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Marches aléatoires branchantes,
environnement inhomogene, sélection

Résumé

On s’intéresse dans cette these au modele de la marche aléatoire branchante, un systeme
de particules qui évoluent au court du temps en se déplacant et se reproduisant de fagon
indépendante. Le but est d’étudier le rythme auquel ces particules se déplacent, dans deux
variantes particulieres de marches aléatoires branchantes.

Dans la premiére variante, la fagon dont les individus se déplacent et se reproduisent
dépend du temps. Ce modele a été introduit par Fang et Zeitouni en 2010. Nous nous inté-
resserons a trois types de dépendance en temps : une brusque modification du mécanisme
de reproduction des individus apreés un temps long ; une lente évolution de ce mécanisme a
une échelle macroscopique ; et des fluctuations aléatoires a chaque génération. Ce dernier
cas a été étudié dans un article en collaboration avec Piotr Mitos.

Dans la seconde variante, le mécanisme de reproduction est constant, mais les individus
subissent un processus de sélection darwinien. La position d’un individu est interprétée
comme son degré d’adaptation au milieu, et le déplacement d’un enfant par rapport a
son parent représente I'héritage des genes. Dans un tel processus, la taille maximale de
la population est fixée a une certaine constante IV, et a chaque étape, seuls les N plus a
droite sont conservés. Ce modele a été introduit par Brunet, Derrida, Mueller et Munier,
et étudié par Bérard et Gouéré en 2010. Nous nous sommes intéressés dans un premier
temps a une variante de ce modele, qui autorise quelques grands sauts. Dans un second
temps, nous avons considéré que la taille totale N de la population dépend du temps.

Mots-clefs

Marche aléatoire branchante, marche aléatoire, processus de branchement, environne-
ment aléatoire, environnement inhomogene, somme de variables aléatoires indépendantes,
sélection.




Branching random walks,
time-inhomogeneous environment, selection

Abstract

In this thesis, we take interest in the branching random walk, a particles system, in
which particles move and reproduce independently. The aim is to study the rhythm at
which these particles invade their environment, a quantity which often reveals informa-
tion on the past of the extremal individuals. We take care of two particular variants of
branching random walk, that we describe below.

In the first variant, the way individuals behave evolves with time. This model has
been introduced by Fang and Zeitouni in 2010. This time-dependence can be a slow
evolution of the reproduction mechanism of individuals, at macroscopic scale, in which
case the maximal displacement is obtained through the resolution of a convex optimization
problem. A second kind of time-dependence is to sample at random, at each generation,
the way individuals behave. This model has been studied in an article in collaboration
with Piotr Mitos.

In the second variant, individuals endure a Darwinian selection mechanism. The po-
sition of an individual is understood as its fitness, and the displacement of a child with
respect to its parent is associated to the process of heredity. In such a process, the total
size of the population is fixed to some integer N, and at each step, only the N fittest
individuals survive. This model was introduced by Brunet, Derrida, Mueller and Munier.
In a first time, we took interest in a mechanism of reproduction which authorises some
large jumps. In the second model we considered, the total size N of the population may
depend on time.

Keywords

Branching random walk,random walk, branching process, random environment, time-
inhomogeneous environment, sum of independent random variables, selection.
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Introduction

Le processus de Galton-Watson est I'un des plus anciens processus aléatoires introduits
pour simuler I’évolution au cours du temps d’une population, et certainement I’'un des plus
étudiés. Dans ce modele, les individus sont asexués et se reproduisent sans compétition.
A chaque nouvelle génération, tous les individus de la génération précédente meurent en
donnant naissance a un certain nombre d’enfants de fagon indépendante et suivant la méme
loi de reproduction. D’apres Kendall [Ken75], ce processus fut introduit pour la premiere
fois par Bienaymé [Bie76] en 1845 ; et indépendamment redécouvert par Galton et Watson
[GWT74] en 1873 pour étudier la probabilité d’extinction des noms de famille chez les lords
anglais. C’est également I'un des premiers exemples de processus de branchement connus.

FIGURE 1 — L’arbre généalogique d’un processus de Galton-Watson

Francis Galton était également un cousin de Charles Darwin, qui introduisit dans son
livre On the origin of species by means of natural selection la notion de sélection natu-
relle : dans la compétition pour la survie, seuls les individus les plus aptes survivent et se
reproduisent. Ces individus transmettent par la méme occasion leur patrimoine génétique
a leurs descendants. Afin de réaliser une modélisation mathématique simple de ce phéno-
mene, une idée peut étre d’enrichir le processus de Galton-Watson avec des informations
supplémentaires, qui se transmettent de parent en enfant.

Ainsi, on peut associer a chaque individu vivant dans le processus de Galton-Watson
un score de valeur sélective ou fitness. Cette quantité représente le degré d’adaptation d’un
individu & som milieu. Ceci influe directement sur les chances que celui-ci a de survivre
et de se reproduire. Lorsqu’il se reproduit, cet individu transmet a ses enfants ce score de
fitness, a un bruit aléatoire pres. Ce modele de sélection, simplifié a ’extréme, ressemble
a une marche aléatoire branchante.

Dans une marche aléatoire branchante, on étudie 1’évolution au cours du temps d’une
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population d’individus qui se reproduisent et se déplacent comme suit. A chaque nouvelle
génération, tous les individus meurent en donnant naissance des enfants. Les enfants sont
positionnés autour de leur parent au hasard selon des processus de points indépendants.
En remplacant les termes « position » par « fitness », on se rameéne au modele défini plus
haut.

Position ou

Fitness

v

0 I

Temps

FIGURE 2 — Le graphe d’une marche aléatoire branchante

Dans cette these, on s’intéresse au comportement au cours du temps de certains pro-
cessus de branchement, batis comme des variantes de la marche aléatoire branchante. Nous
étudions I'impact d’une modification au cours du temps de la loi selon laquelle les indi-
vidus se reproduisent d’une part ; les effets de la « sélection naturelle » sur le processus
d’autre part. Les résultats portent principalement sur le comportement asymptotique du
plus grand déplacement dans ces variantes de marche aléatoire branchante.

Dans un premier temps, nous listons quelques résultats bien connus sur le comporte-
ment en temps long d’une marche aléatoire branchante classique. Ensuite, nous présentons
plus précisément les modeles étudiés et les notations employées, puis les résultats obte-
nus au cours de la thése qui concernent la marche aléatoire branchante en environnement
inhomogene ou une marche aléatoire branchante avec sélection. Nous terminons cette in-
troduction en reliant les marches aléatoires branchantes a d’autres objets mathématiques
qui ont été, ou sont encore le sujet d’études approfondies.

1 Des résultats préexistants sur les marches aléatoires bran-
chantes

L’arbre généalogique du processus de Galton-Watson et de la marche aléatoire bran-
chante sont identiques. Il est bien connu, depuis les travaux de Bienaymé, Galton et Watson
que le processus s’éteint presque stirement ? si et seulement si le nombre moyen d’enfants
d’un individu est inférieur ou égal a 1. Plus précisément, si on note Z,, le nombre d’en-
fants vivants a la génération n dans ce processus, la probabilité d’extinction est la plus
petite solution ¢ dans [0,1] de I’équation E(¢%!) = ¢. On peut ainsi classer les proces-
sus de Galton-Watson en processus sous-critiques, critiques et sur-critiques, pour E(Z;)
respectivement plus petit, égal ou plus grand que 1. Dans le cadre de cette thése, nous
supposons les processus de populations des marches aléatoires branchantes surcritique, et
méme régulierement que Z; > 1 presque strement. Dans ce dernier cas, le processus de

2. C’est-a-dire qu’a partir d’un certain temps, il n’y a plus d’individus vivants.
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population survit presque strement. Le théoréme de Kesten-Stigum permet d’estimer la
taille de la population dans le processus de Galton-Watson : si E(Z; log Z1) < 400, alors
elle croit & vitesse exponentielle proportionnellement a [E(Z7)]". Plus précisément il existe
une variable aléatoire positive Z telle que

lim

————=7ps. et P(Z=0)=q.
LN P ( )=4q

Des résultats similaires ont été prouvés dans le cadre de la marche aléatoire branchante
dans les années 1970. On note M, le plus grand déplacement a l'instant n. Les travaux
pionniers de Hammersley [Ham74], Kingman [Kin75] et Biggins [Big76] ont prouvé que
M, croit a vitesse balistique. En d’autre termes, il existe une constante explicite v telle
que

. n
lim — =9 p.s.
n—+oo n

FI1GURE 3 — Des frontieres linéaires pour la marche aléatoire branchante

Par conséquent, la population de la marche aléatoire branchante envahit son environ-
nement & vitesse balistique. De plus, il existe une fonction convexe x* : R — R vérifiant
la propriété suivante :

e pour tout a < v, la taille de la population vivant a I'instant n au-dessus de na est

d’ordre e~ (@) ;

e pour tout a > v, la probabilité qu’un individu existe a 'instant n au-dessus de na

est d’ordre e~ (@),

En 2009, Addario-Berry et Reed [ABRO09] et Hu et Shi [HS09] ont amélioré la connais-
sance du comportement asymptotique de M,. Ils ont montré I’existence d’une constante
0 > 0 telle que

. M, —nv -1
imsup—— = — ps.
n%Jrog) logn 20 P
.. M, —nv -3
liminf —— = —  p.s.
n—+oc  logn 20

3
(Mn —nv+ % logn,n > 1) est tendue.
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M 1 individu par pixel

== 10° individus par pixel

m 10% individus par pixel

B au moins 10° individus par pixel

FIGURE 4 — Densité de population dans une marche aléatoire branchante

En d’autres termes, non seulement M, est proche de nv — % log n avec grande probabilité,
mais cette quantité exhibe également des fluctuations presque stires de taille logarithmique.

FIGURE 5 — La correction logarithmique est sujette a des fluctuations presque stires

Le dernier terme du développement asymptotique de M, a été obtenu par Aidékon
[Aid13] qui a montré, sous des hypothéses dont Chen [Chel4] a prouvé I'optimalité par la
suite, que M,, —nv+ % logn converge en loi vers une variable aléatoire W. Cette loi limite
s’exprime comme une variable aléatoire de Gumbel, décalée d’un coefficient aléatoire.

2 Modéles étudiés

L’objectif de cette these est 1’étude du comportement asymptotique du plus grand
déplacement dans les deux variantes suivantes de la marche aléatoire branchante :
e la marche aléatoire branchante en environnement inhomogene en temps, dans la-
quelle la fagon dont les individus se reproduisent dépend du temps;
e la marche aléatoire branchante avec sélection, dans laquelle & chaque étape n la taille
totale de la population est fixée a une valeur IV, et seuls les IV,, individus les plus
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haut placés dans le processus, interprétés comme les individus ayant la meilleure
fitness, survivent.

2.1 Marche aléatoire branchante en environnement inhomogene

Ce modele peut étre vu comme une généralisation naturelle de la marche aléatoire
branchante, lorsque ce processus est interprété comme I’évolution d’une population. Les
conditions environnementales peuvent varier au cours du temps, ce qui peut avoir un
impact sur la fagon dons les individus se reproduisent ou se déplacent. Ces fluctuations
peuvent avoir lieu a des échelles de temps longues, comparées a la durée de vie des indi-
vidus (c.f. Chapitres 1, 2, 3). A Dinverse, 'environnement peut également étre modifié &
chaque nouvelle génération. C’est le cas du modele étudié dans le Chapitre 4. Nous nous
intéressons a l'effet de ces modifications d’environnement sur ’asymptotique du plus grand
déplacement.

Des modeles de marche aléatoire branchante en environnement inhomogeéne ont été
introduits par Derrida et Spohn [DS88]. En adaptant les résultats trés généraux de [Big76,
BKO04], il est aisé de se convaincre que sous des hypotheéses d’intégrabilité relativement
générales, le plus grand déplacement M,, dans ce nouveau modele reste linéaire au premier
ordre.

Fang et Zeitouni ont introduit et étudié dans [FZ12a] un modele de marche aléatoire
branchante avec une interface. Dans ce modele, les individus se reproduisent selon une
premiére loi pendant la premieére moitié du temps, puis selon une seconde loi pendant la
seconde moitié du temps. Dans leur modeéle, tout individu vivant a la génération k fait
deux enfants, qui se déplacent par rapport & leur parent de facon indépendante selon des
gaussiennes centrées, de variance o2 si k < n/2 ou 03 si k > N/2. Ils montrent que dans
ce processus, le comportement asymptotique de M,, est toujours donné par un premier
ordre linéaire plus une correction logarithmique. Notamment, on observe que ce deuxiéme
ordre logarithmique est trés sensible au signe de 02 — 07 et subit une transition de phase
lorsque ce signe change.

Nous montrons dans le Chapitre 1 un résultat similaire, pour des lois de reproduction
plus générales que le cas binaire gaussien. Dans le Chapitre 2, ce modele de marche aléatoire
branchante est généralisé au cas de plusieurs interfaces. Nous montrons dans ce cas encore
que 'asymptotique du plus grand déplacement est donné par un premier terme linéaire
plus une correction logarithmique. Ce premier terme est obtenu en résolvant un probléme
d’optimisation sous contraintes, et le second ordre dépend de 'interaction de cette solution
avec les contraintes.

Par la suite, un certain nombre d’articles, parmi lesquels [FZ12b, NRR14, MZ14], ont
étudié des marches aléatoires branchantes évoluant dans un environnement variant a une
échelle grande devant le temps de vie des individus (correspondant & des fluctuations de
Ienvironnement a grande échelle). Dans ces modeles, on se fixe une famille de lois de
reproduction (Lt € [0,1]) ainsi que la longueur n de la marche branchante que l'on
considere. Les individus présents a la génération k se reproduisent selon la loi £y, Dans
tous les articles cités plus haut, les enfants d’un individu donné se déplacent toujours selon
des variables aléatoires gaussiennes, de variance o7.

Dans le Chapitre 3, nous nous intéressons a ce modéle, tout en autorisant une grande
classe de loi de reproduction. Sous ’hypothese que la loi de reproduction évolue de fagon
suffisamment réguliére, nous montrons qu’au premier ordre, le comportement de M,, est
toujours linéaire et que la vitesse peut étre calculée comme la solution d’un probléme
d’optimisation sous contrainte. En calculant la transformée de Laplace de l'aire sous la
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courbe d’'un mouvement brownien conditionné a rester négatif, nous montrons que le
second terme de 'asymptotique de M,, est une correction d’ordre au plus nl/3.

Dans le Chapitre 4, nous nous intéressons a un type de marche aléatoire branchante
en environnement inhomogene différent. Dans ce modeéle, la loi de reproduction a chaque
nouvelle génération est tirée au hasard indépendamment de la marche. Tous les indivi-
dus se reproduisent ensuite en utilisant cette loi. Nous montrons que dans ce cas, le plus
grand déplacement dans la marche aléatoire branchante est donné par un premier terme li-
néaire, des fluctuations en n'/2 qui ne dépendent que de environnement, et une correction
logarithmique négative propre a la marche aléatoire branchante.

2.2 Marches aléatoires branchantes avec sélection

Dans [BLSW91], il a été introduit un mécanisme de sélection dans une marche aléatoire
branchante. Tous les individus dont la position devient négative sont immédiatement tués.
On montre que ce processus se comporte, dans les grandes lignes, comme un processus
de Galton-Watson. Ainsi, cette barriére crée une population qui meurt ou croit a vitesse
exponentielle, en fonction de la loi de reproduction. Des mécanismes de sélection similaires,
basés sur la position des individus ont été intensément étudiés, en particulier avec une
barriére constituée d'un terme linéaire et d’une correction d’ordre n'/?. On peut ainsi
citer [FZ10, AJ11, GHS11, FHS12, Jaf12, BBS13] parmi bien d’autres.

La marche aléatoire branchante avec sélection des N individus les plus a droite, ou
en plus court la N-marche aléatoire branchante, a été introduite par Brunet et Derrida
dans [BD97] en temps que processus de population se déplagant sur Z. Ce processus a
été généralisé dans [BDMMO7]| au cas d’un processus de population se déplacant sur la
droite réelle. La taille de la population est limitée par une constante N, et la position
d’un individu est interprétée comme son degré d’adaptation & l’environnement. A chaque
étape, tous les individus se reproduisent de fagon indépendante, comme dans une marche
aléatoire branchante. Dans un second temps, seuls les N individus les plus hauts 3 survivent
et se reproduisent a I’étape suivante. Ce mécanisme de sélection est différent du précédent,
dans ce nouveau modele les individus vivants a la génération n se reproduisent de fagon
corrélée.

Dans ces articles, les auteurs ont conjecturé que le nuage d’individus se déplacent au
cours du temps a une vitesse vy, et de plus que lorsque N — +o0,

C
(log N + 3loglog N + O(1))?’

UN = VU0 —

ou C est une constante explicite qui dépend de la loi de reproduction des individus. Bérard
et Gouéré prouvent une premiere partie de cette conjecture dans [BG10], a savoir

o = o = otz (1 olD)
Maillard [Mail3] obtient par la suite des résultats plus fins, dans le cas du modéle voisin
du mouvement brownien branchant avec sélection des N plus & droite, sous de bonnes
hypotheses sur la configuration des individus a l'instant initial. D’autres modeles voisins
ont été étudiés. Ainsi, Bérard et Maillard [BM14] ont étudié la marche aléatoire branchante
avec sélection, lorsque les déplacements des enfants sont a queue lourde ; Couronné et Gerin
[CG14] se sont intéressés a certaines marches aléatoires branchantes avec sélection sur Z.

3. C’est-a-dire les N individus les plus adaptés.
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Dans le Chapitre 5, nous nous intéressons au comportement du nuage d’individus,
lorsque la taille de la population a l'instant n n’est pas une constante fixée, mais une
quantité qui évolue au cours du temps. Plus précisément, lorsque la taille de la population
croit au rythme critique eanl/B, nous calculons le comportement asymptotique des positions
extrémales dans le nuage de particules. Dans le Chapitre 6, nous montrons un résultat
similaire a celui de Bérard et Gouéré pour des marches aléatoires branchantes dont les
déplacements autorisent quelques rares grands sauts. Pour a € (0,2), nous exhibons des
marches aléatoires branchantes avec sélection telles que vy — voo ~ C(log N)~.

3 Notations employées

Afin de décrire avec plus de détails les résultats démontrés, nous introduisons un certain
nombre de notations qui seront valables dans le reste de cette thése. La plupart de ces
notations sont rappelées dans les chapitres qui leur sont dédiés. De plus, dans chaque
chapitre un index rappelle les notations spécifiques au modele étudié.

Nous introduisons d’abord les notations d’Ulam-Harris, qui permettent de décrire les
arbres généalogiques. Dans un second temps, nous présentons un certain nombre de no-
tations liées aux processus de points, des variables aléatoires & valeurs dans I’ensemble
des suites finies ou infinies de réels. Un processus de point représente alors le déplacement
de I'ensemble des enfants d’un individu par rapport a leur parent. En utilisant ces deux
notions, nous décrivons la loi de la marche aléatoire branchante.

3.1 Arbre plan enraciné étiqueté

On introduit tout d’abord

U =N et U =t U{0}
neN

I’ensemble des suites finies d’entiers, olt () représente la suite vide. Un arbre sera défini
comme un sous-ensemble de . Un élément u € U symbolise un individu d’un arbre. Si
u = (u(1),...u(n)) alors u est le u(n)®™® enfant du u(n — 1) enfant du ... du w(1)eme
enfant de ancétre commun (), que 'on appelle la racine de 1’arbre.

Soit u = (u(1),...u(n)) € U, on note |u| = n la génération a laquelle u appartient, avec
la convention || = 0. Pour k£ < n, on note ux, = (u(1),...u(k)) 'ancétre a la génération k
de u, en posant ug = (). Si u # (), on note Tu = Ujp|—1 le parent de w.

Un arbre plan enraciné est un sous-ensemble T de U/ vérifiant les propriétés suivantes.

Enracinement : la suite vide ) € T.
Hérédité : si u € T, alors mu € T.

Consistance : si u = (u(1l),...u(n)) € T, alors (u(1),...u(n — 1),v) € T pour tout
v < u(n).

Etant donné un arbre T, I'ensemble {u € T : |u| = n} est appelé la n'®™® génération de
T. Le plus grand entier tel que cet ensemble est non-vide est appelé la hauteur de I’arbre.
Pour tout individu w € T, on notera souvent Q(u) = {v € T : mv = u} ensemble des
enfants de u.

Si la hauteur de I'arbre est infinie, on note T l'ensemble des suites (u(™) € TN
vérifiant

Vn >0, \u(”)| =n et YV0<p< q,ul()q) =@,
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[3111][3112] 3121

Q(21)
Culke]ls] ] [(2]

FIGURE 6 — Un arbre plan T de hauteur 4.

Les éléments de OT sont les branches infinies de I'arbre.
Un arbre plan enraciné étiqueté est la donnée d’un couple (T, V'), ou T est un arbre
plan enraciné, et V : T — R est la fonction d’étiquetage. Pour u € T, on appelle V (u) la

position de u, et on pose
M, = max V(u)
ueT:|u|=n
la position de I'individu le plus haut a I'instant n dans T.

position

génération

FIGURE 7 — Le graphe d’un arbre plan enraciné étiqueté (T, V).

Arbre de Galton-Watson. Gréice aux notations d’Ulam-Harris, on peut aisément dé-
crire un arbre de Galton-Watson. Etant donné (&, u € U) un ensemble de variables aléa-
toires indépendantes et identiquement distribuées a valeurs dans les entiers, on écrit

T={ueld:V1<k<|ul,u(k) <&, ,}-

Cet ensemble est un arbre (plan, enraciné) aléatoire. On observe que si on note, pour tout
n >0, Z, = #{u € T : |u| = n} le nombre d’individus vivant a la génération n dans cet
arbre, le processus (Z,,n > 0) est un processus de Galton-Watson.

3.2 Processus de points

Un processus de points est une variable aléatoire a valeurs dans ’ensemble des mesures
de comptage de R finies sur les compacts. Ce processus représente un ensemble de points de
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R, fini ou infini, compté avec leur multiplicité. Les processus de points que nous considérons
admettent presque stirement un plus grand élément. Par conséquent, on peut toujours

écrire un processus de points L = (¢1,...4,), ou n est le nombre aléatoire de points dans
L (notons que l'on autorise n = +o00 en toute généralité), et £; > fo > ... et la suite
de points dans L, listée dans 'ordre décroissant (si n = +o00, on pose par convention
loo = —00).

On pose L la loi de L. La transformée de log-Laplace de L est la fonction x définie par

(0,400) — RU{+o0}

K : o/

0 — logE [deLe } ,

ou ) _scy, représente la sommation sur I’ensemble des éléments du processus de points. Une
autre fonction souvent associée a L est sa transformée de Cramér k* définie par

o R — R
" a > supgsgfa— k(0).

On notera que k et k* sont deux fonctions convexes semi-continues inférieurement, et de
classe C*° sur l'intérieur de ’ensemble o elles sont finies. De plus, si k est différentiable
au point 8 > 0, on a

0k’ (0) — k(0) = k™ (K'(9)) .

Supposons qu'’il existe § > 0 tel que x(0) < +o0, on pose

.o K(0) ]
= = N < .
v égg 7 sup{a € R : k*(a) <0}

On note 0* > 0, s’il existe, la quantité vérifiant
0%k (0%) — K(6%).
Par convexité, on a sans difficulté v = /(#*). Pour finir, on notera 0% = x”(6*).

3.3 La loi de la marche aléatoire branchante

Une marche aléatoire branchante est une variable aléatoire (T, V') a valeurs dans ’en-
semble des arbres enracinés étiquetés telle que V() = 0, et que la famille de processus
de points {(V(v) = V(u),v € Q(u)),u € T} est indépendante et identiquement distribuée.
On note £ la loi de ces processus de points, que I’on appelle la loi de reproduction de la
marche aléatoire branchante.

Ce processus peut étre construit de la fagon suivante. On se donne {L* u € U} une
famille de processus de points indépendants et identiquement distribués de loi £. Pour tout
u €U, on écrit L* = (¢4, .. .E}(,(u)), et LY représente le processus de point du déplacement
des enfants de u par rapport a leur parent. On pose alors

T={0}U{ueld :Vk <|u|,u(k) < N(ug_1)}

et pour w € T, on écrit V(u) = Z‘;ﬂl KZG;.
La filtration naturelle associée a la marche aléatoire branchante est donnée par

Fn=0(u,V(u),ueT:|ul <n).
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4 Plus grand déplacement dans des variantes de marche
aléatoire branchante

Gréace aux notations de la section précédente, nous introduisons les principaux théo-
remes démontrés dans cette these, liés a 'asymptotique du plus grand déplacement M,
dans une marche aléatoire branchante en temps inhomogéne ou avec sélection. Etant donné
une suite de variables aléatoires (X,,,n € N) et (a,) € RY, on note

X, =op(ay) siVe >0, lim P (|X,/a,| >¢) =0,
n—-+o00

X, = Op(ay) si Klim supP (| X, /an| > K) = 0.

—+00neN

4.1 Marches aléatoires branchantes en environnement inhomogéene en
temps

On se donne une suite (£,,n > 1) de loi de processus de points sur R. Une marche
aléatoire branchante en environnement inhomogene est une variable aléatoire (T, V) a
valeurs dans ’ensemble des arbres plans enracinés étiquetés telle que la famille de processus
de points {(V(v) — V(u),v € T : mv =u),u € T} est indépendante et pour u € T la loi
de (V(v) = V(u),v € T : mv = u) est L},. La suite de loi (£,,n > 0) est appelée
environnement de la marche aléatoire branchante.

En d’autres termes, une marche aléatoire branchante en environnement inhomogene
commence avec un unique individu situé en 0 & Pinstant 0. A chaque instant n, tous les
individus vivants a la génération n — 1 meurent, en donnant naissance de fagon indépen-
dante a un certain nombre d’enfants, qui se répartissent autour de leur parent selon un
processus de point de loi £,. Pour n € N, on pose &, la transformée de log-Laplace de L,
et x;, la transformée de Cramér associée.

Marches aléatoires branchantes avec interfaces. On se donne des lois de processus
de points (L£1,...Lp) et desréelst) = 0 < t1 <ty < --- < tp = 1. On fixe ensuite un entier
n, la longueur de la marche aléatoire branchante avec interfaces que I’on considére. Dans
ce modele, les individus faisant partie de la génération k € [t,—in,t,n) se reproduisent de
facon indépendante selon des processus de points de loi £,. Les individus de la génération
n meurent sans descendance.

FIGURE 8 — Une marche aléatoire branchante avec deux interfaces
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Dans le Chapitre 1 on s’intéresse au cas particulier P = 2, correspondant a la marche
aléatoire branchante avec une seule interface. On montre une premiere généralisation du
résultat de Fang et Zeitouni [FZ12a].

Théoréme 1. Soient L1 et Lo deux lois de processus de points sur R. On suppose qu’il
existe 07,05 > 0 tels que
07 ki (07) — Ki(67) =0,

ainst que certaines hypotheses d’intégrabilité supplémentaires.
Si 07 < 03, alors

3 3
M, = n(twl + (1 — tl)vg) — (29* + 20*) logn + OP(l).
1 2

St 07 = 05, alors

M, = n(tiv1 + (1 —t1)v2) — logn + Op(1).

3
20%
Si 07 > Oa, et s’il existe 8* € (07,05) tel que

0" (t1£1(0%) + (1 — t1)K5(0%)) — (t161(07) + (1 — t1)K2(0%)) = 0,

alors
1

My = n (0184 (07) + (1= 1)5(67)) — 5

logn + Op(1).
Grace a ce théoréme, on observe qu'il existe v' € R et Al > 0 vérifiant
M, = nv' — Xlogn + Op(1).

On note que v' évolue continfiment lorsque les lois de processus de points évoluent, alors
que A subit une transition de phase lorsque 63 — 65 change de signe.

A

Uslow

FIGURE 9 — Lieu des corrections logarithmiques possibles pour une marche aléatoire bran-
chante avec une interface et vitesse associée

Dans le Chapitre 2, le Théoreme 1 est étendu au cas d’un nombre arbitraire P > 2
d’interfaces. Pour ce faire, il est nécessaire de connaitre la trajectoire suivie par I'individu
qui réalise le plus grand déplacement au temps n. Dans ce but, on prouve tout d’abord le
résultat suivant, basé sur un théoreme d’existence de multiplicateurs de Lagrange.
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Proposition 2. Sisup,<p.cg fy(a) < 400, il existe un unique a € RP tel que

P P q

D (tp —tp—1)ap =max Y (tp — tp1)bp, b € R : Vg < P “(t, — tp—1)rkis(by) <00,
p=1 p=1 p=1

vérifiant Vg < P, Y70 (t, — tp—1)ry(ap) < 0.
De plus, si on note 0, = () (ap) alors

¢ 1 <by<- <Op;

® 5101 # 04 alors Zgzl(tp —tp-1)ky(aj) =0;

b Zf;:l(tp - tp—l)’f;(ap> =0.

Gréace a cette proposition, on pose vis = Z£:1(tp — tp—1)ap. Soient p1 < -+ < g tels
que {¢1,...,90} = {61,...,0p} Pensemble des valeurs distinctes prises par 6, classées
dans 'ordre croissant. Pour ¢ < @, on pose

fo=min{p < P:0, =4} et l; =max{p < P: 6, = ¢4}

On écrit enfin

A
Ais = Z 27% 1+ 1{,‘-@* (afq)=0} * 1{"‘7(1_1(“%*1):0}

q:l fq
On peut alors calculer le comportement asymptotique de M,,.

Théoréme 3. Sous de bonnes hypothéses d’intégrabilité, on a

M,, = nvis — A\islogn + Op(1).

Marches aléatoires branchantes en environnement variant. Une généralisation
naturelle des processus étudiés précédemment est la suivante. On considere une famille
(Liyt € ]0,1]) de lois de processus de points sur R. Notons x; la transformée de log-
Laplace de L;. On fixe ensuite la taille n de la marche aléatoire branchante. Les individus
vivants a la génération k se reproduisent en utilisant la loi Ly /,.

FIGURE 10 — Deux marches aléatoires branchantes en environnement variant

Lorsque t — L; évolue de facon lisse, les individus se reproduisent localement comme
dans une marche aléatoire branchante en temps homogene. La vitesse de cette marche
aléatoire branchante est donnée par

Uy = max {/01 bsds,b € C([0,1]) : Vt € [0,1] /Ot Ki(bs)ds < O} .



4. PLUS GRAND DEPLACEMENT 25

Néanmoins, nous montrons dans le Chapitre 3 que le deuxiéme ordre de M, est n'/3. On
détermine dans un premier temps le chemin suivi par I'individu réalisant le plus grand
déplacement a l'instant n, un résultat similaire a la Proposition 2.

Proposition 4. Soit a une fonction cadlag sur [0,1), on pose 0,0,k] (ar). Si (t,a) — K (a)
est de classe C?, a vérifie

1 t
vt = / asds et Vt € [0, 1],/ Ka(as)ds <0,
0 0

st et seulement si

e 0 est strictement positive et croissante ;

o [} K*(a)sdf;' =0;

o [y Ki(as)ds =0.

En particulier, il existe une unique solution a ce probleme d’optimisation, et cette
solution a est lipschitzienne.

Dans un second temps, grace a des calculs explicites, on montre sans difficultés le
résultat suivant sur la transformée de Laplace de I'aire d’'un mouvement brownien restant
négatif.

Lemme 5. Soit h: [0,1] — [0, +00) une fonction continue. Pour tout x < 0, étant donné
un mouvement brownien B issu de x, on a

.1 t ar (1
tl}inooglogE [exp (_/0 h(s/t)BSds> 1{Bs§0,s§t}:| = m/{) hsds,

ot ap &~ —2.3381... est le premier zéro de la fonction Ai d’Airy.
Gréce a la Proposition 4 et au Lemme 5, on peut estimer M,,.

Théoréme 6. Sous de bonnes hypothéses d’intégrabilité et de régularité, on note a 'unique
fonction vérifiant

1 ¢
vt = / asds et Vt € [0, 1],/ Ki(as)ds <0,
0 0

on pose 0y = gk} (ar) et oF = OFki(0:). Si 6 est absolument continue et admet une dérivée

Riemann-intégrable 0, alors

M, =nv, +n ds+0p(n1/3).

1/3 91 /1 (6505)%/3
21/3 0 93

Marches aléatoires branchantes en environnement aléatoire. Dans ce modele, la
suite (L, n € N) de lois de processus de points est une suite indépendante et identiquement
distribuée. On considere la marche aléatoire branchante en environnement inhomogéne
dans laquelle tous les individus vivants a l'instant n se reproduisent indépendemment
selon la loi £,,.

On note k,(0) la transformée de log-Laplace de £,, et k(0) = E[k1(0)]. On suppose
qu’il existe §* > 0 vérifiant

0%k (0%) — k(6%) = 0.

Des arguments classiques de marche aléatoire branchante montrent que sous de bonnes
hypotheses, le plus grand déplacement & l'instant n est proche de Z?ﬂ %. Pour dé-
terminer le comportement asymptotique de M, de facon plus précise, il est nécessaire
d’obtenir le résultat suivant, sur la probabilité pour un mouvement brownien de rester
au-dessus d’un autre mouvement brownien.
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FIGURE 11 — Une marche aléatoire branchante en environnement aléatoire

Théoréme 7 (Théoréeme du scrutin aléatoire). Soit B et W deuz mouvements browniens
indépendants. Il existe vy : R — R une fonction paire conveze et que y(0) = 1/2 telle que
pour tout B > 0,

1
lim ——

> — < = —
A gt logP (Bs > W, — 1,5 <t|W) = —(8) pss.

Grace a ce résultat, on prouve le résultat suivant sur le plus grand déplacement dans
la marche aléatoire branchante en environnement aléatoire.

Théoréme 8. On suppose que
O'é = (6*)’E [k1(6%)] € (0,400) et 04 = Var [0*K} (6%) — k1 (6%)] € [0, +00),

et on note p = %7(%) + # Sous de bonnes hypothéses d’intégrabilité, on a

1 n
M, = e*;ﬂj(ﬁ) — plogn + op(logn).

On observe que le comportement asymptotique de M,, est dans ce modele donné par un
premier ordre linéaire de pente “E;L ), des fluctuations d’ordre n'/2 qui ne dépendent que

de ’environnement, et un terme logarithmique qui ne dépend pas de cet environnement.

4.2 Marches aléatoires branchantes avec sélection

Dans une marche aléatoire branchante avec sélection, on se fixe une suite d’entiers
(Np,n > 1), qui représente la taille maximale de la population a chaque étape. A chaque
instant n > 1, tous les individus vivants a la génération n meurent, en laissant des enfants
placés autour de chaque parent selon des versions i.i.d. du processus de points £. Immé-
diatement apres, les N, 11 individus avec la plus grande position sont conservés, les autres
sont immédiatement tués. On note M la position de I'individu le plus haut parmi les
individus sélectionnés et m2 celle de I'individu le plus bas.

Sélection croissante. On s’intéresse dans un premier temps a une marche aléatoire
branchante dans laquelle la suite des tailles de population au cours du temps est donnée par
N, = {e‘ml/SJ, pour a € (0,+00). Le principal résultat du Chapitre 5 est le comportement

asymptotique de MZLV et m,jy .
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FIGURE 12 — Marche aléatoire branchante avec sélection des e3""* individus les plus hauts

a la génération n

L’un des principaux ingrédients de cette preuve est un couplage entre la marche aléa-
toire branchante avec sélection et une marche aléatoire branchante avec une barriere, dans

laquelle les individus passant sous un niveau donné meurent.
Théoréme 9. Sous de bonnes hypothéses d’intégrabilité, on a

MY — no _ 3m20* o2

lim n = .S.
n——+o0o n1/3 2a2 p
. mnN —nv a N 3202
lim =—— p.s
n—+oo nl/3 0* 2a?

Sélection pour des marches a épine stable. Dans un second temps, on s’intéresse
aux marches aléatoires branchantes avec sélection pour lesquelles I’épine (définie dans la
Section 1.2.3) de la marche aléatoire branchante est dans le domaine d’attraction d’une
marche aléatoire stable d’indice v € (0,2]. On montre dans le Chapitre 6 le résultat

suivant, en reprenant et généralisant la preuve de [BG10].

Théoréme 10. Sous de bonnes hypothéses d’intégrabilité, pour tout N € N, on a

: W my
lim — = lim — =y p.s.
n—4+oco N n—+o0o n

De plus, il existe une fonction a variations lentes A et une constante x > 0 telles que

lim (v — UN)M —x
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FI1GURE 13 — N-Marche aléatoire branchante avec épine stable

4.3 Marche aléatoire branchante classique

Une troisieme partie est consacrée a la preuve de deux résultats classiques sur les
marches aléatoires branchantes en environnement homogene. Ces résultats sont prouvés
sous des conditions d’intégrabilité plus fortes que celles trouvées dans la littérature. On
calcule dans le Chapitre 7 'asymptotique du plus grand déplacement dans la marche
aléatoire branchante, jusqu’au terme Op(1). On s’intéresse dans le Chapitre 8 au compor-
tement asymptotique du plus grand déplacement consistant, défini comme

A, = min max kv — V(uyg).
lu|=n k<n

Il a 6té prouvé dans [FZ10] et [FHS12] que A,n~ /3 converge presque siirement une
constante explicite. Nous redémontrons ce résultat sous des conditions d’intégrabilité plus
faible.

Les Chapitres 7 et 8 contiennent ’essentiel des arguments employés dans les autres
chapitres de cette theése, mais dans un cadre plus simple. Les notations et les raisonnements
liés & la marche aléatoire branchante en environnement homogene gagnent en clarté par des
notations plus légeres. Nous espérons que leur lecture pourra éclairer quelques arguments
perdus au sein de détails techniques.

5 Des modeles liés aux marches aléatoires branchantes

Nous présentons de fagon trés bréve plusieurs objets mathématiques qui peuvent étre
reliés a des marches aléatoires branchantes, que l'on peut étudier en introduisant des
marches aléatoires branchantes et/ou pour lesquels des techniques de preuves de marche
aléatoire branchante peuvent étre adaptées. La plupart du temps, ces objets sont présentés
dans un cas particulier, par soucis de clarté ou de concision. Ne nous intéressant qu’a leurs
liens avec les marches aléatoires branchantes, nous ne pouvons prétendre donner un apergu
complet des modeles évoqués.
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Mouvement brownien branchant. Le mouvement brownien branchant peut étre
considéré comme la version a temps continu de la marche aléatoire branchante. C’est un
processus simulant ’évolution au cours du temps d’une population sur R. Les individus
se déplacent selon des mouvements browniens indépendants. De plus, a chaque individu
est associé une horloge exponentielle de parametre 1. Lorsque cette horloge sonne, 1'in-
dividu associé meurt en donnant naissance a deux enfants. Ces enfants se comportent
alors comme n’importe quelle autre individu du processus, se déplacent indépendamment
de facon brownienne et meurent au bout d’un temps exponentiel de parametre 1. Le
comportement du mouvement brownien branchant et de la marche aléatoire branchante
sont tres similaires. Un grand nombre de résultats prouvés pour la marche aléatoire bran-
chante ont d’abord été prouvés dans le cadre du mouvement brownien branchant, cf.
[Bra78, BBS13, Mail3, MZ14, Rob12].

Cascades multiplicatives de Mandelbrot. Les cascades multiplicatives de Mandel-
brot ont été construites pour étudier les phénomenes d’intermittence dans la théorie des
turbulences de Kolmogorov [Kol91b, Kol91a]. Une cascade multiplicative est, par exemple,
une mesure aléatoire construite sur 'intervalle [0, 1] telle que la mesure de I'intervalle dya-
dique [k27", (k 4+ 1)27"] est égale en loi a la masse totale de cette mesure, multipliée par
une variable aléatoire indépendante dont la loi dépend de la profondeur n de 'intervalle.
Dans les articles de Mandelbrot [Man74a, Man74b, Man74c|, Kahane [Kah74], Peyriere
[Pey74] et Kahane et Peyriere [KP76], des marches aléatoires branchantes sont introduites
pour étudier ces cascades multiplicatives.

Chaos multiplicatif gaussien. Le chaos multiplicatif gaussien est une autre mesure
aléatoire, introduite par Kahane [Kah85b] en 1985. Une telle mesure peut étre construite
de facon informelle comme suit. Etant donné v € R et un champ gaussien centré (X(z),z €
R?) vérifiant

E[X (2)X ()] ~ log (min(1, |y — z))

2
le chaos multiplicatif gaussien associé est la mesure M, (dz) = 7% (@)= BX@)*) gz Cette
mesure peut bien entendu étre construite sur des espaces métriques mesurés plus généraux,
et pour des noyaux non nécessairement gaussiens. Pour une présentation plus précise du
chaos multiplicatif gaussien, nous nous référons a [RV14]. Le chaos multiplicatif gaussien
satisfait les mémes propriétés d’auto-similarité que les cascades de Mandelbrot. La marche
aléatoire branchante peut étre considérée comme un modele-jouet de ce processus.

Equation aux dérivées partielles FKPP. Une fonction u : [0,400) x R — [0,1]
satisfait I’équation de réaction-diffusion de Fisher-Kolmogorov-Petrowski-Piscounov si
ou 10%u
vt > O,VxeR,a = iw—i—u(l—u).

Cette équation, introduite dans [Fis37, KPP37], peut étre interprétée comme 1’évolution
au cours du temps d’une population d’individus en interaction. Les individus se déplacent
sur R en diffusant, et u(t,z) représente la proportion d’individus présents au voisinage
du point x a I'instant ¢, ou 1 représente la constante de saturation de ’environnement.
En d’autres termes, si u(t,z) = 1, la population cesse de croitre au voisinage du point
x car la mortalité due a la compétition pour les ressources contrebalance la naissance
d’enfants. McKean [McK75, McK76] et Neveu [Nev88| ont noté que l'on pouvait relier
I’équation FKPP avec le mouvement brownien branchant. Ainsi, si on écrit M; le plus
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grand déplacement a l'instant ¢ dans le mouvement brownien branchant, on observe que
u(t,z) = P(My > x) satisfait I’équation FKPP ci-dessus. Un certain nombre de résultats
sur les solutions de ’équation FKPP se transforment donc en résultats sur le comportement
du mouvement brownien branchant et réciproquement, comme le montre par exemple
I’enchainement récent des résultats de Fang et Zeitouni [FZ12b] (mouvement brownien
branchant), Nolen, Roquejofire et Ryzhik (équation FKPP), et Maillard et Zeitouni [MZ14]
(mouvement brownien branchant).

Generalised Random Energy Model. Le « Generalised Random Energy Model »
ou Grem est un modele de verre de spin introduit par Derrida [Der85]. Dans ce modele,
les particules sont corrélées selon une struture hiérarchique arborescente. Du fait de leurs
nombreuses similarités, de nombreux résultats prouvés pour un modele peuvent également
étre prouvés pour 'autre.

Marche aléatoire sur une marche aléatoire branchante. La marche aléatoire bran-
chante est également un environnement de choix pour I’étude des marches aléatoires en
environnement aléatoire. Dans ce modele, un marcheur se déplace sur ’ensemble des in-
dividus présents a tout instant dans le processus. A chaque étape, le marcheur remonte
vers le parent de I’individu sur lequel il se trouve avec une probabilité proportionnelle &
1, et descend vers I'un de ses enfants avec probabilité proportionnelle & I’exponentielle du
déplacement relatif de I’enfant par rapport au parent (telle que définie dans [LP92]). Entre
dans ce cadre, par exemple, les marches aléatoires biaisées sur les arbres de Galton-Watson
[Lyo92, Lyo94].
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CHAPTER 1

Maximal displacement in a
branching random walk
through an interface

“Il parait que la crise rend les riches plus riches et les pauvres
plus pauvres. Je ne vois pas en quot c’est une crise. Depuis que
je suis petit, c’est comme ¢a.”

Michel Colucci, dit Coluche — Sketch "Le choémeur'

Abstract

In this chapter, we study the maximal displacement of a branching random walk
in time-inhomogeneous environment. This environment consists in two macroscopic
time intervals, in each of which the reproduction of individuals remains constant.
This chapter provides tools helpful to the understanding of branching random walks
in more general time-inhomogeneous environments. We prove here that the maxi-
mal displacement is given —as in the time-homogeneous case— by a first linear term,
a negative logarithmic correction plus fluctuations of order one. This asymptotic
behaviour strongly depends on the path followed by the individual who realises the
maximal displacement. Furthermore, the logarithmic correction exhibit a sharp phase
transition.

NoTA: This chapter is a simplified version of the article Mazimal displacement in a branch-
ing random walk through a series of interfaces submitted to Electronic Journal of Probabil-
ities. There is a single interface in the process and the text is available on arXiv:1305.6201

1.1 Introduction

A time-inhomogeneous branching random walk on R is a process which starts with one
individual located at the origin at time 0, and evolves as follows: at each time k, every
individual currently in the process dies, giving birth to a certain number of children, which
are positioned around their parent according to independent versions of a point process,
whose law may depend on the generation of the parent.

In 2011, Fang and Zeitouni [FZ12a] studied the asymptotic of the maximal displace-
ment in a branching random walk defined as follows. Given n € N, they considered a
branching random walk through an interface with length n, in which individuals split
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into two children, which displace around their parent according to independent Gaussian
random variables. During the first § unit of times, the Gaussian random variables have
variance o7, while they have variance 05 between the generation 5 and the generation n.
They observed that the behaviour of such branching random walks depends on the sign of

03 — 0?2, in particular the asymptotic of the maximal displacement is a first ballistic order,

and a logarithmic term, which exhibits a phase transition as o3 grows bigger than o2.

We generalize their result to a large variety of branching mechanisms. Let ¢ € [0, 1]
and L1, Lo be two laws of point processes. For all n > 1, we study the time-inhomogeneous
branching random walk (T, V() in which individuals reproduce independently, with
law L if they are alive before time tn, and with law Lo otherwise. In this process, M,
—the maximal displacement at time n— has again a first ballistic order, plus logarithmic
corrections which again exhibit a phase-transition, and fluctuations of order 1.

We now introduce additional notation, to define more precisely time-inhomogeneous
branching random walks, before stating the main result of the article, the asymptotic of
M, for a branching random walk through an interface.

1.1.1 Definition of the model and notation
The time-inhomogeneous branching random walk

We recall that (T, V) € T is a (plane, rooted) marked tree if T is a (plane, rooted)
tree, and V : T — R. For a given individual u € T, we write |u| the generation to which
u belongs. If u is not the root, then wu the parent of v and wu; the ancestor of u alive at
generation k. Finally, we write Q(u) = {v € T : mv = u} the set of children of u.

Let (L, n > 1) be a family of point processes laws, which we call the environment of the
branching random walk. A time-inhomogeneous branching random walk with environment
(Ly,) is a random variable in 7" which we write (T, V). The law of this random variable is
characterized by the three following properties

o V(0)=0;

o {(V(v) = V(u),v e Qu)),u e T} is a family of independent point processes;

e the point process (V(v) — V(u),v € Q(u)) has law L4, and Ly41 = dy.

The branching random walk can be constructed in the following way. We write I/ the
set of all finite sequences of integers —following the Ulam-Harris notations for trees— and for
u € U, we write |u| the length of u. We consider a family of independent point processes
{L",u € U}, where L" has law Lyy+1- For any u € U, we write L" = ( [ .E?V(u)). The
plane rooted tree which represent the genealogy of the population is

T={uveld :Vk<|ul—1ulk+1) < N(ug)}.

In particular, we observe that the tree T is a —time-inhomogeneous— Galton-Watson tree,
with reproduction law at generation k given by the number of points in a point process of
law L. We set V() = 0 and, for u € T with |u| = k,

k-1
V(u) = V(mu) + () = > EZZ;’+1)‘
=0

For a given u € T, the sequence (V (ug), V(u1),...V(u)) of positions of the ancestors of u
is often called the path or the trajectory of u. Finally, we write M,, = max,—, V' (u) the
maximal displacement in the branching random walk.
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Branching random walk through an interface

In this chapter, we take interest in a branching random walk with an interface. In this
model, the environment of the time-inhomogeneous branching random walk scales at rate
n, and consists in two macroscopic time-intervals, in each of which the reproduction law
remains constant. Let ¢ € (0,1) and £, Ly be two laws of point processes. To avoid a
discussion on the survival of the branching random walk, we assume that

> 1] > 1, (1.1.1)

lteL,

Vpe{1,2},P(L,=0)=0 and E

where L, is a point process with law £,. For all n € N, we write (T(”), V(”)) a time-
inhomogeneous branching random walk with length n, with environment £; until time tn,
Lo between time tn and n, and such that individuals at time n die without children. We
observe in particular that T is a tree of height n.

The branching random walk (T V(") is called branching random walk through an
interface -BRWi for short— of length n. When the value of n is clear in the context, we
often omit the superscripts to make the notation lighter.

Let p € {1,2}. We write &, for the log-Laplace transform of £,. For a € R, we
set kp(a) = supysqfa — rp(0) its Fenchel-Legendre transform. We observe that if «), is
differentiable at point a, we have

rp(a) = (53 (a)a — iy () (a)) (1.1.2)

1.1.2 Assumptions and main results

Using some well-known branching random walk estimates, we build heuristics for the
first order of M,,. It leads to a definition of the speed v' as the solution of an optimization
problem, that we study in a second time. In a third part, we finally state the main result
of this chapter —the asymptotic of M,, up to stochastically bounded fluctuations.

Number of individuals at a given level in a branching random walk

We list here some classical results for (time-homogeneous) branching random walks,
which can be found in [Bigl0]. Let p € {1,2}, we write (T,,V},) for a branching random
walk with reproduction law L£,. If there exists # > 0 such that x,(f) < +oo, then the
speed of the branching random walk is defined by

rip(0)
0

Vp e {1,2},v, = gnf(; =sup{a € R: ky(a) < 0} < +oo, (1.1.3)
>

in the sense that lim,_, 1~ %’LVP(U) = vy a.s.
Additionally, the function «}, is linked to the number of individuals alive at a given
level at time n. As proved in [Big77a], we have

{Va < vp, limy, s o0 2 log Dluj=n L{V,(w)>na} = —kp(a) a.s. (1.1.4)

¥a > vp, im0 3 10g P [Blul = n 1 V(u) > na] = —rj(a).

Note that with high probability, there is no individual above nv, at time n, and there is an
exponentially large number of individuals at distance of order n of this maximal position.
By (1.1.4), the quantity e ™%(9) is either an approximation of the number of individuals
alive at time n in a neighbourhood of na, or of the probability to observe at least one
individual around na at time n, depending on the sign of /@;(a).
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Heuristics for the maximal displacement

We now consider the BRWi (T, V). By (1.1.4), for any a; < vy, there are approximately
e~"tr1(a1) individuals alive at time tn at position tajn. Each of these individuals starts an
independent branching random walk with reproduction law L£o. By law of large number,
there are at time n about e ?#i(e)=(=tnr3(a2) individuals around (ta; + (1 — t)ag)n,
whose ancestors were close to tain. Therefore, there exists at least one individual to the
right of nb if there exists (a1, az) € R? such that

ta; + (1 —t)ag > b, a1 < vy and tk](a1) + (1 —t)k3(a2) < 0.
We define
v' = sup{ta; + (1 — t)ag, (a1,a2) € R?: xi(a1) < 0,txf(ar) + (1 — t)wi(az) <0} (1.1.5)

which we expect to be the speed of the BRWi. As xj(v1) < 0 and k3(v2) < 0 —these two
functions being lower-continuous— we have immediately tv; + (1 — t)vy < v'.
Observe that if we write

v* = sup{ta; + (1 — t)as, (a1, a2) € R? : tk}(a1) + (1 — t)k5(as) < 0}, (1.1.6)

we have immediately v' < v*. If v' = v*, this means that the condition x}(a1) < 0 doesn’t
play any role in the optimization problem (1.1.5), thus the path followed by the rightmost
individual until time n stays at any time k < tn below the boundary kv;. Otherwise, if
vt < v*, the condition x}(a;) < 0 is important, and the path followed by the rightmost
individual until time n has to be very close to the boundary tnv; at time tn. These
different situations lead to different behaviours.

Around the logarithmic correction

We assume that

Kp(Op)
Op

Vp e {1,2},30, >0:v, = =E

3 éeﬁpf—”p(‘%)] : (1.1.7)

(€L,

With some additional integrability conditions (see Chapter 7), the maximal displacement
at time n of (Tp,V}) is of order nv, — %logn + Op(1). Moreover, by (1.1.2), if &}, is
differentiable at point vp, then (#5) (vp) = 6. As a consequence, the value of (61, 0) is
linked to the question v' = v* raised above. If kj(a) and k%(a) are both finite for any
a € R, using careful analysis one can observe that

o if 0 < 0y, then tvy + (1 — t)vy = v' < v

o if §1 = Oy, then tvy + (1 — t)vg = v' = v*;

o if 1 > 0, then tvy + (1 — t)vg < v' = v*.
We observe that (1.1.8) is easily solved as soon as 6; < 5.

Proposition 1.1.1. Under assumptions (1.1.3) and (1.1.7), if 61 < 05 then
o' = tug + (1 — t)ve.

Proof. Under assumption (1.1.7), we have £%(v,) = 0. Assuming 01 < 63, let (a1,a2) € R?

be such that xj(a1) <0 and tkj(a1) + (1 —t)k5(az) < 0. By convexity of functions x;, we
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have

tv] + (1 — t)vg — (ta1 + (1 — t)az) = t(’l)l — al) + (1 - t)(’l)g — ag)

K1(v1) — Ki(a1) K5(v2) — K5(az)
91 92

k3(a1) k5 (az)

IT —(1—-t)2—=

>t

+(1—-1)

> —t
leading to

tvy + (1 — t)vy — (tar + (1 — t)ag)
> —tif(a) (7 — ) — (tri(ar) + (1 = Dr3(a2)) 35 > 0.

Therefore for any pair (aj,a2) we have tvy + (1 — t)ve > ta; + (1 — t)ag, that yields
tvy + (1 — t)va > v'. We conclude observing that by definition, v' > tvy + (1 —t)ve. O

If ; < 63, one would expect that in the optimization problem (1.1.5), the condition
ki(a1) < 0 plays a role, and the optimal path would have been higher by increasing a
little a;. This observation hints that with high probability, the rightmost individual at
time n descends from one of the rightmost individuals at time tn. Therefore the maximal
displacement at time n is, up to a Op(1) the sum of the maximal displacement at time tn
of (T1, V1) and the maximal displacement at time (1 — ¢)n of the branching random walk
(TQ’ VQ).

If 1 = 65, there should be no “pressure” on the path followed by the rightmost
individual at time n to be within distance O(1) from the boundary of the branching
random walk at time tn. Nevertheless, we still expect the path to be within distance
O(nl/ 2) from this boundary. This has a cost % log n, thus one would expect the behaviour
of the maximal displacement at time n to be similar to the one of a time-homogeneous
branching random walk.

Finally, if 8, > 65, the “pressure” for the optimal path to stay close to the boundary
does not exists. Moreover, the optimal path stays far from the boundary at any time
k < n. As a consequence, the branching issues should not play any role in this case, and
we expect the maximal displacement in this process to have a behaviour similar to the
maximum of an exponentially large number of independent random walks of length n.

The asymptotic of the maximal displacement

We define here three different regimes for the BRWi, indexed by the sign of 6; — 6.
The asymptotic behaviour of the maximal displacement depends on the regime, as the
path followed by the rightmost individual at time n has very different features in each of
them. To provide some integrability conditions, for L, a point process with law £,, we
define

Xp(0)=> (1+ £.)e% and X,(0) = > 2eb.
¢eLy teL,

The slow regime. We assume 01 < 6. In this regime, the rightmost individual at time
n descend from one of the rightmost individuals at time tn, and the following result holds.
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Theorem 1.1.2. Under the assumptions (1.1.1), (1.1.3) and (1.1.7), if 61 < 62 and

max E[S,(0,)]+E | > efrllog, (Xp(0,))%| < +oo
pe{1,2} lel,
then
M, = nv' — <3+3>lo n+ Op(1)
"= 20, ' 26,) B TRV

The mean regime. If §; = -, the behaviour of the BRWi is very similar to the one of
a classical branching random walk. In particular, the following result holds.

Theorem 1.1.3. Under the assumption (1.1.7), writing 6 := 01 = 0o, if

max E[3,(0)] + E Z e log. (X,(0))?| < +oo
peil 2} teLy
then
M, =n(tvy + (1 —t)va) — — logn + Op(1).

26

The fast regime. If §; > 05, then the path leading to the rightmost individual at time
n stays far from the boundary. We assume that
trk1(0) + (1 — t)r2(0)

Uy = é&% 7 < 400. (1.1.8)

Moreover, we assume there exists § > 0 such that

v = t’“e(e) + (-2 9 E|Y ¢’ O+ 1-0)E | O (1.1.9)
lel leLy
and that
S PO —ki(6) < 0. (1.1.10)
Le L

Under these assumptions, (1.1.5) can be solved once again. The following result links the
quantities vi, v* and v,.

Proposition 1.1.4. Under assumptions (1.1.8) and (1.1.9), we have v* = v,. Under the
additional assumption (1.1.10), then v, = v'.
Moreover, assuming (1.1.3), (1.1.7), (1.1.8) and (1.1.9), if 61 > 02, then (1.1.10) holds,
0 € (91,02) and
tog 4+ (1 — t)vg < v' = v,.

Proof. We write

Z feee_’“(e)] and a9 =

lely

Z geee—@(a)] ’

YA )

and we observe that xj(ay) = 0ap — kp(0).In effect, if there exists ¢ > 6 such that
kp(p) < 400, then a, is the right derivative of £, at point # by dominated convergence.
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Moreover, by convexity of k,, we have k(@) — kp(0) > (¢ — 0)a,. Similarly, if ¢ < 6,
kp(p) — K£p(0) > (¢ — 8)ap. We conclude that

a, — kp(0) > sup pa, — kp(p) = Ky (ap).
peR

We prove in a first time that v* = v,. We first observe that
t(0a; — Kk1(0)) + (1 — 1) (fag — K2(0)) = Ov, — tr1(0) — (1 — t)k2(0) = 0.

Therefore, v* > v,. Moreover, by convexity of k1 and kg, for all (b1, bs) € R? such that
tr(b1) + (1 —t)x5(b2) < 0, we have

ta1 + (1 - t)a2 — (tbl + (1 - t)bg) = t(a1 - b1) + (1 - t)(ag — bg)

K1(a1) — k1(b1) +a Aft)%§(a2) g‘ﬁi(bz)

Z t ((9&1 — /ﬁ:l(e)) + (1 - t) (9&2 — /{2(9))
= v, — (tr1(0) + (1 — )ka(0)) = 0.

>t

As a consequence, optimizing in (b1, b2), we obtain v, > v*.

Moreover, under the additional assumption (1.1.10), we have xj(a;) < 0, yielding
ta; + (1 —t)ag < v'. As v < v*, we can conclude.

We now assume (1.1.3), (1.1.7), (1.1.8) and (1.1.9), and that 6 > 6. As a Legendre
transform, &, is a convex function, which is twice differentiable on the interior of D), :=
{0 >0:kp(0) < +oo}. We write

fpip—oE

Z gesof—ﬁp(@)] — ().

(eL,

By dominated convergence again, for any ¢ in the interior of Dy, f,(¢) = @y, (0) — kp(p).
As a consequence, ), is an increasing function on its definition set.

Note that ¢, (6),) = ky(vp) = 0 and that ¢, (0) = ry(ap). As

tr1(a1) + (1 = t)rz(az) =0,

if k{(a1) > 0, then k3(a2) < 0. As fi and fo are increasing, we have 6; < 6 < 0y which
is in contradiction with 6; > 6. As a consequence, xj(a;) < 0, thus (1.1.10) holds, and
v' = v,. Additionally, we have 0y < 6 < 6;.

We prove then that tvy + (1 — t)ve < v'. We observe that 1 is finite on [0, 0] and k2
is finite on [02,60]. As a consequence, for a, > 0, and = > 0 small enough, we have

K (v1 — 22) = =201+ O(2®) and &} (vg + %x) = %021‘ + O(z?).
As a consequence, as soon as afl; < 69, for x > 0 small enough we have
v; >t (v — Gx) + (1 —1) (vg—i—%x) =tvy + (1 —t)vy + (B — a)x.

Thus, choosing 8 > « such that af; < (62 —which exists as 0y < 01— we obtain v; >
tv] + (1 — t)v2. O

The following theorem describes the asymptotic behaviour of the maximal displacement
of the branching random walk in the fast regime.
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Theorem 1.1.5. Under the assumptions (1.1.8), (1.1.9) and (1.1.10), if

E[Z,(0)] +E
ax [3,(0)] +

< +00

S log, (Z eepe)

(L, teL,

then

1
M, = nv, — %logn+ Op(1).

NN N

(a) Regime 61 > 62 (b) Regime 61 = 02 (c) Regime 61 < 02

Figure 1.1: Regimes in the branching random walk with interface

Remark 1.1.6. We observe that if 8,607, 60s exist, then 0 is always between 6; and 62, by
convexity of k1 and ko. We write M,, = not — \ logn + Op(1). We note that v! evolves
continuously with respect to £; and Lo, while

. : 1
lim )\lzi>i> lim \'=—.
03—0; 61" 201 9,0, 261

We also observe that A' does not depend on the value of ¢.

In Section 1.2, we introduce a time-inhomogeneous version of the spinal decomposition,
which links the computation of some moments of the branching random walk with time-
inhomogeneous random walk estimates. In Section 1.3 we introduce some well-known
random walk estimates, and extend these to time-inhomogeneous random walks. Finally,
we bound in Section 1.4 the right tail of the maximal displacement in all three regimes,
and use it in Section 1.5 to prove Theorems 1.1.2, 1.1.3 and 1.1.5.

1.2 The spinal decomposition of the time-inhomogeneous
branching random walk

This section is devoted to the proof of a time-inhomogeneous version of the well-
known spinal decomposition of the branching random walk. This result consists in two
ways of describing the same size-biased law of the branching random walk. The spinal
decomposition of a branching process has been introduced on Galton-Watson processes
in [LPP95]. In [Lyo97], this result has been successfully adapted for the first time to
the study of branching random walks. Until now, many results obtained in branching
processes use this spinal decomposition, or its simpler version: the many-to-one lemma,
first introduced by Peyriere [Pey74].
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1.2.1 The size-biased law of the branching random walk

Let (L, n € N) be a sequence of laws of point processes which forms the environment
of the time-inhomogeneous branching random walk (T, V). For any = € R, we set P,
the law of (T,V + z) and E, the corresponding expectation. We recall that, for n > 1,
Fn =0 (u,V(u) : |u] <n) is the natural filtration of the branching random walk.

We write y(6) the log-Laplace transform of £y, and we assume there exists § > 0 such
that for any n € N, k,,(0) < +00. We set

Wp= Y exp <9V(u) - zn: Hk(9)> 5
|lu|=n k=1

we observe that (W,,) is a (F,)-martingale, that W,, > 0 P,-a.s. and that E,(W,,) = €*,
therefore, we can define the law

P,

=e Wy Pglr . (1.2.1)
Fn n

The spinal decomposition consists in an alternative construction of the law P, as the
projection of a law on the set of planar rooted marked trees with spine, which we define
below.

1.2.2 A law on plane rooted marked trees with spine

Let (T,V) € T be a marked tree, and w € N be a sequence of integers. We write
wy, = (w(l),...w(n)) and we assume that for all n € N, w, € T. The triple (T, V,w) is
then called a plane rooted marked tree with spine of length n. The spine of a tree is a
distinguished path of infinite length which links the root and the boundary of the tree.
The set of marked trees with spine is written 7. On this set, we define, for n € N the
filtrations

Gn =0 ((wj, V(wy)),j <n)Vo((u,V(u),ue Quw;),j<n) and Fn=FuVGn

In particular F is the natural filtration of the branching random walk with spine, F is
the information of the marked tree, obtained by forgetting about the spine, and G is the
sigma-field of the knowledge of the spine and its children only.

Figure 1.2: The graph of a plane rooted marked tree with spine

position position position

\s
W\

. L ﬂ .
0 — — time O // — time O time
(a) Information in 7 (b) Information in F (¢) Information in G

We now introduce a law P, on 7. For any k € N, we write

£ = (Z eeenk(a)) L,

leL
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a law of a point process with Radon-Nikodym derivative with respect to L, and we write
L, = (Ek(j), j< Nk) an independent point processes of law Lj. Conditionally on (Ly),
we choose, for every k € N, w(k) < Nj independently at random, such that

P (wk) = h|Lik <n) =L =g

We denote by w the sequence (w(n),n € N).

We now introduce a family of independent point processes {L",u € U, |u| < n} such
that LY = zk+1, and if u # wy,), then L has law Ly, ;. For any u € U such that
lu| < n, we write L* = (¢}, ... 7]{[(“)). We construct the random tree

T={uecld:V1<k<|ul,ulk) < N(ug-1)},

and the the function
T — R

DY Sy

For all z € R, the law of (T, xz+V,w) € T is written f’x, and the corresponding expectation
is Ew

This law is called branching random walk with spine, and can be constructed as a
process in the following way. It starts with a unique individual positioned at x at time
0, which is the ancestral spine wg. Then, at each time k < n, every individual alive at
generation k die. Fach of these individuals gives birth to children, which are positioned
around their parent according to an independent point process. If the parent is wg, then
the law of this point process is [Zk, else it is L. The individual wy1q is then chosen at
random among the children u of wy, with probability proportional to eV (%),

In the rest of the chapter, we write P, ; the law of the time-inhomogeneous branching
random walk starting from z with environment (Lg41,...£Ly). In particular, observe that
conditionally on G, the branching random walks of the descendants of children of w; are
independent, and the branching random walk of the descendants of u € Q(wy) has law

Py () kt1-

Figure 1.3: Construction of P
Wo
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1.2.3 The spinal decomposition

The following result, which links the laws P, and P, is the time-inhomogeneous version
of the spinal decomposition.

Proposition 1.2.1 (Spinal decomposition). For all x € R and n > 1, we have

o, = P, g (1.2.2)
Moreover, for any n € N and |u| = n, we have
~ exp (0V (u) — > p_q kr(0
Po(wp = ulFp) = Lery 6V (u) = F )). (1.2.3)

Wy

Proof. Let n € N and x € R, we introduce the (non-probability) measure P} on ?, in
which every possible choice of spine has mass 1. More precisely, for any JF,, measurable
function f, we have

Z f(T,V,w)

|lw|=n

[ H(TV.w, )Py V. 0) = E,

We compute in a first time by recurrence on n the Radon-Nikodym derivative of P,
with respect to P}, to prove

dP,,
dP*

n
= exp <9(V(wk) —x) — Z Kk(9)> . (1.2.4)
7 k=1
Observe that for n = 1, (1.2.4) follows from the definition of L, and w(1). In effect,
writing L1 a point process of law £; and f a non-negative F; measurable function,

01 (k)

N1 Nk
E |f(Li,w(1)| = E Zf(il,mm =B Zf(Ll,Me“l(k)-mw)].
k=1 j=1 k=1

We now assume (1.2.4) true for some k € N, and we observe that

P, = Py X ( Z ee(v(u)—v(wk))_l‘ik+l(9)) efz(lf/lwl)*vv(wk) :
dp; Fenr x| 7, weQwy) Zueﬂ(wk) OV () =V (wg))—ki+1(9)
k
= exp (Q(V(wk) —x) — Z [{j(e)) ee(v(wkﬂ)*v(wk))*ﬁkﬂ(9)’
7j=1

which proves (1.2.4).
As a consequence, for any J,-measurable function f:7 — Ry, we have

B, [f(T,V)] = /T V) =0 = 3 5O f(T V) PE(T, V)

=E, |f(T,V) Z 69(‘/(“)—%)—2;:1@(60

u[=n

= e—@a} E, [an(Tv V))
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therefore R
dP,,
dP,,

_dP,
- dP,

n

- W,
Fn

which proves (1.2.2).
Moreover, for any F,-measurable function f : 7 — Ry and v € U with |u| = n, we
have

E, [f(T,V)l{wn:u}] - /? OV (wa)=2)= 3 (0) FIT, V)1 —ydPL(T, V, w)

_B, /(1) Y L@ m(o)l{w}]

L v[=n

—69V(u)

I
el
8

n

f(T7 V)]-{uGT}]

[ OV (u)

Il
=)
8

f(T7 v)l{uET}‘|

n

by (1.2.2), which ends the proof of (1.2.3). O

A direct consequence of this result, which can also be proved directly by recurrence, is
the well-known many-to-one lemma. This equation, known at least from the early works
of Peyriére [Pey74] has been used in many forms over the last decades, and we introduce
here a time-inhomogeneous version of it. Let (X,,n € N) be a sequence of independent
random variables such that the law of X, is characterized, by Riesz extension theorem,
by

VfeG,E[f(Xn)] =E

Z f(é)e%—nn (6)

{eLy

We define the time-inhomogeneous random walk S by S,, = So+ Z?:l X that starts from
z € R under law P,. In other words, we assume P, (Syp = x) =1 for any z € R.

Lemma 1.2.2 (Many-to-one). For all x € R,n € N and non-negative measurable function
f, we have

E, | Y f(V(w),...V(uyp))

|ul=n

— R, [eesﬁz?-l“j(@) S sl (2

Proof. Let f a continuous bounded function and x € R, we have, by Proposition 1.2.1

Ox
~E, % STV (), V(ug))

n
[ul=n

E, | Y f(V(w),...V(uy))

lu|l=n

Ox
% STV (), V(ug))

n
[ul=n

Il
=
8

Il
=
8

e’ N eV IP(w, = ulFp) f(V(wr), ... V(uy))

u[=n

OV (wn)=2)+37 O F(V (wy), ... V(wn))} :

Il
=
8
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Moreover, by definition of P, we observe that the law of (V(wy), ...,V (wy)) is the same
as the law of (Si,...S,) under P,, which ends the proof. O

The spinal decomposition and the many-to-one lemma are used to compute moments
of the number of individuals in the BRWi that stay in a given path, by using random walk
estimates. The random walk estimates we use in this chapter are introduced in the next
section, and extended to include time-inhomogeneous versions.

1.3 Some random walk estimates

We collect a series of well-known random walk estimates, the local limit Theorem, the
ballot Theorem and the Hsu-Robbins Theorem. By classical methods, we extend these
results to bound the probability for a random walk to make an excursion above a given
curve. In a second time these results are extended to random walks enriched by additional
random variables, correlated with the last step of the random variable. Finally, these
estimates are extended to the case of “random walks through an interface”, which we use
with the many-to-one Lemma to prove the main theorems of the chapter.

1.3.1 Classical random walk estimates

We denote by (T},,n > 0) a one-dimensional centred random walk, with finite variance
o2. We write P, for the law of T such that P,(Ty = z) = 1, and P = Py. We begin with
Stone’s local limit theorem, which bounds the probability for a random walk to end up in
an interval of finite size.

Theorem I (Stone [Sto65]). There exists C > 0 such that for alla >0 and h >0

a2

limsupn'/? sup P(T, € [y,y + h]) < C(1+ h)e 272.

n—-+o0o |y|2an1/2
Moreover, there exists H > 0 such that for all a < b e R
lim inf n'/? inf P(T, € [y,y+ H]) > 0.

n—-+o0o ye[anl/Q,bnl/Q}
A similar result has been obtained in [CC13], for the random walk conditioned to stay
positive.

Theorem II (Caravenna-Chaumont’s local limit theorem). Let (r,,,n > 0) be a positive
sequence such that r, = O(nl/Q). There exists C > 0 such that for all a > 0, h > 0 and
Y€ [07 Tn]:

a2
sup Py(T), € [z,z+h]|T; >0, <n) <C(1+ h)ae 22 n~1/2,

x>anl/?
Moreover, there exists H > 0 such that for all a < b € R,
liminfn'/? inf inf P(T, € [z, 2+ H]|T; > —y,j <n) > 0.

n—+400 y€[0,ry] xe[an1/27bn1/2}

Up to a transformation 7' — T'/(2H ), which corresponds to shrinking the space by a
factor ﬁ, we may and will always assume that all the random walks we consider are such
that the lower bound in Theorems I and II hold with H = 1.

The next result, often called in the literature the ballot theorem, compute the prob-
ability for a random walk to stay above zero. This result is stated in [Koz76], see also
[ABROS] for a review article on ballot theorems.
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Theorem IIT (Kozlov [Koz76])

There exists C > 0 such that for alln > 1 and y > 0
Py(T; > 0,j <n) < C(1+yn
Moreover, there exists ¢ > 0 such that for all y € [0,n'/?]

Py(T; > 0,j <n)>c(1+yn /%

A modification of this theorem, Theorem 3.2 of Pemantle and Peres in [PP95], expresses
the probability for a random walk to stay above a boundary moving “strictly slower than
1/2»
n-/7"

Theorem IV (Pemantle—Peres [PP95]). Let f : N — N be an increasing positive function
The condition

>

n>0

3/2

is mnecessary and sufficient for the existence of an integer ny such that
supn'PP(Tj > —fj,np < j <n) < +oo
neN

Using Theorems III and IV, we prove two more estimates. First, a quantitative version
of the probability for a random walk to stay above a curve

Lemma 1.3.1. Let A > 0 and o € [0,1/2), there exists C > 0 such that for any (f,) € RN
verifying |fn| < An®, y >0 and n > 1, we have

Py(T; = —fj,j <n) <C(1+y)

n~1/2.
Proof. Let k € N, we write 7, = inf{n

>0:T, < —k—An“}. As |f,] < An®, for any
y € [k— <n) <P(rp > n).
writing

We now bound P(7; > n)

1,k], we have P (T; > —f;,3j

I/\’ﬂ

Vk € N, Ky, = supn'/?P(ry > n), K'= sup (n+1)"?P(T, € [y,y +1])
neN yER,NEN

1/2
and K* = sup " P(T; <y,j <n), (1.3.1)
neN,y>0 1+ Yy
which are finite, by use of Theorems I, III and IV. For k£ € N, we have
n—1
P(rp >n) <P(ri>n)+ Y P >n—p,m=p)
p=0
n—1
<Kin 24+ Py =n—pmn=p). (1.3.2)
p=0
Let p < n. Applying the Markov property at time p, we have
P(ry >n—p,m1 =p) <P(n =p) Sl[lp]P(Tj —z2=Ap" = —Alp+j)* =k, j < (n—p))
z€[1,k
<P(n=pP(T; =2 -Aj"—(k—1),j < (n—p))
<P(n

=p)Ky-1(n —p) /2.
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We now bound P(r; = p). Conditioning on the p*® step, we have
P(n=p)=P[I, <-1-Ap"T; > -1 - Aj% j <p| = E[pp-1(X,)]
where we set pp(z) =P [T, < -1 - Ap® +2,T; > -1 — Aj*,j <p|] forz € Rand p € N.
By the Markov property applied at time p’ = [p/3] to obtain

op(z) < Klp’_1/2 supP(T,—py + 2z € [2,0]T; +2>0,j <p—17).
z€R

We write fj =Tp—p — Tp—p—j, which is a random walk with the same law as T. We
often refer to this process as to the time-reversed random walk of T. For any z > 0,
P(T, y+2€[x,0,Tj+2>0,j<p—7p)
< P(fp_p/ +ze,0,Tj < —x,5 <p)
<P(T; < —x,j <p) SuﬂgP(Tp—%’ € ly,y+al)
ye

< K*(L+a4)(p/3) 2K (14 21)(p/3) 7'/

We have P(r; = p) < K1 K*K'(p/3) ™2 E (1 + (X,)1)?). As E(X}) < 400, there exists
a constant K > 0 which does not depend on k, such that (1.3.2) becomes

P(rx >n) <P(m1 >n)+ ZP(Tl =p, Tk > N)
p=1

n—1
< Kin Y%+ K, 1K Zp*S/Q(n —p)*l/2 < Kin Y24+ 1OKKk,1n*1/2.
p=1

Thus, there exists C' > 0 such that for all n > 1 and k € N, P(1, > n) < C(1 + k)n~/2,
which ends the proof. O

We now bound from above the probability for a random walk to make an excursion.

Lemma 1.3.2. There exists C' > 0 such that for allp,q € N, x,h > 0 and y € R, we have

Po(Tprg € ly+hy+h+1,T) > ylyspy, i <p+q)
(1+xz)Ap'/? 1 (1+h) A q'/?
pl/2 max(p, g)'/2 ql/2 :

Proof. We denote by p' = [p/2], ¢ = |q/2] and by p"” = p -9/, ¢" = ¢ — ¢. By the
Markov property applied at time p’, we have

<C

Po(Tprq € ly+hy+h+1,T; >yl i <p+q)
<Py(T; 20,5 <p) sup Po(Tyriq € [y+hy+h+1T; 2y p" <j<p"+4q).

z>—x

We denote by Tj, = Ty +q — Ty 4q—k, which is a random walk with the same law as T'. We
observe that, for all z € R
Pz(Tp”—l—q S [hah + 1]7T7 2 O7p” < .7 S p// + Q)
<P(Tyig€lz+hz+h+1,T;<h+1,j<q)
< P—h—l(Tp”+q € [Z - 172]7Tj <0,5 < Q)‘
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Applying again the Markov property at time ¢’, we deduce that

Po(Tyrg € ly+ g+ b+ 1,75 2 Yl gpeseprapsd <+ a)
<SP(T;>0,j <p)P_p1(T; <0,j < ¢)sup P(Tpyrign € 2,2+ 1))
z€R

<C

1+x 1+h
Al <C=2A1 <C———
pl/2 _qu/2 = max(p,q)1/2

using Theorems I and III. O

These two lemmas can be mixed together to bound the probability for a random walk
to make an excursion above some slowly moving curve.

Lemma 1.3.3. For any A > 0, there exists C' > 0 such that for all y,h > 0 and n > 1,
we have

Py(T, + Alogn € [h,h +1],T; > —Alog 4,7 < n)

(1+y)An?2 1 (1+h)An'/?

<C nl/2 nl/2 nl/2

Proof. Let A >0 and n € N, we write p = |n/3]. Applying the Markov property at time
p, we have

P, (T, — Alogn € [h,h+1],T; > —Alog . —7,J < n)
<P,(T; 20,j <p)supP.(T;,—p + Alogn € [h, h + 1], T; > —Alog -—t7,7 < n—p)
z€R

<P,(T; > 0,j < p)P_p_1(T; < Alog(j +1),j < p)sup P(Ts, € [2,2 + 1]),
z€R

by time-reversal and the Markov property applied at time p. We then apply respectively
Theorem IV, Lemma 1.3.1 and Theorem I, as well as the fact that probabilities are bounded
by 1 to conclude the proof. O

The lower bound in Theorem II can be used to obtain a lower bound on the probability
for a random walk to make an excursion.

Lemma 1.3.4. For allt € (0,1), there exists ¢ > 0 such that for all n > 1 large enough,
z € [0,n'/?] and y € [-n"/?,n'/?] we have

(1+x)

PZ‘(TR S Yy + 17Tj 2 y1{]>tn}7] S n) 2 C n3/2

Proof. Let t € (0,1), n > 1, z € [0,n"/?] and y € [-n'/2,n'/?], by the Markov property
applied at time p = |tn|, we have

Px<Tn <y+ 17T’] > yl{j>tn}7j < 77,)
>P (T, <y+ 1,7, € 3%, 4n' 2| Tj > yl oy, < n)

>P,(T, € 20123012, T; >0, <p) inf P (T, <y+1,Tj>y,j<n-—p).
2€[2n1/2 4n1/2]
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Observe for one part that

P.(T, € 202,302, T; > 0,5 < p)
= PJ:(TJ Z 07] S p)Px(Tp € [2’01/2,3711/2”1}' Z 0’-7 S p)

L4g )
. :
> ey > Pu(Ty €22+ 1T > 0,5 <p)
z= £2n1/2J

> c(1+z)n~ Y2,

applying Theorem IIT then Theorem II. On the other hand, for all z € [2n'/2,4n'/?], by
time-reversal

Pz(Tn—p Sy"’—laTj Z%] Sn_p)
ZP(j—\‘ﬂ*p—{_Ze [yay—i_l]aj:‘j éoa] §n—p)
> inf P,(T,_p€[z,7+1],T;<0,j<n—p)>cn !

z€[n1/2,4n1/2)
using once again Theorems II and III. O
So far, we only considered boundaries that grows slower than n'/2. Similar estimates

can be obtained for the random walk when the barrier moves at linear speed, namely the
Hsu-Robbins theorem. It is used to study branching random walks in the fast regime.

Theorem V (Hsu-Robbins [HR47]). For all € > 0, we have

Z P(T, < —ne) < +oc.
n>0

By dominated convergence theorem, Theorem V implies

ZETOO%P(Tn < —ne —z) = 0. (1.3.3)

1.3.2 Extension to enriched random walks

We extend some of the results obtained in the previous section to a random walk
enriched by extra random variables, which are correlated to the last step of the random
walk. Let ((X,,&,),n > 0) be an i.i.d. sequence of random variables taking values in R
such that E(X1) = 0, E(X?) < +o0o and E(£2) < +oo. Weset T, = Tp + X1 + -+ - + X,
where P, (Ty) = z) = 1. The process (T},,&n,n > 0) is an useful toy-model for the study
of the spine of the branching random walk, defined in Proposition 1.2.1; in effect the n'®
step of the spine w, is only correlated with the displacement of the siblings of w,. We
begin with a lemma similar to Theorem III.

Lemma 1.3.5. We suppose that E(X1) = 0, E(X?) < 400 and E((&1)2) < +o0o. There
exists C' > 0 that does not depend on the law of &1 such that for alln € N and z > 0, we

have

P12 0,5 <3k <0 Te < &) < 01T [P(6 2 0) + B((E))]



50 CHAPTER 1. BRANCHING RANDOM WALK THROUGH AN INTERFACE

Proof. Let n € N and z > 0. We observe that

P, [Tj>0,j<n3k<n:Tp <& <Y Po[lh <&, T;>0,j<n].
k=1

Tk

Applying the the Markov property at time k, we obtain

T < B | Lirce Lin205am P (T 2 0,5 <n — k).
By use of Theorem III, for all z € R, we have

P.[T;>0,j<n—kl <C(L+2)(n—k+1)"*1 5.

Thus, writing (X, ) for a copy of (X1,&1) independent of (T,,&,,n > 0), we have

e < C(n—k+1)72 By [1g 50 (1+ &) Lm <) Lmy >0, <k |

< Cln—k+1)7"?Ba [Lieooy(1+ €)1 pr<e1x ) Lo <1
We bound this quantity by conditioning on the value ( = &4 + X_ > 0, we obtain

(2 (1+¢) o 2
P (T, < (T >0, < k) < {C(k+1)3/2 if¢7 <k, by Lemma 1.3.2

C (k—l%% otherwise, by Theorem III

Summing these estimates, we obtain

min(¢2,n—1) min(¢2,n—1)

1
P, [T, <(T;>0,7 <kl <C(1+

<C(1+z)1+ Y2,

and
- ) n—1 1
P, (1L <(,Tj 2 0,j < k] <C(1+a)(1+
ng [T < ¢, Ty > 0,5 < k] <C(1+2)( <>k222(k+1>3/2(n_k+1)1/2
<C(1+z)(1+ On~ 2,
thus
n—1
1

We conclude that

Yome < OB [l (1+ X+ €)1 +6)] < O L TR(X) [P(e 2 0) + BE)
k=1

by the Cauchy-Schwarz inequality, which ends the proof. O

This lemma can be extended to prove an analogue of Lemma 1.3.2.
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Lemma 1.3.6. We assume that E(X1) = 0, E(X}) < +oo and E((£1)%) < +oo. For all
€ (0,1), there ezists C > 0 that does not depend on the law of &1, such that for alln € N,
x,h >0 and y € R, we have

P, [TTL —y—he [07 1]711] > yl{j>tn}7j <n, 3k <n:Tp <&+ yl{k>tn}}

< OW P& > 0) +E((€)2)] -

Proof. Let n € N, x,h > 0 and y € R. We denote by 7 = inf{k > 0: Ty < & + ylipsiny}
and by p = [tn]. We observe that

P, T~y —h€[0,1,T) > yljomy,j < n,7 <n
<P, (Tn —y—he [Oa 1]aT3 > yl{j>p}a7_ Sp>
+ Py (T —y—h € 0,115 >yl p <7 <n). (134)

We first take interest in the event {7 < p}. Applying the Markov property at time p,
we obtain

Py [Tn —y—hel0,1,T; >yl 7 < P} =E; [1{Tj20,j§p}1{7§p}(p(Tp):| ,  (1.35)

where ¢(z) =P, [T,-p —y—h €[0,1],T; > y,j <n—p] for z € R. Using Lemma 1.3.3,
we have sup,cg p(2) < C(1 + h)n~1, which yields

P, (Tn—y—h€[0,1,T) > ylgsy, 7 <p)
SO+ Py [T;20,j <p, 3k < p:Tj; < &
<C(L+ )1+ hn ™2 [P > 0) + B((&)2)]

by use of Lemma 1.3.5. R R
We now take care of {7 > p}. We denote by T; = T,,—T,,—; and &; = &,—;. We observe
that (T},&;)j<n has the same law as (T}, &;)<n under Py, and

P, |Tn—y—hel0,1,T) 2 yl(spy,j Snp<7<n
P [Tn—y—he 0.1, T = Ty Sy +ht 1= ylnjcp). 1

IN

Hkﬁn—piTn—kﬁﬁn—k‘Fy

T, —To—y—h+2c(0,1],Th —Thj <h+1+ylysnp
dk<n—p:T,—Thr>y+h—(6—r+Yy)

IN

P,

thus, in terms of T
P, [Tn_y—he [0a1]>T] Zy]-{j>p} J<mn, p<T<7’L}

T, —y— h+x€[0 1],T; Sht1l—ylgsn p}]

<P,
W<n—p:Th>y+h—(E+y)

~

As a consequence, using the identity in law between (7', &) and (T, €), we have
P, [T~y —he[0,1],T) > ylgsy,j <np<7<n|
<Py [T —h—y+a € 0,1, Ty Sh+1-ylgsnpp Tk <n—p:Th>h—&

<Pp1 [Tn —y+z€[-L0,T; < —ylijcp py, 3k <n—p: T > =& — 1} -
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This quantity is bounded in (1.3.5) for the random walk (=T, &), where the roles of z and
h have been exchanged, thus similar computations give

P, |:Tyn_y_hE [Oa 1]71_’] > yl{j>p}aj <n,p<T< n}

. (I1+x)(1+h)
- (n+1)3/2
which ends the proof. O

[P(E>0)+B(E})]. (1306)

We use Lemmas 1.3.5 and 1.3.6 to control at the same time the position of the spine
and the number of its children.

1.3.3 Random walk through an interface

We extend the above results to time-inhomogeneous random walk. Let (X ,51), E>1)

and (X ,£2), kE > 1) be two independent sequences of i.i.d. random variables, centred with
finite variance. For 1 <p <n € N and k& < n, we write

kAp W (k—p)+ @
St=2 X7+ X
=i =1

a random walk of length n through an interface. We first bound the probability that such
a random walk makes an excursion.

Lemma 1.3.7. There exists C' > 0 such that for all1 < p <n and x,h > 0 and y € R,
we have
P (Sﬁ’" €ly+hy+h+1],87" > —alpe, + yl{k>p})

(1+x) Ap/? 1 (1+h)A(n—p)/?
p'/? max(p,n — p)*/? (n—p)'/2

<C
Proof. We write Sj(-l) = i:l X,gl) and S](-z) = i:l XIEQ). Informally, SP" is the concate-
nation of SM) and S®. Applying the Markov property at time p, we have immediately
P (Sﬁ’” ely+hy+h+1],80" > —alpe, + yl{k>p}>

<P (8> —a,j<p)suwpP (S, +zely+hy+h+1,8? >y j<n-p)
z€R

< (c(lﬂc) M) <0(1+h)A(n)—p)”2>,

p'/? (n—p

by Theorem I and Lemma 1.3.2.

_ T TR P o _
Moreover, if we write Sf = gpmn_ gbn ;» then SP™ is also a time-homogeneous random
(1

walk, with n — p steps with same law as X £2) and p steps with same law as .S} ). Moreover

P (Sﬁ’" €ly+hy+h+1],87" > —alpy,y + y]-{k>p})

<P (SEmely+hy+h+10,80" < (h+ Dljcupy + @ +2+h+ 1)1 y)
(L+R) A (n—p)/2 (1 + ) Ap'/2

(n —p)1/? p ’

using the same arguments as above. Choosing the smallest upper bound concludes the
proof. O

<C
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1.4 Bounding the tail of the maximal displacement

Let (T,V) be a BRWi of length n, and M,, be its maximal displacement at time n.
We compute in this section a tight estimate for P(M,, > m, + y) as y and n — +o0, for
a suitable choice of m,,, in each of the three regimes.

1.4.1 Slow regime : strong boundary effects

We assume here that all the hypotheses of Theorem 1.1.2 are fulfilled. We write
p = [tn] and

3 3 1 3
my, = pv1 + (n — p)vy — (291 + 202) logn and m, = pv; — z—ellogn.
In these conditions, the rightmost individual at time n descends from one of the rightmost
individuals at time tn. As a consequence, the bounds on the tail of M, is a straightforward
consequence of Aidékon’s Theorem [Aid13] on the asymptotic behaviour of the maximal
displacement in the branching random walk. We recall here a corollary of this result, of
which we provide an independent proof in Chapter 7.

Theorem 1.4.1. Let (T", V") be a time-homogeneous branching random walk. If there
exists 0* > 0 such that k(6*) :=E [Z‘u‘zl ee*vh(“)] < 400 and

CE| Y vh(u)e"*vh@“(@*)] — K(07) =0,
Jul=1
and if
2
E Z Vh(u)Qee*Vh(“) +E (Z ee*vh(“)) log, (Z Vh(u)ee*vh(“)) < 400
Ju|=1 Ju|=1 |u|=1

then there exist c¢,C' > 0 such that for alln € N and y € |0, nl/Q],

lul=n

Wrpetrer (max Vi (u) 2 n®5) — g logn + y) <C(L+y)e .

The main result of the section is the following.

Lemma 1.4.2. Under the assumptions of Theorem 1.1.2, there exist ¢,C' > 0 such that
for any n > 1 and y € [0,n"/?], we have

c(1+y)e ¥ <P(M, > my, +y) < C(1+y)e M.

Proof. We observe that the p = [tn| first steps of the branching random walk (T, V)
are similar to the p first steps of a branching random walk with reproduction law L;.
Moreover, L1 satisfies all hypotheses of Theorem 1.4.1, therefore there exist ¢, C' > 0 such
that for all n > 1 and y € R,

c(1+y)e ¥ < P(‘m‘aXV(u) >ml +y) <O +y)e 0. (1.4.1)
u|=p

To obtain the lower bound of this lemma, we observe that the rightmost individual at
time p starts from its position an independent branching random walk with reproduction
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law Lo. Using again Theorem 1.4.1, there exists r > 0 such that with probability at least
r, its rightmost descendant at time n makes a displacement of at least (1 —t)von— % log n.
As the maximal position at time n is greater than the position of the rightmost descendant
of the rightmost individual alive at time n, we have

P(M, > my, +vy) > rP(max V(u) > mk +y) > c¢(1 +y)e Y,
=p

|ul=
by the lower bound in (1.4.1).
We now take care of the upper bound. We write, for k& < p, f,gn) = kv, — % log zﬁﬂ'
Note that with high probability, no individual crosses the boundary f(™ at any time k < p.
By the Markov inequality and Lemma 1.2.2, we have

P Bl <p:V(w) > [+

IN
M”@

2P 1{V(u)2f,§")+y} ! {V(uj)§f§")+y,j<k}]

lul=k

B
Il
—

o~ 01Ktk (01)1

IN
M=
=

{328 40821 4wa<n}

=
Il
—

__r
(p— k4 1)32

3

3/2

IN

P (S 2 " +y.5 < f” +vy.5 < k).
k

For all k < p, conditioning with respect to Sx — Si_1, we have
P (S > fi” +3,8 < £ + 1,5 < k) <E oSk — Se1)],
where
or(®) = 1> P (Skfl > f;in) +y—x5; < f](n) +y,j <k-— 1)
S (m) ()
<SS P(Sea— A —yela—1,-a,8 <V 4y <k-1)
a=0
(1+2)%(1+y)
- (k+1)3/2 7
by Lemma 1.3.3. As E((Sy — Sk_1)?) = E(Z1(61)) < +00, we have

P [Ful <p:V(w) > fi) +y| < CO+y)e . (1.4.2)

We now decompose the population alive at time n according to the position of its
ancestor at time p. For y, h > 0, we set

Xn(,h) = D Liv(w—ml —ye[-h—1,—h}1

= {Veup<r+i<r}

the number of individuals who, staying below f(™) are at time p close to ml +y—h. By

the many-to-one lemma, we have

_ —01Sp—pr1(6
E(Xu(y,h)) = E |5 1)1{51977%%246[h1,h]}l{sj<f<_”>+yj<p}
—Jj " =
< Op*PM VP (9, —my, —y € [~h—1,—h],S; < f;"” + 9,5 <p)

<C(l+y)(1l+ h)e‘elyeelh
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by Lemma 1.3.3. Each one of the individuals counted in X,,(y, h) starts an independent
branching random walk with reproduction law L2. By Theorem 1.4.1, the probability that
one of the descendants of an individual positioned at time p to the left of m,, +y — h, is
at time n above m,, + y is bounded from above by C(1 4+ h)e~%2". As a consequence,

“+o0o
P(M, > my +y) < PEul <p: V(w) > £ +1) + Z E(X,(y,h))C(1+ h)e %"

<C(1+y) “’1?/( +Z (14 h)2elr=02)h
<O +y)e %

using (1.4.2) and the fact that 6 > 6;. O

1.4.2 Mean regime : a classical branching random walk estimate

We now consider a BRWi (T, V) of length n, such that the hypotheses of Theo-
rem 1.1.3 are fulfilled. We obtain in this section an asymptotic similar to the one of
a time-homogeneous branching random walk. We write § := 6; = 65, p = |nt] and

n

7.

20

My = NUsx —

We prove in a first time a boundary estimate.

Lemma 1.4.3. Under the assumptions of Theorem 1.1.3, there exists C' > 0 such that for
alln € N and y > 0,

Pl <n:V(u) > f| ‘ )b y) < C(1 +y)e .

Proof. Let n € N and y > 0, we write

Zn(y)= Y 1{V(u)2f‘<;‘)+y}I{V(Uj)<f§">+y,j<\u\}'

lul<n

Applying the many-to-one lemma, we have

E|Z, y)| = E 1 . 1 . ‘
)] kzz:l uz::k {V(u)Zf,ﬁ )+y} {V(uj)gfj ’+w<k}]
— B | e 05+ (kAP)k1(0)+(k—p)+r2(0)

{Ssz,i">+y}l{sj<f§”>+y,j<k}] ’

where (Sk, k < n) is a time-inhomogeneous random walk, with step distribution verifying

E[f(Sk — Sk-1)] = E Z F0)e = O for k < p,
_KELl 1

and E[f(Sy — Si—)] =E | Y f(0) | for k > p.
L{€ L2 1
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As k1(0) = vy and ko(0) = Ovg, for any k < n

E | e 0Sktkni(6) {ssz,inuy}l{sj<f§”)+y,j<k}
<L6_9yP (Sk >y, S < 1y < k)
“(n—k+1)3/2 = Jk 125 = )
<L/26_9y E [pr—1(Sk — Sk-1)]

“(n—k+1)3/2

where we write ¢ (x) = P (S’k > f,gi)l +y—x,5 < f](n) +uy,j < k) by conditioning with

respect to the last step of the random walk. Observe that if £ < p, by Lemma 1.3.3 we
have oy (z) < C(1 +y)(1 + )2k=53/2,

If k > p, writing p’ = |p/2], we have
or(x)
P (S <jvty,j <p)supPy . (Skp > fi +y— 2.8 < f0, +y.5 < k=)

1+y

<O WPy (Siop > [ 4y =85 < [T +g <k =)

by Lemma 1.3.1. Writing §j = Sk — Sk—;, we have

P,. (Sk_plzféi)l+y—x Sy < 9ty i< k- p)
<P (S’\kf flgi)l —y+tzE [—iL',O],Sj > fk+1 _fk;—j —x,] < k_p/)
<P (8 > jvs — 35 log(n

14+ 14z
(k—p)l/2~ nl/2

—k+j)—mj Sk—p) sup P (Sp_py € 2,24+ 2 + C])
z€R

<C

by Lemma 1.3.1 and Theorem 1.

As E(31) + E(X2) < 400, we have E(S?) + E((Sp+1 — Sp)?) < +0o0, thus

E | e 0Sktkri(0)1

g, > () 1 N
k>fr Y Si<f; +y.g<k

3/2 _
< C(k+1)3/;(n7k+1)3/2 (1+y)e® k<p
> 1/2 _
C(k_p)l/QTl(n_k+1)3/2(1 +y)€ Qy?k >p

summing these estimates for k < n gives

3/2 n3/2

P
n
z:: n—k—|—1)3/2k3/2+ Z (k: p)1/2(

P P R nl/2
<C(1+y)e ™ [Z £3/2 Z L1/2 1)3/2]

E[Z.(y)] < C(1 +y)e”

—k+ 1)3/2}
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This lemma is enough to obtain an upper bound on P(M,, > m,, +y). To bound this
quantity from below, we use a second moment argument. For all n € N and k& < n, we
write

n 3
g,(C ) = (k Ap)vy + (k—p)yvs — 1{k>p}% logn +1
a boundary close to f(™ but simpler to use. We prove in this section that the set
An(y) = {u € T, ful = n: V() > mp + 9,V (u) < g+, <n}

is non-empty with high probability. To do so, we restrict ourselves to a subset of individuals
which do not have too many children. We write

(n)
B, (z) = {u eT,|ul =n:E&(u;) < e2(V ()=, i< n} ,

where €(u) = Yyeaqy (1 + (V (W) = V(u))4)e VIV,
We set G(y,2) = An(y) N Bup(z), and we compute now the first two moments of
Yn(ya z) = E|u\:n l{ueGn(y,z)}-

Lemma 1.4.4. Under the assumptions of Theorem 1.1.3, there exists C' > 0 such that for
alln €N, y >0 and z > 0, we have

E [Vu(y,2)*] < Ce*(1+y)e™
Proof. Let p = |tn], applying Proposition 1.2.1, we have

~

E(V(y:2)") = E |- Ya(v. 2| =B

1
i 2 HueGaway¥n(v:2)

n
|ul=n

- E [6—9V(wn)+pm(9)+(n—p)ﬁz(9)

Lw,eGu(y,2)} Yn(Y; Z)} :
Using the fact that w, € A,(y) C Gp(y, 2), we have
E(Yn(ya 2)2) < Cn3/26—9yE [Yn(yv Z>1{wn€Gn(y,z)}} .

We decompose Y, (y, z) along the spine, to obtain

n—1
Yn(ya Z) < l{wnEGn(y,z)} + Z Z Yn(uay)v
k=0 ueQ(wy)

where, for u € T and y > 0, we write Y, (u, y) = 30/ |=nw>u L{ueAn(y)}-

We recall that under the law f’, for all ¥ < n, the branching random walk of the
children of an individual u € Q(wy,) has law Py () x41. As a consequence, for y > 0, k <n
and u € Q(wy),

E [V (u, )] = Byuasr | D2 1{V(u'>zmn+y}1{

/ (n) :
|u/|=n—k—1 V(u.i)ggk+j+l+y’]§n7k}

As a consequence, by Lemma 1.2.2, we have
E [V (u, 1) Gnl < COn3/2e=09 0V (u)=(k+1Ap)K1(0) = (k+1-p)+r2(0)

X PV(u),k—‘rl (Sn—k:—l > mp + Y, Sj < gj(‘j_)k+1 + yaj <n-—k-— 1) .
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For k <p—1 and z € R, applying the Markov property at time p, we have

Pm,k+1 (Sn—k—l > mp + Y, Sj < gj(‘i)]pﬂ + y7j <n-—k- 1)
<Pupy1(Sj<(k+j+Dui+y+1,j<p—(k+1))

X iugph,p(sn—p > (n—P)UQ‘FyaSj Sjv2+y+1vj Sn_p)
S
1+(w—g;§”+)1 —y)+ 1

< -
=¢ (p— k)12 n

by Lemma 1.3.7. Similarly, for all £ > p and = € R, we have

L+ (x *951)1 —Y)+

(= k4192

Px,kJrl (Snfk:fl = My + Y, Sj < g]('i)k+1 + y7j <n-— k — 1) < C

using Lemma 1.3.2.
For all k£ < n, we write

n u)— (n)
S (1 (V) g —y)e) L0 gk*l)l{wnecn<y,z>}]
u€Q(wy)

~ n wy)—g™
<E {ﬁ(wk) (14 (Vwn) = g =) ) ) V0 gk“)l{wnecnw,z)}]

hi =E

~ n ] w)—ag(™
<eE {(1 +(Vwe) =gy —y)) eV gkﬂ)l{wneAn(y)}}
Decomposing this expectation with respect to the value taken by V(wy), we have

+o00 > _ (n) B L
hk S Cezegy/Z Z(l + h)efeh/QP l Sn = 7721;1) + Y, ‘S.1k gk.+1 y S [ h 1, h,] .
=0 Sj<g; +y.j<n

We apply the Markov property at time k£ to obtain

J
. n g M _ () . _
X xE[f}znffl,fh] P, [Sn—k > mp — gy, ;95 < Ir+5 — Ik+10J <n k} .

If k£ < p applying Lemma 1.3.2, we have

(1 —+ y)(l + 1{k:p} logn + h)
(k4 1)3/2

P(Sp— gl —ye-h—1,-h,8 <g” +y,j<k| <C

and applying Lemma 1.3.7,

. (n) (n) (n) -
a:e[—}zn—fl,—h] P, [Snfk > My — Gy, 7Sj < It — Ikt10J <n-— k}
(14 1g—py logn + h)

<
- (p—k+1)12n

By similar arguments, if k > p we have

(L+y)d+h)
n(k —p+1)1/2

PS5 — gy —yel-h—1,-n],8; <g" +y,j <k <C
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as well as
- ) o~ () _ (0 N (1+h)
re[—gl—fl,—h] P, {Snfk > My — g, 7S < It — gk.t,_laj <n k} < C(n A 1)3/2-

Therefore, if k¥ < p, we have

X A+h)(14+h+ 1y logn)2e 0"/

<01 byt=
h < C(1+y)e };) Gt D i1 - K Rm D)

(1 +y)e
n(k —p)/2(n — k+1)3/2

In the same way, if & > p,

< (Cz

+o0 1+y)(1+h)36—9h/2
he < z Oy (
k_Ce e Zn(k_p+1)1/2(n_k.+1)3/2

(1 +y)e
<C .
- Zn(k:—p)l/2(n—/<:+1)3/2

As a consequence, for k < p, we have,

(n)
R n3/2e09 11— (k+1)r1(6)
E | lw,conwe) D Ya(wy)| < Chye™® 1/2
wetttn) nip+1—k)
3/2
<Ce*(1+y) "

(k+1)32n2(p —k+ 1)

Summing these estimates for k < p, we have

YVunetnwey D Yo(wy)

p—1
> E
k=0

ueQ(wg)
lp/2] p—1
< Cz(1+vy) |n3? Z (k+1)73/2 4 n=5/2 Z (p—k+1)7"
k=0 k={p/2)+1

< Cz(14y)n™% (1.4.3)

Similarly, if £ > p, we have

(n)
1372091~ Pr1(0)—(k+1-p)r2(0)
E 1{wn€Gn (y,2)} Z Y u y < Chkeiey 3/2
wete) (n—k+1)
1
< Cz(1+y)

n(k —p)/2(n —k+1)3"

Summing these estimates, we have once again

Z E(l,conway 2 Yalwy)| <Cz(l+yn 2 (1.4.4)
k=p+1 ueQ(wy,)
And for k = p, we have
1 2
Elconwe > Yaluw,y)| <Cz(1 ) Oif) . (1.4.5)
u€Q(wp)
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We note that

P(wy € Au(y)) < P(Sy = my +4.5 < ¢ + 9.5 <n)

<P(S; <vij+y,j< p)suﬁpp,x(sn >wve(n—p)+y,S; <voj+y+1,j<n-—p)
Te
By Lemmas 1.3.1 and 1.3.2, this yields

- 1+
P(w, € G,(y, 2)) < CnT/zy‘

(1.4.6)
We conclude that

E(Y,(y, 2)%) < Cn®2e B Yo (4, 2) 1w, oy}

n—1
(1{wneGn(y,z)}+Z > Yn(“aw) 1{wneGn<y,z>}]

k=0 uEQ(wk)

< Cn32e~E

n—1
< Cn®2e% |P(w, € Gu(y,2)) + Y_E
k=0

1{wn€Gn(y,z)} Z Yn(uay)] ]

ueQ(wy)
< C(1+y)e”,

by (1.4.3), (1.4.4), (1.4.5) and (1.4.6). O

Lemma 1.4.5. Under the assumptions of Theorem 1.1.3, there exist ¢ > 0 and z > 0
such that for alln € N and y € [0,n'/?], we have

E (Y, (y,2)] > c(1+ y)e_ay.

Proof. Let n > 1 and y € [0,n'/2], applying the Proposition (1.2.1), we have

1
7 2o Yueonwen

n
ul=n

> n32e” WP (w, € Gu(y, 2)).

E(Yn(y7 Z)) = E = E {ev(wn)—pﬁl(g)—(n—p)ng(

(%
RIc——

To bound P(w, € G,(y,z)), we observe that
P(wn € Ap(y) N Ba(2)) = P(wy € An(y)) — P(wy € An(y) N Bp(2)°).

We bound f’(wn € A, (y)). Applying the Markov property at time p, we have

P(wy € Au(y)) = P(Sy = my +9,5; < ¢ + 9.5 < n)

P(S, — pv1 —y € [3nY2,5nY%],8; > ju, +y,5 < p)

v

i (n) .
> — . < L < _ )
. J:E[3n11}12f,5n1/2] Pp,x(snfp = Mn = PUL SJ S Ypyj — PV ST p)

By Theorems IT and III, we have easily

P(S, —pv1i —y € [3711/2,5”1/2]7% > jui+y,5 <p)
14y

>P(S, —pvi € [4n1/2,5n1/2],5j > jur +y) > 75
n
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Moreover, setting §j =S, — Sy—j and ¢ = [(n — p)/2], we have

> — - < . — <n-—
xe[3n11}l2f,5n1/2} Ppo(Snp 2 10 = pv1, 85 < g, = pr1,j <n—p)

> inf  P(S,_,— (n— Slogn e [—x—1,—x],8; > jvs,j <n—
_xe[?mllgfml/?] (np (n p)U2+29 ogn € [~z ] j = Jv2,) SN p)
> P(S, € [n'/%,2n1%),5; > jua,j < q) inf P(S, , ,€[-z—1, 2]
z€[0,7n1/2]
L 1
= a2 X iz

using Theorems II and III for one part, and Theorem I for the other part. We conclude
that

14y
n3/2 :

P(w, € A(y)) > ¢ (1.4.7)

We now compute an upper bound of P(w, € A,(y) N B,(2)¢). We observe that

P o Viwa) = my +y, Viwy) < 6"y, <n,
P(w, € A,(y) N Bu(2)¢) =P (wp) > mp +y (753) <y; uj— y,i<n
e < n:Elwy) > erer (V)=o)

<M+ o

where we write

T =

I < p: E(wy) > eres (VD=9

av)

T =

V(wn) > mp + 1, V(wy) < g™ +y,5 <n,
Tp <k < wy) > erer Vo) '

To bound 71, applying the Markov property at time p, we have

m <P (V(wj) <jui+y,j <p,Ik<p:3(logé&(wy) —2) > V(wg) — k‘vl)

xsuEpr(Sn —p = Mn +Y,5; <g§ vy, j<n—p)
e

15 . .
<C_ P (V(w)) < joi+9,5 < p, 3k < p: 3 (log&lwy) — 2) > V(wy) — kvy — y)

by Lemma 1.3.2. Using Lemma 1.3.5, we obtain

m < clnj/j/ [P (log €(wo) — = 2 0) + B ((log &(wo) - 2)2)]

As E(X,(log X;,)?) < +oo, we have E((logg(wo))i), thus by dominated convergence

theorem
n3/2

lim  sup

m = 0.
2400 neN,y>0 I+y

Similarly, for mo, we apply the Markov property at time p again, we have

Ty < E (1{V(wj)Sjv1+y7jﬁp}¢(v(wp))>
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where, for x > 0,

V(wn—p) > mn +y,V(wy) < gV + 9.5 <n—p, )

sO(w)Sf’,z( n
P\ k< n—p: 2 (log€lwg) — 2) > V(wy) — g —y

<ot (pv;;iy — [P(log&(wpsn) — 2 2 0) + B ((log (wps1) — 2)7 )|

by Lemma 1.3.6. As a consequence,

“+o0o
T2 < Z%E (I{V(wp)—pm—yE[—(a+1)n1/2,—an1/2}}1{V(wj)§jvl+y7jﬁp}(’D(V(wp)))
a=

< O [Pllog€(wps1) — 2 = 0) + B ((log &(wpi1) — 2)3 )|

400 1/2
1 2
xS :MP (Sp —pvy —y € [—(a+ 1)nY2 —an'/?], S; < jur +y,j < P)

- 372
+o0o

< C [Plogt(uwprr) — = > 0) + B ((log&(wper) — 2)3)] Y We_caa
a=0

applying Theorem IT and Lemma 1.3.1. As E(X3(log X2)?) < 400, we have
n3/2

lim  sup mg = 0.

2400 neN,y>0 I+y

We conclude that for any € > 0, there exists z > 1 such that for all n > 1 and
y € [0,n'/2], we have

P(w, € An(y) N Bu(2)) < e(1 + y)n /2,
We conclude there exists z > 1 large enough and ¢ > 0 such that for any y > 0,
E(Ya(y,2)) > e(1 +y)e .
O]

Using these three lemmas, we obtain the following bound on the tail of the maximal
displacement.

Lemma 1.4.6. There exist ¢,C > 0 such that for alln > 1 and y € [0,n/?] we have
c(1+y)e % <P(M, >m, +y) <CA+y)e %,
Proof. The upper bound is a direct consequence of Lemma 1.4.3, as
P(M, > my +y) <PEu| <n:V(w) > £ +y) < CO+y)e™.

For the lower bound, we use the Cauchy-Schwarz estimate, we fix z > 0 such that there
exists ¢ > 0 verifying

E(Ya(y, 2) 2 ¢(1+y)e
which exists by Lemma 1.4.5 Using Lemma 1.4.4, we have
E(Ya(y,2)%) < C(1+y)e .
As a consequence, by the Cauchy-Schwarz inequality, we have

E(Ya(y, 2))?
E(Ya(y,2)?)
which ends the proof. O

P(M, > m, +vy) >PY,(y,2) > 0) > > (14 y)e %
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1.4.3 Fast regime : large deviations of a random walk

We assume in this section that all the hypotheses of Theorem 1.1.5 are true. We write

1
M = NVx = o5 log n.
In these conditions, the rightmost individual at time n descend from one individual at
distance O(n) from the rightmost position at time tn. Thus the boundary computations
are of no use to obtain this asymptotic, the upper bound is easy to obtain, as the branching
structure does not play a role in this asymptotic. Let

CL1:E

leln el

Z Eeoé’“(e)] and a9 =E

Z geae@(e)]

the slopes followed in each stage by the individual reaching the highest position at time
n.

Lemma 1.4.7. Under the assumptions of Theorem 1.1.5, there exists C' > 0 such that for
alln € N and y > 0,
P(M, >m, +y) < Ce™%.

Proof. We write p = |tn]. For any y > 0, we write

XaW) = D Livwelmntymntyti]}-

lu|l=n
By Lemma 1.2.2, we have
E(X,(y)) = B [ 0Smtrm@Ornnn®y g o vy
< Ce Wnl2P (S, € [mn +y,mp +y+1]).
Applying the Markov property at time p, we have

P (S, € [mn +y,my, +y+1]) <sup P(Sg_p €lz,241]) <Cn V2,
z€R

applying Stone’s local limit theorem, where S? is a random walk with step distribution
verifying

E Zf(g)e%*ngw)

lelo

=E|f(5} - 5{0)].

As a consequence,
P(Mp, > my, +y) <E(X,(y)) < Ce™.

O
To obtain a lower bound, we apply once again second moment techniques. Let § > 0

such that
O(a1+9) — Kk1(0) >0 and 6O(az + 20) — k2(0) < —20,

which exists by (1.1.10). We write r,gn) = 0k1lgr<py + 0(n — k)1ypspy, and introduce an
upper boundary for the set of individuals we consider

gl(cn) =ai(kAp)+az(k—p)y + r,(fn) — 1{k>p}% logn + 1.
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For y > 0, we set
An(y) ={u € T,|u[ =n:V(u) —my € [y,y +1],j < n}
and

(n)
Bu(y,2) = {u ET,|ul =n:&(u;) < et V() < g™

j +y+z,j§n}.

We write Gn(y, 2) = An(y) N Bu(y, 2), and Yy (y,2) = Yju=n LueGn(y,2)}- We compute
the first two moments of Y;,(y, z) in the following lemma.

Lemma 1.4.8. There exists C' > 0 such that for alln € N, y > 0 and z > 0, we have
E [Yn(y, 2)2} < Ce? %
Moreover, there exist ¢ > 0 and z > 0 such that for alln € N and y € [0, nl/g], we have
E [V, (y,2)] > ce .

Proof. Let n € N and y > 0, we write p = [tn], and compute the second moment of
Y, (y, z). By Proposition 1.2.1, we have

E(V(y:2)) = E |- V(v 2| =B

1
W, Z LiueGn (y,2)} Yn (¥, Z)]

n
|ul=n

= B [0V (ot O+ mnna®y oo Ya(y,2)]

Using the fact that w, € A,(y) C Gp(y, 2), we have

E(Yn(y, Z)2) < Cnl/Qe—GyE [Yn(y, Z)l{wnEGn(y,Z)}}

< C’I’Ll/2€_0y

n—1
P(w, € Gn(y,2)) + >_E (l{wnEGn(y,z)} > Yn(uvy))]

k=0 ueQ(wy)

where, for u € T and y > 0, we write Yy, (u,y) = 3|y |=nwsu Lwed,(y)}- We recall that

under the law P, the branching random walk of the children of an individual u € Q(wy,)
has law Py () x41- As a consequence, for y > 0, k < n and u € Q(wy),

E [Yn(u, )|Gn] = Ev(u) k1 [ > 1{V(u'>2mn+y}1{v(u<)<g,§’3“+y j<n_k}] .
Jj’= J W=

|u/|=n—k—1
As a consequence, by Lemma 1.2.2, we have
E [Yn(u, y)| gn] < Cnl/Qe—GyGQV(u)—(k—l—l/\p)m(6)—(k+1—p)+52(9)
X PV(u),k+1 (Snfkfl > My + Y, Sj < g](':L_)]g+1 +y,j<n—k-— 1) .
Using the Markov property at time p if K+ 1 < p, for any k£ < n we have

PV(u),k+1 (Sn—k—l = My + Y, Sj < gj(‘:i)kJrl + yaj <n-— k — 1)
< SUpP 1)y (S € 22+ 1]) < Ol — 1) 72
zE
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by Theorem 1.
For any k£ < n, we compute the quantity

hy, =F

LwneGulwa)) D eg(V(U)gén))]‘

u€Q(wy)
By definition of £(wy) we have

_(n)
10, e oy V )8 >§(wk>}

n) ~
< o2 P [wn, € An(y)]

(n) (n)
< Ce* i eeyP(Sn —mp € [y,y +1]) < Ce™ o n_1/27

hy < CE

by Theorem I. We finally observe that

E [Yn(y, 2)2}

I n—1
Scn1/2€—9y f)(wn € An(y)) + Z CE (1{wn€Gn(y,z)} Z Yn(uvy))]

k=0 uEQ(wk)

n—1
<Cn'?e=% |Cn=12 4 Cn/2e=% Z hke
k=0

09" —((k+1)Ap)r1(0)—(k+1—p) 1 K2(6))
(n—k+1)1/2

p n
Sceny 1_’_262z+(571~a’1‘(a1))k+ Z

e22—pr](a1)+6(n—k)+(k—p)r3(az)
k=0 k=p+1

=kt 1)
SC€2z79y,
as sup,ey [pri(a1) + (n — p)rz(az)| < +oo.

We now bound the first moment of Y;,(y,z). For any y € [0,n!/2], by the spinal
decomposition again, we have

E[Y,(y,2)] =E {e_ev(wn)“'lml(9)+(n—p)52(0)

1{wn€Gn(y’3)}i|
> /26005 [Bu, € Ay (y) — Plw, € Au(y) N Ba(y.2)7)]

We observe that P(w, € A,(y)) > en~1/2 by Theorem I, moreover

~

P(wn € An(y) N Ba(y, 2)") < En: P(V(wn) —ma € ly,y + 11, V(wy) > 6" +)
k=0

n
+ 3 P(V(wn) —mn € [y,y + 1], (log €(wg) — 2) > 1),
k=0
For any k < p, applying the Markov property at time p and Theorem I again, we have

~ n C
P(V(wn) —ma € [y, + 1.V (wi) = 6" +y) < 5 P(Sg — hay > 0k +2)

B(V (wn) = o € lysy + 1] (o (un) — 2) = 6) < -

P (logﬁ(gvo)—z > k)

)
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therefore

STP(V(wy) —mn € ly,y + 1), Vi(wg) > glin) + )

k=0
p o~
+ S P(V(wa) — € g,y + 1], (log () — 2) > (")
k=0
~ _ p
= nSQ (E [(logg(wg) & + ZP(Sk > kay +2)| .

k=0

Similarly, for k > p, we write §j = V(wp) — V(wp—;) and EJ = {(wp—j). Applying
time-reversal we have

P(V(wn) — 1 € [y, y+ 1, V(wp) = g +)
<P(Sp—mn € [y, y+1], 5 > (n—k)(ag — 8) — z — 1)

< WP(gn,k —(n—k)kay > —-0(n—k)—=z—-1)
as well as
P(V(wn) = my € [y,y + 1], (log & (wy) — 2) = 6k)
Sf’(gn—mne [y,y—i—l],logg(w%)_z Zn—k)
< ng213 (logs(wgmfz > 5(n — k,)> .
Consequently

S P(V(wn) = ma € [y,y + 1], V(wg) > g +y)
k=p+1

+ Z P(V(wp) —mn € [y, y + 1], (log &(wy) — 2) > T’gn))
k=p+1

C (a[0ogé(wpi1) —2)+] 2o
< (E{ b ]+I§P(Sk2ka1+z) :

As E(X;log X1) + E(X2log X2) < +00, using Theorem V, and more precisely (1.3.3),
we have

im sup n'2P(w, € An(y) N Buly, 2)¢) = 0.
Consequently, for any z large enough we have P(w, € Gy,(y,z)) > en~/2, which leads to
E[Y,(y,2)] > ce™¥
for all n > 1 and y € [0,n'/?], provided that z is large enough. O

Using these two lemmas, we obtain the following asymptotic tail for the maximal
displacement at time n.

Lemma 1.4.9. There exist ¢,C > 0 such that for alln € N and y € [0,n/?] we have

ce % < P(M, >m,+y) < Ce %,
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Proof. Upper bound is obtained in Lemma 1.4.7. We apply Lemma 1.4.8 to obtain a lower
bound, fixing z > 0 such that E(Y,,(y,2)) > ce”%. We know that E(Y,,(y,2)?) < Ce=%,
and apply the Cauchy-Schwarz inequality again

EY,
P(My > my +y) > P(Va(y,2) > 0) >

1.5 From tail estimates to the tension

The aim of this section is to obtain the tension of M,, — m,, using the tail estimates
obtained in the previous section. The main tool, similar for the three regimes, is the
application of a cutting argument. We use the fact that the size of the population in the
branching random walk alive at time k grows at exponential rate, as in a Galton-Watson
process. Each one of the individuals start an independent branching random walk, and
has positive probability to make a descendent to the right of m,, at time n > k, which is
enough to conclude to the tension of M, — m,,.

We start this section by recalling the definition of a Galton-Watson process. Let u be
alaw on Zy, and (X, (k,n) € N?) an i.i.d. array of random variables with law u. The
process (Z,,n € N) defined by recurrence by

Zn
Zo =1 and ZnJrl = Z Xk,n+1
k=1

is a Galton-Watson process with reproduction law u. The quantity Z, represents the size
of the population at time n, and X, ; the number of children of the Eth individual alive at
time n. Galton-Watson processes have been extensively studied since their introduction
by Galton and Watson in 1874 '. The results we use in this section can all been found in
[ANO4].
We write
‘ 0,1 — [0,1]
I s — E [SXl*l} = 3700 u(k)s.

We observe that for alln € N, E (SZ”) = f"(s), where f™ is the n'" iterate of f. Moreover,

if m := E(X1,1) < +o0, then f is a C! strictly increasing convex function on [0,1] that
verifies

f(0)=p(0), f(1)=1 and f'(1)=m.

We write g the smallest solution of the equation f(q) = ¢, it is a well-known fact that ¢ is
the probability of extinction of the Galton-Watson process, i.e. P(In € N: Z, =0) = q.
Observe in particular that ¢ < 1 if and only if m > 1. If m > 1, we also introduce
o= —18L ¢ (0, +o0].

Lemma 1.5.1. Let (Z,,n > 0) be a Galton-Watson process with reproduction law p. We
write b = min{k € Zy : p(k) > 0}, m = E(Z1) € (1,400) and q the smallest solution of

1. Independently from the seminal work of Bienaymé, who also introduced and studied such a process.
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the equation E(q%') = q. There exists C > 0 such that for all z € (0,1) and n € N we
have .
q+ Czatt ifb=20
P(Zn S zm”) S Cz® Zfb =1
logb
exp {—Cz_logmglogb] if b > 2.

A more precise computation of the left tail of the Galton-Watson process can be found
in [FWO07].

Proof. We write sg = qg—l, and for all k € 7Z, s, = f¥(so) ~where negative iterations

are understood as iterations of f~!. Using the properties of f, there exists C_ > 0 such
that 1 — s ~p__0o C_m¥. Moreover, if 1(0) + u(1) > 0, there exists C; > 0 such that
Sk — d Yk—+oo C+f'(¢])k- Otherwise,

(b)) 2 ok
sk = f7(0) as k — 400

where f®)(0) = blpu(b) is the b derivative of f at point 0.

Observe that for any z < m™", we have P(Z,, < zm") = P(Z,, = 0) < 1, therefore, we
assume in the rest of the proof that z > m™". By the Markov inequality, we have, for all
z€(m™™ 1) and s € (0,1),

n, _ E(s% n
P(Zn < Zmn) :P(SZ" > g#m ) < (3 ) _ f (3>

- - grm” gzm™ !

In particular, for s = s;_,, we have P(Z, < zm") < 5k the rest of the proof

S )
consists in choosing the optimal k in this equation, depending on the value of b.
— _ —log 2 . .
If b = 0, we choose k = Togm—log F'(g) which grows to +o00 as z — 0, while k —n — —oc.
As a consequence, there exists ¢ > 0 such that for all n > 1 and z > m™",

(Sken) ™" < exp (C’zmk) :

As lim,_,o zm”* = 0, we conclude there exists C' > 0 such that for all n» > 1 and z > m™",

— log z log fl(‘Z>

P(Zn < Zmn) <q+ Cf/(q) logm—log f'(q) 4 szk =q+ Oz Tlogm—log f'(a) — q+ CzaLJrl

Similarly, if b = 1, then ¢ = 0 and f/(0) = p(1). We set k = 7282 there exists C' > 0

logm
such that for all n» > 1 and z > m™", we have

log p1(1)

log 2z
P(ZTL S Zmn) S C//L(l)_lcg% S CZ_ logm |

Finally, if b > 2, we choose k = _log}ﬂg%gbv there exists ¢ > 0 (small enough) such that

_ logb
P(Z, <zm™) <exp {—cz logmlogb] ,

which ends the proof. O

Proof of Theorems 1.1.2, 1.1.3 and 1.1.5. Let (T, V) be a branching random walk. We
set
n(tvr + (1 — t)vg) — (% + %) logn for Theorem 1.1.2

My = {n(tvy + (1 — t)vs) — 2 logn for Theorem 1.1.3
n(tay + (1 —t)az) — 55 logn for Theorem 1.1.5.
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We choose ¢ > 0 such that applying Lemmas 1.4.2, 1.4.6 or 1.4.9 depending on the case,
there exist ¢, C' > 0 verifying for all y € [0,n/?]

ce” < P(My > mp +y) < O(1 +y)e . (1.5.1)
As a consequence, we have easily

lim supP (M, >m,+y)=0.
Y=o neN

We now turn to a lower bound. Let Lq be a point process with law £1. For all h > 0,
we write Ny = 3 pcr, Lyg>—pn) and py the law of Nj, the number of children of a given
individual which makes a displacement greater than —h. We write

fn=E(s"™) and f=E [SN} ,

where N = #1L, is the total number of elements in L1. By monotone convergence, we have
In(s) h—> f(s) for all s € [0,1]. In particular, g, the smallest solution of f5(qn) = qn
—+o00

converge, as h — +00 to 0 the smallest solution of the equation f(¢) = ¢ (by (1.1.1)).
Moreover, E(N) > 1, we choose h large enough such that E(Ny) > 0? > 1. Applying
Lemma 1.5.1, we have

P (Z Ly wy>—kny < Qk) < qn+Cp*
|u|=k

for some 8 < 1. As a consequence, for all ¢ > 0, there exists h large enough and k large
enough such that for all n € N such that p > k, we have

P (Z Ly ()z—kny < 9'“) < 2%
lu|=k

We now consider (T, V(™) to be a BRWi of length n, such that tn > k. Let ¢ € N
such that [tq] = p — k. For every individual alive at time k in T("), we write

T“:{veT("):v>u,\v]§q+k},

and we observe that (T% V) — V() (4)) has the same law as (T@, V(). Thus, using
the lower bound of (1.5.1), we have
k

P(H\u]:k—f—qzv(”)(u)zmq—kh> >1-2e—(1—-¢)°.

Consequently, for all € > 0, there exists h > 0 and k£ > 1 chosen large enough, such
that for all n > k/t we have

P (Jul=k+q: V™ (u) > my—kh) >1-3e.

We observe there exists C' > 0 such that n — ¢ < Ck. Therefore, we consider €, h, k being
fixed. There exists y1 > 0 such that for all n > k/t

P(E||u| —k+q: V(v Zmn—y1> >1— 3¢,
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moreover, if there exists an individual u alive at time k + ¢ such that V(™ (u) > m, — y1,
as a point process with law Lo is always non-empty, we can consider v the rightmost child
of the rightmost child of ... of the rightmost child of u, which lives at generation n. There
exists obviously y2 > 0 large enough such that

sup PV (1) = VO () < ) < e,
neN
as a consequence,

P(M, >my, —y1 —y2) > 1 — 4e.

We conclude that

lim supP(M, >m, —y) =0,
Y=+ neN

which ends the proof of the tension of M,,. O



CHAPTER 2

Maximal displacement in a
branching random walk
through interfaces

Ta mavTa geL.
Héraclite d’Ephese

Abstract

We generalize in this chapter the results obtained in Chapter 1, allowing any finite
number of interfaces. We compute the asymptotic of the maximal displacement of
a branching random walk in a time-inhomogeneous environment, which consists in
a sequence of macroscopic time intervals, in each of which the law of reproduction
remains constant. In this model again, the asymptotic consists again in a first ballistic
order, given by the solution of an optimization problem under constraints, a negative
logarithmic correction, plus stochastically bounded fluctuations.

NoTA: This chapter is a slightly modified version of the article Mazimal displacement in a
branching random walk through interfaces submitted to Flectronic Journal of Probabilities
in May 2013.

2.1 Introduction

In the previous chapter, we considered time-inhomogeneous branching random walks
defined in the following manner. We fix ¢t € (0,1) and L1, L2 two point processes laws.
Given n € N, the BRWi (branching random walk with an interface) of length n starts with
a unique individual located at 0 at time 0. At time 1, this individual dies, giving birth
to children which are positioned on R according to a point process with law £;. These
individuals form the first generation of the process. Then, at each time k < n, every
individual alive at generation k dies, giving birth to children, positioned according to
independent point processes shifted by the position of their ancestor. The law of the point
processes is L1 if k < tn, and Ly if tn < k < n. At time n, individuals die with no children.
We proved in the previous chapter that under some mild integrability assumptions, the
maximal displacement at time n of the BRWi M, is given by a first ballistic order, plus a
negative logarithmic correction and stochastically bounded fluctuations.
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These results can be generalized to a time-inhomogeneous environment that changes
more than once. We set P > 0 an integer, 0 = ag < a1 < -+ < ap = 1 forming a
partition of [0,1] and (£,,1 < p < P) a family of laws of point processes. Let n € N,
the time-inhomogeneous branching random walk we study is defined as follows: every
individual in the process at generation k € [noy,_1,ncoy,) reproduces according to the law
L,, independently of all other reproduction events in the process. We prove, under mild
integrability conditions, that in such a branching random walk trough interfaces (BRWis
for short) the asymptotic of the maximal displacement is again given by a first ballistic
order plus logarithmic corrections and stochastically bounded fluctuations. The speed of
the BRWis is obtained as the maximum of an optimization problem under constraints.
The logarithmic correction strongly depends on the way the optimal solution interacts
with the constraints, as this interaction has an influence on the path followed by the
rightmost individual at time n.

We recall that ¢, C are two positive constants, respectively small enough and large
enough, which may change from line to line, and depend only on the law of the random
variables we consider. For a given sequence of random variables (X,,n > 1), we write
X, = Op(1) if the sequence is tensed, i.e.

I P(|X,| > K) =0.
i sup P(Xa] 2 K)

Moreover, we always assume the convention max () = —oco and min () = +oo, and for u € R,
we write uy = max(u,0), and log, (u) = (logu);. Finally, Cp is the set of continuous
bounded functions on R.

In the rest of the introduction, we give a formal definition of the BRWis in Section 2.1.1,
and describe an heuristic for the asymptotic for the value of M, in Section 2.1.2. Finally,
we give in Section 2.1.3 the asymptotic of the maximal displacement at time n, and
compare this result with the one we obtained for the BRWi in the previous chapter.

2.1.1 Definition of the branching random walk through interfaces and
notation

We recall that (T, V) € T is a (plane, rooted) marked tree if T is a (plane, rooted)
tree, and V : T — R. For a given individual u € T, we write |u| the generation to which
u belongs. If u is not the root, then 7wu is the parent of w. For k < |u|, we write ug
the ancestor of u in generation k. Finally, we write Q(u) = {v € T : mv = u} the set of
children of u.

In this chapter, we take interest in BRWis. In this model, the time-inhomogeneous
environment consists in a sequence of macroscopic stages. We set P € N the number of
such stages, 0 = ap < a1 < --- < ap = 1 the times at which the interfaces are placed,
and (L£,,p < P) a P-uple of laws of point processes. We assume that the point processes
are never empty and have supercritical offspring i.e.

Vp< PP(L,=0)=0 and E( > 1|>1, (2.1.1)
leLy,

where L, is a point process with law L.
For all p < P and 6 > 0, we write k,(0) = logE [ZZE% eeq the log-Laplace transform
of Ly, and for all a € R, x;(a) = supg>( [a — k()] its Fenchel-Legendre transform. We
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recall that the Fenchel-Legendre transform is an involution on the set of convex func-
tions. Moreover, if f: R — R U {400} is a convex function, and f* its Fenchel-Legendre
transform, if f* is differentiable at point z, we have

fr@) = () @)z = f (/) (@) (2.1.2)

For n € N and p < P, we write az(,n) = [noy). The BRWis of length n is a branching
random walk in time-inhomogeneous environment, in which individuals alive at generation

k reproduce with law £, for all az@l <k< al()n). In other words, this is a random marked

tree (T V(™) of length n verifying
° V(n)(@) =05
o {(V(") (v) = VW (u),v € Q(u)) U € T(”)} is a family of independent point pro-
cesses;
o (V(”) (v) = V) (u),v e Q(u)) has law £, if ozén_)l < |u| < 041(3”).
When the value of n is clear in the context, we often omit the superscripts to make the
notations lighter.

Remark 2.1.1. By splitting the first time-interval into three pieces, we may always assume
that the number P of distinct point processes we consider is greater than or equal to 3
in the rest of the article. This remark is discussed more precisely in the introduction
statement of Section 2.4.

2.1.2 Heuristics for the asymptotic of the maximal displacement
We fix an integer P, a sequence 0 = ap < a1 < --- < ap =1 and (£,,p < P) the laws
of points processes of the BRWis we consider.

Some well-known time-homogeneous branching random walk estimates

We recall once again the following classical branching random walk results, which can
be found in [Bigl0]. Let p < P, we consider a time-homogeneous branching random
walk (T, V) in which individuals reproduce according to £,. We write M, ,, its maximal
displacement at time n. If there exists § > 0 such that k,(6) < +o0, we write

Kp(6)
0

vp = inf =sup{a € R: k*(a) <0} (2.1.3)

0>0

which is the speed of the branching random walk, i.e. lim, % = vp a.s. Under the
assumption B B B B

Vp < P30, € Ry : 0,5,(0p) — rp(0p) =0, (2.1.4)

we have v, = /ﬁ;@p). Moreover, the function ry, is linked to the density of individuals alive

at time n around some point. As proved in [Big77a], we have
{Va < vp, limy, 54 o0 % 108 3" uj=n L{V,(w)>na} = —Hp(a) a.s. (2.15)

¥a > vp, limn oo 3 l0g P [Bful = n 1 V(u) > na] = —rj(a).

For all € > 0, with high probability, there is no individual above n(v, + ¢) at time n, and
there is an exponentially large number of individuals above n(v, — €). Equation (2.1.5)
gives that e~ (%) ig either an approximation of the number of individuals alive at time n
in a neighbourhood of na, or of the probability to observe at least one individual around
na at time n.
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The speed of the BRWis

We now consider the BRWis (T, V). Given a = (a,,p < P) € RY —in the rest of this

chapter, we write in bold letters real P-uples— we take interest in the number of individuals

alive at time n, whose path is close to alagn) at time a(n), alozgn) +as (aé”) - agn)) at time

ag ") and for all p <P, closeto Yt _ja (oz/,(€ ) _ a,g )1) at time az(,n). If such an individual

exists, we say that it “follows the path driven by a”.
. (1) ox T . .
Using (2.1.5), we know there are e~ #i(91) individuals alive at time agn) around

(n)

a;j ’ay if k7(a1) < 0, and none otherwise. Each one of these individuals —if any— starts an

independent branching random walk from agn)al, therefore by the law of large numbers, we

expect @1 #i(a1)=(aa =1 )r3(e2) ndividuals alive at time agn)

More generally, writing

at the wanted position.

o R? — RF

Ca = (Shi(ag —ag-)Rilag),p < P)
the rate function associated to the BRWis; the expected number of individuals that fol-
lowed the path driven by a is e=™"(2),

Observe that if for all p < P, K*(a), < 0, we obtain that with high probability, the
number of individuals that followed the path driven by a is strictly positive, thus the
maximal displacement at time n is greater than Zle(ozp — ap—1)ap. On the other hand,
if there exists pg < P such that K*(a),, > 0, then with high probability, there is no
individual that followed the path driven by a until time a,(;;), therefore no individual at
time n that followed the path driven by a.

position

— Frontier of the BRWis

— Interfaces

— Path driven by (v, p < P)
-- A non-followed path

— The optimal path

D

generation

Figure 2.1: Finding the optimal path
We set R = {a eRP:Vp < P, K*(a), < 0}. Following the heuristic, we expect to

find individuals alive in the process at time m around position nu if and only if v =
> (o — ap_1)ay for some a € R. As a consequence, we write

Vjs = Sup Z —ap_1) (2.1.6)
aER

which is the conjectured speed for the maximal displacement in the BRWis.
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The optimization problem
According to this heuristic, if the BRWis verifies

P
JaeR: v = Z(ap — Qp—1)ap, (2.1.7)
p=1

then the rightmost individual at time n followed the path driven by the optimal solution
a. Under the additional assumption

Vp < P,Va € R, k, is differentiable at point a or xj(a) = +o0, (2.1.8)
this optimal solution satisfies some interesting properties. To guarantee existence and/or
uniqueness of the solutions of (2.1.7), we need to introduce another hypothesis,

Vp < P, £kp(0) € (0,+00) and £, (0) exists. (2.1.9)

Proposition 2.1.2. If point processes L1, ... Lp verify (2.1.1), under assumption (2.1.8),
/
a € R is a solution of (2.1.7) if and only if, writing 0, = (m;) (ap), we have

(P1) 0 is non-decreasing and positive;
(P2) if K*(a), <0, then Opp1 = 6);
(P3) K*(a)p =0.

Under the conditions (2.1.4) and (2.1.8), there exists at most one solution to (2.1.7).
Under the conditions (2.1.8) and (2.1.9), there exists at least one solution to (2.1.7).

The proof of this result, which is a direct application of the theory of Lagrange multipli-
ers, is postponed to Section 2.B. Observe that, despite this would be a natural candidate,
the path driven by v := (v1,...,vp) is not always the optimal solution —as in the BRWi
case, tv] + (1 —t)vg is not always the correct speed. For example, if there exists p < P —1
such that @, > 0,1, Proposition 2.1.2 proves that v is not the solution. Loosely speaking,
in this case, the path of the rightmost individual at time n does not stay close to the
boundary of the branching random walk at all time.

Remark 2.1.3. On the other hand, under the assumptions (2.1.4) and (2.1.8), if 8 is positive
and non-decreasing, then v is indeed the optimal solution. In this case, v satisfies the first
assumption of Proposition 2.1.2, and the two others are easy since K*(v), = 0 for all
p < P. This situation corresponds, in Gaussian settings, to branching random walks with
decreasing variance. In this situation, the ancestors of the rightmost individual at time n
were at any time k < n within range O(n'/?) from the boundary of the BRWis.

On the logarithmic correction

In this section, we use the previous heuristic to build a conjecture on the value of the
logarithmic correction of the BRWis. For a time-homogeneous branching random walk
with reproduction law L£,, under assumption (2.1.4) and some additional integrability
conditions —as proved in Chapter 7— we have

MP) = nu, — 2? logn + Op(1),
P
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and the —5 logn second order comes from the following estimate for a random walk with
finite varlance

logP [S, <E(S,)+1,5; > E(S;),j <n]~ —g log n.
This is due to the fact that, if u is the rightmost individual alive at time n, then for all
k <n, V(u) < kvp, thus the path (V(up), V(u1),...V (u)) forms an excursion, as it has
been underlined in [AS10].
A similar condition holds for BRWis, the path leading to the rightmost individual at
time n stays at any time below the boundary of the branching random walk. If K*(a), = 0,
the optimal path is at distance o(n) from the boundary of the branching random walk at

time az(;") . Moreover, for all p < P such that 6,1 > 0,, we prove in Section 2.4.3 that the

ancestor at time al()n) of the rightmost individual at time n was within distance O(1) from
the boundary!. As a result, the logarithmic correction in the BRWis is a sum of terms
related to the probability for a random walk to stay below the boundary of the branching
random walk, and hit at time n this boundary.

From now on, a stands for the optimal solution of (2.1.6), and 0, = ()’ (a,). We write
T = #{6p,p < P} the number of values taken by € and ¢ < @2 < -+ < @7 these distinct
values, listed in the increasing order. For any t < T', let f; = min{p < P : 0, = ¢} and
Iy = max{p < P : 6, =¢;}. Observe that for all p € [f;,l;], we have 6, = ¢;. Finally, we
write

T
A:Zi

t=1

with the convention K*(a)g = 0. If K*(a)y, = 0, then between times agc *) ’, and a; ),
the optimal path stays close to the boundary of the BRWis, which has a cost of order
—% logn by the ballot theorem —see Section 2.3. The fact that at time al(tn), the optimal

path is within a widows of size O(1) has also cost of order —% log n by local limit theorem.
Finally, if K*(a);,—1 then the optimal path stays close to the boundary again, between
times ozl(tn_)l and ozl(zl).

We prove in the rest of this chapter that under some good integrability conditions
M, =~ vn — Alogn. We observe that A > 5— (p > (0. Moreover, if P =T =1, then A = G
which is consistent with the results of Hu—Shi [HS09], Addario-Berry—Reed [ABR09] and

Chapter 7.

2.1.3 The asymptotic of the maximal displacement in the BRWis

We recall that a is the maximal solution of (2.1.7). We write
B={p<P:K"(a),—-1 =K*(a), =0}, (2.1.11)

for all k& € Upep| ; )1, (n)] the path leading to the the rightmost individual at time n is
within distance o(n) from the boundary of the branching random walk. For all p < P, we
introduce the random variable

Xp =) " (2.1.12)

(€L,

1. Similarly to what happens in a BRWi in the slow regime, see Chapter 1.
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and the following integrability conditions for the point processes:

sup E Z 2e%t | < oo, (2.1.13)
PP lycg,
sup E [Xp (log, Xp)ﬂ < 400 (2.1.14)
pEB
sup E [X,(log, X,)] < +o0. (2.1.15)
peB*©

The following theorem is the main result of this chapter.

Theorem 2.1.4. If all the point processes L1, -- L, satisfy (2.1.1), under assumptions
(2.1.7), (2.1.8), (2.1.13), (2.1.14) and (2.1.15), we have

M,, = nvis — Aogn + Op(1).

To prove this theorem, we bound in a first time the tail of M,,, obtaining the following
result.

Theorem 2.1.5. If point processes L1, ...Lp verify (2.1.1), under assumptions (2.1.7),
(2.1.8) and (2.1.13), there exists C' > 0 such that for alln € N and y > 0,

P (M, > nvis — Mogn + 1) < C(1 +ylp(1))e %Y.

Moreover, under the additional assumptions (2.1.14) and (2.1.15), there exists ¢ > 0 such
that for allm € N and y € [0,n/?],

P (M, > nvis — Alogn + y) > (1 + ylp(1))e Y.

Before proving these two theorems, we apply them to BRWi, and obtain once again
the three regimes described in the previous chapter.

Application to the BRWi

Theorem 2.1.4 is consistent with Theorems 1.1.2, 1.1.3 and 1.1.2 of Chapter 1. We
consider here a BRWis with a single interface (T, V'), or in other words, such that P = 2.
We set two point processes £1 and L, verifying (2.1.1), and a; € (0,1). We assume (2.1.4),
i.e. there exist 01,0y such that for all i € {1,2},

gllﬁ;(gz) — Hz(az) =0.
We also suppose there exists 8 > 0 such that x; and k9 are differentiable at point § and
0(a1k1(0) + (1 — a1)k5(0)) — (a1k1(0) + (1 — a1)k2(6)) = 0. (2.1.16)

For all i € {1,2}, k; is a convex function on {¢ > 0 : k;(p) < 400}, which is twice
differentiable on the interior of this set. As a consequence, ¢ — k(@) — Ki(p) is a
decreasing function. Thus, 6 is always between 61 and 0. We write vgg = a1k](0) +
(1 — a1)kh(0) and vgew = a1k (01) + (1 — a1)kh(f2). Observe that vgoy is the sum of
the speeds of a branching random walk with reproduction £; of length na; with one with
reproduction Lo and length nas.

Applying Theorem 2.1.4 and using Proposition 2.1.2, under (2.1.13), (2.1.14) and
(2.1.15), one of the following alternative is true.
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o If 1 > 0y, then 0 € (02,01), Vgow < Vtast and

1
M, = nvgst — 20 logn + Op(1),
in which case the optimal path is at time ayn at distance O(n) from the boundary
of the branching random walk.
o If §; =0y, then 0 = 0; = Oy, Vyjow = Vpast and

3
My, = nvgast — % logn + Op(l),
and the process behaves similarly to time-homogeneous branching random walk, thus
the path followed by to the rightmost individual at time n is at time a;n within
distance O(y/n) from the boundary of the branching random walk.
o If 01 < 05, then vyow < Vgagt and
M, [3+3}lo +0p(1)
= NUglow — | —= — n N
n slo 291 292 g P
in other words, the logarithmic corrections add up, and the rightmost individual at
time n descend from one of the rightmost individuals alive at time ajn.
Under assumption (2.1.8), using Lagrange theorem ? we have

Vtast = sup {ara1 + (1 — aq)ag : a1k](a1) + (1 — a1)kr5(az) < 0},

Vslow = sup {arar + (1 — a1)ag : agki(a1) < 0,167 (ar) + (1 — aq)k5(az) < 0}.

Therefore, a branching random walk goes at speed wvgeow if the condition kj(a;) < 0
modifies the solution of (2.1.7). If this is the case, it means that the “theoretical optimal
path” would cross the boundary of the branching random walk, thus no individual could
follow it. Under these circumstances, an individual which is at time «ain close to the
rightmost position has an important advantage to breed the rightmost descendant at time
n. Otherwise, at time aqn, there is a large number of individuals around ajain, each of
which having small probability to be the rightmost individual. Therefore the logarithmic
correction is similar to the one obtained computing the maximal displacement of a large
number of independent random walks. Although the speed varies continuously as 6
grows bigger than f,, the logarithmic correction exhibits a phase transition, as observed
in Chapter 1.

We now prove Theorems 2.1.4 and 2.1.5 for a general BRWis. The organisation of
the chapter is very similar to the one in Chapter 1. In Section 2.2, we recall the spinal
decomposition for a time-inhomogeneous branching random walks. In Section 2.3, we
extend the random walks estimates of Chapter 1 to a random walk with any number of
interfaces. In Section 2.4, we prove Theorem 2.1.5 by recurrence, then use it to prove
Theorem 2.1.4. Finally, we prove in Section 2.A the random walk estimates described in
Section 2.3 and Proposition 2.1.2 in Section 2.B.

2.2 The spinal decomposition

We recall in this section the time-inhomogeneous version of the spinal decomposition
of the branching random walk?. We give two ways of describing a size-biased version of

2. See Appendix 2.B.
3. 6:00 — “I Got You Babe”.
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the law of the branching random walk. After its introduction to the study of Galton-
Watson processes in [LPP95], this method has been adapted to branching random walks
in [Lyo97], and to general branching Markov processes in [BK04].

2.2.1 The size-biased law of the branching random walk

Let n > 1 and (Lg,k < n) be a sequence of point processes laws which forms the
environment of a time-inhomogeneous branching random walk (T, V). For all z € R we
set P, the law on T of the marked tree (T, V + ), and E, the corresponding expectation.

We write k(@) the log-Laplace transform of £ and we assume there exists § > 0 such
that for all & < n we have k;(6) < +o00. Let

W, = Z exp (HV(U) - Z /@(9)) .
j=1

lul=n

We observe that W,, > 0,P, — a.s. and E,;(W,,) = e*. Therefore, we can define the law P
on the set of marked trees of height n by

P, =c¢ "W, P,. (2.2.1)

The spinal decomposition consists of an alternative construction of the law P,, as the
projection of a law on the set of planar rooted marked trees with spine, which we define
below.

2.2.2 A law on plane rooted marked trees with spine

Let (T, V') be a marked tree of height n, and w € {u € T : |u| = n} an individual alive
at the n'" generation. The triplet (T, V,w) is then called a plane rooted marked tree with
spine of length n. The spine of a tree is a distinguished path of length n linking the root
and the last generation. The set of marked trees with spine of height n is written 7,,.. On
this set, we define the three following filtrations,

Vk <n,Fr =0 (u,V(u),ueT,ul <k) Vo(wj,j<k) and F=Fn

VE<n,Fp=o0(u,V(u):ueT|u <k) and F=2F,

Vk <n,Gr =0 (w;,V(wj):j <k)Vo(u,V(u),ueQuw;),j<k) and G=G,.
The filtration F is the information of the marked tree, obtained by forgetting the spine,
G is the sigma-field of the knowledge of the spine and its children only, and F = FV G is

the natural filtration of the branching random walk with spine.
We introduce a law P, on 7,. For any k < n, we write

Z"\k _ (Z e@énk(a)) . £k7

leL
a law of a point process with Radon-Nikodym derivative with respect to L, and we
write L, = (Ek(j), j< Nk> an independent point processes of law L;. Conditionally on
(lALk, k < n), we choose, for every k < n, w(k) < N independently at random, such that

eb%i(h)

P (w(k) =h|Lyk<n) = e S o)



80 CHAPTER 2. BRANCHING RANDOM WALK THROUGH INTERFACES

We denote by w,, € U the sequence (w(1),...w(n)).

We consider a family {L",u € U, |u| < n} of independent point processes such that
L% = L1, and if u # wyy|, then L" has law L,41. For any u € U such that |u| < n, we
write L* = (¢},... “N(u)). We construct the tree

T={uecld:|u <nV1<Ek<|ul,uk) < N(uk-1)},

and the the function

T — R

lul -~ pur—1
u = Y by -

For all z € R, the law of (T,z + V,w,) € 7, is written f’m, and the corresponding
expectation is f}ac

The marked tree with spine (T,z + V,w,) is called a branching random walk with
spine, and can be constructed as a process in the following manner. It starts with a
unique individual positioned at x at time 0, which is the ancestral spine wg. Then, at each
time k < n, every individual alive at generation k dies. Each of these individuals gives
birth to children, which are positioned around their parent according to an independent
point process. If the parent is wy, then the law of this point process is Ek, otherwise it
is L. The individual wgy1 is then chosen at random among the children u of wy, with
probability proportional to V() At time n, individuals die without children.

In the rest of the article, we write P ;, the law of the time-inhomogeneous branching
random walk of length n — k starting from x with environment (Lg41,...L,). Observe
that conditionally on G, the branching random walks of the descendants of the children
of wy, are independent, and the branching random walk of the children of u € Q(wy,) has

law Py (y) k41
2.2.3 The spinal decomposition

The following result, which links the laws P, and P,, is the time-inhomogeneous
version of the spinal decomposition, proved in Chapter 1.

Proposition 2.2.1 (Spinal decomposition). For all x € R, we have

P, =P, . (2.2.2)
Moreover, for any |u| = n, we have
- OV (u) — >3- 9
By (w, = o F) = SOV =2k ey (2.2.3)

W,

A straightforward consequence of this result is the well-known many-to-one lemma.
This equation, known at least from the early works of Peyriere [Pey74] has been used in
many forms over the last decades, and we introduce here a time-inhomogeneous version
of it, proved again in Chapter 1.

Lemma 2.2.2 (Many-to-one). We define an independent sequence of random variables
(Xk, k <n) by

Vk <n,Vzx e R,P[X} <z]=

Z 1 }eee Hk(a)] 7

LELy
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and we write S, = So + Z?:l X; for k <n, where P,(So =) =1. Forallx e R,k <n
and f a measurable non-negative function, we have

k
— R, {eeskJij—l SO s sl (2.2.4)
lu|l=Fk

The many-to-one lemma and the spinal decompositions enable to compute moments
of an additive functional of the branching random walk, by using random walk esti-
mates. These estimates are introduced in the next section, and extended to include
time-inhomogeneous versions, and the control of random variables correlated to the last
step.

2.3 Some random walk estimates

We recall the random walk estimates introduced in Chapter 1, and extend them to
bound similar events on random walks through a sequence of interfaces. We denote by
(T,,n > 0) a one-dimensional centred random walk, with finite variance o2. We begin
with Stone’s local limit theorem [Sto65]. There exists C' > 0 such that for all @ > 0 and
h > 0, we have

2

limsupn'/? sup P(T, € [y,y+ h]) < C(1+h)e 2.2, (2.3.1)

n—+oo |y\2an1/2
Moreover, there exists H > 0 such that for all a < b € R

liminfn'/?  inf  P(T, €[y,y + H]) > 0. (2.3.2)

n—-+0o ye[anl/z,bnl/Q]

We continue with Caravenna—Chaumont’s local limit theorem [CC13]. Let (rp,n > 0) be
a positive sequence such that r, = O(n'/?). There exists C' > 0 such that for all a > 0
and h > 0,

2

limsupn'/?2 sup sup P(T, € [z,2+ h]|T; > —y,j <n) < C(1+ h)ae_2a7. (2.3.3)

n—-+oo yG[O,Tn] xZanl/z
Moreover, there exists H > 0 such that for all a < b € Ry,

liminfn'/? inf inf  P(T, € [z,z + H||T; > —y,7 <n) > 0. (2.3.4)

n—+o00 y€[0,rn] 2€lant/2 bnl/2)

Once again, up to a transformation T +— T'/(2H), we assume in the rest of this chapter
that all the random walks we consider are such that (2.3.2) and (2.3.4) hold with H = 1.
The Hsu—Robbins theorem, introduced in Chapter 1 is useful to bound the probability for
a random walk to stay below a linear boundary, for all €0

> P(T, < —ne) < +oo. (2.3.5)
n>0

We next recall extension of Kozlov’s and Pemantle-Peres’ ballot theorem [Koz76],
proved in Chapter 1. For all A > 0 and « € [0,1/2), there exists C' > 0 such that for all
n>1andy >0,

P(T; > —y — Aj*,j <n) < C(1+yn /2 (2.3.6)
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moreover, there exists ¢ > 0 such that for all n > 1 and y € [0, n!/?]
P(T; > —y,j <n)>c(l+yn V2 (2.3.7)

Mixing (2.3.6) and (2.3.1), we proved in Chapter 1 that there exists C' > 0 such that
for all z,h > 0 and y € R,

P(Tp+q S [y+hay+h+1]7T] > _x+y1{j>p}’j < n)
(1+z) Ap/? 1 (1+h)Aqg'/?

<
=¢ pl/? max(p, )/ q'/? ’

(2.3.8)

and using (2.3.7) and (2.3.2), that there exists ¢ > 0 such that for all n > 1 large enough,
z € [0,n'/?] and y € [-n'/2,n'/?],

(1+x)

W (2-3-9)

Po(Tn <y+1,Tj > ylyjspa,j <n)>c
This result also holds for excursions above bended curves. For all A > 0 there exists C' > 0
such that for all n € Nand y,h > 0

P(T, + Alogn € [h—y,h—y+1],T; > —Alog ;=7 —y,j < n)

L+y) AnY2) (1 +h) Anl/?)

((
=C n3/2

(2.3.10)

We sum up all the previous random walks estimates into two lemmas, that bound from
above and from below the probability, for a random walk through interfaces, to make an
excursion above a given curve. Let p,q,7 € N, (Xg)ren and (X;)ren be two independent
families of i.i.d. random variables, with mean 0 and finite variance, and (Y,)n>0 be a
family of independent random variables. We write n = p 4+ ¢ + r and define the time-
inhomogeneous random walk (Si, k < n) as follows:

min{k,p} min{k—p,q} min{k—p—q,r} B
D IS D T Y S
i=1 i=1 i=1

Let A€ R, and z,y € Ry, h € R, we denote by

4 (2, y,h) = {s € R" : Yk < p,s;, > —z} and

FA’3(1:,y,h) ={seR":Vk e [n—rn| s > y—|—Alogn%k+l}

the sets of trajectories staying above —x during the p initial steps and above a logarithmic
boundary during the r last steps. The next lemma is proved in Section 2.A.1.

Lemma 2.3.1. For all A € R and F C {1,3}, there exists C > 0 such that for all
p,q,7r €N, z,y € Ry and h € R, we have

P (S, + Alogn € [y+ h,y + h+1],(Sg, k <n) € ﬂ 4 (2, y, h)
feF
< ol yteQ) 1 1+ hylp(3)
=Y T2 max(pr)2 | rleG)2
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We now bound from below a similar event, for a random walk through interfaces
S, defined as follows: given XM, ... X(P) real-valued centred random walks with finite
variance, the process S is a sum of independent random variables, such that the law of
Sk+1 — Sk is the same as X® forall p € [a](fi)l, oz;n)). For FF C {1,3} and z,y,0 € Ry, we
write

B Vk < aﬁ”), sk 2 —xlyepy — 0klyigry
T (z,y,0) = (s €R": vk e (agn),aﬁ_l],sk >0
Vk € (oz’]gfl,n]? Sg > y1{3€F} — 5(’0 — k)1{3€F}

Lemma 2.3.2. There exists ¢ > 0 such that for all n > 1 large enough, F C {1, 3},
z € [0,n'?), y € [-n'/2,n'?] and § > 0

1+21p(l) 1 1
nir()/2 12 plr®)/2”

P(S, <y+1,5e T (x,y,0) >c

This lemma is proved in Section 2.A.2.

Finally, we recall the upper bounds for enriched random walks, obtained in Chapter 1.
Given (X,,&,,n € N) ii.d. random variables such that E(X;) = 0, E(X?) < 400 and
E((&)%) < +o0, we write T,, = >} Xj. For all t € (0,1), there exists C' > 0 that does
not depend on the law of & such that for all n > 1, ,h > 0 and y € R, we have

P> —z,j<n,3k<n:Tp <& —x] < Canlri/Qx [P(fl >0)+ E((fl)i—)} , (2:311)

as well as

P [Tn—x—y—he 0,1, Tj > =z + ylgism),J <n, 3k <n: Ty §§k+y1{k>m}—w}
1+z)(1+h
< 0(71)3(/2> [P(& >0) + E((gl)i)} . (2312

We introduce an additional result, which is to Hsu—Robbins theorem what (2.3.11) and
(2.3.12) are respectively to (2.3.6) and (2.3.8).

Lemma 2.3.3. We suppose that E(X1) = 0, E(X?) < 400 and E((¢£1)4) < +oo. Let
€ > 0, there exists C > 0 that does not depend on the law of & such that for all x,z > 0
andn € N

P[T;>—x—ej,j<n,3k<n:T < —x—ck+E]

E[(€+2)4]
9

<c| +E

Z 1 {Tn<zzn5/2}] :

n>0

Proof. We observe that for all z > 0,

P[Tj2—:c—ej,jgn,EIk:Sn:Tkg—x—€k+§k]SZP(TkS—x—Ek—i-fk),
k=1

moreover

P(Tk < —."L‘—Ek‘—l—fk) < P(Tk < —ZE—Z—E/{?/Z) —I—P(fk > sk/Q—z),
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thus

PT;>—cj—u,j<n3Ik<n:T, <—ck—x+&]

< ZH:P[T;C < —sj/2+z—:n]+zn:P(£k >ek/2—2)
k=1

k=1
“+oo
E((¢+ =
<E [Z Liry<—z—ejja| + 2M’
k=1 €
ending the proof. O

2.4 Bounding the tail of the maximal displacement

We consider a BRWis (T, V) of length n. The sequence of point processes can freely
be replaced by (L1,L1,L1,La,...Lp) and the sequence of positions of the interfaces be
replaced by 0 = ap < a1/3 < 201/3 < a1 < ag < ... < ap = 1. Thus, we assume
without loss of generality in this section that P > 3. For p < P and 6 > 0, we write
kp(0) = logE {Zze L, eeq the log-Laplace transform of £,. We write M,, the maximal
displacement at time n of the BRWis.

We prove in a first time Theorem 2.1.5, using the decomposition of the BRWis obtained
thanks to Proposition 2.1.2. According to this result, if a is the solution of (2.1.7), and
0p = (k) (ap), the sequence € is non-decreasing, and takes a finite number 7" of values.
We proceed by induction on 7. The next section proves Theorem 2.1.5 for a BRWis such
that T"= 1. In Section 2.4.2 we prove the induction hypothesis, and Section 2.4.3 derives
Theorem 2.1.4 from Theorem 2.1.5.

2.4.1 The case of a mono-parameter branching random walk
We consider in a first time a BRWis (T, V) satisfying additional assumptions that
guarantee the sequence @ to be constant. For all ¢ € Ry, we write

p

Ep(p) =Y (g — ag-1)(pry () — rq(e))-
q=1

We assume there exists 8 > 0 such that

Vp < P,E,(0) <0 and Ep(d)=0. (2.4.1)
We write a, = x,(0) and B = {p < P : E, = E, 1 = 0}. By (21.2), a € R, and by
Proposition 2.1.2; a is the solution of (2.1.7). With these notations, we have
P 1
vis =Y (ap—ap_1)ap, and A= — (1+1p(1) +15(P)). (2.4.2)
= 20

Theorem 2.4.1. Under assumptions (2.1.13) and (2.4.1), there exists C' > 0 such that
foralln>1 andy >0,

P (M, > nvis — Aogn +y) < C(1+ ylp(1))e .

Moreover, under the additional assumptions (2.1.14) and (2.1.15), there exists ¢ > 0 such
that for allm > 1 and y € [0, /n],

P(M,, > nvis — Aogn +y) > ¢(1 + le(l))e*Qy.
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We write m,, = nvis — Alogn. To obtain the upper bound, we prove the existence of
a boundary that no individual crosses with high probability. Then, we bound from above
and from below the first two moments of the number of individuals who stayed below the
boundary, and end at time n close to m,,.

We denote by

P k
K = 2 Oy )

p—1’

and by d,gn) = Zle Z§:1 apl

Using Equation (2.1.2), we observe that

jelal™af)

} the path followed by the rightmost individual.

P k
oa” — K™ = $ "k 1 2.4.3
ay. P pgl l‘fp<ap) JZ {je[a(n) (n))}7 ( )

i—1 p—1'%P

in particular, if ¢, = fg 25:1 Kp(ap)liselay_1,a,)}1d8, by Riemann integration

sup sup 065;1) - K ’gn) — NPk

n>0 k<n

< 4o0. (2.4.4)

A boundary for the branching random walk

We prove in a first time that if 1 € B, then with high probability, there is no individual

to the right of a1k at any time k < agn).

Lemma 2.4.2. Under assumption (2.4.1), if 1 € B, then for ally > 0 and n € N,
PEueT,|ul < agn) V(u) > ar)ul +y) < e .

Proof. Let y > 0andn > 1, for k < a&n), we write
Zlgn) = Z Lv > ark+yy LV (uy)<arj+y.i<k}s
lu|l=k

the number of individuals who are for the first time at time k& above the curve a1k + .
By use of (2.2.4), we have

E(Z")=E [B_GS‘“M“(G)1{Skzka1+y}1{sj3ja1+y,j<k} )

where S is a random walk with mean

el

and finite variance, thanks to (2.1.13). Moreover, as 1 € B, we have Fy = fa; — k1(0) = 0,
therefore
E(Z") < e %P(S), > ka1 +v,5; < jar +y,j < k).
As a consequence, by Markov inequality, we have
RO

1
PGue T,lul <ol : V() >ailu +y) < Y E(ZM)
k=1

n
<e WS P(Sk > kay +y,5; < jar +y,j <k)
k=1

<e P33k <n:Sy,>ka +y),
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which ends the proof. O

We now compute, if P € B, the probability there exists at some time k£ > agle an

individual above some well-chosen curve. To do so, we denote by

(n)

r. =ap(k—n)+ %log(n —k+1).
We add a piece of notation to describe the boundary of the branching random walk. We
write -
rn) — U [ap_l, a](gn)} )
peBN{1,P}

F™ = F [0, k] and, for j € F(,

Jjzap’y

fj(n) — aljl{jgagn)} + (mn + ’l“]gn)) ]_{ (n) }

The following estimate holds.

Lemma 2.4.3. Under assumptions (2.1.13) and (2.4.1), if P € B, there ezists C > 0
such that for all y > 0 and n € N,

P [3|u| > 045311 :V(u) >my + r,(cn) + y] < C(14y1p(1))e .
Proof. We assume in a first time that 1 € B. We have A = % and
P {El|u| > agle :V(u) > my + r,gn) + y}
<E

= > 1 1 (OIN ORI
o™ {V(u)zmnw,u‘ +y} {V(uj)ﬁmnwj +y,ap_1§J<k}
UlZap_y

n
_ (n)

< > E | (n) TN
{SkZmn+rk +y,Sj§mn+r]. +y,o¢P71§j<k}

k:aglll
= Cnfre=0 ‘
S D | A (Sk > mn + 7 +4.8; <+ 4,08, <G <k),
k:"‘gvnll

(2.4.5)
by (2.2.4) and (2.4.4). By conditioning with respect to Sy — Si_1, we have

P (Sk > mpy —i—?"](cn) +y,Sj < mpy +7“](-n) +y,a§le S] < ]{2) = E[gok(Sk — Sk,1 — al)],

writing for z € R,

or(x)
=P(Sp_1 = mn + 1" +y—a,8; <my, + " byl <<k -1
+oo
=S P(Siet —mn — 1) —y—hehh+1),8 <my i 4yl <j<k-1)
h=0
L] 1+h

<y C
h

= n2(k— o) )12
(1+a4)?
n/2(k — o) )1/2
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by use of Lemma 2.3.1. Thus, by (2.1.13),

C
A= o

P (S > my+ ol 4.5 <m0l 4y,0l), <G < k) <

As a consequence (2.4.5) becomes

[3\u| > a(n) :Vi(u) > my + r,in) + y]

S 0 nt/2 0
< Z Ce ™% o < Ce .
) (k —apl; + D)2 (n — k+1)32
=Ap_1

In a second time, if 1 € B, then \ = %. We have

P [3lul > o)y V() = m i 4y
<P [3lul < of” : V) > arful +9]
P F'“' > o) V(W) > A 4y Vi) < fY g€ Flﬁ} .

Using Lemma 2.4.2, we only need to bound the second part of this inequality. Then, by
(2.2.4), we have, for k > agle

Z 1{ > ! n)+y}1{V(Uj)<f](n>+y7jeFli7_l>l}]

|u|=k

(n)

PRI L SR R
k_fk +y j_fj +y,0€ k—1

nfA

< Cmefeyp(sk > £V +y,8; < f;n) +y.j € FyM)

n3/2

<O(L+y)e ™ ,
(k—al | +1)3/2(n — k + 1)3/2

using again Lemma 2.3.1, and conditioning with respect to the last step of the random
walk. Thus, by Markov inequality, we have

P [Jul > ol V) > £ + 4, V() < [V 4y € B

n n3/2
< O(1+y)e ™ < C(1+y)e?,
k_;ﬂ (k — agﬂl +1)3/2(n — k +1)3/2
=ap
which ends the proof. O

These two lemmas imply that with high probability, there is no individual above f(™ 4y
at any time in F(. To complete the proof of the upper bound for the tail distribution of
M,,, we compute the number of individuals who, travelling below that boundary, are at
time n in a neighbourhood of m,. We write

Xy h) = 3" v (u)mn—yel—h—nr1 1

|ul=n

Vs spsere}
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Lemma 2.4.4. Under assumptions (2.1.13) and (2.4.1), there exists C > 0 such that for
alln>1, y € Ry and h € R, we have

E(X™(y,h) < C(1 4 y1p(1))(1 + hylp(P))e W),

Proof. We observe that if P € B and h < —1, then X (y,h) = 0. Otherwise, using
Equation (2.2.4), we have

n _ 08, + K™
E<X( )(y7 h)) - E € 1{Sn7mn7y€[7h,7h+1}}1{S]§f](n)+y7jeF(n>}

< Cnfre—f0w—hp (Sn —m, —y € [~h,—h+1],8; < fj(”) +y,j€ F(n))

by Equation 2.4.4. Applying Lemma 2.3.1, we obtain

p (STL - fr(LN) —yc [_h7_h+ 1]7Sj S f](n) +y)j € F(n)

(1+y1p(1))(1 + hi1p(P))

S O ) L0162

O

These lemmas can be used to obtain a tight upper bound for P(M,, > nvis—Alogn+y).

Corollary 2.4.5. Under assumptions (2.1.13) and (2.4.1), there exists C > 0 such that
for all y > 0 and n € N, we have

P(M,, > nvis — Mogn +y) < C(1 +ylp(1))e %,
Proof. Let y > 0 and n € N, we have
+oo
P (M, > nvis — Mlogn +y) <P (Jul € F™ :V(w) > £l +y) + > B (X (y,—h)).
h=0

Using Lemmas 2.4.2 and 2.4.3, we have
P (3ul € F™M :V(w) > [ +y) < C(1L+y1p(1))e

and applying Lemma 2.4.4, we obtain

io E(X™(y,—h)) < C(1+ylg(1))e % io e < C(1+y1p(1))e .
h=0 h=0

Lower bound through a second moment computation

To bound from below P(M,, > m,, + y), we bound from below the probability there
exists an individual alive at time n, which stayed an any time k < n below some curve
g™ defined below and is at time n above m,,. We write B(") = Upe B(a(ri)l, az(,n)] the set of

p
times such that the optimal path is close to the boundary of the BRWis. We choose § > 0
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small enough such that 305 < min,cpe —E,(#). For alln > 1, p < P and k € (0‘;(;71)17 a,(gn)]
we define

al) —1p_pMogn it Ep(0) = E,_1(0) =0
n a, +(k—a )0 if E,10)=0,E,0) <0
R B A e L (2.4.6)
a,’ + (ap’ — k) if E,(0)=0,E,1(0) <0
6,(:) +dn otherwise.
With this definition, using (2.4.4), we have,
—1{p:p}9/\ logn Ep(Q) = Ep_l(e) =0
—5(k — o™ it F,_1(0) =0, E,(0
09 K\ < O+ ( (n>ap_1) Lo 1(8) =0, Ep(6) <0 (2.4.7)
—0(apry — k) = Lp—pyfrlogn if  Ep_1(0) <0, Ey(0) =
~n if  E,_1(0) > 0,E,(0) > 0.

We prove in the rest of the section that the set
An(y) = {u € T V) > mu+y,V(uy) < g +v,5 < n}

is non-empty. To do so, we restrict this set to individuals with a constraint on their
reproduction. For u € T, we denote by

§u) = Z (1 + (VW) - V(u))+1{|u|63(n>+1}> VW)=V (w)
u' €Q(u)

a quantity closely related to the spread of the offspring of u. We write, for z > 0 and
p<P

0 Vi) —ag™
B, (z) = {uGT: lul = n,&(u;) < ze 2[ (u3)=9; },j<n},
and we consider the set G, (y, z) = An(y) N By(z). We compute the first two moments of

Yoa(y:2) = Y LueGn(y)}

lul=n

to bound from below P(Y,,(y,2z) > 1), using the Cauchy-Schwarz inequality. We begin
with an upper bound of the second moment of Y,.

Lemma 2.4.6. Under assumptions (2.1.13) and (2.4.1), there exists C > 0 such that for
ally >0, z>0 and n € N, we have

E(Ya(y,2)*) < C2(1+ylp(1))e ™.
Proof. Applying Lemma 2.2.1, we have

1 .

)] =B

1
W Z 1{u€Gn(y,z)}Yn(ya Z)]

n
lul=n

=

E(Ya(y,2)?) =

I
&=

— Wn, 'r(r,n)
[6 BV (wn) +K 1{wnecn(y,z)}Yn(yyz)}'
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Using the fact that w, € A,(y) C Gn(y, z), we have
E(Y,(y, 2)?) < Cn™e™™E [Ya(y, 2)Lu,ccn ] -

We decompose Y, (y, z) along the spine, to obtain

n—1
Yn(ya Z) < l{wnEGn(y,z)} + Z Z Yn(uyy)v
k=0 ueQ(wy)

where, for u € T and y > 0, we write Yy, (u,y) = X2 /|=nw>u L{wed, ()} Let k <n. We
recall that conditionally on G,, the branching random walks of the descendants of distinct
children u,v € Q(wy) are independent. Moreover, the branching random walk extracted
from an individual u € Q(wy) has law Py (u),k+1- As a consequence, for y > 0, k < n and
u € Qwy),

(n)

E [V, (u,9)|Gn] = By, Ly (w)>mnty) 1
Yo(w,9)IGn] = Bvyrer | . Lvw)zmats} (Ve sy isnr)

|v/|=n—k—1

We use (2.2.4) and (2.4.4) to obtain

E (Yo (u, y)|Gn]
<

O .
Cn)\eeOV(U) K QyPV(u),k+1 (Snfkfl > My + Y, Sj < g](':L_)k;+1 +y,j<n—k-— 1) .

We now apply Lemma 2.3.1. For all p < P and k € [oz[()n_)l, a;(,n)), we have

n .
PV(u),k+1(Sn—k—1 = mp+ Yy, Sj < gj('+)k+1 +y,j<n—k-— 1)
1+(g\" +y—V (u)) 4+ 15(p)
(& —k+1)1B () /21 +15())/2
1+(g{", +y—V (w) 4 15(P)
(n—k+1)1/2+1B(P)

if p<P-1
(2.4.8)

C if p=~P.

Let p< Pand k € [al(fi)l, al(,n)), we compute the quantity

n W)™
Lneanmay 3o (14 (9 +y = V()1 1p(p)e’” ™ } |
u€Q(wg)

hp, =E

Using (2.4.3), the definition of £(wy) and the fact « — x4 is Lipschitz, we have

~ (n) n
hi < CE [e“V(wk)gk 1+ (g +y— V(wk)+)£(wk)1{wnecn<y7z>}]

< CE

(n) n
SVt (g 4y~ V() )E00) L ,,00)

as wy, € By, (z). Decomposing this expectation with respect tot the value taken by V(wy),
we obtain

+o0
hy, < Cze® Z(l +i)e /2P
=0

S > mn+y, Sk — g\ —y € =i — 1, i),
S; <9, +y.j € B |
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We apply the Markov property at time & and Lemma 2.3.1 to obtain, if p € B

(14y)etv nl/2
z ) ox
k3/2(a1 —k+1)1/2 n
(1+ylp(1))e’ 1

if p=1

h <

(k—a;@1)1/2(0¢1<on)—k+1)1/2n1/2 nox i l<p<P (249)

Cz
(14ylp(1))e? 1 . _
Cz (k—al  +1)1/2(n—k41)3/2 it p=r

In the same way, if p ¢ B, we have

C’zegyﬁn% it k< a&n)
he < { Caef B L i oY <k <ol (2.4.10)
C’z%agy%n%A otherwise,
applying again Lemma 2.3.1.
For p < P we denote by
a;m—l
Hp = Z E 1{wn€Gn(y,Z)} Z Yn(u,y)

k:a;@l ueQ(wy)

oy 1 () _pem)
<C Z hyeP9k1 = Kepa

k::a;n_)l

Using (2.4.3), and summing the estimates (2.4.8), (2.4.9) and (2.4.10), we obtain that
H, <Cz(1+ y1p(1))e~% for all p < P. To conclude this proof, we observe that

P
E(Y,(y,2)%) < Z H, + Cne %P (w, € Gu(y,2)) < Cz(1 +ylp(1))e %,
p=1
as Lemma 2.3.1 implies P(w,, € Gy, (y,2)) < C(1 +ylp(1))n=. O

We now prove the following result, a lower bound on the first moment of Y,,(y, B).

Lemma 2.4.7. Under assumptions (2.1.13), (2.1.14), (2.1.15) and (2.4.1), there exists
¢ >0 and z > 0 such that for alln >0 and y € [0, /n], we have

E(Yn(y,2)) = e(1 + 1p(L)y)e ™.

Proof. Using Lemma 2.2.1, we have

~

_0V(w (n) PPN
E(Ya(y,2)) = E [e V@01 oy | = en® e P (w, € Gu(y, 2)).

To bound P(w, € G, (y, z)), we observe that
P(w, € Gn(y,2)) = P(wn € An(y)) — P(w, € An(y) N Ba(2)°).
Moreover, by Lemma 2.3.2, for all n > 1 and y € [0, /n]

P(wn € Au(y) = P(Sn = my +1,5; < ¢ 44,5 < n) = (1 +ylp(1))n
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Therefore, we only need to bound from above P(w, € A,(y) N By(2)¢) for z > 0 large
enough.
We write
0 n
7™ (2) = inf {kz <n:&(wg) > zexp <—2 [V(wk) - g](C )D} :

and, for p < P, m, = P (wn € Au(y), 7™ (2) € (a;@l,a,gn)]). We introduce, for p < P the

random variables

(& A2 (Vw1 = Vwg), Ewx))  for k € [y, af).

Let (&8, AP) be i.i.d random variables with the same law as (§,,A,). We introduce the
random walk T? = Al + ...+ AP, Keeping in mind (2.3.12) and Lemma 2.3.3, we define
for p € B and z > 1 the functions

- 2
xp(2) = E {(1 + (log (&) — A, —log z)+> 1{£p>z}]
and, for p € B¢

_ _ [ (log, (&) — Ap —log 2/2)
Xp(2) = E l 5 +1

i E [Z;ic()) 1{T£2(6k+logz)/2}} if EP(G) <0
E [22—28 1{T£§7(6k+logz)/2}} if Ep(e) =0,

Ep_l(e) < 0.

First, if p = 1, we apply the Markov property at time a(ln) and Lemma 2.3.1 to obtain

1 n . n n _ 1 (n)
”1<Cn<1+13<m>/zp<7?<g§- iy <al™ 3k <l gl > a2 T )>'

As a consequence, if 1 € B, we apply (2.3.11) to obtain 7 < C;%’Xl(z); and if 1 ¢ B,

then F7 < 0 so, applying Lemma 2.3.3 we have m < C’n%il(z)

We now suppose that 1 < p < P. Applying the Markov property at times aén) and

(n)

Q, ", we have

C .
< - -
T < — s P {1 {V(wj)gg](_n) i ga@l}@p (V(wa;n)l)>] ; (2.4.11)

P

where we write, for s € R

op(s) = Ps [TJP < gfﬂ)lﬂ +y,7 < 041(,”) - ozz(ﬁ)l,T(”)(z) € (a;"_)l, aé")]} )
o

If p € B, applying (2.3.11), we have ¢, (s) < 22ty (2), and, by (2.3.3),

ni/2

1
sup —775 B Hsa“”l - 6(730 pqi)l
o

. < g + <
neN nt/2 o,y SJ J Y7 =

]<+oo.

Then, by Lemma 2.3.1, as y < y/n, we have 7, < %Xp(z).
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In the same way, if p € B, we use Lemma 2.3.3, and time-reversal when E,(#) = 0 and
E,—1(0) < 0—to have ¢,(s) < Xp(z), which, thanks to (2.4.11) leads to m), < %ﬂf()){p( ).

We finally take care of the case p = P. If P € B, we apply the Markov property and
(2.3.12) to obtain

1+ (Sa(n) — G(TZL) + y)
P-1 63 1 +

mp < CE .
n3/? {Sjggﬁ-”)+y,j§a§>_)1}

1+yl1p(1
gczef()m(z)-

If P ¢ B, we use the time-reversal, then Lemma 2.3.3 to obtain

mp < Cxp(z )quP S o, € lh,h+1],5; <g( )+y,j<a$)1}
e P

1+ylp(1)_
ox

<C Xp(2).

We conclude there exists C > 0 such that

Blw, € A (y) 0 BM (2)¢) < 2T YE8L) le

ZXP + Z ip(z)] .

pEB peBe°

If p € B, by (2.1.14) and (2.1.13), E((log §,—A,)?) < +00. In the same way, if p ¢ B, using
(2.1.15) and (2.1.13) again, we have E((log&, — Ap)+) < 400. Applying the dominated
convergence theorem, we have

lim | D> xp(2) + D xp(2)

Z—>+00
LEB peEB*°

Consequently, there exists z > 0 such that P(w, € A™(y) N BM(2)) < c%,
therefore,

P(w, € A (y) N B (2)) > P(w, € A™(y)) — P(w, € AW (y) N B™(2)")

5 1+yl1p(1)
/ n@A b

which ends the proof. O

Y
o

Using these two lemmas, we obtain a lower bound on M,,.

Lower bound in Theorem 2.4.1. By Lemma 2.4.7, there exist ¢ > 0 and z > 0 such that
for all n > 1 and y € [0, y/n], we have

E(Ya(y,2)) = ¢(1+ylp(1))e .
Thus, using Lemma 2.4.6 and the Cauchy-Schwarz inequality, we have
2
B(Ya(y.9)® _ ( (1L+y1p(1)e ™)
2

E(Ya(y, ) ) (1+y13( ))e=?
> c(1+y1p(1))e”

P(Yo(y,2) > 1) >
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2.4.2 Extension to the multi-parameter branching random walk

In this section, we extend Theorem 2.4.1 to BRWis such that 0 is non-constant, rea-
soning by induction on the number T of different values taken by the sequence.

Proof of Theorem 2.1.5. If T = 1, then the branching random walk satisfies all the hy-
potheses of Theorem 2.4.1, with optimal path a, and parameter § = ¢, by Proposi-
tion 2.1.2. The initiation of the recurrence is then given by Theorem 2.4.1. Therefore, we
only need to prove the induction hypothesis.

Let T € N, we assume that for all BRWis such that #{6,,p < P} < T, Theorem 2.1.5
holds. For n € N, we now consider a BRWis (T, V() of length n. We write a the
optimal solution of Proposition 2.1.2, and 0, = ;,(ap). We assume that T' = #{6,,p < P},
and write 1 < @9 < --- < @7 these values, listed in the increasing order. For any ¢t < T,
let fy =min{p < P:60, =¢;} and l; = max{p < P : 0, = ¢;}. Finally, we write v;s and
A the speed and correction as defined in (2.1.6) and (2.1.10), and m,, = nvis — Alogn the
expected position of the maximal displacement M,. We now divide this BRWis into two
parts, before and after the first time oy, such that 6;, .1 > 6;,.

We write [ = {7 and

!
1
v = Z(Ozp —ap_1)a, and A = %01 (1+1p(1)+1p(1)).
p=1

We denote by Tgn) ={u € T : |u| < qyn} the tree cut at generation n; = |oyn]|. By

Proposition 2.1.2, we observe that (Tgn), V|'(I‘n<)”)) is a BRWis which satisfies the hypotheses
1
1

of Theorem 2.4.1, with parameter 6 := ;. Therefore, if we write m, = vin — A;logn
and M! = max|,|—,, V (u), there exist ¢, C' > 0 such that for all n € N large enough and

y € [O,nl/Q], we have

(L4 YL g (0y)—op)e 7 < P(M)>m, +y) <C(1+ YL {0} )E

We now consider a branching random walk (TE:i)l, Vtgfl)) of law Py, o, which has the
law of the branching random walk of the descendants of any individual alive at time n;.
We write ngay = n — ny the length of this BRWis, and

tail

Vtail =V — V1, Atail = A — A1 and  m," = Vgain — Awail logn.

By Proposition 2.1.2 again, this marked tree is a BRWis and its optimal path is the path
driven by (ajy1,...,ap). Moreover, #{6,,l < p < P} =T —1 < T. Therefore, by the
induction hypothesis, writing M = MAaX|y|=nq, Vtail(y), there exist ¢, C > 0 such that
for all n € N large enough and y € [0, n'/2], we have

ce P < P(M;“lail > m;ail +y) < C(1l+y)e ¥,

To obtain the lower bound of Theorem 2.1.5, we observe that if M}! > ml + y, and
if one of the descendants of the rightmost individual at time m; makes a displacement
greater than m!2l then M, > m, +y. Therefore

n

P(M, > nvis — Alogn +y) > c¢(1 + le(l))e_‘pll
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for n € N large enough and y € [0,n!/2]. To obtain an upper bound for P(M,, > m, +y),
we decompose the n** generation of the branching random walk with respect to the position
of their ancestors alive at time ni. We write

XMy =31

[u[=n1

L0y ()} —ye[—h—1,— ]}
[Vl rpgeci ) HY @ -moyel-hoto)

and, by union bound and the Markov property, we have
(M, > ma ) < P € 1 V(a) 2 7 41+

+oo
+ Y EX M (y, h)P(MET > milt 4 p).
h=0

As a consequence, applying Lemma 2.4.4 and the upper bound of Theorem 2.4.1,

“+o0o
P(M, >m,+y) <C(1+ yl{ﬁ,{(al)zo})e*my 1+ Z(l + h)elpr—e2)h
h=0
< C(l + yl{%’{(al)ZO})e_wly;
which gives the correct upper bound. ]

2.4.3 Proof of Theorem 2.1.4

Using Theorem 2.1.5, we are able to obtain Theorem 2.1.4. To do so, we strengthen
the estimate P(M,, > nvis — Alogn) > ¢ > 0 in
. o > ma. _
yll)r_noo IT}IBi&fP(Mn > nvi — Alogn) =1,
using a standard cutting argument. Loosely speaking, with high probability, there will be a

large number of individuals alive at generation k, each of which having positive probability
to make a descendant that displaced more than m,, which is enough to conclude.

Proof of Theorem 2.1.4. Let (T,V) be a BRWis of length n, satisfying all hypotheses of
Theorem 2.1.4. To prove that the sequence (M,, — m,,) is tight, we prove that

lim supP(|M, —m,| > K)=0.
K—=+o00neN

By Theorem 2.1.5, there exists C' > 0 such that

supP(M,, >m, + K) <C(1+ K)eﬂ”lK,
neN
therefore the upper bound is easy to obtain.
We now turn to the lower bound. Applying Theorem 2.1.5, there exists ¢; > 0 such
that

inf P(M,, > > c.
AP (M 2 1n) 2

Let L; be a point process of law £1. By (2.1.1), there exists h > 0 and N € N such
that

m=E

max (N, Z 1{@2]1})] > 1.

el
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We write p the law of max (N, > el 1{g2_h}), and (Z,,n > 0) a Galton-Watson process
with reproduction law pu. Observe we can couple (Z,) and a branching random walk
(T1, V1) with reproduction law £; such that for any n € N, Plul=n Lvi(w)>—nn} = Zn.
By standard Galton-Watson processes theory, there exists co > 0 and § > 0 such that
infkeN P(Zk > 5mk) > Co.

Let € > 0 and R > 0 be such that (1 — ¢;)® < e. We now choose k& € N such that
émF > R. For any n € N, we write u, = (1,...1) € Y. By (2.1.1), for all n € N we
have u,, € T. We write 7 the first time n such that u,, has a sibling at distance smaller
than h, and this child has at least R descendants alive at time n + k& which displaced less
that —kh. According to the previous computations, 7 is stochastically dominated by a
Geometric random variable. Therefore, it exists 79 € N such that P(7 > 7p) < e.

Therefore, with probability at least 1 —2¢, there are at least R individuals alive at some
time before 79 + k, all of which are above inf;<,, V' (u;) — kh. Each of these individuals
u starts an independent BRWis with law Py y(,), thus, using Theorem 2.1.5, there exists
y > 0 such that, for all n > 1 large enough

P(M

n+m2mn—y)21—4€

a1

which ends the proof of the lower bound. O

2.A Time-inhomogeneous random walk estimates

In this section, we prove the random walk estimates we defined in Section 2.3.

2.A.1 Proof of Lemma 2.3.1

We recall here the notations of Lemma 2.3.1. Let p,q,r € N, set n =p+ g+ 1r. The
time-inhomogeneous random walk S consists of p steps of independent centred random
walk with finite variance, ¢ steps of independent random variables, then r steps of another
centred random variable with finite variance.

Let Ae R, and z,y € R, h € R, we denote by

T4z, y,h) = {s € R* : Vk < p, s, > —x}

the set of trajectories staying above —x during the initial steps, and by

43z, y, h) = {s eER":Vk € n—rn]sp>y+ Alog n_2+1}.

Proof. Let A >0, p,q,r € N,y >0 and h € R. Without loss of generality, we can assume
that both p and r are even (by changing ¢ in ¢+ 1 or g + 2).

If F =0, Lemma 2.3.1 is an easy consequence of (2.3.1).

If FF = {1}, applying the Markov property at time p/2, we obtain

P [Sn + Alogn € [y+ h,y+h+1],(Sk,k<n) € FA’l(xa?J,h)}
1+ 1
p*/? max(p,r)t/?’

<P (8> -2, <p/2)swpP (S, = Spp€lzz+1]) <C
z€R
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using (2.3.7) and (2.3.1). If F = {3}, we apply time-reversal, let §j = Sy — Sn—j, we have

P[Sn—i—Alogn—y—hE [O,l],Sj2y+Alog#,n—r§j§n}
SP[§n+Alogn—y—he [o,1],§jgh+1—Alog(j+1),j§r]
1+ hy 1

<
=¢ r1/2 max(p,r)l/2

by the same arguments as above.
Finally, if F' = {1, 3}, applying Markov property at time p/2, and time-reversal
P [(Sk,k < n) € D (a,y, h) N T3 (a,y, b))

<P[S;>—x,j <p/2]supP |:§n_p/2 €z, 2+ 1],§j <h+1-—Alog(j+1),j < r} )
z€R

Using the same arguments as above, we obtain

142 1 1+ hy
pl/2 max(p,r)l/2 r1/2

P [(Sk, k <n) € D4 (5, h) N T3y, h)] < €

2.A.2 Proof of Lemma 2.3.2

We consider a collection of independent random variables (X2,n > 0,p < P), with,
for all p < P, (XP,n > 0) an i.i.d. sequence of real-valued centred random variables with

finite variance. Let n > 1, we write, for k < n, Sy = 2521 E?:l le{' } For

(e, o)

F c{1,3} and z,y,0 € Ry, we write

Vk < ozgn), sk > —xlpepy — 0klggpy,
TF(.CIZ‘,y,d) ={sER": Vk € (O‘gn)vaglll]wgk >0

vk € (i), n], sk > ylsery — 0(n — K)1(agry

We now prove there exists ¢ > 0 such that for any F c {1,3}, for all z € [0,n'/?],
y € [-n'/2,n'/?] and 6 > 0

1+21p(l) 1 1
nlr(D/2 /2 plr(3)/2°

P[Snﬁy—l-l,SGTF(x,y,é)} >c

Proof of Lemma 2.3.2. Let n > 1, x,|y| € [0,n'/?] and § > 0. We denote by

QF(6,y) = {s c Rn—ai") . vk < 0‘%11)1 - O‘gn)’sk' >0 } )
Vk € (april,n], Sk > yl{gep} — 5(71 - k‘)l{3€F}

Applying the Markov property at time agn), we have

P[Snng,SeTF(x,y,a)}

— F
=E |:1{Sj2—rl{1eF}—5k1{1€F}}Pagn),Sagn) <Sn—04§n> <y+l Sefl (57 y>>:| '
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On the one hand, if 1 € F, we have
P [Sn <y+1,S¢€ TF(x,y,a)}
>P (Sj >—x,5 m € [3711/2,4711/2])
i

X inf P (S m <y+1,5¢€ QF(5,y)) .
u n_al

u€[3nl/2 4nl/2] 41 5
Using (2.3.4) and (2.3.7), we have

c(l1+x)

1/2 1/2

On the other hand, if 1 € F', for all A > 3
P [Sn <y+1,8¢€ TF(x,y,a)}

>P (Sj > ok,

e [3n!/2, hn1/2]>

X inf P <S w Jy+1,5¢ QF(5,y)) .
n*al

u€[3nl/2 pnt/2] 41 ¥

By (2.3.5), we have P(¥n € N, S, > —én) > 0. Thus, writing A(") = {a /2J by central
limit theorem, there exists ¢ > 0 and h > 0 such that for all n > 1 large enough

P (8; > —05,j <A™, Sy € [=hv/n, hy/n]) > ¢
Moreover, by the Donsker theorem

%gfgpfg%f\/ﬁpz (Sj > —2hy/n, S\ € [3v/n,4y/n]) >0

As a consequence, we have

12 4.1/2 c(1+21p(1))
P <S] > —371{16}7} - 5/@1{1@},5&5") S [Sn / ,4TL / ]) > W
We now apply time-reversal, for k < n, let §k =S, — S, _i, we have

P (S, <y+1.5€976y)
nfal

26[3711/2,4711/2] a7,

’Vl—Oél

> inf P

T ue2nt/2,5n1/2]

) € [u,u+1],8; > —onlgsgpy, j <n— 045211
Sj>n'%j <n—af" |

We write S, = S a4k Sn—aglll’ we apply again the Markov property at time n—agle

inf P o (Sna(n) <y+ 1,5 € QF((S, y))
1

2€[3n1/2 4nl/2] 1 HF

C —
> inf P min S; >
nlr(3)/2 o jSaglll—agn) J

1/2 @
—nl/ ’Saﬁlﬂl—aim €lz,z+1]
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using the same tools as above. Finally

min S, > —nl/2 S
() (m
P—1 1

P (n) G[Z,Z+1]
oy

(n)
p 1™

Jj<a

using (2.3.4) and the Donsker theorem, implying

inf P min gj > —nl2| > 0.
neN" | q(m Z ot
]
2.B Lagrange multipliers for the optimization problem
In this section, for any h,k € R” we write h.k = ;;:1 hpky the usual scalar prod-

uct in RP. Moreover, if f : R — R is differentiable at point h, we write Vf(h) =
(01f(h),...0pf(h)) the gradient of f.

We study in this section the optimization problem consisting of finding a € R such
that

P P

Z (ap — ap—1) ap = sup Z (ap —ap—1)bp:bER . (2.B.1)
p=1 p=1

Equation (2.B.1) is a problem of optimization under constraint the a € R. To obtain a

solution, we use an existence of Lagrange multipliers theorem. The version we use here is
stated in [Kur76], for Banach spaces.

Theorem VI (Existence of Lagrange multipliers). Let P,Q € N. We denote by U an
open subset of RY | .J a differentiable function U — R and g = (g1, . . .9q) a differentiable
function U — R?. Let R be a close convez cone in R? i.e. a close subset of R? such that

Ve,y € RV, u e Ry, Az + uy € R.
If a € RY werifies g(a) € R and
J(a) =sup{J(b),b € R”: ¢g(b) € R},

and if the differential of g at point a is a surjection, then there exist non-negative Lagrange
multipliers A1, ... \q verifying the following properties.

(L1) For allh € R”, VJ(a).h = Y2 \;(Vg,(a).h).
(L2) For allh € R, Y& \jhg < 0;
(L3) 222:1 Aggq(@) = 0.

Using this theorem, we prove Proposition 2.1.2. We start by proving that if a satisfies
some specific properties, then a is the solution to (2.B.1).

Lemma 2.B.1. Under assumptions (2.1.1) and (2.1.8), a € R is a solution of (2.B.1) if
!/
and only if, writing 0, = (n;) (ap), we have

(P1) 0 is non-decreasing and positive;
(P2) if K*(a), <0, then 0,41 = 0,;
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(P3) K*(a)p =0.
Proof. For b € R”, we denote by

P

J(b) = Z(ap —ap-1)by, R={keRY:k,<0,p< P}
p=1
and we write, 0,(b) = (k)" (by).

We assume in a first time that a € R is a solution of (2.B.1), in which case
J(a) = sup {J(b),b € R” : K*(b) € R}. (2.B.2)

The function J is linear thus differentiable, and assumption (2.1.8) implies that K* is
differentiable at point a. For h € RF we have V.J(a).h = 5 1(ap — ap—1)hyp, and
VE*(a)p.h = (ap — ap-1)0,(a)hy.

To prove that K* has a surjective differential, it is enough to prove that for all p < P,
0p(a) # 0. Let p < P be the smallest value such that 6,(a) = 0. Observe that in this case,
kiy(ap) < 0 by (2.1.1), thus we can increase a little a, and stay in R as soon as we decrease
a little a,—1 —or ap if p = 1, in which case same proof would work with few modifications.
For € > 0 and ¢ < P, we write ag =a; — 61{q:p_1} + 62/31{q:p}. We observe that, for all
€ > 0 small enough,

K*(@%)p—1 = K"(a%)p—2 + (ap-1 — op— 2)’€ (ap-1—¢)

—1
< K*(a)p—2 + (ap—1 — ap-2)kp_q(ap-1) — (ap-1 — ap—2)0p—1(a)e + O(c?)
< K*(a)p-1 — (-1 — ap-2)0p-1(a)e + O(e?)

o

and

K*(a%), < K*(a)p-1+ (ap —ap-1)k (ap + 52/3)
< K*(a)p-1 — (ap-1 — ap—2)0p—1(a)e + (ap — O‘p—l)"&;(ap) + 0(54/3)
< K*(a), — (ap-1 — ap-2)bp-1(a)e + O(*/?),

thus, for € > 0 small enough, a® € R and Zgzl(ozp —ap-1)ag, > 25:1(%3 —yp—1)ap, which
is inconsistent with the fact that a is the optimal solution of (2.B.1).

Therefore, by Theorem VI, there exist non-negative A1,...Ap such that
(L1) Vh e RP, VJ(a).h =] | \,VK*(a),.h;

(L2) vh € R, Z —1 A\phy < 0;
(L3) 3o AWK *(a), = 0.

We observe that Condition (L1) can be rewritten Vp < P,A,0,(a) = 1, therefore
Op(a) = )\ip We define h? € R” such that h? = —1yj—p + 1{j—pt1}- Condition (L2)
applied to h? € R implies that A is non-increasing, thus @ is non-decreasing; which gives
(P1). Finally, we rewrite Condition (L3) as follows, by discrete integration by part

P—

P
0=> NK*(a), = ApK*(a)p — 1 Apt1 = Ap) K7 (),

H

=

<0 >0

therefore Condition (P3) (K*(a)p = 0) is verified; and if A\p;1 # Ay, then K*(a), = 0,
which implies (P2).
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We now suppose that a € R verifies Conditions (P1), (P2) and (P3) and we prove that
forall be R,

P P
> (ap — ap-1) Z —ap1) (2.B.3)
p=1 p=1

To do so, we use the fact that functions rj, are convex and differentiable at point a,
therefore, for all x € R, k() > rp(ap) + Op(x — ap). As a consequence, we have

Lid P w*(a,) — k*(b
> (e = apr)ap —by) > 30 D ()
p—l p:l p
S (K*(a)p— K (b)) — 3 (1 - 1) (K*(a), — K*(b),)
Op 1 Opr1 O

—1 9P+1 9?
thus
P P—1
K*(b 1 1
Z(O‘p_ap—l)(ap_bp)z_e()P"‘ Z <9 _9> K*(b), >0,
p=1 P p—1 \Up+1 P

as 0 is non-decreasing an K*(b) non-positive. Optimizing (2.B.3) over b € R gives us

P
Z p — Qp—1)ap > Vis

p=1
which ends the proof. O

We now prove the uniqueness of the solution of (2.B.1).

Lemma 2.B.2. If for all p < P, k), is finite on an open subset of [0,+00), then there is
at most one solution to (2.B.1).

Proof. The uniqueness of the solution in an easy consequence of the strict convexity of
(k5,p < P). Let a and b be two different solutions to (2.B.1), there exists a largest p < P

such that a, # b,. Then, writing ¢ = %, we have

quva*(C)q 2 —

Thus, by continuity of K*, ¢ is in the interior of R, then we can increase a little ¢, and the
path driven by (c+¢e1y ;) goes farther than both a and b, which is a contradiction. [l

Finally, we prove the existence of such a solution when the mean number of children
of an individual in the BRWis is finite.

Lemma 2.B.3. Under the assumptions (2.1.8) and (2.1.9), there exists at least a solution
0 (2.B.1).
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Proof. 1f k,(0) < 400, then infg rj, = —£,(0) and the minimum is reached at «;,(0). As
K, are bounded from below, for all p < P there exists x;, > 0 such that
(ap — p—1)K xp +Z qullnf/'i > 0.
q#p

Therefore, writing X =R N [],<pl#;(0), z,], we have

supz —ap_1) pfsupz —ap_1)b

beR beX

But, X being compact, this supremum is in fact a maximum. There exists a € X such

that
E :(O‘p Qp—1)ap = sup E : —ap-1)bp
beR

which ends the proof. ]

2.C Notation

e Point processes
— Lp: law of a point process;
— Ly point process with law L;
— Kp: log-Laplace transform of L,;
— ky: Fenchel-Legendre transform of £p;
— X, defined in 2.1.12.
o (eneric marked tree
— T: genealogical tree of the process;
— w € T: individual in the process;
— V(u): position of the individual u;
— |u|: generation at which u belongs;
— uy: ancestor at generation k of u;
— (: initial ancestor of the process;
— if u # (), wu: parent of u;
— Q(u): set of the children of u;
— M,, = max|,|—, V(u) maximal displacement at the n't generation in (T, V).
° anching random walk with reproduction law L,
— vy = (0): speed of the branching random walk, such that M" — Up A.8.;
~ 0, critical parameter such that 8,v, — £,(0,) = 0.
° anching random walk through interfaces
— P: number of distinct phases in the process;
- 0=aqap < a; <...<ap=1: position of the interfaces;

- a](J " = = |nay): position of the p' interface for the BRWis of length n;

- aé)zzplz%l{

: - P.
it (n)]} path driven by a := (ay,...a,) € R";

p—1>%p
— u “follows path @™” if Vk < |ul, |V (u) — dlgn)| < nl/?
~ K*(a), = Y11 (ag — ag-1)a,: rate function associated to the BRWis;
- R={acR":vp < P,K*(a), <0}.

o The optimal path
~ Vjg = MaXpeR 2521(0417 — ap—1)bp: speed of the BRWis;
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— a € R such that Z;zl(ozp — ayp—1)ap = vis: optimal speed profile;
Op = (r3) (ap);
— T = #{6p,p < P}: number of different values taken by 6;
— 1 < g < -+ < p: different values taken by 6;
— fi=min{k < P: 0, = ¢} and I; = max{k < P : 0 = ¢ };
A=, 2—3% {I{K*(a)h:o} +1+ l{K*(a)zt_FO}}: log-correction of the BRWis;
- B={p<P:K*a)y_1 = K*(a), =0}
e Spinal decomposition
- W, = Z\u|=n V=25 5k 0). the additive martingale with parameter 0;
— Py law of the time-inhomogeneous branching random walk with environment
(Lr, L1, -+ )3

— Py =W, - Py size-biased law of Py, .;

— Py 0 law of the branching random walk with spine;
— w: spine of the branching random walk;
— Fn =0(u, V(u),|u| <n): filtration of the branching random walk;
- Gp =o0(wg, V(wg),k <n)Vo(u,V(u),u € Quwyg), k <n): filtration of the spine;
- .7?” = F, V G,: filtration of the branching random walk with spine;
— Spinal decomposition: Proposition 2.2.1;
— Many-to-one lemma: Lemma 2.2.2.
o Random walks
— (T,,): random walk with finite variance;
— (Sp): random walk through interfaces;
— Time-reversal: replacement of S by (§n =S, — Sn—k, k <n).
e Branching random walk estimates
- my = nujs — Alogn;
= Ep(p) = X1 (ag — ag-1)(pry(0) — Kel9));
n Ign) = Z;;D:l /{p(e) Z?:l l{je(a(n) a;”)}};

p—1
(n)

~ ) =ap(k—n)+ 2 log(n —k+1);
_ B(n) =U (a(") a(”)] and F(n) =U [a(”) a(”)]
peB\“p—15 D peBN{1,P}|%p—-1>%p D

_ f](n) — aljl{jgai’l)} + (mn + r]g")) 1{j2ag21}: upper boundary;

= Xy, h) = Yjuyn l{V(u)—mn—ye[—h,—h-i-l}}1{V(uj)<f§n)+yjeF(n)}5
—Jj bl

- g,in): another boundary, defined in (2.4.6);
~ Au(y) = {u €T V(W) = ma+y, Vi) < g +y.j <n;

_Q wi)— (n)
,Bn(z): UGT:’U‘:n7f(uj)§ze Z{V( 3)=9; } ;

- Gn(y,2) = An(y) N Byu(z) and Y, (y, z) = #Gn(y, 2).






CHAPTER 3

LThe maximal displacement of
a branching random walk in
slowly varying environment

“Winter is coming.”

Georges R. R. Martin — Game of thrones

Abstract

We consider in this chapter a BRWtie in which the time-inhomogeneous environment
evolves smoothly at a time scale of order n. The asymptotic behaviour of the max-
imal displacement in this process consists in a first ballistic order plus a negative
correction of order n'/3. The speed of the process is obtained, as in the previous
chapter, as the solution of an optimization problem under constraints. The second
term comes from time-inhomogeneous random walk estimates. This result partially
answers a conjecture of Fang and Zeitouni [FZ12b]. We also obtain in this chapter
the asymptotic behaviour of the consistent maximal displacement with respect to the
optimal path.

NotA: This chapter is a slightly modified version of the article Mazimal displacement in a
branching random walk through a series of interfaces accepted for publication in Stochastic
Processes and Applications, doi 10.1016/j.spa.2015.05.011. Available on arXiv:1307.4496.

3.1 Introduction

The time-inhomogeneous branching random walk on R studied in this chapter is defined
as follow. Let (L, t € [0,1]) be a family of point processes, that we call the environment of
the branching random walk. We consider a branching random walk (T V(™) in which
individuals alive at generation k < n reproduce independently according to point processes
of law Ly /,. Individuals alive at generation n have no children. We call such a process a
branching random walk in large scale time inhomogeneous environment (abbreviated as
BRWIs).

The study of the maximal displacement in a time-inhomogeneous branching Brownian
motion, the continuous time counterpart of the branching random walk, with smoothly
varying environment has been started in [FZ12b]. In this process individuals split into 2
children at rate 1, and move according to independent Gaussian diffusion with variance
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af/n at time t € [0,n|. Fang and Zeitouni conjectured that under mild hypotheses, there
exists a constant v* and a function g verifying

g(n) _ .. g9(n)
o0 < i 917 < imsup £ <0

such that the sequence (M,, — nv* — g(n),n > 1) is tensed. They proved this result for
smoothly decreasing variance. Using PDE techniques, Nolen, Roquejoffre and Ryzhik
[NRR14] established, again in the case of decreasing variances, that g(n) = I*n'/3 +
O(logn) for some explicit constant [*. Maillard and Zeitouni [MZ14] proved, independently
from our result, that g(n) = *n/3 — ¢ logn, for some explicit ¢;. The techniques they
used for their proofs are similar to the ones presented here, based on first and second
moment computations of number of individuals staying in a given path and the study of
a partial differential equation (see Appendix 3.A).

In this chapter we prove that for a large class of time-inhomogeneous branching ran-
dom walks, — nU* ~p i *n!/3 in probability for some explicit constants v* and
*. Conversely to previous articles in the domain, the displacements we authorize are non
necessarily Gaussian, and the law of the number of children may be correlated with the
displacement and depend on the time. More importantly, we do not restrict ourselves to
(an hypothesis similar to) decreasing variance. However assuming a decreasing variance
remains interesting as in this case quantities such as v* and [* admit a closed expression.

We do not prove in this chapter there exists a function such that (M, —nv* — g(n))
is tight, thus we do not exactly answer to the conjecture of Fang and Zeitouni. However
Fang [Fan12]| proved the sequence (M,,) shifted by its median is tight for a large class of
generalized branching random walks. This class does not exactly covers the class of time-
inhomogeneous branching random walks we consider, but on the non-trivial intersection,
the conjecture is then proved applying Theorem 3.1.3.

To address the fact the displacements are non Gaussian, we use the Sakhanenko es-
timate [Sak84], which couples sums of independent random variables with a Brownian
motion. The non-monotonicity of the variance leads to additional concerns. We discuss
in Section 3.1.2 a formula for lim,, %, expressed as the solution of an optimization
problem under constraints (3.1.6). This equation is solved in Section 3.4, using some an-
alytical tools such as the existence of Lagrange multipliers in Banach spaces described in
[Kur76]. Solving this problem, an increasing function appears that replaces the inverse of
the variance in computations of [NRR14] and [MZ14]. We finally use Brownian estimates
and the many-to-one lemma to compute moments of an additive functional of the BRWIs.

Notation In this chapter, ¢,C stand for two positive constants', respectively small
enough and large enough, which may change from line to line, and depend only on the law
of the random variables we consider. We assume the convention max () = —oo and min () =
+o00. For € R, we write x4 = max(z,0), z— = max(—z,0) and log, () = (logx)4. For
any function f :[0,1] — R, we say that f is Riemann-integrable if

n—1

1
lim inf — min = limsu max
n_H_OOnkz;) se[oL ki) fs = n—)—l—ognkz%) e[kt bt2) s,
and this common value is written fol fsds. In particular, a Riemann-integrable function is
bounded. A subset F' C [0, 1] is said to be Riemann-integrable if 1 is Riemann-integrable.

1. Whereas everywhere else, C' is for cookie.
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For example, an open subset of (0,1) of Lebesgue measure 1/2 that contains all rational
numbers is not Riemann-integrable. Finally, if A is a measurable event, we write E(-; A)
for E(-14). An index of notation is available in Appendix 3.B

The rest of the introduction is organised as follows. We start with some branching
random walk notation in Section 3.1.1. We describe in Section 3.1.2 the optimization
problem that gives the speed of the time-inhomogeneous branching random walk. In
Section 3.1.3, we state the main result of this article: the asymptotic of the maximal
displacement in a time-inhomogeneous branching random walk. We also introduce another
quantity of interest for the branching random walk: the consistent maximal displacement
with respect to the optimal path in Section 3.1.4. Finally, in Section 3.1.5, we introduce
some of the random walk estimates that are used to compute moments of the branching
random walk.

3.1.1 Branching random walk notation

We consider (L, t € [0,1]) a family of laws of point processes. Let ¢ € [0, 1], we write
L; for a point process with law £;. For § > 0, we denote by r¢(0) = logE {ZZELt eeq

the log-Laplace transform of # and for a € R by «j(a) = supy-g[fa — x:(0)] its Fenchel-
Legendre transform. We recall the following elementary fact: if s} is differentiable at point
a, then setting 6 = 0,x7 (a), we have

Oa — ki (0) = K; (a). (3.1.1)

The branching random walk of length n with large scale time-inhomogeneous environ-
ment (L, t € [0,1]) is the marked tree (T, V(™) such that {L*,u € T(™} forms a family
of independent point processes, where L* has law L juj+1 if |u| < n, and is empty otherwise.

n

In particular, T(™ is the (time-inhomogeneous) Galton-Watson tree of the genealogy of
this process. When the value of n is clear in the context, we often omit the superscript,
to lighten notation.

We consider processes that never get extinct, and have supercritical offspring above a
given straight line with slope p. We introduce this (strong) supercritical assumption

vVt € [0,1],P(Ly=0)=0 and JpecR: tif(l)f”P(#{E €L;:0>p}>2)>0. (3.1.2)
€lo,

A weaker supercritical assumption is enough for most of the results proved in this chapter,
but this stronger version is technically convenient to obtain concentration inequalities for
the maximal displacement. It is also helpful to guarantee the existence of a solution to
the optimization problem that defines v*.

We also make some assumptions on the regularity of the function t — L;. We write

D = {(t,0) € [0,1] x [0,400) : k() < 400} and D* = {(t,a) : k;(a) < 400}, (3.1.3)

and we assume that D and D* are non-empty, that D (resp. D*) is open in [0, 1] X [0, +00)
(resp. [0,1] x R) and that

k€ CY? (D) and k* € C1? (D*). (3.1.4)

These regularity assumptions are used to ensure the solution of the optimization problem
defining v* is regular. If (3.1.4) is verified, then the maximum of L; has at least exponential
tails, and P(max L; = esssupmax L;) = 0. We do not claim these assumptions to be
optimal, but they are sufficient to define v*.
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For example, a finite number of i.i.d. random variables with exponential left tails satisfy
the above condition. Conversely, heavy tailed random variables, or if the maximum of the
point process verifies

P(max{{ € L} > &) ~ps100 & "

for some € € (0,2) do not satisfy (3.1.3).

3.1.2 The optimization problem

We write C for the set of continuous functions, and D for the set of cadlag? functions
on [0, 1] which are continuous at point 1. To a function b € D, we associate the path of
length n defined for & < n by B,(Cn) = Z?Zl b We say that b is the speed profile of the

path B(n), and we introduce

J/n

D — C

Koy (fotn:(bs)ds,te[o,l}).

By standard computations on branching random walks (see, e.g. [Bigl0]), for any ¢ € [0, 1],

the mean number of individuals that follow the path E(H) until time tn i.e., that stay at
all time within distance \/n from the path, verifies

1

—1

nogE Z 1
lu|=|nt]

—(n ~ —K*(b);.
{‘V(“k)—bl(c/)n n——+o0o ( )t

<\/ﬁ,k§nt}

Therefore, e K" ()
to the path B(n) until time tn.

If there exists tg € (0, 1) such that K*(b), > 0, by Markov property, with high prob-
ability there is no individual who stayed close to this path until time nty. Consequently
no individual in BRWIs followed path B(n) until time n. Conversely, if for all ¢t € [0, 1],

K*(b); < 0, one would expect to find with positive probability at least one individual at
(n)

is a good approximation of the number of individuals that stay close

time n to the right of b . Following this heuristic, we introduce

1
v* = sup {/ bsds,be D :Vt € [0,1], K*(b); < 0} . (3.1.5)
0

We expect nv* to be the highest terminal point in the set of paths that are followed with
positive probability by individuals in the branching random walk. Therefore we expect
that lim, 400 % = v* in probability.

We are interested in the path that realises the maximum in (3.1.5). We define the
optimization problem under constraints

1
JaeD:v* = / asds and Vt € [0,1], K*(a); < 0. (3.1.6)
0

We say that a is a solution to (3.1.6) if fol asds = 0 and K*(a) is non-positive. Describing
such a path gives the second order correction. In effect, as highlighted for regular branch-
ing random walks in [AS10], the second order of the asymptotic of M,, is linked to the
probability for a random walk to follow this optimal path.

2. Right-continuous with left limits at each point.
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Proposition 3.1.1. Under the assumptions (3.1.2) and (3.1.4), there exists a unique
solution a to (3.1.6), and a and 0 are Lipschitz.
Moreover, a is a solution to (3.1.6) if and only if, setting 0y = Ok} (ar), we have

(P1) 6 is positive and non-decreasing;
(P2) K*(a) =0;
(P3) [y K*(a)sdf;' =0.
This result is proved in Section 3.4. The path a solution to (3.1.6) is called the optimal

speed profil, and @ is called the optimal path. This optimization problem is similar to the
one solved for the GREM by Bovier and Kurkova [BKO07].

3.1.3 Asymptotic of the maximal displacement

Under the assumptions (3.1.4) and (3.1.6), let a be the optimal speed profile charac-
terised by Proposition 3.1.1. For t € [0, 1] we denote by

O; = Okt (a;) and o = Fki(6;). (3.1.7)

To obtain the asymptotic of the maximal displacement, we introduce the following regu-
larity assumptions:

0 is absolutely continuous, with a Riemann-integrable derivative 6, (3.1.8)
{t €0,1] : Kj(a) = 0} is Riemann-integrable. (3.1.9)

Finally, we make the following second order integrability assumption:

2
sup E (Z e%> < +o0. (3.1.10)

t€[0,1] (€L,

Remark 3.1.2. This last integrability condition is not optimal. Using the spinal decompo-
sition as well as estimates on random walks enriched by random variables depending only
on the last step, as in the previous chapters would lead to an integrability condition of
the form E(X (log X)?) < +oo instead of (3.1.10). However, this assumption considerably
simplifies the proofs.

The main result of this article is the following.
Theorem 3.1.3 (Maximal displacement in the BRWIs). We assume (3.1.2), (3.1.4),

(3.1.8), (3.1.9) and (3.1.10) are wverified. We write oy for the largest zero of the Airy
function of first kind® and we set

. a1 1 (9808)2/3
=i | s <o (3.1.11)

For any I > 0 we have,

1 1 * * 1/3 _
S g log P (Mn >nv* + (IF 4+ D)n ) = —fyl,
and for any € > 0,
lim sup i log P (’M —nv* — l*nl/g‘ > 6711/3) <0
n—+oo n1/3 " - .

3. Recall that oy =~ —2.3381...
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This theorem is proved in Section 3.5. The presence of the largest zero of the Airy
function of first kind is closely related to the asymptotic of the Laplace transform of the
area under a Brownian motion B starting from 1 staying positive,

_ [t —Lt+to(t
E, (6 fo BSds;BS > 073 < t) Rty too e21/3 +o( )

The fact that the second order of M, is n'/3 can be explained as follows: when 6 is
strictly increasing at time t, the optimal path has to stay very close to the boundary of
the branching random walk at time nt. If 6 is strictly increasing on [0, 1], the optimal
path has to stay close to the boundary of the branching random walk. This n'/3
order is then similar to the asymptotic of the consistent minimal displacement for the
time-homogeneous branching random walk, obtained in [FZ10, FHS12].

second

3.1.4 Consistent maximal displacement

The arguments we develop for the proof of Theorem 3.1.3 can be extended to obtain the
asymptotic behaviour of the consistent maximal displacement with respect to the optimal
path in the BRWIs, which we define now. For n € N and u € T™, we denote by

Au) = max @ = Vi),

the maximal distance between the optimal path and the position of an ancestor of individ-
ual u. The consistent maximal displacement with respect to the optimal path is defined
by

A= min  Au). (3.1.12)

u€T () |y|=n

This quantity correspond to the smallest distance from the optimal path @ at which one
can put a killing barrier, bellow which individuals get killed, such that the system survives
until time n. The consistent maximal displacement has been studied for time-homogeneous
branching random walks in [FZ10, FHS12]. In the case of BRWIs, the following result
holds.

Theorem 3.1.4 (Consistent maximal displacement). Under the assumptions (3.1.2),
(3.1.4), (3.1.8), (3.1.9) and (3.1.10), there exists \* < —I*, defined in (3.5.13) such that
for any X € (0, \%),

. 1 . 3\
Jim g logP (An < (X = N)n'%) = 6o,
and for any € > 0,
1
lim sup —— log P(|A,, — Nnl/3] > enl/3) < 0.
n—+oco N /3

Remark 3.1.5. If u € T verifies V(u) = M, then A(u) < nv* — M,,. As a consequence,
the inequality A, < nv* — M, holds almost surely, thus A\* < —I[* as soon as these
quantities are well-defined.

In Theorem 3.1.4, we give the asymptotic of the consistent maximal displacement
with respect to the optimal path. However, this is not the only path one may choose
to consider. For example, one can choose the “natural speed path”, in which the speed
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profile is a function v € C defined by v, = infy~q ”t(e) . Note that v; is the speed of a time-

homogeneous branching random walk with reproductlon law £;. This path is interesting,
as it is the unique path such that for all ¢ € [0,1], K*(v); = 0. Consequently, for any
A > 0, the number of individuals that stay above 7™ — An!/3 at all time is at most of
order ¢2"*) with high probability.

In Section 3.3, we provide a new time-inhomogeneous version of the many-to-one
lemma, linking additive moments of the branching random walk with time-inhomogeneous
random walk estimates. To prove Theorems 3.1.3 and 3.1.4, we use random walk estimates
that are proved in Section 3.2.

3.1.5 Airy functions and random walk estimates

We introduce a few basic property on Airy functions, that can be found in [AS64].
The Airy function of first kind Ai can be defined, for € R, by the improper integral

1 ¢ :
Ai(z) = = lim cos (% + xs) ds, (3.1.13)
0

and the Airy function of second kind Bi by

: . t $3 (B
Bi(x) = = t_lgrnoo ; exp (_F + xs) + sin (§ + xs) ds. (3.1.14)

These two functions form a basis of the space of solutions of
Vz € R,y"(x) — zy(z) = 0,

and verify lim,_, 4~ Ai(z) = 0 and lim,_, » Bi(z) = +00. The equation Ai(x) = 0 has an
infinitely countable number of solutions, which are negative with no accumulation points,
that we list in the decreasing order: 0 > a3 > ag > - --

The Laplace transform of the area below a random walk, or a Brownian motion,
conditioned to stay positive admits an asymptotic behaviour linked to the largest zero of
Ai, as proved by Darling [Dar83], Louchard [Lou84]| and Takacs [Tak92]. This result still
holds in time-inhomogeneous settings. Let (X, x,n > 1,k < n) be a triangular array of
independent centred random variables. We assume that

3o € C([0,1],(0,4+00)) : ¥n € N,Vk < n, E(X} ) = 07 /., (3.1.15)
>0 E [Nl ] < foo (3.1.16)
We write S,(j) = ?:1 Xp,j for the time-inhomogeneous random walk.

Theorem 3.1.6 (Time-inhomogeneous Takécs estimate). Under (3.1.15) and (3.1.16),
for any continuous function g such that g(0) > 0 and any absolutely continuous increasing
function h with a Riemann-integrable derivative h, we have

1
ngr—ir—loo n1/3 IOgE

exXp ( Z j/n T ] 1 /n)S(n)) ;Sj < gj/nn1/37j < TL]

_ [ h +£(i’zo)2/3 ds
- 0 SgS 21/3 sYSs .
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This result is, in some sense, similar to the Mogul’skil estimate [Mog74], which gives
the asymptotic of the probability for a random walk to stay in an interval of length n'/3.
A time-inhomogeneous version of this result, with an additional exponential weight, holds
again. To state this result, we introduce a function ¥, defined in the following lemma.

Lemma 3.1.7. Let B be a Brownian motion. There exists a unique convex function
¥ : R — R such that for all h € R
1 ot
lim ~log sup E, {e nloBsds e 0,1],s € [O,t]] = U(h). (3.1.17)
t—=+oo t z€[0,1]

Remark 3.1.8. We show in Section 3.A.2 that W admits the following alternative definition:

Vh > 0,¥(h) = ;g sup {A <01 Ai (V) Bi (A+ (21)/%) = Bi(\) Ai (A + (20)'/%) = 0},

2

and prove that W verifies ¥(0) = =%, U(h) ~p 400 algf% and ¥(h) — ¥U(—h) = —h for
all h € R.

Proof of Lemma 3.1.7. For h € R and t > 0, we write
1 t
U, (h) = —log sup E, {ehfo Bsds. B e [0,1],s € [O,t]} .
z€]0,1]

As By € [0,1], we have trivially |¥¢(h)| < |h| < +00. Let 0 < ¢; <ty and = € [0, 1], by
the Markov property

t1+t
E. |:ehf01 zBst;Bs S [O, 1], S € [O,tl + tg]:|
t t
_E, [ehfol Basp, [ehf()Q Buds. B e [0,1],s € [o,tQ]} B, € [0,1],s € [O,tl]]

t
Setzll/tz(h) E, [ehfol Bsds; B, € [07 1]73 c [O,tl]}

<et1 ‘lftl (h)etQ\th (h) .

As a consequence, for all h € R, (tW(h),t > 0) is a sub-additive function, therefore
lim W, (h) = %1218 U (h) =: U(h).

t—+00

In particular, for all A € R, we have |¥(h)| < |h| < +o0.
We now prove that W is a convex function on R, thus continuous. By the Holder
inequality, for all A € [0, 1], (h1,h2) € R?, 2 € [0,1] and ¢ > 0, we have

B, [V LB 0,15 € (0.4
1-X

19 1
' B ds > B ' Bds T

_

1-X

r t A t
<E, |eM Jo Bids. g [0,1],s € [O,t]] E, {ehQ Jo Bsds. p ¢ [0,1],s € [O,t]}

< AW (1) H1-N) W (h2)

f— )

therefore, for all ¢ > 0, ¥, is a convex function. As a consequence

limsup Uy (Ah1 + (1 — A)ha) < Alimsup Wy (h1) + (1 — A) lim sup Wy (ha),
t—+o00

t——+o0 t—4o00

which proves that ¥ is convex, thus continuous. ]
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Theorem 3.1.9 (Time-inhomogeneous Mogul’skii estimate). Under assumptions (3.1.15)
and (3.1.16), for any pair of continuous functions f < g such that f(0) < 0 < g(0) and
any absolutely continuous function h with a Riemann-integrable derivative h, we have

1
lim —r

n—4o00 n1/3 log E

- m ). S -
exp (Z(hj/n - h(j—l)/n)sj ) ,HT;S € [fj/nagj/n]v.] < n]

Jj=1
= /1 hsgs + % A ((95_55)3 hs> ds.
0 (gs - fs) 75

The rest of the chapter is organised as follows. Theorems 3.1.6 and 3.1.9 are uni-
fied and proved in Section 3.2. These results are used in Section 3.3 to compute some
branching random walk estimates, useful to bound the probability there exists an indi-
vidual staying in a given path until time n. We study (3.1.6) in Section 3.4, proving in
particular Proposition 3.1.1. Using the particular structure of the optimal path, we prove
Theorems 3.1.3 and 3.1.4 in Section 3.5. In Appendix 3.A we prove a Brownian motion
equivalent of Theorems 3.1.6 and 3.1.9, that were used in Section 3.2.

Acknowledgments I would like to thank Pascal Maillard, for introducing me to the
time-inhomogeneous branching random walk topic, Ofer Zeitouni for his explanations on
[FZ12b] and Zhan Shi for help in all the stages of the research. I also thank the referees for
their careful proofreading of this chapter and pointing out a mistake in one of the original
proofs. Finally, I wish to thank David Gontier and Cécile Huneau for their help with the
PDE analysis in Appendix 3.A.

3.2 Random walk estimates

We consider an array (X, ,n > 1,k < n) of independent centred random variables,
such that there exist o € C(]0, 1], (0, +0o0)) and p € (0, +00) verifying (3.1.15) and (3.1.16).

We write S,gn) = S(()n) + Z§:1 Xp,; for the time-inhomogeneous random walk of length n,

such that Pw(S(()n) =z) = 1. Let E; be the expectation corresponding to the probability
P.. Let h be a continuous function on [0, 1] such that

h is absolutely continuous, with Riemann-integrable derivative A. (3.2.1)

The main result of this section is the computation of the asymptotic behaviour of the
Laplace transform of the integral of S with respect to h, as n — +00, on the event that
S(") stays in a given path, that is defined in (3.2.4).

Let f and g be two continuous functions on [0, 1] such that f < g and f(0) < 0 < ¢(0),
and F' and G be two Riemann-integrable subsets of [0, 1] (i.e., such that 1r and 14 are
Riemann-integrable). We assume that

{te[0,1]:hy <0} CF and {te[0,1]:h >0}CG. (3.2.2)

Interval F' (respectively GG) represent the set of times at which the barrier f (resp. g) is
put below (resp. above) the path of the time-inhomogeneous random walk. Consequently,
(3.2.2) implies that when there is no barrier below, the Laplace exponent is non-negative,
so that the random walk does not “escape” to —oo (resp. +00) with high probability.

For n > 1, we introduce the %th approximation of F' and G, defined by

Fo={1<k<n:|[EE[nrz0}, Gu={o<k<n:[LEnG£0}. (323

n’ n n’> n
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The path followed by the random walk of length n is defined, for 0 < j < n, by

fg/nn agj/nnl/g] lf] € F, NGy,

[
() = [fj /n> +00) if j € F, NG, (3.2.4)
" ( 00, gj/nT 1/3] 1f.7 GFﬁﬁGn,
R otherwise.

The random walk S follows the path I if > fk/nn1/3 at any time k£ € F,,, and

S,(Cn) < gk/nnl/?’ at any time k£ € G,,. Choosing F' and G in an appropriate way, we obtain
Theorem 3.1.6 or Theorem 3.1.9.
We introduce the quantity

0.2

e ()

E]

1
HF’G:/ hsgsds +
g 0 s9s Fna (s

/ 2/3 ; _ o1 2/3
+/chG 21/3(h s05)7ds + e <hs(fs gs) + 21/3( hsos) >ds (3.2.5)

where U is the function defined by (3.1.17). The first integral in this definition enables to
“center” the path interval in a way that g is replaced by 0. The integral term over F'N G
comes from the set of times in which the random walk is blocked in an interval of finite
length as in Theorem 3.1.9, and the last two integral terms correspond to paths with only
one boundary, above or below the random walk respectively.

The rest of the section is devoted to the proof of the following result.

Theorem 3.2.1. Under the assumptions (3.1.15) and (3.1.16), for any continuous func-
tion h satisfying (3.2.1) and pair of continuous functions f < g such that f(0) < 0 < g(0),
for any Riemann-integrable F,G C [0,1] such that (3.2.2) holds, we have

lim sup

> (h‘(]+1)/n_h7/n)s (n) o 7 . FG
im sup y75 Sup log Ea [6 1S e g <n| =Hp (1) (3.2.6)

zeR 1.9

Moreover, setting IN](-n) = Ij(n) N [=n2/3,n2/3], for all fi < a <b< g1 we have

lim inf — log Eg

n——+oo n /

221 (B n=hyyn)S5" 4 g ¢ T “(n) Ji<n
{Sén)e[an1/3’bnl/3]}’ J

= H{ 7. (3.2.7)

Remark 3.2.2. Observe that when (3.2.2) does not hold, the correct rate of growth of the
expectations in (3.2.6) and (3.2.7) is e©™), instead of the order O™,

To prove this theorem, we decompose the time interval [0,n] into A intervals, each
of length %. On these smaller intervals, the functions f, g and h can be approached
by constants. These intervals are divide into %f subintervals of length tn?/%. On these
subintervals, the time-inhomogeneous random walk can be approached by a Brownian
motion. The corresponding quantities are explicitly computed using the Feynman-Kac
formula. Letting n, ¢ then A grow to 400, we conclude the proof of Theorem 3.2.1. We
give in Section 3.2.1 the asymptotic of the area under a Brownian motion constrained
to stay non-negative or in an interval, and use the Sakhanenko exponential inequality in
Section 3.2.2 to quantify the approximation of a random walk by a Brownian motion,

before proving Theorem 3.2.1 in Section 3.2.3.
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3.2.1 Brownian estimates through the Feynman-Kac formula

The asymptotic behaviour of the Laplace transform of the area under a Brownian
motion, constrained to stay non-negative or in an interval, is proved in Appendix 3.A. In
this section, (By,t > 0) is a standard Brownian motion, which starts at position = € R at
time O under the law P,. We give the main results that are used in the next section to
compute similar quantities for time-inhomogeneous random walks. First, for a Brownian
motion that stay non-negative:

Lemma 3.2.3. Forallh >0,0<a<band0<a <V, we have

t
hm flogsupE [ —h J, Beds, B > 0,5 < t]
t—=+oo ¢ Tz€R

ot
= lim flog inf E, { " fy BSdSl{Bte[a/7b/]}§BsZO,SSt 3h2/3 (3.2.8)

t—+oo ¢ z€[a,b]

21/
A similar estimate holds for a Brownian motion constrained to stay in the interval
[0,1]:

Lemma 3.2.4. Let B be a Brownian motion. For all h € R, 0 < a < b < 1 and
0<d <V <1, we have

1 ¢
lim - sup logE, [ —h Js Buds, g ¢ [0,1],s < t]
t=+oo { z€[0,1]

1 tBSds A
= tlgi_noo Z xéI[lafb} IOgE |: fo 1{Bt€[a’,b’]}a Bs S [O, 1], s < t:| = ‘I/(h) (329)

Moreover, for all h > 0, we have
h2/3

U(h) = 575

sup {A < 0: Ai (V) Bi (A+ (21)/%) = Bi(\) Ai (A + (20)1/) = 0} .
(3.2.10)
We also have ¥(0) = —%, limy, s 100 ;I:Q(Z) = 5if5 and, for h € R, W(h) — ¥(—h) = h.

3.2.2 From a Brownian motion to a random walk

We use the Sakhanenko exponential inequality to extend the Brownian estimates to
time-inhomogeneous random walks. We obtain here the correct n'/3 order, but non-
optimal upper and lower bounds. These results are used in the next section to prove
Theorem 3.2.1.

Theorem VII (Sakhanenko exponential inequality [Sak84]). Let X = (Xi,...X,,) be a
sequence of independent centred random wvariables. We suppose there exists A > 0 such
that for all j <n

AE (|X[%N0) < B (X7). (3.2.11)

We can construct a sequence X = ()?1, .. )Z'n) with the same law as X; and Y a sequence
of centred Gaussian random variables with the same covariance as X such that for some
universal constant Cy and alln > 1

E [exp(CoAAn)] < 1+ A\l%’
j=1

where A, = max;<, ’Z{;:l X5 — Yk’.
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Using this theorem, we couple a time-inhomogeneous random walk with a Brownian
motion such a way that they stay at distance O(logn) with high probability. Technically,
to prove Theorem 3.2.1, we simply need a uniform control on P(A, > enlt/ 3). The
polynomial Sakhanenko inequality would be enough, that only impose a uniform bound
on the third moment of the array of random variables instead of (3.1.16). However in
the context of branching random walks, exponential integrability conditions are needed to
guarantee the regularity of the optimal path (see Section 3.1.2).

Let (X, 5, n € N,k < n) be a triangular array of independent centred random variables,
such that there exists a continuous positive function o2 verifying

Yn €Nk <n,E[X2,] =0}, (3.2.12)
We set g = minge(g 1) 0r > 0 and & = maxcg,1] 01 < +00. We also assume that

IN>0: sup E (e/\‘X"”“') < 4o0. (3.2.13)
neNk<n

Note there exists C' > 0 such that for any p < A\/2 and 2 > 0, 23e** < Ce*. Thus
(3.2.13) implies
Ju>0: sup pE (\XnJ\?’e“‘X"J') <o (3.2.14)
n>1,k<n
In the first instance, we bound from above the asymptotlc of the Laplace transform of
the area under the time-inhomogeneous random walk S Z

Lemma 3.2.5. We assume (3.2.12) and (3.2.13) are verified. For all h > 0, we have

i gL gl

logsupE [ =0 " S](n) >0,j < n} < —(h0)2/3 (3.2.15)

limsup —= 51/3

n—-+o0o /
For all h € R and r > 0, we have

n—1 S(n) 2 3

logsup B, [e " im0 5. oM ¢ [O,rnl/3]] < %xp (%h) (3.2.16)

limsup ——= j

n——+o0 n1/3

Proof. In this proof, we assume h > 0 (and h > 0 if r = +00). The result for h < 0 in
(3.2.16) can be deduced by symmetry and the formula ¥(h) — ¥(—h) = —h.

For all r € [0,400), we write f(r) = %jllf (Z—Zh) and f(+o00) = 515 (ha)?/3. For all
x € R, we use the convention +00 + = x + 0o = +00. By Lemmas 3.2.3 and 3.2.4, for
all 7 € [0, +00], we have

I 1 ~h [ B2, ds
imsup —logsupE, [e "Jo " B o€ [0,7],5 <t < f(r), (3.2.17)
to+oo U azeR
using the scaling property of the Brownian motion.
Let A € Nand n € N, we write T' = [AnQ/ﬂ and K = [n/T|. For all k < K, we write
my = kT'; applying the Markov property at time mg, mg_1,...m1, we have
n— ls(n)

h
sup E, ¢ im0 5, ;SJ(-n) € [0,rn'/3],j < n}
x>0

h n—1 o(n,k)
< H sup E, [e w20 5 ;Sj(n’k) € [0,7”7”&1/3],]' <T|, (3.2.18)
k= OIER
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where we write SJ("’k) = S(”) 57(:13 4 Sﬁ:fk) for the time-inhomogeneous random walk
starting at time my and at position  under P,. We now bound, uniformly in k£ < K, the

quantity

E{(r) = supE, e[0,rn'/3,j <T|.

zeR

Let k < K, we write t? = ZfT,;ZZ_H 05/ We apply Theorem VII, by (3.2.12) and

(3.2.13), there exist Brownian motions B*) such that, denoting by S(™*) a random walk
(n,k) ( ) S(” k)

h T—-1 4(n,k)
{ s S](n,k)

with same law as S and Ak = max;<r |B , there exists p > 0 such that for

alle >0, n>1and k < K,

P (AI:L > 6n1/3> < e—C’ousnl/?’ E (ech;g) < 6—00,15711/3 (1 + MEAI/in/?’) :

where we used (3.2.13) (thus (3.2.14)) and the exponential Markov inequality. Note in
particular that for all ¢ > 0, P(AX > en!/3) converges to 0 as n — 400, uniformly in
k < K. As a consequence, for all € > 0

E,in)(r) =supE, |e =079 55,

T—1 n,k —~
|: —% gimk) (n, k:)

€ [0,rn!/?], 5 < T]
_h T—-1 F(n,k) ~
<supE, [e n £aj=0 "j 1{M<5n1/3};5§n’k) € [O,rn1/3],j < T} +P (A,’z > 5n1/3) .
z€R n=

Moreover,

h NT—1 3(n,k)

sup E, [e_n =0 1{A§§6n1/3}; gj(n’k) € [07Tn1/3]7j < T:|

z€R
hIak b Tlp,
=2k [e o 1{M<mus} By € [-Ahmn? + AL j < T
x
hLept/3_h
<supE, [e " X J Btk € [—en'B (r+en'/?j<T
z€R

e3hAaEv}E:n) (r + 2e),

h T-1

- —LyTlp
setting E,(Cn)(r) = Sup,egr Ex [e "o t?;Btk € [0,rn'/?3],5 <T| for all 7 € [0, +00].

We set T]’-“ =n"2% Stk by the scaling property of the Brownian motion, we have

E,(cn)(r):supEx 1B €[0,7],j <T|.
z€R J

h T—-1
~ lenz/s Z]’:O Bk

We now replace the sum in E by an integral: we set

03—03 and 4 = sup |B; — Bs] .
8,t<262 Atwn, 4

|t—s\§2Awn7A+52n*1/3

W, A = sup
[t—s|<2An—1/3

For all k < K and j < T, we have

mg+j
k.2 —2/3 —2/3
i = IOk /" / ‘ <n / Z

i=mp+1

2 2
Oi/n — OkT/n < 2Awn7A7
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< Q.. As a consequence, for all € > 0, we obtain

and SUPsc(jo? /n, ;1 1)0%/n) | B — By

B __h_ ZT_ B
E{"(r) < supE, le MR T i B €107 S T| + P24 > ¢)

z€R

< M qup B, [ Mo Bttt <Al +P(Qua >

> pLg (€ = y gzse[ov(r+2€)]75_ + ( n,A—g)'
A

We set EA(T) = sup,cgr Eq {e_hfo By2.ds, By2s €10,7],5 < A]. As B is continuous, we

have lim,, 4 oo P(2,,,4 > €) = 0 uniformly in k£ < K. Therefore (3.2.18) leads to
—hgntgln)
|

e n Laj=0"j ;Sj(-n)E[O,rnl/?’],jgn]

K
T n—+4oo n1/3 Ikn<af}élogE( )( )

1
< — limsup

e [+ pglos (B4 20 - (2> 1))

< 6he + lim sup log {E (r+4¢) +P(Qp 4 > ¢) + maxP (Ak > 5n1/3>}
n—-+oo k<K

1
< 6he + 1 log EA(T + 4e).

We now use (3.2.17), letting A — +00, and thereby letting € — 0, this yields

n—1 4(n)
lim sup —— logsupE {e " 2o 5 ;S(-n) e [0,rn!/?,j < n} < f(r),
n—+oo N /3 J
which ends the proof. O

Next, we derive lower bounds with similar computations. To lighten notations, we set
IL(ITIL)) = [an1/3,bn1/3].

Lemma 3.2.6. We assume (3.2.12) and (3.2.13). Forallh >0,0<a <band0 <ada <V,
we have

_ny el g

j=0 "J ]_ )
{5 ey,

1 _\2/3
M ol iy log inf B ) 173 (1),
a,b

};S(n)>0,7<n] >

(3.2.19)
and for allh e R, r>0,0<a<b<rand0<d <V <r, we have

_nynelg
lim inf ——log 1nf E, =07 1 (m)
n—+o00 n /3 zel) {Snel iy

};5§") eI, j < n] > (;;q; (Zh).

Proof. We once again assume h > 0; as if h < 0 we can deduce (3.2.20) by symmetry and
the formula ¥(h) — W(—h) = h. We write, for all € [0,+00), f(r) = %2\1! (ﬁh> and

f(4o0) = 21/3(ha)2/3 By Lemmas 3.2.3 and 3.2.4, for all r € [0,4+00], 0 < a < b < r and
0<d <b <r, wehave

t
hmmf;log inf E, ]y BF?sdsl{Bte[a/’b/]}?Bs €0,r],s < t] > f(r). (3.2.21)

z€la,b
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We choose u € (a/,b') and § > 0 such that (u — 30, u+ 39) C (a’,’), and we introduce
J én) = I (u—8,u+6). We decompose again [0, n] into subintervals of length of order n?/3.
Let A€ Nand n € N, we write T" = {An2/3J and K = [n/T]. For all k < K, we set again
my, = kT, for all r € [0, +00], applying the Markov property at times mg, mg_1,...my
leads to

by g(n)
inf E; |e —n 20 1 () ;S(”)elé"),jgn
(n) Spel'? J 4
xe]a,b { n€ lb,}
_h T—1 o(n)
> inf By e 0 ) s er j<T
a,b
K—-1
B —~T-1 (nk)
X inf E,; |e ~3 2= 5 1 S( )EI(), <T
kl;[lmej(") x {S(n k)EJ(n)} 0,r J

h n—KT 4(n,K)
x inf E, {e ”Z 5

f ;S e 1, < - KT} . (3.2.22)
:UEJ '

where SJ(.”’k):Sé")—i—SggH—S%z. Let0<a<b<randO<dad <b <r,wesete>0

such that a > 8¢, r — b > 8¢ and b’ — @’ > 8. We bound uniformly in k the quantity

h T—1 4(n,k)
El(gn)("”) = inf E, = 1{S(n,k)€1(“) }’ S(n g € Ié & J =T
T a’ b’

J
ze[i?b)

To do so, we set once again, for k < K, t? = ZfT,jTJH ]2/” By Theorem VII, we
introduce a Brownian motion B such that, denoting by S'\" S(nk) 3 random walk with the
same law as S(™*) and setting A¥ = max;<z ‘Bt? - §§n’k)’, for all € > 0, by (3.2.14) and
the exponential Markov inequality we get
sup P (AZ > 5n1/3) < ¢~ Conen’/? (1 + ,uEAl/in/3> ,
k<K

which converges to 0, uniformly in k, as n — 4o00. As a consequence, for all ¢ > 0 and
k< K,

(n)
Ey (r)
h T—1 F(n,k) ~
= inf B, e n2a=0 % 1 Sk e <1
Gy T k) ) 1095 orJ =
xe[{z,b T € a’,b’
h T-1 (n k) ~ k) (TL)
> inf E, [e n 20 % 1, 1 (SR e g s <
el {Birmery, LT {aksent 2} O J =
h ZT 1 B
o—3hA j=0 “tk
> inf “E, ’ 1 (n) 1{M<sn1/3};Bt‘? < Ia( r) ] =T
:(:Efin)s bte Bk eIaUrs,b/ e " !

>~ 3hAs (E,g )(r —2¢) — P(Afl > €n1/3)> ,

where we set

() :
Ek (7’) N xe[a—lgaf:b—&-%] Eq

1 B, € [0, <
{B k €la’+2¢,b' — 22]} [ 7’] y TT] ’
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and Tj’-“ = t;‘?n_Q/?’. We also set

o —0? and Qua= sup |B; — Bs|,
5,4<252 Atwn, A

|tfs\§2Awn7A+52n_1/3

Wn,A = SUp
|t—s|<2An—1/3

so that for all £ < K and j < T, we have

my+j
k . 2 —2/3 —2/3
’Tj = JOkT /" ‘ <n Z

i=mp+1

2 2
Ui/n - O-kT/n’ < 2Aw”:A’

< Qp 4. As a consequence,

and SUD e [p24 42i%1) By — Bt;;

E}in) (T)e?,hAs >

inf E,

A
e_hfo Bg28d81 ; Bo2g € [O,T—QE],SSA
z€[a—4e,b+4e] }} -

{ngAe [a’+4e,b' —4e

— P(QmA > 6).

This last estimate gives a lower bound for E,E,n) (r) which is uniform in £ < K. As a
consequence, (3.2.22) yields

lim inf — log mf E,
n—=+00 1/3 xe[ab

_h n—1 g(n)
Z] =0 S] 1{5 GI(H) }7‘9](”) c IO(;’;)’j < n] >
nS&Lor

—6h 1 f E;
0 E+A O%e[a 12& ,b+4e]

A
efhfo Bg2,dsq ; By, € 0,1 —4e],s < A
{ngAe[a’+4a,b’—4a]} =

Letting A — 400, then € — 0 leads to

h n—1 o(n)
n 7=0 S] 1
{s eI<”)

which ends the proof. O

imint i log inf, B,
a,b

}7SJ(n) EI(gr)vj <n] >f( )

3.2.3 Proof of Theorem 3.2.1

We prove Theorem 3.2.1 by decomposing [0,n] into A intervals of length n/A, and
apply Lemmas 3.2.5 and 3.2.6.

Proof of Theorem 3.2.1. Let n € N and A € N. For 0 < a < A, we write m, = |na/A|,
and dg = mgyr1 — Mg-

Upper bound in (3.2.6). We apply the Markov property at times mg_1,ma—2,...m1,
to see that
n—1 (n)
sup E;, {ezm (asm=him)S 5 g e 1™ j <n
xGI(()n)
A—-1 Eda—l(h ) _h ) )S(n,a) (n a) (’I’L)
< II sw E. {6 g0 Hmats DTt/ S e I, § < da
a=0 zerI")

a

R
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where Sj(.n’a) = S(()n) + 57(7?,3 4 S,(&) is the time-inhomogeneous random walk starting at
time m, and position z. Letting n — 400, this yields

lim sup sup log E,, Z] 1(h<9+1>/n_ha/n) S(n) S I( n) 7 < n}

n—+oo zeR n1/3
A-1

< Z limsup —~
a—0 M—+oo n

1/3 log R7). (3.2.23)

To bound Réﬂ, we replace functions f,¢ and h by constants. We set, for all A € N
and a < A,

hoa= sup  hy, hga= inf
te[agt, a2 te[ogr, 2]
Ya,A = sup gt fa,A = ai}%fa+2 ft and Oag,A = aiI}fa+2 Os-
te[agl,‘iz] te[* =, 4] te[* =, 7]

Observe that for all n € N and k < n, by (3.2.2), if h(q1)/n > hy/n, then k € Gy, and if
h(k+1)/n < hi/n, then k € F,,. Consequently, for all z € I,g"),

(hgesryfn — Prgn)® < (hny/m — haon)+-9r/mn™® = (hign = Bigesry o)+ Fopan™®. (3.2.24)

(n)

We now bound from above R, in four different ways, depending on the presence of the
boundaries f and g.
First, for all a < A, by (3.2.24), we have

Ma4+1—1
R} < exp ( > (hganym = Bigm)+ G5 mn® = (R = hijinym)+ fepn! 3) :

Jj=mgq
and thus,
() (a+1)/A . : (a+1)/A . .
lim sup — - log R / (ha) s — (he)—fuds :/ hags — (ha)—(fo — go)ds.
n—+oo n1/3 a/A a/A
(3.2.25)
This crude estimate can be improved as follows. If h, 4 > 0, then [, “+1] C G and the
upper bound g, /nnl/ 3 of the path is present at all times k € [mg, mq1]. As a consequence,
(3.2.24) becomes
13, 1 1/3
Vk € [ma, ma+1), SUF)(h(kH)/n—hk/n)m < (A1) =Pk /n)a, A"+ —h A (2= Ga, A1)
xelk”
(3.2.26)
We have
R = sup B, { Z20 Ctmargenn—homasnmS" ga g p) 5o g ]
xe[ﬁ,ﬁz

meq —1
< oimma (BG1)/n=hj/n)ga,an'/?

1 da—l (n),a 1
by 4(S]"" =ga,an?/?)  o(n)a _ 7(n)
X su(p)E { j=0 “aA ;8 ey, +J,j<d]
€Ly,

S(n) a

j=0 —aA
Mma+J

— 1/3
S e(hma+1/7L hma/n)ga,An SupE

|: dg— 1 S(n ,a
<0

go,jgda].
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Letting n — +o00, we have

lim sup 1/3 log R((IA < (Mar1)/a — haja)ga,a

n—+oo T

,a A qa—l ngL),a (n) a .
+ lim sup 1/3logsupEm e n 4j=0 i ;Sj T <0,5 <dgf -

n—+oo T

As dy ~n—100 n/A, by (3.2.15),

ﬁa,A Zda—l S(n) a

lim sup log supE e Alda+T)

.5 <5 < d,
n——+o0o / J o I = 1

1 a1 /g 2/3 aq 2/3
< 1/3 a1/3 (Zﬁa AO’a,A> = m (ba,AO—a,A) .
We conclude that

1 (n) (e %1 2/3
limsup —= 73 log Ra < (Plag1y/4 — haja)ga,a + S (ﬁa,AUa,A) . (3.2.27)

n—+oo T

By symmetry, if hy 4 < 0, then [%, 28] C F, h(k+1)/n < hi/n and the lower bound of the
path is present at all time, which leads to

(n) a1 - 2/3
limsup —= 1/3 log RaA (h(a—l—l)/A - ha/A)fa,A + 21734 (—h&AUa’A) . (3.2.28)

n—+oo M1

Fourth and the smallest upper bound; if [%, %41] C F N G, then both bounds of the
path are present at any time in [m,, ma+1] and, by (3.2.26), setting 74,4 = ga,.a4 — fa,4,

R(,)4 ( ma+1/n_hma/’ﬂ)ga7/‘n1/3
a
1 dg—1 (n),a .
s B[RS 0% e 0] <

xE[Ta’Anl/LQ’,O}

We conclude that

limsup — /3 log Raﬂ (h(a+1)/4 — haja)ga,.a

n—+oco N
1 ha, A ~da—1 o(n),a
+ lim sup log sup E,le >ito 5 ,S(-n)’a €1 Anl/g,()],j <d,|.
n—+o00 nl/3 2€[—rqanl/3,0] J ’

Applying then (3.2.16), this yields

i 1 La,A §~da— L g(n)a (n),a 1/3 .
im sup 1/31 g sup E,|le n j=0 "J ,Sj S [—Ta,An ,0,7 <d,

nroo 1 v, An1/3.0)
2 3
g T
a,A a,A
<13 q;( 2 ha,A)7

Ua,A

which yields

limsup —— 1/3 log R((“Zl < (h(at1)/4 = haja)ga,a +

n—+oo T

(gaA faA
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We now let A grow to +oo in (3.2.23). By Riemann-integrability of F, G and h, we have

lim sup Z

A—+o0 0<a<A

[&, 4] CcFNG

(gaA faA

0.2
(h(a-f-l)/A - ha/A)ga,A + @ )2 v <<ga A—fa A) ﬁa,A)]
aA

' o3 (gs — f2)%
= /FﬂG hsgs * (gs - fs)Q\Ij ( 03 hs) ds. (3'2'30)

Similarly, using the fact that A is non-negative on F€, and non-positive on G¢, (3.2.27)
and (3.2.28) lead respectively to

lim sup Z

A—+o0 0<a<A
hy 4>0,[%, 2“2 FNG

aq 2/3
((a+1)/4 = haja)ga,a + 013 (ha,AUa,A) ]

< h heod) ' d 2.31
= /F‘CQG Sgs+ 21/3 ( US) 87 (3 3 )

and to
. o1 — 2/3
lim sup (h a A hfa A)fa,A + _ha,AUa,A ]

Ea,A<0u[%7 EZI ]¢FOG

/ j o1 . 2/3
< /FCOG hsgs + hs(fs — gs) + 2173 ( h 05) ds. (3.2.32)

Finally, by (3.2.25), (3.2.30), (3.2.31) and (3.2.32), letting A — +o0, (3.2.23) yields

n ) . (n)
lim sup sup log E, [ Zj:1(h(a+1)/n hj/n)S; ;S](n) e I](n),j < n] < Hﬁf

n—+oo zeR n1/3
Lower bound in (3.2.7). We now take care of the lower bound. We start by fixing
H > 0, and we write

1" = 18 0 [~ Hn'/?, B,

letting H grow to +oo at the end of the proof. We only need (3.2.20) here.
We choose k € C([0,1]) a continuous function such that ky = 0 and k1 € (a,b) and
e > 0 such that for all t € [0,1], k¢ € [f; + 4e, g+ — 4e] and ky € [a + 4e,b — 4e]. We set

T = [(kaja — )03, (kopa + 03]

We apply the Markov property at times m4_1,...mq, only considering random walk paths
(n)

that are in interval J, ’ at any time m,. For all n > 1 large enough, we have

n—1 (n)
E |e2i—o PGnm=him)S;" ¢

.gln) o 7n)

1/3
A-1 dg—1 (n,a)
: -i (h ma-+7 nih ma+7 n)S ’ (n’a) (Tl H)
> H 1n(f : E, eZ]_o (ma+i+1)/ (ma+j)/n)2; 1 (n e ,S’ el +J"7 <d,
a=0 T€1m,, €Jata
A-1
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with the same random walk notation as in the previous paragraph. Therefore,

A-1 ~(n)
Z lnu_n> inf — 1/3 log RJA.

B (3.2.33)
We now bound from below Rgg, replacing functions f,g and h by constants. We write
here

" (hiiin)m—hjm)S™ .
%ginfli/g]ogE 2121( (j+1)/ i/ ) J 75«](”4) c Ij(n)’] <n

Jaa= suw  fi, gaa= inf g and o= inf oy
te[esl, et2] telez 4 te[egh, 42

keeping notations h, 4 and hg 4 as above. We assume A > 0 is chosen large enough such
that

sup | fe — fs| + 19t — gs| + |kt — ks| < €.
lt—s|< %
We first observe that [fmAnl/?’,ga,Anl/?’] C IJ(»n’H) for all j € [mg, mgt1], therefore,
Writing Ta,A = Ga,A — fa,Aa

R(,zl ( ma+1/n_hma/n)9a,A”1/3
a

. Ea,A dg—1 S(‘n,a)
x inf Eg|e » =0 “i 1
IEJ}ln) {

(n,a) 1 3 .

Thus, by (3.2.20), we have

2
( ) UaA (ga,A_fa,A)Si
mint 75108 A 2 (e = hoy4)a + Algan — Jan (e T
(3.2.34)
This lower bound can be improved, if [%, GTTI] C F°, in which case for all j € [mg, mg1]

(n,H)

we have [—Hn'/3, g, an'/3] C I; Thus

R( ,)4 ( ma+1/n_hma/’ﬂ)ga7/‘n1/3
a,

7(; A dg—1 S(n,a)

e @ \ (na) 1/3
B e R S € O = g ]y<d]

which leads to

L oe B™ %o, (ga,a+H)* 7
lﬁminfn/ logRaA (h(a+1)/A_ha/A>ga’A+A(ga,A—l—H)Q\II( %’A ha,A). (3.2.35)

By symmetry, if [§, a—f] C G¢, we have

1 ~(n ) O-L21,A (H—fa,4)3
lim it 575 108 Faa = (avyia = hajafoa + G =55V (_ =5y h“’A) '
(3.2.36)

As a consequence, letting A — 400, by Riemann-integrability of F', G and h, (3.2.34)
leads to

2
lim inf liminf —= lo R(n) / hygs + i v (ge—f1)° hy) dt.
Z & FNG 19t (9t — fr)? ( oi t)

A—too 0<a<A noteon /
& St NFNG#£D
(3.2.37)
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Similarly, (3.2.35) gives

2
Lo =(n) >/ ; 0y (Qt-‘rH)
i SZGSA %@E&ﬁnl/ log R, 4 Fchtgt+(gt+H)2‘ll( Srhe) dt, (3.2.38)
(4,5 ] cpe

and (3.2.36) gives

lim inf lim inf —— log R
AS Yoo O;A lim inf n1/3 08 Ity A

[,24 ] cFnGe

2

. . o 3.
> h e f; — t gy (0 Y d (3.2.39
_/Fch g+ he(fe — ge) + (H— )2 ( o2 t) ( )
Finally, we recall that
li L ymy = 9o
g gV H) = 5

As h is non-negative on G¢ and null on F¢ N G¢, by dominated convergence, we have

0.2

s (gs+H)3 _ 2/3
1o Jpe (go + H)? o (15 ) ds = Pe 21/3<h o) ds,

and as h is non-positive on F'°, we have similarly,

2
o H—f.)3; _/ a1 ; 2/3
li (- h) ds = hsos)?>d
1510 Jpnge (H — fs)? ( o8 ) *7 Jrrge 21/3( 0s) s

Consequently, letting n, then A, then H grow to +oo —observe that e, given it is small
enough, does not have any impact on the asymptotic— we have

n—1 (n)
lim inf — 1 log Eg e2i—0 Pz /m=him) 55"

n—+oo n nl/3 {S%n)E[cwzl/?’,b77,1/3’]}7

.qn) - 7(n)
S;el; < n}
F.G
> Hp' o
Conclusion. Using the fact that

supE e2m0 (g n=hyn)SS  gn) o pln) j<n
z€R ! T 3=
(n)

> Eo 62?=1(h(j+1)/n*hj/n)sj

I{S,(I")e[anl/is’bnl/:s]}’sj GIj ,jgn],

the two inequalities we obtained above allow to conclude the proof. ]

3.3 The many-to-one lemma and branching random walk
estimates

In this section, we introduce a time-inhomogeneous version of the many-to-one lemma,
that links some additive moments of the branching random walk with the random walk
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estimates obtained in the previous section. Using the well-established method in the
branching random walk theory (see e.g. the previous chapters, [Aid13, AJ11, AS10, FZ12a,
FZ12b, GHS11, HR11, HS09, MZ14] and a lot of others) that consists in proving the
existence of a boundary via a first moment method, then bounding the tail distribution of
maximal displacement below this boundary by estimation of first and second moments of
the number of individuals below this boundary, and the Cauchy-Schwarz inequality. The
boundary is determined by a differential equation, which is solved in Section 5.

3.3.1 Branching random walk notations and the many-to-one lemma

The many-to-one lemma can be traced back at least to the early works of Peyriere
[Pey74] and Kahane and Peyriere [KP76]. This result has been used under many forms
in the past years, extended to branching Markov processes in [BK04]. This is a very
powerful tool that has been used to obtain different branching random walk estimates, see
e.g. [Aid13, AJ11, AS10, FZ12a, FZ12b, HR11]. We introduce some additional branching
random walk notation in a first time.

Let (T, V) be a BRWIs of length n with environment (Lt € [0,1]). We recall that T
is a tree of height n and that for any u € T, |u| is the generation to which u belongs, u
the ancestor of u at generation k and V(u) the position of u. We introduce, for k < n,
Fi = o0 ((u,V(u)),|u] < k) the o-field generated by the branching random walk up to
generation k.

Let y € Rand k < n. We denote by Py, the law of the time-inhomogeneous branching
random walk (T*,V*) where T* is a tree of length n — k, such that the family of point
processes {L" u/ € TF, |u/| < n —k — 1} is independent, with L of law L(|w | +k+1) /n-
With this definition, we observe that conditionally on Fg, for every individual u € T alive
at generation k, the subtree T" of T rooted at u, with marks Vjpu is a time-inhomogeneous
branching random walk with law P, y(,), independent of the rest of the branching random
walk (T\T", Vip\ ).

We introduce ¢ a continuous positive function on [0, 1] such that

Vt € [0,1], ke(pr) < 400, (3.3.1)

and set, for t € [0,1]
bt = 8@Ht(g0t) and 0'? = 83/@(90,5). (332)

Let (X, k,n > 1,k < n) be a triangular array of independent random variables such that
forallm > 1, k <nand z € R, we have

P(Xpp <2) =B | 30 Ljegyeftmtmmonm

where Ly, is a point process of law Ly, /,,. By (3.1.4) and (3.3.2), we have
E(Xnt) = bin and B (X = bijn)?) = 07

For k < n, we denote by S = Z§:1 Xy,,j the time-inhomogeneous random walk associated

to ¢, by B,(gn) = Z?:l bj/ns Dy gk =S, — B,(gn) the centred version of this random walk and
by

k k
By i=3_ @imbijn = Kim(@im) = D_ 85 m(bim); (3:33)
j=1 J=1
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by (3.1.1). Under Py, (S;,j < n— k) and (y + Zer]ng Xni,j <n— k) have the same
law.

Lemma 3.3.1 (Many-to-one lemma). Let n > 1 and k < n. Under assumption (3.3.1),
for any measurable non-negative function f, we have

(Z f j < k)) — e—EkE|: ‘Pk/nsk"!‘zj 0 @(]-Fl)/n ‘Pj/n ]f( j;.] < k):|

ul=k

Remark 3.3.2. As an immediate corollary of the many-to-one lemma, we have, for p < n,
y€Rand k <n—p,

B 3 v 1)

- S
= B Brtpetr/nV B, { ~ (4 S+ (P (1) fn =P /) S - f(S;,5 < k)}

Proof. Let n > 1, k < n and f non-negative and measurable, we prove by induction on
k < n that

(Z F(V(uy),5 < k)) E [eZfﬂ*’ﬂnxmﬂ'“ﬂ‘/““"j/“f(sj,j < k:)} :

ul=F

We first observe that if £ = 1, by definition of X,, 1, we have

E ( Z f(V(u))) —E |:e_¢1/an,1+Hl/n(¢l/n)f(Xn’l)j| .

ul=1

Let k > 2. By conditioning on Fj_1, we have

-
lu|l=k

where, for (z;,j <k—1) € RF-1,

o> v ]<k‘)]

Ju|l=k—1 v’ €Q(u)

(Z g(V J<k—1))
lu|=k—1

g(xj,j <k—-1)= Z flz1, .. xp_1, 21+ £)

- E {e—%/an,k-i-nk/n(wk/n)f(xl’ Ty T + ka)} )

Using the induction hypothesis, we conclude that

k
( Z f ] < k:)) E [6_ Ej:l Spj/an,j—Hj/n(Wj/n)f(Sj’j S k‘)]

ul=F
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Finally, we modify the exponential weight by the Abel transform,

k k k k
> 0im(Xng —0) =D 0i/m(Si—=Si-1) =Y 0imSi — > 0imSi-1
J=1 j= j=1 j=1

7j=1
k k-1 N k-l N
= 0imSi = > 0+1)/nSi = CrnSk — O_(@(j+1)m — Li/m)Sis
j=1 j=1 j=1
which ends the proof. O

3.3.2 Number of individuals staying along a path

In this section, we bound some quantities related to the number of individuals that
stay along a path. We start with an upper bound of the expected number of individu-
als that stay in the path until some time k¥ < n, and then exit the path by the upper
boundary. Subsequently, we bound the probability that there exists an individual that
stays in the path until time n. We then compute the first two moments of the number
of such individuals, and apply the Cauchy-Schwarz inequality to conclude. We assume in
this section that

 is absolutely continuous, with a Riemann-integrable derivative ¢, (3.3.4)

as we plan to apply Theorem 3.2.1 with function h = ¢. Under this assumption, ¢ is
Lipschitz, thus so is b. As a consequence, we have

_ t
sup sup |Er —nK*(b): < +oco and sup sup b,ﬁ”) — n/ bsds| < +oo.
neEN e k=l k+2) neN je k=1 k+2) 0
k<n n ' n k<n n ' n
(3.3.5)

Let f < g be two continuous functions such that f(0) < 0 < ¢g(0), and F and G two
Riemann-integrable subsets of [0, 1] such that

(te[0,1]:¢ <0 CF and {te[0,1]:¢ >0} CG. (3.3.6)
We write, for t € [0,1]

o3
(gs - fs

t a . . a .
+/O 1chc(s)21%(sosos)2/3 + 1pnae (sos(fs —gs) + 21}3(—%05)2/3) ds. (3.3.7)

t t s
Hf’G(f,g,(p) :/0 Sbsgsd5+/() 1rnc(s) )2\11((95055) 905) ds

We keep notation of Section 3.2: F,, and Gy, are the subsets of {0,...n — 1} defined in
(3.2.3), and the path I lgn) as defined in (3.2.4). We are interested in the individuals u alive

at generation n such that for all &k < n, V(ux) — B,ﬁ") € I,gn).
A boundary estimate

We compute the number of individuals that stayed in B(n) + I™) until some time k — 1

and then crossed the upper boundary 5,(:) + gk/nn1/3 of the path at time k € G,,. We
denote by

ARG (f.9) = {u e T ul € Gu s V(w) =B > guyan'®, V() = 85" € I, j < [ul} |

the set of such individuals, and by ADC(f, g) = #ALC(f, g).
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Lemma 3.3.3. Under the assumptions (3.1.4), (3.3.1), (3.3.4) and (3.3.6), if we have
G C {te[0,1] : K*(b)t = 0} then,

: 1 FG
limsup —= log B(A;“(f,9)) < sup (11, 9.9) — ouan]
oo M tef0,1]

Remark 3.3.4. Observe that in order to use this lemma, we need to assume that
{te]0,1]: ¢ >0} Cc G C{tel0,1]: K*(b); = 0},
we cannot consider paths of speed profile b such that the associated parameter  increases

at a time when there is an exponentially large number of individuals following the path.
For such paths, the mean of A, grows exponentially fast.

Proof. By (3.3.1) and Lemma 3.3.1, we have
E(A79(f,9))

:ZE

> 1 {V(u)fz,(cn)>gk/nn1/3} 1 {V(uj)—5§">e[§") ,j<k}]

keGn lu|=k
~ e ~
_ Z e Er R e—sﬂk/nsk-f-zj:o(<P(j+1)/n—¢j/n)5j1{§k>g n1/3}1 — )
ke / {SJEI] 7j<lc}

For all k € Gy, there exists t € [k/n,(k + 1)/n] such that ¢t € G, thus K*(b); = 0. By
(3.3.5), this implies that sup,,ey ke, Erx < +00, hence

E(A79(f,9))

k—1 =t
<C e=Pk/mIkmn P B | gm0 (Pl /m=05/n)S;

keGn

1,3 1. .
{Sk>g1/nn!/?} {SjGI](7L),j<k}]

As (3.3.6) is verified, similarly to (3.2.24), for all k <n and z € I,gn), we have

/3_(

(Plet1)/n — Ph/n)T < (Pot1)jn — Pho/n)+Gho/mn Chjn — P(h1)/n)+frmnt > (3.3.8)

In particular, (¢(ri1)/n—Pr/m)T < ‘90(k+1)/n - (Pk/n‘ (Iflloo + llglloo)- Let A > 0be alarge
integer. For a < A, we set mq = |an/A] and

gavA:inf{gt,te [aTTl,aTJfQ}}, Pan :inf{got,te [%,ﬂ#”

(a+2)
and doa = (1f e + l9ll) |

/A
|psds.
(a—1)/A

For k € (ma, ma+1], applying the Markov property at time m,, we have

n)

E ezf;é(‘ﬂ(jﬁ»l)/n_@j/n)gj1 ~ 1 < eXp (d An1/3> @(
{Feom2y HE e jan) | = P e
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where C:[Jaﬁz1 =E

i P =i m)Siq . We observe that S is a centred
{s eI‘">,j<ma}
random walk which, by (3.3.2), verifies (3.1.15) with variance function o2. Moreover, as
E |:eM|Xn,k|:| <E [ean,k + e_MXn,k:|

<E

Z elottm)l=ri(pr) o o(pr—ml—ri(or) | < prt(petu)—riler) | e"it(sot—ﬂ)—f‘ft(Sé’t)7
EeLk/n

by (3.1.4), there exists p > 0 such that sup,ey <, E [e“‘Xn,kq < 400 and (3.1.16) is
verified. For all a < A, we apply Theorem 3.2.1, to hy = ppq/a, functions f and g and
intervals F' and G stopped at time a/A, to obtain

i log <I>( ) ( )
msup ———— = f,g,0
- p 1/3 a/A 9
We observe that
(Al G f, < C E exp (( fa,AQa, )n1/3) @a?)q.

Letting n — 400, we have

log E(A,(f,
lim sup 8 (nl/?,(f 9)) < maXH (f g,0) — wayAgmA—i-da,A.

n—+00 a<A

By uniform continuity of K, g, ¢, and as lim 4,4 o max,<4 dgq 4 = 0, letting A — 400, we

have e
log E(A7“(f,
KAL) <y (B9 0.0) — ]
n te[0,1]

lim sup
n—-+0o00

O]

Lemma 3.3.3 is used to obtain an upper bound for the maximal displacement among

individuals that stay above b,(c ") + nl/?’fk/n at any time k € F,,. If HFG(f, ) < prgy for

all t € [0, 1], then with high probability, no individual crosses the boundary b,ﬁ ™yl Ik/n

at time k € (GU{1}),. In particular, there is at time n no individual above Eﬁ”) + gint/3,
If we choose g and G in a proper manner, the upper bound obtained here is tight.

Concentration estimate by a second moment method

We take interest in the number of individuals which stay at any time & < n in B,(Cn) +1 ,gn).

For all 0 < z < g1 — f1, we set

BIC(f,g,0) = {Jul = n: V(uy) = 0" € IV j <n, V() = B > (g1 — w)n'/?},

where .7](-n) = I](-n) N [-n?/3,n?/3]. We denote by BEC(f,g,2) = #BEC(f,g,x). In order
to bound from above the probability that B, # (), we compute the mean of B,.
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Lemma 3.3.5. We assume (3.1.4), (3.3.1), (3.3.4) and (3.3.6). If K*(b); = 0 then

1

. F,.G _ ghG
nETOOWIOgE(Bn (fvgax))_Hl (fagaso)_sol(gl_l')'

Proof. Observe that, as K*(b); = 0, by (3.3.5) |E,| is bounded by a constant uniformly
in n € N. Using the many-to-one lemma, we have

E(BIC(f,g,2)) = e Br E | 5t Eim@urnm—eimSiq

(s st )

{}] |

< Ce—erlm—an? | | 25 (PG /m—0s/m)Siq

Therefore applying Theorem 3.2.1, we have

; lo EBE,G fvgam
lim sup —& ( nl/gf ))ZHf’G(f,g,so)*sol(gﬁ:ﬂ)

n—-+4o0o

We now compute a lower bound for E(B,). Applying the many-to-one lemma, for all
€ > 0 we have

E(B;“(f,9,2))

> e_En E e*‘PISnJFZ?:l(%D(jJrl)/n*SOj/n)Sj1

{gj GFE") J’Sn} 1{gn_(gl—z)n1/3€[0,5n1/3]}:|

> Ce—w1(91—x+6)n1/3 E 62?:1(900—0—1)/11*%'/71)5]'1

Applying Theorem 3.2.1 again, we have

logE (BFC(f.9.7))

.. G
%gl_il_gg nl/g Z‘[{1 (fag,sﬁ)—801(91—$+5)-
Letting ¢ — 0 concludes the proof. O

To obtain a lower bound for P(B,, # ()), we compute an upper bound for the second
moment of B,,. We assume

2
sup E (Z eM) < 400 (3.3.9)

tE[O,l] =

which enables to bound the second moment of B,,.

Lemma 3.3.6. Under the assumptions (3.1.4), (3.3.1), (3.3.4), (3.3.6) and (3.3.9), if
G =10,1], K*(b)1 =0 and for allt € [0,1], K*(b); <0, then

) 1 FG 2
l}fﬂi&f PRVE logE (Bn (f,9,7) )

<2[H(f,9,0) = 1(g1 — 2)] - . [H(f,9.0) = o191 -
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Proof. In order to estimate the second moment of B,, we decompose the set of pairs of
individuals (u,u’) € T? according to their most recent common ancestor u A u’ as follows:

F,G 2| _
E{Bn (f’g’“")}_E > LueBr (.90 HuweBE G (.9.0)}

ul=|u'|=n

n

= Z E Z 1{u€85’c(f,g,z)}1{u’685’c(f,g,x)}
k=0 lu|=|v|=n
lunu'|=k
Therefore writing, for v’ € T,A(v') = 3, =p usw 1{uer’G(f,g,a:)} the number of descen-

dants of v/ which are in B,,, we have
E[BIC(f,9,2)%]

=E[BIC(f,9,2 }+ZE
k=0

5 1y g X, MG

ul=k u1 £u2€Q(u)

We observe that for any two distinct individuals |u1| = |ug| = k, conditionally to Fy, the
quantities A(uq) and A(ug) are independent.
By the Markov property applied at time k, for all v’ € T with |u’| = k, we have

.

{S el j<n— k} {gn—kZ(gl—x)nl/S}] ’

E [A(u)| Fi]

:E’“V(u”{ 2 1{V<u>—557)z(gl—w>n1/3}1{v< D-Bel j<nk

|lu|=n—k

n—k—1
—015,_ Ay,
e R S

using the many-to-one lemma. Therefore,

E [A(W)] Fi] < Cexp (Bi+ oryn(V(W) = 5) = g1(gn — 2)n'/?)

n—k—1 >
X Ep vy |e—i=0 AnitkSig .

Let A > 0 be a large integer, and for a < A, let my, = |an/A|. We introduce

start __
4 =E

mag—1 ~
exp ( > (p+1y/m — (Pj/n)Sj) 1{§jeﬂn>j<m }] and
g W = a

=0
n—meqg—1 _
exp Z Avnma+iSj 1{5 et i<n—m } )
N J? a

Jj=0

en
@a7 =supE,,, 4
yeR

By Theorem 3.2.1, we have

' log (I)start . log (I)end FG F .
hmsupT= H,(f.9.¢) and hmsupli/3 Hy7 (f,9:0) = Hy )4 (], 95 0)-

n—-+00 n—-+o00
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Moreover, using the same estimates as in Lemma 3.3.3, and setting
ga,Azsup {gtvte I:aT?l7aTT1:|}7 ¢a7A:SL1p {@t,te [%7%}}

(a+1)/A ]
and doa= [ 1gdds(f o + gl
(a=1)/A

a—

for all k € [mg, mq+1), applying the Markov property at time mg41, we have
/ 7(n)
E [A(u)|Fy] < CePrtormWVIN=0 oxp ((dya — (g1 — @) n'/?) @2 4. (3.3.10)

We observe that for all uw € T with |u| = k and V(u) € f,gn) we have

E Z e 1)/n(V (u1)+V (u2))

w1 Zu2€Q(u)

2
]:k] < 2PV W B ( Z e%’(kﬂ)/r/)

LEL(ky1)/n

< CGQWk/nV(U)GHQ/s|@(k+1)/n*¢k/n| < C(EQS%MV(U)7
(3.3.11)

using (3.3.9) and the fact that ¢ is Lipschitz. We now bound, for k € [mgq, ma+1)

ul=F

7(n)
E 20n/n(V(w)=by 7)1
€ 7(n n .
{V(uj)*bg- >€f§- ),Jék}

- E e‘Pk/ngk‘FZ;:;(‘/’<j+1)/n—‘ﬂj/n)§i 1 (3.3.12)

> n) . )
{Sjelj >,Jgk}

using Lemma 3.3.1. As sup;c(o.1) K*(b): < 0 and by (3.3.5), Ej is bounded from above
uniformly in n € N and £ < n. As G, = {0,...,n}, for all n € N large enough and
k € [mq, mqy1), applying the Markov property at time mgn, it yields

Z 62<pk/n(v(u) _B}(:’) ) 1
|u|l=k

}] < exp ((%,A%,A + da,A> ”1/3) oo

(3.3.13)
Finally, combining (3.3.10) with (3.3.11) and (3.3.13), for all n > 1 large enough and
ke [ma7ma+1)7

{V(uj)efﬁ"%jszc

E|> 1{ BT ~<n>7j§k} > A(Ul)/\(W)]

lu|=Fk u1Zu2€Q(u)
1/3 - = start end 2
< Cexp [Tl (—2<P1(91 —2) + Py aTan + 3da,A)} Q.0 ((Da-i-l,A) ;

thus

lim sup log Z E
n—-+00 k=0

Z 1{ )b e}("),]<k} Z A(ul)A(u2)]

lu|=k u1 Fu2€0Q(u)

F.G . ) F.G _
<2 (H1 (£,9:0) = (91 — 2)) = min2HLS(f,9,0) = HEV(f,9,0) = Pa,aTa,a — 3o a-
a<A A A
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Letting A — 400, and using Lemma 3.3.5, we obtain

log E( n(fvg)Q)
<2(H{(f.9.0) = (1 =) = inf (H(f.9.9) = 0191

te(0,1]

lim sup —=
n——+0o00 /

O]

Using the previous two lemmas, we can bound from below the probability that there
exists an individual that follows the path E(n) + 1),

Lemma 3.3.7. Under the assumptions (3.1.4), (3.3.1), (3.3.4), (3.3.6) and (3.3.9), if
K*(b); = sup K*(b); =0,

te(0,1]
then for all x < g1
F.G . F.G .
17%I—I>1-41—Iolof / logP(B (fa g9,T ) 7& ®) = tel%fl} (Ht (fa 9, 90) Qotgt) . (3314)

Proof. We first assume that G = [0,1]. Since By, € Z4 a.s, we have

E(B,“(f,9,2))

FG _ FG
PBC(fg.2) #0) = P(B(f,9,0) > 0) 2 T oa = =5

using the Cauchy-Schwarz inequality. As a consequence,

lﬁrgiggl—/glogP(Bm(f g,2) #0)

>2hm1nf ! log E(BEY(f,g,z)) — limsup ! logE(BFG(f g,x ))
—too nl/3 oo M1/3

n

> i ’ — .
2 b (HS(f.9.90) — e11)

We then extend this estimate for G a Riemann-integrable subset of [0, 1], that we can,
without loss of generality, choose closed —as the Lebesgue measure of the boundary of a
Riemann-integrable set is null. According to (3.3.6), {¢ > 0} C G. We set, for H > 0

9" = max {g;, —||gll . + Hd(t,G)}.

Observe that ¢ is an increasing sequence of functions, that are equal to g on G and
increase to +o00 on G€. For all n € N, x € [f1, 1] and H > 0, we have

BEOA(f, M 2y  BEC(f, g,2).

As a consequence,

lim inf 1/ log P(BEY(f,g,2) #0) > lim hmlnfilogP(Bg’[O’l](f,gH,m) # ()

n—+oo n H-400 n—+oo nl/3

- b (PO JH oy o o)
_H—lgllootelﬁl),l]( t (fag 730) @tgt>

By Lemma 3.2.4, we have W(h) ~p_, 400 535h?/3. Thus, using (3.3.6), this yields

L F.G . F,G o
lrggligofnl/g log P(B,"(f,9,2) #0) = f (HSC(£.9.0) = e1a) -
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Remark 3.3.8. Observe that the inequality in Lemma 3.3.7 is sharp when

inf (HC(f,9.9) = ¢19:) = H(£,9,0) — ¢101.
te[0,1]

3.4 Identification of the optimal path

We denote by R = {b € D :Vt € [0,1], K*(b); <0}. In this section, we take interest in

functions a € R that verify
1 1
/ asds = sup {/ bsds,b € R} , (3.4.1)
0 0

i.e. which are solution of (3.1.6). This equation is an optimisation problem under con-
straints. Information on its solution can be obtained using a theorem of existence of
Lagrange multipliers in Banach spaces.

Let E, F be two Banach spaces, a function f : E — F is said to be differentiable
at u € F if there exists a linear continuous mapping D, f : F — F called its Fréchet
derivative at u, verifying

f(u+h) = f(u)+ Dyf(h) +o(||R]]), k]| —0, heE.
A set K is a closed convex cone of F if it is a closed subset of I’ such that
Vo, y € K,Y\, 1 € [0, +00)%, Az + uy € K.

Finally, we set F™* the set of linear continuous mappings from F' to R. We now introduce
a result on the existence of Lagrange multipliers in Banach spaces obtained in [Kur76],
Theorem 4.5.

Theorem VIII (Kurcyusz [Kur76]). Let E, F' be two Banach spaces, J: E - R, g: E —
F and K be a closed convex cone of F. If U verifies

J(@) =max{J(u),u € E:g(u) € K} and g(u)€ K,

and if J and g are both differentiable at u, and D,g is a bijection, then there exists X € F*
such that

Vh € E, D=J(h) = X* [Dag(h)] (3.4.2)
Vh e K, \*(h) <0 (3.4.3)
A*(g(@)) = 0. (3.4.4)

We first introduce the natural speed path of the branching random walk, which is the
path driven by (vs, ¢ € [0,1]).

Lemma 3.4.1. Under the assumptions (3.1.2) and (3.1.4), there exists a unique v € R
such that for all t € [0,1], &} (v¢) = 0. Moreover, for all t € [0,1], 0; := Ok} (ve) > 0, and
v and 0 are Cy function.

Proof. For all t € [0,1], as ; is the Fenchel-Legendre transform of x;, we have

;Ielﬂg ki (a) = —ke(0) < 0.
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Moreover, a — kf(a) is convex, continuous on the interior of its definition set and increas-
ing. By (3.1.4), we have k*(a) — +oo when a increases to sup{b € R : x;(b) < +o0}.
As a consequence, by continuity, there exists € R such that x}(x) = 0. Furthermore,
as infyer k7 (a) < 0, K} is strictly increasing at point x. Therefore the point v, = x is
uniquely determined, and 6; = 9.k} (z) at point x is positive. Finally, v € C; by the

implicit function theorem; thus so is 6, by composition with d,x*. O

We now observe that if a is a solution of (3.1.6), then a is a regular point of R —i.e.
we can apply Theorem VIII.

Lemma 3.4.2. Under the assumptions (3.1.2) and (3.1.4), if a is a solution of (3.1.6),
then for all t € [0, 1], Ouk](at) > 0.

Proof. Let a € R be a solution of (3.1.6). For ¢t € [0, 1], we set 6; = Ok (ar). We observe
that 6 € D is non-negative.

We first assume that for all ¢ € [0,1], #; = 0, in which case x;(a;) is the minimal
value of rj. By (3.1.2), we have infyc(o 1) ¢(0) > 0, thus supycjo 1) infaer 7 (a) < 0. As a
consequence, by continuity, there exists x € D such that for all ¢t € [0, 1], xf(a; + x¢) < 0.
We have a+z € R and fol as+xsds > fol asds, which contradicts a is a solution of (3.1.6).

We now assume that 6 is non-identically null, but there exists ¢ € [0,1] such that
0; = 0. We start with the case ) > ¢ > 0. As 0 € D, there exists t > 0 and J > 0 such
that inf,ejg 5105 > € and sup,e; 445)0s < g/3. For x > 0, we set a” = a—x1g 5 +221 445)-
We observe that uniformly for s € [0,1], as x — 0

K*(a")s < K*(a)s —xes N0+ Zze(s —t) 4 NS+ O(xz?).

There exists z > 0 small enough such that ®” € R and [ a” > [ a, which contradicts again
the fact that a is a solution of (3.1.6).

Finally, we assume that 6y = 0. In this case, as 9;K*(a)g < 0, there exists 6 > 0
such that K*(a); < —0t for any ¢ < §. Therefore, there exists ¢ > 0 such that for all
0<s<t Ka)s <0, and §; > 0. For any 6; > ¢ > 0, there exists ¢’ > 0 such that
for any s < ¢, we have 6; < ¢/3 and for all s € [t,t + '], 65 > 2c. Therefore, setting
a® = a+ 2zl 5) — ¥1[44), as  — 0, uniformly in s € [0, 1], we have

K*(a®) < K*(a)s + gxs(s A& —ae((s —t)s AJ) + O(z?),

so for x > 0 small enough we have a® € R. Moreover fol a® > fol a which, once again,
contradicts the fact that a is a solution of (3.1.6). O

Applying Theorem VIII, and using the previous lemma, we prove Proposition 3.1.1.

Proof of Proposition 3.1.1. We first consider a function a € R that verifies

1 1
/ asds = sup {/ bsds, b € R} ,
0 0

i.e. such that a is a solution of (3.1.6). We set 6; = 9,x; (at), and observe that 6 € D.
We introduce J : b~ [} beds and g : b — (k%(bs),s € [0,1]). These functions are

differentiable at point a, and for h € D, we have D,J(h) = fol hsds and Dgg(h): = Oihy.
We denote by

t
K—{heD:Vte[O,l],/ hsdsgo},
0
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which is a closed convex cone of D. Using Lemma 3.4.2, we have 6, > 0 for all ¢ € [0, 1],
thus D,g is a bijection.

By Theorem VIII, there exists A* € D* —which is a measure by the Riesz representation
theorem— such that

Vh e D, /0 hads = /O " Dag(h)N*(ds) (3.4.5)
Vh e K, / "X (ds) < 0 (3.4.6)
0
1
/0 g(@)sX*(ds) = 0. (3.4.7)

We observe easily that (3.4.5) implies that A\* admits a Radon-Nikodym derivative
with respect to the Lebesgue measure, and that A (ds) = 9%. As a consequence, we can

rewrite (3.4.6) as

VheK/ h—<0

We set f; = fot g—:, for all s,t € [0,1], and p € (0,1), by (3.4.6), we have

=
N

1
pfe+ (0= p) fs = furr—pys = /0 (Ml{u<t} + (1= ) lycsy — 1{u<ut+(1—p)s}> R <0.

is non-

S

As a consequence, f is concave. In particular, its right derivative function
increasing. Consequently 6 is non-decreasing.
The last equation (3.4.7) gives

1 1
oz/ f@;‘(as))\*(ds):/ “(a,)0 \ds = K*(a /K )b,
0 0

by Stieltjés integration by part. But for all ¢ € [0,1], K*(a); < 0, and 3 is non-increasing.
This yields

1
K*(a); =0 and /K*(a)8d9;1:0.

In particular, as a € R, 6 increases on {t € [0,1] : K*(a); = 0}.

Conversely, we consider a function a € R such that, setting 0; = d,x}(a;), we have

e ( is non-decreasing ;

o K* (CL)l =0 5

o [} K*(a)sdf;! = 0.
Our aim is to prove that fol asds = v*, by observing that fol asds > fol bsds for all b € R.
By convexity of s}, we have, for all ¢ € [0, 1]

Ky (be) > ki (ag) + 0:(by — ay),

and integrating with respect to t, we obtain

1 1 * %k
/at—btdtZ/ rilar) = ri(be) o,
0 0 0y

1
< K@) — K" (0= [ U (@) = K (b)) o
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by Stieltljes integration by parts. Using the specific properties of a, we get
1 1
/ a; — bydt < —K*(b); +/ K*(b)do; .
0 0

As K*(b) is non-positive, and 0! is non-increasing, we conclude that the left-hand side
is non-positive, which leads to fol asds > fol bsds. Optimizing this inequality over b € R
proves that a is a solution of (3.1.6).

We now prove that if a is a solution of (3.1.6), then a is continuous. Observe that as
a = Opkt(0;) and € is non-decreasing, it admits a right and left limit at each point. We
assume there exists t € (0,1) such that a; # a;—, i.e. such that a jumps at time ¢. Then,
0; # 0:— by continuity of 9,x* on D*. As fol K*(a)sdf;1 = 0 and df~! has an atom at
point ¢, thus K*(a); = 0.

Therefore, if a jumps at time ¢, then the continuous function s — K*(a), with right and
left derivatives at each point, bounded from above by 0, hits a local maximum at time ¢.
Its left derivative xj(a;—) is then non-negative and its right derivative xj(a¢) non-positive.
As k*t is a non-decreasing function, we obtain a;— > ay.

Moreover, by convexity of k}, © — 0.k} (x) is also non-decreasing, and as a consequence
0;— > 60, which is a contradiction with the hypothesis 6, # 6; and 6 non-decreasing. We
conclude that a (and ) is continuous as a cadlag function with no jump.

We now assume there exists another solution b € R to (3.1.6). Using the previous com-
putations, we have fol K*(b)sd0;t = 0, and b is continuous. As a consequence, denoting
by T the support of df~1, for all t € T, K*(b); = 0. Moreover, K*(b) is a C! function, with
a local maximum at time ¢, thus s} (b;) = 0, or in other words, b; = v;, by Lemma 3.4.2.

Consequently, if we write ¢y = 0yk;(bt), we know from previous results that ¢ is
continuous and increasing. Furthermore, ¢ increases only on T, and ¢; = 0.k} (v;) = 0y.
For all t € [0,1], we set oy =sup{s <t:s€T}and 7 =inf{s >t:se€T}. If o and 7
are finite then

0075 = Por = Pt = Py — eTt'

As a is also a solution of (3.1.6), we have 0,, = 6; = 0,,, therefore § = . As a consequence,
we have

at = 36/%(91%) = aelit(%) = by,

which proves the uniqueness of the solution.

We prove that a and 6 are Lipschitz functions. For all ¢ € [0,1], [J k%(as)ds < 0, and
Ji w%(as)dd;t = 0. In particular, this means that #}(a;) vanishes df; '-almost everywhere,
thus 6, = 0;, d; Lalmost everywhere. By continuity of # and 6, these functions are
identical on T. In addition, for all s < ¢ such that (s,t) C [0, 1]\T, we have [’df,' =0,
hence 0, = 05, which proves that 6 is constant on [0, 1]\7T". As a result, for all s < ¢ € [0, 1],
we have 6; = 6, if (s,t) C [0,1]\T, otherwise

98 - UZ%SI,]EET 0u and Ht - uSltI,llf»ET 91“

In consequence |0 — 05| < sup,,c[s g 0, — 0,/]. As 0 is C* on [0,1], 6 and 6 are Lipschitz
functions. As a; = 9gr¢(0;), the function a is also Lipschitz.

Finally, we prove the existence of a solution to (3.1.6). To do so, we reformulate this
optimization problem in terms of an optimization problem for . The aim is to find a
positive function 6 € C such that

1 1
/ Ogrit(04)dt = max {/ gkt (pr)dt - o € C, ¥t € [0,1], E(p): < —i—oo} , (3.4.8)
0 0
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where E(p); = f(f 0s0pkit(pr) — Ke(pr). By Theorem VIII, if 6 exists, then it verifies

e 0 non-decreasing;

o I (0)1 = 0;

o Vt €[0,1], [3 E(0)sd0; " = 0.

Using these three properties, we have # = 6 on the support of the measure df—!.
Moreover, as Ey(f) = E1(f) = 0 and E; is non-positive, we observe that E;(6) is locally
non-increasing in the neighbourhood of 0 and locally non-decreasing in the neighbourhood
of 1, in particular

9089%0(90) - Iio(go) S 0 and 0189%1(91) — /451(01) Z 0.

As for all t € [0, 1], the function ¢ — wdyri(p) — Ki(p) is increasing, we conclude that
0 < Oy and 61 > 01. As a consequence, T = {t € [0,1] : 6; = 6;} is non-empty, and,
setting oy = sup{s <t:s € T} and 7, = inf{s > t: s € T} we have 0, = 0,, if o, > —o0
and 0; = gﬂ if 7 < +oc.

We write

t
0= {9 € C : 0 non-decreasing, 0y > 0,Vt € [0, 1],/ Ey(0)do;! =0 and Fy(0) < 0} .
0

This set is uniformly equicontinuous and bounded, thus by Arzela-Ascoli theorem, it is
compact. It is non-empty as for all € > 0 small enough, the function ¢ — ¢ belongs to ©.
We write 6 a maximizer of fol Opks(0s)ds on ©.

By continuity, if E(0); < 0, then we can increase a little 6 in the neighbourhood
of 1, thus @ is non-optimal. As a result, # is non-decreasing, verifies E(f); = 0 and
[ E(0)sdf; ! = 0, which proves that a = 9 (6) is a solution of (3.1.6). O

The previous proof gives some characteristics of the unique solution a of (3.1.6). In
particular, if we set 6, = 04k} (a;), we know that 6 is positive, non-decreasing, and that on
the support of the measure df—!, § and 6 are identical. Consequently, the optimal speed
path of the branching random walk verifies the following property: while in the bulk of the
branching random walk, it follows an equipotential line, and when close to the boundary
it follows the natural speed path.

For some time-inhomogeneous environments, (3.1.6) can be solved explicitly. This is
the case, for example, when the function ¢ — 6; is monotone. A time-inhomogeneous
environment such that @ is increasing behaves as the branching Brownian motion with de-
creasing variance, studied in [FZ12b, NRR14, MZ14] and verifies a = v. If § is decreasing,
then @ is constant, and Theorem 3.1.3 is non-optimal: for a wide class of processes, the
correct correction is logarithmic.

Lemma 3.4.3. We assume (3.1.2) and (3.1.4).
o If 0 is non-decreasing, then a =v (and 6 = 0).
o If 0 is non-increasing, then there exists 6 € [0,+00) such that a; = dgr(6).
e If § is non-increasing on [0,1/2] and non-decreasing on [1/2,1], then there emists
t €[1/2,1] such that
Vs € [0,1], Ouki(as) = Osye.

Proof. We first assume that 6 is a non-decreasing function. As K*(v); = 0 for all ¢ € [0, 1],
we have
e 0 non-decreasing;

o [LE*(v),df; " = 0;



140 CHAPTER 3. BRANCHING RANDOM WALK IN SLOWLY VARYING ENVIRONMENT

o K*(v)1 =0;
which, by Proposition 3.1.1 implies that v is the solution of (3.1.6).

We now denote by a the solution of (3.1.6), and by 6; = 0gx;(at). Let T be the support
of the measure of df, ! we know by Proposition 3.1.1 that 6 is non-decreasing and equal
to f; when it is increasing. In particular, we have

1—1+/td9—1—1+/t1 d0—1—1+/t1 o,
0t _00 0 S _00 0 {SET} s _90 0 {SET} s

As a consequence, if § is non-increasing on [0, ¢], then IS 1{S€T}d§$_1 >0 for all u < t.
As 671 is non-increasing, we conclude that [j' 1{serydf, t o 0, and 6, = 6. In particular,
in the non-increasing case, we conclude that 6 is a constant.

In the mixed case, we have just shown that 6 is constant up to time 1/2. We set
uw=inf{t > 1/2:6; = 6p}. Since § = on T, we know that TN [1/2,u) = (). Hence 6 is
constant up to point u. For ¢t > u, as 6 increases, we have

1 1 t —1 1 t —1 1
N +/0 liserydd, = 7. "‘/u seryddy > 9,

which yields 6; > 6;. We now observe that K*(a); = 0, thus K*(a) attains a local
maximum at time 1, and its left derivative xj(a1) is non-negative. This implies that
1 > 0. If there exists s > u such that 05 < 5, then TN [s,1] = 0, and 0; = 05 < G, < 04,
which contradicts the previous statement. In consequence, for t > wu, we have 6, = 6,,
which ends the proof of the mixed case. O

3.5 Maximal and consistent maximal displacements

We apply the estimates obtained in the previous section to compute the asymptotic
behaviour of some quantities of interest for the BRWIs. In Section 3.5.1, we take interest
in the maximal displacement in a BRWIs with selection. In Section 3.5.2, we obtain a
formula for the consistent maximal displacement with respect to a given path. If we apply
these estimates in a particular case, we prove Theorems 3.1.3 and 3.1.4.

3.5.1 Maximal displacement in a branching random walk with selection

We first define the mazimal displacement in a branching random walk with selection,
which is the position of the rightmost individual among those alive at generation n that
stayed above a prescribed curve. We consider a positive function ¢ that satisfies (3.3.1)
and (3.3.4). We introduce functions b and o according to (3.3.2). Let f be a continuous
function on [0, 1] with f(0) < 0, and F' be a Riemann-integrable subset of [0,1]. The set
of individuals we consider is

Wi(f, F) = {|U’ <n:Vje FmV(U]’) > Egn) +fj/nn1/3}.

This set is the tree of the BRWIs with selection (W7 (f, F), Viyye(s,r)), in which every
(n)

individual u alive at time k € F;, at a position below Bkn + fr /nnl/ 3 is immediately killed,
as well as all its descendants. Its maximal displacement at time n is denoted by

MP(f, F) =max {V(u),u € WZ(f,F):|ul=n}.
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To apply the results of the previous section, we assume here that b satisfies

sup K*(b)y =0= K*"(b)1; (3.5.1)
t€[0,1]
in other words, there exists individuals that follow the path with speed profile b with
positive probability, and at time 1, there are e°(™ of those individuals. We set G the set
of zeros of K*(b), and we assume that

G ={te|0,1] : K*(b); = 0} is Riemann-integrable. (3.5.2)
For A € R, we set ¢* € C([0,t,)) the function solution of
vt € [0.6), gt — HO(f,9% ) = @ (3.5.3)

To study MZ(f, F), we first prove the existence of a unique maximal ¢y € (0,1], and a
function g* solution of (3.5.3). We recall the following theorem of Carathéodory, that can
be found in [Fil88|.

Theorem IX (Existence and uniqueness of solutions of Carathéodory’s ordinary differen-
tial equation). Let 0 < t; <ty <1, x1 <z, M >0 and f : [t1,t2] X [x1,22] — [-M, M]
a bounded function. Let to € [t1,t2] and xo € [x1,22], we consider the differential equation
consisting in finding t > 0 and a continuous function =y : [to, to + t] — R such that

Vs € [to, to +t],v(s) = zo + /ts flu,y(u))du. (3.5.4)

If for all x € [x1,x39], t — f(t,x) is measurable and for all t € [t1,to], © — f(t, x)
is continuous, then for all (to,zo) there exists t > min(ta — to, 5, 47 ) and v that
satisfy (3.5.4).

If additionally, there exists L > 0 such that for all x,y € [x1,22] and t € [t1,ts],
|f(t,2) — f(t,y)| < Lz —1y|, then for every pair of solutions (t,~) and (t,7) of (3.5.4), we
have

Vs < min(t, t),7(s) = 7(s).
Consequently, there exists a unique solution defined on a mazimal interval [ty, to + tmax]-
We use this theorem to prove there exists a unique solution g to (3.5.3).

Lemma 3.5.1. Let f be a continuous function, ¢ that verifies (3.3.4), and F,G two
Riemann-integrable subsets of [0,1]. For all A\ > fy, there exists a unique ty € [0,1] and a
unique continuous function defined on [0,t)\] such that for all t < ty, we have

9 > fi and @9 = o)+ HEC(f, g7, ).

Moreover, there exists A such that for all A > A, ty = 1 and X\ — ¢ is continuous with
respect to the uniform norm and strictly increasing.

Proof. Let f be a continuous function, and F' be a Riemann-integrable subset of [0, 1], we
set
D ={(t,x) € [0,1] x R:if t € F, then x > ¢ f;},

and, for (¢t,x) € D,

P 2 T 3
(pt Ut (77ft) . >
d(t,z)=—x+1 t)— \Il<“’t
( ) 0 FQG( )(a — ft)2 2 Pt
a . . T a .
1chG(t) 721}3 (goto't)Q/?’ + 1FQGC <S0t(ft — E) + 721} (_tho-t)Q/:s) .
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For all A > fp, we introduce
= {(t, h),t €[0,1],h € C([0,t]) : Vs < t,hs = ¢DA+/ ®(u, hu)du} ,
0

the set of functions such that g = 2 is a solution of (3.5.3).

We observe that for all [t1,t2] X [21,Z2] C D, |, t]x[21,20] 15 Mmeasurable with respect
to t, and uniformly Lipschitz with respect to z. As a consequence, by Theorem IX, for
all (to,x0) € D, there exists ¢ > 0 such that there exists a unique function h € C([0,¢])
satisfying

S
Vs <t hs=xz0+ | ®(u,hy)du. (3.5.5)
to
Using this result, we first prove that T is a set of consistent functions. Indeed, let
(t1,h') and (t2,h?) be two elements of I'*, and let 7 = inf{s < min(ty,t2) : hl # h2}.
We observe that if 7 < min(¢1,t2), then by continuity of h! and h?, we have hl = h2.
Furthermore, s — hl, , and s — h2,, are two different functions satisfying (3.5.5) with
to = 7 and z9 = hl = h2, which contradicts the uniqueness of the solution. We conclude
that 7 > min(ty,t2), every pair of functions in I'* are consistent up to the first terminal
point.
We define t) = max {t € [0,1]: 3h € C((0,1]), (t,h) € T*}. We have £y > 0 by the
existence of a local solution starting at time 0 and position pgA. For s < t), we write
h) = hg, where (s, hy) € T*. By definition,

Vs < ty, h) = @o) +/ ®(u, h)))du.
0

By local uniqueness of the solution, if there exists ¢ € (0, 1) such that k) = h?', then for all
s <t, h) = h), and in particular A = X'. We deduce that for all A < X, if s < min(ty, th)
then h) < h)'.

Moreover, as there exist C; and Cy > 0 such that for all t € [0,1] and =z > Cf,
®(t,z) < Ca, we have limsup, ,;, b} < +oo. Hence, if A < X and ty > t}, if

)

zo € |liminf b, lim sup hy
L=t t—ty

then as xg > hi‘y, we can extend A on [txr, txr + 0], which contradicts the fact that ¢y is
maximal. We conclude that ¢ty > ).
If X' > A > A, the functions A* and A" are defined on [0, 1]. Moreover, the set

B = {(ta) € 0,1 x Rz € 1)1}

is a compact subset of D, that can be paved by a finite number of rectangles in D. As a
consequence, there exists L > 0 such that

vt € [0,1],Va, ' : (t,x) € HM (t,2") € HM | |®(t, z) — (¢, 2")| < Lz — 2]
As for all € [\, X], (t,ht") € H™| we observe that

/

, t
ne | < |u—;/|+/ (s, 1) — (s, ") ds
0

<|p—p|+ L/Ot ’h’; - hu’as) ds.
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Applying the Gronwall inequality, for all u, u’ € [\, \], we have
-] < el
oo

which proves that A — h* is continuous with respect to the uniform norm.

Finally, there exist Cyp and C7 > 0 such that for all ¢ € [0,1] and = > Cj, we have
®(t,z) > —Cy. Therefore, for all A > Cy + C1 + ||of|l., for all t € [0,1], h} > |l f]l s
and ty = 1. We set A. = inf{\ € R : ¢, = 1}, and we conclude the proof by observing that
g = Z—i is the solution of (3.5.3). O

Lemma 3.5.2. Under the assumptions (3.1.4), (3.3.1), (3.3.4), (3.3.6), (3.3.9) and (3.5.1),
for all X\ > max(0, \.), we have

7(1) A 1/3) — — oA

1 -
i s og P (ME (P 2 D

Proof. To obtain an upper bound, we recall that 1 € G, as K*(b); = 0 by (3.5.1). Let
A > max(0, \.), we set g = ¢ the unique solution of (3.5.3). We observe that

P (M7 (f,F) > 5 + gin'/?) <P (AFC(f,9) £0) <E(45%(f,9)).

Therefore, by Lemma 3.3.3, we have

s log P(ME(f, F) 2 B + gin'/?) < sup HI(f,9,0) = orgr = —po).
n—s+oo N te[0,1]

When X > A, we have g}’ > g1, and

P (Mg (f,F) 25" + gint/?) > P (BEC(f,0¥ 0 — 1) #0)

Consequently, using Lemma 3.3.7, we have

liminf 2 log P (Mg (£.F) 2 B0 + dn%) > sup HE(£.9,0) — euge = —poX.
n—+oo n te[0,1]

Letting A" decrease to A\, we have

1 7(n) | A 1/3) _
Jim logP(M (£, F)>b" + g'n )_—woA.

O]

The previous lemma gives an estimate of the right tail of M?(f, F) for any f € C and
Riemann-integrable set F' C [0,1]. Note that to obtain this estimate, we do not need the
assumption (3.1.2) of supercritical reproduction, however (3.5.1) implies that

f li f —1 E e T t >0
o i fnf = log [#{u ) lul = [tn]}] >0,
which is a weaker supercriticality condition. Assuming (3.1.2), we strengthen Lemma 3.5.2

to prove a concentration estimate for M?(f, F') around B,(ln) + g9nl/3.
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Lemma 3.5.3 (Concentration inequality). Under the assumptions (3.1.2), (3.1.4), (3.3.1),
(3.3.4), (3.3.6), (3.3.9) and (3.5.1), if \c > 0, then for all ¢ > 0, we have

10gP(‘M“" £ F) =B — g0 1/3’ >6n1/3> <0.

lim sup —~ /
n—-+0o

Proof. We set g = ¢g° the solution of (3.5.3) for A = 0. We observe that for all £ > 0 and
t € [0,1], we have
HIC(f,9+,0) — ol +€) <0.

Consequently, for all € > 0, we have

lim sup — 75 log P (M£(f, F) 2 B + (g1 + )n'/?)

n—+oo T

1
< limsup —= =7 log P (AFGU{l}(f g+e)# @)

n—+oo T

< s1[1p] HEC(fog+6,0) — (g +¢) <0,
tel0,1

by Lemma 3.3.3.

To obtain a lower bound, we need to strengthen the tail estimate of M?(f, F'). Using
(3.1.2), the size of the population in the branching random walk increases at exponential
rate. We set p € R and ¢ > 0 such that ¢ = inficjo P(#{¢ € Lt : £ > p} > 2).
We can assume, without loss of generality, that p < by. We couple the BRWIs with
a Galton-Watson process (Z,,n > 0) with Zy = 1, and reproduction law defined by
P(Z1=2)=1-P(Z; =1) = p; in a way that for any n > 0,

#{u e TW : ju| = {nnl/gJ V() > npn'/3} > Z;, as. for n large enough.
By standard Galton-Watson theory (see, e.g. [FWO07]), there exists o > 0 such that

hmsup log P (Z, < e*™) < 0.

n—+oo T

Consequently, with high probability, there are at least e®* individuals to the right of pk
at any time k <n.

Let e > 0and n > 0, we set k = {nnl/ 3J. Applying the Markov property at time k,
we have

ak

P (M, <my —en'/?) <P (2 <) 4 [1 = Pryy (Mg, > my, — ent/?)]

As a consequence

lim sup —= 1/3 log P (M <my,— €n1/3)

n—+oo T

: ak ek 1/3
< max < limsup —= 1/3 logP (Zk <e ) — lim inf 1/3sz,k:p (Mn—k >my —€En ) .

n—+oo N n—+00

To conclude the proof, we need to prove that

lim inf e Py (M > B + (91 — e)n'/? — kp) > 0. (3.5.6)

n—-+o0o
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Let 0 > 0, we choose n = bop T 4, we have

7(n) 1/3
ggligfnl/glongo( nk =0y + (g1 —e)n'/ —kp)

(n) _ 7(n) 1/3
_lﬁgigofnl/glongo(Mnk>b ~ by + g1+ on'l?)

<-— SDOA(%

by applying Lemma 3.5.2, where \; is the solution of the equation gf“s = 0. Here, we
implicitly used the fact that the estimate obtained in Lemma 3.5.2 is true uniformly in
k € [0,nn'/3]. This is due to the fact that this is also true for Theorem 3.2.1. Finally,

letting § — 0, we have Ay — 0, hence
etk 13
%%irolof n1/3 k.kp ( n—k Z My = €N ) ’

which concludes the proof. O

Proof of Theorem 3.1.3

We denote by a the solution of (3.1.6) and by 6 the function defined by 6; = Jgrj (at).
We assume that (3.1.4) is verified, i.e. 6 is absolutely continuous with a Riemann-integrable

derivative h. For all n € N and k < n, we set 6,(:) = 2?21 a;/n- We recall that

104 ~\2/3
A / Os02)"
0 0s

21/3
where a7 is the largest zero of the Airy function of first kind.

Proof of Theorem 3.1.83. With the previous notation, we have M,, = Mg(O, (). By Propo-
sition 3.1.1, a satisfies (3.5.1), 0 is non-decreasing and increases only on GG. As a conse-
quence, (3.3.6) is verified, and (3.5.4) can be written, for A € R,

¢
vt € [0, 1], 0,97 = OoA +/ 0.0 + 2L (6,0,)2/3ds. (3.5.7)
0

21/3

By integration by parts, g;' = A + fo Ve (0s04)?/3ds. In particular, g) = A+ 1*. As a
consequence, applying Lemma 3.5.2 to A = [, we have

(n ) * 1/3
im_ n1/3 log P(M,, >a™ + (I* + [)n'/3) = —ol.

Similarly, using Lemma 3.5.3, for all € > 0,

lim sup log P (‘M —alm — l*nl/?" > snl/g) < 0.

n——+o0 n1/3

As a is a Lipschitz function, we have

n 1
aln) = Zaj/” = n/ asds+0(1).
i=1 0

—_———

v*

This concludes the proof. ]
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Mixing Lemma 3.4.3 and Theorem 3.1.3, we obtain an explicit asymptotic for the
maximal displacement, in some particular cases. If 8 is non-decreasing, then § = 6. As a
result, setting

- 2/3
Z* . aq /1 (9805)

T 91/3 0 gs
we have M,, = nfol vsds + 1" n'/3 4+ o(n'/3) in probability.

ds,

Remark 3.5.4. Let 0 € C? be a positive decreasing function. For ¢ € [0,1], we define
the point process L; = (¢},¢2) with £}, /? two i.i.d. centred Gaussian random variables
with variance o;. We consider the BRWIs with environment (L ¢ € [0,1]). We have

0; = 7v2;fgg, which is increasing. Consequently, by Theorem 3.1.3 and Lemma 3.4.3

1 1
_ 1/3 ail _1N\2/3 _1/3 1/3
Mn—n\/210g2/0 osds +nt/ 21/3(2log2)1/6/0( o235 3ds + op (n'/?),

which is consistent with the results obtained in [MZ14] and [NRR14].

Similarly, if # is non-increasing, then 6 is constant. Applying Theorem 3.1.3, we have
M, =n fol asds + o(n'/3), and the correct second order is logarithmic.

3.5.2 Consistent maximal displacement with respect to a given path

Let ¢ be a continuous positive function, we write by = dgr¢(p¢), and we assume that b
satisfies (3.5.1). We take interest in the consistent maximal displacement with respect to
the path with speed profile b, defined by

A% = min max (5" — V() (3.5.8)

lul=n k<n

In other words, this is the smallest number such that, killing every individual at generation
k and in a position below B,(Cn) — AY, an individual remains alive until time n.
We set, for u € T, A¥(u) = max;<|y (B,i”) - V(uk)) the maximal delay of individual

u. In particular, with the definition of Section 3.3, for all u > 0, we have
Mi2(=p1,10,1]) = max {V (w), [u| = n, A®(u) < pn'/3}, (3.5.9)

in particular M¢(—u, [0,1]) > —o0 <= A¥ < un'/3.
For A, 1 > 0, we denote by ¢™* the solution of
o2

:W\If ((gsjg“%s) ds. (3.5.10)

t
P1gt = PoA +/0 s9s + L{K*(b),=0} (g

Using the particular structure of this differential equation, for all A\, > 0, we have
gM* = gM0 — . Indeed, let A > 0 and g > 0, and let g = g*#9 — ;1. By definition, the
differential equation satisfied by g + p is

t 0-2 3
= wolX /.ss Lk v)o= v (e, ) d
ei(ge + 1) = @o(A + p) + ; $s(gs + 1) + 1k ®):=0} ()2 ( o2 %0> 5
2
Os (93+M)3 p
Gt i (ot es) .

t
Ptgt = PoA +/0 Psgs + 1{K*(b)S:0}(

and by uniqueness of the solution of the equation, we have g = gM*.
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For A > 0, we set g* = g™?. We observe that if {¢y > 0} C {K*(b); = 0}, then, for all
A >0, ¢* is a decreasing function. As A — ¢g* is strictly increasing and continuous, there
exists a unique non-negative \* that verifies

g =0. (3.5.11)

Alternatively, A* can be defined as g1 /g, where g is the unique solution of the differential
equation

_ 1 o2 B
vt €[0,1), 019t = —/t $sgs + 1{K*(b)szo}?\l’ (ﬁg%) ds.

Lemma 3.5.5 (Asymptotic of the consistent maximal displacement). Under the assump-
tions (3.1.4), (3.3.1), (3.3.4), (3.3.6), (3.3.9) and (3.5.1), for all A\ < \*, we have

1
lim —rs

n—+oo nl/3 log P (A;i <@ - )\)nl/?)) = —@oA.

Moreover, for all € > 0,

ligilg)nll/glogP (‘Aﬁ — /\*nl/‘g’ > snl/g) < 0.

Proof. Let X € (0,\*), weset g; = g} . Note first that AY < An'/3 if and only if there exists
an individual v alive at generation n such that A®(u) < An'/3. To bound this quantity

from above, we observe that such an individual either crosses 5@ +nl/3(g /m— A+e) at
some time before n, or stays below this boundary until time n. Consequently, for all € > 0,
we have

P (BOUC(=0, g = A+e,-2) £0)
<P (A7 < a0/
<P (APUC(=Ag—A+e) #0) + P (BPC (=N, g = A+e,-2).

Using Lemma 3.3.3, Lemma 3.3.5 and Lemma 3.3.7, and letting £ — 0, we conclude

1
lim —rc

n—+oo nl/3 log P (AZ = )\n1/3) - _@0()\* - A).

Finally, to bound P(A¥ > (A\* 4 £)n'/3) we apply (3.5.9), and we get
P(A? > (\ +e)n'/?) = P(M(—A" — £,[0,1]) = —o0).

By Lemma 3.5.3, we conclude that

1

73 log P(AY > (\* +)n'/3) < 0.

lim sup
n—+oo M
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Proof of Theorem 3.1.4

We prove Theorem 3.1.4, applying Lemma 3.5.5 to A, = A%,

Proof of Theorem 3.1.4. We denote by G = {t € [0,1] : K*(a); = 0}. For A > 0, we let g*
be the solution of the equation

t . O'g g3 .
Orgr = Oo\ + / Duge + 16(s) T5 0 (%6.) ds. (3.5.12)
O S

s

and A\* be the unique non-negative real number that verifies
PR
g7 =0. (3.5.13)

By Proposition 3.1.1, a satisfies (3.5.1) and {6; > 0} C {K*(b); = 0}. By Lemma 3.5.5,
for all A € (0, \*), we have

1
lim ——r

0 * 1/3] _
n—+o0 nl/3 IOgP [An < ()\ A)n } - 90)\a

and for all € > 0, we have

1
lim sup 73 logP HA% — /\*nl/?” > snl/g} < 0.
n—+oo N

O

In a similar way, we can compute the consistent maximal displacement with respect to
the path with speed profile v, which is A?. We denote by g* the solution of the equation

_ _ t . 0'2 3
J— gS
Orgi = ToA+ [ ug.+ % (50.) ds
and by A" the solution of glx* = 0. By Lemma 3.5.5, for all 0 <[ < X*,

1
lim —rs

n—+oo nl/3 log P (A;i <@ - )\)nl/?)) = —%oA,

and for all € > 0, we have

ligig)nll/glogP HAE — X*nl/3‘ > 6711/3} < 0.

Consistent maximal displacement of the time-homogeneous branching random
walk

We consider (T, V) a time-homogeneous branching random walk, with reproduction
law £. We denote by « the Laplace transform of £. The optimal speed profile is a constant
v = infp=g %9), and we set 0* = x/(6%) and 0% = K" (6*). The equation (3.5.12) can be
written in the simpler form

A t 0.2
6" :9*)\+/ 7 W(0)ds.
: o a7

1/3
As U(0) = —%2, the solution of this differential equation is g} = ()\3 - tSQZ‘Zz) / .
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For A, = minj,—, maxy<, (kv — V(ug)), applying Theorem 3.1.4, and the Borel-

Cantelli lemma, we obtain
A 3n2o? 1/
lim D= ( ) a.s.

n——+o0o n1/3 20*

This result is similar to the one obtained in [FZ10] and [FHS12].
More generally, if (T, V') is a BRWIs such that 6 is non-increasing, then 6 is a constant,
and for all € > 0,

1
1/3

lim sup
n—+oo T

3rlo? 1 e 1/3
IOgP An - ( 2 /0 1{K*(a)50}d8> n /

3.A Airy facts and Brownian motion estimates

> 5n1/3] .

In Section 3.A.1, using some Airy functions —introduced in Section 3.1.5— facts, the
Feynman-Kac formula and PDE analysis, we compute the asymptotic of the Laplace
transform of the area under a Brownian motion constrained to stay positive, proving
Lemma 3.2.3. Adding some Sturm-Liouville theory, we obtain by similar arguments
Lemma 3.2.4 in Section 3.A.2. In all this section, B stands for a standard Brownian
motion, starting from x under law P,.

3.A.1 Asymptotic of the Laplace transform of the area under a Brown-
ian motion constrained to stay non-negative

In this section, we write L2 = L2([0, +00)) for the set of square-integrable measurable
functions on [0, +00). This space L? can be seen as a Hilbert space, when equipped with
the scalar product

(f,9) = /O+OO f(z)g(z)dz.

We denote by C3 = C3([0, +00)) the set of twice differentiable functions w with a continuous

second derivative, such that w(0) = limy; s o w(z) = 0. Finally, for any continuous

function w, ||w||,, = sup,>q|w(z)|. The main result of the section is:
Forallh>0,0<a<band0<d <V, we have

1 _ t
lim —logsupE, [e hJy BSdS;BS >0,5< t]
t——+oo ¢

zeR

o1 . —h (! Baods ) _ o1 493
= tLIquOO - log xél[laf:b] Ex [6 fo 1{Bt€[a’,b’]}7 BS > 0, s<t| = mh . (3A1)

We recall that (o, n € N) is the set of zeros of Ai, listed in the decreasing order. We
start with some results on the Airy function Ai, defined in (3.1.13).

Lemma 3.A.1. Forn € N and x > 0, we set
+00 —-1/2
dn(2) = Ai(z + an) ( / Ai(y)dy) . (3.A.2)

The following properties hold:
o (Yn,n € N) forms an orthogonal basis of L?;
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o limy, ann_2/3 = —37”;

o for all \ € R and ¢ € C?, if
{V:E > 0#{)”(»”6) —atp(z) = M (x) (3.A.3)
¥(0) = limg 400 Y(x) = 0,

then either ¢ = 0, or there exist n € N and ¢ € R such that A = oy, and ¢ = cipy,.

Proof. The fact that lim,— 40 anpn~2/3 = —37” and that (¢,,n € N) is an orthogonal basis
of L2 can be found in [VS10]. We now consider (),) a solution of (3.A.3). In particular
1) verifies

Vz > 0,¢"(z) — (z 4+ A\)(x) = 0.

By definition of Ai and Bi, there exist ¢1, co such that ¢(x) = c1Ai(z + A) + c2Bi(z + ).
As limy 400 ¥(z) = 0, we have co = 0, and as ¥(0) = 0, either ¢; = 0, or Ai(\) = 0. We
conclude that either 1) = 0, or A is a zero of Ai, in which case () = c19,(z) for some
n € N. [

As « is the largest zero of Ai, note that the eigenfunction 11 corresponding to the
largest eigenvector ay is non-negative on [0, 400), and is positive on (0, +00).

For h > 0 and n € N, we define ¢ = (2h)/%4,,((2h)"/3z). By Lemma 3.A.1, the
sequence (wﬁ, n € N) forms an orthonormal basis of L2. With this lemma, we can prove
the following preliminary result.

Lemma 3.A.2. Let h > 0 and uy € C3 N L%, such that ufy,uy € L? and ||Juf||l,, < +oo.
We define, fort > 0 and x > 0
t

u(t,) = B, [uo(Bo)e b P05 B, 2 0,5 € 0.1

We have
_n2E .
lim suple 2172 " u(t,x) — (up, Y1)y (z)| = 0. (3.A4)
t—-+o0 z€R

Proof. Let h > 0, by the Feynman-Kac formula (see e.g. [KS91], Theorem 5.7.6), u is the
unique solution of the equation

vt > 0,Vz > 0,0u(t,z) = $02u(t, z) — hau(t, x)
Va > 0,u(0,x) = up(x) (3.A.5)
Vit > 0,u(t,0) = limg— 400 u(t,x) = 0.

We define the operator

G — C
wo o (:c — s (z) — haw(z),z € [O,+oo)) ,

G
By definition of Ai and of the ", we have
h2/3
G = St

thus (y!) forms an orthogonal basis of eigenfunctions of G".
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There exists C' > 0 such that for any x > 0, Ai(x) + Ai'(z) < C(1+ x1/4)e*2x2/3/3 (see
g. [VS10]). For any w € C3 N L? such that w’ and w” are bounded, by integration by
parts

Goty =3 [ w@dde —n [ s
=5 [T e@@hy @ [ s

= [T ww)@t e s
h2/3

= G730 {w, vn)-

Therefore, decomposing w with respect to the basis (M{), we have

h h = h h = h h2/3 X
<g U),’LU) = <g U), 2_:1 <¢n7w>wn> = z_:l <w7wn>< 7¢n - 21/3 Zan w wn

As (o) is a decreasing sequence, we have
h2/3 +oo h2/3
<ghw,w 5173 Z ag{w ¢h 21/3 ag (w, w). (3.A.6)
If (w, ") = 0, the inequality can be improved in
h2/3 +oo h2/3

(GMw, w) < EWE Zag w, Pl ) BWE ag(w, w). (3.A.7)

Using these results, we now prove (3.A.4). For x > 0 and ¢ > 0, we define

n2/3

o(t, ) =e —S7sel ult, z) — (ug, Yyt

We observe first that for all ¢ > 0, (v(t,-),%?) = 0. Indeed, we have (v(0,-),%) = 0 by
definition, and deriving with respect to t, we have

h h2/3 _ﬁalt h —ﬂoqt h
O(u(t, ), 1) = —ggaae 27 ult @) 9r) +e 2t x), ¥r)
h2/3 n2/3 BSTEN
= —ggaae 27 ult @) ) + e 2 GMu(t x), o)
h2/3 _ Rr2%/3 h2/3 n2/3
= —gipoe Mutt ), i) + +opgoe 2 “Hult, x),v})

=0.

We now prove that the non-negative, finite functions

—+o00 +o0
Ti(t) = / o(t,2)%de and  Jo(t) — / 10p0(t, 2)2da,
0 0
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are decreasing, and converge to 0 as t — +00. We observe first that
oo
O J1(t) z/ 20(t, z)Oyv(t, x)dx

0
+oo R2/3 w2 n2/3

:/ 2u(t, ) ~SiEMe Ayt x) F e 21 'y wu(t,x)| dx
+oo h 2/3 b

_/ o(t,2) |~ Srenv(t.a) + ot x) | do

2/3
— 9 [‘Zl/gawf(u D),0(t, ) + (wlt, ), G o(t, '”] ’

and as (v(t,-),¥}) =0, by (3.A.7)
A J1(t) < (20)*3 (g — an) 1 (1) < —cJy(t).

By Gronwall inequality, Ji(t) decreases to 0 as t — +o00 exponentially fast. Similarly, we
have J(0) < 400, and

+00 +o0o
O Ja(t) = /0 20,0(t, )00, v(t, x)dx = 2/0 O0,v(t, )0, 0pv(t, x)dx

+o00 h2/3
:2/ D (t, x) | — == Opv(t, z) + 0,6 v(t, x) | da
0 21/3

— (20)?Bay(B,0(t, ), Bpu(t, ) + 2(0,v(t, ), G OLu(t, -)) — 2h /0-&-00 v(t, x)0v(t, z)dx

limg s 400 v(t,2)2—v(t,0)2

by integration by parts and (3.A.6). Thus, 0;J2(t) < 0. As Jo is non-negative and
decreasing, this function converges, as t — 400, to Ja(+00) > 0. Moreover, we can write
the derivative of J; as follows

2/3
Ou(1) =2 [—Qﬁ/wm(t, Jovlt)) + (ot )., ->>]

+o0 +oo
—(2h)* P Jy (t) +/ v(t, 2)02v(t, x)dx —/ hxv(t, z)?dx
0 0

— (20 Bari(t) — / " Ot ) da
0

—Jo(t) — (2h)*Pag Jy(t).
As limy 100 Ji(t) = 0, if limyy oo Jo(t) = Jo(+00) > 0, we would conclude that the
derivative of J; stays negative and bounded away from 0 for large ¢. This would indicate
that J; decreases to —oo, contradicting the fact that limy 4 J1(t) = 0. We conclude
that limy_, 1o J2(t) = 0.
As Ji and Jy decrease to 0, we have

- oo 2 2
tllinoo ; [v(t, z)|* + [0zv(t, x)|*dx = 0,

which means that v(t,-) converges to 0 in H' norm, as t — +oco. By Sobolev injection in
dimension 1, there exists C' > 0 such that

[E \|+00§C/ ot 2)|? + 9u0(t, 2)2da,

which proves (3.A.4). O
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This lemma can be easily extended to authorize any bounded starting function wuyg.

Corollary 3.A.3. Let h > 0 and ug be a measurable bounded function. Setting, for x > 0
andt >0

t
u(t,z) = By [u()(Bt)e—% Buds. B >0, s ¢ [o,t]} ,

we have
_n2E b B
eyt ) — (ug, YN ()] = 0. (3.A.8)

lim sup
t—+o00 z€R

Proof. Let ug be a measurable bounded function. We introduce, for x > 0 and £ > 0
us(z) = ule,z) = Ey {uo(Bg)ehfo Bsds. B > 0,5 €0, 1]} .

Observe that by the Markov property, for all ¢ > ¢, we have
u(t, )

r t
—E, |uo(B)e "o B¥. B, > 0,5 € [o,t]]

B e t—e
=E, |Ep,_. uo(Ba)e_hfo Buds. B > 0,5 € [0,8]:| e o Bsds. B > 0,5 € [0, — 6]:|

r t—e
=E, uE(Bt_g)efhfo Beds. s e [0, — 5]} :

t
Therefore, u(t,z) = u-(t — €, z), wher u.(t,x) = E, [us(Bt)eh Jo Beds, 5 ¢ [O,t]}

As f(‘f Bgds is, under the law P,, a Gaussian random variable with mean ex and
variance £3/3, we have

5 2_3
uc(@)] < o] B [e-hfo Bsﬂ < fuoll e,

Moreover, as h > 0, by the Ballot lemma,
lue(z)| < |luol| o Pz [Bs > 0,5 € [0,¢]] < Ce™V2a,

For any ¢ > 0, there exists C > 0 such that for any z > 0, u.(z) < Cz A e "2,
Therefore, we can find sequences (v(™) and (w™) of functions in C3 N L2, such that
(™) (™) (w™) and (w™)” are in L2, that their second derivatives are bounded,
and that for all x € R,

w™ <y < w™ + 1 and o™ — 1 < e < o™,
n

3

Forne N,z >0and t >0, we set

t
v (t,z) = E, [v™(By)e” Jo Beds. B > 0,5 € [O,t]] and

t
w(")(t,a}) =E, [w(”)(Bt)e Jo BSdS;BS >0,s€[0,¢]].
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Note that for all 2 > 0 and ¢t > 0 we have w(™ (t,z) < u.(t,z) < v™(t,z). Moreover, by
Lemma 3.A.2, we have

n2/3
lim sup eiﬁaltv(n)(tw) — ™ yYiyl(z)| =0,
t—+o0 z€R
_B23
and lim suple 2/37" ’w(n)(t,x) - <w(”),w?>w?(rc) =0.
t—+o0 z€R

By the dominated convergence theorem, we have

lim (w("),w?) = lim <U(n),1l){l> = (anﬁ-

n—-+o0o n—-+o0o
As a result, letting ¢, then n — 400, this yields

n2/3

lim sup eiﬁmtue(t,ﬂ?) - <Uaa1/}lf>¢?(33) = 0.

t——+o0 z€R

For almost every x > 0, letting ¢ — 0, we have u.(z) — uo(x), and thus by dominated con-
vergence theorem again, lim._q (uc, %) = (ug, ). As u(t,z) = u-(t — &, z), we conclude
that

_ﬁalt h\, 1 h
e 213 " u(t,x) — (ug, 1)V ()

lim sup =0.

t—+o00 z€R

O]

This last corollary is enough to prove the exponential decay of the Laplace transform
of the area under a Brownian motion constrained to stay positive.

Proof of Lemma 3.2.5. Let h > 0, we set
h (! Bsd
u(t,z) = E, [e Jo Bs * By >0,s € [O,t]} ,

and py, = [;F°° ¢ (x)dr < +oc. By Corollary 3.A.3, we have

n2/3

e Mt x) -l (x)| = 0,

lim  sup
t—+oo z€[0,400)

As 9! is bounded, we have

1 h2/3
liriligop sgp —logu(t,z) = 517301
x>0

(3.A.9)

Similarly, for 0 < a < band 0 < a’ <V, we set

t
ﬂ(t, LL’) = Ea: |:1{Bt€[a/,b/]}ehf0 Bsds; BS > O, S € [0, t]]

and i, = f;,/ Y (z)dr > 0. By Corollary 3.A.3 again, we have

n2/3

lim suple 273 “Ya(t, z) — fipdl(z)| = 0.

t——+00 z>0
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In particular, as inf,cq) Yl >0, we have

lminf inf Llogi( o) = o (3.A.10)
t—+o00 zela,b] t 21/3
As @ < u, mixing (3.A.9) and (3.A.10), we conclude that
1 1 h2/3
tiigloo il;}g n logu(t,z) = tiiinoo mér[zf’b] n logu(t,z) = 51730
0

3.A.2 The area under a Brownian motion constrained to stay in an
interval

The main result of this section is that:
ForallheR, 0<a<b<land0<d <V <1, we have

1 _ t
lim — sup logE, [e m o Bsds. poc0,1],s <t
t—=+o0 1 z€[0,1]

.1 —h (" Byd )
= t£+moo n :cg[laf,b} log E, [e Jo 1.l p)); Bs € 0,1],s <t| = ¥(h), (3.A.11)

where W is the function defined in (3.1.17).

The organisation, the results and techniques of the section are very similar to Sec-
tion 3.A.1, with a few exceptions. First, to exhibit an orthonormal basis of eigenfunctions,
we need some additional Sturm-Liouville theory, that can be found in [Zet05]. Secondly,
we work on [0, 1], which is a compact set. This lightens the analysis of the PDE obtained
while proving Lemma 3.A.5.

In this section, we write L2 = L2([0,1]) for the set of square-integrable measurable
functions on [0, 1], equipped with the scalar product

(f,9) = /01 f(x)g(x)dz.

Moreover, we write C3 = C3([0,1]) for the set of continuous, twice differentiable func-
tions w on [0, 1] such that w(0) = w(1) = 0. Finally, for any continuous function w,
[wlloe = SUPgep) [w()] and [Jwlly, = <w,w>1/2. We introduce in a first time a new
specific orthogonal basis of [0, 1].

Lemma 3.A.4. Let h > 0. The set of zeros of the function
A = Ai(N)Bi(A 4 (20)Y3) — Ai(\ + (2h)/3)Bi()\)

s countable and bounded from above by 0, that are listed in the decreasing order as follows:
N> AE > oo In particular, we have

A = sup {A <0 Ai()Bi(A + (20)%) = Ai(A + (21)/*)Bi(A) } (3.A.12)
Additionally, for n € N and z € [0, 1], we define
Ai (M) Bi (M + (20)1/32) — Ai (AL + (21)/32) Bi (ML)
[[AL(AR) Bi (A} + ) — AL (A, + ) Bi(A) ),

o (z) = (3.A.13)

The following properties are verified:
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e (¢ n €N) forms an orthogonal basis of L?;

° hmn_H_oo)\ n?= %

o forall u € R and ¢ € C3, if

{Vfﬂé( 1), 5¢" (@) = hap(z) = pp(x)

o(0) = p(1) =, (3.A.14)

then either ¢ = 0, or there exist n € N and ¢ € R such that yu = 21/3 )\ﬁ and ¢ = cpl.

Proof. We consider equation (3.A.14). This is a Sturm-Liouville problem with separated
boundary conditions, that satisfies the hypotheses of Theorem 4.6.2 of [Zet05]. Therefore,
there is an infinite but countable number of real numbers (u?,n € N) such that the
differential equation

{Vmé( 1), 5¢"(@) = hap(z) = po(@)
¢(0) = (1) = 0,

admit non-zero solutions. For all n € N, we write " for one of such solutions normalized
so that HgonH2 = 1. For every solution (A, ¢) of (3.A.14), there exist n € N and ¢ € R such

that A = p! and ¢ = cpl. Moreover, since (¢!, n € N) forms an orthonormal basis of L2,
2

By Theorem 4.3.1. of [Zet05], we have lim,,_, )\ n=?= —5.
We now identify (u”) and (¢!). By the deﬁmtlon of Airy functions, given pu € R, the

solutions of
{és@”(w) — hap(w) = pp(w)
v(0) =0,
are, up to a multiplicative constant
1/3 . 1/3 . 1/
x — Bi (h2/3“) Ai (,212/3,u + (2h)1/3a:> — Aj (fﬂﬁu) Bi (i—/ + (20)32 )
This function is null at point x = 1 if and only if
1/3 1/3 . 1/3 1/3
Bi (}le/&u) Ai (22/3u + (2h)l/3> — Ai (22/3,“) Bi (22 (2h)1/3>

Therefore, the zeros of

A= Ai(N)Bi(A 4 (20)Y3) — Ai(X + (20)/3)Bi()),

1/3
22/3 M?L‘
Moreover, we conclude that the eigenfunction ¢! described above is proportional to

> AL (ML) Bi (ML + (20)/32) — Ai (A + (2h)/32) Bi (XL)

can be listed in the decreasing order as follows: A\? > \; > ... and we have \! =

and has L? norm 1, which validates the formula (3.A.13).
We have left to prove that for all n > 1, A < 0. To do so, we observe that if (i, ) is
a solution of (3.A.14), we have

u/s@ dw—/s@ 50 )—/Olw(ﬂﬁ)de

= 2 0(6 ())dm—h/ zo(x)?dr < 0,

which proves that for all n € N, ! < 0, so A\ < 0 which justifies (3.A.12). O
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We observe that once again, the eigenfunction go’f corresponding to the largest eigen-

vector m)\h is a non-negative function on [0, 1], and positive on (0, 1).

Using this lemma, we can obtain a precise asymptotic of the Laplace transform of the
area under a Brownian motion.

Lemma 3.A.5. Let h > 0 and ug € C%([0,1]) such that ug(0) = ug(1) = 0. We define,
fort>0and x>0

u(t,z) = By {uo(Bt)e_hfot Buds. B e [0,1],s € [o,t]} .

We have
n2/3 \ny b R
=3 (1, 2) — (g, )l ()] = 0. (3.A.15)

lim sup|e
t——+o00 z€R

Proof. This proof is very similar to the proof of Lemma 3.A.2. For h > 0, by the Feynman-
Kac formula, u is the unique solution of the equation

vt > 0,Vz € (0,1), Ou(t,z) = 10%u(t, z) — hau(t, z)
Vz € [0,1],u(0,z) = up(x) (3.A.16)
Vit > 0,u(t,0) = limg_y 400 u(t,x) = 0.

We define the operator

G - C

g w (ﬂc = g () — haw(z),z € [0, 1]) )

By Lemma 3.A .4, we know that (") forms an orthogonal basis of L? consisting of eigen-
vectors of G". In particular, for all n € N,

h 2/3
h h _

For all w € C3, by integration by parts, we have

@ =3 [ e b [ u@ees

= [ @y @i —n [ 7w
:A w(w) (G ) () da
R2/3

= 91/3 )‘Z<wv 902>

Therefore, decomposing w with respect to the basis (¢!), we obtain

h _ /ah = h h _+OO R\ /ah h = hz/g/\h h\2
<g w7w> - <g w, Z <90n7w>90n> - Z <w780n><g w, (pn> - Z 21/3 n<w7§0n> .

As (A1) is a decreasing sequence, we get

b 400 h2/3 h B2 h2/3 h
(G"w,w) < Z 21/3)\ “w, o) < 21/3)\ Tw, w). (3.A.17)
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In addition, if (w, @) = 0, the inequality can be strengthened in

N +o0 h2/3 N b /3
(G "w,w) < Z 21/3)\ s{w, )" < WAQ (w, w). (3.A.18)

Using these results, we prove (3.A.15). For x € [0, 1] and ¢ > 0, we set

n2/3

_h%7° \h
o(t,a) = e 7 (@) — (un, o}l
We observe first that (v(0,-), %) = 0 by definition, and that for all ¢ > 0,

h2/3 h2/3)\h _ﬂ h
Ouu(t, ), o) = Al 5 gt ), o) + TN Dt ), o)

R2/3 | n2/3 ., _n?B3n
= —gs e 2t ), o) + e Gt ), o)
23 w2, wo B3 nE b
= —grpAte 2T ult, @), o) + g re 2T (ult 2), o1)

which proves that for all ¢ > 0, (v(t,-), %) = 0.
We now prove that the functions

/|vtw|d:n and  Jo(t /|8vtm)|2dx

are non-negative, decreasing, and converge to 0 as ¢t — +o00. Note that

O J1(t) = /01 20(t, x)0w(t, x)dx

2/3 K2/3 |1 h2/3 \n

1
:/ 20(t, ) [— 21/3 PUTREE /\ltu(t,:n) + e_zlﬂ‘/\ltﬁtu(t,m)] dx
/ h
_/ 20(t, x) 1/3)\1v(t x) +G"(t,x)| dx

h2/3 L .
:2[ 21/3)‘ 1(u(t, ), v(t, ) + (v(t,-), G U(t,-))] ’

and as (v(t,-), ¢%) = 0, we have
A J1(t) < (2R)2PNE = MY JL (1),

Therefore, J;(t) decreases to 0 as t — +o0o. Similarly,
O Jo(t / 20,0(t, )00z v(t, x)dx
= 2/ O0zv(t, )00pv(t, x)dx

h2/
—2/ Ogv(t, x) l 21/3)\h8v(tx)+8gv(taz)]dm

= N B,0(t, ), Be(t, ) + 2(050(t, ), G Bt ) — Qh/olv(t, 2)0u0(t, ) dx

v(t,1)2—v(t,0)2
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As a consequence, Jy is decreasing and non-negative, is therefore convergent, as t — 400
to Jo(+00). In addition, we can bound the derivative of .J; as follows

h2/3
8t‘]1(t) = [ 21/3 )\h< ( ),U(t, )> + <’U(t, ')aghv(ta )>‘|

= —(20)23N\h g ( —I—/ (t,x)0 ta:dx—/ hxv(t, z)?dx

—(2R)BN T (1) — /0 (Op0(t, 2))? da
< —Jo(t) = (20PN ().

As Ji(t) — 0, if Jo(t) = J2(+00) > 0, then the derivative of J; stays negative and bounded
away from 0, which would indicate that J; decreases to —oo, contradicting the fact that
J1 > 0. We conclude that lim;_, o Jo(t) = 0.

Finally, by Cauchy-Schwarz inequality, for all = € [0, 1], we have

T T 1/2
lu(t,z)| < / |0zv(t, z)|dx < z1/2 (/ 8wv(t,a:)]2dx) < Jo(t),
0 0
so lim¢ 4o ||v(¢, )| o = 0, which proves (3.A.4). O

This lemma can be easily extended to authorize more general starting function ug.

Corollary 3.A.6. Let h > 0 and ug be a measurable bounded function. Setting, for x > 0
andt >0

u(t,x) = Ey {uo(Bt)ehfc: Bsds. B e 10,1],5 € [O,t]} ,

we have
A h
e 237 u(t, x) — (ug, 1)t (z)| = 0. (3.A.19)

lim sup
t——+o0 zeR

Proof. Let ug be a measurable bounded function. We define, for x > 0 and € > 0
us(z) = ule,x) = E, [uo(Bs)e_hfo6 Bsds. B e [0,1],5 € [0, 1]] :
Observe that by the Markov property, for all ¢ > ¢, we have
u(t,z) = B, {uo(Bt)eth Buds. g 10.1], s € [O,t]}
=E, {ug(Bt_a)e—thEBst; B, €[0,1],s € [0,t — g]] .

Therefore, u(t, z) = u.(t — €, x), setting u.(t,z) = E, {ug(Bt)e_h Jo Bads. s ¢ 0, t]}
As h >0, for all € > 0 and z € [0, 1], we have
|ue(z)| < Jluoll Pz [Bs € 0,1],5 € [0,¢]]
< Cmax (Pg (Bs > 0,5 € [0,¢]),P, (Bs < 1,5 €[0,¢]))
< Ce V2 max(x,1 — ).
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As a consequence, we can find sequences (v(™) and (w(™) of functions in C3 such that
for all z € R

w™ <y < w™ + 1 and o™ — 1 < e < o™,
n

Forn e N, x > 0 and t > 0, we denote by

3

t
v(”)(t,a:) =E, v(”)(az)ef Jo Bsds. p ¢ [0,1],s € [O,t]]

t
and by w™(t,z) =E, [w(")(x)e_ Jo Buds. B e 10,1],s € [0,1]] .

For all x > 0 and ¢ > 0 we have w(™ (t,x) <wue(t,z) < v (t,z). Moreover Lemma 3.A.5
gives

n2/3

_hZ/° \h
t—lz-s—moo Slelg e 21/3 Altv(n)(t, x) — (v("),w’f>90}f(ﬂf) =0.
T
_ K23 4p
im_sup e300 1,2) = (W, ) e)| =0
T

By the dominated convergence theorem, we have

lim <w(n)’ (pfll> = lim <v(n)’ 90}11> = <u€7()0?>7

n—-+o0o n—-+o0o

which yields
_n28 hy b
e 23 ug(t, ) — (ue, 1)t (z)| = 0.

lim sup
t——+o0 zeR

For all z > 0, we have u.(x) — up(z) as ¢ — 0. By dominated convergence theorem again
. h h
il—I}é <U5, @1> = <u07 Spl>7

as u(t, ) = u.(t — e, x), we conclude that

_h2/3 h h h
e 2137 u(t, x) — (ug, v1) e ()

=0.

lim sup
t—+o0 TER

Proof of Lemma 3.2.4. We begin with the case h > 0. We set
h [ Bsd
u(t,z) = Ey [e_ Jo B % Bs €10,1],s € [O,t]]

and pp = fol ol (x)dx < +o00. By Corollary 3.A.3, we have

h2/3 \h

lim suple 273 u(t, z) — ppe(z)| = 0.

t—+o0 >0

As ¢} is bounded,

1
lim sup sup ~ log u(t, z) = 27 /3p%/3 )\ (3.A.20)
t—+00 x>0
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Similarly, for 0 <a<b<land 0 <a <V <1, we set

t
u(t,z) = Ey [1{Bte[a/,b’}}ehf0 Bsds. B e 0,1],5 € [O,t}} ,

and fip, = f;,/ " (x)dz > 0. Corollary 3.A.3 implies that

_B2/3 \hy 5
li s u(t,x) — 1 =0.
t—}Elooig% ez u(t, ) — pnepr (z)
In particular, as inf,c(q5) ok >0, we have
liminf inf - log@ L) A
im inf xér[;b] n ogu(t,xz) = m)q. (3.A.21)

Using the fact that 7 < u, (3.A.20) and (3.A.21) lead to

1 1 2/3
lim sup —logu(t,z) = lim inf flogﬂ(t,x):h A

t—+00 ;>0 t—+oo z€fab] t 21/3

Moreover, by definition of ¥, for all ~ > 0 we have ¥(h) = %A}f, and (3.2.10) is
a consequence of the definition of A?. Ussing this alternative definition and the implicit
function theorem, we observe immediately that U is differentiable on (0, +00). We compute

the asymptotic of ¥ as h increases to 400 and we get

U(h) _ _ . . . .
s = 2N =27 sup {w e R:Bi() AL (A + (20)%) = Ai () Bi (A + (20)'/4) ]
. Bi(\)Ai(A+(2h)1/3 .
We recall that A} < 0, we have Ai(\}) = (BB(AJ(F(;E)U):,)) ) and log Bi(z) ~p 100 /3.

Consequently,

Bi (M) Ai (A+ (20)1/%)
li =0
hotoo xomy  Bi (A + (2h)1/3)

For all € > 0, there exists § > 0 small enough such that
{z € [*%592,0] : |Ai(z)| < 0} C a1 — e, 01 + .

Bi(\)Ai(A\+(2h)1/?)
Bi(A-+(2h)1/3)

Moreover, there exists H > 0 such that supj,> g \>q, < 4. As a result,

Y(h) _ ~1/3¢,.

for all h > H, ‘)\’f — al‘ < g, which is enough to conclude that limp_; oo s =

We now observe that if A < 0, then
E, {U(Bt)e_hfot Buds. B e 0,1],s € [O,t]}
—-E, [u(Bt)e—th(Bs—Hl)dS; B,—1€[-1,0],s € [O,t]]
=e ME, {u(Bt + 1)e*hfot Bsds. B e [—1,0],s € [O,t]}

t
— efht El—a: |:u(]_ — Bt)ehfo BSdS; BS € [0) 1]7 RS [07t]:| .
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Forall0<a<b<land 0<d <b <1, we have

t
lim sup flogE [ o Buds. B e 0,1],s € [O,t]}
t——+o0 .736[0 1]

t
1{Bt€[a,,b,}}e*hfo Buds. B c10,1],s € [O,t]] = —h+U(=h).

= lim inf llog E.
t—+o0 zc(a,b] t
We also conclude that for h < 0, W(h) = ¥(—h) — h, and in particular, ¥ is differentiable
on (—o0,0). Moreover, at point 0, its right derivative and its left derivative do not match,
U;(0) = 0.(0) + 1
Finally, we take care of the case h = 0. By [IM74],

t
Eﬂ? 1{Bt€[a,b]}€_0f0 BSdSQBs € [07 1]7 s € [O,t]

=P, [B; € [a,b],BS € [0,1],s € [0,¢]]

b Foo
/ 2 Z e " 2 tsin(nmx) sin(nrz)dz

+o0o

=2 Z sin(nmz)

n=1

cos(nma) — cos(nmwb) _,2 =
e :

nm

As a consequence,

lim sup flogP Bs; €10,1],5 € [0,¢
i s (B, € 0,15 € [0,1]

. L Y _
= t_13+moomér[sz] logP [B: € [d,b'], Bs € [0,1],s € [0,t]] = ¥(0) 5

3.B Notation

e Point processes
— L law of a point process;
— L4 point process with law Ly;
— K¢ log-Laplace transform of Ly;
— kj: Fenchel-Legendre transform of £;.
e Paths
— C: set of continuous functions on [0, 1];
— D: set of cadlag functions on [0, 1], continuous at point 1;
- b(n) k 1 bj/m: path of speed profile b € D;
- K *(b) 0 k%(bs)ds: energy associated to the path of speed profile b;
- = OuK} (bt) parameter associated to the path of speed profile b;
- E( )i = Jo 9s0aris(ps) — ks (ps)ds: quantity equal to K*(b);, energy associated to
the path of parameter function ¢;
- R={beD:Vtel0,1], K*(b); < 0}: set of speed profiles b such that 5™ s fol-
lowed until time n by at least one individual with positive probability.
e Branching random walk
— T: genealogical tree of the process;
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— u € T: individual in the process;

— V(u): position of the individual u;

— |u|: generation at which u belongs;

— uy: ancestor of u at generation k;

— (): initial ancestor of the process;

— if u # (), wu: parent of u;

— Q(u): set of children of u;

- L% = (V(v) = V(u),v € Q(u)): point process of the displacement of the children;
— My, = max|,|—y, V (u) maximal displacement at the n' generation in (T, V);

— Ay = miny,—, maxg<, 5,(;0 —V(ug): consistent maximal displacement with respect

to the path B(n) ;

- W¢ ={ueT:VkeF,V(u) > 5,(:) + fk/nnl/?’}: tree of a BRWIs with selection
(n)

above the curve b~ + nl/?’f,/n at times in F,.

The optimal path

— V% = SUpPper fol bsds: speed of the BRWls;

— a € R such that fol asds = v*: optimal speed profile;

— 0y = O,k (as): parameter of the optimal path;

o2 = 03rk¢(0;): variance of individuals following the optimal path;

— 6: Radon-Nikodym derivative of df with respect to the Lebesgue measure;

. /3
05 S . . .
=273 fol %ds: n'/3 correction of the maximal displacement;

— v = infg>q MT@: natural speed profile.
Airy functions

— Ai(z) =1 [ cos (% + xs) ds: Airy function of the first kind;

— xJO
- Bi(z) = % o7 exp (—% + ws) + sin (§ + :L"s) ds: Airy function of the second
kind;
— (ap): zeros of Ai, listed in the decreasing order;
t
- U(h) =lim 400 % log sup,co,1] Ex [ehfo Bst;BS € [0,1],s € [0,¢]].
Random walk estimates
— (Xnk,n € Nk <n): array of independent random variables;

- S,(gn) =x+ Zle Xp,j: time-inhomogeneous random walk starting from x;
— Given f,geC,and 0 < j <mn,

fj/nn1/37 gj/nnl/B] If.] € FnNGhp,

] =
" —oo,gj/nnl/?’} if j € FX NG,
R otherwise;

_ jj(n) _ j(n) N [—n?/3, n2/3].

Many-to-one lemma

— Pyt law of the BRWIs of length n — k with environment (L;)/n,J < n —k);

— Fr = 0o(u,V(u),|u| < k): filtration of the branching random walk;

— Many-to-one lemma: Lemma 3.3.1.

Random walk estimates

— AEG(f g): individuals staying in the path 5™ 4 10" until some time then exiting
by the upper boundary;
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~ BFG(f,g,2): individuals that stayed in the path ™) + I™ at any time k < n,

that are above E;n) + (g1 — z)n'/? at time n.



CHAPTER 4

LThe maximal displacement of
a branching random walk
in random environment

“Un homme tirait au sort toutes ses décisions.
Il ne lui arriva pas plus de mal qu’aux autres qui réfléchissent.”

Paul Valéry — Choses tues.

Abstract

The behaviour of the tip of supercritical branching random walk (BRW) has been a
subject of intense studies for a long time. But only recently, starting with the work
of [FZ12a], the case of time-inhomogeneous branching has gained focus. The main
contribution of this chapter is to analyse a model in which the branching law at the
n'™ generation is a random variable £, sampled independently from a distribution
of point measures (representing the displacement of the children). We present an
asymptotic of the maximal displacement at time n up to a logarithmic term. The
first, ballistic, order is established for a much more general class of models. As a tool,
we derive a result of independent interest concerning the probability for a Brownian
motion to stay above another Brownian motion path.

Nota: This chapter is based on a joint work in collaboration with Piotr Milos !, currently
unpublished.

4.1 Introduction

We recall that a branching random walk in random environment on R is a model
defined as follows. Let (£,,n € N) be a sequence of point processes laws? that we call
the environment of the branching random walk. It starts with one individual located at
the origin at time 0. This individual dies at time 1 giving birth to children, positioned
according to a realisation a point process of law L. Similarly, at each time n every
individual alive at generation n — 1 dies giving birth to children. The position of the
children with respect to their parent are given by an independent realisation of a point
process with law £,,. We denote by T the (random) genealogical tree of the process.

1. Faculty of Mathematics, Informatics and Mechanics, University of Warsaw
2. Le., probability distributions on | J, 5 R*.
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For a given individual u € T we write V(u) € R for the position of u and |u| for the
generation at which wu is alive. The couple (T, V) is called the branching random walk in
time-inhomogeneous environment.

We assume the time-inhomogeneous Galton-Watson tree to be supercritical (i.e. the
number of individuals alive at generation n grows exponentially fast), that does not become
extinct (we assume that the number of offspring is always at least 1). We take interest in
the maximal displacement at time n of (T, V'), defined by

M, = max V(u). (4.1.1)
u€T:|u|l=n

In this chapter, the environment of the branching random walk is sampled randomly.
More precisely, we set (L,,n € N) a sequence of i.i.d. random laws of point processes.
A branching random walk in random environment (BRWre) is a branching random walk
with the time-inhomogeneous environment (£,,n € N). Conditionally on this sequence,
we write P, for the law of this BRWre (T, V) and E/ for the corresponding expectation.
The joint probability of the environment and the branching random walk is written P,
with the corresponding expectation E. For the clarity of exposition, we present the most
important results deferring to the subsequent sections number of generalisations which

require additional notation.

Some notation. Given a sequence (x,) € RY, we recall that Op(z,) is a sequence of
random variables (X,,n € N) verifying

Ve >0,3K >0:supP (X,, > Kx,) <¢
neN

Similarly, op(x,) denotes a generic sequence of random variables (X,,n € N) such that
f—: — 0 in P-probability. Moreover C' and ¢ stand for two positive constants respectively
large enough and small enough, that may change from line to line.

To ensure the non-extinction of the BRWre (T, V'), we assume that

Pr{ueT:|u/=1}=0)=0 aus. (4.1.2)
and using [BMO08], a sufficient condition for the random tree T to be supercritical is
3C > 0:E¢ (# {ueT: |u= 1}2) < C as. and E (logEg(#{|u] =1})) > 0. (4.1.3)
Under (4.1.2) and (4.1.3), by [BMO08, Theorem 1.1] we have

lim inf (4{u € T Ju| = n})"/" > exp [B[log Be(#{ful = 11)]]  Br—as  (414)

For n € N, we introduce the log-Laplace transform x,, : Ry — RU{+4o00} of £,,, defined
for 6 € Ry by

kn(0) =logE, (Z BM) , (4.1.5)

{eLy

where L,, is a point process on R distributed according to the law £,,. As the point process
L,, is a.s. non-empty we have k,(0) > —oo a.s. For a fixed § > 0, (k,(0),n € N) is an
i.i.d. sequence of random variables under law P. We assume that E (k1(6)-) < +oo for
all # > 0, and we define x : (0,+00) = RU {400} by x(0) = E (k,(0)).
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As k1 is the log-Laplace transform of a measure on R, x is a convex function, that
is C* on the interior of the interval {# > 0 : k() < +oo}. Assuming this interval is
non-empty, we define

_ . K(0)
v= 5227, (4.1.6)

and we assume there exists 6" > 0 such that  is differentiable at point 8* (implying that
k is finite in a neighbourhood of 6*) and

0K (6%) — K(6%) = 0. (4.1.7)

Under this assumption, by dominated convergence, we have v = £/(6*) = E [} (6*)]. We
introduce two variance terms, that we assume to be finite

0’22 = (0")?E [£](6%)] € (0,+00) and % := Var [0*x](0") — x1(0%)] € [0, +00).
(4.1.8)
To compute the asymptotic behaviour of M,, we introduce two additional integrability
assumptions:

2
E |E, (Z (1+6W)) < 400, (4.1.9)
YA

as well as

3u>0: pub, [Z 103 (e<9*+“)e + e(e*ﬂﬂ)] <Er [Z 2 as. (4.1.10)

leLy lely

When the reproduction law does not depend on the time, under mild integrability
assumptions, Hu and Shi [HS09] and Addario-Berry and Reed [ABRO09] independently
proved the existence of a second order logarithmic correction to first order behaviour of
M,,. Our aim is to extend the scope of this result to the random environment setting. We
introduce K,, = Y 1_; kx(6*). This quantity depends only of the environment. Being a
random walk, we have K,, = nv + Op(n'/?). The main result of this article is

Theorem 4.1.1. Under the assumptions (4.1.2), (4.1.3), (4.1.7), (4.1.8), (4.1.9) and
(4.1.10), there exists ¢ > 5o, defined in (4.1.11) below, such that

1 ifB>¢

in probability.
0 ifB<e T !

n——+00

lim P [Mn — LK, > —ﬁlogn} - {

A direct consequence of this theorem is the asymptotic behaviour of M,, under law P.
Corollary 4.1.2. Under the assumptions of Theorem 4.1.1, we have

1
lim 7Mn ~ o Kn

Jim log = —p in P — probability.

Most likely, the convergence cannot be strengthen to M,, = Q%Kn —plogn+op,(logn)
P-a.s. We expect the median of M,, under law P to exhibit some non-trivial log n-scale
fluctuations. This fact is discussed in more details in Section 4.3. We also expect that as
soon as 0% > 0, the random environment of the branching random walk slows down the
process. In other words, the constant ¢ is expected to be strictly greater than % the
logarithmic correction of the time-homogeneous branching random walk.
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It is well-known, see for example [AS10], that the constant % of the branching random
walk is directly related to the % exponent of the ballot theorem problem? i.e., for any

centred random walk (S,,) with finite variance, there exists A > 0 and C' > 0 such that
P(S, < A,S; > —1,j <n) ~Cn~32

In analysis of our model, studying a random environment version of ballot theorem comes
out naturally. We believe that this result is of independent interest. We state here a toy-
model version of the main results (Theorem 4.2.3 for the Brownian motion and Theorem
4.3.1 for the random walk in random environment) which involve additional notation.

Theorem 4.1.3. Let B and W be two independent Brownian motions. There exists an
even convex function v : R — Ry such that for any B € R we have

logP (Bs > Wy —1,s <t|W
lim —2 (B, 2 5 s< ):—'y(ﬁ) a.s.

t—+o00 logt

Moreover, infger v(8) = v(0) = 1.

The case 8 = 0 reduces to the classical ballot theorem. The constant ¢ from Theorem
4.1.1 can be expressed using the function . We write

o= %v (&) + 2;*. (4.1.11)
In the case of a classical branching random walk, we have 0% = 0 thus ¢ = %, which is
consistent with the results of Hu and Shi, and Addario-Berry and Reed.

The rest of the paper is organised as follows. The next section is devoted to the proof of
Theorem 4.1.3, based on Kingman’s subadditive ergodic theorem. Section 4.3 extends the
random ballot theorem to random walks in random environment, using the Sakhanenko
exponential inequality, that links a sum of independent random variables with a Brownian
motion. We use this result to prove Theorem 4.1.1 in Section 4.4, applying a classical
tool of branching processes theory: the many-to-one lemma. It links the computation of
additive moments of the branching random walk with random walk estimates.

4.2 Asymptotic behaviour of the probability for a Brownian
motion to stay above another Brownian motion

Let B and W be two Brownian motions. We study in this section the asymptotic
behaviour as t — +o00 of the probability for B to stay at any time above W, conditionally
on the Brownian path W. We first prove the convergence in Theorem 4.1.3, that the
probability in question almost surely behaves as t~7(®)+o(1)  Secondly, taking this result
as input, we prove that it holds for a class of perturbed Brownian motions. This is used
in the next section to extend this random ballot theorem to random walks in random
environment. This section is concluded establishing some properties of ~.

To study these Brownian estimates, we use the Fortuin—Kasteleyn—-Ginibre (FKG)
inequality for the Brownian motion, that we define now. We set f < g if for all 0 < 51 <
so < t, f(s2) — f(s1) < g(s2) — g(s1). We say that a subset I' of the set of continuous
functions of [0, ] is an increasing event if for any pair of continuous functions (f, g),

f<gand fel' = gel. (4.2.1)

3. For review on ballot theorems, one can look at [ABROS].
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The (strong) FKG inequality for the Brownian motion, proved in [Bar05], states that
increasing events are positively correlated, i.e. if I and I are two increasing events, then

P ((Bs,s€10,t])) eI'NI") > P ((Bs,s € [0,t]) e )P ((Bs,s € 0,¢]) €eT’).  (4.2.2)

Note that for continuous functions f that verify f(0) = 0, the order < is weaker than the
order < defined by f < g if for all s <t, f(s) < g(s). Therefore, if I verifies

f<gand fel' = gel, (4.2.3)
then I'N{f € C: f(0) = 0} is an increasing event, and satisfies FKG inequality.

Lemma 4.2.1. Let B and W be two independent Brownian motions, there exists a func-
tion v : R — R4 such that for any f € R and any a > 0, we have

_logP (B> at'/? 4 fW;, By +1> fW,,0 < s <t| W)
tkinoo logt
Proof. We first note that if § = 0, then

= —v(B) a.s. and in L .

P(B,+1>BW, 0<s<t|/W)=P(B,>—1,5<t).

As limy 4 o0 @ logP(B, > —1,s <t) = —3, 7(0) exists and is equal to . Moreover, by
standard Brownian estimate, for any a > 0 we have

1 1
lim — logP (Bt > at!/2 B, > —1,0< s < t) = —5 as. andin L.

t—+o0 log t
W> |

d
pO,logt(:)P (th > B(Wy — W) +tY2 B+ 12> B(Wypr — W), u <t — 1‘ W) ;

We now assume that g # 0. For 0 < s < ¢, we introduce

Dst =P Bes oy — Bes > B(Wespo — Wes) + 68/27u <el—ef
ot Bot — Bes > B(Wo — Wes) 4 €t/?

Note that

a quantity closely related to the one we aim to bound.
For all 0 < s < t, applying the Markov property at time e® — 1 we have

Dot = P0,sDs,t- (4.2.4)

Moreover, by the scaling property of the Brownian motion,

d
ps,t(:)po,tf& (425)

and by independence of the increments of the Brownian motion, for all 0 < s < t and
0<s <t
if [s,t] N [s',#'] =0, then ps; and py  are independent. (4.2.6)

We now prove that E(—logpg1) < +o0o. Writing 7' = e — 1, we observe that by the
inversion property of the Brownian motion,

P (Elt <T:W,> at1/3) —pP (Elt <ST:W, > at_2/3) -P (375 >T LW, > at2/3>
< ZP (Elt c {%, %} W > aiz/?’) < Zexp [—Ca%il/g}
i>1 i>1 t
< cexp(—Ca®),
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for some ¢, €', a > 0. In particular, writing X = sup;¢(o 7 tle—/g, we have P(X > a) < e=¢2%,

Thus,
E(—logpo1)

“+o00
— Z E [— 10gp0,11{BX€(a,a+1]}}

< ZE [~ logP(Br > (a+ TP+ 7% By > (a4 1)s'* = 1,5 < T) 1 pxe(aasn |
+oo

< Z —logP (BT > (a+ l)Tl/3 —i—eT/Q,BS > (a+ 1)31/3 —1,5< T) P(BX > a).
a=0

Moreover, there exists ¢/, C' > 0 such that
P (BT > qT3 + T2 By > as'/® — 1,5 < T) > c’e_cla5,

which leads to
+oo

E(—logpo1) < C'a%eC(5) < 1. (4.2.7)
a=0

As a result, by Kingman’s subadditive ergodic theorem (see e.g. [Kal02, Theorem
10.22]), (4.2.4), (4.2.5), (4.2.6) and (4.2.7) imply there exists v(3) € Ry such that

i — log Dot
m ———F—
t——+o0 t

= () a.s. and in L. (4.2.8)
We use (4.2.8) to obtain the asymptotic behaviour, as t — +o00, of
pot =P (Bu+1 —B1+ 1> Wy —Wi),u<e — 1] W) .
To do so, we apply the FKG inequality for the Brownian motion, we have
Pos % P (Bee = By > B(Wee = Wi) + ¢2| W) < po, < oy (4.2.9)

Moreover, bounding the right tail of the Gaussian random variable we have

log P (Bet —B1+12> B(Wee — W) +€t/2‘ W)
lim

t—-+o0 t

=0as. andin L'.  (4.2.10)

As a consequence, (4.2.8) and (4.2.9) yield

loo 5
lim —2Pot —v(B8) a.s. and in L'. (4.2.11)

t——+o00 t
Let a > 0, we use once again the FKG inequality to compute the asymptotic behaviour

of
W> |

s _p Byt — Bl+1>ﬁ( u+l — Wl)uget—l
Po.t Bet—Bl>aet/2+5( Wee — Wh)

We have _
_ Pgt
P(Bet—Bl>,3< et—W1)+aet/2]W)
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By (4.2.10), we have log P (Bet — By > (W —Wh) + aet/Q‘ W) /logt — 0 a.s. therefore
(4.2.11) yield
. logpp, -
tl}gloo — = —v(B) a.s. and in L".

O]

In a second time, we add an upper bound on the terminal value of B; — SW; in the
event.

Lemma 4.2.2. Let B and W be two independent Brownian motions, for any > 0 and
0<a<b<+oo we have

1
lim —— log P (Bt — BW; € [atY/2, btY/2], By + 1> fW,,0< s < t‘ W)
t—+o0 logt

= —(B) in probability.
Proof. Let p € R. We first observe that for any A > 0,

(BWy + A(tlog t)1/2)2>
; .

P (B — AW, > Atlogt)'/2| W) < exp <—
Consequently, we have

1
limsup —— log P (Bt — W, > )\(tlogt)l/2‘ W) < —X\? as.
t—+oo logt

Therefore, for any A > v(3)2, we have

. 1
lim
n——+oo log ¢

log P (B, — BW; € [at/? A(tlog)'/?], By + 1> AW,,0 < 5 < t| W)

= —7(B) as.

Using the scaling probability of the Brownian motion and the fact that for any € > 0,
P(B1+1>pWi,Bs+¢e>pWs|W) >0,

we conclude that for any A > 0

1
lim ———logP (B, — AW, € [at"/? A(tlog)'/?], By + 1> BW,,0 < s < t‘ w)
n—+oc logt
=—(B) as.

We now use the fact that with high probability, [W(i, ., — Wi| < A(et)'/?, and that

P(Bet +x € y + [at'/?, bt'/2)

2t1
> exp (A tfgt) (log?)~,

€

inf in
z€latt/2 \(tlogt)1/2] ye[—A(et)1/2,A(et) /2]

to obtain, choosing A large enough, € > 0 small enough then A > 0 small enough

1
lim — logP (Bt — BW; € [at*/2, btY/?], By + 1> fW,,0 < s < t‘ W)
n—+oco logt

= —v(p) in probability.
O
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The convergence studied in Lemma 4.2.1 turns out to be stable under various pertur-
bations, e.g. adding o(t!/2) function to a Brownian motion. We formalize it in the next
theorem which is one of main results of the section and is an essential tool for studying
random walks version of the problem in the next section.

Theorem 4.2.3 (Random ballot theorem for the Brownian motion). Let B and W be two
independent Brownian motions. We set f : Ry — R, g: Ry — [1,400) and h: Ry — Ry
to be continuous functions such that there exists o < 1/2 fulfilling f(0) = 0, |f(¢)| = O(t%)
and log g(t) log h(t) = o(logt) ast — 4+o00. For any f € R and 0 < a < b < 400 we have

S e il— _ . 0
tlH-oo log logP [g(t) + Bs > BWs + f(s), h(t) < s <] v(B) in probability. (4.2.12)

Proof. We note there exist A > 0, « < 1/2 such that for any ¢ > 0, |f(¢)| < 1/2 + At?,
therefore
P(Bs+1>Ws+1/24 As*,0<s<t|W)
<P (g(t)+ Bs = BW;s + f(s),h(t) < s < t|W)
<P (14 B, > W, —1/2 - As*h(t) < s <t{ W),
where h(t) = max(h(t),g(t)é) verifies again log h(t) = o(logt) as t — +o00. Consequently,

to prove (4.2.12), it is enough to prove that, for all A > 0, a < %, 0<a<b<+4ooand
h(t) = e°1°gt)  for any e > 0 we have

Jim P (log P(3/2+ B, = W, — As* h(t) < s <HW) = —(y(B) — <) logt) = 0

(4.2.13)
as well as
i loe P 1/2+ By > W, + As®, s < 't - L 0
t—}—&-oo 8 — W € [atlﬂ,btl/z} < ~(v(B) +¢)logt )

(4.2.14)

For t > 0, we write r(t) = %to‘, and

Zt:exp[/ot dW—f/ }

As fg ' (5)%ds < 400, (Z;,t > 0) is a uniformly integrable non-negative martingale. We
denote by Z, its a.s. limit. By the Girsanov theorem, under probability Q := Z - P, the
process (Wi —r(t),t > 0) is a standard Brownian motion. Moreover, under Q, (W:—r(t)) is
independent of B. By definition, Q is absolutely continuous with respect to P. Moreover,
as under Q, (Z; 1) is an uniformly integrable martingale, we have P = Z_! - Q, which
proves that Q and P are equivalent measures.

We have

Q(B; — B(W; = 1(t)) € [at"/2,bt!/2] | By +1/2 > B(W, = 7(5)),0 < 5 < W)
= P(B, — W, € [atl/ﬂ,btl/ﬂ By +1/2> BW,,0 < s < t|W).

By Lemma 4.2.2, we have

_ 1ogQ(B, — AWy —r(t)) € [at!/2,0t1/2] [ 1/2+ B, > (W, = 7(s)), s < t|W)
t—g-imoo logt
= —v(B) in Q-probability.
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As P is absolutely continuous with respect to Q, we obtain (4.2.14).
To prove (4.2.13), we use once again the strong FKG inequality,

Q1+ Bs > B(Ws —1r(s)),0 < s < t|W)
> Q1+ By > B(Ws —1(s)),0 < s < h(t)|W)
X Q(1+ Bs > B(Wy —r(s)),h(t) < s < t{W).

We recall that under Q,the process (W; — r(t),t > 0) is a standard Brownian motion.
Therefore,

1
limsup —— log Q(1 + Bs > W5 — A(s + 1), h(t) < s < t|IW)
t—+oo logt

1
< limsup@logQ(l + Bs > B(Ws —r(s)),0 < s < t|W)

t——+00

—liminf —— log Q(1+ By > B(W, — #(s)),0 < 5 < h(t)

t—+oo logt
< —(B), Qas,
applying Lemma 4.2.1. As Q is absolutely continuous with respect to P, this inequality
also holds P-a.s, concluding the proof. O

We study some of the properties of the function 8 +— () introduced in Lemma 4.2.1.
Lemma 4.2.4. The function 5 — v(B) is convez, even and v(0) = infger v(5) = 1/2.

Proof. The bound from below by % is a direct* consequence of the Jensen inequality. We
have

E(—logP(Bs+ 1> W;,0 < s <t|W))
< —logE (P(Bs +1 2> W,,0 < s <t|W)) ~isjoo ——

As a consequence, letting t — +00, we have

v(B) =

= lim —
t—+o0 logt

N | =

E(—logP(Bs+1> W, 0<s <t|W)) >

This lower bound is tight, indeed

—logP(Bs > —-1,s<t) 1

0)= i =5
7(0) +-5 00 logt 2

Let 8 € R, using the symmetry of the Brownian motion W, we have

(P(B, > — W, + 1,5 <t|W),t > 0) YL (P(Bs > W, + 1,5 < tjW), ¢ > 0),

which proves that v(8) = v(—0).
Finally, we use the log-concavity of the Gaussian measure, for any pair of continuous
functions (f, g) and n € N, we have

P (Byjn > f(ti/n),5 <n) P (Bym > g(ti/n),j <n)

-p (Btj/n S AGIL) ;—g(tj/n)’j - n)?

4. And unnecessary, as the minimum of an even convex function is its value at 0.
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Letting n — +o00, we have
2
P(B, > f(s),0 < s < )P(B, > g(s),0 < s < t) gP(BSz M,ogsgt) .

As a consequence, for all 51, fs € R, we have

P(3521+51-2Fﬁz

W,,0 < s < t|IW)?
> P(Bs > 1+ 1 W, s < t’W)P(Bs > 1+ poWs, s < t’W),

letting t — +o00, this leads

y (51 ;5@) < v(51) ;7(52)7

which proves that v is convex. O

We observe that Theorem 4.1.3 follows easily combining Lemma 4.2.1 and Lemma 4.2.4.

Anticipating the next section and the problem of Brownian excursions above a Brow-
nian motion, we compute the probability for a Brownian motion B to stay above the
curve s — W, — W;_g, that is a Brownian motion seen backward, and the end part of an
excursion. We observe this quantity exhibits almost sure fluctuations on log-scale.

Lemma 4.2.5. For all § € R, we have

tl}er @ logP (Bs+ 1> (W, —W,_s),s <t|W)=—~(8) in probability (4.2.15)
hmsup—logP(B +1> (W —Wi_g),s <t|W)>-1/2 a.s. (4.2.16)
t——+o0 Og

— + > M/ M/ <t M/ < — 2
ltlmlnf 10gP(B 1 ,8( t — tfs),s | ) max (1/27ﬁ /2) a.s.
(4.2.1[)

The constants we obtain here in (4.2.16) and (4.2.17) are far from optimal. For exam-
ple, (4.2.17) gives no information for g € (—1,1).

Proof. We first observe that

@

P(BS-{—lZWt—Wt,S,SSﬂW) —P(BS—FlZWs,SSHW)

Thus (4.2.15) follows by Lemma 4.2.1. This limit does not coincides with limsup and the
liminf as the behaviour of the Brownian motion seen backwards near the origin fluctuates
much more.

We set I; = infs<; Ws. It is well-known that lim; , o Iy = —oo and W; = I; infinitely
often. Let ¢ > 0 be such that I; = W; then SUpg<¢ Wy — Wi_s < 0. As a consequence,

P(Bs+1>W,—Wy_s,s<t|/W)>P(Bs+1>0,s < t).

Now (4.2.16) follows by the classical ballot theorem.
We now prove (4.2.17). Let 8 > 0, applying the Girsanov theorem, for all a > 0 and
t > 0 we have

a2
Ce Tt >P(W, — Wiy > as — 1/(28),s < t) > ct /27, (4.2.18)
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As a consequence, for any A > 0, we have
P (3u € [Aogt,t] : Vs < Alogt, Wy, — Wy_s > as — 1/(2p))
> P (3) < |51k | Vs < Mogt, Wintogs — Winiogt—s > as — 1/(26))

_t
S (1P (Wit~ Watoros > s 1/(28).5 < Aog ) 7).

By (4.2.18), we obtain that for all A < %, there exists infinitely many times ¢ such that
for s < Alogt, Wy — Wy_s > as — 1/(25). For any such ¢t we have

a2
P(Bs+1>W;— Wi_g,s <t|/W) <P (B> Bas — 1/2,s < Mogt) < Ce P TAlogt,
We conclude that for all € > 0, there exists infinitely many times ¢ such that

52

1
) )

o1 logP (Bs+1>W, — W5, s <t|{W) < —(1—¢)

proving (4.2.17). O

4.3 Ballot theorem for a random walk in random environ-
ment

The exponent of polynomial decay () found in Section 4.2 admit some level of
uniformity. It is valid not only for Brownian motions but also for a class of random walks
in random environment. The connexion between the ballot theorem for random walks in
random environment and the Brownian motion problem is explained in Remark 4.3.3.

We now define the random walk in random (time) environment we consider. We write
(tn,n € N) for a sequence of i.i.d. random probability measures on R. Conditionally on
this sequence, we introduce a sequence (X,,) of independent random variables, with X, of
law p,. We denote by S, = Z};l X the random walk in random environment. We write
P, for the law of (S,,n > 0) conditionally on the sequence (y,,n € N), and P for the
joint law of S and the environment p. The corresponding expectations are respectively
written E, and E. We introduce the integrability assumption

E[E,(51)] =0, 03 := E [B,(8}) — Eu($1)?] € (0, +00)
and 0% = E [E,($1)%] € [0, +00). (4.3.1)

We observe that o2 is the variance of E,(X;) the quenched expectation of the random
walk, while Jé is the expected variance of the law p1. These definitions share similarities
with the quantities defined in (4.1.8). The main result of the section is the ballot theorem
for a random walk in a random time-environment.

Theorem 4.3.1 (Random ballot theorem). We assume (4.3.1) and there exists A > 0
such that
AB, [| XM < By, [X2] as. (4.3.2)

We set (by) € RI_\?_ and o < 1/2. If limy, 54 o0 logbn — () then

logn

lim su log sup P,(S; > —2—75%7<n)<—(24) a.s. 4.3.3
m S oy 08 b u(Sj 2 5 <n) <=7 (2) (4.3.3)
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Additionally, if liminf,, 4 kf’ﬁ > 0, then for all 0 < a < b,

e, 1 . 1/2 1/2 . .

It o (5 o252 5 % 2) 2 (38) s
Remark 4.3.2. The condition liminf b, /logn > 0 we introduce to prove (4.3.4) is non-
optimal, but simplifies the proof. In greater generality, we may introduce the event

Ay ={IneN:P,(S; > —y,j <n)=0}.
One may observe that P(Ay) € [0,1) and that on Aj, the probability P,(S; > —y,j < n)
(34 ) 4o .
decreases asn  \79 . Moreover, by simple random walk theory, almost surely, there
exists y > 0 large enough such that A7 holds.

Remark 4.3.3. The link between Theorems 4.3.1 and 4.1.3 can be expressed as follows. We
note that S can be decomposed as S, = S, — E,(Sn) + E.(Sn). As E,(Sy) is a random
walk, it can be approached by a Brownian motion with variance 0. Then S, — E,(S,) is
a sum of independent centred random variables, that behaves as a Brownian motion with
variance 022.

The two main tools of the proof of Theorem 4.3.1 are the following theorems, that
couple Brownian motions with sum of independent random variables. We first introduce
the KMT coupling, discovered by Komlés, Major and Tusnady, that links a random walk
with a standard Brownian motion.

Theorem 4.3.4 (Komlés, Major, Tusnddy [KMT76]). Let X be a random variable such
that

E(X)=0, o®:=E(X?) €[0,400) and 3a>0:E[e"] < 4oc. (4.3.5)

There exist positive numbers X\,C, D, i.i.d. random variables (X,) with the same law as
X and i.i.d. standard Gaussian random variables (Zy,) such that, writing

A, = max ,
k<n

k
ZXJ' — O'Zj
7=1

we have
Ve € Ry,Vn e N,P(A, > 2+ Dlogn) < Ce 7.

Note that under this integrability assumption, by Jensen inequality, the random vari-
able E,,(X1) satisfies (4.3.5), with 02 = 2. This result has been extended by Sakhanenko
to sums of independent random variables with non identical law.

Theorem 4.3.5 (Sakhanenko [Sak84]). Let (X1,...,X,) be independent random vari-
ables, we assume there exists A > 0 such that

vk <0 AE [ X PN ] < B[] < 400

There exists random variables (X1, ..., Xy,) with the same law as (X1, ..., Xyn) and in-
dependent Gaussian random variables (Z1,...,7Z,) with same means and variances as
(X1,...X,) such that, writing

A,, = max
k<n

Y

k
> Xj—Z;
j=1
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there exists a universal constant Cy > 0 such that

E [¢©Me] <142 | Var(X;).
j=1

Proof of Theorem 4.3.1. We consider the random walk in random environment (.S,,). For
any n € N, we introduce
M, =E,(S,) and X2 =E,(S2)— M2 (4.3.6)

The process (M,,) is the random walk of the mean of (S,), and is centred. The process
(¥2) is the random walk of the variance of (S,,). By law of large numbers, (X2) converges
to +oo at ballistic speed 0’124. We now construct two independent Brownian motions B
and W such that we may replace P,(S; > 0,5 <n) by P(cgBs + 1> 04W,,s <n).

By Theorem 4.3.4, we couple the random walk (M,,n > 0) with a Brownian motion
W such that, writing A,, = supy<,, |[My — W], there exists A, C, D such that

Yz >0,Yn € N,P(A, > Dlogn + z) < Ce™*, (4.3.7)

Slightly abusing notation we use the same notation P for the probability space on which
the random walk (M,) is coupled with a Brownian motion such that Theorem holds.
Conditionally on the sequence (u,) and the coupled Brownian motion W, we introduce
independent random variables (X,,n > 1), where X, has law 1, and set S, = 377 Xj.

Conditionally on this construction, we consider the process (S, — M,,n € N), which
is a sum of independent centred random variables. By Theorem 4.3.5, we introduce® a
Brownian motion B (independent of W) such that, writing A, = supy<,, |Sx — My — By, |,
we have

E, [ecokgn] <1+AE, as. (4.3.8)

We introduce the event
B, = {An > (logn)z} U {Eij <n: ‘Zj —jai‘ > (logn)? +j2/3}

<n: . — > 2.
U{Elj_n ﬁg‘wﬁ] WJZ]H’_(logn)}

By (4.3.7), and the Borel-Cantelli lemma, lim,, ;o 15: = 1 a.s. Moreover, by (4.3.8), we
have N
logP, (A, > (logn)?)

lim inf — = +400. (4.3.9)
n—+o0 logn
Consequently
lim sup log sup P,(S; > —2z—j%j<n)

n—+oo 108N 2€[0,b]

. 15
< limsup —=
n—+oco 108N

log P, (Sj > by —§% G <n, A, < (logn)2) .

5. Up to enlarging once again the probability space.
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We adhere to the convention that j, k iterate over natural numbers and s,t over real
numbers. By the definition of B, we have
13;?1]?;1 (Sg > _bn _jaaj < n, An < (logn)Q)
<15 Py (Bs, +2(logn)? > ~by, — j* = W,a;,5 < n)

<1pP, (BZLSJ > —by, — j* — 3(logn)? — W,z

g5 8)

sSn).

Moreover, on B, ‘Zj —jaé‘ < (logn)? + 4%/3. Using the union bound and standard
Gaussian calculations, we observe that

-1
lim inf

n—+oo log n lOgPu (El] < n,3|t‘ < (10gn)2 +j2/3 . B'o’% _ Bjo‘éth > j2/5 + (10gn)2>

J

= +o0, (4.3.10)

which is enough to conclude that

lim sup log sup P,(S; > —z—j%j<n)
n—+oo 1087 2€[0,b,]

< limsup

n—+oo lOgn IOgPH (Bo%s 2 Wais - bn - 4(10gn)2 — (32/5 + SOC)’S S n)

applying Lemma 4.2.1.

The lower bound holds using similar arguments. We assume that for any n € N,
b, > 5(logn)?. In this case, for 0 < a < b and n > 1, we have

nf P, (Sn € [an'/?,6012] ,S; > —2 4 5, j < n)
> P, (Sn € {anl/Q,bnl/Q} S5 > —5(logn)? 4+ j%,j < n)
>P, (Sn € {anlﬂ,bnl/ﬂ ,(S; — Mj) > —M; — 5(logn)? + j%,j < n)

. 1P By, + Wy, € {anl/Q + 2(log n)?,bn'/? — 2(log n)ﬂ
= By, > ~Wa, — 3(logn) + 7%, j < n, A, < (logn)? |

Moreover, keeping (4.3.9) in mind, we notice that

p By, + Wy, € [anl/Q + 2(logn)?, bn'/2 — 2(log n)g]
"\ Bs, 2 —W,2; —3(logn)? + j*,j < n, A, < (logn)*

op [ BuotWoan € [an'/? + 2(logn)?, bn'/? — 2(logn)?|
S\ By = W 3(logn)? 40 <

-P, (An < (log n)Q) .
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By (4.3.10) and Lemma 4.2.2, we have

) 1
lim
n—+o0 logn

log iI;f(;PM (S’n € [an'/? bn1/?, S;>—z2+4+37%7 < n)

> lim
n—+oco logn

15¢ oo P Bcrén + Woz, € [anl/Q + 4(logn)?,bn'/? — 4(log n)z} ,
0
8w Baés2—WU%S—(logn)Q—i-sQ/‘r’—i-sa,sSn

— _ oA .
=7 (UQ) in probability. (4.3.11)

Finally, we choose € > 0 such that liminf,, lé’ﬁ > ¢. For all n > 1 large enough,
and 0 < a < b we have

. 172 p01/21 . ~ _ o
ZlélbntP’”(SnE[an S > —2 4 7]§n>

>P, (Sn € [anl/Z,bnl/Q],Sj > —clogn+j%j < n) .

(elogn)l/2

We set p = {e J, applying the Markov property at time p, for all 6 > 0 small

enough and n > 1 large enough, we have

P, (Sn c [anl/Q,bnl/ﬂ .S, > —clogn + j%,j < n)
> P, (S, =€ [p/2,2p"/%], 5 > —5(log p)?,j < p)
X By (Sp € [(a+0)n'2, (b= 0)n?] ;> ~(5logn)® + (j +p)*, 5 <n—p).

Applying (4.3.11) twice, we observe the log of the first probability is a.s. negligible with
respect to logn and

log P, (Sn > on'/?,8; > —elogn + j*,j < n)
lim inf

n—+00 z>by, logn

_ A j ili
> — (O'Q> in probability.
O

The upper bound of Theorem 4.3.1 can be strengthened to hold wih some level of
uniformity with respect to the environment. More precisely, for a given environment
(n,n € N) and k£ € N, we denote by ]P’z the law of the random walk with random
environment (p4;,j € N), shifted in time by k. Alternatively, one can see the law of
(S;,7 > 0) under law P* as the law of (Ski+; — Sk,j > 0) under law P. We prove in the
next lemma that the previous lemma holds uniformly in k& < e°(ogm)

Lemma 4.3.6. We assume that (4.3.1) and (4.3.2) hold. Let (b,), (t,) € RY be such that

limy, 1 o0 lﬁ)ggbg = limy, s 100 lﬁjggt; =0 and a € [0,1/2). We have
Pk (S; > —b, — j¢,j <
lim sup (8 2 =bn = j%j <) = —(B) in probability.
n—+00 p<y logn

Proof. Note the lower bound of this lemma is a direct consequence of Theorem 4.3.1. We
assume, without loss of generality, that lim, 4o t, = +00. Let k < t,, applying the
Markov property at time k, we have

Pr(S) > —by — % § < b)P,(S; > —logty,j < k)
<P (S 2 =bn —logtn — j% j <n+k).
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As a consequence, uniformly in k < t,,, we have

Sj 2 —bn —logty, — j%j <n)

Py (
w552 b =% TS0 S S e et < )

By Theorem 4.3.1, we have

log[P,u (S] > _bn _jaaj < ’I’L)

nEIJIrlOO Toen = —v(p) in probability,
as well as
logP(S; > —logt,,j <t
lim —& (5 2 ~10gtn,j < tn) = —v(B)in probability,
n—+0co log by,
which concludes the proof. O

This almost sure exponent for the random ballot theorem can be used to obtain another
exponent of interest, which correspond to the probability of observation of an excursion
of length n. For a classical centred random walk with finite variance, we have

P(S, <1,5; > 0,5 < 1) ®nspoo n” 2

It can be explained as follows. An excursion of length n can be divided into three parts.
The one between 0 and n/3 is a random walk required to stay positive, which happens
with probability n~'/2. Similarly, the end part between 2n/3 and n seen backward is a
random walk required to stay negative, which again happens with probability n~1/2 factor.
Finally, the part between n/3 and 2n/3 joins these segments, which by the local CLT costs
another n~1/2.
Using similar arguments on the random walk in random environment suggests that
writing
Ni=2y (%) 4+ % (4.3.12)
we have P, (S, < 1,5; > 0,7 <n) ~ n~*. However, working with the random walk seen
from backward leads to additional difficulties. As already observed in Lemma 4.2.5, the
convergence for a backward random walk holds only in probability and cannot be improved

to an a.s. result.

Lemma 4.3.7. We assume that (4.3.1) and (4.3.2) hold. Let (t,) € RY be such that

limy, 400 lﬁ)ggt;; =0. For any € > 0, we have

logP* (Sy_pp < 2,8 >y, j<n—k—Fk
lim P( sup sup g“(nkk_ i=YJ= )

n—+oo  \ _p <y<w<0kk/<tn logn

25—)\) =0.

Proof. Without loss of generality, we assume that lim, 4 hfﬁ = +00. Let n € N, we
set p = [n/3]. We choose —t, <z <y <0andk <t,, ¥ <t, Applying the Markov
property at time p — k — k’, we have

P (Spoi > 2,8 <y, j <n)

S]P’ﬁ(SjStn,jSp—k)su}gPﬁ(Sn,p,k/—i—zZ:U,Sj—l—zSy,jSn—p—k').
S
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We introduce, for 7 < n—p—k’ the time-reversed random walk §J(k ) — Sp—p—k! —Sn—p—k/—j-

Note that for all fixed n, ((§§k/),j < n—p—£k'), k" <t,)has the same law as ((Sk4+;—Sk,J <
n—p—=k),k <t,). We apply the Markov property at time p — k’ to obtain

PP (Sp—p-t +2>2,5+2<y,j<n-—Dp)

m
<P (@”” > ~tn,j <p— k’) 2‘;§Pﬁ (Sn-2p € [h,h+y —a]).

We conclude that

sup sup PR (S,_pow <2, >y, <n—k—Fk)
—tn<y<z<0k,k'<tn
< sup Pf (S) > —tn,j <p—tn) sup P (S <t <p—tn)
k<tn k'<tpn

x sup P (Sy—2p € [h, h + 1)) .
heR

By Theorem 4.3.1, we have

log supy.<;, Ph(Sj < tn,j < p)

. o4 .
nkr—ir-loo logn = —7 (UQ) in probability.
Moreover, as S has the same law as S thus
~ k/ .
i log SuPgr<t,, P‘Z (Sj( ) Stp, ) Sp— tn) oa) babili
n_l}gr_loo log = —v <£) in probability.

Finally, applying again Theorem 4.3.5, by (4.3.2) we have

. log supj,cgr Pﬁ (Sn—2p € [h, h + tn]) 1
lim sup =—— a.s.
n—+00 log n 2

Combining the last three estimates concludes the proof. O

We now derive a lower bound, using a similar reasoning.

Lemma 4.3.8. We assume that (4.3.1) and (4.3.2) hold. Let (ay), (b,) € RY be such that

an < by, liminf, ., kﬁ‘ﬁ > 0 and limy, 1 iggb;; =0 and a € [0,1/2). For k < n, we

write ryp 1, = min(k,n — k)*. For all € > 0, we have

< . > L5 <
lim P 1OgP(S”—m’SJ—y+Tn,J»J_”)

1 < —e— Al =0.
n——+o0 —bp<y<z—an<—2an log n

Proof. Let n € N, we set p = |n/3]| and §j = Sp—p — Sn—p—j. Applying the Markov
property at times p and n — p, for all —b, <y < x —a, < —2a, and o > 0, we have
]P),u (Sn < J},Sj > y+rn7j7j < TL)
> P, (Sp € {in/zﬂgnl/ﬂ [ 85> —an + j%,j < p)
x PP, (8, € [~20n"/2, —on'"?] ,§; < an — j,j < p)

X f Pp S_ c , ,S>— 1/27.< _2 '
zE[O,l;lin/Q} “<”2p (2,2 4+ an], S5 2 —on' /%, j < m p)
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Using Theorem 4.3.1, we have

logP, (Sp € [Qn1/2,2gn1/2} ,S; > —an+75%j < p) = —x (g—g) a.s.

lim
n—+oco logn

as well as
1 ~ ~
: g _ /2 _ ,1/2 < e — _~foa
ngrfoo logn log P}, (Sp € { 20n%, —on } S <a,—j% 5 < p) v (m) a.s.

Finally, using the Sakhanenko coupling of the random walk in random environment, we
have

1
. 1/2 -
o ogn 08P (Sn-2p € [2:2 + ). S = —en',j < n—2p) = —,
which concludes the proof. O

Combining Lemma 4.3.8 and Lemma 4.3.7, for a random walk in random environment
that satisfies (4.3.1) and (4.3.2), we have

ngr-lr-loo og loglP, (S, <0,5; > —dlogn,j <n)=—X in probability. (4.3.13)

4.4 Maximal displacement for the branching random walk
in random environment

We use the random walk estimates presented in Section 4.3 to obtain bounds on the
maximal displacement for the branching random walk in random environment. As often,
the proof to compute the asymptotic behaviour of M, the maximal displacement at time
n, is based on the computation of the asymptotic behaviour of P (M, > y) as n,y — +o0.
To obtain an upper bound, we exhibit a border the random walk does not cross with high
probability; to obtain a lower bound, we compute first two moments of the number of
individuals who stayed below this border at any time before n, and are at time n above a
given level.

4.4.1 The many-to-one lemma

We introduce the celebrated many-to-one lemma, which expresses expectation of ad-
ditive functionals of branching random walks by functionals of random walks. It has been
essential in various studies of extremal behaviour of branching random walks. It can be
traced down to the early works of Peyriere [Pey74] and Kahane and Peyriere [KP76].
Many variations and modifications of this concept have been introduced, see e.g. [BK04].
In this article, we use a time-inhomogeneous version of this lemma, that can be found in
Chapter 1. For all n > 1, we write L, for a point process with law L,, and we define the
probability measure u,, by

(e = Be | 3 e
el

Let (X,,n € N) be a sequence of independent random variables, where X,, has law .
We set S, = 37 Xj. From now on, the law P, stand for the joint law of the BRWre
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(T, V) and the random walk in random environment S, conditionally on the environment
L.

The many-to-one lemma is expressed as follows: for any n € N and any measurable
bounded function f, we have

Eg [ Z f(V(ur),....V(un))| =E¢ {679*57#22:1 50 (S, Sn)} a.s. (4.4.1)

lul=n

It is useful to consider a shifted version of (4.4.1). For k& € N we consider the environ-
ment (Ljx,j € N). The definitions of branching random walks and random walks above
are still valid, we denote the corresponding probability function by IP”Z. In this scenario
(4.4.1) writes as

k+n

EF { Z F(V(uy),...,V(u,))| = EE |:60*Sn+zj=k+1 ”1(9*)f(51, .Sp) | as. (4.4.2)

lul=n

For n € N, we introduce
n
Kn =) £;(0*) and T, =6"S, — K. (4.4.3)
j=1

By (4.1.7), we have E(T},) = 0. Moreover, by (4.1.8), we have
0f = E[BE(T) - Ex(Th)?| and o} = B [Ex(Th)?],

and by (4.1.10), the random walk in random environment (7},) satisfies (4.3.2). As a
consequence, Theorem 4.3.1 and similar results apply to (7},).

4.4.2 Proof of the upper bound of Theorem 4.1.1

In this section, we bound the probability that M, > G%Kn — plogn. To do so, we
observe that with high probability, no individual of the branching random walk crosses
the border n — %Kn + logn for large n > 0.

Lemma 4.4.1. We assume that for alln € N, k,(6%) < +00 a.s. For all y > 0, we have

P, (Elu eT:V(u) > GL*KM + y) < e 0.

Proof. Let y > 0, we denote by

Z(y) = UEZT 1{‘/(”)2%@}1{V(Uj)<%+y7j<\ul},

the number of individuals that cross the line n Igf + y for the first time. Using the
Markov inequality, we have

P, (Elu eT:V(u) > IZ;L' + y> =P, (Z(y) > 0) <Ez[Z(y)].
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By (4.4.1) and (4.4.3), we have

+oo
Ec(Z() =D Br | Y Lovu)—Kn200y} 1{0°V (u))—K; <0%y.j<n}

n=1 |ul=n
+oo

_ —0*Sp+Kn

=) E [6 1{9*Sn—Kn29*y}1{0*Sj—Kj<9*y,j<n}}
n=1

“+o00
<> e VP (T, > 0%y, Tj < 07y, 5 < n)
n=1

<e VP, (GneN:T, >0%y) < e 0y,
O

We then partition the set of individuals that are higher that [0{*" — Blogn into two
subsets: the set of individuals that crossed n — [9(*” + y, and the set of individuals that
made an excursion of length n below this curve. This leads to the following lemma, that
proves the upper bound of Theorem 4.1.1.

Lemma 4.4.2. We assume that (4.1.7), (4.1.8) and (4.1.10) hold. For any < ¢, we
have

P, (Mn > Igf — Blog n) — 0 in probability.
Proof. Let n € N. We start noticing that by Lemma 4.4.1, we have
KM ;log TL) < nl

For 8 > 0, we set Yy,(8) = X juj=n 1{0+V(u)— Kn>—B0* log n} 1 {0V (u;)— K, <logn,j<n}- YWe Ob-
serve that

Pr (EIuGT:V(u) >

K
P. <Mn > e—f —,Blogn>
K, +logn

<P, <3uET:V(u)Z e

) L P(Ya(B) > 0)

<n '+ EL (Va(B). (4.4.4)
We apply (4.4.1), we have

Er (Ya(B)) = Ec {6_9*5”+K"1{0*SH—K,,,2—59* logn}l{Q*Sj—Kjglogn,an}}
<P Pp (T, > —pB0* logn,T; <logn,j <n).
Applying Lemma 4.3.7, we obtain
log Py (T, > —56*logn,T; <logn,j < n) 1

. _ - oA _ * . .1
ngl}rloo log n =3 2y (UQ) = 0% in probability.

Thus, for any € > 0, we have

lim P [IP’[; (Tn, > —B0*logn, T < logn,j <n) > n*f’*ws] —0,

n—-+4o0o

therefore
lim P (B [V,(8)] > o (=9+¢] =0,

n——+0o00
As B < ¢, choosing £ > 0 small enough we obtain that E. [Y,,(5)] converge to 0 in proba-
bility. By (4.4.4), we conclude that P(M,, > K, — Slogn) converges to 0 in probability,
which ends the proof. O
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4.4.3 Proof of the lower bound of Theorem 4.1.1

We now prove that with high probability, M,, > [9(* — cplogn To do so, we bound
from below the probability there exists an individual above 9" — plogn at time n, that

stayed at any time k < n away from the boundary k +— 9* .

Lemma 4.4.3. We assume that (4.1.9), (4.1.7), (4.1.8) and (4.1.10) hold. For anye > 0,

we have K
lim P [IPL; <Mn > e—f — gologn) < n_e} =0.

n—-4o00

Proof. Let n € Nand 6 > 0. For k < n we set

B k'/3 — 25 logn if k<n/2
ok (n — k)3 — (26 — ¢)logn otherwise.

We introduce

Z 1{ — o +tplogn€[0510g"]} 1{V(Uj)§%*’"w}.

lul=

Our aim is to to bound from below Pz (X, (d) > 1). To this end we utilize the second
moment method.
We first bound from below E;(X,,(0)). Applying the many-to-one lemma, we have

Eg (Xn(é)) =E [e_Tn1{Tn+9*<plogn€[0,9*6logn]}l{Tjg—G*rn,J-,jgn}}
> n?"¢=0P . (T, + 0*plogn € [0,56* logn] T < =0, <n).
Applying Lemma 4.3.8, for any € > 0, we have

lim P (B (X,(0) <n~?07¢) =0, (4.4.5)

n—-+0o0o

We then bound from above E [X,,(§)?]. We note that X,,(0)? is the number of pairs of

1

k < n at distance at least Tn, k from & g+ For u ,u? 6 T we set u! A u? the most recent
common ancestor of u! and u?. We then partition X,,(§)? according to the generation of
the most recent common ancestor. We write

- Z Z Z 1{V(ui)—%-ﬂologne[O,élogn}, V(u )<—J—Tn,j,i6{1,2}}.

k‘:O‘u|:k |u1‘:|u2|:n 0*

ulAul=u
Notice that

2.2 1{vww—

[ul=n |ul |=|u?|=n
ul Aul=u

= X,().

Igf +plognel0,6logn],V (u )<6—J—7’n,j,i€{172}}

By similar calculations as the ones leading to (4.4.5), we use the many-to-one lemma and
Lemma 4.3.7 to prove that for any € > 0,

lim P[E-(X,(5)) >nf]=0.

n—-+o0o
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Let k < n, we set

N=Y Y

lu|=F |ut|=|u?|=n
utAu?=u

1 , . .
{Vi(u)—%wlog nel0,8log n],V(u;)gg—rn,j,ie{m}}

We denote by F, = o(u, V(u), |u| < k). Applying the Markov property at time k + 1, we
have

Er [Ak|fk+1] < Z 1 K . Z fk—l-l(v(ul))fk—l-l(v(uQ))’
ul =k {V(“j)gfg_r"’j’]gk} jut|=|u?|=k+1
ulAu?=u

where we set, for k <n and z € R,

fer1(z) =

Ek+l Z 1 X
£ =k {V(“)+m*19(33+8010gn€[07510gn}7v(uj)+1§ k;£+1—rn,k+j+1,jgn—k—1}

Note that if z > Kg;“ — Tnk+1, then fryq(x) = 0.
We set b, = (logn)%, and consider k > b, in a first time. Applying (4.4.2), we obtain
the following upper bound for fii1, for k+1 > by,:

fer1()
<1
{

efe*snfkflfzjzk_ﬂ Kj (9*) 1

k+1
EL

Kkt {Sn—k—1ta— G2 +o0* 1ogne[0,5logn]}}

k1
< —5= —Tn,k+1}

n@*cpeé*z—Kk+1

Sl{xﬁ Kji1

K3 7”1n,k+1}
As a consequence, we have
Er [Ax] < n2 R, Z 07V (ur)—Kr)q K _ Z o0 () =2k 41(0)
ul=k {V(“j)*T*_T"J’Lk} 00 €Lk

where L1 is a point process with law L1, independent from (T, V). We set

2
P, = max E. ( > (1 + 66*€_Hk+1(9)>)

leLy 41

By (4.1.9), this is the maximum of n i.i.d. random variables with finite mean, therefore,
for all n > 0, there exists > 0 such that

sup P (®,, > nz) <. (4.4.6)
neN

Applying (4.4.1), we have
Eg [Af] < @n*" YE, [eTkl{T]s-em,j,jgk}} :

Note that if & < n — by, then r,; > (logn)? — 26logn. Therefore for any n > 1 large
enough

sup  Bp [Ag] < Bpe 0" (oem)?/2, (4.4.7)
k€ [bn,n—bn]
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If £ > n — by, we still have 7, > (¢ — 20) logn. We set

2
(I)%nd: max Eg (Z (1+ee*e—fek+1(0)))

k€n—bp,n| ELnn

Dividing the expectation between the event {1} > —b,} and {T} < —b,}, for any n > 1
large enough we have

Ec [Ag] < 0" CH2)PL [Ty > —b,, T < —0%ry 4, j < k] + dde0"(logm)*/2

We introduce
P = sup P [T} > —by, Tj < —0%rp,5 < K].
k>n—by
By Lemma 4.3.7, for any € > 0, we have
lim P [P,f“d > n*9*¢+€] =0,
n—-4o0o
yielding
Er [Ak’] < (I)%nd [nﬂ*(go—l—Q(S)Psnd + e—@*(logn)2/2} ) (448)

In a second time, we bound Ez[Ax] for k < b,. By (4.4.2), as 1, ; > 0 logn, we have

fora(e) Sl [0S g
{ 0*(Sp—k—1+2)—Kn—0*¢lognel0,0 logn| }

0*(Sj+z)<K;j+dlogn,j<n—k—1

<n el Kt o PIZ [ 0*(Sp_k_1+ ) — K, —0*plogn € [0, logn] ] .

0*(Sj+2) <Kj+dlogn,j <n—Fk—1

We set
2

start _ 0*l—kKr41(0)

o gg})};Eg ( Z (1+e ))
- @GLk+1
0 (Sp—k—1+ ) — K, — 0*plogn € [0, logn]

Pstart —_ Pk n n - ) ) ’

n heb bor s p, L | 0°(Sj+2) < Kj+dlogn,j <n—k—1

and we recall that by Lemma 4.3.7, for all € > 0, we have

lim P[Pyt > n0e ] < 0.

n——+o0o

For all £+ 1 < b,,, we have

0*p 0*r—K start
frrr(z) <n” e . (Pn LioraKi1>—bn} T 1{9*:67Kk+1g—bn}) :

Consequently, applying (4.4.1), we have

2
Er [Ak] < QPStarthé)*tpEﬁ |:6Tk 1{Tk§29*510gn}} E. ( Z ee*e—mkﬂ(é)*))
ZGLkJrl

+2n* et E, [#Liﬂ} :
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We conclude that, for all n > 1 large enough,
Er [Ak] < (I,itart [2P2tartn20*(go+5) + e—9*(logn)2] ] (4_4'9)
We conclude that for all n > 1 large enough, by (4.4.7), (4.4.8) and (4.4.9), we have
B [ Xn(0)2] < Be [Xa(6)] + 26, @5 (n2?(#10) pitart 4. =07 (ogn)*)
+ nq)ne—H*(logn)Q/Q + bn(pznd (nO*(go+26)Psnd + e—@*(logn)2/2) )
By (4.4.6), for any n > 0, there exists > 0 such that for any n € N,
P (B > ab,| + P [0 > ab,| + P [®,, > 2n] <.
We conclude that for any 7 > 0 and € > 0, we have

lim sup P (Eg [Xn(é)Q] > nQG*‘HE) <n.

n——+oo

Letting n — 0, we have

lim P (Be [X.(0)2] > n?"04) = 0. (4.4.10)

n—+oo -

By the Cauchy-Schwarz inequality, for any § > 0 we have

K,
P (M, 2 32— plogn) = Pe (X,(9) 2 1) =

6

Applying (4.4.5) and (4.4.10), we have

lim P (g [X,(6)?] > 0?04 or Bz [X,(5)] < n7?77¢) =0,

n—-+4o0o
We obtain "
, Kn —4976-3¢ ) _
ngr_EOOP (PE (Mn > o @ log n) <n ) 0,
choosing ¢, > 0 small enough, we conclude the proof. ]

Proof of Theorem 4.1.1. Lemmas 4.4.2 and 4.4.3 can be used to prove Theorem 4.1.1. By
Lemma 4.4.2 for § < ¢, Pp (Mn > % — Blog n) converges to 0 in probability.
We are now left to prove that if 5 > ¢, then

K,
lim P, (Mn >—" — Blog n) =1 in probability.

n—+4oo 0*

To do so, we use, for the first time in this chapter, the assumptions (4.1.2) and (4.1.3).
We obtain there exists ¢ > 1 such that P,-a.s.

lim inf #{|u| = n}'/" > .

n—-+4o0o

Let n € N and k£ < n, we use the Markov property at time k: with high probability,

there are at least o individuals, each of which being below Igf +y with high probability by
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Lemma 4.4.1, that start an independent branching random walk in random environment
with law ]P’Z. Therefore,

Pg (M < 10(7 — ﬁlogn> < EE ( H (Pn,k(v(u))) )

lu|l=Fk

where ¢, (z) = Pk (M _ — Blogn — I) Note this function is increasing, thus,

forally >0
P, <M < IH{— —ﬂlogn)
<P, (u| =k:0*V(v) — K < y) +E5(H on k(52 ))
|u|=F
<e Y+ Ep (IP”Z (Mn e < % — Blogn + y))#ﬂu':k}] .

Let € > 0, we set k£ = clogn and obtain

K,
P, (M <3t —Blogn)

elogo
K, — K "
(IP’[:( nk<9*k—610gn+y>) ]

<e™V 4+ Pr [#{lul = k} < o] + B

For any n > 1 large enough, we have

ne log o

K, - K
(IP”Z (Mnk < Tk _ 510gn+y)>
nelogg

(% (s < B g )Y

(n— k)), we have

and as IP’]Z (Mn,k > K"(;*K’“ — plog(n — k;)) (i)]P’L (M _

né log o

K,— K
b Blogn + y>) = ( in probability.

9*

n—-4o00

lim <1 — Pk (Mn_k >
By dominated convergence, we conclude that

Ky
limsup P {PI; <Mn < —— —fBlog n) > e—y] =0.

n—+400 9

This estimate holding for every y > 0, we conclude that

K
lim P, (Mn < —f — Blog n) =0 in probability,

n—-+oo 9

which ends the proof of Theorem 4.1.1.
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CHAPTER 5

The branching random walk
with increasing selection

“One general law, leading to the advancement of all organic
beings, namely, multiply, vary, let the strongest live and the
weakest die.”

Charles Darwin — The Origin of Species

Abstract

We consider in this chapter a branching-selection particle system on the real line. In
this model the total size of the population at time n is limited by exp (an1/3). At each
step n, every individual dies while reproducing independently, making children around
their current position according to i.i.d. point processes. Only the exp (a(n + 1)1/3)
rightmost children survive to form the (n -+ 1)'" generation. This process can be seen
as a generalisation of the branching random walk with selection of the N rightmost
individuals, introduced by Brunet and Derrida in [BD97]. We obtain the asymptotic
behaviour of position of the extremal particles alive at time n by coupling this process
with a branching random walk with a killing boundary.

NoTA: This chapter is a slight modification of the article Branching random walk with
selection at critical rate, available on arXiv:1502.07390.

5.1 Introduction

Let £ be the law of a point process on R. A branching random walk on R with
reproduction law L is a particle process defined as follows: it starts at time 0 with a
unique individual () positioned at 0. At time 1, this individual dies giving birth to children
which are positioned according to a point process of law £. Then at each time k € N, each
individual in the process dies, giving birth to children which are positioned according to
i.i.d. point processes of law L, shifted by the position of their parent. We denote by T the
genealogical tree of the process, encoded with the Ulam-Harris notation. Note that T is a
Galton-Watson tree. For a given individual u € T, we write V(u) € R for the position of
u, and |u| € Z4 for the generation of u. If u is not the initial individual, we denote by mu
the parent of u. The marked Galton-Watson tree (T, V') is the branching random walk on
R with reproduction law L.
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Let L be a point process with law £. In this chapter again, we assume the Galton-
Watson tree T never get extinct and is supercritical, i.e.

P(#L=0)=0 and E[#L]> 1. (5.1.1)

We also assume the branching random walk (—V,T) to be in the so-called boundary case,
with the terminology of [BK04]:

261 =1, E

E < fo0. (5.1.2)

ZEQeé

leL lel lel

Zﬂeé] =0 and o2:=E

Under mild assumptions, discussed in [Jafl12, Appendix A], there exists an affine transfor-
mation mapping a branching random walk into a branching random walk in the boundary
case. We impose that

2
E Zee log (Z eé/e) < +o0. (5.1.3)

el Vel

Under slightly stronger integrability conditions, Aidékon [Aid13] proved that

3
mi}é V(u) + 3 log nn_?OOW,
where W is a random shift of a negative Gumble distribution.

In [BD97], Brunet and Derrida described a discrete-time particle system® on Z in
which the total size of the population remains constant equal to N. At each time k,
individuals alive reproduce in the same way as in a branching random walk, but only the
N rightmost individuals are kept alive to form the (k + 1)'" generation. This process is
called the N-branching random walk. They conjectured that the cloud of particles in the
process moves at some deterministic speed vy, satisfying

B 20 ( (6 +0(1))loglog N
2(log N)? log N

UN = ) as N — +oo.

Bérard and Gouéré [BG10] proved that in a N-branching random walk satisfying some
stronger integrability conditions, the cloud of particles moves at linear speed vy on R, i.e.

writing m2, MY respectively the minimal and maximal position at time n, we have
N N 22
. . m . o
lim —% = lim —% =oy as. and lim (log N)?vy = — )
n—+oo N n—+oo N N—+o00 2

partially proving the Brunet-Derrida conjecture.

We introduce a similar model of branching-selection process. We set ¢ : N — N|
and we consider a process with selection of the ¢(n) rightmost individuals at generation
n. More precisely we define T¥ as a non-empty subtree of T, such that ) € T¥ and
the generation k € N is composed of the ¢(k) children of {u € T? : |u| = k — 1} with
largest positions, with ties broken uniformly at random 2. The marked tree (T¥, V) is the
branching random walk with selection of the ¢(n) rightmost individuals at time n. We
write

mf = uETIB,i\%:n V(u) and MP = ue’lgéﬁf\:nv(u)' (5.1.4)

The main result of the chapter is the following.

1. Extended in [BDMMO7] to a particle system on R.
2. Or in any other predictable fashion.
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Theorem 5.1.1. Let a > 0, we set p(n) = {exp (anl/g’)J. Under assumptions (5.1.1),
(5.1.2) and (5.1.3) we have

3mlo?
M? ~onyioo —Wnl/?) a.s. (5.1.5)
3 2 2
me ~ — (;Tagnl/?’ + a) n'3  as. (5.1.6)

We prove Theorem 5.1.1 using a coupling between the branching random walk with
selection and a branching random walk with a killing boundary, introduced in [BG10].
We also provide in this chapter the asymptotic behaviour of the extremal positions in
a branching random walk with a killing boundary; and the asymptotic behaviour of the
extremal positions in a branching random walk with selection of the {ehk/nnl/gJ at time
k < n, where h is a positive continuous function.

We consider in this chapter populations with e9"* individuals on the interval of time
[0,n]. This rate of growth is in some sense critical. More precisely in [BDMMO07], the
branching random walk with selection of the N rightmost individuals is conjectured to
typically behave at the time scale (log N)3. This observation has been confirmed by the
results of [BG10, BBS13, Mail3]. Using methods similar to the ones developed here, or in
[BG10], one can prove that the maximal displacement in a branching random walk with

selection of the e rightmost individuals behaves as —“27"2(12711_20‘ for « < 1/2. If

2(1—2a
a > 1/2, it is expected that the behaviour of the maximal (displz;mcement in the branching
random walk with selection is similar to the one of the classical branching random walk,
of order logn.

We recall that ¢, C' stand for positive constants, respectively small enough and large
enough, which may change from line to line and depend only on the law of the processes
we consider. Moreover, the set {|u| = n} represents the set of individuals alive at the n'"
generation in a generic branching random walk (T, V') with reproduction law L.

The rest of the chapter is organised as follows. In Section 5.2, we introduce the spinal
decomposition of the branching random walk, the Mogul’skii small deviation estimate and
lower bounds on the total size of the population in a Galton-Watson process. Using these
results, we study in Section 5.3 the behaviour of a branching random walk with a killing
boundary. Section 5.4 is devoted to the study of branching random walks with selection,
that we use to prove Theorem 5.1.1.

5.2 Some useful lemmas

5.2.1 The spinal decomposition of the branching random walk

For any a € R, we write P, for the probability distribution of (T, V +a) the branching
random walk with initial individual positioned at a, and E, for the corresponding expecta-
tion. To shorten notation, we set P = Py and E = Ej. We write F,, = o(u, V(u), |u| < n)
for the natural filtration on the set of marked trees. Let Wy = 31, —, eV By (5.1.2),
we observe that (W),,) is a non-negative martingale with respect to the filtration (F,,). We
define a new probability measure P, on F,, such that for all n € N,

dP,,
dP, 7

= e W, (5.2.1)
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We write E, for the corresponding expectation and P = Py, E = Ey. The so-called
spinal decomposition, introduced in branching processes by Lyons, Pemantle and Peres
in [LPP95], and extended to branching random walks by Lyons in [Lyo97| gives an alter-
native construction of the measure P, by introducing a special individual with modified
reproduction law.

Let L be a point process with law E, we introduce the law £ defined by

=Y e (5.2.2)

lelL

We describe a probability measure P, on the set of marked trees with spine (T, V,w),
where (T, V) is a marked tree, and w = (wy,,n € N) is a sequence of individuals such that
for any n € N, w,, € T, |w,| = n and 7w, = w,—1. The ray w is called the spine of the
branching random walk.

Under law Py, the process starts at time 0 with a unique individual wy = ) located at
position a. It generates its children according to a point process of law L. Individual w;
is chosen at random among the children u of wy with probability proportional to eV (W,
At each time n € N, every individual u in the n*® generation die, giving independently
birth to children according to the measure L if u # w, and L if u = wy,. Finally, wy4+1 is

chosen at random among the children v of w,, with probability proportional to e¥(®).

Proposition 5.2.1 (Spinal decomposition). Under assumption (5.1.2), for all n € N, we
have

~

P, =P,

Fn
Moreover, for all w € T such that |u| =n,

Fn

eV(u)
W, ’

and (V(wy),n > 0) is a centred random walk starting from a with variance o

13a (wn, =u| Fp) =
2

This proposition in particular implies the following result, often called in the literature
the many-to-one lemma, which has been introduced for the first time by Kahane and
Peyriére in [KP76, Pey74], and links additive moments of the branching random walks
with random walk estimates.

Lemma 5.2.2 (Many-to-one lemma). There exists a centred random walk (Sy,n > 0),
starting from a under P,, with variance o such that for any n > 1 and any measurable
non-negative function g, we have

> 9(V(ur), -V (un))

lul=n

=B, [e"g(S1, - 5)]- (5.2.3)

Proof. We use Proposition 5.2.1 to compute

Bo | 3 oV, Vi) | =Fa |15 3 o(Viwn), - Viwn)
ful=n L fel=n
=E, [e Z Lumwnye” gV (ur), -V (un)
_ B, [ <w"> g(V(wr), -,V (wn)] .
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Therefore we define the random walk S under P, as a process with the same law as
(V(wp),n > 0) under P,, which ends the proof. Note that for any continuous bounded
function,

Eo(f(S51—0a)) =E

Z&Wi.

Lel

O

Using the many-to-one lemma, to compute the number of individuals in a branching
random walk who stay in a well-chosen path, we only need to understand the probability
for a random walk to stay in this path. This is what is done in the next section.

5.2.2 Small deviation estimate and variations

The following theorem gives asymptotic bounds for the probability for a random walk
to have small deviations, i.e., to stay until time n within distance significantly smaller than
v/n from the origin. Let (S,,n > 0) be a centred random walk on R with finite variance
o2, We assume that for any z € R, P,(Sy = ) = 1 and we set P = P.

Theorem 5.2.3 (Mogul’skii estimate [Mog74]). Let f < g be continuous functions on
[0,1] such that fo <0 < go and (an) a sequence of positive numbers such that

2
. . a
lim a, =400 and lim -2 =0.
n—-+oo n—-+oo n
For any fi <z <y < g1, we have
2 7.‘.20.2 1 ds

(5.2.4)

n—+oo N n

a S. S
lim —ZlogP | == € [x,y], =L € |fi/n: i ;<4:— .
g [ y] an {f]/n g]/n} J > 2 0 (gs_fs)2
In the rest of this chapter, we use some modifications of the Mogul’skii theorem,
choosing a, = n'/3. We start with a straightforward corollary: the Mogul’skii theorem
holds uniformly with respect to the starting point.

Corollary 5.2.4. Let f < g be continuous functions on [0,1] such that fo < go and (ay)
a sequence of positive numbers such that

. . a
lim a, =400 and lim &
n—-+oo n—+oo n

2
T =0.

For any f1 <z <y < g1, we have

a2

N n
lim —“logsupP.,, |—
n—+oo n zeR an,

S, .
S [may]aé € [fj/nvgj/n:| yJ<n

Proof. We observe that

Sn S; .
?elgpzan |:an S [x,y], é € {fj/mgj/n} J < n:|

2 Pa fotgo

no2

Sn S .
[ € [‘T’y]aaij € [fj/nmgj/n} ] < Tl:| :

n
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Therefore, applying Theorem 5.2.3, we have

2

.. .a S, S ) m2g2 [l ds
ggli{gglogiggman Ln € [z, 9], w € {fj/n)gj/n} J < n] > - /0 TREAL

We choose § > 0, and set M = [@] We observe that

Pzan |:

n

€ [z,y] % € [fj/n7gj/n:| J < n] =0,

st/
)

an
thus

Sn S; .
ilel]ngan |:an € [:E?y]a i € {f]/n)g]/n} J < ’I’L:|

2 e [Fymegym] o < 1]

’
n an

S
= max sup P.a, {n € [z,y]
0SkSM =1 e[ fo+kd, fot+(k+1)0) a

< max P
= 0<k<i—1 an (f0+k6)

S, S;
Sn P AP Y | }
an E[$7y+ ]vane[fj/n7g]/n+ }aj_n

As a consequence, we have

a? S, S w202 [l ds
lim sup -2 log sup P {"E 2, Y], =L € | fi/ns Gi ,'<n]<— / .
n—>+o<1>) n gzeg “an n [ y] an [fj/n g]/n:| I = - 2 0 (gs - fS + 5)2
Letting § — 0 ends the proof. O

We present a more involved result on enriched random walks, a useful toy-model to
study the spine of the branching random walk. The following lemma is proved by mocking
the original proof of Mogul’skii.

Lemma 5.2.5 (Mogul’skil estimate for spine). Let ((X;,&;),7 € N) be an i.i.d. sequence
of random wvariables taking values in R x Ry, such that

E(X;) =0 and 0% := E(X}) < 4o0.
We write Sp, = 3771 X;j and Ey, = {&; <n,j <n}. Let (a,) € RY be such that

2
. . Ay : 2
ngrfoo ap = +00, ngrfoo - 0 and REIEOO a, P& >n)=0
Let f < g be two continuous functions. For all fo <x <y <go and f1 <z’ <y < g1, we

have

lim ﬁ inf logP (S” € la y’]i c [f g; } ji<nE >
n—+00 N 2€[z,y| =\ ap " lay, jfmo9j/n| s =T En
n2o? [l ds

2 0 (gs_fs)T

Proof. For any z € [x,y], we have

Sn ;7 S] . S_] .
Pzan (an € [SE vy]a a € [fj/n’gj/n} J < TZ,En) < iggph(zn (an € [fj/nagj/n} 7 < n> .
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So the upper bound in this lemma is a direct consequence of Corollary 5.2.4. We now
consider the lower bound.

We suppose in a first time that f and g are two constants. Let n > 1, f<ax <y <g
and f < 2’ <y < g, we bound from below the quantity

PEY (f.g) = m‘m%(*euzAS [ﬁ]jSmaQ.
2€[z,y] (079} an

Setting A € N and r, = |AdZ]|, we divide [0,n] into K = {%J intervals of length 7.
For k < K, we write my = kr,, and mgy1 = n. By restriction to the set of trajectories
verifying S,,, € [¥'an,y ay], and applying the Markov property at time mg, ... m, and
restricting to trajectories which are at any time my in [2'a,,y'a,], we have

PIY (f.9) 2 72 (o) (w2) " (5.2.6)
writing

. Sr,, Sj
Ty ,y (f g) inf Pzan (a € [w Z/] a [f g] J < TnaErn> .

ze[ﬂc,y} n n
Let § > 0 chosen small enough such that M = [ 5 -‘ > 3 we observe easily that

! 3 z 7yl
Ty Zl/y (f’ g) 2 0<r7r7111£1M 7ra:+m6,x+(m+1)6(f’ g)

. z'—(m—=1)8,y—(m+1)d ¢ . N
> min 2 (f—(m-Dbg—(m+1)3).  (527)

Moreover, we have
S, S
MY (.9) = Poa, (22 € 69, 2 € (1,9, B, )
an an
25

> Pua, (ST" e, y], 5 € [f, g]) —roP(&1 > n).

n n

Using the Donsker theorem [Don51], (527:”,75 e [o, 1]) converges, under law P, , as n

grows to infinity to a Brownian motion with variance ov/A starting from z. In particular

lim inf 77 ’y (f,9) > Pu(Bas2 € (2/,9), Bu € (f,9),u < Ad?).

n—-+00

Using (5.2.7), we have

2y > — < Ac?
%gl_il_ggﬂ% (f,9) 0<m1nMPz+m5(BA02 € (@ +6,y —0),Bu€(f+5,9g—0),u< Ac?).

As a consequence, recalling that K ~ 475, (5.2.6) leads to

a2
lim inf — log Px v (f,9) >

n—+4+oo n

1
1 0<m1n 1og Pyims(Bas2 € (&' + 6,4 —0),By € (f+06,9—0),u< Ac?). (5.2.8)

According to Karatzas and Shreve [KS91], probability P, (B; € (¢/,v), Bs € (f,9),s < t)
is exactly computable, and

7.‘.2

]‘ /o0
- <t)=——— .
Jm 5108, P(Be € (¢,9)), B € (f19), 8 <) = —5 0~
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Letting A — +oco then 6 — 0, (5.2.8) becomes

2 2 2
a,, ’oo oo
lim inf 2 log P ¥ P —
iminf 2 Mg Pog” (f9) 2 =50 —
We now take care of the general case. Let f < g be two continuous functions such that
fo <0< go. We write hy = —ft;rgt. Let € > 0 be such that

(5.2.9)

12e < mf gt ft
telo,1

and A € N such that

sup | fe — fsl 4 gt — gs| + |t — hs| < €.
[t—s|<2

For any a < A, we write m, = |an/A],
1, A= [fa/A + ¢, ga/A - 5] and Ja,A = [ha/A — &, ha/A + 5]7
except Jo 4 = [z,y] and Ja 4 = [2/,V/].

We apply the Markov property at times ma_1,...,m1, we have

S; .
lnf Pzan (aj € |:f]/’r7,7gj/7’lj| 7] S n? E’I’L)

ZGJO A

A—-1
Sma S .
> H inf Pzan < a e Ja+1,A7Ema+1fmaa7j € Ia,Ay] < Mgt — ma) .

o OZEJaA n n

Applying equation (5.2.9), we conclude

a? S; .
liminf " log inf P, (— € {fj/mgj/n} and & <n,j<n
an

n—+o0o 1 ZEJ() A

2 2

— iatel
g fa,A_2€)2.

gaA

Letting ¢ — 0 then A — 400, we conclude the proof. O

Lemma 5.2.5 is extended in the following fashion, to take into account functions g such
that ¢g(0) = 0.

Corollary 5.2.6. Let ((X;,&;),j € N) be an i.i.d. sequence of random wvariables taking
values in R x Ry such that

E(X;) =0 and o®:=E(X}) < +oo0.
We write Sy, = Yj_) X; and E, = {& <n,j <n}. Let (a,) € RY verifying
3

a
lim a, = 400, limsup = < +oo and lim @a2P(& >n) =0.
n—+oo n—+oo N n—+o00

Let f < g be two continuous functions such that fo <0 and liminf; ;o % > —oo. For any
fi <2’ <y < g1, we have
a? Sh S;
lim 10gP< € [z, 9], *E[fg/n,gj/n} .7<nE) -
7’1/

n—+oo N

w202 1 ds

2 0 (gs_fs)?
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Proof. Let d > 0 be such that for all ¢ € [0,1], g(t) > —dt. We set z <y < 0and A >0
verifying P(X; € [z,y],&1 < A) > 0. For any § > 0, we set N = |da,|. Applying the
Markov property at time N, for any n € N large enough, we have

Sn S ) L
P ( S [x,?y/] : S [fj/nvgj/n} ) < n7ETL> > P(Sj S [Jxv.]y]v.j < NaEN)

,—=
Qn Qn

- SuN o Siw | )
X f P S TR J € |fi+n, g, .j<n—N,E,_
z€[2(l§2,6y/2} Z“”( an [z, y] an [f% g%} J<n n—N

with P (Sj € [jz,7y],j < N,Ex) > P (X1 € [z,9],&6 < AN, As limsup,, % < 400,
we have

li 'fﬁl P&e[”]ie[f l,j<n,E
égigon 0g an $7y7an j/n>9j/nls] = Ty L

2 St ¢ [fran,gyen] j <

a 6 N 5 N | S n N

>liminf % inf P, [ fien,gun], ] |
n—+o00 N z€[26z,0y/2] n-N & [ﬂfl,y’],En_N

an

Consequently, applying Lemma 5.2.5 and letting § — 0, we have

2 2.2 /1
a S, S o ds
liminf logP ( == € [2/,¥'], =L € [fi/m, Gj/m)sJ < En)>— :
lim inf —* log (an [m,y],an (fi/ns 9jmlsd < m, R A e
The upper bound is a direct consequence of Corollary 5.2.4. ]

5.2.3 Lower bounds for the total size of the population above a barrier

To prove Theorem 5.1.1, we need an almost sure lower bound on the size of the pop-
ulation in a branching random walk that stay above a given boundary. We obtain this
lower bound using Lemma 1.5.1, that bounds from below the size of the population in a
supercritical Galton-Watson process. This lemma is recalled below.

Lemma 5.2.7. Let (Z,,n > 0) be a Galton-Watson process with reproduction law p. We
write b = min{k € Zy : p(k) > 0}, m = E(Z1) € (1,400) and q the smallest solution of
the equation E(q?t) = q. There exists C > 0 such that for all z € (0,1) and n € N we
have
q+ Czatt ifb=0
P(Z, < zm") < Cz“ ifb=1

logb

exp {—Cz_logm—logb] ifb> 2.

This result is used to obtain a lower bound on the size of the population in a branching
random walk above a given position.

Lemma 5.2.8. Under assumptions (5.1.1) and (5.1.3), there exist a > 0 and ¢ > 1 such
that a.s. for n > 1 large enough

#{lul =n:Vj <n,V(y;) > —na} > 0"

Proof. As limg_, 400 E [Z|u|:1 l{V(u)Z—a}} =E {szl 1}, by (5.1.1), there exists a > 0
such that go; := E [szl 1{V(u)§a}} > 1. We write N = 37— 1{v(w)>—a}- By (5.1.3), we
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have E(N) < +00. One can easily couple a Galton-Watson process Z with reproduction
law N with the branching random walk (T, V') in a way that

Y Lvjcnv(u)z—ja} = Zn.

lu|=n

We write p := P(Vn € N, Z, > 0) > 0 for the survival probability of this Galton-Watson
process.

For n € N, we write Zn for the number of individuals with an infinite number of
descendants. Conditionally on the survival of Z, the process (Zn, n > 0) is a supercritical
Galton-Watson process that survives almost surely (see e.g. [AN04]). Applying Lemma
5.2.7, there exists o > 1 such that

P(Z, <o) <o™

Applying the Borel-Cantelli lemma, a.s. for any n > 1 large enough Zn > 0"

We introduce a sequence of individuals (u,) € TN such that |u,| = n, up = 0 and w41
is the leftmost child of u,,, with ties broken uniformly at random. We write ¢ = P(N > 2)
for the probability that w, has at least two children, both of them above —a. We introduce
the random time T defined as the smallest £ € N such that the second leftmost child v
of u is above —a, and the Galton-Watson process coupled with the branching random
walk rooted at v survives. We observe that T' is stochastically bounded by a geometric
random variable with parameter pq, and that conditionally on 7', the Galton-Watson tree
that survives has the same law as Z.

Thanks to these observations, we note that 7' < +o0 and inf;j<r V(u;) > —oo. For
any n > 1 large enough such that 7" < n and inf;<7 V' (u;) > —na we have

#{ueT:|ul=2nVj<n,V(yj) > —3na} > o",

as desired. ]

5.3 Branching random walk with a killing boundary at crit-
ical rate

In this section, we study the behaviour of a branching random walk on R in which
individuals below a given barrier are killed. Given a continuous function f € C([0, 1]) such
that limsup,_,q % < 400 and n € N, for any k£ < n every individual alive at generation
k below level f3 /nnl/ 3 are removed, as well as all their descendants. Let (T,V) be a
branching random walk, we denote by

T = {ueT: |ul <n,Vj < [ul, V() >nBfk/n)},

and note that Tgcn) is a random tree. The process (Tgcn), V), called branching random
walk with a killing boundary, has been introduced in [AJ11, Jaf12], where the question of
survival of the process is studied.

We compute the survival probability of Tgfn), and provide a bound on the size of the

M) at any time k < n. We start finding a function g such that with

high probability, no individual alive at generation k € Tgcn) is above n!/3¢, /n- We then

compute the first and second moments of the number of individuals in T that stay at any
time k < n between n1/3fk/n and nl/?’gk/n.

population in T
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With a careful choice of functions f and g, one can compute the asymptotic behaviour
of the consistent maximal displacement at time n, which is [FZ10, Theorem 1] and [FHS12,
Theorem 1.4]; or the asymptotic behaviour as ¢ — 0 of the probability there exists an
individual in the branching random walk staying at any time n € N above —en, which
is [GHS11, Theorem 1.2]. We present these results respectively in Theorem 5.3.7 and
Theorem 5.3.8, with weaker integrability conditions than in the seminal articles.

5.3.1 Number of individuals in a given path
For any two continuous functions f < g, we denote by
n2a? [t ds
2 0 (gs - fs)2 .

For n > 1 and k < n, we write I,g") = [fk/nn1/3,gk/nn1/3]. We compute in a first time

the number of individuals in Tgcn) that crosses for the first time at some time & < n the

Ht(f7 g) =

boundary gk/nnl/?’. We set
(n) _
Yf,g - Z 1{V(u)>g‘u‘/nn1/3}1{V(uj)§gj/nn1/3,j<|u\}'
ueTgc")

Lemma 5.3.1. Let f < g such that fo <0 < go. Under assumptions (5.1.1) and (5.1.2),

limsupn~?log E {Yf(z)} < — teir(l)f” g+ Hi(f,9). (5.3.1)

n—-+o0o [

Proof. Using Lemma 5.2.2, we have

Il
M=

E [Y}ngﬂ

B
Il
—

E 1 u n1/3 1 n) .
u|z_k’ {V(w)>gi/n } {V(uj)elj(. ),J<k}]

k
Ee 1{Sk29k/nn1/3}1{sj e1§”),j<k}]

Il
M=

i
I

IA
M=

e PP (85 € 1M, 5 < k).

=
Il
—

Let 6 > 0, we set I,in)"s = {(fk/n - 5)n1/3,(gk/n +5)n1/3}. Let A €N, for a < A we
write mq = |na/A] and g, = infocla/a,(atr1)/4) 9s- Applying the Markov property at
time mg, for any k > m,, we have

_nl/3g

e P 8y € Iy j < k) < e P (85 € 10,65, < ma).

Applying Theorem 5.2.3, we have

limsup n~ /3 logE [YJS’Z)} < max—g, 4~ Hya(f —6,9+96).

n—+o00 a< -

Letting 6 — 0 and A — 400, we conclude that

limsupn_1/3 log E {Yf(z)} < sup —gr — Hi(f,9)-
n—+o0 ’ t€[0,1]
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Using this lemma, we note that if inf,c(o 1) gt + Ht(f, g) > d, then with high probability

(n) 1/3 —ont/? 1

no individual in T § crosses the curve g ,,n*/” with probability at least 1 —e

a second time, we take interest in the number of individuals that stays between f /nnl/ 3

and g./nnl/?’. For any f1 < <y < g1, we set

Zj(c Z 1{V Ye[znl/3, yn1/3]} { I< )]<n}

lul=n

Lemma 5.3.2. Let f < g be such that liminf; ,o % > —oo and limsupt_m% < +oo.
Under assumptions (5.1.1) and (5.1.2), we have

lim n 1/S’logE(Z( )( )) =—(z+ Hi(f,9)).

n—-+o0o

Proof. Applying (5.2.3), we have

(n) _ —Sn
E(ng( ))_E ¢ 1{Sn€[m”3:y"”3]}1{Sjelﬁ-"’,an}7

which yields
B (7)) <P (S0 e oSy e 10 <n) (532)

Moreover, note that for any & > 0, Zj(fn; (z,y) > Z](Zj; (z,z +€), and we have

B(Z{)(w.y) 2 P (S, € fan' @ o5 € [V <n). (5.8

gt

As f < g, liminf; o % > —oo and limsupt_m% < 400, either fy < 0 or go > O.

Consequently, applying Corollary 5.2.6, for any f1 <2’ <y’ < g1 we have

lim n~Y3logP (S € la 1/3,y'n1/3]75j € I](-n),j < Tl) = —Hi(f,9)

n—-+4o0o

Therefore, (5.3.2) yields

limsupn~/? log B(Z}") (2,y)) < —x — Hy(f,9)

n—-+o0o

and (5.3.3) yields

liminfn~ 1/310gE(Z](cg)(x y)) > —x—e— Hi(f,g).

n—-+o0o

Letting € — 0 concludes the proof. O

Lemma 5.3.2 is used to bound from above the number of individuals in T;n) who
are at time n in a given interval. To compute a lower bound we use a second moment
concentration estimate. To successfully bound from above the second moment, we are
led to restrict the set of individuals we consider to individuals who have “not too many
siblings” in the following sense. For u € T, we set

¢(u) = log (1 + Z eV(”)_V(“))

veY (u)
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where T (u) is the set of siblings of u, except w itself. In other words,
T(u) ={veT:mv=mnuuv#u}.

For 6 > 0 and f; <z <y < g1, we write

ZJ(IZJ)(:L"y’ Z 1{V w)Eznl/3, n1/3}}1

|ul=n

{Vier g)<om/jzn}’

and observe that for any ¢ > 0, Z}TL) (z,y,0) < J(‘ )(m,y).

Lemma 5.3.3. Let f < g be such that liminf; ,o % > —oo and limsupt_m% < +oo.
Under assumptions (5.1.1), (5.1.2) and (5.1.3), for any f1 <z <y < g1 and § > 0 we
have

lim inf n= "3 log E(Z ()(x y,0)) > —(z+ Hi(f,9)), (5.3.4)

n—+oo

_ 2
limsupn /3 log E [(Z}"g)(x,y,é)) ] < =2(x+Hi(f,g9))+0+ sup g+ Hi(f,9). (5.3.5)
n—+00 ’ tel0,1]

Proof. For any € > 0, applying Proposition 5.2.1 we have

E {ZJ(JL) (z,y, 5)}

W HZ L{vetent/2ynr/o} {Viuper!" >]<n}1{£<w>é6n“3m}]

> B |e V)

Lv wn)etont/2 orepmi/ 3]}1{V(wj)efy('n)vf(wj)ﬁtsnl/s,jﬁn}]

e (@tan'*p {V(wn) € [xn'3 (x + e)n*?), V(w;) € I](”),g(wj) <ol j < n} :

v

Setting X = £(wy), (5.1.3) implies E(X2) < +o0, thus lim,_, o 22P(X > z) = 0. Apply-
ing Corollary 5.2.6, we obtain

liminfn~ 1/?’logE{ J(c)(x,y,(S)} > —(x+¢)— Hi(f,9),

n—-+o0o

and conclude the proof of (5.3.4) by letting ¢ — 0.
We now take care of the second moment. Using again Proposition 5.2.1, we have

E|(Z{)(z.y, a>>2}
[ ()
| Z: (z,y,9
fig\ o
- Wi, Z Liv@etent/o g/} b {Veuper jzn} {f(uj)§5n1/3,j§”}]

lul=n

Lo —V(wn (n)
<E e )Zf,g<l”y”{V(wn)e[mUSw“]}1{v<wj>e1§-"%j<n}1{5‘”‘””9"1/3’5"}]

—anl/3 33 (n)
Se E Zf,!] (x’y)l{v(w")e[xnlm’ynl/s]}1{v(w].)€[](,">7j<n}1{5(wj)§5"1/3’j§"}] . (536)
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We decompose Z](:;) (x,y) according to the generation at which individuals split with the
spine, i.e.,

Z](C7 )( y) = 1{V Ye[znl/3, ynl/B]} { I<”) ]<n} + Z Z Au

k=1 ueTk

where A(u) = 31, /=p v>u 1{V(v)e nl/3 yn1/3]} foru e T, and T = T (wg)

v])EI ,J<n}
is the set of children of wjy_1 which are different from wy,.

By definition of 13, conditionally on Fi the subtree of the descendants of u € Yy, is
distributed as a branching random walk starting from V(u). For any k¥ < n and u € Ty,
applying Lemma 5.2.2 we have

E | A(u)| Fi

a {V(wj)d;"),jgc} v

2 Lvwepms yn”"’”I{V(melzii’j,jsn—’“}]

|v|=n—k

:1 —V(u) E —Sn,kl
{V(wj)61§n),jgk}e V(u) |€ {Sn_k6[$nl/37ynl/3]} {S el j<n— k}

Sev(wk)—xnl/SeV(u)—V(wk)Pv(u) {Sj c Ilgi)j’j <n-— k‘} )

Thus, by definition of &(wy),

Z E [ |-7:k} < ev(wk)—xn1/3+£(wk)supP [S c Ilg—l-) ,J<n—k
wET, ze€R

Let A € N. For any a < A we write m, = [na/A|. For any k < m, and z € R,
applying the Markov property at time m, — k we have

p.[s, € 12

k+j,j§n—k] < sup P [S EI( )+],]<n—ma].

Z'eR

We write \I'((zn) = SUp,icr P [S c ™ )_H,j <n-— ma} By Corollary 5.2.4, we have

limsupn_l/3 log \If((ln) < - (Hl(fag) - Ha/A(f7g)> .

n—-+00

Moreover, (5.3.6) becomes

~(n 2 —gnl/3 n) .
Eﬂégmw)]Se P(S; € 1" j <n)

Mag41

o Sa, S

k=mg+1

V(wg)+€(wr) 1

{Viwper gt/ j<n}

11 gs, we have

We set g, 4 = SUPc(a atl)

E |V (wr)+E(wi)q

W3 GaatOp (s, e 1M
{VWJ)EI‘" (w;><6n1/33<n}] < et tIP(S; € Y5 < ).
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We apply Theorem 5.2.3 to obtain

Ma+1
limsupn /310 E |V (wr)+&(wi)q
n—)—l—ocI)) gk mza+1 {V(wj)elj(-"),&(wj)§5n1/3,j§n}

S ga,A + 5 - Hl(ny)
We conclude that

limsupn ™/ log B [(Z{7) (@,9))*] < (20 + Hi(f,9)) + 6 + maxg, 4 + Hoss (£, 9).

n—-+4o0o

Letting A — +o0o concludes the proof. O

A straightforward consequence of Lemma 5.3.3 is a lower bound on the asymptotic
behaviour of the probability for Zj(cfbg) to be positive.

Corollary 5.3.4. Under the assumptions of Lemma 5.53.3, we have

1/3 (n) > > —
liminfn™"""log P [Zf (z,y) 1] t;épu g9t + Hi(f,9).

Proof. For any § > 0, we have ZJ(”ZJ) (x,y) > ZJ(%) (z,y,9). As a consequence,
~(n 2

E|Z)(x.9.9)]

E|Z}")(z,9,0)]

by the Cauchy-Schwarz inequality. Therefore using Lemma 5.3.3 we have

P [Z}Z)(x,y) ] > P [Z( )(2,y,0) > 1] >

lim inf n='/3 log P {Z( )(m y) > 1} > — sup g+ + He(f,9).
n—+00 te[0,1]

O]

Another application of Lemma 5.3.3 is a lower bound on the value of the sum of a large

(n)<

number of i.i.d. versions of Z .0 (@ y). This is useful observing that after time k, there
exists with large probability at least ¢* individuals, each of which starting an independent
branching random walk.

Corollary 5.3.5. Under the assumptions of Lemma 5.5.3, we set (ZJ(cg) (r,y),j € N)

i.1.d. copies Ofog( ,Y). Let z> 0, we write p = { ant/? J For any € > 0, we have

lim supn ~1/3 logP

n—-+o00

ZZ(”“ (z,y) < exp (nl/?’(z —z—Hi(f,9) - 5)]
J=1
< —z+4 sup g+ H(f,9).
t€[0,1]

Proof. The proof is based on the following observation. Let (Xj,j € N) be i.i.d. random
variables with finite variance. Using the Bienaymé-Chebychev inequality, we have

(o (Ee)) e (B

_ 4Var (ijl Xj>
- p2 E(Xl)z

—pE(X)1)

N

>PE(X1)/2>

Var(Xy) _ A E(X?)

=SHEX) S hEX)T

(5.3.7)
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Let 6 > 0, as ZJ({;)(x,y) > Z](cflg)(x,y, J), we have
()
P |3 2 (@) < exp (n'3(z 2 — Hi(f.9) — <))
j=1

P
2220y @y 0) Sexp (n(z —a — Hi(f.9) = <) |
j=1

<P

where (Z](Z;)’j(x, y,9),7 € N) is a sequence of i.i.d. copies of Z( ") !(z,y,6). By Lemma 5.3.3,
- -1/3 ~(n)
liminfn~"/*1og B (2} (2,4,8)) > — (« + Hi(f.9)).

thus, for any € > 0, for any n > 1 large enough we have

/3
E (ZJ(‘g)(:U Y, )) /2>e (z+H1(f,9)+e)

Therefore, using again Lemma 5.3.3 and (5.3.7), we have

lim sup n —1/3 logP

n—+400

7j=1

< —z+0+ sup g+ Hi(f,9).
te(0,1]

Consequently, letting 6 — 0 we have

lim sup n~ /3 log P

n—-+00

zp: 2 (,y) < exp (”1/3<Z —x = Hi(f.9) - 5)]

j=1

< —z+ sup g+ Hi(f,9).
te(0,1]

O]

5.3.2 Asymptotic behaviour of the branching random walk with a killing
boundary

The results of Section 5.3.1, in particular Lemma 5.3.1 and Corollaries 5.3.4 and 5.3.5,
emphasize the importance of the functions g verifying

vt € [0,1], 9t = go — Hi(f,9) > fi (5.3.8)

in the study of Tgcn). For such a function, the estimates of Lemmas 5.3.1, 5.3.2 and 5.3.3
are tight. They enable to precisely study the asymptotic behaviour of Tgen).

Theorem 5.3.6. We consider a branching random walk (T, V') satisfying (5.1.1), (5.1.2)
and (5.1.3). Let f € C([0,1]) be such that fo < 0. If there exists a continuous function g
such that

g[]:O, VtG[O,l],gt—

and Vt € [0,1],g: > ft,
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then almost surely for n > 1 large enough, {u € T;n) Sul =n} #0 and

1
ngl}rloo n1/3# {u < T ”U,‘ o n} — 9 fh
1
—= i V(u) = d 1l V(u) = s (5.3.9
i i, VOO = and I V) = as (589)

Otherwise, writing

252
A = inf {go,g € C([0,1]) : Yt € [0,1],9¢ = go + 5 / f 2 > fi } , (5.3.10)
then :
nll)riloon log P ({u € Ticn ul = n} # (Z)) = -\ (5.3.11)
Proof. We study the solutions of the differential equation (5.3.8). As (¢,z) — —%

is locally Lipschitz on {(¢t,z) € [0,1] x R: z > f;}, the Cauchy-Lipschitz theorem implies
that for any x > fp, there exists a unique continuous function ¢g* defined on the maximal
interval [0, t;] such that ¢§ = x, either t, = 1 or g1, = f,, and for any ¢ < ¢,

w202 [t ds
2 0 (gg_fs)z'

Moreover, we observe that ¢, is increasing with respect to « and g is decreasing in ¢ and
increasing in x on {(¢,x) € [0, 1] x (fo, +00) : t < t;}. With these notations, we have

T __
gy =X —

:inf{x>f0:tx:1}.

As limy 1o SUPye(o, 1] (”2 = = 0, there exists > 0 large enough such that ¢, = 1. This
implies A\ < 4-00.
We note that for any = > 0 such that ¢* > f on [0, 1], applying Corollary 5.3.4 we
obtain
lim inf n~'/3 log P [{u €T, (), Cul =n} # (Z)} > hmlnfn BlogP | Z { }n)x(fl),gf) > 1}
n—-+o00o g
> —zx.
Therefore, we have liminf, ;. n~/3log P [{u € Tf Dul =n} # @} > —min(},0).
If A > 0, writing t = t), we use the fact that at some time before ¢ every individual

1/3

in Tgcn) crosses n'/°g s, before time ¢n, thus

P (El\u] =n:u€ TSZ”) <P (Elu € Tgcn) :V(u) > nl/?’g‘uvn) .

We set fs(l) = fst/t1/3 and ggl) = gg‘t/tl/‘g. Applying Lemma 5.3.1, and writing m = [tn|
we have
limsupn /3 logE (Yf((l)) " ) < =),

n—-+oo

which by Markov inequality yields

limsupn~ /3 log P (u €Ty |ul <tn,V(u) > nl/ggw/n) < =),

n—-+o00
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concluding the proof of (5.3.11).
We now assume A < 0, or equivalently ¢° > f. Applying Lemma 5.3.1, for any € > 0
we have

limsupn~ /3 log P <E|u € T; " V(u) > n1/3g|5u|/n) < — inf gi+ H(f,9°) = —¢.
n—+4o0o t€(0,1]

By the Borel-Cantelli lemma, almost surely for any n > 1 large enough, we have
{ueTi V@) =ne,,} =0 (5.3.12)
In particular, letting € — 0 we have

limsup—7=% max V(u)=g1 as.
n—+oo 1 1/3 T(f"),|u|:n

Moreover, by Lemma 5.3.2 we have

B (200 (D)) < ~(fi + Hi(F.9) = 6 — fi — =
Thus, by the Markov inequality and the Borel-Cantelli Lemma

~1/3

limsupn log Z}T;)E(fl,gi) <gi—fi.

n—-+4o0o

Mixing with (5.3.12) and letting € — 0, we conclude

lim sup —~ / log # {u € T ul = n} <g1— f1.
n——+o0o
To obtain the other bounds of (5.3.9), we apply Lemma 5.2.8. For any £ > 0 there
exists o > 1 and & > 0 such that almost surely for any n > 1 large enough,

# {U c Tgc”) . ‘u| = {(577,1/3J and V(u) c [_€n1/37€n1/3]} > 05711/3.

We write S, this event. On S,,, each of these 95”1/3 individuals starts an independent
branching random walk from some point in [—5n1/3, 6n1/3] with a killing boundary nl/?’f./n.
For € small enough, we use Corollary 5.3.5 to bound from below the number of descendants
that stay between f + 2¢ and g~2¢ + 2¢. We have

limsupn /3 log P {# {u € TS‘N) u| = n} <e nl/3 (g%~ f1)

n—-+00

s\

< —n+ sup g, + 2+ Hy(f +2e,97% +2¢) = —.
te(0,1]

Using again the Borel-Cantelli lemma, we obtain

liminf n~ "3 log # {u € T ul = n} >~ fi as.

n—-+o0o

Consequently, letting ¢ — 0 we conclude

lim n~'/3 log#{u € T( S n} =g —fi as.

n—-+o00
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In particular, almost surely for n > 1 large enough, Tgcn) survives until time n, which is

enough to prove
iminf —— i > .S.
W i, ) 2 e
By Corollary 5.3.4, for any € > 0 small enough, for any f1 +2c <z <y < gl_zs + 2¢

we have

- -1/3 (n)
lﬁgligof " log P (Z f+2e,g72+2e

(x,y) > 0) > 0.
Therefore, for any f1 < z < y < g1, for any € > 0 small enough we have

67777,1/3

n o(nl/3
P (2w =0 Su) = (1= )
We conclude that for any ¢ > 0 small enough,

liminfn_1/3log (—logP (Z}T;)(fl +¢, fi+20) = 0)) >0

n—-+o0o

as well as
lim inf n="/*log (— log P (Z{") (g1 — 2¢, g1 — ¢) = 0) ) > 0.

n——+00

Using once again the Borel-Cantelli lemma, we obtain respectively

. 1 .
hmsupl—/3 min  V(u) < fi as.
n—+oo T uET;n),|u|:n

1
and lim infm max  V(u) >g? as.
n—+00 1 uET;"),|u|:n

which concludes the proof. O

5.3.3 Applications

Using the results developed in this section, we deduce the asymptotic behaviour of the
consistent maximal displacement at time n of the branching random walk.

Theorem 5.3.7 (Consistent maximal displacement of the branching random walk, [FZ10,
FHS12]). We consider a branching random walk (T, V') satisfying (5.1.1), (5.1.2) and
(5.1.3). We have

lim

n—+o0o n1/3

MAX|y| =, Milk<p V(ug) _ <37r202>1/3
S 5 .

Proof. To prove this result, we only have to show that for any § > 0, almost surely for
n > 1 large enough we have

weT™ L onis flul=mp=0 and weT™ Loyt lul=mnop #E0.
(-2=2) e ) s

We solve for = < 0 the differential equation

g2 [t ds
2 0 (gs - x)Q.

gt = —
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1/3
The solution is gt = = + (—x3 — #t) / for t < =2 Applying Theorem 5.3.6, for

3m2o2 "
3n2q2 1/3 (n) i
any > — (T) , almost surely for any n > 1 large enough the tree Ty~ gets extinct

1/3
before time n. For any x < — (#) , almost surely for n > 1 large enough the tree

T&") survives until time n. O

Similarly, we provide the asymptotic behaviour, as € — 0 of the probability of survival
of a branching random walk with a killing boundary of slope —e.

Theorem 5.3.8 (Survival probability in the killed branching random walk [GHS11]). Let
(T, V) be a branching random walk satisfying (5.1.1), (5.1.2) and (5.1.3). We have

. 1/2 . N> i __ "0
il_r)r(l)s logP (Vn € N,Jlu| =n:V(uj) > —€j,j <n)= 51/
Proof. For any ¢ > 0 and n € N, we set o(n,e) =P (Ju| =n:V(u;) > —ej,j < n) and

o(e) = lim p(n,e) =P (VneN,Ju|=n:V(u;) > —cj,j <n).

n—-+0o

In a first time, we prove that for any 6 > 0, we have

oy < lmjnf ! Mogo (n0n27) < Hmaupn™!/Mogo (n, 0n*%) < @7'(0),
(5.3.13)

where @ : \ s T A,
Applying Lemma 5.3.1 with functions f : ¢t — —60t and g : t — A\(1 — t)1/3 — 60t we
prove the upper bound of (5.3.13). Using the fact that an individual staying above )

until time n crosses g(”) at some time k < n, the Markov inequality implies

limsupn /3 log o(n, 977172/3) < limsupn /3 log E(YJ‘(Z))
n——400 n—+o00 '

< — inf H
< téfé,l]gt+ «(f.9)

2 2 t ds
< — inf AN1-0Y3 0t 7TU/
< - dnf M-t T =) B

< — inf A— D) [1— (1 —8)/3].
< - inf A= 0t+3 ) [1 =@ =51

We observe that ¢ — 1—(1—t)/3 is a convex function on [0, 1], with derivative 1/3 at t = 0.
Thus, for any A > 0 such that ®(\) > 0, for all € [0,1], 36(\) [1 - (1 - 1)1/3] > (At
We conclude that for any A > 0 such that ®(\) > 6 > 0, we have

limsupn~ /3 log o(n, 0n72/3) < =\

n—-+0o
With A = ®~1(8), we conclude the proof of the upper bound of (5.3.13). We now observe
that for any € > 0, we have p(¢) < p(n,¢). Setting n = {(5/9)3/2J, for any 6 > 0 we have

lim sup e'/?log o(¢) < limsupe'/?log o(n, ) < —0'/2®71(6).

e—0 e—0

We note that limg_, 91/2<I>_1(0) = lim)_,g )\CI>()\)1/2 = 5173, which concludes the proof
of the upper bound in Theorem 5.3.8.
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To prove the lower bound in (5.3.13), we apply Corollary 5.3.4 to functions f : t — —0t
and g : t — A — 6t. We have

lim inf n=3log o(n, On=%?) > liminf n~'/3 log P (Z](ff; fi,1) > 1)

n—+00 n—+00
2202
> — sup A—60t+ t.
t€[0,1] 2)2
Choosing A = W, we obtain
1/3 2/3y~ __T0
H@i&f" log o(n,On"=/?) > 20)172"

proving the lower bound of (5.3.13). To extend this lower bound into the lower bound in
Theorem 5.3.8 needs more care than the upper bound. First, we observe that this equation
implies that for any 6 > 0,

1/3 3/2, . —2/3 o
léginfn log 0(6°"*n,n™%/") > ~51/

By (5.1.1), there exist a > 0 and P € N such that

E ((Z 1{V(u)2—a}> A\ P) > 1.
Ju|=1

Consequently, there exist o > 1 and a random variable W positive with positive probability

such that Gi<nV - .
limigg U =1V <0 Vi) > —aj}

n—+o00 o"

>W a.s.
We conclude there exist a > 0, » > 0 and ¢ > 1 such that
inf P (#{Jul =n:Vj<nV(y) = —aj} 2 0") 2

With these notations, we observe that for any 6 > 0, € > 0, 6 > 0 and n € N, we have

P (#{lul = 0+ <nviwy) = - (BEE) 5} 2 07) 2 relone).

Given A > 1% and 6 > 0, we set € > 0 small enough such that

gl/2 log o ([2925_3/ﬂ , 5) > =\

We write 6 = 2 and n = {(0 + 6)5_3/2J, choosing € > 0 small enough such that § < 6.
We have

1/2

P (# {lul =n:Vj <n,V(u;) > —2¢5} > g5”> > re N ,

We construct a Galton-Watson process (Gp(e),p > 0) based on the branching random
walk (T, V) such that

Gp(e) = #{lul = pn : Vj < pn, V(u;) = —2¢j} .

We note that G(¢) dominates the Galton-Watson process G(¢), in which individuals make
N, = { MJ children with probability p. = re —27"% and none with probability 1 — p. As

e — 0 we have
lin% gl/? log(p-N.) = =\ + 6*log o,
E—r
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which is positive choosing some 6 > 0 large enough. With this choice of 6, for any € > 0
small enough p. N. > 2. Consequently ¢. the probability of survival of G(e) is positive for
any € > 0 small enough. Moreover, we have p(2¢) > ¢..

We introduce f. : s — E(sé(e)) which is a convex function verifying f-(1) = 1 and
fe(1 —¢q.) =1 — g.. Moreover, for any h > 0, for any £ > 0 small enough

fa(l - hpe) =1-p +pa(1 - hpa)NE <1-—p:+pe eXp(_hpaNa) <1-p +p5672h‘

Choosing h > 0 small enough, for any € > 0 small enough we have f.(1 — hp) < 1 — hp.
This proves that ¢. > hp., leading to

liminf £/ log o(¢) > liminfe'/? logpe > —A.
e—0 e—0

Letting A — —5i7% concludes the proof. O

5.4 Branching random walk with selection

In this section, we consider a branching random walk on R in which at each generation
only the rightmost individuals live. Given a positive continuous function h, at any time
k <n only the {e"l/ghk/ "J rightmost individuals remain alive. The process is constructed
as follows. Let ((T?,VP),p € N) be an i.i.d. sequence of independent branching random
walks, for any n € N we write 7, for the disjoint union of T? for p < n, and introduce
the function V' : u € T,y = VP(u) if u € TP. We rank individuals at a given generation
according to their position, from highest to lowest, breaking ties uniformly at random.
For any u € T(,), we write N(,)(u) for the ranking of u in the |u|th generation.

Let h be a positive continuous function on [0, 1], we write ¢ = {ehO”I/SJ and

Th ) = {u € Tig : lul <n,Vj < |ul,log Ny (u;) < nl/?’hj/n}.

(n

The process (T?n), V') is a branching random walk with selection of the en'/oh. rightmost
individuals. We write

M'M=  max  V(u) and mPl= min V(u).
uGT?n)Ju\:n uGT?n),|u\:n

We study (T?n), V) by comparing it with ¢ independent branching random walks with a
killing boundary f, choosing f in a way that

log # {u € Tgcn) sul = Lth} ~ n'3(hy — ho).
Using Lemmas 5.3.1 and 5.3.2, we choose functions (f, g) verifying

2 2
g+ "5 o e = o
2 2
Je+ - f(f 7(gsfsfs)2 = ho — he.

vt € [0, 1],{

which solution is

252 rt( 252 ot g
frtelo ) —ho—h ="~ [ = and g:tel0,1]mho— - [ .
0 1y

= 4.1
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To compare branching random walk with selection and branching random walks with
killing boundary, we couple them in a fashion preserving a certain partial order, that we
describe now. Let u,v be two Radon measures on R, we write

w=xv <= VeeR, u((x,+00)) < v((z,+00)).

The relation < forms a partial order on the set of Radon measures, that can be used to
rank populations, representing an individual by a Dirac mass at its position.

A branching-selection process is defined as follows. Given ¢ : Z; — N a process
adapted to the filtration of 7 (¢p), we denote by

TY = {u S 7@,0) : VJ < |u],N(¢O)(uj) < QOJ‘} .

Let (21,...2p,) € R¥, we write V' : u € T? — 2, + VP(u) if u € TP. The process (T¥,V)
is a branching-selection process with ¢(n) individuals at generation n and initial positions

(x1,...%y,). Note that both T’(”n) and Tgcn) can be described as branching-selection pro-
cesses. We prove there exists a coupling between branching-selection processes preserving
partial order <. Note this lemma is essentially an adaptation of [BG10, Corollary 2].

Lemma 5.4.1. Let ¢ and ¥ be two adapted processes, on the event

ueT? ueTY?
u|=0 |u]=0

we have 3 cme juj=n 0V (1) I 2ueT?,juj=n OV (u)-

Proof. The lemma is a direct consequence of the following observation. Given m < n,
z € R™ and y € R" such that Y7 d,; < 27— 9y, and (2,7 < n,i € N), we have

m 00 n —+oo
‘Zl Zl 5m]-+zf < Zl Zl 6yj+zg :
J=11= J=L=

Consequently, step k of the branching-selection process preserves order < if ¢ < 9. O

This lemma implies that branching random walks with selection and branching random
walk with killing can be coupled in an increasing fashion for the order <, as soon as there
are at any time k < n more individuals in one process than in the other. The main result
of the section is the following estimate on the extremal positions in the branching random
walk with selection.

Theorem 5.4.2. Assuming (5.1.1), (5.1.2) and (5.1.3), for any continuous positive func-
tion h we have

Mh w202 [lds ] mh w202 1lds
=nhy— —— and lim ho*hlf

i g _n _ g
lirn 2 Jo hZ n—-+oo nl/3 2 Jo RhZ

_n
n—+oo n1/3

a.s.

Remark 5.4.3. It is worth noting that choosing h as a constant, Theorem 5.4.2 provides

information on the Brunet-Derrida’s N-BRW, at the time scale (loié\]) 3. If we let h — 0,

we study the large times asymptotic behaviour of the N-BRW.
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The proof of Theorem 5.4.2 is based on the constructlon of an increasing coupling
existing between (T?n), V) and approximatively ehon'/? independent branching random
walks with a killing boundary n'/3 f /n- Using Lemma 5.4.1, it is enough to bound the size
of the population at any time in the branching random walks with a killing boundary to
prove the coupling. In a first time, we bound from below the branching random walk with
selection by e(ho—2e)nt/? independent branching random walks with a killing boundary.

Lemma 5.4.4. We assume that (5.1.1) and (5.1.2) hold. For any positive continuous
function h and € > 0, there exists a coupling between (T( ),V) and i.1.d. branching

random walks ((T7,V7),5 > 1) such that almost surely for any n > 1 large enough, we
have

e(ho— 25)n1/3

vk <n, Z OV (u) 7 Z Z 1{VJ (ui)>(f;/n—e)nt/3 z<k}6‘“ (5.4.2)

uET?n) J=1 ueTJ
Proof. Let n € N and € > 0, we denote by p = {e(ho_za)”l/gJ and by 'i‘gen_)g the disjoint
union of TJSC )E for j < p. For u € Tgc )a, we write V(u) = VJ(u) if u € T/. By

Lemma 5.4.1, it is enough to prove that almost surely, for any n > 1 large enough we have
Vk<nlog#{u€T |u|—k:}<n/hk/

T(n)

We first prove that with high probability, no individual in T Foc CrOSSES the boundary

(Gr/m — £)n'/3 at some time k < n. By Lemma 5.3.1, we have

limsupn /3 log P (Elu € ’i‘gcn_)s V() = (Gum — a)nl/g)

n—-+o0o

< limsupn =3 log (pP (Elu € Tgcn_)a 2 V(u) = (Gum — a)nl/g))
n—-+o0o
252
<hyg—2¢— inf g —e+ / = —¢.
’ e 2 fs)

Using the Borel-Cantelli lemma, almost surely for any n > 1 large enough and u € 'i‘gcnj o

we have V(u) < (gjy/n — e)nt/3,
By this result, almost surely, for n > 1 large enough and for k < n, the size of the k"

generation in Tgﬁ)s is given by

(n) _
Z Z 1{|“| k}l{V (u;)<(gj/n—e)nt/3 ]<k}
uGT(n)
Using the Markov inequality, we have

P (3 <n:z > e M) < zn: e B[ 2]
=1

x>

We now provide an uniform upper bound for E(Zk")). Applying Lemma 5.2.2, for any
1 <k <n we have

(n) -S
E {Zk } spE [e kI{Sje[(fj/n*6)%1/37(9j/n*5)"1/3]}}
— —_ n / 1
S pe (fk/" €) ' 3:P (S] S |:(fj/n - E)nl/?)’ (g]/n B E)'I’Ll/3:| »J g k) ’
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Let A € N. For any a < A we write m, = |na/A] and ia,A = infeia/a,(at1)/4] f5s- For any
k € (mg, mq 1], applying the Markov property at time m, and Theorem 5.2.3 we have

N 71'20'2 a/A ds
E{Z,g )} < exp [(h0—26)n1/3—n1/3 (fa,A_€+ 5 /0 h§>]

As hg = fi + he + # Ot%, letting A — 400 we have

lim sup n1/3 log P (Elk <n: Z,(Cn) > e”l/shk/n) < —e.

n—-+oo

Consequently, applying the Borel-Cantelli lemma again, for any n > 1 large enough we

have N
Vk < n,log # {u € Tgcn_)a ul = k:} < n1/3hk/n

which concludes the proof, by Lemma 5.4.1. O

Similarly, we prove that the branching random walk with selection is bounded from
above by Le(h‘)*zs)”l/dJ independent branching random walks with a killing boundary.

Lemma 5.4.5. We assume (5.1.1), (5.1.2) and (5.1.3) hold. For any continuous positive
function h and e > 0, there exists a coupling between (T?n), V) and i.i.d. branching random

walks ((T7,V7),j > 1) such that almost surely for any n > 1 large enough we have

e(h0+2€)n1/3

Vksn 3 v s X X Lyiwz(e-ont sk} (5-4.3)
ueTh Jj=1 ueTI
ik ful=k

Proof. Let n € N and € > 0, we denote by p = {e(hOHE)”WJ and by Tgcn)a the disjoint

union of Tjgcn_)a for j < p. For u € 'i‘gcnjs, we write V(u) = VI (u) if u € T7. Similarly to

the previous lemma, the key tool is a bound from below of the size of the population at
any time in T;n_)e. For any 1 < k < n, we set

() _
2 = 30 Lty Ly u) (g, et/ gk} @0d
ue’f‘(f’i
=) _
Z" =) L=k} Loy (> it/ 2} LV ()< (g —en /3, <k}
ueT?

f—e
For any t € (0,1), applying Corollary 5.3.5, we have
lim sup n=1/3 logP {ZEZZ

g e(hz+6)n1/3} S _35
n—+00

]

Let A € N, for a < A we set mg, = |na/A|. By the Borel-Cantelli lemma, almost surely,
for any n > 1 large enough we have

Va < A, log ZT(,’L? > n1/3(h% +¢).

We extend this result into an uniform one. To do so, we notice that Theorem 5.3.7
implies there exists r > 0 small enough and A > 0 large enough such that

ingP [El|u] =n:Vk <n,V(u) > 7)\n1/3} >
ne
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Consequently, every individual alive at time m, above fa/Anl/ 3 start an independent
branching random walk, which has probability at least r to have a descendant at time
Mq+1 which stayed at any time in k € [mg, may1] above (fo/4 — MA~1/3)n1/3 . Choosing
A > 0 large enough, conditionally on F,,, infrcpmg mai] Z,gn) is stochastically bounded
from below by a binomial variable with parameters Zy(,?a) and r. We conclude from an easy
large deviation estimate and the Borel-Cantelli lemma again, that almost surely for n > 1
large enough we have
Vk < n,log Z > n'Phy .

Applying Lemma 5.4.1, we conclude that

VE<n, Y v S Y. Ovw

uET?n) ue'f‘(’i)s
lul=k |u|=k

O

Using Lemmas 5.4.4 and 5.4.5, we easily bound the maximal and the minimal displace-
ment in the branching random walk with selection.

Proof of Theorem 5.4.2. The proof is based on the observation that for any pair of se-
quences x1 > a3 > -+ > xp and yy > ya > - >y, if 30 0 < 201 0y, then p < g,
z1 <y and z, < yp.

Let n € N and € > 0, we denote by p = {e(ho_%)"l/w and by p = {e(hOHS)”l/gJ.
Given ((T7,V7),j € N) i.i.d. branching random walks, we set 'i‘gen_)s

the disjoint union of TJ( n) . for j < p (resp. j <p). Forue ’Tgcn_)e, we write V (u) = V7 (u)
if w € T7. By Lemmas 5.4.4 and 5.4.5, we have

(respectively T 2)

max  V(u) <M} <  max V().
u€’i‘§f_é,|u|:n uETs,njE,\u|:n

For any § > —hg, we denote by ¢° the solution of the differential equation

2,2
s  To ds
gt + = ho + 0.
! 2 Jo (92— fs)?

Note that ¢° is well-defined on [0, 1] for § in a neighbourhood of 0, that ¢° = g and that
§ — ¢% is continuous with respect to the uniform norm. Moreover

P ( max  V(u) > ¢in 1/3)

ue’/I\‘;n_)EJM:n

gP(aueT}"JE:V( > Gl )

Consequently, using Lemma 5.3.1, we have

limsupn~ /3 log P ( max  V(u) > g5 1/3)

n—+00 ue’/l:gfi)e,|u|:n

2 2 .t

T ds
<hg+2 — inf ¢+ / .
=0 telf%)vl]gt 2 0 (6_fs+5)2
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For any § > 0, for any € > 0 small enough we have

limsup n~ /3 log P (M,i‘ > g‘fnl/?’) < 0.

n—-+o0o

h
By the Borel-Cantelli lemma, we have lim sup,, ., ., % < g‘ls a.s. Letting § — 0 concludes
the proof of the upper bound of the maximal displacement.
To obtain a lower bound, we notice that

P (Mff < (¢ — 25)711/3) <P max  V(u) < (90 — 2e)n'/?
uGT;T:)EJu\:n

P
<P <max Vi(u) < (g8 — 25)711/3) .

[ul=n

We only consider individuals u alive at time n that stayed at any time & < n between
the curves nl/B(fk/n —¢) and nl/?’(gl;/il —¢), applying Corollary 5.3.4, for any 6 > 0 small
enough, for any € > 0 small enough, we have

lim inf n /% log P (Ellu\ =n:V(u) > (97° - 25)711/3)

n—-4o0o

> s 0 s+w202/t ds >ec—ho+4d
Z — Sup g — Z&—No .
tef0.] " 2 Jo (92— fs)?

As a consequence,

lim inf n~'/3 log (— logP (Mg < (¢ — 26)n1/3)) >0—e.

n—-+00

For any § > 0 small enough, for any ¢ > 0 small enough, applying the Borel-Cantelli

lemma we have
h

e My 5
%g}rggWZgl—% a.s.

Letting ¢ — 0 then § — 0 concludes the almost sure asymptotic behaviour M.

We now bound m”

~. By Lemma 5.4.5, almost surely for n > 1 large enough, the
\‘ 1/3h th
et

(n)

rightmost individual at generation n in T is above m/. Therefore for any

x € R, almost surely for n > 1 large enough,

1 <1 ~ .
{mhzant/3} = {#{uGT(fn_)E:W\:n,V(u)anl/?’}Zehlnl/?’}
Let 0 > 0. By Lemma 5.3.1, we have

limsupn~ /3 log P (Eiu € 'i‘gfn_)a V() > (gi/n - 5)n1/3) <hy—(ho+0—c¢).

n—-+0o0o

Consequently, for any § > 0, for any € > 0 small enough, almost surely for n > 1 large

enough the population in 'i‘gcn_) . at time k belongs to [, ,g"). We write

ZM(@) = D0 Luea iy wzens) L

= (V)< ~omt/2<n}’
u
f—e
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By Lemma 5.3.2, we have

2.2 ds
limsupn~ /3logE |Z™ ()| < hg— |z + o
n—r+00 & [ ( )] : 2 Jo (93— fs)?

Using the Markov inequality and the Borel-Cantelli lemma, for any § > 0, for any n > 1
large enough, we have Z(™ (g? — hy) < ehlnl/?’, which leads to

h

lim sup m”3

< g‘lS —h1 as.
n——+00 nl/ o

Letting § — 0 concludes the proof of the upper bound of mﬁ
The lower bound is obtained in a similar fashion. For any ¢ > 0, we write k = {C nt/ 3J.
Almost surely, for n > 1 large enough we have

Yo v < D v

ue( ueT),

—& (n)

h
n

This inequality is not enough to obtain a lower bound on m han!/?

(n)

individuals alive in T'/” . at generation n—k. Therefore, starting from generation n—k, we
start a modified branching-selection procedure that preserve the order < and guarantees

, as there are less than e

1/3 . .. . :
there are {ehln / J individuals alive at generation n.

In a first time, we bound from below the size of the population alive at generation
n — k. We write, for § > 0 and > 0

(n) —
X 2 1{|u|=”—’f}1{v(uj)S(g.—;;—e>n1/3,s<u]-)3enn”3Jgn—k}'
ueT(fnjE J
By Lemma 5.3.3, we have

w2g? 1 ds

2 0 (98—5_]08)2

liminf n~ "3 log E(X(")) > ho—2e— ((fl —&)+

n—-+o0o

) = §—e+(g97°— f1).

Consequently, using the fact that for p i.i.d. random variables (X;), we have
? AE(X?)
P X <pE(X1)/2| < ——LL

for any € > 0 and § > 0 small enough enough, Lemma 5.3.3 leads to

lim sup n~1/3 log P (X(”) < e((gl_é_fl)M)”l/g) <n+4+hy—38—¢e—(hy—2e).

n—-+0o

For any & > 0, choosing § > 0 small enough, and € > 0 and n > 0 small enough, we
conclude by the Borel-Cantelli lemma that almost surely, for n > 1 large enough

# {u € TS@E Cul=n— k:} > exp (n1/3(h1 - 5)) .
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In a second time, we observe by (5.1.1) there exists a > 0 and ¢ > 1 such that

B> Lyvwsa| >0
lu|=1

We consider the branching-selection process that starts at time n — k with the population
of the (n—k)*™" generation of T(™) in which individuals reproduce independently according
to the law L, with the following selection process: an individual is erased if it belongs to
generation n — k + j and is below nl/?’f(n_k)/n — ja, or if it is not one of the e *hin—kig)/n
rightmost individuals. By Lemma 5.4.1, this branching-selection process stays at any time
n —k < j < n below (T? ),V) for the order <. Moreover, by definition, the leftmost

(n
individual alive at time n is above n1/3(f(n_k)/n —e—a().
We now bound the size of the population in this process. We write (X;,j € N) for a
sequence of i.i.d. random variables with the same law as >, —; 1{v(u)>—q}- By Cramér’s
theorem, there exists A > 0 such that for any n € N, we have

n

P (Z X; < ng) <e M,
k=1

The probability there exists j € [n — k,n] such that the size of the population at time j in

the branching-selection process is less than min (QkJrj*"e(h(n—k)/n*é)”w, ehj/nnl/g) decays

exponentially fast with n. Applying the Borel-Cantelli lemma, for any ¢ > 0, there exists

&€ > 0 such that almost surely for n > 1 large enough, the number of individuals alive at

1/3 .
hant/ J On this event, m/

generation n in the bounding branching-selection process is {e
is greater than the minimal position in this process. We conclude, letting n grows to +oo

then € and ¢ decrease to 0 that

h 2 2 1
. e My o ds
—=>hg—h1 — — a.s.
lmpnt s 2 ho =l =S5 | g A
completing the proof of Theorem 5.4.2. O

An application of Theorem 5.4.2 leads to Theorem 5.1.1.

Proof of Theorem 5.1.1. Let a > 0, we denote by ¢ : n — Le‘me and by (T¥,V) the
branching random walk with selection of the ¢(n) rightmost individuals at generation n.
For n € N we write
M? = ma V() and mf= min V(u).
" uGT%",|§|:n ( ) " uwe€T? |u|=n ( )
Let ¢ > 0and n € N, we set k = |ne| and h : t — a(t + ¢)'/3. By Lemma 5.4.1, for
any two continuous non-negative functions hy < hsy, and k < n we have

> v S D v
ueT)! ueT 2
|u|=k lu|l=Fk
As a consequence, for any n € N and £ > 0, we couple the branching random walk with
selection (T%, V) with two branching random walks with selection (T/*T, V') and (TZ’Z)_, V)

; (n)
in a way that

Z 5V(u)+mf < Z 6V(u) < Z 5V(u)+M;f? (544)
weTh ™ uET? weTh =
(n) |u|=n (n)

lu|=n—k |u|=n—k
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using the fact that the population at time k in T¥ is between m; and M.
Applying Theorem 5.4.2, we have

h 2 2 _
lim sup w_MSD < lim sup —k Sael/?’—ﬂa ' eL a.s
n—-+o00 nl/3 n—+00 n1/3 2 0 (G(S + 5)1/3)2
as well as
m¢ —mj, mh w20? [l-e ds
liminf %k > liminf "k > g — s.
M inf =573 Hminf =" = —a = —— | (a(s 1 o)1 3)2 *°
As lim._,q f01,€ (a(si_% = a%, for any § > 0, for any € > 0 small enough we have
My - MY, 3n2g2
lim su Len] < — 0 a.s.
n—>+o<I)) nl/3 2a? *
We set p = {—lﬁ’é:J, and observe that
p—2 M¥

My 1 leP—1n]
n1/3 - 7/ z_: (MEPEJ”J N Mlij+1nj) + n1/3

@ ®
< pz ci/3 Miing = Migssin) 4 2UPjse Mf
= (e7n)1/3 nl/3

Using a straightforward adaptation of the Cesaro lemma, we obtain

371' 0' 46
I;Eigg) n173 < 1 - 51/3 a.s.
Letting ¢ — 0 then § — 0 we have
lim sup M7 < _37r202 a.s.
n——+oo nl/3 2a?

Similarly, for any § > 0, for any € > 0 small enough we have

mi — mfmJ 3202
lim fnf ——572=—= > —a - —40 a.s.
ﬁ§i€° ’I’Ll/3 =-a 2a2 a.s
Setting p = {— llgi’;J and observing that
_ 410 p . f o
3/3 Mgin) = Meitrp)  Mljce—2m;
1/3 - 4L sjn)l/?) 173 ,

we use again the Cesaro lemma to obtain, letting € then § decrease to 0,

my 3202
liminf —% > —a — ——— a.s.
n—+oo nl/3 2a2

To obtain the other bounds, we observe that (5.4.4) also leads to

Mgp Mh + P 2 2 1—¢ d 3 2 2
liminf = > lim inf —2=F it >_T9 / ( 5)2/3 —|a+ g gl/3
0

n——+o0o nl/3 — nS+eo nl/3 - 2a? s+¢ 2a2

(5.4.5)

(5.4.6)

a.s.
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by Theorem 5.4.2 and (5.4.6). Letting ¢ — 0 we have

g M 3mio?
im in - a.s.
n—+oo nl/3 = 2a2
Similarly, we have
h P 2 2 1—¢
. m¥ . m_ .+ M o ds
lim sup —7 < limsup % <—a— 5 / 7 &S
n—too N/ n——+00 nt/ 2a% Jo (s+e) /

using Theorem 5.3.6 and (5.4.5). We let ¢ — 0 to obtain

my 3mlo?

lim sup

< —a a.s.
n—-+oo n1/3 2a2

O
The careful reader will notice that, for almost any a € R there exist @ # a such that

3202 37202

Ot g Tt g

With these notation, both the branching random walk with selection of the ean'’? rightmost
individuals at generation n and the branching random walk with selection of the ean'/?
rightmost ones are coupled, between times en and n with branching random walks with

the same killing barrier

3rla?\
S 1 SR, PAVE
f e[a]H(aJr 2a2> :

the difference between the processes being the number of individuals initially alive in the
processes, respectively I CORANY e CORAS

Acknowledgements. 1 would like to thank Zhan Shi for having me started on the
branching-selection processes topic, as well as for his constant help and advices.






CHAPTER 6

LThe N-branching random walk
with stable spine

“C’est tres vilain de faire du mal a un livre, 4 un arbre ou a une
béte.”

René Goscinny — Le Petit Nicolas

Abstract

We consider a branching-selection particle system on the real line introduced by
Brunet and Derrida in [BD97]. In this model, the size of the population is fixed to
some constant N. At each step, these individuals reproduce independently. Only
the N rightmost children survive to reproduce on the next generation. Bérard and
Gouéré studied the speed at which the cloud of individuals drifts in [BG10], assuming
the tails of the displacement decays at exponential rate; Bérard and Maillard [BM14]
took interest in the case of heavy tail displacements. We offer here some interpolation
between these two models, considering branching random walks in which the critical
spine behaves as an a-stable random walk.

NoTA: This chapter is mainly extracted from the article N-Branching random walk with
a-stable spine, available on arXiv:1503.03762.

6.1 Introduction

Let £ be the law of a random point process on R. Brunet, Derrida et al. introduced in
[BD97, BDMMO7| a discrete-time branching-selection particle system on R in which the
size of the population is fixed to some integer N. This process evolves as follows: for any
n € N, every particle in the n'" generation dies giving birth to children around its current
position, according to an independent version of a point process of law £. Only the N
new individuals with the largest position are kept alive and form the (n + 1)* generation
of the process. We write (Y (1),... XV (N)) for the positions at time n of particles in the
process, ranked in the decreasing order.

In [BG10], Berard and Gouéré proved that under some appropriated integrability con-
ditions, the cloud of particles drifts at some deterministic speed

N (0 zN(N)

UN:nErJJraOO - :nETOOT a.s., (6.1.1)
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and obtained the following asymptotic behaviour for vy as N — 400

C

~ 1.2
N-oo (log N2’ (6.1.2)

Voo — UN

in which C is an explicit positive constant that depends only on the law £. Their arguments
are based on precise computations on a branching random walk, defined below; and a
coupling argument recalled in Section 6.4.2.

A branching random walk with branching law £ is a process defined as follows. It
begins with a unique individual located at position 0 at time 0. At each time k£ € N, each
individual alive in the process at time k dies giving birth to children. The children are
position around their parent according to i.i.d. point processes with law L.

We write T for the genealogical tree of the process. For u € T, we denote by V(u) the
position of u, by |u| the time at which w is alive, by wu the parent of u (provided that w
is not the root of T) and by uy the ancestor alive at time k of u. We set (u) the set of
siblings of w i.e. the set of individuals v € T such that 7v = mu and v # u. We observe
that T is a (random) Galton-Watson tree with reproduction law #£L, and that (T, V) is
a (plane rooted) marked tree that we refer to as the branching random walk.

The point process L is supposed to verify some integrability assumptions. We write L
for a point process with law £. We assume in this chapter that the Galton-Watson tree
T is supercritical and survives a.s., i.e.

E[#L]>1 and P (#L=0)=0. (6.1.3)

We suppose the point process law £ to be in the stable boundary case, in the following
sense:

E

Zef] =1, (6.1.4)

leL

and the random variable X defined by

P(X<z)=E

> 1{@<I}e£] (6.1.5)

el

to be in the domain of attraction of a stable random variable Y verifying P(Y > 0) € (0, 1).
Note that if E(]X|) < +oo, this assumption implies E(X) = 0. In this case, the point
process is in the boundary case, as defined in [BK05]. Up to an affine transformation
several point processes laws verify these properties, adapting the discussion in [Jafl2,
Appendix A] to this setting.

The following result, that gives a necessary and sufficient condition for X to be in the
domain of attraction of Y, can be found in [Fel71, Chapter XVII]. Let o € (0, 2] be such
that Y is an a-stable random variable verifying P(Y > 0) € (0,1). We introduce the
function

L' z— 2% %E [Y21{|Y|§:c}] . (6.1.6)

This function is slowly varying!. We set

xa
b :inf{:ﬂ>0: :n}. 6.1.7
1. i.e. for all A > 0, limy_s 4o %@? -1
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The random variable X is in the domain of attraction Y if and only if writing (S,,) for a
random walk with step distribution with the same law as X, f—: converges in law to Y.

As Y is an a-stable random variable, there exists an a-stable Lévy process (Y;, ¢t > 0)
such that Y7 has the same law as Y. By [Mog74, Lemma 1], we define

1 1
= li —— < —.s< . .
Co=lim_— logP (\YS\ <gos _t) € (0, +0) (6.1.8)

We introduce an additional integrability assumption to ensure that the spine in the
spinal decomposition —see Section 2.1- has the same behaviour as a typical individual
staying close to the boundary. We assume that

. @ Y , o
a:ggloo L*(x) E KEZLQ 1{108;(2@’@ et _Z)>"E}] =0, (6.1.9)
and that
2
E [maxﬁ < 400. (6.1.10)
leL

Condition (6.1.10) is not expected to be optimal. It is used to bound in a crude way
from below the minimal position in the branching random walk with selection of the N
rightmost individuals.

Theorem 6.1.1. Under the previous assumptions, the sequence (vy, N > 1) described in
(6.1.2) exists and verifies
L*(log N)

UN ~ —C—.
N—+00 (log N)«
Examples. We present two point process laws that satisfy the hypotheses of Theorem
6.1.1. Let X be the law of a random variable on R. We write A(f) for the log-Laplace
transform of X. We assume there exists #* > 0 such that A(0*) = log2, and a > 1
verifying

P(X >z) ~e ogma7l

In this case, there exists y := E (X e X ) /2 such that the point process £ defined as

the law of a pair of independent random variables (Y7, Y2) which have the same law as
0* (X — p) satisfies the hypotheses of Theorem 6.1.1.

Let v, be the law of an a-stable random variable Y such that P(Y > 0) € (0,1). If £
is the law of a point process on R with intensity v(dx)e™, then L satisfies all assumptions
of Theorem 6.1.1, and the spine of such a branching random walk is in the domain of
attraction of Y.

The rest of the chapter is organised as follows. In Section 6.2, we introduce the spinal
decomposition, that links the computation of additive branching random walk moments
with random walks estimates; and the Mogul’skii small deviations estimate for random
walks. In Section 6.3, we use these two results to compute the asymptotic of the survival
of individuals above a killing line of slope —¢, using the same technique as [GHS11]. This
asymptotic is then used in Section 6.4 to prove Theorem 6.1.1, applying the methods
introduced in [BG10].
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6.2 Useful lemmas

6.2.1 The spinal decomposition

The spinal decomposition is a tool introduced by Lyons, Pemantle and Peres in [LPP95]
to study branching processes. It has been extended to branching random walks by Lyons in
[Lyo97]. It provides two descriptions on a law absolutely continuous with respect to the law
P, , of the branching random walk (T, V + a). More precisely, we set W,, = ZM:n eV (W
and F,, = o(u, V(u),|u| <n) the natural filtration on the set of marked trees. We observe
that (W,) is a non-negative martingale. We define the probability measure P, on F
such that for any n € N,

dP,
dP, 7

= e "“W,. (6.2.1)

We write E, for the corresponding expectation.

We construct a second probability measure P, on the set of marked trees with spine.
For (T, V) a marked tree, we say that w = (w,,n € N) is a spine of T if for any n € N,
|wp| =n, w, € T and (wy)p—1 = wyp—1. We introduce

dL '
— =), (6.2.2)
L lel

another law of point processes. The probability measure f’a is the law of the process
(T, V,w) constructed as follows. It starts at time 0 with a unique individual wp located
at position a. It makes children according to a point process of law L. Individual w; is

chosen at random among children u of wy with probability 5 eV ()
|

SR LOR At each generation
v|=1

n € N, every individual v in the n'" generation dies, giving independently birth to children

according to independent point processes, with law L if u = w,, or law £ otherwise. Finally,
Wp41 is chosen among children v of w, with probability proportional to e¥(¥).

To shorten notations, we write P = Py, P = P(. The spinal decomposition links laws
P and P.

Proposition 6.2.1 (Spinal decomposition). Under assumption (6.1.4), for any n € N,
we have

f)a 7, = Fa

Fn

Moreover, for any z € T such that |z| = n,

f’a (wy, = 2| Fp) =

and (V(wy),n > 0) is a random walk starting from a, with step distribution defined in
(6.1.5).

An immediate consequence of Proposition 6.2.1 is the celebrated many-to-one lemma.
Introduced by Peyriere in [Pey74], this lemma links an additive moment of the branching
random walks with a random walk estimate. Given (X,,) an i.i.d. sequence of random
variables with law defined by (6.1.5), we set .S, = So+3_7_; X; such that P(Sy = a) = 1.
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Lemma 6.2.2 (Many-to-one lemma). Under assumption (6.1.4), for any n > 1 and
measurable non-negative function g, we have

E, Z g(V(u1)7V(un))

lul=n

=B, [e"g(S1, 5)]- (6.2.3)

Proof. We use Proposition 6.2.1 to compute

E, ZQ(V(U1)7"'V(UH)) =E,

|ul=n

_ ]j]a [ea—V(wn)g(V(wl)’ o ,V(wn))] .

We now observe that (S,,n > 0) under P, has the same law as (V (w,),n > 0) under P,,
which ends the proof. O

The many-to-one lemma can be used to bound the maximal displacement in a branch-
ing random walk. For example, for all y > 0, we have

+00
EY 1{V<u>zy}1{V<uj><y,j<|u}] => E

ueT k=1

> 1{V<u>2y}1{v<uj><y,j<|u}]
|u|=k

+00
= Z E [e_skl{Ska}l{Sa‘@J“}}
k=1

+o0

<e VY P(Sk>y. S <y, j<k)
k=1

<e Y.

By the Markov inequality, this computation leads to

P (sup M, > y) <supP(M, >y) <e Y. (6.2.4)
neN neN

Using the spinal decomposition, to compute the number of individuals in a branching
random walk who stay in a well-chosen path, it is enough to know the probability for a
random walk decorated by additional random variables to follow that path.

6.2.2 Small deviations estimate and variations

Let S be a random walk in the domain of attraction of an a-stable random variable
Y. We recall that
) b
* o a— n _
L (u) = U E(Yl{|y|§u}) and L*(bn) =N

For any z € R, we define P, in a way that S under law P, has the same law as S + z
under law P. The Mogul’skii small deviation estimate enables to compute the probability
for S to present typical fluctuations of order o(by,).
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Theorem 6.2.3 (Mogul’skil theorem). Let (a,) € RY be such that

. ) a
lim a, = 400, lim — =0.
n—-+00 n—+o00 Oy,

Let f < g be two continuous functions such that f(0) < 0 < ¢g(0). If P(Y <0) € (0,1)
then

agy S ; _ 1 d
oA T (@) 8 F Ln elr(d)o(d)] 0=y 5"] = —C*/O m
where Cy is defined in (6.1.8).

This result, proved in [Mog74], can be seen as a consequence of an a-stable version of
the Donsker theorem, obtained by Prokhorov. This result yields the convergence of the
trajectory of the random walk S, suitably normalized, to the trajectory of an a-stable
Lévy process (Yi,t € [0,1]) such that Y] has the same law as Y.

Theorem 6.2.4 (Prokhorov theorem [Pro56)). If f—: converges in law to a stable random
variable Y, then the process (Slgizﬂ,t € [0,1]) converges in law to (Yz,t € [0,1]) in D([0,1])
equipped with the Skorokhod topology.

We first note that the Mogul’skii estimate holds uniformly with respect to the starting
point.

Corollary 6.2.5. With the same notation as Theorem 6.2.3, we have

a

p S iy o] o [ s
sy [ € 7000 <5 < = - [

Proof. Observe in a first time that if y & [a, f(0), a,g(0)], then

P, [ 2 e (g0 < <0 =0

an

We now choose § > 0, and write K = [g(o)gf(o)L we have
S j j .
zggp Lbn €[f(%),9(£)],0<5 < n} < inj;(iﬂf( 0)+k8,7(0)+(k+1)s (f+ 9),

where

Mo(fig)= swp P[22 € (f(2)o(.0<] <n]

yE€[zan,x’'an]
<P [fj €[f(d) —a',g() —a,0<j < n] :
Therefore, for all k£ < K, we have

oY 1 d
lim sup%logﬂf( 0)+k6,£(0)+(k+1)5 (f> 9) < /o (g(s) — f?s) +6)’

n—-+oo nL*
which leads to

o S
hmsupailogsupP 2i Y

n—s+oo NL*(an) yeR an € [f(%)ag(l)] 0<5< n}

<-0. || Gor=strar

We let 6 — 0, which concludes the proof, as the lower bound is a dlrect consequence of
Theorem 6.2.3. ]
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Using an adjustment of the original proof of Mogul’skii, one can prove a similar estimate
for enriched random walks. We set (X,,,&,) a sequence of i.i.d. random variables on
R x Ry, with X7 in the domain of attraction of the stable random variable Y, such that
P(Y > 0) € (0,1). We denote by S,, = Sy + X1 + - -+ X,,, which is a random walk in the
domain of attraction of Y. The following estimate then holds.

Lemma 6.2.6. Let (a,) € RY be such that limy,_ 4o 72 =0. Weset E, ={§ <n,j<n}

and we assume that ”

lim
n—1>+oo L* (an)

P({ >n) = (6.2.5)

There exists Cy > 0, given by (6.1.8), such that for any pair (f,g) of continuous functions
verifying f < g, for any f(0) < x <y < g(0) we have

aO{

: n . Sj .
By e P (€ imia] 50 50)
—_C, /1 _ds
o (9(s) = f(s))*

Proof. We assume in a first time that f, g are two constant functions. Let n > 1, f <z <
0<y<gand f <2 <y < g, we denote by

PEY(f0) = it P, (el L elfgli<nE). (620
2€[z,y] an Aan,
Let A > 0 and r, = {AL*‘I(Z )J. We divide [0,n] into K = {%J intervals of length r,.

For any k < K, we set my = kr, and mgy1 = n. Applying the Markov property at time
mg,...m1, and restricting to trajectories which are, at any time my in [x an, Y an], we
have

z y a:’ ' a:’,y' K
P (f7 ) x,?; (f7 g) (T‘-x/’y/ (f7 g)) ’ (627)
where we set

(o) = it P, (52 € oy) 2 € [fig)d < B ).

z€[z,y] n n

Let 0 > 0 be chosen small enough such that M = [ -‘ > 3. We observe easily that

/

y
(f7 ) 0<mlgM m+m5 er m+1 (f7 )

> Join g8 HmEDSY DI (f 4 (m +1)8, g + (m — 1)d). (6.2.8)

Moreover, we have

S, .S
MY (.9) = Poa, (22 € 69, 22 € [£,9). B, )
S, .S
ZPmn(a"G[m,y],a]e[f,g])—rnP(glzn).

By (6. 2 5), we have lim, 0o m,P(§1 > n) = 0. Applying Theorem 6.2.4, the random

walk (=22t Sirnt] ,t € [0, A]) converges as n — +oo under law P,,, to a stable Lévy process
(x+ Y%, t'e [O A]) such that Y7 has the same law than Y. In particular

lim inf 77V (f,9) > Po(Ya € (2',9/), Ya € (f,9),u < A).

n—+0o00
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Using (6.2.8), we have

hIIllIlfﬂ'z’y(f, g) > mm Poims(Ya€e (' +68,y —98),Yue(f+6,9—0),u<A).

n—-+00 Y 0<m
As a consequence, recalling that K ~ %ﬁ‘;”’), (6.2.7) leads to

. . (Ig z’,y’
%&gg m log P7 .Y (f,9)

1
> - / I - <
= 7 ouin logPoyms(Ya € (2" 0,y —0).Yu € (f+0,9-0),u<A). (6.29)

By [Mog74, Lemma 1], we have

1 o C,
— < = -
Jim -~ log, P(Y: € (7,y),Ys € (f,9),s < 1) T

where C, is defined by (6.1.8). Letting A — 400 then 6 — 0, (6.2.9) yields

a® C.
lim inf —2—log P¥V (f,g) > —————
() B T (F:9) 2 =0

6.2.10
n—+oo nL*(ay) ( )

which is the expected result when f, g are two constants.

In a second time, we consider two continuous functions f < g. Let f(0) < x <y < ¢(0).
We set h a continuous function such that f < h < g and h(0) = L;ry Let € > 0 such that
6e < infyc(,1) min(g; — hy, hy — fi). We choose A > 0 such that

sup ’ft - fs‘ + ’gt - gs‘ + ’ht - hs‘ <e.
lt—s|<%

and for a < A, we write m, = |an/A] and I, o = [fo/a+€, gaja—e]. We define Jo 4 = [z, y],
and for 1 <a < A, Jya = [hgja — €, haya +¢]. Applying the Markov property at times
mA_1,..., M1, we have

) S; .
inf P, (a] € [fj/n?gj/n} J =, En)

z€[zan,yan]

A-1
S S
> | I inf Pgq, < ER Ry Jay1,4,— €1g 4,5 <mgy1 — ma,EmaHmu) .
a0 x€Jg A Qp, an

Therefore, using equation (6.2.10), we have

- nL*(ay) S; 1 1
=AM —J . . < > _—
L s k’gp(an € [Fiym i)+ B ”> ;)O (gat — far — 26)

As the upper bound is a direct consequence of Theorem 6.2.3, we let A — 400 and € — 0
to conclude the proof. O

6.3 Branching random walk with a barrier
In this section, we study the asymptotic, as n — +o0 and € — 0 of the quantity

o(n,e) =P (3ul =n:Vj<n, V() > —cj). (6.3.1)
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The asymptotic behaviour of p(00, €) has been studied by Gantert, Hu and Shi in [GHS11]
for a branching random walk with a spine in the domain of attraction of a Gaussian random
variable. To do so, they studied the asymptotic behaviour of g(n, ) for ¢ ~ On—2/3. Using
the same arguments, we obtain sharp estimates on the asymptotic behaviour of o(n,¢) for
€~ 9[\(71)71_11%17 where A is a well-chosen slowly varying function.

We apply the spinal decomposition and the Mogul’skii estimate to compute the number
of individuals that stay at any time k& < n between curves a, f(k/n) and a,g(k/n), for an
appropriate choice of (a,), f and g. We note that

—S,
> L uelanfGmmatimlicnt | = B e s elan G /m anstim i<n)]

lu|=n
~ e IWP (8 € [anf(j/n), ang(j/n)),j < n)
nL*(ay) 1 ds
%exp(—a g(1) = ———=C / >
(1) ap “Jo (9s — f5)*
This informal computation hints that to obtain tight estimates, it is appropriate to choose
a sequence (ay) satisfying a, ~n— 100 % and functions f and g verifying
vt € [0,1], (1) + C. / — 4(0), (6.3.2)
However, the differential equation g; = —Ci (g — 9t)°‘ being uneasy to solve as a function

of t and # we use approximate solutions for (6.3.2).
We define the sequence

xa—i—l
=i > N = . -J.
VneNa, =inf<x >0 @) n (6.3.3)

and we introduce the function

(0,40) — R

q) . )\ s C. by (634)

A« a+1"°

Note that ® is a C* strictly decreasing function on (0, +00), that admits a well-defined
inverse ®~!'. The main result of the section is the following.

Theorem 6.3.1. Under the assumptions of Theorem 6.1.1, for all § > 0 we have

& 1
Cl < hmmflogg(n 0— ) < 11msuplogg(n 0— ) < —-d74(9).

o N—+00 Gy, n—+oo Qn

Remark 6.3.2. By inversion of regularly varying functions, for all u > 0 we have

1
Al un| ~n—+oo potlay.

Consequently, Theorem 6.3.1 implies that for any 6 > 0, for all n > 1 large enough,

1nJ,C*CZL>

< lim sup L log o ({(Q/C*)aaﬂnJ ,C—

n—+oo An

-1< hmmf—logg ({(O/C*)ai

n—-+o0o ’I’L
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1
We observe that limg_, o 95@_1(9) = C2, therefore

1 a 1 a
lim li f—1 — )= lim li —1 — ) =-1
i oyt -og (), C:52) =l tnsup 2 loge (), .57
(6.3.6)

We prove separately the upper and the lower bound. To prove Theorem 6.3.1, we prove
separately an upper bound in Lemma 6.3.3 and the lower bound in Lemma 6.3.4. The
upper bound is obtained by computing the mean number of individuals that stay above
the line of slope —6% during n units of time.

Lemma 6.3.3. Under the assumptions of Theorem 6.1.1, for all @ > 0 we have

hmsupilogg <n 0— ) < -o71(9).

n——+oo Qn

Proof. Let 6 > 0 and A\ > 0, we set g : t — —0t + A\(1 — t)a%rl For j < n, we introduce

the intervals
1" = [~0anj/n, ang(j/n)] .

We observe that
0 (n,@ij) <P (HM =n:Vj <n,V(u) > —Ganf)
<P (3ful <n: V() > ang(lul/n), V() € I, j < |u]).
Therefore, defining

Yo= 2 Ly >ang<\u\/n>}1{ Veer j<lul |’

lul<n

by the Markov inequality we have ¢ (n,0%) < E(Y;,). Applying Lemma 6.2.2, we have

E |§|:k1{ V(uj EI(n)7]<k} {V(u)Zang(k/n)}]

(] iMB

E |e 1 1
‘ {Sjefj(-")aq} {Sk>“n9(’f/")}]

i
I

I
Mz

e s/manp (5, € 1M j < k).

B
Il

1

Let A € N, we set m, = [na/A| and go 4 = SUD,ca=1 at2] g(s), we have
A A

A—1 Mmg41

<> 3 e ’“/”‘Z"P(S el(),]<k>
a=0 k=mg+1
A-1
<n Z e Ja. AP (Sj € I](n),j < ma> ,
a=0

by the Markov inequality applied at time m,. Therefore, by Corollary 6.2.5, we have

1
limsup—logE(Y)< max ( 9a,A — C/ +98 )

< max (~gaa — Cula+1) [1 ~ (1-a/A)7]).
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Letting A — +00, as ¢ is uniformly continuous, we have

1 an, 1 1
lim sup — log o (n,@) < sup {Qt — M1 —t)a — Cy(a+1) [1 —(1- t)a+1”
n

n—+oo On t€[0,1]

< A+ sup Ot — (a+ 1)) [1- (1~ t)T}
te(0,1]

Note that ¢t — 1 — (1 — t)a+1 is a convex function with slope -5 at ¢t = 0. Therefore,

if we choose A = ®~1(f), the function ¢t — 0t — (o + 1)®()\) {1 - (1 —t)a 1} is concave
and decreasing. As a consequence

1
lim sup — log o (n 0— ) —A,

n—+oo Un

which concludes the proof. O

To obtain a lower bound, we bound from below the probability for an individual to
stay between two given curves, while having not too many children. To do so, we compute
the first two moments of the number of such individuals, and apply the Cauchy-Schwarz
inequality to conclude.

Lemma 6.3.4. Under the assumptions of Theorem 6.3.1, for all 8 > 0 we have

1
hmmflogg(n9 )_ Cj.

n—-+4oo an 05
Proof. For u € T, we introduce §{(u) = log 3_,cow) eV =V where
Qu)={veT:mv=nu and v #u}

is the set of siblings of u. Note that (6.1.9) implies

i

P (¢(wy) > x) = 0. (6.3.7)
Let # >0, A >0 and ¢ > 0. For j < n, we set Ij(n) = [—anbj/n,an(\ —6j/n)] and
Xo= 21 ) VHE) <dan j<n)
o Ve J<”} S

‘We observe that

0 (n,0an> P (3lul =n:V(uj) > —anbj/n,j <n)
n
>P <3|u] =n:V(u;) € I](n),j < n)
>P (X, >1),
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In a first time, we bound from below E(X,,). Using Proposition 6.2.1, we have

1

E(X,) = — 1 Lie(u,s ;
(Xn) Wy, |uZ:n {v(uj)efj."’,jsn} {5(“J)<5“"’J<”}]

o

V(u

>
M

(u=wnlF ”)1{v<uj>ez;n>,jgn}1{s<uj>saan,j3n}]

E e V(v | P , .
€ {V(wj)EI]("),an} {E(wj)géa”’jén}:|

Let € > 0, we have

- —V(wn
E(X,)>E ¢V )1{V(wn)<<—9+£)“"}1{v<wj>ez<n> j<n}1{£(wj)<6amj<n}]
j W=
> 079 P [V(wy) < (=0 +£)an, V(wy) € IV €(wy) < dan, j < n].

We introduce 0 < z < y and A > 0 such that ls(V(wl) € [z,y],£(w1) < A) > 0. Applying
the Markov property at time p = |ea, |, for any n > 1 large enough we have

o~

P [V(wj) € Ij(n),ﬁ(wj) <dan,j < n]
> P(V(wi) € [a,y],(wr) AP inf P [V(wy) € 1Y), €(wy) < dag, j <n—p|

zE€[xean, yean]

As (6.3.7) holds, we apply Lemma 6.2.6, we have

lim inf — logE( Xp)>0—c— % +elogP(V(w1) € [z, 9], &(wy) < A).

n—+00 Ay

Letting ¢ — 0, we have

hmmf—logE( n) >0 — Q

n—+o0o a, Ao
We now bound from above the second moment of X,, using once again the spinal
decomposition. Observe that

E(X;)=E nz: {viper? j<n} {s(uj)saan,an})

—V(u)p
X, Y e VP (w, = ulF,)1 {V(uj)el;n)ngn}1{s<uj><6ama'<n})

=E
lu|l=n
=E

—V(wn) x 1 Lietw, j
e n {V(wj)EI](n),jS’fl} {&(wjy)<ban,j<n}

Oan 1
ScmE an{V(wj>ez;n>,jgn}1{§<wj><6ama'<n}] -

We decompose the set of individuals counted in X, under law P according to their most
recent common ancestor with the spine w, we have

A e e iman £ 3 Y Al

J=lueQ(wjy)
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where ' > « means v’ is a descendant of © and

AMu)= 3 1{v(u;)ef;”),jgn} {e))<dan,j<n}-

|v/|=n,u' >u

Let k <n and u € Q(wyg). Conditionally on G, the subtree rooted at u with marks V'
is a branching random walk with law Py (,), therefore

E(A(u)\g)gva)( > 1{V(u,)elk ,J<n_k})

|w|=n—k

Viu —S,_
<" By, (e kl{s e, j<n— k}]

< VW™ Wansup P (55 € 17,
z€R

j<n— k) .
Let A € N, we set m, = [na/A] and

V,a=supP, (S e 1w

<n—m).
+7.7_ a
z€R Ma™J

For all k < mgy1 and u € Q(wy), we have

E (A(u)|G) < "®Webang, ) 4.

Therefore
Ma+1
E 1{V( )GI( )]<n} {&(wy)<dan, ]<n}k ;+1 ueﬂz(wk)A
Ma+1
< Y E o1 A(u)
(n) {§(wr)<dan}
k=mg+1 {V )GIJ ’jgn} ueQ(wg) "
A E(wn)+V ()
<V, E RS | w a
a2 B ) (et son)
<nWq1,4 W0 4P/ A0Fo)an
Consequently, applying Corollary 6.2.5, we have
9 C.
lim sup — logE(X ) < max)\ +(2-a/A)O - 2)+6
n—+oo an A%

§/\+26—2%+6,

as soon as 0 > %
Using the first and second moment estimates of X,,, we have

hmmflogg(n 0— ) > —-A—0.

n—+00 Ay

Letting 6 — 0 and A — (H/C*ﬁ concludes the proof. O
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Remark 6.3.5. If we assume (f?, g%) to be a pair of functions solution of the differential
equation

f(t)=—0t
9(t) = =0+ C. [} i
using similar estimates as the ones developed in Lemmas 6.3.3 and 6.3.4, we prove that
for all 0 € R
. 1 an 0
lim —logo(n,0— ) =—g"(0).
n

n—+00 Ay,

Theorem 6.3.1 is used to obtain closed bounds for ¢?(0), that are tight for large 6.

6.4 Speed of the N-branching random walk

In [BG10], to prove that lim,_, . (log N)?vy = C for a branching random walk in the
usual boundary case, the essential tool was a version of Theorem 6.3.1, found in [GHS11].
The same methods are applied to compute the asymptotic behaviour of vy under the
assumptions of Theorem 6.1.1. Loosely speaking, we compare the N-branching random
walk with NV independent branching random walks in which individuals crossing a linear
boundary with slope —vy defined by

L*(log N)

VN ‘= C*W

(6.4.1)

By (6.3.6), for any h > 0 large enough and N > 1 large enough, o (h%, VN) Ay %

a+1
Consequently, % is expected to be the correct time scale for the study of the process.

In this section, we give in a first time a more precise definition of the branching-
selection particle system we consider. We introduce additional notations that enables
to describe it as a measure-valued Markov process. In Section 6.4.2, we introduce an
increasing coupling between branching-selection particles systems, and use it to prove the
existence of vy. Finally, we obtain in Section 6.4.3 an upper bound for vy and in Section
6.4.4 a lower bound, that are enough to conclude the proof of Theorem 6.1.1.

6.4.1 Definition of the N-branching random walk and notation

The branching-selection models we consider are particle systems on R. It is often
convenient to represent the state of a particle system by a counting measure on R with
finite integer-valued mass on every interval of the form [z, +00). The set of such measures
is written M. A Dirac mass at position z € R indicates the presence of an individual
alive at position z. With this interpretation, a measure in M represents a population
with a rightmost individual, and no accumulation point. For N € N, we write My for
the set of measures in M with total mass N, that represent populations of N individuals.
If 4 € My, then there exists (21, ...,z,) € RV such that u = Z?ﬂ Oz

We introduce a partial order on M: given u,v € M, we write u < v if for all z € R,
p([z, +00)) < v([z, +00)). Note that if u < v then p(R) < v(R). A similar partial order
can be defined on the set of laws point processes. We say that £ < L if there exists a
coupling (L, f/) of these two laws, such that L has law L, L has law £ and

Z(Sg < Z(S’[ a.s.

lel el
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Let N € N. We introduce a Markov chain (X,n > 1) on My that we call the
branching random walk with selection of the N rightmost individuals, or N-BRW for short.
For any n € N, we denote by (zY(1),...2)(N)) € RY the random vector that verifies

n

N
j=1

Conditionally on XV, XN+1 is constructed as follows. We introduce N i.i.d. point pro-
cesses (L}, ..., LN) with law £, and we set

N
Yn]\il = Z Z 5:vﬁ(z)+€1 EM,

j=1rieLi

which is the population after the branching step. We set y = sup{z € R : Ynjil([m, +00)) >

N} and P =Y N ((y,+00)). Then X}N,; = Yn]YH\(y,Jroo) + (N — P)d,. For n € N, we set

Fn=0(X jN ,7 < n) the natural filtration associated to the N-BRW. Whereas this is not
done in this chapter, note that genealogical informations can be added to this process —as
long as any ambiguity that might appears, when deciding which of the individuals alive
at position y are killed, is settled in a F-adapted manner.

6.4.2 Increasing coupling of branching-selection models

We construct here a coupling between N-BRWs, that preserves the order <. This
coupling has been introduced in [BG10], in a special case and is a key tool in the study of
the branching-selection processes we consider. It is used to bound from above and from
below the behaviour of the N-BRW by a branching random walk in which individuals that
cross a line of slope —vyy are killed. In a first time, we couple a single step of the N-BRW.

Lemma 6.4.1. Let 1 < m < n and p € Mp, i € My, be such that p < . Let L X L
be two laws of point processes. For any 1 < M < N, there exists a coupling of X the
first step of a M -BRW with reproduction law L starting from p with )~({V the first step of
a N-BRW with reproduction law L starting from [i, in a way that XM < X{V a.s.

Proof. Let (L, E) be a pair of point processes such that > ,c; 0/ < Zéef d¢ a.s., L has law
L and L has law £. We set ((Ly, Ej,j > 0) i.i.d. random variables with the same law as
(L,L). We write p=>1" 6,, and gt = > ;"1 0y, in a way that (z;,j < m) and (y;,5 < n)
are ranked in the decreasing order. We set

/’Ll = Z Z 6$¢+f¢ and ﬁl = Z Z 5yi+éi~

i=1picL; =1y T,

Note that p! < v! a.s. N
Moreover, setting X for the M individuals in the highest position inN/J1 and X{V the
N individuals in the highest position in fi'. Once again, we have XM < X}V as. O]

A direct consequence of this lemma is the existence of an increasing coupling between

N-BRWs.

Corollar}i 6.4.2. Let L < L be two laws of point processes. For all1 < M < N < 400,
if XM < X~0N, then there exists a coupling between the M-BRW (XM with law L and the
N-BRW (XN with law L verifying

Vn € N, X,y < XN as.

n
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Using this increasing coupling, we prove that with high probability, the cloud of par-
ticles in the N-BRW does not spread.

Lemma 6.4.3. Under the assumptions (6.1.3), (6.1.4) and (6.1.10) there exist C' > 0 and
a > 0 such that for all N > 2,y >1 and n > C(log N +y),

NlogN)2

P (o) —al(V) 2 ) <0 (-

Proof. Let n € Nand k < n, we bound z2 (1) — 2, (1) from above and x) (N) — 22, (1)
from below to estimate the size of the cloud of particles at time n. In a second time,
choosing k appropriately we conclude the proof of Lemma 6.4.3.

We first observe that the N-BRW starting from position XT]LV_k can be coupled with
N ii.d. branching random walks ((T7,V7),j < N) with (TY,V7) starting from position
zN . (4), in a way that

N
X< D v

J=1ueTI |ul=k

As a consequence, by (6.2.4), for any y € R,

P (xff(l) — 2l (1) > y) <P (51%% B VI (u) > y> < Ne™V. (6.4.2)

We now bound from below the displacements in the N-BRW. Let L be a point process
with law £. By (6.1.3), there exists R > 0 such that E (Z%L 1{22—R}) > 1. We denote
by Lgr the point process that consists in the maximal point in L as well as any other
point that is greater than —R. Using Corollary 6.4.2, we couple (X,fuin,n > 0) with the
N-BRW (XXN-E n > 0) of reproduction law Lg, starting from a unique individual located
at ¥, (1) at time 0 in an increasing fashion.

As XN < XN it XNE(R) = N, then x)f(N) < 2)Y(N). Moreover by definition
of Ly, the minimal displacement made by one child with respect to its parent is given
by min(—R,max L). For n € N, we write (), v a random variable defined as the sum
of n ii.d. copies of min(—R, max L). Observe that Qyy is stochastically dominated by

xiV’R (N). Consequently

P () (V) = 2l (1) < —y) <P (XTFR) < V) + P (Quv < ).

By (6.1.10), we have P(Qrn < —y) < Cka];/Q. Moreover, the process (X2-2(R),n > 0)
is a Galton-Watson process with reproduction law given by #Lg, that saturates at time

N. Consequently, using [FWO07] results, setting mp = E(#Lg) and o = _% we
have .
P (X)"H(R) < N) <C—.
(R < N) <o
We conclude that
k?N? N°
P (2N () =2l (1) <y) < O+ O (6.4.3)
y mhs

Combining (6.4.2) and (6.4.3), for all y > 1 and k € N we have

k2N? N
2 + ¢ ko ”
) mpg

P (2 (1) - 2} (N) > 2y) < Ne™¥ 4+ C
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Thus, setting k = {%J, there exists C' > 0 such that for any y > 1 and N > 1 large

logm
enough,

N log N)2N?2
P (2 (1) - 2 (N) > 2y) < Ne ™ + c(gy;

n

2
4 CNfaefaylong <C (NlOgN>

Y
O

Applying Lemma 6.4.3 and the Borel-Cantelli lemma, for all N > 2 we have

(1) — 2 (N)

lim % =0 as. and in L,
n—-+oo n
N
thus, if we prove that an(l) converges, the same hold for every individual in the cloud.

This is done in the next proof, using the Kingman’s subadditive ergodic theorem.

Lemma 6.4.4. Under the assumptions (6.1.3), (6.1.4) and (6.1.10), for all N > 1, there
exists vy € R such that for all j < N

=N ()
lim =ox a.s. and in L' (6.4.4)
n—-+4oo n
Moreover, if X{¥ = Né&y, we have
E(z) (1 E(zY
oy = inf E@ ) _ o B () (6.4.5)
n>1 n n>1 n

Proof. This proof is based on the Kingman’s subadditive ergodic theorem. We first prove

that if X" = Ndp, then (22 (1)) is a subadditive sequence, and (z2 (V)) is an overadditive
z (1) ;,;gy(N) (1) N(N)

one. Thus === and === converge, and lim % = lim © a.s. by Lemma 6.4.3. We

treat in a second time the case of a generic startlng value Xo € My using Corollary

6.4.2.

Let N € N, let (Ljn,j < N,n > 0) be an array of i.i.d. point processes with common
law £. We define on the same probability space random measures (X,],\{ ns 0 <k <n) such
that for all m > 0, (XN m+n> 1 = 0) is a N-BRW starting from the initial distribution Ndo.
For ny m > 0, we set X;]nvm = Néo. Let 0 < m < n, we assume that XT],\in = Zﬁvzl 53:%’"(]-),
with (22 ,(j)) listed in the decreasing order, is given. We define (z}) ,,,1(j),7 > 0), again
listed in the decreasing order, in a way that

oo
DB Z D G G
Jj=1 J=14;n€Ljn

N
and set an\’?nJrl =2 6xm o
For z € R, we write ¢, for the shift operator on M, such that v (1) = p(. —x). With
this definition, we observe that for all 0 < m < n we have

N N N
(prn( )Xn n+m XO,ner < @xévn(l)(Xn,ner)‘
As a consequence,
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We apply Kingman’s subadditive ergodic theorem. Indeed, (:U%m 4n(1),n > 0) is inde-

pendent of (:UkNJ(l),O < k <1< m) and has the same law as (:Ué\fn(l),n > 0). Moreover,
E(|:cévl(1)\) < 400 by (6.1.10). As a consequence, (6.4.6) implies there exists vy € R such

that N
g, (1
lim 0’n( ) =wvy a.s. and in Ll,
n—-+oo n
. E(=),.(1 .. . N (N E({ (N .
and vy = inf, ey w. Similarly, lim,, %#() = SUP,cN W a.s. and in L,

and (6.3.5) is verified. Moreover, by Lemma 6.4.3, these limits are equal.

We now consider the general case. Let (XV,n > 0) be a N-BRW. We couple this
process with YV and ZV two N-BRWs stating from N 5$N(1) and N 5xN( N) respectively,
such that for all n € N, ZYV < XN < VN, We have

Vi < N2V (N) < 2N () <2 (1) <y (5) < vh (1)

z) ()

-5 = UN a.s. and in L'. O

We conclude that for all j < N, lim,,_,

We now study the asymptotic behaviour of vy as N — +oo. To do so, we couple the
N-BRW with a branching random walk in which individuals are killed below the line of
slope —vn. Applying Theorem 6.3.1, we derive upper and lower bounds for vy.

6.4.3 An upper bound on the maximal displacement

To obtain an upper bound on the maximal displacement in the N-branching random
walk, we link the existence of an individual alive at time n with the event there exists
an individual staying above a line of slope —vy, during my units of time. The following
lemma is an easier and less precise version of [BG10, Lemma 2|, that is sufficient for our
proofs.

Lemma 6.4.5. Let v < K. We set (xn,n > 0) a sequence of real numbers with xo = 0
such that sup, ey Tit1 — 2z < K. For allm <n, if x,, > (n—m)v+ Km, then there exists
i <n —m such that for all j <m, x;y; —x; > vj.
Proof. Let (xy) be a sequence verifying sup;cy ziy1 — i < K. We assume that for any
i < n —m, there exists j; < m verifying z;1;, — x; < vj;. We set 09 = 0 and o341 = Jjoy -
By definition, we have

x0k+1 S (Uk+1 - O-IC)’U + x0k7
thus, for all &k > 0, z,, < orv. Moreover, as (o) is strictly increasing, with steps smaller
than m, there exists kg such that oy, € [n —m,n]. We conclude that

Tn < Tp = Toy, + Top < K(n—ok,) +vog, < Km+ (n—m)v.
O

The previous lemma can be used to extend the estimate obtained thanks to Theorem
6.3.1 from times of order (log N)®*! to times of order N°.

Lemma 6.4.6. Under the assumptions of Theorem 6.1.1, let XN be a N-BRW with
reproduction law L starting from Nég. For any e € (0,1), there exists § > 0 such that for
any N > 1 large enough, we have

o (1
P (LNNJ;) > —(1- 5)VN)) <N
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Proof. Let € € (0,1) and 6 > 0. By (6.3.5), for all n > 1 large enough we have

1 0 o a 0xd-1(0)
n——+oo Qn * Ce (1 — 5)&

B 0 o (log N)o+1
MmN = <(1—e)0*> L*(logN) |’

For any ¢ > 0 small enough, there exists d € (0,£'/2) such that for all # > 0 large enough
we have we have o(my, (1 — e)vy) < N~1+20) for all N > 1 large enough.

We set n = {N 5J. Observe the N-BRW of length n is built with n/V independent
point processes of law £ satisfying (6.1.4). If L is a point process with law £, we have

We set

PmaxL > z) <P (Z et > ex) <e "

lel

Therefore, setting K = (1 4+ 2J) log N, the probability there exists one individual in the
N-BRW alive before time n that made a step larger than K is bounded from above by
1— (1 _ N—(1+25))nN < N_(S.

We now consider the path of length n that links an individual alive at time n at position
xN (1) with is ancestor alive at time 0. We write y (k) for the position of the ancestor at
time k of this individual. With probability 1— N7, this is a path with no step greater than
K. As for N > 1 large enough, we have —(1 —e — d)vyn > —(n —mp)(1 —e)vy + Kmy.
By Lemma 6.4.5, for any N > 1 large enough we have

{Vk <n,yN(k+1) -y (k) SK}U{xfj(l) > —(1—(5—5)1/Nn}

{3 <n—my Yk < mu, G+ F) =y () 2 —(1 = )uwk} .

Consequently if #Y (1) > —(1—§—¢)vnn, there exists an individual in the N-BRW that
has a sequence of descendants of length my staying above the line of slope —(1 — §)vy.
This happens with probability at most nNo(my, (1 — ¢)vy). We conclude from these
observations that for any € > 0 and N > 1 large enough

P (:1:,];7(1) > —vn(l—06— s)n) < CN7°.
O

Proof of the upper bound of Theorem 6.1.1. We first observe that the maximal displace-
ment at time n in the N-BRW is bounded from above by the maximum of N independent
branching random walks. By (6.2.4), for all y > 0 and n € N we have P(z (1) > y) <
Ne Y.

Moreover, as (z

(1)) is a subadditive sequence, for all p > 1 we have

N1 zN(1
lim sup = (1) <E A a.s.
n—+oo n D

8
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For any € > 0 and y > 0, there exists § > 0 such that setting p = {N‘SJ we have

N

zp (1) zp (1)
UN < E[ 7 1{x5(1)2py}] +E | 1{3:{7\](1)

o elun(1-e) ]

+E|2Wq
p Az ()<—p(l—e)vn}|>

therefore

vy < / e (2 (1) > pz) dz +yP (20 (1) > —p(1 — )vw ) — (1 - e

N
<—e P4 yNO—(1—¢e)y.
p

Letting N — +o00 then € — 0, we conclude that

. vy (log N)® *
limsup —————2- < —C"*.
Nﬁ+olo) L*(log N) B

6.4.4 The lower bound

To bound from below the position of the leftmost individual in the N-BRW, we prove
that with high probability, there exists a time k < ny such that 2 (N) > —kvy. We use
these events as renewal times for a particle process that stays below the N-BRW.

Lemma 6.4.7. For any A > 0 and any € > 0 small enough, there exists 6 > 0 such that
for all N > 1 large enough,

(log N)ott s
< A— < — < - .
P(Vn_)\L*(logN) ,Zy (N) < —n(l+¢e)vy _exp( N )

Proof. For N € N and \ > 0, we set my = P\%J. Let € > 0, by (6.3.5), we have

}?Eféﬁ loglN logo(mn,(1+e)vy) > —(1+ 5)_é.
Consequently for any € > 0 small enough, there exists ¢ € (0, £1/2) such that for all N > 1
large enough we have o(my, (1 + d)vy) > ﬁ

Let L be a point process with law £. Using (6.1.3), there exists R > 0 large enough
such that E(#{¢ € L:¢> —R}) > 1. We consider the branching random walk in which
individuals that cross the line of slope — R are killed. By standard Galton-Watson processes
theory 2, there exists r > 0 and o > 0 such that for all N > 1 large enough the probability
there exists at least N individuals alive at time |alog N| in this process is bounded
from below by r. Thus for all N > 1 large enough, the probability there exists at least
N + 1 individuals alive at time my + |alog N| in a branching random walk in which
individuals that cross the line of slope —vn (1 + 2¢) are killed is bounded from below by
ro(my, (1 +¢e)vy).

2. see, e.g. [FWO07].
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We set By = {Vn <mpy + |alog N,z < —nuy(1 + 25)}. By Corollary 6.4.2, the
N-BRW can be coupled with N independent branching random walks starting from 0, in
which individuals below the line of slope —vy (1 + 2¢) are killed, in a way that on By, XV
is above the branching random walks for the order <. The probability that at least one
of the branching random walks has at least N + 1 individuals at time my + |alog N| is
bounded from below by

1— (1 —ro(my,(1+8vy))N > 1 —exp(—N%?),

for any N > 1 large enough. On this event, the coupling is impossible as XV has no
more that N individuals alive at time N, thus By is not satisfied. We conclude that
P(By) < e N% O

Lower bound of Theorem 6.1.1. The proof is based on a coupling of the N-BRW X with
another particle system Y%, in a way that for any n € N, YV < XV, Let (Ljn,j <
N,n > 0) be an array of i.i.d. point processes with law £. We construct XN such that
L;, represents the set of children of the individual N (5), with XV = Ndy. By Lemma
a+1
6.4.7, for any € > 0 small enough, there exists § > 0 such that setting my = {%J,

for any N > 1 large enough we have
N §
P (Vn <mpn,z, (N) < —-n(l+ E)I/N) < exp (—N ) .

We introduce Ty = 0 and YON = N&y. The process YV behaves as a N-BRW, using
the same point processes (L) as X until time

T; = min (mN,inf {j >0: ij(N) > —jun (1 —l—s)}) .

We then write Y:,{L = N5y}€V(N)a i.e. just after time 77, the process YV starts over at time
T1+ from its leftmost individual. Then for any k € N, the process behaves as a N-BRW
between time Ty+ and Ty, defined by

Tyt1 = Ti + min (mN,inf {j >0: y%d_j(N) - yqj\i(N) > —jun(l —|—€)}> )

We observe easily that for all k € N, we have Y < XV a.s. and in particular yi¥ (N) <
As (T, — Tip—1,k > 1) is a sequence of i.i.d. random variables, Lemma 6.4.4 leads to

N
. I,
lim —* =E(T)uvy as.
n—+o00

Moreover, as (yJT\; (N) — y%ﬂ vy k= 1) is another sequence of i.i.d. random variables, by
law of large numbers we have

lim 22 = E(yN (N)) as.

n—-+oo k;

Combining these two estimates, we have
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We now compute

E(y (V) = E (y8 (Mg cmyy ) + B (45 (N)irmy )
=B (—un(1+ )iz cmyy) + B (U8 (V)1 gr—myy )
> —un(1+ &) E(T1) + B (45 (N) 1z 2myy )
Note that for all j < T3, we have YjN =X ]N . Moreover, by Corollary 6.4.2, we couple XV

with a N-BRW X in which every individual makes only one child, with a displacement of
law max L. Consequently, we have

which leads to
mpy
vy > —vn(l+e)+E [(Z xréiﬁmax ij) 1{T1mw}] .
—17<

Using the Cauchy-Schwarz inequality and (6.1.10), we have

my
E l(Z m<i]{[1maij,n> I G Ap—

We apply Lemma 6.4.7 and let N — +o0o then § — 0 to prove that

> —CNmNP (T1 = mN)1/2 .

.. ~un(log N)®
1 f——=— > _C,.
N L*(logN) =
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CHAPTER 7

Maximal displacement in a
branching random walk

“J’ai une mémoire admirable, joublie tout.”

Alphonse Allais

Abstract

This chapter is devoted to the study of the maximal displacement in the branching
random walk. We prove here that the asymptotic this quantity is composed of a first
ballistic order, plus a logarithmic correction and stochastically bounded fluctuations.
This result, proved in [HS09] and [ABR09] under some additional integrability con-
ditions, is given here under close-to-optimal conditions. Borrowing ideas of [AS10],
we obtain a simple proof for the two first order of the asymptotic of the maximal
displacement in a branching random walk.

7.1 Introduction

A branching random walk on R is a process which starts with one individual located at
the origin at time 0, and evolves as follows: at each time k, every individual currently in
the process dies, giving birth to a certain number of children, which are positioned around
the position of their parent according to independent and identically distributed versions
of a point process.

Under some mild integrability conditions, the asymptotic behaviour of the maximal
displacement is fully known. Hammersley [Ham74], Kingman [Kin75] and then Biggins
[Big76] proved this maximal value grows at linear speed. In 2009, Hu and Shi [HS09] ex-
hibited a logarithmic correction in probability, with almost sure fluctuations; and Addario-
Berry and Reed [ABR09] showed the tightness of the maximal displacement, shifted around
its median. More recently, Aidékon [Aid13] proved the fluctuations converge in law to some
random shift of a Gumbel variable.

Aidékon and Shi gave in [AS10] a simple way to obtain the asymptotic behaviour of
the maximal displacement up to an o(logn) order. The aim of this chapter is to expose a
slight refinement of their methods to prove the asymptotic behaviour up to terms of order
1. Moreover we work here with more general integrability conditions, similar to the ones
used in [Aid13].

The upper bound of the asymptotic behaviour is obtained by “bending the boundary”
of the branching random walk. The idea follows from an heuristic bootstrap argument,
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which is detailed in Section 7.4.1. The close-to-optimal integrability conditions arise nat-
urally when using the spinal decomposition of the branching random walk, introduced by
Lyons [Lyo97] and recalled in Section 7.2. We introduce some ideas that are used in the
further chapters, in a more complicate setting. Thus this chapter can be seen as a sandbox
for later computations.

We recall that in this thesis, ¢, C' are two positive constants, respectively small enough
and large enough, which may change from line to line, and depend only on the law of the
random variables we consider. For a given sequence of random variables (X,,,n > 1), we
write X,, = Op(1) if the sequence is tensed, i.e.

Kgrﬁmiglip(|Xn’ >K)=0.
Moreover, we always assume the convention max () = —oco and min () = +o0, and for u € R,
we write uy = max(u,0), and log, (u) = (logu);. Finally, Cp is the set of continuous
bounded functions on R.
We consider a point process L on R, of law £. We write x for the log-Laplace transform
0 — logE [deL e%} of £. We assume there exists §* > 0 such that x(0*) < 400 and

0*E

Zﬁee*g_“(e*)] — k(6%) =0. (7.1.1)

leL

We write v = ”gi*) =E {ZéeL 569*5*”(9*)} for the speed of the branching random walk.

We introduce the assumption of finite variance for the spine

Z 5266*6

lel

E < 400, (7.1.2)

and the additional integrability condition

2
E Z elog., (Z 1+ — €)+)69*w4)> < +o00. (7.1.3)
lel Vel

Let (T,V) be a branching random walk with reproduction law £. We denote by
M, = max|y—p V(u) the maximal displacement in this branching random walk and by
S = {T is infinite} the survival event. By definition, M, = —oo on S¢ for all n large
enough. The following result holds.

Theorem 7.1.1. Under the assumptions (7.1.1), (7.1.2) and (7.1.3), we have

3
M, =nv — 27?*10gn +0p(1) onS.

The main tool used to prove this theorem is the following estimate on the right tail of
the maximal displacement M,,.

Theorem 7.1.2. Under the assumptions (7.1.1), (7.1.2) and (7.1.3), there exists ¢,C >0
such that for alln > 1 and y € [0,n'/?],
3

C(l + y)e*G*y S P Mn 2 nv — @logn + Yy S C(]. + y)efe*y‘



7.2. SPINAL DECOMPOSITION OF THE BRANCHING RANDOM WALK 251

The rest of this chapter is organised as follows. In Section 7.2, we introduced the so-
called spinal decomposition of the branching random walk, which links additive moments
of the branching random walk with random walk estimates. In Section 7.3, we recall
the random walk estimates obtained in Chapter 1, and their extensions to random walks
enriched by additional random variables, which are only correlated to the last step of
the walk. Section 7.4 is devoted to the proof of Theorem 7.1.2. This theorem is used in
Section 7.5 to prove Theorem 7.1.1, using a coupling between the branching random walk
and a Galton-Watson process.

7.2 Spinal decomposition of the branching random walk

We introduce in this section the well-known spinal decomposition of the branching
random walk. This result consists in two ways of describing a size-biased version of the
law of the branching random walk. Spinal decomposition of a branching process has been
introduced for the first time to study Galton-Watson processes in [LPP95]. In [Lyo97],
this technique is adapted to the study of branching random walks.

7.2.1 The size-biaised law of the branching random walk

Let (T,V) be a branching random walk with reproduction law £. For all z € R, we
write P, the law of (T,V + x) and E, the corresponding expectation. For all n > 1, we
set

Wy, = Z exp (0*V (u) — nk(6%)) .

|ul=n

Writing F,, = o(u, V(u),u < n), we observe that (W,,) is a non-negative (F,)-martingale.
We define the law
P,

=e "Wy Pylr . (7.2.1)
Fn n

The spinal decomposition consists in an alternative construction of the law P,, as the
projection of a law on the set of planar rooted marked trees with spine, which we define
below.

7.2.2 A law on plane rooted marked trees with spine

Let (T, V) be a marked tree with infinite height. Let w € NN be a sequence of integers,
we write w, = (w(1l),...w(n)) and we say that w is a spine for T if for all n € N, w,, € T.
The triplet (T, V,w) is called a (plane rooted) marked tree with spine, and the set of such

A~

objects is written 7. We define the three following filtrations on this set

Fon=0u,V(u):ueT|u <n), Fo =Fn Vo (wg,k<n)
and G, = o (wg, V(wg) : k <n) Vo (u,V(u),u e Qwg),k<n). (7.2.2)
The filtration (F,) is the filtration of the knowledge of the marked tree with spine up to
height n, (F,) has only the informations of the marked tree when forgetting about the
spine, and (G,,) has only the knowledge of the spine and its children.
We introduce

- (Z e@*@/{(@*)) L

Lel
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a law of a point process with Radon-Nikodym derivative with respect to £, and we write
(Ln, n € N) i.i.d. point processes with law L. Conditionally on this sequence, we choose,
for every n € N, w(n) € N independently at random, such that, writing L, = (by,...0N,),

we have
0"k (h)

VheN, P (w(k) h ](Lmn S N)) = 1{h<Nk}Z 00 ()

We write w the sequence (w(n),n € N).

We now define a random variable (T, V,w) on 7. To do so, we introduce a family of
independent point processes {L“, u € U} such that L** = f/k+17 and if u # wy,), then L*
has law L. For any u € U such that |u| < n, we write L* = (¢},.. .6}‘\,(u)). We construct
the random tree

T={ueld:|u <nV1<k<|u|,uk) <N(up-1)},

and the the function
T — R

\UI PUk=1
(TS D) s u(k

For all z € R, the law of (T, 24V, w) € ’7; is written Px, and the corresponding expectation
is Em This law is called the law of the branching random walk with spine.

We can describe the branching random walk with spine as a process in the following
manner. It starts with a unique individual positioned at x € R at time 0, which is the
ancestral spine wg. Then, at each time n € N, every individual alive at generation n
dies. Each of these individuals gives birth to children, which are positioned around their
parent according to an independent point process. If the parent is w,, the law of this
point process is CA, otherwise the law is £. The individual w1 is then chosen at random
among the children u of w,, with probability proportional to "V ().

7.2.3 The spinal decomposition

The following result, which links the laws 133; and P, is the spinal decomposition,
proved in [Lyo97].

Proposition X (Spinal decomposition). For all x € R, we have

T 7, = Px ]__n- (723)
Moreover, for any n € N and |u| = n, we have
~ 9* k(0
B, (1w, = uF) = SRV (W) = ns(07)) (7.2.4)

Wn

Note that a time-inhomogeneous version of this result has been proved in Chapter 1.
An immediate consequence of this result, which can also be proved directly by recurrence,
is the well-known many-to-one lemma. This equation, known at least from the early works
of Peyriere [Pey74] has been used in many forms over the last decades. We denote by p a
probability measure on R defined by,

(=00, 2]) =

> 1“9}69*@%(9*)] |

LeL
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Lemma XI (Many-to-one). Let (X,,) be an i.i.d. sequence of random variables with law
w, we write Sy, = So + Y p_1 Xi for n € N, where P,(So =z) =1. Forallz € Ryn € N
and continuous bounded function f, we have

E, | Y f(V(w),...V(up))

|u[=n

_ fe E, {6*9*Sn+””(9*)f(S1, . Sn)} . (7.2.5)

Remark 7.2.1. Under the assumption (7.1.1), we observe that the mean S is

E(S)) =E

ZKGH*ZR(G*)] — 0.

LeL

Moreover, assumption (7.1.2) leads to E(S?) = E {ZZGL 9RO | < oo, 50 (S,,) is a
random walk with mean v and finite variance.

Proof. Let f be a continuous bounded function and = € R, we have, by Proposition X

E. Z F(V(uy),...V(uy))
lul=n
o 69*:1:

_ E, Z efe*V(u)+nn(9*)f(V(u1)7 . V(un))f’(wn = u|fn)]

Llu[=n

_ ee*“’f}z Z 6_9*\/(u)-§—nn(0*)f(V(ul)7 . V(“n))l{wn:u}]

lul=n

= ee*xﬁx {G—O*V(wn)-i-nn(@*)f(v(wl)7 T V(w”))} ’

Moreover, by definition of P, we observe that the law of (V(wy), ...,V (w,)) is the same
as the law of (S1,...S,) under P,, which ends the proof. O

The many-to-one lemma and the spinal decomposition enable to compute moments of
any additive functional of the branching random walk, by using random walk estimates,
which are obtained in the next section.

7.3 Some random walk estimates

We collect first a series of well-known random walk estimates, such as local limit and
ballot theorems, and extend these results to bound the probability for a random walk to
make an excursion above a given curve. In a second section, we extend these results to
random walks enriched with additional random variables which are correlated with the
last step of the random variable.
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7.3.1 Classical random walk estimates

We recall in this section the random walk estimates obtained in Chapter 1, that we
use to prove Theorem 7.1.2. We denote by (7,,,n > 0) a one-dimensional centred random
walk, with finite variance 0?. We begin with Stone’s local limit theorem [Sto65]. There
exists C > 0 such that for all ¢ > 0 and h > 0, we have

a2

limsupn'/? sup P(T, € [y,y +h]) < C(1+h)e 257, (7.3.1)

n—+oo |y\2an1/2
Moreover, there exists H > 0 such that for all a < b € R

liminfn'/?2  inf  P(T, € [y,y + H]) > 0. (7.3.2)

n——+o00 yE[anl/z,bnl/Q]

We continue with Caravenna—-Chaumont’s local limit theorem [CC13]. Let (rn,n > 0) be
a positive sequence such that r, = O(nl/ 2). There exists C' > 0 such that for all @ > 0
and h > 0,

a2

limsupn'/?2 sup  sup P(T, € [z,2+ h]|T; > —y,j <n) < C(1+ h)ae 22. (7.3.3)

n—+o00 y€[0,rn] >anl/?
Moreover, there exists H > 0 such that for all a < b € R,

liminf n'/2 inf n
n—+00 y€[0,rn] z€lant/2,bnl/2)

P(T, € [z, + H||T; > —y,j <n) > 0. (7.3.4)
Up to a transformation 7"+ T'/(2H ), which shrinks the space by a factor ﬁ, we may and
will assume in the rest of this chapter once again that all the random walks we consider
are such that (7.3.2) and (7.3.4) hold with H = 1.

We next recall the consequence of Kozlov’s [Koz76] and Pemantle-Peres’ [PP95] ballot
theorems, for all A > 0 and « € [0,1/2), there exists C' > 0 such that for all n > 1 and
y =0,

P(T; > —y — Aj®,j <n) < C(1+y)n~ "2, (7.3.5)

moreover, there exists ¢ > 0 such that for all n > 1 and y € [0,n'/?]
P(T; > —y,j <n)>c(l+y)n /2 (7.3.6)

We also obtained in Chapter 1 the following bounds for the probability for a random
walk to make an excursion. There exists C' > 0 such that for any z,h > 0 and y € R we
have

P(Tprq€lythy+h+1,T; > —x+ylgsy,j <n)
(14 z) Ap'/? 1 (1+h) A q'/?

<C
- pl/2 max(p, q)'/2 q'/?

(7.3.7)

Moreover, there exists ¢ > 0 such that for all n > 1 large enough, = € [0,n!/?] and
y € [-n'/2,n'/?] we have

(1+x)

P.(T, <y+ LT > yl{j>n/2};j <n)> CW

(7.3.8)
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This result also holds for excursions above bended curves. For all A > 0 there exists C' > 0
such that for all n € N and y,h >0

P(T, + Alogn € [h—y,h—y+1],T; > —Alog ;=7 —y,j < n)

(1 +y) An'2)((L+ k) An'/?)

¢ n3/2

(7.3.9)

We also need the results obtained for random walks enriched with random variables
that only depend on its last step. Let (X,,,&,) be a sequence of i.i.d. random vectors in
R?, such that E(X;) = 0, E(X}) < +oo and E((£1)3) < +oo. We write T, = >.7_; Xj.
There exists C' > 0 that does not depend on the law of & such that for allm > 1, x,h >0
and y € R, we have

1+zx

P[TjZ—x,jgn,ﬂkgn:Tkgﬁk—x]SCﬁ
n

P@ >0 +E(@32)]. (7310

as well as

P [Tnfﬂﬂ*y*h € 0,1, T > =z + ylgjniny, J <0, 3k <n: Ty < &+ ylsimy *96}

< CW [P(e > 0) +E(@)D)]. (7311)

We use these two bounds to control at the same time the position of the spine and the
number of its children.

7.4 Bounding the tail of the maximal displacement

Let (T, V) be a branching random walk, and M,, its maximal displacement at time n.
We write m,, = nv — % logn, the main goal of this section is to prove Theorem 7.1.2.
We first give an upper bound for the tail of M,, by observing there exists a boundary
such that, with high probability, no individual in the branching random walk crosses. The
lower bound is obtained by bounding from below the probability there exists an individual
which is at time n close to m, := nv — % log n, such that all its ancestors were below

this boundary.

7.4.1 The boundary of the branching random walk

A natural way to compute an upper bound for P(M,, > m,, + y) would be a direct
application of the Markov inequality. We have

P(My, 2m,+y) <E Z Levwy>ma+v}

lu|=n

<E [ee*sn_mw*)l{snzmﬁy}]

by Lemma XI. Therefore, as E(S;) = v = %, we have

+oo
P(M, >m, +y) < n3/2e=0"y Z e*H*hP(Sn —my —y € h,h+1]) < Cne v
h=0

by (7.3.1). Note this computation is not precise enough to yield Theorem 7.1.2.
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To obtain a better bound, a natural idea is to compute the number of individuals
alive at generation £ who would have with high probability a descendant above m,, +y at
generation n. If we assume Theorem 7.1.1 to be true, then an individual alive at generation
k may have children above m,, with high probability if it is to the right of

f,gn) = kv — (logn —log(n — k+1)).

20*
We prove that with high probability, no individual crosses the boundary f.(n) + y before
time n.
Lemma 7.4.1. Under the assumptions (7.1.1) and (7.1.2), there exists C > 0 such that
forally >0

Pl <n:V(u) > i) +) < CO+y)e™.

Proof. For all k < n, we write Z,g")(y) = 2 juj=k 1{V the

1
="} {vw)<r i<}
number of individuals which cross for the first time curve £ at time k. By many-to-one
lemma, we have
E Z(n) -F e—G*Sk-‘rkH(e*)l 1
(2" w) {se2s0u} {5, i<k}
- 713/2
~ (n—k+1)3/2

We condition this probability with respect to the last step Sy — Sip_1 to obtain

P (Sk> £ +9.8 < £ + .5 < k) = Bpg1(Sk — Sk1)).

VP (S > iV .8 < M 4y < k).

where pi(z) =P (Sk > flgi)l +y—=x,5 < f](n) +9y,j < k:) Applying (7.3.9), there exists
C > 0 such that for all £k <n and x € R

(1+y)(1+2)?

As a consequence,

P (3ul <n:V(w) > fi) +y) < S PP 21 < Y BEZP W)
k=1 k=1

—0*y i n3/2 2
§C(1+y)e lczlkg/Q(n—k+1)3/2E((Sk_Sk1)++1).

By decomposition of this sum into & < n/2 and k > n/2, we conclude

Pl <n:V(u) > i) +y) <CO+y)e™.

This lemma directly implies the upper bound in Theorem 7.1.2.
Proof of the upper bound in Theorem 7.1.2. As fén) = my,, we observe easily that
P(M,>m,+y) <P (E\U\ <n:V(u) > fm) —I—y) ,

applying Lemma 7.4.1 ends the proof. O
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7.4.2 A lower bound through second moment computations

For all n € N and k < n, we write g,(Cn) =kv— 1{k>n/2}% logn 4+ 1 a boundary which

is close to f( but simpler to use. We prove in this section that the set
An(y) = {u € T, Jul =n: V(w) > my+y, V() <gi"” +y,j <n}

is non-empty with positive probability. To do so, we wish to bound the first two moments
of the number of individuals in 4,,(y). However, to obtain a good upper bound for a second
moment in branching processes, we need to control the reproduction of the individuals we
consider. For v € T, we write

)= Y (14 (V) = V())y)e V7V
u'eY (u)

where Y(u) = {v € T : v = wu,v # u} is the set of siblings of u. For any z > 0, we set
* ) (n)
B,(z) = {u eT,|ul =n:&(uj) < ze'T (V()=9; ) j< n} :

We compute the first two moments of Y, (y,z) = > jul=n L{ueGy(y,2)} Where Gn(y,z) =
A, (y) N By(z).

Lemma 7.4.2. Under the assumptions (7.1.1) and (7.1.2), there exists C > 0 such that
for ally >0 and z > 1 we have

E(Ya(y, 2)%) < Cz(1 +y)e V.
Proof. Applying Proposition X, we have

1 N

07| =B

1
W Z l{ueGn(y,z)}Yn(ya 2)

n
ul=n

=

E(Ya(y,2)?) =

= E [S_H*V(w”H”“("*)1{wneGn(y,z)}Yn(y’ Z):| .

Using the fact that w, € A,(y) C Gp(y, 2), we have
E(Ya(y,2)?) < Cn*2e"VE [Yn(%z)l{wneGn(y,z)}} :

We decompose Y, (y, z) along the spine, to obtain

Yn(y, Z) < l{wnGGn(y,z)} + Z Z Yn(u,y), (7.4.1)
k=1ue (wy)

where, for u € T and y > 0, we write Yy, (w,y) = > |=nw>u Huwed,(y)}- We recall that

under law f’, for any k < n, the branching random walk of the children of an individual
u € Y(wy) has law Py (). As a consequence, for y > 0, k <n and u € T (wy),

E [Yn(u’ y)’gn] = EV(u) Z 1{V(u’)2mn+y}]—

[u|=n—Fk {V(u;)gg’(ﬁr)j+y7j§nik}



258 CHAPTER 7. MAXIMAL DISPLACEMENT IN A BRANCHING RANDOM WALK

As a consequence, by Lemma XI, we have

E Yo (u, )|Gn]
SCnS/Qe—e*yeﬁ*V(u)—lm(ﬁ*)Pv(u) (Sn—k > m, + y,Sj < g](j-)k +y,j<n-— k)
<Ce 0y n?/? G*V(u)—kn(e*)(l ( (n) + V(u)y)
=0 Tk 1)32° Tty - Viu))s
by (7.3.7).

For all £ < n, we now compute the quantity

h =E

n * w)— (n)
L{uncGn(p.2) 22<Lw¢>+y—vw»wﬁ““>%>r
weY (wg)

using the definition of £(wy) and the fact that x +— x is Lipschitz, we have

. n V() — o™
e < CE [Lip,euran (14 6+ = Viwn) e 5w

5 n O Viwn)—a(™
< CzE [1{wn€An(y)}(1 + (gl(e ) +y— V(wkj))+)662 (V(wk)—g, )} .
Decomposing this expectation with respect to the value taken by V' (wy), we have
* = *
hi < Cze?v Z(l + h)e—9 h/2
h=0

P Sann+y,Sk—g£")—y€[—h—la—h]]_

S;< g +yj<n

We apply the Markov property at time k£ to obtain

P[Sann-i-nyk—g/(gn)—ye [_h_17_h]7Sj Sg](n)+y7]§n:|
<P[Si—g" —ye[-h—1,-h],5; < g +y,j < k|

; _ () q. (n) _ (n) _
Xze[_}fi_h] P, [Snfk >mn =G 9 S iy — 9k I <N k}

thus, applying again (7.3.7),

onp L)1ty 14k
(k+1372 (n—k+1)32

+oo
hy, < Cze?V Z(l + h)e
h=0
(1+y)e?v
< .
=T )R — k1)

As a consequence,

E l{wnEGn(y,z)} Z Yn(u7 y)

ueY (wy)
3/2
< e ( :: i 1)3/2 hkee*gl(fm_k“(e*)
n—
3/2 1
< Cz(1+y) z

(k+1)32(n—k+1)3 140321529
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We now apply this bound to (7.4.1), we obtain

E(Y,(y, 2)2) < Cn32e "VE {l{wnegn(%z)}Yn(y, z)}

< Cn3/2670*y

P (wn € An(y)) + Z E (1{wn€Gn(y,z)} Z Yn(ua y))]

k=1 u€Y (wy)

. ” 1 n3
gC(1+y)e—9y<1+z )
kgl (k + 1)3/2(n —k+ 1)3 1+ n3/21{k>n/2}
< Cz(1+4y)e Y,
using (7.3.7) to bound P(w, € Ay, (y)). O

In a second time, we bound E(Y,,(y, z)) from below.

Lemma 7.4.3. Under the assumptions (7.1.1), (7.1.2) and (7.1.3), there exist ¢ > 0 and
2 > 1 such that for all y € [0,nY/?] and n € N

E(Y,(y,2) > c¢(1+y)e Y.

Proof. Let n € N, y € [0, nl/Q} and z > 1. By the spinal decomposition, we have

E(Ya(y,2)) > E

Y

B oV () (0

1
7 2o Liueatwa) 1,66, (2]

n
lul=n

> 32" WP (w, € Gu(y, 2)).

To bound this probability, we observe first that
P(wy, € An(y) N Bu(2)) = P(wn € An(y)) — P(wy € An(y) N Bn(2)°),

and P(w, € An(y)) > ¢(1+y)n=3/?2 by (7.3.8). Introducing

7 = inf {k >1: % (V(wk) _ glg”)) > log &(wyg—1) — logz} ,

we rewrite

~

P(wn € An(y) N Bn(2)°) <P (V(wn) >+, V(wy) < 9§ +y,7 < n) .

Therefore, we can apply (7.3.11), there exists C' > 0 such that

o~

P(w, € A,(y) N B,(2)°)

=< Cl :_/Qy (P(logﬁ(un) > logz) + E((logg(wl) — log Z)Jr)?) )
n

By (7.1.3), we have E((log&(wl))i), therefore by dominated convergence, we have

n3/2
P(w, € A,(y) N B,(2)°) =0,

lim  sup
2—+00 neN,y>0 1+ Yy

thus we can find z > 1 large enough such that P(w, € A,(y) N Bn(2)) > (1 + y)n=>/2,
which ends the proof. O
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Using these two lemmas, we obtain a lower bound for the right tail of the random
variable M,,.

Lower bound in Theorem 7.1.2. By the Cauchy-Schwarz inequality, we have

E(Ya(y,2))*
P(Y,(y,2) > 1) > W

Using Lemmas 7.4.2 and 7.4.3, there exists z > 1 such that
e\ 2
(c(l +y)e™? y)

Cz(1+y)e 0"y
> c(1+y)e V.

P(Ya(y,2) > 1)

v

As a consequence, we conclude P(M,, > m,, +y) > P(Gn(y,2) #0) > c(1+y)e %v. O

7.5 Concentration estimates for the maximal displacement

The aim of this section is to prove Theorem 7.1.1 using Theorem 7.1.2. We use the
fact that on the survival event S of the branching random walk, the size of the population
alive at time k grows at exponential rate, as in a Galton-Watson process. Moreover, each
one of the individuals alive at time k£ have positive probability to make a child to the right
of m, at time n > k, which is enough to obtain the tension of M,, — m,. We recall the
Galton-Watson estimate obtained in Chapter 1.

Lemma 7.5.1. Let (Z,,n > 0) be a Galton-Watson process with reproduction law p. We
write b = min{k € Zy : p(k) > 0}, m = E(Z1) € (1,400) and q the smallest solution of
the equation E(q?t) = q. There exists C > 0 such that for all z € (0,1) and n € N we
have

g+ Czatt ifb=0

P(Zn S zm") S Cz® Zfb =1
logb

exp [—Czlogmlogb] ifb>2.
Proof of Theorem 7.1.1. To prove Theorem 7.1.1, we have to prove that

lim limsup P(|M,, — m,| >y, T is infinite) = 0.

Y—=+00 nstoo

Using the upper bound of Theorem 7.1.2, we have

limsup P(M, > m, +y) < C(1+y)e " — 0.

n—s-+o00 y—-+oo

To complete the proof, we have to strengthen the lower bound of Theorem 7.1.2, given by
Je > 0,¥n € N,Vy € [0,n'/?],P(My, > my +y) > c(1+1y)e Y.

To do so, we observe that with high probability, there is a large number of in-
dividuals alive at time k& and above some given position. For all h > 0, we write
No = > =1 1{v(u)>—n}y and py the law of Nj the number of children of a given indi-
vidual which makes a displacement greater than —h. We write

fn=E(s™) and f:E[sN},
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where N = Z|u|:1 1 is the total progeny of an individual in the branching random walk.
By monotone convergence, we have fj(s) h—+> f(s) for all s € [0,1]. In particular, g
—+00

the smallest solution of fy,(g) = g5, converge, as h — +00 to ¢ the smallest solution of the
equation f(q) = q. Moreover, it is well-known that 1 — ¢ = P(T is infinite). Observe that
by (7.1.1), we have necessary E(N) > 1, therefore, we can choose h to be large enough
such that E(Ny,) > 0 > 1.

We can easily couple the branching random walk with a Galton-Watson process Z" with
reproduction law s, in such a way that Z" < > jul=n 1{V(w)>—nn}- Applying Lemma 7.5.1,
we have

P (Z Livw>—kny < Qk) <q,+CB*
lu|l=Fk

for some B < 1. As a consequence, for all ¢ > 0, there exists h large enough and k large
enough such that

P (Z Loy wy>—kny < Qk) < g+ 2e.
|ul=k

By Theorem 7.1.2, there exists n > 0 such that for all n € N, P(M,, > m,,) > n. But there
are with high probability at least ¥ individuals alive to the right of —kh at time k, each
of which starting an independent branching random walk. Therefore

P (Mn+k <my — kh) < (1 - U)gk +P ( Z 1{V(u)27kh} < Qk) <gqg+ 357
lul=k

as long as k is chosen large enough.
As a consequence, for all ¢ > 0, there exists k € N and C' > 0 such that for all n > k,
writing y = —kh — kv + % log 2 we have P(M, 4 > mp1r —y) > 1 — q¢ — e. Therefore

lim liminf P(M,, < m, —y, T is infinite) = 0,

Yy—+00 n—+o00

which ends the proof. O






CHAPTER 8

LConsistent maximal displacement
of the branching random walk

“If all you have is a hammer, everything looks like a nail.”

Abraham Maslow — The Psychology of Science

Abstract

We obtain in this chapter the asymptotic behaviour of the consistent maximal dis-
placement of the branching random walk. This quantity is the maximal distance
between the boundary of the process, and the individual which stayed the closest to
it at any time. This result has been obtained by Fang and Zeitouni [FZ10], Fauraud,
Hu and Shi [FHS12] under some stronger integrability assumptions. Roberts [Rob12]
computed the second order of the asymptotic for the branching Brownian motion.
We provide here only the main asymptotic behaviour, but under particularly light
integrability assumptions, using a spinal version of the Mogul’skii estimate.

8.1 Introduction

We consider a branching random walk (T,V) on R. For § > 0, we write x(#) for
the log-Laplace transform of the point process used in the branching random walk for
reproduction. As in Chapter 1, we assume the following integrability assumption: there
exists 6* > 0 such that x(6*) < 400 and

O E | > V(e V| g(67) = 0. (8.1.1)
[ul=1
Under this assumption, writing v = H%Q**), it has been proved in [Big76] that the maximal

displacement at time n in the branching random walk increases at ballistic speed v. We
introduce

o =E | Y (V(u) —v)2e?V =) < foo, (8.1.2)
lul=1
which is the variance of the spine obtained in the spinal decomposition.
The consistent mazimal displacement of the branching random walk is the quantity
defined as
L, = min max {kv — V(ug)}. (8.1.3)

lul=n k<n
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It correspond to the maximal distance between the boundary of the process —the line
of slope v— and the individual that stayed as close as possible to this highest position!.
In order to obtain the a.s. asymptotic behaviour of L, as n — +o00, we introduce the
following integrability assumption

: 2 0*¢ —
Jim 2*B ge Liog(S,, e @0z} | =0- (8.1.4)

This condition ensure that in the spinal decomposition, the spine at time n + 1 is one
of the rightmost children of the spine at time n 2, thus the behaviour of the size-biased
process is similar to the behaviour of the original process. In some sense, it is similar to
the E(N log N) < 400 condition for the Galton-Watson process. We note that (8.1.4) is
implied by the usual integrability condition:

2

E Z et ) log Z et < +o0. (8.1.5)
el el

The following theorem is the main result of the chapter.

Theorem 8.1.1. Assuming (8.1.1), (8.1.2) and (8.1.4) hold, we have

lim =
n—+oo n1/3

9 9\ 1/3
Ln _ (3293 ) a.s. on {T is infinite} .

The rest of the chapter is organised as follows. In Section 8.2, we introduce the
Mogul’skii estimate of the probability for a random walk to have smaller than usual
fluctuations around its mean. We then extend this result to random walks with spine.
Section 8.3 is devoted to the study of the right tail of L,,, using the spinal decomposition
of the branching random walk and the previous random walk estimates. We prove Theo-
rem 8.1.1 in Section 8.4, using the previous estimate and a coupling between the branching
random walk and a Galton-Watson process.

8.2 A small deviations estimate

Let (Sn,m > 0) be a centred random walk with finite variance o2 := E(S?). The
Mogul’skii estimate gives the rate of decay of the probability for the random walk of
length n to have fluctuations of order a,, where a,, = o(nl/ 2).

Theorem 8.2.1 (Mogul’skii [Mog74]). Let (a,) be a sequence of real non-negative numbers

2
such that limg,— o0 @, = +00 and limy,_ 4 oo %" = 0. For any pair of continuous functions

f,g such that f < g and f(0) <0 < g(0), we have

a? S w202 1 ds
lim 2loeP (2L e . . ;< ) — .
”HIJFOO n o8 (an {f]/mgj/n} S =n 2 0 (g9s— fs)2

1. The “Talleyrand” of the branching random walk.
2. With great power there must also come -- great responsibility! — Amazing Fantasy #15.
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This theorem, which admit a number of modifications and extension. For example,
it holds with a level of uniformity on the starting point, or on the length of the random
walk. We prove here that this theorem also work for random walks enriched by random
variables correlated to the last step. We denote by (X, ¢;) i.i.d. random variables taking
values in R%2. We assume that

E(X)) =0, o?:=E(X}) < +oo. (8.2.1)
For n € N, we set S,, = ;’:1 X. The process we consider is (Sy,&p,n € N).

Theorem 8.2.2 (Spinal Mogul’skil estimate). Let (a,) be a sequence of real numbers,
such that limy, o0 an, = +00 and lim,_ % = 0. Iflim, 100 a2P(& > n) =0, then for
any pair of continuous functions (f,g) such that f < g and f(0) < 0 < ¢g(0), and for all
fi<x <2’ <g1, we have

- a S; _
lim —* lOgP (S’n € [xanvx/an}a ;] € [fj/nag]/n} 75] <n,j < n)
n

n—4+oco N
o2 1 ds
2 0 (gs - fs)2 .

Proof. Note first that the upper bound of this result is a direct consequence of Theo-
rem 8.2.1. Indeed, we have

limsupagllogP<S € [za x'a]ie[f» gi } §4<nj<n>
n 7z nvan j/moY5/n|Sj =10 =

n—+oo T
w202 1 ds
2 0 (gs - fs)2 '

The proof of the lower bound is a modification of the original proof of Mogul’skii. It
consists in decomposing the time interval [0, n] into subintervals of length n/A, for a given
A > 0. On these subintervals, the continuous functions can be approached by constants.
The intervals are then truncated in smaller ones, of length ga,%. On these small intervals,
the random walk can be approached by a Brownian motion, as n — 4o00. Finally, we let
A then A grow to +00 to conclude the proof.

We choose a continuous function h such that h(0) = 0, h(1) = %x/ and for all t € [0, 1],
ft < hy < gi. We set § € (0, JIS_:”) such that for all ¢ € [0,1], f; + 85 < hy < g+ — 8). We
then choose A > 0 such that

2 S
< limsupa—”logP (aj € [fj/n)gj/n:| J < n) <-

n—+oo TN

sup |ge — gs| + [ fe = fs| + |he — hs| < 0. (8.2.2)

2
[t—s|<%

For a < A, we set my, = |na/A| and 1 = {(ha/A —30)an, (ha/a + 36)an] Consid-

ering only random walks paths that are in intervals IC(Ln) at times mg, and applying the
Markov property at times m4_1,..., m1, we obtain

S; .
P <Sn € [wan,x'an], i € [fj/nvgj/n:| 7£j <n,j < ’I’L>

A-1

. Stmat1—ma S; ,

> H lrjl(fn) P, [m;lm 6115@1,67] € [fa/A""(s’ga/A_é} & <nyj <mgyr — Mg -
a=0 z€lq n n
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By (8.2.2) {(ha/A — 28)an, hqy1 + 25)an] C I(+)1 for all a < A. Therefore, for a < A we
have

. S; .
m(f : P, {Smaﬂ—ma € 1(1)17 — [fa/A + 9, 9a/a — } &G <nyj < Mgy — ma}
yelan n

> RmA,é(fa/A - ha/A + 9, Ga/A — ha/A - 5)7 (823)

where, for a < —66 and 65 < 3, we denote by

Smgs1—m j )
Rpas(a,f):= inf P, {““ € [—26,24], % ¢ [a,B],& < n,j < mag1 — ma] :

ly|<3dan an an

n

Let a < A. We choose A > 0, we set r, = {Aa
T = krn, and by Ay = mgy1 —mg — Tr. We apply the Markov property at times 7, ... 71
to obtain

ZJ and K = {AﬁnJ' We denote by

S; "
[_555]7(17] € [O£—|—25,,8—25],fj <n,j< Tn:|>

€ [~26.28),6; < . j < Aa} . (8.2.4)

n

As A, € [0,7,], the probability on the second line can be bounded from below by

S;
inf P, [ €[—26,20],¢ <n,j < Tn:| ;
ly|<dan 7%

which is bounded in a similar way than the other quantities present in (8.2.4).
Indeed, we observe that

inf P, [S’“n € [-4,4], 55 € [a+26,8—20],& <n,j< rn]

ly|<3dan Qnp an

> inf P, [ST” € [-4,4], 55 €la+26,8-268,j< rn} —rP(§1 > n).

ly|<3dan Gnp Qn

As limy, 400 P(§1 > n) =0 and 7, ~pqoo ﬁa%, by the Donsker theorem, we have

lim inf P, [S 6[—5,5],%€[a+25,ﬁ—25],j§rn}

n—-+00 |y|<3dan (079 an

= inf Py, |oB;€[~6,0],0B, € [a+25,8—20],5 < 4],

We observe that K ~j, 100 %, thus for all a < A, (8.2.4) leads to

a2
1 .
Iég_il_lgof—long;A( ,B) > i ‘ylllég(sP {O‘Bg € [—0,0],0Bs € [+ 26,5 — 26],s5 < A} .
The probability for a Bronwian motion to stay in a strip admit a closed expression (see
g. [IM74]), for all @ <  and § < min(—a, 3)/3,

inf P, {UBZ €[-4,0],0B; € [a, ], s < A]

ly| <36
: n2_n2e® 7 —a) . z—
—| | / 5 Ze 2(8-2)2" " gin (nﬂz >s1n (mrﬁ )dz.
y|<38 ) — — —
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In particular, letting A 400, we have

2 2 2 1

7T ag
li f—l .
liminf 22108 Rnsa(en ) 2 =5 = =5

Using this last inequality, (8.2.3) leads to

2 S;
lim inf 22 logP (S € [zan, 2'a,), 2
a

n—+o0o n n

[fj/n’gj/n} & <n,j < n)
S

Letting A — 400 then § — 0 concludes the proof. O

1
(9aja — faja —66)2

8.3 Left tail of the consistent maximal displacement

In this section, we use Theorem 8.2.2 as well as the spinal decomposition of the branch-
ing random walk to compute first and second moment estimates. These are used to bound
the probability there exists an individual in the branching random walk that stay in a
given path. We observe that the n'/3 order of the consistent maximal displacement is the
correct rate such that the exponential term eS» in the many-to-one lemma exactly balances
the probability P(|S;] < n'/3,j < n). The main result of the section is the computation
of the left tail of the consistent maximal displacement. We set

3202 13
A= . 3.1
(222) -

Theorem 8.3.1. We assume that (8.1.1), (8.1.2) and (8.1.4) hold. For all X < \*, we
have

1 *,1/3 1/3\ _ *
Jim 7 log P (Ln—)\ nl/3 < —n ) — 6"\

8.3.1 An upper bound of the right tail of the consistent maximal dis-
placement

We start with a boundary estimate, that gives an upper bound of the right tail of the
consistent maximal displacement. We prove that with high probability, every individual
that stays above kv — An/3 at any time k& < n also stay below kv — gk/nnl/?’, for a
well-chosen function g.

Lemma 8.3.2. We assume that (8.1.1) and (8.1.2) hold. For any pair of functions f,g
such that f < g and f(0) < 0 < g(0), we set

Z 1{V(u) \u|v>g‘u|/n}1{v<uj>fjv

|u‘<n W1/3 e[fj/n7gj/n]7]<|u|}

We have

7-(20'2 dS
msup 7510 B(Z,(1.9)) té%,u{ " o( —fs>2}
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Proof. To prove this estimate, we need Theorem 8.2.1 with a kind of uniform control in
the length of the random walk. Indeed, applying the many-to-one lemma, we have

173

ol

E(Zu(f,9)=> E| > 1{V(u>kv>gk/n}1{V(”J'””e[fj/n,gj/n],xk}]

—

£
\

e

—0* Sy +kr(0*
E € F ( )1 Skfk'u> 1 Sj*jv <k
1 173 29k/n ﬁe[fj/mgj/nLK

_p* n”1/3 S —jv .
e~ 9y P<Jnl/3€ [fj/n,gj/n},j<k>.

I
M=

i

<

M=

k=1

We observe that (S, —nv,n > 0) is a centred random walk, thanks to (8.1.1), with finite
variance by (8.1.2).
To obtain an uniform bound, we choose A € N, and divide [0,n] into A intervals of

length %. For a < A, we set m, = || and

9a,A = SUD  Gs.

We observe that for all k € (mg, mg+1],

[ S

—9* n 1/3 S] _j'v
e~ 7 K/ TP (W € [fj/nvgj/n

,j<k)

_0*7 1/3 S — jv .
<e 07Ga,an P ( jnl/3 € {f]/n)g]/n:| J < ma) ,
therefore
E(Zn(f’g)) < Z Z e Gk/n TP (Jnl/3 € [fj/nvgj/n} aj < ma) .
a=0

We now apply A times Theorem 8.2.1, which leads to

1 w20? (% ds
li ——=logE(Z,(f,9)) < —0%G, A — .
;gilg pYE ogE(Zyn(f,9)) < Iglfj({ Ja,A 2 Jo (gs— fs)g}
Letting A — +oo concludes the proof. O

We now compute the expected number of individuals that stayed at all times between
the curves kv + n1/3fk/n and kv + nl/?’gk/n.

Lemma 8.3.3. We assume that (8.1.1) and (8.1.2) hold. For any pair of functions f,g
such that f < g and f(0) < 0 < g(0) and for all x € [f1,91), we set

Yo(f,9) = Z 1{V(u),nvzx}1{v<uj)—jv

u|=n 173 173 e{f]'/mgj/"]’jgn}

We have o o
1 o ds
——=logE(Y,(f,g,2)) = —0"x — )
(¥al ) 2 Jo (9s— fs)?

lim
n—-+00 n1/3
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Proof. This lemma is a direct consequence of the many-to-one lemma and Theorem 8.2.2
when choosing &, = 0. Indeed, we have

—0* S, +nk(0*) 1

E(Yo(f,g,2)) =E |e

{521_/?293}1{51/3 [fj/n’gJ/"]’]<n}] ‘

Consequently, we obtain easily the following upper bound

limsup —= log E (Y,.(f, g9, 7))

n—+o0o /

« 1 Sj - jv .

< 0o+ lmap logP (SL € (g <n)
2 2 1

< -0z ds

B a 2 0 (gs_fs)Q.

The lower bound is derived in a similar way. We set € > 0 such that x + ¢ < g;. We
have

6—9* Sn+nk(6%) 1

E(Yo(f,9,2)) 2 E

s _ju
{ B cwara} {5 el masnlasn

0% (pte)nl/3 Sn, —nv S;—jv )
>e (z+e) P<1’1,1/3 [ +€] 1/3 S {fj/n,gj/n},jgn)

We apply Theorem 8.2.2, that leads to

nlo? 1 ds
li f——=logE (Y,(f, g, > —0" — .
lim inf / g B(Yalf,g9.2) 2 =07(w+e) === | o7
Letting € — 0 concludes the proof. O

These two lemmas can be used to obtain the upper bound of Theorem 8.3.1.
Upper bound of Theorem 8.3.1. Let A > 0. For all n € N, we have
P (Ln < )\nl/3> =P (El|u| =n:Vj <n,V(u;) > jv— )\nl/?’)
<SP (Zu(=Xg) > 0) + P (Ya(=A g,—A) > 0),

for any continuous function g such that g(0) > 0 and g > —A. Applying the Markov
inequality and Lemma 8.3.2, we have

lim su log P (Zy(~\,g) > 0) < — inf {6 o ds (8.3.2)
n—>+£n1/3 & 9 T tefo,1] gt + 2 Jo (gs—l—)\)2 ’ e

Similarly, we have

g2 1 ds

lim su log P Ag,—A)>0)<O0°N— : 8.3.3
imsup 2175 08P (V=4 9,22) > 0) 2 Jo (g5+N)7? (833)
Given A > 0, we now choose a convenient function g, that satisfies
2 2 d
vt € [0,1], —0%g — 2 i — 6% go. (8.3.4)

2 0 (gs+)‘)
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We observe that this differential solution admit the following solution:

1/3

ge = ((g0+ N = (%) 7

1/3
Let € > 0, we define g, = ((1 —t) (M) + 53> P A, which is a solution of (8.3.4) with

the condition g = ¢ — A\. With this definition, (8.3.2) becomes

. 1 . ) s
lrILHJSrg}:) nt/3 log P (Zn(=A,9) > 0) < —0 [(()\ ) +€3> - )\} ,
and (8.3.3) gives
1 ! P 1/3
limsup —7z log P (Y, (=X, 9, =) > 0) < % — 67 {((A*)?’ + 83> " /\] .
n—+oo M

Letting € — 0, we obtain

. 1 1/3 * [y %
I;EiggmlogP(Lngkn )§—0 A" =]

We conclude that

. 1 * 1/3 *
lilrgig}))mlogP (Ln < (A" =X)n ) < =0\

8.3.2 A lower bound by a second moment method

To obtain the lower bound of Theorem 8.3.1, we bound from below the probability
there exists an individual that is above kv — An'/3 at any time k < n. Computing the
first two moments of the number of such individuals and applying the Cauchy-Schwarz
inequality concludes the proof. Let (f, g) be a pair of continuous functions such that f < g
and f(0) <0 < ¢g(0). We write

An(f.9) = {Iu! =n:Vj<n,V(u)—jve [fj/nnl/?”gj/nnl/ﬂ }

However, a direct second moment method would not lead to a convenient lower bound.
To obtain a more precise upper bound, we have to control the reproduction of the indi-
viduals we consider. For u € T, we write Y (u) the set of siblings of u and

€(u) = Z 69*(‘/(“/)*‘/(“))’ (8.3.5)
u €Y (u)

that is used to control the reproduction along the spine. Note that (8.1.4) is equivalent to

lim #%P (log (€(wy)) > x) = 0. (8.3.6)

T—+00

For all 6 > 0, we denote by

B} = {Jul = n: ¥j < n,log€(uy) < on'/3}.
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Lemma 8.3.4. We assume (8.1.1), (8.1.2) and (8.1.4) hold. For any pair of functions
f,g such that f < g and f(0) <0 < g(0), for all x € [f1,91] and § > 0, we set

Xg(fmgv Z 1{u€An(f, mBé}l{%/m’>m}'

lul=n

We have

2 2 1
5 > g T¢o / ds
%gl—il—gg n1/3 log B [X (f:9, )} 2 0z 2 o (gs— f8)2’

as well as

2.2 1
5 9 . N oo ds
< —
lim sup / logE |:<Xn(f7gax)) } <07 -2 (9 T+ > b (s _fs)2>

n—+00
o Lorg T / L ds
up g .
t€[0,1] ' 2 0 (g9s— fs)2

Proof. We first bound from below the mean of X°. We set W,, = 2 ful=n 0"V (W) —ns(07)
Applying the spinal decomposition, we have

/3 =

E[Xi(f,gaw)] =E | Z Huean(r.a083} {V”“m}]

& | 07V (wa)+nr(6%)
Ele v " 1{wn€An(f,g)ﬂBf,§}1{V(w?};nvzw}] :

n

As a consequence, for all € > 0 small enough, we have

/34 {V(wn) —nv

B T € ot el w € Au(f9) MBS
n

B[X)(f,0.2)] 2

By (8.1.1) and (8.1.2), (V(wy),&(wy),n € N) satisfies (8.2.1). Moreover, by (8.3.6), we
have
lim n?°P [logﬁ(wo) > 5n1/3} =0.

n—-+00

Therefore, applying Theorem 8.2.2, we have

w202 1 ds

2 0 (gs_fs)Q.

liminf —— / logE[ fl(f,g,x)} > -0z —

n—+oo n

In a second time, we bound from above the second moment of X,‘i. Applying once
again the spinal decomposition, we have

E [(Xg(f,g,:v)y] =E é}j’ Z 1{u6A (f.9) ﬂBi}l{V(“B/;“zz}]

lul=n

o é —0*V (wn, 0*
=E Xn(fug7x)e () )1{wn€An(f,g)ﬂBg}1{V(wn)nv>x}]

nl/3

/3

1
Xn(fa g, x)l{wneAn(fvg)mBg}l{V(w")"v>z}]
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Under the law f’, we decompose Xfl( f,g,x) along the spine, we have

X)) <143 Y Aulw)

k=1ueY (w)

setting, for k < n and u € T (wy),

Ap(u) = > 1{u'eAn(f,9)}1{L)/gmzx}'

|u |=n,u' >u n

We set G = o(V (wn), Qwy), V(w),u € Qwy),n > 0) and LY = | fy/nn!/3, gpnn'/?].
We compute, conditionally on G the value of Ag(u). Applying the many-to-one lemma,
for all k < n and u € T(wyg), we have

E[Ax(u)] 9]

0V () —ke(0) —0* Sy _k—nr(0%)1

e

V(w)

1
S, _—nv . n) .
{ nnlk/:; 2.%} {Sj(k+])velé+)j,j<nk}]

fonl/3 0%V (0)—kr(0* Sp—k — NV ) n) .

We set A € N, and for a < A, m, = |na/A]. We also introduce

@3{12: SUP)P;,; (Sj—jUEI( )+],] <n—ma).
w€lpm,

Applying the Markov property at time mg41, for all £ < mg41 and u € T(wy), we have

0*znl/3 o* —kr(0*) Fen
E[Ap(u)]g] < VTR gend, .

For a < A, we now compute the asymptotic behaviour as n — +oo of

Raﬂ = sup
ke [ma ,ma+1)

( 2. A"(“)) oo Y H edn (s

ueY (wg) nl/3
We have
Ri)‘ —Q*mn (I)elili_l AE |: 0*V (wg—1)—kr(0 )1{wn€An (£,9) }g(wk)l{logg (wg) <6n1/3}:|
1/3 —end
O 4P [wn € An(f,9)]

We set g, 4 = SUD e [azt at2) Js for all k € [mg, ma41), we have

<Ce(—0"8+0"g(i1)/nt0)n

R((l,zx et gk/n+5)”l/3@eril AP {Sj LAS IJ('n)aj <n|.

Applying Theorem 8.2.1, we obtain

lim sup 73 sup log R( )
n—+oo T k€[ma,mat1)

D SR R S /1 ds +/1 s
= Ja.4 2 \Jo (go—f2 " Jorr (ga— f2)2 )
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We finally observe that

2 n 0*znl/3 n
B[(X30.0.0)"] < B0 + e 3 R
a=0
Therefore, we apply Lemma 8.3.3, then let A — 400, which concludes the proof. O

We use this lemma to prove the lower bound of Theorem 8.3.1.

Lower bound of Theorem 8.3.1. We keep the notation of Lemma 8.3.4. Let f, g be a pair
of continuous functions with f < g and fy < 0 < go, and = € [f1,91) Applying the
Cauchy-Schwarz inequality, for all § > 0, we have

P(Xif9m) 21) 2 ([ (j:i )21'

Therefore, by Lemma 8.3.4, we have

1 w2o? [t ds
liminf —— logP (X°(f,g,2) > 1) > -6 — sup 0*g; — .
lim inf —77 log ( w(fr9,7) > ) > te[(ﬁ] 95 )y i I
In2o2 3\1/3
Let A < A*and e > 0. Fort € [0, 1], weset fy = —Aand g; = ((1 — 1) + ¢ ) -\,

by the same computations as in the proof of the upper bound, for all § > 0, we have

1
liminf — log P (Ln < /\nl/?’)

n—+oo n, /

> lim inf — / log P (3[u| = n : Vk < n,V(uy) — kv > —xn'/?)

n—+oo n

L 0
> limint g log P (X170, -0 2 1)

1/3
> =6 - 0" () +¢°) G
Letting ¢ — 0 and § — 0, for all A < A*, we have

1/3 _ px
%gligofnl/glogP(L < (= Mn) > o7

8.4 Proof of Theorem 8.1.1

This section is very similar to Section 7.5 of Chapter 7. Indeed, we obtained in the
previous section the asymptotic behaviour of the tail distribution of L,,, and we offer to
strengthen it into a concentration estimate. In order to do so, we use the fact that the
tree T is a supercritical Galton-Watson tree. Therefore, at time dn'/3, there are at least
e=n'* individuals alive, each of which starting an independent branching random walk.
We then conclude with the lower bound of Theorem 8.3.1.

Proof of Theorem 8.1.1. We observe first that for all A < \*, by Theorem 8.3.1, we have

> P (Ln < (A - /\)n1/3) < +o0.

neN
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Thus, by the Borel-Cantelli lemma, we have

Lo _ ..
lﬁgliglg 373 > A" a.s.

We now prove the lower bound holds a.s. on the survival event of the branching random
walk. We note first that by Theorem 8.3.1, for all § > 0,

*,1/3 *
lim inf — 7 / log P (L, < A'n'/?) > —0"3. (8.4.1)
Let h > 0. We write N = Z\u\:1 1 and Ny, = Z\u|=1 1v(u)>—n}, which are respectively
the number of children and the number of children to the right of —h of the ancestor of
the branching random walk. We set

fu=B(s"") and f=E(sV).

We set gp, the smallest solution of the equation f;(s) = s and ¢ the smallest solution of
the equation f(s) = s. Note that by (8.1.1), E(IN) > 1, thus ¢ < 1. Moreover, for all h
large enough, by monotone convergence, we have E(NNy) > 1, and ¢, < 1.

We observe that T is a Galton-Watson tree with reproduction law N. By standard
Galton-Watson process theory, we have P(T is infinite) = 1 — ¢q. For h > 0, we introduce
the tree

(h) = {0} U {u eT:u#0,mueT™ V) —Viru) > —h}.

We observe that T is the random tree of the individuals in T in which there is no
jump smaller than —h. Note that T(" is a Galton-Watson tree with reproduction law Nj,.
Therefore, P(T(h) is infinite) = 1 — g, Moreover, by monotone convergence, as h — +00,
we have f, — f, thus g5, — q.

We set Sj, = {T™ is infinite} and S = {T is infinite}, we observe that for all h < b/,
we have

Sy C Sy C S,

as limp_, 1 oo P(S,) = P(5), S = Up>0Sk up to a negligible event.

We now apply Lemma 7.5.1 to bound from below the number of individuals alive in T
conditionally to the survival of the process. We choose ¢ > 1 such that E(N) > ¢* > 1.
For all h > 0 large enough, we have E(N") > 2. Therefore, there exists 3, < 1 and
C}, > 0 such that for all k € N

P (#{ueT®:|ul =k} < o) < gn+CuBf.

We set h > 0 chosen large enough and bound from above P(L, < Anl/3, Sh). Note
that every individual alive at time & in T is above —kh. For all A > \*, applying the
Markov property at time k leads to

P (Ln > )\nl/3,5h) <P (# {u eT® |y = k} < o~ Sh) +P (Lnfk > Ant/3 — kh)gk
< ChBf + (1 P (LH < anl/3 - kh))gk

Let € > 0, we set k = {5n1/3J, we have

cnl/3

P (L > Anl/3 Sh) < Coppem (1 —P (L <(\— e)nl/?’))g

n—ent/3
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For all € > 0, we set § = sé%g*g and A = \* + . By (8.4.1), we have

1/3
EN 1
log [— log <(1 -P (Ln7€n1/3 <(\— s)nl/?’))Q )] ~ns oo #nl/?’.

We conclude that >, P (Ln > (A +5)n1/3) < 400, thus by Borel-Cantelli lemma
again, for all h > 0 large enough and ¢ > 0,

L
limsup —= < (A\*+¢) as. on Sy,
n—+4o00 n1/3

As S = Up~0Sh, letting e — 0 and h — +o00, we conclude that

L
lim sup 1—"3 <\* as.onS.
n—+oo N /

which ends the proof. O
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