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Greffage de couches organiques par électrochimie 
bipolaire  
Résumé : 
Dans cette thèse, le concept d’électrochimie bipolaire qui permet de réaliser des 
réactions électrochimiques par l’application d’un champ électrique, sur un objet 
conducteur placé dans une solution électrolytique sans aucun contact avec les 
électrodes, a été utilisé pour générer des objets Janus possédant une partie 
organique et une partie inorganique. Comme preuve de principe, des billes de 
carbone vitreux de taille micrométrique ont été modifiées de manière asymétrique 
par électrochimie bipolaire en réduisant un sel d’aryl diazonium. La couche 
organique ainsi greffée a pu être observée après interaction avec des nanoparticules 
d’or, ou des molécules fluorescentes. Les résultats ont montré que la moitié de la 
surface des billes a pu être modifiée de manière sélective et avec une grande 
précision. En ajustant le temps et/ou le champ électrique utilisé pour la réduction du 
sel de diazonium, la surface greffée peut être modulée. Ce concept a été généralisé 
à l’échelle nanométrique sur des nanotubes de carbone alignés verticalement. Ces 
nanotubes de carbone ont été préparés par un dépôt chimique en phase gazeuse en 
utilisant un template d’oxyde d’aluminium poreux. L’électrogreffage bipolaire d’une 
couche organique uniquement sur une extrémité des nanotubes et uniquement sur la 
face interne de ces tubes, a été possible en conservant les nanotubes piégés dans le 
template d’oxyde d’aluminium. Cette technique ouvre donc la voie d’applications 
dans le domaine des piles à combustible, des bio-capteurs, et également pour la 
délivrance contrôlée de médicaments. 
Mots clés : électrochimie bipolaire, particules Janus, électrogreffage, sels de 
diazonium, carbone,  nanotubes de carbone, oxyde d’aluminium anodique 
 
Grafting of Organic Layers via Bipolar Electrochemistry 
Abstract :  
In this thesis, the concept of bipolar electrochemistry, which allows carrying out 
electrochemical reactions on a free-standing conductive object in an electric field, 
was employed to generate Janus-type objects with a hybrid organic-inorganic 
composition. As a proof-of-concept micrometer-sized glassy carbon beads were 
modified asymmetrically via the bipolar electrochemical reduction of aryl diazonium 
salts. The grafted organic layers can be probed either with gold nanoparticles 
(AuNPs) or with fluorescent molecules. The results show that one-half sphere of the 
beads was modified selectively and with high precision. This concept was then 
generalized to vertically aligned carbon nonotubes (VACNTs). They were prepared 
via chemical vapor deposition using porous anodic aluminum oxide (AAO) as 
template. The bipolar electrografting of an organic layer onto the inner surface of the 
VACNTs was performed by using the tubes that were still embedded in the pores of 
the AAO membrane as the starting material. The grafted results can be visualized by 
coupling them with AuNPs. After the AAO removal, the results reveal a grafting of 
organic layers only at one end of the tubes along the inner wall. For both cases, fine 
tuning of the deposition time and/or the electric field used for the reduction of 
diazonium salts can control the geometric area of the grafting. This technique opens 
up applications of these objects in the fields of controlled drug delivery and storage. 
Keywords : Bipolar Electrochemistry, Janus particles, Electrografting, 
Diazonium salts, Carbon, Carbon nanotubes, Anodic aluminum oxide 
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Chapter I: GENERAL INTRODUCTION 
 

 The present thesis is dealing with the controlled surface modification of carbon 

objects based on the concept of bipolar electrochemistry. Different approaches allowing 

the immobilization of ultrathin layers of organic molecules on the surface of isotropic or 

anisotropic particles will be explored with the final goal to obtain asymmetric Janus-type 

objects. In the following the most important ingredients for this work in terms of 

materials and mechanisms will be briefly described in order to set the fundamental 

scientific background for the understanding of the subsequent chapters.  

 

1. Carbon materials 

 

Carbonaceous materials have been widely used in various applications and 

technologies as they are present in different forms (ranging from powder to fibers) and 

allotropes (i.e. diamond, graphite, graphene, amorphous carbon, fullerenes, carbon 

nanotubes (CNTs), glassy carbon) and have a rich variety of dimensionality (ranging 

from 0D to 3D) and structural scale (ranging from micro- to nanoscale) as shown in 

Figure 1. 
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Figure 1 Six allotropes of carbon with all possible dimensionalities. The carbon forms 

structures of zero – dimension (0D) like fullerene, one – dimension (1D) as 

single- and multi-walled carbon nanotubes, two – dimensional (2D) graphene 

sheets, and, three – dimensional (3D) graphite and diamond.  

 

The physical properties of carbon materials vary widely with their different forms 

even though all forms consist of pure carbon. For example, diamond is one of the hardest 

materials, it is colorless and transparent and has very low electrical conductivity (Collins, 

1993) while graphite is very soft (can be used to write on paper), black, and it is a great 

electrical conductor (Deprez and McLachlan, 1988). Carbon materials with good 

electrical conductivity, chemical and mechanical stability, light-weight and a relatively 

low price (compared to noble metals) have been widely used for electrochemical 

applications. For example, glassy carbon has been traditionally used as an electrode 

material for electro-analytical applications (Van der Linden and Dieker, 1980). CNTs, 

graphene, activated carbon and porous carbon have been used as the electrode materials 
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for storage of electrochemical energy in batteries or supercapacitors (Chen and Dai, 

2013; Frackowiak and Béguin, 2001). In addition, much attention has been paid to the 

use of graphene, CNTs and porous carbons as the supporting materials for 

electrocatalysts recently (Li et al., 2012). 

 

Glassy carbon is a non-graphitizing carbon. It has been fabricated since the early 

1960s (Cowlard and Lewis, 1967; Lewis et al., 1963; Ulrich et al.). Commonly, it is 

generated from polymeric precursors via heat treatment in the temperature range of 1000 

- 3000 �C under an inert atmosphere. This treatment introduces its distinguishing 

properties including high mechanical strength, high thermal, oxidation (in the presence of 

water vapor, oxygen, or carbon dioxide) and chemical (especially for acids) resistance, as 

well as good electrical and thermal conductivity (Harris, 2004; Harris and Kawamura, 

1976; Jenkins et al., 1972). Due to these unique properties, glassy carbon has been used 

as material for high-temperature crucibles and electrodes.  Glassy carbon has a highly 

disordered structure. Unlike graphite, which is an allotropic form of carbon possessing a 

structure with the sheets of the hexagonal (honeycomb) carbon lattices or graphene 

sheets, glassy carbon was proposed to have a fullerene-related microstructure in which 

the sp2 hybridized carbon atoms arrange in planes with a hexagonal symmetry. The 

proposed structure consists of discrete fragments of the curved carbon planes. The five- 

and seven-membered rings are dispersed randomly throughout the networks of the six-

membered rings and bend the hexagonal carbon planes (Harris, 2004).  

  

CNTs have also attracted great attention from both experimental and theoretical 

points of view. This is because they possess a huge surface-to-volume ratio, remarkable 

thermal and mechanical properties, unique electrical and optical properties opening up 

various applications for coatings, composites, electronics, energy storage, catalysis, and 

biotechnology (De Volder et al., 2013). CNTs were firstly observed in the carbon soot of 

graphite rods during an arc-discharge experiment in which carbon was evaporated at high 

temperatures via the arc discharge of high voltage under inert gas environment in 1991 by 
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Iijima (Iijima, 1991). Until recently, various methods have been utilized for the synthesis 

of CNTs. Among one of them, the catalytic chemical vapor deposition (CCVD) 

incorporating the catalyst-assisted thermal decomposition of carbon sources at high 

temperature (600 - 1200°C) (José-Yacamán et al., 1993; Walker et al., 1959) has the 

highest potential for large-scale production of CNTs because it is a simple, low-cost and 

easy to scale-up method (Endo et al., 2006).  

 

CNTs possess a cylindrical nanostructure. Their structure can be considered as the 

rolling rolled-up graphene sheets. Depending on the number of the rolled graphene sheet, 

CNTs can be categorized into two major types including single-walled carbon nanotubes 

(SWCNTs) and multi-walled carbon nanotubes (MWCNTs). CNTs have superior 

electrical properties as they are 1-D carbon structures with high aspect ratio (length-to-

diameter ratio) in which electrons can move only forward or backward along the length 

of tubes and are not easy to scatter (Avouris et al., 2003). In addition, their electronic 

properties can be varied depending on the morphology. For example, MWCNTs are 

metallic and can carry an electrical current of up to 109 A.cm-2 (Wei et al., 2001) while 

SWCNTs may be metallic or semiconducting depending on the arrangement of the 

graphene lattice with respect to the tube axis or the chirality.  

 

Nevertheless, due to the inert pristine surface leading the poor solubility of CNTs 

in most commonly-used solvents and the strong intertube forces keeping the tubes 

together in bundles, their manipulation is limited. As a result, their practical applications 

in many promising fields are hampered.  

 

2. Surface functionalization 

 

Surface functionalization offers the great advantage of producing soluble and 

easy-to-handle tubes. Furthermore, it is possible to introduce novel properties such as 

biocompatibility which allows using them as drug delivery agents in living systems in 



5 
 

drug therapy (Shim et al., 2002; Wu et al., 2008). Advanced modifications can not only 

improve the relevant properties of CNTs, but also can allow the fabrication of novel 

composites with desirable properties extending the application of CNTs. For example, 

functionalized CNTs can be used as catalyst support to enhance the catalytic activity for 

fuel cell (Guo and Li, 2005). 

 

Chemical methods are typically used for the surface functionalization of CNTs. 

The chemical modification can be achieved via two approaches: covalent and non-

covalent approaches. In the covalent approach, the functional groups are covalently 

attached to the tube sidewalls and/or the ends of the tubes. In the non-covalent approach, 

the functionalizations typically include wrapping by polymers (O'Connell et al., 2001), 

encapsulation by surfactant molecules (Hu et al., 2008) or π-stacking by conjugated 

macromolecules (Davis et al., 2003). Comparing these approaches, the non-covalent 

functionalization can better maintain the original geometric structure and properties of 

CNTs including electronic properties due to little or no structural damage. However, it 

usually suffers from some disadvantages such as the requirement of specific complex, 

synthetic and/or expensive reagents. Although the covalent methods are more efficient 

for the tube functionalization providing a very stable derivatization compared to the non-

covalent functionalization (Hoffman et al., 1991; Wildgoose et al., 2005), most of them 

require harsh reaction conditions such as using concentrated strong acids and thus 

significantly damage the tubes. Typically, CNTs are etched and shortened during the 

modification. 

 

Electrochemically assisted covalent modification is an attractively alternative 

method for the modification of carbon materials. It is based on the electrogeneration of a 

highly reactive (radical) species near a carbon surface after a constant potential 

(potentiostatic) or a constant current (galvanostatic) is applied to the carbon electrode 

immersed in the solution that consists of a suitable reagent. Recently, two strategies 

involving the electrochemical reduction of aromatic diazonium salts (used in this thesis) 



6 
 

(Delamar et al., 1992) and the oxidation of aromatic amines (Barbier et al., 1990) have 

been reported in the literature. As an advantage over the common chemical 

functionalization, the electrochemically assisted modification does not require harsh 

chemical reagents, and thus, provides a modification without etching and shortening of 

carbon materials (Delamar et al., 1992). 

 

3. Aryl diazonium salts 

 

Diazonium compounds or diazonium salts are organic compounds with a 

diazonium group (N2
+). They have the general chemical formula R-N2

+ X- where R can 

be any organic residue such alkyl or aryl and X is an inorganic or organic anion. 

Diazonium salts with an aryl group, which is the functional group or the substituent 

derived from an aromatic ring, are important intermediates in organic synthesis, 

especially for the synthesis of azo dyes (Robert et al., 2011; Zollinger, 2003). Typically, 

aryl diazonium salts are prepared in cold (0 ºC to 10 ºC) aqueous solution (Furniss et al., 

1989). They can generally react with various nucleophiles during the substitution 

reaction, producing the corresponding molecules with various functional groups 

including halogens, amino (-NH2), hydroxyl (-OH), or cyano (-CN) groups (Allongue et 

al., 1997). Diazonium compounds can also be coupling agents for linking polymers, 

biomacromolecules, and other species (e.g. metallic nanoparticles) to the surface of 

carbon materials (Mahouche-Chergui et al., 2011). 

  

The electrochemical reduction strategy using aryl diazonium salts was primarily 

developed by Jean Pinson and co-workers in 1992 (Delamar et al., 1992). Soon after, it is 

further developed by a number of other groups (Allongue et al., 1997; Delamar et al., 

1997; Kumsapaya et al., 2013; Mahouche-Chergui et al., 2011; Pinson and Podvorica, 

2005; Radi et al., 2008). The basic mechanism involved in the carbon modification via 

this strategy is shown schematically in Figure 2. The aryl radical is generated in the 

vicinity of the carbon surface by a one-electron electrochemical reduction of a diazonium 
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cation. Subsequently, the resulting radical species attach onto the carbon surface via a 

covalent bond (Andrieux and Pinson, 2003; Bahr et al., 2001). The advantage of the use 

of aryl diazonium salts compared to other carbon surface modifiers lies in their ease of 

the preparation due to the rapid electrochemical reduction reaction and the resulting 

strong aryl-surface covalent bonding (Wildgoose et al., 2005). In addition, as mentioned 

above, it provides a large choice of functional groups (Downard, 2000a). For these 

reasons, this strategy has been employed for a wide range of applications including 

sensing (Yang et al., 2003), catalysis (Guo and Li, 2005), and materials science 

(Mahouche-Chergui et al., 2011). 

 

carbon 
substrate R+N2+

e-+
- N2

R+ . N2+ R

   Diazonium cation         Aryl radical 

 

Figure 2 Schematic illustration of the basic mechanism involved in the carbon 

modification via the electrochemical reduction of aryl diazonium salts. R can 

be any organic residue such alkyl or aryl or substituted functional 

substituents such as halogens, amine or amino (-NH2), hydroxyl (-OH), or 

cyano (-CN) groups. 

 

In the beginning, the carbon modification via the electrochemical reduction of 

aryl diazonium salts was considered as a monolayer modification (Delamar et al., 1992). 

However, multilayer films of organic compounds can be formed on the carbon substrate 

(Brooksby and Downard, 2005; Kariuki and McDermott, 1999; 2001; Marcoux et al., 

2004) due to the difficulty to precisely control the surface modification. The aryl 

multilayers are formed by the reaction of the electrochemically generated radicals with 

the aryl groups that are already bound to the carbon surface as illustrated in Figure 3. 
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Figure 3  Schematic mechanism of multilayer formation during the modification on the 

carbon substrate via the electrochemical reduction of aryl diazonium salts. The 

dotted lines show the possible positions to form further bonds during the 

multilayer growth of phenyl units on the carbon substrate. 

 

The magnitude of the applied potential is an essential parameter to control the 

film thickness (Brooksby and Downard, 2004; Downard, 2000b). The more the negative 

applied potential, the thicker the film (Downard, 2000b). Furthermore, the film thickness 

depends not only on the applied potential, but also on the type and the concentration of 

the diazonium salts, the employed substrate, and the duration of the electrochemical 

modification (Ceccato et al., 2011). For example, Kariuki and co-workers (Kariuki and 

McDermott, 2001) demonstrated that multilayer films of diethylaniline were grown 

continuously over 30 min deposition time on the glassy carbon electrode with an average 

film thickness of 20 nm. Phenyl acetic acid and nitrophenyl films with a thickness of 15 – 

25 nm can be produced by using this procedure. In fact, the thickness of a monolayer of 

phenyl and nitrophenyl groups are approximately 0.59 nm and 0.68 nm, respectively 

(Yang and McCreery, 1999). This indicates that multilayer aryl films with these 

functional groups are deposited on the glassy carbon electrodes by using the deposition 

times greater than 10 min for reducing the corresponding diazonium salts (Kariuki and 

McDermott, 2001). Allongue and co-workers demonstrated that 84% of the aryl radicals 

generated electrochemically (Figure 2) form bonds with a glassy carbon surface whereas 

only 56% form bonds with the basal planes of highly oriented pyrolytic graphite (HOPG) 

(the rest escapes into the solution) (Delamar et al., 1997). Thus controllable modification 
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on carbon substrates via electrochemical reduction of aryl diazonium salts is still a 

challenge for developing further applications of CNTs. 

 

Although the electrochemical reduction of diazonium salts has become very 

attractive for the derivatization of carbon surfaces, the main disadvantage of this 

approach is that the step for the salt synthesis (called as "diazotation", "diazoniation", or 

"diazotization") is required. The diazotization typically includes the treatment of aromatic 

amines such as aniline with nitrous acid, which is usually generated in situ from sodium 

nitrite (NaNO2) and mineral acid (HX) such as HCl, as shown in Figure 4 (Allongue et 

al., 1997; Furniss et al., 1989; Yang et al., 2003). As the products are rather unstable and 

tend to lose the N2 molecule from their structure at temperatures above 5 °C in aqueous 

solutions (only diazonium compounds in the form of tetrafluoroborate salts can be kept 

almost indefinitely at room temperature) (Sagar, 1996), their isolation for further use is 

difficult. The stability of salts also depends on the acidity/basicity of medium. The salts 

are more stable in acidic medium (especially for a pH lower than 3) compared to neutral 

and alkaline media (Pazo-Llorente et al., 2004).  

 

In a simpler and efficient way, diazonium salts are generated in a medium via 

diazotization of aryl amines and are then immediately used in the further reaction without 

isolation from the medium. Because the results of the grafting obtained by either the 

isolated diazonium salts or the in situ-generated corresponding salts are comparable 

(Belanger and Pinson, 2011; Shul et al., 2013), this in situ strategy has become very 

attractive for carbon modification. The modification of carbon surfaces based on aryl 

diazonium is usually achieved by the addition of either NaNO2 in water or nitrosonium 

tetrafluoroborate (NOBF4) in acetonitrile (Downard, 2000a; Pinson and Podvorica, 2005).  
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R+N2

X-

 

Aromatic amine         Diazonium salt 

 

Figure 4  Schematic illustration of the standard diazotization reaction. The diazonium 

salt is prepared from the reaction of aromatic amine and nitrous acid, which is 

generated in situ from sodium nitrite (NaNO2) and mineral acid (HX). 

 

Amine (-NH2) and carboxylic acid (-COOH) functional groups are present in 

amino acids, which are the building blocks of proteins and of biologically important 

organic compounds. Amide functional groups (-CONH) are fundamental components of 

biological molecules. The amide coupling of carboxylic acids and amines is one of the 

most common methods employed to immobilize a protein or a peptide through a covalent 

bond onto the surface of supporting materials. Figure 5 is the schematic illustration of the 

strategy used to immobilize bio-molecules on the surface of materials. The amide bond is 

formed between the carboxylic acid group, which is introduced on the material surface 

via aryl diazonium chemistry, and the amine group of the bio-molecule. Therefore, amine 

and carboxylic acid groups are the key functional groups for the modification of carbon 

materials for exploring their potential in biological applications including bio-sensing 

(Yang et al., 2003), bio-fuel cell (Pellissier et al., 2008a), bio-electrocatalyst (Guo and Li, 

2005) and drug delivery (Liu and Gooding, 2006; Liu et al., 2007). Therefore we are 

going to use this versatile immobilization strategy also in the present thesis.  
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Figure 5 Schematic illustration showing a strategy to immobilize bio-molecules 

through the formation of an amide bond between the carboxylic acid 

functional group of the material surface modified by aryl diazonium and 

the amine functional group of the bio-molecule. 

 

4. Janus particles 

 

Asymmetry brings an additional degree of freedom when increasing the 

complexity of micro/nano-materials that is promising for advanced applications such as 

directed self-assembly, molecular electronics, sensing and catalysis (Fattah et al., 2011; 

Himmelhaus and Takei, 2000; Loget and Kuhn, 2011a). Janus particles are asymmetrical 

functionalized particles with two different parts of surface compositions. The name of 

“Janus” is borrowed from the Roman god of beginnings and transitions whose two faces 

are looking into the opposite directions. Janus particles can have several geometric 

characteristics such as spheres (most commonly) (Nisisako et al., 2006), cylinders (Loget 

et al., 2011) and discs (Walther et al., 2009). They can for example incorporate different 

chemical compositions (Paunov and Cayre, 2004), polarities (Cayre et al., 2003a), and/or 

colors (Nisisako et al., 2006) on their two parts upon design. Therefore Janus particles 

are very promising for diverse applications. 
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For example, the particles can be designed to have both hydrophilic and 

hydrophobic parts on their surface. These particles are called amphiphilic Janus particles. 

These particles behave like amphiphilic surfactants, which can stabilize water-in-oil or 

oil-in-water emulsions (Binks and Lumsdon, 2001). Amphiphilic Janus particles are 

sometimes used for the water-repellent textile applications. For this application, the 

hydrophilic side of the particles is bound to the surface of a textile such as polyethylene 

terephthalate fabric whereas their hydrophobic side is exposed to the environment 

providing water-repellent behaviors (Loget and Kuhn, 2010). Janus particles can be 

designed to have opposite charges on their both sides resulting in bipolar Janus particles 

(Cayre et al., 2003b). They allow remote control of their position and orientation in an 

electric field (Cayre et al., 2003a; b; Paunov and Cayre, 2004; Takei and Shimizu, 1997). 

If these particles are also bicolored by coating them with black color on one side and 

white color on the other side, they can be used for electronic ink applications in the 

electronic-paper display technology as shown in Figure 6 (Nisisako et al., 2006).  
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Figure 6  Top views and their magnified top views of color switching tests using 

bicolored Janus spheres with electrical and color anisotropies. Under an 

external electrical field within the display panel, these spheres turn to orient 

their black hemispheres (carbon black) to the negatively charged panel and 

their white hemispheres (titanium oxide) to the opposite panel. The particles 

flip after reversing the electric field gradient. Scale bar is 100 μm. Adapted 

from reference (Nisisako et al., 2006). 

 

Additionally, some Janus particles allow the evolution of gas from a catalytic 

reaction on one side of them due to their chemical composition. The gas evolution 

triggers propulsion of the particle. The particles then can act as jets or swimmers and be 

potentially applied as vehicles for drug delivery (Loget and Kuhn, 2010). Some types of 

Janus particles could be used as probes or sensors for some chemicals or bio-chemicals 

when modified with selective receptors or corresponding chemical active compounds. 

Apart from the applications mentioned above, some Janus particles can also be used as 

materials for targeting (Yang et al., 2012) and as catalysts (Faria et al., 2010; Fattah et 

al., 2011; Mano and Heller, 2005). 
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Several techniques have been adopted to fabricate Janus particles. One of the 

simplest techniques is based on the use of surfaces to break the symmetry. For example, 

the particles are placed on a planar solid substrate, which functions as the protecting 

surface. Then the obtained surface is coated with a chemical substance or stamped with  

ink resulting in particles with two different faces (Casagrande et al., 1989; Cayre et al., 

2003b). The uncoated side of the particles can also be further modified with different 

deposits leading to a higher control of the functionalities of the particles (Cayre et al., 

2003b). Nevertheless, the main disadvantage of this preparation technique is that a large 

scale production is limited. In order to obtain a relatively large quantity of Janus particles, 

the production in a liquid emulsion using interfaces to break the symmetry was 

employed. In this technique, the homogeneous particles are located at the interface of an 

emulsion of two immiscible phases. Then the particle surface is modified by the 

substances presented in one or both phases (Aveyard et al., 2003; Hong et al., 2006). 

Still, this technique does not allow an efficient and precise control of the modification 

(Nisisako et al., 2006). Besides that, Janus particles can be also obtained by microfluidic 

techniques. This technique provides an outstanding control in the particle morphology 

(Nie et al., 2006; Nisisako and Torii, 2007; Nisisako et al., 2006). However, this 

technique requires sophisticated microfluidic devices. Additionally, the controlled 

nucleation and growth technique can be applied to produce Janus particles with different 

shapes e.g. dumbbells (Yu et al., 2005), snowmen (Gu et al., 2004) and acorns (Teranishi 

et al., 2004). With this technique, a single particle of the second material is grown onto 

the surface of each original particle (Yu et al., 2005). Nevertheless, the precise control of 

nucleation and growth of particles in that way is rather difficult. 

 

Taking into account the above mentioned drawbacks it is still a very important 

challenge to develop scalable processes or bulk processes, yielding micro- and 

nanometer-sized objects in relatively large quantities, required for technological and 

commercial applications. Although a few methods providing bulk synthesis of Janus 

particles were reported, they still do not allow a fine-tuning of the particle characteristics. 
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Recently, a new approach based on bipolar electrochemistry has been suggested that 

satisfies such criteria. 

 

5. Bipolar electrochemistry 

 

5.1. Principle of bipolar electrochemistry 

 

The concept of bipolar electrochemistry on microobjects was first described by 

Fleischmann and co-workers in 1986 (Fleischmann et al., 1986). Under the influence of 

an external electric field, redox reactions, both oxidation (loss of electrons) and reduction 

(gain of electrons) reactions, can occur on a substrate placed between two feeder 

electrodes without any physical contact made between the conductive (or semi-

conductive) substrate and the electrodes when the potential drop in the solution is high 

enough to drive the reactions (Loget and Kuhn, 2011b; Mavré et al., 2010). For this 

reason, this approach allows a real bulk synthesis of Janus particles without any 

complexity related to the use of interfaces or surfaces to break the symmetry (Loget et 

al., 2012). 

 

Normally, the traditional electrochemical cell with a three-electrode setup consists 

of working, counter and reference electrodes. The potential of the working electrode is 

controlled relatively to the constant potential of the reference electrode by transferring 

electrons from or to the working electrode using a potentiostat, which means controlling 

the energy of electrons within the working electrode (Bard and Faulkner, 2001). Without 

the externally applied electric field, the solution potential is at a floating potential that 

relies on the composition of the solution (Mavré et al., 2010). When the potential of the 

working electrode reaches a value more negative (the energy of electrons is raised) than 

that of an electroactive molecule in the solution, electrons may transfer from the electrode 

to the oxidize species in solution (reduction reactions) (Bard and Faulkner, 2001) (Figure 
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7). On the other hand, the oxidation reactions can occur when the electron transfer is in 

the opposite way as shown at left side in Figure 7. 

 

 
 

Figure 7 Schematic illustration of electron transfer across the electrode-solution 

interface for the oxidation (left) and the reduction (right) reactions involving 

two different redox couples in the solution, Ox1/Red1 and Ox2/Red2, 
respectively.  

 

For bipolar electrochemistry, unlike the normal case of electrochemical reactions, 

the conducting substrate has no contact with the power supply, its potential thus cannot 

be controlled but it is the solution potential that is controlled by the power supply. 

Furthermore, in contrasts to common electrochemistry, the anodic process occurs at the 

negative side of the field set up in the solution while the cathodic reduction occurs at the 

positive one. This is a characteristic feature of bipolar electrode (BPE).  
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5.2. Open bipolar electrochemistry  

 

Until recently, the strategies which have been used for bipolar experiments can be 

divided into two categories. In the first category that was used in this work, the redox 

reactions are taken place on a substrate, which is completely immersed in an electrolyte 

(Figure 8). This approach is called open bipolar electrochemistry. 

 

 
 

Figure 8 Scheme of (a) the open bipolar configuration. When a conductive (or semi-

conductive) substrate is placed between two feeder electrodes in an electrolyte, 

and if the potential drop in the solution depicted in (b) is high enough, the 

redox reactions can occur at the bipolar electrode. 

 

Figure 8a illustrates the experimental set-up corresponding to the open bipolar 

electrochemistry approach. The present set-up allows a direct observation of the 

individual redox reactions occurring at the ends of the conductive substrate in response to 

the applied field across the solution. A conductive (or semi-conductive) substrate is 

placed in an electrolyte in a reservoir. A potential difference, Etot = Ea – Ec, where Ea and 

Ec represent the potential of anode and cathode, respectively is applied between two 
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feeder electrodes separated by a distance L. Due to the high resistance of the solution, the 

majority of Etot drops linearly along the channel length (Mavré et al., 2009) (Figure 8b). 

If we assume that the potential drop at the feeder electrode-solution interface is 

negligible, then Etot drops linearly across the solution. The interfacial potential difference 

between the BPE and the solution becomes the driving force for the bipolar 

electrochemical reactions (Mavré et al., 2010). Therefore, the resulting electric field (E) 

in the solution is given by E = Etot/L.  

 

When a BPE, either of spherical or tubular shape, is placed inside the electrolytic 

solution, a fraction of Etot, denoted as ΔV, drops along its characteristic length (or 

diameter), d, following equation (1) (Duval et al., 2001; Mavré et al., 2010): 

                                              

 

                                           

The BPE potential floats (it is not controlled with respect to a reference value) at 

an equilibrium value (Veq) situated between the solution potential at one end (Vc) and the 

other end (Va) of the BPE (Mavré et al., 2009). The value depends on the composition of 

the electrolyte solution and the object’s position in the field.  

 

 The position x0 in Figure 8b defines the position at which the solution potential is 

equal to Veq, meaning that at that position no electrochemical reactions occur. This point 

separates the conductive substrate into two poles: the anodic pole (δ+), where the solution 

potential is lower than Veq and the cathodic pole (δ-), where the solution potential is 

higher than Veq at x > x0 and x < x0, respectively. Under the influence of the applied 

electric field, the potential difference at the substrate surface-solution interface induces a 

polarization potential (V), which may or may not be sufficient to drive an electrochemical 

reaction. If the electric field is considered to be constant, V varies linearly as a function of 

…(1) E 
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the position x along the interface as calculated by equation (2) and equation (3) for a 

spherical and a tubular substrate, respectively: 

 

V(x) = E (x – x0) cos Θ                                                …(2) 

V(x) = E (x – x0)                                                     …(3) 

 

Accordingly, V increases when moving towards both ends of the substrate. The 

maximum polarization potential difference (ΔV) is present at the extremities of the 

substrate, according to the equation (1); ΔV = E d. The value of ΔV indicates the overall 

polarization between the ends of the substrate. This means that it controls directly the 

reactivity at the extremities of the polarized interface.  

 

In general, two different redox couples, Ox1/Red1 and Ox2/Red2, are involved in 

the anodic and cathodic processes via two irreversible reactions (Figure 7): 

 

Red1
 -----> Ox1 + n1 e-                                        …(4) 

Ox2 + n2 e------> Red2        …(5) 

 

where, n1 and n2 represent the number of electrons involved in each half-reaction with the 

standard potentials of E1� and E2�, respectively.  

 

In order to generate two redox reactions simultaneously, the minimum potential 

value (ΔVmin) needs to be at least equal to the difference between the standard potentials 

of the two redox couples (see equation (6)). 

 

ΔVmin = E1� - E2�                                                    …(6) 

 

 If the applied electric field induces a large enough polarization across the 

conductive substrate, that is ΔV > ΔVmin, then both electrochemical reactions in equation 
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(4) and (5) can occur at the opposite ends of the substrate. It is necessary that the 

oxidation reaction (equation (4)) occurs at the anodic pole (red arrow in Figure 8a) 

coupled electrically with the reduction reaction (equation (5)) at the cathodic pole (blue 

arrow in Figure 8a) to maintain the electroneutrality within the BPE (Mavré et al., 2010).  

 

Obviously, a BPE can be a material with any chemical composition and its 

structure can be of any dimension and scale, but its conductivity must be higher than that 

of the surrounding electrolyte. As this open bipolar electrochemistry approach can be 

generalized to various types of objects and can also be used to deposit various materials 

with different nature ranging from metals and semiconductors to polymers, this approach 

is therefore powerful and versatile opening up the way to a whole new family of complex 

objects with an increasingly sophisticated design, thus extending their potential 

applications (Loget and Kuhn, 2011b; Mavré et al., 2010). 

 

5.3. Closed bipolar electrochemistry 

 

In the second category, the conducting substrate is placed as a barrier between 

two feeder electrodes. The electrolyte is therefore separated into two distinct parts: an 

anodic and a cathodic compartment as shown in Figure 9. As there is no direct contact 

and exchange of ions between these two compartments, the total amount of the current 

has to flow through the substrate as an electronic current. Therefore the relative 

conductivity of the substrate and the electrolyte is no longer playing an important role, in 

contrast to what has been explained for the open configuration. Generally this approach, 

also known as closed bipolar electrochemistry, needs lower field intensities to achieve a 

sufficient polarization of the substrate with respect to the solution phase. (Guerrette et al., 

2012). Thus experiments can be carried out under less drastic conditions and can lead to a 

very controllable functionalization of the substrate surface.    
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Figure 9  Scheme of a closed bipolar electrochemical cell showing the oxidation (red 

arrow) and reduction (blue arrow) reactions generated separately on the anodic 

and cathodic parts of the bipolar electrode under the influence of the global 

electric field. 

 

5.4. Applications of bipolar electrochemistry 

 

Bradley and Ma first used the bipolar electrochemical technique to modify 

microscale carbon particles (Bradley and Ma, 1999). Palladium (Pd) catalysts could be 

electrochemically deposited on various carbon materials including graphite (Figure 10), 

carbon nanofibers, carbon nanotubes, and carbon nanopipes (Bradley et al., 2001; 

Bradley and Ma, 1999; Bradley et al., 2005).  

 



22 
 

 
 

Figure 10 Scheme of the preparation of bipolar electrodeposited catalyst. The 

electric field is applied between two graphite electrodes to deposit 

asymmetrically Pd on graphite particles that are sandwiched between 

layers of cellulose paper in a solution of PdCl2 in toluene/acetonitrile. 

Adapted from reference (Bradley and Ma, 1999).  

 

This technique has also been used to deposit conducting polymer (Babu et al., 

2005). However, it was necessary to immobilize the substrates on the surface of a solid 

(Bradley and Ma, 1999). For this reason, the employed method is considered as a surface-

confined method and not as a real bulk method. In addition, organic solvent was used to 

widen the potential window (Bradley and Ma, 1999) and to avoid problems related to 

side reactions such as water electrolysis, which generates macroscopic bubbles at both 

feeder electrodes and disturbs the orientation of the substrate in the electric field. Thus 

the employed technique is also not so attractive from an environmental point of view. 

  

Later, the capillary assisted bipolar electrodeposition (CABED) was described 

and applied to the selectively asymmetric decoration of multi-walled carbon nanotubes 

(MWCNTs) at one end with gold nanoparticles (AuNPs). In the experiment, the gold 

deposition occurred via the reduction of gold salts at the cathodic pole of MWCNTs 

whereas the water oxidation occurred at the anodic pole (Warakulwit et al., 2008). As 



23 
 

this procedure uses a real bulk-phase reaction in contrast to most of the literature methods 

based on interfaces to break the symmetry, this CABED process is very attractive for a 

mass production of asymmetric objects, especially nanoobjects. 

 

Subsequently, nickel (Ni) (Loget et al., 2010), platinum (Pt) (Fattah et al., 2011), 

copper (Cu) (Fattah et al., 2012) and silver (Ag) (Fattah et al., 2013) were also 

electrodeposited asymmetrically on carbon tubes with a length at the microscale via the 

bipolar electrochemical technique. It has been shown that this technique can not only 

provide carbon microtubes with a metal decoration at one end, but that metal can also be 

deposited on both ends of the tubes via adjusting strength and time of the applied electric 

field. For this purpose, the metal decoration was carried out first on one side (cathodic or 

reduction side) of the tubes by applying an electric field pulse. After that the field was 

turned off. This allowed the tubes to re-orientate or relax in the capillary. During the 

second pulse, the deposition occurs at a position depending on the relaxation time (Loget 

et al., 2011). The concept of bipolar electrochemical deposition has then be extended to 

the real bulk-phase reactions (Loget and Kuhn, 2011b). Janus objects with various types 

of substrates and deposits with diverse nature and shape have been successfully created 

(Fattah et al., 2012; Loget et al., 2010; Loget et al., 2012; Loget et al., 2013; Warakulwit 

et al., 2008) as shown in Figure 11.  
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Figure 11  Janus objects with various types of substrates and deposits obtained by bipolar 

electrochemistry: (a) optical micrograph of a carbon fiber modified with gold. 

SEM micrographs of (b) a carbon microfiber modified with a copper deposit, 

a carbon tube (c) modified with platinum, and (d) modified with nickel. (e) 

TEM micrograph of MWCNT modified with gold. SEM micrographs of 

micrometric glassy carbon beads (f) modified with gold, and (g) modified 

with silver. (h) SEM micrograph of submillimetric glassy carbon beads 

modified with platinum rings. (i) Optical micrograph showing a gold bead 

modified with polypyrrole. (j) TEM micrograph of a silver nanowire modified 

with silver chloride. Adapted from references (Fattah et al., 2012; Loget et al., 

2010; Loget et al., 2012; Loget et al., 2013; Warakulwit et al., 2008). 
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The special features of the fabricated hybrid materials gives rise to many 

applications in various fields including electrochemical reactors and batteries (Loget, 

2012), detection and separation (Mavré et al., 2010; Sheridan et al., 2011), microfluidic 

devices (Bouffier and Kuhn, 2013; Loget and Kuhn, 2010; 2011a; 2012), bipolar 

patterning (Inagi et al., 2010; Ulrich et al., 2008) and smart objects (Loget and Kuhn, 

2011b; Loget et al., 2011; Loget et al., 2013; Warakulwit et al., 2008). 

 

In this work, we aim to fabricate for the first time Janus particles with an organic 

layer grafted selectively at one side. The organic layer is generated via a bipolar 

electrografting technique using aryl diazonium salts as reagents. In the first proof-of-

principle experiments, micrometer-sized glassy carbon beads were used. Then the 

grafting technique has been generalized for another type of objects namely CNTs. 
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Chapter II: BIPOLAR ELECTROGRAFTING OF MOLECULAR 

LAYERS FOR JANUS-TYPE BEAD SYNTHESIS 

 
Janus-type beads with hybrid organic-inorganic compositions, opening up 

biological applications, were fabricated via two different grafting strategies. These 

strategies lead to the grafting of different functional groups onto the carbon substrate, 

namely amino and carboxylic groups. The details are described in the following. In this 

part, the first proof-of-principle experiments were performed by using micrometer-sized 

glassy carbon beads as carbon substrate. 

 

1. Modification of glassy carbon beads by bipolar electrochemical reduction of 4-

nitrobenzenediazonium salt 

 

First the bipolar electrochemical grafting of 4-nitrobenzene moieties onto the 

glassy carbon beads was carried out. The resulting immobilized 4-nitrobenzene moieties 

were used as the precursor of the amino-terminated aryl moieties. These amino groups 

are aimed for the further grafting of the carbon surface because they may be used as a 

very general platform for linking molecules or bio-molecules such as protein and DNA to 

the surface. This opens up the potential applications in fields of bio-sensing or 

biochemical micromotors (Mano and Heller, 2005).  

 

The strategy proposed for asymmetrical grafting the carbon bead with the amino-

terminated aryl groups is shown in Figure 12. In the first experimental step, asymmetric 

electrografting of 4-nitrobenzene moieties onto the bead is performed in an aqueous 

hydrochloric acid (HCl) solution. A 4-nitrobenzenediazonium tetrafluoroborate (BF4
- 

+N2-C6H4-NO2) salt is selected to be used as a reagent. This salt is one of the most 

common diazonium salts used for grafting nitro-phenyl groups to carbon based surfaces 

because it is commercially available, relatively stable (Sagar, 1996) and it has the nitro-

phenyl group which allows to monitor electrochemically the surface coverage via its 
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electrochemical reduction to aminobenzene. By immersing the carbon bead in the 

electrolyte and applying an external electric field, the bead can act as BPE where the 

reduction of diazonium salts and the water oxidation can occur at the cathodic and the 

anodic poles, respectively, if the induced polarization potential (ΔV) (see equation (1) in 

Chapter 1) is high enough. In principle, ΔV has to be at least equal to the difference 

between the formal potentials of the two involved redox couples. For the electrochemical 

reduction of diazonium salts leading to the grafting of the nitrobenzene groups on to the 

bead surface, the reduction potential (E1)  equals to 0.15 V vs Ag/AgCl (Baranton and 

Bélanger, 2005). For the water oxidation reaction: 2H2O → O2 + 4H+ + 4e-, the oxidation 

potential (E2) equals to 1.2 V vs Ag/AgCl. Then, a voltage of at least 1.05 V (calculated 

from the equation: ΔVmin = E2 – E1) has to be presented across the bead in order to trigger 

these coupled redox reactions on the two sides of the bead. This means that for a glassy 

carbon bead with diameter of about 800 μm, an electric field of at least 1313 V.m-1 

(calculated from E = ΔV/d = 1.05 V/ 800 μm) is required for the bipolar experiments. If 

an electric field below this threshold value is applied, the electrochemical reduction of 4-

nitrobenzenediazonium salts is impossible, and thus, no grafting can be obtained. This 

calculation demonstrates that the applied external voltage has to be at least 13.13*x V 

with a distance of x cm between the two feeder electrodes. Thus, if the distance between 

two feeder electrodes is �10 cm, we need to apply a voltage of at least 131 V between the 

electrodes to obtain the organic layer grafted site-selectively onto the bead. Taking into 

account eventual reaction overpotentials and potential drops at the electrodes a voltage 

two times higher than the theoretical value is suggested for the experiments. For instance, 

for the set-up with a distance between two feeder electrodes of �10 cm and a carbon bead 

with a diameter of �800 μm, a voltage of more than 300 V is required.  

 

The area on the bead that is modified by the organic layer is expected to be 

controllable by the variation of the applied voltage or electric field and the period of time 

that the voltage or the field is applied, namely the deposition time. The products 

containing the nitro-phenyl groups can be simply characterized by X-ray photoelectron 
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spectroscopy (XPS) and infrared spectroscopy (IR). The XPS presents a signal at ~406 

eV corresponding to nitro group (Delamar et al., 1997). Two strong IR bands 

corresponding to the antisymmetric and symmetric vibrations of the functional nitro 

groups are at ~1520 and 1340 cm-1 (Silverstein et al., 1991).  

  

In order to obtain amino groups attached onto the bead surface, the nitro groups of 

the grafted nitrobenzene moieties can be further electrochemically reduced to the amino 

groups. This reduction potential is -0.60 V vs Ag/AgCl (Brooksby and Downard, 2004). 

The obtained amino groups can then be further coupled with other functional groups such 

as carboxylic acid groups of molecules or bio-molecules such as proteins and DNA 

allowing their immobilization onto the carbon surface. 

 

The functional amino groups presented on the beads can be protonated under 

acidic conditions leading to a positively charged surface due to the NH3
+ groups. This 

allows an electrostatic attachment of the negatively charged species onto the bead 

surface. Electrostatic attachment of the negatively charged gold nanoparticles (AuNPs) 

onto the bead surface provides the labeling of the electrografted 4-aminobenzene layer 

(Bradley and Garcia-Risueño, 2011; Frens, 1973; Kimling et al., 2006). The presence of 

AuNPs can be simply observed by scanning electron microscopy (SEM). The colloidal 

negatively charged AuNPs can be easily obtained, for example, by the chemical reduction 

of gold ions in an aqueous solution containing citrate species.  
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Figure 12 Schematic illustration showing the strategy employed for site-selective 

modification of a glassy carbon bead by the amino-terminated aryl groups. 

The experimental steps are (a) asymmetric electrografting of 4-aminobenzene 

moieties in an aqueous HCl solution and (b) electrostatic attachment of 

citrate-reduced colloidal gold nanoparticles to the grafted bead for 

visualization of the grafted molecules. 
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1.1. Materials and Methods 

 

1.1.1. Materials 

 

Major Chemicals 

 

� Glassy carbon beads (spherical powder with diameter of 630-1000 μm, type 2, 

Alfa Aesar) 
� Carbon rods (99.997%, diameter of 2 mm, Goodfellow Cambridge Limited) 
� 4-Nitrobenzenediazonium tetrafluoroborate (97%, BF4

- +N2-C6H4-NO2, 

Sigma-Aldrich) 
� Gold (III) chloride trihydrate (≥99.9%, HAuCl4 . 3H2O, Sigma-Aldrich) 
� Citric acid-trisodium salt dihydrate (≥99%, HOC(COONa)(CH2COONa)2. 

2H2O, Sigma-Aldrich) 
� Hydrochloric acid (HCl, VWR International) 
� Ethanol (96%, C2H5OH, VWR International) 
� Deionized (DI) water (resistivity of 18 MΩ·cm, Milli-Q Integral 3, 

MILLIPORE) 
 
Major Equipment 

 

� High voltage power supply (6000V - 150 mA, CONSORT E862) 
� Blowlamp (Soudogaz X 2000 PZ, CAMPINGAZ) 

� Helping hand (tool) with adjustable arm ending in alligator clip 

� Ultrasonic processor/bath 

� Oven 

� Combined hot-plate magnetic-stirrer device 

� Glass Pasteur pipettes (with 0.53 mm wall thickness, 1.50 mm jet outer 

diameter, 230 mm long, VWR International) 
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� Scanning Electron Microscope (SEM) (performed with an accelerating 

voltage of 15 kV, TM-1000, Hitachi) 

� Zetasizer (Nano-ZS90, Malvern) with disposable folded capillary cell 

 

1.1.2. Methods 

 

1.1.2.1. Purification of glassy carbon bead and carbon graphite 

 

The commercial glassy carbon beads (diameter of �800 �m) and carbon rods 

(diameter of 2 mm) were used as substrates and feeder electrodes, respectively. Both 

materials were cleaned by the sonication in absolute ethanol for half an hour. Then, they 

were allowed to dry at 100�C in an oven for 15 min before using them in the bipolar 

electrografting experiments.  

 

1.1.2.2. Preparation of the negatively charged gold nanoparticles (AuNPs) via the 

citrate reduction method 

 

In order to visualize the grafted 4-aminobenzene moieties on the bead surface that 

cannot be observed directly by eyes, the modified bead was exposed to the citrate-

reduced AuNPs which have been prepared as follows (Kimling et al., 2006) (Figure 13). 

Briefly, 1.7 mg of gold (III) chloride trihydrate was dissolved in 19 ml of DI water in an 

Erlenmeyer flask. The obtained solution was then boiled under magnetic stirring. Then, 1 

ml of 0.5% w/v aqueous solution of trisodium citrate dihydrate was immediately added to 

the boiling solution. The color of the solution rapidly changed from pale yellow, 

colorless, dark purple to ruby red, respectively, within 15 s. After the ruby red color was 

obtained, the colloidal solution of AuNPs was removed from heat immediately. The 

solution was allowed to cool down to room temperature. 
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Figure 13 Schematic illustration showing the preparation of the negatively charged 

AuNPs via citrate reduction. 

 

The prepared AuNPs were characterized by TEM. For this, a few drops of the 

colloidal solution were placed on the TEM grid (Formvar/carbon 200 mesh Cu grids, 

Agar Scientific). After that, a few drops of absolute ethanol were used for removing the 

residues from the citrate reduction (by soaking). The TEM characterization was 

performed using a FEI Technai 12 instrument equipped with an Orius SC1000 11MPx 

(GATAN) camera. The particle size and size distribution of these AuNPs were 

determined by using ImageJ, a Java-based image processing program developed by the 

National Institutes of Health (Collins, 2007).  

 

Furthermore, the synthesized colloidal solution was characterized by zeta 

potential measurements (Figure 14) to measure the electrical charge of particles (Figure 

14a). A disposable folded capillary cell with two gold electrodes (Figure 14b) was filled 

with the synthesized colloidal solution to apply an electric field. The zeta potential can be 
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obtained by characterizing the movement of the particles under the influence of the 

applied electric field.   

 

 
        (a)                      (b) 

 

Figure 14   Picture of (a) the zetaseizer and (b) the disposable folded capillary cell used 

for the zeta potential measurement of the synthesized colloidal solution of 

gold nanoparticles.   

 

1.1.2.3. Control experiments 

 

In order to confirm the grafting of the organic layer on the bead, five control 

experiments were performed prior to the bipolar experiments. Glassy carbon beads 

purified by the absolute ethanol under the sonication for half an hour and then dried in 

oven were used. The details of these experiments are shown in Table 1. These 

experiments were performed in order to examine 1) the raw glassy carbon beads, in order 

to exclude the possibility that the glassy carbon bead also interacts with the diazonium 

salt without applying an electric field to the system (Adenier et al., 2006; Dyke and Tour, 

2003) 2) beads with and 3) without the labeling by AuNPs, 4) the interaction between 

raw glassy carbon beads and the citrate-capped AuNPs and 5) the grafted organic layer 

on the bead by using the citrate-capped AuNPs.  
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Table 1 Details of control experiments performed in order to confirm the grafting of 

organic layer on the bead*  

Details 1 2 3 4 5 

Add 5 mM 4-nitrobenzenediazonium tetrafluoroborate 

/1 mM HCl 
 

  
   

Apply an electric field (4 kVm-1) 
     

Further interact with the citrate-capped AuNPs 
     

*The experiment was performed with ( ) and/or without ( ) the corresponding 
experimental step. 

 

1.1.2.4. Fabrication of Janus-type carbon beads via bipolar electrochemical 

reduction of 4-nitrobenzene diazonium salt 

 
 

Figure 15   Schematic illustration showing the experimental set-up for the fabrication of 

Janus-type carbon beads with inorganic-organic composition via bipolar 

electrochemical reduction of 4-nitrobenzenediazonium salt. The bipolar cell 

was prepared from a U-shaped glass capillary connected with a conical tip. 

The distance between two feeder electrodes (carbon rods) was ~ 10 cm while 

the BPE (glassy carbon bead) was ~ 800 μm in diameter. 
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Figure 15 shows the experimental set-up for the fabrication of Janus-type carbon 

beads with inorganic-organic composition via bipolar electrochemical reduction of 4-

nitrobenzene diazonium salt. Details of the experimental procedures are shown in Table 

2. 

 

Briefly, in order to modify a glassy carbon bead with 4-aminobenzene moieties, 

the bead (with an average diameter of �800 μm) was placed between two carbon rod 

electrodes (acting as the feeder electrodes) in a bipolar cell. The cell was made from a U-

shaped glass capillary. The capillary was then filled with 5 mM 4-nitrobenzenediazonium 

tetrafluoroborate in 1 mM glacial aqueous HCl solution. An electric field of desired 

amplitude was then generated by the high-voltage power supply and applied to the cell 

for a certain period of time. After the grafting process, the modified carbon bead was 

taken out from the cell and rinsed with 0.1 M HCl solution for several times in order to 

remove salt residues and to transform NH2 into NH3
+.  

 

Table 2 Details of experimental procedures for the fabrication of Janus-type carbon 

beads with inorganic-organic composition via bipolar electrochemical 

reduction of 4-nitrobenzenediazonium salt 

 

Procedure Step Details 

Preparation of bipolar cell  1 Use blowlamps to manually shape the glass 

Pasteur pipette into a U-shaped glass capillary 

 2 Lock the capillary in a vertical position with 

the helping hand 

 3 Put one purified glassy carbon bead into one 

arm of the capillary until it is stopped by the 

surrounding capillary wall 
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Table 2 (Continued) 

  

Procedure Step Details 

Preparation of glacial  

4-nitrobenzenediazonium salt 

solution 

4 Dissolve 0.0122 g of 4-

nitrobenzenediazonium tetrafluoroborate in 10 

ml of 1 mM HCl cold solution prepared with 

DI water 

 5 Keep the solution cold in an ice bath and keep 

it away from light. 

Fabrication of Janus-type 

carbon beads with inorganic-

organic compositions via 

bipolar electrochemical 

reduction of 4-

nitrobenzenediazonium salt 

6 Fill the capillary (obtained from the 3rd step) 

with 1 ml of 5 mM 4-nitrobenzenediazonium 

tetrafluoroborate/1 mM HCl (prepared from 

the 5th step) 

7 Insert the carbon rods (the feeder electrodes) 

on the top of each arm of the bipolar cell 

 8 Connect the feeder electrodes to a high-

voltage power supply without applying the 

electricity 

 9 Apply the voltage of 400 V for 90 s 

 10 Stop applying the voltage and transfer 

carefully the modified carbon bead into an 

Eppendorf cup. 

 11 Rinse the modified bead gently with 0.1 M 

HCl 

 

The bead with the grafted organic layer on the surface was further coupled with 

the citrate-reduced AuNPs by soaking it into the colloidal solution overnight. During this 

step, the mixture was kept away from light to avoid unwanted byproducts (Kimling et al., 

2006). Due to the electrostatic interaction between the negatively charged AuNPs that is 
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due to the citrate stabilizer and the positively charged bead surface originating from the 

protonated aryl amino groups that are site selectively grafted onto the surface, the AuNPs 

were attached to the surface of the carbon bead at the grafted fraction. The modified bead 

was carefully rinsed with 0.1 M HCl solution for several times before the SEM 

characterization in order to remove the non-specifically attached AuNPs from the bead 

surface. The bead was then allowed to dry in air. For the SEM characterization, the bead 

with the gold label was placed directly on a conductive double-sided sticky carbon tape. 

The SEM analysis was performed with an accelerating voltage of 15 kV.  

 

To investigate the influences of the amplitude of the applied electric field and the 

deposition time on the grafting of the organic layer, experiments were performed with the 

same procedure but with various applied electric fields and deposition times. 

 

1.2. Results and discussion 

 

1.2.1. Preparation of citrate-capped AuNPs 

 

 The used sodium citrate plays a dual role as a reducing agent and a capping agent 

that stabilizes AuNPs. The solution of sodium citrate was added to the pale-yellow 

boiling HAuCl4 solution, leading to an initial loss of color which indicates the 

complexation and the reduction of AuCl4
- ions to atomic Au. Within a few seconds, the 

solution became dark purple, witnessing the formation of metallic Au nuclei due to the 

collision of the Au atoms. The small crystalline structures will act as seeds for the growth 

of the final spherical particles presented in the ruby red solution (Frens, 1973). Figure 16 

shows the synthesized citrate-capped AuNPs solution with the transparent color of red 

ruby. Its color reveals the formation of quite homogeneous spherical AuNPs having an 

average diameter of 10 – 20 nm as described by Turkevich (Turkevich et al., 1951) and 

Frens (Frens, 1973). This was confirmed by Figure 17a, displaying the well-dispersed 

spherical AuNPs with an average particle size of 15.08±1.91 nm. A relatively narrow size 
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distribution of particles between 11 and 20 nm in diameter (Figure 17b) was obtained by 

analyzing with the ImageJ program.   

  

Figure 16 Photograph showing the red ruby color of the colloidal solution containing 

the citrate-capped AuNPs.   

 

   (a)                          (b) 

Figure 17 (a) TEM micrograph and (b) the corresponding particle size distribution 

histogram obtained by the ImageJ processing program of the citrate-

capped AuNPs in the colloidal solution showing a particle size of 

~15.08±1.91 nm.  
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The zeta potential, indicating the particle charge (Hunter, 1981; 1993), was also 

measured. Briefly, the particles dispersed in a colloidal solution will carry a surface 

charge that attracts a thin layer of oppositely charged ions to the surface of the particle. 

While the particle moves through the solution by the applied electric field or the gravity, 

this electrical double layer moves together with it. The electric potential at the boundary 

of the double layer is defined as the zeta potential. It is a crucial tool for predicting the 

stability of the nanoparticles because if the particles have a large positive or negative zeta 

potential, they will have a strong enough repulsive force to repel each other and will 

maintain the particles dispersed. In other words, the greater the magnitude of zeta 

potential, the more stable the colloidal suspension will be. 

  

In this study, the AuNPs have a large negative zeta potential (- 46.2 mV). This 

value resulted from the citrate ions adsorbing on the AuNPs surface, providing the 

AuNPs with overall negative charge.  

 

1.2.2. Optimization of experimental conditions and control experiments 

 

The external voltage applied in our bipolar experiment is one of the most 

important issues that should be considered first. The potential drop in the solution will 

generate variable overpotentials along the conductive object. We need to consider this 

point, particularly pH changes which might affect the required potential difference. In 

order to estimate the potential difference necessary to drive both redox reactions with 

sufficiently high kinetics, cyclic voltammetry has been used.  

 

A normal electrochemical measurement was performed with a μAutolab type III 

potentiostat/galvanostat and controlled by GPES software with a three-electrode system. 

The three-electrode system comprised a carbon rod (graphite) as a counter electrode, a 

silver-silver chloride (Ag/AgCl) electrode as a reference electrode, and a glassy carbon 

electrode as a working electrode (Figure 18). This cyclic voltammetry was carried out in 
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5 mM 4-nitrobenzenediazonium tetrafluoroborate/1 mM HCl/0.1 M NaCl aqueous 

solution at a scan rate of 100 mV/s.  

 

 
 

Figure 18 Photograph of the cyclic voltammetry set-up for determining the voltage to be 

applied to the bipolar cell for the bipolar electrografting of 4-aminobenzene 

onto carbon bead. 

  

Figure 19 shows the first three cyclic voltammograms recorded during this 

experiment. The first scan (solid line) in a reductive direction shows a single, broad, 

reduction wave with a peak potential of approximately 0.23 V vs Ag/AgCl that 

corresponds to the reduction of aryl diazonium cations to radicals, which then react with 

and bind covalently to the glassy carbon surface (Andrieux and Pinson, 2003). This 

reduction wave disappeared during the following cycles, second (dashed line) and third 

(dotted line) scans, due to the blocking of the glassy carbon electrode by the organic layer 

generated on it. The modification of organic layers on the surface during the 

voltammogram recording results in a broadening of the wave.   
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Figure 19 Cyclic voltammograms (solid line: first scan; dashed line: second scan; dot 

line: third scan) for 5 mM 4-nitrobenzenediazonium tetrafluoroborate/1 mM 

HCl in 0.1 M NaCl solution on a glassy carbon working electrode at a scan 

rate of 100 mV/s. 

 

The potential used to drive the water oxidation reaction, 2H2O → O2 + 4H+ + 4e-; 

E� = 1.23 V vs SHE, will also depend on the pH value of the solution. In this experiment, 

we used pH 3 obtained with a 1 mM HCl solution. From the relation between the 

potential at equilibrium (Eeq) and the pH value, Eeq (O2/H2O) = E�(O2/H2O) + 

0.059log[H+], a potential of 1.05 V vs NHE (1.23 - (0.059)(3)) should be used for the 

water oxidation. However, due to the overpotential for water oxidation on a glassy carbon 

electrode, we observed in Figure 19 that a potential of 1.50 V is required to start this 

oxidation. 

 

Therefore, in order to have a sufficient driving force for the two redox reactions, a 

polarization of the glassy carbon of at least 1.27 V (1.50 V - 0.23 V) is required. This 
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agrees with the potential calculated from the difference between the two standard 

reduction potentials (in the introduction part).  

 

As mentioned before, in order to drive the desired redox reactions (the reduction 

of diazonium salt and the water oxidation) at two sides of a carbon bead with a diameter 

of �800 μm placed between two feeder electrodes at a distance of �10 cm, a voltage of 

more than 300 V is required in order to observe distinctly the grafted organic layer at one 

end of the bead. For this reason, we decided to apply a voltage of 400 V to the system in 

order to make sure to meet the reaction criteria. 

 

In the beginning, two commercial gold coated slides (purchased from ACM) were 

used as the feeder electrodes. However, we found that these gold plates were not suitable 

to be used as feeder electrodes during the bipolar electrografting experiments. This is 

because the applied high potential induced a strong oxidation reaction that can destroy 

the deposited gold layer. The high potential of 400 V not only leads to the bipolar 

electrochemical reduction of diazonium salt at the carbon bead but also to many redox 

reactions at the feeder electrodes themselves, especially when the feeder electrodes are 

immersed in the same reservoir as the BPE. For example, the oxidation of the anchoring 

layer of the gold coated glass slides (chromium, Cr and Nickel, Ni), occurs at the anodic 

side of the feeder electrodes (Bard et al., 1985). 

  

Cr3+ (aq.)  + 3 e-  -----> Cr (s), Eo = - 0.74. V/NHE 

Ni2+ (aq.)  + 2 e-  -----> Ni (s), Eo = - 0.25. V/NHE 

 

, where Eo stands for the standard reduction potential. In addition, under very high 

electric field, it is possible to further trigger the oxidation of the gold layer itself (Bard et 

al., 1985). 

 

Au3+ (aq.)   + 3 e-  -----> Au (s), Eo
 = 1.52 V/NHE 
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Au+ (aq.)  + e- ----->  Au (s), Eo = 1.83 V/NHE 

 

These oxidation reactions result in the destruction of the electrode as shown in 

Figure 20. Simultaneously, the proton reduction occurs at the cathodic feeder electrode 

(Bard et al., 1985), together with the reduction of the diazonium salt and of the gold ions 

dissolved from the anodic gold plate. 

 

2 H+ (aq.)   + 2 e- -----> H2 (g), Eo = 0.00 V/ SHE 

 

Therefore metallic gold might also deposit on the bipolar electrode and it would 

be hard to distinguish this deposit from the citrate-capped AuNPs used for labeling the 

organic layer on the bead. As a consequence the gold plates are not suitable as feeder 

electrodes in this experimental set-up. 

 

 
 

Figure 20 Photographs showing the corrosion of the gold plates used as feeder 

electrodes (left: (-) cathode, right: (+) anode). 

 

For this reason, we used graphite rods as feeder electrodes. Next, we consider 

other redox reactions occurring in our system. Concerning water oxidation at the BPE, 

oxygen gas (O2) is produced (coupled with the reduction of diazonium salt which can 
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generate N2 gas). If this water oxidation occurs very slowly, O2 can gradually dissolve in 

the solution. However, if the oxidation occurs rapidly, oxygen bubbles will be produced 

which might induce a rotation or a displacement of the bead thus disturbing the grafting 

process. Furthermore, in the extreme case when water oxidation occurs very rapidly, big 

bubbles can interrupt the current flow in the system and stop the electrochemical 

reactions in the cell. 

 

In order to avoid or at least slow down the rotation or the movement of the bead , 

Loget and co-workers added gelling agents such as agarose into the solution of the 

reaction compartment to increase the viscosity of the medium (Loget et al., 2012). 

Nevertheless, this strategy requires heating of the polymer in the solution (here 

containing also the diazonium salts). This thermal process can cause an undesired 

spontaneous reduction of diazonium salts and results in an unspecific grafting instead of 

the site-selective grafting. As a consequence, the citrate-capped AuNPs can couple with 

the carbon bead due to both spontaneous reduction and bipolar electrochemical reduction 

of diazonium salts as shown in Figure 21a. Even though there was no electric field 

applied to the system gold labeling was found on the carbon bead as shown in Figure 21b 

due to the grafted organic layer generated from the spontaneous reduction of diazonium 

salts. 
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Figure 21 SEM images of the 4-aminobenzene-modified glassy carbon bead 

generated (a) by applying an electric field of 4 kVm-1 and (b) without 

applying an electric field in solidified agarose containing 5 mM 4-

nitrobenzenediazonium tetrafluoroborate/1 mM HCl solution. To label the 

surface grafted organic molecules, the beads were immersed into a 

colloidal gold solution containing the citrate-capped AuNPs. Scale bar is 

500 μm. 

 

As a consequence, a closed bipolar electrochemical cell configuration was used in 

order to mechanically stabilize the position of the bead. The inner diameter of the 

capillary used in this study was adapted to fit the diameter of the carbon bead in order to 

avoid its rotation or movement during the grafting experiment. Before the grafting 

process, the bead was introduced into a capillary. Due to the approximately same 

diameter of the carbon bead and the capillary, the bead was physically blocked in the 

capillary. With this configuration, the reorientation and movement due to the 

macroscopic bubbles originating from the water oxidation at the BPE can be avoided.   

 

In order to confirm the grafting of 4-aminobenzene moieties onto the bead via 

bipolar electrochemical reduction of 4-nitrobenzenediazonium salt, control experiments 

were performed prior to the bipolar experiments. A SEM image of raw glassy carbon 
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beads purified with ethanol is shown in Figure 22. The image shows that the surface of 

commercial glassy carbon beads is typically not smooth even if the beads are already 

purified. 

 

 
 

Figure 22  SEM image of raw carbon beads purified by ethanol. Scale bar is 500 μm.  

 

 In the second control experiment, a glassy carbon bead purified with ethanol was 

soaked in 5 mM 4-nitrobenzenediazonium tetrafluoroborate/1 mM HCl solution for 90 s. 

This period of time is similar to that used in the bipolar experiment. The resulting bead 

was then rinsed with 0.1 M HCl solution and further observed by SEM, not shown here 

because it is similar to that of the untreated one. This indicates that the treatment 

employed in this case did not lead to a grafting of the carbon surface by the organic layer.     

   

Subsequently, another control experiment was performed by soaking a glassy 

carbon bead purified with ethanol into 5 mM 4-nitrobenzenediazonium 

tetrafluoroborate/1 mM HCl solution for 90 s. Then, the bead was isolated from the 
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solution and rinsed with 0.1 M HCl solution. Afterwards, it was immersed into the 

colloidal solution of AuNPs overnight. After this treatment it shows no gold labeling. The 

result confirms that when the electric field is not applied to the system, the grafting of the 

organic layer cannot occur spontaneously. 

 

In order to validate the interaction between a raw glassy carbon bead and the 

citrate-capped AuNPs, a purified bead was soaked in the colloidal solution of the citrate-

capped AuNPs overnight. After that, the bead was taken out from the solution and rinsed 

with 0.1 M HCl solution. The SEM results (not shown here) is similar to that of the 

previous control experiment, which shows no gold labeling on the carbon bead. The 

result indicates that the citrate-capped AuNPs can not directly attach to the raw bead 

surface.  

 

The last control experiment was performed by using the same procedure as for the 

bipolar experiment but without exposing the modified bead to the citrate-capped AuNPs. 

The SEM observation (not shown here) reveals that without the citrate-capped AuNPs, 

the grafted area cannot be visualized. Thus, the step of the AuNP attachment is an 

important step for visualization of the grafted area by SEM. 

 

1.2.3.  Fabrication of Janus-type beads via bipolar electrochemical reduction of 4-
nitrobenzenediazonium salt 

 

The SEM image of a glassy carbon bead treated by applying an electric field of 400 

V between the two feeder electrodes (with the distance of � 10 cm between them) for 90 

s in 5 mM 4-nitrobenzenediazonium tetrafluoroborate/1 mM HCl after the purification by 

ethanol is shown in Figure 23. The bead was immersed in a colloidal AuNP solution 

overnight and then rinsed with 0.1 M HCl solution before the observation. The image 

indicates the presence of the gold label at one side of the modified glassy carbon bead. 



48 
 

The position of the gold labeling proves the successful bipolar electrochemical reduction 

of 4-nitrobenzenediazonium salts. 

  

 
 

Figure 23 SEM image of a glassy carbon bead treated by applying a voltage of 400 

V between two feeder electrodes for 90 s in 5 mM 4-

nitrobenzenediazonium tetrafluoroborate/1 mM HCl after the purification 

by ethanol. The distance between the feeder electrodes was � 10 cm. The 

bead was immersed in a colloidal AuNP solution overnight and then 

rinsed with 0.1 M HCl solution before the observation. Scale bar is 500 

μm. 

 

Additional experiments were performed by applying various electric fields for 

various periods of time namely 1) an electric field of 4 kVm-1 for 66 s, 2) an electric field 

of 4.3 kVm-1 for 80 s and 3) an electric field of 6.7 kVm-1 for 40 s. The variability of the 

grafting obtained under these conditions and the previous conditions (an electric field of 

4 kVm-1 for 90 s) are shown by the SEM images in Figure 24. The images indicate that 

the gold labeled area can be extended by increasing the deposition time and/or the 
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potential used for the reduction of the diazonium salts. Janus-type beads with hybrid 

organic–inorganic composition were obtained in all cases.   

 

 
 

Figure 24 SEM images of glassy carbon beads treated by applying various electric 

fields for various periods of time namely (a) an electric field of 4 kVm-1 

for 66 s, (b) an electric field of 4 kVm-1 for 90 s, (c) an electric field of 4.3 

kVm-1 for 80 s, and (d) an electric field of 6.7 kVm-1 for 40 s in 5 mM 4-

nitrobenzenediazonium tetrafluoroborate/1 mM HCl after the purification 

by ethanol. Before the observation, the beads were immersed in a colloidal 

AuNP solution overnight and then rinsed with 0.1 M HCl solution. Scale 

bar is 500 μm. 
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2. Modification of a glassy carbon bead by bipolar electrochemical reduction of in 

situ generated 4-carboxyphenyl diazonium salts  

 

In order to demonstrate the general validity of this grafting concept, an 

asymmetrical grafting of an organic layer with different functional groups of carboxylic 

acid on the carbon surface was performed. The carboxylic acid groups are used for the 

grafting of carbon surfaces because they can be coupled with bio-molecules such as 

glucose oxidase (GOx) (Bourdillon et al., 1992; Pellissier et al., 2008a; Pellissier et al., 

2008b) and horseradish peroxidase (HRP) (Radi et al., 2008) via carbodiimide chemistry, 

opening up many applications in the fields of bio-sensing applications and enzymatic bio-

fuel cells.   

 

The strategy proposed for asymmetrical grafting the carbon bead with the 

carboxylic acid substituted aryl groups is shown in Figure 25. In the first step, 4-

Carboxyphenyl (4-CP) diazonium salt (+N2-C6H4-COOH) is generated in situ by a 

standard diazotization reaction (Bourdillon et al., 1992) using NaNO2 and 4-

aminobenzoic acid as reactants in a HCl solution (Baranton and Bélanger, 2005). The 

resulting molecule is immediately used for the asymmetric grafting of carboxylic acid 

substituted aryl groups on the surface of glassy carbon beads. The bipolar 

electrochemical grafting of 4-carboxy phenyl moieties occurred via one-electron 

reduction of 4-CP diazonium salts. This reaction results in the loss of a N2 molecule and 

the covalent attachment of the 4-carboxy phenyl moieties to the cathodic side of the 

carbon bead.  
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Figure 25 Scheme illustrating the strategy employed for site-selective modification of a 

glassy carbon bead by the carboxylic acid substituted aryl groups through (a) 

bipolar electrochemical reduction of in situ generated 4-carboxyphenyl (4-CP) 

diazonium in an aqueous NaNO2/HCl solution and (b) followed by the 

coupling of the carboxylic acid groups of 4-CP presented on the bead surface 

to the functional amino groups of fluoresceinamine by using 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC) as a coupling agent. 
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For the grafting of the carboxyphenyl groups on the bead surface, a voltage of at 

least 1.4 V (calculated from the equation: ΔVmin = E2 – E3) has to be presented across the 

bead in order to trigger the coupled redox reactions (the electrochemical reduction of 4-

CP with the reduction potential (E3) of 0.2 V vs Ag/AgCl (Baranton and Bélanger, 2005) 

and the water oxidation with a formal potential (E2) of 1.2 V vs Ag/AgCl). This means 

that for a glassy carbon bead with diameter of about 800 μm, an electric field of at least 

1750 Vm-1 (calculated from E = ΔV/d = 1.4 V/ 800 μm) is required for the bipolar 

experiments. In order to be sure to observe site-selective grafting of the 4-carboxyphenyl 

moieties on the bead, an electric field of 4 kVm-1 was selected. 

 

In order to observe the organic layer of 4-CP bound to the bead surface, a 

fluorescent labeling precursor allowing the observation by fluorescence microscopy, 

namely fluoresceinamine, is used. 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide 

(EDC), a water soluble carbodiimide, is used as a carboxyl activating agent for the 

coupling of the carboxylic acid groups of the 4-carboxy phenyl moieties presented on the 

bead surface to the primary amine groups of fluoresceinamine.  

 

For the first step of the generation of 4-CP, the mechanism is according to the one 

reported in the literature (Clayden et al., 2012). The proposed mechanism is shown as 

Figure 26. Nitrite (NaNO2) reacts with acid producing a nitrosonium ion (Figure 26a). 

This nitrosonium ion then reacts with the amino group of 4-aminobenzoic acid producing 

the diazo group (Figure 26b).  
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Figure 26  Reaction mechanism for the generation of 4-CP diazonium salt. (a) 

Generation of nitrosonium ion from the reaction between nitrite and acid. (b) 

Reaction of the nitrosonium ion and 4-aminobenzoic acid producing 4-CP. 

 

2.1. Materials and Methods 

 

2.1.1. Materials 

 

 Most of the ingredients and the equipments used in this section are similar to as 

described in the previous section (1.1.1. Materials). However, the preparation of 

diazonium salts and the visualization of modified organic layers are slightly adopt as 

follows:  
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Major Chemicals 

 

� 4- Aminobenzoic acid (≥99%, H2NC6H4CO2H, Sigma-Aldrich) 

� Sodium nitrite (≥97%, NaNO2, ACROS ORGANICS) 

� N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride or 1-ethyl-3-

(3-dimethylaminopropyl) carbodiimide (EDC) (≥98.0%, C8H17N3.HCl, 

Sigma-Aldrich) 

� Fluoresceinamine isomer I (C20H13NO5, Sigma-Aldrich) 

� N,N-Dimethylformamide or DMF (99.9%, HCON(CH3)2,  Scharlau) 

 
Major Equipment 

 

� Epi-fluorescent microscope (DMI 6000B, Leica) equipped with a digital 

camera (DFC310 FX, Leica) 

 

2.1.2. Methods 

 

2.1.2.1. Purification of glassy carbon bead and carbon graphite 

 

Similar to the previous bipolar experiments for grafting of the organic layer 

containing the functional amino groups, prior to the experiments, the commercial glassy 

carbon beads and carbon rods were purified with ethanol. 

  

2.1.2.2. Synthesis of Janus-type beads by using bipolar electrografting of in situ 

generated 4-carboxyphenyl diazonium in an aqueous NaNO2/HCl solution 

 

Details of the experimental procedures used for the modification of glassy carbon 

beads with 4-CP are shown in Table 3. Briefly, a purified glassy carbon beads was 

introduced in a bipolar cell with the same set-up used for the previous section (see Figure 
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15) containing 4-CP diazonium salts in a glacial aqueous HCl solution. The feeder 

electrodes were connected to a high-voltage power supply. The electric field of 4 kV.m-1 

was applied to the cell for a certain period of time. After the grafting process, the 

modified carbon bead was taken out from the cell and rinsed by 0.1 M HCl solution for 

several times in order to remove salt residues.  

  

Table 3 Details of experimental procedures for the fabrication of Janus-type carbon 

beads with inorganic-organic composition via bipolar electrochemical 

reduction of in situ generated 4-CP diazonium salt in an aqueous NaNO2/HCl 

solution 

 

Procedure Step Details 

Preparation of glacial 5 mM 4-

aminobenzoic acid/10 mM 

NaNO2/ 10 mM HCl solution 

1 Dissolve 0.69 g of NaNO2 in 10 ml of cold DI 

water (solution A) 

2 Dissolve 0.007 g of 4-aminobenzoic acid in 

10 ml of cold 10 mM aqueous HCl solution 

(solution B) 

3 Add 100 μl of solution A into the solution B 

4 Mix the mixture well  

5 Keep the mixture in a cold and dark place 

Fabrication of Janus-type 

carbon beads with inorganic-

organic compositions via 

bipolar electrochemical 

reduction of in situ generated 

4-CP diazonium salt in an 

aqueous NaNO2/HCl solution 

6 Put a purified glassy carbon bead into one 

arm of the U-shaped glass capillary (see 

Figure 15)  

7 Fill the capillary with1 ml of glacial 5 mM 4-

aminobenzoic acid/10 mM NaNO2/ 10 mM 

HCl solution into the capillary (obtained from 

5th experimental step).  

8 Connect the feeder electrodes to a power 

supply 
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Table 3 (Continued) 

 

Procedure Step Details 

Fabrication of Janus-type 

carbon beads with inorganic-

organic compositions via 

bipolar electrochemical 

reduction of in situ generated 

4-CP diazonium salt in an 

aqueous NaNO2/HCl solution 

9 Apply an electric field of 4 kV.m-1 for 120 s 

10 Stop applying the electric field and transfer 

the modified bead into an Eppendorf cup. 

11 Rinse that modified bead twice with DI water 

 

2.1.2.3. Coupling the 4-carboxyphenyl (4-CP)-modified glassy carbon bead with a 

fluorescent labeling precursor  

 

To observe the modification of the carbon bead by 4-CP, after rinsing the 

modified glassy carbon bead with DI water, the bead was immersed into 200 μl of 5 mM 

aqueous EDC solution for 10 min. Subsequently, 200 μL of 4 mM ethanolic 

fluoresceinamine solution was added to the system. The reaction was left under stirring at 

room temperature for 2 h. After 2 h, the solvent was removed. The resulting glassy 

carbon bead was then rinsed several times with DI water and DMF. Finally, the bead was 

allowed to dry in air at room temperature. The modification of the bead was then 

confirmed under a fluorescent microscope. For the observation, the bead was placed on a 

glass slide. One drop of oil (Leica, Immersion liquid, Type F) was thus added on the 

modified bead and left for 10 min. The characterization was then performed by an epi-

fluorescent microscope with a mercury lamp as a light source. A filter cube I3, an 

excitation filter in the range of 450-490 nm, and an emission filter of 515 nm were used 

for the fluorescence mode. The microscope was equipped with a digital camera (Leica 

DFC310 FX) as shown in Figure 27.  
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Figure 27 Photograph of the epi-fluorescent microscope (DMI 6000B, Leica) equipped 

with a digital camera (DFC310 FX, Leica) used for the direct visualization of 

the grafted fluorescent molecule coupled with one side of the 4-CP-modified 

glassy carbon bead. 

 

2.1.2.4. Control experiment 

 

In order to confirm the grafting of the organic layer onto the bead, a control 

experiment was performed. The experiment was performed with the same procedure used 

for the bipolar experiments but without the bipolar cell and no electric field. 

 

2.2. Results and discussion 

 

In the same way as in the case of the bipolar electrografting of 4-aminobenzene, 

we first determined by the cyclic voltammetry the applied voltage needed to drive the 

involved redox reactions. We used the conditions and the experimental set-up (Figure 18) 

of the previous case but three electrodes were immersed in 0.1 M NaCl solution, 
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containing a 5 mM 4-aminobenzoic acid/10 mM NaNO2/ 10 mM HCl solution instead of 

5 mM 4-nitrobenzenediazonium tetrafluoroborate/1 mM HCl/0.1 M NaCl aqueous 

solution. 

 

Figure 28 demonstrates three consecutive cyclic voltammograms from 0.5 to - 1.0 

V vs Ag/AgCl for the 4-CP modification of the glassy carbon electrode in aqueous acidic 

medium containing in situ generated diazonium cations (5 mM 4-aminobenzoic acid/10 

mM NaNO2/ 10 mM HCl/0.1 M NaCl solution). In the reduction sweep, the first scan 

presents the reduction of the 4-aminobenzoic acid moiety, which starts at around 0.25 V 

and reaches a maximum at - 0.25 V. This irreversible reduction peak disappears during 

the following scans (dashed and dotted line) indicating the presence of a grafted organic 

layer. The process relates to the conversion of aryl amines to aryl diazonium salts by the 

treatment with HCl and nitrite. Then, the aryl group is attached covalently to the 

electrode surface by electrochemical reduction and N2 is released.    
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Figure 28 Cyclic voltammograms (solid line: first scan; dashed line: second scan; dot 

line: third scan) for a 5 mM 4-aminobenzoic acid/10 mM NaNO2/ 10 mM HCl 

solution in 0.1 M NaCl solution on a glassy carbon working electrode at a 

scan rate of 100 mV/s. 

 

As mentioned above, the potential required to drive the water oxidation reaction 

will depend on the pH value of the solution. For this experiment, pH 2.5 was measured 

for a 10 mM HCl solution. From the relation between the potential at equilibrium (Eeq) 

and the pH value, Eeq (O2/H2O) = E�(O2/H2O) + 0.059log[H+], a potential of 1.08 V vs 

NHE, or 0.87 V vs Ag/AgCl should be used for the water oxidation. But as indicated by 

Figure 19 the overpotential for the water oxidation on a glassy carbon electrode allows 

the reaction to occur only around 1.50 V. In order to have a sufficient driving force for 

two redox reactions, a polarization of the glassy carbon of at least 1.75 V (1.50 V - (- 

0.25 V)) should be applied. This corresponds to the potential calculated from the 

difference between the two standard reduction potentials (1.4 V, in the introduction part). 

To drive the desired redox reactions (the reduction of diazonium salt and the water 

oxidation) over a carbon bead with diameter of �800 μm placed between two feeder 

electrodes at a distance between each other of �10 cm, a voltage of at least 219 V is 
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needed to be applied to the system. However, in order to make sure to observe the grafted 

organic layer at one end of the bead, we decided to apply 400V (4 kVm-1). 

 

Figure 29 shows the fluorescent micrograph of the carbon bead obtained from the 

control experiment where the experiment was performed with the same procedure used 

for the bipolar experiments but without the use of the bipolar cell and the application of 

any electric field to the system. The image indicates that no fluorescence can be 

observed. The result indicates that without the electrochemical reduction of 4-CP 

diazonium salts the 4-carboxy phenyl moieties cannot attach to the surface of the carbon 

bead. Therefore, the coupling with the fluorescent labeling precursor providing the 

observation by fluorescent microscopy cannot occur.  

 

 
 

Figure 29 Fluorescent micrograph of a carbon bead obtained from the control 

experiment where the experiment was performed with the same procedure 

used for the bipolar experiments but without the use of the bipolar cell and 

the application of any electric fields to the system. Scale bar is 200 μm. 
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Figure 30 shows the fluorescent micrograph of a carbon bead obtained from the 

bipolar experiment. The fluorescence was selectively observed at one side of the glassy 

carbon bead confirming the formation of an amide bond between amine and carboxylic 

acid functional groups of the fluoresceinamine and the 4-carboxypheynyl moieties, 

respectively. Some spots appear darker and others brighter. We suggest that this is 

because the commercial glassy carbon beads have a rough surface, and the organic layer 

cannot be uniformly deposited because of this roughness.  

 

 
 

Figure 30 Fluorescent micrograph of a glassy carbon bead obtained from a bipolar 

experiment with the application of a 4 kVm-1 electric field for 120 s to an 

aqueous solution of 5 mM 4-aminobenzoic acid/10 mM NaNO2/10 mM 

HCl. Before the observation, the bead was subsequently reacted with EDC 

and fluoresceinamine. Scale bar is 200 μm. 

 

 Figure 31 shows the fluorescent micrographs of the carbon beads obtained from 

additional bipolar experiments. The images reveal Janus-type beads with fluorescence on 
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one-half side in every experiment. This indicates that the results of the bipolar 

experiments can be obtained in a reproducible way. 

 

 
  

Figure 31 Fluorescent micrographs showing the possibility to obtain Janus-type 

beads in every experiment when modifying the glassy carbon bead by the 

application of a 4 kVm-1 electric field for 120 s to an aqueous solution of 5 

mM 4-aminobenzoic acid/10 mM NaNO2/10 mM HCl and subsequent 

interaction with EDC and fluoresceinamine. Scale bar is 200 μm.  
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3. Conclusions 

 

In summary, the micrometer-sized glassy carbon beads (�630-1000 μm in 

diameter) were used as carbon substrates in the first proof-of-principle bipolar 

experiments for producing Janus-type objects with hybrid organic-inorganic composition. 

The bipolar electrochemical asymmetric covalent grafting of amino-terminated and 

carboxylic acid substituted aryl moieties was performed via the reduction of diazonium 

salt precursors coupled with the water oxidation. The one-electron reduction of the 

diazonium salt occurred in the vicinity of the surface of the carbon bead and leads to the 

loss of dinitrogen from the precursor molecules. As a result, the aryl radical species with 

functional groups form a covalent bond at the cathodic side of the glassy carbon. 

Depending on the redox couples, an electric field was applied to the home-built bipolar 

cell containing the substrate or bipolar electrode, the precursors, and electrolyte solution 

for a certain time period. The bead was confined in the capillary in order to limit its 

motion during the experiment. This configuration allows that almost all the current goes 

directly through the bead without any physical contact to feeder electrodes. In the first 

case, a diazonium salt, namely 4-nitrobenzenediazonium tetrafluoroborate, was used as a 

reagent. The bipolar electrografting of 4-aminobenzene moieties on glassy carbon bead 

was obtained. The amino groups functionalized on the bead surface were then positively 

charged under acidic conditions. Then, they can be coupled with negatively-charged gold 

nanoparticles produced by a simple reduction of gold ions in the presence of citrate 

stabilizer. This leads to an indirect visualization of the organic layer presented on the 

bead surface. In the latter case, 4-carboxyphenyl diazonium salt was generated in situ via 

the diazotization reaction between 4-aminobenzoic acid and sodium nitrite under acidic 

conditions. Consequently, this salt was immediately used for the bipolar electrografting 

of 4-carboxyphenyl moieties on the bead. The subsequent coupling between the 

carboxylic acid groups and the functional amino groups of fluoresceinamine by using 1-

ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as a coupling agent allows the 

visualization of the grafted layer under a fluorescent microscope. The results show that 
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both types of organic layers can be successfully grafted on one half of the bead 

selectively and the modified area can be simply tuned by varying the applied electric field 

and/or the deposition time. The finding demonstrates that bipolar electrochemistry is a 

very attractive method for the production of such asymmetric objects bearing organic 

functionalities. The asymmetric grafting of aryl diazonium compounds with various 

substituents can be easily imagined, thus allowing the generation of platforms for the 

linking of other molecules. These open promising possibilities for using Janus-type beads 

with hybrid organic-inorganic composition as model objects in the field of biochemical 

sensing devices or micromotors. As the approach allows by definition objects to be 

electromodified without physical contact to electrodes, it constitutes an important 

enrichment of the chemical methods used in micro and nanoscience. 
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Chapter III: ASYMMETRICALLY ELECTROCHEMICAL 

MODIFICATION OF VERTICALLY ALIGNED CARBON 

NANOTUBES BY ORGANIC LAYERS VIA A BIPOLAR 

ELECTROCHEMICAL APPROACH 

 

1. Introduction 

 

In the previous chapter, we highlighted the fact that the bipolar electrochemical 

technique is well adapted for the production of microscale Janus-type objects with hybrid 

organic-inorganic composition. This technique is also very attractive for the production 

of nanoscale Janus-type objects. For this reason, in this chapter we studied the possibility 

to use this technique for nanoscale objects. Multi-walled carbon nanotubes (MWCNTs) 

were selected as the nanoscale objects studied here due to their excellent and unique 

properties offering numerous breakthrough applications. The electrochemical 

modification of MWCNTs was performed in order to create selectively an area with 

organic functionalities on the tubes. 

 

Relating to the principle of bipolar electrochemical modification, under an electric 

field, the maximum potential drop will be along the part of the object that is parallel to 

the field. This means that if the object can be aligned with the electric field or be arranged 

in a straight line parallel to the field direction, the maximum potential difference will be 

between both ends of the object. As a result, the electrochemical modification will take 

place selectively at both extremities of the object (Warakulwit, 2007). In contrast, for 

objects which cannot be aligned with the field, the modification will not selectively occur 

at both extremities. Taking the advantage that CNTs will be automatically aligned with 

the electric field, they were used here in order to promote their selective modification. 

  

 Until recently, CNTs have been prepared by several techniques. Arc discharge is 

the first technique used for synthesis of CNTs. In 1991, Ijima discovered MWCNTs with 



66 
 

4-30 nm in diameter, grown at the cathode (negative side) of  high-purity graphite 

electrodes during direct current (dc) arc-discharge evaporation of carbon under an inert 

gas atmosphere (100 Torr) (Iijima, 1991). With this technique, SWCNTs can be 

generated in the presence of transition metal catalysts (Iijima and Ichihashi, 1993). For 

example, SWCNTs with diameters ranging from 0.75 to 1.37 nm were successfully 

prepared between Fe-graphite electrodes in a methane-argon atmosphere during the dc 

current discharge at 200 A and 20 V. In general, the production costs of CNTs via this 

technique are rather high because inert gas such as helium (He) or argon (Ar) with high-

purity and sacrificial graphite electrodes are required, limiting the production at large or 

industrial scale. 

  

Later, laser-ablation (vaporization) was used to produce CNTs. With this 

technique, MWCNTs can be produced by high-power laser vaporization of a pure 

graphite target in a chamber at a relatively high temperature of about 1200 �C under an 

inert atmosphere (Guo et al., 1995). This method can also generate SWCNTs by adding a 

metal catalyst such as cobalt (Co) or nickel (Ni) to the graphite target (Thess et al., 1996). 

The growth mechanism of the tubes produced via this technique is quite similar to that 

produced via the arc discharge technique. This technique can provide SWCNTs with a 

yield of more than 70% (Thess et al., 1996) . However, due to the requirements of high 

laser power sources and high-purity graphite targets this technique is also not 

economically advantageous for large scale production. 

  

Apart from the above mentioned methods, CNTs can also be produced via 

chemical vapor decomposition (CVD). With this technique, hydrocarbon molecules are 

decomposed into carbon atoms, and are precipitated as CNTs over a supporting material. 

The metal catalyst is usually involved in the process in order to lower the reaction 

temperature. This technique is called catalytic CVD (CCVD) technique. Until recently, 

many kinds of catalysts and supporting materials have been used for the CNT production 

via the CCVD technique. These include Fe particles (José-Yacamán et al., 1993), Fe or 
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Co on glass (SiO2) (Fonseca et al., 1996; Li et al., 1996), Fe or Co on zeolite support 

(Fonseca et al., 1996; Hernadi et al., 1996), and Fe on alumina (Al2O3) substrate (Ohno et 

al., 2008; Qin et al., 1998). Various hydrocarbons can be used as carbon sources. These 

include methane (Kong et al., 1998; Qin et al., 1998), ethylene (Fan et al., 1999), 

acetylene (José-Yacamán et al., 1993; Li et al., 1996), carbon monoxide (CO) (Nikolaev 

et al., 1999), and ethanol (Ohno et al., 2008). In the process, N2 or Ar is typically used as 

carrier gas. In order to prevent the catalyst deactivation, H2 or NH3 may be used as 

reducing gas. The reaction temperature for this technique can be varied in the range of 

650-900 �C (Fonseca et al., 1996; José-Yacamán et al., 1993). 

  

With the CCVD technique, both SWCNTs and MWCNTs can be produced. For 

the production of SWCNTs, the metal catalyst is typically formed through the thermal 

decomposition of organometallic compounds such as iron pentacarbonyl (Fe(CO)5) and 

ferrocene (Fe(C5H5)2). For example, Thess and co-workers (Thess et al., 1996) produced 

SWCNTs by using CO and Fe(CO)5 as the carbon source and catalyst, respectively. 

Apart from main metal catalysts used for the CNT production (Fe, Co and Ni),  

molybdenum exhibits also potential for the production of SWCNTs using CO as the 

carbon source (Dai et al., 1996).  

  

Compared to the arc-discharge and the laser-ablation techniques, the CVD 

technique is more versatile and better adapted for a large scale production of CNTs. This 

is because it can be operated at a relatively low temperature. In addition, it provides 

CNTs with a relatively high yield and controllable characteristics. Based on the simple 

set-up of the equipment required for this technique (such as temperature-programmable 

reactor and gas system), this technique is easy to scale up, leading to the possibility of a 

large scale production of CNTs (Iijima and Ichihashi, 1993; Kong et al., 1998; Qin et al., 

1998). Although, the CVD technique, especially the catalytic one that operates at 

relatively low temperature, is used for the industrial scale production with acceptable 

production cost, the commercially produced CNTs are typically spaghetti-like (non-
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oriented or disordered) in terms of morphology and contain a lot of structural defects, 

such as tube twisting and bending. In addition, they are bound into intractably entangled 

macroscopic aggregates (Wong et al., 2004). For this reason, they cannot be well aligned 

with the electric field, and thus, they are not suitable for the bipolar electrochemical 

deposition, which is studied in this work. Consequently, for a well-defined selective 

grafting of the organic layer on the tube surface, obtaining arrays of aligned CNTs is 

crucial. 

 

Vertically aligned carbon nanotubes (VACNTs) with the array aligned 

perpendicular to the substrate surface exhibit many attractive characteristics and 

properties that are interesting for electronic and functional devices such as scanning 

probes and field emitters and for interface and composite materials (Dai, 2006; Harris, 

1999). In order to obtain VACNTs in a large quantity, several CVD techniques have been 

adopted (Gong et al., 2008; Hata et al., 2004; Meyyappan et al., 2003; Singh et al., 2003; 

Xu et al., 2006; Zhong et al., 2009). These techniques include the use of template 

materials such as mesoporous silica (Che et al., 1998a; Li et al., 1996), zeolites (Zhao et 

al., 2012), alumina (Suh and Lee, 1999)and patterned catalysts.  

 

Due to the relatively low amount of mesopores (diameter ��2-50 nm) and 

macropores (diameter > 50 nm), which are suitable for the growth of CNTs in 

mesoporous silica and zeolite materials, the use of patterned catalysts is more attractive in 

the context of high-yield production. Unfortunately, the VACNTs obtained via this 

technique are contaminated with catalyst particles, and thus, require purification steps 

after the synthesis and are therefore impractical. In addition, the growth process often 

involves a tip growth mechanism, which leads to the fact that the obtained VACNTs are 

capped or closed with catalyst particles (Andrews et al., 1999; Fan et al., 1999; Li et al., 

1996; Ren et al., 1998; Terrones et al., 1997; Zhang et al., 2002). This results in the 

difficulties for filling other particles or materials into the tubes, and thus, limits the 

applications in the fields of storage and delivery. Although, post-treatment techniques 
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have been reported for opening the closed tips such as the oxidation by acid solution 

(Hiura et al., 1995; Tsang et al., 1994), these treatments usually destroy the tube 

structure. Consequently, the use of alumina template that can be produced commercially 

with a simple and scalable technique such as an electrochemical technique and with high 

pore densities has attracted a great interest for the production of VACNTs. This technique 

not only yields tube arrays with uniform orientation but also with high purity and 

identical tube length and diameter.  

 

 

 

Figure 32 Schematic illustration of the AAO chemical composition and structure in 

which a porous anodic Al2O3 layer with well ordered hexagonal pore 

structure, narrow pore size distribution and uniform interpore spacing is 

situated on an Al substrate.  

 

Anodic aluminum oxide (AAO) membranes are alumina (Al2O3) membranes with 

well-ordered pore structure, narrow pore size distribution and uniform interpore spacing. 

These membranes are commonly obtained from the anodic oxidation of aluminum (Al) 

metal (located at the anodic side of the circuit), in a strongly acid electrolyte, to 
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aluminum oxide (Keller et al., 1953; Masuda and Fukuda, 1995; Sulka and Parkoła, 

2007). These membranes are commercially available. Their structure can be considered 

as hexagonally close-packed arrays of parallel cylindrical pores with a high aspect ratio 

or length to diameter ratio (see Figure 32).  

 

Apart from the mentioned advantageous characteristics and properties, AAO 

membranes have good thermal, mechanical and chemical stabilities. Their stabilities 

facilitate their use as template for the preparation of CNTs, which is typically performed 

at an elevated high temperature. In addition, their textural properties are tunable leading 

to a diversity in the CNT characteristics when they are used as template. The AAO 

membranes do not exhibit the potential only for the preparation of VACNTs but also for 

the numerous applications such as molecular separation (Jirage et al., 1997), sensors 

(Heilmann et al., 2003) and drug delivery (Losic and Simovic, 2009). Furthermore, they 

can be utilized as a template in the preparation of other materials ranging from polymers 

to metals (Martin, 1994; Masuda and Fukuda, 1995).  

 

For the preparation of VACNTs, Kyotani and co-workers firstly used AAO films 

as template for the tube synthesis in 1995. The CVD process was performed without 

adding any additional catalyst (Kyotani et al., 1995; 1996). In this process, an elevated 

high temperature within a hot-wall tubular reactor, in which the AAO template is located, 

promotes the decomposition of the gaseous carbon source. This results in the coating of a 

uniform carbon layer on the inner wall of the AAO nanochannels. After the template 

removal by immersing in hydrofluoric (HF) acid solution, CNTs are obtained as residue 

(Kyotani et al., 1995; 1996) (see Figure 33) 
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Figure 33  Schematic illustration of the process used for the VACNT production by 

using an AAO template. The illustration is adapted from that presented in the 

literature (Kyotani et al., 1996).  

  

It has been reported that this synthesis technique provides the parallel and straight 

arrays of CNTs with uniform and controllable characteristics (length and diameter) that 

reflect the characteristics of the AAO channels. The length of the whole tubes is derived 

from the thickness of the parent AAO template while the outer diameter of the tubes 

directly relates to the pore diameter of AAO (Che et al., 1998b; Kyotani et al., 1995). 

AAO is easily removable from the synthesized carbon by a simple chemical treatment 

using an acidic or alkaline solution (HF or sodium hydroxide (NaOH)) without affecting 

the structure of the CNT product confined inside its pores. In addition, it can yield 

MWCNTs without using any metal catalysts (Altalhi et al., 2010). This is because AAO 

can itself play a catalytic role in the decomposition of the gaseous carbon source (Sui et 

al., 2001). By considering that purification steps are not required in the process, this 

synthesis technique is practical for the production of VACNTs (Altalhi et al., 2010). In 

addition to the advantage of the well-defined structure and alignment of the tubes, the use 

of AAO templates also yields tubes with open-ends. Thus, it is possible to fill foreign 

materials inside the hollow channel of the tubes. 
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In order to extend the applications of CNT in the fields of bio-fuel cell, bio-

electrocatalyst and bio-sensing (Guo and Li, 2005; Wang and Lin, 2008), both non-

covalent (Barone and Strano, 2006; Das and Das, 2009; Nativ-Roth et al., 2007; Yan et 

al., 2008) and covalent (Datsyuk et al., 2008; Nayak et al., 2007; Philip et al., 2005; 

Rahimi-Razin et al., 2012) approaches have been employed to create surface functional 

groups on the tube surface. The introduction of the key biocompatible functional groups 

including amine and carboxylic acid groups to the surface of the tubes is the fundamental 

process. Although both covalent and non-covalent functionalization can be employed for 

immobilizing bio-molecules including proteins, enzymes and DNA, the covalent 

functionalization offer a better mechanical, thermal and chemical stability than the non-

covalent one. Nevertheless, as a main disadvantage, it usually damages the tube structure 

during the modification (Mittal, 2011).  

 

In 2001, Bahr and co-workers reported for the first time an alternative and 

efficient way to modify the tubes without leading to structural damage of the tubes. The 

electrochemical grafting on CNTs via diazonium chemistry was employed (Bahr et al., 

2001). CNTs were modified with various degrees of aryl groups by an electrochemical 

reduction technique using a metal catalyst. It was found that via this technique the aryl 

groups are widely dispersed onto the tube surface. As the substituent of the aryl group of 

the diazonium molecules allows the coupling with other molecules such as polymers and 

other materials such as nanoparticles, the surface properties of the modified tubes can be 

tuned. Accordingly, the modification technique of CNTs using diazonium has attracted 

great interest. 

  

The mechanism of the attachment of the molecules to the CNT surface using 

diazonium has been explored. Steven and co-workers suggested that via the 

electrochemical modification the covalent bonds are established between the carbon atom 

of substituted aryl groups (derived the diazonium molecules) and the lattice of CNTs 

(Kooi et al., 2002). It was found that a highly reactive radical generated by the 
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electrochemical reduction of diazonium can not only interact and attach to the ends of 

CNTs but also to the sidewall of the tubes. This leads to a high degree of 

functionalization of the tubes (~5% of carbon atoms bear the functional groups) (Kooi et 

al., 2002). Until recently, the selective modification of CNTs via the bipolar 

electrochemical reduction of diazonium that can increase the complexity of CNTs and 

make them promising for some specific applications such as storage and drug delivery, 

has not been reported.  

 

 In this section, we studied the selective modification of CNTs by an organic layer 

of 4-aminobenzene via the bipolar electrochemical approach. VACNTs were firstly 

prepared via the CVD technique by using AAO as the template. Then, the bipolar 

electrografting was performed without the removal of AAO from the carbon product. The 

main ideas for using the as-prepared VACNT/AAO product without removing of AAO 

are i) to simplify the setup because no membranes are needed ii) prevent the reaction on 

the outer surface of the tube walls. Keeping the tubes in the bundle form allows fixing the 

tubes between the two feeder electrodes, and as a consequence the tubes cannot get in 

contact with the feeder electrodes during the bipolar experiment and the reactions occur 

on the tube via bipolar electrochemistry. The template block protects the outer surface of 

the tubes from the covalent attachment of 4-aminobenzene, and thus, leads to the 

selective modification with the organic layer on the inner surface of the tubes and at one 

side of the tubes. Similar to the previous section, citrate-capped gold nanoparticles 

(AuNPs) were used for labeling the area that is modified by the organic layer in order to 

verify the asymmetric modification. In the last step, the AAO template was removed 

leading to the desired material.  
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2. Methods 

 

The experimental steps for the selective modification of CNTs with the organic 

layer of 4-aminobenzene via the bipolar electrochemical approach are depicted in Figure 

34. In the first step, VACNTs were prepared via the CVD technique by using AAO as the 

template. In this step, the additional metal catalyst was not used. Thus, the step for the 

metal catalyst removal is not required. After that the bipolar electrografting of 4-

aminobenzene moieties onto the inner surface of the tubes was performed. Then in order 

to create the positive charges on the surface area that is modified by 4-aminobenzene 

moieties allowing the verification of the modification, the protonation of the amine 

groups of 4-aminobenzene moieties was performed by soaking the product in an acid 

solution. Then the material was coupled with the negatively charged AuNPs and 

analyzed. In the final step, the AAO template was removed. The asymmetrically 

modified tubes were then isolated, washed and dried. The details for each experimental 

step are as follows. 
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Figure 34 Schematic illustration of the experimental steps for the selective modification 

of CNTs with an organic layer of 4-aminobenzene via the bipolar 

electrochemical approach.   
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2.1. Preparation of VACNT/AAO  
 

2.1.1. Pretreatment of AAO membrane  

 

Commercial AAO membrane filters (Anodisc 47, WHATMAN) with a membrane 

diameter of 47 mm, average pore diameter of ��200 nm and thickness of 60 μm (without 

the polymer support) were used as templates for the synthesis of VACNTs. In order to 

avoid the wrapping of the membrane at an elevated temperature (at the reaction 

temperature for the tube synthesis) that originates from the transition of alumina, the 

membranes were annealed at the highest temperature used for the tube synthesis (the 

discussion about the optimized experimental conditions for the synthesis of VACNTs is 

included in the next section). During this annealing step, each AAO membrane was 

placed between crucibles with their bottoms facing the membrane and annealed in a 

muffle furnace (LV3/11/B180, NABERTHERM) at 1000 °C for 1 h with a heating rate of 

3 °C/min. The annealed membranes were then used for the synthesis of CNTs. 

 

2.1.2. Synthesis of VACNT/AAO  

 

The experimental set-up used for the synthesis of VACNT/AAO in this work is 

quite similar to that used in the literature (Warakulwit, 2007). A few pieces of the 

annealed AAO membrane were placed on quartz wool (ALTECH) within a vertical 

aluminum porcelain work tube at the middle position as a fixed bed as shown in Figure 

35. The work tube was then introduced in a vertical wire-wound tube furnace (LENTON 

LTF 12/38/250) equipped with a temperature controller. The mass flow controllers 

(AALBORG) were used to control the flow rate of acetylene (C2H2) and nitrogen (N2) 

gases. A liquid trap was included in the system to condense the hydrocarbon residue gas 

to liquid.   
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Figure 35 Schematic illustration and photo showing the setup of the equipment used 

for the synthesis of VACNT/AAO in this study. 

 

Under a N2 atmosphere (flow rate of N2 was fixed at 90 ml/min), the temperature 

of the reactor was increased gradually from room temperature to 750 �C with a heating 

rate of 10 �C/min. The reactor was left under this condition for 5 min in order to ensure a 

steady temperature of the reactor before starting the reaction. Next, C2H2 gas (99.9% 

purity) was passed through the work tube by using N2 as the carrier gas. The flow of N2 

and C2H2 was 90 and 10 ml/min, respectively. After 1 h (the reaction time), the C2H2 

flow was stopped. The reactor was left to cool down to room temperature under the N2 

flow (90 ml/min). This process usually takes about 2 h. After each synthesis, the work 

tube was cleaned via an air oxidation at 1000 �C for 6 h in the horizontal furnace (LTF 

12/50/610, LENTON).  

 

2.1.3. Post-treatment of the VACNT/AAO product 

 

Because no additional metal catalyst is used in this work in order to avoid the 

catalyst removal step, vertically aligned MWCNTs with low graphiticity (the proportion 
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of crystallinity and amorphousness) were obtained together with amorphous carbon (see 

later in the Results and Discussion section). Due to a relatively low electrical 

conductivity of the tubes which can lower the efficiency of the bipolar electrochemical 

grafting, a post-treatment of the tubes was performed. For this purpose, we firstly 

attempted to use manual polishing (by using a sand paper, DCC#2000, TOA, Thailand) to 

remove amorphous carbon from the top surface of the tube array and later employed a 

thermal annealing of the polished sample at 1000 �C under inert N2 atmosphere . 

Unfortunately, we found that via this procedure, the structure of CNTs was severely 

damaged (see details in the Results and Discussion section). Therefore we avoided the 

manual polishing in order to preserve the tube structure. The steps of the thermal 

annealing of tubes and the air oxidation (of amorphous carbon from the carbon product) 

were employed instead in order to obtain VACNTs with high purity, improved 

graphiticity and preserved tube structure. 

  

The treated VACNT/AAO material can be obtained by using a procedure similar 

to the one described above, but with some modifications. Afterwards the VACNT/AAO 

material was prepared via the decomposition of C2H2 at 750 �C for 1 h. The thermal 

annealing of the as-prepared VACNT/AAO material was immediately performed by 

continuously ramping up the temperature of the reactor to 1000 �C with a heating rate of 

10 �C/min. The work tube was kept at this temperature for 4 h. Then, the reactor was left 

to cool down to room temperature (about 2 h) under the N2 flow. After each synthesis, the 

work tube was cleaned via an air oxidation at 1000 �C for 6 h. After that the air oxidation 

of amorphous carbon from the carbon product was performed. The obtained sample was 

further transferred from the reactor into a crucible. The crucible was then placed in a 

muffle furnace (LV3/11/B180, NABERTHERM) and heated at 500 �C for 1 h with a 

heating rate of 3 �C/min.  
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2.1.4. Opening of both ends of the VACNT bundle  
 

In order to enhance the efficiency of the bipolar electrografting, we attempted to 

liberate the ends of the VACNT bundle embedded in the AAO membrane by partly 

removing of the AAO top surface. For this purpose, hydrofluoric acid solutions with 

different concentrations were used to remove partly alumina from the top surface at both 

ends of the prepared VACNT/AAO membrane. A suction filter system was used in order 

to offer a short contact time between the membrane surface and the HF solution. This is 

because only a small area of the alumina on the top surface at both ends of the membrane 

is expected to be removed as shown in Figure 36.  

 

 

 

Figure 36 Schematic illustration showing the process to remove alumina from the top 

surface in part at both ends of the prepared VACNT/AAO membrane in order 

to facilitate the polarization of the tubes in the electric field, and thus, 

promoting the bipolar electrografting by the organic layer. 

 

HF solutions with various concentrations were prepared from a concentrated 

solution of HF (50%, CARLO ERBA). A few droplets of the HF solution were carefully 

dropped on the top surface of the prepared VACNT/AAO membrane, which was placed 

on a polytetrafluoroethylene (Teflon) membrane filter (MILLIPORE) equipped with a 

suction filter system to remove the solution quickly from the membrane by using a water-

jet vacuum pump (WJ-20, SIBATA) connected to the suction flask (see Figure 37). Then 
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ultrapure water was used to rinse the membrane. This procedure was repeated for the 

other side of the membrane surface.  

 

 

 

Figure 37 Photo showing the equipment used for the removal of alumina from the 

top surface in part at both ends of the prepared VACNT/AAO membrane. 

 

2.2. Asymmetric electrografting of 4-aminobenzene on VACNTs via bipolar 

electrochemical reduction of 4-nitrobenzenediazonium salts 

 

For an asymmetric electrografting of 4-aminobenzene on VACNTs via bipolar 

electrochemical reduction of 4-nitrobenzenediazonium salts, the obtained membrane was 

positioned in an electrochemical cell filled with a cold solution of 4-

nitrobenzenediazonium salts (5 mM), which is prepared by dissolving 0.0122 g of 4-

nitrobenzenediazonium tetrafluoroborate in 10 ml of cold 1 mM HCl solution  (see 

Figure 38). A plastic container was used as the solution reservoir. The water cooling 

system consisted of ice, water, and salt was added into the container around the reaction 
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compartment. The resin was used to protect the flow of outer solution into the reaction 

compartment and vice versa. About 1 ml of glacial nitrobenzenediazonium 

tetrafluoroborate/1 mM HCl solution was filled into the reaction compartment. Two 

carbon rods were cleaned by sonicating in absolute ethanol, dried and used as the feeder 

electrodes. The feeder electrodes arranged horizontally were connected to a high-voltage 

power supply with steel crocodile clips. It should be noted that only the membrane and 

two feeder electrodes were suspended in the solution. 

 

 

 

Figure 38 Schematic illustration and photo showing the experimental set-up of the 

equipments used for asymmetric electrografting of 4-aminobenzene on 

VACNTs by using bipolar electrochemical reduction of 4-

nitrobenzenediazonium salts.  
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In order to drive the redox reactions leading to the bipolar electrografting of 4-

aminobenzene moieties onto the tube inner surface (the average length of the tubes or the 

membrane thickness was � 60 μm) in the electric field (E) generated between the feeder 

electrodes with the distance between the electrodes of 1 cm (see equation (1)), a voltage 

of 400 V was applied for 30 s to the system. After that, the sample was carefully 

transferred into an Eppendorf cup and rinsed with 0.1 M HCl to protonate the amine 

groups of the 4-aminobenzene moieties grafted onto the inner surface of the tubes. Then, 

the obtained material was isolated from the acid solution and immersed overnight in the 

colloidal Au-citrate solution prepared according to the procedure described in the last 

chapter. The product was characterized by field-emission scanning electron microscopy 

(FE-SEM, S-4700, HITACHI with an accelerating voltage of 5 – 10 kV) and 

environmental scanning electron microscopy (ESEM, Quanta 450, FEI with an 

accelerating voltage of 30 kV). The chemical composition of the product was 

investigated by energy dispersive X-ray (EDX) analysis.  

 

For the transmission electron microscopy (TEM) characterization, the alumina 

matrix was completely removed from the resulting material by immersing the membrane 

in an excess amount of 50% HF solution overnight. The precipitate was collected by the 

centrifugation. Consequently, the HF solution was removed from the precipitate. The 

precipitate was washed with ultrapure water several times until the pH of the supernatant 

was ��7. Then, the precipitate was dried in an oven at ��100 °C. A part of the precipitate 

was re-dispersed in absolute ethanol by using an ultrasonic bath (RK106, BANDELINE, 

LECTRONIC). A few drops of this suspension were put on a copper grid for the TEM 

characterization (HT-7700, HITACHI and JEM-2100, JEOL with an accelerating voltage 

of 120 kV). 
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3. Results and discussion 

 

3.1. Preparation of VACNT/AAO 

 

 Figure 39 shows the photo and the SEM images of the as-obtained commercial 

AAO membrane. The top-view SEM image shows that the membrane is composed of the 

highly ordered structure of a hexagonal array of pores (see Figure 39b). By observing the 

two extremities of the membrane, the pores were found to be open at both ends. 

However, there is a slightly difference in the feature of the pore opening on both sides. 

The pores with an average diameter of about 200 nm can clearly be observed from the 

back side of the membrane (see Figure 39b). While at the opposite side, we found that the 

pores have a smaller diameter, about 165 nm in average (obtained by analyzing by 

ImageJ program). This feature is typically found for the commercially available 

Whatman® Anopore (Anodisc) membrane. Nevertheless, at the main entrances (the black 

pores beneath the openings at the top), we can observe also pores with an average 

diameter of about 200 nm (see Figure 39c) similar to that observed at the other side of the 

top-view surface. Then the difference in the feature of the pore openings at both 

extremities is expected to not have any influence on the main characteristics of the 

prepared CNTs, and thus, can be neglected. On the SEM image of the membrane cross-

section (figure 39d) we observed the uniform length (~ 60 μm) of the pores. The high 

magnification image (Figure 39e) of this cross-section image shows pores with a straight, 

parallel and cylindrical structure and the openings of the pores. This finding corresponds 

well to that reported in the literature (Masuda and Fukuda, 1995; Poinern et al., 2013). It 

should be noted that, from the cross-section SEM image, the sample does not look so 

clean and contains small pieces of the membrane fracture due to the cracking of 

membrane (by hands) in the preparation step of the sample for the SEM side-view 

observation. 
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(a) 

 

 

(b) 

 

Figure 39 (a) Photograph and (b-e) SEM micrographs of a commercial AAO 

membrane filter with average pore diameter of about 200 nm. (b-c) The 

images show the top-view surfaces of the membrane: (b) back side and (c) 

front side. (d) The images with the cross-section view and (e) high 

magnification.  
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(c) 

 

 

(d) 

 

Figure 39 (continued) 
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(e) 

 

Figure 39 (continued) 

 

Figure 40a shows the photo of the AAO membrane after the removal of the 

polymer support at the edge of the membrane (the transparent part in Figure 39a) by 

using a scissor and after a thermal treatment at 1000 °C for 1 h in air. It can be seen that 

the membrane splits in several pieces, rolled up almost into a semicircle. The SEM 

images of this membrane (see Figure 40b-c) do not show any modification in the pore 

characteristics. They are still highly ordered with a hexagonal arrangement. The average 

pore diameter, the straight, parallel and cylindrical structure was not changed during the 

treatment. It can be seen from the cross-section SEM image (Figure 40d) that there is a 

distortion of the surface plane of the membrane. The reason for the membrane to roll up 

and have a distorted surface plane is that there is a phase transformation of the alumina 

from amorphous to polycrystalline. This transformation is suggested to occur at a 

temperature of around 830 – 840 °C (Mardilovich et al., 1995). Because of this wrapping 

feature, the membrane is not suitable anymore to be used for the bipolar experiment. In 

order to avoid the membrane wrapping at the temperature where the CNTs are prepared, 
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the membrane was placed between two crucibles that face their bottoms to the membrane 

and heat treated at 1000 °C as a pre-treatment. 

 

 

 

Figure 40 (a) Photograph of an AAO membrane obtained after the heat treatment at 

1000 °C for 1 h in air and its SEM images taken from the top of (b) the 

front side and (c) the back side. (d) Its cross-section SEM image.  

 

3.1.1. Pretreatment of AAO membrane 

 

 Figure 41a shows a photo of the membrane pretreated by placing between the 

crucibles that face their bottoms to the membrane during the heating at 1000 °C for 1 h in 

air. It was found that the wrapping of the membrane due to the transformation of the 
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alumina phase can be reduced (see Figure 41a). The SEM images (see Figure 41b-d) of 

the membrane show that the distortion of its surface plane is diminished and the pore 

characteristics including the highly ordered structure of hexagonal arrangement, the 

average pore diameter, and the straight, parallel and cylindrical structure are preserved. 

This pretreatment technique is thus used for the membrane prior to the synthesis of 

VACNTs. 

 

 

 

Figure 41 (a) Photograph of an AAO membrane pretreated by placing between 

crucibles that face their bottoms to the membrane during the heating at 

1000 °C for 1 h in air and its SEM images taken from the top of (b) the 

front side and (c) the back side. (d) Its cross-section SEM image.  
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3.1.2. Synthesis of VACNT/AAO 

 

 Figure 42a shows a photo of the VACNT/AAO sample prepared at 750 °C. The 

membrane is now black because of the formation of carbon materials. Figure 42b shows 

the cross-section SEM image of the sample confirming a successful synthesis of 

VACNTs. The characteristics of the tubes including the straight, parallel and cylindrical 

structure, and the average diameter of ~ 200 nm are reflected from the pore 

characteristics of the AAO membrane (see inset of Figure 42b). The top-view image 

(Figure 42c) shows the average tube length of ��60 �m that is related to the membrane 

thickness. Nevertheless, it can be seen also from the image that, via the pyrolysis of 

acetylene under the current experimental conditions, apart from VACNTs, amorphous 

carbon is also formed at the surface of VACNT/AAO as a thin layer (indicated by the 

white arrows in Figure 42c). Because the tubes are formed without the catalyst in AAO 

template, playing the role of a catalyst, via the pyrolysis of the hydrocarbon precursor 

(acetylene), it is possible that amorphous carbon is generated over the top surface of the 

AAO (Schneider et al., 2008). Due to the presence of the amorphous carbon, we expect 

that the prepared tubes are not completely open at the end. As the modification of the 

inner surface of the tubes is the objective of the bipolar experiments we did not use the 

as-prepared tubes (with the amorphous carbon) because i) the amorphous carbon layer 

can prevent the penetration of the organic precursors into the tubes ii) the bipolar 

modification will not occur at the end of the tubes but will occur at the amorphous layer 

leading to undesirable results and iii) the presence of the carbon coverage can prevent the 

removal of AAO by using HF. For all these reasons, a post-treatment is required in order 

to obtain the VACNT/AAO sample without the amorphous carbon that is not suitable for 

the bipolar experiments. We firstly attempted to remove the amorphous carbon by a 

simple manual polishing. The obtained results are described in the next part. 
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(a) 

 

 

(b) 

 

Figure 42 (a) Photograph and (b-c) SEM images of the VACNT/AAO sample 

prepared via the decomposition of acetylene at 750 °C for 1 h. (b) SEM 

image taken from the cross-section view (inset: the image with high 

magnification). (d) SEM image taken from the top-view.  
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(c) 

 

Figure 42 (continued) 

 

3.1.3. Post-treatment of the VACNT/AAO product 

 

The manual polishing was performed by using waterproof abrasive sandpaper 

(DCC#2000, TOA, Thailand). The membrane was mildly polished by hands at both front 

and back sides. We found that it is easy to get rid of the tiny black powder from the 

membrane without any severe breakages of the membrane (Figure 43a). After that, the 

polished membrane was thermally treated at 1000 �C and kept constant at this 

temperature for 1 h under the inert atmosphere of N2 as an annealing step (heat treatment 

that alters the physical and sometimes chemical properties of a material to improve its 

workability) to improve the graphiticity (carbon crystallinity i.e. the presence of sp2 

hybridized or graphitic configuration) of the tubes, and thus, their mechanical strength. 

The SEM images of the obtained membrane are shown in Figure 43b-d. It can be seen 

from the images that the characteristics of the synthesized tubes are mainly preserved, 

however, the tubes were decomposed into tiny pieces at the ends and these pieces are 



92 
 

expected to block the entrance of the tubes. For this reason, we decided that the employed 

technique is not suitable for the post-treatment of the VACNT/AAO product. 

 

 

 

Figure 43 (a) Photograph of the VACNT/AAO sample prepared at 750 �C via the 

decomposition of C2H2 and post-treated by manual polishing using sand 

paper and (b-c) SEM images of the VACNT/AAO sample prepared at 750 

�C via the decomposition of C2H2 and post-treated by manual polishing 

using sand paper and thermal annealing at 1000 �C. (d) SEM image taken 

from the cross-section view. 

 

Next, we attempted to use a different technique to remove amorphous carbon 

from the product instead of the manual polishing. Typical purification techniques that 
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have been used to remove amorphous carbon from CNTs after the synthesis are wet-

chemical treatments that use acids and bases as the oxidants for amorphous carbon 

(Colomer et al., 2000; Li et al., 2003). These treatments, however, extensively damage 

the tube sidewall and cause many defects on the tube sidewall (Hou et al., 2008). In 

addition, the procedures, like filtering and drying, performed after the chemical etching 

also typically lower the yield of the tubes considerably. Then, an alternative purification 

approach, namely air oxidation, was used in this work. This technique is based on the 

gas-phase thermal oxidation by using air as the gaseous oxidant (Haddon et al., 2004). 

Typically, via air oxidation, the carbon materials are oxidized at a temperature in the 

range of 200-500 °C depending on the type of the materials (Dementev et al., 2009). The 

amorphous carbon is typically oxidized in air in the temperature range of 200-300 °C, 

whereas CNTs are thermally stable up to 400-650 °C (Lehman et al., 2011; Osswald et 

al., 2005). As reported in the literature the graphiticity or cystallinity of CNTs prepared 

via the CVD method without the use of metal catalysts is generally not high (Jeong et al., 

2004), thus we expected that the air oxidation might damage easily the sidewalls of the 

tubes obtained from our CVD synthesis, and thus decreasing the electrical conductivity of 

the tubes (leading to the inefficient bipolar experiments). For this reason, after the step of 

the tube synthesis at 750 �C, we employed thermal annealing by increasing the 

temperature of the work tube to 1000 �C and keeping it constant for 4 h (under the inert 

atmosphere of N2) as the thermal annealing step should increase the graphiticity of the 

tubes in order to strengthen the tubes (Huang et al., 2003; Kowalska et al., 2006; Lin et 

al., 2010) and preserve the tubes from the severe structural damage during the air 

oxidation step. Then, we performed the air oxidation at 500 °C for 1 h in air. The 

decomposition of VACNTs can be avoided at this temperature (see details in Appendix 

A).  
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Figure 44 (a) Photograph and (b-c) SEM images of the VACNT/AAO sample 

prepared at 750 �C via the decomposition of C2H2, post-treated with the 

thermal annealing at 1000 �C for 4 h (under N2 atmosphere) and the air 

oxidation at 500 �C for 1 h. (d) SEM image taken from the cross-section.  

 

Figure 44a shows a photo of the VACNT/AAO sample prepared at 750 �C via the 

decomposition of C2H2 and post-treated by thermal annealing at 1000 �C for 4 h (under 

N2 atmosphere) and air oxidation at 500 �C for 1 h. The black color of the sample 

indicates the existence of carbon materials. Figure 44b-d shows the SEM images of the 

sample confirming a successful removal of amorphous carbon from the VACNT/AAO 

product. 
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Figure 45a shows a photo of VACNTs prepared at 750 �C via the decomposition 

of C2H2 and post-treated by the thermal annealing at 1000 �C for 4 h (under N2 

atmosphere) and air oxidation at 500 �C for 1 h after the removal of the AAO template. It 

was found that although the AAO template was removed (by using HF), the tubes still 

stay together as bundles. It is due to the van der Waals interactions between them (Hertel 

et al., 1998; Ruoff et al., 1993). Additionally, the characteristics of the tubes including 

the straight, parallel and cylindrical structure, the average diameter of ~200 nm and the 

tube length of 60 �m were found to be preserved after the removal of the template (see 

Figure 45b-c).  
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Figure 45 SEM images of the VACNT sample prepared at 750 �C via the 

decomposition of C2H2 through AAO template, post-treated with the 

thermal annealing at 1000 �C for 4 h (under N2 atmosphere) and air 

oxidation at 500 �C for 1 h after the removal of the AAO template by 

using HF taken from the (a-b) top-view (from both sides) and (c) cross-

section view.  

 

The high-magnification cross-section SEM images focusing at both ends of the 

tubes (see Figure 46a-b) demonstrate that the tubes are open at both ends. As mentioned, 

this opening feature serves for the filling of the tubes with foreign molecules, ions or 

nanomaterials, and thus, opens up many related applications. It can also be observed from 
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the images that some tubes are branched in nature. This is due to the branched channels 

of the commercial AAO template. 

 

 

 

Figure 46 High magnification SEM images of the VACNT sample prepared at 750 

�C via the decomposition of C2H2 through AAO template, post-treated by 

thermal annealing at 1000 �C for 4 h (under N2 atmosphere) and air 

oxidation at 500 �C for 1 h after the removal of the AAO template by 

using HF taken from the cross-section view (from both sides) (a-b). 

 

Raman spectroscopy , a non-destructive characterization technique that is widely 

employed for the characterization of CNTs, was used to provide information about the 

structural changes occurring during the treatments (Colomer et al., 2000; Geng et al., 

2002; Lee et al., 1999; Wepasnick et al., 2010). Two main features in the Raman spectra 

of MWCNTs include D-band, the band at ~1350 cm-1, which is associated with the 

disordered carbon defects of MWCNTs, and G-band, the band in the range of 1500-1600 

cm-1, which is attributed to the tangential vibrations of the graphitic carbon atoms (the 

fundamental Raman modes of crystalline graphite) (Eklund et al., 1995; Geng et al., 

2002; Tuinstra and Koenig, 1970). The ratio between the D-band and the G-band (ID/IG) 

was used to evaluate of the degree of disorder of the tubes (Geng et al., 2002; Tan et al., 
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1997). A small ID/IG ratio suggests CNTs with the few defects and less amorphous 

carbon.  

 

 Raman spectra and the ID/IG ratios of the tubes prepared at 750 �C via the 

decomposition of C2H2 ("as-synthesized VACNTs"), the tubes prepared at 750 �C via the 

decomposition of C2H2 and post-treated with the thermal annealing at 1000 �C ("as-

annealed VACNTs") and the tubes prepared at 750 �C via the decomposition of C2H2, 

post-treated with the thermal annealing at 1000 �C for 4 h (under N2 atmosphere) and air 

oxidation at 500 �C for 1 h ("as-purified VACNTs") are shown in Figure 47. The D-band 

and G-band, which are the characteristics of MWCNTs, were found for all samples 

confirming the formation of the tubes via the synthesis and the preservation of the tubes 

during the treatment. The ID/IG ratio of the as-annealed VACNTs (1.04) is slightly lower 

than that of the as-synthesized VACNTs (1.07) indicating a slight improvement of the 

graphiticity of the tubes via the annealing process (at 1000 �C). The ID/IG ratio of the as-

purified VACNTs (1.06) is slightly higher than that of the as-annealed VACNTs (1.04) 

indicating a lowering of the graphiticity of the tubes due to the air oxidation (at 500 �C). 

Nevertheless, the ID/IG ratio of the as-purified VACNTs (1.06) is almost comparable to 

that of the as-annealed VACNTs (1.04) indicating that, via the post-treatment, the 

graphiticity of the tubes was mainly preserved. Then the post-treatment performed in this 

study is considered to be a suitable process for the removal of amorphous carbon from 

the tube product.   
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Figure 47 Raman spectra and the ID/IG ratios of the tubes prepared at 750 �C via the 

decomposition of C2H2 ("as-synthesized VACNTs"), the tubes prepared at 

750 �C via the decomposition of C2H2 and post-treated by thermal 

annealing at 1000 �C for 4 h (under N2 atmosphere) ("as-annealed 

VACNTs") and the tubes prepared at 750 �C via the decomposition of 

C2H2, post-treated by thermal annealing at 1000 �C for 4 h (under N2 

atmosphere) and air oxidation at 500 �C for 1 h ("as-purified VACNTs"). 

 

Figure 48 shows the TEM image of the as-purified sample evidencing the 

formation of VACNTs. As the tubes were broken during the sonication process, some 

short tube fractions can be seen in the image. The outer diameter of the tubes is found to 

be variable due to a range of diameters in the AAO template itself, the average diameter 

of the tubes being ��200 nm. The tubes are found to be branched at the ends and some 

ends are closed because of the nature of the commercial AAO template, however most 

tubes have an open end.  
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Figure 48 TEM image of the tubes prepared at 750 �C via the decomposition of 

C2H2, post-treated by thermal annealing at 1000 �C and air oxidized at 500 

�C for 1 h ("as-purified VACNTs"). 

 

3.2. Asymmetric electrografting of 4-aminobenzene on VACNTs via bipolar 

electrochemical reduction of 4-nitrobenzenediazonium salts 

 

For the bipolar configuration, a disposable cuvette was used as bipolar cell. In 

order to simplify the experimental set-up, the ion-selective membranes were not used in 

this work. These membranes are usually used to avoid the classical electrochemical 

reactions at the feeder electrodes, and thus a loss of the ions supplied for the redox 

reactions on the bipolar electrode and also to avoid disturbing the reactions at the BPE. 

The obtained VACNT/AAO membrane, which was post-treated by the thermal annealing 

at 1000 �C for 4 h and the air oxidation at 500 �C for 1 h, was introduced into the cuvette 

with their top surfaces facing the walls of the cuvette and located in the middle of the 
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cuvette (see Figure 49). The sample was not in Ohmic contact with the feeder electrodes. 

The feeder electrodes were arranged vertically and parallel to the top surfaces of the 

VACNT/AAO membrane and connected to a high-voltage power supply by using steel 

crocodile clips. Only the membrane and the ends of the feeder electrodes were suspended 

in the solution.   

 

 

 

Figure 49  Photo and schematic illustration showing the experimental set-up for 

asymmetric electrografting of 4-aminobenzene on VACNTs embedded in 

the AAO membrane with the feeder electrodes being arranged vertically.  

 

For this configuration, we found that it is not possible to apply the desired electric 

field to the system for a long time. After a few seconds of the application of electric field, 

the electrical current in the system reached the maximum limitation of the power supply. 

Then, the electric field was automatically stopped. This reaction time (few seconds) is too 

short to provide the desired deposition. For this reason, in the next step, we attempted to 

reduce the current of the system by reducing the surface area of the feeder electrodes 

immersed in the solution. The feeder electrodes were arranged horizontally (see Figure 

50).  
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Figure 50  Photo and schematic illustration showing the experimental set-up for 

asymmetric electrografting of 4-aminobenzene on VACNTs embedded in 

the AAO membrane with the feeder electrodes being arranged 

horizontally. 

 

With this configuration, we could apply a voltage of 400 V to the system for a 

longer time of up to 30 s. However, we found that during the application of the electric 

field, the temperature of the solution was increasing due to the passage of an electric 

current through the solution. This temperature increase can induce the grafting of 

diazonium on the tube surface via a thermal reaction, which cannot be controlled to be 

site-selective (Delamar et al., 1992; Sagar, 1996). Thus, the asymmetric deposition on 

VACNTs was then expected to be not achieved. For this reason, we tried to keep the 

temperature of the solution as constant as possible. The cooling unit, simply constructed 

by using an ice bath composed of a container filled with ice, water and sodium chloride 

(NaCl) salt, was introduced around the bipolar cell (see Figure 51). This configuration 

allows us to apply a voltage of 400 V for up to 120 s without boiling of the working 

solution. Thus, we used this configuration for the asymmetric electrografting of 4-
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aminobenzene on VACNTs via the bipolar electrochemical reduction of 4-

nitrobenzenediazonium salts. 

 

 

 

Figure 51  Photo and schematic illustration showing the experimental set-up for 

asymmetric electrografting of 4-aminobenzene on VACNTs embedded in 

the AAO membrane with a cooling unit around the bipolar cell. 

 

Nevertheless, it was observed from the TEM image of the tubes, which were 

obtained after i) the grafting of 4-aminobenzene moieties onto the inner surface of the 

tubes by using the voltage of 400 V and a deposition time ranging from 30 to 120 s, ii) 

the protonation of the amine groups of the 4-aminobenzene moieties in an HCl solution, 

iii) the electrostatic coupling of the protonated amine groups with the labeling materials 

(the negatively charged citrate-capped AuNPs), and iv) the removal of AAO template (by 

using HF) that there are no AuNPs present on the surface of CNTs. In other words, there 

is no grafting of the 4-aminobenzene moieties on the tube surface. AuNPs cannot be 

observed from the TEM images both in the cases of individual tubes (Figure 52a) and 

CNT bundles (Figure 52b). We suggest that this is because the VACNT/AAO membrane 

was not conductive enough to allow the electron transfer necessary for the bipolar 

reactions. This is due to the insulating nature of the AAO material (alumina). For this 
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reason, in the next step, we attempted to enhance the efficiency of the bipolar 

electrografting by disclosing partly the ends of the VACNT bundle that is embedded in 

the AAO membrane via the removal of the AAO top surface using HF solution. 

 

 

 

Figure 52 TEM images of (a) an individual CNT and (b) a CNT bundle obtained 

after i) the grafting of 4-aminobenzene moieties onto the inner surface of 

the tubes by using a voltage of 400 V and a deposition time ranging from 

30 to 120 s, ii) the protonation of the amine groups of the 4-aminobenzene 

moieties in an HCl solution, iii) the electrostatic coupling of the 

protonated amine groups with the labeling materials (the negatively 

charged citrate-capped AuNPs), and iv) the removal of the AAO template 

(by using HF). 

 

3.2.1. Opening of both ends of the VACNT bundle  
 

Hydrofluoric acid solutions with different concentrations (including 50%, 25% 

and 12.5% w/v) were used to remove alumina partly from the top surface at both ends of 

the as-prepared VACNT/AAO membrane together with the use of the suction filter 

system. It was found that, by dropping only few drops of the 50% HF solution onto the 

surface of the VACNT/AAO membrane for a short time, the membrane was corroded 
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immediately to small pieces (see Figure 53a). This result indicates that this acid 

concentration is too high for keeping the membrane structure. The SEM image taken 

from the top of the treated membrane (see Figure 53b) shows that the treatment causes 

severe corrosion of the alumina from the membrane surface. The outer surface of the 

tubes was highly opened by the treatment (see Figure 53c). This makes the sample not 

suitable to be used for the selective grafting of the organic layer onto the inner surface of 

the tubes because the grafting is expected to occur also at the outer surface of the tubes. 

In the next step, we then used the HF solution with the lower concentration of 25%. 

    

 

 

Figure 53 (a) Photograph and (b-c) SEM images with the (b) top-surface and (c) 

cross-section views of the VACNT/AAO sample prepared at 750 �C via 

the decomposition of C2H2, post-treated by thermal annealing at 1000 �C 

for 4 h (under N2 atmosphere) and air oxidation at 500 �C for 1 h in which 

both ends of the VACNT bundle were partly exposed by using a 50% HF 

solution. 
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In the case of using the 25% HF acid solution, the resultant was similar to the case 

of using the 50% HF acid solution. Therefore, we used the HF solution with the lower 

concentration of 12.5%.  

  

 

 

Figure 54 (a) Photograph and (b-d) SEM images with the (b-c) top-surface (at both 

sides) and (d) cross-section views of the VACNT/AAO sample prepared at 

750 �C via the decomposition of C2H2, post-treated by thermal annealing 

at 1000 �C for 4 h (under N2 atmosphere) and air oxidation at 500 �C for 1 

h in which both ends of the VACNT bundle were partly exposed to a 

12.5% HF solution. 

 

By using the 12.5% HF acid solution, the membrane structure could be preserved 

(see Figure 54a). The SEM images with low magnification taken from the top of the 
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treated membrane on both sides (Figure 54b-c) show that the treatment did not remove 

significantly alumina from the membrane surface. The membrane surface on both sides 

still looks similar to that of the untreated one. However, via the image with high 

magnification, the opening of the VACNT bundle at the ends was clearly observed. Then, 

we further used this treatment for the selective grafting of the organic layer onto the inner 

surface of the tubes. 

 

To promote the asymmetric electrografting of the organic layer onto the inner 

surface of the tubes embedded in the VACNT/AAO membrane, we first attempted to use 

a voltage of 400 V (corresponding to an electric field of 40 kV m-1), which was expected 

to be enough to drive the desired redox reactions across tubes with a length of ��60 �m in 

the bipolar cell with the distance between the feeder electrodes of 1 cm. During that 

experiment, we observed the generation of a substance with orange color and gas bubbles 

at the cathodic and the anodic sides of the BPE, respectively. This finding corresponds 

well to the redox reactions expected to occur at both sides of the BPE (see Figure 55). 

The evolution of the substance with orange color corresponds well to the reduction of 4-

nitrobenzenediazonium salts (see step 2 in Figure 34). While the gas bubbles are expected 

to be the evolution of the oxygen bubbles due to water oxidation that occurs rapidly until 

the gas bubbles can be seen (Warakulwit, 2007). Although gas bubbles were formed, we 

assumed that they will not disturb the grafting of the organic layer on the other side of the 

membrane. This is because in our set-up the membrane is fixed. The SEM images of the 

VACNT/AAO sample obtained after i) the grafting of 4-aminobenzene moieties onto the 

inner surface of the tubes by using a voltage of 400 V and a deposition time of 30 s, ii) 

the protonation of the amine groups of the 4-aminobenzene moieties in an HCl solution 

and iii) the electrostatic coupling of the protonated amine groups with the labeling 

materials (the negatively charged citrate-capped AuNPs) (see Figure 56) suggest that 

electrografting of the 4-aminobenzene moieties on the tube surface occurred under the 

current experimental conditions as AuNPs can be observed. 
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Figure 55  Photo and schematic illustration showing the experimental set-up and the 

redox reactions that are expected to occur at both sides of the BPE (the 

VACNT/AAO membrane). The reduction of 4-nitrobenzenediazonium 

salts (the coating with orange color) and the water oxidation (the evolution 

of gas bubbles) are expected to occur at the cathodic and anodic sides of 

the BPE, respectively. 

 

The top-view high magnification SEM image of the cathodic side of the modified 

membrane is shown in Figure 56a. The presence of AuNPs in the images confirms the 

successful grafting of the 4-aminobenzene moieties on the inner surface of the tubes at 

the cathodic side of the membrane. The top-view high magnification SEM image of the 

anodic side of the membrane (see Figure 56b) in which AuNPs cannot be seen confirms 

the selective grafting of the organic layer on one side (the cathodic side) of the 

VACNT/AAO membrane. 
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(a) 

 

(b) 

Figure 56 High-magnification FE-SEM images with the top-surface view of the 

VACNT/AAO sample at the (a) cathodic and (b) anodic sides. The sample 

was obtained after i) the grafting of 4-aminobenzene moieties onto the 

inner surface of the tubes by using a voltage of 400 V (corresponding to an 

electric field of 40 kV m-1) and a deposition time of 30 s, ii) the 

protonation of the amine groups of the 4-aminobenzene moieties in an 

HCl solution and iii) the electrostatic coupling of the protonated amine 

groups with the labeling materials (the negatively charged citrate-capped 

AuNPs). 
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The chemical composition of the anodic and cathodic side has been characterized 

via the EDX technique (Figure 57). The EDX data corresponding to the SEM images of 

the cathodic side indicate the presence of carbon (C) (from CNTs), oxygen (O) and 

aluminium (Al) (from the alumina composition) and gold (Au) (derived from AuNPs). 

The calculated Au content is rather high (7.91 atomic %) at this side and neglectable 

(0.051 atomic %) at the anodic side (while other chemical compositions are almost 

preserved). This finding confirms again the selective grafting of the organic layer on the 

cathodic side of the VACNT/AAO membrane. 

 

 

                                (a)             (b) 

 

Figure 57  The EDX data corresponding to the SEM images of Figure 56a and 56b 

for the (a) cathodic and (b) anodic sides. 

 

After that the sample was treated with a 50% HF acid solution in order to remove 

completely the AAO template. The SEM images of the resulting sample are shown in 

Figure 58a-b, respectively. Figure 58a clearly shows the presence of AuNPs on the tube 

surface at the cathodic side although the amount of the particles is less than that found in 

the as-prepared sample (before the removal of AAO). We suggest that the remaining 

particles have a strong interaction with the tube surface. Thus, they could withstand the 

removal of AAO by using the strong HF solution. Figure 58b clearly shows the absence 

of AuNPs on the tube surface at the anodic side. This finding clearly confirms the 
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selective grafting of the organic layer on the cathodic side of the VACNT/AAO 

membrane. 

 

 

(a) 

 

 
(b) 

 

Figure 58 FE-SEM images with the top-surface view of a bundle of VACNTs 

focused on the (a) cathodic and (b) anodic sides obtained from the removal 

of AAO template (by using HF) from the sample corresponding to Figure 

56a and 56b, respectively. 
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The low magnification TEM images of the sample are shown in Figure 59. It can 

be seen from the images that AuNPs are located selectively at one end of the tubes 

although most of the tubes were shortened due to the sonication employed in the step of 

sample preparation for the TEM characterization.   

 

 

 

Figure 59 TEM images of the tubes obtained after the bipolar electrografting of 4-

aminobenzene moieties onto the inner surface of the tubes by using an 

electric field of 40 kV m-1 for 30 s, the protonation of the 4-aminobenzene 

moieties in HCl solution, the coupling with the citrate-capped AuNPs, and 

the removal of AAO template.  

 

The high magnification TEM images of the sample are shown in Figure 60a-b. It 

can be seen from the images that AuNPs are located selectively inside of the tubes 

revealing the successful asymmetric electrografting of 4-aminobenzene on the inner 

surface of the tubes. Figure 60c shows that the particles located at the tube surface have 

comparable size compared to the as-prepared particles although the sample underwent the 

harsh treatment with the concentrated HF. For this reason, we suggested that the 

technique using the citrate-capped AuNPs is suitable for labeling the asymmetric 

electrografting of 4-aminobenzene on CNTs. 
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Figure 60 (a-b) High-magnification TEM images of the tubes corresponding to the 

TEM image of Figure 59 for the cathodic side. (c) Histogram showing the 

particle size distribution of AuNPs deposited onto the tube surface. 

 

 In order to investigate the role of the deposition time on the bipolar 

electrografting of 4-aminobenzene onto VACNTs, an additional experiment was 

performed by using the same bipolar configuration and a voltage of 400 V 

(corresponding to an electric field of 40 kV m-1), but with a longer deposition time of 120 

s.  
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Figure 61  TEM images of the tubes obtained after the bipolar electrografting of 4-

aminobenzene moieties onto the inner surface of the tubes by using the 

electric field of 40 kV m-1 and the deposition time of 30 s (a) and 120 s (b), 

the protonation of the 4-aminobenzene moieties in HCl solution, the coupling 

with the citrate-capped AuNPs, and the removal of AAO template.  

 

Figure 61 shows the TEM images of the obtained sample. It is interesting that we 

found that the increase of deposition time does not result in an increase in the area where 

AuNPs are deposited on the tube surface. In other words, there is no increase of the area 

that is grafted by 4-aminobenzene moieties, but it results in the grafting of the dense 

organic layer onto the tube inner surface (see Figure 61b). This leads to the clogging of 

the entrance of the tube channels that can be revealed by the high amount of AuNPs 

located at the tube extremity. We suggest that this is because, in the case of CNTs, their 

average diameter is rather small (��200 nm). Then, when the inner surface of the tubes 
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undergoes the deposition for a relatively long time, the organic layer may be too dense, 

and thus, preventing the penetration of the redox active ions into the tube channels. As a 

result, the deposition continues only at the tube extremity where the ions can be supplied. 

From this finding, we conclude that the bipolar electrochemical technique employed in 

this work can not only introduce an organic layer or a biocompatible functional groups on 

the tube surface but also can be employed to create a dense organic layer as a cap of the 

tubes opening up applications in the field of drug delivery. 

 

4. Conclusions 

 

In conclusion, the asymmetric electrografting of the amino-terminated substituted 

aryl moieties (4-aminobenzene) onto carbon nanotubes was performed via the bipolar 

electrochemical reduction of 4-nitrobenzenediazonium salts as a proof-of-concept 

experiment with the aim to establish bipolar electrochemistry as a technique for the 

production of nanoscale Janus-type objects. Vertically aligned multi-walled carbon 

nanotubes prepared in the pores of an aluminum oxide template via chemical vapor 

deposition were used. Prior to the bipolar experiments, they were thermally annealed (re-

ordering of the structure) under nitrogen atmosphere and air oxidized (removing the 

carbonaceous impurities such as the amorphous carbon from the sample). It was found 

that the employed treatment can remove the amorphous carbon from the sample without a 

significant change in the graphiticity (crystallinity) of the tubes compared to the as-

synthesized ones. After that, the membrane was treated with HF acid solution to expose 

partly the tube ends, thus improving the polarization by the applied electric field in the 

bipolar experiments. It was found that an HF solution with a concentration of 12.5% is 

suitable. The membrane structure is preserved. Only the part at the tube extremities was 

removed. Then, the modification can be controlled to occur almost only on the inner 

surface of the tubes. By using an in-house bipolar cell simply made of a disposal cuvette 

as the solution reservoir equipped with two carbon rods that were horizontally aligned in 

the cell as the feeder electrodes, a power supply and a water cooling unit, an organic layer 
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of 4-aminobenzene was selectively grafted over the inner surface at the cathodic side of 

the tubes (whereas the water oxidation was generated at the anodic side) under an electric 

field of 40 kV m-1 and a deposition time of 30 s. For this reason, the bipolar 

electrochemical technique employed in this work can introduce an organic layer or 

biocompatible functional groups onto the tube surface selectively, thus extending the 

applications of CNTs in the fields of bio-fuel cell, bio-electrocatalyst and bio-sensing. 

For a prolonged deposition time of 120 s, we obtained a dense organic layer at the tube 

ends. For this reason, the bipolar electrochemical technique employed in this work can 

also serve to create a dense organic layer as a cap of the tubes, opening up applications in 

the fields of drug delivery and storage.   
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CHAPTER IV: CONCLUDING REMARKS 

 

 This thesis presents the use of bipolar electrochemistry as a new technique for 

generating Janus-type objects with hybrid organic-inorganic composition. The surface of 

carbon objects with various natures ranging from isotropic to anisotropic and various 

sizes ranging from micro- to nano-scale have been modified in a controllable manner 

based on a precise control of the deposition time and the applied electric field.  

 

 The asymmetric modification of micrometer-sized glassy carbon beads were first 

performed via two different strategies, the bipolar electrochemical reduction of 4-

nitrobenzenediazonium salts and in situ generated 4-carboxyphenyl diazonium salts as 

proof-of-concept experiments. These strategies lead to the successful grafting of different 

functional groups such as amino and carboxylic acid substituents selectively on one side 

(cathodic side) of the carbon beads whereas water is oxidized at another side, generating 

the oxygen bubbles (anodic side). The asymmetric grafting of the amino groups was 

revealed by charging the modified bead positively under acidic condition, and subsequent 

coupling with negatively-charged gold nanoparticles via the electrostatic interactions. 

The carbon beads modified with carboxylic acid groups were indirectly visualized by 

coupling the carboxylic acid moieties and the functional amino groups of a fluorescent 

molecule in the presence of carbodiimide reagent as the coupling agent. Additionally, we 

found that the asymmetric grafting of Janus-type beads in terms of geometric area can be 

easily tuned by varying the deposition time and/or the applied electric field used for the 

reduction of the diazonium salts. The Janus-type beads obtained via the asymmetric 

grafting of aryl diazonium salts with various substituents can be further developed in a 

straight forward way. It is now possible to create a platform for linking other molecules, 

leading to promising perspectives in the field of bio-sensing applications and enzymatic 

bio-fuel cells. 
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 Apart from the production of microscale Janus-type beads, this versatile and 

attractive approach on bipolar electrochemistry can be also generalized for the production 

of nanoscale asymmetric objects. Vertically aligned carbon nanotubes (VACNTs) grown 

over the inner wall of the pores of an anodic aluminum oxide (AAO) template 

(VACNT/AAO) were prepared via a CVD technique and used as bipolar electrode. The 

presence of AAO during the bipolar experiments intrinsically protects the outer surface of 

the tubes from the grafting of the 4-aminobenzene moieties. Therefore the organic layer 

is not only selectively grafted at the cathodic side of the tubes but also selectively grafted 

onto the inner surface of the tubes. Depending on the deposition time, the grafted area 

can be controlled. For short deposition times (30 s), the inner surface of the tubes was 

selectively modified with the organic layer at the cathodic side. Interestingly, for a longer 

deposition time (120 s), the ends of the tubes were capped with a dense organic layer of 

4-aminobenzene. For this reason, the employed bipolar electrochemical technique can not 

only generate CNTs bearing organic functionalities on the tube surface for bio-sensing or 

bio-electrocatalytic applications, but also can create a dense organic layer as a cap at one 

end of the tubes, opening up applications in the fields of drug delivery and storage.   
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Appendix A 

 

Details of thermal decomposition of VACNTs by Thermal Gravimetric Analysis (TGA) 
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The thermal gravimetric analysis (TGA) weight loss profile of VACNTs prepared 

at 750 �C via the decomposition of C2H2 using the AAO membrane as the template, post-

treated with the thermal annealing at 1000 �C for 4 h (under N2 atmosphere) and the air 

oxidation at 500 �C for 1 h after the removal of AAO by using the 50% HF solution is 

shown below. The data was taken by using a PYRIS 1 TGA, PERKIN-ELMER 

equipment in the temperature range of 100 oC to 1000 oC with a heating rate of 10 oC/min 

under an air flow. The weight loss profile shows that the tubes are thermally stable until 

��500 �C in air.  

 

 

 

Appendix Figure A1 TGA weight loss profile of VACNTs prepared at 750 �C via the 

decomposition of C2H2 using the AAO membrane as the template, 

post-treated with the thermal annealing at 1000 �C for 4 h (under 

N2 atmosphere) and the air oxidation at 500 �C for 1 h after the 

removal of AAO by using the 50% HF solution 
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Appendix B 

 

Details of EDX spectra of the as-purified VACNT/AAO sample  
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The SEM images with the top-surface view of the VACNT/AAO sample at both 

sides of the membrane and corresponding EDX spectra are shown below. The chemical 

compositions including carbon (C) (derived from CNTs), oxygen (O) and aluminium (Al) 

(derived from the alumina composition) are observed.  
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(b) 

 

Appendix Figure B1 (a-b) Low-magnification SEM images with the top-surface 

view of the VACNT/AAO sample at both sides of the 

membrane and corresponding EDX spectra 
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