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Résumé

Dans cette thèse, nous donnons une introduction systématique à la condition
dépendance faible, introduit par Doukhan and Louhichi (1999) , qui est plus
générale que les cadres classiques de mélange ou de séquences associées. La
notion est suffisamment large pour inclure des modèles standards tels que les
modèles stables de Markov , les modèles bilinéaires , et plus généralement , les
schémas de Bernoulli. Dans certains cas, aucunes des propriétés de mélangeant
ne peut s’attendre sans hypothèse de régularité supplémentaire sur la distribution
innovations pour lesquelles une condition de dépendance faible peut être facile-
ment dérivée. Nous étudions la relation entre dépendance faible et mélangeant
pour les processus de valeurs discrètes. Nous montrons que la dépendance faible
implique des conditions de mélangeant sous des hypothèses naturelles. Les ré-
sultats se spécialisent au cas des processus Markovian. Plusieurs exemples de
processus à valeur entier sont examinés et leurs propriétés de dépendance faibles
sont étudiés à l’aide d’une contraction principale.

Dans la deuxième partie, nous établissons des vitesses de convergences en
apprentissage statistique pour les prédictions d’une série chronologique. En util-
isant l’approche PAC- bayésienne, les vitesses lentes de convergence

√
d/n pour

l’estimateur de Gibbs sous la perte absolue ont été donnés dans un travail précé-
dent Alquier and Wintenberger (2012), où n est la taille de l’échantillon et
d la dimension de l’ensemble des prédicteurs. Sous les mêmes conditions de
dépendance faible, nous étendons ce résultat à une fonction de perte Lipschitz
convexe. Nous identifions également une condition sur l’espace des paramètres
qui assure des vitesses similaires pour la procédure classique de l’ERM pé-
nalisé. Nous appliquons cette méthode pour la prédiction quantile du PIB
français. Dans des conditions supplémentaires sur les fonctions de perte ( satis-
faites par la fonction de perte quadratique ) et pour les processus uniformément
mélangeant, nous montrons que l’estimateur de Gibbs atteint effectivement les
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vitesses rapides de convergence d/n. Nous discutons de l’ optimalité de ces dif-
férentes vitesses à abaisser les limites en soulignant des références quand elles
sont disponibles. En particulier, ces résultats apportent une généralisation des
résultats de Dalalyan and Tsybakov (2008) sur l’estimation en régression sparse
à certains auto-régression.
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Abstract

This thesis aims at a systematic introduction to a weak dependence condition,
provided by Doukhan and Louhichi (1999), which is more general than the clas-
sical frameworks of mixing or associated sequences. The notion is broad enough
to include some standard models such as stable Markov models, Bilinear models,
and more generally, Bernoulli shifts. In some cases no mixing properties can
be expected without additional regularity assumption on the distribution of the
innovations for which a weak dependence condition can be easily derived. We
investigate the relationship between weak dependence and mixing for discrete
valued processes. We show that weak dependence implies mixing conditions
under natural assumptions. The results specialize to the case of Markov pro-
cesses. Several examples of integer valued processes are discussed and their weak
dependence properties are investigated by means of a contraction principle.

In the second part, we establish rates of convergences in statistical learning
for time series forecasting. Using the PAC-Bayesian approach, slow rates of con-
vergence

√
d/n for the Gibbs estimator under the absolute loss were given in

a previous work Alquier and Wintenberger (2012), where n is the sample size
and d the dimension of the set of predictors. Under the same weak dependence
conditions, we extend this result to any convex Lipschitz loss function. We also
identify a condition on the parameter space that ensures similar rates for the clas-
sical penalized ERM procedure. We apply this method for quantile forecasting of
the French GDP. Under additional conditions on the loss functions (satisfied by
the quadratic loss function) and for uniformly mixing processes, we prove that
the Gibbs estimator actually achieves fast rates of convergence d/n. We discuss
the optimality of these different rates pointing out references to lower bounds
when they are available. In particular, these results bring a generalization of the
results of Dalalyan and Tsybakov (2008) on sparse regression estimation to some
autoregression.





Contents

1 Introduction Générale et Résultats Principaux 1

I Weak Dependence, Models and Applications 19

2 Weak Dependence Notions and Models 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Weak dependence . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3 Physique dependence measure . . . . . . . . . . . . . . . . 29

2.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.1 Bernoulli shifts . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.2 Models with a Markovian representation . . . . . . . . . . 31
2.2.3 Linear process . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.4 Chaotic expansion . . . . . . . . . . . . . . . . . . . . . . 33
2.2.5 LARCH(∞) models . . . . . . . . . . . . . . . . . . . . . . 34
2.2.6 Models with infinite memory . . . . . . . . . . . . . . . . . 35
2.2.7 Gaussian and associated processes . . . . . . . . . . . . . . 36

3 Dependence of Integer Valued Time Series 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Dependence of integer valued time series . . . . . . . . . . . . . . 41
3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Integer autoregressive models of order p . . . . . . . . . . 43
3.4.2 Integer valued bilinear models . . . . . . . . . . . . . . . . 45
3.4.3 Integer valued LARCH models . . . . . . . . . . . . . . . . 45



x Contents

3.4.4 Mixed INAR(1) models . . . . . . . . . . . . . . . . . . . . 46
3.4.5 Random Coefficient INAR(1) model . . . . . . . . . . . . . 46
3.4.6 Signed Integer-valued Autoregressive (SINAR) models . . . 47

3.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Modeling of DNA Sequence 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Mains results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Asymptotic properties . . . . . . . . . . . . . . . . . . . . 53
4.2.2 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . 59
4.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Some Preliminary Lemmas and Proofs . . . . . . . . . . . . . . . 64

II Time Series Forecasting under Weak Dependence
Conditions 67

5 Prediction of Time Series by Statistical Learning 69
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 The context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Basic inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 ERM and Gibbs estimator . . . . . . . . . . . . . . . . . . . . . . 79
5.5 Main assumptions and main tools . . . . . . . . . . . . . . . . . . 80
5.6 Low rates oracle inequalities . . . . . . . . . . . . . . . . . . . . . 84

5.6.1 Finite classes of predictors . . . . . . . . . . . . . . . . . . 84
5.6.2 Linear autoregressive predictors . . . . . . . . . . . . . . . 85
5.6.3 General parametric classes of predictors . . . . . . . . . . 86
5.6.4 Aggregation in the model-selection setting . . . . . . . . . 88

5.7 Fast rates oracle inequalities . . . . . . . . . . . . . . . . . . . . . 90
5.7.1 Discussion on the assumptions . . . . . . . . . . . . . . . . 90
5.7.2 General result . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.7.3 Corollary: sparse autoregression . . . . . . . . . . . . . . . 93

5.8 Application to French GDP forecasting . . . . . . . . . . . . . . . 94
5.8.1 Setting of the Problem: Uncertainty in GDP Forecasting . 94



Contents xi

5.8.2 Application of Theorem 5.5.1 . . . . . . . . . . . . . . . . 95
5.8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.9 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.9.1 First case: parametric family of predictors . . . . . . . . . 99
5.9.2 Second case: sparse autoregression . . . . . . . . . . . . . 101

5.10 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.10.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.10.2 Proof of Theorems 5.5.1 , 5.6.5 and 5.6.7 . . . . . . . . . . 105
5.10.3 Proof of Theorems 5.6.2 and 5.6.6 . . . . . . . . . . . . . . 107
5.10.4 Some preliminary lemmas for the proof of Theorem 5.7.1 . 109
5.10.5 Proof of Theorem 5.7.1 . . . . . . . . . . . . . . . . . . . . 111

Bibliography 115





Chapitre 1

Introduction Générale et
Résultats Principaux

Cette thèse porte sur l’inférence de la dépendance faible et la prévision des
séries temporelles par l’approche PAC-bayésienne. Elle se compose de deux par-
ties.

Le but de la première partie est d’étudier un système de dépendance faible.
Nous donnons des grandes classes de modèles de séries temporelles qui satisfaient
cette notion. Nous étudions la relation entre dépendance faible et mélangeant
pour les processus de valeurs discrètes.

Cette première partie correspond au Chapitre 1 2 3. Chapitre 2 est constitué
de l’article suivant :

1. On weak dependence conditions : The case of discrete valued processes, en
collaboration avec Paul Doukhan et Konstantinos Fokianos, Statistics and
Probability Letters, 82 (2012), 1941-1948.

La deuxième partie correspond aux Chapitres 4, dans lesquels on étudie les
problèmes de prévision des séries temporelles. Cette seconde partie est constituée
essentiellement de 2 articles :

2. Prediction of Quantiles by Statistical Learning and Application to GDP Fo-
recasting, en collaboration avec Pierre Alquier, in the proceedings of DS’12
(conference on Discovery Science), J.-G. Ganascia, P. Lenca and J.-M.
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Petit Eds., Springer - Lecture Notes in Artificial Intelligence, 7569 (2012),
22-36 ;

3. Prediction of Time Series by Statistical Learning : General Losses and
Fast Rates, en collaboration avec Pierre Alquier et Olivier Wintenberge,
Dependence Modeling, Volume 1 (2013), 65-93.

Au cours des cinquante dernières années, diverses conditions de dépendance sont
apparus dans la littérature, à la suite de la notion de mélange introduit par Rosen-
blatt (voir Rosenblatt (1985) pour plus d’information). Les notions de mélange
ont été appliqués à de nombreux problèmes de type dépendant ; en particulier
dans le contexte de séries temporelles et de leurs applications financières qui
ont été appliqués à prouver des théorèmes limites qui permettent de valider l’in-
férence asymptotique ; voir Doukhan (1994), Rio (2000) et Bradley (2007) pour
d’autres exemples. Cependant, pour certains modèles apparus fréquemment dans
les applications, les conditions de mélange forts ne sont pas satisfaits. Les prin-
cipaux exemples de ces modèles sont le célèbre AR (1) non-mélangeant modèle
deAndrews (1984) et le LARCH(1) modèle considéré par Doukhan et al. (2006).
Ces types de problèmes ont motivés Doukhan and Louhichi (1999) à introduire
des conditions de dépendance plus flexible pour accueillir le plus grandes classes
de modèles de séries temporelles. La principale notion introduite est que la dé-
pendance faible ; le sujet est étudié de façon approfondie dans la monographie
récente Dedecker et al. (2007) qui inclut de nombreux exemples de processus
faiblement dépendantes.

Doukhan and Louhichi (1999) ont introduit un concept de dépendance faible
pour les séries temporelles qui généralise les notions de mélange et association.
Les covariances des variables aléatoirs sont beaucoup plus facile à calculer que
les coefficients de mélange. Par conséquent la dépendance faible définie dans la
définition 2.1.1 est mesurée en termes de covariances des fonctions. Supposons
que, pour les fonctions commodes h et k,

Cov (h(‘past’), k(‘future’))

converge vers 0 comme la distance entre le “passé” et le “futur” converge vers
l’infini. La convergence n’est pas supposé tenir uniformément sur la dimension
du “passé” ou “futur” impliqués. Cette définition rend explicite l’indépendance
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asymptotique entre le “passé” et le “futur” ; cela signifie que le “passé” est pro-
gressivement oublié.

Considérons (Xt)t∈Z un processus à valeurs dans un espace E
u et ‖ · ‖ la

norme correspondante. Nous définissons le module d’une fonction Lipschitzienne
h : Eu → R

Liph = sup
(y1,...,yu) �=(x1,...,xu)∈Eu

|h(y1, . . . , yu) − h(x1, . . . , xu)|
‖y1 − x1‖ + . . . + ‖yu − xu‖ .

Définition 2.1.1. Soit (Xt)t∈Z un processus à valeurs dans E. Soit Γ(u, v, r) est
l’ensemble des (s, t) en Z

u ×Z
v tels que s1 ≤ . . . ≤ su ≤ su+r ≤ t1 . . . ≤ tv. Pour

certains classes de functions Eu, Ev → R, Fu, Gv le coefficient de dépendance est
définit par

ε(r) = sup
u,v

sup
(s,t)∈Γ(u,v,r)

sup
f∈Fu,g∈Gv

|Cov (f(Xs1 , . . . , Xsu), g(Xt1 , . . . , Xtv)) |
ψ(f, g, u, v) .

Xt est appelé processus (ε, ψ)-faiblement dependent si la séquence ε(r) →r→∞ 0.

Exemples d’intérêt concernent la fonction ψ1(f, g, u, v) = vLip g (par exemple
dans les processus linéaires causal ), ψ2(f, g, u, v) = uLip f+vLip g, (par exemple
dans les processus linéaire non causal ), ψ3(f, g, u, v) = uvLip f · Lip g (par
exemple dans les processus associés), et ψ4(f, g, u, v) = uLip f + vLip g+ vLip f ·
Lip g. Cette définition est héréditaire.

Il y a deux raisons pour lesquelles nous préférons utiliser la dépendance faible
au lieu de mélange. Tout d’abord , les conditions de mélange se réfèrent plutôt
à σ-algèbre qu’à des variables aléatoires. Ils sont donc plus adaptées à travailler
dans des domaines de la finance ou d’histoire, où la σ-algèbre engendrée par le
passé a une importance considérable. Deuxiémement, une difficulté de mélange
est la vérification car il est généralement difficile (voir par exemple Doukhan
(1994) ), cependant, la dépendance faible a explicité un exemple simple d’un
processus autoregressive avec des innovations de Bernoulli(Andrews (1984)) et
a prouvé que ce modèle n’est pas fortement mélangeant , Doukhan and Lou-
hichi (1999) ont montré que ce processus est faiblement dépendante. Cette no-
tion de dépendance faible est suffisamment large pour inclure des nombreux
exemples intéressants tels que les modèles de Markov stationnaires, modèles bi-
linéaires, et plus généralement, les schámas de Bernoulli. Plus précisément, dans



4 Chapitre 1. Introduction Générale et Résultats Principaux

des conditions faibles, tous les processus causals ou non causals sont faiblement
dépendants : par exemple les processus Gaussian, associés, linéaire, ARCH (∞),
bilinéaires, Volterra, et les processus de mémoire infinie...

Nous discutons et étudions la relation entre le mélange et la dépendance faible
pour les modèles temporelles à valeur entière. Au cours des dernières années, il
y a une littérature émergente sur le thème de la modélisation et l’inférence pour
les séries temporelles disctrètes, voir Kedem and Fokianos (2002),Doukhan et al.
(2006), Drost et al. (2008) Fokianos et al. (2009), Fokianos and Tjøstheim (2011),
Franke (2010) et Neumann (2011) pour modèles autorégressifs à valeur entière et
modèles autoregressive généralisées. Nous allons nous concentrer sur ces modèles,
mais nous signalons que d’autres familles de processus pourraient être considérés ;
voir Coupier et al. (2006) pour le cas d’un processus général avec deux valeurs.

Notre objectif est de relier le mélange et la dépendance faible pour des mo-
dèles de séries temporelles à valeur entière. En utilisant la définition de η, la
dépendance de la séquence Xt, t ∈ Z entre le passé et ses futurs r-uplets peut
être évaluée suivant :

∣∣∣Cov (f(Xi1 , . . . , Xiu), g(Xj1 , . . . , Xjv))
∣∣∣ ≤ (uLip f + vLip g)η(r).

En raison du fait que les σ-algèbres générés par des ensembles discrets sont
assez petites, nous montrons que les coefficients obtenus du monde de mélange
coïncident souvent à ceux introduits sous dépendance faible. Par exemple, nous
relions le coefficient de dépendance faible η pour les coefficients de mélange α.

Définition 3.3.1. Pour tout d ≥ 1 on note ‖ · ‖ la norme uniforme, c’est à
dire ‖(u1, . . . , ud)‖ = max1≤j≤d |uj| sur Rd. un ensemble G sera appelé discret si
G ⊂ R

d pour certains d ≥ 1 et ses éléments satisfont

D = inf
x �=x′,x,x′∈G

‖x − x′‖ > 0

Proposition 3.3.1. Si {Xt, t ∈ Z} est un processus à valeur entière η-faiblement
dépendant, alors

αu,v(r) ≤ 2
D
(u + v)η(r)
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Résultats analogues lorsque Xt, t ∈ Z est un processus à valeur entière τ -faiblement
dépendante.

Le cas des processus de Markov est d’un intérêt particulier pour notre étude.
Nous montrons que les coefficients de dépendance mènent une attention par-
ticulière aux chaînes de Markov. Plusieurs exemples de modèles autorègressifs
entiers sont discutés en détail. En particulier, nous allons démontrer des condi-
tions où les modèles existants doivent satisfaire de sorte qu’ils sont faiblement
dépendants.

Le problème de prévision des séries temporelles est un problème fondamen-
tal dans les études de statistique. L’approche paramétrique contient une large
famille de modèles associés à des méthodes d’estimation efficace et de prévision,
voir par exemple Hamilton (1994); Brockwell and Davis (2009). Les modèles pa-
ramétriques classiques contiennent les processus linéaires tels que l’ARMA, et
plus récemment, les processus non linéaires tels que les modèles volatilité sto-
chastique et ARCH a reçu beaucoup d’attention dans les applications financières,
voir, e.g., le papier séminal par le prix Nobel Engle (1991), et Francq and Zakoian
(2010) pour une introduction plus récente. Cependant, dans la pratique, les hy-
pothèses paramétriques tiennent rarement. Cela peut conduire à des prédictions
très biaisée, et sous-évaluer les risques, voir Taleb (2007).

Au cours des dernières années, plusieurs approches universelles sont apparus
dans divers domaines tels que la statistique non paramétrique, l’apprentissage
automatique, l’informatique et la théorie de jeux. Ces approches partagent cer-
taines caractéristiques communes : l’objectif est de construire une procédure qui
prévoit la série ainsi que le meilleur prédicteur dans un ensemble donné de va-
riables prédictives initiales, sans aucune hypothèse paramétrique de la distribu-
tion de l’observation. Cependant, l’ensemble de prédicteurs peut être inspiré par
différents modèles statistiques paramètriques ou non paramétriques. Nous pou-
vons distinguer deux des classes de ces approches, avec quantification différent
de l’objectif, et des terminologies différentes :

• dans l’approche “prédiction de séquences individuelles”, les facteurs prédic-
tifs sont généralement appelés des “experts”. L’objectif est la prd́iction en
ligne : à chaque date t, une prédiction de la réalisation de l’avenir xt+1 est
basée sur l’observations précédente x1,...,xt, l’objectif est de minimiser la
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perte de prédiction cumulative. Voir par exemple Cesa-Bianchi and Lugosi
(2006); Stoltz (2009) pour une introduction.

• dans l’approche de l’apprentissage statistique, les prédicteurs proposés sont
parfois appelés “modèles” ou des “concepts”. Le cadre de batch est plus
classique dans la statistique. Une procédure de la prédiction est construite
sur un échantillon complet X1,..., Xn. La performance de la procédure est
comparée à la moyenne avec le meilleur prédicteur, appelé “l’oracle”. L’en-
vironnement n’est pas déterministe et certaines hypothèses comme mélange
ou dépendance faible sont nécessaires : voir Meir (2000); Modha and Masry
(1998); Alquier and Wintenberger (2012). Notez que les résultats de l’ap-
proche “prédiction de séquences individuelles” peuvent généralement être
étendus à ce cadre, voir par exemple Gerchinovitz (2011) pour le cas iid,
et Agarwal and Duchi (2011); Agarwal et al. (2012) pour le mélange de la
série chronologique.

Dans les deux cas, on est généralement capables de prévoir une série tem-
porelle borné ainsi que le meilleur expert, jusqu’à un petit residu Δn. Ce type
de résultats est appelé dans la théorie de statistique une inégalité d’oracle. En
général, en négligeant la taille de l’ensemble des prédicteurs θ, le residu est de
l’ordre 1/

√
n dans les deux approches : voir par exemple Cesa-Bianchi and Lugosi

(2006) pour l’approche “séquences individuelles”, pour l’approche “statistique
de l’apprentissage” la vitesse 1/

√
n est atteinte dans Alquier and Wintenberger

(2012) avec la fonction de perte absolue et sous une hypothése de dépendance
faible . Différentes procédures sont utilisées pour atteindre ces vitesses. Citons la
minimisation du risque empiriqueVapnik (1999) et les procédures d’agrégation
avec des poids exponentiels, souvent référé comme l’EWA Dalalyan and Tsy-
bakov (2008); Gerchinovitz (2011) ou l’estimateur Gibbs Catoni (2004, 2007),
lié à l’approche en ligne de l’algorithme pondération majoritaire Littlestone and
Warmuth (1994), see also Vovk (1990).

Dans cette thèse, nous nous concentrons sur la prévision des séries temporelles
en utilisant l’approche de l’apprentissage statistique. Soit X1,..., Xn représentent
des observations effectuées à temps t ∈ {1, . . . , n} de la série temporelle X =
(Xt)t∈Z définie sur (Ω, A,P). Nous supposons que cette série temporelle prend
des valeurs dans R

p équipés de la norme euclidienne ‖ · ‖. Comme mentionné
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ci-dessus, dans l’approche de la théorie de l’apprentissage, fixe un entier k, nous
supposons que l’on nous donne un ensemble de prédicteurs

{fθ : (Rp)k → R
p, θ ∈ Θ}

où Θ est un sous-ensemble de l’espace linéaire pour des raisons de simplicité.
Toutefois, le θ ici représente l’union de tous les paramètres de tous les modèles
que nous envisageons. Nous allons utiliser une approche du type sélection de
modèle :

Θ = ∪M
j=1Θj.

Θ sera une union finie (ou plus généralement dénombrable) de sous-espaces.
L’importance de l’introduction une telle structure a été mise en avant par Vapnik
(1999), c’est un moyen d’éviter de faire des hypothèses fortes sur la distribution
des observations.

Dans l’approche PAC-bayésienne, nous menons des prévisions de séries tem-
porelle dans un contexte où les inégalités du type Hoeffding ou Bernstein peuvent
être appliquées, puis à se débarrasser des échantillons d’observation par une in-
tégration. Afin de mesurer la complexité de l’espace de paramètres θ, nous consi-
dérons un σ-algèbre T sur θ, soit M1

+(θ) représentent l’ensemble de toutes les
mesures de probabilité sur (Θ, T ), nous définissons une distribution de proba-
bilité π ∈ M1

+(θ). Remarquons que π est aussi appelée la distribution a priori
dans le point de vue PAC-bayésien, mais ne dispose pas d’interprétation bayé-
sienne. Plus précisément, π ne tient pas compte de toute croyance préalable sur
la localisation de la “vraie” valeur du paramètre ni modélisation stochastique de
θ ∈ Θ, π joue juste le rôle de définir une structure en Θ liés à la mesure de la
complexité de θ.

Les bornes PAC-bayésiens ont été introduits dans Shawe-Taylor and William-
son (1997); McAllester (1999) dans le contexte de 0 − 1 classification, Il peut
traiter des problèmes très généraux et donne des résultats sur le choix du modèle
et de l’agrégation, voir Catoni (2004, 2007); Alquier (2008); Audibert (2010);
Audibert and Catoni (2011) pour les traveaux les plus rćents. Le nom est en
raison du fait que, dans sa première forme son objectif était de combiner les
principaux avantages du point de vue de théorie de l’apprentissage et des statis-
tiques bayésiens. Dans l’apprentissage statistique, les bornes sur le risque R(θ̂)
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d’un estimateur θ̂ souvent dépend du risque empirique de θ̂, rn(θ̂), et sur une
mesure de la complexité de la sous-modèle de Θ utilisé pour construire θ̂.

La technique utilisée dans cette thèse est inspirée par celle mise au point
récemment par Catoni (2004, 2007). Il utilise une structure d’une distribution
“préalable” de probabilité sur l’espace de paramètre Θ : π ∈ M1

+(θ) pour rem-
placer la structure de sous-modèles de Θ. Au lieu de borner le minimum du risque
empirique par rapport au paramètre θ ∈ Θ, nous étudions les déviation des quan-
tiles de rn(θ) par rapport à une mesure de probabilité a priori π ∈ M1

+(θ) définie
sur l’espace des paramètres.

L’idée de l’approche PAC-bayésienne est que le risque de l’estimateur de
Gibbs sera proche de infθ R(θ) jusque’à un petit résidu qui est remplacé par une
mesure de la distance entre ρ et π. Pour des raisons de simplicité, nous posons
θ ∈ Θ telle que

R(θ) = inf
θ∈Θ

R(θ)

(Si un tel minimiseur n’existe pas, nous pouvons le remplacer par un minimiseur
approximative R(θα) ≤ infθ R(θ) + α).

Dans le point de vue de PAC-bayésienne, on est généralement capable de
prévoir une série temporelle aussi bien que le meilleur modèle ou expert, jusque’à
un terme d’erreur qui diminue avec le nombre d’observations n. Ce type de
résultats est appelé les inégalités oracle dans la théorie statistique. Autrement
dit, on construit un prédicteur θ̂ sur la base des observations de telle sorte que

R(θ̂) ≤ inf
θ∈Θ

R(θ) + Δ(n,Θ)

où R(θ) est une mesure du risque de prédiction du prédicteur θ ∈ Θ. En général, le
terme de residu est de l’ order Δ(n,Θ) ∼

√
c(Θ)/n, où c(Θ) mesure la complexité

de Θ. Ici, cela se fait avec la divergence de Kullback :

K(ρ, π) = ρ

[
log
(
dρ

dπ

)]

si ρ est absolument continue par rapport à π, sinon K(ρ, π) = ∞.

Nous vous présentons un premier exemple de ce type de résultats prśentés
dans cette thèse.

Théorème 5.5.1. Supposons que LowRates(κ) est satisfait pour certains κ > 0.
Alors, pour tout λ, ε > 0, avec la probabilité au moins 1 − ε on obtient
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R
(
θ̂λ

)
≤ inf

ρ∈M1
+(Θ)

[∫
Rdρ + 2λκ2

n (1 − k/n)2
+ 2K(ρ, π) + 2 log (2/ε)

λ

]
.

Le choix du paramètre λ est un problème difficile dans le cadre de la dé-
pendance, c’est discuté en détail dans cette thèse. De plus, sous des hypothèses
supplémentaires sur le modèle, nous pouvons montrer que la procédure classique
de Minimisation du Risque empirique(ERM) peut être utilisé à la place de l’esti-
mateur Gibbs. Au contraire de l’estimateur de Gibbs, il n’y a pas de paramètre
de réglage pour l’ERM, donc c’est une situation très favorable.

Cependant, il est connu que, en théorie d’apprentissage si l’on veut avoir
en fait à réaliser des estimateurs atteignent effectivement une vitesse rapide de
convergence d/n, les théorèmes comme 5.5.1 ne sont pas suffisantes. Dans des
conditions supplémentaires sur les fonctions de perte (satisfaites par la fonction
de perte quadratique) et pour les processus de mélange uniforme, nous montrons
dans cette thèse que la vitesse 1/n peut être atteinte.

Théorème 5.7.1. Supposons que :

1. Margin(K) et LipLoss(K) sont satisfaits pour certains K, K > 0 ;

2. PhiMix(B, C) est satisfait pour certains C > 0 ;

3. Lip(L) est satisfait pour certains L > 0 ;

4. pour tout j ∈ {1, ..., M}, il existe dj = d(Θj, π) et Rj = R(Θj, πj) satisfai-
sant la relation

∀δ > 0, log 1∫
θ∈Θj

1{R(θ) − R(θj) < δ}πj(dθ)
≤ dj log

(
Dj

δ

)
.

Alors pour
λ = n − k

4kKLBC ∧ n − k

16kC
pour tout ε > 0, l’inequalité oracle (5.3) est avec

Δ(n, λ, π, ε)

= 4 inf
j

⎧⎨⎩R(θj) − R(θ) + 4kC (4 ∨ KLB)
dj log

(
Dje(n−k)
16kCdj

)
+ log

(
2

εpj

)
n − k

⎫⎬⎭ .
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Notons que Agarwal and Duchi (2011) prouve la vitesse rapide pour les algo-
rithmes en ligne qui sont également de calcul efficace, voir aussi Agarwal et al.
(2012). La vitesse rapide 1/n est atteinte lorsque les coefficients (φr) sont géo-
métriquement diminués. Dans d’autres cas, la vitesse est plus lente. Nous ne
souffrons pas d’une telle restriction ici. Il faut noter que les algorithmes efficaces
de Monte Carlo sont disponibles pour calculer ces estimateurs de poids expo-
nentiels , voir par exemple Alquier and Lounici (2011); Dalalyan and Tsybakov
(2008).



11

General Introduction

Over the last fifty years or so, various dependence conditions have emerged in
literature, as a result of the notion of mixing introduced by Rosenblatt (see
Rosenblatt (1985) for more). Mixing notions have been applied to numerous
dependence type problems; especially in the context of time series and their fi-
nancial applications they were applied on proving limit theorems which enable
valid asymptotic inference; see Doukhan (1994), Rio (2000) and Bradley (2007)
for further examples. However, for some models encountered frequently in appli-
cations, strong mixing conditions are not satisfied. Prominent examples of such
models are the celebrated AR(1) non-mixing model of Andrews (1984) and the
LARCH(1) model considered by Doukhan et al. (2006). These types of problems
motivated Doukhan and Louhichi (1999) to introduce more flexible dependence
conditions to accommodate larger classes of time series models. The main notion
introduced is that of weak dependence; the topic is studied extensively in the
recent monograph by Dedecker et al. (2007) which includes numerous examples
of weakly dependent processes.

Doukhan and Louhichi (1999) have introduced a concept of weak dependence
for time series which generalizes the notions of mixing and association. Covari-
ances of r.v.s are much easier to compute than mixing coefficients. Therefore
weak dependence as defined in Definition 2.1.1 is measured in terms of covari-
ances of functions. Assume that, for convenient functions h and k,

Cov (h(’past’), k(’future’))

converge to 0 as the distance between the ’past’ and the ’future’ converges to
infinity. The convergence is not assumed to hold uniformly on the dimension
of the ’past’ or ’future’ involved. This definition makes explicit the asymptotic
independence between ’past’ and ’future’; this means that the ’past’ is progres-
sively forgotten. Consider (Xt)t∈Z a process with values in some space E

u and
‖ · ‖ the corresponding norm. We define the Lipschitz modulus of a function
h : Eu → R

Liph = sup
(y1,...,yu) �=(x1,...,xu)∈Eu

|h(y1, . . . , yu) − h(x1, . . . , xu)|
‖y1 − x1‖ + . . . + ‖yu − xu‖ .

Definition 2.1.1. Let (Xt)t∈Z be a process with values in E. Let Γ(u, v, r) be the
set of (s, t) in Z

u × Z
v such that s1 ≤ . . . ≤ su ≤ su + r ≤ t1 . . . ≤ tv. For some



12 Chapitre 1. Introduction Générale et Résultats Principaux

classes of functions Eu, Ev → R, Fu, Gv the dependence coefficient is defined by

ε(r) = sup
u,v

sup
(s,t)∈Γ(u,v,r)

sup
f∈Fu,g∈Gv

|Cov (f(Xs1 , . . . , Xsu), g(Xt1 , . . . , Xtv)) |
ψ(f, g, u, v) .

Xt is called (ε, ψ)-weakly dependent process if the sequence ε(r) →r→∞ 0.

Examples of interest involve the function ψ1(f, g, u, v) = vLip g (e.g. in causal
linear processes), ψ2(f, g, u, v) = uLip f + vLip g, (e.g. in non causal linear
processes), ψ3(f, g, u, v) = uvLip f · Lip g (e.g. in associated processes), and
ψ4(f, g, u, v) = uLip f + vLip g + vLip f · Lip g. This definition is hereditary
through images by convenient functions.

There are two reasons we prefer using weak dependence instead of mixing.
Firstly, mixing conditions refer rather to σ-algebra than to random variables.
They are consequently more adapted to work in areas like Financ, that is the
σ-algebra generated by the past is of a considerable importance. Secondly,
A difficulty of mixing is that checking for it is usually hard.(see e.g Doukhan
(1994)) however, weak dependence is a very general property including certain
non-mixing processes: e.g. Andrews (1984) explicated the simple example of an
autoregressive process with Bernoulli innovations and proved that such a model
is not strong mixing, while Doukhan and Louhichi (1999) proved that such a
process is weakly dependent.

This weak dependence notion is broad enough to include many interesting
examples such as stationary Markov models, bilinear models, and more generally,
Bernoulli shifts. More precisely, under weak conditions, all the usual causal
or non causal time series are weakly dependent processes: this is the case for
instance of Gaussian, associated, linear, ARCH(∞), bilinear, Volterra, infinite
memory processes, . . .

We discuss and investigate the relationship between mixing and weak depen-
dence for integer valued time series models. In recent years, there is an emerging
literature on the topic of modeling and inference for count time series, see Kedem
and Fokianos (2002), Doukhan et al. (2006), Drost et al. (2008) Fokianos et al.
(2009), Fokianos and Tjøstheim (2011), Franke (2010) and Neumann (2011) for
integer autoregressive models and for generalized autoregressive models, among
other references. We will focus on such models but we point out that other
families might be considered as well; see Coupier et al. (2006) for the case of a
general process with two values.
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Our objective is to relate mixing and weak dependence conditions for such
integer valued count time series models. Using the definition of η, the dependence
between the past of the sequence Xt, t ∈ Z and its future r-tuples may be assessed
as follows.

∣∣∣Cov (f(Xi1 , . . . , Xiu), g(Xj1 , . . . , Xjv))
∣∣∣ ≤ (uLip f + vLip g)η(r).

Due to the fact that the σ-algebras generated by discrete sets are quite small,
we prove that the coefficients obtained from the mixing world often coincide
to those introduced under weak dependence. For example, we link the weak
dependence coefficient η to the strong mixing coefficients α.

Definition 3.3.1. For each d ≥ 1 we denote by ‖ · ‖ the uniform norm, i.e.
‖(u1, . . . , ud)‖ = max1≤j≤d |uj| on R

d. A set G will be called discrete if G ⊂ R
d

for some d ≥ 1 and its elements satisfy

D = inf
x �=x′,x,x′∈G

‖x − x′‖ > 0

Proposition 3.3.1. If {Xt, t ∈ Z} is an η-weakly dependent integer valued pro-
cess, then

αu,v(r) ≤ 2
D
(u + v)η(r)

Similar results when {Xt, t ∈ Z} is a τ -weakly dependent integer valued
process.

The case of Markov processes is of a particular interest in our investigation.
We show that the various coefficients of dependence lead special attention to
Markov chains. Several examples of integer autoregressive models are discussed
in detail. In particular, we will prove conditions which existing models should
satisfy so that they are weakly dependent.

The problem of time series forecasting is a fundamental problem in statis-
tics. The parametric approach contains a wide range of models associated with
efficient estimation and prediction methods, see e.g. Hamilton (1994); Brock-
well and Davis (2009). Classical parametric models include linear processes such
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as ARMA, and more recently, non-linear processes such as stochastic volatil-
ity models and ARCH received a lot of attention in financial applications - see
e.g. the seminal paper by Nobel prize winner Engle (1991), and Francq and
Zakoian (2010) for a more recent introduction. However, in practice, paramet-
ric assumptions rarely holds. This can lead to highly biased prediction, and to
underevaluate the risks, see among others the polemical but highly informative
discussion in Taleb (2007).

In the last few years, several universal approaches emerged from various
fields such that non-parametric statistics, machine learning, computer science
and game theory. These approaches share some common features: the aim is to
build a procedure that predicts the series as well as the best predictor in a given
set of initial predictors, without any parametric assumption on the distribution
of the observation. However, the set of predictors can be inspired by different
parametric or non-parametric statistical models. We can distinguish two classes
in these approaches, with different quantification of the objective, and different
terminologies:

• in the “prediction of individual sequences” approach, predictors are usu-
ally called “experts”. The objective is online prediction: at each date t, a
prediction of the future realization xt+1 is based on the previous observa-
tions x1, ..., xt, the objective being to minimize the cumulative prediction
loss. See for example Cesa-Bianchi and Lugosi (2006); Stoltz (2009) for an
introduction.

• in the statistical learning approach, the given predictors are sometimes re-
ferred to as “models” or “concepts”. The batch setting is more classical in
statistics. A prediction procedure is build on a complete sample X1, ...,
Xn. The performance of the procedure is compared on average with the
best predictor, called the ‘oracle”. The environment is not deterministic
and some hypotheses like mixing or weak dependence is required: see Meir
(2000); Modha and Masry (1998); Alquier and Wintenberger (2012). Note
that results from the “individual sequences” approach can usually be ex-
tended to this setting, see e.g. Gerchinovitz (2011) for the iid case, and
Agarwal and Duchi (2011); Agarwal et al. (2012) for mixing time series.

In both settings, one is usually able to predict a bounded time series as well
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as the best expert, up to a small remainder Δn. This type of results is referred
in statistical theory as an oracle inequality. In general, neglecting the size of the
set of predictors Θ, the remainder is of the order 1/

√
n in both approaches: see

e.g. Cesa-Bianchi and Lugosi (2006) for the “individual sequences” approach;
for the “statistical learning approach” the rate 1/

√
n is reached in Alquier and

Wintenberger (2012) with the absolute loss function and under a weak depen-
dance assumption. Different procedures are used to reach these rates. Let us
mention the empirical risk minimization Vapnik (1999) and aggregation proce-
dures with exponential weights, usual referred as EWA Dalalyan and Tsybakov
(2008); Gerchinovitz (2011) or Gibbs estimator Catoni (2004, 2007) in the batch
approach, linked to the weighted majority algorithm of the online approach Lit-
tlestone and Warmuth (1994), see also Vovk (1990).

In this thesis, we focus on the time series forecasting using the statistical
learning approach. Let X1, . . . , Xn denote the observations at time t ∈ {1, . . . , n}
of a time series X = (Xt)t∈Z defined on (Ω, A,P). We assume that this time series
takes values in R

p equipped with the Euclidean norm ‖ · ‖. As mentioned above,
in the learning theory approach, fixed an integer k, we assume that we are given
a set of predictors

{fθ : (Rp)k → R
p, θ ∈ Θ}

where Θ is subset of a linear space for the sake of simplicity. However the Θ here
represent the union of all the parameters of all the models we envision. We will
use a model-selection type approach:

Θ = ∪M
j=1Θj.

Θ will be a finite (or more generally countable) union of subspaces. The impor-
tance of introducing such a structure has been put forward by Vapnik (1999), as
a way to avoid making strong hypotheses on the distribution of the observations.

In the PAC-Bayesian approach, we lead time series forecasting to a context
where Hoeffding or Bernstein type inequalities can be applied, and then to get
rid of the observation samples by an integration with respect it. In order to
measure the complexity of the parameter space Θ, we consider a σ-algebra T
on Θ, let M1

+(Θ) denote the set of all probability measure on (Θ, T ), we define
a probability distribution π ∈ M1

+(Θ). Remark that π is also called the prior
distribution in the PAC- Bayesian point of view but does not have any Bayesian
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interpretation. More precisely, π does not reflect any prior belief on the localiza-
tion of the “true” value of the parameter nor a stochastic modelization of θ ∈ Θ,
π just plays the role on defining a structure over Θ involved in measuring the
complexity of Θ.

PAC-Bayesian bounds were introduced in Shawe-Taylor andWilliamson (1997);
McAllester (1999) in the context of 0−1 classification, It can deal with very gen-
eral problems and gives results about model selection and aggregation, see Catoni
(2004, 2007); Alquier (2008); Audibert (2010); Audibert and Catoni (2011) for
more recent advances. Its name is due to the fact that in its first form its objec-
tive was to combine the major advantages of the learning theory point of view
and of the Bayesian statistics. In statistical learning, the bounds on the risk
R(θ̂) of an estimator θ̂ often depends on the empirical risk of θ̂, rn(θ̂), and on a
measure of the complexity of the submodel of Θ used to build θ̂.

The technique used in this thesis is inspired by the one developed more re-
cently by Catoni (2004, 2007). He uses as a structure a “prior” probability
distribution over the parameter space Θ: π ∈ M1

+(Θ) to replace the structure
of submodels of Θ. Instead of bounding the minimum of the empirical risk with
respect to the parameter θ ∈ Θ, we study the deviations of the quantiles of rn(θ)
with respect to some prior probability measure π ∈ M1

+(Θ) defined on the pa-
rameter space. The idea of PAC-Bayesian approach is that the risk of the Gibbs
estimator will be close to infθ R(θ) up to a small remainder which is replaced by
a measure of the distance between ρ and the π. For the sake of simplicity, let
θ ∈ Θ be such that

R(θ) = inf
θ∈Θ

R(θ)

(if such a minimizer do not exist, we can just replace it by an approximate
minimizer R(θα) ≤ infθ R(θ) + α).

In the PAC-Bayesian point of view, one is usually able to predict a time series
as well as the best model or expert, up to an error term that decreases with the
number of observations n. This type of results is referred to as oracle inequalities
in statistical theory. In other words, one builds on the basis of the observations
a predictor θ̂ such that

R(θ̂) ≤ inf
θ∈Θ

R(θ) + Δ(n,Θ)
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where R(θ) is a measure of the prediction risk of the predictor θ ∈ Θ. In general,
the remainder term is of the order Δ(n,Θ) ∼

√
c(Θ)/n, where c(Θ) measures

the complexity of Θ. Here, this is done with the Kullback divergence:

K(ρ, π) = ρ

[
log
(
dρ

dπ

)]

if ρ is absolutely continuous with respect to π, otherwise K(ρ, π) = ∞.

Let us introduce a first example of this kind of results presented in the second
part of this thesis.

Theorem 5.5.1. Let us assume that LowRates(κ) is satisfied for some κ > 0.
Then, for any λ, ε > 0, with probability at least 1 − ε we have

R
(
θ̂λ

)
≤ inf

ρ∈M1
+(Θ)

[∫
Rdρ + 2λκ2

n (1 − k/n)2
+ 2K(ρ, π) + 2 log (2/ε)

λ

]
.

The choice of the parameter λ is a hard problem in the context of dependence,
it is discussed in details in this thesis. Also, under additional assumptions on
the model, we can prove that the classical Empirical Risk Minimization (ERM)
procedure can be used instead of the Gibbs estimator. On the contrary to the
Gibbs estimator, there is no tuning parameter for the ERM, so this is a very
favorable situation.

However, it is a known fact that in learning theory that if one wants to have
estimators actually achieve fast rates of convergence d/n, theorems like 5.5.1 are
not sufficient. Under additional conditions on the loss functions(satisfied by the
quadratic loss function) and for uniformly mixing processes, we prove in this
thesis that the rate 1/n can be achieved.

Theorem 5.7.1. Assume that:

1. Margin(K) and LipLoss(K) are satisfied for some K, K > 0;

2. PhiMix(B, C) is satisfied for some C > 0;

3. Lip(L) is satisfied for some L > 0;

4. for any j ∈ {1, ..., M}, there exist dj = d(Θj, π) and Rj = R(Θj, πj)
satisfying the relation

∀δ > 0, log 1∫
θ∈Θj

1{R(θ) − R(θj) < δ}πj(dθ)
≤ dj log

(
Dj

δ

)
.
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Then for
λ = n − k

4kKLBC ∧ n − k

16kC
the oracle inequality (5.3) for any ε > 0 with

Δ(n, λ, π, ε)

= 4 inf
j

⎧⎨⎩R(θj) − R(θ) + 4kC (4 ∨ KLB)
dj log

(
Dje(n−k)
16kCdj

)
+ log

(
2

εpj

)
n − k

⎫⎬⎭ .

Note that Agarwal and Duchi (2011) proves fast rates for online algorithms

that are also computationally efficient, see also Agarwal et al. (2012). The fast
rate 1/n is reached when the coefficients (φr) are geometrically decreasing. In
other cases, the rate is slower. We do not suffer such a restriction here. It
should be noted that efficient Monte Carlo algorithms are available to compute
these exponential weights estimators, see for example Alquier and Lounici (2011);
Dalalyan and Tsybakov (2008).



Part I

Weak Dependence, Models and
Applications





Chapter 2

Weak Dependence Notions and
Models

The aim of this part is to propose a mathematical introduction to the content
of dependence. To do this, we recall weak dependence conditions from Dedecker
et al. (2007) (Weak dependence, examples and applications. Lecture Notes in
Statistics, Vol 190)’s monograph. Mixing sequences, functions of associated or
Gaussian sequences, Bernoulli shifts as well as models with a Markovian repre-
sentation are examples of the models considered. We investigate the relationship
between mixing and weak dependence for integer valued time series models.

2.1 Introduction

We start here from some very basic facts concerning independence of random
variables. We suppose that we are given P and F two random variables defined
on the same probability space (Ω, A,P). Note σ(P ) the σ-algebra generated by
P , and respectively σ(F ). So independence of both random variables writes as

P(A ∩ B) = P(A)P(B). ∀A ∈ σ(P ), ∀B ∈ σ(F ).

This definition can be extended to

Cov (f(P ), g(F )) = 0

for all f ,g with ‖f‖∞, ‖g‖∞ ≤ 1.
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If now, we consider a time series X = (Xt)t∈Z, the variable P and F may be
denoted ‘Past’ and ‘Future’:

P = (Xi1 , . . . , Xiu), F = (Xj1 , . . . , Xjv)

for i1 ≤ i2 ≤ . . . , ≤ iu < j1 ≤ j2 . . . ≤ jv, u, v ∈ N∗.

Since no phenomena are really independent from each others, a first question
is asked here, how to weaken those relations.

A first answer to this problem was the mixing assumption introduced by
Rosenblatt (1956). For a long time mixing conditions have been the dominant
type of conditions for imposing a restriction on the dependence between time
series data. They are considered to be useful since they are fulfilled for many
classes of processes and since they allow us to derive tools similar to those in
the independent case. However, mixing conditions can be very hard to verify for
particular models or are even too strong to be true (see. e.g Doukhan (1994))
and such conditions refer rather to σ-algebras than to random variables.

Covariances of r.v.s are much easier to compute than mixing coefficient.
Therefore Doukhan and Louhichi (1999) have introduced a concept of weak de-
pendence to the case of time series which generalizes the notion of mixing and
association. It is measured in terms of covariances of functions. For convenient
functions h and k, we assume that

Cov (h(‘past’), k(‘future’))

is small when the distance between the ‘past’ and the ‘future’ is sufficiently large.
This definition makes explicit the asymptotic independence of finite-dimensional
distribution with separated index sets (see Definition 2.1.1); the convergence is
not assumed to hold uniformly on the dimension of the distributions involved.

Wu (2005) introduced the physique dependence measures for stationary causal
process. Based on the nonlinear system theory, he introduces dependence coef-
ficients by measuring the degree of dependence of outputs on inputs in physical
system. Asymptotic properties have been established under such dependence
conditions.
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2.1.1 Mixing

Mixing conditions are defined in terms of the σ-algebras generated by a random
sequence.

α(σ(P ), σ(F )) = sup
P ∈σ(P ),F ∈σ(F )

|P(P )P(F ) − P(P ∩ F )|

β(σ(P ), σ(F )) = ‖P(P,F ) − PP ⊗ PF ‖T V

ρ(σ(P ), σ(F )) = sup
p∈L2

(σ(P )),f∈L2
(σ(F ))

|Corr(p, f)|

φ(σ(P ), σ(F )) = sup
P ∈σ(P ),V ∈σ(F )

|P(P ∩ F )
P(P ) − P(F )|

The β-mixing coefficient, introduced byWolkonski and Rozanov (1959, 1961),Kol-
mogorov and Rozanov (1978) introduced the maximal correlation coefficient ρ

and defined the corresponding dependence condition. The coefficient φ is the
uniform mixing coefficient by Ibragimov (1962).

Proposition 2.1.1. The following relations hold:

φ −mixing⇒
⎧⎨⎩ ρ −mixing

β −mixing

⎫⎬⎭⇒ α −mixing

Proof is omitted and more details and examples for such conditions can be found
in Doukhan (1994) and Rio (2000), there is no reverse implication holds in gen-
eral.

As basic assumptions on the dependence structures, the mixing conditions
have been widely used and various limit theorems have been obtained; It is im-
possible to give a complete list of references here. Representative results are
Doukhan (1994), Rio (2000) and Bradley (2007). However, most of the asymp-
totic results developed in the literature are for strong mixing processes and pro-
cesses with quite restrictive summability conditions on joint cumulants. Such
conditions seem restrictive and they are not easily verifiable. For example, An-
drews (1984) showed that, for a simple autoregressive process with innovations
being independent and identically distributed (iid) Bernoulli random variables,
the process is not strong mixing.
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Example 2.1.1. Andrews (1984)’s simple example is, however, not mixing

Xt =
1
2(Xt−1 + ξt), ξt ∼ b

(1
2

)
, iid.

Xt has the uniform density over (0, 1). Xt is a causal process with the rep-
resentation Xt =

∑∞
j=0 2−jξt−j and the innovations ξt, ξt−1, . . . correspond to the

dyadic expansion of Xt. ξt−k is the k-th digit in the binary expansion of the
uniformly chosen number Xt = 0.ξtξt−1 . . . ∈ [0, 1]. This shows that X0 is some
deterministic function of Xt which derives that such models are not mixing. Thus
the process Xt is not strong mixing and αn ≡ 1/4 for all t.

Example 2.1.2. In Doukhan et al. (2009) paper, one extend andrew’s idea and
provide an LARCH(1) not-mixing model:

Xt = ξt(1 + aXt−1)

where P(ξ0 = 1) = P(ξ0 = −1) = 1/2.

This model has the stationary uniform distribution in L
m with m ≥ 1,

Xt = ξt +
∑
j≥1

ajξt . . . ξt−j. (2.1)

But it satisfies no mixing condition if a ∈ (3−
√
5

2 , 12 ] (the past may entirely be
recovered from the present).

The proof is as in Andrews (1984) that P(Xt ∈ A|Xt−(n+1) ∈ B) = 1, (∀n),
P(Xt−(n+1) ∈ B) �= 0 and P(Xt ∈ A) < 1, for some well chosen subsets A, B of R.
Set Ut = (Xt ∈ A) and Vt−n−1 = (Xt−(n+1) ∈ B) then P(Ut ∩Vt−n−1) = P(Vt−n−1)
and we derive from stationarity that P(Vt−n−1) = P(V0) �= 0 and P(Ut) = P(U0) <

1; thus αn ≥ P(Ut ∩ Vt−n−1) − P(Ut)P(Vt−n−1) ≥ P(V0)(1 − P(U0)) > 0.
We use the decomposition:

Xt = At,n + an+1ξt . . . ξt−nXt−(n+1), At,n = ξt + aξtξt+1 + . . . + anξt . . . ξt−n.

1. The values of the random variable At,n are spaced of at least 2an. Indeed
two distinct values of At,n are always spaced by a number d = 2∑n

i=0 εia
i

where for i = 0, . . . , n, εi ∈ {−1, 0, 1}. As l = min{i; 0 ≤ i ≤ n, εi �= 0}
exists and εl = 1, we have d ≥ 2an.
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2. We have P(a < |Xt| ≤ 2) ≥ 1/4. Indeed P(a < |Xt| ≤ 2) ≥> 0, Xt ≥ 1 +
a−∑i≥2 ai for a ∈ (0, 1/2] if ξt = ξt−1 = 1. Moreover as X ≤ 1/(1−a) ≤ 2
for a ∈ (0, 1/2].

3. For B = (−a, a) we have P(Xt ∈ B) > 0. For this, observe first that
a ∈]3−

√
5

2 , 1/2] implies 1 − a − a2 − a3 − . . . < a; thus for n0 ≥ 2 large
enough we get 1 − a − . . . − an0 +∑k≥n0+1 ak < a.

If ξt−i = 1 for i �= 1 with 0 ≤ i ≤ n0, and ξt−1 = −1, we have 0 ≤ Xt ≤ 1 − a −
. . .−an0+∑k≥n0+1 ak < a. Thus P(|Xt| < a) ≥ 2−n0−1. Now if w1, . . . , wk denote
the values of At,n, we set A = ∪k

i=1]wi −an+2, wi+an+2[. Using the decomposition
we infer that Xt ∈ Aif |Xt−(n+1)| < a thus P(Xt ∈ A|Xt−(n+1) ∈ B) = 1.

We prove here that P(Xt ∈ A) < 1. If a < |Xt−(n+1)| ≤ 2, then Xt writes as
wi + c with 2an+1 ≥ |c| > an+2. In this case Xt /∈ A. Indeed |Xt − wi| > an+2

and if, for example c > 0, we use point 1 and the fact that a ≤ 1/2 to derive:
Xt < wi + 2an+1 ≤ wi+1 − an+2 provided wi+1 exists (else we have obviously
Xt /∈ A). And we obtain Xt /∈ A if c > 0. It is also the case if c < 0 with a
similar argument. The result follows from P(Xt ∈ A) = P(Xt ∈ A ∩ |Xt−(n+1)| ≤
a) ≤ P(|X0| ≤ a) < 1. Moreover it is clear that P (|Xt−(n+1)|2a) �= 0.(Doukhan
et al. (2009))

2.1.2 Weak dependence

Doukhan and Louhichi (1999) aim at defining weak dependence coefficients which
makes explicit the asymptotic independence between ‘past’ and ‘future’; this
means that the ‘past’ is progressively forgotten. In terms of the initial time
series, ‘past’ and ‘future’ are elementary events given through finite dimensional
marginals. Roughly speaking, for convenient functions f and g, one shall assume
that

Cov (f(‘past’), g(‘future’))

is small when the distance between the ‘past’ and the ‘future’ is sufficiently large.
Such inequalities are significant only if the distance between indices of the initial
time series in the ‘past’ and the ‘future’ terms grows to infinity:

|Cov (f(P ), g(F ))| ≤ ψ(u, v,Lip f,Lip g)ε(r).



26 Chapter 2. Weak Dependence Notions and Models

Consider (Xt)t∈Z a process with values in a Polish space (E, ‖ · ‖). ‖ · ‖m denotes
the usual Lm-norm, i.e., ‖X‖m

m = E‖X‖m for m ≥ 1 for every E-valued random
variable X. We define the Lipschitz constant in order to distinct functions ψ.
For h : Eu → R,

Liph = sup
(y1,...,yu) �=(x1,...,xu)∈Eu

|h(y1, . . . , yu) − h(x1, . . . , xu)|
‖y1 − x1‖ + . . . + ‖yu − xu‖ .

Definition 2.1.1. Let (Xt)t∈Z be a process with values in E. Let Γ(u, v, r) be
the set of (i, j) in Z

u × Z
v such that i1 ≤ . . . ≤ iu ≤ iu + r ≤ j1 . . . ≤ jv. For

some classes of functions Fu from Eu to R and Gv from Ev to R, if ψ is some
function from F × G × R

2 to R
+, the dependence coefficient is defined by

ε(r) = sup
u,v

sup
(i,j)∈Γ(u,v,r)

sup
f∈Fu,g∈Gv

|Cov (f(Xi1 , . . . , Xiu), g(Xj1 , . . . , Xjv)) |
ψ(f, g, u, v) .

Xt is called (ε, ψ)-weakly dependent process if the sequence ε(r) →r→∞ 0.

Remark that in the previous definition:

a) r always denotes the gap in time between ‘past’ and ‘future’.

b) the sequence ε depends both on the class F , G and on the function ψ.

Assume that Fu are the set of functions bounded by 1 (resp. Gv). Then the
weak dependence coefficients correspond to:

ψ = uLip f + vLip g then denote ε(r) = η(r)
= vLip g then denote ε(r) = θ(r)
= uvLip f · Lip g then denote ε(r) = κ(r)
= uLip f + vLip g + uvLip f · Lip g then denote ε(r) = λ(r)
= uLip f + vLip g + uvLip f · Lip g + u + v then denote ε(r) = ω(r)

Remark 2.1.1. The coefficients η, κ, λ, and ω are non-causal coefficients when
Fu = Gu and ψ is symmetric. In this situations where both Fu and Gu are spaces
of regular functions, we say that we are in the non causal case. In the case
where the sequence (Xt)t∈Z is an adapted process with respect to some increasing
filtration (Mi)i∈Z, it is often more suitable to work without assuming any regu-
larity conditions on Fu. In that case Gu is some space of regular functions and
Fu �= Gu. This last case is called the causal case.
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An important point in the previous definition is its heredity through appro-
priate images as is the case for mixing conditions. As well as mixing coefficients,
these coefficients also have some hereditary properties.

Proposition 2.1.2 (Bardet et al. (2007)). Let (Xt)t∈Z be a sequence of Rk-valued
random variables. Let p > 1. We assume that there exists some constant C > 0
such that max0≤i≤k ‖Xi‖p ≤ C. Let h be a function from R

k to R such that
h(0) = 0 and for x, y ∈ R

k, there exists a in [1, p[ and c > 0 such that

|h(x) − h(y)| ≤ c|x − y|(1 + |x|a−1 + |y|a−1)

. We define the sequence (Yt)t∈Z by Yt = h(Xt), then,

• if (Xt)t∈Z is θ-weakly dependent, then (Yt)t∈Z too, θY (r) = O
(

θ(r)
p−a
p−1

)
;

• if (Xt)t∈Z is η-weakly dependent, so is (Yt)t∈Z and ηY (r) = O
(

η(r)
p−a
p−1

)
;

• if (Xt)t∈Z is λ-weakly dependent, (Yt)t∈Z also λY (r) = O
(

λ(r)
p−a

p+a−2

)
.

Example 2.1.3. The function h(x) = x2 satisfies the previous assumptions.
This condition is satisfied by polynomials with degree a.

Let Fu be the class of bounded functions from Eu to R, and let Gu be the class
of functions from Eu to R which are Lipschitz. We assume that the variables Xi

are L1-integrable. We shall see that the θ causal coefficient defined above belongs
to a more general class of dependence coefficients defined through conditional
expectations with respect to the filtration σ(Xj, j ≤ i).

Definition 2.1.2. Let (Ω, A,P) be a probability space, and M be a σ-algebra
of A. Let E be s Polish space. For any L

p-integrable random variable X with
values in E, we define

θp(M, X) = sup{‖E(g(X)|M) − E(g(X))‖p, Lip g ≤ 1}.

and then if (Xi)i∈Z is an L
p-sequence, and (Mk)k∈Z are σ-algebras (σ(Xj, j ≤

k)).
θp,k(r) = max

s≤k

1
s

sup
i+r≤j1≤...≤js

θp (Mi, (Xj1 , . . . , Xjs)) .

The two preceding definitions are coherent as proved in Dedecker et al. (2007),
θ(r) = θ1,∞(r).
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Remark 2.1.2. It is clear that if X is a θ-weakly dependent process it is also
a λ-weakly dependent process. Then main reasons for considering a distinction
between causal and non causal time series are

a) the θ-weak dependence is more easily relied to the strong mixing property;

b) some models or properties require different conditions on the convergence rate
of (θ(r)) than of (λ(r)).

We now define τ and γ causal coefficients.

Definition 2.1.3. Let (Ω, A,P) be a probability space, and M be a σ-algebra
of A. Let E be s Polish space and p ∈ [1, ∞]. For any L

p-integrable random
variable X with values in E, we define

• τ coefficients:

τp(M, X) = ‖ sup
Lip g≤1

{∫
g(X)PX|Mdx −

∫
g(X)PXdx

}
‖p.

and we clear have
θp(M, X) ≤ τp(M, X)

now let (Xi)i∈Z be a Lp integrable random sequence. The coefficient τp,k(r)
are defined as follow:

τp,k(r) = max
s≤k

1
s

sup
i+r≤j1≤...≤js

τp (Mi, (Xj1 , . . . , Xjs)) .

• γ coefficients (projective measure)

γp(M, X) = ‖E(X|M) − E(X)‖p ≤ θp(M, X)

and
γp(r) = sup

i∈Z

γp (Mi, Xi+r) .

Those coefficients are defined in Gordin (1969), these coefficients are used
in order to derive various limit theorems in Mc Leish (1975,a).
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2.1.3 Physique dependence measure

In this section, we introduce another look at the fundamental issue of dependence.
By interpreting causal Bernoulli shifts as physical systems, Wu (2005) introduce
physical and predictive dependence measures quantify the degree of dependence
of outputs Xt on inputs εt in physical systems. Consider the causal Bernoulli
shift

Xt = H(ξt, ξt−1, . . .)

where ξt, t ∈ Z are i.i.d random variables and H is a measurable function. In
view as physical system, ξt, ξt−1, . . . are inputs and H is a filter or a transform. Xi

shall be the output. Applying the idea of coupling, they introduce dependence
coefficient by measuring the degree of dependence of outputs on inputs. Let (ξ′

i)
by an iid copy of (ξi). Hence ξ′

i, ξj, i, j ∈ Z, are i.i.d.

Definition 2.1.4. Let the shift process Fi = (ξi, ξi−1, . . .). Denote X∗
j be a

coupled version of Xj in the latter beging replaced by ξ′
0:

X∗
j = H(F∗

j ), F∗
j = (ξj, ξj−1, . . . , ξ1, ξ′

0, ξ−1, . . .).

For j ∈ Z, define the the projection operator

Pj(X) = E(X|Fj) − E(X|Fj−1)

• Functional or physical dependence measure. Let Xi ∈ L
p, p > 0,

δp(j) = ‖Xj − X∗
j ‖p

• Predictive dependence measure. Let Xi ∈ L
p, p ≥ 1

θp(i) = ‖P0Xi‖p

• p-stability. The process (Xt) is said to be p-stable if

Δp :=
∞∑

j=0
δp(j) < ∞.

We say that it is weakly p-stable if

Ωp :=
∞∑

j=0
θp(j) < ∞.
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Limit theorems with those dependence measures have been established and
are often optimal or nearly optimal. Those dependence measures provide a simple
way for a large-sample theory for stationary causal processes and they are directly
related to the underlying data-generating mechanism H. Examples as linear
processes and Volterra processes, a polynomial-type nonlinear process, nonlinear
time series ...

2.2 Models

2.2.1 Bernoulli shifts

Now we consider the weak dependence structure to the class of Bernoulli shifts.

Definition 2.2.1. Let ξi, i ∈ Z, be independent and identically distributed ran-
dom variables and H a measurable function defined on R

Z. A Bernoulli shift is
a sequence (Xt)t∈Z defined by

Xt = H((ξt−j)j∈Z),

where, more precisely, H in L
m(μ) for some m > 0, with μ the distribution of

(ξt)t∈Z.

This way of constructing stationary sequence is very natural. A simple case
of infinitely dependent Bernoulli shift is the moving average process, writes Xt =∑∞

j=−∞ ajξt−j.

Proposition 2.2.1 (Doukhan and Louhichi (1999)). The process (Xt)t∈Z is η-
weak dependent with η(r) = 2δm∧1

[r/2] if

E|H(ξj, j ∈ Z) − H(ξj1|j|<r, j ∈ Z)| ≤ δr ↓ 0(r ↑ ∞) (2.2)

If H(ξj, j ∈ Z) does not depend on ξj with j < 0, then it is causal and θ-dependent
holds with θ(r) = δm∧1

r .

In fact, the sequences (δk)k are related to the modulus of uniforms continuity
of H. It is evaluated under regularity conditions on the function H; e.g. if

|H(ui; i ∈ Z) − H(vi; i ∈ Z)| ≤
∑
i∈Z

ai|ui − vi|b
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for some 0 < b ≤ 1 and for positive constants (ai)i∈Z fulfilling ∑i∈Z ai < ∞. If
the sequence (ξi)i∈Z has finite bth-order moment, then

δk ≤
∑
|i|≥k

aiE|ξi|b.

Notice finally that most of models used in statistics are such processes. Examples
of such situations follow:

• Example (2.1.1), the example of the non mixing stationary Markovian
chain with i.i.d Binomial innovations,

Xt =
1
2(Xt−1 + ξt)

satisfies δr = O(2−r); its marginal distribution is uniform on [0, 1].

• Nonparametric AR model

The real-valued functional autoregressive model

Xt = r(Xt−1) + ξt with r : R → R.

If |r(u)−r(u′)| ≤ c|u−u′| for some 0 ≤ c ≤ 1 and for all u, u′ ∈ R, and if the
i.i.d. innovation process (ξt)t∈Z satisfies E‖X0‖ < ∞, then θ-dependence
holds with θ(r) = δr = C · cr for some constant C > 0.

2.2.2 Models with a Markovian representation

Let (Xt)t∈N be sequence of random variables with values in a Banach space
(B, ‖ · ‖). Let (ξt)t∈N be a sequence of independent r.v.s and F be a measurable
function. Assume that Xt satisfies the recurrence equation

Xt = F (Xt−1, ξt).

The initial distribution X0 is supposed to be independent of the sequence (ξi)i∈N.
Assume that, the function F satisfies⎧⎪⎨⎪⎩

E‖F (0, ξ1)‖a < ∞

E‖F (x, ξ1) − F (y, ξ1)‖a ≤ αa‖x − y‖a
(2.3)

for some a ≥ 1 and 0 ≤ α < 1. It is known by Duflo (1996) that the Markov
chain (Xi)i∈N has a stationary law μ with finite moment of order a. We suppose
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that μ is the distribution of X0(i.e the Markov chain is stationary). If moreover
condition (2.3) is satisfied then the Markov chain, if X̃0 is independent of X0 and
distributed as X0, previous defined is weakly dependent and

θp,∞(r) ≤ τp,∞(r) ≤ αr‖X̃0 − X0‖p

(see Doukhan and Louhichi (1999)).

Remark that the stationary iterative markov models Xt = F (Xt−1, ξt) can
be represented as Bernoulli shifts if condition (2.3) holds, when Xt and ξt take
values in Euclidean space.

2.2.3 Linear process

If X is a ARMA(p, q) process or, more generally, linear process such that

Xt =
∞∑

j=0
ajξt−j

for t ∈ Z, with aj = O(|j|−μ) with μ > 1/2.

A first choice is

δr = E|ξ0|
∑
k>r

|ak|

for the linear process with i.i.d innovations such that E|ξ0| < ∞.

For centered and L
2 innovations, another choice is

δr =
√
E|ξ0|2

∑
k>r

|ak|2.

Thus X is a θ- (respectively, λ-) weakly dependent process with

θ(r) = λ(r) = O
( 1

rμ−1/2

)

(see Doukhan and Lang (2002)). It is also possible to deduce λ-weak dependence
properties for X if the innovation process is itself λ-weakly dependent (Doukhan
and Wintenberger (2008)).
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2.2.4 Chaotic expansion

We study chaotic expansions associated with the discrete chaos generated by the
sequence (ξt)t∈Z. In a condensed formulation we write

F (x) =
∞∑

k=0
Fk(x)

where Fk(x) denote the kth order chaos contribution and F0(x) = a
(0)
0 is only a

centring constant and

Fk(x) =
∞∑

j1=−∞

∞∑
j2=−∞

. . .
∞∑

jk=−∞
a
(k)
j1,...,jk

xj1 × xj2 × . . . × xjk
.

It can be written in the vectorial notation Fk(x) =
∑

j∈Zk a
(k)
j xj.

An example is a Volterra stationary process defined through a convergent
Voleterra expansion

Xt = v0 +
∞∑

k=1
Vk;t Vk;t =

∑
−∞<j1<...<jk<∞

a
(k)
j1,...,jk

− ξt−j1 . . . ξt−k,

where v0 denotes a constant and (a(k)j )j∈Zk = (a(k)j1,...,jk
)(j1,...,jk)∈Zk are real number

for each k > 0. This expression converges in L
m for m ≥ 1, provided that

E|ξ0|m < ∞ and ∑∞
k=0
∑

j∈Zk |a(k)j | < ∞. Those models are η-dependent since
(2.2) is satisfied, δr corresponding to the tail of the previous series

δr =
∞∑

k=0

⎧⎨⎩ ∑
j∈Zk;‖j‖∞>r

|a(k)j |E|ξ0|k
⎫⎬⎭ < ∞.

One more example is the simple bilinear process with the recurrence equation

Xt = aXt−1 + bXt−1ξt−1 + ξt.

Such processes are associated with the chaotic representation in

F (x) =
∞∑

j=1
xj

j−1∏
s=0

(a + bxs), x ∈ R
Z

If c = E|a+ bξ0| < 1 then δr = θr = cr(r+1)/(c − 1) has a geometric decay rate.
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2.2.5 LARCH(∞) models

We mention LARCH(∞) models from Doukhan et al. (2006). Let (ξt)t∈Z be
an i.i.d sequence of random d × D-matrices, (Aj)j∈N∗ be a sequence of D × d

matrices, and a be a vector in R
D. Conditionally heteroscedastic models can be

expressed in terms of a vector valued LARCH(∞) model, which is a solution of
the recurrence equation

Xt = ξt

⎛⎝a +
∞∑

j=1
AjXt−j

⎞⎠
Such models are proved to have a stationary representation with the chaotic
expansion

Xt = ξt

⎛⎝a +
∞∑

k=1

∑
j1,...,jk≥1

Aj1ξt−j1Aj2 . . . Ajk
ξt−j1−j2−...−jk

a

⎞⎠ (2.4)

If φ = ‖ξ0‖m
∑

j ‖aj‖ < 1, there exists a solution of previous LARCH models
for some m ≥ 1, and it’s given as (2.4). This solution has been proved weakly-
dependent with θ(r) ≤ ‖Xr − X̃r‖1 and τm,∞(r) ≤ ‖Xr − X̃r‖m where

‖Xr − X̃r‖m ≤ ‖ξ0‖m

⎛⎝‖ξ0‖m

∑
j<t

jφj−1A

(
t

j

)
+ φr

1 − φ

⎞⎠
with A(s) = ∑j≥s ‖aj‖. Moreover for some constants C, C ′ and b,

θ(r) ≤

⎧⎪⎨⎪⎩
C ′ (log(r))b∨1

rb , under Riemaniann decay A(s) ≤ Cs(−b),

C ′(q ∨ φ)
√

r, under geometric decay A(s) ≤ Cqs.

Such LARCH(∞) models include a large variety of models, as

• Bilinear models

Xt = ζt

⎛⎝a +
∞∑

j=1
αjXt−j

⎞⎠+ β +
∞∑

j=1
βjXt−j

where the variables are real valued and ζ is the innovation. For this, we

set ξt =
⎛⎝ζt

1

⎞⎠, a =
⎛⎝α

β

⎞⎠ and Aj =
⎛⎝αj

βj

⎞⎠.
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• ARCH(∞) processes, ⎧⎪⎨⎪⎩
rt = σtξt

σ2t = β0 +
∑∞

j=1 βjσ
2
t−j

,

We set ξt = (ξt1), a =
⎛⎝κβ0

λ1β

⎞⎠, Aj =
⎛⎝ κβj

λ1βj

⎞⎠ with λ1 = E(ξ20) and κ2 =

Var (ξ20).

• GARCH(p, q) process,⎧⎪⎨⎪⎩
rt = σtξt

σ2t =
∑p

j=1 βjσ
2
t−j + γ +∑q

j=1 γjr
2
t−j

,

where γ > 0, γi ≥ 0, βi ≥ 0, and the variables ξt are centered at expecta-
tion.

2.2.6 Models with infinite memory

Let (ξt)t∈Z be i.i.d, and F : (Rd)N ×R
D → R

d, we introduce a chain with infinite
memory as the stationary solution of the equation

Xt = F (Xt−1, Xt−2, Xt−3, . . . ; ξt).

Assume, for some m ≥ 1, that A = ‖F (0, 0, 0, . . . ; ξt)‖m < ∞ and

‖F (x1, x2, x3, . . . ; ξt) − F (y1, y2, y3, . . . ; ξt)‖m ≤
∞∑

j=1
aj‖xj − yj‖.

where (aj)j≥1 is a sequence of non-negative real number such that

a =
∞∑

j=1
aj < 1.

Then existence of the model holds in L
m, as well as its stationarity and its

weak dependence with,

θ(r) ≤ C inf
N>0

⎛⎝∑
j≥N

aj + e−αr/N

⎞⎠
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if e−α = ∑∞
j=1 aj, or

λ(r) = inf
p≥1

{ar/p +
∑

|j|>p

aj}.

(see Doukhan and Wintenberger (2008))

Chains with infinite memory can also be represented as causal Bernoulli shifts
Xt = H(ξt, ξt−1, ξt−2, . . .), and then conditions on H gave weak dependence prop-
erties and asymptotic results. But several Bernoulli shifts, such as Volterra series,
may not fit the parsimony criterion and the function H may be non-explicit.

2.2.7 Gaussian and associated processes

Definition 2.2.2. The sequence (Zt)t∈Z is associated, if for all coordinatewise
increasing real-valued functions h and k,

Cov (h(Zt, t ∈ A), k(Zt, t ∈ B)) ≥ 0

for all finite subsets A and B of Z.

Gaussian or associated L
2-processes are weakly dependent if

κ(r) = O
(
sup
i≥r

|Cov (X0, Xi)|
)

→r→∞ 0.

then X is a λ-weakly dependent process such that λr = O
(
supi≥r |Cov (X0, Xi)|

)
.

See Doukhan and Louhichi (1999) for more details.



Chapter 3

Dependence of Integer Valued
Time Series

3.1 Introduction

Over the last fifty years or so, various dependence conditions have emerged in
the literature, as a result of the notion of mixing introduced by Rosenblatt (see
Rosenblatt (1985) for more). Mixing notions have been applied to numerous
dependence type problems; especially in the context of time series and their fi-
nancial applications they were applied on proving limit theorems which enable
valid asymptotic inference; see Doukhan (1994), Rio (2000) and Bradley (2007)
for further examples. However, for some models encountered frequently in appli-
cations, strong mixing conditions are not satisfied. Prominent examples of such
models are the celebrated AR(1) non-mixing model of Andrews (1984) and the
LARCH(1) model considered by Doukhan et al. (2009). These types of problems
motivated Doukhan and Louhichi (1999) to introduce more flexible dependence
conditions to accommodate larger classes of time series models. The main notion
introduced is that of weak dependence; the topic is studied extensively in the
recent monograph by Dedecker et al. (2007) which includes numerous examples
of weakly dependent processes.

The goal of this section is to investigate the relationship between mixing and
weak dependence for integer valued time series models. In recent years, there
is an emerging literature on the topic of modeling and inference for count time
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series, see Kedem and Fokianos (2002), Doukhan et al. (2006), Drost et al. (2008)
Fokianos et al. (2009), Fokianos and Tjøstheim (2011), Franke (2010) and Neu-
mann (2011) for integer autoregressive models and for generalized autoregressive
models, among other references. We will focus on such models but we point out
that other families might be considered as well; see Coupier et al. (2006) for the
case of a general process with two values. The objective is to relate mixing and
weak dependence conditions for such integer valued count time series models.
Due to the fact that the σ-algebras generated by discrete sets are quite small,
we prove that the coefficients obtained from the mixing world often coincide to
those introduced under weak dependence. The case of Markov processes is of
a particular interest in our investigation. Several examples of integer autore-
gressive models are discussed in detail. In particular, we will prove conditions
which existing models should satisfy so that they are weakly dependent. In this
way, we offer several theoretical tools for estimation and inference about integer
autoregressive processes.

Theorem 3.2.1 gives conditions for the existence and stationarity of a rich
class of time series models; see Doukhan and Wintenberger (2008). Section 3.3
contains several new results for integer valued time series models; in particular
it links the various coefficients of dependence with special attention to Markov
chains. The section 3.4 contains several examples and discusses conditions for
their weak dependence by utilizing suitably Theorem 3.2.1.

3.2 Generalities

For the Euclidean space R
d equipped with some norm ‖ · ‖, define the space

Λ1
(
R

d
)
by the set of functions h : Rd → R such that Liph ≤ 1. Furthermore,

let us denote by ‖h‖∞ = supx∈Rd |h(x)|.

We will be working with the notion of τ–dependence as introduced by Dedecker
and Prieur (2004); this notion seems to be appropriate for integer valued time se-
ries models. To be more specific, let (Ω, G,P) be a probability space and suppose
that M is a σ-algebra of G. We denote by L

m(Ω, G,P) the class of measurable
functions g(·), such that ‖g‖m = (

∫
Ω |g(x)|mdP(x))1/m < ∞. Let X be a random

variable on (Ω, G,P) with values in R
d. Assume that ‖X‖1 < ∞ and define the
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coefficient τ as

τ(M, X) =
∥∥∥∥sup{∣∣∣∣∫ f(x)PX|M(dx) −

∫
f(x)PX(dx)

∣∣∣∣/ f ∈ Λ1
(
R

d
)}∥∥∥∥

1
.

An easy way to bound this coefficient is based on a coupling argument; it can
be shown that

τ(M, X) ≤ ‖X − Y ‖1,

for any random variable Y with the same distribution as X and independent
of M, see Dedecker and Prieur (2004). As those authors, we assume that the
probability space (Ω, G,P) is rich enough to define independent sequences of
random variables. This implies that there exists a random variable X∗ such that

τ(M, X) = ‖X − X∗‖1.

Using the definition of τ , the dependence between the past of the sequence
(Xt)t∈Z and its future k-tuples may be assessed as follows. For two k-tuples
x = (x1, . . . , xk) and y = (y1, . . . , yk), consider the norm ‖x − y‖ = ‖x1 − y1‖ +
· · · + ‖xk − yk‖ on R

dk, set Mp = σ(Xt, t ≤ p) and

τk(r) = max
1≤l≤k

1
l
sup
{

τ(Mp, (Xj1 , . . . , Xjl
))
/

p + r ≤ j1 < · · · < jl

}
, (3.1)

τ(r) = sup
k>0

τk(r). (3.2)

Then, we say that the time series (Xt)t∈Z is τ -weakly dependent when its coeffi-

cients τ(r) tend to 0 as r tends to infinity.

Note that the last condition implies other notions of dependence; the η and
θ-weak dependence. Consider numeric functions f and g uniformly bounded by
1 and defined on the sets (Rd)u and (Rd)v equipped with the following norm.

‖(x1, . . . , xu)‖ = ‖x1‖∞ + · · · + ‖xu‖∞, x1, . . . , xu ∈ R
d.

where ‖x‖∞ = max1≤j≤d |xj|, for any x ∈ R
d. Then those coefficients are defined

as the least nonnegative numbers η(r) and θ(r) such as

∣∣∣Cov (f(Xi1 , . . . , Xiu), g(Xj1 , . . . , Xjv))
∣∣∣ ≤ (uLip f + vLip g)η(r)

≤ vLip g · θ(r)

for integers i1, . . . , iu, j1, . . . , jv which satisfy i1 ≤ · · · ≤ iu ≤ iu + r ≤ j1 ≤ · · · ≤
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jv. Note that η(r) ≤ θ(r) ≤ τ(r) and the definition of η(r) corresponds to the
case of non causal models.

The following theorem gives a general result about the decay rate of weak
dependence coefficients and improves upon the results obtained by Doukhan and
Wintenberger (2008) for infinite order models, which are not, in general, Markov
models; see e.g. LARCH(∞) models in Dedecker et al. (2007).

Theorem 3.2.1. Suppose that {Xt, t ∈ Z} is a time series which satisfies

Xt = F (Xt−1, Xt−2, . . . ; ξt), (3.3)

where {ξt, t ∈ Z} is an i.i.d sequence. Suppose that the function F (·) satisfies
the following conditions:

‖F (0, ξ0)‖m < ∞

‖F (x; ξ0) − F (x′ ; ξ0)‖m ≤
∞∑

l=1
αl‖xl − x

′
l‖,

where x = (xi)i≥1, x
′ = (x′

i)i≥1 belong to R
∞ and (αl)l≥1 a sequence of positive

real numbers with α = ∑l αl. If α < 1, then there exists a unique causal station-
ary solution X which satisfies equation (3.3) such that ‖X0‖m < ∞. Moreover,
{Xt, t ∈ Z} is both η and τ weakly dependent process with corresponding coeffi-
cients.

τ(r) ≤ 2‖F (0, ξ0)‖1
1 − α

inf
1≤u≤r

{
α

r
u + 1

1 − α

∞∑
k=u+1

αk

}
Analogous result holds true for the η-coefficients. In particular, for Markov mod-
els, we obtain that the sequence τ(r) decays exponentially fast.

Following either Doukhan (1994) or Rio (2000), recall that for integers 1 ≤
u, v ≤ ∞, the strong mixing coefficient is defined by

αu,v(r) = sup |P(U ∩ V ) − P(U)P(V )|, (3.4)

α(r) = α∞,∞(r), (3.5)

whereas the absolute regularity mixing coefficient is given by

βu,v(r) = sup
∑
i,j

|P(Ui ∩ Vj) − P(Ui)P(Vj)|, (3.6)

β(r) = β∞,∞(r). (3.7)
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In all the above displays, the suprema is taken over U ∈ U , and V ∈ V or
respectively for measurable partitions Ui ∈ U , and Vj ∈ V of Ω; note that
U = σ(Xi1 , . . . , Xiu), and V = σ(Xj1 , . . . , Xjv) for integers i1 ≤ · · · ≤ iu ≤
iu + r ≤ j1 ≤ · · · ≤ jv; the suprema first runs over all such integers and second
over the sigma fields U , V .

3.3 Dependence of integer valued time series

We investigate the relation between mixing and weak dependence for integer
valued time series. We first need the following definition.

Definition 3.3.1. For each d ≥ 1 we denote by ‖ · ‖∞ the uniform norm, i.e.
‖(u1, . . . , ud)‖ = max1≤j≤d |uj| on R

d. A set G will be called discrete if G ⊂ R
d

for some d ≥ 1 and its elements satisfy

D = inf
x �=x′,x,x′∈G

‖x − x′‖∞ > 0

Note that if G = Z
d, then D = 1.

Lemma 3.3.1. Any real valued function with uniform norm less than 1 defined
on G with G discrete, is the restriction of a [−1, 1]−valued and 2

D
-Lipschitz

function.

Based on the previous lemma, we can link the weak dependence coefficient η

to the strong mixing coefficient α.

Proposition 3.3.1. If {Xt, t ∈ Z} is an η-weakly dependent integer valued pro-
cess, then

αu,v(r) ≤ 2
D
(u + v)η(r)

Note that the same situation applies to the coefficients τ . Hence Lemma 3.3.1
shows again that

Proposition 3.3.2. If {Xt, t ∈ Z} is an τ -weakly dependent integer valued pro-
cess, then

β∞,v(r) ≤ 2v
D

τ(r)
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This entails that a different technique should better be chosen to bound
from above the usual mixing coefficients α, or β . Towards this goal, either a
restriction for the range of the process, similar to Coupier et al. (2006) (where
only {0, 1}−discrete valued models are considered) is needed or the restriction
to Markov type times series for which memory properties are essential.

We thus specialize the investigation to Markov processes. Assume that {Xt, t ∈
Z} is a Gd-valued stationary Markov process where G is a discrete set; see Defini-
tion 3.3.1. Then employing ideas of Doukhan (1994), we recall that the absolute
regularity coefficient has the simple expression

β(r) = ‖P(X0,Xr) − PX0 ⊗ PXr‖T V = sup
‖f‖∞≤1

|E(f(X0, Xr) − f(X0, X∗
r ))|,

where X∗
r is a copy of Xr independent of X0.

Hence the Proposition 3.3.2 together with the fact that for Markov processes
β(t) = β1,1(t), we derive the following result:

Theorem 3.3.1. Assume that (Xt)t∈Z is a stationary p−Markov chain with val-
ues in G

d.

• Assume also that this chain is η−weakly dependent, then this process is
absolutely regular.

• Moreover, if it is η-weakly dependent and ‖X0‖m
m < ∞ for some m > 0,

then its absolute regularity coefficient sequence satisfies

β(r) ≤ 4p2
m

m+d D−(1+d)(‖X0‖m
m)

d
m+d η(r)

m
m+d ,

for all r ∈ N, large enough.

• If the process is τ -dependent then

β(r) ≤ 2p
D

τ(r)

An immediate consequence of the above theorem is that for d > 1 yields rates
of dependence for d-dimensional Markov integer valued processes. Indeed for a
d−Markov process (Zt)t∈Z, setting Xt = (Zt, . . . , Zt−d+1), the process (Xt)t∈Z is
now a Markov and G

d−valued process.



3.4. Examples 43

3.4 Examples

Here we give some examples of integer-valued time series models that are weakly
dependent. The great advantage of working with the notion of weak dependence
is that the ease of verification of (3.3) which shows that when the function F (.)
is Lipschitz, then the process is stationary which possess moments of any order.

3.4.1 Integer autoregressive models of order p

Integer autoregressive processes have been introduced by Al-Osh and Alzaid
(1987, 1990) as a convenient way to transfer the usual autoregressive structure
to discrete valued time series. The main concept is given by the notion of thinning
which is defined by as follows.

Suppose that X is a non–negative integer random variable and let a ∈ [0, 1].
Then, the thinning operator, denoted by ◦, is defined as

a ◦ X =
⎧⎨⎩
∑X

i=1 Yi, if X > 0,
0, otherwise,

where {Yi} is a sequence of independent and identically distributed non-negative
integer valued random variables with mean a–independent of X. The sequence
{Yi} is termed as a counting series. The most common example is when the
counting sequence consists of an iid sequence of Bernoulli random variables with
probability of success a.

To carry out the task of identifying the right form of F (·) in (3.3), it is
important to use an alternative representation of the thinning operator. More
specifically, suppose that {Ui, i ≥ 1} is a sequence of iid standard uniform random
variables. Let pa(k) = P(Y ≤ k), k = 0, 1, 2, . . .. Then, we can express the
random variables Yi explicitly in terms of the uniform random variables by

Yi(a) = Y (Ui, a) =
∞∑

k=0
1(Ui ≤ pa(k)).

The above representation allows for more convenient calculations, as we shall
see.

The integer autoregressive process of order p is defined as follows. Suppose
that for i = 1, 2, . . . , p, ai ∈ [0, 1) and let {ξt} be a sequence of independent
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and identically distributed nonnegative integer valued random variables with
‖ξ‖r < ∞. Then, the following process

Xt =
p∑

i=1
ai ◦ Xt−i + ξt, (3.8)

is called integer autoregressive process of order p and is denoted by INAR(p). It
should be noted that the counting series used for defining the random variable
a1 ◦ Xt−1 are independent of those involved in the definition of a2 ◦ Xt−2, and
so on. This assumption guarantees that the INAR(p) process has the classical
AR(p) correlation structure, see Du and Li (1991). Now using definition (3.8)
and the almost sure representation of the thinning operator, we obtain that

Xt =
p∑

i=1
ai ◦ Xt−i + ξt = F (Xt−1, . . . , Xt−p; ξt)

=
p∑

i=1

Xt−i∑
j=1

Y (Ut;jai) + ξt,

where the error sequence is defined ξt = (ξt, Vt) with Vt = (Ut;j)j≥1. Now, it
is easy to verify the conditions that (3.3) has to satisfy. Since ‖ξ‖r < ∞ we
have that the first condition is satisfied. For the second condition, note that an
application of Minkowski shows that

‖F (x1, . . . , xp; ξ0) − F (x′
1, . . . , x

′
p; ξ0)‖r ≤

p∑
i=1

‖Y (ai)‖r|xi − x
′
i|.

Hence with α = ∑p
i=1 ‖Y (ai)‖r < 1, the conclusion of Theorem (3.2.1) hold

true. In particular, when the counting series is Bernoulli random variables with
probability ai, then we obtain the condition ∑p

i=1 ai < 1, which is the standard
condition for stationarity and ergodicity of the INAR(p) model with Bernoulli
counting series, see Du and Li (1991).

Remark 3.4.1. In order to derive mixing properties of Markov processes one
needs irreducibility: this makes a real problem for integer valued models since
they belong ṡ. to a null set with respect to Lebesgue measure. In theorem 3.3.1
Lyapounov technique does not apply for the simple Markov models INAR(1):

Xt = a ◦ Xt−1 + ξt

Even stationarity needs |a| < 1. The operator x �→ a ◦ x is contracting in the
mean for this case. Quote that x �→ ax is uniformly contracting. Thus Steutel
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van Harn operators provide special problems. Indeed, let a◦ denote the Steutel
and van Harn operator based on a counting sequence (Yi)i∈N. We have

‖F (x; ξ0) − F (x′ ; ξ0)‖r ≤ max
j

|Yj|‖x − x
′‖r.

The maxj |Yj| can be not bounded by (0, 1) (see Wu and Shao (2004) ).

3.4.2 Integer valued bilinear models

Consider the following bilinear type of INAR model

Xt = a1 ◦ Xt−1 + b1 ◦ (Xt−1ξt−1) + ξt,

called BINAR(1,1). Then, working analogously as before, we can show that a
necessary condition for {Xt} to be stationary and ergodic with r-moments is
given by ⎧⎪⎨⎪⎩

‖ξt‖r < ∞

‖Y (a1)‖r + ‖εt‖r‖Y (b1)‖r < 1,

see Doukhan et al. (2006), Drost et al. (2008) for more.

3.4.3 Integer valued LARCH models

More generally we can consider integer valued ARCH type models with infinite
memory; for instance suppose that

Xt = ξt

(
a0 +

∞∑
i=1

ai ◦ Xt−i

)
.

Then again, the elementary calculations show that a necessary condition for {Xt}
to be stationary and ergodic with r-moments is given by

‖ξt‖r

∞∑
i=1

‖Y (ai)‖r < 1.

See Latour and Truquet (2008).
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3.4.4 Mixed INAR(1) models

Suppose that for all i ∈ {1, 2, . . . , k}, pi > 0 and ∑k
i=1 pi = 1. Then a mixed

integer autoregressive model can be considered for modeling when the process
changes behavior in different regimes. More precisely, suppose that

Xt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 ◦ Xt−1 + ξt, with probability p1,

a2 ◦ Xt−1 + ξt, with probability p2,
...

ak ◦ Xt−1 + ξt, with probability pk.

To examine weak dependence properties of the above model it is convenient to
introduce a random variable, say J , which is independent of the counting series
and the error terms and such that P(J = j) = pj, for j = 1, 2, . . . , k. Then, the
above process can be rewritten as

Xt =
k∑

j=1
I{J=j}(aj ◦ Xt−1 + ξt).

Now, it is again simple to show that a stationary and ergodic process X = (Xt)t∈Z

with finite moments of order r satisfies the above model if⎧⎪⎨⎪⎩
‖ξt‖r < ∞∑k

j=1(pj)1/r‖Y (aj)‖r < 1.

In particular, when the counting series is Bernoulli with success probabilities aj,
j = 1, 2, . . . , k, we obtain that ∑k

j=1 pjaj < 1.

3.4.5 Random Coefficient INAR(1) model

The random coefficient INAR(1) model is defined in analogy with the existing
random coefficients models as

Xt = a1;t ◦ Xt−1 + ξt,

where {a1;t} is a stationary process which takes real values. For the case of
Bernoulli counting series and {a1;t} iid, this class of models has been studied by
Zheng et al. (2006) and Zheng et al. (2007). In this case, we can write the above
equation as

Xt =
Xt−1∑
j=1

Y (Ut;j, a1;t) + εt = F (Xt−1, ξt),
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where now sequence ξt consists of the triplets (εt, Vt, a1;t) with Vt = (Ut;j)j≥1.
Working as before, and using a conditioning argument, we obtain that the con-
ditions for weak dependence are⎧⎪⎨⎪⎩

‖εt‖r < ∞

‖E(|Y (a1;0)|r | F−1)‖1/r
∞ < 1,

where the σ-algebra Ft = σ(εs, Vs, a1;s, s ≤ t). In particular, when the sequence
{a1,t} are i.i.d with mean a1 and the counting series is Bernoulli, then the previous
result reduces to the condition a1 = E(|Y (a1;0)|) < 1. The above specification
makes evident that a large class of models can be produced in this way; however
their dependence conditions are not clear. For instance, long range dependence
can be introduced in this way or several other forms of dependence.

3.4.6 Signed Integer-valued Autoregressive (SINAR) mod-
els

Following Latour and Truquet (2008) and more recently Kachour and Truquet
(2011), define the signed thinning operator by the following. Suppose that
{Yi, i ∈ Z} is a an i.i.d sequence of integer-valued random variables with cumu-
lative distribution function G. Let X be another integer valued random variable
which is independent of Yi’s. Then the signed thinning operator is defined by

G ◦ X =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sign(X)

|X|∑
i=1

Yi, ifX �= 0

0 otherwise,

where sign(x) = 1, if x > 0 and −1 if x < 0. This definition generalizes the
previous thinning definition and moreover it allows modeling of integer valued
time series that assume negative values as well as positive. In particular, (3.8)
is generalized by the following signed integer autoregressive process of order p

(abbreviated SINAR(p))

Xt =
p∑

i=1
Gi ◦ Xt−i + εt, (3.9)

where the counting sequences Y
(1)

t , . . . , Y
(p)

t associated with the c.d.f G1, . . . , Gp

are mutually independent.
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To study the weak dependence properties of process (3.9), it is useful to
represent the signed thinning operator in terms of uniform random variables, as
in the case of ordinary INAR(p). Towards this goal, suppose that the expectation
of the cdf G is a. Then define

Yi = Y (Ui, a) =
∞∑

k=0
kI(pa(k − 1) < Ui ≤ pa(k)),

by recalling that pa(k) = P (Y ≤ k), k ∈ Z. Then rewriting (3.9) as

Xt =
p∑

i=1
Gi ◦ Xt−i + εt = F (Xt−1, . . . , Xt−p; ξt)

=
p∑

i=1

{
sign(Xt−i)

|Xt−i|∑
j=1

Y (Ut;jai)
}
+ εt

and applying Theorem 3.2.1, we obtain that the conditions for weak dependence
and existence of moments are⎧⎪⎨⎪⎩

‖εt‖r < ∞∑p
i=1 ‖Y (Gi)‖r < 1.

When we compare those conditions to the conditions A1 and A2 obtained by
Kachour and Truquet (2011), we note that they do not restrict the support of
the distribution of Gi and εt. On the other hand, condition A2 of Kachour and
Truquet (2011) is less strict than the second of the above mentioned conditions.

3.5 Proofs

Proof of Lemma 3.3.1. A crucial step towards our analysis is given by the ob-
servation that the indicator function of any point x0 ∈ Z

d can be expressed
as

1x0(x) =
⎧⎨⎩ 1 − 2d(x, x0), if d(x, x0) < 1/2

0, otherwise,

where d(·, ·) is a distance defined in Zd. However, the function g(x) = 1 −
2d(x, x0) is a 2-Lipschitz function. From a summation and the fact that all such
functions admit disjoint supports, we deduce the useful fact that the same applies
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for any discrete set G ⊂ R
d. Indeed, let G be any discrete subset of Rd, x0 ∈ G,

and consider now the function

fx0(x) = (1 − 2‖x − x0‖/D)+, x ∈ G.

This function is a smooth approximation of the indicator of x0 ∈ G vanishing out
of the ball with radius D/2. Hence the supports of fx0(·) and fx1(·) are disjoint
whenever x0 is not equal to x1 and both of them belong to G. In other words, we
have proved that any function F : G → [−1, 1] admits a 2

D
−-Lipschitz extension

F̃ on R
d defined as

F̃ (x) =
∑

x0∈G

F (x0)fx0(x)

Proof of Proposition 3.3.1. Suppose that {Xt, t ∈ Z} is and η-dependent pro-
cess. Then,

|P((X0 ∈ A) ∩ (Xt ∈ B) − P(X0 ∈ A)P(Xt ∈ B)| = Cov (1{X0∈A}, 1{Xt∈B})|

= |Cov (fA(X0), fB(Xt))|

≤ 4
D

η(t),

where fA(·) and fB(·) denote the 2
D
-Lipschitz extensions of indicators of the

sets A, B which exist by Lemma 3.3.1. Consider events U, V from the history
of the process at negative time which are t-time epochs apart. Suppose that
U = (Xi1 ∈ A1, . . . , Xiu ∈ Au) for times i1 ≤ i2 ≤ · · · ≤ iu = 0 and analogously
V = (Xj1 ∈ B1, . . . , Xjv ∈ Bv) for times t = j1 ≤ i2 ≤ · · · ≤ jv. Then the same
calculations as before yield

|P(U ∩ V ) − P(U)P(V )| ≤ 2
D
(u + v)η(r)

Proof of theorem 3.3.1. Using Lemma 3.3.1, we obtain for any f and indicator
function g, h in G

d , that

|E(f(X0, Xr) − f(X0, X∗
r )| = |Cov (g(X0), h(Xr))| ≤ 2η(r)/D,

similarly to the previous calculations. If now the function f admits a finite
support S ⊂ G

2d then analogously

|E(f(X0, Xr) − f(X0, X∗
r )| ≤ 2

D
card(S)η(r),
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where card(·) denotes cardinality. Finally since the distribution of X0 is tight,
for each ε > 0 there exists Mε such that P(|X0| > Mε) ≤ ε, then replacing f by
its restriction to [−Mε, Mε] yields

|E(f(X0, Xr) − f(X0, X∗
r ))| ≤ 2ε + 2M2d

ε η(r).

Therefore, when E‖X0‖m < ∞, we derive from Markov inequality that Mε ≤
(E‖X0‖m/ε)1/m. One may choose ε1+2/m = (E‖X0‖m)2/mη(r)/D to get

|E(f(X0, Xr) − f(X0, X∗
r )| ≤ 2(E‖X0‖m)

2d
m+2d

(
η(r)
D

) m
m+2d

We may now consider the case of p−Markov processes by setting d̃ = pd and
setting ‖(x1, . . . , xd̃)‖ = ‖x1‖ + · · · + ‖xp‖ where for x1, . . . , xp ∈ G

d, and for
u ∈ G

d, ‖u‖ = ‖(u1, . . . , ud)‖ = maxj |uj|. Indeed, Yt ≡ (Xt, . . . , Xt−p+1) ∈ G
d̃

is again a Markov chain.



Chapter 4

Modeling of DNA Sequence

4.1 Introduction

DNA sequences perform a very important role in the transmission of genetic in-
formations to proteins. Modeling DNA chains is a challenging problem. ACGT
stand for the four nucleic acid bases that make up DNA( Adenine, Thymine, Cy-
tosine, Guanine). These four nucleic acids make up a creature’s genetic code, or
DNA. We aim at classifying and understanding the structure of DNA strings for
medical purposes. We consider statistical inference to estimate the distributions
of nucleotides under some random hypotheses. In particular, using the strong
invariance principle of stochastic processes, this allows to construct SCBs with
asymptotically correct nominal coverage probabilities.

We think of the genome as a realization of a stochastic process. A simple
model fitting applications is following: we may suppose that the base is A, at
the point t ∈ [1, n] of a DNA string, according to the fact that Ut,n ≤ pA(t/n),
for (Ut)t∈Z a process with uniform marginals and where p is the deterministic
trend of the model. More generally, functions pA, pC , pG : [0, 1] → [0, 1] with
0 ≤ pA ≤ pC ≤ pG ≤ 1 provide a model for trends in such strings:

Xt,n = A1{Ut≤pA( t
n
)} + C1{pA( t

n
)≤Ut≤pA( t

n
)+pC( t

n
)}

+ G1{pA( t
n
)+pC

t
n
)≤Ut≤pA( t

n
)+pC( t

n
)+pG( t

n
)} + T1{Ut>pA( t

n
)+pC( t

n
)+pG( t

n
)}
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Such categorical data rely on specific questions, in order to go back to quan-
titative data, we suppose Xt,n = 1{Ut,n≤p(t/n)} as the DNA gene at the point
t ∈ [1, n] is A with (Ut)t∈Z i.i.d uniform sequence and p is a deterministic trend
of the model. Similar models can be proposed for the base C, T and G.

To determine the promoters in DNA strings, one models the fact that at the
point t ∈ [1, n] of DNA the gene is A as Xt,n = 1{Ut,n≤p(t/n)}:

Xt,n =
⎧⎨⎩ 1, with probability p( t

n
)

0, with probability 1 − p( t
n
)

⎫⎬⎭
Then Xt,n ∼ b(p(t/n)) follows a Bernoulli distribution with parameter p(t/n).

If there are repeated observations at a fixed point t, Calistri et al. (2011) use
just the average of the corresponding Xt values to get the estimation of p(t/n).
For each genome G they have collected a set of NG promoter sequences (X i

t,n)t∈Z,
i = 1, . . . , NG. A natural idea is to measure the occurrence of A, C, G and T at
each position along the aligned set. They are interested in studying the spatial
distribution of nucleotides along the promoters by measuring of the percentage
of A, C, G and T nucleotides in a set of DNA sequences, i.e.,

ps(t) =
1

NG

NG∑
i=1

1s(X i
t,n)

where s = A, C, G andT .

We would like to provide statistical inference to discuss the asymptotic prop-
erties of smoothing methods and the construction of confidence intervals.

We can describe this non stationary time series by a time-varying model,

Xt,n = p( t

n
) +
√

p( t

n
)(1 − p( t

n
))ξt, t = 1, . . . , n. (4.1)

where ξt admits the mean 0 and the variance 1. ξt is non i.i.d but it is a weak
white noise in L

2 (i.e Eξt = 0 and Eξ2t = 1). The support of ξt also depends on
t ∈ [0, 1]. For the sake of simplicity, we denote

Xt,n = p( t

n
) + σ( t

n
)ξt with σ2(t) = p( t

n
)(1 − p( t

n
)).

The process Xt is non-stationary and can be interpreted as a signal plus noise
model. The objective is to describe this sequence by modeling the process and
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testing the proposed model. Since the mean of Xt varies over time, we esti-
mate this trend in a first time. Interesting special features are, for instance,
monotonicity or convexity.

Those trends are determinant for individuals. Standard kernel-type smooth-
ing techniques are processed together with the development of asymptotic in this
case. Asymptotic properties of nonparametric estimates for time series have been
widely discussed under various strong mixing conditions; see Robinson (1983),
Bosq (1996), Doukhan and Louhichi (1999) among others.

In this chapter, we provide central limit theorems for the kernel-type esti-
mator to the case of general process satisfying the strong invariance principle
conditions. For our goal of constructing SCBs for p, we assume that p is smooth.
SCBs can be used to find parametric forms of p. For example, in the study of
global temperature series, an interesting problem is to test whether the trend is
linear, quadratic or of other patterns. Applying the strong invariance principle
of stochastic processes, we shall provide a solution to the problem and construct
SCBs with asymptotically correct nominal coverage probabilities. Another in-
teresting problem is to test the monotone or convexity of the trends p. We point
out that if it were possible to model genome sequences as stochastic process, one
could construct a test for monotone or convexity based on the asymptotically
correct nominal coverage for p′ and p′′.

Our starting point is the same as in Wu and Shao (2007). Those authors
prove that a strong approximation principle for the partial sums of a station-
ary process with an explicit rate to entails simultaneous confidence bands with
asymptotically correct nominal coverage probabilities. In their paper, they point
out that an explicit rate in the strong approximation principle is crucial to con-
trol certain errors terms (see their Remark 2). The possible bandwidth heavily
depend on the previous convergence rate.

4.2 Mains results

4.2.1 Asymptotic properties

We begin in this section by introducing our estimators. Let K be a real-valued,
bounded and kernel function with

∫
K(u)du = 1. There exists a vast literature on
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nonparametric estimation of the regression function p. Here we use the Priestley-
Chao estimator

p̂hn(t) =
n∑

i=1

1
nhn

K

(
t − i/n

hn

)
Xi,n. (4.2)

The bandwidth hn → 0 satisfies nhn → ∞. Some regularity conditions on K are
imposed below.

Our object will be to get global measures of how good p̂hn(t) is as an estimate
of p(t). We assume

∫
K(u)udu = 0 and

∫
K(u)u2du �= 0. p(t) must be twice

differentiable. Then it is known that if hn → 0 as n → ∞ in such a way that
nhn → ∞,

E(p̂hn(t)) ∼ p(t) + 1
2h2ndKp′′(t) (4.3)

and if ∑∞
i=−∞ Eξ0ξi ≤ ∞, one obtains

Var (p̂hn(t)) ∼ σ2(t)γcK

nhn

(4.4)

where cK =
∫

K(u)2du, dK =
∫ 1

−1 K(u)u2du and γ = ∑∞
i=−∞ Eξ0ξi.

Quite often the regression curve itself is not the target of interest but rather
derivatives of it. The technique of kernel estimation can also be used to estimate
derivatives of the regression function. Kernel derivative estimators are defined
by differentiating the kernel function with respect to t. If the kernel is sufficiently
smooth and the bandwidth sequence is correctly tuned then these estimators will
converge to the corresponding derivatives.

Definition 4.2.1. Let the function p be a Cq[0, 1] function, with bounded deriva-
tions, for some q ∈ N

∗. Then the k-th(k ≤ q) derivative with respect to t gives

p̂
(k)
hn
(t) = n−1h−(k+1)

n

n∑
i=1

K(k)
(

t − i/n

hn

)
Xi,n

The derivative estimator p̂
(k)
hn
(t) is asymptotically unbiased. Assume that for

some q ∈ N
∗, the function K be a Cq[0, 1] function with K(j)(0) = K(j)(1) = 0,

j = 0, . . . , q − 1. Then elementary calculations show that

E(p̂(k)hn
(t)) ∼ p(k)(t) + h2nd

(k)
K p(k+2)(t)/(k + 2)!

The variance of E(p̂(k)hn
(t)) tends to zero if nh2k+1

n → ∞ ,

Var (p̂(k)hn
(t)) ∼ σ2(t)γc

(k)
K

nh2k+1
n
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where d
(k)
K =

∫
K(k)(u)uk+2du and c

(k)
K =

∫
K(k)(u)2du.

If K and its derivatives are Lipschitz continuous and have bounded support,
elementary calculations show that Theorem (4.2.1) (4.2.2) (4.2.3) assert central
limit theorems (CLT) for p̂hn(t), p̂′

hn
(t) and p̂′′

hn
(t), which can be used to construct

point-wise confidence intervals for p(t) p′(t) and p′′(t).
Assumption SIP: Let (ξi)i∈Z be some centered dependent process with a fi-
nite second moment, there exists a sequence (Zi)i≥1 of i.i.d centered Gaussian
variables such that

sup
i≤k≤n

|
k∑

i=1
(ξi − Zi)| = oAS(nα log n) 1/4 ≤ α ≤ 1/2 (4.5)

.

Example 4.2.1 (Causal Bernoulli shifts). Let (ξn)n∈Z defined by

ξn = H(εn, εn−1, εn−2, . . . , )

where εi, i ∈ Z are iid random variables and H is a measurable function such
that ξi is well-defined. By interpreting causal Bernoulli shifts as physical sys-
tems, Wu (2005) introduces physical dependence coefficients quantifying the de-
pendence of outputs (ξt) on inputs (εt). Let ε′

j be an IID copy of εj and ξ∗
n =

H(εn, εn−1, . . . , ε1, ε′
0, ε−1, . . .). Assume that E‖ξn‖m < ∞, m > 2, he considers

the nonlinear system theory’s coefficient

δm(n) = ‖ξn − ξ∗
n‖m.

For a variety of non-linear time series models, There exists r ∈ (0, 1) such that

δm(n) = ‖ξn − ξ∗
n‖m = O(rn)

Wu (2007) showed that under ∑∞
i=1 i‖ξn − ξ∗

n‖m < ∞, the condition 4.5 holds.

Example 4.2.2 (Symmetric random walk on the circle). Let us define the
Markov kernel KM by KMf(x) = 1

2 (f(x + a) + f(x − a)) on the torus R/Z,
with a irrational in [0, 1], and the Lebesgue-Haar measure μ is the unique proba-
bility which is invariant by KM . We assume that (εi)i∈Z is the stationary Markov
chain with transition kernel KM and invariant distribution μ. For f ∈ L

2(μ), let

ξk = f(εk) − μ(f).
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Let a satisfy mini∈Z |ka − i| ≥ c(a)|k| − 1 for some positive constant c(a) and
f̂(k) be the Fourier coefficients of f . Assume that for some positive ε,

sup
k �=0

|k|s (log(1 + |k|))1+ε |f̂(k)| < ∞ where s =
√

α2 − 2α + 4 − 3α + 2.

then the condition 4.5 holds with σ2 = ∑k Cov (ξ0, ξk).(see Dedecker et al. (2012))

Assumption H(a) : Let H(a), 1 ≤ a ≤ 2, be the set of bounded functions H

with bounded support satisfying

1.
∫
R
ΨH(u, δ)du = O(δ) as δ → 0, where ΨH(u, δ) = sup{|H(y) − H(y′)| :

y, y′ ∈ [u − δ, u + δ]}, and,

2. the limDH,a = limδ→0[|δ|]−a
∫
R
{H(x+ δ)− H(x)}2dx exists and DH,a �= 0.

For m ≥ 3 define

BH,a(m) =
√
2 log(m) + 1√

2 logm

⎡⎣2 − a

2a log logm + log
⎛⎝C

1/a
H,aha21/a

2
√

π

⎞⎠⎤⎦ .

where CH,a = DH,a/2
∫
R

H2(s)ds and ha has two values h1 = 1 and h2 = π−1/2

(see Bickel and Rosemblatt (1973),Wu and Shao (2007)).

Example 4.2.3. The triangle, quartic, Epanechnikov and Parzen kernels satis-
fies the previous assumptions with a = 2, and a = 1 for the rectangle kernel.

Theorem 4.2.1. Let us assume that Assumption SIP is satisfied and that
K has bounded variation, hn → 0 and (log n)2 = o(n1−2αhn). Then for fixed
0 < t < 1,

√
nhn {p̂hn(t) − Ep̂hn(t)}

P→ N (0, σ2(t)γcK).

Now, following the regularity of the function p,Ep̂(t) is a more or less good
approximation of p(t). Hence, here we provide an approximation of the bias.
Let Cq([0, 1]), q = 0, 1, . . . , , denote the collection of functions having un to q-th
order derivatives.

Corollary 4.2.1. Assume that for some q ∈ N
∗, the function p is a Cq[0, 1]

function, with bounded derivations. Then, under the conditions of Theorem
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(4.2.1) , with K a kernel such that
∫

K(u)usdu = 0 for s = {1, . . . , q − 1}
and

∫
K(u)uqdu �= 0, if hn = C · n−1/(2q+1) (with C > 0) then
√

nhn {p̂hn(t) − p(t)} P→ N (p(q)(t) 1
q!

∫
uqK(u)du, σ2(t)γcK).

Replacing p̂(t) with p̂′
hn
(t), p̂′′

hn
(t) in the prove of 4.2.1 lead us Theorem 4.2.2

and 4.2.3 below.

Theorem 4.2.2. Assume that Assumption SIP is satisfied, Let K be a func-
tion in C1[0, 1] and K ′ has bounded variation, hn → 0, nh3n → ∞ and (log n)2 =
o(n1−2αhn). Then for fixed 0 < t < 1,

√
nh3n

{
p̂′

hn
(t) − Ep̂′

hn
(t)
}

P→ N (0, σ2(t)γc
(1)
K ).

Theorem 4.2.3. Assume that Assumption SIP is satisfied, Let K be a func-
tion in C2[0, 1] and K ′′ has bounded variation , hn → 0, nh5n → ∞ and (log n)2 =
o(n1−2αhn). Then for fixed 0 < t < 1,

√
nh5n

{
p̂′′

hn
(t) − Ep̂′′

hn
(t)
}

P→ N (0, σ2(t)γc
(2)
K ).

To construct an asymptotic SCB for p(t) over the interval t ∈ T with level
(1 − α), α ∈ (0, 1), We need to find two functions ln(t) and un(t) based on the
data such that

lim
n→∞

P (ln(t) ≤ p(t) ≤ un(t), for all t ∈ T ) = 1 − α.

A closely related problem is to study the asymptotic uniform distributional the-
ory for the estimator p̂hn(t). Namely, one needs to find the asymptotic distribu-
tion for sup0<t<1 |p̂hn(t) − Ep̂hn(t)|.
Theorem (4.2.4) (4.2.5) (4.2.6) provide theoretical SCBs for p p′ and p′′ with
asymptotically correct coverage probabilities under slightly different model.
The construction of SCB ln and un has been a difficult problem if dependence is
present. A key tool in Wu’s approach is Bickel and Rosemblatt (1973) asymptotic
theory for maximal deviations of kernel density estimators Bickel and Rosenblatt
applied a deep result in probability theory, strong approximation, which asserts
that normalized empirical processes of independent random variables can be ap-
proximated by Brownian bridges. Mention that both Wu (2007) and Dedecker et
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al. (2012) give rates of convergence in the strong invariance principle for station-
ary sequences satisfying some projective criteria. Thus one can construct simul-
taneous confidence bands with asymptotically correct nominal coverage proba-
bilities for time series.

Theorem 4.2.4 ( Wu and Shao (2007)). Assume that Assumption H(a) is
satisfied for K and that K is a symmetric kernel with support [−ω, ω]. Further
assume that p ∈ C3[0, 1] and

(log(n))3
hnn1−2α

+ nh7n log(n) → 0. (4.6)

Let m = 1/hn and the interval T = [ωhn, 1 − ωhn]. Then for every u ∈ R, as
n → ∞,

P

[ √
nhn

γcK
√

cK

sup
t∈T

1
σ(t) |p̂hn(t) − p(t) − 1

2h2np′′(t)dk| − BK,a(m) ≤ u√
2 logm

]

→ exp{−2 exp(−u)}

In condition (4.6), the first part ensures the validity of the strong approxi-
mation and the second part controls the bias. Condition (4.6) are satisfied if
hn � n−γ, 1/7 < γ < 1/2. Indeed, the choir of γ = 1/5 is well known as the
optimal bandwidth under the mean-squared error criterion. Analogue results
may be provided for p′ and p′′.

Theorem 4.2.5. Assume that Assumption H(a) is satisfied for K ′ and that
K ′ is a symmetric kernel with support [−ω, ω]. Further assume that p ∈ C4[0, 1]
and

(log(n))3
hnn1−2α

+ nh9n log(n) → 0. (4.7)

Let m = 1/hn and the interval T = [ωhn, 1 − ωhn]. Then for every u ∈ R, as
n → ∞,

P

⎡⎣
√

nh3n

γc
(1)
K

√
c
(1)
K

sup
t∈T

1
σ(t) |p̂

′
hn
(t) − p′(t) − 1

6h2np(3)(t)d(1)k | − BK′,a(m) ≤ u√
2 logm

⎤⎦
→ exp{−2 exp(−u)}

We also have nh3n → ∞ for the estimator p̂′
hn
(t), combine the condition 4.6,

hn � n−γ with 1/7 < γ < 1/3.
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Theorem 4.2.6. Assume that Assumption H(a) is satisfied for K ′′ and that
K ′′ is a symmetric kernel with support [−ω, ω]. Further assume that p ∈ C5[0, 1]
and

(log(n))3
hnn1−2α

+ nh11n log(n) → 0. (4.8)

Let m = 1/hn and the interval T = [ωhn, 1 − ωhn]. Then for every u ∈ R, as
n → ∞,

P

⎡⎣
√

nh5n

γc
(2)
K

√
c
(2)
K

sup
t∈T

1
σ(t) |p̂

′′
hn
(t) − p′′(t) − 1

24h2np(4)(t)d(2)k | − BK′′,a(m) ≤ u√
2 logm

⎤⎦
→ exp{−2 exp(−u)}

Note that hn � n−γ with 1/7 < γ < 1/5, since nh5n → ∞.

4.2.2 Hypothesis Testing

Calistri et al. (2011) noticed that the frequencies of A, C, G and T nucleotides
in a set of DNA sequences on bacteria appear monotone or convexity. So we
now focus on developing tests of statistical significance for the monotone and
convexity property of the genome sequences. The test of monotone or convexity
is related to first or second order derivatives. We shall see that this hypothesis
is not satisfied in any of the cases we studied.

We first assume that the function to test, under both hypotheses, belongs to
a certain class of regular function. The hypothesis of positivity is referred to as
null hypothesis. this hypothesis is composite and presented by

H0 : inf
0≤t≤1

g(t) ≥ 0

and the alternative hypothesis is defined as:

H1 : inf
0≤t≤1

g(t) < 0.

The test is set up so that H0 is rejected (H1 is accepted) at significance level
α if PH0 (inft ĝ(t) ≤ ε(n)) ≤ α where ε(n) is chosen such that the probability of
a type I error is less than or equal to α. For some ε(n) > 0, the probability of a
type I error may be written as

P(H0 is rejected|H0 is true) = P( inf
0<t<1

ĝ(t) ≤ −ε(n)| inf
0<t<1

g(t) ≥ 0)



60 Chapter 4. Modeling of DNA Sequence

≤ P

(
sup

t
|ĝ(t) − g(t)| ≥ ε(n)

)
→ α

As we know that ĝ(t) converge to g(t) in probability, the power of the test is
written for g ∈ H1,

P( inf
0<t<1

ĝ(t) ≤ −ε(n)) → 1

Proposition 4.2.1 and 4.2.2 are simple consequences of Theorem 4.2.5 and
4.2.6.

Proposition 4.2.1. Under the assumptions of Theorem 4.2.5, choose 0 < α < 1,

let ε(n) =
(

− log(− 1
2 log(1−α))√
2 logm

+ BK′,a(m)
)

γc
(1)
K

√
c

(1)
K√

nh3
n

supt σ(t), then we have for
n → ∞

P

(
sup

t
|p̂′

hn
(t) − p′(t)| ≥ ε(n)

)
≤ α

and
lim

n→∞
P( inf

0<t<1
p̂′

hn
(t) ≤ −ε(n)) → 1

Proposition 4.2.2. Under the assumptions of Theorem 4.2.6, choose 0 < α < 1,

let ε(n) =
(

− log(− 1
2 log(1−α))√
2 logm

+ BK′′,a(m)
)

γc
(2)
K

√
c

(2)
K√

nh5
n

supt σ(t), then we have for
n → ∞

P

(
sup

t
|p̂′′

hn
(t) − p′′(t)| ≥ ε(n)

)
≤ α

and
lim

n→∞
P( inf

0<t<1
p̂′′

hn
(t)) ≤ −ε(n)) → 1

4.2.3 Implementation

Let us detail our specific proposal for confidence band. Let σ̂bn(t) be estimates
of σ. On the basis of theorem (4.2.4), The asymptotic 100(1 − α)% confidence
band for p we use take the form

p̂hn(t) − h2nβp̂′′(t) ± �uα ,

where

�uα = σ̂hn(t)γcK√
(nhn)

⎡⎣BK,a(h−1
n ) +

− log
(
log(1 − α)−1/2

)
√
(2 log(h−1

n ))

⎤⎦
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To construct the confidence band it requires the knowledge of p̂′′, which cannot
be easily estimated. Following Wu and Shao (2007) , we adopt a jackknife-type
bias correction scheme which avoids estimating p̂′′:

p̂∗
hn
(t) = 2p̂hn(t) − p̂√

2hn
(t)

This is equivalent to using the higher (4-th) order kernel

K∗(u) = 2K(u) − K(u/
√
2)√

2
The bias term O(h2n) in p̂hn(t) reduces to O(h4n) in p̂∗

hn
(t). Remark that this is

particularly convenient as we only estimate the p̂∗
hn
(t) once and we can use it to

approximate the confidence bands.

Definition 4.2.2. Recall that Xt ∼ b(p(t/n)) follows a Bernoulli distribution
with parameter p(t/n), so

σ̂2(t) = p̂hn(t)(1 − p̂hn(t))

Replacing σ2(t) with σ̂2hn
(t) gives the approximate confidence intervals that

is applicable in practice.
It is well known that the convergence to the extreme value distributions in 4.2.4
is extremely slow and very large values of n are needed for the approximation to
be reasonably accurate. We shall propose a finite sample approximation scheme
to compute the cutoff value qα. Let Zi, 1 ≤ i ≤ n, be i.i.d. standard normal
random variables, model (4.1) can be reduced to the convention model

X̄k,n = p( t

n
) + σ(k)Zk, k = 1, . . . , n.

So we propose the finite sample cutoff value qα defined by

P{ sup
1≤i≤n

|Zi| < qα} = 1 − α.

4.3 Simulation study

In this section, a simulation study shall be given for the performance of our
estimators and SCBs in section 2.2.3. We choose the mean function p(t) = sin(π

2 t)
with t = 1, . . . , n, and consider the model

Xt,n =
⎧⎨⎩ 1, with probability p( t

n
)

0, with probability 1 − p( t
n
)

⎫⎬⎭
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Let n = 1000, to estimate q0.95 = q0.95(h) for each b, we draw an iid sample
Z1, . . . , Zn from the normal standard distribution, and calculate sup0≤t≤1 |p̄∗

h(t)|,
where p̄∗

h(t) = 2p̄h(t) − p̄h
√
2(t) and p̄h(t) =

∑n
i=1

1
nh

K
(

t−i/n
h

)
Zi. The estimated

quantile q̂0.95 is obtained by generating N = 104 realization of p̄∗
h(t). The 95%

SCB is constructed as p̂∗h(t) ± σ̂hn(t)q̂0.95. For α = 0.05, q0.95 = 0.308 and the
optimal bandwidths is hn = 0.20, choosing by the kernel regression smoothing
program glkerns in the R package. Figure 4.1 and Figure 4.2 report the results.
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Figure 4.1: an kernel estimator for p(t).

The 95% SCBs
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Figure 4.2: an asymptotic SCB for p(t) with level 95%.
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To test the monotone, we choose a = 1, c
(1)
K = c

(2)
K = 1/2, then ε(n) = 0.077.

The test H0 : inft p′(t) ≥ 0 is accepted with inft p̂′
hn
(t) = 0.081 > −ε(n).

4.4 Application

Here we consider the series (Xi)1≤i≤1000 of nucleotide of an eucaryote. The pur-
pose is to estimate the trends and give an asymptotic SCB . We shall use the
simulation method in 4.3 to obtain cut-off values. Let n = 1000. We repeat
the following process for 104 times: generate n iid normals N (0, 1) and calculate
p̄∗

h(t). The 95% and 99% simulated quantiles are 0.39 and 0.42 respectively.

Figure 4.3 and 4.4 show our asymptotic SCB for the trends of DNA data with
level 95% and 99%. The test statistic inft p̂′

hn
(t) = −1.005 <= −ε(n) = −0.028,

and inft p̂′′
hn
(t) = −17.153 <= −ε(n) = −0.073.

The 95% SCBs
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Figure 4.3: an asymptotic SCB for the trends of DNA data with level 95%.

As we have seen so far, in eukaryotes, while remaining constant in the up-
stream part of the analyzed regions. the trend of the nucleotide base A changes
downstream.
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The 99% SCBs
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Figure 4.4: an asymptotic SCB for the trends of DNA data with level 99%.

4.5 Some Preliminary Lemmas and Proofs

Lemma 4.5.1 (Wu and Shao (2007)). Assume that H ∈ H(a), a ∈ [1, 2],∫
R

H2(u) = 1 and H has finite support [−ω, ω]. Let hn → 0 satisfy
√

nhn/(log n)3 →
∞. For 0 ≤ t ≤ 1 define

Un(t) =
1√
nhn

n∑
j=1

H
(
m(t − j

n
)
) ej

σ(t)

where m = 1/hn. Then, for u ∈ R

lim
n→∞

(P[ max
t∈[ωhn,1−ωhn]

] − BH,a(m) ≤ u√
2 logm

) = exp(−2 exp(−u))

Lemma 4.5.2 (Wu and Shao (2007)). Let K ∈ H(a) be a symmetric kernel with
support [−ω, ω] and p ∈ C3[0, 1]. Then E(phn(t)) − p(t) = 1

2h
2
np′′(t)dK + O(h3n +

(nhn)−1) uniformly over t ∈ T = [ωhn, 1 − ωhn].

Lemma 4.5.3. Let K be a Cq[0, 1] symmetric kernel function with support
[−ω, ω] for some q ∈ N

∗. Let K(k) ∈ H(a) and p ∈ Cq[0, 1]. Then for k ≤ q

E(p(k)hn
(t))−p(k)(t) = h2

n

(k+2)!p
(k+2)(t)d(k)K +O(h3n+(nhn)−1) uniformly over t ∈ T =

[ωhn, 1 − ωhn].

The proof is similar to Lemma 4.5.2 and the details are omitted.

Proof of Theorem (4.2.1). Let (ξi)i∈Z be a dependent time series with real values,
zero mean and variance 1. Assume that ‖ξ0‖∞ < ∞ and γ = ∑∞

i=−∞ E(ξ0ξi) <
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∞. Denote
p̂hn(t) =

n∑
j=1

ωn(t, j)Xj,n

where ωn(t, j) = 1
nhn

K
(

t−j/n
hn

)
are suitable weights.

Let t ∈ [0, 1], we have

Y (t) = p̂hn(t) − Ep̂hn(t) =
n∑

j=1
ωn(t, j)σ( j

n
)ξj

we now define the Gaussian process

Y ∗(t) =
n∑

j=1
ωn(t, j)σ( j

n
)Zj

using the summation by parts formula, we have

|Y (t) − Y ∗(t)| ≤ Ω(t) sup
k≤n

|
k∑

i=1
(ξi − Zi)| = oAS(Ω(t)nα log n)

where Ω(t) = |ωn(t, 1)σ( 1n)| +
∑n−1

k=1 |
(
ωn(t, k + 1)σ(k+1

n
) − ωn(t, k)σ( k

n
)
)

|.

Let Ωn = max0≤t≤t Ω(t), we obtain the uniform approximation

‖Y (t) − Y ∗(t)‖∞ = oAS(Ωnnα log n)

If K has bounded variation Ωn(t) have tractable bounds and Ωn = O ((nhn)−1).
Thus with (log n)2 = o(n1−2αhn),√

nhn‖Y (t) − Y ∗(t)‖∞
P→ 0

Proof of Corollary (4.2.1). Under the assumption on K and p is a Cq(R) function
for some q ∈ N

∗,

E(p̂hn(t)) = p(t) + hq
n · (1 + o(1)) · p(q)(t) 1

q!

∫
uqK(u)du

It implies the optimal choice convergence rate of hn.

Proof of Theorem (4.2.4). By condition 4.6, (h3n + (nhn)−1)
√

nhn = o(
√
log n),

and the Theorem follows from Lemma 4.5.1 and 4.5.2, which concern the stochas-
tic part phn(t)− E(phn(t)) and the bias E(phn(t))− p(t) = 2

1h
2
np′′(t)dK +O(h3n +

(nhn)−1) respectively.
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Proof of Theorem (4.2.5). By condition 4.7, (h3n + (nhn)−1)
√

nh3n = o(
√
log n),

and the Theorem follows from Lemma 4.5.1 and 4.5.3.

Proof of Theorem (4.2.6). By condition 4.8, (h3n + (nhn)−1)
√

nh5n = o(
√
log n),

and the Theorem follows from Lemma 4.5.1 and 4.5.3.



Part II

Time Series Forecasting under
Weak Dependence Conditions





Chapter 5

Prediction of Time Series by
Statistical Learning

The aim of this part is the study of statistical properties of learning algorithm in
the case of time series prediction. A series of papers (e.g. Meir (2000); Modha and
Masry (1998); Alquier and Wintenberger (2012)) extends the oracle inequalities
obtained for i.i.d observations to time series under weak dependence conditions.
Given a family of predictors and n observations, oracle inequalities state that a
predictor forecasts the series as well as the best predictor in the family up to a
remainder term Δn. Using the PAC-Bayesian approach, we establish under weak
dependence conditions oracle inequalities with optimal rates of convergence Δn

for Gibbs estimator. Similar results were proved for the ERM procedure under a
restriction on the parameter space. We apply the method for quantile forecasting
of the french GDP with promising results.

5.1 Introduction

Motivated by economics problems, the prediction of time series is one of the most
emblematic problems of statistics. Various methodologies are used that come
from such various fields as parametric statistics, statistical learning, computer
science or game theory.

In the parametric approach, one assumes that the time series is generated
from a parametric model, e.g. ARMA or ARIMA, see Hamilton (1994); Brockwell
and Davis (2009). It is then possible to estimate the parameters of the model
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and to build confidence intervals on the prevision. However, such an assumption
is unrealistic in most applications.

In the statistical learning point of view, one usually tries to avoid such re-
strictive parametric assumptions - see, e.g., Cesa-Bianchi and Lugosi (2006);
Stoltz (2009) for the online approach dedicated to the prediction of individual
sequences, and Modha and Masry (1998); Meir (2000); Alquier and Wintenberger
(2012) for the batch approach. However, in this setting, a few attention has been
paid to the construction of confidence intervals or to any quantification of the
precision of the prediction. This is a major drawback in many applications. No-
tice however that Biau and Patra (2011) proposed to minimize the cumulative
risk corresponding to the quantile loss function defined by Koenker and Bassett
(1978). This led to asymptotically correct confidence intervals.

In this thesis, we propose to adapt this approach to the batch setting and
provide nonasymptotic results. We also apply these results to build quarterly
prediction and confidence regions for the French Gross Domestic Product (GDP)
growth. Our approach is the following. We assume that we are given a set of
basic predictors - this is a usual approach in statistical learning, the predictors
are sometimes referred as “experts”, e.g. Cesa-Bianchi and Lugosi (2006). Fol-
lowing Alquier and Wintenberger (2012), we describe a procedure of aggregation,
usually referred as Exponentially Weigthed Agregate (EWA), Dalalyan and Tsy-
bakov (2008); Gerchinovitz (2011), or Gibbs estimator, Catoni (2004, 2007). It is
interesting to note that this procedure is also related to aggregations procedure in
online learning as the weighted majority algorithm of Littlestone and Warmuth
(1994), see also Vovk (1990). We give a PAC-Bayesian inequality that ensures
optimality properties for this procedure. In a few words, this inequality claims
that our predictor performs as well as the best basic predictor up to a remainder
of the order K/

√
n where n is the number of observations and K measures the

complexity of the set of basic predictors. This result is very general, two con-
ditions will be required: the time series must be weakly dependent in a sense
that we will make more precise below, and loss function must be Lipschitz. This
includes, in particular, the quantile loss functions. This allows us to apply this
result to our problem of economic forecasting. Under additional assumptions,
we are able to prove that the empirical risk minimizer (ERM, see e.g. Vapnik
(1999)) is also able to perform such a prediction. Our main results are given
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under the form of PAC-Bayesian oracle inequalities.

The idea of PAC-bayesian learning theorems, as introduced by Shawe-Taylor
and Williamson (1997); McAllester (1999) is to measure the complexity of mod-
els, and thereby their ability to generalize from observed examples to unknown
situations, with the help of some prior probability measure defined on the pa-
rameter space. “PAC” is fundamentally about choosing particular prediction
functions out of some class of plausible alternatives so that, with high reliabil-
ity, the resulting predictions will be nearly as accurate as possible (”probably
approximately correct”). Bayesian analysis of generalization can place a prior
distribution on the hypotheses and estimate the volume of the space that is con-
sistent with the training data. The larger this volume the greater the confidence
in the classifier obtained. The key feature of such estimators is that they provide
a posteriori estimates of the generalization based on properties of the hypothe-
sis and the training data. This contrasts with a ‘classical’ PAC analysis which
provides only a priori bounds. Here, we use for simplicity the term parameter
space in a rather loose and unusual way, to talk about the union of all the pa-
rameters of all the models we envision. (maybe the term model space would be
more accurate : these parameters may be of finite or infinite dimension and we
do not restrict the number of models, therefore we are definitely not describing
a parametric statistical framework, but rather a non-parametric one!).

The status of the prior measure has not to be misunderstood either : it
does not represent the frequency according to which we expect to observe data
produced by different probability distributions, nor does it stand for the belief we
put in the accuracy of different possible distributions or different possible models.
It is somehow equivalent to the choice of some representation of the parameter
space, and therefore is related to the Minimum Description Length approach of
Rissanen and to the structural risk minimization approach of Vapnik. On a more
technical level, it is meant to produce non asymptotic worst case bounds. (as
opposed to a Bayesian study of the mean risk under the prior).

In particular, these methods control the expected accuracy of future predic-
tions from mis-specified models based on finite samples. This allows for imme-
diate model comparisons which neither appeal to asymptotic nor make strong
assumptions about the data-generating process, in stark contrast to such popular
model-selection tools as AIC.
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5.2 The context

Let us assume that we observe X1, . . . , Xn from a R
p-valued stationary time

series X = (Xt)t∈Z
defined on (Ω, A,P). Let ‖ · ‖ denote the Euclidean norm on

R
p. Fix an integer k and let us assume that we are given a family of predictors

{
fθ : (Rp)k → R

p, θ ∈ Θ
}

for any θ and any t, fθ applied to the last past values (Xt−1, . . . , Xt−k) is a possible
prediction of Xt. The aim is to choose some predictors fθ which predicts Xt from
(Xt−1, . . . , Xt−k) making as few mistakes as possible on average.

For the sake of simplicity, let us put for any t ∈ Z and any θ ∈ Θ,

X̂θ
t = fθ(Xt−1, . . . , Xt−k).

We also assume that θ �→ fθ is linear. As we have already explained, the set
of predictors

{
fθ : (Rp)k → R

p, θ ∈ Θ
}
will in general not be a single parametric

model, but rather the union of a large number of parametric models. Using the
terminology of statistics, note that we may want to include parametric set of
predictors as well as non-parametric ones (i.e. respectively finite dimensional
and infinite dimensional).

Example 5.2.1. We put θ = (θ0, θ1, . . . , θk) ∈ Θ ⊂ R
k+1 and define the linear

autoregressive predictors

fθ(Xt−1, . . . , Xt−k) = θ0 +
k∑

j=1
θjXt−j.

In order to deal with various family of predictors, we will sometimes use a
model-selection type approach:

Θ = ∪M
j=1Θj.

Example 5.2.2. We may generalize the previous example to non-parametric
auto-regression, for example using a dictionary of functions (Rp)k → R

p, say
(ϕi)∞

i=0. Then we take θ = (θ1, . . . , θ) ∈ Θj ⊂ R
j and

fθ(Xt−1, . . . , Xt−k) =
j∑

i=1
θiϕi(Xt−1, . . . , Xt−k).
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In many cases, Θ = ∪M
j=1Θj will be a finite (or more generally countable)

union of subspaces. The importance of introducing such structure has been
put forward by V. Vapnik (Vapnik (1999)), as a way to avoid making strong
hypotheses on the distribution of the sample.

From the technical point of view, our aim will be to produce non asymptotic
bounds for the risk of properly designed predictors of Xt given
(Xt−1, . . . , Xt−k), leading to a non asymptotic level of confidence for this risk.

Come back to the prediction problem, in order to quantifier the prediction X̂θ
t ,

we first define a quantitative criterion to evaluate the quality of the predictions.
Let � be a loss function, the risk of fθ will be measured as its expected error rate:

Definition 5.2.1. We put, for any θ ∈ Θ,

R (θ) = E

[
�
(
X̂θ

t , Xt

)]
.

with E the expected value of all the observations (Xt)1≤t≤n from a stationary
process (Xt).

Note that because of the stationarity, R(θ) does not depend on t. To actu-
ally calculate the risk, we would need to know the distribution of the process
(Xt)t∈Z and have a single fixed prediction function fθ, neither of which is com-
mon. Because explicitly calculating the risk is infeasible, forecasters typically
try to estimate it, which calls for detailed assumptions on the distribution. The
alternative we employ here is to find upper bounds on risk which hold uniformly
over large classes of models Θ from which some particular θ is chosen, possibly
in a data dependent way, and uniformly over distributions.

As the above quantity is unobserved, we use the corresponding empirical error
rate.

Definition 5.2.2. For any θ ∈ Θ,

rn(θ) =
1

n − k

n∑
i=k+1

�
(
X̂θ

i , Xi

)
.

We cannot minimize R(θ) with respect to θ because R(θ) is not observable: it
depends on the unknown distribution. The next sensible attempt is to minimize
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rn(θ) instead. Unfortunately, although E(rn(θ)) = R(θ), the fluctuations of
the random process rn(θ) may be strong enough to make the solutions of the
two minimization problem quite difficult, and even in many cases completely
unrelated. An intensively studied way to get some control on this situation is to
add a penalty term pen(θ) and study the relations between infθ R(θ) + pen(θ)
and infθ r(θ) + pen(θ). The penalty pen(θ) has a regularizing effect: it shrinks
the size of the set of values of θ where infθ r(θ) + pen(θ) is likely to be achieved
and therefore provides a way to control the gap between P[infθ r(θ)+pen(θ)] and
infθ R(θ) + pen(θ).

5.3 Basic inequality

Let T be a σ-algebra on Θ and T be its restriction to Θ. Let M1
+(Θ) denote

the set of all probability measures on (Θ, T ), and π ∈ M1
+(Θ). This probability

measure is usually called the prior. It will be used to control the complexity of
the set of predictors Θ.

Note that in statistical learning, given an estimator θ̂, the bounds on the
risk R(θ̂) often depends on the empirical risk rn(θ̂) and on a remainder term
measuring the complexity of the model of Θ. The aim of the PAC-Bayesian
approach is to obtain PAC bounds on the integrated risk∫

Θ
R(θ)ρ(dθ) = ρ[R(·)]

where ρ ∈ M1
+(Θ) is whatever posterior distribution, depending on π and on

the observed data. The bounds here will depend on the empirical counterpart of
ρ[R(·)]:

ρ[rn(·)] =
∫
Θ

rn(θ)ρ(dθ),

and on a measure of the distance between ρ and π. This measure of the distance
between ρ and π will be made by the use of the Kullback divergence.

Definition 5.3.1. The Kullback-Leibler divergence K(ρ, π) of ρ with respect to
π is defined as:

K(ρ, π) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫
log
(
dρ
dπ

)
dρ, when ρ is absolutely continuous

with respect to π i.e ρ � π

∞, otherwise



5.3. Basic inequality 75

The following lemma shows in which sense the Kullback divergence function
can be thought of as the dual of the Legendre transform.

Definition 5.3.2. For any measurable function h : Θ → R, for any measure
ρ ∈ M1

+(Θ) we put:
ρ[h(θ)] = sup

B∈R

E (min{B, h(θ)})

Lemma 5.3.1 (Legendre transform of the Kullback divergence function). For
any π ∈ M1

+(Θ) , for any measurable function h : Θ → R we have:

π[exp(h)] = exp
⎛⎝ sup

ρ∈M1
+(Θ)

(ρ[h] − K(ρ, π))
⎞⎠

where (as in general we will note)

π[h] =
∫

h(x)π(dx)

with convention ∞ − ∞ = −∞. Indeed, a priority is given to ∞ in ambiguous
cases: the expectation of a function whose negative part is not integrable will be
assumed to be −∞, even when its positive part integrates to +∞. Moreover, as
soon as h is upper-bounded on the support of π, the supremum with respect to ρ

in the right-hand side is reached for the Gibbs measure π{h}.

Actually, it seems that in the case of discrete probabilities, this result was
already known by Kullback (Problem 8.28 of Chapter 2 in Kullback (1959)).
Here we provide a complete proof of this variational formula from Catoni (2003).

Proof. Let us assume that h is upper-bounded on the support of π. Consider
the Gibbs distribution, πexp(h) given by:

dπexp(h)
dπ

(θ) = exp[h(θ)]
π[exp[h(θ)]] ,

Let us remark that ρ is absolutely continuous with respect to π if and only if it
is absolutely continuous with respect to πexp(h). Let us assume that this is the
case, then we have,

K(ρ, πexp(h)) = log
{
π[exp[h(θ)]]

}
+ K(ρ, π) − ρ[h(θ)]
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The left-hand side of this equation is nonnegative and cancels only for ρ = πexp(h).
Note that this equation is still valid if ρ is not absolutely continuous with respect
to π. (it just says that +∞ = +∞ in this case). So we obtain:

0 = inf
ρ∈M1

+(Θ)
[K(ρ, π) − ρ(h)] + log π exp(h)

This proves the second part of lemma 5.3.1, For the first part, we now use
the notation min{B, h(θ)} = B ∧ h(θ), then we get

log π exp[h(θ)] = sup
B∈R

log π exp[B ∧ h(θ)]

= sup
ρ∈M1

+(Θ)
sup
B∈R

{ρ[B ∧ h(θ)] − K(ρ, π)}

= sup
ρ∈M1

+(Θ)
sup
B∈R

{ρ[B ∧ h(θ)]} − K(ρ, π)

= sup
ρ∈M1

+(Θ)
ρ[h(θ)] − K(ρ, π)

We now turn to the study of large deviations for partial sums of weakly
dependent processes. Our main tool is Hoeffding type inequalities which provide
an upper bound on the probability that the empirical error deviates from its
expected value. The aim is to analyze the fluctuations of the random process
θ → rn(θ) from its mean process θ → R(θ). This Hoeffding inequality transform
is well suited to relate minθ∈Θ rn(θ) to infθ∈Θ R(θ), since for large enough values
of the parameter λ, corresponding to low enough values of the temperature, the
system has small fluctuations around its ground state.

The Hoeffding’s inequality is a powerful tool in both probability and statistics.
It says that the sum of random variables deviates from its expected value can be
upper bounded on the probability. More precisely, when (Xi)1≤i≤n is a sequence
of bounded random variables, the Hoeffding-type inequality can be constructed
in such a way that

Eetf(X1,...,Xn)−tE(f(X1,...,Xn)) < ent2C

where C is a constant depending on f and Xi.
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Example 5.3.1. Let X1, . . . , Xn be i.i.d rondom variables bounded, i.e a ≤
‖Xi‖ ≤ b almost surely. Let f(x1, . . . , xn) =

∑n
i=1 Xi , we obtain evidently a

Hoeffding’s inequality with C = (b−a)2
8 .

Let us begin with exponential type inequalities for dependent random vari-
ables. Here, we are interested in the θ∞,n(1)-weak dependence condition of Rio
(2000); Dedecker et al. (2007). Let us recall the notation.

Definition 5.3.3. For any k > 0, define the θ∞,k(1)-weak dependence coefficients
of a bounded stationary sequence (Xt) by the relation

θ∞,k(1) := sup
f∈Λk

1 ,0<j1<···<jk

∥∥∥∥E [f(Xj1 , . . . , Xj�
)|Xt, t ≤ 0] − E [f(Xj1 , . . . , Xj�

)]
∥∥∥∥

∞
.

where Λk
1 is the set of 1-Lipshitz functions of q variables

Λk
1 =

{
f : (Rp)k → R,

|f(u1, . . . , uk) − f(u′
1, . . . , u′

k)|∑k
j=1 ‖uj − u′

j‖
≤ 1
}

.

The sequence (θ∞,k(1))k>0 is non decreasing and upper bounded for many
bounded stationary time series. This notion of dependence is more general for
bounded time series than mixing ones, see Dedecker et al. (2007) for details.

Lemma 5.3.2 (Rio (2000)). Let h be a function (Rp)n → R such that for all x1,
..., xn, y1, ..., yn ∈ R

p,

|h(x1, . . . , xn) − h(y1, . . . , yn)| ≤
n∑

i=1
‖xi − yi‖. (5.1)

Let the stationary sequence (Xt) be θ dependent and bounded, i.e. (θ∞,k(1))k>0 <

C and ‖X0‖ ≤ B almost surely. Then for any t > 0 we have C = (B+θ∞,n(1))2
2 i.e

E

(
et{E[h(X1,...,Xn)]−h(X1,...,Xn)}

)
≤ e

t2n(B+θ∞,n(1))2
2 .

Proof. This version of Theorem 1 of Rio (2000) comes rewriting the inequality 3
in Rio (2000) as, for any 1-Lipschtiz function g:

Γ(g) = ‖E (g(Xl+1, . . . , Xn)|Fl) − E (g(Xl+1, . . . , Xn)) ‖∞ ≤ θ∞,n−l(1).

The result is proved as sup1≤r≤n θ∞,r(1) ≤ θ∞,n(1).
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Others exponential inequalities can be used to obtain PAC-Bounds in the con-
text of time series: the inequalities in Doukhan (1994); Samson (2000) for mix-
ing time series, and Dedecker et al. (2007); Wintenberger (2010) under weakest
“weak dependence” assumptions, Seldin et al. (2012) for martingales. However,
Lemma 5.3.2 is particularly convenient here, and will lead to optimal learning
rates. In order to prove the fast rates oracle inequalities, a more restrictive de-
pendence condition is assumed. It holds on the uniform mixing coefficients φ

introduced by Ibragimov (1962).

Definition 5.3.4. The φ-mixing coefficients of the stationary sequence (Xt) with
distribution P are defined as

φr = sup
(A,B)∈ σ(Xt,t≤0)×σ(Xt,t≥r)

|P(B/A) − P(B)|.

The stationary sequence (Xt) is uniformly mixing when φr → 0. Examples
of uniformly mixing sequences are given in Doukhan (1994).

We will also use Samson Berstein’s type inequality in the proof of the fast
rates.

Lemma 5.3.3 ( Samson (2000)). Let N ∈ N. Let (Zi)i∈Z be a stationary process,
let (φZ

r ) denote its φ-mixing coefficients, let f be a measurable function R →
[−M, M ] and let

SN(f) :=
N∑

i=1
f(Zi).

Then: we have one inequality with C = 8KφZ σ2(f). i.e.

lnE(exp(λ(S(f) − ES(f)))) ≤ 8KφZ Nσ2(f)λ2

for all 0 ≤ λ ≤ 1/(MK2
φZ ) , where KφZ = 1+∑N

r=1

√
φZ

r and σ2(f) = Var [f(Zi)].

Proof. Actually, this result is not stated in this form in Samson (2000) but can
be deduced from the proof of Theorem 3 in that paper, a much more difficult
result. To do so, in page 457 of Samson (2000), just replace the definition of
fN(x1, . . . , xn) by fN(x1, . . . , xn) =

∑n
i=1 g(xi) (following the notations of Samson

(2000)). Then check that all the arguments of the proof remain valid, the claim
of Lemma 5.3.3 is obtained page 460, line 7.



5.4. ERM and Gibbs estimator 79

5.4 ERM and Gibbs estimator

As the objective is to minimize the risk R(·), naturally, we first consider the
empirical risk rn(·). The boundedness assumption ensures that it is a good
estimator of R.

Definition 5.4.1 (ERM estimator Vapnik (1999)). We define the Empirical Risk
Minimizer estimator (ERM) by

θ̂ERM ∈ argmin
θ∈Θ

rn(θ).

The random measures depending on the empirical risk r(θ) are a special case
of posterior distributions. More precisely, we will make a heavy use of Gibbs
estimator distributions of the form:

Definition 5.4.2. For any measure π and any measurable function h such that
π[exp(h)] < +∞, the Gibbs measure denote ρ is defined by

ρ(dθ) = exp(h(θ))π(dθ)∫
exp(h(θ′))π(dθ′) .

The introduction of these posterior distributions, viewed as random objects
whose fluctuations are easily manageable, leads us to consider randomized esti-
mators: instead of picking some parameter θ̂ as a deterministic function of the
observations (X1, . . . , Xn), we choose it at random according to the posterior
distribution ρ (which itself depends on the observations).

Remark 5.4.1. In the case where Θ = ∪M
j=1Θj and the Θj are disjoint, we can

write
π(dθ) =

m∑
j=1

μjπj(dθ)

where μj := π(Θj) and πj(dθ) := π(dθ)1Θj
(θ)/μj. Here πj can be interpreted

as a prior probability measure inside the model Θj and that the μj as a prior
probability measure between the models.

Definition 5.4.3 (Gibbs estimator). We put, for any λ > 0,

θ̂λ =
∫
Θ

θρ̂λ(dθ)

where
ρ̂λ(dθ) = e−λrn(θ)π(dθ)∫

e−λrn(θ′)π(dθ′) .
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The choice of the parameter λ is discussed in the next sections. The Gibbs
estimator is a method to aggregate estimators who:

• build a posterior distribution which is faster to compute,

• build efficient posterior distributions in the case of a continuous family of
fixed distributions, thus avoiding the use of sample splitting schemes.

Our results assert that the risk of the ERM or Gibbs estimator is close to
infθ R(θ) up to a remainder term Δ called the rate of convergence. For the sake
of simplicity, let θ ∈ Θ be such that

R(θ) = inf
θ

R(θ).

If θ does not exist, it is replaced by an approximative minimizer θα satisfying
R(θα) ≤ infθ R(θ) + α where α is negligible w.r.t. Δ (e.g. α < 1/n).

We want to prove that the ERM satisfies, for any ε > 0,

P

(
R
(
θ̂ERM

)
≤ R(θ) + Δ(n,Θ, ε)

)
≥ 1 − ε (5.2)

where Δ(n,Θ, ε) → 0 as n → ∞.

We also want to prove that and that the Gibbs estimator satisfies, for any
ε > 0,

P

(
R
(
θ̂λ

)
≤ R(θ) + Δ(n, λ, π, ε)

)
≥ 1 − ε (5.3)

where Δ(n, λ, π, ε) → 0 as n → ∞ for some λ = λ(n). To obtain such results
called oracle inequalities, we require some general assumptions discussed later.

5.5 Main assumptions and main tools

In order to ensure good performances in terms of prediction for the ERM and
Gibbs estimator, we need some hypotheses in the model. Assumptions LipLoss(K)
and Lip(L) hold respectively on the loss function � and the set of predictors Θ.
In some extent, we choose the loss function and the predictors, so these assump-
tions can always be satisfied. Note that assumption Margin(K) holds on � and
also on the marginal distribution. It is used to obtain fast rates of convergence
only and thus we discuss it in Section 5.7. On the other hand, assumptions
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WeakDep(C) and PhiMix(C) hold on the dependence of the time series. In
practice, we cannot know wether these assumptions are satisfied on data. How-
ever, remark that these assumptions are not parametric and are satisfied for
many classical models, see Doukhan (1994); Dedecker et al. (2007).

Assumption LipLoss(K), K > 0: the loss function � is given by

�(x, x′) = g(x − x′)

for some convex K-Lipschitz function g such that g(0) = 0 and g ≥ 0.

Example 5.5.1. A first example is �(x, x′) = ‖x − x′‖. In this case, the Lips-
chitz constant K is 1. This example was studied in detail in Alquier and Win-
tenberger (2012). In Modha and Masry (1998); Meir (2000), the loss function
is the quadratic loss �(x, x′) = ‖x − x′‖2. Note that it also satisfies our Lipschitz
condition, but only if we assume that the time series is bounded.

Example 5.5.2. When the time-series is real-valued, we can use a quantile loss
function. The class of quantile loss functions is defined as

�τ (x, y) =

⎧⎪⎨⎪⎩
τ (x − y) , if x − y > 0

− (1 − τ) (x − y) , otherwise

where τ ∈ (0, 1). It is motivated by the following remark: if U is a real-valued
random variable, then any value t∗ satisfying P(U ≤ t∗) = τ is a minimizer of
of t �→ E(�τ (X − t)); such a value is called quantile of order τ of U . So, the
use of this loss function might be a good way to evaluate the risk of rare events
and to build confidence intervals. This loss function was introduced by Koenker
and Bassett (1978), see Koenker (2005) for a survey. Recently, Belloni and
Chernozhukov (2011) used it in the context of high-dimensional regression, and
Biau and Patra (2011) in learning problems.

Assumption Lip(L), L > 0: for any θ ∈ Θ there are coefficients aj (θ) for
1 ≤ j ≤ k such that, for any x1, ..., xk and y1, ..., yk,

‖fθ (x1, . . . , xk) − fθ (y1, . . . , yk)‖ ≤
k∑

j=1
aj (θ) ‖xj − yj‖ ,

with ∑k
j=1 aj (θ) ≤ L.
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Remark that for bounded observations the empirical risk is a bounded ran-
dom variable under assumptions LipLoss(K) and Lip(L). Such condition is
required in the approach of individual sequences. We assume it in the statistical
approach for simplicity but it is possible to extend the slow rates oracles inequal-
ities to unbounded cases see Alquier and Wintenberger (2012).

Assumption WeakDep(C), C > 0: There exists finite constants (C), C > 0,
such that supt∈Z ‖Xt‖ ≤ B almost surely, and θ∞,k(1) ≤ C for any k > 0.

Under this assumption, the process (Xt) will be called θ weakly dependent.

Example 5.5.3. Examples of processes satisfying WeakDep(C) are provided in
Alquier and Wintenberger (2012); Dedecker et al. (2007). It includes Bernoulli
shifts Xt = H(ξt, ξt−1, ξt−2, . . . ) where the ξt are iid, ‖ξ0‖ ≤ b and H satisfies a
Lipschitz condition:

‖H(v1, v2, ...) − H(v′
1, v′

2, ...)‖ ≤
∞∑

j=0
aj‖vj − v′

j‖ with
∞∑

j=0
jaj < ∞.

Then (Xt) is bounded by B = H(0, 0, ...) + bC and satisfies WeakDep(C) with
C = ∑∞

j=0 jaj. In particular, solutions of linear ARMA models with bounded
innovations satisfy WeakDep(C).

In order to prove the fast rates oracle inequalities, a more restrictive depen-
dence condition is assumed.

Assumption PhiMix(C ′), C ′ > 0: 1 +∑∞
r=1

√
φr ≤ C′.

This assumption is more restrictive than WeakDep(C) for bounded time
series:

Proposition 5.5.1 (Rio (2000)). For bounded time series, PhiMix(C ′) ⇒ WeakDep(C).

For the sake of completeness, we give the proof of this already known result.

Proof. First let us remind

θ∞,n(1) ≤
n∑

i=1
‖E(‖Xi − X∗

i ‖/σ(Xt, t ≤ 0))‖∞.
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Now we will consider the maximal coupling scheme of Goldstein (1979): there
exists a version (X∗

t ) such that

‖P(Xt �= X∗
t for some t ≥ r/σ(Xt, t ≤ 0))‖∞

= sup
(A,B)∈ σ(Xt,t≤0)×σ(Xt,t≥r)

|P(B/A) − P(B)| = φ(r)

We know that, for any variables Y , Z bounded by ‖X0‖∞, ‖Y − Z‖ ≤
2‖X0‖∞1Y �=Z . So

‖E(‖Xi − X∗
i ‖/σ(Xt, t ≤ 0))‖∞ ≤ 2‖X0‖∞‖E(1Xi �=X∗

i
/σ(Xt, t ≤ 0))‖∞

≤ 2‖X0‖∞‖P(Xi �= Xi∗/σ(Xt, t ≤ 0))‖∞

≤ 2‖X0‖∞‖P(Xt �= X∗
t for some t ≥ r/σ(Xt, t ≤ 0))‖∞

≤ 2‖X0‖∞‖φ(r).

We conclude θ∞,n(1) ≤ 2‖X0‖∞‖∑n
r=1 φ(r).

For fast rates oracle inequalities, we use an additional assumption that mix
optimal properties of the loss function � and the margin distributions. In the
iid case, such conditions are also required. They are called Margin assumptions
Mammen and Tsybakov (1999); Alquier (2008) or Bernstein hypothesis Lecué
(2011).

Assumption Margin(K), K > 0:

EP

{[
�
(

Xq+1, fθ(Xq, ..., X1)
)

− �
(

Xq+1, fθ(Xq, ..., X1)
)]2}

≤ K
[
R(θ) − R(θ)

]
.

Theorem 5.5.1 (PAC-Bayesian Oracle Inequality for the Gibbs estimator). Let
us assume that LowRates(κ) is satisfied for some κ > 0. Then, for any λ,
ε > 0 we have

P

{
R
(
θ̂λ

)
≤ inf

ρ∈M1
+(Θ)

[∫
Rdρ + 2λκ2

n (1 − k/n)2
+ 2K(ρ, π) + 2 log (2/ε)

λ

]}

≥ 1 − ε.
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This result is the analogous of the PAC-Bayesian bounds proved by Catoni
in the case of iid data Catoni (2007). It is proved in Section 5.10. This very
general result provides a bound on the generalization risk of the Gibbs estimator
θ̂λ. Two question arise now:

(1) when one uses a given class of predictor Θ, what is the value of this bound?

(2) what value of λ should be taken in order to minimize this bound?

The next section will provide answers to these questions. Note that we will
see that in some particular cases, the ERM θ̂ERM will predict as well as the
Gibbs estimator with optimal parameter λ. So in these cases, the question of the
choice of λ vanishes. However, such a general result as Theorem 5.5.1 cannot be
proved for the ERM (see Vapnik (1999): we need assumptions on θ).

5.6 Low rates oracle inequalities

In this section, we give oracle inequalities (5.2) and/or (5.3) with low rates of
convergence Δ(n,Θ) ∼

√
c(Θ)/n and also the proof of these results.

5.6.1 Finite classes of predictors

Consider first the toy example where Θ is finite with |Θ| = M , M ≥ 1. In this
case, the optimal rate in the iid case is known to be

√
log(M)/n, see e.g. Vapnik

(1999).

Theorem 5.6.1. Assume that |Θ| = M and that LowRates(κ) is satisfied for
κ > 0. Let π be the uniform probability distribution on Θ. Then the oracle
inequality (5.3) is satisfied for any λ > 0, ε > 0 with

Δ(n, λ, π, ε) = 2λκ2

n (1 − k/n)2
+ 2 log (2M/ε)

λ
.

Proof. We apply Theorem 5.5.1 for π = 1
M

∑
θ∈Θ δθ and restrict the inf in the

upper bound to Dirac masses ρ ∈ {δθ, θ ∈ Θ}. We obtain K(ρ, π) = logM , and
the upper bound for R(θ̂λ) becomes:

R
(
θ̂λ

)
≤ inf

ρ∈{δθ,θ∈Θ}

[∫
Rdρ + 2λκ2

n (1 − k/n)2
+ 2 log (2M/ε)

λ

]
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= inf
θ∈Θ

[
R(θ) + 2λκ2

n (1 − k/n)2
+ 2 log (2M/ε)

λ

]
.

The choice of λ in practice in this toy example is already not trivial. The
choice λ =

√
log(M)n yields the oracle inequality:

R(θ̂λ) ≤ R(θ) + 2
√
log(M)

n

(
κ

1 − k/n

)2
+ 2 log (2/ε)√

n log(M)
.

However, this choice is not optimal and one would like to choose λ as the
minimizer of the upper bound

2λκ2

n (1 − k/n)2
+ 2 log (M) .

λ

However κ = κ(K, L, B, C) and the constants B and C are, usually, unknown.In
this context we will prefer the ERM predictor that performs as well as the Gibbs
estimator with optimal λ:

Theorem 5.6.2. Assume that |Θ| = M and that LowRates(κ) is satisfied for
κ > 0.. Then the oracle inequality (5.2) is satisfied for any ε > 0 with

Δ(n,Θ, ε) = inf
λ>0

[
2λκ2

n (1 − k/n)2
+ 2 log (2M/ε)

λ

]
= 4κ
1 − k/n

√
log (2M/ε)

n
.

The proof of this result is given in Section 5.10.

5.6.2 Linear autoregressive predictors

We focus on the linear predictors given in Example 5.2.1.

Theorem 5.6.3. Consider the linear autoregressive model of AR(k) predictors

fθ(xt−1, . . . , xt−k) = θ0 +
k∑

j=1
θjxt−j

with
θ ∈ Θ = {θ ∈ R

k+1, ‖θ‖ ≤ L}
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such that Lip(L) is satisfied. Assume that Assumptions LipLoss(K) andWeakDep(C)
are satisfied. Let π be the uniform probability distribution on the extended pa-
rameter set {θ ∈ R

k+1, ‖θ‖ ≤ L+1}. Then the oracle inequality (5.3) is satisfied
for any λ > 0, ε > 0 with

Δ(n, λ, π, ε) = 2λκ2

n (1 − k/n)2
+ 2

(k + 1) log
(
(KB∨K2B2)(L+1)

√
eλ

k+1

)
+ log (2/ε)

λ
.

In theory, λ can be chosen of the order
√
(k + 1)n to achieve the optimal

rates
√
(k + 1)/n up to a logarithmic factor. But the choice of the optimal λ

in practice is still a problem. The ERM predictor still performs as well as the
Gibbs predictor with optimal λ but under an additional necessary constraint on
λ:

Theorem 5.6.4. Under the assumptions of Theorem 5.6.3, the oracle inequality
(5.2) is satisfied for any ε > 0 with

Δ(n,Θ, ε) = inf
λ≥2KB/(k+1)

⎡⎣ 2λκ2

n (1 − k/n)2
+
(k + 1) log

(
2eKB(L+1)λ

k+1

)
+ 2 log (2/ε)

λ

⎤⎦ .

The additional constraint on λ does not depend on n. It is restrictive only
when k+1, the complexity of the autoregressive model, has the same order than
n. For n sufficiently large and λ = ((1 − k/n)/κ)

√
((k + 1)n/2) satisfying the

constraint λ ≥ 2KB/(k + 1) we obtain the oracle inequality

R(θ̂ERM) ≤ R(θ)

+
√
2(k + 1)

n

κ

1 − k/n
log
(
2e2KB(R + 1)

κ

√
n

k + 1

)
+ 2

√
2κ log (2/ε)√

(k + 1)n (1 − k/n)
.

The optimal slow rate of convergence is achieved up to a logarithmic factor.
Theorems 5.6.3 and 5.6.4 are both direct consequences of the following results
about general classes of predictors.

5.6.3 General parametric classes of predictors

We state a general result about finite-dimensional families of predictors. The
complexity k+1 of the autoregressive model is replaced by a more general mea-
sure of the dimension d(Θ, π). We also introduce some general measure D(Θ, π)
of the diameter of the compact model.
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Theorem 5.6.5. Assume that LowRates(κ) is satisfied and the existence of
d = d(Θ, π) > 0 and D = D(Θ, π) > 0 satisfying the relation

∀δ > 0, log 1∫
θ∈Θ 1{R(θ) − R(θ) < δ}π(dθ)

≤ d log
(

D

δ

)
.

Then the oracle inequality (5.3) is satisfied for any λ > 0, ε > 0 with

Δ(n, λ, π, ε) = 2λκ2

n (1 − k/n)2
+ 2d log (D

√
eλ/d) + log (2/ε)

λ
.

We remind that the proofs are given in Section 5.10. A similar result holds
for the ERM predictor under a more restrictive assumption on the structure of
Θ, see Remark 5.6.1.

Theorem 5.6.6. Assume that

1. Θ = {θ ∈ R
d : ‖θ‖1 ≤ D},

2. ‖X̂θ1
1 − X̂θ2

2 ‖ ≤ ψ. ‖θ1 − θ2‖1 a.s. for some ψ > 0 and all (θ1, θ2) ∈ Θ2.

Assume also that LipLoss(K) and WeakDep(C). are satisfied and that Lip(L)
holds on the extended model Θ′ = {θ ∈ R

d : ‖θ‖1 ≤ D + 1}. Then the oracle
inequality (5.2) is satisfied for any ε > 0 with

Δ(n,Θ, ε) = inf
λ≥2Kψ/d

[
2λκ2

n (1 − k/n)2
+ d log (2eKψ(D + 1)λ/d) + 2 log (2/ε)

λ

]
.

The proof of this result can be found in Section 5.10. This result yields
to nearly optimal rates of convergence for the ERM predictors. Indeed, for n

sufficiently large and λ = ((1 − k/n)/κ)
√
(dn/2) ≥ 2Kψ/d we obtain the oracle

inequality

R(θ̂ERM) ≤ R(θ) +
√
2d
n

κ

1 − k/n
log
(
2e2Kψ(D + 1)

κ

√
n

d

)
+ 2

√
2κ log (2/ε)√

dn (1 − k/n)
.

Thus, the ERM procedure yields prediction that are close to the oracle with an
optimal rate of convergence up to a logarithmic factor. Note that the context of
Theorem 5.6.6 are less general than the one of Theorem 5.6.5:

Remark 5.6.1. Under the assumptions of Theorem 5.6.6 we have for any θ ∈ Θ

R(θ) − R(θ) = E

{
g
(
X̂θ
1 − X1

)
− g
(
X̂θ
1 − X1

)}
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≤ E

{
K
∥∥∥X̂θ

1 − X̂θ
1

∥∥∥}

≤ Kψ‖θ − θ‖1.

Define π as the uniform distribution on Θ′ = {θ ∈ R
d : ‖θ‖1 ≤ D + 1}. We

derive from simple computation the inequality

log 1∫
θ∈Θ 1{R(θ) − R(θ) < δ}π(dθ)

≤ log 1∫
θ∈Θ 1{‖θ − θ‖1 < δ

Kψ
}π(dθ)⎧⎪⎪⎪⎨⎪⎪⎪⎩

= d log
(

Kψ(D+1)
δ

)
when δ/Kψ ≤ 1

≤ d log (Kψ(D + 1)) otherwise.

Thus, in any case,

log 1∫
θ∈Θ 1{R(θ) − R(θ) < δ}π(dθ)

≤ d log
(
(Kψ ∨ K2ψ2)(D + 1)

δ

)

and the assumptions of Theorem 5.6.5 are satisfied for d(Θ, π) = d and D(Θ, π) =
(Kψ ∨ K2ψ2)(D + 1).

5.6.4 Aggregation in the model-selection setting

Consider now several models of predictors Θ1, ..., ΘM and consider

Θ =
M⊔

i=1
Θi

(disjoint union). Our aim is to predict as well as the best predictors among all
Θj’s, but paying only the price for learning in the smallest possible Θj. For
this, let us choose M priors πj on each models such that πj(Θj) = 1 for all
j ∈ {1, ..., M}. Let π = ∑M

j=1 pjπj be a mixture of these priors with prior
weights pj ≥ 0 satisfying ∑M

j=1 pj = 1. Denote

θj ∈ arg min
θ∈Θj

R(θ)

the oracle of the model Θj for any 1 ≤ j ≤ M . For any λ > 0, denote ρ̂λ,j the
Gibbs distribution on Θj and

θ̂λ,j =
∫
Θj

θρ̂λ,j(dθ)

the corresponding Gibbs estimator. A Gibbs predictor based on a model selection
procedure satisfies an oracle inequality with low rate of convergence:
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Theorem 5.6.7. Assume that:

1. LipLoss(K) is satisfied for some K > 0;

2. WeakDep(C) is satisfied for some C > 0;

3. for any j ∈ {1, ..., M} we have

(a) Lip(Lj) is satisfied by the model Θj for some Lj > 0,

(b) there are constants dj = d(Θj, π) and Dj = c(Θj, πj) are such that

∀δ > 0, log 1∫
θ∈Θj

1{R(θ) − R(θj) < δ}πj(dθ)
≤ dj log

(
Dj

δ

)

Denote κj = κ(K, Lj, B, C) = K(1 + Lj)(B + C)/
√
2 and define θ̂ = θ̂λĵ ,ĵ where

ĵ = arg min
1≤j≤M

{∫
Θj

rn(θ)ρ̂λj ,j(dθ) + λjκj

n(1 − k/n)2 +
K(ρ̂λj ,j, πj) + log (2/(εpj))

λj

}

with

λj = argmin
λ>0

[
2λκ2j

n (1 − k/n)2
+ 2dj log (Djeλ/dj) + log (2/(εpj))

λ

]
.

Then, with probability at least 1 − ε, the following oracle inequality holds

R(θ̂) ≤ inf
1≤j≤M

⎡⎣R(θj) + 2 κj

1 − k/n

⎧⎨⎩
√

dj

n
log
(

Dje
2

κj

√
n

dj

)
+ log (2/(εpj))√

ndj

⎫⎬⎭
⎤⎦ .

The proof of this result is given in 5.10. A similar result can be obtained if we
replace the Gibbs predictor in each model by the ERM predictor in each model.
The resulting procedure is known in the iid case under the name SRM (Struc-
tural Risk Minimization), see Vapnik (1999), or penalized risk minimization, ?.
However, as it was already the case for a fixed model, additional assumptions
are required to deal with ERM predictors. In the model-selection context, the
procedure to choose among all the ERM predictors also depends on the unknown
κj’s. Thus the model-selection procedure based on Gibbs predictors outperforms
the one based on the ERM predictors.
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5.7 Fast rates oracle inequalities

5.7.1 Discussion on the assumptions

In this section, we study conditions under which the rate 1/n can be achieved.
These conditions are restrictive:

• now p = 1, i.e. the process (Xt)t∈Z is real-valued;

• the dependence condition WeakDep(C) is replaced by PhiMix(C);

• we assume additionally Margin(K) for some K > 0.

Let us provide some examples of processes satisfying the uniform mixing
assumption PhiMix(B, C). In the three following examples (εt) denotes an iid
sequence (called the innovations).

Example 5.7.1 (AR(p) process). Consider the stationary solution (Xt) of an
AR(p) model: ∀t ∈ Z, Xt = ∑p

j=1 ajXt−j + εt. Assume that (εt) is bounded
with a distribution possessing an absolutely continuous component. If A(z) =∑p

j=1 ajz
j has no root inside the unit disk in C then (Xt) is a geometrically φ-

mixing processe, see Athreya and Pantula (1986) and PhiMix(C) is satisfied for
some C.

Example 5.7.2 (MA(p) process). Consider the stationary process (Xt) such that
Xt =

∑p
j=1 bjεt−j for all t ∈ Z. By definition, the process (Xt) is stationary and

φ-dependent - it is even p-dependent, in the sense that φr = 0 for r > p. Thus
PhiMix(C) is satisfied for some C > 0.

Example 5.7.3 (Non linear processes). For extensions of the AR(p) model of
the form Xt = F (Xt−1, . . . , Xt−p; εt), Φ-mixing coefficients can also be computed
and satisfy PhiMix(C). See e.g. Meyn and Tweedie (1993).

We now provide an example of predictive model satisfying all the assumptions
required to obtain fast rates oracle inequalities, in particular Margin(K), when
the loss function � is quadratic, i.e. �(x, x′) = (x − x′)2:



5.7. Fast rates oracle inequalities 91

Example 5.7.4. Consider Example 5.2.2 where

fθ(Xt−1, . . . , Xt−k) =
N∑

i=1
θiϕi(Xt−1, . . . , Xt−k),

for functions (ϕi)∞
i=0 of (Rp)k to R

p, and θ = (θ1, . . . , θN) ∈ R
N . Assume the ϕi

upper bounded by a constant Φ and Θ = {θ ∈ R
N , ‖θ‖1 ≤ D} such that Lip(L) is

satisfied for L = DΦ. Moreover LipLoss(K) is satisfied with K = 4B. Assume
that θ = argminθ∈RN R(θ) ∈ Θ in order to have:

EP

⎧⎨⎩
[(

Xq+1 − fθ(Xq, ..., X1)
)2

−
(

Xq+1 − fθ(Xq, ..., X1)
)2]2⎫⎬⎭

= EP

{
[fθ(Xq, ..., X1) − fθ(Xq, ..., X1)]2

[2Xq+1 − fθ(Xq, ..., X1) − fθ(Xq, ..., X1)]2
}

≤ EP

{
[fθ(Xq, ..., X1) − fθ(Xq, ..., X1)]2 4B2(1 + R)2

}
≤ 4B2(1 + R)2

[
R(θ) − R(θ)

]
by Pythagorean theorem.

Assumption Margin(K) is satisfied with K = 4B2(1 + D)2 and the oracle in-
equality with fast rates holds if Assumption PhiMix(C) is satisfied.

5.7.2 General result

We only give oracle inequalities for the Gibbs predictor in the model-selection
setting. In the case of one single model, this result can be extended to the
ERM predictor. For several models, the approach based on the ERM predictors
requires a penalized risk minimization procedure as in the slow rates case. In the
fast rates case, the Gibbs predictor itself directly have nice properties. Let Θ =⊔M

i=1Θi (disjoint union), choose π = ∑M
j=1 pjπj and denote θj ∈ argminθ∈Θj

R(θ)
as previously.

Theorem 5.7.1. Assume that:

1. Margin(K) and LipLoss(K) are satisfied for some K, K > 0;

2. PhiMix(B, C) is satisfied for some C > 0;

3. Lip(L) is satisfied for some L > 0;
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4. for any j ∈ {1, ..., M}, there exist dj = d(Θj, π) and Rj = R(Θj, πj)
satisfying the relation

∀δ > 0, log 1∫
θ∈Θj

1{R(θ) − R(θj) < δ}πj(dθ)
≤ dj log

(
Dj

δ

)
.

Then for
λ = n − k

4kKLBC ∧ n − k

16kC
the oracle inequality (5.3) for any ε > 0 with

Δ(n, λ, π, ε)

= 4 inf
j

⎧⎨⎩R(θj) − R(θ) + 4kC (4 ∨ KLB)
dj log

(
Dje(n−k)
16kCdj

)
+ log

(
2

εpj

)
n − k

⎫⎬⎭ .

We remind that the proofs are given in Section 5.10. Compare with the low
rates case, we don’t optimize with respect to λ as the optimal order for λ is
independent of j. In practice, the value of λ provided by Theorem 5.7.1 is too
conservative. In the iid case, it is shown in Dalalyan and Tsybakov (2008) that
the value λ = n/(4σ2), where σ2 is the variance of the noise of the regression
yields good results. In our simulations results, we will use λ = n/v̂ar(X), where
v̂ar(X) is the empirical variance of the observed time series.

Notice that for the index j0 such that R(θj0) = R(θ) we obtain:

R
(
θ̂λ

)
≤ R(θ) + 4kC (4 ∨ KLB) dj0 log (cj0e(n − k)/(16kCdj0)) + log (2/(εpj0))

n − k
.

So, the oracle inequality achieves the fast rate dj0/n log (n/dj0) where j0 is the
model of the oracle. However, note that the choice j = j0 does not necessarily
reach the infimum in Theorem 5.7.1.

Let us compare the rates in Theorem 5.7.1 to the ones in Meir (2000); Modha
and Masry (1998); Agarwal and Duchi (2011); Agarwal et al. (2012). In Meir
(2000); Modha and Masry (1998), the optimal rate 1/n is never obtained. The
paper Agarwal and Duchi (2011) proves fast rates for online algorithms that are
also computationally efficient, see also Agarwal et al. (2012). The fast rate 1/n is
reached when the coefficients (φr) are geometrically decreasing. In other cases,
the rate is slower. Note that we do not suffer such a restriction. The Gibbs
estimator of Theorem 5.7.1 can also be computed efficiently thanks to MCMC
procedures, see Alquier and Lounici (2011); Dalalyan and Tsybakov (2008).
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5.7.3 Corollary: sparse autoregression

We consider the sparse autoregression model where the number of parameter p

is lager than the sample size n. Let the predictors are the linear AR(p)

X̂θ
p =

p∑
j=1

Xp−jθj.

For any J ⊂ {1, . . . , p}, define the model:

ΘJ = {θ ∈ R
p : ‖θ‖1 ≤ L and θj �= 0 ⇔ j ∈ J}.

Let us remark that we have the disjoint union

Θ =
⊔

J⊂{1,...,p}
ΘJ = {θ ∈ R

p : ‖θ‖1 ≤ 1}.

We choose πJ as the uniform probability measure on ΘJ and pj = 2−|J |−1
(

p
|J |

)−1
.

For any subset J ⊂ {1, . . . , p} define

θJ = argmin
θ∈Rp

R(θ) ∈ ΘJ

and
θ = argmin

θ∈Rp
R(θ) ∈ Θ.

We can now state the main result for the sparse autoregression.

Corollary 5.7.1. Assume that PhiMix(C) is satisfied for some C > 0. Then
the oracle inequality (5.3) is satisfied for any ε > 0 with

Δ(n, λ, π, ε) = 4 inf
J

⎧⎨⎩R(θJ) − R(θ) + cst.
|J | log ((n − k)p/|J |) + log

(
2
ε

)
n − k

⎫⎬⎭
for some constant cst = cst(B, C, L).

This extends the results of Alquier and Lounici (2011); Dalalyan and Tsy-
bakov (2008); Gerchinovitz (2011) to the case of autoregression.

Proof. The proof follows the computations of Example 5.7.4 that we do not
reproduce here: we check the conditions LipLoss(K) with K = 4B, Lip(L) and
Margin(K) with K = 4B2(1 + L)2. We can apply Theorem 5.7.1 with dJ = |J |
and Dj = L.
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5.8 Application to French GDP forecasting

In this section we give an application of the previous result to French GDP
forecasting.

5.8.1 Setting of the Problem: Uncertainty in GDP Fore-
casting

Every quarter, economic forecasters at INSEE 1 publish a forecast of the quarterly
growth rate of the French GDP (Gross Domestic Product). Since it involves a
huge amount of data that takes months to be collected and processed, the “true”
realization of the GDP growth rate log(GDPt/GDPt−1) is only known after a long
time (two years). This means that at time t+1, the value log(GDPt/GDPt−1) is
actually not known. However, a preliminary value of the growth rate is published
45 days only after the end of the current quarter t. This value is called a flash
estimate and is the quantity that INSEE forecasters actually try to predict. As
we want to play exactly the same “game” as the INSEE, we will now focus on the
prediction on the flash estimate and let ΔGDPt denote this quantity. In order
to do so, they use two sources of information:

1. past flash estimates 2 ΔGDPt;

2. a climate indicator It based on business surveys.

A business survey is a questionnaire of about ten questions sent monthly to a
representative panel of French companies (see Devilliers (2004) for more details
on this process). As a consequence these surveys provide information coming
directly from the true economic decision makers. Morever, they are rapidly
available (on a monthly basis). Note that a similar approach is used in other
countries, see e.g. Biau et al. (2008) on forecasting the European Union GDP
growth thanks to EUROSTATS data.

INSEE publishes a composite indicator, the French business climate indicator.
This indicator summarises information of the whole business survey. Its defini-

1. Institut National de la Statistique et des Etudes Economiques, the French national bureau
of statistics, http://www.insee.fr/

2. It has been checked that to replace past flash estimates by the actual GDP growth rate
when it becomes available do not improve the quality of the forecasting Minodier (2010).
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tion is given for example in Clavel and Minodier (2009); Dubois and Michaux
(2006). Let It denote this indicator at time t (following Cornec (2010), It is
the mean of the climate indicator at month 3 of quarter t − 1 and at month 1
and 2 of quarter t, that are all available to INSEE forecasters at quarter t when
they publish their forecast of t+1) All these values (GDP, climate indicator) are
available from the INSEE website.

However it is well known that interval confidence or any relevant information
about the accuracy of the prediction should be given with the forecast, in order
to provide a quantification of its uncertainty. As a consequence the ASA and
the NBER started using density forecasts in 1968, while the Central Bank of
England and INSEE provide their prediction with a “fan chart”. See Diebold
et al. (1997); Tay and Wallis (2007) for surveys on density forecasting in official
statistics and Britton et al. (1998) for fan charts. However the methodology
used is often very crude, see the criticism in Cornec (2010); Dowd (2004). For
example, until 2012, the fan chart provided by the INSEE was based on the
assumption that the forecast errors are Gaussian with a constant variance. This
led to confidence intervals with constant length. But on the other hand there is
an empirical evidence that

1. it is more difficult to forecast GDP in a period of crisis or recession;

2. the distribution of the errors is non-symmetric.

See e.g. the graphics in Cornec (2010) about these two points. The Central
Bank of England fan chart seems more adaptive to the situation but is unfortu-
nately not reproducible as forecasters includes subjective information. In Cornec
(2010) a reproducible density forecasting method based on quantile regressions
is proposed and gives good results in practice. However, this method did not
receive any theoretical support up to our knowledge. The primary motivation of
the current paper was to provide a theoretical support to Cornec (2010).

5.8.2 Application of Theorem 5.5.1

We define Xt as the information that becomes available at time t, Xt = (ΔGDPt, It)′ ∈
R
2. The loss function will only take into account ΔGDPt as this is the quantity

of interest. We use the quantile loss function (see Example 5.5.2 page 81):
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�τ ((ΔGDPt, It), (Δ′GDPt, I ′
t))

=

⎧⎪⎨⎪⎩
τ (ΔGDPt − Δ′GDPt) , if ΔGDPt − Δ′GDPt > 0

− (1 − τ) (ΔGDPt − Δ′GDPt) , otherwise.

To remind that the risk depends on τ , we add a subscript τ in the notation
Rτ (θ) := E [�τ (ΔGDPt, fθ(Xt−1, Xt−2))] and let rτ

n denote the associated em-
pirical risk. We use the family of predictors proposed by Cornec (2010). The
reason is that one of the conclusions of Cornec (2010); Li (2010) is that this set
of predictors allow to obtain a forecasting as accurate as the INSEE. It is given
by

fθ(Xt−1, Xt−2) = θ0 + θ1ΔGDPt−1 + θ2It−1 + θ3(It−1 − It−2)|It−1 − It−2| (5.4)

where θ = (θ0, θ1, θ2, θ3) ∈ Θ(B). Fix R > 0 and

Θ =
{

θ = (θ0, θ1, θ2, θ3) ∈ R
4, ‖θ‖1 =

3∑
i=0

|θi| ≤ R

}
.

Remark that in this framework, Assumption Lip is satisfied with L = R + 1,
and the loss function is K-Lipschitz with K = 1 so Assumption LipLoss is also
satisfied. We compare the performance of both ERM and Gibbs estimator.

Corollary 5.8.1. Let us fix τ ∈ (0, 1). Let us assume that AssumptionWeakDep
is satisfied, and that n ≥ max (10, κ2/(3B2)). Let us fix λ =

√
3n/κ. Then, with

probability at least 1 − ε we have

Rτ (θ̂τ
B,λ) ≤ inf

θ∈Θ(B)

⎧⎨⎩Rτ (θ) + 2
√
3κ√
n

⎡⎣2.25 + log
(
(R + 1)B√

n

κ

)
+
log
(
1
ε

)
3

⎤⎦⎫⎬⎭ .

Remark 5.8.1. The choice of λ proposed in the theorem may be a problem as
in practice we will not know κ. Note that from the proof, it is obvious that in
any case, for n large enough, when λ =

√
n we still have a bound

Rτ (θ̂τ
B,λ) ≤ inf

θ∈Θ(B)

{
Rτ (θ) + C(B, B, κ, ε)√

n

}
.

We let θ̂ERM,τ denote the ERM with quantile loss �τ :

θ̂ERM,τ ∈ argmin
θ∈Θ

rτ
n(θ).
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We apply Theorem 5.6.6. Note that Assumption Lip(L) is satisfied Θ′ with
L = R + 1, Assumption LipLoss(K) is satisfied with K = 1. Finally, under
WeakDep(B, C), the assumptions of Theorem 5.6.6 are satisfied with ψ = B
and d = 4.

Corollary 5.8.2. Let us fix τ ∈ (0, 1). Let us assume that AssumptionWeakDep(B, C)
is satisfied, Then we have, for any ε > 0 and for n large enough,

P

⎧⎨⎩Rτ (θ̂ERM,τ ) ≤ inf
θ∈Θ

Rτ (θ) + 2κ
√
2

√
n
(
1 − 4

n

) log(2e2B(R + 1)
√

n

κε

)⎫⎬⎭ ≥ 1 − ε.

In the simulations, it appears that the choice of R has little importance as
soon as R is large enough: in this case, the simulation shows that the estimator
does not really depend on R - only the theoretical bound does. As a consequence
we take R = 100 in our experiments.

5.8.3 Results

The results are shown in Figure 5.1 for prediction, τ = 0.5, in Figure 5.2 for
confidence interval of order 50%, i.e. τ = 0.25 and τ = 0.75 (left) and for
confidence interval of order 90%, i.e. τ = 0.05 and τ = 0.95 (right). We report
only the results for the period 2000-Q1 to 2011-Q3 (using the period 1988-Q1 to
1999-Q4 for learning).

Figure 5.1: French GDP online prediction using the quantile loss function with
τ = 0.5.
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Figure 5.2: French GDP online 50%-confidence intervals (left) and 90%-confidence
intervals (right).

We denote θ̂ERM,τ [t′] the estimator computed at time t′, based on the obser-
vations from t = 1 to t = t′ − 1. We report the online performance:

mean abs. pred. error = 1
n

∑n
t=1

∣∣∣ΔGDPt − fθ̂ERM,0.5[t](Xt−1, Xt−2)
∣∣∣

mean quad. pred. error = 1
n

∑n
t=1

[
ΔGDPt − fθ̂ERM,0.5[t](Xt−1, Xt−2)

]2
and compare it to the INSEE performance, see Table 5.1.

We also report the frequency of realizations of the GDP falling above the
predicted τ -quantile for each τ , see Table 5.2. Note that this quantity should be
close to τ .

We completely fail to forecast the 2008 subprime crisis. However, as noted in
Cornec (2010), the INSEE forecast for that quarter was also completely wrong.
This is in accordance with the fact mentionned above that it is more difficult
to forecast the GDP during crisis. However, it is interesting to note that our
confidence interval shows that our prediction at this date is less reliable than the
previous ones: so, at this time, the forecasters could have been aware that their
prediction was unreliable.

One of the most interesting point is to remark that the lower bound of the pre-
dicted confidence intervals are really varying over time, while the upper bound is
almost constant in the case of τ = 0.95. This is another evidence that the distri-
bution of the errors is non symmetric, and that a parametric model with gaussian
innovations would lead to clearly underestimate the magnitude of recessions.
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Predictor Mean absolute prediction error Mean quadratic prediction error
θ̂ERM,0.5 0.2249 0.0812
INSEE 0.2579 0.0967

Table 5.1: Performances of the ERM and of the INSEE.
τ Estimator Frequency

0.05 θ̂ERM,0.05 0.1739
0.25 θ̂ERM,0.25 0.4130
0.5 θ̂ERM,0.5 0.6304
0.75 θ̂ERM,0.75 0.9130
0.95 θ̂ERM,0.95 0.9782

Table 5.2: Empirical frequencies of the event: GDP falls under the predicted
τ -quantile.

5.9 Simulation study

5.9.1 First case: parametric family of predictors

The ERM estimator is now compared to parametric estimators assuming an
ARMA form for the time series on a set of simulated data. Here again we consider
the ERM estimator for both the quadratic and absolute loss. We compare the
performances of both estimators to the one computed by the R procedure “arma”
R.

We consider observations drawn from an AR(1) models and a slight variant,
see (5.5) and (5.6). Namely, we simulate sequences of length n = 100 and
n = 1000 from the following first-order autoregressive processes:

Xt = 0.5Xt−1 + εt (5.5)

Xt = 0.5 sin(Xt−1) + εt (5.6)

where εt is the iid innovation. We consider two cases of distributions for εt: the
uniform case, εt ∼ U [−a, a], and the Gaussian case, εt ∼ N (0, σ2). Note that,
in the first case, our two models satisfy the assumptions of Theorem 5.5.1 and
Theorem 5.7.1. More precisely there exists a stationary solutions (Xt) that is
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n Model Innovations ERM abs. ERM quad. ARMA

100 (5.5) Gaussian 0.1538 0.1549 0.1577
Uniform 0.1716 0.1739 0.1774

(5.6) Gaussian 0.1714 0.1705 0.1736
Uniform 0.1512 0.1510 0.1542

1000 (5.5) Gaussian 0.1652 0.1659 0.1662
Uniform 0.1553 0.1558 0.1562

(5.6) Gaussian 0.1545 0.1526 0.1530
Uniform 0.1767 0.1760 0.1764

Table 5.3: Performances of the ERM estimator and ARMA, on the simulations.
We highlight the best result for each experiment. The first row “ERM abs.” is
for the ERM estimator with absolute loss, the second row “ERM quad.” for the
ERM with quadratic loss.

φ-mixing for an AR(p) process with uniform innovations. and as a consequence
WeakDep(B, C) is satisfied. In the Gaussian case, however, it is known that
{Xt} is no longer φ-mixing, see Doukhan (1994). However, as this case is more
classical in statistics, it is worth testing if our method performs well in practice
in this case too.

We take σ = 0.4 and a = 0.70. In both cases this leads to V ar(εt) � 0.16. For
each model, we simulate first a sequence of length n, we take the observations
1 to n − 1 as a learning set and we predict Xn. Each simulation is repeated
100 times and we report the mean error of each method on the Table 5.3. The
evolution of the performance is measured by the quadratic prevision error.

It is interesting to note that the ERM estimator with absolute loss performs
better on model (5.5) while the ERM with quadratic loss performs slightly better
on model (5.6). The differences might be too small to be significative, however,
the numerical results tends to indicate that both methods are robust to model
mispecification. Also, both estimators seem to perform better than the R “arma”
procedure when n = 100, but the differences tends to be less perceptible when n

grows.
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5.9.2 Second case: sparse autoregression

Here, we illustrate Corollary 5.7.1. We compare here the Gibbs estimator to
the model selection approach of the “arma” procedure in the R software. This
procedure computes the parametric estimator in each submodel AR(p) and then
selects the order p by Akaike’s AIC criterion Akaike (1973). Note that the
computation of the Gibbs estimator in this case is described in Alquier and
Lounici (2011) using a Reversible Jump MCMC algorithm. For the parameter
λ, λ = n/v̂ar(X), where v̂ar(X) is the empirical variance of the observed time
series.

We generate the data according to the following:

Xt = 0.5Xt−1 + 0.1Xt−2 + εt (5.7)

Xt = 0.6Xt−4 + 0.1Xt−8 + εt (5.8)

Xt = cos(Xt−1) sin(Xt−2) + εt (5.9)

where εt is the innovation. We still use two models for the innovation: the
uniform case, εt ∼ U [−a, a], and the Gaussian case, εt ∼ N (0, σ2). Also we still
take σ = 0.4 and a = 0.70. We compare the Gibbs estimator performances to
the ones of AIC criterion as implemented in the R software and to the basic
least square estimator in the model AR(q) - that we will call “full model”. The
experimental design is the following: for each model, we simulate a time series of
length 2n, use the observations 1 to n as a learning set and n+1 to 2n as a test
set. We report the performances on the test set. We take n = 100 and n = 1000
in the simulations. Each simulation is repeated 20 times, we report on Table 5.4
the mean performance and standard deviation of each method.

It is interesting to note that our estimator performs better on Model (5.8) and
Model (5.9) while AIC performs slightly better on Model (5.7). The differences
tends to be less perceptible when n grows - this is coherent with the fact that
we develop here a non-asymptotic theory. It is also interesting to note that our
estimator seems to perform well even in the case of a Gaussian noise.
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Table 5.4: Performances of the Gibbs estimator, AIC and least square estima-
tor in the full model, on the simulations. We reported the mean performance
and standard deviation of each method. We highlight the best result for each
experiment.

n Model Innovations Gibbs AIC Full Model

100 (5.7) Uniform 0.165 (0.022) 0.165 (0.023) 0.182 (0.029)
Gaussian 0.167 (0.023) 0.161 (0.023) 0.173 (0.027)

(5.8) Uniform 0.163 (0.020) 0.169 (0.022) 0.178 (0.022)
Gaussian 0.172 (0.033) 0.179 (0.040) 0.201 (0.049)

(5.9) Uniform 0.174 (0.022) 0.179 (0.028) 0.201 (0.040)
Gaussian 0.179 (0.025) 0.182 (0.025) 0.202 (0.031)

1000 (5.7) Uniform 0.163 (0.005) 0.163 (0.005) 0.166 (0.005)
Gaussian 0.160 (0.005) 0.160 (0.005) 0.162 (0.005)

(5.8) Uniform 0.164 (0.004) 0.166 (0.004) 0.167 (0.004)
Gaussian 0.160 (0.008) 0.161 (0.008) 0.163 (0.008)

(5.9) Uniform 0.171 (0.005) 0.172 (0.006) 0.175 (0.006)
Gaussian 0.173 (0.009) 0.173 (0.009) 0.176 (0.010)

5.10 Proofs

5.10.1 Preliminaries

Lemma 5.10.1. We assume that LowRates(κ) is satisfied for some κ > 0. For
any λ > 0 and θ ∈ Θ we have

E

(
eλ(R(θ)−rn(θ))

)
∨ E
(

eλ(rn(θ)−R(θ))
)

≤ exp
(

λ2κ2

n (1 − k/n)2
)

.

Proof of Lemma 5.10.1. Let us fix λ > 0 and θ ∈ Θ. Let us define the function
h by:

h(x1, . . . , xn) =
1

K(1 + L)

n∑
i=k+1

�(fθ(xi−1, . . . , xi−k), xi).

We now check that h satisfies (5.1), remember that �(x, x′) = g(x − x′) so∣∣∣∣h (x1, . . . , xn) − h (y1, . . . yn)
∣∣∣∣

≤ 1
K(1 + L)

n∑
i=k+1

∣∣∣∣g(fθ(xi−1, . . . , xi−k) − xi) − g(fθ(yi−1, . . . , yi−k) − yi)
∣∣∣∣

≤ 1
1 + L

n∑
i=k+1

∥∥∥∥(fθ(xi−1, . . . , xi−k) − xi

)
−
(
fθ(yi−1, . . . , yi−k) − yi

)∥∥∥∥
where we used Assumption LipLoss(K) for the last inequality. So we have∣∣∣∣h (x1, . . . , xn) − h (y1, . . . yn)

∣∣∣∣
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≤ 1
1 + L

n∑
i=k+1

(∥∥∥∥fθ(xi−1, . . . , xi−k) − fθ(yi−1, . . . , yi−k)
∥∥∥∥+ ∥∥∥∥xi − yi

∥∥∥∥
)

≤ 1
1 + L

n∑
i=k+1

⎛⎝ k∑
j=1

aj(θ)‖xi−j − yi−j‖ + ‖xi − yi‖
⎞⎠

≤ 1
1 + L

n∑
i=1

⎛⎝1 + k∑
j=1

aj(θ)
⎞⎠ ‖xi − yi‖ ≤

n∑
i=1

‖xi − yi‖

where we used Assumption Lip(L). So we can apply Lemma 5.3.2 with h(X1, . . . , Xn) =
n−k

K(1+L)rn(θ), E(h(X1, . . . , Xn)) = n−k
K(1+L)R(θ), and t = K(1 + L)λ/(n − k):

E

(
eλ[R(θ)−rn(θ)]

)
≤ exp

(
λ2K2(1 + L)2 (B + θ∞,n(1))2

2n (1 − k/n)2
)

≤ exp
(

λ2K2(1 + L)2 (B + C)2

2n
(
1 − k

n

)2 )

by Assumption WeakDep(C). This ends the proof of the first inequality. The
reverse inequality is obtained by replacing the function h by −h. �

We are now ready to state the following key Lemma.

Lemma 5.10.2. Let us assume that LowRates(κ) is satisfied satisfied for some
κ > 0. Then for any λ > 0 we have

P

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∀ρ ∈ M1
+(Θ),∫

Rdρ ≤ ∫ rndρ + λκ2

n(1−k/n)2 +
K(ρ,π)+log(2/ε)

λ

and∫
rndρ ≤ ∫ Rdρ + λκ2

n(1−k/n)2 +
K(ρ,π)+log(2/ε)

λ

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
≥ 1 − ε. (5.10)

Proof of Lemma 5.10.2. Let us fix θ > 0 and λ > 0, and apply the first inequality
of Lemma 5.10.1. We have:

E

(
exp
(

λ
(

R(θ) − rn(θ) − λκ2

n (1 − k/n)2
)))

≤ 1,

and we multiply this result by ε/2 and integrate it with respect to π(dθ). An
application of Fubini’s Theorem yields

E

∫
exp
(

λ(R(θ) − rn(θ)) − λ2κ2

n (1 − k/n)2
− log (2/ε)

)
π(dθ) ≤ ε

2 .
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We apply Lemma 5.3.1 and we get:

E exp
(
sup

ρ

{
λ
∫
(R(θ) − rn(θ))ρ(dθ) − λ2κ2

n (1 − k/n)2
− log (2/ε) − K(ρ, π)

})
≤ ε

2 .

As ex ≥ 1R+(x), we have:

P

{
sup

ρ

{
λ
∫
(R(θ) − rn(θ)) ρ(dθ) − λ2κ2

n (1 − k/n)2
− log (2/ε) − K(ρ, π)

}
≥ 0
}

≤ ε

2 .

Using the same arguments than above but starting with the second inequality of
Lemma 5.10.1:

E exp
(

λ
(

rn(θ) − R(θ) − λκ2

n (1 − k/n)2
)))

≤ 1.

we obtain:

P

⎧⎪⎨⎪⎩supρ
⎧⎪⎨⎪⎩λ
∫
[rn(θ) − R(θ)] ρ(dθ) − λ2κ2

n
(
1 − k

n

)2 − log
(2

ε

)
− K(ρ, π)

⎫⎪⎬⎪⎭ ≥ 0

⎫⎪⎬⎪⎭ ≤ ε

2 .

A union bound ends the proof. �

The following variant of Lemma 5.10.2 will also be useful.

Lemma 5.10.3. Let us assume that LowRates(κ) is satisfied satisfied for some
κ > 0. Then for any λ > 0 we have

P

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∀ρ ∈ M1
+(Θ),∫

Rdρ ≤ ∫ rndρ + λκ2

n(1−k/n)2 +
K(ρ,π)+log(2/ε)

λ

and
rn(θ) ≤ R(θ) + λκ2

n(1−k/n)2 +
log(2/ε)

λ

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
≥ 1 − ε.

Proof of Lemma 5.10.3. Following the proof of Lemma 5.10.2 we have:

P

{
sup

ρ

{
λ
∫
(R(θ) − rn(θ)) ρ(dθ) − λ2κ2

n (1 − k/n)2
− log (2/ε) − K(ρ, π)

}
≥ 0
}

≤ ε

2 .

Now, we use the second inequality of Lemma 5.10.1, with θ = θ:

E

(
exp
(

λ
(

rn(θ) − R(θ) − λκ2

n (1 − k/n)2
)))

≤ 1.

But then, we directly apply Markov’s inequality to get:

P

{
rn(θ) ≥ R(θ) + λκ2

n (1 − k/n)2
+ log (2/ε)

λ

}
≤ ε

2 .

Here again, a union bound ends the proof. �
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5.10.2 Proof of Theorems 5.5.1 , 5.6.5 and 5.6.7

Proof of Theorem 5.5.1. We apply Lemma 5.10.2. So, with probability at least
1 − ε we are on the event given by (5.10). From now, we work on that event.
The first inequality of (5.10), when applied to ρ̂λ(dθ), gives
∫

R(θ)ρ̂λ(dθ) ≤
∫

rn(θ)ρ̂λ(dθ) + λκ2

n (1 − k/n)2
+ 1

λ
log (2/ε) + 1

λ
K(ρ̂λ, π).

According to Lemma 5.3.1 we have:∫
rn(θ)ρ̂λ(dθ) + 1

λ
K(ρ̂λ, π) = inf

ρ

(∫
rn(θ)ρ(dθ) + 1

λ
K(ρ, π)

)
so we obtain∫

R(θ)ρ̂λ(dθ) ≤ inf
ρ

{∫
rn(θ)ρ(dθ) + λκ2

n (1 − k/n)2
+ K(ρ, π) + log (2/ε)

λ

}
.

(5.11)
We now estimate from above r(θ) by R(θ). Applying the second inequality
of (5.10) and plugging it into Inequality 5.11 gives

∫
R(θ)ρ̂λ(dθ) ≤ inf

ρ

{∫
Rdρ + 2

λ
K(ρ, π) + 2λκ2

n (1 − k/n)2
+ 2

λ
log (2/ε)

}
.

We end the proof by the remark that θ �→ R(θ) is convex and so by Jensen’s
inequality

∫
R(θ)ρ̂λ(dθ) ≥ R (

∫
θρ̂λ(dθ)) = R(θ̂λ). �

Proof of Theorem 5.6.5. An application of Theorem 5.5.1 yields that with prob-
ability at least 1 − ε

R(θ̂λ) ≤ inf
ρ∈M1

+(Θ)

[∫
Rdρ + 2λκ2

n (1 − k/n)2
+ 2K(ρ, π) + 2 log (2/ε)

λ

]
.

Let us estimate the upper bound at the probability distribution ρδ defined as

dρδ

dπ
(θ) = 1{R(θ) − R(θ) < δ}∫

t∈Θ 1{R(t) − R(θ) < δ}π(dt)
.

Then we have:

R
(
θ̂λ

)
≤ inf

δ>0

⎡⎣R(θ) + δ + 2λκ2

n (1 − k/n)2

+ 2
− log

∫
t∈Θ 1{R(t) − infΘ R < δ}π(dt) + log

(
2
ε

)
λ

⎤⎦.
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Under the assumptions of Theorem 5.6.5 we have:

R
(
θ̂λ

)
≤ inf

δ>0

⎡⎣R(θ) + δ + 2λκ2

n (1 − k/n)2
+ 2

d log (D/δ) + log
(
2
ε

)
λ

⎤⎦.
The infimum is reached for δ = d/λ and we have:

R
(
θ̂λ

)
≤ R(θ) + 2λκ2

n (1 − k/n)2
+ 2

d log (D
√

eλ/d) + log
(
2
ε

)
λ

.

�

Proof of Theorem 5.6.7. Let us apply Lemma 5.10.2 in each model Θj, with a
fixed λj > 0 and confidence level εj > 0. We obtain, for all j,

P

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∀ρ ∈ M1
+(Θj),∫

Rdρ ≤ ∫ rndρ + λjκ2
j

n(1−k/n)2 +
K(ρ,πj)+log(2/εj)

λj

and∫
rndρ ≤ ∫ Rdρ + λjκ2

j

n(1−k/n)2 +
K(ρ,πj)+log(2/εj)

λj

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
≥ 1 − εj.

We put εj = pjε, a union bound gives leads to:

P

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀j ∈ {1, ..., M}, ∀ρ ∈ M1
+(Θj),∫

Rdρ ≤ ∫ rndρ + λjκ2
j

n(1−k/n)2 +
K(ρ,πj)+log

(
2

εpj

)
λj

and
∫

rndρ ≤ ∫ Rdρ + λjκ2
j

n(1−k/n)2 +
K(ρ,πj)+log

(
2

εpj

)
λj

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
≥ 1 − ε. (5.12)

From now, we only work on that event of probability at least 1−ε. Remark that

R(θ̂) = R(θ̂λĵ ,ĵ)

≤
∫

R(θ)ρ̂λĵ ,ĵ(dθ) by Jensen’s inequality

≤
∫

rnρ̂λĵ ,ĵ(dθ) +
λjκ

2
j

n (1 − k/n)2
+

K(ρ̂λĵ ,ĵ, πj) + log
(

2
εpj

)
λj

by (5.12)

= inf
1≤j≤M

⎧⎨⎩
∫

rnρ̂λj ,j(dθ) +
λjκ

2
j

n (1 − k/n)2
+

K(ρ̂λj ,j, πj) + log
(

2
εpj

)
λj

⎫⎬⎭
by definition of ĵ

= inf
1≤j≤M

inf
ρ∈M1

+(Θj)

⎧⎨⎩
∫

rnρ(dθ) +
λjκ

2
j

n (1 − k/n)2
+

K(ρ, πj) + log
(

2
εpj

)
λj

⎫⎬⎭
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by Lemma 5.3.1

≤ inf
1≤j≤M

inf
ρ∈M1

+(Θj)

⎧⎨⎩
∫

Rρ(dθ) +
2λjκ

2
j

n (1 − k/n)2
+ 2

K(ρ, πj) + log
(

2
εpj

)
λj

⎫⎬⎭
by (5.12) again

≤ inf
1≤j≤M

inf
δ>0

⎧⎨⎩R(θj) + δ +
2λjκ

2
j

n (1 − k/n)2
+ 2

dj log (Dj/δ) + log
(

2
εpj

)
λj

⎫⎬⎭
by restricting ρ as in the proof of Cor. 5.6.5 page 87

≤ inf
1≤j≤M

⎧⎨⎩R(θj) +
2λjκ

2
j

n (1 − k/n)2
+ 2

dj log
(

Djeλj

dj

)
+ log

(
2

εpj

)
λj

⎫⎬⎭
by taking δ = dj

λj

= inf
1≤j≤M

⎧⎨⎩R(θj) + inf
λ>0

⎧⎨⎩ 2λκ2j

n (1 − k/n)2
+ 2

dj log
(

Djeλ

dj

)
+ log

(
2

εpj

)
λ

⎫⎬⎭
⎫⎬⎭

by definition of λj

≤ inf
1≤j≤M

⎧⎨⎩R(θj) + 2 κj

1 − k/n

⎧⎨⎩
√

dj

n
log
(

Dje
2

κj

√
n

dj

)
+
log
(

2
εpj

)
√

ndj

⎫⎬⎭
⎫⎬⎭ .

�

5.10.3 Proof of Theorems 5.6.2 and 5.6.6

Let us now prove the results about the ERM.
Proof of Theorem 5.6.2. We choose π as the uniform probability distribution on
Θ and λ > 0. We apply Lemma 5.10.3. So we have, with probability at least
1 − ε, ⎧⎪⎨⎪⎩

∀ρ ∈ M1
+(Θ′),

∫
Rdρ ≤ ∫ rndρ + λκ2

n(1−k/n)2 +
K(ρ,π)+log(2/ε)

λ

and rn(θ) ≤ R(θ) + λκ2

n(1−k/n)2 +
log(2/ε)

λ
.

We restrict the inf in the first inequality to Dirac masses ρ ∈ {δθ, θ ∈ Θ} and we
obtain: ⎧⎪⎨⎪⎩ ∀θ ∈ Θ, R(θ) ≤ rn(θ) + λκ2

n(1−k/n)2 +
log( 2M

ε )
λ

and rn(θ) ≤ R(θ) + λκ2

n(1−k/n)2 +
log(2/ε)

λ
.

In particular, we apply the first inequality to θ̂ERM . We remind that θ minimizes
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R on Θ and that θ̂ERM minimizes rn on Θ, and so we have

R(θ̂ERM) ≤ rn(θ̂ERM) + λκ2

n (1 − k/n)2
+ log(M) + log (2/ε)

λ

≤ rn(θ) +
λκ2

n (1 − k/n)2
+ log(M) + log (2/ε)

λ

≤ R(θ) + 2λκ2

n (1 − k/n)2
+ log(M) + 2 log (2/ε)

λ

≤ R(θ) + 2λκ2

n (1 − k/n)2
+ 2 log (2M/ε)

λ
.

The result still holds if we choose λ as a minimizer of

2λκ2

n (1 − k/n)2
+ 2 log (2M/ε)

λ
.

�

Proof of Theorem 5.6.6. We put Θ′ = {θ ∈ R
d : ‖θ‖1 ≤ D + 1}. We choose π

as the uniform probability distribution on Θ′. We apply Lemma 5.10.3. So we
have, with probability at least 1 − ε,⎧⎪⎨⎪⎩

∀ρ ∈ M1
+(Θ′),

∫
Rdρ ≤ ∫ rndρ + λκ2

n(1−k/n)2 +
K(ρ,π)+log(2/ε)

λ

and rn(θ) ≤ R(θ) + λκ2

n(1−k/n)2 +
log(2/ε)

λ
.

So for any ρ,

R(θ̂ERM) =
∫
[R(θ̂ERM) − R(θ)]ρ(dθ) +

∫
Rdρ

≤
∫
[R(θ̂ERM) − R(θ)]ρ(dθ) +

∫
rndρ + λκ2

n (1 − k/n)2
+ K(ρ, π) + log (2/ε)

λ

≤
∫
[R(θ̂ERM) − R(θ)]ρ(dθ) +

∫
[rn(θ) − rn(θ̂ERM)]ρ(dθ) + rn(θ̂ERM)

+ λκ2

n (1 − k/n)2
+ K(ρ, π) + log (2/ε)

λ

≤ 2Kψ
∫

‖θ − θ̂ERM‖1ρ(dθ) + rn(θ) +
λκ2

n (1 − k/n)2
+ K(ρ, π) + log (2/ε)

λ

≤ 2Kψ
∫

‖θ − θ̂ERM‖1ρ(dθ) + R(θ) + 2λκ2

n (1 − k/n)2
+ K(ρ, π) + 2 log (2/ε)

λ
.

Now we define, for any δ > 0, ρδ by

dρδ

dπ
(θ) = 1{‖θ − θ̂ERM‖ < δ}∫

t∈Θ′ 1{‖t − θ̂ERM‖ < δ}π(dt)
.
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So in particular, we have, for any δ > 0,

R(θ̂ERM) ≤ 2Kψδ + R(θ)

+ 2λκ2

n (1 − k/n)2
+
log 1∫

t∈Θ′ 1{‖t−θ̂ERM ‖<δ}π(dt) + 2 log (2/ε)

λ
.

But for any δ ≤ 1,

− log
∫

t∈Θ′
1{‖t − θ̂ERM‖ < δ}π(dt) = d log

(
D + 1

δ

)
.

So we have

R(θ̂ERM) ≤ inf
δ≤1

⎧⎨⎩2Kψδ + R(θ) + 2λκ2

n (1 − k/n)2
+

d log
(

D+1
δ

)
+ 2 log (2/ε)
λ

⎫⎬⎭ .

We optimize this result by taking δ = d/(2λKψ), which is smaller than 1 as soon
as t ≥ 2Kψ/d, we get:

R(θ̂ERM) ≤ R(θ) + 2λκ2

n (1 − k/n)2
+

d log
(
2eKψ(D+1)t

d

)
+ 2 log (2/ε)

λ
.

We just choose λ as the minimizer of the r.h.s., subject to t ≥ 2Kψ/d, to end
the proof. �

5.10.4 Some preliminary lemmas for the proof of Theo-
rem 5.7.1

Lemma 5.10.4. Under the hypothesis of Theorem 5.7.1, we have, for any θ ∈ Θ,
for any 0 ≤ λ ≤ (n − k)/(2kKLBC),

E exp
{

λ

[(
1 − 8kCλ

n − k

)(
R(θ) − R(θ)

)
− r(θ) + r(θ)

]}
≤ 1,

and
E exp

{
λ

[(
1 + 8kCλ

n − k

)(
R(θ) − R(θ)

)
− r(θ) + r(θ)

]}
≤ 1.

Lemma 5.10.4. We apply Lemma 5.3.3 to N = n − k, Zi = (Xi+1, . . . , Xi+k),

f(Zi) =
1

n − k

[
R(θ) − R(θ)

− � (Xi+k, fθ(Xi+k−1, . . . , Xi+1)) + � (Xi+k, fθ(Xi+k−1, . . . , Xi+1))2
]
,
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and so
SN(f) = [R(θ) − R(θ) − r(θ) + r(θ)],

and the Zi are uniformly mixing with coefficients φZ
r = φ�r/q�. Note that 1 +∑n−q

r=1

√
φZ

r = 1 +∑n−q
r=1
√

φ�r/k� ≤ k C by PhiMix(C). For any θ and θ′ in Θ let
us put

V (θ, θ′) = E

{[
�
(

Xk+1, fθ(Xk, ..., X1)
)

− �
(

Xk+1, fθ′(Xk, ..., X1)
)]2}

.

We are going to apply Lemma 5.3.3. Remark that σ2(f) ≤ V (θ, θ)/(n − k)2.
Also,
∣∣∣∣� (Xi+k, fθ(Xi+k−1, . . . , Xi+1)) − � (Xi+k, fθ(Xi+k−1, . . . , Xi+1))

∣∣∣∣
≤ K |fθ(Xi+k−1, . . . , Xi+1) − fθ(Xi+k−1, . . . , Xi+1)| ≤ KLB

where we used LipLoss(K) for the first inequality and Lip(L) and PhiMix(B, C)
for the second inequality. This implies that ‖f‖∞ ≤ 2KLB/(n − k), so we can
apply Lemma 5.3.3 for any 0 ≤ λ ≤ (n − k)/(2kKLBC)], we have

lnE exp
[
λ
(

R(θ) − R(θ) − r(θ) + r(θ)
)]

≤ 8kCV (θ, θ)λ2
n − k

.

Notice finally that Margin(K) leads to

V (θ, θ) = K
[
R(θ) − R(θ)

]
This proves the first inequality of Lemma 5.10.4. The second inequality is proved
exacly in the same way, but replacing f by −f .

We are now ready to state the following key Lemma.

Lemma 5.10.5. Under the hypothesis of Theorem 5.7.1, we have, for any 0 ≤
λ ≤ (n − k)/(2kKLBC), for any 0 < ε < 1,

P

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∀ρ ∈ M1
+(Θ),(

1 − 8kCλ
n−k

) (∫
Rdρ − R(θ)

)
≤ ∫ rdρ − r(θ) + K(ρ,π)+log(2/ε)

λ

and∫
rdρ − r(θ) ≤

(∫
Rdρ − R(θ)

) (
1 + 8kCλ

n−k

)
+ K(ρ,π)+log(2/ε)

λ

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
≥ 1 − ε.
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Proof of Lemma 5.10.5. Let us fix ε, λ and θ ∈ Θ, and apply the first inequality
of Lemma 5.10.4. We have:

E exp
{

λ

[(
1 − 8kCλ

n − k

)(
R(θ) − R(θ)

)
− r(θ) + r(θ)

]}
≤ 1,

and we multiply this result by ε/2 and integrate it with respect to π(dθ). Fubini’s
Theorem gives:

E

∫
exp
⎧⎨⎩λ

⎡⎣(1 − 8kCλ

n − k

)(
R(θ) − R(θ)

)
− r(θ) + r(θ) + log(ε/2)

⎤⎦⎫⎬⎭π(dθ)

≤ ε

2 .

We apply Lemma 5.3.1 and we get:

E exp
⎧⎨⎩supρ λ

⎡⎣(1 − 8kCλ

n − k

)(∫
Rdρ − R(θ)

)
−
∫

rdρ + r(θ)

+ log(ε/2) − K(ρ, π)
⎤⎦⎫⎬⎭ ≤ ε

2 .

As ex ≥ 1R+(x), we have:

P

⎧⎨⎩supρ λ

⎡⎣(1 − 8kCλ

n − k

)(∫
Rdρ − R(θ)

)
−
∫

rdρ + r(θ)

+ log(ε/2)
⎤⎦− K(ρ, π) ≥ 0

⎫⎬⎭ ≤ ε

2 .

Let us apply the same arguments starting with the second inequality of Lemma 5.10.4.
We obtain:

P

⎧⎨⎩supρ λ

⎡⎣(1 + 8kCλ

n − k

)(
R(θ) −

∫
Rdρ

)
− r(θ) +

∫
rdρ

+ log(ε/2) − K(ρ, π)
⎤⎦ ≥ 0

⎫⎬⎭ ≤ ε

2 .

A union bound ends the proof. �

5.10.5 Proof of Theorem 5.7.1

Proof of Theorem 5.7.1. Fix 0 ≤ λ = (n − k)/(4kKLBC) ∧ (n − k)/(16kC) ≤
(n−k)/(2kKLBC). Applying Lemma 5.10.5, we assume from now that the event
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of probability at least 1 − ε given by this lemma is satisfied. In particular we
have ∀ρ ∈ M1

+(Θ),∫
Rdρ − R(θ) ≤

∫
rdρ − r(θ) + K(ρ,π)+log(2/ε)

λ(
1 − 8kCλ

n−k

) .

In particular, thanks to Lemma 5.3.1, we have:
∫

Rdρ̂λ − R(θ) ≤ inf
ρ∈M1

+(Θ)

∫
rdρ − r(θ) + K(ρ,π)+log(2/ε)

λ(
1 − 8kCλ

n−k

) .

Now, we apply the second inequality of Lemma 5.10.5:∫
Rdρ̂λ − R(θ)

≤ inf
ρ∈M1

+(Θ)

(
1 + 8kCλ

n−k

) [∫
Rdρ − R(θ)

]
+ 2K(ρ,π)+log(2/ε)

λ(
1 − 8kCλ

n−k

)

≤ inf
j

inf
ρ∈M1

+(Θj)

(
1 + 8kCλ

n−k

) [∫
Rdρ − R(θ)

]
+ 2

K(ρj ,π)+log
(

2
εpj

)
λ(

1 − 8kCλ
n−k

)

≤ inf
j
inf
δ>0

(
1 + 8kCλ

n−k

) [
R(θj) + δ − R(θ)

]
+ 2

dj log
(

Dj
δ

)
+log
(

2
εpj

)
λ(

1 − 8kCλ
n−k

)
by restricting ρ as in the proof of Theorem 5.6.5. First, notice that our choice
λ ≤ (n − k)/(16kC) leads to

∫
Rdρ̂λ − R(θ) ≤ 2 inf

j
inf
δ>0

⎧⎨⎩32
[
R(θj) + δ − R(θ)

]
+ 2

dj log
(

Dj

δ

)
+ log

(
2

εpj

)
λ

⎫⎬⎭
≤ 4 inf

j
inf
δ>0

⎧⎨⎩R(θj) + δ − R(θ) +
dj log

(
Dj

δ

)
+ log

(
2

εpj

)
λ

⎫⎬⎭ .

Taking δ = dj/λ leads to

∫
Rdρ̂λ − R(θ) ≤ 4 inf

j

⎧⎨⎩R(θj) − R(θ) +
dj log

(
Djeλ

dj

)
+ log

(
2

εpj

)
λ

⎫⎬⎭ .

Finally, we replace the last occurences of λ by its value:∫
Rdρ̂λ − R(θ)

≤ 4 inf
j

⎧⎨⎩R(θj) − R(θ) + (16kC ∨ 4kKLBC)
dj log

(
Dje(n−k)
16kCdj

)
+ log

(
2

εpj

)
n − k

⎫⎬⎭ .
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Jensen’s inequality leads to:

R
(
θ̂λ

)
− R(θ)

≤ 4 inf
j

⎧⎨⎩R(θj) − R(θ) + 4kC (4 ∨ KLB)
dj log

(
Dje(n−k)
16kCdj

)
+ log

(
2

εpj

)
n − k

⎫⎬⎭ .

�
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