
HAL Id: tel-01187929
https://theses.hal.science/tel-01187929

Submitted on 28 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extension of PageRank and application to social
networks

The Dang Huynh

To cite this version:
The Dang Huynh. Extension of PageRank and application to social networks. Other [cs.OH]. Univer-
sité Pierre et Marie Curie - Paris VI, 2015. English. �NNT : 2015PA066114�. �tel-01187929�

https://theses.hal.science/tel-01187929
https://hal.archives-ouvertes.fr

Université Pierre et Marie Curie
École doctorale

Alcatel-Lucent Bell Labs France

Extension de PageRank et
Application aux Réseaux Sociaux

Par The Dang Huynh

Thèse de doctorat d’Informatique

Présentée et soutenue publiquement le 01/06/2015

Devant le jury composé de

Rapporteur : M. Konstantin Avratchenkov, Directeur de recherche, INRIA
Rapporteur : M. Jean-Loup Guillaume, Professeur, L3i
Examinateur : Mlle. Nidhi Hegde, Chercheur, ALBLF
Co-directeur: M. Fabien Mathieu, Chercheur, ALBLF
Examinateur : M. Sébastien Tixeuil, Professeur, LIP6
Directeur de thèse : M. Laurent Viennot, Directeur de recherche, INRIA

ii

Acknowledgements

This work would not have been possible without the advice and support of

many people, and I will always keep all of that in my heart with a deep appreciation.

First and foremost, enormous gratitude is due to Dr. Fabien Mathieu who

has been there as my supervisor for almost four years. His supervision, support and

guidance are immeasurable during my Master and PhD. I am highly indebted and

thoroughly grateful to him for providing me with material and knowledge that I

could not possibly have discovered on my own, for his kind words and suggestions,

and also for introducing me to Dr. Laurent Viennot and Dr. Dohy Hong.

Particular thanks must also be recorded to Laurent Viennot for his valuable

comments, discussions and motivations.

I would like to thank Dohy Hong, from whom I have learned a lot and who

put me on the track of D-Iteration.

I would also like to say thank to Dr. Chung Shue Chen for his guidance in

an interesting topic outside the mainstream of my PhD.

I must thank reviewers, Dr. Konstantin Avratchenkov and Professor Jean-

Loup Guillaume, for their time revising my thesis. Without them, these chapters

below can not be as readable as they are.

Special thanks go to the members of my jury who kindly accepted to judge

my work, Dr. Konstantin Avratchenkov, Professor Jean-Loup Guillaume, Dr. Nidhi

Hegde, Dr. Fabien Mathieu, Professor Sébastien Tixeuil and Dr. Laurent Viennot.

I would appreciate Maura Covaci and Gérard Burnside for correcting English

and French grammatical errors in the thesis.

I would also thank Madame Félix-Noël Gudrun for sincerely hosting me in

the last three years.

ii

iii

I would like to express my gratitude to all colleagues of the Department of

Mathematics of Complex Dynamic Network of which I am proud to be a part. Here,

I have a great leader Philippe, a humorous Gérard, a friendly Dimitrios, an amiable

Alonso and many other people that I can not list all, Walid, Ludovic, Nidhi, Amira,

Loreta, Lamine, etc. I would also like to thank my friends at LINCS for their

supports, specially Yuting and Rim with whom I am always in a good mood after

talking.

Most importantly, none of this would have been possible without the love and

patience of my family. My parents to whom this dissertation is dedicated to, have

been a constant source of love, concern, support and strength all these years. I would

like to express my heart-felt gratitude to my family. Also many thanks to my friends

who have helped me stay sane through these challenging years.

iii

iv

Abstract

In this thesis, we investigate the performance and applications of a new

method that can accelerate the computation of the PageRank vector. The method,

called D-Iteration (DI), has been introduced by Dohy Hong. It is based on the de-

composition of the matrix vector that can be seen as a fluid diffusion model and is

potentially adapted to asynchronous implementation. We recall the theoretical re-

sults about the convergence of the algorithm and we show through numerical analysis

on a real Web graph that DI can improve the computation efficiency compared to

other classical algorithms like Power Iteration (PI), Gauss-Seidel (GS) or Adaptive

On-Line Page Importance Computation (OPIC). Besides, performance comparison

between DI and other algorithms is further studied through experiments on real

graphs and in various metrics such as iteration and operational cost. In the second

part of the thesis, we study one of the main challenges for large networks data mining

that deals with high dynamics of huge datasets: not only are these datasets difficult

to gather, but they tend to become obsolete very quickly. We are also interested in

the evolution at large time scale of any large corpus available online. Our primary

focus will be the Web, but our approach, called LiveRank, encompasses any online

data with similar linkage enabling crawling, like P2P networks or online social net-

works. We thus focus on batch crawling, where starting from a completely out-dated

snapshot of a large graph like the Web, we want to identify a significant fraction of

the nodes that are still alive now.

iv

v

v

Contents

Acknowledgements . ii

Abstract . iv

List of Tables . x

List of Figures . xi

1 Introduction 16

1.1 Context . 16

1.1.1 Ranking problems . 17

1.1.2 Social networks . 19

1.1.3 Challenges of social network ranking 21

1.2 Roadmap and contributions . 22

2 PageRank 25

2.1 Model . 26

2.2 PageRank computation techniques 29

2.2.1 Power Iteration . 29

2.2.2 Gauss-Seidel . 29

2.2.3 Successive Over-Relaxation 31

2.2.4 Generalized Minimal Residual 31

vi

CONTENTS vii

2.2.5 Online Page Importance Computation 32

2.3 Collection and diffusion approach . 33

2.4 PageRank of Web graph . 34

2.5 PageRank of Call-log graph . 35

2.6 Web graph storage . 41

2.7 Conclusion . 45

3 D-Iteration: diffusion approach to solve PageRank 46

3.1 Definition . 47

3.2 Convergence . 48

3.3 Implicit completion . 49

3.4 Schedulers . 50

3.5 Update equation . 51

3.6 Conclusion . 53

4 Preliminary performance evaluations on a small graph 54

4.1 Dataset and settings . 55

4.2 Comparison criteria . 56

4.3 Experiments . 57

4.3.1 Jacobi, GS, SOR and GMRES 57

4.3.2 D-Iteration . 61

4.4 Intermezzo: PageRank approximation with partial information 64

4.4.1 Context . 64

4.4.2 PageRank approximation . 65

4.4.3 Experiment . 66

4.5 Conclusion . 69

vii

viii CONTENTS

5 Experiments on large graphs 70

5.1 Datasets and settings . 71

5.2 Performance evaluation . 73

5.2.1 Comparison criteria . 73

5.2.2 Web graphs . 74

5.2.3 Social network graphs . 80

5.3 PageRank for Twitter user ranking 82

5.3.1 Model . 83

5.3.2 Result . 84

5.4 Conclusion . 85

6 LiveRank 87

6.1 Introduction . 88

6.2 Related work . 89

6.3 Model . 91

6.3.1 Performance metric . 91

6.3.2 Static LiveRanks . 92

6.3.3 Sample-based LiveRanks . 93

6.3.4 Dynamic LiveRanks . 94

6.4 Datasets . 96

6.4.1 Webgraph Dataset . 96

6.4.2 Twitter Dataset . 97

6.4.3 Correlations . 99

6.5 LiveRanks evaluation . 99

6.5.1 Web graph dataset . 100

6.5.2 Twitter graph . 102

6.6 Conclusion . 105

viii

CONTENTS ix

7 Summary and future work 108

Appendices 111

A GMRES: Residual Minimization over Krylov subspace 112

B Proof of diagonal term elimination with DI 117

C Colonel Blotto games 120

D Exploiting user movement for position detection 124

D.1 Introduction . 125

D.2 Related Work . 126

D.3 System design . 129

D.4 Simulation . 135

D.5 Two-Step Movement using Multi-Sampling 139

D.6 Generalization of 2SM to Device-to-Device system 143

D.7 Conclusion . 151

Bibliography 155

ix

List of Tables

2.1 Call-log graph statistics . 37

2.2 An adjacency list of neighbors attached to a node. 43

2.3 Gap-based list exploiting locality of web graph. 44

2.4 Reference list exploiting locality of web graph. 44

5.1 Datasets statistics . 72

6.1 Status of web pages in uk-2002, crawled in December 2013. 95

D.1 Requirement comparison between triangulation and proposed 2-Step

Movement (2SM) method. 125

D.2 Average error (in meter) under various AB, BC, CD, and noise levels

(ed, ea). 139

D.3 Average estimation error (in meter) due to the single-sampling and

multi-sampling 2SM methods under various AB, BC, CD, and noise

levels. 142

D.4 G2SM with multi-sampling: the average positioning error (in meter)

under various AB, AD, BC, and noise levels. 151

x

List of Figures

1 Nombre de sites web sur Internet. Source: InternetLiveStats.com [1] . 4

2 Nombre d’utilisateurs actifs mensuels de Facebook et de Twitter.

Source: Statista.com [2] . 5

3 Les connections simplifiées du réseau social. 6

4 Hétérogeneité du graphe de réseau social de Twitter: différents types

d’objets (personnes, tweets) et liens (follow, tweet, retweet, mention) 10

1.1 Number of websites on the Internet over years. Source: InternetLiveS-

tats.com [1] . 17

1.2 Number of monthly active users of Facebook and Twitter. Source:

Statista.com [2] . 18

1.3 Simplified social network connections. 19

1.4 Heterogeneity of Twitter social network graph: different types of ob-

jects (users, tweets) and links (follow, tweet, retweet, mention). 22

2.1 Example of PageRank values of nodes in a graph. 28

2.2 A directed graph . 34

2.3 Collection model: N1 is updated from N1 and N3; N2 from N1 and

N3; N3 from N2. 34

xi

xii LIST OF FIGURES

2.4 Diffusion model: N1 is used to update N1 and N2; N2 to N3; N3 to

N1 and N2. 34

2.5 Web graph uk-2007 visualization with sorted node identity 36

2.6 Call-log graph visualization with normal order. 37

2.7 Call-log graph . 39

2.8 Web graph uk-2007 . 40

4.1 n = 104 nodes, GS and Jacobi . 58

4.2 n = 104 nodes, SOR algorithm varying ω from 0.8 to 1.2 58

4.3 GMRES with different restart values comparison. 59

4.4 n = 104 nodes, GMRES and BICGSTAB 60

4.5 n = 104 nodes; GS, Jacobi and DI comparison 61

4.6 n = 106 nodes, DI and OPIC . 62

4.7 Dataset uk-2007: n = 104 nodes, DI and GMRES comparison 63

4.8 Context of PageRank approximation where storage server and com-

putation machine are apart. Information of column (or row) matrix is

transferred upon request from storage server to computation machine. 65

4.9 Full matrix at storage server . 66

4.10 The graph is gradually reconstructed over time at the computation

machine. Requests for outgoing neighbour list are made sequentially

from N1,...,N5. 67

4.11 Web graph uk-2007: PageRank approximation with partial information 68

5.1 it-2004 . 76

5.2 uk-2005 . 78

5.3 uk-2006-2007 . 79

5.4 orkut-2007 . 81

xii

LIST OF FIGURES xiii

5.5 twitter-2010 . 82

5.6 k-overlapping between PageRank after first few iterations and the real

PageRank. 84

5.7 k-overlapping between PageRank and indegree. 84

6.1 Statistics of the twitter-2010 dataset 97

6.2 Cumulative distribution of nodes according to Indegree/PageRank. . 98

6.3 Cumulative distribution of nodes according to Indegree/PageRank. . 99

6.4 Comparison with the cost of an active-site first LiveRank 102

6.5 Static and sample-based LiveRanks (z=100 000) 104

6.6 Impact of z (Double adaptive LiveRank) 104

6.7 Impact of Z (double adaptive with z=100 000) 104

6.8 Sample-based and dynamic LiveRanks (z=100 000) 105

6.9 Impact of Z on dynamic LiveRanks (z=100 000) 105

6.10 twitter-2010 evaluation results . 106

6.11 uk-2006 main evaluation results . 107

7.1 Positioning system with 1 RP and many MTs. 110

A.1 An example graph. 113

C.1 Demo 1. Colonel Blotto game with 5 battlefields. 122

C.2 Demo 2. Colonel Blotto game with 38 battlefields representing 38

European countries. 123

D.1 Positioning techniques using different number of reference points (RPs).128

D.2 One-Step Movement (1SM). 132

D.3 Two-Step Movement (2SM). 134

D.4 Ambiguity elimination in case of noise. 136

xiii

xiv LIST OF FIGURES

D.5 Resulting error when AB = 5 meters, BC = CD = 0.1 × AB under

various (ed, ea). 136

D.6 Resulting error when AB = 5 meters, BC = CD = 0.2 × AB under

various (ed, ea). 137

D.7 Resulting error when AB = 5 meters, BC = CD = 0.5 × AB under

various (ed, ea). 138

D.8 Two-Step Movement (2SM) application: waving hand to get position. 140

D.9 Two-Step Movement (2SM) with multi-sampling near the end points. 141

D.10 The possible solutions in the presence of noise. 142

D.11 Generalization of Two-Step Movement (G2SM): The Reference Point

(black) is another mobile phone. Another mobile terminal (white)

can localized itself thanks to the movement of the moveable reference

point nearby. 144

D.12 Generalized One-Step Movement (GSM). 145

D.13 Generalized Two-Step Movement (Generalized-2SM). 149

D.14 Three-Step Movement (3SM) in three-dimensional (3D) space. The

position of the device can be determined after three moves of the user

carrying it. 152

xiv

PUBLICATIONS

� Localization Method for Device-to-Device through User Movement,

T.D. Huynh, C.S. Chen, S.W. Ho, Workshop on Advances in Network Local-

ization and Navigation, IEEE International Conference on Communications

(ICC’15), London, UK, June 2015.

� METHOD, SYSTEM AND COMPUTER-READABLE MEDIUM

TO DETERMINE THE POSITION OF AN APPARATUS (Method

for accurate positioning under only one and mobile reference), C.S.

Chen and T.D. Huynh, Filing No. 15305765.8, Europe, May 2015.

� LiveRank: How to Refresh Old Datasets, T.D. Huynh, F. Mathieu, L.

Viennot, Internet Mathematics journal, April 2015, Submitted.

� Analyzing methods computing PageRank vector of large matrix,

T.D. Huynh, D. Hong, G. Burnside, F. Mathieu, Preprint, https://hal.

archives-ouvertes.fr/hal-01109536/document, January 2015.

� D-Iteration: diffusion approach for solving PageRank, D. Hong,

T.D. Huynh, F. Mathieu, Preprint, https://hal.archives-ouvertes.fr/

hal-01109532/document, January 2015.

� Exploiting user movement for position detection, T.D. Huynh, C.S.

Chen, S.W. Ho, The 12th Annual IEEE Consumer Communications and Net-

working Conference (CCNC’15), Las Vegas, Nevada, USA, January 2015.

� LiveRank: How to refresh old crawls, T.D. Huynh, F. Mathieu, L.

Viennot, 11th Workshop on Algorithms and Models for the Web Graph

(WAW’2014), Beijing, China, December 2014.

� LiveRank: Comment faire du neuf avec du vieux, T.D. Huynh, F.

Mathieu, L. Viennot, The 16th Francophone conference on Telecommunication

algorithms (AlgoTel’14), Le-Bois-Plage-en-Ré, France, June 2014.

� Contenu généré par les utilisateurs: une étude sur DailyMotion,

Yannick Carlinet, T.D. Huynh, B. Kauffmann, F. Mathieu, L. Noirie, and

https://hal.archives-ouvertes.fr/hal-01109536/document
https://hal.archives-ouvertes.fr/hal-01109536/document
https://hal.archives-ouvertes.fr/hal-01109532/document
https://hal.archives-ouvertes.fr/hal-01109532/document

S. Tixeuil, The 5th Francophone conference on Telecommunication algorithms

(AlgoTel’13), Pornic, France, May 2013.

� Four Months in DailyMotion: Dissecting User Video Requests, Yan-

nick Carlinet, T.D. Huynh, B. Kauffmann, F. Mathieu, L. Noirie, and S.

Tixeuil, In Proceedings of the Third International Workshop on Traffic Anal-

ysis and Classification (TRAC’2012), Limassol, Cyprus, August 2012.

Résumé en français

Contexte

Internet a connu une croissance rapide au cours de la dernière décennie, en

particulier le World Wide Web. Selon une étude de Netcraft [3], il y a plus d’un

milliard de sites Web à la fin d’octobre 2014. Une autre étude [1] montre un nombre

légèrement différent, environ 1,1 milliards de sites Web actifs pour la même période.

La figure 1 indique l’évolution du World Wide Web pendant les 14 dernières années,

à partir de 2000 à 2014.

Cette thèse parlera principalement du PageRank, un algorithme de classement

introduit par Page et al. (cf [4, 5]) et utilisé par le moteur de recherche Google comme

un des facteurs les plus importants pour classifier les pages web. Notez que le terme

site Web fait référence à un nom de domaine, et que le terme de page Web est une

page qui se trouve sur ce domaine. Nous devons distinguer clairement ces deux

termes parce que, dans le contexte de l’algorithme de PageRank, il existe plusieurs

méthodes [6, 7, 8, 9] qui estiment la valeur de PageRank d’une page web en fonction

du PageRank de tout le site, spécialement dans le contexte de calcul parallèle où le

calcul et le stockage sont souvent au niveau du site web.

Les moteurs de recherche comme Google, Bing et Yahoo classifient les docu-

ments au niveau de chaque page Web. Avec un milliard de sites Web sur Internet,

selon [10] Google a environ 50 milliards de pages Web, ce qui revient à dire que

chaque site a en moyenne 50 pages web indexées par Google. Toutefois, la taille du

WWW pourrait être encore plus considérable en raison du fait que la grande majorité

des pages Web n’est obtenue qu’en interrogeant des serveurs Web. D’autre part,

l’émergence de réseaux sociaux, tels que Twitter [11], Facebook [12] et Google+ [13],

3

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
0

2

4

6

8

10

12
x 10

8

Year

N
um

be
r

of
 w

eb
si

te
s

Figure 1: Nombre de sites web sur Internet. Source: InternetLiveStats.com [1]

enrichit le World Wide Web de manière significative grâce à sa croissance rapide. La

figure 2 montre l’évolution d’utilisateurs actifs mensuels de Twitter et Facebook du

premier trimestre 2010 (Q1’10) au troisième trimestre 2014 (Q3’14). Comme nous

pouvons voir, les sites Web ont augmenté de façon exponentielle, contrairement à

la croissance linéaire du nombre d’utilisateurs des réseaux sociaux. L’explication

intuitive peut provenir du fait que les sites Web n’ont aucune limite à grossir et les

moteurs de recherche plus modernes (plus intelligents) peuvent indexer plus de pages

Web basées sur les requêtes. Pourtant, les membres de réseaux sociaux sont limités

par la taille de la population humaine qui augmente linéairement.

Problème du classement

Le classement des objets est une des questions importantes et typiques dans

notre vie quotidienne. De nombreuses applications ont besoin de classifier des objets

en fonction de certains critères, parfois simple comme de classifier les étudiants dans

une classe en fonction de relevé de notes ou plus compliqué comme le classement des

universités. Classifier des objets consiste à les ordonner selon certains critères exigés

par une application spécifique.

Avec la popularisation de l’Internet, un problème typique qui a émergé ces

deux dernières décennies est le classement des résultats renvoyés par les moteurs de

Problème du classement 5

Q1’10 Q2’10 Q3’10 Q4’10 Q1’11 Q2’11 Q3’11 Q4’11 Q1’12 Q2’12 Q3’12 Q4’12 Q1’13 Q2’13 Q3’13 Q4’13 Q1’14 Q2’14 Q3’14
0

200

400

600

800

1000

1200

1400

1600

1800

Time

N
um

be
r

of
 m

on
th

ly
 a

ct
iv

e
us

er
s

(m
ill

io
n)

Twitter monthly active users
Facebook monthly active users

Figure 2: Nombre d’utilisateurs actifs mensuels de Facebook et de Twitter. Source:
Statista.com [2]

recherche. Dans les moteurs de recherche classiques (comme Google, Yahoo ou Bing),

l’importance d’une page web est la base pour le classement. Cette valeur est calculée

sur la base de l’analyse des hyper-liens entre les pages Web. Avec un ensemble de

documents V = {v1, ..., vn}, quand il y a une requête q d’un utilisateur arrivant, le

moteur de recherche cherche des documents dans V correspondant à la requête q,

puis trie les documents dans l’ordre décroissant de leur pertinence pour la requête.

Ce processus peut être réalisé grâce à une fonction de classement qui permet de

calculer la similarité sim(q, vi) entre la requête q et un document vi ∈ V . La fonction

de classement peut être considéré comme le noyau qui détermine essentiellement la

qualité du moteur de recherche.

À fin des années 1990, Cohen [14] a dit qu’il y aurait de nombreuses ap-

plications nécessitant un classement d’objets plutôt qu’un rangement en bonnes

catégories. Toutes les applications dont les résultats renvoyés aux utilisateurs comme

une liste d’objets triés les aident à trouver rapidement les objets les plus pertinents de

ce qu’ils recherchent. Ça a été confirmé par beaucoup d’applications que nous avons

aujourd’hui. Cela montre que le classement fait partie des problèmes importants et

significatifs.

Un nouveau concept de classement a été récemment introduit pour les objets

du Web, en particulier les pages web. La valeur d’importance est appelée la valeur

5

6 Résumé en français

de page rank et le PageRank [4, 5] est considéré comme un algorithme de classement

du Web le plus connu aujourd’hui. Essentiellement, il calcule la valeur de page rank

basé sur une analyse des liens entre les pages Web d’un graphe du web.

Au cours des dernières années, l’extraction de données dans les réseaux soci-

aux en ligne est devenu un sujet de recherche à la mode [15, 16, 17]. Les ressources

et le contenu des réseaux sociaux générés par les utilisateurs reflètent une vie sociale

riche et l’esprit de la société humaine. Par conséquent, le classement des objets dans

le réseau social (personnes, contenu, etc.) tend à devenir de plus en plus important.

Réseaux sociaux

La tendance de communication de ce début de 21e siècle est associé au terme

“réseau social” où les gens peuvent trouver et partager des informations rapidement

et efficacement. Étant donné un nom ou une adresse mail, les gens sont capable

de se trouver. Toutes les informations sur les réseaux sociaux peuvent se propager

rapidement grâce à des connexions entre tous les membres (voir Figure 3). Le réseau

social est un endroit connectant des gens ayant des intérêts similaires sur l’Internet,

indépendamment de l’espace et du temps à travers différents services. Les réseaux

sociaux sont devenus de plus en plus populaires et bien évidemment l’émergence de

Facebook, Twitter, Youtube, etc., a considérablement changé la façon dont nous

nous communiquons.

Figure 3: Les connections simplifiées du réseau social.

6

Réseaux sociaux 7

Le domaine de Social Network Analysis (SNA) consiste à étudier les relations,

les connexions, les communications et les comportements des différents groupes soci-

aux. SNA est dérivé à la fois de la sociologie, de l’analyse de réseau et de la théorie de

graphes. Les scientifiques utilisent l’informatique pour étudier les réseaux sociaux,

le trafic de communication sur Internet et également la diffusion de l’information.

Les résultats de SNA aident à expliquer les comportements sociaux.

Avec le SNA vient le problème de détermination des nœuds clés, aussi connu

comme les facteurs critiques dans les réseaux sociaux. Ils sont des éléments (util-

isateurs, articles, ...) qui sont considérés cruciaux par rapport à certains critères.

On peut dire que dans les graphes sociaux les éléments clés sont des nœuds ayant la

capacité de contrôler le flux d’information, les plus importants et les plus influents

par rapport à d’autres nœuds dans le réseau.

Pour déterminer les nœuds clés dans les graphes de réseaux sociaux, on pour-

rait se baser sur la mesure de centralité. “En théorie de graphe et analyse de réseau,

la centralité se réfère aux indicateurs qui identifient les sommets les plus importants

dans un réseau” [18]. Selon les propriétés des graphes et les problèmes à résoudre, les

méthodologies pour trouver les nœuds clés sont différents. En général, on distingue

quatre types principaux de la mesure de centralité :

� Centralité de degré (degree centrality) : défini par le nombre de liens d’un nœud

avec d’autres nœuds. Dans les réseaux sociaux, cette valeur d’un utilisateur

est principalement déterminée par le nombre d’autres utilisateurs avec lesquels

il partage des connexions dans un sens ou l’autre.

� Centralité de proximité (closeness centrality) : montre comment un nœud est

proche d’autres nœuds. Le nœud central a des distances plus courtes aux

autres, et la distance entre une paire de nœuds est définie par la longueur du

chemin le plus court entre eux. Dans les réseaux sociaux, plus petite est la

distance qu’un utilisateur a besoin pour atteindre les autres, plus cet individu

est important. Dans le contexte de propagation de l’information, cette mesure

pourrait donner une vue fondamental sur la façon de diffuser le contenu le plus

rapidement possible étant donnée une seule ou peu de sources d’information.

Inversement, ce sont les nœuds qui peuvent recevoir des informations venant

d’autres nœuds plus rapidement et avec moins d’effort.

7

8 Résumé en français

� Centralité de milieu (betweenness centrality) : d’un nœud est défini par combien

de chemins les plus courts entre toutes les paires de nœuds le traversent. Cela

mesure la capacité d’un élément du réseau à se connecter à d’autres éléments.

Cette mesure est importante pour étudier la façon dont un réseau est connecté

à l’intérieur et comment maintenir ou renforcer la structure du réseau. Si un

nœud ayant une haute centralité est enlevé du réseau, beaucoup de paires de

nœuds risquent de ne plus pouvoir communiquer entre eux.

� Centralité de vecteur propre (eigenvector centrality) : mesure l’importance

des nœuds dans un rseau, partant du principe qu’une connexion sortant d’un

nœud plus important contribue plus de score qu’une connexion équivalente

sortant d’un nœud moins important. Cette déclaration peut être interprétée

de différentes manières. Dans un graphe du web, un nœud est considéré

comme important s’il est pointé par (beaucoup) d’autres nœuds importants.

De même, dans le contexte de réseau social, un utilisateur est considéré influent

s’il est connecté avec (beaucoup) d’autres utilisateurs influents. L’algorithme

de PageRank est une variante de la centralité de vecteur propre et cette thèse

donc portera principalement sur cette mesure de centralité.

Il y a beaucoup de façons de construire un modèle de classement pour les

réseaux sociaux. Elles consistent à répondre à deux questions : que trie-t-on et com-

ment le trier. Cependant, la construction d’un tel modèle de manière satisfaisante

n’est pas une tâche facile.

Défis du classement de réseau social

Ordonner des objets dans les réseaux sociaux est difficile à cause de différentes

raisons.

Tout d’abord, les graphes de réseaux sociaux sont hétérogènes. Au contraire

des graphes du web homogènes qui consistent simplement en pages Web, fichiers et

liens entre eux, les graphes sociaux contiennent une large variété d’objets tels que

les personnes, les évènements, les messages... Chaque réseau social a ses propres

objets et des liens spécifiques. Par exemple Twitter a utilisateurs, tweets, retweets

comme objets et following/follower, tweet, retweet, mentionner, préférer sous forme

8

LiveRank 9

de liens. D’autre part, Facebook a utilisateurs, messages, commentaires comme

objets et amis, commentaires, aimer, partager, mentionner comme liens. Les graphes

sociaux sont hétérogènes en termes des objets ainsi que des liens (voir Figure 4).

Cette hétérogénéité rend la question de comment ordonner beaucoup plus difficile,

par exemple devrions-nous ordonner un utilisateur de Twitter en fonction de ses

followers ou du nombre de fois que d’autres utilisateurs partagent ses tweets? Ou les

deux?

Deuxièmement, les graphes sociaux évoluent beaucoup plus vite que les

graphes du Web. Leur dynamique peut être observée par les apparitions rapides de

nouveaux objets et les disparitions de relations anciennes ou d’éléments obsolètes.

Supposons que nous voulons calculer les valeurs de PageRank de nœuds d’un graphe

social, il n’est pas pratique d’utiliser des méthodes de calcul classiques parce qu’elles

doivent prendre un certain temps pour s’adapter aux changements de la structure

du graphe, et ensuite recalculer les valeurs de PageRank presque du début. C’est

la raison pour laquelle nous allons introduire D-itération, un algorithme qui permet

d’actualiser le vecteur PageRank par rapport à l’évolution du graphe.

Troisièmement, même si nous avons déjà un modèle de classement, ce n’est

pas évident de savoir comment évaluer sa validité. Le classement du Web a aussi

ce problème parce que la base de validité est difficile à définir. Ce défi concerne

plus ou moins la question de quoi ordonner. Si l’on veut chercher les utilisateurs les

plus influents dans le réseau, on pourrait se retrouver coincé de la vérification de la

validité. Dans ce cas, un facteur humain peut aider, en introduisant un risque de

biais non-négligable mais au prix de beaucoup de temps et d’efforts. Pour éviter ce

problème, nous choisissons d’ordonner des objets selon des critères vérifiables comme

le dynamisme des utilisateurs dans les graphes sociaux qui peut être correctement

dérivé de l’enregistrement de leurs activités accessibles.

LiveRank

Beaucoup d’exemplaires de grands graphes datant d’une dizaine d’années ou

plus sont disponibles aujourd’hui. Reconstruire ce qui reste de ces archives pourraient

conduire à des études intéressantes de l’évolution à long terme de ces graphes. Pour

les grandes archives où l’on s’intéresse à un type particulier de pages Web, recrawler

9

10 Résumé en français

tweet
follow

fo
ll
ow

m
ention

ret
weet

Figure 4: Hétérogeneité du graphe de réseau social de Twitter: différents types
d’objets (personnes, tweets) et liens (follow, tweet, retweet, mention)

.

un grand ensemble de pages peut être prohibitif. Nous proposons d’identifier le

plus rapidement possible une fraction significative des pages encore en vie. Une

sélection supplémentaire peut alors être faite pour identifier un ensemble de pages

appropriés pour l’etude, afin de les explorer. Ces techniques seraient particulièrement

intéressantes lorsque le test de la viabilité d’une page est beaucoup plus léger que

le téléchargement complet. C’est par exemple le cas pour le Web avec des requêtes

HEAD par rapport à des requêtes GET.

De plus, certains graphes tendent à être plus difficiles à crawler avec le temps.

Par exemple, Twitter restreint sa capacité à être exploré. Effectuer une analyse

complète était possible il y a quelques années [56], mais il pourrait être prohibitif

de nos jours à cause des restrictions de volume introduites dans l’interface API. De

nouvelles techniques doivent donc être développées pour identifier efficacement les

comptes actifs efficacement dans de tels contextes.

Étant donné un “vieux” graphe, notre objectif est d’identifier une fraction

significative des éléments qui sont encore en vie ou actifs à l’instant présent. Nous

considerons le coût comme le nombre de récupérations nécessaires pour atteindre cet

objectif. Une mesure typique de coût sera le nombre moyen de récupérations pour

obtenir un élément actif. La stratégie consiste à produire un ordre pour récupérer

les pages. Nous appelons LiveRank un ordre tel que les éléments qui sont en-

core en vie ont tendance à apparâıtre en premier. Nous considérons le problème

de trouver un LiveRank efficace dans trois contextes : statique quand il est cal-

10

Système de localisation 11

culé uniquement à partire du vieux graphe et des liens enregistrés à l’époque, sur

la base d’échantillonnage quand un échantillon sur le graphe actuel est testé dans

une première phase permettant d’ajuster l’ordre selon la viabilité des éléments de

l’échantillon, ou enfin dynamique quand il s’est progressivement calculé au cours de

la récupération des pages.

Nous proposons divers algorithmes de LiveRank en fonction de la structure

du graphe à un instant donné. Nous les évaluons sur deux graphes de Web réels

(10-20 millions de nœuds) et sur un graphe de Twitter (40 millions de nœuds).

Nous donnons plusieurs algorithmes sur la base de la structure du graphe. Un

bon algorithme consiste à combiner une petite phase d’échantillonnage avec une

propagation de l’information d’activité partielle obtenue sur le graphe restant. Il

permet de recueillir de 15% à 75% des nœuds actifs avec un coût qui reste en dessous

d’un facteur 2 de la solution optimale.

Système de localisation

Les systèmes de positionnement sont cruciaux pour la société numérique

d’aujourd’hui. Ils aident à localiser des objets ou des personnes portant les ob-

jets, et à fournir l’information géographique pour faciliter de nombreuses activités

humaines. Par exemple, les systèmes de navigation de véhicule sont indispensables

pour les conducteurs dans les grandes villes. Certains services basés sur la localisa-

tion sont déployés dans les centres commerciaux afin que les clients puissent obtenir

un guidage tout en marchant dans un environnement complexe et puissent recevoir

des promotions ou publicités des magasins. Le marché des services de localisation

intérieure et extérieure a connu une croissance rapide dans la dernière décennie.

Cependant, la question majeure du système de localisation intérieure est affaire

de compromis entre le coût de la mise en œuvre et la précision du système. Un

système moins cher qui n’exige que quelques appareils sera moins précis et risquera

d’introduire des erreurs de localisation.

Le système de localisation global (GPS) est très populaire et largement utilisé

pour la localisation extérieure. Lorsque la vue-directe (line-of-sight) aux quatre

satellites GPS est disponible, le lieu (latitude, longitude et altitude) et des infor-

mations de synchronisation peuvent être obtenues. Cependant, la qualité de lo-

11

12 Résumé en français

calisation est sensible aux conditions météorologiques, par exemple quand la vue

du ciel est limitée à cause du brouillard, de la pluie, de nuages, etc., ou bloquée

par de grands bâtiments dans les zones urbaines. Ces problèmes peuvent dégrader

considérablement la précision du GPS. Comme on peut s’y attendre, le GPS ne

fonctionne pas bien pour une utilisation à l’intérieur en raison de l’absence de la

vue-directe avec les satellites. Il existe également des systèmes de localisation cellu-

laires [69] qui sont construits en mesurant la puissance du signal de trois ou plusieurs

stations de base pour localiser l’utilisateur. Cependant, ces solutions ne fonctionnent

pas non plus très bien à l’intérieur.

Divers systèmes de localisation à l’intérieur ont été développés, par exemple

[70, 71, 72]. Ils peuvent être classés à base de réseau ou de non-réseau. L’approche

à base de réseau, qui prend avantage de l’infrastructure du réseau existant tels que

les réseaux locaux sans fil (WLAN), sans exiger de nouvelles infrastructures, peut

maintenir le coût de déploiement bas. L’approche à base de non-réseau utilise une

infrastructure de localisation dédiée et peut avoir une grande fiabilité, mais à un coût

supplémentaire. Par exemple, les solutions actuelles d’ultra-sons et d’infrarouges ont

un coût de déploiement élevé. On peut aussi considérer une solution simple basée

sur la détection de proximité comme iBeacon [73] qui n’est capable de dire que si

un appareil est à proximité d’un point de référence. Certains systèmes utilisent la

lumière visible pour construire un système de localisation précise [74, 75]. Un bon

système de localisation devrait être bon marché en offrant une précision acceptable.

La construction d’un système de localisation simple et efficace est toujours

un défi. Techniquement, cela dépend du nombre de points de référence (PR) que

nous pouvons avoir, des technologies utilisées (par exemple, base-RF, ultra-sons, in-

frarouge, etc.), ainsi que de la nature de l’environnement. Dans cette étude, nous

proposons une méthode de localisation basée sur la géométrie qui peut déterminer la

position de l’utilisateur en utilisant un PR unique et en exploitant son mouvement,

par exemple en marchant ou en agitant son appareil, et quelques informations sim-

ples. Comme la solution ne nécessite qu’un seul PR et qu’elle peut donner un bon

résultat même dans un environnement bruté, notre approche apporte des avantages

compétitifs par rapport à d’autres méthodes. La méthode est intéressante et peut

avoir un fort potentiel pour améliorer la technologie d’aujourd’hui ou des solutions

existantes.

12

Structure du mémoire et contributions 13

Structure du mémoire et contributions

Cette thèse vise à étudier l’état de l’art du PageRank, puis nous présenterons

l’algorithme D-Itération, initialement introduit par Dohy Hong [19], qui supporte le

calcul du vecteur de PageRank de manière distribuée. Nous ne nous limitons pas

au graphe du web, et étendons la méthode à d’autres types de graphes, par exemple

des graphes de réseau social et d’appels téléphoniques, dans lesquels le PageRank

classique ne peut pas donner un classement approprié.

En gardant cela en tête, nous introduisons également une extension du

PageRank, appelée LiveRank qui peut aider par exemple à classifier les utilisa-

teurs du graphe de Twitter par rapport à leur dynamisme, ou à détecter rapide-

ment les pages vivantes d’un graphe du web ancien. Cette extension peut être utile

pour des crawleurs de web, ou plus généralement dans le contexte de la recherche

d’information.

La thèse est organisée comme suit: le chapitre 2 introduit l’algorithme de

PageRank et à quoi il ressemble lorsqu’il est appliqué à un graphe du Web ou un

graphe de log téléphonique.

Le chapitre 3 présente D-Itération (DI), un nouvel algorithme qui a été pro-

posé par Dohy Hong [19], pour calculer le vecteur de PageRank. Le chapitre inclut la

définition de DI et les principaux résultats théoriques (l’exactitude, la convergence,

et la condition d’arrêt. . .). L’algorithme montre son potentiel grâce à des expériences

sur des données réelles en comparaison avec d’autres algorithmes classiques.

Le chapitre 4 montre des évaluations de performance de DI et d’autres al-

gorithmes, comme like Power Iteration (PI), Jacobi, Gauss-Seidel (GS), Adaptive

On-Line Page Importance Computation (OPIC) et Generalized Minimal Residual

(GMRES), sur un petit graphe du web. Nous comparons les méthodes en termes

d’itérations et de coût d’exploitation. Nous proposons aussi une stratégie pour ap-

proximer le vecteur de PageRank d’un graphe dont toutes les colonnes (ou lignes)

ne sont pas données.

Le chapitre 5 présente des évaluations de performance de DI sur différents

critères: le nombre d’itérations, le coût d’exploitation, etc., en comparaison avec

d’autres algorithmes. Les paramètres de comparaison sont: itérations, opérations

élémentaires et messages de requête. Pour les deux derniers critères, nous proposons

13

14 Résumé en français

une variante de DI qui obtient la meilleure performance par rapport aux autres

méthodes d’itération classique.

Le chapitre 6 introduit LiveRank, un ordre de classement de nœuds dans

un graphe tels que les nœuds vivants devraient apparâıtre en premier. Nous pro-

posons divers algorithmes de LiveRank basés sur des structures de graphes, ensuite

les évaluons sur deux captures de Web et sur une capture de Twitter. Nous avons

publi les résultats dans [22, 23].

Chapitre 7 conclut la thèse et souligne des directions de recherche dans le

futur.

Le mémoire contient également quelques annexes dont certains sont liées au

PageRank et d’autres pointent vers des sujets supplémentaires sur lesquels j’ai tra-

vaillés pendant les trois dernières années.

L’Annexe A présente un exemple de comment l’algorithme GMRES fonc-

tionne.

L’Annexe B donne une preuve détaillée sur la relation de l’algorithme de

Gauss-Seidel et l’une des variantes de D-Itération.

À part du PageRank, je participais à une démonstration de la théorie de

jeu dans le cadre des Open Days d’Alcatel-Lucent Bell Labs. Dans l’Annexe C, je

présente deux prototypes graphiques j’ai construites pour cet évenement. Le premier

prototype concerne la distribution des ressources limitées sur plusieurs objets pour

gagner plus d’entre eux. Le second prototype est une extension du premier dans

laquelle nous considérons une quarantaine de pays européens comme des objets à

gagner, avec l’introduction de différentes stratégies de jeu, par exemple, Tit-for-tat,

ressources inégales. Les deux prototypes sont disponibles au téléchargement.

Dans l’Annexe D, nous proposons une nouvelle méthode appelée Two-Step

Movement (2SM) pour estimer la position d’un appareil mobile (MT). Il ne nécessite

qu’un seul point de référence (RP) en combinaison avec l’exploitation de l’information

utile générée par le changement de position du MT ou le mouvement de l’utilisateur.

Nous combinons par ailleurs la méthode 2SM avec la technique multi-sampling pour

améliorer la performance de localisation. On peut alors réduire le nombre de points

de référence nécessaires et réduire ainsi le coût de construction du système de lo-

calisation. En plus, une généralisation de 2SM (appelée G2SM) au contexte de

communication “machine à machine” est également décrite qui permet au point de

14

Structure du mémoire et contributions 15

référence unique de se déplacer ou d’être un autre appareil mobile. Nous avons publié

les résultats correspondants dans [24, 25].

15

Chapter 1

Introduction

1.1 Context

The Internet has been growing rapidly over the last decade, particularly the

World Wide Web. According to the Netcraft’s survey [3], there were more than

1 billion websites by the end of October 2014. Another survey done in [1] shows

a slightly different number, about 1.1 billion websites active by the same period.

Figure 1.1 indicates the evolution of World Wide Web over the last 14 years, starting

from 2000 to 2014.

This thesis will be mainly talking about PageRank, a ranking algorithm first

introduced by Page et al. (cf [4, 5]) and used by the Google Internet search engine

as one of the most important factors to rank web pages. Note that the term website

refers to a domain name whereas web page is a page that stems from that domain

name 1. Search engines like Google, Bing or Yahoo rank documents at web page

level. Given 1 billion websites on the Internet, according to [10] Google handles

approximately 50 billions web page indices , roughly saying that each website has

in average 50 web pages indexed by Google. However, the size of WWW could turn

out to be much more enormous due to the fact that a vast majority of web pages

can be reached only by querying web servers. On the other hand, the emergence

1We should clearly distinguish these two terms because in the context of PageRank algorithm,
there are several methods [6, 7, 8, 9] which estimate the PageRank value of a web page as a
function of PageRank of the whole website, specially in parallel context where computation and
storage scheme at each server is often at website level.

16

1.1. CONTEXT 17

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
0

2

4

6

8

10

12
x 10

8

Year

N
um

be
r

of
 w

eb
si

te
s

Figure 1.1: Number of websites on the Internet over years. Source: InternetLiveS-
tats.com [1]

of social networks, such as Twitter [11], Facebook [12] and Google+ [13], enriches

the World Wide Web significantly thanks to its rapid growth. Figure 1.2 shows the

evolution of monthly active users of Twitter and Facebook from the first quater 2010

(Q1’10) to the third quater 2014 (Q3’14). As we can see, the websites have been

increasing exponentially, in contrast to linear growth of the social networks. Intuitive

explanation may come from the fact that websites have no limit of growing and more

modern (smarter) search engines can index more query-based web pages mentioned

above. Meanwhile, social network members are bounded by human population which

increases linearly.

1.1.1 Ranking problems

Ranking objects is one of the important and typical issues in our daily life.

Many applications need to rank objects according to certain criteria, as simple as

ranking students in a class according to average grades, or more complicated as

ranking universities. Ranking objects means to arrange them in accordance with

some criteria depending on the specific application.

In the era of the Internet, a typical problem emerging in the last decades is the

ranking of results returned by search engines. In conventional search engines (like

17

18 CHAPTER 1. INTRODUCTION

Q1’10 Q2’10 Q3’10 Q4’10 Q1’11 Q2’11 Q3’11 Q4’11 Q1’12 Q2’12 Q3’12 Q4’12 Q1’13 Q2’13 Q3’13 Q4’13 Q1’14 Q2’14 Q3’14
0

200

400

600

800

1000

1200

1400

1600

1800

Time

N
um

be
r

of
 m

on
th

ly
 a

ct
iv

e
us

er
s

(m
ill

io
n)

Twitter monthly active users
Facebook monthly active users

Figure 1.2: Number of monthly active users of Facebook and Twitter. Source:
Statista.com [2]

Google, Yahoo or Bing), the importance of a web page is the basis for ranking. This

value is determined based on the analysis of graph links between web pages. With a

set of documents V = {v1, ..., vn}, when there is a user’s query q arriving, the search

engine looks for documents in V matching the query q, then sorts the documents

according to their relevance to the query in descending order. This process can be

done thanks to a ranking function which allows us to compute the similarity s(q, vi)

between the query q and a document i ∈ V . Obviously, the ranking function can be

seen as the core and significantly determines the quality of the search engine.

In the late 1990s, Cohen [14] made the comment that there would be many

applications requiring arrangement of objects rather than classifying them. All ap-

plications whose results returned to users as a list of sorted objects helps them

quickly reach those most relevant to what they look for. This comment has been

confirmed by an uncountable number of such applications we meet nowadays. That

said, ranking is one of the important and meaningful problems.

A new concept of ranking was recently introduced to orient rating objects

on the Web, specifically web pages. The pages need to be arranged in descending

importance. Value of importance is called page rank value and the PageRank [4, 5] is

considered as the most successful and well-known web ranking algorithm. Essentially,

18

1.1. CONTEXT 19

it calculates page rank value based on an analysis of the links between web pages in

a web graph.

In recent years, data mining in online social networks has become a trendy

research topic [15, 16, 17]. Resources and content of social networks are generated by

users, reflecting an increasingly rich social life and spirit of human society. Therefore,

ranking objects in social networks (people, content, etc) has also become important.

1.1.2 Social networks

Communication trends of 21st century are associated with the phrase “Social

network” where people can find and share information rapidly and effectively. Given

a name or an email address, people are able to find each other. All information on

the social networks can be quickly spread thanks to connections among members

(see Figure 1.3). The social network is a place connecting members with similar

interests on the Internet irrespective of space and time through different services.

Social networks have become more and more popular and obviously the advent of

Facebook, Twitter, Youtube, etc, has significantly changed the way we communicate.

Figure 1.3: Simplified social network connections.

Social Network Analysis (SNA) involves studying relationships, connections,

communications and behaviour patterns of different social groups. SNA is derived

from sociology, network analysis and graph theory. Scientists use computers to

study social networks, communication traffic on the Internet and also information

dissemination. Results of SNA help to explain social behaviours.

19

20 CHAPTER 1. INTRODUCTION

Part of the problem of the SNA is determining the key nodes, also known as

the critical factors in social networks. They are elements (users, items, ...) which are

considered crucial with respect to certain criteria. It can be said that in social graphs

the key elements are nodes who have the ability to control the flow of information,

they are the most prominent and influential compared to other nodes in the network

society.

To determine the key nodes in social network graphs, one could use centrality

measurement. “In graph theory and network analysis, centrality refers to indicators

which identify the most important vertices within a network” [18]. Depending on

properties of social graphs and problems to be solved, methodologies of finding the

key nodes are different. However in general, there are four main types of centrality

measurement:

� Degree centrality : is defined as the number of links a node has with other

nodes. In social networks, this value of a user is mostly determined by how

many other users he has connections with and/or have connections with him.

� Closeness centrality : shows how close a node is to other nodes. The more

central node has lower distances to others, and the distance between a pair of

nodes is defined by the length of their shortest path. In social networks, the

least number of steps a user can reach others, the more important he is. In the

context of information propagation, this measurement could give a basic view

on how to spread content as quickly as possible given only one single or a few

information sources. Reversely, they are the nodes that can receive information

from other nodes fastest and with least effort.

� Betweenness centrality : of a node is defined by how many shortest paths be-

tween all pairs of nodes passing through it. This measures the ability of a

network element to connect other elements. This measure is crucial to study

how well a network is internally connected and how to maintain or strengthen

the network structure. If a node having high betweenness centrality is removed

from the network, it turns out that many pairs of nodes may not communicate

any more.

� Eigenvector centrality : measures the importance of nodes in a network, saying

that a connection from a higher-score node results in a higher score contribution

20

1.1. CONTEXT 21

than an equivalent connection from a lower-score node 2. PageRank algorithm

is a variant of the eigenvector centrality and this thesis therefore will be mainly

talking about this centrality measure.

There are many ways to build a ranking model for social networks. It consists

in answering two questions: what to rank and how to rank. However, constructing

a good model is not such an easy task.

1.1.3 Challenges of social network ranking

Ranking objects in social networks is challenging due to various reasons.

Firstly, social network graphs are heterogeneous. Unlike homogeneous web

graphs which simply consist of web pages, files and hyperlinks between them, social

graphs contain a variety of objects such as people, news, posts... Each social network

has its own specific objects and links. For instance Twitter has users, tweets, retweets

as objects and following/follower relationship, tweet, retweet, mention, favorite as

links. On the other hand, Facebook has users, posts, comments as objects and

friendship, comment, like, share as links. Social graphs are heterogeneous in terms

of both objects and links (see Figure 1.4). This heterogeneity makes the question of

how to rank much more difficult, for instance should we rank a Twitter user based

on his followers or on the number of times other users retweet his tweets? Or both?

Secondly, social graphs evolve much faster than web graphs. Their dynamics

can be observed by the rapid appearances of new objects and disappearances of old

relationships or out-dated elements. Assume we want to compute PageRank values

of nodes in the graphs, it is not convenient to use classical computation methods

because they must take some time to adapt to the graph structure changes, then

recompute the PageRank values almost from scratch. That is why we will later

introduce D-Iteration, an algorithm that can continuously update the PageRank

vector along with the graph evolution.

Thirdly, even when we have already a raking model, it is not obvious how

to evaluate its validity. Web ranking has also encountered this issue since the

2This statement can be interpreted in different ways. In a web graph, a node is considered
important if it is pointed to by (many) other important nodes. Similarly, in the context of social
network, a user is influential if he is connected to by (many) other influential users.

21

22 CHAPTER 1. INTRODUCTION

ground truth is hard to define. This challenge more or less relates to the ques-

tion of what to rank. If one wants to find the most influential users in the graph,

then he might get stuck at validity verification. In this case, the human factor may

help, i.e., a human will check the validity based on the outcomes of the ranking

algorithm, and of course it takes much time and effort. To avoid this problem, we

choose to rank objects according to some verifiable criteria like activeness of users

in social graphs which can be correctly derived by their accessible activity records.

tweet
follow

fo
ll
ow

m
ention

ret
weet

Figure 1.4: Heterogeneity of Twitter social network graph: different types of objects
(users, tweets) and links (follow, tweet, retweet, mention).

1.2 Roadmap and contributions

This thesis aims at investigating the state of the art of PageRank, then we

will present D-Iteration algorithm, firstly introduced by Dohy Hong [19], that fully

supports PageRank vector computation in a distributed way. The scope of this

thesis is not limited to the web graph but stretched to other types of graphs, e.g.,

social network or call-log graphs in which the classical PageRank may not give an

appropriate ranking order. Keeping that in mind, we also introduce an extension

of PageRank, called LiveRank which can help for example to rank users in Twitter

graph with respect to their activeness, or to quickly detect alive pages in a web graph

that makes a lot of sense in web crawling applications, or generally in the context of

information retrieval.

The thesis is organized as follows. Chapter 2 introduces the PageRank algo-

rithm and how it looks like when applied on a web graph or a call-log graph.

22

1.2. ROADMAP AND CONTRIBUTIONS 23

Chapter 3 introduces D-Iteration (DI), a new algorithm for computing PageR-

ank that has been proposed by Dohy Hong [19]. The chapter is organized as a self-

contained summary of DI’s definition and main theoretical results (correctness, con-

vergence bounds, stopping condition. . .). The algorithm shows its potential through

experiments on real data in comparison with other classical algorithms.

Chapter 4 shows the performance evaluations between DI and other algo-

rithms, like Power Iteration (PI), Jacobi, Gauss-Seidel (GS), Adaptive On-Line Page

Importance Computation (OPIC) and Generalized Minimal Residual (GMRES), on

a small web graph. We compare the methods in terms of iterations and operational

cost. We also propose a strategy to approximate the PageRank vector of a graph of

which all columns (or rows) are not given.

Chapter 5 provides further performance evaluation of DI on different metrics:

iteration, operational cost, etc, in comparison with the other algorithms like PI,

GS and OPIC. The comparison metrics are iterations, elementary operations and

request messages. For each of the later two criteria, we proposed a DI variant

that gives better performance compared to the other classical iteration methods.

Additionally, we show the application of PageRank to Twitter user ranking and

compare its efficiency with the classical indegree ranking.

Chapter 6 talks about LiveRank, a ranking order of nodes in a graph such

that alive nodes should appear first. We propose various LiveRank algorithms based

on graph structures. We evaluate them on two Web snapshots and on a Twitter

snapshot. We propose several propositions based on the graph structure of the snap-

shot. A rather simple combination of a small sampling phase and the propagation of

the partial activity information are obtained in the remaining graph of the snapshot

through a modified PageRank algorithm. We published the results in [22, 23].

Chapter 7 concludes the thesis and points out future research directions.

The thesis also contains a few appendices, some related to the main subject

and others pointing to additional work I made during the last three years.

Appendix A shows through a didactic example how the GMRES algorithm

works.

AppendixB gives a detailed proof of a relationship between the Gauss-Seidel

algorithm and one of D-Iteration’s variant.

23

24 CHAPTER 1. INTRODUCTION

Unrelated to PageRank issues, I participated to a demonstration of game

theoretical results for Alcatel-Lucent Bell Labs’ Open Days. In Appendix C, I present

two graphical demonstrations I built for that occasion. The first demo is about

distributing limited resources over several objects to win most of them. The second

demo is an extension of the first one that we consider forty European countries as

objects to win in Internet Service Provider (ISP) market, along with the introduction

of various game strategies to play with, e.g., Tit-for-Tat, unequal resources. The two

demos are available for download.

In Appendix D, we propose a new method called Two-Step Movement (2SM)

to estimate the position of a Mobile Terminal (MT). It requires only one reference

point (RP) by exploiting useful information given by the position change of the MT

or user movement. Also, we combine the 2SM method with multi-sampling technique

to improve the positioning performance. One can therefore reduce the number of

RPs required and lower the system cost. Furthermore, a Generalization of the Two-

Step Movement (G2SM) to Device-To-Device context is also described as it allows

the unique Reference Point to move or to be another mobile device. We published

the results in [24, 25].

24

Chapter 2

PageRank

Issues concerning systems of linear equations have attracted many research

efforts. A system of linear equations can be written under the form of the equation

Ax = b where A is a n×n matrix, b is a constant vector of size n and unknown vector

x. Different methods exist for solving this equation, such as Jacobi, Gauss-Seidel,

etc. They vary in memory requirement, computation cost and convergence speed.

Further, those algorithms can deal with different problems which spread throughout

a large research area. One of their well-known applications is solving the PageRank

equation.

PageRank is a link analysis algorithm that has been initially introduced in

[4] and used as an important factor among thousands of others by the Google Inter-

net search engine to rank web pages. It assigns a numerical value to each element

of a hyper-linked set of nodes, such as the World Wide Web. The algorithm may

be applied to any collection of entities (nodes) that are linked through directional

relationships. The numerical value assigned to each node is called PageRank and

is associated to an eigenvector problem of which we are interested in the computa-

tion issue. Although PageRank may today only be a small part of Google’s ranking

algorithm (the complete algorithm is obviously kept secret, but it seems to take

into account hundreds of parameters, most of them have been related to the user’s

profile), but it stays appealing, especially in the research community, as it balances

simplicity of definition, ranking efficiency and computational challenges. These chal-

lenges include the growing size of the dataset (Web graphs can have tens of billions

of nodes) and the dynamics of the structure that requires frequent updates.

25

26 CHAPTER 2. PAGERANK

In this chapter, our main contributions is conducting a survey on the PageR-

ank algorithm, including an introduction of different techniques solving the PageR-

ank equation like Power Iteration, Gauss-Seidel, etc. Next, we visualized a web graph

and a call-log graph in descending PageRank order to better understand the graph

structures. The structures will be explained using the diffusion approach which will

also be presented in this chapter. We also conducted a survey on some basic web

graph compression techniques which exploit locality of the graph structures.

This chapter is organized as follows. Section 2.1 presents the PageRank model.

Section 2.2 introduces several methods to solve the PageRank equation. Section 2.3

shows the definitions of collection and diffusion approaches in the PageRank context.

Section 2.4 and Section 2.5 show how a web graph and a call-log graph look like

respectively under canonic and PageRank point of view. Section 2.6 talks about

some existing web graph storage methods. Finally, Section 2.7 concludes the chapter.

2.1 Model

The informal definition of PageRank is rather simple: it is an importance vec-

tor over Web pages such that important pages are referenced by important pages [26].

More formally, let G = (V,E) be a weighted oriented graph. The size of G is

n = |V | and wij > 0 is the weight of edge (i, j) ∈ E. G represents a set of nodes and

their (weighted, oriented) relationships. In [26], G was a Web graph, V representing

web pages and E hyperlinks, but the principle applies to most structured sets, e.g.,

social network graphs.

Let P be a n× n diffusion matrix defined by:

Pij =


wji∑

(j,k)∈E wjk

if (j, i) ∈ E,

0 otherwise.
(2.1)

P is a left substochastic matrix, column j summing to 1 if node j has an

outgoing edge at least, 0 if j is a dangling node. Note that:

� For unweighted graphs, the expression of P is simpler: for (j, i) ∈ E, we just

have Pi,j = 1/out(j), where out(j) is the out-degree of j.

26

2.1. MODEL 27

� Some variants of PageRank require P to be stochastic. For these variants, one

usually pads the null columns of P with 1
n

(dangling nodes completion).

P represents how importance flows from one node to another. When it is

stochastic, it represents the Markov chain over V implied by the edges E. In that

case, the PageRank can be defined as a stationary state of the Markov chain, that

is a distribution x over V that verifies

x = Px. (2.2)

Thanks to Perron-Frobenius theorem, we know that x is unique if G is strongly

connected [27].

In practice, the following variant is used instead of (2.2):

x = dPx+ (1− d)Z, (2.3)

where 0 < d < 1 is called damping (often set to 0.85), and Z a default distribution

over V (often set to the uniform distribution).

If P is stochastic, the solution x of (2.3) is a distribution, which corresponds

to the Markov chain defined by: with probability d, use the Markov chain induced

by P ; otherwise jump to a random node according to distribution Z.

Introducing parameters d and Z has many advantages:

� It guarantees the existence and uniqueness of a solution for any substochastic

matrix P , without any assumption on G.

� It speeds up the PageRank computation (cf below).

� Parameter d introduces some locality: influence of a node at distance k is

reduced by a factor dk. This strengthens the impact of the local structure and

mitigates the possibility of malicious PageRank alterations through techniques

like links farm [28].

� Parameter Z allows to customize the PageRank. For instance, one can concen-

trate the default importance on pages known to talk about some given topic

to create a topic-sensitive PageRank [29].

27

28 CHAPTER 2. PAGERANK

A
3.3%

B
38.4%

C
34.3%

D
3.9%

E
8.1%

F
3.9%

1.6%

1.6%
1.6%

1.6%

1.6%

Figure 2.1: Example of PageRank values of nodes in a graph.

In the rest of the thesis, unless stated otherwise, we focus on solving (2.3).

Writing the solution is straightforward:

x = (1− d)(I − dP)−1Z, where I is the identity matrix. (2.4)

However, such a direct approach cannot be used due to the size of P that

forbids an explicit computation of (I−dP)−1. Instead, one can use different iterative

methods (see [30] and Section 2.2).

Figure 2.1 shows an example of normalized PageRank values of nodes in a

graph with the vector Z uniform on V . That means, if the matrix P is substochastic,

L1-norm of the vector x, denoted by ‖x‖1 =
∑

i xi, is less than one. In this case if

one wants a distribution for output, we pad the null columns of P with 1
n

(known as

dangling node completion) before the computation.

28

2.2. PAGERANK COMPUTATION TECHNIQUES 29

The complexity of computing the PageRank of a graph rapidly increases with

the number of nodes, as it is equivalent to computing an eigenvector on some huge,

matrix, and efficient and accurately computing eigenvalues and eigenvectors of arbi-

trary matrices is in general a difficult problem. In the particular case of the PageRank

equation, several specific solutions were proposed and analysed [30, 28] including the

power method [31] with adaptation [32] or extrapolation [33, 34], or the adaptive

on-line method [35], etc.

For performance evaluations in later chapters, we now briefly introduce these

methods.

2.2 PageRank computation techniques

2.2.1 Power Iteration

The simplest approach is Power Iteration (PI), also called Jacobi: start-

ing from an initial guess vector x0, the stationary PageRank vector is iteratively

computed using (2.3):

xk+1 = dPxk + (1− d)Z, (2.5)

until the change between two consecutive vectors is negligible. During an iteration

round, entries xk+1(i) are computed from i = 1 to i = n using:

xk+1(i) = d
∑
j

Pi,jxk(j) + (1− d)Z(i). (2.6)

It is straightforward that the error decays by a factor at least d at each iteration

(hence one of the interests of introducing a damping factor). PI requires to maintain

two vectors xk and xk+1. The Power Iteration is shown in Algorithm 1.

2.2.2 Gauss-Seidel

The Gauss-Seidel (GS) applied to PageRank consists in using the updated

entries of xk as they are computed:

xk+1(i) = d

(∑
j<i

Pi,jxk+1(j) +
∑
j≥i

Pi,jxk(j)

)
+ (1− d)Z(i). (2.7)

29

30 CHAPTER 2. PAGERANK

Algorithm 1 Power Iteration: x = dPx+ (1− d)Z

1: for i = 1 : n do
2: xold(i) = 1/n; . Initializing uniform vector x0
3: end for
4: while (true) do
5: for i = 1 : n do
6: sum = 0;
7: for j = 1 : n do
8: sum+= d× Pi,j × xold(j);
9: end for

10: xnew(i) = sum+ (1− d)× Z(i);
11: end for
12: for i = 1 : n do
13: xold(i) = xnew(i);
14: end for
15: Check the convergence, continue if necessary;
16: end while

Thanks to the immediate update, one needs to maintain only one vector and

the convergence is faster, typically by a factor 2 asymptotically. The main downside

of the update mechanism is the necessity to access the entries in a round-robin

fashion, which can cause problems in a distributed scenario. The Gauss-Seidel is

presented in Algorithm 2.

Algorithm 2 Gauss-Seidel: x = dPx+ (1− d)Z

1: for i = 1 : n do
2: x(i) = 1/n; . Initializing uniform vector x0
3: end for
4: while (true) do
5: for i = 1 : n do
6: sum = 0;
7: for j = 1 : n do
8: sum+= d× Pi,j × x(j);
9: end for

10: x(i) = sum+ (1− d)× Z(i);
11: end for
12: Check the convergence, continue if necessary;
13: end while

30

2.2. PAGERANK COMPUTATION TECHNIQUES 31

2.2.3 Successive Over-Relaxation

The Gauss-Seidel belongs to a larger class of methods called Successive

Overrelaxation (SOR), but other SOR variants are seldom used for Web PageR-

ank computations [36]. However, for performance evaluation purposes we introduce

here the SOR algorithm. The PageRank vector xk+1 is computed as follows:

xk+1(i) = d

[
ω

(∑
j<i

Pi,jxk+1(j) +
∑
j≥i

Pi,jxk(j)

)
+ (1− ω)xk(i)

]
+ (1− d)Z(i).

(2.8)

Intuitively, if ω > 1 the algorithm may converge faster thanks to the boost induced

by (2.7). However, this convergence is not guaranteed in general, i.e., the algorithm

may diverge.

2.2.4 Generalized Minimal Residual

The Generalized Minimal Residual (GMRES) is an algorithm used to

find the unknown x in the equation Ax = b on the Krylov subspace K(A, r0) where

r0 = b−Ax0 and x0 is the initial vector. In principle, GMRES finds the vector x by

using the Krylov subspace K(A, r0) = {r0, Ar0, A2r0, ...}.
One can use GMRES to compute the PageRank vector after transforming the

equation 2.3 to the form Ax = b 1.

One important aspect of GMRES is the restart parameter. In the PageRank

context, the number of nodes may go up to billions and the PageRank vector itself

takes GBs, not to mention the whole web graph. By adjusting the restart value,

one can restrict the Krylov subspace size so that it fits system memory. After

some iterations equal to the restart value, the algorithm erases the current Krylov

subspace, keeps the last result vector, then uses it as the initial guess vector for

the next GMRES repetition. Its disadvantage is again the convergence speed due

to the lack of information from previous result vectors in the subspace. To better

1We rewrite the PageRank equation x = dPx + (1 − d)Z as (I − dP)x = (1 − d)Z where I is
an identity matrix (a square matrix with ones on the main diagonal and zeros elsewhere). The
GMRES algorithm will then be applied to compute PageRank vector x in the quation Ax = b such
that A = I − dP and b = (1− d)Z.

31

32 CHAPTER 2. PAGERANK

understand how GMRES works step-by-step, reader can refer to Appendix A where

there is a numerical example of the algorithm.

2.2.5 Online Page Importance Computation

The Online Page Importance Computation (OPIC) was proposed in

[35]. Its core idea: most PageRank algorithms implicitly use a pull approach, where

the state of a node is updated according to the states of its incoming neighbors. By

contrast, OPIC proposes a push approach, where the state of a node is read and

used to update the states of its outgoing neighbors. In details, OPIC focuses on

solving (2.2) for a modified graph G′ = (V ∪ z, E ∪ J), where z is a virtual zap node

and J = (V × z) ∪ (z × V) is all possible edges between V and z, plus edge (z, z).

This was introduced to make P stochastic and irreducible, allowing (2.2) to admit a

unique solution.

The OPIC algorithm works as follows: initially, each node receives some

amount of fluid (a non-negative number) and a null history record. A scheduler,

which can be associated to a web crawler, iterates among the nodes. When a node

i is selected, its fluid F (i) is, in order,

� credited to its history: H(i) = H(i) + F (i);

� equally pushed to its neighbors: for all j that are outgoing neighbors of i,

F (j) = F (j) + F (i)
out(i)

;

� cleared: F (i) = F (i)
out(i)

if i has a loop, F (i) = 0 otherwise.

It has been shown that as long as the scheduler is fair (i.e. any given node

is selected infinitely often) then the history vector converges, up to normalization,

to the desired solution [35]. Algorithm 3 describes how OPIC works. At a given

moment, the importance of a node i is proportional to the fluid going through it and

is equal to (F (i) + H(i))/(G + 1) where G is the total fluid diffused on the entire

graph.

The main advantage of OPIC is its flexibility. In particular, it is easy to adapt

and incorporate to a continuous, possibly distributed, Web crawler, allowing to get

a dynamic, lightweight, PageRank importance estimation. One drawback is that it

is not designed to work with (2.3).

32

2.3. COLLECTION AND DIFFUSION APPROACH 33

Algorithm 3 OPIC algorithm

1: for i = 1 : n do
2: H(i) = 0; . Initializing history vector
3: F (i) = 1/n; . Initializing fluid vector
4: end for
5: G = 0; . Accumulated fluid diffused
6: while (true) do
7: Choose some node i;
8: H(i)+ = F (i);
9: for all child node j of i do

10: F (j)+= F (i)/out(i);
11: end for
12: G+= F (i);
13: F (i) = 0;
14: end while

2.3 Collection and diffusion approach

To solve the PageRank equation, most of the methods (e.g., Jacobi, Gauss-

Seidel) exploit the matrix-vector multiplication. It means, the PageRank score of

a node is calculated by iteratively collecting (pulling) the scores from its incoming

neighbours. Few others compute PageRank by continuously diffusing (pushing) its

score to outgoing neighbours (e.g., OPIC).

We take a look of how collection and diffusion approach work. Given a directed

three-nodes graph in Figure 2.2, collection methods make use of incoming links of

nodes as in Figure 2.3 (or rows of the corresponding transition matrix) whereas

diffusion method exploits outgoing links as in Figure 2.4 (or columns of the matrix).

If the iteration is based on vector level update (such as Jacobi or Power iteration),

the collection and diffusion approaches become equivalent (full cycle operations on

all nodes).

Somehow, these two types of operations can be seen as dual operations, but

with different consequences.

33

34 CHAPTER 2. PAGERANK

N1

N2 N3

Figure 2.2: A directed graph

N1

N3

(a) Node 1

N1

N2 N3

(b) Node 2

N2 N3

(c) Node 3

Figure 2.3: Collection model: N1 is updated from N1 and N3; N2 from N1 and N3;
N3 from N2.

N1

N2

(a) Node 1

N2 N3

(b) Node 2

N1

N2 N3

(c) Node 3

Figure 2.4: Diffusion model: N1 is used to update N1 and N2; N2 to N3; N3 to N1
and N2.

2.4 PageRank of Web graph

In this part of the chapter we describe how web pages are connected and what

a web graph looks like under the PageRank point of view. The locality of web graph

is well-know [37, 8]. It can be intuitively understood by observing the fact that web

pages of the same website often point to each other rather than to those of other

34

2.5. PAGERANK OF CALL-LOG GRAPH 35

websites. If nodes in a web graph are numbered in a lexicographic order, i.e., pages

of the same website are marked by consecutive series of numbers, the web graph will

look like Figure 2.5 where each point represents a hyper-link from a Source page

to a Destination page. The dataset uk-2007 2, collected by UbiCrawler [38] and

compressed using techniques in [39, 40], holds 1M nodes of .uk domain. There are

two remarks:

� The diagonal with a high density of points confirms the locality characteristic.

� On the diagonal, there are dense squares nested in other less-dense squares.

All of them may belong to a main website (domain). The dense squares

are sub-websites (sub-domains) and the less-dense would be main website,

say company.com containing various sub-websites serviceA.company.com, ser-

viceB.compagny.com, etc.

2.5 PageRank of Call-log graph

To have a broader view of how the PageRank algorithm works, it is worth

to test it on different types of graphs. The dataset used in this section comes from

phone calls in a prepaid telephon service on April 20, 2012. In its simple version,

each line of log represents a call and contains four types of information:

� caller: group of user making a call.

� callee: group of user receiving a call.

� timestamp of a call when it was made.

� duration of a call (in seconds).

We are only interested in caller and callee information to visualize the transi-

tion graph. In the log file, each caller/callee identification represents a group of user

having the same prefix (e.g., company, association, ...) and is anonymized under the

form of a string of digits. The entire call log was collected in one single day. Suppose

2http://law.di.unimi.it/webdata/uk-2007-05@1000000/. This is an extraction of the
dataset uk-2007-05 (containing 106M nodes) using Breadth-First Search (BFS) starting at a ran-
dom node.

35

http://law.di.unimi.it/webdata/uk-2007-05@1000000/

36 CHAPTER 2. PAGERANK

Figure 2.5: Web graph uk-2007 visualization with sorted node identity

that each node corresponds to a user group in the call log, there is a link between a

pair {caller, callee} if the caller has called the callee. Table 2.1 shows some properties

of the graph. Note that the degree 3 shows the real number of calls a user makes or

receives, i.e., the graph is weighted. Figure 2.6 shows what the graph looks like if

nodes are sorted by their identification number. We cannot really see any structure

like web graph, except the diagonal which represents the self-calls (or internal calls)

within each group. This is the motivation of why we want to observe the graph in a

PageRank-sorted order.

With the goal of measuring user groups’ importance, a corresponding transi-

tion matrix P is then constructed, on which we can apply the PageRank algorithm

(with damping factor d = 0.85).

In the call-log graph, edges are weighted according to how many calls were

made between each corresponding pair of caller and callee. Hence, the transition

matrix P is filled as follows:

3The term degree we use in this study (call-log dataset) is weighted, i.e., it takes into account
the number of in-coming or out-going calls of a user.

36

2.5. PAGERANK OF CALL-LOG GRAPH 37

Property Value
Number of nodes (n) 233,308
Number of links 540,399
Maximum indegree 319
Maximum outdegree 244
Average degree 2.32
Dangling nodes 201,346 (86%)
Zero-indegree nodes 6310 (2.7%)
Self-loop nodes 2631 (1.13%)

Table 2.1: Call-log graph statistics

Figure 2.6: Call-log graph visualization with normal order.

37

38 CHAPTER 2. PAGERANK

pij =

calls(j → i)/outdeg(j) if j ever makes a call to i

0 otherwise.

where calls(j → i) is the number of calls from j to i and outdeg(j) =
∑
k

calls(j → k)

is the total number of calls j has made.

The PageRank vector of the sub-stochastic matrix P is computed. Callers and

callees are sorted in descending PageRank order and their connections are visualized

in Figure 2.7a. In the plot, nodes are arranged from the left/lower part (higher

PageRank) to the right/upper part (lower PageRank). There are some remarks:

� Each identification stands for a group of users and naturally people of the

same group often make internal calls. This fact results in the appearance

of the diagonal which indicates self-calls (or internal calls), like observed in

Figure 2.6.

� Strong connection among top users due to the fact that important users receive

calls from other important users.

� There exist many blank lines throughout the figure. They represent users

called by many other users but make few (or no) calls. Those users users may

be call-centers which often receive lots of calls from clients.

There are curly traces appearing across the figure, separated by uniform gap

distances. Those lines stem from callees who receive calls from unique callers. Under

the diffusion point of view, the importance score of the callee is expressible as a

function of that of the caller. The position of the curly lines varies according to the

out-degree of the single caller. In detail, given damping factor d, let PageRank score

of the caller be pr(caller) and its out-degree be outdeg(caller) (the total number of

calls it made), because the callee has only the single caller as parent.

Besides, the curly lines move upwards to the top of the figure and form clouds

of points which are distinguished by an almost uniform gap. Those points correspond

to unimportant callers who have no incoming call. Their initial importance score is

set to pr(caller) = (1 − d)/n before the diffusion process starts. All connections of

single callers are reconstructed in Figure 2.7b. In fact, there is a function g that can

38

2.5. PAGERANK OF CALL-LOG GRAPH 39

(a) Call-log graph: visualization with descending PageRank order. Nodes are arranged from
the left/lower part (higher PageRank) to the right/upper part (lower PageRank).

0 0.5 1 1.5 2

x 10
5

0

0.5

1

1.5

2

x 10
5

Callee

C
al

le
r

(b) Call-log graph: visualization of nodes (descending PageRank order) having single parent.
The color is porportional to density, i.e., less ratio is less visible. Each coordinate (x, y) means
callee x only receives calls from a unique caller y but not from others.

.

Figure 2.7: Call-log graph

39

40 CHAPTER 2. PAGERANK

(a) Web graph uk-2007: Visualization with descending PageRank order. Nodes are arranged
from the left/lower part (higher PageRank) to the right/upper part (lower PageRank).

0 1 2 3 4 5 6 7 8 9

x 10
5

0

1

2

3

4

5

6

7

8

9

10
x 10

5

Destination

S
ou

rc
e

out−degree = 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
out−degree = 30

(b) Web graph uk-2007: visualization of nodes (descending PageRank order) having single
parent whose out-degree increases from left (1) to right (30). Each coordinate (x, y) means
page x is pointed to by a unique page y but not from others.

Figure 2.8: Web graph uk-2007

40

2.6. WEB GRAPH STORAGE 41

transform the rank of a node x, denoted by R(x), to the PageRank PR(x):

g : R ∈ [1, n]→ PR ∈ [0, 1] . (2.9)

and its inverse function g−1 exists as well. If a callee j receives k calls from a unique

caller i who has made K calls in total (k ≤ K), the PageRank of user j is

PR(j) = d× k

K
PR(i) +

1− d
n

. (2.10)

and his rank is

R(j) = g−1
(
d× k

K
g (R(i)) +

(1− d)

n

)
. (2.11)

As a consequence, the curly lines are computed thanks to a function f(k,K) such

that

f(k,K) : x→ g−1
(
d× k

K
g (x) +

(1− d)

n

)
. (2.12)

Moreover, the blank lines can be explained by observing the uniform gaps.

The difference in PageRank score of nodes residing in the middle between the two

adjacent vertical (or horizontal) lines depends mainly on the outdeg(caller). For

example, between the kth and (k+ 1)th blank lines (from left to right), the difference

is d× (1− d)/(nk(k + 1)).

In case of the web graph uk-2007, there are also series of obvious curly lines

located at the lower-right part of the Figure 2.8a. They characterize all incoming

connections of nodes having single parent, i.e., nodes with only one incoming link.

We apply the same method to the web graph to extract the curly lines from it. The

result is shown in Figure 2.8b. As expected, what we obtain confirms the explanation

of the curly lines. They characterize all incoming connections of nodes having a single

parent, i.e., web pages pointed to by only one other page and the lines appear from

left to right according to the out-degree of the single parent.

2.6 Web graph storage

Web graphs and social network graphs are gigantic. Suppose we need to

compute the PageRank vector of a fraction of the World Wide Web graph which

contains one billion nodes, and also assume that each PageRank value associated

41

42 CHAPTER 2. PAGERANK

to a node is 8-bytes double type. The PageRank vector itself takes 7.45 GBs and

of course the storage space for such a graph is even much larger. The necessity

of having an efficient graph storage scheme becomes very important if one wants

to deal with enormous data. Fortunately, graphs containing directed relationship

between nodes are sparse, i.e., one node often connects to fewer other nodes. Based

on this characteristics, many methods were invented. Paolo et al. [41] shows several

compression techniques There is always a trade-off between the size of compressed

graph and the complexity of compression/decompression process. We show below

some basic web graph storage techniques:

� Square matrix: the classical web graph storage method uses directly a square

matrix of size n×n where n is the number of pages. Each entry value of a web

graph matrix P is defined by pji = wij such that wij is the link weight from

node i to j. Storing a web graph under square matrix form requires memory

O(n2) (n2 bits if it represents an unweighted graph) if n grows large.





0 1 1 0 1

1
. 1 0 0

1
. . . 1 0

1 0 1

0 1
. . . 1 1 0

1 1 1 0

1 1 1 1

0 0
. 0

1 0 1

� Adjacency list (see Table 2.2): this method is often preferable over the square

matrix thanks to its simplicity and better memory usage for sparse graph. Each

node, numbered according to the lexicographic ordering of the URL, would be

attached to a list of neighbours that it points to. We also note that the average

out-degree k is much smaller than n. Thus the memory required is O(nk).

Compared to the square matrix, memory space gains around (n2 − nk) if the

same value data type is used. Table 2.2 shows an example.

42

2.6. WEB GRAPH STORAGE 43

Node Outdegree Neighbors
.
24 5 22, 23, 24, 26, 28
25 3 22, 23, 25
26 0
.

Table 2.2: An adjacency list of neighbors attached to a node.

� Gap-based neighbors [41] (see Table 2.3): one can easily observe that the

web graph’s out-going links are mostly local. Web pages from the same website

(or the same domain name) often point to each other. This method is based

on a adjacency list and exploits locality characteristic. By keeping only the

difference between node identifications, we can keep the neighbor list small. Let

out(x) be the list of outgoing neighbours of node x. Then, the list out(x) =

(s1, s2, ..., sk) will be replaced by a list of gaps out(x) = (s1 − x, s2 − s1 −
1, ..., sk − sk−1 − 1) or in general:

gap =

sk − x if k = 1

sk − sk−1 − 1 if k > 1

Note that the list (s1, s2, ..., sk) should be sorted in ascending order (to optimize

the gaps) so that sk−sk−1 ≥ 1. In that case, the gaps are equal to sk−sk−1−1

starting from k > 1 (to minimize the value of each gap, i.e., one unit less), but

not at the first gap s1 − x. Otherwise, for the first k. However, negative

gap results in the use of, for example, integer (int) instead of unsigned integer

(uint), thus less efficient if one prefers to work with uint. In order to deal with

this, a transformation function can be defined as follows:

gap =

2× gap if gap ≥ 0

2× |gap| − 1 if gap < 0

Additionally, if the list (s1, s2, ..., sk) is sorted in ascending order, only the first

gap s1 − x < 0. Table 2.3 converts the adjacency list of Table 2.2 to a gap-

based list. Note that the memory benefit between the adjacency list and the

gap-based neighbours appears thanks to the use of a smaller value type which

43

44 CHAPTER 2. PAGERANK

sufficiently fits the gap, e.g., use 2-bytes short type instead of 4-bytes int type.

For the bigger gaps which do not follow the locality, we can store them apart

with bigger value types under the form of an array next to the local small gaps.

Node Outdegree Neighbors
.
24 5 3, 0, 0, 1, 1
25 3 5, 0, 1
26 0
.

Table 2.3: Gap-based list exploiting locality of web graph.

� Reference list [41] (see Table 2.4): one can further optimize web graph rep-

resentation by again using locality. There are probably nodes which share

almost the same neighbour list. Instead of having its own list, a node can

refer to another whose neighbor list looks similar to its, then add remaining

different nodes. The reference value of a node is the distance between itself

to the referred (and precedent) node or zero if it does not refer to any other.

Table 2.4 details the reference list of the adjacency list of Table 2.2. It shows to

which node the current node refers and a binary string corresponds to elements

copied from the referred node. The method then adds extra nodes which are

different from the two neighbouring lists.

This section aims to give readers an overview of web graph compression so that

the presented techniques are very basic. For more advanced methods like reference

block or interval exploitation, one may read [41] for a complete reference. Many

Node Outdegree Reference Copy list Extra node
.
24 5 0 22, 23, 24, 26, 28
25 3 1 11000 25
26 0
.

Table 2.4: Reference list exploiting locality of web graph.

44

2.7. CONCLUSION 45

graphs 4 were compressed using these techniques and also most of the datasets that

we use in this thesis. In general, the complete compression model can be used to

compress different types of graphs, such as web graphs or social network graphs.

Of course, the compression ratio depends on the nature of the graph and inversely

proportional to the compression time. For example, the web graph uk-2005 5 (40

millions nodes, 936 millions links) can achieve a ratio 1.463 bits/link whereas the

social network graph twitter-2010 6 (41 millions nodes, 1.5 billion links) needs

13.897 bits/link.

2.7 Conclusion

In this chapter, we gave the introduction of the PageRank algorithm and how

it is formulated mathematically. Several techniques to find the PageRank vector

were introduced. We then visualized the transition matrix under the PageRank

point of view which unveils some specific structures of the web graph. We looked

at what could be observed by computing PageRank on another type of graph (call-

logs). Some strange graph structures were explained using the definition of the

diffusion approach. Efficient compression methods were also exposed as a solution

to store enormous web graph. The principle goal of this chapter was to give readers

a panoramic and preliminary view of PageRank, which will facilitate the reading of

the later chapters.

4http://law.di.unimi.it/datasets.php
5http://law.di.unimi.it/webdata/uk-2005/
6http://law.di.unimi.it/webdata/twitter-2010/

45

http://law.di.unimi.it/datasets.php
http://law.di.unimi.it/webdata/uk-2005/
http://law.di.unimi.it/webdata/twitter-2010/

Chapter 3

D-Iteration: diffusion approach to

solve PageRank

Several techniques to solve the PageRank equation were introduced in Chap-

ter 2; Power Iteration (PI), Gauss-Seidel (GS) and Online Page Importance Com-

putation (OPIC). In this chapter we present a new method that can accelerate the

computation of the PageRank importance vector. The method, called D-Iteration

(DI) and firstly introduced by Dohy Hong [19], is based on the decomposition of the

matrix-vector product that can be seen as a fluid diffusion model and is potentially

adapted to asynchronous implementation. We give theoretical results about the

convergence of the algorithm and we show through experimentations on a real Web

graph that DI can improve the computation efficiency compared to other classical

algorithms like PI, GS or OPIC. D-Iteration aims at solving the PageRank equation

with an efficiency similar to Gauss-Seidel while keeping the scheduling flexibility of-

fered by OPIC. This results in a fluid diffusion approach similar to OPIC with some

damping added to the mix.

The main contribution of this chapter is doing a survey on D-Iteration, based

on [19]. We give the definition of DI and explain how the algorithm can compute

the PageRank vector. We also point out the advantages of DI such as convergence

speed thanks to implicit completion due to dangling nodes 1, freedom in choosing

nodes to iterate and adaptation to the graph evolutions. The results of this chapter

are put in [20].

1Nodes without out-going links, or zero-outdegree nodes.

46

3.1. DEFINITION 47

This chapter is organized as follows. Section 3.1 presents the definition the

D-Iteration, followed by Section 3.2 explaining the convergence of the algorithm.

Section 3.3 shows how to complete the PageRank vector with the presence of dan-

gling nodes. Section 3.4 talks about DI schedulers. Section 3.5 demonstrates the

adaptability of DI to the graph evolutions. Finally, Section 3.6 concludes the chap-

ter.

3.1 Definition

In the following, we assume that a deterministic or a random diffusion se-

quence I = {i1, i2, ..., ik, ...} with ik ∈ {1, .., n} is given. I is not obliged to be fixed

in advance but can be adjusted on the fly as long as the fairness 2 property stands.

Note that the fairness assumption is sufficient but not necessary and will be discussed

in detail later.

Like OPIC, we have to deal with two variable vectors at the same time: a

fluid vector F , initially equal to (1−d)Z and a history vector H, initially null for all

nodes. When a node is selected, its current fluid value is added to its history, then a

fraction d of its fluid is equally pushed to its neighbors and its fluid value is cleared.

Formally, the fluid vector F associated to the scheduler I is iteratively up-

dated using:

F0 = (1− d)Z, (3.1)

Fk = Fk−1 + dFk−1(ik)Peik − Fk−1(ik)eik , (3.2)

where eik is the standard basis vector corresponding to ik.

The second term in (3.2) represents the damped diffusion and the third term

clears the local fluid (up to loops). Similarly to OPIC, an iteration reads one value,

Fk−1(ik) and updates ik and its outgoing neighbors. Note that F is always non-

negative.

We also formally define the history vector H:

2The scheduler I is fair if each value of ik appears in I infinitely often.

47

48 CHAPTER 3. D-ITERATION: DIFFUSION APPROACH TO SOLVE PAGERANK

H0 = ~0, (3.3)

Hk = Hk−1 + Fk−1(ik)eik . (3.4)

By construction, Hk is non-decreasing with k.

3.2 Convergence

The following Theorem states the convergence of the D-Iteration algorithm:

Theorem 1. For any fair sequence I (all nodes are chosen infinitely often) and any

positive damping factor d < 1, the history vector Hk converges to the unique vector

x such that x = dPx+ (1− d)Z:

lim
k→∞

Hk = (1− d)(I − dP)−1Z.

Moreover, we have

|x−Hk| ≤
|Fk|

1− d
, where | · | is the L1 norm. (3.5)

Proof. We first prove the equality:

Hk + Fk = F0 + dPHk. (3.6)

This is straightforward by induction: (3.6) is true for k = 0; assuming it is

true for k − 1, we have

Hk + Fk = Hk−1 + Fk−1(ik)eik + Fk−1 + dFk−1(ik)Peik − Fk−1(ik)eik

= F0 + dP (Hk−1 + Fk−1(ik)eik) = F0 + dPHk.

From the equation 3.6, we have:

Hk = (I − dP)−1(F0 − Fk)

= x−
∑∞

i=0 d
iP iFk

48

3.3. IMPLICIT COMPLETION 49

Noticing that P is substochastic, we get

|x−Hk| = |
∞∑
i=0

diP iFk| ≤
∞∑
i=0

di|Fk| =
|Fk|

1− d
.

All we need is to show that |Fk| tends to 0. Notice that the total available fluid

is non-increasing. That being said, the fluid of a given node is non-decreasing until

it is scheduled, and when it is, a quantity (1− d) of it is “lost” due to the damping

(or more if it is a dangling node). Given these two observations, let us consider a

time k and another time k′ > k such that all nodes have been scheduled at least

once between k and k′ (this is always feasible thanks to the fairness assumption).

For each node i, its fluid Ft(i) at the time t of its first scheduling after k is greater

than its fluid Fk(i) at time k and |Ft+1| ≤ |Ft| − (1 − d)Fk(i), so we have |Fk′ | ≤
|Fk| − (1− d)Fk = d|Fk|. This concludes the proof.

3.3 Implicit completion

Equation (3.5) gives a first stopping condition of the algorithm. If one aims at

|x−Hn| < ε, the condition becomes |Fn| ≤ (1−d)ε which stands for a non-normalized

version. The Equation (3.5) further becomes an equality if P is stochastic (for

example thanks to dangling node completion), in which case we have |P iFk| = |Fk|.
It is more efficient to perform the computation on a non-completed matrix

(every time a dangling node is selected, all non-null entries of Z are updated if P is

completed). The question is: can we control the convergence to the solution of the

completed matrix while running the algorithm on the original one?

To address this problem precisely, we count the total amount of fluid that

has left the system when a diffusion was applied on a dangling node. We call this

quantity lk (up to step k of the DI). To compensate this loss and emulate completion,

a quantity dlkZ should have been added to the initial fluid, leading to (1−d+dlk)Z

instead of (1 − d)Z. But then the fluid dlkZ would have produced after k steps a

leak (dl2k/(1− d))Z on dangling nodes, which needs to be compensated. . .

In the end, the correction that is required to compensate the effect of dangling

nodes on the residual fluid |Fk| consists in replacing the initial condition |F0| = (1−d)

by |F ′0| such that:

49

50 CHAPTER 3. D-ITERATION: DIFFUSION APPROACH TO SOLVE PAGERANK

|F ′0| = (1− d) + dlk + dlk
dlk

1− d
+ dlk

(
dlk

1− d

)2

+ ...

= (1− d) + dlk

∞∑
n=0

(
dlk

1− d

)n

=
(1− d)2

1− d− dlk
.

As |F ′0|/|F0| = (1 − d)/(1 − d − dlk), Hk needs to be renormalized (multipli-

cation) by (1 − d)/(1 − d − dlk) so that the exact L1 distance between x and the

normalized H is equal to:

|x− 1− d
1− d− dlk

Hk| =
|Fk|

1− d− dlk
.

To summarize, we can run the algorithm on the original matrix using |Fk|
1−d−dlk

as a stopping condition that guarantees the precision of the normalized result.

3.4 Schedulers

The actual performance of DI is directly related to the scheduler used. A

simple scheduler, which we call DI-cyc, is a Round-Robin (RR) one, where a given

permutation of nodes is repeated as long as necessary.

Theorem 2. For any Round-Robin scheduler I, we have:

|x−Hk| ≤ db
k
n
c. (3.7)

The proof is a direct application of the proof of Theorem 1 considering suc-

cessive sequences of n steps.

Theorem 2 ensures that D-Iteration performs at least as well as the PI method:

in both cases, after a round where all nodes have been processed once, the error is

reduced by at least d.

While the bound can be tight for specific situations (for instance a clockwise

scheduler applied to a counterclockwise-oriented cycle), it is conservative in the sense

that it ignores that some of the fluid can be pushed multiple times during a sequence

of n steps. For that reason, and keeping in mind that D-Iteration is a push version of

50

3.5. UPDATE EQUATION 51

the Gauss-Seidel method, we expect that DI-cyc will perform more like Gauss-Seidel

in practice.

However, one strength of D-Iteration is the freedom in the choice of a sched-

uler. As the convergence is controlled by the remaining fluid |Fk|, a good scheduler is

one that makes the fluid vanish as quickly as possible. This disappearance is caused

by two main parameters: the damping factor d and dangling nodes (cf above). Not-

ing that at time k a quantity (1 − d)Fk−1(ik) vanishes through damping, a natural

greedy strategy would consist in selecting at each step ik = argmaxi=1,...,nFk−1(i).

The main drawback of such a strategy is the expensive searching cost. To

address that issue, Dohy Hong introduced in [19] a simple heuristic, calledDI-argmax,

which works as follows: we use a RR scheduler, but at each iteration, we run through

the scheduler until we find a node that possesses a fluid greater or equal to the average

fluid in the whole graph. The advantage of this method is that nodes with relatively

low fluids will be skipped, avoiding unprofitable update operations, with a searching

cost lower than picking up the best node at each iteration.

Theorem 3. Using DI-argmax, we have:

|x−Hk| ≤
(

1− 1− d
n

)k

≈ e−(1−d)
k
n . (3.8)

The proof is immediate, as by construction we have |Fk| ≤ (1− 1−d
n

)|Fk−1|.
Note that the Theorem proves the convergence of DI-argmax, which is not

a fair scheduler: for instance, after some time, it will ignore the transient nodes

of the graph, which eventually have no fluid left. We conjecture that (3.8) is not

tight (tightness would require to always choose an average node) and that the actual

convergence should be faster.

3.5 Update equation

The existing iterative methods (such as Gauss-Seidel iteration, Power Itera-

tion, ...) can naturally adapt the iteration when G (and thus P) is changed because

they are generally independent of the initial condition (for any starting vector, the

iterative scheme converges to the unique limit). The simplest way to adjust is to

51

52 CHAPTER 3. D-ITERATION: DIFFUSION APPROACH TO SOLVE PAGERANK

compute the PageRank of the new graph using the previous computation as starting

vector.

This technique cannot be used in the case of DI so we need to provide an

adapted result.

Theorem 4. Assume that after k0 diffusions, the DI algorithm has computed the

values (Hk0 , Fk0) for some matrix P , and consider a new matrix P ′ (typically an

update of P). One can compute the unique solution of the equation x′ = dP ′x′+(1−
d)Z by running a new D-Iteration with starting parameters

F ′0 = Fk0 + d(P ′ − P)Hk0, (3.9)

H ′0 = Hk0. (3.10)

A few remarks on Theorem 4:

� It implies that one can continue the diffusion process when P is regularly

updated: we just need to inject in the system a fluid quantity equal to d(P ′ −
P)Hk0 and then change to the new matrix P ′, keeping the same history.

� The precision of the result directly relates to the quantity of fluid left. Here the

precision induced by Fk0 + d(P ′−P)Hk0 seems rather minimal, as the original

fluid is only altered by the difference between the two matrices. In particular,

if the difference P − P ′ is small, the update should be quickly absorbed.

� For the sake of clarity, we assumed that the set of nodes is the same between

P and P ′, but the result can be extended to cope with variations of V .

Proof. Call H ′∞ the asymptotic result of the new D-Iteration. We first use (3.6) on

the reduced history H ′k − Hk0 (Equation (3.6) requires that the history is initially

empty):

(H ′k −Hk0) + F ′k = F ′0 + dP ′(H ′k −Hk0).

Letting k go to ∞ leads to

(H ′∞ −Hk0) = F ′0 + dP ′(H ′∞ −Hk0)

= Fk0 + d(P ′ − P)Hk0 + dP ′(H ′∞ −Hk0)

= dP ′H ′∞ + Fk0 − dPHk0 ,

52

3.6. CONCLUSION 53

which can be written

H ′∞ = dP ′H ′∞ +Hk0 + Fk0 − dPHk0 .

Equation (3.6) (Hk0 + Fk0 = F0 + dPHk0 .) concludes the proof.

3.6 Conclusion

In this chapter, we summarized the theoretical results of D-Iteration, an algo-

rithm based on a diffusion approach, to solve the PageRank equation. These results

include properties concerning the correctness (convergence), the precision measure-

ment and update equations. This chapter is the basis for chapter 4 and chapter 5

where we will show the potential of DI through experiments on real data in compar-

ison with other classical pull (Power Iteration, Gauss-Seidel, etc) and push (OPIC)

methods.

53

Chapter 4

Preliminary performance evaluations

on a small graph

To better understand the convergence of the algorithms exposed in Section

2.2, we test them on a real web graph of 1 million nodes. The evaluation will

be based on two main criteria: iterations and elementary operation cost. We will

notice that some algorithms perform well on one criterion but not on the other.

In contrast, there is a D-Iteration variant that converges quickly with respect to a

certain measurement.

On the other hand, the computation of PageRank vector turns out to be even

more challenging if the graph is not fully visible. Therefore, this chapter will also

investigate how to approximate the PageRank vector of a matrix of which all columns

(or rows) are not given. In other words, the transition matrix is now partially hidden.

This study makes sense in a distributed environment where the graph is not stored

on the computation machine but on another. That means, the graph can only be

gradually unveiled by exchanging requests between machines.

In this chapter, the main contribution is studying the performances of Jacobi,

Gauss-Seidel, SOR, GMRES and OPIC, then compare them with DI. We explain

where the difference comes from and in which case an algorithm can be a good

choice. Besides, we propose a method to approximate the PageRank vector of a

graph partially hidden. Our method consists in combining a random strategy and

a maximal one that experimentally achieves a gain factor of ten compared to using

only one of them. The results are presented in [21].

54

4.1. DATASET AND SETTINGS 55

The chapter is organized as follows. Section 4.1 presents the data set we use

and the choice of PageRank parameters. Section 4.2 introduces the two measurement

criteria. Section 4.3 then shows and explains experiment results. Section 4.4 presents

the method to approximate the PageRank vector of a graph partially hidden. Section

4.5 summarizes the chapter.

4.1 Dataset and settings

We use the same web graph as in Chapter 2: a small graph available on [42]

named uk-2007-05@1000000 1 in DELIS project 2 [43]. This is an extraction of

the dataset uk-2007-05 (containing 106M nodes) using Breadth-First Search (BFS)

starting at a random node. Each node is a web page of .uk domain and edges are

hyperlinks between them.

We recall the transition matrix P (see Section 2.1) in the PageRank equation

x = dPx+ (1− d)x as follows:

Pi,j =

1/outdeg(j) if hyperlink j → i exists,

0 otherwise.

where Pi,j is the entry at ith row and jth column of matrix P ; outdeg(j) is out-degree

of node j. All the algorithms are tuned to solve the equation (2.3) using d = 0.85

and Z ≡ 1
n
. Remind that DI does not need to pad null columns of P with 1

n
thanks

to the implicit completion (see Section 3.3). We use the GMRES function in Matlab

library 3 to solve the PageRank equation.

In the case of OPIC, remind that the original version does not take into

account damping factor. In order be consistent with other algorithms, we emulate

(2.3) by running OPIC on the stochastic matrix P ′ defined by:

P ′i,j =


d

outdeg(j)
+ 1−d

n
if hyperlink j → i exists,

1
n

if j is a dangling node,
1−d
n

otherwise.

(4.1)

1http://law.di.unimi.it/webdata/uk-2007-05@1000000/
2http://delis.upb.de/
3http://fr.mathworks.com/help/matlab/ref/gmres.html

55

http://law.di.unimi.it/webdata/uk-2007-05@1000000/
http://delis.upb.de/
http://fr.mathworks.com/help/matlab/ref/gmres.html

56CHAPTER 4. PRELIMINARY PERFORMANCE EVALUATIONS ON A SMALL GRAPH

Note that even if we do not write P ′ as an explicit full matrix, this emulation makes

each diffusion rather costly as all entries need to be updated at each elementary

step. It is only introduced to allow comparison with other methods, assuming all

diffusions have the same cost, and should not be used in practice.

For DI, we used the two exposed variants, DI-cyc and DI-argmax. The same

schedulers were used for OPIC, called OPIC-cyc and OPIC-argmax. Remember that

the fluid amount F is constant in OPIC, so the threshold that triggers diffusion in

OPIC-argmax is constant (it is the average fluid).

The y-axis in all figures shows either L1-norm or L2-norm 4 of the distance

indicating how far the current vector xk is to the PageRank vector x∞. The ground

truth vector x∞ is pre-computed using DI with a precision 10−9, i.e., until the re-

maining fluid (residual) ‖Fk‖1 < 10−9. Remind that with DI we can explicitly know

the distance to the PageRank vector thanks to ‖Fk‖1 (see Section 3.2) while we

cannot with other algorithms (only an upper bound for the error is provided).

4.2 Comparison criteria

The performance of the algorithms is evaluated with respect to the two fol-

lowing criteria:

� Iterations: conventionally, performance of iterative methods is measured by

the number of iterations required to reach certain precision. One iteration

of, for instance, Jacobi method, GS or SOR corresponds to one matrix-vector

multiplication.

� Elementary operations: among different reasons that can cause bottlenecks

like slow memory access or synchronization delay in distributed computation,

we consider here the number of elementary operations that the algorithms need

to perform the calculation tasks. We define the cost of one addition (Ta) and

multiplication (Tm). To numerically estimate values of Ta and Tm, we made a

small program running several times 1010 each operation, take the average of

its cpu time (CPU clock in a second) and real time (real running time), then

4L1-norm and L2-norm of a vector u are defined as ‖u‖1 =
∑n

i=1 |ui| and ‖u‖2 =
√∑n

i=1 u
2
i

respectively.

56

4.3. EXPERIMENTS 57

normalize it. Not surprisingly we obtain the same value as [44] that Ta = Tm,

and we consider this value as one unit cost.

4.3 Experiments

4.3.1 Jacobi, GS, SOR and GMRES

These four algorithms were described in Section 2.2, we recall briefly how they

can be used to compute the PageRank vector x iteratively:

Jacobi / Power Iteration:

xk+1(i) = d
∑

j Pi,jxk(j) + (1− d)Z(i).

Gauss-Seidel (GS):

xk+1(i) = d
(∑

j<i Pi,jxk+1(j) +
∑

j≥i Pi,jxk(j)
)

+ (1− d)Z(i).

Successive Over-Relaxation (SOR):

xk+1(i) = d

[
ω

(∑
j<i

Pi,jxk+1(j) +
∑
j≥i

Pi,jxk(j)

)
+ (1− ω)xk(i)

]
+ (1− d)Z(i).

Generalized Minimal Residual (GMRES): exploits the Krylov subspace to find

the PageRank vector thanks to an orthogonalization of all vectors in the subspace.

We begin with the comparison of the two classical iterative methods, Jacobi

and GS. Let us consider a graph of size n = 104 extracted from the first 104 nodes

of uk-2007-05@1000000. Figure 4.1 shows that Jacobi takes 72 iterations to reach

the residual 10−6 while GS only requires 39. The main difference between the two

methods is that with Jacobi, vector xk+1 (vector x at (k+1)th iteration) is calculated

by using only elements of vector xk whereas GS exploits right away all elements

xk+1(j) (element j of the vector x at (k + 1)th iteration) to compute xk+1(i) for

j < i. Thanks to that, GS has a better performance than Jacobi, not only w.r.t.

convergence speed but also memory usage (at (k+1)th iteration GS keeps only vector

xk+1 whereas Jacobi needs both xk+1 and xk). However, the fact that GS updates

“in real time” its working PageRank vector could be perceived as a downside in

asynchronous computation because it loses the freedom of choosing nodes to iterate.

57

58CHAPTER 4. PRELIMINARY PERFORMANCE EVALUATIONS ON A SMALL GRAPH

0 10 20 30 40 50 60 70 80
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of iterations

L1
−

no
rm

 r
es

id
ua

l

Jacobi
GS

Figure 4.1: n = 104 nodes, GS and Jacobi

0 10 20 30 40 50 60
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of iterations

L1
−

re
si

du
al

 n
or

m

SOR (0.8)
SOR (0.9)
SOR (1) = GS
SOR (1.1)
SOR (1.2)

Figure 4.2: n = 104 nodes, SOR algorithm varying ω from 0.8 to 1.2

58

4.3. EXPERIMENTS 59

0 5 10 15 20 25 30 35 40
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of iterations

L2
−

no
rm

 r
es

id
ua

l

GMRES (restart=5)
GMRES (7)
GMRES (10)
GMRES (no restart)

(a) n = 100 nodes

0 10 20 30 40 50 60 70 80
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of iterations

L2
−

no
rm

 r
es

id
ua

l

GMRES (restart=5)
GMRES (7)
GMRES (10)
GMRES (15)
GMRES (no restart)

(b) n = 1000 nodes

0 5 10 15 20 25 30 35 40
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of iterations

L2
−

no
rm

 r
es

id
ua

l

GMRES (restart=5)
GMRES (7)
GMRES (10)
GMRES (15)
GMRES (no restart)

(c) n = 5000 nodes

0 5 10 15 20 25 30 35 40
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of iterations

L2
−

no
rm

 r
es

id
ua

l

GMRES (restart=5)
GMRES (7)
GMRES (10)
GMRES (15)
GMRES (no restart)

(d) n = 10000 nodes

Figure 4.3: GMRES with different restart values comparison.

Next we analyze the SOR algorithm. SOR is a variant of GS, characterized

by an additional relaxation parameter ω. In detail, SOR improves the convergence

rate by adding (ω < 1) or removing (ω > 1) a fraction of the vector xk. According

to [45], SOR diverges if ω ≤ 0 or ω ≥ 2. It has also been proven converged if the

matrix A is symmetric positive definite 5 and 0 < ω < 2. Adjusting the value of ω

can be used to speed up the convergence. For example, if we set 1 < ω < 2, the

part of (1− ω)xk is negative and the GS-like part receives extra weight which could

result in a faster convergence as shown in Figure 4.2. SOR becomes GS if ω = 1. In

our experiment, SOR gets worse when ω > 1.2.

The number of elementary operations required by Jacobi, GS and SOR is

linearly dependent on the number of iterations so that we do not plot a figure for

this criterion.

5A symmetric n × n real matrix M is said to be positive definite if if zTMz > 0 for all for all
nonzero complex vectors z

59

60CHAPTER 4. PRELIMINARY PERFORMANCE EVALUATIONS ON A SMALL GRAPH

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of iterations

L2
−

no
rm

 r
es

id
ua

l

GMRES (no restart)
BICGSTAB

Figure 4.4: n = 104 nodes, GMRES and BICGSTAB

Regarding GMRES, given an unlimited memory, one would run the algorithm

without restart value, i.e., restart =∞ called GMRES (no restart), the algorithm

would converge more quickly at the expense of a (much) larger memory due to an

expansion of the Krylov subspace. In other words given a restart value the subspace

contains {r0, Ar0, ..., Arestart−1r0}.
Figure 4.3 shows the results while varying matrix size from n = 102 to n = 104.

Each GMRES curve applying a restart value, i.e., 0 < restart <∞, is stemmed from

the root curve (restart =∞) at its corresponding restart value, and converges from

then on more slowly than the root curve. In Figure 4.3b, GMRES with restart = 5

requires up to 75 iterations compared to 17 iteration of that with restart =∞ to both

converge at 10−6, and a bad initial guess vector after each turn of restart iterations

may cause this slowness. Besides the basic cost (matrix-vector multiplication cost),

GMRES introduces some extra costs coming from:

� Arnoldi process to orthogonalize current vector with all previous vectors which

are stored in Hessenberg matrix at each iteration.

� Residual minimization based on projection method after each turn of restart

iterations.

Thus, we will see that this method is not performing quite well in terms of the

number of elementary operations when restart value is large.

60

4.3. EXPERIMENTS 61

0 0.5 1 1.5 2

x 10
7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of elementary operations

L1
−

no
rm

 r
es

id
ua

l

Jacobi
GS
DI−CYC

Figure 4.5: n = 104 nodes; GS, Jacobi and DI comparison

In addition to GMRES, we also study Biconjugate Gradient Stabilized [46]

(BICGSTAB) which also exploits Krylov subspace to produce the result vector x.

However, in case of PageRank matrix, BICGSTAB diverges as shown in Figure 4.4.

4.3.2 D-Iteration

Classical iterative methods, like Jacobi or GS, perform matrix row operations.

Each node gathers “score” from incoming links (row-based collection). With DI, in

contrast, each node distributes its “score” (or “fluid”) to its neighbours following

the outgoing links (column-based diffusion). DI is well-adapted to asynchronous

computation thanks to the freedom of diffusion sequence. Figure 4.5 shows a quick

comparison between Jacobi, GS and DI-cyc. We can see that DI-cyc behaves almost

similarly to GS, but starts to converge more slowly at the middle of the curve. We will

prove later in Appendix B that the convergences of GS and DI-cyc are exactly the

same if diagonal (or self-loop link) elimination is applied. The graph here contains

those links so that after the first tens of iterations converging almost at the same

rate, the DI-cyc requires more time to diffuse fluid trapped inside the loops, and it

leads to a slower convergence.

We show the convergence of DI and OPIC in Figure 4.6. As one can ob-

serve, given the same number of iterations, OPIC-argmax converges more quickly

than OPIC-cyc which always stays monotone. An iteration of DI-argmax is one

61

62CHAPTER 4. PRELIMINARY PERFORMANCE EVALUATIONS ON A SMALL GRAPH

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

Number of iterations

L1
−

no
rm

 r
es

id
ua

l

OPIC−cyc
OPIC−argmax
DI−cyc
DI−argmax

Figure 4.6: n = 106 nodes, DI and OPIC

pass through all nodes in the graph regardless of either diffusing fluid at nodes or

not, because it takes time to check whether a node satisfies the diffusion condition.

The DI-argmax is better than DI-cyc and OPIC as it reaches the precision 10−3

after several rounds. This can be intuitively understood because only nodes having

sufficiently large fluid are diffused. It then results in a less effort wasted on minor

nodes and thus a performance boost. OPIC is suitable for a less-precise computation

since it converges slowly over time. Its main advantage compared to DI is the auto-

matic adaptation to the graph evolutions while DI needs to be tuned as mentioned

in Section 3.5.

To be comparable with GMRES (the GMRES function in Matlab library

that we use returns L2-norm of the distance), in Figure 4.7a we use the L2-norm

residual ‖Fk‖2. The peak at the second iteration of DI is due to the definition of L2-

norm of F : because F0 is uniform, after the first diffusion iteration, due to damping

factor we have ‖F1‖1 < ‖F0‖1 but as the entries of F1 are non-uniform, we get

‖F1‖2 > ‖F0‖2. The figure shows that GMRES converges faster than DI in terms of

iterations. However, DI consumes much less elementary operations than GMRES as

seen in Figure 4.7b. Remind that the restart value determines the Krylov subspace

62

4.3. EXPERIMENTS 63

0 10 20 30 40 50 60 70
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of iterations

L2
−

no
rm

 r
es

id
ua

l

GMRES (5)
GMRES (10)
GMRES (no restart)
DI−cyc
DI−argmax

(a) Number of iterations

0 2 4 6 8 10 12 14 16 18

x 10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of elementary operations

L2
−

no
rm

 r
es

id
ua

l

GMRES (5)
GMRES (10)
GMRES (no restart))
DI−cyc	
DI−argmax

(b) Number of elementary operations

Figure 4.7: Dataset uk-2007: n = 104 nodes, DI and GMRES comparison

63

64CHAPTER 4. PRELIMINARY PERFORMANCE EVALUATIONS ON A SMALL GRAPH

size. If it increases, the Krylov subspace will grow larger and the cost spending on

some tasks such as vector orthogonalization will become remarkably heavy.

4.4 Intermezzo: PageRank approximation with

partial information

Before we move on to larger graphs, we propose one last experiment on the

dataset uk-2007-05@1000000. In this section, we will investigate how to approxi-

mate true PageRank vector of a matrix of which all columns (or rows) are not given.

In other words, the transition matrix is now partially hidden.

4.4.1 Context

The PageRank vector computed in the previous chapters is the principle eigen-

vector of the (possibly modified) transition matrix P of a graph G(V,E) such that

x = Px. In this section, we consider that G is not stored on the same machine used

to compute the PageRank vector. Now the graph is not visible and can only be grad-

ually revealed by sending requests to a storage server (see Figure 4.8). At a time, the

PageRank computation machine can request information of a full ith column of the

matrix (list of outgoing neighbours of node i) or information of a full ith row of the

matrix (list of incoming neighbours of node i). For the sake of simplicity, we assume

that the machine always requests either column or row consistently during the whole

computation process, but not the mix of them. To further fix the assumption, we

suppose that the machine always asks for column information (outgoing neighbours)

of a node. The problem that we study in this chapter is finding a good strategy

for requesting columns, i.e., order of nodes requested, such that these following two

statements are satisfied:

� the number of requests exchanged between the machine and the server is mini-

mized, i.e., the computation cost (time) is kept minimum, assuming that com-

munication is the main bottleneck.

64

4.4. INTERMEZZO: PAGERANK APPROXIMATION WITH PARTIAL INFORMATION65

PageRank
computation

machine

Storage server

Matrix

(1) Request ith column (row)

(2) Return data of ith column (row)

Figure 4.8: Context of PageRank approximation where storage server and computa-
tion machine are apart. Information of column (or row) matrix is transferred upon
request from storage server to computation machine.

� the approximate PageRank vector (or top values of the approximate vector)

calculated based on partial information is as close as possible to the true PageR-

ank values computed as if the full graph (matrix) is known.

In order to achieve that, previous studies suggest to request new nodes in a

Bread First Search (BFS) manner [47] or high-ranking nodes [48]. However, we show

that a mix strategy could give a much better result.

4.4.2 PageRank approximation

To begin with, we have to differentiate two problems: (i) how to compute

PageRank vector of P in case of lacking information and (ii) what is a good strategy

to request column of P to have a good approximation. It is natural to say that,

the vector can be calculated merely based on the visible part (information of nodes

requested) and we consider ~0 (vector of all zeros) at all columns for the unknown

part, i.e., those nodes are supposed to be dangling nodes (zero outdegree). However,

what is a good request order is not obvious to see. Figure 4.10 illustrates an example

of sequential request to a full graph (cf Figure 4.9). Initially at time t0, the machine

does not have any information about edges in the graph, thus all nodes have equal

65

66CHAPTER 4. PRELIMINARY PERFORMANCE EVALUATIONS ON A SMALL GRAPH

N1

N2

N3

N5

N4

Figure 4.9: Full matrix at storage server

PageRank value that is 1/n. However, this PageRank vector is far from that of the

full graph due to a huge lack of information. Then, at time tk, it asks for outgoing

neighbour list of node k and modified its perspective on the graph, then recompute

the PageRank vector according to the updated perspective. Obviously, the more

nodes are requested, the closer the perspective is to the real graph, and therefore the

more precise the PageRank approximation is.

4.4.3 Experiment

In the following, we assume that the order of requests is I = {i1, i2, ..., ik, ...}
with ik ∈ {1, .., n}. We can think of two basic choices:

� Random: node ik is randomly requested among nodes which have not been

chosen yet.

� Max: node ik is requested if it has the highest PageRank value (and not yet

chosen), computed based on the information given by previous chosen nodes

i1, ..., ik−1.

We propose an additional strategy:

� Max + Random: the Random and the Max strategy are used alternatively. If at

time tn, Random strategy is applied to request node in, so at time tn+1, Max

strategy is applied to request node in+1, and vice-versa. The frequency at

which each strategy is used is an important factor to optimize the algorithm.

66

4.4. INTERMEZZO: PAGERANK APPROXIMATION WITH PARTIAL INFORMATION67

N1

N2

N3

N5

N4

(a) Time t0, graph without
edge

N1

N2

N3

N5

N4

(b) Time t1, request N1

N1

N2

N3

N5

N4

(c) Time t2, request N2

N1

N2

N3

N5

N4

(d) Time t3, request N3

N1

N2

N3

N5

N4

(e) Time t4, request N4

N1

N2

N3

N5

N4

(f) Time t5, request N5

Figure 4.10: The graph is gradually reconstructed over time at the computation
machine. Requests for outgoing neighbour list are made sequentially from N1,...,N5.

67

68CHAPTER 4. PRELIMINARY PERFORMANCE EVALUATIONS ON A SMALL GRAPH

0 20 40 60 80 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Percentage of nodes known

P
re

ci
si

on

Max strategy
Random strategy
Max + Random strategy

Figure 4.11: Web graph uk-2007: PageRank approximation with partial information

This is subject to future research. In this preliminary work, we consider equal

probability between the two strategies, i.e., 1
2
Random + 1

2
Max.

Figure 4.11 shows the result on the uk-2007-05@1000000 dataset. The y-axis

represents the L1-norm of the difference between the approximate PageRank vector

and the true vector of the graph, computed using DI with precision 10−9. The x-

axis indicates the percentage of nodes requested with respect to the total number

of nodes in the graph. The request sequence follows the three strategies mentioned

above: Random, Max and Max + Random. For each additional percent of new nodes

unveiled, we recompute the vector and compare it with the true one. The more nodes

we crawled, the better the performance indicated by a lower (better) precision. As

expected, all strategies converge as the percentage reaches 100%: at that time, the

“approximate vector” is exactly the true PageRank vector of the graph. In the figure,

we show the comparison results of various sets of vector entries randomly extracted

from the approximate vector and the true PageRank vector.

68

4.5. CONCLUSION 69

A remarkable point is, the Max strategy does not perform well among the

three strategies. This can be explained as follows. Since we only choose the node

having highest PageRank according to the updated perspective, that node is probably

connected to those which were already requested because it receives more PageRank

score than others that are isolated (or those apart from the visible part of the graph).

Therefore, it takes a long time for this strategy to find high PageRank nodes that

are far from the initial node.

Unlike Max, the Random strategy can avoid being locally trapped because nodes

are randomly requested. Hence, it behaves better than the Max strategy. However,

the combined strategy of Max + Random outperforms the other two by a gain factor

of 10, thanks to the fact that it benefits the advantages of both strategies.

4.5 Conclusion

In this chapter, we evaluated the performances of some algorithms (Jacobi,

Gauss-Seidel, SOR, GMRES and OPIC) on a real web graph, then compare them

with the two variants of D-Iteration (DI-cyc and DI-argmax). We saw that GM-

RES requires less iterations to converge but the additional cost caused by vector

orthogonalization makes it become heavy. On the other hand, thanks to a smart

scheduler, the DI-argmax only diffuses at important nodes (containing much fluid)

so that it converges faster than other methods in terms of elementary operation cost

which relates directly to the computation time. Additionally, we proposed a method

to approximate the PageRank vector of a graph partially hidden. Note that we used

a 1
2
Random + 1

2
Max strategy and how to weight the two choices is still an open

question.

69

Chapter 5

Experiments on large graphs

After first experiments with small graph in the previous chapter, we now

consider bigger datasets. Computation on large graphs in general is challenging due

to resource constraints such as memory usage and computation time. The first part of

this chapter focuses on evaluating the performance of D-Iteration (DI) specifically in

solving PageRank equation and compare it on a larger scale with other algorithms

seen before like Jacobi, Gauss-Seidel (GS), Online Page Importance Computation

(OPIC), etc. Each of them has its own pros and cons. Obviously, finding the best

algorithm for all cases is impossible. Therefore, the main target of this chapter is

instead to find a good candidate, given a specific case which depends on the nature

of the graph and how the resource constraints are defined.

We will also discuss the application of PageRank to Twitter social graph.

Ranking users in such a network is interesting but quite challenging as mentioned

in Section 1.1.3. Some results will be shown to compare the outcomes of ranking

according to PageRank and to indegree.

In this chapter, our main contributions consists in evaluating the perfor-

mance of D-Iteration in solving PageRank equation. The benchmarks are carried

out on graphs varying in size (number of vertices and edges) and in type (undi-

rected/directed social networks and web graphs). Besides, we present the applica-

tion of PageRank to rank Twitter users and compare its efficiency with the classical

ranking according to the number of followers (indegree). The results of this chapter

are partly presented in [21].

70

5.1. DATASETS AND SETTINGS 71

The chapter is organized as follows. Section 5.1 introduces the large datasets

used. Section 5.2 shows the comparisons criteria and evaluates the performance of

the algorithms. Section 5.3 talks about applying PageRank to rank Twitter users.

Section 5.4 concludes the chapter.

One other related experiment on large graph, “LiveRank”, will be described

in the next chapter to limit the size of this chapter.

5.1 Datasets and settings

In order to compare the convergence speed of DI with other algorithms ex-

posed in Section 2.2: Power Iteration, Gauss-Seidel, Jacobi and OPIC, we use the

six following datasets 1:

� it-2004: contains 41 million nodes and over 1.1 billion links, representing part

of Italian web graph (.it domain). Link from node x to node y indicates an

hyperlink from page x to page y. We use the original version.

� uk-2005: roughly 39.5 million nodes and 940 million links of British web graph

(.uk domain). This crawl has been done by UbiCrawl [38] which aims at

enlarging number of hosts rather than number of pages crawled at each host.

We make use of the original graph.

� uk-06-07: this dataset is a time-aware graph [49] generated by combining

twelve monthly snapshots (from May 2006 to May 2007) of the .uk domain.

It contains 133 million nodes and 5.5 billion links. This is a crawl done for

DELIS project [43].

� orkut-2007: this dataset is a snapshot of IMC 2007 Data Sets2. Orkut is

a social network being launched and operated by Google. Unlike Twitter, a

relationship between two users requires acceptance from both of them (one

sends request and one confirms). As a consequence, its links are undirected.

However, about 10% of links miss their opposite in the original graph due

to crawling issues, as suggested in [50] we completed the graph so that it is

1The first five datasets are available at [42] and the last one (twitter-2012) at http:

//www-sop.inria.fr/members/Arnaud.Legout/Projects/sotweet.html
2http://socialnetworks.mpi-sws.org/data-imc2007.html

71

http://www-sop.inria.fr/members/Arnaud.Legout/Projects/sotweet.html
http://www-sop.inria.fr/members/Arnaud.Legout/Projects/sotweet.html
http://socialnetworks.mpi-sws.org/data-imc2007.html

72 CHAPTER 5. EXPERIMENTS ON LARGE GRAPHS

symmetric, and an undirected link from x to y depicts a mutual friendship

between x and y. After completion, this dataset contains 3 million nodes and

over 234 million directed links (representing 117 million friendships).

� twitter-2010: contains about 42 million nodes and 1.5 billion links. Nodes are

Twitter users and link from x to y means user y follows user x. In other words,

links indicate direction of tweet propagation. The dataset was presented in

[51]. In PageRank context, a web page is important if it is pointed to by many

other important pages. We assume one applies the same philosophy to Twitter

user ranking, i.e., an important user is pointed to by many other important

users. Obviously, link direction in user ranking graph is inverse with respect

to tweet propagation graph. So instead of using the original twitter-2010

graph, we exploit its transposed version.

� twitter-2012: a complete snapshot of Twitter crawled in 2012 by Gabielkov

et al. [52] and available for academic studies. The graph contains 400 millions

nodes and 23 billions edges. It is given under the form of a very large 3

adjacency list: each user having at least one follower corresponds to one line

showing the user identifier, the number of followers and the list of followers.

All users who are completely isolated, i.e., zero indegree and zero outdegree,

are not referenced (and that results in 399 millions instead of 505 millions [52]).

The properties of the graphs are summarized in Table 5.1.

Dataset name N L max in max out L/N D/N E/N O/N
it-2004 41,291,594 1,150,725,436 1,326,745 9,964 27.87 0.1276 0.0001 0.36
uk-2005 39,459,925 936,364,282 1,776,852 5,213 23.73 0.1100 0.0010 0.38

uk-2006-2007 133,633,040 5,507,679,822 6,366,525 22,429 41.22 0.09 0.0537 0.24
orkut-2007 3,071,378 234,370,166 33,313 33,313 76.28 0.0001 0.0001 0

twitter-2010 41,652,230 1,468,365,182 2,997,469 770,155 35.25 0.1439 0.0382 0
twitter-2012 398,846,191 23,137,510,395 24,635,412 734,806 58.01 0.0718 0.2697 0

Table 5.1: Datasets statistics

� N: number of nodes in the graph, i.e., number of columns/rows in matrix,

� L: number of links, i.e., number of non-null entries in transition matrix P ,

3100 GBs of compressed text format

72

5.2. PERFORMANCE EVALUATION 73

� max in: maximum in-degree of a node, i.e., row with maximum non-null

entries in the transition matrix,

� max out: maximum out-degree of a node, i.e., column with maximum non-

null entries in the matrix,

� D: number of dangling nodes, i.e., nodes with no outgoing link or columns with

only null entries,

� E: number of in-tendril nodes; initially the in-tendril nodes are nodes without

incoming links (zero-indegree nodes) and they are recursively defined: if a node

has all incoming links from in-tendril nodes, it can be called as transitory node

and also counted as in-tendril node. The reason we introduce this notion is

that those nodes converge in finite steps with DI, so DI will perform especially

well on graphs with a high number of those.

� O: number of self-loop nodes.

The PageRank settings (construction of matrix P , d = 0.85 and Z ≡ 1
n
) are

as in Section 4.1

5.2 Performance evaluation

5.2.1 Comparison criteria

Besides the two metrics mentioned in Section 4.2 (iterations and elementary

operations), we also benchmark the performance based on request messages. This

metric is often used in parallel computations where the matrix is stored on a sepa-

rated machine. Each time a node is iterated on, the computation machine will send

a request message to get a row value (Jacobi, GS) or column value (DI) to the cen-

tral database. This should be considered as a communication cost in a distributed

system. As a direct consequence, regardless of how many non-null entries there are

in a row/column, the cost to get information of a row/column is identical, i.e. the

cost of one message sent.

Keeping in mind that updating values can be costly in very large datasets

due to parallelism, a good DI scheduler should try to achieve a trade-off between

73

74 CHAPTER 5. EXPERIMENTS ON LARGE GRAPHS

the amount of fluid (convergence) and the outdegree (update-cost) of a node. If one

wants to optimize the diffusion achieved per update, it seems natural to try and select

the nodes with the highest fluid/outdegree value. Following that idea, Dohy Hong

introduced in [19] a DI variant, called DI-argmax/outdeg, which works as follows:

at kth iteration, diffuse Fk[i] iff Fk[i]/outdeg[i] > l where l =
∑

i Fk−1[i]/|E| (|E| is

the total number of links in the graph).

5.2.2 Web graphs

The two next sections will show the performance evaluations of the algorithms

on the datasets.

it-2004 and uk-2005

Minimizing elementary operation cost means optimizing link utilization which

aims at a prudent choice of whether or not DI should perform diffusion on a link.

Simply put, if fluid passing through each outgoing link (coming from the same node)

is greater than that of the average of the whole graph, DI-argmax/outdeg will diffuse

that node; otherwise, it does not.

The other strategy, DI-argmax, targets at minimizing the number of requests

sent in a parallel deployment. Each request of the client asks the central database

for an entire column information representing outgoing neighbours list of a node.

The strategy consists in optimizing the amount of fluid to diffuse at each node. If

this quantity is sufficiently large, i.e., greater than the average of the whole graph,

it is worth a diffusion. Another intuition is that each request sent means some fluid

disappeared. The larger the volume vanishes, the quicker the convergence.

One of the important differences between a social network graph and a web

graph is the existence of self-loop nodes. They should not appear in social network

friendship context because a user cannot make friend with himself. In contrast, it is

quite common to have such nodes in various sorts of web graph mostly because of

anchors and permanent navigation links. In case of DI, self-loop nodes slow down

the convergence speed since the nodes always receive some fluid coming back to

themselves after diffusion. To avoid this problem, we modify the diffusion condition

as in Algorithm 4. Each time a self-loop node is chosen, we emulate what would

74

5.2. PERFORMANCE EVALUATION 75

happen if that node was selected an infinite number of times until all of its fluid

is gone. In that case, the fluid is accumulated over time before being completely

diffused through the outgoing links. The additional cost of setting the new fluid

amount (see Algorithm 4: line 11) is equal to 2Tm + Ta operations. This cost then

can be further reduced to only Tm if we pre-compute once the value 1/(1 − dPik,ik)

and store it at each self-loop node. Remind that although GS and the modified

version of DI-cyc (i.e. DI-cyc using the new diffusion condition, called DI-cyc

(No diag)) are computed differently, they are exactly equivalent (w.r.t number of

iterations and precision), this will be explained in Appendix B. In general, if one

applies diagonal elimination 4 on a graph having self-loop nodes, it will result in the

same behaviour between GS and DI-cyc. One can also observe this phenomenon in

the social network graphs where GS, DI-cyc and DI-cyc (No diag) behave in the

same way due to the absence of loops (O=0).

Algorithm 4 D-Iteration with modified diffusion condition: x = dPx+ (1− d)Z.

1: for i = 1 : n do
2: H(i) = 0; . Initialize result vector
3: F (i) = (1− d)Z(i); . Initialize diffusion vector
4: end for
5: k = 1;
6: while (‖F‖ > Target Error) do
7: Choose ik;
8: sent = F (ik);
9: F (ik) = 0;

10: if Pik,ik 6= 0 then . check if ik is a self-loop node
11: sent = sent× (1/(1− dPik,ik));
12: end if
13: for all child node j of ik (j 6= ik) do
14: F (j)+ = sent× dPj,ik ;
15: end for
16: H(ik)+ = sent;
17: k++;
18: end while

It-2004 is built on the web graph of Italian network. The highest indegree

node is pointed to by 1.3 million nodes and the highest outdegree one points to 10

4Diagonal elimination is the process of removing self-loop links of nodes in a graph and adjusting
their corresponding incoming link weights (details in Appendix B).

75

76 CHAPTER 5. EXPERIMENTS ON LARGE GRAPHS

0 20 40 60 80 100 120

10
−8

10
−6

10
−4

10
−2

Number of iterations

L1
−

no
rm

 r
es

id
ua

l

Jacobi
GS
DI−cyc
DI−argmax
DI−argmax/outdeg
DI−cyc (No diag)

(a) Iterations

0 0.5 1 1.5 2 2.5

x 10
11

10
−8

10
−6

10
−4

10
−2

10
0

Cost

L1
−

no
rm

 r
es

id
ua

l

Jacobi
GS
DI−cyc
DI−argmax
Di−argmax/outdeg
DI−cyc (No diag)

(b) Number of elementary operations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
9

10
−8

10
−6

10
−4

10
−2

10
0

Number of requests

L1
−

re
si

du
al

 n
or

m

Jacobi
GS
DI−cyc
DI−argmax
DI−argmax/outdeg
DI−cyc (No diag)

(c) Number of requests sent

Figure 5.1: it-2004

thousands others. On average, each page has 28 outgoing links whereas 12% of them

are dangling nodes. A very small are in-tendrils (E/N=0.01%) and a noticeable

number of nodes (36%) have loops.

Figure 5.1 shows some benchmarking results. GS and DI-cyc (No diag)

outperform other algorithms w.r.t. iterations in Figure 5.1a. We deliberately

plotted DI-cyc with diagonal links to illustrate its impact on convergence speed:

DI-cyc starts to converge more slowly from 10−2 precision point. DI-argmax and

DI-argmax/outdeg clearly dominate DI-cyc (No diag) and thus GS in the two

remaining criteria. In Figure 5.1b, DI-cyc (No diag) brings a remarkable improve-

ment to DI-cyc (a gain factor of 4) in terms of operations and DI-argmax achieves a

gain factor greater than 2 (w.r.t. request messages) as depicted in Figure 5.1c. But

the general result still holds: DI-argmax works well with the request messages while

DI-argmax/outdeg is optimized for elementary operation cost.

76

5.2. PERFORMANCE EVALUATION 77

To verify our results, we perform the same tests on uk-2005, a web graph

constructed from .uk domain with similar properties than it-2004. They behave

alike on all three criteria as shown in Figure 5.2.

The advantage of DI-argmax/outdeg is in terms of elementary operations.

Each node diffusion corresponds to a sequence of multiplications and additions. More

precisely, let ci and ri be the number of non-null entries of the ith column and the

ith row of the transition matrix P of the graph. Recall that Ta and Tm are the

operational costs of an addition and a multiplication respectively, and that Ta = Tm

(see Section 4.2). In the PageRank context, outgoing links from the same node receive

a uniformly distributed fluid portion from that node. Suppose that the current result

vector is a full vector (without any null entry), we have

Di = Tm + Ta × ci.

Ci = (Tm + Ta)× ri.

where Di and Ci are diffusion cost (of DI) and collection cost (of Jacobi and GS)

at node i. In general, the costs of one full iteration of DI (DI-cyc) and Jacobi/GS

could be written

CostDI−CY C =
∑
i

Di = Tm ×N + Ta × L.

CostJacobi/GS =
∑
i

Ci = (Tm + Ta)× L.

where N is the number of nodes and L is the number of links of the graph. Con-

sequently, with the same number of iterations, DI-cyc consumes less elementary

operations than GS and Jacobi. However, one can think of an improvement of GS

and Jacobi , by storing and making use of the value xi/outdeg(i) instead of xi (ith

element of vector x), for all components of vector x as follows:

Jacobi (MOD):

xk+1(i)

outdeg(i)
= d

∑
j

xk(j)

outdeg(j)
+ (1− d)Z(i). (5.1)

77

78 CHAPTER 5. EXPERIMENTS ON LARGE GRAPHS

0 20 40 60 80 100 120

10
−8

10
−6

10
−4

10
−2

10
0

Number of iterations

L1
−

no
rm

 r
es

id
ua

l

Jacob
GS
DI−cyc
DI−argmax
DI−argmax/outdeg
DI−cyc (No diag)

(a) Iterations

0 1 2 3 4 5 6 7 8 9 10

x 10
10

10
−8

10
−6

10
−4

10
−2

10
0

Cost

L1
−

no
rm

 r
es

id
ua

l

Jacobi (MOD)
GS (MOD)
DI−cyc
DI−argmax
DI−argmax/outdeg
DI−cyc (No diag)

(b) Number of elementary operations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
9

10
−8

10
−6

10
−4

10
−2

Number of requests

L1
−

no
rm

 r
es

id
ua

l

Jacobi
GS
DI−cyc
DI−argmax
DI−argmax/outdeg
Di−cyc (No diag)

(c) Number of requests sent

Figure 5.2: uk-2005

GS (MOD):

xk+1(i)

outdeg(i)
= d

(∑
j<i

xk+1(j)

outdeg(j)
+
∑
j≥i

xk(j)

outdeg(j)

)
+ (1− d)Z(i). (5.2)

Additional costs caused by this modification, e.g., reconstruction of the final

vector x, can be considered negligible so that the cost of Jacobi (MOD) and GS (MOD)

decreases roughly by a half (thanks to Tm = Ta). We give the result in Figure 5.2b

with the analysis of uk-2005 dataset. From now on, unless we mention explicitly on

the plots the algorithms Jacobi (MOD) and GS (MOD), we use the classical Jacobi

and GS.

Web graph: uk-2006-2007

The main goal of this experiment is comparing the performances of

OPIC (OPIC-cyc and OPIC-argmax) with GS and DI (DI-cyc, DI-argmax and

78

5.2. PERFORMANCE EVALUATION 79

0 5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

Number of Iterations

L1
−

no
rm

 r
es

id
ua

l

OPIC−cyc
OPIC−argmax
GS
DI−cyc
DI−argmax
DI−argmax/outdeg

(a) Iterations

0 2 4 6 8 10

x 10
10

10
−4

10
−3

10
−2

10
−1

10
0

Number of elementary operations

L1
−

no
rm

 r
es

id
ua

l

OPIC−cyc
OPIC−argmax
GS
DI−cyc
DI−argmax
DI−argmax/outdeg

(b) Number of elementary operations

0 0.5 1 1.5 2 2.5 3

x 10
9

10
−4

10
−3

10
−2

10
−1

10
0

Number of requests

L1
−

no
rm

 r
es

id
ua

l

OPIC−cyc
OPIC−argmax
GS
DI−cyc
DI−argmax
DI−argmax/outdeg

(c) Number of requests sent

Figure 5.3: uk-2006-2007

DI-argmax/outdeg). The evaluation results on web graph uk-2006-2007 are shown

in Figure 5.3.

The OPIC-argmax method performs well during the first few steps in all com-

parison criteria: iterations (see Figure 5.3a), elementary operations (see Figure 5.3b)

and request messages (see Figure 5.3c). It has a clear advantage over OPIC-cyc.

However, the convergence slows down really hard after. Note that OPIC remains

interesting as its primary goal was to provide lightweight PageRank estimates. The

results only state that OPIC should not be used for precise PageRank estimations.

GS converges fastest in terms of iterations and has the second best convergence

speed, better than OPIC but worse than DI, in the other two metrics. It still is a good

candidate if one needs a simple and efficient way to compute a precise PageRank.

DI-cyc performs very similarly to Gauss-Seidel (although a little slower).

This is in line with our interpretation that DI-cyc is a kind of push version of

79

80 CHAPTER 5. EXPERIMENTS ON LARGE GRAPHS

Gauss-Seidel. On the other hand, DI-argmax clearly outperforms the other methods

in request messages metric and DI-argmax/outdeg in computational cost.

5.2.3 Social network graphs

In addition to web graphs, we test the algorithms on social network graphs.

The properties of the two types of graphs are different from each other, for example

in the degree distribution or the fraction of self-loop nodes, etc.

Social network undirected graph: orkut-2007

Orkut-2007 is constructed based on mutual relationship between users so

that each link is supposed to have its opposite. Remind that about 10% of links of

the original dataset missed their opposite and we had to complete them to have a

symmetric graph. This graph is clearly characterized by some specific properties,

e.g. maximum indegree and outdegree are equal. Orkut social network graph does

not have self-loop node (like Twitter) and in our graph each node has on average

76 links. A negligible number of nodes (0.01%) are isolated nodes (for example new

users) with no connection to the rest of the graph.

An important remark is that for undirected graphs, without the damping

factor d (d = 0), the PageRank of a node is proportional to its degree. However, if

the damping factor is used, this property no longer holds [53].

Convergence rate measured in iterations is quite similar between GS

and DI-cyc as in Figure 5.4a. The explanation comes from social network

context where there is no self-loop node. In Figure 5.4b and Figure 5.4c,

DI-cyc and DI-argmax/outdeg perform quite similarly and we suspect that even

DI-argmax/outdeg needs more iterations to converge, the nodes are activated al-

most at the same frequency due to the symmetric graph structure without loops.

However, a concrete explanation requires more investigations. Figure 5.4c confirms

that DI-argmax is still a good candidate in terms of number of messages.

Social network directed graph: twitter-2010

In the twitter-2010 dataset, the node having maximum indegree is labelled

23934132 standing for Twitter User ID 19058681. This user is Ashton Kutcher,

80

5.2. PERFORMANCE EVALUATION 81

0 50 100 150

10
−8

10
−6

10
−4

10
−2

10
0

Number of iterations

L1
−

no
rm

 r
es

id
ua

l

Jacobi
GS
DI−cyc
DI−argmax
DI−argmax/outdeg

(a) Iterations

0 1 2 3 4 5 6

x 10
10

10
−8

10
−6

10
−4

10
−2

10
0

Cost

L1
−

no
rm

 r
es

id
ua

l

Jacobi
GS
DI−cyc
DI−argmax
DI−argmax/outdeg

(b) Number of elementary operations

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
8

10
−8

10
−6

10
−4

10
−2

10
0

Number of requests

L1
−

no
rm

 r
es

id
ua

l

Jacobi
GS
DI−cyc
DI−argmax
DI−argmax/outdeg

(c) Number of requests sent

Figure 5.4: orkut-2007

an American actor and producer. He had 2,997,469 followers when the crawl was

done in 2010. On the other hand, the node with maximum outdegree (770,155) is

21513299 which corresponds to Twitter User ID 28744551.

In DI, diffusion at dangling nodes gives faster convergence because the fluid

amount vanishes without being transferred to other nodes. 14% nodes of Twitter

dataset are dangling nodes (D). They can be seen as users following no one and

probably be accounts created only for pushing information, e.g., institutional ac-

counts. The dataset also has no self-loop node (O) because a Twitter user cannot

follow himself.

Figures 5.5 details how the algorithms perform. In Figure 5.5a, GS and

DI-cyc converge within 55 iterations to precision 10−9 whereas DI-argmax, Jacobi

and DI-argmax/outdeg require 101, 104, and 122 iterations respectively. As ex-

pected with this criterion, GS behaves twice better than Jacobi thanks to the use

of the last updated result vector. We have no gain in the number of iterations from

81

82 CHAPTER 5. EXPERIMENTS ON LARGE GRAPHS

0 20 40 60 80 100 120 140

10
−8

10
−6

10
−4

10
−2

10
0

Number of iterations

L1
−

no
rm

 r
es

id
ua

l

Jacobi
GS
DI−cyc
DI−argmax
DI−argmax/outdeg

(a) Iterations

0 0.5 1 1.5 2 2.5 3 3.5

x 10
11

10
−8

10
−6

10
−4

10
−2

10
0

Cost

L1
−

no
rm

 r
es

id
ua

l

Jacobi
GS
DI−cyc
DI−argmax
DI−argmax/outdeg

(b) Number of elementary operations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
9

10
−8

10
−6

10
−4

10
−2

10
0

Number of requests

L1
−

no
rm

 r
es

id
ua

l

Jacobi
GS
DI−cyc
DI−argmax
DI−argmax/outdeg

(c) Number of requests sent

Figure 5.5: twitter-2010

DI-argmax and DI-argmax/outdeg because they always check if fluid at a node sat-

isfies certain condition before diffusing so they perform less operations per iteration.

The number of diffused nodes at each iteration is then less than n, it ends up with

a larger number of iterations. However, the gain of DI-argmax/outdeg is remark-

able compared to GS (and of course Jacobi) in Figure 5.5b, about a factor of 3.

Figure 5.5c indicates a gain factor of 3 between DI-argmax and GS.

5.3 PageRank for Twitter user ranking

The Twitter social network 5 allows to disseminate information in the form of

short messages (tweets) that are transmitted mainly through subscription relation-

5https://twitter.com/

82

https://twitter.com/

5.3. PAGERANK FOR TWITTER USER RANKING 83

ships: a message posted by a user will be sent to all subscribers (followers) who will

each in turn decide to transmit the message to their subscribers.

Given a large amount of information generated (500 million tweets per day on

average in 2014), it is important to have efficient search tools, such as a popularity

indicator to distinguish the most interesting users . A commonly used metric is

the number of subscribers. However because of its simplicity, it generates many

abuses, such as the ability to buy large quantities of subscribers to give an illusion

of reputation [54].

A natural alternative is using PageRank to modulate recursively the impor-

tance of users. The idea of applying PageRank to rank Twitter users is not new, but

to our knowledge there has been no evaluation of the algorithm in large scale.

5.3.1 Model

The Twitter subscription graph indicates the follower/followee relationships.

It is a directed graph G = (V,E), where V is the set of Twitter users and E is

the set of relationships. The presence of a pair (i, j) ∈ E means that i follows j.

This is inspired by the standard representation of Web graphs hyperlinks models and

therefore the number of followers of a user is its indegree.

We use the graph twitter-2012 (see Section 5.1) for the experiment. Because

identities of users in the graph are anoymized, it is impossible to verify the validity

of the PageRank by checking the actual user profiles. However, what we do is

comparing the ranking given by PageRank and the one given by indegree which

represents somehow the popularity of users.

To be precise, given two ranking order R1 and R2, we define Ck(R1, R2) as

the overlap of the first k items in R1 and R2, or more formally:

Ck(R1, R2) = 100
|{i such that R1(i) ≤ k and R2(i) ≤ k}|

k
. (5.3)

where R(i) is the rank of item i in the ranking order R.

We use D-Iteration to compute the PageRank of the Twitter graph. Due to

the lack of studies on how to choose suitable parameters for Twitter case, we conserve

the damping d = 0.85 and Z ≡ 1
n
.

83

84 CHAPTER 5. EXPERIMENTS ON LARGE GRAPHS

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

91

92

93

94

95

96

97

98

99

100

k

O
v
e
rl
a
p
C
k
(%

)

20 iterations
10 iterations

Figure 5.6: k-overlapping between PageRank after first few iterations and the real
PageRank.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

10

20

30

40

50

60

70

80

90

100

k

O
v
e
rl
a
p
C
k
(%

)

Figure 5.7: k-overlapping between PageRank and indegree.

5.3.2 Result

If we are only interested in the most popular users, a few iterations are suffi-

cient to point them out. This is shown in Figure 5.6: after 10 iterations, the overlap

with the real PageRank is more than 90% over the first thousand users, and 99%

between 103 and 107. To 20 iterations, the classification of the first 107 users al-

most converges. So for the study of the most popular users, we can set the stopping

condition at 20 iterations.

PageRank can be seen as a refinement of indegree. So one might think that

the difference between the two rankings is to be relatively small. As shown in Figure

84

5.4. CONCLUSION 85

5.7, it is not the case: the overlap is relatively low over the range of interest, seldom

greater than 70%. The PageRank thus provides additional information that is not

contained in the indegree, which is already interesting in itself.

Another interesting point is the presence of a fairly steady slope between

k ≈ 1000 (users with one million or more followers) and k ≈ 100, 000 (10,000 or

more followers), which leads to a local minimum of 54%. The greatest divergence

action on this range means that among users who mainly around 10,000 subscribers

and more (up to 1,000,000), we find relatively more users receiving little PageRank

from their followers, either because the followers have low popularity or because they

follow more users than the average.

It is difficult to give a concrete explanation about this phenomenon due to the

anonymity of the graph, but we can think of the two following hypothesis: firstly, it

is possible that the most popular users in terms of followers (indegree) are mostly

followed by many passive users who produce very few contents or even not at all;

another possibility is that the depression corresponds to users who have illegally

bought followers to boost their illusive popularity [55]. The second hypothesis is

reinforced by the depression zone, meaning the weak PageRank comes from the fact

that most of follower sellers provide buyers with low-quality accounts that do not

have any follower in general, i.e., very low PageRank and are also sold to many other

buyers. As a consequence, the PageRank given by those accounts are very low.

5.4 Conclusion

In this chapter we presented some experimental benchmarking results of the

algorithms: Power Iteration, Jacobi, GS, OPIC and DI to solve PageRank equation.

The comparison metrics are the number of iterations, elementary operations and

request messages. For each of the later two criteria, there is a DI variant that

gives better performance compared to the other classical iteration methods. One

advantage of DI is the capability to be adapted to distributed computation thanks

to its fully asynchronous nature. Evaluating the actual performance gain of the DI

variants in a real distributed environment requires more studies (clever partitioning

scheme, current state of the art, etc.) and are subject to future work. Additionally,

we also see the results of applying PageRank to rank Twitter users. It reveals

85

86 CHAPTER 5. EXPERIMENTS ON LARGE GRAPHS

interesting information that the algorithm can provide in comparison with the mere

indegree-based ranking.

86

Chapter 6

LiveRank

One of the main challenges for large networks data mining is dealing with the

high dynamics of huge datasets: not only are these datasets difficult to gather, but

they tend to become obsolete very quickly. We are interested in the evolution at

large time scale of any large corpus available online. Our primary focus will be the

Web, but our approach encompasses any online data with similar linkage enabling

crawling, like P2P networks or online social networks. We thus focus on batch

crawling, where starting from a completely out-dated snapshot of a large graph like

the Web, we want to identify a significant fraction of the nodes that are still alive

now.

In this chapter, our main contribution is proposing a PageRank-based algo-

rithm helping to build a crawler that can efficiently crawl alive nodes of an old graph.

The advantage of our method is the ability to work in a distributed way. It can also

be exploited in different types of graphs, for example to guess active users in social

networks like Twitter. The results of this chapter were published in [22, 23].

This chapter is organized as follows. Section 6.1 introduces context and mo-

tivation. Section 6.2 talks about the state of the art of previous works. We propose

in Section 6.3 a simple metric to evaluate the quality of a LiveRank and we propose

several classes of possible solutions, which we call LiveRanks. To confirm this in-

tuition, we use three datasets from the Web and from Twitter, for which we have

extracted the activity of items. They allow to verify activity correlations and to

test the proposed LiveRanks. The datasets and how activities were obtained are

87

88 CHAPTER 6. LIVERANK

described in Section 6.4. In Section 6.5, we benchmark our LiveRanks against the

datasets and discuss the results. Finally, Section 6.6 concludes the chapter.

6.1 Introduction

Many old snapshots of large graphs are available today. Reconstructing

roughly what remains from such archives could result to interesting studies of the

long term evolution of these graphs. For large archives where one is interested in

a particular type of pages, recrawling the full set of pages can be prohibitive. We

propose to identify as quickly as possible a significant fraction of the pages still alive.

Further selection can then be made to identify a set of pages suitable for the study

and then to crawl them. Such techniques would be especially interesting when test-

ing the liveness of an item is much lighter than downloading it completely. This is

for instance the case for the Web with HEAD queries compared to GET queries.

If a large amount of work has been devoted to maintaining a fresh set of crawled

pages, little attention has been paid to the coverage of a partial recrawling a fairly

old snapshot.

Second, some graphs tend to be harder to crawl with time. For instance,

Twitter has continuously restricted its capacity to be crawled. Performing a full

scan was possible a few years ago [56], but it can be prohibitively long nowadays.

New techniques must thus be developed for identifying efficiently active accounts in

such settings.

Given an old snapshot, our goal is to identify a significant fraction of the items

that are still alive or active now. The cost we incur is the number of fetches that are

necessary to attain this a goal. A typical cost measure will be the average number

of fetches per active item identified. The strategy for achieving this goal consists in

producing an ordering for fetching the pages. We call LiveRank an ordering such

that the items that are still alive tend to appear first. We consider the problem of

finding an efficient LiveRank in three settings: static when it is computed solely from

the snapshot and the link relations recorded at that time, sampling-based when a

sampling is performed in a first phase allowing to adjust the ordering according to

the liveness of sampled items, or finally dynamic when it is incrementally computed

as pages are fetched.

88

6.2. RELATED WORK 89

We propose various LiveRank algorithms based on the graph structure of the

snapshot. We evaluate them on two Web snapshots (from 10 to 20 millions nodes)

and on a Twitter snapshot (40 million nodes). We propose several propositions based

on the graph structure of the snapshot. A rather simple combination of a small

sampling phase and the propagation of the partial activity information is obtained

in the remaining graph of the snapshot through a modified PageRank algorithm. It

allows to gather from 15% to 75% of the active nodes with a cost that remains within

a factor of 2 from the optimal ideal solution.

6.2 Related work

The process of crawling the Web has been extensively studied. A survey is

given by Olston and Najork [57]. Batch crawling where the process starts from a

given set of pages and terminates at some point is classically opposed to incremen-

tal crawling where pages are continuously fetched. In incremental crawling, one of

the main tuning is to balance the fetch of new and old pages: the former increase

coverage while the latter increase freshness. Both types may allow to discover new

links towards unknown new pages (old pages can change). Cho and Garcia-Molina

have extensively studied the problem of incremental crawling. See for example [58]

for one of the first formalization of freshness and a thorough study on refreshing

policies. They show the counter-intuitive result that adapting the frequency of crawl

proportionally to the frequency of change works poorly with respect to the overall

freshness of the fetched copy of the Web. Variations of freshness have been intro-

duced. For instance, information longevity [59] considers the evolution of fragments

of the content of a page. Closer to our problem, Cho and Ntoulas [60] introduce

the problem of using sampling to estimate the frequency of change per site and then

to fetch a set of pages such that the overall change ratio of the set is maximized.

Their technique consists in estimating the frequency of page change per site and to

crawl first sites with high frequency change. Tan et al. [61] improve slightly over this

technique by clusterizing the pages according to several features: not only their site

(and other features read from the URL) but also content based features and linkage

features (including pagerank and incoming degree). A change ratio per cluster is

then estimated through sampling and clusters are downloaded in descending order

89

90 CHAPTER 6. LIVERANK

of the estimated values. More recently, Radinsky and Bennett [62] investigate a sim-

ilar approach using learning techniques and avoiding the use of sampling. However,

these approaches mainly focus on highly dynamic pages and use various information

about pages whereas we are interested in stable pages and we use only the graph

structure. With a slightly different objective, Dasgupta et al. [63] investigate how

to discover new pages while minimizing the average number of fetches per new page

found. Their work advocates for a greedy cover heuristic when a small fraction of the

new pages has to be discovered quickly. On the opposite, they recommend a heuris-

tic based on out-degrees which performs better for gathering a large fraction of the

new pages. The methods are directed toward dynamicity again but the framework

is closer to ours since we naturally use a similar cost of average number of fetches

per interesting page found. To compare with such previous work, we could derive

a method based on [60] that we call active-sites first: estimate through a sampling

phase the fraction of active pages per web site and then crawl each site completely

by decreasing order of liveness (sites with a higher proportion of alive pages first).

This performs similarly to our techniques for gathering more than 80% of the overall

active pages, but not for smaller fractions (less than 40%) as shown in Section 6.5.

On the other hand such recrawling policies have much less been studied for

other sources of online data such as social networks. Indeed it is possible to similarly

crawl the Twitter network by fetching information about user accounts that are

linked by the follower-followee relations. However, crawling is much more restricted

as all the data is possessed by a single company. This makes our approach even more

relevant in such contexts where gathering a large amount can be extensively long.

Interestingly, Kwak et al. [15] show, among various observation, a correlation

between number of followers and pagerank. On the other hand the activity of a user

in number of tweets seems to be more correlated to his number of followees that his

number of followers. First reported Twitter crawls include [64, 65, 15]. Recently,

Gabiekov et al. [66, 56] have presented a preliminary study on a complete picture

of Twitter social graph. The authors themselves claim that such extensive crawling

could not be possible now anymore as Twitter has restricted its white list of IP

authorized to query its API at high rate.

90

6.3. MODEL 91

6.3 Model

Let G = (V,E) be a graph obtained from a past crawl of a structured network.

By structured network, we mean something like:

� A Web graph, V representing the crawled pages and E the hyperlinks. For i,

j in V , (i, j) is in E if, and only if, there is an hyperlink to j in i. For Web

graphs, edges are always directed.

� A social network, V representing the users and E social relationships between

them. For social networks, edges can be undirected (symmetric relationships

like friendship) or directed (asymmetric relationship like follower/followee).

Let n denote the size of V . At present time, only a subset of G is still active.

The meaning of active depends of the context and needs to be defined: for instance,

alive pages for Web graphs, or non-idle users for social networks, etc. We call a the

function that tells if nodes are active or not: a(X) denotes the active nodes from

X ⊂ V , while ā(X) stands for X \ a(X). Let na be |a(V)|.
The problem we need to solve can be expressed as: how to crawl a maximum

number of pages from a(V) with a minimal crawling cost. In particular, one would

like to avoid crawling too much pages from ā(V). If a was known, the task would

be easy, but testing the activity of a node obviously requires to crawl it. This is the

rationale for the notion of LiveRank.

6.3.1 Performance metric

As any ordering can be seen as a LiveRank, we need some performance met-

rics to define good LiveRanks that succeed in ranking the pages from a(V) first.

Following [63], we define the LiveRank cost as the average number of node retrievals

necessary to obtain an active node when the process is stopped as soon as αa(V)

active nodes have been retrieved for a given desired fraction 0 < α ≤ 1.

Formally, let Li represent the i first pages returned by a LiveRank L, and let

i(L, α) be the smallest integer such that |a(Li)|
na
≥ α. The refresh cost is then defined

by:

cost(L, α) =
i(L, α)

αna

.

91

92 CHAPTER 6. LIVERANK

Remarks on the cost function By construction, the cost function of a LiveRank

is always at least 1. An ideal LiveRank I would perfectly separate a(V) from rest of

the nodes, so its cost function would simply be C = 1. In absence of some clairvoyant

knowledge, I cannot be obtained before all nodes have been tested, which is exactly

what we would like to avoid. The cost function allows to capture this dilemma.

Note that keeping a low cost becomes very difficult as α gets close to 1:

without some oracle, being able to capture almost all active nodes is almost as

difficult as capturing all actives nodes. For that reason, one expects that when α

gets close to 1, the set of nodes any real LiveRank will need to crawl will tend to V ,

leading to an asymptotical cost n
na

. This will be verified in Section 6.5.

Lastly, one may have noticed that the cost function uses na = |a(V)| and

therefore requires a full knowledge of the activity. This is not an issue as the proposed

cost is an external metric used to evaluate the LiveRanks.

We now present the different LiveRanks that we will consider in this chapter.

We broadly classify them in three classes: static, sample-based and dynamic.

6.3.2 Static LiveRanks

Static LiveRanks are computed offline using solely the information from G.

That makes them very basic, but also very easy to be used in a distributed way:

given p crawlers of similar capacities, if L = (l1, . . . , ln), simply assign the task of

testing node li to crawler i mod p.

Random permutation (R) is proposed here to serve both as a reference and as a

building block for more advanced LiveRanks. R completely ignores any information

from G, so its cost should be in average n
|a(V)| , with a variance that tends to 0 as α

tends to 1. We expect good LiveRanks to have a cost function significantly lower

than cost(R).

Decreasing Indegree ordering (I) is a simple LiveRank that we expect to be-

have better than a random permutation. The intuition is that older nodes should

have more incoming edges (in terms of correlation), so high degree nodes should

already be older at the time G was crawled. In web graphs and social networks, old

nodes may last longer than younger ones. Sorting by degree is the easiest way to

exploit that correlation.
92

6.3. MODEL 93

PageRank ordering (P) pushes forward the indegree idea. The intuition is that

pages from the snapshot that are still active are likely to point toward pages that are

still alive also, even considering only the old links. This suggests to use a PageRank-

like importance ranking [26]. A PageRank usually needs two parameters: d, a damp-

ing factor, and X, a zap distribution on V (see the Appendix for details). In absence

of further knowledge, we propose to choose d = .85 (typical value for Web graphs)

and X uniform on V .

Note that it is very subjective to evaluate PageRank as an importance ranking,

as importance should be ultimately validated by humans. On the other hand, the

quality of PageRank as a static LiveRank is straightforward to verify, for instance

using our cost metric.

The validity of the assumptions we made for justifying the choice of I and P

(existence of correlations) will be verified in Section 6.4.3.

6.3.3 Sample-based LiveRanks

Using a LiveRank consists in crawling V in the prescribed order. During the

crawl, the activity function a becomes partly available, and it is natural to reinject

the obtained information to produce a new LiveRank.

To keep things simple, we first consider in this chapter a two-steps sample-

based approach: we first fix a testing threshold z and test z items following a static

LiveRank (like R, I or P). The set Z of nodes tested is called indeffirently the sample

set or the training set. We thus obtain for Z the knowledge of a(Z) and ā(Z), which

allows us to to recompute the LiveRank of the remaining untested pages.

Because the sampling uses a static LiveRank, and the adjusted new LiveRank

is static as well, sample-based LiveRanks are still easy to use in a distributed way

as the crawlers only need to receive crawl instructions on two occasions.

Notice that in the case where the sampling LiveRank is a random permutation,

|a(Z)|n
z

can be used as an estimate for na. This can for instance be used to decide

when to stop crawling if we desire to identify αna active nodes in a(V).

Simple adaptive LiveRank Pa When a page is alive, we can assume it increases

the chance that pages it points to in G are also alive, and that life is transmitted

somehow through hyperlinks. Following this idea, a possible adaptive LiveRank

93

94 CHAPTER 6. LIVERANK

consists in taking for X the uniform distribution on a(Z). This diffusion from such

an initial set can be seen as a kind of breadth-first traversal starting from a(Z),

but with PageRank flavour, by weighting according to the structure of G. Readers

may refer to the Appendix for a more detailed description of adaptive LiveRank

computation.

Active-site first LiveRank ASF (from [60]) To have a point of comparison

with previsous work, we propose the following variant of the Dasgupta et al. [60]

strategy for finding pages that have changed in a recrawl. Their algorithm is based

on sampling for estimating page change rate for each web site and then to crawl sites

by decreasing change rate. Note that it is appropriate when a site structure can be

read from the node identifiers. This is the case while inspecting the URLs of a Web

snapshot, but no such structure exists in Twitter. Active-site first (ASF) consists in

partitioning Z according to web sites. We thus obtain a collection Z1, . . . , Zp of sets.

For each set Zj corresponding to some site i, we obtain an estimation |a(Zj)|/|Zj| of

its activity (i.e. the fraction of active pages in the site). We then sort the remaining

URLs by decreasing site activity.

Double adaptive LiveRank P
+/−
a The simple adaptive LiveRank does not use

the information given by ā(Z). One way to do this is to calculate an “anti”-PageRank

based on ā(Z) instead of a(Z). This ranking would represents a kind of diffusion

of death, the underlying hypothesis being that dead pages may point to pages that

tend to be dead. As a result, we obtain a new LiveRank by combining these two

PageRanks. After having tested several possible combinations not discussed in this

chapter, we empirically chose to weight each node by the ratio of the two sample-

based PageRank, after having set all null entries of the anti-PageRank equal to the

minimal non-null entry.

6.3.4 Dynamic LiveRanks

Instead of using the acquired information just one time after the sampling,

Dynamic LiveRanks are continuously computed and updated on the fly along the

entire crawling process. On the one hand, this gives them real-time knowledge of a,

but on the other hand, as the dynamic LiveRank may evolve all the time, they can

create synchronization issues when used by distributed crawlers.

94

6.3. MODEL 95

Status Description Number of pages Percentage

Code HTTP 404 Page not found 6 467 219 34,92%
No answer Host not found 4 470 845 24,14%

Code HTTP 301 Redirection 3 455 923 18,66%
Target 301 Target of redirection 20 414 0,11%

Code HTTP 200 Page exists 2 365 201 12,77%
True 200 Page really exists 1 164 998 6,29%

Others (403,. . .) Other error 1 761 298 9,51%
Total Graph size 18 520 486 100%

Table 6.1: Status of web pages in uk-2002, crawled in December 2013.

Like for sample-based LiveRanks, dynamics LiveRank use a training set Z of

z pages from a static LiveRank. This allows to bootstrap the adjustment by giving

a non-empty knowledge of a, and prevents the LiveRank from focusing on only a

small subset of V .

Breadth-First Search (BFS) With BFS, one may reconsider the diffusion model

in adaptive LiveRanks at one-hop distance. A BFS queue is initialized with the

(uncrawled) training set Z. The next node to be crawled is popped from the queue

following First-In-First-Out (FIFO) rule. If the selected node appears to be alive, all

of its uncrawled outgoing neighbours are pushed into the end of the queue. When

the queue is empty, we always pick the unvisited node with highest PageRank1.

Alive indegree (AI) The BFS does not give any priority to the popping order

from queue except FIFO. We now propose AI which provides a more reasonable

node selection scheme. For AI, each node in the graph is associated with a live score

value indicating how many alive nodes point to it. These values are set to zeros

at the beginning and always kept up-to-date. AI is initialized by testing Z: each

node in a(Z) will increment the associated values of its out-going neighbours by one.

After Z is tested, the next node to be crawled is simply the one with highest live

score (in case of equality, to keep things consistent, we pick the node with highest

PageRank). Whenever a new alive node is found, we update the live scores of its

untested neighbours.

1We tested several other natural options and observed no significant impact.

95

96 CHAPTER 6. LIVERANK

6.4 Datasets

We chose to evaluate the proposed LiveRanks on existing datasets of the Web

and Twitter available on the WebGraph platform2. In this Section, we present the

datasets, describe how we obtained the activity function a and observe the correla-

tions between a, indegree and PageRank.

6.4.1 Webgraph Dataset

We focused on snapshots of the British domain .uk.

uk-2002 dataset The main dataset we will use is the web graph uk-20023 crawled

by UbiCrawler [38]. This snapshot was crawled in 2002. It contains 18,520,486 pages

and 298,113,762 hyperlinks.

The preliminary task is to grab statistically current states of all web pages

within the graph to determine a. For each URL of the snapshot, we have performed

a GET request and hopefully obtained a corresponding HTTP code. The results are

summarized in Table 6.1. Our main findings are:
� One third of the total pages are no longer available today, the server returns

error 404.

� One fourth have DNS problem (which probably means the web site is also

dead).

� For one fifth of the cases, the server sends back the redirection message 301.

Most redirections for pages of an old site lead to the root of a new site. If we

look at the proportion of distinct pages alive at the end of redirections, it is as

low as 0.1%.

� Less than 13% of pages return the code 200 (success), and we found that half of

them display some text mentioning that the page was not found. To handle this

issue, we have fully crawled all the pages with code 200 and filtered out pages

whose title or content have either Page Not Found or Error 404. Finally, the

alive set contains 1,164,998 pages, accounting for 6.4% of nodes of the entire

graph.
2http://webgraph.di.unimi.it/
3http://law.di.unimi.it/webdata/uk-2002/

96

http://webgraph.di.unimi.it/
http://law.di.unimi.it/webdata/uk-2002/

6.4. DATASETS 97

Not found

10.21%

At least one tweet

55.12%

No tweet

34.67%

Figure 6.1: Statistics of the twitter-2010 dataset

uk-2006 dataset We chose uk-2002 because of its adversarial settings (old snap-

shot with relatively few alive pages), but it is also important to evaluate the impact

of LiveRanks on shorter time scales. In absence of fresh enough available datasets,

we used the DELIS dataset [49], a series of twelve continuous snapshots4 starting

from 06/2006 to 05/2007 (one-month intervals). We set G to the first snapshot

(06/2006). It contains 31,316,403 nodes and 813,807,972 hyperlinks. We then used

the last snapshot (05/2007), and considered the intersection between the two snap-

shots to be the active set a(V). With this methodology, we hope to have a good

approximation for a one-year period. As a result, we obtained na = 11, 142, 177

“alive” nodes representing 35.56% of the graph.

6.4.2 Twitter Dataset

Lastly, we used the dataset twitter-20105 first introduced in [15]. The graph

contains roughly 42 millions Twitter user accounts and 1.5 billions follower-followee

relationships among them. Arcs in the graph are directed from follower to followee:

there is an arc from node x to y if user x follows y. This follows the PageRank

intuition: we consider that a user is important when she is followed by important

users. (Notice that tweets traverse arcs in the reverse direction.)

4http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/
5http://law.di.unimi.it/webdata/twitter-2010/

97

http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/
http://law.di.unimi.it/webdata/twitter-2010/

98 CHAPTER 6. LIVERANK

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Indegree

C
D

F

Alive pages
Dead pages
All

(a) uk-2002: CDF Indegree

10
−8

10
−7

10
−6

10
−5

0

0.2

0.4

0.6

0.8

1

PageRank

C
D

F

Alive pages
Dead pages
All

(b) uk-2002: CDF PageRank

Figure 6.2: Cumulative distribution of nodes according to Indegree/PageRank.

We consider a user as active if he has posted a tweet recently. For that

purpose, we can query the Twitter interface to recover the timestamp of the last-

tweet of the user associated with a given identifier. Recovering the timestamps of all

41 millions users using Twitter API [67] would be extremely slow: when we made

our measurements (05/2014), an authorized Twitter account was limited to 350 API

requests/hour so querying all the accounts would have taken 13 years. While this is

one of the main reasons for designing good LiveRank, we still need a full crawl to

build a ground truth. To overcome this obstacle, we cheated and used a browser-

like crawler to recover each user timeline as if a regular browser was connecting to

Twitter front servers. This is possible because the timestamp of the last entry can

easily be recovered inside the HTML structure of the returned documents. However,

such an approach becomes much more difficult for complex queries and might also

be detected and prevented by Twitter in the future.

Having tested all nodes, we found three main categories of users corresponding

to those who (i) no longer exist, (ii) have no tweet at all and (iii) have tweeted at

least once before the crawling time. Figure 6.1 shows the relative proportion of each

category. Subsequently for those who have ever tweeted, we crawl and extract the

timestamp of their last tweet. Finally, after considering the cumulative distribution

of last-tweet timestamps we arbitrarily decided to fix a six months limit. If we

consider a user is active if she has tweeted during the last six months, we then

obtained a list of 7,300,399 (17.53%) active users, serving as the ground truth for

benchmarking purposes.
98

6.5. LIVERANKS EVALUATION 99

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Number of followers

C
D

F

Active users
Inactive users
All

(a) twitter-2010: CDF Indegree

10
−9

10
−8

10
−7

10
−6

10
−5

0

0.2

0.4

0.6

0.8

1

PageRank

C
D

F

Active users
Inactive users
All

(b) twitter-2010: CDF PageRank

Figure 6.3: Cumulative distribution of nodes according to Indegree/PageRank.

6.4.3 Correlations

We proposed the LiveRanks I and P on the assumption that the activity of

nodes is correlated to the graph structure of the snapshot, so that a node with high

in-degree or PageRank has more chances to be active in the future.

To validate this, we plot in Figure 6.2, 6.3 the cumulative distribution of active

nodes compared to others according to their in-degree (6.2a and 6.3a) and PageRank

value (6.2b and 6.3b) respectively for both datasets uk-2002 and twitter-2010. We

can observe that the curve for active nodes is slightly shifted to the right compared to

the other curves in each figures: active users tend to have slightly higher in-degree

and PageRank than in the overall population. The bias seems relatively small,

but we will measure now how this bias impacts the cost function of corresponding

LiveRanks.

6.5 LiveRanks evaluation

After having proposed several LiveRanks in Section 6.3 and described our

datasets in previous Section, we can now benchmark our proposals.

Regarding the LiveRanks, we focus on two main aspects: (i) efficiency of

different LiveRanks classes and (ii) impact of tuning parameters, especially the choice

of the number z of pages sampled in sample-based and dynamic settings.

As for the datasets, we evaluate how the performance of LiveRanks varies

according to the type of graph structure (Web vs Twitter) and the age of the old

99

100 CHAPTER 6. LIVERANK

crawl. For instance, Web sites clustering is characteristic of Web graphs: a majority

of the links of a Web graph are actually intra-site navigational links, and when a

web server or a DNS entry dies, so do all related pages. This is not the case of social

graph in which users are independent from each other, and we aim to investigate

whether these qualitative differences have an impact on the cost of the LiveRanks.

All our evaluations are based on representations of the cost functions. In

each plot, the x-axis indicates the fraction α of active nodes found at some point

during the crawl and the y-axis corresponds to the relative cost of the crawl up to

that point. A low curve indicates an efficient LiveRank. An ideal LiveRank would

recover all active nodes without probing any other useless node, achieving a constant

cost of 1. The ideal curve is thus horizontal from (0, 1) to (1, 1). On the other hand,

a random LiveRank is quickly constant with an average cost n/na. Note that any

non-clairvoyant LiveRank will terminate at point (1, n/na): in practice, the exact

number of active nodes is unknown during the crawl (but well estimated by random

sampling as shows the random ordering curve). In practice, We thus cannot now

for sure that we have gather all active nodes until we have probed all of them. This

is the reason why all practical LiveRank curves begin to increase significantly when

approaching 1.

When it is not specified, the training set contains the z = 100000 pages of

higher (static) PageRank.

6.5.1 Web graph dataset

We gather in five Figures (Figure 6.5, 6.6, 6.7, 6.8 and 6.9) several LiveRank

evaluations on the web graph uk-2002 to serve as reference.

Figure 6.5 compares the static and sample-based LiveRanks. For static Liv-

eRanks, we see that indegree ordering (I) and PageRank (P) significantly outperform

random ordering, PageRank being the best of the three: it is twice more efficient

than random for small α, and still performs approximately 30% better when up to

α = 0.6. Second, we can get even much better costs with sample-based approaches.

(By default, the sampling set is made of the top z nodes according to PageRank.)

The two adaptive LiveRanks Pa allow to improve ordering by a factor of 6 approx-

imately around α = 0.2 with a cost of 2.5 fetches per active node found. Notice

100

6.5. LIVERANKS EVALUATION 101

that their costs remains steadily low on the range [0.1, 0.4] and even further for the

double adaptive version P
+/−
a .

Figure 6.6 shows the impact of the size z of the sampling set. All curves

correspond to the double adaptive LiveRank P
+/−
a with varying z. Similar results

are obtained with the simple-adaptive version Pa. As the sampling set grows larger,

we spend more effort on testing it at the beginning but it results in a significant

increment of efficiency in the long run. For this dataset, taking a big training set

(z=500 000) allows to reduce the cost of the crawl for α ≥ 0.6.

Another key aspect of the sampling phase is the choice of the sample set. We

can observe in Figure 6.7 that the performance of double adaptive P
+/−
a is further

improved by using a random sample set rather than selecting it according to the

PageRank or by decreasing indegree. The reason is that a random sample avoids

a locality effect in the sampling set as high PageRank pages tend to concentrate in

some local parts of the graph. Note that double adaptive LiveRank through random

sampling is within a factor of 2 from optimal for a large range of α values.

We then compare sample-based approaches to fully dynamic strategies. We

see in Figure 6.8 that bread-first search BFS and alive indegree AI perform similarly

to double adaptive P
+/−
a for low α and can outperform it for large α (especially

BFS). BFS begin to significantly outperform double adaptive for α ≥ 0.5. However,

if one needs to gather half of the active pages or less, double adaptive is still the best

candidate as it is much simpler to operate, especially with a distributed crawler.

Finally, Figure 6.9 then shows the impact of different sampling sets on BFS

and AI. Except for high values of α where a random sampling outperforms other

strategies, the type of sampling does not seem to affect the two dynamic LiveRanks

as much as for the sample-based approaches.

Additionally, we have repeated the same experiments on the dataset uk-2006,

where the update interval is only one year. As Figure 6.11 shows, the results are

qualitatively quite similar, the main difference being better costs due to a higher

proportion of alive pages (less than 1.4 for double adaptive, against 2.8 for the

random ordering).

To compare with techniques from previous works for finding web pages that

have been updated after a crawl, Figure 6.4 compares double adaptive P
+/−
a to active-

site first ASF with random sampling (the same number of random pages is tested

101

102 CHAPTER 6. LIVERANK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

Fraction of alive pages crawled

R
el

at
iv

e
co

st

Double adaptive
Active−sites first
Random sites
Ideal LiveRank

Figure 6.4: Comparison with the cost of an active-site first LiveRank

in each site and the overall number of tests is the same as with double adaptive).

We see that crawling according to site activity performs well on the long run with

similar performance as double adaptive. However for a smaller fraction of desired

coverage (less than 40%), this technique is clearly outperformed by the other (by a

factor of 2 for 20% and 4 for 10%).

6.5.2 Twitter graph

As we discussed earlier, the Twitter graph has structural properties distinct

from Web graphs. In this part we analyze how these differences may change the per-

formance of LiveRanks. We conduct the same set of experiments on twitter-2010

as what have done in uk-2002.

Figure 6.10a compares the static and sample-based LiveRanks. A first obser-

vation is that the double adaptive LiveRank P
+/−
a performs very poorly compared to

the other LiveRanks, including Indegree I. It indicates that if the intuition of some

death propagation was relevant for Web graphs (it was a convenient way to spot

dead web sites for instance), this is not the case for Twitter: the fact that followers

102

6.5. LIVERANKS EVALUATION 103

become inactive does not seem to have an impact on the activity of the followees. In

the end, the simple adaptive LiveRank Pa has the best performance, closely followed

by the static LiveRanks P and I. The three of them have a cost function that seem

to grow roughly linearly between 2 and 4 as α goes from 0 to 0.6.

In Figure 6.10b, we vary the size of the training set, ranging from z =200 000

to z =1000 000. Results indicate that the cost function is almost not affected by

z as long as it is high enough. Compared to the results observed on Web graphs,

this means that taking a big training set: (i) will not burden the cost function for

small α. This likely comes from the fact that the sampling set is PageRank-based by

default, and the static PageRank is already close to the best LiveRank we obtain;

(ii) will not improve the performance for large α either, meaning that no significantly

useful knowledge is obtained after some threshold. This relative independence with

respect to z is another qualitative difference compared to Web graphs,

Figure 6.10c shows the impact of training set types on simple adaptive Liv-

eRank Pa. Unlike Web graphs where random sampling dominates others, in social

network the training set filled by PageRank is the best whereas the random seed is

worse. This can be interpreted as a result of a weaker structural locality (i.e., no

highly correlated clusters like web sites for Web graphs), so that activeness is more

concentrated around important Twitter individual users that should be considered

as soon as possible.

In Figure 6.10d, we compare the simple adaptive PageRank Pa with the dy-

namic LiveRanks. All of them are initialized with default values (PageRank sampling

of size z =100 000). Pa stays the best option: it is slightly better than AI and much

more efficient than BFS. While for Web graphs, dynamics LiveRanks could still be

preferred for some settings, it seems that in the context of Twitter it is never the

case especially considering their deploiement complexity in a distributed crawler.

Lastly, Figure 6.10e indicates the impact of different training sets on the two

dynamic LiveRanks. It confirms that the combination of AI and a PageRank-ordered

training set gives the best results for that type of LiveRanks, which is still not enough

to compete against Pa.

103

104 CHAPTER 6. LIVERANK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

Fraction of alive pages crawled

R
el

at
iv

e
co

st

Random
Indegree
PageRank
Single adaptive
Double adaptive
Ideal LiveRank

Figure 6.5: Static and sample-based LiveRanks (z=100 000)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

Fraction of alive pages crawled

R
el

at
iv

e
co

st

z=100 000
z=200 000
z=300 000
z=400 000
z=500 000
Ideal LiveRank

Figure 6.6: Impact of z (Double adaptive LiveRank)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

Fraction of alive pages crawled

R
el

at
iv

e
co

st

Random
Top PR seed
Top PR Independent seed
Top Indegree
Top Indegree Independent seed
Ideal LiveRank

Figure 6.7: Impact of Z (double adaptive with z=100 000)

104

6.6. CONCLUSION 105

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

Fraction of alive pages crawled
R

el
at

iv
e

co
st

Double adaptive
BFS
Alive Indegree
Ideal LiveRank

Figure 6.8: Sample-based and dynamic LiveRanks (z=100 000)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

Fraction of alive pages crawled

R
el

at
iv

e
co

st

Alive Indegree − Random seed
Alive Indegree − Top Indegree seed
Alive Indegree − Top PR seed
BFS − Random seed
BFS − Top Indegree seed
BFS − Top PR seed
Ideal LiveRank

Figure 6.9: Impact of Z on dynamic LiveRanks (z=100 000)

6.6 Conclusion

In this chapter we have investigated how to efficiently retrieve large portions

of active nodes from an old crawl using orderings we called LiveRanks.

For Web graphs, we observed that PageRank is a good static LiveRank. In a

12 years old crawl, it outperforms a random rank by a factor approximately 1.5 for

gathering half of the alive pages with a cost of 10 fetches per alive page. However,

we get a significant gain by first testing a small fraction of the pages to adjust the

PageRank in a sample-based approach. We then get a cost as low as two fetches per

alive page.

We get somewhat similar results on a Twitter dataset. The main difference

is that costs tend to increase linearly with the fraction of alive items recovered with

Twitter whereas the cost is rather stable with Web in the range 15%-75%. On this

range, the cost increases roughly from 2 to 4 fetches per alive pages for Twitter graph

when it remains around 2 for the Web.

105

106 CHAPTER 6. LIVERANK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Fraction of active users cralwed

R
el

at
iv

e
co

st

Random
Indegree
PageRank
Simple adaptive
Double adaptive
Ideal LiveRank

(a) twitter-2010: Static and sample-
based LiveRanks (z=100 000)

0 0.05 0.1 0.15 0.2 0.25
0.5

1

1.5

2

2.5

3

Fraction of active users crawled

R
el

at
iv

e
co

se

z=200 000
z=400 000
z=600 000
z=800 000
z=1000 000
Ideal LiveRank

(b) twitter-2010: Impact of z (Double
adaptive)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

1

1.5

2

2.5

3

3.5

Fraction of active users crawled

R
el

at
iv

e
co

st

Random
Top PR seed
Top PR independant seed
Top Indegree seed
Top Indegree independent seed
Ideal LiveRank

(c) twitter-2010: Simple adaptive
with different training sets (z=100 000)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

Fraction of active users crawled

R
el

at
iv

e
co

st

Simple adaptive
Alive Indegree
BFS
Ideal LiveRank

(d) twitter-2010: Comparison be-
tween sample-based and dynamic Liv-
eRanks (z=100 000)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

Fraction of active users crawled

R
el

at
iv

e
co

st

Alive Indeg − Random seed
Alive Indeg − Top Indegree seed
Alive Indeg − TopPR seed
BFS − Random seed
BFS − Top Indegree seed
BFS − Top PR seed
Idead LiveRank

(e) twitter-2010: Impact of training
set on dynamic LiveRanks (z=100 000)

Figure 6.10: twitter-2010 evaluation results

106

6.6. CONCLUSION 107

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

Fraction of alive pages crawled

R
el

at
iv

e
co

st

Random
Indegree
PageRank
Simple adaptive
Double adaptive
Ideal LiveRank

(a) Static and sample-based LiveRanks, (z=200
000)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

Fraction of alive pages crawled

R
el

at
iv

e
co

st

z=200 000
z=400 000
z=600 000
z=800 000
z=1000 000
Ideal LiveRank

(b) Impact of z (Double adaptive LiveRank)

Figure 6.11: uk-2006 main evaluation results

Compared to previous works on identifying modified pages, our technique

performs similarly for large desired fraction (around 80%) when compared to the

LiveRank algorithm inspired by the technique in [60] that could be adapted to our

setting in the Web case. However, for a small fraction (less than 40%) our method

outperforms this technique. Interesting future work could reside in using our tech-

niques for the identification of pages that have changed and compare with such

techniques in the domain they were conceived for.

Interestingly, we could not get significant gain when using fully dynamic Liv-

eRank. As noted before, each of the two phases of the sample-based approach can

be easily parallelized through multiple crawlers whereas this would be much more

difficult with a fully dynamic approach. The sample-based method could for example

be implemented with in two rounds of a simple map-reduce program whereas the

dynamic approach requires continuous exchanges of messages between the crawlers.

107

Chapter 7

Summary and future work

The rapid growth of World Wide Web and social networks has created a need

of having good ranking systems. Although there has been a lot of research efforts

and results on this topic, it still has many issues that need to be considered, like

ground truth definition or large scale computation, etc.

In this thesis, we investigate the D-iteration, an algorithm proposed by Dohy

Hong that can compute the PageRank vector, based on diffusion approach. We sum-

marize the theoretical results concerning the correctness (convergence), the precision

measurement and update equation. Our algorithm shows its potential through exper-

iments on real data in comparison with Jacobi, Gauss-Seidel, SOR, OPIC, GMRES,

etc.

Based on the properties of DI, there are some interesting issues to be discussed.

DI is capable of adapting to asynchronous computation. Recalling that some clas-

sical methods are restricted by how nodes are iterated. For instance, Gauss-Seidel

updates its vector at element level: it applies right away the vector elements xjk

to compute xik for j < i in the kth iteration and this procedure impedes the asyn-

chronous deployment. On the contrary, DI has almost no constraint on diffusion

sequence except the fairness which is easy to meet. However, DI still requires some

further work to be fully efficient in a distributed setting: controlling the fluid spread

on several machines in distributed computation is not easy because the issues involve

in graph partitioning process (i.e., assigning certain groups of nodes to one or several

machines), diffusion strategy and graph storage scheme.

108

109

On the other hand, with DI one can control the precision of the approximate

PageRank vector while it is impossible with other algorithms. This advantage makes

sense in the case where different applications do not demand the same approximation

accuracy. For example in many recommendation systems, we are only interested

in the top k items instead of the entire ranking vector, and the top k items can

probably be detected after a few tens of iterations (see example of Twitter ranking

in Figure 5.6 of Section 5.3). Thanks to this observation, one can formulate the

number of necessary iterations to find the top k of total n items with a precision p

as a function f(k, n, p). This value can be used as the stopping condition of DI.

As for graph dynamics, we only considered in this thesis the evolution of the

graph in terms of links modification. In fact, a complete graph update comprises of

node/link additions/removals. This will bring a huge impact on the update strategy,

for example on how to modify the fluid while having new node arriving. Obviously,

the problem is even more difficult to tackle when it is not clear how the graph evolves.

For further developing the existing DI algorithm, we basically plan to focus on

how to adapt and implement DI in a distributed manner. Related problems (graph

partitioning,...) of course would be also the subject of future investigations.

An approximation of the PageRank vector of a partially hidden graph was

discussed as well. In reality, the graph is not always fully accessible (specially in case

of distributed computation) so that we have to approximate it based on the visible

part. The strategy of how to unveil the graph becomes crucial. It has been shown

that if one chooses random nodes and high-rank nodes alternatively, the PageRank

vector can be approximated with a precision gain factor of 10 compared to the case

where only one of them is chosen infinitely. A potential of future work on this topic

is building a dynamic scheduler that, based on the perspective of the current graph

observed it can tell what is the good node to request next.

An application of PageRank to Twitter social network was carried out to

rank Twitter users. The results showed that there is not a strong correlation between

PageRank and indegree ranking, i.e., PageRank provides additional information that

is not contained in the indegree, which is already interesting in itself. However, the

two rankings may be used in slightly different applications. Let us take an example

of Twitter. If one wants to optimize the information propagation rate (number of

users receiving information) in a short time step, the indegree ranking should be

109

110 CHAPTER 7. SUMMARY AND FUTURE WORK

more interesting than the PageRank which is probably optimized for a long-term

propagation.

We also proposed LiveRank, a ranking order that helps to efficiently retrieve

large portions of active nodes from an old crawl. Our work establishes the possibility

of efficiently recovering a significant portion of the active part of an old snapshot

and advocates for an adaptive PageRank with sampling for obtaining an efficient

LiveRank. Our work establishes the possibility of efficiently recovering a significant

portion of the alive pages of an old snapshot and advocates for the use of an adaptive

sample-based PageRank for obtaining an efficient LiveRank.

Figure 7.1: Positioning system with 1 RP and many MTs.

Additionally, in Appendix D we proposed a new method called Two-Step

Movement (2SM) to estimate the position of MT. It requires only one reference

point (RP) by exploiting useful information given by the position change of the MT

or user movement. More precisely, the method consists of two basic ideas. The first

one is that by using the motion of the device, we can determine its position through

one and only one reference point (RP), instead of many (e.g. at least 3 in GPS-

like solution). We allow the minimal number of required reference device. The cost

of a reference system (e.g. using WiFi access points, RF base stations, Bluetooth

beaconing devices) increases proportional to the density of the reference devices. We

keep it minimal. The second idea is that by using the geometry through our new

algorithm (in solving a couple of quadratic equations), we can determine the position

of the device even when the reference is a moving object (surely includes the special

case when the reference is static or almost static that is todays common assumption).

110

111

The algorithm has four main advantages: (i) implementable to today’s smart devices

(e.g. smart phones) and wireless networks, (ii) the requirement of infrastructure is

low, database (like WiFi fingerprint) is not required, low computation complexity,

(iii) it is not limited by the number of devices in use (scalable) and finally (iv) it

offers much better performance, which in comparison to iBeacon 1 (with average

error = 3 meters), our solution can reduce the positioning error from 2 times (error

is reduced to 1 meter) to 10 times (error is reduced to 0.3 meter) in various cases.

It is not obvious to perceive the relation between ranking and localization

systems. As an effort to bridge them for future works, we may think of a positioning

system using one RP and many MTs in its coverage area shown in Figure 7.1.

Suppose that thanks to the 2SM, all MTs can estimate their positions but with

different errors, i.e., some of them are localized more precisely than others. Now,

the question is how to select one (or a few) MT(s) and to use it as a semi-RP to

reduce the estimation error of the other MTs. In such a context, a ranking algorithm

managed by the true RP may help. Based on the error observed while solving the

quadratic equations of each MT, the RP can assign a reliability degree for each MT

and decide which one (probably the highest) can be used as the semi-RP. Hopefully,

with the additional information given by the semi-RP (plus the original RP), the

position estimation process can be improved.

1https://support.apple.com/en-us/HT202880

111

https://support.apple.com/en-us/HT202880

Appendix A

GMRES: Residual Minimization over

Krylov subspace

To provide a complementary information about GMRES introduced in Sec-

tion 2.2.4, this appendix will give the pseudo-code of the algorithm and an numerical

example to show how it works step-by-step.

The pseudo-code of GMRES is shown in Algorithm 5.

Algorithm 5 GMRES algorithm: Ax = b

1: Compute r0 = b− Ax0, β = ‖r0‖2, and v1 = r0/β . Start with initial guess
vector x0

2: Define the (m+ 1)×m matrix Hm = {hij}1≤i≤m+1,1≤j≤m. Set Hm = 0. .
Initialize Hessenberg matrix

3: for j = 1 : m do
4: Compute wj = Avj
5: for i = 1 : j do
6: hij = (wj, vi) . Product of wj and vi
7: wj = wj − hijvi
8: end for
9: hj+1,j = ‖wj‖2. If hj+1,j = 0 set m = j and go to 12.

10: vj+1 = wj/hj+1,j

11: end for
12: Compute ym the minimizer of ‖βe1 −Hmy‖2 and xm = x0 + Vmym. . e1 is the

1st column of an identity matrix

Given a graph in Figure A.1, we construct the corresponding transition matrix

P , then choose the damping d and the zap vector Z as follows

112

113

N1 N2 N3

Figure A.1: An example graph.

P =


0.5 0.5 0

0.5 0 0

0 0.5 1

 , d = 0.25, Z =


0.5

0.5

0



We will find the PageRank vector x of the equation x = dPx+(1−d)Z using

GMRES. Thus we need to transform the equation to the form Ax = b such that

A = I − dP (I is an identity matrix) and b = (1− d)Z. Starting with the initial x0

as follows

A =


0.75 −0.25 0

−0.25 1 0

0 −0.25 0.5

 , b =


0.25

0.25

0

 , x0 =


0

0

0


we compute r0:

r0 = b− Ax0 =


0.25

0.25

0

−


0.75 −0.25 0

−0.25 1 0

0 −0.25 0.5




0

0

0

 =


0.25

0.25

0

 .

so that β = ‖r0‖2 = 0.3536 and v1 =
r0
β

=


0.7071

0.7071

0

 and ‖v1‖2 = 1.

1st iteration:

• First, we compute w1:

113

114 APPENDIX A. GMRES: RESIDUAL MINIMIZATION OVER KRYLOV SUBSPACE

w1 = Av1 =


0.3536

0.5303

−0.1768

⇒ h11 = w1 · v1 = 0.625.

w1 = w1 − h11v1 =


−0.0884

0.0884

−0.1768

⇒ h21 = ‖w1‖2 = 0.2165.

• Then v2:

v2 =
w1

h21
=


−0.4082

0.4082

−0.8165

⇒ ‖v2‖2 = 1.

• We obtain the two matrices H1 and V1:

H1 =

(
0.625

0.2165

)
;

V1 = (v1) =


0.7071

0.7071

0

;

The next step is to compute y1 which minimizes ‖βe1 − H1y‖2. We apply

QR factorization using GramSchmidt process such that the Hessenberg matrix Hi is

decomposed as follows:

H1 = Q1R1.

where Q1 is an orthogonal matrix and R1 is an upper triangular matrix. In the first

iteration, the process results in two matrices Q1 and R1:

H1 =

(
−0.9449 −0.3273

−0.3273 0.9449

)
︸ ︷︷ ︸

Q1

(
−0.6614

0

)
︸ ︷︷ ︸

R1

.

To solve the least square problem ‖βe1 −H1y‖2, we rewrite the equation:

H1y = βe1

⇔ H
T

1H1y = H
T

1 βe1

⇔ RT
1Q

T
1Q1R1y = RT

1Q
T
1 βe1

⇔ RT
1R1y = RT

1Q
T
1 βe1 (Q1 is orthogonal)

⇔ R1y = QT
1 βe1

114

115

and thus the solution y1 = R1\QT
1 βe1 where the operator ‘\’ is the left division. We

have:

y1 =

(
−0.6614

0

)∖[(
−0.9449 −0.3273

−0.3273 0.9449

)(
0.3536

0

)]
=
(

0.5051
)

and the result x1 of the first iteration is:

x1 = x0 + V1y1 =


0

0

0

+


0.7071

0.7071

0

× (0.5051
)

=


0.3572

0.3572

0

 .

and the precision r1 = b− Ax1 =


0.0714

−00.179

0.0893

⇒ ‖r1‖2 = 0.1157

2nd iteration: is similar to the previous step. More precisely:

w2 = Av2 =


−0.4082

0.5103

−0.5103

.

w2 = w2 − h12︸︷︷︸
projv1w2=0.0722

v1 − h22︸︷︷︸
projv2w2=0.7917

v2 =


−0.1361

0.1361

0.1361

.

h32 = ‖w2‖2 = 0.2357.

v3 =
w2

h32
=


−0.5774

0.5774

−0.0.5774

⇒ ‖v3‖2 = 1.

We obtain the two matrices H2 and V2:

V2 = (v1, v2) =


0.7071 −0.4082

0.7071 0.4082

0 −0.8165


H2 =


0.625 0.0722

0.2165 0.7917

0 0.2357

 =


−0.9449 0.3112 0.1015

−0.3273 −0.8984 −0.2929

0 −0.31 0.9507


︸ ︷︷ ︸

Q2


−0.6614 −0.3321

0 −0.7603

0 0


︸ ︷︷ ︸

R2

.

We then have:

115

116 APPENDIX A. GMRES: RESIDUAL MINIMIZATION OVER KRYLOV SUBSPACE

y2 = R2\[QT
2 βe1] =


−0.6614 −0.3321

0 −0.7603

0 0


∖[

QT
2


0.3536

0

0


]

=

(
0.5778

−0.1447

)
.

and the result x1 of the second iteration is:

x2 = x0 + V2y2 =


0

0

0

+


0.7071 −0.4082

0.7071 0.4082

0 −0.8165

×
(

0.5778

−0.1447

)
=


0.4677

0.3495

0.1182

 .

and the precision r2 = b− Ax2 =


−0.0134

0.0174

0.0283

⇒ ‖r2‖2 = 0.0358.

kth iteration: is similar to the previous iterations. The algorithm continues

until finding the solution xk such that ‖rk‖2 < ε.

116

Appendix B

Proof of diagonal term elimination

with DI

In Section 5.2.2, we saw that DI-cyc has exactly the same performance with

Gauss-Seidel in case of web graph if we apply diagonal elimination. This Appendix

will provide a rigorous proof why we observed such a phenomenon.

D-Iteration is used to solve the PageRank equation x = dPx + (1 − d)Z

whereas conventionally Gauss-Seidel is used to solve the equation Ax = b as follows

x
(k+1)
i =

1

aii

(
bi −

∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

)
. (B.1)

Let A = dP , to solve the PageRank equation we transform the GS equation to the

form:

(I −A)x = b. (B.2)

We have:

xi =
∑
j 6=i

Aij

1−Aii

xj +
bi

1−Aii

. (B.3)

where Aii < 1. Let A′ be a matrix of size n × n and b′ be a vector of size n such

that:

A′ij =
Aij

1−Aii
.

A′ii = 0.

b′i = bi
1−Aii

.

117

118 APPENDIX B. PROOF OF DIAGONAL TERM ELIMINATION WITH DI

We rewrite the GS equation:

(I −A′)x = b′. (B.4)

and

xi =
∑
j 6=i

A′ijxj + b′i. (B.5)

Equation B.3 and B.5 are exactly equivalent. Applying GS on either B.2 or

B.4 yields the same result. In other words, the transformation would be obtained by

combining two main changes:

� removing self-loop link, updating incoming link weight

i

Aii

Aik

Aij

i
Aik

1−Aii

Aij

1−Aii

� and updating vector b to b′ such that b′i = bi/(1−Aii).

In diffusion point of view, diagonal term elimination can be done by infinitely

diffusing fluid on self-loop link and then is equal to accumulating fluid at the self-loop

node:

i

fi

Aii

i

fi
1−Aii

With DI, recall the Equation 3.6:

Hk + Fk = F0 +AHk.

We have:

Hk = Hk−1 + JikFk−1.

= (Hk−1 − Jik(F0 − Fk−1)) + JikF0.

= (Hk−1 − Jik(Hk−1 −AHk−1)) + JikF0

= (I − Jik(I −A))Hk−1 + JikF0

118

119

where I is the identity matrix, Jm is a matrix with all entries equal to zero except

the m-th diagonal term: (Jm)mm = 1, F0 is the initial condition vector and ik is the

kth choice of node for the diffusion. The choice of the sequence I = {i1, i2, ..., in, ...}
with i ∈ {1, .., n} is the main optimization factor of the D-iteration.

Therefore, if we apply diagonal term elimination and the same choice se-

quence of nodes, vector Hk of DI is exactly the same as vector x obtained by GS in

Equation B.5, and thus in Equation B.3.

119

Appendix C

Colonel Blotto games

In the second year of my PhD, I participated in building a Demo for Bell-Labs

Future X Days 1. The demo consists in explaining the basis of Colonel Blotto game

(see below) and its applications to solve real-life problem.

According to [68], Colonel Blotto game is a two-person zero-sum game 2 in

which the two players simultaneously distribute limited resources over several ob-

jects, or battlefields. The player distributes more resources than the other to a bat-

tlefield wins that battlefield, and the gain is equal to the total number of battlefields

won.

The Colonel Blotto aims at finding the optimum distribution of soldiers (or

resources) over n battlefields knowing that: (i) the party (or player) that has allo-

cated the most soldiers on a battlefield wins that battlefield, but (ii) both parties

do not know how many soldiers the other party will allocate to each battlefield, and

(iii) both parties try to maximize the number of battlefields they expect to win.

Based on that, we build two demos of Colonel Blotto games 3.

In the first demo (see Figure C.1), we set up two parties, five battlefields and

initially give 100 solders to each party. Each battlefield will bring a certain gain

value for the party who wins that battlefield. The target of the two parties is to

maximize the total gain value they can win.

1https://www.bell-labs.com/programs/bell-labs-futurex-days/
2Zero-sum game is a situation in which a player’s gain (or loss) of utility is exactly equal to the

losses (or gains) of the utility of the other player(s)
3The source code (16MB) is available at

http://www.mediafire.com/download/05j01bpoi55c0ym/Colonel_Blotto_Demos.zip

120

https://www.bell-labs.com/programs/bell-labs-futurex-days/
http://www.mediafire.com/download/05j01bpoi55c0ym/Colonel_Blotto_Demos.zip

121

The second demo (see Figure C.2) is an extension of the first demo. It com-

prises of 38 European countries representing 38 battlefields of which the gain values

correspond to the number of borders they have in common with other countries. The

budget of the two players (for example two enterprises providing internet services) is

allowed not to be equal. Besides the classical Colonel Blotto game, players can join

the game with some additional strategies like Tit-For-Tat 4, etc.

The two demos are written using PHP, JavaScript, JQuery and Matlab.

4http://en.wikipedia.org/wiki/Tit for tat

121

122 APPENDIX C. COLONEL BLOTTO GAMES

Figure C.1: Demo 1. Colonel Blotto game with 5 battlefields.

122

123

Figure C.2: Demo 2. Colonel Blotto game with 38 battlefields representing 38 Eu-
ropean countries.

123

Appendix D

Exploiting user movement for

position detection

During the last year of the PhD, besides the main research topic on PageRank

and social networks, I was also interested in positioning systems and localization

issues. The main goal of this adventure is firstly to challenge myself and satisfy my

curiosity (personal), then to enlarge my research domain (professional).

Positioning systems are crucial to today’s digital society. They help to locate

objects or people carrying the objects and provide geographic information, thus

to facilitate many human activities. For instance, vehicle navigation systems are

indispensable for drivers in big cities. Some location-based services are deployed in

commercial malls so that customers can get navigation while walking in complex

environment and can receive promotion advertisement from shops. The market of

indoor and outdoor location-based services has grown rapidly in the last decade.

However, the major issue of indoor localization system is the trade-off between

implementation cost and accuracy. A low-cost system which demands only few

hardware devices could save the cost but often it turns out to be less reliable.

In this chaper, our main contribution is proposing a new method, called Two-

Step Movement (2SM), which requires only one reference point (RP) by exploiting

useful information given by the position change of a mobile terminal (MT), or the

user movement. This method can minimize the number of reference points required

in a localization system or navigation service and reduce system implementation

cost. Analytical result shows that the user position can be thus derived and given in

124

D.1. INTRODUCTION 125

RPs required Distance Additional requirement(s)

Triangulation
3 Yes No
2 Yes Last position tracked or motion prediction
1 Yes Angle of arrival (i.e., using array of antennas)

2-Step Movement 1 Yes Measurement of user movement

Table D.1: Requirement comparison between triangulation and proposed 2-Step
Movement (2SM) method.

simple closed-form expression. Finally, simulation is conducted to demonstrate its

effectiveness under noisy environment. We published the results of this chapter in

[24, 25].

This chapter is organized as follows. Section D.1 introduces the context of the

study. Section D.2 talks about existing positioning solutions. Section D.3 describes

the system design of the 2SM. Section D.4 evaluates performance of the method.

Section D.5 presents how to improve the 2SM by using multi-sampling technique.

Section D.6 describes a generalization of the algorithm when the reference point is

mobile. Finally, Section D.7 concludes the chapter.

D.1 Introduction

Positioning systems are crucial to today’s digital society. They help to locate

objects or people carrying the objects and provide geographic information, thus

to facilitate many human activities. For instance, vehicle navigation systems are

indispensable for drivers in big cities. Some location-based services are deployed in

commercial malls so that customers can get navigation while walking in complex

environment and can receive promotion advertisement from shops. The market of

indoor and outdoor location-based services has grown rapidly in the last decade.

Global positioning system (GPS) is very popular and widely used for user

localization. When line-of-sight to at least four GPS satellites is available, loca-

tion (latitude, longitude, and elevation) and timing information can be obtained.

Although GPS is very convenient outdoors, its quality is susceptible to weather con-

ditions, for example when sky view is poor due to fog, rain, cloud, etc., or being

blocked by tall buildings in urban areas. These issues can significantly degrade the

accuracy. As expected, GPS is not for indoor use due to the lack of line-of-sight.

There also exists cellular-based positioning systems [69] which are built on measuring

125

126 APPENDIX D. EXPLOITING USER MOVEMENT FOR POSITION DETECTION

signal strength from three or more base stations for tracking mobile user’s location.

However, these solutions also do not work well to indoors.

Various indoor positioning systems have been developed, see e.g., [70, 71, 72].

They can be categorized into network based or non-network based solutions. The

network based approach, which takes advantages of existing network infrastructure

such as wireless local area networks (WLANs), without demanding new infrastruc-

ture, can maintain low deployment cost. The non-network based approach is to use

dedicated positioning infrastructure and often can provide higher reliability but at

extra cost. For example, ultrasound and infrared based solutions have high deploy-

ment cost. One may also consider simple proximity-based solution like iBeacon [73]

which however is only able to offer an approximate location. Some systems consider

using visible light to construct an indoor positioning system with high accuracy

[74, 75]. A good positioning system should be cost-effective and also be able to offer

high accuracy.

Constructing an efficient and simple positioning system is always challenging.

Technically, it would depend on the number of reference points (RPs) that we can

have, on the technologies to be used (e.g., RF-based, ultrasound, infrared, etc.),

and also on the characteristics of the environment. In this study, we propose a

geometry-based positioning method which can determine user position by only using

one RP and exploiting his/her simple movement, for instance walking or waving

his/her hand-held device, and some simple information. As the solution requires

only one RP and can provide either exact result in noiseless environment or accurate

positioning in noisy condition, our approach brings competitive advantages compared

to other methods, thanks to its simplicity and effectiveness. Meanwhile, the method

is interesting and may have a high potential to improve today’s technology or existing

solutions.

D.2 Related Work

Indoor positioning problem has attracted research over years [76, 77, 78, 79].

Lots of studies have been done extensively and many possible solutions have been

proposed so far. Generally speaking, there are four major approaches to solve this

126

D.2. RELATED WORK 127

problem: triangulation, fingerprinting, scene analysis, and proximity. We will discuss

them below.

Triangulation is used to estimate the position of a user or mobile terminal

(MT) if the geographical coordinates of the RPs are known and assume that the

MT is capable of measuring the distance between itself and the RPs. A priori, this

method requires three RPs to construct a distinct geometric intersection of three

circles, which indicates the position of the MT. Fig. 1(a) illustrates the principle (or

see e.g., [70]). Note that not all schemes based on triangulation requires three circles,

see e.g., Fig. 1(b) and (c). For instance, given angle-of-arrival (AoA) information,

using only one RP is sufficient to locate the MT.

Fingerprinting [80] is to estimate device position by using pre-measured

location-related data. This method consists of two phases: an offline training phase

and an online position estimation phase. In the offline phase, location-related data is

collected at different positions in the area. During the online position determination

phase, real-time location-related data is measured and then matched with the set of

data gathered during the offline phase to estimate the device’s location.

Scene analysis localization method [76] is based on a set of images or scenes

received by one or multiple cameras. This approach in principle does not require user

(to be tracked) to carry any extra device. However, the solution is usually expensive

because it requires one or many cameras to perform tracking and may prone to a

high computation cost due to image or video processing.

Proximity helps to detect if a MT is nearby or for example in the coverage

area of a RP. However, it is hard to provide accurate position with high reliability.

Each of the above method also has some variants or hybrid scheme. Our

proposed geometry-based solution is built on triangulation. We will explain and

discuss in comparison other methods stemmed from this branch. The cost and

accuracy of triangulation method primarily rely on the number of RPs required.

Traditionally, one would need at least three RPs to determine the position of the

MT.

Fig. 1(b) shows a variant of traditional triangulation method, which requires

two RPs and the last estimated previous position of the mobile terminal so as to

eliminate one of the two intersection points of the two circles constructed by the

two RPs. In such case, the location closer to the last estimated position would be

127

128 APPENDIX D. EXPLOITING USER MOVEMENT FOR POSITION DETECTION

A(xA, yA)

B(xB, yB)

C(xC , yC)

(a) Three RPs

A(xA, yA)

B(xB, yB)

The last estimated
position of the MT

(b) Two RPs, plus the last estimated position
tracked

A(xA, yA)

α

(c) One RP, plus information
of angle-of-arrival α

Figure D.1: Positioning techniques using different number of reference points (RPs).

selected. Or, the system has to be able to predict user mobility pattern in order

to select one. Note that this method still requires more than one RP. A variant of

the above triangulation method is to use only one RP but requires the information

of angle-of-arrival (AoA) provided by an array of antennas either implemented in

the user terminal (MT) or at the RP [81], see Fig. 1(c). However, such an array of

antennas is often costly and cumbersome.

128

D.3. SYSTEM DESIGN 129

D.3 System design

Here, we propose a new method called “Two-Step Movement (2SM)”. It aims

to improve the classical triangulation approach and requires only one RP. It consists

in making use of movements of the user (i.e., changes in the position of the MT),

either active (e.g., a user may wave his/her MT to assist) or natural (e.g., the user

is walking or moving), relative to the position of the RP. Therefore, 2SM turns

out to have a competitively low deployment cost and without extra or expensive

tracking hardware such as antenna array and is able to determine user position in

exact closed-form solution. The simplicity and effectiveness would highly facilitate

practical indoor positioning systems. Table D.1 gives a comparison of the above

methods and outlines their key difference. In our proposed 2SM method, the MT

is supposed be able to measure his/her movement using its embedded sensors and

applications (Apps), which are common in today’s smartphones.

D.3.1 One-Step Movement (1SM)

Our method exploits useful information generated by user movement. For the

sake of simplicity, the 2SM is presented as a combination of two One-Step Movements.

One-Step Movement (1SM) makes use of one position change (one move) to

identify the two possible locations (position candidates) of the MT. We consider the

following system and assumptions:

� The position of the RP is known.

� The MT is capable of measuring the distance between itself and the RP.

� The MT is capable of measuring the distance and the angle (direction) of the

movement it has done.

Fig. D.2 illustrates the system design:

� A is the RP and its position (xA, yA) is known.

� B is the initial position of the MT that is unknown and we want to compute

it, denoted by coordinates (xB, yB).

129

130 APPENDIX D. EXPLOITING USER MOVEMENT FOR POSITION DETECTION

� C is the position of MT right after the first movement, (xC , yC), which is also

unknown.

� MT is capable of measuring the distance between itself and the RP. That is,

the distances AB and AC are given for example by measuring the received

signal strength or standard techniques.

� MT is capable of measuring the distance and the angle of the movement it has

done, thus BC and the angle α ∈ (0, 2π] (with respect to the positive x-axis)

are also measurable.

Theorem 5. Suppose that A(xA, yA), AB,BC,AC, and α are known, the One-

Step Movement (1SM) will give two estimated locations, denoted by generic point

B(xB, yB), whose x and y coordinates satisfy:

xB cosα + yB sinα = xA cosα + yA sinα− (AB2 +BC2 − AC2)

2BC
. (D.1)

Proof. Using Fig. D.2, from the two measured distances AB and AC, the equations

of the two circles centered at A(xA, yA) on which the MT probably lies are expressible

as:

(xB − xA)2 + (yB − yA)2 = AB2

(xC − xA)2 + (yC − yA)2 = AC2
(D.2)

where
xC = xB +BC cosα,

yC = yB +BC sinα.
(D.3)

From (D.2), we have:

AB2 − AC2 = (xB − xC)(xB + xC − 2xA)

+ (yB − yC)(yB + yC − 2yA).
(D.4)

Substitute xC and yC in (D.3) to (D.4), we can have:

AB2 − AC2 = −BC cosα(2xB +BC cosα− 2xA)

−BC sinα(2yB +BC sinα− 2yA).
(D.5)

130

D.3. SYSTEM DESIGN 131

which can be re-written as:

AB2 +BC2 − AC2 = −2BC(xB cosα− xA cosα + yB sinα− yA sinα). (D.6)

hence,

xB cosα + yB sinα = xA cosα + yA sinα− (AB2 +BC2 − AC2)

2BC
. (D.7)

Eqn. (D.1) can be solved as follows:

• If sinα = 0, thus cosα = ±1, (D.1) becomes:

xB = xA ±
(AB2 +BC2 − AC2)

2BC
.

It is then straightforward to compute the values of xB and yB, by substituting the

value of xB to (D.2).

• If sinα 6= 0, dividing (D.1) by sinα, we have:

yB = − cotαxB + xA cotα + yA −
AB2 +BC2 − AC2

2BC sinα
.

Let a = − cotα, b = xA cotα + yA − (AB2 + BC2 − AC2)/(2BC sinα), we see that

now yB is expressible as a function of xB such that yB = axB + b. Substituting yB

to the first equation of (D.2), we have:

(xB − xA)2 + (axB + b− yA)2 = AB2.

Then

(1 + a2)x2B − 2xB(xA − a(b− yA)) + x2A + (b− yA)2 − AB2 = 0. (D.8)

The above quadratic equation (D.8) can be solved easily.

Algorithm 6 shows in detail how to perform 1SM. It outputs two points

B1(xB1, yB1) and B2(xB2, yB2), which are the possible solution of B.

Remark 1. It is clear that one of the two points, B1(xB1, yB1) and B2(xB2, yB2),

must be the position of the MT (or both of them are, if B1 and B2 are identical).

131

132 APPENDIX D. EXPLOITING USER MOVEMENT FOR POSITION DETECTION

x

y

A(xA, yA)

B(xB, yB)

C(xC , yC)

B(xB, yB)

α

Figure D.2: One-Step Movement (1SM).

D.3.2 Two-Step Movement (2SM)

After the first movement, we have two possible locations of the MT given by

1SM using Algorithm 6, but cannot determine which one is the true location. We

need to resolve this ambiguity. It is natural to think about performing an additional

movement. The basic idea is simple: a Two-Step Movement (2SM) is a combination

of two consecutive 1SM’s where each move gives two possible positions (in which

one of these two positions must be the true position). It is clear that by comparing

the results of two 1SM’s, we can determine the location of the MT, given that the

results of the two 1SM’s are not redundant.

Fig. D.3 depicts how 2SM works. The MT makes the second movement from

C to D in the direction of angle β, which is measured from the positive x-axis

counter-clockwise. The distance CD and β are known by the MT, whereas the

distance AD from the MT to the RP is measured from the received signal strength

by standard techniques. The underlying idea is that, we now consider the movement

132

D.3. SYSTEM DESIGN 133

Algorithm 6 One-Step Movement algorithm

Require: A(xA, yA), AB,AC,BC, α;
1: function OneStep(A(xA, yA), AB, AC, BC, α)
2: if sinα == 0 then
3: if cosα == 1 then
4: xB = xA − (AB2 +BC2 − AC2)/(2BC);
5: else
6: xB = xA + (AB2 +BC2 − AC2)/(2BC);
7: end if
8: yB1 = yA +

√
AB2 − (xB − xA)2;

9: yB2 = yA −
√
AB2 − (xB − xA)2;

10: return {B1(xB, yB1), B2(xB, yB2)};
11: else
12: . Pre-compute a, b such that yB = axB + b;
13: a = − cotα;
14: b = xA cotα + yA − (AB2 +BC2 − AC2)/(2BC sinα);
15: . Compute xB, yB;
16: ∆ = (xA − a(b− yA))2 − (1 + a2)(x2A + (b− yA)2 − AB2);
17: xB1 = (xA − a(b− yA) +

√
∆)/(1 + a2);

18: yB1 = axB1 + b;
19: xB2 = (xA − a(b− yA)−

√
∆)/(1 + a2);

20: yB2 = axB2 + b;
21: return {B1(xB1, yB1), B2(xB2, yB2)};
22: end if
23: end function

of 2SM case similarly as that of 1SM case in which the starting point is now B and

the ending point is D. We can compute the distance BD and the angle γ analytically

(see Algorithm 7: line 6–13) and then use the method of Algorithm 6 to determine

B. Algorithm 7 details how 2SM works. By comparing the results from the two

1SM’s computation, we determine the location of the MT.

Remark 2. Note that the directions of the two movements should not be in parallel,

i.e., β 6= α and β 6= α ± π, otherwise the ambiguity cannot be resolved since the

system of equations generated by the second movement would be equivalent to that of

the first one.

In practice with estimation error or system imperfection, say noise exists,

such that we cannot have a common solution from the two 1SM’s computation, i.e.,

the first movement may give us two possible solutions denoted by B1(xB1, yB1) and

133

134 APPENDIX D. EXPLOITING USER MOVEMENT FOR POSITION DETECTION

x

y

A(xA, yA)

B(xB, yB)

CD

B(xB, yB)B(xB, yB)

β

γ

Figure D.3: Two-Step Movement (2SM).

B2(xB2, yB2), whereas the second movement may give us another two possible solu-

tions denoted by B3(xB3, yB3) and B4(xB4, yB4), however {B1, B2} and {B3, B4}
have no common point, as shown in Fig. D.4. To deal with, we can choose the pair of

points that have the smallest distance, i.e., solving min{d(P1, P2)|P1 6= P2}, where

P1, P2 ∈ {B1, B2, B3, B4} and d(P1, P2) is used to denote the Euclidean distance

of points P1 and P2, and then takes their mean (e.g., the mid-point of B1 and B3

in Fig. D.4, see below) as the estimate of the MT’s position for minimizing the error.

In general, one can formulate it as an optimization problem and find the optimal

result.

134

D.4. SIMULATION 135

Algorithm 7 Two-Step Movement algorithm

Require: A(xA, yA);
1: function TwoStep(A(xA, yA))
2: MT makes the first movement from B to C; measure AB,AC,BC, α;
3: . Compute two location B1 and B2
4: {B1(xB1, yB1), B2(xB2, yB2)} = OneStep(A(xA, yA), AB,AC,BC, α);
5: MT makes the second movement from C to D; measure CD,AD, β; make

sure that β 6= α and β 6= α± π ;
6: . The change in x-coordinate after the second move
7: X = BC cosα + CD cos β;
8: . The change in y-coordinate after the second move
9: Y = BC sinα + CD sin β;

10: BD =
√
X2 + Y 2;

11: cos γ = X/BD;
12: sin γ = Y/BD;
13: Compute γ ∈ (0; 2π] from cos γ and sin γ;
14: . Compute two location B3 and B4
15: {B3(xB3, yB3), B4(xB4, yB4)} = OneStep(A(xA, yA), AB,AD,BD, γ);
16: . Determine MT location B(xB, yB) from the set of B1, B2, B3 and B4
17: B(xB, yB) = {B1(xB1, yB1), B2(xB2, yB2)} ∩ {B3(xB3, yB3), B4(xB4, yB4)};
18: return B(xB, yB);
19: end function

D.4 Simulation

Simulation is performed to investigate the performance of the proposed

scheme (2SM) under noisy environment. The RP is placed at the center of a room,

say A = (0, 0). The user device or MT is randomly distributed in the room at

B(xB, yB), which is to be determined. For analysis, we discuss the following three

scenarios and the performance: the MT (denoted by B, in Fig. D.3) is at a distance

of 1, 5, and 10 meters from the RP, respectively, and the direction from B to A is

uniformly distributed in (0, 2π].

For a given AB, the movement from B to C or from C to D is equal to

0.1, 0.2, and 0.5 times of AB. The directions of the movement, i.e., α and β, are

uniformly distributed in (0, 2π]. Estimation error to the measurement of distances

AB, AC, AD, and BC, is considered to be bounded in [−1%, 1%], [−2%, 2%], and

[−5%, 5%], for comparison. We use ed to denote the above bound such that ed = 1%,

2%, and 5%, respectively. Estimation error to the measurement of angles α and β

135

136 APPENDIX D. EXPLOITING USER MOVEMENT FOR POSITION DETECTION

B2(xB2, yB2) B4(xB4, yB4)

B1(xB1, yB1) B3(xB3, yB3)

Figure D.4: Ambiguity elimination in case of noise.

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Resulting estimation error (in meter)

C
D

F

AB = 5m, BC = 0.1*AB

 e
d
=1%, e

a
=1°

e
d
=1%, e

a
=2°

e
d
=1%, e

a
=5°

e
d
=2%, e

a
=1°

e
d
=2%, e

a
=2°

e
d
=2%, e

a
=5°

e
d
=5%, e

a
=1°

e
d
=5%, e

a
=2°

e
d
=5%, e

a
=5°

e
d
=2%

e
d
=5%

e
d
=1%

Figure D.5: Resulting error when AB = 5 meters, BC = CD = 0.1 × AB under
various (ed, ea).

is considered to be bounded in [−1◦, 1◦], [−2◦, 2◦], and [−5◦, 5◦]. The bound on the

angle measurement error is denoted by ea such that ea = 1, 2, and 5 degrees. For each

(ed, ea) setup, the errors are randomly generated to corrupt the proposed algorithm

in determining B(xB, yB). Results when AB = 5 meters are shown in Fig. D.5,

D.6, and D.7, respectively. Note that each curve in the figures is obtained by 10,000

136

D.4. SIMULATION 137

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Resulting estimation error (in meter)

C
D

F

AB = 5m, BC = 0.2*AB

e

d
=1%, e

a
=1°

e
d
=1%, e

a
=2°

e
d
=1%, e

a
=5°

e
d
=2%, e

a
=1°

e
d
=2%, e

a
=2°

e
d
=2%, e

a
=5°

e
d
=5%, e

a
=1°

e
d
=5%, e

a
=2°

e
d
=5%, e

a
=5°

e
d
=2%

e
d
=5%

e
d
=1%

Figure D.6: Resulting error when AB = 5 meters, BC = CD = 0.2 × AB under
various (ed, ea).

runs. During these runs, we observe that about 10% of the time the system fails

to find the MT position (i.e., the quadratic equation (D.8) has no solution since ∆

in Algorithm 6 is negative) due to the noises (which would be accumulated to ∆).

We find that when ∆ < 0, the system is indeed heavily corrupted. We therefore

consider them as bad movements and do not use for determining the MT. Note that

it would be interesting to derive the position of the MT even when ∆ < 0 or see how

to extract useful information to optimize results. This is subject to future work.

As shown in Fig. D.5-D.7, the estimation error in determining the position of

the MT increases as ed increases. Note that the estimation error is defined by the

distance between the real position of the MT and the result given by Algorithm 7.

Clearly, ed = 1% (curves in “red”) results in smaller estimation error than that

ed = 3% or ed = 5% (curves in “blue” and “black”, respectively) makes, given that

ea is the same.

As expected, the estimation error in determining the position of the MT also

increases as ea increases. However, when ed is relatively large (5%), the impact of

137

138 APPENDIX D. EXPLOITING USER MOVEMENT FOR POSITION DETECTION

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Resulting estimation error (in meter)

C
D

F
AB = 5m, BC = 0.5*AB

e
d
=1%, e

a
=1°

e
d
=1%, e

a
=2°

e
d
=1%, e

a
=5°

e
d
=2%, e

a
=1°

e
d
=2%, e

a
=2°

e
d
=2%, e

a
=5°

e
d
=5%, e

a
=1°

e
d
=5%, e

a
=2°

e
d
=5%, e

a
=5°

e
d
=1%

e
d
=5%

e
d
=2%

Figure D.7: Resulting error when AB = 5 meters, BC = CD = 0.5 × AB under
various (ed, ea).

the considered ea is relatively less significant. This can be clearly shown by Fig. D.6

and D.7. Roughly speaking, ed is more dominating.

In comparing Fig. D.5-D.7, we observe that when increasing BC and CD

from 0.1× to 0.5× AB, the estimation error in determining the position of the MT

decreases quite substantially. See in Fig. D.6 and D.7, the curves shift to the left.

The distance of the movement is a significant factor. We can improve the system

performance by requiring a larger movement distance. However, a larger movement

may be less favorable in some usage. In addition, from obtained simulation results

(we did not plot all of them here), we see that the improvement is indeed decreasing

and starts to get flat at 0.5× AB.

Table D.2 shows the average error in determining the position of the MT

under different AB (at 1, 5, and 10 meters, respectively) and various BC, CD, and

noise levels (ed, ea). Result at AB = 5 was plotted in Fig. D.5-D.7. Note that since

the curves for AB = 1 and 10 have very similar characteristics to those in Fig. D.5-

D.7, we do not plot them here. Comparing the results at AB = 1, 5, and 10, we see

that the magnitude of the error increases roughly proportional to AB, as expected.

It is clear that the estimation error is minimized when (ed, ea) are small and the

138

D.5. TWO-STEP MOVEMENT USING MULTI-SAMPLING 139

ed = 1% ed = 1% ed = 1% ed = 2% ed = 2% ed = 2% ed = 5% ed = 5% ed = 5%
ea = 1° ea = 2° ea = 5° ea = 1° ea = 2° ea = 5° ea = 1° ea = 2° ea = 5°

AB = 1 (BC=CD= 0.1AB) 0.1412 0.1434 0.1581 0.2583 0.2640 0.2708 0.5530 0.5608 0.5691
AB = 1 (BC=CD= 0.2AB) 0.0808 0.0859 0.1036 0.1463 0.1508 0.1631 0.3202 0.3340 0.3417
AB = 1 (BC=CD= 0.5AB) 0.0484 0.0566 0.0896 0.0753 0.0804 0.1086 0.1701 0.1759 0.1868

AB = 5 (BC=CD= 0.1AB) 0.7194 0.7279 0.8027 1.2797 1.3012 1.3668 2.7913 2.9031 2.9226
AB = 5 (BC=CD= 0.2AB) 0.3957 0.4235 0.5513 0.7145 0.7480 0.8246 1.6222 1.6372 1.6587
AB = 5 (BC=CD= 0.5AB) 0.2193 0.2831 0.4481 0.4136 0.4412 0.5448 0.8738 0.8829 0.9134

AB = 10 (BC=CD= 0.1AB) 1.4165 1.4348 1.6130 2.4798 2.6257 2.7011 5.7899 5.8059 5.8929
AB = 10 (BC=CD= 0.2AB) 0.8006 0.8602 1.0845 1.4779 1.1508 1.5112 3.2304 3.3131 3.3873
AB = 10 (BC=CD= 0.5AB) 0.4987 0.5601 0.9362 0.8180 0.8798 0.1058 1.7551 1.7652 1.8750

Table D.2: Average error (in meter) under various AB, BC, CD, and noise levels
(ed, ea).

movement distance is relatively large. Roughly speaking, at BC = CD = 0.5×AB,

the performance is quite desirable when ed ≤ 2% and ea ≤ 5%. When the movement

distance is at the level of 0.2×AB, the same performance can be achieved when ed

is reduced to ≤ 1%. The average error can be limited to within about 10% of AB.

In the best case, the average error can be less than 5% of AB.

D.5 Two-Step Movement using Multi-Sampling

To further improve the performance of 2SM, this section demonstrates the use

of multi-sampling technique so that many measurements will be conducted during

the movement of the MT instead of using only one at the end of each movement to

combat measurement errors and improve the positioning performance.

D.5.1 System Design

To begin with, we recall our system design (cf Section D.3) and the 2SM

positioning method which requires only one RP (for minimal system implementation

cost). We determine user position by exploiting its movement, e.g., in walking or by

waving his/her hand-held device, as demonstrated in Figure D.8.

D.5.2 Motivation of Multi-Sampling

The precision of the estimation is depending on the accuracy in the measure-

ment phase (e.g., α, AB, AC, BC). In reality, the limitation of hardware technology

and presence of noise may severely degrade the quality of the inputs to our algo-

rithm and then leads to poor position estimation. To reduce the impact of noise,

139

140 APPENDIX D. EXPLOITING USER MOVEMENT FOR POSITION DETECTION

1st 2nd

Figure D.8: Two-Step Movement (2SM) application: waving hand to get position.

naturally one can think of making many measurements and then combine them to

produce better result. The intuition is that in the simplest case where noise follows

a zero-mean distribution, we can expect the output of our algorithm also to have

roughly a zero-mean error distribution. Another idea is that one could probably use

a set of measurements to infer or pick out a better result.

Recall that in 2SM, all measurements are done only once at the end of each

movement step (e.g., at C). Here, we propose a multi-sampling 2SM such that many

measurements are carried out along the path so that the MT continuously keeps

track of the movement and the distance to the RP. In other words, the step BC

is considered as a series of small steps and we will use all the data obtained from

these steps for positioning (see Fig. D.9). In the first movement from B to C (see

Fig. D.9a), measurements are taken at the intermediate points C1, . . . , Cn and each

of them allows to compute two possible positions of B, denoted by B1 and B2.

Obviously, n intermediate measurements give us two sets of B1 and B2, denoted

by SB1 and SB2 with |SB1| = |SB2| = n. One can simply take the middle points

of SB1 and SB2 respectively or formulate an optimization problem to find the best

estimates of B1 and B2. Similarly, the above process is applied to the second step

movement (see Fig. D.9b) such that we can find two estimates, denoted by B3 and

B4, respectively. In general, we will have four sets of points as shown in Fig. D.10.

140

D.5. TWO-STEP MOVEMENT USING MULTI-SAMPLING 141

A(xA, yA)

B(xB, yB)

C(xC , yC)

C1

. . .Cn
α

(a) The first movement with multi-samples

A(xA, yA)

B(xB, yB)

C

D(xD, yD)

D1. . .Dn

β

(b) The second movement with multi-samples

Figure D.9: Two-Step Movement (2SM) with multi-sampling near the end points.

To resolve the ambiguity, we can then for example take the mid-point of the pair

which have the minimum Euclidean distance (i.e., the mid-point of B1 and B3 in

Fig. D.10) as the MT’s position or formulate an optimization problem to minimize

the error.

D.5.3 Numerical Studies

Simulation is performed to investigate the performance of the above multi-

sampling 2SM in comparison to that in D.4, say single-sampling 2SM. The simulation

set-up is as follows:

� RP is placed at the center of a room, i.e., A(0, 0).

141

142 APPENDIX D. EXPLOITING USER MOVEMENT FOR POSITION DETECTION

x x x x

B2(xB2, yB2)

x x x x x
x x x x

B1(xB1, yB1)

x x x

B3(xB3, yB3)

x x x x
x x x x

B4(xB4, yB4)

xxxx

Figure D.10: The possible solutions in the presence of noise.

ed = 1%, ea = 1° ed = 2%, ea = 2° ed = 5%, ea = 5°
Single Multi Single Multi Single Multi

AB = 1(BC = CD = 0.1AB) 0.1412 0.1154 0.2640 0.2164 0.5691 0.4090
AB = 1(BC = CD = 0.2AB) 0.0808 0.0666 0.1508 0.1370 0.3417 0.2638
AB = 1(BC = CD = 0.5AB) 0.0484 0.0416 0.0804 0.0792 0.1868 0.1541

AB = 5(BC = CD = 0.1AB) 0.7194 0.5858 1.3012 1.0269 2.9226 2.1480
AB = 5(BC = CD = 0.2AB) 0.3957 0.3623 0.7480 0.6062 1.6587 1.2861
AB = 5(BC = CD = 0.5AB) 0.2193 0.2108 0.4412 0.3393 0.9134 0.8067

AB = 10(BC = CD = 0.1AB) 1.4165 1.1650 2.6257 1.9102 5.8929 4.0634
AB = 10(BC = CD = 0.2AB) 0.8006 0.5777 1.1580 1.1238 3.3873 2.5696
AB = 10(BC = CD = 0.5AB) 0.4987 0.4325 0.8798 0.7959 1.8750 1.5831

Table D.3: Average estimation error (in meter) due to the single-sampling and multi-
sampling 2SM methods under various AB, BC, CD, and noise levels.

� The initial position of MT is called B and its distance to the RP is set to three

values: 1, 5, and 10 meters. Its position on a corresponding circle is randomly

generated.

� Measurement error of distance is denoted by ed and bounded by [−1%, 1%],

[−2%, 2%], and [−5%, 5%] with respect to its true value. Meanwhile, measure-

ment error of angle is denoted by ea and bounded by [−1◦, 1◦], [−2◦, 2◦], and

[−5◦, 5◦].

Note that there are several ways to choose the sampling intervals. For ex-

ample, one may simply use uniform sampling, i.e., BC is divided into n intervals of

equal distance such that BC1 = CiCi+1, where 1 ≤ i ≤ n− 1. However, we observe

142

D.6. GENERALIZATION OF 2SM TO DEVICE-TO-DEVICE SYSTEM 143

that it is better to do sampling closer to the end point of each movement, i.e., close

to C in the first movement (and D in the second movement). Indeed, this coincides

the result obtained in single-sampling 2SM that the larger the BCi in the first move,

the more accurately the second move can help to determine the true MT position.

Table D.3 compares the performance of the single-sampling and multi-

sampling 2SM. The result is obtained by 105 runs. In multi-sampling 2SM, we per-

form 1000 sampling near the end point of each movement (see Fig. D.9). Table D.3

shows that the multi-sampling has effectively reduced the position estimation error

by 15%− 30%. Besides, it is also interesting to see that when the positioning error

resulted in the single-sampling is larger, the improvement thanks to multi-sampling

is even more significant.

D.6 Generalization of 2SM to Device-to-Device

system

In this section, we generalize the Two-Step movement algorithm, called Gen-

eralized Two-Step Movement or G2SM in short, to Device-to-Device (D2D) envi-

ronment. The considered system consists of a Mobile Terminal (MT) and a movable

Reference Point (RP) (e.g., another mobile device) such that the location of the MT,

which always move in the coverage area of the RP, can be estimated with respect to

the position of the RP (see Figure D.11). Additionally, the RP is always precisely

localized regardless of where it moves to.

D.6.1 System Design and Basic Idea

We consider the following system and generalization:

� The RP is also mobile (movable).

� The MT is capable of measuring the distance between itself and the RP.

� The MT is capable of measuring the distance and the angle (direction) of the

movement it has done.

Figure D.12 depicts the following technical details:

143

144 APPENDIX D. EXPLOITING USER MOVEMENT FOR POSITION DETECTION

1st

2nd

Figure D.11: Generalization of Two-Step Movement (G2SM): The Reference Point
(black) is another mobile phone. Another mobile terminal (white) can localized itself
thanks to the movement of the moveable reference point nearby.

� The RP is initially located at A(xA, yA) which is known.

� The MT is initially at position B, which is however unknown, denoted by

coordinates (xB, yB).

� C and D are the positions of the MT and RP, respectively, during their move-

ment. Assume that RP can localize itself, so that D(xD, yD) is known. How-

ever, C(xC , yC) is not given.

� MT is capable of measuring the distance between itself and the RP, i.e., dis-

tances AB and DC are deterministic. For example, this can be done by mea-

suring the received signal strength or using other standard techniques.

� MT is capable of measuring the distance and angle of its movement so that

BC and the angle α ∈ (0, 2π] (with respect to the x-axis) are deterministic.

144

D.6. GENERALIZATION OF 2SM TO DEVICE-TO-DEVICE SYSTEM 145

x

y

A(xA, yA)

B(xB, yB)

D(xD, yD)

C

B(xB, yB)

α

Figure D.12: Generalized One-Step Movement (GSM).

Theorem 6. If A(xA, yA), D(xD, yD), AB, DC, BC, and α are known, Algorithm 8

give stwo possible solutions of B, denoted by (xB, yB), satisfying

xB(BC cosα− xD + xA) + yB(BC sinα− yD + yA)

= xDBCcosα + yDBC sinα

−AB
2 +BC2 −DC2 − (x2A + y2A) + (x2D + y2D)

2
.

(D.9)

Proof. The equations of the two circles centered at A(xA, yA) and D(xD, yD) after

the first movement (Fig. D.12) can be written as follows:

AB2 = (xB − xA)2 + (yB − yA)2.

DC2 = (xC − xD)2 + (yC − yD)2.
(D.10)

145

146 APPENDIX D. EXPLOITING USER MOVEMENT FOR POSITION DETECTION

Algorithm 8 Generalized One-Step movement algorithm

Require: A(xA, yA), D(xD, yD), AB,DC,BC, α;
1: function OneStepExt(A(xA, yA), D(xD, yD), AB, DC, BC, α)
2: . Precompute a, b, c such that axB + byB = c;
3: a = BC cosα− xD + xA;
4: b = BC sinα− yD + yA;
5: c = xDBCcosα+yDBC sinα−(AB2 +BC2 −DC2 − (x2A + y2A) + (x2D + y2D)) /2;
6: . Compute xB, yB;
7: if b == 0 then
8: xB = c/a;
9: yB1 = yA +

√
AB2 − (xB − xA)2;

10: yB2 = yA −
√
AB2 − (xB − xA)2;

11: return {B1(xB, yB1), B2(xB, yB2)};
12: else
13: d = −a/b;
14: e = c/b;
15: ∆ = (xA − d(e− yA))2 − (1 + d2)(x2A + (e− yA)2 − AB2);
16: xB1 = (xA − d(e− yA) +

√
∆)/(1 + d2);

17: yB1 = dxB1 + e;
18: xB2 = (xA − d(e− yA)−

√
∆)/(1 + d2);

19: yB2 = dxB2 + e;
20: return {B1(xB1, yB1), B2(xB2, yB2)};
21: end if
22: end function

where
xC = xB +BCcosα.

yC = yB +BCsinα.
(D.11)

Substitute (D.11) to (D.10), we have

AB2 = (xB − xA)2 + (yB − yA)2.

DC2 = (xB +BC cosα− xD)2 + (yB +BC sinα− yD)2.
(D.12)

which gives the equality

DC2 − AB2 = 2xB(BC cosα− xD + xA)− x2A
+ 2yB(BC sinα− yD + yA)− y2A
+ (BC cosα− xD)2 + (BC sinα− yD)2.

146

D.6. GENERALIZATION OF 2SM TO DEVICE-TO-DEVICE SYSTEM 147

and can be rewritten as:

2xB(BC cosα− xD + xA) + 2yB(BC sinα− yD + yA)

= 2xDBC cosα + 2yDBC sinα +DC2 − AB2 −BC2

+(x2A + y2A)− (x2D + y2D).

Thus,

xB(BC cosα− xD + xA) + yB(BC sinα− yD + yA)

= xDBC cosα + yDBC sinα

−AB
2 +BC2 −DC2 − (x2A + y2A) + (x2D + y2D)

2
.

Let a = BC cosα − xD + xA, b = BC sinα − yD + yA and c = xDBCcosα +

yDBC sinα− (AB2 +BC2 −DC2 − (x2A + y2A) + (x2D + y2D)) /2, the Eqn. (D.9) can

be rewritten under the form axB + byB = c and be solved as follows:

� If b = 0 (or BC sinα = yD − yA), straightforwardly xB = c/a and yB =

yA ±
√
AB2 − (xB − xA)2.

� If b 6= 0, let d = −a/b, e = c/b, we see that now yB is expressible as a function

of xB such that yB = dxB + e. Substituting yB to the first equation of (D.10),

we have

(xB − xA)2 + (dxB + e− yA)2 = AB2.

which is a quadratic equation

(1 + d2)x2B − 2(xA − d(e− yA))xB + x2A + (e− yA)2 − AB2 = 0. (D.13)

The above equation (D.13) can be solved easily.

Algorithm 8 shows step-by-step how to compute the possible solutions of

B. It outputs two points B1(xB1, yB1) and B2(xB2, yB2).

It outputs two points B1(xB1, yB1) and B2(xB2, yB2), which are the possible

solution of B.

Remark 3. It is clear that one of the two points, B1(xB1, yB1) and B2(xB2, yB2),

must be the position of the MT (or both of them are the position, if B1 and B2 are

identical).

147

148 APPENDIX D. EXPLOITING USER MOVEMENT FOR POSITION DETECTION

Remark 4. In the specific case where RP position is fixed (i.e., AD = 0 such that

xA = xD and yA = yD), the above generalized Algorithm 8 (G1SM) will become the

1SM Algorithm and Equation (D.9) can be simplified as:

xB cosα + yB sinα = xA cosα + yA sinα− (AB2 +BC2 − AC2)

2BC
.

D.6.2 The Generalized Two-Step Movement (G2SM)

After the first movement, we have two possible locations of the MT given by

G1SM using Algorithm 8, but cannot determine which one is the true location. We

need to resolve this ambiguity. It is natural to think about performing an additional

movement. The basic idea is simple: a Generalized Two-Step Movement (G2SM) is a

combination of two consecutive G1SMs where each move gives two possible positions

(in which one of these two positions must be the true position). It is clear that by

comparing the results of the two G1SMs, we can determine the location of the MT,

given that the results of the two G1SMs are not redundant.

Fig. D.13 depicts how G2SM works. While the RP moves from D to E, the

MT carries out the second movement from C to F in the direction of angle β, which

is measured from the positive x-axis counter-clockwise. The distance CF and β are

known by the MT, whereas the distance EF from the MT to the up-to-date position

of RP is measured from the received signal strength by standard techniques. Because

the position of RP is always accurately tracked, its coordinate E(xE, yE) is known.

The underlying idea is that, we now consider the movement of G2SM case similarly

as that of G1SM case in which the starting point of MT is now B and the ending

point is F , regarding the two positions of RP are A and E. We can compute the

distance BF and the angle γ analytically (see Algorithm 9: line 8–15) and then

use the method of Algorithm 8 to determine B. Algorithm 9 details how 2SM

works. By comparing the results from the two 1SM’s computation, we determine

the location of the MT.

Remark 5. The G2SM requires the MT to change the moving direction such that β 6=
α and β 6= α±π (or the RP is changing its direction), otherwise the ambiguity cannot

be eliminated since the system of equations obtained from the second movement would

be equivalent to that of the first one.

148

D.6. GENERALIZATION OF 2SM TO DEVICE-TO-DEVICE SYSTEM 149

x

y

A(xA, yA)

B(xB, yB)

D
E

CF

B(xB, yB)
B(xB, yB)

γ

β

Figure D.13: Generalized Two-Step Movement (Generalized-2SM).

In practice with estimation error or system imperfection, say the existence of

noise, we may not obtain a common solution from the two G1SM’s computations, i.e.,

the two possible solutions obtained from the first movement are different from the

solutions obtained from the second movement (see Fig D.13). To solve this problem,

we can choose the pair of points in {B1, B2, B3, B4} that have the minimum

Euclidean distance, i.e., solving min{d(Pi, Pj)|Pi 6= Pj}, where Pi, Pj ∈ {B1, B2,

B3, B4} and d(Pi, Pj) is used to denote the Euclidean distance of points Pi and Pj,

and then takes their mean position. One may also consider a possible optimization

problem to improve the result in combining the original data sets instead of the

above.

149

150 APPENDIX D. EXPLOITING USER MOVEMENT FOR POSITION DETECTION

Algorithm 9 Generalized Two-Step movement algorithm

Require: A(xA, yA); . Initial position of RP
1: function TwoStepExt(A(xA, yA))
2: RP makes the first movement from A to D; obtaining D(xD, yD);
3: In parallel, MT makes the first movement from B to C; measuring AB, DC,
BC, α;

4: . Compute two locations B1 and B2;
5: {B1(xB1, yB1), B2(xB2, yB2)} = OneStepExt(A(xA, yA), D(xD, yD), AB,
DC, BC, α);

6: RP makes the second movement from D to E; obtaining E(xE, yE);
7: In parallel, MT makes the second movement from C to F ; measuring CF ,
EF , β; make sure that β 6= α± π;

8: . Change in x-coordinate after the second move;
9: X = BC cosα + CF cos β;

10: . Change in y-coordinate after the second move;
11: Y = BC sinα + CF sin β;
12: BF =

√
X2 + Y 2;

13: cos γ = X/BF ;
14: sin γ = Y/BF ;
15: Compute γ ∈ [0; 2π) from cos γ and sin γ;
16: . Compute two locations B3 and B4;
17: {B3(xB3, yB3), B4(xB4, yB4)} = OneStepExt(A(xA, yA), E(xE, yE), AB,

EF ,BF , γ);
18: . Determine the MT location B(xB, yB) from the set of B1, B2, B3 and B4;
19: B(xB, yB) = {B1(xB1, yB1), B2(xB2, yB2)} ∩ {B3(xB3, yB3), B4(xB4, yB4)};
20: return B(xB, yB);
21: end function

D.6.3 Simulation Result

The performance of the G2SM method is investigated by simulation. Param-

eters used are the same as those used when studying 2SM (see Section D.5-C). Since

the RP is also mobile (movable), we have to set the values of AD and DE. Here, we

consider they are proportional to AB and in three movement ranges: [0.1, 0.2]×AB
(i.e., small move), [0.2, 0.5]× AB (i.e., medium move), and [0.5, 1]× AB (i.e., large

move). In the simulation, we consider that the RP moves in a distance which is at

most AB (assuming that AB is the signal coverage range of the RP). Secondly, we

consider AD = DE, for simplicity. However, the movement direction of the RP does

150

D.7. CONCLUSION 151

AD = DE = [0.1, 0.2]× AB AD = DE = [0.2, 0.5]× AB AD = DE = [0.5, 1]× AB
ed = 1%
ea = 1°

ed = 2%
ea = 2°

ed = 5%
ea = 5°

ed = 1%
ea = 1°

ed = 2%
ea = 2°

ed = 5%
ea = 5°

ed = 1%
ea = 1°

ed = 2%
ea = 2°

ed = 5%
ea = 5°

AB = 1(BC = CF = 0.1AB) 0.1139 0.2011 0.4121 0.0677 0.1189 0.2736 0.0461 0.0820 0.1808
AB = 1(BC = CF = 0.2AB) 0.0855 0.1518 0.3310 0.0597 0.1126 0.2432 0.0473 0.0832 0.1803
AB = 1(BC = CF = 0.5AB) 0.0509 0.0918 0.2119 0.0462 0.0877 0.1802 0.0413 0.0765 0.1678

AB = 5(BC = CF = 0.1AB) 0.5433 0.9654 2.1378 0.3346 0.6336 1.3726 0.2431 0.4196 0.9274
AB = 5(BC = CD = 0.2AB) 0.4162 0.7548 1.6035 0.3058 0.5562 1.1936 0.2361 0.4100 0.9044
AB = 5(BC = CF = 0.5AB) 0.2567 0.4452 1.0373 0.2349 0.4349 0.9156 0.2148 0.3852 0.8364

AB = 10(BC = CF = 0.1AB) 1.1319 1.9817 4.1819 0.7184 1.1993 2.7077 0.4064 0.7965 1.8415
AB = 10(BC = CF = 0.2AB) 0.8090 1.5358 3.2446 0.6189 1.2082 2.4429 0.4292 0.8366 1.8521
AB = 10(BC = CF = 0.5AB) 0.5059 0.9164 2.0490 0.4579 0.8819 1.9196 0.4539 0.7590 1.6926

Table D.4: G2SM with multi-sampling: the average positioning error (in meter)
under various AB, AD, BC, and noise levels.

not need to be fixed and we thus generate it to be uniformly distributed in (0; 2π].

Note that the proposed algorithms are not limited to above numerical settings.

Table D.4 shows the simulation result of G2SM localization with multi-

sampling. For each setup, we conduct 105 runs of simulation to obtain the aver-

age performance. Same as 2SM with multi-sampling, we perform 1000 sampling

near the end point of each movement at G2SM. As expected, it can be seen that

the estimation error in determining the position of the MT increases as the noise

power increases. However, there is a correlation between the movement distance

of the two devices (the MT and RP) and the resulting error. If the RP moves

a bit (see AD = DE = [0.1, 0.2] × AB) but the MT moves a lot (see the case

BC = CF = 0.5AB), there is substantial error decrease. However, when RP moves

a lot (see AD = DE = [0.5, 1] × AB), the error is independent of how much the

MT moves. Another interesting observation is that a substantial movement of either

the MT or the RP is sufficient for achieving good performance. Overall, the average

error is within about 15% of AB. In the best case, the average error is less than 5%

of AB.

D.7 Conclusion

In this chapter, we have proposed a new method called Two-Step Movement

(2SM) to estimate the position of MT. It requires only one reference point (RP) by

exploiting useful information given by the position change of the MT or user move-

ment. One can therefore reduce the number of RPs required and lower the system

cost. Furthermore, a Generalization of the Two-Step Movement (G2SM) to Device-

151

152 APPENDIX D. EXPLOITING USER MOVEMENT FOR POSITION DETECTION

z

y

x

1st

2nd

3rd

Figure D.14: Three-Step Movement (3SM) in three-dimensional (3D) space. The
position of the device can be determined after three moves of the user carrying it.

To-Device context is also described as it allows the unique Reference Point to move

or to be another mobile device. Analytical result shows that the user position can be

derived and given in simple closed-form expression with low complexity. Simulation

is conducted to study its performance under noisy environment. It is possible to

achieve average error within about 10% of the distance between the RP and MT, or

even less. Note that further analysis of noise impact and issues related to reflection

and refraction of signals are important to improve the proposed method. Also in this

152

D.7. CONCLUSION 153

chapter, we first combine the 2SM method with multi-sampling technique to improve

the positioning performance. Simulation result shows an error decrease of 15%−30%.

Secondly, we propose the generalized localization method G2SM by utilizing device

movement in which both the MT and RP are allowed to move. The position of MT

can be determined analytically and in simple closed-form expression. Simulations

are conducted to study its performance under various setup and noise levels. Re-

sults show that an average error within about 15% of the distance between the MT

and RP can be realized. Since G2SM would allow a MT to locate itself through a

peer mobile device, it has potential applications in future large D2D or multi-hop

systems. Our method, thanks to the reliance on a single reference point, makes a lot

of sense in the context of Internet of Things (IoT) such as home or business office

area. It should be also noted that our method can be easily extended to localization

in 3D coordinates (see Figure D.14). Together with practical implementation, they

are subject to future work.

153

154 APPENDIX D. EXPLOITING USER MOVEMENT FOR POSITION DETECTION

154

Bibliography

[1] I. L. Stats, “Internet usage & social media statistics,” http://www.
internetlivestats.com/, 2014.

[2] “The statistics portal for market data, market research and market studies,”
http://www.statista.com/.

[3] http://news.netcraft.com/archives/category/web-server-survey/.

[4] L. Page and S. Brin, “The anatomy of a large-scale hypertextual Web search
engine,” Computer Networks and ISDN Systems, vol. 30, no. 1–7, pp. 107–117,
1999.

[5] L. Page, S. Brin, M. Rajeev, and W. Terry, “The pagerank citation ranking:
Bringing order to the web,” Stanford University, Technical Report, 1998.

[6] M. Jelasity, G. Canright, and K. Eng-monsen, “Asynchronous distributed power
iteration with gossip-based normalization,” in Euro-Par 2007, volume 4641 of
Lecture Notes in Computer Science. Springer-Verlag, 2007, pp. 514–525.

[7] Y. Wang and D. J. DeWitt, “Computing pagerank in a distributed internet
search system,” in IN VLDB, 2004, pp. 420–431.

[8] F. Mathieu and L. Viennot, “Local Aspects of the Global Ranking of Web
Pages,” in 6th International Workshop on Innovative Internet Community
Systems (I2CS), Neuchâtel, Switzerland, Jun. 2006, pp. 493–506. [Online].
Available: https://hal.inria.fr/inria-00160799

[9] K. Avrachenkov and N. Litvak, “Decomposition of the google pagerank and
optimal linking strategy,” Enschede, the Netherlands, 2004, imported from
MEMORANDA. [Online]. Available: http://doc.utwente.nl/65897/

[10] “The size of world wide web (the internet),” http://www.worldwidewebsize.
com/.

[11] “Twitter,” https://twitter.com/.

155

http://www.internetlivestats.com/
http://www.internetlivestats.com/
http://www.statista.com/
http://news.netcraft.com/archives/category/web-server-survey/
https://hal.inria.fr/inria-00160799
http://doc.utwente.nl/65897/
http://www.worldwidewebsize.com/
http://www.worldwidewebsize.com/
https://twitter.com/

156 BIBLIOGRAPHY

[12] “Facebook,” https://facebook.com/.

[13] “Googleplus,” https://plus.google.com/.

[14] W. W. Cohen, R. E. Schapire, and Y. Singer, “Learning to order things,” J.
Artif. Int. Res., vol. 10, no. 1, pp. 243–270, May 1999. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1622859.1622867

[15] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social network or
a news media?” in Proceedings of the 19th international conference on World
wide web. ACM, 2010, pp. 591–600.

[16] M. Huang, Y. Yang, and X. Zhu, “Quality-biased ranking of short texts in
microblogging services,” in In IJCNLP?11, 2011.

[17] H. Huang, A. Zubiaga, H. Ji, H. Deng, D. Wang, H. Le, T. Abdelzaher,
J. Han, A. Leung, J. Hancock, and C. Voss, “Tweet ranking based on
heterogeneous networks,” in Proceedings of COLING 2012. Mumbai, India:
The COLING 2012 Organizing Committee, December 2012, pp. 1239–1256.
[Online]. Available: http://www.aclweb.org/anthology/C12-1076

[18] P. Dey, A. Sinha, and S. Roy, “Social network analysis of different parameters
derived from realtime profile,” in Distributed Computing and Internet
Technology - 11th International Conference, ICDCIT 2015, Bhubaneswar,
India, February 5-8, 2015. Proceedings, 2015, pp. 452–455. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-14977-6 50

[19] D. Hong, “Optimized on-line computation of pagerank algorithm,” CoRR, vol.
abs/1202.6158, 2012. [Online]. Available: http://arxiv.org/abs/1202.6158

[20] D. Hong, T. D. Huynh, and F. Mathieu, “D-iteration: diffusion approach for
solving pagerank,” 2015. [Online]. Available: https://hal.archives-ouvertes.fr/
hal-01109532/document

[21] T. D. Huynh, D. Hong, G. Burnside, and F. Mathieu, “Analyzing methods
computing pagerank vector of large matrix,” 2015. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01109536/document

[22] T. D. Huynh, F. Mathieu, and L. Viennot, “Liverank: How to refresh old
crawls,” in Algorithms and Models for the Web Graph - 11th International Work-
shop, WAW 2014, Beijing, China, December 17-18, 2014, Proceedings, 2014, pp.
148–160.

[23] ——, “LiveRank : comment faire du neuf avec du vieux ?” in ALGOTEL
2014 – 16èmes Rencontres Francophones sur les Aspects Algorithmiques des
Télécommunications, Le Bois-Plage-en-Ré, France, Jun. 2014, pp. 1–4.

156

https://facebook.com/
https://plus.google.com/
http://dl.acm.org/citation.cfm?id=1622859.1622867
http://www.aclweb.org/anthology/C12-1076
http://dx.doi.org/10.1007/978-3-319-14977-6_50
http://arxiv.org/abs/1202.6158
https://hal.archives-ouvertes.fr/hal-01109532/document
https://hal.archives-ouvertes.fr/hal-01109532/document
https://hal.archives-ouvertes.fr/hal-01109536/document

BIBLIOGRAPHY 157

[24] T. D. Huynh, C. Shue Chen, and H. Siu-Wai, “Exploiting User Movement for
Position Detection,” in IEEE Consumer Communications and Networking Con-
ference. Las Vegas, United States: IEEE, Jan. 2015, p. 6.

[25] ——, “Localization Method for Device-to-Device through User Movement,” in
IEEE International Conference on Communications, London, United Kingdom,
2015.

[26] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search
engine,” in Proceedings of the seventh international conference on World Wide
Web 7, ser. WWW7. Amsterdam, The Netherlands, The Netherlands: Elsevier
Science Publishers B. V., 1998, pp. 107–117.

[27] L. Surhone, M. Tennoe, and S. Henssonow, Perron-Frobenius Theorem.
VDM Publishing, 2010. [Online]. Available: https://books.google.fr/books?id=
c1q5cQAACAAJ

[28] M. Bianchini, M. Gori, and F. Scarselli, “Inside pagerank,” ACM Trans. Internet
Technol., vol. 5, no. 1, pp. 92–128, Feb. 2005.

[29] T. H. Haveliwala, “Topic-sensitive pagerank,” in Proceedings of the
11th International Conference on World Wide Web, ser. WWW ’02.
New York, NY, USA: ACM, 2002, pp. 517–526. [Online]. Available:
http://doi.acm.org/10.1145/511446.511513

[30] A. N. Langville and C. D. Meyer, “Deeper inside pagerank,” Internet Mathe-
matics, vol. 1, p. 2004, 2004.

[31] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:
Bringing order to the web.” no. 1999-66. Stanford InfoLab, 1999, Technical
Report.

[32] S. Kamvar, T. Haveliwala, and G. Golub, “Adaptive methods for the computa-
tion of pagerank,” Stanford InfoLab, Technical Report 2003-26, April 2003.

[33] T. Haveliwala, S. Kamvar, D. Klein, C. Manning, and G. Golub, “Computing
pagerank using power extrapolation,” Stanford InfoLab, Technical Report 2003-
45, 2003.

[34] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub, “Extrapolation meth-
ods for accelerating pagerank computations,” in In Proceedings of the Twelfth
International World Wide Web Conference. ACM Press, 2003, pp. 261–270.

[35] S. Abiteboul, M. Preda, and G. Cobena, “Adaptive on-line page importance
computation,” in Proceedings of the 12th International Conference on World
Wide Web, ser. WWW ’03. New York, NY, USA: ACM, 2003, pp. 280–290.

157

https://books.google.fr/books?id=c1q5cQAACAAJ
https://books.google.fr/books?id=c1q5cQAACAAJ
http://doi.acm.org/10.1145/511446.511513

158 BIBLIOGRAPHY

[36] C. Greif and D. Kurokawa”, “A note on the convergence of sor for the pagerank
problem,” ”SIAM J. Scientific Computing”, pp. 3201–3209, 2011.

[37] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub, “Exploiting
the block structure of the web for computing pagerank,” Stanford InfoLab,
Technical Report 2003-17, 2003. [Online]. Available: http://ilpubs.stanford.edu:
8090/579/

[38] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “Ubicrawler: A scalable fully
distributed web crawler,” Software: Practice & Experience, vol. 34, no. 8, pp.
711–726, 2004.

[39] P. Boldi and S. Vigna, “The webgraph framework i: Compression techniques,”
in In Proc. of the Thirteenth International World Wide Web Conference. ACM
Press, 2003, pp. 595–601.

[40] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propagation: A
multiresolution coordinate-free ordering for compressing social networks,” in
Proceedings of the 20th international conference on World Wide Web. ACM
Press, 2011.

[41] P. Boldi and S. Vigna, “The webgraph framework i: Compression techniques,”
in In Proc. of the Thirteenth International World Wide Web Conference. ACM
Press, 2003, pp. 595–601.

[42] “Webgraph: Laboratory of webgraph algorithmic,” http://webgraph.di.unimi.
it/.

[43] I. Bordino, P. Boldi, D. Donato, M. Santini, and S. Vigna, “Temporal evolution
of the uk web,” in ICDM Workshops, 2008, pp. 909–918.

[44] B. D. Lubachevsky and D. Mitra, “A chaotic asynchronous algorithm for com-
puting the fixed point of a nonnegative matrix of unit spectral radius,” Journal
of the ACM, vol. 33, no. 1, pp. 130–150, 1986.

[45] O. Axelsson, Iterative Solution Methods. Cambridge University Press, 1996.

[46] H. A. van der Vorst, “Bi-cgstab: a fast and smoothly converging variant
of bi-cg for the solution of nonsymmetric linear systems,” SIAM J. Sci.
Stat. Comput., vol. 13, no. 2, pp. 631–644, Mar. 1992. [Online]. Available:
http://dx.doi.org/10.1137/0913035

[47] M. Najork and J. L. Wiener, “Breadth-first crawling yields high-quality pages,”
in Proceedings of the 10th International Conference on World Wide Web,
ser. WWW ’01. New York, NY, USA: ACM, 2001, pp. 114–118. [Online].
Available: http://doi.acm.org/10.1145/371920.371965

158

http://ilpubs.stanford.edu:8090/579/
http://ilpubs.stanford.edu:8090/579/
http://webgraph.di.unimi.it/
http://webgraph.di.unimi.it/
http://dx.doi.org/10.1137/0913035
http://doi.acm.org/10.1145/371920.371965

BIBLIOGRAPHY 159

[48] J. Cho and U. Schonfeld, “Rankmass crawler: A crawler with high personalized
pagerank coverage guarantee,” in Proceedings of the 33rd International
Conference on Very Large Data Bases, ser. VLDB ’07. VLDB Endowment,
2007, pp. 375–386. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1325851.1325897

[49] P. Boldi, M. Santini, and S. Vigna, “A large time-aware graph,” SIGIR Forum,
vol. 42, no. 2, pp. 33–38, 2008.

[50] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee,
“Measurement and Analysis of Online Social Networks,” in Proceedings of the
5th ACM/Usenix Internet Measurement Conference (IMC’07), San Diego, CA,
October 2007.

[51] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social network or
a news media?” in Proceedings of the 19th International Conference on World
Wide Web, ser. WWW ’10. New York, NY, USA: ACM, 2010, pp. 591–600.
[Online]. Available: http://doi.acm.org/10.1145/1772690.1772751

[52] M. Gabielkov, A. Rao, and A. Legout, “Studying Social Networks at
Scale: Macroscopic Anatomy of the Twitter Social Graph,” in ACM
Sigmetrics 2014, Austin, United States, Jun. 2014. [Online]. Available:
https://hal.inria.fr/hal-00948889

[53] V. Grolmusz, “A note on the pagerank of undirected graphs,” CoRR, vol.
abs/1205.1960, 2012. [Online]. Available: http://arxiv.org/abs/1205.1960

[54] K. Thomas, D. McCoy, C. Grier, A. Kolcz, and V. Paxson, “Trafficking fraudu-
lent accounts: The role of the underground market in twitter spam and abuse,”
in USENIX Security 13.

[55] ——, “Trafficking fraudulent accounts: The role of the underground market in
twitter spam and abuse,” in USENIX Security 13.

[56] M. Gabielkov, A. Rao, and A. Legout, “Studying Social Networks at
Scale: Macroscopic Anatomy of the Twitter Social Graph,” in ACM
Sigmetrics 2014, Austin, United States, Apr. 2014. [Online]. Available:
http://hal.inria.fr/hal-00948889

[57] C. Olston and M. Najork, “Web crawling,” Foundations and Trends in Infor-
mation Retrieval, vol. 4, no. 3, pp. 175–246, 2010.

[58] J. Cho and H. Garcia-Molina, “Effective page refresh policies for web crawlers,”
ACM Transactions on Database Systems (TODS), vol. 28, no. 4, pp. 390–426,
2003.

159

http://dl.acm.org/citation.cfm?id=1325851.1325897
http://dl.acm.org/citation.cfm?id=1325851.1325897
http://doi.acm.org/10.1145/1772690.1772751
https://hal.inria.fr/hal-00948889
http://arxiv.org/abs/1205.1960
http://hal.inria.fr/hal-00948889

160 BIBLIOGRAPHY

[59] C. Olston and S. Pandey, “Recrawl scheduling based on information longevity,”
in Proceedings of the 17th international conference on World Wide Web. ACM,
2008, pp. 437–446.

[60] J. Cho and A. Ntoulas, “Effective change detection using sampling,” in VLDB
’02, 2002, pp. 514–525.

[61] Q. Tan, Z. Zhuang, P. Mitra, and C. L. Giles, “A clustering-based sampling
approach for refreshing search engine’s database,” in WebDB ’07, 2007.

[62] K. Radinsky and P. N. Bennett, “Predicting content change on the web,” in
WSDM ’13. ACM, 2013, pp. 415–424.

[63] A. Dasgupta, A. Ghosh, R. Kumar, C. Olston, S. Pandey, and A. Tomkins,
“The discoverability of the web,” in WWW ’07. ACM, 2007, pp. 421–430.

[64] A. Java, X. Song, T. Finin, and B. Tseng, “Why we twitter: understanding mi-
croblogging usage and communities,” in Proceedings of the 9th WebKDD and 1st
SNA-KDD 2007 workshop on Web mining and social network analysis. ACM,
2007, pp. 56–65.

[65] B. Krishnamurthy, P. Gill, and M. Arlitt, “A few chirps about twitter,” in
Proceedings of the first workshop on Online social networks. ACM, 2008, pp.
19–24.

[66] M. Gabielkov and A. Legout, “The complete picture of the twitter social graph,”
in Proceedings of the 2012 ACM conference on CoNEXT student workshop.
ACM, 2012, pp. 19–20.

[67] “Twitter graph 2010,” https://dev.twitter.com/.

[68] “Colonel blotto game,” http://en.wikipedia.org/wiki/Blotto games/.

[69] G. Gartner and K. Rehrl, Location Based Services and TeleCartography II: From
Sensor Fusion to Context Models. Lecture Notes in Geoinformation and Car-
tography, Springer, 2009.

[70] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning
techniques and systems,” IEEE Trans. Sys. Man Cyber - Part C, vol. 37, no. 6,
pp. 1067–1080, Nov. 2007.

[71] G. Mao, B. Fidan, and B. D. O. Anderson, “Wireless sensor network localization
techniques,” Comput. Netw., vol. 51, no. 10, Jul. 2007.

[72] A. Kushki, K. N. Plataniotis, and A. N. Venetsanopoulos, WLAN Positioning
Systems: Principles and Applications in Location-Based Services. Cambridge
University Press, 2012.

160

https://dev.twitter.com/
http://en.wikipedia.org/wiki/Blotto_games/

BIBLIOGRAPHY 161

[73] A. Cavallini, iBeacons Bible, http://meetingofideas.files.wordpress.com/
2013/12/ibeacons-bible-1-0.pdf.

[74] M. Yasir, S.-W. Ho, and B. Vellambi, “Indoor localization using visible light and
accelerometer,” in 2013 IEEE Global Communications Conference (GLOBE-
COM), Dec 2013, pp. 3341–3346.

[75] ——, “Indoor positioning system using visible light and accelerometer,” Journal
of Lightwave Technology, vol. 32, pp. 3306–3316, Oct 2014.

[76] Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning systems for
wireless personal networks,” IEEE Commun. Surveys Tuts., vol. 11, no. 1, pp.
13–32, Jan. 2009.

[77] M. Abdat, T.-C. Wan, and S. Supramaniam, “Survey on indoor wireless posi-
tioning techniques: Towards adaptive systems,” in International Conference on
Distributed Framework and Applications, Aug 2010.

[78] K. Al Nuaimi and H. Kamel, “A survey of indoor positioning systems and algo-
rithms,” in International Conference on Innovations in Information Technology,
April 2011, pp. 185–190.

[79] R. Harle, “A survey of indoor inertial positioning systems for pedestrians,” IEEE
Commun. Surveys Tuts., vol. 15, no. 3, 2013.

[80] P. Mirowski, D. Milioris, P. Whiting, and T. Kam Ho, “Probabilistic radio-
frequency fingerprinting and localization on the run,” Bell Labs Technical Jour-
nal, vol. 18, no. 4, pp. 111–133, Feb. 2014.

[81] R. Peng and M. Sichitiu, “Angle of arrival localization for wireless sensor net-
works,” in IEEE SECON, Sep 2006, pp. 374–382.

161

