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Abstract

We propose two methods for calculating the shear waves spectra in 1D and 2D phononic
crystal (PC) waveguides. Starting this study with 1D PC, we consider the 1D-periodic
coated substrate. Here we develop scalar impedance method providing efficient means
for analysis and calculation of dispersion spectrum.

The main focus of our work in on the 2D PC’s: the 2D PC layer on a substrate, the free
PC plate and the PC plate sandwiched between two substrates. Since the propagator M

over a unit cell approximated by Fourier harmonics in one coordinate can have very large
components, we introduce its resolvent R = (zI −M)−1 (z is a complex number outside
of specM) as a numerically stable substitute. Another two key tools given in terms of the
resolvent, a spectral projector Pd and propagator Md for the decreasing modes, come into
play in the case of a waveguide with a substrate.

The resolvent method providing simple dispersion and wave field equations in terms
of R, Pd and Md has several advantages. It is of a good precision due to the exact solution
in one direction, computationally cheap due to the reduction of the problem to one unit
cell even in a semi-infinite substrate, and versatile since it is applicable to uniform, 1D- or
2D-periodic structures. Moreover, it is extendible to P/SV waves and 3D PC.

In numerical examples, we model low-frequency band gaps and compare them for the
mirror-symmetric and perturbed profiles.

Keywords: Phononic crystals, Guided waves, Propagator, Resolvent, Spectral projector

Résumé. Méthodes de l’impédance et de la résolvante pour le calcul des modes de
cisaillement dans des guides d’ondes phononiques 1D et 2D

Nous proposons deux méthodes pour calculer le spectre des ondes de cisaillement dans
les cristaux phononiques (CP) 1D et 2D. Commençant notre étude par les CP 1D, nous
développons la méthode des impédances scalaires pour la couche sur le substrat 1D.

Le focus principal de ce travail est sur les CP 2D : en particulier, on considère la couche
sur le substrat 2D, la plaque à conditions libres 2D et la couche entre les deux substrats
2D. Comme la matrice propagateur M à travers la cellule unitaire obtenue via l’expansion
des ondes planes dans une coordonnée peut avoir des composants très grandes, notre ap-
proche consiste à la substituer par sa résolvante R = (zI −M)−1 qui est numériquement
stable (où z est un nombre complexe hors de specM). Deux autres outils centraux définis
par la résolvante, le projecteur spectral Pd et propagateur Md pour les ondes évanescentes,
entrent en jeu pour le cas des CP avec un substrat.

La méthode de la résolvante, fournissant les équations de dispersion et du champ
d’ondes en termes de R, Pd et Md, a de multiples avantages. Elle est d’une bonne
précision grâce à la solution exacte dans une coordonnée, efficace grâce à la réduction
du problème à une seule cellule unitaire, même pour un substrat semi-infini, et polyva-
lente, puisque applicable pour les structures uniformes ou périodiques à 1D ou 2D. De
plus, la méthode peut être généralisée aux CP à 3D et aux ondes vectorielles.

Dans les exemples numériques, nous calculons les bandes d’arrêt de basse fréquence et
les comparons avec les profils de symétrie axiale et les profils perturbées.

Mots-clés: cristaux phononiques, ondes guidées, propagateur, résolvante, projecteur spectral
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Résumé étendu. Méthodes de l’impédance et de la résolvante

pour le calcul des modes de cisaillement dans des guides

d’ondes phononiques 1D et 2D

Nous proposons deux méthodes pour calculer le spectre des ondes de cisaillement dans

les cristaux phononiques (CP) à une et deux dimensions (1D et 2D). Les CP sont des

structures périodiques, dont le spectre d’onde acoustique présente des bandes acous-

tiques d’arrêt donnant lieu à des effets acoustiques particuliers. Les structures étudiées

sont constituées d’inclusions solides distribuées périodiquement dans une matrice solide.

Bien que les méthodes proposées puissent être élargies aux CP tri dimensionnels (3D) et

aux ondes vectorielles, nous ne considérerons que la propagation des ondes scalaires à

travers des CP 1D et 2D afin de simplifier le problème posé.

Nous commençons notre étude par les CP 1D, et nous développons la méthode des

impédances scalaires pour la couche sur le substrat 1D. Une analyse rigoureuse des fonc-

tions d’impédance nous permet d’obtenir une formulation alternative du problème posé;

cette approche se révèle plus avantageuse par rapport à la formulation commune de la

matrice de transfert. En particulier, la monotonicité des fonctions impédance par rapport

à la fréquence ω et au nombre d’ondes kx permet la visualisation graphique des racines

des équations de dispersion et clarifie la connectivité des branches rompues d’ondes de

Love. Ici x dénote la direction (latérale) de propagation. De plus, le comportement des

fonctions d’impédance soutient la relation entre le nombre des ondes de Love dans les

bandes d’arrêt et le nombre de résonances de la couche.

Nous illustrons les phénomènes spectraux observés au moyen de diverses exemples

numériques et comparons ces derniers avec les spectres des autres structures des CP. Le

spectre de dispersion d’un CP 1D formé par une couche sur le substrat est comparé dans

un premier temps avec le cas classique d’un substrat homogène recouvert par une couche
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homogène ou une couche 1D. Dans un second temps, cette comparaison sera faite cette

fois avec un substrat CP 1D sans la couche. On constate de multiples différences dans le

spectre. Par exemple, on constate qu’un substrat périodique, en contraste avec un sub-

strat homogène, admet des ondes localisées apparaissant à des fréquences finies quand

kx = 0. La différence générale entre les ondes de Love et les ondes de surface est que

chaque bande d’arrêt à kx fixé peut contenir au plus une onde de cisaillement de surface,

tandis qu’elle peut contenir plusieurs ondes de Love (leur nombre est égal au nombre des

résonances de la couche qui tombent dans cette bande d’arrêt). Un autre effet significatif

de la couche peut être constaté dans un cas assez typique lorsqu’un substrat périodique à

surface libre n’admet que des modes de cisaillement de surface que dans un étroit éventail

de vitesses. Dans ce cas, même une faible perturbation par une fine couche crée des on-

des localisées dans le domaine spectral où elles ne peuvent pas exister dans le cas d’un

substrat sans couche.

Le focus principal de ce travail porte sur les CP 2D : en particulier, on considère la

couche sur le substrat 2D, la plaque à conditions libres 2D et la couche entre les deux

substrats 2D. On développe ici une méthode basée sur la résolvante de propagation. Le

propagateur M (la matrice de monodromie) à travers la cellule unitaire est obtenu par

l’expansion en ondes planes dans une coordonnée. Comme la matrice M peut avoir des

composantes très grandes, nous substituons cette matrice par sa résolvante R = (zI −

M)−1, où z est un nombre complexe hors du spectre de M. La norme de R étant bornée,

R est numériquement stable. Cette approche permet de contourner les instabilités du

propagateur à travers la cellule élémentaire de la plaque. En général, la résolvante est

la solution d’une équation différentielle de Riccati dans la direction de la profondeur.

Le calcul explicite de la résolvante peut être simplifié considérablement si le milieu est

homogène au moins partiellement dans sa profondeur. Dans ce cas, la cellule unitaire

peut être partagée en couches partielles 2D homogènes, homogènes dans la profondeur

et 2D hétérogènes. Les résolvantes ’partielles’ Rj de ces couches partielles peuvent être
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calculées d’une manière plus rapide; soit explicitement ou comme une fonction de la

matrice système. La résolvante complète R est ensuite obtenue via les Rj en utilisant la

règle de la chaı̂ne pour la résolvante.

Pour une plaque à conditions libres 2D, les équation de dispersion et des champs de

déplacement et de contrainte sont établis en introduisant la résolvante. Dans le cas des

CP avec un substrat semi-infini, entrent en ligne de compte la résolvante Rs de la cel-

lule unitaire du substrat, le projecteur spectral Pd et le propagateur Md pour les ondes

évanescentes.

Pour calculer le spectre de la dispersion des ondes localisées, la solution évanescente

ηηη est extraite en appliquant le projecteur Pd sur les modes évanescentes et en imposant

l’égalité ηηη = Pdηηη. Le projecteur peut être considéré comme un filtre qui permet de ne

conserver que les ondes spécifiquement choisies (évanescentes ou propagatives), tout en

renonçant au reste. Il extrait les modes ’physiques’ évanescentes dans la profondeur

du substrat sans résoudre l’équation d’ondes, mais en utilisant la position des valeurs

propres dans le plan complexe, tout en évitant leur calcule explicite. En général, cet

opérateur peut être défini comme une intégrale curviligne : Pd = 1
2πi

∫
|z|=1−0

Rs(z)dz.

Cette définition peut être implémentée comme une fonction matricielle de la résolvante

Rs, et son calcul admet des simplifications sous la condition que la cellule unitaire complète

soit totalement uniforme ou uniforme dans le profondeur.

Pour calculer le champ des modes évanescents sans avoir recours au propagateur M

qui est numériquement instable, on utilisera la matrice Md définie par l’intégrale curviligne

Md =
1
2πi

∫
|z|=1−0

zRs(z)dz et implémentée comme une fonction matricielle de la résolvante

Rs.

La méthode de la résolvante, fournissant les équations de la dispersion et du champ

d’ondes en termes de R, Pd et Md, a de multiples avantages. Le propagateur M et sa

résolvante R sont obtenus à l’aide d’un développement en ondes planes tronqué (DOP)

selon la direction de propagation couplée à un calcul intégral exact, alors que les autres
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méthodes, comme le DOP 2D ou la méthode des éléments finis, impliquent une tronca-

ture suivant deux directions. Par conséquent, notre méthode permet une plus grande

précision et une meilleure efficacité grâce à la taille réduite de la matrice à traiter. La

méthode de la résolvante est en outre efficace grâce à la réduction du problème à une

seule cellule unitaire au moyen du projecteur Pd même pour un substrat semi-infini. De

plus, elle est polyvalente, applicable pour les structures uniformes ou périodiques à 1D

ou 2D. On remarquera que l’expansion en séries de Fourier empêche l’application de la

méthode de la résolvante à d’autres types de CP, tels des CP fluide/solide, solide/fluide

ou solide avec des inclusions vides. Dans ces cas, un changement de base de projection

en lieu de l’expansion de Fourier pourrait apporter une solution.

L’utilisation de la méthode est présentée à travers plusieurs exemples numériques. On

montre que les branches à basse fréquence peuvent soit se croiser soit se repousser, don-

nant lieu, dans ce dernier cas, à des bandes d’arrêt de basse fréquence à l’intérieur de la

zone de Brillouin. Ces bandes d’arrêt sont d’autant plus larges quand les inclusions sont

proches de la surface à conditions libres ou à l’interface; de plus leur taille augmente avec

la taille des inclusions. Nous comparons différentes bandes d’arrêt de basse fréquence

pour établir les profils de symétrie axiale et les profils perturbés. Les bandes d’arrêt provi-

ennent de la répulsion des branches de dispersion au bord de la zone de Brillouin pour

les profiles de symétrie axiale et au bord ainsi qu’à l’intérieur de la zone de Brillouin pour

les profiles asymétriques. Les champs de déplacement et de contrainte sont calculés pour

les CP avec les valeurs de raideur très différentes entre la matrice et les inclusions, ce qui

nous permet de révéler la géométrie du CP.
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Chapter 1

Introduction

Phononic crystals (PC) are periodic structures whose wave spectra exhibit frequency band

gaps; see [1]. This feature makes possible extraordinary effects such as total transmission,

negative refraction, superlensing etc. The present study is concerned with SH (shear hor-

izontal) waves in solid PC with boundaries and interfaces. We start with a relatively sim-

pler case of Love waves in the coated periodically multilayered or functionally graded

isotropic substrate. This setup may be viewed as a particular case of a periodic laminate

with structural defect; see [2]–[10]. The layering is parallel to the surface, so that the

substrate is vertically periodic and laterally homogeneous. Thus this is a 1D PC struc-

ture. The method of scalar impedances is an appropriate tool for tackling this problem.

The main focus of this work is on the 2D PC laterally periodic depth-dependent struc-

tures represented by 2D solid isotropic inclusions (bars) parallel to the surface of a solid

isotropic matrix and periodic along this surface. Taking the direction of lateral period-

icity as the coordinate x1, the properties of such a 2D structure depend (periodically or

not) on the depth coordinate x2 and are uniform along the second lateral coordinate x3

parallel to the bars; see Fig. 1.1. Hence this structure admits uncoupling of the SH mode

propagating in the plane X1X2 and polarized along the axis X3. Specifically, we consider

SH waves for a 2D PC layer on a uniform or 2D-periodic substrate (2D Love waves), for a

11



12 CHAPTER 1. INTRODUCTION

free 2D PC layer (2D plate waves), and for a 2D PC layer between two periodic substrates

(2D guided waves).

X1

X2

X3

Figure 1.1: Example of a 2D PC structure.

Much work which has recently been devoted to the dispersion spectra of the PC layer

on a substrate (see [11]–[21]) and of the PC plate and the PC sandwiched plate (see [22]–

[37]) used extended plane wave expansion (PWE), supercell method in combination with

PWE, finite difference method (FDM) or, most commonly, with finite elements method

(FEM). Moreover, note other related techniques for the waveguides such as the Dirichlet-

to-Neumann approach (see [38]) or scattering and Green function approach for discrete

structures (see [39]–[41]). The main aim of this thesis is to propose a new method for cal-

culation of the SH dispersion spectrum of bounded 2D PC (note that it can be extended

to P/SV waves and 3D PC). The method can be applied, like the supercell method, for

any type of substrate, uniform, depth-uniform or 2D-periodic, whereas extended PWE

for example is suitable only for uniform substrates. This 2D method proceeds from the

propagator M over a vertical period of the structure (see § 3.2). Reducing consequently

the waveguide problems to their unit cells by means of M makes our method less com-

putationally expensive than other methods considering several unit cells of the periodic

structure. M is approximated via truncated PWE in the lateral coordinate giving a matrix

of large size (corresponding to the size of wave packet) 2(2N+1)×2(2N+1), where 2N+1

is the number of Fourier harmonics. In particular, we take into account here the Floquet-

Bloch form of displacement field in periodic media. Next, M is obtained by means of
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exact integration in the depth coordinate in contrast to other methods (see above) in-

volving truncation in all coordinates. Thus the advantages of this method are accuracy

and efficiency due to the smaller size of the input matrix of coefficients of the governing

system of equations (O(N) instead of O(N2) for other methods). At the same time, the

propagator M of large size becomes numerically unstable. This problem is circumvented

by substituting instead of M its resolvent R = (zI−M)−1 (z is a complex number outside

of the spectrum of M and I denotes the identity matrix), which is numerically stable (see

§ 3.3).

The resolvent is the central object of our method which can therefore be called the re-

solvent method. We propose the resolvent as a numerically stable substitute for the ex-

ponentially growing propagator. The resolvent formalism is an amply developed theory

to solve differential equations and study the spectral properties - thanks to its stabilizer

feature. Nevertheless still it remains relatively unused in physical acoustics. Generally, a

resolvent can be taken of any matrix A by choosing an appropriate z outside of the spec-

trum of A. Therefore, it gives a small object by inverting a big one. Roughly speaking, it

can be considered as a stable inverse. Here, we take the resolvent of the propagator.

The main idea to state the dispersion equation is the following. On a bounded piece

of structure like a layer, the resolvent substitutes the layer propagator. For the problem

including substrate(s) (Love waves and guided waves, see Chapters 3 and 5), another key

tool defined by the resolvent Rs of the propagator through the unit-cell of the substrate

comes into play. This key tool is a spectral projector P which allows us to extract the

’physical’ modes decreasing or propagating into the depth of the substrate without solv-

ing the wave equation (see § 3.3). Spectral projector was first applied for surface waves in

[42]; here we extend this tool to other types of structures. Note again that the projector ex-

tracting ’physical’ modes is defined over a single unit cell, which makes our method less

computationally expensive than the widely used supercell method, which requires con-

sidering several unit cells for the same purpose. Summarizing, the dispersion equation
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for the PC waveguides can be formulated via two tools, the resolvent Rl of the layer(s)

and the projector Pd on the decreasing modes in the half-space(s).

We calculate the wave field for the PC waveguides by extending the method developed

for the dispersion equation. The initial wave field is given by the solution of the disper-

sion equation of the overall structure discussed above. To calculate the propagating wave

field, we ’move’ our tools inside the structure considering e.g. Rl(x2, 0) for any x2 ∈ [d, 0]

instead of Rl(d, 0). As before, we apply the resolvent Rl of the layer(s) for the wave field

propagating inside a plate. However to calculate the wave field decreasing into the depth

of the substrate, we can not use the projector Pd introduced above, since it only extracts

the decreasing modes, but does not give the corresponding values. Here we introduce a

new tool, a modification of the projector Pd, the propagator Md for the decreasing modes

over a unit cell of the substrate (see § 5.6). This propagator is numerically stable, since it

can be viewed as a substrate propagator Ms containing only eigenvalues corresponding

to the decreasing modes and other eigenvalues replaced by zeros.

The means of calculation of the resolvent, the projector and the propagator for decreas-

ing modes are as follows. The resolvent is calculated similarly as the propagator. In gen-

eral, the resolvent satisfies the Riccati equation and hence can be computed by standard

numerical means such as the Runge-Kutta method. At the same time, the calculation can

often be simplified, since the unit cell can often be partitioned into the sublayers including

the ones uniform along the depth or along the both coordinates. The ’partial’ resolvents

Rj of such sublayers can be calculated in a faster way (explicitly or as a function of a

constant system matrix), and the overall resolvent R is obtained via Rj using the special

chain rule. In general, the projector Pd on the decreasing modes is expressed as a con-

tour integral Pd = 1
2πi

∫
|z|=1−0

Rs(z)dz. This definition can be implemented as a function

of the resolvent matrix. Moreover, like in the case of the resolvent, the calculation of Pd

admits simplification, but this time only if the entire unit cell of a substrate is uniform or

depth-uniform. The propagator Md for decreasing modes is defined similarly as Pd by a



15

contour integral Md = 1
2πi

∫
|z|=1−0

zRs(z)dz and implemented as a matrix function of the

resolvent.

In the thesis, we consider the analytical derivation of the dispersion equations and wave

field equations for 2D PC structures and the implementation of the numerical solutions.

We also use various numerical examples to discuss the observed physical features. In

particular, we demonstrate how a variation of the structure of the PC (i.e. changing the

size, material, form and position of inclusions) can make bandgaps appear or disappear.

Special attention is given to the case of asymmetric periodic perturbation of a symmetric

profile which can create absolute bandgaps due to a split of the formerly intersecting

symmetric and antisymmetric dispersion branches.

The thesis is organized as follows. For comparison with the 2D cases, we proceed in

Chapter 2 from the case of the SH Love waves in a coated vertically periodic substrate

(1D PC). Due to the lateral homogeneity, the dispersion spectrum ω(k1) is infinite and has

no bandgaps. Also due to the lateral homogeneity, the SH propagator M is confined to the

2 × 2 size, so there is only one decreasing (’physical’) and one increasing (’nonphysical’)

modes, which can be identified explicitly. Instead of using a most common propagator

approach, we recast the dispersion equation in terms of the scalar impedances. Analytical

properties of the impedances facilitate analysis of the spectrum and provide an insightful

graphical method of visualizing roots of the dispersion equation. The results of Chapter

2 are published in [43]. Chapters 3-5 are devoted to 2D PC structures. Lateral periodicity

makes this setup much more complicated than the case of 1D PC. First, the dispersion

spectrum ω(k1) folds up in the first Brillouin zone and acquires bandgaps. Secondly, the

corresponding SH propagator M is now of a large size 2(2N + 1)× 2(2N + 1) and respec-

tively there is a large number 2N + 1 of decreasing and increasing Floquet-Bloch modes

in the substrate. This calls for a resolvent R to bypass numerical instability of M and for

a projector P in the substrate to extract ’physical’ modes decaying into the depth without

calculating them explicitly. These objects are introduced in Chapter 3 which deals with
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the Love waves in a laterally periodic 2D PC layer on a substrate. The dispersion equation

is expressed via the resolvent in the layer and the projector in the substrate. Examples of

the formation of bandgaps in the subsonic dispersion spectra depending on the position

of the inclusions are discussed. Chapter 4 describes the SH waves in a free 2D PC plate.

The starting point is the formulation of the dispersion equation via propagator M which

is then recast in stable terms of the resolvent. Chapter 5 is concerned with the SH guided

waves in a 2D PC layer between two substrates. This case involves two substrates, hence

the dispersion equation is written via the resolvent in the layer and two projectors in the

substrate. Chapters 4 and 5 also discuss in some detail the uncoupled dispersion equa-

tions for symmetric and antisymmetric branches in the case of a mirror-symmetric profile

of the structure. Examples are provided where the asymmetric perturbation of the sym-

metric profile breaks the intersection of the symmetric and antisymmetric branches and

creates absolute bandgaps. Moreover, in Chapters 4 and 5 we derive the wave field equa-

tion for displacement and traction field and illustrate it by some numerical examples. The

results of Chapters 3-5 are published in the papers [44] and [45]. Mathematical technical-

ities, explicit formulas for the model uniform case and different options for calculating

the resolvent and projector in the general are discussed in the Appendices A, B and C

respectively. Application of the resolvent method to the calculation of the Floquet-Bloch

spectrum of propagating SH waves in the 2D infinite PC is demonstrated in the Appendix

D.



Chapter 2

Love waves in a vertically periodic

coated substrate

2.1 Introduction

Acoustic wave spectra in periodic laminates with structural defects has been studied from

different perspectives; see [2]–[10]. One of the topical problems studies the effect of coat-

ing on SH waves in a periodically layered substrate. It is well known that if a semi-

infinite substrate is homogeneous then its coating by ’slow’ layer is a means to achieve

the SH wave localisation (decay into the depth). These are the classical Love waves whose

phase-velocity branches v (kx) = ω/kx must be subsonic with respect to the substrate, i.e.

be confined between the shear speeds of the coating layer and the substrate cl < cs (here kx

is the wavenumber along the surface, and cl means min cl (y) if the coating is transversely

inhomogeneous); see [46]. The situation is different if the substrate is periodic. For any

kx (possibly kx = 0), taking ω in the Floquet stopbands ensures by itself decaying waves

without setting upper limit on their velocity v = ω/kx [2, 3, 47, 48]. At the same time, it is

also possible that SH surface waves in a free (uncoated) periodic substrate are restricted

to a fairly narrow velocity range, as detailed in [49]. For instance, this may be often the

17
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case in substrates with a bilayered or monotonic profile on a period; moreover, there is no

SH surface waves at all if the profile is even. In such cases, coating the substrate creates

or drastically enriches the spectrum of SH localised waves and thus plays a similar role

as in the classical setting with a homogeneous substrate, though in a more complicated

context (e.g. the coating does not have to be ’slow’). In view of different terminology used

in the literature, let us agree to refer to the SH localised waves in the uncoated and coated

periodic substrate as the surface waves and the Love waves, respectively. The former are

related to a strictly periodic halfspace, the latter imply perturbed periodicity. Similar in

that they both lie in the Floquet stopbands of a substrate and decay into the depth, these

are actually two different types of wave solutions. One essential difference is that any

periodic substrate admits no more than a single SH surface wave per a stopband, while

there is no such limitation for Love waves. This feature of possible wave mutliplexing is

another interesting functional capacity of coating.

The present Chapter studies the dispersion spectrum of Love waves in a coated sub-

strate with arbitrary periodic piecewise constant or functionally graded (see [49, 50])

variation of material properties in the depth direction. The motivation is to gain better

understanding into the spectral effect of coating and to obtain some general analytical re-

sults. The structure and main results of the Chapter are as follows. The background of the

problem is outlined in §2.2. Here we state the SH wave equation, introduce the notion of

propagator for 1D periodic structure (also referred to as monodromy matrix) and explain

how it defines spectrum of the propagating waves. Unlike commonly used formulation

via the transfer matrix, the dispersion equation is set as equality of scalar SH impedances

of the coating layer and the substrate. The advantage of using impedances lies in their

helpful analytical properties such as monotonicity in ω and kx which is demonstrated in

§2.3 and exploited in §2.4.1. It enables insightful graphical visualisation of roots of the

dispersion equation that clarifies the nature and connectivity of the broken branches of

Love waves (§2.4.1.1), and it also underpins the relation of the number of Love waves in a
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stopband to the number of resonances of the coating layer (§2.4.1.2). The monotonicity of

Love dispersion branches ω (kx) is proved in §2.4.1.3 and their lower bound is discussed

in §2.4.1.4. The criterion for existence of the fundamental Love branch with an origin at

zero ω and kx is derived in §2.4.2. General findings are illustrated in §2.5 by examples of

Love waves which arise due to coating of periodically layered and functionally graded

substrates. Concluding remarks are presented in §2.6.

2.2 Background

2.2.1 Propagator (monodromy matrix)

Consider the SH wave uz (x, y, t) = u (y) ei(kxx−ωt) in an isotropic medium with piecewise

continuous density ρ (y) and shear modulus µ (y) . The wave equation

(µu′)
′ − µk2

xu = −ρω2u (2.1)

may be recast as the system

Qη = η′ with Q (y) = i




0 −µ−1

µk2
x − ρω2 0


 , η (y) =




u

if


 , (2.2)

where f = µu′ is the traction and ′ ≡ d/dy. For any initial condition η (y0) , the solution of

the first-order differential system (2.2) is

η (y) = M (y, y0) η (y0) with M (y, y0) ≡




M1 M2

M3 M4


 =

∫̂ y

y0

(I+Qdy) , (2.3)

where M is the matricant (propagator or transfer matrix) and
∫̂

is the multiplicative in-

tegral which expands in the Peano series and reduces to a product
∏1

j=n expQj (∆y)j if
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Q (y) takes piecewise constant values Qj on [y0, y]; see [51]. In view of the explicit form of

Q in (2.2), it follows that detM = 1 and that ImM1,4 = 0, ReM2,3 = 0.

In the case of periodic properties ρ (y) = ρ (y + T ) and µ (y) = µ (y + T ), the central

role is played by the matricant over the period, or the monodromy matrix, M (y + T, y)

[= M (y, 0)M (T, 0)M−1 (y, 0)] with eigenvectors w1,2 = w1,2 (y) and with eigenvalues q1,2

(q1 = q−1
2 ) independent of y.

The monodromy matrix gives the projection of the spectrum of the propagating waves

on the plane {ω, kx} in the following way. The so-called Lyapunov function ∆(ω2, k2
x) =

1
2
traceM (T, 0) partitions the {ω, kx}-plane into alternating passband and stopband areas

where, respectively,

|∆(ω2, k2
x)| < 1 ⇒ complex q1 6= q2 with |q1,2| = 1, w+

1 Tw2 = 0;

|∆(ω2, k2
x)| > 1 ⇒ real q1,2 ≷ 1, w+

1 Tw1 = w+
2 Tw2 = 0

(2.4)

(+ means Hermitian conjugation and T is a matrix with zero diagonal and unit off-

diagonal components). Equation |∆(ω2, k2
x)| = 1 defines the set of curves {ωe (kx)} of

band edges where a degenerate eigenvalue qd = ±1 corresponds to a single eigenvector

wd so that w1,w2 → wd at |∆| → 1 (barring the exceptional case of a zero-width stopband

and also the point ω = 0, kx = 0 where (2.1) has a trivial solution u (y) = const). Note that

|∆(0, k2
x)| > 1 at kx 6= 0. Indeed the first stopband area [0, ω

(1)
e (kx)) for the case of periodic

media is what is the subsonic interval for homogeneous media.

In the following, we refer to eqs. (2.1)-(2.3) with ρl, µl for a coating layer y ∈ [−d, 0] and

with ρs, µs for a T -periodic substrate y > 0. Denote

c2l (y) = µl/ρl, c̄2l = 〈µl〉 / 〈ρl〉 with 〈·〉 ≡ 1
d

∫ 0

−d
· dy,

c2s (y) = µs/ρs, c̄2s = 〈µs〉 / 〈ρs〉 with 〈·〉 ≡ 1
T

∫ T

0
· dy,

(2.5)

where c (y) implies ’local’ speed of short waves and c̄ implies effective speed of long
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waves in the direction x. Note that we will use the same symbol 〈·〉 for an average across

the layer and across the substrate period (the label l or s of the enclosed quantities suffices

to clarify which is the case).

2.2.2 Definition of conditional and modal SH impedances

Assume that a layer y ∈ [−d, 0] with ρl (y) and µl (y) is free of traction at the upper face

and, under this condition, introduce via (2.3) the impedance zl at the lower face:

f (−d) = 0, f (0) = −zlu (0) ⇒ zl = iM3 (0,−d)M−1
1 (0,−d) . (2.6)

The ’conditional’ impedance zl = zl (ω
2, k2

x) is a real function, whose zeros and poles

define the spectra
{
ωf/f (kx)

}
and

{
ωf/c (kx)

}
of SH waves in the given layer with free/free

or free/clamped faces (f (−d) = 0 and f (0) = 0 or u (0) = 0), respectively. The least value

ω
(1)
f/f (kx) among

{
ωf/f (kx)

}
, i.e. the first zero of zl, satisfies

kxminy∈[−d,0] cl (y) 6 ω
(1)
f/f (kx) 6 kxc̄l , (2.7)

while the first pole of zl is ω
(1)
f/c (kx) ∼ O (1) at any kx. The definition (2.6)2 obviously

reduces to

zl = µlky tan kyd with ky =
√

ω2/c2l − k2
x (2.8)

if the layer is homogeneous (has constant ρl, µl).

Next, consider a periodic half-space y > 0. With reference to (2.3), define the Floquet

modes η1,2 (y) via the eigenvectors w1,2 of, specifically, M (T, 0) :

ηα (y) = M (y, 0)wα, where M (T, 0)wα = qαwα; α = 1, 2. (2.9)

By this definition, ηα (nT ) = qnαwα for n = 0, 1, ... Using the notations ηα = (uα ifα)
T and
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wα = (aα bα)
T , wd = (ad bd)

T (T means transposition), introduce the modal impedances

Zsα at the substrate surface as follows

fα (0) = −Zsαuα (0) ⇔ Zsα = ibαa
−1
α , α = 1, 2;

(
Zs1 = Zs2 = ibda

−1
d at |∆| = 1 if ad 6= 0

)
,

(2.10)

where

ibα
aα

=
iM3 (T, 0)

qα −M4 (T, 0)

(
=

M1 (T, 0)− qα
iM2 (T, 0)

)
, qα = ∆±

√
∆2 − 1. (2.11)

Our case of interest is when ω, kx lie in the stopbands. The impedances Zsα (ω
2, k2

x) at

|∆| > 1 (hence w+
αTwα = 0, see (2.4)2) are real functions, with zeros and poles on the

sets of curves {ωN (kx)} and {ωD (kx)} which yield bα = 0 and aα = 0 and thus fulfil

the Neumann f (0) = 0 (⇔ u′ (0) = 0) and Dirichlet u (0) = 0 conditions, respectively.

It is known that each closed stopband contains one Neumann branch ωN (kx) and one

Dirichlet branch ωD (kx) (missing in the first stopband only), and that these two branches

coincide with the opposite edges of each stopband if ρ (y) and µ (y) are even about the

midpoint of a period [0, T ]. Similarly to (2.7), the first Neumann branch ω
(1)
N (kx) lying in

the first stopband ω ∈ [0, ω
(1)
e (kx)) satisfies

kxminy∈[0,T ] cs (y) 6 ω
(1)
N (kx) 6 ω(1)

e (kx) 6 kxc̄s, (2.12)

while the second stopband and hence the first Dirichlet branch occur at finite frequency

whatever small kx is. For more details, see [52].

2.2.3 Statement of the Love wave problem

Consider Love waves in a periodic substrate y > 0 coated by a layer y ∈ [−d, 0]. The

Love-wave spectrum {ωL (kx)} follows from the SH wave equation under the traction-free

condition f (−d) = 0 at the upper surface, continuity of displacement u (y) and traction
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f (y) at the layer/substrate interface, and the requirement that the solution must vanish at

y → ∞. The latter implies that the branches ωL (kx) are confined to the stopbands and that

the Love waves must incorporate the decreasing Floquet mode in the substrate (|qα| < 1).

In the following, we choose to label the two Floquet modes so that α = 1 and α = 2

always correspond to, respectively, decreasing and increasing ones, i.e. |q1| < 1 < |q2| in

any stopband. In this regard, we will refer to the impedances Zs1 and Zs2 in the stopbands

as physical and non-physical one.

Using the above auxiliary conditions and the definitions (2.6) and (2.10) of the layer and

substrate impedances, the dispersion equation on the Love spectrum may be posed in the

form

zl
(
ω2, k2

x

)
= Zs1

(
ω2, k2

x

)
for

∣∣∆
(
ω2, k2

x

)∣∣ > 1 with |q1| < 1 < |q2| . (2.13)

Note that equation zl = Zs2 defines the branches ωnL (kx) of non-physical Love waves

increasing into the depth. The impedance formulation of the problem is convenient due

to some useful and general properties of the functions zl and Zsα. These properties are

considered next.

2.3 Properties of the impedances

2.3.1 Layer impedance

Using (2.2), let us develop positive functions ρl (y) |u (y)|2 and µl (y) |u (y)|2 as follows

ρl |u|2 = iη+(T ∂Q
∂(ω2)

)η = iη+T ∂2η
∂y∂(ω2)

+ i (Qη)+ T ∂η
∂(ω2)

= i(η+T ∂η
∂(ω2)

)′ = (f ∗ ∂u
∂(ω2)

− u∗ ∂f
∂(ω2)

)′,

µl |u|2 = −iη+(T ∂Q
∂(k2x)

)η = ... = −(f ∗ ∂u
∂(k2x)

− u∗ ∂f
∂(k2x)

)′,

(3.14)

where ∗ means complex conjugation. Integrate both sides of (3.14) over the layer y ∈

[−d, 0] under the condition f (−d) = 0, insert f (0) = −zlu (0) with real zl from (2.6) and
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express u (y) = M1 (y,−d)u (−d) from (2.3). Hence

〈
ρlM

2
1

〉
=

1

d

∂zl (ω
2, k2

x)

∂ (ω2)
M2

1 (0,−d) ,
〈
µlM

2
1

〉
= −1

d

∂zl (ω
2, k2

x)

∂ (k2
x)

M2
1 (0,−d) , (3.15)

where 〈·〉 denotes average across the layer, see (2.5). Next, multiplying (2.1) by complex

conjugated u∗ (y) and manipulating likewise as above gives

−1
d
µl (0) u

′ (0)u∗ (0) + 〈µl |u′|2〉+ k2
x〈µl |u|2〉 = ω2〈ρl |u|2〉 ⇒

1
d
zlM

2
1 (0,−d) + 〈µ−1

l |M3|2〉+ k2
x〈µlM

2
1 〉 = ω2〈ρlM2

1 〉.
(3.16)

Note that (3.16) is consistent with identical vanishing of zl and M3 at ω = 0, kx = 0.

By (3.15) and (3.16), the impedance zl (ω
2, k2

x) for a layer with any ρl (y) and µl (y) satis-

fies

∂zl/∂
(
ω2

)
> 0, ∂zl/∂

(
k2
x

)
< 0; zl

(
0, k2

x

)
kx 6=0

< 0 (zl (0, 0) = 0), (3.17)

hence its zeros ωf/f and poles ωf/c are strictly alternating and its overall shape mimics the

’tangent-like’ function (2.8) describing a homogeneous layer. Dependence zl (ω) at fixed

kx 6= 0 is outlined in Fig. 2.1.

ω

z
l

Figure 2.1: Shape of zl (ω) at fixed kx 6= 0.
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2.3.2 Substrate impedances

For a substrate material with T -periodic ρs (y) and µs (y) , define the positive forms similar

to (3.14) but now associated with each of the Floquet modes ηα (y) (2.9), namely,

ρs |uα|2 = i(η+αT
∂ηα
∂ (ω2)

)′, µs |uα|2 = −i(η+αT
∂ηα
∂ (k2

x)
)′; α = 1, 2. (3.18)

Integrate both sides of (3.18) over the period y ∈ [0, T ] , insert (2.9)2, invoke the definition

(2.10) of the impedances Zsα (ω
2, k2

x) and consider them in the stopbands so that Zsα are

real. It thus follows that

〈
ρs |uα|2

〉
= i

T
(|qα|2 − 1)w+

αT
∂wα

∂(ω2)
= 1

T
(|qα|2 − 1)

∂Zsα(ω2,k2x)
∂(ω2)

|aα|2 ,
〈
µs |uα|2

〉
= ... = 1

T
(1− |qα|2)

∂Zsα(ω2,k2x)
∂(k2x)

|aα|2 ; α = 1, 2,
(3.19)

where 〈·〉 denotes average across the period, see (2.5). It can also be shown, similarly to

(3.16), that real Zsα satisfy the identity

1

T
(|qα|2 − 1)Zsα |aα|2 + 〈µs |u′

α|
2〉+ k2

x〈µs |uα|2〉 = ω2〈ρs |uα|2〉, α = 1, 2. (3.20)

In particular, (3.20) is valid at any point ω = 0, kx 6= 0 (since it always lies a stopband, see

§2.2.1).

By (3.19) and (3.20), the physical and non-physical impedances Zs1 and Zs2 associated

with the decreasing α = 1 and increasing α = 2 Floquet modes (|q1| < 1 < |q2|) fulfil the

inequalities

∂Zs1/∂ (ω
2) < 0, ∂Zs2/∂ (ω

2) > 0; ∂Zs1/∂ (k
2
x) > 0, ∂Zs2/∂ (k

2
x) < 0;

Zs1 (0, k
2
x)kx 6=0 > 0, Zs2 (0, k

2
x)kx 6=0 < 0 (Zsα (0, 0) = 0) ,

(3.21)
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which specify at the band edges as

∂Zsα/∂
(
ω2

)
, ∂Zsα/∂

(
k2
x

)
→ ±∞ at |qα| → 1 (α = 1, 2) . (3.22)

(a)

(b)

(d)

(c)

(e)

Figure 2.2: Possible shapes of Zsα (ω) at fixed kx in the (a) first and (b,c) higher stopbands
(|∆| > 1) of a semi-infinite periodic substrate with an asymmetric profile and (d,e) with
an even profile of ρs (y) , µs (y) on a period. Solid and dashed lines are used for the phys-
ical and non-physical impedances Zs1 and Zs2 associated with decreasing and increasing
Floquet modes, respectively. Dotted lines indicate the stopband edges (|∆| = 1) and
asymptotes.
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Adding into consideration the known properties of the Neumann and Dirichlet branches

ωN (kx) and ωD (kx) which define zeros and poles of Zsα (see §2.2.2), possible shapes of the

curves Zsα (ω) occurring in the stopbands at fixed kx are encompassed in Fig. 2.2. Recall

that the first stopband (Fig. 2.2a) is a case apart, since it does not admit a Dirichlet so-

lution ωD and it disappears at kx = 0 (see (2.12)). In order to embrace different options

concisely, we do not fix zero mark of the axis Zsα in Figs. 2.2a-c which thus imply that,

generally, a single zero point ωN of Zsα within a given stopband may correspond to either

decreasing α = 1 or increasing α = 2 mode (i.e. either Zs1 (ωN) = 0 or Zs2 (ωN) = 0)

and may occur either before or after the pole (i.e. ωN ≶ ωD). The particular case where

ρs (y) and µs (y) are even on a period [0, T ] (see §2.2.2) is shown in Figs. 2.2d,e: here the

pole ωD (unless the first stopband) and zero ωN coincide with the opposite edges of each

stopband.

In conclusion, consider the transformation under which the profile ρs (y) , µs (y) of each

period is ’symmetrically reflected’ about the midline. It can be shown that such trans-

formation amounts to interchanging the diagonal components of the monodromy matrix

M (T, 0); see [49]. By (2.10), (2.11), this leads to the reciprocal identity

Zs1 = −Z̃s2, Zs2 = −Z̃s1 (3.23)

between the impedances Zsα and Z̃sα of any substrate and its ’symmetric reflection’. Note

that (3.23) is consistent with the identity Zs1 = −Zs2 for periodically even substrates, see

Figs. 2.2d,e.
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2.4 Love wave spectrum

2.4.1 Overview of the spectrum

The impedance properties established in §2.3 and delineated in Figs. 2.1, 2.2 are insight-

ful for understanding the Love-wave spectrum {ωL (kx)}. At any fixed kx, the solutions

ωL of the dispersion equation (2.13) for Love waves can be identified graphically as inter-

sections of the curves zl (ω) and Zs1 (ω) , while intersections of zl (ω) with Zs2 (ω) define

the solutions ωnL for non-physical (increasing) Love wave. Allowing kx to vary, it is ev-

ident from Figs. 2.1, 2.2 that branches of physical and non-physical solutions transform

to each other when they meet the stopband edge. Thus the Love spectrum should gen-

erally include finite and semi-infinite branches ωL (kx) originating and/or terminating at

cutoff points kx 6= 0, where a branch ωL (kx) meets a band-edge curve ωe (kx) and pass on

a non-physical branch ωnL (kx) (see examples in §2.5).

2.4.2 Number of Love waves per a stopband

It is seen from Figs. 2.1, 2.2 that, in contrast to a free substrate which does not admit more

than a single SH surface wave per stopband, there is no such limitation for Love waves

defined by intersections of zl with Zs1. The number of Love waves increases along with

the number n of poles of ωf/c of zl getting into the given stopband. To be specific, let us

formulate a few statements in which Ω denotes the frequency interval of a stopband at

fixed kx.

1) Let the stopband Ω contain no poles of zl (ω) . Then there must be (i) none or one or

two Love waves in Ω of the type plotted in Fig. 2.2b and (ii) none or one Love wave in Ω

of all other types plotted in Fig. 2.2.

2) Let the stopband Ω contain n = 1, 2, ... poles of zl (ω) . Then there must be (i) n or n+1

or n+2 Love waves in Ω of the type plotted in Fig. 2.2b, (ii) n−1 or n or n+1 Love waves
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in Ω of the type plotted in Fig. 2.2c, and (iii) n or n + 1 Love waves in Ω of other types

plotted in Figs. 2.2a,c,d. Also note that there must be at least n non-physical solutions ωnL

in Ω of the type plotted in Fig. 2.2c and at least n − 1 of them in Ω of other types plotted

in Fig. 2.2.

These observations are evident from Figs. 2.1, 2.2 and can be proved analytically by

noting that, according to (2.13) and (3.17), (3.21), the Love wave solutions ωL are zeros of

monotonic function zl (ω)− Zs1 (ω) and hence there is one and only one ωL between each

pair of poles of zl (ω)− Zs1 (ω) occurring inside Ω or at its edges. In other words, there is

one Love wave in between two poles ωf/c of zl (ω) in Ω unless they enclose ωD realizing

pole of Zs1 (Fig. 2.2b), in which case there are two Love waves in between such pair of

ωf/c.

Similar analysis basing on (3.17), (3.21) can be performed at fixed ω and varying kx.

2.4.3 Monotonicity of the Love wave branches

Equations (2.13) and (3.17), (3.21) show that the Love branches ωL (kx) are monotonically

increasing at kx 6= 0. Using (3.15) and (3.19) yields the explicit identity

dω2
L

d (k2
x)

= −∂ (zl − Zs1) /∂ (k
2
x)

∂ (zl − Zs1) /∂ (ω2)
=

(1− |q1|2) |a1|2 〈µlM
2
1 〉d+M2

1 (0,−d) 〈µs |u1|2〉T
(1− |q1|2) |a1|2 〈ρlM2

1 〉d+M2
1 (0,−d) 〈ρs |u1|2〉T

> 0,

(4.24)

where |q1|2 < 1. Expressing ω2
L (kx) from the system of equations (3.16)2, (3.20) taken at

zl = Zs1 and combining with (4.24) provides a similar identity for the velocity branches

vL (kx) = ωL (kx) /kx which shows that they are monotonically decreasing at kx 6= 0:

k2
x

dv2L
d (k2

x)
=

dω2
L

d (k2
x)

− v2L = − (1− |q1|2) |a1|2 〈µ−1
l M2

3 〉d+M2
1 (0,−d) 〈µs |u′

1|2〉T
k2
x

[
(1− |q1|2) |a1|2 〈ρlM2

1 〉d+M2
1 (0,−d) 〈ρs |u1|2〉T

] < 0.

(4.25)

The same consideration but with Zs2 and |q2|2 > 1 reveals that the branches ωnL (kx) and

vnL (kx) of non-physical Love solutions (the ones that involve the increasing Floquet mode
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α = 2) are generally not monotonic. The latter is in contrast to the case of a free periodic

halfspace where both physical and non-physical SH surface waves are monotonic.

2.4.4 Lower bound of the Love wave spectrum

The velocity spectrum of Love waves {vL (kx)} = {ωL (kx)} /kx has the lower bound

{vL (kx)} > min
(
miny∈[−d,0] cl (y) ,miny∈[0,T ] cs (y)

)
. (4.26)

Since the Love velocity branches vL (kx) are decreasing (§2.4.2), the bound (4.26) should

also be a common limit for those of them which extend up to kx → ∞ (i.e. do not switch

to a non-physical branch).

The result (4.26) follows directly from the wave equation (2.1) and the auxiliary condi-

tions of the Love-wave problem (§2.3), since the latter imply that the operator (µu′)′ of

(2.1) defined on y ∈ [−d,∞) is negative definite. The same conclusion is evident from the

impedance approach whereby Figs. 2.1, 2.2 show that the dispersion equation zl = Zs1

can hold only if ω > min
(
ω
(1)
f/f , ω

(1)
N

)
which leads via (2.7) and (2.12) to (4.26).

Recall the meaning of c (y) =
√

µ/ρ as a local velocity of SH bulk mode. It is noteworthy

to this end that if min cs (y) < min cl (y) (= cl for a homogeneous layer), then (4.26) admits

existence of the Love waves with vL (kx) < min cl (y) which are thus slower than the

slowest SH bulk mode in the layer (see Fig. 2.6b below). Such regime is ruled out for the

case of a homogeneous substrate, i.e. for the classical Love waves.

2.4.5 Fundamental branch

The fundamental dispersion branch is understood as a (physical) branch with origin at

zero ω and kx. The Love spectrum may or may not contain such a branch. The criterion as

to which is the case is based on the low-frequency long-wave asymptotics of zl and Zsα.

These can be found using the Peano series of the matricant M = I +
∫
Q +

∫ ∫
QQ + ...
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(see [51]) with Q given by (2.2). From (2.6), it readily follows that

zl = −k2
xd

(
〈µl〉 − 〈ρl〉v2

)
+O

(
k4
xd

3
)
, (4.27)

where d is the layer thickness. To obtain Zsα, we first note that traceM (T, 0) = 2 +

F (v) κ2 + ... hence the eigenvalues qα and eigenvectors wα of M (T, 0) expand as

qα = 1∓
√
F (v)κ+ 1

2
F (v)κ2 +O (κ3) ,

wα ‖




−iT 〈µ−1
s 〉+O (κ2)

±κ
√

F (v) + κ2
(
J (v)− 1

2
F (v)

)
+O (κ3)


 ,

(4.28)

and thus, from (2.10) with (4.28),

Zsα =
1

T 〈µ−1
s 〉

[
±κ

√
F (v) + κ2

(
J (v)− 1

2
F (v)

)
+O

(
κ3
)]

, α = 1, 2. (4.29)

The notations used above are κ = kxT, F (v) = 〈ρs〉 〈µ−1
s 〉 (c̄2s − v2) and

J (v) = 1
T 2

∫ T

0
µ−1
s

∫ y

0
(µs − ρsv

2) dydy1 =

1
T 2

∑n
j=1

∑j
k=1

(
1− 1

2
δjk

)
µ−1
j (µk − ρkv

2) djdk,
(4.30)

where (4.30)2 is specialized for the case of a piecewise homogeneous substrate whose

period consists of n layers with constant ρj , µj and thickness dj, j = 1..n. The upper

and lower signs in (4.28), (4.29) correspond to the decreasing α = 1 and increasing α = 2

modes, respectively (cf. (3.21)).

Denote the Love fundamental branch by ω
(1)
L (kx) = v

(1)
L (kx) kx. By definition, it must

start at the point ω = 0, kx = 0 as a physical branch extending into the first stopband

[0, ω
(1)
e ) (where its extent may be finite, i.e. it may transform into non-physical branch

due to meeting the band-edge ω
(1)
e at kx 6= 0). Consider the dispersion equation zl = Zs1

(2.13) with (4.27) and (4.29). The quasistatic limit gives F (v2) = 0 and hence v
(1)
L (0) = c̄s
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(the same follows from (4.24) at ω, kx → 0). Taking into account the next-order terms, we

arrive at the following conclusion:

if C = d

( 〈ρl〉
〈ρs〉

− 〈µl〉
〈µs〉

)
− T

J (c̄s)

〈µs〉 〈µ−1
s 〉 is positive (C > 0), (4.31)

then there exists the Love fundamental branch and its long-wave onset is described by

the formula

v
(1)
L (kx) = c̄s

[
1− 1

2
〈µs〉

〈
µ−1
s

〉
C2k2

x +O
(
k4
x

)]
with c̄2s = 〈µs〉/〈ρs〉. (4.32)

If, alternatively, C < 0 then no physical branch emerges from zero of ω, kx and hence the

Love spectrum has no fundamental branch. In fact what happens at C < 0 is that now the

same quasistatic velocity value v = c̄s gives rise to a non-physical Love branch v
(1)
nL (kx)

defined by the equation zl = Zs2. Inserting (4.29) with lower sign gives the asymptotics

of v
(1)
nL (kx) described by the same right-hand side of (4.32). Thus, the point ω = 0, kx = 0

always gives rise to velocity branch with long-wave onset (4.32) which is physical atC > 0

and non-physical at C < 0.

2.5 Numerical examples

As a typical example, consider a periodically bilayered substrate. Assume the W-Al sub-

strate y > 0 consisting of equidistant layers of W and Al materials, so that T -periodic ρs, µs

are equal to ρ1 ≡ ρW, µ1 ≡ µW at y ∈ [0, T/2] and to ρ2 ≡ ρAl, µ2 ≡ µAl at y ∈ [T/2, T ]

(see Table 1). Explicit form of the monodromy matrix M (T, 0) through a bilayered unit
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cell [0, T ] is well-known:

M(T, 0) = M(T, T/2)M(T/2, 0)

=




cos1 − i
µ1ky1

sin1

−iµ1ky1 sin1 cos1







cos2 − i
µ2ky2

sin2

−iµ2ky2 sin2 cos2




=




cos1 cos2−µ2ky2
µ1ky1

sin1 sin2 −i( 1
µ1ky1

sin1 cos2+
1

µ2ky2
cos1 sin2)

−i(µ1ky1 sin1 cos2+µ2ky2 cos1 sin2) cos1 cos2−µ1ky1
µ2ky2

sin1 sin2


 ,

(5.33)

where we denote cosj ≡ cos(
kyjT

2
) and sinj ≡ sin(

kyjT

2
) with wave numbers kyj =

√
ρj
µj
ω2 − k2

x

and j = 1, 2. Plugging M (T, 0) in (2.4) and (2.11) defines the passband and stopband ar-

eas (shaded and blanc in the subsequent figures) and the impedances Zsα.

According to [49], the inequalities (ρµ)W > (ρµ)Al and (ρ/µ)W > (ρ/µ)Al suffice to con-

clude that the SH surface waves in the free W-Al substrate terminated by the W layer

are restricted to the narrow range cW < ω/kx < cAl and there is no surface waves else-

where. This is observed in Fig. 2.3 where zeros of impedance Zsα and hence the disper-

sion branches are all non-physical ω/kx > cAl. The effect of coating this substrate by Ag

layer is demonstrated in Fig. 2.4. In particular, it is seen that even a very thin coating cre-

ates branches of physical (localised) waves, the reason being evident from the graphical

display of dispersion equation zl = Zs1 on right-hand panel. Note also that the thicker

coating the more disconnected Love branches appear in the spectrum, see Fig. 2.4c.

Table 1. Material properties used in calculations

W Al Ag Si

ρ, g/cm3 19.32 2.73 10.64 2.33

µ, GPa 160.2 26.1 33.7 79.6

c, mm/µs 2.88 3.09 1.78 5.85

Let Al-W substrate be a semi-infinite structure of the same W and Al layers as above

but terminated by the Al layer. The W-Al and Al-W substrates have the same pass-
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band/stopband spectrum while their impedances satisfy the reciprocity identity (3.23),

as observed on comparing the right-hand panels of Figs. 2.4 and 2.5. This impedance

reciprocity underlies the different configuration of the Love branches of the W-Al and

Al-W substrates with the same Ag coating, see Figs 2.4b,c and 2.5a,b.
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Figure 2.3: SH waves in the uncoated W-Al substrate. The left-hand diagram shows the
dispersion spectrum where the fundamental branch is physical (solid line) and all upper
branches are non-physical (dashed lines). Passband areas are shaded, stopband areas are
blanc. The right-hand diagram shows the physical and non-physical impedances Zs1 (ω)
and Zs2 (ω) (solid and dashed lines, like in Fig. 2.2) at fixed kxT = 3. Shaded segments
indicate passbands.

A complementary perspective based on the slowness s = k/ω is presented in Fig. 2.6.

The slowness spectrum of the uncoated W-Al substrate where all supersonic branches

s(ω) are non-physical (Fig. 2.6a corresponding to Fig. 2.3) is compared to the spectra s(ω)

of the given substrate with relatively slow coating (Ag) and fast coating (Si), Figs. 2.6b

and 2.6c. To this end, Fig. 2.6c shows the case of ”isospeed coating” which implies taking

the top W layer of the W-Al substrate to be thicker then all others. It is seen that such

perturbation also gives rise to the branches of localised waves in the supersonic domain

s < c−1
Al where they cannot exist in the case of perfectly periodic W-Al substrate (cf. Fig.

2.3).

Note that the existence of the fundamental Love branch in Figs. 2.4, 2.5, 2.6b and its

non-existence in Figs. 2.6c,d is correctly predicted by the sign of coefficient C defined in
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Figure 2.4: Love waves in the W-Al substrate coated by the Ag layer of thickness
d/T = 0.03 (a), 0.1 (b) and 0.3 (c). The left-hand diagrams show physical and non-
physical branches ωL (kx) and ωnL (kx) (solid and dashed lines, respectively). Thin line
traces the pole of the coating layer impedance zl. The right-hand diagrams show the sub-
strate impedances Zsα (ω) (see Fig. 3) and the Ag layer impedance zl (ω) (2.8) (thin solid
line) at fixed kxT = 3: their intersections are the roots ωL and ωnL (marked by squares and
circles).
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Figure 2.5: Love waves in the Al-W substrate coated by the Ag layer of thickness d/T =
0.1 (a) and 0.3 (b). The notations are the same as in Fig. 2.4.

(4.31) (with d1 = d2 = T/2 and 〈ρl〉 , 〈µl〉 being ρ, µ of Ag, Si or W for the corresponding

cases in hand).

Finally consider the example of functionally graded materials. Numerical implementa-

tion of this case is based on the calculation of multiplicative integral defining the matri-

cant M, see (2.3). Assume a constant density ρl = ρs = 1 g/cm3, denote c0 = 2 mm/µs,

and let the velocity profiles be cs (y) = c0(1−0.65y/T ) for the unit cell y ∈ [0, T ] of a piece-

wise continuous periodic substrate and cl (y) = (c0/2) (1 + y/2d) for the coating layer

y ∈ [−d, 0] of thickness d = T. It was mentioned among other examples in [49] that a free

periodic substrate with the above profile cs (y) disallows SH surface waves everywhere

beyond a very narrow range of values of ω/kx ≈ c0 (see Fig. 4c of [49]). In this regard,

emergence of extended branches of Love waves in the same substrate with coating (Fig.
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Figure 2.6: Slowness spectra s (ω) of SH waves (a) and Love waves (b-c) in the W-Al
substrate without coating (a) and with d/T = 1 thick coating layer of Ag (b) and of Si
(c), and with the top W layer being thicker than all others by d/T = 1 (d). As in the
previous figures, passband and stopband areas are shaded and blanc, and physical and
non-physical branches are solid and dashed, respectively.

2.7) demonstrates a prominent spectral effect of the coating.

2.6 Conclusion

Dispersion spectrum of SH Love waves in a coated periodic substrate has been studied. It

is in many ways different from the classical case of coated homogeneous substrates. For

instance, a periodic substrate admits localised waves emerging with finite frequencies at

kx = 0. Interestingly, their existence can essentially ramify the long-wave limit of transient

problem comparatively to the case of classical Love waves (see [53]). Love waves in a
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Figure 2.7: Love waves in the periodic functionally graded substrate coated by the func-
tionally graded layer (their velocity profiles are given in the text). The right-hand diagram
shows the impedances Zsα (ω) and zl (ω) at fixed kxT = 3. The notations are the same as
in Fig. 2.4.

coated periodic substrate can also differ a lot from the SH surface waves in the same

periodic substrate without coating. There is a general dissimilarity between these types

of waves, which is that any stopband at fixed kx cannot contain more than one SH surface

wave whereas it may contain several Love waves (about as many, as many resonances

of the coating layer fall within this stopband). Another significant effect of coating arises

in a fairly typical case where a free periodic substrate admits SH surface waves only in a

narrow velocity range - then even a weak perturbation by thin coating creates localised

waves in the spectral domain where they could not exist for the uncoated substrate.

The methodology and results of this chapter can have useful implications. The impedance

formalism can be appropriately adapted to the case of vector waves in a coated periodic

substrate and/or in a periodic medium with different models of an embedded defect

layer; see e.g. [10].



Chapter 3

Love waves for a 2D laterally periodic

layer on a substrate

3.1 Introduction

Among various configurations following the pioneer work [54], the case of 2D periodic

coating on a uniform substrate has recently been introduced and studied, see Refs. [11]-

[21]. With the exception of Ref. [19], all these papers have been concerned with depth-

independent coatings formed by periodically distributed finite pillars or holes. At the

same time, no results seem to have been reported for the SH waves in the case of 2D

depth-dependent coating and/or substrate. This situation is similar to the case of sur-

face waves in a 2D periodic half-space in that the calculation for the depth-dependent

structures is notably more involved.

In this Chapter we consider again the Love waves, but this time we let the SH waves

propagate in the 2D depth-dependent coating layer on a substrate. More precisely, the

layer consists of the laterally periodic roads parallel to the surface and the substrate can

either be of the similar 2D structure or it can be uniform.

In contrast to Refs [11]-[21] which all used the finite element method, a new analyti-

39
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cal approach of calculating the dispersion spectrum called the resolvent method is pre-

sented. Within this approach, the dispersion equation is formulated via the resolvent Rl

of the layer and the spectral projector Pd on the decreasing (’physical’) modes in the sub-

strate. The projector is defined by the resolvent Rs through the unit cell of the substrate.

The dispersion equation is stable, since R provides a numerically stable substitute of the

unstable propagator M. The advantage of using the resolvent is that it is, like the prop-

agator M, Fourier expanded only in lateral coordinate and keeps the exact integration in

depth coordinate. Therefore the resolvent method gives a good accuracy and efficiency

due to the smaller size of the input matrix of coefficients of the governing system of equa-

tions (O(N) instead of O(N2) for PWE, where N is the number of Fourier harmonics).

The advantage of using the spectral projector is that it extracts the decreasing (’physical’)

modes by accessing the spectrum of the propagator directly without solving the eigen-

value problem and without invoking several unit cells like in the supercell method. By

these means, we calculate the subsonic spectrum of the Love waves for a 2D laterally

periodic depth-dependent coating layer on a uniform or 2D periodic substrate.

The main motivation is to model low-frequency band gaps inside the Brillouin zone.

Coating is chosen so that it provides multiple subsonic branches.

3.2 Problem statement

Consider an 2D elastically isotropic medium consisting of a half-space {x = (x1, x2) :

x2 > 0} coated by a layer x2 ∈ [−d, 0]. We recall that the axes X1, X2, X3 are introduced

so that x2 is the thickness coordinate. We assume that the medium is uniform along one

of the lateral directions, which is taken as the axis X3, periodic along the other lateral

axis X1 and generally heterogeneous along the thickness axis X2. The halfspace and layer

materials may be 2D periodic or not but at least the layer is laterally periodic (along X1).

A typical example is a uniform half-space coated by a layer composed of infinite bars
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embedded into matrix material along the axis X3, ; see Figs. 3.1a, 3.3a. The periodicity

here is due to the 2D inclusions (bars). Denote the lateral period by T1. For brevity, let

T1 = 1.

The medium is uniform along X3 and hence yields uncoupled SH wave with the dis-

placement v3(x, t) = v(x)e−iωt. The problem consists of the scalar wave equation

∂1(µ∂1v) + ∂2(µ∂2v) = −ρω2v (2.1)

with the traction-free boundary condition at the surface and the radiation condition into

the depth given by

∂2v |x2=−d= 0, lim
x2→∞

v = 0, (2.2)

where ∂i = ∂/∂xi. The shear coefficient µ(x) and the density ρ(x) are 1-periodic in x1.

Hence the function v(x) satisfies the Floquet-Bloch form

v(x) = u(x)eik1x1 , (2.3)

where u(x) is 1-periodic in x1 and k1 ∈ [−π, π] is the wave number lying in the Brillouin

zone. Using (2.3), the wave equation (2.1) can be rewritten as

(∂1 + ik1)µ(∂1 + ik1)u+ ∂2(µ∂2u) = −ρω2u. (2.4)

Next, we apply the Fourier series expansion to the functions µ, ρ and u which are 1-

periodic in x1:

f(x) =
∞∑

m=−∞

f̂m(x2)e
2πimx1

with f̂m(x2) =
1/2∫

−1/2

f(x)e−2πimx1dx1 for f = µ, ρ, u.

(2.5)

As a result of the plane wave expansion in x1, the partial differential equation (2.4) takes
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the form of a system of ordinary differential equations in x2, namely,

−(∂∂∂1 + k1)µµµ(∂∂∂1 + k1)u+ ∂2(µµµ∂2u) = −ρρρω2u (2.6)

with the matrices and vector of Fourier coefficients

µµµ(x2) = (µ̂n−m(x2)), ρρρ(x2) = (ρ̂n−m(x2)),

∂∂∂1 = diag(2πm) and u(x2) = (ûm(x2)), n,m ∈ Z.

(2.7)

In practice all matrices and vectors are truncated by the number N of plane modes, so we

have (2N + 1)× (2N + 1)-matrices with n,m ∈ [−N,N ] in (2.7).

Finally, we recast the system (2.6) of differential equations of second order as the double-

size system of differential equations of first order. Taking into account (2.2), this gives the

initial value problem

∂2ηηη = Qηηη, ηηη(−d) =



u(−d)

0


 (2.8)

with the condition

lim
x2→∞

ηηη(x2) = 0. (2.9)

Here we denote1

ηηη =




u

µµµ∂2u


 , Q =




0 µµµ−1

(∂∂∂1 + k1)µµµ(∂∂∂1 + k1)− ρρρω2 0


 . (2.10)

In contrast to the plane wave expansion method (PWE), the expansion here has been

applied along one coordinate only, while an exact integration is performed along the other

1In the 2D case, for numerical convenience we define ηηη and Q without additional factor of the imaginary
unit i in contrast to their conventional definition (2.2) in the 1D case. We also use here x1, x2 coordinates
instead of, respectively, x, y coordinates of the 1D case.
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coordinate. This leads to a better accuracy of our method in comparison to the PWE.

3.3 The resolvent

The first-order differential system (2.8) with the initial condition has a unique solution

provided by the propagator M via

ηηη(x2) = M(x2,−d)ηηη(−d), (3.11)

where the propagator M(b, a) satisfies

∂2M = QM, M(a, a) = I, (3.12)

as (2.8) implies.

However, recall that M for 2D is of 2(2N + 1)× 2(2N + 1) size with large N . As a result

the direct calculation of the propagator M via (3.12) is hindered by numerical instabilities

due to exponential growth of M with growing N (see Appendix B). The key idea is to

replace the propagator M with its resolvent

Rz(b, a) = (zI −M(b, a))−1 (for any fixed z ∈ C \ spec M), (3.13)

which grows only linearly with growing N (see Appendix B). For brevity we will omit

index z. The condition z 6∈ spec M(b, a) is fulfilled via taking any randomly chosen z far

enough from the unit circle and the real axis. The differential equation for the resolvent

R(x2, a) is derived from the differential equation (3.12) for the propagator M(x2, a) in the

following way. Using the identity A′ = −A(A−1)′A which holds for any matrix A with



44 CHAPTER 3. LOVE WAVES IN 2D PC

detA 6= 0, we obtain by (R−1)′ = −QM the equality

∂2R = RQMR. (3.14)

Note the identity

MR = zR − I (3.15)

derived from the resolvent definition (3.13) as R−1R = zR−MR. Inserting (3.15) in (3.14)

yields the Riccati differential equation

∂2R = RQ(zR− I), R(a, a) =
1

z − 1
I. (3.16)

The resolvent R(x2, a) can be computed as a root of (3.16) by standard numerical means

such as the Runge-Kutta method. At the same time, if we have a partially uniform

medium, there is a more efficient way of computation (see Appendix C for more details).

First of all, the unit cell may be partitioned in several horizontal sublayers parallel to x1

and then the overall resolvent R can be expressed via Rj of each sublayer according to

the special chain rule. The point is that the calculation of Rj of each horizontal sublayer

may be simplified depending on the type of this sublayer. If the sublayer is uniform along

x1 and x2, then Rj can be evaluated explicitly. If the sublayer is heterogeneous along x1

but uniform along x2 (the system matrix Qj is constant), then Rj can be calculated as a

function of the matrix Qj . It is only in the general case, where the sublayer is heteroge-

neous along both x1 and x2, that we have to use that Rj satisfies the Riccati equation and

hence can be computed by the Runge-Kutta method.
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3.4 The spectral projector

To extract the waves fulfilling the radiation condition in a half-space (substrate), we apply

the spectral projector (see [42] and [51]). A spectral projector P is a mathematical tool to

distinguish the eigenvectors by means of the corresponding eigenvalues. It makes use of

the location of the eigenvalues on the complex plane, whereas their explicit value is not

necessary. In this section, we introduce the spectral projector for our problem, whereas

the methods of its numerical implementation are detailed in Appendix C. In particular,

we discuss there the case of a uniform or depth-independent substrate, where the system

matrix Qsub is constant and the projector is found directly from Qsub bypassing Msub.

3.4.1 The eigenspaces

Denote the eigenvalues and eigenvectors of the substrate propagator Msub ≡ Msub(T2, 0)

over the period T2 along the depth coordinate x2 by qj ∈ C andwwwj with 1 6 j 6 2(2N+1).

The wave field ηηη(0) at the interface x2 = 0 can be expressed as the superposition of the

eigenvectors wj , i.e.

ηηη(0) =

2(2N+1)∑

j=1

αjwwwj , αj ∈ C. (4.17)

Hence any solution ηηη(x2) in the depth of the periodic structure is

ηηη(x2) = ηηη(nT2 + x̃2) = Msub(x̃2, 0)M
n
subηηη(0) =

2(2N+1)∑

j=1

αjq
n
j Msub(x̃2, 0)wwwj , (4.18)

where n ∈ Z and x̃2 ∈ [0, T2). It is seen that ηηη(x2) is purely decreasing, increasing or

propagating (bounded) in the depth of the substrate n → ∞ iff the initial wave field ηηη(0)

consists only of the eigenvectors wwwj with |qj| < 1, |qj | > 1 or |qj | = 1, respectively. Let us

state this in terms of the spans of eigenvectors of Msub and then define the projectors.
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The full eigenspace of Msub, i.e.

E = span{www : Msubwww = qwww with q ∈ C} = C
2(2N+1), (4.19)

comprises the wave fields www = ηηη(0) giving rise to all types of behavior into the depth of

the substrates. The subspace of Ed giving rise to decreasing modes is identified through

the corresponding eigenvalues as

Ed := span{www : Msubwww = qwww, |q| < 1}. (4.20)

For brevity we will call the wave fields www = ηηη(0) ∈ Ed as simply decreasing modes (omit-

ting ’giving rise to’) in the sense that

lim
x2→∞

ηηη(x2) = 0 iff ηηη(0) ∈ Ed. (4.21)

Similarly we define the subspaces Ei and Ep of the increasing and propagating modes as

follows

Ei := span{www : Msubwww = qwww, |q| > 1}, (4.22)

Ep := span{www : Msubwww = qwww, |q| = 1}. (4.23)

Thus any wave field www ∈ E at the interface can be decomposed in a unique way into a

sum of purely decreasing wwwd, increasing wwwi and propagating wwwp modes:

E = Ed + Ei + Ep ⇒ www = wwwd +wwwi +wwwp with wwwγ ∈ Eγ . (4.24)
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3.4.2 The spectral projector definition via propagator eigenvalues

Given the unique decomposition (4.24) of E into Ed, Ei and Ep, we can define the spectral

projector as a map onto a corresponding subspace of the form

Pγwww = wwwγ, Pγ : E → Eγ, with γ = d, i, p. (4.25)

To define the spectral projector explicitly, we use the definitions (4.20), (4.22) and (4.23) of

the Eγ in terms of the propagator eigenvalues qj . This gives the definition

www ∈ Eγ ⇔ Pγwww = www with γ = d, i, p (4.26)

Hence, (4.25) and (4.26) together give

P2
γwww = Pγwwwγ = wwwγ = Pγwww with γ = d, i, p, (4.27)

which amounts to

P2
γ = Pγ with γ = d, i, p. (4.28)

The identity (4.28) proves that the eigenvalues pj of Pγ satisfy p2j = pj and take therefore

either zero or unit values. Hence

dimEγ = tracePγ. (4.29)

Moreover, equations (4.24) and (4.25), (4.26) yield the following identity

Pd +Pp +Pi = I. (4.30)
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3.4.3 The alternative definition of the spectral projector via path inte-

gral

Projector as a function counting the required modes is defined by counting the resolvent

poles inside a corresponding path. That is, the spectral projector Pd extracts the decreas-

ing modes as the integral over a path, which is given by a circle smaller but close enough

to the unite circle:

Pd =
1

2πi

∮

|z|=1−0

Rzdz, (4.31)

where Rz = (zI − Msub)
−1 is the substrate resolvent over a period. Here we select the

eigenvalues of the propagator placed inside this closed path applying the Cauchy integral

theorem (at the third equality):

Pdwwwj =
1

2πi

∮

|z|=1−0

(zI−Msub)
−1dzwwwj =

1

2πi

∮

|z|=1−0

(z − qj)
−1dzwwwj =





wwwj , |qj | < 1

0, elsewhere

.

(4.32)

Similarly to (4.31), Pp and Pi = I − Pd − Pp are given by the path integrals close to the

unit circle:

Pp =
1

2πi
(

∮

|z|=1+0

−
∮

|z|=1−0

)Rzdz and Pi = I− 1

2πi

∮

|z|=1+0

Rzdz. (4.33)

3.5 The dispersion equation

The spectrum is given by the localized waves spectrum and the propagative waves spec-

trum.
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3.5.1 Love wave spectrum

The solution at the interface is defined via the layer propagator (indicated by the subscript

l):

ηηη(0) = Mlηηη(−d). (5.34)

By the continuity of traction and displacement at the interface x2 = 0 and the radiation

condition limx2→∞ ηηη(x2) = 0 at x2 → ∞, the solution is selected then via projector due to

its decreasing behavior into the depth of the substrate:

Pdηηη(0) = ηηη(0). (5.35)

Taking into the account traction-free boundary condition at x2 = −d, i.e. ηηη(−d) = (u(−d), 0)T ,

(5.34) and (5.35) give the dispersion equation in the form

∃u0 6= 0 : (Pd − I)Ml



u0

0


 = 0. (5.36)

However (5.36) is numerically unstable due to the instability of the propagator (recall §

3.3). The key idea in this regard is to restate the identity (5.36) in terms of the product (see

(3.15))

MlRl = zRl − I, (5.37)

which is numerically stable. Therefore our ansatz is to define the solution u0 at the surface

in terms of the numerically stable resolvent Rl of the layer, i.e.



u0

0


 = Rl



v0

ṽ0


 (5.38)
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for some v0, ṽ0. From (5.38), it follows that

ṽ0 = −R−1
l4 Rl3v0, (5.39)

where Rl3 is the bottom left and Rl4 is the bottom right blocks of Rl. Note here that the

inversion R−1
l4 of the resolvent block is numerically stable in contrast to the inversion of

other two blocks R−1
l2 and R−1

l3 ; see explicit formulas in the Appendix B. Hence (5.37) and

(5.39) together imply

Ml



u0

0


 = MlRl



v0

ṽ0


 = (zRl − I)




I

−R−1
l4 Rl3


v0. (5.40)

Finally, inserting (5.40) in (5.36) yields

∃v0 6= 0 : Dv0 = 0

with D = (Pd − I)(zRl − I)




−I

R−1
l4 Rl3


 .

(5.41)

Since D is not a square matrix, we arrive at

detD∗D = 0 (5.42)

as the dispersion equation, where ∗ hereafter means Hermitian conjugation. However the

determinant of a large size square matrix is a numerically unstable object due to the large

eigenvalues possibly presented even at its zero points. A stable calculation of its zeros

can be ensured by the estimation of a minimal eigenvalue of the matrix. The Love wave
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spectrum is therefore given in stable terms by

λmin(D
∗D) = 0, (5.43)

where λmin(·) is the minimal eigenvalue of the positive definite matrix in the brackets. The

method based on eq. (5.43) provides fast and stable calculation for any configuration.

3.5.2 Projection of the spectrum of the propagating waves

The propagating wave spectrum (also called the Floquet spectrum) of a substrate is given

by the Floquet eigenvalues ω(k1, k2) with k1, k2 ∈ [−π, π]2 corresponding to the propa-

gating modes and given by the identity q(ω, k1) = eik2 , where q is some eigenvalue of

Msub.

We calculate the projection of the dispersion surface ω(k1, k2) on the plane (ω, k1) in

terms of the projector Pp on propagating modes. As follows from the projector definition

(see (4.29)), its trace indicates the number Np(ω, k1) of the propagating modes, i.e.

Np(ω, k1) = tracePp. (5.44)

Therefore, we determine the projections of the propagative spectra of the substrate at a

given ω and k1 by the condition

Np(ω, k1) > 1. (5.45)

However it is preferable to calculate the projection of the propagative spectra in terms of

Pd, since the latter is anyway calculated to obtain the localized spectrum (5.41). We utilize

(5.45) with

Np(ω, k1) = 2(2N + 1)− 2 tracePd. (5.46)

Equation (5.46) follows from (5.44) and the identity (A.2.103). Note that the number of
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propagating modes therefore is always even.

3.6 Numerical examples
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Figure 3.1: (a) Layer with laterally periodic depth-dependent baffles on the uniform sub-
strate. (b) L = 0: reference (unperturbed) subsonic spectrum formally folded with respect
to the subsequently imposed period T1. Spectra for (c) L = 0.1; (d) L = 3.5; (e) L = 6.
Shaded area bounded by the sound line of the substrate (Si) contains leaky branches (grey
lines). The values of ωT1 are in mm/µs.

We provide several numerical examples. To begin with, consider the perturbation by

thin laterally periodic baffles of Pb (ρ = 11.6 g/cm3, µ = 14.9 GPa) embedded in the

coating layer of epoxy (ρ = 1.142 g/cm3, µ = 1.482 GPa) lying on the uniform substrate

of Si (ρ = 2.33 g/cm3, µ = 79.9 GPa), see Fig. 3.1a. The geometrical parameters are T1 = 1

mm, d = 6 mm, and h = 0.2 mm. The layer depth to the horizontal period ratio d/T1

is taken to be large enough to enable possibility to move inclusions up and down in the
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Figure 3.2: (a) Layer with laterally periodic cylindrical inclusions on the uniform sub-
strate. Spectra for (b) L = 0.5 mm (c) L = 4.5 mm (d) L = 5.5 mm.

layer. The formally folded (unperturbed) spectrum is displayed in Fig. 3.1b. It is obtained

from the 1D laterally homogeneous case by formal imposition of the periodic condition

along the lateral coordinate. Figures 3.1c-e show that any considered perturbation creates

band gaps at the edge of the Brillouin zone; at the same time, the low-frequency band

gap, arising inside the Brillouin zone due to repulsion of the second and third dispersion

branches, depends on the length L of the baffles: the gap opens up at L > 0 and closes

at L ' 5.5 mm. Note that a similar effect of the branch repulsion due to the laterally

periodic loading has been discussed in Refs. [55] and [56]. It is seen from Fig. 2.2b that

the upper branches either originate from the sound line (the Sezawa branches) or arise

due to the folding at the edge of the Brillouin zone. The branches which initially arise

from the folding tend to continue into the radiative region as the leaky branches, see Figs.

3.1c-e. Leaky branches are computed by adding one of the propagating modes into the

projector Pd that formally corresponds to taking integral (4.31) along the closed contour

half of which is |z| = 1 + 0 and the other half is |z| = 1 − 0. Real part of the leaky wave

frequency is computed approximately, under the condition λmin < 10−3, see eq. (5.43).

As another example, consider again a coating layer of epoxy on the uniform substrate
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Figure 3.3: (a) Layer with laterally periodic cylindrical inclusions on the substrate with
2D periodic cylindrical inclusions. Spectra for (b) the uniform coating layer (c) L = 0.5
mm (d) L = 4.5 mm (e) L = 5.5 mm. Shaded area is bounded by the sound line which
corresponds to the effective speed of the Si/Epoxy substrate along x1.

of Si and assume now that the layer contains laterally periodic cylindrical inclusions of Pb

with the radius r = 0.45 mm, see Fig. 3.2a. Let the inclusions move away from the surface

towards the interface. The two formerly intersecting dispersion branches repulse each

other (Figs. 3.2b,c) until the inclusions reach the interface which fact leads to the abrupt

closure of the low-frequency gaps both at the edge and inside the Brillouin zone, see Figs.

3.2d. Upper branches give rise to the leaky branches above the sound line, similarly as in

Fig. 3.1.

Next we demonstrate a similar evolution in the case where not only the layer but also

the substrate contains cylindrical inclusions (epoxy; T2 = 3 mm, L̃ = 0.5 mm). Let the

inclusions in the layer move towards the interface. Only a little difference is observed
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between the spectra in Figs. 3.2b-d and Figs. 3.3c-e (except that there remains a narrow

gap inside the Brillouin zone in Fig. 3.3e that is in contrast to Fig. 3.2d). This may

be related to the fact that the Love wave is localized mainly in the layer and so the 2D

periodicity of the substrate does not matter that much. To highlight this point, we present

the subsonic spectrum for a 2D periodic substrate coated by a thick uniform layer, Fig.

3.3b. It is seen that this spectrum is perfectly similar to the initial unperturbed spectrum

for a uniform substrate, cf. Fig. 3.1b.

3.7 Conclusion

The original method of calculation of the dispersion spectra has been proposed which

proves to be efficient and versatile, i.e. applicable to any configuration of 2D solid/solid

PC layer on a substrate. To state a dispersion equation, the two main steps are to carry

the initial solution through the layer and then to identify the solution at the interface as a

solution decreasing into the depth of the substrate. Both steps follow in terms of the layer

and substrate resolvents Rl and Rs, since the large size propagator matrices Ml and Ms

are numerically unstable. First we substitute Rl instead of Ml. We consider a new initial

solution η̃ηη(−d) on the traction-free surface premultiplied by Rl, i.e. ηηη(−d) = Rlη̃ηη(−d). The

premultiplied solution gives a numerically stable propagated solution Mlηηη = MlRlη̃ηη,

since the product MlRl = zRl − I expressed in terms of the resolvent is numerically

stable. Secondly, we qualify the solution ηηη(0) at the interface between the layer and the

substrate as a decreasing solution by applying the projector Pd on the decreasing modes.

The solution is decreasing iff. ηηη(0) = Pdηηη(0). That is, a projector can be considered as a

kind of filter maintaining only the chosen kind of waves (e.g. decreasing) and rejecting

the rest. Moreover, the projection of the spectrum of the propagating waves on the plane

(ω, k1) is also given by the projector, more precisely by tracePd.

We have presented subsonic spectra of Love SH waves in 2D phononic crystals, where
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either the coating or the substrate or both are laterally periodic, heterogeneous along

two in-plane directions and uniform along the out-of-plane direction. It is demonstrated

that the intersection of the folded subsonic branches inside the Brillouin zone is likely to

break up provided that the laterally periodic inclusion in the coating is depth dependent

and is deposited close enough to its free surface whereas the substrate may stay either

2D periodic or uniform. The low-frequency band gaps are the bigger, the closer are the

inclusions to the traction-free surface and the bigger are the inclusions themselves.



Chapter 4

Plate waves in a free 2D laterally

periodic plate

4.1 Introduction

The recent studies treating a broad variety of plate structures (depth-independent, depth-

dependent and so on) are restricted to a limited number of numerical means such as the

finite element method, supercell method or plane wave expansion.

We propose here the resolvent method for the 2D PC plate. The starting point is the

dispersion equation written via 2(2N + 1) × 2(2N + 1) propagator M through the unit

cell (the monodromy matrix) which is obtained by PWE in lateral coordinate x1 and exact

integration in depth coordinate x2. This formulation is, however, not satisfactory, since M

grows exponentially at growing N . In this regard, the dispersion equation is easily recast

in terms of the resolvent R = (zI −M)−1, which is numerically stable at a growing N .

Another aspect of the study in this Chapter is concerned with symmetric/antisymmetric

dispersion branches. We prove that if the profile of the unit cell is mirror symmetric with

57
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respect to the horizontal midplane, then the dispersion spectrum splits into uncoupled

symmetric and antisymmetric branches which can intersect with each other. Asymmetric

perturbation of the profile breaks up these intersections and thus creates band gaps inside

the Brillouin zone.

We model the absolute low-frequency band gaps. The plate width is taken bigger than

the horizontal period, i.e. d > T1, in order to allow the intersection of the dispersion

branches for a uniform plate (considered formally as periodic) at a lowest possible fre-

quency inside the Brillouin zone. Different geometries and material properties are con-

sidered to analyze their influence on the stopband/passband pattern.

Finally, the displacement and traction fields are recast in terms of the initial field and

two resolvents, the resolvent taken at the corresponding depth of the plate and the resol-

vent through the rest of the plate.

4.2 Problem statement

Consider 2D PC laterally periodic plate of thickness d with traction-free faces. Similarly

as for the structure in Chapter 3, we assume that the plate is uniform along one of the

lateral directions, e.g. X3, periodic along the other lateral axis X1 and generally heteroge-

neous along the thickness axis X2. A typical example is a plate composed of infinite bars

embedded into matrix material along the axis X3.

Since the plate is uniform along X3, it admits propagation of the SH wave with the

displacement v3(x, t) = v(x)e−iωt parallel to X3. The problem consists of the scalar wave

equation

∂1(µ∂1v) + ∂2(µ∂2v) = −ρω2v (2.1)

with the traction-free boundary conditions at the upper and lower faces given by

∂2v |x2=0= 0, ∂2v |x2=d= 0, (2.2)
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where ∂i = ∂/∂xi. The shear coefficient µ(x) and the density ρ(x) are 1-periodic in x1.

Hence the function v(x) satisfies the Floquet-Bloch form (2.3). Similarly as in §3.2, we

apply the plane wave expansion in x1 and recast the system of differential equations of

second order as the double-size system of differential equations of first order (cf. (2.8)1)

∂2ηηη = Qηηη (2.3)

with the boundary conditions

ηηη(0) =



u0

0


 , ηηη(d) =



ũ0

0


 . (2.4)

Here we have ηηη = (u, µµµ∂2u)
T and Q given by (2.10) in terms of the Fourier coefficients

(2.7); see §3.2.

4.3 The dispersion equation in terms of the propagator

The first-order differential system of the form (2.3) with the initial condition (2.4) has a

unique solution provided by the propagator M via

ηηη(x2) = M(x2, 0)ηηη(0). (3.5)

Therefore (3.5) and (2.4) lead to the identity

M(d, 0)



u0

0


 =



ũ0

0


 , (3.6)

which gives

M3(d, 0)u0 = 0 (3.7)
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with M3 denoting the left lower block of M. Hence the dispersion equation for the free

plate takes the well known form

detM3(d, 0) = 0. (3.8)

However, direct calculation of the propagator M via (3.12) is hindered by numerical insta-

bilities due to exponential growth of M with the growing number of Fourier harmonics

N (see Appendix B). So the standard dispersion equation (3.8) should be restated in terms

of the resolvent which is numerically stable.

4.4 The dispersion equation in terms of the resolvent

Now we state the dispersion equation in stable terms. From (3.6) it follows that

(zI −M(d, 0))



u0

0


 =



zu0 − ũ0

0


 (4.9)

and therefore by the definition (3.13) of the resolvent we have



u0

0


 = R(d, 0)



zu0 − ũ0

0


 . (4.10)

This gives

R3(d, 0)(zu0 − ũ0) = 0 (4.11)

with R3 denoting the left lower block of the matrix R. Hence we arrive at

detR3(d, 0) = 0 (4.12)
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instead of (3.8) as dispersion equation. Similarly as in § 3.7.1, eq. (4.12) is recast as

λmin(R
∗
3(d, 0)R3(d, 0)) = 0, (4.13)

where λmin(·) is the minimal eigenvalue of the positive definite matrix in the brackets

and ∗ Hermitian conjugation. The method based on eq. (4.13) provides fast and stable

calculation for any configuration.

4.5 The dispersion spectrum for mirror symmetric profiles

We show that the dispersion spectrum of the mirror symmetric plate is a union of two dis-

persion spectra – for the symmetric and antisymmetric waves. The key idea to prove this

is to decompose the free plate problem into two independent problems. The dispersion

equations obtained for symmetric and antisymmetric waves are not directly related to the

overall free plate dispersion equation. However their solutions (zeros) are correlated.

4.5.1 Problem decomposition for symmetric and antisymmetric waves

We restate the free plate problem in terms of symmetric and antisymmetric waves. Intro-

ducing the solution ηηη1 = (u1,σσσ1)
T with σσσ1 ≡ µµµ∂∂∂2u1 in the middle of the plate x2 = d/2,

we link it through the propagator to the lower boundary condition at x2 = d via

M(d,
d

2
)



u1

σσσ1


 =



ũ0

0


 (5.14)

and to the upper boundary condition at x2 = 0 via

M(0,
d

2
)



u1

σσσ1


 =



u0

0


 . (5.15)
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Due to the profile symmetry, the propagator M satisfies the identity (A.3.5) with [a1, b1] =

[0, d/2] and [a2, b2] = [d/2, d], namely,

M(0,
d

2
) = SM(d,

d

2
)S−1 =




M1 −M2

−M3 M4


 with M(d,

d

2
) =



M1 M2

M3 M4


 (5.16)

Using the identity (5.16), the system (5.14), (5.15) can be recast equivalently via taking

difference and sum of (5.14) and (5.15), which leads to




0 2M2

2M3 0






u1

σσσ1


 =



ũ0 − u0

0


 (5.17)

and 

2M1 0

0 2M4






u1

σσσ1


 =



ũ0 + u0

0


 . (5.18)

Equation (5.17) gives the solution M3u1 = 0 which is equivalent to

detM3 = 0 or u1 = 0. (5.19)

In turn, (5.18) gives the solution M4σσσ1 = 0 which is equivalent to

detM4 = 0 or σσσ1 = 0. (5.20)

The two solutions obtained (5.19) and (5.20) are linearly independent. The main idea

therefore is to decompose the Neumann/Neumann boundary problem (5.14), (5.15) as the

following two independent problems for a half-plate: the Neumann boundary problem

detM3 = 0 and σσσ1 = 0, i.e., ηηη(
d

2
) =



u1

000


 (5.21)



4.5. THE DISPERSION SPECTRUM FOR MIRROR SYMMETRIC PROFILES 63

and the Dirichlet boundary problem

detM4 = 0 and uuu1 = 0, i.e., ηηη(
d

2
) =




0

σσσ1


 . (5.22)

Here the equations detM3 = 0 and detM4 = 0 ensure traction-free conditions at the plate

faces x2 = 0 and x2 = d.

We observe that (5.21) gives the symmetric and (5.22) the antisymmetric waves, corre-

spondingly. It can be verified as follows e.g. for (5.21). On the one hand, we have

M(
d

2
+ x2,

d

2
)



u1

0


 =



M1 M2

M3 M4






u1

0


 =



M1

M3


u1 =



u(d

2
+ x2)

σσσ(d
2
+ x2)


 (5.23)

for any 0 6 x2 6
d
2
. On the other hand, it holds

M(
d

2
− x2,

d

2
)



u1

0


 =




M1 −M2

−M3 M4






u1

0


 =




M1

−M3


u1 =



u(d

2
− x2)

σσσ(d
2
− x2)


 , (5.24)

where the first equality in (5.24) uses the identity (A.3.5) with [a1, b1] = [d/2 − x2, d/2]

and [a2, b2] = [d/2, d/2 + x2]. The identities (5.23) and (5.24) together give the waves with

symmetric displacement and antisymmetric traction at any 0 6 x2 6
d
2
, i.e.

u(
d

2
+ x2) = u(

d

2
− x2) and σσσ(

d

2
+ x2) = −σσσ(d

2
− x2). (5.25)

These are the symmetric waves. Correspondingly, equation (5.22) defines antisymmetric

waves with antisymmetric displacement and symmetric traction, i.e.

u(
d

2
+ x2) = −u(

d

2
− x2) and σσσ(

d

2
+ x2) = σσσ(

d

2
− x2). (5.26)
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Thus the dispersion spectrum of the mirror symmetric free plate is the union of two spec-

tra (5.21) for the symmetric and (5.22) for the antisymmetric waves.

4.5.2 Dispersion equations in stable terms

The problems (5.21) and (5.22) include equations with numerically unstable propagator.

We restate the both problems in numerically stable terms. For the symmetric case (5.21),

the dispersion equation in stable terms is given similarly to the free plate dispersion equa-

tion (4.12) by the resolvent R(d, d
2
) of the half-width propagator:

detR3(d,
d

2
) = 0. (5.27)

For the antisymmetric case (5.21), we derive the dispersion equation in stable terms as

follows. From

M(d,
d

2
)




0

σσσ1


 =



ũ0

0


 (5.28)

we obtain

(zI−M(d,
d

2
))




0

σσσ1


 =



−ũ0

zσσσ1


 , (5.29)

which implies 


0

σσσ1


 = R(d,

d

2
)



−ũ0

zσσσ1


 ≡



R1 R2

R3 R4






−ũ0

zσσσ1


 . (5.30)

Therefore

ũ0 = zR−1
1 R2σσσ1,

σσσ1 = −R3ũ0 + zR4σσσ1. (5.31)

This yields

det(I+ zR3R
−1
1 R2 − zR4) = 0 (5.32)
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as the dispersion equation for the antisymmetric waves.

Note that alternatively to the dispersion equations (5.27) and (5.32) we can calculate the

aggregate spectrum by means of the resolvent R(d, 0) for the entire plate propagator.

4.6 Numerical examples
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Figure 4.1: (a) Free plate with laterally periodic baffles. (b) L = 0: reference (unperturbed)
subsonic spectrum formally folded with respect to the subsequently imposed period T1.
Spectra for (c) L = 0.25 mm, (d) L = 0.5 mm, (e) L = 0.75 mm, (f) L = d = 1 mm. In Fig.
(f), the black and grey lines are symmetric and antisymmetric wave dispersion branches,
respectively. In all figures, the values of ωT1 are in mm/µs.

4.6.1 One array of inclusions

As the first example, consider the free plate of epoxy (ρ = 1.142 g/cm3, µ = 1.482 GPa)

with embedded thin laterally T1-periodic baffles of silicium (ρ = 2.33 g/cm3, µ = 79.9
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Figure 4.2: (a) Free plate with laterally periodic cylindrical inclusions. Spectra for (b)
L = 0.5 mm, (c) L = 0.55 mm and (d) L = 0.9 mm. In Fig. (b), the black and grey lines are
symmetric and antisymmetric wave dispersion branches, respectively.
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Figure 4.3: The spectra and the corresponding bilayer plate profiles.

GPa); see Fig. 4.1(a). The geometrical parameters are d = T1 = 1 mm, h = 0.2 mm. Figs.

4.1(b)-(f) show the evolution of the dispersion spectrum as the length L of baffles varies

from L = 0 to L = d. First, we present in Fig. 4.1(b) the formally folded spectrum of the

homogeneous plate. The following Figs. 4.1(c)-(f) show that insertion of baffles of any

length L creates a low frequency absolute band gap due to repulsion of the first and the

second dispersion branches at the edge of the Brillouin zone. The bigger the inclusions

are, the bigger the gap is. At the same time, the structure of the spectrum displayed in

Figs. 4.1(c)-(e) and Fig. 4.1(f) has a significant difference. On the one hand, the spectra
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Figure 4.4: Free plate with two arrays of laterally periodic baffles. Spectra and profiles
for (a) L = 0, (b) L = 0.3 mm, (c) L = 0.5 mm. In Fig. (a), the black and grey lines are
symmetric and antisymmetric wave dispersion branches, respectively.

in Figs. 4.1(c)-(e) compared to the unperturbed spectrum in Fig. 4.1(b) exhibit repulsion

of the second and the third dispersion branches at their former intersection inside the

Brillouin zone giving rise to the second low-frequency absolute band gap. On the other

hand, if the mirror symmetry arises, as it is the case for the profile (f), the dispersion

spectrum consists of uncoupled families of symmetric and antisymmetric branches (see

§4.5). These spectra intersect, and so the low-frequency gaps arise here by repulsion of

the dispersion curves only at the edge of the Brillouin zone.

Consider again the epoxy plate with laterally T1-periodic Pb (ρ = 11.6 g/cm3, µ = 14.9

GPa) inclusions, which are given this time by the cylindrical bars parallel to the surface;

see Fig. 4.2(a). The corresponding geometrical parameters are d = T1 = 1 mm, r = 0.08

mm. As in the previous example, we compare the spectrum for the mirror-symmetric

profile (Fig. 4.2(b)) and the spectra for non-symmetric profiles obtained by shifting the

bars from the midplane position (Figs. 4.2 (c),(d)). The first low-frequency band gap is



68 CHAPTER 4. PLATE WAVES IN 2D PC

observed for any perturbed profile. At the same time, the low-frequency gaps created by

the repulsed dispersion branches inside the Brillouin zone are presented only for the non-

symmetric profiles, see Figs. 4.2(c),(d). These gaps are the bigger, the closer the cylinders

are to the surface: the gap opens up at L > d/2 and grows until the inclusions reach the

interface at L = d− r.

4.6.2 Two arrays of inclusions

The next example is a bilayer plate with both the square and the cylindrical bars. Here

we observe how the geometrical shape of inclusions affects the spectral structure. The

materials are combined in a complementary way. That is, the bilayer consists of the up-

per epoxy layer with Si inclusions and the lower Si layer with epoxy inclusions; see the

profiles depicted in Figs. 4.3(a)-(d). The geometrical parameters are T1 = 1 mm, r = 0.25

mm and the thickness of each layer is d = 1 mm. The spectral pattern in the first two

Figs. 4.3(a),(b) and in the second two Figs. 4.3(c),(d) are similar, since the shape of the

soft epoxy inclusions has no strong influence on the spectral structure. The absolute stop

bands exist for any configuration; see Figs. 4.3(a)-(d). They are produced by the repulsion

of the dispersion branches inside the Brillouin zone due to asymmetry of the profiles.

In conclusion, we note that the mirror-symmetry of the unit cell profile with respect to

the horizontal midplane is not the only cause for intersection of dispersion branches. For

example, consider the epoxy plate with two arrays of T1-periodically embedded rectan-

gular Si bars of the fixed depth 0.5 mm inserted at the both surfaces (the total width of

plate is 1.5 mm), see Fig. 4.4(a); other profile parameters are T1 = 1 mm, h = 0.2 mm. In

Fig. 4.4(a), we observe the intersection of the symmetric and antisymmetric branches in

accordance with the symmetry of the profile about the horizontal midplane. This symme-

try is destroyed in Fig. 4.4(b), where one array is slightly shifted with respect to the other;

however, the intersection persists. Moreover, in Fig. 4.4(c), where the unit cell profile is
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symmetric about the vertical midplane, there appear several intersections. Thus the issue

of the impact of symmetries on the intersection of branches deserves further analysis.

4.7 The displacement and traction field

4.7.1 The wave field equation

The initial displacement field is calculated via the eigenvectors of the overall plate wave

disperison equation detR3(d, 0) = 0; see (4.12). The propagating displacement and trac-

tion field is calculated by combining the straightforward formulation via the propagator

M(x2, 0) at the corresponding depth x2 ∈ [0, d] of the plate with the resolvent chain rule.

First recall (cf. (4.9), (4.10)) that the identity

(z −M(d, 0))



u0

0


 =



zu0 − ũ0

0


 , (7.33)

yields 

u0

0


 =



R1 R2

R3 R4






zu0 − ũ0

0


 . (7.34)

giving zu0 − ũ0 by

R3(zu0 − ũ0) = 0. (7.35)

To calculate the propagating displacement and traction field ηηη ≡
(
u(x2) σσσ(x2)

)T

we

apply the resolvent chain rule (for more details see Appendix A, (A.1.3)):

R(d, 0) = R(x2, 0)(z(1− z)R(d, x2)R(x2, 0) + zR(d, x2) + zR(x2, 0)− I)−1R(d, x2). (7.36)
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Inserting (7.36) in the formulation via the propagator

ηηη = M(x2, 0)



u0

0


 = M(x2, 0)R(d, 0)



zu0 − ũ0

0


 (7.37)

gives the numerically stable expression in terms of the resolvent Rf ≡ R(x2, 0) at the

corresponding depth x2 ∈ [0, d] of the plate and the resolvent Rr ≡ R(d, x2) through the

rest of the plate:

ηηη = (zRf − I)(z(1− z)RrRf + zRr + zRf − I)−1Rr



zu0 − ũ0

0


 , (7.38)

where zu0 − ũ0 is obtained from (7.35).

4.7.2 Numerical examples

We compare two complementary examples. First, consider the plate of epoxy (ρ = 1.142

g/cm3, µ = 1.482 GPa) with embedded thin laterally T1-periodic square (h = 0.5 mm) bars

of silicium (ρ = 2.33 g/cm3, µ = 79.9 GPa); see Fig. 4.5(a). The geometrical parameters

are d = 1.8 mm, L = 2 ∗ r = 0.6 mm and T1 = 1 mm. Displacement has the highest

positive or negative amplitude (depicted in red and blue) moving along the interfaces

inside the soft matrix, decreasing towards the midplane of the plate (depicted in light

green) and completely vanishing (depicted in black) on the stiff inclusions in the center of

the plate. This behavior detects the rectangular form of inclusions, the (black) areas with

zero displacement surrounded by (light green) minor displacement wave field. Traction

field has the biggest and lowest amplitude values (depicted in red and blue) on the stiff

inclusions, keeps near zero (depicted in light green) inside the soft matrix and vanishes

completely (depicted in black) between the inclusions and towards the upper and lower

surfaces. Therefore the traction field also recognizes the inclusions.
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Figure 4.5: The left-hand diagrams show free plate with laterally periodic square bars
with the matrix/inclusions materials (a) Ep/Si and (b) Si/Ep. The right-hand diagrams
show the real part of displacement and traction field at the same time, Re(u) and Re(σ)
(upper and lower part of the diagram, respectively) for the corresponding free plate with
k1T1 = 0.4π and (a) ωT1 = 3.19, (b) ωT1 = 9.3. Here, black corresponds to zero wave
field, green to near-zero (with values (a) 0 < |Re(u)| < 0.1mm ≡ uRe, 0 < |Re(σ)| <
0.5GPa ≡ sRe and (b) uRe = 0.2mm, sRe = 0.7GPa) wave field, red and blue (with (a)
uRe < |Re(u)| < 1mm, sRe < |Re(σ)| < 0.9GPa and (b) uRe < |Re(u)| < 1.1mm, sRe <
|Re(σ)| < 1.5GPa) to bigger positive and negative wave field amplitudes.

Secondly, consider the plate with the same parameters, but oppositely chosen materi-

als, silicium plate with epoxy inclusions; see Fig. 4.5(b). Here, the propagation of dis-

placement wave field is concentrated on the soft inclusions, where it achieves the highest

positive or negative phase (depicted in red and blue), taking only minor values (depicted
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in light green) inside the stiff matrix. Traction field has the highest and lowest amplitude

values on the interfaces between matrix and inclusions and on the edges of inclusions

(depicted in red and blue), keeps near zero around these areas and vanishes completely

elsewhere, in particular towards the upper and lower surfaces.

4.8 Conclusion

The dispersion equation in terms of the layer resolvent R is obtained by a direct substi-

tution of the exponentially growing propagator M. Next, the dispersion relations for the

mirror-symmetric plate with respect to the horizontal midplane are derived. We show

that the dispersion spectrum of the mirror-symmetric plate is a union of two dispersion

spectra – for the symmetric and antisymmetric waves. The key idea to prove this is to

decompose the free plate problem into two independent problems. The dispersion equa-

tions obtained for symmetric and antisymmetric waves are not directly related to the

overall free plate dispersion equation. However their solutions (zeros) are correlated.

We illustrate the analytical results by comparing the spectra of the mirror-symmetric

profiles with their asymmetric perturbations. One observes that mirror symmetry gives

no gaps inside the Brillouin zone, whereas its asymmetric perturbation causes repulsion

of the dispersion branches inside the Brillouin zone producing a stop band. Next, we

consider structures with absolute stop bands modelled by varying position, size, shape

and material of the inclusions. The closer we place the inclusion to the surface and the

bigger we make the inclusions, the bigger gaps we obtain. At the same time, the shape of

the, specifically, soft inclusion has no strong influence on the spectral structure.

Finally, we calculate the wave field in terms of the initial field and two resolvents. The

initial field η̃ηη(0) is obtained as an eigenvector corresponding to the dispersion eigenvalue

problem. The two resolvents are the resolvent taken at the corresponding depth of the

plate and the resolvent through the rest of the plate. The starting point of this approach is
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to recast the initial field ηηη(0) in terms of the resolvent R(d, 0) of the whole plate, i.e. ηηη(0) =

R(d, 0)η̃ηη(0). This yields a numerically stable expression ηηη(x2) = M(x2, 0)R(d, 0)η̃ηη(0) for

the whole field. The crucial point here is that the product M(x2, 0)R(d, 0) is numerically

stable for x2 ∈ [0, d], since we can decompose R(d, 0) into R(d, x2) and R(x2, 0) using the

resolvent chain rule.

In numerical examples for the wave field, we consider the plates with highly contrasting

matrix/inclusions stiffness values. This allows us to recognize well the plate geometry

by observing the amplitudes of the displacement and traction fields. For example, a stiff

inclusion in a soft matrix can be detected as an area with zero displacement values and at

the same time maximal traction field values.
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Chapter 5

Guided waves for a 2D layer between

two 2D substrates

5.1 Introduction

We propose for the 2D-periodic plate sandwiched between two 2D-periodic substrates the

resolvent method based on an analytical approach. Other works on this subject use the

classical numerical means such as extended PWE (suitable only for uniform substrates),

supercell method in combination with FEM, FDM or PWE (suitable for any substrate:

uniform, depth-uniform or 2D-periodic). Our approach applies exact integration in the

depth coordinate and reduces the problem to the unit cell of the periodic structure in con-

trast to other methods involving truncation in all coordinates and consideration of several

unit cells. Thus the advantages of the resolvent method are accuracy and efficiency due

to the smaller size of the input matrix of coefficients of the governing system of equations

(O(N) instead of O(N2) for other methods).

The guided wave in the sandwiched plate propagates along the plate decreasing in the

lower and upper substrates. This calls for a projector on the decreasing waves in the lower

substrate like for the Love wave problem (see Chapter 3). Additionally, the modes in the

75
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upper substrate decreasing in the direction opposite to the direction of reference are given

by the projector on the increasing modes. Hence, it is convenient to keep subscripts ’d’

and ’i’ for the projectors on the modes decreasing in the direction x2 → +∞ and in the

opposite direction x2 → −∞, respectively. We use a tilde to distinguish the upper half-

space. Thus, by the lower half-space projector Pd, we extract the modes decreasing in the

lower half-space for x2 → +∞. In turn, by the projector P̃i, we extract the modes decreas-

ing in the upper half-space for x2 → −∞. At the same time, the propagation through the

plate is provided by the layer resolvent Rl. As a result, the dispersion equation for the

sandwiched plate is stated in terms of Rl, Pd and P̃i.

Apart from the general type, the mirror-symmetric sandwiched plate with respect to the

horizontal midplane is considered. As in the case of the plate waves (see Chapter 4), the

problem for the mirror-symmetric profile can be split up into two independent problems

for symmetric and antisymmetric waves.

Numerical examples are discussed for sandwiched plate with identical and dissimilar

substrates. Moving the inclusions in the plate, we perturb the mirror symmetry (of the

whole structure or only of the plate). This provides useful observations on the existence

and width of the band gaps. As in the rest of the work, the plate width is taken such that

it admits several subsonic branches.

The displacement and traction field for the sandwiched plate are obtained, on the one

hand, by using the wave field calculation method for the free plate (see Chapter 4) in

terms of resolvents and, on the other hand, by introducing two particular propagators.

These propagators are the propagator Md for decreasing modes in the lower substrate

and the propagator M̃dop for decreasing modes in the opposite direction in the upper

substrate. We define Md and M̃dop as the modified spectral projector Pd.
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5.2 Problem statement

Consider a 2D PC layer {x = (x1, x2) : 0 6 x2 6 d} of thickness d embedded in between

two 2D half-spaces x2 ∈ (−∞, 0] and x2 ∈ [d,∞); see Fig. 5.1. Both the layer and the

half-spaces are assumed to be of the same horizontal period T1 = 1 along the axis X1.

The vertical periods of the upper and lower half-spaces along the axis X2 are T2 and T̃2,

respectively. As in the rest of the work, we assume that the PC structure is uniform along

the axis X3.

Figure 5.1: Example of a 2D PC plate embedded between two semi-infinite substrates

The SH wave has the form v3(x, t) = v(x)e−iωt. The problem for the plate between two

substrates consists of the scalar wave equation

∂1(µ∂1v) + ∂2(µ∂2v) = −ρω2v (2.1)

with the displacement continuity conditions at the interfaces x2 = 0 and x2 = d and the

radiation conditions into the depths of both substrates given by

lim
x2→+∞

v(x2) = 0, lim
x2→−∞

v(x2) = 0. (2.2)

The shear coefficient µ(x) and the density ρ(x) are 1-periodic in x1. Hence the SH wave
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has the Floquet-Bloch form v(x) = u(x)eik1x1 with u(x) 1-periodic in x1 and the wave

number k1 ∈ [−π, π]. Similarly as in §3.2, after plane wave expansion in x1, equations

(2.1) and (2.2) can be recast in the system of the first order ordinary differential equations

∂2ηηη = Qηηη (2.3)

with the radiation conditions

lim
x2→±∞

ηηη(x2) = 0. (2.4)

Here, ηηη = (u, µµµ∂2u)
T and Q are given by (2.10) in terms of Fourier coefficients (2.7).

5.3 Dispersion equation with resolvent and projector

The spectrum is given by the localized waves spectrum and the propagative waves spec-

trum.

5.3.1 The localized waves spectrum

We restate the sandwiched plate problem (2.3) and (2.4). The wave ηηη(0) taken at the

interface x2 = 0 between the layer and the upper half-space is decreasing for x2 → −∞ in

the upper half-space and for x2 → +∞ in the lower half-space after propagating through

the layer. This calls for a projector on the decreasing waves in the lower substrate like

for the Love wave problem (see Chapter 3). Additionally, the modes decreasing in the

direction opposite to the direction of reference are given by the projector on the increasing

modes. Hence, it is convenient to keep subscripts ’d’ and ’i’ for the projectors on the

modes decreasing in the direction x2 → +∞ and in the opposite direction x2 → −∞,

respectively. We use a tilde to distinguish the upper half-space. Thus, by the lower half-

space projector Pd applied to ηηη(d) = Mlηηη(0), where Ml is the layer propagator, we extract
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the modes decreasing in the lower half-space for x2 → +∞. In turn, by the projector P̃i

applied to ηηη(0) we extract the modes decreasing in the upper half-space for x2 → −∞.

This gives the dispersion system

(P̃i − I)ηηη(0) = 0 and

(Pd − I)Mlηηη(0) = 0.
(3.5)

To circumvent the instabilities of the propagator Ml, our ansatz is, as for the Love wave

problem (see § 3.5.1), to define the solution ηηη(0) in terms of the layer resolvent Rl, i.e.

ηηη(0) = Rlη̃ηη. (3.6)

Then, using the identity MlRl = zRl − I (see (3.15)), the system (3.5) is stated in numeri-

cally stable terms as

D1η̃ηη ≡ (P̃i − I)Rlη̃ηη = 0 and

D2η̃ηη ≡ (Pd − I)(zRl − I)η̃ηη = 0.
(3.7)

Next to evaluate the both equations simultaneously, we first rewrite the system (3.7) as a

unique equality

Dη̃ηη = 0 with D = D∗
1D1 +D∗

2D2, (3.8)

which yields

detD = 0. (3.9)

This leads to the dispersion equation in the final numerically stable form (see the remark

to (5.42)) via the minimal eigenvalue of the corresponding positive definite matrix D as:

λmin(D) = 0. (3.10)
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5.3.2 Projection of the spectrum of the propagating waves

Similarly as for the Love wave problem (see § 3.5.2), we calculate the projection of the

dispersion surface ω(k1, k2) on the plane (ω, k1) in terms of the projectors Pp and P̃p on

propagating modes corresponding to the upper and lower half-spaces. As follows from

the projector definition (see (4.29)), their trace indicates the number Np(ω, k1) of the prop-

agating modes, i.e.

Np(ω, k1) = tracePp, Ñp(ω, k1) = trace P̃p. (3.11)

Therefore, we determine the projections of the propagative spectra of the upper and lower

half-space at a given ω and k1 by the condition

Np(ω, k1) > 1 or Ñp(ω, k1) > 1. (3.12)

To calculate the projection of the propagative spectra in terms of Pd, we specify (5.45) by

Np(ω, k1) = 2(2N + 1)− 2 tracePd, Ñp(ω, k1) = 2(2N + 1)− 2 trace P̃d (3.13)

using (3.11) and the identity (A.2.103).

5.4 The dispersion equation for the mirror-symmetric case

5.4.1 Problem decomposition for symmetric and antisymmetric waves

Assume that the waveguide consisting of the layer embedded between two semi-infinite

substrates is mirror-symmetric. This implies that the system matrix Ql is an even func-

tion and Qsub, Q̃sub are mirror-symmetric with respect to the midplane x2 = d/2 of the

waveguide structure. Then, according to the identities (A.3.5) and (A.3.7), the propagator
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and the projectors are related as follows:

Ml(0, d/2) = SMl(d, d/2)S
−1, P̃i = SPdS

−1. (4.14)

Introducing the solution ηηη1 = (u1,σσσ1)
T at the midplane x2 = d/2 we rewrite the dispersion

equation (3.5) in the form

(P̃i − I)Ml(0, d/2)ηηη1 = 0,

(Pd − I)Ml(d, d/2)ηηη1 = 0.
(4.15)

Denoting the matrix

(P̃i − I)Ml(0, d/2) ≡ A =



A1 A2

A3 A4


 (4.16)

and using (4.14), we observe that (4.15) is equivalent to



A1 A2

A3 A4






u1

σσσ1


 =



0

0


 and




A1 −A2

−A3 A4






u1

σσσ1


 =



0

0


 . (4.17)

Adding and subtracting these two equalities yields



A1 0

0 A4






u1

σσσ1


 =



0

0


 and




0 A2

A3 0






u1

σσσ1


 =



0

0


 . (4.18)

Let u1 = 0, then A2σσσ1 = 0 and A4σσσ1 = 0. Let σσσ1 = 0, then A1u1 = 0 and A3u1 = 0. Thus

we obtain the equivalent form of (4.17) as the union of two independent problems1

u1 = 0 and det(A∗
2A2 +A∗

4A4) = 0 (4.19)

and

σσσ1 = 0 and det(A∗
1A1 +A∗

3A3) = 0. (4.20)

1The case u1 6= 0, σσσ1 6= 0 is exceptional corresponding to the intersection of (4.19) and (4.20).



82 CHAPTER 5. GUIDED WAVES IN 2D PC

The problems (4.19) and (4.20) give independent families of dispersion branches. The

union of all these branches composes the whole set of dispersion branches for guided

spectrum. Similarly as in §4.5.1, it follows that eq. (4.19) defines the waves with the anti-

symmetric displacement u(d/2+x2) = −u(d/2−x2) and symmetric traction σσσ(d/2+x2) =

σσσ(d/2−x2) with x2 ∈ [0, d/2], while eq. (4.19) defines the waves with symmetric displace-

ment and antisymmetric traction. This is the same conclusion as for the free symmetric

plates. Finally, we note that the propagative spectra for the mirror-symmetric upper and

low substrates are the same Np(ω, k1) = Ñp(ω, k1). This follows from the fact that tracePp

is invariant under the mirror-symmetry.

5.4.2 Dispersion equations in stable terms

Equations (4.19) and (4.20) include numerically unstable propagator. Let us restate them

in stable terms. As for the Love wave problem in § 3.5, we assume that ηηη1 = Rl(d, d/2)ηηη0

and then rewrite the second equation in (4.15) as follows

(Pd − I)(zRl(d, d/2)− I)ηηη0 = 0. (4.21)

Denoting

Rl(d, d/2) ≡ R =



R1 R2

R3 R4


 , ηηη0 =



u0

σσσ0


 , (4.22)

the condition u1 = 0 in (4.19) via ηηη1 = Rηηη0 leads to u0 = −R−1
1 R2σσσ0, which on substitut-

ing in (4.21) gives us the dispersion equation for the antisymmetric waves

λmin(D
∗
asymDasym) = 0, where Dasym ≡ (Pd − I)(zR− I)



R−1

1 R2

−I


 . (4.23)
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By analogy, the dispersion equation for the symmetric waves is obtained in the form

λmin(D
∗
symDsym) = 0, where Dsym ≡ (Pd − I)(zR− I)




−I

R−1
4 R3


 . (4.24)

5.5 Numerical examples

5.5.1 Square inclusions and 2D substrates
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Figure 5.2: (a) Layer between two identical half-spaces. The spectra for (a) with (b) the
uniform plate (c) L1 = 0.6 mm; (d) L1 = 0.7. In Figs. (b) and (c), the black and grey (dark
blue and orange online) lines are dispersion branches for symmetric and antisymmetric
waves. (e) Layer between two dissimilar half-spaces. The spectra for (e) with (f) L1 = 0.6
mm, (g) L1 = 0.7 mm, (h) L1 = 0.5 mm. The light grey and dark grey areas (yellow and
dark green online) correspond to the spectra of the propagating waves in the upper and
lower substrate, correspondingly. The grey areas (light green online) correspond to the
superposition of these spectra.

Consider the layer of epoxy of thickness d = L1 + r1 + L̃1 = 1.6 mm located between
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the two periodic half-spaces consisting of silicium square rods inside epoxy matrix. The

rods can be of equal (r2 = 0.6 mm) or different (r2 = 0.6 mm, r̃2 = 0.7 mm) size; see the

structures in Fig. 5.2. (a),(e). The geometrical parameters are T1 = 1 mm and T2 = T̃2 = 1.2

mm. Assume first that half-spaces are identical (Fig. 5.2. (a)) and hence have the same

propagative spectra, see Figs. 5.2 (b)-(d). The layer is either uniform (r1 = 0) or it includes

periodic square rods of Pb (r1 = 0.4 mm) which are placed either at the layer midplane

(L1 = L̃1) or not (L1 6= L̃1). The first two cases imply the mirror symmetry of the structure,

therefore symmetric and antisymmetric branches (see Figs. 5.2 (b),(c)) hinder existence of

the absolute gaps, since these branches intersect each other. In Fig. 5.2 (d), the shift

of layer inclusions destroys the mirror symmetry, therefore the branches split and the

absolute gap opens up. Next let the substrates be dissimilar; see Fig. 5.2 (e). Now the

propagative spectra of the upper and lower substrates differ from each other; see Figs. 5.2

(f)-(h). Since the overall structure is asymmetric, the dispersion branches of the localized

spectrum do not intersect and create an absolute gap regardless of whether the layer

inclusions are symmetric (Fig. 5.2 (f)) or asymmetric (Fig. 5.2 (g),(h)). In the latter case

the gap is wider.

5.5.2 Circular inclusions and layered substrates
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Figure 5.3: (a) Layer between two mirror-symmetric half-spaces. The spectra for (a) with
(b) the uniform layer, (c) L1 = 0.8 mm, (d) L1 = 1.1 mm.

Consider again the layer of epoxy of thickness d = L1 + r1 + L̃1 = 1.6 mm, this time
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between two periodically bilayered substrates which are mirror-symmetric with respect

to the layer midplane; see Fig. 5.3 (a). Their geometrical parameters are T1 = 1 mm,

T2 = 1.5 mm and L2 = 1 mm. Note that the propagative spectra for the mirror-symmetric

substrates are identical. Moreover, the propagative spectrum has no stop bands, since

the substrates are laterally uniform; see Fig. 5.3 (b)-(d). If the layer is uniform (r1 = 0),

then the whole structure is laterally uniform and mirror-symmetric, so that its spectrum

represents formally folded and intersecting branches of symmetric and antisymmetric

waves; see Fig. 5.3 (b). There are no band gaps in this case. Next let us place the periodic

inclusions (Pb cylinders of radius r1 = 0.08 mm) in the middle of the layer, so that the

structure becomes laterally heterogeneous staying mirror-symmetric. Then the symmet-

ric/antisymmetric uncoupling persists and hence the corresponding branches intersect

inside the Brillouin zone; see Fig. 5.3 (c). Now let us shift the inclusions with respect to

the layer midplane. The structure becomes asymmetric. Hence the branches no longer

intersect, but repulse each other inside the Brillouin zone; see Fig. 5.3 (d).

5.6 The displacement and traction field

5.6.1 The propagators for decreasing modes

The wave field decreasing into the depth of the lower and upper 2D-periodic substrates

is calculated by introducing two new tools, the propagators Md and M̃dop for decreasing

modes in the direction of reference and in the opposite direction, respectively. These new

objects Md ≡ Md(T2+x2, x2) and M̃dop ≡ M̃dop(x2−T2, x2) can be viewed as the substrate

propagators Msub(x2+T2, x2) and M̃sub(x2−T̃2, x2) with only eigenvalues corresponding to

decreasing modes left and other eigenvalues replaced by zeroes. We define Md and M̃dop

as the modified spectral projector Pd on decreasing modes in the direction of reference
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and the projector

P̃dop =
1

2πi

∮

|z|=1−0

R̃z(−T̃2, 0)dz. (6.25)

on the decreasing modes in the opposite direction, respectively (cf. spectral projector

definition (4.31) in 3.4.3):

Md(x2 + T2, x2) =
1

2πi

∮

|z|=1−0

zRz(x2 + T2, x2)dz (6.26)

and

M̃dop(x2 − T̃2, x2) =
1

2πi

∮

|z|=1−0

zR̃z(x2 − T̃2, x2)dz. (6.27)

Moreover, we have the identity

M̃dop(x2 − T̃2, x2) = TM̃∗
d(x2, x2 − T̃2)T

−1, (6.28)

similarly to the projector identity (A.2.8) for the projectors P̃d and P̃dop; see (C.3.5) for

more details. Note that the implementation of Md and M̃dop as a matrix function of corre-

sponding resolvents is discussed in Appendix C.3.3.

5.6.2 The wave field equation

The displacement and traction field is recast in terms of the initial field, the resolvents

and two propagators Md and M̃dop for decreasing modes defined in (6.26) and (6.27). The

calculation consists of two main steps. On the one hand, we use the wave field calculation

method for the free plate (see Chapter 4) in terms of resolvents. On the other hand, the

wave field in the depth of the upper and lower substrates is given by Md and M̃dop.

First, the wave field is calculated inside the plate and the surrounding layers of the

upper and lower substrates, i.e. for x2 ∈ [−T̃2, d + T2]. Here we apply the same resolvent

method like for the traction-free plate (see §4.7.1.), since it is independent from boundary



5.6. THE DISPLACEMENT AND TRACTION FIELD 87

conditions (either with traction or traction-free). The initial wave field at the interface

x2 = −T̃2 of the first and second layer in the upper substrate is given by

ηηη(−T̃2) = Rslsηηη0, (6.29)

where Rsls ≡ R(d + T2,−T̃2) and ηηη0 is obtained as an eigenvector of the overall sand-

wiched plate dispersion eigenvalue problem (see §5.3.1 for more details; cf. (3.8)). Explic-

itly, ηηη0 satisfies

Dηηη0 = 0 withD = D∗
1D1 +D∗

2D2, (6.30)

where

D1 ≡ (P̃i − I)Rsls and

D2 ≡ (Pd − I)(zRsls − I).
(6.31)

Note that we have Rsls in (6.31) in place of Rl ≡ R(d, 0) in the original dispersion equation

(3.8). Denoting further Rf ≡ R(x2,−T̃2) and Rr ≡ R(d + T2, x2), we obtain from (6.29)

the wave field ηηη(x2) ≡ (u(x2),σσσ(x2))
T for x2 ∈ [−T̃2, d+ T2] as

ηηη(x2) = Mslsηηη(−T̃2) = MslsRslsηηη0

= (zRf − I)(z(1− z)RrRf + zRr + zRf − I)−1Rrηηη0, (6.32)

where ηηη0 is given by (6.30).

Secondly, the wave field ηηη decreasing into the depth of the substrates is calculated by

multiplying Md and M̃dop with the wave field ηηη(x2) inside the first layer of the substrates,

i.e. for x2 ∈ [d, d + T2] and x2 ∈ [−T̃2, 0]. In the n-th layer of a 2D-periodic (lower and

upper) substrate, the wave field is determined via

ηηη(x2 + nT2) = Mn
d(x2 + T2, x2)ηηη(x2), x2 ∈ [d, d+ T2], (6.33)
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and

ηηη(x2 − nT̃2) = M̃n
dop(x2 − T̃2, x2)ηηη(x2), x2 ∈ [−T̃2, 0], (6.34)

with Md and M̃dop defined by (6.26) and (6.27) and with ηηη(x2) given by (6.32).

5.6.3 Numerical examples

We compare the wave fields for two waveguides of the same geometry, but with oppo-

sitely chosen materials. First, consider the layer of epoxy located between the two peri-

odic half-spaces consisting of silicium square rods (r2 = 0.6 mm) inside epoxy matrix; see

Fig. 5.4 (a). The geometrical parameters are T1 = 1 mm and T2 = T̃2 = 1.2 mm. The

layer of thickness d = L1 + r1 + L̃1 = 1.6 mm includes periodic square rods of silicium

(r1 = 0.6 mm) placed at the layer midplane (L1 = L̃1 = 0.5 mm). Displacement field mov-

ing along the horizontal axis reaches the highest positive or negative amplitude (depicted

in red and blue) in the middle of the waveguide - on the areas of square form correspond-

ing to the soft matrix between the stiff inclusions. Going away from the middle of the

waveguide, the behavior of the field remains the same, but its amplitude diminishes con-

siderably (depicted in light green). On the homogeneous soft layers, the displacement

field vanishes (depicted in black) or takes minor values (depicted in light green) forming

a pattern in the middle of the waveguide or straight lines corresponding to weak prop-

agation without perturbations in the depth of the waveguide. The displacement field

vanishes completely (depicted in black) on the stiff inclusions. This behavior detects the

rectangular form of inclusions, the (black) areas with zero displacement surrounded by

(light green) minor displacement wave field.

Traction field propagates with much more complicated pattern than the displacement

field. It has the biggest and lowest amplitude values (depicted in red and blue) on the stiff

inclusions, on the interfaces between matrix and inclusions or even on the soft matrix

between the inclusions. Like for the displacement field, we see also here the straight
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Figure 5.4: The displacement and traction wave fields. The left-hand diagrams show
sandwiched plate with laterally periodic square bars with the matrix/inclusions mate-
rials (a) Ep/Si and (b) Si/Ep. The right-hand diagrams show the real part of displace-
ment and traction field at the same time, Re(u) and Re(σ) (left and right part of the di-
agram, respectively) for the corresponding sandwiched plate with k1T1 = 0.4π and (a)
ωT1 = 6.86, (b) ωT1 = 9.36. Here, black corresponds to zero wave field, green to near-
zero (with values (a) 0 < |Re(u)| < 0.022mm ≡ uRe, 0 < |Re(σ)| < 0.2GPa ≡ sRe and
(b) uRe = 0.007mm, sRe = 0.55GPa) wave field, red and blue (with (a) uRe < |Re(u)| <
0.05mm, sRe < |Re(σ)| < 1.05GPa and (b) uRe < |Re(u)| < 0.01mm, sRe < |Re(σ)| <
1.5GPa) to bigger positive and negative wave field amplitudes.

lines of a weaker propagation (depicted in light green) alternated with the domains of

zero propagation (depicted in black). The traction field vanishes into the depth of the

waveguide taking only minor or zero values (depicted in light green and black).



90 CHAPTER 5. GUIDED WAVES IN 2D PC

Secondly, consider the waveguide consistent of silicium matrix and epoxy inclusions;

see Fig. 5.4(b). The displacement and traction fields for this waveguide have a much more

simple form than in the first example. The wave fields propagate on square domains

(depicted in red and blue and clear green) and vanish elsewhere (depicted in black and

very clear green). For the displacement field, the square domains of propagation are

the soft inclusions, whereas for the traction field, these are the stiff matrix between the

inclusions. The amplitudes are the biggest in the middle of the waveguide vanishing into

its depth. Therefore also for this waveguide the inclusions are recognized perfectly well.

5.7 Conclusion

The dispersion equation for 2D PC sandwiched plate is stated in terms of the plate re-

solvent Rl and two projectors Pd and P̃i. Here, we keep subscripts ’d’ and ’i’ for the

projectors on the modes decreasing in the direction x2 → +∞ and in the opposite direc-

tion x2 → −∞, respectively. Recall that the modes decreasing in the direction opposite to

the direction of reference are given by the projector on the increasing modes. We also use

a tilde to distinguish the upper half-space. The technique to state the dispersion equation

has two key steps. First consider the plate. Here we substitute the numerically stable re-

solvent Rl instead of exponentially growing layer propagator Ml. The ansatz is the same

as in the case of Love waves (see Chapter 3). We consider a new initial solution η̃ηη premul-

tiplied by the resolvent Rl, i.e. ηηη = Rlη̃ηη. The premultiplied solution gives a numerically

stable propagated solution Mlηηη = MlRlη̃ηη, since the product MlRl = zRl − I expressed in

terms of the resolvent is numerically stable. Secondly consider the lower and upper sub-

strates. Using the projectors Pd and P̃i, we extract the modes decreasing in the lower and

upper half-spaces via ηηη = Pdηηη and ηηη = P̃iηηη, respectively. That is, the projector maintains

only the chosen type of waves (decreasing or increasing) discarding the others. Moreover,

the projection of the spectrum of the propagating waves is given by union of the spectra
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in the lower and upper substrates and is calculated via tracePd and trace P̃i. If the lower

and upper substrates are identical, their projectors and hence their propagating spectra

are identical too.

After the general case, the mirror-symmetric sandwiched plate with respect to the hori-

zontal midplane is considered. Similarly as for the plate waves (see Chapter 4), the prob-

lem is decomposed for symmetric and anti-symmetric waves giving two independent

dispersion equations. Despite the fact that these dispersion equations are not directly

related to the overall sandwiched plate dispersion equation, their solutions (zeros) are

correlated.

We consider sandwiched plate with identical and dissimilar substrates. The first case

gives rise to mirror-symmetry, if the plate is either uniform or have inclusions placed at

its midplane. Therefore we observe here the intersection of two independent dispersion

spectra for symmetric and anti-symmetric waves hindering the existence of absolute gaps.

As soon as the plate inclusions are shifted destroying the mirror symmetry, the branches

split and the absolute gap opens up. At the same time, in the case of two dissimilar sub-

strates, the absolute gaps are created regardless of the position of the inclusion. However

the symmetric position gives a smaller gap.

The displacement and traction field is calculated in two steps. First, the wave field is

calculated inside the plate and the surrounding layers of the upper and lower substrates -

analogously like for the free plate (see Chapter 4) in terms of resolvents, since this method

is independent from boundary conditions (either with traction or traction-free). Secondly,

the wave field into the depth of the substrates is obtained by introducing the propagator

Md for decreasing modes (in the lower substrate) and the propagator M̃dop for decreasing

modes in the opposite direction (in the upper substrate). Defined as the modified pro-

jector Pd, the propagators Md and M̃dop give the wave field at any depth of the periodic

substrate from the initial field in its first layer: ηηη(x2 + nT2) = Mn
d(x2 + T2, x2)ηηη(x2) with

x2 ∈ [d, d+ T2].
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Chapter 6

Conclusions

We propose a new calculation method of the dispersion spectrum and wave field in 2D

PC called the resolvent method. To approach this topic gradually, we begin with 1D PC.

In this case, it is possible to compute the dispersion spectrum in an easier way, which

sums up in the scalar impedance method.

The impedance method is applied to Love waves in the 1D PC coated substrate. The

dispersion equation is stated as equality of scalar SH impedances of the coating layer

and the substrate. Rigorous mathematical derivation demonstrates some helpful proper-

ties of the impedance functions giving several advantages of the method in comparison

to the commonly used formulation via the transfer matrix. First of all, monotonicity of

impedance functions in ω and kx enables insightful graphical visualization of roots of the

dispersion equation and clarify the connectivity of the broken branches of Love waves.

Next, the behavior of the impedance functions underpins the relation of the number of

Love waves in a stopband to the number of resonances of the coating layer. Moreover, the

impedance method can be extended to the case of vector waves in a coated periodic sub-

strate and/or in a periodic medium with different models of an embedded defect layer;

see e.g. [10].

We also illustrate the observed spectral phenomena by means of diverse numerical ex-
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amples contrasting them with the spectra of other PC structures. The dispersion spectrum

of a 1D PC coated substrate is compared, first, to the classical case of a homogeneous

substrate coated by a homogeneous or 1D layer and, secondly, to the 1D PC (uncoated)

substrate. There are several differences. For instance, a periodic substrate, in contrast to

a homogeneous one, admits localized waves emerging with finite frequencies at kx = 0.

A general dissimilarity between Love and surface waves is that any stopband at fixed

kx cannot contain more than one SH surface wave whereas it may contain several Love

waves (about as many, as many resonances of the coating layer fall within this stopband).

Another significant effect of coating arises in a fairly typical case where a free periodic

substrate admits SH surface waves only in a narrow velocity range - then even a weak

perturbation by thin coating creates localised waves in the spectral domain where they

could not exist for the uncoated substrate.

The method based on the resolvent of propagator is developed and applied to calcu-

lation of the dispersion spectra and wave field of shear horizontal waves in the 2D PC

coated substrates, the PC free plates and sandwiched plates. The background of the

method consists of the Fourier expansion in the lateral coordinate and of the exact differ-

ential equation in the depth direction. One could have taken the equation for the propaga-

tor (monodromy matrix M); however this approach is not satisfactory because the propa-

gator is numerically unstable - it exponentially grows as the number of Fourier harmonics

increases. In this regard, our method replaces the propagator by the numerically stable

object, the resolvent R, which is formally related to the propagator as R = (zI − M)−1.

The resolvent is the solution of the Riccati differential equation in the depth direction. Its

calculation can be essentially simplified if the medium is at least partially homogeneous

into the depth.

The dispersion equation for diverse PC waveguides consisting of layer(s) and one or

two half-spaces can be formulated via three tools, the resolvent Rl of the layer(s), the pro-

jector Pd on the decreasing modes in the first half-space and eventually the projector Pi
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on the modes decreasing in the second half-space. We apply the resolvent tool Rl for the

plate or coating and the projector tool (defined in terms of the substrate resolvent Rs) for

the substrate. By these means the problem is always reduced to a single unit cell of the 2D

periodic structure. The technique to state the dispersion equation has two key steps. First

consider a layer. Here we substitute the numerically stable resolvent Rl instead of expo-

nentially growing layer propagator Ml. The substitution can follow either directly (plate

waves, see Chapter 4) or by a premultiplying (Love waves and guided waves, see Chap-

ters 3 and 5). The last case consists of considering a new initial solution η̃ηη premultiplied

by the resolvent R, i.e. ηηη = Rη̃ηη. The premultiplied solution gives a numerically stable

propagated solution Mηηη = MRη̃ηη, since the product MR = zR − I expressed in terms

of the resolvent is numerically stable. Secondly consider a substrate. The decreasing so-

lution ηηη is extracted applying the projector Pd on the decreasing modes by imposing the

equality ηηη = Pdηηη. That is, a projector can be considered as a kind of filter maintaining

only the chosen kind of waves (decreasing or propagating) and discarding the rest. Ana-

lytical properties of the resolvent and, in the case of a substrate and a waveguide, of the

projector are presented and several options for calculation of the resolvent and projector

are provided (see Appendix).

We calculate the wave field for the PC waveguides by extending the method developed

for the dispersion equation. The displacement and traction field for PC structures consist-

ing of layer(s) and one or two half-spaces can be formulated via three tools, the resolvent

Rl of the layer(s), the propagator Md for the decreasing modes in the first half-space and

eventually the propagator M̃dop for the modes decreasing in the opposite direction in the

second half-space. First, we take the solution of the dispersion equation for the overall

PC structure discussed above as the initial wave field. Next, we calculate the propa-

gating wave field by ’moving’ our tools inside the structure. For example, we consider

the resolvent R(x2, 0) with any x2 ∈ [0, d] instead of the layer resolvent R(d, 0) and the

propagator Md(x2 + T2, x2) with any x2 ∈ [d, d + T2] instead of the substrate projector
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Pd(T2, d). First consider a plate (either sandwiched or traction-free), since this method is

independent from boundary conditions (Chapters 4 and 5). Here the wave field is cal-

culated in terms of resolvents. Recasting the initial field ηηη(0) in terms of the resolvent

R(d, 0) of the whole plate as ηηη(0) = R(d, 0)η̃ηη(0) yields a numerically stable expression

ηηη(x2) = M(x2, 0)R(d, 0)η̃ηη(0) for the propagating field. The crucial point here is that the

product M(x2, 0)R(d, 0) is numerically stable for x2 ∈ [0, d], since we can decompose

R(d, 0) into R(d, x2) and R(x2, 0) using the resolvent chain rule. Secondly consider a sub-

strate (Chapter 5). The wave field ηηη(x2) with x2 ∈ [d, d + T2] inside the first layer of the

substrate is calculated like for the free plate in terms of resolvents. The wave field in the

further layers decreasing into the depth of the substrates is obtained by introducing the

propagator Md for decreasing modes (in the lower substrate) and the propagator M̃dop for

decreasing modes in the opposite direction (in the upper substrate). Defined as the mod-

ified projector Pd, the propagators Md and M̃dop give the wave field at any depth of the

periodic substrate from the initial field in its first layer. For example, in the n-th layer of a

2D-periodic substrate, the wave field is determined via ηηη(x2+nT2) = Mn
d (x2+T2, x2)ηηη(x2),

where x2 ∈ [d, d+ T2]. Note that also the field of Love waves can be calculated using this

technique.

The method deriving simple dispersion and wave field equations with different com-

putational features (Riccatti equation, contour integral, matrix function) has several ad-

vantages. First, it is fast and stable thanks to the resolvent circumventing the instabili-

ties of the propagator. Secondly, it gives a good precision: exact solution into the depth

gives better accuracy than the plane-wave expansion method which implies Fourier ex-

pansion in each coordinate. Thirdly, the method is relatively computationally cheap in

comparison e.g. with the supercell method, since we reduce consequently the problems

for the periodic structures to their unit cells, whereas the supercell method requires sev-

eral unit cells for the same purpose. Fourthly, the method is versatile, multifunctional

and extendible in the following sense. It is versatile, since it covers the broad frequency
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range and the diversity of media, e.g. 2D-uniform, depth-uniform, 2D-heterogeneous.

Next, the method is multifunctional, since it can be applied to different kinds of problems

in phononic crystals with various interfaces, e.g. layer on a half-space, layer between

two half-spaces. Finally, it is extendible to vector waves and three-dimensional phononic

crystals. Moreover, the resolvent (like the propagator) does not depend on the boundary

conditions and hence allows the old discretized data to be used for a further calculation

of a better precision in contrast to the iterative methods.

Note that the Fourier series expansion limits the application of the method on the other

types of phononic plates as fluid/solid, solid/fluid or solid with void inclusions. A pos-

sible solution is to take other basis functions instead of the Fourier.

The numerical examples were obtained by means of Embarcadero Delphi Xe with the

use of MtxVec component which provides highly optimized BLAS and LAPACK linear

algebra routines.

Our physical observations reveal absolute low-frequency band gaps. It is shown that

the low-frequency dispersion branches may either cross or repulse each other, the latter

leading to the low-frequency band gaps inside the Brillouin zone. They are the bigger, the

closer are the inclusions to the traction-free surface and the bigger are the inclusions them-

selves. For the PC with substrates (see Chapter 3 and 5), the projection of the spectrum

of the propagating waves is traced and the spectrum of localized waves is studied. It has

been shown for such structures that the inclusions in the substrate do not have a big influ-

ence on a localized spectrum. Next, a special attention is paid to mirror-symmetric pro-

files (see Chapter 4 and 5). The stop bands arise by the repulsion of dispersion branches

at their former intersections at the edge of the Brillouin zone for mirror-symmetric profile

and at the edge and inside the Brillouin zone for asymmetric profile.

In numerical examples for the wave field, we consider the waveguides with highly

contrasting matrix/inclusions stiffness values. This allows us to recognize well the PC

geometry by observing the amplitudes of the displacement and traction fields. For exam-
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ple, a stiff inclusion in a soft matrix can be detected as an area with zero displacement

values and at the same time maximal traction field values.



Appendix A

Useful identities for the propagator,

resolvent and projector

A.1 Chain rule and Hilbert identity for resolvent

For any a, b, c, we have the chain rule for the propagator

M(c, a) = M(c, b)M(b, a). (A.1.1)

The resolvent satisfies the chain rule in the following form. Having two resolvents R(b, a) =

(zI −M(b, a))−1 and R(c, b) = (zI −M(c, b))−1 at hand, the aggregate resolvent

R(c, a) = (zI −M(c, b)M(b, a))−1 (A.1.2)

is given by

R(c, a) = (zI− (zI−R−1(c, b))(zI −R−1(b, a)))−1

= R(b, a)(z(1 − z)R(c, b)R(b, a) + zR(c, b) + zR(b, a)− I)−1R(c, b),
(A.1.3)
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avoiding unstable term R−1.

If one resolvent Rα(b, a) = (αI −M(b, a))−1 for a fixed α is known, then we can easily

calculate a resolvent Rβ(b, a) = (βI−M(b, a))−1 for any β by using identity

Rβ(b, a) = Rα(b, a)

(
I− (α− β)Rα(b, a)

)−1

. (A.1.4)

Equation (A.1.4) follows from the Hilbert identity (also called the first resolvent identity)

Rβ(b, a)−Rα(b, a) = (α− β)Rβ(b, a)Rα(b, a). (A.1.5)

The latter can be proved by premultiplying both sides of (A.1.5) by R−1
β (b, a) = βI −

M(b, a) from the left and by R−1
α (b, a) = αI−M(b, a) from the right.

A.2 T-unitarity of the propagator and its consequences

The propagator can be calculated as a multiplicative Volterra integral

M(b, a) =

∫̂ b

a

(I+Q(x2)dx2) = lim
n→∞

(
I+

1

n
Q

(
a+ n

b− a

n

))
...

(
I+

1

n
Q

(
a+ 0

b− a

n

))
,

where b > a. The inverse propagator is

M(a, b) = M−1(b, a) =
∫̂ a

b
(I+Q(x2)dx2) =

limn→∞

(
I− 1

n
Q

(
a+ 0 b−a

n

))
...

(
I− 1

n
Q

(
a + n b−a

n

))
=

limn→∞

((
I+T 1

n
Q

(
a+ n b−a

n

)
T−1

)
...

(
I+T 1

n
Q

(
a + 0 b−a

n

)
T−1

))∗

=

T

(
limn→∞

(
I+ 1

n
Q

(
a+ n b−a

n

))
...

(
I+ 1

n
Q

(
a + 0 b−a

n

)))∗

T−1 =

TM∗(b, a)T−1,

(A.2.1)
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where ∗ is Hermitian conjugation and we have used that Q defined in (2.3) with real µ

and ρ is symplectic

Q = −TQ∗T−1 with T = −T∗ = −T−1 =




0 I

−I 0


 . (A.2.2)

Thus identities (A.2.1) amount to T-unitarity of the propagator

M−1(b, a) = TM∗(b, a)T−1. (A.2.3)

In particular, (A.2.3) yields that the sets of eigenvalues of M−1 and M∗ are identical con-

sisting of qd, qp and qi with

q−1
i = q∗d and q−1

p = q∗p ,

dimEi = dimEd and dimEp ∈ 2Z. (A.2.4)

T-unitarity (A.2.3) of the propagator leads via

R∗
α(b, a) = T(α−M−1(b, a))−1T−1, (A.2.5)

where α denotes complex conjugated value of α, to the corresponding identity

Rα(a, b) = TR∗
α(b, a)T

−1 (A.2.6)

for the resolvent. Next, note that the projector on the increasing modes Pi is identical to

the projector Pdop on the decreasing modes in the opposite direction, since

Pi = I− 1

2πi

∮

|z|=1+0

(zI−M)−1dz = I− 1

2πi

∮

|z|=1+0

(zM−1 − I)−1M−1dz
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= I− 1

2πi

∮

|z|=1+0

z−1(zM−1 − I)−1(zM−1 − I+ I)dz

= I− 1

2πi

∮

|z|=1+0

z−1Idz − 1

2πi

∮

|z|=1+0

z−1(zM−1 − I)−1dz

= I− I− 1

2πi

∮

|z|=1+0

z−2(M−1 − z−1I)−1dz

= − 1

2πi

∮

|z|=1+0

z−2(M−1 − z−1I)−1dz =
1

2πi

∮

|z|=1+0

(M−1 − z−1I)−1d(z−1)

= − 1

2πi

∮

|z|=1−0

(M−1 − zI)−1dz =
1

2πi

∮

|z|=1−0

(zI −M−1)−1dz ≡ Pdop. (A.2.7)

Using (A.2.7) and applying the resolvent identity (A.2.6) for the substrate resolvent Rz(T2, 0)

over the depth period T2 implies for the projectors

Pi = Pdop =
1

2πi

∮

|z|=1−0

Rz(0, T2)dz =
1

2πi

∮

|z|=1−0

TR∗
z(T2, 0)T

−1dz

= T

(
1

2πi

∮

|z|=1−0

R∗
z(T2, 0)dz

)
T−1 = T

(
− 1

2πi

∮

|z|=1−0

Rz(T2, 0)dz̄

)∗

T−1

= T

(
1

2πi

∮

|z|=1−0

Rz(T2, 0)dz

)∗

T−1 = TP∗
dT

−1. (A.2.8)

From (A.2.8), it follows that the set of the eigenvalues of Pi and P∗
d is identical. In other

words,

tracePi = traceP∗
d = tracePd. (A.2.9)

Therefore in our case, already the projector Pd on the decreasing modes contains all the

information about decreasing, increasing and propagating modes thanks to the fact that

the system matrix Q is symplectic and using the projector sum identity (4.30). Explicitly,

Pi = TP∗
dT

−1, Pp = I−Pd −TP∗
dT

−1

and tracePp = 2(2N + 1)− 2 tracePd.
(A.2.10)
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A.3 Mirror-symmetric sublayers

Consider two sublayers x2 ∈ [a1, b1] and x2 ∈ [a2, b2] of the same length d = b1−a1 = b2−a2

and with the property that one is the reflection of the other:

Q(a1 + x2) = Q(b2 − x2), x2 ∈ [0, d]. (A.3.1)

The identity (A.2.1) with (A.3.1) for the reflected propagator gives us

M−1(b1, a1) = limn→∞

(
I− 1

n
Q

(
a1 + 0 d

n

))
...

(
I− 1

n
Q

(
a1 + n d

n

))
=

limn→∞

(
I− 1

n
Q

(
a2 + n d

n

))
...

(
I− 1

n
Q

(
a2 + 0 d

n

))
=

limn→∞

(
I+ S 1

n
Q

(
a2 + n d

n

)
S−1

)
...

(
I+ 1

n
SQ

(
a2 + 0 d

n

)
S−1

)
=

S limn→∞

(
I+ 1

n
Q

(
a2 + n d

n

))
...

(
I+ 1

n
Q

(
a2 + 0 d

n

))
S−1 = SM(b2, a2)S

−1,

(A.3.2)

where we have used that Q given in (2.3) satisfies

−Q = SQS−1 for S = S−1 =



I 0

0 −I


 . (A.3.3)

The identities (A.3.2) amount to

M−1(b1, a1) = SM(b2, a2)S
−1 (A.3.4)

which implies

M(a1, b1) = SM(b2, a2)S
−1 = S



M1 M2

M3 M4


S−1 =




M1 −M2

−M3 M4


 . (A.3.5)
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Using (A.3.5) with (A.2.6) we obtain the following identity for the direct and reflected

resolvents

Rα(b1, a1) = JR∗
α(b2, a2)J with J = J−1 = ST =



0 I

I 0


 . (A.3.6)

Consider two semi-infinite periodic profiles (−∞, a) (direct) and (b,∞) (reflected) and

denote the propagator through period and projectors for the reflected layer with symbol

.̃ Then for the direct and reflected projectors we have the following identities

P̃d =
1

2πi

∮

|z|=1−0

(z − M̃)−1dz = S
1

2πi

∮

|z|=1−0

(z −M−1)−1dzS−1 = SPiS
−1. (A.3.7)



Appendix B

Explicit formulas for propagator,

resolvent, and projector of the uniform

layer

This section demonstrates that the propagator M grows exponentially with growing size

of M while the resolvent R grows only linearly. Besides, the formulas obtained herein

will be used in Appendix C in the case, where 2D layer includes uniform sublayer(s) or a

half-space is uniform.

Consider the uniform layer with the constant stiffness µ and the constant density ρ

formally as periodic in x1. Then the system matrix has the following form

Q =




0 Q2

Q3 0


 with Q2 = µ−1I, Q3 = diag

−N6j6N
(µθj), θj = (2πj + k1)

2 − ω2ρ

µ
, (B.0.1)

where I is (2N + 1) × (2N + 1) identity matrix. The matrix Q admits another useful
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representation, namely,

Q = U diag
−N6j6N

(qj)U
−1, where qj =




0 µ−1

µθj 0


 and (B.0.2)

U = (unm)
2(2N+1)
n,m=1 , unm =





δn,m+1

2

, if n 6 2N + 1

δn−2N−1,m
2
, if n > 2N + 1

, (B.0.3)

where δpq denotes the Kronecker symbol for rational numbers p, q and diag(qj) is the

matrix with diagonal blocks qj . The propagator through this layer of the depth l is given

by

M = exp(lQ) = U diag
−N6j6N

(mj)U
−1 =



M1 M2

M3 M1


 with (B.0.4)

mj = exp(lqj) =




cosh l
√

θj
sinh l

√
θj

µ
√

θj

µ
√
θj sinh l

√
θj cosh l

√
θj


 and M1 = diag

−N6j6N
(cosh l

√
θj), (B.0.5)

M2 = diag
−N6j6N

(
sinh l

√
θj

µ
√

θj

)
, M3 = diag

−N6j6N
(µ
√
θj sinh l

√
θj). (B.0.6)

Note the exponential growth of the propagator matrix M components with the grow-

ing index j of the Fourier harmonic. Using the block inversion formula, we obtain the

following explicit form for the resolvent

R = (zI−M)−1 = U diag
−N6j6N

(rj)U
−1 =



R1 R2

R3 R1


 , (B.0.7)

where rj = (z −mj)
−1 =



r1j r2j

r3j r1j


 and (B.0.8)
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R1 = diag
−N6j6N

(r1j), r1j =





z−cos l
√

|θj |

z2−2z cos l
√

|θj |+1
, θj 6 0

zsechl
√

θj−1

(z2+1)sechl
√

θj−2z
, θj > 0

, (B.0.9)

R2 = diag
−N6j6N

(r2j), r2j =





sin l
√

|θj |

µ
√

|θj |(z2−2z cos l
√

|θj |+1)
, θj 6 0

tanh l
√

θj

µ
√

θj((z2+1)sechl
√

θj−2z)
, θj > 0

, (B.0.10)

R3 = diag
−N6j6N

(r3j), r3j =





µ
√

|θj | sin l
√

|θj |

z2−2z cos l
√

|θj |+1
, θj 6 0

µ
√

θj tanh l
√

θj

(z2+1)sechl
√

θj−2z
, θj > 0

. (B.0.11)

Therefore we see that the inversion of the resolvent block R1 is numerically stable, whereas

that of R2 and R3 is not. The reason for it is, in simple words, that the shift by z is not

involved in the numerators of R2 and R3. The components of the resolvent R can have

only linear growth for j → ∞. Finally, the projector P ≡ Pd on decreasing modes (see the

definition of gd in (C.2.1)) has the following explicit form

P = gd(Q) = U diag
−N6j6N

(pj)U
−1 =



P1 P2

P3 P1


 , where (B.0.12)

pj = gd(qj) =




µ−1 µ−1

√
θj −

√
θj






gd(

√
θj) 0

0 gd(−
√

θj)







µ
2

1

2
√

θj

µ
2

−1

2
√

θj


 =

=




µ−1 µ−1

√
θj −

√
θj






0 0

0 H(θj)







µ
2

1

2
√

θj

µ
2

−1

2
√

θj


 =

= H(θj)




1
2

−1

2µ
√

θj

−µ
√

θj

2
1
2


 and P1 = diag

−N6j6N

(
H(θj)

2

)
,

(B.0.13)
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P2 = diag
−N6j6N

(
−H(θj)

2µ
√

θj

)
, P3 = diag

−N6j6N

(
−H(θj)µ

√
θj

2

)
,

H(x) =





0, x 6 0

1, x > 0.

(B.0.14)



Appendix C

Options for calculation of the resolvent,

projector and propagator for decreasing

modes

C.1 Options for calculation of the resolvent

In general, the resolvent for the layer can be computed as a root of the Riccati equation

(3.16) by the standard numerical means such as the Runge-Kutta method.

However the calculation can be substantially simplified, if a considerable part of the

layer is uniform in the depth coordinate x2. Within a sublayer uniform in x2, the calcu-

lation of the resolvent reduces from solving the differential equation to taking a function

of the constant system matrix. Note that various object oriented numerical libraries (we

use e.g. Mtx Vec) include an implemented matrix function for a given matrix and a given

function. Moreover, the explicit formula for the resolvent is available, if the sublayer is

2D-uniform in x1 and x2. Therefore, the computation of the resolvent is most efficient,

if we can decompose the layer into sublayers some of which are either 2D-uniform or

depth-uniform or there are both. The aggregate resolvent of the layer is then calculated

109
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via the chain rule.

We start by discussing the computation of the resolvent for two particular cases of con-

stitutive sublayers: 2D-uniform (in x1 and x2) and depth-uniform (in x2). Thereafter, we

incorporate these methods into the calculation of the aggregate resolvent.

C.1.1 2D-uniform sublayer. The explicit formula

In this case, the resolvent is given by an explicit formula

R =



R1 R2

R3 R1


 with Ri = diag

−N6j6N
(rij), i = 1, 2, 3. (C.1.1)

Here the coefficients rij are given by (B.0.9)-(B.0.11) in the Appendix B. The calculation

can be further shortened in the following way. For a uniform sublayer, the wave equation

for each Fourier harmonic can be stated and solved independently. It means that we can

compute the 2 × 2 resolvents rj for each jth Fourier harmonic and then compose them

into an aggregate 2(2N +1)× 2(2N +1) resolvent R of the whole wave packet. Explicitly,

we have

R = U diag
−N6j6N

(rj)U
−1 with rj =



r1j r2j

r3j r1j


 , (C.1.2)

where the permutation matrix U is given by (B.0.3).

C.1.2 Depth-uniform sublayer. The function of system matrix

The system matrix Q here is constant and the resolvent R is given by

R = (αI− exp(lQ))−1 (C.1.3)
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with l denoting the thickness of the sublayer. We compute the formula (C.1.3) via the

function of a matrix defined by the scalar function of its eigenvalues. The function of a

matrix may be defined via the spectral decomposition. Given a constant diagonalizable

matrix

A = C diag
−N6i6N

(zi)C
−1

and a function f(z), f : C → C, we define a function f(A) of a matrix via

f(A) := C diag
−N6i6N

(f(zi))C
−1. (C.1.4)

For a diagonalizable system matrix Q, the eigenvalues λi of the resolvent (C.1.3) are given

by the eigenvalues zi of Q, that is λi = (α− elzi)−1. Computing them numerically, we can

avoid the instabilities for the case, when the values Re zi are relatively big. In stable terms,

the computational formula for the resolvent R has the form

R = f(Q) with f(z) =





(α− elz)−1, if Re z < 0,

e−lz(αe−lz − 1)−1, otherwise.

(C.1.5)

We find R via (C.1.5) for any Q, since the analytical function f can be extended to the

class of non-diagonalizable matrices Q. Note that numerical instabilities can arise for a

Q with multiple eigenvalues due to the instability of the eigenvalue algorithms in this

case. However this fact restricts rarely the practical implementation of (C.1.5), since the

multiple eigenvalues are seldom present on the (ω, k1)-plane and therefore practically not

involved in the numerical grid used for the calculation.

C.1.3 Multilayer. The chain rule

If we have a 2D- or depth-uniform sublayers alternating with the heterogeneous ones,

then we can take advantage of the simple computation for the uniform sublayers in the
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following way.

First, we decompose the unit cell into three possible types of horizontal sublayers ac-

cording to the uniformity criteria, namely, (i) 2D-uniform, (ii) depth-uniform, (iii) 2D-

heterogeneous. Then we compute the resolvent for every layer applying (C.1.2), (C.1.5)

or (3.16), correspondingly. Note that the number of operations needed for the calculation

of the layer resolvent via the three approaches differs substantially. The formula (C.1.2)

corresponds to O(N) operations for computing the coefficients of rj’s and putting them

into the matrix R, since U reduces to a permutation. In turn, (C.1.5) yields O(N3) opera-

tions for the square matrix manipulations. Finally, (3.16) needs NstepO(N3) operations for

the Runge-Kutta algorithm with Nstep steps.

Secondly, the aggregate resolvent of the plate is obtained from the layer resolvents via

a successive application of the resolvent chain rule (A.1.3). Note that if there are two

successive 2D-uniform layers, the chain rule (A.1.3) can be further simplified. In this

case, we can apply (A.1.3) instead of R(b, a) and R(c, b) directly to the corresponding 2×2

resolvents rj(b, a) and rj(c, b) of the Fourier harmonics given by R = U diag
−N6j6N

rjU
−1. The

aggregate resolvent has then the form

R(c, a) = U diag
−N6j6N

rj(c, a)U
−1. (C.1.6)

C.1.4 Examples of the calculation scheme

Let us exemplify the calculation steps for the layer resolvent basing on the procedure

detailed above. For the profile with rectangular inclusions depicted in Fig. C.1(a), the

resolvent Rl of the aggregate layer can be calculated in the most efficient way in three

steps as follows.

1. Rlayer1 for the depth-uniform layer 1 is obtained by the matrix function formula

(C.1.5).

2. Rlayer2 for 2D-uniform layer 2 is obtained by the explicit formula (C.1.2).
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layer-1

layer-2

(a)

layer-1

layer-2

layer-3

layer-4

(b)

Figure C.1: Two unit cells partitioned into layers.

3. Rl is obtained by the chain rule (A.1.3) from the both layer resolvents Rlayer1 and

Rlayer2.

For the profile with circular inclusions depicted in Fig. C.1(b), the plate resolvent can

be calculated in five steps.

1. Rlayer1 for 2D-uniform layer 1 is obtained by the explicit formula (C.1.2).

2. Rlayer2 for heterogeneous layer 2 is obtained by the Runge-Kutta algorithm for (3.16).

3. Rlayer3 for the layer 3 is obtained by a symmetry transformation (A.3.6) of Rlayer2,

since the layer 3 is the reflected layer 2.

4. Rlayer4 for 2D-uniform layer 4 is obtained by the explicit formula (C.1.2).

5. Rl is obtained by the chain rule (A.1.3) from all the four layer resolvents Rlayer1, Rlayer2, Rlayer3

and Rlayer4.

C.2 Options for calculation of the projector

There exist several options for obtaining the projector. We present them in the order of

increasing of computation time. By the substrate we mean either upper or lower half-

spaces.
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C.2.1 2D-uniform substrate. The explicit formula

If the substrate unit cell is uniform, then the projector matrix has an explicit form; see

(B.0.12)-(B.0.14) in Appendix B.

C.2.2 Depth-uniform substrate. The function of system matrix

In the case of the depth-independent unit cell of the substrate, the system matrix Qsub

for the substrate does not depend on the depth coordinate x2. So the projectors can be

obtained without using the resolvent of propagator through the unit cell but just as a

function of system matrix

Pd = gd(Qsub) with gd(z) =





1, if Re z < 0,

0, otherwise,

Pi = gi(Qsub) with gi(z) =





1, if Re z > 0,

0, otherwise.

(C.2.1)

To justify these formulas, we note that in the uniform case we have Msub = exp(T2Qsub),

where T2 is arbitrary, and so the eigenvalues qj of Msub are exponentials of eigenvalues zj

of Qsub. Hence the absolute value of the eigenvalue of Msub is less than 1 iff the real part

of corresponding eigenvalue of Qsub is less than 0.

C.2.3 2D-periodic substrate. The function of resolvent matrix

In this case, we implement, by means of the function f(Rsub) of the resolvent matrix, the

spectral projector definition (4.25) with (4.20) via the propagator eigenvalues:

Pdwww = www ⇔ www ∈ Ed (C.2.2)
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with

Ed := span{www : Msubwww = qwww, |q| < 1}. (C.2.3)

Hence the eigenvalues wj of Pd are given through the corresponding eigenvalues qj of the

propagator Msub as

wj(qj) =





1, if |qj| < 1,

0, otherwise.

(C.2.4)

Recalling that Msub is numerically unstable, it remains, for the sake of stability, to express

qj in terms of the eigenvalues λj of the resolvent Rsub. Assuming Rsub is diagonalizable,

we have

qj = z − λ−1
j . (C.2.5)

Identifying qj numerically, we have to avoid calculating sufficiently big values of qj , i.e.

small values of λj , which anyway give wj = 0 as (C.2.4) states. The key observation to do

so is

|λj| 6 (|z| + 1)−1 ⇒ |qj | > 1. (C.2.6)

This can be derived as follows. Observe that |λj| 6 (|z| + 1)−1 is equivalent to

|λj |−1 > |z| + 1. (C.2.7)

At the same time, (C.2.5) yields

|qj| > |λj|−1 − |z| (C.2.8)

due to the triangle inequality. Inserting (C.2.7) into (C.2.8) implies |qj | > 1. The statement

(C.2.6) is proved. Consequently, λj ∈ A with

A = {λ : |λ| 6 (|z|+ 1)−1} (C.2.9)
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directly yields wj = 0 and it suffices to verify the condition |qj| < 1 only for λj 6∈ A. On

these grounds, we recast (C.2.4) via λj in stable terms and obtain the following computa-

tional formula for the projector Pd:

Pd = fd(Rsub) with fd(λ) =





1, if |z − λ−1| < 1 with λ 6∈ A,

0, otherwise.

(C.2.10)

Similarly

Pi = fi(Rsub) with fi(λ) =





1, if λ ∈ A,

1, if |z − λ−1| > 1 with λ 6∈ A,

0, otherwise.

(C.2.11)

C.2.4 2D-periodic substrate. The sum of resolvents

Let us discuss an alternative computation of the projector as a sum of resolvents Rsub(z)

– based on the projector definition (4.31) via a path integral. This implementation can be

useful in particular for parallel programming. The matrix Pd defined as a path integral

(see (4.31))

Pd =
1

2πi

∮

|z|=1−0

Rzdz (C.2.12)

can be expressed in terms of the matrices Rsub(z) = (zI −Msub)
−1 with varying complex

parameter z. We have the approximation

Pd =
1

2πi

∮

|z|=1−ε

Rsub(z)dz ≈ (1− ε)

n

n∑

m=1

e2πi
m
n Rsub((1− ε)e2πi

m
n ) (C.2.13)
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for n sufficiently big and ε small enough. Here any matrix Rsub(z) with a varying z can

be obtained in terms of the matrix Rsub(z0) with a fixed z0 via the identity (A.1.4), namely,

Rsub(z) = Rsub(z0)(I− (z0 − z)Rsub(z0))
−1. (C.2.14)

Substitution of (C.2.14) in (C.2.13) gives a stable computational formula for the projector

Pd.

C.3 Calculation of the propagators for decreasing modes

The propagator Md ≡ Md(T2 + x2, x2) for decreasing modes in a 2D-periodic substrate

(see definition (6.26)) can be recasted as

Mdwwwj =





qjwwwj, |qj| < 1

0, elsewhere

, (C.3.1)

where wwwj are the eigenvectors composing the wave field ηηη(x2) and qj the eigenvalues of

the substrate propagator Msub(x2 + T2, x2). This gives the implementation of Md as a

matrix function of the corresponding resolvent Rz(T2 + x2, x2):

Md(T2+x2, x2) = hd(Rz(T2+x2, x2)) with hd(λ) =





z − λ−1, if |z − λ−1| < 1 with λ 6∈ A,

0, otherwise.

(C.3.2)

Here the set A is defined by (C.2.9). The derivation of the formula (C.3.2) is analogous

to the formula (C.2.10) for the implementation of the spectral projector Pd as a matrix

function of a resolvent in Appendix C.2.3. Note that the matrix functions hd in (C.3.2) and

fd in (C.2.10) are linked.

The propagator Mdop(0, T2) for the modes decreasing in the direction opposite to the di-
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rection of reference in a 2D-periodic substrate (see definition (6.27)) can be also calculated

via matrix function hd of the backward resolvent Rz(x2 − T2, x2) as

Mdop(x2 − T2, x2) = hd(Rz(x2 − T2, x2)) (C.3.3)

or even via the forward resolvent Rz(x2, x2 − T2) as

Mdop(x2 − T2, x2) = T

(
hd(Rz(x2, x2 − T2))

)∗

T−1, (C.3.4)

since we have, similarly to the identity (A.2.8) for the projectors Pi and Pd, the identity

for Mdop(x2 − T2, x2) and Md(x2, x2 − T2):

Mdop(x2 − T2, x2) =
1

2πi

∮

|z|=1−0

zRz(x2 − T2, x2)dz =
1

2πi

∮

|z|=1−0

zTR∗
z(x2, x2 − T2)T

−1dz

= T

(
1

2πi

∮

|z|=1−0

zR∗
z(x2, x2 − T2)dz

)
T−1 = T

(
− 1

2πi

∮

|z|=1−0

zRz(x2, x2 − T2)dz̄

)∗

T−1

= T

(
1

2πi

∮

|z|=1−0

zRz(x2, x2 − T2)dz

)∗

T−1 = TM∗
d(x2, x2 − T2)T

−1. (C.3.5)
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The spectrum of the propagating waves

calculated via resolvent

D.1 Dispersion equation

The projection of the propagating wave spectrum is given by the spectral projector Pp,

namely by tracePp. However at a fixed k2, the spectral projector gives no dispersion

data. The propagating wave spectrum at a fixed k1 or k2 can be given by the resolvent R.

We calculate k2 in terms of the eigenvalues λj , 1 6 j 6 2(2N + 1), of the resolvent

R(ω, k1) = (αI − M)−1 at a fixed (ω, k1). On the one hand, the eigenvalues qj , 1 6 j 6

2(2N + 1), of the propagator M(ω, k1) satisfy |qj| = 1 ensuring no decay in x2, that is,

qj = eik2T2 . (D.1.1)

Note that M(ω, k1) is considered with real k1 which ensures no decay in x1. On the other

hand,

qj = α− λ−1
j . (D.1.2)

Setting equal the both identities (D.1.1) and (D.1.2) gives the result (D.1.3) in terms of the

119



120 APPENDIX D. THE SPECTRUM OF THE PROPAGATING WAVES

appropriate resolvent eigenvalues λj, 1 6 j 6 2(2N + 1):

k2 =
1

iT2
Log(α− λ−1

j ) =
1

T2
Arg(α− λ−1

j ) with λj such that |α− λ−1
j | = 1. (D.1.3)

Here we use the definition of the complex logarithm Log as follows:

Log z = ln |z| + iArg z, Arg z ∈ (−π, π). (D.1.4)

D.2 Numerical implementation

We consider the reduced Brillouin zone given by the triangle with vertices (k1, k2) = (0, 0),

(π, 0) and (π, π). For the second edge k1 = π, k2 ∈ [0, π], we obtain the whole range of

k2 calculating it for every ω and a fixed k1 = π. We find k2 by (D.1.3) as a function of the

resolvent eigenvalues λj :

k2 = f(λj) with f(q) =





1
T2

Arg(α− λ−1), if |λ| > 0 and |α− λ−1| ≈ 1,

0, otherwise.

(D.2.1)

We calculate two other edges at the same time for every ω and k1. For k2 = 0 and each

k1 ∈ [0, π], we find all ω = ω(k1) such that (k2 =)f(ω(k1)) = 0. For each pair k1 = k2 ∈

[0, π], we find all ω(k1) such that (k2 =)f(ω(k1)) = k1.

D.3 Numerical examples

We display the spectra of the propagating waves for 2D periodic spaces in the reduced

Brillouin zone spanned in a triangle between (0, 0), (π, 0) and (π, π).

Consider an epoxy space with periodically distributed circular or square rods; see Figs.

D.1 (a) and (b). The geometrical parameters are T1 = 1 mm and T2 = 1.4 mm. For
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comparison, we display the spectrum for the uniform epoxy space considered formally

as periodic. This spectrum is given by folded dispersion branches; see Fig. D.1 (c).

We change the size, material and form of inclusions observing how it affects the stop

band pattern. The inclusions of different forms and materials, steel circular and silicium

square, but similar size (circular inclusions of radius r = 0.08 mm and square rods of

radius r = 0.1 mm), produce a similar perturbation of the spectrum; see Figs. D.1 (d)

and (e). The dispersion branches in this case are repulsed both at the edges (0, 0), (π, 0)

and (π, π) and inside the Brillouin zone giving local stop bands around the corresponding

frequencies. However if we increase the size of inclusions, e.g. we increase the radius r

of the silicium square rods from 0.1 to 0.2 mm, then the size of the local stop bands gets

bigger producing absolute stop bands. See e.g. the low-frequency stop band given by

repulsion of the first and second dispersion branches in Fig. D.1 (f).
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Figure D.1: 2D-periodic (half-)space with (a) steel circle and (b) silicium square inclusions.
Spectra for (c) uniform, i.e. r = 0, (d) r = 0.08 mm. Spectra for (b) with (e) r = 0.1 mm, (f)
r = 0.2 mm
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