
HAL Id: tel-01188690
https://theses.hal.science/tel-01188690v1

Submitted on 31 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmical and mathematical approaches of causal
graph dynamics

Simon Martiel

To cite this version:
Simon Martiel. Algorithmical and mathematical approaches of causal graph dynamics. Other [cs.OH].
Université Nice Sophia Antipolis, 2015. English. �NNT : 2015NICE4043�. �tel-01188690�

https://theses.hal.science/tel-01188690v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ NICE SOPHIA ANTIPOLIS

ECOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION ET DE LA COMMUNICATION

THÈSE

pour l’obtention du grade de

Docteur en Sciences

de l’Université Nice Sophia Antipolis

Mention: Informatique

présentée et soutenue par

Simon MARTIEL

Approches informatique et mathématique
des dynamiques causales de graphes

Thèse dirigée par Pablo ARRIGHI et Bruno MARTIN

soutenue le 6 juillet 2015

Jury :

M. Pablo ARRIGHI Université Aix-Marseille Directeur de thèse

M. Bruno MARTIN Université Nice Sophia Antipolis Directeur de thèse

M. Vincent DANOS CNRS Rapporteur

M. Emmanuel JEANDEL Université de Lorraine Rapporteur

M. Jarkko KARI University of Turku Rapporteur

M. Gilles DOWEK INRIA Examinateur

M. Jean-Louis GIAVITTO CNRS Examinateur

M. Eric GOLES Universidad Adolfo Ibáñez Examinateur

Abstract

English

Cellular Automata constitute one of the most established model of discrete
physical transformations that accounts for euclidean space. They implement
three fundamental symmetries of physics: causality, homogeneity and finite
density of information. Even though their origins lies in physics, they are
widely used to model spatially distributed computation (self-replicating ma-
chines, synchronization problems,...), as well as a great variety of multi-agents
phenomena (traffic jams, demographics,...). While being one of the most
studied model of distributed computation, their rigidity forbids any trivial
extension toward time-varying topology, which is a fundamental requirement
when it comes to modelling phenomena in biology, sociology or physics: for
instance when looking for a discrete formulation of general relativity. Causal
graph dynamics generalize cellular automata to arbitrary, bounded degree,
time-varying graphs. In this work, we generalize the fundamental structure
results of cellular automata for this type of transformations. We endow our
graphs with a compact metric space structure, and follow two approaches. An
axiomatic approach based on the notions of continuity and shift-invariance,
and a constructive approach, where a local rule is applied synchronously on
every vertex of the graph. Compactness allows us to show the equivalence of
these two definitions, extending the famous result of Curtis-Hedlund-Lyndons
theorem. Another physics-inspired symmetry is then added to the model,
namely reversibility. We answer the question whether the inverse of a causal
graph dynamics is itself a causal graph dynamics, and prove the existence
of a block decomposition of reversible causal graph dynamics, thereby gen-
eralizing two results of reversible cellular automata theory. We present the
construction of a family of intrinsically universal local rules, indexed by the
degree of the simulated rule, such that every local rule can be simulated by

1

2

one of these rules, with a constant delay, whilst preserving the space-time
structure of the computation. We also present the construction of a universal
construction machine, able to construct any instance of causal graph dynam-
ics. Finally, we provide a correspondence between graphs and ∆−complexes,
allowing us to define causal dynamics of discrete geometrical spaces.

Français

Le modèle des automates cellulaires constitue un des modèles le mieux établi
de physique discrète sur espace euclidien. Ils implantent trois symétries fon-
damentales de la physique: la causalité, l’homogénéité et la densité finie
de l’information. Bien que l’origine des automates cellulaires provienne de
la physique, leur utilisation est très répandue comme modèles de calcul
distribué dans l’espace (machines auto-réplicantes, problèmes de synchro-
nisation,...), ou bien comme modèles de systèmes multi-agents (congestion
du trafic routier, études démographiques,...). Bien qu’ils soient parmis les
modèles de calcul distribué les plus étudiés, la rigidité de leur structure in-
terdit toute extension triviale vers un modèle de topologie variant dans le
temps, qui se trouve être un prérequis fondamental à la modélisation de cer-
tains phénomènes biologiques, sociaux ou physiques, comme par exemple la
discrétisation de la relativité générale.

Les dynamiques causales de graphes généralisent les automates cellulaires
aux graphes arbitraires de degré borné et pouvant varier dans le temps. Dans
cette thèse, nous nous attacherons à généraliser certains des résultats fonda-
mentaux de la théorie des automates cellulaires. En munissant nos graphes
d’une métrique compacte, nous présenterons deux approches différentes du
modèle. Une première approche axiomatique basée sur les notions de conti-
nuité et d’invariance par translation, et une deuxième approche constructive,
où une règle locale est appliquée en parallèle et de manière synchrone sur
l’ensemble des sommets du graphe. La compacité nous permettra de prou-
ver l’équivalence entre ces deux définitions, étendant le célèbre résultat de
Curtis, Hedlund et Lyndon sur les automates cellulaires. Nous ajouterons
ensuite une symmétrie supplémentaire au modèle: la réversibilité. Nous
répondrons à la question de savoir si toute instance bijective de notre modèle
admet bien une dynamique inverse, et nous montrerons comment toute in-
stance réversible peut être décomposée en un circuit d’opérations locales et
réversibles. Nous présenterons la construction d’une famille de règles locales

3

intrinsèquement universelles, indexées selon le degré de la règle simulée, et
capables de simuler toute autre instance du modèle, tout en préservant la
structure spatio-temporelle du calcul. Ce résultat nous permettra ensuite
de décrire une machine de construction universelle capable de construire
n’importe quelle instance du modèle. Enfin nous étudierons une correspon-
dance entre graphes et ∆−complexes nous permettant ainsi de définir les
dynamiques causales d’espaces géométriques discrets.

4

Remerciements

Je voudrais commencer par remercier mes deux directeurs de thèse, Pablo
et Bruno. Pablo pour m’avoir fait découvrir le monde merveilleux de la
recherche, la richesse des interactions entre physique et informatique et surtout
pour avoir pris le temps de s’occuper d’un étudiant qui est arrivé dans son
bureau, il y a maintenant six ans, en lui demandant un sujet de stage en in-
formatique quantique. Bruno pour avoir accepté de m’encadrer sur un sujet
original, pour s’être prêté au jeu des dynamiques causales de graphes et pour
avoir pris le temps de relire ma thèse avec autant d’attention.

Je voudrais ensuite remercier les membres de l’équipe MC3: Enrico (pour
m’avoir concocté un Master de rêve), Sandrine (si Bruno est mon “père de
thèse”, Sandrine est sans aucun doute ma “mère de thèse”), Christophe (pour
les discussion de relativité, les jeux vidéos, et les groupes de travail sur les
grands ordinaux), mon co-bureau Pierre-Alain (pour les longues discussions
autout d’un thé), ainsi que ceux de passage: Émilie, Jonas et Fabien.

Je me dois de remercier mes trois rapporteurs qui ont accepté de relire
cette thèse: Vincent Danos, Emmanuel Jeandel et Jarkko Kari, ainsi que mes
examinateurs Jean-Louis Giavitto, Gilles Dowek et Éric Golès.

Je voudrais remercier toutes ces personnes qui ont croisé ma route au
cours de ces dernières années, et avec qui j’ai eu l’occasion de collaborer ou
simplement de discuter: Kevin Perrot, Simon Perdrix, Zizhu Wang, Vincent
Nesme, Eric Thierry, Pascal Vanier, Maxime Senot.

Enfin, je voudrais remercier tous ceux qui m’ont supporté pendant mes
études, en particulier les ex-lyonnais, Bruno, Guilhem, Florent, Étienne,
Alexis, ainsi que les niçois, Julien, Damien et Mug.

Et pour finir ceux qui me supportent ou m’ont supporté au quotidien,
ma famille, et surtout Elsa pour sa bravoure sans égale face à mon bordel
constant.

5

6

Contents

1 Introduction 9

2 Generalized cayley graphs 15
2.1 Brief overview. 16
2.2 Generalized Cayley Graphs . 18
2.3 Basic operations . 23
2.4 Topological properties . 28
2.5 Summary of the results . 30

3 Causal graph dynamics 33
3.1 Causal dynamics . 33
3.2 Localizable dynamics . 39
3.3 Equivalence theorem . 42
3.4 Properties . 47
3.5 Summary of results . 49

4 Reversible causal graph dynamics 53
4.1 Reversible causal graph dynamics 55
4.2 Block decomposition . 61
4.3 Lifting the curse of vertex-preservingness 70
4.4 Summary of results . 74

5 Intrinsic universality 75
5.1 Intrinsic simulation and universality 76
5.2 Preliminary results . 77
5.3 Construction of a family of universal rules 78
5.4 Building instances: Universal constructing machine 86
5.5 Summary of results and open problems 89

7

8 CONTENTS

6 Causal dynamics of discrete spaces 101
6.1 The 2−dimensional case . 102
6.2 Toward an n−dimensional generalization 112
6.3 Hurdles toward a definition of causal dynamics of discrete ge-

ometrical spaces . 115

7 Conclusion 117

Bibliography 119

A Adjacency sructures 129
A.1 Paths structures . 129
A.2 Paths as languages . 130
A.3 Graphs as languages . 132

Chapter 1

Introduction

Interactions between theoretical physics and computer science are often de-
scribed as unilateral. Either physicists require some algorithmic knowledge to
simulate some natural phenomenon, or computer scientists use different phys-
ical theories to design new computational models and study their properties.
It seems, however, that the interaction between those two fields could lead to
a more profound dialogue. It turns out that the current trend in theoretical
physics is to identify physical systems to the ’information’ they carry, and
not by the ’matter’ they are constituted of. In fact, this vision can be directly
traced back to the postulates of different physical theories. For instance, the
notion of entropy, present in thermodynamics, captures the notion of “quan-
tity of information” inside a closed physical system. There is a growing opin-
ion that physics will soon enter a ‘computational’ trend. Taking this view to
an extreme in this direction, one could imagine making the Gedankenexper-
iment that the universe is nothing but a large parallel computer, processing
bits of information rather than mechanical processes: this is the “digital
physics” paradigm. This vision was proposed by numerous great researchers,
such as Fredkin, Toffoli and Margolus [Fre92, FT82, Mar88, Mar84].

One of the most famous computation model born thanks to this approach
of physics is the model of cellular automata. This model, introduced by von
Neumann and Ulam in the forties, is the simplest discrete model captur-
ing three fundamental symmetries of physics: causality (information travels
with a bounded speed across space), homogeneity (the laws of physics are
the same everywhere, at every time) and bounded density of information
(a bounded volume of space cannot contain an unbounded amount of in-
formation). In their primary definition, cellular automata consist in arrays

9

10 CHAPTER 1. INTRODUCTION

of cells, each of them containing a state in a finite set. The arrays evolve
synchronously and in discrete time steps, the state of each cell being up-
dated according to the states of its neighbours. In a more computer science
oriented-vision, cellular automata can be seen as the synchronous applica-
tion of a local rule throughout the grid. Later, in 1969, Hedlund, together
with Curtis and Lyndon, gave a mathematical reality to the model by prov-
ing that cellular automata defined using local rules are, in fact, uniformly
continuous and shift-commuting transformations over a set of configurations.
This plurality of the formalisms places this model directly at the interface
between physics, mathematics and computer science. However, the rigidity
of the underlying space is often cited as a limitation of the model. Indeed,
while they are the perfect choice when considering dynamics on Euclidean
space, they fail to model dynamics over irregular topologies, like for instance
general discrete metric spaces, or arbitrary interaction agent networks. Cel-
lular automata have been generalized in many flavours. Some generalizations
explore the way a cellular automaton can act upon its set of configurations,
such as asynchronous cellular automata, while others try to generalize the
configurations space. For instance, it is possible to nicely generalize cellular
automata to act upon Cayley graphs. A Cayley graph is a graph representing
a finitely generated group: each vertex of the graph represents an element
of the group, and for each relation a · b = c where b is a generator, an edge
between vertices a and c is added, labelled with b at one end and b−1 at the
other. These graphs have the nice feature of being very regular: all vertices
have the same degree and are indistinguishable, making it easy to generalize
the notion of cellular automata acting upon them. Even though this general-
ization allows the definition of cellular automata acting upon a much relaxed
set of configuration, the underlying space is still regular and fixed in time.

However, there are many situations where the interaction of some agents
(for instance some particles, some computer process, or some biological agent)
according to some interactions networks, leads to a change in the network
itself. A good example would be a network composed of people and their
address books. The interaction network would change locally (e.g. you could
share your contacts with one of your friend), or maybe a new person could
enter the network. Another, more physical, example would the case of general
relativity. In this case, the network would represent space itself, with its
curvature. Some massive particle will then move across space along the path
dictated by its curvature. The motion of the particle will, in turn, modify
space curvature, thus modifying the underlying network. Modelling those

11

dynamics require a less restricted, time-varying interaction network. There
have been several approaches to generalize cellular automata not just to
Cayley graphs, but to arbitrary connected graphs of bounded degree, with,
sometimes, time-variation of the topology:

• With a fixed, arbitrary topology, in order to describe certain distributed
algorithms [PR02, DMG08, Gru10], or to generalize the Garden-of-
Eden theorem [Gro99, CSS04].

• Through the simulation environments of [GS08, VMPDJ11, KKBS05]
which offer the possibility of applying a local rewriting rule simultane-
ously in different non-conflicting places.

• Through concrete instances advocating the concept of cellular automata
extended to time-varying graphs as in [TKM09, KK07, KCN+10], some
of which are advanced algorithmic constructions [TKM02, TMKK05].

• Through amalgamated graph transformations [BFH87, Löw93] and par-
allel graph transformations [EL93, Tae96, Tae97], which work out rig-
orous ways to apply a local rewriting rule synchronously throughout a
graph.

• Through rule-based graph rewriting languages [DL04], or their stochas-
tic versions [DFF+12].

The approach of this thesis is different in the sense that it first generalizes
Cayley graphs and then applies the mathematical characterization of cellu-
lar automata as the set of shift-invariant continuous transformations in order
to generalize cellular automata, thus defining a new model: Causal Graph
Dynamics. Compared to the above cellular automata approaches, our model
extends the fundamental structure theorems about cellular automata to ar-
bitrary, connected, bounded degree, time-varying graphs. Compared with
the above mentioned graph rewriting papers, the contribution is to deduce
aspects of amalgamated/parallel graph transformations from the axiomatic
and topological properties of the global function.

The subject of this thesis is to study and develop this model, which
was first introduced by Arrighi and Dowek in [AD12]. In this first version,
the authors already achieved an extension of cellular automata to arbitrary,
bounded degree, time-varying graphs, although through a notion of conti-
nuity, with the same motivations. However, this work failed to endow the

12 CHAPTER 1. INTRODUCTION

configuration space with a compact metric, necessary to the formulation of a
similar result as Hedlund’s theorem, and the existence of such a metric was
left as an open question. It also leaves open whether causal graph dynamics
are (locally) computable. Indeed, in this early formalization of the model,
the graph structure used to define the configuration space of the cellular au-
tomata had identified vertices. The shift-invariance of a graph transformation
was then naturally translated as a weak commutation with renamings of the
vertices. While this allows a relatively compact definition for shift-invariance,
it does not prevent the graph transformation to hide possibly uncomputable
functions inside the identifiers of the vertices. In order to tackle this issue,
we had to define a new model of graph, where vertices have no identifier
whatsoever.
This thesis is organized as follows. Chapter 2 is dedicated to the construction
of this model of graph. The introduction of this new model of graph allows to
define our model of causal graph dynamics as graph transformations satisfy-
ing three properties: continuity, shift-invariance and boundedness. Alterna-
tively, these transformations can also be defined as the synchronous mapping
of a local rule on every vertex of a graph (see Figure 1.1).

These two definitions and their equivalence are presented in Chapter 3,
thus generalizing Hedlund’s theorem. We will then focus on an additional
symmetry almost omnipresent in physics: reversibility. Given the variety of
results in reversible cellular automata theory, it seems quite natural to study
this additional property when considering extension of cellular automata.
More particularly, the fact that causal graph dynamics can, for instance,
change the number of vertices of a graph brings novel questions. Another,
more physical, motivation is the design of a quantum version of causal graph
dynamics, which is yet to achieve. Several aspects of this symmetry are
addressed in chapter 4. First, the correspondence between invertibility and
reversibility is studied. Then, a decomposition of reversible causal graph
dynamics into bounded-depth circuit of reversible local gates is presented.
Another fructifying area of discrete computational models is the study of
their universality. Intrinsic universality, in particular, is a subject of choice.
This type of universality explores the capacity of the model to simulate it-
self efficiently, and has been intensively studied for cellular automata and
their various extensions. In the scope of studying a computational model
as a physical toy model, the quest of the simplest universal instance of the
model takes a completely new meaning, and could help us understand the
true structure of physical laws. Another, less common, form of universality

13

fF f

Figure 1.1: Representation of a graph transformation F induced by the
homogeneous and synchronous application of a local rule f on every vertex
of a graph.

is von Neumann’s notion of universal construction machine, where a machine
can read a description of any instance of the model and build this instance.
Chapter 5 provides a natural definition of intrinsic universality and describes
the construction of a family of intrinsically universal local rules, together with
a universal construction machine. A natural application of causal graph dy-
namics to physics is the modelling of discrete version of general relativity.
Even though this model seems adequate, in terms of structure of the dynam-
ics, to the study of this complicated field, the structure of the configuration
space is still too relaxed to be considered as a discrete geometrical space.
Chapter 6 explores a correspondence between generalized Cayley graphs and
∆-complexes which leads, in the two-dimensional case, to a definition of dis-
crete surface causal dynamics.

14 CHAPTER 1. INTRODUCTION

How to read this thesis?

Even though the origin of causal graph dynamics model lies in physics, I was
conducted to study very different aspects of this model, some of which have
nothing to do with constructing a discrete model able to embed the power
of relativity. Here are some guidelines to read this thesis. Although Chapter
2 and 3 are mandatory to get the basic definitions of the model, a reader
having no particular interest in the axiomatic approach of the model might
want to focus its reading on sections 2.1, and 3.2, which provides sufficient
background to understand the universal construction of Chapter 5. On the
other hand, a reader whose interest lies in the reversibility of CGD, and in
particular the relations between invertibility and reversibility, might want to
skip the details of the local rule construction, as it is not a requirement for
the results of Chapter 4.

Chapter 2

Generalized cayley graphs

Classical graphs. In the original work of Arrighi and Dowek [AD12], the
model of causal graph dynamics was based on what we could refer to as
“usual” graphs, with the added feature of using ports to name the neigh-
bours of a vertex and having a bound on the degree of the graph. This
model is sufficient to define cellular automata over time-varying graphs. In
order to define local rules over graphs, the authors needed to use identifiers
in vertices. The influence of those identifiers was then limited by enforcing
a weakened commutation relation between the cellular automaton and any
renaming of the vertices. Even though the intricacies of these identifiers was
sort of decoupled from the rest of the evolution, this still made it impossible
to prove that applying a causal graph dynamics to a finite graph was a com-
putable process, which seemed to be a desirable property. It became natural
to try to embed this absence of influence of the identifiers, by just removing
these identifiers right from the start in the graph model itself, rather than
“artificially” removing them when defining the cellular automata.

Cayley graphs. Cayley graphs are directed graphs, or digraphs, encoding
a finitely generated group. The Cayley graph of a group having a set of gen-
erators S = {s1, s

−1
1 , ..., sn, s

−1
n } is a graph whose vertices are the elements

of the group and whose edges are of the form (g, g · s) where s ∈ S and ·
denotes the group operation. The regularity of these graphs allows to eas-
ily generalize the classical definition of cellular automata by replacing the
n−dimensional Euclidean grid topology by a Cayley graph. One interesting
feature of these graphs is the fact that, even though their vertices are labelled
by an element of the group, one does not need this information to refer to a

15

16 CHAPTER 2. GENERALIZED CAYLEY GRAPHS

precise vertex. Indeed one could imagine referring to a vertex by using the
sequence of edges we need to traverse to reach it, starting from the identity.
To go even further, we might want to fully describe the target vertex, and
give the set of all paths starting from the identity and leading to it. In fact
this representation is equivalent to describe the group as a language over
he set of its generators S considered as a finite alphabet, together with an
equivalence relation induced by the group equality.

Generalized Cayley graphs. Now consider a “classical” graph where a
vertex is pointed. Even though it is not a Cayley graph, we can still describe
a vertex of this graph by using the set of paths starting from the pointed
vertex and leading to it. Using ports to number the adjacent edges of the
vertices, each path can be seen as a word over the alphabet of the ports and
the set of all paths as a language. We can still quotient this language by
the relation “lead to the same vertex”. The corresponding structure is not
necessarily a group, but can represent any “classical” graph. This structure
is what we call a generalized Cayley graph.

The content of this chapter is based on [AMN13] and [AM12], co-authored
with Pablo Arrighi and Vincent Nesme.

2.1 Brief overview.

This first section offers a brief overview of the model of generalized Cayley
graph (or pointed graph modulo) used in this thesis. Sections 2.2, 2.3 and 2.4
provide the formal definition of the graph model and its properties. Finally,
appendix A provides all the details and interpretations of this model.

Pointed graph modulo. Basically, the pointed graphs modulo are the
usual, connected, undirected, possibly infinite, bounded-degree graphs, but
with a few added twists:

• Each vertex has ports in a finite set π. A vertex and its port are written
u :a.

• An edge is an unordered pair {u :a, v :b}. I.e. edges are between ports of
vertices, rather than vertices themselves. Because the port of a vertex
can only appear in one edge, the degree of the graphs is bounded by
|π|. We shall consider connected graphs only.

2.1. BRIEF OVERVIEW. 17

1

2

3

4

:a
:b

:b
:c

:c

:b

:a

:b

(a)

1

2

3

4

:a
:b

:b
:c

:c

:b

:a

:b

(b)

:a

:b

:b

:c

:c

:b

:a

:b

(c)

Figure 2.1: The different types of graphs. (a) A graph. (b) A pointed graph.
(c) A generalized Cayley graph. In (c), vertices have no name and the formal
way of describing this graph structure is given in section A.

• There is a privileged pointed vertex playing the role of an origin, so
that any vertex can be referred to relative to the origin, via a sequence
of ports that lead to it.

• The graphs are considered modulo isomorphism, so that only the rela-
tive position of the vertices can matter.

• The vertices and edges are given labels taken in finite sets Σ and ∆,
so that they may carry an internal state just like the cells of a cellular
automaton.

• The labelling functions are partial, so that we may express our partial
knowledge about part of a graph. For instance it is common that a
local function may yield a vertex, its internal state, its neighbours, and
yet have no opinion about the internal state of those neighbours.

The set of all pointed graphs modulo (see Figure 2.1(c)) of ports π, vertex
labels Σ and edge labels ∆ is denoted XΣ,∆,π.

Paths and vertices. Since we are considering pointed graphs modulo iso-
morphism, vertices no longer have a unique identifier, which may seem im-
practical when it comes to designating a vertex. Two elements come to our
rescue. First, these graphs are pointed, thereby providing an origin. Sec-
ond, the vertices are connected through ports, so that each vertex can tell
between its different neighbours. It follows that any vertex of the graph can

18 CHAPTER 2. GENERALIZED CAYLEY GRAPHS

be designated by a sequence of ports in (π2)∗ that lead from the origin to
this vertex. The origin is designated by ε. For instance, say two vertices
designated by a path u and a path v, respectively. Suppose there is an edge
e = {u : a, v : b}. Then, v can be designated by the path u.ab, where “.”
stands for the word concatenation.

Operations. Given a pointed graph modulo X, Xr denotes the subdisk of
radius r around the pointer. The pointer of X can be moved along a path
u, leading to Y = Xu. The pointer can be moved back where it was before,
leading to X = Yu. We use the notation Xr

u for (Xu)
r i.e., first the pointer

is moved along u, then the subdisk of radius r is taken. Figure 2.2 describes
those two operations.

2.2 Generalized Cayley Graphs

The current section formalizes the notion of generalized Cayley graphs. Fun-
damental algebraic properties, in terms of languages and comparison with
Cayley graphs, are provided in Appendix A.

Notations. Let π be a finite set, Π = π2 denotes pairs of elements in π,
and V = P(Π∗) the set of languages over the alphabet Π. The operator ‘.’
represents the concatenation of words and ε the empty word, as usual.

Whilst generalized Cayley graphs will be up to isomorphism, we still need
to manipulate plain graphs, non-modulo, at different stages. The vertices
of these graphs (See Figure 2.1(a)) we consider in this work are uniquely
identified by a name u in V . (This particular choice of the universe of names
is actually irrelevant until Definition 8, where it becomes natural.) A vertex
u may also be labelled with a state σ(u) in Σ a finite set. Each vertex has
ports in the finite set π. A vertex u and its port a is denoted u :a.
An edge is an unordered pair {u : a, v : b}. Such an edge connects vertices u
and v; We shall consider connected graphs only. The port of a vertex can
only appear in one edge, so that the degree of the graphs is always bounded
by |π|. Edges may also be labelled with a state δ({u : a, v : b}) in ∆ a finite
set.

Definitions 1 to 4 are as in [AD12]. The first two are reminiscent of the many
papers seeking to generalize cellular automata to arbitrary, bounded degree,
fixed graphs [PR02, DMG08, Gru10, Gro99, CSS04, TKM09, KK07, TKM02,

2.2. GENERALIZED CAYLEY GRAPHS 19

(1a)
:a

:a :c

:a

:b

:b

:d

:a

:b

:a

:b

:c

:c

:b

:a

:c

(1b)
:a

:a :c

:a

:b

:b

:d

:a

(2a)

:a
:b

:c

:b

:b

:c

:a
:c

(2b)

:a
:b

:c

:b

:b

:c

:a
:c

(2c)

:a
:b

:c

:b

:b

:c

:a
:c

Figure 2.2: Operations over pointed graphs modulo. (1) From X to X0:
taking the subdisk of radius 0. In general the neighbours of radius r are
just those vertices which can be reached in r steps starting from the origin,
whereas the disk of radius r, written Xr, is the subgraph induced by the
neighbours of radius r + 1, with labellings restricted to the neighbours of
radius r and the edges between them. (2a) A pointed graph modulo X. (2b)
Xab the pointed graph modulo X shifted by ab. (2c) Xbc.ac the pointed graph
modulo X shifted by bc.ac, which also corresponds to the graph Xab shifted
by cb.ac. Shifting this last graph by cb.ac = ca.bc produces the graph (2b)
again.

TMKK05, BFH87, Löw93, EL93, Tae96, Tae97]. They are illustrated by
Figure 2.1(a).

Definition 1 (Graph). A graph G is given by

• An at most countable subset V (G) of V , whose elements are called
vertices.

• A finite set π, whose elements are called ports.

• A set E(G) of non-intersecting two element subsets of V (G) :π, whose
elements are called edges. In other words an edge e is of the form

20 CHAPTER 2. GENERALIZED CAYLEY GRAPHS

{u :a, v :b}, and ∀e, e′ ∈ E(G), e ∩ e′ 6= ∅⇒ e = e′.

The graph is assumed to be connected: for any two u, v ∈ V (G), there exists
v0, . . . , vn ∈ V (G), a0, b0 . . . , an−1, bn−1 ∈ π such that for all i ∈ {0 . . . n−1},
one has {vi :ai, vi+1 :bi} ∈ E(G) with v0 = u and vn = v.

Definition 2 (Labelled graph). A labelled graph is a triple (G, σ, δ), also
denoted simply G when it is unambiguous, where G is a graph, and σ and δ
respectively label the vertices and the edges of G:

• σ is a partial function from V (G) to a finite set Σ;

• δ is a partial function from E(G) to a finite set ∆.

The set of all graphs with ports π is written Gπ. The set of labelled graphs
with states Σ,∆ and ports π is written GΣ,∆,π. To ease notations, we some-
times write v ∈ G for v ∈ V (G).

In definition 2 the labelling functions are possibly partial, e.g. a vertex
may be potentially stateless. Allowing for this possibility is convenient to
describe local rules, which produce vertices and their relations to neighbour
vertices, without necessarily having an opinion on the states of the neighbour
vertices. A concrete example of this is given in Section 3.2 and Figure 3.4.

We now want to single out a vertex. Definition 3 is illustrated by Figure
2.1(b).

Definition 3 (Pointed graph). A pointed (labelled) graph is a pair (G, p)
with p ∈ G. The set of pointed graphs with ports π is written Pπ. The set of
pointed labelled graphs with states Σ,∆ and ports π is written PΣ,∆,π.

The idea is now to get rid of all the unnecessary information in these
graphs. Definition 4 of isomorphism formalizes the notion of vertex renaming
in a graph.

Definition 4 (Isomorphism). An isomorphism R is a function from Gπ to
Gπ which is specified by a bijection R(.) from V to V . The image of a graph
G under the isomorphism R is a graph RG whose set of vertices is R(V (G)),
and whose set of edges is {{R(u) : a,R(v) : b} | {u : a, v : b} ∈ E(G)}.
Similarly, the image of a pointed graph P = (G, p) is the pointed graph
RP = (RG,R(p)). When P and Q are isomorphic we write P ≈ Q, defining

2.2. GENERALIZED CAYLEY GRAPHS 21

an equivalence relation on the set of pointed graphs. The definition extends
to pointed labelled graphs.

Notice that pointed graph isomorphism renames the pointer in the same way
as it renames the vertex upon which it points; which effectively means that
the pointer does not move. Later we shall introduce a distinct kind of oper-
ation, which moves the pointer, not to be confused with this isomorphism.

When describing a graph, we do not need to specify the name or the identity
of the vertices in order to uniquely describe this graph. In definition 5, we
use the notion of isomorphism to get rid of all names in the graph.

Definition 5 (Generalized Cayley graphs). Let P be a pointed (labelled)

graph (G, p). The generalized Cayley graph X is P̃ the equivalence class of
P with respect to the equivalence relation ≈. The set of generalized Cayley
graphs with ports π is written Xπ. The set of labelled generalized Cayley
graphs with states Σ,∆ and ports π is written XΣ,∆,π.

These pointed graphs modulo will constitute the set of configurations of the
generalized cellular automata that we will consider in this work.

We will need a notion of path in a generalized Cayley graph:

Definition 6 (Path). Given a generalized Cayley graph X, we say that α ∈
Π∗ is a path of X if and only if there is a finite sequence α = (aibi)i∈{0,...,n−1}

of ports such that, starting from the pointer, it is possible to traverse the
graph according to this sequence. More formally, α is a path if and only if
there exists (G, p) ∈ X and there also exists v0, . . . , vn ∈ V (G) such that for
all i ∈ {0, . . . , n − 1}, one has {vi : ai, vi+1 : bi} ∈ E(G), with v0 = p and
αi = aibi. Notice that the existence of a path does not depend on the choice
of (G, p) ∈ X. The set of paths of X is denoted by L(X).

Notice that paths can be seen as words on the alphabet Π and thus come
with a natural operation ‘.’ of concatenation, a unit ε denoting the empty
path, and a notion of inverse path α which stands for mirror of path α. The
detailed algebraic structure of the set of paths L(X) of a generalized Cayley
graph X is described in Appendix A.

Two paths are equivalent if they lead to same vertex:

Definition 7 (Equivalence of paths). Given a generalized Cayley graph

22 CHAPTER 2. GENERALIZED CAYLEY GRAPHS

X, we define the equivalence of paths relation, denoted ≡X , on L(X) such
that for all paths α, α′ ∈ L(X), α ≡X α′ if and only if, starting from the
pointer, α and α′ lead to the same vertex of X. More formally, α ≡X α′ if
and only if there exists (G, p) ∈ X and v1, . . . , vn, v

′
1, . . . , v

′
n′ ∈ V (G) such that

for all i ∈ {0 . . . n− 1}, i′ ∈ {0 . . . n′ − 1}, one has {vi :ai, vi+1 : bi} ∈ E(G),
{v′i′ : a

′
i′ , v

′
i′+1 : b′i′} ∈ E(G), with v0 = p, v′0 = p, α = (aibi)i∈{0,...,n−1},

α′ = (a′i′b
′
i′)i∈{0,...,n′−1} and vn = vn′. We write α̃ for the equivalence class of

α with respect to ≡X .

For mainly technical reasons, it will often be useful to undo the modulo,
i.e. to obtain a canonical instance of a pointed graph modulo.

Definition 8 (Associated graph). Let X be a generalized Cayley graph.
Let G(X) be the graph such that:

• The set of vertices V (G(X)) is the set of equivalence classes of L(X);

• The edge {α̃ : a, β̃ : b} is in E(G(X)) if and only if α.ab ∈ L(X) and
α.ab ≡X β, for all α ∈ α̃ and β ∈ β̃.

We define the associated graph to be G(X).

Conventions. Appendix A proves that:

• a generalized Cayley graph X,

• its associated graph G(X)

• the algebraic structure 〈L(X),≡X〉

can be viewed as three presentations of the same mathematical object. It
further provides an axiomatization of these algebraic structures. Altogether,
this justifies the fact that each vertex of this mathematical object can be
designated by

• α̃ an equivalence class of L(X), i.e. the set of all paths leading to this
vertex starting from ε̃,

• or more directly by α an element of an equivalence class α̃ of X, i.e. a
particular path leading to this vertex starting from ε.

These two remarks lead to the following mathematical conventions, which
we adopt for convenience. From now on:

2.3. BASIC OPERATIONS 23

• α̃, α will no longer be distinguished. The latter notation will be given
the meaning of the former. We shall speak of a “vertex” α in V (X) (or
simply α ∈ X).

• It follows that ‘≡X ’ and ‘=’ will no longer be distinguished. The latter
notation will be given the meaning of the former. I.e. we shall speak
of “equality of vertices” α = β (when strictly speaking we just have
α̃ = β̃).

In any case, we will make sure that a rigorous meaning can always be recov-
ered by placing tildes back.

2.3 Basic operations

2.3.1 Operations on generalized Cayley graphs

For a pointed graph (G, p) non-modulo (see [AD12] for details):

• the neighbours of radius r are just those vertices which can be reached
in r steps starting from the pointer p;

• the disk of radius r, written Gr
p, is the subgraph induced by the neigh-

bours of radius r + 1, with labellings restricted to the neighbours of
radius r and the edges between them, and pointed at p.

Notice that the vertices of Gr
p continue to have the same names as they

used to have in G. For generalized Cayley graphs, on the other hand, the
analogous operation is:

Definition 9 (Disk). Let X ∈ XΣ,∆,π be a generalized Cayley graph and G

its associated graph. Let Xr be G̃r
ε. The generalized Cayley graph Xr ∈ XΣ,∆,π

is referred to as the disk of radius r of X. The set of disks of radius r with
states Σ,∆ and ports π is written Xr

Σ,∆,π.

A technical remark is that the vertices ofXr no longer have quite the same
names as they used to have in X. This is because, in a generalized Cayley
graph, vertices are designated by those paths that lead to them, starting from
the vertex ε, and there were many more such paths in X than there are in its
subgraphXr. Still, it is clear that there is a natural inclusion V (Xr) ⊆ V (X),
meaning that u ∈ Xr implies that there exists a unique u′ ∈ X such that

24 CHAPTER 2. GENERALIZED CAYLEY GRAPHS

ε̃

ãa

b̃b

b̃b.ac

c̃a

d̃a

d̃a.cb
:a

:a

:b

:b:a

:c

:c

:a

:d

:a

:b

:a:c

:b

:c

:b ε̃

ãa

b̃b

c̃a

d̃a

:a

:a

:b

:b

:c

:a

:d

:a

X X0

Figure 2.3: A generalized Cayley graph and its disk of radius 0. Notice that
the equivalence classes describing vertices in X0 are strict subsets of those in
X, even though their shortest representative is the same. For instance the
path ca.cb is in d̃a in X but is not a path in X0, and thus does not belong
to d̃a in X0.

u ⊆ u′. Thus, we will commonly say that a vertex of u ∈ Xr belongs to X,
even though technically we are referring to the corresponding vertex u′ of X.
Similarly, we will commonly say that a vertex of u′ ∈ X belongs to Xr when
we actually mean that there is a unique vertex u of Xr such that u ⊆ u′.

Definition 10 (Size). Let X ∈ XΣ,∆,π be a generalized Cayley graph. We
say that a vertex u ∈ X has size less or equal to r+1, and write |u| ≤ r+1,
if and only if u ∈ Xr. We denote V (Xr

π) =
⋃

X∈Xr
π
V (X).

It will help to have a notation for the graph where vertices are named rela-
tively to some other pointer vertex u.

Definition 11 (Shift). Let X ∈ XΣ,∆,π be a generalized Cayley graph and
G its associated graph. Consider u ∈ X or Xr for some r, and consider the
pointed graph (G, u), which is the same as (G, ε) but with a different pointer.

Let Xu be (̃G, u). The generalized Cayley graph Xu is referred to as X shifted
by u.

The composition of a shift, and then a restriction, applied on X, will simply
be written Xr

u. Whilst this is the analogous operation to Gr
u over pointed

graphs non-modulo, notice that the shift-by-u completely changes the names
of the vertices of Xr

u. As the naming has become relative to u, the disk Xr
u

2.3. BASIC OPERATIONS 25

holds no information about its prior location, u.
We may also want to designate a vertex v by those paths that lead to the
vertex u relative to ε, followed by those paths that lead to v relative to u. The
following definition of concatenation coincides with the one that is induced
by the concatenation of words belonging to the classes u and v:

Definition 12 (Concatenation). Let X ∈ Xπ be a generalized Cayley
graph and G its associated graph. Consider u ∈ X and v ∈ Xu or Xr

u

for some r. Let G′ be the associated graph of (Xu)v, R be an isomorphism
such that G′ = RG, and u.v be R−1(ε). The vertex u.v ∈ X is referred to as
u concatenated with v.

According to Definition 11, G′ and G are isomorphic. Moreover, the restric-
tion of R−1 to V (G′) is uniquely determined; hence definition 12 is sound.
It also helps to have a notation for the paths to ε relative to u.

Definition 13 (Inverse). Let X ∈ Xπ be a generalized Cayley graph and G
its associated graph. Consider u ∈ X. Let G′ be the associated graph of Xu

and R be an isomorphism such that G′ = RG, and u be R(ε). The vertex
u ∈ Xu is referred to as the inverse of u.

Notice the following easy facts: (Xu)v = Xu.v, u.u = ε. Notice also that the
isomorphism R such that G(Xu) = RG(X) maps v to u.v. This last property
suggests that we may define shifts upon graphs (non-modulo) as a certain
class of isomorphisms. In order to formalize this notion within the set of
graphs without appealing to graphs modulo, we will need that the vertices
of our graphs non-modulo be of a particular form.

2.3.2 Operations on graphs

In Section 2.2 we said that a graph G ∈ Gπ would have vertex names in
V . But now we shall allow vertices to have names in disjoint subsets of
V.S, with S = {ε, 1, 2, . . . , b} a finite set of suffixes. For instance, given
some generalized Cayley graph X, having vertices u, v in V (X), we may
build some graph G having vertices {v}, {u.1}, {u.3, v.1} . . . i.e. subsets of
V (X).S. Later, {u.1} will be interpreted as the vertex which is ‘the first
successor of u’, {u.3, v.1} as the vertex which is ‘the first successor of v and
the third successor of u’, {v} as the vertex which is ‘the continuation of v’.
Disjointness is just to keep things tidy: one cannot have a vertex which is the

26 CHAPTER 2. GENERALIZED CAYLEY GRAPHS

first successor of u ({u.1}, say) coexisting with another which is the ‘the first
successor of u and the second successor of v’ ({u.1, v.2}, say) — although
some other convention could have been used. Still, some form of suffixes
is necessary in order to provide just the little, extra naming space that is
needed in order to create new vertices. Figure 2.4 illustrates this restriction
over the vertices names.

{ab} {ab.1, ca.2} {ca.1}

{ab} {ab, ca.2} {ca.1}

a)

b)

Figure 2.4: a) Is a valid graph as all its vertices names are disjoint subsets.
However, b) is not valid as vertices names {ab} and {ab, ca.2} intersect.

Definition 14 (Shift isomorphism). Let X ∈ Xπ be a generalized Cayley
graph. Let G ∈ Gπ be a graph that has vertices that are disjoint subsets of
V (X).S or V (Xr).S for some r. Consider u ∈ X. Let R be the isomorphism
from V (X).S to V (Xu).S mapping v.z 7→ u.v.z, for any v ∈ V (X) or V (Xr),
z ∈ S. Extend this bijection pointwise to act over subsets of V (X).S, and
let u.G to be RG. The graph u.G has vertices that are disjoint subsets of
V (Xu).S, it is referred to as G shifted by u. The definition extends to labelled
graphs.

Definitions 15 and 16 are standard, see [BFH87, Löw93] and [AD12], although
here again the vertices of G are given names in disjoint subsets of V (X).S for
some X. Basically, we need a notion of union of graphs, and for this purpose
we need a notion of consistency between the operands of the union:

Definition 15 (Consistency). Let X ∈ Xπ be a generalized Cayley graph.
Let G be a labelled graph (G, σ, δ), and G′ be a labelled graph (G′, σ′, δ′), each
one having vertices that are pairwise disjoint subsets of V (X).S. The graphs
are said to be consistent if and only if:

(i) ∀x ∈ G ∀x′ ∈ G′ x ∩ x′ 6= ∅⇒ x = x′,

2.3. BASIC OPERATIONS 27

2 3

ε1

ba.ε

ba.1

:d :b

:a

:c

:b:d

:c

:a

:b:a

:b:a

ab.2 ab.3

ab.εab.1

ε

1

:d :b

:a

:c

:b:d

:c

:a

:b:a

:b:a

(1)

ab.

3 ε

12

ab.2

ab.1

:a :c

:b

:d

:c:a

:d

:b

:a :b

:a :b

ab.2 ab.3

ab.εab.1

ε

1

:d :b

:a

:c

:b:d

:c

:a

:b:a

:b:a

3 ε

12

ab.2 ab.3

ab.εab.1

:a :c

:b

:d

:c:a

:d

:b

:d :b

:a

:c

:b:d

:c

:a

:a :b

:a :b

(2)

Figure 2.5: Operations over graphs. (1) A shift of a graph on the vertex
ba. The structure of the graph is preserved, only the names of the vertices
are changed. The new vertex ε is the former vertex ba. (2) A graph union.
Here the two graphs on the left hand side intersect on vertices ε, 1, ab.1 and
ab.2. As the two are consistent (e.g. in both graph, vertices ε and ab.2 are
connected along an ab edge) their union can be computed, resulting in the
right hand side graph.

(ii) ∀x, y ∈ G ∀x′, y′ ∈ G′ ∀a, a′, b, b′ ∈ π
({x :a, y :b} ∈ E(G) ∧ {x′ :a′, y′ :b′} ∈ E(G′) ∧ x = x′ ∧ a = a′)⇒ (b = b′ ∧ y = y′),

(iii) ∀x, y ∈ G ∀x′, y′ ∈ G′ ∀a, b ∈ π x = x′ ⇒ δ({x :a, y :b}) = δ′({x′ :a, y′ :
b}) when both are defined,

(iv) ∀x ∈ G ∀x′ ∈ G′ x = x′ ⇒ σ(x) = σ′(x′) when both are defined.

They are said to be trivially consistent if and only if for all x ∈ G, x′ ∈ G′

we have x ∩ x′ = ∅.

The consistency conditions aim at making sure that both graphs “do not
disagree”. Indeed: (iv) means that “if G says that vertex x has label σ(x),
G′ should either agree or have no label for x”; (iii) means that “if G says

28 CHAPTER 2. GENERALIZED CAYLEY GRAPHS

that edge e has label δ(e), G′ should either agree or have no label for e”; (ii)
means that “if G says that starting from vertex x and following port a leads
to y via port b, G′ should either agree or have no edge on port x :a”.
Condition (i) is in the same spirit: it requires that G and G′, if they have a
vertex in common, then they must fully agree on its name. Remember that
vertices of G and G′ are disjoint subsets of V (X).S. If one wishes to take
the union of G and G′, one has to enforce that the vertex names will still be
disjoint subsets of V (X).S.
Trivial consistency arises when G and G′ have no vertex in common: thus,
they cannot disagree on any of the above.

Definition 16 (Union). Let X ∈ Xπ be a generalized Cayley graph. Let
G be a labelled graph (G, σ, δ), and G′ be a labelled graph (G′, σ′, δ′), each
one having vertices that are pairwise disjoint subsets of V (X).S. Whenever
they are consistent, their union is defined. The resulting graph G ∪G′ is the
labelled graph with vertices V (G) ∪ V (G′), edges E(G) ∪ E(G′), labels that
are the union of the labels of G and G′.

Finally, recall that for a pointed graph (G, p) non-modulo Gr
p, is the

subgraph induced by the neighbours of radius r+1, with labellings restricted
to the neighbours of radius r and the edges between them, and pointed at p
[AD12].

2.4 Topological properties

Having a well-defined notion of disks allows us to define a topology upon
XΣ,∆,π, which is the natural generalization of the well-studied Cantor metric
upon cellular automata configurations [Hed69].

Definition 17 (Gromov-Hausdorff-Cantor metrics). Consider the func-
tion

d : XΣ,∆,π × XΣ,∆,π −→ R+

(X, Y) 7→ d(X, Y) = 0 if X = Y

(X, Y) 7→ d(X, Y) = 1/2r otherwise

where r is the minimal radius such that Xr 6= Y r.

2.4. TOPOLOGICAL PROPERTIES 29

The function d(., .) is such that for ǫ > 0 we have (with r = ⌊− log2(ǫ)⌋):

d(X, Y) < ǫ⇔ Xr = Y r.

It defines an ultrametric distance.

Soundness:
[Nonnegativity, symmetry, identity of indiscernibles] are obvious.
[Equivalence]

d(X, Y) < ǫ⇔ d(X, Y) = 1/2k with k ∈ N ∧ 1/2k < ǫ

⇔ k = min{r ∈ N | Xr 6= Y r} ∧ 1/2k < ǫ

⇔r=k−1 Xr = Y r with r ∈ N ∧ 1/2r+1 < ǫ

⇔ Xr = Y r with r = ⌊− log2(ǫ)⌋.

[Ultrametricity] Consider k such that 1/2k = d(X,Z) and l such that
1/2l = d(X, Y). By definition of the metric X,Z differ only after index k
and X, Y differ only after index l. Suppose k ≤ l so that Y, Z differ only
after index k. But then d(Y, Z) = 1/2k which is d(X,Z).
[Triangle inequality] is obvious from the ultrametricity.

The fact that generalized Cayley graphs are pointed graphs modulo, i.e. the
fact that they have no “vertex name degree of freedom” is key to proving
the following property. Indeed, compactness crucially relies on the set be-
ing “finite-branching”, meaning that the set of possible generalized Cayley
graphs, as one progressively enlarges the radius of a disk, remains finite. This
does not hold for usual graphs.

Lemma 1 (Compactness). (XΣ,∆,π, d) is a compact metric space, i.e. ev-
ery sequence admits a converging subsequence.

Proof. This is essentially König’s Lemma. Let us consider an infinite se-
quence of graphs (X(n))n∈N. Because Σ and ∆ are finite, and there is an
infinity of elements of (X(n)), there must exist a graph of radius zero X0

such that there is an infinity of elements of (X(n)) fulfilling X(n)0 = X0.
Choose one of them to be X(n0), i.e. X(n0)

0 = X0. Now iterate: because
the degree of the graph is bounded by |π|, and because Σ and ∆ are finite but
there is an infinity of elements of (X(n)) having the above property, there
must exist a pointed graph of radius one X1 such that (X1)0 = X0 and such

30 CHAPTER 2. GENERALIZED CAYLEY GRAPHS

that there is an infinity of elements of (X(n)) having X(n)1 = X1. Choose
one of them as X(n1), i.e. X(n1)

1 = X1. Etc. The limit is the unique graph
X ′ having disks X ′k = Xk for all k.

Recall the difference in quantifiers between the continuity of a function F
over a metric space (X, d):

∀X ∈ X ∀ǫ > 0 ∃η > 0 ∀Y ∈ X, d(X, Y) < η ⇒ d(F (X), F (Y)) < ǫ,

and its uniform continuity:

∀ǫ > 0 ∃η > 0 ∀X, Y ∈ X, d(X, Y) < η ⇒ d(F (X), F (Y)) < ǫ.

Uniform continuity is the physically relevant notion, as it captures the fact
that F does not propagate information too fast. In a compact setting, it is
equivalent to simple continuity, which is easier to check and is the mathemat-
ically standard notion. This is the content of Heine’s Theorem, a well-known
result in general topology [FAP90]: given two metric spaces X and Y and
F : X −→ Y continuous, if X is compact, then F is uniformly continuous.

The implications of these topological notions for cellular automata were
first studied in [Hed69], with self-contained elementary proofs available in
[Kar11]. For cellular automata over Cayley graphs a complete reference is
[CSC10]. For causal graph dynamics [AD12], these implications had to be
reproven by hand, due to the lack of a clear topology in the set of graphs that
was considered. Here we are able rely on the topology of generalized Cayley
graphs and reuse Heine’s theorem out-of-the-box, which makes the setting of
generalized Cayley graphs a very attractive one in order to generalize cellular
automata.

2.5 Summary of the results

We constructed a model graph, generalized Cayley graphs, having the fol-
lowing properties:

• neighbours of vertices are numbered, with numbering in a finite set π,
hence bounding the degree of the graph,

• a particular, pointed, vertex plays the role of origin in the graph,

• vertices are named relatively to this origin.

2.5. SUMMARY OF THE RESULTS 31

We defined several operations over these graphs. In particular, we defined a
notion of shift, which consists in moving the origin along a given path in the
graph, and a notion of disk. We also endowed the set of generalized Cayley
graphs with a compact metric, allowing us to define uniformly continuous
transformations over this set.

32 CHAPTER 2. GENERALIZED CAYLEY GRAPHS

Chapter 3

Causal graph dynamics

Generalizing cellular automata. Now that our configuration space is well
defined, we will present our definition of cellular automata over generalized
Cayley graphs, namely causal graph dynamics. The main challenge here is
to preserve the two definitions of “classical” cellular automata, giving them
legitimacy as both physics toy-models and computational models, and to
prove their equivalence.

The first two sections of this chapter give two alternative definitions of
our model: section 3.1 is based on the notions of causality and homogeneity,
while section 3.2 is based on the notion of local rule. Finally, section 3.3
provides a proof of the equivalence between these two definitions.

The content of this chapter is based on [AMN13] and [AM12], co-authored
with Pablo Arrighi and Vincent Nesme.

3.1 Causal dynamics

The notion of causality extends the known mathematical definition of cellular
automata over grids and Cayley graphs. This extension will have two main
features: not only the graphs become arbitrary, but they can also vary in
time.

In order to define these causal dynamics, we will need to define three
properties over graph transformations. The first two properties, continuity
and shift-invariance, are very similar to their equivalent in CA theory, even
though their expression is less immediate due to the complexity of the config-
uration set. The last property, boundedness, is here to prevent our dynamics

33

34 CHAPTER 3. CAUSAL GRAPH DYNAMICS

to locally create an infinite number of new vertices.
The main difficulty we encountered when elaborating an axiomatic def-

inition of causality from XΣ,∆,π to XΣ,∆,π (the set of generalized Cayley
graphs), was the need to establish a correspondence between the vertices
of X ∈ XΣ,∆,π, and those of its image by a dynamics F , F (X). Indeed,
on the one hand it is important to know that a given u ∈ X has become
u′ ∈ F (X), e.g. in order to express the shift-invariance F (Xu) = F (X)u′ .
But on the other hand since u′ is named relative to ε, its determination
requires a global knowledge of X.

The following analogy provides a useful way of tackling this issue. Say
that we were able to place a white stone on the vertex u ∈ X that we wish
to follow across the application of the dynamics F . Later, by observing that
the white stone is found at u′ ∈ F (X), we would be able to conclude that u
has become u′. This way of grasping the correspondence between an image
vertex and its antecedent vertex is a local, operational notion of an observer
moving across the dynamics.

Definition 18 (Dynamics). A dynamics (F,R•) is given by

• a function F : XΣ,∆,π → XΣ,∆,π;

• a map R•, with R• : X 7→ RX and RX : V (X)→ V (F (X)).

For all X, the function RX can be pointwise extended to sets, i.e. RX :
P(V (X))→ P(V (F (X))) maps S to RX(S) = {RX(u) | u ∈ S}.

The intuition is thatRX indicates which vertices {u′, v′, · · · } = RX({u, v, · · · }) ⊆
V (F (X)) will end up being marked as a consequence of {u, v, · · · } ⊆ V (X)
being marked. Now, clearly, the set {(X,P(V (X))) | X ∈ XΣ,∆,π} is iso-
morphic to XΣ′,∆,π with Σ′ = Σ × {0, 1}. Hence, we can define the function
F ′ that maps (X,S) ∼= X ′ ∈ XΣ′,∆,π to (F (X), RX(S)) ∼= F ′(X ′) ∈ XΣ′,∆,π,
and think of a dynamics as just this function F ′ : XΣ′,∆,π → XΣ′,∆,π. This
alternative formalism will turn out to be very useful.

Definition 19 (Shift-invariance). A dynamics (F,R•) is said to be shift-
invariant if and only if for every X and u ∈ X, v ∈ Xu,

• F (Xu) = F (X)RX(u)

• RX(u.v) = RX(u).RXu
(v).

3.1. CAUSAL DYNAMICS 35

The second condition expresses the shift-invariance of R•. Notice that
RX(ε) = RX(ε).RX(ε); hence RX(ε) = ε.
In the F ′ : XΣ′,∆,π → XΣ′,∆,π formalism, the two above conditions are equiv-
alent to just one: F ′(Xu) = F ′(X)RX(u).

Definition 20 (Continuity). A dynamics (F,R•) is said to be continuous
if and only if:

• F : XΣ,∆,π → XΣ,∆,π is continuous,

• For all X, for all integer m, there exists an integer n such that for
all X ′, X ′n = Xn implies domRm

X′ ⊆ V (X ′n), domRm
X ⊆ V (Xn) and

Rm
X′ = Rm

X .

where Rm
X denotes the partial map obtained as the restriction of RX to the

codomain F (X)m, using the natural inclusion of F (X)m into F (X).

The second condition expresses the continuity of R•. It can be reinforced
into uniform continuity: for all m, there exists n such that for all X, X ′,
X ′n = Xn implies Rm

X′ = Rm
X .

Indeed, in the F ′ : XΣ′,∆,π → XΣ′,∆,π formalism, the two above conditions are
equivalent to just one: F ′ continuous. But since continuity implies uniform
continuity upon the compact space XΣ′,∆,π, it follows that F ′ is uniformly
continuous, and thus the reinforced second condition.
We need one third, last condition:

Definition 21 (Boundedness). A dynamics (F,R•) from XΣ,∆,π to XΣ,∆,π

is said to be bounded if and only if there exists a bound b such that for all
X, for all w′ ∈ F (X), there exists u′ ∈ imRX and v′ ∈ F (X)bu′ such that
w′ = u′.v′.

With the help of these three conditions, we can state our main definition:

Definition 22 (Causal dynamics). A dynamics is causal if it is shift-
invariant, continuous and bounded.

Example: The inflating grid. An example of causal dynamics is the in-
flating grid dynamics illustrated in Figure 3.1. In the inflating grid dynamics
each vertex gives birth to four distinct vertices, such that the structure of
the initial graph is preserved, but inflated. The graph has maximal degree

36 CHAPTER 3. CAUSAL GRAPH DYNAMICS

4, and the set of ports is π = {a, b, c, d}, vertices and edges are unlabelled.
For this dynamics, the R• operator is defined as follows:

RX(u0 · u1 · · · · · un) = R(u0) ·R(u1) · · · · ·R(un)

where R is the function acting on letters in π2 described in the following
table:

u ∈ π2 R(u)
aa aa.db
ab ab.db.ac
ac ac.ac
ad ad.bd
ba bd.ba.db
bb bd.bb.db.ac
bc bd.bc.ac
bd bd.bd
ca ca.ca
cb ca.cb.db
cc ca.cc.db.ac
cd ca.cd.ac
da da
db db.db
dc dc.db.ac
dd dd.ac

For instance, if two vertices are sep-
arated by a single edge cb in X,
then moving the pointer from the
first one to the second one will re-
sult in moving the pointer along the
path R(cb) = ca.cb.db in F (X).

Lemma 2 (Bounded inflation). Consider a causal dynamics F from XΣ,∆,π

to XΣ,∆,π. There exists a bound b such that for all X and u ∈ Xr, we have
|RX(u)| ≤ (r + 1)b.

Proof. Let ac ∈ Π, and let E the subset of XΣ,∆,π of those X such that
ac ∈ X. E is closed — any sequence of elements of E converging in XΣ,∆,π

converges in E — and XΣ,∆,π is compact, therefore E is compact. By con-
tinuity, the function X 7→ |RX(ac)| is continuous from E to N; since E is
compact, it must be bounded. The result then follows from the triangle
inequality and shift-invariance.

3.1. CAUSAL DYNAMICS 37

:a

:d
:c

:b

:a

:c

:c

:a

:d:b :b :d

Figure 3.1: The inflating grid dynamics. Each vertex splits into 4 vertices.
The structure of the grid is preserved. For this precise graph, all edges are
connected to ports as stipulated on the pointed vertex (port :a on top, :b on
the right, :c on the bottom and :d on the left).

38 CHAPTER 3. CAUSAL GRAPH DYNAMICS

:c :d

:b

:c

:a

:b

:c

:a

X

F (X)

RX

Figure 3.2: To each original vertex of X, RX associates a vertex of F (X)
within the square of four it creates. More precisely, it is mapped to that of
the four vertices whose ports a and d get out of the square.

3.2. LOCALIZABLE DYNAMICS 39

3.2 Localizable dynamics

The notion of localizability of a dynamics F captures exactly the same idea
as the constructive definition of a cellular automata, namely that F arises
as a single local rule f applied synchronously and homogeneously across the
input graph.
The general idea is that the local rule f looks at a portion of the generalized
Cayley graph X (a disk Xr) and produces a piece of graph G = f(Xr).
The same is done synchronously at every location u ∈ X producing pieces of
graph G′ = f(Xr

u). The produced pieces must be consistent (see Subsection
2.3.2) so that we take their union. Their union is a graph, but taking its
modulo leads to a generalized Cayley graph F (X).

We now formalize this idea.
First, we must make sure that a local rule is an object that adopts the same
naming conventions for vertices as those of the basic graph operations of
Subsection 2.3.2.

Definition 23 (Dynamics non-modulo). A function f from XΣ,∆,π to
GΣ,∆,π is said to be a dynamics if and only if for all X the vertices of f(X)
are disjoint subsets of V (X).S, and ε ∈ f(X).

Intuitively, the integer z ∈ S stands for the ‘successor number z’. Hence
the vertices designated by {1}, {2} · · · are successors of the vertex ε, whereas
{ε} is its ‘continuation’, i.e. its direct descendant. The vertices designated
by {ab.1}, {ab.2} · · · are successors of its neighbour ab ∈ Xr. A vertex named
{1, ab.3} is understood to be both the first successor of vertex ε and the third
successor of vertex ab. Recall also that ε, just like ab, are not just words but
entire equivalence classes of these words, i.e. elements of V (X).

Next, we disallow local rules that would suddenly produce an infinite graph.

Definition 24 (Boundedness non-modulo). A function f from Xr
Σ,∆,π

to GΣ,∆,π is said to be bounded if and only if for all X, the graph f(X) is
finite.

Finally, we make sure that the different pieces of graphs that are produced
by the local rule are consistent with one another.

Definition 25 (Local rule). A function f from XΣ,∆,π to GΣ,∆,π is a local
rule if and only if it is a bounded dynamics and

40 CHAPTER 3. CAUSAL GRAPH DYNAMICS

• For any disk Xr+1 and any u ∈ X0 we have that f(Xr) and u.f(Xr
u)

are non-trivially consistent.

• For any disk X3r+2 and any u ∈ X2r+1 we have that f(Xr) and u.f(Xr
u)

are consistent.

It is clear that we do not need to formulate any consistency condition
beyond u ∈ X2r+1, because f(Xr) and u.f(Xr

u) then become trivially con-
sistent, as they share nothing in common, see Figure 3.3. The only subtlety
in Definition 25 is to impose that within u ∈ X0, the produced pieces of
graphs f(Xr) and u.f(Xr

u) be non-trivially consistent, i.e. consistent and
overlapping (see Figure 3.3). The point here is to enforce the connectedness
of the union of the pieces of graphs via a local, syntactic restriction. To illus-

ε

w
Xr

> 2r + 1

r

u

1

Xr
u

Xr+1

v

Xr
v

≤ 2r + 1

X3r+1

Figure 3.3: The consistency conditions for a local rule. The drawing rep-
resents disks of a generalized Cayley graph X upon which a local rule f of
radius r will be applied. f(Xr) and u.f(Xr

u) have to be non-trivially consis-
tent since ε and u are at distance 1. f(Xr) and v.f(Xr

v) have to be consistent
but their intersection is allowed to be empty. f(Xr) and w.f(Xr

w) will be
trivially consistent as they are to far to interact in one time step. The disk
Xr+1 is large enough to check all the non-trivial consistency conditions, as
it contains first neighbours and their r-disks. The disk X3r+1 is enough to
check all the consistency conditions, as it contains all the 2r + 1 neighbours
and their r-disks.

3.2. LOCALIZABLE DYNAMICS 41

trate the concept of local rule, we will now describe a local rule implementing
the inflating grid dynamics. The local rule is of radius zero: it “sees” the
neighbour vertices and nothing more. In the standard case the local rule is
applied on a vertex surrounded by four neighbours. It then generates a graph
of twelve vertices, each with particular names (see Figure 3.4). In particular
cases, when less than four neighbours are present, the rule generates a graph
of 10, 8, 6 or 4 vertices, each with particular names (see Figure 3.5). The
local rule is not exhaustively described here, since there exists 625 different
neighbourhoods of radius 0. In any case, all generated vertex names are care-
fully chosen, so that when taking the union of all the generated subgraphs,
the name collisions lead to the desired identification of vertices (see Figure
3.6).

:b :a

:d:b

:a

:c

:c

:d

ε 1

23

ac.3 ac.2

ba.1

ba.ε

cd.ε cd.3

db.2

db.1

:a

:c

:b :d

:a

:c

:b :a

:c

:a
:b :a

:c

:d

:d:b

:a

:c

:c

:d

:d:b

:d:b

Figure 3.4: Standard case of the inflating grid local rule. The left-hand-side
of the rule is a generalized Cayley graph of form X0

u (a disk of radius 0). The
right-hand-side is a graph whose vertex names are subsets of V (X0

u).S. Here
they are just singletons, curly brackets are dropped: e.g. we wrote ac.3 for
{ac.3}, which should be understood as “the third successor of my neighbour
on edge ac”.

Definition 26 (Localizable function). A function F from XΣ,∆,π to XΣ,∆,π

is said to be localizable if and only if there exists a radius r and a local rule
f from Xr

Σ,∆,π to GΣ,∆,π such that for all X, F (X) is given by the equivalence

42 CHAPTER 3. CAUSAL GRAPH DYNAMICS

:d:b

:a

:c

ε 1

23

ac.3 ac.2

db.2

db.1

:a

:c

:b :d

:a

:c

:c

:a

:d:b

:a

:c

:d:b

:d:b

Figure 3.5: A particular case of the inflating grid local rule.

class modulo isomorphism, of the pointed graph

⋃

u∈X

u.f(Xr
u)

with ε taken as the pointer.

3.3 Equivalence theorem

The following theorem shows that the constructive definition (localizable
functions) is in fact equivalent to the mathematical, axiomatic definition
(causal dynamics).

Theorem 1 (Causal is equivalent to localizable). Let F be a function
from XΣ,∆,π to XΣ,∆,π. The function F is localizable if and only if there exists
R• such that (F,R•) is a causal dynamics.

Proof. [Loc.⇒Caus.] Let F : XΣ,∆,π → XΣ,∆,π be a localizable dynamics
with local rule f from Xr

Σ,∆,π to GΣ,∆,π. F (X) is the equivalence class, with
ε taken as the pointer vertex, of the graph H(X) =

⋃
u.f(Xr

u).

[Dynamics] Using the dynamicity of the local rule f , for all Xr we have
ε ∈ f(Xr). Therefore, for all u ∈ X, we have u ∈ u.f(Xr) and thus
u ∈ H(X). Let R be an isomorphism such that G(F (X)) = RH(X). Let

3.3. EQUIVALENCE THEOREM 43

u ∈ V (X), we define RX(u) to be R(u′), where u′ is the vertex of H(X)

that contains u in its name. Notice that ˜(H(X), u) = ˜(RXH(X), RX(u)) =
˜(G(F (X)), RX(u)) = F (X)RX(u).

[Translation-invariance] Take u ∈ X. We have H(Xu) =
⋃

v.f(Xr
u.v).

This is equal to H(Xu) = u.
⋃

u.v.f(Xr
u.v), which in turn is equal to u.H(X).

Next, we have that F (Xu) = ˜(H(Xu), ε) = ˜(u.H(X), u.u) = ˜(H(X), u) =
F (X)RX(u). It follows that F (Xu) = F (X)RX(u), and soG(F (Xu)) = RX(u).G(F (X)).
We have therefore

G(F (X)) = RX(u).G(F (Xu)) = RX(u).RXu
H(Xu) = RX(u).RXu

u.H(X).

But since the relation G(F (X)) = RH(X) defines RX , we have proven that
for all u ∈ X, RX = (RX(u).RXu

u.). It follows that, for all u.v ∈ X,
RX(u.v) = RX(u).RXu

(v).

[Boundedness] for all X, for all w′ ∈ F (X), consider w ∈ H(X) such that
w′ = R(w) when G(F (X)) = RH(X), and u ∈ X such that w ∈ u.f(Xr

u).
Since ε ∈ f(Xr

u), we have u ∈ u.f(Xr
u). Since f is bounded, w lies at most

at a certain distance b of u in H(X). Since G(F (X) = RH(X), w′ lies at
most at a certain distance b of u′ = R(u) = RX(u) in F (X).

[Continuity] The following is illustrated in Figure 3.7. Let m ∈ N. We must
show that there exists an integer n such that F (X)m = H̃(X)mε is determined
by Xn.
Consider a sequence v0 = ε, v1, · · · , vm+1 of vertices of H(X) such that for
all i ∈ {0, · · · ,m} there exists ei = (vi : ai, vi+1 : bi+1) in E(H(X)). For such
an ei to exist, and according to Definitions 15 and 16, it must appear in some
ui.f(X

r
ui
). Moreover if δ(ei) is defined, it must be defined in some ui.f(X

r
ui
).

Consider u0, u1, · · · , um a sequence of vertices of X such that this is the case.
Also, since vi+1 is a subset of V (X).S, there exists wi ∈ X, zi ∈ S such that
wi.zi ∈ vi. Again consider w0 = ε, w1, · · · , wm+1 a sequence of vertices of X
such that this is the case.
Since ei is in ui.f(Xui

), it follows that vi and vi+1 are in ui.f(Xui
). This en-

tails that vi and vi+1 are subsets of ui.V (Xui
).S, thus in particular wi, wi+1 ∈

ui.V (Xui
). Therefore we have both wi+1 ∈ ui.Xui

and wi+1 ∈ ui+1.Xui+1
.

As a consequence ui and ui+1 lie at distance 2(r + 1) in X, and it fol-
lows that

⋃
i=0···m ui.X

r
ui
⊆ X2(m+1)(r+1)−1. Hence X2(m+1)(r+1)−1 determines

44 CHAPTER 3. CAUSAL GRAPH DYNAMICS

E(H(X)mε) and their internal states.
For σ(vi) to be defined, there must exists xi ∈ X such that σ(vi) is defined
in xi.f(X

r
xi
). Consider x0, x1, · · · xm a sequence of vertices of X such that

this is the case. But since vi ∈ xi.f(X
r
xi
), we must have that wi ∈ xi.X

r
xi
.

Thus xj+1 lies at distance at most r + 1 of uj.X
r
uj
. Hence xj lies at distance

at most r + 1 of
⋃m−1

i=0 ui.X
r
ui
⊆ X2m(r+1)−1. Hence xj ∈ X2m(r+1)+r, and

thus
⋃

i=0···m xi.X
r
xi
⊆ X2m(r+1)+2r+1. Hence X2(m+1)(r+1)−1 determines the

internal states of H(X)mε .
Summarizing, Xn, with n = 2(m+1)(r+1)−1 determines F (X)m = H̃(X)mε .
Consider some v′′ ∈ Rm

X . This means that v′′ ∈ (RH(X))mε and v′′ = R(v′)
for some v′ ∈ H(X) that contains v ∈ X in its name. Hence v′ ∈ H(X)mε ,
where we used R(ε) = ε. Since this is determined by Xn, we have v ∈ Xn.
Hence dom Rm

X ⊆ Xn. Moreover, consider X ′ such that X ′r = Xr. Therefore
v ∈ X ′r, H(X)mε and H(X ′)mε are isomorphic, and this isomorphism sends v′

to the w′ of H(X ′)mε whose name contains v. Therefore F (X)m and F (X ′)m

are equal, and the same paths designate Rm
X(v) and Rm

X′(v), which are thus
equal.

[Caus.⇒Loc.] Let (F,R•) be a causal dynamics. Let b0 and b1 be respec-
tively the bounds given by Definition 21 and Lemma 2, and b = max(b0 +
1, b1). Let m = 3b + 2. Let r be the radius such that for all X,X ′,
Xr = X ′r implies F (X)m = F (X ′)m and Rm

X = Rm
X′ , from Definition 22

and Heine’s Theorem. We will construct f from Xr to GΣ,∆,π so that for
all Xr, the graph f(Xr) is a well-chosen member of the equivalence class
F (Xr)b. Hence we must instantiate F (Xr)b via a suitable, local naming of
its vertices. We use the isomorphism SXr of Lemma 3 for this purpose, i.e.
f(Xr) = SXrG(F (Xr)b).

[Dynamics] For all Xr, f(Xr) has vertices that are subsets of V (Xr).S,
by definition. These sets are disjoint, by Lemma 3 (i) applied to pairs of
vertices of F (Xr)b. Moreover ε ∈ f(Xr), since ε ∈ F (Xr)b and SXr(ε) = ε
by Lemma 3 (ii).

[Boundedness] For all Xr, the graph f(Xr) is finite, by construction.

[Consistency] In order to show the consistency of f , we will show that for
all X, u ∈ X, we have that u.f(Xr

u) is the subgraph H(X)bu of H(X), where

3.3. EQUIVALENCE THEOREM 45

H(X) is a well-chosen member of the equivalence class F (X). Hence we
must instantiate F (X) via a suitable naming of its vertices. We use the
isomorphism SX of Lemma 3 for this purpose, i.e. H(X) = SXG(F (X)).
Start from u.f(Xr

u) = u.SXr
u
G(F (Xr

u)
b), which is equal to u.SXu

G(F (Xu)
b),

by Lemma 3 (iii) and using the fact that F (Y)b = F (Y r)b. This, in turn,

is equal to u.
(
SXu

G(F (Xu))
)b
, using the natural inclusion of F (Y)b into

F (Y). This, in turn, is equal to u.
(
SXu

RX(u).G(F (X))
)b
, by shift-invariance,

which is equal to u.
(
u.SXG(F (X))

)b
, by Lemma 3 (iv). This, finally, is(

SXG(F (X))
)b
u
= H(X)bu, since it is true that for any graph G and any

isomorphism T , TGb
u = (TG)bT (u) and thus Gb

u = T−1(TG)bT (u).

Summarizing, u.f(Xr
u) = H(X)bu. Moreover if u ∈ X0, then notice that

u ∈ f(Xr) and u ∈ u.f(Xr
u), and hence they are non-trivially consistent.

Since f is consistent, and f(Xr) is a representative of F (Xr)b, it remains
only to remark that F (X) =

⋃
u.F (Xr

u)
b, which is true because b was chosen

to be strictly larger than the one given by Definition 21, insuring that all the
vertices and edges of F (Xr) are covered, along with their labels.

In the proof of Theorem 4, the renaming SX takes a generalized Cayley
graph F (X) into a mere graph H(X). It does so by providing names for the
vertices of F (X), that are subsets of V (X).S. The idea is that w′ in F (X)
gets named SX(w

′), which is the set of those u.z, such that u′ = RX(u) is
close to w′, and z is an integer encoding the remaining path between u′ and
w′. Lemma 3 formalizes this idea as well as some useful, technical although
expected properties.

Lemma 3 (Local renaming properties). Let (F,R•) be a causal dynam-
ics. Let b be the maximum of the bounds from Definition 21 and Lemma 2.
Let m = 3b+2. Let r be the radius such that for all X,X ′, Xr = X ′r implies
F (X)m = F (X ′)m and Rm

X = Rm
X′, from Definition 22 and Heine’s Theorem.

Let z be an injection from V (Xb
π)\ε, as in Definition 10, to N. Let z(ε) be

the empty word. Let Y be a generalized Cayley graph. Consider SY such that
for all w′ ∈ F (Y) we have

SY (w
′) = {u.z(v′) | u′.v′ = w′ ∧ u ∈ Y ∧ u′ = RY (u) ∧ v′ ∈ F (Y)bu′}.

We have:

(i) ∀w′
1, w

′
2 ∈ F (Y), SY (w

′
1) ∩ SY (w

′
2) 6= ∅ ⇒ SY (w

′
1) = SY (w

′
2).

46 CHAPTER 3. CAUSAL GRAPH DYNAMICS

(ii) ε ∈ SY (ε).

(iii) ∀w′ ∈ F (Xu)
b, u.SXr

u
(w′) = u.SXu

(w′).

(iv) ∀v′ ∈ F (Xu), SX(RX(u).v
′) = u.SXu

(v′).

Proof. [(i)] Consider w′
1, w

′
2 such that SY (w

′
1) and SY (w

′
2) have a common

element u.z(v′). This entails that w′
1 = u′.v′ = w′

2 is the same vertex in
F (Y), and thus that SY (w

′
1) = SY (w

′
2).

[(ii)] Since z(ε) = ε, ε.ε = ε, ε = RY (ε) and ε ∈ F (Y)b.
[(iii)] Consider the u = ε case. Let w′ be a vertex of F (X)b, and u′ ∈ F (X)
a vertex such that u′.v′ = w′, with |v′| ≤ b + 1. We necessarily have that
u′ ∈ F (X)2b+1. Moreover, since F (X)3b+2 = F (Xr)3b+2, we have F (X)bu′ =
F (Xr)bu′ . Also, using Rm

X = Rm
Xr , we have that

u′ = RX(u) ⇔ u′ = Rm
X(u) ⇔ u′ = Rm

Xr(u) ⇔ u′ = RXr(u).

where the middle equivalence uses the natural inclusion of Xr into X. As a
consequence the two sets:

SX(w
′) = {u.z(v′) | u′.v′ = w′ ∧ u ∈ X ∧ u′ = RX(u) ∧ v′ ∈ F (X)bu′}

SXr(w′) = {u.z(v′) | u′.v′ = w′ ∧ u ∈ Xr ∧ u′ = RXr(u) ∧ v′ ∈ F (Xr)bu′}

are equal, up to the natural inclusion of Xr into X. The same holds for SXu

and SXr
u
. Then, since the shift operation (u.) is from V (Xn) to V (X), a full

equality holds between u.SXu
and u.SXr

u
.

[(iv)] Consider some u′.v′.w′ ∈ F (X) with u′ = RX(u), v
′ = RXu

(v) and
w′ ∈ F (Xu.v)

b.

u.SXu
(v′.w′) = u.{x.z(y′) | v′.w′ = x′.y′ ∧ x ∈ Xu

∧ x′ = RXu
(x) ∧ y′ ∈ F (Y)′bu}

= {u.x.z(y′) | u′.v′.w′ = u′.x′.y′ ∧ u.x ∈ X

∧ u′.x′ = RX(u.x) ∧ y′ ∈ F (Y)′bu}

= SX(u
′.v′.w′)

= SX(RX(u).v
′.w′)

3.4. PROPERTIES 47

Our causal dynamics over generalized Cayley graphs is a candidate model
of computation accounting for space, but without this space being fixed. As
a candidate model of computation, we must check that it is computable.
The following shows that we can decide whether a syntactic object is a valid
instance of the model.

Proposition 1 (Decidability of consistency). Given a dynamics f from
Xr

Σ,∆,π to GΣ,∆,π, it is decidable whether f is a local rule.

Proof. First of all notice that there is a finite number of disks Xb of radius b,
with labels in finite sets ∆ and Σ. The following informal procedure verifies
that f is a local rule:

• For each Xr check that ε ∈ f(Xr).

• For each Xr+1 check that for all u ∈ X0, f(Xr) and u.f(Xr
u) are non-

trivially consistent.

• For each X3r+2 check that for all u ∈ X2r+1, f(Xr) and u.f(Xr
u) are

non-trivially consistent.

Finally, we prove that if the initial state is finite, its evolution can be com-
puted.

Proposition 2 (Computability of causal functions). Given a local rule
f and a finite generalized Cayley graph X, then F (X) is computable, with F
the causal graph dynamics induced by f .

Proof. Since f is a local rule, the images of disks of radius r included in X
are all finite, and consistent with one another. Moreover the finite union of
finite, consistent graphs, is computable.

3.4 Properties

Composability. We have characterized causal dynamics as the continuous,
shift-invariant, bounded functions over generalized Cayley graphs. An im-
portant question is whether this notion is general enough. A good indicator
of this robustness is its stability under composition.

48 CHAPTER 3. CAUSAL GRAPH DYNAMICS

Definition 27 (Composition). Consider two dynamics (F,R•) and (G,S•).
Their composition (G,S•) ◦ (F,R•) is (G ◦ F, T•) where TX = SF (X) ◦ RX ,
i.e. TX(v) = SF (X)(RX(v)).

Indeed, stability under composition holds for classical and reversible cellu-
lar automata, but has failed to be obtained for the early definitions of proba-
bilistic cellular automata and quantum cellular automata (see [AFNT11] and
[DS96, SW04, ANW08] for a discussion).

Theorem 2 (Composability). [AD12] Consider causal dynamics (F,R•)
and (G,S•), both over XΣ,∆,π. Then their composition is also a causal dy-
namics.

Proof. [Continuous] In the F ′, G′ : XΣ′,∆,π → XΣ′,∆,π formalism, it suf-
fices to state that the composition of two continuous functions is continuous.
Without this formalism this decomposes into:

• (G ◦ F) is continuous because it is the composition of two continuous
functions.

• Consider T• = SF (•) ◦R•. For all X, for all m, there exists n such that
for all X ′, X ′n = Xn implies Tm

X′ = Tm
X . Indeed:

Fix some X and m. Since (G,S•) is a causal dynamics, there exists a radius
n′ such that for allX ′, F (X ′)n

′
= D′ = F (X)n

′
implies Sm

F (X′) = Sm
D′ = Sm

F (X).

Fix this n′. Since (F,R•) is a causal dynamics, there exists a radius n such
that for all X ′, Xn = D = X ′n implies F (X)n

′
= F (X ′)n

′
and Rn′

X = Rn′

D =
Rn′

X′ . Now, for this radius n, Tm
X′ = Sm

F (X′) ◦ R
n′

X′ = Sm
D′ ◦ Rn′

X′ = Sm
D′ ◦ Rn′

D ,
which, by the symmetrical is equal to Tm

X .
[Shift-invariant] We haveG(F (Xu)) = G(F (X)RX(u)) = G(F (X))SF (X)(RX(u)),

TX(u.v) = SF (X)(RX(u.v))

= SF (X)(RX(u).RXu
(v)))

= SF (X)(RX(u)).SF (X)RX (u)
(RXu

(v))

= TX(u).SF (Xu)(RXu
(v))

= TX(u).TXu
(v)

[Bounded] Since (G,S•) is a causal dynamics, there exists a bound b′′ such
that for all X, for all w′′ ∈ G(F (X)), there exists x′′ = SF (X)(x

′) and v′′ ∈

3.5. SUMMARY OF RESULTS 49

G(F (X))b
′′

x′′ such that w′′ = x′′.v′′. Since (F,R•) is a causal dynamics, there
exists a bound b′ such that there exists u′ = SF (X)(u) and v′ ∈ F (X)b

′′

u′

such that x′ = u′.v′. Let u′′ = SF (X)(u
′) = SF (X)(RX(u)) = TX(u). Now,

according to Lemma 2 applied to (G,S•) and points u′ and x′, there exists a

bound c such that there exists t′′ ∈ G(F (X))
c.(b′+1)
u′′ and x′′ = u′′.t′′. Let b =

c.(b′+1)+ b′′, we now have that for u′′ = SF (X)(u
′) = SF (X)(RX(u)) = TX(u)

there exists v′′.t′′ ∈ G(F (X))bu′′ such that w′′ = u′′.t′′.v′′.

The above proof was done via the axiomatic characterization of causal
dynamics, as this work enjoys a more straightforward formalization than
[AD12]. In [AD12] the same result is proven via the constructive approach
to causal graph dynamics (localizability), which has the advantage of ex-
tra information about the composed function. It establishes the following.
Consider F a causal dynamics induced by the local rule f of radius r (i.e.
diameter d = 2r + 1). Consider G a causal graph dynamics induced by the
local rule g of radius s (i.e. diameter e = 2s + 1). Then G ◦ F is a causal
graph dynamics induced by the local rule g of radius t = 2rs + r + s (i.e.
diameter f = de) which maps X t to

⋃

v∈X′

v.g(X ′s
v) with X ′ =

⋃

u∈Xt

u.f(Xr
u).

The same result, with the transposed proof, still holds.

3.5 Summary of results

We gave two definitions of causal graph dynamics as cellular automata over
generalized Cayley graphs. While the first definition, causal dynamics, is
axiomatic and correspond to graph transformations having three properties
(uniform continuity, shift-invariance and boundedness), the second definition
is more constructive and relies on a notion of local rule applied simultaneously
on every vertex in the graph. We then prove the equivalence of these two
definitions, In addition, we proved that the application of a causal graph
dynamics on a finite graph is a computable process, and that the composition
of two causal graph dynamics is also a causal graph dynamics.

50 CHAPTER 3. CAUSAL GRAPH DYNAMICS

:a :b

ff local rule

3 ε

12

ab.2

ab.1

:a :c

:b

:d

:c:a

:d

:b

:a :b

:a :b

2 3

ε1

ba.ε

ba.1

:d :b

:a

:c

:b:d

:c

:a

:b:a

:b:a

ε. ab.prefixing

3 ε

12

ab.2

ab.1

:a :c

:b

:d

:c:a

:d

:b

:a :b

:a :b

ab.2 ab.3

ab.εab.1

ε

1

:d :b

:a

:c

:b:d

:c

:a

:b:a

:b:a

union

3 ε

12

ab.2 ab.3

ab.εab.1

:a :c

:b

:d

:c:a

:d

:b

:d :b

:a

:c

:b:d

:c

:a

:a :b

:a :b

modulo

:a :c

:b

:d

:c:a

:d

:b

:d :b

:a

:c

:b:d

:c

:a

:a :b

:a :b

Figure 3.6: Local rule implementation of the inflating grid dynamics. First
the local rule is applied on the neighbourhood of every vertex of the input
graph. The resulting graphs are prefixed (see definition 12) by the vertex
they are issued of. Third a union of graphs is performed to obtain the output
graph. Lastly, the corresponding pointed graph modulo is returned.

3.5. SUMMARY OF RESULTS 51

v0 = ε v1 v2 vm vm+1

x0 x1 x2 xm

w0 = ε w1 w2 wm wm+1

u0 u1 um

≤ m+ 1

≤ r + 1 ≤ r + 1

≤ r + 1

≤ 2(r + 1)

≤ 2(m+ 1)(r + 1)

Figure 3.7: Proof of continuity.

52 CHAPTER 3. CAUSAL GRAPH DYNAMICS

Chapter 4

Reversible causal graph
dynamics

Motivations. Cellular automata find their origins in physics, where they
are commonly used as toy models for waves or particles interaction. In fact
they are some of the simplest discrete models of physics implementing two of
its symmetries: causality and homogeneity (see introduction). In this con-
text, it seems natural to consider a further physics-like symmetry, namely
reversibility. This symmetry has been studied in depth, and led to some
beautiful results on the structure of reversible parallel computation, such as
the block decomposition of reversible cellular automata. In the case of causal
graph dynamics, reversibility brings novel questions. For instance, now that
the configuration (the graph) can be extended by adding or deleting vertices,
does bijectivity brings any constraints on the structure of the transforma-
tion? More generally, these questions are linked to a more fundamental one,
coming from theoretical physics: is it possible to reconciliate reversible small
scale physics (quantum mechanics, micro-mechanical), with the time-varying
topology of large scale physics (relativity)? In that precise scope, defining a
proper block decomposition for reversible causal graph dynamics seems to be
a key step toward the design of a quantum version of causal graph dynamics.

Invertibility versus reversibility. As previously introduced, cellular au-
tomata can be constructively defined as homogeneous mappings of a local
rule over a configuration, but, thanks to Curtis-Hedlund-Lyndon theorem
(C.-H.-L.), they can also be defined as transformations over the configuration

53

54 CHAPTER 4. REVERSIBLE CAUSAL GRAPH DYNAMICS

space verifying two properties: continuity with respect to Cantor’s metric,
and commutation with the shift operator. That latter definition of the model
comes in handy when studying reversibility. The first natural question we
can ask ourselves is the following: is the bijectivity of the global function
sufficient to ensure that its inverse is still a cellular automaton? The answer
is yes, and the proof relies on a simple topological result: If F is a continuous
function over a compact space X and if F is a bijection, then F−1 is con-
tinuous. Using C.-H.-L. theorem together with this result, we have that the
inverse of the global function of a reversible cellular automata is continuous.
The shift-commutation of the inverse of the global function is easy to obtain
from the shift-commutation of the global function. Hence, any cellular au-
tomaton whose global function is bijective is reversible.
The situation is more complicated in the case of causal graph dynamics.
While it is still true, using the same topological result, that the inverse of
a causal graph dynamics is continuous, its shift-invariance is not obvious.
Section 4.1 studies in details this shift-invariance property in order to prove
two results:

• Every bijective causal graph dynamics preserves the number of vertices
of all graphs larger than a certain bound,

• Every bijective causal graph dynamics admits an inverse causal graph
dynamics.

Block decomposition. Even though C.-H.-L. theorem states that defining
a CA using a local rule or describing a continuous shift-invariant transforma-
tion is equivalent, some antisymmetry between the two formalisms remain.
Indeed, if we consider a reversible cellular automaton, and a local rule in-
ducing it, nothing guarantees that this local rule will be itself a reversible
function. In fact, as this function is of the form f : Σ2r+1 → Σ, it is, in gen-
eral, not the case. Hence, another natural question would be: is it possible
to implement any reversible cellular automaton using only local, reversible
mechanisms? In [Kar96, DL01], it is proved that reversible cellular automata
admit a finite-depth, reversible circuit form, with gates acting only locally.
The result carries through to Quantum CA [ANW10], whose proof technique
inspired the construction described in [AN11].
In the scope of causal graph dynamics, the freedom of changing the shape of
the underlying graph may seem to be a direct hurdle toward the generaliza-
tion of the results of the above papers. Section 4.2 provides a definition of

4.1. REVERSIBLE CAUSAL GRAPH DYNAMICS 55

local transformations in a graph and a notion of conjugate operation through
a reversible causal graph dynamics in order to obtain a block decomposition
of any reversible causal graph dynamics.

The curse of vertex-preservingness. Even though one result of section
4.1 generalizes a famous result of cellular automata theory to causal graph
dynamics, the other result seems to put a consequent constraint upon the
shape of reversible causal graph dynamics: reversible causal graph dynamics
necessarily preserve the size of almost all the graphs. Section 4.3 describes
a way to slightly generalize the model of causal graph dynamics in order to
allow reversible dynamics to have a less constraint behaviour.

The content of this chapter is based on [AMP15], co-authored with Pablo
Arrighi and Simon Perdrix.

4.1 Reversible causal graph dynamics

In this section we compare the two notions of invertibility and reversibility,
defined as follows. An invertible causal graph dynamics, is a causal graph
dynamics inducing a bijection over the set of generalized Cayley graphs:

Definition 28 (Invertible dynamics). A causal graph dynamics (F,R•)
is said to be invertible if F is a bijection from XΣ,∆,π to itself.

While a causal graph dynamics (F,R•) is said reversible if it is invertible and
its inverse a causal graph dynamics itself:

Definition 29 (Reversible). A causal graph dynamics (F,R•) is reversible
if there exists S• such that (F−1, S•) a causal graph dynamics.

Moving head. Figure 4.1 is an example of invertible causal graph dynamics.
In this example, a vertex, representing the head of an automaton, is moving
along a path graph, representing a tape. The path graph is built using
ab−edges, while the head is attached using either a cc−edge if it is travelling
forward along the ab−edges, or dd−edges if it is travelling backwards. The
transformation can be completed into a bijection over the entire set of graphs
with π = {a, b, c, d}. It then accounts for several heads, etc.

56 CHAPTER 4. REVERSIBLE CAUSAL GRAPH DYNAMICS

:a :b :a :b :a :b
:c
:c

:a :b :a :b :a :b
:c
:c

:a :b :a :b :a :b
:c
:c

(1) (2) (3)

:a :b :a :b :a :b
:c
:c

:a :b :a :b :a :b

:d
:d

:a :b :a :b :a :b

:d
:d(4) (5) (6)

Figure 4.1: Moving head dynamics. In this example, a moving head is run-
ning along a “tape” formed by a linear graph of alternating ab edges. When
reaching the end of the line, the head starts moving backwards and changes
the ports on its attaching edge to dd. (1) to (6) represent 6 consecutive
configurations.

4.1.1 Invertibility and almost-vertex-preservingness

:a :a

Figure 4.2: The turtle dynamics has the two above pointed graphs modulo
to oscillate between one another. The two vertices of the right hand side
are shift-equivalent, i.e. pointing the graph upon one or the other does not
change the graph.

Recall that, in general, causal graph dynamics are allowed to transform
the graph, not only by changing internal states and edges, but also by creating
or deleting vertices. Since invertibility imposes information-conservation, one
may wonder whether invertible causal graph dynamics are still allowed to
create or delete vertices. They are, as shown by Figure 4.2. One notices,
however, that the right hand side of this example features shift-equivalent
vertices:

Definition 30 (Shift-equivalent vertices). Let X ∈ XΣ,∆,π and let u, v ∈
V (X). We say that u and v are shift-equivalent, denoted u ≈ v, if Xu = Xv.
A graph is called asymmetric if it has only trivial (i.e. of size one) shift-
equivalence classes.

4.1. REVERSIBLE CAUSAL GRAPH DYNAMICS 57

One can show that all the shift-equivalence classes of a pointed graph
modulo have the same size. Intuitively, given two shift-equivalent vertices
u, v and a third vertex w, since there is a path from u to w, moving from v
along the same path leads to a vertex equivalent to w.

Lemma 4 (Shift-equivalence classes isometry). Let X ∈ XΣ,∆,π be a
graph. If C1 ⊆ V (X) and C2 ⊆ V (X) are two shift-equivalence classes of X,
then |C1| = |C2|.

Proof. Consider two equivalent and distinct vertices u and v in X. Consider
a path w. The vertices u.w and v.w are distinct and equivalent. More
generally, if we have n equivalent distinct vertices v1, ..., vn, any vertex u =
v1.w will be equivalent to v2.w, ..., vn.w and distinct from all of them, hence
the equivalence classes are all of the same size.

Moreover, we can show that creation or deletion of vertices by invertible
causal graph dynamics must respect the shift-symmetries of the graph.

Lemma 5 (Invertible causal graph dynamics preserves shift-equiva-
lence classes). Let (F,R•) be a shift-invariant dynamics over XΣ,∆,π, such
that F is a bijection. Then for any X and any u, v ∈ X, u ≈ v if and only
if RX(u) ≈ RX(v).

Proof. u ≈ v expresses Xu = Xv, which by bijectivity of F , is equivalent
to F (Xu) = F (Xv) and hence F (X)RX(u) = F (X)RX(v). This, in turn, is
expressed by RX(u) ≈ RX(v).

Shift-symmetry is fragile however, and can be destroyed by adding a few
vertices to a graph:

Definition 31 (Primal extension). Given a finite graph X ∈ XΣ,∆,π where
|π| > 1 such that X has k shift-equivalence classes of size n with k, n 6= 1,
we obtain its primal extension ✷X by:

• If X has a free port (i.e. one of its vertex u has a port i ∈ π such that
u : i does not appear in any edge): connect p − kn new vertices in a
line to this free port, where p is the smallest prime number greater than
kn+ 2.

• If X has no free port: X has at least one cycle. Remove an edge from
this cycle, and do the same construction as above.

58 CHAPTER 4. REVERSIBLE CAUSAL GRAPH DYNAMICS

Lemma 6 (Properties of primal extensions). Any primal extension ✷X
is asymmetric.

Proof. As ✷X has a prime number of vertices, by lemma 4, its has either one
single equivalence class of maximal size or only trivial equivalence classes.
As the primal extension adds at least two vertices and that these vertices
have different degree (1 for the last vertex on the line, and 2 for its only
neighbour), ✷X contains at least two non equivalent vertices, hence the first
result.

Theorem 3 (Invertible implies almost-vertex-preserving). Let (F,R•)
be a causal graph dynamics over XΣ,∆,π, such that F is a bijection. Then there
exists a bound p, such that for any graph X, if |X| > p then RX is bijective.

Proof outline. We consider a finite graph X as large as we want, and
assume that RX is not a bijection. We the consider the two cases where
RX is not surjective and RX is not injective. In the non surjective case, we
asymmetrize F (X) and consider its pre-image, thus exhibiting two “close”
graphs having necessarily very different images, contradicting the continuity
of R•. In the non injective case, we asymmetrize X, thus producing a similar
situation and contradicting the continuity of R•.

In a second time we extend the result to infinite graph using the continuity
of (F,R•).

Proof. When |π| ≤ 1, XΣ,∆,π is finite so the theorem is trivial. So we assume
in the rest of the proof that |π| > 1.
[Finite graphs] First we prove the result for any finite graph. By contra-
diction, assume that there exists a sequence of finite graphs (X(n))n∈N such
that |X(n)| diverges and such that for all n, RX(n) is not bijective. As this
sequence is infinite, we have that one of the two following cases is verified for
an infinite number of n:

• RX(n) is not surjective,

• RX(n) is not injective.

• [RX(n) not surjective]. There exists a vertex v′ /∈ imRX(n). Without
loss of generality, we can assume that |v′| < b where b is the bound from the
boundedness property of F . Consider the graph Y (n) = F−1(✷F (X(n))).
Using uniform continuity of F−1 and R•, and the fact that |X(n)| is as

4.1. REVERSIBLE CAUSAL GRAPH DYNAMICS 59

large as we want, we have that there exists an index n and a radius r such
that Y (n)r = X(n)r and Rb

Y (n)r = Rb
X(n)r . As F (Y (n)) is asymmetric by

construction, v′ ∈ imRb
Y (n)r which contradicts v′ /∈ imRX(n).

• [RX(n) not injective]. There exist two vertices u, v ∈ X(n) such that
RX(n)(u) = RX(n)(v) and u 6= v. Without loss of generality, we can assume
that u = ε as F is shift-invariant. According to lemma 5, we have that
ε ≈ v. Moreover, using the uniform continuity of R•, we have that, as
RX(n)(v) = RX(n)(ε) = ε, there exists a radius l, which does not depend on
n, such that |v| < l . Let us consider the graph ✷X(n). In this graph, ε and
v are not shift-equivalent and thus, R✷X(n)(ε) 6= R✷X(n)(v) . By continuity
of R•, we have that there exists a radius r > l such that R0

✷X(n)r = R0
X(n)r

for a large enough n. Hence R0
✷X(n)r(v) = R0

X(n)r(v) = ε, which contradicts

R✷X(n)(ε) 6= R✷X(n)(v).

[Infinite graphs] We now show that the result on finite graphs can be
extended to infinite graphs, proving that for any infinite graphRX is bijective:
• [RX injective]. By contradiction. Take X infinite such that there is u 6= v
and RX(u) = RX(v). Without loss of generality we can take u = ε, i.e. v 6= ε
and RX(v) = ε. By continuity of R•, there exists a radius r, which we can
take larger than |v| and p, such that RX = RXr . Then RXr(v) = RX(v) = ε,
thus RXr is not injective in spite of Xr being finite and larger than p, leading
to a contradiction.
• [RX surjective]. By contradiction. Take X infinite such that there is
v′ in F (X) and v′ /∈ imRX . By boundedness and shift-invariance, we can
assume that there exists b such that |v′| < b. By continuity of R•, there
exists a radius r, which we can take larger than p, such that the images of
RX and RXr coincide over the disk of radius b. Then, v′ /∈ imRX implies
v′ /∈ imRXr , thus RXr is not surjective in spite of Xr being finite and larger
than p, leading to a contradiction.

4.1.2 Invertibility vs. Reversibility

Theorem 3 shows that invertible causal graph dynamics are almost vertex-
preserving. Notice that vertex-preservingness guarantees that the inverse of
a shift-invariant dynamics is a shift-invariant dynamics.

Lemma 7 (Vertex-preserving invertible is shift-invariant invert-

60 CHAPTER 4. REVERSIBLE CAUSAL GRAPH DYNAMICS

ible). If (F,R•) is an invertible shift-invariant dynamics such that for all
X, RX is a bijection, then (F−1, S•) is a shift-invariant dynamics, with
SY = (RF−1(Y))

−1.

Proof. Consider Y and u′.v′ ∈ Y . Take X and u.v ∈ X such that F (X) = Y ,
RX(u) = u′ and RX(u.v) = u′.v′. We have:

F−1(Yu′)= F−1(F (X)RX(u))

= F−1(F (Xu))

= X(RX)−1(u′)

= F−1(Y)SY (u′)

Moreover, take v ∈ Xu such that RX(u.v) = RX(u).RXu
(v) = u′.v′. We have:

SY (u
′.v′) = (RX)

−1(RX(u.v))

= u.v

= (RX)
−1(u′).(RXu

)−1(v′)

= SY (u
′).SYu′

(v′)

Theorem 4 (Invertible implies reversible). If (F,R•) is an invertible
causal graph dynamics, then (F,R•) is reversible.

Proof. Continuity of F−1 is directly given by the continuity of F together
with the compactness of XΣ,∆,π. Its boundedness derives either from the
bijectivity of RX for |X| > p or from the finiteness of X when |X| ≤ p.

We must construct S•. For |F (X)| = |X| > p, we know that RX is bijec-
tive and we let SF (X) = R−1

X . For |X| ≤ p, we proceed as follows.
We write ũ for the shift-equivalence class of u. For all v′ ∈ F (X), we make
the arbitrary choice SF (X)(ṽ′) = v, where v is such that RX(v) ≈ v′. For this
X, we have enforced ≈-compatibility. In order to enforce shift-invariance,
we must make consistent choices for SF (X)u′

. This is obtained by demand-

ing that SF (X)u′
(ũ′.v′) = u.v. Indeed, this accomplishes shift-invariance

because SF (X)u′
(v′) = SF (X)u′

(u′.u′.v′) = ε.v′ = v′ implying the equal-
ity: SF (X)(u

′.v′) = u.v = SF (X)(u
′).SF (X)u′

(v′). Moreover, SF (X)u′
is itself

shift-invariant because: SF (X)u′.v′
(w′) = SF (X)u′.v′

(v′.v′.w′) = ε.w = w and
SF (X)u′

(v′) = v implying that SF (X)u′
(v′.w′) = v.w = SF (X)u′

(v′).SF (X)u′.v′
(w′)

4.2. BLOCK DECOMPOSITION 61

, and ≈-compatible because v′ ≈ w′ implies SF (X)u′
(v′) = SF (X)u′

(w′), and
thus SF (X)u′

(v′) ≈ SF (X)u′
(w′).

Continuity of the constructed S• is due to the continuity of R• and the finite-
ness of p.
Shift-invariance of (F−1, S•) follows from ≈-compatibility of S• and shift-
invariance of (F,R•), because F

−1(F (X)′u) = Xv where v is such thatRX(v) ≈
u′, hence F−1(F (X)′u) = XSF (X)(u

′).

4.2 Block decomposition of reversible causal

graph dynamics

In [AN11], a general construction is presented, representing any reversible
cellular automata G over ΣZ as a finite-depth circuit of reversible local op-
eration over the set Σ2Z. The idea of the construction is the following. The
circuit is composed of local update. Each local update acts upon a cell and
its neighbourhood. Updating cell i corresponds to (1) applying G to the first
component of the configuration, (2) swapping the two component of cell i and
(3) applying G−1 on the first component of the configuration. After every
cell has been updated, the second component of the configuration contains
the image of the initial configuration. More intuitively, this corresponds to
applying the CA around a cell and saving the new state of this cell in its
second component. Figure 4.3 gives an example of such a decomposition. In
our case, the concept of the construction will be somehow simpler. As our
space of configurations is less constrained, we can proceed as follow: Apply
the reversible causal graph dynamics F , “freeze” the vertex u, apply the re-
verse dynamics F−1. As F is defined over the set of all graphs, it will be
defined over the initial graph where u has been removed.

4.2.1 Locality

Causal graph dynamics change the entire graph in one go. Local operations,
on the other hand, act just in one bounded region of the graph, leaving the
rest unchanged. We introduce the following locality definition:

Definition 32 (Local dynamics). A dynamics (L, S•) is r-local if it is
continuous and bounded, and for any X and any v ∈ L(X) with |v| > r,
there exists u ∈ X such that L(X)0v = X0

u and ∀w ∈ X0
u, SX(u.w) = v.w.

62 CHAPTER 4. REVERSIBLE CAUSAL GRAPH DYNAMICS

−2 −1 0 +1

G

G−1

Swap

−2 −1 0 +1

G

G−1

Swap Swap Swap Swap

Figure 4.3: A simple block decomposition of a reversible cellular automaton.
Each cell contains a product state in {0, 1}2. The initial configuration is
encoded in the first component of the cells (left cells). Left hand side: Local
reversible operation applied on cell 0. Right hand side: the complete circuit
of local reversible operations.

Local operations may also be shifted to act over the region surrounding
some vertex u. The details of the next definition become apparent with
Figure 4.4.

Definition 33 (Shifted dynamics). Consider a dynamics (L, S•) and some
u ∈ Π∗. We define Lu to be the map X 7→ (L(Xu))SXu (u)

if u ∈ X, and the

identity otherwise. We define Su,X to be the map v 7→ SXu
(u).SXu

(u.v) if
u ∈ X, and the identity otherwise. We say that (Lu, Su,•) is (L, S•) shifted
at u.

A local dynamics acts around the pointer of the graph modulo. To act
around another position u, one can shift the local dynamics at u. Moreover,
we may wish to apply a series of local operations at several positions ui i.e., a
circuit. However, applying a local operation may change the graph and hence
vertex names, hence some care must be taken when defining the successive
application of local operations.

Definition 34 (Product). Consider a local dynamics (L, S•) and X a
pointed graph modulo in its domain we define the product

∏
(L, S) as the

4.2. BLOCK DECOMPOSITION 63

X

ε u

v

•u

Xu

u ε
u.v

L

L(Xu)

SXu
(u) ε

SXu
(u.v)

Lu

L(Xu)SXu (u.v)

ε SXu
(u)

SXu
(u).SXu

(u.v) •SXu (u)

Figure 4.4: Shifted dynamics Lu. In the bottom graph Lu(X), former vertex
v has name SXu

(u).SXu
(u.v).

limit when r goes to infinity of (Lr, Sr
•):

Lr(X) =
∏

i∈[1,...,|V (Xr)|]

Lu′
i
(X)

Sr
X =

∏

i∈[1,...,|V (Xr)|]

Su′
i,
∏

k∈[1,...,i−1] Lu′
k
(X)

where {u1, u2, ...} = V (X) such that i < j ⇒ |ui| ≤ |uj|, and u′
1 = u1,

u′
2 = Su′

1,X
(u2), u

′
3 = Su′

2,Lu′1
(X)(u3),...

Soundness of the definition. For infinite graphs, the image of a graph X
through the application of

∏
(L, S) needs to be defined as the limit of the

sequence of graphs (Lr(X)) obtained by applying L to every node of the
disk Xr. As XΣ,∆,π is compact, this sequence of graphs converges toward
a limit graph X ′. Moreover, for all radius r′ there exists a radius r such
that X ′r = Lr′(X). Thus, X ′ corresponds to the graph X where the local
dynamics (L, S•) has been applied on every vertex.

64 CHAPTER 4. REVERSIBLE CAUSAL GRAPH DYNAMICS

4.2.2 Block representation

We can now start the construction of our local reversible updates. First,
we show that conjugating a local operation with a reversible causal graph
dynamics still yields a local operation.

Lemma 8 (Bounded inflation). If (L, S•) is r′-local, then for all s there
exists s′ such that for all X and v ∈ X, if |v| ≤ s, then |SX(v)| ≤ s′.

Proof. Suppose the contrary: X(s′) has some |v(s′)| ≤ s such that |SX(v)| >
s′. Since XΣ,∆,π is compact [AM12], X(s′) admits a subsequence which con-
verges to some limit X, in the sense that X(s′k)

k = Xk. For this particu-
lar X, for any s′, there is some |v(s′)| ≤ s such that |SX(v)| > s′. This
is because we can choose k so that s′k ≥ s′ and k superior to the radius
needed to determine L(X)s

′
k = L(X(s′k))

s′
k , so that |SX(v)| = |SXk(v)| =

|SX(sk)
k(v)| = |SX(sk)(v)| > s′k ≥ s′. Thus, there exists a point of v ∈ X

which has |SX(v)| >∞, which is a contradiction.

Lemma 9 (Local at radius t). If (L, S•) is r′-local, for all t, for all u′ ∈
L(X) with |u′| > r′ + t+ 1, there exists u ∈ X with SX(u) = u′ such that we
have:

(i) L(X)tu′ = X t
u,

(ii) ∀v ∈ X t
u, SX(u.v) = u′.v.

Proof. Take such a u′ and consider u such that u′ = SX(u).
[(i)] Since |u′| > r′+ t+1, we have that for all v ∈ L(X)tu′ , |u′.v| > r′. Hence,
by r′-locality of L, there exists x ∈ X such that SX(x) = u′.v and such that
L(X)0u′.v = X0

x, i.e. the vertex v in L(X)tu′ , in terms of its internal states and
edges, is the same as the vertex x in X. Now, say there exists |z| = 1 such
that w = v.z ∈ L(X)tu′ , i.e. there is an edge between v and v.z in L(X)tu′ .
Again since |SX(x)| > r′, the r′-locality yields u′.v.z = SX(x).z = SX(x.z),
i.e. the edge between v and v.z v in L(X)tu′ is the same as that between x and
x.z in X. Consider v1 . . . vk = v with k ≤ t and |vi| = 1. A similar argument
starting from u′ and following these edges shows that x is at distance t of u
in X, and thus x.z is at distance t+ 1 of u in X. So the vertices x, x.v and
their edge do appear in X t

u.
[(ii)] Again take w ∈ X t

u = L(X)tu′ . Consider w1 . . . wk = w with k ≤
t + 1 and |wi| = 1. Since |u′| > r′ + t + 1 > r′, the r′-locality applies

4.2. BLOCK DECOMPOSITION 65

and yields SX(u.w1) = SX(u).w1 = u′.w1. Similarly, since |u′.w1 . . . wi| >
r′ + t + 1 − i > r′, the r′-locality applies and yields SX(u.w1 . . . wi.wi+1) =
SX(u.w1 . . . wi).wi+1 = u′.w1 . . . wi.wi+1. Eventually SX(u.w) = u′.w.

Proposition 3 (Conjugate of local is local). If (F,R•) is an reversible
causal graph dynamics and (L, S•) is a local dynamics, then (L′, T•) is a local
dynamics, with

(i) L′ = F−1 ◦ L ◦ F and

(ii) TX(u) = R′
F−1(L(F (X))(SF (X)(RX(u))),

where the function R′
• is such that (F−1, R′

•) is a causal graph dynamics.

Proof. Boundedness and uniform continuity by composition. Next, suppose:
L is local, r0 is such that for all X, Y if Xr0 = Y r0 then F−1(X)0 = F−1(Y)0

(given by uniform continuity of F−1), r2bF is such that for all X, Y if Xr2bF =
Y r2bF then F (X)2bF = F (Y)2bF (given by uniform continuity of F), bF−1 is
the bound given by the bounded inflation lemma applied on F−1, bL is the
bound given by the boundedness of L and rL the radius of locality of L. In
the two following points, we chose a radius r′ as follow:

r′ = bF
−1

(rL + 2 +max(r0, 2bF , r2bF))

Consider |u′| > r′.
[(i)] Let us show that there exists u ∈ X such that L′(X)0u′ = X0

u. By
definition of F−1, there exists w ∈ LF (X) such that RF−1

LF (X)(w) = u′. By

bounded inflation of F−1, we have |w| > rL and thus by locality of L, there
exists w′ ∈ F (X) such that SF (X)(w

′) = w. Finally by reversibility of F
there exists u ∈ X such that RF

X(u) = w, and thus u′ = TX(u). Notice
that we have that |SF (X)R

F
X(u)| > r0 + rL + 2. Using lemma 9 with t = r0,

we have: LF (X)r0
SF (x)R

F
X
(u)

= F (X)r0
RF

X
(u)

= F (Xu)
r0 . By definition of r0,

F (Xu)
r0 = LF (X)r0

SF (x)R
F
X
(u)

implies X0
u = F−1(LF (X)r0

SF (x)R
F
X
(u)

)0, which

leads by shift-invariance of F−1 to X0
u = F−1(LF (X)r0)0

RF−1

LF (X)
SF (x)R

F
X
(u)

.

Hence X0
u = L′(X)0u′ .

66 CHAPTER 4. REVERSIBLE CAUSAL GRAPH DYNAMICS

[(ii)] Consider u as above and v ∈ X0
u.

TX(u.v) = RF ′

LF (X)SF (x)(R
F
X(u.v))

= RF ′

LF (X)SF (x)(R
F
X(u).R

F
Xu

(v)) using shift-invariance of F

= RF ′

LF (X)SF (x)(R
F
X(u)).R

F
Xu

(v) because |SF (X)R
F
X(u)| > rL + 2bF + 2

= RF ′

LF (X)(SF (x)(R
F
X(u))).R

F ′

LF (X)
SF (X)(R

F
X

(u))
(RF

Xu
(v)) using shift-invariance of F−1

= TX(u).R
F ′

LF (X)
SF (X)(R

F
X

(u))
(RF

Xu
(v))

We will now show that: v = RF ′

LF (X)
SF (X)(R

F
X

(u))
(RF

Xu
(v)). Since |RF

Xu
(v)| <

2bF by bounded inflation of F , it is enough to show:

RF ′

LF (X)
SF (X)(R

F
X

(u))

2bF
(RF

Xu
(v)) = v.

By definition of r2bF , we have that: if Xr2bF = Y r2bF then RF ′
(X)2bF =

RF ′
(Y)2bF . Let us show that LF (X)

r2bF

S
2bF
F (X)

(RF
X
(u))

= F (Xu)
r2bF . By applying

lemma 9 with t = r2bF , LF (X)
r2bF

S
2bF
F (X)

(RF
X
(u))

= F (X)
r2bF
RF

X
(u)

which, by shift-

invariance of F , is equal to F (Xu)
r2bF . As a consequence,

RF ′

LF (X)
SF (X)(R

F
X

(u))

2bF
(RF

Xu
(v)) = RF ′

F (Xu)

2bF
(RF

Xu
(v)) = RF ′

F (Xu)(R
F
Xu

(v)) = v

by definition of RF ′

•

Second, we give ourselves a little more space so as to mark which parts
of the graph have been updated, or not.

Definition 35 (Marked pointed graphs modulo). Consider the set of
pointed graphs modulo XΣ,∆,π with labels in Σ, and ports in π. Let Σ′ =
Σ× {0, 1} and π′ = π × {0, 1}. We define the set of marked pointed graphs
modulo XΣ′,∆,π′ to be the subset of XΣ′,∆,π′ such that:

• ∀u ∈ X, if u is labelled with (x, a) and {u:(i, b), v:(j, c)} ∈ X, then
a = c.

• ∀v ∈ X, if {u:(i, b), v:(j, c)}∈X and {u′:(i′, b′), v:(j, c′)} ∈ X, then
u = u′.

4.2. BLOCK DECOMPOSITION 67

Definition 36 (Mark operation). We define the mark operation µ as the
following local dynamics (Lµ, Sµ

•) over XΣ′,∆,π′. For any X in XΣ′,∆,π′:

• if the label of ε is (x, a) in X then its label is (x, 1−a) in Lµ(X).

• if {ε : (x, a), ε : (y, b)} ∈ X then {ε : (x, 1−a), ε : (y, 1−b)} ∈ Lµ(X).

• if {ε : (x, a), v : (y, b)} ∈ X with v 6= ε then {ε : (x, a), v : (y, 1−b)} ∈
Lµ(X),

• Sµ
X(u) =

ε if u = ε

(x, a)(y, 1−b) if {ε : (x, a), v : (y, b)} ∈ X with v 6= ε

Sµ
X(v).pq if u = v.pq with p, q ∈ π′

and leaving the rest of the graph X unchanged.

Notice that the set of marked graphs XΣ′,∆,π′ is nothing but the subset of
XΣ′,∆,π′ obtained by as closure of µ, and shifts, upon XΣ×{0},∆,π×{0}. Notice

also that XΣ′,∆,π′ is a compact subset of XΣ′,∆,π′ .
It turns out that any reversible causal graph dynamics admits an exten-

sion that allows for these marks.

Definition 37 (Reversible extension). Let (F,R•) be an reversible causal
graph dynamics over XΣ,∆,π. We say that (F ′, R′

•) is a reversible extension
of (F,R•) if it is an reversible causal graph dynamics over XΣ′,∆,π′ such that,

• For any X ∈ XΣ,∆,π and u ∈ X:
F ′(X×{0}) = F (X)×{0} R′

X×{0}(u×{0}) = RX(u)×{0}

F ′(X×{1}) = X×{1} R′
X×{1}(u×{1}) = u×{1}

• For any X ∈ XΣ′,∆,π′ such that |X| ≤ p and X /∈ XΣ×{0},∆,π×{0}:
F ′(X) = X R′

X = u 7→ u

where p is that of theorem 3; X×{0} consists in pairing with 0 all the vertex-
states and edges of X; and u×{0} is defined as ε×{0} = ǫ and u.ab×{0} =
(u×{0}):(a, 0)(b, 0).

Proposition 4 (Reversible extension). Any RCDG (F,R•) over XΣ,∆,π

admits a reversible extension (F ′, R′
•) over XΣ′,∆,π′.

68 CHAPTER 4. REVERSIBLE CAUSAL GRAPH DYNAMICS

To prove this result, we need to introduce two notions of projection of
a marked graph. In definition 38 and lemma 10, G(X), with X ∈ XΣ,∆,π

stands for the canonical representative of X in GΣ,∆,π, i.e. a classical graph
having the same structure as X. This operations is detailed in appendix A.

Definition 38 (Upper and lower projections). Let G be a graph in
G(XΣ′,∆,π′). We define ↓G (resp. ↑G) the lower (resp. upper) projection of
G as the set of the connected component obtained after removing all marked
vertices (resp. all non-marked vertices without used marked ports).

Lemma 10 (Characterization of connected components). Given G
in G(XΣ′,∆,π′), the elements of the sets ↓G and ↑G are of the form u.Y with
u ∈ G̃ and Y ∈ G(XΣ′,∆,π′).

Notice that the following proof uses the notion of local rules.

Proof. Let us construct such a reversible extension F ′. Let p be that of
theorem 3. For all |X| ≤ p and X /∈ XΣ×{0},∆,π×{0}, we let F ′(X) = X. We
now assume that |X| > p. Given L : XΣ,∆,π → XΣ,∆,π, we define L⋆ as the
function G ◦F . Now for all X ∈ XΣ′,∆,π′ , we define F ′(X) as the equivalence
class modulo isomorphism of the following graph pointed on ε:

[
⋃

C∈↑G

C

]
∪

[
⋃

u.Y ∈↓G

u.F ⋆(Ỹ)

]

where G = G(X). Notice that if G ∈ GΣ×{0},π×{0} then ↑G is empty and
↓G contains a single connected component ε.G (the graph itself), thus F ′

computes F . On the other hand, if G ∈ GΣ×{1},π×{1} then ↓G is empty and
↑G contains ε.G only, thus F ′ computes the identity. Hence this F ′ is a good
candidate for being a reversible extension of F . It remains now to check that
F ′ is causal, vertex-preserving and reversible.
[Causal] Shift-invariance, boundedness and continuity follow directly from
the shift-invariance, boundedness and continuity of both F and the identity.
[Reversible] Replace F by F−1 in the previous definition.

In order to obtain our circuit-like form for reversible causal graph dynam-
ics, we will proceed by reversible, local updates.

Definition 39 (Conjugate mark). Given a reversible extension (F ′, R′
•)

over XΣ′,∆,π′, we define the conjugate mark K as a dynamics (LK , SK
•) over

4.2. BLOCK DECOMPOSITION 69

XΣ′,∆,π′ as follows:

LK = F ′−1 ◦ Lµ ◦ F ′ and SK
X (u) = TF ′−1(Lµ(F ′(X))(S

µ

F (X)(R
′
X(u)))

where the function T• is such that (F ′−1, T•) is a CDG.

Notice that by Proposition 3, the local update blocks are local operations.
Moreover, since they are defined as a composition of invertible dynamics,
so they are. In order to represent the whole of an reversible causal graph
dynamics, it suffices to apply these local update blocks at every vertex.

Theorem 5 (Reversible localizability). For any reversible causal graph
dynamics (F,R•) over XΣ,∆,π, (F,R•) and (

∏
µ)(
∏

K) act the same on all
but a finite number of graphs, where K is the conjugate mark of a reversible
extension of F .

Proof. By theorem 3, there exists p > 0 s.t. if |X| > p, RX is invertible. On
these graphs, the action of (

∏
µ)(
∏

K) is equivalent to (
∏

µ)(F ′−1, R−1
•)(

∏
µ)(F ′, R•).

Therefore, given X s.t. |X| > p, we have X×{0} 7→ (F ′, R•)F (X)×{0}
7→
∏

µF (X)×{1} 7→ (F ′−1, R−1
•)F (X)×{1} 7→

∏
µF (X)×{0}.

Notice that for the finite number when the decomposition of theorem
5 does not apply, F is bijective. Therefore it just permutes those cases.
Thus, this theorem generalizes the block decomposition of reversible cellular
automata, which represents any reversible cellular automata as a circuit of
finite depth of local permutations. Here, the mark µ and its conjugate K
are the local permutations. The circuit is again of finite depth, a vertex u
will be attained by all those K that act over Xr′

u , where r′ is the locality
radius of K. Therefore, the depth is less than |π|r

′
. An example of such

a decomposition is described in Figure 4.5. Moreover, it is interesting to
notice that the construction proposed in this result is somehow simple than
the corresponding construction for reversible cellular automata. Indeed, our
marked graphs simply consist in the original graphs with an additional bit
of information on each vertex and each port. The classical construction
proposed in [?] changes the set of internal states Σ of each cell into the set
Σ2, which is much bigger. This is due to the fact that causal graph dynamics
are defined on every possible graph of our configuration space, allowing us
to simply remove the concerned vertex. For classical cellular automata, one
must replace the cell by another one instead of just removing it.

70 CHAPTER 4. REVERSIBLE CAUSAL GRAPH DYNAMICS

(1)

:a :b :a :b :a :b

u

:c
:c

v

w

(2)

:a :b :a :b :a :b

u

:c
:c

v

w

(3)

:a :b :a :b :a :b

u

:c
:c

v

w

(4)

:a :b :a :b :a :b

u

:d
:d

v

w
(5)

:a :b :a :b :a :b

u

:c
:c

v

w

(6)

:a :b :a :b :a :b

u

:c
:c

v

w

(7)

:a :b :a :b :a :b

u

:c
:c

v

w

(8)

:a :b :a :b :a :b

u

:c
:c

v

w

(9)

:a :b :a :b :a :b
:c
:c

Figure 4.5: Block representation of the moving head dynamics. (1) Initially,
no vertices are marked. (2) to (4) Application of Kv. First F is applied, then
v is marked, followed by the application of F−1. (5) to (7) Application of
Ku. (8) The graph once every K have been applied. The vertices just need
to be unmarked by the µ’s. (9) Altogether this implements one time step of
F.

4.3 Lifting the curse of vertex-preservingness

The curse of vertex-preservingness. When we first started studying
reversible instances of causal graph dynamics, we assumed that we had a
perfect example of such a dynamics. In [HM98], Meyer and al. introduced
a model of lattice gas, i.e. particles moving and interacting on a lattice,
where particles collisions induced local geometrical changes in the lattice.
This example, at least in their ad hoc formalism, seems to be reversible.
Figure 4.6 provides more details on this example. However, in section 4.1,
we proved that any reversible causal graph dynamics preserves the size of all
large enough graphs, which implies that this example can not be reversible
in our model.

And what if all graphs are infinite? Vertex-preservingness, by definition,
only concerns finite graphs. Let us imagine that every vertex of our graph is

4.3. LIFTING THE CURSE OF VERTEX-PRESERVINGNESS 71

:a :b :a :b:a :b :a :b

:a :b :a :b:a :b :a :b

:a :b :a :b:a :b :a :b

:a :b :a :b :a :b

{ba, ba.1} {ε} {1} {ab, ab.1}

:a :b :a :b

{ba, ba.1}
{ε, 1, ab, ab.1}

{ab.ab, ab.ab.1}

:a :b :a :b

{ba, ba.1} {ε, 1} {ab, ab.1}

Figure 4.6: Lattice gas automaton with dynamical geometry. Vertices are
arranged in lines of alternating port ab. Each vertex can carry travelling
particles, moving left or right (the black half disks). Only three different
neighbourhood are depicted here, as the others do not bring any additional
information. (1) When two particles meet on a vertex, the vertex is split
in two new vertices. (2) When two particles cross along an edge, the two
vertices concerned by the crossing are merged. (3) When alone, the particle
simply move left or right one step at a time. Notice that, in order to allow
the possible duplication of a vertex, vertices in the right hand side graphs
might have composed names of the form {u, u.1}, or simple names {u} or
{u.1}. This implies that the corresponding R• operator is not bijective.

connected to an infinite “pool” of hidden vertices. Now, creating or deleting
a new vertex simply comes down to extracting a vertex out of the pool,
or hiding one inside it (see Figure 4.7). That being said, one can imagine
going even further and altering the model itself in order to account for the
presence of such an invisible matter without having to restrict ourselves to
infinite graphs. This is what we call the “dark matter” approach.

Configurations. We define YΣ,∆,π to be XΣ,∆,π×(π
∗∪ω). These are pointed

graphs modulo, together with a translation of the pointer. The translation
is specified by the sequence of ports along which the pointer ought to be
moved. The element ω is short for all infinite chains of πω, as these will be

72 CHAPTER 4. REVERSIBLE CAUSAL GRAPH DYNAMICS

:a :b :a :b:a :b :a :b
:m

:m

:a

:m :b

:m

:m

:m

:m

:m

:a :b :a :b:a :b :a :b
:m

:m

:a

:m :b

:m

:m

:m

:m

:m

:a :b :a :b:a :b :a :b
:m

:m

:a

:m :b

:m

:m

:m

:m

:m

:a :b :a :b :a :b
:m

:m

:m

:m

{ba} {ε} {mm} {ab}

{mm.am} {mm.bm}

:a :b :a :b
:m

:m

:a

:m :b

:m

{ba} {ε} {ab.ab}

{ab}

{ab.mm}{mm}

:a :b :a :b
:m

:m

{ba} {ε} {ab}

{mm}

Figure 4.7: Lattice gas automaton with dynamical geometry, with dark
matter. This time, each vertex possess an infinite tree of fresh vertices (in
grey). The rule are almost the same, except the fact that the new vertex in
(1) is extracted out of the dark matter, and the deleted vertex of (2) is now
hidden in the dark matter. Notice that in this new rule, all vertices in the
right hand side graphs have simple names (implying the bijectivity of the
associated R• operator).

4.3. LIFTING THE CURSE OF VERTEX-PRESERVINGNESS 73

treated in the same manner.

Equivalent configurations. Notice that the specified translation is arbi-
trary and thus not necessarily a path of the graph. If it is part of the graph,
then the pointed-graph-modulo-with-translation naturally reduces to the cor-
responding translated pointed-graph-modulo-without-translation. More gen-
erally, if u ∈ X then

(X, u.v)→ (Xu, v).

On the other hand, if a ∈ π is not in X, then (X, a.v) cannot be reduced
and is said to be normalized. Clearly, every pointed-graph-modulo-with-
translation Y admits a unique normalized form Y ↓, obtained by reducing as
much as possible. We say that two pointed-graph-modulo-with-translation
Y and Y ′ are equivalent, and write Y

∗
↔ Y ′, if and only if Y ↓= Y ′↓.

Let E stand for (∅, ω). We add that

(X,ω)→ E (∅, v)→ E.

Disks and metric over configurations. For X in XΣ,∆,π, we define the
disk Xr as usual. This is extended to YΣ,∆,π as follows. Given Y = (X, u),
consider Y ↓= (X ′, u′). If |u′| ≤ r then Y r is defined to be (X ′r, u′). Else it is
just E. From this definition of disks, there immediately follows a notion of
metric on YΣ,∆,π. Namely, that Y and Y ′ are at a distance 2−r if and only r
is the greatest radius such that Y r = Y ′r. Notice that the metric is compact.
Dynamics and translation invariance. A dynamics is given by a function
F ′ : YΣ,∆,π → YΣ,∆,π such that

Y
∗
↔ Y ′ implies that F ′(Y)

∗
↔ F ′(Y ′).

It decomposes it as
F ′(X, u) = (F (X), RX(u)).

For comparison with respect to the previous formalism, RX has been re-
laxed to act over the whole of (π∗ ∪ ω) and not just from the vertices X
to those of F (X). The intuition is still that RX indicates how a transla-
tion u with respect to X turns into a translation u′ with respect to F (X).
This point becomes relevant to express translation invariance. A dynamics is
translation-invariant if and only if for all (X, u.v) with u ∈ X we have that

RX(u.v) = RX(u).RXu
(v).

74 CHAPTER 4. REVERSIBLE CAUSAL GRAPH DYNAMICS

Continuity and causality. A dynamics F ′ is continuous if and only if it is
continuous in the usual meaning of the term, i.e. with respect to the above-
given metric on YΣ,∆,π. Given that the metric is compact, this is equivalent
to uniform continuity. Now, consider (X, v) and (X, v′) normalized. We can
see that uniform continuity implies that for all n, there exists an m such
that RX(v)1...n is a function of v1...m. In order to leave the ‘dark matter’
untouched, we need to make this function trivial beyond a certain point.
Hence, the definition that a dynamics F ′ is causal if and only if it is shift-
invariant, continuous, and such that there exists b such that for all (X, u.v)
normalized with |u| = b, we have

RX(u.v) = RX(u).v.

4.4 Summary of results

We managed to generalize two fundamental results of cellular automata the-
ory to the model of causal graph dynamics. We proved that any bijective
causal dynamics admits an inverse causal dynamics, and that any reversible
causal dynamics admits a representation as a bounded depth circuit of local
reversible operations. Moreover, we proved that reversible causal dynamics
preserves the size of large enough graphs.

Chapter 5

Intrinsic universality

Intrinsic universality. When considering the problem of intrinsic simu-
lation inside a model of computation such as Turing Machines or cellular
automata, or in between models, the problem of qualifying the “structure”
of the computation arises. Indeed, intrinsic simulation is about simulating
an instance of a model while preserving the “structure” of the computation.
In the case of cellular automata for instance, where this type of universal-
ity has been intensively studied [GMRT11, BT09, DL09, Oll08, Mar07], it
is required that one must be able to obtain the simulated configuration by
grouping cells of the simulating configuration, encoding a simulated cell into
a block of fixed dimensions of simulating cells. In the case of causal graph
dynamics, there is no such notion as “grouping” cells, due to the heterogene-
ity of the configuration. However, another way of interpreting a cell grouping
in CA is to look at the global transformation used to encode the simulated
configuration. It is of the form E : ΣZ

1 → ΣZ
2 where Σ1 is the set of cells state

of the simulated automaton and Σ2 is the set of cells state of the simulating
automaton, and, as the grouping is homogeneous and local, it is continuous
(with respect to the metrics over ΣZ

1 and ΣZ
2) and shift-commuting (in an

extended way). In fact it is just a CA from one set of configurations to an-
other, possibly different, set of configurations. This is how we will proceed
to define our notion of intrinsic simulation and universality.

This chapter. In this chapter, after defining a notion of intrinsic univer-
sality for causal graph dynamics, we present the construction of a family of
intrinsically universal local rules. Due to the complexity of the construction
of this family, it is impossible to provide a formal proof of its universality.

75

76 CHAPTER 5. INTRINSIC UNIVERSALITY

This construction is followed by the definition of an universal construction
machine, describing a machine that is able to read as an input a description
of a local rule together with a graph and to construct the initial state of a
simulation of the application of the input local rule over the input graph.

The content of this chapter is based on [MM13] and [MM15], both co-
authored with Bruno Martin.

5.1 Intrinsic simulation and universality

Even though, we only defined continuity and shit-invariance for transforma-
tions from the set of generalized Cayley graphs XΣ,∆,π to itself, these defi-
nitions can be slightly altered to characterize continuity and shift-invariance
for a transformation from a set XΣ1,∆1,π1 to a set XΣ2,∆2,π2 . Indeed, defining
the continuity of such a transformation is immediate using the two appro-
priate metrics over XΣ1,∆1,π1 and XΣ2,∆2,π2 . Moreover, both definitions of
shift-invariance and boundedness do not make any assumption on the image
set of graphs on the considered transformation.

Definition 40 (Intrinsic simulation). A localizable dynamics (XΣ1,∆1,π1 , f1)
intrinsically simulates another localizable dynamics (XΣ2,∆2,π2 , f2) if and only
if there exists a continuous, shift-invariant, bounded, injective, locally com-
putable function E : XΣ2,∆2,π2 → XΣ1,∆1,π1 and a constant δ ∈ N such that,
for all graph X ∈ XΣ2,∆2,π2:

E ◦ F2(X) = F δ
1 ◦ E(X)

where δ corresponds to the number of steps needed to simulate one time step
of F2.

Now the definition of intrinsic universality comes naturally:

Definition 41 (Intrinsic universality). A localizable dynamics (XΣu,∆u,πu
, f)

is intrinsically universal if and only if, it intrinsically simulates any other lo-
calizable dynamics (XΣ,∆,π, f).

5.2. PRELIMINARY RESULTS 77

5.2 Preliminary results

Lemma 11 and lemma 12 are used to restrict the set of local rules we need
to simulate in our construction.

Lemma 11 (Radius 1 is universal). Let f be a local rule of radius r = 2ℓ

over XΣ,∆,π. There exists a local rule f ′ over XΣℓ+1,∆∪{⋆},πr of radius 1 such
that (XΣ×{1,...,ℓ},∆∪{⋆},πr , f ′) simulates (XΣ,∆,π, f).

Proof. Outline. Over the first i = 1...ℓ steps, each vertex will grow some
ancillary edges to, in the end, reach all neighbours in its neighbourhood of
radius r. More precisely, states of vertices are kept identical, whereas an
ancillary edge with state ⋆ is added between any two vertices at distance 2.
Moreover, the vertices count until stage ℓ. At this point, the neighbours that
were initially at distance r have become visible at distance one. The local
rule f can be applied, all ancillary edges are dropped, and all counters are
reset.

Lemma 12 (Label free is universal). Let f be a local rule of radius r over
XΣ,∆,π. There exists a local rule f ′ over X∅,∅,π∪Σ∪∆|π| such that (X∅,∅,π′ , f ′)

simulates (XΣ,∆,π, f), where π′ = π ∪ Σ ∪∆|π|.

Proof. Outline. The presence of a label i ∈ Σ on a vertex will be encoded
by the presence of a dangling vertex on port i of this vertex. In the same
fashion, if an edge labelled with j ∈ ∆ connects two ports u : a and v : b,
then vertex u will have a dangling vertex on port j in its ath port component
and v a dangling vertex in its bth port component. Notice that not all graphs
are valid encodings, e.g. if a vertex has a dangling vertex on port i ∈ Σ and
on port j ∈ Σ at the same time. Nevertheless this encoding verifies all the
require properties as it is injective, continuous and shift-invariant.

Notice that these two constructions are not incompatible. Composing the
two in the right order leads to the fact that any local rule can be intrinsically
simulated by a local rule of radius one with no labels. In other words, the
subset of localizable dynamics of radius one with no labels is intrinsically
universal.

Corollary 1 (Radius 1 label free is universal). Let f be a local rule of
radius r over XΣ,∆,π. There exists a local rule f ′ over X∅,∅,π′ of radius 1 such

78 CHAPTER 5. INTRINSIC UNIVERSALITY

that (X∅,∅,π′ , f ′) simulates (XΣ,∆,π, f).

5.3 Construction of a family of universal rules

We will now describe a family of intrinsically universal local rules (fd,XΣu,∆u,πu
)d

such that fd simulates all rules over X∅,∅,π with |π| = d. More precisely, all
of these universal rules will act upon the same set of graphs XΣu,∆u,πu

, and
will only differ in their radius. In order to define these rules, we are faced
with several problems:

• Our universal rules all act upon a given set of graphs of bounded degree
|πu|. We need to be able to encode any graph of bounded degree into
our set of graphs XΣu,∆u,πu

. Subsection 5.3.1 tackles this issue and
introduces an encoding of any graph of bounded degree in a graph of
degree 3.

• There is an unbounded number of local rules of radius 1 with no labels.
Hence, the information of which local rule is to be simulated can not be
stored as a label in Σu. Subsection 5.3.2 offers an encoding of any local
rule in a subgraph whose purpose is to be attached to every simulated
vertex.

• In order to simulate more than a single time step of the local rule,
we must be able to create several instances of the graph containing
its encoding and transmit these instances to the descendants of the
simulated vertex. Subsection 5.3.3 offers a way to duplicate a subgraph
describing a local rule, together with some synchronization tools.

A description of the functioning of the universal local rule is given in sub-
section 5.3.3. In this section we might refer to simulated vertices as “meta”-
vertices since each of these vertices will be encoded in a graph structure.

5.3.1 Graph encoding

We choose the following encoding to represent any graph of bounded degree
π in a graph of degree 3. For readability purpose, we will give explicit
names to the 3 ports used in the following definition. The set of ports in the
encoding can be assimilated to {0, 1, 2}. The three port are: previous, next

5.3. CONSTRUCTION OF A FAMILY OF UNIVERSAL RULES 79

and neighbour. The set containing those three ports will be referred to as
πgraph. We define the set of labels Σgraph as the set {VERTEX,PORT}.

Definition 42 (Graph encoding). Given a set of ports π, consider the
transformation Egraph

π : Xπ → XΣgraph,πgraph
defined as follows:

• To each vertex v in X, corresponds π+1 vertices v0, ..., vπ in Egraph
π (X)

and the following edges: for all i ∈ {0, ..., |π|}, {vi : next, vi+1 :
previous}. vi has label PORT for i < |π| and v|π| has label VERTEX.

• To each edge {u : i, v : j} in X corresponds an edge {ui : neighbour, vj :
neighbour}.

The idea is to split the encoded vertex into |π| + 1 vertices and arrange
them into a ring. Each vertex vi for i < |π| represents a port of the encoded
vertex. The last vertex vπ is here to mark the beginning of the ring (the vertex
representing port 0 will be found on its port next). Figure 5.1 describes the
encoding for graphs with |π| = 3.

Lemma 13 (Egraph
π is a good encoding). Given π, Egraph

π is continuous,
shift-invariant and injective.

Proof. The proof of this result is pretty straightforward. As Egraph
π acts lo-

cally on the graph, continuity and shift-invariance are instantaneous. More-
over, any change in the original graph will result in a change in the encoded
graph as all information on the topology is preserved.

5.3.2 Local rule encoding

[General structure] We need to encode any local rule of radius 1 without
label into a subgraph. A rule of degree |π| can be seen as an array of fixed
length (the number of possible neighbourhoods) containing all the possible
outputs of the local rule. We choose to arrange all these outputs along a line
graph together with a description of the corresponding neighbourhood. The
description of the neighbourhoods is detailed in subsection 5.3.3. Figure 5.2
represents such an encoding for the local rule inducing the turtle dynamics.

[Addresses and identification] We also need to identify a meta-vertex of
an output to another meta-vertex in another output, in order to proceed to a

80 CHAPTER 5. INTRINSIC UNIVERSALITY

a)

b) c)

:2

:0

N

P

NP

N

P

N P

N

P

N

P

N P

N

P

NP

N

P

Figure 5.1: In this example, π = {0, 1, 2}. a) represents a graph composed
of two vertices connected through ports 2 and 0. b) represents the encoding
of this graph. Each vertex is represented by 4 vertices forming a ring. The
darkest vertices have label VERTEX while the grey vertices have label PORT.
The ports used in the ring are next and previous (N and P). The edge linking
the two vertices is represented by an edge between the third vertex of the
first ring (representing port 2 of the first vertex) and the first vertex of the
second ring (representing port 0 of the second vertex). Finally, c) presents
a lighter representation of the same encoding where an arrow indicates the
orientation of the rings. For the sake of clarity, this latter representation will
be used in the following figures.

graph union. This is done by adding to each vertex labelled by VERTEX a
line graph containing a path towards the other vertex. Figure 5.3 represents
the graph encoding the turtle local rule with these addresses. Figure 5.4
represents the graph encoding the inflating line local rule.

[Inheritors and disowned vertices] Inside an output subgraph, there are
two types of meta-vertices: The ones that need to receive a copy of the local
rule graph and the others. We use a product label to mark the meta-vertices
that will inherit of a copy of the local rule. In the example of the turtle, all

5.3. CONSTRUCTION OF A FAMILY OF UNIVERSAL RULES 81

0

1

Figure 5.2: Encoding of the turtle rule. Black vertices are vertices labelled
by VERTEX, dark grey vertices are labelled by PORT. Light grey vertices
are part of line structure onto which all outputs are attached. Vertices on
the left of the vertical line are labelled by bits and correspond to the number
of the outputs in an enumeration of all possible neighbourhoods. We chose
not to use the neighbourhood encoding used in 5.3.3, as there are only 2
different neighbourhoods. Finally the square vertex represents the top of the
line structure.

0

1

∅ ∅

↑ → | → ↓

Figure 5.3: Encoding of the turtle rule including the addresses. The empty
set label is used to specify that the meta-vertex does not need to be identified
to another meta-vertex. When the address is not empty, it is encoded in a
line graph using 4 different labels: ↑, →, ↓ and |. ↑ indicates to move on
the father meta-vertex. ↓ indicates to go down from a father meta-vertex to
its output. → indicates to travel along the port NEXT in a meta-vertex. |
indicates to travel along the port neighbour between two meta-vertices.

82 CHAPTER 5. INTRINSIC UNIVERSALITY

meta-vertices are marked while in the example of the inflating line, only the
meta-vertices having an empty address are marked.

5.3.3 Description of an intrinsically universal rule

Applying a local rule to every vertex in a graph consists in several stages:

(i) Each vertex observes its neighbourhood,

(ii) Each vertex deduces the output subgraph it has to produce according
to the local rule,

(iii) A graph union of all these subgraphs is computed to produce the final
graph.

The universal local rule implements those three stages, with an additional
stage:

(ii)∗ The encoding of the local rule is duplicated into each meta vertex of
the chosen output subgraph.

Moreover, a universal local rule must synchronise the simulation in every
meta-vertex in order to perform the graph union only when all subgraphs
are chosen and all duplications are over.
We will detail how each of these stages are performed by the universal local
rule.

[Neighbourhood observation] First the meta-vertex proceeds to generate
a matrix of vertices of size |π|+ 1 to store the connectivity of its neighbour-
hood. A new vertex is attached to the vertex labelled VERTEX and starts
moving along the ring of vertices labelled PORT growing the matrix in two
passes. Figure 5.5 describes this growing process on a meta-vertex of degree
9.
Once the matrix is built, the machine vertex starts a depth first search (DFS)
of depth 1 on the meta vertex it is attached on. It grows 2 edges (or arms)
that will travel in the graph and four unary counters to keep track of the
DFS status. The unary counters are line graphs of length |π| + 1 and |π|.
The two counters of length |π| + 1 keep track of which meta-vertex can be
found at the end of each arm while the two counters of length π keep track
of the ports currently considered. Figure 5.7 represents the structure of a

5.3. CONSTRUCTION OF A FAMILY OF UNIVERSAL RULES 83

counter, and figure 5.8 describes the structure used to store the current state
of the DFS. While visiting a vertex ui, its port pj and a vertex uk and its
port pl, an edge is created between cells (i, j) and (k, l) of the matrix if the
edge {ui : pj, uk : pl} is present in the graph. Once the DFS is over, the
matrix contains enough information to determine the neighbourhood of the
vertex. Figure 5.6 presents the two different matrices for neighbourhoods in
graphs of degree 1.

Note on the description of the neighbourhood. The usage of a matrix to
encode the neighbourhood of a meta-vertex is the most general solution we
can implement. However, in most of the cases, we do not need that much
information. In the two examples we develop in this section (the turtle and
the inflating line), it is only required to test for the existence of a potential
neighbour on each port of the meta-vertex, and the local rule does not require
to know its complete connectivity. Hence, in both local rule encodings, we
will use an ad hoc encoding of the neighbourhoods. For the turtle rule, we
will use a single bit to represent the two possible neighbourhoods. For the
inflating line, a string of bits is used. For each port of the vertex we proceed
as follow: If there is no neighbour on this port we add a 0 to the string. If
there is a neighbour on the port, we add a 1 to the string, followed by a 0 or
a 1 depending on the port at the other end of the edge.

[Choosing the output subgraph] After recording the local connectivity,
the machine vertex starts to travel down the local rule encoding and compare
this recording to the information attached to each output, stopping when the
two are matching.

[Duplicating the local rule encoding] The machine then initiates a DFS
on the chosen output graph. The purpose of this DFS is to search for marked
meta-vertices. During the DFS, every time a marked meta-vertex is met, the
DFS is paused and a new DFS starts from the root of the local rule encoding.
This new DFS will explore the local rule encoding while constructing a new
copy of it. This can be done by maintaining a stack structure containing
the path followed in the graph during the DFS. When the machine encoun-
ters an edge leading toward a previously visited vertex, it uses this stack to
backtrack and find the right edge to create in the new version of the graph.
These two DFS act on graphs of degree 3 and 4 and thus do not require the
same counter structures as the DFS in the neighbourhood observation stage,
as everything can be stored using a bounded number of labels in the vertices.

84 CHAPTER 5. INTRINSIC UNIVERSALITY

This new version of the local rule encoding is then attached to the marked
meta-vertex and the first DFS is resumed.

[Graph union and vertex identification] Once the DFS is over, meta-
vertices of the output graph start moving in the graph according to the
addresses attached to them. Meanwhile, the local rule encoding is reduced
to get rid of all the unused outputs, leaving the only chosen output attached
to the simulated meta-vertex.

[Merging two meta-vertices] After moving according to its address, a
meta-vertex will meet its target meta-vertex and they will try to merge.
Notice that the target meta-vertex might also try to merge with a third
vertex, and so on, forming a sequence of meta-vertices that must be merged
in a single meta-vertex. This can lead to two very distinct situation:

• The sequence is not cyclic,

• The sequence forms a cycle.

In the first case, the first vertex of the sequence will perform the merging,
followed by the second and so on until all the meta-vertices are merged as a
single meta-vertex. In the second case, no meta-vertex can decide to start
the merging process as every meta-vertex sees itself in the middle of the se-
quence. Meta-vertices can easily decide whether this is the case by growing a
new edge whose extremity will travel along the sequence. If the edge reaches
the end of the sequence, then the merging process will start. If not, a syn-
chronization process will start.

[Synchronization process] If synchronization is required during the merg-
ing process, then we can assume that these meta-vertices are synchronized
(i.e. they decide to start the merging process exactly at the same time).
Indeed, if they were not synchronized, then the symmetry could have been
broken in the local rule encoding, as only the neighbourhood of simulated
meta-vertex has an influence on the time step at which meta-vertices of its
local rule encoding decide to merge. Two problems now arise:

• In order for the cycle to collapse in a single meta-vertex in a single
time step, the universal local rule must be able to “see” the whole
cycle, hence its radius must be of at least half the length of the larger
possible identification cycle.

5.3. CONSTRUCTION OF A FAMILY OF UNIVERSAL RULES 85

• Meta-vertices are not composed of a single vertex. They contain at least
|π|+ 1 vertices and might also contain a local rule encoding. All these
vertices need to be simultaneously merged with their corresponding
vertices in the previous and next meta-vertices in the merging cycle.

The first problem is easy to solve as we are constructing a family of intrinsi-
cally universal local rules. A given local rule can only produce merging cycles
of bounded length, hence will be simulated by one of our universal local rule.

The second problem can be solved using a solution of a problem known
as the Firing Squad Synchronisation Problem (FSSP) over graph automata
[RFH+72, Maz88]. The construction uses labels on the vertices of a graph in
order to synchronize all the vertices using only local communication between
vertices. Moreover, the solution only depends on the degree of the graph to
synchronize. In our case, we need to synchronize meta-vertices and their local
rule encodings, which are of bounded degree 4. The identification process
will be performed as follows:

• Meta-vertices will detect that they are in a cycle of identification,

• Meta-vertices start a FSSP on their main vertex,

• The FSSP synchronizes every vertex composing the meta-vertex and
its potential local rule encoding,

• While propagating the FSSP, new edges are built between vertices of
the meta-vertex and their corresponding vertices in the previous and
next meta-vertices.

• When all vertices are synchronized, the universal local rule performs
a merging of the vertices, leading to a single meta-vertex and its local
rule encoding.

Figures 5.9 and 5.10 describe the different possible case of merging sequences
and the synchronization process. When all mergings are performed, the orig-
inal meta-vertices are destroyed, leaving only the new graph and can be
restarted to simulate the next time-step.

86 CHAPTER 5. INTRINSIC UNIVERSALITY

[Overall synchronization and counter structures] One last step of syn-
chronization is required to allow faster meta-vertices to wait for slower meta-
vertices. This is done by adding to each local rule encoding a counter struc-
ture. This counter structure implements a binary counter decreasing its value
at each time step. When the value 0 is reached, all meta-vertices finalize the
merging process and generate a new automaton to pursue the simulation.
Notice that the counter structure is necessarily a (at least) binary structure,
as it must be duplicated together with the local rule encoding. If the counter
was of the unary type, it could require a linear time to copy it, hence it will
necessarily finish counting before the end of the duplication.

Figures 5.11 and 5.12 describe the complete simulation of one time step
of the turtle dynamics over the graph containing two vertices.

5.4 Building instances: Universal construct-

ing machine

While this formalism of intrinsic universality captures the idea we have in
mind of what would be nowadays called an interpreter, another less for-
mal definition suggested by von Neumann, namely the universal construc-
tion machine, is closer to the notion of a compiler. Von Neumann’s idea,
directly inspired by Turing’s universal machine, is that there must exist a
machine (not necessarily a Turing machine) which, when provided a suit-
able description of an instance of a computational model, constructs a copy
of it. This definition is particularly useful when considering the problem
of self-reproduction [Arb88]. The most classical example to illustrate this
definition is the uniform generation of Boolean networks where a Turing ma-
chine receives as an input the standard encoding of the circuit and its size and
explicitely generates the corresponding Boolean network [BDG88]. Though
detached from any mathematical formalism, this notion particularly fits to
our model, in as much as we are allowed to modify the topology and have
enough freedom to design such a machine inside the model itself. In our
case we can imagine having a “machine” (in fact, just a vertex) reading two
“tapes” (linear graphs) containing a description of a graph and a description
of a local rule, i.e. of another graph encoding the local rule as described
above. The goal is then to build the described graph and to attach to each
of its vertex a local rule encoding.

5.4. BUILDING INSTANCES: UNIVERSAL CONSTRUCTINGMACHINE87

5.4.1 Encoding the initial graph

The usual way to encode a graph into a linear structure is to perform a DFS
on the graph while remembering the edges leading to any previously visited
vertex. The alphabet we use to encode the initial graph of a dynamics of
degree |π| and of labels Σ is the following:

Aπ = π2 ∪ {$, ; , |} ∪ Σ

With Σ the finite set of labels of the vertices and {$, ; , |} some arbitrary
symbols used as delimiters (we need 3 of them). Figure 5.13 gives an example
of the encoding of a graph with π = {1, 2, 3}.

The string encoding the graph is a sequence of words, one for each vertex,
describing the backward edges (ie the edges leading to one of the previously
visited vertices) and the forward path leading to the next vertex visited by
the DFS. The structure of a word is described as follow:

$σ (i1, j1)

n1︷︸︸︷
| . . .(i2, j2)

n2︷︸︸︷
|; (s1, t1)(s2, t2) . . . (sn, tn) $next word...

where:

• $ plays the role of word separator.

• σ ∈ Σ is the label of the vertex.

• (i, j)

k︷︸︸︷
| . . . describes the existence of an edge from port i of the current

vertex to port j of the kth vertex when backtracking in the DFS.

• ; is a separator between the backward edges and the forward path.

• (s1, t1)(s2, t2) . . . (sn, tn), with (si, ti) ∈ π2, describes the path from the
current vertex to the next vertex in the DFS.

The backwards edge (i, j)

k︷︸︸︷
| . . . is described using a unary description of the

number of times a backtracking has to be made in the DFS. This unary en-
coding is here to simplify the functioning of the universal machine described
in the next section and does not change the time complexity of the con-
struction of the graph. Notice that, as all our graphs are generalized Cayley
graphs, they are pointed and thus this encoding is unique (the root of the

88 CHAPTER 5. INTRINSIC UNIVERSALITY

DFS being the empty path ε). This encoding is not the only way to encode
a graph in a string and maybe not the most efficient way but it conveniently
fits to our needs while being easy to describe. We could have equivalently
defined our encoding using a Breadth First Search algorithm instead of a
DFS without changing the complexity of the encoding.

This encoding is both injective and computable (it simply consists in a
DFS).

In the following, the encoding of a generalized Cayley graph X in a linear
graph is written 〈X〉. Using the construction of the previous section, we can
also define the encoding of a local rule f in a linear graph: 〈f〉. It consists
in two successive encoding: first the local rule is encoded into a graph of
XΣu,∆u,πu

which, in turn, is encoded into a linear graph.

5.4.2 Universal machine

The universal machine we design is implemented in the model itself. It con-
sists in a single vertex to which the two encodings 〈X〉 and 〈f〉 are connected.

The universal machine can now read the string 〈X〉 describing X in order
to build the graph. While building it, each vertex receives a copy of the
local rule encoding. The universal machine is very similar to the machine
performing the stage of duplication of the local rule encoding of the universal
dynamics described in subsection 5.3.3. However, its functioning is simpler
as the input consists in an adequate description of the graph to build instead
of the graph itself.

The universal machine itself is a vertex of degree 7:

• Three edges for the inputs: one for 〈X〉 (read only) and two for 〈f〉
(read and top),

• Two edges for manipulating the graph being constructed (one pointing
at the last added vertex and another travelling along the DFS tree to
create backward edges),

• Two edges for manipulating a stack used to store the sequence of paths
linking to consecutive vertices in the DFS (one pointing at the start of
the stack, the other reading it),

The execution of the universal machine is described by a simple local
rule acting as the identity everywhere except in the neighbourhood of the
machine itself. The machine proceeds as follow:

5.5. SUMMARY OF RESULTS AND OPEN PROBLEMS 89

• If the symbol $ is read, followed by σ, it adds the label σ in the last
added vertex,

• If (i, j)

k︷︸︸︷
| . . . is read, the machine uses the stack to backtrack k times

in the DFS tree and add the edge (i, j) between the last added vertex
and the vertex reached at the end of the backtracking.

• If the letter ; is read, all backward edges have been added,

• After letter ;, the machine read the (si, ti) one by one, following the
described path, whose last edge has to be created together with a new
vertex.

5.5 Summary of results and open problems

In this work, we provide a definition of intrinsical simulation and intrinsical
universality for causal graph dynamics. We then construct a family of in-
trinsically universal instances of this model. All the local rules of this family
act on the same set of graphs and only differ in their radius.
This construction is in no manner optimal, and can still be optimized in
various ways:

• One could achieve a similar result with a construction on graphs of
smaller degree, and with a smaller label set,

• The time-complexity of the simulation can probably be decreased by
optimizing the structure of the graph encoding and the local rule en-
coding. For instance one could imagine using a set structure to encode
the local rule, changing a linear access time (in the number of possible
neighbourhoods) in a logarithmic access time.

Moreover, it seems that this is the best result we can achieve with this kind
of construction, as it seems impossible to construct a unique intrinsically
universal rule.
(Non) existence of a single universal rule. The construction presented
in section 5.3 describes a family of intrinsically universal local rules, and not
an universal local rule. All local rules in this family act on the same set
of graphs, and only differ in their radius. Having universal local rules with

90 CHAPTER 5. INTRINSIC UNIVERSALITY

arbitrary large radius is only required in the last part of the construction,
for the merging process. When meta-vertices decide to merge into a single
meta-vertex, and the merging sequence forms a cycle, the local rule must be
able to either:

• order the meta-vertices and proceed to merge them one-by-one accord-
ing to that order

• or “see” all the meta-vertices, synchronize them, and proceed to the
merging in one time step.

The latter case is only possible if the radius of the local rule is large enough,
and that is the solution we adopted here. In the former case however, we must
order meta-vertices that are descendant of different vertices of the simulated
graph. This requires to be able to unambiguously order the meta-vertices in
any disk of radius one of our simulated graph. This is equivalent to have a
clean coloration of the simulated graph. The coloration will then give us a
way to totally order the descendants of the meta-vertices, and hence gives
us a way to proceed to the merging without requiring any synchronization
process.
However, to use a clean coloration, we must prove that any local rule can be
modified to take the coloration into account and maintain it over time. This,
in turn, requires to be able to locally break the symmetries in the image
graph, which might be impossible for some graphs.
Hence, it seems impossible to construct a unique intrinsically universal rule,
at least using this type of constructions.

Notice that, although we need a family of instances to simulate all the
possible instances, most of the “natural” instances can be simulated by the
universal rule that allows merging sequence of arbitrary length and only
forbids merging cycles of length greater that 4, i.e. the universal local rule
of radius 2.

5.5. SUMMARY OF RESULTS AND OPEN PROBLEMS 91

∅∅

∅

∅

↑→|→→↓

∅

∅

↑ → | → ↓ →

→|→→

∅

∅

↑→→|→→

↓

∅

∅

↑ → → | → ↓

→|→

∅

∅

↑→|→→↓

↑

→

→

|→

→

↓

∅

∅

↑ → | → → ↓

→→|→

↑

→

→

| →

↓

∅

∅

↑→|→→↓

↑

→

→

|

→

↓→

→

|

→

∅

∅

↑ → | → → ↓

→→|→

↑

→

→

|

→

↓ →

→

|

→

Figure 5.4: Encoding of the inflating line rule including the addresses. There
exists 9 different neighbourhoods of radius 0 on graphs of degree 2, thus the
presence of 9 different outputs in the encoding. Numbering of the possi-
ble outputs are neglected here as they do not bring any information to the
understanding of this encoding.

92 CHAPTER 5. INTRINSIC UNIVERSALITY

a)
c)

b)

d)

e)

f)

g)g)

i)h)

Figure 5.5: Growth of the connectivity matrix. A “machine” vertex starts
to run along the ring and for each vertex it passes, adds a new vertex to
a line graph: a) At first the line graph is empty and the machine vertex is
attached on the VERTEX vertex. b) After three steps. c) After 10 steps,
the machine vertex is back on the first vertex and start the second pass. d),
e), f), g) represent the first 4 steps of the second pass. The machine sends a
signal (in grey) that triggers the growth of each column while moving along
the ring. h) represents the 11th step where the signal reaches the last column
and the machine arrives at the VERTEX label again. The machine sends an
“end” signal to stop the growth of the columns. i) represents the final matrix
(after 20 steps).

5.5. SUMMARY OF RESULTS AND OPEN PROBLEMS 93

Figure 5.6: The two matrices encoding respectively the neighbourhood where
no neighbour is present, and the neighbourhood where another vertex is
present on the single port. In the first graph, the bottom right vertex is
crossed to indicate that there is no “second” vertex in the neighbourhhod.

94 CHAPTER 5. INTRINSIC UNIVERSALITY

Top

Next

Prev.

Read

n

Figure 5.7: A counter structure.
It consists in a line graph of the
appropriate length. The origin of
the line can grow an arm to read
the counter, one vertex at a time.
It is easy for an automaton to
grow a counter of the appropriate
size by running along a meta-vertex
and generating a new vertex for
each visited port (see matrix gener-
ation). All vertices composing the
counter have the same label.

vertex on port :0

port :2 of this vertex

Figure 5.8: DFS structure for
the neighbourhood exploration of a
vertex of degree |π| = 4. At the
top: 4 unary counters structure.
The DFS explores the neighbour-
hood of the center vertex by con-
sidering every possible pair of ver-
tices (including the center vertex,
as there might be loops the graph).
The two center counters are used
to keep track of which vertices are
currently being visited. The two
smaller counters are here to keep
track of which port is currently con-
sidered in each of these vertices.
Here, the currently considered pair
is composed of the “center” vertex
and its neighbour of port : 0 and
their ports :3 and :2.

5.5. SUMMARY OF RESULTS AND OPEN PROBLEMS 95

1 2

1 2 n− 1 n

Figure 5.9: Different types of merging sequences. The two top cases are
solved by ordering the vertices according to the sequence, and then having
the first one merged to the second one, and so on. In the last case, the
sequence forms a cycle, and a synchronization is necessary to perform the
simultaneous merging of the cycle.

96 CHAPTER 5. INTRINSIC UNIVERSALITY

local rulelocal rule
local rule

local rulelocal rule
local rule

Figure 5.10: Synchronization process of three meta-vertices and their local
rule encodings. All meta-vertices start a FSSP on their vertices. At the
beginning, only the “main” vertex is connected along the merging cycle to the
others “main” vertices (top graph). As the FSSP is propagated, the vertices
connect themselves to their corresponding vertices in the previous and next
vertices. The bottom graph describes the same graph, two propagation steps
later. When the FSSP is completed, all vertices “fire” exactly at the same
time and perform a merging along all the built cycles, resulting in a single
meta-vertex and its local rule encoding.

5.5. SUMMARY OF RESULTS AND OPEN PROBLEMS 97

:0 :0

0

1

∅ ∅

↑ → | → ↓

0

1

∅∅

↑→|→↓

Figure 5.11: A graph of degree |π| = 1 and its encoding together with turtle
local rule encodings. Each of the two meta-vertices receive a version the local
rule encoding. Once again, the description of the different neighbourhoods
in the local rule encoding is not made using matrices, as there are only two
possible cases, instead we used single digits. Here the neighbourhood with
only one single vertex is encoded by a 0 while the neighbourhood with two
vertices is encoded by a 1.

98 CHAPTER 5. INTRINSIC UNIVERSALITY

(a) (b)
1 1

0

1

∅ ∅

↑ → | → ↓

0

1

∅∅

↑→|→↓

0

1

∅ ∅

↑ → | → ↓

0

1

∅∅

↑→|→↓

(c) (d)

0

1

∅ ∅

↑ → | → ↓

0

1

∅∅

↑→|→↓

0

1

∅∅

↑→|→↓

0

1

∅ ∅

↑ → | → ↓

↑→|→↓↑ → | → ↓| |

0

1

∅∅

↑→|→↓

0

1

∅ ∅

↑ → | → ↓

(e) (f)

0

1

∅∅

↑→|→↓

0

1

∅ ∅

↑ → | → ↓

0

1

∅ ∅

↑ → | → ↓

Figure 5.12: Steps of the simulation of the turtle local rule. (a) After
the neighbourhood exploration. The two automata attached to each meta-
vertices have detected the presence of another meta-vertex in the neighbour-
hood, and thus generated a vertex labelled 1. (b) The automaton travelled
down the local rule and chose the second output subgraph. They will then
start a DFS on the chosen subgraph. (c) the DFS detected a meta-vertex
and decided to duplicate the local rule and attach a copy to it. (d) The DFS
is over, the local rule is destroyed and the identification process is running.
The automaton is on his way to reach the meta-vertex at the end of the
address attached to the meta-vertex of the output subgrah. Two symbols of
the address have been read: ↑ and →. (e) After reading the address the two
meta-vertices are pointing toward each other and start the merging process.
(f) After synchronization, the two meta-vertices and their local rule encod-
ings are merged, and the simulation is over. To restart the simulation a new
automaton can be attached to the meta-vertex.

5.5. SUMMARY OF RESULTS AND OPEN PROBLEMS 99

0

0

1

1

ε

: 2

: 3

: 3

: 2

: 1

: 1 : 1

: 1

: 2

: 3

Figure 5.13: Generalized Cayley graph with set of port π = {1, 2, 3}
and with labels Σ = {0, 1}. The incoming arrow on the top-left
vertex indicates the pointed vertex ε. Its encoding is the string:
$1; (1, 1)$0; (2, 3)$0(2, 3)||; (1, 1)$1(2, 3)||;

100 CHAPTER 5. INTRINSIC UNIVERSALITY

Chapter 6

Causal dynamics of discrete
geometrical spaces

Motivations. The motivation for developing this model of causal graph
dynamics was to “free cellular automata off the grid”, so as to be able to
model any situation where a dynamics acts over a graph synchronously and
locally, leading to changes in the topology, i.e. the notion of who is next
to whom. When first introduced in [AD12], two examples were presented,
both representing a distinct class of problems whose understanding might
evolve through this model. The first example is that of a mobile phone
network: mobile phones are modelled as vertices of the graph, in which they
appear connected if they can call each other, i.e. one of them has the other
as a contact. The second example is that of particles lying on a smooth
surface and interacting with one another, but whose distribution influences
the topology the smooth surface (cf. Heat diffusion in a dilating material, or
even discretized General Relativity [Sor75]). Causal graph dynamics seems
quite appropriate for modelling the first situation (or at least a stochastic
version of it). Modelling the second situation, however, is not a short term
perspective.

Are graphs enough? One of the main difficulties we face is that having
generalized cellular automata to arbitrary graphs, we lost the capacity of
interpreting our configurations as surfaces (for grids) or, more generally, as
spaces of a given dimension. There exist, however, number of formalisms de-
scribing discrete (or “combinatorial”) manifolds, that are very close to graphs
(Abstract simplicial complexes, CW-complexes...). These work by consider-

101

102 CHAPTER 6. CAUSAL DYNAMICS OF DISCRETE SPACES

ing a collection of “small” n-dimensional spaces and glueing them together,
with some constraints, to form an approximation of a smooth manifold. The
goal of this chapter is to study a correspondence between our model of graph
and these objects, trying to define what could be causal transformations of
discrete spaces. Section 6.1 focuses on the 2−dimensional case, where we
manage to give a definition of causal dynamics of discrete surfaces. Section
6.2 generalizes some of these results and states the next hurdles to the def-
inition of causal dynamics of discrete spaces. To simplify the notation and
focus on the interesting aspect of this work, we dropped the formalism of gen-
eralized Cayley graphs and went back to the formalism of [AD12]. All the
results can be easily extended to generalized Cayley graphs and the definition
of localizable dynamics introduced in chapter 3.

The content of this chapter is based on [AMW13], co-authored with Pablo
Arrighi and Zizhu Wang.

6.1 The 2−dimensional case

In the 2−dimensional case, we want to define a correspondence between
graphs of degree |π| = 3 and 2D CW complexes. In this formalism, a
discrete surface is represented using triangles (2D simplices, i.e. the simplest
2−dimensional objects) glued along their facets. In this section, all graphs
are of degree 3 with π = {a, b, c}.

6.1.1 Surfaces as Graphs

Correspondence. The straightforward way is to map each triangle to a
vertex, and each facet of the triangle to an edge. The problem, then, is that
we can no longer tell one facet from another, which leads to ambiguities (see
Fig. 6.1 Top row.).

A first solution is to consider 2D coloured simplicial complexes instead.
In these complexes, each of the three facets of a triangle has a different colour
amongst {a, b, c}. Now each triangle is again mapped to a vertex, and each
facet of the triangle to an edge, but this edge holds the colours of the facets
it connects at its ends (see Fig. 6.1 Bottom row.).

The following provides a formal interpretation of those graphs into CW -
complexes.

6.1. THE 2−DIMENSIONAL CASE 103

b
a b

a c
b

c

a

c

b

c

a

→֒ ←֓

→֒ ←֓6=
b

a b
a

b

c

c

a

c

c

b

a

a

bc

c

a b

b

a c

c

a b

a

bc

c

a b

b

a c

c

b a

Figure 6.1: Complexes as graphs. Top row. The straightforward way to
encode complexes as graphs is ambiguous. Bottom row. Encoding coloured
complexes instead lifts the ambiguity. However, the fact that the extreme
triangles share one point or not, is less obvious in the graph representation.

Definition 43 (Interpretation). Given a graph G, its interpretation as a
CW -complex K(G) is such that:

• its set of triangles K2 is V (G).

• its set of segments K1 is the quotient of V (G) : π with respect to the
equivalence: u : p ≡1 v : q if and only if {u : p, u : q} ∈ E(G). Elements
of K1 are denoted u : p, to distinguish them from the following:

• its set of points K0 is the quotient of V (G) : π with respect to the
equivalence: u : p ≡0 v : q if and only if {u : (p+1), v : (q−1)} ∈ E(G).

A segment u : p has points {u : (p+ o) modulo ≡0 | o ∈ {1, 2} }.
A triangle u has segments {u : p modulo ≡1 | p ∈ π }. Notice that segments
u : p and u : q have common point u : p ∩ q.

This notion of coloured simplicial complex is not so common, however. It
is more common to consider a version of coloured complexes where triangles
can rotate freely, i.e. where we can permute the colours: a for b, b for c, c for

104 CHAPTER 6. CAUSAL DYNAMICS OF DISCRETE SPACES

a

b c

b

a c

c

ab

a

bc

Figure 6.2: Complexes, Coloured complexes, Oriented Complexes

a, so that each triangle has a cyclic ordering of its facets but no privileged
facet a. The cyclic ordering is then interpreted an orientation: when two
facets are glued together in the complex, their orientation must be opposed,
so that the two adjacent triangles have the same orientation. This leads to
oriented 2D simplicial complexes. Fig. 6.2 summarizes the three kinds of 2D
simplicial complexes we have mentioned. Definition 1 captured 2D coloured
complexes as graphs. How can we capture oriented 2D simplicial complexes
as graphs?

We need to define rotations of the vertices of the graphs in a way that
corresponds to rotating the triangles of coloured complexes. Namely, vertex
rotations simply permute the ports of the vertex, whilst preserving the rest
of the graph:

Definition 44 (Vertex Rotation). Let pports be some cyclic permutation
over {a, b, c}, and plabels be some bijection from Σ to itself such that p3labels =
id. Let G be a graph and u ∈ V (G) one of its vertices. Then ruG = G′ is
such that V (G′) = V (G) and:

• ∀v, w 6= u we have {v : i, w : j} ∈ E(G)∧ ⇔ {v : i, w : j} ∈ E(G′).

• {u : i, v : j} ∈ E(G)⇔ {u : pports(i), v : j} ∈ E(G′).

• σ′(u) = plabels(σ(u)), whereas σ′(v) = σ(v) for v 6= u.

(From now on in order to simplify notations we will drop all labels σ(.) ∈
Σ, though all the results of this chapter carry through to labelled graphs.)
A rotation sequence r is a finite composition of rotations ru1 , ru2 , Since
rotations commute with each other, a rotation sequence can be seen as a
multiset, i.e. a set whose elements can appear several times. Hence, the
union of two rotation sequences r1 ⊔ r2 refers to multiset union. Moreover,

6.1. THE 2−DIMENSIONAL CASE 105

since r3u = Id, we can consider that each rotation appears at most two times
in a rotation sequence.

Second, we define the equivalence relation induced by the rotations. Using
this equivalence relation, we can define graphs in which vertices have cyclic
ordering of their edges, but no privileged edge a.

Definition 45 (Rotation Equivalence). Two graphs G and H are rota-
tion equivalent if there exists a sequence of rotations r such that rG = H.
This equivalence relation is denoted G ≡ H.

Who is next to whom? On the one hand in the world of 2D simplicial
complexes, two simplices are adjacent if they share a point. On the other
hand in the world of graphs, two vertices are adjacent if they share an edge.
These two notions do not coincide, as shown in Fig. 6.1. The figure also
shows that two triangles share a point if and only if their corresponding
vertices are related by a monotonous path:

Definition 46 (Alternating paths). Let Π = {a, b, c}2. We say that u ∈
Π∗ is a path of the graph G if and only if there is a sequence u of pairs of ports
qipi such that it is possible to travel in the graph according to this sequence,
i.e. there exists v0, . . . , v|u| ∈ V (G) such that for all i ∈ {0 . . . |u| − 1},
one has {vi : qi, vi+1 : pi} ∈ E(G), with ui = qipi. We say that a path
u = q0p0 . . . q|u|p|u| alternates at i = 0 . . . |u| − 2 if either pi = qi+1 + 1 and
pi+1 = qi+2 − 1, or pi = qi+1 − 1 and pi+1 = qi+2 + 1. A path is k-alternating
if and only if it has exactly k alternations. A path is monotonous if and only
if it does not alternate.

Thus distance one in complexes is characterized by the existence of a 0-
alternating path. More generally, distance k+1 in complexes is characterized
by the existence of a k-alternating path. Recall that our aim is to define a
CA-like model of computation over these complexes. In CA models, each
cell must have a bounded number of neighbours (or a bounded “star” in the
vocabulary of complexes). This bounded-density of information hypothesis
[Gan80] is the first justification for the following restriction upon the graphs
we will consider:

Definition 47 (Bounded-star Graphs). A graph G is bounded-star of
bound s if and only if is monotonous paths are of length less or equal to s.

106 CHAPTER 6. CAUSAL DYNAMICS OF DISCRETE SPACES

Notice that the property is stable under rotation. A further justification
for this restriction will be given later.

6.1.2 Causal dynamics of discrete Surfaces

This subsection formalizes causal dynamics of discrete Surfaces.
Rotation-commutating. First, we will restrict CGD so that they may
use the information carried out by ports, but only as far as it defines an
orientation. Formally, this means restricting to dynamics which commute
with graphs rotations.

Definition 48 (Rotation-Commuting function). A function F from Gπ

to Gπ is rotation-commuting if and only if for all graph G and all sequence of
rotations r there exists a sequence of rotations r∗ such that F (rG) = r∗F (G).
Such an r∗ is called a conjugate of r. The definition extends naturally to
functions from Dπ to Gπ.

Lemma 14 (Rotations factorisation). For all finite set of graphs G1, ..., Gn

and for all set of rotation sequences r1, ..., rn, if G1, ..., Gn are consistent with
each other, and r1G1, ..., rnGn are consistent with each other, then

⋃

i∈{1,...,n}

riGi =

 ⊔

i∈{1,...,n}

ri

 ⋃

i∈{1,...,n}

Gi

Proof. Notice that we only need to prove this result for the union of two
graphs. Let us consider two graphs G1, G2 and two rotation sequences r1, r2
such that G1 and G2 are consistent and r1G1, r2G2 are consistent. Let us
consider some rotation ru appearing only once in r1. There are two possible
cases:

• ru /∈ r2: In this case, ru acts on G1 \ (G1 ∩ G2). Indeed, if u ∈ V (G2)
then ruG1 and G2 can not be consistent as u has been rotated in the
first graph and not in the second. As u only appears in a part of the
graph that is left unchanged by the union, we have that (ru(r1\ru)G1)∪
(r2G2) = ru[(r1 \ ru)G1 ∪ r2G2].

• ru ∈ r2: In this case, the two graphs (r1 \ru)G1 and (r2 \ru)G2 are con-
sistent and the rotations sequences (r1\ru) and (r2\ru) leave the vertex
u unchanged. It is easy to check that the graphs ru [(r1 \ ru)G1 ∪ (r2 \ ru)G2]
and r1G1 ∪ r2G2 are the same.

6.1. THE 2−DIMENSIONAL CASE 107

u4 u3 u0 u1 u2
: i :a :b :a :b :a :b :j

u4 u3 u0 u1 u2
: i :a :b :b :a :a :b :j

u3 u0 u1 u2
:b :b :a :a :b :j

u4 u3 u0 u1
: i :a :b :a :b :a

Figure 6.3: A non-rotation commuting local rule induces a rotation commut-
ing CGD.

The case where ru appears more than once in r1 can be proven similarly. By
commuting all the rotations with the ∪ operator, we have that:

(r1 ⊔ r2)(G1 ∪G2) = (r1G1) ∪ (r2G2)

The next question is “When is a CGD rotation-commuting?”. More pre-
cisely, can we decide, given the local rule f of a CGD F , whether F is
rotation-commuting? The difficulty is that being rotation-commuting is a
property of the global function F . Indeed, a first guess would be that F is
rotation-commuting if and only if f is rotation-commuting, but this turns
out to be false.

Example 1 (Identity function). Consider the local rule of radius 1 over
graphs of degree 2 which acts as the identity in every cases but those given in
Fig. 6.3. Because of these two cases, the local rule makes use the information
carried out by the ports around the center of the neighbourhood. It is not
rotation-commuting. Yet, the CGD it induces is just the identity, which is
trivially rotation-commuting.

Thus, unfortunately, some rotation-commuting F can be induced by a
non-rotation-commuting f . Yet, fortunately, any rotation-commuting F can
be induced by a rotation-commuting f .

108 CHAPTER 6. CAUSAL DYNAMICS OF DISCRETE SPACES

Theorem 6 (Rotation commuting). Let F be a localizable dynamics. F
is rotation-commuting if and only if there exists a rotation-commuting local
rule f which induces F .

Proof. [⇐] Let us consider a rotation-commuting local rule f of radius r
inducing a localizable dynamics F . Let G be a graph and u a vertex of G.
The following sequence of equalities proves that F is rotation-commuting:

F (rG) =
⋃

v∈G

f(rGr
v)

=
⋃

v∈G

r∗vf(G
r
v) (using f rotation-commuting)

Using lemma 1, we can commute the union operator and the sequences of
rotations rv as follow:

F (rG) =

(
⊔

v∈G

rv
∗

)
⋃

v∈G

f(Gr
v) =

(
⊔

v∈G

rv
∗

)
F (G)

Less formally, we can commute rotations and unions by looking at the highest
power with which the rotations appear at the right of the union operator.

[⇒] Let F be a rotation-commuting localizable function, and f a local rule
inducing F . Informally, since f(Gr

u) is included in F (G) we know that as far
as orientation is concerned f will indeed be rotation-commuting. However it
may still happen that f , depending upon the orientation of Gr

u, will produce
a smaller, or a larger, subgraph of F (G). Therefore, we must define some f̃
which does not do that. Let us consider the following function f̃ from Dπ to
Gπ:

∀Gr
u, f̃(G

r
u) =

⋃

r

r∗−1f(rGr
u)

with r∗ a conjugate of r (given by F rotation-commuting).

• f̃ is well defined: By definition of r∗ we have that:

∀r, f(rGr
u) ⊂ r∗F (G)

⇒ ∀r, r∗−1f(rGr
u) ⊂ F (G) (∗)

⇒ ∀r1, r2, r1
∗−1f(r1G

r
u) and r2

∗−1f(r2G
r
u) consistent

6.1. THE 2−DIMENSIONAL CASE 109

• f̃ is a local rule: we can check that it inherits of the local rule properties
of f .

• f̃ induces F :

⋃

v∈G

f̃(Gr
u) =

⋃
v∈G

[
⋃

r

r∗−1f(rGr
u)

]

=
⋃

v∈G

[
f(Gr

u) ∪

(
⋃

r 6=id

r∗−1f(rGr
u)

)]

= F (G) ∪
⋃

v∈G

(
⋃

r 6=id

r∗−1f(rGr
u)

)

= F (G) since (∗)

• f̃ is rotation-commuting: let us consider a sequence of rotations s. We
have:

f̃(sGr
u) =

⋃

r

r∗−1f(rsGr
u)

Let us define t = rs. As r spans all rotations sequences, t spans all
rotations sequences. We can write:

f̃(sGr
u) =

⋃

t

r∗−1f(tGr
u)

=
⋃

t

r∗−1t
∗
t
∗−1

f(tGr
u)

=

(
⊔

t

r∗−1t
∗

)
⋃

t

t
∗−1

f(tGr
u) using lemma 1

=

(
⊔

t

r∗−1t
∗

)
f̃(Gr

u)

Proposition 5 (Decidability of rotation commutation). Given a local
rule f , it is decidable whether f is rotation-commuting.

Proof. There exists a simple algorithm to verify that f is rotation-commuting.
Let r be the radius of f . We can check that for all disk D ∈ Dr

π and for

110 CHAPTER 6. CAUSAL DYNAMICS OF DISCRETE SPACES

all vertex rotation ru, u ∈ V (D), we have the existence of a sequence r such
that f(ruD) = rf(D).
As the graph f(D) is finite, there is finite number of sequences r to test.
Indeed, if |V (f(D))| = k, we only have 3k different sequences we can apply
on f(D) (for each vertex u, we can apply ru 0,1 or 2 times). Notice that as
f is a local rule, changing the names of the vertices in D will not change the
structure of f(D) and thus we only have to test the commutation property
on a finite set of disks.

Moreover, we have the more general result that:

Proposition 6 (Decidability of rotation commutation). Given a local
rule f , it is decidable whether f induces a rotation-commuting causal graph
dynamics.

Proof. Simply consider the construction of the local rule f̃ in the proof of
Theorem 6. If we manage to build such a local rule, then, using Theorem
6, we will have that the induced CGD is rotation-commuting. On the other
hand, if the construction fails, it will provide us a graph witness of the non-
rotation-commutation of the induced dynamics. Moreover, the construction
of f̃ is a finite process, hence the result.

Bounded-star preserving. Second, we will restrict CGD so that they
preserve the property of a graph being bounded-star. Indeed, we have ex-
plained in Section 6.1.1 that the graph distance between two vertices does
not correspond to the geometrical distance between the two triangles that
they represent. By modelling CCD via CGD, we are guaranteeing that infor-
mation does not propagate too fast with respect to the graph distance, but
not with respect to the geometrical distance. The fact that the geometrical
distance is less or equal to the graph distance is falsely reassuring: the dis-
crepancy can still lead to an unwanted phenomenon as depicted in Fig. 6.4.
Of course we may choose not to care about geometrical distance. But if we
do care, then we must make the assumption that graphs are bounded-star.
This assumption will not only serve to enforce the bounded-density of infor-
mation hypothesis. It will also relate the geometrical distance and the graph
distance by a factor s. As a consequence, the guarantee that information
does not propagate too fast with respect to the geometrical distance will be
inherited from its counterpart in graph distance. In particular, it will forbid

6.1. THE 2−DIMENSIONAL CASE 111

: a

: b

: a

: b

: a

: b

: a

: b

: a

: b
: c

: b

: c

: b

: c

: b

: c

: b

: c

: b

: a
: b

: a
: b

: a
: b
: a

: b
: a : b : a : b

: a
: b
: a
: b

: a

: b
: a

: b

Figure 6.4: An unwanted evolution: sudden collapse in geometrical distance.
Left column: in terms of complexes. Right column. In terms of graph repre-
sentation.

the sudden collapse phenomenon of Fig. 6.4. All we need to do, then, is to
impose that CCD take bounded-star graphs into bounded-star graphs. This
can be decided from its local rule.

Definition 49 (Bounded-star preserving). A CGD F is bounded-star
preserving if and only if for all bounded-star graph G, F (G) is also bounded-
star. A local rule f is bounded-star preserving if and only if it induces
bounded-star preserving a global dynamics F .

Proposition 7 (Decidability of bounded-star preservation). Given a
local rule f and a bound s, it is decidable whether f is bounded-star preserving
with bound s.

Proof. We can, for each disk D ∈ Dr centred on a vertex u, consider a disk H
of radius 2rs centered on u and containing D. Considering any 0-alternating
path p of f(D), the two following cases can appear:

• p is strictly contained in f(D) and it can be checked whether its length
is greater than s,

• p can be extended as a 0-alternating path in f(H) by a length between
1 and s. In that case, we can also check if its length is strictly less than
s+ 1.

112 CHAPTER 6. CAUSAL DYNAMICS OF DISCRETE SPACES

By checking this property for each disk D of radius r and each H containing
D, we can decide whether the image of a graph will contain 0-alternating
path of length greater than s.

This is our final definition of causal dynamics of discrete Surfaces:

Definition 50 (Causal dynamics of discrete Surfaces). Let F be a
causal graph dynamics over Xπ with |π| = 3. F is a causal dynamics of
discrete surface if F is rotation commuting and F is bounded star preserving.

6.2 Toward an n−dimensional generalization

We now want to extend the previous results to CW−complexes of higher di-
mensions. As before, to each vertex of our graph will now correspond a small
piece of n−dimensional space, and to each edge will correspond an identifica-
tion of facets. The first difference between the 2− dimensional case and the
general case lies in the fact that, when given two coloured triangles and two
of their facets, there is only a single way of glueing them to obtain an ori-
entable surface. This is not the case in higher dimension. For instance, when
given two coloured tetrahedron and two of their facets, there is three different
ways of glueing them while constructing an orientable 3−dimensional space.
In order to specify which of this glueing is used, we chose to use directed
edges and to add a label on the edges describing the permutation used to
transform the colors of the source vertex in the colors of the target vertex.

Definition 51 generalizes the correspondence between graphs of degree
3 and complexes of triangles to a correspondence between graphs of degree
n+ 1 and complexes of n−simplices.

Definition 51 (Interpretation). Given a graph G, its interpretation as a
CW -complex K(G) is such that:

• its set of n-simplices Kn is V (G).

• For 0 ≤ k ≤ n−1, its set of k-simplices Kk is the quotient of V (G)πPk+1(π)
with respect to the equivalence: uπ{p0, . . . pk} ≡k vπ{q0, . . . qk} if and
only if there exists e = (uπp, r, vπq) ∈ E(G), such that −r(p0) =
q0, . . . ,−r(pk) = qk, and p 6= p0, . . . , p 6= pk, q 6= q0, . . . , q 6= qk.

A k+ 1-simplex uπ{p0 . . . pk+1} has facets uπPk+1({p0 . . . pk+1}) modulo ≡k.
Notice that simplices uπP and uπQ have common simplex uπP ∩Q.

6.2. TOWARD AN N−DIMENSIONAL GENERALIZATION 113

Figure 6.5 depicts a graph and its interpretation in the 3−dimensional
case.

u v
:1

r = (3, 1, 0, 2)

:0

u 0

2

3

1

v2

3

1

0

v :1 ≡0 u :−r(1) = u :3

v :2 ≡0 u :−r(2) = u :0

v :3 ≡0 u :−r(3) = u :2

Figure 6.5: Interpreting graphs as CW -complexes: the different, rotated
ways of glueing of two tetrahedrons along two given facets are specified on
the edges.

We need to define rotations of the vertices of the graphs in a way that
corresponds to rotating the n−simplices of a coloured complex while preserv-
ing their orientation. We also need to have a notion of vertex symmetry (i.e.
vertex transformations that inverse its orientation). In the rest of this work,
Π denotes the set of permutations over π.

Definition 52 (Vertex Rotation and vertex Symmetry). Let G be
a graph and u ∈ V (G) one of its vertex and r an element of Π. Then
G′ = (r@u)G is such that V (G′) = V (G) and:

• (uπp, s, vπq) ∈ E(G)⇔ (uπp, s◦r−1, vπq) ∈ E(G′)∧ (vπq, r ◦s, uπp) ∈
E(G′).

• (vπi, s, wπj) ∈ E(G) ∧ v 6= u ∧ w 6= u⇔ (vπi, s, wπj) ∈ E(G′).

This transformation is called a rotation if r is an even permutation and a
symmetry if it is odd (in this case it will be denoted by a s).
A rotation sequence r is a finite composition of rotations.
A symmetry sequence s is a finite composition of symmetries such that an
odd number of symmetries is applied on each vertex of the graph.

Notice that, since the composition of two odds permutation is even, ap-
plying a symmetry to a strict subset of V (G) produces an object which is

114 CHAPTER 6. CAUSAL DYNAMICS OF DISCRETE SPACES

not a graph (ie with even permutations on the edges). Moreover, applying
two symmetries on the same vertex can be summed up as applying a rotation
to the vertex. Therefore, when applying a sequence of symmetries, we must
ensure that symmetries are applied an odd number of time on every vertex
of the graph. We can also assume that a sequence of symmetries s applied
to a graph G is in fact a sequence of |V (G)| rotations su, u ∈ V (G), as any
composition of an odd number of symmetries is a symmetry. From now on,
we will denote by su the symmetry applied to u in a symmetry sequence s.

The definition of rotation equivalent graphs is left unchanged.
We can now try and define a notion of geometrical distance similar to

definition 46.

Definition 53 (Paths). We say that e ∈ E(G)∗ is a path of the graph G
if and only if it is possible to travel in the graph according to this sequence,
i.e. one has ei = (uiπpi, si, viπqi) ∈ E(G), with ui+1 = vi.

Definition 54 generalizes the notion of 0−alternating paths of section 6.1.

Definition 54 (Hinging paths). Consider e ∈ E(G)∗ a path of the graph
G with ei = (uiπpi, si, viπqi) ∈ E(G), ui+1 = vi. Fix x0 ∈ π. We say that a
path hinges around the point u0πx0 if and only if for all i = 0 . . . |e| − 1 we
have pi 6= xi, with xi+1 = si(xi).

We can now generalize the notion of alternating path:

Definition 55 (Alternating paths). We say that a path k-alternates if k+
1 is the minimal number of points u0πx0, ui1πxi1 , . . . uikπxik such that the sub-
paths e0...i1 , ei1...i2 , . . . eik...|e| hinge around those points. A path is monotonous
if and only if it 0-alternates.

Thus distance one in complexes is characterized by the existence of a 0-
alternating path. More generally, distance k+1 in complexes is characterized
by the existence of a k-alternating path.

Definition 56 (Geometrical distance). Two vertices u and v of a graph
G are at geometrical distance k in G if there exists a (k − 1)-alternating
path between u and v in G and no j-alternating path with j < k − 1 between
them. Given a single vertex u in G, the subgraph of neighbours of u in G is
denoted Star(G, u) and corresponds to the subgraph induced by the vertices at
geometrical distance 1 or less of u.

6.3. HURDLES TOWARDADEFINITION OF CAUSAL DYNAMICS OF DISCRETE GEOMETRICAL

Using this new definition of geometrical distance, we can easily generalizes
the previous definition of bounded star graphs.

6.3 Hurdles toward a definition of causal dy-

namics of discrete geometrical spaces

Rotation commuting dynamics in higher dimension. While in the
2−dimensional scope, the set of vertex rotations has a nice structure, this
structure appears to be more complex in higher dimension. In particular two
different rotations do not necessarily commute. It seems that the result of
theorem 6 can be generalized, but the proof would require to keep track of
the order of application of the vertex rotations.

Pseudo-manifolds and manifolds. Oriented 2−dimensional complexes
have a nice property: the underlying topological space is always smooth and
without singularities. This is not the case in higher dimension. This property
of having no singularities is a complex one. It is know to be undecidable in
the general case, as it requires to be able to test the existence of an homeo-
morphism between a piece of our space and a n−dimensional ball. However,
if we restrict ourselves to the set of bounded star graph of a given bound,
it seems that we might be able to prove the decidability of this problem.
This would require to define a proper notion of homeomorphism using local
modifications of the graphs similar to Pachner moves [Pac91] .

116 CHAPTER 6. CAUSAL DYNAMICS OF DISCRETE SPACES

Chapter 7

Conclusion

Summary of results

Generalized Cayley graphs. We introduced a new model of graphs gen-
eralizing the construction of Cayley graphs to arbitrary, bounded degree
graphs. In these graphs, vertices are named relatively to a pointed vertex
acting as the center of the graph. We defined several operations over gen-
eralized Cayley graphs, in particular a shift operation, consisting in moving
the pointer on a different vertex, and a disk operation. We also proved that
this set of graphs can be endowed with a compact metric.

Causal and localizable graph dynamics. We defined cellular automata
over the set of generalized Cayley graphs in two fashions. First, we gave an
axiomatic definition, relying on three properties, namely uniform continuity,
shift-invariance and boundedness. Then, we gave a more constructive defi-
nition, relying on a notion of local rule applied synchronously and uniformly
throughout the graph. We then proved that these two definitions are equiv-
alent, hence generalizing Curtis-Hedlund-Lyndon theorem. We also proved
that the composition of two causal graph dynamics is a causal graph dynam-
ics, and that the application of a causal graph dynamics on a finite graph is
a computable process.

Reversible causal graph dynamics. We proved that bijective instances
of causal graph dynamics admit an inverse causal graph dynamics, hence
generalizing a similar result of cellular automata theory. Moreover, we proved
that these same instances of causal graph dynamics preserve the number of

117

118 CHAPTER 7. CONCLUSION

vertices of almost all finite graphs. Next, we proved that any reversible
instance of causal graph dynamics can be implemented by a bounded-depth
circuit of reversible local operations.

Intrinsic universality. We defined a notion of intrinsic simulation and
intrinsic universality for causal graph dynamics. We began by tackling the
simpler case of exhibiting an intrinsically universal set of local rules, namely
the one having radius one and no labels. We then presented the construction
of an intrinsically universal family of local rules, together with a universal
constructing machine, able to construct any initial state of a simulation of
the application of causal graph dynamics over a finite graph.

Causal dynamics of discrete geometrical space. We established a
correspondence between our model of graphs and ∆−complexes. In the
2−dimensional scope, we characterize causal dynamics of discrete surfaces as
causal graph dynamics acting on graphs of degree three having two proper-
ties: vertex rotation commutation and bounded star preservation. Moreover,
we proved that it is equivalent for a causal graph dynamics over graphs of
degree three to commute with vertex rotations or to be induced by a local
rule which commutes with vertex rotations. We then stated the next steps
toward the generalization of this characterization to higher dimensions.

Future works and next milestones

Quantum Causal Graph Dynamics. As discussed in chapter 4, the main
purpose of the study of reversible causal graph dynamics, aside from the
generalization of several classical cellular automata results, was to try and
design a quantum version of the model. While the work described in section
4.3 would allow us to extend the block decomposition of section 4.2 to a
broader set of Causal Graph Dynamics, it might come in handy to have a
more constrained structure in our generalized block decomposition. A good
lead would be to study a partitioned block decomposition of reversible causal
graph dynamics, which is close to the block decomposition presented here,
but is yet to achieve. This kind of decomposition has already been intensively
studied in cellular automata theory, and led to some interesting universality
results [MH89]. The idea is to implement a reversible cellular automaton
using the compositions of two operations: a local exchange of information
followed by an internal permutation. In the case of reversible Causal Graph

119

Dynamics, the decomposition might not be as simple, due to the dynamism
of the neighbourhoods. The next two natural steps would be to, first, define
a proper notion of partitioned reversible causal graph dynamics, and then,
try and generalize to varying topologies the result of [ANW11] which states
that causal unitary evolutions of a quantum graph automaton are localizable.
Eventually, a good definition of quantum causal graph dynamics would lead
to an interesting toy model for quantum gravitation.

Discrete general relativity. As stated at the beginning of this thesis, the
model of causal graph dynamics is a good candidate to produce discrete toy
models for general relativity. The long term goal of this approach would be
to be able to simulate, using causal graph dynamics, Einstein’s field equation
over a discrete geometrical space. The work presented in chapter 6 is a first
attempt toward being able to model causal dynamics of discrete manifolds,
which would the first step to reach. After that, it seems natural to try
and adapt all the key notions of Riemannian geometry, such as torsion and
curvature to our model of discrete spaces, in the spirit of Regge calculus.

120 CHAPTER 7. CONCLUSION

Bibliography

Personal bibliography

[AM12] P. Arrighi and S. Martiel. Generalized Cayley graphs and cel-
lular automata over them. In Proceedings of GCM 2012, Bre-
men, September 2012. Pre-print arXiv:1212.0027, pages 129–
143, 2012.

[AMN13] P. Arrighi, S. Martiel, and V. Nesme. Generalized Cayley
graphs and cellular automata over them. submitted (long ver-
sion). Pre-print arXiv:1212.0027, 2013.

[AMP15] P. Arrighi, S. Martiel, and S. Perdrix. Reversible Causal Graph
Dynamics. arXiv pre-print, 2015.

[AMW13] P. Arrighi, S. Martiel, and Z. Wang. Causal dynamics over
Discrete Surfaces. In Proceedings of DCM’13, Buenos Aires,
August 2013, EPTCS, 2013.

[MM13] S. Martiel and B. Martin. Intrinsic universality of causal graph
dynamics. In Turlough Neary and Matthew Cook, editors,
Proceedings, Machines, Computations and Universality 2013,
Zürich, Switzerland, 9/09/2013 - 11/09/2013, volume 128 of
Electronic Proceedings in Theoretical Computer Science, pages
137–149. Open Publishing Association, 2013.

[MM15] S. Martiel and B. Martin. An intrinsically universal family of
causal graph dynamics. accepted at MCU 2015, 2015.

121

122 CHAPTER 7. CONCLUSION

[PBH+14] T. J. Proctor, K. E. Barr, B. Hanson, S. Martiel, V. Pavlović,
A. Bullivant, and V. M. Kendon. Nonreversal and nonrepeating
quantum walks. Phys. Rev. A, 89:042332, Apr 2014.

State of the art

[AD12] P. Arrighi and G. Dowek. Causal graph dynamics (long ver-
sion). Information & Computation journal, to appear. Pre-
print arXiv:1202.1098, 2012.

[AFNT11] P. Arrighi, R. Fargetton, V. Nesme, and E. Thierry. Applying
causality principles to the axiomatization of Probabilistic Cel-
lular Automata. In Proceedings of CiE 2011, Sofia, June 2011,
LNCS, volume 6735, pages 1–10, 2011.

[AN11] P. Arrighi and V. Nesme. A simple block representation of
Reversible Cellular Automata with time-symmetry. In 17th In-
ternational Workshop on Cellular Automata and Discrete Com-
plex Systems, (AUTOMATA 2011), Santiago de Chile, Novem-
ber 2011., 2011.

[ANW08] P. Arrighi, V. Nesme, and R. F. Werner. Quantum cellular
automata over finite, unbounded configurations. In Proceedings
of LATA, Lecture Notes in Computer Science, volume 5196,
pages 64–75. Springer, 2008.

[ANW10] P. Arrighi, V. Nesme, and R. Werner. Unitarity plus causality
implies localizability. J. of Computer and Systems Sciences,
77:372–378, 2010. QIP 2010 (long talk).

[ANW11] P. Arrighi, V. Nesme, and R. Werner. Unitarity plus causality
implies localizability (full version). Journal of Computer and
System Sciences, 77(2):372–378, 2011.

[Arb88] M.A. Arbib. The universal Turing machine, chapter From
universal Turing machines to self-reproduction, pages 177–189.
Oxford Science Publications, 1988.

123

[BDG88] J.L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity
I. Springer Verlag, 1988.

[BFH87] P. Boehm, H.R. Fonio, and A. Habel. Amalgamation of graph
transformations: a synchronization mechanism. Journal of
Computer and System Sciences, 34(2-3):377–408, 1987.

[BT09] L. Boyer and G. Theyssier. On Local Symmetries and Univer-
sality in Cellular Automata. In Susanne Albers and Jean-Yves
Marion, editors, 26th International Symposium on Theoretical
Aspects of Computer Science (STACS 2009), Dagstuhl, Ger-
many, 2009. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, Germany.

[CSC10] T. Ceccherini-Silberstein and M. Coornaert. Cellular automata
and groups. Springer Verlag, 2010.

[CSS04] F. Ceccherini-Silberstein, T.; Fiorenzi and F. Scarabotti. The
Garden of Eden Theorem for cellular automata and for symbolic
dynamical systems. In Random walks and geometry. Proceed-
ings of a workshop at the Erwin Schrödinger Institute, Vienna,
June 18 – July 13, 2001. In collaboration with Klaus Schmidt
and Wolfgang Woess. Collected papers., pages 73–108. Berlin:
de Gruyter, 2004.

[DFF+12] V. Danos, J. Feret, W. Fontana, R. Harmer, J. Hayman, J. Kriv-
ine, C. Thompson-Walsh, and G. Winskel. Graphs, rewriting
and pathway reconstruction for rule-based models. In FSTTCS
2012-IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, volume 18, pages
276–288, 2012.

[DL01] J. O. Durand-Lose. Representing reversible cellular automata
with reversible block cellular automata. Discrete Mathematics
and Theoretical Computer Science, 145:154, 2001.

[DL04] V. Danos and C. Laneve. Formal molecular biology. Theoret-
ical Computer Science, 325(1):69 – 110, 2004. Computational
Systems Biology.

124 CHAPTER 7. CONCLUSION

[DL09] J. O. Durand-Lose. Universality of Cellular Automata. In
Encyclopedia of Complexity and System Science, pages 903–913.
Springer, 2009.

[DMG08] B. Derbel, M. Mosbah, and S. Gruner. Mobile agents imple-
menting local computations in graphs. Graph Transformations,
pages 99–114, 2008.

[DS96] C. Dürr and M. Santha. A decision procedure for unitary linear
quantum cellular automata. In Proceedings of the 37th IEEE
Symposium on Foundations of Computer Science, pages 38–45.
IEEE, 1996.

[EL93] H. Ehrig and M. Lowe. Parallel and distributed derivations
in the single-pushout approach. Theoretical Computer Science,
109(1-2):123–143, 1993.

[FAP90] V.V. Fedorchuk, A.V. Arkhangelskiui, and L.S. Pontriagin. Gen-
eral topology I, volume 1. Springer, 1990.

[Fre92] Edward Fredkin. Finite nature. XXVIIth Rencotre de Moriond,
1992.

[FT82] E. Fredkin and T. Toffoli. Conservative logic. International
Journal of Theoretical Physics, 21(3):219–253, 1982.

[Gan80] R. Gandy. Church’s thesis and principles for mechanisms. In
The Kleene Symposium, Amsterdam, 1980. North-Holland Pub-
lishing Company.

[GMRT11] E Goles, P-E Meunier, Ivan Rapaport, and Guillaume Theyssier.
Communication complexity and intrinsic universality in cellular
automata. Theoretical Computer Science, 412(1):2–21, 2011.

[GR01] C. D. Godsil and G. Royle. Algebraic graph theory, volume 8.
Springer-Verlag, New York, 2001.

[Gro99] M. Gromov. Endomorphisms of symbolic algebraic varieties.
Journal of the European Mathematical Society, 1(2):109–197,
April 1999.

125

[Gru10] S. Gruner. Mobile agent systems and cellular automata. Au-
tonomous Agents and Multi-Agent Systems, 20:198–233, 2010.
10.1007/s10458-009-9090-0.

[GS08] J.L. Giavitto and A. Spicher. Topological rewriting and the
geometrization of programming. Physica D: Nonlinear Phe-
nomena, 237(9):1302–1314, 2008.

[Hed69] G. A. Hedlund. Endomorphisms and automorphisms of the
shift dynamical system. Math. Systems Theory, 3:320–375,
1969.

[HM98] B. Hasslacher and D. A. Meyer. Modelling dynamical geometry
with lattice gas automata. Expanded version of a talk presented
at the Seventh International Conference on the Discrete Simu-
lation of Fluids held at the University of Oxford, June 1998.

[Kar96] J. Kari. Representation of reversible cellular automata with
block permutations. Theory of Computing Systems, 29(1):47–
61, 1996.

[Kar11] J. Kari. Cellular Automata, Lecture notes. http:users.utu.fijkarica,
2011.

[KCN+10] A. Klales, D. Cianci, Z. Needell, D. A. Meyer, and P. J. Love.
Lattice gas simulations of dynamical geometry in two dimen-
sions. Phys. Rev. E., 82(4):046705, Oct 2010.

[KK07] H.J. Kreowski and S. Kuske. Autonomous units and their
semantics-the parallel case. Recent Trends in Algebraic De-
velopment Techniques, pages 56–73, 2007.

[KKBS05] W. Kurth, O. Kniemeyer, and G. Buck-Sorlin. Relational
growth grammars–a graph rewriting approach to dynamical sys-
tems with a dynamical structure. Unconventional Programming
Paradigms, pages 97–97, 2005.

[Löw93] M. Löwe. Algebraic approach to single-pushout graph trans-
formation. Theoretical Computer Science, 109(1-2):181–224,
1993.

126 CHAPTER 7. CONCLUSION

[Mar84] N. Margolus. Physics-like models of computation. Physica D:
Nonlinear Phenomena, 10(1-2):81–95, 1984.

[Mar88] Norman H Margolus. Physics and computation. Technical
report, DTIC Document, 1988.

[Mar07] Bruno Martin. Universal simulations by spatial machines.
Journal of Cellular Automata, 2(3):203–217, 2007.

[Maz88] J. Mazoyer. An overview of the firing squad synchronization
problem. In Automata Networks, pages 82–94. Springer, 1988.

[MH89] K. Morita and M. Harao. Computation universality of one-
dimensional reversible (injective) cellular automata. IEICE
Trans. Inf. & Syst., E, 72:758–762, 1989.

[Oll08] N. Ollinger. Universalities in cellular automata a (short) survey.
In B. Durand, editor, First Symposium on Cellular Automata
“Journées Automates Cellulaires” (JAC 2008), Uzès, France,
April 21-25, 2008. Proceedings, pages 102–118. MCCME Pub-
lishing House, Moscow, 2008.

[Pac91] U. Pachner. Pl homeomorphic manifolds are equivalent by
elementary 5hellingst. European journal of Combinatorics,
12(2):129–145, 1991.

[PR02] C. Papazian and E. Remila. Hyperbolic recognition by graph
automata. In Automata, languages and programming: 29th
international colloquium, ICALP 2002, Málaga, Spain, July 8-
13, 2002: proceedings, volume 2380, page 330. Springer Verlag,
2002.

[RFH+72] P. Rosenstiehl, J.R. Fiksel, A Holliger, et al. Intelligent graphs:
Networks of finite automata capable of solving graph problems.
Graph theory and computing, pages 219–265, 1972.

[Sor75] R. Sorkin. Time-evolution problem in Regge calculus. Phys.
Rev. D., 12(2):385–396, 1975.

[SW04] B. Schumacher and R. Werner. Reversible quantum cellular
automata. arXiv pre-print quant-ph/0405174, 2004.

127

[Tae96] G. Taentzer. Parallel and distributed graph transformation:
Formal description and application to communication-based sys-
tems. PhD thesis, Technische Universitat Berlin, 1996.

[Tae97] G. Taentzer. Parallel high-level replacement systems. Theoret-
ical computer science, 186(1-2):43–81, 1997.

[TKM02] K. Tomita, H. Kurokawa, and S. Murata. Graph automata:
natural expression of self-reproduction. Physica D: Nonlinear
Phenomena, 171(4):197 – 210, 2002.

[TKM09] K. Tomita, H. Kurokawa, and S. Murata. Graph-rewriting
automata as a natural extension of cellular automata. In
Thilo Gross and Hiroki Sayama, editors, Adaptive Networks,
volume 51 of Understanding Complex Systems, pages 291–309.
Springer Berlin / Heidelberg, 2009.

[TMKK05] K. Tomita, S. Murata, A. Kamimura, and H. Kurokawa. Self-
description for construction and execution in graph rewriting
automata. Advances in Artificial Life, pages 705–715, 2005.

[VMPDJ11] S. Von Mammen, D. Phillips, T. Davison, and C. Jacob. A
graph-based developmental swarm representation and algorithm.
Swarm Intelligence, pages 1–12, 2011.

128 CHAPTER 7. CONCLUSION

Appendix A

Adjacency sructures

In this appendix we provide an alternative, more algebraic, definition of gen-
eralized Cayley graphs, as a language endowed with a theory of equivalence.
We then prove the equivalence between this definition and the definition
given in chapter 2.

A.1 Paths structures

Definition 57 (Path structure). Given a generalized Cayley graph X, we
define the structure of paths S(X) as the structure 〈L(X),≡X〉. The set of
all path structures is the set {S(X) | X ∈ Xπ}. It is written S(Xπ).

Given two generalized Cayley graphs, any difference between them shows up
in their path structure.

Proposition 8 (Generalized Cayley graphs and path structures iso-
morphism). The function X 7→ S(X) is a bijection between Xπ and S(Xπ).

Proof. [Surjectivity]. By definition of S(Xπ).
[Injectivity]. Let us suppose that S(X) = S(Y), i.e. that L(X) = L(Y)
and ≡X=≡Y . Then ≡X and ≡Y must have the same number of equivalence
classes and so X and Y have the same number of vertices. Let us choose
two graphs P ∈ X and Q ∈ Y . For any vertex u of P , there is a unique
equivalence class c of ≡X such that the paths of c lead to u in P . Since ≡X

and ≡Y are supposed equal, c is also an equivalence class of ≡Y . Conversely
given c an equivalence class of ≡Y , there is a unique v of Q such that the

129

130 APPENDIX A. ADJACENCY SRUCTURES

paths of c lead to v in Q. Then, the paths which point to u in P are the
same as those which point to v in Q. We can now define a function R which
maps each vertex u in P to its corresponding vertex v in Q. Because this
is a bijection, we can then extend R to be a bijection over the entire set V .
Let us consider two vertices u and u′ in P linked by and edge {u : i, u′ : j}
and their corresponding vertices v and v′ in Q. As P ∈ X, we have that the
equivalence classes ũ.ij = ũ′. As the classes representing v and v′ are equal
to ũ.ij and ũ′. Thus R is a graph isomorphism, and P and Q are isomorphic.
This is true for every P ∈ X and Q ∈ Y thus X = Y .

A.2 Paths as languages

Inversely, we could have started by defining a certain class of languages en-
dowed with an equivalence, namely adjacency structures, and then asked
whether the path structures of generalized Cayley graphs fall into this class.
This is the purpose of the following definitions and lemma.

Definition 58 (Completeness). Let L ⊆ Π∗ be a language and ≡L an
equivalence on this language. The tuple (L,≡L) is said to be complete if and
only if

(i) ∀u, v ∈ Π∗ u.v ∈ L⇒ u ∈ L

(ii) ∀u, u′ ∈ L ∀v ∈ Π∗ (u ≡L u′ ∧ u.v ∈ L)⇒ (u′.v ∈ L ∧ u′.v ≡L u.v)

(iii) ∀u ∈ L ∀a, b ∈ π u.ab ∈ L⇒ (u.ab.ba ∈ L ∧ u.ab.ba ≡L u)

The completeness conditions aim at making sure that (L,≡L), seen as
some algebra of paths, is complete. Indeed: (i) means that “a shortened
path remains a path”; (ii) means that “Equivalent paths from A to B admit
the same prolongations from B to C which lead to equivalent paths from A
to C”; (iii) means that “if a step takes you from A to B, the inverse step
takes you from B to A”.

Definition 59 (Adjacency structure). Let L ⊆ Π∗ be a language and
≡L an equivalence on this language. The tuple (L,≡L) defines an adjacency
structure if and only if it is complete and

∀u, u′ ∈ L ∀a, b, c ∈ π (u ≡L u′ ∧ u.ab ∈ L ∧ u′.ac ∈ L)⇒ b = c.

A.2. PATHS AS LANGUAGES 131

When this is the case, L is referred to as an adjacency language and ≡L as
an adjacency equivalence. We denote by 〈L,≡〉 an adjacency structure of
langage L and equivalence relation ≡. The set of all adjacency structures is
written Sπ. From now on, S will represent an element of Sπ.

The added adjacency structure condition aims at making sure that (L,≡L

), seen as some algebra of paths, is port-unambiguous, meaning that “once
at some place A, taking port a leads to a definite place B”.

Definition 60 (Associated (generalized Cayley) graph). Let S be some
adjacency structure 〈L,≡L〉. Let P (S) be the pointed graph (G(S), ε̃), with
G(S) such that:

• The set of vertices V (G(X)) is the set of equivalence classes of S;

• The edge {ũ : a, ṽ : b} is in E(G(S)) if and only if u.ab ∈ L and
u.ab ≡L v, for all u ∈ ũ and v ∈ ṽ.

We define the associated graph to be G(S). We define the associated pointed
graph to be P (S). We define the associated generalized Cayley graph to be
X(S).

Soundness: The properties of adjacency structures ensure that the ports of
the vertices are not used several times. Moreover, G(S) (and thus P (S)) are
connected as every vertex is path connected to the vertex ε̃.

Lemma 15 (Path structures are adjacency structures). Let X be
a generalized Cayley graph. Then S(X) is an adjacency structure. Hence
S(Xπ) ⊆ Sπ.

Proof. [Completeness]. If u.v is a valid path in X, then the truncated path
u is a valid path in X and belongs to L(X).
If two paths u and v in X lead to the same vertex, i.e. u ≡X v, then
extending u and v by the same path w will still lead to the same vertex i.e.
if u.w ∈ L(X) u.w ≡X v.w.
If u.ab is a valid path in X then the extension u.ab.ba consisting in going
back on the last visited vertex is still a valid path and leads to the vertex
pointed by u.
Summarizing, the completeness properties are verified by construction of the
language of path L(X) and the relation ≡X .

132 APPENDIX A. ADJACENCY SRUCTURES

[Adjacency structure]. Let us consider two paths u and v in L(X) and three
ports a, b, c such that u ≡X v and u.ab ≡X u.ac. Then, for the graph X to
be well defined we have that b = c.

Not only do we have that path structures are adjacency structures, but it
also turns out that any adjacency structure can be generated this way, i.e.
it is the path structure of some generalized Cayley graph.

Proposition 9 (Adjacency structures are path structures). Let S be
some adjacency structure. The equality S = S(X(S)) holds. Hence Sπ =
S(Xπ).

Proof. Let S = 〈L,≡L〉 and S ′ = S(P̃ (X)) = 〈L′,≡L′〉. Next, we will write
S ⊆ S ′ if and only if L ⊆ L′ and ≡L⊆≡L′ , with the relations ≡L, ≡L′ viewed
as subsets of (L ∪ L′)2.

[S ⊆ S(X(S))]:
Let us consider w ∈ L. By construction of X(S), there exists a path w

in X(S). By definition of the function X, we have that this path will be
represented by the word w ∈ L′. Now, let us consider two words u and v in
L such that u ≡ v. By construction of X(S), u and v will be two paths of
X(S) leading to the same vertex. By definition of the function X, the two
words u and v in L′ will be equivalent regarding to the relation ≡′.

[S(X(S)) ⊆ S]:
Let w′ ∈ L′. By definition there exists a path ω′ in X(S) labeled by w′

from the pointed vertex to a vertex u. By Definition 59 there exists a word
in L describing the path ω′, hence w′ ∈ L. Similarly we prove the inclusion
≡L′⊆≡L.

A.3 Graphs as languages

Generalized Cayley graphs. Summarizing, S(.) is bijective from Proposition
8 and S ◦X = Id from Proposition 9, thus X is bijective, i.e. the following
theorem comes out as a corollary:

Theorem 7 (Generalized Cayley graphs and adjacency structures
isomorphism). The function X 7→ S(X) is a bijection between Xπ and Sπ,

A.3. GRAPHS AS LANGUAGES 133

whose inverse is the function S 7→ X(S).

Therefore, XΣ and SΣ are the same set, namely the set of generalized
Cayley graphs.
Discussion. Generalized Cayley graphs extend Cayley graphs:

Proposition 10 (Recovering Cayley graph). Consider H a group with
law ∗ and generators the finite set h = {a, b, . . .}. Let π = {a, a−1 | a ∈ h}
be the generators together with their inverses, π = {(a, a−1), | a ∈ π} the
generators paired up with their inverses. We define L to be π∗. Consider the
morphism mapping:

• a in π to a = (a, a−1) in π

• the term a ∗ v in H to a.v in L

• the equivalence u = v over H to the equivalence u ≡L v over L.

Then, S = 〈L,≡L〉 is an adjacency structure, and the generalized Cayley
graph X coincides with the Cayley graph of H.

Proof. All of the adjacency structures conditions are met:

(i) u.v ∈ L⇒ u ∈ L by definition of L.

(ii) u ≡L u′ ⇒ u′.v ≡L u.v, since u = u′ ⇒ u ∗ v = u ∗ v′.

(iii) u.a⇒ u.a.a−1 ≡L u, since u ∗ a ∗ a−1 = u.

(-) (u ≡L u′ ∧ u.(a, b) ∈ L ∧ u′.(a, c) ∈ L) ⇒ b = c = a−1 by definition of
L.

One might have thought that any adjacency structure over the language
〈L,≡L〉, with L = π∗ is a Cayley graph, but this is not the case: the fact
that ≡L corresponds to group equality does matter in the above proposition.
The Petersen graph, for instance, can be endowed with such an adjacency
structure, while being famously not a Cayley graph [GR01], see Figure A.3.
But generalized Cayley graphs extend Cayley graphs in a much wider way
than just including Petersen-like graphs. Indeed, whereas Cayley graphs
are highly symmetric, generalized Cayley graphs can be arbitrary connected

134 APPENDIX A. ADJACENCY SRUCTURES

:a

:a−1

:a
:a−1

:a

:a−1

:a

:a−1

:a

:a−1

:b

:b−1

:b

:b−1

:b :b−1

:b

:b−1

:b

:b−1

:b

:b−1

:b

:b−1

:b:b−1

:b

:b−1

:b

:b−1

Figure A.1: The Petersen graph as a generalized Cayley graph structure.

graphs of bounded degree. Still, this extension is an advantageous one, since
all of the key features of Cayley graphs remain: We are able to name vertices
relative to a point, through the word describing the path from that point, and
in fact the topology of the graph describes the equivalence structure upon
words. We have a well-defined notion of translation, which is described as
part of the basic operations upon these graphs in Section 2.3. We can define a
distance between theses graphs, which makes XΣ,∆,π a compact metric space,
as done in Section 2.4.

	Introduction
	Generalized cayley graphs
	Brief overview.
	Generalized Cayley Graphs
	Basic operations
	Topological properties
	Summary of the results

	Causal graph dynamics
	Causal dynamics
	Localizable dynamics
	Equivalence theorem
	Properties
	Summary of results

	Reversible causal graph dynamics
	Reversible causal graph dynamics
	Block decomposition
	Lifting the curse of vertex-preservingness
	Summary of results

	Intrinsic universality
	Intrinsic simulation and universality
	Preliminary results
	Construction of a family of universal rules
	Building instances: Universal constructing machine
	Summary of results and open problems

	Causal dynamics of discrete spaces
	The 2-dimensional case
	Toward an n-dimensional generalization
	Hurdles toward a definition of causal dynamics of discrete geometrical spaces

	Conclusion
	Bibliography
	Adjacency sructures
	Paths structures
	Paths as languages
	Graphs as languages

