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Résumé

Dans cette thèse, nous donnons une introduction systématique à la condition dépendance faible, introduit par [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF] , qui est plus générale que les cadres classiques de mélange ou de séquences associées. La notion est suffisamment large pour inclure des modèles standards tels que les modèles stables de Markov , les modèles bilinéaires , et plus généralement , les schémas de Bernoulli. Dans certains cas, aucunes des propriétés de mélangeant ne peut s'attendre sans hypothèse de régularité supplémentaire sur la distribution innovations pour lesquelles une condition de dépendance faible peut être facilement dérivée. Nous étudions la relation entre dépendance faible et mélangeant pour les processus de valeurs discrètes. Nous montrons que la dépendance faible implique des conditions de mélangeant sous des hypothèses naturelles. Les résultats se spécialisent au cas des processus Markovian. Plusieurs exemples de processus à valeur entier sont examinés et leurs propriétés de dépendance faibles sont étudiés à l'aide d'une contraction principale.

Dans la deuxième partie, nous établissons des vitesses de convergences en apprentissage statistique pour les prédictions d'une série chronologique. En utilisant l'approche PAC-bayésienne, les vitesses lentes de convergence d/n pour l'estimateur de Gibbs sous la perte absolue ont été donnés dans un travail précédent [START_REF] Alquier | Model selection for weakly dependent time series forecasting[END_REF], où n est la taille de l'échantillon et d la dimension de l'ensemble des prédicteurs. Sous les mêmes conditions de dépendance faible, nous étendons ce résultat à une fonction de perte Lipschitz convexe. Nous identifions également une condition sur l'espace des paramètres qui assure des vitesses similaires pour la procédure classique de l'ERM pénalisé. Nous appliquons cette méthode pour la prédiction quantile du PIB français. Dans des conditions supplémentaires sur les fonctions de perte ( satisfaites par la fonction de perte quadratique ) et pour les processus uniformément mélangeant, nous montrons que l'estimateur de Gibbs atteint effectivement les Chapitre 1

Introduction Générale et

Résultats Principaux

Cette thèse porte sur l'inférence de la dépendance faible et la prévision des séries temporelles par l'approche PAC-bayésienne. Elle se compose de deux parties.

Le but de la première partie est d'étudier un système de dépendance faible.

Nous donnons des grandes classes de modèles de séries temporelles qui satisfaient cette notion. Nous étudions la relation entre dépendance faible et mélangeant pour les processus de valeurs discrètes.

Cette première partie correspond au Chapitre 1 2 3. Chapitre 2 est constitué de l'article suivant :

1. On weak dependence conditions : The case of discrete valued processes, en collaboration avec Paul Doukhan et Konstantinos Fokianos, Statistics and Probability Letters, 82 (2012), 1941-1948. La deuxième partie correspond aux Chapitres 4, dans lesquels on étudie les problèmes de prévision des séries temporelles. Cette seconde partie est constituée essentiellement de 2 articles : 2. Prediction of Quantiles by Statistical Learning and Application to GDP Forecasting, en collaboration avec Pierre Alquier, in the proceedings of DS'12 (conference on Discovery Science), J.-G. Ganascia, P. Lenca and J.-M. Petit Eds., Springer -Lecture Notes in Artificial Intelligence, 7569 (2012) Au cours des cinquante dernières années, diverses conditions de dépendance sont apparus dans la littérature, à la suite de la notion de mélange introduit par Rosenblatt (voir Rosenblatt (1985) pour plus d'information). Les notions de mélange ont été appliqués à de nombreux problèmes de type dépendant ; en particulier dans le contexte de séries temporelles et de leurs applications financières qui ont été appliqués à prouver des théorèmes limites qui permettent de valider l'inférence asymptotique ; voir [START_REF] Doukhan | Mixing: properties and examples[END_REF], Rio (2000) et [START_REF] Bradley | Introduction to strong mixing conditions[END_REF] pour d'autres exemples. Cependant, pour certains modèles apparus fréquemment dans les applications, les conditions de mélange forts ne sont pas satisfaits. Les principaux exemples de ces modèles sont le célèbre AR (1) non-mélangeant modèle deAndrews (1984) et le LARCH(1) modèle considéré par Doukhan et al. (2006).

Ces types de problèmes ont motivés [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF] à introduire des conditions de dépendance plus flexible pour accueillir le plus grandes classes de modèles de séries temporelles. La principale notion introduite est que la dépendance faible ; le sujet est étudié de façon approfondie dans la monographie récente [START_REF] Dedecker | Weak dependence: With Examples and Applications[END_REF] qui inclut de nombreux exemples de processus faiblement dépendantes. [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF] ont introduit un concept de dépendance faible pour les séries temporelles qui généralise les notions de mélange et association.

Les covariances des variables aléatoirs sont beaucoup plus facile à calculer que les coefficients de mélange. Par conséquent la dépendance faible définie dans la définition 2.1.1 est mesurée en termes de covariances des fonctions. Supposons que, pour les fonctions commodes h et k, Cov (h('past'), k('future')) converge vers 0 comme la distance entre le "passé" et le "futur" converge vers l'infini. La convergence n'est pas supposé tenir uniformément sur la dimension du "passé" ou "futur" impliqués. Cette définition rend explicite l'indépendance asymptotique entre le "passé" et le "futur" ; cela signifie que le "passé" est progressivement oublié. |Cov (f (X s 1 , . . . , X su ), g(X t 1 , . . . , X tv )) | ψ (f, g, u, v) .

Considérons (X

X t est appelé processus ( , ψ)-faiblement dependent si la séquence (r) → r→∞ 0.

Exemples d'intérêt concernent la fonction ψ 1 (f, g, u, v) = vLip g (par exemple dans les processus linéaires causal ), ψ 2 (f, g, u, v) = uLip f +vLip g, (par exemple dans les processus linéaire non causal ), ψ 3 (f, g, u, v) = uvLip f • Lip g (par exemple dans les processus associés), et ψ 4 (f, g, u, v) = uLip f + vLip g + vLip f • Lip g. Cette définition est héréditaire.

Il y a deux raisons pour lesquelles nous préférons utiliser la dépendance faible au lieu de mélange. Tout d'abord , les conditions de mélange se réfèrent plutôt à σ-algèbre qu'à des variables aléatoires. Ils sont donc plus adaptées à travailler dans des domaines de la finance ou d'histoire, où la σ-algèbre engendrée par le passé a une importance considérable. Deuxiémement, une difficulté de mélange est la vérification car il est généralement difficile (voir par exemple Doukhan (1994) ), cependant, la dépendance faible a explicité un exemple simple d'un processus autoregressive avec des innovations de Bernoulli [START_REF] Andrews | Non strong mixing autoregressive processes[END_REF]) et a prouvé que ce modèle n'est pas fortement mélangeant , [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF] ont montré que ce processus est faiblement dépendante. Cette notion de dépendance faible est suffisamment large pour inclure des nombreux exemples intéressants tels que les modèles de Markov stationnaires, modèles bilinéaires, et plus généralement, les schámas de Bernoulli. Plus précisément, dans des conditions faibles, tous les processus causals ou non causals sont faiblement dépendants : par exemple les processus Gaussian, associés, linéaire, ARCH (∞), bilinéaires, Volterra, et les processus de mémoire infinie...

Nous discutons et étudions la relation entre le mélange et la dépendance faible pour les modèles temporelles à valeur entière. Au cours des dernières années, il y a une littérature émergente sur le thème de la modélisation et l'inférence pour les séries temporelles disctrètes, voir [START_REF] Kedem | Regression Models for Time Series Analysis[END_REF], Doukhan et al. (2006), [START_REF] Drost | Note on integer-valued bilinear time series models[END_REF][START_REF] Fokianos | Poisson autoregression[END_REF], [START_REF] Fokianos | Log-linear poisson autoregression[END_REF], [START_REF] Franke | Weak dependence of functional INGARCH processes[END_REF] et [START_REF] Neumann | Absolute regularity and ergodicity of Poisson count processes[END_REF] pour modèles autorégressifs à valeur entière et modèles autoregressive généralisées. Nous allons nous concentrer sur ces modèles, mais nous signalons que d'autres familles de processus pourraient être considérés ;

voir [START_REF] Coupier | 0-1 laws for dependent images[END_REF] pour le cas d'un processus général avec deux valeurs.

Notre objectif est de relier le mélange et la dépendance faible pour des modèles de séries temporelles à valeur entière. En utilisant la définition de η, la dépendance de la séquence X t , t ∈ Z entre le passé et ses futurs r-uplets peut être évaluée suivant :

Cov (f (X i 1 , . . . , X iu ), g(X j 1 , . . . , X jv )) ≤ (uLip f + vLip g)η(r).

En raison du fait que les σ-algèbres générés par des ensembles discrets sont assez petites, nous montrons que les coefficients obtenus du monde de mélange coïncident souvent à ceux introduits sous dépendance faible. Par exemple, nous relions le coefficient de dépendance faible η pour les coefficients de mélange α. 

α u,v (r) ≤ 2 D (u + v)η(r)
Résultats analogues lorsque X t , t ∈ Z est un processus à valeur entière τ -faiblement dépendante.

Le cas des processus de Markov est d'un intérêt particulier pour notre étude.

Nous montrons que les coefficients de dépendance mènent une attention particulière aux chaînes de Markov. Plusieurs exemples de modèles autorègressifs entiers sont discutés en détail. En particulier, nous allons démontrer des conditions où les modèles existants doivent satisfaire de sorte qu'ils sont faiblement dépendants.

Le problème de prévision des séries temporelles est un problème fondamental dans les études de statistique. L'approche paramétrique contient une large famille de modèles associés à des méthodes d'estimation efficace et de prévision, voir par exemple [START_REF] Hamilton | Time Series Analysis[END_REF]; [START_REF] Brockwell | Time Series: Theory and Methods[END_REF]. Les modèles paramétriques classiques contiennent les processus linéaires tels que l'ARMA, et plus récemment, les processus non linéaires tels que les modèles volatilité stochastique et ARCH a reçu beaucoup d'attention dans les applications financières, voir, e.g., le papier séminal par le prix Nobel Engle (1991), et [START_REF] Francq | GARCH Models: Structure, Statistical Inference and Financial Applications[END_REF] pour une introduction plus récente. Cependant, dans la pratique, les hypothèses paramétriques tiennent rarement. Cela peut conduire à des prédictions très biaisée, et sous-évaluer les risques, voir Taleb (2007).

Au cours des dernières années, plusieurs approches universelles sont apparus dans divers domaines tels que la statistique non paramétrique, l'apprentissage automatique, l'informatique et la théorie de jeux. Ces approches partagent certaines caractéristiques communes : l'objectif est de construire une procédure qui prévoit la série ainsi que le meilleur prédicteur dans un ensemble donné de variables prédictives initiales, sans aucune hypothèse paramétrique de la distribution de l'observation. Cependant, l'ensemble de prédicteurs peut être inspiré par différents modèles statistiques paramètriques ou non paramétriques. Nous pouvons distinguer deux des classes de ces approches, avec quantification différent de l'objectif, et des terminologies différentes :

• dans l'approche "prédiction de séquences individuelles", les facteurs prédictifs sont généralement appelés des "experts". L'objectif est la pr diction en ligne : à chaque date t, une prédiction de la réalisation de l'avenir x t+1 est basée sur l'observations précédente x 1 ,. [START_REF] Catoni | Statistical Learning Theory and Stochastic Optimization[END_REF][START_REF] Catoni | PAC-Bayesian Supervised Classification (The Thermodynamics of Statistical Learning)[END_REF], lié à l'approche en ligne de l'algorithme pondération majoritaire [START_REF] Littlestone | The weighted majority algorithm[END_REF], see also [START_REF] Vovk | Aggregating strategies[END_REF].

Dans cette thèse, nous nous concentrons sur la prévision des séries temporelles en utilisant l'approche de l'apprentissage statistique. Soit X 1 ,..., X n représentent des observations effectuées à temps t ∈ {1, . . . , n} de la série temporelle X = (X t ) t∈Z définie sur (Ω, A, P). Nous supposons que cette série temporelle prend des valeurs dans R p équipés de la norme euclidienne • . Comme mentionné ci-dessus, dans l'approche de la théorie de l'apprentissage, fixe un entier k, nous supposons que l'on nous donne un ensemble de prédicteurs

{f θ : (R p ) k → R p , θ ∈ Θ}
où Θ est un sous-ensemble de l'espace linéaire pour des raisons de simplicité.

Toutefois, le θ ici représente l'union de tous les paramètres de tous les modèles que nous envisageons. Nous allons utiliser une approche du type sélection de modèle :

Θ = ∪ M j=1 Θ j .
Θ sera une union finie (ou plus généralement dénombrable) de sous-espaces.

L'importance de l'introduction une telle structure a été mise en avant par Vapnik (1999), c'est un moyen d'éviter de faire des hypothèses fortes sur la distribution des observations. Dans l'approche PAC-bayésienne, nous menons des prévisions de séries temporelle dans un contexte où les inégalités du type Hoeffding ou Bernstein peuvent être appliquées, puis à se débarrasser des échantillons d'observation par une intégration. Afin de mesurer la complexité de l'espace de paramètres θ, nous considérons un σ-algèbre T sur θ, soit M 1 + (θ) représentent l'ensemble de toutes les mesures de probabilité sur (Θ, T ), nous définissons une distribution de probabilité π ∈ M 1 + (θ). Remarquons que π est aussi appelée la distribution a priori dans le point de vue PAC-bayésien, mais ne dispose pas d'interprétation bayésienne. Plus précisément, π ne tient pas compte de toute croyance préalable sur la localisation de la "vraie" valeur du paramètre ni modélisation stochastique de θ ∈ Θ, π joue juste le rôle de définir une structure en Θ liés à la mesure de la complexité de θ.

Les bornes PAC-bayésiens ont été introduits dans Shawe-Taylor and [START_REF] Shawe-Taylor | A PAC Analysis of a Bayes Estimator[END_REF][START_REF] Mcallester | PAC-Bayesian Model Averaging[END_REF] dans le contexte de 0 -1 classification, Il peut traiter des problèmes très généraux et donne des résultats sur le choix du modèle et de l'agrégation, voir [START_REF] Catoni | Statistical Learning Theory and Stochastic Optimization[END_REF][START_REF] Catoni | PAC-Bayesian Supervised Classification (The Thermodynamics of Statistical Learning)[END_REF]; [START_REF] Alquier | PAC-Bayesian bounds for randomized empirical risk minimizers[END_REF]; [START_REF] Audibert | PAC-Bayesian aggregation and multi-armed bandits[END_REF]; [START_REF] Audibert | Robust linear least squares regression[END_REF] pour les traveaux les plus rćents. Le nom est en raison du fait que, dans sa première forme son objectif était de combiner les principaux avantages du point de vue de théorie de l'apprentissage et des statistiques bayésiens. Dans l'apprentissage statistique, les bornes sur le risque R( θ) d'un estimateur θ souvent dépend du risque empirique de θ, r n ( θ), et sur une mesure de la complexité de la sous-modèle de Θ utilisé pour construire θ.

La technique utilisée dans cette thèse est inspirée par celle mise au point récemment par [START_REF] Catoni | Statistical Learning Theory and Stochastic Optimization[END_REF][START_REF] Catoni | PAC-Bayesian Supervised Classification (The Thermodynamics of Statistical Learning)[END_REF]. Il utilise une structure d'une distribution "préalable" de probabilité sur l'espace de paramètre Θ : π ∈ M 1 + (θ) pour remplacer la structure de sous-modèles de Θ. Au lieu de borner le minimum du risque empirique par rapport au paramètre θ ∈ Θ, nous étudions les déviation des quantiles de r n (θ) par rapport à une mesure de probabilité a priori π ∈ M 1 + (θ) définie sur l'espace des paramètres.

L'idée de l'approche PAC-bayésienne est que le risque de l'estimateur de Gibbs sera proche de inf θ R(θ) jusque'à un petit résidu qui est remplacé par une mesure de la distance entre ρ et π. Pour des raisons de simplicité, nous posons

θ ∈ Θ telle que R(θ) = inf θ∈Θ R(θ)
(Si un tel minimiseur n'existe pas, nous pouvons le remplacer par un minimiseur

approximative R(θ α ) ≤ inf θ R(θ) + α).
Dans le point de vue de PAC-bayésienne, on est généralement capable de prévoir une série temporelle aussi bien que le meilleur modèle ou expert, jusque'à un terme d'erreur qui diminue avec le nombre d'observations n. Ce type de résultats est appelé les inégalités oracle dans la théorie statistique. Autrement dit, on construit un prédicteur θ sur la base des observations de telle sorte que

R( θ) ≤ inf θ∈Θ R(θ) + Δ(n, Θ)
où R(θ) est une mesure du risque de prédiction du prédicteur θ ∈ Θ. En général, le terme de residu est de l' order Δ(n, Θ) ∼ c(Θ)/n, où c(Θ) mesure la complexité de Θ. Ici, cela se fait avec la divergence de Kullback :

K(ρ, π) = ρ log dρ dπ si ρ est absolument continue par rapport à π, sinon K(ρ, π) = ∞.
Nous vous présentons un premier exemple de ce type de résultats prśentés dans cette thèse.

Théorème 5.5.1. Supposons que LowRates(κ) est satisfait pour certains κ > 0.

Alors, pour tout λ, ε > 0, avec la probabilité au moins 1ε on obtient

R θλ ≤ inf ρ∈M 1 + (Θ) Rdρ + 2λκ 2 n (1 -k/n) 2 + 2K(ρ, π) + 2 log (2/ε) λ .
Le choix du paramètre λ est un problème difficile dans le cadre de la dépendance, c'est discuté en détail dans cette thèse. De plus, sous des hypothèses supplémentaires sur le modèle, nous pouvons montrer que la procédure classique de Minimisation du Risque empirique(ERM) peut être utilisé à la place de l'estimateur Gibbs. Au contraire de l'estimateur de Gibbs, il n'y a pas de paramètre de réglage pour l'ERM, donc c'est une situation très favorable.

Cependant, il est connu que, en théorie d'apprentissage si l'on veut avoir en fait à réaliser des estimateurs atteignent effectivement une vitesse rapide de convergence d/n, les théorèmes comme 5.5.1 ne sont pas suffisantes. Dans des conditions supplémentaires sur les fonctions de perte (satisfaites par la fonction de perte quadratique) et pour les processus de mélange uniforme, nous montrons dans cette thèse que la vitesse 1/n peut être atteinte.

Théorème 5.7.1. Supposons que :

1. Margin(K) et LipLoss(K) sont satisfaits pour certains K, K > 0 ;

2. PhiMix(B, C) est satisfait pour certains C > 0 ;

3. Lip(L) est satisfait pour certains L > 0 ;

4. pour tout j ∈ {1, ..., M }, il existe

d j = d(Θ j , π) et R j = R(Θ j , π j ) satisfai- sant la relation ∀δ > 0, log 1 θ∈Θ j 1{R(θ) -R(θ j ) < δ}π j (dθ) ≤ d j log D j δ .
Alors pour

λ = n -k 4kKLBC ∧ n -k 16kC pour tout ε > 0, l'inequalité oracle (5.3) est avec Δ(n, λ, π, ε) = 4 inf j ⎧ ⎨ ⎩ R(θ j ) -R(θ) + 4kC (4 ∨ KLB) d j log D j e(n-k) 16kCd j + log 2 εp j n -k ⎫ ⎬ ⎭ .
Notons que Agarwal and Duchi (2011) prouve la vitesse rapide pour les algorithmes en ligne qui sont également de calcul efficace, voir aussi Agarwal et al. (2012). La vitesse rapide 1/n est atteinte lorsque les coefficients (φ r ) sont géométriquement diminués. Dans d'autres cas, la vitesse est plus lente. Nous ne souffrons pas d'une telle restriction ici. Il faut noter que les algorithmes efficaces de Monte Carlo sont disponibles pour calculer ces estimateurs de poids exponentiels , voir par exemple [START_REF] Alquier | PAC-Bayesian bounds for sparse regression estimation with exponential weights[END_REF]; [START_REF] Dalalyan | Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity[END_REF].

General Introduction

Over the last fifty years or so, various dependence conditions have emerged in literature, as a result of the notion of mixing introduced by Rosenblatt (see [START_REF] Rosenblatt | Stationary processes and random fields[END_REF] for more). Mixing notions have been applied to numerous dependence type problems; especially in the context of time series and their financial applications they were applied on proving limit theorems which enable valid asymptotic inference; see [START_REF] Doukhan | Mixing: properties and examples[END_REF], Rio (2000) and [START_REF] Bradley | Introduction to strong mixing conditions[END_REF] for further examples. However, for some models encountered frequently in applications, strong mixing conditions are not satisfied. Prominent examples of such models are the celebrated AR(1) non-mixing model of [START_REF] Andrews | Non strong mixing autoregressive processes[END_REF] and the LARCH(1) model considered by Doukhan et al. (2006). These types of problems motivated [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF] to introduce more flexible dependence conditions to accommodate larger classes of time series models. The main notion introduced is that of weak dependence; the topic is studied extensively in the recent monograph by [START_REF] Dedecker | Weak dependence: With Examples and Applications[END_REF] which includes numerous examples of weakly dependent processes. [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF] have introduced a concept of weak dependence for time series which generalizes the notions of mixing and association. Covariances of r.v.s are much easier to compute than mixing coefficients. Therefore weak dependence as defined in Definition 2.1.1 is measured in terms of covariances of functions. Assume that, for convenient functions h and k,

Cov (h('past'), k('future'))
converge to 0 as the distance between the 'past' and the 'future' converges to infinity. The convergence is not assumed to hold uniformly on the dimension of the 'past' or 'future' involved. This definition makes explicit the asymptotic independence between 'past' and 'future'; this means that the 'past' is progressively forgotten. Consider (X t ) t∈Z a process with values in some space E u and

• the corresponding norm. We define the Lipschitz modulus of a function

h : E u → R Lip h = sup (y 1 ,...,yu) =(x 1 ,...,xu)∈E u |h(y 1 , . . . , y u ) -h(x 1 , . . . , x u )| y 1 -x 1 + . . . + y u -x u . Definition 2.1.1. Let (X t ) t∈Z be a process with values in E. Let Γ(u, v, r) be the set of (s, t) in Z u × Z v such that s 1 ≤ . . . ≤ s u ≤ s u + r ≤ t 1 . . . ≤ t v . For some classes of functions E u , E v → R, F u , G v the dependence coefficient is defined by (r) = sup u,v sup (s,t)∈Γ(u,v,r) sup f ∈Fu,g∈Gv |Cov (f (X s 1 , . . . , X su ), g(X t 1 , . . . , X tv )) | ψ(f, g, u, v) .
X t is called ( , ψ)-weakly dependent process if the sequence (r) → r→∞ 0.

Examples of interest involve the function ψ 1 (f, g, u, v) = vLip g (e.g. in causal linear processes), ψ 2 (f, g, u, v) = uLip f + vLip g, (e.g. in non causal linear processes),

ψ 3 (f, g, u, v) = uvLip f • Lip g (e.
g. in associated processes), and

ψ 4 (f, g, u, v) = uLip f + vLip g + vLip f • Lip g.
This definition is hereditary through images by convenient functions.

There are two reasons we prefer using weak dependence instead of mixing.

Firstly, mixing conditions refer rather to σ-algebra than to random variables.

They are consequently more adapted to work in areas like Financ, that is the σ-algebra generated by the past is of a considerable importance. Secondly, A difficulty of mixing is that checking for it is usually hard.(see e.g Doukhan ( 1994)) however, weak dependence is a very general property including certain non-mixing processes: e.g. [START_REF] Andrews | Non strong mixing autoregressive processes[END_REF] explicated the simple example of an autoregressive process with Bernoulli innovations and proved that such a model is not strong mixing, while [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF] proved that such a process is weakly dependent.

This weak dependence notion is broad enough to include many interesting examples such as stationary Markov models, bilinear models, and more generally, Bernoulli shifts. More precisely, under weak conditions, all the usual causal or non causal time series are weakly dependent processes: this is the case for instance of Gaussian, associated, linear, ARCH(∞), bilinear, Volterra, infinite memory processes, . . . We discuss and investigate the relationship between mixing and weak dependence for integer valued time series models. In recent years, there is an emerging literature on the topic of modeling and inference for count time series, see [START_REF] Kedem | Regression Models for Time Series Analysis[END_REF], Doukhan et al. (2006), [START_REF] Drost | Note on integer-valued bilinear time series models[END_REF][START_REF] Fokianos | Poisson autoregression[END_REF], Fokianos andTjøstheim (2011), Franke (2010) and [START_REF] Neumann | Absolute regularity and ergodicity of Poisson count processes[END_REF] for integer autoregressive models and for generalized autoregressive models, among other references. We will focus on such models but we point out that other families might be considered as well; see [START_REF] Coupier | 0-1 laws for dependent images[END_REF] for the case of a general process with two values.

Our objective is to relate mixing and weak dependence conditions for such integer valued count time series models. Using the definition of η, the dependence between the past of the sequence X t , t ∈ Z and its future r-tuples may be assessed as follows.

Cov (f (X i 1 , . . . , X iu ), g(X j 1 , . . . , X jv )) ≤ (uLip f + vLip g)η(r).
Due to the fact that the σ-algebras generated by discrete sets are quite small, we prove that the coefficients obtained from the mixing world often coincide to those introduced under weak dependence. For example, we link the weak dependence coefficient η to the strong mixing coefficients α.

Definition 3.3.1. For each d ≥ 1 we denote by • the uniform norm, i.e. (u 1 , . . . , u d ) = max 1≤j≤d |u j | on R d . A set G will be called discrete if G ⊂ R d
for some d ≥ 1 and its elements satisfy

D = inf x =x ,x,x ∈G x -x > 0 Proposition 3.3.1. If {X t , t ∈ Z} is an η-weakly dependent integer valued pro- cess, then α u,v (r) ≤ 2 D (u + v)η(r)
Similar results when {X t , t ∈ Z} is a τ -weakly dependent integer valued process.

The case of Markov processes is of a particular interest in our investigation.

We show that the various coefficients of dependence lead special attention to Markov chains. Several examples of integer autoregressive models are discussed in detail. In particular, we will prove conditions which existing models should satisfy so that they are weakly dependent.

The problem of time series forecasting is a fundamental problem in statistics. The parametric approach contains a wide range of models associated with efficient estimation and prediction methods, see e.g. [START_REF] Hamilton | Time Series Analysis[END_REF]; [START_REF] Brockwell | Time Series: Theory and Methods[END_REF]. Classical parametric models include linear processes such as ARMA, and more recently, non-linear processes such as stochastic volatility models and ARCH received a lot of attention in financial applications -see e.g. the seminal paper by Nobel prize winner Engle (1991), and [START_REF] Francq | GARCH Models: Structure, Statistical Inference and Financial Applications[END_REF] for a more recent introduction. However, in practice, parametric assumptions rarely holds. This can lead to highly biased prediction, and to underevaluate the risks, see among others the polemical but highly informative discussion in Taleb (2007).

In the last few years, several universal approaches emerged from various fields such that non-parametric statistics, machine learning, computer science and game theory. These approaches share some common features: the aim is to build a procedure that predicts the series as well as the best predictor in a given set of initial predictors, without any parametric assumption on the distribution of the observation. However, the set of predictors can be inspired by different parametric or non-parametric statistical models. We can distinguish two classes in these approaches, with different quantification of the objective, and different terminologies:

• in the "prediction of individual sequences" approach, predictors are usually called "experts". The objective is online prediction: at each date t, a prediction of the future realization x t+1 is based on the previous observations x 1 , ..., x t , the objective being to minimize the cumulative prediction loss. See for example [START_REF] Cesa-Bianchi | Prediction, Learning, and Games[END_REF]; [START_REF] Stoltz | Agrégation séquentielle de prédicteurs : méthodologie générale et applications à la prévision de la qualité de l'air et à celle de la consommation électrique[END_REF] for an introduction.

• in the statistical learning approach, the given predictors are sometimes referred to as "models" or "concepts". The batch setting is more classical in statistics. A prediction procedure is build on a complete sample X 1 , ...,

X n . The performance of the procedure is compared on average with the best predictor, called the 'oracle". The environment is not deterministic and some hypotheses like mixing or weak dependence is required: see [START_REF] Meir | Nonparametric time series prediction through adaptive model selection[END_REF]; Modha and Masry (1998); [START_REF] Alquier | Model selection for weakly dependent time series forecasting[END_REF]. Note that results from the "individual sequences" approach can usually be extended to this setting, see e.g. [START_REF] Gerchinovitz | Sparsity regret bounds for individual sequences in online linear regression[END_REF] for the iid case, and Agarwal and Duchi (2011); Agarwal et al. (2012) for mixing time series.

In both settings, one is usually able to predict a bounded time series as well as the best expert, up to a small remainder Δ n . This type of results is referred in statistical theory as an oracle inequality. In general, neglecting the size of the set of predictors Θ, the remainder is of the order 1/ √ n in both approaches: see e.g. [START_REF] Cesa-Bianchi | Prediction, Learning, and Games[END_REF] for the "individual sequences" approach;

for the "statistical learning approach" the rate 1/ √ n is reached in [START_REF] Alquier | Model selection for weakly dependent time series forecasting[END_REF] with the absolute loss function and under a weak dependance assumption. Different procedures are used to reach these rates. Let us mention the empirical risk minimization [START_REF] Vapnik | The nature of statistical learning theory[END_REF] and aggregation procedures with exponential weights, usual referred as EWA [START_REF] Dalalyan | Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity[END_REF]; [START_REF] Gerchinovitz | Sparsity regret bounds for individual sequences in online linear regression[END_REF] or Gibbs estimator [START_REF] Catoni | Statistical Learning Theory and Stochastic Optimization[END_REF][START_REF] Catoni | PAC-Bayesian Supervised Classification (The Thermodynamics of Statistical Learning)[END_REF] in the batch approach, linked to the weighted majority algorithm of the online approach Littlestone and Warmuth (1994), see also [START_REF] Vovk | Aggregating strategies[END_REF].

In this thesis, we focus on the time series forecasting using the statistical learning approach. Let X 1 , . . . , X n denote the observations at time t ∈ {1, . . . , n} of a time series X = (X t ) t∈Z defined on (Ω, A, P). We assume that this time series takes values in R p equipped with the Euclidean norm • . As mentioned above, in the learning theory approach, fixed an integer k, we assume that we are given a set of predictors

{f θ : (R p ) k → R p , θ ∈ Θ}
where Θ is subset of a linear space for the sake of simplicity. However the Θ here represent the union of all the parameters of all the models we envision. We will use a model-selection type approach:

Θ = ∪ M j=1 Θ j .
Θ will be a finite (or more generally countable) union of subspaces. The importance of introducing such a structure has been put forward by [START_REF] Vapnik | The nature of statistical learning theory[END_REF], as a way to avoid making strong hypotheses on the distribution of the observations.

In the PAC-Bayesian approach, we lead time series forecasting to a context where Hoeffding or Bernstein type inequalities can be applied, and then to get rid of the observation samples by an integration with respect it. In order to measure the complexity of the parameter space Θ, we consider a σ-algebra T on Θ, let M 1 + (Θ) denote the set of all probability measure on (Θ, T ), we define a probability distribution π ∈ M 1 + (Θ). Remark that π is also called the prior distribution in the PAC-Bayesian point of view but does not have any Bayesian interpretation. More precisely, π does not reflect any prior belief on the localization of the "true" value of the parameter nor a stochastic modelization of θ ∈ Θ, π just plays the role on defining a structure over Θ involved in measuring the complexity of Θ.

PAC-Bayesian bounds were introduced in Shawe- [START_REF] Shawe-Taylor | A PAC Analysis of a Bayes Estimator[END_REF]; [START_REF] Mcallester | PAC-Bayesian Model Averaging[END_REF] in the context of 0 -1 classification, It can deal with very general problems and gives results about model selection and aggregation, see [START_REF] Catoni | Statistical Learning Theory and Stochastic Optimization[END_REF][START_REF] Catoni | PAC-Bayesian Supervised Classification (The Thermodynamics of Statistical Learning)[END_REF]; [START_REF] Alquier | PAC-Bayesian bounds for randomized empirical risk minimizers[END_REF]; [START_REF] Audibert | PAC-Bayesian aggregation and multi-armed bandits[END_REF]; [START_REF] Audibert | Robust linear least squares regression[END_REF] for more recent advances. Its name is due to the fact that in its first form its objective was to combine the major advantages of the learning theory point of view and of the Bayesian statistics. In statistical learning, the bounds on the risk R( θ) of an estimator θ often depends on the empirical risk of θ, r n ( θ), and on a measure of the complexity of the submodel of Θ used to build θ.

The technique used in this thesis is inspired by the one developed more recently by [START_REF] Catoni | Statistical Learning Theory and Stochastic Optimization[END_REF][START_REF] Catoni | PAC-Bayesian Supervised Classification (The Thermodynamics of Statistical Learning)[END_REF]. He uses as a structure a "prior" probability distribution over the parameter space Θ: π ∈ M 1 + (Θ) to replace the structure of submodels of Θ. Instead of bounding the minimum of the empirical risk with respect to the parameter θ ∈ Θ, we study the deviations of the quantiles of r n (θ) with respect to some prior probability measure π ∈ M 1 + (Θ) defined on the parameter space. The idea of PAC-Bayesian approach is that the risk of the Gibbs estimator will be close to inf θ R(θ) up to a small remainder which is replaced by a measure of the distance between ρ and the π. For the sake of simplicity, let θ ∈ Θ be such that

R(θ) = inf θ∈Θ R(θ)
(if such a minimizer do not exist, we can just replace it by an approximate minimizer R(θ α ) ≤ inf θ R(θ) + α).

In the PAC-Bayesian point of view, one is usually able to predict a time series as well as the best model or expert, up to an error term that decreases with the number of observations n. This type of results is referred to as oracle inequalities in statistical theory. In other words, one builds on the basis of the observations a predictor θ such that

R( θ) ≤ inf θ∈Θ R(θ) + Δ(n, Θ)
where R(θ) is a measure of the prediction risk of the predictor θ ∈ Θ. In general, the remainder term is of the order Δ(n, Θ) ∼ c(Θ)/n, where c(Θ) measures the complexity of Θ. Here, this is done with the Kullback divergence:

K(ρ, π) = ρ log dρ dπ if ρ is absolutely continuous with respect to π, otherwise K(ρ, π) = ∞.
Let us introduce a first example of this kind of results presented in the second part of this thesis.

Theorem 5.5.1. Let us assume that LowRates(κ) is satisfied for some κ > 0.

Then, for any λ, ε > 0, with probability at least 1ε we have

R θλ ≤ inf ρ∈M 1 + (Θ) Rdρ + 2λκ 2 n (1 -k/n) 2 + 2K(ρ, π) + 2 log (2/ε) λ .
The choice of the parameter λ is a hard problem in the context of dependence, it is discussed in details in this thesis. Also, under additional assumptions on the model, we can prove that the classical Empirical Risk Minimization (ERM) procedure can be used instead of the Gibbs estimator. On the contrary to the Gibbs estimator, there is no tuning parameter for the ERM, so this is a very favorable situation.

However, it is a known fact that in learning theory that if one wants to have estimators actually achieve fast rates of convergence d/n, theorems like 5.5.1 are not sufficient. Under additional conditions on the loss functions(satisfied by the quadratic loss function) and for uniformly mixing processes, we prove in this thesis that the rate 1/n can be achieved.

Theorem 5.7.1. Assume that:

1. Margin(K) and LipLoss(K) are satisfied for some K, K > 0;

2. PhiMix(B, C) is satisfied for some C > 0;

3. Lip(L) is satisfied for some L > 0;

4. for any j ∈ {1, ..., M }, there exist

d j = d(Θ j , π) and R j = R(Θ j , π j )
satisfying the relation ∀δ > 0, log 1

θ∈Θ j 1{R(θ) -R(θ j ) < δ}π j (dθ) ≤ d j log D j δ .
Then for

λ = n -k 4kKLBC ∧ n -k 16kC the oracle inequality (5.3) for any ε > 0 with Δ(n, λ, π, ε) = 4 inf j ⎧ ⎨ ⎩ R(θ j ) -R(θ) + 4kC (4 ∨ KLB) d j log D j e(n-k) 16kCd j + log 2 εp j n -k ⎫ ⎬ ⎭ .
Note that Agarwal and Duchi (2011) proves fast rates for online algorithms that are also computationally efficient, see also Agarwal et al. (2012). The fast rate 1/n is reached when the coefficients (φ r ) are geometrically decreasing. In other cases, the rate is slower. We do not suffer such a restriction here. It should be noted that efficient Monte Carlo algorithms are available to compute these exponential weights estimators, see for example [START_REF] Alquier | PAC-Bayesian bounds for sparse regression estimation with exponential weights[END_REF]; [START_REF] Dalalyan | Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity[END_REF].

Part I

Weak Dependence, Models and

Applications

Chapter 2

Weak Dependence Notions and

Models

The aim of this part is to propose a mathematical introduction to the content of dependence. 

Introduction

We start here from some very basic facts concerning independence of random variables. We suppose that we are given P and F two random variables defined on the same probability space (Ω, A, P). Note σ(P ) the σ-algebra generated by P , and respectively σ(F ). So independence of both random variables writes as

P(A ∩ B) = P(A)P(B). ∀A ∈ σ(P ), ∀B ∈ σ(F ).
This definition can be extended to Cov (f (P ), g(F )) = 0 for all f ,g with f ∞ , g ∞ ≤ 1.

If now, we consider a time series X = (X t ) t∈Z , the variable P and F may be denoted 'Past' and 'Future':

P = (X i 1 , . . . , X iu ), F = (X j 1 , . . . , X jv ) for i 1 ≤ i 2 ≤ . . . , ≤ i u < j 1 ≤ j 2 . . . ≤ j v , u, v ∈ N * .
Since no phenomena are really independent from each others, a first question is asked here, how to weaken those relations.

A first answer to this problem was the mixing assumption introduced by [START_REF] Rosenblatt | A central limit Theorem and a strong mixing condition[END_REF]. For a long time mixing conditions have been the dominant type of conditions for imposing a restriction on the dependence between time series data. They are considered to be useful since they are fulfilled for many classes of processes and since they allow us to derive tools similar to those in the independent case. However, mixing conditions can be very hard to verify for particular models or are even too strong to be true (see. e.g Doukhan ( 1994))

and such conditions refer rather to σ-algebras than to random variables.

Covariances of r.v.s are much easier to compute than mixing coefficient.

Therefore [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF] have introduced a concept of weak dependence to the case of time series which generalizes the notion of mixing and association. It is measured in terms of covariances of functions. For convenient functions h and k, we assume that Cov (h('past'), k('future'))

is small when the distance between the 'past' and the 'future' is sufficiently large.

This definition makes explicit the asymptotic independence of finite-dimensional distribution with separated index sets (see Definition 2.1.1); the convergence is not assumed to hold uniformly on the dimension of the distributions involved. [START_REF] Wu | Nonlinear system theory: Another look at dependence[END_REF] introduced the physique dependence measures for stationary causal process. Based on the nonlinear system theory, he introduces dependence coefficients by measuring the degree of dependence of outputs on inputs in physical system. Asymptotic properties have been established under such dependence conditions.

Mixing

Mixing conditions are defined in terms of the σ-algebras generated by a random sequence.

α(σ(P ), σ(F )) = sup P ∈σ(P ),F ∈σ(F )

|P(P )P(F ) -P(P ∩ F )| β(σ(P ), σ(F )) = P (P,F ) -P P ⊗ P F T V ρ(σ(P ), σ(F )) = sup p∈L 2 (σ(P )),f ∈L 2 (σ(F )) |Corr(p, f )| φ(σ(P ), σ(F )) = sup P ∈σ(P ),V ∈σ(F ) | P(P ∩ F ) P(P ) -P(F )|
The β-mixing coefficient, introduced by [START_REF] Wolkonski | Some limit theorems for random functions[END_REF][START_REF] Wolkonski | Some limit theorems for random functions[END_REF], [START_REF] Kolmogorov | On the strong mixing conditions for stationary Gaussian sequences[END_REF] introduced the maximal correlation coefficient ρ and defined the corresponding dependence condition. The coefficient φ is the uniform mixing coefficient by [START_REF] Ibragimov | Some limit theorems for stationary processes[END_REF].

Proposition 2.1.1. The following relations hold:

φ -mixing ⇒ ⎧ ⎨ ⎩ ρ -mixing β -mixing ⎫ ⎬ ⎭ ⇒ α -mixing
Proof is omitted and more details and examples for such conditions can be found in [START_REF] Doukhan | Mixing: properties and examples[END_REF] and Rio (2000), there is no reverse implication holds in general.

As basic assumptions on the dependence structures, the mixing conditions have been widely used and various limit theorems have been obtained; It is impossible to give a complete list of references here. Representative results are [START_REF] Doukhan | Mixing: properties and examples[END_REF], Rio (2000) and [START_REF] Bradley | Introduction to strong mixing conditions[END_REF]. However, most of the asymptotic results developed in the literature are for strong mixing processes and processes with quite restrictive summability conditions on joint cumulants. Such conditions seem restrictive and they are not easily verifiable. For example, Andrews (1984) showed that, for a simple autoregressive process with innovations being independent and identically distributed (iid) Bernoulli random variables, the process is not strong mixing.

Example 2.1.1. [START_REF] Andrews | Non strong mixing autoregressive processes[END_REF]'s simple example is, however, not mixing

X t = 1 2 (X t-1 + ξ t ), ξ t ∼ b 1 2 , iid.
X t has the uniform density over (0, 1). X t is a causal process with the representation X t = ∞ j=0 2 -j ξ t-j and the innovations ξ t , ξ t-1 , . . . correspond to the dyadic expansion of X t . ξ t-k is the k-th digit in the binary expansion of the uniformly chosen number X t = 0.ξ t ξ t-1 . . . ∈ [0, 1]. This shows that X 0 is some deterministic function of X t which derives that such models are not mixing. Thus the process X t is not strong mixing and α n ≡ 1/4 for all t.

Example 2.1.2. In [START_REF] Doukhan | Weak dependence, models and some applications[END_REF] paper, one extend andrew's idea and provide an LARCH( 1) not-mixing model:

X t = ξ t (1 + aX t-1 )
where

P(ξ 0 = 1) = P(ξ 0 = -1) = 1/2.
This model has the stationary uniform distribution in L m with m ≥ 1,

X t = ξ t + j≥1 a j ξ t . . . ξ t-j .
(2.1)

But it satisfies no mixing condition if a ∈ ( 3- √ 5
2 , 1 2 ] (the past may entirely be recovered from the present).

The proof is as in [START_REF] Andrews | Non strong mixing autoregressive processes[END_REF] 

that P(X t ∈ A|X t-(n+1) ∈ B) = 1, (∀n), P(X t-(n+1) ∈ B) = 0 and P(X t ∈ A) < 1, for some well chosen subsets A, B of R. Set U t = (X t ∈ A) and V t-n-1 = (X t-(n+1) ∈ B) then P(U t ∩ V t-n-1 ) = P(V t-n-1 )
and we derive from stationarity that P(V t-n-1 ) = P(V 0 ) = 0 and

P(U t ) = P(U 0 ) < 1; thus α n ≥ P(U t ∩ V t-n-1 ) -P(U t )P(V t-n-1 ) ≥ P(V 0 )(1 -P(U 0 )) > 0.
We use the decomposition:

X t = A t,n + a n+1 ξ t . . . ξ t-n X t-(n+1) , A t,n = ξ t + aξ t ξ t+1 + . . . + a n ξ t . . . ξ t-n .
1. The values of the random variable A t,n are spaced of at least 2a n . Indeed two distinct values of A t,n are always spaced by a number d = 2 n i=0 i a i where for i = 0, . . . , n, i ∈ {-1, 0, 1}. As l = min{i; 0 ≤ i ≤ n, i = 0} exists and l = 1, we have d ≥ 2a n .

We have

P(a < |X t | ≤ 2) ≥ 1/4. Indeed P(a < |X t | ≤ 2) ≥> 0, X t ≥ 1 + a -i≥2 a i for a ∈ (0, 1/2] if ξ t = ξ t-1 = 1. Moreover as X ≤ 1/(1 -a) ≤ 2 for a ∈ (0, 1/2].
3. For B = (-a, a) we have P(X t ∈ B) > 0. For this, observe first that

a ∈] 3- √ 5 2 , 1/2] implies 1 -a -a 2 -a 3 -. . . < a; thus for n 0 ≥ 2 large enough we get 1 -a -. . . -a n 0 + k≥n 0 +1 a k < a. If ξ t-i = 1 for i = 1 with 0 ≤ i ≤ n 0 , and ξ t-1 = -1, we have 0 ≤ X t ≤ 1 -a - . . .-a n 0 + k≥n 0 +1 a k < a. Thus P(|X t | < a) ≥ 2 -n 0 -1 . Now if w 1 , . . . , w k denote the values of A t,n , we set A = ∪ k i=1 ]w i -a n+2 , w i +a n+2 [. Using the decomposition we infer that X t ∈ Aif |X t-(n+1) | < a thus P(X t ∈ A|X t-(n+1) ∈ B) = 1.
We prove here that P(

X t ∈ A) < 1. If a < |X t-(n+1) | ≤ 2, then X t writes as w i + c with 2a n+1 ≥ |c| > a n+2 . In this case X t / ∈ A. Indeed |X t -w i | > a n+2
and if, for example c > 0, we use point 1 and the fact that a ≤ 1/2 to derive:

X t < w i + 2a n+1 ≤ w i+1 -a n+2
provided w i+1 exists (else we have obviously

X t / ∈ A). And we obtain X t / ∈ A if c > 0. It is also the case if c < 0 with a similar argument. The result follows from P(X t ∈ A) = P(X t ∈ A ∩ |X t-(n+1) | ≤ a) ≤ P(|X 0 | ≤ a) < 1. Moreover it is clear that P (|X t-(n+1) | 2 a) = 0.(Doukhan et al. ( 2009 
))
2.1.2 Weak dependence [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF] aim at defining weak dependence coefficients which makes explicit the asymptotic independence between 'past' and 'future'; this means that the 'past' is progressively forgotten. In terms of the initial time series, 'past' and 'future' are elementary events given through finite dimensional marginals. Roughly speaking, for convenient functions f and g, one shall assume that Cov (f ('past'), g('future'))

is small when the distance between the 'past' and the 'future' is sufficiently large.

Such inequalities are significant only if the distance between indices of the initial time series in the 'past' and the 'future' terms grows to infinity:

|Cov (f (P ), g(F ))| ≤ ψ(u, v, Lip f, Lip g) (r).
Consider (X t ) t∈Z a process with values in a Polish space (E, • ). • m denotes the usual L m -norm, i.e., X m m = E X m for m ≥ 1 for every E-valued random variable X. We define the Lipschitz constant in order to distinct functions ψ.

For h : E u → R, Lip h = sup (y 1 ,...,yu) =(x 1 ,...,xu)∈E u |h(y 1 , . . . , y u ) -h(x 1 , . . . , x u )| y 1 -x 1 + . . . + y u -x u . Definition 2.1.1. Let (X t ) t∈Z be a process with values in E. Let Γ(u, v, r) be the set of (i, j) in Z u × Z v such that i 1 ≤ . . . ≤ i u ≤ i u + r ≤ j 1 . . . ≤ j v . For some classes of functions F u from E u to R and G v from E v to R, if ψ is some function from F × G × R 2 to R + , the dependence coefficient is defined by (r) = sup u,v sup (i,j)∈Γ(u,v,r) sup f ∈Fu,g∈Gv |Cov (f (X i 1 , . . . , X iu ), g(X j 1 , . . . , X jv )) | ψ(f, g, u, v) . X t is called ( , ψ)-weakly dependent process if the sequence (r) → r→∞ 0.
Remark that in the previous definition: a) r always denotes the gap in time between 'past' and 'future'.

b) the sequence depends both on the class F, G and on the function ψ.

Assume that F u are the set of functions bounded by 1 (resp. G v ). Then the weak dependence coefficients correspond to:

ψ = uLip f + vLip g then denote (r) = η(r) = vLip g then denote (r) = θ(r) = uvLip f • Lip g then denote (r) = κ(r) = uLip f + vLip g + uvLip f • Lip g then denote (r) = λ(r) = uLip f + vLip g + uvLip f • Lip g + u + v then denote (r) = ω(r)
Remark 2.1.1. The coefficients η, κ, λ, and ω are non-causal coefficients when F u = G u and ψ is symmetric. In this situations where both F u and G u are spaces of regular functions, we say that we are in the non causal case. In the case where the sequence (X t ) t∈Z is an adapted process with respect to some increasing filtration (M i ) i∈Z , it is often more suitable to work without assuming any regularity conditions on F u . In that case G u is some space of regular functions and

F u = G u .
This last case is called the causal case.

An important point in the previous definition is its heredity through appropriate images as is the case for mixing conditions. As well as mixing coefficients, these coefficients also have some hereditary properties.

Proposition 2.1.2 [START_REF] Bardet | Uniform limit theorems for the integrated periodogram of weakly dependent time series and their applications to WhittleÕs estimate[END_REF]). Let (X t ) t∈Z be a sequence of R k -valued random variables. Let p > 1. We assume that there exists some constant C > 0

such that max 0≤i≤k X i p ≤ C. Let h be a function from R k to R such that h(0) = 0 and for x, y ∈ R k , there exists a in [1, p[ and c > 0 such that |h(x) -h(y)| ≤ c|x -y|(1 + |x| a-1 + |y| a-1 )
. We define the sequence

(Y t ) t∈Z by Y t = h(X t ), then, • if (X t ) t∈Z is θ-weakly dependent, then (Y t ) t∈Z too, θ Y (r) = O θ(r) p-a p-1 ; • if (X t ) t∈Z is η-weakly dependent, so is (Y t ) t∈Z and η Y (r) = O η(r) p-a p-1 ; • if (X t ) t∈Z is λ-weakly dependent, (Y t ) t∈Z also λ Y (r) = O λ(r) p-a p+a-2 . Example 2.1.3. The function h(x) = x 2 satisfies the previous assumptions.
This condition is satisfied by polynomials with degree a.

Let F u be the class of bounded functions from E u to R, and let G u be the class of functions from E u to R which are Lipschitz. We assume that the variables X i are L 1 -integrable. We shall see that the θ causal coefficient defined above belongs to a more general class of dependence coefficients defined through conditional expectations with respect to the filtration σ(X j , j ≤ i).

Definition 2.1.2. Let (Ω, A, P) be a probability space, and M be a σ-algebra of A. Let E be s Polish space. For any L p -integrable random variable X with values in E, we define

θ p (M, X) = sup{ E(g(X)|M) -E(g(X)) p , Lip g ≤ 1}. and then if (X i ) i∈Z is an L p -sequence, and (M k ) k∈Z are σ-algebras (σ(X j , j ≤ k)). θ p,k (r) = max s≤k 1 s sup i+r≤j 1 ≤...≤js θ p (M i , (X j 1 , . . . , X js )) .
The two preceding definitions are coherent as proved in [START_REF] Dedecker | Weak dependence: With Examples and Applications[END_REF],

θ(r) = θ 1,∞ (r).
Remark 2.1.2. It is clear that if X is a θ-weakly dependent process it is also a λ-weakly dependent process. Then main reasons for considering a distinction between causal and non causal time series are a) the θ-weak dependence is more easily relied to the strong mixing property; b) some models or properties require different conditions on the convergence rate of (θ(r)) than of (λ(r)).

We now define τ and γ causal coefficients.

Definition 2.1.3. Let (Ω, A, P) be a probability space, and M be a σ-algebra

of A. Let E be s Polish space and p ∈ [1, ∞]. For any L p -integrable random variable X with values in E, we define • τ coefficients: τ p (M, X) = sup Lip g≤1 g(X)P X|M dx -g(X)P X dx p .
and we clear have

θ p (M, X) ≤ τ p (M, X) now let (X i ) i∈Z be a L p integrable random sequence. The coefficient τ p,k (r)
are defined as follow:

τ p,k (r) = max s≤k 1 s sup i+r≤j 1 ≤...≤js τ p (M i , (X j 1 , . . . , X js )) . • γ coefficients (projective measure) γ p (M, X) = E(X|M) -E(X) p ≤ θ p (M, X)
and

γ p (r) = sup i∈Z γ p (M i , X i+r ) .
Those coefficients are defined in [START_REF] Gordin | The central limit theorem for stationary processes[END_REF], these coefficients are used in order to derive various limit theorems in Mc Leish (1975,a).

Physique dependence measure

In this section, we introduce another look at the fundamental issue of dependence.

By interpreting causal Bernoulli shifts as physical systems, [START_REF] Wu | Nonlinear system theory: Another look at dependence[END_REF] introduce physical and predictive dependence measures quantify the degree of dependence of outputs X t on inputs ε t in physical systems. Consider the causal Bernoulli shift

X t = H(ξ t , ξ t-1 , . . .)
where ξ t , t ∈ Z are i.i.d random variables and H is a measurable function. In view as physical system, ξ t , ξ t-1 , . . . are inputs and H is a filter or a transform. X i shall be the output. Applying the idea of coupling, they introduce dependence coefficient by measuring the degree of dependence of outputs on inputs. Let (ξ i ) by an iid copy of (ξ i ). Hence ξ i , ξ j , i, j ∈ Z, are i.i.d.

Definition 2.1.4. Let the shift process F i = (ξ i , ξ i-1 , . . .). Denote X * j be a coupled version of X j in the latter beging replaced by ξ 0 :

X * j = H(F * j ), F * j = (ξ j , ξ j-1 , . . . , ξ 1 , ξ 0 , ξ -1 , . . .).
For j ∈ Z, define the the projection operator

P j (X) = E(X|F j ) -E(X|F j-1 ) • Functional or physical dependence measure. Let X i ∈ L p , p > 0, δ p (j) = X j -X * j p • Predictive dependence measure. Let X i ∈ L p , p ≥ 1 θ p (i) = P 0 X i p • p-stability. The process (X t ) is said to be p-stable if Δ p := ∞ j=0 δ p (j) < ∞.
We say that it is weakly p-stable if

Ω p := ∞ j=0 θ p (j) < ∞.
Limit theorems with those dependence measures have been established and are often optimal or nearly optimal. Those dependence measures provide a simple way for a large-sample theory for stationary causal processes and they are directly related to the underlying data-generating mechanism H. Examples as linear processes and Volterra processes, a polynomial-type nonlinear process, nonlinear time series ...

Models

Bernoulli shifts

Now we consider the weak dependence structure to the class of Bernoulli shifts.

Definition 2.2.1. Let ξ i , i ∈ Z, be independent and identically distributed random variables and H a measurable function defined on R Z . A Bernoulli shift is a sequence (X t ) t∈Z defined by

X t = H((ξ t-j ) j∈Z ),
where, more precisely, H in L m (μ) for some m > 0, with μ the distribution of

(ξ t ) t∈Z .
This way of constructing stationary sequence is very natural. A simple case of infinitely dependent Bernoulli shift is the moving average process, writes

X t = ∞ j=-∞ a j ξ t-j .
Proposition 2.2.1 [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF]). The process (X t ) t∈Z is η-

weak dependent with η(r) = 2δ m∧1 [r/2] if E|H(ξ j , j ∈ Z) -H(ξ j 1 |j|<r , j ∈ Z)| ≤ δ r ↓ 0(r ↑ ∞) (2.2)
If H(ξ j , j ∈ Z) does not depend on ξ j with j < 0, then it is causal and θ-dependent

holds with θ(r) = δ m∧1 r .
In fact, the sequences (δ k ) k are related to the modulus of uniforms continuity of H. It is evaluated under regularity conditions on the function H; e.g. if

|H(u i ; i ∈ Z) -H(v i ; i ∈ Z)| ≤ i∈Z a i |u i -v i | b
for some 0 < b ≤ 1 and for positive constants (a i ) i∈Z fulfilling i∈Z a i < ∞. If the sequence (ξ i ) i∈Z has finite bth-order moment, then

δ k ≤ |i|≥k a i E|ξ i | b .
Notice finally that most of models used in statistics are such processes. Examples of such situations follow:

• Example (2.1.1), the example of the non mixing stationary Markovian chain with i.i.d Binomial innovations,

X t = 1 2 (X t-1 + ξ t ) satisfies δ r = O(2 -r ); its marginal distribution is uniform on [0, 1].

• Nonparametric AR model

The real-valued functional autoregressive model

X t = r(X t-1 ) + ξ t with r : R → R.
If |r(u)-r(u )| ≤ c|u-u | for some 0 ≤ c ≤ 1 and for all u, u ∈ R, and if the i.i.d. innovation process (ξ t ) t∈Z satisfies E X 0 < ∞, then θ-dependence

holds with θ(r) = δ r = C • c r for some constant C > 0.

Models with a Markovian representation

Let (X t ) t∈N be sequence of random variables with values in a Banach space (B, • ). Let (ξ t ) t∈N be a sequence of independent r.v.s and F be a measurable function. Assume that X t satisfies the recurrence equation

X t = F (X t-1 , ξ t ).
The initial distribution X 0 is supposed to be independent of the sequence (ξ i ) i∈N .

Assume that, the function F satisfies

⎧ ⎪ ⎨ ⎪ ⎩ E F (0, ξ 1 ) a < ∞ E F (x, ξ 1 ) -F (y, ξ 1 ) a ≤ α a x -y a (2.3)
for some a ≥ 1 and 0 ≤ α < 1. It is known by [START_REF] Duflo | Algorithmes stochastiques[END_REF] that the Markov chain (X i ) i∈N has a stationary law μ with finite moment of order a. We suppose that μ is the distribution of X 0 (i.e the Markov chain is stationary). If moreover condition (2.3) is satisfied then the Markov chain, if X0 is independent of X 0 and distributed as X 0 , previous defined is weakly dependent and [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF]).

θ p,∞ (r) ≤ τ p,∞ (r) ≤ α r X0 -X 0 p (see
Remark that the stationary iterative markov models X t = F (X t-1 , ξ t ) can be represented as Bernoulli shifts if condition (2.3) holds, when X t and ξ t take values in Euclidean space.

Linear process

If X is a ARMA(p, q) process or, more generally, linear process such that

X t = ∞ j=0 a j ξ t-j for t ∈ Z, with a j = O(|j| -μ ) with μ > 1/2.
A first choice is

δ r = E|ξ 0 | k>r |a k |
for the linear process with i.i.d innovations such that E|ξ 0 | < ∞.

For centered and L 2 innovations, another choice is

δ r = E|ξ 0 | 2 k>r |a k | 2 .
Thus X is a θ-(respectively, λ-) weakly dependent process with

θ(r) = λ(r) = O 1 r μ-1/2
(see [START_REF] Doukhan | Rates in the empirical central limit theorem for stationary weakly dependent random fields[END_REF]). It is also possible to deduce λ-weak dependence properties for X if the innovation process is itself λ-weakly dependent [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF]).

Chaotic expansion

We study chaotic expansions associated with the discrete chaos generated by the sequence (ξ t ) t∈Z . In a condensed formulation we write

F (x) = ∞ k=0 F k (x)
where F k (x) denote the kth order chaos contribution and F 0 (x) = a (0) 0 is only a centring constant and

F k (x) = ∞ j 1 =-∞ ∞ j 2 =-∞ . . . ∞ j k =-∞ a (k) j 1 ,...,j k x j 1 × x j 2 × . . . × x j k .
It can be written in the vectorial notation

F k (x) = j∈Z k a (k) j x j .
An example is a Volterra stationary process defined through a convergent Voleterra expansion

X t = v 0 + ∞ k=1 V k;t V k;t = -∞<j 1 <...<j k <∞ a (k) j 1 ,...,j k -ξ t-j 1 . . . ξ t-k ,
where v 0 denotes a constant and (a

(k) j ) j∈Z k = (a (k) j 1 ,...,j k ) (j 1 ,...,j k )∈Z k are real number for each k > 0. This expression converges in L m for m ≥ 1, provided that E|ξ 0 | m < ∞ and ∞ k=0 j∈Z k |a (k) j | < ∞.
Those models are η-dependent since (2.2) is satisfied, δ r corresponding to the tail of the previous series

δ r = ∞ k=0 ⎧ ⎨ ⎩ j∈Z k ; j ∞>r |a (k) j |E|ξ 0 | k ⎫ ⎬ ⎭ < ∞.
One more example is the simple bilinear process with the recurrence equation

X t = aX t-1 + bX t-1 ξ t-1 + ξ t .
Such processes are associated with the chaotic representation in

F (x) = ∞ j=1 x j j-1 s=0 (a + bx s ), x ∈ R Z If c = E|a + bξ 0 | < 1 then δ r = θ r = c r (r + 1)/(c -1)
has a geometric decay rate.

LARCH(∞) models

We mention LARCH(∞) models from Doukhan et al. (2006). Let (ξ t ) t∈Z be an i.i.d sequence of random d × D-matrices, (A j ) j∈N * be a sequence of D × d matrices, and a be a vector in R D . Conditionally heteroscedastic models can be expressed in terms of a vector valued LARCH(∞) model, which is a solution of the recurrence equation

X t = ξ t ⎛ ⎝ a + ∞ j=1 A j X t-j ⎞ ⎠
Such models are proved to have a stationary representation with the chaotic expansion

X t = ξ t ⎛ ⎝ a + ∞ k=1 j 1 ,...,j k ≥1 A j 1 ξ t-j 1 A j 2 . . . A j k ξ t-j 1 -j 2 -...-j k a ⎞ ⎠ (2.4) If φ = ξ 0 m j a j < 1,
there exists a solution of previous LARCH models for some m ≥ 1, and it's given as (2.4). This solution has been proved weakly-

dependent with θ(r) ≤ X r -Xr 1 and τ m,∞ (r) ≤ X r -Xr m where X r -Xr m ≤ ξ 0 m ⎛ ⎝ ξ 0 m j<t jφ j-1 A t j + φ r 1 -φ ⎞ ⎠ with A(s) = j≥s a j . Moreover for some constants C, C and b, θ(r) ≤ ⎧ ⎪ ⎨ ⎪ ⎩ C (log(r)) b∨1 r b , under Riemaniann decay A(s) ≤ Cs (-b) , C (q ∨ φ) √ r , under geometric decay A(s) ≤ Cq s .
Such LARCH(∞) models include a large variety of models, as

• Bilinear models X t = ζ t ⎛ ⎝ a + ∞ j=1 α j X t-j ⎞ ⎠ + β + ∞ j=1 β j X t-j
where the variables are real valued and ζ is the innovation. For this, we

set ξ t = ⎛ ⎝ ζ t 1 ⎞ ⎠ , a = ⎛ ⎝ α β ⎞ ⎠ and A j = ⎛ ⎝ α j β j ⎞ ⎠ . • ARCH(∞) processes, ⎧ ⎪ ⎨ ⎪ ⎩ r t = σ t ξ t σ 2 t = β 0 + ∞ j=1 β j σ 2 t-j , We set ξ t = (ξ t 1), a = ⎛ ⎝ κβ 0 λ 1 β ⎞ ⎠ , A j = ⎛ ⎝ κβ j λ 1 β j ⎞ ⎠ with λ 1 = E(ξ 2 0 ) and κ 2 = Var (ξ 2 0 ). • GARCH(p, q) process, ⎧ ⎪ ⎨ ⎪ ⎩ r t = σ t ξ t σ 2 t = p j=1 β j σ 2 t-j + γ + q j=1 γ j r 2 t-j
, where γ > 0, γ i ≥ 0, β i ≥ 0, and the variables ξ t are centered at expectation.

Models with infinite memory

Let (ξ t ) t∈Z be i.i.d, and

F : (R d ) N × R D → R d
, we introduce a chain with infinite memory as the stationary solution of the equation

X t = F (X t-1 , X t-2 , X t-3 , . . . ; ξ t ).
Assume, for some m ≥ 1, that A = F (0, 0, 0, . . . ; ξ t ) m < ∞ and

F (x 1 , x 2 , x 3 , . . . ; ξ t ) -F (y 1 , y 2 , y 3 , . . . ; ξ t ) m ≤ ∞ j=1 a j x j -y j .
where (a j ) j≥1 is a sequence of non-negative real number such that

a = ∞ j=1 a j < 1.
Then existence of the model holds in L m , as well as its stationarity and its weak dependence with,

θ(r) ≤ C inf N>0 ⎛ ⎝ j≥N a j + e -αr/N ⎞ ⎠ if e -α = ∞ j=1 a j , or λ(r) = inf p≥1 {a r/p + |j|>p a j }.
(see [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF])

Chains with infinite memory can also be represented as causal Bernoulli shifts 

X t = H(ξ t , ξ t-1 , ξ t-2 , . . .),
Cov (h(Z t , t ∈ A), k(Z t , t ∈ B)) ≥ 0
for all finite subsets A and B of Z.

Gaussian or associated L 2 -processes are weakly dependent if

κ(r) = O sup i≥r |Cov (X 0 , X i )| → r→∞ 0.
then X is a λ-weakly dependent process such that λ r = O sup i≥r |Cov (X 0 , X i )| .

See [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF] for more details.

Chapter 3

Dependence of Integer Valued Time Series

Introduction

Over the last fifty years or so, various dependence conditions have emerged in the literature, as a result of the notion of mixing introduced by Rosenblatt (see [START_REF] Rosenblatt | Stationary processes and random fields[END_REF] for more). Mixing notions have been applied to numerous dependence type problems; especially in the context of time series and their financial applications they were applied on proving limit theorems which enable valid asymptotic inference; see [START_REF] Doukhan | Mixing: properties and examples[END_REF], Rio (2000) and [START_REF] Bradley | Introduction to strong mixing conditions[END_REF] for further examples. However, for some models encountered frequently in appli- The goal of this section is to investigate the relationship between mixing and weak dependence for integer valued time series models. In recent years, there is an emerging literature on the topic of modeling and inference for count time series, see [START_REF] Kedem | Regression Models for Time Series Analysis[END_REF], Doukhan et al. (2006), [START_REF] Drost | Note on integer-valued bilinear time series models[END_REF][START_REF] Fokianos | Poisson autoregression[END_REF], [START_REF] Fokianos | Log-linear poisson autoregression[END_REF], [START_REF] Franke | Weak dependence of functional INGARCH processes[END_REF] and Neumann (2011) for integer autoregressive models and for generalized autoregressive models, among other references. We will focus on such models but we point out that other families might be considered as well; see [START_REF] Coupier | 0-1 laws for dependent images[END_REF] for the case of a general process with two values. The objective is to relate mixing and weak dependence conditions for such integer valued count time series models.

Due to the fact that the σ-algebras generated by discrete sets are quite small, we prove that the coefficients obtained from the mixing world often coincide to those introduced under weak dependence. The case of Markov processes is of a particular interest in our investigation. Several examples of integer autoregressive models are discussed in detail. In particular, we will prove conditions which existing models should satisfy so that they are weakly dependent. In this way, we offer several theoretical tools for estimation and inference about integer autoregressive processes.

Theorem 3.2.1 gives conditions for the existence and stationarity of a rich class of time series models; see [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF]. Section 3.3 contains several new results for integer valued time series models; in particular it links the various coefficients of dependence with special attention to Markov chains. The section 3.4 contains several examples and discusses conditions for their weak dependence by utilizing suitably Theorem 3.2.1.

Generalities

For the Euclidean space R d equipped with some norm • , define the space

Λ 1 R d by the set of functions h : R d → R such that Lip h ≤ 1. Furthermore, let us denote by h ∞ = sup x∈R d |h(x)|.
We will be working with the notion of τ -dependence as introduced by Dedecker and Prieur (2004); this notion seems to be appropriate for integer valued time series models. To be more specific, let (Ω, G, P) be a probability space and suppose that M is a σ-algebra of G. We denote by L m (Ω, G, P) the class of measurable

functions g(•), such that g m = ( Ω |g(x)| m dP(x)) 1/m < ∞. Let X be a random variable on (Ω, G, P) with values in R d . Assume that X 1 < ∞ and define the coefficient τ as τ (M, X) = sup f (x)P X|M (dx) -f (x)P X (dx) f ∈ Λ 1 R d 1 .
An easy way to bound this coefficient is based on a coupling argument; it can be shown that

τ (M, X) ≤ X -Y 1 ,
for any random variable Y with the same distribution as X and independent of M, see [START_REF] Dedecker | Coupling for τ -Dependent Sequences and Applications[END_REF]. As those authors, we assume that the probability space (Ω, G, P) is rich enough to define independent sequences of random variables. This implies that there exists a random variable X * such that

τ (M, X) = X -X * 1 .
Using the definition of τ , the dependence between the past of the sequence (X t ) t∈Z and its future k-tuples may be assessed as follows. For two k-tuples

x = (x 1 , . . . , x k ) and y = (y 1 , . . . , y k ), consider the norm x -y = x 1 -y 1 + • • • + x k -y k on R dk , set M p = σ(X t , t ≤ p) and τ k (r) = max 1≤l≤k 1 l sup τ (M p , (X j 1 , . . . , X j l )) p + r ≤ j 1 < • • • < j l , (3.1) τ (r) = sup k>0 τ k (r). (3.2)
Then, we say that the time series (X t ) t∈Z is τ -weakly dependent when its coefficients τ (r) tend to 0 as r tends to infinity.

Note that the last condition implies other notions of dependence; the η and θ-weak dependence. Consider numeric functions f and g uniformly bounded by

1 and defined on the sets (R d ) u and (R d ) v equipped with the following norm.

(x 1 , . . . , x u ) = x 1 ∞ + • • • + x u ∞ , x 1 , . . . , x u ∈ R d .
where x ∞ = max 1≤j≤d |x j |, for any x ∈ R d . Then those coefficients are defined as the least nonnegative numbers η(r) and θ(r) such as

Cov (f (X i 1 , . . . , X iu ), g(X j 1 , . . . , X jv )) ≤ (uLip f + vLip g)η(r) ≤ vLip g • θ(r) for integers i 1 , . . . , i u , j 1 , . . . , j v which satisfy i 1 ≤ • • • ≤ i u ≤ i u + r ≤ j 1 ≤ • • • ≤ j v . Note that η(r) ≤ θ(r) ≤ τ (r)
and the definition of η(r) corresponds to the case of non causal models.

The following theorem gives a general result about the decay rate of weak dependence coefficients and improves upon the results obtained by [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] for infinite order models, which are not, in general, Markov models; see e.g. LARCH(∞) models in [START_REF] Dedecker | Weak dependence: With Examples and Applications[END_REF].

Theorem 3.2.1. Suppose that {X t , t ∈ Z} is a time series which satisfies

X t = F (X t-1 , X t-2 , . . . ; ξ t ), (3.3)
where {ξ t , t ∈ Z} is an i.i.d sequence. Suppose that the function F (•) satisfies the following conditions: 

F (0, ξ 0 ) m < ∞ F (x; ξ 0 ) -F (x ; ξ 0 ) m ≤ ∞ l=1 α l x l -x l , where x = (x i ) i≥1 , x = (x i ) i≥1 belong to R ∞ and (α l ) l≥1 a
τ (r) ≤ 2 F (0, ξ 0 ) 1 1 -α inf 1≤u≤r α r u + 1 1 -α ∞ k=u+1 α k
Analogous result holds true for the η-coefficients. In particular, for Markov models, we obtain that the sequence τ (r) decays exponentially fast.

Following either [START_REF] Doukhan | Mixing: properties and examples[END_REF] or Rio (2000), recall that for integers 1 ≤ u, v ≤ ∞, the strong mixing coefficient is defined by

α u,v (r) = sup |P(U ∩ V ) -P(U )P(V )|, (3.4) α(r) = α ∞,∞ (r), (3.5)
whereas the absolute regularity mixing coefficient is given by

β u,v (r) = sup i,j |P(U i ∩ V j ) -P(U i )P(V j )|, (3.6) β(r) = β ∞,∞ (r). (3.7)
In all the above displays, the suprema is taken over U ∈ U, and V ∈ V or respectively for measurable partitions U i ∈ U, and V j ∈ V of Ω; note that

U = σ(X i 1 , . . . , X iu ), and V = σ(X j 1 , . . . , X jv ) for integers i 1 ≤ • • • ≤ i u ≤ i u + r ≤ j 1 ≤ • • • ≤ j v ;
the suprema first runs over all such integers and second over the sigma fields U, V.

Dependence of integer valued time series

We investigate the relation between mixing and weak dependence for integer valued time series. We first need the following definition.

Definition 3.3.1. For each d ≥ 1 we denote by • ∞ the uniform norm, i.e. (u 1 , . . . , u d ) = max 1≤j≤d |u j | on R d . A set G will be called discrete if G ⊂ R d
for some d ≥ 1 and its elements satisfy

D = inf x =x ,x,x ∈G x -x ∞ > 0 Note that if G = Z d , then D = 1.
Lemma 3.3.1. Any real valued function with uniform norm less than 1 defined on G with G discrete, is the restriction of a [-1, 1]-valued and 2 D -Lipschitz function.

Based on the previous lemma, we can link the weak dependence coefficient η to the strong mixing coefficient α.

Proposition 3.3.1. If {X t , t ∈ Z} is an η-weakly dependent integer valued pro- cess, then α u,v (r) ≤ 2 D (u + v)η(r)
Note that the same situation applies to the coefficients τ . Hence Lemma 3. [START_REF] Doukhan | Mixing: properties and examples[END_REF], we recall that the absolute regularity coefficient has the simple expression

β(r) = P (X 0 ,Xr) -P X 0 ⊗ P Xr T V = sup f ∞≤1 |E(f (X 0 , X r ) -f (X 0 , X * r ))|,
where X * r is a copy of X r independent of X 0 .

Hence the Proposition 3.3.2 together with the fact that for Markov processes

β(t) = β 1,1 (t)
, we derive the following result:

Theorem 3.3.1. Assume that (X t ) t∈Z is a stationary p-Markov chain with val- ues in G d .
• Assume also that this chain is η-weakly dependent, then this process is absolutely regular.

• Moreover, if it is η-weakly dependent and X 0 m m < ∞ for some m > 0, then its absolute regularity coefficient sequence satisfies

β(r) ≤ 4p2 m m+d D -(1+d) ( X 0 m m ) d m+d η(r) m m+d ,
for all r ∈ N, large enough.

• If the process is τ -dependent then

β(r) ≤ 2p D τ (r)
An immediate consequence of the above theorem is that for d > 1 yields rates of dependence for d-dimensional Markov integer valued processes. Indeed for a d-Markov process (Z t ) t∈Z , setting X t = (Z t , . . . , Z t-d+1 ), the process (X t ) t∈Z is now a Markov and G d -valued process.

Examples

Here we give some examples of integer-valued time series models that are weakly dependent. The great advantage of working with the notion of weak dependence is that the ease of verification of (3.3) which shows that when the function F (.)

is Lipschitz, then the process is stationary which possess moments of any order.

Integer autoregressive models of order p

Integer autoregressive processes have been introduced by Al-Osh and Alzaid (1987,1990) as a convenient way to transfer the usual autoregressive structure to discrete valued time series. The main concept is given by the notion of thinning which is defined by as follows.

Suppose that X is a non-negative integer random variable and let a ∈ [0, 1].

Then, the thinning operator, denoted by •, is defined as

a • X = ⎧ ⎨ ⎩ X i=1 Y i , if X > 0, 0, otherwise,
where {Y i } is a sequence of independent and identically distributed non-negative integer valued random variables with mean a-independent of X. The sequence 

{Y i } is
Y i (a) = Y (U i , a) = ∞ k=0 1(U i ≤ p a (k)).
The above representation allows for more convenient calculations, as we shall see.

The integer autoregressive process of order p is defined as follows. Suppose that for i = 1, 2, . . . , p, a i ∈ [0, 1) and let {ξ t } be a sequence of independent and identically distributed nonnegative integer valued random variables with ξ r < ∞. Then, the following process

X t = p i=1 a i • X t-i + ξ t , (3.8)
is called integer autoregressive process of order p and is denoted by INAR(p). It should be noted that the counting series used for defining the random variable a 1 • X t-1 are independent of those involved in the definition of a 2 • X t-2 , and so on. This assumption guarantees that the INAR(p) process has the classical AR(p) correlation structure, see [START_REF] Du | The integer valued autoregressive (INAR(p)) model[END_REF]. Now using definition (3.8)

and the almost sure representation of the thinning operator, we obtain that

X t = p i=1 a i • X t-i + ξ t = F (X t-1 , . . . , X t-p ; ξ t ) = p i=1 X t-i j=1 Y (U t;j a i ) + ξ t ,
where the error sequence is defined

ξ t = (ξ t , V t ) with V t = (U t;j ) j≥1 . Now, it
is easy to verify the conditions that (3.3) has to satisfy. Since ξ r < ∞ we have that the first condition is satisfied. For the second condition, note that an application of Minkowski shows that

F (x 1 , . . . , x p ; ξ 0 ) -F (x 1 , . . . , x p ; ξ 0 ) r ≤ p i=1 Y (a i ) r |x i -x i |.
Hence with α = p i=1 Y (a i ) r < 1, the conclusion of Theorem (3.2.1) hold true. In particular, when the counting series is Bernoulli random variables with probability a i , then we obtain the condition p i=1 a i < 1, which is the standard condition for stationarity and ergodicity of the INAR(p) model with Bernoulli counting series, see [START_REF] Du | The integer valued autoregressive (INAR(p)) model[END_REF].

Remark 3.4.1. In order to derive mixing properties of Markov processes one needs irreducibility: this makes a real problem for integer valued models since they belong ṡ. to a null set with respect to Lebesgue measure. In theorem 3.3.1

Lyapounov technique does not apply for the simple Markov models INAR(1):

X t = a • X t-1 + ξ t
Even stationarity needs |a| < 1. The operator x → a • x is contracting in the mean for this case. Quote that x → ax is uniformly contracting. Thus Steutel van Harn operators provide special problems. Indeed, let a• denote the Steutel and van Harn operator based on a counting sequence (Y i ) i∈N . We have

F (x; ξ 0 ) -F (x ; ξ 0 ) r ≤ max j |Y j | x -x r .
The max j |Y j | can be not bounded by (0, 1) (see [START_REF] Wu | Limit Theorems for Iterated Random Functions[END_REF] ).

Integer valued bilinear models

Consider the following bilinear type of INAR model

X t = a 1 • X t-1 + b 1 • (X t-1 ξ t-1 ) + ξ t ,
called BINAR(1,1). Then, working analogously as before, we can show that a necessary condition for {X t } to be stationary and ergodic with r-moments is given by

⎧ ⎪ ⎨ ⎪ ⎩ ξ t r < ∞ Y (a 1 ) r + t r Y (b 1 ) r < 1,
see Doukhan et al. (2006), [START_REF] Drost | Note on integer-valued bilinear time series models[END_REF] for more.

Integer valued LARCH models

More generally we can consider integer valued ARCH type models with infinite memory; for instance suppose that

X t = ξ t a 0 + ∞ i=1 a i • X t-i .
Then again, the elementary calculations show that a necessary condition for {X t } to be stationary and ergodic with r-moments is given by

ξ t r ∞ i=1 Y (a i ) r < 1.
See [START_REF] Latour | An integer-valued bilinear type model[END_REF].

Mixed INAR(1) models

Suppose that for all i ∈ {1, 2, . . . , k}, p i > 0 and k i=1 p i = 1. Then a mixed integer autoregressive model can be considered for modeling when the process changes behavior in different regimes. More precisely, suppose that

X t = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ a 1 • X t-1 + ξ t , with probability p 1 , a 2 • X t-1 + ξ t , with probability p 2 , . . . a k • X t-1 + ξ t , with probability p k .
To examine weak dependence properties of the above model it is convenient to introduce a random variable, say J, which is independent of the counting series and the error terms and such that P(J = j) = p j , for j = 1, 2, . . . , k. Then, the above process can be rewritten as

X t = k j=1 I {J=j} (a j • X t-1 + ξ t ).
Now, it is again simple to show that a stationary and ergodic process X = (X t ) t∈Z with finite moments of order r satisfies the above model if

⎧ ⎪ ⎨ ⎪ ⎩ ξ t r < ∞ k j=1 (p j ) 1/r Y (a j ) r < 1.
In particular, when the counting series is Bernoulli with success probabilities a j , j = 1, 2, . . . , k, we obtain that k j=1 p j a j < 1.

Random Coefficient INAR(1) model

The random coefficient INAR(1) model is defined in analogy with the existing random coefficients models as

X t = a 1;t • X t-1 + ξ t ,
where {a 1;t } is a stationary process which takes real values. For the case of Bernoulli counting series and {a 1;t } iid, this class of models has been studied by [START_REF] Zheng | Inference for the pth-order random coefficient integer-valued process[END_REF] and [START_REF] Zheng | First-order random coefficient integer-valued autoregressive processes[END_REF]. In this case, we can write the above equation as

X t = X t-1 j=1 Y (U t;j , a 1;t ) + ε t = F (X t-1 , ξ t ),
where now sequence ξ t consists of the triplets (ε t , V t , a 1;t ) with V t = (U t;j ) j≥1 .

Working as before, and using a conditioning argument, we obtain that the conditions for weak dependence are

⎧ ⎪ ⎨ ⎪ ⎩ ε t r < ∞ E(|Y (a 1;0 )| r | F -1 ) 1/r ∞ < 1,
where the σ-algebra

F t = σ(ε s , V s , a 1;s , s ≤ t).
In particular, when the sequence {a 1,t } are i.i.d with mean a 1 and the counting series is Bernoulli, then the previous result reduces to the condition a 1 = E(|Y (a 1;0 )|) < 1. The above specification makes evident that a large class of models can be produced in this way; however their dependence conditions are not clear. For instance, long range dependence can be introduced in this way or several other forms of dependence.

Signed Integer-valued Autoregressive (SINAR) models

Following [START_REF] Latour | An integer-valued bilinear type model[END_REF] and more recently Kachour and Truquet (2011), define the signed thinning operator by the following. Suppose that {Y i , i ∈ Z} is a an i.i.d sequence of integer-valued random variables with cumulative distribution function G. Let X be another integer valued random variable which is independent of Y i 's. Then the signed thinning operator is defined by

G • X = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ sign(X) |X| i=1 Y i , if X = 0 0 otherwise,
where sign(x) = 1, if x > 0 and -1 if x < 0. This definition generalizes the previous thinning definition and moreover it allows modeling of integer valued time series that assume negative values as well as positive. In particular, (3.8) is generalized by the following signed integer autoregressive process of order p (abbreviated SINAR(p))

X t = p i=1 G i • X t-i + ε t , (3.9)
where the counting sequences Y To study the weak dependence properties of process (3.9), it is useful to represent the signed thinning operator in terms of uniform random variables, as in the case of ordinary INAR(p). Towards this goal, suppose that the expectation of the cdf G is a. Then define

Y i = Y (U i , a) = ∞ k=0 kI(p a (k -1) < U i ≤ p a (k)), by recalling that p a (k) = P (Y ≤ k), k ∈ Z.
Then rewriting (3.9) as

X t = p i=1 G i • X t-i + ε t = F (X t-1 , . . . , X t-p ; ξ t ) = p i=1 sign(X t-i ) |X t-i | j=1 Y (U t;j a i ) + ε t
and applying Theorem 3.2.1, we obtain that the conditions for weak dependence and existence of moments are

⎧ ⎪ ⎨ ⎪ ⎩ ε t r < ∞ p i=1 Y (G i ) r < 1.
When we compare those conditions to the conditions A1 and A2 obtained by Kachour and Truquet (2011), we note that they do not restrict the support of the distribution of G i and ε t . On the other hand, condition A2 of Kachour and Truquet (2011) is less strict than the second of the above mentioned conditions.

Proofs

Proof of Lemma 3.3.1. A crucial step towards our analysis is given by the observation that the indicator function of any point x 0 ∈ Z d can be expressed as

1 x 0 (x) = ⎧ ⎨ ⎩ 1 -2d(x, x 0 ), if d(x, x 0 ) < 1/2 0, otherwise,
where d(•, •) is a distance defined in Z d . However, the function g(x) = 1 -2d(x, x 0 ) is a 2-Lipschitz function. From a summation and the fact that all such functions admit disjoint supports, we deduce the useful fact that the same applies for any discrete set G ⊂ R d . Indeed, let G be any discrete subset of R d , x 0 ∈ G, and consider now the function

f x 0 (x) = (1 -2 x -x 0 /D) + , x ∈ G.
This function is a smooth approximation of the indicator of x 0 ∈ G vanishing out of the ball with radius D/2. Hence the supports of f x 0 (•) and f x 1 (•) are disjoint whenever x 0 is not equal to x 1 and both of them belong to G. In other words, we have proved that any function

F : G → [-1, 1] admits a 2 D --Lipschitz extension F on R d defined as F (x) = x 0 ∈G F (x 0 )f x 0 (x) Proof of Proposition 3.3.1. Suppose that {X t , t ∈ Z} is and η-dependent pro- cess. Then, |P((X 0 ∈ A) ∩ (X t ∈ B) -P(X 0 ∈ A)P(X t ∈ B)| = Cov(1 {X 0 ∈A} , 1 {Xt∈B} )| = |Cov (f A (X 0 ), f B (X t ))| ≤ 4 D η(t),
where f A (•) and f B (•) denote the 2 D -Lipschitz extensions of indicators of the sets A, B which exist by Lemma 3.3.1. Consider events U, V from the history of the process at negative time which are t-time epochs apart. Suppose that

U = (X i 1 ∈ A 1 , . . . , X iu ∈ A u ) for times i 1 ≤ i 2 ≤ • • • ≤ i u = 0 and analogously V = (X j 1 ∈ B 1 , . . . , X jv ∈ B v ) for times t = j 1 ≤ i 2 ≤ • • • ≤ j v .
Then the same calculations as before yield

|P(U ∩ V ) -P(U )P(V )| ≤ 2 D (u + v)η(r)
Proof of theorem 3.3.1. Using Lemma 3.3.1, we obtain for any f and indicator

function g, h in G d , that |E(f (X 0 , X r ) -f (X 0 , X * r )| = |Cov (g(X 0 ), h(X r ))| ≤ 2η(r)/D,
similarly to the previous calculations. If now the function f admits a finite support S ⊂ G 2d then analogously

|E(f (X 0 , X r ) -f (X 0 , X * r )| ≤ 2 D card(S)η(r),
where card(•) denotes cardinality. Finally since the distribution of X 0 is tight, for each > 0 there exists M such that P(|X 0 | > M ) ≤ , then replacing f by its restriction to [-M , M ] yields

|E(f (X 0 , X r ) -f (X 0 , X * r ))| ≤ 2 + 2M 2d η(r).
Therefore, when E X 0 m < ∞, we derive from Markov inequality that M ≤

(E X 0 m / ) 1/m . One may choose 1+2/m = (E X 0 m ) 2/m η(r)/D to get |E(f (X 0 , X r ) -f (X 0 , X * r )| ≤ 2(E X 0 m ) 2d m+2d η(r) D m m+2d
We may now consider the case of p-Markov processes by setting d = pd and setting (x 1 , . . . , x d) = x 1 + • • • + x p where for x 1 , . . . , x p ∈ G d , and for

u ∈ G d , u = (u 1 , . . . , u d ) = max j |u j |. Indeed, Y t ≡ (X t , . . . , X t-p+1 ) ∈ G d is again a Markov chain.

Chapter 4

Modeling of DNA Sequence

Introduction

DNA sequences perform a very important role in the transmission of genetic informations to proteins. Modeling DNA chains is a challenging problem. ACGT stand for the four nucleic acid bases that make up DNA( Adenine, Thymine, Cytosine, Guanine). These four nucleic acids make up a creature's genetic code, or DNA. We aim at classifying and understanding the structure of DNA strings for medical purposes. We consider statistical inference to estimate the distributions of nucleotides under some random hypotheses. In particular, using the strong invariance principle of stochastic processes, this allows to construct SCBs with asymptotically correct nominal coverage probabilities.

We think of the genome as a realization of a stochastic process. A simple model fitting applications is following: we may suppose that the base is A, at the point t ∈ [1, n] of a DNA string, according to the fact that U t,n ≤ p A (t/n), for (U t ) t∈Z a process with uniform marginals and where p is the deterministic trend of the model. More generally, functions p A , p C , p G : [0, 1] → [0, 1] with 0 ≤ p A ≤ p C ≤ p G ≤ 1 provide a model for trends in such strings:

X t,n = A1 {Ut≤p A ( t n )} + C1 {p A ( t n )≤Ut≤p A ( t n )+p C ( t n )} + G1 {p A ( t n )+p C t n )≤Ut≤p A ( t n )+p C ( t n )+p G ( t n )} + T 1 {Ut>p A ( t n )+p C ( t n )+p G ( t n )}
Such categorical data rely on specific questions, in order to go back to quantitative data, we suppose X t,n = 1 {Ut,n≤p(t/n)} as the DNA gene at the point t ∈ [1, n] is A with (U t ) t∈Z i.i.d uniform sequence and p is a deterministic trend of the model. Similar models can be proposed for the base C, T and G.

To determine the promoters in DNA strings, one models the fact that at the For each genome G they have collected a set of N G promoter sequences (X i t,n ) t∈Z , i = 1, . . . , N G . A natural idea is to measure the occurrence of A, C, G and T at each position along the aligned set. They are interested in studying the spatial distribution of nucleotides along the promoters by measuring of the percentage of A, C, G and T nucleotides in a set of DNA sequences, i.e.,

point t ∈ [1, n] of DNA the gene is A as X t,n = 1 {Ut,n≤p(t/n)} : X t,n = ⎧ ⎨ ⎩ 1, with probability p( t n ) 0, with probability 1 -p( t n ) ⎫ ⎬ ⎭ Then X t,n ∼ b(p(t/n))
p s (t) = 1 N G N G i=1 1 s (X i t,n )
where s = A, C, G and T .

We would like to provide statistical inference to discuss the asymptotic properties of smoothing methods and the construction of confidence intervals.

We can describe this non stationary time series by a time-varying model,

X t,n = p( t n ) + p( t n )(1 -p( t n ))ξ t , t = 1, . . . , n. (4.1)
where ξ t admits the mean 0 and the variance 1. ξ t is non i.i.d but it is a weak white noise in L 2 (i.e Eξ t = 0 and Eξ 2 t = 1). The support of ξ t also depends on t ∈ [0, 1]. For the sake of simplicity, we denote

X t,n = p( t n ) + σ( t n )ξ t with σ 2 (t) = p( t n )(1 -p( t n )).
The process X t is non-stationary and can be interpreted as a signal plus noise model. The objective is to describe this sequence by modeling the process and testing the proposed model. Since the mean of X t varies over time, we estimate this trend in a first time. Interesting special features are, for instance, monotonicity or convexity.

Those trends are determinant for individuals. Standard kernel-type smoothing techniques are processed together with the development of asymptotic in this case. Asymptotic properties of nonparametric estimates for time series have been widely discussed under various strong mixing conditions; see [START_REF] Robinson | Nonparametric estimators for time series[END_REF], [START_REF] Bosq | Nonparametric Statistics for Stochastic Processes, Estimation and Prediction[END_REF], [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF] among others.

In this chapter, we provide central limit theorems for the kernel-type estimator to the case of general process satisfying the strong invariance principle conditions. For our goal of constructing SCBs for p, we assume that p is smooth.

SCBs can be used to find parametric forms of p. For example, in the study of global temperature series, an interesting problem is to test whether the trend is linear, quadratic or of other patterns. Applying the strong invariance principle of stochastic processes, we shall provide a solution to the problem and construct SCBs with asymptotically correct nominal coverage probabilities. Another interesting problem is to test the monotone or convexity of the trends p. We point out that if it were possible to model genome sequences as stochastic process, one could construct a test for monotone or convexity based on the asymptotically correct nominal coverage for p and p .

Our starting point is the same as in [START_REF] Wu | Inference of trends in time series[END_REF]. Those authors prove that a strong approximation principle for the partial sums of a stationary process with an explicit rate to entails simultaneous confidence bands with asymptotically correct nominal coverage probabilities. In their paper, they point out that an explicit rate in the strong approximation principle is crucial to control certain errors terms (see their Remark 2). The possible bandwidth heavily depend on the previous convergence rate.

Mains results

Asymptotic properties

We begin in this section by introducing our estimators. Let K be a real-valued, bounded and kernel function with K(u)du = 1. There exists a vast literature on nonparametric estimation of the regression function p. Here we use the Priestley-Chao estimator

phn (t) = n i=1 1 nh n K t -i/n h n X i,n . (4.2)
The bandwidth h n → 0 satisfies nh n → ∞. Some regularity conditions on K are imposed below.

Our object will be to get global measures of how good phn (t) is as an estimate of p(t). We assume K(u)udu = 0 and K(u)u 2 du = 0. p(t) must be twice differentiable. Then it is known that if h n → 0 as n → ∞ in such a way that

nh n → ∞, E(p hn (t)) ∼ p(t) + 1 2 h 2 n d K p (t) (4.3) and if ∞ i=-∞ Eξ 0 ξ i ≤ ∞, one obtains Var (p hn (t)) ∼ σ 2 (t)γc K nh n (4.4) where c K = K(u) 2 du, d K = 1 -1 K(u)u 2 du and γ = ∞ i=-∞ Eξ 0 ξ i .
Quite often the regression curve itself is not the target of interest but rather derivatives of it. The technique of kernel estimation can also be used to estimate derivatives of the regression function. Kernel derivative estimators are defined by differentiating the kernel function with respect to t. If the kernel is sufficiently smooth and the bandwidth sequence is correctly tuned then these estimators will converge to the corresponding derivatives. Definition 4.2.1. Let the function p be a C q [0, 1] function, with bounded derivations, for some q ∈ N * . Then the k-th(k ≤ q) derivative with respect to t gives

p(k) hn (t) = n -1 h -(k+1) n n i=1 K (k) t -i/n h n X i,n
The derivative estimator p(k) hn (t) is asymptotically unbiased. Assume that for some q ∈ N * , the function K be a C q [0, 1] function with K (j) (0) = K (j) (1) = 0, j = 0, . . . , q -1. Then elementary calculations show that

E(p (k) hn (t)) ∼ p (k) (t) + h 2 n d (k) K p (k+2) (t)/(k + 2)!
The variance of E(p

(k) hn (t)) tends to zero if nh 2k+1 n → ∞ , Var (p (k) hn (t)) ∼ σ 2 (t)γc (k) K nh 2k+1 n where d (k) K = K (k) (u)u k+2 du and c (k) K = K (k) (u) 2 du.
If K and its derivatives are Lipschitz continuous and have bounded support, elementary calculations show that Theorem (4.2.1) (4.2.2) (4.2.3) assert central limit theorems (CLT) for phn (t), p hn (t) and p hn (t), which can be used to construct point-wise confidence intervals for p(t) p (t) and p (t).

Assumption SIP: Let (ξ i ) i∈Z be some centered dependent process with a finite second moment, there exists a sequence (Z i ) i≥1 of i.i.d centered Gaussian variables such that

sup i≤k≤n | k i=1 (ξ i -Z i )| = o AS (n α log n) 1/4 ≤ α ≤ 1/2 (4.5)
.

Example 4.2.1 (Causal Bernoulli shifts). Let (ξ n ) n∈Z defined by

ξ n = H(ε n , ε n-1 , ε n-2 , . . . , )
where ε i , i ∈ Z are iid random variables and H is a measurable function such that ξ i is well-defined. By interpreting causal Bernoulli shifts as physical systems, [START_REF] Wu | Nonlinear system theory: Another look at dependence[END_REF] introduces physical dependence coefficients quantifying the dependence of outputs (ξ t ) on inputs (ε t ). Let ε j be an IID copy of ε j and ξ * n = H(ε n , ε n-1 , . . . , ε 1 , ε 0 , ε -1 , . . .). Assume that E ξ n m < ∞, m > 2, he considers the nonlinear system theory's coefficient

δ m (n) = ξ n -ξ * n m .
For a variety of non-linear time series models, There exists r ∈ (0, 1) such that 

δ m (n) = ξ n -ξ * n m = O(r n ) Wu (2007) showed that under ∞ i=1 i ξ n -ξ * n m < ∞,
M by K M f (x) = 1 2 (f (x + a) + f (x -a)
) on the torus R/Z, with a irrational in [0, 1], and the Lebesgue-Haar measure μ is the unique probability which is invariant by K M . We assume that (ε i ) i∈Z is the stationary Markov chain with transition kernel K M and invariant distribution μ. For f ∈ L 2 (μ), let

ξ k = f (ε k ) -μ(f ).
Let a satisfy min i∈Z |ka -i| ≥ c(a)|k| -1 for some positive constant c(a) and f (k) be the Fourier coefficients of f . Assume that for some positive ,

sup k =0 |k| s (log(1 + |k|)) 1+ | f (k)| < ∞ where s = √ α 2 -2α + 4 -3α + 2.
then the condition 4.5 holds with σ 2 = k Cov (ξ 0 , ξ k ).(see [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF]) For m ≥ 3 define

Assumption H(a) : Let H(a), 1 ≤ a ≤ 2,
B H,a (m) = 2 log(m) + 1 √ 2 log m ⎡ ⎣ 2 -a 2a log log m + log ⎛ ⎝ C 1/a H,a h a 2 1/a 2 √ π ⎞ ⎠ ⎤ ⎦ .
where C H,a = D H,a /2 R H 2 (s)ds and h a has two values h 1 = 1 and h 2 = π -1/2

(see Bickel and Rosemblatt (1973), [START_REF] Wu | Inference of trends in time series[END_REF]).

Example 4.2.3. The triangle, quartic, Epanechnikov and Parzen kernels satisfies the previous assumptions with a = 2, and a = 1 for the rectangle kernel.

Theorem 4.2.1. Let us assume that Assumption SIP is satisfied and that

K has bounded variation, h n → 0 and (log n) 2 = o(n 1-2α h n ). Then for fixed 0 < t < 1, nh n {p hn (t) -Ep hn (t)} P → N (0, σ 2 (t)γc K ).
Now, following the regularity of the function p, Ep(t) is a more or less good approximation of p(t). Hence, here we provide an approximation of the bias.

Let C q ([0, 1]), q = 0, 1, . . . , , denote the collection of functions having un to q-th order derivatives.

Corollary 4.2.1. Assume that for some q ∈ N * , the function p is a C q [0, 1] function, with bounded derivations. Then, under the conditions of Theorem (4.2.1) , with K a kernel such that K(u)u s du = 0 for s = {1, . . . , q -1} and K(u)u q du = 0, if

h n = C • n -1/(2q+1) (with C > 0) then nh n {p hn (t) -p(t)} P → N (p (q) (t) 1 q! u q K(u)du, σ 2 (t)γc K ).
Replacing 

tion in C 1 [0, 1] and K has bounded variation, h n → 0, nh 3 n → ∞ and (log n) 2 = o(n 1-2α h n ). Then for fixed 0 < t < 1, nh 3 n p hn (t) -E p hn (t) P → N (0, σ 2 (t)γc (1) K ). Theorem 4.2.3. Assume that Assumption SIP is satisfied, Let K be a func- tion in C 2 [0, 1] and K has bounded variation , h n → 0, nh 5 n → ∞ and (log n) 2 = o(n 1-2α h n ). Then for fixed 0 < t < 1, nh 5 n p hn (t) -E p hn (t) P → N (0, σ 2 (t)γc (2) K ).
To construct an asymptotic SCB for p(t) over the interval t ∈ T with level

(1α), α ∈ (0, 1), We need to find two functions l n (t) and u n (t) based on the data such that

lim n→∞ P (l n (t) ≤ p(t) ≤ u n (t), for all t ∈ T ) = 1 -α.
A closely related problem is to study the asymptotic uniform distributional theory for the estimator phn (t). Namely, one needs to find the asymptotic distribu- 

(log(n)) 3 h n n 1-2α + nh 7 n log(n) → 0. (4.6) Let m = 1/h n and the interval T = [ωh n , 1 -ωh n ]. Then for every u ∈ R, as n → ∞, P √ nh n γc K √ c K sup t∈T 1 σ(t) |p hn (t) -p(t) - 1 2 h 2 n p (t)d k | -B K,a (m) ≤ u √ 2 log m → exp{-2 exp(-u)}
In condition (4.6), the first part ensures the validity of the strong approximation and the second part controls the bias. Condition (4.6) are satisfied if h n n -γ , 1/7 < γ < 1/2. Indeed, the choir of γ = 1/5 is well known as the optimal bandwidth under the mean-squared error criterion. Analogue results may be provided for p and p .

Theorem 4.2.5. Assume that Assumption H(a) is satisfied for K and that

K is a symmetric kernel with support [-ω, ω]. Further assume that p ∈ C 4 [0, 1] and (log(n)) 3 h n n 1-2α + nh 9 n log(n) → 0. (4.7) Let m = 1/h n and the interval T = [ωh n , 1 -ωh n ]. Then for every u ∈ R, as n → ∞, P ⎡ ⎣ nh 3 n γc (1) K c (1) K sup t∈T 1 σ(t) | p hn (t) -p (t) - 1 6 h 2 n p (3) (t)d (1) k | -B K ,a (m) ≤ u √ 2 log m ⎤ ⎦ → exp{-2 exp(-u)}
We also have nh 3 n → ∞ for the estimator p hn (t), combine the condition 4.6, h n n -γ with 1/7 < γ < 1/3. is related to first or second order derivatives. We shall see that this hypothesis is not satisfied in any of the cases we studied.

P ⎡ ⎣ nh 5 n γc (2) K c (2) K sup t∈T 1 σ(t) | p hn (t) -p (t) - 1 24 h 2 n p (4) (t)d (2) k | -B K ,a (m) ≤ u √ 2 log m ⎤ ⎦ → exp{-2 exp(-u)} Note that h n n -γ with 1/7 < γ < 1/5, since nh 5 n → ∞.

Hypothesis Testing

We first assume that the function to test, under both hypotheses, belongs to a certain class of regular function. The hypothesis of positivity is referred to as null hypothesis. this hypothesis is composite and presented by

H 0 : inf 0≤t≤1 g(t) ≥ 0
and the alternative hypothesis is defined as:

H 1 : inf 0≤t≤1 g(t) < 0.
The test is set up so that H 0 is rejected (H 1 is accepted) at significance level

α if P H 0 (inf t ĝ(t) ≤ (n))
≤ α where (n) is chosen such that the probability of a type I error is less than or equal to α. For some (n) > 0, the probability of a type I error may be written as

P(H 0 is rejected|H 0 is true) = P( inf 0<t<1 ĝ(t) ≤ -(n)| inf 0<t<1 g(t) ≥ 0) ≤ P sup t |ĝ(t) -g(t)| ≥ (n) → α
As we know that ĝ(t) converge to g(t) in probability, the power of the test is written for g ∈ H 1 , 

P( inf 0<t<1 ĝ(t) ≤ -(n)) →
let (n) = -log(-1 2 log(1-α)) √ 2 log m + B K ,a (m) γc (1) K c (1) K √ nh 3 n sup t σ(t), then we have for n → ∞ P sup t | p hn (t) -p (t)| ≥ (n) ≤ α and lim n→∞ P( inf 0<t<1 p hn (t) ≤ -(n)) → 1
Proposition 4.2.2. Under the assumptions of Theorem 4.2.6, choose 0 < α < 1,

let (n) = -log(-1 2 log(1-α)) √ 2 log m + B K ,a (m) γc (2) K c (2) K √ nh 5 n sup t σ(t), then we have for n → ∞ P sup t | p hn (t) -p (t)| ≥ (n) ≤ α and lim n→∞ P( inf 0<t<1 p hn (t)) ≤ -(n)) → 1

Implementation

Let us detail our specific proposal for confidence band. Let σbn (t) be estimates of σ. On the basis of theorem (4.2.4), The asymptotic 100(1α)% confidence band for p we use take the form

phn (t) -h 2 n β p (t) ± uα , where uα = σhn (t)γc K (nh n ) ⎡ ⎣ B K,a (h -1 n ) + -log log(1 -α) -1/2 (2 log(h -1 n )) ⎤ ⎦
To construct the confidence band it requires the knowledge of p , which cannot be easily estimated. Following [START_REF] Wu | Inference of trends in time series[END_REF] , we adopt a jackknife-type bias correction scheme which avoids estimating p :

p * hn (t) = 2p hn (t) -p√ 2hn (t)
This is equivalent to using the higher (4-th) order kernel

K * (u) = 2K(u) - K(u/ √ 2) √ 2
The 

σ2 (t) = phn (t)(1 -phn (t))
Replacing σ 2 (t) with σ2 hn (t) gives the approximate confidence intervals that is applicable in practice.

It is well known that the convergence to the extreme value distributions in 4.2.4 is extremely slow and very large values of n are needed for the approximation to be reasonably accurate. We shall propose a finite sample approximation scheme to compute the cutoff value q α . Let Z i , 1 ≤ i ≤ n, be i.i.d. standard normal random variables, model (4.1) can be reduced to the convention model

Xk,n = p( t n ) + σ(k)Z k , k = 1, . . . , n.
So we propose the finite sample cutoff value q α defined by

P{ sup 1≤i≤n |Z i | < q α } = 1 -α.

Simulation study

In this section, a simulation study shall be given for the performance of our estimators and SCBs in section 2.2.3. We choose the mean function p(t) = sin( π 2 t) with t = 1, . . . , n, and consider the model

X t,n = ⎧ ⎨ ⎩ 1, with probability p( t n ) 0, with probability 1 -p( t n ) ⎫ ⎬ ⎭
Let n = 1000, to estimate q 0.95 = q 0.95 (h) for each b, we draw an iid sample 

(t) = 2p h (t) -ph √ 2 (t) and ph (t) = n i=1 1 nh K t-i/n h Z i .
The estimated quantile q0.95 is obtained by generating N = 10 4 realization of p * h (t). The 95% SCB is constructed as p * h (t) ± σhn (t)q 0.95 . For α = 0.05, q 0.95 = 0.308 and the optimal bandwidths is h n = 0.20, choosing by the kernel regression smoothing program glkerns in the R package. To test the monotone, we choose a = 1, c

(1)

K = c (2) K = 1/2, then (n) = 0.077. The test H 0 : inf t p (t) ≥ 0 is accepted with inf t p hn (t) = 0.081 > -(n).

Application

Here we consider the series (X i ) 1≤i≤1000 of nucleotide of an eucaryote. The purpose is to estimate the trends and give an asymptotic SCB . We shall use the simulation method in 4.3 to obtain cut-off values. Let n = 1000. We repeat the following process for 10 4 times: generate n iid normals N (0, 1) and calculate p * h (t). The 95% and 99% simulated quantiles are 0.39 and 0.42 respectively. As we have seen so far, in eukaryotes, while remaining constant in the upstream part of the analyzed regions. the trend of the nucleotide base A changes downstream.

∞.

Denote

phn (t) = n j=1 ω n (t, j)X j,n
where ω n (t, j) = 1 nhn K t-j/n hn are suitable weights.

Let t ∈ [0, 1], we have

Y (t) = phn (t) -Ep hn (t) = n j=1 ω n (t, j)σ( j n )ξ j
we now define the Gaussian process

Y * (t) = n j=1 ω n (t, j)σ( j n )Z j
using the summation by parts formula, we have

|Y (t) -Y * (t)| ≤ Ω(t) sup k≤n | k i=1 (ξ i -Z i )| = o AS (Ω(t)n α log n)
where

Ω(t) = |ω n (t, 1)σ( 1 n )| + n-1 k=1 | ω n (t, k + 1)σ( k+1 n ) -ω n (t, k)σ( k n ) |. Let Ω n = max 0≤t≤t Ω(t)
, we obtain the uniform approximation

Y (t) -Y * (t) ∞ = o AS (Ω n n α log n)
If K has bounded variation Ω n (t) have tractable bounds and Ω n = O ((nh n ) -1 ).

Thus with (log n)

2 = o(n 1-2α h n ), nh n Y (t) -Y * (t) ∞ P → 0
Proof of Corollary (4.2.1). Under the assumption on K and p is a C q (R) function for some q ∈ N * ,

E(p hn (t)) = p(t) + h q n • (1 + o(1)) • p (q) (t) 1 q! u q K(u)du
It implies the optimal choice convergence rate of h n .

Proof of Theorem (4.2.4). By condition 4.6, (h

3 n + (nh n ) -1 ) √ nh n = o( √ log n),
and the Theorem follows from Lemma 4.5.1 and 4.5.2, which concern the stochastic part p hn (t) -E(p hn (t)) and the bias

E(p hn (t)) -p(t) = 2 1 h 2 n p (t)d K + O(h 3 n + (nh n ) -1 ) respectively.
and to build confidence intervals on the prevision. However, such an assumption is unrealistic in most applications.

In the statistical learning point of view, one usually tries to avoid such restrictive parametric assumptions -see, e.g., [START_REF] Cesa-Bianchi | Prediction, Learning, and Games[END_REF]; [START_REF] Stoltz | Agrégation séquentielle de prédicteurs : méthodologie générale et applications à la prévision de la qualité de l'air et à celle de la consommation électrique[END_REF] for the online approach dedicated to the prediction of individual sequences, and Modha and Masry (1998); [START_REF] Meir | Nonparametric time series prediction through adaptive model selection[END_REF]; [START_REF] Alquier | Model selection for weakly dependent time series forecasting[END_REF] for the batch approach. However, in this setting, a few attention has been paid to the construction of confidence intervals or to any quantification of the precision of the prediction. This is a major drawback in many applications. Notice however that [START_REF] Biau | Sequential quantile prediction of time series[END_REF] proposed to minimize the cumulative risk corresponding to the quantile loss function defined by [START_REF] Koenker | Regression quantiles[END_REF]. This led to asymptotically correct confidence intervals.

In this thesis, we propose to adapt this approach to the batch setting and provide nonasymptotic results. We also apply these results to build quarterly prediction and confidence regions for the French Gross Domestic Product (GDP) growth. Our approach is the following. We assume that we are given a set of basic predictors -this is a usual approach in statistical learning, the predictors are sometimes referred as "experts", e.g. [START_REF] Cesa-Bianchi | Prediction, Learning, and Games[END_REF]. Following [START_REF] Alquier | Model selection for weakly dependent time series forecasting[END_REF], we describe a procedure of aggregation, usually referred as Exponentially Weigthed Agregate (EWA), [START_REF] Dalalyan | Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity[END_REF]; [START_REF] Gerchinovitz | Sparsity regret bounds for individual sequences in online linear regression[END_REF], or Gibbs estimator, [START_REF] Catoni | Statistical Learning Theory and Stochastic Optimization[END_REF][START_REF] Catoni | PAC-Bayesian Supervised Classification (The Thermodynamics of Statistical Learning)[END_REF]. It is interesting to note that this procedure is also related to aggregations procedure in online learning as the weighted majority algorithm of [START_REF] Littlestone | The weighted majority algorithm[END_REF], see also [START_REF] Vovk | Aggregating strategies[END_REF]. We give a PAC-Bayesian inequality that ensures optimality properties for this procedure. In a few words, this inequality claims that our predictor performs as well as the best basic predictor up to a remainder of the order K/ √ n where n is the number of observations and K measures the complexity of the set of basic predictors. This result is very general, two conditions will be required: the time series must be weakly dependent in a sense that we will make more precise below, and loss function must be Lipschitz. This includes, in particular, the quantile loss functions. This allows us to apply this result to our problem of economic forecasting. Under additional assumptions, we are able to prove that the empirical risk minimizer (ERM, see e.g. [START_REF] Vapnik | The nature of statistical learning theory[END_REF]) is also able to perform such a prediction. Our main results are given under the form of PAC-Bayesian oracle inequalities.

The idea of PAC-bayesian learning theorems, as introduced by Shawe-Taylor and [START_REF] Shawe-Taylor | A PAC Analysis of a Bayes Estimator[END_REF][START_REF] Mcallester | PAC-Bayesian Model Averaging[END_REF] is to measure the complexity of models, and thereby their ability to generalize from observed examples to unknown situations, with the help of some prior probability measure defined on the parameter space. "PAC" is fundamentally about choosing particular prediction functions out of some class of plausible alternatives so that, with high reliability, the resulting predictions will be nearly as accurate as possible ("probably approximately correct"). Bayesian analysis of generalization can place a prior distribution on the hypotheses and estimate the volume of the space that is consistent with the training data. The larger this volume the greater the confidence in the classifier obtained. The key feature of such estimators is that they provide a posteriori estimates of the generalization based on properties of the hypothesis and the training data. This contrasts with a 'classical' PAC analysis which provides only a priori bounds. Here, we use for simplicity the term parameter space in a rather loose and unusual way, to talk about the union of all the parameters of all the models we envision. (maybe the term model space would be more accurate : these parameters may be of finite or infinite dimension and we do not restrict the number of models, therefore we are definitely not describing a parametric statistical framework, but rather a non-parametric one!).

The status of the prior measure has not to be misunderstood either : it does not represent the frequency according to which we expect to observe data produced by different probability distributions, nor does it stand for the belief we put in the accuracy of different possible distributions or different possible models.

It is somehow equivalent to the choice of some representation of the parameter space, and therefore is related to the Minimum Description Length approach of Rissanen and to the structural risk minimization approach of Vapnik. On a more technical level, it is meant to produce non asymptotic worst case bounds. (as opposed to a Bayesian study of the mean risk under the prior).

In particular, these methods control the expected accuracy of future predictions from mis-specified models based on finite samples. This allows for immediate model comparisons which neither appeal to asymptotic nor make strong assumptions about the data-generating process, in stark contrast to such popular model-selection tools as AIC.

The context

Let us assume that we observe X 1 , . . . , X n from a R p -valued stationary time series X = (X t ) t∈Z defined on (Ω, A, P). Let • denote the Euclidean norm on R p . Fix an integer k and let us assume that we are given a family of predictors

f θ : (R p ) k → R p , θ ∈ Θ
for any θ and any t, f θ applied to the last past values (X t-1 , . . . , X t-k ) is a possible prediction of X t . The aim is to choose some predictors f θ which predicts X t from (X t-1 , . . . , X t-k ) making as few mistakes as possible on average.

For the sake of simplicity, let us put for any t ∈ Z and any θ ∈ Θ,

Xθ t = f θ (X t-1 , . . . , X t-k ).
We also assume that θ → f θ is linear. As we have already explained, the set of predictors f θ : (R p ) k → R p , θ ∈ Θ will in general not be a single parametric model, but rather the union of a large number of parametric models. Using the terminology of statistics, note that we may want to include parametric set of predictors as well as non-parametric ones (i.e. respectively finite dimensional and infinite dimensional).

Example 5.2.1. We put θ = (θ 0 , θ 1 , . . . , θ k ) ∈ Θ ⊂ R k+1 and define the linear autoregressive predictors

f θ (X t-1 , . . . , X t-k ) = θ 0 + k j=1 θ j X t-j .
In order to deal with various family of predictors, we will sometimes use a model-selection type approach:

Θ = ∪ M j=1 Θ j .
Example 5.2.2. We may generalize the previous example to non-parametric auto-regression, for example using a dictionary of functions (R p ) k → R p , say

(ϕ i ) ∞ i=0 . Then we take θ = (θ 1 , . . . , θ ) ∈ Θ j ⊂ R j and f θ (X t-1 , . . . , X t-k ) = j i=1 θ i ϕ i (X t-1 , . . . , X t-k ).
In many cases, Θ = ∪ M j=1 Θ j will be a finite (or more generally countable) union of subspaces. The importance of introducing such structure has been put forward by V. [START_REF] Vapnik | The nature of statistical learning theory[END_REF]), as a way to avoid making strong hypotheses on the distribution of the sample.

From the technical point of view, our aim will be to produce non asymptotic bounds for the risk of properly designed predictors of X t given (X t-1 , . . . , X t-k ), leading to a non asymptotic level of confidence for this risk.

Come back to the prediction problem, in order to quantifier the prediction Xθ t , we first define a quantitative criterion to evaluate the quality of the predictions.

Let be a loss function, the risk of f θ will be measured as its expected error rate: Definition 5.2.1. We put, for any θ ∈ Θ,

R (θ) = E Xθ t , X t .
with E the expected value of all the observations (X t ) 1≤t≤n from a stationary process (X t ).

Note that because of the stationarity, R(θ) does not depend on t. To actually calculate the risk, we would need to know the distribution of the process (X t ) t∈Z and have a single fixed prediction function f θ , neither of which is common. Because explicitly calculating the risk is infeasible, forecasters typically try to estimate it, which calls for detailed assumptions on the distribution. The alternative we employ here is to find upper bounds on risk which hold uniformly over large classes of models Θ from which some particular θ is chosen, possibly in a data dependent way, and uniformly over distributions.

As the above quantity is unobserved, we use the corresponding empirical error rate.

Definition 5.2.2. For any θ ∈ Θ,

r n (θ) = 1 n -k n i=k+1 Xθ i , X i .
We cannot minimize R(θ) with respect to θ because R(θ) is not observable: it depends on the unknown distribution. The next sensible attempt is to minimize r n (θ) instead. Unfortunately, although E(r n (θ)) = R(θ), the fluctuations of the random process r n (θ) may be strong enough to make the solutions of the two minimization problem quite difficult, and even in many cases completely unrelated. An intensively studied way to get some control on this situation is to add a penalty term pen(θ) and study the relations between inf θ R(θ) + pen(θ)

and inf θ r(θ) + pen(θ). The penalty pen(θ) has a regularizing effect: it shrinks the size of the set of values of θ where inf θ r(θ) + pen(θ) is likely to be achieved and therefore provides a way to control the gap between P[inf θ r(θ)+pen(θ)] and inf θ R(θ) + pen(θ).

Basic inequality

Let T be a σ-algebra on Θ and T be its restriction to Θ . Let M 1 + (Θ) denote the set of all probability measures on (Θ, T ), and π ∈ M 1 + (Θ). This probability measure is usually called the prior. It will be used to control the complexity of the set of predictors Θ.

Note that in statistical learning, given an estimator θ, the bounds on the risk R( θ) often depends on the empirical risk r n ( θ) and on a remainder term measuring the complexity of the model of Θ. The aim of the PAC-Bayesian approach is to obtain PAC bounds on the integrated risk

Θ R(θ)ρ(dθ) = ρ[R(•)]
where ρ ∈ M 1 + (Θ) is whatever posterior distribution, depending on π and on the observed data. The bounds here will depend on the empirical counterpart of

ρ[R(•)]: ρ[r n (•)] = Θ r n (θ)ρ(dθ),
and on a measure of the distance between ρ and π. This measure of the distance between ρ and π will be made by the use of the Kullback divergence. Definition 5.3.1. The Kullback-Leibler divergence K(ρ, π) of ρ with respect to π is defined as:

K(ρ, π) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ log dρ
dπ dρ, when ρ is absolutely continuous with respect to π i.e ρ π

∞, otherwise

The following lemma shows in which sense the Kullback divergence function can be thought of as the dual of the Legendre transform.

Definition 5.3.2. For any measurable function h : Θ → R, for any measure

ρ ∈ M 1 + (Θ) we put: ρ[h(θ)] = sup B∈R E (min{B, h(θ)})
Lemma 5.3.1 (Legendre transform of the Kullback divergence function). For any π ∈ M 1 + (Θ) , for any measurable function h : Θ → R we have:

π[exp(h)] = exp ⎛ ⎝ sup ρ∈M 1 + (Θ) (ρ[h] -K(ρ, π)) ⎞ ⎠
where (as in general we will note)

π[h] = h(x)π(dx)
with convention ∞ -∞ = -∞. Indeed, a priority is given to ∞ in ambiguous cases: the expectation of a function whose negative part is not integrable will be assumed to be -∞, even when its positive part integrates to +∞. Moreover, as soon as h is upper-bounded on the support of π, the supremum with respect to ρ in the right-hand side is reached for the Gibbs measure π{h}.

Actually, it seems that in the case of discrete probabilities, this result was already known by Kullback (Problem 8.28 of Chapter 2 in [START_REF] Kullback | Information theory and statistics[END_REF]).

Here we provide a complete proof of this variational formula from [START_REF] Catoni | A PAC-Bayesian approach to adaptative classification[END_REF].

Proof. Let us assume that h is upper-bounded on the support of π. Consider the Gibbs distribution, π exp(h) given by:

dπ exp(h) dπ (θ) = exp[h(θ)] π[exp[h(θ)]] ,
Let us remark that ρ is absolutely continuous with respect to π if and only if it is absolutely continuous with respect to π exp(h) . Let us assume that this is the case, then we have,

K(ρ, π exp(h) ) = log π[exp[h(θ)]] + K(ρ, π) -ρ[h(θ)]
The left-hand side of this equation is nonnegative and cancels only for ρ = π exp(h) .

Note that this equation is still valid if ρ is not absolutely continuous with respect to π. (it just says that +∞ = +∞ in this case). So we obtain:

0 = inf ρ∈M 1 + (Θ) [K(ρ, π) -ρ(h)] + log π exp(h)
This proves the second part of lemma 5.3.1, For the first part, we now use

the notation min{B, h(θ)} = B ∧ h(θ), then we get log π exp[h(θ)] = sup B∈R log π exp[B ∧ h(θ)] = sup ρ∈M 1 + (Θ) sup B∈R {ρ[B ∧ h(θ)] -K(ρ, π)} = sup ρ∈M 1 + (Θ) sup B∈R {ρ[B ∧ h(θ)]} -K(ρ, π) = sup ρ∈M 1 + (Θ) ρ[h(θ)] -K(ρ, π)
We now turn to the study of large deviations for partial sums of weakly dependent processes. Our main tool is Hoeffding type inequalities which provide an upper bound on the probability that the empirical error deviates from its expected value. The aim is to analyze the fluctuations of the random process θ → r n (θ) from its mean process θ → R(θ). This Hoeffding inequality transform is well suited to relate min θ∈Θ r n (θ) to inf θ∈Θ R(θ), since for large enough values of the parameter λ, corresponding to low enough values of the temperature, the system has small fluctuations around its ground state.

The Hoeffding's inequality is a powerful tool in both probability and statistics.

It says that the sum of random variables deviates from its expected value can be upper bounded on the probability. More precisely, when (X i ) 1≤i≤n is a sequence of bounded random variables, the Hoeffding-type inequality can be constructed in such a way that

Ee tf (X 1 ,...,Xn)-tE(f (X 1 ,...,Xn)) < e nt 2 C
where C is a constant depending on f and X i .

Example 5.3.1. Let X 1 , . . . , X n be i.i.d rondom variables bounded, i.e a ≤ X i ≤ b almost surely. Let f (x 1 , . . . , x n ) = n i=1 X i , we obtain evidently a Hoeffding's inequality with C = (b-a) 2 8 .

Let us begin with exponential type inequalities for dependent random variables. Here, we are interested in the θ ∞,n (1)-weak dependence condition of Rio (2000); [START_REF] Dedecker | Weak dependence: With Examples and Applications[END_REF]. Let us recall the notation.

Definition 5.3.3. For any k > 0, define the θ ∞,k (1)-weak dependence coefficients of a bounded stationary sequence (X t ) by the relation

θ ∞,k (1) := sup f ∈Λ k 1 ,0<j 1 <•••<j k E [f (X j 1 , . . . , X j )|X t , t ≤ 0] -E [f (X j 1 , . . . , X j )] ∞ .
where

Λ k 1 is the set of 1-Lipshitz functions of q variables Λ k 1 = f : (R p ) k → R, |f (u 1 , . . . , u k ) -f (u 1 , . . . , u k )| k j=1 u j -u j ≤ 1 .
The sequence (θ ∞,k (1)) k>0 is non decreasing and upper bounded for many bounded stationary time series. This notion of dependence is more general for bounded time series than mixing ones, see [START_REF] Dedecker | Weak dependence: With Examples and Applications[END_REF] for details.

Lemma 5.3.2 (Rio (2000)). Let h be a function (R p ) n → R such that for all x 1 , ..., x n , y 1 , ...,

y n ∈ R p , |h(x 1 , . . . , x n ) -h(y 1 , . . . , y n )| ≤ n i=1
x iy i .

(5.1)

Let the stationary sequence (X t ) be θ dependent and bounded, i.e. (θ ∞,k (1)) k>0 < C and X 0 ≤ B almost surely. Then for any t > 0 we have

C = (B+θ∞,n(1)) 2 2 i.e E e t{E[h(X 1 ,...,Xn)]-h(X 1 ,...,Xn)} ≤ e t 2 n(B+θ∞,n(1)) 2 2 .
Proof. This version of Theorem 1 of Rio (2000) comes rewriting the inequality 3 in Rio (2000) as, for any 1-Lipschtiz function g:

Γ(g) = E (g(X l+1 , . . . , X n )|F l ) -E (g(X l+1 , . . . , X n )) ∞ ≤ θ ∞,n-l (1).
The result is proved as sup 1≤r≤n θ ∞,r (1) ≤ θ ∞,n (1).

ERM and Gibbs estimator

As the objective is to minimize the risk R(•), naturally, we first consider the empirical risk r n (•). The boundedness assumption ensures that it is a good estimator of R.

Definition 5.4.1 (ERM estimator Vapnik (1999)). We define the Empirical Risk Minimizer estimator (ERM) by

θERM ∈ arg min θ∈Θ r n (θ).
The random measures depending on the empirical risk r(θ) are a special case of posterior distributions. More precisely, we will make a heavy use of Gibbs estimator distributions of the form:

Definition 5.4.2. For any measure π and any measurable function h such that π[exp(h)] < +∞, the Gibbs measure denote ρ is defined by

ρ(dθ) = exp(h(θ))π(dθ) exp(h(θ ))π(dθ ) .
The introduction of these posterior distributions, viewed as random objects whose fluctuations are easily manageable, leads us to consider randomized estimators: instead of picking some parameter θ as a deterministic function of the observations (X 1 , . . . , X n ), we choose it at random according to the posterior distribution ρ (which itself depends on the observations).

Remark 5.4.1. In the case where Θ = ∪ M j=1 Θ j and the Θ j are disjoint, we can write

π(dθ) = m j=1 μ j π j (dθ)
where μ j := π(Θ j ) and π j (dθ) := π(dθ)1 Θ j (θ)/μ j . Here π j can be interpreted as a prior probability measure inside the model Θ j and that the μ j as a prior probability measure between the models. Definition 5.4.3 (Gibbs estimator). We put, for any λ > 0, θλ = Θ θ ρλ (dθ) where ρλ (dθ) = e -λrn(θ) π(dθ) e -λrn(θ ) π(dθ ) .

The choice of the parameter λ is discussed in the next sections. The Gibbs estimator is a method to aggregate estimators who:

• build a posterior distribution which is faster to compute,

• build efficient posterior distributions in the case of a continuous family of fixed distributions, thus avoiding the use of sample splitting schemes.

Our results assert that the risk of the ERM or Gibbs estimator is close to inf θ R(θ) up to a remainder term Δ called the rate of convergence. For the sake of simplicity, let θ ∈ Θ be such that

R(θ) = inf θ R(θ).
If θ does not exist, it is replaced by an approximative minimizer θ α satisfying

R(θ α ) ≤ inf θ R(θ) + α where α is negligible w.r.t. Δ (e.g. α < 1/n).
We want to prove that the ERM satisfies, for any ε > 0,

P R θERM ≤ R(θ) + Δ(n, Θ, ε) ≥ 1 -ε (5.2)
where Δ(n, Θ, ε) → 0 as n → ∞.

We also want to prove that and that the Gibbs estimator satisfies, for any

ε > 0, P R θλ ≤ R(θ) + Δ(n, λ, π, ε) ≥ 1 -ε (5.3)
where Δ(n, λ, π, ε) → 0 as n → ∞ for some λ = λ(n). To obtain such results called oracle inequalities, we require some general assumptions discussed later.

Main assumptions and main tools

In order to ensure good performances in terms of prediction for the ERM and

Gibbs estimator, we need some hypotheses in the model. Assumptions LipLoss(K)

and Lip(L) hold respectively on the loss function and the set of predictors Θ.

In some extent, we choose the loss function and the predictors, so these assumptions can always be satisfied. Note that assumption Margin(K) holds on and also on the marginal distribution. It is used to obtain fast rates of convergence only and thus we discuss it in Section 5.7. On the other hand, assumptions

WeakDep(C) and PhiMix(C) hold on the dependence of the time series. In practice, we cannot know wether these assumptions are satisfied on data. However, remark that these assumptions are not parametric and are satisfied for many classical models, see [START_REF] Doukhan | Mixing: properties and examples[END_REF]; [START_REF] Dedecker | Weak dependence: With Examples and Applications[END_REF].

Assumption LipLoss(K), K > 0: the loss function is given by

(x, x ) = g(x -x )
for some convex K-Lipschitz function g such that g(0) = 0 and g ≥ 0.

Example 5.5.1. A first example is (x, x ) = xx . In this case, the Lipschitz constant K is 1. This example was studied in detail in [START_REF] Alquier | Model selection for weakly dependent time series forecasting[END_REF]. In Modha and Masry (1998); [START_REF] Meir | Nonparametric time series prediction through adaptive model selection[END_REF], the loss function is the quadratic loss (x, x ) = xx 2 . Note that it also satisfies our Lipschitz condition, but only if we assume that the time series is bounded.

Example 5.5.2. When the time-series is real-valued, we can use a quantile loss function. The class of quantile loss functions is defined as

τ (x, y) = ⎧ ⎪ ⎨ ⎪ ⎩ τ (x -y) , if x -y > 0 -(1 -τ ) (x -y) , otherwise
where τ ∈ (0, 1). It is motivated by the following remark: if U is a real-valued random variable, then any value t * satisfying P(U ≤ t * ) = τ is a minimizer of of t → E( τ (Xt)); such a value is called quantile of order τ of U . So, the use of this loss function might be a good way to evaluate the risk of rare events and to build confidence intervals. This loss function was introduced by [START_REF] Koenker | Regression quantiles[END_REF], see [START_REF] Koenker | Quantile Regression[END_REF] for a survey. Recently, [START_REF] Belloni | L1-penalized quantile regression in high-dimensional sparse models[END_REF] used it in the context of high-dimensional regression, and [START_REF] Biau | Sequential quantile prediction of time series[END_REF] in learning problems.

Assumption Lip(L), L > 0: for any θ ∈ Θ there are coefficients a j (θ) for 1 ≤ j ≤ k such that, for any x 1 , ..., x k and y 1 , ..., y k ,

f θ (x 1 , . . . , x k ) -f θ (y 1 , . . . , y k ) ≤ k j=1 a j (θ) x j -y j , with k j=1 a j (θ) ≤ L.
Remark that for bounded observations the empirical risk is a bounded random variable under assumptions LipLoss(K) and Lip(L). Such condition is required in the approach of individual sequences. We assume it in the statistical approach for simplicity but it is possible to extend the slow rates oracles inequalities to unbounded cases see [START_REF] Alquier | Model selection for weakly dependent time series forecasting[END_REF].

Assumption WeakDep(C), C > 0: There exists finite constants (C), C > 0, such that sup t∈Z X t ≤ B almost surely, and θ ∞,k (1) ≤ C for any k > 0.

Under this assumption, the process (X t ) will be called θ weakly dependent.

Example 5.5.3. Examples of processes satisfying WeakDep(C) are provided in [START_REF] Alquier | Model selection for weakly dependent time series forecasting[END_REF]; [START_REF] Dedecker | Weak dependence: With Examples and Applications[END_REF]. It includes Bernoulli

shifts X t = H(ξ t , ξ t-1 , ξ t-2 , . . . )
where the ξ t are iid, ξ 0 ≤ b and H satisfies a

Lipschitz condition:

H(v 1 , v 2 , ...) -H(v 1 , v 2 , ...) ≤ ∞ j=0 a j v j -v j with ∞ j=0 ja j < ∞.
Then (X t ) is bounded by B = H(0, 0, ...) + bC and satisfies WeakDep(C) with C = ∞ j=0 ja j . In particular, solutions of linear ARMA models with bounded innovations satisfy WeakDep(C).

In order to prove the fast rates oracle inequalities, a more restrictive dependence condition is assumed.

Assumption PhiMix(C ), C > 0: 1 + ∞ r=1 √ φ r ≤ C .
This assumption is more restrictive than WeakDep(C) for bounded time series:

Proposition 5.5.1 (Rio (2000)). For bounded time series, PhiMix(C ) ⇒ WeakDep(C).

For the sake of completeness, we give the proof of this already known result.

Proof. First let us remind

θ ∞,n (1) ≤ n i=1 E( X i -X * i /σ(X t , t ≤ 0)) ∞ .
Now we will consider the maximal coupling scheme of [START_REF] Goldstein | Maximal coupling[END_REF]: there exists a version (X * t ) such that

P(X t = X * t for some t ≥ r/σ(X t , t ≤ 0)) ∞ = sup (A,B)∈ σ(Xt,t≤0)×σ(Xt,t≥r) |P(B/A) -P(B)| = φ(r)
We know that, for any variables Y , Z bounded by

X 0 ∞ , Y -Z ≤ 2 X 0 ∞ 1 Y =Z . So E( X i -X * i /σ(X t , t ≤ 0)) ∞ ≤ 2 X 0 ∞ E(1 X i =X * i /σ(X t , t ≤ 0)) ∞ ≤ 2 X 0 ∞ P(X i = X i * /σ(X t , t ≤ 0)) ∞ ≤ 2 X 0 ∞ P(X t = X * t for some t ≥ r/σ(X t , t ≤ 0)) ∞ ≤ 2 X 0 ∞ φ(r). We conclude θ ∞,n (1) ≤ 2 X 0 ∞ n r=1 φ(r).
For fast rates oracle inequalities, we use an additional assumption that mix optimal properties of the loss function and the margin distributions. In the iid case, such conditions are also required. They are called Margin assumptions [START_REF] Mammen | Smooth discrimination analysis[END_REF]; [START_REF] Alquier | PAC-Bayesian bounds for randomized empirical risk minimizers[END_REF] or Bernstein hypothesis [START_REF] Lecué | Interplay between concentration, complexity and geometry in learning theory with applications to high dimensional data analysis[END_REF].

Assumption Margin(K), K > 0:

E P X q+1 , f θ (X q , ..., X 1 ) -X q+1 , f θ (X q , ..., X 1 ) 2 ≤ K R(θ) -R(θ) .
Theorem 5.5.1 (PAC-Bayesian Oracle Inequality for the Gibbs estimator). Let us assume that LowRates(κ) is satisfied for some κ > 0. Then, for any λ, ε > 0 we have

P R θλ ≤ inf ρ∈M 1 + (Θ) Rdρ + 2λκ 2 n (1 -k/n) 2 + 2K(ρ, π) + 2 log (2/ε) λ ≥ 1 -ε.
This result is the analogous of the PAC-Bayesian bounds proved by Catoni in the case of iid data [START_REF] Catoni | PAC-Bayesian Supervised Classification (The Thermodynamics of Statistical Learning)[END_REF]. It is proved in Section 5.10. This very general result provides a bound on the generalization risk of the Gibbs estimator θλ . Two question arise now:

(1) when one uses a given class of predictor Θ, what is the value of this bound?

(2) what value of λ should be taken in order to minimize this bound?

The next section will provide answers to these questions. Note that we will see that in some particular cases, the ERM θERM will predict as well as the Gibbs estimator with optimal parameter λ. So in these cases, the question of the choice of λ vanishes. However, such a general result as Theorem 5.5.1 cannot be proved for the ERM (see [START_REF] Vapnik | The nature of statistical learning theory[END_REF]: we need assumptions on θ).

Low rates oracle inequalities

In this section, we give oracle inequalities (5.2) and/or (5.3) with low rates of convergence Δ(n, Θ) ∼ c(Θ)/n and also the proof of these results.

Finite classes of predictors

Consider first the toy example where Θ is finite with |Θ| = M , M ≥ 1. In this case, the optimal rate in the iid case is known to be log(M )/n, see e.g. [START_REF] Vapnik | The nature of statistical learning theory[END_REF].

Theorem 5.6.1. Assume that |Θ| = M and that LowRates(κ) is satisfied for κ > 0. Let π be the uniform probability distribution on Θ. Then the oracle inequality (5.3) is satisfied for any λ > 0, ε > 0 with

Δ(n, λ, π, ε) = 2λκ 2 n (1 -k/n) 2 + 2 log (2M/ε) λ .
Proof. We apply Theorem 5.5.1 for π = 1 M θ∈Θ δ θ and restrict the inf in the upper bound to Dirac masses ρ ∈ {δ θ , θ ∈ Θ}. We obtain K(ρ, π) = log M , and the upper bound for R( θλ ) becomes:

R θλ ≤ inf ρ∈{δ θ ,θ∈Θ} Rdρ + 2λκ 2 n (1 -k/n) 2 + 2 log (2M/ε) λ = inf θ∈Θ R(θ) + 2λκ 2 n (1 -k/n) 2 + 2 log (2M/ε) λ .
The choice of λ in practice in this toy example is already not trivial. The choice λ = log(M )n yields the oracle inequality:

R( θλ ) ≤ R(θ) + 2 log(M ) n κ 1 -k/n 2 + 2 log (2/ε) n log(M )
.

However, this choice is not optimal and one would like to choose λ as the minimizer of the upper bound

2λκ 2 n (1 -k/n) 2 + 2 log (M ) . λ
However κ = κ(K, L, B, C) and the constants B and C are, usually, unknown.In this context we will prefer the ERM predictor that performs as well as the Gibbs estimator with optimal λ: Theorem 5.6.2. Assume that |Θ| = M and that LowRates(κ) is satisfied for κ > 0.. Then the oracle inequality (5.2) is satisfied for any ε > 0 with

Δ(n, Θ, ε) = inf λ>0 2λκ 2 n (1 -k/n) 2 + 2 log (2M/ε) λ = 4κ 1 -k/n log (2M/ε) n .
The proof of this result is given in Section 5.10.

Linear autoregressive predictors

We focus on the linear predictors given in Example 5.2.1.

Theorem 5.6.3. Consider the linear autoregressive model of AR(k) predictors 

f θ (x t-1 , . . . , x t-k ) = θ 0 + k j=1 θ j x t-j with θ ∈ Θ = {θ ∈ R k+1 , θ ≤ L}
Δ(n, λ, π, ε) = 2λκ 2 n (1 -k/n) 2 + 2 (k + 1) log (KB∨K 2 B 2 )(L+1) √ eλ k+1 + log (2/ε) λ .
In theory, λ can be chosen of the order (k + 1)n to achieve the optimal rates (k + 1)/n up to a logarithmic factor. But the choice of the optimal λ in practice is still a problem. The ERM predictor still performs as well as the Gibbs predictor with optimal λ but under an additional necessary constraint on λ:

Theorem 5.6.4. Under the assumptions of Theorem 5.6.3, the oracle inequality

(5.2) is satisfied for any ε > 0 with Δ(n, Θ, ε) = inf λ≥2KB/(k+1) ⎡ ⎣ 2λκ 2 n (1 -k/n) 2 + (k + 1) log 2eKB(L+1)λ k+1 + 2 log (2/ε) λ ⎤ ⎦ .
The additional constraint on λ does not depend on n. It is restrictive only when k + 1, the complexity of the autoregressive model, has the same order than n. For n sufficiently large and λ = ((1k/n)/κ) ((k + 1)n/2) satisfying the constraint λ ≥ 2KB/(k + 1) we obtain the oracle inequality

R( θERM ) ≤ R(θ) + 2(k + 1) n κ 1 -k/n log 2e 2 KB(R + 1) κ n k + 1 + 2 √ 2κ log (2/ε) (k + 1)n (1 -k/n) .
The optimal slow rate of convergence is achieved up to a logarithmic factor.

Theorems 5.6.3 and 5.6.4 are both direct consequences of the following results about general classes of predictors.

General parametric classes of predictors

We state a general result about finite-dimensional families of predictors. The complexity k + 1 of the autoregressive model is replaced by a more general measure of the dimension d(Θ, π). We also introduce some general measure D(Θ, π)

of the diameter of the compact model. Then the oracle inequality (5.3) is satisfied for any λ > 0, ε > 0 with

Δ(n, λ, π, ε) = 2λκ 2 n (1 -k/n) 2 + 2 d log (D √ eλ/d) + log (2/ε) λ .
We remind that the proofs are given in Section 5.10. A similar result holds for the ERM predictor under a more restrictive assumption on the structure of Θ, see Remark 5.6.1.

Theorem 5.6.6. Assume that

1. Θ = {θ ∈ R d : θ 1 ≤ D}, 2. Xθ 1 1 -Xθ 2 2 ≤ ψ. θ 1 -θ 2 1 a.s. for some ψ > 0 and all (θ 1 , θ 2 ) ∈ Θ 2 .
Assume also that LipLoss(K) and WeakDep(C). are satisfied and that Lip(L)

holds on the extended model Θ = {θ ∈ R d : θ 1 ≤ D + 1}. Then the oracle inequality (5.2) is satisfied for any ε > 0 with

Δ(n, Θ, ε) = inf λ≥2Kψ/d 2λκ 2 n (1 -k/n) 2 + d log (2eKψ(D + 1)λ/d) + 2 log (2/ε) λ .
The proof of this result can be found in Section 5.10. This result yields to nearly optimal rates of convergence for the ERM predictors. Indeed, for n sufficiently large and λ = ((1

-k/n)/κ) (dn/2) ≥ 2Kψ/d we obtain the oracle inequality R( θERM ) ≤ R(θ) + 2d n κ 1 -k/n log 2e 2 Kψ(D + 1) κ n d + 2 √ 2κ log (2/ε) √ dn (1 -k/n) .
Thus, the ERM procedure yields prediction that are close to the oracle with an optimal rate of convergence up to a logarithmic factor. Note that the context of Theorem 5.6.6 are less general than the one of Theorem 5.6.5:

Remark 5.6.1. Under the assumptions of Theorem 5.6.6 we have for any

θ ∈ Θ R(θ) -R(θ) = E g Xθ 1 -X 1 -g Xθ 1 -X 1 ≤ E K Xθ 1 -Xθ 1 ≤ Kψ θ -θ 1 .
Define π as the uniform distribution on Θ = {θ ∈ R d : θ 1 ≤ D + 1}. We derive from simple computation the inequality

log 1 θ∈Θ 1{R(θ) -R(θ) < δ}π(dθ) ≤ log 1 θ∈Θ 1{ θ -θ 1 < δ Kψ }π(dθ) ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ = d log Kψ(D+1) δ when δ/Kψ ≤ 1 ≤ d log (Kψ(D + 1)) otherwise.
Thus, in any case,

log 1 θ∈Θ 1{R(θ) -R(θ) < δ}π(dθ) ≤ d log (Kψ ∨ K 2 ψ 2 )(D + 1) δ
and the assumptions of Theorem 5.6.5 are satisfied for d(Θ, π) = d and D(Θ, π) = (Kψ ∨ K 2 ψ 2 )(D + 1).

Aggregation in the model-selection setting

Consider now several models of predictors Θ 1 , ..., Θ M and consider

Θ = M i=1 Θ i
(disjoint union). Our aim is to predict as well as the best predictors among all Θ j 's, but paying only the price for learning in the smallest possible Θ j . For this, let us choose M priors π j on each models such that π j (Θ j ) = 1 for all j ∈ {1, ..., M }. Let π = M j=1 p j π j be a mixture of these priors with prior weights p j ≥ 0 satisfying M j=1 p j = 1. Denote

θ j ∈ arg min θ∈Θ j R(θ)
the oracle of the model Θ j for any 1 ≤ j ≤ M . For any λ > 0, denote ρλ,j the Gibbs distribution on Θ j and θλ,j = 1. LipLoss(K) is satisfied for some K > 0;

2. WeakDep(C) is satisfied for some C > 0;

3. for any j ∈ {1, ..., M } we have (a) Lip(L j ) is satisfied by the model Θ j for some L j > 0, (b) there are constants d j = d(Θ j , π) and D j = c(Θ j , π j ) are such that ∀δ > 0, log 1

θ∈Θ j 1{R(θ) -R(θ j ) < δ}π j (dθ) ≤ d j log D j δ Denote κ j = κ(K, L j , B, C) = K(1 + L j )(B + C)/ √ 2 and define θ = θλ ĵ , ĵ where ĵ = arg min 1≤j≤M Θ j r n (θ)ρ λ j ,j (dθ) + λ j κ j n(1 -k/n) 2 + K(ρ λ j ,j , π j ) + log (2/(εp j )) λ j with λ j = arg min λ>0 2λκ 2 j n (1 -k/n) 2 + 2 d j log (D j eλ/d j ) + log (2/(εp j )) λ .
Then, with probability at least 1ε, the following oracle inequality holds

R( θ) ≤ inf 1≤j≤M ⎡ ⎣ R(θ j ) + 2 κ j 1 -k/n ⎧ ⎨ ⎩ d j n log D j e 2 κ j n d j + log (2/(εp j )) nd j ⎫ ⎬ ⎭ ⎤ ⎦ .
The proof of this result is given in 5.10. A similar result can be obtained if we replace the Gibbs predictor in each model by the ERM predictor in each model.

The resulting procedure is known in the iid case under the name SRM (Structural Risk Minimization), see [START_REF] Vapnik | The nature of statistical learning theory[END_REF], or penalized risk minimization, ?.

However, as it was already the case for a fixed model, additional assumptions are required to deal with ERM predictors. In the model-selection context, the procedure to choose among all the ERM predictors also depends on the unknown κ j 's. Thus the model-selection procedure based on Gibbs predictors outperforms the one based on the ERM predictors.

Fast rates oracle inequalities

Discussion on the assumptions

In this section, we study conditions under which the rate 1/n can be achieved.

These conditions are restrictive:

• now p = 1, i.e. the process (X t ) t∈Z is real-valued;

• the dependence condition WeakDep(C) is replaced by PhiMix(C);

• we assume additionally Margin(K) for some K > 0.

Let us provide some examples of processes satisfying the uniform mixing assumption PhiMix(B, C). In the three following examples ( t ) denotes an iid sequence (called the innovations).

Example 5.7.1 (AR(p) process). Consider the stationary solution (X t ) of an AR(p) model: ∀t ∈ Z, X t = p j=1 a j X t-j + t . Assume that ( t ) is bounded with a distribution possessing an absolutely continuous component. If A(z) = p j=1 a j z j has no root inside the unit disk in C then (X t ) is a geometrically φmixing processe, see [START_REF] Athreya | Mixing properties of Harris chains and autoregressive processes[END_REF] and PhiMix(C) is satisfied for some C.

Example 5.7.2 (MA(p) process). Consider the stationary process (X t ) such that X t = p j=1 b j t-j for all t ∈ Z. By definition, the process (X t ) is stationary and φ-dependent -it is even p-dependent, in the sense that φ r = 0 for r > p. Thus PhiMix(C) is satisfied for some C > 0.

Example 5.7.3 (Non linear processes). For extensions of the AR(p) model of the form X t = F (X t-1 , . . . , X t-p ; t ), Φ-mixing coefficients can also be computed and satisfy PhiMix(C). See e.g. [START_REF] Meyn | Markov chains and stochastic stability[END_REF]. We now provide an example of predictive model satisfying all the assumptions required to obtain fast rates oracle inequalities, in particular Margin(K), when the loss function is quadratic, i.e. (x, x ) = (xx ) 2 : Example 5.7.4. Consider Example 5.2.2 where 

f θ (X t-1 , . . . , X t-k ) = N i=1 θ i ϕ i (X t-1 , . . . , X t-k ), for functions (ϕ i ) ∞ i=0 of (R p ) k to R p
E P ⎧ ⎨ ⎩ X q+1 -f θ (X q , ..., X 1 ) 2 -X q+1 -f θ (X q , ..., X 1 ) 2 2 ⎫ ⎬ ⎭ = E P [f θ (X q , ..., X 1 ) -f θ (X q , ..., X 1 )] 2 [2X q+1 -f θ (X q , ..., X 1 ) -f θ (X q , ..., X 1 )] 2 ≤ E P [f θ (X q , ..., X 1 ) -f θ (X q , ..., X 1 )] 2 4B 2 (1 + R) 2 ≤ 4B 2 (1 + R) 2 R(θ) -R(θ) by Pythagorean theorem.
Assumption Margin(K) is satisfied with K = 4B 2 (1 + D) 2 and the oracle inequality with fast rates holds if Assumption PhiMix(C) is satisfied.

General result

We only give oracle inequalities for the Gibbs predictor in the model-selection setting. In the case of one single model, this result can be extended to the ERM predictor. For several models, the approach based on the ERM predictors requires a penalized risk minimization procedure as in the slow rates case. In the fast rates case, the Gibbs predictor itself directly have nice properties. Let Θ = M i=1 Θ i (disjoint union), choose π = M j=1 p j π j and denote θ j ∈ arg min θ∈Θ j R(θ) as previously.

Theorem 5.7.1. Assume that:

1. Margin(K) and LipLoss(K) are satisfied for some K, K > 0;

2. PhiMix(B, C) is satisfied for some C > 0;

3. Lip(L) is satisfied for some L > 0;

4. for any j ∈ {1, ..., M }, there exist d j = d(Θ j , π) and R j = R(Θ j , π j ) satisfying the relation ∀δ > 0, log 1

θ∈Θ j 1{R(θ) -R(θ j ) < δ}π j (dθ) ≤ d j log D j δ .
Then for

λ = n -k 4kKLBC ∧ n -k 16kC the oracle inequality (5.3) for any ε > 0 with Δ(n, λ, π, ε) = 4 inf j ⎧ ⎨ ⎩ R(θ j ) -R(θ) + 4kC (4 ∨ KLB) d j log D j e(n-k) 16kCd j + log 2 εp j n -k ⎫ ⎬ ⎭ .
We remind that the proofs are given in Section 5.10. Compare with the low rates case, we don't optimize with respect to λ as the optimal order for λ is independent of j. In practice, the value of λ provided by Theorem 5.7.1 is too conservative. In the iid case, it is shown in [START_REF] Dalalyan | Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity[END_REF] that the value λ = n/(4σ 2 ), where σ 2 is the variance of the noise of the regression yields good results. In our simulations results, we will use λ = n/ v ar(X), where v ar(X) is the empirical variance of the observed time series.

Notice that for the index j 0 such that R(θ j 0 ) = R(θ) we obtain:

R θλ ≤ R(θ) + 4kC (4 ∨ KLB) d j 0 log (c j 0 e(n -k)/(16kCd j 0 )) + log (2/(εp j 0 )) n -k .
So, the oracle inequality achieves the fast rate d j 0 /n log (n/d j 0 ) where j 0 is the model of the oracle. However, note that the choice j = j 0 does not necessarily reach the infimum in Theorem 5.7.1.

Let us compare the rates in Theorem 5.7.1 to the ones in [START_REF] Meir | Nonparametric time series prediction through adaptive model selection[END_REF]; Modha and Masry (1998); Agarwal and Duchi (2011); Agarwal et al. (2012). In [START_REF] Meir | Nonparametric time series prediction through adaptive model selection[END_REF]; Modha and Masry (1998), the optimal rate 1/n is never obtained. The paper Agarwal and Duchi (2011) proves fast rates for online algorithms that are also computationally efficient, see also Agarwal et al. (2012). The fast rate 1/n is reached when the coefficients (φ r ) are geometrically decreasing. In other cases, the rate is slower. Note that we do not suffer such a restriction. The Gibbs estimator of Theorem 5.7.1 can also be computed efficiently thanks to MCMC procedures, see [START_REF] Alquier | PAC-Bayesian bounds for sparse regression estimation with exponential weights[END_REF]; [START_REF] Dalalyan | Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity[END_REF].

Corollary: sparse autoregression

We consider the sparse autoregression model where the number of parameter p is lager than the sample size n. Let the predictors are the linear AR(p)

Xθ p = p j=1 X p-j θ j .
For any J ⊂ {1, . . . , p}, define the model:

Θ J = {θ ∈ R p : θ 1 ≤ L and θ j = 0 ⇔ j ∈ J}.
Let us remark that we have the disjoint union Θ = J⊂{1,...,p}

Θ J = {θ ∈ R p : θ 1 ≤ 1}.
We choose π J as the uniform probability measure on Θ J and p

j = 2 -|J|-1 p |J| -1
.

For any subset J ⊂ {1, . . . , p} define

θ J = arg min θ∈R p R(θ) ∈ Θ J and θ = arg min θ∈R p R(θ) ∈ Θ.
We can now state the main result for the sparse autoregression.

Corollary 5.7.1. Assume that PhiMix(C) is satisfied for some C > 0. Then the oracle inequality (5.3) is satisfied for any ε > 0 with

Δ(n, λ, π, ε) = 4 inf J ⎧ ⎨ ⎩ R(θ J ) -R(θ) + cst. |J| log ((n -k)p/|J|) + log 2 ε n -k ⎫ ⎬ ⎭ for some constant cst = cst(B, C, L).
This extends the results of [START_REF] Alquier | PAC-Bayesian bounds for sparse regression estimation with exponential weights[END_REF]; [START_REF] Dalalyan | Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity[END_REF]; [START_REF] Gerchinovitz | Sparsity regret bounds for individual sequences in online linear regression[END_REF] to the case of autoregression.

Proof. The proof follows the computations of Example 5.7.4 that we do not reproduce here: we check the conditions LipLoss(K) with K = 4B, Lip(L) and Margin(K) with K = 4B 2 (1 + L) 2 . We can apply Theorem 5.7.1 with d J = |J| and D j = L.

Application to French GDP forecasting

In this section we give an application of the previous result to French GDP forecasting. A business survey is a questionnaire of about ten questions sent monthly to a representative panel of French companies (see [START_REF] Devilliers | Les enquêtes de conjoncture[END_REF] for more details on this process). As a consequence these surveys provide information coming directly from the true economic decision makers. Morever, they are rapidly available (on a monthly basis). Note that a similar approach is used in other countries, see e.g. [START_REF] Biau | Nonparametric Forecasting of the Manufacturing Output Growth with Firm-level Survey Data[END_REF] 

5.

)) = ⎧ ⎪ ⎨ ⎪ ⎩ τ (ΔGDP t -Δ GDP t ) , if ΔGDP t -Δ GDP t > 0 -(1 -τ ) (ΔGDP t -Δ GDP t ) , otherwise.
To remind that the risk depends on τ , we add a subscript τ in the notation

R τ (θ) := E [ τ (ΔGDP t , f θ (X t-1 , X t-2
))] and let r τ n denote the associated empirical risk. We use the family of predictors proposed by [START_REF] Cornec | Constructing a conditional GDP fan chart with an application to French business survey data[END_REF]. The reason is that one of the conclusions of [START_REF] Cornec | Constructing a conditional GDP fan chart with an application to French business survey data[END_REF]; [START_REF] Li | Agrégation de prédicteurs appliquée à la conjoncture, Rapport de stage de M2 -Université Paris 6 -INSEE sous la direction de Matthieu Cornec[END_REF] is that this set of predictors allow to obtain a forecasting as accurate as the INSEE. It is given by

f θ (X t-1 , X t-2 ) = θ 0 + θ 1 ΔGDP t-1 + θ 2 I t-1 + θ 3 (I t-1 -I t-2 )|I t-1 -I t-2 | (5.4) where θ = (θ 0 , θ 1 , θ 2 , θ 3 ) ∈ Θ(B). Fix R > 0 and Θ = θ = (θ 0 , θ 1 , θ 2 , θ 3 ) ∈ R 4 , θ 1 = 3 i=0 |θ i | ≤ R .
Remark that in this framework, Assumption Lip is satisfied with L = R + 1, and the loss function is K-Lipschitz with K = 1 so Assumption LipLoss is also satisfied. We compare the performance of both ERM and Gibbs estimator.

Corollary 5.8.1. Let us fix τ ∈ (0, 1). Let us assume that Assumption WeakDep is satisfied, and that n ≥ max (10, κ 2 /(3B 2 )). Let us fix λ = √ 3n/κ. Then, with probability at least 1ε we have

R τ ( θτ B,λ ) ≤ inf θ∈Θ(B) ⎧ ⎨ ⎩ R τ (θ) + 2 √ 3κ √ n ⎡ ⎣ 2.25 + log (R + 1)B √ n κ + log 1 ε 3 ⎤ ⎦ ⎫ ⎬ ⎭ .
Remark 5.8.1. The choice of λ proposed in the theorem may be a problem as in practice we will not know κ. Note that from the proof, it is obvious that in any case, for n large enough, when λ = √ n we still have a bound

R τ ( θτ B,λ ) ≤ inf θ∈Θ(B) R τ (θ) + C(B, B, κ, ε) √ n .
We let θERM,τ denote the ERM with quantile loss τ : θERM,τ ∈ arg min θ∈Θ r τ n (θ).

We apply Theorem 5.6.6. Note that Assumption Lip(L) is satisfied Θ with is satisfied, Then we have, for any ε > 0 and for n large enough,

L = R + 1, Assumption LipLoss(K) is satisfied with K = 1.
P ⎧ ⎨ ⎩ R τ ( θERM,τ ) ≤ inf θ∈Θ R τ (θ) + 2κ √ 2 √ n 1 -4 n log 2e 2 B(R + 1) √ n κε ⎫ ⎬ ⎭ ≥ 1 -ε.
In the simulations, it appears that the choice of R has little importance as soon as R is large enough: in this case, the simulation shows that the estimator does not really depend on R -only the theoretical bound does. As a consequence we take R = 100 in our experiments.

Results

The results are shown in Figure 5.1 for prediction, τ = 0.5, in Figure 5.2 for confidence interval of order 50%, i.e. τ = 0.25 and τ = 0.75 (left) and for confidence interval of order 90%, i.e. τ = 0.05 and τ = 0.95 (right). We report only the results for the period 2000-Q1 to 2011-Q3 (using the period 1988-Q1 to 1999-Q4 for learning). We denote θERM,τ [t ] the estimator computed at time t , based on the observations from t = 1 to t = t -1. We report the online performance: mean abs. pred. error =

1 n n t=1 ΔGDP t -f θERM,0.5 [t] (X t-1 , X t-2 ) mean quad. pred. error = 1 n n t=1 ΔGDP t -f θERM,0.5 [t] (X t-1 , X t-2 ) 2
and compare it to the INSEE performance, see Table 5.1.

We also report the frequency of realizations of the GDP falling above the predicted τ -quantile for each τ , see Table 5.2. Note that this quantity should be close to τ .

We completely fail to forecast the 2008 subprime crisis. However, as noted in [START_REF] Cornec | Constructing a conditional GDP fan chart with an application to French business survey data[END_REF], the INSEE forecast for that quarter was also completely wrong. This is in accordance with the fact mentionned above that it is more difficult to forecast the GDP during crisis. However, it is interesting to note that our confidence interval shows that our prediction at this date is less reliable than the previous ones: so, at this time, the forecasters could have been aware that their prediction was unreliable.

One of the most interesting point is to remark that the lower bound of the predicted confidence intervals are really varying over time, while the upper bound is almost constant in the case of τ = 0.95. This is another evidence that the distribution of the errors is non symmetric, and that a parametric model with gaussian innovations would lead to clearly underestimate the magnitude of recessions. 5.9 Simulation study

First case: parametric family of predictors

The ERM estimator is now compared to parametric estimators assuming an ARMA form for the time series on a set of simulated data. Here again we consider the ERM estimator for both the quadratic and absolute loss. We compare the performances of both estimators to the one computed by the R procedure "arma" R.

We consider observations drawn from an AR(1) models and a slight variant, see (5.5) and (5.6). Namely, we simulate sequences of length n = 100 and n = 1000 from the following first-order autoregressive processes:

X t = 0.5X t-1 + ε t (5.5) X t = 0.5 sin(X t-1 ) + ε t (5.6)
where ε t is the iid innovation. We consider two cases of distributions for ε t : the uniform case, ε t ∼ U[-a, a], and the Gaussian case, ε t ∼ N (0, σ 2 ). Note that, in the first case, our two models satisfy the assumptions of Theorem 5.5.1 and Theorem 5.7.1. More precisely there exists a stationary solutions (X t ) that is 

Proofs

Preliminaries

Lemma 5.10.1. We assume that LowRates(κ) is satisfied for some κ > 0. For any λ > 0 and θ ∈ Θ we have E e λ(R(θ)-rn(θ)) ∨ E e λ(rn(θ)-R(θ)) ≤ exp λ 2 κ 2 n (1k/n) 2 .

Proof of Lemma 5.10.1. Let us fix λ > 0 and θ ∈ Θ. Let us define the function h by: h(x 1 , . . . , x n ) = 1 K(1 + L) n i=k+1 (f θ (x i-1 , . . . , x i-k ), x i ).

We now check that h satisfies (5.1), remember that (x, x ) = g(xx ) so h (x 1 , . . . , x n )h (y 1 , . . . y n )

≤ 1 K(1 + L) n i=k+1 g(f θ (x i-1 , . . . , x i-k ) -x i ) -g(f θ (y i-1 , . . . , y i-k ) -y i ) ≤ 1 1 + L n i=k+1
f θ (x i-1 , . . . , x i-k )x if θ (y i-1 , . . . , y i-k )y i where we used Assumption LipLoss(K) for the last inequality. So we have h (x 1 , . . . , x n )h (y 1 , . . . y n )

≤ 1 1 + L n i=k+1 f θ (x i-1 , . . . , x i-k ) -f θ (y i-1 , . . . , y i-k ) + x i -y i ≤ 1 1 + L n i=k+1 ⎛ ⎝ k j=1 a j (θ) x i-j -y i-j + x i -y i ⎞ ⎠ ≤ 1 1 + L n i=1 ⎛ ⎝ 1 + k j=1 a j (θ) ⎞ ⎠ x i -y i ≤ n i=1
x iy i where we used Assumption Lip(L). So we can apply Lemma 5.3.2 with h(X 1 , . . . , X n ) = n-k K(1+L) r n (θ), E(h(X 1 , . . . , X n )) = n-k K(1+L) R(θ), and t = K(1 + L)λ/(nk):

E e λ[R(θ)-rn(θ)] ≤ exp λ 2 K 2 (1 + L) 2 (B + θ ∞,n (1)) 2 2n (1 -k/n) 2 ≤ exp λ 2 K 2 (1 + L) 2 (B + C) 2 2n 1 -k n 2
by Assumption WeakDep(C). This ends the proof of the first inequality. The reverse inequality is obtained by replacing the function h by -h.

We are now ready to state the following key Lemma.

Lemma 5.10.2. Let us assume that LowRates(κ) is satisfied satisfied for some κ > 0. Then for any λ > 0 we have

P ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∀ρ ∈ M 1 + (Θ), Rdρ ≤ r n dρ + λκ 2 n(1-k/n) 2 + K(ρ,π)+log(2/ε) λ and r n dρ ≤ Rdρ + λκ 2 n(1-k/n) 2 + K(ρ,π)+log(2/ε) λ ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ ≥ 1 -ε.
(5.10)

Proof of Lemma 5.10.2. Let us fix θ > 0 and λ > 0, and apply the first inequality of Lemma 5.10.1. We have:

E exp λ R(θ) -r n (θ) - λκ 2 n (1 -k/n) 2 ≤ 1,
and we multiply this result by ε/2 and integrate it with respect to π(dθ). An application of Fubini's Theorem yields

E exp λ(R(θ) -r n (θ)) - λ 2 κ 2 n (1 -k/n) 2 -log (2/ε) π(dθ) ≤ ε 2 .
We apply Lemma 5.3.1 and we get:

E exp sup ρ λ (R(θ) -r n (θ))ρ(dθ) - λ 2 κ 2 n (1 -k/n) 2 -log (2/ε) -K(ρ, π) ≤ ε 2 .
As e x ≥ 1 R + (x), we have:

P sup ρ λ (R(θ) -r n (θ)) ρ(dθ) - λ 2 κ 2 n (1 -k/n) 2 -log (2/ε) -K(ρ, π) ≥ 0 ≤ ε 2 .
Using the same arguments than above but starting with the second inequality of Lemma 5.10.1:

E exp λ r n (θ) -R(θ) - λκ 2 n (1 -k/n) 2 ≤ 1.
we obtain:

P ⎧ ⎪ ⎨ ⎪ ⎩ sup ρ ⎧ ⎪ ⎨ ⎪ ⎩ λ [r n (θ) -R(θ)] ρ(dθ) - λ 2 κ 2 n 1 -k n 2 -log 2 ε -K(ρ, π) ⎫ ⎪ ⎬ ⎪ ⎭ ≥ 0 ⎫ ⎪ ⎬ ⎪ ⎭ ≤ ε 2 .
A union bound ends the proof.

The following variant of Lemma 5.10.2 will also be useful.

Lemma 5.10.3. Let us assume that LowRates(κ) is satisfied satisfied for some κ > 0. Then for any λ > 0 we have

P ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∀ρ ∈ M 1 + (Θ), Rdρ ≤ r n dρ + λκ 2 n(1-k/n) 2 + K(ρ,π)+log(2/ε) λ and r n (θ) ≤ R(θ) + λκ 2 n(1-k/n) 2 + log(2/ε) λ ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ ≥ 1 -ε.
Proof of Lemma 5.10.3. Following the proof of Lemma 5.10.2 we have:

P sup ρ λ (R(θ) -r n (θ)) ρ(dθ) - λ 2 κ 2 n (1 -k/n) 2 -log (2/ε) -K(ρ, π) ≥ 0 ≤ ε 2 .
Now, we use the second inequality of Lemma 5.10.1, with θ = θ:

E exp λ r n (θ) -R(θ) - λκ 2 n (1 -k/n) 2 ≤ 1.
But then, we directly apply Markov's inequality to get:

P r n (θ) ≥ R(θ) + λκ 2 n (1 -k/n) 2 + log (2/ε) λ ≤ ε 2 .
Here again, a union bound ends the proof.

5.10.2 Proof of Theorems 5.5.1 , 5.6.5 and 5.6.7

Proof of Theorem 5.5.1. We apply Lemma 5.10.2. So, with probability at least 1ε we are on the event given by (5.10). From now, we work on that event.

The first inequality of (5.10), when applied to ρλ (dθ), gives

R(θ)ρ λ (dθ) ≤ r n (θ)ρ λ (dθ) + λκ 2 n (1 -k/n) 2 + 1 λ log (2/ε) + 1 λ K(ρ λ , π).
According to Lemma 5.3.1 we have: We end the proof by the remark that θ → R(θ) is convex and so by Jensen's inequality R(θ)ρ λ (dθ) ≥ R ( θ ρλ (dθ)) = R( θλ ).

Proof of Theorem 5.6.5. An application of Theorem 5.5.1 yields that with probability at least 1ε R( θλ ) ≤ inf

ρ∈M 1 + (Θ) Rdρ + 2λκ 2 n (1 -k/n) 2 + 2K(ρ, π) + 2 log (2/ε) λ .
Let us estimate the upper bound at the probability distribution ρ δ defined as dρ δ dπ (θ) = 1{R(θ) -R(θ) < δ} t∈Θ 1{R(t) -R(θ) < δ}π(dt)

.

Then we have:

R θλ ≤ inf δ>0 ⎡ ⎣ R(θ) + δ + 2λκ 2 n (1 -k/n) 2 + 2 -log t∈Θ 1{R(t) -inf Θ R < δ}π(dt) + log 2 ε λ ⎤ ⎦ .
Under the assumptions of Theorem 5.6.5 we have:

R θλ ≤ inf δ>0 ⎡ ⎣ R(θ) + δ + 2λκ 2 n (1 -k/n) 2 + 2 d log (D/δ) + log 2 ε λ ⎤ ⎦ .
The infimum is reached for δ = d/λ and we have:

R θλ ≤ R(θ) + 2λκ 2 n (1 -k/n) 2 + 2 d log (D √ eλ/d) + log 2 ε λ .
Proof of Theorem 5.6.7. Let us apply Lemma 5.10.2 in each model Θ j , with a fixed λ j > 0 and confidence level ε j > 0. We obtain, for all j,

P ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∀ρ ∈ M 1 + (Θ j ), Rdρ ≤ r n dρ + λ j κ 2 j n(1-k/n) 2 + K(ρ,π j )+log(2/ε j ) λ j and r n dρ ≤ Rdρ + λ j κ 2 j n(1-k/n) 2 + K(ρ,π j )+log(2/ε j ) λ j ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ ≥ 1 -ε j .
We put ε j = p j ε, a union bound gives leads to: (5.12)

From now, we only work on that event of probability at least 1ε. Remark that 5.10.3 Proof of Theorems 5.6.2 and 5.6.6

R( θ) = R( θλ ĵ , ĵ ) ≤ R(θ)ρ λ ĵ , ĵ ( 
Let us now prove the results about the ERM.

Proof of Theorem 5.6.2. We choose π as the uniform probability distribution on Θ and λ > 0. We apply Lemma 5.10.3. So we have, with probability at least

1 -ε, ⎧ ⎪ ⎨ ⎪ ⎩ ∀ρ ∈ M 1 + (Θ ), Rdρ ≤ r n dρ + λκ 2 n(1-k/n) 2 + K(ρ,π)+log(2/ε) λ and r n (θ) ≤ R(θ) + λκ 2 n(1-k/n) 2 + log(2/ε) λ .
We restrict the inf in the first inequality to Dirac masses ρ ∈ {δ θ , θ ∈ Θ} and we obtain:

⎧ ⎪ ⎨ ⎪ ⎩ ∀θ ∈ Θ, R(θ) ≤ r n (θ) + λκ 2 n(1-k/n) 2 + log( 2M ε ) λ and r n (θ) ≤ R(θ) + λκ 2 n(1-k/n) 2 + log(2/ε) λ .
In particular, we apply the first inequality to θERM . We remind that θ minimizes R on Θ and that θERM minimizes r n on Θ, and so we have

R( θERM ) ≤ r n ( θERM ) + λκ 2 n (1 -k/n) 2 + log(M ) + log (2/ε) λ ≤ r n (θ) + λκ 2 n (1 -k/n) 2 + log(M ) + log (2/ε) λ ≤ R(θ) + 2λκ 2 n (1 -k/n) 2 + log(M ) + 2 log (2/ε) λ ≤ R(θ) + 2λκ 2 n (1 -k/n) 2 + 2 log (2M/ε) λ .
The result still holds if we choose λ as a minimizer of

2λκ 2 n (1 -k/n) 2 + 2 log (2M/ε) λ .
Proof of Theorem 5.6.6. We put Θ = {θ ∈ R d : θ 1 ≤ D + 1}. We choose π as the uniform probability distribution on Θ . We apply Lemma 5.10.3. So we have, with probability at least 1ε, Lemma 5.10.4. We apply Lemma 5.3.3 to N = nk, Z i = (X i+1 , . . . , X i+k ),

f (Z i ) = 1 n -k R(θ) -R(θ)
-(X i+k , f θ (X i+k-1 , . . . , X i+1 )) + (X i+k , f θ (X i+k-1 , . . . , X i+1 )) 2 , and so

S N (f ) = [R(θ) -R(θ) -r(θ) + r(θ)],
and the Z i are uniformly mixing with coefficients φ Z r = φ r/q . Note that 1 + n-q r=1

φ Z r = 1 + n-q r=1 φ r/k ≤ k C by PhiMix(C). For any θ and θ in Θ let us put V (θ, θ ) = E X k+1 , f θ (X k , ..., X 1 ) -X k+1 , f θ (X k , ..., X 1 )

2 .

We are going to apply Lemma 5.3.3. Remark that σ 2 (f ) ≤ V (θ, θ)/(nk) 2 . Also, (X i+k , f θ (X i+k-1 , . . . , X i+1 )) -(X i+k , f θ (X i+k-1 , . . . , X i+1 ))

≤ K |f θ (X i+k-1 , . . . , X i+1 ) -f θ (X i+k-1 , . . . , X i+1 )| ≤ KLB
where we used LipLoss(K) for the first inequality and Lip(L) and PhiMix(B, C)

for the second inequality. This implies that f ∞ ≤ 2KLB/(nk), so we can apply Lemma 5.3.3 for any 0 ≤ λ ≤ (nk)/(2kKLBC)], we have ln E exp λ R(θ) -R(θ)r(θ) + r(θ) ≤ 8kCV (θ, θ)λ 2 nk .

Notice finally that Margin(K) leads to

V (θ, θ) = K R(θ) -R(θ)
This proves the first inequality of Lemma 5.10.4. The second inequality is proved exacly in the same way, but replacing f by -f .

We are now ready to state the following key Lemma. 

Proofs

Proof of Lemma 5.10.5. Let us fix ε, λ and θ ∈ Θ, and apply the first inequality of Lemma 5.10.4. We have:

E exp λ 1 - 8kCλ n -k R(θ) -R(θ) -r(θ) + r(θ) ≤ 1,
and we multiply this result by ε/2 and integrate it with respect to π(dθ). Fubini's Theorem gives:

E exp ⎧ ⎨ ⎩ λ ⎡ ⎣ 1 - 8kCλ n -k R(θ) -R(θ) -r(θ) + r(θ) + log( /2) ⎤ ⎦ ⎫ ⎬ ⎭ π(dθ) ≤ ε 2 .
We apply Lemma 5.3.1 and we get:

E exp ⎧ ⎨ ⎩ sup ρ λ ⎡ ⎣ 1 - 8kCλ n -k Rdρ -R(θ) -rdρ + r(θ) + log( /2) -K(ρ, π) ⎤ ⎦ ⎫ ⎬ ⎭ ≤ ε 2 .
As e x ≥ 1 R + (x), we have:

P ⎧ ⎨ ⎩ sup ρ λ ⎡ ⎣ 1 - 8kCλ n -k Rdρ -R(θ) -rdρ + r(θ) + log( /2) ⎤ ⎦ -K(ρ, π) ≥ 0 ⎫ ⎬ ⎭ ≤ ε 2 .
Let us apply the same arguments starting with the second inequality of Lemma 5.10.4.

We obtain:

P ⎧ ⎨ ⎩ sup ρ λ ⎡ ⎣ 1 + 8kCλ n -k R(θ) -Rdρ -r(θ) + rdρ + log( /2) -K(ρ, π) ⎤ ⎦ ≥ 0 ⎫ ⎬ ⎭ ≤ ε 2 .
A union bound ends the proof.

Proof of Theorem 5.7.1

Proof of Theorem 5.7.1. Fix 0 ≤ λ = (nk)/(4kKLBC) ∧ (nk)/(16kC) ≤

(n-k)/(2kKLBC). Applying Lemma 5.10.5, we assume from now that the event of probability at least 1ε given by this lemma is satisfied. In particular we have ∀ρ ∈ M 1 + (Θ),

Rdρ -R(θ) ≤ rdρ -r(θ) + K(ρ,π)+log(2/ε) λ 1 -8kCλ n-k .
In particular, thanks to Lemma 5.3.1, we have:

Rdρ λ -R(θ) ≤ inf ρ∈M 1 + (Θ)
rdρr(θ) + K(ρ,π)+log(2/ε)

λ 1 -8kCλ n-k
. Now, we apply the second inequality of Lemma 5.10.5: 

Rdρ λ -R(θ) ≤ inf ρ∈M 1 + (Θ) 1 + 8kCλ n-k Rdρ -R(θ) + 2 K(ρ,π)+log(2/ε) λ 1 -8kCλ n-k ≤ inf j inf ρ∈M 1 + (Θ j ) 1 + 8kCλ n-k Rdρ -R(θ) + 2 K(ρ j ,π)+log 2
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  of Time Series by Statistical Learning : General Losses and Fast Rates, en collaboration avec Pierre Alquier et Olivier Wintenberge, Dependence Modeling, Volume 1 (2013), 65-93.

  Définition 3.3.1. Pour tout d ≥ 1 on note • la norme uniforme, c'est à dire (u 1 , . . . , u d ) = max 1≤j≤d |u j | sur R d . un ensemble G sera appelé discret si G ⊂ R d pour certains d ≥ 1 et ses éléments satisfont D = inf x =x ,x,x ∈G xx > 0 Proposition 3.3.1. Si {X t ,t ∈ Z} est un processus à valeur entière η-faiblement dépendant, alors

  cations, strong mixing conditions are not satisfied. Prominent examples of such models are the celebrated AR(1) non-mixing model of[START_REF] Andrews | Non strong mixing autoregressive processes[END_REF] and the LARCH(1) model considered by[START_REF] Doukhan | Weak dependence, models and some applications[END_REF]. These types of problems motivated[START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF] to introduce more flexible dependence conditions to accommodate larger classes of time series models. The main notion introduced is that of weak dependence; the topic is studied extensively in the recent monograph by[START_REF] Dedecker | Weak dependence: With Examples and Applications[END_REF] which includes numerous examples of weakly dependent processes.

  termed as a counting series. The most common example is when the counting sequence consists of an iid sequence of Bernoulli random variables with probability of success a.To carry out the task of identifying the right form of F (•) in (3.3), it is important to use an alternative representation of the thinning operator. More specifically, suppose that {U i , i ≥ 1} is a sequence of iid standard uniform random variables. Let p a (k) = P(Y ≤ k), k = 0, 1, 2, . . .. Then, we can express the random variables Y i explicitly in terms of the uniform random variables by

  t associated with the c.d.f G 1 , . . . , G p are mutually independent.

  Assume that Assumption H(a) is satisfied for K and that K is a symmetric kernel with support [-ω, ω]. Further assume that p ∈ C 5 [0, 1] and (log(n)) 3 h n n 1-2α + nh 11 n log(n) → 0. (4.8) Let m = 1/h n and the interval T = [ωh n , 1ωh n ]. Then for every u ∈ R, as n → ∞,

Calistri

  et al. (2011) noticed that the frequencies of A, C, G and T nucleotides in a set of DNA sequences on bacteria appear monotone or convexity. So we now focus on developing tests of statistical significance for the monotone and convexity property of the genome sequences. The test of monotone or convexity

Figure 4

 4 Figure 4.1: an kernel estimator for p(t).

Figure 4 .Figure 4 . 3 :

 443 Figure 4.3: an asymptotic SCB for the trends of DNA data with level 95%.

  such that Lip(L) is satisfied. Assume that Assumptions LipLoss(K) and WeakDep(C) are satisfied. Let π be the uniform probability distribution on the extended parameter set {θ ∈ R k+1 , θ ≤ L + 1}. Then the oracle inequality (5.3) is satisfied for any λ > 0, ε > 0 with

  Assume that LowRates(κ) is satisfied and the existence of d = d(Θ, π) > 0 and D = D(Θ, π) > 0 satisfying the relation ∀δ > 0, log 1 θ∈Θ 1{R(θ) -R(θ) < δ}π(dθ) ≤ d log D δ .

  Θ j θ ρλ,j (dθ) the corresponding Gibbs estimator. A Gibbs predictor based on a model selection procedure satisfies an oracle inequality with low rate of convergence: Theorem 5.6.7. Assume that:

  , and θ = (θ 1 , . . . , θ N ) ∈ R N . Assume the ϕ i upper bounded by a constant Φ and Θ = {θ ∈ R N , θ 1 ≤ D} such that Lip(L) is satisfied for L = DΦ. Moreover LipLoss(K) is satisfied with K = 4B. Assume that θ = arg min θ∈R N R(θ) ∈ Θ in order to have:

  Finally, under WeakDep(B, C), the assumptions of Theorem 5.6.6 are satisfied with ψ = B and d = 4. Corollary 5.8.2. Let us fix τ ∈ (0, 1). Let us assume that Assumption WeakDep(B, C)

Figure 5

 5 Figure 5.1: French GDP online prediction using the quantile loss function with τ = 0.5.

Figure 5 . 2 :

 52 Figure 5.2: French GDP online 50%-confidence intervals (left) and 90%-confidence intervals (right).

  R(θ)ρ λ (dθ) ≤ inf ρ r n (θ)ρ(dθ) + λκ 2 n (1k/n) 2 + K(ρ, π) + log (2/ε) λ .(5.11)We now estimate from above r(θ) by R(θ). Applying the second inequality of (5.10) and plugging it into Inequality 5.11 gives R(θ)ρ λ (dθ) ≤ inf ρ

  dθ) by Jensen's inequality≤ r n ρλ ĵ , ĵ (dθ) + λ j κ 2 j n (1k/n) 2 + K(ρ λ ĵ , ĵ , π j ) + log 2 r n ρ(dθ) + λ j κ 2 j n (1k/n) 2 + K(ρ, π j ) + log 2

..

  Rdρ ≤ r n dρ + λκ 2 n(1-k/n) 2 + K(ρ,π)+log(2/ε) λ and r n (θ) ≤ R(θ) + λκ 2 n(1-k/n) 2 + log(2/ε) λ So for any ρ, R( θERM ) = [R( θERM ) -R(θ)]ρ(dθ) + Rdρ ≤ [R( θERM ) -R(θ)]ρ(dθ) + r n dρ + λκ 2 n (1k/n) 2 + K(ρ, π) + log (2/ε) λ ≤ [R( θERM ) -R(θ)]ρ(dθ) + [r n (θ)r n ( θERM )]ρ(dθ) + r n ( θERM ) + λκ 2 n (1k/n) 2 + K(ρ, π) + log (2/ε) λ ≤ 2Kψ θ -θERM 1 ρ(dθ) + r n (θ) + λκ 2 n (1k/n) 2 + K(ρ, π) + log (2/ε) λ ≤ 2Kψ θ -θERM 1 ρ(dθ) + R(θ) + 2λκ 2 n (1k/n) 2 + K(ρ, π) + 2 log (2/ε) λ .Now we define, for any δ > 0, ρ δ bydρ δ dπ (θ) = 1{ θ -θERM < δ} t∈Θ 1{ t -θERM < δ}π(dt).So in particular, we have, for any δ > 0,R( θERM ) ≤ 2Kψδ + R(θ)We optimize this result by taking δ = d/(2λKψ), which is smaller than 1 as soon as t ≥ 2Kψ/d, we get:R( θERM ) ≤ R(θ) + 2λκ 2 n (1k/n) 2 + d log 2eKψ(D+1)t d + 2 log (2/ε) λ .We just choose λ as the minimizer of the r.h.s., subject to t ≥ 2Kψ/d, to end the proof. Under the hypothesis of Theorem 5.7.1, we have, for any θ ∈ Θ,for any 0 ≤ λ ≤ (nk)/(2kKLBC), E exp λ 1 -8kCλ nk R(θ) -R(θ)r(θ) + r(θ) ≤ 1,andE exp λ 1 + 8kCλ nk R(θ) -R(θ)r(θ) + r(θ) ≤ 1.

  Under the hypothesis of Theorem 5.7.1, we have, for any 0≤ λ ≤ (nk)/(2kKLBC), for any 0 < ε < 1, Rdρ -R(θ) ≤ rdρr(θ) + K(ρ,π)+log(2/ε) λ and rdρr(θ) ≤ Rdρ -R(θ) 1 + 8kCλ n-k + K(ρ,π)+log(2/ε) λ ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ ≥ 1ε.

  by restricting ρ as in the proof of Theorem 5.6.5. First, notice that our choiceλ ≤ (nk)/(16kC) leads to Rdρ λ -R(θ) j ) + δ -R(θ) + 2 d j log D jδ replace the last occurences of λ by its value:Rdρ λ -R(θ) j ) -R(θ) + (16kC ∨ 4kKLBC) d j log D j e(n-k) 

  t ) t∈Z un processus à valeurs dans un espace E u et • la norme correspondante. Nous définissons le module d'une fonction Lipschitzienneh : E u → R ,...,yu) =(x 1 ,...,xu)∈E u |h(y 1 , . . . , y u )h(x 1 , . . . , x u )| y 1x 1 + . . . + y ux u .

	Lip h =	sup
	(y 1 Définition 2.1.1. Soit (X	

t ) t∈Z un processus à valeurs dans E. Soit Γ(u, v, r) est l'ensemble des (s, t) en Z u × Z v tels que s 1 ≤ . . . ≤ s u ≤ s u + r ≤ t 1 . . . ≤ t v . Pour certains classes de functions E u , E v → R, F u , G v le coefficient de dépendance est définit par (r) = sup u,v sup (s,t)∈Γ(u,v,r) sup f ∈Fu,g∈Gv

  and then conditions on H gave weak dependence properties and asymptotic results. But several Bernoulli shifts, such as Volterra series, may not fit the parsimony criterion and the function H may be non-explicit.

2.2.7 Gaussian and associated processes

Definition 2.2.2. The sequence (Z t ) t∈Z is associated, if for all coordinatewise increasing real-valued functions h and k,

  This entails that a different technique should better be chosen to bound from above the usual mixing coefficients α, or β . Towards this goal, either a restriction for the range of the process, similar to[START_REF] Coupier | 0-1 laws for dependent images[END_REF] (where only {0, 1}-discrete valued models are considered) is needed or the restriction to Markov type times series for which memory properties are essential.We thus specialize the investigation to Markov processes. Assume that {X t , t ∈ Z} is a G d -valued stationary Markov process where G is a discrete set; see Definition 3.3.1. Then employing ideas of

3.1 shows again that Proposition 3.3.2. If {X t , t ∈ Z} is an τ -weakly dependent integer valued process, then β ∞,v (r) ≤ 2v D τ (r)

  the condition 4.5 holds.

	Example 4.2.2 (Symmetric random walk on the circle). Let us define the
	Markov kernel K

  be the set of bounded functions H

	with bounded support satisfying
	1.

R Ψ H (u, δ)du = O(δ) as δ → 0, where Ψ H (u, δ) = sup{|H(y) -H(y )| : y, y ∈ [uδ, u + δ]},

and, 2. the lim D H,a = lim δ→0 [|δ|] -a R {H(x + δ) -H(x)} 2 dx exists and D H,a = 0.

  (2012) give rates of convergence in the strong invariance principle for stationary sequences satisfying some projective criteria. Thus one can construct simul-

	taneous confidence bands with asymptotically correct nominal coverage proba-
	bilities for time series.
	Theorem 4.2.4 ( Wu and Shao (2007)). Assume that Assumption H(a) is
	satisfied for K and that K is a symmetric kernel with support [-ω, ω]. Further
	assume that p ∈ C 3 [0, 1] and
	Theorem (4.2.4) (4.2.5) (4.2.6) provide theoretical SCBs for p p and p with
	asymptotically correct coverage probabilities under slightly different model.
	The construction of SCB l n and u n has been a difficult problem if dependence is
	present. A key tool in Wu's approach is Bickel and Rosemblatt (1973) asymptotic
	theory for maximal deviations of kernel density estimators Bickel and Rosenblatt

tion for sup 0<t<1 |p hn (t) -Ep hn (t)|. applied a deep result in probability theory, strong approximation, which asserts that normalized empirical processes of independent random variables can be approximated by Brownian bridges. Mention that both

[START_REF] Wu | Strong invariance principles for dependent random variables[END_REF] 

and

Dedecker et al. 

  Z 1 , . . . , Z n from the normal standard distribution, and calculate sup 0≤t≤1 |p *

	h (t)|,
	where p * h

8.1 Setting of the Problem: Uncertainty in GDP Fore- casting

  Every quarter, economic forecasters at INSEE 1 publish a forecast of the quarterly growth rate of the French GDP (Gross Domestic Product). Since it involves a huge amount of data that takes months to be collected and processed, the "true" realization of the GDP growth rate log(GDP t /GDP t-1 ) is only known after a long time (two years). This means that at time t + 1, the value log(GDP

t /GDP t-1 ) is actually not known. However, a preliminary value of the growth rate is published 45 days only after the end of the current quarter t. This value is called a flash estimate and is the quantity that INSEE forecasters actually try to predict. As we want to play exactly the same "game" as the INSEE, we will now focus on the prediction on the flash estimate and let ΔGDP t denote this quantity. In order to do so, they use two sources of information:

1. past flash estimates 2 ΔGDP t ; 2. a climate indicator I t based on business surveys.

  is given for example in[START_REF] Clavel | A monthly indicator of the french business climate[END_REF];[START_REF] Dubois | Étalonnages à l'aide d'enquêtes de conjoncture: de nouvaux résultats[END_REF]. Let I t denote this indicator at time t (following[START_REF] Cornec | Constructing a conditional GDP fan chart with an application to French business survey data[END_REF], I t is the mean of the climate indicator at month 3 of quarter t -1 and at month 1 and 2 of quarter t, that are all available to INSEE forecasters at quarter t when they publish their forecast of t + 1) All these values (GDP, climate indicator) are available from the INSEE website.However it is well known that interval confidence or any relevant information about the accuracy of the prediction should be given with the forecast, in order to provide a quantification of its uncertainty. As a consequence the ASA and the NBER started using density forecasts in 1968, while the Central Bank of England and INSEE provide their prediction with a "fan chart". See[START_REF] Diebold | Evaluating density forecasts of inflation: the Survey of Professional Forecasters[END_REF];Tay and Wallis (2007) for surveys on density forecasting in official statistics and[START_REF] Britton | The Inflation Report Projections: Understanding the Fan Chart[END_REF] for fan charts. However the methodology used is often very crude, see the criticism in[START_REF] Cornec | Constructing a conditional GDP fan chart with an application to French business survey data[END_REF];[START_REF] Dowd | The inflation fan charts: An evaluation[END_REF]. For example, until 2012, the fan chart provided by the INSEE was based on the assumption that the forecast errors are Gaussian with a constant variance. This led to confidence intervals with constant length. But on the other hand there is

	an empirical evidence that
	1. it is more difficult to forecast GDP in a period of crisis or recession;
	2. the distribution of the errors is non-symmetric.
	See e.g. the graphics in Cornec (2010) about these two points. The Central
	Bank of England fan chart seems more adaptive to the situation but is unfortu-
	nately not reproducible as forecasters includes subjective information. In Cornec
	(2010) a reproducible density forecasting method based on quantile regressions
	is proposed and gives good results in practice. However, this method did not
	receive any theoretical support up to our knowledge. The primary motivation of
	on forecasting the European Union GDP the current paper was to provide a theoretical support to Cornec (2010).
	growth thanks to EUROSTATS data.
	INSEE publishes a composite indicator, the French business climate indicator. This indicator summarises information of the whole business survey. Its defini-5.8.2 Application of Theorem 5.5.1

1. Institut National de la Statistique et des Etudes Economiques, the French national bureau of statistics, http://www.insee.fr/ 2. It has been checked that to replace past flash estimates by the actual GDP growth rate when it becomes available do not improve the quality of the forecasting Minodier (2010). tion We define X t as the information that becomes available at time t, X t = (ΔGDP t , I t ) ∈ R 2 . The loss function will only take into account ΔGDP t as this is the quantity of interest. We use the quantile loss function (see Example 5.5.2 page 81): τ ((ΔGDP t , I t ), (Δ GDP t , I t

Table 5 . 4 :

 54 Performances of the Gibbs estimator, AIC and least square estimator in the full model, on the simulations. We reported the mean performance and standard deviation of each method. We highlight the best result for each experiment.

	n	Model	Innovations	Gibbs	AIC	Full Model
	100	(5.7)	Uniform	0.165 (0.022)	0.165 (0.023)	0.182 (0.029)
			Gaussian	0.167 (0.023)	0.161 (0.023)	0.173 (0.027)
		(5.8)	Uniform	0.163 (0.020)	0.169 (0.022)	0.178 (0.022)
			Gaussian	0.172 (0.033)	0.179 (0.040)	0.201 (0.049)
		(5.9)	Uniform	0.174 (0.022)	0.179 (0.028)	0.201 (0.040)
			Gaussian	0.179 (0.025)	0.182 (0.025)	0.202 (0.031)
	1000	(5.7)	Uniform	0.163 (0.005)	0.163 (0.005)	0.166 (0.005)
			Gaussian	0.160 (0.005)	0.160 (0.005)	0.162 (0.005)
		(5.8)	Uniform	0.164 (0.004)	0.166 (0.004)	0.167 (0.004)
			Gaussian	0.160 (0.008)	0.161 (0.008)	0.163 (0.008)
		(5.9)	Uniform	0.171 (0.005)	0.172 (0.006)	0.175 (0.006)
			Gaussian	0.173 (0.009)	0.173 (0.009)	0.176 (0.010)

Remerciements

The 99% SCBs 

Some Preliminary Lemmas and Proofs

Lemma 4.5.1 [START_REF] Wu | Inference of trends in time series[END_REF]). Assume that H ∈ H(a), a ∈ [1, 2],

R H 2 (u) = 1 and H has finite support [-ω, ω]. Let h n → 0 satisfy

where m = 1/h n . Then, for u ∈ R lim n→∞ (P[ max t∈[ωhn,1-ωhn] ] -B H,a (m) ≤ u √ 2 log m ) = exp(-2 exp(-u))

Lemma 4.5.2 [START_REF] Wu | Inference of trends in time series[END_REF]). Let K ∈ H(a) be a symmetric kernel with support [-ω, ω] and

The proof is similar to Lemma 4.5.2 and the details are omitted.

Proof of Theorem (4.2.1). Let (ξ i ) i∈Z be a dependent time series with real values, zero mean and variance 1. Assume that Theorem (4.2.5). By condition 4.7, (h

and the Theorem follows from Lemma 4.5.1 and 4.5.3.

Proof of Theorem (4.2.6). By condition 4.8, (h

and the Theorem follows from Lemma 4.5.1 and 4.5.3.

Part II Time Series Forecasting under

Weak Dependence Conditions

Chapter 5

Prediction of Time Series by

Statistical Learning

The aim of this part is the study of statistical properties of learning algorithm in the case of time series prediction. A series of papers (e.g. [START_REF] Meir | Nonparametric time series prediction through adaptive model selection[END_REF]; Modha and Masry (1998); [START_REF] Alquier | Model selection for weakly dependent time series forecasting[END_REF]) extends the oracle inequalities obtained for i.i.d observations to time series under weak dependence conditions.

Given a family of predictors and n observations, oracle inequalities state that a predictor forecasts the series as well as the best predictor in the family up to a remainder term Δ n . Using the PAC-Bayesian approach, we establish under weak dependence conditions oracle inequalities with optimal rates of convergence Δ n for Gibbs estimator. Similar results were proved for the ERM procedure under a restriction on the parameter space. We apply the method for quantile forecasting of the french GDP with promising results.

Introduction

Motivated by economics problems, the prediction of time series is one of the most emblematic problems of statistics. Various methodologies are used that come from such various fields as parametric statistics, statistical learning, computer science or game theory.

In the parametric approach, one assumes that the time series is generated from a parametric model, e.g. ARMA or ARIMA, see [START_REF] Hamilton | Time Series Analysis[END_REF] 

The stationary sequence (X t ) is uniformly mixing when φ r → 0. Examples of uniformly mixing sequences are given in [START_REF] Doukhan | Mixing: properties and examples[END_REF].

We will also use Samson Berstein's type inequality in the proof of the fast rates.

Lemma 5.3.3 [START_REF] Samson | Concentration of measure inequalities for markov chains and Φ-mixing processes[END_REF]). Let N ∈ N. Let (Z i ) i∈Z be a stationary process, let (φ Z r ) denote its φ-mixing coefficients, let f be a measurable function R → [-M, M ] and let

Then: we have one inequality with

Proof. Actually, this result is not stated in this form in [START_REF] Samson | Concentration of measure inequalities for markov chains and Φ-mixing processes[END_REF] but can be deduced from the proof of Theorem 3 in that paper, a much more difficult result. To do so, in page 457 of [START_REF] Samson | Concentration of measure inequalities for markov chains and Φ-mixing processes[END_REF], just replace the definition of φ-mixing for an AR(p) process with uniform innovations. and as a consequence

WeakDep(B, C) is satisfied. In the Gaussian case, however, it is known that {X t } is no longer φ-mixing, see [START_REF] Doukhan | Mixing: properties and examples[END_REF]. However, as this case is more classical in statistics, it is worth testing if our method performs well in practice in this case too.

We take σ = 0.4 and a = 0.70. In both cases this leads to V ar( t ) 0.16. For each model, we simulate first a sequence of length n, we take the observations 1 to n -1 as a learning set and we predict X n . Each simulation is repeated 100 times and we report the mean error of each method on the Table 5.3. The evolution of the performance is measured by the quadratic prevision error.

It is interesting to note that the ERM estimator with absolute loss performs better on model (5.5) while the ERM with quadratic loss performs slightly better on model (5.6). The differences might be too small to be significative, however, the numerical results tends to indicate that both methods are robust to model mispecification. Also, both estimators seem to perform better than the R "arma" procedure when n = 100, but the differences tends to be less perceptible when n grows.

Second case: sparse autoregression

Here, we illustrate Corollary 5.7.1. We compare here the Gibbs estimator to the model selection approach of the "arma" procedure in the R software. This procedure computes the parametric estimator in each submodel AR(p) and then selects the order p by Akaike's AIC criterion [START_REF] Akaike | Information Theory and an Extension of the Maximum Likelihood Principle[END_REF]. Note that the computation of the Gibbs estimator in this case is described in Alquier and Lounici (2011) using a Reversible Jump MCMC algorithm. For the parameter λ, λ = n/ v ar(X), where v ar(X) is the empirical variance of the observed time series.

We generate the data according to the following:

where ε t is the innovation. We still use two models for the innovation: the uniform case, ε t ∼ U[-a, a], and the Gaussian case, ε t ∼ N (0, σ 2 ). Also we still take σ = 0.4 and a = 0.70. We compare the Gibbs estimator performances to the ones of AIC criterion as implemented in the R software and to the basic least square estimator in the model AR(q) -that we will call "full model". The experimental design is the following: for each model, we simulate a time series of length 2n, use the observations 1 to n as a learning set and n + 1 to 2n as a test set. We report the performances on the test set. We take n = 100 and n = 1000 in the simulations. Each simulation is repeated 20 times, we report on Table 5.4

the mean performance and standard deviation of each method.

It is interesting to note that our estimator performs better on Model (5.8) and Model (5.9) while AIC performs slightly better on Model (5.7). The differences tends to be less perceptible when n grows -this is coherent with the fact that we develop here a non-asymptotic theory. It is also interesting to note that our estimator seems to perform well even in the case of a Gaussian noise.