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Marches aléatoires branchantes,
environnement inhomogène, sélection

Résumé

On s’intéresse dans cette thèse au modèle de la marche aléatoire branchante, un système
de particules qui évoluent au court du temps en se déplaçant et se reproduisant de façon
indépendante. Le but est d’étudier le rythme auquel ces particules se déplacent, dans deux
variantes particulières de marches aléatoires branchantes.

Dans la première variante, la façon dont les individus se déplacent et se reproduisent
dépend du temps. Ce modèle a été introduit par Fang et Zeitouni en 2010. Nous nous inté-
resserons à trois types de dépendance en temps : une brusque modification du mécanisme
de reproduction des individus après un temps long ; une lente évolution de ce mécanisme à
une échelle macroscopique ; et des fluctuations aléatoires à chaque génération. Ce dernier
cas a été étudié dans un article en collaboration avec Piotr Miłoś.

Dans la seconde variante, le mécanisme de reproduction est constant, mais les individus
subissent un processus de sélection darwinien. La position d’un individu est interprétée
comme son degré d’adaptation au milieu, et le déplacement d’un enfant par rapport à
son parent représente l’héritage des gènes. Dans un tel processus, la taille maximale de
la population est fixée à une certaine constante N , et à chaque étape, seuls les N plus à
droite sont conservés. Ce modèle a été introduit par Brunet, Derrida, Mueller et Munier,
et étudié par Bérard et Gouéré en 2010. Nous nous sommes intéressés dans un premier
temps à une variante de ce modèle, qui autorise quelques grands sauts. Dans un second
temps, nous avons considéré que la taille totale N de la population dépend du temps.

Mots-clefs

Marche aléatoire branchante, marche aléatoire, processus de branchement, environne-
ment aléatoire, environnement inhomogène, somme de variables aléatoires indépendantes,
sélection.
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Branching random walks,
time-inhomogeneous environment, selection

Abstract

In this thesis, we take interest in the branching random walk, a particles system, in
which particles move and reproduce independently. The aim is to study the rhythm at
which these particles invade their environment, a quantity which often reveals informa-
tion on the past of the extremal individuals. We take care of two particular variants of
branching random walk, that we describe below.

In the first variant, the way individuals behave evolves with time. This model has
been introduced by Fang and Zeitouni in 2010. This time-dependence can be a slow
evolution of the reproduction mechanism of individuals, at macroscopic scale, in which
case the maximal displacement is obtained through the resolution of a convex optimization
problem. A second kind of time-dependence is to sample at random, at each generation,
the way individuals behave. This model has been studied in an article in collaboration
with Piotr Miłoś.

In the second variant, individuals endure a Darwinian selection mechanism. The po-
sition of an individual is understood as its fitness, and the displacement of a child with
respect to its parent is associated to the process of heredity. In such a process, the total
size of the population is fixed to some integer N , and at each step, only the N fittest
individuals survive. This model was introduced by Brunet, Derrida, Mueller and Munier.
In a first time, we took interest in a mechanism of reproduction which authorises some
large jumps. In the second model we considered, the total size N of the population may
depend on time.

Keywords

Branching random walk,random walk, branching process, random environment, time-
inhomogeneous environment, sum of independent random variables, selection.
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Introduction

Le processus de Galton-Watson est l’un des plus anciens processus aléatoires introduits
pour simuler l’évolution au cours du temps d’une population, et certainement l’un des plus
étudiés. Dans ce modèle, les individus sont asexués et se reproduisent sans compétition.
À chaque nouvelle génération, tous les individus de la génération précédente meurent en
donnant naissance à un certain nombre d’enfants de façon indépendante et suivant la même
loi de reproduction. D’après Kendall [Ken75], ce processus fut introduit pour la première
fois par Bienaymé [Bie76] en 1845 ; et indépendamment redécouvert par Galton et Watson
[GW74] en 1873 pour étudier la probabilité d’extinction des noms de famille chez les lords
anglais. C’est également l’un des premiers exemples de processus de branchement connus.

Figure 1 – L’arbre généalogique d’un processus de Galton-Watson

Francis Galton était également un cousin de Charles Darwin, qui introduisit dans son
livre On the origin of species by means of natural selection la notion de sélection natu-
relle : dans la compétition pour la survie, seuls les individus les plus aptes survivent et se
reproduisent. Ces individus transmettent par la même occasion leur patrimoine génétique
à leurs descendants. Afin de réaliser une modélisation mathématique simple de ce phéno-
mène, une idée peut être d’enrichir le processus de Galton-Watson avec des informations
supplémentaires, qui se transmettent de parent en enfant.

Ainsi, on peut associer à chaque individu vivant dans le processus de Galton-Watson
un score de valeur sélective ou fitness. Cette quantité représente le degré d’adaptation d’un
individu à som milieu. Ceci influe directement sur les chances que celui-ci a de survivre
et de se reproduire. Lorsqu’il se reproduit, cet individu transmet à ses enfants ce score de
fitness, à un bruit aléatoire près. Ce modèle de sélection, simplifié à l’extrême, ressemble
à une marche aléatoire branchante.

Dans une marche aléatoire branchante, on étudie l’évolution au cours du temps d’une
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population d’individus qui se reproduisent et se déplacent comme suit. À chaque nouvelle
génération, tous les individus meurent en donnant naissance des enfants. Les enfants sont
positionnés autour de leur parent au hasard selon des processus de points indépendants.
En remplaçant les termes « position » par « fitness », on se ramène au modèle défini plus
haut.

Temps

Position ou
Fitness

0

Figure 2 – Le graphe d’une marche aléatoire branchante

Dans cette thèse, on s’intéresse au comportement au cours du temps de certains pro-
cessus de branchement, bâtis comme des variantes de la marche aléatoire branchante. Nous
étudions l’impact d’une modification au cours du temps de la loi selon laquelle les indi-
vidus se reproduisent d’une part ; les effets de la « sélection naturelle » sur le processus
d’autre part. Les résultats portent principalement sur le comportement asymptotique du
plus grand déplacement dans ces variantes de marche aléatoire branchante.

Dans un premier temps, nous listons quelques résultats bien connus sur le comporte-
ment en temps long d’une marche aléatoire branchante classique. Ensuite, nous présentons
plus précisément les modèles étudiés et les notations employées, puis les résultats obte-
nus au cours de la thèse qui concernent la marche aléatoire branchante en environnement
inhomogène ou une marche aléatoire branchante avec sélection. Nous terminons cette in-
troduction en reliant les marches aléatoires branchantes à d’autres objets mathématiques
qui ont été, ou sont encore le sujet d’études approfondies.

1 Des résultats préexistants sur les marches aléatoires bran-
chantes

L’arbre généalogique du processus de Galton-Watson et de la marche aléatoire bran-
chante sont identiques. Il est bien connu, depuis les travaux de Bienaymé, Galton et Watson
que le processus s’éteint presque sûrement 2 si et seulement si le nombre moyen d’enfants
d’un individu est inférieur ou égal à 1. Plus précisément, si on note Zn le nombre d’en-
fants vivants à la génération n dans ce processus, la probabilité d’extinction est la plus
petite solution q dans [0, 1] de l’équation E(qZ1) = q. On peut ainsi classer les proces-
sus de Galton-Watson en processus sous-critiques, critiques et sur-critiques, pour E(Z1)
respectivement plus petit, égal ou plus grand que 1. Dans le cadre de cette thèse, nous
supposons les processus de populations des marches aléatoires branchantes surcritique, et
même régulièrement que Z1 ≥ 1 presque sûrement. Dans ce dernier cas, le processus de

2. C’est-à-dire qu’à partir d’un certain temps, il n’y a plus d’individus vivants.
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population survit presque sûrement. Le théorème de Kesten-Stigum permet d’estimer la
taille de la population dans le processus de Galton-Watson : si E(Z1 logZ1) < +∞, alors
elle croît à vitesse exponentielle proportionnellement à [E(Z1)]n. Plus précisément il existe
une variable aléatoire positive Z telle que

lim
n→+∞

Zn
[E(Z1)]n = Z p.s. et P(Z = 0) = q.

Des résultats similaires ont été prouvés dans le cadre de la marche aléatoire branchante
dans les années 1970. On note Mn le plus grand déplacement à l’instant n. Les travaux
pionniers de Hammersley [Ham74], Kingman [Kin75] et Biggins [Big76] ont prouvé que
Mn croît à vitesse balistique. En d’autre termes, il existe une constante explicite v telle
que

lim
n→+∞

Mn

n
= v p.s.

Figure 3 – Des frontières linéaires pour la marche aléatoire branchante

Par conséquent, la population de la marche aléatoire branchante envahit son environ-
nement à vitesse balistique. De plus, il existe une fonction convexe κ∗ : R → R vérifiant
la propriété suivante :
• pour tout a < v, la taille de la population vivant à l’instant n au-dessus de na est
d’ordre e−nκ∗(a) ;
• pour tout a > v, la probabilité qu’un individu existe à l’instant n au-dessus de na

est d’ordre e−nκ∗(a).
En 2009, Addario-Berry et Reed [ABR09] et Hu et Shi [HS09] ont amélioré la connais-

sance du comportement asymptotique de Mn. Ils ont montré l’existence d’une constante
θ > 0 telle que

lim sup
n→+∞

Mn − nv
logn = −1

2θ p.s.

lim inf
n→+∞

Mn − nv
logn = −3

2θ p.s.(
Mn − nv + 3

2θ logn, n ≥ 1
)

est tendue.
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1 individu par pixel
103 individus par pixel
106 individus par pixel
au moins 109 individus par pixel

Figure 4 – Densité de population dans une marche aléatoire branchante

En d’autres termes, non seulementMn est proche de nv− 3
2θ logn avec grande probabilité,

mais cette quantité exhibe également des fluctuations presque sûres de taille logarithmique.

Figure 5 – La correction logarithmique est sujette à des fluctuations presque sûres

Le dernier terme du développement asymptotique de Mn a été obtenu par Aïdékon
[Aïd13] qui a montré, sous des hypothèses dont Chen [Che14] a prouvé l’optimalité par la
suite, queMn−nv+ 3

2θ logn converge en loi vers une variable aléatoireW . Cette loi limite
s’exprime comme une variable aléatoire de Gumbel, décalée d’un coefficient aléatoire.

2 Modèles étudiés

L’objectif de cette thèse est l’étude du comportement asymptotique du plus grand
déplacement dans les deux variantes suivantes de la marche aléatoire branchante :
• la marche aléatoire branchante en environnement inhomogène en temps, dans la-
quelle la façon dont les individus se reproduisent dépend du temps ;
• la marche aléatoire branchante avec sélection, dans laquelle à chaque étape n la taille
totale de la population est fixée à une valeur Nn, et seuls les Nn individus les plus
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haut placés dans le processus, interprétés comme les individus ayant la meilleure
fitness, survivent.

2.1 Marche aléatoire branchante en environnement inhomogène

Ce modèle peut être vu comme une généralisation naturelle de la marche aléatoire
branchante, lorsque ce processus est interprété comme l’évolution d’une population. Les
conditions environnementales peuvent varier au cours du temps, ce qui peut avoir un
impact sur la façon dons les individus se reproduisent ou se déplacent. Ces fluctuations
peuvent avoir lieu à des échelles de temps longues, comparées à la durée de vie des indi-
vidus (c.f. Chapitres 1, 2, 3). À l’inverse, l’environnement peut également être modifié à
chaque nouvelle génération. C’est le cas du modèle étudié dans le Chapitre 4. Nous nous
intéressons à l’effet de ces modifications d’environnement sur l’asymptotique du plus grand
déplacement.

Des modèles de marche aléatoire branchante en environnement inhomogène ont été
introduits par Derrida et Spohn [DS88]. En adaptant les résultats très généraux de [Big76,
BK04], il est aisé de se convaincre que sous des hypothèses d’intégrabilité relativement
générales, le plus grand déplacementMn dans ce nouveau modèle reste linéaire au premier
ordre.

Fang et Zeitouni ont introduit et étudié dans [FZ12a] un modèle de marche aléatoire
branchante avec une interface. Dans ce modèle, les individus se reproduisent selon une
première loi pendant la première moitié du temps, puis selon une seconde loi pendant la
seconde moitié du temps. Dans leur modèle, tout individu vivant à la génération k fait
deux enfants, qui se déplacent par rapport à leur parent de façon indépendante selon des
gaussiennes centrées, de variance σ2

1 si k ≤ n/2 ou σ2
2 si k > N/2. Ils montrent que dans

ce processus, le comportement asymptotique de Mn est toujours donné par un premier
ordre linéaire plus une correction logarithmique. Notamment, on observe que ce deuxième
ordre logarithmique est très sensible au signe de σ2

2 − σ2
1 et subit une transition de phase

lorsque ce signe change.
Nous montrons dans le Chapitre 1 un résultat similaire, pour des lois de reproduction

plus générales que le cas binaire gaussien. Dans le Chapitre 2, ce modèle de marche aléatoire
branchante est généralisé au cas de plusieurs interfaces. Nous montrons dans ce cas encore
que l’asymptotique du plus grand déplacement est donné par un premier terme linéaire
plus une correction logarithmique. Ce premier terme est obtenu en résolvant un problème
d’optimisation sous contraintes, et le second ordre dépend de l’interaction de cette solution
avec les contraintes.

Par la suite, un certain nombre d’articles, parmi lesquels [FZ12b, NRR14, MZ14], ont
étudié des marches aléatoires branchantes évoluant dans un environnement variant à une
échelle grande devant le temps de vie des individus (correspondant à des fluctuations de
l’environnement à grande échelle). Dans ces modèles, on se fixe une famille de lois de
reproduction (Lt, t ∈ [0, 1]) ainsi que la longueur n de la marche branchante que l’on
considère. Les individus présents à la génération k se reproduisent selon la loi Lk/n. Dans
tous les articles cités plus haut, les enfants d’un individu donné se déplacent toujours selon
des variables aléatoires gaussiennes, de variance σ2

t .
Dans le Chapitre 3, nous nous intéressons à ce modèle, tout en autorisant une grande

classe de loi de reproduction. Sous l’hypothèse que la loi de reproduction évolue de façon
suffisamment régulière, nous montrons qu’au premier ordre, le comportement de Mn est
toujours linéaire et que la vitesse peut être calculée comme la solution d’un problème
d’optimisation sous contrainte. En calculant la transformée de Laplace de l’aire sous la
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courbe d’un mouvement brownien conditionné à rester négatif, nous montrons que le
second terme de l’asymptotique de Mn est une correction d’ordre au plus n1/3.

Dans le Chapitre 4, nous nous intéressons à un type de marche aléatoire branchante
en environnement inhomogène différent. Dans ce modèle, la loi de reproduction à chaque
nouvelle génération est tirée au hasard indépendamment de la marche. Tous les indivi-
dus se reproduisent ensuite en utilisant cette loi. Nous montrons que dans ce cas, le plus
grand déplacement dans la marche aléatoire branchante est donné par un premier terme li-
néaire, des fluctuations en n1/2 qui ne dépendent que de l’environnement, et une correction
logarithmique négative propre à la marche aléatoire branchante.

2.2 Marches aléatoires branchantes avec sélection

Dans [BLSW91], il a été introduit un mécanisme de sélection dans une marche aléatoire
branchante. Tous les individus dont la position devient négative sont immédiatement tués.
On montre que ce processus se comporte, dans les grandes lignes, comme un processus
de Galton-Watson. Ainsi, cette barrière crée une population qui meurt ou croît à vitesse
exponentielle, en fonction de la loi de reproduction. Des mécanismes de sélection similaires,
basés sur la position des individus ont été intensément étudiés, en particulier avec une
barrière constituée d’un terme linéaire et d’une correction d’ordre n1/3. On peut ainsi
citer [FZ10, AJ11, GHS11, FHS12, Jaf12, BBS13] parmi bien d’autres.

La marche aléatoire branchante avec sélection des N individus les plus à droite, ou
en plus court la N -marche aléatoire branchante, a été introduite par Brunet et Derrida
dans [BD97] en temps que processus de population se déplaçant sur Z. Ce processus a
été généralisé dans [BDMM07] au cas d’un processus de population se déplaçant sur la
droite réelle. La taille de la population est limitée par une constante N , et la position
d’un individu est interprétée comme son degré d’adaptation à l’environnement. À chaque
étape, tous les individus se reproduisent de façon indépendante, comme dans une marche
aléatoire branchante. Dans un second temps, seuls lesN individus les plus hauts 3 survivent
et se reproduisent à l’étape suivante. Ce mécanisme de sélection est différent du précédent,
dans ce nouveau modèle les individus vivants à la génération n se reproduisent de façon
corrélée.

Dans ces articles, les auteurs ont conjecturé que le nuage d’individus se déplacent au
cours du temps à une vitesse vN , et de plus que lorsque N → +∞,

vN = v∞ −
C

(logN + 3 log logN +O(1))2 ,

où C est une constante explicite qui dépend de la loi de reproduction des individus. Bérard
et Gouéré prouvent une première partie de cette conjecture dans [BG10], à savoir

vN = v∞ −
C1

(logN)2 (1 + o(1)).

Maillard [Mai13] obtient par la suite des résultats plus fins, dans le cas du modèle voisin
du mouvement brownien branchant avec sélection des N plus à droite, sous de bonnes
hypothèses sur la configuration des individus à l’instant initial. D’autres modèles voisins
ont été étudiés. Ainsi, Bérard et Maillard [BM14] ont étudié la marche aléatoire branchante
avec sélection, lorsque les déplacements des enfants sont à queue lourde ; Couronné et Gerin
[CG14] se sont intéressés à certaines marches aléatoires branchantes avec sélection sur Z.

3. C’est-à-dire les N individus les plus adaptés.
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Dans le Chapitre 5, nous nous intéressons au comportement du nuage d’individus,
lorsque la taille de la population à l’instant n n’est pas une constante fixée, mais une
quantité qui évolue au cours du temps. Plus précisément, lorsque la taille de la population
croît au rythme critique ean1/3 , nous calculons le comportement asymptotique des positions
extrémales dans le nuage de particules. Dans le Chapitre 6, nous montrons un résultat
similaire à celui de Bérard et Gouéré pour des marches aléatoires branchantes dont les
déplacements autorisent quelques rares grands sauts. Pour α ∈ (0, 2), nous exhibons des
marches aléatoires branchantes avec sélection telles que vN − v∞ ∼ C(logN)−α.

3 Notations employées

Afin de décrire avec plus de détails les résultats démontrés, nous introduisons un certain
nombre de notations qui seront valables dans le reste de cette thèse. La plupart de ces
notations sont rappelées dans les chapitres qui leur sont dédiés. De plus, dans chaque
chapitre un index rappelle les notations spécifiques au modèle étudié.

Nous introduisons d’abord les notations d’Ulam-Harris, qui permettent de décrire les
arbres généalogiques. Dans un second temps, nous présentons un certain nombre de no-
tations liées aux processus de points, des variables aléatoires à valeurs dans l’ensemble
des suites finies ou infinies de réels. Un processus de point représente alors le déplacement
de l’ensemble des enfants d’un individu par rapport à leur parent. En utilisant ces deux
notions, nous décrivons la loi de la marche aléatoire branchante.

3.1 Arbre plan enraciné étiqueté

On introduit tout d’abord

U∗ =
⋂
n∈N

Nn et U = U∗ ∪ {∅}

l’ensemble des suites finies d’entiers, où ∅ représente la suite vide. Un arbre sera défini
comme un sous-ensemble de U . Un élément u ∈ U symbolise un individu d’un arbre. Si
u = (u(1), . . . u(n)) alors u est le u(n)ième enfant du u(n− 1)ième enfant du ... du u(1)ième

enfant de l’ancêtre commun ∅, que l’on appelle la racine de l’arbre.
Soit u = (u(1), . . . u(n)) ∈ U , on note |u| = n la génération à laquelle u appartient, avec

la convention |∅| = 0. Pour k ≤ n, on note uk = (u(1), . . . u(k)) l’ancêtre à la génération k
de u, en posant u0 = ∅. Si u 6= ∅, on note πu = u|n|−1 le parent de u.

Un arbre plan enraciné est un sous-ensemble T de U vérifiant les propriétés suivantes.
Enracinement : la suite vide ∅ ∈ T.
Hérédité : si u ∈ T, alors πu ∈ T.
Consistance : si u = (u(1), . . . u(n)) ∈ T, alors (u(1), . . . u(n − 1), v) ∈ T pour tout

v ≤ u(n).
Étant donné un arbre T, l’ensemble {u ∈ T : |u| = n} est appelé la nième génération de

T. Le plus grand entier tel que cet ensemble est non-vide est appelé la hauteur de l’arbre.
Pour tout individu u ∈ T, on notera souvent Ω(u) = {v ∈ T : πv = u} l’ensemble des
enfants de u.

Si la hauteur de l’arbre est infinie, on note ∂T l’ensemble des suites (u(n)) ∈ TN

vérifiant
∀n ≥ 0, |u(n)| = n et ∀0 ≤ p ≤ q, u(q)

p = u(p).
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Figure 6 – Un arbre plan T de hauteur 4.

Les éléments de ∂T sont les branches infinies de l’arbre.
Un arbre plan enraciné étiqueté est la donnée d’un couple (T, V ), où T est un arbre

plan enraciné, et V : T→ R est la fonction d’étiquetage. Pour u ∈ T, on appelle V (u) la
position de u, et on pose

Mn = max
u∈T:|u|=n

V (u)

la position de l’individu le plus haut à l’instant n dans T.
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Figure 7 – Le graphe d’un arbre plan enraciné étiqueté (T, V ).

Arbre de Galton-Watson. Grâce aux notations d’Ulam-Harris, on peut aisément dé-
crire un arbre de Galton-Watson. Étant donné (ξu, u ∈ U) un ensemble de variables aléa-
toires indépendantes et identiquement distribuées à valeurs dans les entiers, on écrit

T =
{
u ∈ U : ∀1 ≤ k ≤ |u|, u(k) ≤ ξuk−1

}
.

Cet ensemble est un arbre (plan, enraciné) aléatoire. On observe que si on note, pour tout
n ≥ 0, Zn = #{u ∈ T : |u| = n} le nombre d’individus vivant à la génération n dans cet
arbre, le processus (Zn, n ≥ 0) est un processus de Galton-Watson.

3.2 Processus de points

Un processus de points est une variable aléatoire à valeurs dans l’ensemble des mesures
de comptage de R finies sur les compacts. Ce processus représente un ensemble de points de
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R, fini ou infini, compté avec leur multiplicité. Les processus de points que nous considérons
admettent presque sûrement un plus grand élément. Par conséquent, on peut toujours
écrire un processus de points L = (`1, . . . `n), où n est le nombre aléatoire de points dans
L (notons que l’on autorise n = +∞ en toute généralité), et `1 ≥ `2 ≥ . . . et la suite
de points dans L, listée dans l’ordre décroissant (si n = +∞, on pose par convention
`∞ = −∞).

On pose L la loi de L. La transformée de log-Laplace de L est la fonction κ définie par

κ :
(0,+∞) → R ∪ {+∞}

θ 7→ log E
[∑

`∈L e
θ`
]
,

où∑`∈L représente la sommation sur l’ensemble des éléments du processus de points. Une
autre fonction souvent associée à L est sa transformée de Cramér κ∗ définie par

κ∗ : R 7→ R
a 7→ supθ>0 θa− κ(θ).

On notera que κ et κ∗ sont deux fonctions convexes semi-continues inférieurement, et de
classe C∞ sur l’intérieur de l’ensemble où elles sont finies. De plus, si κ est différentiable
au point θ > 0, on a

θκ′(θ)− κ(θ) = κ∗
(
κ′(θ)

)
.

Supposons qu’il existe θ > 0 tel que κ(θ) < +∞, on pose

v = inf
θ>0

κ(θ)
θ

= sup{a ∈ R : κ∗(a) ≤ 0}.

On note θ∗ > 0, s’il existe, la quantité vérifiant

θ∗κ′(θ∗)− κ(θ∗).

Par convexité, on a sans difficulté v = κ′(θ∗). Pour finir, on notera σ2 = κ′′(θ∗).

3.3 La loi de la marche aléatoire branchante

Une marche aléatoire branchante est une variable aléatoire (T, V ) à valeurs dans l’en-
semble des arbres enracinés étiquetés telle que V (∅) = 0, et que la famille de processus
de points {(V (v)− V (u), v ∈ Ω(u)) , u ∈ T} est indépendante et identiquement distribuée.
On note L la loi de ces processus de points, que l’on appelle la loi de reproduction de la
marche aléatoire branchante.

Ce processus peut être construit de la façon suivante. On se donne {Lu, u ∈ U} une
famille de processus de points indépendants et identiquement distribués de loi L. Pour tout
u ∈ U , on écrit Lu = (`u1 , . . . `uN(u)), et Lu représente le processus de point du déplacement
des enfants de u par rapport à leur parent. On pose alors

T = {∅} ∪ {u ∈ U∗ : ∀k < |u|, u(k) < N(uk−1)}

et pour u ∈ T, on écrit V (u) = ∑|u|
j=1 `

uj−1
u(j) .

La filtration naturelle associée à la marche aléatoire branchante est donnée par

Fn = σ ((u, V (u)), u ∈ T : |u| ≤ n) .
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4 Plus grand déplacement dans des variantes de marche
aléatoire branchante

Grâce aux notations de la section précédente, nous introduisons les principaux théo-
rèmes démontrés dans cette thèse, liés à l’asymptotique du plus grand déplacement Mn

dans une marche aléatoire branchante en temps inhomogène ou avec sélection. Étant donné
une suite de variables aléatoires (Xn, n ∈ N) et (an) ∈ RN, on note

Xn = oP(an) si ∀ε > 0, lim
n→+∞

P (|Xn/an| ≥ ε) = 0,

Xn = OP(an) si lim
K→+∞

sup
n∈N

P (|Xn/an| ≥ K) = 0.

4.1 Marches aléatoires branchantes en environnement inhomogène en
temps

On se donne une suite (Ln, n ≥ 1) de loi de processus de points sur R. Une marche
aléatoire branchante en environnement inhomogène est une variable aléatoire (T, V ) à
valeurs dans l’ensemble des arbres plans enracinés étiquetés telle que la famille de processus
de points {(V (v)− V (u), v ∈ T : πv = u) , u ∈ T} est indépendante et pour u ∈ T la loi
de (V (v) − V (u), v ∈ T : πv = u) est L|u|. La suite de loi (Ln, n ≥ 0) est appelée
environnement de la marche aléatoire branchante.

En d’autres termes, une marche aléatoire branchante en environnement inhomogène
commence avec un unique individu situé en 0 à l’instant 0. À chaque instant n, tous les
individus vivants à la génération n− 1 meurent, en donnant naissance de façon indépen-
dante à un certain nombre d’enfants, qui se répartissent autour de leur parent selon un
processus de point de loi Ln. Pour n ∈ N, on pose κn la transformée de log-Laplace de Ln
et κ∗n la transformée de Cramér associée.

Marches aléatoires branchantes avec interfaces. On se donne des lois de processus
de points (L1, . . .LP ) et des réels t0 = 0 < t1 < t2 < · · · < tP = 1. On fixe ensuite un entier
n, la longueur de la marche aléatoire branchante avec interfaces que l’on considère. Dans
ce modèle, les individus faisant partie de la génération k ∈ [tp−1n, tpn) se reproduisent de
façon indépendante selon des processus de points de loi Lp. Les individus de la génération
n meurent sans descendance.

Figure 8 – Une marche aléatoire branchante avec deux interfaces
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Dans le Chapitre 1 on s’intéresse au cas particulier P = 2, correspondant à la marche
aléatoire branchante avec une seule interface. On montre une première généralisation du
résultat de Fang et Zeitouni [FZ12a].

Théorème 1. Soient L1 et L2 deux lois de processus de points sur R. On suppose qu’il
existe θ∗1, θ∗2 > 0 tels que

θ∗i κ
′
i(θ∗i )− κi(θ∗i ) = 0,

ainsi que certaines hypothèses d’intégrabilité supplémentaires.
Si θ∗1 < θ∗2, alors

Mn = n (t1v1 + (1− t1)v2)−
( 3

2θ∗1
+ 3

2θ∗2

)
logn+OP(1).

Si θ∗1 = θ∗2, alors

Mn = n (t1v1 + (1− t1)v2)− 3
2θ∗1

logn+OP(1).

Si θ∗1 > θ2, et s’il existe θ∗ ∈ (θ∗1, θ∗2) tel que

θ∗
(
t1κ
′
1(θ∗) + (1− t1)κ′2(θ∗)

)− (t1κ1(θ∗) + (1− t1)κ2(θ∗)) = 0,

alors
Mn = n

(
t1κ
′
1(θ∗) + (1− t1)κ′2(θ∗)

)− 1
2θ∗ logn+OP(1).

Grâce à ce théorème, on observe qu’il existe vi ∈ R et λi > 0 vérifiant

Mn = nvi − λi logn+OP(1).

On note que vi évolue continûment lorsque les lois de processus de points évoluent, alors
que λi subit une transition de phase lorsque θ∗2 − θ∗1 change de signe.

θ∗
1

λi

θ∗
2

•

vfast vslow

Figure 9 – Lieu des corrections logarithmiques possibles pour une marche aléatoire bran-
chante avec une interface et vitesse associée

Dans le Chapitre 2, le Théorème 1 est étendu au cas d’un nombre arbitraire P ≥ 2
d’interfaces. Pour ce faire, il est nécessaire de connaître la trajectoire suivie par l’individu
qui réalise le plus grand déplacement au temps n. Dans ce but, on prouve tout d’abord le
résultat suivant, basé sur un théorème d’existence de multiplicateurs de Lagrange.
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Proposition 2. Si supp≤P,a∈R κ∗p(a) < +∞, il existe un unique a ∈ RP tel que

P∑
p=1

(tp − tp−1)ap = max


P∑
p=1

(tp − tp−1)bp, b ∈ RP : ∀q ≤ P,
q∑
p=1

(tp − tp−1)κ∗p(bp) ≤ 0

 ,
vérifiant ∀q ≤ P,∑q

p=1(tp − tp−1)κ∗p(ap) ≤ 0.
De plus, si on note θp = (κ∗p)′(ap) alors
• θ1 ≤ θ2 ≤ · · · ≤ θP ;
• si θq+1 6= θq alors

∑q
p=1(tp − tp−1)κ∗p(aj) = 0 ;

• ∑P
p=1(tp − tp−1)κ∗p(ap) = 0.

Grâce à cette proposition, on pose vis = ∑p
p=1(tp − tp−1)ap. Soient ϕ1 < · · · < ϕQ tels

que {ϕ1, . . . , ϕQ} = {θ1, . . . , θP } l’ensemble des valeurs distinctes prises par θ, classées
dans l’ordre croissant. Pour q ≤ Q, on pose

fq = min{p ≤ P : θp = ϕq} et lq = max{p ≤ P : θp = ϕq}.

On écrit enfin

λis =
Q∑
q=1

1
2ϕq

1 + 1{
κ∗
fq

(afq)=0
} + 1{

κ∗
lq−1(alq−1)=0

} .
On peut alors calculer le comportement asymptotique de Mn.

Théorème 3. Sous de bonnes hypothèses d’intégrabilité, on a

Mn = nvis − λis logn+OP(1).

Marches aléatoires branchantes en environnement variant. Une généralisation
naturelle des processus étudiés précédemment est la suivante. On considère une famille
(Lt, t ∈ [0, 1]) de lois de processus de points sur R. Notons κt la transformée de log-
Laplace de Lt. On fixe ensuite la taille n de la marche aléatoire branchante. Les individus
vivants à la génération k se reproduisent en utilisant la loi Lk/n.

Figure 10 – Deux marches aléatoires branchantes en environnement variant

Lorsque t 7→ Lt évolue de façon lisse, les individus se reproduisent localement comme
dans une marche aléatoire branchante en temps homogène. La vitesse de cette marche
aléatoire branchante est donnée par

v∗ = max
{∫ 1

0
bsds, b ∈ C([0, 1]) : ∀t ∈ [0, 1]

∫ t

0
κ∗s(bs)ds ≤ 0

}
.
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Néanmoins, nous montrons dans le Chapitre 3 que le deuxième ordre de Mn est n1/3. On
détermine dans un premier temps le chemin suivi par l’individu réalisant le plus grand
déplacement à l’instant n, un résultat similaire à la Proposition 2.

Proposition 4. Soit a une fonction càdlàg sur [0, 1), on pose θt∂aκ∗t (at). Si (t, a) 7→ κ∗t (a)
est de classe C2, a vérifie

v∗ =
∫ 1

0
asds et ∀t ∈ [0, 1],

∫ t

0
κ∗s(as)ds ≤ 0,

si et seulement si
• θ est strictement positive et croissante ;
• ∫ 1

0 K
∗(a)sdθ−1

s = 0 ;
• ∫ 1

0 κ
∗
s(as)ds = 0.

En particulier, il existe une unique solution à ce problème d’optimisation, et cette
solution a est lipschitzienne.

Dans un second temps, grâce à des calculs explicites, on montre sans difficultés le
résultat suivant sur la transformée de Laplace de l’aire d’un mouvement brownien restant
négatif.

Lemme 5. Soit h : [0, 1]→ [0,+∞) une fonction continue. Pour tout x < 0, étant donné
un mouvement brownien B issu de x, on a

lim
t→+∞

1
t

log E
[
exp

(
−
∫ t

0
h(s/t)Bsds

)
1{Bs≤0,s≤t}

]
= α1

21/3

∫ 1

0
hsds,

où α1 ≈ −2.3381... est le premier zéro de la fonction Ai d’Airy.

Grâce à la Proposition 4 et au Lemme 5, on peut estimer Mn.

Théorème 6. Sous de bonnes hypothèses d’intégrabilité et de régularité, on note a l’unique
fonction vérifiant

v∗ =
∫ 1

0
asds et ∀t ∈ [0, 1],

∫ t

0
κ∗s(as)ds ≤ 0,

on pose θt = ∂aκ
∗
t (at) et σ2

t = ∂2
θκt(θt). Si θ est absolument continue et admet une dérivée

Riemann-intégrable θ̇, alors

Mn = nv∗ + n1/3 α1
21/3

∫ 1

0

(θ′sσs)2/3
θs

ds+ oP (n1/3).

Marches aléatoires branchantes en environnement aléatoire. Dans ce modèle, la
suite (Ln, n ∈ N) de lois de processus de points est une suite indépendante et identiquement
distribuée. On considère la marche aléatoire branchante en environnement inhomogène
dans laquelle tous les individus vivants à l’instant n se reproduisent indépendemment
selon la loi Ln.

On note κn(θ) la transformée de log-Laplace de Ln et κ(θ) = E [κ1(θ)]. On suppose
qu’il existe θ∗ > 0 vérifiant

θ∗κ′(θ∗)− κ(θ∗) = 0.
Des arguments classiques de marche aléatoire branchante montrent que sous de bonnes
hypothèses, le plus grand déplacement à l’instant n est proche de ∑n

j=1
κj(θ∗)
θ∗ . Pour dé-

terminer le comportement asymptotique de Mn de façon plus précise, il est nécessaire
d’obtenir le résultat suivant, sur la probabilité pour un mouvement brownien de rester
au-dessus d’un autre mouvement brownien.
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Figure 11 – Une marche aléatoire branchante en environnement aléatoire

Théorème 7 (Théorème du scrutin aléatoire). Soit B et W deux mouvements browniens
indépendants. Il existe γ : R → R une fonction paire convexe et que γ(0) = 1/2 telle que
pour tout β > 0,

lim
t→+∞

1
log t log P (Bs ≥ βWs − 1, s ≤ t|W ) = −γ(β) p.s.

Grâce à ce résultat, on prouve le résultat suivant sur le plus grand déplacement dans
la marche aléatoire branchante en environnement aléatoire.

Théorème 8. On suppose que

σ2
Q = (θ∗)2 E

[
κ′′1(θ∗)

] ∈ (0,+∞) et σ2
A = Var

[
θ∗κ′1(θ∗)− κ1(θ∗)

] ∈ [0,+∞),

et on note ϕ = 2
θ∗γ

(
σA
σQ

)
+ 1

2θ∗ . Sous de bonnes hypothèses d’intégrabilité, on a

Mn = 1
θ∗

n∑
j=1

κj(θ)− ϕ logn+ oP(logn).

On observe que le comportement asymptotique deMn est dans ce modèle donné par un
premier ordre linéaire de pente κ(θ∗)

θ∗ , des fluctuations d’ordre n1/2 qui ne dépendent que
de l’environnement, et un terme logarithmique qui ne dépend pas de cet environnement.

4.2 Marches aléatoires branchantes avec sélection

Dans une marche aléatoire branchante avec sélection, on se fixe une suite d’entiers
(Nn, n ≥ 1), qui représente la taille maximale de la population à chaque étape. A chaque
instant n ≥ 1, tous les individus vivants à la génération n meurent, en laissant des enfants
placés autour de chaque parent selon des versions i.i.d. du processus de points L. Immé-
diatement après, les Nn+1 individus avec la plus grande position sont conservés, les autres
sont immédiatement tués. On note MN

n la position de l’individu le plus haut parmi les
individus sélectionnés et mN

n celle de l’individu le plus bas.

Sélection croissante. On s’intéresse dans un premier temps à une marche aléatoire
branchante dans laquelle la suite des tailles de population au cours du temps est donnée par
Nn =

⌊
ean

1/3
⌋
, pour a ∈ (0,+∞). Le principal résultat du Chapitre 5 est le comportement

asymptotique de MN
n et mN

n .
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Figure 12 – Marche aléatoire branchante avec sélection des e3n1/3 individus les plus hauts
à la génération n

L’un des principaux ingrédients de cette preuve est un couplage entre la marche aléa-
toire branchante avec sélection et une marche aléatoire branchante avec une barrière, dans
laquelle les individus passant sous un niveau donné meurent.

Théorème 9. Sous de bonnes hypothèses d’intégrabilité, on a

lim
n→+∞

MN
n − nv
n1/3 = 3π2θ∗σ2

2a2 p.s.

lim
n→+∞

mN
n − nv
n1/3 = − a

θ∗
− θ∗ 3π2σ2

2a2 p.s.

Sélection pour des marches à épine stable. Dans un second temps, on s’intéresse
aux marches aléatoires branchantes avec sélection pour lesquelles l’épine (définie dans la
Section 1.2.3) de la marche aléatoire branchante est dans le domaine d’attraction d’une
marche aléatoire stable d’indice α ∈ (0, 2]. On montre dans le Chapitre 6 le résultat
suivant, en reprenant et généralisant la preuve de [BG10].

Théorème 10. Sous de bonnes hypothèses d’intégrabilité, pour tout N ∈ N, on a

lim
n→+∞

MN
n

n
= lim

n→+∞
mN
n

n
= vN p.s.

De plus, il existe une fonction à variations lentes Λ et une constante χ > 0 telles que

lim
N→+∞

(v − vN ) (logN)α
Λ(logN) = χ.
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Figure 13 – N -Marche aléatoire branchante avec épine stable

4.3 Marche aléatoire branchante classique

Une troisième partie est consacrée à la preuve de deux résultats classiques sur les
marches aléatoires branchantes en environnement homogène. Ces résultats sont prouvés
sous des conditions d’intégrabilité plus fortes que celles trouvées dans la littérature. On
calcule dans le Chapitre 7 l’asymptotique du plus grand déplacement dans la marche
aléatoire branchante, jusqu’au terme OP(1). On s’intéresse dans le Chapitre 8 au compor-
tement asymptotique du plus grand déplacement consistant, défini comme

Λn = min
|u|=n

max
k≤n

kv − V (uk).

Il a été prouvé dans [FZ10] et [FHS12] que Λnn−1/3 converge presque sûrement une
constante explicite. Nous redémontrons ce résultat sous des conditions d’intégrabilité plus
faible.

Les Chapitres 7 et 8 contiennent l’essentiel des arguments employés dans les autres
chapitres de cette thèse, mais dans un cadre plus simple. Les notations et les raisonnements
liés à la marche aléatoire branchante en environnement homogène gagnent en clarté par des
notations plus légères. Nous espérons que leur lecture pourra éclairer quelques arguments
perdus au sein de détails techniques.

5 Des modèles liés aux marches aléatoires branchantes

Nous présentons de façon très brève plusieurs objets mathématiques qui peuvent être
reliés à des marches aléatoires branchantes, que l’on peut étudier en introduisant des
marches aléatoires branchantes et/ou pour lesquels des techniques de preuves de marche
aléatoire branchante peuvent être adaptées. La plupart du temps, ces objets sont présentés
dans un cas particulier, par soucis de clarté ou de concision. Ne nous intéressant qu’à leurs
liens avec les marches aléatoires branchantes, nous ne pouvons prétendre donner un aperçu
complet des modèles évoqués.
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Mouvement brownien branchant. Le mouvement brownien branchant peut être
considéré comme la version à temps continu de la marche aléatoire branchante. C’est un
processus simulant l’évolution au cours du temps d’une population sur R. Les individus
se déplacent selon des mouvements browniens indépendants. De plus, à chaque individu
est associé une horloge exponentielle de paramètre 1. Lorsque cette horloge sonne, l’in-
dividu associé meurt en donnant naissance à deux enfants. Ces enfants se comportent
alors comme n’importe quelle autre individu du processus, se déplacent indépendamment
de façon brownienne et meurent au bout d’un temps exponentiel de paramètre 1. Le
comportement du mouvement brownien branchant et de la marche aléatoire branchante
sont très similaires. Un grand nombre de résultats prouvés pour la marche aléatoire bran-
chante ont d’abord été prouvés dans le cadre du mouvement brownien branchant, cf.
[Bra78, BBS13, Mai13, MZ14, Rob12].

Cascades multiplicatives de Mandelbrot. Les cascades multiplicatives de Mandel-
brot ont été construites pour étudier les phénomènes d’intermittence dans la théorie des
turbulences de Kolmogorov [Kol91b, Kol91a]. Une cascade multiplicative est, par exemple,
une mesure aléatoire construite sur l’intervalle [0, 1] telle que la mesure de l’intervalle dya-
dique [k2−n, (k + 1)2−n] est égale en loi à la masse totale de cette mesure, multipliée par
une variable aléatoire indépendante dont la loi dépend de la profondeur n de l’intervalle.
Dans les articles de Mandelbrot [Man74a, Man74b, Man74c], Kahane [Kah74], Peyrière
[Pey74] et Kahane et Peyrière [KP76], des marches aléatoires branchantes sont introduites
pour étudier ces cascades multiplicatives.

Chaos multiplicatif gaussien. Le chaos multiplicatif gaussien est une autre mesure
aléatoire, introduite par Kahane [Kah85b] en 1985. Une telle mesure peut être construite
de façon informelle comme suit. Étant donné γ ∈ R et un champ gaussien centré (X(x), x ∈
R2) vérifiant

E [X(x)X(y)] ≈ log (min(1, |y − x|)) ,

le chaos multiplicatif gaussien associé est la mesure Mγ(dx) = eγX(x)− γ
2

2 E(X(x)2)dx. Cette
mesure peut bien entendu être construite sur des espaces métriques mesurés plus généraux,
et pour des noyaux non nécessairement gaussiens. Pour une présentation plus précise du
chaos multiplicatif gaussien, nous nous référons à [RV14]. Le chaos multiplicatif gaussien
satisfait les mêmes propriétés d’auto-similarité que les cascades de Mandelbrot. La marche
aléatoire branchante peut être considérée comme un modèle-jouet de ce processus.

Équation aux dérivées partielles FKPP. Une fonction u : [0,+∞) × R → [0, 1]
satisfait l’équation de réaction-diffusion de Fisher-Kolmogorov-Petrowski-Piscounov si

∀t ≥ 0,∀x ∈ R,
∂u

∂t
= 1

2
∂2u

∂x2 + u(1− u).

Cette équation, introduite dans [Fis37, KPP37], peut être interprétée comme l’évolution
au cours du temps d’une population d’individus en interaction. Les individus se déplacent
sur R en diffusant, et u(t, x) représente la proportion d’individus présents au voisinage
du point x à l’instant t, où 1 représente la constante de saturation de l’environnement.
En d’autres termes, si u(t, x) = 1, la population cesse de croître au voisinage du point
x car la mortalité due à la compétition pour les ressources contrebalance la naissance
d’enfants. McKean [McK75, McK76] et Neveu [Nev88] ont noté que l’on pouvait relier
l’équation FKPP avec le mouvement brownien branchant. Ainsi, si on écrit Mt le plus
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grand déplacement à l’instant t dans le mouvement brownien branchant, on observe que
u(t, x) = P(Mt ≥ x) satisfait l’équation FKPP ci-dessus. Un certain nombre de résultats
sur les solutions de l’équation FKPP se transforment donc en résultats sur le comportement
du mouvement brownien branchant et réciproquement, comme le montre par exemple
l’enchaînement récent des résultats de Fang et Zeitouni [FZ12b] (mouvement brownien
branchant), Nolen, Roquejoffre et Ryzhik (équation FKPP), et Maillard et Zeitouni [MZ14]
(mouvement brownien branchant).

Generalised Random Energy Model. Le « Generalised Random Energy Model »
ou Grem est un modèle de verre de spin introduit par Derrida [Der85]. Dans ce modèle,
les particules sont corrélées selon une struture hiérarchique arborescente. Du fait de leurs
nombreuses similarités, de nombreux résultats prouvés pour un modèle peuvent également
être prouvés pour l’autre.

Marche aléatoire sur une marche aléatoire branchante. La marche aléatoire bran-
chante est également un environnement de choix pour l’étude des marches aléatoires en
environnement aléatoire. Dans ce modèle, un marcheur se déplace sur l’ensemble des in-
dividus présents à tout instant dans le processus. A chaque étape, le marcheur remonte
vers le parent de l’individu sur lequel il se trouve avec une probabilité proportionnelle à
1, et descend vers l’un de ses enfants avec probabilité proportionnelle à l’exponentielle du
déplacement relatif de l’enfant par rapport au parent (telle que définie dans [LP92]). Entre
dans ce cadre, par exemple, les marches aléatoires biaisées sur les arbres de Galton-Watson
[Lyo92, Lyo94].
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time-inhomogeneous environments





CHAPTER 1

Maximal displacement in a
branching random walk

through an interface

“Il paraît que la crise rend les riches plus riches et les pauvres
plus pauvres. Je ne vois pas en quoi c’est une crise. Depuis que
je suis petit, c’est comme ça.”

Michel Colucci, dit Coluche – Sketch "Le chômeur"

Abstract
In this chapter, we study the maximal displacement of a branching random walk
in time-inhomogeneous environment. This environment consists in two macroscopic
time intervals, in each of which the reproduction of individuals remains constant.
This chapter provides tools helpful to the understanding of branching random walks
in more general time-inhomogeneous environments. We prove here that the maxi-
mal displacement is given –as in the time-homogeneous case– by a first linear term,
a negative logarithmic correction plus fluctuations of order one. This asymptotic
behaviour strongly depends on the path followed by the individual who realises the
maximal displacement. Furthermore, the logarithmic correction exhibit a sharp phase
transition.

Nota: This chapter is a simplified version of the articleMaximal displacement in a branch-
ing random walk through a series of interfaces submitted to Electronic Journal of Probabil-
ities. There is a single interface in the process and the text is available on arXiv:1305.6201

1.1 Introduction

A time-inhomogeneous branching random walk on R is a process which starts with one
individual located at the origin at time 0, and evolves as follows: at each time k, every
individual currently in the process dies, giving birth to a certain number of children, which
are positioned around their parent according to independent versions of a point process,
whose law may depend on the generation of the parent.

In 2011, Fang and Zeitouni [FZ12a] studied the asymptotic of the maximal displace-
ment in a branching random walk defined as follows. Given n ∈ N, they considered a
branching random walk through an interface with length n, in which individuals split
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into two children, which displace around their parent according to independent Gaussian
random variables. During the first n

2 unit of times, the Gaussian random variables have
variance σ2

1, while they have variance σ2
2 between the generation n

2 and the generation n.
They observed that the behaviour of such branching random walks depends on the sign of
σ2

2−σ2
1, in particular the asymptotic of the maximal displacement is a first ballistic order,

and a logarithmic term, which exhibits a phase transition as σ2
2 grows bigger than σ2

1.
We generalize their result to a large variety of branching mechanisms. Let t ∈ [0, 1]

and L1,L2 be two laws of point processes. For all n ≥ 1, we study the time-inhomogeneous
branching random walk (T(n), V (n)), in which individuals reproduce independently, with
law L1 if they are alive before time tn, and with law L2 otherwise. In this process, Mn

–the maximal displacement at time n– has again a first ballistic order, plus logarithmic
corrections which again exhibit a phase-transition, and fluctuations of order 1.

We now introduce additional notation, to define more precisely time-inhomogeneous
branching random walks, before stating the main result of the article, the asymptotic of
Mn for a branching random walk through an interface.

1.1.1 Definition of the model and notation

The time-inhomogeneous branching random walk

We recall that (T, V ) ∈ T is a (plane, rooted) marked tree if T is a (plane, rooted)
tree, and V : T→ R. For a given individual u ∈ T, we write |u| the generation to which
u belongs. If u is not the root, then πu the parent of u and uk the ancestor of u alive at
generation k. Finally, we write Ω(u) = {v ∈ T : πv = u} the set of children of u.

Let (Ln, n ≥ 1) be a family of point processes laws, which we call the environment of the
branching random walk. A time-inhomogeneous branching random walk with environment
(Ln) is a random variable in T which we write (T, V ). The law of this random variable is
characterized by the three following properties
• V (∅) = 0;
• {(V (v)− V (u), v ∈ Ω(u)) , u ∈ T} is a family of independent point processes;
• the point process (V (v)− V (u), v ∈ Ω(u)) has law L|u|+1, and Ln+1 = δ∅.
The branching random walk can be constructed in the following way. We write U the

set of all finite sequences of integers –following the Ulam-Harris notations for trees– and for
u ∈ U , we write |u| the length of u. We consider a family of independent point processes
{Lu, u ∈ U}, where Lu has law L|u|+1. For any u ∈ U , we write Lu =

(
`u1 , . . . `

u
N(u)

)
. The

plane rooted tree which represent the genealogy of the population is

T = {u ∈ U : ∀k ≤ |u| − 1, u(k + 1) ≤ N(uk)} .

In particular, we observe that the tree T is a –time-inhomogeneous– Galton-Watson tree,
with reproduction law at generation k given by the number of points in a point process of
law Lk. We set V (∅) = 0 and, for u ∈ T with |u| = k,

V (u) := V (πu) + `πuu(k) =
k−1∑
j=0

`
uj
u(j+1).

For a given u ∈ T, the sequence (V (u0), V (u1), . . . V (u)) of positions of the ancestors of u
is often called the path or the trajectory of u. Finally, we write Mn = max|u|=n V (u) the
maximal displacement in the branching random walk.
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Branching random walk through an interface

In this chapter, we take interest in a branching random walk with an interface. In this
model, the environment of the time-inhomogeneous branching random walk scales at rate
n, and consists in two macroscopic time-intervals, in each of which the reproduction law
remains constant. Let t ∈ (0, 1) and L1,L2 be two laws of point processes. To avoid a
discussion on the survival of the branching random walk, we assume that

∀p ∈ {1, 2},P(Lp = ∅) = 0 and E

∑
`∈Lp

1

 > 1, (1.1.1)

where Lp is a point process with law Lp. For all n ∈ N, we write (T(n), V (n)) a time-
inhomogeneous branching random walk with length n, with environment L1 until time tn,
L2 between time tn and n, and such that individuals at time n die without children. We
observe in particular that T(n) is a tree of height n.

The branching random walk (T(n), V (n)) is called branching random walk through an
interface –BRWi for short– of length n. When the value of n is clear in the context, we
often omit the superscripts to make the notation lighter.

Let p ∈ {1, 2}. We write κp for the log-Laplace transform of Lp. For a ∈ R, we
set κ∗p(a) = supθ>0 θa − κp(θ) its Fenchel-Legendre transform. We observe that if κ∗p is
differentiable at point a, we have

κ∗p(a) = (κ∗p)′(a)a− κp
(
(κ∗p)′(a)

)
. (1.1.2)

1.1.2 Assumptions and main results

Using some well-known branching random walk estimates, we build heuristics for the
first order of Mn. It leads to a definition of the speed vi as the solution of an optimization
problem, that we study in a second time. In a third part, we finally state the main result
of this chapter –the asymptotic of Mn up to stochastically bounded fluctuations.

Number of individuals at a given level in a branching random walk

We list here some classical results for (time-homogeneous) branching random walks,
which can be found in [Big10]. Let p ∈ {1, 2}, we write (Tp, Vp) for a branching random
walk with reproduction law Lp. If there exists θ > 0 such that κp(θ) < +∞, then the
speed of the branching random walk is defined by

∀p ∈ {1, 2}, vp = inf
θ>0

κp(θ)
θ

= sup{a ∈ R : κ∗p(a) ≤ 0} < +∞, (1.1.3)

in the sense that limn→+∞
max|u|=n Vp(u)

n = vp a.s.
Additionally, the function κ∗p is linked to the number of individuals alive at a given

level at time n. As proved in [Big77a], we have{
∀a < vp, limn→+∞ 1

n log∑|u|=n 1{Vp(u)≥na} = −κ∗p(a) a.s.
∀a > vp, limn→+∞ 1

n log P [∃|u| = n : Vp(u) ≥ na] = −κ∗p(a).
(1.1.4)

Note that with high probability, there is no individual above nvp at time n, and there is an
exponentially large number of individuals at distance of order n of this maximal position.
By (1.1.4), the quantity e−nκ∗p(a) is either an approximation of the number of individuals
alive at time n in a neighbourhood of na, or of the probability to observe at least one
individual around na at time n, depending on the sign of κ∗p(a).
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Heuristics for the maximal displacement

We now consider the BRWi (T, V ). By (1.1.4), for any a1 < v1, there are approximately
e−ntκ

∗
1(a1) individuals alive at time tn at position ta1n. Each of these individuals starts an

independent branching random walk with reproduction law L2. By law of large number,
there are at time n about e−tnκ∗1(a1)−(1−t)nκ∗2(a2) individuals around (ta1 + (1 − t)a2)n,
whose ancestors were close to ta1n. Therefore, there exists at least one individual to the
right of nb if there exists (a1, a2) ∈ R2 such that

ta1 + (1− t)a2 ≥ b, a1 < v1 and tκ∗1(a1) + (1− t)κ∗2(a2) < 0.

We define

vi = sup{ta1 + (1− t)a2, (a1, a2) ∈ R2 : κ∗1(a1) ≤ 0, tκ∗1(a1) + (1− t)κ∗2(a2) ≤ 0} (1.1.5)

which we expect to be the speed of the BRWi. As κ∗1(v1) ≤ 0 and κ∗2(v2) ≤ 0 –these two
functions being lower-continuous– we have immediately tv1 + (1− t)v2 ≤ vi.

Observe that if we write

v∗ = sup{ta1 + (1− t)a2, (a1, a2) ∈ R2 : tκ∗1(a1) + (1− t)κ∗2(a2) ≤ 0}, (1.1.6)

we have immediately vi ≤ v∗. If vi = v∗, this means that the condition κ∗1(a1) ≤ 0 doesn’t
play any role in the optimization problem (1.1.5), thus the path followed by the rightmost
individual until time n stays at any time k ≤ tn below the boundary kv1. Otherwise, if
vi < v∗, the condition κ∗1(a1) ≤ 0 is important, and the path followed by the rightmost
individual until time n has to be very close to the boundary tnv1 at time tn. These
different situations lead to different behaviours.

Around the logarithmic correction

We assume that

∀p ∈ {1, 2}, ∃θp > 0 : vp = κp(θp)
θp

= E

∑
`∈Lp

`eθp`−κp(θp)

 . (1.1.7)

With some additional integrability conditions (see Chapter 7), the maximal displacement
at time n of (Tp, Vp) is of order nvp − 3

2θp logn + OP(1). Moreover, by (1.1.2), if κ∗p is
differentiable at point vp, then (κ∗p)′(vp) = θp. As a consequence, the value of (θ1, θ2) is
linked to the question vi = v∗ raised above. If κ∗1(a) and κ∗2(a) are both finite for any
a ∈ R, using careful analysis one can observe that
• if θ1 < θ2, then tv1 + (1− t)v2 = vi < v∗;
• if θ1 = θ2, then tv1 + (1− t)v2 = vi = v∗;
• if θ1 > θ2, then tv1 + (1− t)v2 < vi = v∗.

We observe that (1.1.8) is easily solved as soon as θ1 ≤ θ2.

Proposition 1.1.1. Under assumptions (1.1.3) and (1.1.7), if θ1 ≤ θ2 then

vi = tv1 + (1− t)v2.

Proof. Under assumption (1.1.7), we have κ∗p(vp) = 0. Assuming θ1 ≤ θ2, let (a1, a2) ∈ R2

be such that κ∗1(a1) ≤ 0 and tκ∗1(a1) + (1− t)κ∗2(a2) ≤ 0. By convexity of functions κ∗p, we
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have

tv1 + (1− t)v2 − (ta1 + (1− t)a2) = t(v1 − a1) + (1− t)(v2 − a2)

≥ tκ
∗
1(v1)− κ∗1(a1)

θ1
+ (1− t)κ

∗
2(v2)− κ∗2(a2)

θ2

≥ −tκ
∗
1(a1)
θ1

− (1− t)κ
∗
2(a2)
θ2

,

leading to

tv1 + (1− t)v2 − (ta1 + (1− t)a2)

≥ −tκ∗1(a1)
(

1
θ1
− 1

θ2

)
− (tκ∗1(a1) + (1− t)κ∗2(a2)) 1

θ2
≥ 0.

Therefore for any pair (a1, a2) we have tv1 + (1 − t)v2 ≥ ta1 + (1 − t)a2, that yields
tv1 + (1− t)v2 ≥ vi. We conclude observing that by definition, vi ≥ tv1 + (1− t)v2.

If θ1 < θ2, one would expect that in the optimization problem (1.1.5), the condition
κ∗1(a1) ≤ 0 plays a role, and the optimal path would have been higher by increasing a
little a1. This observation hints that with high probability, the rightmost individual at
time n descends from one of the rightmost individuals at time tn. Therefore the maximal
displacement at time n is, up to a OP(1) the sum of the maximal displacement at time tn
of (T1, V1) and the maximal displacement at time (1− t)n of the branching random walk
(T2, V2).

If θ1 = θ2, there should be no “pressure” on the path followed by the rightmost
individual at time n to be within distance O(1) from the boundary of the branching
random walk at time tn. Nevertheless, we still expect the path to be within distance
O(n1/2) from this boundary. This has a cost 3

2θ1
logn, thus one would expect the behaviour

of the maximal displacement at time n to be similar to the one of a time-homogeneous
branching random walk.

Finally, if θ1 > θ2, the “pressure” for the optimal path to stay close to the boundary
does not exists. Moreover, the optimal path stays far from the boundary at any time
k ≤ n. As a consequence, the branching issues should not play any role in this case, and
we expect the maximal displacement in this process to have a behaviour similar to the
maximum of an exponentially large number of independent random walks of length n.

The asymptotic of the maximal displacement

We define here three different regimes for the BRWi, indexed by the sign of θ1 − θ2.
The asymptotic behaviour of the maximal displacement depends on the regime, as the
path followed by the rightmost individual at time n has very different features in each of
them. To provide some integrability conditions, for Lp a point process with law Lp, we
define

Xp(θ) =
∑
`∈Lp

(1 + `+)eθ` and Σp(θ) =
∑
`∈Lp

`2eθ`.

The slow regime. We assume θ1 < θ2. In this regime, the rightmost individual at time
n descend from one of the rightmost individuals at time tn, and the following result holds.
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Theorem 1.1.2. Under the assumptions (1.1.1), (1.1.3) and (1.1.7), if θ1 < θ2 and

max
p∈{1,2}

E [Σp(θp)] + E

∑
`∈Lp

eθp` log+(Xp(θp))2

 < +∞

then
Mn = nvi −

( 3
2θ1

+ 3
2θ2

)
logn+OP(1).

The mean regime. If θ1 = θ2, the behaviour of the BRWi is very similar to the one of
a classical branching random walk. In particular, the following result holds.

Theorem 1.1.3. Under the assumption (1.1.7), writing θ := θ1 = θ2, if

max
p∈{1,2}

E [Σp(θ)] + E

∑
`∈Lp

eθ` log+(Xp(θ))2

 < +∞

then
Mn = n(tv1 + (1− t)v2)− 3

2θ logn+OP(1).

The fast regime. If θ1 > θ2, then the path leading to the rightmost individual at time
n stays far from the boundary. We assume that

v∗ = inf
θ>0

tκ1(θ) + (1− t)κ2(θ)
θ

< +∞. (1.1.8)

Moreover, we assume there exists θ > 0 such that

v∗ = t
κ1(θ)
θ

+ (1− t)κ2(θ)
θ

= tE

∑
`∈L1

`eθ`−κ1(θ)

+ (1− t) E

∑
`∈L2

`eθ`−κ2(θ)

 , (1.1.9)

and that

θE

∑
`∈L1

`eθ`−κ1(θ)

− κ1(θ) < 0. (1.1.10)

Under these assumptions, (1.1.5) can be solved once again. The following result links the
quantities vi, v∗ and v∗.

Proposition 1.1.4. Under assumptions (1.1.8) and (1.1.9), we have v∗ = v∗. Under the
additional assumption (1.1.10), then v∗ = vi.

Moreover, assuming (1.1.3), (1.1.7), (1.1.8) and (1.1.9), if θ1 > θ2, then (1.1.10) holds,
θ ∈ (θ1, θ2) and

tv1 + (1− t)v2 < vi = v∗.

Proof. We write

a1 = E

∑
`∈L1

`eθ`−κ1(θ)

 and a2 = E

∑
`∈L2

`eθ`−κ2(θ)

 ,
and we observe that κ∗p(ap) = θap − κp(θ).In effect, if there exists ϕ > θ such that
κp(ϕ) < +∞, then ap is the right derivative of κp at point θ by dominated convergence.
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Moreover, by convexity of κp, we have κp(ϕ) − κp(θ) ≥ (ϕ − θ)ap. Similarly, if ϕ < θ,
κp(ϕ)− κp(θ) ≥ (ϕ− θ)ap. We conclude that

θap − κp(θ) ≥ sup
ϕ∈R

ϕap − κp(ϕ) = κ∗p(ap).

We prove in a first time that v∗ = v∗. We first observe that

t (θa1 − κ1(θ)) + (1− t) (θa2 − κ2(θ)) = θv∗ − tκ1(θ)− (1− t)κ2(θ) = 0.

Therefore, v∗ ≥ v∗. Moreover, by convexity of κ1 and κ2, for all (b1, b2) ∈ R2 such that
tκ∗1(b1) + (1− t)κ∗2(b2) ≤ 0, we have

ta1 + (1− t)a2 − (tb1 + (1− t)b2) = t(a1 − b1) + (1− t)(a2 − b2)

≥ tκ
∗
1(a1)− κ∗1(b1)

θ
+ (1− t)κ

∗
2(a2)− κ∗2(b2)

θ
≥ t (θa1 − κ1(θ)) + (1− t) (θa2 − κ2(θ))
= θv∗ − (tκ1(θ) + (1− t)κ2(θ)) = 0.

As a consequence, optimizing in (b1, b2), we obtain v∗ ≥ v∗.
Moreover, under the additional assumption (1.1.10), we have κ∗1(a1) < 0, yielding

ta1 + (1− t)a2 ≤ vi. As vi ≤ v∗, we can conclude.
We now assume (1.1.3), (1.1.7), (1.1.8) and (1.1.9), and that θ2 > θ1. As a Legendre

transform, κp is a convex function, which is twice differentiable on the interior of Dp :=
{θ ≥ 0 : κp(θ) < +∞}. We write

fp : ϕ 7→ ϕE

∑
`∈Lp

`eϕ`−κp(ϕ)

− κp(ϕ).

By dominated convergence again, for any ϕ in the interior of Dp, fp(ϕ) = ϕκ′p(ϕ)−κp(ϕ).
As a consequence, ϕp is an increasing function on its definition set.

Note that ϕp(θp) = κ∗p(vp) = 0 and that ϕp(θ) = κ∗p(ap). As

tκ∗1(a1) + (1− t)κ∗2(a2) = 0,

if κ∗1(a1) ≥ 0, then κ∗2(a2) ≤ 0. As f1 and f2 are increasing, we have θ1 ≤ θ ≤ θ2 which
is in contradiction with θ1 > θ2. As a consequence, κ∗1(a1) < 0, thus (1.1.10) holds, and
vi = v∗. Additionally, we have θ2 < θ < θ1.

We prove then that tv1 + (1− t)v2 < vi. We observe that κ1 is finite on [θ, θ1] and κ2
is finite on [θ2, θ]. As a consequence, for α, β > 0, and x ≥ 0 small enough, we have

κ∗1
(
v1 − α

t x
)

= −α
t θ1x+O(x2) and κ∗2

(
v2 + β

1−tx
)

= β
1−tθ2x+O(x2).

As a consequence, as soon as αθ1 < βθ2, for x ≥ 0 small enough we have

vi ≥ t
(
v1 − α

t x
)

+ (1− t)
(
v2 + β

1−tx
)

= tv1 + (1− t)v2 + (β − α)x.

Thus, choosing β > α such that αθ1 < βθ2 –which exists as θ2 < θ1– we obtain vi >
tv1 + (1− t)v2.

The following theorem describes the asymptotic behaviour of the maximal displacement
of the branching random walk in the fast regime.
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Theorem 1.1.5. Under the assumptions (1.1.8), (1.1.9) and (1.1.10), if

max
p∈{1,2}

E [Σp(θ)] + E

∑
`∈Lp

eθ` log+

∑
`∈Lp

eθp`

 < +∞

then

Mn = nv∗ −
1
2θ logn+OP(1).

(a) Regime θ1 > θ2 (b) Regime θ1 = θ2 (c) Regime θ1 < θ2

Figure 1.1: Regimes in the branching random walk with interface

Remark 1.1.6. We observe that if θ, θ1, θ2 exist, then θ is always between θ1 and θ2, by
convexity of κ1 and κ2. We write Mn = nvi − λi logn + OP(1). We note that vi evolves
continuously with respect to L1 and L2, while

lim
θ2→θ+

1

λi = 3
θ1
>

3
2θ1

> lim
θ2→θ−1

λi = 1
2θ1

.

We also observe that λi does not depend on the value of t.

In Section 1.2, we introduce a time-inhomogeneous version of the spinal decomposition,
which links the computation of some moments of the branching random walk with time-
inhomogeneous random walk estimates. In Section 1.3 we introduce some well-known
random walk estimates, and extend these to time-inhomogeneous random walks. Finally,
we bound in Section 1.4 the right tail of the maximal displacement in all three regimes,
and use it in Section 1.5 to prove Theorems 1.1.2, 1.1.3 and 1.1.5.

1.2 The spinal decomposition of the time-inhomogeneous
branching random walk

This section is devoted to the proof of a time-inhomogeneous version of the well-
known spinal decomposition of the branching random walk. This result consists in two
ways of describing the same size-biased law of the branching random walk. The spinal
decomposition of a branching process has been introduced on Galton-Watson processes
in [LPP95]. In [Lyo97], this result has been successfully adapted for the first time to
the study of branching random walks. Until now, many results obtained in branching
processes use this spinal decomposition, or its simpler version: the many-to-one lemma,
first introduced by Peyrière [Pey74].
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1.2.1 The size-biased law of the branching random walk

Let (Ln, n ∈ N) be a sequence of laws of point processes which forms the environment
of the time-inhomogeneous branching random walk (T, V ). For any x ∈ R, we set Px

the law of (T, V + x) and Ex the corresponding expectation. We recall that, for n ≥ 1,
Fn = σ (u, V (u) : |u| ≤ n) is the natural filtration of the branching random walk.

We write κk(θ) the log-Laplace transform of Lk, and we assume there exists θ > 0 such
that for any n ∈ N, κn(θ) < +∞. We set

Wn =
∑
|u|=n

exp
(
θV (u)−

n∑
k=1

κk(θ)
)
,

we observe that (Wn) is a (Fn)-martingale, that Wn ≥ 0 Px-a.s. and that Ex(Wn) = ex,
therefore, we can define the law

Px

∣∣∣
Fn

= e−xWn · Px|Fn . (1.2.1)

The spinal decomposition consists in an alternative construction of the law Px, as the
projection of a law on the set of planar rooted marked trees with spine, which we define
below.

1.2.2 A law on plane rooted marked trees with spine

Let (T, V ) ∈ T be a marked tree, and w ∈ NN be a sequence of integers. We write
wn = (w(1), . . . w(n)) and we assume that for all n ∈ N, wn ∈ T. The triple (T, V, w) is
then called a plane rooted marked tree with spine of length n. The spine of a tree is a
distinguished path of infinite length which links the root and the boundary of the tree.
The set of marked trees with spine is written T̂ . On this set, we define, for n ∈ N the
filtrations

Gn = σ ((wj , V (wj)), j ≤ n) ∨ σ ((u, V (u)), u ∈ Ω(wj), j < n) and F̂n = Fn ∨ Gn
In particular F̂ is the natural filtration of the branching random walk with spine, F is
the information of the marked tree, obtained by forgetting about the spine, and G is the
sigma-field of the knowledge of the spine and its children only.

Figure 1.2: The graph of a plane rooted marked tree with spine

time

position

0

w4

(a) Information in F̂

time

position

0

(b) Information in F

time

position

0

w4

(c) Information in G

We now introduce a law P̂a on T̂ . For any k ∈ N, we write

L̂k =

∑
`∈L

eθ`−κk(θ)

 · Lk,
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a law of a point process with Radon-Nikodým derivative with respect to Lk, and we write
L̂k =

(̂̀
k(j), j ≤ Nk

)
an independent point processes of law L̂k. Conditionally on (L̂k),

we choose, for every k ∈ N, w(k) ≤ Nk independently at random, such that

P
(
w(k) = h

∣∣∣L̂k, k ≤ n) = 1{h≤Nk}
eθ`k(h)∑

j≤Nk e
θ`k(j) .

We denote by w the sequence (w(n), n ∈ N).
We now introduce a family of independent point processes {Lu, u ∈ U , |u| ≤ n} such

that Lwk = L̂k+1, and if u 6= w|u|, then Lu has law L|u|+1. For any u ∈ U such that
|u| ≤ n, we write Lu = (`u1 , . . . `uN(u)). We construct the random tree

T = {u ∈ U : ∀1 ≤ k ≤ |u|, u(k) ≤ N(uk−1)} ,

and the the function
V :

T → R
u 7→ ∑|u|

k=1 `
uk−1
u(k) .

For all x ∈ R, the law of (T, x+V,w) ∈ T̂ is written P̂x, and the corresponding expectation
is Êx.

This law is called branching random walk with spine, and can be constructed as a
process in the following way. It starts with a unique individual positioned at x at time
0, which is the ancestral spine w0. Then, at each time k < n, every individual alive at
generation k die. Each of these individuals gives birth to children, which are positioned
around their parent according to an independent point process. If the parent is wk, then
the law of this point process is L̂k, else it is Lk. The individual wk+1 is then chosen at
random among the children u of wk, with probability proportional to eθV (u).

In the rest of the chapter, we write Px,k the law of the time-inhomogeneous branching
random walk starting from x with environment (Lk+1, . . .Ln). In particular, observe that
conditionally on G, the branching random walks of the descendants of children of wk are
independent, and the branching random walk of the descendants of u ∈ Ω(wk) has law
PV (u),k+1.

Figure 1.3: Construction of P̂
•w0
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•

P·,1

•
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•
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1.2.3 The spinal decomposition

The following result, which links the laws P̂x and Px is the time-inhomogeneous version
of the spinal decomposition.

Proposition 1.2.1 (Spinal decomposition). For all x ∈ R and n ≥ 1, we have

Px

∣∣∣
Fn

= P̂x

∣∣∣
Fn
. (1.2.2)

Moreover, for any n ∈ N and |u| = n, we have

P̂x(wn = u|Fn) = 1{u∈T}
exp (θV (u)−∑n

k=1 κk(θ))
Wn

. (1.2.3)

Proof. Let n ∈ N and x ∈ R, we introduce the (non-probability) measure P∗x on T̂ , in
which every possible choice of spine has mass 1. More precisely, for any F̂n measurable
function f , we have

∫
f(T, V, wn)dP∗x(T, V, w) = Ex

 ∑
|w|=n

f(T, V, w)

 .
We compute in a first time by recurrence on n the Radon-Nikodým derivative of P̂x

with respect to P∗x, to prove

dP̂x

dP∗x

∣∣∣∣∣
F̂n

= exp
(
θ(V (wk)− x)−

n∑
k=1

κk(θ)
)
. (1.2.4)

Observe that for n = 1, (1.2.4) follows from the definition of L̂1 and w(1). In effect,
writing L1 a point process of law L1 and f a non-negative F̂1 measurable function,

E
[
f(L̂1, w(1))

]
= E

 N1∑
k=1

f(L̂1, k) eθ`1(k)∑N1
j=1 e

θ`1(j)

 = E

 Nk∑
k=1

f(L1, k)eθ`1(k)−κ1(θ)

 .
We now assume (1.2.4) true for some k ∈ N, and we observe that

dP̂x

dP∗x

∣∣∣∣∣
F̂k+1

= dP̂x

dP∗x

∣∣∣∣∣
F̂k
×
 ∑
u∈Ω(wk)

eθ(V (u)−V (wk))−κk+1(θ)

 e−V (wk+1)−V (wk)∑
u∈Ω(wk) e

θ(V (u)−V (wk))−κk+1(θ)

= exp

θ(V (wk)− x)−
k∑
j=1

κj(θ)

 eθ(V (wk+1)−V (wk))−κk+1(θ),

which proves (1.2.4).
As a consequence, for any Fn-measurable function f : T → R+, we have

Êx [f(T, V )] =
∫
T̂
e
θ(V (wn)−x)−

∑n

j=1 κj(θ)f(T, V )dP∗x(T, V, w)

= Ex

f(T, V )
∑
|u|=n

e
θ(V (u)−x)−

∑n

j=1 κj(θ)


= e−θx Ex [Wnf(T, V ))
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therefore
dP̂x

dPx

∣∣∣∣∣
Fn

= dPx

dPx

∣∣∣∣∣
Fn

= Wn

which proves (1.2.2).
Moreover, for any Fn-measurable function f : T → R+ and u ∈ U with |u| = n, we

have

Êx

[
f(T, V )1{wn=u}

]
=
∫
T̂n
e
θ(V (wn)−x)−

∑n

j=1 κj(θ)f(T, V )1{wn=u}dP∗x(T, V, w)

= Ex

f(T, V )
∑
|v|=n

e
θ(V (v)−x)−

∑n

j=1 κj(θ)1{v=u}


= Ex

[
eθV (u)

Wn
f(T, V )1{u∈T}

]

= Êx

[
eθV (u)

Wn
f(T, V )1{u∈T}

]

by (1.2.2), which ends the proof of (1.2.3).

A direct consequence of this result, which can also be proved directly by recurrence, is
the well-known many-to-one lemma. This equation, known at least from the early works
of Peyrière [Pey74] has been used in many forms over the last decades, and we introduce
here a time-inhomogeneous version of it. Let (Xn, n ∈ N) be a sequence of independent
random variables such that the law of Xn is characterized, by Riesz extension theorem,
by

∀f ∈ Cb,E [f(Xn)] = E

∑
`∈Ln

f(`)eθ`−κn(θ)

 .
We define the time-inhomogeneous random walk S by Sn = S0 +∑n

j=1Xj that starts from
x ∈ R under law Px. In other words, we assume Px(S0 = x) = 1 for any x ∈ R.

Lemma 1.2.2 (Many-to-one). For all x ∈ R, n ∈ N and non-negative measurable function
f , we have

Ex

 ∑
|u|=n

f(V (u1), . . . V (un))

 = eθx Ex

[
e
−θSn+

∑n

j=1 κj(θ)f(S1, . . . Sn)
]
. (1.2.5)

Proof. Let f a continuous bounded function and x ∈ R, we have, by Proposition 1.2.1

Ex

 ∑
|u|=n

f(V (u1), . . . V (un))

 = Ex

 eθx
Wn

∑
|u|=n

f(V (u1), . . . V (un))


= Êx

 eθx
Wn

∑
|u|=n

f(V (u1), . . . V (un))


= Êx

eθx ∑
|u|=n

e−θV (u)P̂(wn = u|Fn)f(V (u1), . . . V (un))


= Êx

[
e
−θ(V (wn)−x)+

∑n

j=1 κj(θ)f(V (w1), . . . V (wn))
]
.
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Moreover, by definition of P̂x we observe that the law of (V (w1), . . . , V (wn)) is the same
as the law of (S1, . . . Sn) under Px, which ends the proof.

The spinal decomposition and the many-to-one lemma are used to compute moments
of the number of individuals in the BRWi that stay in a given path, by using random walk
estimates. The random walk estimates we use in this chapter are introduced in the next
section, and extended to include time-inhomogeneous versions.

1.3 Some random walk estimates
We collect a series of well-known random walk estimates, the local limit Theorem, the

ballot Theorem and the Hsu-Robbins Theorem. By classical methods, we extend these
results to bound the probability for a random walk to make an excursion above a given
curve. In a second time these results are extended to random walks enriched by additional
random variables, correlated with the last step of the random variable. Finally, these
estimates are extended to the case of “random walks through an interface”, which we use
with the many-to-one Lemma to prove the main theorems of the chapter.

1.3.1 Classical random walk estimates

We denote by (Tn, n ≥ 0) a one-dimensional centred random walk, with finite variance
σ2. We write Px for the law of T such that Px(T0 = x) = 1, and P = P0. We begin with
Stone’s local limit theorem, which bounds the probability for a random walk to end up in
an interval of finite size.
Theorem I (Stone [Sto65]). There exists C > 0 such that for all a ≥ 0 and h ≥ 0

lim sup
n→+∞

n1/2 sup
|y|≥an1/2

P(Tn ∈ [y, y + h]) ≤ C(1 + h)e−
a2

2σ2 .

Moreover, there exists H > 0 such that for all a < b ∈ R

lim inf
n→+∞

n1/2 inf
y∈[an1/2,bn1/2]

P(Tn ∈ [y, y +H]) > 0.

A similar result has been obtained in [CC13], for the random walk conditioned to stay
positive.
Theorem II (Caravenna-Chaumont’s local limit theorem). Let (rn, n ≥ 0) be a positive
sequence such that rn = O(n1/2). There exists C > 0 such that for all a ≥ 0, h ≥ 0 and
y ∈ [0, rn],

sup
x≥an1/2

Py(Tn ∈ [x, x+ h]|Tj ≥ 0, j ≤ n) ≤ C(1 + h)ae−
a2

2σ2 n−1/2.

Moreover, there exists H > 0 such that for all a < b ∈ R+,

lim inf
n→+∞

n1/2 inf
y∈[0,rn]

inf
x∈[an1/2,bn1/2]

P(Tn ∈ [x, x+H]|Tj ≥ −y, j ≤ n) > 0.

Up to a transformation T 7→ T/(2H), which corresponds to shrinking the space by a
factor 1

2H , we may and will always assume that all the random walks we consider are such
that the lower bound in Theorems I and II hold with H = 1.

The next result, often called in the literature the ballot theorem, compute the prob-
ability for a random walk to stay above zero. This result is stated in [Koz76], see also
[ABR08] for a review article on ballot theorems.
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Theorem III (Kozlov [Koz76]). There exists C > 0 such that for all n ≥ 1 and y ≥ 0,

Py(Tj ≥ 0, j ≤ n) ≤ C(1 + y)n−1/2.

Moreover, there exists c > 0 such that for all y ∈ [0, n1/2]

Py(Tj ≥ 0, j ≤ n) ≥ c(1 + y)n−1/2.

Amodification of this theorem, Theorem 3.2 of Pemantle and Peres in [PP95], expresses
the probability for a random walk to stay above a boundary moving “strictly slower than
n1/2”.

Theorem IV (Pemantle–Peres [PP95]). Let f : N→ N be an increasing positive function.
The condition ∑

n≥0

fn
n3/2 < +∞

is necessary and sufficient for the existence of an integer nf such that

sup
n∈N

n1/2P(Tj ≥ −fj , nf ≤ j ≤ n) < +∞.

Using Theorems III and IV, we prove two more estimates. First, a quantitative version
of the probability for a random walk to stay above a curve.

Lemma 1.3.1. Let A > 0 and α ∈ [0, 1/2), there exists C > 0 such that for any (fn) ∈ RN

verifying |fn| ≤ Anα, y ≥ 0 and n ≥ 1, we have

Py(Tj ≥ −fj , j ≤ n) ≤ C(1 + y)n−1/2.

Proof. Let k ∈ N, we write τk = inf{n ≥ 0 : Tn ≤ −k − Anα}. As |fn| ≤ Anα, for any
y ∈ [k − 1, k], we have Py(Tj ≥ −fj , j ≤ n) ≤ P(τk ≥ n). We now bound P(τk ≥ n),
writing

∀k ∈ N,Kk = sup
n∈N

n1/2P(τk ≥ n), K ′ = sup
y∈R,n∈N

(n+ 1)1/2P(Tn ∈ [y, y + 1])

and K∗ = sup
n∈N,y≥0

n1/2

1 + y
P(Tj ≤ y, j ≤ n), (1.3.1)

which are finite, by use of Theorems I, III and IV. For k ∈ N, we have

P(τk ≥ n) ≤ P(τ1 ≥ n) +
n−1∑
p=0

P(τk ≥ n− p, τ1 = p)

≤ K1n
−1/2 +

n−1∑
p=0

P(τk ≥ n− p, τ1 = p). (1.3.2)

Let p < n. Applying the Markov property at time p, we have

P(τk ≥ n− p, τ1 = p) ≤ P(τ1 = p) sup
z∈[1,k]

P(Tj − z −Apα ≥ −A(p+ j)α − k, j ≤ (n− p))

≤ P(τ1 = p)P(Tj ≥ −Ajα − (k − 1), j ≤ (n− p))
≤ P(τ1 = p)Kk−1(n− p)−1/2.
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We now bound P(τ1 = p). Conditioning on the pth step, we have

P(τ1 = p) = P [Tp ≤ −1−Apα, Tj ≥ −1−Ajα, j < p] = E [ϕp−1(Xp)]

where we set ϕp(x) = P [Tp ≤ −1−Apα + x, Tj ≥ −1−Ajα, j ≤ p] for x ∈ R and p ∈ N.
By the Markov property applied at time p′ = bp/3c to obtain

ϕp(x) ≤ K1p
′−1/2 sup

z∈R
P(Tp−p′ + z ∈ [x, 0]Tj + z ≥ 0, j < p− p′).

We write T̂j = Tp−p′ − Tp−p′−j , which is a random walk with the same law as T . We
often refer to this process as to the time-reversed random walk of T . For any z ≥ 0,

P(Tp−p′ + z ∈ [x, 0], Tj + z ≥ 0, j < p− p′)
≤ P(T̂p−p′ + z ∈ [x, 0], T̂j ≤ −x, j < p′)
≤ P(Tj ≤ −x, j ≤ p′) sup

y∈R
P(Tp−2p′ ∈ [y, y + x])

≤ K∗(1 + x+)(p/3)−1/2K ′(1 + x+)(p/3)−1/2.

We have P(τ1 = p) ≤ K1K∗K ′(p/3)−3/2 E
(
(1 + (Xp)+)2). As E(X2

p ) < +∞, there exists
a constant K̃ > 0 which does not depend on k, such that (1.3.2) becomes

P(τk ≥ n) ≤ P(τ1 ≥ n) +
n∑
p=1

P(τ1 = p, τk ≥ n)

≤ K1n
−1/2 +Kk−1K̃

n−1∑
p=1

p−3/2(n− p)−1/2 ≤ K1n
−1/2 + 10K̃Kk−1n

−1/2.

Thus, there exists C > 0 such that for all n ≥ 1 and k ∈ N, P(τk ≥ n) ≤ C(1 + k)n−1/2,
which ends the proof.

We now bound from above the probability for a random walk to make an excursion.

Lemma 1.3.2. There exists C > 0 such that for all p, q ∈ N, x, h ≥ 0 and y ∈ R, we have

Px(Tp+q ∈ [y + h, y + h+ 1], Tj ≥ y1{j>p}, j ≤ p+ q)

≤ C (1 + x) ∧ p1/2

p1/2
1

max(p, q)1/2
(1 + h) ∧ q1/2

q1/2 .

Proof. We denote by p′ = bp/2c, q′ = bq/2c and by p′′ = p − p′, q′′ = q − q′. By the
Markov property applied at time p′, we have

Px(Tp+q ∈ [y + h, y + h+ 1], Tj ≥ y1{p<j}, j ≤ p+ q)
≤ Px(Tj ≥ 0, j ≤ p′) sup

z≥−x
Pz(Tp′′+q ∈ [y + h, y + h+ 1], Tj ≥ y, p′′ < j ≤ p′′ + q).

We denote by T̂k = Tp′′+q−Tp′′+q−k, which is a random walk with the same law as T . We
observe that, for all z ∈ R

Pz(Tp′′+q ∈ [h, h+ 1], Tj ≥ 0, p′′ < j ≤ p′′ + q)
≤ P(T̂p′′+q ∈ [z + h, z + h+ 1], T̂j ≤ h+ 1, j ≤ q)
≤ P−h−1(Tp′′+q ∈ [z − 1, z], Tj ≤ 0, j ≤ q).
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Applying again the Markov property at time q′, we deduce that

Px(Tp+q ∈ [y + h, y + h+ 1], Tj ≥ y1{p<j≤p+q}, j ≤ p+ q)
≤ Px(Tj ≥ 0, j ≤ p′)︸ ︷︷ ︸

≤C 1+x
p1/2 ∧1

P−h−1(Tj ≤ 0, j ≤ q′)︸ ︷︷ ︸
≤C 1+h

q1/2∧1

sup
z∈R

P(Tp′′+q′′ ∈ [z, z + 1])︸ ︷︷ ︸
≤C 1

max(p,q)1/2

using Theorems I and III.

These two lemmas can be mixed together to bound the probability for a random walk
to make an excursion above some slowly moving curve.

Lemma 1.3.3. For any A ≥ 0, there exists C > 0 such that for all y, h ≥ 0 and n ≥ 1,
we have

Py(Tn +A logn ∈ [h, h+ 1], Tj ≥ −A log n
n−j+1 , j ≤ n)

≤ C (1 + y) ∧ n1/2

n1/2
1

n1/2
(1 + h) ∧ n1/2

n1/2 .

Proof. Let A ≥ 0 and n ∈ N, we write p = bn/3c. Applying the Markov property at time
p, we have

Py(Tn −A logn ∈ [h, h+ 1], Tj ≥ −A log n
n−j+1 , j ≤ n)

≤Py(Tj ≥ 0, j ≤ p) sup
z∈R

Pz(Tn−p +A logn ∈ [h, h+ 1], Tj ≥ −A log n
n−p−j+1 , j ≤ n− p)

≤Py(Tj ≥ 0, j ≤ p)P−h−1(Tj ≤ A log(j + 1), j ≤ p) sup
z∈R

P(Tn−2p ∈ [z, z + 1]),

by time-reversal and the Markov property applied at time p. We then apply respectively
Theorem IV, Lemma 1.3.1 and Theorem I, as well as the fact that probabilities are bounded
by 1 to conclude the proof.

The lower bound in Theorem II can be used to obtain a lower bound on the probability
for a random walk to make an excursion.

Lemma 1.3.4. For all t ∈ (0, 1), there exists c > 0 such that for all n ≥ 1 large enough,
x ∈ [0, n1/2] and y ∈ [−n1/2, n1/2] we have

Px(Tn ≤ y + 1, Tj ≥ y1{j>tn}, j ≤ n) ≥ c(1 + x)
n3/2 .

Proof. Let t ∈ (0, 1), n ≥ 1, x ∈ [0, n1/2] and y ∈ [−n1/2, n1/2], by the Markov property
applied at time p = btnc, we have

Px(Tn ≤ y + 1, Tj ≥ y1{j>tn}, j ≤ n)
≥Px(Tn ≤ y + 1, Tp ∈ [3n1/2, 4n1/2], Tj ≥ y1{j>p}, j ≤ n)
≥Px(Tp ∈ [2n1/2, 3n1/2], Tj ≥ 0, j ≤ p) inf

z∈[2n1/2,4n1/2]
Pz(Tn−p ≤ y + 1, Tj ≥ y, j ≤ n− p).
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Observe for one part that

Px(Tp ∈ [2n1/2, 3n1/2], Tj ≥ 0, j ≤ p)
= Px(Tj ≥ 0, j ≤ p)Px(Tp ∈ [2n1/2, 3n1/2]|Tj ≥ 0, j ≤ p)

≥ c1 + x

n1/2

b3n1/2c∑
z=b2n1/2c

Px(Tp ∈ [z, z + 1]|Tj ≥ 0, j ≤ p)

≥ c(1 + x)n−1/2,

applying Theorem III then Theorem II. On the other hand, for all z ∈ [2n1/2, 4n1/2], by
time-reversal

Pz(Tn−p ≤ y + 1, Tj ≥ y, j ≤ n− p)
≥ P(T̂n−p + z ∈ [y, y + 1], T̂j ≤ 0, j ≤ n− p)
≥ inf

z̃∈[n1/2,4n1/2]
Pz(Tn−p ∈ [z̃, z̃ + 1], Tj ≤ 0, j ≤ n− p) ≥ cn−1

using once again Theorems II and III.

So far, we only considered boundaries that grows slower than n1/2. Similar estimates
can be obtained for the random walk when the barrier moves at linear speed, namely the
Hsu-Robbins theorem. It is used to study branching random walks in the fast regime.

Theorem V (Hsu–Robbins [HR47]). For all ε > 0, we have∑
n≥0

P(Tn ≤ −nε) < +∞.

By dominated convergence theorem, Theorem V implies

lim
z→+∞

∑
n∈N

P(Tn ≤ −nε− z) = 0. (1.3.3)

1.3.2 Extension to enriched random walks

We extend some of the results obtained in the previous section to a random walk
enriched by extra random variables, which are correlated to the last step of the random
walk. Let ((Xn, ξn), n ≥ 0) be an i.i.d. sequence of random variables taking values in R2,
such that E(X1) = 0, E(X2

1 ) < +∞ and E(ξ2
1) < +∞. We set Tn = T0 +X1 + · · ·+Xn,

where Px(T0 = x) = 1. The process (Tn, ξn, n ≥ 0) is an useful toy-model for the study
of the spine of the branching random walk, defined in Proposition 1.2.1; in effect the nth

step of the spine wn is only correlated with the displacement of the siblings of wn. We
begin with a lemma similar to Theorem III.

Lemma 1.3.5. We suppose that E(X1) = 0, E(X2
1 ) < +∞ and E((ξ1)2

+) < +∞. There
exists C > 0 that does not depend on the law of ξ1 such that for all n ∈ N and x ≥ 0, we
have

Px [Tj ≥ 0, j ≤ n, ∃k ≤ n : Tk ≤ ξk] ≤ C
1 + x

n1/2

[
P(ξ1 ≥ 0) + E((ξ1)2

+)
]
.
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Proof. Let n ∈ N and x ≥ 0. We observe that

Px [Tj ≥ 0, j ≤ n,∃k ≤ n : Tk ≤ ξk] ≤
n∑
k=1

Px [Tk ≤ ξk, Tj ≥ 0, j ≤ n]︸ ︷︷ ︸
πk

.

Applying the the Markov property at time k, we obtain

πk ≤ Ex

[
1{Tk≤ξk}1{Tj≥0,j≤k}PTk (Tj ≥ 0, j ≤ n− k)

]
.

By use of Theorem III, for all z ∈ R, we have

Pz [Tj ≥ 0, j ≤ n− k] ≤ C(1 + z)(n− k + 1)−1/21{z≥0}.

Thus, writing (X, ξ) for a copy of (X1, ξ1) independent of (Tn, ξn, n ≥ 0), we have

πk ≤ C(n− k + 1)−1/2 Ex

[
1{ξk≥0}(1 + ξk)1{Tk≤ξk}1{Tj≥0,j≤k}

]
≤ C(n− k + 1)−1/2 Ex

[
1{ξ≥0}(1 + ξ+)1{Tk−1≤ξ++X−}1{Tj≥0,j≤(k−1)}

]
We bound this quantity by conditioning on the value ζ = ξ+ +X− ≥ 0, we obtain

Px(Tk ≤ ζ, Tj ≥ 0, j ≤ k) ≤
C

(1+x)(1+ζ2)
(k+1)3/2 if ζ2 ≤ k, by Lemma 1.3.2

C 1+x
(k+1)1/2 otherwise, by Theorem III

Summing these estimates, we obtain

min(ζ2,n−1)∑
k=0

Px [Tk ≤ ζ, Tj ≥ 0, j ≤ k] ≤C(1 + x)
min(ζ2,n−1)∑

k=0

1
(n− k + 1)1/2(k + 1)1/2

≤C(1 + x)(1 + ζ)n−1/2,

and

n−1∑
k=ζ2

Px [Tk ≤ ζ, Tj ≥ 0, j ≤ k] ≤C(1 + x)(1 + ζ2)
n−1∑
k=ζ2

1
(k + 1)3/2(n− k + 1)1/2

≤C(1 + x)(1 + ζ)n−1/2,

thus
n−1∑
k=0

1
(n− k + 1)1/2 Px [Tk ≤ ζ, Tj ≥ 0, j ≤ k] ≤ C(1 + x)(1 + ζ)n−1/2.

We conclude that
n∑
k=1

πk ≤ C
1 + x

n1/2 E
[
1{ξ≥0}(1 +X− + ξ+)(1 + ξ+)

]
≤ C 1 + x

n1/2 E(X2
−)
[
P(ξ ≥ 0) + E(ξ2

+)
]

by the Cauchy-Schwarz inequality, which ends the proof.

This lemma can be extended to prove an analogue of Lemma 1.3.2.
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Lemma 1.3.6. We assume that E(X1) = 0, E(X2
1 ) < +∞ and E((ξ1)2

+) < +∞. For all
t ∈ (0, 1), there exists C > 0 that does not depend on the law of ξ1, such that for all n ∈ N,
x, h ≥ 0 and y ∈ R, we have

Px

[
Tn − y − h ∈ [0, 1], Tj ≥ y1{j>tn}, j ≤ n,∃k ≤ n : Tk ≤ ξk + y1{k>tn}

]
≤ C (1 + x)(1 + h)

n3/2

[
P(ξ1 ≥ 0) + E((ξ1)2

+)
]
.

Proof. Let n ∈ N, x, h ≥ 0 and y ∈ R. We denote by τ = inf{k ≥ 0 : Tk ≤ ξk + y1{k>tn}}
and by p = btnc. We observe that

Px

[
Tn − y − h ∈ [0, 1], Tj ≥ y1{j>tn}, j ≤ n, τ ≤ n

]
≤ Px

(
Tn − y − h ∈ [0, 1], Tj ≥ y1{j>p}, τ ≤ p

)
+ Px

(
Tn − y − h ∈ [0, 1], Tj ≥ y1{j>p}, p < τ ≤ n

)
. (1.3.4)

We first take interest in the event {τ ≤ p}. Applying the Markov property at time p,
we obtain

Px

[
Tn − y − h ∈ [0, 1], Tj ≥ y1{j>p}, τ ≤ p

]
= Ex

[
1{Tj≥0,j≤p}1{τ≤p}ϕ(Tp)

]
, (1.3.5)

where ϕ(z) = Pz [Tn−p − y − h ∈ [0, 1], Tj ≥ y, j ≤ n− p] for z ∈ R. Using Lemma 1.3.3,
we have supz∈R ϕ(z) ≤ C(1 + h)n−1, which yields

Px

(
Tn − y − h ∈ [0, 1], Tj ≥ y1{j>p}, τ ≤ p

)
≤ C(1 + h)n−1Px [Tj ≥ 0, j ≤ p,∃k ≤ p : Tk ≤ ξk]
≤ C(1 + x)(1 + h)n−3/2

[
P(ξ1 > 0) + E((ξ1)2

+)
]

by use of Lemma 1.3.5.
We now take care of {τ > p}. We denote by T̂j = Tn−Tn−j and ξ̂j = ξn−j . We observe

that (T̂j , ξ̂j)j≤n has the same law as (Tj , ξj)j≤n under P0, and

Px

[
Tn − y − h ∈ [0, 1], Tj ≥ y1{j>p}, j ≤ n, p ≤ τ ≤ n

]
≤ Px

[
Tn − y − h ∈ [0, 1], Tn − Tn−j ≤ y + h+ 1− y1{n−j<p},
∃k ≤ n− p : Tn−k ≤ ξn−k + y

]

≤ Px

[
Tn − T0 − y − h+ x ∈ [0, 1], Tn − Tn−j ≤ h+ 1 + y1{j≥n−p}
∃k ≤ n− p : Tn − Tn−k ≥ y + h− (ξn−k + y)

]
,

thus, in terms of T̂

Px

[
Tn − y − h ∈ [0, 1], Tj ≥ y1{j>p}, j ≤ n, p ≤ τ ≤ n

]
≤ Px

[
T̂n − y − h+ x ∈ [0, 1], T̂j ≤ h+ 1− y1{j≥n−p}
∃k ≤ n− p : T̂k ≥ y + h− (ξ̂k + y)

]
.

As a consequence, using the identity in law between (T, ξ) and (T̂ , ξ̂), we have

Px

[
Tn − y − h ∈ [0, 1], Tj ≥ y1{j>p}, j ≤ n, p ≤ τ ≤ n

]
≤P0

[
Tn − h− y + x ∈ [0, 1], Tj ≤ h+ 1− y1{j≥n−p},∃k ≤ n− p : Tk ≥ h− ξk

]
≤Ph+1

[
Tn − y + x ∈ [−1, 0], Tj ≤ −y1{j≤n−p},∃k ≤ n− p : Tk ≥ −ξk − 1

]
.
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This quantity is bounded in (1.3.5) for the random walk (−T, ξ), where the roles of x and
h have been exchanged, thus similar computations give

Px

[
Tn − y − h ∈ [0, 1], Tj ≥ y1{j>p}, j ≤ n, p < τ ≤ n

]
≤ C (1 + x)(1 + h)

(n+ 1)3/2

[
P(ξ ≥ 0) + E(ξ2

+)
]
. (1.3.6)

which ends the proof.

We use Lemmas 1.3.5 and 1.3.6 to control at the same time the position of the spine
and the number of its children.

1.3.3 Random walk through an interface

We extend the above results to time-inhomogeneous random walk. Let (X(1)
k , k ≥ 1)

and (X(2)
k , k ≥ 1) be two independent sequences of i.i.d. random variables, centred with

finite variance. For 1 ≤ p < n ∈ N and k ≤ n, we write

Sp,nk =
k∧p∑
j=1

X
(1)
j +

(k−p)+∑
j=1

X
(2)
j

a random walk of length n through an interface. We first bound the probability that such
a random walk makes an excursion.
Lemma 1.3.7. There exists C > 0 such that for all 1 ≤ p < n and x, h ≥ 0 and y ∈ R,
we have

P
(
Sp,nn ∈ [y + h, y + h+ 1], Sp,nj ≥ −x1{k≤p} + y1{k>p}

)
≤ C (1 + x) ∧ p1/2

p1/2
1

max(p, n− p)1/2
(1 + h) ∧ (n− p)1/2

(n− p)1/2 .

Proof. We write S(1)
j = ∑j

k=1X
(1)
k and S(2)

j = ∑j
k=1X

(2)
k . Informally, Sp,n is the concate-

nation of S(1) and S(2). Applying the Markov property at time p, we have immediately

P
(
Sp,nn ∈ [y + h, y + h+ 1], Sp,nj ≥ −x1{k≤p} + y1{k>p}

)
≤ P

(
S

(1)
j ≥ −x, j ≤ p

)
sup
z∈R

P
(
S

(2)
n−p + z ∈ [y + h, y + h+ 1], S(2)

j ≥ y, j ≤ n− p
)

≤
(
C

(1 + x)
p1/2 ∧ 1

)(
C

(1 + h) ∧ (n− p)1/2

(n− p)

)
,

by Theorem I and Lemma 1.3.2.
Moreover, if we write Ŝp,nj = Ŝp,nn −Ŝp,nn−j , then Ŝp,n is also a time-homogeneous random

walk, with n−p steps with same law as X(2)
1 and p steps with same law as S(1)

1 . Moreover

P
(
Sp,nn ∈ [y + h, y + h+ 1], Sp,nj ≥ −x1{k≤p} + y1{k>p}

)
≤ P

(
Ŝp,nn ∈ [y + h, y + h+ 1], Ŝp,nj ≤ (h+ 1)1{k≤n−p} + (y + x+ h+ 1)1{k>n−p}

)
≤ C (1 + h) ∧ (n− p)1/2

(n− p)1/2
(1 + x) ∧ p1/2

p
,

using the same arguments as above. Choosing the smallest upper bound concludes the
proof.
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1.4 Bounding the tail of the maximal displacement
Let (T, V ) be a BRWi of length n, and Mn be its maximal displacement at time n.

We compute in this section a tight estimate for P(Mn ≥ mn + y) as y and n → +∞, for
a suitable choice of mn, in each of the three regimes.

1.4.1 Slow regime : strong boundary effects

We assume here that all the hypotheses of Theorem 1.1.2 are fulfilled. We write
p = btnc and

mn = pv1 + (n− p)v2 −
( 3

2θ1
+ 3

2θ2

)
logn and m1

n = pv1 −
3

2θ1
logn.

In these conditions, the rightmost individual at time n descends from one of the rightmost
individuals at time tn. As a consequence, the bounds on the tail ofMn is a straightforward
consequence of Aïdékon’s Theorem [Aïd13] on the asymptotic behaviour of the maximal
displacement in the branching random walk. We recall here a corollary of this result, of
which we provide an independent proof in Chapter 7.

Theorem 1.4.1. Let (Th, V h) be a time-homogeneous branching random walk. If there
exists θ∗ > 0 such that κ(θ∗) := E

[∑
|u|=1 e

θ∗V h(u)
]
< +∞ and

θ∗E

∑
|u|=1

V h(u)eθ∗V h(u)−κ(θ∗)

− κ(θ∗) = 0,

and if

E

∑
|u|=1

V h(u)2eθ
∗V h(u)

+ E


∑
|u|=1

eθ
∗V h(u)

 log+

∑
|u|=1

V h(u)eθ∗V h(u)

2
 < +∞

then there exist c, C > 0 such that for all n ∈ N and y ∈ [0, n1/2],

c(1 + y)e−θ∗y ≤ P
(

max
|u|=n

V h(u) ≥ nκ(θ∗)
θ∗ − 3

2θ∗ logn+ y

)
≤ C(1 + y)e−θ∗y.

The main result of the section is the following.

Lemma 1.4.2. Under the assumptions of Theorem 1.1.2, there exist c, C > 0 such that
for any n ≥ 1 and y ∈ [0, n1/2], we have

c(1 + y)e−θ1y ≤ P(Mn ≥ mn + y) ≤ C(1 + y)e−θ1y.

Proof. We observe that the p = btnc first steps of the branching random walk (T, V )
are similar to the p first steps of a branching random walk with reproduction law L1.
Moreover, L1 satisfies all hypotheses of Theorem 1.4.1, therefore there exist c, C > 0 such
that for all n ≥ 1 and y ∈ R,

c(1 + y)e−θ1y ≤ P(max
|u|=p

V (u) ≥ m1
n + y) ≤ C(1 + y)e−θ1y. (1.4.1)

To obtain the lower bound of this lemma, we observe that the rightmost individual at
time p starts from its position an independent branching random walk with reproduction
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law L2. Using again Theorem 1.4.1, there exists r > 0 such that with probability at least
r, its rightmost descendant at time n makes a displacement of at least (1−t)v2n− 3

2θ2
logn.

As the maximal position at time n is greater than the position of the rightmost descendant
of the rightmost individual alive at time n, we have

P(Mn ≥ mn + y) ≥ rP(max
|u|=p

V (u) ≥ m1
n + y) ≥ c(1 + y)e−θ1y,

by the lower bound in (1.4.1).
We now take care of the upper bound. We write, for k ≤ p, f (n)

k = kv1− 3
2θ1

log p
p−k+1 .

Note that with high probability, no individual crosses the boundary f (n) at any time k ≤ p.
By the Markov inequality and Lemma 1.2.2, we have

P
[
∃|u| ≤ p : V (u) ≥ f (n)

|u| + y
]

≤
p∑

k=1
E

 ∑
|u|=k

1{
V (u)≥f (n)

k
+y
}1{

V (uj)≤f (n)
j +y,j<k

}
≤

p∑
k=1

E

e−θ1Sk+kκ1(θ1)1{
Sk≥f (n)

k
+y,Sj≤f (n)

j +y,j<k
}

≤
p∑

k=1

p3/2

(p− k + 1)3/2 P
(
Sk ≥ f (n)

k + y, Sj ≤ f (n)
j + y, j < k

)
.

For all k ≤ p, conditioning with respect to Sk − Sk−1, we have

P
(
Sk ≥ f (n)

k + y, Sj ≤ f (n)
j + y, j < k

)
≤ E [ϕk(Sk − Sk−1)] ,

where

ϕk(x) = 1{x≥0}P
(
Sk−1 ≥ f (n)

k + y − x, Sj ≤ f (n)
j + y, j ≤ k − 1

)
≤
bxc∑
a=0

P
(
Sk−1 − f (n)

k−1 − y ∈ [−a− 1,−a], Sj ≤ f (n)
j + y, j ≤ k − 1

)
≤ C (1 + x)2

+(1 + y)
(k + 1)3/2 ,

by Lemma 1.3.3. As E((Sk − Sk−1)2) = E(Σ1(θ1)) < +∞, we have

P
[
∃|u| ≤ p : V (u) ≥ f (n)

|u| + y
]
≤ C(1 + y)e−θ1y. (1.4.2)

We now decompose the population alive at time n according to the position of its
ancestor at time p. For y, h ≥ 0, we set

Xn(y, h) =
∑
|u|=p

1{V (u)−m1
n−y∈[−h−1,−h]}1{

V (uj)≤f (n)
j +y,j≤p

}
the number of individuals who, staying below f (n) are at time p close to m1

n + y − h. By
the many-to-one lemma, we have

E(Xn(y, h)) = E

e−θ1Sp−pκ1(θ1)1{Sp−m1
n−y∈[−h−1,−h]}1{

Sj≤f (n)
j +y,j≤p

}
≤ Cp3/2eθ1(h−y)P

(
Sp −m1

n − y ∈ [−h− 1,−h], Sj ≤ f (n)
j + y, j ≤ p

)
≤ C(1 + y)(1 + h)e−θ1yeθ1h
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by Lemma 1.3.3. Each one of the individuals counted in Xn(y, h) starts an independent
branching random walk with reproduction law L2. By Theorem 1.4.1, the probability that
one of the descendants of an individual positioned at time p to the left of mn + y − h, is
at time n above mn + y is bounded from above by C(1 + h)e−θ2h. As a consequence,

P(Mn ≥ mn + y) ≤ P(∃|u| ≤ p : V (u) ≥ f (n)
|u| + y) +

+∞∑
h=0

E(Xn(y, h))C(1 + h)e−θ2h

≤ C(1 + y)e−θ1y

(
1 +

+∞∑
h=0

(1 + h)2e(θ1−θ2)h
)

≤ C(1 + y)e−θ1y

using (1.4.2) and the fact that θ2 > θ1.

1.4.2 Mean regime : a classical branching random walk estimate

We now consider a BRWi (T, V ) of length n, such that the hypotheses of Theo-
rem 1.1.3 are fulfilled. We obtain in this section an asymptotic similar to the one of
a time-homogeneous branching random walk. We write θ := θ1 = θ2, p = bntc and

mn = nv∗ −
3
2θ logn and f

(n)
k = (k ∧ p)v1 + (k − p)+v2 −

3
2θ log n

n− k + 1 .

We prove in a first time a boundary estimate.

Lemma 1.4.3. Under the assumptions of Theorem 1.1.3, there exists C > 0 such that for
all n ∈ N and y ≥ 0,

P(∃|u| ≤ n : V (u) ≥ f (n)
|u| + y) ≤ C(1 + y)e−θy.

Proof. Let n ∈ N and y ≥ 0, we write

Zn(y) =
∑
|u|≤n

1{
V (u)≥f (n)

|u| +y
}1{

V (uj)<f (n)
j +y,j<|u|

}.
Applying the many-to-one lemma, we have

E [Zn(y)] =
n∑
k=1

E

 ∑
|u|=k

1{
V (u)≥f (n)

k
+y
}1{

V (uj)≤f (n)
j +y,j<k

}
= E

e−θSk+(k∧p)κ1(θ)+(k−p)+κ2(θ)1{
Sk≥f (n)

k
+y
}1{

Sj<f
(n)
j +y,j<k

} ,
where (Sk, k ≤ n) is a time-inhomogeneous random walk, with step distribution verifying

E [f(Sk − Sk−1)] = E

∑
`∈L1

f(`)eθ`−κ1(θ)

 for k ≤ p,

and E [f(Sk − Sk−1)] = E

∑
`∈L2

f(`)eθ`−κ2(θ)

 for k > p.
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As κ1(θ) = θv1 and κ2(θ) = θv2, for any k ≤ n

E

e−θSk+kκ1(θ)1{
Sk≥f (n)

k
+y
}1{

Sj<f
(n)
j +y,j<k

}
≤ n3/2

(n− k + 1)3/2 e
−θyP

(
Sk ≥ f (n)

k + y, Sj ≤ f (n)
j + y, j < k

)
≤ n3/2

(n− k + 1)3/2 e
−θy E [ϕk−1(Sk − Sk−1)]

where we write ϕk(x) = P
(
Sk ≥ f (n)

k+1 + y − x, Sj ≤ f (n)
j + y, j ≤ k

)
by conditioning with

respect to the last step of the random walk. Observe that if k ≤ p, by Lemma 1.3.3 we
have ϕk(x) ≤ C(1 + y)(1 + x)2k−3/2.

If k > p, writing p′ = bp/2c, we have

ϕk(x)

≤P
(
Sj ≤ jv + y, j ≤ p′) sup

z∈R
Pp′,z

(
Sk−p′ ≥ f (n)

k+1 + y − x, Sj ≤ f (n)
j+p′ + y, j ≤ k − p′

)
≤C 1 + y

n1/2 sup
z∈R

Pp′,z

(
Sk−p′ ≥ f (n)

k+1 + y − x, Sj ≤ f (n)
j+p′ + y, j ≤ k − p′

)
by Lemma 1.3.1. Writing Ŝj = Sk − Sk−j , we have

Pp′,z

(
Sk−p′ ≥ f (n)

k+1 + y − x, Sj ≤ f (n)
p′+j + y, j ≤ k − p′

)
≤P

(
Ŝk−p′ − f (n)

k+1 − y + z ∈ [−x, 0], Ŝj ≥ f (n)
k+1 − f

(n)
k−j − x, j ≤ k − p′

)
≤P

(
Ŝj ≥ jv2 − 3

2θ log(n− k + j)− x, j ≤ k − p
)

sup
z∈R

P
(
Sp−p′ ∈ [z, z + x+ C]

)
≤C 1 + x

(k − p)1/2C
1 + x

n1/2

by Lemma 1.3.1 and Theorem I.
As E(Σ1) + E(Σ2) < +∞, we have E(S2

1) + E((Sp+1 − Sp)2) < +∞, thus

E

e−θSk+kκ1(θ)1{
Sk≥f (n)

k
+y
}1{

Sj<f
(n)
j +y,j<k

}
≤
C

n3/2

(k+1)3/2(n−k+1)3/2 (1 + y)e−θy, k ≤ p
C n1/2

(k−p)1/2(n−k+1)3/2 (1 + y)e−θy, k > p

summing these estimates for k ≤ n gives

E [Zn(y)] ≤ C(1 + y)e−θy
 p∑
k=1

n3/2

(n− k + 1)3/2k3/2 +
n∑

k=p+1

n3/2

n(k − p)1/2(n− k + 1)3/2


≤ C(1 + y)e−θy

[ p∑
k=1

1
k3/2

n−p∑
k=1

n1/2

k1/2(n− p− k + 1)3/2

]
≤ C(1 + y)e−θy.
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This lemma is enough to obtain an upper bound on P(Mn ≥ mn + y). To bound this
quantity from below, we use a second moment argument. For all n ∈ N and k ≤ n, we
write

g
(n)
k = (k ∧ p)v1 + (k − p)+v2 − 1{k>p}

3
2θ logn+ 1

a boundary close to f (n) but simpler to use. We prove in this section that the set

An(y) =
{
u ∈ T, |u| = n : V (u) ≥ mn + y, V (uj) ≤ g(n)

j + y, j ≤ n
}

is non-empty with high probability. To do so, we restrict ourselves to a subset of individuals
which do not have too many children. We write

Bn(z) =
{
u ∈ T, |u| = n : ξ(uj) ≤ e

θ
2 (V (uj)−g(n)

j )+z, j < n

}
,

where ξ(u) = ∑
u′∈Ω(u)(1 + (V (u′)− V (u))+)e−θ(V (u′)−V (u)).

We set Gn(y, z) = An(y) ∩ Bn(z), and we compute now the first two moments of
Yn(y, z) = ∑

|u|=n 1{u∈Gn(y,z)}.

Lemma 1.4.4. Under the assumptions of Theorem 1.1.3, there exists C > 0 such that for
all n ∈ N, y ≥ 0 and z ≥ 0, we have

E
[
Yn(y, z)2

]
≤ Cez(1 + y)e−θy

Proof. Let p = btnc, applying Proposition 1.2.1, we have

E(Yn(y, z)2) = E
[ 1
Wn

Yn(y, z)2
]

= Ê

 1
Wn

∑
|u|=n

1{u∈Gn(y,z)}Yn(y, z)


= Ê

[
e−θV (wn)+pκ1(θ)+(n−p)κ2(θ)1{wn∈Gn(y,z)}Yn(y, z)

]
.

Using the fact that wn ∈ An(y) ⊂ Gn(y, z), we have

E(Yn(y, z)2) ≤ Cn3/2e−θyÊ
[
Yn(y, z)1{wn∈Gn(y,z)}

]
.

We decompose Yn(y, z) along the spine, to obtain

Yn(y, z) ≤ 1{wn∈Gn(y,z)} +
n−1∑
k=0

∑
u∈Ω(wk)

Yn(u, y),

where, for u ∈ T and y ≥ 0, we write Yn(u, y) = ∑
|u′|=n,u′>u 1{u′∈An(y)}.

We recall that under the law P̂, for all k ≤ n, the branching random walk of the
children of an individual u ∈ Ω(wk) has law PV (u),k+1. As a consequence, for y ≥ 0, k < n
and u ∈ Ω(wk),

Ê [Yn(u, y)|Gn] = EV (u),k+1

 ∑
|u′|=n−k−1

1{V (u′)≥mn+y}1{
V (u′j)≤g

(n)
k+j+1+y,j≤n−k

} .
As a consequence, by Lemma 1.2.2, we have

Ê [Yn(u, y)| Gn] ≤ Cn3/2e−θyeθV (u)−(k+1∧p)κ1(θ)−(k+1−p)+κ2(θ)

×PV (u),k+1
(
Sn−k−1 ≥ mn + y, Sj ≤ g(n)

j+k+1 + y, j ≤ n− k − 1
)
.
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For k ≤ p− 1 and x ∈ R, applying the Markov property at time p, we have

Px,k+1
(
Sn−k−1 ≥ mn + y, Sj ≤ g(n)

j+k+1 + y, j ≤ n− k − 1
)

≤Px,k+1 (Sj ≤ (k + j + 1)v1 + y + 1, j ≤ p− (k + 1))
× sup
h∈R

Ph,p (Sn−p ≥ (n− p)v2 + y, Sj ≤ jv2 + y + 1, j ≤ n− p)

≤C 1 + (x− g(n)
k+1 − y)+

(p− k)1/2
1
n

by Lemma 1.3.7. Similarly, for all k ≥ p and x ∈ R, we have

Px,k+1
(
Sn−k−1 ≥ mn + y, Sj ≤ g(n)

j+k+1 + y, j ≤ n− k − 1
)
≤ C 1 + (x− g(n)

k+1 − y)+

(n− k + 1)3/2 ,

using Lemma 1.3.2.
For all k ≤ n, we write

hk := Ê

 ∑
u∈Ω(wk)

(
1 + (V (u)− g(n)

k+1 − y)+
)
eθ(V (u)−g(n)

k+1)1{wn∈Gn(y,z)}


≤ Ê

[
ξ(wk)

(
1 +

(
V (wk)− g(n)

k+1 − y)+
))
eθ(V (wk)−g(n)

k+1)1{wn∈Gn(y,z)}

]
≤ ezÊ

[(
1 +

(
V (wk)− g(n)

k+1 − y
))
e
θ
2 (V (wk)−g(n)

k+1)1{wn∈An(y)}

]
Decomposing this expectation with respect to the value taken by V (wk), we have

hk ≤ Cezeθy/2
+∞∑
h=0

(1 + h)e−θh/2P
[
Sn ≥ mn + y, Sk − g(n)

k+1 − y ∈ [−h− 1,−h]
Sj ≤ g(n)

j + y, j ≤ n

]
.

We apply the Markov property at time k to obtain

P
[
Sn ≥ mn + y, Sk − g(n)

k+1 − y ∈ [−h− 1,−h], Sj ≤ g(n)
j + y, j ≤ n

]
≤ P

[
Sk − g(n)

k+1 − y ∈ [−h− 1,−h], Sj ≤ g(n)
j + y, j ≤ k

]
× inf
x∈[−h−1,−h]

Px

[
Sn−k ≥ mn − g(n)

k , Sj ≤ g(n)
k+j − g

(n)
k+1, j ≤ n− k

]
.

If k ≤ p applying Lemma 1.3.2, we have

P
[
Sk − g(n)

k+1 − y ∈ [−h− 1,−h], Sj ≤ g(n)
j + y, j ≤ k

]
≤ C (1 + y)(1 + 1{k=p} logn+ h)

(k + 1)3/2

and applying Lemma 1.3.7,

inf
x∈[−h−1,−h]

Px

[
Sn−k ≥ mn − g(n)

k , Sj ≤ g(n)
k+j − g

(n)
k+1, j ≤ n− k

]
≤ C (1 + 1{k=p} logn+ h)

(p− k + 1)1/2n
.

By similar arguments, if k > p we have

P
[
Sk − g(n)

k+1 − y ∈ [−h− 1,−h], Sj ≤ g(n)
j + y, j ≤ k

]
≤ C (1 + y)(1 + h)

n(k − p+ 1)1/2
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as well as

inf
x∈[−h−1,−h]

Px

[
Sn−k ≥ mn − g(n)

k , Sj ≤ g(n)
k+j − g

(n)
k+1, j ≤ n− k

]
≤ C (1 + h)

(n− k + 1)3/2 .

Therefore, if k ≤ p, we have

hk ≤ C(1 + y)eθy+z
+∞∑
h=0

(1 + h)(1 + h+ 1{k=p} logn)2e−θh/2

(k + 1)3/2(p+ 1− k)1/2(n+ 1)

≤ Cz (1 + y)eθy
n(k − p)1/2(n− k + 1)3/2 .

In the same way, if k > p,

hk ≤ Cezeθy
+∞∑
h=0

(1 + y)(1 + h)3e−θh/2

n(k − p+ 1)1/2(n− k + 1)3/2

≤ Cz (1 + y)eθy
n(k − p)1/2(n− k + 1)3/2 .

As a consequence, for k < p, we have,

Ê

1{wn∈Gn(y,z)}
∑

u∈Ω(wk)
Yn(u, y)

 ≤ Chke−θy n3/2eθg
(n)
k+1−(k+1)κ1(θ)

n(p+ 1− k)1/2

≤ Cez(1 + y) n3/2

(k + 1)3/2n2(p− k + 1)
.

Summing these estimates for k < p, we have

p−1∑
k=0

Ê

1{wn∈Gn(y,z)}
∑

u∈Ω(wk)
Yn(u, y)


≤ Cz(1 + y)

n−3/2
bp/2c∑
k=0

(k + 1)−3/2 + n−5/2
p−1∑

k=bp/2c+1
(p− k + 1)−1


≤ Cz(1 + y)n−3/2. (1.4.3)

Similarly, if k > p, we have

Ê

1{wn∈Gn(y,z)}
∑

u∈Ω(wk)
Yn(u, y)

 ≤ Chke−θy n3/2eθg
(n)
k+1−pκ1(θ)−(k+1−p)κ2(θ)

(n− k + 1)3/2

≤ Cz(1 + y) 1
n(k − p)1/2(n− k + 1)3 .

Summing these estimates, we have once again
n∑

k=p+1
Ê

1{wn∈Gn(y,z)}
∑

u∈Ω(wk)
Yn(u, y)

 ≤ Cz(1 + y)n−3/2. (1.4.4)

And for k = p, we have

Ê

1{wn∈Gn(y,z)}
∑

u∈Ω(wp)
Yn(u, y)

 ≤ Cz(1 + y)(logn)2

n3 . (1.4.5)



60 Chapter 1. Branching random walk through an interface

We note that

P̂(wn ∈ An(y)) ≤ P(Sn ≥ mn + y, Sj ≤ g(n)
j + y, j ≤ n)

≤ P(Sj ≤ v1j + y, j ≤ p) sup
x∈R

Pp,x(Sn ≥ v2(n− p) + y, Sj ≤ v2j + y + 1, j ≤ n− p)

By Lemmas 1.3.1 and 1.3.2, this yields

P̂(wn ∈ Gn(y, z)) ≤ C 1 + y

n3/2 . (1.4.6)

We conclude that

E(Yn(y, z)2) ≤ Cn3/2e−θyÊ
[
Yn(y, z)1{wn∈Gn(y,z)}

]
≤ Cn3/2e−θyÊ

1{wn∈Gn(y,z)} +
n−1∑
k=0

∑
u∈Ω(wk)

Yn(u, y)

1{wn∈Gn(y,z)}


≤ Cn3/2e−θy

P̂(wn ∈ Gn(y, z)) +
n−1∑
k=0

Ê

1{wn∈Gn(y,z)}
∑

u∈Ω(wk)
Yn(u, y)


≤ C(1 + y)ez−θy,

by (1.4.3), (1.4.4), (1.4.5) and (1.4.6).

Lemma 1.4.5. Under the assumptions of Theorem 1.1.3, there exist c > 0 and z > 0
such that for all n ∈ N and y ∈ [0, n1/2], we have

E [Yn(y, z)] ≥ c(1 + y)e−θy.

Proof. Let n ≥ 1 and y ∈ [0, n1/2], applying the Proposition (1.2.1), we have

E(Yn(y, z)) = E

 1
Wn

∑
|u|=n

1{u∈Gn(y,z)}

 = Ê
[
eV (wn)−pκ1(θ)−(n−p)κ2(θ)1{wn∈Gn(y,z)}

]
≥ n3/2e−θ

∗(y+1)P̂(wn ∈ Gn(y, z)).

To bound P̂(wn ∈ Gn(y, z)), we observe that

P̂(wn ∈ An(y) ∩ Bn(z)) = P̂(wn ∈ An(y))− P̂(wn ∈ An(y) ∩ Bn(z)c).

We bound P̂(wn ∈ An(y)). Applying the Markov property at time p, we have

P̂(wn ∈ An(y)) = P(Sn ≥ mn + y, Sj ≤ g(n)
j + y, j ≤ n)

≥ P(Sp − pv1 − y ∈ [3n1/2, 5n1/2], Sj ≥ jv1 + y, j ≤ p)
× inf
x∈[3n1/2,5n1/2]

Pp,x(Sn−p ≥ mn − pv1, Sj ≤ g(n)
p+j − pv1, j ≤ n− p).

By Theorems II and III, we have easily

P(Sp − pv1 − y ∈ [3n1/2, 5n1/2], Sj ≥ jv1 + y, j ≤ p)

≥ P(Sp − pv1 ∈ [4n1/2, 5n1/2], Sj ≥ jv1 + y) ≥ c1 + y

n1/2 .
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Moreover, setting Ŝj = Sn − Sn−j and q = b(n− p)/2c, we have

inf
x∈[3n1/2,5n1/2]

Pp,x(Sn−p ≥ mn − pv1, Sj ≤ g(n)
p+j − pv1, j ≤ n− p)

≥ inf
x∈[3n1/2,5n1/2]

P(Ŝn−p − (n− p)v2 + 3
2θ logn ∈ [−x− 1,−x], Ŝj ≥ jv2, j ≤ n− p)

≥ P(Ŝq ∈ [n1/2, 2n1/2], Ŝj ≥ jv2, j ≤ q) inf
x∈[0,7n1/2]

P(Ŝn−p−q ∈ [−x− 1,−x])

≥ 1
n1/2 ×

1
n1/2

using Theorems II and III for one part, and Theorem I for the other part. We conclude
that

P̂(wn ∈ An(y)) ≥ c1 + y

n3/2 . (1.4.7)

We now compute an upper bound of P̂(wn ∈ An(y) ∩ Bn(z)c). We observe that

P̂(wn ∈ An(y) ∩ Bn(z)c) = P̂

 V (wn) ≥ mn + y, V (wj) ≤ g(n)
j + y, j ≤ n,

∃k ≤ n : ξ(wk) ≥ eze
θ
2 (V (wk)−g(n)

k
)


≤ π1 + π2

where we write

π1 = P̂

 V (wn) ≥ mn + y, V (wj) ≤ g(n)
j + y, j ≤ n,

∃k ≤ p : ξ(wk) ≥ eze
θ
2 (V (wk)−g(n)

k
)

 and

π2 = P̂

 V (wn) ≥ mn + y, V (wj) ≤ g(n)
j + y, j ≤ n,

∃p < k ≤ n : ξ(wk) ≥ eze
θ
2 (V (wk)−g(n)

k
)

 .
To bound π1, applying the Markov property at time p, we have

π1 ≤ P̂
(
V (wj) ≤ jv1 + y, j ≤ p, ∃k ≤ p : 2

θ (log ξ(wk)− z) ≥ V (wk)− kv1
)

× sup
x∈R

Pp,x(Sn−p ≥ mn + y, Sj ≤ g(n)
j + y, j ≤ n− p)

≤ C 1
n

P̂
(
V (wj) ≤ jv1 + y, j ≤ p,∃k ≤ p : 2

θ (log ξ(wk)− z) ≥ V (wk)− kv1 − y
)

by Lemma 1.3.2. Using Lemma 1.3.5, we obtain

π1 ≤ C
1 + y

n3/2

[
P̂ (log ξ(w0)− z ≥ 0) + Ê

(
(log ξ(w0)− z)2

+
)]
.

As E(Xp(logXp)2) < +∞, we have Ê
(
(log ξ(w0))2

+
)
, thus by dominated convergence

theorem

lim
z→+∞

sup
n∈N,y≥0

n3/2

1 + y
π1 = 0.

Similarly, for π2, we apply the Markov property at time p again, we have

π2 ≤ Ê
(
1{V (wj)≤jv1+y,j≤p}ϕ(V (wp))

)
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where, for x ≥ 0,

ϕ(x) ≤ P̂p,x

(
V (wn−p) ≥ mn + y, V (wj) ≤ g(n)

p+j + y, j ≤ n− p,
∃k ≤ n− p : 2

θ (log ξ(wk)− z) ≥ V (wk)− g(n)
p+k − y

)

≤ C 1 + (pv1 + y − x)+
n3/2

[
P̂(log ξ(wp+1)− z ≥ 0) + Ê

(
(log ξ(wp+1)− z)2

+
)]

by Lemma 1.3.6. As a consequence,

π2 ≤
+∞∑
a=0

Ê
(
1{V (wp)−pv1−y∈[−(a+1)n1/2,−an1/2]}1{V (wj)≤jv1+y,j≤p}ϕ(V (wp))

)
≤ C

[
P̂(log ξ(wp+1)− z ≥ 0) + Ê

(
(log ξ(wp+1)− z)2

+
)]

×
+∞∑
a=0

1 + (a+ 2)n1/2

n3/2 P
(
Sp − pv1 − y ∈ [−(a+ 1)n1/2,−an1/2], Sj ≤ jv1 + y, j ≤ p

)

≤ C
[
P̂(log ξ(wp+1)− z ≥ 0) + Ê

(
(log ξ(wp+1)− z)2

+
)]+∞∑

a=0

(1 + a)(1 + y)
n3/2 e−ca

2

applying Theorem II and Lemma 1.3.1. As E(X2(logX2)2) < +∞, we have

lim
z→+∞

sup
n∈N,y≥0

n3/2

1 + y
π2 = 0.

We conclude that for any ε > 0, there exists z ≥ 1 such that for all n ≥ 1 and
y ∈ [0, n1/2], we have

P̂(wn ∈ An(y) ∩ Bn(z)c) ≤ ε(1 + y)n−3/2.

We conclude there exists z ≥ 1 large enough and c > 0 such that for any y ≥ 0,

E(Yn(y, z)) ≥ c(1 + y)e−θy.

Using these three lemmas, we obtain the following bound on the tail of the maximal
displacement.
Lemma 1.4.6. There exist c, C > 0 such that for all n ≥ 1 and y ∈ [0, n1/2] we have

c(1 + y)e−θy ≤ P(Mn ≥ mn + y) ≤ C(1 + y)e−θy.

Proof. The upper bound is a direct consequence of Lemma 1.4.3, as

P(Mn ≥ mn + y) ≤ P(∃|u| ≤ n : V (u) ≥ f (n)
|u| + y) ≤ C(1 + y)e−θy.

For the lower bound, we use the Cauchy-Schwarz estimate, we fix z > 0 such that there
exists c > 0 verifying

E(Yn(y, z)) ≥ c(1 + y)e−θy

which exists by Lemma 1.4.5 Using Lemma 1.4.4, we have

E(Yn(y, z)2) ≤ C(1 + y)e−θy.

As a consequence, by the Cauchy-Schwarz inequality, we have

P(Mn ≥ mn + y) ≥ P(Yn(y, z) > 0) ≥ E(Yn(y, z))2

E(Yn(y, z)2) ≥ c(1 + y)e−θy

which ends the proof.
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1.4.3 Fast regime : large deviations of a random walk

We assume in this section that all the hypotheses of Theorem 1.1.5 are true. We write

mn = nv∗ −
1
2θ logn.

In these conditions, the rightmost individual at time n descend from one individual at
distance O(n) from the rightmost position at time tn. Thus the boundary computations
are of no use to obtain this asymptotic, the upper bound is easy to obtain, as the branching
structure does not play a role in this asymptotic. Let

a1 = E

∑
`∈L1

`eθ`−κ1(θ)

 and a2 = E

∑
`∈L2

`eθ`−κ2(θ)


the slopes followed in each stage by the individual reaching the highest position at time
n.

Lemma 1.4.7. Under the assumptions of Theorem 1.1.5, there exists C > 0 such that for
all n ∈ N and y ≥ 0,

P(Mn ≥ mn + y) ≤ Ce−θy.

Proof. We write p = btnc. For any y ≥ 0, we write

Xn(y) =
∑
|u|=n

1{V (u)∈[mn+y,mn+y+1]}.

By Lemma 1.2.2, we have

E(Xn(y)) = E
[
e−θSn+pκ1(θ)+(n−p)κ2(θ)1{Sn∈[mn+y,mn+y+1]}

]
≤ Ce−θyn1/2P (Sn ∈ [mn + y,mn + y + 1]) .

Applying the Markov property at time p, we have

P (Sn ∈ [mn + y,mn + y + 1]) ≤ sup
z∈R

P(S2
n−p ∈ [z, z + 1]) ≤ Cn−1/2,

applying Stone’s local limit theorem, where S2 is a random walk with step distribution
verifying

E

∑
`∈L2

f(`)eθ`−κ2(θ)

 = E
[
f(S2

k − S2
k−1)

]
.

As a consequence,
P(Mn ≥ mn + y) ≤ E(Xn(y)) ≤ Ce−θy.

To obtain a lower bound, we apply once again second moment techniques. Let δ > 0
such that

θ(a1 + δ)− κ1(θ) > δ and θ(a2 + 2δ)− κ2(θ) < −2δ,

which exists by (1.1.10). We write r(n)
k = δk1{k≤p} + δ(n − k)1{k>p}, and introduce an

upper boundary for the set of individuals we consider

g
(n)
k = a1(k ∧ p) + a2(k − p)+ + r

(n)
k − 1{k>p} 1

2θ logn+ 1.
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For y ≥ 0, we set

An(y) = {u ∈ T, |u| = n : V (u)−mn ∈ [y, y + 1], j ≤ n}

and

Bn(y, z) =
{
u ∈ T, |u| = n : ξ(uj) ≤ ez+r

(n)
j , V (uj) ≤ g(n)

j + y + z, j ≤ n
}
.

We write Gn(y, z) = An(y) ∩ Bn(y, z), and Yn(y, z) = ∑
|u|=n 1{u∈Gn(y,z)}. We compute

the first two moments of Yn(y, z) in the following lemma.

Lemma 1.4.8. There exists C > 0 such that for all n ∈ N, y ≥ 0 and z ≥ 0, we have

E
[
Yn(y, z)2

]
≤ Ce2z−θy

Moreover, there exist c > 0 and z ≥ 0 such that for all n ∈ N and y ∈ [0, n1/2], we have

E [Yn(y, z)] ≥ ce−θy.

Proof. Let n ∈ N and y ≥ 0, we write p = btnc, and compute the second moment of
Yn(y, z). By Proposition 1.2.1, we have

E(Yn(y, z)2) = E
[ 1
Wn

Yn(y, z)2
]

= Ê

 1
Wn

∑
|u|=n

1{u∈Gn(y,z)}Yn(y, z)


= Ê

[
e−θV (wn)+pκ1(θ)+(n−p)κ2(θ)1{wn∈Gn(y,z)}Yn(y, z)

]
.

Using the fact that wn ∈ An(y) ⊂ Gn(y, z), we have

E(Yn(y, z)2) ≤ Cn1/2e−θyÊ
[
Yn(y, z)1{wn∈Gn(y,z)}

]
≤ Cn1/2e−θy

P̂(wn ∈ Gn(y, z)) +
n−1∑
k=0

Ê

1{wn∈Gn(y,z)}
∑

u∈Ω(wk)
Yn(u, y)


where, for u ∈ T and y ≥ 0, we write Yn(u, y) = ∑

|u′|=n,u′>u 1{u′∈An(y)}. We recall that
under the law P̂, the branching random walk of the children of an individual u ∈ Ω(wk)
has law PV (u),k+1. As a consequence, for y ≥ 0, k < n and u ∈ Ω(wk),

Ê [Yn(u, y)|Gn] = EV (u),k+1

 ∑
|u′|=n−k−1

1{V (u′)≥mn+y}1{
V (u′j)≤g

(n)
k+j+1+y,j≤n−k

} .
As a consequence, by Lemma 1.2.2, we have

Ê [Yn(u, y)| Gn] ≤ Cn1/2e−θyeθV (u)−(k+1∧p)κ1(θ)−(k+1−p)+κ2(θ)

×PV (u),k+1
(
Sn−k−1 ≥ mn + y, Sj ≤ g(n)

j+k+1 + y, j ≤ n− k − 1
)
.

Using the Markov property at time p if k + 1 ≤ p, for any k < n we have

PV (u),k+1
(
Sn−k−1 ≥ mn + y, Sj ≤ g(n)

j+k+1 + y, j ≤ n− k − 1
)

≤ sup
z∈R

P0,(k+1)∨p (Sn−k−1 ∈ [z, z + 1]) ≤ C(n− k + 1)−1/2
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by Theorem I.
For any k ≤ n, we compute the quantity

hk := Ê

1{wn∈Gn(y,z)}
∑

u∈Ω(wk)
eθ(V (u)−g(n)

k
)

 .
By definition of ξ(wk) we have

hk ≤ CÊ
[
1{wn∈Gn(y,z)}e

θ(V (wk)−g(n)
k

)ξ(wk)
]

≤ Ce2z+r(n)
k eθyP̂ [wn ∈ An(y)]

≤ Ce2z+r(n)
k eθyP(Sn −mn ∈ [y, y + 1]) ≤ Cez+δr

(n)
k n−1/2,

by Theorem I. We finally observe that

E
[
Yn(y, z)2

]
≤Cn1/2e−θy

P̂(wn ∈ An(y)) +
n−1∑
k=0

CÊ

1{wn∈Gn(y,z)}
∑

u∈Ω(wk)
Yn(u, y)


≤Cn1/2e−θy

Cn−1/2 + Cn1/2e−θy
n−1∑
k=0

hk
eθ(g

(n)
k
−((k+1)∧p)κ1(θ)−(k+1−p)+κ2(θ))

(n− k + 1)1/2


≤Ce−θy

1 +
p∑

k=0
e2z+(δ−κ∗1(a1))k +

n∑
k=p+1

e2z−pκ∗1(a1)+δ(n−k)+(k−p)κ∗2(a2)

(n− k + 1)1/2


≤Ce2z−θy,

as supn∈N |pκ∗1(a1) + (n− p)κ∗2(a2)| < +∞.
We now bound the first moment of Yn(y, z). For any y ∈ [0, n1/2], by the spinal

decomposition again, we have

E [Yn(y, z)] = Ê
[
e−θV (wn)+pκ1(θ)+(n−p)κ2(θ)1{wn∈Gn(y,z)}

]
≥ n1/2e−θ(y+1)

[
P̂(wn ∈ An(y))− P̂(wn ∈ An(y) ∩ Bn(y, z)c)

]
.

We observe that P̂(wn ∈ An(y)) ≥ cn−1/2 by Theorem I, moreover

P̂(wn ∈ An(y) ∩ Bn(y, z)c) ≤
n∑
k=0

P̂(V (wn)−mn ∈ [y, y + 1], V (wk) ≥ g(n)
k + y)

+
n∑
k=0

P̂(V (wn)−mn ∈ [y, y + 1], (log ξ(wk)− z) ≥ r(n)
k ).

For any k ≤ p, applying the Markov property at time p and Theorem I again, we have

P̂(V (wn)−mn ∈ [y, y + 1], V (wk) ≥ g(n)
k + y) ≤ C

n1/2 P(Sk − ka1 ≥ δk + z)

P̂(V (wn)−mn ∈ [y, y + 1], (log ξ(wk)− z) ≥ δk) ≤ C

n1/2 P̂
(

log ξ(w0)−z
δ ≥ k

)
,
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therefore
p∑

k=0
P̂(V (wn)−mn ∈ [y, y + 1], V (wk) ≥ g(n)

k + y)

+
p∑

k=0
P̂(V (wn)−mn ∈ [y, y + 1], (log ξ(wk)− z) ≥ r(n)

k )

≤ C

n1/2

(
Ê
[(log ξ(w0)− z)+

δ

]
+

p∑
k=0

P(Sk ≥ ka1 + z)
]
.

Similarly, for k > p, we write Ŝj = V (wn) − V (wn−j) and ξ̂j = ξ(wn−j). Applying
time-reversal we have

P̂(V (wn)−mn ∈ [y, y + 1], V (wk) ≥ g(n)
k + y)

≤ P̂(Ŝn −mn ∈ [y, y + 1], Ŝn−k ≥ (n− k)(a2 − δ)− z − 1)

≤ C

n1/2 P(Ŝn−k − (n− k)ka2 ≥ −δ(n− k)− z − 1)

as well as

P̂(V (wn)−mn ∈ [y, y + 1], (log ξ(wk)− z) ≥ δk)

≤ P̂
(
Ŝn −mn ∈ [y, y + 1], log ξ̂(wn−k)−z

δ ≥ n− k
)

≤ C

n1/2 P̂
(

log ξ(wp+1)−z
δ ≥ δ(n− k)

)
.

Consequently

n∑
k=p+1

P̂(V (wn)−mn ∈ [y, y + 1], V (wk) ≥ g(n)
k + y)

+
n∑

k=p+1
P̂(V (wn)−mn ∈ [y, y + 1], (log ξ(wk)− z) ≥ r(n)

k )

≤ C

n1/2

(
Ê
[(log ξ(wp+1)− z)+

δ

]
+
n−p∑
k=0

P(Ŝk ≥ ka1 + z)
]
.

As E(X1 logX1) + E(X2 logX2) < +∞, using Theorem V, and more precisely (1.3.3),
we have

lim
z→+∞

sup
n∈N

n1/2P̂(wn ∈ An(y) ∩ Bn(y, z)c) = 0.

Consequently, for any z large enough we have P(wn ∈ Gn(y, z)) ≥ cn−1/2, which leads to

E [Yn(y, z)] ≥ ce−y

for all n ≥ 1 and y ∈ [0, n1/2], provided that z is large enough.

Using these two lemmas, we obtain the following asymptotic tail for the maximal
displacement at time n.

Lemma 1.4.9. There exist c, C > 0 such that for all n ∈ N and y ∈ [0, n1/2] we have

ce−θy ≤ P(Mn ≥ mn + y) ≤ Ce−θy.
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Proof. Upper bound is obtained in Lemma 1.4.7. We apply Lemma 1.4.8 to obtain a lower
bound, fixing z > 0 such that E(Yn(y, z)) ≥ ce−θy. We know that E(Yn(y, z)2) ≤ Ce−θy,
and apply the Cauchy-Schwarz inequality again

P(Mn ≥ mn + y) ≥ P(Yn(y, z) > 0) ≥ E [Yn(y, z)]2

E [Yn(y, z)2] ≥
c2e−2θy

Ce−θy
≥ ce−θy.

1.5 From tail estimates to the tension

The aim of this section is to obtain the tension of Mn −mn, using the tail estimates
obtained in the previous section. The main tool, similar for the three regimes, is the
application of a cutting argument. We use the fact that the size of the population in the
branching random walk alive at time k grows at exponential rate, as in a Galton-Watson
process. Each one of the individuals start an independent branching random walk, and
has positive probability to make a descendent to the right of mn at time n� k, which is
enough to conclude to the tension of Mn −mn.

We start this section by recalling the definition of a Galton-Watson process. Let µ be
a law on Z+, and (Xk,n, (k, n) ∈ N2) an i.i.d. array of random variables with law µ. The
process (Zn, n ∈ N) defined by recurrence by

Z0 = 1 and Zn+1 =
Zn∑
k=1

Xk,n+1

is a Galton-Watson process with reproduction law µ. The quantity Zn represents the size
of the population at time n, and Xn,k the number of children of the kth individual alive at
time n. Galton-Watson processes have been extensively studied since their introduction
by Galton and Watson in 1874 1. The results we use in this section can all been found in
[AN04].

We write

f :
[0, 1] → [0, 1]

s 7→ E
[
sX1,1

]
= ∑+∞

k=0 µ(k)sk.

We observe that for all n ∈ N, E
(
sZn

)
= fn(s), where fn is the nth iterate of f . Moreover,

if m := E(X1,1) < +∞, then f is a C1 strictly increasing convex function on [0, 1] that
verifies

f(0) = µ(0), f(1) = 1 and f ′(1) = m.

We write q the smallest solution of the equation f(q) = q, it is a well-known fact that q is
the probability of extinction of the Galton-Watson process, i.e. P(∃n ∈ N : Zn = 0) = q.
Observe in particular that q < 1 if and only if m > 1. If m > 1, we also introduce
α := − log f ′(q)

logm ∈ (0,+∞].

Lemma 1.5.1. Let (Zn, n ≥ 0) be a Galton-Watson process with reproduction law µ. We
write b = min{k ∈ Z+ : µ(k) > 0}, m = E(Z1) ∈ (1,+∞) and q the smallest solution of

1. Independently from the seminal work of Bienaymé, who also introduced and studied such a process.
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the equation E(qZ1) = q. There exists C > 0 such that for all z ∈ (0, 1) and n ∈ N we
have

P(Zn ≤ zmn) ≤


q + Cz

α
α+1 if b = 0

Czα if b = 1

exp
[
−Cz−

log b
logm−log b

]
if b ≥ 2.

A more precise computation of the left tail of the Galton-Watson process can be found
in [FW07].

Proof. We write s0 = q+1
2 , and for all k ∈ Z, sk = fk(s0) –where negative iterations

are understood as iterations of f−1. Using the properties of f , there exists C− > 0 such
that 1 − sk ∼k→−∞ C−mk. Moreover, if µ(0) + µ(1) > 0, there exists C+ > 0 such that
sk − q ∼k→+∞ C+f ′(q)k. Otherwise,

sk = f (b)(0)
bk

b−1 +o(bk) as k → +∞

where f (b)(0) = b!µ(b) is the bth derivative of f at point 0.
Observe that for any z < m−n, we have P(Zn ≤ zmn) = P(Zn = 0) ≤ 1, therefore, we

assume in the rest of the proof that z ≥ m−n. By the Markov inequality, we have, for all
z ∈ (m−n, 1) and s ∈ (0, 1),

P(Zn ≤ zmn) = P(sZn ≥ szmn) ≤ E(sZn)
szmn

= fn(s)
szmn

.

In particular, for s = sk−n, we have P(Zn ≤ zmn) ≤ sk
(sk−n)zmn

, the rest of the proof
consists in choosing the optimal k in this equation, depending on the value of b.

If b = 0, we choose k = − log z
logm−log f ′(q) which grows to +∞ as z → 0, while k−n→ −∞.

As a consequence, there exists c > 0 such that for all n ≥ 1 and z ≥ m−n,

(sk−n)−zm
n ≤ exp

(
Czmk

)
.

As limz→0 zmk = 0, we conclude there exists C > 0 such that for all n ≥ 1 and z ≥ m−n,

P(Zn ≤ zmn) ≤ q + Cf ′(q)
− log z

logm−log f ′(q) + Czmk = q + Cz
− log f ′(q)

logm−log f ′(q) = q + Cz
α
α+1 .

Similarly, if b = 1, then q = 0 and f ′(0) = µ(1). We set k = − log z
logm , there exists C > 0

such that for all n ≥ 1 and z ≥ m−n, we have

P(Zn ≤ zmn) ≤ Cµ(1)−
log z
logm ≤ Cz−

logµ(1)
logm .

Finally, if b ≥ 2, we choose k = − log z
logm−log b , there exists c > 0 (small enough) such that

P(Zn ≤ zmn) ≤ exp
[
−cz−

log b
logm−log b

]
,

which ends the proof.

Proof of Theorems 1.1.2, 1.1.3 and 1.1.5. Let (T, V ) be a branching random walk. We
set

mn =


n(tv1 + (1− t)v2)−

(
3

2θ1
+ 3

2θ2

)
logn for Theorem 1.1.2

n(tv1 + (1− t)v2)− 3
2θ logn for Theorem 1.1.3

n(ta1 + (1− t)a2)− 1
2θ logn for Theorem 1.1.5.
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We choose ϕ > 0 such that applying Lemmas 1.4.2, 1.4.6 or 1.4.9 depending on the case,
there exist c, C > 0 verifying for all y ∈ [0, n1/2]

ce−ϕy ≤ P(Mn ≥ mn + y) ≤ C(1 + y)e−ϕy. (1.5.1)

As a consequence, we have easily

lim
y→+∞

sup
n∈N

P(Mn ≥ mn + y) = 0.

We now turn to a lower bound. Let L1 be a point process with law L1. For all h ≥ 0,
we write Nh = ∑

`∈L1 1{`≥−h} and µh the law of Nh the number of children of a given
individual which makes a displacement greater than −h. We write

fh = E(sNh) and f = E
[
sN
]
,

where N = #L1 is the total number of elements in L1. By monotone convergence, we have
fh(s) −→

h→+∞
f(s) for all s ∈ [0, 1]. In particular, qh the smallest solution of fh(qh) = qh

converge, as h→ +∞ to 0 the smallest solution of the equation f(q) = q (by (1.1.1)).
Moreover, E(N) > 1, we choose h large enough such that E(Nh) > %2 > 1. Applying

Lemma 1.5.1, we have

P

∑
|u|=k

1{V (u)≥−kh} ≤ %k
 ≤ qh + Cβk

for some β < 1. As a consequence, for all ε > 0, there exists h large enough and k large
enough such that for all n ∈ N such that p ≥ k, we have

P

∑
|u|=k

1{V (u)≥−kh} ≤ %k
 ≤ 2ε.

We now consider (T(n), V (n)) to be a BRWi of length n, such that tn > k. Let q ∈ N
such that btqc = p− k. For every individual alive at time k in T(n), we write

Tu = {v ∈ T(n) : v > u, |v| ≤ q + k},

and we observe that (Tu, V (n) − V (n)(u)) has the same law as (T(q), V (q)). Thus, using
the lower bound of (1.5.1), we have

P
(
∃|u| = k + q : V (n)(u) ≥ mq − kh

)
≥ 1− 2ε− (1− c)%k .

Consequently, for all ε > 0, there exists h > 0 and k ≥ 1 chosen large enough, such
that for all n > k/t we have

P
(
∃|u| = k + q : V (n)(u) ≥ mq − kh

)
≥ 1− 3ε.

We observe there exists C > 0 such that n− q ≤ Ck. Therefore, we consider ε, h, k being
fixed. There exists y1 > 0 such that for all n > k/t

P
(
∃|u| = k + q : V (n)(u) ≥ mn − y1

)
≥ 1− 3ε,
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moreover, if there exists an individual u alive at time k + q such that V (n)(u) ≥ mn − y1,
as a point process with law L2 is always non-empty, we can consider v the rightmost child
of the rightmost child of ... of the rightmost child of u, which lives at generation n. There
exists obviously y2 > 0 large enough such that

sup
n∈N

P(V (n)(v)− V (n)(u) ≤ −y2) ≤ ε,

as a consequence,
P(Mn ≥ mn − y1 − y2) ≥ 1− 4ε.

We conclude that
lim

y→+∞
sup
n∈N

P(Mn ≥ mn − y) = 0,

which ends the proof of the tension of Mn.



CHAPTER 2

Maximal displacement in a
branching random walk

through interfaces

Tα παντα %ει.

Héraclite d’Éphèse

Abstract
We generalize in this chapter the results obtained in Chapter 1, allowing any finite
number of interfaces. We compute the asymptotic of the maximal displacement of
a branching random walk in a time-inhomogeneous environment, which consists in
a sequence of macroscopic time intervals, in each of which the law of reproduction
remains constant. In this model again, the asymptotic consists again in a first ballistic
order, given by the solution of an optimization problem under constraints, a negative
logarithmic correction, plus stochastically bounded fluctuations.

Nota: This chapter is a slightly modified version of the article Maximal displacement in a
branching random walk through interfaces submitted to Electronic Journal of Probabilities
in May 2013.

2.1 Introduction

In the previous chapter, we considered time-inhomogeneous branching random walks
defined in the following manner. We fix t ∈ (0, 1) and L1,L2 two point processes laws.
Given n ∈ N, the BRWi (branching random walk with an interface) of length n starts with
a unique individual located at 0 at time 0. At time 1, this individual dies, giving birth
to children which are positioned on R according to a point process with law L1. These
individuals form the first generation of the process. Then, at each time k < n, every
individual alive at generation k dies, giving birth to children, positioned according to
independent point processes shifted by the position of their ancestor. The law of the point
processes is L1 if k ≤ tn, and L2 if tn < k ≤ n. At time n, individuals die with no children.
We proved in the previous chapter that under some mild integrability assumptions, the
maximal displacement at time n of the BRWi Mn is given by a first ballistic order, plus a
negative logarithmic correction and stochastically bounded fluctuations.
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These results can be generalized to a time-inhomogeneous environment that changes
more than once. We set P > 0 an integer, 0 = α0 < α1 < · · · < αP = 1 forming a
partition of [0, 1] and (Lp, 1 ≤ p ≤ P ) a family of laws of point processes. Let n ∈ N,
the time-inhomogeneous branching random walk we study is defined as follows: every
individual in the process at generation k ∈ [nαp−1, nαp) reproduces according to the law
Lp, independently of all other reproduction events in the process. We prove, under mild
integrability conditions, that in such a branching random walk trough interfaces (BRWis
for short) the asymptotic of the maximal displacement is again given by a first ballistic
order plus logarithmic corrections and stochastically bounded fluctuations. The speed of
the BRWis is obtained as the maximum of an optimization problem under constraints.
The logarithmic correction strongly depends on the way the optimal solution interacts
with the constraints, as this interaction has an influence on the path followed by the
rightmost individual at time n.

We recall that c, C are two positive constants, respectively small enough and large
enough, which may change from line to line, and depend only on the law of the random
variables we consider. For a given sequence of random variables (Xn, n ≥ 1), we write
Xn = OP(1) if the sequence is tensed, i.e.

lim
K→+∞

sup
n≥1

P(|Xn| ≥ K) = 0.

Moreover, we always assume the convention max ∅ = −∞ and min ∅ = +∞, and for u ∈ R,
we write u+ = max(u, 0), and log+(u) = (log u)+. Finally, Cb is the set of continuous
bounded functions on R.

In the rest of the introduction, we give a formal definition of the BRWis in Section 2.1.1,
and describe an heuristic for the asymptotic for the value of Mn in Section 2.1.2. Finally,
we give in Section 2.1.3 the asymptotic of the maximal displacement at time n, and
compare this result with the one we obtained for the BRWi in the previous chapter.

2.1.1 Definition of the branching random walk through interfaces and
notation

We recall that (T, V ) ∈ T is a (plane, rooted) marked tree if T is a (plane, rooted)
tree, and V : T→ R. For a given individual u ∈ T, we write |u| the generation to which
u belongs. If u is not the root, then πu is the parent of u. For k ≤ |u|, we write uk
the ancestor of u in generation k. Finally, we write Ω(u) = {v ∈ T : πv = u} the set of
children of u.

In this chapter, we take interest in BRWis. In this model, the time-inhomogeneous
environment consists in a sequence of macroscopic stages. We set P ∈ N the number of
such stages, 0 = α0 < α1 < · · · < αP = 1 the times at which the interfaces are placed,
and (Lp, p ≤ P ) a P -uple of laws of point processes. We assume that the point processes
are never empty and have supercritical offspring i.e.

∀p ≤ P,P(Lp = ∅) = 0 and E

∑
`∈Lp

1

 > 1, (2.1.1)

where Lp is a point process with law Lp.
For all p ≤ P and θ ≥ 0, we write κp(θ) = log E

[∑
`∈Lp e

θ`
]
the log-Laplace transform

of Lp, and for all a ∈ R, κ∗p(a) = supθ≥0 [θa− κp(θ)] its Fenchel-Legendre transform. We
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recall that the Fenchel-Legendre transform is an involution on the set of convex func-
tions. Moreover, if f : R → R ∪ {+∞} is a convex function, and f∗ its Fenchel-Legendre
transform, if f∗ is differentiable at point x, we have

f∗(x) = (f∗)′(x)x− f ((f∗)′(x)
)
. (2.1.2)

For n ∈ N and p ≤ P , we write α(n)
p = bnαpc. The BRWis of length n is a branching

random walk in time-inhomogeneous environment, in which individuals alive at generation
k reproduce with law Lp for all α(n)

p−1 ≤ k < α
(n)
p . In other words, this is a random marked

tree (T(n), V (n)) of length n verifying
• V (n)(∅) = 0;
•
{(
V (n)(v)− V (n)(u), v ∈ Ω(u)

)
, u ∈ T(n)

}
is a family of independent point pro-

cesses;
•
(
V (n)(v)− V (n)(u), v ∈ Ω(u)

)
has law Lp if α(n)

p−1 ≤ |u| < α
(n)
p .

When the value of n is clear in the context, we often omit the superscripts to make the
notations lighter.
Remark 2.1.1. By splitting the first time-interval into three pieces, we may always assume
that the number P of distinct point processes we consider is greater than or equal to 3
in the rest of the article. This remark is discussed more precisely in the introduction
statement of Section 2.4.

2.1.2 Heuristics for the asymptotic of the maximal displacement

We fix an integer P , a sequence 0 = α0 < α1 < · · · < αP = 1 and (Lp, p ≤ P ) the laws
of points processes of the BRWis we consider.

Some well-known time-homogeneous branching random walk estimates

We recall once again the following classical branching random walk results, which can
be found in [Big10]. Let p ≤ P , we consider a time-homogeneous branching random
walk (Tp, Vp) in which individuals reproduce according to Lp. We write Mp,n its maximal
displacement at time n. If there exists θ > 0 such that κp(θ) < +∞, we write

vp = inf
θ>0

κp(θ)
θ

= sup{a ∈ R : κ∗(a) ≤ 0} (2.1.3)

which is the speed of the branching random walk, i.e. limn→+∞
Mp,n

n = vp a.s. Under the
assumption

∀p ≤ P,∃θp ∈ R+ : θpκ′p(θp)− κp(θp) = 0, (2.1.4)

we have vp = κ′p(θp). Moreover, the function κ∗p is linked to the density of individuals alive
at time n around some point. As proved in [Big77a], we have{

∀a < vp, limn→+∞ 1
n log∑|u|=n 1{Vp(u)≥na} = −κ∗p(a) a.s.

∀a > vp, limn→+∞ 1
n log P [∃|u| = n : Vp(u) ≥ na] = −κ∗p(a).

(2.1.5)

For all ε > 0, with high probability, there is no individual above n(vp + ε) at time n, and
there is an exponentially large number of individuals above n(vp − ε). Equation (2.1.5)
gives that e−nκ∗(a) is either an approximation of the number of individuals alive at time n
in a neighbourhood of na, or of the probability to observe at least one individual around
na at time n.
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The speed of the BRWis

We now consider the BRWis (T, V ). Given a = (ap, p ≤ P ) ∈ RP –in the rest of this
chapter, we write in bold letters real P -uples– we take interest in the number of individuals
alive at time n, whose path is close to a1α

(n)
1 at time α(n)

1 , a1α
(n)
1 +a2(α(n)

2 −α
(n)
1 ) at time

α
(n)
2 , and for all p ≤ P , close to ∑p

k=1 ak(α
(n)
k − α

(n)
k−1) at time α(n)

p . If such an individual
exists, we say that it “follows the path driven by a”.

Using (2.1.5), we know there are e−α
(n)
1 κ∗1(a1) individuals alive at time α(n)

1 around
α

(n)
1 a1 if κ∗1(a1) < 0, and none otherwise. Each one of these individuals –if any– starts an

independent branching random walk from α
(n)
1 a1, therefore by the law of large numbers, we

expect e−α
(n)
1 κ∗1(a1)−(α(n)

2 −α
(n)
1 )κ∗2(a2) individuals alive at time α(n)

2 at the wanted position.
More generally, writing

K∗ :
RP → RP

a 7→
(∑p

q=1(αq − αq−1)κ∗1(aq), p ≤ P
)

the rate function associated to the BRWis; the expected number of individuals that fol-
lowed the path driven by a is e−nK∗(a).

Observe that if for all p ≤ P , K∗(a)p < 0, we obtain that with high probability, the
number of individuals that followed the path driven by a is strictly positive, thus the
maximal displacement at time n is greater than ∑P

p=1(αp − αp−1)ap. On the other hand,
if there exists p0 ≤ P such that K∗(a)p0 > 0, then with high probability, there is no
individual that followed the path driven by a until time α(n)

p0 , therefore no individual at
time n that followed the path driven by a.

α
(n)
1 α

(n)
2 α

(n)
3

Frontier of the BRWis
Interfaces
Path driven by (vp, p ≤ P )
A non-followed path
The optimal path

generation

position

0

Figure 2.1: Finding the optimal path

We set R =
{

a ∈ RP : ∀p ≤ P,K∗(a)p ≤ 0
}
. Following the heuristic, we expect to

find individuals alive in the process at time n around position nu if and only if u =∑(αp − αp−1)ap for some a ∈ R. As a consequence, we write

vis = sup
a∈R

P∑
p=1

(αp − αp−1)ap (2.1.6)

which is the conjectured speed for the maximal displacement in the BRWis.
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The optimization problem

According to this heuristic, if the BRWis verifies

∃a ∈ R : vis =
P∑
p=1

(αp − αp−1)ap, (2.1.7)

then the rightmost individual at time n followed the path driven by the optimal solution
a. Under the additional assumption

∀p ≤ P,∀a ∈ R, κ∗p is differentiable at point a or κ∗p(a) = +∞, (2.1.8)

this optimal solution satisfies some interesting properties. To guarantee existence and/or
uniqueness of the solutions of (2.1.7), we need to introduce another hypothesis,

∀p ≤ P, κp(0) ∈ (0,+∞) and κ′p(0) exists. (2.1.9)

Proposition 2.1.2. If point processes L1, . . .LP verify (2.1.1), under assumption (2.1.8),
a ∈ R is a solution of (2.1.7) if and only if, writing θp =

(
κ∗p
)′

(ap), we have

(P1) θ is non-decreasing and positive;
(P2) if K∗(a)p < 0, then θp+1 = θp;
(P3) K∗(a)P = 0.

Under the conditions (2.1.4) and (2.1.8), there exists at most one solution to (2.1.7).
Under the conditions (2.1.8) and (2.1.9), there exists at least one solution to (2.1.7).

The proof of this result, which is a direct application of the theory of Lagrange multipli-
ers, is postponed to Section 2.B. Observe that, despite this would be a natural candidate,
the path driven by v := (v1, . . . , vP ) is not always the optimal solution –as in the BRWi
case, tv1 + (1− t)v2 is not always the correct speed. For example, if there exists p ≤ P − 1
such that θp > θp+1, Proposition 2.1.2 proves that v is not the solution. Loosely speaking,
in this case, the path of the rightmost individual at time n does not stay close to the
boundary of the branching random walk at all time.

Remark 2.1.3. On the other hand, under the assumptions (2.1.4) and (2.1.8), if θ is positive
and non-decreasing, then v is indeed the optimal solution. In this case, v satisfies the first
assumption of Proposition 2.1.2, and the two others are easy since K∗(v)p = 0 for all
p ≤ P . This situation corresponds, in Gaussian settings, to branching random walks with
decreasing variance. In this situation, the ancestors of the rightmost individual at time n
were at any time k < n within range O(n1/2) from the boundary of the BRWis.

On the logarithmic correction

In this section, we use the previous heuristic to build a conjecture on the value of the
logarithmic correction of the BRWis. For a time-homogeneous branching random walk
with reproduction law Lp, under assumption (2.1.4) and some additional integrability
conditions –as proved in Chapter 7– we have

M (p)
n = nvp −

3
2θp

logn+OP(1),
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and the −3
2 logn second order comes from the following estimate for a random walk with

finite variance,

log P [Sn ≤ E(Sn) + 1, Sj ≥ E(Sj), j ≤ n] ≈ −3
2 logn.

This is due to the fact that, if u is the rightmost individual alive at time n, then for all
k ≤ n, V (uk) ≤ kvp, thus the path (V (u0), V (u1), . . . V (u)) forms an excursion, as it has
been underlined in [AS10].

A similar condition holds for BRWis, the path leading to the rightmost individual at
time n stays at any time below the boundary of the branching random walk. IfK∗(a)p = 0,
the optimal path is at distance o(n) from the boundary of the branching random walk at
time α(n)

p . Moreover, for all p < P such that θp+1 > θp, we prove in Section 2.4.3 that the
ancestor at time α(n)

p of the rightmost individual at time n was within distance O(1) from
the boundary 1. As a result, the logarithmic correction in the BRWis is a sum of terms
related to the probability for a random walk to stay below the boundary of the branching
random walk, and hit at time n this boundary.

From now on, a stands for the optimal solution of (2.1.6), and θp = (κ∗p)′(ap). We write
T = #{θp, p ≤ P} the number of values taken by θ and ϕ1 < ϕ2 < · · · < ϕT these distinct
values, listed in the increasing order. For any t ≤ T , let ft = min{p ≤ P : θp = ϕt} and
lt = max{p ≤ P : θp = ϕt}. Observe that for all p ∈ [ft, lt], we have θp = ϕt. Finally, we
write

λ =
T∑
t=1

1
2ϕt

[
1{K∗(a)ft=0} + 1 + 1{K∗(a)lt−1=0}

]
(2.1.10)

with the convention K∗(a)0 = 0. If K∗(a)ft = 0, then between times α(n)
ft−1 and α

(n)
ft

,
the optimal path stays close to the boundary of the BRWis, which has a cost of order
−1

2 logn by the ballot theorem –see Section 2.3. The fact that at time α(n)
lt

, the optimal
path is within a widows of size O(1) has also cost of order −1

2 logn by local limit theorem.
Finally, if K∗(a)lt−1 then the optimal path stays close to the boundary again, between
times α(n)

lt−1 and α(n)
lt

.
We prove in the rest of this chapter that under some good integrability conditions

Mn ≈ vn− λ logn. We observe that λ ≥ 1
2ϕ1

> 0. Moreover, if P = T = 1, then λ = 3
2ϕ1

,
which is consistent with the results of Hu–Shi [HS09], Addario-Berry–Reed [ABR09] and
Chapter 7.

2.1.3 The asymptotic of the maximal displacement in the BRWis

We recall that a is the maximal solution of (2.1.7). We write

B = {p ≤ P : K∗(a)p−1 = K∗(a)p = 0} , (2.1.11)

for all k ∈ ∪p∈B[α(n)
p−1, α

(n)
p ], the path leading to the the rightmost individual at time n is

within distance o(n) from the boundary of the branching random walk. For all p ≤ P , we
introduce the random variable

Xp =
∑
`∈Lp

eθp`, (2.1.12)

1. Similarly to what happens in a BRWi in the slow regime, see Chapter 1.
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and the following integrability conditions for the point processes:

sup
p≤P

E

∑
`∈Lp

`2eθp`

 < +∞, (2.1.13)

sup
p∈B

E
[
Xp
(
log+Xp

)2]
< +∞ (2.1.14)

sup
p∈Bc

E
[
Xp(log+Xp)

]
< +∞. (2.1.15)

The following theorem is the main result of this chapter.

Theorem 2.1.4. If all the point processes L1, · · · Lp satisfy (2.1.1), under assumptions
(2.1.7), (2.1.8), (2.1.13), (2.1.14) and (2.1.15), we have

Mn = nvis − λ logn+OP(1).

To prove this theorem, we bound in a first time the tail of Mn, obtaining the following
result.

Theorem 2.1.5. If point processes L1, . . .LP verify (2.1.1), under assumptions (2.1.7),
(2.1.8) and (2.1.13), there exists C > 0 such that for all n ∈ N and y ≥ 0,

P(Mn ≥ nvis − λ logn+ y) ≤ C(1 + y1B(1))e−θ1y.

Moreover, under the additional assumptions (2.1.14) and (2.1.15), there exists c > 0 such
that for all n ∈ N and y ∈ [0, n1/2],

P(Mn ≥ nvis − λ logn+ y) ≥ c(1 + y1B(1))e−θ1y.

Before proving these two theorems, we apply them to BRWi, and obtain once again
the three regimes described in the previous chapter.

Application to the BRWi

Theorem 2.1.4 is consistent with Theorems 1.1.2, 1.1.3 and 1.1.2 of Chapter 1. We
consider here a BRWis with a single interface (T, V ), or in other words, such that P = 2.
We set two point processes L1 and L2 verifying (2.1.1), and α1 ∈ (0, 1). We assume (2.1.4),
i.e. there exist θ1, θ2 such that for all i ∈ {1, 2},

θiκ
′
i(θi)− κi(θi) = 0.

We also suppose there exists θ > 0 such that κ1 and κ2 are differentiable at point θ and

θ(α1κ
′
1(θ) + (1− α1)κ′2(θ))− (α1κ1(θ) + (1− α1)κ2(θ)) = 0. (2.1.16)

For all i ∈ {1, 2}, κi is a convex function on {ϕ > 0 : κi(ϕ) < +∞}, which is twice
differentiable on the interior of this set. As a consequence, ϕ 7→ ϕκ′i(ϕ) − κi(ϕ) is a
decreasing function. Thus, θ is always between θ1 and θ2. We write vfast = α1κ′1(θ) +
(1 − α1)κ′2(θ) and vslow = α1κ′1(θ1) + (1 − α1)κ′2(θ2). Observe that vslow is the sum of
the speeds of a branching random walk with reproduction L1 of length nα1 with one with
reproduction L2 and length nα2.

Applying Theorem 2.1.4 and using Proposition 2.1.2, under (2.1.13), (2.1.14) and
(2.1.15), one of the following alternative is true.
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• If θ1 > θ2, then θ ∈ (θ2, θ1), vslow < vfast and

Mn = nvfast −
1
2θ logn+OP(1),

in which case the optimal path is at time α1n at distance O(n) from the boundary
of the branching random walk.
• If θ1 = θ2, then θ = θ1 = θ2, vslow = vfast and

Mn = nvfast −
3
2θ logn+OP(1),

and the process behaves similarly to time-homogeneous branching random walk, thus
the path followed by to the rightmost individual at time n is at time α1n within
distance O(

√
n) from the boundary of the branching random walk.

• If θ1 < θ2, then vslow < vfast and

Mn = nvslow −
[ 3

2θ1
+ 3

2θ2

]
logn+OP(1),

in other words, the logarithmic corrections add up, and the rightmost individual at
time n descend from one of the rightmost individuals alive at time α1n.

Under assumption (2.1.8), using Lagrange theorem 2 we have

vfast = sup {α1a1 + (1− α1)a2 : α1κ
∗
1(a1) + (1− α1)κ∗2(a2) ≤ 0} ,

vslow = sup {α1a1 + (1− α1)a2 : α1κ
∗
1(a1) ≤ 0, α1κ

∗
1(a1) + (1− α1)κ∗2(a2) ≤ 0} .

Therefore, a branching random walk goes at speed vslow if the condition κ∗1(a1) ≤ 0
modifies the solution of (2.1.7). If this is the case, it means that the “theoretical optimal
path” would cross the boundary of the branching random walk, thus no individual could
follow it. Under these circumstances, an individual which is at time α1n close to the
rightmost position has an important advantage to breed the rightmost descendant at time
n. Otherwise, at time α1n, there is a large number of individuals around α1a1n, each of
which having small probability to be the rightmost individual. Therefore the logarithmic
correction is similar to the one obtained computing the maximal displacement of a large
number of independent random walks. Although the speed varies continuously as θ1
grows bigger than θ2, the logarithmic correction exhibits a phase transition, as observed
in Chapter 1.

We now prove Theorems 2.1.4 and 2.1.5 for a general BRWis. The organisation of
the chapter is very similar to the one in Chapter 1. In Section 2.2, we recall the spinal
decomposition for a time-inhomogeneous branching random walks. In Section 2.3, we
extend the random walks estimates of Chapter 1 to a random walk with any number of
interfaces. In Section 2.4, we prove Theorem 2.1.5 by recurrence, then use it to prove
Theorem 2.1.4. Finally, we prove in Section 2.A the random walk estimates described in
Section 2.3 and Proposition 2.1.2 in Section 2.B.

2.2 The spinal decomposition
We recall in this section the time-inhomogeneous version of the spinal decomposition

of the branching random walk 3. We give two ways of describing a size-biased version of

2. See Appendix 2.B.
3. 6:00 – “I Got You Babe”.
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the law of the branching random walk. After its introduction to the study of Galton-
Watson processes in [LPP95], this method has been adapted to branching random walks
in [Lyo97], and to general branching Markov processes in [BK04].

2.2.1 The size-biased law of the branching random walk

Let n ≥ 1 and (Lk, k ≤ n) be a sequence of point processes laws which forms the
environment of a time-inhomogeneous branching random walk (T, V ). For all x ∈ R we
set Px the law on T of the marked tree (T, V +x), and Ex the corresponding expectation.

We write κk(θ) the log-Laplace transform of Lk and we assume there exists θ > 0 such
that for all k ≤ n we have κk(θ) < +∞. Let

Wn =
∑
|u|=n

exp

θV (u)−
n∑
j=1

κj(θ)

 .
We observe that Wn ≥ 0,Px − a.s. and Ex(Wn) = ex. Therefore, we can define the law P
on the set of marked trees of height n by

Px = e−xWn ·Px. (2.2.1)

The spinal decomposition consists of an alternative construction of the law Pa, as the
projection of a law on the set of planar rooted marked trees with spine, which we define
below.

2.2.2 A law on plane rooted marked trees with spine

Let (T, V ) be a marked tree of height n, and w ∈ {u ∈ T : |u| = n} an individual alive
at the nth generation. The triplet (T, V, w) is then called a plane rooted marked tree with
spine of length n. The spine of a tree is a distinguished path of length n linking the root
and the last generation. The set of marked trees with spine of height n is written T̂n. On
this set, we define the three following filtrations,

∀k ≤ n, F̂k = σ (u, V (u), u ∈ T, |u| ≤ k) ∨ σ(wj , j ≤ k) and F̂ = F̂n
∀k ≤ n,Fk = σ (u, V (u) : u ∈ T, |u| ≤ k) and F = Fn
∀k ≤ n,Gk = σ (wj , V (wj) : j ≤ k) ∨ σ (u, V (u), u ∈ Ω(wj), j < k) and G = Gn.

The filtration F is the information of the marked tree, obtained by forgetting the spine,
G is the sigma-field of the knowledge of the spine and its children only, and F̂ = F ∨ G is
the natural filtration of the branching random walk with spine.

We introduce a law P̂a on T̂n. For any k ≤ n, we write

L̂k =

∑
`∈L

eθ`−κk(θ)

 · Lk,
a law of a point process with Radon-Nikodým derivative with respect to Lk, and we
write L̂k =

(̂̀
k(j), j ≤ Nk

)
an independent point processes of law L̂k. Conditionally on

(L̂k, k ≤ n), we choose, for every k ≤ n, w(k) ≤ Nk independently at random, such that

P
(
w(k) = h

∣∣∣L̂k, k ≤ n) = 1{h≤Nk}
eθ`k(h)∑

j≤Nk e
θ`k(j) .
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We denote by wn ∈ U the sequence (w(1), . . . w(n)).
We consider a family {Lu, u ∈ U , |u| ≤ n} of independent point processes such that

Lwk = L̂k+1, and if u 6= w|u|, then Lu has law L|u|+1. For any u ∈ U such that |u| ≤ n, we
write Lu = (`u1 , . . . `uN(u)). We construct the tree

T = {u ∈ U : |u| ≤ n, ∀1 ≤ k ≤ |u|, u(k) ≤ N(uk−1)} ,

and the the function

V :
T → R
u 7→ ∑|u|

k=1 `
uk−1
u(k) .

For all x ∈ R, the law of (T, x + V,wn) ∈ T̂n is written P̂x, and the corresponding
expectation is Êx.

The marked tree with spine (T, x + V,wn) is called a branching random walk with
spine, and can be constructed as a process in the following manner. It starts with a
unique individual positioned at x at time 0, which is the ancestral spine w0. Then, at each
time k < n, every individual alive at generation k dies. Each of these individuals gives
birth to children, which are positioned around their parent according to an independent
point process. If the parent is wk, then the law of this point process is L̂k, otherwise it
is Lk. The individual wk+1 is then chosen at random among the children u of wk, with
probability proportional to eθV (u). At time n, individuals die without children.

In the rest of the article, we write Px,k the law of the time-inhomogeneous branching
random walk of length n − k starting from x with environment (Lk+1, . . .Ln). Observe
that conditionally on G, the branching random walks of the descendants of the children
of wk are independent, and the branching random walk of the children of u ∈ Ω(wk) has
law PV (u),k+1.

2.2.3 The spinal decomposition

The following result, which links the laws P̂x and Px, is the time-inhomogeneous
version of the spinal decomposition, proved in Chapter 1.

Proposition 2.2.1 (Spinal decomposition). For all x ∈ R, we have

Px = P̂x

∣∣∣
F
. (2.2.2)

Moreover, for any |u| = n, we have

P̂x(wn = u|F) = exp (θV (u)−∑n
k=1 κk(θ))

Wn
1{u∈T}. (2.2.3)

A straightforward consequence of this result is the well-known many-to-one lemma.
This equation, known at least from the early works of Peyrière [Pey74] has been used in
many forms over the last decades, and we introduce here a time-inhomogeneous version
of it, proved again in Chapter 1.

Lemma 2.2.2 (Many-to-one). We define an independent sequence of random variables
(Xk, k ≤ n) by

∀k ≤ n,∀x ∈ R,P [Xk ≤ x] = E

∑
`∈Lk

1{`≤x}eθ`−κk(θ)

 ,
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and we write Sk = S0 +∑k
j=1Xj for k ≤ n, where Px(S0 = x) = 1. For all x ∈ R, k ≤ n

and f a measurable non-negative function, we have

Ex

 ∑
|u|=k

f(V (u1), . . . V (uk))

 = eθx Ex

[
e
−θSk+

∑k

j=1 κj(θ)f(S1, . . . Sk)
]
. (2.2.4)

The many-to-one lemma and the spinal decompositions enable to compute moments
of an additive functional of the branching random walk, by using random walk esti-
mates. These estimates are introduced in the next section, and extended to include
time-inhomogeneous versions, and the control of random variables correlated to the last
step.

2.3 Some random walk estimates
We recall the random walk estimates introduced in Chapter 1, and extend them to

bound similar events on random walks through a sequence of interfaces. We denote by
(Tn, n ≥ 0) a one-dimensional centred random walk, with finite variance σ2. We begin
with Stone’s local limit theorem [Sto65]. There exists C > 0 such that for all a ≥ 0 and
h ≥ 0, we have

lim sup
n→+∞

n1/2 sup
|y|≥an1/2

P(Tn ∈ [y, y + h]) ≤ C(1 + h)e−
a2

2σ2 . (2.3.1)

Moreover, there exists H > 0 such that for all a < b ∈ R

lim inf
n→+∞

n1/2 inf
y∈[an1/2,bn1/2]

P(Tn ∈ [y, y +H]) > 0. (2.3.2)

We continue with Caravenna–Chaumont’s local limit theorem [CC13]. Let (rn, n ≥ 0) be
a positive sequence such that rn = O(n1/2). There exists C > 0 such that for all a ≥ 0
and h ≥ 0,

lim sup
n→+∞

n1/2 sup
y∈[0,rn]

sup
x≥an1/2

P(Tn ∈ [x, x+ h]|Tj ≥ −y, j ≤ n) ≤ C(1 + h)ae−
a2

2σ2 . (2.3.3)

Moreover, there exists H > 0 such that for all a < b ∈ R+,

lim inf
n→+∞

n1/2 inf
y∈[0,rn]

inf
x∈[an1/2,bn1/2]

P(Tn ∈ [x, x+H]|Tj ≥ −y, j ≤ n) > 0. (2.3.4)

Once again, up to a transformation T 7→ T/(2H), we assume in the rest of this chapter
that all the random walks we consider are such that (2.3.2) and (2.3.4) hold with H = 1.
The Hsu–Robbins theorem, introduced in Chapter 1 is useful to bound the probability for
a random walk to stay below a linear boundary, for all ε0∑

n≥0
P(Tn ≤ −nε) < +∞. (2.3.5)

We next recall extension of Kozlov’s and Pemantle–Peres’ ballot theorem [Koz76],
proved in Chapter 1. For all A ≥ 0 and α ∈ [0, 1/2), there exists C > 0 such that for all
n ≥ 1 and y ≥ 0,

P(Tj ≥ −y −Ajα, j ≤ n) ≤ C(1 + y)n−1/2, (2.3.6)
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moreover, there exists c > 0 such that for all n ≥ 1 and y ∈ [0, n1/2]

P(Tj ≥ −y, j ≤ n) ≥ c(1 + y)n−1/2. (2.3.7)

Mixing (2.3.6) and (2.3.1), we proved in Chapter 1 that there exists C > 0 such that
for all x, h ≥ 0 and y ∈ R,

P(Tp+q ∈ [y + h, y + h+ 1], Tj ≥ −x+ y1{j>p}, j ≤ n)

≤ C (1 + x) ∧ p1/2

p1/2
1

max(p, q)1/2
(1 + h) ∧ q1/2

q1/2 , (2.3.8)

and using (2.3.7) and (2.3.2), that there exists c > 0 such that for all n ≥ 1 large enough,
x ∈ [0, n1/2] and y ∈ [−n1/2, n1/2],

Px(Tn ≤ y + 1, Tj ≥ y1{j>n/2}, j ≤ n) ≥ c(1 + x)
n3/2 . (2.3.9)

This result also holds for excursions above bended curves. For all A ≥ 0 there exists C > 0
such that for all n ∈ N and y, h ≥ 0

P(Tn +A logn ∈ [h− y, h− y + 1], Tj ≥ −A log n
n−j+1 − y, j ≤ n)

≤ C ((1 + y) ∧ n1/2)((1 + h) ∧ n1/2)
n3/2 . (2.3.10)

We sum up all the previous random walks estimates into two lemmas, that bound from
above and from below the probability, for a random walk through interfaces, to make an
excursion above a given curve. Let p, q, r ∈ N, (Xk)k∈N and (X̃k)k∈N be two independent
families of i.i.d. random variables, with mean 0 and finite variance, and (Yn)n≥0 be a
family of independent random variables. We write n = p + q + r and define the time-
inhomogeneous random walk (Sk, k ≤ n) as follows:

Sk =
min{k,p}∑
j=1

Xj +
min{k−p,q}∑

j=1
Yj +

min{k−p−q,r}∑
j=1

X̃j .

Let A ∈ R, and x, y ∈ R+, h ∈ R, we denote by

ΓA,1(x, y, h) = {s ∈ Rn : ∀k ≤ p, sk ≥ −x} and
ΓA,3(x, y, h) = {s ∈ Rn : ∀k ∈ [n− r, n], sk ≥ y +A log n

n−k+1}

the sets of trajectories staying above −x during the p initial steps and above a logarithmic
boundary during the r last steps. The next lemma is proved in Section 2.A.1.

Lemma 2.3.1. For all A ∈ R and F ⊂ {1, 3}, there exists C > 0 such that for all
p, q, r ∈ N, x, y ∈ R+ and h ∈ R, we have

P

Sn +A logn ∈ [y + h, y + h+ 1], (Sk, k ≤ n) ∈
⋂
f∈F

ΓA,f (x, y, h)


≤ C 1 + y1F (1)

p1F (1)/2
1

max(p, r)1/2
1 + h+1F (3)
r1F (3)/2 .
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We now bound from below a similar event, for a random walk through interfaces
S, defined as follows: given X(1), . . . X(P ) real-valued centred random walks with finite
variance, the process S is a sum of independent random variables, such that the law of
Sk+1 − Sk is the same as X(p) for all p ∈ [α(n)

p−1, α
(n)
p ). For F ⊂ {1, 3} and x, y, δ ∈ R+, we

write

ΥF (x, y, δ) =

s ∈ Rn :
∀k ≤ α(n)

1 , sk ≥ −x1{1∈F} − δk1{1 6∈F}
∀k ∈ (α(n)

1 , αnP−1], sk ≥ 0
∀k ∈ (αnP−1, n], sk ≥ y1{3∈F} − δ(n− k)1{36∈F}

 .
Lemma 2.3.2. There exists c > 0 such that for all n ≥ 1 large enough, F ⊂ {1, 3},
x ∈ [0, n1/2], y ∈ [−n1/2, n1/2] and δ > 0

P(Sn ≤ y + 1, S ∈ ΥF (x, y, δ)) ≥ c1 + x1F (1)
n1F (1)/2

1
n1/2

1
n1F (3)/2 .

This lemma is proved in Section 2.A.2.
Finally, we recall the upper bounds for enriched random walks, obtained in Chapter 1.

Given (Xn, ξn, n ∈ N) i.i.d. random variables such that E(X1) = 0, E(X2
1 ) < +∞ and

E((ξ1)2
+) < +∞, we write Tn = ∑n

k=1Xk. For all t ∈ (0, 1), there exists C > 0 that does
not depend on the law of ξ1 such that for all n ≥ 1, x, h ≥ 0 and y ∈ R, we have

P [Tj ≥ −x, j ≤ n,∃k ≤ n : Tk ≤ ξk − x] ≤ C 1 + x

n1/2

[
P(ξ1 ≥ 0) + E((ξ1)2

+)
]
, (2.3.11)

as well as

P
[
Tn − x− y − h ∈ [0, 1], Tj ≥ −x+ y1{j>tn}, j ≤ n, ∃k ≤ n : Tk ≤ ξk + y1{k>tn} − x

]
≤ C (1 + x)(1 + h)

n3/2

[
P(ξ1 ≥ 0) + E((ξ1)2

+)
]
. (2.3.12)

We introduce an additional result, which is to Hsu–Robbins theorem what (2.3.11) and
(2.3.12) are respectively to (2.3.6) and (2.3.8).

Lemma 2.3.3. We suppose that E(X1) = 0, E(X2
1 ) < +∞ and E((ξ1)+) < +∞. Let

ε > 0, there exists C > 0 that does not depend on the law of ξ1 such that for all x, z ≥ 0
and n ∈ N

P [Tj ≥ −x− εj, j ≤ n,∃k ≤ n : Tk ≤ −x− εk + ξk]

≤ C
[E [(ξ + z)+]

ε

]
+ E

∑
n≥0

1{Tn≤−x−z−nε/2}

 .
Proof. We observe that for all z ≥ 0,

P [Tj ≥ −x− εj, j ≤ n,∃k ≤ n : Tk ≤ −x− εk + ξk] ≤
n∑
k=1

P(Tk ≤ −x− εk + ξk),

moreover

P(Tk ≤ −x− εk + ξk) ≤ P(Tk ≤ −x− z − εk/2) + P(ξk ≥ εk/2− z),
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thus

P [Tj ≥ −εj − x, j ≤ n,∃k ≤ n : Tk ≤ −εk − x+ ξk]

≤
n∑
k=1

P [Tk ≤ −εj/2 + z − x] +
n∑
k=1

P(ξk ≥ εk/2− z)

≤ E
[+∞∑
k=1

1{Tj≤−z−εj/2}

]
+ 2E((ξ + z)+)

ε
,

ending the proof.

2.4 Bounding the tail of the maximal displacement
We consider a BRWis (T, V ) of length n. The sequence of point processes can freely

be replaced by (L1,L1,L1,L2, . . .LP ) and the sequence of positions of the interfaces be
replaced by 0 = α0 < α1/3 < 2α1/3 < α1 < α2 < . . . < αP = 1. Thus, we assume
without loss of generality in this section that P ≥ 3. For p ≤ P and θ > 0, we write
κp(θ) = log E

[∑
`∈Lp e

θ`
]
the log-Laplace transform of Lp. We write Mn the maximal

displacement at time n of the BRWis.
We prove in a first time Theorem 2.1.5, using the decomposition of the BRWis obtained

thanks to Proposition 2.1.2. According to this result, if a is the solution of (2.1.7), and
θp = (κ∗p)′(ap), the sequence θ is non-decreasing, and takes a finite number T of values.
We proceed by induction on T . The next section proves Theorem 2.1.5 for a BRWis such
that T = 1. In Section 2.4.2 we prove the induction hypothesis, and Section 2.4.3 derives
Theorem 2.1.4 from Theorem 2.1.5.

2.4.1 The case of a mono-parameter branching random walk

We consider in a first time a BRWis (T, V ) satisfying additional assumptions that
guarantee the sequence θ to be constant. For all ϕ ∈ R+, we write

Ep(ϕ) =
p∑
q=1

(αq − αq−1)(ϕκ′q(ϕ)− κq(ϕ)).

We assume there exists θ > 0 such that

∀p ≤ P,Ep(θ) ≤ 0 and EP (θ) = 0. (2.4.1)

We write ap = κ′p(θ) and B = {p ≤ P : Ep = Ep−1 = 0}. By (2.1.2), a ∈ R, and by
Proposition 2.1.2, a is the solution of (2.1.7). With these notations, we have

vis =
P∑
p=1

(αp − αp−1)ap and λ = 1
2θ (1 + 1B(1) + 1B(P )) . (2.4.2)

Theorem 2.4.1. Under assumptions (2.1.13) and (2.4.1), there exists C > 0 such that
for all n ≥ 1 and y ≥ 0,

P(Mn ≥ nvis − λ logn+ y) ≤ C(1 + y1B(1))e−θy.

Moreover, under the additional assumptions (2.1.14) and (2.1.15), there exists c > 0 such
that for all n ≥ 1 and y ∈ [0,

√
n],

P(Mn ≥ nvis − λ logn+ y) ≥ c(1 + y1B(1))e−θy.
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We write mn = nvis − λ logn. To obtain the upper bound, we prove the existence of
a boundary that no individual crosses with high probability. Then, we bound from above
and from below the first two moments of the number of individuals who stayed below the
boundary, and end at time n close to mn.

We denote by

K
(n)
k =

P∑
p=1

k∑
j=1

κp(θ)1{
j∈[α(n)

p−1,α
(n)
p )
}

and by a(n)
k = ∑P

p=1
∑k
j=1 ap1{

j∈[α(n)
p−1,α

(n)
p )
} the path followed by the rightmost individual.

Using Equation (2.1.2), we observe that

θa
(n)
k −K

(n)
k =

P∑
p=1

κ∗p(ap)
k∑
j=1

1{
j∈[α(n)

p−1,α
(n)
p )
}, (2.4.3)

in particular, if ϕt =
∫ t

0
∑P
p=1 κ

∗
p(ap)1{s∈[αp−1,αp)}ds, by Riemann integration

sup
n≥0

sup
k≤n

∣∣∣θa(n)
k −K

(n)
k − nϕ k

n

∣∣∣ < +∞. (2.4.4)

A boundary for the branching random walk

We prove in a first time that if 1 ∈ B, then with high probability, there is no individual
to the right of a1k at any time k ≤ α(n)

1 .
Lemma 2.4.2. Under assumption (2.4.1), if 1 ∈ B, then for all y ≥ 0 and n ∈ N,

P(∃u ∈ T, |u| ≤ α(n)
1 : V (u) ≥ a1|u|+ y) ≤ e−θy.

Proof. Let y ≥ 0 and n ≥ 1, for k ≤ α(n)
1 , we write

Z
(n)
k =

∑
|u|=k

1{V (u)≥a1k+y}1{V (uj)≤a1j+y,j≤k},

the number of individuals who are for the first time at time k above the curve a1k + y.
By use of (2.2.4), we have

E(Z(n)
k ) = E

[
e−θSk+kκ1(θ)1{Sk≥ka1+y}1{Sj≤ja1+y,j<k}

]
,

where S is a random walk with mean

E

∑
`∈L1

`eθ`−κ1(θ)

 = κ′1(θ) = a1,

and finite variance, thanks to (2.1.13). Moreover, as 1 ∈ B, we have E1 = θa1−κ1(θ) = 0,
therefore

E(Z(n)
k ) ≤ e−θyP(Sk ≥ ka1 + y, Sj ≤ ja1 + y, j < k).

As a consequence, by Markov inequality, we have

P(∃u ∈ T, |u| ≤ α(n)
1 : V (u) ≥ a1|u|+ y) ≤

α
(n)
1∑
k=1

E(Z(n)
k )

≤ e−θy
n∑
k=1

P(Sk ≥ ka1 + y, Sj ≤ ja1 + y, j < k)

≤ e−θyP(∃k ≤ n : Sk ≥ ka1 + y),



86 Chapter 2. Branching random walk through interfaces

which ends the proof.

We now compute, if P ∈ B, the probability there exists at some time k ≥ α
(n)
P−1 an

individual above some well-chosen curve. To do so, we denote by

r
(n)
k = aP (k − n) + 3

2θ log(n− k + 1).

We add a piece of notation to describe the boundary of the branching random walk. We
write

F (n) =
⋃

p∈B∩{1,P}

[
α

(n)
p−1, α

(n)
p

]
,

F
(n)
k = F (n) ∩ [0, k] and, for j ∈ F (n),

f
(n)
j = a1j1{

j≤α(n)
1

} +
(
mn + r

(n)
k

)
1{

j≥α(n)
P−1

}.
The following estimate holds.
Lemma 2.4.3. Under assumptions (2.1.13) and (2.4.1), if P ∈ B, there exists C > 0
such that for all y ≥ 0 and n ∈ N,

P
[
∃|u| > α

(n)
P−1 : V (u) ≥ mn + r

(n)
k + y

]
≤ C(1 + y1B(1))e−θy.

Proof. We assume in a first time that 1 6∈ B. We have λ = 1
θ and

P
[
∃|u| > α

(n)
P−1 : V (u) ≥ mn + r

(n)
k + y

]
≤E

 ∑
|u|≥α(n)

P−1

1{
V (u)≥mn+r(n)

|u| +y
}1{

V (uj)≤mn+r(n)
j +y,α(n)

P−1≤j<k
}


≤
n∑

k=α(n)
P−1

E

e−θSk+K(n)
k 1{

Sk≥mn+r(n)
k

+y,Sj≤mn+r(n)
j +y,α(n)

P−1≤j<k
}

≤
n∑

k=α(n)
P−1

Cnθλe−θy

(n− k + 1)3/2 P
(
Sk ≥ mn + r

(n)
k + y, Sj ≤ mn + r

(n)
j + y, α

(n)
P−1 ≤ j < k

)
,

(2.4.5)
by (2.2.4) and (2.4.4). By conditioning with respect to Sk − Sk−1, we have

P
(
Sk ≥ mn + r

(n)
k + y, Sj ≤ mn + r

(n)
j + y, α

(n)
P−1 ≤ j < k

)
= E [ϕk(Sk − Sk−1 − a1)] ,

writing for x ∈ R,
ϕk(x)

=P(Sk−1 ≥ mn + r
(n)
k + y − x, Sj ≤ mn + r

(n)
j + y, α

(n)
P−1 ≤ j ≤ k − 1)

=
+∞∑
h=0

P(Sk−1 −mn − r(n)
k − y − h ∈ [h, h+ 1), Sj ≤ mn + r

(n)
j + y, α

(n)
P−1 ≤ j ≤ k − 1)

≤
bxc∑
h=0

C
1 + h

n1/2(k − α(n)
P−1)1/2

≤C (1 + x+)2

n1/2(k − α(n)
P−1)1/2

,
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by use of Lemma 2.3.1. Thus, by (2.1.13),

P
(
Sk ≥ mn + r

(n)
k + y, Sj ≤ mn + r

(n)
j + y, α

(n)
P−1 ≤ j < k

)
≤ C

n1/2(k − α(n)
P−1)1/2

.

As a consequence (2.4.5) becomes

P
[
∃|u| > α

(n)
P−1 : V (u) ≥ mn + r

(n)
k + y

]
≤

n∑
k=α(n)

P−1

Ce−θy
n1/2

(k − α(n)
P−1 + 1)1/2(n− k + 1)3/2

≤ Ce−θy.

In a second time, if 1 ∈ B, then λ = 3
2θ . We have

P
[
∃|u| > α

(n)
P−1 : V (u) ≥ mn + r

(n)
k + y

]
≤ P

[
∃|u| ≤ α(n)

1 : V (u) ≥ a1|u|+ y
]

+ P
[
∃|u| ≥ α(n)

P−1 : V (u) ≥ f (n)
k + y, V (uj) ≤ f (n)

j + y, j ∈ F (n)
k−1

]
.

Using Lemma 2.4.2, we only need to bound the second part of this inequality. Then, by
(2.2.4), we have, for k ≥ α(n)

P−1

E

 ∑
|u|=k

1{
V (u)≥f (n)

k
+y
}1{

V (uj)≤f (n)
j +y,j∈F (n)

k−1

}
≤ E

e−θSk+K(n)
k 1{

Sk≥f (n)
k

+y
}1{

Sj≤f (n)
j +y,j∈F (n)

k−1

}
≤ C nθλ

(n− k + 1)3/2 e
−θyP(Sk ≥ f (n)

k + y, Sj ≤ f (n)
j + y, j ∈ F (n)

k−1)

≤ C(1 + y)e−θy n3/2

(k − α(n)
P−1 + 1)3/2(n− k + 1)3/2

,

using again Lemma 2.3.1, and conditioning with respect to the last step of the random
walk. Thus, by Markov inequality, we have

P
[
∃|u| ≥ α(n)

P−1 : V (u) ≥ f (n)
k + y, V (uj) ≤ f (n)

j + y, j ∈ F (n)
k−1

]
≤ C(1 + y)e−θy

n∑
k=α(n)

P−1

n3/2

(k − α(n)
P−1 + 1)3/2(n− k + 1)3/2

≤ C(1 + y)e−θy,

which ends the proof.

These two lemmas imply that with high probability, there is no individual above f (n)+y
at any time in F (n). To complete the proof of the upper bound for the tail distribution of
Mn, we compute the number of individuals who, travelling below that boundary, are at
time n in a neighbourhood of mn. We write

X(n)(y, h) =
∑
|u|=n

1{V (u)−mn−y∈[−h,−h+1]}1{
V (uj)≤f (n)

j +y,j∈F (n)
}.



88 Chapter 2. Branching random walk through interfaces

Lemma 2.4.4. Under assumptions (2.1.13) and (2.4.1), there exists C > 0 such that for
all n ≥ 1, y ∈ R+ and h ∈ R, we have

E(X(n)(y, h)) ≤ C(1 + y1B(1))(1 + h+1B(P ))e−θ(y−h).

Proof. We observe that if P ∈ B and h < −1, then X(n)(y, h) = 0. Otherwise, using
Equation (2.2.4), we have

E(X(n)(y, h)) = E

e−θSn+K(n)
n 1{Sn−mn−y∈[−h,−h+1]}1{

Sj≤f (n)
j +y,j∈F (n)

}
≤ Cnθλe−θ(y−h)P

(
Sn −mn − y ∈ [−h,−h+ 1], Sj ≤ f (n)

j + y, j ∈ F (n)
)

by Equation 2.4.4. Applying Lemma 2.3.1, we obtain

P
(
Sn − f (n)

n − y ∈ [−h,−h+ 1], Sj ≤ f (n)
j + y, j ∈ F (n)

)
≤ C (1 + y1B(1))(1 + h+1B(P ))

(n+ 1)(1+1B(1)+1B(P ))/2 .

These lemmas can be used to obtain a tight upper bound for P(Mn ≥ nvis−λ logn+y).

Corollary 2.4.5. Under assumptions (2.1.13) and (2.4.1), there exists C > 0 such that
for all y ≥ 0 and n ∈ N, we have

P(Mn ≥ nvis − λ logn+ y) ≤ C(1 + y1B(1))e−θy.

Proof. Let y ≥ 0 and n ∈ N, we have

P(Mn ≥ nvis − λ logn+ y) ≤ P
(
∃|u| ∈ F (n) : V (u) ≥ f (n)

|u| + y
)

+
+∞∑
h=0

E
(
X(n)(y,−h)

)
.

Using Lemmas 2.4.2 and 2.4.3, we have

P
(
∃|u| ∈ F (n) : V (u) ≥ f (n)

|u| + y
)
≤ C(1 + y1B(1))e−θy

and applying Lemma 2.4.4, we obtain

+∞∑
h=0

E(X(n)(y,−h)) ≤ C(1 + y1B(1))e−θy
+∞∑
h=0

e−θh ≤ C(1 + y1B(1))e−θy.

Lower bound through a second moment computation

To bound from below P(Mn ≥ mn + y), we bound from below the probability there
exists an individual alive at time n, which stayed an any time k ≤ n below some curve
g(n) defined below and is at time n above mn. We write B(n) = ∪p∈B(α(n)

p−1, α
(n)
p ] the set of

times such that the optimal path is close to the boundary of the BRWis. We choose δ > 0
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small enough such that 3θδ < minp∈Bc −Ep(θ). For all n ≥ 1, p ≤ P and k ∈ (α(n)
p−1, α

(n)
p ]

we define

g
(n)
k = 1 +


a

(n)
k − 1{p=P}λ logn if Ep(θ) = Ep−1(θ) = 0
a

(n)
k + (k − α(n)

p−1)δ if Ep−1(θ) = 0, Ep(θ) < 0
a

(n)
k + (α(n)

p − k)δ if Ep(θ) = 0, Ep−1(θ) < 0
a

(n)
k + δn otherwise.

(2.4.6)

With this definition, using (2.4.4), we have,

θg
(n)
k −K

(n)
k ≤ C+


−1{p=P}θλ logn Ep(θ) = Ep−1(θ) = 0
−δ(k − α(n)

p−1) if Ep−1(θ) = 0, Ep(θ) < 0
−δ(α(n)

p+1 − k)− 1{p=P}θλ logn if Ep−1(θ) < 0, Ep(θ) = 0
−δn if Ep−1(θ) > 0, Ep(θ) > 0.

(2.4.7)

We prove in the rest of the section that the set

An(y) =
{
u ∈ T : V (u) ≥ mn + y, V (uj) ≤ g(n)

j + y, j ≤ n
}

is non-empty. To do so, we restrict this set to individuals with a constraint on their
reproduction. For u ∈ T, we denote by

ξ(u) =
∑

u′∈Ω(u)

(
1 + (V (u′)− V (u))+1{|u|∈B(n)+1}

)
eθ(V (u′)−V (u))

a quantity closely related to the spread of the offspring of u. We write, for z > 0 and
p ≤ P

Bn(z) =
{
u ∈ T : |u| = n, ξ(uj) ≤ ze

− θ2
[
V (uj)−g(n)

j

]
, j < n

}
,

and we consider the set Gn(y, z) = An(y) ∩ Bn(z). We compute the first two moments of

Yn(y, z) =
∑
|u|=n

1{u∈Gn(y,z)},

to bound from below P(Yn(y, z) ≥ 1), using the Cauchy-Schwarz inequality. We begin
with an upper bound of the second moment of Yn.

Lemma 2.4.6. Under assumptions (2.1.13) and (2.4.1), there exists C > 0 such that for
all y ≥ 0, z > 0 and n ∈ N, we have

E(Yn(y, z)2) ≤ Cz(1 + y1B(1))e−θy.

Proof. Applying Lemma 2.2.1, we have

E(Yn(y, z)2) = E
[ 1
Wn

Yn(y, z)2
]

= Ê

 1
Wn

∑
|u|=n

1{u∈Gn(y,z)}Yn(y, z)


= Ê

[
e−θV (wn)+K(n)

n 1{wn∈Gn(y,z)}Yn(y, z)
]
.
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Using the fact that wn ∈ An(y) ⊂ Gn(y, z), we have

E(Yn(y, z)2) ≤ Cnθλe−θyÊ
[
Yn(y, z)1{wn∈Gn(y,z)}

]
.

We decompose Yn(y, z) along the spine, to obtain

Yn(y, z) ≤ 1{wn∈Gn(y,z)} +
n−1∑
k=0

∑
u∈Ω(wk)

Yn(u, y),

where, for u ∈ T and y ≥ 0, we write Yn(u, y) = ∑
|u′|=n,u′>u 1{u′∈An(y)}. Let k < n. We

recall that conditionally on Gn, the branching random walks of the descendants of distinct
children u, v ∈ Ω(wk) are independent. Moreover, the branching random walk extracted
from an individual u ∈ Ω(wk) has law PV (u),k+1. As a consequence, for y ≥ 0, k < n and
u ∈ Ω(wk),

Ê [Yn(u, y)|Gn] = EV (u),k+1

 ∑
|u′|=n−k−1

1{V (u′)≥mn+y}1{
V (u′j)≤g

(n)
k+j+1+y,j≤n−k

} .
We use (2.2.4) and (2.4.4) to obtain

Ê [Yn(u, y)|Gn]

≤ CnλθeθV (u)−K(n)
k+1−θyPV (u),k+1

(
Sn−k−1 ≥ mn + y, Sj ≤ g(n)

j+k+1 + y, j ≤ n− k − 1
)
.

We now apply Lemma 2.3.1. For all p ≤ P and k ∈ [α(n)
p−1, α

(n)
p ), we have

PV (u),k+1(Sn−k−1 ≥ mn + y, Sj ≤ g(n)
j+k+1 + y, j ≤ n− k − 1)

≤


C

1+(g(n)
k+1+y−V (u))+1B(p)

(α(n)
p −k+1)1B(p)/2n(1+1B(p))/2 if p < P − 1

C
1+(g(n)

k+1+y−V (u))+1B(P )
(n−k+1)1/2+1B(P ) if p = P.

(2.4.8)

Let p ≤ P and k ∈ [α(n)
p−1, α

(n)
p ), we compute the quantity

hk := Ê

1{wn∈Gn(y,z)}
∑

u∈Ω(wk)
(1 + (g(n)

k+1 + y − V (u))+1B(p))eθV (u)−g(n)
k+1

 .
Using (2.4.3), the definition of ξ(wk) and the fact x 7→ x+ is Lipschitz, we have

hk ≤ CÊ
[
eθ(V (wk)−g(n)

k
)(1 + (g(n)

k + y − V (wk)+)ξ(wk)1{wn∈Gn(y,z)}

]
≤ CzÊ

[
e
θ
2 (V (wk)−g(n)

k
)(1 + (g(n)

k + y − V (wk)+)ξ(wk)1{wn∈An(y,z)}

]
as wn ∈ Bn(z). Decomposing this expectation with respect tot the value taken by V (wk),
we obtain

hk ≤ Czeθy
+∞∑
i=0

(1 + i)e−θi/2P
[
Sn ≥ mn + y, Sk − g(n)

k − y ∈ [−i− 1,−i],
Sj ≤ g(n)

j + y, j ∈ B(n)

]
.
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We apply the Markov property at time k and Lemma 2.3.1 to obtain, if p ∈ B

hk ≤


Cz (1+y)eθy

k3/2(α(n)
1 −k+1)1/2

n1/2

nθλ
if p = 1

Cz (1+y1B(1))eθy

(k−α(n)
p−1)1/2(α(n)

p −k+1)1/2n1/2
1
nθλ

if 1 < p < P

Cz (1+y1B(1))eθy

(k−α(n)
P−1+1)1/2(n−k+1)3/2

1
nθλ

if p = P.

(2.4.9)

In the same way, if p 6∈ B, we have

hk ≤


Czeθy 1

k1/2
1
nθλ

if k < α
(n)
1

Czeθy 1+y1B(1)
n1/2

1
nθλ

if α
(n)
1 ≤ k < α

(n)
P−1

Czeθy 1+y1B(1)
(n−k+1)1/2

1
nθλ

otherwise,
(2.4.10)

applying again Lemma 2.3.1.
For p ≤ P we denote by

Hp :=
α

(n)
p −1∑

k=α(n)
p−1

Ê

1{wn∈Gn(y,z)}
∑

u∈Ω(wk)
Yn(u, y)



≤ C
α

(n)
p −1∑

k=α(n)
p−1

hke
θg

(n)
k+1−K

(n)
k+1 .

Using (2.4.3), and summing the estimates (2.4.8), (2.4.9) and (2.4.10), we obtain that
Hp ≤ Cz(1 + y1B(1))e−θy for all p ≤ P . To conclude this proof, we observe that

E(Yn(y, z)2) ≤
P∑
p=1

Hp + Cnθλe−θyP(wn ∈ Gn(y, z)) ≤ Cz(1 + y1B(1))e−θy,

as Lemma 2.3.1 implies P(wn ∈ Gn(y, z)) ≤ C(1 + y1B(1))n−θλ.

We now prove the following result, a lower bound on the first moment of Yn(y,B).

Lemma 2.4.7. Under assumptions (2.1.13), (2.1.14), (2.1.15) and (2.4.1), there exists
c > 0 and z > 0 such that for all n ≥ 0 and y ∈ [0,

√
n], we have

E(Yn(y, z)) ≥ c(1 + 1B(1)y)e−θy.

Proof. Using Lemma 2.2.1, we have

E(Yn(y, z)) = Ê
[
e−θV (wn)+K(n)

n 1{wn∈Gn(y,z)}

]
≥ cnθλe−θyP̂(wn ∈ Gn(y, z)).

To bound P̂(wn ∈ Gn(y, z)), we observe that

P̂(wn ∈ Gn(y, z)) = P̂(wn ∈ An(y))− P̂(wn ∈ An(y) ∩ Bn(z)c).

Moreover, by Lemma 2.3.2, for all n ≥ 1 and y ∈ [0,
√
n]

P̂(wn ∈ An(y)) = P(Sn ≥ mn + y, Sj ≤ g(n)
j + y, j ≤ n) ≥ c(1 + y1B(1))n−θλ.
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Therefore, we only need to bound from above P̂(wn ∈ An(y) ∩ Bn(z)c) for z > 0 large
enough.

We write

τ (n)(z) = inf
{
k ≤ n : ξ(wk) ≥ z exp

(
−θ2

[
V (wk)− g(n)

k

])}
,

and, for p ≤ P , πp = P̂
(
wn ∈ An(y), τ (n)(z) ∈ (α(n)

p−1, α
(n)
p ]
)
. We introduce, for p ≤ P the

random variables

(ξp,∆p)
(d)= (V (wk+1 − V (wk), ξ(wk)) for k ∈ [α(n)

p−1, α
(n)
p ).

Let (ξpn,∆p
n) be i.i.d random variables with the same law as (ξp,∆p). We introduce the

random walk T pn = ∆p
1 + · · ·+ ∆p

n. Keeping in mind (2.3.12) and Lemma 2.3.3, we define
for p ∈ B and z ≥ 1 the functions

χp(z) = Ê
[(

1 +
(
log+(ξp)−∆p − log z

)
+

)2
1{ξp≥z}

]
and, for p ∈ Bc

χ̃p(z) = Ê
[(

log+(ξp)−∆p − log z/2
)
+

δ

]

+

E
[∑+∞

k=0 1{T pk≥(δk+log z)/2}
]

if Ep(θ) < 0
E
[∑+∞

k=0 1{T pk≤−(δk+log z)/2}
]

if Ep(θ) = 0, Ep−1(θ) < 0.

First, if p = 1, we apply the Markov property at time α(n)
1 and Lemma 2.3.1 to obtain

π1 ≤ C
1

n(1+1B(P ))/2 P
(
T 1
j ≤ g(n)

j + y, j ≤ α(n)
1 ,∃k ≤ α(n)

1 : ξ1
k ≥ ze−θ/2(T 1

k−g
(n)
k

)
)
.

As a consequence, if 1 ∈ B, we apply (2.3.11) to obtain π1 ≤ C 1+y
nθλ

χ1(z); and if 1 6∈ B,
then E1 < 0 so, applying Lemma 2.3.3 we have π1 ≤ C 1

nθλ
χ̃1(z).

We now suppose that 1 < p < P . Applying the Markov property at times α(n)
p and

α
(n)
p−1, we have

πp ≤
C

n(1+1B(P ))/2 Ê

1{
V (wj)≤g(n)

j +y,j≤α(n)
p−1

}ϕp (V (w
α

(n)
p−1

)
) , (2.4.11)

where we write, for s ∈ R

ϕp(s) = Ps

[
T pj ≤ g

(n)
α

(n)
p−1+j

+ y, j ≤ α(n)
p − α(n)

p−1, τ
(n)(z) ∈ (α(n)

p−1, α
(n)
p ]
]
.

If p ∈ B, applying (2.3.11), we have ϕp(s) ≤ 1+y+s
n1/2 χp(z), and, by (2.3.3),

sup
n∈N

1
n1/2 E

[∣∣∣∣Sα(n)
p−1
− a(n)

α
(n)
p−1

∣∣∣∣∣∣∣∣Sj ≤ g(n)
j + y, j ≤ α(n)

p−1

]
< +∞.

Then, by Lemma 2.3.1, as y ≤ √n, we have πp ≤ C(1+y1B(1))
nθλ

χp(z).
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In the same way, if p 6∈ B, we use Lemma 2.3.3, and time-reversal when Ep(θ) = 0 and
Ep−1(θ) < 0– to have ϕp(s) ≤ χ̃p(z), which, thanks to (2.4.11) leads to πp ≤ 1+y1B(1)

nθλ
χ̃p(z).

We finally take care of the case p = P . If P ∈ B, we apply the Markov property and
(2.3.12) to obtain

πP ≤ C E


1 +

(
S
α

(n)
P−1
− a(n)

α
(n)
P−1

+ y

)
+

n3/2 1{
Sj≤g(n)

j +y,j≤α(n)
P−1

}


≤ C 1 + y1B(1)
nθλ

χP (z).

If P 6∈ B, we use the time-reversal, then Lemma 2.3.3 to obtain

πP ≤ Cχ̃P (z) sup
h∈R

P
[
S
α

(n)
p−1
∈ [h, h+ 1], Sj ≤ g(n)

j + y, j ≤ α(n)
P−1

]
≤ C 1 + y1B(1)

nθλ
χ̃P (z).

We conclude there exists C > 0 such that

P̂(wn ∈ A(n)(y) ∩ B(n)(z)c) ≤ C 1 + y1B(1)
nθλ

∑
p∈B

χp(z) +
∑
p∈Bc

χ̃p(z)

 .
If p ∈ B, by (2.1.14) and (2.1.13), E((log ξp−∆p)2) < +∞. In the same way, if p 6∈ B, using
(2.1.15) and (2.1.13) again, we have E((log ξp − ∆p)+) < +∞. Applying the dominated
convergence theorem, we have

lim
z→+∞

∑
p∈B

χp(z) +
∑
p∈Bc

χp(z)

 = 0.

Consequently, there exists z ≥ 0 such that P̂(wn ∈ A(n)(y) ∩ B(n)(z)c) ≤ c (1+y1B(1))
2nθλ ,

therefore,

P̂(wn ∈ A(n)(y) ∩ B(n)(z)) ≥ P̂(wn ∈ A(n)(y))− P̂(wn ∈ A(n)(y) ∩ B(n)(z)c)

≥ c/21 + y1B(1)
nθλ

,

which ends the proof.

Using these two lemmas, we obtain a lower bound on Mn.

Lower bound in Theorem 2.4.1. By Lemma 2.4.7, there exist c > 0 and z > 0 such that
for all n ≥ 1 and y ∈ [0,

√
n], we have

E(Yn(y, z)) ≥ c(1 + y1B(1))e−θy.

Thus, using Lemma 2.4.6 and the Cauchy-Schwarz inequality, we have

P(Yn(y, z) ≥ 1) ≥ E(Yn(y, z))2

E(Yn(y, z)2) ≥

(
c(1 + y1B(1))e−θy

)2

Cz(1 + y1B(1))e−θy

≥ c(1 + y1B(1))e−θy.
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2.4.2 Extension to the multi-parameter branching random walk

In this section, we extend Theorem 2.4.1 to BRWis such that θ is non-constant, rea-
soning by induction on the number T of different values taken by the sequence.

Proof of Theorem 2.1.5. If T = 1, then the branching random walk satisfies all the hy-
potheses of Theorem 2.4.1, with optimal path a, and parameter θ = ϕ1, by Proposi-
tion 2.1.2. The initiation of the recurrence is then given by Theorem 2.4.1. Therefore, we
only need to prove the induction hypothesis.

Let T ∈ N, we assume that for all BRWis such that #{θp, p ≤ P} < T , Theorem 2.1.5
holds. For n ∈ N, we now consider a BRWis (T(n), V (n)) of length n. We write a the
optimal solution of Proposition 2.1.2, and θp = κ′p(ap). We assume that T = #{θp, p ≤ P},
and write ϕ1 < ϕ2 < · · · < ϕT these values, listed in the increasing order. For any t ≤ T ,
let ft = min{p ≤ P : θp = ϕt} and lt = max{p ≤ P : θp = ϕt}. Finally, we write vis and
λ the speed and correction as defined in (2.1.6) and (2.1.10), and mn = nvis − λ logn the
expected position of the maximal displacement Mn. We now divide this BRWis into two
parts, before and after the first time αl1 such that θl1+1 > θl1 .

We write l = l1 and

v1 =
l∑

p=1
(αp − αp−1)ap and λ1 = 1

2ϕ1
(1 + 1B(1) + 1B(l)) .

We denote by T(n)
1 = {u ∈ T : |u| ≤ αln} the tree cut at generation n1 = bαlnc. By

Proposition 2.1.2, we observe that (T(n)
1 , V

(n)
|T(n)

1
) is a BRWis which satisfies the hypotheses

of Theorem 2.4.1, with parameter θ := ϕ1. Therefore, if we write m1
n = v1n − λ1 logn

and M1
n = max|u|=n1 V (u), there exist c, C > 0 such that for all n ∈ N large enough and

y ∈ [0, n1/2], we have

c(1 + y1{κ∗1(a1)=0})e
−ϕ1y ≤ P(M1

n ≥ m1
n + y) ≤ C(1 + y1{κ∗1(a1)=0})e

−ϕ1y.

We now consider a branching random walk (T(n)
tail, V

(n)
tail ) of law Pn1,0, which has the

law of the branching random walk of the descendants of any individual alive at time n1.
We write ntail = n− n1 the length of this BRWis, and

vtail = v − v1, λtail = λ− λ1 and mtail
n = vtailn− λtail logn.

By Proposition 2.1.2 again, this marked tree is a BRWis and its optimal path is the path
driven by (al+1, . . . , aP ). Moreover, #{θp, l < p ≤ P} = T − 1 < T . Therefore, by the
induction hypothesis, writing M tail

n = max|u|=ntail V
tail(u), there exist c, C > 0 such that

for all n ∈ N large enough and y ∈ [0, n1/2], we have

ce−ϕ2y ≤ P(M tail
n ≥ mtail

n + y) ≤ C(1 + y)e−ϕ2y.

To obtain the lower bound of Theorem 2.1.5, we observe that if M1
n ≥ m1

n + y, and
if one of the descendants of the rightmost individual at time n1 makes a displacement
greater than mtail

n , then Mn ≥ mn + y. Therefore

P(Mn ≥ nvis − λ logn+ y) ≥ c(1 + y1B(1))e−ϕ1l
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for n ∈ N large enough and y ∈ [0, n1/2]. To obtain an upper bound for P(Mn ≥ mn + y),
we decompose the nth generation of the branching random walk with respect to the position
of their ancestors alive at time n1. We write

X(n)(y, h) =
∑
|u|=n1

1{
V (uj)≤f (n1)

j +y,j∈C(n1)
1

}1{V (u)−m1
n−y∈[−h−1,−h]},

and, by union bound and the Markov property, we have

P(Mn ≥ mn + y) ≤ P(∃|u| ∈ C(n1)
1 : V (x) ≥ f (n1)

k + r
(n)
k + y)

+
+∞∑
h=0

E(X(n)(y, h))P(M tail
n ≥ mtail

n + h).

As a consequence, applying Lemma 2.4.4 and the upper bound of Theorem 2.4.1,

P(Mn ≥ mn + y) ≤ C(1 + y1{κ∗1(a1)=0})e
−ϕ1y

[
1 +

+∞∑
h=0

(1 + h)e(ϕ1−ϕ2)h
]

≤ C(1 + y1{κ∗1(a1)=0})e
−ϕ1y,

which gives the correct upper bound.

2.4.3 Proof of Theorem 2.1.4

Using Theorem 2.1.5, we are able to obtain Theorem 2.1.4. To do so, we strengthen
the estimate P(Mn ≥ nvis − λ logn) > c > 0 in

lim
y→−∞

lim inf
n→+∞

P(Mn ≥ nvis − λ logn) = 1,

using a standard cutting argument. Loosely speaking, with high probability, there will be a
large number of individuals alive at generation k, each of which having positive probability
to make a descendant that displaced more than mn, which is enough to conclude.

Proof of Theorem 2.1.4. Let (T, V ) be a BRWis of length n, satisfying all hypotheses of
Theorem 2.1.4. To prove that the sequence (Mn −mn) is tight, we prove that

lim
K→+∞

sup
n∈N

P(|Mn −mn| ≥ K) = 0.

By Theorem 2.1.5, there exists C > 0 such that

sup
n∈N

P(Mn ≥ mn +K) ≤ C(1 +K)e−ϕ1K ,

therefore the upper bound is easy to obtain.
We now turn to the lower bound. Applying Theorem 2.1.5, there exists c1 > 0 such

that
inf
n∈N

P(Mn ≥ mn) ≥ c1.

Let L1 be a point process of law L1. By (2.1.1), there exists h > 0 and N ∈ N such
that

m = E

max

N, ∑
`∈L1

1{`≥−h}

 > 1.
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We write µ the law of max
(
N,
∑
`∈L1 1{`≥−h}

)
, and (Zn, n ≥ 0) a Galton-Watson process

with reproduction law µ. Observe we can couple (Zn) and a branching random walk
(T1, V1) with reproduction law L1 such that for any n ∈ N, ∑|u|=n 1{V1(u)≥−nh} ≥ Zn.
By standard Galton-Watson processes theory, there exists c2 > 0 and δ > 0 such that
infk∈N P(Zk ≥ δmk) > c2.

Let ε > 0 and R > 0 be such that (1 − c1)R ≤ ε. We now choose k ∈ N such that
δmk ≥ R. For any n ∈ N, we write un = (1, . . . 1) ∈ U . By (2.1.1), for all n ∈ N we
have un ∈ T. We write τ the first time n such that un has a sibling at distance smaller
than h, and this child has at least R descendants alive at time n+ k which displaced less
that −kh. According to the previous computations, τ is stochastically dominated by a
Geometric random variable. Therefore, it exists τ0 ∈ N such that P(τ > τ0) < ε.

Therefore, with probability at least 1−2ε, there are at least R individuals alive at some
time before τ0 + k, all of which are above infj≤τ0 V (uj) − kh. Each of these individuals
u starts an independent BRWis with law Pk,V (u), thus, using Theorem 2.1.5, there exists
y > 0 such that, for all n ≥ 1 large enough

P(M
n+ k+τ0

α1
≥ mn − y) ≥ 1− 4ε

which ends the proof of the lower bound.

2.A Time-inhomogeneous random walk estimates

In this section, we prove the random walk estimates we defined in Section 2.3.

2.A.1 Proof of Lemma 2.3.1

We recall here the notations of Lemma 2.3.1. Let p, q, r ∈ N, set n = p + q + r. The
time-inhomogeneous random walk S consists of p steps of independent centred random
walk with finite variance, q steps of independent random variables, then r steps of another
centred random variable with finite variance.

Let A ∈ R, and x, y ∈ R+, h ∈ R, we denote by

ΓA,1(x, y, h) = {s ∈ Rn : ∀k ≤ p, sk ≥ −x}

the set of trajectories staying above −x during the initial steps, and by

ΓA,3(x, y, h) =
{
s ∈ Rn : ∀k ∈ [n− r, n], sk ≥ y +A log n

n−k+1

}
.

Proof. Let A > 0, p, q, r ∈ N, y ≥ 0 and h ∈ R. Without loss of generality, we can assume
that both p and r are even (by changing q in q + 1 or q + 2).

If F = ∅, Lemma 2.3.1 is an easy consequence of (2.3.1).
If F = {1}, applying the Markov property at time p/2, we obtain

P
[
Sn +A logn ∈ [y + h, y + h+ 1], (Sk, k ≤ n) ∈ ΓA,1(x, y, h)

]
≤ P (Sj ≥ −x, j ≤ p/2) sup

z∈R
P
(
Sn − Sp/2 ∈ [z, z + 1]

)
≤ C 1 + x

p1/2
1

max(p, r)1/2 ,
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using (2.3.7) and (2.3.1). If F = {3}, we apply time-reversal, let Ŝj = Sn−Sn−j , we have

P
[
Sn +A logn− y − h ∈ [0, 1], Sj ≥ y +A log n

n−j+1 , n− r ≤ j ≤ n
]

≤ P
[
Ŝn +A logn− y − h ∈ [0, 1], Ŝj ≤ h+ 1−A log(j + 1), j ≤ r

]
≤ C 1 + h+

r1/2
1

max(p, r)1/2

by the same arguments as above.
Finally, if F = {1, 3}, applying Markov property at time p/2, and time-reversal

P
[
(Sk, k ≤ n) ∈ ΓA,1(x, y, h) ∩ ΓA,3(x, y, h)

]
≤ P [Sj ≥ −x, j ≤ p/2] sup

z∈R
P
[
Ŝn−p/2 ∈ [z, z + 1], Ŝj ≤ h+ 1−A log(j + 1), j ≤ r

]
.

Using the same arguments as above, we obtain

P
[
(Sk, k ≤ n) ∈ ΓA,1(x, y, h) ∩ ΓA,3(x, y, h)

]
≤ C 1 + x

p1/2
1

max(p, r)1/2
1 + h+
r1/2 .

2.A.2 Proof of Lemma 2.3.2

We consider a collection of independent random variables (Xp
n, n ≥ 0, p ≤ P ), with,

for all p ≤ P , (Xp
n, n ≥ 0) an i.i.d. sequence of real-valued centred random variables with

finite variance. Let n ≥ 1, we write, for k ≤ n, Sk = ∑P
p=1

∑k
j=1Xj1{

j∈(α(n)
p−1,α

(n)
p ]
}. For

F ⊂ {1, 3} and x, y, δ ∈ R+, we write

ΥF (x, y, δ) =

s ∈ Rn :
∀k ≤ α(n)

1 , sk ≥ −x1{1∈F} − δk1{1 6∈F},
∀k ∈ (α(n)

1 , α
(n)
P−1], sk ≥ 0

∀k ∈ (α(n)
p−1, n], sk ≥ y1{3∈F} − δ(n− k)1{36∈F}

 .
We now prove there exists c > 0 such that for any F ⊂ {1, 3}, for all x ∈ [0, n1/2],

y ∈ [−n1/2, n1/2] and δ > 0

P
[
Sn ≤ y + 1, S ∈ ΥF (x, y, δ)

]
≥ c1 + x1F (1)

n1F (1)/2
1

n1/2
1

n1F (3)/2 .

Proof of Lemma 2.3.2. Let n ≥ 1, x, |y| ∈ [0, n1/2] and δ > 0. We denote by

ΩF (δ, y) =
{
s ∈ Rn−α

(n)
1 : ∀k ≤ α

(n)
P−1 − α

(n)
1 , sk ≥ 0

∀k ∈ (α(n)
p−1, n], sk ≥ y1{3∈F} − δ(n− k)1{36∈F}

}
.

Applying the Markov property at time α(n)
1 , we have

P
[
Sn ≤ y + 1, S ∈ ΥF (x, y, δ)

]
= E

[
1{Sj≥−x1{1∈F}−δk1{1 6∈F}}Pα

(n)
1 ,Sα

(n)
1

(
S
n−α(n)

1
≤ y + 1, S ∈ ΩF (δ, y)

)]
.
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On the one hand, if 1 ∈ F , we have

P
[
Sn ≤ y + 1, S ∈ ΥF (x, y, δ)

]
≥ P

(
Sj ≥ −x, Sα(n)

1
∈ [3n1/2, 4n1/2]

)
× inf
u∈[3n1/2,4n1/2]

P
α

(n)
1 ,u

(
S
n−α(n)

1
≤ y + 1, S ∈ ΩF (δ, y)

)
.

Using (2.3.4) and (2.3.7), we have

P
(
Sj ≥ −x, Sα(n)

1
∈ [3n1/2, 4n1/2]

)
≥ c(1 + x)

n1/2 .

On the other hand, if 1 6∈ F , for all h > 3

P
[
Sn ≤ y + 1, S ∈ ΥF (x, y, δ)

]
≥ P

(
Sj ≥ −δk,

∣∣∣∣Sα(n)
1

∣∣∣∣ ∈ [3n1/2, hn1/2]
)

× inf
u∈[3n1/2,hn1/2]

P
α

(n)
1 ,u

(
S
n−α(n)

1
≤ y + 1, S ∈ ΩF (δ, y)

)
.

By (2.3.5), we have P(∀n ∈ N, Sn ≥ −δn) > 0. Thus, writing λ(n) =
⌊
α

(n)
1 /2

⌋
, by central

limit theorem, there exists c > 0 and h > 0 such that for all n ≥ 1 large enough

P
(
Sj ≥ −δj, j ≤ λ(n), Sλ(n) ∈ [−h√n, h√n]

)
≥ c.

Moreover, by the Donsker theorem

lim inf
n→+∞

inf
|z|≤h√n

Pz
(
Sj ≥ −2h

√
n, Sλ(n) ∈ [3

√
n, 4
√
n]
)
> 0.

As a consequence, we have

P

(
Sj ≥ −x1{1∈F} − δk1{16∈F}, Sα(n)

1
∈ [3n1/2, 4n1/2]

)
≥ c(1 + x1F (1))

n1F (1)/2 .

We now apply time-reversal, for k ≤ n, let Ŝk = Sn − Sn−k, we have

inf
z∈[3n1/2,4n1/2]

P
α

(n)
1 ,z

(
S
n−α(n)

1
≤ y + 1, S ∈ ΩF (δ, y)

)

≥ inf
u∈[2n1/2,5n1/2]

P

 Ŝ
n−α(n)

1
∈ [u, u+ 1], Ŝj ≥ −δn1{3 6∈F}, j ≤ n− α(n)

P−1

Ŝj ≥ n1/2, j ≤ n− α(n)
1

 .
We write Sk = Ŝ

n−α(n)
P−1+k−Ŝn−α(n)

P−1
, we apply again the Markov property at time n−α(n)

P−1

inf
z∈[3n1/2,4n1/2]

P
α

(n)
1 ,z

(
S
n−α(n)

1
≤ y + 1, S ∈ ΩF (δ, y)

)

≥ c

n1F (3)/2 inf
z∈[0,10n1/2]

P

 min
j≤α(n)

P−1−α
(n)
1

Sj ≥ −n1/2, S
α

(n)
P−1−α

(n)
1
∈ [z, z + 1]


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using the same tools as above. Finally

P

 min
j≤α(n)

P−1−α
(n)
1

Sj ≥ −n1/2, S
α

(n)
P−1−α

(n)
1
∈ [z, z + 1]

 ≥ c

n1/2 ,

using (2.3.4) and the Donsker theorem, implying

inf
n∈N

P

 min
j≤α(n)

P−1−α
(n)
1

Sj ≥ −n1/2

 > 0.

2.B Lagrange multipliers for the optimization problem
In this section, for any h,k ∈ RP , we write h.k = ∑P

p=1 hpkp the usual scalar prod-
uct in RP . Moreover, if f : RP → R is differentiable at point h, we write ∇f(h) =
(∂1f(h), . . . ∂P f(h)) the gradient of f .

We study in this section the optimization problem consisting of finding a ∈ R such
that

P∑
p=1

(αp − αp−1) ap = sup


P∑
p=1

(αp − αp−1) bp : b ∈ R
 . (2.B.1)

Equation (2.B.1) is a problem of optimization under constraint the a ∈ R. To obtain a
solution, we use an existence of Lagrange multipliers theorem. The version we use here is
stated in [Kur76], for Banach spaces.

Theorem VI (Existence of Lagrange multipliers). Let P,Q ∈ N. We denote by U an
open subset of RP , J a differentiable function U → R and g = (g1, . . . gQ) a differentiable
function U → RQ. Let R be a close convex cone in RQ i.e. a close subset of RQ such that

∀x, y ∈ R,∀λ, µ ∈ R+, λx+ µy ∈ R.

If a ∈ RP verifies g(a) ∈ R and

J(a) = sup {J(b),b ∈ Rp : g(b) ∈ R} ,

and if the differential of g at point a is a surjection, then there exist non-negative Lagrange
multipliers λ1, . . . λQ verifying the following properties.
(L1) For all h ∈ RP , ∇J(a).h = ∑Q

q=1 λq(∇gq(a).h).

(L2) For all h ∈ R, ∑Q
q=1 λqhq ≤ 0;

(L3) ∑Q
q=1 λqgq(a) = 0.

Using this theorem, we prove Proposition 2.1.2. We start by proving that if a satisfies
some specific properties, then a is the solution to (2.B.1).

Lemma 2.B.1. Under assumptions (2.1.1) and (2.1.8), a ∈ R is a solution of (2.B.1) if
and only if, writing θp =

(
κ∗p
)′

(ap), we have

(P1) θ is non-decreasing and positive;
(P2) if K∗(a)p < 0, then θp+1 = θp;
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(P3) K∗(a)P = 0.

Proof. For b ∈ RP , we denote by

J(b) =
P∑
p=1

(αp − αp−1)bp, R = {k ∈ RP : kp ≤ 0, p ≤ P},

and we write, θp(b) = (κ∗p)′(bp).
We assume in a first time that a ∈ R is a solution of (2.B.1), in which case

J(a) = sup
{
J(b),b ∈ RP : K∗(b) ∈ R

}
. (2.B.2)

The function J is linear thus differentiable, and assumption (2.1.8) implies that K∗ is
differentiable at point a. For h ∈ RP , we have ∇J(a).h = ∑P

p=1(αp − αp−1)hp, and
∇K∗(a)p.h = (αp − αp−1)θp(a)hp.

To prove that K∗ has a surjective differential, it is enough to prove that for all p ≤ P ,
θp(a) 6= 0. Let p ≤ P be the smallest value such that θp(a) = 0. Observe that in this case,
κ∗p(ap) < 0 by (2.1.1), thus we can increase a little ap and stay in R as soon as we decrease
a little ap−1 –or aP if p = 1, in which case same proof would work with few modifications.
For ε > 0 and q ≤ P , we write aεq = aq − ε1{q=p−1} + ε2/31{q=p}. We observe that, for all
ε > 0 small enough,

K∗(aε)p−1 = K∗(aε)p−2 + (αp−1 − αp−2)κ∗p−1(ap−1 − ε)
≤ K∗(a)p−2 + (αp−1 − αp−2)κ∗p−1(ap−1)− (αp−1 − αp−2)θp−1(a)ε+O(ε2)
≤ K∗(a)p−1 − (αp−1 − αp−2)θp−1(a)ε+O(ε2)

and

K∗(aε)p ≤ K∗(a)p−1 + (αp − αp−1)κ∗p(ap + ε2/3)
≤ K∗(a)p−1 − (αp−1 − αp−2)θp−1(a)ε+ (αp − αp−1)κ∗p(ap) +O(ε4/3)
≤ K∗(a)p − (αp−1 − αp−2)θp−1(a)ε+O(ε4/3),

thus, for ε > 0 small enough, aε ∈ R and∑P
p=1(αp−αp−1)aεp >

∑P
p=1(αp−αp−1)ap, which

is inconsistent with the fact that a is the optimal solution of (2.B.1).
Therefore, by Theorem VI, there exist non-negative λ1, . . . λP such that

(L1) ∀h ∈ RP , ∇J(a).h = ∑P
p=1 λp∇K∗(a)p.h;

(L2) ∀h ∈ R, ∑P
p=1 λphp ≤ 0;

(L3) ∑P
p=1 λpK

∗(a)p = 0.
We observe that Condition (L1) can be rewritten ∀p ≤ P, λpθp(a) = 1, therefore

θp(a) = 1
λp
. We define hp ∈ RP such that hpj = −1{j=p} + 1{j=p+1}. Condition (L2)

applied to hp ∈ R implies that λ is non-increasing, thus θ is non-decreasing; which gives
(P1). Finally, we rewrite Condition (L3) as follows, by discrete integration by part

0 =
P∑
p=1

λpK
∗(a)p = λPK

∗(a)P︸ ︷︷ ︸
≤0

−
P−1∑
p=1

(λp+1 − λp)K∗(a)p︸ ︷︷ ︸
≥0

,

therefore Condition (P3) (K∗(a)P = 0) is verified; and if λp+1 6= λp, then K∗(a)p = 0,
which implies (P2).
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We now suppose that a ∈ R verifies Conditions (P1), (P2) and (P3) and we prove that
for all b ∈ R,

P∑
p=1

(αp − αp−1)ap ≥
P∑
p=1

(αp − αp−1)bp. (2.B.3)

To do so, we use the fact that functions κ∗p are convex and differentiable at point a,
therefore, for all x ∈ R, κ∗p(x) ≥ κ∗p(ap) + θp(x− ap). As a consequence, we have

P∑
p=1

(αp − αp−1)(ap − bp) ≥
P∑
p=1

κ∗p(ap)− κ∗p(bp)
θp

(αp − αp−1)

≥ (K∗(a)P −K∗(b)P ) 1
θP
−
P−1∑
p=1

(
1

θp+1
− 1
θp

)
(K∗(a)p −K∗(b)p)

by discrete integration by part. By the specific properties of a, we have

K∗(a)P
1
θP
−
P−1∑
p=1

(
1

θp+1
− 1
θp

)
K∗(a)p = 0,

thus
P∑
p=1

(αp − αp−1)(ap − bp) ≥ −
K∗(b)P
θP

+
P−1∑
p=1

(
1

θp+1
− 1
θp

)
K∗(b)p ≥ 0,

as θ is non-decreasing an K∗(b) non-positive. Optimizing (2.B.3) over b ∈ R gives us

P∑
p=1

(αp − αp−1)ap ≥ vis

which ends the proof.

We now prove the uniqueness of the solution of (2.B.1).

Lemma 2.B.2. If for all p ≤ P , κp is finite on an open subset of [0,+∞), then there is
at most one solution to (2.B.1).

Proof. The uniqueness of the solution in an easy consequence of the strict convexity of
(κ∗p, p ≤ P ). Let a and b be two different solutions to (2.B.1), there exists a largest p ≤ P
such that ap 6= bp. Then, writing c = a+b

2 , we have

∀q ≥ p,K∗(c)q <
K∗(a)q +K∗(b)q

2 ≤ 0.

Thus, by continuity of K∗, c is in the interior of R, then we can increase a little cp, and the
path driven by (c + ε1{.=p}) goes farther than both a and b, which is a contradiction.

Finally, we prove the existence of such a solution when the mean number of children
of an individual in the BRWis is finite.

Lemma 2.B.3. Under the assumptions (2.1.8) and (2.1.9), there exists at least a solution
to (2.B.1).
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Proof. If κp(0) < +∞, then infR κ∗p = −κp(0) and the minimum is reached at κ′p(0). As
κ∗p are bounded from below, for all p ≤ P there exists xp ≥ 0 such that

(αp − αp−1)κ∗p(xp) +
∑
q 6=p

(αq − αq−1) inf
R
κ∗q > 0.

Therefore, writing X = R∩∏p≤P [κ′p(0), xp], we have

sup
b∈R

∑
(αp − αp−1)bp = sup

b∈X

∑
(αp − αp−1)bp.

But, X being compact, this supremum is in fact a maximum. There exists a ∈ X such
that ∑

(αp − αp−1)ap = sup
b∈R

∑
(αp − αp−1)bp

which ends the proof.

2.C Notation

• Point processes
– Lp: law of a point process;
– Lp: point process with law Lp;
– κp: log-Laplace transform of Lp;
– κ∗p: Fenchel-Legendre transform of Lp;
– Xp: defined in 2.1.12.
• Generic marked tree
– T: genealogical tree of the process;
– u ∈ T: individual in the process;
– V (u): position of the individual u;
– |u|: generation at which u belongs;
– uk: ancestor at generation k of u;
– ∅: initial ancestor of the process;
– if u 6= ∅, πu: parent of u;
– Ω(u): set of the children of u;
– Mn = max|u|=n V (u) maximal displacement at the nth generation in (T, V ).
• Branching random walk with reproduction law Lp
– vp = infθ>0

κp(θ)
θ : speed of the branching random walk, such that Mn

n → vp a.s.;
– θp critical parameter such that θpvp − κp(θp) = 0.
• Branching random walk through interfaces
– P : number of distinct phases in the process;
– 0 = α0 < α1 < . . . < αP = 1: position of the interfaces;
– α

(n)
p = bnαpc: position of the pth interface for the BRWis of length n;

– a
(n)
k = ∑P

p=1
∑k
j=1 1{

j∈(α(n)
p−1,α

(n)
p ]
} path driven by a := (a1, . . . ap) ∈ RP ;

– u “follows path a(n)” if ∀k ≤ |u|, |V (uk)− a(n)
k | ≤ n1/2;

– K∗(a)p = ∑p
q=1(αq − αq−1)aq: rate function associated to the BRWis;

– R =
{

a ∈ RP : ∀p ≤ P,K∗(a)p ≤ 0
}
.

• The optimal path
– vis = maxb∈R

∑P
p=1(αp − αp−1)bp: speed of the BRWis;
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– a ∈ R such that ∑P
p=1(αp − αp−1)ap = vis: optimal speed profile;

– θp = (κ∗p)′(ap);
– T = #{θp, p ≤ P}: number of different values taken by θ;
– ϕ1 < ϕ2 < · · · < ϕT : different values taken by θ;
– ft = min{k ≤ P : θk = ϕt} and lt = max{k ≤ P : θk = ϕt};
– λ = ∑T

t=1
1

2ϕt

[
1{K∗(a)ft=0} + 1 + 1{K∗(a)lt−1=0}

]
: log-correction of the BRWis;

– B = {p ≤ P : K∗(a)p−1 = K∗(a)p = 0}.
• Spinal decomposition
– Wn = ∑

|u|=n e
θV (u)−

∑n

k=1 κk(θ): the additive martingale with parameter θ;
– Pk,x: law of the time-inhomogeneous branching random walk with environment

(Lk,Lk+1, . . .);
– Pk,x = Wn ·Pk,x: size-biased law of Pk,x;
– P̂k,x: law of the branching random walk with spine;
– w: spine of the branching random walk;
– Fn = σ(u, V (u), |u| ≤ n): filtration of the branching random walk;
– Gn = σ(wk, V (wk), k ≤ n) ∨ σ(u, V (u), u ∈ Ω(wk), k < n): filtration of the spine;
– F̂n = Fn ∨ Gn: filtration of the branching random walk with spine;
– Spinal decomposition: Proposition 2.2.1;
– Many-to-one lemma: Lemma 2.2.2.
• Random walks
– (Tn): random walk with finite variance;
– (Sn): random walk through interfaces;
– Time-reversal: replacement of S by (Ŝn = Sn − Sn−k, k ≤ n).
• Branching random walk estimates
– mn = nvis − λ logn;
– Ep(ϕ) = ∑p

q=1(αq − αq−1)(ϕκ′p(ϕ)− κq(ϕ));
– K

(n)
k = ∑P

p=1 κp(θ)
∑k
j=1 1{

j∈(α(n)
p−1,α

(n)
p ]
};

– r
(n)
k = aP (k − n) + 3

2θ log(n− k + 1);
– B(n) = ⋃

p∈B(α(n)
p−1, α

(n)
p ] and F (n) = ⋃

p∈B∩{1,P}[α
(n)
p−1, α

(n)
p ];

– f
(n)
j = a1j1{

j≤α(n)
1

} +
(
mn + r

(n)
k

)
1{

j≥α(n)
P−1

}: upper boundary;
– X(n)(y, h) = ∑

|u|=n 1{V (u)−mn−y∈[−h,−h+1]}1{
V (uj)≤f (n)

j +y,j∈F (n)
};

– g
(n)
k : another boundary, defined in (2.4.6);

– ξ(u) = ∑
u′∈Ω(u)(1 + (V (u′)− V (u))+1{|u|∈B(n)})eθ(V (u′)−V (u));

– An(y) =
{
u ∈ T : V (u) ≥ mn + y, V (uj) ≤ g(n)

j + y, j ≤ n
}
;

– Bn(z) =
{
u ∈ T : |u| = n, ξ(uj) ≤ ze

− θ2
[
V (uj)−g(n)

j

]}
;

– Gn(y, z) = An(y) ∩ Bn(z) and Yn(y, z) = #Gn(y, z).





CHAPTER 3

The maximal displacement of
a branching random walk in
slowly varying environment

“Winter is coming.”

Georges R. R. Martin – Game of thrones

Abstract
We consider in this chapter a BRWtie in which the time-inhomogeneous environment
evolves smoothly at a time scale of order n. The asymptotic behaviour of the max-
imal displacement in this process consists in a first ballistic order plus a negative
correction of order n1/3. The speed of the process is obtained, as in the previous
chapter, as the solution of an optimization problem under constraints. The second
term comes from time-inhomogeneous random walk estimates. This result partially
answers a conjecture of Fang and Zeitouni [FZ12b]. We also obtain in this chapter
the asymptotic behaviour of the consistent maximal displacement with respect to the
optimal path.

Nota: This chapter is a slightly modified version of the article Maximal displacement in a
branching random walk through a series of interfaces accepted for publication in Stochastic
Processes and Applications, doi 10.1016/j.spa.2015.05.011. Available on arXiv:1307.4496.

3.1 Introduction
The time-inhomogeneous branching random walk on R studied in this chapter is defined

as follow. Let (Lt, t ∈ [0, 1]) be a family of point processes, that we call the environment of
the branching random walk. We consider a branching random walk (T(n), V (n)) in which
individuals alive at generation k < n reproduce independently according to point processes
of law Lk/n. Individuals alive at generation n have no children. We call such a process a
branching random walk in large scale time inhomogeneous environment (abbreviated as
BRWls).

The study of the maximal displacement in a time-inhomogeneous branching Brownian
motion, the continuous time counterpart of the branching random walk, with smoothly
varying environment has been started in [FZ12b]. In this process individuals split into 2
children at rate 1, and move according to independent Gaussian diffusion with variance
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σ2
t/n at time t ∈ [0, n]. Fang and Zeitouni conjectured that under mild hypotheses, there

exists a constant v∗ and a function g verifying

−∞ < lim inf
n→+∞

g(n)
n1/3 ≤ lim sup

n→+∞

g(n)
n1/3 ≤ 0

such that the sequence (Mn − nv∗ − g(n), n ≥ 1) is tensed. They proved this result for
smoothly decreasing variance. Using PDE techniques, Nolen, Roquejoffre and Ryzhik
[NRR14] established, again in the case of decreasing variances, that g(n) = l∗n1/3 +
O(logn) for some explicit constant l∗. Maillard and Zeitouni [MZ14] proved, independently
from our result, that g(n) = l∗n1/3 − c1 logn, for some explicit c1. The techniques they
used for their proofs are similar to the ones presented here, based on first and second
moment computations of number of individuals staying in a given path and the study of
a partial differential equation (see Appendix 3.A).

In this chapter, we prove that for a large class of time-inhomogeneous branching ran-
dom walks, Mn − nv∗ ∼n→+∞ l∗n1/3 in probability for some explicit constants v∗ and
l∗. Conversely to previous articles in the domain, the displacements we authorize are non
necessarily Gaussian, and the law of the number of children may be correlated with the
displacement and depend on the time. More importantly, we do not restrict ourselves to
(an hypothesis similar to) decreasing variance. However assuming a decreasing variance
remains interesting as in this case quantities such as v∗ and l∗ admit a closed expression.

We do not prove in this chapter there exists a function such that (Mn − nv∗ − g(n))
is tight, thus we do not exactly answer to the conjecture of Fang and Zeitouni. However
Fang [Fan12] proved the sequence (Mn) shifted by its median is tight for a large class of
generalized branching random walks. This class does not exactly covers the class of time-
inhomogeneous branching random walks we consider, but on the non-trivial intersection,
the conjecture is then proved applying Theorem 3.1.3.

To address the fact the displacements are non Gaussian, we use the Sakhanenko es-
timate [Sak84], which couples sums of independent random variables with a Brownian
motion. The non-monotonicity of the variance leads to additional concerns. We discuss
in Section 3.1.2 a formula for limn→+∞ Mn

n , expressed as the solution of an optimization
problem under constraints (3.1.6). This equation is solved in Section 3.4, using some an-
alytical tools such as the existence of Lagrange multipliers in Banach spaces described in
[Kur76]. Solving this problem, an increasing function appears that replaces the inverse of
the variance in computations of [NRR14] and [MZ14]. We finally use Brownian estimates
and the many-to-one lemma to compute moments of an additive functional of the BRWls.

Notation In this chapter, c, C stand for two positive constants 1, respectively small
enough and large enough, which may change from line to line, and depend only on the law
of the random variables we consider. We assume the convention max ∅ = −∞ and min ∅ =
+∞. For x ∈ R, we write x+ = max(x, 0), x− = max(−x, 0) and log+(x) = (log x)+. For
any function f : [0, 1]→ R, we say that f is Riemann-integrable if

lim inf
n→+∞

1
n

n−1∑
k=0

min
s∈[ k−1

n
, k+2
n

]
fs = lim sup

n→+∞

1
n

n−1∑
k=0

max
s∈[ k−1

n
, k+2
n

]
fs,

and this common value is written
∫ 1

0 fsds. In particular, a Riemann-integrable function is
bounded. A subset F ⊂ [0, 1] is said to be Riemann-integrable if 1F is Riemann-integrable.

1. Whereas everywhere else, C is for cookie.
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For example, an open subset of (0, 1) of Lebesgue measure 1/2 that contains all rational
numbers is not Riemann-integrable. Finally, if A is a measurable event, we write E(·;A)
for E(·1A). An index of notation is available in Appendix 3.B

The rest of the introduction is organised as follows. We start with some branching
random walk notation in Section 3.1.1. We describe in Section 3.1.2 the optimization
problem that gives the speed of the time-inhomogeneous branching random walk. In
Section 3.1.3, we state the main result of this article: the asymptotic of the maximal
displacement in a time-inhomogeneous branching random walk. We also introduce another
quantity of interest for the branching random walk: the consistent maximal displacement
with respect to the optimal path in Section 3.1.4. Finally, in Section 3.1.5, we introduce
some of the random walk estimates that are used to compute moments of the branching
random walk.

3.1.1 Branching random walk notation

We consider (Lt, t ∈ [0, 1]) a family of laws of point processes. Let t ∈ [0, 1], we write
Lt for a point process with law Lt. For θ > 0, we denote by κt(θ) = log E

[∑
`∈Lt e

θ`
]

the log-Laplace transform of θ and for a ∈ R by κ∗t (a) = supθ>0[θa − κt(θ)] its Fenchel-
Legendre transform. We recall the following elementary fact: if κ∗t is differentiable at point
a, then setting θ = ∂aκ

∗
t (a), we have

θa− κt(θ) = κ∗t (a). (3.1.1)

The branching random walk of length n with large scale time-inhomogeneous environ-
ment (Lt, t ∈ [0, 1]) is the marked tree (T(n), V (n)) such that {Lu, u ∈ T(n)} forms a family
of independent point processes, where Lu has law L |u|+1

n

if |u| < n, and is empty otherwise.
In particular, T(n) is the (time-inhomogeneous) Galton-Watson tree of the genealogy of
this process. When the value of n is clear in the context, we often omit the superscript,
to lighten notation.

We consider processes that never get extinct, and have supercritical offspring above a
given straight line with slope p. We introduce this (strong) supercritical assumption

∀t ∈ [0, 1],P(Lt = ∅) = 0 and ∃p ∈ R : inf
t∈[0,1]

P(#{` ∈ Lt : ` ≥ p} ≥ 2) > 0. (3.1.2)

A weaker supercritical assumption is enough for most of the results proved in this chapter,
but this stronger version is technically convenient to obtain concentration inequalities for
the maximal displacement. It is also helpful to guarantee the existence of a solution to
the optimization problem that defines v∗.

We also make some assumptions on the regularity of the function t 7→ Lt. We write

D = {(t, θ) ∈ [0, 1]× [0,+∞) : κt(θ) < +∞} and D∗ = {(t, a) : κ∗t (a) < +∞}, (3.1.3)

and we assume that D and D∗ are non-empty, that D (resp. D∗) is open in [0, 1]× [0,+∞)
(resp. [0, 1]× R) and that

κ ∈ C1,2 (D) and κ∗ ∈ C1,2 (D∗) . (3.1.4)

These regularity assumptions are used to ensure the solution of the optimization problem
defining v∗ is regular. If (3.1.4) is verified, then the maximum of Lt has at least exponential
tails, and P(maxLt = esssupmaxLt) = 0. We do not claim these assumptions to be
optimal, but they are sufficient to define v∗.
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For example, a finite number of i.i.d. random variables with exponential left tails satisfy
the above condition. Conversely, heavy tailed random variables, or if the maximum of the
point process verifies

P(max{` ∈ L} ≥ x) ∼x→+∞ x−1−εe−x

for some ε ∈ (0, 2) do not satisfy (3.1.3).

3.1.2 The optimization problem

We write C for the set of continuous functions, and D for the set of càdlàg 2 functions
on [0, 1] which are continuous at point 1. To a function b ∈ D, we associate the path of
length n defined for k ≤ n by b(n)

k = ∑k
j=1 bj/n. We say that b is the speed profile of the

path b(n), and we introduce

K∗ :
D −→ C
b 7−→

(∫ t
0 κ
∗
s(bs)ds, t ∈ [0, 1]

)
.

By standard computations on branching random walks (see, e.g. [Big10]), for any t ∈ [0, 1],
the mean number of individuals that follow the path b(n) until time tn i.e., that stay at
all time within distance

√
n from the path, verifies

1
n

log E

 ∑
|u|=bntc

1{∣∣∣V (uk)−b(n)
k/n

∣∣∣<√n,k≤nt}
 ≈n→+∞ −K∗(b)t.

Therefore, e−nK∗(b)t is a good approximation of the number of individuals that stay close
to the path b(n) until time tn.

If there exists t0 ∈ (0, 1) such that K∗(b)t0 > 0, by Markov property, with high prob-
ability there is no individual who stayed close to this path until time nt0. Consequently
no individual in BRWls followed path b

(n) until time n. Conversely, if for all t ∈ [0, 1],
K∗(b)t ≤ 0, one would expect to find with positive probability at least one individual at
time n to the right of b(n). Following this heuristic, we introduce

v∗ = sup
{∫ 1

0
bsds, b ∈ D : ∀t ∈ [0, 1],K∗(b)t ≤ 0

}
. (3.1.5)

We expect nv∗ to be the highest terminal point in the set of paths that are followed with
positive probability by individuals in the branching random walk. Therefore we expect
that limn→+∞ Mn

n = v∗ in probability.
We are interested in the path that realises the maximum in (3.1.5). We define the

optimization problem under constraints

∃a ∈ D : v∗ =
∫ 1

0
asds and ∀t ∈ [0, 1],K∗(a)t ≤ 0. (3.1.6)

We say that a is a solution to (3.1.6) if
∫ 1

0 asds = 0 and K∗(a) is non-positive. Describing
such a path gives the second order correction. In effect, as highlighted for regular branch-
ing random walks in [AS10], the second order of the asymptotic of Mn is linked to the
probability for a random walk to follow this optimal path.

2. Right-continuous with left limits at each point.
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Proposition 3.1.1. Under the assumptions (3.1.2) and (3.1.4), there exists a unique
solution a to (3.1.6), and a and θ are Lipschitz.

Moreover, a is a solution to (3.1.6) if and only if, setting θt = ∂aκ
∗
t (at), we have

(P1) θ is positive and non-decreasing;
(P2) K∗(a)1 = 0;
(P3)

∫ 1
0 K

∗(a)sdθ−1
s = 0.

This result is proved in Section 3.4. The path a solution to (3.1.6) is called the optimal
speed profil, and a is called the optimal path. This optimization problem is similar to the
one solved for the GREM by Bovier and Kurkova [BK07].

3.1.3 Asymptotic of the maximal displacement

Under the assumptions (3.1.4) and (3.1.6), let a be the optimal speed profile charac-
terised by Proposition 3.1.1. For t ∈ [0, 1] we denote by

θt = ∂aκ
∗
t (at) and σ2

t = ∂2
θκt(θt). (3.1.7)

To obtain the asymptotic of the maximal displacement, we introduce the following regu-
larity assumptions:

θ is absolutely continuous, with a Riemann-integrable derivative θ̇, (3.1.8)

{t ∈ [0, 1] : K∗t (a) = 0} is Riemann-integrable. (3.1.9)
Finally, we make the following second order integrability assumption:

sup
t∈[0,1]

E


∑
`∈Lt

eθt`t

2
 < +∞. (3.1.10)

Remark 3.1.2. This last integrability condition is not optimal. Using the spinal decompo-
sition as well as estimates on random walks enriched by random variables depending only
on the last step, as in the previous chapters would lead to an integrability condition of
the form E(X(logX)2) < +∞ instead of (3.1.10). However, this assumption considerably
simplifies the proofs.

The main result of this article is the following.

Theorem 3.1.3 (Maximal displacement in the BRWls). We assume (3.1.2), (3.1.4),
(3.1.8), (3.1.9) and (3.1.10) are verified. We write α1 for the largest zero of the Airy
function of first kind 3 and we set

l∗ = α1
21/3

∫ 1

0

(θ̇sσs)2/3

θs
ds ≤ 0. (3.1.11)

For any l > 0 we have,

lim
n→+∞

1
n1/3 log P

(
Mn ≥ nv∗ + (l∗ + l)n1/3

)
= −θ0l,

and for any ε > 0,

lim sup
n→+∞

1
n1/3 log P

(∣∣∣Mn − nv∗ − l∗n1/3
∣∣∣ ≥ εn1/3

)
< 0.

3. Recall that α1 ≈ −2.3381...
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This theorem is proved in Section 3.5. The presence of the largest zero of the Airy
function of first kind is closely related to the asymptotic of the Laplace transform of the
area under a Brownian motion B starting from 1 staying positive,

E1

(
e−
∫ t

0 Bsds;Bs ≥ 0, s ≤ t
)
≈t→+∞ e

α1
21/3 t+o(t).

The fact that the second order of Mn is n1/3 can be explained as follows: when θ is
strictly increasing at time t, the optimal path has to stay very close to the boundary of
the branching random walk at time nt. If θ is strictly increasing on [0, 1], the optimal
path has to stay close to the boundary of the branching random walk. This n1/3 second
order is then similar to the asymptotic of the consistent minimal displacement for the
time-homogeneous branching random walk, obtained in [FZ10, FHS12].

3.1.4 Consistent maximal displacement

The arguments we develop for the proof of Theorem 3.1.3 can be extended to obtain the
asymptotic behaviour of the consistent maximal displacement with respect to the optimal
path in the BRWls, which we define now. For n ∈ N and u ∈ T(n), we denote by

Λ(u) = max
k≤|u|

[
a

(n)
k − V (uk)

]
,

the maximal distance between the optimal path and the position of an ancestor of individ-
ual u. The consistent maximal displacement with respect to the optimal path is defined
by

Λn = min
u∈T(n),|u|=n

Λ(u). (3.1.12)

This quantity correspond to the smallest distance from the optimal path a at which one
can put a killing barrier, bellow which individuals get killed, such that the system survives
until time n. The consistent maximal displacement has been studied for time-homogeneous
branching random walks in [FZ10, FHS12]. In the case of BRWls, the following result
holds.

Theorem 3.1.4 (Consistent maximal displacement). Under the assumptions (3.1.2),
(3.1.4), (3.1.8), (3.1.9) and (3.1.10), there exists λ∗ ≤ −l∗, defined in (3.5.13) such that
for any λ ∈ (0, λ∗),

lim
n→+∞

1
n1/3 log P

(
Λn ≤ (λ∗ − λ)n1/3

)
= −θ0λ,

and for any ε > 0,

lim sup
n→+∞

1
n1/3 log P(|Λn − λ∗n1/3| ≥ εn1/3) < 0.

Remark 3.1.5. If u ∈ T(n) verifies V (u) = Mn, then Λ(u) ≤ nv∗ −Mn. As a consequence,
the inequality Λn ≤ nv∗ − Mn holds almost surely, thus λ∗ ≤ −l∗, as soon as these
quantities are well-defined.

In Theorem 3.1.4, we give the asymptotic of the consistent maximal displacement
with respect to the optimal path. However, this is not the only path one may choose
to consider. For example, one can choose the “natural speed path”, in which the speed
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profile is a function v ∈ C defined by vt = infθ>0
κt(θ)
θ . Note that vt is the speed of a time-

homogeneous branching random walk with reproduction law Lt. This path is interesting,
as it is the unique path such that for all t ∈ [0, 1], K∗(v)t = 0. Consequently, for any
λ > 0, the number of individuals that stay above v(n) − λn1/3 at all time is at most of
order eO(n1/3) with high probability.

In Section 3.3, we provide a new time-inhomogeneous version of the many-to-one
lemma, linking additive moments of the branching random walk with time-inhomogeneous
random walk estimates. To prove Theorems 3.1.3 and 3.1.4, we use random walk estimates
that are proved in Section 3.2.

3.1.5 Airy functions and random walk estimates

We introduce a few basic property on Airy functions, that can be found in [AS64].
The Airy function of first kind Ai can be defined, for x ∈ R, by the improper integral

Ai(x) = 1
π

lim
t→+∞

∫ t

0
cos

(
s3

3 + xs
)
ds, (3.1.13)

and the Airy function of second kind Bi by

Bi(x) = 1
π

lim
t→+∞

∫ t

0
exp

(
− s3

3 + xs
)

+ sin
(
s3

3 + xs
)
ds. (3.1.14)

These two functions form a basis of the space of solutions of

∀x ∈ R, y′′(x)− xy(x) = 0,

and verify limx→+∞Ai(x) = 0 and limx→+∞Bi(x) = +∞. The equation Ai(x) = 0 has an
infinitely countable number of solutions, which are negative with no accumulation points,
that we list in the decreasing order: 0 > α1 > α2 > · · · .

The Laplace transform of the area below a random walk, or a Brownian motion,
conditioned to stay positive admits an asymptotic behaviour linked to the largest zero of
Ai, as proved by Darling [Dar83], Louchard [Lou84] and Takács [Tak92]. This result still
holds in time-inhomogeneous settings. Let (Xn,k, n ≥ 1, k ≤ n) be a triangular array of
independent centred random variables. We assume that

∃σ ∈ C([0, 1], (0,+∞)) : ∀n ∈ N,∀k ≤ n,E(X2
n,k) = σ2

k/n, (3.1.15)

∃µ > 0 : E
[
eµ|Xn,k|

]
< +∞. (3.1.16)

We write S(n)
k = ∑k

j=1Xn,j for the time-inhomogeneous random walk.

Theorem 3.1.6 (Time-inhomogeneous Takács estimate). Under (3.1.15) and (3.1.16),
for any continuous function g such that g(0) > 0 and any absolutely continuous increasing
function h with a Riemann-integrable derivative ḣ, we have

lim
n→+∞

1
n1/3 log E

exp

− n∑
j=1

(hj/n − h(j−1)/n)S(n)
j

 ;Sj ≤ gj/nn1/3, j ≤ n


=
∫ 1

0

(
ḣsgs + a1

21/3 (ḣsσs)2/3
)
ds.
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This result is, in some sense, similar to the Mogul’skĭı estimate [Mog74], which gives
the asymptotic of the probability for a random walk to stay in an interval of length n1/3.
A time-inhomogeneous version of this result, with an additional exponential weight, holds
again. To state this result, we introduce a function Ψ, defined in the following lemma.
Lemma 3.1.7. Let B be a Brownian motion. There exists a unique convex function
Ψ : R→ R such that for all h ∈ R

lim
t→+∞

1
t

log sup
x∈[0,1]

Ex

[
e−h

∫ t
0 Bsds;Bs ∈ [0, 1], s ∈ [0, t]

]
= Ψ(h). (3.1.17)

Remark 3.1.8. We show in Section 3.A.2 that Ψ admits the following alternative definition:

∀h > 0,Ψ(h) = h2/3

21/3 sup
{
λ ≤ 0 : Ai (λ) Bi

(
λ+ (2h)1/3

)
− Bi (λ) Ai

(
λ+ (2h)1/3

)
= 0

}
,

and prove that Ψ verifies Ψ(0) = −π2

2 , Ψ(h) ∼h→+∞ α1
h2/3

21/3 and Ψ(h)−Ψ(−h) = −h for
all h ∈ R.

Proof of Lemma 3.1.7. For h ∈ R and t ≥ 0, we write

Ψt(h) = 1
t

log sup
x∈[0,1]

Ex

[
eh
∫ t

0 Bsds;Bs ∈ [0, 1], s ∈ [0, t]
]
.

As Bs ∈ [0, 1], we have trivially |Ψt(h)| ≤ |h| < +∞. Let 0 ≤ t1 ≤ t2 and x ∈ [0, 1], by
the Markov property

Ex

[
eh
∫ t1+t2

0 Bsds;Bs ∈ [0, 1], s ∈ [0, t1 + t2]
]

= Ex

[
eh
∫ t1

0 Bsds EBt1

[
eh
∫ t2

0 Bsds;Bs ∈ [0, 1], s ∈ [0, t2]
]

;Bs ∈ [0, 1], s ∈ [0, t1]
]

≤et2Ψt2 (h) Ex

[
eh
∫ t1

0 Bsds;Bs ∈ [0, 1], s ∈ [0, t1]
]

≤et1Ψt1 (h)et2Ψt2 (h).

As a consequence, for all h ∈ R, (tΨt(h), t ≥ 0) is a sub-additive function, therefore

lim
t→+∞

Ψt(h) = inf
t≥0

Ψt(h) =: Ψ(h).

In particular, for all h ∈ R, we have |Ψ(h)| ≤ |h| < +∞.
We now prove that Ψ is a convex function on R, thus continuous. By the Hölder

inequality, for all λ ∈ [0, 1], (h1, h2) ∈ R2, x ∈ [0, 1] and t ≥ 0, we have

Ex

[
e(λh1+(1−λ)h2)

∫ t
0 Bsds;Bs ∈ [0, 1], s ∈ [0, t]

]

≤Ex

[(
eλh1

∫ t
0 Bsds1{Bs∈[0,1],s∈[0,t]}

) 1
λ

]λ
Ex

[(
e(1−λ)h2

∫ t
0 Bsds1{Bs∈[0,1],s∈[0,t]}

) 1
1−λ
]1−λ

≤Ex

[
eh1
∫ t

0 Bsds;Bs ∈ [0, 1], s ∈ [0, t]
]λ

Ex

[
eh2
∫ t

0 Bsds;Bs ∈ [0, 1], s ∈ [0, t]
]1−λ

≤etλΨt(h1)et(1−λ)Ψt(h2),

therefore, for all t ≥ 0, Ψt is a convex function. As a consequence

lim sup
t→+∞

Ψt(λh1 + (1− λ)h2) ≤ λ lim sup
t→+∞

Ψt(h1) + (1− λ) lim sup
t→+∞

Ψt(h2),

which proves that Ψ is convex, thus continuous.
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Theorem 3.1.9 (Time-inhomogeneous Mogul’skĭı estimate). Under assumptions (3.1.15)
and (3.1.16), for any pair of continuous functions f < g such that f(0) < 0 < g(0) and
any absolutely continuous function h with a Riemann-integrable derivative ḣ, we have

lim
n→+∞

1
n1/3 log E

exp

 n∑
j=1

(hj/n − h(j−1)/n)S(n)
j

 ; Sj
n1/3 ∈ [fj/n, gj/n], j ≤ n


=
∫ 1

0

(
ḣsgs + σ2

s

(gs − fs)2 Ψ
(

(gs−fs)3

σ2
s

ḣs
))

ds.

The rest of the chapter is organised as follows. Theorems 3.1.6 and 3.1.9 are uni-
fied and proved in Section 3.2. These results are used in Section 3.3 to compute some
branching random walk estimates, useful to bound the probability there exists an indi-
vidual staying in a given path until time n. We study (3.1.6) in Section 3.4, proving in
particular Proposition 3.1.1. Using the particular structure of the optimal path, we prove
Theorems 3.1.3 and 3.1.4 in Section 3.5. In Appendix 3.A we prove a Brownian motion
equivalent of Theorems 3.1.6 and 3.1.9, that were used in Section 3.2.
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time-inhomogeneous branching random walk topic, Ofer Zeitouni for his explanations on
[FZ12b] and Zhan Shi for help in all the stages of the research. I also thank the referees for
their careful proofreading of this chapter and pointing out a mistake in one of the original
proofs. Finally, I wish to thank David Gontier and Cécile Huneau for their help with the
PDE analysis in Appendix 3.A.

3.2 Random walk estimates
We consider an array (Xn,k, n ≥ 1, k ≤ n) of independent centred random variables,

such that there exist σ ∈ C([0, 1], (0,+∞)) and µ ∈ (0,+∞) verifying (3.1.15) and (3.1.16).
We write S(n)

k = S
(n)
0 +∑k

j=1Xn,j for the time-inhomogeneous random walk of length n,
such that Px(S(n)

0 = x) = 1. Let Ex be the expectation corresponding to the probability
Px. Let h be a continuous function on [0, 1] such that

h is absolutely continuous, with Riemann-integrable derivative ḣ. (3.2.1)

The main result of this section is the computation of the asymptotic behaviour of the
Laplace transform of the integral of S(n) with respect to h, as n→ +∞, on the event that
S(n) stays in a given path, that is defined in (3.2.4).

Let f and g be two continuous functions on [0, 1] such that f < g and f(0) < 0 < g(0),
and F and G be two Riemann-integrable subsets of [0, 1] (i.e., such that 1F and 1G are
Riemann-integrable). We assume that

{t ∈ [0, 1] : ḣt < 0} ⊂ F and {t ∈ [0, 1] : ḣt > 0} ⊂ G. (3.2.2)

Interval F (respectively G) represent the set of times at which the barrier f (resp. g) is
put below (resp. above) the path of the time-inhomogeneous random walk. Consequently,
(3.2.2) implies that when there is no barrier below, the Laplace exponent is non-negative,
so that the random walk does not “escape” to −∞ (resp. +∞) with high probability.

For n ≥ 1, we introduce the 1
n

th approximation of F and G, defined by

Fn =
{

1 ≤ k ≤ n :
[
k
n ,

k+1
n

]
∩ F 6= ∅

}
, Gn =

{
0 ≤ k ≤ n :

[
k
n ,

k+1
n

]
∩G 6= ∅

}
. (3.2.3)
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The path followed by the random walk of length n is defined, for 0 ≤ j ≤ n, by

In(j) =


[fj/nn1/3, gj/nn

1/3] if j ∈ Fn ∩Gn,
[fj/n,+∞) if j ∈ Fn ∩Gcn,
(−∞, gj/nn1/3] if j ∈ F cn ∩Gn,
R otherwise.

(3.2.4)

The random walk S(n) follows the path I(n) if ≥ fk/nn
1/3 at any time k ∈ Fn, and

S
(n)
k ≤ gk/nn1/3 at any time k ∈ Gn. Choosing F and G in an appropriate way, we obtain

Theorem 3.1.6 or Theorem 3.1.9.
We introduce the quantity

HF,G
f,g =

∫ 1

0
ḣsgsds+

∫
F∩G

σ2
s

(gs − fs)2 Ψ
(

(gs−fs)3

σ2
s

ḣs
)
ds

+
∫
F c∩G

α1
21/3 (ḣsσs)2/3ds+

∫
G∩F c

(
ḣs(fs − gs) + α1

21/3 (−ḣsσs)2/3
)
ds, (3.2.5)

where Ψ is the function defined by (3.1.17). The first integral in this definition enables to
“center” the path interval in a way that g is replaced by 0. The integral term over F ∩G
comes from the set of times in which the random walk is blocked in an interval of finite
length as in Theorem 3.1.9, and the last two integral terms correspond to paths with only
one boundary, above or below the random walk respectively.

The rest of the section is devoted to the proof of the following result.

Theorem 3.2.1. Under the assumptions (3.1.15) and (3.1.16), for any continuous func-
tion h satisfying (3.2.1) and pair of continuous functions f < g such that f(0) < 0 < g(0),
for any Riemann-integrable F,G ⊂ [0, 1] such that (3.2.2) holds, we have

lim sup
n→+∞

1
n1/3 sup

x∈R
log Ex

[
e
∑n

j=1(h(j+1)/n−hj/n)S(n)
j ;S(n)

j ∈ I(n)
j , j ≤ n

]
= HF,G

f,g (1). (3.2.6)

Moreover, setting Ĩ(n)
j = I

(n)
j ∩ [−n2/3, n2/3], for all f1 < a < b < g1 we have

lim inf
n→+∞

1
n1/3 log E0

e∑n

j=1(h(j+1)/n−hj/n)S(n)
j 1{

S
(n)
n ∈[an1/3,bn1/3]

};S(n)
j ∈ Ĩ(n)

j , j ≤ n


= HF,G
f,g . (3.2.7)

Remark 3.2.2. Observe that when (3.2.2) does not hold, the correct rate of growth of the
expectations in (3.2.6) and (3.2.7) is eO(n), instead of the order eO(n1/3).

To prove this theorem, we decompose the time interval [0, n] into A intervals, each
of length n

A . On these smaller intervals, the functions f , g and ḣ can be approached
by constants. These intervals are divide into n1/3

tA subintervals of length tn2/3. On these
subintervals, the time-inhomogeneous random walk can be approached by a Brownian
motion. The corresponding quantities are explicitly computed using the Feynman-Kac
formula. Letting n, t then A grow to +∞, we conclude the proof of Theorem 3.2.1. We
give in Section 3.2.1 the asymptotic of the area under a Brownian motion constrained
to stay non-negative or in an interval, and use the Sakhanenko exponential inequality in
Section 3.2.2 to quantify the approximation of a random walk by a Brownian motion,
before proving Theorem 3.2.1 in Section 3.2.3.
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3.2.1 Brownian estimates through the Feynman-Kac formula

The asymptotic behaviour of the Laplace transform of the area under a Brownian
motion, constrained to stay non-negative or in an interval, is proved in Appendix 3.A. In
this section, (Bt, t ≥ 0) is a standard Brownian motion, which starts at position x ∈ R at
time 0 under the law Px. We give the main results that are used in the next section to
compute similar quantities for time-inhomogeneous random walks. First, for a Brownian
motion that stay non-negative:

Lemma 3.2.3. For all h > 0, 0 < a < b and 0 < a′ < b′, we have

lim
t→+∞

1
t

log sup
x∈R

Ex

[
e−h

∫ t
0 Bsds;Bs ≥ 0, s ≤ t

]
= lim

t→+∞
1
t

log inf
x∈[a,b]

Ex

[
e−h

∫ t
0 Bsds1{Bt∈[a′,b′]};Bs ≥ 0, s ≤ t

]
= α1

21/3h
2/3. (3.2.8)

A similar estimate holds for a Brownian motion constrained to stay in the interval
[0, 1]:

Lemma 3.2.4. Let B be a Brownian motion. For all h ∈ R, 0 < a < b < 1 and
0 < a′ < b′ < 1, we have

lim
t→+∞

1
t

sup
x∈[0,1]

log Ex

[
e−h

∫ t
0 Bsds;Bs ∈ [0, 1], s ≤ t

]
= lim

t→+∞
1
t

inf
x∈[a,b]

log Ex

[
e−h

∫ t
0 Bsds1{Bt∈[a′,b′]};Bs ∈ [0, 1], s ≤ t

]
= Ψ(h). (3.2.9)

Moreover, for all h > 0, we have

Ψ(h) = h2/3

21/3 sup
{
λ ≤ 0 : Ai (λ) Bi

(
λ+ (2h)1/3

)
− Bi (λ) Ai

(
λ+ (2h)1/3

)
= 0

}
.

(3.2.10)
We also have Ψ(0) = −π2

2 , limh→+∞
Ψ(h)
h2/3 = α1

21/3 and, for h ∈ R, Ψ(h)−Ψ(−h) = h.

3.2.2 From a Brownian motion to a random walk

We use the Sakhanenko exponential inequality to extend the Brownian estimates to
time-inhomogeneous random walks. We obtain here the correct n1/3 order, but non-
optimal upper and lower bounds. These results are used in the next section to prove
Theorem 3.2.1.

Theorem VII (Sakhanenko exponential inequality [Sak84]). Let X = (X1, . . . Xn) be a
sequence of independent centred random variables. We suppose there exists λ > 0 such
that for all j ≤ n

λE
(
|Xj |3eλ|Xj |

)
≤ E

(
X2
j

)
. (3.2.11)

We can construct a sequence X̃ = (X̃1, . . . X̃n) with the same law as X; and Y a sequence
of centred Gaussian random variables with the same covariance as X̃ such that for some
universal constant C0 and all n ≥ 1

E [exp(C0λ∆n)] ≤ 1 + λ

√√√√ n∑
j=1

Var(Xj),

where ∆n = maxj≤n
∣∣∣∑j

k=1 X̃k − Yk
∣∣∣.
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Using this theorem, we couple a time-inhomogeneous random walk with a Brownian
motion such a way that they stay at distance O(logn) with high probability. Technically,
to prove Theorem 3.2.1, we simply need a uniform control on P(∆n ≥ εn1/3). The
polynomial Sakhanenko inequality would be enough, that only impose a uniform bound
on the third moment of the array of random variables instead of (3.1.16). However in
the context of branching random walks, exponential integrability conditions are needed to
guarantee the regularity of the optimal path (see Section 3.1.2).

Let (Xn,k, n ∈ N, k ≤ n) be a triangular array of independent centred random variables,
such that there exists a continuous positive function σ2 verifying

∀n ∈ N, k ≤ n,E
[
X2
n,k

]
= σ2

k/n. (3.2.12)

We set σ = mint∈[0,1] σt > 0 and σ = maxt∈[0,1] σt < +∞. We also assume that

∃λ > 0 : sup
n∈N,k≤n

E
(
eλ|Xn,k|

)
< +∞. (3.2.13)

Note there exists C > 0 such that for any µ < λ/2 and x ≥ 0, x3eµx ≤ Ceλx. Thus
(3.2.13) implies

∃µ > 0 : sup
n≥1,k≤n

µE
(
|Xn,j |3eµ|Xn,j |

)
≤ σ2. (3.2.14)

In the first instance, we bound from above the asymptotic of the Laplace transform of
the area under the time-inhomogeneous random walk S(n)

k = ∑k
j=1Xn,j .

Lemma 3.2.5. We assume (3.2.12) and (3.2.13) are verified. For all h > 0, we have

lim sup
n→+∞

1
n1/3 log sup

x∈R
Ex

[
e
− h
n

∑n−1
j=0 S

(n)
j ;S(n)

j ≥ 0, j ≤ n
]
≤ α1

21/3 (hσ)2/3. (3.2.15)

For all h ∈ R and r > 0, we have

lim sup
n→+∞

1
n1/3 log sup

x∈R
Ex

[
e
− h
n

∑n−1
j=0 S

(n)
j ;S(n)

j ∈ [0, rn1/3]
]
≤ σ2

r2 Ψ
(
r3

σ2h
)
. (3.2.16)

Proof. In this proof, we assume h ≥ 0 (and h > 0 if r = +∞). The result for h < 0 in
(3.2.16) can be deduced by symmetry and the formula Ψ(h)−Ψ(−h) = −h.

For all r ∈ [0,+∞), we write f(r) = σ2

r2 Ψ
(
r3

σ2h
)
and f(+∞) = α1

21/3 (hσ)2/3. For all
x ∈ R, we use the convention +∞ + x = x +∞ = +∞. By Lemmas 3.2.3 and 3.2.4, for
all r ∈ [0,+∞], we have

lim sup
t→+∞

1
t

log sup
x∈R

Ex

[
e
−h
∫ t

0 Bσ2sds;Bσ2s ∈ [0, r], s ≤ t
]
≤ f(r), (3.2.17)

using the scaling property of the Brownian motion.
Let A ∈ N and n ∈ N, we write T =

⌈
An2/3

⌉
and K = bn/T c. For all k ≤ K, we write

mk = kT ; applying the Markov property at time mK ,mK−1, . . .m1, we have

sup
x≥0

Ex

[
e
− h
n

∑n−1
j=0 S

(n)
j ;S(n)

j ∈ [0, rn1/3], j ≤ n
]

≤
K−1∏
k=0

sup
x∈R

Ex

[
e
− h
n

∑n−1
j=0 S

(n,k)
j ;S(n,k)

j ∈ [0, rn1/3], j ≤ T
]
, (3.2.18)
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where we write S(n,k)
j = S

(n)
0 + S

(n)
mk+j − S

(n)
mk for the time-inhomogeneous random walk

starting at time mk and at position x under Px. We now bound, uniformly in k < K, the
quantity

E
(n)
k (r) = sup

x∈R
Ex

[
e
− h
n

∑T−1
j=0 S

(n,k)
j ;S(n,k)

j ∈ [0, rn1/3], j ≤ T
]
.

Let k < K, we write tkj = ∑kT+j
i=kT+1 σ

2
j/n. We apply Theorem VII, by (3.2.12) and

(3.2.13), there exist Brownian motions B(k) such that, denoting by S̃(n,k) a random walk
with same law as S(n,k) and ∆k

n = maxj≤T
∣∣∣∣B(k)

tkj
− S̃(n,k)

j

∣∣∣∣, there exists µ > 0 such that for
all ε > 0, n ≥ 1 and k ≤ K,

P
(
∆k
n ≥ εn1/3

)
≤ e−C0µεn1/3 E

(
eC0µ∆k

n

)
≤ e−C0µεn1/3 (1 + µσA1/2n1/3

)
,

where we used (3.2.13) (thus (3.2.14)) and the exponential Markov inequality. Note in
particular that for all ε > 0, P(∆k

n ≥ εn1/3) converges to 0 as n → +∞, uniformly in
k ≤ K. As a consequence, for all ε > 0

E
(n)
k (r) = sup

x∈R
Ex

[
e
− h
n

∑T−1
j=0 S̃

(n,k)
j ; S̃(n,k)

j ∈ [0, rn1/3], j ≤ T
]

≤ sup
x∈R

Ex

[
e
− h
n

∑T−1
j=0 S̃

(n,k)
j 1{∆k

n≤εn1/3}; S̃
(n,k)
j ∈ [0, rn1/3], j ≤ T

]
+ P

(
∆k
n ≥ εn1/3

)
.

Moreover,

sup
x∈R

Ex

[
e
− h
n

∑T−1
j=0 S̃

(n,k)
j 1{∆k

n≤εn1/3}; S̃
(n,k)
j ∈ [0, rn1/3], j ≤ T

]

≤ sup
x∈R

Ex

[
e
hT
n

∆k
n− hn

∑T−1
j=0 B

tk
j 1{∆k

n≤εn1/3};Btkj ∈ [−∆k
n, rn

1/3 + ∆k
n], j ≤ T

]

≤ sup
x∈R

Ex

[
e
hT
n
εn1/3− h

n

∑T−1
j=0 B

tk
j ;Btkj ∈ [−εn1/3, (r + ε)n1/3], j ≤ T

]
≤ e3hAεẼ

(n)
k (r + 2ε),

setting Ẽ
(n)
k (r) = supx∈R Ex

[
e
− h
n

∑T−1
j=0 B

tk
j ;Btkj ∈ [0, rn1/3], j ≤ T

]
for all r ∈ [0,+∞].

We set τkj = n−2/3tkj ; by the scaling property of the Brownian motion, we have

Ẽ
(n)
k (r) = sup

x∈R
Ex

[
e
− h

n2/3
∑T−1

j=0 B
τk
j ;Bτkj ∈ [0, r], j ≤ T

]
.

We now replace the sum in Ẽ by an integral: we set

ωn,A = sup
|t−s|≤2An−1/3

∣∣∣σ2
t − σ2

s

∣∣∣ and Ωn,A = sup
s,t≤2σ2A+ωn,A

|t−s|≤2Aωn,A+σ2n−1/3

|Bt −Bs| .

For all k < K and j ≤ T , we have

∣∣∣τkj − jσ2
kT/nn

−2/3
∣∣∣ ≤ n−2/3

mk+j∑
i=mk+1

∣∣∣σ2
i/n − σ2

kT/n

∣∣∣ ≤ 2Aωn,A,
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and sups∈[jσ2/n,(j+1)σ2/n]

∣∣∣Bs −Btkj ∣∣∣ ≤ Ωn,A. As a consequence, for all ε > 0, we obtain

Ẽ
(n)
k (r) ≤ sup

x∈R
Ex

[
e
− h

n2/3
∑T−1

j=0 B
τk
j 1{Ωn,A≤ε};Bτkj ∈ [0, r], j ≤ T

]
+ P(Ωn,A ≥ ε)

≤ e3hAε sup
x∈R

Ex

[
e
−h
∫ A

0 Bσ2sds;Bσ2s ∈ [0, (r + 2ε)], s ≤ A
]

+ P(Ωn,A ≥ ε).

We set EA(r) = supx∈R Ex

[
e
−h
∫ A

0 Bσ2sds;Bσ2s ∈ [0, r], s ≤ A
]
. As B is continuous, we

have limn→+∞P(Ωn,A ≥ ε) = 0 uniformly in k < K. Therefore (3.2.18) leads to

lim sup
n→+∞

1
n1/3 log sup

x≥0
Ex

[
e
− h
n

∑n−1
j=0 S

(n)
j ;S(n)

j ∈ [0, rn1/3], j ≤ n
]

≤ lim sup
n→+∞

K

n1/3 max
k≤K

logE(n)
k (r)

≤ 1
A

lim sup
n→+∞

[
3hAε+ max

k≤K
log

(
Ẽ

(n)
k (r + 2ε) + P

(
∆k
n ≥ εn1/3

))]
≤ 6hε+ lim sup

n→+∞
log

[
E
A(r + 4ε) + P(Ωn,A ≥ ε) + max

k≤K
P
(
∆k
n ≥ εn1/3

)]
≤ 6hε+ 1

A
logEA(r + 4ε).

We now use (3.2.17), letting A→ +∞, and thereby letting ε→ 0, this yields

lim sup
n→+∞

1
n1/3 log sup

x≥0
Ex

[
e
− h
n

∑n−1
j=0 S

(n)
j ;S(n)

j ∈ [0, rn1/3], j ≤ n
]
≤ f(r),

which ends the proof.

Next, we derive lower bounds with similar computations. To lighten notations, we set
I

(n)
a,b = [an1/3, bn1/3].

Lemma 3.2.6. We assume (3.2.12) and (3.2.13). For all h > 0, 0 < a < b and 0 < a′ < b′,
we have

lim inf
n→+∞

1
n1/3 log inf

x∈I(n)
a,b

Ex

e− hn∑n−1
j=0 S

(n)
j 1{

Sn∈I(n)
a′,b′

};S(n)
j ≥ 0, j ≤ n

 ≥ α1
21/3 (hσ)2/3,

(3.2.19)
and for all h ∈ R, r > 0, 0 < a < b < r and 0 < a′ < b′ < r, we have

lim inf
n→+∞

1
n1/3 log inf

x∈I(n)
a,b

Ex

e− hn∑n−1
j=0 S

(n)
j 1{

Sn∈I(n)
a′,b′

};S(n)
j ∈ I(n)

0,r , j ≤ n
 ≥ σ2

r2 Ψ
(
r3

σ2h
)
.

(3.2.20)

Proof. We once again assume h ≥ 0; as if h < 0 we can deduce (3.2.20) by symmetry and
the formula Ψ(h) − Ψ(−h) = h. We write, for all r ∈ [0,+∞), f(r) = σ2

r2 Ψ
(
r3

σ2h
)
and

f(+∞) = α1
21/3 (hσ)2/3. By Lemmas 3.2.3 and 3.2.4, for all r ∈ [0,+∞], 0 < a < b < r and

0 < a′ < b′ < r, we have

lim inf
t→+∞

1
t

log inf
x∈[a,b]

Ex

[
e−h

∫ t
0 Bσ2sds1{Bt∈[a′,b′]};Bs ∈ [0, r], s ≤ t

]
≥ f(r). (3.2.21)
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We choose u ∈ (a′, b′) and δ > 0 such that (u− 3δ, u+ 3δ) ⊂ (a′, b′), and we introduce
J

(n)
δ = I(n)(u−δ, u+δ). We decompose again [0, n] into subintervals of length of order n2/3.

Let A ∈ N and n ∈ N, we write T =
⌊
An2/3

⌋
and K = bn/T c. For all k ≤ K, we set again

mk = kT , for all r ∈ [0,+∞], applying the Markov property at times mK ,mK−1, . . .m1
leads to

inf
x∈I(n)

a,b

Ex

e− hn∑n−1
j=0 S

(n)
j 1{

Sn∈I(n)
a′,b′

};S(n)
j ∈ I(n)

0,r , j ≤ n


≥ inf
x∈I(n)

a,b

Ex

e− hn∑T−1
j=0 S

(n)
j 1{

S
(n)
T ∈J

(n)
δ

};S(n)
j ∈ I(n)

0,r , j ≤ T


×
K−1∏
k=1

inf
x∈J(n)

δ

Ex

e− hn∑T−1
j=0 S

(n,k)
j 1{

S
(n,k)
T ∈J(n)

δ

};S(n,k)
j ∈ I(n)

0,r , j ≤ T


× inf
x∈J(n)

δ

Ex

[
e
− h
n

∑n−KT
j=0 S

(n,K)
j ;S(n,k)

j ∈ I(n)
a′,b′ , j ≤ n−KT

]
, (3.2.22)

where S(n,k)
j = S

(n)
0 + S

(n)
mk+j − S

(n)
mk . Let 0 < a < b < r and 0 < a′ < b′ < r, we set ε > 0

such that a > 8ε, r − b > 8ε and b′ − a′ > 8ε. We bound uniformly in k the quantity

E
(n)
k (r) = inf

x∈I(n)
a,b

Ex

e− hn∑T−1
j=0 S

(n,k)
j 1{

S
(n,k)
T ∈I(n)

a′,b′

};S(n,k)
j ∈ I(n)

0,r , j ≤ T
 .

To do so, we set once again, for k < K, tkj = ∑kT+j
i=kT+1 σ

2
j/n. By Theorem VII, we

introduce a Brownian motion B such that, denoting by S̃(n,k) a random walk with the
same law as S(n,k) and setting ∆k

n = maxj≤T
∣∣∣Btkj − S̃(n,k)

j

∣∣∣, for all ε > 0, by (3.2.14) and
the exponential Markov inequality we get

sup
k≤K

P
(
∆k
n ≥ εn1/3

)
≤ e−C0µεn1/3 (1 + µσA1/2n1/3

)
,

which converges to 0, uniformly in k, as n → +∞. As a consequence, for all ε > 0 and
k < K,

E
(n)
k (r)

= inf
x∈I(n)

a,b

Ex

e− hn∑T−1
j=0 S̃

(n,k)
j 1{

S̃
(n,k)
T ∈I(n)

a′,b′

}; S̃(n,k)
j ∈ I(n)

0,r , j ≤ T


≥ inf
x∈I(n)

a,b

Ex

e− hn∑T−1
j=0 S̃

(n,k)
j 1{

S̃
(n,k)
T ∈I(n)

a′,b′

}1{∆k
n≤εn1/3}; S̃

(n,k)
j ∈ I(n)

0,r , j ≤ T


≥ inf
x∈I(n)

a−ε,b+ε

e−3hAε Ex

e− hn∑T−1
j=0 B

tk
j 1{

B
tk
T
∈I(n)
a′+ε,b′−ε

}1{∆k
n≤εn1/3};Btkj ∈ I

(n)
ε,r−ε, j ≤ T


≥e−3hAε

(
Ẽ

(n)
k (r − 2ε)−P(∆k

n ≥ εn1/3)
)
,

where we set

Ẽ
(n)
k (r) = inf

x∈[a−2ε,b+2ε]
Ex

e− h

n2/3
∑T−1

j=0 B
τk
j 1{

B
τk
T
∈[a′+2ε,b′−2ε]

};Bs ∈ [0, r], s ≤ τkT

 ,
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and τkj = tkjn
−2/3. We also set

ωn,A = sup
|t−s|≤2An−1/3

∣∣∣σ2
t − σ2

s

∣∣∣ and Ωn,A = sup
s,t≤2σ2A+ωn,A

|t−s|≤2Aωn,A+σ2n−1/3

|Bt −Bs| ,

so that for all k < K and j ≤ T , we have∣∣∣τkj − jσ2
kT/nn

−2/3
∣∣∣ ≤ n−2/3

mk+j∑
i=mk+1

∣∣∣σ2
i/n − σ2

kT/n

∣∣∣ ≤ 2Aωn,A,

and sups∈[σ2 j
n
,σ2 j+1

n
]

∣∣∣Bs −Btkj ∣∣∣ ≤ Ωn,A. As a consequence,

Ẽ
(n)
k (r)e3hAε ≥

inf
x∈[a−4ε,b+4ε]

Ex

e−h∫ A0 Bσ2sds1{
Bσ2A∈[a′+4ε,b′−4ε]

};Bσ2s ∈ [0, r − 2ε], s ≤ A


−P(Ωn,A ≥ ε).

This last estimate gives a lower bound for E(n)
k (r) which is uniform in k ≤ K. As a

consequence, (3.2.22) yields

lim inf
n→+∞

1
n1/3 log inf

x∈I(n)
a,b

Ex

e− hn∑n−1
j=0 S

(n)
j 1{

Sn∈I(n)
a′,b′

};S(n)
j ∈ I(n)

0,r , j ≤ n
 ≥

−6hε+ 1
A

log inf
x∈[a−4ε,b+4ε]

Ex

e−h∫ A0 Bσ2sds1{
Bσ2A∈[a′+4ε,b′−4ε]

};Bσ2s ∈ [0, r − 4ε], s ≤ A
 .

Letting A→ +∞, then ε→ 0 leads to

lim inf
n→+∞

1
n1/3 log inf

x∈I(n)
a,b

Ex

e− hn∑n−1
j=0 S

(n)
j 1{

Sn∈I(n)
a′,b′

};S(n)
j ∈ I(n)

0,r , j ≤ n
 ≥ f(r),

which ends the proof.

3.2.3 Proof of Theorem 3.2.1

We prove Theorem 3.2.1 by decomposing [0, n] into A intervals of length n/A, and
apply Lemmas 3.2.5 and 3.2.6.

Proof of Theorem 3.2.1. Let n ∈ N and A ∈ N. For 0 ≤ a ≤ A, we write ma = bna/Ac,
and da = ma+1 −ma.

Upper bound in (3.2.6). We apply the Markov property at times mA−1,mA−2, . . .m1,
to see that

sup
x∈I(n)

0

Ex

[
e
∑n−1

j=0 (h(j+1)/n−hj/n)S(n)
j ;S(n)

j ∈ I(n)
j , j ≤ n

]

≤
A−1∏
a=0

sup
x∈I(n)

ma

Ex

[
e
∑da−1

j=0 (h(ma+j+1)/n−h(ma+j)/n)S(n,a)
j ;S(n,a)

j ∈ I(n)
ma+j , j ≤ da

]
︸ ︷︷ ︸

R
(n)
a,A

,
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where S(n,a)
j = S

(n)
0 + S

(n)
ma+j − S

(n)
ma is the time-inhomogeneous random walk starting at

time ma and position x. Letting n→ +∞, this yields

lim sup
n→+∞

sup
x∈R

1
n1/3 log Ex

[
e
∑n

j=1(h(j+1)/n−hj/n)S(n)
j ;S(n)

j ∈ I(n)
j , j ≤ n

]

≤
A−1∑
a=0

lim sup
n→+∞

1
n1/3 logR(n)

a,A. (3.2.23)

To bound R(n)
a,A, we replace functions f, g and ḣ by constants. We set, for all A ∈ N

and a ≤ A,

ha,A = sup
t∈[ a−1

A
,a+2
A

]
ḣt, ha,A = inf

t∈[ a−1
A
,a+2
A

]
ḣt,

ga,A = sup
t∈[ a−1

A
,a+2
A

]
gt, fa,A = inf

t∈[ a−1
A
,a+2
A

]
ft and σa,A = inf

t∈[ a−1
A
,a+2
A

]
σs.

Observe that for all n ∈ N and k ≤ n, by (3.2.2), if h(k+1)/n > hk/n, then k ∈ Gn, and if
h(k+1)/n < hk/n, then k ∈ Fn. Consequently, for all x ∈ I(n)

k ,

(h(k+1)/n − hk/n)x ≤ (h(k+1)/n − hk/n)+gk/nn
1/3 − (hk/n − h(k+1)/n)+fk/nn

1/3. (3.2.24)

We now bound from above R(n)
a,A in four different ways, depending on the presence of the

boundaries f and g.
First, for all a < A, by (3.2.24), we have

R
(n)
a,A ≤ exp

ma+1−1∑
j=ma

(h(j+1)/n − hj/n)+gj/nn
1/3 − (hj/n − h(j+1)/n)+fk/nn

1/3

 ,
and thus,

lim sup
n→+∞

1
n1/3 logR(n)

a,A ≤
∫ (a+1)/A

a/A
(ḣs)+gs − (ḣs)−fsds =

∫ (a+1)/A

a/A
ḣsgs − (ḣs)−(fs − gs)ds.

(3.2.25)
This crude estimate can be improved as follows. If ha,A > 0, then [ aA ,

a+1
A ] ⊂ G and the

upper bound gk/nn1/3 of the path is present at all times k ∈ [ma,ma+1]. As a consequence,
(3.2.24) becomes

∀k ∈ [ma,ma+1), sup
x∈I(n)

k

(h(k+1)/n−hk/n)x ≤ (h(k+1)/n−hk/n)ga,An1/3+ 1
n
ha,A(x−ga,An1/3).

(3.2.26)
We have

R
(n)
a,A = sup

x∈I(n)
ma

Ex

[
e
∑da−1

j=0 (h(ma+j+1)/n−h(ma+j)/n)S(n),a
j ;S(n),a

j ∈ I(n)
ma+j , j ≤ da

]

≤ e
∑ma+1−1

j=ma (h(j+1)/n−hj/n)ga,An1/3

× sup
x∈I(n)

ma

Ex

[
e

1
n

∑da−1
j=0 ha,A(S(n),a

j −ga,An1/3);S(n),a
j ∈ I(n)

ma+j , j ≤ da
]

≤ e(hma+1/n−hma/n)ga,An1/3
sup
x≤0

Ex

[
e

1
n

∑da−1
j=0 ha,AS

(n),a
j ;S(n),a

ma+j ≤ 0, j ≤ da
]
.
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Letting n→ +∞, we have

lim sup
n→+∞

1
n1/3 logR(n)

a,A ≤ (h(a+1)/A − ha/A)ga,A

+ lim sup
n→+∞

1
n1/3 log sup

x≤0
Ex

[
e
ha,A
n

∑da−1
j=0 S

(n),a
j ;S(n),a

j ≤ 0, j ≤ da
]
.

As da ∼n→+∞ n/A, by (3.2.15),

lim sup
n→+∞

1
n1/3 log sup

x≤0
Ex

[
e

ha,A
A(da+1)

∑da−1
j=0 S

(n),a
j ;S(n),a

j ≤ 0, j ≤ da
]

≤ 1
A1/3

α1
21/3

(
1
Aha,Aσa,A

)2/3
= α1

21/3A

(
ha,Aσa,A

)2/3
.

We conclude that

lim sup
n→+∞

1
n1/3 logR(n)

a,A ≤ (h(a+1)/A − ha/A)ga,A + α1
21/3A

(
ha,Aσa,A

)2/3
. (3.2.27)

By symmetry, if ha,A < 0, then [ aA ,
a+1
A ] ⊂ F , h(k+1)/n < hk/n and the lower bound of the

path is present at all time, which leads to

lim sup
n→+∞

1
n1/3 logR(n)

a,A ≤ (h(a+1)/A − ha/A)fa,A + α1
21/3A

(
−ha,Aσa,A

)2/3
. (3.2.28)

Fourth and the smallest upper bound; if [ aA ,
a+1
A ] ⊂ F ∩ G, then both bounds of the

path are present at any time in [ma,ma+1], and, by (3.2.26), setting ra,A = ga,A − fa,A,

R
(n)
a,A ≤ e

(hma+1/n−hma/n)ga,An1/3

× sup
x∈[ra,An1/3,0]

Ex

[
e

1
n

∑da−1
j=0 ha,AS

(n),a
j ;S(n),a

j ∈ [−ra,An1/3, 0], j ≤ da
]
.

We conclude that

lim sup
n→+∞

1
n1/3 logR(n)

a,A ≤ (h(a+1)/A − ha/A)ga,A

+ lim sup
n→+∞

1
n1/3 log sup

x∈[−ra,An1/3,0]
Ex

[
e
ha,A
n

∑da−1
j=0 S

(n),a
j ;S(n),a

j ∈ [−ra,An1/3, 0], j ≤ da
]
.

Applying then (3.2.16), this yields

lim sup
n→+∞

1
n1/3 log sup

x∈[−ra,An1/3,0]
Ex

[
e
ha,A
n

∑da−1
j=0 S

(n),a
j ;S(n),a

j ∈ [−ra,An1/3, 0], j ≤ da
]

≤
σ2
a,A

Ar2
a,A

Ψ
(
r3
a,A

σ2
a,A

ha,A

)
,

which yields

lim sup
n→+∞

1
n1/3 logR(n)

a,A ≤ (h(a+1)/A − ha/A)ga,A +
σ2
a,A

A(ga,A − fa,A)2 Ψ
(

(ga,A − fa,A)3

σ2
a,A

ha,A

)
.

(3.2.29)
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We now let A grow to +∞ in (3.2.23). By Riemann-integrability of F,G and ḣ, we have

lim sup
A→+∞

∑
0≤a<A

[ a
A
,a+1
A

]⊂F∩G

[
(h(a+1)/A − ha/A)ga,A +

σ2
a,A

A(ga,A − fa,A)2 Ψ
(

(ga,A − fa,A)3

σ2
a,A

ha,A

)]

≤
∫
F∩G

ḣsgs + σ2
s

(gs − fs)2 Ψ
(

(gs − fs)3

σ2
s

ḣs

)
ds. (3.2.30)

Similarly, using the fact that ḣ is non-negative on F c, and non-positive on Gc, (3.2.27)
and (3.2.28) lead respectively to

lim sup
A→+∞

∑
0≤a<A

ha,A>0,[ a
A
,a+1
A

] 6⊂F∩G

[
(h(a+1)/A − ha/A)ga,A + α1

A21/3

(
ha,Aσa,A

)2/3
]

≤
∫
F c∩G

ḣsgs + α1
21/3

(
ḣsσs

)2/3
ds, (3.2.31)

and to

lim sup
A→+∞

∑
0≤a<A

ha,A<0,[ a
A
,a+1
A

] 6⊂F∩G

[
(h(a+1)/A − ha/A)fa,A + α1

A21/3

(
−ha,Aσa,A

)2/3
]

≤
∫
F c∩G

ḣsgs + ḣs(fs − gs) + α1
21/3

(
−ḣsσs

)2/3
ds. (3.2.32)

Finally, by (3.2.25), (3.2.30), (3.2.31) and (3.2.32), letting A→ +∞, (3.2.23) yields

lim sup
n→+∞

sup
x∈R

1
n1/3 log Ex

[
e
∑n

j=1(h(j+1)/n−hj/n)S(n)
j ;S(n)

j ∈ I(n)
j , j ≤ n

]
≤ HF,G

f,g .

Lower bound in (3.2.7). We now take care of the lower bound. We start by fixing
H > 0, and we write

I
(n,H)
j = I

(n)
j ∩ [−Hn1/3, Hn1/3],

letting H grow to +∞ at the end of the proof. We only need (3.2.20) here.
We choose k ∈ C([0, 1]) a continuous function such that k0 = 0 and k1 ∈ (a, b) and

ε > 0 such that for all t ∈ [0, 1], kt ∈ [ft + 4ε, gt − 4ε] and k1 ∈ [a+ 4ε, b− 4ε]. We set

J (n)
a =

[
(ka/A − ε)n1/3, (ka/A + ε)n1/3

]
.

We apply the Markov property at timesmA−1, . . .m1, only considering random walk paths
that are in interval J (n)

a at any time ma. For all n ≥ 1 large enough, we have

E

e∑n−1
j=0 (h(j+1)/n−hj/n)S(n)

j 1{
S

(n)
n

n1/3∈[a′,b′]
};S(n)

j ∈ Ĩ(n)
j , j ≤ n


≥
A−1∏
a=0

inf
x∈I(n)

ma

Ex

e∑da−1
j=0 (h(ma+j+1)/n−h(ma+j)/n)S(n,a)

j 1{
S

(n,a)
da

∈J(n)
a+1

};S(n,a)
j ∈ I(n,H)

ma+j , j ≤ da


=:

A−1∏
a=0

R̃
(n)
a,A,
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with the same random walk notation as in the previous paragraph. Therefore,

lim inf
n→+∞

1
n1/3 log E

[
e
∑n

j=1(h(j+1)/n−hj/n)S(n)
j ;S(n)

j ∈ I(n)
j , j ≤ n

]
≥

A−1∑
a=0

lim inf
n→+∞

1
n1/3 log R̃(n)

a,A.

(3.2.33)
We now bound from below R̃

(n)
a,A, replacing functions f, g and ḣ by constants. We write

here
fa,A = sup

t∈[ a−1
A
,a+2
A

]
ft, ga,A = inf

t∈[ a−1
A
,a+2
A

]
gt and σa,A = inf

t∈[ a−1
A
,a+2
A

]
σt,

keeping notations ha,A and ha,A as above. We assume A > 0 is chosen large enough such
that

sup
|t−s|≤ 2

A

|ft − fs|+ |gt − gs|+ |kt − ks| ≤ ε.

We first observe that [fa,An1/3, ga,An
1/3] ⊂ I

(n,H)
j for all j ∈ [ma,ma+1], therefore,

writing ra,A = ga,A − fa,A,

R̃
(n)
a,A ≥ e

(hma+1/n−hma/n)ga,An1/3

× inf
x∈J(n)

a

Ex

eha,An ∑da−1
j=0 S

(n,a)
j 1{

S
(n,a)
da

∈J(n)
a+1

};S(n,a)
j ∈ [−ra,An1/3, 0], j ≤ da

 .
Thus, by (3.2.20), we have

lim inf
n→+∞

1
n1/3 log R̃(n)

a,A ≥ (h(a+1)/A − ha/A)ga,A +
σ2
a,A

A(ga,A − fa,A)2 Ψ
(

(ga,A−fa,A)3

σ2
a,A

ha,A

)
.

(3.2.34)
This lower bound can be improved, if [ aA ,

a+1
A ] ⊂ F c, in which case for all j ∈ [ma,ma+1]

we have [−Hn1/3, ga,An
1/3] ⊂ I(n,H)

j . Thus

R̃
(n)
a,A ≥ e

(hma+1/n−hma/n)ga,An1/3

× inf
x∈J(n)

a

Ex

eha,An ∑da−1
j=0 S

(n,a)
j 1{

S
(n,a)
da

∈J(n)
a+1

};S(n,a)
j ∈ [−(H − ga,A)n1/3, 0], j ≤ da

 ,
which leads to

lim inf
n→+∞

1
n1/3 log R̃(n)

a,A ≥ (h(a+1)/A−ha/A)ga,A+
σ2
a,A

A(ga,A +H)2 Ψ
(

(ga,A+H)3

σ2
a,A

ha,A

)
. (3.2.35)

By symmetry, if [ aA ,
a+1
A ] ⊂ Gc, we have

lim inf
n→+∞

1
n1/3 log R̃(n)

a,A ≥ (h(a+1)/A − ha/A)fa,A +
σ2
a,A

A(H − fa,A)2 Ψ
(
− (H−fa,A)3

σ2
a,A

ha,A

)
.

(3.2.36)
As a consequence, letting A → +∞, by Riemann-integrability of F , G and ḣ, (3.2.34)
leads to

lim inf
A→+∞

∑
0≤a≤A

[ a
A
,a+1
A

]∩F∩G6=∅

lim inf
n→+∞

1
n1/3 log R̃(n)

a,A ≥
∫
F∩G

ḣtgt + σ2
t

(gt − ft)2 Ψ
(

(gt−ft)3

σ2
t

ḣt
)
dt.

(3.2.37)
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Similarly, (3.2.35) gives

lim inf
A→+∞

∑
0≤a≤A

[ a
A
,a+1
A

]⊂F c

lim inf
n→+∞

1
n1/3 log R̃(n)

a,A ≥
∫
F c
ḣtgt + σ2

t

(gt +H)2 Ψ
(

(gt+H)3

σ2
t

ḣt
)
dt, (3.2.38)

and (3.2.36) gives

lim inf
A→+∞

∑
0≤a≤A

[ a
A
,a+1
A

]⊂F∩Gc

lim inf
n→+∞

1
n1/3 log R̃(n)

a,A

≥
∫
F∩Gc

ḣtgt + ḣt(ft − gt) + σ2
t

(H − ft)2 Ψ
(
− (H−ft)3

σ2
t

ḣt
)
dt. (3.2.39)

Finally, we recall that
lim

H→+∞
1

H2/3 Ψ(H) = α1
21/3 .

As ḣ is non-negative on Gc and null on F c ∩Gc, by dominated convergence, we have

lim
H→+∞

∫
F c

σ2
s

(gs +H)2 Ψ
(

(gs+H)3

σ2
s

ḣs
)
ds =

∫
F c

α1
21/3 (ḣsσs)2/3ds,

and as ḣ is non-positive on F c, we have similarly,

lim
H→+∞

∫
F∩Gc

σ2
s

(H − fs)2 Ψ
(
− (H−fs)3

σ2
s

ḣs
)
ds =

∫
F∩Gc

α1
21/3 (−ḣsσs)2/3ds.

Consequently, letting n, then A, then H grow to +∞ –observe that ε, given it is small
enough, does not have any impact on the asymptotic– we have

lim inf
n→+∞

1
n1/3 log E0

e∑n−1
j=0 (h(j+1)/n−hj/n)S(n)

j 1{
S

(n)
n ∈[an1/3,bn1/3]

};S(n)
j ∈ Ĩ(n)

j , j ≤ n


≥ HF,G
f,g .

Conclusion. Using the fact that

sup
x∈R

Ex

[
e
∑n−1

j=0 (h(j+1)/n−hj/n)S(n)
j ;S(n)

j ∈ I(n)
j , j ≤ n

]

≥ E0

e∑n

j=1(h(j+1)/n−hj/n)S(n)
j 1{

S
(n)
n ∈[an1/3,bn1/3]

};S(n)
j ∈ Ĩ(n)

j , j ≤ n
 ,

the two inequalities we obtained above allow to conclude the proof.

3.3 The many-to-one lemma and branching random walk
estimates

In this section, we introduce a time-inhomogeneous version of the many-to-one lemma,
that links some additive moments of the branching random walk with the random walk
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estimates obtained in the previous section. Using the well-established method in the
branching random walk theory (see e.g. the previous chapters, [Aïd13, AJ11, AS10, FZ12a,
FZ12b, GHS11, HR11, HS09, MZ14] and a lot of others) that consists in proving the
existence of a boundary via a first moment method, then bounding the tail distribution of
maximal displacement below this boundary by estimation of first and second moments of
the number of individuals below this boundary, and the Cauchy-Schwarz inequality. The
boundary is determined by a differential equation, which is solved in Section 5.

3.3.1 Branching random walk notations and the many-to-one lemma

The many-to-one lemma can be traced back at least to the early works of Peyrière
[Pey74] and Kahane and Peyrière [KP76]. This result has been used under many forms
in the past years, extended to branching Markov processes in [BK04]. This is a very
powerful tool that has been used to obtain different branching random walk estimates, see
e.g. [Aïd13, AJ11, AS10, FZ12a, FZ12b, HR11]. We introduce some additional branching
random walk notation in a first time.

Let (T, V ) be a BRWls of length n with environment (Lt, t ∈ [0, 1]). We recall that T
is a tree of height n and that for any u ∈ T, |u| is the generation to which u belongs, uk
the ancestor of u at generation k and V (u) the position of u. We introduce, for k ≤ n,
Fk = σ ((u, V (u)), |u| ≤ k) the σ-field generated by the branching random walk up to
generation k.

Let y ∈ R and k ≤ n. We denote by Pk,y the law of the time-inhomogeneous branching
random walk (Tk, V k) where Tk is a tree of length n − k, such that the family of point
processes {Lu′ , u′ ∈ Tk, |u′| ≤ n − k − 1} is independent, with Lu

′ of law L(|u′|+k+1)/n.
With this definition, we observe that conditionally on Fk, for every individual u ∈ T alive
at generation k, the subtree Tu of T rooted at u, with marks V|Tu is a time-inhomogeneous
branching random walk with law P|u|,V (u), independent of the rest of the branching random
walk (T\Tu, V|T\Tu).

We introduce ϕ a continuous positive function on [0, 1] such that

∀t ∈ [0, 1], κt(ϕt) < +∞, (3.3.1)

and set, for t ∈ [0, 1]
bt = ∂θκt(ϕt) and σ2

t = ∂2
θκt(ϕt). (3.3.2)

Let (Xn,k, n ≥ 1, k ≤ n) be a triangular array of independent random variables such that
for all n ≥ 1, k ≤ n and x ∈ R, we have

P(Xn,k ≤ x) = E

 ∑
`∈Lk/n

1{`≤x}eϕk/n`−κk/n(ϕk/n)

 ,
where Lk/n is a point process of law Lk/n. By (3.1.4) and (3.3.2), we have

E(Xn,k) = bk/n and E
(
(Xn,k − bk/n)2

)
= σ2

k/n.

For k ≤ n, we denote by Sk = ∑k
j=1Xn,j the time-inhomogeneous random walk associated

to ϕ, by b(n)
k = ∑k

j=1 bj/n, by S̃k = Sk − b(n)
k the centred version of this random walk and

by

Ek :=
k∑
j=1

ϕj/nbj/n − κj/n(ϕj/n) =
k∑
j=1

κ∗j/n(bj/n), (3.3.3)
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by (3.1.1). Under Pk,y, (Sj , j ≤ n − k) and
(
y +∑k+j+1

i=k+1 Xn,i, j ≤ n− k
)
have the same

law.

Lemma 3.3.1 (Many-to-one lemma). Let n ≥ 1 and k ≤ n. Under assumption (3.3.1),
for any measurable non-negative function f , we have

E

∑
|u|=k

f(V (uj), j ≤ k)

 = e−Ek E
[
e
−ϕk/nS̃k+

∑k−1
j=0 (ϕ(j+1)/n−ϕj/n)S̃jf(Sj , j ≤ k)

]
.

Remark 3.3.2. As an immediate corollary of the many-to-one lemma, we have, for p ≤ n,
y ∈ R and k ≤ n− p,

Ep,y

∑
|u|=k

f(V (uj), j ≤ k)


= eEp−Ek+peϕp/ny Ep,y

[
e
−ϕ(k+p)/nS̃k+

∑p+k−1
j=p (ϕ(j+1)/n−ϕj/n)S̃j−pf(Sj , j ≤ k)

]
.

Proof. Let n ≥ 1, k ≤ n and f non-negative and measurable, we prove by induction on
k ≤ n that

E

∑
|u|=k

f(V (uj), j ≤ k)

 = E
[
e
−
∑k

j=1 ϕj/nXn,j−κj/n(ϕj/n)
f(Sj , j ≤ k)

]
.

We first observe that if k = 1, by definition of Xn,1, we have

E

∑
|u|=1

f(V (u))

 = E
[
e−ϕ1/nXn,1+κ1/n(ϕ1/n)f(Xn,1)

]
.

Let k ≥ 2. By conditioning on Fk−1, we have

E

∑
|u|=k

f(V (uj), j ≤ k)

 = E

 ∑
|u|=k−1

∑
u′∈Ω(u)

f(V (u′j), j ≤ k)


= E

 ∑
|u|=k−1

g(V (uj), j ≤ k − 1)

 ,
where, for (xj , j ≤ k − 1) ∈ Rk−1,

g(xj , j ≤ k − 1) = E

 ∑
`∈Lk/n

f(x1, . . . xk−1, xk−1 + `)


= E

[
e−ϕk/nXn,k+κk/n(ϕk/n)f(x1, . . . xk−1, xk−1 +Xn,k)

]
.

Using the induction hypothesis, we conclude that

E

∑
|u|=k

f(V (uj), j ≤ k)

 = E
[
e
−
∑k

j=1 ϕj/nXn,j−κj/n(ϕj/n)
f(Sj , j ≤ k)

]

= e−Ek E
[
e
−
∑k

j=1 ϕj/n(Xn,j−bj/n)
f(Sj , j ≤ k)

]
.
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Finally, we modify the exponential weight by the Abel transform,
k∑
j=1

ϕj/n(Xn,j − bj) =
k∑
j=1

ϕj/n(S̃j − S̃j−1) =
k∑
j=1

ϕj/nS̃j −
k∑
j=1

ϕj/nS̃j−1

=
k∑
j=1

ϕj/nS̃j −
k−1∑
j=1

ϕ(j+1)/nS̃j = ϕk/nS̃k −
k−1∑
j=1

(ϕ(j+1)/n − ϕj/n)S̃j ,

which ends the proof.

3.3.2 Number of individuals staying along a path

In this section, we bound some quantities related to the number of individuals that
stay along a path. We start with an upper bound of the expected number of individu-
als that stay in the path until some time k ≤ n, and then exit the path by the upper
boundary. Subsequently, we bound the probability that there exists an individual that
stays in the path until time n. We then compute the first two moments of the number
of such individuals, and apply the Cauchy-Schwarz inequality to conclude. We assume in
this section that

ϕ is absolutely continuous, with a Riemann-integrable derivative ϕ̇, (3.3.4)

as we plan to apply Theorem 3.2.1 with function h = ϕ. Under this assumption, ϕ is
Lipschitz, thus so is b. As a consequence, we have

sup
n∈N
k≤n

sup
t∈[ k−1

n
, k+2
n

]
|Ek − nK∗(b)t| < +∞ and sup

n∈N
k≤n

sup
t∈[ k−1

n
, k+2
n

]

∣∣∣∣b(n)
k − n

∫ t

0
bsds

∣∣∣∣ < +∞.

(3.3.5)
Let f < g be two continuous functions such that f(0) < 0 < g(0), and F and G two

Riemann-integrable subsets of [0, 1] such that

{t ∈ [0, 1] : ϕ̇t < 0} ⊂ F and {t ∈ [0, 1] : ϕ̇t > 0} ⊂ G. (3.3.6)

We write, for t ∈ [0, 1]

HF,G
t (f, g, ϕ) =

∫ t

0
ϕ̇sgsds+

∫ t

0
1F∩G(s) σ2

s

(gs − fs)2 Ψ
(

(gs−fs)3

σ2
s

ϕ̇s
)
ds

+
∫ t

0
1F c∩G(s) a1

21/3 (ϕ̇sσs)2/3 + 1F∩Gc
(
ϕ̇s(fs − gs) + a1

21/3 (−ϕ̇sσs)2/3
)
ds. (3.3.7)

We keep notation of Section 3.2: Fn and Gn are the subsets of {0, . . . n − 1} defined in
(3.2.3), and the path I(n)

k as defined in (3.2.4). We are interested in the individuals u alive
at generation n such that for all k ≤ n, V (uk)− b(n)

k ∈ I(n)
k .

A boundary estimate

We compute the number of individuals that stayed in b(n) + I(n) until some time k− 1
and then crossed the upper boundary b

(n)
k + gk/nn

1/3 of the path at time k ∈ Gn. We
denote by

AF,Gn (f, g) =
{
u ∈ T, |u| ∈ Gn : V (u)− b(n)

|u| > g|u|/nn
1/3, V (uj)− b(n)

j ∈ I(n)
j , j < |u|

}
,

the set of such individuals, and by AF,Gn (f, g) = #AF,Gn (f, g).
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Lemma 3.3.3. Under the assumptions (3.1.4), (3.3.1), (3.3.4) and (3.3.6), if we have
G ⊂ {t ∈ [0, 1] : K∗(b)t = 0} then,

lim sup
n→+∞

1
n1/3 log E(AF,Gn (f, g)) ≤ sup

t∈[0,1]

[
HF,G
t (f, g, ϕ)− ϕtgt

]
.

Remark 3.3.4. Observe that in order to use this lemma, we need to assume that

{t ∈ [0, 1] : ϕ̇t > 0} ⊂ G ⊂ {t ∈ [0, 1] : K∗(b)t = 0},

we cannot consider paths of speed profile b such that the associated parameter ϕ increases
at a time when there is an exponentially large number of individuals following the path.
For such paths, the mean of An grows exponentially fast.

Proof. By (3.3.1) and Lemma 3.3.1, we have

E(AF,Gn (f, g))

=
∑
k∈Gn

E

 ∑
|u|=k

1{
V (u)−b(n)

k >gk/nn
1/3
}1{

V (uj)−b
(n)
j ∈I

(n)
j ,j<k

}
=
∑
k∈Gn

e−Ek E

e−ϕk/nS̃k+
∑k−1

j=0 (ϕ(j+1)/n−ϕj/n)S̃j1{
S̃k>gk/nn

1/3
}1{

S̃j∈I(n)
j ,j<k

} .
For all k ∈ Gn, there exists t ∈ [k/n, (k + 1)/n] such that t ∈ G, thus K∗(b)t = 0. By
(3.3.5), this implies that supn∈N,k∈Gn Ek < +∞, hence

E(AF,Gn (f, g))

≤ C
∑
k∈Gn

e−ϕk/ngk/nn
1/3 E

e∑k−1
j=0 (ϕ(j+1)/n−ϕj/n)S̃j1{

S̃k>gk/nn
1/3
}1{

S̃j∈I(n)
j ,j<k

} .
As (3.3.6) is verified, similarly to (3.2.24), for all k ≤ n and x ∈ I(n)

k , we have

(ϕ(k+1)/n − ϕk/n)x ≤ (ϕ(k+1)/n − ϕk/n)+gk/nn
1/3 − (ϕk/n − ϕ(k+1)/n)+fk/nn

1/3. (3.3.8)

In particular, (ϕ(k+1)/n−ϕk/n)x ≤
∣∣∣ϕ(k+1)/n − ϕk/n

∣∣∣ (‖f‖∞ + ‖g‖∞). Let A > 0 be a large
integer. For a < A, we set ma = ban/Ac and

g
a,A

= inf
{
gt, t ∈

[
a−1
A , a+2

A

]}
, ϕ

a,A
= inf

{
ϕt, t ∈

[
a−1
A , a+2

A

]}
and da,A = (‖f‖∞ + ‖g‖∞)

∫ (a+2)/A

(a−1)/A
|ϕ̇s|ds.

For k ∈ (ma,ma+1], applying the Markov property at time ma, we have

E

e∑k−1
j=0 (ϕ(j+1)/n−ϕj/n)S̃j1{

S̃k>gk/nn
1/3
}1{

S̃j∈I(n)
j ,j<k

} ≤ exp
(
da,An

1/3
)

Φ(n)
a,A,
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where Φ(n)
a,A = E

e∑ma
j=1(ϕ(j+1)/n−ϕj/n)S̃j1{

S̃j∈I(n)
j ,j≤ma

}. We observe that S̃ is a centred

random walk which, by (3.3.2), verifies (3.1.15) with variance function σ2. Moreover, as

E
[
eµ|Xn,k|

]
≤ E

[
eµXn,k + e−µXn,k

]
≤ E

 ∑
`∈Lk/n

e(ϕt+µ)`−κt(ϕt) + e(ϕt−µ)`−κt(ϕt)

 ≤ eκt(ϕt+µ)−κt(ϕt) + eκt(ϕt−µ)−κt(ϕt),

by (3.1.4), there exists µ > 0 such that supn∈N,k≤n E
[
eµ|Xn,k|

]
< +∞ and (3.1.16) is

verified. For all a ≤ A, we apply Theorem 3.2.1, to ht = ϕt∧a/A, functions f and g and
intervals F and G stopped at time a/A, to obtain

lim sup
n→+∞

log Φ(n)
a,A

n1/3 = HF,G
a/A (f, g, ϕ).

We observe that

E(AF,Gn (f, g)) ≤ C
A−1∑
a=0

n

A
exp

((
da,A − ϕa,Aga,A

)
n1/3

)
Φ(n)
a,A.

Letting n→ +∞, we have

lim sup
n→+∞

logE(An(f, g))
n1/3 ≤ max

a<A
HF,G
a/A (f, g, ϕ)− ϕ

a,A
g
a,A

+ da,A.

By uniform continuity of K, g, ϕ, and as limA→+∞maxa<A da,A = 0, letting A→ +∞, we
have

lim sup
n→+∞

logE(AF,Gn (f, g))
n1/3 ≤ sup

t∈[0,1]

[
HF,G
t (f, g, ϕ)− ϕtgt

]
.

Lemma 3.3.3 is used to obtain an upper bound for the maximal displacement among
individuals that stay above b(n)

k +n1/3fk/n at any time k ∈ Fn. If HF,G
t (f, g, ϕ) < ϕtgt for

all t ∈ [0, 1], then with high probability, no individual crosses the boundary b(n)
k +n1/3gk/n

at time k ∈ (G∪{1})n. In particular, there is at time n no individual above b(n)
n + g1n1/3.

If we choose g and G in a proper manner, the upper bound obtained here is tight.

Concentration estimate by a second moment method

We take interest in the number of individuals which stay at any time k ≤ n in b(n)
k +I(n)

k .
For all 0 < x < g1 − f1, we set

BF,Gn (f, g, x) =
{
|u| = n : V (uj)− b(n)

j ∈ Ĩ(n)
j , j ≤ n, V (u)− b(n)

n ≥ (g1 − x)n1/3
}
,

where Ĩ(n)
j = I

(n)
j ∩ [−n2/3, n2/3]. We denote by BF,G

n (f, g, x) = #BF,Gn (f, g, x). In order
to bound from above the probability that Bn 6= ∅, we compute the mean of Bn.
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Lemma 3.3.5. We assume (3.1.4), (3.3.1), (3.3.4) and (3.3.6). If K∗(b)1 = 0 then

lim
n→+∞

1
n1/3 log E(BF,G

n (f, g, x)) = HF,G
1 (f, g, ϕ)− ϕ1(g1 − x).

Proof. Observe that, as K∗(b)1 = 0, by (3.3.5) |En| is bounded by a constant uniformly
in n ∈ N. Using the many-to-one lemma, we have

E(BF,G
n (f, g, x)) = e−En E

e−ϕ1S̃n+
∑n

j=1(ϕ(j+1)/n−ϕj/n)S̃j1{
S̃j∈Ĩ(n)

j ,j≤n
}1{

S̃n≥(g1−x)n1/3
}

≤ Ce−ϕ1(g1−x)n1/3 E

e∑n

j=1(ϕ(j+1)/n−ϕj/n)S̃j1{
S̃j∈I(n)

j ,j≤n
} .

Therefore applying Theorem 3.2.1, we have

lim sup
n→+∞

log E(BF,G
n (f, g, x))
n1/3 = HF,G

1 (f, g, ϕ)− ϕ1(g1 − x).

We now compute a lower bound for E(Bn). Applying the many-to-one lemma, for all
ε > 0 we have

E(BF,G
n (f, g, x))

≥ e−En E

e−ϕ1S̃n+
∑n

j=1(ϕ(j+1)/n−ϕj/n)S̃j1{
S̃j∈Ĩ(n)

j ,j≤n
}1{

S̃n−(g1−x)n1/3∈[0,εn1/3]
}

≥ ce−ϕ1(g1−x+ε)n1/3 E

e∑n

j=1(ϕ(j+1)/n−ϕj/n)S̃j1{
S̃j∈Ĩ(n)

j ,j≤n
}1{

S̃n−(g1−x)n1/3∈[0,εn1/3]
} .

Applying Theorem 3.2.1 again, we have

lim inf
n→+∞

log E
(
BF,G
n (f, g, x)

)
n1/3 ≥ HF,G

1 (f, g, ϕ)− ϕ1(g1 − x+ ε).

Letting ε→ 0 concludes the proof.

To obtain a lower bound for P(Bn 6= ∅), we compute an upper bound for the second
moment of Bn. We assume

sup
t∈[0,1]

E


∑
`∈Lt

eϕt`

2
 < +∞ (3.3.9)

which enables to bound the second moment of Bn.

Lemma 3.3.6. Under the assumptions (3.1.4), (3.3.1), (3.3.4), (3.3.6) and (3.3.9), if
G = [0, 1], K∗(b)1 = 0 and for all t ∈ [0, 1], K∗(b)t ≤ 0, then

lim sup
n→+∞

1
n1/3 log E

(
BF,G
n (f, g, x)2)
≤ 2

[
HF,G

1 (f, g, ϕ)− ϕ1(g1 − x)
]
− inf
t∈[0,1]

[
HF,G
t (f, g, ϕ)− ϕtgt

]
.
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Proof. In order to estimate the second moment of Bn, we decompose the set of pairs of
individuals (u, u′) ∈ T2 according to their most recent common ancestor u∧ u′ as follows:

E
[
BF,G
n (f, g, x)2

]
= E

 ∑
|u|=|u′|=n

1{u∈BF,Gn (f,g,x)}1{u′∈BF,Gn (f,g,x)}



=
n∑
k=0

E

 ∑
|u|=|v|=n
|u∧u′|=k

1{u∈BF,Gn (f,g,x)}1{u′∈BF,Gn (f,g,x)}

 .
Therefore writing, for u′ ∈ T,Λ(u′) = ∑

|u|=n,u>u′ 1{u∈BF,Gn (f,g,x)} the number of descen-
dants of u′ which are in Bn, we have

E
[
BF,G
n (f, g, x)2

]
= E

[
BF,G
n (f, g, x)

]
+
n−1∑
k=0

E

 ∑
|u|=k

1{
V (uj)−b

(n)
j ∈Ĩ

(n)
j ,j≤k

} ∑
u1 6=u2∈Ω(u)

Λ(u1)Λ(u2)

 .
We observe that for any two distinct individuals |u1| = |u2| = k, conditionally to Fk, the
quantities Λ(u1) and Λ(u2) are independent.

By the Markov property applied at time k, for all u′ ∈ T with |u′| = k, we have

E
[
Λ(u′)

∣∣Fk]
= Ek,V (u′)

 ∑
|u|=n−k

1{
V (u)−b(n)

n ≥(g1−x)n1/3
}1{

V (uj)−b
(n)
j+k∈Ĩ

(n)
j ,j≤n−k

}∣∣∣∣∣∣Fk


= exp
(
−En + Ek + ϕk/n(V (u′)− b(n)

k )
)

×Ek,V (u′)

e−ϕ1S̃n−k+
∑n−k−1

j=0 ∆ϕn,k+j S̃j1{
S̃j∈Ĩ(n)

j+k,j≤n−k
}1{

S̃n−k≥(g1−x)n1/3
} ,

using the many-to-one lemma. Therefore,

E
[
Λ(u′)

∣∣Fk] ≤ C exp
(
Ek + ϕk/n(V (u′)− b(n)

k )− ϕ1(g1 − x)n1/3
)

×Ek,V (u′)

e∑n−k−1
j=0 ∆ϕn,j+kS̃j1{

S̃j∈I(n)
j+k,j≤n−k

} .
Let A > 0 be a large integer, and for a ≤ A, let ma = ban/Ac. We introduce

Φstart
a,A = E

exp

ma−1∑
j=0

(ϕ(j+1)/n − ϕj/n)S̃j

1{
S̃j∈Ĩ(n)

j ,j≤ma
} and

Φend
a,A = sup

y∈R
Ema,y

exp

n−ma−1∑
j=0

∆ϕn,ma+jS̃j

1{
S̃j∈I(n)

ma+j ,j≤n−ma
} .

By Theorem 3.2.1, we have

lim sup
n→+∞

log Φstart
a,A

n1/3 = HF,G
a/A (f, g, ϕ) and lim sup

n→+∞

log Φend
a,A

n1/3 = HF,G
1 (f, g, ϕ)−HF,G

a/A (f, g, ϕ).
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Moreover, using the same estimates as in Lemma 3.3.3, and setting

ga,A = sup
{
gt, t ∈

[
a−1
A , a+1

A

]}
, ϕa,A = sup

{
ϕt, t ∈

[
a−1
A , a+1

A

]}
and da,A =

∫ (a+1)/A

(a−1)/A
|ϕ̇s|ds(‖f‖∞ + ‖g‖∞),

for all k ∈ [ma,ma+1), applying the Markov property at time ma+1, we have

E
[
Λ(u′)|Fk

] ≤ CeEk+ϕk/n(V (u′)−b(n)
k ) exp

(
(da,A − ϕ1(g1 − x))n1/3

)
Φend
a+1,A. (3.3.10)

We observe that for all u ∈ T with |u| = k and V (u) ∈ Ĩ(n)
k we have

E

 ∑
u1 6=u2∈Ω(u)

eϕ(k+1)/n(V (u1)+V (u2))

∣∣∣∣∣∣Fk
 ≤ e2ϕ(k+1)/nV (u) E


 ∑
`∈L(k+1)/n

eϕ(k+1)/n`

2


≤ Ce2ϕk/nV (u)en
2/3|ϕ(k+1)/n−ϕk/n| ≤ Ce2ϕk/nV (u),

(3.3.11)

using (3.3.9) and the fact that ϕ is Lipschitz. We now bound, for k ∈ [ma,ma+1)

E

 ∑
|u|=k

e2ϕk/n(V (u)−b(n)
k )1{

V (uj)−b
(n)
j ∈Ĩ

(n)
j ,j≤k

}
= E

eϕk/nS̃k+
∑k−1

j=0 (ϕ(j+1)/n−ϕj/n)S̃j1{
S̃j∈Ĩ(n)

j ,j≤k
} , (3.3.12)

using Lemma 3.3.1. As supt∈[0,1]K
∗(b)t ≤ 0 and by (3.3.5), Ek is bounded from above

uniformly in n ∈ N and k ≤ n. As Gn = {0, . . . , n}, for all n ∈ N large enough and
k ∈ [ma,ma+1), applying the Markov property at time man, it yields

E

 ∑
|u|=k

e2ϕk/n(V (u)−b(n)
k )1{

V (uj)∈Ĩ(n)
j ,j≤k

} ≤ exp
((
ϕa,Aga,A + da,A

)
n1/3

)
Φstart
a,A .

(3.3.13)
Finally, combining (3.3.10) with (3.3.11) and (3.3.13), for all n ≥ 1 large enough and
k ∈ [ma,ma+1),

E

 ∑
|u|=k

1{
V (uj)−b

(n)
j ∈Ĩ

(n)
j ,j≤k

} ∑
u1 6=u2∈Ω(u)

Λ(u1)Λ(u2)


≤ C exp

[
n1/3

(
−2ϕ1(g1 − x) + ϕa,Aga,A + 3da,A

)]
Φstart
a,A

(
Φend
a+1,A

)2
,

thus

lim sup
n→+∞

1
n1/3 log

n−1∑
k=0

E

 ∑
|u|=k

1{
V (uj)−b

(n)
j ∈Ĩ

(n)
j ,j≤k

} ∑
u1 6=u2∈Ω(u)

Λ(u1)Λ(u2)


≤ 2

(
HF,G

1 (f, g, ϕ)− (g1 − x)
)
−min
a<A

2HF,G
a+1
A

(f, g, ϕ)−HF,G
a
A

(f, g, ϕ)−ϕa,Aga,A − 3da,A.
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Letting A→ +∞, and using Lemma 3.3.5, we obtain

lim sup
n→+∞

1
n1/3 log E(Bn(f, g)2)

≤ 2
(
HF,G

1 (f, g, ϕ)− (g1 − x)
)
− inf
t∈[0,1]

(
HF,G
t (f, g, ϕ)− ϕtgt

)
.

Using the previous two lemmas, we can bound from below the probability that there
exists an individual that follows the path b(n) + I(n).

Lemma 3.3.7. Under the assumptions (3.1.4), (3.3.1), (3.3.4), (3.3.6) and (3.3.9), if

K∗(b)1 = sup
t∈[0,1]

K∗(b)t = 0,

then for all x < g1

lim inf
n→+∞

1
n1/3 log P(BF,Gn (f, g, x) 6= ∅) ≥ inf

t∈[0,1]

(
HF,G
t (f, g, ϕ)− ϕtgt

)
. (3.3.14)

Proof. We first assume that G = [0, 1]. Since Bn ∈ Z+ a.s, we have

P(BF,Gn (f, g, x) 6= ∅) = P(BF,G
n (f, g, x) > 0) ≥ E(BF,G

n (f, g, x))2

E(BF,G
n (f, g, x)2)

,

using the Cauchy-Schwarz inequality. As a consequence,

lim inf
n→+∞

1
n1/3 log P(BF,Gn (f, g, x) 6= ∅)

≥ 2 lim inf
n→+∞

1
n1/3 log E(BF,G

n (f, g, x))− lim sup
n→+∞

1
n1/3 log E

(
BF,G
n (f, g, x)2

)
≥ inf

t∈[0,1]

(
HF,G
t (f, g, ϕ)− ϕtgt

)
.

We then extend this estimate for G a Riemann-integrable subset of [0, 1], that we can,
without loss of generality, choose closed –as the Lebesgue measure of the boundary of a
Riemann-integrable set is null. According to (3.3.6), {ϕ̇ > 0} ⊂ G. We set, for H > 0

gHt = max {gt,−‖g‖∞ +Hd(t, G)} .
Observe that gH is an increasing sequence of functions, that are equal to g on G and
increase to +∞ on Gc. For all n ∈ N, x ∈ [f1, g1] and H > 0, we have

BF,[0,1]
n (f, gH , x) ⊂ BF,Gn (f, g, x).

As a consequence,

lim inf
n→+∞

1
n1/3 log P(BF,Gn (f, g, x) 6= ∅) ≥ lim

H→+∞
lim inf
n→+∞

1
n1/3 log P(BF,[0,1]

n (f, gH , x) 6= ∅)

≥ lim
H→+∞

inf
t∈[0,1]

(
H
F,[0,1]
t (f, gH , ϕ)− ϕtgHt

)
.

By Lemma 3.2.4, we have Ψ(h) ∼h→+∞
α1

21/3h
2/3. Thus, using (3.3.6), this yields

lim inf
n→+∞

1
n1/3 log P(BF,Gn (f, g, x) 6= ∅) ≥ inf

t∈[0,1]

(
HF,G
t (f, g, ϕ)− ϕtgt

)
.
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Remark 3.3.8. Observe that the inequality in Lemma 3.3.7 is sharp when

inf
t∈[0,1]

(
HF,G
t (f, g, ϕ)− ϕtgt

)
= HF,G

1 (f, g, ϕ)− ϕ1g1.

3.4 Identification of the optimal path

We denote by R = {b ∈ D : ∀t ∈ [0, 1],K∗(b)t ≤ 0}. In this section, we take interest in
functions a ∈ R that verify ∫ 1

0
asds = sup

{∫ 1

0
bsds, b ∈ R

}
, (3.4.1)

i.e. which are solution of (3.1.6). This equation is an optimisation problem under con-
straints. Information on its solution can be obtained using a theorem of existence of
Lagrange multipliers in Banach spaces.

Let E,F be two Banach spaces, a function f : E → F is said to be differentiable
at u ∈ E if there exists a linear continuous mapping Duf : E → F called its Fréchet
derivative at u, verifying

f(u+ h) = f(u) +Duf(h) + o(‖h‖), ‖h‖ → 0, h ∈ E.

A set K is a closed convex cone of F if it is a closed subset of F such that

∀x, y ∈ K,∀λ, µ ∈ [0,+∞)2, λx+ µy ∈ K.

Finally, we set F ∗ the set of linear continuous mappings from F to R. We now introduce
a result on the existence of Lagrange multipliers in Banach spaces obtained in [Kur76],
Theorem 4.5.

Theorem VIII (Kurcyusz [Kur76]). Let E,F be two Banach spaces, J : E → R, g : E →
F and K be a closed convex cone of F . If û verifies

J(û) = max{J(u), u ∈ E : g(u) ∈ K} and g(û) ∈ K,

and if J and g are both differentiable at û, and Dûg is a bijection, then there exists λ ∈ F ∗
such that

∀h ∈ E,DûJ(h) = λ∗
[
Dûg(h)

]
(3.4.2)

∀h ∈ K,λ∗(h) ≤ 0 (3.4.3)
λ∗(g(û)) = 0. (3.4.4)

We first introduce the natural speed path of the branching random walk, which is the
path driven by (vt, t ∈ [0, 1]).

Lemma 3.4.1. Under the assumptions (3.1.2) and (3.1.4), there exists a unique v ∈ R
such that for all t ∈ [0, 1], κ∗t (vt) = 0. Moreover, for all t ∈ [0, 1], θt := ∂aκ

∗
t (vt) > 0, and

v and θ are C1 function.

Proof. For all t ∈ [0, 1], as κ∗t is the Fenchel-Legendre transform of κt, we have

inf
a∈R

κ∗t (a) = −κt(0) < 0.
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Moreover, a 7→ κ∗t (a) is convex, continuous on the interior of its definition set and increas-
ing. By (3.1.4), we have κ∗(a) → +∞ when a increases to sup{b ∈ R : κ∗t (b) < +∞}.
As a consequence, by continuity, there exists x ∈ R such that κ∗t (x) = 0. Furthermore,
as infa∈R κ∗t (a) < 0, κ∗t is strictly increasing at point x. Therefore the point vt = x is
uniquely determined, and θt = ∂aκ

∗
t (x) at point x is positive. Finally, v ∈ C1 by the

implicit function theorem; thus so is θ, by composition with ∂aκ∗.

We now observe that if a is a solution of (3.1.6), then a is a regular point of R –i.e.
we can apply Theorem VIII.

Lemma 3.4.2. Under the assumptions (3.1.2) and (3.1.4), if a is a solution of (3.1.6),
then for all t ∈ [0, 1], ∂aκ∗t (at) > 0.

Proof. Let a ∈ R be a solution of (3.1.6). For t ∈ [0, 1], we set θt = ∂aκ
∗
t (at). We observe

that θ ∈ D is non-negative.
We first assume that for all t ∈ [0, 1], θt = 0, in which case κ∗t (at) is the minimal

value of κ∗t . By (3.1.2), we have inft∈[0,1] κt(0) > 0, thus supt∈[0,1] infa∈R κ∗t (a) < 0. As a
consequence, by continuity, there exists x ∈ D such that for all t ∈ [0, 1], κ∗t (at + xt) ≤ 0.
We have a+x ∈ R and

∫ 1
0 as+xsds >

∫ 1
0 asds, which contradicts a is a solution of (3.1.6).

We now assume that θ is non-identically null, but there exists t ∈ [0, 1] such that
θt = 0. We start with the case θ0 > ε > 0. As θ ∈ D, there exists t > 0 and δ > 0 such
that infs∈[0,δ] θs > ε and sups∈[t,t+δ] θs < ε/3. For x > 0, we set ax = a−x1[0,δ] +2x1[t,t+δ].
We observe that uniformly for s ∈ [0, 1], as x→ 0

K∗(ax)s ≤ K∗(a)s − xεs ∧ δ + 2
3xε(s− t)+ ∧ δ +O(x2).

There exists x > 0 small enough such that ax ∈ R and
∫
ax >

∫
a, which contradicts again

the fact that a is a solution of (3.1.6).
Finally, we assume that θ0 = 0. In this case, as ∂tK∗(a)0 < 0, there exists δ > 0

such that K∗(a)t < −δt for any t ≤ δ. Therefore, there exists t > 0 such that for all
0 < s ≤ t, K∗(a)s < 0, and θt > 0. For any θt > ε > 0, there exists δ′ > 0 such that
for any s < δ′, we have θs < ε/3 and for all s ∈ [t, t + δ′], θs > 2ε. Therefore, setting
ax = a+ 2x1[0,δ) − x1[t,t+δ), as x→ 0, uniformly in s ∈ [0, 1], we have

K∗(ax) ≤ K∗(a)s + 2
3xε(s ∧ δ

′)− xε((s− t)+ ∧ δ) +O(x2),

so for x > 0 small enough we have ax ∈ R. Moreover
∫ 1

0 a
x >

∫ 1
0 a which, once again,

contradicts the fact that a is a solution of (3.1.6).

Applying Theorem VIII, and using the previous lemma, we prove Proposition 3.1.1.

Proof of Proposition 3.1.1. We first consider a function a ∈ R that verifies∫ 1

0
asds = sup

{∫ 1

0
bsds, b ∈ R

}
,

i.e. such that a is a solution of (3.1.6). We set θt = ∂aκ
∗
t (at), and observe that θ ∈ D.

We introduce J : b 7→ ∫ 1
0 bsds and g : b 7→ (κ∗s(bs), s ∈ [0, 1]). These functions are

differentiable at point a, and for h ∈ D, we have DaJ(h) =
∫ 1

0 hsds and Dag(h)t = θtht.
We denote by

K =
{
h ∈ D : ∀t ∈ [0, 1],

∫ t

0
hsds ≤ 0

}
,
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which is a closed convex cone of D. Using Lemma 3.4.2, we have θt > 0 for all t ∈ [0, 1],
thus Dag is a bijection.

By Theorem VIII, there exists λ∗ ∈ D∗ –which is a measure by the Riesz representation
theorem– such that

∀h ∈ D,
∫ 1

0
hsds =

∫ 1

0
Dag(h)sλ∗(ds) (3.4.5)

∀h ∈ K,
∫ 1

0
hsλ

∗(ds) ≤ 0 (3.4.6)∫ 1

0
g(a)sλ∗(ds) = 0. (3.4.7)

We observe easily that (3.4.5) implies that λ∗ admits a Radon-Nikodým derivative
with respect to the Lebesgue measure, and that λ∗(ds)

ds = 1
θs
. As a consequence, we can

rewrite (3.4.6) as

∀h ∈ K,
∫ 1

0
hs
ds

θs
≤ 0.

We set ft =
∫ t

0
ds
θs
, for all s, t ∈ [0, 1], and µ ∈ (0, 1), by (3.4.6), we have

µft + (1− µ)fs − fµt+(1−µ)s =
∫ 1

0

(
µ1{u<t} + (1− µ)1{u<s} − 1{u<µt+(1−µ)s}

) du
θu
≤ 0.

As a consequence, f is concave. In particular, its right derivative function 1
θ is non-

increasing. Consequently θ is non-decreasing.
The last equation (3.4.7) gives

0 =
∫ 1

0
κ∗s(as)λ∗(ds) =

∫ 1

0
κ∗s(as)θ−1

s ds = K∗(a)1
1
θ1
−
∫ 1

0
K∗(a)sdθ−1

s ,

by Stieltjès integration by part. But for all t ∈ [0, 1], K∗(a)t ≤ 0, and 1
θ is non-increasing.

This yields

K∗(a)1 = 0 and
∫ 1

0
K∗(a)sdθ−1

s = 0.

In particular, as a ∈ R, θ increases on {t ∈ [0, 1] : K∗(a)t = 0}.
Conversely, we consider a function a ∈ R such that, setting θt = ∂aκ

∗
t (at), we have

• θ is non-decreasing ;
• K∗(a)1 = 0 ;
• ∫ 1

0 K
∗(a)sdθ−1

s = 0.
Our aim is to prove that

∫ 1
0 asds = v∗, by observing that

∫ 1
0 asds ≥

∫ 1
0 bsds for all b ∈ R.

By convexity of κ∗t , we have, for all t ∈ [0, 1]

κ∗t (bt) ≥ κ∗t (at) + θt(bt − at),

and integrating with respect to t, we obtain∫ 1

0
at − btdt ≥

∫ 1

0

κ∗t (at)− κ∗t (bt)
θt

dt

≤ K∗(a)1 −K∗(b)1 −
∫ 1

0
(K∗(a)t −K∗(b)t) dθ−1

t ,
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by Stieltljès integration by parts. Using the specific properties of a, we get∫ 1

0
at − btdt ≤ −K∗(b)1 +

∫ 1

0
K∗(b)tdθ−1

t .

As K∗(b) is non-positive, and θ−1 is non-increasing, we conclude that the left-hand side
is non-positive, which leads to

∫ 1
0 asds ≥

∫ 1
0 bsds. Optimizing this inequality over b ∈ R

proves that a is a solution of (3.1.6).
We now prove that if a is a solution of (3.1.6), then a is continuous. Observe that as

a = ∂θκt(θt) and θ is non-decreasing, it admits a right and left limit at each point. We
assume there exists t ∈ (0, 1) such that at 6= at−, i.e. such that a jumps at time t. Then,
θt 6= θt− by continuity of ∂aκ∗ on D∗. As

∫ 1
0 K

∗(a)sdθ−1
s = 0 and dθ−1 has an atom at

point t, thus K∗(a)t = 0.
Therefore, if a jumps at time t, then the continuous function s 7→ K∗(a)s with right and

left derivatives at each point, bounded from above by 0, hits a local maximum at time t.
Its left derivative κ∗t (at−) is then non-negative and its right derivative κ∗t (at) non-positive.
As κ∗t is a non-decreasing function, we obtain at− ≥ at.

Moreover, by convexity of κ∗t , x 7→ ∂aκ
∗
t (x) is also non-decreasing, and as a consequence

θt− ≥ θt, which is a contradiction with the hypothesis θt− 6= θt and θ non-decreasing. We
conclude that a (and θ) is continuous as a càdlàg function with no jump.

We now assume there exists another solution b ∈ R to (3.1.6). Using the previous com-
putations, we have

∫ 1
0 K

∗(b)sdθ−1
s = 0, and b is continuous. As a consequence, denoting

by T the support of dθ−1, for all t ∈ T , K∗(b)t = 0. Moreover, K∗(b) is a C1 function, with
a local maximum at time t, thus κ∗t (bt) = 0, or in other words, bt = vt, by Lemma 3.4.2.

Consequently, if we write ϕt = ∂aκ
∗
t (bt), we know from previous results that ϕ is

continuous and increasing. Furthermore, ϕ increases only on T , and ϕt = ∂aκ
∗
t (vt) = θt.

For all t ∈ [0, 1], we set σt = sup{s ≤ t : s ∈ T} and τt = inf{s ≥ t : s ∈ T}. If σ and τ
are finite then

θσt = ϕσt = ϕt = ϕτt = θτt .

As a is also a solution of (3.1.6), we have θσt = θt = θτt , therefore θ = ϕ. As a consequence,
we have

at = ∂θκt(θt) = ∂θκt(ϕt) = bt,

which proves the uniqueness of the solution.
We prove that a and θ are Lipschitz functions. For all t ∈ [0, 1],

∫ t
0 κ
∗
s(as)ds ≤ 0, and∫ t

0 κ
∗
s(as)dθ−1

s = 0. In particular, this means that κ∗t (at) vanishes dθ−1
t -almost everywhere,

thus θt = θt, dθ−1
t -almost everywhere. By continuity of θ and θ, these functions are

identical on T . In addition, for all s < t such that (s, t) ⊂ [0, 1]\T , we have
∫ t
s dθ

−1
u = 0,

hence θt = θs, which proves that θ is constant on [0, 1]\T . As a result, for all s < t ∈ [0, 1],
we have θt = θs if (s, t) ⊂ [0, 1]\T , otherwise

θs = inf
u≥s,u∈T

θu and θt = inf
u≤t,u∈T

θu,

In consequence |θt − θs| ≤ supr,r′∈[s,t] |θr − θr′ |. As θ is C1 on [0, 1], θ and θ are Lipschitz
functions. As at = ∂θκt(θt), the function a is also Lipschitz.

Finally, we prove the existence of a solution to (3.1.6). To do so, we reformulate this
optimization problem in terms of an optimization problem for θ. The aim is to find a
positive function θ ∈ C such that∫ 1

0
∂θκt(θt)dt = max

{∫ 1

0
∂θκt(ϕt)dt : ϕ ∈ C,∀t ∈ [0, 1], E(ϕ)t < +∞

}
, (3.4.8)
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where E(ϕ)t =
∫ t

0 ϕs∂θκt(ϕt)− κt(ϕt). By Theorem VIII, if θ exists, then it verifies
• θ non-decreasing;
• E(θ)1 = 0;
• ∀t ∈ [0, 1],

∫ t
0 E(θ)sdθ−1

s = 0.
Using these three properties, we have θ = θ on the support of the measure dθ−1.

Moreover, as E0(θ) = E1(θ) = 0 and Et is non-positive, we observe that Et(θ) is locally
non-increasing in the neighbourhood of 0 and locally non-decreasing in the neighbourhood
of 1, in particular

θ0∂θκ0(θ0)− κ0(θ0) ≤ 0 and θ1∂θκ1(θ1)− κ1(θ1) ≥ 0.

As for all t ∈ [0, 1], the function ϕ 7→ ϕ∂θκt(ϕ) − κt(ϕ) is increasing, we conclude that
θ0 ≤ θ0 and θ1 ≥ θ1. As a consequence, T = {t ∈ [0, 1] : θt = θt} is non-empty, and,
setting σt = sup{s ≤ t : s ∈ T} and τt = inf{s ≥ t : s ∈ T} we have θt = θσt if σt > −∞
and θt = θτt if τt < +∞.

We write

Θ =
{
θ ∈ C : θ non-decreasing, θ0 ≥ 0, ∀t ∈ [0, 1],

∫ t

0
Es(θ)dθ−1

s = 0 and Et(θ) ≤ 0
}
.

This set is uniformly equicontinuous and bounded, thus by Arzelà-Ascoli theorem, it is
compact. It is non-empty as for all ε > 0 small enough, the function t 7→ ε belongs to Θ.
We write θ a maximizer of

∫ 1
0 ∂θκs(θs)ds on Θ.

By continuity, if E(θ)1 < 0, then we can increase a little θ in the neighbourhood
of 1, thus θ is non-optimal. As a result, θ is non-decreasing, verifies E(θ)1 = 0 and∫
E(θ)sdθ−1

s = 0, which proves that a = ∂θκ(θ) is a solution of (3.1.6).

The previous proof gives some characteristics of the unique solution a of (3.1.6). In
particular, if we set θt = ∂aκ

∗
t (at), we know that θ is positive, non-decreasing, and that on

the support of the measure dθ−1, θ and θ are identical. Consequently, the optimal speed
path of the branching random walk verifies the following property: while in the bulk of the
branching random walk, it follows an equipotential line, and when close to the boundary
it follows the natural speed path.

For some time-inhomogeneous environments, (3.1.6) can be solved explicitly. This is
the case, for example, when the function t 7→ θt is monotone. A time-inhomogeneous
environment such that θ is increasing behaves as the branching Brownian motion with de-
creasing variance, studied in [FZ12b, NRR14, MZ14] and verifies a = v. If θ is decreasing,
then θ is constant, and Theorem 3.1.3 is non-optimal: for a wide class of processes, the
correct correction is logarithmic.

Lemma 3.4.3. We assume (3.1.2) and (3.1.4).
• If θ is non-decreasing, then a = v (and θ = θ).
• If θ is non-increasing, then there exists θ ∈ [0,+∞) such that at = ∂θκt(θ).
• If θ is non-increasing on [0, 1/2] and non-decreasing on [1/2, 1], then there exists
t ∈ [1/2, 1] such that

∀s ∈ [0, 1], ∂aκ∗s(as) = θs∨t.

Proof. We first assume that θ is a non-decreasing function. As K∗(v)t = 0 for all t ∈ [0, 1],
we have
• θ non-decreasing;
• ∫ t0 K∗(v)tdθ

−1
t = 0;
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• K∗(v)1 = 0;
which, by Proposition 3.1.1 implies that v is the solution of (3.1.6).

We now denote by a the solution of (3.1.6), and by θt = ∂aκ
∗
t (at). Let T be the support

of the measure of dθ−1
t , we know by Proposition 3.1.1 that θ is non-decreasing and equal

to θt when it is increasing. In particular, we have

1
θt

= 1
θ0

+
∫ t

0
dθ−1
s = 1

θ0
+
∫ t

0
1{s∈T}dθ−1

s = 1
θ0

+
∫ t

0
1{s∈T}dθ

−1
s .

As a consequence, if θ is non-increasing on [0, t], then
∫ u

0 1{s∈T}dθ
−1
s ≥ 0 for all u ≤ t.

As θ−1 is non-increasing, we conclude that
∫ u
0 1{s∈T}dθ

−1
u = 0, and θu = θ0. In particular,

in the non-increasing case, we conclude that θ is a constant.
In the mixed case, we have just shown that θ is constant up to time 1/2. We set

u = inf{t > 1/2 : θt = θ0}. Since θ = θ on T , we know that T ∩ [1/2, u) = ∅. Hence θ is
constant up to point u. For t > u, as θ increases, we have

1
θt

= 1
θ0

+
∫ t

0
1{s∈T}dθ

−1
s = 1

θu
+
∫ t

u
1{s∈T}dθ

−1
s ≥

1
θt
,

which yields θt ≥ θt. We now observe that K∗(a)1 = 0, thus K∗(a) attains a local
maximum at time 1, and its left derivative κ∗1(a1) is non-negative. This implies that
θ1 ≥ θ1. If there exists s > u such that θs < θs, then T ∩ [s, 1] = ∅, and θ1 = θs < θs ≤ θ1,
which contradicts the previous statement. In consequence, for t ≥ u, we have θt = θt,
which ends the proof of the mixed case.

3.5 Maximal and consistent maximal displacements

We apply the estimates obtained in the previous section to compute the asymptotic
behaviour of some quantities of interest for the BRWls. In Section 3.5.1, we take interest
in the maximal displacement in a BRWls with selection. In Section 3.5.2, we obtain a
formula for the consistent maximal displacement with respect to a given path. If we apply
these estimates in a particular case, we prove Theorems 3.1.3 and 3.1.4.

3.5.1 Maximal displacement in a branching random walk with selection

We first define the maximal displacement in a branching random walk with selection,
which is the position of the rightmost individual among those alive at generation n that
stayed above a prescribed curve. We consider a positive function ϕ that satisfies (3.3.1)
and (3.3.4). We introduce functions b and σ according to (3.3.2). Let f be a continuous
function on [0, 1] with f(0) < 0, and F be a Riemann-integrable subset of [0, 1]. The set
of individuals we consider is

Wϕ
n (f, F ) =

{
|u| ≤ n : ∀j ∈ Fn, V (uj) ≥ b(n)

j + fj/nn
1/3
}
.

This set is the tree of the BRWls with selection (Wϕ
n (f, F ), V|Wϕ

n (f,F )), in which every
individual u alive at time k ∈ Fn at a position below b

(n)
k + fk/nn

1/3 is immediately killed,
as well as all its descendants. Its maximal displacement at time n is denoted by

Mϕ
n (f, F ) = max {V (u), u ∈ Wϕ

n (f, F ) : |u| = n} .
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To apply the results of the previous section, we assume here that b satisfies

sup
t∈[0,1]

K∗(b)t = 0 = K∗(b)1; (3.5.1)

in other words, there exists individuals that follow the path with speed profile b with
positive probability, and at time 1, there are eo(n) of those individuals. We set G the set
of zeros of K∗(b), and we assume that

G = {t ∈ [0, 1] : K∗(b)t = 0} is Riemann-integrable. (3.5.2)

For λ ∈ R, we set gλ ∈ C([0, tλ)) the function solution of

∀t ∈ [0, tλ), ϕtgλt −HF,G
t (f, gλ, ϕ) = ϕ0λ. (3.5.3)

To study Mϕ
n (f, F ), we first prove the existence of a unique maximal tλ ∈ (0, 1], and a

function gλ solution of (3.5.3). We recall the following theorem of Carathéodory, that can
be found in [Fil88].

Theorem IX (Existence and uniqueness of solutions of Carathéodory’s ordinary differen-
tial equation). Let 0 ≤ t1 < t2 ≤ 1, x1 < x2, M > 0 and f : [t1, t2]× [x1, x2]→ [−M,M ]
a bounded function. Let t0 ∈ [t1, t2] and x0 ∈ [x1, x2], we consider the differential equation
consisting in finding t > 0 and a continuous function γ : [t0, t0 + t]→ R such that

∀s ∈ [t0, t0 + t], γ(s) = x0 +
∫ s

t0
f(u, γ(u))du. (3.5.4)

If for all x ∈ [x1, x2], t 7→ f(t, x) is measurable and for all t ∈ [t1, t2], x 7→ f(t, x)
is continuous, then for all (t0, x0) there exists t ≥ min(t2 − t0, x2−x0

M , x0−x1
M ) and γ that

satisfy (3.5.4).
If additionally, there exists L > 0 such that for all x, y ∈ [x1, x2] and t ∈ [t1, t2],

|f(t, x)− f(t, y)| ≤ L|x− y|, then for every pair of solutions (t, γ) and (t̃, γ̃) of (3.5.4), we
have

∀s ≤ min(t, t̃), γ(s) = γ̃(s).
Consequently, there exists a unique solution defined on a maximal interval [t0, t0 + tmax].

We use this theorem to prove there exists a unique solution g to (3.5.3).

Lemma 3.5.1. Let f be a continuous function, ϕ that verifies (3.3.4), and F,G two
Riemann-integrable subsets of [0, 1]. For all λ > f0, there exists a unique tλ ∈ [0, 1] and a
unique continuous function defined on [0, tλ] such that for all t < tλ, we have

gλt > ft and ϕtg
λ
t = ϕ0λ+HF,G

s (f, gλ, ϕ).

Moreover, there exists λc such that for all λ > λc, tλ = 1 and λ 7→ gλ is continuous with
respect to the uniform norm and strictly increasing.

Proof. Let f be a continuous function, and F be a Riemann-integrable subset of [0, 1], we
set

D = {(t, x) ∈ [0, 1]× R : if t ∈ F, then x > ϕtft},
and, for (t, x) ∈ D,

Φ(t, x) = ϕ̇t
ϕt
x+ 1F∩G(t) σ2

t

( xϕt − ft)2 Ψ
(

( x
ϕt
−ft)3

σ2
t

ϕ̇t

)
1F c∩G(t) a1

21/3 (ϕ̇tσt)2/3 + 1F∩Gc
(
ϕ̇t(ft − x

ϕt
) + a1

21/3 (−ϕ̇tσt)2/3
)
.



142 Chapter 3. Branching random walk in slowly varying environment

For all λ > f0, we introduce

Γλ =
{

(t, h), t ∈ [0, 1], h ∈ C([0, t]) : ∀s ≤ t, hs = ϕ0λ+
∫ s

0
Φ(u, hu)du

}
,

the set of functions such that g = h
ϕ is a solution of (3.5.3).

We observe that for all [t1, t2]× [x1, x2] ⊂ D, Φ|[t1,t2]×[x1,x2] is measurable with respect
to t, and uniformly Lipschitz with respect to x. As a consequence, by Theorem IX, for
all (t0, x0) ∈ D, there exists t > 0 such that there exists a unique function h ∈ C([0, t])
satisfying

∀s ≤ t, hs = x0 +
∫ s

t0
Φ(u, hu)du. (3.5.5)

Using this result, we first prove that Γλ is a set of consistent functions. Indeed, let
(t1, h1) and (t2, h2) be two elements of Γλ, and let τ = inf{s ≤ min(t1, t2) : h1

s 6= h2
s}.

We observe that if τ < min(t1, t2), then by continuity of h1 and h2, we have h1
τ = h2

τ .
Furthermore, s 7→ h1

τ+s and s 7→ h2
τ+s are two different functions satisfying (3.5.5) with

t0 = τ and x0 = h1
τ = h2

τ , which contradicts the uniqueness of the solution. We conclude
that τ ≥ min(t1, t2), every pair of functions in Γλ are consistent up to the first terminal
point.

We define tλ = max
{
t ∈ [0, 1] : ∃h ∈ C([0, t]), (t, h) ∈ Γλ

}
. We have tλ > 0 by the

existence of a local solution starting at time 0 and position ϕ0λ. For s < tλ, we write
hλs = hs, where (s, hs) ∈ Γλ. By definition,

∀s < tλ, h
λ
s = ϕ0λ+

∫ s

0
Φ(u, hλu)du.

By local uniqueness of the solution, if there exists t ∈ (0, 1) such that hλt = hλ
′
t , then for all

s ≤ t, hλs = hλ
′
s , and in particular λ = λ′. We deduce that for all λ < λ′, if s < min(tλ, t′λ)

then hλs < hλ
′
s .

Moreover, as there exist C1 and C2 > 0 such that for all t ∈ [0, 1] and x > C1,
Φ(t, x) < C2, we have lim supt→tλ h

λ
t < +∞. Hence, if λ < λ′ and tλ > t′λ, if

x0 ∈
[
lim inf
t→tλ

hλt , lim sup
t→tλ

hλt

]
,

then as x0 > hλtλ′ , we can extend hλ′ on [tλ′ , tλ′ + δ], which contradicts the fact that tλ′ is
maximal. We conclude that tλ′ ≥ tλ.

If λ′ > λ > λc, the functions hλ and hλ′ are defined on [0, 1]. Moreover, the set

Hλ,λ′ =
{

(t, x) ∈ [0, 1]× R : x ∈ [hλt , hλ
′
t ]
}
,

is a compact subset of D, that can be paved by a finite number of rectangles in D. As a
consequence, there exists L > 0 such that

∀t ∈ [0, 1],∀x, x′ : (t, x) ∈ Hλ,λ′ , (t, x′) ∈ Hλ,λ′ ,
∣∣Φ(t, x)− Φ(t, x′)

∣∣ ≤ L|x− x′|.
As for all µ ∈ [λ, λ′], (t, hµt ) ∈ Hλ,λ′ , we observe that∣∣∣hµt − hµ′t ∣∣∣ ≤ ∣∣µ− µ′∣∣+ ∫ t

0

∣∣∣Φ(s, hµs )− Φ(s, hµ′s )
∣∣∣ ds

≤
∣∣µ− µ′∣∣+ L

∫ t

0

∣∣∣hµs − hµ′as∣∣∣ ds.
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Applying the Gronwall inequality, for all µ, µ′ ∈ [λ, λ′], we have∥∥∥hµ − hµ′∥∥∥
∞
≤
∣∣µ− µ′∣∣ eL

which proves that λ 7→ hλ is continuous with respect to the uniform norm.
Finally, there exist C0 and C1 > 0 such that for all t ∈ [0, 1] and x ≥ C0, we have

Φ(t, x) ≥ −C1. Therefore, for all λ ≥ C0 + C1 + ‖ϕf‖∞, for all t ∈ [0, 1], hλt ≥ ‖ϕf‖∞,
and tλ = 1. We set λc = inf{λ ∈ R : tλ = 1}, and we conclude the proof by observing that
gλ = hλ

ϕλ
is the solution of (3.5.3).

Lemma 3.5.2. Under the assumptions (3.1.4), (3.3.1), (3.3.4), (3.3.6), (3.3.9) and (3.5.1),
for all λ > max(0, λc), we have

lim
n→+∞

1
n1/3 log P

(
Mϕ
n (f, F ) ≥ b(n)

n + gλ1n
1/3
)

= −ϕ0λ.

Proof. To obtain an upper bound, we recall that 1 ∈ G, as K∗(b)1 = 0 by (3.5.1). Let
λ > max(0, λc), we set g = gλ the unique solution of (3.5.3). We observe that

P
(
Mϕ
n (f, F ) ≥ b(n)

n + gλ1n
1/3
)
≤ P

(
AF,Gn (f, g) 6= ∅

)
≤ E

(
AF,Gn (f, g)

)
.

Therefore, by Lemma 3.3.3, we have

lim sup
n→+∞

1
n1/3 log P(Mϕ

n (f, F ) ≥ b(n)
n + gλ1n

1/3) ≤ sup
t∈[0,1]

HF,G
t (f, g, ϕ)− ϕtgt = −ϕ0λ.

When λ′ > λ, we have gλ′1 > g1, and

P
(
Mϕ
n (f, F ) ≥ b(n)

n + gλ1n
1/3
)
≥ P

(
BF,Gn (f, gλ′ , gλ′1 − g1) 6= ∅

)
.

Consequently, using Lemma 3.3.7, we have

lim inf
n→+∞

1
n1/3 log P

(
Mϕ
n (f, F ) ≥ b(n)

n + gλ1n
1/3
)
≥ sup

t∈[0,1]
HF,G
t (f, g, ϕ)− ϕtgt = −ϕ0λ

′.

Letting λ′ decrease to λ, we have

lim
n→+∞

1
n1/3 log P

(
Mϕ
n (f, F ) ≥ b(n)

n + gλ1n
1/3
)

= −ϕ0λ.

The previous lemma gives an estimate of the right tail of Mϕ
n (f, F ) for any f ∈ C and

Riemann-integrable set F ⊂ [0, 1]. Note that to obtain this estimate, we do not need the
assumption (3.1.2) of supercritical reproduction, however (3.5.1) implies that

inf
t∈[0,1]

lim inf
n→+∞

1
n

log E
[
#{u ∈ T(n), |u| = btnc}

]
≥ 0,

which is a weaker supercriticality condition. Assuming (3.1.2), we strengthen Lemma 3.5.2
to prove a concentration estimate for Mϕ

n (f, F ) around b(n)
n + g0

1n
1/3.
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Lemma 3.5.3 (Concentration inequality). Under the assumptions (3.1.2), (3.1.4), (3.3.1),
(3.3.4), (3.3.6), (3.3.9) and (3.5.1), if λc > 0, then for all ε > 0, we have

lim sup
n→+∞

1
n1/3 log P

(∣∣∣Mϕ
n (f, F )− b(n)

n − g0
1n

1/3
∣∣∣ ≥ εn1/3

)
< 0.

Proof. We set g = g0 the solution of (3.5.3) for λ = 0. We observe that for all ε > 0 and
t ∈ [0, 1], we have

HF,G
t (f, g + ε, ϕ)− ϕt(gt + ε) < 0.

Consequently, for all ε > 0, we have

lim sup
n→+∞

1
n1/3 log P

(
Mϕ
n (f, F ) ≥ b(n)

n + (g1 + ε)n1/3
)

≤ lim sup
n→+∞

1
n1/3 log P

(
AF,G∪{1}n (f, g + ε) 6= ∅

)
≤ sup

t∈[0,1]
HF,G
t (f, g + ε, ϕ)− ϕt(gt + ε) < 0,

by Lemma 3.3.3.
To obtain a lower bound, we need to strengthen the tail estimate of Mϕ

n (f, F ). Using
(3.1.2), the size of the population in the branching random walk increases at exponential
rate. We set p ∈ R and % > 0 such that % = inft∈[0,1] P(#{` ∈ Lt : ` ≥ p} ≥ 2).
We can assume, without loss of generality, that p < b0. We couple the BRWls with
a Galton-Watson process (Zn, n ≥ 0) with Z0 = 1, and reproduction law defined by
P(Z1 = 2) = 1−P(Z1 = 1) = %; in a way that for any η > 0,

#{u ∈ T(n) : |u| =
⌊
ηn1/3

⌋
, V (u) ≥ ηpn1/3} ≥ Zk a.s. for n large enough.

By standard Galton-Watson theory (see, e.g. [FW07]), there exists α > 0 such that

lim sup
n→+∞

1
n

log P (Zn ≤ eαn) < 0.

Consequently, with high probability, there are at least eαk individuals to the right of pk
at any time k ≤ n.

Let ε > 0 and η > 0, we set k =
⌊
ηn1/3

⌋
. Applying the Markov property at time k,

we have

P
(
Mn ≤ mn − εn1/3

)
≤ P

(
Zk ≤ eαk

)
+
[
1−Pk,kp

(
Mn−k ≥ mn − εn1/3

)]eαk
.

As a consequence

lim sup
n→+∞

1
n1/3 log P

(
Mn ≤ mn − εn1/3

)
≤ max

{
lim sup
n→+∞

1
n1/3 log P

(
Zk ≤ eαk

)
,− lim inf

n→+∞
eαk

n1/3 Pk,kp

(
Mn−k ≥ mn − εn1/3

)}
.

To conclude the proof, we need to prove that

lim inf
n→+∞

eαηn
1/3Pk,0

(
Mn−k ≥ b(n)

n + (g1 − ε)n1/3 − kp
)
> 0. (3.5.6)
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Let δ > 0, we choose η = ε
b0−p + δ, we have

lim inf
n→+∞

1
n1/3 log Pk,0

(
Mn−k ≥ b(n)

n + (g1 − ε)n1/3 − kp
)

= lim inf
n→+∞

1
n1/3 log Pk,0

(
Mn−k ≥ b(n)

n − b
(n)
k + g1 + δn1/3

)
≤− ϕ0λδ,

by applying Lemma 3.5.2, where λδ is the solution of the equation gλδ1 = δ. Here, we
implicitly used the fact that the estimate obtained in Lemma 3.5.2 is true uniformly in
k ∈ [0, ηn1/3]. This is due to the fact that this is also true for Theorem 3.2.1. Finally,
letting δ → 0, we have λδ → 0, hence

lim inf
n→+∞

eαk

n1/3 Pk,kp

(
Mn−k ≥ mn − εn1/3

)
= +∞,

which concludes the proof.

Proof of Theorem 3.1.3

We denote by a the solution of (3.1.6) and by θ the function defined by θt = ∂aκ
∗
t (at).

We assume that (3.1.4) is verified, i.e. θ is absolutely continuous with a Riemann-integrable
derivative ḣ. For all n ∈ N and k ≤ n, we set a(n)

k = ∑k
j=1 aj/n. We recall that

l∗ = α1
21/3

∫ 1

0

(θ̇sσs)2/3

θs
ds,

where α1 is the largest zero of the Airy function of first kind.

Proof of Theorem 3.1.3. With the previous notation, we have Mn = M θ
n(0, ∅). By Propo-

sition 3.1.1, a satisfies (3.5.1), θ is non-decreasing and increases only on G. As a conse-
quence, (3.3.6) is verified, and (3.5.4) can be written, for λ ∈ R,

∀t ∈ [0, 1], θtgλt = θ0λ+
∫ t

0
θ̇sg

λ
s + α1

21/3 (θ̇sσs)2/3ds. (3.5.7)

By integration by parts, gλt = λ +
∫ t

0
α1

21/3 (θ̇sσs)2/3ds. In particular, gλ1 = λ + l∗. As a
consequence, applying Lemma 3.5.2 to λ = l, we have

lim
n→+∞

1
n1/3 log P(Mn ≥ a(n)

n + (l∗ + l)n1/3) = −θ0l.

Similarly, using Lemma 3.5.3, for all ε > 0,

lim sup
n→+∞

1
n1/3 log P

(∣∣∣Mn − a(n)
n − l∗n1/3

∣∣∣ ≥ εn1/3
)
< 0.

As a is a Lipschitz function, we have

a(n)
n =

n∑
j=1

aj/n = n

∫ 1

0
asds︸ ︷︷ ︸
v∗

+O(1).

This concludes the proof.
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Mixing Lemma 3.4.3 and Theorem 3.1.3, we obtain an explicit asymptotic for the
maximal displacement, in some particular cases. If θ is non-decreasing, then θ = θ. As a
result, setting

l
∗ = α1

21/3

∫ 1

0

(
θ̇sσs

)2/3

θs
ds,

we have Mn = n
∫ 1
0 vsds+ l

∗
n1/3 + o(n1/3) in probability.

Remark 3.5.4. Let σ ∈ C2 be a positive decreasing function. For t ∈ [0, 1], we define
the point process Lt = (`1t , `2t ) with `1t , `

2
t two i.i.d. centred Gaussian random variables

with variance σt. We consider the BRWls with environment (Lt, t ∈ [0, 1]). We have
θt =

√
2 log 2
σt

, which is increasing. Consequently, by Theorem 3.1.3 and Lemma 3.4.3

Mn = n
√

2 log 2
∫ 1

0
σsds+ n1/3 α1

21/3(2 log 2)1/6

∫ 1

0
(−σ′s)2/3σ1/3

s ds+ oP(n1/3),

which is consistent with the results obtained in [MZ14] and [NRR14].
Similarly, if θ is non-increasing, then θ is constant. Applying Theorem 3.1.3, we have

Mn = n
∫ 1

0 asds+ o(n1/3), and the correct second order is logarithmic.

3.5.2 Consistent maximal displacement with respect to a given path

Let ϕ be a continuous positive function, we write bt = ∂θκt(ϕt), and we assume that b
satisfies (3.5.1). We take interest in the consistent maximal displacement with respect to
the path with speed profile b, defined by

Λϕn = min
|u|=n

max
k≤n

(
b
(n)
k − V (uk)

)
. (3.5.8)

In other words, this is the smallest number such that, killing every individual at generation
k and in a position below b

(n)
k − Λϕn, an individual remains alive until time n.

We set, for u ∈ T, Λϕ(u) = maxk≤|u|
(
b
(n)
k − V (uk)

)
the maximal delay of individual

u. In particular, with the definition of Section 3.3, for all µ ≥ 0, we have

Mϕ
n (−µ, [0, 1]) = max

{
V (u), |u| = n,Λϕ(u) ≤ µn1/3

}
, (3.5.9)

in particular Mϕ
n (−µ, [0, 1]) > −∞ ⇐⇒ Λϕn ≤ µn1/3.

For λ, µ > 0, we denote by gλ,µ the solution of

ϕtgt = ϕ0λ+
∫ t

0
ϕ̇sgs + 1{K∗(b)s=0}

σ2
s

(gs + µ)2 Ψ
(

(gs+µ)3

σ2
s

ϕ̇s
)
ds. (3.5.10)

Using the particular structure of this differential equation, for all λ, µ > 0, we have
gλ,µ = gλ+µ,0 − µ. Indeed, let λ > 0 and µ > 0, and let g = gλ+µ,0 − µ. By definition, the
differential equation satisfied by g + µ is

ϕt(gt + µ) = ϕ0(λ+ µ) +
∫ t

0
ϕ̇s(gs + µ) + 1{K∗(b)s=0}

σ2
s

(gs + µ)2 Ψ
(

(gs+µ)3

σ2
s

ϕ̇s
)
ds

ϕtgt = ϕ0λ+
∫ t

0
ϕ̇sgs + 1{K∗(b)s=0}

σ2
s

(gs + µ)2 Ψ
(

(gs+µ)3

σ2
s

ϕ̇s
)
ds,

and by uniqueness of the solution of the equation, we have g = gλ,µ.
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For λ > 0, we set gλ = gλ,0. We observe that if {ϕ̇t > 0} ⊂ {K∗(b)t = 0}, then, for all
λ ≥ 0, gλ is a decreasing function. As λ 7→ gλ is strictly increasing and continuous, there
exists a unique non-negative λ∗ that verifies

gλ
∗

1 = 0. (3.5.11)

Alternatively, λ∗ can be defined as g̃1/ϕ0, where g̃ is the unique solution of the differential
equation

∀t ∈ [0, 1), ϕtg̃t = −
∫ 1

t
ϕ̇sgs + 1{K∗(b)s=0}

σ2
s

g̃2
s

Ψ
(
g̃3
s
σ2
s
ϕ̇s
)
ds.

Lemma 3.5.5 (Asymptotic of the consistent maximal displacement). Under the assump-
tions (3.1.4), (3.3.1), (3.3.4), (3.3.6), (3.3.9) and (3.5.1), for all λ < λ∗, we have

lim
n→+∞

1
n1/3 log P

(
Λϕn ≤ (λ∗ − λ)n1/3

)
= −ϕ0λ.

Moreover, for all ε > 0,

lim sup
n→+∞

1
n1/3 log P

(∣∣∣Λϕn − λ∗n1/3
∣∣∣ ≥ εn1/3

)
< 0.

Proof. Let λ ∈ (0, λ∗), we set gt = gλ
∗
t . Note first that Λϕn ≤ λn1/3 if and only if there exists

an individual u alive at generation n such that Λϕ(u) ≤ λn1/3. To bound this quantity
from above, we observe that such an individual either crosses b(n)

. + n1/3(g./n − λ+ ε) at
some time before n, or stays below this boundary until time n. Consequently, for all ε > 0,
we have

P
(
B[0,1],G
n (−λ, g − λ+ ε,−λ) 6= ∅

)
≤ P

(
Λϕn ≤ λn1/3

)
≤ P

(
A[0,1],G
n (−λ, g − λ+ ε) 6= ∅

)
+ P

(
B[0,1],G
n (−λ, g − λ+ ε,−λ

)
.

Using Lemma 3.3.3, Lemma 3.3.5 and Lemma 3.3.7, and letting ε→ 0, we conclude

lim
n→+∞

1
n1/3 log P

(
Λϕn ≤ λn1/3

)
= −ϕ0(λ∗ − λ).

Finally, to bound P(Λϕn ≥ (λ∗ + ε)n1/3) we apply (3.5.9), and we get

P(Λϕn ≥ (λ∗ + ε)n1/3) = P(Mn(−λ∗ − ε, [0, 1]) = −∞).

By Lemma 3.5.3, we conclude that

lim sup
n→+∞

1
n1/3 log P(Λϕn ≥ (λ∗ + ε)n1/3) < 0.
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Proof of Theorem 3.1.4

We prove Theorem 3.1.4, applying Lemma 3.5.5 to Λn = Λθn.

Proof of Theorem 3.1.4. We denote by G = {t ∈ [0, 1] : K∗(a)t = 0}. For λ > 0, we let gλ
be the solution of the equation

θtgt = θ0λ+
∫ t

0
θ̇sgs + 1G(s)σ

2
s

g2
s

Ψ
(
g3
s
σ2
s
θ̇s
)
ds, (3.5.12)

and λ∗ be the unique non-negative real number that verifies

gλ
∗

1 = 0. (3.5.13)

By Proposition 3.1.1, a satisfies (3.5.1) and {θt > 0} ⊂ {K∗(b)t = 0}. By Lemma 3.5.5,
for all λ ∈ (0, λ∗), we have

lim
n→+∞

1
n1/3 log P

[
Λθn ≤ (λ∗ − λ)n1/3

]
= −θ0λ,

and for all ε > 0, we have

lim sup
n→+∞

1
n1/3 log P

[∣∣∣Λϕn − λ∗n1/3
∣∣∣ > εn1/3

]
< 0.

In a similar way, we can compute the consistent maximal displacement with respect to
the path with speed profile v, which is Λθn. We denote by gλ the solution of the equation

θtgt = θ0λ+
∫ t

0
θ̇sgs + σ2

s

g2
s

Ψ
(
g3
s
σ2
s
θ̇s
)
ds,

and by λ∗ the solution of gλ
∗

1 = 0. By Lemma 3.5.5, for all 0 ≤ l ≤ λ∗,

lim
n→+∞

1
n1/3 log P

(
Λϕn ≤ (λ∗ − λ)n1/3

)
= −ϕ0λ,

and for all ε > 0, we have

lim sup
n→+∞

1
n1/3 log P

[∣∣∣Λθn − λ∗n1/3
∣∣∣ > εn1/3

]
< 0.

Consistent maximal displacement of the time-homogeneous branching random
walk

We consider (T, V ) a time-homogeneous branching random walk, with reproduction
law L. We denote by κ the Laplace transform of L. The optimal speed profile is a constant
v = infθ>0

κ(θ)
θ , and we set θ∗ = κ′(θ∗) and σ2 = κ′′(θ∗). The equation (3.5.12) can be

written in the simpler form

θ∗gλt = θ∗λ+
∫ t

0

σ2

(gλs )2 Ψ(0)ds.

As Ψ(0) = −π2

2 , the solution of this differential equation is gλt =
(
λ3 − t3π2σ2

2θ∗
)1/3

.
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For Λn = min|u|=n maxk≤n (kv − V (uk)), applying Theorem 3.1.4, and the Borel-
Cantelli lemma, we obtain

lim
n→+∞

Λn
n1/3 =

(
3π2σ2

2θ∗

)1/3

a.s.

This result is similar to the one obtained in [FZ10] and [FHS12].
More generally, if (T, V ) is a BRWls such that θ is non-increasing, then θ is a constant,

and for all ε > 0,

lim sup
n→+∞

1
n1/3 log P

∣∣∣∣∣∣Λn −
(

3π2σ2

2θ

∫ 1

0
1{K∗(a)s=0}ds

)1/3

n1/3

∣∣∣∣∣∣ ≥ εn1/3

 .
3.A Airy facts and Brownian motion estimates

In Section 3.A.1, using some Airy functions –introduced in Section 3.1.5– facts, the
Feynman-Kac formula and PDE analysis, we compute the asymptotic of the Laplace
transform of the area under a Brownian motion constrained to stay positive, proving
Lemma 3.2.3. Adding some Sturm-Liouville theory, we obtain by similar arguments
Lemma 3.2.4 in Section 3.A.2. In all this section, B stands for a standard Brownian
motion, starting from x under law Px.

3.A.1 Asymptotic of the Laplace transform of the area under a Brown-
ian motion constrained to stay non-negative

In this section, we write L2 = L2([0,+∞)) for the set of square-integrable measurable
functions on [0,+∞). This space L2 can be seen as a Hilbert space, when equipped with
the scalar product

〈f, g〉 =
∫ +∞

0
f(x)g(x)dx.

We denote by C2
0 = C2

0([0,+∞)) the set of twice differentiable functions w with a continuous
second derivative, such that w(0) = limx→+∞w(x) = 0. Finally, for any continuous
function w, ‖w‖∞ = supx≥0 |w(x)|. The main result of the section is:

For all h > 0, 0 < a < b and 0 < a′ < b′, we have

lim
t→+∞

1
t

log sup
x∈R

Ex

[
e−h

∫ t
0 Bsds;Bs ≥ 0, s ≤ t

]
= lim

t→+∞
1
t

log inf
x∈[a,b]

Ex

[
e−h

∫ t
0 Bsds1{Bt∈[a′,b′]};Bs ≥ 0, s ≤ t

]
= α1

21/3h
2/3. (3.A.1)

We recall that (αn, n ∈ N) is the set of zeros of Ai, listed in the decreasing order. We
start with some results on the Airy function Ai, defined in (3.1.13).

Lemma 3.A.1. For n ∈ N and x ≥ 0, we set

ψn(x) = Ai(x+ αn)
(∫ +∞

αn
Ai(y)dy

)−1/2
. (3.A.2)

The following properties hold:
• (ψn, n ∈ N) forms an orthogonal basis of L2;
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• limn→+∞ αnn−2/3 = −3π
2 ;

• for all λ ∈ R and ψ ∈ C2, if{
∀x > 0, ψ′′(x)− xψ(x) = λψ(x)
ψ(0) = limx→+∞ ψ(x) = 0,

(3.A.3)

then either ψ = 0, or there exist n ∈ N and c ∈ R such that λ = αn and ψ = cψn.

Proof. The fact that limn→+∞ αnn−2/3 = −3π
2 and that (ψn, n ∈ N) is an orthogonal basis

of L2 can be found in [VS10]. We now consider (λ, ψ) a solution of (3.A.3). In particular
ψ verifies

∀x > 0, ψ′′(x)− (x+ λ)ψ(x) = 0.

By definition of Ai and Bi, there exist c1, c2 such that ψ(x) = c1Ai(x+ λ) + c2Bi(x+ λ).
As limx→+∞ ψ(x) = 0, we have c2 = 0, and as ψ(0) = 0, either c1 = 0, or Ai(λ) = 0. We
conclude that either ψ = 0, or λ is a zero of Ai, in which case ψ(x) = c1ψn(x) for some
n ∈ N.

As α1 is the largest zero of Ai, note that the eigenfunction ψ1 corresponding to the
largest eigenvector α1 is non-negative on [0,+∞), and is positive on (0,+∞).

For h > 0 and n ∈ N, we define ψhn = (2h)1/6ψn((2h)1/3x). By Lemma 3.A.1, the
sequence (ψhn, n ∈ N) forms an orthonormal basis of L2. With this lemma, we can prove
the following preliminary result.

Lemma 3.A.2. Let h > 0 and u0 ∈ C2
0 ∩ L2, such that u′0, u′′0 ∈ L2 and ‖u′′0‖∞ < +∞.

We define, for t ≥ 0 and x ≥ 0

u(t, x) = Ex

[
u0(Bt)e−h

∫ t
0 Bsds;Bs ≥ 0, s ∈ [0, t]

]
.

We have

lim
t→+∞

sup
x∈R

∣∣∣∣∣e−h2/3

21/3 α1tu(t, x)− 〈u0, ψ
h
1 〉ψh1 (x)

∣∣∣∣∣ = 0. (3.A.4)

Proof. Let h > 0, by the Feynman-Kac formula (see e.g. [KS91], Theorem 5.7.6), u is the
unique solution of the equation

∀t > 0, ∀x > 0, ∂tu(t, x) = 1
2∂

2
xu(t, x)− hxu(t, x)

∀x ≥ 0, u(0, x) = u0(x)
∀t ≥ 0, u(t, 0) = limx→+∞ u(t, x) = 0.

(3.A.5)

We define the operator

Gh :
C2

0 → C
w 7→

(
x 7→ 1

2w
′′(x)− hxw(x), x ∈ [0,+∞)

)
,

By definition of Ai and of the ψhn, we have

Ghψhn = h2/3

21/3 αnψ
h
n.

thus (ψhn) forms an orthogonal basis of eigenfunctions of Gh.
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There exists C > 0 such that for any x ≥ 0, Ai(x) + Ai′(x) ≤ C(1 +x1/4)e−2x2/3/3 (see
e.g. [VS10]). For any w ∈ C2

0 ∩ L2 such that w′ and w′′ are bounded, by integration by
parts

〈Ghw,ψhn〉 = 1
2

∫ +∞

0
w′′(x)ψhn(x)dx− h

∫ +∞

0
xw(x)ψhn(x)dx

= 1
2

∫ +∞

0
w(x)(ψhn)′′(x)dx− h

∫ +∞

0
xw(x)ψhn(x)dx

=
∫ +∞

0
w(x)(Ghψhn)(x)dx

= h2/3

21/3 αn〈w,ψ
h
n〉.

Therefore, decomposing w with respect to the basis (ψhn), we have

〈Ghw,w〉 = 〈Ghw,
+∞∑
n=1
〈ψhn, w〉ψhn〉 =

+∞∑
n=1
〈w,ψhn〉〈Ghw,ψhn〉 = h2/3

21/3

+∞∑
n=1

αn〈w,ψhn〉
2
.

As (αn) is a decreasing sequence, we have

〈Ghw,w〉 ≤ h2/3

21/3

+∞∑
n=1

α1〈w,ψhn〉
2 ≤ h2/3

21/3 α1〈w,w〉. (3.A.6)

If 〈w,ψhn〉 = 0, the inequality can be improved in

〈Ghw,w〉 ≤ h2/3

21/3

+∞∑
n=2

α2〈w,ψhn〉
2 ≤ h2/3

21/3 α2〈w,w〉. (3.A.7)

Using these results, we now prove (3.A.4). For x ≥ 0 and t ≥ 0, we define

v(t, x) = e
−h2/3

21/3 α1tu(t, x)− 〈u0, ψ
h
1 〉ψh1 .

We observe first that for all t ≥ 0, 〈v(t, ·), ψh1 〉 = 0. Indeed, we have 〈v(0, ·), ψh1 〉 = 0 by
definition, and deriving with respect to t, we have

∂t〈v(t, ·), ψh1 〉 = −h
2/3

21/3 α1e
−h2/3

21/3 α1t〈u(t, x), ψh1 〉+ e
−h2/3

21/3 α1t〈∂tu(t, x), ψh1 〉

= −h
2/3

21/3 α1e
−h2/3

21/3 α1t〈u(t, x), ψh1 〉+ e
−h2/3

21/3 α1t〈Ghu(t, x), ψh1 〉

= −h
2/3

21/3 α1e
−h2/3

21/3 α1t〈u(t, x), ψh1 〉+ h2/3

21/3 α1e
−h2/3

21/3 α1t〈u(t, x), ψh1 〉

= 0.

We now prove that the non-negative, finite functions

J1(t) =
∫ +∞

0
|v(t, x)|2dx and J2(t) =

∫ +∞

0
|∂xv(t, x)|2dx,
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are decreasing, and converge to 0 as t→ +∞. We observe first that

∂tJ1(t) =
∫ +∞

0
2v(t, x)∂tv(t, x)dx

=
∫ +∞

0
2v(t, x)

[
−h

2/3

21/3 α1e
−h2/3

21/3 α1tu(t, x) + e
−h2/3

21/3 α1t∂tu(t, x)
]
dx

=
∫ +∞

0
2v(t, x)

[
−h

2/3

21/3 α1v(t, x) + Ghv(t, x)
]
dx

= 2
[
−h

2/3

21/3 α1〈v(t, ·), v(t, ·)〉+ 〈v(t, ·),Ghv(t, ·)〉
]
,

and as 〈v(t, ·), ψh1 〉 = 0, by (3.A.7)

∂tJ1(t) ≤ (2h)2/3(α2 − α1)J1(t) ≤ −cJ1(t).

By Grönwall inequality, J1(t) decreases to 0 as t→ +∞ exponentially fast. Similarly, we
have J2(0) < +∞, and

∂tJ2(t) =
∫ +∞

0
2∂xv(t, x)∂t∂xv(t, x)dx = 2

∫ +∞

0
∂xv(t, x)∂x∂tv(t, x)dx

=2
∫ +∞

0
∂xv(t, x)

[
−h

2/3

21/3 α1∂xv(t, x) + ∂xGhv(t, x)
]
dx

=− (2h)2/3α1〈∂xv(t, ·), ∂xv(t, ·)〉+ 2〈∂xv(t, ·),Gh∂xv(t, ·)〉 − 2h
∫ +∞

0
v(t, x)∂xv(t, x)dx︸ ︷︷ ︸

limx→+∞ v(t,x)2−v(t,0)2

,

by integration by parts and (3.A.6). Thus, ∂tJ2(t) ≤ 0. As J2 is non-negative and
decreasing, this function converges, as t→ +∞, to J2(+∞) ≥ 0. Moreover, we can write
the derivative of J1 as follows

∂tJ1(t) = 2
[
−h

2/3

21/3 α1〈v(t, ·), v(t, ·)〉+ 〈v(t, ·),Ghv(t, ·)〉
]

= −(2h)2/3α1J1(t) +
∫ +∞

0
v(t, x)∂2

xv(t, x)dx−
∫ +∞

0
hxv(t, x)2dx

≤ −(2h)2/3α1J1(t)−
∫ +∞

0
(∂xv(t, x))2 dx

≤ −J2(t)− (2h)2/3α1J1(t).

As limt→+∞ J1(t) = 0, if limt→+∞ J2(t) = J2(+∞) > 0, we would conclude that the
derivative of J1 stays negative and bounded away from 0 for large t. This would indicate
that J1 decreases to −∞, contradicting the fact that limt→+∞ J1(t) = 0. We conclude
that limt→+∞ J2(t) = 0.

As J1 and J2 decrease to 0, we have

lim
t→+∞

∫ +∞

0
|v(t, x)|2 + |∂xv(t, x)|2dx = 0,

which means that v(t, ·) converges to 0 in H1 norm, as t→ +∞. By Sobolev injection in
dimension 1, there exists C > 0 such that

‖v(t, ·)‖+∞ ≤ C
∫ +∞

0
|v(t, x)|2 + |∂xv(t, x)|2dx,

which proves (3.A.4).
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This lemma can be easily extended to authorize any bounded starting function u0.

Corollary 3.A.3. Let h > 0 and u0 be a measurable bounded function. Setting, for x ≥ 0
and t ≥ 0

u(t, x) = Ex

[
u0(Bt)e−h

∫ t
0 Bsds;Bs ≥ 0, s ∈ [0, t]

]
,

we have

lim
t→+∞

sup
x∈R

∣∣∣∣∣e−h2/3

21/3 α1tu(t, x)− 〈u0, ψ
h
1 〉ψh1 (x)

∣∣∣∣∣ = 0. (3.A.8)

Proof. Let u0 be a measurable bounded function. We introduce, for x ≥ 0 and ε > 0

uε(x) = u(ε, x) = Ex

[
u0(Bε)e−h

∫ ε
0 Bsds;Bs ≥ 0, s ∈ [0, 1]

]
.

Observe that by the Markov property, for all t ≥ ε, we have

u(t, x)

= Ex

[
u0(Bt)e−h

∫ t
0 Bsds;Bs ≥ 0, s ∈ [0, t]

]
= Ex

[
EBt−ε

[
u0(Bε)e−h

∫ ε
0 Bsds;Bs ≥ 0, s ∈ [0, ε]

]
e−h

∫ t−ε
0 Bsds;Bs ≥ 0, s ∈ [0, t− ε]

]
= Ex

[
uε(Bt−ε)e−h

∫ t−ε
0 Bsds; s ∈ [0, t− ε]

]
.

Therefore, u(t, x) = uε(t− ε, x), wher uε(t, x) = Ex

[
uε(Bt)e−h

∫ t
0 Bsds; s ∈ [0, t]

]
.

As
∫ ε

0 Bsds is, under the law Px, a Gaussian random variable with mean εx and
variance ε3/3, we have

|uε(x)| ≤ ‖u0‖∞Ex

[
e−h

∫ ε
0 Bsds

]
≤ ‖u0‖∞e−εhxe

h2ε3
6 .

Moreover, as h > 0, by the Ballot lemma,

|uε(x)| ≤ ‖u0‖∞Px [Bs ≥ 0, s ∈ [0, ε]] ≤ Cε−1/2x.

For any ε > 0, there exists C > 0 such that for any x ≥ 0, uε(x) ≤ Cx ∧ e−hxε.
Therefore, we can find sequences (v(n)) and (w(n)) of functions in C2

0 ∩ L2, such that
(v(n))′, (v(n))′′, (w(n))′ and (w(n))′′ are in L2, that their second derivatives are bounded,
and that for all x ∈ R,

w(n) ≤ uε ≤ w(n) + 1
n

and v(n) − 1
n
≤ uε ≤ v(n).

For n ∈ N, x ≥ 0 and t ≥ 0, we set

v(n)(t, x) = Ex

[
v(n)(Bt)e−

∫ t
0 Bsds;Bs ≥ 0, s ∈ [0, t]

]
and

w(n)(t, x) = Ex

[
w(n)(Bt)e−

∫ t
0 Bsds;Bs ≥ 0, s ∈ [0, t]

]
.



154 Chapter 3. Branching random walk in slowly varying environment

Note that for all x ≥ 0 and t ≥ 0 we have w(n)(t, x) ≤ uε(t, x) ≤ v(n)(t, x). Moreover, by
Lemma 3.A.2, we have

lim
t→+∞

sup
x∈R

∣∣∣∣∣e−h2/3

21/3 α1tv(n)(t, x)− 〈v(n), ψh1 〉ψh1 (x)
∣∣∣∣∣ = 0,

and lim
t→+∞

sup
x∈R

∣∣∣∣∣e−h2/3

21/3 α1tw(n)(t, x)− 〈w(n), ψh1 〉ψh1 (x)
∣∣∣∣∣ = 0.

By the dominated convergence theorem, we have

lim
n→+∞

〈w(n), ψh1 〉 = lim
n→+∞

〈v(n), ψh1 〉 = 〈uε, ψh1 〉.

As a result, letting t, then n→ +∞, this yields

lim
t→+∞

sup
x∈R

∣∣∣∣∣e−h2/3

21/3 α1tuε(t, x)− 〈uε, ψh1 〉ψh1 (x)
∣∣∣∣∣ = 0.

For almost every x ≥ 0, letting ε→ 0, we have uε(x)→ u0(x), and thus by dominated con-
vergence theorem again, limε→0 〈uε, ψh1 〉 = 〈u0, ψh1 〉. As u(t, x) = uε(t− ε, x), we conclude
that

lim
t→+∞

sup
x∈R

∣∣∣∣∣e−h2/3

21/3 α1tu(t, x)− 〈u0, ψ
h
1 〉ψh1 (x)

∣∣∣∣∣ = 0.

This last corollary is enough to prove the exponential decay of the Laplace transform
of the area under a Brownian motion constrained to stay positive.

Proof of Lemma 3.2.3. Let h > 0, we set

u(t, x) = Ex

[
e−h

∫ t
0 Bsds;Bs ≥ 0, s ∈ [0, t]

]
,

and µh =
∫+∞

0 ψh1 (x)dx < +∞. By Corollary 3.A.3, we have

lim
t→+∞

sup
x∈[0,+∞)

∣∣∣∣∣e−h2/3

21/3 α1tu(t, x)− µhψh1 (x)
∣∣∣∣∣ = 0.

As ψh1 is bounded, we have

lim sup
t→+∞

sup
x≥0

1
t

log u(t, x) = h2/3

21/3 α1. (3.A.9)

Similarly, for 0 < a < b and 0 < a′ < b′, we set

ũ(t, x) = Ex

[
1{Bt∈[a′,b′]}e

−h
∫ t

0 Bsds;Bs ≥ 0, s ∈ [0, t]
]

and µ̃h =
∫ b′
a′ ψ

h
1 (x)dx > 0. By Corollary 3.A.3 again, we have

lim
t→+∞

sup
x≥0

∣∣∣∣∣e−h2/3

21/3 α1tũ(t, x)− µ̃hψh1 (x)
∣∣∣∣∣ = 0.
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In particular, as infx∈[a,b] ψ
h
1 > 0, we have

lim inf
t→+∞

inf
x∈[a,b]

1
t

log ũ(t, x) = h2/3

21/3 α1. (3.A.10)

As ũ ≤ u, mixing (3.A.9) and (3.A.10), we conclude that

lim
t→+∞

sup
x≥0

1
t

log u(t, x) = lim
t→+∞

inf
x∈[a,b]

1
t

log ũ(t, x) = h2/3

21/3 α1.

3.A.2 The area under a Brownian motion constrained to stay in an
interval

The main result of this section is that:
For all h ∈ R, 0 < a < b < 1 and 0 < a′ < b′ < 1, we have

lim
t→+∞

1
t

sup
x∈[0,1]

log Ex

[
e−h

∫ t
0 Bsds;Bs ∈ [0, 1], s ≤ t

]
= lim

t→+∞
1
t

inf
x∈[a,b]

log Ex

[
e−h

∫ t
0 Bsds1{Bt∈[a′,b′]};Bs ∈ [0, 1], s ≤ t

]
= Ψ(h), (3.A.11)

where Ψ is the function defined in (3.1.17).
The organisation, the results and techniques of the section are very similar to Sec-

tion 3.A.1, with a few exceptions. First, to exhibit an orthonormal basis of eigenfunctions,
we need some additional Sturm-Liouville theory, that can be found in [Zet05]. Secondly,
we work on [0, 1], which is a compact set. This lightens the analysis of the PDE obtained
while proving Lemma 3.A.5.

In this section, we write L2 = L2([0, 1]) for the set of square-integrable measurable
functions on [0, 1], equipped with the scalar product

〈f, g〉 =
∫ 1

0
f(x)g(x)dx.

Moreover, we write C2
0 = C2

0([0, 1]) for the set of continuous, twice differentiable func-
tions w on [0, 1] such that w(0) = w(1) = 0. Finally, for any continuous function w,
‖w‖∞ = supx∈[0,1] |w(x)| and ‖w‖2 = 〈w,w〉1/2. We introduce in a first time a new
specific orthogonal basis of [0, 1].

Lemma 3.A.4. Let h > 0. The set of zeros of the function

λ 7→ Ai(λ)Bi(λ+ (2h)1/3)−Ai(λ+ (2h)1/3)Bi(λ)

is countable and bounded from above by 0, that are listed in the decreasing order as follows:
λh1 > λh2 > · · · . In particular, we have

λh1 = sup
{
λ ≤ 0 : Ai(λ)Bi(λ+ (2h)1/3) = Ai(λ+ (2h)1/3)Bi(λ)

}
. (3.A.12)

Additionally, for n ∈ N and x ∈ [0, 1], we define

ϕhn(x) =
Ai
(
λhn

)
Bi
(
λhn + (2h)1/3x

)
−Ai

(
λhn + (2h)1/3x

)
Bi
(
λhn

)
‖Ai (λhn) Bi (λhn + ·)−Ai (λhn + ·) Bi (λhn)‖2

. (3.A.13)

The following properties are verified:
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• (ϕhn, n ∈ N) forms an orthogonal basis of L2;
• limn→+∞ λhnn

−2 = −π2

2 ;
• for all µ ∈ R and ϕ ∈ C2

0 , if{
∀x ∈ (0, 1), 1

2ϕ
′′(x)− hxϕ(x) = µϕ(x)

ϕ(0) = ϕ(1) = 0,
(3.A.14)

then either ϕ = 0, or there exist n ∈ N and c ∈ R such that µ = h2/3

21/3 λ
h
n and ϕ = cϕhn.

Proof. We consider equation (3.A.14). This is a Sturm-Liouville problem with separated
boundary conditions, that satisfies the hypotheses of Theorem 4.6.2 of [Zet05]. Therefore,
there is an infinite but countable number of real numbers (µhn, n ∈ N) such that the
differential equation {

∀x ∈ (0, 1), 1
2ϕ
′′(x)− hxϕ(x) = µhnϕ(x)

ϕ(0) = ϕ(1) = 0,

admit non-zero solutions. For all n ∈ N, we write ϕhn for one of such solutions normalized
so that

∥∥∥ϕhn∥∥∥2
= 1. For every solution (λ, ϕ) of (3.A.14), there exist n ∈ N and c ∈ R such

that λ = µhn and ϕ = cϕhn. Moreover, since (ϕhn, n ∈ N) forms an orthonormal basis of L2.
By Theorem 4.3.1. of [Zet05], we have limn→+∞ λhnn

−2 = −π2

2 .
We now identify (µhn) and (ϕhn). By the definition of Airy functions, given µ ∈ R, the

solutions of {1
2ϕ
′′(x)− hxϕ(x) = µϕ(x)

ϕ(0) = 0,
are, up to a multiplicative constant

x 7→ Bi
(

21/3

h2/3µ
)

Ai
(

21/3

h2/3µ+ (2h)1/3x
)
−Ai

(
21/3

h2/3µ
)

Bi
(

21/3

h2/3µ+ (2h)1/3x
)
.

This function is null at point x = 1 if and only if

Bi
(

21/3

h2/3µ
)

Ai
(

21/3

h2/3µ+ (2h)1/3
)
−Ai

(
21/3

h2/3µ
)

Bi
(

21/3

h2/3µ+ (2h)1/3
)

= 0.

Therefore, the zeros of

λ 7→ Ai(λ)Bi(λ+ (2h)1/3)−Ai(λ+ (2h)1/3)Bi(λ),

can be listed in the decreasing order as follows: λh1 > λh2 > . . ., and we have λhn = 21/3

h2/3µ
h
n.

Moreover, we conclude that the eigenfunction ϕhn described above is proportional to

x 7→ Ai
(
λhn

)
Bi
(
λhn + (2h)1/3x

)
−Ai

(
λhn + (2h)1/3x

)
Bi
(
λhn

)
,

and has L2 norm 1, which validates the formula (3.A.13).
We have left to prove that for all n ≥ 1, λhn < 0. To do so, we observe that if (µ, ϕ) is

a solution of (3.A.14), we have

µ

∫ 1

0
ϕ(x)2dx =

∫ 1

0
ϕ(x)1

2∂
2
xϕ(x)−

∫ 1

0
xϕ(x)2dx

= −1
2

∫ 1

0
(∂xϕ(x))2dx− h

∫ 1

0
xϕ(x)2dx < 0,

which proves that for all n ∈ N, µhn < 0, so λh1 < 0 which justifies (3.A.12).
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We observe that once again, the eigenfunction ϕh1 corresponding to the largest eigen-
vector h2/3

21/3 λ
h
n is a non-negative function on [0, 1], and positive on (0, 1).

Using this lemma, we can obtain a precise asymptotic of the Laplace transform of the
area under a Brownian motion.

Lemma 3.A.5. Let h > 0 and u0 ∈ C2([0, 1]) such that u0(0) = u0(1) = 0. We define,
for t ≥ 0 and x ≥ 0

u(t, x) = Ex

[
u0(Bt)e−h

∫ t
0 Bsds;Bs ∈ [0, 1], s ∈ [0, t]

]
.

We have
lim

t→+∞
sup
x∈R

∣∣∣∣∣e−h2/3

21/3 λ
h
1 tu(t, x)− 〈u0, ϕ

h
1〉ϕh1(x)

∣∣∣∣∣ = 0. (3.A.15)

Proof. This proof is very similar to the proof of Lemma 3.A.2. For h > 0, by the Feynman-
Kac formula, u is the unique solution of the equation

∀t > 0,∀x ∈ (0, 1), ∂tu(t, x) = 1
2∂

2
xu(t, x)− hxu(t, x)

∀x ∈ [0, 1], u(0, x) = u0(x)
∀t ≥ 0, u(t, 0) = limx→+∞ u(t, x) = 0.

(3.A.16)

We define the operator

Gh :
C2

0 → C
w 7→

(
x 7→ 1

2w
′′(x)− hxw(x), x ∈ [0, 1]

)
,

By Lemma 3.A.4, we know that (ϕhn) forms an orthogonal basis of L2 consisting of eigen-
vectors of Gh. In particular, for all n ∈ N,

Ghϕhn = h2/3

21/3 λ
h
nϕ

h
n.

For all w ∈ C2
0 , by integration by parts, we have

〈Ghw,ϕhn〉 = 1
2

∫ 1

0
w′′(x)ϕhn(x)dx− h

∫ +∞

0
xw(x)ϕhn(x)dx

= 1
2

∫ 1

0
w(x)(ϕhn)′′(x)dx− h

∫ +∞

0
xw(x)ϕhn(x)dx

=
∫ 1

0
w(x)(Ghϕhn)(x)dx

= h2/3

21/3 λ
h
n〈w,ϕhn〉.

Therefore, decomposing w with respect to the basis (ϕhn), we obtain

〈Ghw,w〉 = 〈Ghw,
+∞∑
n=1
〈ϕhn, w〉ϕhn〉 =

+∞∑
n=1
〈w,ϕhn〉〈Ghw,ϕhn〉 =

+∞∑
n=1

h2/3

21/3 λ
h
n〈w,ϕhn〉

2
.

As (λhn) is a decreasing sequence, we get

〈Ghw,w〉 ≤
+∞∑
n=1

h2/3

21/3 λ
h
1〈w,ϕhn〉

2 ≤ h2/3

21/3 λ
h
1〈w,w〉. (3.A.17)
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In addition, if 〈w,ϕhn〉 = 0, the inequality can be strengthened in

〈Ghw,w〉 ≤
+∞∑
n=2

h2/3

21/3 λ
h
2〈w,ϕhn〉

2 ≤ h2/3

21/3 λ
h
2〈w,w〉. (3.A.18)

Using these results, we prove (3.A.15). For x ∈ [0, 1] and t ≥ 0, we set

v(t, x) = e
−h2/3

21/3 λ
h
1 tu(t, x)− 〈u0, ϕ

h
1〉ϕh1 .

We observe first that 〈v(0, ·), ϕh1〉 = 0 by definition, and that for all t ≥ 0,

∂t〈v(t, ·), ϕh1〉 = −h
2/3

21/3 λ
h
1e
−h2/3

21/3 λ
h
1 t〈u(t, x), ϕh1〉+ e

−h2/3

21/3 λ
h
1 t〈∂tu(t, x), ϕh1〉

= −h
2/3

21/3 λ
h
1e
−h2/3

21/3 λ
h
1 t〈u(t, x), ϕh1〉+ e

−h2/3

21/3 λ
h
1 t〈Ghu(t, x), ϕh1〉

= −h
2/3

21/3 λ
h
1e
−h2/3

21/3 λ
h
1 t〈u(t, x), ϕh1〉+ h2/3

21/3 λ
h
1e
−h2/3

21/3 λ
h
1 t〈u(t, x), ϕh1〉

= 0.

which proves that for all t ≥ 0, 〈v(t, ·), ϕh1〉 = 0.
We now prove that the functions

J1(t) =
∫ 1

0
|v(t, x)|2dx and J2(t) =

∫ 1

0
|∂xv(t, x)|2dx,

are non-negative, decreasing, and converge to 0 as t→ +∞. Note that

∂tJ1(t) =
∫ 1

0
2v(t, x)∂tv(t, x)dx

=
∫ 1

0
2v(t, x)

[
−h

2/3

21/3 λ
h
1e
−h2/3

21/3 λ
h
1 tu(t, x) + e

−h2/3

21/3 λ
h
1 t∂tu(t, x)

]
dx

=
∫ 1

0
2v(t, x)

[
−h

2/3

21/3 λ
h
1v(t, x) + Ghv(t, x)

]
dx

= 2
[
−h

2/3

21/3 λ
h
1〈v(t, ·), v(t, ·)〉+ 〈v(t, ·),Ghv(t, ·)〉

]
,

and as 〈v(t, ·), ϕh1〉 = 0, we have

∂tJ1(t) ≤ (2h)2/3(λh2 − λh1)J1(t).

Therefore, J1(t) decreases to 0 as t→ +∞. Similarly,

∂tJ2(t) =
∫ 1

0
2∂xv(t, x)∂t∂xv(t, x)dx

= 2
∫ 1

0
∂xv(t, x)∂x∂tv(t, x)dx

= 2
∫ 1

0
∂xv(t, x)

[
−h

2/3

21/3 λ
h
1∂xv(t, x) + ∂xGhv(t, x)

]
dx

= −h
2/3

21/3 λ
h
1〈∂xv(t, ·), ∂xv(t, ·)〉+ 2〈∂xv(t, ·),Gh∂xv(t, ·)〉 − 2h

∫ 1

0
v(t, x)∂xv(t, x)dx︸ ︷︷ ︸
v(t,1)2−v(t,0)2

≤ 0.
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As a consequence, J2 is decreasing and non-negative, is therefore convergent, as t→ +∞
to J2(+∞). In addition, we can bound the derivative of J1 as follows

∂tJ1(t) = 2
[
−h

2/3

21/3 λ
h
1〈v(t, ·), v(t, ·)〉+ 〈v(t, ·),Ghv(t, ·)〉

]

= −(2h)2/3λh1J1(t) +
∫ 1

0
v(t, x)∂2

xv(t, x)dx−
∫ 1

0
hxv(t, x)2dx

≤ −(2h)2/3λh1J1(t)−
∫ 1

0
(∂xv(t, x))2 dx

≤ −J2(t)− (2h)2/3λh1J1(t).

As J1(t)→ 0, if J2(t)→ J2(+∞) > 0, then the derivative of J1 stays negative and bounded
away from 0, which would indicate that J1 decreases to −∞, contradicting the fact that
J1 ≥ 0. We conclude that limt→+∞ J2(t) = 0.

Finally, by Cauchy-Schwarz inequality, for all x ∈ [0, 1], we have

|v(t, x)| ≤
∫ x

0
|∂xv(t, x)|dx ≤ x1/2

(∫ x

0
|∂xv(t, x)|2dx

)1/2
≤ J2(t),

so limt→+∞ ‖v(t, ·)‖∞ = 0, which proves (3.A.4).

This lemma can be easily extended to authorize more general starting function u0.

Corollary 3.A.6. Let h > 0 and u0 be a measurable bounded function. Setting, for x ≥ 0
and t ≥ 0

u(t, x) = Ex

[
u0(Bt)e−h

∫ t
0 Bsds;Bs ∈ [0, 1], s ∈ [0, t]

]
,

we have

lim
t→+∞

sup
x∈R

∣∣∣∣∣e−h2/3

21/3 λ
h
1 tu(t, x)− 〈u0, ϕ

h
1〉ϕh1(x)

∣∣∣∣∣ = 0. (3.A.19)

Proof. Let u0 be a measurable bounded function. We define, for x ≥ 0 and ε > 0

uε(x) = u(ε, x) = Ex

[
u0(Bε)e−h

∫ ε
0 Bsds;Bs ∈ [0, 1], s ∈ [0, 1]

]
.

Observe that by the Markov property, for all t ≥ ε, we have

u(t, x) = Ex

[
u0(Bt)e−h

∫ t
0 Bsds;Bs ∈ [0, 1], s ∈ [0, t]

]
= Ex

[
uε(Bt−ε)e−h

∫ t−ε
0 Bsds;Bs ∈ [0, 1], s ∈ [0, t− ε]

]
.

Therefore, u(t, x) = uε(t− ε, x), setting uε(t, x) = Ex

[
uε(Bt)e−h

∫ t
0 Bsds; s ∈ [0, t]

]
.

As h > 0, for all ε > 0 and x ∈ [0, 1], we have

|uε(x)| ≤ ‖u0‖∞Px [Bs ∈ [0, 1], s ∈ [0, ε]]
≤ C max (Px (Bs ≥ 0, s ∈ [0, ε]) ,Px (Bs ≤ 1, s ∈ [0, ε]))
≤ Cε−1/2 max(x, 1− x).
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As a consequence, we can find sequences (v(n)) and (w(n)) of functions in C2
0 such that

for all x ∈ R
w(n) ≤ uε ≤ w(n) + 1

n
and v(n) − 1

n
≤ uε ≤ v(n).

For n ∈ N, x ≥ 0 and t ≥ 0, we denote by

v(n)(t, x) = Ex

[
v(n)(x)e−

∫ t
0 Bsds;Bs ∈ [0, 1], s ∈ [0, t]

]
and by w(n)(t, x) = Ex

[
w(n)(x)e−

∫ t
0 Bsds;Bs ∈ [0, 1], s ∈ [0, t]

]
.

For all x ≥ 0 and t ≥ 0 we have w(n)(t, x) ≤ uε(t, x) ≤ v(n)(t, x). Moreover Lemma 3.A.5
gives

lim
t→+∞

sup
x∈R

∣∣∣∣∣e−h2/3

21/3 λ
h
1 tv(n)(t, x)− 〈v(n), ϕh1〉ϕh1(x)

∣∣∣∣∣ = 0.

lim
t→+∞

sup
x∈R

∣∣∣∣∣e−h2/3

21/3 λ
h
1 tw(n)(t, x)− 〈w(n), ϕh1〉ϕh1(x)

∣∣∣∣∣ = 0.

By the dominated convergence theorem, we have

lim
n→+∞

〈w(n), ϕh1〉 = lim
n→+∞

〈v(n), ϕh1〉 = 〈uε, ϕh1〉,

which yields

lim
t→+∞

sup
x∈R

∣∣∣∣∣e−h2/3

21/3 λ
h
1 tuε(t, x)− 〈uε, ϕh1〉ϕh1(x)

∣∣∣∣∣ = 0.

For all x ≥ 0, we have uε(x)→ u0(x) as ε→ 0. By dominated convergence theorem again

lim
ε→0
〈uε, ϕh1〉 = 〈u0, ϕ

h
1〉,

as u(t, x) = uε(t− ε, x), we conclude that

lim
t→+∞

sup
x∈R

∣∣∣∣∣e−h2/3

21/3 λ
h
1 tu(t, x)− 〈u0, ϕ

h
1〉ϕh1(x)

∣∣∣∣∣ = 0.

Proof of Lemma 3.2.4. We begin with the case h > 0. We set

u(t, x) = Ex

[
e−h

∫ t
0 Bsds;Bs ∈ [0, 1], s ∈ [0, t]

]
and µh =

∫ 1
0 ϕ

h
1(x)dx < +∞. By Corollary 3.A.3, we have

lim
t→+∞

sup
x≥0

∣∣∣∣∣e−h2/3

21/3 λ
h
1 tu(t, x)− µhϕh1(x)

∣∣∣∣∣ = 0.

As ϕh1 is bounded,
lim sup
t→+∞

sup
x≥0

1
t

log u(t, x) = 2−1/3h2/3λh1 . (3.A.20)
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Similarly, for 0 < a < b < 1 and 0 < a′ < b′ < 1, we set

ũ(t, x) = Ex

[
1{Bt∈[a′,b′]}e

−h
∫ t

0 Bsds;Bs ∈ [0, 1], s ∈ [0, t]
]
,

and µ̃h =
∫ b′
a′ ϕ

h
1(x)dx > 0. Corollary 3.A.3 implies that

lim
t→+∞

sup
x≥0

∣∣∣∣∣e−h2/3

21/3 λ
h
1 tũ(t, x)− µ̃hϕh1(x)

∣∣∣∣∣ = 0.

In particular, as infx∈[a,b] ϕ
h
1 > 0, we have

lim inf
t→+∞

inf
x∈[a,b]

1
t

log ũ(t, x) = h2/3

21/3 λ
h
1 . (3.A.21)

Using the fact that ũ ≤ u, (3.A.20) and (3.A.21) lead to

lim
t→+∞

sup
x≥0

1
t

log u(t, x) = lim
t→+∞

inf
x∈[a,b]

1
t

log ũ(t, x) = h2/3

21/3 λ
h
1 .

Moreover, by definition of Ψ, for all h > 0 we have Ψ(h) = h2/3

21/3 λ
h
1 , and (3.2.10) is

a consequence of the definition of λh1 . Ussing this alternative definition and the implicit
function theorem, we observe immediately that Ψ is differentiable on (0,+∞). We compute
the asymptotic of Ψ as h increases to +∞ and we get

Ψ(h)
h2/3 = 2−1/3λh1 = 2−1/3 sup

{
x ∈ R : Bi (λ) Ai

(
λ+ (2h)1/3

)
= Ai (λ) Bi

(
λ+ (2h)1/3

)}
.

We recall that λh1 < 0, we have Ai(λh1) = Bi(λ)Ai(λ+(2h)1/3)
Bi(λ+(2h)1/3) and log Bi(x) ∼x→+∞ x2/3.

Consequently,

lim
h→+∞

sup
λ≥α2

Bi (λ) Ai
(
λ+ (2h)1/3

)
Bi
(
λ+ (2h)1/3) = 0.

For all ε > 0, there exists δ > 0 small enough such that{
x ∈ [α1+α2

2 , 0
]

: |Ai(x)| ≤ δ} ⊂ [α1 − ε, α1 + ε].

Moreover, there exists H > 0 such that suph≥H,λ≥α2

∣∣∣∣Bi(λ)Ai(λ+(2h)1/3)
Bi(λ+(2h)1/3)

∣∣∣∣ ≤ δ. As a result,

for all h ≥ H,
∣∣∣λh1 − α1

∣∣∣ ≤ ε, which is enough to conclude that limh→+∞
Ψ(h)
h2/3 = 2−1/3α1.

We now observe that if h < 0, then

Ex

[
u(Bt)e−h

∫ t
0 Bsds;Bs ∈ [0, 1], s ∈ [0, t]

]
= Ex

[
u(Bt)e−h

∫ t
0 (Bs−1+1)ds;Bs − 1 ∈ [−1, 0], s ∈ [0, t]

]
= e−ht Ex−1

[
u(Bt + 1)e−h

∫ t
0 Bsds;Bs ∈ [−1, 0], s ∈ [0, t]

]
= e−ht E1−x

[
u(1−Bt)eh

∫ t
0 Bsds;Bs ∈ [0, 1], s ∈ [0, t]

]
.
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For all 0 < a < b < 1 and 0 < a′ < b′ < 1, we have

lim
t→+∞

sup
x∈[0,1]

1
t

log Ex

[
e−h

∫ t
0 Bsds;Bs ∈ [0, 1], s ∈ [0, t]

]
= lim

t→+∞
inf

x∈[a,b]

1
t

log Ex

[
1{Bt∈[a′,b′]}e

−h
∫ t

0 Bsds;Bs ∈ [0, 1], s ∈ [0, t]
]

= −h+ Ψ(−h).

We also conclude that for h < 0, Ψ(h) = Ψ(−h)− h, and in particular, Ψ is differentiable
on (−∞, 0). Moreover, at point 0, its right derivative and its left derivative do not match,
Ψ′l(0) = Ψ′r(0) + 1.

Finally, we take care of the case h = 0. By [IM74],

Ex

[
1{Bt∈[a,b]}e

−0
∫ t

0 Bsds;Bs ∈ [0, 1], s ∈ [0, t]
]

= Px [Bt ∈ [a, b], Bs ∈ [0, 1], s ∈ [0, t]]

=
∫ b

a
2

+∞∑
n=1

e−n
2 π2

2 t sin(nπx) sin(nπz)dz

= 2
+∞∑
n=1

sin(nπx)cos(nπa)− cos(nπb)
nπ

e−n
2 π2

2 t.

As a consequence,

lim
t→+∞

sup
x∈[0,1]

1
t

log Px [Bs ∈ [0, 1], s ∈ [0, t]]

= lim
t→+∞

inf
x∈[a,b]

1
t

log Px
[
Bt ∈ [a′, b′], Bs ∈ [0, 1], s ∈ [0, t]

]
= Ψ(0) = −π

2

2 .

3.B Notation
• Point processes
– Lt: law of a point process;
– Lt: point process with law Lt;
– κt: log-Laplace transform of Lt;
– κ∗t : Fenchel-Legendre transform of Lt.
• Paths
– C: set of continuous functions on [0, 1];
– D: set of càdlàg functions on [0, 1], continuous at point 1;
– b

(n)
k = ∑k

j=1 bj/n: path of speed profile b ∈ D;
– K∗(b)t =

∫ t
0 κ
∗
s(bs)ds: energy associated to the path of speed profile b;

– ϕt = ∂aκ
∗
t (bt): parameter associated to the path of speed profile b;

– E(ϕ)t =
∫ t

0 ϕs∂θκs(ϕs)−κs(ϕs)ds: quantity equal to K∗(b)t, energy associated to
the path of parameter function ϕ;

– R = {b ∈ D : ∀t ∈ [0, 1],K∗(b)t ≤ 0}: set of speed profiles b such that b(n) is fol-
lowed until time n by at least one individual with positive probability.

• Branching random walk
– T: genealogical tree of the process;



3.B. Notation 163

– u ∈ T: individual in the process;
– V (u): position of the individual u;
– |u|: generation at which u belongs;
– uk: ancestor of u at generation k;
– ∅: initial ancestor of the process;
– if u 6= ∅, πu: parent of u;
– Ω(u): set of children of u;
– Lu = (V (v)− V (u), v ∈ Ω(u)): point process of the displacement of the children;
– Mn = max|u|=n V (u) maximal displacement at the nth generation in (T, V );
– Λn = min|u|=n maxk≤n b

(n)
k −V (uk): consistent maximal displacement with respect

to the path b(n);
– Wϕ

n = {u ∈ T : ∀k ∈ Fn, V (uk) ≥ b(n)
k + fk/nn

1/3}: tree of a BRWls with selection
above the curve b(n)

. + n1/3f./n at times in Fn.
• The optimal path
– v∗ = supb∈R

∫ 1
0 bsds: speed of the BRWls;

– a ∈ R such that
∫ 1

0 asds = v∗: optimal speed profile;
– θt = ∂aκ

∗
s(as): parameter of the optimal path;

– σ2
t = ∂2

θκt(θt): variance of individuals following the optimal path;
– θ̇: Radon-Nikodým derivative of dθ with respect to the Lebesgue measure;

– l∗ = α12−1/3 ∫ 1
0

(θ̇sσs)2/3

θs
ds: n1/3 correction of the maximal displacement;

– vt = infθ>0
κt(θ)
θ : natural speed profile.

• Airy functions
– Ai(x) = 1

π

∫+∞
0 cos

(
s3

3 + xs
)
ds: Airy function of the first kind;

– Bi(x) = 1
π

∫+∞
0 exp

(
− s3

3 + xs
)

+ sin
(
s3

3 + xs
)
ds: Airy function of the second

kind;
– (αn): zeros of Ai, listed in the decreasing order;
– Ψ(h) = limt→+∞ 1

t log supx∈[0,1] Ex

[
e−h

∫ t
0 Bsds;Bs ∈ [0, 1], s ∈ [0, t]

]
.

• Random walk estimates
– (Xn,k, n ∈ N, k ≤ n): array of independent random variables;
– S

(n)
k = x+∑k

j=1Xn,j : time-inhomogeneous random walk starting from x;
– Given f, g ∈ C, and 0 ≤ j ≤ n,

In(j) =



[
fj/nn

1/3, gj/nn
1/3
]

if j ∈ Fn ∩Gn,[
fj/n,+∞

[
if j ∈ Fn ∩Gcn,]

−∞, gj/nn1/3
]

if j ∈ F cn ∩Gn,
R otherwise;

– Ĩ
(n)
j = I

(n)
j ∩ [−n2/3, n2/3].

• Many-to-one lemma
– Pk,x: law of the BRWls of length n− k with environment (L(k+j)/n, j ≤ n− k);
– Fk = σ(u, V (u), |u| ≤ k): filtration of the branching random walk;
– Many-to-one lemma: Lemma 3.3.1.
• Random walk estimates
– AF,Gn (f, g): individuals staying in the path b(n) + I(n) until some time then exiting
by the upper boundary;
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– BF,Gn (f, g, x): individuals that stayed in the path b
(n) + I(n) at any time k ≤ n,

that are above b(n)
n + (g1 − x)n1/3 at time n.



CHAPTER 4

The maximal displacement of
a branching random walk
in random environment

“Un homme tirait au sort toutes ses décisions.
Il ne lui arriva pas plus de mal qu’aux autres qui réfléchissent.”

Paul Valéry – Choses tues.

Abstract
The behaviour of the tip of supercritical branching random walk (BRW) has been a
subject of intense studies for a long time. But only recently, starting with the work
of [FZ12a], the case of time-inhomogeneous branching has gained focus. The main
contribution of this chapter is to analyse a model in which the branching law at the
nth generation is a random variable Ln sampled independently from a distribution
of point measures (representing the displacement of the children). We present an
asymptotic of the maximal displacement at time n up to a logarithmic term. The
first, ballistic, order is established for a much more general class of models. As a tool,
we derive a result of independent interest concerning the probability for a Brownian
motion to stay above another Brownian motion path.

Nota: This chapter is based on a joint work in collaboration with Piotr Miłos 1, currently
unpublished.

4.1 Introduction
We recall that a branching random walk in random environment on R is a model

defined as follows. Let (Ln, n ∈ N) be a sequence of point processes laws 2 that we call
the environment of the branching random walk. It starts with one individual located at
the origin at time 0. This individual dies at time 1 giving birth to children, positioned
according to a realisation a point process of law L1. Similarly, at each time n every
individual alive at generation n − 1 dies giving birth to children. The position of the
children with respect to their parent are given by an independent realisation of a point
process with law Ln. We denote by T the (random) genealogical tree of the process.

1. Faculty of Mathematics, Informatics and Mechanics, University of Warsaw
2. I.e., probability distributions on

⋃
k∈N R

k.
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For a given individual u ∈ T we write V (u) ∈ R for the position of u and |u| for the
generation at which u is alive. The couple (T, V ) is called the branching random walk in
time-inhomogeneous environment.

We assume the time-inhomogeneous Galton-Watson tree to be supercritical (i.e. the
number of individuals alive at generation n grows exponentially fast), that does not become
extinct (we assume that the number of offspring is always at least 1). We take interest in
the maximal displacement at time n of (T, V ), defined by

Mn = max
u∈T:|u|=n

V (u). (4.1.1)

In this chapter, the environment of the branching random walk is sampled randomly.
More precisely, we set (Ln, n ∈ N) a sequence of i.i.d. random laws of point processes.
A branching random walk in random environment (BRWre) is a branching random walk
with the time-inhomogeneous environment (Ln, n ∈ N). Conditionally on this sequence,
we write PL for the law of this BRWre (T, V ) and EL for the corresponding expectation.
The joint probability of the environment and the branching random walk is written P,
with the corresponding expectation E. For the clarity of exposition, we present the most
important results deferring to the subsequent sections number of generalisations which
require additional notation.

Some notation. Given a sequence (xn) ∈ RN, we recall that OP(xn) is a sequence of
random variables (Xn, n ∈ N) verifying

∀ε > 0,∃K > 0 : sup
n∈N

P (Xn ≥ Kxn) ≤ ε.

Similarly, oP(xn) denotes a generic sequence of random variables (Xn, n ∈ N) such that
Xn
xn
→ 0 in P-probability. Moreover C and c stand for two positive constants respectively

large enough and small enough, that may change from line to line.
To ensure the non-extinction of the BRWre (T, V ), we assume that

PL ({u ∈ T : |u| = 1} = ∅) = 0 a.s. (4.1.2)

and using [BM08], a sufficient condition for the random tree T to be supercritical is

∃C > 0 : EL
(
# {u ∈ T : |u| = 1}2

)
≤ C a.s. and E (log EL(#{|u| = 1})) > 0. (4.1.3)

Under (4.1.2) and (4.1.3), by [BM08, Theorem 1.1] we have

lim inf
n→+∞

(#{u ∈ T : |u| = n})1/n ≥ exp [E [log EL(#{|u| = 1})]] PL − a.s. (4.1.4)

For n ∈ N, we introduce the log-Laplace transform κn : R+ → R∪{+∞} of Ln, defined
for θ ∈ R+ by

κn(θ) = log EL

∑
`∈Ln

eθ`

 , (4.1.5)

where Ln is a point process on R distributed according to the law Ln. As the point process
Ln is a.s. non-empty we have κn(θ) > −∞ a.s. For a fixed θ > 0, (κn(θ), n ∈ N) is an
i.i.d. sequence of random variables under law P. We assume that E (κ1(θ)−) < +∞ for
all θ > 0, and we define κ : (0,+∞)→ R ∪ {+∞} by κ(θ) = E (κn(θ)).
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As κ1 is the log-Laplace transform of a measure on R, κ is a convex function, that
is C∞ on the interior of the interval {θ > 0 : κ(θ) < +∞}. Assuming this interval is
non-empty, we define

v = inf
θ>0

κ(θ)
θ
, (4.1.6)

and we assume there exists θ∗ > 0 such that κ is differentiable at point θ∗ (implying that
κ is finite in a neighbourhood of θ∗) and

θ∗κ′(θ∗)− κ(θ∗) = 0. (4.1.7)

Under this assumption, by dominated convergence, we have v = κ′(θ∗) = E [κ′1(θ∗)]. We
introduce two variance terms, that we assume to be finite

σ2
Q := (θ∗)2 E

[
κ′′1(θ∗)

] ∈ (0,+∞) and σ2
A := Var

[
θ∗κ′1(θ∗)− κ1(θ∗)

] ∈ [0,+∞).
(4.1.8)

To compute the asymptotic behaviour of Mn we introduce two additional integrability
assumptions:

E

EL


∑
`∈L1

(
1 + eθ

∗`
)2


 < +∞, (4.1.9)

as well as

∃µ > 0 : µEL

∑
`∈L1

|`|3
(
e(θ∗+µ)` + e(θ∗−µ)`

) ≤ EL

∑
`∈L1

`2eθ
∗`

 a.s. (4.1.10)

When the reproduction law does not depend on the time, under mild integrability
assumptions, Hu and Shi [HS09] and Addario-Berry and Reed [ABR09] independently
proved the existence of a second order logarithmic correction to first order behaviour of
Mn. Our aim is to extend the scope of this result to the random environment setting. We
introduce Kn = ∑n

k=1 κk(θ∗). This quantity depends only of the environment. Being a
random walk, we have Kn = nv +OP(n1/2). The main result of this article is

Theorem 4.1.1. Under the assumptions (4.1.2), (4.1.3), (4.1.7), (4.1.8), (4.1.9) and
(4.1.10), there exists ϕ ≥ 3

2θ∗ , defined in (4.1.11) below, such that

lim
n→+∞

PL
[
Mn − 1

θ∗Kn ≥ −β logn
]

=
{

1 if β > ϕ

0 if β < ϕ
in probability.

A direct consequence of this theorem is the asymptotic behaviour of Mn under law P.

Corollary 4.1.2. Under the assumptions of Theorem 4.1.1, we have

lim
n→+∞

Mn − 1
θ∗Kn

logn = −ϕ in P− probability.

Most likely, the convergence cannot be strengthen toMn = 1
θ∗Kn−ϕ logn+oPL(logn)

P-a.s. We expect the median of Mn under law P to exhibit some non-trivial logn-scale
fluctuations. This fact is discussed in more details in Section 4.3. We also expect that as
soon as σ2

A > 0, the random environment of the branching random walk slows down the
process. In other words, the constant ϕ is expected to be strictly greater than 3

2θ∗ the
logarithmic correction of the time-homogeneous branching random walk.
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It is well-known, see for example [AS10], that the constant 3
2 of the branching random

walk is directly related to the 3
2 exponent of the ballot theorem problem 3 i.e., for any

centred random walk (Sn) with finite variance, there exists A > 0 and C > 0 such that

P(Sn ≤ A,Sj ≥ −1, j ≤ n) ∼ Cn−3/2.

In analysis of our model, studying a random environment version of ballot theorem comes
out naturally. We believe that this result is of independent interest. We state here a toy-
model version of the main results (Theorem 4.2.3 for the Brownian motion and Theorem
4.3.1 for the random walk in random environment) which involve additional notation.

Theorem 4.1.3. Let B and W be two independent Brownian motions. There exists an
even convex function γ : R 7→ R+ such that for any β ∈ R we have

lim
t→+∞

log P (Bs ≥ βWs − 1, s ≤ t|W )
log t = −γ(β) a.s.

Moreover, infβ∈R γ(β) = γ(0) = 1
2 .

The case β = 0 reduces to the classical ballot theorem. The constant ϕ from Theorem
4.1.1 can be expressed using the function γ. We write

ϕ = 2
θ∗
γ
(
σA
σQ

)
+ 1

2θ∗ . (4.1.11)

In the case of a classical branching random walk, we have σ2
A = 0 thus ϕ = 3

2θ∗ , which is
consistent with the results of Hu and Shi, and Addario-Berry and Reed.

The rest of the paper is organised as follows. The next section is devoted to the proof of
Theorem 4.1.3, based on Kingman’s subadditive ergodic theorem. Section 4.3 extends the
random ballot theorem to random walks in random environment, using the Sakhanenko
exponential inequality, that links a sum of independent random variables with a Brownian
motion. We use this result to prove Theorem 4.1.1 in Section 4.4, applying a classical
tool of branching processes theory: the many-to-one lemma. It links the computation of
additive moments of the branching random walk with random walk estimates.

4.2 Asymptotic behaviour of the probability for a Brownian
motion to stay above another Brownian motion

Let B and W be two Brownian motions. We study in this section the asymptotic
behaviour as t→ +∞ of the probability for B to stay at any time above βW , conditionally
on the Brownian path W . We first prove the convergence in Theorem 4.1.3, that the
probability in question almost surely behaves as t−γ(β)+o(1). Secondly, taking this result
as input, we prove that it holds for a class of perturbed Brownian motions. This is used
in the next section to extend this random ballot theorem to random walks in random
environment. This section is concluded establishing some properties of γ.

To study these Brownian estimates, we use the Fortuin–Kasteleyn–Ginibre (FKG)
inequality for the Brownian motion, that we define now. We set f 4 g if for all 0 ≤ s1 ≤
s2 ≤ t, f(s2) − f(s1) ≤ g(s2) − g(s1). We say that a subset Γ of the set of continuous
functions of [0, t] is an increasing event if for any pair of continuous functions (f, g),

f 4 g and f ∈ Γ⇒ g ∈ Γ. (4.2.1)

3. For review on ballot theorems, one can look at [ABR08].
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The (strong) FKG inequality for the Brownian motion, proved in [Bar05], states that
increasing events are positively correlated, i.e. if Γ and Γ′ are two increasing events, then

P
(
(Bs, s ∈ [0, t]) ∈ Γ ∩ Γ′

) ≥ P ((Bs, s ∈ [0, t]) ∈ Γ) P
(
(Bs, s ∈ [0, t]) ∈ Γ′

)
. (4.2.2)

Note that for continuous functions f that verify f(0) = 0, the order 4 is weaker than the
order ≤ defined by f ≤ g if for all s ≤ t, f(s) ≤ g(s). Therefore, if Γ verifies

f ≤ g and f ∈ Γ⇒ g ∈ Γ, (4.2.3)

then Γ ∩ {f ∈ C : f(0) = 0} is an increasing event, and satisfies FKG inequality.

Lemma 4.2.1. Let B and W be two independent Brownian motions, there exists a func-
tion γ : R→ R+ such that for any β ∈ R and any a ≥ 0, we have

lim
t→+∞

log P
(
Bt ≥ at1/2 + βWt, Bs + 1 ≥ βWs, 0 ≤ s ≤ t

∣∣∣W)
log t = −γ(β) a.s. and in L1.

Proof. We first note that if β = 0, then

P (Bs + 1 ≥ βWs, 0 ≤ s ≤ t|W ) = P (Bs ≥ −1, s ≤ t) .
As limt→+∞ 1

log t log P(Bs ≥ −1, s ≤ t) = −1
2 , γ(0) exists and is equal to 1

2 . Moreover, by
standard Brownian estimate, for any a > 0 we have

lim
t→+∞

1
log t log P

(
Bt ≥ at1/2, Bs ≥ −1, 0 ≤ s ≤ t

)
= −1

2 a.s. and in L1.

We now assume that β 6= 0. For 0 ≤ s < t, we introduce

ps,t = P
(
Bes+u −Bes ≥ β(Wes+u −Wes) + es/2, u ≤ et − es
Bet −Bes ≥ β(Wet −Wes) + et/2

∣∣∣∣∣W
)
.

Note that

p0,log t
(d)=P

(
Bt−1 ≥ β(Wt −W1) + t1/2, Bu + 1 ≥ β(Wu+1 −W1), u ≤ t− 1

∣∣∣W)
,

a quantity closely related to the one we aim to bound.
For all 0 < s < t, applying the Markov property at time es − 1 we have

p0,t ≥ p0,sps,t. (4.2.4)

Moreover, by the scaling property of the Brownian motion,

ps,t
(d)=p0,t−s, (4.2.5)

and by independence of the increments of the Brownian motion, for all 0 ≤ s < t and
0 ≤ s′ < t′:

if [s, t] ∩ [s′, t′] = ∅, then ps,t and ps′,t′ are independent. (4.2.6)
We now prove that E(− log p0,1) < +∞. Writing T = e − 1, we observe that by the
inversion property of the Brownian motion,

P
(
∃t ≤ T : Wt ≥ at1/3

)
= P

(
∃t ≤ T : W 1

t
≥ at−2/3

)
= P

(
∃t ≥ T−1 : Wt ≥ at2/3

)
≤
∑
i≥1

P
(
∃t ∈

[
i
T ,

i+1
T

]
: Wt ≥ ai2/3

)
≤
∑
i≥1

exp
[
−Ca

2i4/3

i

]
≤ c exp (−Caα) ,



170 Chapter 4. Branching random walk in random environment

for some c, C, α > 0. In particular, writingX = supt∈[0,T ]
Wt

t1/3 , we have P(X ≥ a) ≤ e−Caα .
Thus,

E(− log p0,1)

=
+∞∑
a=0

E
[
− log p0,11{βX∈(a,a+1]}

]

≤
+∞∑
a=0

E
[
− log P(BT ≥ (a+ 1)T 1/3 + eT/2, Bs ≥ (a+ 1)s1/3 − 1, s ≤ T )1{βX∈(a,a+1]}

]

≤
+∞∑
a=0
− log P

(
BT ≥ (a+ 1)T 1/3 + eT/2, Bs ≥ (a+ 1)s1/3 − 1, s ≤ T

)
P(βX ≥ a).

Moreover, there exists c′, C ′ > 0 such that

P
(
BT ≥ aT 1/3 + eT/2, Bs ≥ as1/3 − 1, s ≤ T

)
≥ c′e−C′a5

,

which leads to

E(− log p0,1) ≤
+∞∑
a=0

C ′a5e−C
(
a
β

)α
< +∞. (4.2.7)

As a result, by Kingman’s subadditive ergodic theorem (see e.g. [Kal02, Theorem
10.22]), (4.2.4), (4.2.5), (4.2.6) and (4.2.7) imply there exists γ(β) ∈ R+ such that

lim
t→+∞

− log p0,t
t

= γ(β) a.s. and in L1. (4.2.8)

We use (4.2.8) to obtain the asymptotic behaviour, as t→ +∞, of

p̃0,t = P
(
Bu+1 −B1 + 1 ≥ β(Wu+1 −W1), u ≤ et − 1

∣∣∣W)
.

To do so, we apply the FKG inequality for the Brownian motion, we have

p̃0,t ×P
(
Bet −B1 ≥ β(Wet −W1) + et/2

∣∣∣W)
≤ p0,t ≤ p̃0,t. (4.2.9)

Moreover, bounding the right tail of the Gaussian random variable we have

lim
t→+∞

log P
(
Bet −B1 + 1 ≥ β(Wet −W1) + et/2

∣∣∣W)
t

= 0 a.s. and in L1. (4.2.10)

As a consequence, (4.2.8) and (4.2.9) yield

lim
t→+∞

log p̃0,t
t

= −γ(β) a.s. and in L1. (4.2.11)

Let a > 0, we use once again the FKG inequality to compute the asymptotic behaviour
of

p̃a0,t = P
(
Bu+1 −B1 + 1 ≥ β(Wu+1 −W1), u ≤ et − 1
Bet −B1 ≥ aet/2 + β(Wet −W1)

∣∣∣∣∣W
)
.

We have
p̃a0,t ≤ p̃0,t ≤

p̃a0,t
P
(
Bet −B1 ≥ β(Wet −W1) + aet/2

∣∣W ) .
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By (4.2.10), we have log P
(
Bet −B1 ≥ β(Wet −W1) + aet/2

∣∣∣W)
/ log t→ 0 a.s. therefore

(4.2.11) yield

lim
t→+∞

log p̃a0,t
t

= −γ(β) a.s. and in L1.

In a second time, we add an upper bound on the terminal value of Bt − βWt in the
event.

Lemma 4.2.2. Let B and W be two independent Brownian motions, for any β > 0 and
0 ≤ a < b ≤ +∞ we have

lim
t→+∞

1
log t log P

(
Bt − βWt ∈ [at1/2, bt1/2], Bs + 1 ≥ βWs, 0 ≤ s ≤ t

∣∣∣W)
= −γ(β) in probability.

Proof. Let β ∈ R. We first observe that for any λ > 0,

P
(
Bt − βWt ≥ λ(t log t)1/2

∣∣∣W)
≤ exp

(
−(βWt + λ(t log t)1/2)2

t

)
.

Consequently, we have

lim sup
t→+∞

1
log t log P

(
Bt − βWt ≥ λ(t log t)1/2

∣∣∣W)
≤ −λ2 a.s.

Therefore, for any λ > γ(β)2, we have

lim
n→+∞

1
log t log P

(
Bt − βWt ∈ [at1/2, λ(t log t)1/2], Bs + 1 ≥ βWs, 0 ≤ s ≤ t

∣∣∣W)
= −γ(β) a.s.

Using the scaling probability of the Brownian motion and the fact that for any ε > 0,

P (B1 + 1 > βW1, Bs + ε > βWs|W ) > 0,

we conclude that for any λ > 0

lim
n→+∞

1
log t log P

(
Bt − βWt ∈ [at1/2, λ(t log t)1/2], Bs + 1 ≥ βWs, 0 ≤ s ≤ t

∣∣∣W)
= −γ(β) a.s.

We now use the fact that with high probability, |W(1+ε)t −Wt| ≤ A(εt)1/2, and that

inf
x∈[at1/2,λ(t log t)1/2]

inf
y∈[−A(εt)1/2,A(εt)1/2]

P(Bεt + x ∈ y + [at1/2, bt1/2])

≥ exp
(
λ2t log t
εt

)
(log t)−1,

to obtain, choosing A large enough, ε > 0 small enough then λ > 0 small enough

lim
n→+∞

1
log t log P

(
Bt − βWt ∈ [at1/2, bt1/2], Bs + 1 ≥ βWs, 0 ≤ s ≤ t

∣∣∣W)
= −γ(β) in probability.
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The convergence studied in Lemma 4.2.1 turns out to be stable under various pertur-
bations, e.g. adding o(t1/2) function to a Brownian motion. We formalize it in the next
theorem which is one of main results of the section and is an essential tool for studying
random walks version of the problem in the next section.
Theorem 4.2.3 (Random ballot theorem for the Brownian motion). Let B and W be two
independent Brownian motions. We set f : R+ → R, g : R+ → [1,+∞) and h : R+ → R+
to be continuous functions such that there exists α < 1/2 fulfilling f(0) = 0, |f(t)| = O(tα)
and log g(t), log h(t) = o(log t) as t→ +∞. For any β ∈ R and 0 ≤ a < b ≤ +∞ we have

lim
t→+∞

1
log t log P [g(t) +Bs ≥ βWs + f(s), h(t) ≤ s ≤ t] = −γ(β) in probability. (4.2.12)

Proof. We note there exist A > 0, α < 1/2 such that for any t ≥ 0, |f(t)| ≤ 1/2 + Atα,
therefore

P (Bs + 1 ≥Ws + 1/2 +Asα, 0 ≤ s ≤ t|W )
≤ P (g(t) +Bs ≥ βWs + f(s), h(t) ≤ s ≤ t|W )

≤ P
(

1 +Bs ≥ βWs − 1/2−Asα, h̃(t) ≤ s ≤ t
∣∣∣W)

,

where h̃(t) = max(h(t), g(t) 1
α ) verifies again log h̃(t) = o(log t) as t→ +∞. Consequently,

to prove (4.2.12), it is enough to prove that, for all A > 0, α < 1
2 , 0 < a < b < +∞ and

h(t) = eo(log t), for any ε > 0 we have

lim
t→+∞

P (log P(3/2 +Bs ≥ βWs −Asα, h(t) ≤ s ≤ t|W ) ≥ −(γ(β)− ε) log t) = 0
(4.2.13)

as well as

lim
t→+∞

P
(

log P
(

1/2 +Bs ≥ βWs +Asα, s ≤ t
Bt − βWt ∈

[
at1/2, bt1/2

] ∣∣∣∣∣W
)
≤ −(γ(β) + ε) log t

)
= 0.

(4.2.14)
For t ≥ 0, we write r(t) = A

β t
α, and

Zt = exp
[∫ t

0
r′(s)dWs −

1
2

∫ t

0
r′(s)2ds

]
.

As
∫
R+
r′(s)2ds < +∞, (Zt, t ≥ 0) is a uniformly integrable non-negative martingale. We

denote by Z∞ its a.s. limit. By the Girsanov theorem, under probability Q := Z∞ ·P, the
process (Wt−r(t), t ≥ 0) is a standard Brownian motion. Moreover, under Q, (Wt−r(t)) is
independent of B. By definition, Q is absolutely continuous with respect to P. Moreover,
as under Q, (Z−1

t ) is an uniformly integrable martingale, we have P = Z−1
∞ · Q, which

proves that Q and P are equivalent measures.
We have

Q(Bt − β(Wt − r(t)) ∈
[
at1/2, bt1/2

]
, Bs + 1/2 ≥ β(Ws − r(s)), 0 ≤ s ≤ t|W )

= P(Bt − βWt ∈
[
at1/2, bt1/2

]
, Bs + 1/2 ≥ βWs, 0 ≤ s ≤ t|W ).

By Lemma 4.2.2, we have

lim
t→+∞

log Q(Bt − β(Wt − r(t)) ∈
[
at1/2, bt1/2

]
, 1/2 +Bs ≥ β(Ws − r(s)), s ≤ t|W )

log t
= −γ(β) in Q-probability.
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As P is absolutely continuous with respect to Q, we obtain (4.2.14).
To prove (4.2.13), we use once again the strong FKG inequality,

Q (1 +Bs ≥ β(Ws − r(s)), 0 ≤ s ≤ t|W )
≥ Q (1 +Bs ≥ β(Ws − r(s)), 0 ≤ s ≤ h(t)|W )

×Q (1 +Bs ≥ β(Ws − r(s)), h(t) ≤ s ≤ t|W ) .

We recall that under Q,the process (Wt − r(t), t ≥ 0) is a standard Brownian motion.
Therefore,

lim sup
t→+∞

1
log t log Q(1 +Bs ≥ βWs −A(s+ 1)α, h(t) ≤ s ≤ t|W )

≤ lim sup
t→+∞

1
log t log Q(1 +Bs ≥ β(Ws − r(s)), 0 ≤ s ≤ t|W )

− lim inf
t→+∞

1
log t log Q(1 +Bs ≥ β(Ws − r(s)), 0 ≤ s ≤ h(t))

≤ −γ(β), Q-a.s.,

applying Lemma 4.2.1. As Q is absolutely continuous with respect to P, this inequality
also holds P-a.s, concluding the proof.

We study some of the properties of the function β 7→ γ(β) introduced in Lemma 4.2.1.

Lemma 4.2.4. The function β 7→ γ(β) is convex, even and γ(0) = infβ∈R γ(β) = 1/2.

Proof. The bound from below by 1
2 is a direct 4 consequence of the Jensen inequality. We

have

E (− log P(Bs + 1 ≥ βWs, 0 ≤ s ≤ t|W ))

≤ − log E (P(Bs + 1 ≥ βWs, 0 ≤ s ≤ t|W )) ∼t→+∞
log t

2 .

As a consequence, letting t→ +∞, we have

γ(β) = lim
t→+∞

1
log t E (− log P(Bs + 1 ≥ βWs, 0 ≤ s ≤ t|W )) ≥ 1

2 .

This lower bound is tight, indeed

γ(0) = lim
t→+∞

− log P(Bs ≥ −1, s ≤ t)
log t = 1

2 .

Let β ∈ R, using the symmetry of the Brownian motion W , we have

(P(Bs ≥ −βWs + 1, s ≤ t|W ), t ≥ 0) (d)= (P(Bs ≥ βWs + 1, s ≤ t|W ), t ≥ 0) ,

which proves that γ(β) = γ(−β).
Finally, we use the log-concavity of the Gaussian measure, for any pair of continuous

functions (f, g) and n ∈ N, we have

P
(
Btj/n ≥ f (tj/n) , j ≤ n

)
P
(
Btj/n ≥ g (tj/n) , j ≤ n

)
≤ P

(
Btj/n ≥

f (tj/n) + g (tj/n)
2 , j ≤ n

)2
.

4. And unnecessary, as the minimum of an even convex function is its value at 0.
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Letting n→ +∞, we have

P(Bs ≥ f(s), 0 ≤ s ≤ t)P(Bs ≥ g(s), 0 ≤ s ≤ t) ≤ P
(
Bs ≥

f(s) + g(s)
2 , 0 ≤ s ≤ t

)2
.

As a consequence, for all β1, β2 ∈ R, we have

P(Bs ≥ 1 + β1 + β2
2 Ws, 0 ≤ s ≤ t|W )2

≥ P(Bs ≥ 1 + β1Ws, s ≤ t|W )P(Bs ≥ 1 + β2Ws, s ≤ t|W ),

letting t→ +∞, this leads

γ

(
β1 + β2

2

)
≤ γ(β1) + γ(β2)

2 ,

which proves that γ is convex.

We observe that Theorem 4.1.3 follows easily combining Lemma 4.2.1 and Lemma 4.2.4.
Anticipating the next section and the problem of Brownian excursions above a Brow-

nian motion, we compute the probability for a Brownian motion B to stay above the
curve s 7→ Wt −Wt−s, that is a Brownian motion seen backward, and the end part of an
excursion. We observe this quantity exhibits almost sure fluctuations on log-scale.

Lemma 4.2.5. For all β ∈ R, we have

lim
t→+∞

1
log t log P (Bs + 1 ≥ β(Wt −Wt−s), s ≤ t|W ) = −γ(β) in probability (4.2.15)

lim sup
t→+∞

1
log t log P (Bs + 1 ≥ β(Wt −Wt−s), s ≤ t|W ) ≥ −1/2 a.s. (4.2.16)

lim inf
t→+∞

1
log t log P (Bs + 1 ≥ β(Wt −Wt−s), s ≤ t|W ) ≤ −max

(
1/2, β2/2

)
a.s.

(4.2.17)

The constants we obtain here in (4.2.16) and (4.2.17) are far from optimal. For exam-
ple, (4.2.17) gives no information for β ∈ (−1, 1).

Proof. We first observe that

P (Bs + 1 ≥Wt −Wt−s, s ≤ t|W ) (d)=P (Bs + 1 ≥Ws, s ≤ t|W ) .

Thus (4.2.15) follows by Lemma 4.2.1. This limit does not coincides with limsup and the
liminf as the behaviour of the Brownian motion seen backwards near the origin fluctuates
much more.

We set It = infs≤tWs. It is well-known that limt→+∞ It = −∞ and Wt = It infinitely
often. Let t > 0 be such that It = Wt then sups≤tWt −Wt−s ≤ 0. As a consequence,

P (Bs + 1 ≥Wt −Wt−s, s ≤ t|W ) ≥ P(Bs + 1 ≥ 0, s ≤ t).

Now (4.2.16) follows by the classical ballot theorem.
We now prove (4.2.17). Let β > 0, applying the Girsanov theorem, for all a > 0 and

t > 0 we have

Ce−
a2
2 t ≥ P(Wt −Wt−s ≥ as− 1/(2β), s ≤ t) ≥ ct−1/2e−

a2
2 t. (4.2.18)
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As a consequence, for any λ > 0, we have

P (∃u ∈ [λ log t, t] : ∀s ≤ λ log t,Wu −Wu−s ≥ as− 1/(2β))

≥ P
(
∃j ≤

⌊
t

λ log t

⌋
: ∀s ≤ λ log t,Wjλ log t −Wjλ log t−s ≥ as− 1/(2β)

)
≥ 1− (1−P (Wλ log t −Wλ log t−s ≥ as− 1/(2β), s ≤ λ log t))

⌊
t

λ log t

⌋
.

By (4.2.18), we obtain that for all λ < a2

2 , there exists infinitely many times t such that
for s ≤ λ log t, Wt −Wt−s ≥ as− 1/(2β). For any such t we have

P (Bs + 1 ≥Wt −Wt−s, s ≤ t|W ) ≤ P (Bs ≥ βas− 1/2, s ≤ λ log t) ≤ Ce−β2 a2
2 λ log t.

We conclude that for all ε > 0, there exists infinitely many times t such that

1
log t log P (Bs + 1 ≥Wt −Wt−s, s ≤ t|W ) ≤ −(1− ε)β

2

2 ,

proving (4.2.17).

4.3 Ballot theorem for a random walk in random environ-
ment

The exponent of polynomial decay γ(β) found in Section 4.2 admit some level of
uniformity. It is valid not only for Brownian motions but also for a class of random walks
in random environment. The connexion between the ballot theorem for random walks in
random environment and the Brownian motion problem is explained in Remark 4.3.3.

We now define the random walk in random (time) environment we consider. We write
(µn, n ∈ N) for a sequence of i.i.d. random probability measures on R. Conditionally on
this sequence, we introduce a sequence (Xn) of independent random variables, with Xn of
law µn. We denote by Sn = ∑n

j=1Xj the random walk in random environment. We write
Pµ for the law of (Sn, n ≥ 0) conditionally on the sequence (µn, n ∈ N), and P for the
joint law of S and the environment µ. The corresponding expectations are respectively
written Eµ and E. We introduce the integrability assumption

E [Eµ(S1)] = 0, σ2
Q := E

[
Eµ(S2

1)− Eµ(S1)2
]
∈ (0,+∞)

and σ2
A := E

[
Eµ(S1)2

]
∈ [0,+∞). (4.3.1)

We observe that σ2
A is the variance of Eµ(X1) the quenched expectation of the random

walk, while σ2
Q is the expected variance of the law µ1. These definitions share similarities

with the quantities defined in (4.1.8). The main result of the section is the ballot theorem
for a random walk in a random time-environment.

Theorem 4.3.1 (Random ballot theorem). We assume (4.3.1) and there exists λ > 0
such that

λEµ
[
|X|3eλ|X|

]
≤ Eµ

[
X2
]
a.s. (4.3.2)

We set (bn) ∈ RN
+ and α < 1/2. If limn→+∞

log bn
logn = 0 then

lim sup
n→+∞

1
logn log sup

z∈[0,bn]
Pµ(Sj ≥ −z − jα, j ≤ n) ≤ −γ

(
σA
σQ

)
a.s. (4.3.3)
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Additionally, if lim infn→+∞ bn
logn > 0, then for all 0 ≤ a < b,

lim inf
n→+∞

1
logn log inf

z≥bn
Pµ
(
Sn ∈

[
an1/2, bn1/2

]
, Sj ≥ −z + jα, j ≤ n

)
≥ −γ

(
σA
σQ

)
a.s.
(4.3.4)

Remark 4.3.2. The condition lim inf bn/ logn > 0 we introduce to prove (4.3.4) is non-
optimal, but simplifies the proof. In greater generality, we may introduce the event

Ay = {∃n ∈ N : Pµ(Sj ≥ −y, j ≤ n) = 0}.

One may observe that P(Ay) ∈ [0, 1) and that on Acy, the probability Pµ(Sj ≥ −y, j ≤ n)

decreases as n
−γ
(
σA
σQ

)
+o(1)

. Moreover, by simple random walk theory, almost surely, there
exists y > 0 large enough such that Acy holds.
Remark 4.3.3. The link between Theorems 4.3.1 and 4.1.3 can be expressed as follows. We
note that S can be decomposed as Sn = Sn − Eµ(Sn) + Eµ(Sn). As Eµ(Sn) is a random
walk, it can be approached by a Brownian motion with variance σ2

A. Then Sn−Eµ(Sn) is
a sum of independent centred random variables, that behaves as a Brownian motion with
variance σ2

Q.
The two main tools of the proof of Theorem 4.3.1 are the following theorems, that

couple Brownian motions with sum of independent random variables. We first introduce
the KMT coupling, discovered by Komlós, Major and Tusnády, that links a random walk
with a standard Brownian motion.

Theorem 4.3.4 (Komlós, Major, Tusnády [KMT76]). Let X be a random variable such
that

E(X) = 0, σ2 := E(X2) ∈ [0,+∞) and ∃α > 0 : E
[
eα|X|

]
< +∞. (4.3.5)

There exist positive numbers λ,C,D, i.i.d. random variables (Xn) with the same law as
X and i.i.d. standard Gaussian random variables (Zn) such that, writing

∆n = max
k≤n

∣∣∣∣∣∣
k∑
j=1

Xj − σZj

∣∣∣∣∣∣ ,
we have

∀x ∈ R+, ∀n ∈ N,P(∆n ≥ x+D logn) ≤ Ce−λx.
Note that under this integrability assumption, by Jensen inequality, the random vari-

able Eµ(X1) satisfies (4.3.5), with σ2 = σ2
A. This result has been extended by Sakhanenko

to sums of independent random variables with non identical law.

Theorem 4.3.5 (Sakhanenko [Sak84]). Let (X1, . . . , Xn) be independent random vari-
ables, we assume there exists λ > 0 such that

∀k ≤ n, λE
[
|Xk|3eλ|Xk|

]
≤ E

[
|Xk|2

]
< +∞.

There exists random variables (X̃1, . . . , X̃n) with the same law as (X1, . . . , Xn) and in-
dependent Gaussian random variables (Z1, . . . , Zn) with same means and variances as
(X1, . . . Xn) such that, writing

∆n = max
k≤n

∣∣∣∣∣∣
k∑
j=1

X̃j − Zj

∣∣∣∣∣∣ ,
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there exists a universal constant C0 > 0 such that

E
[
eC0λ∆n

]
≤ 1 + λ

√√√√ n∑
j=1

Var(Xj).

Proof of Theorem 4.3.1. We consider the random walk in random environment (Sn). For
any n ∈ N, we introduce

Mn = Eµ(Sn) and Σ2
n = Eµ(S2

n)−M2
n. (4.3.6)

The process (Mn) is the random walk of the mean of (Sn), and is centred. The process
(Σ2

n) is the random walk of the variance of (Sn). By law of large numbers, (Σ2
n) converges

to +∞ at ballistic speed σ2
A. We now construct two independent Brownian motions B

and W such that we may replace Pµ(Sj ≥ 0, j ≤ n) by P(σQBs + 1 ≥ σAWs, s ≤ n).
By Theorem 4.3.4, we couple the random walk (Mn, n ≥ 0) with a Brownian motion

W such that, writing ∆n = supk≤n |Mk −Wk|, there exists λ,C,D such that

∀x ≥ 0, ∀n ∈ N,P(∆n ≥ D logn+ x) ≤ Ce−λx. (4.3.7)

Slightly abusing notation we use the same notation P for the probability space on which
the random walk (Mn) is coupled with a Brownian motion such that Theorem holds.
Conditionally on the sequence (µn) and the coupled Brownian motion W , we introduce
independent random variables (Xn, n ≥ 1), where Xn has law µn and set Sn = ∑n

j=1Xj .
Conditionally on this construction, we consider the process (Sn −Mn, n ∈ N), which

is a sum of independent centred random variables. By Theorem 4.3.5, we introduce 5 a
Brownian motion B (independent ofW ) such that, writing ∆̃n = supk≤n |Sk −Mk −BΣk |,
we have

Eµ
[
eC0λ∆̃n

]
≤ 1 + λ

√
Σn a.s. (4.3.8)

We introduce the event

Bn =
{

∆n ≥ (logn)2
}
∪
{
∃j ≤ n :

∣∣∣Σj − jσ2
A

∣∣∣ ≥ (logn)2 + j2/3
}

∪
{
∃j ≤ n : sup

|t|≤1

∣∣∣Wσ2
Aj
−Wσ2

Aj+t

∣∣∣ ≥ (logn)2
}
.

By (4.3.7), and the Borel-Cantelli lemma, limn→+∞ 1Bcn = 1 a.s. Moreover, by (4.3.8), we
have

lim inf
n→+∞

− logPµ(∆̃n ≥ (logn)2)
logn = +∞. (4.3.9)

Consequently

lim sup
n→+∞

1
logn log sup

z∈[0,bn]
Pµ(Sj ≥ −z − jα, j ≤ n)

≤ lim sup
n→+∞

1Bcn
logn logPµ

(
Sj ≥ −bn − jα, j ≤ n, ∆̃n ≤ (logn)2

)
.

5. Up to enlarging once again the probability space.
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We adhere to the convention that j, k iterate over natural numbers and s, t over real
numbers. By the definition of Bn, we have

1BcnPµ
(
Sj ≥ −bn − jα, j ≤ n, ∆̃n ≤ (logn)2

)
≤ 1BcnPµ

(
BΣj + 2(logn)2 ≥ −bn − jα −Wσ2

Aj
, j ≤ n

)
≤ 1BcnPµ

(
BΣbsc ≥ −bn − jα − 3(logn)2 −Wσ2

As
, s ≤ n

)
.

Moreover, on Bcn,
∣∣∣Σj − jσ2

Q

∣∣∣ ≤ (logn)2 + j2/3. Using the union bound and standard
Gaussian calculations, we observe that

lim inf
n→+∞

−1
logn logPµ

(
∃j ≤ n, ∃|t| ≤ (logn)2 + j2/3 : Bjσ2

Q
−Bjσ2

Q+t ≥ j2/5 + (logn)2
)

= +∞, (4.3.10)

which is enough to conclude that

lim sup
n→+∞

1
logn log sup

z∈[0,bn]
Pµ(Sj ≥ −z − jα, j ≤ n)

≤ lim sup
n→+∞

1
logn logPµ

(
Bσ2

Qs
≥Wσ2

As
− bn − 4(logn)2 − (s2/5 + sα), s ≤ n

)
= −γ

(
σA
σQ

)
a.s.

applying Lemma 4.2.1.
The lower bound holds using similar arguments. We assume that for any n ∈ N,

bn ≥ 5(logn)2. In this case, for 0 ≤ a < b and n ≥ 1, we have

inf
z≥bn

Pµ
(
Sn ∈

[
an1/2, bn1/2

]
, Sj ≥ −z + jα, j ≤ n

)
≥ Pµ

(
Sn ∈

[
an1/2, bn1/2

]
, Sj ≥ −5(logn)2 + jα, j ≤ n

)
≥ Pµ

(
Sn ∈

[
an1/2, bn1/2

]
, (Sj −Mj) ≥ −Mj − 5(logn)2 + jα, j ≤ n

)
≥ 1BcnPµ

 BΣn +Wσ2
An
∈
[
an1/2 + 2(logn)2, bn1/2 − 2(logn)2

]
BΣj ≥ −Wσ2

Aj
− 3(logn)2 + jα, j ≤ n, ∆̃n ≤ (logn)2

 .
Moreover, keeping (4.3.9) in mind, we notice that

Pµ

 BΣn +Wσ2
An
∈
[
an1/2 + 2(logn)2, bn1/2 − 2(logn)2

]
BΣj ≥ −Wσ2

Aj
− 3(logn)2 + jα, j ≤ n, ∆̃n ≤ (logn)2


≥ Pµ

 BΣn +Wσ2
An
∈
[
an1/2 + 2(logn)2, bn1/2 − 2(logn)2

]
BΣj ≥ −Wσ2

Aj
− 3(logn)2 + jα, j ≤ n


− Pµ

(
∆̃n ≤ (logn)2

)
.
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By (4.3.10) and Lemma 4.2.2, we have

lim
n→+∞

1
logn log inf

z≥0
Pµ
(
Sn ∈ [an1/2, bn1/2], Sj ≥ −z + jα, j ≤ n

)
≥ lim

n→+∞
1Bcn
logn logPµ

 Bσ2
Qn

+Wσ2
An
∈
[
an1/2 + 4(logn)2, bn1/2 − 4(logn)2

]
,

Bσ2
Qs
≥ −Wσ2

As
− (logn)2 + s2/5 + sα, s ≤ n


= −γ

(
σA
σQ

)
in probability. (4.3.11)

Finally, we choose ε > 0 such that lim infn→+∞ bn
logn > ε. For all n ≥ 1 large enough,

and 0 ≤ a < b we have

inf
z≥bn

Pµ
(
Sn ∈ [an1/2, bn1/2], Sj ≥ −z + jα, j ≤ n

)
≥ Pµ

(
Sn ∈ [an1/2, bn1/2], Sj ≥ −ε logn+ jα, j ≤ n

)
.

We set p =
⌊
e(ε logn)1/2

⌋
, applying the Markov property at time p, for all δ > 0 small

enough and n ≥ 1 large enough, we have

Pµ
(
Sn ∈

[
an1/2, bn1/2

]
, Sj ≥ −ε logn+ jα, j ≤ n

)
≥ Pµ

(
Sp ≥∈ [p1/2, 2p1/2], Sj ≥ −5(log p)2, j ≤ p

)
× Pµ

(
Sn ∈

[
(a+ δ)n1/2, (b− δ)n1/2

]
, Sj ≥ −(5 logn)2 + (j + p)α, j ≤ n− p

)
.

Applying (4.3.11) twice, we observe the log of the first probability is a.s. negligible with
respect to logn and

lim
n→+∞

inf
z≥bn

logPµ
(
Sn ≥ %n1/2, Sj ≥ −ε logn+ jα, j ≤ n

)
logn ≥ −γ

(
σA
σQ

)
in probability.

The upper bound of Theorem 4.3.1 can be strengthened to hold wih some level of
uniformity with respect to the environment. More precisely, for a given environment
(µn, n ∈ N) and k ∈ N, we denote by Pkµ the law of the random walk with random
environment (µk+j , j ∈ N), shifted in time by k. Alternatively, one can see the law of
(Sj , j ≥ 0) under law Pk as the law of (Sk+j − Sk, j ≥ 0) under law P. We prove in the
next lemma that the previous lemma holds uniformly in k ≤ eo(logn).

Lemma 4.3.6. We assume that (4.3.1) and (4.3.2) hold. Let (bn), (tn) ∈ RN
+ be such that

limn→+∞
log bn
logn = limn→+∞

log tn
logn = 0 and α ∈ [0, 1/2). We have

lim
n→+∞

sup
k≤tn

Pk (Sj ≥ −bn − jα, j ≤ n)
logn = −γ(β) in probability.

Proof. Note the lower bound of this lemma is a direct consequence of Theorem 4.3.1. We
assume, without loss of generality, that limn→+∞ tn = +∞. Let k ≤ tn, applying the
Markov property at time k, we have

Pkµ (Sj ≥ −bn − jα, j ≤ b)Pµ (Sj ≥ − log tn, j ≤ k)
≤ Pµ (Sj ≥ −bn − log tn − jα, j ≤ n+ k) .
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As a consequence, uniformly in k ≤ tn, we have

Pkµ (Sj ≥ −bn − jα, j ≤ b) ≤
Pµ (Sj ≥ −bn − log tn − jα, j ≤ n)

Pµ (Sj ≥ − log tn, j ≤ tn) .

By Theorem 4.3.1, we have

lim
n→+∞

logPµ (Sj ≥ −bn − jα, j ≤ n)
logn = −γ(β) in probability,

as well as
lim

n→+∞
logP (Sj ≥ − log tn, j ≤ tn)

log bn
= −γ(β)in probability,

which concludes the proof.

This almost sure exponent for the random ballot theorem can be used to obtain another
exponent of interest, which correspond to the probability of observation of an excursion
of length n. For a classical centred random walk with finite variance, we have

P(Sn ≤ 1, Sj ≥ 0, j ≤ n) ≈n→+∞ n−3/2.

It can be explained as follows. An excursion of length n can be divided into three parts.
The one between 0 and n/3 is a random walk required to stay positive, which happens
with probability n−1/2. Similarly, the end part between 2n/3 and n seen backward is a
random walk required to stay negative, which again happens with probability n−1/2 factor.
Finally, the part between n/3 and 2n/3 joins these segments, which by the local CLT costs
another n−1/2.

Using similar arguments on the random walk in random environment suggests that
writing

λ := 2γ
(
σA
σQ

)
+ 1

2 , (4.3.12)

we have Pµ (Sn ≤ 1, Sj ≥ 0, j ≤ n) ≈ n−λ. However, working with the random walk seen
from backward leads to additional difficulties. As already observed in Lemma 4.2.5, the
convergence for a backward random walk holds only in probability and cannot be improved
to an a.s. result.

Lemma 4.3.7. We assume that (4.3.1) and (4.3.2) hold. Let (tn) ∈ RN
+ be such that

limn→+∞
log tn
logn = 0. For any ε > 0, we have

lim
n→+∞

P
(

sup
−tn≤y<x≤0

sup
k,k′≤tn

logPkµ (Sn−k−k′ ≤ x, Sj ≥ y, j ≤ n− k − k′)
logn ≥ ε− λ

)
= 0.

Proof. Without loss of generality, we assume that limn→+∞ tn
logn = +∞. Let n ∈ N, we

set p = bn/3c. We choose −tn ≤ x ≤ y ≤ 0 and k ≤ tn, k′ ≤ tn. Applying the Markov
property at time p− k − k′, we have

Pkµ (Sn−k−k′ ≥ x, Sj ≤ y, j ≤ n)
≤ Pkµ (Sj ≤ tn, j ≤ p− k) sup

z∈R
Ppµ
(
Sn−p−k′ + z ≥ x, Sj + z ≤ y, j ≤ n− p− k′) .
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We introduce, for j ≤ n−p−k′ the time-reversed random walk Ŝ(k′)
j = Sn−p−k′−Sn−p−k′−j .

Note that for all fixed n, ((Ŝ(k′)
j , j ≤ n−p−k′), k′ ≤ tn) has the same law as ((Sk+j−Sk, j ≤

n− p− k), k ≤ tn). We apply the Markov property at time p− k′ to obtain

Ppµ
(
Sn−p−k′ + z ≥ x, Sj + z ≤ y, j ≤ n− p)

≤ Ppµ
(
Ŝ

(k′)
j ≥ −tn, j ≤ p− k′

)
sup
h∈R

Ppµ (Sn−2p ∈ [h, h+ y − x]) .

We conclude that

sup
−tn≤y<x≤0

sup
k,k′≤tn

Pkµ
(
Sn−k−k′ ≤ x, Sj ≥ y, j ≤ n− k − k′

)
≤ sup

k≤tn
Pkµ (Sj ≥ −tn, j ≤ p− tn) sup

k′≤tn
Ppµ
(
Ŝ

(k′)
j ≤ tn, j ≤ p− tn

)
× sup
h∈R

Ppµ (Sn−2p ∈ [h, h+ tn]) .

By Theorem 4.3.1, we have

lim
n→+∞

log supk≤tn Pkµ(Sj ≤ tn, j ≤ p)
logn = −γ

(
σA
σQ

)
in probability.

Moreover, as Ŝ has the same law as S thus

lim
n→+∞

log supk′≤tn Ppµ
(
Ŝ

(k′)
j ≤ tn, j ≤ p− tn

)
logn = −γ

(
σA
σQ

)
in probability.

Finally, applying again Theorem 4.3.5, by (4.3.2) we have

lim sup
n→+∞

log suph∈R Ppµ (Sn−2p ∈ [h, h+ tn])
logn = −1

2 a.s.

Combining the last three estimates concludes the proof.

We now derive a lower bound, using a similar reasoning.

Lemma 4.3.8. We assume that (4.3.1) and (4.3.2) hold. Let (an), (bn) ∈ RN
+ be such that

an ≤ bn, lim infn→+∞ an
logn > 0 and limn→+∞

log bn
logn = 0 and α ∈ [0, 1/2). For k ≤ n, we

write rn,k = min(k, n− k)α. For all ε > 0, we have

lim
n→+∞

P
(

inf
−bn≤y<x−an≤−2an

log P (Sn ≤ x, Sj ≥ y + rn,j , j ≤ n)
logn ≤ −ε− λ

)
= 0.

Proof. Let n ∈ N, we set p = bn/3c and Ŝj = Sn−p − Sn−p−j . Applying the Markov
property at times p and n− p, for all −bn ≤ y ≤ x− an ≤ −2an and % > 0, we have

Pµ (Sn ≤ x, Sj ≥ y + rn,j , j ≤ n)

≥ Pµ
(
Sp ∈

[
%n1/2, 2%n1/2

]
, Sj ≥ −an + jα, j ≤ p

)
× Ppµ

(
Ŝp ∈

[
−2%n1/2,−%n1/2

]
, Ŝj ≤ an − jα, j ≤ p

)
× inf
z∈[0,2%n1/2]

Ppµ
(
Sn−2p ∈ [z, z + an], Sj ≥ −%n1/2, j ≤ n− 2p

)
.



182 Chapter 4. Branching random walk in random environment

Using Theorem 4.3.1, we have

lim
n→+∞

1
logn logPµ

(
Sp ∈

[
%n1/2, 2%n1/2

]
, Sj ≥ −an + jα, j ≤ p

)
= −γ

(
σA
σQ

)
a.s.

as well as

lim
n→+∞

1
logn logPpµ

(
Ŝp ∈

[
−2%n1/2,−%n1/2

]
, Ŝj ≤ an − jα, j ≤ p

)
= −γ

(
σA
σQ

)
a.s.

Finally, using the Sakhanenko coupling of the random walk in random environment, we
have

lim
n→+∞

1
logn logPpµ

(
Sn−2p ∈ [z, z + an], Sj ≥ −%n1/2, j ≤ n− 2p

)
= −1

2 ,

which concludes the proof.

Combining Lemma 4.3.8 and Lemma 4.3.7, for a random walk in random environment
that satisfies (4.3.1) and (4.3.2), we have

lim
n→+∞

1
logn logPµ (Sn ≤ 0, Sj ≥ −δ logn, j ≤ n) = −λ in probability. (4.3.13)

4.4 Maximal displacement for the branching random walk
in random environment

We use the random walk estimates presented in Section 4.3 to obtain bounds on the
maximal displacement for the branching random walk in random environment. As often,
the proof to compute the asymptotic behaviour of Mn the maximal displacement at time
n, is based on the computation of the asymptotic behaviour of PL(Mn ≥ y) as n, y → +∞.
To obtain an upper bound, we exhibit a border the random walk does not cross with high
probability; to obtain a lower bound, we compute first two moments of the number of
individuals who stayed below this border at any time before n, and are at time n above a
given level.

4.4.1 The many-to-one lemma

We introduce the celebrated many-to-one lemma, which expresses expectation of ad-
ditive functionals of branching random walks by functionals of random walks. It has been
essential in various studies of extremal behaviour of branching random walks. It can be
traced down to the early works of Peyrière [Pey74] and Kahane and Peyrière [KP76].
Many variations and modifications of this concept have been introduced, see e.g. [BK04].
In this article, we use a time-inhomogeneous version of this lemma, that can be found in
Chapter 1. For all n ≥ 1, we write Ln for a point process with law Ln, and we define the
probability measure µn by

µn((−∞, x]) = EL

∑
`∈Ln

1{`≤x}eθ
∗`−κn(θ∗)

 .
Let (Xn, n ∈ N) be a sequence of independent random variables, where Xn has law µn.
We set Sn = ∑n

j=1Xj . From now on, the law PL stand for the joint law of the BRWre
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(T, V ) and the random walk in random environment S, conditionally on the environment
L.

The many-to-one lemma is expressed as follows: for any n ∈ N and any measurable
bounded function f , we have

EL

 ∑
|u|=n

f(V (u1), . . . , V (un))

 = EL
[
e−θ

∗Sn+
∑n

k=1 κj(θ
∗)f(S1, . . . Sn)

]
a.s. (4.4.1)

It is useful to consider a shifted version of (4.4.1). For k ∈ N we consider the environ-
ment (Lj+k, j ∈ N). The definitions of branching random walks and random walks above
are still valid, we denote the corresponding probability function by PkL. In this scenario
(4.4.1) writes as

EkL

 ∑
|u|=n

f(V (u1), . . . , V (un))

 = EkL
[
e
−θ∗Sn+

∑k+n
j=k+1 κj(θ

∗)
f(S1, . . . Sn)

]
a.s. (4.4.2)

For n ∈ N, we introduce

Kn =
n∑
j=1

κj(θ∗) and Tn = θ∗Sn −Kn. (4.4.3)

By (4.1.7), we have E(Tn) = 0. Moreover, by (4.1.8), we have

σ2
Q = E

[
EL(T 2

1 )− EL(T1)2
]

and σ2
A = E

[
EL(T1)2

]
,

and by (4.1.10), the random walk in random environment (Tn) satisfies (4.3.2). As a
consequence, Theorem 4.3.1 and similar results apply to (Tn).

4.4.2 Proof of the upper bound of Theorem 4.1.1

In this section, we bound the probability that Mn ≥ 1
θ∗Kn − ϕ logn. To do so, we

observe that with high probability, no individual of the branching random walk crosses
the border n 7→ 1

θ∗Kn + logn for large n ≥ 0.

Lemma 4.4.1. We assume that for all n ∈ N, κn(θ∗) < +∞ a.s. For all y ≥ 0, we have

PL
(
∃u ∈ T : V (u) ≥ 1

θ∗K|u| + y
)
≤ e−θ∗y.

Proof. Let y ≥ 0, we denote by

Z(y) =
∑
u∈T

1{
V (u)≥

K|u|
θ∗ +y

}1{
V (uj)<

Kj
θ∗ +y,j<|u|

},
the number of individuals that cross the line n 7→ Kn

θ∗ + y for the first time. Using the
Markov inequality, we have

PL
(
∃u ∈ T : V (u) ≥ K|u|

θ∗
+ y

)
= PL (Z(y) > 0) ≤ EL [Z(y)] .
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By (4.4.1) and (4.4.3), we have

EL(Z(y)) =
+∞∑
n=1

EL

 ∑
|u|=n

1{θ∗V (u)−Kn≥θ∗y}1{θ∗V (uj)−Kj<θ∗y,j<n}


=

+∞∑
n=1

EL
[
e−θ

∗Sn+Kn1{θ∗Sn−Kn≥θ∗y}1{θ∗Sj−Kj<θ∗y,j<n}
]

≤
+∞∑
n=1

e−θ
∗yPL (Tn ≥ θ∗y, Tj < θ∗y, j < n)

≤ e−θ∗yPL (∃n ∈ N : Tn ≥ θ∗y) ≤ e−θ∗y.

We then partition the set of individuals that are higher that Kn
θ∗ − β logn into two

subsets: the set of individuals that crossed n 7→ Kn
θ∗ + y, and the set of individuals that

made an excursion of length n below this curve. This leads to the following lemma, that
proves the upper bound of Theorem 4.1.1.
Lemma 4.4.2. We assume that (4.1.7), (4.1.8) and (4.1.10) hold. For any β < ϕ, we
have

PL
(
Mn ≥ Kn

θ∗ − β logn
)
→ 0 in probability.

Proof. Let n ∈ N. We start noticing that by Lemma 4.4.1, we have

PL
(
∃u ∈ T : V (u) ≥ K|u| + logn

θ∗

)
≤ n−1.

For β > 0, we set Yn(β) = ∑
|u|=n 1{θ∗V (u)−Kn≥−βθ∗ logn}1{θ∗V (uj)−Kj≤logn,j≤n}. We ob-

serve that

PL
(
Mn ≥

Kn

θ∗
− β logn

)
≤ PL

(
∃u ∈ T : V (u) ≥ K|u| + logn

θ∗

)
+ PL(Yn(β) > 0)

≤ n−1 + EL (Yn(β)) . (4.4.4)

We apply (4.4.1), we have

EL (Yn(β)) = EL
[
e−θ

∗Sn+Kn1{θ∗Sn−Kn≥−βθ∗ logn}1{θ∗Sj−Kj≤logn,j≤n}
]

≤ nβθ∗PL (Tn ≥ −βθ∗ logn, Tj ≤ logn, j ≤ n) .

Applying Lemma 4.3.7, we obtain

lim
n→+∞

logPL (Tn ≥ −βθ∗ logn, Tj ≤ logn, j ≤ n)
logn = −1

2 − 2γ
(
σA
σQ

)
= θ∗ϕ in probability.

Thus, for any ε > 0, we have

lim
n→+∞

P
[
PL (Tn ≥ −βθ∗ logn, Tj ≤ logn, j ≤ n) ≥ n−θ∗ϕ+ε

]
= 0,

therefore
lim

n→+∞
P
[
EL [Yn(β)] ≥ nθ∗(β−ϕ)+ε

]
= 0.

As β < ϕ, choosing ε > 0 small enough we obtain that EL [Yn(β)] converge to 0 in proba-
bility. By (4.4.4), we conclude that P(Mn ≥ Kn − β logn) converges to 0 in probability,
which ends the proof.
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4.4.3 Proof of the lower bound of Theorem 4.1.1

We now prove that with high probability, Mn ≥ Kn
θ∗ − ϕ logn. To do so, we bound

from below the probability there exists an individual above Kn
θ∗ − ϕ logn at time n, that

stayed at any time k ≤ n away from the boundary k 7→ Kk
θ∗ .

Lemma 4.4.3. We assume that (4.1.9), (4.1.7), (4.1.8) and (4.1.10) hold. For any ε > 0,
we have

lim
n→+∞

P
[
PL
(
Mn ≥

Kn

θ∗
− ϕ logn

)
≤ n−ε

]
= 0.

Proof. Let n ∈ N and δ > 0. For k ≤ n we set

rn,k =
{
k1/3 − 2δ logn if k < n/2
(n− k)1/3 − (2δ − ϕ) logn otherwise.

We introduce

Xn(δ) =
∑
|u|=n

1{
V (u)−Knθ∗ +ϕ logn∈[0,δ logn]

} 1{
V (uj)≤

Kj
θ∗ −rn,j

}.
Our aim is to to bound from below PL(Xn(δ) ≥ 1). To this end we utilize the second
moment method.

We first bound from below EL(Xn(δ)). Applying the many-to-one lemma, we have

EL (Xn(δ)) = EL
[
e−Tn1{Tn+θ∗ϕ logn∈[0,θ∗δ logn]}1{Tj≤−θ∗rn,j ,j≤n}

]
≥ nθ∗ϕ−θ∗δPL (Tn + θ∗ϕ logn ∈ [0, δθ∗ logn] , Tj ≤ −θ∗rn,j , j ≤ n) .

Applying Lemma 4.3.8, for any ε > 0, we have

lim
n→+∞

P
(
EL (Xn(δ)) ≤ n−θ∗δ−ε

)
= 0. (4.4.5)

We then bound from above E
[
Xn(δ)2]. We note that Xn(δ)2 is the number of pairs of

individuals that are at time n in a neighbourhood of Knθ∗ −ϕ logn, and stayed at any time
k ≤ n at distance at least rn,k from Kk

θ∗ . For u1, u2 ∈ T, we set u1 ∧ u2 the most recent
common ancestor of u1 and u2. We then partition Xn(δ)2 according to the generation of
the most recent common ancestor. We write

Xn(δ)2 =
n∑
k=0

∑
|u|=k

∑
|u1|=|u2|=n
u1∧u2=u

1{
V (ui)−Kn

θ∗ +ϕ logn∈[0,δ logn],V (uij)≤
Kj
θ∗ −rn,j ,i∈{1,2}

}.
Notice that∑

|u|=n

∑
|u1|=|u2|=n
u1∧u2=u

1{
V (ui)−Kn

θ∗ +ϕ logn∈[0,δ logn],V (uij)≤
Kj
θ∗ −rn,j ,i∈{1,2}

} = Xn(δ).

By similar calculations as the ones leading to (4.4.5), we use the many-to-one lemma and
Lemma 4.3.7 to prove that for any ε > 0,

lim
n→+∞

P [EL(Xn(δ)) ≥ nε] = 0.
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Let k < n, we set

Λk =
∑
|u|=k

∑
|u1|=|u2|=n
u1∧u2=u

1{
V i(u)−Kn

θ∗ +ϕ logn∈[0,δ logn],V (uij)≤
Kj
θ∗ −rn,j ,i∈{1,2}

}.
We denote by Fk = σ(u, V (u), |u| ≤ k). Applying the Markov property at time k + 1, we
have

EL [Λk| Fk+1] ≤
∑
|u|=k

1{
V (uj)≤

Kj
θ∗ −rn,j ,j≤k

} ∑
|u1|=|u2|=k+1
u1∧u2=u

fk+1(V (u1))fk+1(V (u2)),

where we set, for k < n and x ∈ R,

fk+1(x) =

Ek+1
L

 ∑
|u|=n−k−1

1{
V (u)+x−Kn

θ∗ +ϕ logn∈[0,δ logn],V (uj)+x≤
Kk+j+1

θ∗ −rn,k+j+1,j≤n−k−1
} .

Note that if x ≥ Kk+1
θ∗ − rn,k+1, then fk+1(x) = 0.

We set bn = (logn)6, and consider k > bn in a first time. Applying (4.4.2), we obtain
the following upper bound for fk+1, for k + 1 ≥ bn:

fk+1(x)

≤1{
x≤Kk+1

θ∗ −rn,k+1

}Ek+1
L

[
e
−θ∗Sn−k−1−

∑n

j=k+2 κj(θ
∗)1{Sn−k−1+x−Kn

θ∗ +ϕθ∗ logn∈[0,δ logn]}
]

≤1{
x≤Kk+1

θ∗ −rn,k+1

}nθ∗ϕeθ∗x−Kk+1

As a consequence, we have

EL [Λk] ≤ n2θ∗ϕEL

 ∑
|u|=k

e(θ∗V (uk)−Kk)1{
V (uj)≤

Kj
θ∗ −rn,j ,j≤k

} ∑
`,`′∈Lk+1

eθ
∗(`+`′)−2κk+1(θ)


where Lk+1 is a point process with law Lk+1, independent from (T, V ). We set

Φn = max
k≤n

EL


 ∑
`∈Lk+1

(
1 + eθ

∗`−κk+1(θ)
)2

 .
By (4.1.9), this is the maximum of n i.i.d. random variables with finite mean, therefore,
for all η > 0, there exists x > 0 such that

sup
n∈N

P (Φn ≥ nx) ≤ η. (4.4.6)

Applying (4.4.1), we have

EL [Λk] ≤ Φnn
2θ∗ϕEL

[
eTk1{Tj≤−θ∗rn,j ,j≤k}

]
.

Note that if k ≤ n − bn, then rn,k ≥ (logn)2 − 2δ logn. Therefore for any n ≥ 1 large
enough

sup
k∈[bn,n−bn]

EL [Λk] ≤ Φne
−θ∗(logn)2/2. (4.4.7)
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If k ≥ n− bn, we still have rn,k ≥ (ϕ− 2δ) logn. We set

Φend
n = max

k∈[n−bn,n]
EL


 ∑
`∈Lk+1

(
1 + eθ

∗`−κk+1(θ)
)2

 .
Dividing the expectation between the event {Tk ≥ −bn} and {Tk < −bn}, for any n ≥ 1
large enough we have

EL [Λk] ≤ Φend
n nθ

∗(ϕ+2δ)PL [Tk ≥ −bn, Tj ≤ −θ∗rn,j , j ≤ k] + Φend
n e−θ

∗(logn)2/2.

We introduce
P end
n = sup

k≥n−bn
PL [Tk ≥ −bn, Tj ≤ −θ∗rn,j , j ≤ k] .

By Lemma 4.3.7, for any ε > 0, we have

lim
n→+∞

P
[
P end
n ≥ n−θ∗ϕ+ε

]
= 0,

yielding
EL [Λk] ≤ Φend

n

[
nθ
∗(ϕ+2δ)P end

n + e−θ
∗(logn)2/2

]
. (4.4.8)

In a second time, we bound EL[Λk] for k ≤ bn. By (4.4.2), as rn,j ≥ δ logn, we have

fk+1(x) ≤e−Kk+1EkL

e−θ∗Sn−k−1+Kn1{
θ∗(Sn−k−1+x)−Kn−θ∗ϕ logn∈[0,δ logn]
θ∗(Sj+x)≤Kj+δ logn,j≤n−k−1

}


≤nθ∗ϕeθ∗x−Kk+1 × PkL

[
θ∗(Sn−k−1 + x)−Kn − θ∗ϕ logn ∈ [0, δ logn]
θ∗(Sj + x) ≤ Kj + δ logn, j ≤ n− k − 1

]
.

We set

Φstart
n = max

k≤bn
EL


 ∑
`∈Lk+1

(
1 + eθ

∗`−κk+1(θ)
)2


P start
n = sup

k≤bn
sup

θ∗x−Kk+1≥−bn
PkL

[
θ∗(Sn−k−1 + x)−Kn − θ∗ϕ logn ∈ [0, δ logn],
θ∗(Sj + x) ≤ Kj + δ logn, j ≤ n− k − 1

]
,

and we recall that by Lemma 4.3.7, for all ε > 0, we have

lim
n→+∞

P
[
P start
n ≥ n−θ∗ϕ+ε

]
= 0.

For all k + 1 ≤ bn, we have

fk+1(x) ≤ nθ∗ϕeθ∗x−Kk+1
(
P start
n 1{θ∗x−Kk+1≥−bn} + 1{θ∗x−Kk+1≤−bn}

)
.

Consequently, applying (4.4.1), we have

EL [Λk] ≤ 2P start
n n2θ∗ϕEL

[
eTk1{Tk≤2θ∗δ logn}

]
EL


 ∑
`∈Lk+1

eθ
∗`−κk+1(θ∗)

2


+ 2n2θ∗ϕe−bnEL
[
#L2

k+1
]
.
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We conclude that, for all n ≥ 1 large enough,

EL [Λk] ≤ Φstart
n

[
2P start

n n2θ∗(ϕ+δ) + e−θ
∗(logn)2]

. (4.4.9)

We conclude that for all n ≥ 1 large enough, by (4.4.7), (4.4.8) and (4.4.9), we have

EL
[
Xn(δ)2

]
≤ EL [Xn(δ)] + 2bnΦstart

n

(
n2θ∗(ϕ+δ)P start

n + e−θ
∗(logn)2)

+ nΦne
−θ∗(logn)2/2 + bnΦend

n

(
nθ
∗(ϕ+2δ)P end

n + e−θ
∗(logn)2/2

)
.

By (4.4.6), for any η > 0, there exists x ≥ 0 such that for any n ∈ N,

P
[
Φstat
n ≥ xbn

]
+ P

[
Φend
n ≥ xbn

]
+ P [Φn ≥ xn] ≤ η.

We conclude that for any η > 0 and ε > 0, we have

lim sup
n→+∞

P
(
EL
[
Xn(δ)2

]
≥ n2θ∗δ+ε

)
≤ η.

Letting η → 0, we have

lim
n→+∞

P
(
EL
[
Xn(δ)2

]
≥ n2θ∗δ+ε

)
= 0. (4.4.10)

By the Cauchy-Schwarz inequality, for any δ > 0 we have

PL
(
Mn ≥

Kn

θ∗
− ϕ logn

)
≥ PL (Xn(δ) ≥ 1) ≥ EL

[
Xn(δ)2]

EL [Xn(δ)]2
.

Applying (4.4.5) and (4.4.10), we have

lim
n→+∞

P
(
EL
[
Xn(δ)2

]
≥ n2θ∗δ+ε or EL [Xn(δ)] ≤ n−θ∗δ−ε

)
= 0.

We obtain
lim

n→+∞
P
(
PL
(
Mn ≥

Kn

θ∗
− ϕ logn

)
≤ n−4θ∗δ−3ε

)
= 0,

choosing ε, δ > 0 small enough, we conclude the proof.

Proof of Theorem 4.1.1. Lemmas 4.4.2 and 4.4.3 can be used to prove Theorem 4.1.1. By
Lemma 4.4.2 for β < ϕ, PL

(
Mn ≥ Kn

θ∗ − β logn
)
converges to 0 in probability.

We are now left to prove that if β > ϕ, then

lim
n→+∞

PL
(
Mn ≥

Kn

θ∗
− β logn

)
= 1 in probability.

To do so, we use, for the first time in this chapter, the assumptions (4.1.2) and (4.1.3).
We obtain there exists % > 1 such that PL-a.s.

lim inf
n→+∞

#{|u| = n}1/n > %.

Let n ∈ N and k ≤ n, we use the Markov property at time k: with high probability,
there are at least %k individuals, each of which being below Kk

θ∗ +y with high probability by
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Lemma 4.4.1, that start an independent branching random walk in random environment
with law PkL. Therefore,

PL
(
Mn ≤

Kn

θ∗
− β logn

)
≤ EL

 ∏
|u|=k

ϕn,k(V (u))

 ,
where ϕn,k(x) = PkL

(
Mn−k ≤ Kn

θ∗ − β logn− x
)
. Note this function is increasing, thus,

for all y ≥ 0

PL
(
Mn ≤

Kn

θ∗
− β logn

)

≤PL (∃|u| = k : θ∗V (u)−Kk ≤ y) + EL

 ∏
|u|=k

ϕn,k(
Kk

θ∗
+ y)


≤e−y + EL

[(
PkL
(
Mn−k ≤

Kn −Kk

θ∗
− β logn+ y

))#{|u|=k}]
.

Let ε > 0, we set k = ε logn and obtain

PL
(
Mn ≤

Kn

θ∗
− β logn

)
≤e−y + PL

[
#{|u| = k} ≤ %k

]
+ EL

[(
PkL
(
Mn−k ≤

Kn −Kk

θ∗
− β logn+ y

))nε log %]
.

For any n ≥ 1 large enough, we have

(
PkL
(
Mn−k ≤

Kn −Kk

θ∗
− β logn+ y

))nε log %

≤
(
PkL
(
Mn−k ≤

Kn −Kk

θ∗
− ϕ log(n− k)

))nε log %

,

and as PkL
(
Mn−k ≥ Kn−Kk

θ∗ − ϕ log(n− k)
) (d)=PL

(
Mn−k ≥ Kn−k

θ∗ − ϕ log(n− k)
)
, we have

lim
n→+∞

(
1− PkL

(
Mn−k ≥

Kn −Kk

θ∗
− β logn+ y

))nε log %

= 0 in probability.

By dominated convergence, we conclude that

lim sup
n→+∞

P
[
PL
(
Mn ≤

Kn

θ∗
− β logn

)
≥ e−y

]
= 0.

This estimate holding for every y > 0, we conclude that

lim
n→+∞

PL
(
Mn ≤

Kn

θ∗
− β logn

)
= 0 in probability,

which ends the proof of Theorem 4.1.1.
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CHAPTER 5

The branching random walk
with increasing selection

“One general law, leading to the advancement of all organic
beings, namely, multiply, vary, let the strongest live and the
weakest die.”

Charles Darwin – The Origin of Species

Abstract
We consider in this chapter a branching-selection particle system on the real line. In
this model the total size of the population at time n is limited by exp

(
an1/3). At each

step n, every individual dies while reproducing independently, making children around
their current position according to i.i.d. point processes. Only the exp

(
a(n+ 1)1/3)

rightmost children survive to form the (n+ 1)th generation. This process can be seen
as a generalisation of the branching random walk with selection of the N rightmost
individuals, introduced by Brunet and Derrida in [BD97]. We obtain the asymptotic
behaviour of position of the extremal particles alive at time n by coupling this process
with a branching random walk with a killing boundary.

Nota: This chapter is a slight modification of the article Branching random walk with
selection at critical rate, available on arXiv:1502.07390.

5.1 Introduction

Let L be the law of a point process on R. A branching random walk on R with
reproduction law L is a particle process defined as follows: it starts at time 0 with a
unique individual ∅ positioned at 0. At time 1, this individual dies giving birth to children
which are positioned according to a point process of law L. Then at each time k ∈ N, each
individual in the process dies, giving birth to children which are positioned according to
i.i.d. point processes of law L, shifted by the position of their parent. We denote by T the
genealogical tree of the process, encoded with the Ulam-Harris notation. Note that T is a
Galton-Watson tree. For a given individual u ∈ T, we write V (u) ∈ R for the position of
u, and |u| ∈ Z+ for the generation of u. If u is not the initial individual, we denote by πu
the parent of u. The marked Galton-Watson tree (T, V ) is the branching random walk on
R with reproduction law L.
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Let L be a point process with law L. In this chapter again, we assume the Galton-
Watson tree T never get extinct and is supercritical, i.e.

P (#L = 0) = 0 and E [#L] > 1. (5.1.1)

We also assume the branching random walk (−V,T) to be in the so-called boundary case,
with the terminology of [BK04]:

E

∑
`∈L

e`

 = 1, E

∑
`∈L

`e`

 = 0 and σ2 := E

∑
`∈L

`2e`

 < +∞. (5.1.2)

Under mild assumptions, discussed in [Jaf12, Appendix A], there exists an affine transfor-
mation mapping a branching random walk into a branching random walk in the boundary
case. We impose that

E

∑
`∈L

e` log

∑
`′∈L

e`
′−`

2
 < +∞. (5.1.3)

Under slightly stronger integrability conditions, Aïdékon [Aïd13] proved that

max
|u|=n

V (u) + 3
2 logn =⇒

n→+∞
W,

where W is a random shift of a negative Gumble distribution.
In [BD97], Brunet and Derrida described a discrete-time particle system 1 on Z in

which the total size of the population remains constant equal to N . At each time k,
individuals alive reproduce in the same way as in a branching random walk, but only the
N rightmost individuals are kept alive to form the (k + 1)th generation. This process is
called the N -branching random walk. They conjectured that the cloud of particles in the
process moves at some deterministic speed vN , satisfying

vN = − π2σ2

2(logN)2

(
1 + (6 + o(1)) log logN

logN

)
as N → +∞.

Bérard and Gouéré [BG10] proved that in a N -branching random walk satisfying some
stronger integrability conditions, the cloud of particles moves at linear speed vN on R, i.e.
writing mN

n ,M
N
n respectively the minimal and maximal position at time n, we have

lim
n→+∞

MN
n

n
= lim

n→+∞
mN
n

n
= vN a.s. and lim

N→+∞
(logN)2vN = −π

2σ2

2 ,

partially proving the Brunet-Derrida conjecture.
We introduce a similar model of branching-selection process. We set ϕ : N → N,

and we consider a process with selection of the ϕ(n) rightmost individuals at generation
n. More precisely we define Tϕ as a non-empty subtree of T, such that ∅ ∈ Tϕ and
the generation k ∈ N is composed of the ϕ(k) children of {u ∈ Tϕ : |u| = k − 1} with
largest positions, with ties broken uniformly at random 2. The marked tree (Tϕ, V ) is the
branching random walk with selection of the ϕ(n) rightmost individuals at time n. We
write

mϕ
n = min

u∈Tϕ,|u|=n
V (u) and Mϕ

n = max
u∈Tϕ,|u|=n

V (u). (5.1.4)

The main result of the chapter is the following.
1. Extended in [BDMM07] to a particle system on R.
2. Or in any other predictable fashion.
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Theorem 5.1.1. Let a > 0, we set ϕ(n) =
⌊
exp

(
an1/3

)⌋
. Under assumptions (5.1.1),

(5.1.2) and (5.1.3) we have

Mϕ
n ∼n→+∞ −

3π2σ2

2a2 n1/3 a.s. (5.1.5)

mϕ
n ∼ −

(
3π2σ2

2a2 n1/3 + a

)
n1/3 a.s. (5.1.6)

We prove Theorem 5.1.1 using a coupling between the branching random walk with
selection and a branching random walk with a killing boundary, introduced in [BG10].
We also provide in this chapter the asymptotic behaviour of the extremal positions in
a branching random walk with a killing boundary; and the asymptotic behaviour of the
extremal positions in a branching random walk with selection of the

⌊
ehk/nn

1/3⌋ at time
k ≤ n, where h is a positive continuous function.

We consider in this chapter populations with ean1/3 individuals on the interval of time
[0, n]. This rate of growth is in some sense critical. More precisely in [BDMM07], the
branching random walk with selection of the N rightmost individuals is conjectured to
typically behave at the time scale (logN)3. This observation has been confirmed by the
results of [BG10, BBS13, Mai13]. Using methods similar to the ones developed here, or in
[BG10], one can prove that the maximal displacement in a branching random walk with
selection of the eanα rightmost individuals behaves as − π2σ2

2(1−2α)a2n
1−2α for α < 1/2. If

α > 1/2, it is expected that the behaviour of the maximal displacement in the branching
random walk with selection is similar to the one of the classical branching random walk,
of order logn.

We recall that c, C stand for positive constants, respectively small enough and large
enough, which may change from line to line and depend only on the law of the processes
we consider. Moreover, the set {|u| = n} represents the set of individuals alive at the nth

generation in a generic branching random walk (T, V ) with reproduction law L.
The rest of the chapter is organised as follows. In Section 5.2, we introduce the spinal

decomposition of the branching random walk, the Mogul’skĭı small deviation estimate and
lower bounds on the total size of the population in a Galton-Watson process. Using these
results, we study in Section 5.3 the behaviour of a branching random walk with a killing
boundary. Section 5.4 is devoted to the study of branching random walks with selection,
that we use to prove Theorem 5.1.1.

5.2 Some useful lemmas

5.2.1 The spinal decomposition of the branching random walk

For any a ∈ R, we write Pa for the probability distribution of (T, V +a) the branching
random walk with initial individual positioned at a, and Ea for the corresponding expecta-
tion. To shorten notation, we set P = P0 and E = E0. We write Fn = σ(u, V (u), |u| ≤ n)
for the natural filtration on the set of marked trees. Let Wn = ∑

|u|=n e
V (u). By (5.1.2),

we observe that (Wn) is a non-negative martingale with respect to the filtration (Fn). We
define a new probability measure Pa on F∞ such that for all n ∈ N,

dPa

dPa

∣∣∣∣∣
Fn

= e−aWn. (5.2.1)
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We write Ea for the corresponding expectation and P = P0, E = E0. The so-called
spinal decomposition, introduced in branching processes by Lyons, Pemantle and Peres
in [LPP95], and extended to branching random walks by Lyons in [Lyo97] gives an alter-
native construction of the measure Pa, by introducing a special individual with modified
reproduction law.

Let L be a point process with law L, we introduce the law L̂ defined by

dL̂
dL(L) =

∑
`∈L

e`. (5.2.2)

We describe a probability measure P̂a on the set of marked trees with spine (T, V, w),
where (T, V ) is a marked tree, and w = (wn, n ∈ N) is a sequence of individuals such that
for any n ∈ N, wn ∈ T, |wn| = n and πwn = wn−1. The ray w is called the spine of the
branching random walk.

Under law P̂a, the process starts at time 0 with a unique individual w0 = ∅ located at
position a. It generates its children according to a point process of law L̂. Individual w1
is chosen at random among the children u of w0 with probability proportional to eV (u).
At each time n ∈ N, every individual u in the nth generation die, giving independently
birth to children according to the measure L if u 6= wn and L̂ if u = wn. Finally, wn+1 is
chosen at random among the children v of wn with probability proportional to eV (v).

Proposition 5.2.1 (Spinal decomposition). Under assumption (5.1.2), for all n ∈ N, we
have

P̂a

∣∣∣
Fn

= Pa

∣∣∣
Fn
.

Moreover, for all u ∈ T such that |u| = n,

P̂a (wn = u| Fn) = eV (u)

Wn
,

and (V (wn), n ≥ 0) is a centred random walk starting from a with variance σ2

This proposition in particular implies the following result, often called in the literature
the many-to-one lemma, which has been introduced for the first time by Kahane and
Peyrière in [KP76, Pey74], and links additive moments of the branching random walks
with random walk estimates.

Lemma 5.2.2 (Many-to-one lemma). There exists a centred random walk (Sn, n ≥ 0),
starting from a under Pa, with variance σ2 such that for any n ≥ 1 and any measurable
non-negative function g, we have

Ea

 ∑
|u|=n

g(V (u1), · · ·V (un))

 = Ea

[
ea−Sng(S1, · · ·Sn)

]
. (5.2.3)

Proof. We use Proposition 5.2.1 to compute

Ea

 ∑
|u|=n

g(V (u1), · · ·V (un))

 = Ea

 ea
Wn

∑
|z|=n

g(V (u1), · · ·V (un))


= Êa

ea ∑
|u|=n

1{u=wn}e
−V (u)g(V (u1), · · ·V (un))


= Êa

[
ea−V (wn)g(V (w1), · · · , V (wn))

]
.
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Therefore we define the random walk S under Pa as a process with the same law as
(V (ωn), n ≥ 0) under P̂a, which ends the proof. Note that for any continuous bounded
function,

Ea(f(S1 − a)) = E

∑
`∈L

e`f(`)

 .

Using the many-to-one lemma, to compute the number of individuals in a branching
random walk who stay in a well-chosen path, we only need to understand the probability
for a random walk to stay in this path. This is what is done in the next section.

5.2.2 Small deviation estimate and variations

The following theorem gives asymptotic bounds for the probability for a random walk
to have small deviations, i.e., to stay until time n within distance significantly smaller than√
n from the origin. Let (Sn, n ≥ 0) be a centred random walk on R with finite variance

σ2. We assume that for any x ∈ R, Px(S0 = x) = 1 and we set P = P0.

Theorem 5.2.3 (Mogul’skĭı estimate [Mog74]). Let f < g be continuous functions on
[0, 1] such that f0 < 0 < g0 and (an) a sequence of positive numbers such that

lim
n→+∞

an = +∞ and lim
n→+∞

a2
n

n
= 0.

For any f1 ≤ x < y ≤ g1, we have

lim
n→+∞

a2
n

n
log P

[
Sn
an
∈ [x, y], Sj

an
∈
[
fj/n, gj/n

]
, j ≤ n

]
= −π

2σ2

2

∫ 1

0

ds

(gs − fs)2 . (5.2.4)

In the rest of this chapter, we use some modifications of the Mogul’skĭı theorem,
choosing an = n1/3. We start with a straightforward corollary: the Mogul’skĭı theorem
holds uniformly with respect to the starting point.

Corollary 5.2.4. Let f < g be continuous functions on [0, 1] such that f0 < g0 and (an)
a sequence of positive numbers such that

lim
n→+∞

an = +∞ and lim
n→+∞

a2
n

n
= 0.

For any f1 ≤ x < y ≤ g1, we have

lim
n→+∞

a2
n

n
log sup

z∈R
Pzan

[
Sn
an
∈ [x, y], Sj

an
∈
[
fj/n, gj/n

]
, j ≤ n

]
= −π

2σ2

2

∫ 1

0

ds

(gs − fs)2 .

(5.2.5)

Proof. We observe that

sup
z∈R

Pzan

[
Sn
an
∈ [x, y], Sj

an
∈
[
fj/n, gj/n

]
, j ≤ n

]
≥ P

an
f0+g0

2

[
Sn
an
∈ [x, y], Sj

an
∈
[
fj/n, gj/n

]
, j ≤ n

]
.
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Therefore, applying Theorem 5.2.3, we have

lim inf
n→+∞

a2
n

n
log sup

z∈R
Pzan

[
Sn
an
∈ [x, y], Sj

an
∈
[
fj/n, gj/n

]
, j ≤ n

]
≥ −π

2σ2

2

∫ 1

0

ds

(gs − fs)2 .

We choose δ > 0, and set M =
⌈
g0−f0
δ

⌉
. We observe that

Pzan

[
Sn
an
∈ [x, y], Sj

an
∈
[
fj/n, gj/n

]
, j ≤ n

]
= 0,

thus

sup
z∈R

Pzan

[
Sn
an
∈ [x, y], Sj

an
∈
[
fj/n, gj/n

]
, j ≤ n

]
= max

0≤k≤M−1
sup

z∈[f0+kδ,f0+(k+1)δ]
Pzan

[
Sn
an
∈ [x, y], Sj

an
∈
[
fj/n, gj/n

]
, j ≤ n

]
≤ max

0≤k≤M−1
Pan(f0+kδ)

[
Sn
an
∈ [x, y + δ], Sj

an
∈
[
fj/n, gj/n + δ

]
, j ≤ n

]
.

As a consequence, we have

lim sup
n→+∞

a2
n

n
log sup

z∈R
Pzan

[
Sn
an
∈ [x, y], Sj

an
∈
[
fj/n, gj/n

]
, j ≤ n

]
≤ −π

2σ2

2

∫ 1

0

ds

(gs − fs + δ)2 .

Letting δ → 0 ends the proof.

We present a more involved result on enriched random walks, a useful toy-model to
study the spine of the branching random walk. The following lemma is proved by mocking
the original proof of Mogul’skĭı.

Lemma 5.2.5 (Mogul’skĭı estimate for spine). Let ((Xj , ξj), j ∈ N) be an i.i.d. sequence
of random variables taking values in R× R+, such that

E(X1) = 0 and σ2 := E(X2
1 ) < +∞.

We write Sn = ∑n
j=1Xj and En = {ξj ≤ n, j ≤ n}. Let (an) ∈ RN

+ be such that

lim
n→+∞

an = +∞, lim
n→+∞

a2
n

n
= 0 and lim

n→+∞
a2
nP(ξ1 ≥ n) = 0.

Let f < g be two continuous functions. For all f0 < x < y < g0 and f1 < x′ < y′ < g1, we
have

lim
n→+∞

a2
n

n
inf

z∈[x,y]
log Pzan

(
Sn
an
∈ [x′, y′]Sj

an
∈
[
fj/n, gj/n

]
, j ≤ n,En

)
= −π

2σ2

2

∫ 1

0

ds

(gs − fs)2 .

Proof. For any z ∈ [x, y], we have

Pzan

(
Sn
an
∈ [x′, y′], Sj

an
∈
[
fj/n, gj/n

]
, j ≤ n,En

)
≤ sup

h∈R
Phan

(
Sj
an
∈
[
fj/n, gj/n

]
, j ≤ n

)
.
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So the upper bound in this lemma is a direct consequence of Corollary 5.2.4. We now
consider the lower bound.

We suppose in a first time that f and g are two constants. Let n ≥ 1, f < x < y < g
and f < x′ < y′ < g, we bound from below the quantity

P x
′,y′

x,y (f, g) = inf
z∈[x,y]

Pzan

(
Sn
an
∈ [x′, y′], Sj

an
∈ [f, g], j ≤ n,En

)
.

Setting A ∈ N and rn =
⌊
Aa2

n

⌋
, we divide [0, n] into K =

⌊
n
rn

⌋
intervals of length rn.

For k ≤ K, we write mk = krn, and mK+1 = n. By restriction to the set of trajectories
verifying Smk ∈ [x′an, y′an], and applying the Markov property at time mK , . . .m1, and
restricting to trajectories which are at any time mk in [x′an, y′an], we have

P x
′,y′

x,y (f, g) ≥ πx′,y′x,y (f, g)
(
πx
′,y′

x′,y′

)K
, (5.2.6)

writing
πx
′,y′
x,y (f, g) = inf

z∈[x,y]
Pzan

(
Srn
an
∈ [x′, y′], Sj

an
∈ [f, g], j ≤ rn, Ern

)
.

Let δ > 0 chosen small enough such that M =
⌈
y−x
δ

⌉
≥ 3 we observe easily that

πx
′,y′
x,y (f, g) ≥ min

0≤m≤M
πx
′,y′

x+mδ,x+(m+1)δ(f, g)

≥ min
0≤m≤M

πx
′−(m−1)δ,y−(m+1)δ
x,x (f − (m− 1)δ, g − (m+ 1)δ). (5.2.7)

Moreover, we have

πx
′,y′
x,x (f, g) = Pxan

(
Srn
an
∈ [x′, y′], Sj

an
∈ [f, g], Ern

)
≥ Pxan

(
Srn
an
∈ [x′, y′], Sj

an
∈ [f, g]

)
− rnP(ξ1 ≥ n).

Using the Donsker theorem [Don51],
(
Sbrntc
an

, t ∈ [0, 1]
)
converges, under law Pxan , as n

grows to infinity to a Brownian motion with variance σ
√
A starting from x. In particular

lim inf
n→+∞

πx
′,y′
x,x (f, g) ≥ Px(BAσ2 ∈ (x′, y′), Bu ∈ (f, g), u ≤ Aσ2).

Using (5.2.7), we have

lim inf
n→+∞

πx
′,y′
x,y (f, g) ≥ min

0≤m≤M
Px+mδ(BAσ2 ∈ (x′ + δ, y′ − δ), Bu ∈ (f + δ, g − δ), u ≤ Aσ2).

As a consequence, recalling that K ∼ n
Aa2

n
, (5.2.6) leads to

lim inf
n→+∞

a2
n

n
logP x′,y′x,y (f, g) ≥

1
A

min
0≤m≤M

log Px+mδ(BAσ2 ∈ (x′ + δ, y′ − δ), Bu ∈ (f + δ, g − δ), u ≤ Aσ2). (5.2.8)

According to Karatzas and Shreve [KS91], probability Px(Bt ∈ (x′, y′), Bs ∈ (f, g), s ≤ t)
is exactly computable, and

lim
t→+∞

1
t

logx P(Bt ∈ (x′, y′), Bs ∈ (f, g), s ≤ t) = − π2

2(g − f)2 .
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Letting A→ +∞ then δ → 0, (5.2.8) becomes

lim inf
n→+∞

a2
n

n
logP x′,y′x,y (f, g) ≥ − π2σ2

2(g − f)2 . (5.2.9)

We now take care of the general case. Let f < g be two continuous functions such that
f0 < 0 < g0. We write ht = ft+gt

2 . Let ε > 0 be such that

12ε ≤ inf
t∈[0,1]

gt − ft

and A ∈ N such that

sup
|t−s|≤ 2

A

|ft − fs|+ |gt − gs|+ |ht − hs| ≤ ε.

For any a ≤ A, we write ma = ban/Ac,

Ia,A = [fa/A + ε, ga/A − ε] and Ja,A = [ha/A − ε, ha/A + ε],

except J0,A = [x, y] and JA,A = [x′, y′].
We apply the Markov property at times mA−1, . . . ,m1, we have

inf
z∈J0,A

Pzan

(
Sj
an
∈
[
fj/n, gj/n

]
, j ≤ n,En

)

≥
A−1∏
a=0

inf
z∈Ja,A

Pzan

(
Sma+1

an
∈ Ja+1,A, Ema+1−ma

Sj
an
∈ Ia,A, j ≤ ma+1 −ma

)
.

Applying equation (5.2.9), we conclude

lim inf
n→+∞

a2
n

n
log inf

z∈J0,A
Pzan

(
Sj
an
∈
[
fj/n, gj/n

]
and ξj ≤ n, j ≤ n

)

≥ − 1
A

A−1∑
a=0

π2σ2

2(ga,A − fa,A − 2ε)2 .

Letting ε→ 0 then A→ +∞, we conclude the proof.

Lemma 5.2.5 is extended in the following fashion, to take into account functions g such
that g(0) = 0.

Corollary 5.2.6. Let ((Xj , ξj), j ∈ N) be an i.i.d. sequence of random variables taking
values in R× R+ such that

E(X1) = 0 and σ2 := E(X2
1 ) < +∞.

We write Sn = ∑n
j=1Xj and En = {ξj ≤ n, j ≤ n}. Let (an) ∈ RN

+ verifying

lim
n→+∞

an = +∞, lim sup
n→+∞

a3
n

n
< +∞ and lim

n→+∞
a2
nP(ξ1 ≥ n) = 0.

Let f < g be two continuous functions such that f0 < 0 and lim inft→0
gt
t > −∞. For any

f1 ≤ x′ < y′ ≤ g1, we have

lim
n→+∞

a2
n

n
log P

(
Sn
an
∈ [x′, y′], Sj

an
∈ [fj/n, gj/n], j ≤ n,En

)
= −π

2σ2

2

∫ 1

0

ds

(gs − fs)2 .
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Proof. Let d > 0 be such that for all t ∈ [0, 1], g(t) ≥ −dt. We set x < y < 0 and A > 0
verifying P(X1 ∈ [x, y], ξ1 ≤ A) > 0. For any δ > 0, we set N = bδanc. Applying the
Markov property at time N , for any n ∈ N large enough, we have

P
(
Sn
an
∈ [x′, y′], Sj

an
∈
[
fj/n, gj/n

]
, j ≤ n,En

)
≥ P (Sj ∈ [jx, jy], j ≤ N,EN )

× inf
z∈[2δx,δy/2]

Pzan

(
Sn−N
an

∈ [x′, y′], Sj−N
an

∈
[
f j+N

n
, g j+N

n

]
, j ≤ n−N,En−N

)

with P (Sj ∈ [jx, jy], j ≤ N,EN ) ≥ P (X1 ∈ [x, y], ξ1 ≤ A)N . As lim supn→+∞
a3
n
n < +∞,

we have

lim inf
n→+∞

a2
n

n
log P

(
Sn
an
∈ [x′, y′], Sj

an
∈ [fj/n, gj/n], j ≤ n,En

)

≥ lim inf
n→+∞

a2
n

n
inf

z∈[2δx,δy/2]
Pzan

 Sj−N
an
∈
[
f j+N

n
, g j+N

n

]
, j ≤ n−N

Sn−N
an
∈ [x′, y′], En−N

 .
Consequently, applying Lemma 5.2.5 and letting δ → 0, we have

lim inf
n→+∞

a2
n

n
log P

(
Sn
an
∈ [x′, y′], Sj

an
∈ [fj/n, gj/n], j ≤ n,En

)
≥ −π

2σ2

2

∫ 1

0

ds

(gs − fs)2 .

The upper bound is a direct consequence of Corollary 5.2.4.

5.2.3 Lower bounds for the total size of the population above a barrier

To prove Theorem 5.1.1, we need an almost sure lower bound on the size of the pop-
ulation in a branching random walk that stay above a given boundary. We obtain this
lower bound using Lemma 1.5.1, that bounds from below the size of the population in a
supercritical Galton-Watson process. This lemma is recalled below.

Lemma 5.2.7. Let (Zn, n ≥ 0) be a Galton-Watson process with reproduction law µ. We
write b = min{k ∈ Z+ : µ(k) > 0}, m = E(Z1) ∈ (1,+∞) and q the smallest solution of
the equation E(qZ1) = q. There exists C > 0 such that for all z ∈ (0, 1) and n ∈ N we
have

P(Zn ≤ zmn) ≤


q + Cz

α
α+1 if b = 0

Czα if b = 1

exp
[
−Cz−

log b
logm−log b

]
if b ≥ 2.

This result is used to obtain a lower bound on the size of the population in a branching
random walk above a given position.

Lemma 5.2.8. Under assumptions (5.1.1) and (5.1.3), there exist a > 0 and % > 1 such
that a.s. for n ≥ 1 large enough

# {|u| = n : ∀j ≤ n, V (uj) ≥ −na} ≥ %n.

Proof. As lima→+∞E
[∑
|u|=1 1{V (u)≥−a}

]
= E

[∑
|u|=1 1

]
, by (5.1.1), there exists a > 0

such that %1 := E
[∑
|u|=1 1{V (u)≤a}

]
> 1. We writeN = ∑

|u|=1 1{V (u)≥−a}. By (5.1.3), we
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have E(N) < +∞. One can easily couple a Galton-Watson process Z with reproduction
law N with the branching random walk (T, V ) in a way that∑

|u|=n
1{∀j≤n,V (uj)≥−ja} ≥ Zn.

We write p := P(∀n ∈ N, Zn > 0) > 0 for the survival probability of this Galton-Watson
process.

For n ∈ N, we write Z̃n for the number of individuals with an infinite number of
descendants. Conditionally on the survival of Z, the process (Z̃n, n ≥ 0) is a supercritical
Galton-Watson process that survives almost surely (see e.g. [AN04]). Applying Lemma
5.2.7, there exists % > 1 such that

P(Z̃n ≤ %n) ≤ %−n.

Applying the Borel-Cantelli lemma, a.s. for any n ≥ 1 large enough Z̃n ≥ %n.
We introduce a sequence of individuals (un) ∈ TN such that |un| = n, u0 = ∅ and un+1

is the leftmost child of un, with ties broken uniformly at random. We write q = P(N ≥ 2)
for the probability that un has at least two children, both of them above −a. We introduce
the random time T defined as the smallest k ∈ N such that the second leftmost child v
of uk is above −a, and the Galton-Watson process coupled with the branching random
walk rooted at v survives. We observe that T is stochastically bounded by a geometric
random variable with parameter pq, and that conditionally on T , the Galton-Watson tree
that survives has the same law as Z̃.

Thanks to these observations, we note that T < +∞ and infj≤T V (uj) > −∞. For
any n ≥ 1 large enough such that T < n and infj≤T V (uj) ≥ −na we have

# {u ∈ T : |u| = 2n,∀j ≤ n, V (uj) ≥ −3na} ≥ %n,

as desired.

5.3 Branching random walk with a killing boundary at crit-
ical rate

In this section, we study the behaviour of a branching random walk on R in which
individuals below a given barrier are killed. Given a continuous function f ∈ C([0, 1]) such
that lim supt→0

ft
t < +∞ and n ∈ N, for any k ≤ n every individual alive at generation

k below level fk/nn1/3 are removed, as well as all their descendants. Let (T, V ) be a
branching random walk, we denote by

T(n)
f =

{
u ∈ T : |u| ≤ n,∀j ≤ |u|, V (uj) ≥ n1/3f(k/n)

}
,

and note that T(n)
f is a random tree. The process (T(n)

f , V ), called branching random
walk with a killing boundary, has been introduced in [AJ11, Jaf12], where the question of
survival of the process is studied.

We compute the survival probability of T(n)
f , and provide a bound on the size of the

population in T(n)
f at any time k ≤ n. We start finding a function g such that with

high probability, no individual alive at generation k ∈ T(n)
f is above n1/3gk/n. We then

compute the first and second moments of the number of individuals in T that stay at any
time k ≤ n between n1/3fk/n and n1/3gk/n.
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With a careful choice of functions f and g, one can compute the asymptotic behaviour
of the consistent maximal displacement at time n, which is [FZ10, Theorem 1] and [FHS12,
Theorem 1.4]; or the asymptotic behaviour as ε → 0 of the probability there exists an
individual in the branching random walk staying at any time n ∈ N above −εn, which
is [GHS11, Theorem 1.2]. We present these results respectively in Theorem 5.3.7 and
Theorem 5.3.8, with weaker integrability conditions than in the seminal articles.

5.3.1 Number of individuals in a given path

For any two continuous functions f < g, we denote by

Ht(f, g) = π2σ2

2

∫ t

0

ds

(gs − fs)2 .

For n ≥ 1 and k ≤ n, we write I(n)
k = [fk/nn1/3, gk/nn

1/3]. We compute in a first time
the number of individuals in T(n)

f that crosses for the first time at some time k ≤ n the
boundary gk/nn1/3. We set

Y
(n)
f,g =

∑
u∈T(n)

f

1{V (u)>g|u|/nn1/3}1{V (uj)≤gj/nn1/3,j<|u|}.

Lemma 5.3.1. Let f ≤ g such that f0 ≤ 0 ≤ g0. Under assumptions (5.1.1) and (5.1.2),

lim sup
n→+∞

n−1/3 log E
[
Y

(n)
f,g

]
≤ − inf

t∈[0,1]
gt +Ht(f, g). (5.3.1)

Proof. Using Lemma 5.2.2, we have

E
[
Y

(n)
f,g

]
=

n∑
k=1

E

 ∑
|u|=k

1{V (u)≥gk/nn1/3}1{V (uj)∈I(n)
j ,j<k

}
=

n∑
k=1

E

e−Sk1{Sk≥gk/nn1/3}1{Sj∈I(n)
j ,j<k

}
≤

n∑
k=1

e−n
1/3gk/nP

(
Sj ∈ I(n)jj , j < k

)
.

Let δ > 0, we set I(n),δ
k =

[
(fk/n − δ)n1/3, (gk/n + δ)n1/3

]
. Let A ∈ N, for a ≤ A we

write ma = bna/Ac and g
a,A

= infs∈[a/A,(a+1)/A] gs. Applying the Markov property at
time ma, for any k > ma, we have

e−n
1/3gk/nP

(
Sj ∈ I(n)jj , j < k

)
≤ e−n

1/3g
a,AP

(
Sj ∈ I(n), δj , j ≤ ma

)
.

Applying Theorem 5.2.3, we have

lim sup
n→+∞

n−1/3 log E
[
Y

(n)
f,g

]
≤ max

a<A
−g

a,A
−Ha/A(f − δ, g + δ).

Letting δ → 0 and A→ +∞, we conclude that

lim sup
n→+∞

n−1/3 log E
[
Y

(n)
f,g

]
≤ sup

t∈[0,1]
−gt −Ht(f, g).
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Using this lemma, we note that if inft∈[0,1] gt+Ht(f, g) ≥ δ, then with high probability
no individual in T(n)

f crosses the curve g./nn1/3 with probability at least 1 − e−δn1/3 . In
a second time, we take interest in the number of individuals that stays between f./nn1/3

and g./nn1/3. For any f1 ≤ x < y ≤ g1, we set

Z
(n)
f,g (x, y) =

∑
|u|=n

1{V (u)∈[xn1/3,yn1/3]}1{V (uj)∈I(n)
j ,j≤n

}.
Lemma 5.3.2. Let f < g be such that lim inft→0

gt
t > −∞ and lim supt→0

ft
t < +∞.

Under assumptions (5.1.1) and (5.1.2), we have

lim
n→+∞

n−1/3 log E
(
Z

(n)
f,g (x, y)

)
= −(x+H1(f, g)).

Proof. Applying (5.2.3), we have

E
(
Z

(n)
f,g (x, y)

)
= E

e−Sn1{Sn∈[xn1/3,yn1/3]}1{Sj∈I(n)
j ,j≤n

} ,
which yields

E
(
Z

(n)
f,g (x, y)

)
≤ e−xn1/3P

(
Sn ∈ [xn1/3, yn1/3], Sj ∈ I(n)

j , j ≤ n
)
. (5.3.2)

Moreover, note that for any ε > 0, Z(n)
f,g (x, y) ≥ Z(n)

f,g (x, x+ ε), and we have

E(Z(n)
f,g (x, y) ≥ e−(x+ε)n1/3P

(
Sn ∈ [xn1/3, (x+ ε)n1/3], Sj ∈ I(n)

j , j ≤ n
)
. (5.3.3)

As f < g, lim inft→0
gt
t > −∞ and lim supt→0

ft
t < +∞, either f0 < 0 or g0 > 0.

Consequently, applying Corollary 5.2.6, for any f1 ≤ x′ < y′ ≤ g1 we have

lim
n→+∞

n−1/3 log P
(
Sn ∈ [x′n1/3, y′n1/3], Sj ∈ I(n)

j , j ≤ n
)

= −H1(f, g).

Therefore, (5.3.2) yields

lim sup
n→+∞

n−1/3 log E(Z(n)
f,g (x, y)) ≤ −x−H1(f, g)

and (5.3.3) yields

lim inf
n→+∞

n−1/3 log E(Z(n)
f,g (x, y)) ≥ −x− ε−H1(f, g).

Letting ε→ 0 concludes the proof.

Lemma 5.3.2 is used to bound from above the number of individuals in T(n)
f who

are at time n in a given interval. To compute a lower bound we use a second moment
concentration estimate. To successfully bound from above the second moment, we are
led to restrict the set of individuals we consider to individuals who have “not too many
siblings” in the following sense. For u ∈ T, we set

ξ(u) = log

1 +
∑

v∈Υ(u)
eV (v)−V (u)


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where Υ(u) is the set of siblings of u, except u itself. In other words,

Υ(u) = {v ∈ T : πv = πu, v 6= u} .

For δ > 0 and f1 ≤ x < y ≤ g1, we write

Z̃
(n)
f,g (x, y, δ) =

∑
|u|=n

1{V (u)∈[xn1/3,yn1/3]}1{V (uj)∈I(n)
j ,ξ(uj)≤δn1/3,j≤n

},
and observe that for any δ > 0, Z̃(n)

f,g (x, y, δ) ≤ Z(n)
f,g (x, y).

Lemma 5.3.3. Let f < g be such that lim inft→0
gt
t > −∞ and lim supt→0

ft
t < +∞.

Under assumptions (5.1.1), (5.1.2) and (5.1.3), for any f1 ≤ x < y ≤ g1 and δ > 0 we
have

lim inf
n→+∞

n−1/3 log E(Z̃(n)
f,g (x, y, δ)) ≥ −(x+H1(f, g)), (5.3.4)

lim sup
n→+∞

n−1/3 log E
[(
Z̃

(n)
f,g (x, y, δ)

)2
]
≤ −2(x+H1(f, g)) + δ+ sup

t∈[0,1]
gt+Ht(f, g). (5.3.5)

Proof. For any ε > 0, applying Proposition 5.2.1 we have

E
[
Z̃

(n)
f,g (x, y, δ)

]
= E

 1
Wn

∑
|u|=n

1{V (u)∈[xn1/3,yn1/3]}1{V (uj)∈I(n)
j ,j≤n

}1{ξ(uj)≤δn1/3,j≤n}


≥ Ê

e−V (wn)1{V (wn)∈[xn1/3,(x+ε)n1/3]}1{V (wj)∈I(n)
j ,ξ(wj)≤δn1/3,j≤n

}
≥ e−(x+ε)n1/3P̂

[
V (wn) ∈ [xn1/3, (x+ ε)n1/3], V (wj) ∈ I(n)

j , ξ(wj) ≤ δn1/3, j ≤ n
]
.

Setting X = ξ(w1), (5.1.3) implies Ê(X2) < +∞, thus limz→+∞ z2P̂(X ≥ z) = 0. Apply-
ing Corollary 5.2.6, we obtain

lim inf
n→+∞

n−1/3 log E
[
Z̃

(n)
f,g (x, y, δ)

]
≥ −(x+ ε)−H1(f, g),

and conclude the proof of (5.3.4) by letting ε→ 0.
We now take care of the second moment. Using again Proposition 5.2.1, we have

E
[
(Z̃(n)

f,g (x, y, δ))2
]

=E

 Z̃(n)
f,g (x, y, δ)
Wn

∑
|u|=n

1{V (u)∈[xn1/3,yn1/3]}1{V (uj)∈I(n)
j ,j≤n

}1{ξ(uj)≤δn1/3,j≤n}


≤Ê

e−V (wn)Z
(n)
f,g (x, y)1{V (wn)∈[xn1/3,yn1/3]}1{V (wj)∈I(n)

j ,j≤n
}1{ξ(wj)≤δn1/3,j≤n}


≤e−xn1/3Ê

Z(n)
f,g (x, y)1{V (wn)∈[xn1/3,yn1/3]}1{V (wj)∈I(n)

j ,j≤n
}1{ξ(wj)≤δn1/3,j≤n}

 . (5.3.6)
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We decompose Z(n)
f,g (x, y) according to the generation at which individuals split with the

spine, i.e.,

Z
(n)
f,g (x, y) = 1{V (wn)∈[xn1/3,yn1/3]}1{V (wj)∈I(n)

j ,j≤n
} +

n∑
k=1

∑
u∈Υk

Λ(u),

where Λ(u) = ∑
|v|=n,v≥u 1{V (v)∈[xn1/3,yn1/3]}1{V (vj)∈I(n)

j ,j≤n
} for u ∈ T, and Υk = Υ(wk)

is the set of children of wk−1 which are different from wk.
By definition of P̂, conditionally on F̂k the subtree of the descendants of u ∈ Υk is

distributed as a branching random walk starting from V (u). For any k ≤ n and u ∈ Υk,
applying Lemma 5.2.2 we have

E
[
Λ(u)| F̂k

]
=1{

V (wj)∈I(n)
j ,j≤k

}EV (u)

 ∑
|v|=n−k

1{V (v)∈[xn1/3,yn1/3]}1{V (vj)∈I(n)
k+j ,j≤n−k

}
=1{

V (wj)∈I(n)
j ,j≤k

}e−V (u) EV (u)

e−Sn−k1{Sn−k∈[xn1/3,yn1/3]}1{Sj∈I(n)
k+j ,j≤n−k

}
≤eV (wk)−xn1/3

eV (u)−V (wk)PV (u)
[
Sj ∈ I(n)

k+j , j ≤ n− k
]
.

Thus, by definition of ξ(wk),∑
u∈Υk

E
[
Λ(u)| F̂k

]
≤ eV (wk)−xn1/3+ξ(wk) sup

z∈R
Pz

[
Sj ∈ I(n)

k+j , j ≤ n− k
]
.

Let A ∈ N. For any a ≤ A we write ma = bna/Ac. For any k ≤ ma and z ∈ R,
applying the Markov property at time ma − k we have

Pz

[
Sj ∈ I(n)

k+j , j ≤ n− k
]
≤ sup

z′∈R
Pz′

[
Sj ∈ I(n)

ma+j , j ≤ n−ma

]
.

We write Ψ(n)
a = supz′∈R Pz′

[
Sj ∈ I(n)

ma+j , j ≤ n−ma

]
. By Corollary 5.2.4, we have

lim sup
n→+∞

n−1/3 log Ψ(n)
a ≤ −

(
H1(f, g)−Ha/A(f, g)

)
.

Moreover, (5.3.6) becomes

E
[(
Z̃

(n)
f,g (x, y)

)2
]
≤ e−xn1/3P(Sj ∈ I(n)

j , j ≤ n)

+ e−2xn1/3
A−1∑
a=0

Ψ(n)
a+1

ma+1∑
k=ma+1

E

eV (wk)+ξ(wk)1{
V (wj)∈I(n)

j ,ξ(wj)≤δn1/3,j≤n
} .

We set ga,A = sups∈[ a
A
,a+1
A

] gs, we have

E

eV (wk)+ξ(wk)1{
V (wj)∈I(n)

j ,ξ(wj)≤δn1/3,j≤n
} ≤ en1/3(ga,A+δ)P(Sj ∈ I(n)

j , j ≤ n).
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We apply Theorem 5.2.3 to obtain

lim sup
n→+∞

n−1/3 log
ma+1∑

k=ma+1
E

eV (wk)+ξ(wk)1{
V (wj)∈I(n)

j ,ξ(wj)≤δn1/3,j≤n
}

≤ ga,A + δ −H1(f, g).

We conclude that

lim sup
n→+∞

n−1/3 log E
[
(Z̃(n)

f,g (x, y))2
]
≤ −(2x+H1(f, g)) + δ + max

a<A
ga,A +Ha+1

A
(f, g).

Letting A→ +∞ concludes the proof.

A straightforward consequence of Lemma 5.3.3 is a lower bound on the asymptotic
behaviour of the probability for Z(n)

f,g to be positive.
Corollary 5.3.4. Under the assumptions of Lemma 5.3.3, we have

lim inf
n→+∞

n−1/3 log P
[
Z

(n)
f,g (x, y) ≥ 1

]
≥ − sup

t∈[0,1]
gt +Ht(f, g).

Proof. For any δ > 0, we have Z(n)
f,g (x, y) ≥ Z̃(n)

f,g (x, y, δ). As a consequence,

P
[
Z

(n)
f,g (x, y) ≥ 1

]
≥ P

[
Z̃

(n)
f,g (x, y, δ) ≥ 1

]
≥

E
[
Z̃

(n)
f,g (x, y, δ)

]2
E
[
Z̃

(n)
f,g (x, y, δ)2

]
by the Cauchy-Schwarz inequality. Therefore using Lemma 5.3.3 we have

lim inf
n→+∞

n−1/3 log P
[
Z

(n)
f,g (x, y) ≥ 1

]
≥ − sup

t∈[0,1]
gt +Ht(f, g).

Another application of Lemma 5.3.3 is a lower bound on the value of the sum of a large
number of i.i.d. versions of Z(n)

f,g (x, y). This is useful observing that after time k, there
exists with large probability at least %k individuals, each of which starting an independent
branching random walk.

Corollary 5.3.5. Under the assumptions of Lemma 5.3.3, we set (Z(n),j
f,g (x, y), j ∈ N)

i.i.d. copies of Z(n)
f,g (x, y). Let z > 0, we write p =

⌊
ezn

1/3
⌋
. For any ε > 0, we have

lim sup
n→+∞

n−1/3 log P

 p∑
j=1

Z
(n),j
f,g (x, y) ≤ exp

(
n1/3(z − x−H1(f, g)− ε

)
≤ −z + sup

t∈[0,1]
gt +Ht(f, g).

Proof. The proof is based on the following observation. Let (Xj , j ∈ N) be i.i.d. random
variables with finite variance. Using the Bienaymé-Chebychev inequality, we have

P

 p∑
j=1

Xj ≤
1
2 E

 p∑
j=1

Xj

 ≤ P

∣∣∣∣∣∣
p∑
j=1

Xj − pE(X1)

∣∣∣∣∣∣ ≥ pE(X1)/2


≤ 4

Var
(∑p

j=1Xj

)
p2 E(X1)2 ≤ 4Var(X1)

pE(X1) ≤ 4 E(X2
1 )

pE(X1)2 . (5.3.7)
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Let δ > 0, as Z(n)
f,g (x, y) ≥ Z̃(n)

f,g (x, y, δ), we have

P

 p∑
j=1

Z
(n),j
f,g (x, y) ≤ exp

(
n1/3(z − x−H1(f, g)− ε)

)
≤ P

 p∑
j=1

Z̃
(n),j
f,g (x, y, δ) ≤ exp

(
n1/3(z − x−H1(f, g)− ε

) ,
where (Z̃(n),j

f,g (x, y, δ), j ∈ N) is a sequence of i.i.d. copies of Z̃(n),j
f,g (x, y, δ). By Lemma 5.3.3,

lim inf
n→+∞

n−1/3 log E
(
Z̃

(n)
f,g (x, y, δ)

)
≥ − (x+H1(f, g)) ,

thus, for any ε > 0, for any n ≥ 1 large enough we have

E
(
Z̃

(n)
f,g (x, y, δ)

)
/2 ≥ e−n1/3(x+H1(f,g)+ε).

Therefore, using again Lemma 5.3.3 and (5.3.7), we have

lim sup
n→+∞

n−1/3 log P

 p∑
j=1

Z̃
(n),j
f,g (x, y, δ) ≤ exp

(
n1/3(z − x−H1(f, g)− ε

)
≤ −z + δ + sup

t∈[0,1]
gt +Ht(f, g).

Consequently, letting δ → 0 we have

lim sup
n→+∞

n−1/3 log P

 p∑
j=1

Z
(n),j
f,g (x, y) ≤ exp

(
n1/3(z − x−H1(f, g)− ε

)
≤ −z + sup

t∈[0,1]
gt +Ht(f, g).

5.3.2 Asymptotic behaviour of the branching random walk with a killing
boundary

The results of Section 5.3.1, in particular Lemma 5.3.1 and Corollaries 5.3.4 and 5.3.5,
emphasize the importance of the functions g verifying

∀t ∈ [0, 1], gt = g0 −Ht(f, g) > ft (5.3.8)

in the study of T(n)
f . For such a function, the estimates of Lemmas 5.3.1, 5.3.2 and 5.3.3

are tight. They enable to precisely study the asymptotic behaviour of T(n)
f .

Theorem 5.3.6. We consider a branching random walk (T, V ) satisfying (5.1.1), (5.1.2)
and (5.1.3). Let f ∈ C([0, 1]) be such that f0 < 0. If there exists a continuous function g
such that

g0 = 0, ∀t ∈ [0, 1], gt = −π
2σ2

2

∫ t

0

ds

(gs − fs)2 and ∀t ∈ [0, 1], gt > ft,
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then almost surely for n ≥ 1 large enough, {u ∈ T(n)
f : |u| = n} 6= ∅ and

lim
n→+∞

1
n1/3 #

{
u ∈ T(n)

f : |u| = n
}

= g1 − f1,

lim
n→+∞

1
n1/3 min

u∈T(n)
f
,|u|=n

V (u) = f1 and lim
n→+∞

1
n1/3 max

u∈T(n)
f
,|u|=n

V (u) = g1 a.s. (5.3.9)

Otherwise, writing

λ = inf
{
g0, g ∈ C([0, 1]) : ∀t ∈ [0, 1], gt = g0 + π2σ2

2

∫ t

0

ds

(gs − fs)2 > ft

}
, (5.3.10)

then
lim

n→+∞
n−1/3 log P

({
u ∈ T(n)

f : |u| = n
}
6= ∅

)
= −λ. (5.3.11)

Proof. We study the solutions of the differential equation (5.3.8). As (t, x) 7→ − π2σ2

2(x−ft)2

is locally Lipschitz on {(t, x) ∈ [0, 1]× R : x > ft}, the Cauchy-Lipschitz theorem implies
that for any x > f0, there exists a unique continuous function gx defined on the maximal
interval [0, tx] such that gx0 = x, either tx = 1 or gtx = ftx , and for any t < tx

gxt = x− π2σ2

2

∫ t

0

ds

(gxs − fs)2 .

Moreover, we observe that tx is increasing with respect to x and gxt is decreasing in t and
increasing in x on {(t, x) ∈ [0, 1]× (f0,+∞) : t ≤ tx}. With these notations, we have

λ = inf {x > f0 : tx = 1} .

As limx→+∞ supt∈[0,1]
π2σ2

2(x−ft)2 = 0, there exists x > 0 large enough such that tx = 1. This
implies λ < +∞.

We note that for any x > 0 such that gx > f on [0, 1], applying Corollary 5.3.4 we
obtain

lim inf
n→+∞

n−1/3 log P
[
{u ∈ T(n)

f : |u| = n} 6= ∅
]
≥ lim inf

n→+∞
n−1/3 log P

[
Z

(n)
f,gx(f1), gx1 ) ≥ 1

]
≥ −x.

Therefore, we have lim infn→+∞ n−1/3 log P
[
{u ∈ T(n)

f : |u| = n} 6= ∅
]
≥ −min(λ, 0).

If λ ≥ 0, writing t = tλ, we use the fact that at some time before tλ every individual
in T(n)

f crosses n1/3g./n before time tn, thus

P
(
∃|u| = n : u ∈ T(n)

f

)
≤ P

(
∃u ∈ T(n)

f : V (u) ≥ n1/3g|u|/n
)
.

We set f (1)
s = fst/t

1/3 and g(1)
s = gλst/t

1/3. Applying Lemma 5.3.1, and writing m = btnc
we have

lim sup
n→+∞

n−1/3 log E
(
Y

(m)
f (1),g(1)

)
≤ −λ,

which by Markov inequality yields

lim sup
n→+∞

n−1/3 log P
(
u ∈ Tf : |u| ≤ tn, V (u) ≥ n1/3g|u|/n

)
≤ −λ,
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concluding the proof of (5.3.11).
We now assume λ < 0, or equivalently g0 > f . Applying Lemma 5.3.1, for any ε > 0

we have

lim sup
n→+∞

n−1/3 log P
(
∃u ∈ T(n)

f : V (u) ≥ n1/3gε|u|/n
)
≤ − inf

t∈[0,1]
gεt +Ht(f, gε) = −ε.

By the Borel-Cantelli lemma, almost surely for any n ≥ 1 large enough, we have{
u ∈ T(n)

f : V (u) ≥ n1/3gε|u|/n
}

= ∅. (5.3.12)

In particular, letting ε→ 0 we have

lim sup
n→+∞

1
n1/3 max

u∈T(n)
f
,|u|=n

V (u) = g1 a.s.

Moreover, by Lemma 5.3.2 we have

E
[
Z

(n)
f,gε(f1, g

ε
1)
]
≤ −(f1 +H1(f, gε)) = gε1 − f1 − ε.

Thus, by the Markov inequality and the Borel-Cantelli Lemma

lim sup
n→+∞

n−1/3 logZ(n)
f,gε(f1, g

ε
1) ≤ gε1 − f1.

Mixing with (5.3.12) and letting ε→ 0, we conclude

lim sup
n→+∞

1
n1/3 log #

{
u ∈ T(n)

f : |u| = n
}
≤ g1 − f1.

To obtain the other bounds of (5.3.9), we apply Lemma 5.2.8. For any ε > 0 there
exists % > 1 and δ > 0 such that almost surely for any n ≥ 1 large enough,

#
{
u ∈ T(n)

f : |u| =
⌊
δn1/3

⌋
and V (u) ∈ [−εn1/3, εn1/3]

}
≥ %δn1/3

.

We write Sn this event. On Sn, each of these %δn1/3 individuals starts an independent
branching random walk from some point in [−εn1/3, εn1/3] with a killing boundary n1/3f./n.
For ε small enough, we use Corollary 5.3.5 to bound from below the number of descendants
that stay between f + 2ε and g−2ε + 2ε. We have

lim sup
n→+∞

n−1/3 log P
[
#
{
u ∈ T(n)

f : |u| = n
}
≤ en1/3(g−2ε

1 −f1)
∣∣∣Sn]

≤ −η + sup
t∈[0,1]

g−2ε
t + 2ε+Ht(f + 2ε, g−2ε + 2ε) = −η.

Using again the Borel-Cantelli lemma, we obtain

lim inf
n→+∞

n−1/3 log #
{
u ∈ T(n)

f : |u| = n
}
≥ g−2ε

1 − f1 a.s.

Consequently, letting ε→ 0 we conclude

lim
n→+∞

n−1/3 log #
{
u ∈ T(n)

f : |u| = n
}

= g0
1 − f1 a.s.
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In particular, almost surely for n ≥ 1 large enough, T(n)
f survives until time n, which is

enough to prove
lim inf
n→+∞

1
n1/3 min

u∈T(n)
f
,|u|=n

V (u) ≥ f1 a.s.

By Corollary 5.3.4, for any ε > 0 small enough, for any f1 + 2ε < x < y < g−2ε
1 + 2ε

we have
lim inf
n→+∞

n−1/3 log P
(
Z

(n)
f+2ε,g−2ε+2ε(x, y) > 0

)
≥ 0.

Therefore, for any f1 < x < y < g1, for any ε > 0 small enough we have

P
(
Z

(n)
f,g (x, y) = 0

∣∣∣Sn) =
(
1− eo(n1/3)

)eηn1/3

.

We conclude that for any ζ > 0 small enough,

lim inf
n→+∞

n−1/3 log
(
− log P

(
Z

(n)
f,g (f1 + ζ, f1 + 2ζ) = 0

))
> 0

as well as
lim inf
n→+∞

n−1/3 log
(
− log P

(
Z

(n)
f,g (g1 − 2ζ, g1 − ζ) = 0

))
> 0.

Using once again the Borel-Cantelli lemma, we obtain respectively

lim sup
n→+∞

1
n1/3 min

u∈T(n)
f
,|u|=n

V (u) ≤ f1 a.s.

and lim inf
n→+∞

1
n1/3 max

u∈T(n)
f
,|u|=n

V (u) ≥ g0
1 a.s.

which concludes the proof.

5.3.3 Applications

Using the results developed in this section, we deduce the asymptotic behaviour of the
consistent maximal displacement at time n of the branching random walk.

Theorem 5.3.7 (Consistent maximal displacement of the branching random walk, [FZ10,
FHS12]). We consider a branching random walk (T, V ) satisfying (5.1.1), (5.1.2) and
(5.1.3). We have

lim
n→+∞

max|u|=n mink≤n V (uk)
n1/3 = −

(
3π2σ2

2

)1/3

.

Proof. To prove this result, we only have to show that for any δ > 0, almost surely for
n ≥ 1 large enough we haveu ∈ T(n)(

− 3π2σ2
2

)1/3
+δ

: |u| = n

 = ∅ and

u ∈ T(n)(
− 3π2σ2

2

)1/3
−δ

: |u| = n

 6= ∅.
We solve for x < 0 the differential equation

gt = −π
2σ2

2

∫ t

0

ds

(gs − x)2 .
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The solution is gt = x +
(
−x3 − 3π2σ2

2 t
)1/3

for t < −2x3

3π2σ2 . Applying Theorem 5.3.6, for

any x > −
(

3π2σ2

2

)1/3
, almost surely for any n ≥ 1 large enough the tree T(n)

x gets extinct

before time n. For any x < −
(

3π2σ2

2

)1/3
, almost surely for n ≥ 1 large enough the tree

T(n)
x survives until time n.

Similarly, we provide the asymptotic behaviour, as ε→ 0 of the probability of survival
of a branching random walk with a killing boundary of slope −ε.

Theorem 5.3.8 (Survival probability in the killed branching random walk [GHS11]). Let
(T, V ) be a branching random walk satisfying (5.1.1), (5.1.2) and (5.1.3). We have

lim
ε→0

ε1/2 log P (∀n ∈ N, ∃|u| = n : V (uj) ≥ −εj, j ≤ n) = − πσ

21/2 .

Proof. For any ε > 0 and n ∈ N, we set %(n, ε) = P (∃|u| = n : V (uj) ≥ −εj, j ≤ n) and

%(ε) = lim
n→+∞

%(n, ε) = P (∀n ∈ N,∃|u| = n : V (uj) ≥ −εj, j ≤ n) .

In a first time, we prove that for any θ > 0, we have

− πσ

(2θ)1/2 ≤ lim inf
n→+∞

n−1/3 log %
(
n, θn−2/3

)
≤ lim sup

n→+∞
n−1/3 log %

(
n, θn−2/3

)
≤ Φ−1(θ),

(5.3.13)
where Φ : λ 7→ π2σ2

2λ2 − λ
3 .

Applying Lemma 5.3.1 with functions f : t 7→ −θt and g : t 7→ λ(1 − t)1/3 − θt we
prove the upper bound of (5.3.13). Using the fact that an individual staying above f (n)

until time n crosses g(n) at some time k ≤ n, the Markov inequality implies

lim sup
n→+∞

n−1/3 log %(n, θn−2/3) ≤ lim sup
n→+∞

n−1/3 log E(Y (n)
f,g )

≤ − inf
t∈[0,1]

gt +Ht(f, g)

≤ − inf
t∈[0,1]

λ(1− t)1/3 − θt+ π2σ2

2

∫ t

0

ds

(λ(1− s)1/3)2

≤ − inf
t∈[0,1]

λ− θt+ 3Φ(λ)
[
1− (1− t)1/3

]
.

We observe that t 7→ 1−(1−t)1/3 is a convex function on [0, 1], with derivative 1/3 at t = 0.
Thus, for any λ > 0 such that Φ(λ) > 0, for all t ∈ [0, 1], 3Φ(λ)

[
1− (1− t)1/3

]
≥ Φ(λ)t.

We conclude that for any λ > 0 such that Φ(λ) ≥ θ > 0, we have

lim sup
n→+∞

n−1/3 log %(n, θn−2/3) ≤ −λ.

With λ = Φ−1(θ), we conclude the proof of the upper bound of (5.3.13). We now observe
that for any ε > 0, we have %(ε) ≤ %(n, ε). Setting n =

⌊
(ε/θ)3/2

⌋
, for any θ > 0 we have

lim sup
ε→0

ε1/2 log %(ε) ≤ lim sup
ε→0

ε1/2 log %(n, ε) ≤ −θ1/2Φ−1(θ).

We note that limθ→+∞ θ1/2Φ−1(θ) = limλ→0 λΦ(λ)1/2 = πσ
21/2 , which concludes the proof

of the upper bound in Theorem 5.3.8.
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To prove the lower bound in (5.3.13), we apply Corollary 5.3.4 to functions f : t 7→ −θt
and g : t 7→ λ− θt. We have

lim inf
n→+∞

n−1/3 log %(n, θn−2/3) ≥ lim inf
n→+∞

n−1/3 log P
(
Z

(n)
f,g (f1, g1) ≥ 1

)
≥ − sup

t∈[0,1]
λ− θt+ π2σ2

2λ2 t.

Choosing λ = πσ
(2θ)1/2 , we obtain

lim inf
n→+∞

n−1/3 log %(n, θn−2/3) ≥ − πσ

(2θ)1/2 ,

proving the lower bound of (5.3.13). To extend this lower bound into the lower bound in
Theorem 5.3.8 needs more care than the upper bound. First, we observe that this equation
implies that for any θ > 0,

lim inf
n→+∞

n−1/3 log %(θ3/2n, n−2/3) ≥ − πσ

21/2 .

By (5.1.1), there exist a > 0 and P ∈ N such that

E

∑
|u|=1

1{V (u)≥−a}

 ∧ P
 > 1.

Consequently, there exist % > 1 and a random variableW positive with positive probability
such that

lim inf
n→+∞

# {|u| = n : ∀j ≤ n, V (uj) ≥ −aj}
%n

≥W a.s.

We conclude there exist a > 0, r > 0 and % > 1 such that

inf
n∈N

P (# {|u| = n : ∀j ≤ n, V (uj) ≥ −aj} ≥ %n) ≥ r.

With these notations, we observe that for any θ > 0, ε > 0, δ > 0 and n ∈ N, we have

P
(

#
{
|u| = (θ + δ)n : ∀j ≤ n, V (uj) ≥ −

(
θε+ δa

θ + δ

)
j

}
≥ %δn

)
≥ r% (θn, ε) .

Given λ > πσ
21/2 and θ > 0, we set ε > 0 small enough such that

ε1/2 log %
(⌈

2θ2ε−3/2
⌉
, ε
)
> −λ.

We write δ = θε
a−2ε and n =

⌊
(θ + δ)ε−3/2

⌋
, choosing ε > 0 small enough such that δ < θ.

We have
P
(
# {|u| = n : ∀j ≤ n, V (uj) ≥ −2εj} ≥ %δn

)
≥ re−λε−1/2

,

We construct a Galton-Watson process (Gp(ε), p ≥ 0) based on the branching random
walk (T, V ) such that

Gp(ε) = # {|u| = pn : ∀j ≤ pn, V (uj) ≥ −2εj} .

We note that G(ε) dominates the Galton-Watson process G̃(ε), in which individuals make
Nε =

⌊
%δn
⌋
children with probability pε = re−λε

−1/2 and none with probability 1− p. As
ε→ 0 we have

lim
ε→0

ε1/2 log(pεNε) = −λ+ θ2 log %,
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which is positive choosing some θ > 0 large enough. With this choice of θ, for any ε > 0
small enough pεNε > 2. Consequently qε the probability of survival of G̃(ε) is positive for
any ε > 0 small enough. Moreover, we have %(2ε) ≥ qε.

We introduce fε : s 7→ E(sG̃(ε)) which is a convex function verifying fε(1) = 1 and
fε(1− qε) = 1− qε. Moreover, for any h > 0, for any ε > 0 small enough

fε(1− hpε) = 1− pε + pε(1− hpε)Nε ≤ 1− pε + pε exp(−hpεNε) ≤ 1− pε + pεe
−2h.

Choosing h > 0 small enough, for any ε > 0 small enough we have fε(1 − hp) < 1 − hp.
This proves that qε > hpε, leading to

lim inf
ε→0

ε1/2 log %(ε) ≥ lim inf
ε→0

ε1/2 log pε ≥ −λ.

Letting λ→ − πσ
21/2 concludes the proof.

5.4 Branching random walk with selection

In this section, we consider a branching random walk on R in which at each generation
only the rightmost individuals live. Given a positive continuous function h, at any time
k ≤ n only the

⌊
en

1/3hk/n
⌋
rightmost individuals remain alive. The process is constructed

as follows. Let ((Tp, V p), p ∈ N) be an i.i.d. sequence of independent branching random
walks, for any n ∈ N we write T(n) for the disjoint union of Tp for p ≤ n, and introduce
the function V : u ∈ T(n) 7→ V p(u) if u ∈ Tp. We rank individuals at a given generation
according to their position, from highest to lowest, breaking ties uniformly at random.
For any u ∈ T(n), we write N(n)(u) for the ranking of u in the |u|th generation.

Let h be a positive continuous function on [0, 1], we write q =
⌊
eh0n1/3

⌋
and

Th
(n) =

{
u ∈ T(q) : |u| ≤ n, ∀j ≤ |u|, logN(q)(uj) ≤ n1/3hj/n

}
.

The process (Th
(n), V ) is a branching random walk with selection of the en1/3h· rightmost

individuals. We write

Mh
n = max

u∈Th
(n),|u|=n

V (u) and mh
n = min

u∈Th
(n),|u|=n

V (u).

We study (Th
(n), V ) by comparing it with q independent branching random walks with a

killing boundary f , choosing f in a way that

log #
{
u ∈ T(n)

f : |u| = btnc
}
≈ n1/3(ht − h0).

Using Lemmas 5.3.1 and 5.3.2, we choose functions (f, g) verifying

∀t ∈ [0, 1],

gt + π2σ2

2
∫ t

0
ds

(gs−fs)2 = h0

ft + π2σ2

2
∫ t

0
ds

(gs−fs)2 = h0 − ht.

which solution is

f : t ∈ [0, 1] 7→ h0 − ht −
π2σ2

2

∫ t

0

ds

h2
s

and g : t ∈ [0, 1] 7→ h0 −
π2σ2

2

∫ t

0

ds

h2
s

. (5.4.1)
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To compare branching random walk with selection and branching random walks with
killing boundary, we couple them in a fashion preserving a certain partial order, that we
describe now. Let µ, ν be two Radon measures on R, we write

µ 4 ν ⇐⇒ ∀x ∈ R, µ((x,+∞)) ≤ ν((x,+∞)).

The relation 4 forms a partial order on the set of Radon measures, that can be used to
rank populations, representing an individual by a Dirac mass at its position.

A branching-selection process is defined as follows. Given ϕ : Z+ → N a process
adapted to the filtration of T (ϕ0), we denote by

Tϕ =
{
u ∈ T(ϕ0) : ∀j ≤ |u|, N(ϕ0)(uj) ≤ ϕj

}
.

Let (x1, . . . xϕ0) ∈ Rϕ0 , we write V : u ∈ Tϕ 7→ xp+V p(u) if u ∈ Tp. The process (Tϕ, V )
is a branching-selection process with ϕ(n) individuals at generation n and initial positions
(x1, . . . xϕ0). Note that both Th

(n) and T(n)
f can be described as branching-selection pro-

cesses. We prove there exists a coupling between branching-selection processes preserving
partial order 4. Note this lemma is essentially an adaptation of [BG10, Corollary 2].

Lemma 5.4.1. Let ϕ and ψ be two adapted processes, on the event
∑
u∈Tϕ

|u|=0

δV (u) 4
∑
u∈Tψ

|u|=0

δV (u) and ∀j ≤ n, ϕj ≤ ψj

 ,
we have

∑
u∈Tϕ,|u|=n δV (u) 4

∑
u∈Tψ ,|u|=n δV (u).

Proof. The lemma is a direct consequence of the following observation. Given m ≤ n,
x ∈ Rm and y ∈ Rn such that ∑m

j=1 δxj 4
∑n
j=1 δyj and (zji , j ≤ n, i ∈ N), we have

m∑
j=1

+∞∑
i=1

δ
xj+zji

4
n∑
j=1

+∞∑
i=1

δ
yj+zji

.

Consequently, step k of the branching-selection process preserves order 4 if ϕk ≤ ψk.

This lemma implies that branching random walks with selection and branching random
walk with killing can be coupled in an increasing fashion for the order 4, as soon as there
are at any time k ≤ n more individuals in one process than in the other. The main result
of the section is the following estimate on the extremal positions in the branching random
walk with selection.

Theorem 5.4.2. Assuming (5.1.1), (5.1.2) and (5.1.3), for any continuous positive func-
tion h we have

lim
n→+∞

Mh
n

n1/3 = h0 −
π2σ2

2

∫ 1

0

ds

h2
s

and lim
n→+∞

mh
n

n1/3 = h0 − h1 −
π2σ2

2

∫ 1

0

ds

h2
s

a.s.

Remark 5.4.3. It is worth noting that choosing h as a constant, Theorem 5.4.2 provides
information on the Brunet-Derrida’s N -BRW, at the time scale (logN)3

h3 . If we let h → 0,
we study the large times asymptotic behaviour of the N -BRW.



216 Chapter 5. Branching random walk with increasing selection

The proof of Theorem 5.4.2 is based on the construction of an increasing coupling
existing between (Th

(n), V ) and approximatively eh0n1/3 independent branching random
walks with a killing boundary n1/3f./n. Using Lemma 5.4.1, it is enough to bound the size
of the population at any time in the branching random walks with a killing boundary to
prove the coupling. In a first time, we bound from below the branching random walk with
selection by e(h0−2ε)n1/3 independent branching random walks with a killing boundary.
Lemma 5.4.4. We assume that (5.1.1) and (5.1.2) hold. For any positive continuous
function h and ε > 0, there exists a coupling between (Th

(n), V ) and i.i.d. branching
random walks ((Tj , V j), j ≥ 1) such that almost surely for any n ≥ 1 large enough, we
have

∀k ≤ n,
∑

u∈Th
(n)

|u|=k

δV (u) <
e(h0−2ε)n1/3∑

j=1

∑
u∈Tj

|u|=k

1{V j(ui)≥(fi/n−ε)n1/3,i≤k}δV j(u). (5.4.2)

Proof. Let n ∈ N and ε > 0, we denote by p =
⌊
e(h0−2ε)n1/3

⌋
and by T̃(n)

f−ε the disjoint
union of Tj(n)

f−ε for j ≤ p. For u ∈ T̃(n)
f−ε, we write V (u) = V j(u) if u ∈ Tj . By

Lemma 5.4.1, it is enough to prove that almost surely, for any n ≥ 1 large enough we have

∀k ≤ n, log #
{
u ∈ T̃(n)

f−ε : |u| = k
}
≤ n1/3hk/n.

We first prove that with high probability, no individual in T̃(n)
f−ε crosses the boundary

(gk/n − ε)n1/3 at some time k ≤ n. By Lemma 5.3.1, we have

lim sup
n→+∞

n−1/3 log P
(
∃u ∈ T̃(n)

f−ε : V (u) ≥ (g|u|/n − ε)n1/3
)

≤ lim sup
n→+∞

n−1/3 log
(
pP

(
∃u ∈ T(n)

f−ε : V (u) ≥ (g|u|/n − ε)n1/3
))

≤ h0 − 2ε− inf
t∈[0,1]

gt − ε+ π2σ2

2

∫ t

0

ds

(gs − fs)2 = −ε.

Using the Borel-Cantelli lemma, almost surely for any n ≥ 1 large enough and u ∈ T̃(n)
f−ε,

we have V (u) ≤ (g|u|/n − ε)n1/3.
By this result, almost surely, for n ≥ 1 large enough and for k ≤ n, the size of the kth

generation in T̃(n)
f−ε is given by

Z
(n)
k =

∑
u∈T̃ (n)

f−ε

1{|u|=k}1{V (uj)≤(gj/n−ε)n1/3,j≤k}.

Using the Markov inequality, we have

P
(
∃k ≤ n : Z(n)

k ≥ en1/3hk/n
)
≤

n∑
k=1

e−n
1/3hk/n E

[
Z

(n)
k

]
.

We now provide an uniform upper bound for E(Z(n)
k ). Applying Lemma 5.2.2, for any

1 ≤ k ≤ n we have

E
[
Z

(n)
k

]
≤ pE

[
e−Sk1{Sj∈[(fj/n−ε)n1/3,(gj/n−ε)n1/3]}

]
≤ pe−(fk/n−ε)n1/3P

(
Sj ∈

[
(fj/n − ε)n1/3, (gj/n − ε)n1/3

]
, j ≤ k

)
.
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Let A ∈ N. For any a ≤ A we write ma = bna/Ac and f
a,A

= infs∈[a/A,(a+1)/A] fs. For any
k ∈ (ma,ma+1], applying the Markov property at time ma and Theorem 5.2.3 we have

E
[
Z

(n)
k

]
≤ exp

[
(h0 − 2ε)n1/3 − n1/3

(
f
a,A
− ε+ π2σ2

2

∫ a/A

0

ds

h2
s

)]

As h0 = ft + ht + π2σ2

2
∫ t
0
ds
h2
s
, letting A→ +∞ we have

lim sup
n→+∞

n−1/3 log P
(
∃k ≤ n : Z(n)

k ≥ en1/3hk/n
)
≤ −ε.

Consequently, applying the Borel-Cantelli lemma again, for any n ≥ 1 large enough we
have

∀k ≤ n, log #
{
u ∈ T̃(n)

f−ε : |u| = k
}
≤ n1/3hk/n

which concludes the proof, by Lemma 5.4.1.

Similarly, we prove that the branching random walk with selection is bounded from
above by

⌊
e(h0+2ε)n1/3

⌋
independent branching random walks with a killing boundary.

Lemma 5.4.5. We assume (5.1.1), (5.1.2) and (5.1.3) hold. For any continuous positive
function h and ε > 0, there exists a coupling between (Th

(n), V ) and i.i.d. branching random
walks ((Tj , V j), j ≥ 1) such that almost surely for any n ≥ 1 large enough we have

∀k ≤ n,
∑

u∈Th
(n)

|u|=k

δV (u) 4
e(h0+2ε)n1/3∑

j=1

∑
u∈Tj

|u|=k

1{V j(ui)≥(fi/n−ε)n1/3,i≤k}δV j(u). (5.4.3)

Proof. Let n ∈ N and ε > 0, we denote by p =
⌊
e(h0+2ε)n1/3

⌋
and by T̃(n)

f−ε the disjoint
union of Tj(n)

f−ε for j ≤ p. For u ∈ T̃(n)
f−ε, we write V (u) = V j(u) if u ∈ Tj . Similarly to

the previous lemma, the key tool is a bound from below of the size of the population at
any time in T̃(n)

f−ε. For any 1 ≤ k ≤ n, we set

Z
(n)
k =

∑
u∈T̃(n)

f−ε

1{|u|=k}1{V (uj)≤(gj/n−ε)n1/3,j≤k} and

Z̃
(n)
k =

∑
u∈T̃(n)

f−ε

1{|u|=k}1{V (u)≥f1n1/3}1{V (uj)≤(gj/n−ε)n1/3,j≤k}.

For any t ∈ (0, 1), applying Corollary 5.3.5, we have

lim sup
n→+∞

n−1/3 log P
[
Z̃

(n)
bntc ≤ e(ht+ε)n1/3] ≤ −3ε.

Let A ∈ N, for a ≤ A we set ma = bna/Ac. By the Borel-Cantelli lemma, almost surely,
for any n ≥ 1 large enough we have

∀a ≤ A, log Z̃(n)
ma ≥ n1/3(h a

A
+ ε).

We extend this result into an uniform one. To do so, we notice that Theorem 5.3.7
implies there exists r > 0 small enough and λ > 0 large enough such that

inf
n∈N

P
[
∃|u| = n : ∀k ≤ n, V (uk) ≥ −λn1/3

]
> r.
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Consequently, every individual alive at time ma above fa/An1/3 start an independent
branching random walk, which has probability at least r to have a descendant at time
ma+1 which stayed at any time in k ∈ [ma,ma+1] above (fa/A − λA−1/3)n1/3. Choosing
A > 0 large enough, conditionally on Fma , infk∈[ma,ma+1] Z

(n)
k is stochastically bounded

from below by a binomial variable with parameters Z(n)
ma and r. We conclude from an easy

large deviation estimate and the Borel-Cantelli lemma again, that almost surely for n ≥ 1
large enough we have

∀k ≤ n, logZ(n)
k ≥ n1/3hk/n.

Applying Lemma 5.4.1, we conclude that

∀k ≤ n,
∑

u∈Th
(n)

|u|=k

δV (u) 4
∑

u∈T̃(n)
f−ε

|u|=k

δV (u).

Using Lemmas 5.4.4 and 5.4.5, we easily bound the maximal and the minimal displace-
ment in the branching random walk with selection.

Proof of Theorem 5.4.2. The proof is based on the observation that for any pair of se-
quences x1 ≥ x2 ≥ · · · ≥ xp and y1 ≥ y2 ≥ · · · ≥ yq, if

∑p
j=1 δxj 4

∑q
j=1 δyj then p ≤ q,

x1 ≤ y1 and xp ≤ yp.
Let n ∈ N and ε > 0, we denote by p̌ =

⌊
e(h0−2ε)n1/3

⌋
and by p̂ =

⌊
e(h0+2ε)n1/3

⌋
.

Given ((Tj , V j), j ∈ N) i.i.d. branching random walks, we set Ť(n)
f−ε (respectively T̂(n)

f−ε)
the disjoint union of Tj(n)

f−ε for j ≤ p̌ (resp. j ≤ p̂). For u ∈ T̂(n)
f−ε, we write V (u) = V j(u)

if u ∈ Tj . By Lemmas 5.4.4 and 5.4.5, we have

max
u∈Ť(n)

f−ε,|u|=n
V (u) ≤Mh

n ≤ max
u∈T̂(n)

f−ε,|u|=n
V (u).

For any δ > −h0, we denote by gδ the solution of the differential equation

gδt + π2σ2

2

∫ t

0

ds

(gδs − fs)2 = h0 + δ.

Note that gδ is well-defined on [0, 1] for δ in a neighbourhood of 0, that g0 = g and that
δ 7→ gδ is continuous with respect to the uniform norm. Moreover

P

 max
u∈T̂(n)

f−ε,|u|=n
V (u) ≥ gδ1n1/3


≤ P

(
∃u ∈ T̂(n)

f−ε : V (u) ≥ gδ|u|/nn1/3
)

≤ p̂P
(
∃|u| ≤ n : V (u) ≥ gδ|u|/nn1/3

)
.

Consequently, using Lemma 5.3.1, we have

lim sup
n→+∞

n−1/3 log P

 max
u∈T̂(n)

f−ε,|u|=n
V (u) ≥ gδ1n1/3


≤ h0 + 2ε− inf

t∈[0,1]
gδt + π2σ2

2

∫ t

0

ds

(gδs − fs + ε)2 .
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For any δ > 0, for any ε > 0 small enough we have

lim sup
n→+∞

n−1/3 log P
(
Mh
n ≥ gδ1n1/3

)
< 0.

By the Borel-Cantelli lemma, we have lim supn→+∞
Mh
n

n1/3 ≤ gδ1 a.s. Letting δ → 0 concludes
the proof of the upper bound of the maximal displacement.

To obtain a lower bound, we notice that

P
(
Mh
n ≤ (gδ1 − 2ε)n1/3

)
≤ P

 max
u∈Ť(n)

f−ε,|u|=n
V (u) ≤ (gδ1 − 2ε)n1/3


≤ P

(
max
|u|=n

V (u) ≤ (gδ1 − 2ε)n1/3
)p̌

.

We only consider individuals u alive at time n that stayed at any time k ≤ n between
the curves n1/3(fk/n− ε) and n1/3(g−δk/n− ε), applying Corollary 5.3.4, for any δ > 0 small
enough, for any ε > 0 small enough, we have

lim inf
n→+∞

n−1/3 log P
(
∃|u| = n : V (u) ≥ (g−δ1 − 2ε)n1/3

)
≥ − sup

t∈[0,1]
g−δt − ε+ π2σ2

2

∫ t

0

ds

(gδs − fs)2 ≥ ε− h0 + δ.

As a consequence,

lim inf
n→+∞

n−1/3 log
(
− log P

(
Mh
n ≤ (gδ1 − 2ε)n1/3

))
≥ δ − ε.

For any δ > 0 small enough, for any ε > 0 small enough, applying the Borel-Cantelli
lemma we have

lim inf
n→+∞

Mh
n

n1/3 ≥ g
δ
1 − 2ε a.s.

Letting ε→ 0 then δ → 0 concludes the almost sure asymptotic behaviour Mh
n .

We now bound mh
n. By Lemma 5.4.5, almost surely for n ≥ 1 large enough, the⌊

en
1/3h1

⌋th
rightmost individual at generation n in T̂(n)

f−ε is above mh
n. Therefore for any

x ∈ R, almost surely for n ≥ 1 large enough,

1{mhn≥xn1/3} ≤ 1{
#
{
u∈T̂(n)

f−ε:|u|=n,V (u)≥xn1/3
}
≥eh1n1/3

}.
Let δ > 0. By Lemma 5.3.1, we have

lim sup
n→+∞

n−1/3 log P
(
∃u ∈ T̂(n)

f−ε : V (u) ≥ (gδk/n − ε)n1/3
)
≤ h0 − (h0 + δ − ε).

Consequently, for any δ > 0, for any ε > 0 small enough, almost surely for n ≥ 1 large
enough the population in T̂(n)

f−ε at time k belongs to I(n)
k . We write

Z(n)(x) =
∑

u∈T̂(n)
f−ε

1{|u|=n}1{V (u)≥xn1/3}1{V (uj)≤(gδ
j/n
−ε)n1/3,j≤n

}.
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By Lemma 5.3.2, we have

lim sup
n→+∞

n−1/3 log E
[
Z(n)(x)

]
≤ h0 −

(
x+ π2σ2

2

∫ t

0

ds

(gδs − fs)2

)
≤ gδ1 − δ − x.

Using the Markov inequality and the Borel-Cantelli lemma, for any δ > 0, for any n ≥ 1
large enough, we have Z(n)(gδ1 − h1) ≤ eh1n1/3 , which leads to

lim sup
n→+∞

mh
n

n1/3 ≤ g
δ
1 − h1 a.s.

Letting δ → 0 concludes the proof of the upper bound of mh
n.

The lower bound is obtained in a similar fashion. For any ζ > 0, we write k =
⌊
ζn1/3

⌋
.

Almost surely, for n ≥ 1 large enough we have∑
u∈Ť(n)

f−ε
|u|=n−k

δV (u) 4
∑

u∈Th
(n)

|u|=n−k

δV (u).

This inequality is not enough to obtain a lower bound on mh
n, as there are less than eh1n1/3

individuals alive in Ť(n)
f−ε at generation n−k. Therefore, starting from generation n−k, we

start a modified branching-selection procedure that preserve the order 4 and guarantees
there are

⌊
eh1n1/3

⌋
individuals alive at generation n.

In a first time, we bound from below the size of the population alive at generation
n− k. We write, for δ > 0 and η > 0

X(n) =
∑

u∈Ť(n)
f−ε

1{|u|=n−k}1{
V (uj)≤(g−δ

j/n
−ε)n1/3,ξ(uj)≤eηn1/3

,j≤n−k
}.

By Lemma 5.3.3, we have

lim inf
n→+∞

n−1/3 log E(X(n)) ≥ h0−2ε−
(

(f1 − ε) + π2σ2

2

∫ 1

0

ds

(g−δs − fs)2

)
= δ−ε+(g−δ1 −f1).

Consequently, using the fact that for p̌ i.i.d. random variables (Xj), we have

P

 p̌∑
j=1

Xj ≤ p̌E(X1)/2

 ≤ 4 E(X2
1 )

p̌E(X1)2 ,

for any ε > 0 and δ > 0 small enough enough, Lemma 5.3.3 leads to

lim sup
n→+∞

n−1/3 log P
(
X(n) ≤ e((g−δ1 −f1)+δ)n1/3) ≤ η + h0 − δ − ε− (h0 − 2ε).

For any ξ > 0, choosing δ > 0 small enough, and ε > 0 and η > 0 small enough, we
conclude by the Borel-Cantelli lemma that almost surely, for n ≥ 1 large enough

#
{
u ∈ Ť(n)

f−ε : |u| = n− k
}
≥ exp

(
n1/3(h1 − ξ)

)
.
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In a second time, we observe by (5.1.1) there exists a > 0 and % > 1 such that

E

∑
|u|=1

1{V (u)≥−a}

 > %.

We consider the branching-selection process that starts at time n− k with the population
of the (n−k)th generation of Ť(n), in which individuals reproduce independently according
to the law L, with the following selection process: an individual is erased if it belongs to
generation n− k+ j and is below n1/3f(n−k)/n− ja, or if it is not one of the en

1/3h(n−k+j)/n

rightmost individuals. By Lemma 5.4.1, this branching-selection process stays at any time
n − k ≤ j ≤ n below (Th

(n), V ) for the order 4. Moreover, by definition, the leftmost
individual alive at time n is above n1/3(f(n−k)/n − ε− aζ).

We now bound the size of the population in this process. We write (Xj , j ∈ N) for a
sequence of i.i.d. random variables with the same law as ∑|u|=1 1{V (u)≥−a}. By Cramér’s
theorem, there exists λ > 0 such that for any n ∈ N, we have

P
(

n∑
k=1

Xj ≤ n%
)
≤ e−λn.

The probability there exists j ∈ [n− k, n] such that the size of the population at time j in
the branching-selection process is less than min

(
%k+j−ne(h(n−k)/n−ξ)n1/3

, ehj/nn
1/3) decays

exponentially fast with n. Applying the Borel-Cantelli lemma, for any ζ > 0, there exists
ξ > 0 such that almost surely for n ≥ 1 large enough, the number of individuals alive at
generation n in the bounding branching-selection process is

⌊
eh1n1/3

⌋
. On this event, mh

n

is greater than the minimal position in this process. We conclude, letting n grows to +∞
then ε and ζ decrease to 0 that

lim inf
n→+∞

mh
n

n1/3 ≥ h0 − h1 −
π2σ2

2

∫ 1

0

ds

h2
s

a.s.

completing the proof of Theorem 5.4.2.

An application of Theorem 5.4.2 leads to Theorem 5.1.1.

Proof of Theorem 5.1.1. Let a > 0, we denote by ϕ : n 7→
⌊
ean

1/3
⌋
and by (Tϕ, V ) the

branching random walk with selection of the ϕ(n) rightmost individuals at generation n.
For n ∈ N we write

Mϕ
n = max

u∈Tϕ,|u|=n
V (u) and mϕ

n = min
u∈Tϕ,|u|=n

V (u).

Let ε > 0 and n ∈ N, we set k = bnεc and h : t 7→ a(t + ε)1/3. By Lemma 5.4.1, for
any two continuous non-negative functions h1 ≤ h2, and k ≤ n we have∑

u∈Th1
(n)

|u|=k

δV (u) 4
∑

u∈Th2
(n)

|u|=k

δV (u).

As a consequence, for any n ∈ N and ε > 0, we couple the branching random walk with
selection (Tϕ, V ) with two branching random walks with selection (Th,+

(n) , V ) and (Th,−
(n) , V )

in a way that ∑
u∈Th,−

(n)
|u|=n−k

δV (u)+mϕ
k
4
∑
u∈Tϕ

|u|=n

δV (u) 4
∑

u∈Th,−
(n)

|u|=n−k

δV (u)+Mϕ
k
, (5.4.4)
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using the fact that the population at time k in Tϕ is between mϕ
k and Mϕ

k .
Applying Theorem 5.4.2, we have

lim sup
n→+∞

Mϕ
n −Mϕ

k

n1/3 ≤ lim sup
n→+∞

Mh
n−k
n1/3 ≤ aε

1/3 − π2σ2

2

∫ 1−ε

0

ds

(a(s+ ε)1/3)2 a.s.

as well as

lim inf
n→+∞

mϕ
n −mϕ

k

n1/3 ≥ lim inf
n→+∞

mh
n−k
n1/3 ≥ −a−

π2σ2

2

∫ 1−ε

0

ds

(a(s+ ε)1/3)2 a.s.

As limε→0
∫ 1−ε

0
ds

(a(s+ε)1/3)2 = 3
a2 , for any δ > 0, for any ε > 0 small enough we have

lim sup
n→+∞

Mϕ
n −Mϕ

bεnc
n1/3 ≤ −3π2σ2

2a2 + δ a.s.

We set p =
⌊
− logn

log ε

⌋
, and observe that

Mϕ
n

n1/3 = 1
n1/3

p−2∑
j=0

(
Mϕ
bεjnc −M

ϕ
bεj+1nc

)
+
Mϕ
bεp−1nc
n1/3

≤
p−2∑
j=0

εj/3
Mϕ
bεjnc −M

ϕ
bεj+1nc

(εjn)1/3 +
supj≤ε−2 M

ϕ
j

n1/3 .

Using a straightforward adaptation of the Cesàro lemma, we obtain

lim sup
n→+∞

Mϕ
n

n1/3 ≤
−3π2σ2

2a2 + δ

1− ε1/3 a.s.

Letting ε→ 0 then δ → 0 we have

lim sup
n→+∞

Mϕ
n

n1/3 ≤ −
3π2σ2

2a2 a.s. (5.4.5)

Similarly, for any δ > 0, for any ε > 0 small enough we have

lim inf
n→+∞

mϕ
n −mϕ

bεnc
n1/3 ≥ −a− 3π2σ2

2a2 − δ a.s.

Setting p =
⌊
− logn

log ε

⌋
and observing that

mϕ
n

n1/3 ≥
p−2∑
j=0

εj/3
mϕ
bεjnc −m

ϕ
bεj+1nc

(εjn)1/3 +
infj≤ε−2 mϕ

j

n1/3 ,

we use again the Cesàro lemma to obtain, letting ε then δ decrease to 0,

lim inf
n→+∞

mϕ
n

n1/3 ≥ −a−
3π2σ2

2a2 a.s. (5.4.6)

To obtain the other bounds, we observe that (5.4.4) also leads to

lim inf
n→+∞

Mϕ
n

n1/3 ≥ lim inf
n→+∞

Mh
n−k +mϕ

k

n1/3 ≥ −π
2σ2

2a2

∫ 1−ε

0

ds

(s+ ε)2/3 −
(
a+ 3π2σ2

2a2

)
ε1/3 a.s.
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by Theorem 5.4.2 and (5.4.6). Letting ε→ 0 we have

lim inf
n→+∞

Mϕ
n

n1/3 ≥ −
3π2σ2

2a2 a.s.

Similarly, we have

lim sup
n→+∞

mϕ
n

n1/3 ≤ lim sup
n→+∞

mh
n−k +Mϕ

k

n1/3 ≤ −a− π2σ2

2a2

∫ 1−ε

0

ds

(s+ ε)2/3 a.s.

using Theorem 5.3.6 and (5.4.5). We let ε→ 0 to obtain

lim sup
n→+∞

mϕ
n

n1/3 ≤ −a−
3π2σ2

2a2 a.s.

The careful reader will notice that, for almost any a ∈ R there exist a 6= a such that

a+ 3π2σ2

2a2 = a+ 3π2σ2

2a2 .

With these notation, both the branching random walk with selection of the ean1/3 rightmost
individuals at generation n and the branching random walk with selection of the ean1/3

rightmost ones are coupled, between times εn and n with branching random walks with
the same killing barrier

f : t ∈ [ε, 1] 7→
(
a+ 3π2σ2

2a2

)
t1/3,

the difference between the processes being the number of individuals initially alive in the
processes, respectively ea(εn)1/3 and ea(εn)1/3 .

Acknowledgements. I would like to thank Zhan Shi for having me started on the
branching-selection processes topic, as well as for his constant help and advices.





CHAPTER 6

The N -branching random walk
with stable spine

“C’est très vilain de faire du mal à un livre, à un arbre ou à une
bête.”

René Goscinny – Le Petit Nicolas

Abstract
We consider a branching-selection particle system on the real line introduced by
Brunet and Derrida in [BD97]. In this model, the size of the population is fixed to
some constant N . At each step, these individuals reproduce independently. Only
the N rightmost children survive to reproduce on the next generation. Bérard and
Gouéré studied the speed at which the cloud of individuals drifts in [BG10], assuming
the tails of the displacement decays at exponential rate; Bérard and Maillard [BM14]
took interest in the case of heavy tail displacements. We offer here some interpolation
between these two models, considering branching random walks in which the critical
spine behaves as an α-stable random walk.

Nota: This chapter is mainly extracted from the article N -Branching random walk with
α-stable spine, available on arXiv:1503.03762.

6.1 Introduction

Let L be the law of a random point process on R. Brunet, Derrida et al. introduced in
[BD97, BDMM07] a discrete-time branching-selection particle system on R in which the
size of the population is fixed to some integer N . This process evolves as follows: for any
n ∈ N, every particle in the nth generation dies giving birth to children around its current
position, according to an independent version of a point process of law L. Only the N
new individuals with the largest position are kept alive and form the (n+ 1)st generation
of the process. We write (xNn (1), . . . XN

n (N)) for the positions at time n of particles in the
process, ranked in the decreasing order.

In [BG10], Berard and Gouéré proved that under some appropriated integrability con-
ditions, the cloud of particles drifts at some deterministic speed

vN = lim
n→+∞

xNn (0)
n

= lim
n→+∞

xNn (N)
n

a.s., (6.1.1)
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and obtained the following asymptotic behaviour for vN as N → +∞

v∞ − vN ∼
N→+∞

C

(logN)2 , (6.1.2)

in which C is an explicit positive constant that depends only on the law L. Their arguments
are based on precise computations on a branching random walk, defined below; and a
coupling argument recalled in Section 6.4.2.

A branching random walk with branching law L is a process defined as follows. It
begins with a unique individual located at position 0 at time 0. At each time k ∈ N, each
individual alive in the process at time k dies giving birth to children. The children are
position around their parent according to i.i.d. point processes with law L.

We write T for the genealogical tree of the process. For u ∈ T, we denote by V (u) the
position of u, by |u| the time at which u is alive, by πu the parent of u (provided that u
is not the root of T) and by uk the ancestor alive at time k of u. We set Ω(u) the set of
siblings of u i.e. the set of individuals v ∈ T such that πv = πu and v 6= u. We observe
that T is a (random) Galton-Watson tree with reproduction law #L, and that (T, V ) is
a (plane rooted) marked tree that we refer to as the branching random walk.

The point process L is supposed to verify some integrability assumptions. We write L
for a point process with law L. We assume in this chapter that the Galton-Watson tree
T is supercritical and survives a.s., i.e.

E [#L] > 1 and P (#L = 0) = 0. (6.1.3)

We suppose the point process law L to be in the stable boundary case, in the following
sense:

E

∑
`∈L

e`

 = 1, (6.1.4)

and the random variable X defined by

P(X ≤ x) = E

∑
`∈L

1{`≤x}e`
 (6.1.5)

to be in the domain of attraction of a stable random variable Y verifying P(Y ≥ 0) ∈ (0, 1).
Note that if E(|X|) < +∞, this assumption implies E(X) = 0. In this case, the point
process is in the boundary case, as defined in [BK05]. Up to an affine transformation
several point processes laws verify these properties, adapting the discussion in [Jaf12,
Appendix A] to this setting.

The following result, that gives a necessary and sufficient condition for X to be in the
domain of attraction of Y , can be found in [Fel71, Chapter XVII]. Let α ∈ (0, 2] be such
that Y is an α-stable random variable verifying P(Y ≥ 0) ∈ (0, 1). We introduce the
function

L∗ : x 7→ xα−2 E
[
Y 21{|Y |≤x}

]
. (6.1.6)

This function is slowly varying 1. We set

bn = inf
{
x > 0 : xα

L∗(x) = n

}
. (6.1.7)

1. i.e. for all λ > 0, limt→+∞
L∗(λt)
L∗(t) = 1.
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The random variable X is in the domain of attraction Y if and only if writing (Sn) for a
random walk with step distribution with the same law as X, Snbn converges in law to Y .

As Y is an α-stable random variable, there exists an α-stable Lévy process (Yt, t ≥ 0)
such that Y1 has the same law as Y . By [Mog74, Lemma 1], we define

C∗ = lim
t→+∞

−1
t

log P
(
|Ys| ≤

1
2 , s ≤ t

)
∈ (0,+∞). (6.1.8)

We introduce an additional integrability assumption to ensure that the spine in the
spinal decomposition –see Section 2.1– has the same behaviour as a typical individual
staying close to the boundary. We assume that

lim
x→+∞

xα

L∗(x) E

∑
`∈L

e`1{log(∑`′∈L e
`′−`)>x}

 = 0, (6.1.9)

and that

E
[∣∣∣∣max

`∈L
`

∣∣∣∣2
]
< +∞. (6.1.10)

Condition (6.1.10) is not expected to be optimal. It is used to bound in a crude way
from below the minimal position in the branching random walk with selection of the N
rightmost individuals.

Theorem 6.1.1. Under the previous assumptions, the sequence (vN , N ≥ 1) described in
(6.1.2) exists and verifies

vN ∼
N→+∞

−C∗
L∗(logN)
(logN)α .

Examples. We present two point process laws that satisfy the hypotheses of Theorem
6.1.1. Let X be the law of a random variable on R. We write Λ(θ) for the log-Laplace
transform of X. We assume there exists θ∗ > 0 such that Λ(θ∗) = log 2, and α > 1
verifying

P(X ≥ x) ∼ e−θ∗xx−α−1.

In this case, there exists µ := E
(
Xeθ

∗X
)
/2 such that the point process L defined as

the law of a pair of independent random variables (Y1, Y2) which have the same law as
θ∗(X − µ) satisfies the hypotheses of Theorem 6.1.1.

Let να be the law of an α-stable random variable Y such that P(Y ≥ 0) ∈ (0, 1). If L̃
is the law of a point process on R with intensity ν(dx)e−x, then L̃ satisfies all assumptions
of Theorem 6.1.1, and the spine of such a branching random walk is in the domain of
attraction of Y .

The rest of the chapter is organised as follows. In Section 6.2, we introduce the spinal
decomposition, that links the computation of additive branching random walk moments
with random walks estimates; and the Mogul’skĭı small deviations estimate for random
walks. In Section 6.3, we use these two results to compute the asymptotic of the survival
of individuals above a killing line of slope −ε, using the same technique as [GHS11]. This
asymptotic is then used in Section 6.4 to prove Theorem 6.1.1, applying the methods
introduced in [BG10].
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6.2 Useful lemmas

6.2.1 The spinal decomposition

The spinal decomposition is a tool introduced by Lyons, Pemantle and Peres in [LPP95]
to study branching processes. It has been extended to branching random walks by Lyons in
[Lyo97]. It provides two descriptions on a law absolutely continuous with respect to the law
Pa , of the branching random walk (T, V + a). More precisely, we set Wn = ∑

|u|=n e
V (u)

and Fn = σ(u, V (u), |u| ≤ n) the natural filtration on the set of marked trees. We observe
that (Wn) is a non-negative martingale. We define the probability measure Pa on F∞
such that for any n ∈ N,

dPa

dPa

∣∣∣∣∣
Fn

= e−aWn. (6.2.1)

We write Ea for the corresponding expectation.
We construct a second probability measure P̂a on the set of marked trees with spine.

For (T, V ) a marked tree, we say that w = (wn, n ∈ N) is a spine of T if for any n ∈ N,
|wn| = n, wn ∈ T and (wn)n−1 = wn−1. We introduce

dL̂
dL =

∑
`∈L

e`, (6.2.2)

another law of point processes. The probability measure P̂a is the law of the process
(T, V, w) constructed as follows. It starts at time 0 with a unique individual w0 located
at position a. It makes children according to a point process of law L̂. Individual w1 is
chosen at random among children u of w1 with probability eV (u)∑

|v|=1 e
V (v) . At each generation

n ∈ N, every individual u in the nth generation dies, giving independently birth to children
according to independent point processes, with law L̂ if u = wn or law L otherwise. Finally,
wn+1 is chosen among children v of wn with probability proportional to eV (v).

To shorten notations, we write P = P0, P̂ = P̂0. The spinal decomposition links laws
P̂ and P.

Proposition 6.2.1 (Spinal decomposition). Under assumption (6.1.4), for any n ∈ N,
we have

P̂a

∣∣∣
Fn

= Pa

∣∣∣
Fn
.

Moreover, for any z ∈ T such that |z| = n,

P̂a (wn = z| Fn) = eV (z)

Wn
,

and (V (wn), n ≥ 0) is a random walk starting from a, with step distribution defined in
(6.1.5).

An immediate consequence of Proposition 6.2.1 is the celebrated many-to-one lemma.
Introduced by Peyrière in [Pey74], this lemma links an additive moment of the branching
random walks with a random walk estimate. Given (Xn) an i.i.d. sequence of random
variables with law defined by (6.1.5), we set Sn = S0 +∑n

j=1Xj such that Pa(S0 = a) = 1.
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Lemma 6.2.2 (Many-to-one lemma). Under assumption (6.1.4), for any n ≥ 1 and
measurable non-negative function g, we have

Ea

 ∑
|u|=n

g(V (u1), · · ·V (un))

 = Ea

[
ea−Sng(S1, · · ·Sn)

]
. (6.2.3)

Proof. We use Proposition 6.2.1 to compute

Ea

 ∑
|u|=n

g(V (u1), · · ·V (un))

 = Ea

 ea
Wn

∑
|z|=n

g(V (u1), · · ·V (un))


= Êa

ea ∑
|u|=n

P̂a (wn = u| Fn) e−V (u)g(V (u1), · · ·V (un))


= Êa

[
ea−V (wn)g(V (w1), · · · , V (wn))

]
.

We now observe that (Sn, n ≥ 0) under Pa has the same law as (V (wn), n ≥ 0) under P̂a,
which ends the proof.

The many-to-one lemma can be used to bound the maximal displacement in a branch-
ing random walk. For example, for all y ≥ 0, we have

E
[∑
u∈T

1{V (u)≥y}1{V (uj)<y,j<|u|}

]
=

+∞∑
k=1

E

 ∑
|u|=k

1{V (u)≥y}1{V (uj)<y,j<|u|}


=

+∞∑
k=1

E
[
e−Sk1{Sk≥y}1{Sj<y,j<k}

]

≤ e−y
+∞∑
k=1

P (Sk ≥ y, Sj < y, j < k)

≤ e−y.

By the Markov inequality, this computation leads to

P
(

sup
n∈N

Mn ≥ y
)
≤ sup

n∈N
P(Mn ≥ y) ≤ e−y. (6.2.4)

Using the spinal decomposition, to compute the number of individuals in a branching
random walk who stay in a well-chosen path, it is enough to know the probability for a
random walk decorated by additional random variables to follow that path.

6.2.2 Small deviations estimate and variations

Let S be a random walk in the domain of attraction of an α-stable random variable
Y . We recall that

L∗(u) = uα−2 E(Y 1{|Y |≤u}) and bαn
L∗(bn) = n.

For any z ∈ R, we define Pz in a way that S under law Pz has the same law as S + z
under law P. The Mogul’skĭı small deviation estimate enables to compute the probability
for S to present typical fluctuations of order o(bn).
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Theorem 6.2.3 (Mogul’skĭı theorem). Let (an) ∈ RN
+ be such that

lim
n→+∞

an = +∞, lim
n→+∞

an
bn

= 0.

Let f < g be two continuous functions such that f(0) < 0 < g(0). If P(Y ≤ 0) ∈ (0, 1)
then

lim
n→+∞

aαn
nL∗(an) log P

[
Sj
an
∈
[
f
(
j
n

)
, g
(
j
n

)]
, 0 ≤ j ≤ n

]
= −C∗

∫ 1

0

ds

(g(s)− f(s))α ,

where C∗ is defined in (6.1.8).
This result, proved in [Mog74], can be seen as a consequence of an α-stable version of

the Donsker theorem, obtained by Prokhorov. This result yields the convergence of the
trajectory of the random walk S, suitably normalized, to the trajectory of an α-stable
Lévy process (Yt, t ∈ [0, 1]) such that Y1 has the same law as Y .
Theorem 6.2.4 (Prokhorov theorem [Pro56]). If Snbn converges in law to a stable random
variable Y , then the process (Sbntcbn

, t ∈ [0, 1]) converges in law to (Yt, t ∈ [0, 1]) in D([0, 1])
equipped with the Skorokhod topology.

We first note that the Mogul’skĭı estimate holds uniformly with respect to the starting
point.
Corollary 6.2.5. With the same notation as Theorem 6.2.3, we have

lim
n→+∞

aαn
nL∗(an) log sup

y∈R
Py

[
Sj
an
∈ [f( jn), g( jn)], 0 ≤ j ≤ n

]
= −C∗

∫ 1

0

ds

(g(s)− f(s))α .

Proof. Observe in a first time that if y 6∈ [anf(0), ang(0)], then

Py

[
Sj
an
∈ [f( jn), g( jn)], 0 ≤ j ≤ n

]
= 0.

We now choose δ > 0, and write K =
⌈
g(0)−f(0)

δ

⌉
, we have

sup
y∈R

Py

[
Sj
an
∈ [f( jn), g( jn)], 0 ≤ j ≤ n

]
≤ max

k≤K
Πf(0)+kδ,f(0)+(k+1)δ(f, g),

where

Πx,x′(f, g) = sup
y∈[xan,x′an]

Py

[
Sj
an
∈ [f( jn), g( jn)], 0 ≤ j ≤ n

]
≤ P

[
Sj
an
∈ [f( jn)− x′, g( jn)− x], 0 ≤ j ≤ n

]
.

Therefore, for all k ≤ K, we have

lim sup
n→+∞

aαn
nL∗(an) log Πf(0)+kδ,f(0)+(k+1)δ(f, g) ≤ −C∗

∫ 1

0

ds

(g(s)− f(s) + δ)α ,

which leads to

lim sup
n→+∞

aαn
nL∗(an) log sup

y∈R
P
[
Sj + y

an
∈ [f( jn), g( jn)], 0 ≤ j ≤ n

]
≤ −C∗

∫ 1

0

ds

(g(s)− f(s) + δ)α .

We let δ → 0, which concludes the proof, as the lower bound is a direct consequence of
Theorem 6.2.3.



6.2. Useful lemmas 231

Using an adjustment of the original proof of Mogul’skĭı, one can prove a similar estimate
for enriched random walks. We set (Xn, ξn) a sequence of i.i.d. random variables on
R× R+, with X1 in the domain of attraction of the stable random variable Y , such that
P(Y > 0) ∈ (0, 1). We denote by Sn = S0 +X1 + · · ·+Xn, which is a random walk in the
domain of attraction of Y . The following estimate then holds.

Lemma 6.2.6. Let (an) ∈ RN
+ be such that limn→+∞ an

bn
= 0. We set En = {ξj ≤ n, j ≤ n}

and we assume that
lim

n→+∞
aαn

L∗(an)P(ξ1 ≥ n) = 0. (6.2.5)

There exists C∗ > 0, given by (6.1.8), such that for any pair (f, g) of continuous functions
verifying f < g, for any f(0) < x < y < g(0) we have

lim
n→+∞

aαn
nL∗(an) log inf

z∈[xan,yan]
Pz

(
Sj
an
∈
[
fj/n, gj/n

]
, j ≤ n,En

)
= −C∗

∫ 1

0

ds

(g(s)− f(s))α .

Proof. We assume in a first time that f, g are two constant functions. Let n ≥ 1, f < x <
0 < y < g and f < x′ < y′ < g, we denote by

P x
′,y′

x,y (f, g) = inf
z∈[x,y]

Pzan

(
Sn
an
∈ [x′, y′], Sj

an
∈ [f, g], j ≤ n,En

)
. (6.2.6)

Let A > 0 and rn =
⌊
A aαn
L∗(an)

⌋
. We divide [0, n] into K =

⌊
n
rn

⌋
intervals of length rn.

For any k ≤ K, we set mk = krn and mK+1 = n. Applying the Markov property at time
mK , . . .m1, and restricting to trajectories which are, at any time mk in [x′an, y′an], we
have

P x
′,y′

x,y (f, g) ≥ πx′,y′x,y (f, g)
(
πx
′,y′

x′,y′ (f, g)
)K

, (6.2.7)

where we set

πx
′,y′
x,y (f, g) = inf

z∈[x,y]
Pzan

(
Srn
an
∈ [x′, y′], Sj

an
∈ [f, g], j ≤ rn, Ern

)
.

Let δ > 0 be chosen small enough such that M =
⌈
y−x
δ

⌉
≥ 3. We observe easily that

πx
′,y′
x,y (f, g) ≥ min

0≤m≤M
πx
′,y′

x+mδ,x+(m+1)δ(f, g)

≥ min
0≤m≤M

πx
′+(m+1)δ,y′+(m−1)δ
x,x (f + (m+ 1)δ, g + (m− 1)δ). (6.2.8)

Moreover, we have

πx
′,y′
x,x (f, g) = Pxan

(
Srn
an
∈ [x′, y′], Sj

an
∈ [f, g], Ern

)
≥ Pxan

(
Srn
an
∈ [x′, y′], Sj

an
∈ [f, g]

)
− rnP(ξ1 ≥ n).

By (6.2.5), we have limn→+∞ rnP(ξ1 ≥ n) = 0. Applying Theorem 6.2.4, the random
walk (Sbrntcan

, t ∈ [0, A]) converges as n → +∞ under law Pxan to a stable Lévy process
(x+ Yt, t ∈ [0, A]) such that Y1 has the same law than Y . In particular

lim inf
n→+∞

πx
′,y′
x,x (f, g) ≥ Px(YA ∈ (x′, y′), Yu ∈ (f, g), u ≤ A).
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Using (6.2.8), we have

lim inf
n→+∞

πx
′,y′
x,y (f, g) ≥ min

0≤m≤M
Px+mδ(YA ∈ (x′ + δ, y′ − δ), Yu ∈ (f + δ, g − δ), u ≤ A).

As a consequence, recalling that K ∼ nL∗(an)
Aaαn

, (6.2.7) leads to

lim inf
n→+∞

aαn
nL∗(an) logP x′,y′x,y (f, g)

≥ 1
A

min
0≤m≤M

log Px+mδ(YA ∈ (x′ + δ, y′ − δ), Yu ∈ (f + δ, g − δ), u ≤ A). (6.2.9)

By [Mog74, Lemma 1], we have

lim
t→+∞

1
t

logx P(Yt ∈ (x′, y′), Ys ∈ (f, g), s ≤ t) = − C∗
(g − f)α ,

where C∗ is defined by (6.1.8). Letting A→ +∞ then δ → 0, (6.2.9) yields

lim inf
n→+∞

aαn
nL∗(an) logP x′,y′x,y (f, g) ≥ − C∗

(g − f)α (6.2.10)

which is the expected result when f, g are two constants.
In a second time, we consider two continuous functions f < g. Let f(0) < x < y < g(0).

We set h a continuous function such that f < h < g and h(0) = x+y
2 . Let ε > 0 such that

6ε ≤ inft∈[0,1] min(gt − ht, ht − ft). We choose A > 0 such that

sup
|t−s|≤ 2

A

|ft − fs|+ |gt − gs|+ |ht − hs| ≤ ε.

and for a ≤ A, we writema = ban/Ac and Ia,A = [fa/A+ε, ga/A−ε]. We define J0,A = [x, y],
and for 1 ≤ a ≤ A, Ja,A = [ha/A − ε, ha/A + ε]. Applying the Markov property at times
mA−1, . . . ,m1, we have

inf
z∈[xan,yan]

Pz

(
Sj
an
∈
[
fj/n, gj/n

]
, j ≤ n,En

)

≥
A−1∏
a=0

inf
x∈Ja,A

Pxan

(
Sma+1

an
∈ Ja+1,A,

Sj
an
∈ Ia,A, j ≤ ma+1 −ma, Ema+1−ma

)
.

Therefore, using equation (6.2.10), we have

lim inf
n→+∞

nL∗(an)
aαn

log P
(
Sj
an
∈
[
fj/n, gj/n

]
, En, j ≤ n

)
≥ − 1

A

A−1∑
a=0

C∗
1

(ga,A − fa,A − 2ε)α .

As the upper bound is a direct consequence of Theorem 6.2.3, we let A→ +∞ and ε→ 0
to conclude the proof.

6.3 Branching random walk with a barrier
In this section, we study the asymptotic, as n→ +∞ and ε→ 0 of the quantity

%(n, ε) = P (∃|u| = n : ∀j ≤ n, V (uj) ≥ −εj) . (6.3.1)



6.3. Branching random walk with a barrier 233

The asymptotic behaviour of %(∞, ε) has been studied by Gantert, Hu and Shi in [GHS11]
for a branching random walk with a spine in the domain of attraction of a Gaussian random
variable. To do so, they studied the asymptotic behaviour of %(n, ε) for ε ≈ θn−2/3. Using
the same arguments, we obtain sharp estimates on the asymptotic behaviour of %(n, ε) for
ε ≈ θΛ(n)n−

α
α+1 , where Λ is a well-chosen slowly varying function.

We apply the spinal decomposition and the Mogul’skĭı estimate to compute the number
of individuals that stay at any time k ≤ n between curves anf(k/n) and ang(k/n), for an
appropriate choice of (an), f and g. We note that

E

 ∑
|u|=n

1{V (uj)∈[anf(j/n),ang(j/n)],j≤n}

 = E
[
e−Sn1{Sj∈[anf(j/n),ang(j/n),j≤n}

]
≈ e−ang(1)P (Sj ∈ [anf(j/n), ang(j/n)], j ≤ n)

≈ exp
(
−ang(1)− nL∗(an)

aαn
C∗
∫ 1

0

ds

(gs − fs)α
)
.

This informal computation hints that to obtain tight estimates, it is appropriate to choose
a sequence (an) satisfying an ∼n→+∞

nL∗(an)
aαn

, and functions f and g verifying

∀t ∈ [0, 1], g(t) + C∗
∫ t

0

ds

(gs − fs)α
= g(0), (6.3.2)

However, the differential equation g′t = −C∗(gt − θt)α being uneasy to solve as a function
of t and θ we use approximate solutions for (6.3.2).

We define the sequence

∀n ∈ N, an = inf
{
x ≥ 0 : x

α+1

L∗(x) = n

}
. (6.3.3)

and we introduce the function

Φ : (0,+∞) → R
λ 7→ C∗

λα − λ
α+1 .

(6.3.4)

Note that Φ is a C∞ strictly decreasing function on (0,+∞), that admits a well-defined
inverse Φ−1. The main result of the section is the following.

Theorem 6.3.1. Under the assumptions of Theorem 6.1.1, for all θ > 0 we have

−C
1
α∗

θ
1
α

≤ lim inf
n→+∞

1
an

log %
(
n, θ

an
n

)
≤ lim sup

n→+∞

1
an

log %
(
n, θ

an
n

)
≤ −Φ−1(θ).

Remark 6.3.2. By inversion of regularly varying functions, for all µ > 0 we have

abµnc ∼n→+∞ µ
1

α+1an.

Consequently, Theorem 6.3.1 implies that for any θ > 0, for all n ≥ 1 large enough,

− 1 ≤ lim inf
n→+∞

1
an

log %
(⌊

(θ/C∗)
α+1
α n

⌋
, C∗

an
n

)
≤ lim sup

n→+∞

1
an

log %
(⌊

(θ/C∗)
α+1
α n

⌋
, C∗

an
n

)
≤ −θ

1
αΦ−1(θ)

C
1
α∗

. (6.3.5)
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We observe that limθ→+∞ θ
1
αΦ−1(θ) = C

1
α∗ , therefore

lim
h→+∞

lim inf
n→+∞

1
an

log %
(
bhnc, C∗

an
n

)
= lim

h→+∞
lim sup
n→+∞

1
an

log %
(
bhnc, C∗

an
n

)
= −1.

(6.3.6)
We prove separately the upper and the lower bound. To prove Theorem 6.3.1, we prove

separately an upper bound in Lemma 6.3.3 and the lower bound in Lemma 6.3.4. The
upper bound is obtained by computing the mean number of individuals that stay above
the line of slope −θ ann during n units of time.

Lemma 6.3.3. Under the assumptions of Theorem 6.1.1, for all θ > 0 we have

lim sup
n→+∞

1
an

log %
(
n, θ

an
n

)
≤ −Φ−1(θ).

Proof. Let θ > 0 and λ > 0, we set g : t 7→ −θt + λ(1 − t) 1
α+1 . For j ≤ n, we introduce

the intervals
I

(n)
j = [−θanj/n, ang(j/n)] .

We observe that

%

(
n, θ

an
n

)
≤ P

(
∃|u| = n : ∀j ≤ n, V (uj) ≥ −θan

j

n

)
≤ P

(
∃|u| ≤ n : V (u) ≥ ang(|u|/n), V (uj) ∈ I(n)

j , j < |u|
)
.

Therefore, defining

Yn =
∑
|u|≤n

1{V (u)≥ang(|u|/n)}1{
V (uj)∈I(n)

j ,j<|u|
},

by the Markov inequality we have %
(
n, θ ann

) ≤ E(Yn). Applying Lemma 6.2.2, we have

E(Yn) =
n∑
k=1

E

 ∑
|u|=k

1{
V (uj)∈I(n)

j ,j<k

}1{V (u)≥ang(k/n)}


=

n∑
k=1

E

e−Sk1{
Sj∈I(n)

j ,j<k

}1{Sk≥ang(k/n)}


≤

n∑
k=1

e−g(k/n)anP
(
Sj ∈ I(n)

j , j < k
)
.

Let A ∈ N, we set ma = bna/Ac and ga,A = sups∈[ a−1
A
,a+2
A

] g(s), we have

E(Yn) ≤
A−1∑
a=0

ma+1∑
k=ma+1

e−g(k/n)anP
(
Sj ∈ I(n)

j , j < k
)

≤ n
A−1∑
a=0

e−ga,AanP
(
Sj ∈ I(n)

j , j ≤ ma

)
,

by the Markov inequality applied at time ma. Therefore, by Corollary 6.2.5, we have

lim sup
n→+∞

1
an

log E(Yn) ≤ max
a≤A−1

(
−ga,A − C∗

∫ a
A

0

ds

(g(s) + θs)α

)
≤ max

a≤A−1

(
−ga,A − C∗(α+ 1)

[
1− (1− a/A)

1
α+1
])
.
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Letting A→ +∞, as g is uniformly continuous, we have

lim sup
n→+∞

1
an

log %
(
n, θ

an
n

)
≤ sup

t∈[0,1]

{
θt− λ(1− t) 1

α+1 − C∗(α+ 1)
[
1− (1− t) 1

α+1
]}

≤ −λ+ sup
t∈[0,1]

θt− (α+ 1)Φ(λ)
[
1− (1− t) 1

α+1
]
.

Note that t 7→ 1− (1− t) 1
α+1 is a convex function with slope 1

α+1 at t = 0. Therefore,
if we choose λ = Φ−1(θ), the function t 7→ θt − (α + 1)Φ(λ)

[
1− (1− t) 1

α+1
]
is concave

and decreasing. As a consequence

lim sup
n→+∞

1
an

log %
(
n, θ

an
n

)
≤ −λ,

which concludes the proof.

To obtain a lower bound, we bound from below the probability for an individual to
stay between two given curves, while having not too many children. To do so, we compute
the first two moments of the number of such individuals, and apply the Cauchy-Schwarz
inequality to conclude.

Lemma 6.3.4. Under the assumptions of Theorem 6.3.1, for all θ > 0 we have

lim inf
n→+∞

1
an

log %
(
n, θ

an
n

)
≥ −C

1
α∗

θ
1
α

.

Proof. For u ∈ T, we introduce ξ(u) = log∑v∈Ω(u) e
V (v)−V (u), where

Ω(u) = {v ∈ T : πv = πu and v 6= u}

is the set of siblings of u. Note that (6.1.9) implies

lim
x→+∞

xα

L∗(x)P̂ (ξ(w1) ≥ x) = 0. (6.3.7)

Let θ > 0, λ > 0 and δ > 0. For j ≤ n, we set I(n)
j = [−anθj/n, an(λ− θj/n)] and

Xn =
∑
|u|=n

1{
V (uj)∈I(n)

j ,j≤n
}1{ξ(uj)≤δan,j≤n}.

We observe that

%

(
n, θ

an
n

)
≥ P (∃|u| = n : V (uj) ≥ −anθj/n, j ≤ n)

≥ P
(
∃|u| = n : V (uj) ∈ I(n)

j , j ≤ n
)

≥ P (Xn ≥ 1) ,

thus by the Cauchy-Schwarz inequality, %
(
n, θ ann

) ≥ E(Xn)2

E(X2
n) .
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In a first time, we bound from below E(Xn). Using Proposition 6.2.1, we have

E(Xn) = E

 1
Wn

∑
|u|=n

1{
V (uj)∈I(n)

j ,j≤n
}1{ξ(uj)≤δan,j≤n}


= Ê

 ∑
|u|=n

e−V (u)P̂(u = wn|Fn)1{
V (uj)∈I(n)

j ,j≤n
}1{ξ(uj)≤δan,j≤n}


= Ê

e−V (wn)1{
V (wj)∈I(n)

j ,j≤n
}1{ξ(wj)≤δan,j≤n}

 .
Let ε > 0, we have

E(Xn) ≥ Ê

e−V (wn)1{V (wn)≤(−θ+ε)an}1{V (wj)∈I(n)
j ,j≤n

}1{ξ(wj)≤δan,j≤n}


≥ e(θ−ε)anP̂

[
V (wn) ≤ (−θ + ε)an, V (wj) ∈ I(n)

j , ξ(wj) ≤ δan, j ≤ n
]
.

We introduce 0 < x < y and A > 0 such that P̂(V (w1) ∈ [x, y], ξ(w1) ≤ A) > 0. Applying
the Markov property at time p = bεanc, for any n ≥ 1 large enough we have

P̂
[
V (wj) ∈ I(n)

j , ξ(wj) ≤ δan, j ≤ n
]

≥ P̂(V (w1) ∈ [x, y], ξ(w1) ≤ A)p inf
z∈[xεan,yεan]

P̂z

[
V (wj) ∈ I(n)

j+p, ξ(wj) ≤ δan, j ≤ n− p
]

As (6.3.7) holds, we apply Lemma 6.2.6, we have

lim inf
n→+∞

1
an

log E(Xn) ≥ θ − ε− C∗
λα

+ ε log P̂(V (w1) ∈ [x, y], ξ(w1) ≤ A).

Letting ε→ 0, we have
lim inf
n→+∞

1
an

log E(Xn) ≥ θ − C∗
λα
.

We now bound from above the second moment of Xn, using once again the spinal
decomposition. Observe that

E(X2
n) = E

Xn

Wn

∑
|u|=n

1{
V (uj)∈I(n)

j ,j≤n
}1{ξ(uj)≤δan,j≤n}


= E

Xn

∑
|u|=n

e−V (u)P(wn = u|Fn)1{
V (uj)∈I(n)

j ,j≤n
}1{ξ(uj)≤δan,j≤n}


= Ê

e−V (wn)Xn1{
V (wj)∈I(n)

j ,j≤n
}1{ξ(wj)≤δan,j≤n}


≤ eθanÊ

Xn1{
V (wj)∈I(n)

j ,j≤n
}1{ξ(wj)≤δan,j≤n}

 .
We decompose the set of individuals counted in Xn under law P̂ according to their most
recent common ancestor with the spine w, we have

Xn = 1{
V (wj)∈I(n)

j ,j≤n
}1{ξ(wj)≤δan,j≤n} +

n∑
j=1

∑
u∈Ω(wj)

Λ(u),
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where u′ ≥ u means u′ is a descendant of u and

Λ(u) =
∑

|u′|=n,u′≥u
1{

V (u′j)∈I
(n)
j ,j≤n

}1{ξ(u′j)≤δan,j≤n}.

Let k ≤ n and u ∈ Ω(wk). Conditionally on G, the subtree rooted at u with marks V
is a branching random walk with law PV (u), therefore

E (Λ(u)| G) ≤ EV (u)

 ∑
|u′|=n−k

1{
V (u′j)∈I

(n)
k+j ,j≤n−k

}
≤ eV (u) EV (u)

e−Sn−k1{
Sj∈I(n)

k+j ,j≤n−k
}

≤ eV (u)e−g
λ,δ(1)an sup

z∈R
Pz

(
Sj ∈ I(n)

k+j , j ≤ n− k
)
.

Let A ∈ N, we set ma = bna/Ac and

Ψa,A = sup
z∈R

Pz

(
Sj ∈ I(n)

ma+j , j ≤ n−ma

)
.

For all k ≤ ma+1 and u ∈ Ω(wk), we have

E (Λ(u)| G) ≤ eV (u)eθanΨa+1,A.

Therefore

E

1{
V (wj)∈I(n)

j ,j≤n
}1{ξ(wj)≤δan,j≤n}

ma+1∑
k=ma+1

∑
u∈Ω(wk)

Λ(u)


≤

ma+1∑
k=ma+1

E

1{
V (wj)∈I(n)

j ,j≤n
} ∑
u∈Ω(wk)

1{ξ(wk)≤δan}Λ(u)


≤Ψa+1,Ae

θan

ma+1∑
k=ma+1

E

1{
V (wj)∈I(n)

j ,j≤n
}eξ(wk)+V (wk)1{ξ(wk)≤δan}


≤nΨa+1,AΨ0,Ae

(λ+(1−a/A)θ+δ)an .

Consequently, applying Corollary 6.2.5, we have

lim sup
n→+∞

1
an

log E(X2
n) ≤ max

a≤A
λ+ (2− a/A)(θ − C∗

λα
) + δ

≤ λ+ 2θ − 2C∗
λα

+ δ,

as soon as θ ≥ C∗
λα .

Using the first and second moment estimates of Xn, we have

lim inf
n→+∞

1
an

log %
(
n, θ

an
n

)
≥ −λ− δ.

Letting δ → 0 and λ→ (θ/C∗)
1
α concludes the proof.
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Remark 6.3.5. If we assume (fθ, gθ) to be a pair of functions solution of the differential
equation f(t) = −θt

g(t) = −θ + C∗
∫ 1
t

ds
(g(s)−f(s))α ,

using similar estimates as the ones developed in Lemmas 6.3.3 and 6.3.4, we prove that
for all θ ∈ R

lim
n→+∞

1
an

log %
(
n, θ

an
n

)
= −gθ(0).

Theorem 6.3.1 is used to obtain closed bounds for gθ(0), that are tight for large θ.

6.4 Speed of the N -branching random walk

In [BG10], to prove that limn→+∞(logN)2vN = C for a branching random walk in the
usual boundary case, the essential tool was a version of Theorem 6.3.1, found in [GHS11].
The same methods are applied to compute the asymptotic behaviour of vN under the
assumptions of Theorem 6.1.1. Loosely speaking, we compare the N -branching random
walk with N independent branching random walks in which individuals crossing a linear
boundary with slope −νN defined by

νN := C∗
L∗(logN)
(logN)α . (6.4.1)

By (6.3.6), for any h > 0 large enough and N ≥ 1 large enough, %
(
h (logN)α+1

L∗(logN) , νN
)
≈ 1

N .
Consequently, (logN)α+1

L∗(logN) is expected to be the correct time scale for the study of the process.
In this section, we give in a first time a more precise definition of the branching-

selection particle system we consider. We introduce additional notations that enables
to describe it as a measure-valued Markov process. In Section 6.4.2, we introduce an
increasing coupling between branching-selection particles systems, and use it to prove the
existence of vN . Finally, we obtain in Section 6.4.3 an upper bound for vN and in Section
6.4.4 a lower bound, that are enough to conclude the proof of Theorem 6.1.1.

6.4.1 Definition of the N -branching random walk and notation

The branching-selection models we consider are particle systems on R. It is often
convenient to represent the state of a particle system by a counting measure on R with
finite integer-valued mass on every interval of the form [x,+∞). The set of such measures
is written M. A Dirac mass at position x ∈ R indicates the presence of an individual
alive at position x. With this interpretation, a measure in M represents a population
with a rightmost individual, and no accumulation point. For N ∈ N, we write MN for
the set of measures inM with total mass N , that represent populations of N individuals.
If µ ∈MN , then there exists (x1, . . . , xn) ∈ RN such that µ = ∑n

j=1 δxj .
We introduce a partial order onM: given µ, ν ∈ M, we write µ 4 ν if for all x ∈ R,

µ([x,+∞)) ≤ ν([x,+∞)). Note that if µ 4 ν then µ(R) ≤ ν(R). A similar partial order
can be defined on the set of laws point processes. We say that L 4 L̃ if there exists a
coupling (L, L̃) of these two laws, such that L has law L, L̃ has law L̃ and∑

`∈L
δ` 4

∑
˜̀∈L̃ δ˜̀ a.s.
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Let N ∈ N. We introduce a Markov chain (XN
n , n ≥ 1) on MN that we call the

branching random walk with selection of the N rightmost individuals, or N -BRW for short.
For any n ∈ N, we denote by (xNn (1), . . . xNn (N)) ∈ RN the random vector that verifies

XN
n =

N∑
j=1

δxNn (j) and xNn (1) ≥ xNn (2) ≥ · · · ≥ xNn (N).

Conditionally on XN
n , XN+1

n is constructed as follows. We introduce N i.i.d. point pro-
cesses (L1

n, . . . , L
N
n ) with law L, and we set

Y N
n+1 =

N∑
j=1

∑
`i∈Lin

δxNn (i)+`i ∈M,

which is the population after the branching step. We set y = sup{x ∈ R : Y N
n+1([x,+∞)) ≥

N} and P = Y N
n+1((y,+∞)). Then XN

n+1 = Y N
n+1|(y,+∞) + (N − P )δy. For n ∈ N, we set

Fn = σ(XN
j , j ≤ n) the natural filtration associated to the N -BRW. Whereas this is not

done in this chapter, note that genealogical informations can be added to this process –as
long as any ambiguity that might appears, when deciding which of the individuals alive
at position y are killed, is settled in a F-adapted manner.

6.4.2 Increasing coupling of branching-selection models

We construct here a coupling between N -BRWs, that preserves the order 4. This
coupling has been introduced in [BG10], in a special case and is a key tool in the study of
the branching-selection processes we consider. It is used to bound from above and from
below the behaviour of the N -BRW by a branching random walk in which individuals that
cross a line of slope −νN are killed. In a first time, we couple a single step of the N -BRW.
Lemma 6.4.1. Let 1 ≤ m ≤ n and µ ∈ Mm, µ̃ ∈ Mn be such that µ 4 µ̃. Let L 4 L̃
be two laws of point processes. For any 1 ≤ M ≤ N , there exists a coupling of XM

1 the
first step of a M -BRW with reproduction law L starting from µ with X̃N

1 the first step of
a N -BRW with reproduction law L̃ starting from µ̃, in a way that XM

1 4 X̃N
1 a.s.

Proof. Let (L, L̃) be a pair of point processes such that ∑`∈L δ` 4
∑
`∈L̃ δ` a.s., L has law

L and L̃ has law L̃. We set ((Lj , L̃j , j ≥ 0) i.i.d. random variables with the same law as
(L, L̃). We write µ = ∑m

i=1 δxi and µ̃ = ∑n
i=1 δyi in a way that (xj , j ≤ m) and (yj , j ≤ n)

are ranked in the decreasing order. We set

µ1 =
m∑
i=1

∑
`i∈Li

δxi+`i and µ̃1 =
n∑
i=1

∑
`i∈L̃i

δyi+`i .

Note that µ1 4 ν1 a.s.
Moreover, setting XM

1 for the M individuals in the highest position in µ1 and X̃N
1 the

N individuals in the highest position in µ̃1. Once again, we have XM
1 4 X̃N

1 a.s.

A direct consequence of this lemma is the existence of an increasing coupling between
N -BRWs.
Corollary 6.4.2. Let L 4 L̃ be two laws of point processes. For all 1 ≤ M ≤ N ≤ +∞,
if XM

0 4 X̃N
0 , then there exists a coupling between the M -BRW (XM

n ) with law L and the
N -BRW (X̃N

n ) with law L̃ verifying

∀n ∈ N, XM
n 4 X̃N

n a.s.
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Using this increasing coupling, we prove that with high probability, the cloud of par-
ticles in the N -BRW does not spread.

Lemma 6.4.3. Under the assumptions (6.1.3), (6.1.4) and (6.1.10) there exist C > 0 and
α > 0 such that for all N ≥ 2, y ≥ 1 and n ≥ C(logN + y),

P
(
xNn (1)− xNn (N) ≥ y

)
≤ C

(
N logN

y

)2

Proof. Let n ∈ N and k ≤ n, we bound xNn (1)−xNn−k(1) from above and xNn (N)−xNn−k(1)
from below to estimate the size of the cloud of particles at time n. In a second time,
choosing k appropriately we conclude the proof of Lemma 6.4.3.

We first observe that the N -BRW starting from position XN
n−k can be coupled with

N i.i.d. branching random walks ((Tj , V j), j ≤ N) with (Tj , V j) starting from position
xNn−k(j), in a way that

XN
n 4

N∑
j=1

∑
u∈Tj ,|u|=k

δV j(u).

As a consequence, by (6.2.4), for any y ∈ R,

P
(
xNn (1)− xNn−k(1) ≥ y

)
≤ P

(
max
j≤N

max
u∈Tj ,|u|=k

V j(u) ≥ y
)
≤ Ne−y. (6.4.2)

We now bound from below the displacements in the N -BRW. Let L be a point process
with law L. By (6.1.3), there exists R > 0 such that E

(∑
`∈L 1{`≥−R}

)
> 1. We denote

by LR the point process that consists in the maximal point in L as well as any other
point that is greater than −R. Using Corollary 6.4.2, we couple (XN

k+n, n ≥ 0) with the
N -BRW (XN,R

n , n ≥ 0) of reproduction law LR, starting from a unique individual located
at xNn−k(1) at time 0 in an increasing fashion.

As XN,R
n 4 XN

n , if XN,R
n (R) = N , then xN,Rn (N) ≤ xNn (N). Moreover by definition

of LR, the minimal displacement made by one child with respect to its parent is given
by min(−R,maxL). For n ∈ N, we write Qn,N a random variable defined as the sum
of n i.i.d. copies of min(−R,maxL). Observe that QkN is stochastically dominated by
xN,Rk (N). Consequently

P
(
xNn (N)− xNn−k(1) ≤ −y

)
≤ P

(
XN,R
k (R) < N

)
+ P (QkN ≤ −y) .

By (6.1.10), we have P(QkN ≤ −y) ≤ C k2N2

y2 . Moreover, the process (XN,R
n (R), n ≥ 0)

is a Galton-Watson process with reproduction law given by #LR, that saturates at time
N . Consequently, using [FW07] results, setting mR = E(#LR) and α = − log P(#LR=1)

logmR we
have

P
(
XN,R
k (R) < N

)
≤ C Nα

mkα
R

.

We conclude that

P
(
xNn (N)− xNn−k(1) ≤ y

)
≤ Ck

2N2

y2 + C
Nα

mkα
R

(6.4.3)

Combining (6.4.2) and (6.4.3), for all y ≥ 1 and k ∈ N we have

P
(
xNn (1)− xNn (N) ≥ 2y

)
≤ Ne−y + C

k2N2

y2 + C
Nα

mkα
R

.
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Thus, setting k =
⌊

2 logN+y
logmR

⌋
, there exists C > 0 such that for any y ≥ 1 and N ≥ 1 large

enough,

P
(
xNn (1)− xNn (N) ≥ 2y

)
≤ Ne−y + C

(logN)2N2

y2 + CN−αe−αy logmR ≤ C
(
N logN

y

)2
.

Applying Lemma 6.4.3 and the Borel-Cantelli lemma, for all N ≥ 2 we have

lim
n→+∞

xNn (1)− xNn (N)
n

= 0 a.s. and in L1,

thus, if we prove that xNn (1)
n converges, the same hold for every individual in the cloud.

This is done in the next proof, using the Kingman’s subadditive ergodic theorem.

Lemma 6.4.4. Under the assumptions (6.1.3), (6.1.4) and (6.1.10), for all N ≥ 1, there
exists vN ∈ R such that for all j ≤ N

lim
n→+∞

xNn (j)
n

= vN a.s. and in L1. (6.4.4)

Moreover, if XN
0 = Nδ0, we have

vN = inf
n≥1

E(xNn (1))
n

= sup
n≥1

E(xNn (n))
n

. (6.4.5)

Proof. This proof is based on the Kingman’s subadditive ergodic theorem. We first prove
that if XN

0 = Nδ0, then (xNn (1)) is a subadditive sequence, and (xNn (N)) is an overadditive
one. Thus xNn (1)

n and xNn (N)
n converge, and lim xNn (1)

n = lim xNn (N)
n a.s. by Lemma 6.4.3. We

treat in a second time the case of a generic starting value XN
0 ∈ MN using Corollary

6.4.2.
Let N ∈ N, let (Lj,n, j ≤ N,n ≥ 0) be an array of i.i.d. point processes with common

law L. We define on the same probability space random measures (XN
m,n, 0 ≤ k ≤ n) such

that for allm ≥ 0, (XN
m,m+n, n ≥ 0) is a N -BRW starting from the initial distribution Nδ0.

For ny m ≥ 0, we set XN
m,m = Nδ0. Let 0 ≤ m ≤ n, we assume that XN

m,n = ∑N
j=1 δxNm,n(j),

with (xNm,n(j)) listed in the decreasing order, is given. We define (xNm,n+1(j), j ≥ 0), again
listed in the decreasing order, in a way that

+∞∑
j=1

δxNm,n+1(j) =
N∑
j=1

∑
`j,n∈Lj,n

δxNm,n(j)+`j,n ,

and set XN
m,n+1 = ∑N

j=1 δxNm,n+1
.

For x ∈ R, we write ϕx for the shift operator onM, such that ϕx(µ) = µ(.−x). With
this definition, we observe that for all 0 ≤ m ≤ n we have

ϕxN0,n(N)X
N
n,n+m 4 XN

0,n+m 4 ϕxN0,n(1)(XN
n,n+m).

As a consequence,

xN0,m+n(1) ≤ xN0,m(1) + xNm,m+n(1) and xN0,m+n(N) ≥ xN0,m(N) + xNm,m+n(N). (6.4.6)
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We apply Kingman’s subadditive ergodic theorem. Indeed, (xNm,m+n(1), n ≥ 0) is inde-
pendent of (xNk,l(1), 0 ≤ k ≤ l ≤ m) and has the same law as (xN0,n(1), n ≥ 0). Moreover,
E(|xN0,1(1)|) < +∞ by (6.1.10). As a consequence, (6.4.6) implies there exists vN ∈ R such
that

lim
n→+∞

xN0,n(1)
n

= vN a.s. and in L1,

and vN = infn∈N
E(xN0,n(1))

n . Similarly, limn→+∞
xN0,n(N)

n = supn∈N
E(xN0,n(N))

n a.s. and in L1,
and (6.3.5) is verified. Moreover, by Lemma 6.4.3, these limits are equal.

We now consider the general case. Let (XN
n , n ≥ 0) be a N -BRW. We couple this

process with Y N and ZN two N -BRWs stating from NδxN (1) and NδxN (N) respectively,
such that for all n ∈ N, ZNn 4 XN

n 4 Y N
n . We have

∀j ≤ N, zNn (N) ≤ zNn (j) ≤ xNn (1) ≤ yNn (j) ≤ yNn (1).

We conclude that for all j ≤ N , limn→+∞
xNn (j)
n = vN a.s. and in L1.

We now study the asymptotic behaviour of vN as N → +∞. To do so, we couple the
N -BRW with a branching random walk in which individuals are killed below the line of
slope −νN . Applying Theorem 6.3.1, we derive upper and lower bounds for vN .

6.4.3 An upper bound on the maximal displacement

To obtain an upper bound on the maximal displacement in the N -branching random
walk, we link the existence of an individual alive at time n with the event there exists
an individual staying above a line of slope −νN , during mN units of time. The following
lemma is an easier and less precise version of [BG10, Lemma 2], that is sufficient for our
proofs.

Lemma 6.4.5. Let v < K. We set (xn, n ≥ 0) a sequence of real numbers with x0 = 0
such that supn∈N xi+1−xi ≤ K. For all m ≤ n, if xn > (n−m)v+Km, then there exists
i ≤ n−m such that for all j ≤ m, xi+j − xi ≥ vj.
Proof. Let (xn) be a sequence verifying supi∈N xi+1 − xi ≤ K. We assume that for any
i ≤ n−m, there exists ji ≤ m verifying xi+ji − xi ≤ vji. We set σ0 = 0 and σk+1 = jσk .
By definition, we have

xσk+1 ≤ (σk+1 − σk)v + xσk ,

thus, for all k ≥ 0, xσk ≤ σkv. Moreover, as (σk) is strictly increasing, with steps smaller
than m, there exists k0 such that σk0 ∈ [n−m,n]. We conclude that

xn ≤ xn − xσk0
+ xσk0

≤ K(n− σk0) + vσk0 ≤ Km+ (n−m)v.

The previous lemma can be used to extend the estimate obtained thanks to Theorem
6.3.1 from times of order (logN)α+1 to times of order N ε.

Lemma 6.4.6. Under the assumptions of Theorem 6.1.1, let XN be a N -BRW with
reproduction law L starting from Nδ0. For any ε ∈ (0, 1), there exists δ > 0 such that for
any N ≥ 1 large enough, we have

P

xNbNδc(1)

N δ
≥ −(1− ε)νN )

 ≤ N−δ.
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Proof. Let ε ∈ (0, 1) and θ > 0. By (6.3.5), for all n ≥ 1 large enough we have

lim sup
n→+∞

1
an

log %
(⌊(

θ

(1− ε)C∗

)α+1
α

n

⌋
, C∗(1− ε)

an
n

)
≤ − θ

1
αΦ−1(θ)

C
1
α∗ (1− ε) 1

α

.

We set

mN =
⌊(

θ

(1− ε)C∗

)α+1
α (logN)α+1

L∗(logN)

⌋
,

For any ε > 0 small enough, there exists δ ∈ (0, ε1/2) such that for all θ > 0 large enough
we have we have %(mN , (1− ε)νN ) ≤ N−(1+2δ) for all N ≥ 1 large enough.

We set n =
⌊
N δ
⌋
. Observe the N -BRW of length n is built with nN independent

point processes of law L satisfying (6.1.4). If L is a point process with law L, we have

P(maxL ≥ x) ≤ P

∑
`∈L

e` ≥ ex
 ≤ e−x.

Therefore, setting K = (1 + 2δ) logN , the probability there exists one individual in the
N -BRW alive before time n that made a step larger than K is bounded from above by
1− (1−N−(1+2δ))nN ≤ N−δ.

We now consider the path of length n that links an individual alive at time n at position
xNn (1) with is ancestor alive at time 0. We write yNn (k) for the position of the ancestor at
time k of this individual. With probability 1−N−δ, this is a path with no step greater than
K. As for N ≥ 1 large enough, we have −(1− ε− δ)νNn > −(n−mN )(1− ε)νN +KmN .
By Lemma 6.4.5, for any N ≥ 1 large enough we have

{
∀k < n, yNn (k + 1)− yNn (k) ≤ K

}
∪
{
xNn (1) ≥ −(1− δ − ε)νNn

}
⊂
{
∃j ≤ n−mN : ∀k ≤ mN , y

N
n (j + k)− yNn (j) ≥ −(1− ε)νNk

}
.

Consequently if xNn (1) ≥ −(1−δ−ε)νNn, there exists an individual in the N -BRW that
has a sequence of descendants of length mN staying above the line of slope −(1 − δ)νN .
This happens with probability at most nN%(mN , (1 − ε)νN ). We conclude from these
observations that for any ε > 0 and N ≥ 1 large enough

P
(
xNn (1) ≥ −νN (1− δ − ε)n

)
≤ CN−δ.

Proof of the upper bound of Theorem 6.1.1. We first observe that the maximal displace-
ment at time n in the N -BRW is bounded from above by the maximum of N independent
branching random walks. By (6.2.4), for all y ≥ 0 and n ∈ N we have P(xNn (1) ≥ y) ≤
Ne−y.

Moreover, as (xNn (1)) is a subadditive sequence, for all p ≥ 1 we have

lim sup
n→+∞

xNn (1)
n
≤ E

[
xNp (1)
p

]
a.s.
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For any ε > 0 and y > 0, there exists δ > 0 such that setting p =
⌊
N δ
⌋
we have

vN ≤ E
[
xNp (1)
p 1{xNp (1)≥py}

]
+ E

xNp (1)
p 1{xNp (1)

p ∈[−νN (1−ε),y]
}


+ E
[
xNp (1)
p 1{xNp (1)≤−p(1−ε)νN}

]
,

therefore

vN ≤
∫ +∞

y
P
(
xNp (1) ≥ pz

)
dz + yP

(
xNp (1) ≥ −p(1− ε)νN

)
− (1− ε)νN

≤N
p
e−py + yN−δ − (1− ε)νN .

Letting N → +∞ then ε→ 0, we conclude that

lim sup
N→+∞

vN (logN)α
L∗(logN) ≤ −C

∗.

6.4.4 The lower bound

To bound from below the position of the leftmost individual in the N -BRW, we prove
that with high probability, there exists a time k ≤ nN such that xNk (N) ≥ −kνN . We use
these events as renewal times for a particle process that stays below the N -BRW.

Lemma 6.4.7. For any λ > 0 and any ε > 0 small enough, there exists δ > 0 such that
for all N ≥ 1 large enough,

P
(
∀n ≤ λ(logN)α+1

L∗(logN) , x
N
n (N) ≤ −n(1 + ε)νN

)
≤ exp

(
−N δ

)
.

Proof. For N ∈ N and λ > 0, we set mN =
⌊
λ (logN)α+1

L∗(logN)

⌋
. Let ε > 0, by (6.3.5), we have

lim inf
N→+∞

1
logN log % (mN , (1 + ε)νN ) ≥ −(1 + ε)−

1
α .

Consequently for any ε > 0 small enough, there exists δ ∈ (0, ε1/2) such that for all N ≥ 1
large enough we have %(mN , (1 + δ)νN ) ≥ 1

N1−δ .
Let L be a point process with law L. Using (6.1.3), there exists R > 0 large enough

such that E (# {` ∈ L : ` ≥ −R}) > 1. We consider the branching random walk in which
individuals that cross the line of slope−R are killed. By standard Galton-Watson processes
theory 2, there exists r > 0 and α > 0 such that for all N ≥ 1 large enough the probability
there exists at least N individuals alive at time bα logNc in this process is bounded
from below by r. Thus for all N ≥ 1 large enough, the probability there exists at least
N + 1 individuals alive at time mN + bα logNc in a branching random walk in which
individuals that cross the line of slope −νN (1 + 2ε) are killed is bounded from below by
r%(mN , (1 + ε)νN ).

2. see, e.g. [FW07].
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We set BN =
{
∀n ≤ mN + bα logNc, xNn ≤ −nνN (1 + 2ε)

}
. By Corollary 6.4.2, the

N -BRW can be coupled with N independent branching random walks starting from 0, in
which individuals below the line of slope −νN (1 + 2ε) are killed, in a way that on BN , XN

is above the branching random walks for the order 4. The probability that at least one
of the branching random walks has at least N + 1 individuals at time mN + bα logNc is
bounded from below by

1− (1− r%(mN , (1 + δ)νN ))N ≥ 1− exp(−N δ/2),

for any N ≥ 1 large enough. On this event, the coupling is impossible as XN has no
more that N individuals alive at time N , thus BN is not satisfied. We conclude that
P(BN ) ≤ e−Nδ/2 .

Lower bound of Theorem 6.1.1. The proof is based on a coupling of the N -BRW XN with
another particle system Y N , in a way that for any n ∈ N, Y N 4 XN . Let (Lj,n, j ≤
N,n ≥ 0) be an array of i.i.d. point processes with law L. We construct XN such that
Lj,n represents the set of children of the individual xNn (j), with XN

0 = Nδ0. By Lemma
6.4.7, for any ε > 0 small enough, there exists δ > 0 such that setting mN =

⌊
(logN)α+1

L∗(logN)

⌋
,

for any N ≥ 1 large enough we have

P
(
∀n ≤ mN , x

N
n (N) ≤ −n(1 + ε)νN

)
≤ exp

(
−N δ

)
.

We introduce T0 = 0 and Y N
0 = Nδ0. The process Y N behaves as a N -BRW, using

the same point processes (Lj,n) as X until time

T1 = min
(
mN , inf

{
j ≥ 0 : yNj (N) > −jνN (1 + ε)

})
.

We then write Y N
T1+ = NδyN

k
(N), i.e. just after time T1, the process Y N starts over at time

T1+ from its leftmost individual. Then for any k ∈ N, the process behaves as a N -BRW
between time Tk+ and Tk+1, defined by

Tk+1 = Tk + min
(
mN , inf

{
j ≥ 0 : yNTk+j(N)− yNTk(N) > −jνN (1 + ε)

})
.

We observe easily that for all k ∈ N, we have Y N 4 XN a.s. and in particular yNk (N) ≤
xNk (N).

As (Tk − Tk−1, k ≥ 1) is a sequence of i.i.d. random variables, Lemma 6.4.4 leads to

lim
n→+∞

xNTk
k

= E(T1)vN a.s.

Moreover, as (yNTk(N)− yNTk−1(N), k ≥ 1) is another sequence of i.i.d. random variables, by
law of large numbers we have

lim
n→+∞

yNTk(N)
k

= E(yNT1(N)) a.s.

Combining these two estimates, we have

vN ≥
E(yNT1

(N))
E(T1) .
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We now compute

E(yNT1(N)) = E
(
yNT1(N)1{T1<mN}

)
+ E

(
yNT1(N)1{T1=mN}

)
= E

(
−νN (1 + ε)T11{T1<mN}

)
+ E

(
yNT1(N)1{T1=mN}

)
≥ −νN (1 + ε) E(T1) + E

(
yNT1(N)1{T1=mN}

)
Note that for all j ≤ T1, we have Y N

j = XN
j . Moreover, by Corollary 6.4.2, we couple XN

with a N -BRW X̃ in which every individual makes only one child, with a displacement of
law maxL. Consequently, we have

yNT1(N) ≥
 T1∑
n=1

min
j≤N

maxLj,n

 a.s.

which leads to

vN ≥ −νN (1 + ε) + E
[(

mN∑
n=1

min
j≤N

maxLj,n
)

1{T1=mN}

]
.

Using the Cauchy-Schwarz inequality and (6.1.10), we have

E
[(

mN∑
n=1

min
j≤N

maxLj,n
)

1{T1=mN}

]
≥ −CNmNP (T1 = mN )1/2 .

We apply Lemma 6.4.7 and let N → +∞ then δ → 0 to prove that

lim inf
N→+∞

vN (logN)α
L∗(logN) ≥ −C∗.
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Simple proofs of classical
branching random walks estimates





CHAPTER 7

Maximal displacement in a
branching random walk

“J’ai une mémoire admirable, j’oublie tout.”

Alphonse Allais
Abstract

This chapter is devoted to the study of the maximal displacement in the branching
random walk. We prove here that the asymptotic this quantity is composed of a first
ballistic order, plus a logarithmic correction and stochastically bounded fluctuations.
This result, proved in [HS09] and [ABR09] under some additional integrability con-
ditions, is given here under close-to-optimal conditions. Borrowing ideas of [AS10],
we obtain a simple proof for the two first order of the asymptotic of the maximal
displacement in a branching random walk.

7.1 Introduction
A branching random walk on R is a process which starts with one individual located at

the origin at time 0, and evolves as follows: at each time k, every individual currently in
the process dies, giving birth to a certain number of children, which are positioned around
the position of their parent according to independent and identically distributed versions
of a point process.

Under some mild integrability conditions, the asymptotic behaviour of the maximal
displacement is fully known. Hammersley [Ham74], Kingman [Kin75] and then Biggins
[Big76] proved this maximal value grows at linear speed. In 2009, Hu and Shi [HS09] ex-
hibited a logarithmic correction in probability, with almost sure fluctuations; and Addario-
Berry and Reed [ABR09] showed the tightness of the maximal displacement, shifted around
its median. More recently, Aidékon [Aïd13] proved the fluctuations converge in law to some
random shift of a Gumbel variable.

Aidékon and Shi gave in [AS10] a simple way to obtain the asymptotic behaviour of
the maximal displacement up to an o(logn) order. The aim of this chapter is to expose a
slight refinement of their methods to prove the asymptotic behaviour up to terms of order
1. Moreover we work here with more general integrability conditions, similar to the ones
used in [Aïd13].

The upper bound of the asymptotic behaviour is obtained by “bending the boundary”
of the branching random walk. The idea follows from an heuristic bootstrap argument,
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which is detailed in Section 7.4.1. The close-to-optimal integrability conditions arise nat-
urally when using the spinal decomposition of the branching random walk, introduced by
Lyons [Lyo97] and recalled in Section 7.2. We introduce some ideas that are used in the
further chapters, in a more complicate setting. Thus this chapter can be seen as a sandbox
for later computations.

We recall that in this thesis, c, C are two positive constants, respectively small enough
and large enough, which may change from line to line, and depend only on the law of the
random variables we consider. For a given sequence of random variables (Xn, n ≥ 1), we
write Xn = OP(1) if the sequence is tensed, i.e.

lim
K→+∞

sup
n≥1

P(|Xn| ≥ K) = 0.

Moreover, we always assume the convention max ∅ = −∞ and min ∅ = +∞, and for u ∈ R,
we write u+ = max(u, 0), and log+(u) = (log u)+. Finally, Cb is the set of continuous
bounded functions on R.

We consider a point process L on R, of law L. We write κ for the log-Laplace transform
θ 7→ log E

[∑
`∈L e

θ`
]
of L. We assume there exists θ∗ > 0 such that κ(θ∗) < +∞ and

θ∗E

∑
`∈L

`eθ
∗`−κ(θ∗)

− κ(θ∗) = 0. (7.1.1)

We write v = κ(θ∗)
θ∗ = E

[∑
`∈L `e

θ∗`−κ(θ∗)
]
for the speed of the branching random walk.

We introduce the assumption of finite variance for the spine

E

∑
`∈L

`2eθ
∗`

 < +∞, (7.1.2)

and the additional integrability condition

E

∑
`∈L

eθ
∗` log+

∑
`′∈L

(1 + (`′ − `)+)eθ∗(`′−`)
2
 < +∞. (7.1.3)

Let (T, V ) be a branching random walk with reproduction law L. We denote by
Mn = max|u|=n V (u) the maximal displacement in this branching random walk and by
S = {T is infinite} the survival event. By definition, Mn = −∞ on Sc for all n large
enough. The following result holds.

Theorem 7.1.1. Under the assumptions (7.1.1), (7.1.2) and (7.1.3), we have

Mn = nv − 3
2θ∗ logn+OP(1) on S.

The main tool used to prove this theorem is the following estimate on the right tail of
the maximal displacement Mn.

Theorem 7.1.2. Under the assumptions (7.1.1), (7.1.2) and (7.1.3), there exists c, C > 0
such that for all n ≥ 1 and y ∈ [0, n1/2],

c(1 + y)e−θ∗y ≤ P
[
Mn ≥ nv −

3
2θ∗ logn+ y

]
≤ C(1 + y)e−θ∗y.
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The rest of this chapter is organised as follows. In Section 7.2, we introduced the so-
called spinal decomposition of the branching random walk, which links additive moments
of the branching random walk with random walk estimates. In Section 7.3, we recall
the random walk estimates obtained in Chapter 1, and their extensions to random walks
enriched by additional random variables, which are only correlated to the last step of
the walk. Section 7.4 is devoted to the proof of Theorem 7.1.2. This theorem is used in
Section 7.5 to prove Theorem 7.1.1, using a coupling between the branching random walk
and a Galton-Watson process.

7.2 Spinal decomposition of the branching random walk

We introduce in this section the well-known spinal decomposition of the branching
random walk. This result consists in two ways of describing a size-biased version of the
law of the branching random walk. Spinal decomposition of a branching process has been
introduced for the first time to study Galton-Watson processes in [LPP95]. In [Lyo97],
this technique is adapted to the study of branching random walks.

7.2.1 The size-biaised law of the branching random walk

Let (T, V ) be a branching random walk with reproduction law L. For all x ∈ R, we
write Px the law of (T, V + x) and Ex the corresponding expectation. For all n ≥ 1, we
set

Wn =
∑
|u|=n

exp (θ∗V (u)− nκ(θ∗)) .

Writing Fn = σ(u, V (u), u ≤ n), we observe that (Wn) is a non-negative (Fn)-martingale.
We define the law

Px

∣∣∣
Fn

= e−xWn · Px|Fn . (7.2.1)

The spinal decomposition consists in an alternative construction of the law Pa, as the
projection of a law on the set of planar rooted marked trees with spine, which we define
below.

7.2.2 A law on plane rooted marked trees with spine

Let (T, V ) be a marked tree with infinite height. Let w ∈ NN be a sequence of integers,
we write wn = (w(1), . . . w(n)) and we say that w is a spine for T if for all n ∈ N, wn ∈ T.
The triplet (T, V, w) is called a (plane rooted) marked tree with spine, and the set of such
objects is written T̂ . We define the three following filtrations on this set

Fn = σ (u, V (u) : u ∈ T, |u| ≤ n) , F̂n = Fn ∨ σ (wk, k ≤ n)
and Gn = σ (wk, V (wk) : k ≤ n) ∨ σ (u, V (u), u ∈ Ω(wk), k < n) . (7.2.2)

The filtration (F̂n) is the filtration of the knowledge of the marked tree with spine up to
height n, (Fn) has only the informations of the marked tree when forgetting about the
spine, and (Gn) has only the knowledge of the spine and its children.

We introduce

L̂ =

∑
`∈L

eθ
∗`−κ(θ∗)

 · L,
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a law of a point process with Radon-Nikodým derivative with respect to L, and we write
(L̂n, n ∈ N) i.i.d. point processes with law L̂. Conditionally on this sequence, we choose,
for every n ∈ N, w(n) ∈ N independently at random, such that, writing L̂n = (`1, . . . `Nk),
we have

∀h ∈ N, P
(
w(k) = h

∣∣∣(L̂n, n ∈ N)
)

= 1{h≤Nk}
eθ
∗`k(h)∑

j≤Nk e
θ∗`k(j) .

We write w the sequence (w(n), n ∈ N).
We now define a random variable (T, V, w) on T̂ . To do so, we introduce a family of

independent point processes {Lu, u ∈ U} such that Lwk = L̂k+1, and if u 6= w|u|, then Lu
has law L. For any u ∈ U such that |u| ≤ n, we write Lu = (`u1 , . . . `uN(u)). We construct
the random tree

T = {u ∈ U : |u| ≤ n, ∀1 ≤ k ≤ |u|, u(k) ≤ N(uk−1)} ,

and the the function

V :
T → R
u 7→ ∑|u|

k=1 `
uk−1
u(k) .

For all x ∈ R, the law of (T, x+V,w) ∈ T̂n is written P̂x, and the corresponding expectation
is Êx. This law is called the law of the branching random walk with spine.

We can describe the branching random walk with spine as a process in the following
manner. It starts with a unique individual positioned at x ∈ R at time 0, which is the
ancestral spine w0. Then, at each time n ∈ N, every individual alive at generation n
dies. Each of these individuals gives birth to children, which are positioned around their
parent according to an independent point process. If the parent is wn, the law of this
point process is L̂, otherwise the law is L. The individual wn+1 is then chosen at random
among the children u of wn, with probability proportional to eθ∗V (u).

7.2.3 The spinal decomposition

The following result, which links the laws P̂x and Px, is the spinal decomposition,
proved in [Lyo97].

Proposition X (Spinal decomposition). For all x ∈ R, we have

Px

∣∣∣
Fn

= P̂x

∣∣∣
Fn
. (7.2.3)

Moreover, for any n ∈ N and |u| = n, we have

P̂x(wn = u|F) = exp (θ∗V (u)− nκ(θ∗))
Wn

. (7.2.4)

Note that a time-inhomogeneous version of this result has been proved in Chapter 1.
An immediate consequence of this result, which can also be proved directly by recurrence,
is the well-known many-to-one lemma. This equation, known at least from the early works
of Peyrière [Pey74] has been used in many forms over the last decades. We denote by µ a
probability measure on R defined by,

µ((−∞, x]) = E

∑
`∈L

1{`≤x}eθ
∗`−κ(θ∗)

 .
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Lemma XI (Many-to-one). Let (Xn) be an i.i.d. sequence of random variables with law
µ, we write Sn = S0 +∑n

k=1Xk for n ∈ N, where Px(S0 = x) = 1. For all x ∈ R, n ∈ N
and continuous bounded function f , we have

Ex

 ∑
|u|=n

f(V (u1), . . . V (un))

 = eθ
∗x Ex

[
e−θ

∗Sn+nκ(θ∗)f(S1, . . . Sn)
]
. (7.2.5)

Remark 7.2.1. Under the assumption (7.1.1), we observe that the mean S1 is

E(S1) = E

∑
`∈L

`eθ
∗`−κ(θ∗)

 = v.

Moreover, assumption (7.1.2) leads to E(S2
1) = E

[∑
`∈L `e

θ∗`−κ(θ∗)
]
< +∞, so (Sn) is a

random walk with mean v and finite variance.

Proof. Let f be a continuous bounded function and x ∈ R, we have, by Proposition X

Ex

 ∑
|u|=n

f(V (u1), . . . V (un))


= Ex

eθ∗x
Wn

∑
|u|=n

f(V (u1), . . . V (un))


= eθ

∗xEx

 ∑
|u|=n

e−θ
∗V (u)+nκ(θ∗)f(V (u1), . . . V (un))P̂(wn = u|Fn)


= eθ

∗xÊx

 ∑
|u|=n

e−θ
∗V (u)+nκ(θ∗)f(V (u1), . . . V (un))1{wn=u}


= eθ

∗xÊx

[
e−θ

∗V (wn)+nκ(θ∗)f(V (w1), · · ·V (wn))
]
.

Moreover, by definition of P̂x, we observe that the law of (V (w1), . . . , V (wn)) is the same
as the law of (S1, . . . Sn) under Px, which ends the proof.

The many-to-one lemma and the spinal decomposition enable to compute moments of
any additive functional of the branching random walk, by using random walk estimates,
which are obtained in the next section.

7.3 Some random walk estimates

We collect first a series of well-known random walk estimates, such as local limit and
ballot theorems, and extend these results to bound the probability for a random walk to
make an excursion above a given curve. In a second section, we extend these results to
random walks enriched with additional random variables which are correlated with the
last step of the random variable.
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7.3.1 Classical random walk estimates

We recall in this section the random walk estimates obtained in Chapter 1, that we
use to prove Theorem 7.1.2. We denote by (Tn, n ≥ 0) a one-dimensional centred random
walk, with finite variance σ2. We begin with Stone’s local limit theorem [Sto65]. There
exists C > 0 such that for all a ≥ 0 and h ≥ 0, we have

lim sup
n→+∞

n1/2 sup
|y|≥an1/2

P(Tn ∈ [y, y + h]) ≤ C(1 + h)e−
a2

2σ2 . (7.3.1)

Moreover, there exists H > 0 such that for all a < b ∈ R

lim inf
n→+∞

n1/2 inf
y∈[an1/2,bn1/2]

P(Tn ∈ [y, y +H]) > 0. (7.3.2)

We continue with Caravenna–Chaumont’s local limit theorem [CC13]. Let (rn, n ≥ 0) be
a positive sequence such that rn = O(n1/2). There exists C > 0 such that for all a ≥ 0
and h ≥ 0,

lim sup
n→+∞

n1/2 sup
y∈[0,rn]

sup
x≥an1/2

P(Tn ∈ [x, x+ h]|Tj ≥ −y, j ≤ n) ≤ C(1 + h)ae−
a2

2σ2 . (7.3.3)

Moreover, there exists H > 0 such that for all a < b ∈ R+,

lim inf
n→+∞

n1/2 inf
y∈[0,rn]

inf
x∈[an1/2,bn1/2]

P(Tn ∈ [x, x+H]|Tj ≥ −y, j ≤ n) > 0. (7.3.4)

Up to a transformation T 7→ T/(2H), which shrinks the space by a factor 1
2H , we may and

will assume in the rest of this chapter once again that all the random walks we consider
are such that (7.3.2) and (7.3.4) hold with H = 1.

We next recall the consequence of Kozlov’s [Koz76] and Pemantle–Peres’ [PP95] ballot
theorems, for all A ≥ 0 and α ∈ [0, 1/2), there exists C > 0 such that for all n ≥ 1 and
y ≥ 0,

P(Tj ≥ −y −Ajα, j ≤ n) ≤ C(1 + y)n−1/2, (7.3.5)

moreover, there exists c > 0 such that for all n ≥ 1 and y ∈ [0, n1/2]

P(Tj ≥ −y, j ≤ n) ≥ c(1 + y)n−1/2. (7.3.6)

We also obtained in Chapter 1 the following bounds for the probability for a random
walk to make an excursion. There exists C > 0 such that for any x, h ≥ 0 and y ∈ R we
have

P(Tp+q ∈ [y + h, y + h+ 1], Tj ≥ −x+ y1{j>p}, j ≤ n)

≤ C (1 + x) ∧ p1/2

p1/2
1

max(p, q)1/2
(1 + h) ∧ q1/2

q1/2 . (7.3.7)

Moreover, there exists c > 0 such that for all n ≥ 1 large enough, x ∈ [0, n1/2] and
y ∈ [−n1/2, n1/2] we have

Px(Tn ≤ y + 1, Tj ≥ y1{j>n/2}, j ≤ n) ≥ c(1 + x)
n3/2 . (7.3.8)
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This result also holds for excursions above bended curves. For all A ≥ 0 there exists C > 0
such that for all n ∈ N and y, h ≥ 0

P(Tn +A logn ∈ [h− y, h− y + 1], Tj ≥ −A log n
n−j+1 − y, j ≤ n)

≤ C ((1 + y) ∧ n1/2)((1 + h) ∧ n1/2)
n3/2 (7.3.9)

We also need the results obtained for random walks enriched with random variables
that only depend on its last step. Let (Xn, ξn) be a sequence of i.i.d. random vectors in
R2, such that E(X1) = 0, E(X2

1 ) < +∞ and E((ξ1)2
+) < +∞. We write Tn = ∑n

j=1Xj .
There exists C > 0 that does not depend on the law of ξ1 such that for all n ≥ 1, x, h ≥ 0
and y ∈ R, we have

P [Tj ≥ −x, j ≤ n, ∃k ≤ n : Tk ≤ ξk − x] ≤ C 1 + x

n1/2

[
P(ξ1 ≥ 0) + E((ξ1)2

+)
]
, (7.3.10)

as well as

P
[
Tn − x− y − h ∈ [0, 1], Tj ≥ −x+ y1{j>tn}, j ≤ n, ∃k ≤ n : Tk ≤ ξk + y1{k>tn} − x

]
≤ C (1 + x)(1 + h)

n3/2

[
P(ξ1 ≥ 0) + E((ξ1)2

+)
]
. (7.3.11)

We use these two bounds to control at the same time the position of the spine and the
number of its children.

7.4 Bounding the tail of the maximal displacement

Let (T, V ) be a branching random walk, and Mn its maximal displacement at time n.
We write mn = nv − 3

2θ∗ logn, the main goal of this section is to prove Theorem 7.1.2.
We first give an upper bound for the tail of Mn, by observing there exists a boundary
such that, with high probability, no individual in the branching random walk crosses. The
lower bound is obtained by bounding from below the probability there exists an individual
which is at time n close to mn := nv − 3

2θ∗ logn, such that all its ancestors were below
this boundary.

7.4.1 The boundary of the branching random walk

A natural way to compute an upper bound for P(Mn ≥ mn + y) would be a direct
application of the Markov inequality. We have

P(Mn ≥ mn + y) ≤ E

 ∑
|u|=n

1{V (u)≥mn+y}

 ≤ E
[
eθ
∗Sn−nκ(θ∗)1{Sn≥mn+y}

]

by Lemma XI. Therefore, as E(S1) = v = κ(θ∗)
θ∗ , we have

P(Mn ≥ mn + y) ≤ n3/2e−θ
∗y

+∞∑
h=0

e−θ
∗hP(Sn −mn − y ∈ [h, h+ 1]) ≤ Cne−θ∗y

by (7.3.1). Note this computation is not precise enough to yield Theorem 7.1.2.
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To obtain a better bound, a natural idea is to compute the number of individuals
alive at generation k who would have with high probability a descendant above mn + y at
generation n. If we assume Theorem 7.1.1 to be true, then an individual alive at generation
k may have children above mn with high probability if it is to the right of

f
(n)
k = kv − 3

2θ∗ (logn− log(n− k + 1)) .

We prove that with high probability, no individual crosses the boundary f (n)
· + y before

time n.
Lemma 7.4.1. Under the assumptions (7.1.1) and (7.1.2), there exists C > 0 such that
for all y ≥ 0

P(∃|u| ≤ n : V (u) ≥ f (n)
|u| + y) ≤ C(1 + y)e−θ∗y.

Proof. For all k ≤ n, we write Z(n)
k (y) = ∑

|u|=k 1{
V (u)≥f (n)

k
+y
}1{

V (uj)≤f (n)
j +y,j<k

} the

number of individuals which cross for the first time curve f (n) at time k. By many-to-one
lemma, we have

E
(
Z

(n)
k (y)

)
= E

e−θ∗Sk+kκ(θ∗)1{
Sk≥f (n)

k
+y
}1{

Sj≤f (n)
j +y,j<k

}
≤ n3/2

(n− k + 1)3/2 e
−θ∗yP

(
Sk ≥ f (n)

k + y, Sj ≤ f (n)
j + y, j < k

)
.

We condition this probability with respect to the last step Sk − Sk−1 to obtain

P
(
Sk ≥ f (n)

k + y, Sj ≤ f (n)
j + y, j < k

)
= E(ϕk−1(Sk − Sk−1)).

where ϕk(x) = P
(
Sk ≥ f (n)

k+1 + y − x, Sj ≤ f (n)
j + y, j ≤ k

)
. Applying (7.3.9), there exists

C > 0 such that for all k ≤ n and x ∈ R

ϕk(x) ≤ C1{x≥0}
(1 + y)(1 + x)2

(k + 1)3/2 .

As a consequence,

P
(
∃|u| ≤ n : V (u) ≥ f (n)

|u| + y
)
≤

n∑
k=1

P(Z(n)
k (y) ≥ 1) ≤

n∑
k=1

E(Z(n)
k (y))

≤ C(1 + y)e−θ∗y
n∑
k=1

n3/2

k3/2(n− k + 1)3/2 E
(
(Sk − Sk−1)2

+ + 1
)
.

By decomposition of this sum into k ≤ n/2 and k ≥ n/2, we conclude

P(∃|u| ≤ n : V (u) ≥ f (n)
|u| + y) ≤ C(1 + y)e−θ∗y.

This lemma directly implies the upper bound in Theorem 7.1.2.

Proof of the upper bound in Theorem 7.1.2. As f (n)
n = mn, we observe easily that

P(Mn ≥ mn + y) ≤ P
(
∃|u| ≤ n : V (u) ≥ f (n)

|u| + y
)
,

applying Lemma 7.4.1 ends the proof.
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7.4.2 A lower bound through second moment computations

For all n ∈ N and k ≤ n, we write g(n)
k = kv − 1{k>n/2} 3

2θ∗ logn+ 1 a boundary which
is close to f (n) but simpler to use. We prove in this section that the set

An(y) =
{
u ∈ T, |u| = n : V (u) ≥ mn + y, V (uj) ≤ g(n)

j + y, j ≤ n
}

is non-empty with positive probability. To do so, we wish to bound the first two moments
of the number of individuals in An(y). However, to obtain a good upper bound for a second
moment in branching processes, we need to control the reproduction of the individuals we
consider. For u ∈ T, we write

ξ(u) =
∑

u′∈Υ(u)
(1 + (V (u)− V (u′))+)e−θ∗(V (u′)−V (u))

where Υ(u) = {v ∈ T : πv = πu, v 6= u} is the set of siblings of u. For any z > 0, we set

Bn(z) =
{
u ∈ T, |u| = n : ξ(uj) ≤ ze

θ∗
2 (V (uj)−g(n)

j ), j < n

}
.

We compute the first two moments of Yn(y, z) = ∑
|u|=n 1{u∈Gn(y,z)} where Gn(y, z) =

An(y) ∩ Bn(z).

Lemma 7.4.2. Under the assumptions (7.1.1) and (7.1.2), there exists C > 0 such that
for all y ≥ 0 and z ≥ 1 we have

E(Yn(y, z)2) ≤ Cz(1 + y)e−θ∗y.

Proof. Applying Proposition X, we have

E(Yn(y, z)2) = E
[ 1
Wn

Yn(y, z)2
]

= Ê

 1
Wn

∑
|u|=n

1{u∈Gn(y,z)}Yn(y, z)


= Ê

[
e−θ

∗V (wn)+nκ(θ∗)1{wn∈Gn(y,z)}Yn(y, z)
]
.

Using the fact that wn ∈ An(y) ⊂ Gn(y, z), we have

E(Yn(y, z)2) ≤ Cn3/2e−θ
∗yÊ

[
Yn(y, z)1{wn∈Gn(y,z)}

]
.

We decompose Yn(y, z) along the spine, to obtain

Yn(y, z) ≤ 1{wn∈Gn(y,z)} +
n∑
k=1

∑
u∈Υ(wk)

Yn(u, y), (7.4.1)

where, for u ∈ T and y ≥ 0, we write Yn(u, y) = ∑
|u′|=n,u′≥u 1{u′∈An(y)}. We recall that

under law P̂, for any k ≤ n, the branching random walk of the children of an individual
u ∈ Υ(wk) has law PV (u). As a consequence, for y ≥ 0, k ≤ n and u ∈ Υ(wk),

Ê [Yn(u, y)|Gn] = EV (u)

 ∑
|u′|=n−k

1{V (u′)≥mn+y}1{
V (u′j)≤g

(n)
k+j+y,j≤n−k

} .
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As a consequence, by Lemma XI, we have

Ê [Yn(u, y)|Gn]

≤Cn3/2e−θ
∗yeθ

∗V (u)−kκ(θ∗)PV (u)
(
Sn−k ≥ mn + y, Sj ≤ g(n)

j+k + y, j ≤ n− k
)

≤Ce−θ∗y n3/2

(n− k + 1)3/2 e
θ∗V (u)−kκ(θ∗)(1 + (g(n)

k + y − V (u))+)

by (7.3.7).
For all k ≤ n, we now compute the quantity

hk := Ê

1{wn∈Gn(y,z)}
∑

u∈Υ(wk)
(1 + (g(n)

k + y − V (u))+)eθ∗(V (u)−g(n)
k

)

 ,
using the definition of ξ(wk) and the fact that x 7→ x+ is Lipschitz, we have

hk ≤ CÊ
[
1{wn∈Gn(y,z)}(1 + (g(n)

k + y − V (wk))+)eθ∗V (wk)−g(n)
k ξ(wk)

]
≤ CzÊ

[
1{wn∈An(y)}(1 + (g(n)

k + y − V (wk))+)e
θ∗
2 (V (wk)−g(n)

k
)
]
.

Decomposing this expectation with respect to the value taken by V (wk), we have

hk ≤ Czeθ
∗y

+∞∑
h=0

(1 + h)e−θ∗h/2

×P
[
Sn ≥ mn + y, Sk − g(n)

k − y ∈ [−h− 1,−h]
Sj ≤ g(n)

j + y, j ≤ n

]
.

We apply the Markov property at time k to obtain

P
[
Sn ≥ mn + y, Sk − g(n)

k − y ∈ [−h− 1,−h], Sj ≤ g(n)
j + y, j ≤ n

]
≤ P

[
Sk − g(n)

k − y ∈ [−h− 1,−h], Sj ≤ g(n)
j + y, j ≤ k

]
× inf
z∈[−h−1,−h]

Pz

[
Sn−k ≥ mn − g(n)

k , Sj ≤ g(n)
k+j − g

(n)
k , j ≤ n− k

]
,

thus, applying again (7.3.7),

hk ≤ Czeθ
∗y

+∞∑
h=0

(1 + h)e−θ∗h/2 (1 + h)(1 + y)
(k + 1)3/2

1 + h

(n− k + 1)3/2

≤ Cz (1 + y)eθ∗y
(k + 1)3/2(n− k + 1)3/2 .

As a consequence,

E

1{wn∈Gn(y,z)}
∑

u∈Υ(wk)
Yn(u, y)


≤ Ce−θ∗y n3/2

(n− k + 1)3/2hke
θ∗g

(n)
k
−kκ(θ∗)

≤ Cz(1 + y) n3/2

(k + 1)3/2(n− k + 1)3
1

1 + n3/21{k>n/2}
.
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We now apply this bound to (7.4.1), we obtain

E(Yn(y, z)2) ≤ Cn3/2e−θ
∗y E

[
1{wn∈Gn(y,z)}Yn(y, z)

]
≤ Cn3/2e−θ

∗y

P (wn ∈ An(y)) +
n∑
k=1

Ê

1{wn∈Gn(y,z)}
∑

u∈Υ(wk)
Yn(u, y)


≤ C(1 + y)e−θ∗y

(
1 + z

n∑
k=1

1
(k + 1)3/2(n− k + 1)3

n3

1 + n3/21{k>n/2}

)
≤ Cz(1 + y)e−θ∗y,

using (7.3.7) to bound P(wn ∈ An(y)).

In a second time, we bound E(Yn(y, z)) from below.

Lemma 7.4.3. Under the assumptions (7.1.1), (7.1.2) and (7.1.3), there exist c > 0 and
z ≥ 1 such that for all y ∈ [0, n1/2] and n ∈ N

E(Yn(y, z)) ≥ c(1 + y)e−θ∗y.

Proof. Let n ∈ N, y ∈ [0, n1/2] and z ≥ 1. By the spinal decomposition, we have

E(Yn(y, z)) ≥ Ê

 1
Wn

∑
|u|=n

1{u∈Gn(y,z)}

 ≥ Ê
[
eV (wn)−nκ(θ∗)1{wn∈Gn(y,z)}

]
≥ n3/2e−θ

∗(y+1)P̂(wn ∈ Gn(y, z)).

To bound this probability, we observe first that

P̂(wn ∈ An(y) ∩ Bn(z)) = P̂(wn ∈ An(y))− P̂(wn ∈ An(y) ∩ Bn(z)c),

and P̂(wn ∈ An(y)) ≥ c(1 + y)n−3/2 by (7.3.8). Introducing

τ = inf
{
k ≥ 1 : θ

∗

2
(
V (wk)− g(n)

k

)
≥ log ξ(wk−1)− log z

}
,

we rewrite

P̂(wn ∈ An(y) ∩ Bn(z)c) ≤ P
(
V (wn) ≥ mn + y, V (wj) ≤ g(n)

j + y, τ ≤ n
)
.

Therefore, we can apply (7.3.11), there exists C > 0 such that

P̂(wn ∈ An(y) ∩ Bn(z)c)

≤ C 1 + y

n3/2

(
P(log ξ(w1) ≥ log z) + Ê((log ξ(w1)− log z)+)2

)
.

By (7.1.3), we have Ê((log ξ(w1))2
+), therefore by dominated convergence, we have

lim
z→+∞

sup
n∈N,y≥0

n3/2

1 + y
P̂(wn ∈ An(y) ∩ Bn(z)c) = 0,

thus we can find z > 1 large enough such that P(wn ∈ An(y) ∩ Bn(z)) ≥ c(1 + y)n−3/2,
which ends the proof.
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Using these two lemmas, we obtain a lower bound for the right tail of the random
variable Mn.

Lower bound in Theorem 7.1.2. By the Cauchy-Schwarz inequality, we have

P(Yn(y, z) ≥ 1) ≥ E(Yn(y, z))2

E(Yn(y, z)2) .

Using Lemmas 7.4.2 and 7.4.3, there exists z ≥ 1 such that

P(Yn(y, z) ≥ 1) ≥

(
c(1 + y)e−θ∗y

)2

Cz(1 + y)e−θ∗y

≥ c(1 + y)e−θ∗y.

As a consequence, we conclude P(Mn ≥ mn + y) ≥ P(Gn(y, z) 6= ∅) ≥ c(1 + y)e−θ∗y.

7.5 Concentration estimates for the maximal displacement
The aim of this section is to prove Theorem 7.1.1 using Theorem 7.1.2. We use the

fact that on the survival event S of the branching random walk, the size of the population
alive at time k grows at exponential rate, as in a Galton-Watson process. Moreover, each
one of the individuals alive at time k have positive probability to make a child to the right
of mn at time n � k, which is enough to obtain the tension of Mn −mn. We recall the
Galton-Watson estimate obtained in Chapter 1.

Lemma 7.5.1. Let (Zn, n ≥ 0) be a Galton-Watson process with reproduction law µ. We
write b = min{k ∈ Z+ : µ(k) > 0}, m = E(Z1) ∈ (1,+∞) and q the smallest solution of
the equation E(qZ1) = q. There exists C > 0 such that for all z ∈ (0, 1) and n ∈ N we
have

P(Zn ≤ zmn) ≤


q + Cz

α
α+1 if b = 0

Czα if b = 1

exp
[
−Cz−

log b
logm−log b

]
if b ≥ 2.

Proof of Theorem 7.1.1. To prove Theorem 7.1.1, we have to prove that

lim
y→+∞

lim sup
n→+∞

P(|Mn −mn| ≥ y,T is infinite) = 0.

Using the upper bound of Theorem 7.1.2, we have

lim sup
n→+∞

P(Mn ≥ mn + y) ≤ C(1 + y)e−θ∗y −→
y→+∞

0.

To complete the proof, we have to strengthen the lower bound of Theorem 7.1.2, given by

∃c > 0, ∀n ∈ N, ∀y ∈ [0, n1/2],P(Mn ≥ mn + y) ≥ c(1 + y)e−θ∗y.

To do so, we observe that with high probability, there is a large number of in-
dividuals alive at time k and above some given position. For all h ≥ 0, we write
Nh = ∑

|u|=1 1{V (u)≥−h} and µh the law of Nh the number of children of a given indi-
vidual which makes a displacement greater than −h. We write

fh = E(sNh) and f = E
[
sN
]
,
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where N = ∑
|u|=1 1 is the total progeny of an individual in the branching random walk.

By monotone convergence, we have fh(s) −→
h→+∞

f(s) for all s ∈ [0, 1]. In particular, qh
the smallest solution of fh(qh) = qh converge, as h→ +∞ to q the smallest solution of the
equation f(q) = q. Moreover, it is well-known that 1− q = P(T is infinite). Observe that
by (7.1.1), we have necessary E(N) > 1, therefore, we can choose h to be large enough
such that E(Nh) > %2 > 1.

We can easily couple the branching random walk with a Galton-Watson process Zh with
reproduction law µh in such a way that Zhn ≤

∑
|u|=n 1{V (u)≥−nh}. Applying Lemma 7.5.1,

we have

P

∑
|u|=k

1{V (u)≥−kh} ≤ %k
 ≤ qh + Cβk

for some β < 1. As a consequence, for all ε > 0, there exists h large enough and k large
enough such that

P

∑
|u|=k

1{V (u)≥−kh} ≤ %k
 ≤ q + 2ε.

By Theorem 7.1.2, there exists η > 0 such that for all n ∈ N, P(Mn ≥ mn) ≥ η. But there
are with high probability at least %k individuals alive to the right of −kh at time k, each
of which starting an independent branching random walk. Therefore

P (Mn+k ≤ mn − kh) ≤ (1− η)%k + P

∑
|u|=k

1{V (u)≥−kh} ≤ %k
 ≤ q + 3ε,

as long as k is chosen large enough.
As a consequence, for all ε > 0, there exists k ∈ N and C > 0 such that for all n ≥ k,

writing y = −kh− kv + 3
2θ∗ log 2 we have P(Mn+k ≥ mn+k − y) ≥ 1− q − ε. Therefore

lim
y→+∞

lim inf
n→+∞

P(Mn ≤ mn − y,T is infinite) = 0,

which ends the proof.





CHAPTER 8

Consistent maximal displacement
of the branching random walk

“If all you have is a hammer, everything looks like a nail.”

Abraham Maslow – The Psychology of Science
Abstract

We obtain in this chapter the asymptotic behaviour of the consistent maximal dis-
placement of the branching random walk. This quantity is the maximal distance
between the boundary of the process, and the individual which stayed the closest to
it at any time. This result has been obtained by Fang and Zeitouni [FZ10], Fauraud,
Hu and Shi [FHS12] under some stronger integrability assumptions. Roberts [Rob12]
computed the second order of the asymptotic for the branching Brownian motion.
We provide here only the main asymptotic behaviour, but under particularly light
integrability assumptions, using a spinal version of the Mogul’skĭı estimate.

8.1 Introduction
We consider a branching random walk (T, V ) on R. For θ > 0, we write κ(θ) for

the log-Laplace transform of the point process used in the branching random walk for
reproduction. As in Chapter 1, we assume the following integrability assumption: there
exists θ∗ > 0 such that κ(θ∗) < +∞ and

θ∗E

∑
|u|=1

V (u)eθ∗V (u)−κ(θ∗)

− κ(θ∗) = 0. (8.1.1)

Under this assumption, writing v = κ(θ∗)
θ∗ , it has been proved in [Big76] that the maximal

displacement at time n in the branching random walk increases at ballistic speed v. We
introduce

σ2 := E

∑
|u|=1

(V (u)− v)2eθ
∗V (u)−κ(θ∗)

 < +∞, (8.1.2)

which is the variance of the spine obtained in the spinal decomposition.
The consistent maximal displacement of the branching random walk is the quantity

defined as
Ln = min

|u|=n
max
k≤n
{kv − V (uk)} . (8.1.3)
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It correspond to the maximal distance between the boundary of the process –the line
of slope v– and the individual that stayed as close as possible to this highest position 1.
In order to obtain the a.s. asymptotic behaviour of Ln as n → +∞, we introduce the
following integrability assumption

lim
x→+∞

x2 E

∑
`∈L

eθ
∗`1{log(∑`′∈L e

θ∗(`′−`))≥x}

 = 0. (8.1.4)

This condition ensure that in the spinal decomposition, the spine at time n + 1 is one
of the rightmost children of the spine at time n 2, thus the behaviour of the size-biased
process is similar to the behaviour of the original process. In some sense, it is similar to
the E(N logN) < +∞ condition for the Galton-Watson process. We note that (8.1.4) is
implied by the usual integrability condition:

E


∑
`∈L

eθ
∗`

 log

∑
`∈L

eθ
∗`

2
 < +∞. (8.1.5)

The following theorem is the main result of the chapter.

Theorem 8.1.1. Assuming (8.1.1), (8.1.2) and (8.1.4) hold, we have

lim
n→+∞

Ln
n1/3 =

(
3π2σ2

2θ∗

)1/3

a.s. on {T is infinite} .

The rest of the chapter is organised as follows. In Section 8.2, we introduce the
Mogul’skĭı estimate of the probability for a random walk to have smaller than usual
fluctuations around its mean. We then extend this result to random walks with spine.
Section 8.3 is devoted to the study of the right tail of Ln, using the spinal decomposition
of the branching random walk and the previous random walk estimates. We prove Theo-
rem 8.1.1 in Section 8.4, using the previous estimate and a coupling between the branching
random walk and a Galton-Watson process.

8.2 A small deviations estimate

Let (Sn, n ≥ 0) be a centred random walk with finite variance σ2 := E(S2
1). The

Mogul’skĭı estimate gives the rate of decay of the probability for the random walk of
length n to have fluctuations of order an, where an = o(n1/2).

Theorem 8.2.1 (Mogul’skĭı [Mog74]). Let (an) be a sequence of real non-negative numbers
such that limn→+∞ an = +∞ and limn→+∞

a2
n
n = 0. For any pair of continuous functions

f, g such that f < g and f(0) < 0 < g(0), we have

lim
n→+∞

a2
n

n
log P

(
Sj
an
∈
[
fj/n, gj/n

]
, j ≤ n

)
= −π

2σ2

2

∫ 1

0

ds

(gs − fs)2 .

1. The “Talleyrand” of the branching random walk.
2. With great power there must also come -- great responsibility! – Amazing Fantasy #15.
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This theorem, which admit a number of modifications and extension. For example,
it holds with a level of uniformity on the starting point, or on the length of the random
walk. We prove here that this theorem also work for random walks enriched by random
variables correlated to the last step. We denote by (Xj , ξj) i.i.d. random variables taking
values in R2. We assume that

E(X1) = 0, σ2 := E(X2
1 ) < +∞. (8.2.1)

For n ∈ N, we set Sn = ∑n
j=1Xj . The process we consider is (Sn, ξn, n ∈ N).

Theorem 8.2.2 (Spinal Mogul’skĭı estimate). Let (an) be a sequence of real numbers,
such that limn→+∞ an = +∞ and limn→0

a2
n
n = 0. If limn→+∞ a2

nP(ξ1 ≥ n) = 0, then for
any pair of continuous functions (f, g) such that f < g and f(0) < 0 < g(0), and for all
f1 ≤ x < x′ ≤ g1, we have

lim
n→+∞

a2
n

n
log P

(
Sn ∈ [xan, x′an], Sj

an
∈
[
fj/n, gj/n

]
, ξj ≤ n, j ≤ n

)
= −π

2σ2

2

∫ 1

0

ds

(gs − fs)2 .

Proof. Note first that the upper bound of this result is a direct consequence of Theo-
rem 8.2.1. Indeed, we have

lim sup
n→+∞

a2
n

n
log P

(
Sn ∈ [xan, x′an], Sj

an
∈
[
fj/n, gj/n

]
, ξj ≤ n, j ≤ n

)
≤ lim sup

n→+∞

a2
n

n
log P

(
Sj
an
∈
[
fj/n, gj/n

]
, j ≤ n

)
≤ −π

2σ2

2

∫ 1

0

ds

(gs − fs)2 .

The proof of the lower bound is a modification of the original proof of Mogul’skĭı. It
consists in decomposing the time interval [0, n] into subintervals of length n/A, for a given
A > 0. On these subintervals, the continuous functions can be approached by constants.
The intervals are then truncated in smaller ones, of length Ãa2

n. On these small intervals,
the random walk can be approached by a Brownian motion, as n → +∞. Finally, we let
Ã then A grow to +∞ to conclude the proof.

We choose a continuous function h such that h(0) = 0, h(1) = x+x′
2 and for all t ∈ [0, 1],

ft < ht < gt. We set δ ∈ (0, x′−x8 ) such that for all t ∈ [0, 1], ft + 8δ < ht < gt − 8δ. We
then choose A > 0 such that

sup
|t−s|≤ 2

A

|gt − gs|+ |ft − fs|+ |ht − hs| ≤ δ. (8.2.2)

For a ≤ A, we set ma = bna/Ac and I(n)
a =

[
(ha/A − 3δ)an, (ha/A + 3δ)an

]
. Consid-

ering only random walks paths that are in intervals I(n)
a at times ma, and applying the

Markov property at times mA−1, . . . ,m1, we obtain

P
(
Sn ∈ [xan, x′an], Sj

an
∈
[
fj/n, gj/n

]
, ξj ≤ n, j ≤ n

)

≥
A−1∏
a=0

inf
x∈I(n)

a

Px

[
Sma+1−ma

an
∈ I(n)

a+1,
Sj
an
∈
[
fa/A + δ, ga/A − δ

]
, ξj ≤ n, j ≤ ma+1 −ma

]
.



266 Chapter 8. Consistent maximal displacement

By (8.2.2)
[
(ha/A − 2δ)an, ha/1 + 2δ)an

]
⊂ I(n)

a+1 for all a < A. Therefore, for a < A we
have

inf
y∈I(n)

a

Py

[
Sma+1−ma ∈ I

(n)
a+1,

Sj
an
∈
[
fa/A + δ, ga/A − δ

]
, ξj ≤ n, j ≤ ma+1 −ma

]
≥ Rn,A,δ(fa/A − ha/A + δ, ga/A − ha/A − δ), (8.2.3)

where, for α < −6δ and 6δ < β, we denote by

Rn,A,δ(α, β) := inf
|y|≤3δan

Py

[
Sma+1−ma

an
∈ [−2δ, 2δ], Sj

an
∈ [α, β] , ξj ≤ n, j ≤ ma+1 −ma

]
.

Let a < A. We choose Ã > 0, we set rn =
⌊
Ãa2

n

⌋
and K =

⌊
n
Arn

⌋
. We denote by

τk = krn, and by ∆a = ma+1−ma−τK . We apply the Markov property at times τK , . . . τ1
to obtain

Rn,A,δ(α, β) ≥
(

inf
|y|≤3δan

Py

[
Srn
an
∈ [−δ, δ], Sj

an
∈ [α+ 2δ, β − 2δ] , ξj ≤ n, j ≤ rn

])K
× inf
|y|≤δan

Py

[
S∆a

an
∈ [−2δ, 2δ], ξj ≤ n, j ≤ ∆a

]
. (8.2.4)

As ∆a ∈ [0, rn], the probability on the second line can be bounded from below by

inf
|y|≤δan

Py

[
Sj
an
∈ [−2δ, 2δ], ξj ≤ n, j ≤ rn

]
,

which is bounded in a similar way than the other quantities present in (8.2.4).
Indeed, we observe that

inf
|y|≤3δan

Py

[
Srn
an
∈ [−δ, δ], Sj

an
∈ [α+ 2δ, β − 2δ] , ξj ≤ n, j ≤ rn

]
≥ inf
|y|≤3δan

Py

[
Srn
an
∈ [−δ, δ], Sj

an
∈ [α+ 2δ, β − 2δ] , j ≤ rn

]
− rnP(ξ1 ≥ n).

As limn→+∞ rnP(ξ1 ≥ n) = 0 and rn ∼n→+∞ Ãa2
n, by the Donsker theorem, we have

lim
n→+∞

inf
|y|≤3δan

Py

[
Srn
an
∈ [−δ, δ], Sj

an
∈ [α+ 2δ, β − 2δ] , j ≤ rn

]
= inf
|y|≤3δ

Py

[
σB

Ã
∈ [−δ, δ], σBs ∈ [α+ 2δ, β − 2δ] , s ≤ Ã

]
,

We observe that K ∼n→+∞ n

AÃa2
n

, thus for all a < A, (8.2.4) leads to

lim inf
n→+∞

a2
n

n
logRn,δ,A(α, β) ≥ 1

AÃ
inf
|y|≤3δ

Py

[
σB

Ã
∈ [−δ, δ], σBs ∈ [α+ 2δ, β − 2δ] , s ≤ Ã

]
.

The probability for a Bronwian motion to stay in a strip admit a closed expression (see
e.g. [IM74]), for all α < β and δ < min(−α, β)/3,

inf
|y|≤3δ

Py

[
σB

Ã
∈ [−δ, δ], σBs ∈ [α, β] , s ≤ Ã

]
= inf
|y|≤3δ

∫ δ

−δ

2
β − α

+∞∑
n=1

e
−n2 π2σ2

2(β−α)2 Ã sin
(
nπ

y − α
β − α

)
sin
(
nπ

z − α
β − α

)
dz.



8.3. Left tail of the consistent maximal displacement 267

In particular, letting Ã→ +∞, we have

lim inf
n→+∞

a2
n

n
logRn,δ,A(α, β) ≥ −π

2σ2

2A
1

(β − α− 4δ) .

Using this last inequality, (8.2.3) leads to

lim inf
n→+∞

a2
n

n
log P

(
Sn ∈ [xan, x′an], Sj

an
∈
[
fj/n, gj/n

]
, ξj ≤ n, j ≤ n

)

≥ −π
2σ2

2A

A−1∑
a=0

1
(ga/A − fa/A − 6δ)2 .

Letting A→ +∞ then δ → 0 concludes the proof.

8.3 Left tail of the consistent maximal displacement

In this section, we use Theorem 8.2.2 as well as the spinal decomposition of the branch-
ing random walk to compute first and second moment estimates. These are used to bound
the probability there exists an individual in the branching random walk that stay in a
given path. We observe that the n1/3 order of the consistent maximal displacement is the
correct rate such that the exponential term eSn in the many-to-one lemma exactly balances
the probability P(|Sj | ≤ n1/3, j ≤ n). The main result of the section is the computation
of the left tail of the consistent maximal displacement. We set

λ∗ :=
(

3π2σ2

2θ∗

)1/3

. (8.3.1)

Theorem 8.3.1. We assume that (8.1.1), (8.1.2) and (8.1.4) hold. For all λ < λ∗, we
have

lim
n→+∞

1
n1/3 log P

(
Ln − λ∗n1/3 ≤ −λn1/3

)
= −θ∗λ.

8.3.1 An upper bound of the right tail of the consistent maximal dis-
placement

We start with a boundary estimate, that gives an upper bound of the right tail of the
consistent maximal displacement. We prove that with high probability, every individual
that stays above kv − λn1/3 at any time k ≤ n also stay below kv − gk/nn

1/3, for a
well-chosen function g.

Lemma 8.3.2. We assume that (8.1.1) and (8.1.2) hold. For any pair of functions f, g
such that f < g and f(0) < 0 < g(0), we set

Zn(f, g) =
∑
|u|≤n

1{
V (u)−|u|v
n1/3 ≥g|u|/n

}1{V (uj)−jv

n1/3 ∈[fj/n,gj/n],j<|u|
}.

We have

lim sup
n→+∞

1
n1/3 log E(Zn(f, g)) ≤ − inf

t∈[0,1]

{
θ∗gt + π2σ2

2

∫ t

0

ds

(gs − fs)2

}
.
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Proof. To prove this estimate, we need Theorem 8.2.1 with a kind of uniform control in
the length of the random walk. Indeed, applying the many-to-one lemma, we have

E(Zn(f, g)) =
n∑
k=1

E

 ∑
|u|=k

1{
V (u)−kv
n1/3 ≥gk/n

}1{V (uj)−jv

n1/3 ∈[fj/n,gj/n],j<k
}

=
n∑
k=1

E

e−θ∗Sk+kκ(θ∗)1{Sk−kv
n1/3 ≥gk/n

}1{Sj−jv
n1/3 ∈[fj/n,gj/n],j<k

}
≤

n∑
k=1

e−θ
∗gk/nn

1/3P
(
Sj − jv
n1/3 ∈

[
fj/n, gj/n

]
, j < k

)
.

We observe that (Sn − nv, n ≥ 0) is a centred random walk, thanks to (8.1.1), with finite
variance by (8.1.2).

To obtain an uniform bound, we choose A ∈ N, and divide [0, n] into A intervals of
length n

A . For a ≤ A, we set ma =
⌊
na
A

⌋
and

ga,A = sup
s∈[ a−1

A
,a+2
A ]

gs.

We observe that for all k ∈ (ma,ma+1],

e−θ
∗gk/nn

1/3P
(
Sj − jv
n1/3 ∈

[
fj/n, gj/n

]
, j < k

)
≤ e−θ∗ga,An1/3P

(
Sj − jv
n1/3 ∈

[
fj/n, gj/n

]
, j ≤ ma

)
,

therefore

E(Zn(f, g)) ≤ 2n
A

A−1∑
a=0

e−θ
∗gk/nn

1/3P
(
Sj − jv
n1/3 ∈

[
fj/n, gj/n

]
, j ≤ ma

)
.

We now apply A times Theorem 8.2.1, which leads to

lim sup
n→+∞

1
n1/3 log E(Zn(f, g)) ≤ max

a<A

{
−θ∗ga,A −

π2σ2

2

∫ a
A

0

ds

(gs − fs)2

}
.

Letting A→ +∞ concludes the proof.

We now compute the expected number of individuals that stayed at all times between
the curves kv + n1/3fk/n and kv + n1/3gk/n.

Lemma 8.3.3. We assume that (8.1.1) and (8.1.2) hold. For any pair of functions f, g
such that f < g and f(0) < 0 < g(0) and for all x ∈ [f1, g1), we set

Yn(f, g) =
∑
|u|=n

1{
V (u)−nv
n1/3 ≥x

}1{V (uj)−jv

n1/3 ∈[fj/n,gj/n],j≤n
}.

We have
lim

n→+∞
1

n1/3 log E(Yn(f, g, x)) = −θ∗x− π2σ2

2

∫ 1

0

ds

(gs − fs)2 .
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Proof. This lemma is a direct consequence of the many-to-one lemma and Theorem 8.2.2
when choosing ξn = 0. Indeed, we have

E (Yn(f, g, x)) = E

e−θ∗Sn+nκ(θ∗)1{
Sn−nv
n1/3 ≥x

}1{Sj−jv
n1/3 ∈[fj/n,gj/n],j≤n

} .
Consequently, we obtain easily the following upper bound

lim sup
n→+∞

1
n1/3 log E (Yn(f, g, x))

≤ −θ∗x+ lim sup
n→+∞

1
n1/3 log P

(
Sj − jv
n1/3 ∈

[
fj/n, gj/n

]
, j ≤ n

)
≤ −θ∗x− π2σ2

2

∫ 1

0

ds

(gs − fs)2 .

The lower bound is derived in a similar way. We set ε > 0 such that x + ε < g1. We
have

E (Yn(f, g, x)) ≥ E

e−θ∗Sn+nκ(θ∗)1{
Sn−nv
n1/3 ∈[x,x+ε]

}1{Sj−jv
n1/3 ∈[fj/n,gj/n],j≤n

}
≥ e−θ∗(x+ε)n1/3P

(
Sn − nv
n1/3 ∈ [x, x+ ε], Sj − jv

n1/3 ∈
[
fj/n, gj/n

]
, j ≤ n

)
.

We apply Theorem 8.2.2, that leads to

lim inf
n→+∞

1
n1/3 log E (Yn(f, g, x)) ≥ −θ∗(x+ ε)− π2σ2

2

∫ 1

0

ds

(gs − fs)2 .

Letting ε→ 0 concludes the proof.

These two lemmas can be used to obtain the upper bound of Theorem 8.3.1.

Upper bound of Theorem 8.3.1. Let λ > 0. For all n ∈ N, we have

P
(
Ln ≤ λn1/3

)
= P

(
∃|u| = n : ∀j ≤ n, V (uj) ≥ jv − λn1/3

)
≤ P (Zn(−λ, g) > 0) + P (Yn(−λ, g,−λ) > 0) ,

for any continuous function g such that g(0) > 0 and g > −λ. Applying the Markov
inequality and Lemma 8.3.2, we have

lim sup
n→+∞

1
n1/3 log P (Zn(−λ, g) > 0) ≤ − inf

t∈[0,1]

{
θ∗gt + π2σ2

2

∫ t

0

ds

(gs + λ)2

}
. (8.3.2)

Similarly, we have

lim sup
n→+∞

1
n1/3 log P (Yn(−λ, g,−λ) > 0) ≤ θ∗λ− π2σ2

2

∫ 1

0

ds

(gs + λ)2 . (8.3.3)

Given λ > 0, we now choose a convenient function g, that satisfies

∀t ∈ [0, 1],−θ∗gt −
π2σ2

2

∫ t

0

ds

(gs + λ)2 = −θ∗g0. (8.3.4)
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We observe that this differential solution admit the following solution:

gt =
(
(g0 + λ)3 − (λ∗)3 t

)1/3
− λ.

Let ε > 0, we define gt =
(
(1− t) (λ∗)3 + ε3

)1/3
−λ, which is a solution of (8.3.4) with

the condition g1 = ε− λ. With this definition, (8.3.2) becomes

lim sup
n→+∞

1
n1/3 log P (Zn(−λ, g) > 0) ≤ −θ∗

[(
(λ∗)3 + ε3

)1/3
− λ

]
,

and (8.3.3) gives

lim sup
n→+∞

1
n1/3 log P (Yn(−λ, g,−λ) > 0) ≤ θ∗ε− θ∗

[(
(λ∗)3 + ε3

)1/3
− λ

]
.

Letting ε→ 0, we obtain

lim sup
n→+∞

1
n1/3 log P

(
Ln ≤ λn1/3

)
≤ −θ∗ [λ∗ − λ] .

We conclude that

lim sup
n→+∞

1
n1/3 log P

(
Ln ≤ (λ∗ − λ)n1/3

)
≤ −θ∗λ.

8.3.2 A lower bound by a second moment method

To obtain the lower bound of Theorem 8.3.1, we bound from below the probability
there exists an individual that is above kv − λn1/3 at any time k ≤ n. Computing the
first two moments of the number of such individuals and applying the Cauchy-Schwarz
inequality concludes the proof. Let (f, g) be a pair of continuous functions such that f < g
and f(0) < 0 < g(0). We write

An(f, g) =
{
|u| = n : ∀j ≤ n, V (uj)− jv ∈

[
fj/nn

1/3, gj/nn
1/3
]}
.

However, a direct second moment method would not lead to a convenient lower bound.
To obtain a more precise upper bound, we have to control the reproduction of the indi-
viduals we consider. For u ∈ T, we write Υ(u) the set of siblings of u and

ξ(u) =
∑

u′∈Υ(u)
eθ
∗(V (u′)−V (u)), (8.3.5)

that is used to control the reproduction along the spine. Note that (8.1.4) is equivalent to

lim
x→+∞

x2P̂ (log (ξ(w1)) ≥ x) = 0. (8.3.6)

For all δ > 0, we denote by

Bδn =
{
|u| = n : ∀j ≤ n, log ξ(uj) ≤ δn1/3

}
.
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Lemma 8.3.4. We assume (8.1.1), (8.1.2) and (8.1.4) hold. For any pair of functions
f, g such that f < g and f(0) < 0 < g(0), for all x ∈ [f1, g1] and δ > 0, we set

Xδ
n(f, g, x) =

∑
|u|=n

1{u∈An(f,g)∩Bδn}1
{
V (u)−nv
n1/3 ≥x

}.
We have

lim inf
n→+∞

1
n1/3 log E

[
Xδ
n(f, g, x)

]
≥ −θ∗x− π2σ2

2

∫ 1

0

ds

(gs − fs)2 ,

as well as

lim sup
n→+∞

1
n1/3 log E

[(
Xδ
n(f, g, x)

)2
]
≤ θ∗δ − 2

(
θ∗x+ π2σ2

2

∫ 1

0

ds

(gs − fs)2

)

+ sup
t∈[0,1]

{
θ∗gt + π2σ2

2

∫ t

0

ds

(gs − fs)2

}
.

Proof. We first bound from below the mean of Xδ
n. We set Wn = ∑

|u|=n e
θ∗V (u)−nκ(θ∗).

Applying the spinal decomposition, we have

E
[
Xδ
n(f, g, x)

]
= E

 1
Wn

∑
|u|=n

1{u∈An(f,g)∩Bδn}1
{
V (u)−nv
n1/3 ≥x

}
= Ê

e−θ∗V (wn)+nκ(θ∗)1{wn∈An(f,g)∩Bδn}1
{
V (wn)−nv

n1/3 ≥x
} .

As a consequence, for all ε > 0 small enough, we have

E
[
Xδ
n(f, g, x)

]
≥ e−θ∗εn1/3P̂

[
V (wn)− nv

n1/3 ∈ [x, x+ ε], wn ∈ An(f, g) ∩ Bδn
]
.

By (8.1.1) and (8.1.2), (V (wn), ξ(wn), n ∈ N) satisfies (8.2.1). Moreover, by (8.3.6), we
have

lim
n→+∞

n2/3P̂
[
log ξ(w0) ≥ δn1/3

]
= 0.

Therefore, applying Theorem 8.2.2, we have

lim inf
n→+∞

1
n1/3 log E

[
Xδ
n(f, g, x)

]
≥ −θ∗x− π2σ2

2

∫ 1

0

ds

(gs − fs)2 .

In a second time, we bound from above the second moment of Xδ
n. Applying once

again the spinal decomposition, we have

E
[(
Xδ
n(f, g, x)

)2
]

=E

Xδ
n(f, g, x)
Wn

∑
|u|=n

1{u∈An(f,g)∩Bδn}1
{
V (u)−nv
n1/3 ≥x

}
=Ê

Xδ
n(f, g, x)e−θ∗V (wn)+nκ(θ∗)1{wn∈An(f,g)∩Bδn}1

{
V (wn)−nv

n1/3 ≥x
}

≤e−θ∗xn1/3Ê

Xδ
n(f, g, x)1{wn∈An(f,g)∩Bδn}1

{
V (wn)−nv

n1/3 ≥x
}
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Under the law P̂, we decompose Xδ
n(f, g, x) along the spine, we have

Xδ
n(f, g, x) ≤ 1 +

n∑
k=1

∑
u∈Υ(wk)

Λk(u),

setting, for k ≤ n and u ∈ Υ(wk),

Λk(u) =
∑

|u′|=n,u′≥u
1{u′∈An(f,g)}1{V (u′)−nv

n1/3 ≥x
}.

We set G = σ(V (wn),Ω(wn), V (u), u ∈ Ω(wn), n ≥ 0) and I(n)
k =

[
fk/nn

1/3, gk/nn
1/3
]
.

We compute, conditionally on G the value of Λk(u). Applying the many-to-one lemma,
for all k ≤ n and u ∈ Υ(wk), we have

E [Λk(u)| G]

=eθ∗V (u)−kκ(θ∗) EV (u)

e−θ∗Sn−k−nκ(θ∗)1{Sn−k−nv
n1/3 ≥x

}1{
Sj−(k+j)v∈I(n)

k+j ,j≤n−k
}

≤eθ∗xn1/3
eθ
∗V (u)−kκ(θ∗)PV (u)

[
Sn−k − nv

n1/3 ≥ x, Sj − (k + j)v ∈ I(n)
k+j , j ≤ n− k

]
.

We set A ∈ N, and for a ≤ A, ma = bna/Ac. We also introduce

Φend
a,A = sup

x∈I(n)
ma

Px

(
Sj − jv ∈ I(n)

ma+j , j ≤ n−ma

)
.

Applying the Markov property at time ma+1, for all k ≤ ma+1 and u ∈ Υ(wk), we have

E [Λk(u)| G] ≤ e−θ∗xn1/3
eθ
∗V (u)−kκ(θ∗)Φend

a+1,A.

For a ≤ A, we now compute the asymptotic behaviour as n→ +∞ of

R
(n)
a,A = sup

k∈[ma,ma+1)
Ê

 ∑
u∈Υ(wk)

Λk(u)

1{
V (wn)−nv

n1/3 ≥x
}1{wn∈An(f,g)∩Bδn}

 .
We have

R
(n)
a,A ≤e−θ

∗xn1/3Φend
a+1,AÊ

[
eθ
∗V (wk−1)−kκ(θ∗)1{wn∈An(f,g)}ξ(wk)1{log ξ(wk)≤δn1/3}

]
≤Ce(−θ∗x+θ∗g(k−1)/n+δ)n1/3Φend

a+1,AP̂ [wn ∈ An(f, g)] .

We set ga,A = sups∈[ a−1
A
,a+2
A

] gs for all k ∈ [ma,ma+1), we have

R
(n)
a,A ≤ e(−θ∗x+θ∗gk/n+δ)n1/3Φend

a+1,AP
[
Sj − jv ∈ I(n)

j , j ≤ n
]
.

Applying Theorem 8.2.1, we obtain

lim sup
n→+∞

1
n1/3 sup

k∈[ma,ma+1)
logR(n)

a,A

≤ −θ∗x+ θ∗ga,A + δ − π2σ2

2

(∫ 1

0

ds

(gs − fs)2 +
∫ 1

a+1
A

ds

(gs − fs)2

)
.
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We finally observe that

E
[(
Xδ
n(f, g, x)

)2
]
≤ E [Yn(f, g, x)] + n

A
e−θ

∗xn1/3
A−1∑
a=0

R
(n)
a,A.

Therefore, we apply Lemma 8.3.3, then let A→ +∞, which concludes the proof.

We use this lemma to prove the lower bound of Theorem 8.3.1.

Lower bound of Theorem 8.3.1. We keep the notation of Lemma 8.3.4. Let f, g be a pair
of continuous functions with f < g and f0 < 0 < g0, and x ∈ [f1, g1) Applying the
Cauchy-Schwarz inequality, for all δ > 0, we have

P
(
Xδ
n(f, g, x) ≥ 1

)
≥

E
(
Xδ
n(f, g, x)

)2

E [Xδ
n(f, g, x)2] .

Therefore, by Lemma 8.3.4, we have

lim inf
n→+∞

1
n1/3 log P

(
Xδ
n(f, g, x) ≥ 1

)
≥ −δ − sup

t∈[0,1]
θ∗gt −

π2σ2

2

∫ t

0

ds

(gs − fs)2 .

Let λ < λ∗ and ε > 0. For t ∈ [0, 1], we set ft = −λ and gt =
(
(1− t)3π2σ2

2θ∗ + ε3
)1/3
−λ,

by the same computations as in the proof of the upper bound, for all δ > 0, we have

lim inf
n→+∞

1
n1/3 log P

(
Ln ≤ λn1/3

)
≥ lim inf

n→+∞
1

n1/3 log P
(
∃|u| = n : ∀k ≤ n, V (uk)− kv ≥ −λn1/3

)
≥ lim inf

n→+∞
1

n1/3 log P
(
Xδ
n(f, g,−λ) ≥ 1

)
≥− δ − θ∗

(
(λ∗)3 + ε3

)1/3
− λ.

Letting ε→ 0 and δ → 0, for all λ < λ∗, we have

lim inf
n→+∞

1
n1/3 log P

(
Ln ≤ (λ∗ − λ)n1/3

)
≥ −θ∗λ.

8.4 Proof of Theorem 8.1.1
This section is very similar to Section 7.5 of Chapter 7. Indeed, we obtained in the

previous section the asymptotic behaviour of the tail distribution of Ln, and we offer to
strengthen it into a concentration estimate. In order to do so, we use the fact that the
tree T is a supercritical Galton-Watson tree. Therefore, at time δn1/3, there are at least
eεn

1/3 individuals alive, each of which starting an independent branching random walk.
We then conclude with the lower bound of Theorem 8.3.1.

Proof of Theorem 8.1.1. We observe first that for all λ < λ∗, by Theorem 8.3.1, we have∑
n∈N

P
(
Ln ≤ (λ∗ − λ)n1/3

)
< +∞.
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Thus, by the Borel-Cantelli lemma, we have

lim inf
n→+∞

Ln
n1/3 ≥ λ

∗ a.s.

We now prove the lower bound holds a.s. on the survival event of the branching random
walk. We note first that by Theorem 8.3.1, for all δ > 0,

lim inf
n→+∞

1
n1/3 log P

(
Ln ≤ λ∗n1/3

)
≥ −θ∗δ. (8.4.1)

Let h > 0. We write N = ∑
|u|=1 1 and Nh = ∑

|u|=1 1{V (u)≥−h}, which are respectively
the number of children and the number of children to the right of −h of the ancestor of
the branching random walk. We set

fh = E
(
sNh

)
and f = E

(
sN
)
.

We set qh the smallest solution of the equation fh(s) = s and q the smallest solution of
the equation f(s) = s. Note that by (8.1.1), E(N) > 1, thus q < 1. Moreover, for all h
large enough, by monotone convergence, we have E(Nh) > 1, and qh < 1.

We observe that T is a Galton-Watson tree with reproduction law N . By standard
Galton-Watson process theory, we have P(T is infinite) = 1− q. For h > 0, we introduce
the tree

T(h) = {∅} ∪
{
u ∈ T : u 6= ∅, πu ∈ T(h), V (u)− V (πu) ≥ −h

}
.

We observe that T(h) is the random tree of the individuals in T in which there is no
jump smaller than −h. Note that T(h) is a Galton-Watson tree with reproduction law Nh.
Therefore, P(T(h) is infinite) = 1− qh. Moreover, by monotone convergence, as h→ +∞,
we have fh → f , thus qh → q.

We set Sh = {T(h) is infinite} and S = {T is infinite}, we observe that for all h < h′,
we have

Sh ⊂ Sh′ ⊂ S,
as limh→+∞P(Sh) = P(S), S = ∪h≥0Sh up to a negligible event.

We now apply Lemma 7.5.1 to bound from below the number of individuals alive in T(h)

conditionally to the survival of the process. We choose % > 1 such that E(N) > %2 > 1.
For all h > 0 large enough, we have E(Nh) > %2. Therefore, there exists βh < 1 and
Ch > 0 such that for all k ∈ N

P
(
#
{
u ∈ T(h) : |u| = k

}
≤ %k

)
≤ qh + Chβ

k
h.

We set h > 0 chosen large enough and bound from above P(Ln ≤ λn1/3, Sh). Note
that every individual alive at time k in T(h) is above −kh. For all λ > λ∗, applying the
Markov property at time k leads to

P
(
Ln ≥ λn1/3, Sh

)
≤ P

(
#
{
u ∈ T(h) : |u| = k

}
≤ %k, Sh

)
+ P

(
Ln−k ≥ λn1/3 − kh

)%k
≤ Chβkh +

(
1−P

(
Ln−k ≤ λn1/3 − kh

))%k
.

Let ε > 0, we set k =
⌊
εn1/3

⌋
, we have

P
(
Ln ≥ λn1/3, Sh

)
≤ Chβεn

1/3
h +

(
1−P

(
Ln−εn1/3 ≤ (λ− ε)n1/3

))%εn1/3

.
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For all ε > 0, we set δ = ε log %
2θ∗ and λ = λ∗ + ε. By (8.4.1), we have

log
[
− log

((
1−P

(
Ln−εn1/3 ≤ (λ− ε)n1/3

))%εn1/3)]
∼n→+∞

ε log %
2 n1/3.

We conclude that ∑n∈N P
(
Ln ≥ (λ∗ + ε)n1/3

)
< +∞, thus by Borel-Cantelli lemma

again, for all h > 0 large enough and ε > 0,

lim sup
n→+∞

Ln
n1/3 ≤ (λ∗ + ε) a.s. on Sh.

As S = ∪h>0Sh, letting ε→ 0 and h→ +∞, we conclude that

lim sup
n→+∞

Ln
n1/3 ≤ λ

∗ a.s. on S.

which ends the proof.
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