to speed up the convergence. For example, if we set 1 < ω < 2, the part of (1 -ω)x k is negative and the GS-like part receives extra weight which could result in a faster convergence as shown in Figure 4.2. SOR becomes GS if ω = 1. In our experiment, SOR gets worse when ω > 1.2.

The number of elementary operations required by Jacobi, GS and SOR is linearly dependent on the number of iterations so that we do not plot a figure for this criterion.

A symmetric n × n real matrix M is said to be positive definite if if z T M z > 0 for all for all nonzero complex vectors z Each GMRES curve applying a restart value, i.e., 0 < restart < ∞, is stemmed from the root curve (restart = ∞) at its corresponding restart value, and converges from then on more slowly than the root curve. In Figure 4.3b, GMRES with restart = 5 requires up to 75 iterations compared to 17 iteration of that with restart = ∞ to both converge at 10 -6 , and a bad initial guess vector after each turn of restart iterations may cause this slowness. Besides the basic cost (matrix-vector multiplication cost), GMRES introduces some extra costs coming from: Arnoldi process to orthogonalize current vector with all previous vectors which are stored in Hessenberg matrix at each iteration.

Residual minimization based on projection method after each turn of restart iterations.

Thus, we will see that this method is not performing quite well in terms of the number of elementary operations when restart value is large. In addition to GMRES, we also study Biconjugate Gradient Stabilized [START_REF] Van Der | Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems[END_REF] (BICGSTAB) which also exploits Krylov subspace to produce the result vector x.

However, in case of PageRank matrix, BICGSTAB diverges as shown in Figure 4.4.

D-Iteration

Classical iterative methods, like Jacobi or GS, perform matrix row operations.

Each node gathers "score" from incoming links (row-based collection). With DI, in contrast, each node distributes its "score" (or "fluid") to its neighbours following the outgoing links (column-based diffusion). DI is well-adapted to asynchronous computation thanks to the freedom of diffusion sequence. The DI-argmax is better than DI-cyc and OPIC as it reaches the precision 10 -3 after several rounds. This can be intuitively understood because only nodes having sufficiently large fluid are diffused. It then results in a less effort wasted on minor nodes and thus a performance boost. OPIC is suitable for a less-precise computation since it converges slowly over time. Its main advantage compared to DI is the automatic adaptation to the graph evolutions while DI needs to be tuned as mentioned in Section 3.5.

To be comparable with GMRES (the GMRES function in Matlab library that we use returns L2-norm of the distance), in Figure 4.7a we use the L2-norm residual F k 2 . The peak at the second iteration of DI is due to the definition of L2norm of F : because F 0 is uniform, after the first diffusion iteration, due to damping factor we have F 1 1 < F 0 1 but as the entries of F 1 are non-uniform, we get size. If it increases, the Krylov subspace will grow larger and the cost spending on some tasks such as vector orthogonalization will become remarkably heavy.

F 1 2 > F 0 2 .

Intermezzo: PageRank approximation with partial information

Before we move on to larger graphs, we propose one last experiment on the dataset uk-2007-05@1000000. In this section, we will investigate how to approximate true PageRank vector of a matrix of which all columns (or rows) are not given.

In other words, the transition matrix is now partially hidden.

Context

The PageRank vector computed in the previous chapters is the principle eigenvector of the (possibly modified) transition matrix P of a graph G(V, E) such that x = P x. In this section, we consider that G is not stored on the same machine used to compute the PageRank vector. Now the graph is not visible and can only be gradually revealed by sending requests to a storage server (see Figure 4.8). At a time, the PageRank computation machine can request information of a full i th column of the matrix (list of outgoing neighbours of node i) or information of a full i th row of the matrix (list of incoming neighbours of node i). For the sake of simplicity, we assume that the machine always requests either column or row consistently during the whole computation process, but not the mix of them. To further fix the assumption, we suppose that the machine always asks for column information (outgoing neighbours) of a node. The problem that we study in this chapter is finding a good strategy for requesting columns, i.e., order of nodes requested, such that these following two statements are satisfied: the number of requests exchanged between the machine and the server is minimized, i.e., the computation cost (time) is kept minimum, assuming that communication is the main bottleneck. In order to achieve that, previous studies suggest to request new nodes in a Bread First Search (BFS) manner [START_REF] Najork | Breadth-first crawling yields high-quality pages[END_REF] or high-ranking nodes [START_REF] Cho | Rankmass crawler: A crawler with high personalized pagerank coverage guarantee[END_REF]. However, we show that a mix strategy could give a much better result.

PageRank approximation

To begin with, we have to differentiate two problems: (i) how to compute PageRank vector of P in case of lacking information and (ii) what is a good strategy to request column of P to have a good approximation. It is natural to say that, the vector can be calculated merely based on the visible part (information of nodes requested) and we consider 0 (vector of all zeros) at all columns for the unknown part, i.e., those nodes are supposed to be dangling nodes (zero outdegree). However, what is a good request order is not obvious to see.

Experiment

In the following, we assume that the order of requests is I = {i 1 , i 2 , ..., i k , ...} with i k ∈ {1, .., n}. We can think of two basic choices:

Random: node i k is randomly requested among nodes which have not been chosen yet.

Max: node i k is requested if it has the highest PageRank value (and not yet chosen), computed based on the information given by previous chosen nodes

i 1 , ..., i k-1 .
We propose an additional strategy:

Max + Random: the Random and the Max strategy are used alternatively. If at time t n , Random strategy is applied to request node i n , so at time t n+1 , Max strategy is applied to request node i n+1 , and vice-versa. The frequency at which each strategy is used is an important factor to optimize the algorithm. expected, all strategies converge as the percentage reaches 100%: at that time, the "approximate vector" is exactly the true PageRank vector of the graph. In the figure, we show the comparison results of various sets of vector entries randomly extracted from the approximate vector and the true PageRank vector.

A remarkable point is, the Max strategy does not perform well among the three strategies. This can be explained as follows. Since we only choose the node having highest PageRank according to the updated perspective, that node is probably connected to those which were already requested because it receives more PageRank score than others that are isolated (or those apart from the visible part of the graph).

Therefore, it takes a long time for this strategy to find high PageRank nodes that are far from the initial node.

Unlike Max, the Random strategy can avoid being locally trapped because nodes are randomly requested. Hence, it behaves better than the Max strategy. However, the combined strategy of Max + Random outperforms the other two by a gain factor of 10, thanks to the fact that it benefits the advantages of both strategies.

Conclusion

In this chapter, we evaluated the performances of some algorithms (Jacobi, Gauss-Seidel, SOR, GMRES and OPIC) on a real web graph, then compare them with the two variants of D-Iteration (DI-cyc and DI-argmax). We saw that GM-RES requires less iterations to converge but the additional cost caused by vector orthogonalization makes it become heavy. On the other hand, thanks to a smart scheduler, the DI-argmax only diffuses at important nodes (containing much fluid) so that it converges faster than other methods in terms of elementary operation cost which relates directly to the computation time. Additionally, we proposed a method to approximate the PageRank vector of a graph partially hidden. Note that we used a 1 2 Random + 1 2 Max strategy and how to weight the two choices is still an open question.

The chapter is organized as follows. Section 5.1 introduces the large datasets used. Section 5.2 shows the comparisons criteria and evaluates the performance of the algorithms. Section 5.3 talks about applying PageRank to rank Twitter users. Section 5.4 concludes the chapter.

One other related experiment on large graph, "LiveRank", will be described in the next chapter to limit the size of this chapter.

Datasets and settings

In order to compare the convergence speed of DI with other algorithms exposed in Section 2.2: Power Iteration, Gauss-Seidel, Jacobi and OPIC, we use the six following datasets 1 : it-2004: contains 41 million nodes and over 1.1 billion links, representing part of Italian web graph (.it domain). Link from node x to node y indicates an hyperlink from page x to page y. We use the original version. uk-2005: roughly 39.5 million nodes and 940 million links of British web graph (.uk domain). This crawl has been done by UbiCrawl [START_REF] Boldi | Ubicrawler: A scalable fully distributed web crawler[END_REF] which aims at enlarging number of hosts rather than number of pages crawled at each host.

We make use of the original graph. uk-06-07: this dataset is a time-aware graph [START_REF] Boldi | A large time-aware graph[END_REF] generated by combining twelve monthly snapshots (from May 2006 to May 2007) of the .uk domain.

It contains 133 million nodes and 5.5 billion links. This is a crawl done for DELIS project [START_REF] Bordino | Temporal evolution of the uk web[END_REF].

orkut-2007: this dataset is a snapshot of IMC 2007 Data Sets 2 . Orkut is a social network being launched and operated by Google. Unlike Twitter, a relationship between two users requires acceptance from both of them (one sends request and one confirms). As a consequence, its links are undirected.

However, about 10% of links miss their opposite in the original graph due to crawling issues, as suggested in [START_REF] Mislove | Measurement and Analysis of Online Social Networks[END_REF] we completed the graph so that it is 1 The first five datasets are available at [START_REF]Webgraph: Laboratory of webgraph algorithmic[END_REF] showing the user identifier, the number of followers and the list of followers.

All users who are completely isolated, i.e., zero indegree and zero outdegree, are not referenced (and that results in 399 millions instead of 505 millions [START_REF] Gabielkov | Studying Social Networks at Scale: Macroscopic Anatomy of the Twitter Social Graph[END_REF]).

The properties of the graphs are summarized in Table 5 O: number of self-loop nodes.

The PageRank settings (construction of matrix P , d = 0.85 and Z ≡ 1 n) are as in Section 4.1

Performance evaluation

Comparison criteria

Besides the two metrics mentioned in Section 4.2 (iterations and elementary operations), we also benchmark the performance based on request messages. This metric is often used in parallel computations where the matrix is stored on a separated machine. Each time a node is iterated on, the computation machine will send a request message to get a row value (Jacobi, GS) or column value (DI) to the central database. This should be considered as a communication cost in a distributed system. As a direct consequence, regardless of how many non-null entries there are in a row/column, the cost to get information of a row/column is identical, i.e. the cost of one message sent.

Keeping in mind that updating values can be costly in very large datasets due to parallelism, a good DI scheduler should try to achieve a trade-off between the amount of fluid (convergence) and the outdegree (update-cost) of a node. If one wants to optimize the diffusion achieved per update, it seems natural to try and select the nodes with the highest fluid/outdegree value. Following that idea, Dohy Hong introduced in [START_REF] Hong | Optimized on-line computation of pagerank algorithm[END_REF] a DI variant, called DI-argmax/outdeg, which works as follows:

at k th iteration, diffuse F k [i] iff F k [i]/outdeg[i] > l where l = i F k-1 [i]/|E| (|E| is
the total number of links in the graph).

Web graphs

The two next sections will show the performance evaluations of the algorithms on the datasets.

it-2004 and uk-2005

Minimizing elementary operation cost means optimizing link utilization which aims at a prudent choice of whether or not DI should perform diffusion on a link.

Simply put, if fluid passing through each outgoing link (coming from the same node) is greater than that of the average of the whole graph, DI-argmax/outdeg will diffuse that node; otherwise, it does not.

The other strategy, DI-argmax, targets at minimizing the number of requests sent in a parallel deployment. Each request of the client asks the central database for an entire column information representing outgoing neighbours list of a node.

The strategy consists in optimizing the amount of fluid to diffuse at each node. If this quantity is sufficiently large, i.e., greater than the average of the whole graph, it is worth a diffusion. Another intuition is that each request sent means some fluid disappeared. The larger the volume vanishes, the quicker the convergence.

One of the important differences between a social network graph and a web graph is the existence of self-loop nodes. They should not appear in social network friendship context because a user cannot make friend with himself. In contrast, it is quite common to have such nodes in various sorts of web graph mostly because of anchors and permanent navigation links. In case of DI, self-loop nodes slow down the convergence speed since the nodes always receive some fluid coming back to themselves after diffusion. To avoid this problem, we modify the diffusion condition as in Algorithm 4. Each time a self-loop node is chosen, we emulate what would happen if that node was selected an infinite number of times until all of its fluid is gone. In that case, the fluid is accumulated over time before being completely diffused through the outgoing links. The additional cost of setting the new fluid amount (see Algorithm 4: line 11) is equal to 2T m + T a operations. This cost then can be further reduced to only T m if we pre-compute once the value 1/(1 -dP i k ,i k) and store it at each self-loop node. Remind that although GS and the modified version of DI-cyc (i.e. DI-cyc using the new diffusion condition, called DI-cyc (No diag)) are computed differently, they are exactly equivalent (w.r.t number of iterations and precision), this will be explained in Appendix B. In general, if one applies diagonal elimination4 on a graph having self-loop nodes, it will result in the same behaviour between GS and DI-cyc. One can also observe this phenomenon in the social network graphs where GS, DI-cyc and DI-cyc (No diag) behave in the same way due to the absence of loops (O=0).

F (i k) = 0; 10: if P i k ,i k = 0 then check if i k is a self-loop node 11: sent = sent × (1/(1 -dP i k ,i k)); 12: end if 13:
for all child node j of i k (j = i k) do 14:

F (j)+ = sent × dP j,i k ; 15:
end for 16:

H(i k)+ = sent; The advantage of DI-argmax/outdeg is in terms of elementary operations.

Each node diffusion corresponds to a sequence of multiplications and additions. More precisely, let c i and r i be the number of non-null entries of the i th column and the i th row of the transition matrix P of the graph. Recall that T a and T m are the operational costs of an addition and a multiplication respectively, and that T a = T m (see Section 4.2). In the PageRank context, outgoing links from the same node receive a uniformly distributed fluid portion from that node. Suppose that the current result vector is a full vector (without any null entry), we have

D i = T m + T a × c i . C i = (T m + T a) × r i .
where D i and C i are diffusion cost (of DI) and collection cost (of Jacobi and GS) at node i. In general, the costs of one full iteration of DI (DI-cyc) and Jacobi/GS could be written

Cost DI-CY C = i D i = T m × N + T a × L. Cost Jacobi/GS = i C i = (T m + T a) × L.
where N is the number of nodes and L is the number of links of the graph. Consequently, with the same number of iterations, DI-cyc consumes less elementary operations than GS and Jacobi. However, one can think of an improvement of GS and Jacobi , by storing and making use of the value x i /outdeg(i) instead of x i (i th element of vector x), for all components of vector x as follows:

Jacobi (MOD):

x k+1 (i) outdeg(i) = d j x k (j) outdeg(j) + (1 -d)Z(i). (5
x k+1 (i) outdeg(i) = d j<i x k+1 (j) outdeg(j) + j≥i x k (j) outdeg(j) + (1 -d)Z(i). (5.2)
Additional costs caused by this modification, e.g., reconstruction of the final vector x, can be considered negligible so that the cost of Jacobi (MOD) and GS (MOD)

decreases roughly by a half (thanks to T m = T a). We give the result in Figure 5.2b with the analysis of uk-2005 dataset. From now on, unless we mention explicitly on the plots the algorithms Jacobi (MOD) and GS (MOD), we use the classical Jacobi and GS.

Web graph: uk-2006-2007

The main goal of this experiment is comparing the performances of OPIC (OPIC-cyc and OPIC-argmax) with GS and DI (DI-cyc, DI-argmax and However, the convergence slows down really hard after. Note that OPIC remains interesting as its primary goal was to provide lightweight PageRank estimates. The results only state that OPIC should not be used for precise PageRank estimations. GS converges fastest in terms of iterations and has the second best convergence speed, better than OPIC but worse than DI, in the other two metrics. It still is a good candidate if one needs a simple and efficient way to compute a precise PageRank. DI-cyc performs very similarly to Gauss-Seidel (although a little slower). This is in line with our interpretation that DI-cyc is a kind of push version of 79 Gauss-Seidel. On the other hand, DI-argmax clearly outperforms the other methods in request messages metric and DI-argmax/outdeg in computational cost.

Social network graphs

In addition to web graphs, we test the algorithms on social network graphs.

The properties of the two types of graphs are different from each other, for example in the degree distribution or the fraction of self-loop nodes, etc.

Social network undirected graph: orkut-2007

Orkut-2007 is constructed based on mutual relationship between users so that each link is supposed to have its opposite. Remind that about 10% of links of the original dataset missed their opposite and we had to complete them to have a symmetric graph. This graph is clearly characterized by some specific properties, e.g. maximum indegree and outdegree are equal. Orkut social network graph does not have self-loop node (like Twitter) and in our graph each node has on average 76 links. A negligible number of nodes (0.01%) are isolated nodes (for example new users) with no connection to the rest of the graph.

An important remark is that for undirected graphs, without the damping factor d (d = 0), the PageRank of a node is proportional to its degree. However, if the damping factor is used, this property no longer holds [START_REF] Grolmusz | A note on the pagerank of undirected graphs[END_REF].

Convergence rate measured in iterations is quite similar between GS and DI-cyc as in Figure 5.4a. The explanation comes from social network context where there is no self-loop node. In Figure 5.4b and Figure 5.4c, DI-cyc and DI-argmax/outdeg perform quite similarly and we suspect that even DI-argmax/outdeg needs more iterations to converge, the nodes are activated almost at the same frequency due to the symmetric graph structure without loops. However, a concrete explanation requires more investigations. Figure 5.4c confirms that DI-argmax is still a good candidate in terms of number of messages.

Social network directed graph: twitter-2010

In the twitter-2010 dataset, the node having maximum indegree is labelled 23934132 standing for Twitter User ID 19058681. This user is Ashton Kutcher, The number of diffused nodes at each iteration is then less than n, it ends up with a larger number of iterations. However, the gain of DI-argmax/outdeg is remarkable compared to GS (and of course Jacobi) in Figure 5.5b, about a factor of 3.

PageRank for Twitter user ranking

The Twitter social network 5 allows to disseminate information in the form of short messages (tweets) that are transmitted mainly through subscription relation-ships: a message posted by a user will be sent to all subscribers (followers) who will each in turn decide to transmit the message to their subscribers.

Given a large amount of information generated (500 million tweets per day on average in 2014), it is important to have efficient search tools, such as a popularity indicator to distinguish the most interesting users . A commonly used metric is the number of subscribers. However because of its simplicity, it generates many abuses, such as the ability to buy large quantities of subscribers to give an illusion of reputation [START_REF] Thomas | Trafficking fraudulent accounts: The role of the underground market in twitter spam and abuse[END_REF].

A natural alternative is using PageRank to modulate recursively the importance of users. The idea of applying PageRank to rank Twitter users is not new, but to our knowledge there has been no evaluation of the algorithm in large scale.

Model

The Twitter subscription graph indicates the follower/followee relationships.

It is a directed graph G = (V, E), where V is the set of Twitter users and E is the set of relationships. The presence of a pair (i, j) ∈ E means that i follows j.

This is inspired by the standard representation of Web graphs hyperlinks models and therefore the number of followers of a user is its indegree.

We use the graph twitter-2012 (see Section 5.1) for the experiment. Because identities of users in the graph are anoymized, it is impossible to verify the validity of the PageRank by checking the actual user profiles. However, what we do is comparing the ranking given by PageRank and the one given by indegree which represents somehow the popularity of users.

To be precise, given two ranking order R 1 and R 2 , we define C k (R 1 , R 2) as the overlap of the first k items in R 1 and R 2 , or more formally:

C k (R 1 , R 2) = 100 |{i such that R 1 (i) ≤ k and R 2 (i) ≤ k}| k . (5.3)
where R(i) is the rank of item i in the ranking order R.

We

Result

If we are only interested in the most popular users, a few iterations are sufficient to point them out. This is shown in Figure 5.6: after 10 iterations, the overlap with the real PageRank is more than 90% over the first thousand users, and 99% between 10 3 and 10 7 . To 20 iterations, the classification of the first 10 7 users almost converges. So for the study of the most popular users, we can set the stopping condition at 20 iterations.

PageRank can be seen as a refinement of indegree. So one might think that the difference between the two rankings is to be relatively small. As shown in Figure 5.7, it is not the case: the overlap is relatively low over the range of interest, seldom greater than 70%. The PageRank thus provides additional information that is not contained in the indegree, which is already interesting in itself.

Another interesting point is the presence of a fairly steady slope between k ≈ 1000 (users with one million or more followers) and k ≈ 100, 000 (10,000 or more followers), which leads to a local minimum of 54%. The greatest divergence action on this range means that among users who mainly around 10,000 subscribers and more (up to 1,000,000), we find relatively more users receiving little PageRank from their followers, either because the followers have low popularity or because they follow more users than the average.

It is difficult to give a concrete explanation about this phenomenon due to the anonymity of the graph, but we can think of the two following hypothesis: firstly, it is possible that the most popular users in terms of followers (indegree) are mostly followed by many passive users who produce very few contents or even not at all; another possibility is that the depression corresponds to users who have illegally bought followers to boost their illusive popularity [START_REF]Trafficking fraudulent accounts: The role of the underground market in twitter spam and abuse[END_REF]. The second hypothesis is reinforced by the depression zone, meaning the weak PageRank comes from the fact that most of follower sellers provide buyers with low-quality accounts that do not have any follower in general, i.e., very low PageRank and are also sold to many other buyers. As a consequence, the PageRank given by those accounts are very low.

Conclusion

In this chapter we presented some experimental benchmarking results of the algorithms: Power Iteration, Jacobi, GS, OPIC and DI to solve PageRank equation.

The comparison metrics are the number of iterations, elementary operations and request messages. For each of the later two criteria, there is a DI variant that gives better performance compared to the other classical iteration methods. One advantage of DI is the capability to be adapted to distributed computation thanks to its fully asynchronous nature. Evaluating the actual performance gain of the DI variants in a real distributed environment requires more studies (clever partitioning scheme, current state of the art, etc.) and are subject to future work. Additionally, we also see the results of applying PageRank to rank Twitter users. It reveals Chapter 6

LiveRank

One of the main challenges for large networks data mining is dealing with the high dynamics of huge datasets: not only are these datasets difficult to gather, but they tend to become obsolete very quickly. We are interested in the evolution at large time scale of any large corpus available online. Our primary focus will be the Web, but our approach encompasses any online data with similar linkage enabling crawling, like P2P networks or online social networks. We thus focus on batch crawling, where starting from a completely out-dated snapshot of a large graph like the Web, we want to identify a significant fraction of the nodes that are still alive now.

In this chapter, our main contribution is proposing a PageRank-based algorithm helping to build a crawler that can efficiently crawl alive nodes of an old graph.

The advantage of our method is the ability to work in a distributed way. It can also be exploited in different types of graphs, for example to guess active users in social networks like Twitter. The results of this chapter were published in [START_REF] Huynh | Liverank: How to refresh old crawls[END_REF][START_REF]LiveRank : comment faire du neuf avec du vieux ?[END_REF].

This chapter is organized as follows. Section 6.1 introduces context and motivation. Section 6.2 talks about the state of the art of previous works. We propose in Section 6.3 a simple metric to evaluate the quality of a LiveRank and we propose several classes of possible solutions, which we call LiveRanks. To confirm this intuition, we use three datasets from the Web and from Twitter, for which we have extracted the activity of items. They allow to verify activity correlations and to test the proposed LiveRanks. The datasets and how activities were obtained are described in Section 6.4. In Section 6.5, we benchmark our LiveRanks against the datasets and discuss the results. Finally, Section 6.6 concludes the chapter.

Introduction

Many old snapshots of large graphs are available today. Reconstructing roughly what remains from such archives could result to interesting studies of the long term evolution of these graphs. For large archives where one is interested in a particular type of pages, recrawling the full set of pages can be prohibitive. We propose to identify as quickly as possible a significant fraction of the pages still alive.

Further selection can then be made to identify a set of pages suitable for the study and then to crawl them. Such techniques would be especially interesting when testing the liveness of an item is much lighter than downloading it completely. This is for instance the case for the Web with HEAD queries compared to GET queries.

If a large amount of work has been devoted to maintaining a fresh set of crawled pages, little attention has been paid to the coverage of a partial recrawling a fairly old snapshot.

Second, some graphs tend to be harder to crawl with time. For instance, Twitter has continuously restricted its capacity to be crawled. Performing a full scan was possible a few years ago [START_REF] Gabielkov | Studying Social Networks at Scale: Macroscopic Anatomy of the Twitter Social Graph[END_REF], but it can be prohibitively long nowadays.

New techniques must thus be developed for identifying efficiently active accounts in such settings.

Given an old snapshot, our goal is to identify a significant fraction of the items that are still alive or active now. The cost we incur is the number of fetches that are necessary to attain this a goal. A typical cost measure will be the average number of fetches per active item identified. The strategy for achieving this goal consists in producing an ordering for fetching the pages. We call LiveRank an ordering such that the items that are still alive tend to appear first. We consider the problem of finding an efficient LiveRank in three settings: static when it is computed solely from the snapshot and the link relations recorded at that time, sampling-based when a sampling is performed in a first phase allowing to adjust the ordering according to the liveness of sampled items, or finally dynamic when it is incrementally computed as pages are fetched.

We propose various LiveRank algorithms based on the graph structure of the snapshot. We evaluate them on two Web snapshots (from 10 to 20 millions nodes) and on a Twitter snapshot (40 million nodes). We propose several propositions based on the graph structure of the snapshot. A rather simple combination of a small sampling phase and the propagation of the partial activity information is obtained in the remaining graph of the snapshot through a modified PageRank algorithm. It allows to gather from 15% to 75% of the active nodes with a cost that remains within a factor of 2 from the optimal ideal solution.

Related work

The process of crawling the Web has been extensively studied. A survey is given by Olston and Najork [START_REF] Olston | Web crawling[END_REF]. Batch crawling where the process starts from a given set of pages and terminates at some point is classically opposed to incremental crawling where pages are continuously fetched. In incremental crawling, one of the main tuning is to balance the fetch of new and old pages: the former increase coverage while the latter increase freshness. Both types may allow to discover new links towards unknown new pages (old pages can change). Cho and Garcia-Molina have extensively studied the problem of incremental crawling. See for example [START_REF] Cho | Effective page refresh policies for web crawlers[END_REF] for one of the first formalization of freshness and a thorough study on refreshing policies. They show the counter-intuitive result that adapting the frequency of crawl proportionally to the frequency of change works poorly with respect to the overall freshness of the fetched copy of the Web. Variations of freshness have been introduced. For instance, information longevity [START_REF] Olston | Recrawl scheduling based on information longevity[END_REF] considers the evolution of fragments of the content of a page. Closer to our problem, Cho and Ntoulas [START_REF] Cho | Effective change detection using sampling[END_REF] introduce the problem of using sampling to estimate the frequency of change per site and then to fetch a set of pages such that the overall change ratio of the set is maximized.

Their technique consists in estimating the frequency of page change per site and to crawl first sites with high frequency change. Tan et al. [START_REF] Tan | A clustering-based sampling approach for refreshing search engine's database[END_REF] improve slightly over this technique by clusterizing the pages according to several features: not only their site (and other features read from the URL) but also content based features and linkage features (including pagerank and incoming degree). A change ratio per cluster is then estimated through sampling and clusters are downloaded in descending order 89 of the estimated values. More recently, Radinsky and Bennett [START_REF] Radinsky | Predicting content change on the web[END_REF] investigate a similar approach using learning techniques and avoiding the use of sampling. However, these approaches mainly focus on highly dynamic pages and use various information about pages whereas we are interested in stable pages and we use only the graph structure. With a slightly different objective, Dasgupta et al. [START_REF] Dasgupta | The discoverability of the web[END_REF] investigate how to discover new pages while minimizing the average number of fetches per new page found. Their work advocates for a greedy cover heuristic when a small fraction of the new pages has to be discovered quickly. On the opposite, they recommend a heuristic based on out-degrees which performs better for gathering a large fraction of the new pages. The methods are directed toward dynamicity again but the framework is closer to ours since we naturally use a similar cost of average number of fetches per interesting page found. To compare with such previous work, we could derive a method based on [START_REF] Cho | Effective change detection using sampling[END_REF] that we call active-sites first: estimate through a sampling phase the fraction of active pages per web site and then crawl each site completely by decreasing order of liveness (sites with a higher proportion of alive pages first).

This performs similarly to our techniques for gathering more than 80% of the overall active pages, but not for smaller fractions (less than 40%) as shown in Section 6.5.

On the other hand such recrawling policies have much less been studied for other sources of online data such as social networks. Indeed it is possible to similarly crawl the Twitter network by fetching information about user accounts that are linked by the follower-followee relations. However, crawling is much more restricted as all the data is possessed by a single company. This makes our approach even more relevant in such contexts where gathering a large amount can be extensively long.

Interestingly, Kwak et al. [START_REF] Kwak | What is twitter, a social network or a news media?[END_REF] show, among various observation, a correlation between number of followers and pagerank. On the other hand the activity of a user in number of tweets seems to be more correlated to his number of followees that his number of followers. First reported Twitter crawls include [START_REF] Java | Why we twitter: understanding microblogging usage and communities[END_REF][START_REF] Krishnamurthy | A few chirps about twitter[END_REF][START_REF] Kwak | What is twitter, a social network or a news media?[END_REF]. Recently, Gabiekov et al. [START_REF] Gabielkov | The complete picture of the twitter social graph[END_REF][START_REF] Gabielkov | Studying Social Networks at Scale: Macroscopic Anatomy of the Twitter Social Graph[END_REF] have presented a preliminary study on a complete picture of Twitter social graph. The authors themselves claim that such extensive crawling could not be possible now anymore as Twitter has restricted its white list of IP authorized to query its API at high rate.

Model

Let G = (V, E) be a graph obtained from a past crawl of a structured network.

By structured network, we mean something like:

A Web graph, V representing the crawled pages and E the hyperlinks. For i, j in V , (i, j) is in E if, and only if, there is an hyperlink to j in i. For Web graphs, edges are always directed.

A social network, V representing the users and E social relationships between them. For social networks, edges can be undirected (symmetric relationships like friendship) or directed (asymmetric relationship like follower/followee).

Let n denote the size of V . At present time, only a subset of G is still active.

The meaning of active depends of the context and needs to be defined: for instance, alive pages for Web graphs, or non-idle users for social networks, etc. We call a the function that tells if nodes are active or not: a(X) denotes the active nodes from

X ⊂ V , while ā(X) stands for X \ a(X). Let n a be |a(V)|.
The problem we need to solve can be expressed as: how to crawl a maximum number of pages from a(V) with a minimal crawling cost. In particular, one would like to avoid crawling too much pages from ā(V). If a was known, the task would be easy, but testing the activity of a node obviously requires to crawl it. This is the rationale for the notion of LiveRank.

Performance metric

As any ordering can be seen as a LiveRank, we need some performance metrics to define good LiveRanks that succeed in ranking the pages from a(V) first.

Following [START_REF] Dasgupta | The discoverability of the web[END_REF], we define the LiveRank cost as the average number of node retrievals necessary to obtain an active node when the process is stopped as soon as αa(V) active nodes have been retrieved for a given desired fraction 0 < α ≤ 1.

Formally, let L i represent the i first pages returned by a LiveRank L, and let i(L, α) be the smallest integer such that |a(L i)| na ≥ α. The refresh cost is then defined by: cost(L, α) = i(L, α) αn a .

91

Remarks on the cost function By construction, the cost function of a LiveRank is always at least 1. An ideal LiveRank I would perfectly separate a(V) from rest of the nodes, so its cost function would simply be C = 1. In absence of some clairvoyant knowledge, I cannot be obtained before all nodes have been tested, which is exactly what we would like to avoid. The cost function allows to capture this dilemma.

Note that keeping a low cost becomes very difficult as α gets close to 1:

without some oracle, being able to capture almost all active nodes is almost as difficult as capturing all actives nodes. For that reason, one expects that when α gets close to 1, the set of nodes any real LiveRank will need to crawl will tend to V , leading to an asymptotical cost n na . This will be verified in Section 6.5. Lastly, one may have noticed that the cost function uses n a = |a(V)| and therefore requires a full knowledge of the activity. This is not an issue as the proposed cost is an external metric used to evaluate the LiveRanks.

We now present the different LiveRanks that we will consider in this chapter.

We broadly classify them in three classes: static, sample-based and dynamic.

Static LiveRanks

Static LiveRanks are computed offline using solely the information from G.

That makes them very basic, but also very easy to be used in a distributed way: given p crawlers of similar capacities, if L = (l 1 , . . . , l n), simply assign the task of testing node l i to crawler i mod p.

Random permutation (R) is proposed here to serve both as a reference and as a building block for more advanced LiveRanks. R completely ignores any information from G, so its cost should be in average n |a(V)| , with a variance that tends to 0 as α tends to 1. We expect good LiveRanks to have a cost function significantly lower than cost(R).

Decreasing Indegree ordering (I) is a simple LiveRank that we expect to behave better than a random permutation. The intuition is that older nodes should have more incoming edges (in terms of correlation), so high degree nodes should already be older at the time G was crawled. In web graphs and social networks, old nodes may last longer than younger ones. Sorting by degree is the easiest way to exploit that correlation.

PageRank ordering (P) pushes forward the indegree idea. The intuition is that pages from the snapshot that are still active are likely to point toward pages that are still alive also, even considering only the old links. This suggests to use a PageRanklike importance ranking [START_REF] Brin | The anatomy of a large-scale hypertextual web search engine[END_REF]. A PageRank usually needs two parameters: d, a damping factor, and X, a zap distribution on V (see the Appendix for details). In absence of further knowledge, we propose to choose d = .85 (typical value for Web graphs) and X uniform on V .

Note that it is very subjective to evaluate PageRank as an importance ranking, as importance should be ultimately validated by humans. On the other hand, the quality of PageRank as a static LiveRank is straightforward to verify, for instance using our cost metric.

The validity of the assumptions we made for justifying the choice of I and P (existence of correlations) will be verified in Section 6.4.3.

Sample-based LiveRanks

Using a LiveRank consists in crawling V in the prescribed order. During the crawl, the activity function a becomes partly available, and it is natural to reinject the obtained information to produce a new LiveRank.

To keep things simple, we first consider in this chapter a two-steps samplebased approach: we first fix a testing threshold z and test z items following a static LiveRank (like R, I or P). The set Z of nodes tested is called indeffirently the sample set or the training set. We thus obtain for Z the knowledge of a(Z) and ā(Z), which allows us to to recompute the LiveRank of the remaining untested pages.

Because the sampling uses a static LiveRank, and the adjusted new LiveRank is static as well, sample-based LiveRanks are still easy to use in a distributed way as the crawlers only need to receive crawl instructions on two occasions.

Notice that in the case where the sampling LiveRank is a random permutation, |a(Z)| n z can be used as an estimate for n a . This can for instance be used to decide when to stop crawling if we desire to identify αn a active nodes in a(V).

Simple adaptive LiveRank P a When a page is alive, we can assume it increases the chance that pages it points to in G are also alive, and that life is transmitted somehow through hyperlinks. Following this idea, a possible adaptive LiveRank 93 consists in taking for X the uniform distribution on a(Z). This diffusion from such an initial set can be seen as a kind of breadth-first traversal starting from a(Z), but with PageRank flavour, by weighting according to the structure of G. Readers may refer to the Appendix for a more detailed description of adaptive LiveRank computation.

Active-site first LiveRank ASF (from [START_REF] Cho | Effective change detection using sampling[END_REF]) To have a point of comparison with previsous work, we propose the following variant of the Dasgupta et al. [START_REF] Cho | Effective change detection using sampling[END_REF] strategy for finding pages that have changed in a recrawl. Their algorithm is based on sampling for estimating page change rate for each web site and then to crawl sites by decreasing change rate. Note that it is appropriate when a site structure can be read from the node identifiers. This is the case while inspecting the URLs of a Web snapshot, but no such structure exists in Twitter. Active-site first (ASF) consists in partitioning Z according to web sites. We thus obtain a collection Z 1 , . . . , Z p of sets.

For each set Z j corresponding to some site i, we obtain an estimation |a(Z j)|/|Z j | of its activity (i.e. the fraction of active pages in the site). We then sort the remaining URLs by decreasing site activity.

Double adaptive LiveRank P +/a

The simple adaptive LiveRank does not use the information given by ā(Z). One way to do this is to calculate an "anti"-PageRank based on ā(Z) instead of a(Z). This ranking would represents a kind of diffusion of death, the underlying hypothesis being that dead pages may point to pages that tend to be dead. As a result, we obtain a new LiveRank by combining these two PageRanks. After having tested several possible combinations not discussed in this chapter, we empirically chose to weight each node by the ratio of the two samplebased PageRank, after having set all null entries of the anti-PageRank equal to the minimal non-null entry.

Dynamic LiveRanks

Instead of using the acquired information just one time after the sampling, Dynamic LiveRanks are continuously computed and updated on the fly along the entire crawling process. On the one hand, this gives them real-time knowledge of a, but on the other hand, as the dynamic LiveRank may evolve all the time, they can create synchronization issues when used by distributed crawlers. Alive indegree (AI) The BFS does not give any priority to the popping order from queue except FIFO. We now propose AI which provides a more reasonable node selection scheme. For AI, each node in the graph is associated with a live score value indicating how many alive nodes point to it. These values are set to zeros at the beginning and always kept up-to-date. AI is initialized by testing Z: each node in a(Z) will increment the associated values of its out-going neighbours by one.

Status

After Z is tested, the next node to be crawled is simply the one with highest live score (in case of equality, to keep things consistent, we pick the node with highest PageRank). Whenever a new alive node is found, we update the live scores of its untested neighbours. 1 We tested several other natural options and observed no significant impact. 95

Datasets

We chose to evaluate the proposed LiveRanks on existing datasets of the Web and Twitter available on the WebGraph platform2 . In this Section, we present the datasets, describe how we obtained the activity function a and observe the correlations between a, indegree and PageRank.

Webgraph Dataset

We focused on snapshots of the British domain .uk.

uk-2002 dataset

The main dataset we will use is the web graph uk-20023 crawled by UbiCrawler [START_REF] Boldi | Ubicrawler: A scalable fully distributed web crawler[END_REF]. This snapshot was crawled in 2002. It contains 18,520,486 pages and 298,113,762 hyperlinks.

The preliminary task is to grab statistically current states of all web pages within the graph to determine a. For each URL of the snapshot, we have performed a GET request and hopefully obtained a corresponding HTTP code. The results are summarized in Table 6.1. Our main findings are: One third of the total pages are no longer available today, the server returns error 404.

One fourth have DNS problem (which probably means the web site is also dead).

For one fifth of the cases, the server sends back the redirection message 301.

Most redirections for pages of an old site lead to the root of a new site. If we look at the proportion of distinct pages alive at the end of redirections, it is as low as 0.1%.

Less than 13% of pages return the code 200 (success), and we found that half of them display some text mentioning that the page was not found. To handle this issue, we have fully crawled all the pages with code 200 and filtered out pages shot with relatively few alive pages), but it is also important to evaluate the impact of LiveRanks on shorter time scales. In absence of fresh enough available datasets, we used the DELIS dataset [START_REF] Boldi | A large time-aware graph[END_REF], a series of twelve continuous snapshots 4 starting from 06/2006 to 05/2007 (one-month intervals). We set G to the first snapshot (06/2006). It contains 31,316,403 nodes and 813,807,972 hyperlinks. We then used the last snapshot (05/2007), and considered the intersection between the two snapshots to be the active set a(V). With this methodology, we hope to have a good approximation for a one-year period. As a result, we obtained n a = 11, 142, 177 "alive" nodes representing 35.56% of the graph.

Twitter Dataset

Lastly, we used the dataset twitter-2010 5 first introduced in [START_REF] Kwak | What is twitter, a social network or a news media?[END_REF]. The graph contains roughly 42 millions Twitter user accounts and 1.5 billions follower-followee relationships among them. Arcs in the graph are directed from follower to followee: there is an arc from node x to y if user x follows y. This follows the PageRank intuition: we consider that a user is important when she is followed by important users. (Notice that tweets traverse arcs in the reverse direction.) We consider a user as active if he has posted a tweet recently. For that purpose, we can query the Twitter interface to recover the timestamp of the lasttweet of the user associated with a given identifier. Recovering the timestamps of all 41 millions users using Twitter API [START_REF]Twitter graph[END_REF] would be extremely slow: when we made our measurements (05/2014), an authorized Twitter account was limited to 350 API requests/hour so querying all the accounts would have taken 13 years. While this is one of the main reasons for designing good LiveRank, we still need a full crawl to build a ground truth. To overcome this obstacle, we cheated and used a browserlike crawler to recover each user timeline as if a regular browser was connecting to Twitter front servers. This is possible because the timestamp of the last entry can easily be recovered inside the HTML structure of the returned documents. However, such an approach becomes much more difficult for complex queries and might also be detected and prevented by Twitter in the future.

Having tested all nodes, we found three main categories of users corresponding to those who (i) no longer exist, (ii) have no tweet at all and (iii) have tweeted at least once before the crawling time. Figure 6.1 shows the relative proportion of each category. Subsequently for those who have ever tweeted, we crawl and extract the timestamp of their last tweet. Finally, after considering the cumulative distribution of last-tweet timestamps we arbitrarily decided to fix a six months limit. If we consider a user is active if she has tweeted during the last six months, we then obtained a list of 7,300,399 (17.53%) active users, serving as the ground truth for benchmarking purposes.

Correlations

We proposed the LiveRanks I and P on the assumption that the activity of nodes is correlated to the graph structure of the snapshot, so that a node with high in-degree or PageRank has more chances to be active in the future.

To validate this, we plot in Figure 6.2, 6.3 the cumulative distribution of active nodes compared to others according to their in-degree (6.2a and 6.3a) and PageRank value (6.2b and 6.3b) respectively for both datasets uk-2002 and twitter-2010. We can observe that the curve for active nodes is slightly shifted to the right compared to the other curves in each figures: active users tend to have slightly higher in-degree and PageRank than in the overall population. The bias seems relatively small, but we will measure now how this bias impacts the cost function of corresponding LiveRanks.

LiveRanks evaluation

After having proposed several LiveRanks in Section 6.3 and described our datasets in previous Section, we can now benchmark our proposals.

Regarding the LiveRanks, we focus on two main aspects: (i) efficiency of different LiveRanks classes and (ii) impact of tuning parameters, especially the choice of the number z of pages sampled in sample-based and dynamic settings.

As for the datasets, we evaluate how the performance of LiveRanks varies according to the type of graph structure (Web vs Twitter) and the age of the old 99 crawl. For instance, Web sites clustering is characteristic of Web graphs: a majority of the links of a Web graph are actually intra-site navigational links, and when a web server or a DNS entry dies, so do all related pages. This is not the case of social graph in which users are independent from each other, and we aim to investigate whether these qualitative differences have an impact on the cost of the LiveRanks.

All our evaluations are based on representations of the cost functions. In each plot, the x-axis indicates the fraction α of active nodes found at some point during the crawl and the y-axis corresponds to the relative cost of the crawl up to that point. A low curve indicates an efficient LiveRank. An ideal LiveRank would recover all active nodes without probing any other useless node, achieving a constant cost of 1. The ideal curve is thus horizontal from (0, 1) to (1, 1). On the other hand, a random LiveRank is quickly constant with an average cost n/n a . Note that any non-clairvoyant LiveRank will terminate at point (1, n/n a): in practice, the exact number of active nodes is unknown during the crawl (but well estimated by random sampling as shows the random ordering curve). In practice, We thus cannot now for sure that we have gather all active nodes until we have probed all of them. This is the reason why all practical LiveRank curves begin to increase significantly when approaching 1.

When it is not specified, the training set contains the z = 100000 pages of higher (static) PageRank.

Web graph dataset

We gather in five Figures (Figure 6.5, 6.6, 6.7, 6.8 and 6.9) several LiveRank evaluations on the web graph uk-2002 to serve as reference. Figure 6.5 compares the static and sample-based LiveRanks. For static Liv-eRanks, we see that indegree ordering (I) and PageRank (P) significantly outperform random ordering, PageRank being the best of the three: it is twice more efficient than random for small α, and still performs approximately 30% better when up to α = 0.6. Second, we can get even much better costs with sample-based approaches.

(By default, the sampling set is made of the top z nodes according to PageRank.)

The two adaptive LiveRanks P a allow to improve ordering by a factor of 6 approximately around α = 0.2 with a cost of 2.5 fetches per active node found. Notice that their costs remains steadily low on the range [0.1, 0.4] and even further for the double adaptive version P +/a . Figure 6.6 shows the impact of the size z of the sampling set. All curves correspond to the double adaptive LiveRank P +/a with varying z. Similar results are obtained with the simple-adaptive version P a . As the sampling set grows larger, we spend more effort on testing it at the beginning but it results in a significant increment of efficiency in the long run. For this dataset, taking a big training set (z=500 000) allows to reduce the cost of the crawl for α ≥ 0.6.

Another key aspect of the sampling phase is the choice of the sample set. We can observe in Figure 6.7 that the performance of double adaptive P +/a is further improved by using a random sample set rather than selecting it according to the PageRank or by decreasing indegree. The reason is that a random sample avoids a locality effect in the sampling set as high PageRank pages tend to concentrate in some local parts of the graph. Note that double adaptive LiveRank through random sampling is within a factor of 2 from optimal for a large range of α values.

We then compare sample-based approaches to fully dynamic strategies. We see in Figure 6.8 that bread-first search BFS and alive indegree AI perform similarly to double adaptive P +/a for low α and can outperform it for large α (especially BFS). BFS begin to significantly outperform double adaptive for α ≥ 0.5. However, if one needs to gather half of the active pages or less, double adaptive is still the best candidate as it is much simpler to operate, especially with a distributed crawler.

Finally, Figure 6.9 then shows the impact of different sampling sets on BFS and AI. Except for high values of α where a random sampling outperforms other strategies, the type of sampling does not seem to affect the two dynamic LiveRanks as much as for the sample-based approaches.

Additionally, we have repeated the same experiments on the dataset uk-2006, where the update interval is only one year. As Figure 6.11 shows, the results are qualitatively quite similar, the main difference being better costs due to a higher proportion of alive pages (less than 1.4 for double adaptive, against 2.8 for the random ordering).

To compare with techniques from previous works for finding web pages that have been updated after a crawl, Figure 6 We see that crawling according to site activity performs well on the long run with similar performance as double adaptive. However for a smaller fraction of desired coverage (less than 40%), this technique is clearly outperformed by the other (by a factor of 2 for 20% and 4 for 10%). the other LiveRanks, including Indegree I. It indicates that if the intuition of some death propagation was relevant for Web graphs (it was a convenient way to spot dead web sites for instance), this is not the case for Twitter: the fact that followers become inactive does not seem to have an impact on the activity of the followees. In the end, the simple adaptive LiveRank P a has the best performance, closely followed by the static LiveRanks P and I. The three of them have a cost function that seem to grow roughly linearly between 2 and 4 as α goes from 0 to 0.6.

Twitter graph

In Figure 6.10b, we vary the size of the training set, ranging from z =200 000 to z =1000 000. Results indicate that the cost function is almost not affected by z as long as it is high enough. Compared to the results observed on Web graphs, this means that taking a big training set: (i) will not burden the cost function for small α. This likely comes from the fact that the sampling set is PageRank-based by default, and the static PageRank is already close to the best LiveRank we obtain;

(ii) will not improve the performance for large α either, meaning that no significantly useful knowledge is obtained after some threshold. This relative independence with respect to z is another qualitative difference compared to Web graphs, Figure 6.10c shows the impact of training set types on simple adaptive Liv-eRank P a . Unlike Web graphs where random sampling dominates others, in social network the training set filled by PageRank is the best whereas the random seed is worse. This can be interpreted as a result of a weaker structural locality (i.e., no highly correlated clusters like web sites for Web graphs), so that activeness is more concentrated around important Twitter individual users that should be considered as soon as possible.

In Figure 6.10d, we compare the simple adaptive PageRank P a with the dynamic LiveRanks. All of them are initialized with default values (PageRank sampling of size z =100 000). P a stays the best option: it is slightly better than AI and much more efficient than BFS. While for Web graphs, dynamics LiveRanks could still be preferred for some settings, it seems that in the context of Twitter it is never the case especially considering their deploiement complexity in a distributed crawler.

Lastly, Figure 6

Conclusion

In this chapter we have investigated how to efficiently retrieve large portions of active nodes from an old crawl using orderings we called LiveRanks.

For Web graphs, we observed that PageRank is a good static LiveRank. In a 12 years old crawl, it outperforms a random rank by a factor approximately 1.5 for gathering half of the alive pages with a cost of 10 fetches per alive page. However, we get a significant gain by first testing a small fraction of the pages to adjust the PageRank in a sample-based approach. We then get a cost as low as two fetches per alive page.

We get somewhat similar results on a Twitter dataset. The main difference is that costs tend to increase linearly with the fraction of alive items recovered with Twitter whereas the cost is rather stable with Web in the range 15%-75%. On this range, the cost increases roughly from 2 to 4 fetches per alive pages for Twitter graph when it remains around 2 for the Web. Compared to previous works on identifying modified pages, our technique performs similarly for large desired fraction (around 80%) when compared to the LiveRank algorithm inspired by the technique in [START_REF] Cho | Effective change detection using sampling[END_REF] that could be adapted to our setting in the Web case. However, for a small fraction (less than 40%) our method outperforms this technique. Interesting future work could reside in using our techniques for the identification of pages that have changed and compare with such techniques in the domain they were conceived for. Interestingly, we could not get significant gain when using fully dynamic Liv-eRank. As noted before, each of the two phases of the sample-based approach can be easily parallelized through multiple crawlers whereas this would be much more difficult with a fully dynamic approach. The sample-based method could for example be implemented with in two rounds of a simple map-reduce program whereas the dynamic approach requires continuous exchanges of messages between the crawlers.

On the other hand, with DI one can control the precision of the approximate PageRank vector while it is impossible with other algorithms. This advantage makes sense in the case where different applications do not demand the same approximation accuracy. For example in many recommendation systems, we are only interested in the top k items instead of the entire ranking vector, and the top k items can probably be detected after a few tens of iterations (see example of Twitter ranking in Figure 5.6 of Section 5.3). Thanks to this observation, one can formulate the number of necessary iterations to find the top k of total n items with a precision p as a function f (k, n, p). This value can be used as the stopping condition of DI.

As for graph dynamics, we only considered in this thesis the evolution of the graph in terms of links modification. In fact, a complete graph update comprises of node/link additions/removals. This will bring a huge impact on the update strategy, for example on how to modify the fluid while having new node arriving. Obviously, the problem is even more difficult to tackle when it is not clear how the graph evolves.

For further developing the existing DI algorithm, we basically plan to focus on how to adapt and implement DI in a distributed manner. Related problems (graph partitioning,...) of course would be also the subject of future investigations.

An approximation of the PageRank vector of a partially hidden graph was discussed as well. In reality, the graph is not always fully accessible (specially in case of distributed computation) so that we have to approximate it based on the visible part. The strategy of how to unveil the graph becomes crucial. It has been shown that if one chooses random nodes and high-rank nodes alternatively, the PageRank vector can be approximated with a precision gain factor of 10 compared to the case where only one of them is chosen infinitely. A potential of future work on this topic is building a dynamic scheduler that, based on the perspective of the current graph observed it can tell what is the good node to request next.

An application of PageRank to Twitter social network was carried out to rank Twitter users. The results showed that there is not a strong correlation between PageRank and indegree ranking, i.e., PageRank provides additional information that is not contained in the indegree, which is already interesting in itself. However, the two rankings may be used in slightly different applications. Let us take an example of Twitter. If one wants to optimize the information propagation rate (number of users receiving information) in a short time step, the indegree ranking should be 109 more interesting than the PageRank which is probably optimized for a long-term propagation.

We also proposed LiveRank, a ranking order that helps to efficiently retrieve large portions of active nodes from an old crawl. Our work establishes the possibility of efficiently recovering a significant portion of the active part of an old snapshot and advocates for an adaptive PageRank with sampling for obtaining an efficient LiveRank. Our work establishes the possibility of efficiently recovering a significant portion of the alive pages of an old snapshot and advocates for the use of an adaptive sample-based PageRank for obtaining an efficient LiveRank. or user movement. More precisely, the method consists of two basic ideas. The first one is that by using the motion of the device, we can determine its position through one and only one reference point (RP), instead of many (e.g. at least 3 in GPSlike solution). We allow the minimal number of required reference device. The cost of a reference system (e.g. using WiFi access points, RF base stations, Bluetooth beaconing devices) increases proportional to the density of the reference devices. We keep it minimal. The second idea is that by using the geometry through our new algorithm (in solving a couple of quadratic equations), we can determine the position of the device even when the reference is a moving object (surely includes the special case when the reference is static or almost static that is todays common assumption). 110 Appendix A

GMRES: Residual Minimization over

Krylov subspace

To provide a complementary information about GMRES introduced in Section 2.2.4, this appendix will give the pseudo-code of the algorithm and an numerical example to show how it works step-by-step.

The pseudo-code of GMRES is shown in Algorithm 5. for i = 1 : j do 6:

h ij = (w j , v i)
Product of w j and v i 7:

w j = w j -h ij v i 8:
end for 9:

h j+1,j = w j 2 . If h j+1,j = 0 set m = j and go to 12. 1 st iteration:

• First, we compute w 1 :

w 1 = Av 1 =     0.3536 0.5303 -0.1768     ⇒ h 11 = w 1 • v 1 = 0.625. w 1 = w 1 -h 11 v 1 =     -0.0884 0.0884 -0.1768     ⇒ h 21 = w 1 2 = 0.2165.
• Then v 2 :

v 2 = w 1 h 21 =     -0.4082 0.4082 -0.8165     ⇒ v 2 2 = 1.
• We obtain the two matrices H 1 and V 1 :

H 1 = 0.625 0.2165 ; V 1 = (v 1) =     0.7071 0.7071 0     ;
The next step is to compute y 1 which minimizes βe 1 -H 1 y 2 . We apply QR factorization using GramSchmidt process such that the Hessenberg matrix H i is decomposed as follows:

H 1 = Q 1 R 1 .
where Q 1 is an orthogonal matrix and R 1 is an upper triangular matrix. In the first iteration, the process results in two matrices Q 1 and R 1 :

H 1 = -0.9449 -0.3273 -0.3273 0.9449 Q 1 -0.6614 0 R 1 .
To solve the least square problem βe 1 -H 1 y 2 , we rewrite the equation:

H 1 y = βe 1 ⇔ H T 1 H 1 y = H T 1 βe 1 ⇔ R T 1 Q T 1 Q 1 R 1 y = R T 1 Q T 1 βe 1 ⇔ R T 1 R 1 y = R T 1 Q T 1 βe 1 (Q 1 is orthogonal) ⇔ R 1 y = Q T 1 βe 1 114
and thus the solution y 1 = R 1 \Q T 1 βe 1 where the operator '\' is the left division. We have: and the result x 1 of the first iteration is:

y 1 = -0.6614 0
x 1 = x 0 + V 1 y 1 =     0 0 0     +     0.7071 0.7071 0     × 0.5051 =     0.3572 0.3572 0     .
and the precision r

1 = b -Ax 1 =     0.0714 -00.179 0.0893     ⇒ r 1 2 = 0.1157
2 nd iteration: is similar to the previous step. More precisely:

w 2 = Av 2 =     -0.4082 0.5103 -0.5103     . w 2 = w 2 - h 12
projv 1 w 2 =0.0722 v 1 - h 22 projv 2 w 2 =0.7917 v 2 =     -0.1361 0.1361 0.1361     . h 32 = w 2 2 = 0.2357. v 3 = w 2 h 32 =     -0.5774 0.5774 -0.0.5774     ⇒ v 3 2 = 1.
We obtain the two matrices H 2 and V 2 :

V 2 = (v 1 , v 2) =     0
    Q 2     -0.6614 -0.3321 0 -0.7603 0 0     R 2 .
We then have:

115

y 2 = R 2 \[Q T 2 βe 1] =     -0.6614 -0.3321 0 -0.7603 0 0     Q T 2     0.3536 0 0     = 0.5778 -0.1447 .
and the result x 1 of the second iteration is: The two demos are written using PHP, JavaScript, JQuery and Matlab. simple closed-form expression. Finally, simulation is conducted to demonstrate its effectiveness under noisy environment. We published the results of this chapter in [START_REF] Huynh | Exploiting User Movement for Position Detection[END_REF][START_REF]Localization Method for Device-to-Device through User Movement[END_REF].

x 2 = x 0 + V 2 y 2 =     0 0 0     +     0
This chapter is organized as follows. Section D.1 introduces the context of the study. Section D.2 talks about existing positioning solutions. Section D.3 describes the system design of the 2SM. Section D.4 evaluates performance of the method.

Section D.5 presents how to improve the 2SM by using multi-sampling technique.

Section D.6 describes a generalization of the algorithm when the reference point is mobile. Finally, Section D.7 concludes the chapter.

D.1 Introduction

Positioning systems are crucial to today's digital society. They help to locate objects or people carrying the objects and provide geographic information, thus to facilitate many human activities. For instance, vehicle navigation systems are indispensable for drivers in big cities. Some location-based services are deployed in commercial malls so that customers can get navigation while walking in complex environment and can receive promotion advertisement from shops. The market of indoor and outdoor location-based services has grown rapidly in the last decade.

Global positioning system (GPS) is very popular and widely used for user localization. When line-of-sight to at least four GPS satellites is available, location (latitude, longitude, and elevation) and timing information can be obtained.

Although GPS is very convenient outdoors, its quality is susceptible to weather conditions, for example when sky view is poor due to fog, rain, cloud, etc., or being blocked by tall buildings in urban areas. These issues can significantly degrade the accuracy. As expected, GPS is not for indoor use due to the lack of line-of-sight.

There also exists cellular-based positioning systems [START_REF] Gartner | Location Based Services and TeleCartography II: From Sensor Fusion to Context Models[END_REF] which are built on measuring 125 problem: triangulation, fingerprinting, scene analysis, and proximity. We will discuss them below.

Triangulation is used to estimate the position of a user or mobile terminal (MT) if the geographical coordinates of the RPs are known and assume that the MT is capable of measuring the distance between itself and the RPs. A priori, this method requires three RPs to construct a distinct geometric intersection of three circles, which indicates the position of the MT. Fig. 1(a) illustrates the principle (or see e.g., [START_REF] Liu | Survey of wireless indoor positioning techniques and systems[END_REF]). Note that not all schemes based on triangulation requires three circles, see e.g., Fig. 1(b) and (c). For instance, given angle-of-arrival (AoA) information, using only one RP is sufficient to locate the MT.

Fingerprinting [START_REF] Mirowski | Probabilistic radiofrequency fingerprinting and localization on the run[END_REF] is to estimate device position by using pre-measured location-related data. This method consists of two phases: an offline training phase and an online position estimation phase. In the offline phase, location-related data is collected at different positions in the area. During the online position determination phase, real-time location-related data is measured and then matched with the set of data gathered during the offline phase to estimate the device's location.

Scene analysis localization method [START_REF] Gu | A survey of indoor positioning systems for wireless personal networks[END_REF] is based on a set of images or scenes received by one or multiple cameras. This approach in principle does not require user (to be tracked) to carry any extra device. However, the solution is usually expensive because it requires one or many cameras to perform tracking and may prone to a high computation cost due to image or video processing.

Proximity helps to detect if a MT is nearby or for example in the coverage area of a RP. However, it is hard to provide accurate position with high reliability.

Each of the above method also has some variants or hybrid scheme. Our proposed geometry-based solution is built on triangulation. We will explain and discuss in comparison other methods stemmed from this branch. The cost and accuracy of triangulation method primarily rely on the number of RPs required.

Traditionally, one would need at least three RPs to determine the position of the MT. MT is capable of measuring the distance between itself and the RP. That is, the distances AB and AC are given for example by measuring the received signal strength or standard techniques.

MT is capable of measuring the distance and the angle of the movement it has done, thus BC and the angle α ∈ (0, 2π] (with respect to the positive x-axis) are also measurable.

Theorem 5. Suppose that A(x A , y A), AB, BC, AC, and α are known, the One-

Step Movement (1SM) will give two estimated locations, denoted by generic point B(x B , y B), whose x and y coordinates satisfy:

x B cos α + y B sin α = x A cos α + y A sin α - (AB 2 + BC 2 -AC 2) 2BC . (D
(x B -x A) 2 + (y B -y A) 2 = AB 2 (x C -x A) 2 + (y C -y A) 2 = AC 2 (D.2) where x C = x B + BC cos α, y C = y B + BC sin α. (D.3) From (D.
2), we have:

AB 2 -AC 2 = (x B -x C)(x B + x C -2x A) + (y B -y C)(y B + y C -2y A).
(D.4) Substitute x C and y C in (D.3) to (D.4), we can have:

AB 2 -AC 2 = -BC cos α(2x B + BC cos α -2x A) -BC sin α(2y B + BC sin α -2y A). (D.5)
which can be re-written as:

AB 2 + BC 2 -AC 2 = -2BC(x B cos α -x A cos α + y B sin α -y A sin α). (D.6) hence, x B cos α + y B sin α = x A cos α + y A sin α - (AB 2 + BC 2 -AC 2) 2BC . (D.7)
Eqn. (D.1) can be solved as follows:

• If sin α = 0, thus cos α = ±1, (D.1) becomes:

x B = x A ± (AB 2 + BC 2 -AC 2) 2BC .
It is then straightforward to compute the values of x B and y B , by substituting the value of x B to (D.2).

• If sin α = 0, dividing (D.1) by sin α, we have: to the first equation of (D.2), we have:

y B = -cot αx B + x A cot α + y A - AB 2 + BC 2 -AC 2 2BC sin α . Let a = -cot α, b = x A cot α + y A -(AB
(x B -x A) 2 + (ax B + b -y A) 2 = AB 2 . Then (1 + a 2)x 2 B -2x B (x A -a(b -y A)) + x 2 A + (b -y A) 2 -AB 2 = 0. (D.8)
The above quadratic equation (D.8) can be solved easily.

D.3.2 Two-Step Movement (2SM)

After the first movement, we have two possible locations of the MT given by 1SM using Algorithm 6, but cannot determine which one is the true location. We need to resolve this ambiguity. It is natural to think about performing an additional movement. The basic idea is simple: a Two-Step Movement (2SM) is a combination of two consecutive 1SM's where each move gives two possible positions (in which one of these two positions must be the true position). It is clear that by comparing the results of two 1SM's, we can determine the location of the MT, given that the results of the two 1SM's are not redundant. if sin α == 0 then 3:

if cos α == 1 then 4:

x B = x A -(AB 2 + BC 2 -AC 2)/(2BC); x

B = x A + (AB 2 + BC 2 -AC 2)/(2BC); 7:
end if 8:

y B1 = y A + AB 2 -(x B -x A) 2 ;
9:

y B2 = y A -AB 2 -(x B -x A) 2 ;
10:

return {B1(x B , y B1), B2(x B , y B2)}; a = -cot α;

14: b = x A cot α + y A -(AB 2 + BC 2 -AC 2)/(2BC sin α); 15:
Compute x B , y B ;

16: Remark 2. Note that the directions of the two movements should not be in parallel, i.e., β = α and β = α ± π, otherwise the ambiguity cannot be resolved since the system of equations generated by the second movement would be equivalent to that of the first one.

∆ = (x A -a(b -y A)) 2 -(1 + a 2)(x 2 A + (b -y A) 2 -AB 2); 17: x B1 = (x A -a(b -y A) + √ ∆)/(1 + a 2); 18: y B1 = ax B1 + b; 19: x B2 = (x A -a(b -y A) - √ ∆)/(1 + a 2);
In practice with estimation error or system imperfection, say noise exists, such that we cannot have a common solution from the two 1SM's computation, i.e., the first movement may give us two possible solutions denoted by B1(x B1 , y B1) and MT makes the first movement from B to C; measure AB, AC, BC, α;

3:

Compute two location B1 and B2 4:

{B1(x B1 , y B1), B2(x B2 , y B2)} = OneStep(A(x A , y A), AB, AC, BC, α);

5:

MT makes the second movement from C to D; measure CD, AD, β; make sure that β = α and β = α ± π ; runs. During these runs, we observe that about 10% of the time the system fails to find the MT position (i.e., the quadratic equation (D.8) has no solution since ∆ in Algorithm 6 is negative) due to the noises (which would be accumulated to ∆).

B2(x B2 , y B2) B4(x B4 , y B4) B1(x B1 , y B1) B3(x B3 , y B3)
We find that when ∆ < 0, the system is indeed heavily corrupted. We therefore consider them as bad movements and do not use for determining the MT. Note that it would be interesting to derive the position of the MT even when ∆ < 0 or see how to extract useful information to optimize results. This is subject to future work. Clearly, e d = 1% (curves in "red") results in smaller estimation error than that e d = 3% or e d = 5% (curves in "blue" and "black", respectively) makes, given that e a is the same.

As expected, the estimation error in determining the position of the MT also increases as e a increases. However, when e d is relatively large (5%), the impact of 137 The distance of the movement is a significant factor. We can improve the system performance by requiring a larger movement distance. However, a larger movement may be less favorable in some usage. In addition, from obtained simulation results (we did not plot all of them here), we see that the improvement is indeed decreasing and starts to get flat at 0.5 × AB. movement distance is relatively large. Roughly speaking, at BC = CD = 0.5 × AB, the performance is quite desirable when e d ≤ 2% and e a ≤ 5%. When the movement distance is at the level of 0.2 × AB, the same performance can be achieved when e d is reduced to ≤ 1%. The average error can be limited to within about 10% of AB.

In the best case, the average error can be less than 5% of AB.

D.5 Two-Step Movement using Multi-Sampling

To further improve the performance of 2SM, this section demonstrates the use of multi-sampling technique so that many measurements will be conducted during the movement of the MT instead of using only one at the end of each movement to combat measurement errors and improve the positioning performance.

D.5.1 System Design

To begin with, we recall our system design (cf Section D.3) and the 2SM positioning method which requires only one RP (for minimal system implementation cost). We determine user position by exploiting its movement, e.g., in walking or by waving his/her hand-held device, as demonstrated in Figure D.8.

D.5.2 Motivation of Multi-Sampling

The precision of the estimation is depending on the accuracy in the measurement phase (e.g., α, AB, AC, BC). In reality, the limitation of hardware technology and presence of noise may severely degrade the quality of the inputs to our algorithm and then leads to poor position estimation. To reduce the impact of noise, naturally one can think of making many measurements and then combine them to produce better result. The intuition is that in the simplest case where noise follows a zero-mean distribution, we can expect the output of our algorithm also to have roughly a zero-mean error distribution. Another idea is that one could probably use a set of measurements to infer or pick out a better result.

1 st 2 nd
Recall that in 2SM, all measurements are done only once at the end of each movement step (e.g., at C). Here, we propose a multi-sampling 2SM such that many measurements are carried out along the path so that the MT continuously keeps track of the movement and the distance to the RP. In other words, the step BC is considered as a series of small steps and we will use all the data obtained from these steps for positioning (see Fig. To resolve the ambiguity, we can then for example take the mid-point of the pair which have the minimum Euclidean distance (i.e., the mid-point of B1 and B3 in

D.5.3 Numerical Studies

Simulation is performed to investigate the performance of the above multisampling 2SM in comparison to that in D.4, say single-sampling 2SM. The simulation set-up is as follows:

RP is placed at the center of a room, i.e., A(0, 0). Note that there are several ways to choose the sampling intervals. For example, one may simply use uniform sampling, i.e., BC is divided into n intervals of equal distance such that BC 1 = C i C i+1 , where 1 ≤ i ≤ n -1. However, we observe that it is better to do sampling closer to the end point of each movement, i.e., close to C in the first movement (and D in the second movement). Indeed, this coincides the result obtained in single-sampling 2SM that the larger the BC i in the first move, the more accurately the second move can help to determine the true MT position. shows that the multi-sampling has effectively reduced the position estimation error by 15% -30%. Besides, it is also interesting to see that when the positioning error resulted in the single-sampling is larger, the improvement thanks to multi-sampling is even more significant.

D.6.1 System Design and Basic Idea

We consider the following system and generalization:

The RP is also mobile (movable).

The MT is capable of measuring the distance between itself and the RP.

The MT is capable of measuring the distance and the angle (direction) of the movement it has done. The RP is initially located at A(x A , y A) which is known.

The MT is initially at position B, which is however unknown, denoted by coordinates (x B , y B).

C and D are the positions of the MT and RP, respectively, during their movement. Assume that RP can localize itself, so that D(x D , y D) is known. However, C(x C , y C) is not given.

MT is capable of measuring the distance between itself and the RP, i.e., distances AB and DC are deterministic. For example, this can be done by measuring the received signal strength or using other standard techniques.

MT is capable of measuring the distance and angle of its movement so that BC and the angle α ∈ (0, 2π] (with respect to the x-axis) are deterministic. Remark 4. In the specific case where RP position is fixed (i.e., AD = 0 such that x A = x D and y A = y D), the above generalized Algorithm 8 (G1SM) will become the 1SM Algorithm and Equation (D.9) can be simplified as:

x B cos α + y B sin α = x A cos α + y A sin α -(AB 2 + BC 2 -AC 2) 2BC .

D.6.2 The Generalized Two-Step Movement (G2SM)

After the first movement, we have two possible locations of the MT given by G1SM using Algorithm 8, but cannot determine which one is the true location. We need to resolve this ambiguity. It is natural to think about performing an additional movement. The basic idea is simple: a Generalized Two-Step Movement (G2SM) is a combination of two consecutive G1SMs where each move gives two possible positions (in which one of these two positions must be the true position). It is clear that by comparing the results of the two G1SMs, we can determine the location of the MT, given that the results of the two G1SMs are not redundant. Remark 5. The G2SM requires the MT to change the moving direction such that β = α and β = α±π (or the RP is changing its direction), otherwise the ambiguity cannot be eliminated since the system of equations obtained from the second movement would be equivalent to that of the first one. In practice with estimation error or system imperfection, say the existence of noise, we may not obtain a common solution from the two G1SM's computations, i.e., the two possible solutions obtained from the first movement are different from the solutions obtained from the second movement (see Fig D .13). To solve this problem, we can choose the pair of points in {B1, B2, B3, B4} that have the minimum Euclidean distance, i.e., solving min{d(P i , P j)|P i = P j }, where P i , P j ∈ {B1, B2, B3, B4} and d(P i , P j) is used to denote the Euclidean distance of points P i and P j , and then takes their mean position. One may also consider a possible optimization problem to improve the result in combining the original data sets instead of the above. Note that the proposed algorithms are not limited to above numerical settings.

Table D. [START_REF] Page | The anatomy of a large-scale hypertextual Web search engine[END_REF] shows the simulation result of G2SM localization with multisampling. For each setup, we conduct 10 5 runs of simulation to obtain the average performance. Same as 2SM with multi-sampling, we perform 1000 sampling near the end point of each movement at G2SM. As expected, it can be seen that the estimation error in determining the position of the MT increases as the noise power increases. However, there is a correlation between the movement distance of the two devices (the MT and RP) and the resulting error. If the RP moves a bit (see AD = DE = [0.1, 0.2] × AB) but the MT moves a lot (see the case BC = CF = 0.5AB), there is substantial error decrease. However, when RP moves a lot (see AD = DE = [0.5, 1] × AB), the error is independent of how much the MT moves. Another interesting observation is that a substantial movement of either the MT or the RP is sufficient for achieving good performance. Overall, the average error is within about 15% of AB. In the best case, the average error is less than 5% of AB.

D.7 Conclusion

In this chapter, we have proposed a new method called Two-Step Movement To-Device context is also described as it allows the unique Reference Point to move or to be another mobile device. Analytical result shows that the user position can be derived and given in simple closed-form expression with low complexity. Simulation is conducted to study its performance under noisy environment. It is possible to achieve average error within about 10% of the distance between the RP and MT, or even less. Note that further analysis of noise impact and issues related to reflection and refraction of signals are important to improve the proposed method. Also in this chapter, we first combine the 2SM method with multi-sampling technique to improve the positioning performance. Simulation result shows an error decrease of 15%-30%.

Secondly, we propose the generalized localization method G2SM by utilizing device movement in which both the MT and RP are allowed to move. The position of MT can be determined analytically and in simple closed-form expression. Simulations are conducted to study its performance under various setup and noise levels. Results show that an average error within about 15% of the distance between the MT and RP can be realized. Since G2SM would allow a MT to locate itself through a peer mobile device, it has potential applications in future large D2D or multi-hop systems. Our method, thanks to the reliance on a single reference point, makes a lot of sense in the context of Internet of Things (IoT) such as home or business office area. It should be also noted that our method can be easily extended to localization in 3D coordinates (see Figure D.14). Together with practical implementation, they are subject to future work.

CONTENTS 5

 5 3 D-Iteration: diffusion approach to solve PageRank 3.1 Definition . 3.2 Convergence . 3.3 Implicit completion . 3.4 Schedulers . 3.5 Update equation . 3.6 Conclusion . 4 Preliminary performance evaluations on a small graph 4.1 Dataset and settings . 4.2 Comparison criteria . 4.3 Experiments . 4.3.1 Jacobi, GS, SOR and GMRES 4.3.2 D-Iteration . 4.4 Intermezzo: PageRank approximation with partial information 4.4.1 Context . 4.4.2 PageRank approximation . 4.4.3 Experiment . 4.5 Conclusion . vii viii Experiments on large graphs D.5 Resulting error when AB = 5 meters, BC = CD = 0.1 × AB under various (e d , e a). D.6 Resulting error when AB = 5 meters, BC = CD = 0.2 × AB under various (e d , e a). D.7 Resulting error when AB = 5 meters, BC = CD = 0.5 × AB under various (e d , e a). D.8 Two-Step Movement (2SM) application: waving hand to get position. D.9 Two-Step Movement (2SM) with multi-sampling near the end points. D.10 The possible solutions in the presence of noise. D.11 Generalization of Two-Step Movement (G2SM): The Reference Point (black) is another mobile phone. Another mobile terminal (white) can localized itself thanks to the movement of the moveable reference point nearby. D.12 Generalized One-Step Movement (GSM). D.13 Generalized Two-Step Movement (Generalized-2SM). D.14 Three-Step Movement (3SM) in three-dimensional (3D) space. The position of the device can be determined after three moves of the user carrying it. xiv PUBLICATIONS Localization Method for Device-to-Device through User Movement, T.D. Huynh, C.S. Chen, S.W. Ho, Workshop on Advances in Network Localization and Navigation, IEEE International Conference on Communications (ICC'15), London, UK, June 2015. METHOD, SYSTEM AND COMPUTER-READABLE MEDIUM TO DETERMINE THE POSITION OF AN APPARATUS (Method for accurate positioning under only one and mobile reference), C.S. Chen and T.D. Huynh, Filing No. 15305765.8, Europe, May 2015. LiveRank: How to Refresh Old Datasets, T.D. Huynh, F. Mathieu, L. Viennot, Internet Mathematics journal, April 2015, Submitted. Analyzing methods computing PageRank vector of large matrix, T.D. Huynh, D. Hong, G. Burnside, F. Mathieu, Preprint, https://hal. archives-ouvertes.fr/hal-01109536/document, January 2015. D-Iteration: diffusion approach for solving PageRank, D. Hong, T.D. Huynh, F. Mathieu, Preprint, https://hal.archives-ouvertes.fr/ hal-01109532/document, January 2015. Exploiting user movement for position detection, T.D. Huynh, C.S. Chen, S.W. Ho, The 12 th Annual IEEE Consumer Communications and Networking Conference (CCNC'15), Las Vegas, Nevada, USA, January 2015. LiveRank: How to refresh old crawls, T.D. Huynh, F. Mathieu, L. Viennot, 11 th Workshop on Algorithms and Models for the Web Graph (WAW'2014), Beijing, China, December 2014. LiveRank: Comment faire du neuf avec du vieux, T.D. Huynh, F. Mathieu, L. Viennot, The 16 th Francophone conference on Telecommunication algorithms (AlgoTel'14), Le-Bois-Plage-en-Ré, France, June 2014. Contenu généré par les utilisateurs: une étude sur DailyMotion, Yannick Carlinet, T.D. Huynh, B. Kauffmann, F. Mathieu, L. Noirie, and S. Tixeuil, The 5 th Francophone conference on Telecommunication algorithms (AlgoTel'13), Pornic, France, May 2013. Four Months in DailyMotion: Dissecting User Video Requests, Yannick Carlinet, T.D. Huynh, B. Kauffmann, F. Mathieu, L. Noirie, and S. Tixeuil, In Proceedings of the Third International Workshop on Traffic Analysis and Classification (TRAC'2012), Limassol, Cyprus, August 2012. Résumé en français Contexte Internet a connu une croissance rapide au cours de la dernière décennie, en particulier le World Wide Web. Selon une étude de Netcraft [3], il y a plus d'un milliard de sites Web à la fin d'octobre 2014. Une autre étude [1] montre un nombre légèrement différent, environ 1,1 milliards de sites Web actifs pour la même période. La figure 1 indique l'évolution du World Wide Web pendant les 14 dernières années, à partir de 2000 à 2014. Cette thèse parlera principalement du PageRank, un algorithme de classement introduit par Page et al. (cf [4, 5]) et utilisé par le moteur de recherche Google comme un des facteurs les plus importants pour classifier les pages web. Notez que le terme site Web fait référence à un nom de domaine, et que le terme de page Web est une page qui se trouve sur ce domaine. Nous devons distinguer clairement ces deux termes parce que, dans le contexte de l'algorithme de PageRank, il existe plusieurs méthodes [6, 7, 8, 9] qui estiment la valeur de PageRank d'une page web en fonction du PageRank de tout le site, spécialement dans le contexte de calcul parallèle où le calcul et le stockage sont souvent au niveau du site web.

Figure 1 :

 1 Figure1: Nombre de sites web sur Internet. Source: InternetLiveStats.com[START_REF] Stats | Internet usage & social media statistics[END_REF]

Q1' 10

 10 Q2'10 Q3'10 Q4'10 Q1'11 Q2'11 Q3'11 Q4'11 Q1'12 Q2'12 Q3'12 Q4'12 Q1'13 Q2'13 Q3'13 Q4'13 Q1'14 Q2'14 Q3active users (million) Twitter monthly active users Facebook monthly active users

Figure 2 :

 2 Figure 2: Nombre d'utilisateurs actifs mensuels de Facebook et de Twitter. Source: Statista.com [2]

Le chapitre 3

 3 présente D-Itération (DI), un nouvel algorithme qui a été proposé par Dohy Hong [19], pour calculer le vecteur de PageRank. Le chapitre inclut la définition de DI et les principaux résultats théoriques (l'exactitude, la convergence, et la condition d'arrêt. . .). L'algorithme montre son potentiel grâce à des expériences sur des données réelles en comparaison avec d'autres algorithmes classiques. Le chapitre 4 montre des évaluations de performance de DI et d'autres algorithmes, comme like Power Iteration (PI), Jacobi, Gauss-Seidel (GS), Adaptive On-Line Page Importance Computation (OPIC) et Generalized Minimal Residual (GMRES), sur un petit graphe du web. Nous comparons les méthodes en termes d'itérations et de coût d'exploitation. Nous proposons aussi une stratégie pour approximer le vecteur de PageRank d'un graphe dont toutes les colonnes (ou lignes) ne sont pas données. Le chapitre 5 présente des évaluations de performance de DI sur différents critères: le nombre d'itérations, le coût d'exploitation, etc., en comparaison avec d'autres algorithmes. Les paramètres de comparaison sont: itérations, opérations élémentaires et messages de requête. Pour les deux derniers critères, nous proposons 13 une variante de DI qui obtient la meilleure performance par rapport aux autres méthodes d'itération classique. Le chapitre 6 introduit LiveRank, un ordre de classement de noeuds dans un graphe tels que les noeuds vivants devraient apparaître en premier. Nous proposons divers algorithmes de LiveRank basés sur des structures de graphes, ensuite les évaluons sur deux captures de Web et sur une capture de Twitter. Nous avons publi les résultats dans [22, 23]. Chapitre 7 conclut la thèse et souligne des directions de recherche dans le futur. Le mémoire contient également quelques annexes dont certains sont liées au PageRank et d'autres pointent vers des sujets supplémentaires sur lesquels j'ai travaillés pendant les trois dernières années. L'Annexe A présente un exemple de comment l'algorithme GMRES fonctionne. L'Annexe B donne une preuve détaillée sur la relation de l'algorithme de Gauss-Seidel et l'une des variantes de D-Itération. À part du PageRank, je participais à une démonstration de la théorie de jeu dans le cadre des Open Days d'Alcatel-Lucent Bell Labs. Dans l'Annexe C, je présente deux prototypes graphiques j'ai construites pour cet évenement. Le premier prototype concerne la distribution des ressources limitées sur plusieurs objets pour gagner plus d'entre eux. Le second prototype est une extension du premier dans laquelle nous considérons une quarantaine de pays européens comme des objets à gagner, avec l'introduction de différentes stratégies de jeu, par exemple, Tit-for-tat, ressources inégales. Les deux prototypes sont disponibles au téléchargement. Dans l'Annexe D, nous proposons une nouvelle méthode appelée Two-Step Movement (2SM) pour estimer la position d'un appareil mobile (MT). Il ne nécessite qu'un seul point de référence (RP) en combinaison avec l'exploitation de l'information utile générée par le changement de position du MT ou le mouvement de l'utilisateur.

Figure 1 .Figure 1 . 1 :

 111 Figure 1.1 indicates the evolution of World Wide Web over the last 14 years, starting from 2000 to 2014. This thesis will be mainly talking about PageRank, a ranking algorithm first introduced by Page et al. (cf[START_REF] Page | The anatomy of a large-scale hypertextual Web search engine[END_REF][START_REF] Page | The pagerank citation ranking: Bringing order to the web[END_REF]) and used by the Google Internet search engine as one of the most important factors to rank web pages. Note that the term website refers to a domain name whereas web page is a page that stems from that domain name1 . Search engines like Google, Bing or Yahoo rank documents at web page level. Given 1 billion websites on the Internet, according to[START_REF]The size of world wide web (the internet)[END_REF] Google handles approximately 50 billions web page indices , roughly saying that each website has in average 50 web pages indexed by Google. However, the size of WWW could turn out to be much more enormous due to the fact that a vast majority of web pages can be reached only by querying web servers. On the other hand, the emergence

Figure 1 . 2 :

 12 Figure 1.2: Number of monthly active users of Facebook and Twitter. Source: Statista.com [2]

Figure 1 . 3 :

 13 Figure 1.3: Simplified social network connections.

Figure 1 . 4 :

 14 Figure 1.4: Heterogeneity of Twitter social network graph: different types of objects (users, tweets) and links (follow, tweet, retweet, mention).

Figure 2 . 1 :

 21 Figure 2.1: Example of PageRank values of nodes in a graph.

Figure 2 .

 2 Figure 2.1 shows an example of normalized PageRank values of nodes in a

n do 8 :

 8 sum+= d × P i,j × x old (j);

8 :

 8 sum+= d × P i,j × x(j);

 PageRank vector after transforming the equation 2.3 to the form Ax = b 1 .

 1/n; Initializing fluid vector 4: end for 5: G = 0; Accumulated fluid diffused 6: while (true) do 7:

Figure 2 . 3 :Figure 2 . 4 :

 2324 Figure 2.2: A directed graph

Figure 2 . 5 :

 25 Figure 2.5: Web graph uk-2007 visualization with sorted node identity

Figure 2 .

 2 [START_REF] Jelasity | Asynchronous distributed power iteration with gossip-based normalization[END_REF] shows what the graph looks like if nodes are sorted by their identification number. We cannot really see any structure like web graph, except the diagonal which represents the self-calls (or internal calls) within each group. This is the motivation of why we want to observe the graph in a PageRank-sorted order.

Figure 2 . 6 .

 26 Figure 2.6.

Figure 2 . 7 :

 27 Figure 2.7: Call-log graph 39

(a)

 a Web graph uk-2007: Visualization with descending PageRank order. Nodes are arranged from the left/lower part (higher PageRank) to the right/upper part (lower PageRank).

30 (

 30 b) Web graph uk-2007: visualization of nodes (descending PageRank order) having single parent whose out-degree increases from left (1) to right[START_REF] Langville | Deeper inside pagerank[END_REF]. Each coordinate (x, y) means page x is pointed to by a unique page y but not from others.

Figure 2 . 8 :

 28 Figure 2.8: Web graph uk-2007 40

 : diffusion approach to solve PageRankSeveral techniques to solve the PageRank equation were introduced in Chapter 2; Power Iteration (PI), Gauss-Seidel (GS) and Online Page Importance Computation (OPIC). In this chapter we present a new method that can accelerate the computation of the PageRank importance vector. The method, called D-Iteration (DI) and firstly introduced by Dohy Hong[START_REF] Hong | Optimized on-line computation of pagerank algorithm[END_REF], is based on the decomposition of the matrix-vector product that can be seen as a fluid diffusion model and is potentially adapted to asynchronous implementation. We give theoretical results about the convergence of the algorithm and we show through experimentations on a real Web graph that DI can improve the computation efficiency compared to other classical algorithms like PI, GS or OPIC. D-Iteration aims at solving the PageRank equation with an efficiency similar to Gauss-Seidel while keeping the scheduling flexibility offered by OPIC. This results in a fluid diffusion approach similar to OPIC with some damping added to the mix.

Equation (3. 5)

 5 gives a first stopping condition of the algorithm. If one aims at |x-H n | < , the condition becomes |F n | ≤ (1-d) which stands for a non-normalized version. The Equation (3.5) further becomes an equality if P is stochastic (for example thanks to dangling node completion), in which case we have

a

 quantity dl k Z should have been added to the initial fluid, leading to (1 -d + dl k)Z instead of (1 -d)Z. But then the fluid dl k Z would have produced after k steps a leak (dl 2 k /(1 -d))Z on dangling nodes, which needs to be compensated. . . In the end, the correction that is required to compensate the effect of dangling nodes on the residual fluid |F k | consists in replacing the initial condition |F 0 | = (1-d) by |F 0 | such that:

Theorem 4 .

 4 Assume that after k 0 diffusions, the DI algorithm has computed the values (H k 0 , F k 0) for some matrix P , and consider a new matrix P (typically an update of P). One can compute the unique solution of the equation x = dP x + (1d)Z by running a new D-Iteration with starting parameters

4

 L1-norm and L2-norm of a vector u are defined as u 1 = n i=1 |u i | and u 2 = n i=1 u 2 i respectively.

Figure 4 . 1 :Figure 4 . 2 :

 4142 Figure 4.1: n = 10 4 nodes, GS and Jacobi

Figure 4 .

 4 Figure 4.3: GMRES with different restart values comparison.

Figure 4 . 4 :

 44 Figure 4.4: n = 10 4 nodes, GMRES and BICGSTAB

Figure 4 .

 4 Figure 4.3 shows the results while varying matrix size from n = 10 2 to n = 10 4 .

Figure 4 . 5 :

 45 Figure 4.5: n = 10 4 nodes; GS, Jacobi and DI comparison

Figure 4 .

 4 [START_REF] Page | The pagerank citation ranking: Bringing order to the web[END_REF] shows a quick comparison between Jacobi, GS and DI-cyc. We can see that DI-cyc behaves almost similarly to GS, but starts to converge more slowly at the middle of the curve. We will prove later in Appendix B that the convergences of GS and DI-cyc are exactly the same if diagonal (or self-loop link) elimination is applied. The graph here contains those links so that after the first tens of iterations converging almost at the same rate, the DI-cyc requires more time to diffuse fluid trapped inside the loops, and it leads to a slower convergence.We show the convergence of DI and OPIC in Figure4.6. As one can observe, given the same number of iterations, OPIC-argmax converges more quickly than OPIC-cyc which always stays monotone. An iteration of DI-argmax is one

Figure 4 . 6 :

 46 Figure 4.6: n = 10 6 nodes, DI and OPIC

 The figure shows that GMRES converges faster than DI in terms of iterations. However, DI consumes much less elementary operations than GMRES as seen in Figure4.7b. Remind that the restart value determines the Krylov subspace

Figure 4 . 7 :

 47 Figure 4.7: Dataset uk-2007: n = 10 4 nodes, DI and GMRES comparison

1)(2)Figure 4 . 8 :

 1248 Figure 4.8: Context of PageRank approximation where storage server and computation machine are apart. Information of column (or row) matrix is transferred upon request from storage server to computation machine.

Figure 4 .Figure 4 . 9 :

 449 Figure 4.9: Full matrix at storage server

 Time t 5 , request N5

Figure 4 . 10 :

 410 Figure 4.10: The graph is gradually reconstructed over time at the computation machine. Requests for outgoing neighbour list are made sequentially from N1,...,N5.

Figure 4 . 11 :

 411 Figure 4.11: Web graph uk-2007: PageRank approximation with partial information

Figure 4 .

 4 Figure 4.11 shows the result on the uk-2007-05@1000000 dataset. The y-axis represents the L1-norm of the difference between the approximate PageRank vector and the true vector of the graph, computed using DI with precision 10 -9 . The xaxis indicates the percentage of nodes requested with respect to the total number of nodes in the graph. The request sequence follows the three strategies mentioned above: Random, Max and Max + Random. For each additional percent of new nodes unveiled, we recompute the vector and compare it with the true one. The more nodes we crawled, the better the performance indicated by a lower (better) precision. As

Algorithm 4 D

 4 -Iteration with modified diffusion condition:x = dP x + (1 -d)Z.

1: for i = 1 F 7 :

 17 (i) = (1 -d)Z(i); Initialize diffusion vector 4: end for 5: k = 1; 6: while (F > T arget Error) do Choose i k ; 8: sent = F (i k); 9:

Figure 5 . 1 :

 51 Figure 5.1: it-2004

Figure 5 .

 5 Figure 5.1 shows some benchmarking results. GS and DI-cyc (No diag) outperform other algorithms w.r.t. iterations in Figure 5.1a. We deliberately plotted DI-cyc with diagonal links to illustrate its impact on convergence speed: DI-cyc starts to converge more slowly from 10 -2 precision point. DI-argmax and DI-argmax/outdeg clearly dominate DI-cyc (No diag) and thus GS in the two remaining criteria. In Figure 5.1b, DI-cyc (No diag) brings a remarkable improvement to DI-cyc (a gain factor of 4) in terms of operations and DI-argmax achieves a gain factor greater than 2 (w.r.t. request messages) as depicted in Figure 5.1c. But the general result still holds: DI-argmax works well with the request messages while DI-argmax/outdeg is optimized for elementary operation cost. 76

Figure 5 . 2 :

 52 Figure 5.2: uk-2005

 DI-argmax/outdeg (c) Number of requests sent

Figure 5 .

 5 Figure 5.3: uk-2006-2007

Figure 5 . 4 :

 54 Figure 5.4: orkut-2007

Figures 5 .Figure 5 . 5 :

 555 Figures 5.5 details how the algorithms perform. In Figure5.5a, GS and DI-cyc converge within 55 iterations to precision 10 -9 whereas DI-argmax, Jacobi and DI-argmax/outdeg require 101, 104, and 122 iterations respectively. As expected with this criterion, GS behaves twice better than Jacobi thanks to the use of the last updated result vector. We have no gain in the number of iterations from

Figure 5 .

 5 Figure 5.5c indicates a gain factor of 3 between DI-argmax and GS.

 use D-Iteration to compute the PageRank of the Twitter graph. Due to the lack of studies on how to choose suitable parameters for Twitter case, we conserve the damping d = 0.85 and Z ≡ 1 n . 83

Figure 5 . 6 :Figure 5 . 7 :

 5657 Figure 5.6: k-overlapping between PageRank after first few iterations and the real PageRank.

 Breadth-First Search (BFS) With BFS, one may reconsider the diffusion model in adaptive LiveRanks at one-hop distance. A BFS queue is initialized with the (uncrawled) training set Z. The next node to be crawled is popped from the queue following First-In-First-Out (FIFO) rule. If the selected node appears to be alive, all of its uncrawled outgoing neighbours are pushed into the end of the queue. When the queue is empty, we always pick the unvisited node with highest PageRank 1 .

Figure 6 . 1 :

 61 Figure 6.1: Statistics of the twitter-2010 dataset

4

 http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/ 5 http://law.di.unimi.it/webdata/twitter-2010/ uk-2002: CDF PageRank

Figure 6 . 2 :

 62 Figure 6.2: Cumulative distribution of nodes according to Indegree/PageRank.

 twitter-2010: CDF PageRank

Figure 6 .

 6 Figure 6.3: Cumulative distribution of nodes according to Indegree/PageRank.

Figure 6 . 4 :

 64 Figure 6.4: Comparison with the cost of an active-site first LiveRank

 As we discussed earlier, the Twitter graph has structural properties distinct from Web graphs. In this part we analyze how these differences may change the performance of LiveRanks. We conduct the same set of experiments on twitter-2010 as what have done in uk-2002.

Figure 6 .

 6 Figure 6.10a compares the static and sample-based LiveRanks. A first observation is that the double adaptive LiveRank P +/a performs very poorly compared to

Figure 6 . 9 :

 69 Figure 6.9: Impact of Z on dynamic LiveRanks (z=100 000)

 twitter-2010: Static and samplebased LiveRanks (z=100 000) twitter-2010: Impact of z (Double adaptive) twitter-2010: Comparison between sample-based and dynamic Liv-eRanks (z=100 000) seed Alive Indeg -Top Indegree seed Alive Indeg -TopPR seed BFS -Random seed BFS -Top Indegree seed BFS -Top PR seed Idead LiveRank (e) twitter-2010: Impact of training set on dynamic LiveRanks (z=100 000)

Figure 6

 6 Figure 6.10: twitter-2010 evaluation results

Figure 7 . 1 :

 71 Figure 7.1: Positioning system with 1 RP and many MTs.

Algorithm 5 1 : 2 : 4 :

 5124 GMRES algorithm: Ax = b Compute r 0 = b -Ax 0 , β = r 0 2 , and v 1 = r 0 /β Start with initial guess vector x 0 Define the (m + 1) × m matrix H m = {h ij } 1≤i≤m+1,1≤j≤m . Set H m = 0. Initialize Hessenberg matrix 3: for j = 1 : m do Compute w j = Av j 5:

10 :vFigure A. 1 :

 101 Figure A.1: An example graph.

⇒ r 2 2

 2 the precision r 2 = b -Ax 2 = = 0.0358. k th iteration: is similar to the previous iterations. The algorithm continues until finding the solution x k such that r k 2 < . The second demo (see Figure C.2) is an extension of the first demo. It comprises of 38 European countries representing 38 battlefields of which the gain values correspond to the number of borders they have in common with other countries. The budget of the two players (for example two enterprises providing internet services) is allowed not to be equal. Besides the classical Colonel Blotto game, players can join the game with some additional strategies like Tit-For-Tat 4 , etc.

Fig. 1 (

 1 Fig. 1(b) shows a variant of traditional triangulation method, which requires two RPs and the last estimated previous position of the mobile terminal so as to eliminate one of the two intersection points of the two circles constructed by the two RPs. In such case, the location closer to the last estimated position would be 127

. 1)

 1 Proof. Using Fig. D.2, from the two measured distances AB and AC, the equations of the two circles centered at A(x A , y A) on which the MT probably lies are expressible as:

Algorithm 6 Remark 1 .Figure D. 2 :

 612 Figure D.2: One-Step Movement (1SM).

Fig. D. 3

 3 Fig. D.3 depicts how 2SM works. The MT makes the second movement from C to D in the direction of angle β, which is measured from the positive x-axis counter-clockwise. The distance CD and β are known by the MT, whereas the distance AD from the MT to the RP is measured from the received signal strength by standard techniques. The underlying idea is that, we now consider the movement

11 : else 12 :

 1112 Pre-compute a, b such that y B = ax B + b; 13:

20 :y

 20 B2 = ax B2 + b; 21: return {B1(x B1 , y B1), B2(x B2 , y B2)}; 22: end if 23: end function of 2SM case similarly as that of 1SM case in which the starting point is now B and the ending point is D. We can compute the distance BD and the angle γ analytically (see Algorithm 7: line 6-13) and then use the method of Algorithm 6 to determine B. Algorithm 7 details how 2SM works. By comparing the results from the two 1SM's computation, we determine the location of the MT.

Algorithm 7

 7 Figure D.3: Two-Step Movement (2SM).

Figure D. 4 :

 4 Figure D.4: Ambiguity elimination in case of noise.

Figure D. 5 :Figure D. 6 :

 56 Figure D.5: Resulting error when AB = 5 meters, BC = CD = 0.1 × AB under various (e d , e a).

 As shown inFig. D.5-D.7, the estimation error in determining the position of the MT increases as e d increases. Note that the estimation error is defined by the distance between the real position of the MT and the result given by Algorithm 7.

Figure D. 7 :

 7 Figure D.7: Resulting error when AB = 5 meters, BC = CD = 0.5 × AB under various (e d , e a). the considered e a is relatively less significant. This can be clearly shown by Fig. D.6 and D.7. Roughly speaking, e d is more dominating. In comparing Fig. D.5-D.7, we observe that when increasing BC and CD from 0.1× to 0.5 × AB, the estimation error in determining the position of the MT decreases quite substantially. See in Fig. D.6 and D.7, the curves shift to the left.

Table D. 2

 2 shows the average error in determining the position of the MT under different AB (at 1, 5, and 10 meters, respectively) and various BC, CD, and noise levels (e d , e a). Result at AB = 5 was plotted in Fig. D.5-D.7. Note that since the curves for AB = 1 and 10 have very similar characteristics to those in Fig. D.5-D.7, we do not plot them here. Comparing the results at AB = 1, 5, and 10, we see that the magnitude of the error increases roughly proportional to AB, as expected. It is clear that the estimation error is minimized when (e d , e a) are small and the e d = 1% e d = 1% e d = 1% e d = 2% e d = 2% e d = 2% e d = 5% e d = 5% e d = 5% e a = 1°e a = 2°e a = 5°e a = 1°e a = 2°e a = 5°e a = 1°e a = 2°e a = 5°A B = 1 (BC=CD= 0

Figure D. 8 :

 8 Figure D.8: Two-Step Movement (2SM) application: waving hand to get position.

 Fig. D.9a), measurements are taken at the intermediate points C1, . . . , C n and each of them allows to compute two possible positions of B, denoted by B1 and B2. Obviously, n intermediate measurements give us two sets of B1 and B2, denoted by S B1 and S B2 with |S B1 | = |S B2 | = n. One can simply take the middle points of S B1 and S B2 respectively or formulate an optimization problem to find the best estimates of B1 and B2. Similarly, the above process is applied to the second step movement (see Fig. D.9b) such that we can find two estimates, denoted by B3 and B4, respectively. In general, we will have four sets of points as shown in Fig. D.10.

Fig. D. 10)

 10 Fig. D.10) as the MT's position or formulate an optimization problem to minimize the error.

Figure D. 10 :

 10 Figure D.10: The possible solutions in the presence of noise.

 e d = 1%, e a = 1°e d = 2%, e a = 2°e d = 5%, e a = 5°S ingle Multi Single Multi Single Multi AB = 1(BC = CD = 0.1AB) 0.1412 0.1154 0.2640 0.2164 0.5691 0.4090 AB = 1(BC = CD = 0.2AB) 0.0808 0.0666 0.1508 0.1370 0.3417 0.2638 AB = 1(BC = CD = 0.5AB) 0.0484 0.0416 0.0804 0.0792 0.1868 0.1541 AB = 5(BC = CD = 0.1AB) 0.7194 0.5858 1.3012 1.0269 2.9226 2.1480 AB = 5(BC = CD = 0.2AB) 0.3957 0.3623 0.7480 0.6062 1.6587 1.2861 AB = 5(BC = CD = 0.5AB) 0.2193 0.2108 0.4412 0.3393 0.9134 0.8067 AB = 10(BC = CD = 0.1AB) 1.4165 1.1650 2.6257 1.9102 5.8929 4.0634 AB = 10(BC = CD = 0.2AB) 0.8006 0.5777 1.1580 1.1238 3.3873 2.5696 AB = 10(BC = CD = 0.5AB) 0.4987 0.4325 0.8798 0.7959 1.8750 1.5831 Table D.3: Average estimation error (in meter) due to the single-sampling and multisampling 2SM methods under various AB, BC, CD, and noise levels. The initial position of MT is called B and its distance to the RP is set to three values: 1, 5, and 10 meters. Its position on a corresponding circle is randomly generated. Measurement error of distance is denoted by e d and bounded by [-1%, 1%], [-2%, 2%], and [-5%, 5%] with respect to its true value. Meanwhile, measurement error of angle is denoted by e a and bounded by [-1 • , 1 •], [-2 • , 2 •], and [-5 • , 5 •].

 Table D.3 compares the performance of the single-sampling and multisampling 2SM. The result is obtained by 10 5 runs. In multi-sampling 2SM, we perform 1000 sampling near the end point of each movement (see Fig. D.9). Table D.3

D. 6

 6 Generalization of 2SM to Device-to-Device system In this section, we generalize the Two-Step movement algorithm, called Generalized Two-Step Movement or G2SM in short, to Device-to-Device (D2D) environment. The considered system consists of a Mobile Terminal (MT) and a movable Reference Point (RP) (e.g., another mobile device) such that the location of the MT, which always move in the coverage area of the RP, can be estimated with respect to the position of the RP (see Figure D.11). Additionally, the RP is always precisely localized regardless of where it moves to.

Figure D. 12

 12 Figure D.12 depicts the following technical details:

Figure D. 11 :

 11 Figure D.11: Generalization of Two-Step Movement (G2SM): The Reference Point (black) is another mobile phone. Another mobile terminal (white) can localized itself thanks to the movement of the moveable reference point nearby.

Figure D. 12 :- AB 2 + BC 2 -DC 2 -(x 2 A + y 2 A) + (x 2 D + y 2 D) 2 .(D. 9) 2 +(x 2 A + y 2 A) -(x 2 D- AB 2 + BC 2 -DC 2 -(x 2 A + y 2 A) + (x 2 D + y 2 D) 2 .

 122222222922222222222 Figure D.12: Generalized One-Step Movement (GSM).

Fig. D. 13

 13 Fig. D.13 depicts how G2SM works. While the RP moves from D to E, the MT carries out the second movement from C to F in the direction of angle β, which is measured from the positive x-axis counter-clockwise. The distance CF and β are known by the MT, whereas the distance EF from the MT to the up-to-date position of RP is measured from the received signal strength by standard techniques. Because the position of RP is always accurately tracked, its coordinate E(x E , y E) is known. The underlying idea is that, we now consider the movement of G2SM case similarly as that of G1SM case in which the starting point of MT is now B and the ending point is F , regarding the two positions of RP are A and E. We can compute the distance BF and the angle γ analytically (see Algorithm 9: line 8-15) and then use the method of Algorithm 8 to determine B. Algorithm 9 details how 2SM works. By comparing the results from the two 1SM's computation, we determine the location of the MT.

Figure D. 13 :

 13 Figure D.13: Generalized Two-Step Movement (Generalized-2SM).

 AD = DE = [0.1, 0.2] × AB AD = DE = [0.2, 0.5] × AB AD = DE = [0.5, 1] × AB e d = 1% e a = 1°e d = 2% e a = 2°e d = 5% e a = 5°e d = 1% e a = 1°e d = 2% e a = 2°e d = 5% e a = 5°e d = 1% e a = 1°e d = 2% e a = 2°e d = 5% e a = 5°A B = 1(BC = CF = 0.1AB) 0

(

 2SM) to estimate the position of MT. It requires only one reference point (RP) by exploiting useful information given by the position change of the MT or user movement. One can therefore reduce the number of RPs required and lower the system cost. Furthermore, a Generalization of the Two-Step Movement (G2SM) to Device-

Figure D. 14 :

 14 Figure D.14: Three-Step Movement (3SM) in three-dimensional (3D) space. The position of the device can be determined after three moves of the user carrying it.

 Model . 26 2.2 PageRank computation techniques 29 2.2.1 Power Iteration . 29 Online Page Importance Computation 2.3 Collection and diffusion approach . 2.4 PageRank of Web graph . 2.5 PageRank of Call-log graph . 2.6 Web graph storage . 2.7 Conclusion .

	2 PageRank	25
	2.1	

Introduction 16 1.1 Context . 16 1.1.1 Ranking problems . 17 1.1.2 Social networks . 19 1.1.3 Challenges of social network ranking 21 1.2 Roadmap and contributions . 22 2.2.2 Gauss-Seidel . 29 2.2.3 Successive Over-Relaxation 31 2.2.4 Generalized Minimal Residual 31 vi CONTENTS vii 2.2.5

 Centralité de milieu (betweenness centrality) : d'un noeud est défini par combien de chemins les plus courts entre toutes les paires de noeuds le traversent. Cela mesure la capacité d'un élément du réseau à se connecter à d'autres éléments.Cette mesure est importante pour étudier la façon dont un réseau est connecté à l'intérieur et comment maintenir ou renforcer la structure du réseau. Si un noeud ayant une haute centralité est enlevé du réseau, beaucoup de paires de noeuds risquent de ne plus pouvoir communiquer entre eux.

	Cette hétérogénéité rend la question de comment ordonner beaucoup plus difficile, par exemple devrions-nous ordonner un utilisateur de Twitter en fonction de ses fo ll o w m une première phase permettant d'ajuster l'ordre selon la viabilité des éléments de r e t w e e t l'échantillon, ou enfin dynamique quand il s'est progressivement calculé au cours de e n t i o n la récupération des pages.
	followers ou du nombre de fois que d'autres utilisateurs partagent ses tweets? Ou les deux? Deuxièmement, les graphes sociaux évoluent beaucoup plus vite que les Nous proposons divers algorithmes de LiveRank en fonction de la structure t w e e t du graphe à un instant donné. Nous les évaluons sur deux graphes de Web réels f o l l o w (10-20 millions de noeuds) et sur un graphe de Twitter (40 millions de noeuds).
	Centralité de vecteur propre (eigenvector centrality) : mesure l'importance des noeuds dans un rseau, partant du principe qu'une connexion sortant d'un graphes du Web. Leur dynamique peut être observée par les apparitions rapides de Figure 4: Hétérogeneité du graphe de réseau social de Twitter: différents types
	d'objets (personnes, tweets) et liens (follow, tweet, retweet, mention)
	.
	9

de degré (degree centrality) : défini par le nombre de liens d'un noeud avec d'autres noeuds. Dans les réseaux sociaux, cette valeur d'un utilisateur est principalement déterminée par le nombre d'autres utilisateurs avec lesquels il partage des connexions dans un sens ou l'autre. Centralité de proximité (closeness centrality) : montre comment un noeud est proche d'autres noeuds. Le noeud central a des distances plus courtes aux autres, et la distance entre une paire de noeuds est définie par la longueur du chemin le plus court entre eux. Dans les réseaux sociaux, plus petite est la distance qu'un utilisateur a besoin pour atteindre les autres, plus cet individu est important. Dans le contexte de propagation de l'information, cette mesure pourrait donner une vue fondamental sur la façon de diffuser le contenu le plus rapidement possible étant donnée une seule ou peu de sources d'information. Inversement, ce sont les noeuds qui peuvent recevoir des informations venant d'autres noeuds plus rapidement et avec moins d'effort. noeud plus important contribue plus de score qu'une connexion équivalente sortant d'un noeud moins important. Cette déclaration peut être interprétée de différentes manières. Dans un graphe du web, un noeud est considéré comme important s'il est pointé par (beaucoup) d'autres noeuds importants. De même, dans le contexte de réseau social, un utilisateur est considéré influent s'il est connecté avec (beaucoup) d'autres utilisateurs influents. L'algorithme de PageRank est une variante de la centralité de vecteur propre et cette thèse donc portera principalement sur cette mesure de centralité. Il y a beaucoup de façons de construire un modèle de classement pour les réseaux sociaux. Elles consistent à répondre à deux questions : que trie-t-on et comment le trier. Cependant, la construction d'un tel modèle de manière satisfaisante n'est pas une tâche facile. Défis du classement de réseau social Ordonner des objets dans les réseaux sociaux est difficile à cause de différentes raisons. Tout d'abord, les graphes de réseaux sociaux sont hétérogènes. Au contraire des graphes du web homogènes qui consistent simplement en pages Web, fichiers et liens entre eux, les graphes sociaux contiennent une large variété d'objets tels que les personnes, les évènements, les messages... Chaque réseau social a ses propres objets et des liens spécifiques. Par exemple Twitter a utilisateurs, tweets, retweets comme objets et following/follower, tweet, retweet, mentionner, préférer sous forme de liens. D'autre part, Facebook a utilisateurs, messages, commentaires comme objets et amis, commentaires, aimer, partager, mentionner comme liens. Les graphes sociaux sont hétérogènes en termes des objets ainsi que des liens (voir Figure 4). nouveaux objets et les disparitions de relations anciennes ou d'éléments obsolètes. Supposons que nous voulons calculer les valeurs de PageRank de noeuds d'un graphe social, il n'est pas pratique d'utiliser des méthodes de calcul classiques parce qu'elles doivent prendre un certain temps pour s'adapter aux changements de la structure du graphe, et ensuite recalculer les valeurs de PageRank presque du début. C'est la raison pour laquelle nous allons introduire D-itération, un algorithme qui permet d'actualiser le vecteur PageRank par rapport à l'évolution du graphe. Troisièmement, même si nous avons déjà un modèle de classement, ce n'est pas évident de savoir comment évaluer sa validité. Le classement du Web a aussi ce problème parce que la base de validité est difficile à définir. Ce défi concerne plus ou moins la question de quoi ordonner. Si l'on veut chercher les utilisateurs les plus influents dans le réseau, on pourrait se retrouver coincé de la vérification de la validité. Dans ce cas, un facteur humain peut aider, en introduisant un risque de biais non-négligable mais au prix de beaucoup de temps et d'efforts. Pour éviter ce problème, nous choisissons d'ordonner des objets selon des critères vérifiables comme le dynamisme des utilisateurs dans les graphes sociaux qui peut être correctement dérivé de l'enregistrement de leurs activités accessibles. LiveRank Beaucoup d'exemplaires de grands graphes datant d'une dizaine d'années ou plus sont disponibles aujourd'hui. Reconstruire ce qui reste de ces archives pourraient conduire à des études intéressantes de l'évolution à long terme de ces graphes. Pour les grandes archives où l'on s'intéresse à un type particulier de pages Web, recrawler un grand ensemble de pages peut être prohibitif. Nous proposons d'identifier le plus rapidement possible une fraction significative des pages encore en vie. Une sélection supplémentaire peut alors être faite pour identifier un ensemble de pages appropriés pour l'etude, afin de les explorer. Ces techniques seraient particulièrement intéressantes lorsque le test de la viabilité d'une page est beaucoup plus léger que le téléchargement complet. C'est par exemple le cas pour le Web avec des requêtes HEAD par rapport à des requêtes GET. De plus, certains graphes tendent à être plus difficiles à crawler avec le temps. Par exemple, Twitter restreint sa capacité à être exploré. Effectuer une analyse complète était possible il y a quelques années [56], mais il pourrait être prohibitif de nos jours à cause des restrictions de volume introduites dans l'interface API. De nouvelles techniques doivent donc être développées pour identifier efficacement les comptes actifs efficacement dans de tels contextes. Étant donné un "vieux" graphe, notre objectif est d'identifier une fraction significative des éléments qui sont encore en vie ou actifs à l'instant présent. Nous considerons le coût comme le nombre de récupérations nécessaires pour atteindre cet objectif. Une mesure typique de coût sera le nombre moyen de récupérations pour obtenir un élément actif. La stratégie consiste à produire un ordre pour récupérer les pages. Nous appelons LiveRank un ordre tel que les éléments qui sont encore en vie ont tendance à apparaître en premier. Nous considérons le problème de trouver un LiveRank efficace dans trois contextes : statique quand il est cal-culé uniquement à partire du vieux graphe et des liens enregistrés à l'époque, sur la base d'échantillonnage quand un échantillon sur le graphe actuel est testé dans Nous donnons plusieurs algorithmes sur la base de la structure du graphe. Un bon algorithme consiste à combiner une petite phase d'échantillonnage avec une propagation de l'information d'activité partielle obtenue sur le graphe restant. Il permet de recueillir de 15% à 75% des noeuds actifs avec un coût qui reste en dessous d'un facteur 2 de la solution optimale.

Table 2 .

 2

		Value
	Number of nodes (n) 233,308
	Number of links	540,399
	Maximum indegree	319
	Maximum outdegree 244
	Average degree	2.32
	Dangling nodes	201,346 (86%)
	Zero-indegree nodes	6310 (2.7%)
	Self-loop nodes	2631 (1.13%)

1: Call-log graph statistics Figure 2.6: Call-log graph visualization with normal order.

Table 2

 2

	Node Outdegree	Neighbors

	24	5	22, 23, 24, 26, 28
	25	3	22, 23, 25
	26	0	

.2 shows an example.

Table 2 .

 2

2: An adjacency list of neighbors attached to a node.

Table 2

 2 gap, e.g., use 2-bytes short type instead of 4-bytes int type.For the bigger gaps which do not follow the locality, we can store them apart with bigger value types under the form of an array next to the local small gaps.

	Node Outdegree Neighbors

	24	5	3, 0, 0, 1, 1
	25	3	5, 0, 1
	26	0	

.3 converts the adjacency list of Table

2

.2 to a gapbased list. Note that the memory benefit between the adjacency list and the gap-based neighbours appears thanks to the use of a smaller value type which 43 sufficiently fits the

Table 2 .

 2

	Node Outdegree Reference Copy list	Extra node

	24	5	0		22, 23, 24, 26, 28
	25	3	1	11000	25
	26	0			

3: Gap-based list exploiting locality of web graph.

Reference list

[START_REF] Boldi | The webgraph framework i: Compression techniques[END_REF]

(see Table

2

.4): one can further optimize web graph representation by again using locality. There are probably nodes which share almost the same neighbour list. Instead of having its own list, a node can refer to another whose neighbor list looks similar to its, then add remaining different nodes. The reference value of a node is the distance between itself to the referred (and precedent) node or zero if it does not refer to any other. Table

2

.4 details the reference list of the adjacency list of Table

2

.2. It shows to which node the current node refers and a binary string corresponds to elements copied from the referred node. The method then adds extra nodes which are different from the two neighbouring lists. This section aims to give readers an overview of web graph compression so that the presented techniques are very basic. For more advanced methods like reference block or interval exploitation, one may read

[START_REF] Boldi | The webgraph framework i: Compression techniques[END_REF]

for a complete reference. Many

Table 2 .

 2 4: Reference list exploiting locality of web graph. graphs 4 were compressed using these techniques and also most of the datasets that we use in this thesis. In general, the complete compression model can be used to compress different types of graphs, such as web graphs or social network graphs.

	Of course, the compression ratio depends on the nature of the graph and inversely
	proportional to the compression time. For example, the web graph uk-2005 5 (40
	millions nodes, 936 millions links) can achieve a ratio 1.463 bits/link whereas the
	social network graph twitter-2010 6 (41 millions nodes, 1.5 billion links) needs
	13.897 bits/link.

 and the last one (twitter-2012) at http: //www-sop.inria.fr/members/Arnaud.Legout/Projects/sotweet.html After completion, this dataset contains 3 million nodes and over 234 million directed links (representing 117 million friendships).

	twitter-2010: contains about 42 million nodes and 1.5 billion links. Nodes are
	Twitter users and link from x to y means user y follows user x. In other words,
	links indicate direction of tweet propagation. The dataset was presented in
	[51]. In PageRank context, a web page is important if it is pointed to by many
	other important pages. We assume one applies the same philosophy to Twitter
	user ranking, i.e., an important user is pointed to by many other important
	users. Obviously, link direction in user ranking graph is inverse with respect
	to tweet propagation graph. So instead of using the original twitter-2010
	graph, we exploit its transposed version.

2

http://socialnetworks.mpi-sws.org/data-imc2007.html 71 symmetric, and an undirected link from x to y depicts a mutual friendship between x and y.

twitter-2012: a complete snapshot of Twitter crawled in 2012 by Gabielkov et al.

[START_REF] Gabielkov | Studying Social Networks at Scale: Macroscopic Anatomy of the Twitter Social Graph[END_REF]

and available for academic studies. The graph contains 400 millions nodes and 23 billions edges. It is given under the form of a very large 3 adjacency list: each user having at least one follower corresponds to one line

Table 5 .

 5 .1.

	Dataset name	N	L	max in	max out L/N D/N	E/N O/N
	it-2004	41,291,594	1,150,725,436	1,326,745	9,964	27.87 0.1276 0.0001 0.36
	uk-2005	39,459,925	936,364,282	1,776,852	5,213	23.73 0.1100 0.0010 0.38
	uk-2006-2007 133,633,040 5,507,679,822	6,366,525	22,429	41.22	0.09	0.0537 0.24
	orkut-2007	3,071,378	234,370,166	33,313	33,313	76.28 0.0001 0.0001	0
	twitter-2010	41,652,230	1,468,365,182	2,997,469	770,155 35.25 0.1439 0.0382	0
	twitter-2012 398,846,191 23,137,510,395 24,635,412 734,806 58.01 0.0718 0.2697	0

1: Datasets statistics N: number of nodes in the graph, i.e., number of columns/rows in matrix, L: number of links, i.e., number of non-null entries in transition matrix P , has all incoming links from in-tendril nodes, it can be called as transitory node and also counted as in-tendril node. The reason we introduce this notion is that those nodes converge in finite steps with DI, so DI will perform especially well on graphs with a high number of those.

Table 6 .

 6 1: Status of web pages in uk-2002, crawled in December 2013.

		Description	Number of pages Percentage
	Code HTTP 404	Page not found	6 467 219	34,92%
	No answer	Host not found	4 470 845	24,14%
	Code HTTP 301	Redirection	3 455 923	18,66%
	Target 301	Target of redirection	20 414	0,11%
	Code HTTP 200	Page exists	2 365 201	12,77%
	True 200	Page really exists	1 164 998	6,29%
	Others (403,. . .)	Other error	1 761 298	9,51%
	Total	Graph size	18 520 486	100%

Like for sample-based LiveRanks, dynamics LiveRank use a training set Z of z pages from a static LiveRank. This allows to bootstrap the adjustment by giving a non-empty knowledge of a, and prevents the LiveRank from focusing on only a small subset of V .

 .10e indicates the impact of different training sets on the two dynamic LiveRanks. It confirms that the combination of AI and a PageRank-ordered training set gives the best results for that type of LiveRanks, which is still not enough to compete against P a .

				16							
									Double adaptive	
				14					BFS		
									Alive Indegree	
		18		12					Ideal LiveRank	
	Relative cost	8 10 12 14 16	Relative cost	4 6 8 10								Random
		6		2								Indegree
												PageRank
		4		0 0	0.1	0.2	0.3	Single adaptive 0.7 0.8 Double adaptive Fraction of alive pages crawled 0.4 0.5 0.6	0.9	1
		2										Ideal LiveRank
	0 0 Figure 6.8: Sample-based and dynamic LiveRanks (z=100 000) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Fraction of alive pages crawled
	Figure 6.5: Static and sample-based LiveRanks (z=100 000) 16
							Alive Indegree -Random seed
				14			Alive Indegree -Top Indegree seed
							Alive Indegree -Top PR seed
				12			BFS -Random seed BFS -Top Indegree seed	
							BFS -Top PR seed		
		16	Relative cost	6 8 10			Ideal LiveRank		
		14		4						z=100 000 z=200 000
										z=300 000
		12		2						z=500 000 z=400 000
	Relative cost	6 8 10		0 0	0.1	0.2	0.3	Ideal LiveRank 0.6 0.7 Fraction of alive pages crawled 0.4 0.5	0.8	0.9	1
		4									
		2									
		0 0		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
							Fraction of alive pages crawled	
	Figure 6.6: Impact of z (Double adaptive LiveRank)
		16									
						Random			
		14				Top PR seed			
						Top PR Independent seed	
		12				Top Indegree Top Indegree Independent seed
						Ideal LiveRank		
	Relative cost	6 8 10									
		4									
		2									
		0 0		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
							Fraction of alive pages crawled	
	Figure 6.7: Impact of Z (double adaptive with z=100 000)
									103	

Table D .

 D 2: Average error (in meter) under various AB, BC, CD, and noise levels (e d , e a).

	.1AB)	0.1412	0.1434	0.1581	0.2583	0.2640	0.2708	0.5530	0.5608	0.5691
	AB = 1 (BC=CD= 0.2AB)	0.0808	0.0859	0.1036	0.1463	0.1508	0.1631	0.3202	0.3340	0.3417
	AB = 1 (BC=CD= 0.5AB) 0.0484 0.0566	0.0896	0.0753	0.0804	0.1086	0.1701	0.1759	0.1868
	AB = 5 (BC=CD= 0.1AB)	0.7194	0.7279	0.8027	1.2797	1.3012	1.3668	2.7913	2.9031	2.9226
	AB = 5 (BC=CD= 0.2AB)	0.3957	0.4235	0.5513	0.7145	0.7480	0.8246	1.6222	1.6372	1.6587
	AB = 5 (BC=CD= 0.5AB) 0.2193 0.2831	0.4481	0.4136	0.4412	0.5448	0.8738	0.8829	0.9134
	AB = 10 (BC=CD= 0.1AB) 1.4165	1.4348	1.6130	2.4798	2.6257	2.7011	5.7899	5.8059	5.8929
	AB = 10 (BC=CD= 0.2AB) 0.8006	0.8602	1.0845	1.4779	1.1508	1.5112	3.2304	3.3131	3.3873
	AB = 10 (BC=CD= 0.5AB) 0.4987 0.5601	0.9362	0.8180	0.8798	0.1058	1.7551	1.7652	1.8750

Table D .

 D 4: G2SM with multi-sampling: the average positioning error (in meter) under various AB, AD, BC, and noise levels. not need to be fixed and we thus generate it to be uniformly distributed in (0; 2π].

		.1139	0.2011	0.4121	0.0677	0.1189	0.2736	0.0461	0.0820	0.1808
	AB = 1(BC = CF = 0.2AB)	0.0855	0.1518	0.3310	0.0597	0.1126	0.2432	0.0473	0.0832	0.1803
	AB = 1(BC = CF = 0.5AB)	0.0509	0.0918	0.2119	0.0462	0.0877	0.1802	0.0413	0.0765	0.1678
	AB = 5(BC = CF = 0.1AB)	0.5433	0.9654	2.1378	0.3346	0.6336	1.3726	0.2431	0.4196	0.9274
	AB = 5(BC = CD = 0.2AB)	0.4162	0.7548	1.6035	0.3058	0.5562	1.1936	0.2361	0.4100	0.9044
	AB = 5(BC = CF = 0.5AB)	0.2567	0.4452	1.0373	0.2349	0.4349	0.9156	0.2148	0.3852	0.8364
	AB = 10(BC = CF = 0.1AB) 1.1319	1.9817	4.1819	0.7184	1.1993	2.7077	0.4064	0.7965	1.8415
	AB = 10(BC = CF = 0.2AB) 0.8090	1.5358	3.2446	0.6189	1.2082	2.4429	0.4292	0.8366	1.8521
	AB = 10(BC = CF = 0.5AB) 0.5059	0.9164	2.0490	0.4579	0.8819	1.9196	0.4539	0.7590	1.6926

We should clearly distinguish these two terms because in the context of PageRank algorithm, there are several methods[START_REF] Jelasity | Asynchronous distributed power iteration with gossip-based normalization[END_REF][START_REF] Wang | Computing pagerank in a distributed internet search system[END_REF][START_REF] Mathieu | Local Aspects of the Global Ranking of Web Pages[END_REF][START_REF] Avrachenkov | Decomposition of the google pagerank and optimal linking strategy[END_REF] which estimate the PageRank value of a web page as a function of PageRank of the whole website, specially in parallel context where computation and storage scheme at each server is often at website level.

1.1. CONTEXT

This statement can be interpreted in different ways. In a web graph, a node is considered important if it is pointed to by (many) other important nodes. Similarly, in the context of social network, a user is influential if he is connected to by (many) other influential users.

2.2. PAGERANK COMPUTATION TECHNIQUES

We rewrite the PageRank equation x = dP x + (1 -d)Z as (I -dP)x = (1 -d)Z where I is an identity matrix (a square matrix with ones on the main diagonal and zeros elsewhere). The GMRES algorithm will then be applied to compute PageRank vector x in the quation Ax = b such that A = I -dP and b = (1 -d)Z.

http://law.di.unimi.it/webdata/uk-2007-05@1000000/. This is an extraction of the dataset uk-2007-05 (containing 106M nodes) using Breadth-First Search (BFS) starting at a random node.

The term degree we use in this study (call-log dataset) is weighted, i.e., it takes into account the number of in-coming or out-going calls of a user.

http://law.di.unimi.it/datasets.php

http://law.di.unimi.it/webdata/uk-2005/

http://law.di.unimi.it/webdata/twitter-2010/

Nodes without out-going links, or zero-outdegree nodes.

The scheduler I is fair if each value of i k appears in I infinitely often.

http://law.di.unimi.it/webdata/uk-2007-05@1000000/

http://delis.upb.de/

http://fr.mathworks.com/help/matlab/ref/gmres.html

100 GBs of compressed text format

Diagonal elimination is the process of removing self-loop links of nodes in a graph and adjusting their corresponding incoming link weights (details in Appendix B).

https://twitter.com/

http://webgraph.di.unimi.it/

http://law.di.unimi.it/webdata/uk-2002/

https://support.apple.com/en-us/HT202880

Acknowledgements

This work would not have been possible without the advice and support of many people, and I will always keep all of that in my heart with a deep appreciation.

First and foremost, enormous gratitude is due to Dr. Fabien Mathieu who

Chapter 5

Experiments on large graphs

After first experiments with small graph in the previous chapter, we now consider bigger datasets. Computation on large graphs in general is challenging due to resource constraints such as memory usage and computation time. The first part of this chapter focuses on evaluating the performance of D-Iteration (DI) specifically in solving PageRank equation and compare it on a larger scale with other algorithms seen before like Jacobi, Gauss-Seidel (GS), Online Page Importance Computation (OPIC), etc. Each of them has its own pros and cons. Obviously, finding the best algorithm for all cases is impossible. Therefore, the main target of this chapter is instead to find a good candidate, given a specific case which depends on the nature of the graph and how the resource constraints are defined. We will also discuss the application of PageRank to Twitter social graph.

Ranking users in such a network is interesting but quite challenging as mentioned in Section 1.1.3. Some results will be shown to compare the outcomes of ranking according to PageRank and to indegree.

In this chapter, our main contributions consists in evaluating the performance of D-Iteration in solving PageRank equation. The benchmarks are carried out on graphs varying in size (number of vertices and edges) and in type (undirected/directed social networks and web graphs). Besides, we present the application of PageRank to rank Twitter users and compare its efficiency with the classical ranking according to the number of followers (indegree). The results of this chapter are partly presented in [START_REF] Huynh | Analyzing methods computing pagerank vector of large matrix[END_REF].

interesting information that the algorithm can provide in comparison with the mere indegree-based ranking.

Chapter 7

Summary and future work

The rapid growth of World Wide Web and social networks has created a need of having good ranking systems. Although there has been a lot of research efforts and results on this topic, it still has many issues that need to be considered, like ground truth definition or large scale computation, etc.

In this thesis, we investigate the D-iteration, an algorithm proposed by Dohy Hong that can compute the PageRank vector, based on diffusion approach. We summarize the theoretical results concerning the correctness (convergence), the precision measurement and update equation. Our algorithm shows its potential through experiments on real data in comparison with Jacobi, Gauss-Seidel, SOR, OPIC, GMRES, etc.

Based on the properties of DI, there are some interesting issues to be discussed. DI is capable of adapting to asynchronous computation. Recalling that some classical methods are restricted by how nodes are iterated. For instance, Gauss-Seidel updates its vector at element level: it applies right away the vector elements x j k to compute x i k for j < i in the k th iteration and this procedure impedes the asynchronous deployment. On the contrary, DI has almost no constraint on diffusion sequence except the fairness which is easy to meet. However, DI still requires some further work to be fully efficient in a distributed setting: controlling the fluid spread on several machines in distributed computation is not easy because the issues involve in graph partitioning process (i.e., assigning certain groups of nodes to one or several machines), diffusion strategy and graph storage scheme.

108

The algorithm has four main advantages: (i) implementable to today's smart devices (e.g. smart phones) and wireless networks, (ii) the requirement of infrastructure is low, database (like WiFi fingerprint) is not required, low computation complexity, (iii) it is not limited by the number of devices in use (scalable) and finally (iv) it offers much better performance, which in comparison to iBeacon 1 (with average error = 3 meters), our solution can reduce the positioning error from 2 times (error is reduced to 1 meter) to 10 times (error is reduced to 0.3 meter) in various cases.

It is not obvious to perceive the relation between ranking and localization systems. As an effort to bridge them for future works, we may think of a positioning system using one RP and many MTs in its coverage area shown in Figure 7.1.

Suppose that thanks to the 2SM, all MTs can estimate their positions but with different errors, i.e., some of them are localized more precisely than others. Now, the question is how to select one (or a few) MT(s) and to use it as a semi-RP to reduce the estimation error of the other MTs. In such a context, a ranking algorithm managed by the true RP may help. Based on the error observed while solving the quadratic equations of each MT, the RP can assign a reliability degree for each MT and decide which one (probably the highest) can be used as the semi-RP. Hopefully, with the additional information given by the semi-RP (plus the original RP), the position estimation process can be improved.

Appendix B

Proof of diagonal term elimination with DI

In Section 5.2.2, we saw that DI-cyc has exactly the same performance with Gauss-Seidel in case of web graph if we apply diagonal elimination. This Appendix will provide a rigorous proof why we observed such a phenomenon.

Let A = dP , to solve the PageRank equation we transform the GS equation to the form:

We have:

where A ii < 1. Let A be a matrix of size n × n and b be a vector of size n such that:

We rewrite the GS equation:

and removing self-loop link, updating incoming link weight i

In diffusion point of view, diagonal term elimination can be done by infinitely diffusing fluid on self-loop link and then is equal to accumulating fluid at the self-loop node:

With DI, recall the Equation 3.6:

We have:

where I is the identity matrix, J m is a matrix with all entries equal to zero except the m-th diagonal term: (J m) mm = 1, F 0 is the initial condition vector and i k is the k th choice of node for the diffusion. The choice of the sequence I = {i 1 , i 2 , ..., i n , ...} with i ∈ {1, .., n} is the main optimization factor of the D-iteration.

Therefore, if we apply diagonal term elimination and the same choice sequence of nodes, vector H k of DI is exactly the same as vector x obtained by GS in Equation B.5, and thus in Equation B.3.

Appendix C Colonel Blotto games

In the second year of my PhD, I participated in building a Demo for Bell-Labs Future X Days 1 . The demo consists in explaining the basis of Colonel Blotto game (see below) and its applications to solve real-life problem.

According to [START_REF]Colonel blotto game[END_REF], Colonel Blotto game is a two-person zero-sum game 2 in which the two players simultaneously distribute limited resources over several objects, or battlefields. The player distributes more resources than the other to a battlefield wins that battlefield, and the gain is equal to the total number of battlefields won.

The Colonel Blotto aims at finding the optimum distribution of soldiers (or resources) over n battlefields knowing that: (i) the party (or player) that has allocated the most soldiers on a battlefield wins that battlefield, but (ii) both parties do not know how many soldiers the other party will allocate to each battlefield, and

(iii) both parties try to maximize the number of battlefields they expect to win.

Based on that, we build two demos of Colonel Blotto games 3 .

In the first demo (see Figure C.1), we set up two parties, five battlefields and initially give 100 solders to each party. Each battlefield will bring a certain gain value for the party who wins that battlefield. The target of the two parties is to maximize the total gain value they can win.

1 https://www.bell-labs.com/programs/bell-labs-futurex-days/ 2 Zero-sum game is a situation in which a player's gain (or loss) of utility is exactly equal to the losses (or gains) of the utility of the other player(s) 3 The source code (16MB) is available at http://www.mediafire.com/download/05j01bpoi55c0ym/Colonel_Blotto_Demos.zip Positioning systems are crucial to today's digital society. They help to locate objects or people carrying the objects and provide geographic information, thus to facilitate many human activities. For instance, vehicle navigation systems are indispensable for drivers in big cities. Some location-based services are deployed in commercial malls so that customers can get navigation while walking in complex environment and can receive promotion advertisement from shops. The market of indoor and outdoor location-based services has grown rapidly in the last decade.

However, the major issue of indoor localization system is the trade-off between implementation cost and accuracy. A low-cost system which demands only few hardware devices could save the cost but often it turns out to be less reliable.

In this chaper, our main contribution is proposing a new method, called Two-

Step Movement (2SM), which requires only one reference point (RP) by exploiting useful information given by the position change of a mobile terminal (MT), or the user movement. This method can minimize the number of reference points required in a localization system or navigation service and reduce system implementation cost. Analytical result shows that the user position can be thus derived and given in signal strength from three or more base stations for tracking mobile user's location.

However, these solutions also do not work well to indoors.

Various indoor positioning systems have been developed, see e.g., [START_REF] Liu | Survey of wireless indoor positioning techniques and systems[END_REF][START_REF] Mao | Wireless sensor network localization techniques[END_REF][START_REF] Kushki | WLAN Positioning Systems: Principles and Applications in Location-Based Services[END_REF].

They can be categorized into network based or non-network based solutions. The network based approach, which takes advantages of existing network infrastructure such as wireless local area networks (WLANs), without demanding new infrastructure, can maintain low deployment cost. The non-network based approach is to use dedicated positioning infrastructure and often can provide higher reliability but at extra cost. For example, ultrasound and infrared based solutions have high deployment cost. One may also consider simple proximity-based solution like iBeacon [START_REF] Cavallini | iBeacons Bible[END_REF] which however is only able to offer an approximate location. Some systems consider using visible light to construct an indoor positioning system with high accuracy [START_REF] Yasir | Indoor localization using visible light and accelerometer[END_REF][START_REF]Indoor positioning system using visible light and accelerometer[END_REF]. A good positioning system should be cost-effective and also be able to offer high accuracy.

Constructing an efficient and simple positioning system is always challenging.

Technically, it would depend on the number of reference points (RPs) that we can have, on the technologies to be used (e.g., RF-based, ultrasound, infrared, etc.), and also on the characteristics of the environment. In this study, we propose a geometry-based positioning method which can determine user position by only using one RP and exploiting his/her simple movement, for instance walking or waving his/her hand-held device, and some simple information. As the solution requires only one RP and can provide either exact result in noiseless environment or accurate positioning in noisy condition, our approach brings competitive advantages compared to other methods, thanks to its simplicity and effectiveness. Meanwhile, the method is interesting and may have a high potential to improve today's technology or existing solutions.

D.2 Related Work

Indoor positioning problem has attracted research over years [START_REF] Gu | A survey of indoor positioning systems for wireless personal networks[END_REF][START_REF] Abdat | Survey on indoor wireless positioning techniques: Towards adaptive systems[END_REF][START_REF] Nuaimi | A survey of indoor positioning systems and algorithms[END_REF][START_REF] Harle | A survey of indoor inertial positioning systems for pedestrians[END_REF].

Lots of studies have been done extensively and many possible solutions have been proposed so far. Generally speaking, there are four major approaches to solve this

The last estimated position of the MT selected. Or, the system has to be able to predict user mobility pattern in order to select one. Note that this method still requires more than one RP. A variant of the above triangulation method is to use only one RP but requires the information of angle-of-arrival (AoA) provided by an array of antennas either implemented in the user terminal (MT) or at the RP [START_REF] Peng | Angle of arrival localization for wireless sensor networks[END_REF], see Fig. 1(c). However, such an array of antennas is often costly and cumbersome.

D.3 System design

Here, we propose a new method called "Two-Step Movement (2SM)". It aims to improve the classical triangulation approach and requires only one RP. It consists in making use of movements of the user (i.e., changes in the position of the MT), either active (e.g., a user may wave his/her MT to assist) or natural (e.g., the user is walking or moving), relative to the position of the RP. Therefore, 2SM turns out to have a competitively low deployment cost and without extra or expensive tracking hardware such as antenna array and is able to determine user position in exact closed-form solution. The simplicity and effectiveness would highly facilitate practical indoor positioning systems. Table D.1 gives a comparison of the above methods and outlines their key difference. In our proposed 2SM method, the MT is supposed be able to measure his/her movement using its embedded sensors and applications (Apps), which are common in today's smartphones.

D.3.1 One-Step Movement (1SM)

Our method exploits useful information generated by user movement. For the sake of simplicity, the 2SM is presented as a combination of two One-Step Movements.

One-Step Movement (1SM) makes use of one position change (one move) to identify the two possible locations (position candidates) of the MT. We consider the following system and assumptions:

The position of the RP is known.

The MT is capable of measuring the distance between itself and the RP.

The MT is capable of measuring the distance and the angle (direction) of the movement it has done.

Fig. D.2 illustrates the system design:

A is the RP and its position (x A , y A) is known.

B is the initial position of the MT that is unknown and we want to compute it, denoted by coordinates (x B , y B). The change in x-coordinate after the second move The change in y-coordinate after the second move Compute γ ∈ (0; 2π] from cos γ and sin γ;

14:

Compute two location B3 and B4

15:

{B3(x B3 , y B3), B4(x B4 , y B4)} = OneStep(A(x A , y A), AB, AD, BD, γ);

Determine MT location B(x B , y B) from the set of B1, B2, B3 and B4 17:

return B(x B , y B); 19: end function

D.4 Simulation

Simulation is performed to investigate the performance of the proposed scheme (2SM) under noisy environment. The RP is placed at the center of a room, say A = (0, 0). The user device or MT is randomly distributed in the room at B(x B , y B), which is to be determined. For analysis, we discuss the following three x B = c/a; 9:

10:

11:

return {B1(x B , y B1), B2(x B , y B2)};

y B1 = dx B1 + e;

18:

y B2 = dx B2 + e;

which gives the equality

Algorithm 9 Generalized Two-Step movement algorithm

Require: A(x A , y A); Initial position of RP 1: function TwoStepExt(A(x A , y A))

2:

RP makes the first movement from A to D; obtaining D(x D , y D);

3:

In parallel, MT makes the first movement from B to C; measuring AB, DC, BC, α; RP makes the second movement from D to E; obtaining E(x E , y E);

7:

In parallel, MT makes the second movement from C to F ; measuring CF , EF , β; make sure that β = α ± π;

8:

Change in x-coordinate after the second move; Compute γ ∈ [0; 2π) from cos γ and sin γ;

16:

Compute two locations B3 and B4;

Simulation Result

The performance of the G2SM method is investigated by simulation. Parameters used are the same as those used when studying 2SM (see Section D.5-C). Since the RP is also mobile (movable), we have to set the values of AD and DE. Here, we consider they are proportional to AB and in three movement ranges: [0.1, 0.2] × AB (i.e., small move), [0.2, 0.5] × AB (i.e., medium move), and [0.5, 1] × AB (i.e., large move). In the simulation, we consider that the RP moves in a distance which is at most AB (assuming that AB is the signal coverage range of the RP). Secondly, we consider AD = DE, for simplicity. However, the movement direction of the RP does