
HAL Id: tel-01187958
https://theses.hal.science/tel-01187958v1

Submitted on 28 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evolution, testing and configuration of variability
systems intensive

José Ángel Galindo Duarte

To cite this version:
José Ángel Galindo Duarte. Evolution, testing and configuration of variability systems intensive.
Other [cs.OH]. Université de Rennes; Universidad de Sevilla (Espagne), 2015. English. �NNT :
2015REN1S008�. �tel-01187958�

https://theses.hal.science/tel-01187958v1
https://hal.archives-ouvertes.fr

ANNÉE 2014

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

En cotutelle Internationale avec
Université de Séville, Espagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : informatique

École doctorale Matisse

présentée par

José Ángel GALINDO DUARTE

préparée à l’unité de recherche IRISA-UMR6074

Institut de Recherche en Informatique et Systèmes Aléatoires

INRIA

Evolution, testing
and configuration
of variability
intensive systems

Thèse soutenue à Séville
le 4 mars 2015

devant le jury composé de :

Miguel Toro Bonilla
Professeur de l’université de Séville / examinateur

Sergio Segura Rueda
Professeur de l’université de Séville / examinateur

Jean-Marc Jézéquel
Professeur de l’université de Rennes 1/ examinateur

Alexander Felferning
Professeur de l’université de Graz/ examinateur

Juan Manuel Murillo
Professeur de l’université d’Extremadura/ rapporteur

EVOLUTION, TESTING AND

CONFIGURATION OF VARIABILITY

INTENSIVE SYSTEMS

JOSÉ A. GALINDO

ADVISED BY:
DR. DAVID BENAVIDES CUEVAS AND DR.BENOIT BAUDRY

DOUBLE DEGREE INTERNATIONAL DOCTORAL DISSERTATION

First published in January 2014 by
The Department of Computer Languages and Systems
ETSI Informática
Avda. de la Reina Mercedes s/n
Sevilla, 41012. SPAIN

Copyright c� MMXIV José A. Galindo
http://www.joseangelgalindo.es/

jagalindo@us.es

Classification (ACM 2012):

Categories and subject descriptors: D.2.13 [Software Engineering]: Reusable Soft-
ware: Domain Engineering; D.2.1 [Software Engineering]: Requirement/Specifications:
Languages,Tools; D.2.5 [Software Engineering]: Testing and Debugging - Testing tools

General Terms: Design, Theory, Algorithms, Performance

Additional Key Words and Phrases: software product lines, software product fami-
lies, feature models, automated analysis, variability, combinatorial testing, variability
intensive systems

Support: This work has been partially supported by the European commission
(FEDER), by the Spanish government under TAPAS (TIN2012-32273) project, by the
French government under MOTIV project and by the Andalusian government under
the Talentia scholarships program and under THEOS (TIC-5906) and COPAS (TIC-
1867) projects.

5

Don David Felipe Benavides Cuevas y Don Benoit Baudry, profesor titular
de la Universidad de Sevilla, e investigador principal del grupo de investi-
gación Diverse en INRIA,

HACEN CONSTAR

que Don José Angel Galindo Duarte, Ingeniero en Informática por la Univer-
sidad de Sevilla, ha realizado bajo nuestra supervisión el trabajo de investi-
gación titulado

Evolution, testing and configuration of
variability intensive systems.

Una vez revisado, autorizamos el comienzo de los trámites para su pre-
sentación como tesis doctoral al tribunal que ha de juzgarlo.

Fdo. Dr. David Felipe Benavides Cuevas y Dr. Benoit Baudry
Universidad de Sevilla,

Sevilla, Octubre de 2014

6

7

Yo, José Ángel Galindo Duarte, con DNI número 48959770-S,

DECLARO

Ser el autor del trabajo que se presenta en la memoria de esta tesis doctoral
que tiene por tı́tulo:

Evolution, testing and configuration of
variability intensive systems.

Lo cual firmo en Sevilla, Octubre de 2014.

Fdo. José A. Galindo

8

9

In addition to the committee in charge of evaluating this dissertation and
the two supervisors of the thesis, it has been reviewed by the following re-
searchers:

• Dr. Jules White (Vanderbilt University, USA)

• Dr. Mathieu Acher (Université de Rennes 1, France)

10

A Mis abuelos

José Duarte, José Galindo, Lourdes Rodrı́guez y Valme Vaquero

12

Contents

Acknowledgements . 23

Abstract . 25

Resumen . 27

Résumé . 29

I Preface

1 Introduction . 37
1.1 Overview . 38

1.2 Research method . 41

1.3 Contributions . 43

1.3.1 Summary of contributions . 43

1.3.2 Publications in chronological order 47

1.3.3 Tools . 52

1.4 Research internships and collaborations . 52

1.5 Structure of this dissertation . 55

II Background

2 Automated analysis of variability models 59
2.1 Variability models . 60

2.1.1 Feature models . 60

2.1.2 Orthogonal variability models (OVM) 62

14 Contents

2.1.3 Decisions models . 64

2.2 Automated analysis of variability models . 64

2.2.1 Logics . 65

2.2.2 Operations . 66

2.3 Summary . 68

3 Evolution, testing and configuration 69
3.1 Evolution . 70

3.1.1 Software product line evolution . 71

3.1.2 Feature model evolution . 72

3.2 Testing of variability intensive systems . 72

3.2.1 Combinatorial testing. 73

3.2.2 Cost and value guided testing. 74

3.3 Configuration . 75

3.4 Summary . 76

III Motivation

4 25 years of automated analysis of feature models. 79
4.1 Introduction . 80

4.1.1 Research questions . 80

4.1.2 Systematic mapping . 81

4.2 Classification scheme . 82

4.3 Research focus . 84

4.3.1 Variability intensive systems . 84

4.3.2 Testing and evolution of feature models 86

4.3.3 Product configuration and derivation 87

4.3.4 Variability and modeling expressiveness 87

4.3.5 Multi-model variability analysis . 88

4.3.6 Reverse engineering of feature models 89

4.4 Research type . 89

4.5 Foras analysis . 89

4.6 Discussion . 92

4.7 Summary . 92

5 Research gaps . 95
5.1 Introduction . 96

Contents 15

5.2 Problems . 96

5.3 Current Solutions . 97

5.3.1 Evolution of variability intensive systems 97

5.3.2 Testing of variability intensive systems 99

5.3.3 Configuration of variability intensive systems 102

5.4 Discussion . 104

5.5 Summary . 104

IV Contributions

6 Testing: pruning, prioritizing and packaging 109
6.1 Introduction . 110

6.2 Motivating scenario . 112

6.3 The TESALIA solution . 117

6.3.1 Capturing testing variability with feature models 118

6.3.2 Attributing feature models with testing data 119

6.3.3 Pruning the testing scope . 123

6.3.4 Prioritizing the tests list . 126

6.3.5 Packaging the most profitable set of products 128

6.4 Summary . 130

7 Testing: pair-wise pruning optimization operations . . . 133
7.1 Introduction . 134

7.2 Motivating scenario . 135

7.2.1 Variability-based testing approach 136

7.3 VANE solution . 138

7.3.1 T-wise CSP for attributed feature models 140

7.3.2 T-wise covering sets for attributed feature models 140

7.3.3 T-wise covering sets optimization . 141

7.3.4 Obtaining multi-objective test-suites 143

7.4 Summary . 144

8 Configuring while drifting feature models 145
8.1 Introduction . 146

8.2 Reasoning over multi-step configuration problems 148

8.3 Modeling feature model drift . 150

8.3.1 Modifying the CSP model of multiple steps 151

16 Contents

8.3.2 Feature drift epochs . 152

8.3.3 Epoch-based feature model constraints 154

8.3.4 Ordered epochs . 155

8.3.5 Feature drift branches . 156

8.4 Summary . 156

9 Supporting distributed product configuration 159
9.1 Introduction . 160

9.2 The Invar Approach . 161

9.2.1 Configuration primitives . 162

9.2.2 Inter-model dependencies . 164

9.2.3 Integrating variability models: the Invar architecture . . . 165

9.2.4 Configuration service and enactment support 167

9.3 Summary . 168

V Validation

10 Optimizing the Android emulation in the cloud 173
10.1 Experimentation data . 174

10.2 Experiments . 179

10.2.1 Market-share based prioritization. 181

10.2.2 Cloud cost and market-share optimization 183

10.2.3 TESALIA-packaging validity for the Android scenario. . 184

10.2.4 TESALIA scalability. 185

10.3 Analysis and discussion . 188

10.4 Threats to validity . 189

10.5 Summary . 190

11 Managing video-sequences variability 193
11.1 Evaluation . 194

11.1.1 Applicability of VANE to a real-scenario. 196

11.1.2 Multi-objective capabilities evaluation. 199

11.2 Benefits and limits of the approach . 200

11.3 Threats to validity . 202

11.4 Summary . 203

12 Scalability of feature model drifts configuration. 205

Contents 17

12.1 Experimental platform . 206

12.2 Multi-step configuration scalability . 207

12.3 Feature model drift scalability . 210

12.4 Threats to validity . 211

12.5 Summary . 213

13 Validating Invar . 215
13.1 Integrating three different variability modeling approaches . . . 216

13.1.1 Plugging feature models to Invar . 216

13.1.2 Plugging OVM models to Invar . 217

13.1.3 Plugging decision models to Invar 218

13.2 Configuring the Android privacy settings 220

13.2.1 The Android permissions system . 221

13.2.2 Modeling the Android apps . 222

13.2.3 Modeling security related user preferences using dopler 224

13.2.4 Android permissions as inter-model relationships 224

13.3 Evaluating the performance of different enactment strategies . . 225

13.4 Summary . 229

VI Final Remarks

14 Conclusions and future work . 233
14.1 Conclusions . 233

14.1.1 Discussion and open challenges . 234

14.2 Future work . 236

VII Appendix

15 WindRose . 241
15.1 Introduction . 242

15.2 WindRose cloud-based IDE . 242

15.2.1 Available plugins . 243

15.2.2 Analysis operations . 244

15.2.3 Repositories . 245

16 Foras where the community publish 247

Bibliography . 251

18 Contents

List of Figures

1.1 Smartphone masss-customization . 38

1.2 Automated analysis of variability intensive systems feature models . 40

1.3 Overview of this thesis scope . 40

1.4 Chronological order of publications . 52

1.5 Trips to cope with the Ph.D objectives. 53

2.1 Feature model example from the mobile industry 61

2.2 Attributed feature model example . 62

2.3 OVM notation . 63

2.4 OVM with attributes . 63

2.5 Decision model notation . 64

2.6 Automated analysis of feature models process 65

2.7 Sample void model . 67

2.8 Sample void model . 68

3.1 Evolution process . 70

3.2 Testing operations overview . 74

3.3 Multi-product line configuration . 76

4.1 Search citing publications process . 82

4.2 Visualization of the systematic map . 84

4.3 Distribution in percentage of research focus . 85

4.4 Distribution in percentage of research type . 90

6.1 Android variability impacting testing costs . 113

6.2 Feature model example based on the motivating scenario 117

6.3 TESALIA solution overview . 118

6.4 Example based on the smartphone’s motivating scenario 123

7.1 Four variants of video sequences . 137

20 List of Figures

7.2 Testing in the MOTIV project . 138

7.3 VANE process to obtain optimal T-wise covering sets 139

7.4 An exemplified feature model with attributes 139

8.1 Potential configuration paths . 147

8.2 Boeing 787 feature model drift . 151

8.3 A CSP model of feature model drift . 153

9.1 A simplified view of model-based product configuration 161

9.2 Architecture of the Invar infrastructure. 166

10.1 Steps for optimizing the testing of Android apps using TESALIA . . 175

10.2 The Android feature model . 176

10.3 Market-share example data by September’12 179

10.4 Market-share coverage: Amazon vs TESALIA 183

10.5 Market-share coverage per monetary unit . 184

10.6 Time required by TESALIA’s operations with random models 187

10.7 Time required by TESALIA’s operations with SPLOT models 188

11.1 Feature model to represent variability of a video sequence 195

11.2 Required time when VANE optimizes one quality attribute 198

11.3 # configurations optimizing one quality attribute 198

12.1 Changing between two XOR subtrees . 209

12.2 Automated configuration time for varying numbers of time steps . 209

12.3 Automated configuration time for feature model drift problems . . . 212

13.1 OVM encoding part of the Android application variability 224

13.2 Dopler questions used to define the security criteria in Android . . . 225

13.3 OVM encoding part of the Android application variability 226

13.4 Milliseconds per # features and percentage of constraints 229

15.1 WindRose architecture overview . 243

15.2 Screenshots of WindRose in action . 246

List of Tables

1.1 List of researchers and institutions the student co-authored a work . 54

2.1 Products result for model in Figure §2.1 . 67

4.1 Conferences & workshops with more than one publication 90

4.2 Journals and number of papers from the survey 91

5.1 Multi-objective related work comparison . 102

6.1 Set of products described by the example presented in Figure §6.2 . 119

6.2 Sub-set of products applying the function from Section §6.3.3 126

6.3 Sub-set of products with testing value . 128

6.4 Optimized test products for a budget of 6 cost units 130

7.1 Single derivation CSP vs T-wise covering set derivation CSP 142

9.1 A summary of operations, which can be used to create IMDI links . 164

10.1 Hypotheses and design of experiments to evaluate TESALIA 180

10.2 Twenty Amazon most sold phones (December’12) 182

10.3 Google provided market-share (October’12) . 182

11.1 Hypotheses and design for the VANE solution 196

12.1 MUSCLES first experiment data . 208

12.2 MUSCLES second experiment data . 211

13.1 Mapping of feature model elements to Invar primitives 218

13.2 Mapping of OVM model elements to Invar primitives 219

13.3 Mapping of desicion model elements to Invar primitives 221

13.4 Hardware features used by Android permissions 222

13.5 Hypotheses and design of experiment . 228

14.1 Links between chapters, research questions and publications 235

22 List of Tables

Agradecimientos

Finalmente ha llegado la hora de poner punto y seguido a una etapa
llena de momentos tan duros como enriquecedores. Estos momentos me han
permitido tanto hacer nuevos amigos como echar en falta a otros.

Gracias a mis padres por enseñarme a no rendirme y seguir en los
momentos difı́ciles y a Vanesa por estar siempre conmigo por muchos
kilómetros que nos separasen. Nunca olvidaré esa primera despedida en la
que os decı́a un hasta pronto a los tres. Asimismo, dar las gracias a aquellos
amigos que hicieron que me sintiese en casa estando lejos. Hamilton, Anna,
Joon, Juan, Ania, Ramón, Mauricio, Jesús, Paco y otros tantos que es imposible
mencionarlos aquı́.

También ha sido muy importante el apoyo de mis tutores David y Benoit
para la conclusión de esta tesis. El primero, por enseñarme el oficio y
animarme en todo momento. El segundo, por haber estado ahı́ cuando más
hacı́a falta. También dar especiales gracias a Jules White y a Mathieu Acher
por acogerme en sus grupos de trabajo. Finalmente también agradecer el
apoyo recibido a los grupos de investigación ISA, Diverse y Magnum por
haberme abierto las puertas y puesto a mi disposición todos los recursos que
tenı́an disponibles.

24 List of Tables

Abstract

One of the key characteristics of software is its ability to be adapted and
configured to different scenarios. Recently, software variability has been stud-
ied as a first-class concept in different domains ranging from software product
lines to pervasive systems. Variability is the ability of a software product to
vary depending on different circumstances. Variability intensive systems are
those software products where variability management is a core engineering
activity. The varying parts of those systems are commonly modeled by us-
ing different variability model flavors, being feature modeling one of the most
common ones. Feature models were first introduced by Kang et al. back in
1990 and are a compact representation of a set of configurations in a variabil-
ity intensive system.

The large number of configurations that a feature model can encode makes
the manual analysis of feature models an error prone and costly task. Then,
computer-aided mechanisms appeared as a solution to extract useful informa-
tion from feature models. This process of extracting information from feature
models is known as “Automated Analysis of Feature models” that has been
one of the main areas of research in the last years where more than thirty anal-
ysis operations have been proposed.

In this dissertation we looked for different tendencies in the automated
analysis field and found several research opportunities. Driven by real-world
scenarios such as smart phone or video–surveillance domains, we contributed
applying, adapting or extending automated analysis operations in variability
intensive systems evolution, testing and configuration.

Concretely the main gaps addressed by this thesis are:

Testing. Two different solutions are presented in this context. First, we show
how to prune, prioritize and package variability intensive systems con-
figurations by the use of attributed feature models. This solution brings
cost and value guided testing to variability intensive systems. Second,
we present a hybrid solution to enable the prioritization of pair-wise cov-

26 List of Tables

ering sets while taking into account multiple stakeholders preferences.
Both, approaches are validated in different contexts such as smartphone
ecosystems and video-sequences generators.

Evolution. Evolution is intimately related with testing, being one of the main
task in the evolution process. Evolution of variability models may span
between different years. We propose mechanisms to grant the safeness
of the transition of a configuration between different evolution phases.
We evaluated this approach within an avionics scenario.

Configuration. We propose a solution to configure diverse variability inten-
sive systems that have been modeled with different variability model
languages and have different visibility restrictions. We validated this
approach by using the motivating scenario of the Android permission
system.

Resumen

Una de las caracterı́sticas más importantes del software, es la habilidad de
adaptarse a distintos escenarios. Recientemente, la variabilidad del software
es estudiada como un elemento esencial en distintos dominios que varı́an
desde las lineas de producto software a sistemas de cloud. Este tipo de sis-
temas son conocidos como sistemas de alta variabilidad. Los sistemas de alta
variabilidad son sistemas software que, debido a su naturaleza, gestionan una
gran cantidad de artefactos software variables.

Los modelos de caracterı́sticas surgieron para representarlas partes co-
munes y variables de los sistemas de alta variabilidad. Asimismo, el elevado
número de configuraciones existentes en un sistema de alta variabilidad im-
posibilitan el análisis manual de los mismos. Para salvar este inconveniente,
distintos investigadores han propuesto el uso de mecanismos y herramientas
informáticas. Esto es conocido como el análisis automático de modelos de
caracterı́sticas. Recientemente, el análisis se ha aplicado a una variedad de
sistemas de alta variabilidad como pueden ser sistemas de computación en la
nube o la gestión del kernel de Linux.

En esta tesis, exploramos las diferentes tendencias en el análisis automático
de modelos de caracterı́sticas. En primer lugar, hemos identificado diversas
preguntas de investigación que deben ser abordadas y propuesto diferentes
soluciones. Más tarde, hemos validado nuestras soluciones en sistemas de
alta variabilidad reales como son el ecosistema Android y los sistemas de gen-
eración de vı́deo-secuencias.

Concretamente las principales áreas en las que esta tesis se ha enfocado
son:

Pruebas: Dos soluciones se han desarrollado en este área. Primero,
mostramos como reducir, priorizar y empaquetar conjuntos de pruebas
usando modelos de caracterı́sticas con atributos de calidad. Después,
modelamos las distintas operaciones como un problema de satisfacción
de restricciones y validamos usando el ecosistema Android. Segundo,

28 List of Tables

habilitamos una operación para priorizar la ejecución de conjuntos de
configuraciones a la vez que mantenemos una cobertura por pares de las
mismas. Esta aportación se desarrolla en el contexto de los sistemas de
vı́deo-vigilancia. En estos sistemas se necesitan vı́deos para proceder a
su prueba. En esta tesis proponemos gestionar la variabilidad de cara a
optimizar la generación de vı́deos de prueba para estos sistemas.

Evolución: Los sistemas de alta variabilidad están sujetos a la evolución de-
bido a la inclusion de nuevos requisitos. Para garantizar la corrección
del sistema, es necesario verificar los sistemas de variabilidad en cada
fase de la evolución. También es común que haya usuarios de configura-
ciones procedentes de versiones anteriores que deseen migrar a las más
actuales, introduciendo restricciones al migrar. Para gestionar estas tran-
siciones hemos implementado una solución que nos permite optimizar
los cambios a realizar en nuestras configuraciones. Esta propuesta se ha
evaluado en el contexto de aeronáutica.

Configuración: Finalmente, la complejidad de los sistemas de alta variabil-
idad imposibilitan la configuración del sistema por una persona. Más
aún, una persona no suele tener visibilidad de todo el sistema de alta
variabilidad. Para solventar este problema, desarrollamos una solución
en la que permitimos la configuración de múltiples modelos de variabil-
idad. Esta propuesta se evalúa en el contexto de la seguridad en el eco-
sistema Android.

Résumé

Une particularité importante du logiciel est sa capacité à être adapté et con-
figuré selon différents scénarios. Récemment, la variabilité du logiciel a été
étudiée comme un concept de première classe dans différents domaines allant
des lignes de produits logiciels aux systèmes ubiquitaires. La variabilité est la
capacité d’un produit logiciel à varier en fonction de différentes circonstances.
Les systèmes à forte variabilité mettent en jeu des produits logiciels où la ges-
tion de la variabilité est une activité d’ingénierie prédominante. Les diverses
parties de ces systèmes sont couramment modélisées en utilisant des formes
différentes de “modèle de variabilité”, qui est un formalisme de modélisation
couramment utilisé. Les modèles de caractéristiques (feature models) ont été
introduits par Kang et al. en 1990 et sont une représentation compacte d’un
ensemble de configurations pour un système à forte variabilité.

Le grand nombre de configurations qu’un modèle de caractéristiques per-
met d’encoder rend son analyse manuelle source d’erreur et très couteuse.
De fait, les mécanismes assistés par ordinateur sont apparus comme une
solution pour extraire des informations utiles à partir de modèles de car-
actéristiques. Ce processus d’extraction d’information à partir de modèles
de caractéristiques est appelé dans la littérature scientifique “analyse automa-
tisée de modèles de caractéristiques” et a été l’un des principaux domaines de
recherche ces dernières années. Ainsi, plus de trente opérations d’analyse ont
été proposées durant cette période.

Dans cette thèse, nous avons identifié différentes questions ouvertes dans
le domaine de l’analyse automatisée et nous avons considéré plusieurs axes
de recherche. Poussés par des scénarios du monde réel (e.g., la téléphonie
mobile ou la vidéo protection), nous avons contribué à appliquer, adapter ou
étendre des opérations d’analyse automatisée pour l’évolution, le test et la
configuration de systèmes à forte variabilité.

Concrètement, les principales avancées scientifiques de cette thèse sont les
suivantes:

30 List of Tables

Tests: Deux solutions différentes sont présentées dans ce contexte. Tout
d’abord, nous montrons comment découper, prioritiser et preparer des
systèmes à forte variabilité par l’utilisation de modèles de caractéristiques
avec attributs. Cette solution permet le test de systèmes guidé par le coût et
la valeur. Deuxièmement, nous présentons une solution hybride pour perme-
ttre la prioritisation des ensembles de paires tout en tenant compte des mul-
tiples préférences des parties prenantes. Les deux approches sont validées
dans différents contextes: les écosystèmes liés à la téléphone mobile et les
générateurs de séquences vidéo.

Les applications de téléphone mobile (“apps”) sont généralement exécutées
sur une variété de configurations des plateformes sous-jacentes, telles
que différentes versions d’Android ou iOS. Chaque configuration exprime
différentes caractéristiques de la plateforme mobile, telles que les capacités
de résolution écran ou communication réseau (par exemple, 3G, LTE, etc.).
Le logiciel doit prendre en considération ces caractéristiques, voire même se
configurer différemment selon la plateforme. Par exemple, avec iOS 6, la nav-
igation GPS avec guidage vocal ou visuel est absente sur l’iPhone 3GS mais
présente sur l’iPhone 5. En outre, les iPhones 3GS et 4S ont la même taille
d’écran, ce qui n’est pas le cas avec l’iPhone 5. L’émulateur Android, qui per-
met aux développeurs d’émuler les options de configuration d’equipements
du monde réel, supporte actuellement 46 caractéristiques différentes de plate-
forme mobile, qui (en supposant que toutes les fonctionnalités configurables
par l’utilisateur pourraient être combinées sans aucune restriction) conduit
potentiellement à 246 variantes de configuration de plateforme. La grande
variabilité qui existe dans l’écosystème Android rend les tests difficiles. Être
en mesure de décrire la variabilité de l’écosystème Android comme une ligne
de produits logiciels permet aux développeurs d’appliquer des techniques de
test existantes et nouvelles pour optimiser les stratégies de test.

Dans un autre contexte, nous considérons les systèmes d’analyse vidéo qui
sont omniprésents et cruciaux dans la société moderne. Leurs applications
vont de la vidéo protection à la gestion de crise et à l’analyse de foules. Les
séquences vidéo sont acquises, traitées et analysées afin de produire une in-
formation numérique ou symbolique. L’information correspondante entraı̂ne
généralement la notification d’alertes à des observateurs en cas de situations
ou d’événements remarquables. Par exemple, un scénario classique dans les
catastrophes naturelles est de reconnaı̂tre les victimes en utilisant des caméras
aéroportées avec l’intention d’agir rapidement sur la base des informations
glanées et de fait planifier une stratégie ou tactique de sauvetage.

En fonction de l’objectif de la reconnaissance vidéo, des algorithmes de
traitement du signal sont assemblés de différentes manières. En outre, chaque

List of Tables 31

algorithme est un logiciel complexe, spécialisé dans une tâche spécifique (par
exemple, la segmentation et la reconnaissance d’objets). Même pour un tra-
vail spécifique, il est difficile de trouver un algorithme qui fonctionnerait de
manière efficace et précise dans toutes les situations. Ainsi, l’ingénierie des
systèmes d’analyse de séquences vidéo nécessite de choisir et de configurer la
bonne combinaison d’algorithmes.

Pour surmonter les limitations précédentes, nous introduisons une ap-
proche générative, fondée sur les principes de modélisation et d’analyse de
la variabilité. Le but de la démarche est de synthétiser automatiquement une
variante d’une séquence vidéo ou d’une configuration Android correspondant
à une configuration (c’est-à-dire, une sélection de caractéristiques souhaitées).
Par rapport à la pratique actuelle, l’approche vise à fournir une plus grande
automatisation, plus de diversification et plus de contrôle lors de l’élaboration
de jeu de données de tests.

Evolution: L’évolution est intimement liée aux tests qui est l’une des
principales tâches dans le processus d’évolution. L’évolution des modèles
de variabilité peut s’étendre sur différentes années. Nous proposons des
mécanismes pour s’assurer de la consistance du processus de configuration
entre les différentes phases d’évolution. Nous avons évalué cette approche
dans un scénario d’avionique.

Lorsque le logiciel évolue, son évolution peut avoir besoin d’être divisée en
plusieurs étapes afin de répondre aux contraintes d’évolution. Dans certains
cas, les caractéristiques des produits doivent être introduites progressivement
dans un laps de temps donné. Par exemple, le Boeing 737, introduit en 1966,
a été constamment amélioré et adapté au fil du temps et est toujours actuelle-
ment en service. Chaque configuration successive du Boeing 737, qui corre-
spond à une variante, a été développée sur plusieurs années et a incorporé de
nouvelles fonctionnalités par rapport à la variante de base de 1966. Par ex-
emple, le développement de la configuration 737-300 de l’avion a commencée
en 1979 et son premier vol s’est déroulé en 1984. Le configuration a ajouté
une variété de fonctions, comme un système électronique d’instruments de
vol. Le 737 a eu de nombreuses configurations successives, tels que le 737-400,
737-500, 737-600, 737-700, 737-800 et le 737-900 qui ont toutes été planifiées et
développées pendant de longues périodes.

Il y a un certain nombre de scénarios où l’évolution d’un ensemble de pro-
duits peut être effectuée sur plusieurs étapes prédéfinies. Par exemple, quand
une nouvelle distribution Linux, comme une nouvelle version d’Ubuntu, est
prévue, les développeurs doivent décider l’ensemble des artefacts logiciels qui
vont être ajoutés et supprimés dans la prochaine version de la distribution (par
exemple, ajouter et supprimer des paquets et modifier leurs dépendances).

32 List of Tables

En outre, dans d’autres domaines, tels que la construction d’avions ou les
centrales nucléaires, la configuration et la mise à niveau des produits sont
prévues et analysées des années avant la production réelle (par exemple, les
configurations du Boeing 737 ont duré 46 ans). Idéalement, un constructeur
aéronautique souhaiterait dériver une séquence de configurations successives
qui s’appuient sur les précédentes, comme les variantes du 737 le font, de sorte
que plus de fonctionnalités avancées sont incluses chaque année. Un fabricant,
cependant, ne peut pas choisir arbitrairement les fonctionnalités à ajouter pour
une année donnée. Au lieu de cela, chaque ensemble de fonctionnalités pour
une année doit constituer une configuration complète et correcte de la ligne
de produit pour éviter la vente d’une configuration défectueuse et non viable.

Nous avons développé un procédé automatisé afin de dériver un ensemble
de configurations satisfaisant une série d’exigences sur un ensemble d’étapes
de configuration. Notre technique transforme un problème de configuration
à plusieurs étapes en un problème de satisfaction de contraintes. Elle utilise
ensuite un solveur de contraintes pour générer une série de configurations
qui satisfont les contraintes à plusieurs étapes. De plus, elle peut renvoyer
soit tous les chemins valides, soit un chemin unique optimisé à partir de la
configuration initiale jusqu’à la configuration finale. L’ingénieur des lignes de
produit peut ainsi décider quel chemin d’évolution correspond au mieux aux
objectifs du projet.

Configuration: Nous proposons une solution pour configurer divers
systèmes à forte variabilité qui sont modélisés par différents langages de
modèle de variabilité et qui présentent différentes restrictions de visibilité.
Nous avons validé cette approche en utilisant le scénario du système
d’autorisations d’Android. Les lignes de produits logiciels sont de plus en
plus développés au-delà des frontières d’une seule organisation. Par exem-
ple, dans les écosystèmes logiciels, les organisations et les équipes créent des
logiciels via un effort de collaboration. La gestion de la variabilité et de la con-
figuration du produit dans de tels contextes doivent concilier les différentes
approches de modélisation, les notations et les outils utilisés. En raison des
différences significatives dans les pratiques des différents domaines, il est
irréaliste de supposer qu’il y aura un jour une approche de modélisation de la
variabilité unique et normalisée en dépit des efforts de normalisation en cours.
Toutefois, le nombre croissant de “solutions insulaires” à la modélisation de
la variabilité et de la configuration de produit restreint la communication et la
collaboration entre les ingénieurs de lignes de produits.

Nous proposons Invar, une approche facilitant l’intégration des modèles
de variabilité créés via différentes approches de modélisation et potentielle-
ment par des équipes différentes. Dans ce chapitre, nous nous concen-

List of Tables 33

trons sur les aspects de configuration de produit de notre infrastructure
d’intégration. Invar cache les aspects techniques internes de l’utilisation de
différents modèles de variabilité aux parties prenantes s’occupant de la con-
figuration. Les outils et formats de données spécifiques utilisés pour définir les
modèles de variabilité ne sont pas pertinents pour les utilisateurs finaux qui
n’ont besoin de se concentrer que sur les choix de configuration disponibles
et leurs implications. Invar unifie les opérations de configuration sur les
modèles de variabilité et permet aux modeleurs de choisir librement une
représentation de données en accédant aux modèles de variabilité à travers
de services Web. Notre approche ne force pas les organisations à intégrer
leurs outils de configurations en adaptant la mécanique interne des outils. Au
contraire, nous leur permettons de composer leurs mécanismes de configura-
tion en utilisant des définitions de connecteurs et d’interfaces. Nous validons
notre approche en intégrant trois dialectes différents de modélisation de la
variabilité : modèles de caractéristiques, modèles de variabilité orthogonaux
(OVM) et modèles de décisions. Nous montrons aussi comment les scénarios
typiques des écosystèmes de logiciels peuvent être supportés par Invar.

34 List of Tables

Part I

Preface

Chapter 1

Introduction

If such things have not been part of your own experience, you probably won’t understand what

Bastian did next

Michael Ende, the Neverending Story, Book writer

I n this dissertation, we report our work in the evolution, testing and con-
figuration of variability intensive systems. In this chapter we give an

overview of the contributions, the research method and publications related
to this document.

38 Chapter 1. Introduction

1.1 Overview

Mass customization [50] is the process of producing a product that meets a
wide range of requirement sets while maintaining the low production costs of
mass production systems. The key to mass customization is producing a set
of varying products that share a common core of components, while allowing
specific points of variation in order to meet differing requirements. A more
formal definition can be found in Tseng and Jiao [176], mass customization is
the process of “producing goods and services to meet individual customer’s
needs with near mass production efficiency”. Figure §1.1 present a motivating
scenario of mass customization based in the smart-phone ecosystems, where
the application developed for one ecosystem would be able to adapt to a vari-
ety of screens and hardware architectures.

Figure 1.1: Smartphone masss-customization.

Mass customization introduce new challenges in software engineering
when adapting it to different and diverse scenarios. The varying set of user
requirements pushes forward practitioners in the need of managing the vari-
ability in a systematic and scalable manner. This points out, that variability

1.1. Overview 39

management acts as a proxy between mass customization and software mak-
ing variability management a crucial task in mass-customization related tasks.

Variability intensive systems are those systems in which, the variability
management is a core activity. Different examples can be found in the lit-
erature such as cloud-price management systems [73], video-generators [69],
debian-based distributions [68], comparison matrices [150] or content man-
agement systems like Drupal [171].

To describe the variability existing in variability intensive systems, re-
searchers and practitioners rely on the concept of variability models. Different
variability models focus on different aspects of the variability intensive sys-
tems. For example, feature models emphasize the description of common and
variant functionality while orthogonal variability models describe the variant
parts by stacking on a base model. In any case, feature models got hype and
become the most used variability model flavor making it to appear several
solutions and tools relying in this formalism.

The basic feature model notation[92] constructs are depicted in terms
of mandatory, optional and exclusive features as well as propositional con-
straints over the features. The features are hierarchically organized starting
from the high-level concept to more refined and detailed concepts (see Figure
§1.2). The essence of a feature model is to characterize a set of valid config-
urations, where a configuration is defined as the selection of features and at-
tributes values. Propositional constraints and variability information restrict
the valid combinations of features authorized in a variability intensive system.

The large number of configurations managed by a variability intensive sys-
tem enforces the needing of computer-aided mechanisms to avoid the man-
ual analysis which usually is costly and error prone. For example, in Debian
based distributions we can find models describing around 28000 variability
points [68]. This process of automatically analyze variability intensive sys-
tems is known as Automated analysis of variability models[19]. This process,
starts by taking the model and operational data as input. These artifacts are
then, encoded using a logic paradigm. Then, we inquiry the logic paradigm
extracting the meaningful information required. Figure §1.2 shows the au-
tomated analysis process in terms of variability intensive systems variability
management.

Figure §1.3 shows the different software engineering activities where this
thesis helps by using automated analysis of variability models. We developed
different tools and mechanisms extending existing variability modeling analy-
sis tools and validated in front of real-world variability intensive systems such
as smart-phone ecosystems and video-surveillance applications.

40 Chapter 1. Introduction

�������

����� ��������������

��� ���������

��������

��� �������������

�����������������
��������������������������������
����������������������
���������������������������

�
�

�����

������

Figure 1.2: Automated analysis of variability intensive systems feature mod-
els.

�����������������������������

������������������

���������
������

��������
������

�����������
������

������������������

���������

�������

������������

����
���

���

���
��
��

���
���
��

��
���

���������������

��������������

����������

������������

���������

Figure 1.3: Overview of this thesis scope.

Concretely, we have coped with i) testing, enabling the cost and value
guided testing while relying in quality attributes; ii) evolution, enabling the
safe transition between configurations adhered to different versions of the
variability intensive system; and iii) configuration, enabling the configuration
of distributed and different variability model flavors.

Evolution Evolution is about the introduction of new requirements and
functionality’s in a software system when the development cycle have
started. The evolution and maintenance of variability intensive systems
promotes a set of new challenges. For example, to transition users us-
ing a product from a previous variability intensive system version to the
current one. In this document we propose techniques to grant the safe-
ness in between different versions and validate in front of aeronautics
scenario.

Testing While being a crucial part of the evolution, the testing can also occur
in far-from-evolution contexts. Moreover, when testing variability inten-

1.2. Research method 41

sive systems, the large number of configuration to tests, usually forces
practitioners to prune or prioritize the test-cases. In this document we
will present different solutions for testing variability intensive systems
and validate in front of two real scenarios such as the android ecosystem
and the video-sequences generators problems.

Configuration Configuring a variability intensive system is as difficult as to
prune the valid configurations from the large set of possible features per-
mutations. Moreover, the distributed and diverse nature of variability
intensive systems, makes costly and time consuming this activity. In this
document we propose to rely on computer-aided mechanism to assist
users when configuring variability intensive systems. Moreover, we val-
idated this in front of the Android permission scenario as well as in front
of an enterprise system.

1.2 Research method

The research method used in this research was described by Ida Solheim et
al. [84]. This method adapts the traditional research method to the nature of
technology research. In technological research, the objective is to create arti-
facts that are better in some manner than those already developed. This is, that
the new artifacts improves the previous in speed, safeness or any other tech-
nological characteristic. Once the new artifacts are designed and developed,
researchers have to show that the artifacts are complete. Note that this doesn’t
mean that the artifacts are complete from an end-user perspective but only
from the requirements perspective. In other words, check that the artifacts
satisfies all requirements. Concretely, the main steps in technology research
are:

i Problem statement: where researchers look for the potential need of a
new technology. This is, where researchers identify the need for new
artifacts.

ii Contribution: in this step is where the researchers actually develop a
solution and create the artifacts supporting the solution.

iii Validation: in this final step, researchers verify that all the requirements
required to improve the previous solutions and, of course, to grant the
solution of the problem have been fulfilled.

Following this research method we started to pose the abstract research
questions that would guide our thesis, being it the following one:

42 Chapter 1. Introduction

How to apply the automated analysis of feature model in variability intensive

systems?

To fully understand this question we need to look to the words that provide
more meaning to the the question sentence.

Apply Means “to put to use especially for some practical purpose” †1. There-
fore, to apply automated analysis of feature model we need to detect the
main points in the area of variability intensive systems were is required.

Automated Means “to run or operate (something, such as a factory or system)
by using machines, computers, etc., instead of people to do the work” †2.
In our context, this is to apply computer-aided techniques that help or
guide humans.

Analysis Means “to careful study of something to learn about its parts, what
they do, and how they are related to each other” †3.

Feature models As explained above, feature models are a common way of
representing the commonalities and variability of a software product
line.

Variability intensive systems Means those systems that because of their na-
ture needs to cope with a large set of software artifacts

Concretely, the process we followed up in this thesis (which is inspired in
[84]) was to i) model the variability existing in this problem; and ii) propose
a technique to solve it and evaluate it. To perform such evaluation we have
worked with different companies in tandem and resolved real-world prob-
lems. Concretely, the main problems we used to validate our research were
the ATAACK cloud (funded by the DoD of the USA) and the MOTIV project
(funded by the french DGA). In the ATAACK cloud project, we build up a
cloud system that enable users to test their Android applications in different
systems platforms that vary in different properties such as screen density or
input methods. The MOTIV project aims at evaluating computer vision algo-
rithms such as those used for surveillance or rescue operations. A targeted
scenario is usually as follows. First, airborne or land-based cameras capture
on-the-fly videos. Then, the processing and analysis of video sequences are
performed to detect and track, for example, survivors in a natural disaster.

†1http://www.merriam-webster.com/dictionary/apply
†2http://www.merriam-webster.com/dictionary/automated
†3http://www.merriam-webster.com/dictionary/analysis

1.3. Contributions 43

1.3 Contributions

In this section, we summarize the main contributions of our work. Some of
these contributions have been published in different workshops, conferences
and journals.

1.3.1 Summary of contributions

This thesis delves in the research relative to software product lines per-
formed in the ISA†4, Diverse†5 and †6 research groups. First, we present the
main trends in the automated analysis of feature models. Later, we deep in
the different trends were we found research opportunities and show the con-
tributions. Finally, we show how we have validate our contributions by using
problems coming from the industry.

The main goal of this thesis document is to provide a set of variability
based techniques that help in real scenarios by using feature modeling and
artificial intelligence techniques. This is, we applied a divide and conquer
approach to answer the main research question. Below, you will find the list
of contributions done and questions we answered in this dissertation:

i) Twenty-five years of feature models automated analysis

To shell the works done by the feature model automated analysis re-
searchers we performed a mapping study [184] based in Benavides et al.
previous work [19].

– Problem statement: Previously to this research, Benavides et al. [19]
presented a systematic literature review that provides a comprehensive
list of the automated analysis of feature models. However, in the last five
years, new research trends have emerged.

– Contribution: We performed a systematic mapping study to identify the
main trends in the area and to position the impact of this thesis inside
the automated analysis area.

– Validation: In this case, the results of this first contribution have been
used to guide the realization of this thesis as well as provided the main

†4http://www.isa.us.es
†5http://diverse.inrisa.fr
†6http://magnum.io

44 Chapter 1. Introduction

foras where to publish the thesis results. The research questions related
to the contribution are:

What is the current status of the automated analysis of feature models?

What are the current trends in the area?

Where does the community publish?

See Chapter §4 for more details about this contribution.

ii) Testing variability intensive systems: Pruning, prioritizing and pack-
aging target testing platforms

After determining the current state of the art in feature modeling we
identified that there was a lack of testing mechanisms using quality at-
tributes, thus, this was our first contribution.

– Problem statement: A daunting challenge is to explore how the cost and
value of test cases can be modeled and optimized in order to have more
profitable test cases.

– Contribution: We worked out an approach that uses automated analysis
of feature models to optimize the testing of variability intensive systems.
to enable it so we model test value and cost as feature attributes and then
we use a constraint satisfaction solver to prune, prioritize and package
product line tests complementing prior work in the software product
line testing literature.

– Validation: We validated our approach in the context of the ATAACK
cloud in Virginia Tech. Also, we showed how our approach scales and
improves the testing of Android application. Note that, the Android
ecosystem because of the diversity it manages, can be considered as a
variability intensive system. The research questions related to the con-
tribution are:

How can we improve the testing of variability intensive systems?

How can we select the most profitable set of products in an variability

intensive system?

See Chapter §6 for more details about this contribution. This contribu-
tion has bee published in the software quality journal (http://link.springer.

com/journal/11219).

iii) Advanced test selection in variability intensive systems: Attributed
pair-wise test prioritization.

1.3. Contributions 45

When we finished the research of the first three operations we detected
that our solution lacked a way of optimizing more complex pruning
functions such as the pair-wise [109]. Moreover, we were not able to
cope with multi-optimization problems. This is, when users want to op-
timize more than one function.

– Problem statement: A next step when coping with quality attributes in
testing is to enable the t-wise generations by considering them. More-
over, there are conflicting optimization functions that require to be satis-
fied in tandem. In the MOTIV project†7 we faced the challenge of deriv-
ing meaningful configurations that represent video sequences. It is a re-
quirement to provide a good feature and attribute coverage at the same
time we optimize certain values that narrow the scope of the videos,
thus, being more optimal for certain algorithms and scenarios. This is,
video analysis practitioners may be generating images with a good cov-
erage and with a minimum luminosity (simulating videos recovered at
night).

– Contribution: We developed a hybrid solution that mixes CSP and ge-
netic algorithms allowing to obtain the pair-wise covering set of config-
urations that optimizes a certain quality attribute. This solution, takes
as input a feature model and a set of functions which are used to derive
optimal test-suites. Also, this solution acts differently depending if there
are more than one testing objective or not.

– Validation: We validated our approach in the context of the MOTIV
project, a French funded project. In the context of this project we show
how with our approach we can derive realistic and meaningful video-
sequences for testing videos. Again, we apply the automated analysis
of feature models to the video context which can be also considered as
a variability intensive system because of the large amount of varying
things appearing in a video-sequence.

The research questions related to the contribution are:

How can we manage to select a good covering set that optimizes one or

multiple stakeholders criteria?

See Chapter §7 for more details about this contribution. This contribu-
tion have been published in the ISSTA’14 conference (http://issta2014.

org/).

iv) Managing feature model drifts: Coping with configuration in evolu-
tion scenarios

†7motiv.irisa.fr

46 Chapter 1. Introduction

As a result of the first contribution we detected a lack of support for
configuration in evolutive scenarios. Software evolution is the process
of determining how existing software can be adapted to support new
customer requirements. Lenhman et al. [99], for example, have explored
how software reuse can be employed in software evolution. In partic-
ular, their work showed that there is often a set of evolution rules that
must be adhered to during the evolution process. In this area we address
the configuration plan over multiple steps.

– Problem statement: . In software product-lines, software functionality
is usually encapsulated in components, enabling the reuse of code be-
tween different versions of the software through these components. Be-
cause these software components cannot be arbitrarily composed, rules
are needed to specify how features can be composed across multiple
steps. There are a number of scenarios where the evolution of a set of
products may be performed over several predefined steps. For example,
when a new Linux distribution such as an Ubuntu release is planned,
developers have to decide the set of software artifacts that are going to
be added and removed in the next release of the distribution (e.g. add
and remove packages and change the dependencies between them).

– Contribution: We have developed an automated method for deriving a
set of configurations that meet a series of requirements over a span of
configuration steps. We call our technique the MUlti-step Software Con-
figuration probLEm Solver (MUSCLES). MUSCLES transforms multi-
step feature configuration problems into Constraint Satisfaction Prob-
lems (CSPs) [178]. Once a CSP has been produced for the problem, MUS-
CLES uses a constraint solver to generate a series of configurations that
meet the multi-step constraints. MUSCLES can return either all valid
paths or a single optimized path from the initial configuration to the final
one and the software product line engineer can decide which evolution
path best fits the project’s goals.

– Validation: We validated the scalability of our approach by using a mo-
tivating scenario based on aeronautics. Nevertheless, the example has
been provided by some of our colleges that works in the aeronautics sec-
tor.

The research questions related to the contribution are:

How can we grant the safeness when deriving a set of configurations in a

variability intensive system that spans over multiple configuration steps?

1.3. Contributions 47

See Chapter §8 for more details about this contribution. This contribu-
tion have been reported in the journal of systems and software (http:

//www.journals.elsevier.com/journal-of-systems-and-software/).

v) Configuring diverse and distributed variability intensive systems
The last challenge we addressed in this thesis is the configuration of di-
verse and multiple variability models that represents one variability in-
tensive system.

– Problem statement: In industrial settings, products are rarely developed
by one organization alone. Instead, software vendors and suppliers typ-
ically maintain their own product lines, which the contributes to a larger
(multi) product line or software ecosystem. It is unrealistic to assume
that all participating organizations agree on using a specific variability
modeling technique—they will rather use different approaches and tools
to manage the variability of their systems.

– Contribution: We developed an integrative approach that provides a
unified perspective to users configuring products in multi-product line
environments, regardless of the different modeling methods and tools
used internally.

– Validation: We validated our approach in the context of the Android se-
curity permissions. For doing that, we modeled the different parts of the
Android ecosystem as variability models –choosing the most convenient
each time– and then pluged in in our tool.

The research questions related to the contribution are:

How can we enable different practitioners to work in tandem over multiple

models describing a variability intensive system?

See Chapter §9 for more details about this contribution.

1.3.2 Publications in chronological order

Our research work have followed a frutful path that allowed us to publish
our results in important conferences and journals. Beloww is a complete list
of publications in chronological order.

[2010] In this year, we started to work doing research in our spare time
obtaining some interesting results as an outcome. In this year we were moti-
vated by the applicability of software product lines techniques to far-from-spl
variability systems. Concretely, in that period, we focused on the analysis of

48 Chapter 1. Introduction

Debian variability models which describe the different dependencies among
packages.

• ACoTA’10. José A. Galindo, D. Benavides and S. Segura. Debian Pack-
ages Repositories as Software Product Line Models. Towards Auto-
mated Analysis. Proceedings of the 1st International Workshop on Au-
tomated Configuration and Tailoring of Applications (ACoTA’10 - ASE
collocated), Antwerp, Belgium.

[2011] In this year, again in our spare time we obtained some publications
that ended by guiding this Ph.D dissertation. The reader will find the list
of publications and collaborations we were working out. Concretely, we ob-
tained some publications from previous works related to the Debian variabil-
ity model research, error detection in feature models and started digging in
the configuration of distributed product lines.

• SPLC’11 Deepak Dhungana, Dominik Seichter, Goetz Botterweck, Rick
Rabiser, Paul Grünbacher, David Benavides and José A. Galindo. Con-
figuration of Multi Product Lines by Bridging Heterogeneous Variability
Modeling Approaches. Software Product Lines - 15th International Con-
ference, SPLC, Munich, Germany.

• FMSPLE’11 José A.Galindo, Fabricia Roos-Frantz, Jesús Garcı́a-Galán
and A Ruiz-Cortés. Extracting orthogonal variability models from De-
bian repositories. Proc. of 2nd International Workshop on Formal Meth-
ods and Analysis in Software Product Line Engineering (FMSPLE - SPLC
colocated), Munich, Germany.

• FMSPLE’11 Jesús Garcı́a-Galán, Pablo Trinidad, José A.Galindo, A
Ruiz-Cortés. Tool supported error detection and explanations on fea-
ture models. Proc. of 2nd International Workshop on Formal Methods
and Analysis in Software Product Line Engineering (FMSPLE - SPLC
colocated), Munich, Germany.

[2012] In this year, we obtained a Talentia scholarship grant that allowed
us to formally do research in a full-time schedule. This scholarships was used
to stay one year and a half with Prof. Dr. Jules White in Virginia Tech. We
also published some results fruit of the reserch work conducted in a cojoint
way with Prof. Dr. David Benavides. The research focus was the study of
software evolution, the analysis of diverse variability models, the testing of
diverse variability models and variability analysis tools and started working
on the ATTACK cloud.

1.3. Contributions 49

• SSBSE’12 Roberto E. Lopez-Herrejon, José A. Galindo, David Bena-
vides, Sergio Segura, Alexander Egyed. Reverse Engineering Feature
Models with Evolutionary Algorithms: An Exploratory Study. 4th Sym-
posium on Search Based Software Engineering (SSBSE), Riva del Garda,
Italy.

• SPLC’12 Fabricia R Frantz, José A Galindo, David Benavides, Antonio R
Cortés.FaMa-OVM: a tool for the automated analysis of OVMs. Proceed-
ings of the 16th International Software Product Line Conference (SPLC),
Salvador, Brazil.

• VAMOS’12 Sergio Segura, José A. Galindo, David Benavides, José An-
tonio Parejo, Antonio Ruiz Cortés. BeTTy: benchmarking and testing
on the automated analysis of feature models.Sixth International Work-
shop on Variability Modelling of Software-Intensive Systems (VAMOS),
Leipzig, Germany.

• JISBD’12 Sergio Segura, José A. Galindo, David Benavides, Jose Anto-
nio Parejo, Antonio Ruiz-Cortés.BeTTy: Un Framework de Pruebas para
el Análisis Automático de Modelos de Caracterı́sticas. XVII Jornadas de
Ingenierı́a del Software y Bases de Datos (JCIS), Almerı́a, Spain.

• BOOK CHAPTER H Turner, J White, J Reed, José A. Galindo, A
Porter, M Marathe, A Vullikanti, A Gokhale. Building a Cloud-based
Mobile Application Testbed.Software Testing in the Cloud: Perspec-
tives on an Emerging Discipline, IGI Global, 2013, 382-403, doi:10.4018/

978-1-4666-2536-5.ch018.

[2013] In this year the candidate returned back to Europe and worked
within the ISA research group for three months. Later on, the Ph.D candidate
went to INRIA, Rennes where the student ended by joining to the cotutele
program. The main focus in this year was the evolution, configuration and
testing of software systems.

• ICSR’13 David Benavides, Alexander Felferning, José A Galindo, Flo-
rian Reinfrank. Automated Analysis in Feature Modelling and Product
Configuration. International Conference on Software Reuse (ICSR), Pisa,
Italy.

• VAMOS’13 Deepak Dhungana, Dominik Seichter, Goetz Botterweck,
Rick Rabiser, Paul Grünbacher, David Benavides, José A Galindo. In-
tegrating heterogeneous variability modeling approaches with Invar.
Proceedings of the Seventh International Workshop on Variability Mod-
elling of Software-intensive Systems (VAMOS), Pisa , Italy.

50 Chapter 1. Introduction

• CW’13 A. Felfernig, D. Benavides,José A. Galindo, F. Reinfrank. To-
wards Anomaly Explanation in Feature Models. Configuration Work-
shop (CW), Vienna, Austria.

•

JSS’14 Jules White, José A. Galindo, Tripti Saxena, Brian
Dougherty, David Benavides, Douglas C. Schmidt. Evolv-
ing feature model configurations in software product lines.
Journal of Systems and Software; 1.14 Impact Factor.

[2014] In this year, we moved to the testing research when dealing with
variability intensive systems and started working on the MOTIV project.
Later, we obtained several publications related to that project. Also, we pub-
lished some papers from previous research.

• SPLC’14 Mathieu Acher, Mauricio Alférez, José A Galindo, Pierre Ro-
menteau, Benoit Baudry. ViViD: A Variability-Based Tool for Synthesiz-
ing Video Sequences (SPLC), Florence, Italy.

• ISSTA’14 José A Galindo, Mauricio Alférez, Mathieu Acher, Benoit
Baudry, David Benavides. A Variability-Based Testing Approach for
Synthesizing Video Sequences. International Symposium on Software
Testing and Analysis (ISSTA), Bay Area, California.

• VAMOS’14 David Benavides, José A. Galindo. Variability management
in an unaware software product line company: an experience report.
Proceedings of the Eighth International Workshop on Variability Mod-
elling of Software-Intensive Systems (VAMOS), Nice, France.

• JISBD’14 Fabricia Roos-Frantz, José A. Galindo, David Benavides, An-
tonio Ruiz Cortés, and Jesús Garcı́a-Galán. Automated Analysis of Di-
verse Variability Models with Tool Support. Actas de las X Jornadas de
Ciencia e Ingenierı́a de Servicios (JCIS), Cádiz, Spain.

• JISBD’14 José A. Galindo, David Benavides, Mauricio Alférez, Mathieu
Acher and Benoit Baudry. WindRose: A Cloud-Based Integrated De-
velopment Environment for the Automated Analysis of Feature Models.
Actas de las X Jornadas de Ciencia e Ingenierı́a de Servicios (JCIS), Cádiz,
Spain.

1.3. Contributions 51

•

JSS’14 Roberto E. Lopez-Herrejon, Lukas Linsbauer, José
A. Galindo, José Á. Parejo, David Benavides, Sergio Se-
gura, Alexander Egyed. An Assessment of Search-Based
Techniques for Reverse Engineering Feature Models. Jour-
nal of Systems and Software; 1.14 Impact Factor (In press).

•

SQJ’14 José A.Galindo, Hamilton Turner, David Bena-
vides and Jules White. Testing variability-intensive sys-
tems using automated analysis. An application to Android.
Software Quality Journal 2014; 0.8 Impact Factor (In press).

•

IST’14 José A Galindo, Deepak Dhungana, Goetz Botter-
weck, Rick Rabiser, Paul Grünbacher, David Benavides.
Supporting Distributed Product Configuration by Integrat-
ing Heterogeneous Variability Modeling Approaches. In-
formation and Software Technology (In press).

•

JLAMP’14 Ganesh Khandu Narwane, José A. Galindo,
Shankara Narayanan Krishna, David Benavides, Jean-
Vivien Millo, S Ramesh. Traceability analyses between fea-
tures and assets in software product lines. Journal of Logi-
cal and Algebraic Methods in Programming (Submitted).

•

IST’14 Mauricio Alferez, José A. Galindo, Mathieu Acher,
Benoit Baudry, David Benavides. Modeling Variability in
the Video Domain: Language and Experience Report. Soft-
ware: Practice and Experience; 1.14 Impact Factor (Submit-
ted).

In Figure §1.4, we are showing the chronological order of publications.
Please note that the Ph.D years are 2012,2013 and 2014. This, also shows the
publications depending on the position in the order of authors of each paper
and the research subarea.

52 Chapter 1. Introduction

���

������������ ������������� ������������ �����

�������������������������������

���� ���� ���� ���� ����

��������������������

���������������������

���������������������
���������������

����������������������
�������

��������

����

������

������

�����

����
���������

����� �����

������������
���������

���������
���������

��
���

���������

����
���������

���
���������

�����
���������

����� ����� �����

�����
������������������������ �������������������������

��������������������������
�������������������������
��������������������������
��������������
���������������������

���������
�������������������������

������������������������
�����������������������������������
������������������
����������������������
��������������������������
����������������������

��������
���������

���

���

Figure 1.4: Chronological order of publications.

1.3.3 Tools

Three different tools were developed during this Ph.D. First, we developed
TESALIA †8 which is a tool to prune, prioritize and package the different prod-
ucts within a product lines. Second, we developed VANE †9. VANE is a tool
that is able to derive optimal pair-wise depending on different optimization
functions. Finally, we developed WindRose †10, a web based IDE that inte-
grates all the facilities and tools we developed during this research.

1.4 Research internships and collaborations

During the duration of this Ph.D, the research have been done in three
different countries and worked with colleges from more than twenty nation-
alities. Figure §1.5 shows the periods the student spent with diverse hosts and
advisers in each country while Table §1.1 shows the affiliation, name of each
one and co-authored papers.

†8http://tesalia.github.io
†9http://vane.github.io

†10http://windrose.github.io

1.4. Research internships and collaborations 53

Name Affiliation Papers

1. David Benavides Universidad de Sevilla [8, 17, 18, 55, 56,
66, 68–72, 104,
105, 143, 144,
156, 157, 179]

2. Antonio Ruiz-Cortés Universidad de Sevilla [74, 88, 143, 144,
156, 157]

3. Sergio Segura Universidad de Sevilla [68, 104, 105,
156, 157]

4. José Antonio Parejo Universidad de Sevilla [104, 156, 157]

5. Jesús Garcı́a Galán Universidad de Sevilla [74, 88, 144]

6. Pablo Trinidad Universidad de Sevilla [74]

7. Mathieu Acher Université de Rennes 1 [2, 8, 69, 70]

8. Edward Mauricio Alférez Salinas INRIA - France [2, 8, 69, 70]

9. Benoit Baudry INRIA - France [2, 8, 69, 70]

10. Jean-Vivien Millo INRIA - France [118]

11. Jules White Virginia Polytechnic Institute and State University [71, 177]

12. Brian Dougherty Virginia Polytechnic Institute and State University [179]

13. Hamilton Turner Virginia Polytechnic Institute and State University [71, 177]

14. Jeffrey H. Reed Virginia Polytechnic Institute and State University [177]

15. Madhav Marathe Virginia Polytechnic Institute and State University [177]

16. A Vullikanti Virginia Polytechnic Institute and State University [177]

17. Florian Reinfrank Graz University of Technology [17, 66]

18. Alexander Felfernig Graz University of Technology [17, 66]

19. Fabricia Roos-Frantz UNIJUI - Brazil [88, 143]

20. Dominik Seichter Irish Software Engineering Research Centre [55, 56]

21. Goetz Botterweck Irish Software Engineering Research Centre [55, 56, 72]

22. Tripti Saxena Vanderbilt University [179]

23. Aniruddha Gokhale Vanderbilt University [177]

24. Douglas C. Schmidt Vanderbilt University [179]

25. Paul Grünbacher Johannes Kepler Universität [55, 56, 72]

26. Rick Rabiser Johannes Kepler University [55, 56, 72]

27. Alexander Egyed Johannes Kepler University [104, 105]

28. Roberto E. Lopez-Herrejon Johannes Kepler University [104, 105]

29. Lukas Linsbauer Johannes Kepler University [104, 105]

30. Deepak Dhungana Siemens [55, 56, 72]

31. Adam Porter University of Maryland, College Park [177]

32. Pierre Romenteau IN-PIXAL [2]

33. Ganesh Khandu Narwane Homi Bhabha National Institute, India [118]

34. Shankara Narayanan Krishna Dep. of Computer Science and Engineering, India [118]

35. S Ramesh Global General Motors R&D - India [118]

Table 1.1: List of researchers and institutions the student co-authored a work.

54 Chapter 1. Introduction

�������

�����

���

������

������ ������ �������� ������ ������� ���������� �����������

�����������

����

����

�������

����

�����������

�����������

����

��������

�������

����������� ����

Figure 1.5: Trips to cope with the Ph.D objectives..

1.5. Structure of this dissertation 55

1.5 Structure of this dissertation

This document is organized as follows:

Part I In the first part of this dissertation we present the main contributions
of this research as well as the background and motivating scenarios that
pushed forward this work.

Part II In the second part of the dissertation we explore and update the basic
background information required to understand the goals of this thesis
work.

Part III In this part, we motivate our research work. Concretely we delve
in the trends and related work. This is done by performing a mapping
study and analyzing the resulting papers. In this mapping scenario, we
discovered the main trends in the automated analysis of feature models
area while pointing out the foras where the community publishes as well
as the main research types researchers focus on.

Part IV In this part we present the main contributions of this thesis. Con-
cretely we will go thought all the different sub areas (testing, evolution
and configuration) we researched on. In the testing area, we present two
approaches. The first, to prioritize, prune and package products to test
based on cost and value functions. Later, we present an approach to pri-
oritize pair-wise covering sets. Later, we dig in the variability intensive
systems evolution. Pointedly we propose the use of CSPs to plan the
safe evolution of variability intensive systems. Finally, we present our
approach to configure a product in those scenarios where there are more
than one model describing the variability intensive system.

Part V In this part we present the validation against the different case studies
we have worked with. First, we validate TESALIA agains the Android
case study, were we model all the configurations existing in the Android
emulator. This enabled us to test our Android application in the mo-
bile platform configurations that would provide the most revenue based
on market-share data. Later, we validate VANE in the context of an in-
dustrial project involving three partners to help in the testing of track-
ing and movement detection algorithms. We showed how our solution
scales in this scenario by generating realistic video-sequences. Later on,
we validate our contributions in the area of variability intensive system
evolution by using examples from the aeronautics industry. Finally, we
validate our approach to configure a diversity of distributed models in

56 Chapter 1. Introduction

Invar. This is done by modeling the different artifacts related to the An-
droid permission system and, later, show that users can prevent the exe-
cutions of applications that use not wanted permissions.

Part VI In this part, we show the different conclusions of this thesis and pro-
pose future work to address new and challenging open research ques-
tions found during the realization of this dissertation.

Part II

Background

Chapter 2

Automated analysis of variability
models

If you look at any leaf on any tree branch, it’s similar to but not

exactly a repetition of the previous branch. So the new science of complexity or showing how an

architecture can be produced just as quickly, cheaply and efficiently by using computer production

methods to get the slight variation, the self–similarity.

Charles Jencks, Architecture theorist

V ariability intensive systems description are usually encoded by using
so called variability models. There are different variability models

depending on the focus of the mentioned model. Moreover, there are differ-
ent techniques to extract information depending on the model flavor. In this
Chapter, we present the most common models used in the literature as well
as the process of automated analysis and current information extraction tech-
niques.

60 Chapter 2. Automated analysis of variability models

2.1 Variability models

Variability models are used to represent diverse information existing in
variability intensive systems. This information helps practitioners to manage
variability intensive systems capabilities. While each variability model flavor
focuses on some variability intensive systems aspects, there are some common
constructs that worth know. Different variability modeling approaches share
common characteristics. A Variability Model consists of a set of Variables
and Constraints over these variables. Each variable has a Type, for instance,
Boolean, Integer, or String. Depending on the particular approach there are
different Types of Constraints, e.g., “Optional Sub-features” and “Alternative
Groups” (e.g., different alternative web access options).

2.1.1 Feature models

Feature models are commonly used to represent the commonality and vari-
ability of the products inside a software product line. Feature models were
first defined by Kang [92] and have become the “defacto” standard for de-
scribing variabilities and commonalities when using software product lines.
An example feature model based on the mobile industry is presented in Fig-
ure §2.1. A feature model represents all the different products in a software
product line. Feature models use different kinds of relationships to define the
shared and distinct features between different software products. Usually, two
different groups of relationships are defined: i) hierarchical relationships to
define the options enabled by a variation point in a product line and ii) cross-
tree constraints to define restrictions on features that do not share a common
parent in the feature model tree. Different feature model representations can
be found in the literature [19]. The most well-known feature model represen-
tations are:

Basic Feature Models. Figure §2.1 shows a graphical representation of this
feature model representation. The basic feature model defines four kinds of
hierarchical relationships:

– mandatory: this relationship specifies that when a parent feature is
present in the product the child feature also must be present;

– optional, this relationship refers to features that can be or not in a prod-
uct if its parent feature is present;

– set, this relationship is between one parent feature and more than one

2.1. Variability models 61

child features, it implies to have from 1 to any number of descendant
features if its parent is present in the product. Special cases of the set
relationship are alternative, choose only one of the features in the set;
and or, choose any of the features in the set;

In addition to these hierarchical constraints, three cross-tree constraints are
defined:

– requires indicates that when the origin feature is present in the product,
the destination feature must be also present;

– excludes ensures that when the origin feature is present in the product,
the destination feature is not in the product and vice-versa.

– complex cross–tree constraints are more complex constraints that can be
econded as propositional formulas, e.g. “feature a requires b or c”.

�������

����� ��������������

��� ���������

��������

��� ������ �������������

���������

�������� �����������

�� ��������

��������

Figure 2.1: Feature model example from the mobile industry.

Attributed Feature Models. An attributed feature models is a feature mod-
eling extension that includes attributes on features. Complex constraints are
allowed between features and attributes such as “Every attribute called cost
must have a value greater than 10.” There are a variety of approaches to de-
scribe feature model attributes [145], however, most of them share some char-
acteristics. Usually attributes are defined by the use of a name, a domain, a
value and a null value. The attribute domain represents the set of values that
the attribute can assume. The value, is the value of the attribute when its as-
sociated feature is present in the product, the null value is the value of the
attribute when its associated feature is not present in the product. In Figure
§2.2 an attributed feature model is presented. In the figure, quality attributes
are presented showing the accuracy of each location service in a mobile phone.

62 Chapter 2. Automated analysis of variability models

�������

����� ��������������

��� ���������

��������

��� ������ �������������

��������������
�����������
�������������

��������������
���������
�������������

��������������
���������
�������������

Figure 2.2: Attributed feature model example.

2.1.2 Orthogonal variability models (OVM)

OVM is a modeling language for defining the variability of a software
product line separately without change the base models (e.g. requirement
model, design model). The base models realize the variability defined by the
variability elements in the OVM model. In OVM the first-classes are: varia-
tion points (VP) and variants. A variation point documents the aspects that
can vary in the product line, which must be chosen by the customer or en-
gineer of the software product line. A variant is related to a variation point
and documents how this variation point can vary. OVM is commonly used
for documenting software product line variability [135].

Figure §2.3 shows an example of an OVM diagram. In an OVM model a
variation point (VP) documents a variable item that can vary from one prod-
uct to another, and a variant (V) documents how this variation point can vary.
All VPs are related to at least one V and each V is related to exactly one VP.
Both VPs and Vs can be either optional or mandatory. A mandatory VP must
always be bound in all products of the product line. An optional VP can be
bound optionally. Binding a VP means making a decision about its variants.
A mandatory variant has to be always selected when its parent VP is bound.
An optional variant can be optionally selected when its parent VP is bound.
In OVM, optional variants may be grouped into alternative choices , i.e., SMS,
MMS, or both can be selected as Vs of VP Messaging. This group is asso-
ciated to a cardinality [min...max]. The cardinality prescribes constraints on
how many Vs may be chosen in an alternative choice, at least min and at most
max Vs of the group. In OVM, as in feature models, cross-type relationships
may be defined between Vs or VPs [113, 135].

2.1. Variability models 63

Mandatory Variation Point
(it must always be bound)

Optional Variation Point
(It may or may not be bound)

[min..max]

Alternative variability dependency
(the cardinality determines
how many variants of the group
can be bound)

Mandatory variability dependency
(the variant must be bound whenever
 its parent VP is bound)

Optional variability dependency
(the variant may or may not be bound
 whenever its parent VP is bound)

Requires constraint dependency

Excludes constraint dependency

V
Variant

VP

VP2

VP

VP1

1..3

V2
V

V3
V

V1
V

V4
V

V5

V

VP

VP

Figure 2.3: OVM notation.

Orthogonal variability models have been attributed to support and be in-
terpreted as a set of possible products that can be derived from a variability
intensive system. Thus, the OVM metamodel describes the different variabil-
ity elements and the rules that constraint the combination of these elements
in a product line. For, example, Figure §2.4 shows an OVM model containing
attributes for a mobile-based ecosystem.

�����������������
������

Figure 2.4: OVM with attributes.

64 Chapter 2. Automated analysis of variability models

2.1.3 Decisions models

The family of decision modeling approaches [153] exists nearly as long as
feature-oriented modeling. Similar to the role which FODA [90] plays in the
context of feature-based variability management most if not all decision mod-
eling approaches have been influenced by the Synthesis method [45]. A de-
cision model describes the differences between products in a product line. It
uses a set of multiple related decisions (represented as configuration variables)
that need to be made by the user when configuring a product. Decisions are
often represented as questions with a defined set of possible answers. Prod-
ucts are derived from a decision model by setting values to the decisions, e.g.,
by answering questions and following the sequence defined by the decisions’
dependencies. The set of values possible for a decision is defined by its data
type, e.g., Boolean (users select or unselect an option), Enumeration/Set (users
select from a set of possible answers), Number (users enter a numerical value),
or String (users set a text as an answer).

A simple schematic for decision models is presented in Figure §2.5.

Figure 2.5: Decision model notation.

2.2 Automated analysis of variability models

In realistic-sized models is impossible for a human to extract metrics and
other information in a manual way. Researchers proposed, thus, the use of
computer-aided techniques that extract information from the models. A com-
prehensive list of the different metrics (a.k.a., operations) existing in the liter-
ature can be found in [19].

2.2. Automated analysis of variability models 65

The automated analysis of feature models consist in a process that takes as
input a feature model, then the information contained in the model is trans-
lated to a concrete logic paradigm such as CSP or SAT algorithms [96]. Later,
we query the logic by adding new constraints and other constructs to the logic.
Finally, we extract the metric by analyzing the traceability relation between the
logic and the original model constructs. Figure §2.6 shows this process.

����������������� �����

����� �������� ��������� �����
��������

�����
��������

������
�������

�������
������ �

����������

������ ������

�

������������
����

Figure 2.6: Automated analysis of feature models process .

Therefore, in this process there are three different variation points. First,
the model flavor we use to describe our variability intensive system within
operational data such as optimization functions. Second, the logic we use to
compute the constraints in the moded. Finally, the operation we execute. In
the rest of this section we will go trough the most common logics and opera-
tions existing in the literature.

2.2.1 Logics

Constraint satisfaction problem (CSP) → A CSP is a set of variables and a
set of constraints governing the allowed values of those variables. A set of val-
ues for the variables is called a labeling. A valid labeling of the CSP’s variables
requires that all of the constraints in the CSP are satisfied. For example, in the
CSP “0 < x < y,” where x and y are integer variables, x = 4, y = 5 is a valid
labeling of the variables. Often, CSPs are used to derive variable labelings that
maximize or minimize an objective function. For example, x = 1, y = 2 is a
solution that minimizes the objective function x + y. A key attribute of CSPs
is that automated tools, called constraint solvers, can be used to programmat-
ically derive labelings of a set of CSP’s variables.

66 Chapter 2. Automated analysis of variability models

The main benefit of CSP over other approaches is the ability to cope with
non boolean variables such as those describing cost and value information.

Boolean satisfiability problem (SAT) → A propositional logic formula is
built from i) boolean variables; ii) operators, concretely, the AND, OR and
NOT. A formula is said to be satisfiable if it can be made TRUE by assigning
appropriate logical values (i.e. TRUE, FALSE) to its variables. The Boolean sat-
isfiability problem (SAT) is, given a formula, to check whether it is satisfiable.
The main benefit of this logic flavor is that, because of the nature of the boolean
variables they perform fast and quick when coping with feature models. Also,
this paradigm is trend and innovative. Currently there are new proposals ex-
tending this basic problem, by for example adding different weights to each
formulae (a.k.a Qsat/maxsat). Moreover new options to manage non-boolean
information are emerging such as pseudo-boolean sat problems.

Binary decision diagram (BDD) → A common way of representing SAT
and CSP problems is by using binary diagrams, there is a family of solvers that
rely in this representation. The mayor benefit of this solvers is that while they
are hight memory users, they can count the number of solutions for a problem
in a short time.

2.2.2 Operations

Different operations can be executed by using automated analysis of vari-
ability models. Each operation takes a model as input and provides a response
as result. More details about analysis operations can be found in [19]. Next
we summarize some of the most common analysis operations and exemplify
them by using the Android feature model presented in Figure §2.1:

• Void model : checks whether a model is void or not, i.e. if it represents
at least one valid product. A model may become void due to the wrong
usage of constraints. Figure §2.7 shows a void model caused by the inclu-
sion of the cross-tree relationship between “Communication” and “Lo-
cation”. Note that this restriction makes unfeasible the other cross-tree
relationship.

• All Products : takes as input a model and returns all the valid prod-
ucts represented by this model. Table §2.1 lists the valid products in
the model presented in Figure §2.1.

• #Products : returns the total number of valid products represented by the
model received as input. For example for the model in Figure §2.1 there
are 14 different products.

2.2. Automated analysis of variability models 67

�������

����� ��������������

��� ���������

��������

��� ������ �������������

Figure 2.7: Sample void model.

Name Android Audio Communication Wifi Bluetooth Location Wifi Location GLONAS GPS

P1 � � �

P2 � � � �

P3 � � �

P4 � � � �

P5 � � � � �

P6 � � � � � �

P7 � � � � �

P8 � � � � �

P9 � � � � � �

P10 � � � � � �

P11 � � � � �

P12 � � � � � �

P13 � � � � �

P14 � � � � � �

Table 2.1: Products result for model in Figure §2.1.

• Valid Product : takes a model and a product (set of variability elements)
as input and returns a value that determines whether the input product
belongs to the set of products represented by the model or not. For exam-
ple, if we input the product P14 this operation will return true. However
if we input the product {Android and Communication} this will returns
false.

• Valid Partial Configuration : takes a model and a partial configuration as
input and returns a value informing whether the partial configuration
is valid or not, i.e. a partial configuration is valid if it does not include
any contradiction. This operation will returns valid for the partial con-
figuration {Android and Communication}, however, it will not do it for

68 Chapter 2. Automated analysis of variability models

the configuration {Android, Wifi location, Bluetooth} as there is a non
satisfied constraint in between Wifi location and Wifi.

• Dead Node : returns a set of dead nodes (if any), i.e. those that cannot
appear in any of the valid products represented by the model. Dead
nodes are caused by the wrong usage of constraint dependencies. For
example in Figure §2.8 the Audio Feature is a dead node because it is not
present in any product.

�������

����� ��������������

��� ���������

��������

��� ������ �������������

Figure 2.8: Sample void model.

• Commonality : takes a model and a configuration as inputs and returns
the percentage of valid products including the input configuration. For
example, the commonality for feature Audio is 1/2.

• Optimization : takes as input a model and a function to optimize, return-
ing the configuration that maximizes or minimizes the function. For ex-
ample, in the model, we can maximize the number of features present in
a configuration, this would return all products containing six elements.
Also, this would returns only the P1 when minimizing.

2.3 Summary

In this section we presented the main and most common variability model-
ing flavors such as feature models, orthogonal variability models and decision
models. However, is it worth mentioning that there are other model flavors
such as Debian variability models [68] and sub-types of variability models (see
CVL[169] or Clafer[10]), that mix constructs from the UML world with feature
modeling. We also presented the different logics and operations we used as
based in this dissertation.

Chapter 3

Evolution, testing and configuration

I have called this principle, by which each slight variation, if useful, is preserved, by the term of

Natural Selection.

Charles Darwin, Naturalist and geologist

I n software engineering there are different activities that are critical when
creating a software system. Moreover, when coping with variability in-

tensive systems, these tasks tends to get more complex because of the large
number of products evolved, tested and configured at the same time.

70 Chapter 3. Evolution, testing and configuration

In this chapter we will go through the different activities where we found
the challenges addressed in this thesis.

3.1 Evolution

Software evolution refers to accomplish with new software requirements.
Those requirements are coming from the aim to satisfy upcoming needing of
customers or to solve existing problems with the actual state of the software.
Traditionally the terms software maintenance and software evolution have
been used as synonyms. Was Lehman [100] who described the software evolu-
tion as ”The software evolution phenomenon manifests itself in the common
need, for continuing maintenance and periodic upgrades of software used in
real world applications”. He stated that a software cannot be maintained as a
mechanical goods because its immateriality. Software, don’t suffer from exter-
nal wear by use. Thus, there isn’t any needing to change or replace software
parts. The no material nature of the software makes required to perform an
evolution process instead of maintaining it. Depending on the project cycle of
live the new requirement to be included when evolving can be planned or not.
According to the SWEBOK report [1], and shown in Figure §3.1, there are five
different steps when coping with software evolution:

�������������������

�����������
���������������

Figure 3.1: Evolution process.

Classification and identification. In this step of the evolution process a
set of different requirements or changes proposals are used as input. The ob-
jective of this step is to classify and prioritize every new requirement. The

3.1. Evolution 71

classification of the upcoming requirements define the different sub-types of
evolution/maintenance defined in the literature [1] i) corrective, that groups
the tasks related to restore the system to an operational condition. That, in-
clude bug and errors correction; ii) adaptive, that groups the tasks related to
cope with the changes in the software environment; iii) perfective, that deal
with the introduction of new functionality into the software and iv) preven-
tive, that aims to increase the stability of the software by preventing hidden or
latent faults.

Analysis. The aim of this stage is to quantify the impact of every new ac-
cepted requirement. Determining the impact of the proposed changes allows
developers to determine the associated cost to accomplish a new requirement
and then being able to determine if the change worth the investment.

Design. In this stage is were the required modifications for the upcom-
ing requirements are planned. The planned modifications also include the
changes required to be done in documentation, software configuration man-
agement systems (SCM) and any other artifact related to the software that is
going to be evolved.

Implementation. Every artifact affected by the requirement acceptation
are modified in this stage. That implies, coding, rewriting documentation or
any other artifact identified for change in the design stage.

System Test. In this stage a set of tests are executed on the evolved version
of the software. The aim of those tests is to prevent the inclusion of bugs and
errors in other artifacts not involved in the evolution process.

Acceptance Test. In this stage a set of tests are executed to verify if the
requirement proposed in the classification and identification stage is correct
and valid.

Delivery. Finally in this stage, every deliverable of the new release of out
product is provided to the owners of the software, it also involves the merging
of SCM repositories or any other action pending.

3.1.1 Software product line evolution

The evolution of software product lines enable the safe evolution of soft-
ware product lines projects. Svahnberg and Wu [168, 186] documented real
examples from the industry when evolving software projects. A product line
describes a set of deliverable products that shares common assets but designed
and maintained as one product. The treatment of software product lines evo-

72 Chapter 3. Evolution, testing and configuration

lution can be archived from two different points of view, i) evolve one of the
products contained in a product line; ii) evolve all products at the same time.
An example of SPL evolution is the introduction of a new software product
in a product line. In this case, companies would need a standardized way to
manage the addition of the new product to the product line.

Software products lines are meant to enable the deployment of a set of dif-
ferent products. This characteristic of software product lines makes them a
natural step when evolving traditional software projects. Bosh et al. [30] pre-
sented six different maturity levels and how the architecture design impacts
the profitability of the software product.One existing difference between soft-
ware product lines and traditional software product is the division of the soft-
ware functionality into different artifacts and components. The hierarchical
division of functionality when referring to software product lines makes er-
rors appears on single artifacts or in the common parts that provides cohesion
to the SPL.

3.1.2 Feature model evolution

Open source projects have been dealing with evolution problems by us-
ing variability management mechanisms several years ago [106]. Those
works represent a guidelines for feature model evolution. However, there
are more concrete proposals to cope with feature model evolution such as
the EvoPL[134]. The EvoPL enables the transition from requirements to con-
crete features, this is achieved by adding evolution related information to the
model. Later, EvoPL groups features in EvoFragments. Thus, a new feature
model flavor is defined in base of those fragments and the operators required
to enable the evolution. It is also noticeable the Peng et al.[129] contribution,
which describes a real case of an evolved feature model showing how the re-
quirements affecting the model.

3.2 Testing of variability intensive systems

Variability intensive systems testing represents a new challenge for soft-
ware testing researchers [137]. When testing software product lines, each
product shares some common functionality with one or more other prod-
ucts, while differing in at least one feature. Software product lines add testing
complexity because they require testing a set of products rather than a single
product. These products, however, share common functionality or artifacts,

3.2. Testing of variability intensive systems 73

enabling the reuse of some tests across the entire product line.

According to Pohl et al. [137], varying strategies can be used to test soft-
ware product line products. These testing strategies can be summarized as fol-
lows: i) testing product by product, this testing strategy tries to test all prod-
ucts one by one, as if they were not part of a product line. With this strategy the
test process covers all possible interactions between features but grows expo-
nentially in cost as a function of the number of features in the product line; ii)
incremental testing, this strategy starts by testing the first developed product
and creates new unit tests for each new feature added. Using this strategy, the
commonalities of a software product line are exploited to reduce testing effort.
However, when a new feature is introduced, all the interactions between the
new feature and the old ones should also be tested, thus, presenting problems
for large software product lines; and iii) Reusable asset instantiation, which
relies on data captured in the domain analysis stage of product line creation.
With this data, a set of abstract test cases are developed considering all fea-
tures of the product line. These abstract tests cases are mapped to concrete
requirements in the application engineering stage. These testing strategies are
designed to reduce the software product line combinatorial explosion in test-
ing cost as a function of the feature count.

3.2.1 Combinatorial testing.

Combinatorial interaction testing [121] exploits the commonalities of a soft-
ware product to reduce the cost incurred when testing. This approach has
been applied to the testing of software product lines because of the function-
ality encapsulation used in software product line engineering. Concretely t-
wise approaches [79, 80, 87, 98, 125, 130, 131] have been used to apply com-
binatorial testing to software product lines. For example, when using t-wise
coverage, at least every feature is covered t times. Combinatorial testing has
been proven to produce good results in empirical studies [49, 164], mainly be-
cause points of interaction between software artifacts have been proven [95]
to be key sources of errors. Nevertheless, there is still consensus that concrete
techniques are needed in software product line engineering to aid in reducing
testing cost while maximizing the test value because of the large number of
potential products that must be tested. Different strategies can be used when
applying combinatorial testing on variability intensive systems. Figure §3.2
shows the idea behind this operation.

• Prune. → In short, this is to select a subset of products that accomplish
some criteria. A very common criteria is to select a set of configurations

74 Chapter 3. Evolution, testing and configuration

that covers t interactions in between features. This criteria is commonly
known as t-wise criteria.

• Prioritize. → This operation objective is to establish an order when exe-
cuting the test. Therefore, if a time constraint is introduced in any stage
of the development, at least, the most critical test can be executed.

����������������� �������������

����������

�����

����������

� �

�

Figure 3.2: Testing operations overview.

3.2.2 Cost and value guided testing.

Return on Investment is a metric used in economics that measures the
profit generated from an investment. Concretely:

ROI = (benefit− cost)/cost

This formula shows that when performing an economic activity such as soft-
ware development, cost and value (benefit) are the variables that should be
used as guides. There are several approaches [26] that try to reduce testing
cost. Also in software product line testing, combinatorial testing is used to
reduce cost [131]. The second variable to be focused on when performing test-
ing is the value [27] of a test. Every time that we execute a test we obtain
more confidence that our application is error free. For example in [165], we
can see a more detailed explanation of the importance of the value in software
development. Also in [167], Srikanth et al, present mechanism to perform
value-guided test prioritization.

3.3. Configuration 75

3.3 Configuration

Configuring is to put together all the different features in a product line or
a variability intensive system in such as way that all the constraints within the
model are being satisfied. This is, a configuration is composed by a set of fea-
tures and attributes that are differentiators from other configurations and are
not breaking any constrains existing in the model. This selection can be done
manually or automatically thus, preventing to break any constraint. The pro-
grams that aims to help users when configuring are known as configurations
and have been widely used in the automotive industry †1.

The configuration of feature models can be defined as the process of select-
ing and deselecting features in a feature model until reaching a full configu-
ration, i.e. a configuration where no additional decision on the feature model
needs to be made to have all the information to configure a given software
product of the software product line. The configuration of feature models is
no more than an analysis operation where the input is a feature model with a
set of decisions on the state of a given set of features (a feature can be selected,
deselected or undecided) and the output is the feature model together with
the new states of the features[175].

Product configuration is an independent area of research from software
product line engineering that has a long history as an application of Artificial
Intelligence technologies [67, 114, 149]. The first paper on product configura-
tion was published back in 1978 [102]. Similar to feature model based config-
uration, product configuration can be interpreted as the process of partially or
completely instantiating component types and related attributes with concrete
components and attribute values [149] in a way that preserves the consistency
with a predefined set of constraints (restrictions). Configuration technologies
are typically applied in complex product domains such as telecommunication
[67] and automotive [89].

An important remark to this definition is that nowadays, the industry is
moving towards to open configuration ecosystems where not only one prac-
titioner configures a model. This situation is presented in Figure §3.3 where
there are different providers that configure the different parts of the product
line. For example, the Messaging feature is configured by providers using
ovm while the media feature is configured by a different practitioner using
feature models.

†1http://app.volkswagen.fr/ihdcc/fr/configurator.html

76 Chapter 3. Evolution, testing and configuration

Figure 3.3: Multi-product line configuration.

3.4 Summary

In this section we have presented the main concepts and software engi-
neering activities were this thesis delves into. Concretely we explored the
evolution, configuration and testing areas.

Part III

Motivation

Chapter 4

25 years of automated analysis of
feature models.

Donde muchas cosas hay, de todas hay: buenas y malas, grandes y chicas como en botica.

Dicho popular, Andalusian people

F eature models were invented by Kang et al. 25 years ago. From the very
beginning, the automated analysis of feature models was observed as

an interested and challenging activity. In 2010 there was a survey on the pro-
posals of feature model analysis after 20 years. In this chapter, we provide an
overview of the evolution after five years of this field by performing a sys-
tematic mapping. Specially, we overview the applications of the automated
analysis that range from cloud computing configurations to mobile phone
testing which is beyond the boundaries of software product lines. We also
suggest some opportunities for research and applications in the future as well
as synergies with other areas such as product configuration. Also, we have
detected that the evolution, testing and configuration of feature models are
current trends in the feature model research area.

80 Chapter 4. 25 years of automated analysis of feature models.

4.1 Introduction

Previously to this research, Benavides et al. [19] presented a systematic
literature review that provides a comprehensive list of the automated analysis
operations for feature models. However, in the last five years, new research
trends have emerged. In this chapter, we present a systematic mapping study
to identify the main trends in the area and to position the impact of this thesis
inside the automated analysis area.

Different questions remain open at the time of writing this thesis. In re-
search the time passes fast and this made us question what new things ap-
peared after the publication of Benavides et al. [19], thus, we performed a
systematic mapping study to find the new mechanisms and tools appeared
since the publication.

With this mapping study we want to answer the following research ques-
tions:

4.1.1 Research questions

The goal of this work is to provide an overview of the last available re-
search in the area of the Automated Analysis of feature models and thus, iden-
tify the main current trends in the area.

• RQ1. Which challenges are calling researchers attention? In the last five
years, researchers have focused in a diversity of challenges in the auto-
mated analysis of feature models area. We want to obtain an overview
of the main trends and determine the current direction of the works in
the area.

• RQ2. Which foras are the main targets for publishing research in the
area? Traditionally in the area, researchers tended to publish research
on automated analysis in different foras such as SPLC†1 and ASE†2. We
are willing to know which foras are the most interesting for in-the-area
researchers.

• RQ3. Which research type facets (e.g., validation papers, philosophical
papers) are being left without the researchers attention? Due the matu-
rity of the area some areas are more likely to lose researchers attraction.

†1www.splc.com
†2www.ase.com

4.1. Introduction 81

We want to know which research facets are loosing interest and try to
discern why.

4.1.2 Systematic mapping

To get an overview of the existing trends in the automated analysis of fea-
ture models we conducted a systematic mapping study considering the papers
published in the last five years. Systematic mapping studies are an alternative
to systematic literature reviews where the main interest is to determine groups
of papers and their relevance. Petersen et al. [132] detailed the process of build
systematic mappings and compared them with systematic literature reviews.

The main steps in the process to create a systematic mapping study are: i)
defining the research questions to be answered by the study; ii) screening of
the papers to be considered; iii) define a classification scheme; and iv) map-
ping the publications and obtain the conclusions.

In this chapter, we followed up a four step process to obtain the papers
considered for the mapping. First, we searched papers citing Benavides et
al.[19] previous work since its publication through Google Scholar and Sco-
pus databases. Second, we extended the collection of papers to be considered
by regarding the references and adding relevant research. Third, we discarded
all non-peer reviewed material such as technical reports and thesis documents.
Forth, we removed the conference version of extended papers that were sub-
mitted to journals. This is, if a work has been extended and published into a
journal, we only take into account the journal version. However, to prevent
a bias for the RQ2, we annotated the journal as published in both foras, the
journal and the conference.

In the First step, we picked up the papers citing [19] from Google Scholar
and Scopus databases. The scholar database returned up to 40 pages of results
which does 400 papers in total. Also, we obtained 228 papers from the Scopus
database. Because of the unmanageability of this number of papers we only
took the 200 first most cited papers from each database. Later, we merged
the 200 papers coming from each database and removed the duplicated ones
getting 278.

Finally, we performed a search in both databases of the string search “fea-
ture model” AND (“reasoning” OR “analysis” OR “automated” OR “analy-
ses”). Only results from 2010 to 2015 has been considered. Also, the query
results were ordered by number of citations. From these queries we took the
first 200 results of each database and merged with the results of the second

82 Chapter 4. 25 years of automated analysis of feature models.

step. The aim of this last step is to reduce the bias of only considering cita-
tions to [19]. Note that, as we were looking forward detecting the different
trends in the automated analysis of feature model area, the more related pa-
pers we overview the more insights we can find. Finally, from the total of 278
plus the the 400 from the search we removed the duplicates and the non-peer
reviewed. This, resulted in considering a total of 250 papers (see Figure §4.1).

RQ1 can be answered by analyzing the abstracts and introduction of the
selected papers. Note that this is also part of the keywording process required
to do the mapping (see Section §4.2 for more details). RQ2 and RQ3 will be an-
swered by actually executing the mapping, thus, determining the foras where
the research has been published and the publication type published.

�����������������������
����������������������

���

���

�����������������
�������

���

������
�������������������

����������������
��������������
������������

��������������

����
�����

�������

����
�����

�������

���

�����������������
������������

����������������

�����������
�������

Figure 4.1: Search citing publications process.

4.2 Classification scheme

Publications are classified in three dimensions: i)the research focus; ii) the
type of contribution; and iii) the research type. We defined these dimensions
by following up the process described by Petersen et al.[132]. Petersen et al,
propose to use a key-wording based method to define the research focus to
group the papers. This process is done in two steps. First, researchers read
the abstracts in the collection to review and identify the keywords and con-
cepts that reflects the paper contribution – if the abstracts is not enough then,
researchers may need to take a look to the introduction. Finally, by knowing

4.2. Classification scheme 83

the main paper contributions, researchers define the set of categories to do the
mapping.

We followed up this method to define the different research foci. However,
because of the large number of papers that were selected in the screening pro-
cess described in Figure §4.1, we tried to group the papers in as less groups
possible. Thus, to detect the main trends in the automated analysis of fea-
ture models. The foci we found were: i) Reverse engineering, these papers
describe different techniques to build up feature models from a diversity of
product descriptions such as PCMs [150] or lists of products; ii) variability in-
tensive systems analysis, these papers focus on applying automated analysis
techniques into systems with a high variability requirements such as cloud
service providers [73] or the linux kernel [160]; iii) Variability languages, these
papers focus on properly describing the variability to perform further analy-
sis and extraction of relevant information; iv) Multi-product lines automated
analysis, these papers focus on the analysis when variability is not described
in a single model but in several. This includes for example, merging and slic-
ing operations between models and; v) Software product line testing, these
papers focus on the use of automated analysis techniques to prune, prioritize
or package the set of products within a feature models.

Different kinds of publications were also taken into account for this map-
ping study. The different publication types were selected based in the proposal
of Wieringa et al.[184] and encouraged in [132]. Concretely: i) Validation re-
search, this research type focus on novel techniques not yet implemented nor
validated; ii) Evaluation research, implemented techniques with validation
and conclusions; iii) Solution proposal, in these papers authors proposes solu-
tion to problems but relying in existing techniques – even improving them;
iv)Philosophical papers, these papers try to help structuring the area (e.g.,
taxonomies); v) Opinion papers, groups papers showing the author opinions
over a concrete technique but not relying on methodologies or related work;
and vi) Experience papers, papers explaining industrial or personal experi-
ences in the field.

The contribution type is the last dimension to consider in this mapping.
Again, we base our selection of contribution types in the Wieringa et al.[184]
proposal. Concretely, we chose: Tool, Method, Model, Metric, and Processes.
Note that in this case we did not considered any open items category. Tools,
refers to any kind of tool demo paper we found but is not limited to tool de-
mos, for example, papers with its main focus on a tool prototype are also cat-
egorized as tools. Methods, groups the papers telling about methods to apply
SPL techniques. Model, focus more on the modeling tasks required when ap-
plying SPL engineering. Metric, categorizes those papers that retrieve metrics

84 Chapter 4. 25 years of automated analysis of feature models.

from variability models or other artifacts existing in the SPL. Finally, the pro-
cesses category encloses the research that propose processes to achieve differ-
ent tasks in SPL.

������ ���� ����� ������ ������� ����������
��������

����������
��������

��������
��������

�������������
�����

����������
������

�������
�����

��������
�������������
��������������

����������������
���������

��������������

������������
������������
��������

��������
���������������
��������������

������������
�������������

��������������

����������
������������
�������

������������
�������������

�������������
�����

���������
�����

���

��

��

��

��

�

�

�

�

�

��

�� �

��

� �

�

�

��

��

�

��

�

��

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

��

�

��

��

��

�� ��

��

��

��

Figure 4.2: Visualization of the systematic map.

4.3 Research focus

We read them and extracted the main lines and trends in the research area.
Later we briefly present a tour throughout the main trends presenting what
haven been done in the last five years. Figure §4.2 shows the distribution
of each research focus compared with the contribution facet and the research
facet. Moreover, Figure §4.3 shows the percentage of papers per context facet.

4.3.1 Variability intensive systems

The AAFM was initially developed only thinking in software product
lines. However, it has ended by being used for a widespread number of ap-
plications. Currently, the scenarios were AAFM is used range from variabil-

4.3. Research focus 85

Variability and
modelling

expresiveness

Intensive variability
systems

Mul7‐model
variability analysis

Tes7ng and
evolu7on of feature

models

Product
configura7on and

deriva7on

Reverse engieniering
of feature models

% 21 11 12 25 25 6

0

5

10

15

20

25

30

Figure 4.3: Distribution in percentage of research focus.

ity analysis in other domains such as BPMN analysis to mobile apps testing,
video sequences generation and web services dynamic configuration.

Different variability models are now benefiting from automated analysis
techniques to extract information in a look alike to FM manner. While diverse
models such as OVM[145] and DOPLER[54] models had automated analysis
support in 2010, now, there are far-from-SPL models such as BPMNs[120],
that use similar techniques to extract information and metrics. For exam-
ple, AAFM is used to detect erroneous paths not only in BPMN but also in
SAAS[97, 154] applications to grant the satisfiability of contracts.

Further beyond the variability models analysis, researchers looked in the
world of cloud computing to make applications running on cloud services
more profitable by using AAFM. Cloud providers prices variability have been
encoded using attributed feature models [73]. This enabled, for example, to
extract useful information rapidly adapting the number and kind of rented
cloud instances depending on the network demand.

Also, mobile phone industry is relying on feature model automated tech-
niques. Different researchers modeled the variability present in the Android
operating system using feature models. This permit, to optimize mobile appli-
cation testing by only emulating smartphones with high-market impact [177]
and to adapt dynamically Android applications to different situations [127].

Moreover, there are applications of AAFM really away from software prod-
uct lines such as the embodied ubiquitous learning games, where researchers
have managed to succeed applying variability techniques [191]. For exam-

86 Chapter 4. 25 years of automated analysis of feature models.

ple, modeling the educational and architectural features of those systems to
manage the variants that better adapt to certain student requisites.

4.3.2 Testing and evolution of feature models

Large number of product are encoded in a SPL, making the testing process
expensive and tedious. Two main approaches have been followed to reduce
testing costs. First, combinatorial testing and more concretely T-wise methods
to narrow the number of products to test (see Chapter §6 for more informa-
tion). Later, test prioritization to grant the execution of critical tests if a time
constraint in the project makes impossible to test all products. These tech-
niques become also relevant when coping with software evolution. Software
evolution, and thus, feature model evolution happens because new require-
ments are introduced in the development chain as the time goes by. In this
scenario, granting the safeness of a product line is a must, before, during and
after the evolution actually happens. In this case the rationale about having a
focus with the evolution and testing is that after the keyworking process some
papers touch in both sub-areas, probably, because testing is the main aspect to
consider when evolving variability intensive systems as shown in Chapter §1.

From the set of reviewed papers, we identified more than sixty-two papers
referring to SPL testing and evolution (see Figure §4.3). We also noticed that
the works coping with testing costs reduction are focusing in scenarios where
there is more than one objective –maybe contradictory– to be satisfied at the
same time. This is, to optimize different aspects of the same test-suite. For
example, to find the test-suite that minimizes the testing cost while maximize
the market-share summation of the products within it.

Recently, researchers have been looking for the most convenient genetic al-
gorithm to test and select best SPL products, finding that IBEA is the fastest
algorithm [151] when coping with multi-objective testing objectives. More-
over, Heron et al [105], managed to do the same, but pruning at the same time.
This is, to prioritize not products but T-wise covering test-suites.

In terms of evolution management different automated analysis have been
proposed to grant the safe transition between the different evolution phases
of the product line. In this area we can find several research opportunities.
For example, a challenging task is to cope with implementation artifacts and
variability knowledge to evolve the product line while supporting products
from the previous software product line version. A motivating scenario for
this can be found in the ubuntu open-source community. For example, there
is no automated support when supporting users of a ubuntu distribution after

4.3. Research focus 87

the distribution transition to a newer version by for example offering packages
offering similar functionality but compatible with the newer OS version.

4.3.3 Product configuration and derivation

The configuration of feature models can be defined as the process of se-
lecting and deselecting all features –those that difference one product from
another– in a feature model. This is, to take all decisions needed to dis-
criminate the desired product from the set of products encoded in the fea-
ture model. The next step in the process of composing a working product –
derivation process –, is to compose and orchestrate the artifacts so the product
provides the desired functionality and meet the quality requirements.

In the last five years, researchers explored new configuration mechanisms
for building software product line products. For example, the use of feature-
oriented techniques to implement software product lines have been exten-
sively documented [9]. Also, researchers pushed forward the scalability of
product derivation, making it more responsive [151].

Traditionally, configuration technologies are applied into a closed software
product line context. This is, a context where all the decisions for configuring
a product are taken by a single –or a very small group of– person which have
access of all SPL variability documentation. An emerging challenge in this
area is to configure a diversity of distributed software product line descrip-
tions. As the product lines grow, configuring and maintaining them become
an unfeasible task for a single person. Also, different stakeholders and pri-
vacy policies encourage the use of visibility restrictions of the configurable
parts. We think that there is still work to be done in this area like, for example,
enable the parallel configuration of those open and distributed product lines.

4.3.4 Variability and modeling expressiveness

Encoding the variabilities and commonalities of a product line requires to
find a trade-off between the expressively of the language and its usability. Sev-
eral proposals appeared to cover different domain specific requirements. For
example, new relationships between features have to be considered when en-
coding Debian distributions[68] or cloud computing systems variability[73].

Also language constructs have been introduced in different languages to
ease off the analysis of feature models and to extend the expressively of SPL.
For example, FAMILIAr[4] introduced the forall construct to implement global

88 Chapter 4. 25 years of automated analysis of feature models.

constrains over all feature model variables. Also, Clafer [10], introduced con-
cepts coming from the class diagrams to represent even more complex scenar-
ios.

Research opportunities are appearing as new domains are benefitting from
AAFM. Also, because of the growing complexity of those models, more infor-
mation is required to properly reason over such as big models. For example is
still undetermined how to encode and manage the inter-model relationships
between the different layers defined in CVL.

4.3.5 Multi-model variability analysis

The automated analysis of feature models started by only considering one
feature model description at time. Again, the more the SPL become larger,
the more complex reasoning techniques are needed to extract information
from feature models. Yet CVL [44] introduced the disambiguation between
SPLC features and the base model (a.k.a., feature realization artifacts). But
also, because of the need of describe an variability intensive system in smaller
artefacts so it can be maintained by different practitioners, new operations to
merge models appeared, thus introducing new feature model operations such
as the model merging or the slicing[5].

Different proposals coped with multi-model product lines. Moreover, hav-
ing each model encoded in a different variability language. For example,
Dhungana et al [57], proposed the distributed modeling of product lines pro-
viding examples coming from the automotive industry. New operations have
been provided to, for example, determining the set of implementation artifacts
that supports a concrete feature specification [115].

When coping with multi-model product line descriptions there is a lack
of support for quality attributes. For example, there are no techniques to
show how domain in quality attributes are reduced because of the selection
of certain features at specification level. Also, the distributed analysis of fea-
ture models have not been yet explored. This is, slice first the model, then,
distribute the model in the cloud, execute the analysis operation and finally
merge the results. Therefore, being able to cope with models like the linux
kernel one with more than 8000 features rapidly.

4.4. Research type 89

4.3.6 Reverse engineering of feature models

When developing a software product line, most companies do not start
with the whole set of products developed and being maintained at the same
time but only a few. This is, first, individual products are developed one af-
ter another and at certain point, when the number of similar products is big
enough, the company transition to a SPL engineering approach. Therefore,
when transitioning to a SPL-like approach, practitioners need to encode the
variability in the best manner possible. For example, choosing between differ-
ent possible topologies for a feature model. This process is known as reverse
engineering feature models [3, 48, 78, 105, 161, 190].

The last 5 years have been fruitful in this area. Researchers have been able
to extract the variability encoded in product comparison matrices[150]. More-
over, genetic algorithms have been used with good results extracting models
from product descriptions[105].

First, as the variability is getting complex, attributed feature models are
becoming more used, making the reverse engineering of attributed feature
models a handy tool when applying AAFM techniques to far-from-spl feature
models. Second, normally more than one variability model is used to describe
the variability of a product line. Reverse engineering the relationships with
more than one model is still an open challenge.

4.4 Research type

Figure §4.4 shows the distribution of papers classified by research type. In
this distribution the most papers fits in the category of evaluation research. It
is interesting to see that most research is not being validated.

4.5 Foras analysis

In order to answer the RQ2 and detect the forums where researchers work-
ing on automated analsyis of feature models are publishing we obtained the
Table §4.1 from the set of publications. Table §4.1 shows the most used ones,
above, you will find a large list list of conferences and workshops being used
by area researchers. Note that in the Appendix §16 you will find the whole list
of foras we found.

90 Chapter 4. 25 years of automated analysis of feature models.

Opinion paper Valida-on research Solu-on proposal Philosophical proposal Evalua-on research Experience report
% 1 5 18 13 58 5

0

10

20

30

40

50

60

70

Figure 4.4: Distribution in percentage of research type.

International Conference on Software Reuse (ICSR) 4

International Workshop on Formal Methods and Analysis in Software Product Line Eng. (FMSPLE) 4

International Software Product Line Conference (SPLC) 22

International Conference on Model Driven Engineering Languages and Systems (MODELS) 5

European Conference on Software Architecture (ECSA) 2

International Workshop on Variability Modeling of Software-Intensive Systems (VAMOS) 25

International Conference on Automated Software Engineering (ASE) 12

International Conference on Advanced Information Systems Engineering (CAISE) 2

International Workshop on Product LinE Approaches in Software Engineering (PLEASE) 3

International Workshop on Feature-Oriented Software Development (FOSD) 3

International Conference on Generative Programming and Component Engineering (GPCE) 4

VARiability for You Workshop: Variability Modeling Made Useful for Everyone (VARY) 3

International Computer Software and Applications Conference (COMPSAC) 3

Brazilian Symposium on Software Components, Architectures and Reuse (SBCARS) 2

International Workshop on Model-Driven Approaches in Software Product Line Engineering (MAPLE) 8

International Conference on Fundamental Approaches to Software Engineering (FASE) 3

International Conference on Software Engineering (ICSE) 5

European Conference on Software Maintenance and Reengineering (CSMR) 4

International Conference on Search Based Software Engineering (SBSSE) 2

Workshop on Services, Clouds, and Alternative Design Strategies for Variant-Rich Software Systems
(SCArVeS)

2

International Conference on Web Services (ICWS) 2

International Conference on Service-Oriented Computing (ICSOC) 3

Table 4.1: Conferences & workshops with more than one publication.

4.5. Foras analysis 91

Finally, regarding the publication in journal we obtaining the following set
of papers which are shown in Table §4.2 among the number of related papers
published on it.

Software and Systems Modeling 3

Software Quality Journal 5

Science of Computer Programming 5

Information and Software Technology 6

Journal of Visual Languages and Computing 1

Journal of Object Technology 1

Computer 1

IEEE Transactions on Software Engineering 4

Journal of Systems and Software 4

International Journal of Digital Content Technology and its Applications 1

Information Systems 1

Journal of Theoretical and Applied Information Technology 1

Journal of Universal Computer Science 2

Expert Systems with Applications 3

International Journal of Emerging Trends & Technology in Computer Science 1

International Journal on Software Tools for Technology Transfer 3

International Journal of Software Engineering and Knowledge Engineering 1

IET Software 1

ACM Computing Surveys 1

ISRN Software Engineering 1

ACM SIGPLAN Notices 1

Studies in Computational Intelligence 1

International Journal of computers and technologies 1

International Journal of Information System Modeling and Design 1

Advances in Intelligent Systems and Computing 1

Electronic Notes in Theoretical Computer Science 1

IFIP Advances in Information and Communication Technology 1

Procedia Computer Science 1

Journal of Software Engineering 1

Science China Information Sciences 1

Frontiers in Artificial Intelligence and Applications 1

Table 4.2: Journals and number of papers from the survey.

92 Chapter 4. 25 years of automated analysis of feature models.

4.6 Discussion

The surveyed research points out that the automated analysis of feature
models is a research that is getting mature. However, the majority of the
research is still published in workshops and conferences instead of journals.
Concretely the percentage is 76 % in conferences and workshops and only 22.8
% in journals being the rest in books and other publications forms.

Regarding the distribution depending on the research papers the main fact
detected is that feature model practitioners are not validating the research as
much as they evaluate it. This actually should encourage the community to
work more close to the industry and provide better ready-to-the-market solu-
tions instead of techniques and prototypes. We suspect that this is intimately
related with the fact that there are only a few industrial test cases and projects
reported by the researchers.

When taking a look to the distribution of the research focus there are no
much surprises as the areas with more work are, first “Configuration and
feature oriented techniques” and second, “Testing and evolution”. We sus-
pect that this is because the areas that can provide more profit to companies.
However, the new applications of feature modeling techniques now are being
applied to far-from-spl areas, this points out that while the industrial applica-
bility of SPL techniques into industry is not that strong, there are other areas
such as cloud computing that can benefit from the work done in the past.

The distribution across the research foci is showing that most of proposals
are focusing either in proposing methodologies or focusing in the modeling
aspects of the SPL live cycle. Again, this may mean that the area is not yet
enough mature to focus more in the last phases of the development, however,
this is also contradictory given the number of papers focusing in evolution.

4.7 Summary

In this review we pinpointed the main trends in the area as well as shown
a picture of the current state. Our aim is that this review will guide and help
in the rest of chapters included in this thesis document. Also, we discovered
new forums where publish our research and where to dig in when looking for
related work.

We discovered that there is still work to get done in the area of AAFM. For
example, more industrial applications beyond software product lines must be

4.7. Summary 93

shown and validated. Moreover, it would be interesting to see the possible
benefits of applying AAFM for images recreation, cloud management, operat-
ing systems dependency problems detection and so on.

94 Chapter 4. 25 years of automated analysis of feature models.

Chapter 5

Research gaps

Twenty years from now you will be more disappointed by the things that you didn’t do than by

the ones you did do, so throw off the bowlines, sail away from safe harbor, catch the trade winds

in your sails. Explore, Dream, Discover.

Mark Twain, Writer and humorist

I n the previous chapter we performed a mapping study that update the
state of the art. Moreover we hightlited the current main trends in feature

model automated analisys. In this chapter, we go through the main research
problems existing in each trend analyzing the current solutions and pointing
out possible research oportunities.

96 Chapter 5. Research gaps

5.1 Introduction

The analysis of feature model is a research area that have been gaining
hype in the last 25 years. Moreover, different researchers already started to
apply automated analysis of feature model in different contexts such as cloud
systems [73]. In Chapter §4 we realized that there were still research gaps in
the different trends and sub-areas of the automated analysis. In this section
we explain the current research approaches and its weak points.

Variability intensive systems introduces a diversity of new challenges
when using automated analysis techniques. In this thesis we focus on the fol-
lowing ones : i) variability intensive systems encode non-boolean variability
information, for example, video-analysis systems require to encode physics
related information as floats; ii) variability intensive systems require to use
roles and permissions to support segregation of duties when more than one
practitioner configure the same ecosystem and iii) variability intensive sys-
tems evolve and change over time in multiple ways but there are some that
would provide more benefits than others.

The objective of this chapter is to motivate the need for new methods and
mechanisms that while enhancing the automated analysis of feature model are
applicable to variability intensive systems. We focused in three main facets of
the software. Namely, evolution, testing and configuration. In the next section
we depicts the challenges we found in these facets of software while dealing
with variability intensive systems.

5.2 Problems

The main contributions of this thesis were motivated by the following
problems:

Evolution of variability intensive systems.Evolutions affects software by
introducing new requisites in the development chain as the time goes by. Vari-
ability intensive systems are not an exception, moreover, because of the large
amount of products they encode there are configurations from previous ver-
sions than aim to transition to new model version. Actually, different con-
figuration path can achieve this transition, being some more expensive than
others. In this context we focused on the problem of identifying the path that
satisfy a constraint while minimizing the cost to spend in the transition.

Testing variability intensive systems. The large amount of products en-

5.3. Current Solutions 97

coded in a variability intensive systems makes impossible to test them all. In
this situation, is appealing to reduce and prioritize the tests we are going to
execute. Also, there is information that can be linked to the features, thus, ex-
ploited and used to improve the testing process such as market-share metrics
or relative cost impacts. The problems we faced refering to this information
are, first, how to encode such new variability flavors with non-boolean infor-
mation in a manner that can be automatically analyzed. Second, to extend
and apply automated mechanisms over the encoded information retrieving
only useful testing information.

Configuring variability intensive systems. Configuring variability inten-
sive systems in s daunting task for several reasons. First, the large number of
products makes impossible for one person to take all configuration decisions
in a rapid manner. Second, each practitioner define the variability with the
variability models they are more confortable or used to. Two options can be
considered, either to implement an standard [44] or to allow the configura-
tion orchestration of multiple and diverse variability models. In this thesis we
pushed forward the second strategy to allow collaboration in between practi-
tioners.

5.3 Current Solutions

In this Section we will present the strong and weak points we found in
each of the research areas detected in the previous Chapter.

5.3.1 Evolution of variability intensive systems

Model-driven feature model evolution. A number of approaches have
looked at the development of modeling tools to support feature model evolu-
tion. Pleuss et al. [31, 133] model coherent sets of changes to a feature model as
model fragments and allow modelers to describe evolved versions of feature
models at future points in time. Further, the underlying model-driven tooling
allows developers to check the correctness of the evolved models or inter-
actively evolve the model. Whereas these existing approaches focus on the
user-interface modeling and constraint-checking aspects, there is a lack of au-
tomated mechanisms for optimizing the planning steps of future evolutions of
configurations. For example, Pleuss et al.’s techniques do not provide config-
uration evolution optimization capabilities or automated non-interactive evo-
lution based on objective functions.

98 Chapter 5. Research gaps

Re-configuration approaches. Other research has looked at re-configuration
or SPL error correction in a number of different scenarios. For example, Xiong
et al. [187] researched eCos configuration problems, proposing a set of solu-
tions for a set of concrete configuration errors. These works miss to consider
multiple-steps configration. This is configurations that span over several time
steps.

Managing changes using dynamic SPLs. Rosnmuller et al.[147] investi-
gate unforeseen changes due to the run-time swapping of components in a
SPL. This works focuses on evolution of variants within the same SPL. Fea-
ture model drift allows modifications to the structure of the SPL which is not
covered in the research by Rosenmuller et al.

Supply-chain product-lines. Hartmann et al. [77] investigate methods of
building models that incorporate the variability and constraints of multiple
suppliers into a product-line feature model. Hartmann’s work focuses on the
modeling aspects related to capturing and maintaining the constraints from
multiple suppliers whereas no mechanism to reason about the constraints over
time are provided.

Understanding configuration over time. Elsner et al. [62] have looked at
variability over spans of time and the issues related to understanding when
and how variability points relate to each other. In required to focus on au-
tomating three key tasks that Elsner et al. identify as needed for managing
variability over time. Specifically, providing capabilities for automating and
optimizing tasks that Elsner et al. term: 1) proactive planning, 2) tracking, and
3) analysis. Whereas Elsner et al. focus on general identification of the issues
in managing variability over time, it misses to focus on providing a framework
for automating the specific tasks.

Quality attribute evaluation. Feature models can be attributed with non-
functional information such as price, cost, and time to deploy. Johansen et
al.[87] proposed to use different weights depending on the importance of each
software product line, in that way, they give more importance to some features
than to others. No solutions enable maximization of different model proper-
ties such as the number of different features involved in a configuration, or
maximizing concrete quality attributes. Several techniques have been pro-
posed for evaluating quality attributes [65, 85, 124] to guide a configuration
process. These techniques provide a framework for assessing the impact of
each feature selection on the overall capabilities of the configured system. As
a result, quality characteristics, such as reliability, can be taken into account
when selecting features. These techniques are also designed for single step

5.3. Current Solutions 99

configuration processes.

Step-wise refinement. Batory[11] describes AHEAD, a technique for the
configuration of of SPLs. AHEAD utilizes step-wise refinement, in which
SPLs are configured iteratively. This miss to select additional features over
the course of multiple-steps in order to reach a target configuration.

Feature edits. In the work presented by Thum et al. [174], the authors
present a catalog of possible changes that can be applied to a feature model
in the process of model evolution. The authors also discuss approaches for
determining if the new model is a subset or a super-set of the original fea-
ture model. This work differs from ours in many aspects. A weak point of
this paper is to not consider multi-step changes nor identify paths between
configurations across multiple steps.

5.3.2 Testing of variability intensive systems

Software product-line testing In order to reduce the cost of testing a soft-
ware product line, researchers have presented several approaches for reduc-
ing the number of tests to execute, and therefore the cost of the entire test-
ing phase. For example, [43] presented an overview of possible strategies for
reducing testing costs. [58] present a literature review of strategies for test
software product lines. These works discuss the two principal mechanisms
when testing software product lines–domain artifacts testing and application
artifacts testing. However, they do not evaluate artifacts testing, where combi-
natorial optimization has proved to be one of the most promising approaches.

Software product lines are an approach for building a configurable soft-
ware platform that can be adapted to varying requirement sets. A key com-
ponent of a software product-line is that there are a set of common compo-
nents, as well as points of variability that can be adapted to a given require-
ment set. Some research [24, 93, 116] has investigated testing techniques that
can be applied to software product lines. These software product line testing
techniques provide varying algorithmic approaches to ensuring that the entire
configuration space of the software product line is covered. For example, [93]
presented a method to reduce the efforts of executing a test over the whole set
of products encoded in a product-line. This is done by analyzing the model
and only execute the test one time in the parts not affected by variability. Is
still unknown how to to derive a set of the underlying software product line
configurations to test on top of.

Pair-wise testing. One of the most appealing approaches has been pre-

100 Chapter 5. Research gaps

sented in [41]. Cohen et al. first explain the importance of creating good
covering arrays for the set of products encoded in a product-line, and later
in [42] presented specific algorithms to generate the covering arrays and pro-
vide empirical results. Several others have utilized this general method[42,
86, 98, 130, 131]. For example in [125], authors prosed the use of CSP for gen-
erating pair-wise feature permutations. Our proposal is more ambitious than
the one presented by Oster et al., by enabling not only the use of t-wise prun-
ing but also more complex functions such as the cost of executing the tests in
the cloud. These approaches can be complementary. For example, by using
a pair-wise function as the cost function, we can discard some t-wise pairs
with some reasoning over the attributes of the features involved in the prod-
uct. Moreover, [87] focuses on value guided testing by generating covering
arrays. In that approach, sub-product-lines have different weights, thus some
products are more critical than others when testing.

Cost guided testing. The cost of software development is one of the main
concerns when developing software. There are several proposals that present
solutions to address the problem of testing costs [26–28, 42, 125, 130, 131, 148,
165, 167, 185]. There is a lack of proposals to minimize the testing cost while
maximizing the value of our tests.

Configuration management & analysis. She and Lotufo et al. have investi-
gated techniques for modeling the features and configuration rules embedded
in the Linux kernel[106, 160]. In their work, they use similar feature modeling
approaches to manage the variability in the Linux kernel. We focus on how
to model the variability of configurable platforms and derive valid configu-
rations. However, a key difference with our approach is that it is specifically
focused on combining this configuration data with a market-share model in
order to derive platform configurations for testing.

Multi-objective optimization problems. There are circumstances where it
is important to balance trade-offs between different testing objectives. These
problems are known as “multi-objective” problems. Most solutions for these
problems are based on evolutionary algorithms [39, 51].

Recently there is a trend of applying these techniques to software product
line testing. Because of their similarity with our research, we have developed
a deeper comparison between these approaches. The results obtained by this
comparison are shown in Table §5.1. Concretely, we compare; i) if the ap-
proach uses multi-objective solving techniques. This is, if multiple functions,
maybe conflicting, are used for the same testing operation; ii) the testing op-
eration supported (pruning, prioritization and packaging); iii) if the solution
allows user defined functions; iv) the support for quality attributes; v) the
completeness of the solving techniques, this is if the approach explores the

5.3. Current Solutions 101

whole solution space or uses heuristics mechanisms, and vi) if the implemen-
tation is available and if supports complex cross-tree constraints (constraints
over attributes) and attributes with ranges. Note that the techniques described
here are not focused on product prioritization, pruning, or packaging but tech-
niques that can be applied to other multi-objective problems such as the con-
figuration of a product-line.

[152] explored the existing evolutionary algorithms to find Pareto optimal
solutions. The research found that IBEA algorithm provides the best perfor-
mance when dealing with feature models. This work presented a comparison
between different multi-objective solving techniques based on evolutionary
algorithms and enables the prioritization of objective functions over features.
The main difference of this approach compared to our research is that instead
of heuristic based methods, such as evolutionary algorithms, our solution uses
a CSP and support attributes.

A different approach was presented by [81]. In this work, authors pro-
posed the configuration or generation of test-suites by using objectives over
features. An interesting point of this approach is the generation of test-suites
based on the pair-wise coverage they offer. Again, the main difference with
our solution is the approach used (Evolutionary or CSP) and the attributes
support.

Finally, [123] used an exact solver to obtain the set of products based on
attributes values. The main differences between these approaches and our
approach is the use of different solving techniques that explore the whole so-
lution space. Another notable difference is that our research needs to allow for
constraints that relate attributes to features. Note that none of the approaches
explicitly support prioritization and not are focused on testing.

Knapsack algorithms. Knapsack problems and bin packing problems
have been studied for decades [40, 110]. In our research, an exhaustive so-
lution based on dynamic programming has been used to select the set of hard-
ware configurations that maximize market-share without exceeding a maxi-
mum budget when testing. Researchers have proposed other methods to solve
the knapsack problem based on heuristics [6]. These methods provide a good
approximation of the maximum value of the knapsack, but have much better
algorithmic time complexity.

Value-driven development. Companies aim to maximize profit when de-
veloping software. Value-Driven development is a series of processes that
companies can follow to focus development and testing to maximize prof-
itability. There is previous research on this topic [27, 28, 167]. [165] proposed

102 Chapter 5. Research gaps

Approach [152] [81] [123] Research gap

Multi-objective solver • • • ◦

Pruning support ◦ � ◦ •

Prioritization support ◦ ◦ ◦ •

Packaging support ◦ ◦ ◦ •

User-defined testing functions ◦ ◦ • •

Attributes support ◦ ◦ • •

Completeness ◦ ◦ • •

Implementation available ◦ • ◦ •

Complex constraints ◦ ◦ ◦ •

Attributes with Ranges ◦ ◦ ◦ •

• addressed as goal, � addressed but with restrictions, ◦ not regarded as goal

Table 5.1: Multi-objective related work comparison.

the use of a Return of investment (ROI) metric in order to guide the differ-
ent stages of software development. The ROI metric provides a mechanism to
quantify the profitability of developing a software product at various stages in
the software development lifecycle. To maximize testing ROI, [167] proposed
different ways to prioritize test-case execution. In this research, the market-
share metric has been proposed to maximize the number of users reached by
the platform configurations that a mobile application is tested on. This ap-
proach is a specific type of ROI analysis for value-driven development and
complementary to prior research.

5.3.3 Configuration of variability intensive systems

Staged configuration. Czarnecki et al. [47] describe a method for using
staged feature selection to achieve a final target configuration. Their multi-
stage selection considers cases in which the selection of features in a previous
stage impacts the validity of later stage feature selections.

Configuring multi-step problems is complementary to Czarnecki et al.’s
work since it (1) examines the production of a feature model configuration
over multiple configuration steps and (2) provides a general formal frame-
work that can be used to perform automated reasoning on staged configura-

5.3. Current Solutions 103

tion processes. There is a lack of technique to reason about other multi-step
configuration processes that do not fit into the staged configuration model
such as the avionics example used in chapter §8.1. Hwan et al. [83] have
looked at mechanisms for synchronizing specializations of feature models as
changes occur over time. This problem is similar to the one we target in this
thesis, but we focus in a different and complementary aspect of the problem,
which is reasoning in the face of changes to the feature model over time. Both
synchronization and automated reasoning in the face of changes to the un-
derlying feature model are needed and each approach addresses a different
aspect of the problem.

Classen et al. [36] have investigated creating a formal semantics for staged
configuration. Moreover, they provide a definition of a configuration path
through a series of stages for a feature model. However, existing solutions can
not produce a complete configuration at multiple points in the configuration
process.

Automated single-step configuration. Several single-step feature model
configuration and validation techniques have been proposed [12, 20, 25, 33,
108, 182]. These techniques use CSPs and propositional logic to derive feature
model configurations in a single stage as well as assure their validity. These
techniques help address the high complexity of finding a valid feature selec-
tion for a feature model that meets a set of intricate constraints.

While these techniques are useful for the derivation and validation of con-
figurations in a single step, they do not consider feature configuration over
the course of multiple steps. In many production scenarios (such as the avion-
ics example from Chapter §8.1) the ability to reason about configuration over
multiple steps is critical.

Bosch et al [30] describe several evolution patterns that appear in the con-
figuration of SPLs. These patterns incorporate the effects of manipulating
variation points in regards to time and resource consumption. In contrast,
no solution is handling this evolution variability by spreading feature selec-
tions over multiple stages, such that an introduction of a new variation point
can be taken into account.

Configuration workflows. Hubaux et al.[82] presented a formalism to de-
termine the work-flow required to configure a feature model in multiple steps.
However, Hubaux et al’s work does not investigate feature model drifts or au-
tomated derivation of a configuration path between a starting and final con-
figuration nor multiple practitioners configuring at the same time.

104 Chapter 5. Research gaps

5.4 Discussion

From the analysis of the previous work we detected that the testing, con-
figuration and evolution of variability intensive systems have not been ad-
dressed when having to cope with non-boolean information and complex con-
strains. Also, this points out that existing mechanisms were not enough to
reason over quality information such as floats when testing. Concretely we
identified the following concrete research gaps to enable the evolution, testing
and configuration of variability intensive systems:

Testing of variability intensive systems. From the set of reviewed solu-
tions, we noticed that there were two main activities requiring research efforts.
Researchers were pruning and prioritizing the products to test only taking into
account certain feature model characteristics such as the feature commonal-
ity. Second researchers were narrowing the products to test by using t-wise
methods, thus, forgetting about the non-functional properties of the variabil-
ity intensive systems that can be used to better scope the test-suite. In this
dissertation we tackled this problem by proposing the use of nonfunctional
information such as cost, value and other per-feature non-boolean informa-
tion. This is, to include business information as part of the testing.

Configuration of variability intensive systems. While there have been an
extensive work in the configuration of individual models, we did not find pa-
pers coping with the configuration of diverse and distributed variability mod-
els. Techniques such as the the staged feature models can certainly help in this
task. To enable the configuration of variability intensive systems we devel-
oped a solution that can configure a variability intensive system relying in the
current single-and-not-distributed analysis tools such as FaMa, FaMaOVM or
Dopler.

Evolution of variability intensive systems. Evolving variability intensive
systems require mechanisms and tools that optimize the configuration path
in between different configuration. This is, to optimize the transition from
configurations existing in previous version to configurations in the current
model version.

5.5 Summary

In this section we motivated the needing of our research. We went trough
the related and previous work related to our research highlighting the main
research gaps to address in this thesis work. In the next chapters the reader

5.5. Summary 105

can find the concrete solutions we implemented to address those problems.

106 Chapter 5. Research gaps

Part IV

Contributions

Chapter 6

Testing: pruning, prioritizing and
packaging

El caudal de la labranza siempre rico de esperanza.

Dicho popular, Andalusian people

S oftware product-lines are used to develop a set of software products that,
while being different, share a common set of features. Feature models are

used as a compact representation of all the products (e.g., possible configura-
tions) of the product-line. The number of products that a feature model en-
codes may grow exponentially with the number of features. This increases the
cost of testing the products within a product-line. Some proposals deal with
this problem by reducing the testing space using different techniques. How-
ever, a daunting challenge is to explore how the cost and value of test cases can
be modelled and optimized in order to have lower cost testing processes. In
this chapter, we present TESting vAriAbiLity Intensive Systems (TESALIA),
an approach that uses automated analysis of feature models to optimize the
testing of variability-intensive systems. We model test value and cost as fea-
ture attributes and then we use a constraint satisfaction solver to prune, priori-
tize and package product-line tests complementing prior work in the software
product line testing literature. †1

†1This chapter is based in [71] and part of this material is in press in the SQJ journal

110 Chapter 6. Testing: pruning, prioritizing and packaging

6.1 Introduction

To represent the common and varying features within a product-line, a va-
riety of variability modeling techniques have been proposed [163]. However,
feature models are one of the most widely used techniques to model the vari-
ability of a software product-line [92]. To encode the set of all software product
line products in a feature model’s tree-like structure, a variety of parent-child
relationships are used to represent the constraints governing the possible fea-
ture permutations of valid products in the product-line. The number of prod-
ucts encoded in a feature model grows with the number of features. Given n

features and no constraints on valid feature combinations, there are 2n possi-
ble products. To deal with this complexity, automated mechanisms are used
to extract information from feature models, such as features present in ev-
ery product. These automated mechanisms are known as automated feature
model analysis techniques [19].

Some software product-lines, such as those describing operating systems
[68, 160], have thousands of features [13]. When a product-line has an expo-
nential number of products relative to its feature count, testing all or a large
percentage of its products is an error-prone and expensive task, both in terms
of time and computing resources. To address the issue of not being able to test
all the possible products of a software product line, combinatorial testing [121]
can be used. Combinatorial testing reduces the number of tests to execute by
taking advantage of the shared features across different software product line
products. Roughly speaking, the hypothesis behind combinatorial testing is
that if a given feature has already been tested, then the testing process can skip
further tests containing this feature. A variety of heuristics can be used to de-
cide which feature combinations to test, however, researchers have primarily
used t-wise heuristics for pruning the set of products to test.

The testing phase in a software engineering process can be time-consuming
and expensive [15]. One of the parameters to be considered when selecting test
cases, is test case cost and effort. The same is true in software product-line en-
gineering. Past literature has investigated techniques for reducing testing ef-
fort in software product lines [26–28, 81, 86, 87, 98, 123, 125, 130, 131, 148, 152,
165, 167, 185]. Traditionally, testing cost has not been modeled explicitly. For
example, when applying t–wise based approaches [79, 80, 87, 98, 125, 130, 131],
the cost to test a feature is extracted from the number of product configura-
tions that include a specific feature. Modeling cost information in a more ex-
plicit way can help to reduce the number of products to be tested in a software
product line. For example, if we are testing in the cloud, the time and budget
required for executing a test may vary between different executions. Time and
budget are examples of testing cost. Current approaches for testing software

6.1. Introduction 111

product lines do not consider these situations where test cost is not uniform.

When the time to test all products in a product-line outstrips the available
testing budget, determining how much value is obtained by running a test en-
ables the prioritization of the products to be tested. When there is limited time
for testing due to deadlines, test prioritization enables the critical parts of the
software to be tested when not all tests can be executed [166]. Test value [27]
can be measured in different ways such as the measuring the feature’s relative
importance in terms of the project requirements (e.g., points on associated user
stories) or deriving importance based on the time left until its expected com-
pletion date in the project schedule. The value of a software product changes
as time goes by. For example, a new mobile phone may be widely used when
it is first introduced in the market. Over time, as its feature set becomes older
and less attractive, it may have fewer and fewer users. Therefore, the value
of thoroughly testing an application running on a particular phone may pro-
vide more or less value depending on when the tests are run. Mechanisms to
model the test value in software product lines can be used to properly reduce
the amount of products to test while maximizing the value of the tests that are
run.

To improve the testing process researchers have primarily proposed two
mechanisms; i) test pruning, to selectively execute tests based on test-cost
when there are a large number of tests and [121] ii)test prioritization, to en-
sure that the most important tests always run first in case testing is interrupted
[166]. With the first approach, developers can reduce the number of tests to
execute while maintaining good test coverage. With the second approach, de-
velopers execute the most valuable tests first in order to ensure that critical
software components are tested. Moreover, when companies use test-driven
development approaches [14], the large number of test executions when us-
ing software product lines can result in high costs. Being able to fix a maxi-
mum budget for a test-suite enables developers to bound the cost of the testing
phase while maximizing testbed value.

Automated analysis of feature models is the process of extracting infor-
mation from feature models using computer aided mechanisms [19], such as
constraint solvers. More than thirty different approaches have been proposed
to extract varying kinds of information from feature models, such as how com-
monly a feature is used or the number of unused features [19].

In this chapter we propose to use automated analysis of feature models to
automate the pruning and prioritization of the tests to be executed within a
product-line. We present TESALIA, a method to analyze the set of products
encoded in a software product line, as well as feature value and cost informa-
tion, in order to prioritize the products to be tested. We also propose a method

112 Chapter 6. Testing: pruning, prioritizing and packaging

to build a product test suite that adheres to a fixed testing budget while maxi-
mizing the value of the tested products. This chapter sumarizes the following
contributions:

• A mechanism to store, update and reason about value and product cost
data.

• A CSP-based approach to prune the product set encoded in a feature
model. This approach extends prior work [79, 80, 87, 98, 125, 130, 131] by
enabling the use of a variety of objective functions for pruning test cases.
For example, a 2-wise function or a function based on test execution time
can be used to prune the tests.

• A CSP technique to prioritize the list of products to be executed in order
to maximize testing value.

• A technique for packaging tests with cost and value data to bound test-
ing cost while maximizing test suite value.

6.2 Motivating scenario

Figure §6.1 shows the motivating scenario that promoted this research.
Mobile phone applications (“apps”) are typically executed on a variety of dif-
ferent underlying mobile platform configurations, such as different versions
or configurations of Android or iOS. Each platform configuration has differ-
ent mobile platform features, such as screen resolution or communication ca-
pabilities (e.g., 3G, LTE, etc.) that the software must interact with and may be
configured differently depending on the platform version. For example, iOS
6 on the iPhone 3GS does not have turn by turn directions but iOS 6 on the
iPhone 5 does. Also, the iPhone 3GS-4S has the same screen aspect ratio but
the iPhone 5 does not. The Android emulator †2, which allows developers to
emulate the configuration options of real-world devices, currently supports
46 different mobile platform features, which (presuming all user configurable
features could be combined with no restrictions) potentially leads to 246 dif-
ferent platform variant configurations. The high variability that exists in the
Android ecosystem makes testing hard. Being able to describe the variability
of the Android ecosystem as a software product line would allow developers
to apply existing and new testing techniques to optimize testing strategies.

†2http://developer.android.com/tools/help/emulator.html

6.2. Motivating scenario 113

Because of the large number of in-use platform configurations, it is diffi-
cult for developers, regardless of development team size or proficiency, to test
their software products on all or even most platform configurations before
release. One of the most common approaches is to pick a set of the most pop-
ular mobile devices and then to test exclusively for that subset of devices. For
example, the Android Skype application is installed on thousands of unique
Android platform configurations †3, but the Skype application is only officially
certified to work on fewer than 25 Android devices†4.

�������������������
��������������������

������������

����������������

��ff��������������������

������������

�������������
�������
���������

�������������

Figure 6.1: Android variability impacting testing costs.

A primary challenge of testing on a large number of mobile platforms is
the cost of acquiring so many unique smartphone devices. As an alternative
to testing on actual devices, developers frequently turn to platform emulation
to mimic real-world platform configurations. However, running a complete
suite of tests on hundreds of uniquely configured platform emulator instances
requires substantially more computing power than the average developer pos-
sesses. An option to address this problem is to use the cloud as a supporting
platform for running virtual instances of the emulating configurations.

To guarantee the correct operation of Android applications developers can

†3http://opensignal.com/reports/fragmentation.php
†4http://www.skype.com/intl/en-us/get-skype/on-your-mobile/skype-mobile/android/

114 Chapter 6. Testing: pruning, prioritizing and packaging

adopt a test-driven development process [14]. Test-driven development re-
lies on the repetition of a set of tests in short development cycles (e.g. every
time we release a new version, every time we add a new functionality). When
developing applications that potentially will run in a wide range of differ-
ent platform configurations users need to select which configurations will be
used to run the tests. Usually developers may want to improve the value of
their tests by defining different metrics such as market-share impact, which
is the number of real devices (mobile platform features) and mobile platform
features covered by the tests. Market-share analysis can be used to help deter-
mine which tests to run and automate this testing in the cloud.

Goal: Minimize the probability of encountering an untested feature con-
figuration when installed on a device in the wild.

Ideally, a producer of a mobile application would like to ensure that, when
their app is installed on an arbitrary mobile device in the wild, the app has
been tested with as many of the device’s platform feature configuration op-
tions (e.g., screen size, API version, etc.) as possible. The more untested fea-
ture configurations of the device, the more likely there is a chance that an
unknown bug may emerge and that the app will not function correctly. A key
question, therefore, is how to intelligently choose platform feature configura-
tions to test on in order to minimize the chance of encountering a platform
feature configuration in the wild that present errors. Moreover, since budgets
for testing time and cost are limited, how do developers select the best mix of
platform configurations to test on given their time and cost constraints?

Testing every possible platform configuration is not feasible due to the
large number of platform feature configuration permutations. For example to
test an application with similar requirements to the Facebook app would re-
quire testing every platform configuration that, at a minimum, includes vary-
ing parameters for the camera, camera APIs, GPS, and the nine different screen
resolutions supported by Android at the time of writing this thesis. Those op-
tions represent 211 platform configuration permutations to run the tests on,
which may be expensive and time consuming.

The typical approach taken to handle this problem is simply to pick and
test on the platform configurations of the most popular mobile devices. Pick-
ing popular mobile devices, however, may not be an effective strategy if the
goal is to reach as many users possible with our app. For example, a popular
new phone may have a higher resolution screen, that is not representative of
the screen resolutions of the existing older mobile devices in use. Section §10.2
shows specific examples of where testing on the five most popular Amazon
devices covers over 40% fewer platform feature configuration options of the
in-use devices versus a more intelligently selected set of five platform config-

6.2. Motivating scenario 115

urations.

To reduce the complexity of testing software product lines, a number of
challenges need to be addressed:

Modeling the variability in the mobile platform ecosystem. A daunting chal-
lenge of developing mobile applications is the rapid pace that the under-
lying mobile platforms and device hardware capabilities are evolving.
This rapid pace of evolution has led to platform fragmentation, which
is the large variability in platform configurations used on different mo-
bile devices in the market. Fragmentation may be caused by differences
in manufacturer modifications to an open-source platform, such as on
Android, or the evolution of a single manufacturer’s product-line, such
as Apple’s iOS products. For example the bluetooth API changed sub-
stantially between Android versions, making apps designed for initial
versions fail in current flag-ship devices. Many of these configuration
variations, such as differences in how the API to access a user’s contacts
functions, can directly impact the functionality of apps. The fragmen-
tation creates issues when testing because of the large amount of testing
required to ensure that the app works properly across the entire platform
configuration space.

Defining the cost of testing a mobile application. Regardless of whether real
mobile devices or emulator instances executed in a cloud, such as Ama-
zon EC2, are used, developers typically do not have the time or money
to test their app on top of every possible mobile platform configuration.
A key issue, therefore, is determining how many and which mobile plat-
form configurations to test a mobile app on without exceeding devel-
opment time or cost budgets. For example, although a cloud can be
used to test thousands of emulated mobile device instances, most cloud-
computing providers charge fees based on the amount of CPU time con-
sumed by an application, which can lead to substantial cost. For exam-
ple, using Amazon EC2 †5 to test an Android application that runs on
top of 1000 unique platform configurations may require 1000 cloud in-
stances. If these instances have, on average, a cost of $1.006 per hour and
each test consumes 1

2
hour, the total testing cost will be $503, or $1006 per

hour. Thus, although developers can test their software on thousands of
platform configurations, they must determine the number of configu-
rations to test given their desired cost, time, and coverage goals (tests
profits).

The cost of executing a test can be measured in different ways depending
on a company’s requirements. For example, it can be measured in terms

†5http://aws.amazon.com/s3/

116 Chapter 6. Testing: pruning, prioritizing and packaging

of money invested for running an emulator in the cloud, or in terms of
carbon emissions. Moreover, it also can be measured by executing a test
and capturing the time required to run it or the number of lines of code
executed.

Determining the revenue of executing a test. A key approach that develop-
ers often use is to leverage sales data from a vendor, such as Amazon,
in an attempt to maximize the market-share of the devices that their app
has been tested on. The overall goal of developers is to select a set of top
selling phones from a period of time in an attempt to minimize the num-
ber of mobile platform configurations that the app is installed on that it
has not been tested on top of. However, to date, these approaches to se-
lecting which mobile platform configurations to test on are manual, ad-
hoc processes that are not optimized. Further, these manual processes to
selecting mobile platform configurations to test on top of do not consider
the complex tradeoffs between development budgets, time, and market-
share coverage. Finally, these existing approaches of selecting top selling
devices to test on have not been evaluated for market-share coverage or
compared to other approaches.

Different value functions can be used to achieve different testing scopes.
For example, if we use the market share metric, our test will reach as
many users possible but might leave out android installations without
networking capabilities (e.g., no Wifi or cellular modem hardware). If
we want to look for errors on rare devices we can try to maximize the
number of mobile platform features covered by our tests.

Skype †6 only certify their Android application for the most sold phones,
that makes that when a new device appears into the market some hardware
pieces may not have been tested with the application (e.g. in Sep’13 they have
not tested the Nexus7 Google tablet). Therefore, this work proposes to maxi-
mize market share while meeting the cost boundary.

Prior work proposes addressing this tradeoff between testing cost and
number of tested platforms by reducing the number of tests [94, 117] or au-
tomating the testing process [61]. This existing body of work has not exten-
sively studied the problems unique to optimizing mobile software testing cost
and the market-share coverage of the mobile platform configurations used for
testing but it did in the SPL testing area. The number of different mobile plat-
form features required to verify that our mobile application is error free is
huge. To execute those tests in a reasonable amount of time the use of cloud
computing is a must. However, the execution of those experiments might be

†6http://developer.android.com/tools/help/monkey.html

6.3. The TESALIA solution 117

expensive making it unaffordable to mid–size companies. Know how much
market–share our tests are covering is required by developers to know how
may potential mobile platform features are still on the wild. Therefore, mech-
anisms and tools are being needed to optimize the number of required test
that maximizes the hardware platform.

Later, we describe how we use TESALIA to model Android variability,
add cost and value information, and prioritize, prune, and package tests. For
the sake of simplicity, in the next Section, we use a simplified version of the
motivating example to present the key ideas. This example is shown in Figure
§6.2. The simplified example is based on a feature model with three concrete
features (Audio, Wifi and Bluetooth), all the features have a “cost” attribute
representing the relative cost within the product and a “value” attribute for
specifying the relative benefit of having the associated feature in a product. To
simplify, the attributes are expressed as integer values.

�������

����� ��������������

��� ���������

����

��������������
������������

�����������������
���������������
�������������

�������������������

�����������������������
�������

Figure 6.2: Feature model example based on the motivating scenario.

6.3 The TESALIA solution

The TESALIA (TESting vAriAbiLity Intensive Systems) approach provides
a mechanism for finding the most valuable set of products to test while meet-
ing a fixed budget (cost). First, the variability present in an software product
line is described using a feature model. Second, the feature model is attributed
with information modeling test cost and value. Note that only features im-
pacting test cost and value have to be attributed. Finally, using automated
mechanisms, a list of products defining the selected product for testing is gen-
erated. In the remainder of this section, we present the key components of the
TESALIA approach.

Figure §6.3 shows the TESALIA solution approach. The key benefits of
TESALIA are that it enables i) the pruning of the possible products to test; ii)

118 Chapter 6. Testing: pruning, prioritizing and packaging

the prioritization of the products to test based on value; and iii) the packaging
of products into testable sets that meet a bounded cost constraint while maxi-
mizing the overall test value of the set. Each component of the solution can be
executed sequentially. In other words, testing practitioners can decide either
to execute all operations or only some. For pruning and packaging, develop-
ers must provide both a cost and value estimation function, based on feature
attributes.

������

�����������

��������

���������������

���������������
�������

����������
�������

�������

�

�

�

����
�����

����
�����

�������������

��������������

Figure 6.3: TESALIA solution overview.

6.3.1 Capturing testing variability with feature models

In order to optimize the number of tests to run in a product-line, computer-
aided mechanisms are needed to describe the valid products that can be tar-
geted at when testing. The number of different possible valid products in a
product-line can grow up to 2n, where n is the number of features. In order to
describe the valid and non-valid products in a product-line, researchers use a
variety of variability modeling approaches.

Although feature models have been used for modeling software product
line variability, they can also be used to model other kinds of variability, such
as cloud configurations [60, 73] or Linux–based distributions [68, 160]. Also,
there is a recent trend to use feature models to describe the variability in an
application’s testing space [26–28, 81, 86, 87, 98, 123, 125, 130, 131, 148, 152,
165, 167, 185].

6.3. The TESALIA solution 119

For example, as motivated in Section §6.2, when testing Android applica-
tions on multiple Android devices, there are a large number of potential fea-
ture permutations of the Android emulator, such as audio and connectivity ca-
pabilities, screen size or CPU type. With such a large number of permutations,
it is easy to create an invalid emulator configuration for testing, such as select-
ing Android version 1.5 along with a screen resolution of WVGA, which is not
supported by that platform version. Therefore, when attempting to test across
a wide range of configurations, a method of defining the valid configuration
options and automatically discarding invalid configurations is required.

TESALIA uses feature models to describe the set of feature permutations
(testing variability) available for testing as some other have proposed [26–28,
81, 86, 87, 98, 123, 125, 130, 131, 148, 152, 165, 167, 185]. Having the testing
variability described in a feature model makes it possible to use automated
techniques to identify valid feature permutations [19]. Moreover, it allows
automated reasoning about the evolution of the product-line over time [179],
such as the cost of transitioning to a different configuration containing a new
Android version. For example, the valid products described by the feature
model presented in Figure §6.2 are shown in Table §6.1. The processes for
constructing these feature models is beyond the scope of this thesis. However,
there are a variety of techniques that have been described in prior work that
can be used to reverse engineer feature models from product descriptions,
such as domain engineering approaches [92] or computer-aided algorithms
[105, 162].

Name Android Communication Audio Wifi Bluetooth

P1 � � � �

P2 � � � �

P3 � � � � �

P4 � � �

P5 � � �

P6 � � � �

Table 6.1: Set of products described by the example presented in Figure §6.2.

120 Chapter 6. Testing: pruning, prioritizing and packaging

6.3.2 Attributing feature models with testing data

Once the testing variability is captured in a feature model there are a num-
ber of prior approaches that can be used to reduce the number of products to
be tested by applying, for instance, t-wise methods [79, 80, 87, 98, 125, 130,
131]. TESALIA uses feature attributes in the feature model to specify value
and cost of tests to aid in pruning the testing space and later prioritizing the
set of test cases to run.

Combinatorial explosion is a well known problem in software testing [76].
Because of the large number of software configurations, execution paths, and
inputs, it is generally impossible to execute sufficient tests to completely test
every execution path and input configuration of a software artifact. This prob-
lem also occurs in software product line testing because the number of soft-
ware product line products is an exponential function of the number of fea-
tures in the product-line. One of the goals of software product line testing is
to select the best set of test cases that maximizes the chance of detecting a bug
while reducing the testing effort. To do so, the cost and value of a test case
must be measured to quantify its importance. In this chapter, we refer to the
cost of a test case as a measure that quantifies the effort of executing a test case.
This can be measured in terms of resources, such as budget, person-months,
cloud computing time consumption, or other measures [15]. Additionally, the
value of a test case is the measure that determines the importance of a test case.
It can be measured in terms of number of tested features or market coverage
[27, 189].

To add cost and value information to the set of products in TESALIA there
are two possible approaches. The first approach is to specify the cost/value
information for each product by executing the tests associated with the prod-
uct and storing their cost or value for further use. The second approach is
to manually attribute the model with the relative cost or value of each fea-
ture. However, it requires manually updating the information associated with
each test and product, as well as updating this information as the software
product-line evolves. The cost and value of each product can be obtained by
using a function that provides the cost of each product by using the values
of the attributes present in the model. This can be done by, for example, ex-
tracting usage information from the Android play store in the case of testing
mobile apps. Benefits and drawbacks of each approach should be determined
by domain experts in each case. However, there are studies modelling product
costs of cloud services (measured in monetary units) [73] or modelling space
restrictions when designing circuit boards (measured in mm2) [173].

In this chapter, we use feature attributes to add cost and value information

6.3. The TESALIA solution 121

per feature. This information, together with value and cost functions, are used
to automatically prune and prioritize the products to be tested as described in
Sections §6.3.3 and §6.3.4.

Adding cost data → In order to optimize the number of tests executed, we
use feature attributes to store the cost of the resources needed to run each test.
Estimating testing costs requires both understanding the resource needs of the
tests (e.g. in order to rent virtual machine instances in the cloud), as well as
understanding the domain-specific properties (e.g. pricing model of the cloud
provider for using those resources and time required by each test).

Depending upon the product under test and tests being run, the test can
consume more or fewer resources, such as the number of required virtual
machine instances or the number of cores per instance. These resources are
directly linked to the financial cost to run the tests on the target platform
configurations. Each product is unique, and each feature may have complex
non-linear interactions with other features that affect performance and, conse-
quently, the resources needed to test it. Therefore, extrapolating the resources
usage of a subset of configurations, such as all configurations that use An-
droid 1.6, by manually calculating the value of a few fully specific configu-
rations, such as {Android 1.6, screen size 240x320, 16MB RAM, has ’volume’
hardware buttons, does not have ’Home’ hardware button, etc} is difficult.

As stated in the previous sections, its expensive to execute every test on
every mobile platform configuration. Therefore, it is necessary to select the
mobile platform configurations that are worth testing. Knowing the cost of ex-
ecuting tests enables developers to evaluate the worthiness of executing those
tests. Although appealing, the idea of adding value information may be con-
sidered infeasible in practice. However, we present a number of examples
where test value can be practically determined (see Sections §6.2 and §13.3).
For instance, testing an Android application that is running on an Android
emulator will consume varying hardware resources, such as CPU, depending
upon the emulator configuration.

When testing Android applications, users may want to test on as many
valid hardware configurations (a.k.a emulator options) as possible. However,
the number of potential emulator and device variations makes exhaustive
testing infeasible. Further, because many organizations have limited devel-
opment budgets, is important to provide mechanisms to maximize hardware
coverage, in terms of feature coverage, given bounded testing resources.

For example, if we execute the Facebook Android application in front of
five thousands different machines, and lately we need to execute as much test
we can but with the half time, probably we will remove of the execution set

122 Chapter 6. Testing: pruning, prioritizing and packaging

some of the configurations. Those metrics will allow us to select which tests
to discard. When using a cloud based testbed this problem manifests as we
do not know how the group of tests that keep bounded users costs. The fact is
that the amount of available options to select or deselect when testing android
applications makes hard to find the combination of those that minimizes the
emissions or the costs. Using the ATAACK cloud enables users to test their
applications in front of a large number of different hardware configurations.
However, test an application in 327 options is expensive. To solve that an auto-
mated selection of the configurations that maximizes the hardware coverage
is required.

Adding value data → Estimating the return on investment by executing a
test is a difficult task. However, there are a number of scenarios where the ben-
efits of individual tests can be derived. For example, when testing on mobile
devices, the device market-share covered by the specified emulator configu-
ration of the test can be used to estimate value. The greater the market-share
associated with the platform configuration being tested, the more important
the test is to execute.

An important attribute of the market-share driven approach to selecting
mobile platform configurations to test on top of is that this approach can opti-
mize the selection of platform configurations with respect to the market-share
coverage of the features that the product contains. For example, if the five best
selling Android devices are chosen for testing, these devices may be newer
and have similar features to one another, such as large screens, that are not
characteristic of the large installed base of previous generation phones. If
screen size is a feature that has a direct impact on the product being tested,
limiting the diversity of the screen sizes tested is not beneficial. Moreover, the
product being tested will have a high likelihood of being installed on an older
model device with a smaller screen size that it has not been tested on.

Value data may vary depending on external factors, such as new cus-
tomers, new hardware requirements, or changes in the application design.
TESALIA uses attributes to specify the value of testing each individual fea-
ture because they allow developers to update the value of each feature easily.

Defining the cost and value function → Referring to the motivating sce-
nario presented in Section §6.2, an Android emulator with an extra high pixel
density (high dots per inch [dpi]) screen uses substantially more processing
power on the host computer than an emulator with a low pixel density (low
dpi) screen. However, configuration options cannot be considered indepen-
dently. For example, two hdpi (high number of dots per inch) screen emula-
tors with different Android versions (e.g. 1.6 and 4.0) will have vastly different
CPU utilization due to improvements in the operating system, and it is pos-

6.3. The TESALIA solution 123

sible for an Android 4.0 hdpi emulator to use less CPU on the host computer
than an Android 1.6 ldpi emulator. Without running all possible emulator
configurations, it is hard to determine how much hardware, such as CPU,
each platform configuration will require on a specific Android emulator con-
figuration.

Defining the value of each test is also a key step when trying to optimize
the set of tests to run for a software product-line. Again, TESALIA allows
users to define the function to obtain the value of testing each product. In
the example presented in Figure §6.4, the function

�
Audio.value, Wifi.value,

Bluetooth.value, is used as the value of each product (for the sake of simplic-
ity).

�������

����� ��������������

��� ���������

������
�����������

������
�������

������
�������

Figure 6.4: Example based on the smartphone’s motivating scenario.

Figure §6.4 shows the example feature model with cost and value data on
its attributes.

6.3.3 Pruning the testing scope

Testing on a large set of different product configurations can be very ex-
pensive, as shown in Section §6.2. When trying to reduce the number of tests,
some products cannot be tested. To discard products when testing a product-
line, the majority of approaches described in prior literature apply t-wise cov-
erage to each feature sub-set [79, 80, 87, 98, 125, 130, 131]. T-wise testing con-
sists of testing all products that contain the unique possible combinations of
the selected t features. For example, if we plan to apply 2-wise (t=2) testing on
the feature model presented in Figure §6.4, every combination of tests involv-
ing unique combinations two features in the product-line must be tested. On
the other hand, if we plan to test by using 1-wise testing, every feature should
be in at least one tested product.

124 Chapter 6. Testing: pruning, prioritizing and packaging

When using TESALIA, any function can be used to define product testing
value, since TESALIA is based on an underlying CSP solver. TESALIA can
use the value of the cost attribute defined in each feature to obtain the cost of
the product or can use the cost value to simply detect if a feature is present
and then apply any t-wise based function to obtain the subset of products to
be tested.

In order to automatically prune products for testing, TESALIA applies
prior work on automated CSP-based derivation of feature model configura-
tions to derive configurations sets (e.g., mobile platform configurations to test
on). Moreover, the configuration sets optimize a function over the features
selected for testing without exceeding a testing cost budget(e.g., cloud com-
puting related costs). Once these products have been derived from the feature
model, standard testing tools, such as JUnit, can be used to deploy and test a
product in the cloud on the derived platform configurations.

The first step in deriving a set of products is to be able to derive all prod-
ucts from the feature model that do not exceed the testing budget. TESALIA
builds on prior work for automated derivation of feature model configura-
tions using CSPs to derive each individual platform configuration [19]. Note
that we present the pruning of feature models as a new automated analysis
operation extending the 30 existing approaches in the software product line
community [19]. Given a feature model, a set of feature costs, a function to ob-
tain the product cost and a maximum cost, the pruning operation returns a set
of products that does not exceed the maximum cost provided. The TESALIA
CSP model for deriving a single platform configuration from the feature model
to test on top of is constructed as follows:

CSP model used by TESALIA to prune the products that exceed the max-
imum budget:

TESALIA =< F, FC,A,AC, f(AC), CC >

where:

• F is a set of variables, fi ∈ F, representing the selection state of each
feature in the product-line feature model. If the ith feature is selected for
a product test, then fi = 1 and, otherwise, fi = 0.

• FC is the set of constraints that define the different relationships between
different features (e.g. if the ith feature is a mandatory child feature of
the jth feature, then fi <=> fj) according to the mapping presented by
[19].

• A is the set of attributes describing the estimated costs required to in-
clude each feature as part of a test product, where ai ∈ A is the cost to

6.3. The TESALIA solution 125

include the ith feature in a product to be tested. Note that depending on
the testing scope the cost can be defined in different ways (e.g., cost to
execute the test in a machine, cloud related cost for testing, ...).

• aci ∈ AC is a variable describing the current cost contributed by the ith
feature to the currently selected product. The cost of a feature is only
incurred if it is selected, thus: aci = fi ∗ ai.

• f(AC) is a function that calculates the total estimated cost of testing the
currently selected product. Several different functions can be used de-
pending on the objective to maximize. For example, if we use

�n
i=0 aci

to calculate the sum of each feature cost in a product we can specify not
to exceed a concrete budget.

• CC is the maximum allowed cost for testing a product, thus: f(AC) ≤

CC.

In order to ensure that only valid products are derived, a few additional
constraints must be added. The set of variables, F, is used to describe the se-
lection state of each feature. Initially, the root feature, f0 of the feature model
is labeled with value 1 (e.g., indicating that the root feature is selected). Be-
cause the product being tested will typically require a subset of the features,
such as minimum platform version or a rear-facing camera, these additional
constraints are encoded into the CSP by labeling the corresponding variable
fi of a required feature with value 1 and the corresponding variable fk of a
deselected feature with value 0. Pre-labeling these feature variables removes
them from consideration by the constraint solver and reduces the configura-
tion space size. In other words, is possible to start with a partial configura-
tion that contains the basics for making our product meet a minimum require-
ments, therefore reducing the computing power required by the CSP solver.

Once the initial labeling of the CSP has been performed, a constraint solver
is used to derive values for the remaining variables in F, such that none of the
feature model constraints encoded in the CSP are violated (an extensive dis-
cussion of encoding feature model constraints in CSPs is available in [19]).
Moreover, the CSP includes the additional constraint that the total cost of test-
ing on top of the selected platform configuration, described by the labeled
variables in F, does not exceed the testing budget CC. The result of this au-
tomated labeling process is that the constraint solver produces a set of values
for the variables in F, where the features that have been selected for the plat-
form configuration are labeled with value 1 (e.g. if the feature fi is selected
then fi = 1). The variables in F that are labeled with value 1 represent the
configuration that has been derived for testing.

126 Chapter 6. Testing: pruning, prioritizing and packaging

Applying this pruning method to our model presented in Figure §6.2 re-
quires transforming the feature model into a CSP by using the following assig-
nations of variables.

• F is the set of variables composed by Android, Communication, Audio,
Wifi, Bluetooth, and Product.

• FC is the set of constraints representing the following relationships, An-
droid mandatory Communication, Android optional Audio, Communi-
cation set with cardinality 1..2 Wifi and Bluetooth.

• A is the set of attributes describing the estimated costs, in this example
the features Audio, Wifi and Bluetooth have a cost of one $ per each one.
For the sake of simplicity we are using dollars as a cost unit, however,
other metrics such as CO2 emissions can be used.

• f(AC) for this example we are using the sum of cost as a function to
obtain the total cost of a product.

• CC is the maximum allowed cost, for the illustration purposed we fixed
it to 3.

This CSP returns all products having a $ cost less than 3, thus, filter-
ing the products to test. In Table §6.2 all products with their cost are
presented. Note that the gray line are products not returned by the
TESALIA solution.

Name Android Communication Audio Wifi Bluetooth Product Cost

P1 � � � � 2

P2 � � � � 2

P3 � � � � � 3

P4 � � � 1

P5 � � � 1

P6 � � � � 2

Table 6.2: Sub-set of products applying the function from Section §6.3.3.

6.3.4 Prioritizing the tests list

There are circumstances where knowing which tests fit a bounded cost is
not enough and it is also important to prioritize the set of tests to execute. Hav-
ing tests prioritized, allows testers to begin with the tests that provide more

6.3. The TESALIA solution 127

value, and thus, obtain more testing benefit in less time. TESALIA uses the
value-attribute of each feature and a function to determine how much benefit
is obtained by testing a product.

TESALIA requires developers to define a function to calculate the value of
each product. This function should be adapted to each testing context. For
example, if we want to value tests based on the number of features involved
in a product, the value function would be

�
fi. If we want to increase the

market-share coverage of our tests we should attribute the feature model with
market-share information and, thus, specify our function as

�
valuei where

valuei is the value attribute of a feature present in the product.

CSP model used by TESALIA to prioritize the set of products to test:

TESALIAPrioritization =< V,VA,VAC, f(VAC) >

where:

• V is a set of variables and constraints presented in Section §6.3.3.

• VA is the set of attributes showing the estimated value obtained by in-
cluding or not, each feature as part of a product, where vai ∈ VA is the
value obtained by adding the feature i in a product to be tested. Dif-
ferent value functions may have more or less sense depending on the
testing scenario we were working on.

• vavari ∈ VAC is a variable describing the current value contributed by
the ith feature to the currently selected product. The benefits of having a
feature on a product only appears if it is selected, thus: vavari = fi ∗ vai.

• f(VAC) is a function that calculates the total estimated benefits obtained
by testing the currently selected product. Again, different functions can
be used to prioritize the test list. For example, if we decided to value our
test by a market-share based function, the value of each product can be
represented by the product of the relative market-share of each feature.

Going back to the small example presented in Figure §6.2, and applying
the CSP presented in this section we obtain a pruned list of products with a
total value. Table §6.3 shows the list of products with its value attached. For
doing so, we need to use the following values for each problem component.

• V is a the set of variables used to prune the solution space that ended by
returning the set of products presented in Table §6.2.

• VA are the value attributes for each feature as shown in Figure §2.2.

128 Chapter 6. Testing: pruning, prioritizing and packaging

• vavari ∈ VAC is a variable that contains the relative benefit that is pro-
vided by testing the ith feature. The benefits of having a feature on a
product only appears if it is selected, thus: vavari = fi ∗ vai. In this
example we are using market-share coefficients as values for the tests.

• f(VAC) is a function that calculates the total estimated value obtained by
testing the currently selected product. For the sake of simplicity, we are
using integers in the small example presented in Figure §6.2, therefore
we can simply use the

�
function.

Name Android Communication Audio Wifi Bluetooth Product Product

Cost Value

P1 � � � � 2 3

P2 � � � � 2 5

P4 � � � 1 1

P5 � � � 1 3

P6 � � � � 2 4

Table 6.3: Sub-set of products with testing value.

For example, the following prioritization maximizes the value of the tested
configurations: P2, P6, [P1,P5], P4. Note that the products P1 and P5 can both
be executed in any order because they have the same assigned priority. By
executing the products in this order, the tester knows that if testing is inter-
rupted for some reason, the tests that will have been run are the highest value
tests.

6.3.5 Packaging the most profitable set of products

After pruning and prioritizing the sets of product that meets budgetary
and product-line constraints, being able to automatically derive the group of
tests that maximize the value while keeping the costs bounded to a maximum
cost is appealing. Note that the implementation of this knapsack is not multi-
objective as the maximum cost is fixed. Thus, this solution will return the best
value possible for a concrete maximum cost. Also, this operation requires both
value and cost functions to calculate the weight and value of each element
(product) in the knapsack.

For example, suppose that TESALIA has pruned the sets of possible con-
figurations that do not exceed a 20$ cost and TESALIA also provided the value

6.3. The TESALIA solution 129

of testing each product. In such as situation, how can we maximize the testing
value of a 30$ cloud testing budget? To derive multiple products, TESALIA
starts by discarding those products that exceed the total budget by themselves.
This reduces the computational effort to build the product sets. Later, each
derived product is represented as a new unique labeling of the variables in
F. Once this set is derived, TESALIA constructs a knapsack problem to select
the optimal subset of these mobile platform configurations to test on top of to
maximize market-share

The knapsack problem is a classic problem in computer science. Several
studies have proved that it is an NP-complete problem [40, 110]. In TESALIA
we are using the 0,1 approach based on dynamic programming to solve it
[110]. However, heuristics methods have been proposed to reduce the com-
putational complexity of solving knapsack problems, such as the modified
heuristic (M-HEU) algorithm [6]. The formal definition of the problem in
TESALIA is defined as follows:

TESALIAmulti =< Sp,Cp,CMax, f(VAC) >

where:

• Sp is a set of variables describing the selection state of each possible con-
figuration that could be tested. If the ith possible product in P is selected
for testing, then Spi = 1, if it is deselected then Spi = 0, where Spi ∈ SP.
Sp define the set of elements to introduce in the knapsack. This is used
to discard those products that exceed the maximum allowed budget by
themselves.

• Cp is the cost of executing a test on top of the ith platform configura-
tion in P (e.g., the derived result of f(AC) from the previously described
pruning step). This cost f(AC) represents the volume in the knapsack
problem.

• CMax is the maximum allowed cost of executing the set of tests on the
selected platform configurations. CMax represent the maximum vol-
ume in the knapsack.

• f(VAC) is the set of values per each product that represents the value
of testing our product. As described in previous sections, one concrete
metric for determining the value of a product is by using the market
share it represents.

The goal of using this knapsack problem formulation is to derive the set of
platform configurations that maximize the value of the test-suite being tested.

130 Chapter 6. Testing: pruning, prioritizing and packaging

This objective function is encoded as:

Maximize(

n�

i=0

Spi ∗ f(VAC)i)

Nevertheless, because developers have a limited testing budget, an additional
constraint to bound testing cost should be considered:

CMax ≥

n�

i=0

Spi ∗ f(VAC)i

Referring back to our simplified example presented in Figure §6.4, the re-
sults of deriving a set of products to test that fit within a budget of 6 cost units
are shown in Table §6.4. The best combination of products to test for the given
budget is captured in G3.

Group Name Products set Set Cost Set Value

G1 {P1,P2,P4,P5} 6 12

G2 {P1,P2,P6} 6 12

G3 {P2,P4,P5,P6} 6 13

Table 6.4: Optimized test products for a budget of 6 cost units.

6.4 Summary

In this chapter we present the lessons we learned while developing the
TESALIA solution. A key challenge when testing a software product line is
the large number of different products that can be encoded into it. In the mo-
bile development industry, a similar problem exists, called platform fragmen-
tation, where developers must deal with different features such as major ver-
sions of the mobile OS or varying screen sizes. In most cases, testing all pos-
sible platform configurations is not feasible, and developers therefore select a
set of popular phones to test on. However, no studies have been performed to
determine the effectiveness of this approach over alternative approaches.

This chapter presents TESALIA, a framework for selecting SPL products
(e.g. complete device descriptions) to test applications on. TESALIA extends

6.4. Summary 131

prior work on automated analysis of feature models by deriving which prod-
ucts, or groups of products, an application should be tested on to provide the
most value. Value is defined by a series of cost functions provided by the de-
velopers. We provide an example cost function that balances the desire to test
software on platform feature configurations that cover the largest percentage
of the mobile market (e.g. the current market) and the desire to keep testing
costs low.

132 Chapter 6. Testing: pruning, prioritizing and packaging

Chapter 7

Testing: pair-wise pruning
optimization operations

A grands maux, grands remèdes.

Dicton populaire, Frenchmen

T esting variability intensive systems introduce new challenges when us-
ing feature models such as the needing of coping with continuous vari-

ables using floats or integers. In this chapter, we present VANE, a variability-
based testing approach to derive pair wise covering sets that optimize cer-
tain values. VANE computes T-wise covering sets while optimizing a function
over attributes. Moreover, VANE is able to find pareto optimal solutions by
using an “a proiri” solution. †1.

†1This chapter is based in [69] and part of this material has been published in the ISSTA
conference

134 Chapter 7. Testing: pair-wise pruning optimization operations

7.1 Introduction

Variability intensive systems are becoming more and more common in our
society. However, the complex scenarios described in variability intensive sys-
tems variability models, usually introduces new constructs that require new
automated analysis mechanisms. For example, when describing the variabil-
ity of video analysis systems [126, 138], part of the variability comes encoded
in float and reals which represent realistic information. Moreover, decisions
over variability intensive systems are not usually taken by only one practi-
tioner but more than one.

In the previous chapter, we propose the use of automated analysis for
pruning, prioritizing and packaging feature model products. However, the
new constructs introduced by variability intensive systems make interesting
to apply pruning and prioritization at the same time. For example, to obtain a
set of products that while meeting a certain covering criteria optimize a certain
function over quality attributes.

In this chapter, we present VANE, a variability-based testing approach for
deriving optimal –based on quality attributes– t-wise covering sets. These con-
figurations can be exploited afterwards to test variability intensive systems. In
this research we rely in feature models [19, 22, 136] which are the most pop-
ular notation for modeling and reasoning about variability. We use advanced
constructs such as attributes for handling numerical parameters and prefer-
ences. We apply combinatorial testing [86, 87, 98, 125, 130, 131] over feature
models with attributes to reduce the number of configurations (combinations
of features and attributes).

VANE is a hybrid approach mixing constraint satisfaction problem (CSP)
solving techniques and evolutionary algorithms. The CSP is used to obtain
T-wise covering sets while the genetic algorithm is used to tackle the multi-
objective nature of the problem. A unique property of VANE is that it can ob-
tain the minimal T-wise coverage while optimizing a function over attributes,
for example, to minimize a custom attribute such as the video luminance.

Previous research proposed to use different metrics to optimize test-suites
for concrete users needs in variability-intensive systems [81, 86, 130, 131].
These approaches allowed assigning more importance to some inputs than
others when testing. However, they only focused on functional testing of the
main system features without considering different testing objectives includ-
ing quality attributes. Other evolutionary-based approaches do not consider
testing aspects [151].

7.2. Motivating scenario 135

We have created a solution to address the problem of optimizing a T-wise
covering set while taking into account quality attributes and functional infor-
mation. VANE relies in two artificial intelligence paradigms and takes as input
a feature model describing an variability intensive system. First, VANE builds
a constraint satisfaction problem (CSP) to obtain t-wise covering sets that en-
code all t-wise covering sets for a concrete feature model. This CSP also en-
ables users to optimize custom objective functions such as minimizing the cost
of a test-suite. Later, VANE uses an evolutionary algorithm to optimize more
than one function at the same time. For example, to obtain the minimal t-wise
coverage (cover all pairs using a minimal amount of input configurations) and
maximize a custom quality attribute such as the cost of a test.

In this chapter we provide the following contributions:

• An original motivating scenario for variability and testing techniques to
the domain of video sequence analysis, in the context of an industrial
project.

• CSP encoding and automated techniques to grant T-wise coverage for
feature models with attributes. We also develop multi-objective solving
techniques to obtain T-wise configurations sets that satisfy multiple test-
ing criteria at the same time.

7.2 Motivating scenario

Video analysis systems are ubiquitous and crucial in modern society [126,
138]. Their applications range from video protection and crisis monitoring to
crowds analysis. Video sequences are acquired, processed and analyzed to
produce numerical or symbolic information. The corresponding information
typically raises alerts to human observers in case of interesting situations or
events. For instance, a classical scenario in natural disasters is to recognize
survivors by using airborne cameras with the intention of rapidly acting based
on information gleaned to achieve strategic or tactical rescue.

Depending on the goal of the video sequence recognition, signal processing
algorithms are assembled in different ways. Also, each algorithm is a complex
piece of software, specialized in a specific task (e.g., segmentation and object
recognition). Even for a specific job, it is difficult to find a one-size-fits-all al-
gorithm capable of being efficient and accurate in all settings. The engineering
of video sequence analysis systems, thus, requires choosing and configuring
the right combination of algorithms [138].

136 Chapter 7. Testing: pair-wise pruning optimization operations

In practice, engineering such systems is an iterative process in which al-
gorithms are combined and tested on diverse inputs (video sequences). Prac-
titioners can eventually determine what algorithms are likely to fail or excel
in certain conditions before the actual deployment in realistic settings. Ad-
mittedly, practitioners rely on empirical and statistical methods, based on nu-
merous metrics. However, the major barrier to improve analysis algorithms
is to find a suitable and comprehensive input set of video sequences for test-
ing analysis algorithms. The current testing practice is rather manual, very
costly in time and resources needed, without any qualitative assurance (e.g.,
test coverage) of the inputs [122, 188].

In a project involving three industrial partners, we observed that collecting
videos for testing such algorithms is difficult. The targeted scenarios should
challenge algorithms to process video sequences by introducing high variabil-
ity, for example, different kinds of luminosity, altitudes, instability, meteo-
rological conditions, etc. By combining the different variation points of the
video sequences, we identified 153000 possible video sequences (three min-
utes each), corresponding to 320 days of videos to process and sixty-four years
of filming outdoors (two hours per day). The numbers were calculated at the
beginning of the project and the situation is now worth with billions of possi-
ble video sequences. These values show that the current practice, based on a
manual elaboration of video sequences, is too expensive in terms of time and
resources needed. Moreover, a related problem is that practitioners ignore
what kinds of situations are covered or not by the set of video sequences.

7.2.1 Variability-based testing approach

To overcome the previous limitations, we introduce a generative approach,
based on variability modeling and testing principles. The goal of the approach
is to automatically synthesize a variant of a video sequence given a configu-
ration (i.e., a selection of desired features). Compared to the current practice,
the approach aims to provide more automation, more diversification and more
control when collecting input video sequences.

For example, we synthesized four different variants of video sequences
(see Figure §7.1). The first variant is a video sequence with a very intense
luminosity and a tank moving on. The second variant differs from the first
variant: some birds and other kinds of vehicles are included while the con-
trast is more intense. Variant #3 introduces shadows to mimic passing clouds.
Also, Variant #4 is over expose, thus, some colors are hardly distinguishable.
We only describe static parts of the video sequence variants but the dynamic
parts is impacted as well (e.g., motion of vegetation due to the wind, appear-

7.2. Motivating scenario 137

(a) Variant #1 of video sequence (b) Variant #2 of video sequence

(c) Variant #3 of video sequence (d) Variant #4 of video sequence

Figure 7.1: Four variants of video sequences.

ance of occultants, vibrations of camera, or shadows). Eventually, much more
variants than the four depicted in Figure §7.1 can be synthesized to test com-
puter vision algorithms (e.g., an algorithm in charge of tracking vehicles) in
diverse and challenging settings.

As part of the approach, variability modeling is used to formally char-
acterize what can vary in a video sequence and delimit the relevant testable
configurations. Because of the huge number of testable configurations, combi-
natorial testing techniques are applied to obtain the minimal T-wise coverage
while optimizing attributes. An overview of the approach (in the context of
the MOTIV project) is given in Figure §7.2. At the starting point (see the top
of the figure), a variability model is elaborated and characterizes a set of con-
figurations (see next section for more details about the so-called feature model
with attributes). Testing techniques (see Figure §7.1.a) operate over the model
and are in charge of producing a relevant subset of video sequences. A trans-
formation (Figure §7.1.b) has been developed to obtain configuration files that
consists on variables and values. Lua code developed by one of the MOTIV
partner, processes the configuration files and executes some algorithms to al-
ter, add, remove or substitute elements in a base video sequence. We obtain at
the end variants of video sequences (Figure §7.1.c). Note that, Lua is a widely

138 Chapter 7. Testing: pair-wise pruning optimization operations

���������������������
��
���
��
�
���
��������������
���
���
��
�
��
��������������������
��
���
���������������������������
���
���
���
���
��
�����������������
�����������������������������������
������������������������������������
���

���

�������������

��������������������������������

�

�

�

�����

����������� �������

���������
��������

���������
�����

�����������������������

�

���������������
������������������

�������

�������������
������

��
���

���
���

�
��

��
��
���

�

�����������������������
��������������

�����������������������
��������������

�����������������������
��������������

�����������������������
��������������

���������������������
��
���
��
�
���
��������������
���
���
��
�
��
��������������������
��
���
���������������������������
���
���
���
���
��
�����������������
�����������������������������������
������������������������������������
���

���������������������
��
���
��
�
���
��������������
���
���
��
�
��
��������������������
��
���
���������������������������
���
���
���
���
��
�����������������
�����������������������������������
������������������������������������
���

���������������������
��
���
��
�
���
��������������
���
���
��
�
��
��������������������
��
���
���������������������������
���
���
���
���
��
�����������������
�����������������������������������
������������������������������������
���

���������������������
��
���
��
�
���
��������������
���
���
��
�
��
��������������������
��
���
���������������������������
���
���
���
���
��
�����������������
�����������������������������������
������������������������������������
���

���������������������
��
���
��
�
���
��������������
���
���
��
�
��
��������������������
��
���
���������������������������
���
���
���
���
��
�����������������
�����������������������������������
������������������������������������
���

���������������������
��
���
��
�
���
��������������
���
���
��
�
��
��������������������
��
���
���������������������������
���
���
���
���
��
�����������������
�����������������������������������
������������������������������������
���

��������������������������������

Figure 7.2: Testing in the MOTIV project.

used programming language (http://www.lua.org/). Details about the vision al-
gorithms in charge of synthesizing video sequences’ variants are out of the
scope of the thesis.

7.3 VANE solution

Despite the constraints over attributes and features, the number of possible
configurations is enormous. Exhaustive testing in such a large space of con-
figurations is clearly unfeasible. Literature in the past proved that most errors
can be detected when using pair-wise combinations of inputs [172]. Moreover,
Cohen et. al. [41] proved that those results apply to feature models. Our ap-
proach is to test configurations of video sequences that cover all possible T
feature interactions (T-wise). In theory, T-wise dramatically reduces the num-
ber of testable video sequences while ensuring reasonable coverage.

VariAbility testiNg for fEature models (VANE) is a solution to obtain T-
wise covering sets for feature models with attributes. VANE follows a set of
steps to obtain T-wise covering sets of configurations while meeting different
user criteria (e.g. minimize the cost of a set of configurations). Figure §7.3
shows the VANE process. First, developers encode the variability intensive

7.3. VANE solution 139

����
�������

����������
���������������

�

� �

�����������
�����������

�����������
�����������

�����������
���������

�

���������
��������������

��������������������
��������

�����
����������

���
��������

���������
�����������������
�����������

��

��

����
����
���� �

����������
�����������

������������������
����������

�������������������
���������������

Figure 7.3: VANE process to obtain optimal T-wise covering sets.

system’s variability using an attributed feature model. Second, VANE obtains
the valid permutations of features to be covered. Third, VANE encodes the
input model as a CSP. Later, VANE adds different constraints to the CSP de-
pending on user requirements.

In the case that the user wants to obtain a multi-objective solution, VANE
implements an “a priori” solution by using a genetic algorithm. This solu-
tion uses the previously generated CSP to find the weights that return Pareto
optimal solutions.

�����

�������

�����������������
�������

����������

������

���������

�������� �����������

�� ��������

��������
���������

�����������������

���������������

���������������������������������������
���������������������������������

Figure 7.4: An exemplified feature model with attributes.

140 Chapter 7. Testing: pair-wise pruning optimization operations

7.3.1 T-wise CSP for attributed feature models

This section describes how VANE uses CSP to derive solutions for T-wise
covering arrays. Prior work in the field of automated analysis of feature mod-
els achieved to extract information from feature models by using computed-
aided mechanisms. Those works yielded a set of different operations and
translations into CSP problems [19].

In this chapter, we consider the derivation of T-wise covering sets as an
automated analysis operation that takes as input attributed feature models
and user preferences. After a CSP formulation is defined for obtaining T-wise
configuration sets, VANE can derive all the different valid combinations of
configurations that fully covers a set of feature pairs.

7.3.2 T-wise covering sets for attributed feature models

VANE can reason over all possible configuration sets that cover a concrete
set of T-wise combinations. For example, in the case of the model presented
in Figure §7.4, VANE retrieves the configuration set covering all feature com-
binations such as Urban and Humans. To cover a set of feature combinations,
VANE uses a custom mapping between feature models and CSP. The mapping
used is defined by the tuple:

< P, F, FC,A,AC, PC >

where:

P is the set of feature combinations to be covered. Pij represents the feature j

of the feature combination i needed to be covered by a configuration in
the test-suite.

F is a set of variables representing the features in the feature model. If the
variable fi is equal to 1, then the feature Fi is going to be present in the
configuration. (e.g if the feature i is a mandatory child of the feature j,
the constraint fj ⇔ fi is in this set)

FC is the set of constraints representing the different relationships between
the model elements. This is between different features and between fea-
tures and attributes.

A is the set of variables representing the different attributes existing in the
model.

7.3. VANE solution 141

AC is the set of constraints between different attributes. For example, is the
cost should be greater than 40 a constraint representing that will be
added.

PC is the set of constraints representing the constraints granting the coverage
of each pair. This is, for each pair Pij, the constraint Fj = 1 ∧ Fi = 1 is
introduced in the CSP.

This mapping differs from previous approaches because it is intended to
derive combinations of valid configurations (covering sets) instead of single
configurations. Table §7.1 shows the main differences between the previous
mapping for single configuration derivation proposed by Benavides et al. [19]
and the one used by VANE. Note that in the table, FP represents the parent
feature of the relation. FC1 to FCX represent the children features of a relation
where X is the nth child of the relation.

7.3.3 T-wise covering sets optimization

There is more than one solution for the problem of finding T-wise covering
sets. Moreover, some covering sets may fit better concrete user preferences.
For example, some users may be interested in reducing the number of config-
urations to run while others prefer to reduce the time to test or other quality
attributes of the test-suite. VANE enables users to maximize a concrete func-
tion over features and attributes by adding constraints into the CSP.

Optimizing a function over features and attributes. VANE enables T-
wise practitioners to decide which function between attributes and features
fits better the user desires.

More complex constraints are also allowed when using VANE. For exam-
ple, if the user wants to minimize the number of different features when gen-
erating the test suite, we need to fix the value of the function to a variable:

DifferentNumberOfFeatures

n m�

i=1, j=1

fij

where n is the number of pairs to cover and m the number of features in the
feature model.

Minimizing the number of different configurations to use in a T-wise
covering set. It is interesting to use as few configurations as possible when
performing T-wise coverage. This optimization is known as the minimal or
optimal T-wise [101] and different constraints should be introduced in the CSP
to obtain it.

142 Chapter 7. Testing: pair-wise pruning optimization operations

Relation Traditional mapping VANE mapping

Mandatory FP = FC1 ∀Pij in P , FPij = FC1ij

Optional if(FP = 0) then (FC = 0) ∀Pij in P, if(FPij = 0) then (FCij =

0)

Or if(FP = 1) then�
(FC1, FC2, ..., FCX) in 1..X

else
�

(FC1, FC2, ..., FCX)

∀Pij in P, if(FP = 1) then�
(FC1ij , F

C2
ij , ..., F

CX
ij) in 1...X else�

(FC1ij , F
C2
ij , ..., F

CX
ij) = 0

Alternative if(FP = 1) then�
(FC1, FC2, ..., FCX) = 1 else�
(FC1, FC2, ..., FCX) = 0

∀Pij in P, if(FPij = 1) then�
(FC1ij , F

C2
ij , ..., F

CX
ij) = 1 else�

(FC1ij , F
C2
ij , ..., F

CX
ij) = 0

Excludes if(FP > 0) then (FC1 = 0) ∀Pij in P, if (FPij > 0) then (FC1ij =

0)

Requires if(FP > 0) then (FC1 = 1) ∀Pij in P, if (FPij > 0) then (FC1ij =

1)

Link between
features and
attributes

Not required ∀Pij in P, if (Fij > 0) then
Attrij = value

Complex Con-
straints

Not required These constraints will be
mapped depending on the
constrain itself

Pair-wise con-
straints

Not required ∀Pij, Fj = 1∧ Fi = 1

Table 7.1: Single derivation CSP vs T-wise covering set derivation CSP.

First, we need to introduce a set of reified variables that represents if the
configuration covering the pair i is different from the configuration covering
the pair j.

if (Pi �= Pj) then reifiedi = 1

Later, we minimize the sum of reified variables, thus, minimizing the num-
ber of different configurations used.

min
n�

i=1

reifiedi

For example, the pair-wise combinations existing in the model presented
in Figure §7.4 can be covered by the configurations i) mobile platform fea-

7.3. VANE solution 143

ture“Scene, Background, Objects, Humans, Vehicles, Urban” and; ii) mobile
platform feature“Scene, Background, Objects, Humans, CountrySide”. This is
a minimal set of configurations as we cannot reduce the number of configura-
tions while covering all pair-wise combinations.

7.3.4 Obtaining multi-objective test-suites

In our context, our goal is to generate T-wise covering sets while optimiz-
ing more than one objective function. For example, users might want to mini-
mize the value of concrete attributes while still using as less as possible config-
urations. Note that optimizing different functions at the same time might not
yield optimal values for them separately but a good trade-off between them.
This problem is commonly known as multi-objective optimization problem
[51].

Our initial experiments showed that exact solutions hardly scale when
having complex attributes (see section §10.2). Therefore, we use an “a pri-
ori” solution based on genetic algorithms [52]. In VANE approach, the “a
priori” solution is based on a mix of CSPs and genetic algorithms for multi-
optimization problems. The hybrid solution VANE internally uses the custom
CSP-mapping presented in Section §7.3.1 to evaluate the fitness function.

When defining the multi-objective function for obtaining multi-objective
T-wise covering sets, we define a new function to optimize:

F(x) = w1 ∗ F1(x) +w2 ∗ F2(x) + ...+wk ∗ Fk(x)

where k is the number of different functions to optimize and w represents the
weights of each function to be determined by the genetic algorithm. Note that
all functions should return values normalized between 0 and 1.

Later, we created a genetic algorithm that finds the values of the wk values
that correspond to each Pareto optimal value [51] of the function. The genetic
algorithm is defined by:

• Gen. A gen in the algorithm is a float representing the weight of a con-
crete wk.

• Individual. An individual is represented by a set of genes representing
all wk in the function to optimize. Therefore, an individual is a vector of
floats representing weights for each function to optimize.

• Crossover. In this problem, the crossover operator is based in getting
two random genes and switch their values.

144 Chapter 7. Testing: pair-wise pruning optimization operations

• Mutation. The mutation operators increment or decrement a gen value
in a random quantity. This quantity will affect the precision of the Pareto
optimal found. But also, it will increase the search space.

• Selection method. There are several methods to select the best indi-
viduals from each generation. However, for the sake of simplicity, only
ranked based selection methods are used in this problem.

Let us consider an example in Figure §7.4. If we want to optimize the at-
tribute dustAmount and minimize the number of different configurations for
a 2-wise coverage, we should use the fitness function:

max(w1 ∗

n�

i=1

dustAmounti +w2 ∗

n�

i=1

numberofEqualConstraints)

This will return the Pareto solution: mobile platform feature“Scene, Back-
ground, Objects, Humans, Vehicles, Urban”.

7.4 Summary

We cannot test everything when coping with variability intensive systems.
The domain of video analysis is not an exception to the rule: testing the com-
puter vision algorithms under all combinations of inputs (video sequences)
is not feasible. The manual elaboration of a test suite of variability intensive
systems is a possible solution, but as reported in an industrial project, the pro-
cess is very costly in time and resources. As a result, practitioners face severe
difficulties to tests able of covering the diversity of targeted video analysis
scenarios.

In this chapter, we have described an original approach combining vari-
ability and testing techniques. A formal variability model (i.e., feature model
with attributes and multi-features) documents what can vary within a video
sequence. Combinational and multi-objective optimization techniques have
been presented to generate a certain number of configurations. The config-
urations are exploited afterwards to synthesize variants of video sequences.
Specifically, our solution called VANE computes T-wise combinations of the
parameters while maximizing a custom function over quality-attributes.

Chapter 8

Configuring while drifting feature
models

I was like a summer baby.

But I did grow up in the South.

I grew up in serious, serious Appalachia, in a very small town.

William Gibson, Novelist

T he increasing complexity and cost of software-intensive systems has led
developers to seek ways of reusing software components across devel-

opment projects. One approach to increasing software reusability is to develop
a Software Product-line (SPL), which is a software architecture that can be re-
configured and reused across projects. Rather than developing software from
scratch for a new project, a new configuration of the SPL is produced. It is
hard, however, to find a configuration of an SPL that meets an arbitrary re-
quirement set and does not violate any configuration constraints in the SPL.
Existing research has focused on techniques that produce a configuration of an
SPL in a single step. Budgetary constraints or other restrictions, however, may
require multi-step configuration processes. For example, an aircraft manufac-
turer may want to produce a series of configurations of a plane over a span of
years without exceeding a yearly budget to add features†1.

†1Part of the material used in this chapter was accepted in the JSS journal[179]

146 Chapter 8. Configuring while drifting feature models

8.1 Introduction

When software evolves, its evolution may need to be broken into multiple
steps to satisfy evolution constraints [1]. In some cases, product features must
be introduced gradually over a series of steps. For example, the Boeing 737
aircraft, introduced in 1966, has been continually upgraded and adapted over
time and is still currently in service. Each successive configuration of the 737,
which is called a Variant has been developed over multiple years and incor-
porated new features into the base aircraft configuration [159]. For example,
development of the 737-300 configuration of the aircraft started in 1979 and
first flew in 1984. The configuration added a variety of features, such as an
Electronic Flight Instrumentation System. The 737 has had numerous succes-
sive configurations, such as the 737-400, 737-500, 737-600, 737-700, 737-800,
and 737-900, all planned and developed over significant spans of time.

There are a number of scenarios where the evolution of a set of products
may be performed over several predefined steps. For example, when a new
Linux distribution such as an Ubuntu release is planned, developers have to
decide the set of software artifacts that are going to be added and removed in
the next release of the distribution (e.g. add and remove packages and change
the dependencies between them). Moreover in other domains, such as air-
craft construction, nuclear power plants, etc., configurations and upgrades to
product configurations are planned years in advance (e.g. the configurations
of the 737 have spanned 46 years) and must be analyzed years in advance of
their actual production. Ideally, an aircraft manufacturer would like to derive
a sequence of successive configurations that build upon one another, as the
737 variants do, so that more advanced features are included each year. A
manufacturer, however, cannot arbitrarily choose features to add in a given
year. Instead, each set of features for a year must constitute a complete and
correct configuration of the SPL to avoid selling a defective and non-viable
configuration.

Further complicating this scenario is that a manufacturer is constrained
in its introduction of features. For example, a manufacturer must introduce
features in an order that ensures no two successive configurations will not
differ by more than the price that a customer is willing to pay from one year
to the next (e.g., airline development or acquisition budget). Therefore, not
only should every configuration step should satisfy a set of constraints, but
the delta between any two successive configurations must be also acceptable.

Finally, when the product life spans years, such as the case of the 46 year
history of the 737, the availability and capabilities of the processors, software,
sensors, and other constituent components of the product inevitably change.

8.1. Introduction 147

Not only must manufacturers be able to plan and reason about configuration
over multiple steps but have plans that account for the end-of-life of compo-
nents and the significant increases in capabilities of newer components, which
produce changes in the underlying feature model. For example, the process-
ing power and availability of the processors used in the 737 have changed
dramatically from 1966 to 2012. In some cases, the feature model may be spe-
cialized (e.g., adapted so that its valid configurations at later steps are subsets
of the starting set of valid configurations). In other cases, new features may
be added to the feature model so that it is evolved to allow configurations
that were not initially possible or valid. Thus, when the configuration prob-
lem should be reasoned in multiple steps, manufacturers must deal with two
distinct forms of change: 1) changes to configuration and 2) changes to the
underlying feature model that dictate what configurations are valid.

This process of producing a series of intermediate configurations between
a starting configuration and a desired ending configuration—i.e., a configu-
ration path—is shown in Figure §8.1. In Figure §8.1, the selected features
are colored in grey and the red features represent feature selections that vi-
olate a software evolution constraint. This sequence of activities is called

Figure 8.1: Potential configuration paths.

a multi-step configuration problem. Prior work on automated configura-
tion [12, 25, 33, 108] focuses on selecting a single configuration in a single
step and not determining a configuration path. As a result, developers must
manually derive a configuration path through feature models with hundreds
or thousands of features and complex constraints on how successive configu-
rations can differ.

148 Chapter 8. Configuring while drifting feature models

Manually deriving configuration paths for a product-line is hard because
developers must analyze a myriad of tradeoffs related to the order that the
features are selected. For example, developers may temporarily add a feature
that is not in the desired ending configuration to yield a valid variant at a
particular step. Moreover, the costs of introducing features may vary over
different steps making it hard to identify exactly the right step to introduce a
feature. For example, the cost of adding an entertainment system in an aircraft
may vary from one year to the next one because of variations in display prices,
fluctuations in currency value, or changes in tax rates.

8.2 Reasoning over multi-step configuration prob-

lems

We have developed an automated method for deriving a set of configu-
rations that meet a series of requirements over a span of configuration steps.
We call our technique the MUlti-step Software Configuration probLEm Solver
(MUSCLES). MUSCLES transforms multi-step feature configuration problems
into Constraint Satisfaction Problems (CSPs) [178]. Once a CSP has been pro-
duced for the problem, MUSCLES uses a constraint solver to generate a series
of configurations that meet the multi-step constraints. MUSCLES can return
either all valid paths or a single optimized path from the initial configuration
to the final one and the SPL engineer can decide which evolution path best fits
the project’s goals.

This section presents a CSP model of the multi-step configuration approach
used by MUSCLES to derive valid configuration paths of SPLs. This chap-
ter also presents the techniques for modeling multi-step configuration prob-
lems as CSPs. These techniques give modeling tool developers the theo-
retical underpinnings to develop tools that can reason about configuration
over multiple steps. We have developed domain-specific graphical modeling
tools for our industry partners, using the Generic Eclipse Modeling System
(http://eclipse.org/gmt/gems), for describing these problems and each of the
various constraint types outlined in this chapter and automating the trans-
formation to CSP. For example, in past work with Boeing, Siemens, and oth-
ers, we have developed modeling tools on top of these types of algorith-
mic approaches for the aeronautics, automotive, and mobile computing do-
mains [53, 59, 75, 107, 119, 181–183]. However, the process of building domain-
specific languages and tooling on top of MUSCLE is beyond the scope of this
chapter and focuses on the CSP modeling and solving process for these multi-
step problems. SPL modeling experts can build modeling tools that use model

8.2. Reasoning over multi-step configuration problems 149

to model transformation to create MUSCLES CSPs, solve for optimized con-
figuration paths, and present the results to the user, very similar to our work
in [181].

This approach assumes that developers have advance knowledge of the
feature model changes that will occur. In some cases, unforeseen changes may
arise that impact the configuration paths that were previously derived with
MUSCLES. Unforeseen changes are always a challenge in software develop-
ment. A key attribute of MUSCLES is that it can help developers to quickly
analyze a number of different configuration paths to understand the impact
of an unforeseen change that has arisen. MUSCLES does not guarantee that
the configuration paths may not change due to unforeseen circumstances, but
it does help engineers to reason about how those changes may impact future
configuration decisions and aid them in understanding corrective remedies.

In its most general form, multi-step configuration involves finding a se-
quence of at most K configurations that satisfy a series of point configuration
constraints and edge constraints. This definition requires the start and end
configurations meet a set of point constraints, but does not dictate that a sin-
gle valid starting and ending configuration exist. All derived configurations
at each step must be complete and valid feature model configurations – no
partial configurations are allowed.

General formal model. We define a multi-step configuration problem us-
ing the 6-tuple Msc =< E, PC,Δ(FT , FU), K, FStart, Fend >, where:

• E is the set of edge constraints, such as the maximum development cost
per year for features,

• PC is the set of point configuration constraints that must be met at each
step, such as the feature model rules that developers may require to be
adhered to across all steps (the point configuration constraints do not
have to be identical across all steps. For example, if feature A is active in
the step K is not required to explicitly set it to true in the step k+1),

• Δ(FT , FU) is a function that calculates the change cost or edge weight of
moving from a configuration FT at step T to a configuration FU at step U,

• K is the maximum number of steps in the configuration problem,

• FStart is a set of configuration constraints on the starting configuration.
Those constraints can be a list of features that must initially be selected.
For example, the basic security required when building an aircraft.

• Fend is a set of configuration constraints on the final configuration to be
reached at the end of the configuration steps. Those constraints can be

150 Chapter 8. Configuring while drifting feature models

composed by the features that must be selected or maximum cost of the
final configuration. For example, the maximum cost for the entertain-
ment system on an aircraft.

We define a configuration path from step T over K steps as a K-tuple

P =< FT , FT+1, . . . FT+K−1 >

, where the configuration at step T is denoted by FT . Each configuration, FT ,
denotes the set of selected features at step T .

8.3 Modeling feature model drift

When configuration occurs over multiple steps, the configuration process
may span a substantial period of time. For example, the aeronautics develop-
ment example from Section §8.1, where features are being added to a plane,
spans several years. In most multi-step configuration problems, such as the
Boeing 787, developers may need to reason about configuration over a span
of days, months, or years in order to decide the best path. For example the
Boeing 787 exhibited a number of feature model drifts during its configura-
tion. Figure §8.2 shows the feature model changes made to this aircraft since
its first release †2. Figure §8.2 shows the changes that occurred over several
years. In the period, from 2006 to 2014, the option of having 3 rows and 290
passengers was added. These improvements required the removal of the fea-
tures “126.920L” and “3 rows/210 passengers” from the feature model, as well
as the mandatory child relationship between “Seats Configuration” and “3
rows/210 passengers”. Finally, two new features, “3 rows/290 passengers”
and “138.700L,” were added to the feature model. Further, the next planned
release the plane in 2014 will remove the “3 rows/210 passengers” feature and
the set relationship for seating and add the feature “3 rows/310 passengers”
as the only seating option.

Configuration time frames that span months or years introduce the possi-
bility for feature model drift. Feature model drift is the evolution of a feature
model, through the addition or removal of features and model relationships,
after the initial configuration step. The allowed changes depend on the expres-
siveness of the models being used. For example, if cardinality based feature
models are used, the changes can also incorporate changes in the cardinalities
of relationships. If attributed feature models are used, changes to the values of
attributes and attribute relations can be captured [145]. For, example aircraft
manufacturers may rely on suppliers that plan to introduce new features in

†2http://www.boeing.com/commercial/787family

8.3. Modeling feature model drift 151

a component at a specific time. Moreover, suppliers may plan to discontinue
support for older features in the future.Note that, when a feature model drifts
it is possible that errors may be introduced, such as contradictions that yield
an unsatisfiable feature model. MUSCLES assumes that the feature models
at each step are satisfiable and error-free. In this chapter we do not focus on
this problem but it can be easily addressed by using the error checking tech-
niques listed by Benavides et al.[19], and the parsers from FaMa[20], TVL[37]
or SPLOT[112] for lexer errors.

When using MUSCLES to analyze feature model drift, SPL managers need
to be able to predict the changes ahead of time in order to reason about them,
which is not always possible. Sometimes the drift occurs due to security flaws
detected in advanced stages of development or due to market requirements.
MUSCLES is useful for reasoning about how these changes can or will impact
planned configurations.

������������ ������������ �������
������

������
������������ �������������

�����������
����������

��������
������

������
������������ ������������� ������

������������ �������������

��������
������

��������
������

�����������
����������

�����������
����������

�����������
����������

���������� ���������� ����������������
������������

Figure 8.2: Boeing 787 feature model drift.

In many cases, developers do know ahead of time which features or re-
lations will be introduced, discontinued, or replaced. Moreover, developers
often have an estimate of when the availability of the feature (and its relation-
ships with the rest of the model) will change based on information provided
by a supplier or other mechanism. This data on feature and constraint mod-
ification times allows developers to incorporate this knowledge into the con-
struction of a multi-step configuration problem. This section describes how
feature model drift can be accounted for in a multi-step configuration CSP.

152 Chapter 8. Configuring while drifting feature models

8.3.1 Modifying the CSP model of multiple steps

In the original formulation of the CSP, the set of features that are present
does not change over time. To account for feature model drift, we show how
we can relax our requirement from Section §8.2 that feature model constraints
remain static. Once feature model constraint changes over multiple steps are
modeled in the CSP, the solver can derive a configuration path that respects
the feature model constraints as they drift. This eliminates the burden on de-
velopers to derive configuration paths that must meet complex drifting fea-
ture model requirements. An important point, however, is that this approach
explicitly models the addition, removal of features and relationships in the
future.

As we showed in Section §8.2, we constrain the feature selection variables
FT to respect the feature model constraints. Since each variable represents the
selection state of a feature at a specific step, we do not have to apply the
same constraints to every step. If the jth feature is an optional child of the ith
feature (the software package) at step T and at step K, the jth feature becomes
mandatory, we can model this as:

(fjT = 1) ⇒ (fiT = 1)

At Step K, the jth feature becomes mandatory, changing the constraints on
selection of the feature:

(fiK = 1) ⇒ (fjK = 1)

(fjK = 1) ⇒ (fiK = 1)

That is, at step T , if fi is selected (fiT = 1) there is no constraint requiring fj to be
selected. At step K, however, there is the constrant that (fiK = 1) ⇒ (fjK = 1),
which makes fj mandatory.

Examples of other feature model drifts as CSP constraints are shown in
Figure §8.3.

The approach described above can handle arbitrary modifications to a fea-
ture model as long as the modifications yield a new feature model with at least
one valid product. If a contradiction is introduced via feature model drift and
no valid products are present, the solver will not be able to derive a configura-
tion path. Another possible contradiction is if the edge or point configuration
constraints contradict the changes introduced by feature model drift. For ex-
ample, if a feature that is mandated by a point configuration constraint is re-
moved by feature model drift, a contradiction occurs. The approach requires
that neither type of contradiction be present.

8.3. Modeling feature model drift 153

Figure 8.3: A CSP model of feature model drift.

8.3.2 Feature drift epochs

Because feature model drift may take place far in the future, it may not
always be possible to precisely predict the time step at which a particular fea-
ture becomes available. For example, a supplier may indicate that in the next
3-5 years, they plan to phase out the usage of a particular component. In these
scenarios, SPL engineers need a way to be able to reason about configuration
and place bounds, rather than exact times, on feature model drift.

The formal model of feature model drift that we have presented can be
extended to account for these types of inexact timeframes on the drift of a
feature model. Feature model drift is a change to a feature model at a future
point in time. We introduce a new concept, which we call the change epoch,
which is the period of time during which a change due to feature model drift
is in effect.

Each change epoch includes both a start time and a duration. For example,
a supplier may phase out a component in 3-5 years, causing the feature model
to have several modifications. Let, Ei be the change epoch of the ith set of

154 Chapter 8. Configuring while drifting feature models

changes that need to be applied to the feature model as a result of feature
model drift. When the Ei change epoch is in effect, it means that its starting
point is Estart

i and 3 ≤ Estart
i ≤ 5. The duration of the epoch, Edur

i , is Edur
i = ∞.

To express feature model epochs, constraints must be added to bound the
values for Estart

i and Edur
i . We introduce the function,

S(Estart
i , Edur

i , F0, F1, . . . , Fend)

to determine the begining of a change epoch as a value of time and the con-
figurations of the feature model at each step. For example, if a supplier was
expected to phase out a part 3-5 years in the future, then:

3 ≥ S(Estart
i , Edur

i , F0, F1, . . . , Fend) ≥ 5

Similarly, a separate function,

W(Edur
i , Edur

i , F0, F1, . . . , Fend)

calculates the duration of the change epoch. In the case of a part phased out
of existence, the duration of the change epoch would be indefinite, or:

W(Edur
i , Edur

i , F0, F1, . . . , Fend) = ∞

An important note is that this approach assumes that the changes that are
applied to the feature model during a change epoch are assumed to be correct.
For example, if a feature is removed in a particular step, any other modifica-
tions to the feature model needed to bring it to a valid state (e.g., removing
dependent cross-tree constraints, adding replacement features, etc.) are also
applied so that the feature model does not have inconsistent or unsatisfiable
constraints. Moreover, the approach also assumes that objective functions for
the optimization process are not specified in a manner that they are undefined
when one or more features are added or removed. At all steps, it is assumed
that the objective function is defined and all features needed to calculate its
value are present.

8.3.3 Epoch-based feature model constraints

The feature model drift epochs make it possible to model situations in
which the exact step in which a change will occur to a feature model is not
known. Instead, constraints are placed upon when the feature model drift
epochs will occur and their duration. In order to account for epochs in the
multi-step configuration CSP, additional constraints must be added. In the
previous examples, if the jth feature is an optional child of the ith feature (the
software package) at step T and at step K, the jth feature becomes mandatory,
we can model this as:

8.3. Modeling feature model drift 155

(fjT = 1) ⇒ (fiT = 1)

At Step K, the jth feature becomes mandatory, changing the constraints on
selection of the feature:

(fiK = 1) ⇒ (fjK = 1)

(fjK = 1) ⇒ (fiK = 1)

Now, assume that the jth feature is an optional child of the ith feature (the
software package) at the start and at some step, K, where 3 ≤ K ≤ 5, the jth
feature becomes mandatory, we can no longer directly model this as before.
Instead, we must define the enforcement of the new feature model constraint
in terms of its feature drift epoch. In this situation, we model this as:

(fjT = 1) ⇒ (fiT = 1)

If Step K is within the time period of the feature drift epoch, the jth feature
becomes mandatory, changing the constraints on selection of the feature:

((fiK = 1) ⇒ (fjK = 1)) ⇔ (Estart
i ≤ K ≤ Estart

i + Edur
i)

((fjK = 1) ⇒ (fiK = 1)) ⇔ (Estart
i ≤ K ≤ Estart

i + Edur
i)

where:
3 ≤ Estart

i ≤ 5

Using the concept of a feature model epoch, developers can encode am-
biguity into the feature model drift. Developers can model periods of time
during which changes are expected and reason about how variations in when
those epochs occur will impact configuration. Most importantly, feature
model epochs allow developers to create configuration scenarios that more
closely mirror the uncertainty in real-world development at when a particular
feature will be completed and become part of a feature model.

8.3.4 Ordered epochs

Another issue that developers face is that the development or deprecation
of a feature from a feature model is dependent upon the development or dep-
recation of several other features. For example, developers may know that
the next generation of a mobile phone platform is going to support connectors
that can communicate with an aircraft media server. Within one year from the
time that this new mobile phone platform is developed, they will be able to
develop a video player that streams media from the aircraft media server on
the same mobile platform.

In this scenario, the development of the mobile phone server video
streamer feature is dependent upon the occurrence of the mobile platform’s

156 Chapter 8. Configuring while drifting feature models

server communication feature. The exact point in time at which the diagnostic
interface feature will be developed is only known relative to the occurrence of
another epoch. We term these types of epoch constraints, ordered epochs.

Using the modified model of multi-step configuration, we can defined an
ordered epoch by constraining an epoch’s start, Estart

j , and duration, Edur
j , in

terms of another epoch, Ei. For example, if we wish to define the epoch, Ej, as
occuring at least two steps after the epoch, Ei, we can say:

Estart
j ≥ Estart

i + 2

8.3.5 Feature drift branches

Using these CSP constraints, developers can encode ordering into the oc-
currence of epochs. Another key attribute of epoch ordering is the ability to
introduce branching into the occurrence of epochs. For example, developers
might have a single physical connector on a in-seat screen that they plan to use
either to consume streaming video from a media server or connect to controls
for managing the above seat lighting and vents, but not both.

To encode branching constraints into feature model drift, developers can
use the Estart

i variable to encode branching constraints. For example, if the
changes described by the ith feature model drift are mutually exclusive with
the changes in jth feature model drift, this constraint can be encoded as:

Estart
i ≥ 0 ⇔ Estart

j = −1

Estart
j ≥ 0 ⇔ Estart

i = −1

where, Estart
j = −1 indicates that the jth feature model drift never is in ef-

fect. Using this same strategy, arbitrary constraints on the branching of feature
model drift can be encoded into the CSP.

8.4 Summary

Many SPL scenarios require developers to evolve a configuration over mul-
tiple steps, rather than in a single step. Multi-step SPL configuration, however,
must take into account constraints on the change between successive config-
urations, such as the increase in cost of an aircraft’s configuration from one
year to the next. Moreover, even though configuration is performed over mul-
tiple steps, a valid configuration must still be produced at the end of each step
(e.g., prior to shipping the new year’s model aircraft), which further compli-
cates maintaining a functional system configuration.

8.4. Summary 157

It is hard to determine a sequence of feature model configurations and
feature selections such that an initial configuration can be transformed into
a desired target configuration. This chapter introduces a technique, called the
MUlti-step Software Configuration probLEm Solver (MUSCLES), for model-
ing and solving multi-step configuration problems. MUSCLES represents the
problem as a CSP, which enables CSP solvers to determine a path from a start-
ing configuration to a target configuration. The output from MUSCLES is a
valid sequence of feature selections that will lead from a starting configuration
to the desired target configuration, while accounting for resource constraints.

158 Chapter 8. Configuring while drifting feature models

Chapter 9

Supporting distributed product
configuration

A las vitaminas se le van a oxidar las vitaminas,

pero ese es el precio del éxito.

Juan Manuel Tirado, Researcher

I n industrial settings, products are rarely developed by one organization
alone. Instead, software vendors and suppliers typically maintain their

own product lines, which the contributes to a larger (multi) product line or
software ecosystem. It is unrealistic to assume that all participating organi-
zations agree on using a specific variability modeling technique—they will
rather use different approaches and tools to manage the variability of their
systems. We present an integrative approach that provides a unified perspec-
tive to users configuring products in multi product line environments, regard-
less of the different modeling methods and tools used internally. We also
present a technical infrastructure and a prototypical implementation based
on web services. We show the feasibility of the approach and its implemen-
tation by using it with three different variability modeling approaches (one
feature-based, one OVM-style and one decision-oriented approach), i.e., the
three most widespread types of approaches in the product line community.
We show an example derived from industrial experience and present a perfor-
mance validation of the tool-supported approach†1.

†1Part of this material have been published in the SPLC conference[56] and the VAMOS
workshop [55]

160 Chapter 9. Supporting distributed product configuration

9.1 Introduction

Software product lines (SPL) are increasingly developed beyond the
boundaries of a single organization [29]. For instance, in software ecosystems
distributed organizations and teams create software products in a collabora-
tive effort. Variability management and product configuration in such con-
texts need to reconcile the different modeling approaches, notations, and tools
in use. Due to the significant differences in practices in different domains it
is unrealistic to assume that there will ever be a single and standardized vari-
ability modeling approach despite ongoing standardization efforts†2. How-
ever, the increasing number of “island solutions” to variability modeling and
product configuration restricts communication and hinders collaboration be-
tween distributed product line engineers. Especially in the context of software
ecosystems [29], it is infeasible to assume one kind of modeling approach for
all units of the ecosystem. The required coordination between the participat-
ing organizations (e.g., along the supply chain) further complicates this issue.
Hence, there is a strong need for an integrative infrastructure enabling the
collaboration between different organizations developing product lines. An
approach is needed that supports different variability modeling languages,
notations, and tools and that allows dealing with variability at different lev-
els of granularity. For instance, variability might be modeled at the levels of
features, architectural elements, or configuration decisions.

We propose Invar, an approach facilitating the integration of variability
models†3 created with different modeling approaches and potentially by dif-
ferent teams. In this chapter we focus on the product configuration aspects
of our integrative infrastructure. Invar hides the internal technical aspects of
using different variability models for configuration from the stakeholders per-
forming the configuration. The specific tools or data formats (see [35, 103, 163])
used for defining the variability models are not relevant for the end users who
only need to focus on the available configuration choices and their implica-
tions. Invar unifies configuration operations on variability models and allows
modelers to freely choose a data representation by accessing variability mod-
els through web services. Our approach does not force organizations to inte-
grate their configuration tools by adapting the internals of the tools. Instead,
we allow them to compose their configuration mechanisms using wrappers
and interface definitions. We validate our approach by integrating three dif-
ferent variability modeling dialects, i.e., feature modeling, orthogonal vari-

†2OMG Common Variability Language [170], http://www.omgwiki.org/variability/doku.php
†3Throughout this chapter, we use the term “variability model” to refer to product line

models regardless of the specific approach and notation used, e.g., feature models, decision
models, OVM models

9.2. The Invar Approach 161

ability modeling (OVM), and decision modeling. We also show how typical
scenarios in software ecosystems can be supported with Invar.

9.2 The Invar Approach

Web Services

Product
Configuration
Broker

End-user
Configuration Tools

?

A B CModeling Approach

End-user Tools

No Integration of
Tools/Models

Reasoning Engine

Variability Model

A B C

Current Practice
No integration of existing models and tools

The Invar approach
Integration through web services

Modeling Approach

Reasoning Engine

Variability Model

Figure 9.1: A simplified view of model-based product configuration .

Our Invar†4approach addresses these requirements by providing a “plug-
and-play” approach to managing the integration of variability models. “Plug-
ging” refers to simply adding new variability models to a shared repository.
“Playing” refers to presenting the options provided by variability models to
end users configuring a product. For this purpose, a variability model is
treated as an autonomous entity, which can be plugged into the configuration
space to provide configuration options. Autonomy however does not nec-
essarily mean independence as variability models may be related with each
other as shown in the ERP example. Our approach allows using variabil-
ity models distributed across multiple repositories by accessing them through

†4Invar is a nickel-steel alloy notable for its uniquely low coefficient of thermal expansion.
In metallurgy, it is a good example of how one can benefit from combining different metals,
to achieve special desired properties. We chose the name Invar for our approach to reflect on
the need to combine/integrate/compose different variability modeling approaches, notations
and tools in the context of multi product lines. Alternatively, Invar stands for “integrated
view on variability”.

162 Chapter 9. Supporting distributed product configuration

web services providing configuration choices. An end user works with a front-
end for product configuration and can use the services without knowing de-
tails about the concrete variability models made available by the services.

Based on the common characteristics of variability models described in
Section §1, we defined a set of web services for accessing and using variabil-
ity models. The operations and queries on the models, which are required
for developing such web services, are based on our experience of developing
product configuration applications [19, 21, 32, 54, 139, 140]. Figure §9.1 depicts
the Invar approach compared with the current state of practice. In the cur-
rent state of practice multiple heterogeneous variability modeling approaches
are used by different organizations (left side). Different reasoning and analy-
sis engines –for instance, SAT solvers [19] or rule engines [54] – are adopted
for interpreting the models’ semantics. There is no integration of the diverse
tools supporting different notations. In practice organizations frequently de-
fine variability in configuration files or spreadsheets, which are typically not
integrated with other variability modeling tools.

Using Invar, stakeholders create variability models using an approach of
their choice (see right side of Figure §9.1). Invar defines key operations and
queries (configuration primitives) on variability models to allow the integra-
tion of heterogeneous approaches. These configuration primitives are real-
ized as operations of a Web Service to allow uniform access to the models.
The participating organizational units can reuse variability models from other
units even if they use different modeling approaches. Invar provides a single
and transparent configuration tool to end users. This ensures interoperability
and allows reusing variability models in different contexts. For example, one
model may be shared between several companies and each one may use it
to create different products. The participating organizational units could also
create their own configuration tools and access diverse models via the Invar

web services without having to know all the details about the actual model-
ing approaches underneath. It is even possible to integrate configuration files
or spreadsheets into Invar by defining new web services that interpret these
textual representations.

9.2.1 Configuration primitives

There are typical operations needed by end-user product configuration
tools that “execute” or evaluate variability models. These operations are pro-
vided as methods by most of the existing APIs [21, 32, 54] allowing model-
based product configuration. For example, the end user may query the set of
all available options at a time, or send a request to select one of the options.

9.2. The Invar Approach 163

The basic concepts in most of these APIs revolve around options or choices
for the model consumer. Typical operations on the models are:

Loading and initializing models: load() puts models from their persistent
storage to memory, while reload() loads the model again from memory. The
operation init() is used to start a new configuration session based on a model.
save() persists the session for future use.

Querying the model for available options: For instance, nextQuestion() gets
the next available question to be answered by the user, regardless if this is a
feature, decision, or variation point. The approach only assumes that a ques-
tion about an option or choice can be asked to a user. Analogously, previ-

ousQuestion() allows to obtain the previous question. peek() allows preview-
ing the next available question without having to answer it. Walking through
options step by step requires to define a certain order. For instance, for a tree-
based structure this could be done breadth first or depth first. In our ERP
example, such a walkthrough would start with a question about what key fea-
tures the ERP solution should have (CRM, Project Management, Accounting)
and could then continue with detailed questions on CRM, Project Manage-
ment, or Accounting, depending in the answer to the first question and based
on the related models. It could however also start with a question: “Do you
need CRM support?”, continue with detailed questions on CRM, and only
later ask “Do you need Project Management support?”.

Operating on the available options: The operation setValue() allows assign-
ing a value to an option (e.g., it sets feature attributes or sets answers to deci-
sions). For instance, setting the value (CRM;Project Management) on question
“What key features shall your ERP solution have?” would constrain the fol-
lowing questions to CRM-related and Project Management-related questions
while excluding Accounting (optional feature not selected in this case). The
primitives select() and deselect() allow to explicitly decide about including or
excluding a feature. This distinction is necessary as not selecting a feature is
not the same as excluding it from the configuration. undo() and redo() allow
canceling the last action or replaying the last selection. addOption() adds new
options to available questions.

Notifications: The success() operation shows if an operation was carried
out successfully while error() indicates problems. The primitive contradiction()

shows whether the choices of the user are consistent with the model’s seman-
tics. The operations selected() and deselected() are used to inform users or other
tools about user actions.

Obviously, this set of primitive operations is neither complete nor fixed.
Depending on the end-user application there may be other operations that are

164 Chapter 9. Supporting distributed product configuration

useful in building complex user interfaces. For instance, in some cases, several
options can be proposed at the same time. Our approach thus can easily be
extended to include new operations or queries on the models.

Keyword Type Description

isInit() condition This condition only evaluates to true when a user starts con-
figuring a model for the first time. The actions connected
with isInit() conditions are executed immediately after each
model has been initialized on its Web Service.

isSelected() condition This condition evaluates to true whenever a specified option
of a given question in a specific model is in the state selected.
The condition is evaluated after each change of a user to a
model, i.e., after the user answers a question related to the
link.

isDeselected()condition This condition evaluates to true whenever a specified option
of a given question in a specific model is in the state des-
elected. The condition is evaluated after each change of a
user to a model, i.e., after a user answers a question.

doSelect() action Set a specified option, of a given question in a specific model
to the state selected.

doDeSelect() action Set a specified option, of a given question in a specific model
to the state deselected.

includeModel()action Add a model to the list of included models of the current
navigation strategy, if it was not yet initially included or in-
cluded by another action. Each model can only be included
once.

addOption(. . .)action Add an option to one model as a child of an existing op-
tion. This is usually required, when a model extends another
model.

inform(. . .),

warn(. . .),

recom-

mend(. . .)

action Display a specified message to the user, which can have the
type information, recommendation or warning.

Table 9.1: A summary of operations, which can be used to create IMDI links.

9.2.2 Inter-model dependencies

Whenever a variability model is plugged into the Invar configuration en-
vironment, it needs to explicitly define its relationships to the other models.
This is done by adding an inter-model dependency information (IMDI) packet
together with the model. Dependencies between models are defined using

9.2. The Invar Approach 165

if condition then action clauses. These can be compared to conventional cross–
tree constraints within one model. IMDI packets do not affect the internal
semantics of the models in use. An IMDI action is executed when its condition

evaluates to TRUE.

A summary of conditions and actions, currently supported by the Invar

framework is listed in Table §9.1. In the following we describe the basic types:

Inter-model constraints: If selecting or deselecting an option in one model
has implications on other models, an inter-model constraint needs to be de-
fined. The conditions isSelected() and isDeselected() are used to specify such
constraints. The corresponding actions are doSelect() and doDeSelect().

Informative actions: Modellers can also define actions such as inform(), rec-

ommend() or warn() that are intended to inform the users without changing the
models.

Conditional inclusion of models: If several variability models are used for
product configuration the order of presenting the models to the end user has
to be defined. We define the action includeModel(), which changes the presen-
tation order. This influences the model navigation strategy, i.e., which model
is configured in which order.

9.2.3 Integrating variability models: the Invar architecture

The five main components of the architecture of our infrastructure are
shown in Figure §9.2 (numbered in the figure).

(1) Vendor model repositories: Product vendors or suppliers add their
variability models to model repositories. The models may or may not con-
tribute to the same product and are not necessarily dependent on each other.

(2) Invar repository: The Invar repository defines aggregations of differ-
ent models from the vendor repositories by logically grouping them. For in-
stance, one particular model may be part of multiple product lines, as it may
contribute to more than one product.

(3) Configuration web services: The different models residing in (possibly
distributed) repositories are accessed by configuration web services. A Web
Service provides a standard interface for different configuration front-ends
such as websites, mobile devices, or stand-alone applications. For each type
of model, designated configuration services are developed (by implementing
an interface) that can read the data formats, interpret the content, and perform

166 Chapter 9. Supporting distributed product configuration

Intermodel
dependency
information (IMDI)

Configuration Broker

Model IMDI

Model IMDI

Model IMDI

Configuration events from the frontend

Configuration
Web Services

Configuration
Events

Enduser product configuration
applications (e.g., web sites)

Variability Model Intermodel dependency information

Event flow Web service calls Data flow

Legend

Model IMDI

Model IMDI

Model IMDI 1

2

4

3

5

F
ro
n
t
e
n
d

In
v
a
r S

e
rv
ic
e
s

In
v
a
r R

e
p
o
si
to
ry

Figure 9.2: Architecture of the Invar infrastructure. .

operations on the models.

(4) Configuration broker: The configuration broker enables the communi-
cation between the web services. It reads the inter-model dependency infor-
mation to determine which web services are affected when products are con-
figured. The configuration broker also translates events from the end users
and passes them on to the web services that need to react to the end user’s
interactions.

(5) End-user product configuration front-ends: The configuration choices
defined in the variability models are presented to the end user in a product
configuration front-end. This can be a website or a stand-alone application.
We provide an example user-interface through the Invar framework website
at http://invar.lero.ie.

9.2. The Invar Approach 167

9.2.4 Configuration service and enactment support

Central to Invar is the generic configuration interface defined for accessing
the diverse variability models. The configuration service definition has to be
implemented once for each modeling notation. The Web Service is designed
such that the configuration options are presented to the end user as questions.
Questions are only a means to render the variation point to present it to the
user. This means the user is asked questions about a certain “feature” (in the
wider sense) or a property of the system she configures. The possible answers
to the question (the available alternatives) are presented to the user such that
she may choose one or many of them depending on the type of variability. The
notion of “questions” and possible answers as options is therefore key to the
Invar configuration service. The interface consists of two parts: the variabil-
ity model query part provides basic information about models (e.g., the set of
available questions and the possible answers). The operational part directly
interacts with the models to assign answers to specific questions (e.g., when
selecting a particular feature). The configuration service also defines a set of
predefined question types. The types have been defined based on how the
end user is supposed to answer them. For example, the question type Alterna-

tive refers to questions where the user can select exactly one option (rendered
using radio buttons or comboboxes in the UI); for Optional the user can pick
multiple items (rendered using checkboxes in the UI) and MoreThanOne refers
to cardinality (1..*) (rendered using multi-selection checkboxes in the UI).

9.2.4.1 Enactment strategies

When configuring a model in Invar the user is prompted to answer ques-
tions comprising a set of options a user has to select or deselect. The order in
which such questions are presented to the user can vary depending on differ-
ent criteria. Invar provides two mechanisms to help product line engineers
define in which order the questions need to be presented to the user.

The first mechanism uses predefined orders to present configuration op-
tions to the user. Three orders depending on the way a tree can be traversed,
i.e., in-order, pre-order and post-order, are available for feature models. Invar

also offers two ordering styles based on the number of options the questions
have “more to less” and “less to more” available for feature models and or-
thogonal variability models. For decision-oriented models, the order of ques-
tions is either given through their visibility conditions [54] or can be defined
similar to the definition used for feature models. Finally, Invar also supports
an alphabetical order and a random order for all types of models. More details

168 Chapter 9. Supporting distributed product configuration

about the offered orders in each plugin are presented in Section §13.

Alternatively, invar provides a second mechanism, i.e., an interface, by
which the engineer can define a custom order. This interface defines two
methods, i.e., getOrders() that returns the names of the orders and getQues-

tions(String order) that returns the list of sorted questions given a particular
order.

The order in which questions are answered can be important from an end-
user point of view but also can have an impact on the performance of the back-
end configuration tools [111]. We present experiments to evaluate Invar’s per-
formance in Section §13.3.

9.3 Summary

In contrast to software product lines, software ecosystems go beyond orga-
nizational boundaries per definition. To operate in such contexts, it is equally
important to integrate data, models, and tools across organizations and inner-
organizational boundaries; together with the alignment of the business strat-
egy among the cooperating units. From the perspective of software reuse and
configuration, the initiation and growth of a software ecosystem can be fos-
tered considerably if the involved stakeholders are supported with tools and
techniques for dealing with variability in a uniform manner.

In this chapter, we presented an approach to facilitate the integration of
variability models during product configuration regardless of the modeling
techniques, notations, and tools used. Based on an illustrative example, we de-
fined the basic user interactions required for configuration in general (config-
uration primitives) and mapped these interactions to the concrete semantics of
individual modeling approaches, i.e., an approach for feature modeling, and
OVM-based approach, and an approach for decision modeling. We provide a
technical infrastructure and a prototypic implementation of an integrative ap-
proach based on web services that supports defining dependencies between
multiple variability models as well as different strategies for model enactment
during product configuration. We showed the feasibility of the approach and
its implementation by applying it to three different variability modeling ap-
proaches and by showing that we are able to integrate them in the context
of an example ERP system. We also provided initial evidence on the perfor-
mance of the approach during configuration. One of the challenges to achieve
industrial-scale application of this approach is the effort required for model-
ing the configuration projects in Invar. Each model has to explicitly define its

9.3. Summary 169

relationships to the other models and, if options in one model have implica-
tions for other models, those inter-model constraints (dependency links) need
to be defined.

170 Chapter 9. Supporting distributed product configuration

Part V

Validation

Chapter 10

Optimizing the Android emulation
in the cloud

Amigo de muchos, amigo de ninguno.

Dicho popular, Andalusian people

D evelopers for Google’s Android smartphone platform are increas-
ingly facing the challenge of fragmentation, whereby a growing

number of distinct Android hardware/software configurations are forcing de-
velopers to test their application much more extensively than desired. For ex-
ample, a report by OpenSignalMaps found that their application was installed
on 4000 unique device configurations, which would require significant testing
time and effort to completely cover. Due to the large number of in-use plat-
form configurations, it is difficult for developers, regardless of development
team size or proficiency, to test their software products on all or even most
platform configurations before release. A balance of comprehensive testing
and reasonable consumption of testing resources (e.g. money, time, computa-
tion power, storage, etc) is needed†1.

†1This chapter is based in [71] and part of this material is in press in the SQJ journal

174 Chapter 10. Optimizing the Android emulation in the cloud

In this chapter, we use TESALIA to enable the testing of Android appli-
cations in the cloud while optimizing the market-share coverage of the app
and reducing the cost of the execution. Figure §10.1 shows the different steps
TESALIA takes to optimize test selection, including examining product vari-
ability, product computation cost, and product market share to identify valu-
able testing configurations. In order to perform this analysis, we have rep-
resented the configuration of the Android platform using a software product
line, with the Android emulator being one possible product feature. By using
a software product line to represent many different mobile platform features
of an Android device, such as such as screen resolution or communication
capabilities (e.g., 3G, LTE, etc.), we were able to easily apply TESALIA and
optimize the test selection. Using the current Android emulator, which con-
tains 46 features, we can test up to 246 unique platform configurations. Note
that, we conservatively calculate the maximum number of unique platform
configurations by using binary options and mutual exclusion.

Figure §10.1 shows the process we performed to validate our approach.
First, we describe how we extracted value and cost information (market share
and cloud usage) and how we used it to attribute a feature model describ-
ing the Android emulator options. Later we go through the four different
experiments we developed to test the prioritization, pruning and packaging
capabilities of TESALIA.

One of the most common approaches is to pick a set of the most popular
mobile devices and then to test exclusively for that subset of devices. For
example, the Android Skype application is installed on thousands of unique
Android platform configurations †2, but the Skype application is only officially
certified to work on fewer than 25 Android devices †3.

10.1 Experimentation data

In order to execute the analysis operations presented in Section §6.3 a fea-
ture model with cost and value information needs to be built. To build this
model, we used the Android emulator as the basis of our analysis. First, we
encoded the variability present in the emulator options. Second we extracted
cost value from the costs of executing a test in a cloud. Finally, we obtained
publicly available market share data to create value attributes †4. In the rest
of this section we provide detailed information about how we built the inputs

†2http://opensignal.com/reports/fragmentation.php
†3http://www.skype.com/intl/en-us/get-skype/on-your-mobile/skype-mobile/android/
†4http://developer.android.com/tools/help/emulator.html

10.1. Experimentation data 175

��������������������������

�������������������
���������������

���������������������
����������������
���������������

�������������
�����������������
���������������

������������ ������������ ������������

���������������������

�� ���������������������

� � �

������������

�������������������

Figure 10.1: Steps for optimizing the testing of Android apps using TESALIA.

for the three experiments shown in Section §10.2.

10.1.0.2 Representing all valid Android testing configurations using a fea-
ture model

Feature models describe individual features, or units of functionality, using
a tree-like structure, as shown in Figure §10.2.In the model presented in Fig-
ure §10.2 abstract features have been used to group the characteristics of the
different mobile platform configurations defined in the Android ecosystem.

Using a feature model of a mobile software platform’s configuration rules,
the goal is to select platform feature configurations that adhere to the con-
straints encoded into the feature model. An important property of feature
models is that there are well-known approaches for automatically deriving
valid or optimized feature configurations from a feature model by converting
the model to a constraint satisfaction problem (CSP) or a SAT problem.

TESALIA uses the CSP formulations presented in Section §6.3 to automat-

176 Chapter 10. Optimizing the Android emulation in the cloud

���������

��������
��������

������ ��������������������������������

��� ����� �����������

����������������������� ���������������

������� ���

������������

������ ���������� ���� ��������

����

�����
������� ������������

������

���

��������

�������������

��� ��� ���������

������������������

���

����
������������

���
����
���

����
���

���������
���

����
�������

����

�����

����� �����

�����

�����

�����

�����

������

���������

��������

��������������������

����������������

Figure 10.2: The Android feature model.

ically prune, prioritize, and package the set of platforms configurations to
test. Figure §6.3 shows the general process carried out by TESALIA. More-
over, users can scope the testing process by annotating features that have to
be present or not in the products. Also, users may want to add ‘complex’ con-
straints representing any other exclusion between mobile platform features
or costs related to the model, such as ”If the mobile platform configuration
contains Android 1.5, then the mobile platform configuration should not con-
tain more than 250mb of RAM memory.” Note that those annotations are not
present in the feature diagram presented in Figure §10.2. They are inputs for
the different operations and may vary depending on user preferences. The
feature model representation allows us to exclude invalid platform configu-
rations (a.k.a software product line products) and to dynamically construct a
CSP for pruning, prioritizing, and packaging the products to test. In order
to provide input for the operations presented in Section §6.3, we created a fea-
ture model representing the various options available to the Android emulator
by extracting the rules outline in the emulator documentation. We included
cross-tree constraints to ensure that no incorrect configurations are generated.
As mentioned in Section §6.3.1, there are automated mechanisms that enable
the extraction of feature models from a set of valid product configurations.
However, when building the Android feature model, we found it simpler to
identify constraints instead of listing valid configurations and therefore chose
to directly create the feature model.

10.1. Experimentation data 177

10.1.0.3 Using feature count as a proxy for the cost of execution in a cloud
environment.

Cloud computing, which is promoted as a low-cost, effectively infinite
computing solution, enables the average developer to temporarily rent com-
puting resources powerful enough to test hundreds of unique platform config-
urations. Running such a test suite was previously impractical due to the pro-
hibitive cost of assembling and maintaing computing equipment dedicated
for testing. Commoditized cloud computing allows developers to perform
large-scale application testing on multiple platforms with a minimal amount
of added development time and zero equipment investment overhead.

Renting multiple virtual machines in the cloud can be expensive. To de-
fine the cost of testing a software product in a cloud, a tester must consider
items such as the time required to test each configuration, the number of con-
figurations under test, and the number of cloud virtual machines that must be
rented. In Android, many platform features have complex non-linear inter-
actions with other platform features, which affect both product performance
and the resources needed to execute and test the Android emulator product.
Modeling the exact computation time required to execute a single Android
emulator test is beyond the scope of this work. Additionally, modeling the
cloud resource usage of a subset of configurations, such as all configurations
that use Android 1.6, by manually calculating the value of a few fully specific
configurations. For example, {Android 1.6, screen size 240x320, 16MB RAM,
has ’volume’ hardware buttons, does not have ’Home’ hardware button, etc}
is difficult and also beyond the scope of this work.

To define the cost of executing an emulator instance in a virtual machine,
we count the number of features included in each product. This means that
instances executing more options (e.g. instances which are likely to consume
more resources), have more impact in the calculated cost of a product. The

�

function is used to calculate the cost of each product by making the total cost
of a product equal to the number of concrete features composing that product.

10.1.0.4 Market-share as a value function

A key aspect of TESALIA is that it can rely on different value-functions,
such as market-share data f(VAC), for each individual mobile platform fea-
ture configuration. Although the process for obtaining this data is beyond
the scope of this chapter, two potential approaches are briefly outlined. First,

178 Chapter 10. Optimizing the Android emulation in the cloud

a number of commercial vendors provide access to fine-grained mobile plat-
form market share data, such as comscore †5. A second, more commonly used
approach by application developers, is to directly instrument their application
and collect platform configuration data. For example, Skype keeps track of all
known platform configurations that their software has been executed on. In
general, application developers may find it most effective to use data that they
have obtained from instrumenting their application, since it provides an accu-
rate picture of the market-share of platform features in-use by the consumers
of the developer’s application rather than the market in general. Figure §10.3
shows an example of the market share data that was obtained from Google †6

and used for the experiments in this chapter.

An important attribute of the market-share driven approach to selecting
mobile platform configurations for testing is that this approach can optimize
the selection of platform configurations with respect to the market-share cov-
erage of the features that the application actually uses. For example, if the
five best selling Android devices are chosen for testing, these devices may be
newer and have similar features to one another, such as large screens, that are
not characteristic of the large installed base of previous generation phones. If
screen size is a feature that has a direct impact on the application being tested,
limiting the diversity of the screen sizes tested is not beneficial. Moreover,
the app being tested will have a high likelihood of being installed on an older
model device with a smaller screen size that it has not been tested on.

Because the mobile platform feature model can be pruned to focus on only
the features that directly impact the application, it is possible to derive mobile
platform configurations to test on that maximize the market-share coverage
with respect to the subset of features that matter to the application. For ex-
ample, a developer can choose to only support newer devices with Android
version 4.0 and higher by pre-labeling the corresponding feature variable in
F with value 1 (e.g., requiring every derived mobile platform configuration to
include it). In this case, the developer can maximize the market-share cov-
erage with respect to the devices that actually have the supported platform
version.

The market-share data used in the experiments was freely obtained from
Google Android market as a whole rather than for a specific application.
We focused on a subset of the market-share data related to screen size, res-
olution, and Android version, since these are mobile platform features that
impact the vast majority of Android apps. For other platform features,
the experiments used a uniformly distributed market-share valuation. For

†5http://www.comscore.com
†6http://developer.android.com/about/dashboards/index.html/

10.2. Experiments 179

Android 1.5, 0.20 Android 1.6, 0.40 Android 2.1, 3.70

Android 2.2, 14.00

Android 2.3, 0.15

Android
2.3.2, 0.15

Android 2.3.3,
28.60

Android 2.3.7,
28.60

Android
3.1, 0.50

Android 3.2, 1.60
Android 4, 0.05

Android
4.0.2, 0.05

Android 4.0.3,
10.40

Android 4.0.4,
10.40

Android
4.1, 1.20

Figure 10.3: Market-share example data by September’12.

example, the market-share data of the communication options is fixed to
1/numberOfAvailableOptions, and with four options (GSM, CDMA, Blue-
tooh and Wifi) every option will be fixed to 25% market share. TESALIA gen-
erally performs better in a real-world non-uniform scenario, as optimized mo-
bile platform selections have a substantially greater market-share than non-
optimized choices in this type of model. We chose to use the uniform model
because we had incomplete data on some platform features.

10.2 Experiments

Four different experiments were conducted to evaluate the TESALIA ap-
proach. These experiments compare and analyze: 1) the market-share prioriti-
zation of TESALIA-derived mobile platform configurations for testing versus
the market-share coverage of a set of the most popular phones on Amazon;
2) a cost/benefit analysis of the configurations produced by TESALIA versus
selecting a set of popular mobile phones using the pruning and prioritiza-
tion operations; 3) the TESALIA validity for packaging configurations using
the Android feature model attributed with Google market share; and 4)the
TESALIA scalability with different model sizes and topologies.

180 Chapter 10. Optimizing the Android emulation in the cloud

Hypotheses of Experiment 1

Null Hypothe-
sis (H0)

TESALIA does not optimize the percentage of market share
covered features versus the traditional approach of buying the
most sold phones.

Alt. Hypothe-
sis (H1)

TESALIA optimizes the percentage of market share covered
features versus the traditional approach of buying the most
sold phones.

Dependent
variable

The market share coverage.

Blocking vari-
ables

The most sold phones and the market share indexes.

Model used as
input

Android feature model presented in Figure §10.2

Hypotheses of Experiment 2

Null Hypothe-
sis (H0)

The use of TESALIA will not result in a higher market-share
impact metric than selecting the most commonly sold phones,
for a given maximum budget.

Alt. Hypothe-
sis (H1)

The use of TESALIA will result in a higher market-share im-
pact metric than selecting the most commonly sold phones, for
a given maximum budget.

Model used as
input

Android feature model presented in Figure §10.2

Blocking vari-
ables

The most sold phones, market share indexes and the maxi-
mum cost allowed set to 600$.

Model used as
input

Android feature model presented in Figure §10.2

Hypotheses of Experiment 3

Null Hypothe-
sis (H0)

TESALIA cannot derive the products to test in a reasonable
time.

Alt. Hypothe-
sis (H1)

TESALIA is able to derive the products that maximize the
value function in less than 5 minutes.

Model used as
input

Android feature model presented in Figure §10.2

Hypotheses of Experiment 4

Null Hypothe-
sis (H0)

TESALIA cannot cope with models having 2000 hundreds fea-
tures.

Alt. Hypothe-
sis (H1)

TESALIA scales up to models having 2000 features.

Blocking vari-
ables

Number of features: 10,20,30,40,50,100,200,300,500,1000,2000

Percentages of cross-tree constraints: 5%, 10%, 15%

Number of complex constraints: 1,2,5

Constants

CSP solver ChocoSolver v2

Heuristic for
variable selec-
tion in the CSP
solver

Default

Table 10.1: Hypotheses and design of experiments to evaluate TESALIA.

10.2. Experiments 181

Table §10.1 shows the hypothesis of the experiments executed to validate
our approach. To make the experiments reproducible, a number of fixed as-
sumptions are made, such as homogeneous feature costs. ChocoSolver †7, with
it’s default heuristic, is used as the CSP solver for extracting software products
from the feature model presented in Figure §10.2

Experimental platform - Virginia Tech ATAACK Cloud. The experiments
were conducted using a version of TESALIA implemented in Java. Further,
TESALIA was installed in the Virginia Tech ATAACK Cloud, which is a cluster
testbed capable of simultaneously testing many configurations of an Android
application on 1,000+ Android Emulator instances. The ATAACK Cloud runs
on 34 dual-CPU Dell Blades with Intel Xeon X3470 CPUs running at 2.93GHz,
with 16 threads per CPU, and CentOS v6. Each dual-CPU Dell Blade has 36GB
of RAM.

10.2.1 Market-share based prioritization.

In order to analyze TESALIA’s market-share optimization capabilities, we
designed an experiment to compare the market share of TESALIA-derived
configurations with that of the 20 phones with the highest sales volume on
Amazon. Our hypothesis is that simply selecting a set of the most-sold phones
will not provide the best market-share coverage and that TESALIA’s solutions
will provide more market-share coverage. For this experiment, we obtained
market share data from Amazon †8. For the mobile platform configurations,
we look at the 20 first configurations recommended by TESALIA using screen
size and density mobile platform features. Note that only screen market share
data have been used for this experiment.

In the Table §10.2 we present the raw data for the twenty most sold phones.
This table summarizes the screen size, the pixel density, the market share cat-
egories and the market-share coverage. Note that only the prioritization oper-
ation has been performed in this experiment. Later in Table §10.3 we show the
market-share data provided by google in October’12, which is the most recent
market-share data that is freely available.

The market share coverage refers to the kinds of screen (combinations of
dpi and size) covered by a concrete product and its associated market share
value. Thus, having one configuration with a small and ldpi configuration
will provide the 1.7% market-share coverage.

†7http://www.emn.fr/z-info/choco-solver/
†8Amazon provides the list of the top-selling phones in the United States as of December 12

(www.amazon.com)

182 Chapter 10. Optimizing the Android emulation in the cloud

Phone Name Screen size ddi dpi category Screen
size cat-
egory

MS coverage

Samsung Galaxy S III 1280x720 306 XHDPI LARGE 3,6

Samsung Galaxy Note II 1280x720 267 XHDPI LARGE 3,6

Samsung Galaxy S5830 Galaxy Ace 480x320 164 MDPI NORMAL 11

HTC Droid incredible 800x480 252 XHDPI NORMAL 25,1

Samsung Y Galaxy S-5360 320x240 133 LDPI SMALL 1,7

Samsung Galaxy Nexus 1280x720 316 XHDPI LARGE 3,6

Samsung Galaxy SIII mini 800x480 233 HDPI NORMAL 50,1

Samsung Galaxy sII 800x480 219 HDPI NORMAL 50,1

HTC A9192 inspire 800x480 217 HDPI NORMAL 50,1

Motorola Atrix mb860 960x540 275 XHDPI NORMAL 25,1

Sony xperia U ST25A-BW 854x480 280 XHDPI NORMAL 25,1

Dell Aero 640x360 210 HDPI NORMAL 50,1

HTC EVO 4g 1280x720 312 XHDPI NORMAL 25,1

Samsung Galaxy Y Duos 240x320 127 LDPI SMALL 1,7

Samsung galaxy gt-s7500 ACE plus 480x320 158 MDPI NORMAL 11

Google nexus 4 1280x720 318 XHDPI LARGE 3,6

Samsung Galaxy ace 2 480x800 246 HDPI NORMAL 50,1

Sony xperia play 480x854 245 HDPI NORMAL 50,1

HTC freestyle f5151 480x320 180 MDPI NORMAL 11

Motorola droid 2 480x854 265 XHDPI NORMAL 25,1

Table 10.2: Twenty Amazon most sold phones (December’12).

ldpi mdpi hdpi xhdpi

small 1.7% 1.0%

normal 0.4% 11% 50.1% 25.1%

large 0.1% 2.4% 3.6%

xlarge 4.6%

Table 10.3: Google provided market-share (October’12).

Results & analysis→ Figure §10.4 shows the market-share coverage of the
first 20 most sold phones with respect to screen size and density compared
with the market-share covered when buying the most sold phones in Ama-

10.2. Experiments 183

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
a
rk
e
ts
h
a
re
 c
o
v
e
re
d
 p
e
rc
e
n
ta
g
e

Number of devices used

TESALIA‐derived configura?ons Amazon most sold phones

Figure 10.4: Market-share coverage: Amazon vs TESALIA.

zon. We can see in the chart of Figure §10.4 that is not possible to reach the
100% market share coverage when relying in buying most-sold phones. Also,
using TESALIA-derived configurations we reach the 90% of market-share cov-
erage with only four configurations. Moreover, if we only take into account
the five first phones we observe that the five TESALIA-derived configurations
cover over 53% more of the market than the five most sold phones. The overall
market-share covered buying the five most sold devices is 51.4% while the five
most-scored TESALIA-derived configurations cover 94.4% of the market. In
light of these results we can conclude that the benefits of using market-share
prioritization enable developers to test their applications in front of those de-
vices their customers use. Moreover, we observed that buying the flag-phones
or most-sold phones is not a good idea when optimizing the testing of An-
droid applications.

10.2.2 Cloud cost and market-share optimization

This experiment compares the cost per unit of market-share obtained from
TESALIA-derived configurations versus the most sold phone sets from Exper-
iment §10.2.1. Each phone was considered to have a cost of $600 in this exper-
iment, which is typical of unlocked mobile devices. Then we calculated the
cost of buying the N first phones and divided by the market-share obtained
using them. This is,

600×NumberOfConfigurations

marketShareCovered

184 Chapter 10. Optimizing the Android emulation in the cloud

For example, for the first Amazon phone we would consider the cost as 600/3.6,
for the third 600×3/14.6 and so on. With this experiment we want to show the
economical benefit of automatically derive the most valuable configurations
in terms of market-share.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
o
st
 p
e
r c
o
n
fig

u
ra
/
o
n
s i
n
 $

Number of devices used

Amazon most‐sold Phones TESALIA ranked configuraitons

Figure 10.5: Market-share coverage per monetary unit.

Experiment results. Figure §10.5 shows the market-share/cost when us-
ing TESALIA versus buying the N most sold phones. As can be seen in the
experiments, TESALIA is more cost-effective than selecting a set of the most
popular phones to test on. Moreover, another interesting conclusion is that
testing more than 10 of the most sold phones or TESALIA-derived config-
urations provides no additional benefit. The surplus saved when using the
TESALIA approach could be invested either into additional testing on other
mobile platform configurations or running extra tests on the same mobile plat-
form configurations.

10.2.3 TESALIA-packaging validity for the Android scenario.

A key question when using CSPs and solving NP-hard problems, such as
Knapsack problems, is the scalability of the approach. The purpose of this ex-
periment is to determine if TESALIA is scalable enough to solve market-share
optimization problems for real-world mobile platform configuration spaces
and market sizes. This experiment analyzes the time for TESALIA to derive
all possible configurations of the Android platform that represent real devices

10.2. Experiments 185

and solve the Knapsack problem to optimally select a set of market-share max-
imizing configurations to test.

Experimental platform → This experiment was conducted on an Intel Core
i7 processor running at 1.8GHz, with 4GB DDR3 RAM and the 6.0 Java Virtual
Machine with command line options –Xmx250m and –Xms64m. The operat-
ing system was Mac OS v.10.7.1.

Results → Our experiments showed that TESALIA can find 29,510 con-
figurations per second. Based on estimates of the total number of Android
devices from OpenSignalMaps, we estimate that there are roughly 4,000-6,000
Android device models. Moreover, we attempted to overestimate the number
of possible Android versions that could be on each device as 5, since newer
devices probably have fewer versions of Android that can run on them and
we consider 5 to be a reasonable upper bound on the number of potential
different Android versions available for a given device model. Given this esti-
mate, there could be up to 30,000 different valid platform configurations in the
market, all of which could be derived by TESALIA in approximately 1 second.

We also tested the time to derive package the set of tests with 30,000 prod-
ucts. Solving this problem on our testbed took an average of 232 seconds on
our test platform. We solved the Knapsack using an exact technique. Substan-
tially faster approximation algorithms are available that give near-optimal re-
sults in substantially less time. These algorithms could also be used if desired.

10.2.4 TESALIA scalability.

The scalability of TESALIA has been validated for its use in current An-
droid feature model. However, is important to verify that it scales for larger
problems. We tested TESALIA in front of two different models sets. First,
random models and later, models from the SPLOT [112] repository.

Testing TESALIA with random models → The random feature models
used vary between 10 and 2000 features, 0 to 15 % of cross-tree constraints
and 0 to 5 complex constraints (A constraint involving attributes). To generate
these models, we used the Betty tool [156] provides an implementation of an
algorithm [174] for the feature model random generation. Later, we config-
ured it to generate models having two integers attributes per feature (value
and cost) in a range from 0 to 10. Also, to prevent possible threats affecting
the experiments execution, we obtained 10 models per combination of inputs
and present the average time. Moreover, non-valid models were discarded for
this experiment. Finally, three different functions were defined for each test-

186 Chapter 10. Optimizing the Android emulation in the cloud

ing scope. For pruning, we discarded the configurations exceeding a total cost
greater than the 10 multiplied by the number of features. For prioritization,
the function used is the sum of the value attribute. Finally, for the packaging
scope, the total cost allowed in the knapsack problem is twice as the maximum
cost for a product.

Testing TESALIA with SPLOT models → While the random models al-
low us to see the impact of the different variables in the execution time, they
may not mimic the topology of realistic models such as those used in video-
sequence generation domain[69] or cloud computing usage[73]. To determine
if TESALIA scales in a realistic scenario we took all SPLOT models[112] and
randomly added a cost and a value attribute per feature so that we could exe-
cute our optimization. We also added 0 to 5 complex cross-tree constraints per
model. Attribute values ranged from 0 to 10 in the random models. Also, we
generated 10 attributed models per combination of inputs and presented the
average time. Again, we used the three same objective functions used for the
random models.

Experimental platform → This experiment was conducted on of the blades
of the ATAACK cloud in one thread. Concretely, the blade was using a dual-
CPU Dell Intel Xeon CPU X3470 running at 2.93GHz CentOS v6 and the 6.0
Java Virtual Machine with command line options –Xmx250m and –Xms64m.

Results with random models → Our experiments show that TESALIA
scales up to models with 2000 features without requiring more than 20 sec-
onds of CSP computation for any of the analyses. Figure §10.6 shows the av-
erage time required in a logarithmic scale by each permutation of input vari-
ables along with maximum and minimum values (marked by points above the
bars). In the worst case, the execution of the operations did not exceed 10 sec-
onds, which we consider is sufficient for a wide range of applications. Also,
in the figure, we can observe that the time required by TESALIA depends on
the testing operation being used. That is, different operations perform dif-
ferently. For example, summing the execution time for all input parameters
combinations and pruning the tests takes 7290.5 milliseconds less than test
prioritization.

Results with SPLOT models → After executing the three operations with
the models available in the SPLOT repository we noticed that 7.421 millisec-
onds were required for the pruning operation, 8.446 for the prioritization, and
11.099 for the packaging operation. Figure §10.7 shows a small set of the mod-
els analyzed, which contains the most CPU consuming models, and 0 complex
cross-tree constraints. For example, the most complex model in the repository
– REAL FM 4 – took 524.5 milliseconds for the packaging operation. With
these results in hand, we can conclude that our approach scales up to real-

10.2. Experiments 187

0% cross−tree constraints 10% cross−tree constraints 15% cross−tree constraints

10

1000

10

1000

10

1000

5
 c

o
m

p
le

x
 c

o
n

s
tra

in
ts

2
 c

o
m

p
le

x
 c

o
n

s
tra

in
ts

0
 c

o
m

p
le

x
 c

o
n

s
tra

in
ts

1
0

2
0

3
0

5
0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

1
0
0
0

2
0
0
0

1
0

2
0

3
0

5
0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

1
0
0
0

2
0
0
0

1
0

2
0

3
0

5
0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

1
0
0
0

2
0
0
0

Number of Features

T
im

e
 i
n

 m
ill

is
e

c
o

n
d

s

Testing operation Pruning Prioritization Packaging

Figure 10.6: Time required by TESALIA’s operations with random models.

istic feature model sizes, as well as to large random models. Moreover, we
can infer that the real models are less complex for the operations presented in
this chapter. The data set with the time required for all SPLOT models can be
found in the material website. We also noticed that the inclusion of complex
cross-tree constraints reduces solving time as there are less configurations to
explore.

188 Chapter 10. Optimizing the Android emulation in the cloud

1

10

100

a
ir
c
ra

ft
_

fm

a
rc

a
d

e
_

g
a

m
e

_
p

l_
fm

c
a

r_
fm

c
fd

p
_

lib
ra

ry
_

fm

c
o

n
n

e
c
to

r_
fm

fa
m

e
_

d
b

m
s
_

fm

m
o
v
ie

s
_

a
p

p
_

fm

R
E

A
L

_
F

M
_

1

R
E

A
L

_
F

M
_

1
0

R
E

A
L

_
F

M
_

1
1

R
E

A
L

_
F

M
_

1
2

R
E

A
L

_
F

M
_

1
3

R
E

A
L

_
F

M
_

1
4

R
E

A
L

_
F

M
_

1
5

R
E

A
L

_
F

M
_

1
6

R
E

A
L

_
F

M
_

1
7

R
E

A
L

_
F

M
_

1
8

R
E

A
L

_
F

M
_

1
9

R
E

A
L

_
F

M
_

2
0

R
E

A
L

_
F

M
_

3

R
E

A
L

_
F

M
_

4

R
E

A
L

_
F

M
_

7

R
E

A
L

_
F

M
_

8

R
E

A
L

_
F

M
_

9

s
m

a
rt

_
h

o
m

e
_

fm

s
ta

c
k
_

fm
Model Name

T
im

e
 i
n

 m
ill

is
e

c
o

n
d

s

Testing operation Pruning Prioritization Packaging

Figure 10.7: Time required by TESALIA’s operations with SPLOT models .

10.3 Analysis and discussion

In this section we discuss the results we obtained and how the null hypoth-
esis has been rejected, thus accepting the alternative hypothesis.

We performed four different experiments to check the validity of the
TESALIA approach. With the first experiment we aimed to check the validity
of the market-share metric when selecting smart-phones configurations to test.
The null hypothesis was that TESALIA does not improve the market share
coverage compared to testing on the highest selling phone configurations. To
refute the null hypothesis we compared the 20 most sold phone configurations

10.4. Threats to validity 189

from Amazon with the configurations produced by using TESALIA. Taking a
look to the results we accepted the alternative hypothesis which indicates that
TESALIA outperforms the traditional approach of testing on the most sold
phones.

In the second experiment we compared the cost of the traditional approach
of testing on the most sold phones versus the TESALIA approach. We com-
pared the cost per configuration in dollars assuming that each phone costs
600$. In this case, the null hypothesis to refute is that it is cheaper to buy the
most sold phones than using TESALIA. In this case, again for the 20 most sold
phones, the experiments did not refute the null hypothesis leading us to accept
the alternative hypothesis: TESALIA is more cost effective than the traditional
approach.

The third and fourth experiments investigated the scalability, in terms of
computing cost, of our approach. In each experiment, we determined the ex-
ecution time of the approach when provided feature models of varying com-
plexity and structure. In both experiments, we have been able to refute the
null hypothesis and conclude that TESALIA can properly cope with realistic
models described in prior literature. We noticed that the number of constraints
is not impacting that much the analysis process. However, the less constraints
the model has, a small increment in computing time is observed, specially in
the minimum and maximum values. We suspect that this is caused because we
are maintaining the same value and cost functions, thus, the less constraints
the model has implies more products, making more costly to traverse all solu-
tions.

In these experiments we have shown that TESALIA can cope with the con-
straints and variability complexity present in Android and in a variety of other
models. Moreover, we showed the benefits TESALIA can offer. However, we
need to check the viability of the TESALIA approach with industrial partners
in future work. In current work, we have begun developing guides for devel-
opers to aid in creating optimization functions [7] for a variety of domains.

10.4 Threats to validity

Even though the experiments presented in this chapter provide evidence
that the solution proposed is valid, there are some assumptions that we made
that may affect their validity. In this section, we discuss the different threats
to validity that affect the evaluation.

External validity. The inputs used for the experiments presented in this

190 Chapter 10. Optimizing the Android emulation in the cloud

chapter were either realistic or designed to mimic realistic feature models. The
Android feature model is realistic since numerous experts were involved in
the design. However, since it was developed using a manual design process,
it may have errors and not encode all device configurations. Also, the random
feature models may not accurately reflect the structure of real feature models
used in industry. Another possible threat is the lack of market-share data af-
fecting more features and the age of the market share data. The major threats
to the external validity are:

• Population validity, the Android feature model that we used may not
represent all valid Android configurations. Also, random models might
not have the same structure as real models (e.g. mathematical opera-
tors used in the complex constraints), also the use of incomplete market-
share data may have introduced errors. To reduce these threats to va-
lidity, we generated the models using previously published techniques
[174] and using existing implementations of these techniques in Betty
[156]. Also, for the attributes generation, as there are no well-known val-
ues in the literature yet, we introduced extended cross-tree constraints
and attributes ranges consistent with past studies of feature models [46]
and [128]

• Ecological validity : While external validity, in general, is focused on the
generalization of the results to other contexts (e.g. using other models),
the ecological validity if focused on possible errors in the experiment
materials and tools used. To prevent ecological validity threats, such
as third party threads running in the virtual machines and impacting
performance, the TESALIA analyses were executed 10 times and then
averaged.

Internal validity The CPU resources required to analyze a feature model
depend on the number of features and percentage of cross-tree constraints.
However, there may be other variables that affect performance, such as the
nature of the complex constraints used. To minimize these other possible ef-
fects, we introduced a variety of mathematical operators over the integers in
the constraints to ensure that we covered a large part of the constraint space.

10.5 Summary

The large amount of diverse and variant mobile platform configurations
existing in the Android ecosystem makes the testing of Android apps a costly

10.5. Summary 191

and error prone process. However, the use of cloud computing resources
makes possible to use virtually infinite computing resources. Nevertheless,
cost and time constraints narrow the amount of resources we can use for test-
ing. Therefore, techniques were required to maximize and optimize thosecon-
flicting constraints.

In this chapter we have applied the TESALIA solution to this context and
have effectively optimize the market-share coverage of the target platforms
where we execute our tests. Moreover, we have succesfully stressed the scal-
ability of our tool within the set of models from the SPLOT feature model
repository.

For reviewing purposes, TESALIA and associated test data is available
from http://tesalia.github.io/. Please note, that the software is distributed under
an LGPLv3 license.

192 Chapter 10. Optimizing the Android emulation in the cloud

Chapter 11

Managing video-sequences
variability

Every real story is a never ending story.

Michael Ende, Writer

Image recognition systems rely on signals captured by video cameras,
which are then processed through a chain of algorithms. Basic signal

processing algorithms are assembled in different ways, depending on the goal
of image recognition (scene interpretation, follow a specific object, etc.). Each
algorithm is a complex piece of software that can be configured through mul-
tiple parameters. Additionally, these algorithms can be assembled in different
chains corresponding to various recognition needs, and processing very differ-
ent kind of images (day/night, lots/few contrast, etc). The main challenge for
maintaining, evolving and testing these systems is to deal with the combina-
torial explosion of (i) the number of configurations for individual components
and of (ii) all different kinds of images the assemblies must handle. Several
restrictions do exist when designing these configurations and images that can
be captured in constraint models. However, there currently exists no system-
atic method to generate and qualify test configurations in this context. In this
chapter we validate the VANE solution †1. .

†1This chapter is based in [69] and part of this material has been published in the ISSTA
conference

194 Chapter 11. Managing video-sequences variability

11.1 Evaluation

The acquisition, processing, and analysis of video sequences find appli-
cations in our daily life. Surveillance applications, computer-aided medical
imaging systems, traffic control, and mobile robotics are some examples. Such
software-intensive systems rely on signals captured by video cameras, which
are then, processed through a chain of algorithms. Basic signal processing
algorithms are assembled in different ways, depending on the goal of image
recognition (scene interpretation, follow a specific object, etc.). The algorithms
produce numerical or symbolic information helpful for humans or subject to
subsequent analysis. For example, rectangles covering the zone of a specific
object help tracking people or vehicles in motion.

The MOTIV project aims at evaluating computer vision algorithms such
as those used for surveillance or rescue operations. A targeted scenario is
usually as follows. First, airborne or land-based cameras capture on-the-fly
videos. Then, the processing and analysis of video sequences are performed
to detect and track, for example, survivors in a natural disaster. Eventually,
and based on the information, the operations manager can achieve strategic
or tactical goals in a rapid manner. Two organizations are part of the MO-
TIV project as well as the DGA (the French governmental organization for
defense procurement). The two companies develop and provide numerous
algorithms for video analysis. Clearly, there is no one-size-fits-all solution ca-
pable of handling the diversity of scenarios and signal qualities. This poses
a difficult problem for all the partners of MOTIV: which algorithms are best
suited given a particular application? From the consumer side (the DGA),
how to choose, select and combine the algorithms? From the provider side
(the two companies), how to guarantee that the algorithms meet a large vari-
ety of conditions? How to propose innovative solutions able to handle new
situations?

The fundamental and common challenge is the testing of algorithms. All
the partners, being providers or consumers, aim to determine what algorithms
are likely to fail or excel in certain conditions. Empirical and statistical meth-
ods (based on numerous metrics for assessing non-functional dimensions such
as performance or reliability) have been developed and are intensively used
for this purpose. Nevertheless, practitioners face severe difficulties to obtain
an input test suite (i.e., a set of video sequences) large and diverse enough
to test the algorithms. The current practice is indeed to find some existing
videos or film video sequences outside. The effort of manually collecting
videos is highly consuming in time and resources. First, high costs and com-
plex logistics are required to film video sequences in real locations. Second,
the ground truth should be elaborated for every video sequence – it is again

11.1. Evaluation 195

��������

����� ����������
���������� ��������������

�������

������ ��������
�������

����������� ���������

������

����� �����

����������

���������
�����

����������
�����

������
��������

������������
���������������� ���������

������ ������

����������������
�������

����

��������������������

��������� ������
����������

����
���������� �����������

������������������

�����

�������������

�����

�����������

���� ���

������
������������

����

�����
������������

����������

����������

����������������
��������������

����������������
����������������

�������������

������������

������������� �������������

�������������

��������������
���������������

����������

�������

������������������
���������������������

����������������������������������
�������������������������������������
����������������������������������
������������������������������������
������������������������������������

�����������

���
��
��
��

Figure 11.1: Feature model to represent variability of a video sequence.

time-consuming and also error-prone. Due to the practical difficulties, the
number of collected video sequences is too low and the videos are not differ-
ent enough to test algorithms. In addition, practitioners have limited control
over the scenarios covered by the set of video sequences. As a result, the ma-
jor challenge for testing the algorithms remains: How to obtain a suitable and
comprehensive input set of video sequences?

We aim to evaluate our variability-based testing approach along two di-
mensions:

• Scalability of VANE. As described in Section §11, very large sets
of testable configurations are possible. An implementation of VANE
should be able to cope with models encoding large numbers of features
and attributes. Specifically, we aim to evaluate how the approach scales
when deriving T-wise configurations using the large-scale and realistic
feature model of the MOTIV project. We also aim to determine the num-
ber of configurations required when optimizing different values of the
feature model.

• Practical benefits and limits. of the approach in the context of an indus-
trial project (see Section §11 and the MOTIV project). The introduction
of variability modeling and testing techniques aims at improving current
practice. We discuss qualitative properties of the approach as part of an
action-based research we conduct.

196 Chapter 11. Managing video-sequences variability

Hypotheses of VANE first experiment

Null Hypothe-
sis (H0)

The time required by VANE when deriving t-covering sets is
not affordable for most cases.

Alt. Hypothe-
sis (H1)

VANE effectively optimize different functions when using at-
tributed feature models describing hight configurable systems.

Hypotheses of Experiment 2

Null Hypothe-
sis (H0)

The multi-optimization operation does not returns results in a
reasonable amount of time

Alt. Hypothe-
sis (H1)

VANE derives multi-objectives functions covering sets in a
reasonable amount of time.

Design

Dependent
Variable

Hardware options covered by the tests

Blocking Vari-
ables

Maximum cost al-
lowed

Levels: 5, 10, 15, 20, 25, 30, 35, 40, 45,
50, 55, 60, 65, 70

Constants CSP solver Value: ChocoSolver †2

Heuristic for variable
selection in the CSP
solver

Value: Default

Model used as input Value: Android feature model pre-
sented in Figure §10.2

Table 11.1: Hypotheses and design for the VANE solution.

Table §11.1 present the different hypothesis we assumed when performing
the experiments presented in this section.

11.1.1 Applicability of VANE to a real-scenario.

Experimental data and platform. we used the feature model of the MO-
TIV project to test the scalability of VANE. The feature model was elaborated
during several meetings with the MOTIV partners. Their expertise in the de-
velopment and quantification of (embedded) video processing systems helped
us to know more about the video domain. It should be noted that each con-
figuration of a feature model can be translated to a configuration file (through
assignment of values to attributes)(see Figure §7.2). The design of the con-
figuration file helps to design realistic and concrete correspondences at the
implementation level.

An excerpt of the resulting feature model is shown in Figure §11.1. This

11.1. Evaluation 197

feature model contains a large set of attributes and constraints that reduces
the total number of permutations between input combinations. For example,
this model prevents us of generating video-sequences having more than 50%
of dustAmount when using an mobile platform featureUrban background. It
should be noted that in Figure §11.1, we mark the non-inheritable attributes
with the ∼ mark – the rest of attributes are held by their associated feature and
its children.

Our experiment have been tested using a Java implementation of VANE.
This implementation is provided as part of the FAMILIAR tool [4]. Internally,
this solution uses the Choco CSP solver. The experiments were performed on
a Intel Core i5 running at 1.5, 8 GB of RAM memory, the 1.7 Oracle java virtual
machine and Os X v10.9.1 as operating system.

Hypothesis: VANE derives pair-wise sets in an affordable time when op-
timizing a concrete value. One of the main aspects of the VANE solution is
the ability of maximizing or minimizing custom functions over attributes and
features. We measured the time and the number of different configurations re-
quired to obtain a pair-wise coverage for each quality attribute in the feature
model. Our hypothesis is that VANE is able to derive optimal pair-wise con-
figuration sets for video-sequences in an affordable time. In this experiment
we are only considering the maximization of one attribute per execution. That
is, each time we call the CSP solver, we ask for the variable assignation max-
imizing a function which is the value of one attribute. We consider that the
VANE solution must derive pair-wise combinations in less than 15 minutes to
determine if the VANE is valid for the purposes of the MOTIV project.

Results. Figure §11.2 shows the time required by VANE when optimizing
each attribute present in the model. In this figure, the vertical axis shows the
number of seconds required to optimize the attribute in the horizontal axis.
The results show that none of the optimization operations take more than 15
minutes to finish. Moreover, the time vary from the 171.64 seconds (Vehi-
cles.distance) to 680,75 seconds (TiltMotion). The time required to generate
a video-sequence manually is largely higher than 30 minutes, thus, we think
that spend 5 ∼ 15 minutes is worth to reduce the number of video sequences to
generate. Nevertheless, Figure §11.3 shows the number of configurations re-
quired to use when optimizing each attribute. The number of pairs to cover is
767, thus, by using VANE it was decreased by at least 269 configurations. This
amount of configurations is obtained not by minimizing the number of config-
urations but only when maximizing an attribute. This is, for this experiment,
we did not minimize the number of configurations to use and the testing cost
reduction is very noticeable.

198 Chapter 11. Managing video-sequences variability

0

100

200

300

400

500

600

700

H
um
an
s.
nu
m
be
rO
f

H
um
an
s.
m
o5
on

H
um
an
s.
sh
ad
ow
ed

H
um
an
s.
di
st
an
ce

Ve
hi
cl
es
.n
um
be
rO
f

Ve
hi
cl
es
.m
o5
on

Ve
hi
cl
es
.s
ha
do
w
ed

Ve
hi
cl
es
.d
is
ta
nc
e

Ve
hi
cl
es
.d
us
t

Bu
A
er
flie
s.
le
ve
l

Ve
ge
ta
5o
n.
le
ve
l

Bi
rd
s.
le
ve
l

So
lid
O
cu
lta
nt
.le
ve
l

Tr
an
sp
ar
en
tO
cu
lta
nt
.le
ve
l

Vi
br
a5
on
.le
ve
l

Fo
ca
lD
is
to
rs
io
n

Pa
nD
is
to
rs
io
n

Ti
ltM
o5
on

Figure 11.2: Required time when VANE optimizes one quality attribute.

0

50

100

150

200

250

300

350

400

450

500

H
um
an
s.
nu
m
be
rO
f

H
um
an
s.
m
o5
on

H
um
an
s.
sh
ad
ow
ed

H
um
an
s.
di
st
an
ce

Ve
hi
cl
es
.n
um
be
rO
f

Ve
hi
cl
es
.m
o5
on

Ve
hi
cl
es
.s
ha
do
w
ed

Ve
hi
cl
es
.d
is
ta
nc
e

Ve
hi
cl
es
.d
us
t

Bu
?
er
flie
s.
le
ve
l

Ve
ge
ta
5o
n.
le
ve
l

Bi
rd
s.
le
ve
l

So
lid
O
cu
lta
nt
.le
ve
l

Tr
an
sp
ar
en
tO
cu
lta
nt
.le
ve
l

Vi
br
a5
on
.le
ve
l

Fo
ca
lD
is
to
rs
io
n

Pa
nD
is
to
rs
io
n

Ti
ltM
o5
on

Figure 11.3: # configurations optimizing one quality attribute.

11.1. Evaluation 199

11.1.2 Multi-objective capabilities evaluation.

VANE has multi-objective capabilities that enable the optimization of more
than one function at the same time. Section §7.3.4 explains how is it imple-
mented by using an evolutionary algorithm that internally uses a CSP for
calculating the fitness function. In this experiment we try to minimize the
number of configurations required to grant the pair-wise coverage maximiz-
ing one attributed in a set of thirty random models. The random models were
created by using the Betty tool [156] which implements Thum et al.[174] algo-
rithms. In the random set of models, we fixed the number of features to ten
and vary the percentage of cross-tree constraints from 5% to 15% of cross-tree
constraints. All models have two attributes per feature and two complex con-
straints. Also, we specified a timeout of 1 minute for each evaluation of the
fitness function. This is, the CSP returns the best solution found in 1 minute.
The stop criteria used is to finish the execution after two generations without
improvement or when reaching the twenty-fifth generation.

Hypothesis: Multi-objective scalability. Our hypothesis is that VANE ef-
fectively reduce the number of configurations needed to execute when using
pair-wise reduction at the same time that maximizing an attribute in a reason-
able amount of time.

Experiment 2 Results. We found that VANE derives Pareto optimal config-
urations in no more than 122.34 seconds being the average of the thirty gener-
ated models 38.46 seconds. Also, none of the thirty models reached the maxi-
mum number of generations. This is, all models required less than twenty-five
generations to finish. Moreover, twenty-four out of the thirty models needed
only three generations to reach a Pareto solution. The model that required
more generations to reach a solution only needed 7 generations.

The experiments presented in this section show: i) the amount of time re-
quired by VANE to optimize the set of configurations to execute; and ii) the
reduction in terms of the number of configurations. We conclude that the ex-
ecution time of the tool is worth for the application of pair-wise testing in
video-sequences generation. As previously shown, the reduction of costs car-
ried out when generating video-sequences is noticeable.

Scalability and multi-objective. As part of the experiment, we observed
that the complexity of multi-optimization problems applied for T-wise cov-
ering sets carries out high a memory and CPU consumption. For example,
the time required to use multi-objective functions in our feature model can
take about twelve hours (the previous experience only considers one objective
function; more details about the multi-objective results can be found online).

200 Chapter 11. Managing video-sequences variability

The practical impact is limited though, since experts compute once and for all
the configurations; then the variants of video sequences are synthesized offline
(see the next section for a discussion about other aspects of the approach). We
admit that our current solution prevents an application in contexts requiring
fast responses such as it happens in dynamically re-configurable systems.

We have learned the following important lessons:

i. Scoping the T-wise covering sets. Different T-wise covering sets max-
imizes different properties of the test-suite. We learned that the maxi-
mization of the different properties can the test-suite for the detection of
errors.

ii. T-wise multi-objective optimization is costly. We observed that the
complexity of multi-optimization problems applied for t-wise covering
sets carries out a hight memory and CPU consumption. For example,
the time required to use multi-objective functions in our feature model
takes about twelve hours. This prevents our current implementation of
being applicable in contexts requiring fast responses such as embedded
systems.

11.2 Benefits and limits of the approach

We discuss the approach in the context of the MOTIV project. The project is
still ongoing, but we already observed some practical benefits and limits; we
also identified some open questions. Our report is based on discussions we
had with the partners in nine formal and informal meetings (i.e., workshop
sessions and visits to companies).

Automation. The feature model used in the MOTIV project encodes more
than 240 different Boolean parameters among other quality attributes. Com-
pared to a manual approach, VANE selects around 500 pairs that maximize a
custom attribute. This amount of configurations cannot be handled properly
by a manual approach. As stated in Section §11, preparing a test case (video
sequence) requires to film or find out a realistic video, to prepare the ground
truth, etc. The MOTIV partners estimate that the preparation of a test case
requires at least 2 hours of work per men. In practice, handling five hundred
configurations is clearly unfeasible. Another benefit of automation is to repro-
duce the synthesis with other parameters for targeting more specific scenarios.

Covering. Without a proper and explicit variability modeling, practition-
ers ignore what test cases are actually handled and covered. The knowledge of

11.2. Benefits and limits of the approach 201

the coverage is very important since most situations are covered, thus, practi-
tioners are more confident in terms of robustness, performance and reliability
of the algorithm. It is especially important for an institution like DGA to have
such a strong coverage guarantee. It is as important for the two industrial
partners to cover the maximum kinds of situations and determine if the al-
gorithms behave accordingly. VANE grants, by construction, the validity of
the T-wise configuration set while enabling multi-objective testing optimiza-
tion. Another argument in favor of combinational (like T-wise) and optimiza-
tion techniques is that the number of testable configurations should not be too
high. Indeed the synthesis of a video sequence variant is resource consuming
and can take 1.5h according to the MOTIV partners†3. This is an additional rea-
son that motivates the reduction of the number of tests through combinational
covering.

Flexibility. The VANE approach enables practitioners to control the syn-
thesis of T-wise covering sets. Traditionally, testing approaches (mainly man-
ual or exploratory) rely on the expertise of the practitioners. Different alterna-
tives can be employed for this purpose:

• Putting additional constraints and specializing the feature model for
specific scenarios. For instance, a specific mobile platform featureBack-
ground (e.g., mobile platform featureUrban) can be set up since the ap-
plication is known to be deployed in a specific military ground. In turn,
the testing machinery will then consider only configurations with mo-
bile platform featureUrban. The benefit is that practitioners can focus on
specific testing scenarios, specializing the test suite to realistic cases.

• Optimizing different objective functions over attributes: practitioners
can specify the relative importance or cost of a feature, fix some parame-
ters, etc. Again, it aims at customizing the test suite to fit realistic needs.

In all cases, VANE provides the flexibility of optimizing parameters with-
out altering the coverage of feature combinations (because of the T-wise cri-
terion).The VANE implementation and experiments described in this chap-
ter are available in open source form as part of the FAMILIAR tool. More-
over, we provide the experiments inputs and the results https://github.com/

ViViD-DiverSE/Experiments.

Realisticness. The major threat when synthesizing video sequences is
to produce unrealistic video sequence or videos that present limited inter-
est when testing algorithms. For instance, some natural scenes may not be

†3As part of our experiment we did not measure the time needed for synthesizing video
sequences – we stop at the generation of configurations.

202 Chapter 11. Managing video-sequences variability

reliably recreated or the global luminosity eases too much the tasks of an al-
gorithm. Until now, we have not encountered such situations: the variants of
video sequences reviewed by the experts so far have been assessed as realis-
tic and ready to test algorithms. However, the experts have not reviewed the
entire test suite. It is still unclear how a reviewing process could look like and
how we can ease that task – pointing out to experts what are the features acti-
vated in the video sequence seems an interesting option. In case of detecting
an unrealistic variant, practitioners can add some constraints and exploit the
flexibility of the approach (see above).

Exploration and incremental synthesis. Another promising direction is to
allow practitioners to explicitly report on unrealistic variants. Also, the testing
techniques should be revised/adapted to take this information into account,
i.e., so that the test suite no longer contains an unrealistic video sequence.
More generally it would enable an incremental synthesis process where prac-
titioners modify objective functions, attributes, and constraints of the feature
model to improve the suitability/realisticness (if needs be) of the video se-
quences.

Effort and reuse. The effort needed to realize the approach mainly consists
in i) elaborating a variability model, ii) selecting a ”base” video sequence, and
iii) developing video processing functions to modify elements (e.g., luminos-
ity) or inject new elements (e.g., a tank). Our observation is that the major
effort resides in the third step. It is unclear, at this step of the research, to
determine if the effort pays off and can be reused for other ”base” video se-
quences.

11.3 Threats to validity

Even though the experiments presented in this chapter provide evidence
that the solution proposed is valid, there are some conditions that may affect
their validity.

External validity. The inputs used for the experiments presented in this
chapter represent a realistic feature model. We consider that the feature model
is realistic since numerous experts were involved in the design. Moreover, the
model has proven to have an implementation counterpart (the configuration
files) useful for synthesizing variants of video sequences. However, it is pos-
sible that the feature model do not reflect properly the same structure as other
realistic models. The major threats to the external validity are: population
validity, since the model used in the experiment represent only one concrete

11.4. Summary 203

instance of the problem (there might be other models that do not mirror the
model presented in Figure §11.1); ecological validity: VANE analysis were
executed 10-times and we report on averages to minimize the impact of third-
party threads in the time being measured.

Internal validity. The CPU capabilities required when analyzing a feature
model depend on the number of features, percentage, and nature of cross-tree
constraints. However, multi-optimization and pair-wise derivation add other
new variables affecting the performance, such as the number of the pairs to
cover. We experimented with multiple variations of quality attributes to limit
the internal validity. We plan to vary objective functions as well, based on
knowledge and requirements of video experts.

Construct validity. The results looks promising in terms of time required
to solve problems related to our feature model. However, we might need
to perform a higher scale experimentation when referring to multi-objectives
configuration problems.

11.4 Summary

The complexity existing in the video-surveillance algorithms introduces
new challenges to face when testing them. Moreover, there are multiple and
conflicting functions to optimize at the same time.

In this chapter we have evaluated our tool VANE in this context. First,
we encoded the variability existing in a video-sequence generator, later we
derived pair-wise configurations that optimize certain parameters and later,
we stresed our tool when conflicting functions exists. Moreover, this approach
is currently being used in the context of MOTIV project, more than 5000 videos
have been generated to build up a test-suite for video-surveillance algorithms.

204 Chapter 11. Managing video-sequences variability

Chapter 12

Scalability of feature model drifts
configuration.

Do What thou wilt

Die unendliche Geschichte, German people

Configuring an SPL over multiple steps is a highly combinatorial prob-
lem. An automated multi-step SPL configuration technique should be

able to scale to hundreds of features and multiple steps. This section presents
empirical results from experiments we performed to determine the scalabil-
ity of MUSCLES. We tested a number of hypotheses related to the scalability
of MUSCLES using various SPL configuration parameters, such as the total
number of configuration steps†1.

†1Part of the material used in this chapter was accepted in the JSS journal[179]

206 Chapter 12. Scalability of feature model drifts configuration.

12.1 Experimental platform

Our first experiment was performed with an implementation of MUS-
CLES provided by the open-source Ascent Design Studio (available from
code.google.com/p/ascent-design-studio). The Ascent Design Studio’s imple-
mentation of MUSCLES is built using the Java Choco open-source CSP solver
(available from choco.sourceforge.net). The experiments were performed on
a computer with an Intel Core DUO 2.4GHZ CPU, 2 gigabytes of memory,
Windows XP, and a version 1.6 Java Virtual Machine (JVM). The JVM was run
in server mode using a heap size of 40 megabytes (-Xms40m) and a maximum
memory size of 256 megabytes (-Xmx256m).

The second experiment was performed with an implementation of the
MUSCLES provided by the open-source FAMA tool suite. FAMA is also
built using the Java Choco open-source CSP solver. The experiments were
performed on a rack-mounted DELL PowerEdge server with 12 cores, 2GB
of RAM, and running Ubuntu. The JVM was run in server mode using a
heap size of 40 megabytes (-Xms40m) and a maximum memory size of 256
megabytes (-Xmx256m).

To test the scalability of MUSCLES we needed thousands of feature mod-
els to test with, which posed a problem since there are not many large-scale
feature models available to researchers. A CSP solver’s performance can vary
widely, from extremely fast to exponential time, depending on the constraints
of a particular problem characteristic. In practice, CSP solvers tend to per-
form very well. To be thorough, we wanted to test the technique on a large
number of models to get an accurate picture of the solving time. To solve
this problem, we used a random feature model generator developed in prior
work [180]. The feature model generator and code for these experiments is
also available in open-source form along with the Ascent Design Studio. The
feature model generator takes as input the desired total number of features,
maximum branching factor, total number of cross-tree constraints, and maxi-
mum depth for the feature model tree.This feature model generator is based
on the techniques developed by Thum et al. [174]. The generator produces
a random feature model that meets the requirements. We used a maximum
branching factor of 5 children per feature and a maximum of 1/3 of the fea-
tures were in an XOR group.†2

We also needed the ability to produce valid starting and ending configu-
rations that the solver could derive a configuration path between. To produce
these configurations, we used the CSP technique developed by Benavides et

†2XOR feature groups are features that require the set of their selected children to satisfy a
cardinality constraint (the constraint is 1..1 for XOR).

12.2. Multi-step configuration scalability 207

al. [16] to derive valid configurations of the feature model. If the CSP tech-
nique could not derive at least two different configurations from the feature
model, it was considered void and thrown out.

Our experiments uncovered trends similar to what observed in prior
work [180]. In particular, the branching factor, depth, and cross-tree con-
straints had little effect on configuration time. The key indicator of the solving
complexity was the number of XOR-feature groups in a model. The other key
indicators of solving complexity where whether or not optimization was used
and the total number of time steps involved in the configuration.

12.2 Multi-step configuration scalability

Hypothesis. We hypothesized that MUSCLES could scale up to hundreds
of features and 10 or more time steps, having this hypothesis we designed
this experiment to prove it, believing that a CSP solver would be fast enough
to derive a configuration path in a few seconds. On the other hand, the null
hypothesis of this experiment is that the solver can’t find a suitable solution
for the problem in a reasonable amount of time.

Experiment design. We measured the solving time of MUSCLES by gen-
erating random multi-step configuration problems and solving for configura-
tion paths that involved larger and larger numbers of steps. The problems
were created by generating semi-random feature models with 500 features as
well as starting and ending configurations for each model. The models were
obtained using the tool Betty, which provides an implementation of the Thum
et al.[174] proposal. The point configuration constraints were derived by us-
ing a constraint solver to derive a valid configuration for each step. Once a
point configuration was chosen for a step, an edge constraint was added lim-
iting the sum of the feature selection and deselection costs to be exactly the
sum needed to reach the randomly chosen point configuration. Table §12.1
shows the details of the experiment executed. MUSCLES was used to derive
a configuration path between the starting and ending configurations.

Our experiments were performed with large-scale configuration paths,
which were produced by forcing the solver to find a configuration path that in-
volved switching between two children of the root feature that were involved
in an XOR group. For a feature model with 500 features configured over 3
steps, the worst case solving time we observed was ∼3 seconds. The worst
case solving time for feature models configured over 10 steps was 16 seconds.
These initial results indicate that the technique should be sufficiently fast for

208 Chapter 12. Scalability of feature model drifts configuration.

Hypotheses

Null Hypothe-
sis (H0)

MUSCLES can rapidly identify the configuration paths from
the starting configuration to the final configuration with hun-
dreds features and 10 or more time steps.

Alt. Hypothe-
sis (H1)

The complexity of the problem will prevent MUSCLES from
finding solutions for problems with hundreds of features and
10 steps.

Design

Dependent
Variable

Time required by MUSCLES to derive a configuration path

Independent
Variable

Technique used for FM
generation

Levels: Random models produced by
Thum et al.’s technique[174]

I Technique for selecting
point and edge con-
straints

Levels: Random (Java function applied
to the list of model features tra-
versed inorder.)

Blocking Number of Steps Levels: 3,4,5,6,7,8,9,10

Variables

Constants CSP solver Value: ChocoReasoner

Heuristic for variable
selection in the CSP
solver

Value: Default

Percentage of Cross-
Tree Constraints
(constraints

features
)

Levels: %10

Table 12.1: MUSCLES first experiment data.

feature models with hundreds of features.

Figure §12.1 shows an example of a large-scale configuration path problem
where the solver must derive a configuration path that switches from includ-
ing feature A to feature B.

With this type of configuration problem, the solver was forced to change
every feature selection in the starting configuration to reach the end state, i.e.,
these experiments maximized the difference between the starting and ending
configurations.

We generated and solved temporal configuration path problems for feature
models with 500 features. We successively increased the number of time steps
involved in the configuration path to produce larger and larger configuration
paths. The maximum number of changes per configuration checkpoint were
bounded to 1/4 of the total number of features. We solved 100 randomly

12.2. Multi-step configuration scalability 209

Figure 12.1: Changing between two XOR subtrees.

generated configuration path problems per feature model size.

Results and analysis. The results from the experiment are shown in Fig-
ure §12.2.

Figure 12.2: Automated configuration time for varying numbers of time steps.

This figure shows the solving time in milliseconds for the configuration
path derivation versus the total number of time steps in the configuration
problem. As shown in Figure §12.2, the solving time scales roughly linearly
with the number of time steps.

The apparent linear scaling of the technique with respect to the number of
time steps is a promising result. Although more work is needed to show that

210 Chapter 12. Scalability of feature model drifts configuration.

this linear scaling continues for different configuration path properties, these
results indicate that the technique may scale well as the number of time steps
grows. Our future work will further investigate the scalability of the tech-
nique and improve MUSCLES’s CSP formulation. We also note that standard
CSP solving algorithms, such as branch and bound appear to work well for
these problems even though they have exponential worst case time complex-
ity. However, it may be possible to develop new solving algorithms that pro-
vide better performance for special classes of multi-step configuration prob-
lems. Based on the results, we ended agreeing that the null hypothesis we
proposed have been proved and MUSCLES can rapidly identify the configu-
ration path with hundreds of features and 10 or more steps.

12.3 Feature model drift scalability

Hypothesis. In this experiment we proposed as a null hypothesis, that
MUSCLES could solve for configuration paths that included feature model
drift in several seconds. Given that null hypothesis, the alternative hypothesis
is that MUSCLES can not solve problems with drifts in a few seconds.

Experiment design. As in the first experiment, we measured the solving
time of MUSCLES by generating random multi-step configuration problems
and solving for configuration paths that involved larger and larger numbers of
steps. In this second experiment, we introduced changes to the feature model
at each step. At each step, one feature was added or removed. The feature
model was then checked to ensure that it included one or more valid products
using CSP analysis. If the new feature model did not contain any valid prod-
ucts, the feature change was reversed and another random change attempted.
The feature models were semi-randomly generated with 20-2000 features as
well as starting and ending configurations for each model. MUSCLES was
used to derive a configuration path between the two configurations over mul-
tiple steps. The properties of the feature models described in Experiment 1
were also used for this experiment.

Table §12.2 shows the details of Experiment 2.

Results and analysis. The results from the experiment are shown in Fig-
ure §12.3.

This figure shows the solving time in milliseconds for the configuration
path derivation versus the total number of features. Overall, the approach
scaled well for large feature models. At 1,000 features, a solution could be
found in 4 seconds or less. We believe that for the majority of industry prob-

12.4. Threats to validity 211

Hypotheses

Null Hypothe-
sis (H0)

MUSCLES can find solutions for problems that incorporate
feature model drift and have a high number of features in sev-
eral seconds.

Alt. Hypothe-
sis (H1)

MUSCLES can not solve for solutions within a few seconds if
feature model drift occurs.

Design

Dependent
Variable

Time required by MUSCLES to configure a model with vary-
ing drifts.

Independent
Variable

Technique used for FM
generation

Levels: Random models gener-
ated using Thum et al.’s
technique[174]

Technique for selecting
point and edge con-
straints

Levels: Random (Java function applied
to the list of model features tra-
versed inorder.)

Blocking Number of Features Levels: 20, 100, 200, 500, 1000, 2000

Variables

Constants CSP solver Value: ChocoReasoner

Heuristic for variable
selection in the CSP
solver

Value: Default

Percentage of Cross-
Tree Constraints
(constraints

features
)

Levels: %10

Number of steps Levels: 3

Selection of initial and
final configurations

Levels: Random (from the set of valid
configurations)

Table 12.2: MUSCLES second experiment data .

lems, being able to deal with feature models with 1,000 features will be suffi-
cient. Therefore, given those results, the null hypothesis proved to be correct.

12.4 Threats to validity

Even though the experiments presented in this chapter provide evidence
that the solution proposed is valid, there are some conditions that may affect
the validity of those experiments. In this section we show the different validity
threads that could affect the experiments.

212 Chapter 12. Scalability of feature model drifts configuration.

Figure 12.3: Automated configuration time for feature model drift problems.

External Validity The inputs for the experiments presented in this chapter
have been inspired by industry problems. However, it is possible that
the feature models that we have experimented with do not properly re-
flect real-world models. The major threats to the external validity of are
experiments are: 1) Population validity, the models used are randomly
created and may not mirror realistic feature models seen in industry.
The complexity of the constraints used and the size of the problem may
vary with real projects. To try to minimize this effect we have relied
on the Thum et al.’s feature model generation approach [174] and its
implementation provided by the BeTTy tool [156]. 2) Ecological valid-
ity, MUSCLES analyses were run individually to minimize the impact of
third-party threads in the time being measured. However, there might
be other threads such as operating system threads, that could impact ex-
ecution time. To minimize this effect, we carried out not one execution
of a model, but a hundred executions and used the average as the result.

Internal Validity The time required to analyze a feature model depends on
the number of features and percentage of cross-tree constraint and de-
riving SPL configurations has been proven to be an NP problem in pre-
vious research [19, 91]. Multi-step configuration problems add other in-
puts that might affect the performance, such as the number of the steps
required to reach the final configuration. The conducted experiments
were designed to not exceed a maximum budget between successive

12.5. Summary 213

steps. However, if we add attributes to the experiments, more complex
functions than the sum of costs by selecting and deselecting features can
be employed. For example, a more complex function over the numeric
delta between attributes of successive steps could be used, such as com-
bining carbon emissions with monetary costs. To improve the internal
validity of the experiments we experimented with multiple variations
on the number of features and a variety of step counts.

Construct Validity The first results looks promising in terms of time required
to solve problems with 1,000 features. We assume that most real-world
problems will be of similar scale. However, because the tests were not
exhaustive, more analysis of which solver heuristics provide the best re-
sults are needed.

12.5 Summary

Variability intensive systems change rapidly, therefore, mechanishms
granting the safe transition between different evolution phases are required.
In this chapter, we have shown the scalability of MUSCLES. Concretely, we
have evaluated the multi-step configuration process and the feature model
drift technique.

The Ascent Design Studio (http://ascent-design-studio.googlecode.com)
and FAMA (http://famats.googlecode.com/svn/branches/multistep) provide
open-source implementations of MUSCLES.

214 Chapter 12. Scalability of feature model drifts configuration.

Chapter 13

Validating Invar

Dar más vueltas que el tı́o los caballitos

Dicho popular, Andalusian people

I n this section we demonstrate that Invar is flexible enough to allow the
integration of different variability modeling approaches. We also eval-

uate the conceptual integrity of our approach by applying it to three differ-
ent realistic configuration scenarios to address research question Finally, we
present a performance assessment to know what is the impact of the Invar

enactment strategies on performance†1.

†1Part of this material have been published in the SPLC conference[56] and the VAMOS
workshop [55]

216 Chapter 13. Validating Invar

13.1 Integrating three different variability model-

ing approaches

We have so far implemented the Invar service configuration interface
for the feature-oriented FaMa tool suite [20], the OVM-oriented FaMa tool
[145, 146] and the decision-based DOPLER [54] tool suite. We chose these ap-
proaches as we have gained several years of experience of applying them in
academic and industrial settings including large-scale product lines [19, 21,
32, 54, 139, 142]. Furthermore, these three approaches represent three distinct
classes of modeling techniques in SPLE.

13.1.1 Plugging feature models to Invar

The FaMa approach [20] supports different kind of feature model dialects
and allows using different solvers in the back-end to perform analysis oper-
ations on feature models. Currently it implements analysis using constraint
programming, SAT and BDD solvers. Other solvers can easily be plugged–
in. FaMa also provides capabilities to automatically test new implementa-
tions [158].

The implementation of Invar configuration services for FaMa faced several
issues as FaMa was not designed to be used for questionnaire-based prod-
uct configuration. Also, FaMa was primarily implemented as a framework
to perform automated analysis of feature models, i.e., it eases the automated
extraction of information from feature models and not configuration based on
feature models. Nevertheless, the adaptation to Invar Web Service interfaces
was almost straightforward – a good example demonstrating the flexibility of
Invar. The key mappings between the Invar configuration steps and FaMa
can be summarized as follows:

Question Types: For the sake of simplicity, here we only considered fea-
ture models with four kinds of relationships, which were mapped to Invar

question types as follows: A mandatory relationship in a feature model is a
relationship between a parent and a child where the child has to be selected
whenever the parent is selected. Hence, in this case, no question is asked to the
user, as their is no choice anyway. An optional relationship between a parent
and a child means that the child can be selected or deselected whenever the
parent feature is selected. We mapped an optional relationship to an Alterna-

tive question type in Invar with only one option, this is, a single check box. An
or-relationship between a parent and a set of children determines that at least
one child has to be selected whenever the parent is selected. Any combination

13.1. Integrating three different variability modeling approaches 217

of children is also allowed. We mapped the or-relationship to a MoreThanOne

question type in Invar with multiple check boxes. An alternative relationship
between a parent and a set of children determines that one and only one child
has to be selected whenever the parent is selected. An alternative relationship
maps to the Alternative question type in Invar.

Order of Questions: Feature models are not designed for workflow-
oriented configuration. Hence, there is no predefined order of presenting
questions to the end user. In our implementation we decided to define as
default to traverse the tree in a pre-order-like style. The FaMa FM implemen-
tation provides (i) three traversal-like orders (in-order, pre-order and post-
order); (ii) two orders based on the variability in the models, i.e., the first one
starting with the questions with most options and ending with the questions
with few options, and the second one in the opposite order, from few options
to the most; and (iii) an out of the box way to traverse the questions by name,
using an alphabetical order (cf. Section §9.2.4.1). The user can also define an
add–hoc order by manually sorting the list of questions on features.

Feedback: In FaMa, at any time a configuration can give feedback to the
Invar configuration service. The feedback supported includes: (i) informing
whether a given feature is selected or deselected, (ii) determining whether the
current configuration is valid, i.e., it is possible to extend the configuration to
a valid product, (iii) calculating the total number of potential configurations
of the model, (iv) informing about the number of questions that have not been
decided yet, (v) calculating the number of potential configurations available
according to the current selection/deselection of features, and (vi) determin-
ing whether the current configuration is valid as a final product. A configu-
ration is valid if all the features involved are either selected or deselected and
if there are no conflicts between the existing constraints in the models and the
actual state of the features, meaning that for each feature it is clear whether
via the feature state whether it is in the configuration or not.

13.1.2 Plugging OVM models to Invar

FaMa-OVM [145] is an instance of the FaMa framework [21] but using the
OVM notation. The same analysis capabilities and extensions can be sup-
ported as for feature models (cf. Section §13.1.1). The OVM modeling ap-
proach was not designed to be used in a questionnaire-based configuration
process so we had to face some issues when implementing the FaMa-OVM
configuration service for Invar. However we solved the problems as follows:

Question Types : Internally, FaMa-OVM supports the usage of OVM as de-

218 Chapter 13. Validating Invar

Feature Modeling Invar

Feature Option

Mandatory subfeature (ignored, feature will be selected in any case)

Optional subfeature Alternative with only one option (one checkbox)

Or group MoreThanOne (multiple checkboxes)

Alternative group Alternative with multiple options

Table 13.1: Mapping of feature model elements to Invar primitives.

scribed by Pohl et al. [135]. In Invar we take into account mandatory, optional,
alternative and or relationships as they offer a straight way to map OVM to
Invar. A mapping of a mandatory relationship between a mandatory VP and
a V is not necessary, since this does not define any variability to be configured.
If the mapping of the mandatory relationship is between an optional VP and
a V, then we map that relationship as an Alternative question type in Invar. Ev-
ery optional relationship is mapped as Alternative question type in Invar with
only one option. Every or-relationship is mapped as a MoreThanOne question
type in Invar. An alternative relationship maps to the Alternative question type
in Invar.

Order of Questions : In our implementation we use a random order as a
default option to traverse every VP in the model. However, as Invar offers the
ordering mechanisms presented in Section §9.2.4.1, we also allow the FaMa-
OVM Invar plugin to offer an alphabetical order and two orders based on the
amount of variants that every variation point has, one from more-to-less and
another one from less-to-more variants.

Feedback : FaMa-OVM allows to analyze OVM making it possible to give
feedback to the user. More specifically, FaMa-OVM returns to Invar the same
feedback as FaMa FM, i.e., (i) when a VP or a V is selected/deselected; (ii)
when the configuration is valid; (iii) if the actual configuration is valid as a
final product; (iv) how many valid configurations exist in the model; and (v)
how many questions are remaining to finish the configuration.

13.1.3 Plugging decision models to Invar

The DOPLER approach [54] allows defining decision models together with
the reusable assets of a product line (e.g., reusable software components) and

13.1. Integrating three different variability modeling approaches 219

Orthogonal Variability Modeling Invar

Variant Option

Variation point Option

Mandatory relationship (ignored, variant will be selected in any case)

Optional relationship Alternative with only one option (checkbox)

Or relationship MoreThanOne

Alternative choice Alternative

Table 13.2: Mapping of OVM model elements to Invar primitives.

mappings between the assets and the decisions. A domain-specific meta-
model defines the possible types of assets, their attributes, and dependencies.
In addition to hierarchical dependencies among decisions, other dependencies
(comparable to cross–tree constraints) are modeled using rules of the form if
condition then action [54]. The DOPLER tool suite [54] uses a Java-based Rule
Language (JRL) and execution engine as a back-end for evaluating the rules
defined in models. For a description of diverse application examples refer
to [54, 141].

The implementation of the DOPLER decision modeling approach to pro-
vide Invar configuration services was straightforward, as the DOPLER ap-
proach itself was designed to be used for questionnaire-based product con-
figuration [140]. The mapping from Invar to DOPLER in many cases only
required calling the respective method in the DOPLER API. Some of the key
mappings between the Invar configuration steps and DOPLER can be summa-
rized as follows:

Question Types: We had to map the Invar question types to DOPLER de-
cision types. DOPLER decision types are Boolean, String, Number and Enu-
meration. Enumeration decisions can be defined with a cardinality defining
the subset of the set of possible answers to the decision that might be selected
(e.g., 1:1, 1:n, 2:6). For the sake of simplicity, we have only implemented the
mapping for Boolean and Enumeration decision types. This is sufficient as
String and Number decisions can also be presented as an Enumeration de-
cision with one option (being a string or a number). More specifically, we
mapped the DOPLER Boolean decisions to the Alternative question type with
the options yes or no, the DOPLER enumeration decisions with cardinality 1:1
or 0:1 were also mapped to the question type Alternative (with the enumera-
tion literals as options), and the DOPLER enumeration decisions with all other
possible cardinalities were mapped to the Invar question type Optional.

220 Chapter 13. Validating Invar

Order of Questions: In DOPLER, the order of making decisions is defined
by the decisions’ dependencies. Top level decisions (which are not depen-
dent on other decisions) are presented and answered first. Decisions which
directly depend on top level decisions can be answered next, and so forth.
In addition to these hierarchical dependencies, DOPLER allows defining log-
ical dependencies that cross–cut the hierarchical tree structure. For example,
answering a particular decision might require changing the value of another
decision located somewhere else in the hierarchy. In the Invar configuration
service interface, the methods getFirstQuestion(), getNextQuestion() and getPrevi-

ousQuestion() implement the navigation strategy. When initializing a DOPLER

decision model with Invar, first a sorted list is built based on the decision hi-
erarchy. This list is frequently updated whenever new decisions are added
or the order of decisions is changed due to some rule defined in the DO-
PLER decision model. The order of decisions on one level (e.g., top level) is
randomly defined. Logical dependencies are currently not considered by the
first/next/previous methods because they would require “jumping” within
the model, which might confuse the end user. Whenever making a decision
which has an effect on another decision, this effect has to be presented sep-
arately, e.g., by informing the user that the other decision was changed and
asking her whether she wants to navigate to that decision. Invar allows to
define custom non–predefined orders. For DOPLER we do not delegate any
order options to the Invar ordering component, as DOPLER models have been
created keeping in mind a configuration process and has its own mechanisms
[54] to define the order as described above.

Feedback: In DOPLER, making decisions leads to the inclusion and/or
parametrization of assets related to the decisions. For example, selecting the
document management solution by answering a decision question leads to the
inclusion of the respective software component(s) implementing document
management. Answering a lower-level decision (e.g., on which type of scan-
ner is required) parameterizes the document management software compo-
nent. Feedback to the user of the Invar service implementation for DOPLER is
thus given by presenting her with the assets that are required for the product
currently being configured.

13.2 Configuring the Android privacy settings

To check if Invar applies to different scenarios, we decided to model an-
other domain by using Invar. Concretely we focused in the Android permis-
sion systems which has been already proven to be difficult to configure [34].
Moreover, the privacy of mobile phone users have been a trend discussion

13.2. Configuring the Android privacy settings 221

Decision Modeling (DOPLER) Invar

Boolean decisions Alternative with choices “yes” and “no”

Enumerations with cardinality 0:1 or 1:1 Alternative

Enumerations with other cardinalities Option

Table 13.3: Mapping of desicion model elements to Invar primitives.

over different security foras [63, 64]. Using Invar we can model the differ-
ent variability existing in the Android ecosystem so users can configure only
applications that meet a certain security criteria. Being able to configure prod-
ucts from diverse models allows us to determine is an application meet the
desired security criteria for a concrete user.

In the chapter §10 we show how Android hardware variability can be en-
coded in a feature model. Now, we model the different traceability relation-
ships in between the Android application structure, the emulator options de-
scribed in the chapter §10 and the permissions systems in Android. note that
in this context, the different models are developed and configured by differ-
ent entities. For example, the application are configured by the app developers
while the security requirements by the app users and the mobile platform con-
figurations to execute the app by different mobile phone manufacturers (or the
android emulator designers in our case).

This validation looks forward refuting the null hypothesis “Invar is not
suitable for a diversity of configuration scenarios”. In the case of not being
able to refute it we would need to accept the alternative hypothesis that asserts
that Invar can be used in different real-world scenarios.

13.2.1 The Android permissions system

Android is based in Linux, thus providing a privilege-separated access
system†2. This is, each application runs with different identity (user/group
ID). Also, different parts are also separated, thus, separating applications from
each others and from the operating system itself.

A finer-grained security access is also provided through a “permission”
mechanism that enforces restrictions on the specific operations that a partic-
ular process can perform. Table §13.4 shows the set of Android permissions

†2http://developer.android.com/guide/topics/manifest/uses-feature-element.html

222 Chapter 13. Validating Invar

Hardware feature Permission name Implies This Feature Requirement

Bluetooth BLUETOOTH android.hardware.bluetooth

BLUETOOTH ADMIN android.hardware.bluetooth

Camera CAMERA android.hardware.camera

android.hardware.camera.autofocus

Location ACCESS MOCK LOCATION android.hardware.location

ACCESS LOCATION EXTRA COMMANDS android.hardware.location

INSTALL LOCATION PROVIDER android.hardware.location

ACCESS COARSE LOCATION android.hardware.location.network

android.hardware.location

ACCESS FINE LOCATION android.hardware.location.gps

android.hardware.location

Microphone RECORD AUDIO android.hardware.microphone

Telephony CALL PHONE android.hardware.telephony

CALL PRIVILEGED android.hardware.telephony

MODIFY PHONE STATE android.hardware.telephony

PROCESS OUTGOING CALLS android.hardware.telephony

READ SMS android.hardware.telephony

RECEIVE SMS android.hardware.telephony

RECEIVE MMS android.hardware.telephony

RECEIVE WAP PUSH android.hardware.telephony

SEND SMS android.hardware.telephony

WRITE APN SETTINGS android.hardware.telephony

WRITE SMS android.hardware.telephony

Wi-Fi ACCESS WIFI STATE android.hardware.wifi

CHANGE WIFI STATE android.hardware.wifi

CHANGE WIFI MULTICAST STATE android.hardware.wifi

Table 13.4: Hardware features used by Android permissions.

related to the hardware features it requires. We will be using these relations in
between features and permissions to enable the configuration of valid prod-
ucts according to a certain security aspects.

13.2.2 Modeling the Android apps

Android has been built to dynamically adapt the applications developed
for the operating system to different mobile platform configurations with dif-
ferent screen resolutions, and connectivity capabilities. However, as each ap-
plication is developed by a different developer (or a set of), the structure itself
can differ in between different apps. We here present an OVM model that
encode the different variation points existing in an Android app.

13.2. Configuring the Android privacy settings 223

Manifest declaration. Each Android application contains a file called
MANIFEST.xml where all the different permissions required by the app are
specified. Also, in this file, the actions, activities, services and others are spec-
ified †3.

From the set of variation points described in the manifest.xml we consid-
ered the following ones:

• Compatible-screens. This section describes the different screens sup-
ported by an Android application. For defining a compatible screen we
need to provide the resolution and dpi of all bitmaps artifacts used in
our app.

• Uses-sdk. This section present the minimum Android SDK required for
the application to work in. This refers to the minimum Android version
to execute the application in.

• Uses-feature. Android apps may use different and diverse features
present in mobile platform configurations. Those features should be in-
cluded as references in the manifest.xml. An exhaustive list of all exist-
ing features in the ecosystem can be found at http://developer.android.

com/guide/topics/manifest/uses-feature-element.html.

• Uses-permisions. Android apps may use different permissions. Those
permissions needs to be declared explicitly in the manifest. Later on
this chapter we will define different IMD between uses permissions and
hardware features so we can reason and configure products that satisfy
our security requirements.

To model this variability existing in the manifest.xml file we used OVM
as a notation. Figure §13.1 shows the different variation points existing in
the android manifest.xml. Please note that not all the information existing in
the manifest.xml is presented in the Figure but only the ones related to the
permissions system.

It is important to remark that the different intra-model relationships ex-
isting in the Figure §13.1 have been obtained from the permissions descrip-
tions. This is, if in the manifest we declare that we use the feature an-
droid.hardware.bluetooth in our application it is mandatory to ask for the
BLUETOOTH permission. Also, note that these relationships are shown in
the Figure §13.1 with dashed blue lines.

†3http://developer.android.com/guide/topics/manifest/manifest-intro.html

224 Chapter 13. Validating Invar

��

�������
���

� �

�

�

�

�

�

�

������

��

�����
��������

� �

�

�

� �

�

�

��

���������
�������

�

�

�
����

�������

����
�

�

����

����

�������
�

����

�����

�
��������

�
�������

�
�������

� ���

������

���

�����

�����

���

�������������������������� ����������������������� ����������������� �������������������������

������������������ ������������� �������������������� ��������������������������

��

��������
�����������

� �

�

�

�

�

�

�

������

��������� ����������

��������������������������

������

�������
�����

��������

�����������������

�����������������

Figure 13.1: OVM encoding part of the Android application variability.

13.2.3 Modeling security related user preferences using do-

pler

Moreover, to being able to configure the Android app, we will define a new
Doppler model that will be use to pose the different security questions to the
user. For example, to determine if the configured product may expose data
through the wifi interface.

Figure §13.2 shows the dopler model that inquires about the security con-
cern when configuring the valid apps and mobile platform configurations ex-
isting in the Android ecosystem.

13.2.4 Android permissions as inter-model relationships

Now, what is still missing is the definition of the required inter-model re-
lationships. Defining the appropriated inter-model relationships enable Invar

to configure applications meeting mobile platform configurations and privacy

13.3. Evaluating the performance of different enactment strategies 225

i. Would you need to use bluetooth in your company?

(a) Would you allow users to add/remove bluetooth devices?

ii. Would you need to allow GSM networking capabilities?

iii. Would you need to allow third party apps to know your location?

iv. Would WIFI be an option for you employees?

v. Will you app users need access to the camera?

Figure 13.2: Dopler questions used to define the security criteria in Android.

settings. To do it so, we linked the app supported screens and the mobile
platform configurations available screens. This is marked with a circled in the
Figure §13.3 for the sake of simplicity. Also, we linked the application used
API with the emulator supported Android versions. Finally, we linked the
permissions with the different security concerns existing in the Dopler model.

Having modeled the whole chain of different artifacts describing the An-
droid permission system forces us to accept the alternative hypothesis which
states that Invar is able to help in a diversity of configuration scenarios.

13.3 Evaluating the performance of different enact-

ment strategies

Additionally to show how different multi product line settings can be sup-
ported with Invar, we also consider the performance validity of our approach.
In this section we thus show the time required to configure a set of different
random models with Invar in order to determine which order provides bet-
ter results. Executing this experiment, we determined the time required for
each variable ordering, showing the average time for automatically configur-
ing a model depending on the number of features and constraints. Further,
in this section we demonstrate the “stress” our current implementation is able
to withstand, by determining the maximum number of features and cross-tree
constraints that it can handle without exceeding an affordable amount of time.

In Invar, the configuration process of a multi product line is carried out by

226 Chapter 13. Validating Invar

��
��
���
��

��
��
���

��
�
���

��
�

�
��

��
�

��
���
��
��

��
�
��
���
���
��

��
��
��
�

��
�

��
�

��
��
�

��
��
��

��
��

�

��
��

��
��
��
��

��
��
��
��
��
�

��
��
��

��
��
��
���

��
��
��

�
��

�

��
���

��
�

��
��

��
��
��

���
��

��
���

�
��
�

��
��

���
�

��
�
�

��
��
�

��
�
�

�
��

��
�

��
��
��
��
�

���
��
�

��
�

��
�

��
��
�

��
��
�

��
��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
��
�

��
��
�

��
��
�

��
�

�
��

��
�

�
�
��
��

�
��

��
�

�
�
��

��
�

�
�
��

��
�

�

��
��

�
��

��
��

�
�
��

��
�

�
��

��

��
�
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��

�
���
�
��

��
�

�
�

� � �

� � �

��
���

�

��

��
��

�
��
��
��
��

�
�

� �

�
� �

�

��

��
��

��
�

��
��
��
�

���
��

��

�
��

��
��

��
��

��

��
��

�
��

�

�
��

��
��

�

��
��

�
��

��

�
�
��

��
��

�

�
�
��

��
��

�
�
��

��
��

�
��
� �

��
��
�

��
�

��
��
�

��
��
�

��
�

��
��
���

��
��
��

��
��
���

��
��
��

��
��
���

��
��
�

��
��
���
�
��
�

� ��
�
��
��
��

��
��
��
�

��
��
���

��
��
�

��
��
���
��
���
�

� ���
��
���

��
��
��
��
�

� ���
��
��

��
��
�

��
��
���

��
��

��
��
��
��
�

��
��
���

��
��
��

��
��
��
���

��
��

��

��
��

���
�

��
��

���
��
��

�
�

� � �

� � �

��
���

�

��
��

��
��

�
��

��
��
��

��

��
��

��
��
��

�
��

��
��

��
��

��
�
��

��
�
��

�

��
��

��
�

�
��

��
��

��
��
��

��
��

��
��

��
���

��
��

��
��

��
��

��
���

��
��

��
��
��

��
��
��
��
��
���
�

��
���

��
��
��
��
���
���
�

���
�
��
���
��
��
��
��
���
��
��
��
���
��
��
��
���
��
��
���
�
��
��
�

���
���
���
��
��
���
��
��
���
��
��
��
��
���
��
��
���
�
��
��
���
��
��
��
��
��
���
��

����
�
��
���
��
��
��
��
���
��
���
��
��

�
��
��
��
��
���
���
��
���
����
��

����
��
��
���
��
��
��
��
���
��
���
��
��
���
��
��
���
��
��
���
���
��
���
��
���
��
���
��

���
��
��
���
�
��
���
��
��
��
��
���
���
���
��
��
�
���
��
��
�

��
��
����
��
��
��
��
��
��
���
��
��
��
��
��
���
���
��
��
�
��
��

��
��
���
���

��
��
��

Figure 13.3: OVM encoding part of the Android application variability.

selecting or deselecting options from a set of questions. Invar allows to define
the order to present those questions to the user in different ways. Mendonca

13.3. Evaluating the performance of different enactment strategies 227

et al. [111] demonstrated that when analyzing a feature model, the way the
solver assigns values to the variables affects to the time required to analyze
the model. Our hypothesis is that the order used to present the options in the
configuration process to the user also affects the time needed by the back-end
tool to reason over the model.

To assess whether our hypothesis was correct we designed a set of tests.
To execute those tests we selected the FaMa feature model Invar plugin. We
selected it because it can be used with SAT or CSP solvers and offers the most
orders to be used in an Invar configuration process.

First, we started the testing with the FaMa Invar plugin using a CSP-based
solver. We noticed that our CSP implementation for the feature models was
not responsive as it should and rarely can reason over models with more than
200 features. Usually, when analyzing a feature model, SAT solvers are more
proficient to reason over bigger models than CSP solvers [155]. Therefore,
we created a new version of the FaMa Invar plugin, this time using a SAT
solver. We conjecture that our results will be similar if we used other solvers
than SAT but we wanted to test the approach with larger feature models in
order to increase the number of different scenarios where Invar can provide
configuration support based on feature models.

To verify our hypothesis we created a set of models to be configured by
the FaMa Invar plugin. Those models vary in numbers of features and per-
centages of cross–tree constraints. Its number of features goes from twenty
features to five hundred and from zero percent of cross–tree constraints to
twenty percent.

To automate the testing procedure we created an automation tool that
acted as the Invar core and the user in the configuration process. First an
Invar order was selected to perform the testing. Later, this tool created ran-
dom models using BeTTy [156] and uploaded them to Invar. To generate ran-
dom models, Betty provides a well-tested implementation for the algorithm
presented by Thum et al. [174]. After uploading the models, the tool acted
as the Invar core and iterated over the questions while randomly selecting
or deselecting options. This process was executed in one hundred iterations,
yielding the average of the time required. In Table §13.5 we describe the vari-
ables used to run our experiments.

Results are presented in Figure §13.4. This figure shows time in millisec-
onds (vertical axis) needed to configure a model with a given number of fea-
tures (horizontal axis) and ratio of constraints. Please note that the time is
shown on a logarithmic scale.

228 Chapter 13. Validating Invar

Hypotheses

Null Hypothe-
sis (H0)

The order used in the Invar configuration process affects the
performance of the back-end tool in an Invar configuration
process

Alt. Hypothe-
sis (H1)

There is not a significant difference in the average time re-
quired by the back-end tools in an Invar configuration process

Design

Dependent
Variable

Time required by the back-end tool to configure a model

Independent
Variable

Technique used for FM
generation

Levels: Random

Blocking Number of Features Levels: 20, 50, 100, 200, 500

Variables Percentage of Cross-
Tree Constraints (with
respect to the number
of features)

Levels: 0%, 5%, 10%, 20%

Order used when con-
figuring a model

Levels: preorder, inorder, postorder,
from more options to less, from
less options to more, alphabet-
ically

Constants SAT solver Value: Sat4j

Heuristic for variable
selection in the SAT
solver

Value: Default

Table 13.5: Hypotheses and design of experiment.

We can highlight that Inorder offers better time consumption results mak-
ing Invar more responsive. For example, as shown in Figure §13.4, for models
with two hundred features Inorder only requires half of the time of all other
orderings.

Our conclusion is that the order we select to configure an Invar model
affects the time required by the back-end tool to analyze it. Those results show
that the Inorder order requires less computational resources than the rest of
orders with the models used as input. Therefore, it should be used by default
in the scenarios where no specific order is required.

13.4. Summary 229

������������������������� �������������������������

�������������������������� ��������������������������

�

��

���

����

�����

������

�

��

���

����

�����

������

�� �� ��� ��� ���

�� �� ��� ��� ���

�� �� ��� ��� ���

�� �� ��� ��� ���

������������������

��
�
��
��
��
���
��
��
��
��

�������� ��������� ������� ���������� ���������� ��������������

Figure 13.4: Milliseconds per # features and percentage of constraints.

13.4 Summary

Variability intensive systems introduced new constraints and contracts for
the ussage of variability modelling techniques. Nowadays multiple practi-
tioners configure the same variability intensive systems and different views
are used by them to better configure a –mostly distributed– system.

In this chapter, we evaluated the Invar approach in front of two real sce-
narios. First, to solve the problem within the Android permission systems
(from the variability point of view). Second, in front of a ERP systems widely
used in the industry. Moreover, we went throug the different orderings possi-
ble when configure a variability model showing that in-order is the easiest in
terms of computing capabilities required.

230 Chapter 13. Validating Invar

Part VI

Final Remarks

Chapter 14

Conclusions and future work

Una verde, que se ha hecho de la aurora un cinturón, despliega sobre ti un ala de delicia al

concederte un espı́ritu triunfante.

Abu Asbag Ibn Arqam, Andalusian poet

14.1 Conclusions

In this dissertation we have shown that:

Improving the configuration, testing and evolution of variability intensive
systems by using the automated analysis of variability models is not only fea-
sible but also improves efficiency and reduces costs.

The automated analysis of feature models have been attracting researchers
attention for the last twenty-five years. Now, what was created to only sup-
port software product lines have been successfully applied to a variety of con-
texts. These contexts ranges from cloud systems to software ecosystems such
as Android. Moreover, as the research problems drift, new research challenges
appears. This motivates the need for new research and new solutions. New
research that while grounding in previous research, keeps on improving the
previous solutions.

In this thesis we faced some problems derived from the new applications
of the automated analysis of feature models to variability intensive systems.
Concretely, we have explored the testing and evolution, the product configu-
ration and the multi-model variability analysis areas in this thesis. To show

234 Chapter 14. Conclusions and future work

the validity of our approach we have been extensively evaluated and vali-
dated our solutions in different real scenarios coming from our collaboration
with different industrial partners. Also, motivating scenarios were crawled
from real software ecosystems such as Android.

14.1.1 Discussion and open challenges

In the Chapter §1 we detected and enumerated the research questions we
were willing to address in this thesis document. Table §14.1 shows the chap-
ters where we target each question with the contributions we published. Also,
in the next paragraph we will go trough all different research questions and
explaining how we addressed them.

R1 What is the current status of the automated analysis of feature mod-
els? We performed the mapping study you can find in Chapter §4. In
this mapping study we updated the state of the art documented by Be-
navides et al. [19]

R2 What are the current trends in the area? We performed key-wording
process, analyzing more than 250 abstracts and introduction. From this
key-wording process we detected five main trends in the area. Namely,
i) Testing and evolution of feature models; ii) Product configuration and
derivation; iii)Variability and modeling expressiveness; iv)Multi-model
variability analysis; and v) Reverse engineering of feature models.

R3 Where does the community publish? As part of the mapping study
we also categorized and identified the different foras that more attracted
researchers from the area of feature model automated analysis attention.

R4 How can we improve the testing of variability intensive systems? To
improve the testing of variability intensive systems we chose to describe
the variability contained in a feature model, and add quality attribute
information which can be exploited to prune, prioritize and package sets
of products to tests.

R5 How can we select the most profitable set of products in an variability
intensive system? We chose the Android ecosystem as a target to val-
idate our approach. We have worked within the ATTACK cloud team
to implement the variability aware testing and notice that using market-
share data we improve the efficiency of our tests.

R6 How can we manage to select a good covering set that optimizes one
or multiple stakeholders criteria? To implement a solution that copes

14.1. Conclusions 235

with multiple stakeholders criteria, we encoded the variability existing
in a feature model and developed a t-wise covering set operation that
takes into account quality attributes. For taking into account multiple
stakeholders opinion, we implemented an a-priori solution and used a
genetic algorithm which proved to be efficient enough for the MOTIV
project.

R7 How can we grant the safeness when deriving a set of configurations
in a variability intensive system that spans over multiple configura-
tion steps? The life of a variability intensive system spans over mul-
tiple time slots. Usually, companies design the transition in between
different time slots. To model and optimize this transition in between
configurations we encoded the whole problem as a CSP and validated
our approach with our aeronautics industry partners.

R8 How can we enable different practitioners to work in tandem over
multiple models describing a variability intensive system? The large
amount of variability encoded in a variability intensive system makes
unfeasible to have all the variability encoded in only one model. Also,
users might have different privileges so they can only configure some
parts. To help in this scenario we developed a software solution than
enables the configuration of variability intensive systems using differ-
ent modeling paradigms such as feature models, orthogonal variability
models and dopler models.

Research question Chapter Published contributions

R1 §4 –

R2 §4 –

R3 §4 –

R4 §6,§10 [71, 177]

R5 §6,§10 [71, 177]

R6 §7,§11 [2, 7, 69]

R7 §8,§12 [179]

R8 §9,§13 [55, 57]

Table 14.1: Links between chapters, research questions and publications.

Then, back to the original question:

236 Chapter 14. Conclusions and future work

How to apply the automated analysis of feature model in variability intensive

systems?

By addressing the previous research questions we can now assert that is
possible to apply the automated analysis of variability models to variability
intensive systems. This also incurs in cost reduction and increased efficiency
of software engineering activities such as configuration, testing and evolution.

14.2 Future work

In addition to the future work mentioned in each chapter of this disser-
tation here we show other future work required to cover all current research
trends in the automated analysis of feature models.

Reverse engineering of feature models: Nowadays it is a common prac-
tice to offer a system in many variants such as community, professional, or
academic editions. Each variant provides different functionality described in
terms of features. As practices are becoming more pervasive, reverse engineer-
ing feature models from the feature descriptions of each individual variant has
become an active research subject. Then, is appealing to apply reverse engi-
neering techniques to variability intensive system. Admittedly we already
stared to work in this direction obtaining some publications such as [104, 105].

Error detection and correction in variability intensive systems:Due to the
increasing size and complexity of feature models, anomalies in terms of in-
consistencies and redundancies can occur which lead to increased efforts re-
lated to feature model development and maintenance. We plan to introduce
new knowledge representations which serve as a basis for the explanation of
anomalies in feature models. Again, we also started to work in this area col-
laborating with some authors [17, 66].

Scalable analysis of feature models: The large size of models encoding
variability intensive systems variability require large computation capabili-
ties. Also, the new constructs enhance the combinatorial explosion which
makes unusable variability intensive systems analysis techniques. As part
of our future work, we will explore the different ways of better scaling the
automated analysis of feature models.

Industrial applications: We think that some of the techniques developed
during the writting of this thesis can be applied in the industry. For example,
is appealing to develop a cloud system for testing Android applications that
enables the optimization of multiple parameters. We currently are in context

14.2. Future work 237

with some companies in order to move this idea forward. Also, regarding the
video-surveillance testing, we are collaborating with the INPIXAL company
so we can offer a platform for better testing those algorithms.

On the needing of new variability constructs: During the elaboration of
this thesis we detected that current basic variability mechanisms are useful
but not enough, attributes and multi-features are of prior importance, and
meta-information is relevant for efficient variability analysis. In addition, we
questioned the existence of one-size-fits-all variability modeling solution ap-
plicable in any industry. Yet, some common needs for modeling variability
are becoming apparent such as support for attributes and multi-features. We
already stared to investigate this in the context of video-sequences testing [8]

238 Chapter 14. Conclusions and future work

Part VII

Appendix

Chapter 15

WindRose

El que no llora no mama

Dicho popular, Andalusian people

F eature modelling is the “de facto” standard to describe the common and
variant parts of software product lines. Different tools, approaches and

operations for the automated analysis of feature models have been proposed
in the last 20 years. However, the installation and usage of those tools use to be
time consuming. In this chapter we present the WindRose IDE, a cloud based
IDE that allows the storage, edition and analysis of feature models while being
executed in the cloud. WindRose integrates different feature model analysis
operations such as Valid or Number of Products. This reasoning capabilities
rely in different well stablished tools like FaMa or FaMiliar. Moreover, Win-
dRose generates a public repository where practitioners can share and dis-
tribute their models†1.

†1Part of this material have been published in the JISBD conference[70]

242 Chapter 15. WindRose

15.1 Introduction

Software product lines (SPL) are about developing a set of different soft-
ware products that share some common functionality [38]. Feature models
(FMs) is the standard to represent the variants and commonalities of a soft-
ware product line. A feature model can encode a large set of products such
as those describing operating systems variability [160] or cloud computing
providers [73].

To extract useful information from feature models, researchers and practi-
tioners proposed the use of computer-aided techniques. This is commonly
called Automated Analysis of feature models. In the last 20 years of fea-
ture modeling, practitioners released different analysis tools and more than
30 operations were proposed in the literature such as “NumberOfProducts”
or “ValidModel”.

Currently there is a diversity of tools, operations and textual formats.
However, the tediousness of configuring each tool hinders the collaboration
and reuse of them. In this chapter, we present the WindRose tool. WindRose is
a cloud-based IDE that enables the analysis operations execution in the cloud.
This easies off the requirement of installing and configuring each tool and en-
ables the collaboration between practitioners when designing a feature model.

The main features of WindRose are:

• Allows the simultaneous editing of feature models in textual language.

• Enables the reasoning of feature models using well-tested tools such as
FaMa or FaMiLiAr.

• Offers two repositories, the first public, where all users can share their
models, the second private, where researchers can build their models
without prying eyes.

• Is open source, this is, practitioners can install it in their own server for
private use.

15.2 WindRose cloud-based IDE

WindRose is a cloud-based IDE that integrates different automated rea-
soning tools. It has been developed on top of the CODIAD IDE (http://codiad.

15.2. WindRose cloud-based IDE 243

com/) which has been developed by the MIT and provides useful collaboration
tools and a plugin system out of the box. Figure §15.1 shows a brief overview
of the architecture. Several parts of CODIAD have been extended, for exam-
ple, the plugin system which in the case of WindRose use REST web-services
to communicate and isolate from the different tool implementations.

�������������

���������������

��������������

�����������

��
��
��
��
�

���
���

�
��
���

�

�������������������

����������

������
����������

�������
����������

�������

�
���

��
��

Figure 15.1: WindRose architecture overview.

15.2.1 Available plugins

WindRose offers out of the box integration with different analysis tools.
In WindRose, each plugin is associate with one textual format. This is used
to filter by the file extension the available analysis operations. Some plugin
implementations are:

FaMaTS-SAT FaMa [20] is a framework for building variability analysis
tools. Different tools have been build on top of it’s architecture [68, 145,
156]. It also offers different ways of consume its services: i) by OsGi; i)
by Web services (REST and SOAP); iii) by terminal and iv) by importing
the libraries in a java program. Concretely we configured this tool to use

244 Chapter 15. WindRose

the SAT4j [23] based implementation of the analysis operations for tra-
ditional feature models. This tool is associated with the files having the
.fama extension.

FaMaTS-CSP for Attributed FM FaMa enables the analysis of attributed fea-
ture models. Internally this plugin uses the Choco2 solver http://www.

emn.fr/z-info/choco-solver/ as back-end for executing the analysis oper-
ations. This plugin is associated with the extension .afm and .vm

FaMiLiAr FaMiLiar[4] is a framework for managing families of products
while enabling operations such as merging different models. This plug-
in is associated with the extension .tvl.

VANE This is a proposal developed by INRIA Rennes in France. It allows
to obtain the pair-wise coverages that maximizes a custom attribute
value [69]. It is associated with the vm [7] file format.

TESALIA This is a proposal for the testing of feature models containing qual-
ity information. This tool is also used internally as part of the ATAACK
cloud [177] and help with the testing of Android apps. This plugin is
associated with the afm file format.

15.2.2 Analysis operations

WindRose offers out of the box different feature model operations. Note
that these operation can be extending by implementing new plugins. Cur-
rently the supported operations are:

• Valid Model. This operations checks the semantic correctness of a feature
model. This is, if it represent at least one product. This operation is
implemented by the FaMaTS-SAT, FaMaTS-CSP for Attributed FM and
FaMiLiAr plugins.

• Valid Configuration. This operation takes a model and a partial config-
uration and check if the configuration is correct or not. This operation is
implemented by the FaMaTS-SAT and FaMaTS-CSP for Attributed FM
plugins.

• Valid Product. This operation takes a product (a.k.a non-partial con-
figuration) and checks its validity on top of the selected model. This
operation is implemented by the FaMaTS-SAT and FaMaTS-CSP for At-
tributed FM plugins.

15.2. WindRose cloud-based IDE 245

• All products. This operation print out the list of valid products from a
feature model. FaMaTS-SAT, FaMaTS-CSP for Attributed FM and Fa-
MiLiAr plugins.

• Dead Features. This operation detects those features that cannot be se-
lected because of the topology of the model. This operation is imple-
mented by the FaMaTS-SAT and FaMaTS-CSP for Attributed FM plug-
ins.

• Core Features. This operation returns the features present in all prod-
ucts. This operation is implemented by the FaMaTS-SAT and FaMaTS-
CSP for Attributed FM plugins.

• Pair-Wise. This operation returns a random pairwise coverage.This op-
eration is implemented by the VANE plugin.

• Pair-Wise with attributes. This operation returns the pair-wise cover-
age that maximize a concrete attribute value. This operation returns a
random pairwise coverage.This operation is implemented by the VANE
plugin.

• Prioritization. This operation returns the list of products but ordered by
a function between attributes. This operation returns a random pairwise
coverage. This operation is implemented by the TESALIA plugin.

• Packaging. This operation apply a knapsack over products contain-
ing value and cost definition. This operation is implemented by the
TESALIA plugin.

• Prunning. This operation returns the set of products that meet a cus-
tom constraint over attributes. This operation is implemented by the
TESALIA plugin.

15.2.3 Repositories

WindRose offers two repositories. In the first hand, a public repository
that does not require registration and allows users to download any model
stored and execute analysis operations depending on the size of the models.
For example, the operation that retrieves all valid configurations from a model
is restricted to small-size models in the public repository because of the large
computing capabilities required to execute the operation. However, models
in the public repository can not be overwritten. In the second hand, regis-
tered users can work privately with all-size models. Also these models can be

246 Chapter 15. WindRose

(a) WindRose home page (b) WindRose login page

(c) WindRose public repository FaMaTS-
SAT execution

(d) WindRose public repository FaMaTS-
SAT result

Figure 15.2: Screenshots of WindRose in action.

moved to the public repository so they can be publicly released. Figure§15.2
shows some screenshots of WindRose public repository.

Another characteristic of the WindRose public repository is that allows re-
searchers to associate the model with a publication. This is to store citation
data (in bibtex format) among the model itself.

Chapter 16

Foras where the community publish

In this section we show the different foras we found while doing the map-
ping study showed in Chapter §4.

− International Symposium on Methodologies for Intelligent Systems (ISMIS)
− International Symposium of Applications of Graph Transformation With Indus-

trial Relevance (AGTIVE)
− International Nordic Conference on Secure IT Systems (NordSec)
− International Conference of Testing Software and Systems (ICTSS)
− International Working Conference on Requirements Engineering: Foundation

for Software Quality (REFSQ 2013)
− International Workshop on Knowledge Engineering and Software Engineering

(KESE)
− International Conference on Integrated Formal Methods (iFM)
− International Conference of Distributed Computing and Internet Technology

(ICDCIT)
− The Workshop on Information Systems Economics (WISE)
− International Conference on Model Transformation (ICMT)
− International Conference on Aspect-oriented Software Development (AOSD)
− European Conference on Modeling Foundations and Applications (ECMFA)

(International)
− International Symposium on Applied Computing (SAC)
− International Conference on Engineering of Complex Computer Systems

(ICECCS)
− International Conference on Software Engineering Research (SERP)
− International Conference on Software Language Engineering (SLE)
− International FME Workshop on Formal Methods in Software Engineering

(FORMALISE)
− International Workshop on Variability & Composition (VariComp)
− International Conference on Formal Verification of Object-Oriented Software

(FoVeOOS)

248 Chapter 16. Foras where the community publish

− International Conference on Software Testing, Verification and Validation
Workshops (ICSTW)

− International Conference on Formal Methods for Components and Objects
(FMCO)

− International Comparing *Requirements* Modeling Approaches workshop
(CMA@RE)

− International Symposium Meeting on Foundations of Software Engineering
(FSE)

− International Conference on Advances in Conceptual Modeling: Recent Devel-
opments and New Directions (ER)

− International Requirements Engineering Conference (RE)
− International Configuration Workshop (CW)
− International Workshop on automated configuration and tailoring of applica-

tions (ACoTA)
− International Conference on Cloud Computing and Services Science (CLOSER)
− International Workshop on High-Performance Stencil Computations (HiSten-

cils)
− International Conference on Concurrent Engineering (ISPE CE)
− Working Conference on Reverse Engineering (WCRE)
− International Workshop on Advances in Model Based Testing (A-MOST)
− International Symposium on Software Reliability Engineering (ISSRE)
− International Workshop on Configuration Systems (ECAI)
− International Conference on Principles and Practice of Constraint Programming

(CP)
− International Conference on Application of Information and Communication

Technologies (AICT)
− International Conference on Object oriented programming systems languages

and applications (OOPSLA)
− International Conference on Concurrent Engineering (CE)
− International Conference on Information Resources Management (Conf-IRM)
− International Conference on Services Computing (SCC)
− International Conference on Advances in Mobile Computing and Multimedia

(MoMM)
− International Conference on Software Maintenance (ICSM)
− Working Conference on Software Visualization (VISSOFT)
− Conferencia Latinoamericana En Informatica (CLEI)
− International Conference on Evaluation of Novel Approaches to Software Engi-

neering (ENASE)
− International Workshop on Satisfiability Modulo Theories (SMT)
− Asia-Pacific Software Engineering Conference (APSEC) (International)
− International Conference on Software Engineering and Advanced Applications

(SEAA)
− Software Engineering Conference (APSEC) (International)
− International Symposium on Software Engineering for Adaptive and Self-

Managing Systems (SEAMS)

249

− International symposium on Engineering interactive computing systems (EICS)
− International Workshop on Software Product Management (IWSPM)
− International Workshop on Requirements Engineering Practices on Software

Product Line Engineering (REPOS)
− African Conference on Software Engineering and Applied Computing (AC-

SEAC)
− International Conference on Concurrent Engineering (IPSE)
− First International Workshop on Combining Modeling and Search-Based Soft-

ware Engineering (CMSBSE)
− International Workshop on Recommendation Systems for Software Engineering

(RSSE)
− International Workshop on Replication in Empirical Software Engineering Re-

search (RESER)
− International Workshop on Multi Product Line Engineering (MultiPLE)
− International Conference on Software Testing, Verification and Validation

Workshop (ICSTW)
− International Annual Conference on Systems Engineering Research (CSER

2013)
− The Genetic and Evolutionary Computation Conference (GECCO)
− International Conference on Software Quality (ICSQ)
− International Conference on Towards a Service-based Internet (ServiceWave)
− International Workshop on Variability-intensive Systems Testing, Validation,

and Verification (VAST)
− International Workshop on Knowledge-Oriented Product Line Engineering

(KOPLE)
− International Conference on Software Engineering and Formal Methods

(SEFM)

250 Chapter 16. Foras where the community publish

Bibliography

[1] A. Abran and J. Moore. Guide to the software engineering body of
knowledge. IEEE Computer Society, 2004

[2] M. Acher, M. Alferez, J. A. Galindo, P. Romenteau, and B. Baudry. Vivid:
A variability-based tool for synthesizing video sequences. In 18th Inter-
national Software Product Line Conference (SPLC’14), tool track, Flo-
rence, Italie, 2014.

[3] M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden, P. Collet,
and P. Lahire. On extracting feature models from product descriptions.
In Proceedings of the Sixth International Workshop on Variability Mod-
eling of Software-Intensive Systems, VaMoS ’12, pages 45–54, New York,
NY, USA, 2012. ACM

[4] M. Acher, P. Collet, P. Lahire, and R. France. Familiar: A domain-specific
language for large scale management of feature models. Science of Com-
puter Programming (SCP) Special issue on programming languages,
page 22, 2013

[5] M. Acher, P. Heymans, P. Collet, C. Quinton, P. Lahire, and P. Merle.
Feature model differences. In International Conference on Advanced
Information Systems Engineering (CAISE), LNCS. Springer, jun 2012.

[6] M. Akbar, E. Manning, G. Shoja, and S. Khan. Heuristic solutions for
the multiple-choice multi-dimension knapsack problem. Computational
Science-ICCS 2001, pages 659–668, 2001

[7] M. Alférez, J. A. Galindo, M. Acher, and B. Baudry. Modeling Variability
in the Video Domain: Language and Experience Report. Rapport de
recherche RR-8576, INRIA, July 2014.

[8] M. Alférez, J. A. Galindo, M. Acher, B. Baudry, and D. Benavides. Mod-
eling variability in the video domain: Language and experience report.
Information and Software Technology Journal, 2015

252 Bibliography

[9] S. Apel, D. Batory, C. Kästner, and G. Saake. Feature-Oriented Software
Product Lines. Springer, 2013.

[10] K. Bak, K. Czarnecki, and A. Wasowski. Feature and meta-models in
clafer: Mixed, specialized, and coupled. In International Conference on
Software Language Engineering (SLE), SLE’10, pages 102–122, Berlin,
Heidelberg, 2011. Springer-Verlag.

[11] D. Batory. Feature-oriented programming and the ahead tool suite. In
Proceedings of the 26th International Conference on Software Engineer-
ing, pages 702–703. IEEE Computer Society, 2004

[12] D. Batory. Feature models, grammars, and propositional formulas. Soft-
ware Product Lines, pages 7–20, 2005

[13] D. Batory, D. Benavides, and A. Ruiz-Cortes. Automated analysis of
feature models: challenges ahead. Communications of the ACM, 49(12):
45–47, 2006

[14] K. Beck. Test-driven development: by example. Addison-Wesley Pro-
fessional, 2003

[15] B. Beizer. Software testing techniques. Dreamtech Press, 2003

[16] D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Automated reasoning on
feature models. In Advanced Information Systems Engineering, pages
381–390. Springer, 2005

[17] D. Benavides, A. Felfernig, J. A. Galindo, and F. Reinfrank. Automated
analysis in feature modelling and product configuration. In Interna-
tional Conference on Software Reuse (ICSR), pages 160–175, 2013.

[18] D. Benavides and J. G. Galindo. Variability management in an unaware
software product line company: An experience report. In Proceed-
ings of the Eighth International Workshop on Variability Modelling of
Software-Intensive Systems, VaMoS ’14, pages 5:1–5:6, New York, NY,
USA, 2013. ACM

[19] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of
feature models 20 years later: a literature review. Information Systems,
35(6), 2010

[20] D. Benavides, P. Trinidad, A. R. Cortés, and S. Segura. FaMa, chapter
FaMa, pages 163–171. Springer Berlin Heidelberg, 2013

Bibliography 253

[21] D. Benavides, P. Trinidad, A. Ruiz-Cortés, and S. Segura. Fama. In Sys-
tems and Software Variability Management, pages 163–171. Springer,
2013

[22] Berger, Thorsten and Rublack, Ralf and Nair, Divya and Atlee, Joanne
M. and Becker, Martin and Czarnecki, Krzysztof and Wasowski, An-
drzej. A survey of variability modeling in industrial practice. In Va-
MoS’13. ACM, 2013

[23] D. L. Berre and A. Parrain. The sat4j library, release 2.2. JSAT, 7(2-3):
59–6, 2010

[24] A. Bertolino and S. Gnesi. Use case-based testing of product lines. ACM
SIGSOFT Software Engineering Notes, 28(5):355–358, 2003

[25] D. Beuche. Variant management with pure:: variants. Pure-systems
GmbH, Tech. Rep, 2003

[26] D. Binkley and I. C. Society. Test Cost Reduction. 23(8):498–516, 1997

[27] B. Boehm. Value-Based Software Engineering : Seven Key Elements and
Ethical Considerations. (February), 2005

[28] B. Boehm and K. Sullivan. Software Economics : A Roadmap. pages
319–343, 1992

[29] J. Bosch. From software product lines to software ecosystems. In SPLC
2009, pages 111–119, San Francisco, CA, USA, 2009. ACM ICPS

[30] J. Bosch. Maturity and Evolution in Software Product Lines: Ap-
proaches, Artefacts and Organization. pages 257–271, August 2002.

[31] G. Botterweck, A. Pleuss, A. Polzer, and S. Kowalewski. Towards
feature-driven planning of product-line evolution. In Proceedings of
the First International Workshop on Feature-Oriented Software Devel-
opment, pages 109–116. ACM, 2009

[32] G. Botterweck, M. Janota, and D. Schneeweiss. A design of a con-
figurable feature model configurator. In 3rd International Workshop
on Variability Modelling of Software-intensive Systems (VaMoS 2009),
pages 165–168, Sevilla, Spain, 2009. ICB Research Report vol. 29

[33] R. Buhrdorf, D. Churchett, and C. Krueger. Salion’s experience with a
reactive software product line approach. Software Product-Family En-
gineering, pages 317–322, 2004

254 Bibliography

[34] J. Burns. Developing secure mobile applications for android, 2008

[35] L. Chen, M. Babar, and N. Ali. Variability management in software prod-
uct lines: A systematic review. In SPLC 2009, pages 81–90, San Francisco,
CA, USA, 2009. ACM ICPS

[36] A. Classen, A. Hubaux, and P. Heymans. A formal semantics for multi-
level staged configuration. In Proceedings of the Workshop on Variabil-
ity Modelling of Software-intensive Systems (VaMoS), pages 51–60, 2009

[37] A. Classen, Q. Boucher, and P. Heymans. A text-based approach to fea-
ture modelling: Syntax and semantics of tvl. Science of Computer Pro-
gramming, 76(12):1130 – 1143, 2011

[38] P. Clements and L. Northrop. Software product lines. Addison-Wesley
Boston, 2002

[39] C. A. Coello Coello. Evolutionary multi-objective optimization: a his-
torical view of the field. Computational Intelligence Magazine, IEEE, 1
(1):28–36, 2006

[40] E. Coffman Jr, M. Garey, and D. Johnson. Approximation algorithms
for bin packing: A survey. In Approximation algorithms for NP-hard
problems, pages 46–93. PWS Publishing Co., 1996

[41] M. B. Cohen, M. B. Dwyer, and J. Shi. Coverage and adequacy in soft-
ware product line testing. Proceedings of the ISSTA 2006 workshop on
Role of software architecture for testing and analysis - ROSATEA ’06,
pages 53–63, 2006

[42] M. B. Cohen, M. B. Dwyer, and I. C. Society. Constructing Interaction
Test Suites for Highly-Configurable Systems in the Presence of Con-
straints : A Greedy Approach. 34(5):633–650, 2008

[43] T. E. Colanzi, W. K. G. Assunção, D. de Freitas Guilhermino Trindade,
C. A. Zorzo, and S. R. Vergilio. Evaluating Different Strategies for Test-
ing Software Product Lines. Journal of Electronic Testing, 29(1):9–24,
February 2013

[44] B. Combemale, O. Barais, O. Alam, and J. Kienzle. Using cvl to oper-
ationalize product line development with reusable aspect models. In
VARiability for You Workshop: Variability Modeling Made Useful for
Everyone (VARY), VARY ’12, pages 9–14, New York, NY, USA, 2012.
ACM.

Bibliography 255

[45] S. P. Consortium. Synthesis guidebook. Technical report, SPC-91122-
MC. Herndon, Virginia: Software Productivity Consortium, 1991

[46] M. Cordy, P.-Y. Schobbens, P. Heymans, and A. Legay. Beyond boolean
product-line model checking: Dealing with feature attributes and multi-
features. In Software Engineering (ICSE), 2013 35th International Con-
ference on, pages 472–481, May 2013

[47] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration us-
ing feature models. Software Product Lines Conference, pages 162–164,
2004

[48] K. Czarnecki and A. Wasowski. Feature diagrams and logics: There and
back again. In Software Product Line Conference, 2007. SPLC 2007. 11th
International, pages 23–34, 2007

[49] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Pat-
ton, and B. M. Horowitz. Model-based testing in practice. In PROC.
INTL. CONF. ON SOFTWARE ENGINEERING (ICSE ’99), pages 285–
294, 1999

[50] S. M. Davis. Future perfect. 1987

[51] K. Deb. Multi-objective optimization. Multi-objective optimization us-
ing evolutionary algorithms, pages 13–46, 2001

[52] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii. Evolutionary Computation, IEEE
Transactions on, 6(2):182–197, 2002

[53] G. Deng, D. C. Schmidt, A. Gokhale, J. Gray, Y. Lin, and G. Lenz. Evo-
lution in model-driven software product-line architectures. Designing
Software-Intensive Systems: Methods and Principles, 2008

[54] D. Dhungana, P. Grünbacher, and R. Rabiser. The DOPLER meta-tool
for decision-oriented variability modeling: A multiple case study. Au-
tomated Software Engineering, 18(1):77–114, 2011

[55] D. Dhungana, D. Seichter, G. Botterweck, R. Rabiser, P. Grünbacher,
D. Benavides, and J. Galindo. Integrating heterogeneous variability
modeling approaches with invar. In 7th International Workshop on
Variability Modelling of Software-Intensive Systems (VaMoS 2013), Pisa,
Italy, 2013. ACM

[56] D. Dhungana, D. Seichter, G. Botterweck, R. Rabiser, P. Grünbacher,
D. Benavides, and J. Galindo. Configuration of multi product lines by

256 Bibliography

bridging heterogeneous variability modeling approaches. In Interna-
tional Software Product Line Conference (SPLC), pages 120–129, 2011.

[57] D. Dhungana, D. Seichter, G. Botterweck, R. Rabiser, P. Grünbacher,
D. Benavides, and J. Galindo. Configuration of multi product lines
by bridging heterogeneous variability modeling approaches. In E. S.
de Almeida, T. Kishi, C. Schwanninger, I. John, and K. Schmid, editors,
SPLC, pages 120–129. IEEE, 2011

[58] I. do Carmo Machado, J. D. McGregor, and E. Santana de Almeida.
Strategies for testing products in software product lines. ACM SIGSOFT
Software Engineering Notes, 37(6):1, November 2012

[59] B. Dougherty, J. White, R. Kegley, J. Preston, D. Schmidt, and
A. Gokhale. Optimizing integrated application performance with cache-
aware metascheduling. On the Move to Meaningful Internet Systems:
OTM 2011, pages 432–450, 2011

[60] B. Dougherty, J. White, and D. C. Schmidt. Model-driven auto-scaling of
green cloud computing infrastructure. Future Generation Comp. Syst.,
28(2):371–378, 2012

[61] E. Dustin, J. Rashka, and J. Paul. Automated software testing: intro-
duction, management, and performance. Addison-Wesley Professional,
1999

[62] C. Elsner, G. Botterweck, D. Lohmann, and W. Schroder-Preikschat.
Variability in time—product line variability and evolution revisited.
2010

[63] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of android
application security. In USENIX security symposium, volume 2, page 2,
2011

[64] W. Enck, M. Ongtang, P. D. McDaniel, and others. Understanding an-
droid security. IEEE security & privacy, 7(1):50–57, 2009

[65] L. Etxeberria and G. Sagardui. Variability driven quality evaluation
in software product lines. In Software Product Line Conference, 2008.
SPLC’08. 12th International, pages 243–252. IEEE, 2008

[66] A. Felfernig, D. Benavides, J. Galindo, and F. Reinfrank. Towards
anomaly explanations in feature models. In International Configuration
Workshop (CW), pages 117–124, 2013.

Bibliography 257

[67] G. Fleischanderl, G. E. Friedrich, A. Haselböck, H. Schreiner, and
M. Stumptner. Configuring large systems using generative constraint
satisfaction. IEEE Intelligent Systems, 13(4):59–68, July 1998

[68] J. Galindo, D. Benavides, and S. Segura. Debian packages repositories as
software product line models. towards automated analysis. In ACoTA,
pages 29–34, 2010

[69] J. A. Galindo, M. Alférez, M. Acher, B. Baudry, and D. Benavides. A
variability-based testing approach for synthesizing video sequences. In
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ISSTA 2014, pages 293–303, New York, NY, USA, 2014.
ACM

[70] J. A. Galindo, D. Benavides, M. Alférez, M. Acher, and B. Baudry. Win-
dRose: A Cloud-Based Integrated Development Environment for the
Automated Analysis of Feature Models. In Jornadas de Ingenierı́a del
Software y Bases de Datos (JISBD) Sistedes;2014., 2014

[71] J. A. Galindo, H. Turner, D. Benavides, and J. White. Testing variability
intensive systems using automated analysis. an application in android.
Software Quality Journal, 2014

[72] J. A. Galindo, D. Dhungana, G. Botterweck, R. Rabiser, P. Grünbacher,
and D. Benavides. Supporting distributed product configuration by in-
tegrating heterogeneous variability modeling approaches. Information
and Software Technology, 2014

[73] J. Garcı́a-Galán, O. F. Rana, P. Trinidad, and A. Ruiz-Cortés. Migrating
to the cloud: a software product line based analysis. In 3rd International
Conference on Cloud Computing and Services Science (CLOSER’13),
2013

[74] J. Garcı́a-Galán, P. Trinidad, J. A.Galindo, and A. Ruiz-Cortés. Tool sup-
ported error detection and explanations on feature models. In Proc. of
2nd International Workshop on Formal Methods and Analysis in Soft-
ware Product Line Engineering (FMSPLE 2011), co-located with Soft-
ware Product Line Conference 2011 (SPLC 2011), pages 6–6, Munich,
08/2011 2011. Fraunhofer, Fraunhofer

[75] C. D. Gill, J. P. Loyall, R. E. Schantz, M. Atighetch, J. M. Gossett, D. Gor-
man, and D. C. Schmidt. Integrated adaptive qos management in mid-
dleware: A case study. In Real-Time and Embedded Technology and
Applications Symposium, 2004. Proceedings. RTAS 2004. 10th IEEE,
pages 276–285. IEEE, 2004

258 Bibliography

[76] A. Hartman. Software and hardware testing using combinatorial cov-
ering suites. In Graph Theory, Combinatorics and Algorithms, pages
237–266. Springer, 2005

[77] H. Hartmann, T. Trew, and A. Matsinger. Supplier independent feature
modelling. In Proceedings of the 13th International Software Product
Line Conference, pages 191–200. Carnegie Mellon University, 2009

[78] E. Haslinger, R. Lopez-Herrejon, and A. Egyed. Reverse engineering
feature models from programs’ feature sets. In Reverse Engineering
(WCRE), 2011 18th Working Conference on, pages 308–312, 2011

[79] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. Le Traon. To-
wards automated testing and fixing of re-engineered feature models. In
International Conference on Software Engineering (ICSE), pages 1245–
1248, 2013.

[80] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and Y. L.
Traon. Bypassing the combinatorial explosion: Using similarity to gen-
erate and prioritize t-wise test suites for large software product lines.
IEEE Transactions on Software Engineering, 2014.

[81] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. L. Traon. Multi-
objective test generation for software product lines. In Proceedings
of the 17th International Software Product Line Conference, SPLC ’13,
pages 62–71, New York, NY, USA, 2013. ACM

[82] A. Hubaux, A. Classen, and P. Heymans. Formal modelling of feature
configuration workflows. In Proceedings of the 13th International Soft-
ware Product Line Conference, SPLC ’09, pages 221–230, Pittsburgh, PA,
USA, 2009. Carnegie Mellon University

[83] C. Hwan, P. Kim, and K. Czarnecki. Synchronizing cardinality-based
feature models and their specializations. In Model Driven Architecture–
Foundations and Applications, pages 331–348. Springer, 2005

[84] S. Ida and S. Ketil. Technology research explained. Technical report,
2007

[85] A. Immonen. A method for predicting reliability and availability at the
architectural level. Software Product Lines, pages 373–422, 2006

[86] M. F. Johansen, O. y. Haugen, and F. Fleurey. An algorithm for gener-
ating t-wise covering arrays from large feature models. Proceedings of
the 16th International Software Product Line Conference on - SPLC ’12
-volume 1, page 46, 2012

Bibliography 259

[87] M. F. Johansen, O. Haugen, F. Fleurey, A. G. Eldegard, and T. Syversen.
Generating better partial covering arrays by modeling weights on sub-
product lines. In Proceedings of the 15th International Conference on
Model Driven Engineering Languages and Systems, MODELS’12, pages
269–284, Berlin, Heidelberg, 2012. Springer-Verlag

[88] José A.Galindo, F. Roos-Frantz, J. Garcı́a-Galán, and A. Ruiz-Cortés. Ex-
tracting orthogonal variability models from debian repositories. In Proc.
of 2nd International Workshop on Formal Methods and Analysis in Soft-
ware Product Line Engineering (FMSPLE 2011), co-located with Soft-
ware Product Line Conference 2011 (SPLC 2011), pages 8–8, Munich,
08/2011 2011. Fraunhofer, Fraunhofer

[89] W. E. Juengst and M. Heinrich. Using resource balancing to configure
modular systems. IEEE Intelligent Systems, 13(4):50–58, July 1998

[90] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-oriented
domain analysis (foda) feasibility study. Technical report, Technical Re-
port CMU/SEI-90TR-21, Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh, PA, USA, 1990

[91] K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. Form: A feature-
; oriented reuse method with domain-; specific reference architectures.
Annals of Software Engineering, 5(1):143–168, 1998

[92] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-oriented domain analysis (FODA) feasibility study. Technical
report, DTIC Document, 1990

[93] C. Kästner, A. von Rhein, S. Erdweg, J. Pusch, S. Apel, T. Rendel, and
K. Ostermann. Toward variability-aware testing. In Proceedings of
the 4th International Workshop on Feature-Oriented Software Develop-
ment, FOSD ’12, pages 1–8, New York, NY, USA, 2012. ACM

[94] D. Kuhn, R. Kacker, and Y. Lei. Practical combinatorial testing. NIST
Special Publication, 800:142, 2010

[95] D. Kuhn, D. Wallace, and J. Gallo, A.M. Software fault interactions and
implications for software testing. Software Engineering, IEEE Transac-
tions on, 30(6):418–421, 2004

[96] V. Kumar. Algorithms for constraint-satisfaction problems: A survey. AI
magazine, 13(1):32, 1992

260 Bibliography

[97] I. Kumara, J. Han, A. Colman, T. Nguyen, and M. Kapuruge. Sharing
with a difference: Realizing service-based saas applications with run-
time sharing and variation in dynamic software product lines. In Inter-
national Conference on Services Computing (SCC), pages 567–574, 2013.

[98] B. P. Lamancha and M. P. Usaola. Testing product generation in software
product lines using pairwise for features coverage. In Proceedings of
the 22Nd IFIP WG 6.1 International Conference on Testing Software and
Systems, ICTSS’10, pages 111–125, Berlin, Heidelberg, 2010. Springer-
Verlag

[99] M. M. Lehman. Laws of Software Evolution Revisited. 1968.

[100] M. M. Lehman. Program evolution. Information Processing & Manag-
ment, 20(1), 1984.

[101] Y. Lei and K.-C. Tai. In-parameter-order: A test generation strategy for
pairwise testing. In High-Assurance Systems Engineering Symposium,
1998. Proceedings. Third IEEE International, pages 254–261. IEEE, 1998

[102] F. Liguori and F. Schreiber. The software configurator : an aid to the
industrial production of software. In Computer Software and Applica-
tions Conference, 1978. COMPSAC ’78. The IEEE Computer Society’s
Second International, pages 487–492, 1978

[103] L. B. Lisboa, V. C. Garcia, D. L. dio, E. S. de Almeida, S. R.
de Lemos Meira, and R. P. de Mattos Fortes. A systematic review of
domain analysis tools. Information and Software Technology, 52(1):1–
13, 2010

[104] R. E. Lopez-Herrejon, L. Linsbauer, J. A. Galindo, J. A. Parejo, D. Bena-
vides, S. Segura, and A. Egyed. An assessment of search-based tech-
niques for reverse engineering feature models. Journal of Systems and
Software, 2014

[105] R. E. Lopez-Herrejon, J. A. Galindo, D. Benavides, S. Segura, and
A. Egyed. Reverse engineering feature models with evolutionary al-
gorithms: An exploratory study. In 4th Symposium on Search Based
Software Engineering, pages 168–182, Trento, Italy, 2012. Springer

[106] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wasowski. Evolution
of the linux kernel variability model. Software Product Lines: Going
Beyond, pages 136–150, 2010

Bibliography 261

[107] G. Madl, S. Abdelwahed, and D. C. Schmidt. Verifying distributed real-
time properties of embedded systems via graph transformations and
model checking. Real-Time Systems, 33(1):77–100, 2006

[108] M. Mannion. Using first-order logic for product line model validation.
Software Product Lines, pages 149–202, 2002

[109] D. Marijan, A. Gotlieb, S. Sen, and A. Hervieu. Practical pairwise testing
for software product lines. In T. Kishi, S. Jarzabek, and S. Gnesi, editors,
SPLC, pages 227–235. ACM, 2013

[110] S. Martello and P. Toth. Knapsack problems: algorithms and computer
implementations. John Wiley & Sons, Inc., 1990

[111] M. Mendonca, A. Wasowski, K. Czarnecki, and D. Cowan. Efficient
compilation techniques for large scale feature models. In Proceedings of
the 7th international conference on Generative programming and com-
ponent engineering, pages 13–22. ACM, 2008

[112] M. Mendonca, M. Branco, and D. Cowan. S.p.l.o.t.: Software product
lines online tools. In Proceedings of the 24th ACM SIGPLAN Confer-
ence Companion on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’09, pages 761–762, New York, NY, USA,
2009. ACM

[113] A. Metzger, P. Heymans, K. Pohl, P.-Y. Schobbens, and G. Saval. Dis-
ambiguating the documentation of variability in software product lines:
A separation of concerns, formalization and automated analysis. In
15th IEEE International Requirements Engineering Conference (RE’07),
pages 243–253, New Delhi, India, 2007. IEEE CS

[114] S. Mittal and F. Frayman. Towards a generic model of configuraton
tasks. In Proceedings of the 11th International Joint Conference on Arti-
ficial Intelligence - Volume 2, IJCAI’89, pages 1395–1401, San Francisco,
CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[115] S. Mohalik, S. Ramesh, J.-V. Millo, S. Krishna, and G. Narwane. Tracing
spls precisely and efficiently. In International Software Product Line
Conference (SPLC), volume 1, pages 186–195, 2012.

[116] H. Muccini and A. Van Der Hoek. Towards testing product line architec-
tures. Electronic Notes in Theoretical Computer Science, 82(6):99–109,
2003

[117] J. Musa. Software-reliability-engineered testing practice (tutorial). In
Proceedings of the 19th international conference on Software engineer-
ing, pages 628–629. ACM, 1997

262 Bibliography

[118] G. K. Narwane, J. A. Galindo, S. N. Krishna, D. Benavides, J.-V. Millo,
and S. Ramesh. Traceability analyses between features and assets in
software product lines. Journal of Logical and Algebraic Methods in
Programming, 2014

[119] A. Nechypurenko, E. Wuchner, J. White, and D. C. Schmidt. Application
of aspect-based modeling and weaving for complexity reduction in the
development of automotive distributed realtime embedded system. In
Proceedings of the Sixth International Conference on Aspect-Oriented
Software Development, 2007

[120] T. Nguyen, A. Colman, and J. Han. Modeling and managing variability
in process-based service compositions. In International Conference on
Service-Oriented Computing (ICSOC), ICSOC’11, pages 404–420, Berlin,
Heidelberg, 2011. Springer-Verlag.

[121] C. Nie and H. Leung. A survey of combinatorial testing. ACM Comput-
ing Surveys (CSUR), 43(2):11, 2011

[122] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T. Lee, S. Mukher-
jee, J. K. Aggarwal, H. Lee, L. Davis, E. Swears, X. Wang, Q. Ji, K. Reddy,
M. Shah, C. Vondrick, H. Pirsiavash, D. Ramanan, J. Yuen, A. Torralba,
B. Song, A. Fong, A. Roy-Chowdhury, and M. Desai. A large-scale
benchmark dataset for event recognition in surveillance video. In Pro-
ceedings of the 2011 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR ’11, pages 3153–3160, Washington, DC, USA, 2011.
IEEE Computer Society

[123] R. Olaechea, S. Stewart, K. Czarnecki, and D. Rayside. Modelling and
multi-objective optimization of quality attributes in variability-rich soft-
ware. In Proceedings of the Fourth International Workshop on Non-
functional System Properties in Domain Specific Modeling Languages,
NFPinDSML ’12, pages 2:1–2:6, New York, NY, USA, 2012. ACM

[124] F. Olumofin and V. Misic. Extending the atam architecture evaluation to
product line architectures. In Software Architecture, 2005. WICSA 2005.
5th Working IEEE/IFIP Conference on, pages 45–56. IEEE, 2005

[125] S. Oster, F. Markert, and P. Ritter. Automated Incremental Pairwise Test-
ing of Software Product Lines. pages 196–210, 2010

[126] J. R. Parker. Algorithms for image processing and computer vision. Wi-
ley. com, 2010

Bibliography 263

[127] G. Pascual, M. Pinto, and L. Fuentes. Run-time adaptation of mo-
bile applications using genetic algorithms. In International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), pages 73–82, 2013.

[128] L. Passos, M. Novakovic, Y. Xiong, T. Berger, K. Czarnecki, and A. Wa-
sowski. A study of non-boolean constraints in variability models of an
embedded operating system. Munich, Germany, 08/2011 2011. ACM.

[129] X. Peng, Y. Yu, and W. Zhao. Analyzing evolution of variability in a
software product line : From contexts and requirements to features. In-
formation and Software Technology, 53(7):707–721, 2011.

[130] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, and Y. Traon. Pairwise
testing for software product lines: comparison of two approaches. Soft-
ware Quality Journal, pages 605–643, August 2011

[131] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. L. Traon. Automated
and Scalable T-wise Test Case Generation Strategies for Software Prod-
uct Lines. 2010 Third International Conference on Software Testing, Ver-
ification and Validation, pages 459–468, 2010

[132] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. Systematic map-
ping studies in software engineering. In Proceedings of the 12th Interna-
tional Conference on Evaluation and Assessment in Software Engineer-
ing, EASE’08, pages 68–77, Swinton, UK, UK, 2008. British Computer
Society

[133] A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer, and S. Kowalewski.
Model-driven support for product line evolution on feature level. Jour-
nal of Systems and Software, 2011

[134] A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer, and S. Kowalewski.
Model-driven support for product line evolution on feature level. The
Journal of Systems & Software, 85(10):2261–2274, 2012.

[135] K. Pohl, G. Bockle, and F. Van Der Linden. Software product line engi-
neering: foundations, principles, and techniques. Springer-Verlag New
York Inc, 2005

[136] K. Pohl, G. Böckle, and F. J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag,
2005

[137] K. Pohl and A. Metzger. Software product line testing. Commun. ACM,
49(12):78–81, December 2006

264 Bibliography

[138] J. Ponce, D. Forsyth, E.-p. Willow, S. Antipolis-Méditerranée,
R. d’activité RAweb, L. Inria, and I. Alumni. Computer vision: a modern
approach. Computer, 16:11, 2011

[139] R. Rabiser, P. Grünbacher, and D. Dhungana. Requirements for prod-
uct derivation support: Results from a systematic literature review and
an expert survey. Information and Software Technology, 52(3):324–346,
2010

[140] R. Rabiser, P. Grünbacher, and M. Lehofer. A qualitative study on user
guidance capabilities in product configuration tools. In 27th IEEE/ACM
International Conference Automated Software Engineering (ASE’12),
Essen, Germany, 2012. ACM

[141] R. Rabiser, D. Dhungana, W. Heider, and P. Grünbacher. Flexibility
and end-user support in model-based product line tools. In Euromi-
cro Conference on Software Engineering and Advanced Applications,
pages 508–511, Patras, Greece, 2009. IEEE CS

[142] R. Rabiser, P. Grünbacher, and D. Dhungana. Supporting product
derivation by adapting and augmenting variability models. In SPLC
2007, pages 141–150, Kyoto, Japan, 2007. IEEE CS

[143] F. Roos-Frantz, J. Galindo, D. Benavides, and A. Ruiz-Cortés. Fama-
ovm: A tool for the automated analysis of ovms. In International Soft-
ware Product Line Conference (SPLC), volume 2, pages 250–254, 2012.

[144] F. Roos-Frantz, J. A.Galindo, D. Benavides, A. R. Cortés, and J. Garcı́a-
Galán. Automated Analysis of Diverse Variability Models with Tool
Support. In Jornadas de Ingenierı́a del Software y Bases de Datos
(JISBD) Sistedes;2014., 2014

[145] F. Roos-Frantz, D. Benavides, A. Ruiz-Cortés, A. Heuer, and K. Lauen-
roth. Quality-aware analysis in product line engineering with the or-
thogonal variability model. Software Quality Journal, 20(3-4):519–565,
2012

[146] F. Roos-Frantz, J. A. Galindo, D. Benavides, and A. Ruiz-Cortés. Fama-
ovm: a tool for the automated analysis of ovms. In Proceedings of the
16th International Software Product Line Conference-Volume 2, pages
250–254. ACM, 2012

[147] M. Rosenmüller, N. Siegmund, M. Pukall, and S. Apel. Tailoring dy-
namic software product lines. SIGPLAN Not., 47(3):3–12, October 2011

Bibliography 265

[148] G. Rothermel and D. Hall. A Safe , Efcient Regression Test Selection
Technique. (2):1–35, 1997

[149] D. Sabin and R. Weigel. Product configuration frameworks-a survey.
Intelligent Systems and their Applications, IEEE, 13(4):42–49, Jul 1998

[150] N. Sannier, M. Acher, and B. Baudry. From comparison matrix to vari-
ability model: The wikipedia case study. In International Conference on
Automated Software Engineering (ASE), pages 580–585, 2013.

[151] A. Sayyad, J. Ingram, T. Menzies, and H. Ammar. Scalable product
line configuration: A straw to break the camel’s back. In International
Conference on Automated Software Engineering (ASE), pages 465–474,
2013.

[152] A. Sayyad, T. Menzies, and H. Ammar. On the value of user preferences
in search-based software engineering: A case study in software product
lines. In Software Engineering (ICSE), 2013 35th International Confer-
ence on, pages 492–501, May 2013

[153] K. Schmid, R. Rabiser, and P. Grünbacher. A comparison of decision
modeling approaches in product lines. In 5th International Workshop
on Variability Modelling of Software-intensive Systems (VaMoS 2011),
pages 119–126, Namur, Belgium, 2011. ACM ICPS

[154] J. Schroeter, S. Cech, S. Götz, C. Wilke, and U. Aßmann. Towards model-
ing a variable architecture for multi-tenant saas-applications. In Interna-
tional Workshop on Variability Modeling of Software-Intensive Systems
(VAMOS), pages 111–120, 2012.

[155] S. Segura, D. Benavides, and A. Ruiz-Cortés ands. Functional testing of
feature model analysis tools: a test suite. Software, IET, 5(1):70 –82, 02
2011

[156] S. Segura, J. Galindo, D. Benavides, J. Parejo, and A. Ruiz-Cortés. Betty:
Benchmarking and testing on the automated analysis of feature mod-
els. In U. Eisenecker, S. Apel, and S. Gnesi, editors, Sixth International
Workshop on Variability Modelling of Software-intensive Systems (Va-
MoS’12), pages 63–71, Leipzig, Germany, 2012. ACM

[157] S. Segura, J. Galindo, D. Benavides, J. Parejo, and A. Ruiz-Cortés. Betty:
Un framework de pruebas para el análisis automático de modelos de
caracterı́sticas. In XVII Jornadas de Ingenierı́a del Software y Bases de
Datos, Almeria, Spain, 2012.

266 Bibliography

[158] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés. Automated
metamorphic testing on the analyses of feature models. Information and
Software Technology, 53(3):245–258, 2011

[159] R. Shaw. Boeing 737-300 to 800. Zenith Press, 1999

[160] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. The vari-
ability model of the linux kernel. VaMoS, 10:45–51, 2010

[161] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. Reverse
engineering feature models. In ICSE, pages 461–470, 2011

[162] S. She, U. Ryssel, N. Andersen, A. Wasowski, and K. Czarnecki. Efficient
synthesis of feature models. Information and Software Technology, (0),
2014

[163] M. Sinnema and S. Deelstra. Classifying variability modeling tech-
niques. Information and Software Technology, 49(7):717–739, 2007

[164] B. Smith and M. S. Feather. Challenges and methods in testing the re-
mote agent planner. In In Proc. 5th Int.nl Conf. on Artificial Intelligence
Planning and Scheduling (AIPS, pages 254–263, 2000

[165] H. Sneed. Value Driven Testing. 2009 Testing: Academic and Industrial
Conference - Practice and Research Techniques, pages 157–166, 2009

[166] A. Spillner, T. Linz, and H. Schaefer. Software testing foundations: a
study guide for the certified tester exam. O’Reilly Media, Inc., 2011

[167] H. Srikanth, L. Williams, and J. Osborne. System test case prioritization
of new and regression test cases. In Empirical Software Engineering,
2005. 2005 International Symposium on, pages 10 pp.–, 2005

[168] M. Svahnberg and J. Bosch. Evolution in software product lines: two
cases. Journal of Software Maintenance: Research and Practice, 11(6):
391–422, November 1999.

[169] A. Svendsen, X. Zhang, R. Lind-Tviberg, F. Fleurey, Ø. Haugen,
B. Møller-Pedersen, and G. K. Olsen. Developing a software product
line for train control: A case study of cvl. In J. Bosch and J. Lee, edi-
tors, SPLC, volume 6287 of Lecture Notes in Computer Science, pages
106–120. Springer, 2010

[170] A. Svendsen, X. Zhang, R. Lind-Tviberg, F. Fleurey, Ø. Haugen,
B. Møller-Pedersen, and G. K. Olsen. Developing a software product
line for train control: A case study of CVL. In SPLC 2010, pages 106–
120, Jeju Island, Korea, 2010. Springer

Bibliography 267

[171] A. Sánchez, S. Segura, and A. Ruiz-Cortés. The drupal framework: A
case study to evaluate variability testing techniques. In International
Workshop on Variability Modeling of Software-Intensive Systems (VA-
MOS), 2014.

[172] K.-C. Tai and Y. Lei. A test generation strategy for pairwise testing. Soft-
ware Engineering, IEEE Transactions on, 28(1):109–111, 2002

[173] Q. Y. Tang, P. Friedberg, G. Cheng, and C. J. Spanos. Circuit size op-
timization with multiple sources of variation and position dependant
correlation. In Advanced Lithography, pages 65210P–65210P. Interna-
tional Society for Optics and Photonics, 2007

[174] T. Thum, D. Batory, and C. Kastner. Reasoning about edits to feature
models. In Proceedings of the 31st International Conference on Software
Engineering, ICSE ’09, pages 254–264, Washington, DC, USA, 2009. IEEE
Computer Society

[175] P. Trinidad. Automating the Analysis of Stateful Feature Models. PhD
thesis, University of Seville, http://www.lsi.us.es/∼trinidad/docs/tesis.pdf,
2012

[176] M. M. Tseng, J. Jiao, and M. E. Merchant. Design for mass customization.
CIRP Annals-Manufacturing Technology, 45(1):153–156, 1996

[177] H. Turner, J. White, J. Reed, J. A. Galindo, A. Porter, M. Marathe, A. Vul-
likanti, and A. Gokhale. Building a Cloud-based Mobile Application
Testbed. IGI Global, 701 E. Chocolate Avenue Hershey PA 17033-1240,
USA, 2012

[178] P. Van Hentenryck. Constraint satisfaction in logic programming. 1989

[179] J. White, J. Galindo, T. Saxena, B. Dougherty, D. Benavides, and
D. Schmidt. Evolving feature model configurations in software prod-
uct lines. Journal of Systems and Software, 87(1):119–136, 2014.

[180] J. White, D. Schmidt, D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Au-
tomated diagnosis of product-line configuration errors in feature mod-
els. In Software Product Line Conference, 2008. SPLC’08. 12th Interna-
tional, pages 225–234. IEEE, 2008

[181] J. White, D. C. Schmidt, A. Nechypurenko, and E. Wuchner. Model in-
telligence: an approach to modeling guidance. UPGRADE Journal, 9(2):
22–28, April 2008

268 Bibliography

[182] J. White, D. C. Schmidt, E. Wuchner, and A. Nechypurenko. Automating
product-line variant selection for mobile devices. In Software Product
Line Conference, 2007. SPLC 2007. 11th International, pages 129–140.
IEEE, 2007

[183] J. White, D. C. Schmidt, E. Wuchner, and A. Nechypurenko. Automati-
cally composing reusable software components for mobile devices. Jour-
nal of the Brazilian Computer Society, 14(1):25–44, 2008

[184] R. Wieringa, N. Maiden, N. Mead, and C. Rolland. Requirements en-
gineering paper classification and evaluation criteria: a proposal and a
discussion. Requirements Engineering, 11(1):102–107, 2006

[185] J. Withey. Investment Analysis of Software Assets for Product Lines.
1996

[186] Y. Wu, X. Peng, and W. Zhao. Architecture Evolution in Software Prod-
uct Line : An Industrial Case Study. Development, pages 1–16, 2011.

[187] Y. Xiong, A. Hubaux, S. She, and K. Czarnecki. Generating range fixes
for software configuration. In Proceedings of the 2012 International
Conference on Software Engineering, ICSE 2012, pages 58–68, Piscat-
away, NJ, USA, 2012. IEEE Press

[188] H. Zhang, J. E. Fritts, and S. A. Goldman. Image segmentation evalua-
tion: A survey of unsupervised methods. Computer Vision and Image
Understanding, 110(2):260–280, 2008

[189] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage and
adequacy. ACM Computing Surveys (CSUR), 29(4):366–427, 1997

[190] T. Ziadi, C. Henard, M. Papadakis, M. Ziane, and Y. L. Traon. To-
wards a language-independent approach for reverse-engineering of
software product lines. In Symposium on Applied Computing, SAC
2014, Gyeongju, Republic of Korea - March 24 - 28, 2014, pages 1064–
1071, 2014

[191] I. Zualkernan. A feature modelling framework for ubiquitous embodied
learning games. Frontiers in Artificial Intelligence and Applications,
231:198–216, 2011.

These are the publications that are directly related to the thesis document.

Chapter 6 SQJ’14: José A.Galindo, Hamilton Turner, David Benavides and Jules White. Testing
variability-intensive systems using automated analysis. An application to Android.
Software Quality Journal 2014. DOI: 10.1007/s11219-014-9258-y (In press). JCR Impact
Factor 0.85.

Chapter 6 Book chapter: H Turner, J White, J Reed, José A. Galindo, A Porter, M Marathe, A
Vullikanti, A Gokhale. Building a Cloud-based Mobile Application Testbed.Software
Testing in the Cloud: Perspectives on an Emerging Discipline, IGI Global, 2013, 382-
403, doi:10.4018/978-1-4666-2536-5.ch018.

Chapter 7 ISSTA’14: José A Galindo, Mauricio Alférez, Mathieu Acher, Benoit Baudry, David
Benavides. A Variability-Based Testing Approach for Synthesizing Video Sequences.
International Symposium on Software Testing and Analysis (ISSTA), Bay Area, Califor-
nia. Core A conference.

Chapter 7 SPLC’14: Mathieu Acher, Mauricio Alférez, José A Galindo, Pierre Romenteau, Benoit
Baudry. ViViD: A Variability-Based Tool for Synthesizing Video Sequences (SPLC), Flo-
rence, Italy. Main conference worldwide on software product lines.

Chapter 8 JSS’13: Jules White, José A. Galindo, Tripti Saxena, Brian Dougherty, David Benavides,
Douglas C. Schmidt. Evolving feature model configurations in software product lines.
Journal of Systems and Software 11/2013.Impact Factor: 1.245.

Chapter 9 IST’14: José A Galindo, Deepak Dhungana, Goetz Botterweck, Rick Rabiser, Paul
Grünbacher, David Benavides. Supporting Distributed Product Configuration by In-
tegrating Heterogeneous Variability Modeling Approaches. Information and Software
Technology (2nd round in revision).Impact Factor: 1.328.

These contributions while being related to the PhD candidate learning process are not
intimately related within the thesis document.

– JSS’14 Roberto E. Lopez-Herrejon, Lukas Linsbauer, José A. Galindo, José Á. Parejo,
David Benavides, Sergio Segura, Alexander Egyed. An Assessment of Search-Based
Techniques for Reverse Engineering Feature Models. Journal of Systems and Software
(In press). Impact Factor: 1.245.

– JLAMP’14 Ganesh Khandu Narwane, José A. Galindo, Shankara Narayanan Krishna,
David Benavides, Jean-Vivien Millo, S Ramesh. Traceability analyses between features
and assets in software product lines. Journal of Logical and Algebraic Methods in Pro-
gramming (1st round in revision). Impact Factor: 0.383.

– IST’14 Mauricio Alferez, José A. Galindo, Mathieu Acher, Benoit Baudry, David Bena-
vides. Modeling Variability in the Video Domain: Language and Experience Report.
Journal of Systems and Software (Prepared, this publication is related with chapter 7).
Impact Factor: 1.328.

VU:

Le Directeur de Thèse

VU:

Le Responsable de l’École
Doctorale

VU pour autorisation de soutenance
Rennes, le

Le Président de l’Université de Rennes 1

Guy CATHELINEAU

VU après soutenance pour autorisation de
publication:

Le Président de Jury,

Résumé
Une particularité importante du logiciel est sa capacité à être adapté et configuré selon
différents scénarios. Récemment, la variabilité du logiciel a été étudiée comme un
concept de première classe dans différents domaines allant des lignes de produits
logiciels aux systèmes ubiquitaires. La variabilité est la capacité d’un produit logiciel à
varier en fonction de différentes circonstances. Les systèmes à forte variabilité mettent
en jeu des produits logiciels où la gestion de la variabilité est une activité d’ingénierie
prédominante. Les diverses parties de ces systèmes sont couramment modélisées en
utilisant des formes différentes de “modèle de variabilité”, qui est un formalisme de
modélisation couramment utilisé. Les modèles de caractéristiques (feature models)
ont été introduits par Kang et al. en 1990 et sont une représentation compacte d’un
ensemble de configurations pour un système à forte variabilité.

Le grand nombre de configurations d’un modèle de caractéristiques ne permet
pas une analyse manuelle. De fait, les mécanismes assistés par ordinateur sont ap-
parus comme une solution pour extraire des informations utiles à partir de modèles
de caractéristiques. Ce processus d’extraction d’information à partir de modèles de
caractéristiques est appelé dans la littérature scientifique “analyse automatisée de
modèles de caractéristiques” et a été l’un des principaux domaines de recherche ces
dernières années. Plus de trente opérations d’analyse ont été proposées durant cette
période.

Dans cette thèse, nous avons identifié différentes questions ouvertes dans le do-
maine de l’analyse automatisée et nous avons considéré plusieurs axes de recherche.
Poussés par des scénarios du monde réel (e.g., la téléphonie mobile ou la vidéo protec-
tion), nous avons contribué à appliquer, adapter ou étendre des opérations d’analyse
automatisée pour l’évolution, le test et la configuration de systèmes à forte variabilité.

Abstract
The large number of configurations that a feature model can encode makes the man-
ual analysis of feature models an error prone and costly task. Then, computer-aided
mechanisms appeared as a solution to extract useful information from feature models.
This process of extracting information from feature models is known as “Automated
Analysis of Feature models” that has been one of the main areas of research in the last
years where more than thirty analysis operations have been proposed.

In this dissertation we looked for different tendencies in the automated analysis
field and found several research opportunities. Driven by real-world scenarios such
as smart phone or video–surveillance domains, we contributed applying, adapting or
extending automated analysis operations in variability intensive systems evolution,
testing and configuration.

This document was typeset on // using RC–BOOK α. for LATEX2�. Should
you want to use this document class, please send mail to contact@tdg-seville.info.

